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Chapter 0

Introduction

Let X,Y Ď CP2 be smooth algebraic curves of degrees m and n in the complex projective
plane CP2. If X and Y meet transversely, then the classical theorem of Bezout (see for
example [71]) asserts that the intersection XXY has precisely mn points. This statement has
a natural formulation in the language of cohomology. The curves X and Y have fundamental
classes rXs, rY s P H2pCP2; Zq. If C and C 1 meet transversely, then we have the formula

rXs Y rY s “ rX X Y s,

where the fundamental class rX X Y s P H4pCP2; Zq » Z of the intersection X X Y simply
counts the number of points where X and Y meet. Of course, this should not be surprising:
the cup product on cohomology classes is defined so as to encode the operation of intersection.
However, it would be a mistake to regard the equation rXs Y rY s “ rX X Y s as obvious,
because it is not always true. For example, if the curves X and Y meet nontransversely (but
still in a finite number of points), then we always have a strict inequality

rXs Y rY s ą rX X Y s

if the right hand side is again interpreted as counting the number of points in the set-theoretic
intersection of X and Y .

If we want a formula which is valid for non-transverse intersections, then we must alter
the definition of rX X Y s so that it counts each intersection point with the appropriate
multiplicity. In the situation described above, the multiplicity of an intersection point
p P X X Y can be defined as the dimension of the tensor product

OX,pbOCP2,p
OY,p .

as a vector space over the complex numbers. This tensor product has a natural algebro-
geometric interpretation: it is the local ring of the scheme-theoretic intersection X ˆCP2 Y
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6 CHAPTER 0. INTRODUCTION

at the point p. Consequently, the equation rXs Y rY s “ rX X Y s remains valid if the right
hand side is properly interpreted: we must define the fundamental class of the intersection
rX XY s in a way which takes into account the structure of X XY “ X ˆCP2 Y as a scheme.

In more complicated situations, the appropriate intersection multiplicities cannot always
be determined from the scheme-theoretic intersection alone. Suppose that X and Y are
singular subvarieties of a smooth algebraic variety Z having complementary dimension and
intersecting in a finite number of points. In this case, the appropriate intersection multiplicity
at a point p P X X Y is not always given by the complex dimension of the local ring

OXXY,p “ OX,pbOZ,p OY,p .

The reason for this is easy to understand from the point of view of homological algebra.
Since the tensor product functor bOZ,p is not exact, it does not have good properties
when considered alone. According to Serre’s intersection formula, the correct intersection
multiplicity is instead the Euler characteristic

ÿ

p´1qm dimC TorOZ,p
m pOX,p,OY,pq.

This Euler characteristic contains the dimension of the local ring of the scheme-theoretic
intersection as its leading term, but also higher-order corrections. We refer the reader to
[188] for further discussion of this formula for the intersection multiplicity.

If we would like the equation rXs Y rY s “ rX X Y s to remain valid in the more
complicated situations described above, then we need to interpret the right hand side in a
more sophisticated way. It is not enough to contemplate the intersection X X Y as a set or
even as a scheme: we need to to remember all of the Tor-groups TorOZ,p

m pOX,p,OY,pq, rather
than simply the tensor product OXXY,p “ OX,pbOZ,p OY,p “ TorOZ,p

0 pOX,p,OY,pq.
Let us begin by recalling how these invariants are defined. Suppose that R is a commu-

tative ring and that we are given R-modules A and B. We can then choose a projective
resolution of A as an R-module: that is, an exact sequence of R-modules

¨ ¨ ¨ Ñ P2
d
ÝÑ P1

d
ÝÑ P0 Ñ AÑ 0

where each Pm is projective. By definition, the groups TorRmpA,Bq are given by the homology
groups of the chain complex

¨ ¨ ¨ Ñ P2 bR B
d1
ÝÑ P1 bR B

d1
ÝÑ P0 bR B,

whose differential d1 is given by tensoring d with the identity map idB.
In the situation of interest to us, A and B are not simply R-modules: they are commu-

tative algebras over R. In this case, one can arrange that resolution pP˚, dq is compatible
with the algebra structure on A in the following sense:
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piq There exist multiplication maps Pm bR Pn Ñ Pm`n which endow the direct sum
À

ně0 Pn with the structure of a graded ring which is commutative in the graded sense:
that is, we have xy “ p´1qmnyx for x P Pm, y P Pn.

piiq The differential d : P˚ Ñ P˚´1 satisfies the (graded) Leibniz rule dpxyq “ pdxqy `
p´1qmxpdyq for x P Pm.

piiiq The surjection P0 Ñ A is a ring homomorphism.

Properties piq and piiq can be summarized by saying that pP˚, dq is a commutative differential
graded algebra over R. If B is any commutative R-algebra, then the tensor product complex

¨ ¨ ¨ Ñ P2 bR B
d1
ÝÑ P1 bR B

d1
ÝÑ P0 bR B

inherits the structure of a commutative differential graded algebra over R (or even over B).
We will denote this differential graded algebra by A bLR B and refer to it as the derived
tensor product of A and B over R.

Warning 0.0.0.1. The definition of AbLR B depends on a choice of projective resolution of
A by a differential graded algebra pP˚, dq. However, the resulting commutative differential
graded algebra turns out to be independent of pP˚, dq up to quasi-isomorphism. In particular,
the homology groups of AbLR B are independent of the resolution chosen: these are simply
the Tor-groups TorRn pA,Bq.

Let R be a commutative ring. Then every commutative R-algebra R1 can be regarded as
a commutative differential graded R-algebra by identifying it with a chain complex which is
concentrated in degree zero. We can therefore think of a commutative differential graded
algebra as a generalized of ordinary commutative rings. In particular, the derived tensor
product AbLR B bundles the information contained in the Tor-groups TorRn pA,Bq together
into a single package which behaves, in some sense, like a commutative ring. The central
idea of this book is that this heuristic can be taken seriously: objects like commutative
differential graded algebras are, for many purposes, just as good as commutative rings and
can be used equally well as the basic building blocks of algebraic geometry.

To fix ideas, let us introduce the a preliminary definition:

Definition 0.0.0.2. Let X be a topological space and let OX be a sheaf of commutative
differential graded C-algebras on X. For each integer n, we let HnpOXq denote sheaf of
vector spaces given by the nth homology of OX , so that H0pOXq is a sheaf of commutative
rings on X and each HnpOXq is a sheaf of H0pOXq-modules. We will say that pX,OXq is a
differential graded C-scheme if the following conditions are satisfied:

paq The pair pX,H0pOXqq is a scheme.
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pbq Each HnpOXq is a quasi-coherent sheaf on the scheme pX,H0pOXqq.

pcq The sheaves HnpOXq vanish for n ă 0.

Warning 0.0.0.3. The notion of differential graded scheme has been studied by many
authors (see [121], [41], [42], [19], [20]) using definitions which are different from (but closely
related to) Definition 0.0.0.2.

Warning 0.0.0.4. Definition 0.0.0.2 captures the spirit of the kinds of objects that we
will be studying in this book, at least when work over the field C. However, it does not
really capture the spirit of how we will work with them. If pX,OXq is a differential graded
C-scheme, then one should think of the structure sheaf OX as something that is well-defined
only up to quasi-isomorphism, rather than “on the nose.” This idea needs to be incorporated
systematically into every aspect of the theory, beginning with the notion of morphism
between differential graded C-scheme.

The theory of differential graded C-schemes has the following features:

• Every ordinary C-scheme pX,OXq can be regarded as a differential graded C-scheme:
we can simply regard the structure sheaf OX as a sheaf of commutative differential
graded algebras which is concentrated in degree zero.

• Every differential graded C-scheme pX,OXq determines a C-scheme pX,H0pOXqq,
which we will refer to as the underlying scheme of pX,OXq.

• If pX,OXq is a differential graded C-scheme, then the difference between pX,OXq

and its underlying scheme pX,H0pOXqq is measured by the quasi-coherent sheaves
tHnpOXquną0: if these sheaves vanish, then one should regard pX,OXq and pX,H0pOXqq

as equivalent data (see Warning 0.0.0.4).

• The theory of differential graded C-schemes has a good notion of fiber product.
However, the inclusion of ordinary C-schemes into differential graded C-schemes does
not preserve fiber products. In the setting affine schemes, the usual fiber product
SpecAˆSpecRSpecB is given by the spectrum of the tensor product AbRB. However,
the same fiber product in the setting of differential graded C-schemes can be described
as the spectrum (in a sense we will define later) of the derived tensor product AbLR B.

Recall that a scheme pX,OXq is said to be reduced if the structure sheaf OX has no
nonzero nilpotent sections. The relationship between differential graded C-schemes and
ordinary C-schemes is analogous to the relationship between schemes and reduced schemes.
Every scheme pX,OXq determines a reduced scheme pX,Ored

X q, where Ored
X is the quotient of

the structure sheaf OX by the ideal sheaf of locally nilpotent sections. However, the passage
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from pX,OXq to pX,Ored
X q loses information. Moreover, the lost information could be useful

even if one is primarily interested in smooth algebraic varieties: recall that if X,Y Ď CP2

are smooth algebraic curves, then the (possibly non-reduced) scheme-theoretic intersection
X ˆCP2 Y retains information about the multiplicity of each point p P X X Y , but this
information is lost by passing to the reduced scheme pX ˆCP2 Y qred (which remembers only
the set-theoretic intersection of X and Y ).

The situation for differential graded C-schemes is similar: if X and Y are (possibly
singular) subvarieties of a smooth algebraic variety Z which have complementary dimension
and meet in a finite number of points, then Serre’s formula for the intersection multiplicity
of X and Y at a point p can be written

ř

p´1qn dimC HnpOXXY qp, where OXXY denotes
structure sheaf of the fiber product X ˆZ Y in the setting of differential graded C-schemes.
By passing to the underlying scheme of this fiber product X ˆZ Y , we lose information
about all but the leading term of Serre’s formula.

Remark 0.0.0.5. To get a feeling for the sort of information which is encoded by the
fiber product X ˆZ Y in the setting of differential graded C-schemes, it is instructive to
consider the case where Z “ SpecR is an affine scheme and X “ SpecR{I, Y “ SpecR{J
are closed subschemes given by the vanishing loci of ideals I, J Ď R. In this case, the
usual (scheme-theoretic) intersection of X and Y is the affine scheme SpecR{pI ` Jq. The
difference between X ˆZ Y and this scheme-theoretic intersection is controlled by the groups
tHnpR{I b

L
R R{Jq “ TorRn pR{I,R{Jquną0. The group TorR1 pR{I,R{Jq can be described

concretely as the quotient pI X Jq{IJ . Any element f P R which belongs to the intersection
I X J can be viewed as a regular function on Z which vanishes on both of the closed
subschemes X and Y . Heuristically, such a function f might be said to vanish on the
intersection X X Y for two reasons, and we have f R IJ if these reasons are “different” in
some essential way. Consequently, the quotient TorR1 pR{I,R{Jq “ pI X Jq{IJ is a measure
of the redundancy of the equations defining the subschemes X and Y . Forming the fiber
product X ˆZ Y in differential graded C-schemes retains information about this sort of
redundancy: it remembers not only which functions vanish on the intersection of X and Y ,
but also why they vanish.

If X and Y are smooth subvarieties of a smooth complex algebraic variety Z, then some
simplifications occur. As long as the intersection X X Y has the “expected” dimension
dimX ` dimY ´ dimZ, the Tor-groups TorOZ,p

n pOX,p,OY,pq automatically vanish for each
p P X X Y . This means that the fiber product X ˆZ Y in the setting of differential graded
C-schemes agrees with the usual scheme-theoretic intersection, so the theory of differential
graded schemes has nothing new to tell us. However, the theory can be quite useful in the
case where the intersection X X Y does not have the expected dimension. We will say that
a differential graded C-scheme pW,OW q is quasi-smooth if it is locally of the form X ˆZ Y ,
where X and Y are smooth subvarieties of a smooth complex algebraic variety Z. Then:
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• Every quasi-smooth differential graded C-scheme pW,OW q has a well-defined virtual
dimension vdimwpW q P Z at each point w P W , which is a locally constant as a
function of w.

• The integer vdimwpW q can be thought of as the “expected dimension of W .” When
W is given as a fiber product X ˆZ Y as above, its virtual dimension is given by
the formula vdimwpW q “ dimwpXq ` dimwpY q ´ dimwpZq. Roughly speaking, the
virtual dimension can be described as “the number of variables minus the number of
equations.”

• If pW,OW q is quasi-smooth, then we always have vdimwpW q ď dimwpW q, with equality
if and only if pW,OW q is an ordinary C-scheme in a neighborhood of w. Beware
that unlike the actual dimension dimwpW q, the virtual dimension vdimwpW q can be
negative.

• Let pW,OW q be a quasi-smooth differential graded C-scheme of virtual dimension
d and let W pCq denote the set of closed points of W , equipped with the complex-
analytic topology. If the space W pCq is compact, then there is a canonical element
rW s P H2dpW pCq; Zq called the virtual fundamental class of pW,OW q (this element
can also be defined when W is not compact, in which case it lies in the Borel-Moore
homology of W pCq). In the special case where W is a smooth ordinary C-scheme,
the space W pCq is a compact complex manifold of dimension d and rW s is its usual
fundamental class.

• Let Z be a smooth projective variety of dimension n over the complex numbers. Given
a quasi-smooth differential graded C-scheme X of virtual dimension d and a map
X ãÑ Z which is a closed embedding at the level of topological spaces, let us abuse
notation by identifying the virtual fundamental class rXs P H2dpXpCq; Zq with its
image under the canonical map

H2dpXpCq; Zq Ñ H2dpZpCq; Zq » H2n´2dpZpCq; Zq,

where the isomorphism is provided by Poincare duality (note that when X is a smooth
subvariety of Z, this recovers the usual interpretation of rXs as an element in the
cohomology ring H˚pZpCq; Zq). Then the equation rXs Y rY s “ rX X Y s holds in
complete generality, provided that we interpret X X Y as the fiber product X ˆZ Y in
the setting of differential graded C-schemes.

Example 0.0.0.6. Consider the easiest case of Bezout’s theorem, where we are given a
pair of lines L,L1 Ď CP2 in the complex projective plane CP2. The lines L and L1 always
intersect transversely in exactly one point, except in the trivial case where the lines L and
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L1 are the same. In this degenerate case, the equation rLs Y rL1s “ rLX L1s seems to fail
dramatically, because the naive intersection L X L1 (formed either in the set-theoretic or
scheme-theoretic sense) does not even have the right dimension. However, the fiber product
pW,OW q “ LˆCP2 L1 in the differential graded setting is not equivalent to L as a differential
graded C-scheme: the homology sheaf H1pOW q is a line bundle of degree ´1 on W . This
allows us to extract some useful information:

• The virtual dimension of W is 0, which differs from the dimension of the its underlying
classical scheme L.

• As a topological space, W pCq is a 2-sphere. However, in addition to its usual funda-
mental class in H2pW pCq; Zq, the space W pCq also has a virtual fundamental class
rW s P H0pW pCq; Zq » Z. One can show that this virtual fundamental class is given
by the formula rW s “ degpH0pOW qq ´ degpH1pOW qq “ 1.

More informally, the structure sheaf OW “knows” both that W is expected to be zero-
dimensional and that it is expected to consist of exactly one point.
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0.1 Why Spectral Algebraic Geometry?

Our goal in this book is to study algebro-geometric objects like the differential graded
C-schemes of Definition 0.0.0.2. However, this merits a warning: in the setting of Definition
0.0.0.2, we could replace C by an arbitrary field κ, but the resulting theory is not well-
behaved if κ is of positive characteristic. To get a sensible theory in positive and mixed
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characteristic, we will replace the theory of differential graded commutative algebras by
the more sophisticated theory of E8-rings (for the reader who is not familiar with the
theory of E8-rings, we will give a brief review below; for the moment, it is enough to know
that they are mathematical objects that are equivalent to commutative differential graded
algebras when working over a field of characteristic zero, but better behaved in general).
Among our basic objects of study in this book are spectral schemes: pairs pX,OXq where
X is a topological space and OX is a sheaf of E8-rings on X which satisfies analogues of
the hypotheses which appear in Definition 0.0.0.2. Every spectral scheme pX,OXq has an
underlying scheme which we will denote by pX,π0 OXq.

A reader wanting to get a sense of the subject might ask the following:

pQq What is the difference between spectral algebraic geometry and classical algebraic
geometry? For example, what is the difference between a spectral scheme pX,OXq

and its underlying scheme pX,π0 OXq?

A more skeptical reader might put the question in a more pointed way:

pQ1q What use is the theory of spectral algebraic geometry? What can one do with a
spectral scheme pX,OXq that cannot already be done with the underlying scheme
pX,π0 OXq?

One answer to these questions was already sketched in the introduction: the language of
spectral algebraic geometry provides a natural framework in which to understand issues of
excess intersection and the theory of virtual fundamental classes. However, let us offer three
more:

pA1q The difference between spectral algebraic geometry and classical algebraic geometry
lies in the nature of the structure sheaves considered: the structure sheaf of a spectral
scheme pX,OXq is a sheaf of E8-rings, while the structure sheaf of an ordinary scheme
is a sheaf of commutative rings. Structured ring spectra (such as E8-rings) are
ubiquitous in the study of stable homotopy theory and its applications. The language
of spectral algebraic geometry provides a novel way of thinking about these objects,
just as the language of classical algebraic geometry supplies geometric insights which
are valuable in the study of commutative algebra.

pA2q The difference between spectral algebraic geometry and classical algebraic geometry
is analogous to the difference between triangulated categories and abelian categories.
To every spectral scheme pX,OXq, one can assign a triangulated category hQCohpXq
whose objects we will refer to as quasi-coherent sheaves on X (this triangulated category
arises as the homotopy category of a more fundamental invariant QCohpXq, which is
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a stable 8-category rather than a triangulated category). The triangulated category
hQCohpXq contains, as a full subcategory, the abelian category A of quasi-coherent
sheaves on the underlying scheme pX,π0 OXq. Roughly speaking, the difference
between the spectral scheme pX,OXq and the ordinary scheme pX,π0 OXq is measured
by the failure of hQCohpXq to be the derived category of A. In some situations, this
failure is a feature rather than a bug: the triangulated category hQCohpXq may be
better suited to a particular application.

pA3q The difference between spectral algebraic geometry and classical algebraic geometry
can be understood in terms of deformation theory. One can think of a spectral
scheme pX,OXq as given by an ordinary scheme X0 “ pX,π0 OXq together with an
“obstruction theory” for X0 (of a somewhat elaborate type). In many cases, this
obstruction theory is more natural and easier to work with than the obstruction theory
which is intrinsic to X0 itself.

We now briefly expand on each of these answers (we will discuss each one in much greater
detail in the body of the text; pA2q and pA3q are, in some sense, the main themes of Parts
III and ??, respectively).

0.1.1 Homotopy Theory and E8-Rings

Algebraic topology can be described as the study of topological spaces by means of
algebraic invariants. One of the main goals of the algebraic topologist is to answer questions
of the following general form:

Question 0.1.1.1. Let X be an interesting topological space (perhaps a classifying space,
a sphere, an Eilenberg-MacLane space, a compact Lie group, . . . ) and let E be an algebraic
invariant of spaces (such as homology, cohomology, K-theory, stable or unstable homotopy,
. . . ). What is EpXq?

Before attempting to answer a question of this kind, we would first need to decide what
sort of answer we are looking for. For example, suppose that we are given a topological
space X and asked to compute the cohomology groups H˚pX;κq with coefficients in a field κ.
These cohomology groups form a graded vector space over κ, so one could interpret Question
0.1.1.1 as follows:

paq Give a basis for the cohomology H˚pX;κq as a vector space over κ.

The invariants which arise in algebraic topology often have a very rich structure: for
example, the cohomology H˚pX;κq is not just a graded vector space over κ, it is a graded
algebra over κ. Consequently, one can formulate Question 0.1.1.1 differently:
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pbq Give a presentation of the ring H˚pX;κq by generators and relations.

Remark 0.1.1.2. Problems paq and pbq are not really the same. For example, it is possible
to solve problem paq without having any idea what the multiplication on H˚pX;κq looks
like. Conversely, the task of extracting a vector space basis from a presentation of H˚pX;κq
by generators and relations is nontrivial (but is at least a purely algebraic problem).

If the field κ is of characteristic 2 (or if the cohomology of X is concentrated in even
degrees) then the cohomology ring H˚pX;κq is commutative. In this case, we can reformulate
pbq using the language of algebraic geometry:

pcq Describe the affine scheme Spec H˚pX;κq (for example, by specifying its functor of
points).

The paradigm of pcq has turned out to be a surprisingly useful way of thinking about
Question 0.1.1.1: ideas from algebraic geometry can be a powerful tool for organizing and
understanding the results of many calculations in algebraic topology.

Example 0.1.1.3 (The Dual Steenrod Algebra). Let A_ denote the dual Steenrod algebra:
that is, the graded ring given by the direct limit

A_ “ lim
ÝÑ

Hred
˚`npKpF2, nq; F2q.

Then A_ is a graded Hopf algebra which is of central importance in algebraic topology by
virtue of the fact that it controls the co-operations on F2-homology: for every topological
space (or spectrum) X, the homology H˚pX; F2q has the structure of a comodule over A_.

The structure of A_ has a simple description (due to Milnor; see [152]): as an algebra, it
is isomorphic to a polynomial ring F2rζ1, ζ2, ζ3, . . .s, where each variable ζn is homogeneous
of degree 2n ´ 1 and the comultiplication ∆ : A_ Ñ A_bF2 A_ is given by the formula

∆pζnq “ 1b ζn ` ζ1 b ζ
2
n´1 ` ζ2 b ζ

4
n´2 ` ¨ ¨ ¨ ` ζn´1 b ζ

2n´1
1 ` ζn b 1.

Let G “ SpecA_ denote the associated affine scheme. For any commutative F2-algebra
R, we can identify the set GpRq of R-valued points of G with the subset of Rrrtss consisting
of those formal power series having the form t` ζ1t

2 ` ζ2t
4 ` ζ3t

8 ` ¨ ¨ ¨ ; equivalently, we
can describe GpRq as the subset of Rrrtss consisting of those power series fptq satisfying the
conditions

fptq ” t mod t2 fpt` t1q “ fptq ` fpt1q.

This supplies a conceptual way of thinking about co-operations on F2-homology: for any
space X, we can regard the vector space H˚pX; F2q as an algebraic representation of the
group scheme G (in fact, by taking into account the grading of H˚pX; F2q, we can regard it
as a representation of the larger group scheme G` parametrizing all power series f satisfying
fpt` t1q “ fptq ` fpt1q which are invertible under composition).



0.1. WHY SPECTRAL ALGEBRAIC GEOMETRY? 15

Example 0.1.1.4 (Complex Bordism and Formal Group Laws). For each n ě 0, let MUn

denote the group of bordism classes of stably almost-complex manifolds of dimension n. The
direct sum MU˚ “

À

MUn is a commutative ring, called the complex bordism ring. The
structure of this ring was determined by Milnor ([153]): it is isomorphic to a polynomial ring
Zrx1, x2, x3, . . .s where each variable xi is homogeneous of degree 2i. This result was refined
by Quillen, who showed that there is a canonical isomorphism of MU˚ with the Lazard
ring L classifying 1-dimensional formal group laws ([169]). In other words, if X denotes the
affine scheme Spec MU˚, then for any commutative ring R we can identify the set XpRq
of R-valued points of X with the set of power series fpu, vq P Rrru, vss which satisfy the
identities

fpu, 0q “ u fpu, vq “ fpv, uq fpu, fpv, wqq “ fpfpu, vq, wq.

Quillen’s theorem is the starting point for the subject of chromatic homotopy theory, which
has revealed a surprisingly tight connection between the study of cohomology theories and
the study of formal groups and their arithmetic properties.

Examples 0.1.1.3 and 0.1.1.4 are concerned with algebraic structures that one sees at
the level of homology and homotopy, respectively. For many applications, it is important to
understand algebraic structures at a more primitive level: for example, at the level of chain
complexes before passing to homology. To take a simple example, for any topological space M
and any commutative ring R, the cohomology groups H˚pM ;Rq form a graded-commutative
ring. However, when M is a smooth manifold and R “ R is the field of real numbers, then
H˚pM ;Rq can be described as the cohomology of the de Rham complex

Ω0
M

d
ÝÑ Ω1

M
d
ÝÑ Ω2

M Ñ ¨ ¨ ¨ .

One of the many convenient features of this description is it makes the graded-commutative
ring structure on H˚pM ; Rq visible at the level of cochains: the de Rham complex pΩ˚M , dq
itself is a commutative differential graded algebra. Motivated by this observation, Sullivan
introduced a construction which associates to an arbitrary topological space X a “polynomial
de Rham complex” C˚dRpX; Qq, given by a mixture of singular and de Rham complexes. This
construction is naturally quasi-isomorphic to the usual singular cochain complex C˚pX; Qq
but has the virtue of admitting a ring structure which is commutative at the level of cochains:
C˚dRpX; Qq is a commutative differential graded algebra over Q. The result is a powerful
algebraic invariant of X. For example, one has the following result:

Theorem 0.1.1.5 (Sullivan). Let X be a simply connected topological space whose rational
cohomology groups HnpX; Qq are finite-dimensional for every n. Then the rational homotopy
type of X can be recovered from its polynomial de Rham complex C˚dRpX; Qq. More precisely,
if we let XQ denote the space of maps from C˚dRpX; Qq into Q (in the homotopy theory of
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commutative differential graded algebras over Q), then there is a canonical map X Ñ XQ
which is an isomorphism on rational cohomology.

We refer to [?] for a more precise formulation and proof of Theorem 0.1.1.5 (we will
discuss a version of Theorem 0.1.1.5 in §??).

Remark 0.1.1.6. It follows from Theorem 0.1.1.5 that the ring structure on the polynomial
de Rham complex C˚dRpX; Qq contains much more information than the ring structure on
its homology H˚pX; Qq. It is easy to give examples of finite CW complexes X and Y for
which the cohomology rings H˚pX; Qq and H˚pY ; Qq are isomorphic, but much harder to
give examples in which the polynomial de Rham complexes C˚dRpX; Qq and C˚dRpY ; Qq are
quasi-isomorphic: if X and Y are simply connected, this can happen only if there exist maps
of spaces X Ñ Z Ð Y which induce isomorphisms on rational cohomology (in this case, we
say that X and Y are rationally homotopy equivalent).

Remark 0.1.1.7. The language of differential graded schemes suggests the possibility of
formulating Theorem 0.1.1.5 in an algebro-geometric way. Let X be a topological space and
let C˚dRpX; Qq be its polynomial de Rham complex. One might try to form some sort of
spectrum pX “ SpecC˚dRpX; Qq in the setting of differential graded Q-schemes, so that the
space XQ appearing in Theorem 0.1.1.5 can be interpreted as a space of Q-valued points of
pX. The object pX can be regarded as an algebro-geometric incarnation of the topological
space X (in the terminology of [209], it is the schematization of X).

The geometric object pX does not quite fit into the framework of differential graded
schemes introduced in Definition 0.0.0.2, because commutative differential graded algebra
C˚dRpX; Qq usually has nonzero homology in negative degrees (or, equivalently, nonzero
cohomology in positive degrees). However, it is an example of a different sort of algebro-
geometric object (a coaffine stack) which we will study in Chapter 9.

To define the polynomial de Rham complex C˚dRpX; Qq, it is necessary to work over
Q: if κ is a field of positive characteristic, then there is no canonical way to choose quasi-
isomorphism of the singular cochain complex C˚pX;κq with a commutative differential
graded algebra over κ. However, this should be regarded as a defect not of C˚pX;κq, but of
the notion of commutative differential graded algebra. The cochain complex C˚pX;κq is an
example of an E8-algebra over κ: it can be equipped with a multiplication law

m : C˚pX;κq bκ C˚pX;κq Ñ C˚pX;κq

which is “commutative and associative up to coherent homotopy”: in other words, it
satisfies every reasonable demand that can be formulated in a homotopy-invariant way
(for example, m need not be commutative, but it is commutative up to a chain homotopy
h : C˚pX;κq bκ C˚pX;κq Ñ C˚´1pX;κq).
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Remark 0.1.1.8. Any commutative differential graded algebra pA˚, dq over a field κ deter-
mines an E8-algebra over κ: a multiplication law which is commutative and associative “on
the nose” is, in particular, commutative and associative up to coherent homotopy. If the field
κ has characteristic zero, then every E8-algebra arises in this way, up to quasi-isomorphism.
Over fields of positive characteristic, this is not true: there exists E8-algebras which are
not quasi-isomorphic to commutative differential graded algebras. For example, if A is
an E8-algebra over the field F2, then the homology groups of A (regarded as a cochain
complex over F2) can be equipped with Steenrod operations Sqn : H˚pAq Ñ H˚`npAq). If A
is obtained from a commutative differential graded algebra over F2, then these operations
automatically vanish for ˚ ‰ n. However, in the case A “ C˚pX; F2q, they are usually
nontrivial (and are a useful and important tool for studying the F2-cohomology of X).

Let X be a topological space. Just as the polynomial de Rham complex C˚dRpX; Qq
is a much more powerful invariant than the rational cohomology ring H˚pX; Qq (Remark
0.1.1.6), the structure of the cochain complex C˚pX; Fpq as an E8-algebra is a much more
powerful invariant than the Fp-cohomology ring H˚pX; Fpq. For example, the E8-structure
on C˚pX; Fpq determines not only the ring structure on H˚pX; Fpq, but also the behavior
of Steenrod operations. In fact, from the E8-structure on C˚pX; Fpq one can recover the
entire p-adic homotopy type of X, thanks to the following analogue of Theorem 0.1.1.5:

Theorem 0.1.1.9 (Mandell). Let X be a simply connected space whose cohomology groups
HnpX; Fpq are finite for every n, and let X^p denote the space of E8-algebra morphisms from
C˚pX; Fpq to Fp (here Fp denotes an algebraic closure of Fp). Then there is a canonical
map X Ñ X^p which induces an isomorphism on Fp-cohomology.

Remark 0.1.1.10. In the situation of Theorem 0.1.1.9, the space X^p is a p-adic completion
of X. This implies, for example, that each homotopy group πnX^p an be identified with the
p-adic completion of πnX.

Remark 0.1.1.11. As with Theorem 0.1.1.5, it may be useful to think of Theorem 0.1.1.9
in algebro-geometric terms. If we view C˚pX; Fpq as a generalized commutative ring and
form some kind of spectrum pX “ C˚pX; Fpq, then we can view the p-adic completion X^p as
the space pXpFpq of Fp-valued points of pX. The geometric perspective is a bit more useful
here than in the rational case, because one can give an analogous description of the space
pXpRq for any commutative Fp-algebra R: it can be identified with the space of maps from
the étale homotopy type of SpecR into X^p . For more details, we refer the reader to Part
IX.

If A is an E8-algebra over a field κ, then the multiplication on A (which is commutative
up to homotopy) endows the homology H˚pAq with the structure of a graded-commutative
ring. Many of the graded-commutative rings which arise naturally in algebraic topology
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(such as the cohomology rings of spaces) can be obtained in this way. However, there are
many examples which are similar in spirit to which the formalism of chain complexes does
not quite apply. For example, for each n ě 0 let MSOn denote the collection of bordism
classes of closed oriented n-dimensional smooth manifolds. The collection tMSOnuně0 forms
a graded-commutative ring, where addition is given by the formation of disjoint unions and
multiplication is given by the formation of Cartesian products. Heuristically, one can think
of this graded ring as given by the homology of a “chain complex”

¨ ¨ ¨
B
ÝÑ Ω3

B
ÝÑ Ω2

B
ÝÑ Ω1

B
ÝÑ Ω0

where Ωn denotes the “collection” of compact oriented n-manifolds with boundary, and B is
given by forming the boundary. We have addition and multiplication operations

ž

: Ωn ˆ Ωn Ñ Ωn

ź

: Ωm ˆ Ωn Ñ Ωm`n

which are commutative and associative up to diffeomorphism. For many applications, it is
important that we do not define Ωn to simply be the set of diffeomorphism classes of compact
oriented n-manifolds with boundary: passing to diffeomorphism classes loses important
information about the behavior of addition and multiplication (for example, the natural
action of the symmetric group Σ2 on the manifolds M >M and M ˆM). One can retain
this information by regarding oriented bordism as an example of a more sophisticated object
which we will refer to as an E8-ring. We will give an informal review of the theory of
E8-rings in §0.2.3 (for a more detailed and precise account, see [139]). Let us summarize
some of the features of this theory which are relevant to the present discussion:

• Every E8-ring A has an underlying cohomology theory X ÞÑ A˚pXq. Roughly speaking,
one can think of an E8-ring A as a cohomology theory equipped with a multiplicative
structure which is commutative not only at the level of cohomology classes, but also at
the level of representatives for cohomology classes (at least up to coherent homotopy).

• If A is an E8-ring and n P Z is an integer, then we denote the cohomology group
A´np˚q by πnA and refer to it as the nth homotopy group of A. The direct sum
À

nPZ πnA has the structure of a graded-commutative ring. In particular, π0A is a
commutative ring and each πnA has the structure of a module over π0A.

• Every commutative ring R can be regarded as an E8-ring: the corresponding coho-
mology theory is ordinary cohomology with coefficients in R. The E8-rings A which
arise in this way are characterized by the fact that the homotopy groups πnA vanish
for n ‰ 0.

• If R is an E8-ring, we define an E8-algebra over R to be an E8-ring A equipped with a
morphism of E8-rings RÑ A. When R is an ordinary commutative ring, this reduces
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to the notion described informally earlier: one can identify A with a chain complex of
R-modules equipped with a multiplication which is commutative and associative up to
coherent homotopy. Under this identification, the homotopy groups of A (regarded
as an abstract E8-ring) correspond to the homology groups of the associated chain
complex.

There are many important examples of E8-rings A which do not arise as E8-algebras
over any commutative ring R.

Example 0.1.1.12 (Complex K-Theory). Let X be a finite CW complex. We define K0pXq

to be the Grothendieck group of the commutative monoid

t Complex vector bundles on X u{ isomorphism .

We refer to K0pXq as the complex K-theory of X. It is a commutative ring whose addition
and multiplication arise from the operation of direct sum and tensor product on complex
vector bundles, respectively.

One can extend the construction X ÞÑ K0pXq to define invariants KnpXq for any integer
n and any topological space X. These invariants determine a cohomology theory which we
refer to as complex K-theory. This cohomology theory is represented by an E8-ring roughly
speaking, the E8-structure reflects the fact that multiplication of K-theory classes can be
arises concretely for the formation of tensor products of complex vector bundles, which is
commutative and associative up to canonical isomorphism. Complex K-theory does not
admit the structure of an E8-algebra over any commutative ring R.

Example 0.1.1.13 (Complex Bordism). The complex bordism groups tMUnuně0 of Ex-
ample 0.1.1.4 can be identified with the homotopy groups of an E8-ring MU, called the
complex bordism spectrum. In this case, the E8-structure reflects the fact the fact that the
formation of Cartesian products of (stably almost) complex manifolds is commutative up to
isomorphism. As in Example 0.1.1.12, MU is not an E8-algebra over any commutative ring
R.

Example 0.1.1.14 (The Dual Steenrod Algebra). The dual Steenrod algebraA_ of Example
0.1.1.3 can be defined by the formula

A_ “ π˚pF2 ^ F2q,

where F2 ^ F2 denotes the E8-ring given by a coproduct of two copies of the ordinary
commutative ring F2. This E8-ring does arise as an E8-algebra over F2, but in two different
ways. In some situations, one might not want to choose between these (for example, if one
wants to study the action of the symmetric group Σ2 on F2 ^ F2 given by permuting the
factors), in which case it is better to view F2 ^ F2 as an abstract E8-ring.
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We can summarize the preceding discussion as follows:

piq Many calculations in algebraic topology yield commutative (or graded-commutative)
rings R. In these cases, it is sometimes easier to think about the affine scheme SpecR
(see Examples 0.1.1.3 and 0.1.1.4).

piiq Many of the graded-commutative rings which arise in algebraic topology can be
described as π˚A for some E8-ring A. Passage from A to π˚A loses a lot of potentially
useful information (see Theorems 0.1.1.5 and 0.1.1.9).

The theory of spectral algebraic geometry developed in this book can be described by
the rough heuristic

Spectral algebraic geometry “ Algebraic Geometry` E8-Rings.

One of the aims of this theory is to provide a setting which we can make use of insights piq
and piiq simultaneously: given an E8-ring A, we might wish to contemplate the spectrum of
A itself (regarded as a kind of generalized affine scheme), rather than the spectrum of some
ordinary commutative ring extracted from A (such as π0A or π˚A).

At this point, the reader might reasonably object that all of the schemes considered
in this section are affine. If we are interested only in affine schemes, then the language
of algebraic geometry is superfluous: the datum of an affine scheme is equivalent to the
datum of a commutative ring, and the datum of an affine spectral scheme is equivalent to
the datum of a (connective) E8-ring. However, there are also non-affine algebro-geometric
objects which are relevant to algebraic topology. This is particularly true in the study of
chromatic homotopy theory, where many non-affine objects arise naturally as parameter
spaces for families of formal groups.

Example 0.1.1.15 (Elliptic Cohomology). Let M1,1 denote the moduli stack of elliptic
curves. It follows from the work of Goerss, Hopkins, and Miller that there an essentially
unique sheaf O` of E8-rings on (the étale site of) M1,1 with the following features:

p˚q Let U “ SpecR be an affine scheme, let η : U ÑM1,1 be an étale map which classifies
an elliptic curve E over R, and set A “ O`pUq. Then there is a canonical isomorphism
of commutative rings π0A » R and a canonical isomorphism of the formal R-scheme
Spf A0pCP8q with the formal completion of E (compatible with the group structure on
E). Moreover, the homotopy groups πnA vanish when n is odd, and the multiplication
maps π2AbR πnA » πn`2A are isomorphisms for all n.

Passing to global sections, the sheaf O` determines an E8-ring TMF called the spectrum
of topological modular forms. The resulting cohomology theory manifests a rich interplay
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between ideas from algebraic topology, the arithmetic of modular forms, and mathematical
physics.

The sheaf O` has a natural interpretation in the language of spectral algebraic geometry.
In the terminology of Part I, the pair pM1,1,O

`q is an example of a nonconnective spectral
Deligne-Mumford stack, whose underlying classical Deligne-Mumford stack is the usual
moduli stack of elliptic curves. Moreover, the pair pM1,1,O

`q can itself be interpreted as a
moduli stack: it classifies elliptic curves (defined over E8-rings) which are equipped with an
additional datum called an orientation (for an informal summary, we refer the reader to
[140]). To make sense of this picture, it is important to have a theory of spectral algebraic
geometry which includes non-affine objects: elliptic curves are not affine, and the moduli
stack of elliptic curves is not even a scheme.

0.1.2 Derived Categories

Suppose that we are given some category C that we wish to understand (for example,
the category of complex representations of a finite group G). One basic strategy is to first
find some select some particularly simple objects tCx P CuxPX (for example, the collection of
irreducible representations of the group G) and hope that an arbitrary object C P C can
be expressed as a combination or superposition of the objects tCxuxPX . In many cases of
interest, the “simple” objects tCxu admit an algebraic classification, meaning that they are
parametrized by the points of some algebro-geometric object X.

Example 0.1.2.1. Let G be a finite flat commutative group scheme over a field κ. Then
the one-dimensional (algebraic) representations of G can be identified with maps from G to
the multiplicative group Gm, which we can identify with the κ-valued points of the Cartier
dual group scheme G_. In this case, the category ReppGq of algebraic representations of G
can be identified with the category of quasi-coherent sheaves on G_. In concrete terms, if
we write G “ SpecH for some finite-dimensional Hopf algebra H over κ, then G_ is the
spectrum of the dual Hopf algebra H_, and the desired equivalence is given by

t Quasi-coherent sheaves on G_ u » t H_-modules u
» t H-comodules u
» t Representations of G u.

For every κ-valued point ι : Specκ Ñ G_, this equivalence carries the skyscraper sheaf
ι˚κ (regarded as a quasi-coherent sheaf on G_) to the one-dimensional representation of G
classified by ι.

In Example 0.1.2.1, the identification of representations of G with quasi-coherent sheaves
G_ holds at the level of abelian categories. However, there are many examples in which one
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can apply essentially the same paradigm, but it only provides an equivalence at the level
of derived categories. Recall that for any abelian A, the derived category DpAq is obtained
from the category KpAq of chain complexes with values in A by formally adjoining inverses
to all quasi-isomorphisms (see [?]). If A is the abelian category of quasi-coherent sheaves on
a scheme X, we will denote DpAq simply by DpXq and refer to it as the derived category of
X.

Example 0.1.2.2 (The Fourier-Mukai Transform). Let E be an elliptic curve defined over
the field C of complex numbers. For every (closed) point x P E, let Opxq denote the line
bundle on E whose section are regular away from x and permitted to have a simple pole at
the point x. If we fix a base point e P E, then the construction

x ÞÑ Opx´ eq “ Opxq b Opeq´1

determines a bijection from the set of (closed) points of E to the set of isomorphism classes
of line bundles of degree zero on E. The line bundles tOpx´ equxPE are the fibers of a line
bundle P on E ˆ E corresponding to the Cartier divisor ∆´ pteu ˆ Eq ´ pE ˆ teuq, where
∆ is the image of the diagonal map E Ñ E ˆ E. If we let π0, π1 : E ˆ E Ñ E denote the
projection maps, then the construction F ÞÑ π1˚pP bπ˚0 F q determines a functor from the
abelian category of quasi-coherent sheaves on E to itself, which carries the skyscraper sheaf
at a closed point x P E to the line bundle Opx´ eq. At the level of abelian categories, this
functor is poorly behaved: it is neither exact nor faithful (for example, it annihilates any line
bundle of degree ď 0 on E). However, if we work instead at the level of derived categories,
then the analogous construction F ÞÑ Rπ1˚pP bπ˚0 F q determines an equivalence from the
category DpEq to itself. Moreover, an analogous statement holds if we replace E by an
abelian scheme over any commutative ring A (see [158]).

The derived category DpXq of a scheme X is a fundamental invariant of X. In many
cases it is even a complete invariant: if X is a smooth projective variety over a field κ

whose canonical bundle is either ample or anti-ample, then a celebrated result of Bondal
and Orlov asserts that X is determined (up to isomorphism in the category of schemes) by
the full subcategory Db

cohpXq Ď DpXq spanned by chain complexes with bounded coherent
cohomology; see [163]. One of the main objects of study in this book is an extension of the
construction X ÞÑ DpXq to the case where X is a spectral scheme. The main features of
this extension can be summarized as follows:

• To every spectral scheme pX,OXq, we will associate a triangulated category hQCohpXq.

• If pX,OXq is an ordinary scheme which is quasi-compact and separated, then hQCohpXq
can be identified with the derived category DpXq (see Corollary 10.3.4.13).
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• For a general spectral scheme pX,OXq, we can think of hQCohpXq informally as the
“derived category of X.” However, this heuristic has the potential to cause confusion:
in general, the triangulated category hQCohpXq need not be equivalent to the derived
category of any abelian category (however, it does arise as the homotopy category of a
stable 8-category QCohpXq, which is our actual object of interest).

• Let pX,OXq be a spectral scheme and let A denote the abelian category of quasi-
coherent sheaves on the underlying ordinary scheme X0 “ pX,π0 OXq. Then the
triangulated category hQCohpXq contains the abelian category A as a full subcategory.
Moreover, the inclusion A ãÑ hQCohpXq extends to a triangulated functor DpX0q Ñ

hQCohpXq. Assuming that X is quasi-compact and separated, this functor is an
equivalence if and only if pX,OXq is an ordinary scheme (see Corollary 10.3.4.12).

• Let X0 be a scheme and let A be the abelian category of quasi-coherent sheaves on
X0. Then the construction

t spectral schemes with underlying ordinary scheme X0 u

��
t triangulated categories containing A u

X ÞÑ hQCohpXq

is not too far from being an equivalence (see Corollary 9.6.0.2). In other words, we
have a rough heuristic

Spectral algebraic geometry “ Algebraic Geometry` Triangulated Categories.

Extending the theory of derived categories to the setting of spectral schemes is not an
empty theoretical exercise: it is often necessary when we wish to extend the paradigm of
Examples 0.1.2.1 and 0.1.2.2 to more complicated situations. Given a triangulated category
C and a family of objects tCxuxPX0 parametrized (in some sense) by a scheme X0, there
is often a canonical way to realize X0 as the underlying ordinary scheme of a spectral
scheme X in such a way that the construction x ÞÑ Cx extends to a triangulated equivalence
hQCohpXq Ñ C.

Example 0.1.2.3. Let G be a semisimple algebraic group defined over a field κ of character-
istic p ą 0, let g be its Lie algebra, and let U0pgq denote the restricted universal enveloping
algebra of g. Let X denote the flag variety parametrizing choices of Borel subgroup B Ď G,
let Xp1q denote the pullback of X along the Frobenius map ϕ : Specκ Ñ Specκ, and let
ϕgeom : X Ñ Xp1q denote the geometric Frobenius map associated to X. For each κ-valued
point x P Xp1qpκq, we can write the scheme-theoretic fiber ϕ´1

geomtxu as the spectrum SpecAx,
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where Ax is a finite-dimensional κ-algebra. The action of G on X determines an action
of the restricted universal enveloping algebra U0pgq on Ax, and the construction x ÞÑ Ax
extends to a functor of derived categories T : DpXp1qq Ñ DpU0pgqq. The functor T is far
from being an equivalence. However, if the prime number p is sufficiently large (with respect
to the Dynkin diagram of G), then the functor T can be factored as a composition

DpXp1qq “ hQCohpX p1 qq
π˚
ÝÑ hQCohpY p1 qq

T`
ÝÝÑ DpAq

with the following features:

• The functor T` is a fully faithful embedding whose essential image is a direct summand
(a “block”) of the derived category DpAq.

• The spectral scheme Y p1q is the Frobenius pullback of the (spectral) fiber product
Y “ rgˆg t0u, where rg Ď X ˆSpecκ g is the closed subscheme whose κ-valued points
are pairs px, vq P Xpκq ˆ g satisfying v P bx (here we abuse notation by identifying g

with the affine scheme Spec Sym˚
κ g
_).

• The triangulated functor π˚ : hQCohpX p1 qq Ñ hQCohpY p1 qq is induced by pushfor-
ward along a map of spectral schemes π : Xp1q Ñ Y p1q which exhibits Xp1q as the
ordinary scheme underlying Y p1q.

We refer the reader to [174] and [?] for more details.

Another motivation for the theory of spectral algebraic geometry is that the triangulated
categories which appear have better formal properties than their classical counterparts.

Example 0.1.2.4. Suppose we are given a pullback diagram σ :

X 1

f 1

��

g1 // X

f
��

Y 1
g // Y

of quasi-compact separated schemes. To the morphisms f and f 1 we can associate (derived)
pushforward functors

Rf˚ : DpXq Ñ DpY q Rf 1˚ : DpX 1q Ñ DpY 1q,

to the morphisms g and g1 we can associate (derived) pullback functors

Lg˚ : DpY q Ñ DpY 1q Lg1˚ : DpXq Ñ DpX 1q,

and there is an associated Beck-Chevalley transformation α : Lg˚ ˝Rf˚ Ñ Rf 1˚ ˝ Lg
1˚. This

natural transformation is an equivalence if either f or g is flat, but not in general. One can
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be more precise: the morphism α is an equivalence precisely when the diagram σ is also a
pullback square in the setting of spectral schemes.

The situation in spectral algebraic geometry is simpler: for any pullback diagram σ :

X 1

f 1

��

g1 // X

f
��

Y 1
g // Y

of quasi-compact separated spectral schemes, the associated diagram of triangulated cate-
gories

hQCohpX 1q

f 1˚
��

hQCohpXqg1˚oo

f˚
��

hQCohpY 1q hQCohpY qg˚oo

commutes up to canonical isomorphism (see Proposition 2.5.4.5).

Example 0.1.2.4 illustrates another general point: in classical algebraic geometry, the
role of flatness hypotheses is often to guarantee that fiber products of ordinary schemes
agree with the analogous fiber products in the setting of spectral schemes. If one extends
the vocabulary of algebraic geometry to include spectral schemes, then flatness hypotheses
are often superfluous (or can be substantially weakened).

Example 0.1.2.5 (Proper Descent). Let f : X Ñ S be a morphism of schemes which is
quasi-compact and faithfully flat. Then f is of effective descent for quasi-coherent sheaves.
More precisely, the abelian category AS of quasi-coherent sheaves on S can be identified
with the (homotopy) inverse limit lim

ÐÝ
AX‚ , where X‚ denotes the simplicial scheme obtained

from f (so that Xn “ X ˆS X ˆS ¨ ¨ ¨ ˆS X is the pn` 1q-fold fiber product of X over S)
and AX‚ denotes the associated cosimplicial abelian category.

In the setting of spectral algebraic geometry, one can formulate and prove variants of this
assumption without a flatness hypothesis. For example, if f : X Ñ S is a map of Noetherian
schemes which is proper, surjective, and of finite presentation and X‚ is defined as above,
then there is an associated equivalence QCohpSq Ñ lim

ÐÝ
QCohpX‚q of stable 8-categories

(see Theorem 5.6.6.1). One can even relax the hypothesis that f is surjective: in general,
the inverse limit lim

ÐÝ
QCohpX‚q can be identified with QCohppSq, where pS denotes the formal

completion of S along the image of f . For example, suppose that S is a Noetherian scheme
and let η : tsu ãÑ S be the inclusion of a closed point s P S (regarded as a reduced closed
subscheme of S). Then, for any quasi-coherent sheaf F on S, the restriction of F to the
formal completion pS can be recovered from the fiber η˚F , together with “derived descent
data” whose specification involves the iterated fiber products Xn “ tsu ˆS tsu ˆS ¨ ¨ ¨ ˆS tsu.
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Of course, it is essential here that these iterated fiber product are formed in the setting of
spectral schemes (and therefore depend on the local structure of S near the point s, not
only on the residue field of S at s).

0.1.3 Deformation Theory

Let X0 be a smooth algebraic variety over the field C of complex numbers. One of the
central aims of deformation theory is to understand the algebraic varieties which are “close
to X0” in some sense. For example, suppose that X0 appears as the fiber of a morphism
of schemes f : X Ñ S at some point s P S (having residue field C). One might hope that
there is a close relationship between properties of the fiber X0 and properties of other fibers
Xs1 “ X ˆS ts

1u, or of the scheme X itself. To guarantee this, one typically needs to make
global assumptions about the morphism f (for example, that it is flat or proper) and also
about base scheme S. For example, if s, s1 P S are points belonging to different connected
components of S, then there is no reason to expect any relationship between the fibers
X0 “ X ˆS tsu and Xs1 “ X ˆS ts

1u. One way to avoid this concern is to restrict attention
to the case where the scheme S has only one point: for example, the case where S “ SpecR
for some local Artinian ring R. This leads to the subject of formal deformation theory: the
study of algebraic varieties which are, in some sense, “infinitesimally close” to X0.

Let us begin by considering the simplest nontrivial case: let S denote the spectrum of
the ring Crεs{pε2q (sometimes referred to as the ring of dual numbers). If X0 is an algebraic
variety over C, then a first order deformation of X0 is pullback diagram of schemes

X0 //

��

X

��
Spec C // Spec Crεs{pε2q,

where the vertical maps are flat. The following proposition summarizes some standard facts
about first-order deformations:

Proposition 0.1.3.1. Let X0 be a smooth algebraic variety over C. Then:

paq For every first-order deformation X of X0, there is a canonical bijection

t Automorphisms of X that restrict to the identity on X0 u » H0pX0;TX0q.

Here TX0 denotes the tangent bundle of the smooth variety X0.

pbq There is a canonical bijection

t Isomorphism classes of first-order deformations of X0 u » H1pX0;TX0q.
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Many of the central ideas of spectral algebraic geometry originated from the desire
to extend Proposition 0.1.3.1 to the case where X0 is not smooth. To understand the
issues involved, let us begin by how the tangent bundle is defined in the special case where
X0 “ SpecB is an affine algebraic variety over C. Recall that to any homomorphism of
commutative rings φ : A Ñ B, one can introduce a B-module ΩB{A called the module of
Kähler differentials of B relative to A: it is generated as an B-module by symbols tdbubPB
which are subject only to the relations

dpb` b1q “ db` db1 dpbb1q “ bdb1 ` b1db dφpaq “ 0.

In the special case where B is a smooth A-algebra, the B-module ΩB{A is locally free of
finite rank. In particular, if X0 “ SpecB is smooth affine algebraic variety over C, then
the B-module ΩB{C is locally free of finite rank, and therefore corresponds to an algebraic
vector bundle T ˚X0

on X0 whose dual is (by definition) the tangent bundle TX0 .
To a pair of ring homomorphisms φ : AÑ B and ψ : B Ñ C, one can associate a short

exact sequence of Kähler differentials

C bB ΩB{A Ñ ΩC{A Ñ ΩC{B Ñ 0. (1)

This sequence is generally not exact on the left unless the ring homomorphism ψ is smooth.
To remedy this defect, André and Quillen (independently) introduced the theory known as
André-Quillen homology (generalizing earlier work of Lichtenbaum and Schlessinger), which
has the following features:

• To every homomorphism of commutative rings φ : A Ñ B and every B-module M ,
one associates a sequence of B-modules tDnpB{A;Mquně0, called the André-Quillen
homology groups of B relative to A with coefficients in M .

• The theory of André-Quillen homology generalizes the theory of Kähler differentials:
for every homomorphism of commutative rings φ : A Ñ B and every B-module M ,
there is a canonical isomorphism D0pB{A;Mq »M bB ΩB{A.

• If φ : AÑ B is a smooth homomorphism of commutative rings, then the André-Quillen
homology groups DnpB{A;Mq vanish for n ą 0 and any B-module M .

• To every composable pair of commutative ring homomorphisms φ : A Ñ B and
ψ : B Ñ C and every C-module M , one can associate a long exact sequence

¨ ¨ ¨ Ñ Dn`1pC{B;Mq Ñ DnpB{A;Mq Ñ DnpC{A;Mq Ñ DnpC{B;Mq Ñ ¨ ¨ ¨ ,

extending the short exact sequence (1) in the special case M “ C.
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The André-Quillen homology groups D˚pB{A;Mq are obtained from a more fundamental
invariant Lalg

B{A, called the cotangent complex of B over A, a chain complex of (projective)
B-modules which determines André-Quillen homology via the formula D˚pB{A;Mq “
H˚pM bB L

alg
B{Aq. This invariant was generalized in the work of Illusie (see [?] and [100]),

which associates to every morphism f : X Ñ S of schemes an object Lalg
X{S of the derived

category DpXq, specializing to the chain complex Lalg
B{A in the case where X “ SpecB and

S “ SpecA are affine. With this generalization, Proposition 0.1.3.1 extends as follows:

Proposition 0.1.3.2. Let X0 be an algebraic variety over C (not necessarily smooth).
Then:

paq For every first-order deformation X of X0, there is a canonical bijection

tAutomorphisms of X restricting to the identity on X0u » Ext0
DpX0q

pLalg
X{Spec C,OXq.

pbq There is a canonical bijection

tIsomorphism classes of first-order deformations of X0u » Ext1
DpX0q

pLalg
X{Spec C,OXq.

Illusie’s work on the cotangent complex was an important precursor to the theory of
spectral algebraic geometry developed in this book. To understand this point, let us begin
by recalling that the module of Kähler differentials ΩB{A can be characterized by a universal
property: for any B-module M , there is a canonical bijection

t B-module homomorphisms ΩB{A ÑMu

θ0
��

t A-algebra sections of the projection map B ‘M Ñ B u

which carries a map λ : ΩB{A Ñ M to the A-algebra homomorphism sλ : B Ñ B ‘M

given by sλpbq “ b` λpdbq. The entire cotangent complex Lalg
B{A can be characterized by an

analogous universal property. To simplify the discussion, let us assume that A and B are
Q-algebras; in this case, we will denote the cotangent complex Lalg

B{A simply by LB{A (see
Remark 0.1.3.7 below). If M is a chain complex of B-modules, then the direct sum B ‘M

can be regarded as an E8-algebra over B, with homotopy groups given by

π˚pB ‘Mq “

#

B ‘H0pMq if ˚ “ 0
H˚pMq if ˚ ‰ 0.

We then have a canonical bijection

t Maps from LB{A into M in the derived category DpBq u

θ
��

tHomotopy classes of sections of the projection q : B ‘M Ñ Bu
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where we interpret q as a map of E8-algebras over A. Note that LB{A is characterized by
this universal property: that is, we can define LB{A to be an object which corepresents the
functor

M ÞÑ tHomotopy classes of sections of the projection q : B ‘M Ñ Bu.

This supplies a definition of LB{A which makes sense for any morphism of E8-rings φ : AÑ B.
This leads to the theory of topological André-Quillen homology (see [145], [15], [16]). Like
the theory of ordinary André-Quillen homology, it can be “relativized” to non-affine settings:
to every morphism of spectral schemes f : X Ñ S, one can associate an object LX{S
of the triangulated category hQCohpXq called the relative cotangent complex of f . The
construction pf : X Ñ Sq ÞÑ LX{S has the following features:

p1q Suppose that X and S are ordinary schemes over Spec Q. Then the relative cotangent
complex LX{S (in the setting of spectral schemes) agrees with the cotangent complex
Lalg
X{S of Illusie (for the case of positive and mixed characteristic, see Remark 0.1.3.7

below).

p2q Let f : pX,OXq Ñ pS,OSq be a morphism of spectral schemes, let X0 “ pX,π0 OXq

and S0 “ pS, π0 OSq be their underlying ordinary schemes, and let A be the abelian
category of quasi-coherent sheaves on X0. Then the “degree zero” part of LX{S agrees,
as an object of A, with the sheaf of Kähler differentials ΩX0{S0 of the underlying map
f0 : X0 Ñ S0.

One of the advantages of working in the setting of spectral algebraic geometry is that there
is a much larger class of geometric objects for which the cotangent complex is well-behaved:

piq If X is a spectral C-scheme of finite presentation, then the cotangent complex
LX{Spec C P QCohpXq is perfect: that is, it is dualizable as an object of QCohpXq.

piiq If X is an ordinary C-scheme of finite presentation, then the cotangent complex
LX{Spec C is a perfect complex if and only if X is a local complete intersection (see
[?]).

To reconcile piq and piiq, we remark that if X is an ordinary scheme, then the assumption
that X is of finite presentation as a C-scheme does not imply that it is of finite presentation
as a spectral C-scheme. However, the converse does hold: more generally, if pX,OXq is a
spectral scheme of finite presentation over C (as a spectral scheme), then the underlying
ordinary scheme X0 “ pX,π0 OXq is of finite presentation over C (as a scheme). In this
case, the cotangent complex LX{Spec C is often a much more natural and useful object than
LX0{Spec C.
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Example 0.1.3.3 (Quot Schemes). Let X be a projective algebraic variety over C and let
F be a quasi-coherent sheaf on X. For every commutative C-algebra R, let XR denote the
fiber product X ˆSpec C SpecR and let FR denote the pullback of F to XR. We let F pRq
denote the collection of isomorphism classes of exact sequences

0 Ñ F 1 Ñ FR Ñ F 2 Ñ 0

in the abelian category of quasi-coherent sheaves on XR for which F 2 is flat over R. The
construction R ÞÑ F pRq is representable by a C-scheme Quot (see [?]). Given a C-valued
point η P F pCq classifying an exact sequence

0 Ñ F 1 Ñ F Ñ F 2 Ñ 0,

the Zariski cotangent space of Quot at the point η is the dual of the vector space HomApF
1,F 2q,

where A is the abelian category of quasi-coherent sheaves on X. This vector space can be
described as the 0th homology of the cotangent fiber η˚LQuot {Spec C. However, the scheme
Quot is usually highly singular, so the entire cotangent fiber η˚LQuot {Spec C can be difficult
to describe.

The situation is better if we work in the setting of spectral algebraic geometry. The
definitions of XR, FR, and F pRq make sense more generally when R is an E8-algebra over
C, and the resulting functor on E8-rings is representable by a spectral scheme Quot` having
Quot is its underlying scheme (this object was introduced in [41]). The structure of the
cotangent complex LQuot` {Spec C has an immediate description in terms of the functor F
(on E8-algebras). For example, if η P F pCq is as above, then the complex η˚LQuot` {Spec C
is dual to RHompF 1,F 2q: in particular, the nth homology group of η˚LQuot` {Spec C can
be identified with the C-linear dual of ExtnApF 1,F 2q.

Example 0.1.3.3 illustrates a general phenomenon: if Z0 is a scheme representing which
represents a functor F on the category of commutative rings, there is often a natural way to
extend the definition of F pRq to the case where R is an E8-ring in such a way that extended
functor is representable by a spectral scheme Z. Roughly speaking, we can think of the
specification of Z as given by “equipping Z0 with a deformation theory” (we will make this
idea precise in Part ??; see Theorem 18.1.0.1), according to the rough heuristic

Spectral algebraic geometry “ Algebraic Geometry`Deformation Theory.

From the above perspective, the subject of this book is a natural outgrowth of deformation
theory, which allows us to think about invariants like the cotangent complex in a more
flexible and general setting. However, the ideas of spectral algebraic geometry lead to new
and useful ways to think about deformation-theoretic questions even for smooth algebraic
varieties. For example, consider the following variant of Proposition 0.1.3.1:
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Proposition 0.1.3.4. Let X0 be a smooth algebraic variety over C. Then there is a
canonical “obstruction class map”

ρ : t First order deformations of X0 u Ñ H2pX0;TX0q

with the following property: if X is a first-order deformation of X0, then the obstruction class
ρpXq P H2pX0;TX0q vanishes if and only if X can be extended to a second-order deformation
of X0: that is, if and only if there exists a pullback square of schemes

X //

��

X

��
Spec Crεs{pε2q // Spec Crεs{pε3q

in which the vertical maps are flat.

Proposition 0.1.3.4 is very useful: it allows us to convert an a priori nonlinear problem
(deforming an algebraic variety) into a linear one (checking that a certain cohomology class
vanishes). This linear problem is often difficult, but in some cases it is trivial: for example,
if X0 is a smooth curve, then H2pX0;TX0q » 0, so Proposition 0.1.3.4 implies that any
first-order deformation can be extended to a second-order deformation.

One might object that Proposition 0.1.3.4 is not as satisfying as Proposition 0.1.3.1.
Note that Proposition 0.1.3.1 provides concrete geometric interpretations for the cohomology
groups H0pX0;TX0q and H1pX0;TX0q. Proposition 0.1.3.4 tells us that the cohomology
group H2pX0;TX0q is related to the problem of extending first-order deformations of X0 to
second-order deformations, but it does not tell us what a general element of H2pX0;TX0q

is. The language of spectral algebraic geometry provides a remedy for this situation. More
precisely, it allows us to formulate a generalization of Proposition 0.1.3.1 which supplies
a geometric interpretation for all of the cohomology groups HnpX0;TX0q and which has
Proposition 0.1.3.4 as a consequence.

Fix a smooth C-scheme X0 as in Proposition 0.1.3.4. For every commutative C-algebra
R equipped with an augmentation ρ : RÑ C, let us define a deformation of X0 over R to
be a flat R-scheme XR together with an isomorphism X0 » Spec CˆSpecRXR. The theory
of spectral algebraic geometry allows us to consider a more general notion of deformation: if
R is an E8-algebra over C (still equipped with an augmentation ρ : RÑ C), then we can
contemplate spectral schemes XR equipped with a flat map XR Ñ SpecR and an equivalence
X0 » Spec CˆSpecRXR (if R is an ordinary commutative ring, this reduces to the previous
definition: the flatness of XR over SpecR guarantees that XR is an ordinary scheme). We
then have the following generalization of Proposition 0.1.3.1, which we will discuss in Part
V (see Proposition 19.4.3.1 and Corollary 19.4.3.3):
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Proposition 0.1.3.5. Let X0 be a smooth algebraic variety over the field C of complex
numbers and let R denote the direct sum C‘M , where M is the chain complex of complex
vector spaces which is concentrated in degree n ě 0 and is isomorphic to C in degree n. Let
us regard R as an E8-algebra over C. Then:

paq If XR is any deformation of X0 over R, then there is a canonical bijection

tAutomorphisms of XR that are the identity on X0u{homotopy » HnpX0;TX0q.

pbq There is a canonical bijection

tDeformations of X0 over Ru{homotopy equivalence » Hn`1pX0;TX0q.

Remark 0.1.3.6. In the special case n “ 0, the E8-ring R “ C‘M can be identified with
the ordinary ring of dual numbers Crεs{pε2q, and Proposition 0.1.3.5 reduces to Proposition
0.1.3.1. Proposition 0.1.3.5 implies that all of the cohomology groups HmpX0;TX0q arise
naturally when studying deformations of X0 over “shifted” versions of the ring of dual
numbers.

To relate Propositions 0.1.3.4 and 0.1.3.5, we note that the Crεs{pε3q can be regarded as
a an extension of Crεs{pε2q by the square-zero ideal pε2q » C. This implies that there is a
pullback diagram of E8-algebras

Crεs{pε3q //

��

C

��
Crεs{pε2q φ // R,

where R is defined as in Proposition 0.1.3.5 in the special case n “ 1. We can interpret this
pullback square geometrically as supplying a pushout diagram of affine spectral schemes

Spec Crεs{pε3q Spec Coo

Spec Crεs{pε2q

OO

SpecR.

OO

oo

It follows that if X is a first-order deformation of X0, then X extends to a second-order
deformation if and only if the fiber product XR “ X ˆSpec Crεs{pε2q SpecR is a trivial
deformation of X0 over R (that is, if and only if it is equivalent to X0 ˆSpec C SpecR).
This is equivalent to the vanishing of a certain element ρpXq P H2pX0;TX0q, where ρ is the
“obstruction map” given by the composition

t Deformations of X0 over Crεs{pε2q u Ñ t Deformations of X0 over Ru
» H2pX0;TX0q.
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where the first map is given by extension of scalars along φ and the second follows from the
identification of Proposition 0.1.3.5.

Remark 0.1.3.7. Let φ : AÑ B be a homomorphism of commutative rings, which we can
also regard as a morphism of E8-rings. In general, the algebraic André-Quillen homology
of φ (denoted by Lalg

B{A in the above discussion and throughout this book) is different from
the topological André-Quillen homology of φ (denoted by LB{A in the above discussion
and throughout this book), though they are rationally equivalent (and therefore coincide
whenever B is a Q-algebra). The deformation theory of spectral schemes is controlled by
topological André-Quillen homology. For applications in positive and mixed characteristic,
it is often more appropriate to use the theory of derived algebraic geometry, in which
deformations are controlled by algebraic André-Quillen homology. We will give a detailed
exposition of derived algebraic geometry and its relationship to spectral algebraic geometry
in Part VII.

0.2 Prerequisites

Throughout this book, we will make extensive use of the language of 8-categories
developed in [138] and [139]. The reader will also need some familiarity with stable homotopy
theory and the theory of structured ring spectra, which are developed from the 8-categorical
perspective in [139] (for a different approach to the same material, see [60]). For the reader’s
convenience, we include a brief (and incomplete) expository account of some of the relevant
material below. For a more detailed account (which includes precise definitions and proofs),
we refer the reader to [138] and [139]. Since we will need to refer to these texts frequently in
this book, we adopt the following conventions:

pHTT q We will indicate references to [138] using the letters HTT.

pHAq We will indicate references to [139] using the letters HA.

For example, Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [138].
The other main prerequisite for reading this book is some familiarity with classical

algebraic geometry. To some extent, this is logically unnecessary: the theory of spectral
algebraic geometry is developed “from scratch” in this book, and most of our references to
the classical theory are purely for motivation. Moreover, we have made an effort to keep this
book as self-contained as possible as far as algebraic geometry and commutative algebra are
concerned: we have generally opted to include proofs of standard results (particularly in
cases where the use of “derived” methods can shed some additional light) except in a few
cases which would take us too far afield. Nevertheless, a reader who is not familiar with the
classical theory of schemes will almost surely find this book impenetrable (if he or she has
even made it this far).
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0.2.1 Homotopy Theory and Simplicial Sets

For every integer n ě 0, let |∆n| denote the topological n-simplex, given by

|∆n| “ tpx0, . . . , xnq P Rn`1
ě0 : x0 ` x1 ` ¨ ¨ ¨ ` xn “ 1u.

If X is a topological space, we let SingnpXq denote the set of continuous maps from |∆n|

into X. These sets play a role in defining many important invariants of X: for example, the
singular homology groups of X are obtained from the chain complex of free abelian groups

¨ ¨ ¨ Ñ ZrSing2Xs
d0´d1`d2
ÝÝÝÝÝÝÑ ZrSing1Xs

d0´d1
ÝÝÝÝÑ ZrSing0Xs

where each dk : SingnX Ñ Singn´1X is the map which assigns to a simplex the face opposite
its kth vertex. To describe the structure given by the sets tSingnpXquně0 and the face maps
dk in a more systematic way, it will be useful to introduce a bit of terminology.

Definition 0.2.1.1. For each integer n ě 0, we let rns denote the finite linearly ordered set
t0 ă 1 ă ¨ ¨ ¨ ă nu. We define a category ∆ as follows:

• The objects of ∆ are sets of the form rns for n ě 0.

• A morphism from rms to rns in ∆ consists of a nondecreasing function α : rms Ñ rns.

We will refer to ∆ as the category of combinatorial simplices. A simplicial set is a functor
S‚ : ∆op Ñ Set, where Set denotes the category of sets. In this case, we will denote the
value of S‚ on the object rns P ∆ by Sn, and refer to it as the set of n-simplices of S. We
let Set∆ denote the category Funp∆op,Setq of simplicial sets.

For each n ě 0, it is useful to think of the set rns “ t0 ă 1 ă ¨ ¨ ¨ ă nu as the set of
vertices of the topological n-simplex |∆n|. Every map of sets α : rms Ñ rns extends uniquely
to a linear map ρ : |∆m| Ñ |∆n|, given in coordinates by the construction

px0, . . . , xmq ÞÑ p
ÿ

αpiq“0
xi, . . . ,

ÿ

αpiq“n

xiq.

If X is a topological space, then composition with ρ determines a map SingnX Ñ SingmX.
In particular, we can regard the construction prns P ∆q ÞÑ pSingnX P Setq as a simplicial
set. We refer to this simplicial set as the singular simplicial set of X and denote it by
Sing‚X.

The construction X ÞÑ Sing‚X determines a functor Sing‚ from the category T op of
topological spaces to the category Set∆ of simplicial sets. This functor admits a left adjoint

Set∆ Ñ T op

S‚ ÞÑ |S‚|
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which we refer to as geometric realization. If X is a topological space which has the homotopy
type of a CW complex, then the counit map | Sing‚X| Ñ X is a homotopy equivalence (the
assumption that X has the homotopy type of a CW complex is necessary here: for any
simplicial set S‚, the geometric realization |S‚| is a CW complex). Consequently, from the
perspective of homotopy theory, no information is lost by discarding the original space X
in favor of the simplicial set Sing‚X (see Remark 0.2.1.5 below). In fact, it is possible to
develop the theory of algebraic topology in entirely combinatorial terms, using simplicial
sets as surrogates for topological spaces. Moreover, this approach has many advantages:

• Many of the most important algebraic invariants of a topological space X (such as
homotopy groups, homology, and cohomology) are obtained by studying maps from
n-simplices (and their boundaries) into X. Consequently, these invariants can be
extracted more directly from the singular simplicial set Sing‚X itself.

• Working with simplicial sets rather than topological spaces avoids many of the techni-
calities and pathologies of point-set topology.

• When applying homotopy-theoretic methods to areas of mathematics outside of topol-
ogy (a major theme of this book), the association between homotopy theory and
topological spaces can be an unnecessary distraction.

We will assume throughout this book that the reader is familiar with the homotopy
theory of simplicial sets. We devote the remainder of this section to giving a quick review of
some basic definitions and notations; for a more thorough introduction, we refer the reader
to the texts [81] and [151].

Notation 0.2.1.2. For each n ě 0, we let ∆n P Set∆ “ Funp∆op,Setq denote the simplicial
set which is represented by the object rns P ∆, so that the m-simplices of ∆n are given by
nondecreasing maps rms Ñ rns. We will refer to ∆n as the standard n-simplex. For any
simplicial set S‚, Yoneda’s lemma provides a canonical bijection Sn » HomSet∆p∆n, S‚q.
We will often abuse notation by using this bijection to identify elements of Sn with the
corresponding maps σ : ∆n Ñ S‚, referring to either datum as an n-simplex of S‚.

We let B∆n denote the simplicial subset of ∆n whose m-simplices are nondecreasing
maps α : rms Ñ rns which are not surjective. For 0 ă i ă n, we let Λni denote the simplicial
subset of B∆n Ă ∆n whose m-simplices are nondecreasing maps α : rms Ñ rns having the
property that αprmsq Y tiu Ĺ rns. We will refer to B∆n as the boundary of ∆n and to Λni as
the ith horn of ∆n.

If S‚ is a simplicial set, we will refer to the element of S0 as the vertices of S and
the elements of S1 as the edges of S. Each vertex v P S0 can be identified with a map
∆0 Ñ S‚. We will generally abuse notation by denoting the domain of this map by tvu.
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Taking S‚ to be the standard n-simplex, we see that each element 0 ď i ď n determines a
map tiu » ∆0 Ñ ∆n, which we will refer to as the ith vertex of ∆n.

Remark 0.2.1.3. For each n ě 0, the geometric realization of the standard n-simplex
∆n P Set∆ can be identified with the topological n-simplex

|∆n| “ tpx0, . . . , xnq P Rn`1 : x0 ` x1 ` ¨ ¨ ¨ ` xn “ 1u.

Under this identification, the geometric realization of B∆n corresponds to the subset of
|∆n| consisting of those n-tuples px0, . . . , xnq for which at least one coordinate xj vanishes.
The ith horn Λn

i corresponds to the subset of |∆n| consisting of those tuples px0, . . . , xnq

satisfying xj “ 0 for some j ‰ i. More informally: | B∆n| is obtained from the topological
n-simplex |∆n| by deleting its interior, while |Λn

i | is obtained from |∆n| by deleting its
interior together with the face opposite the ith vertex.

Definition 0.2.1.4. Let S‚ be a simplicial set. We will say that S‚ is a Kan complex
if, for every pair of integers 0 ď i ď n, every map σ0 : Λn

i Ñ S‚ can be extended to an
n-simplex σ : ∆n Ñ S‚. We let Kan denote the full subcategory of Set∆ spanned by the
Kan complexes; we will refer to Kan as the category of Kan complexes.

Let S‚ and T‚ be simplicial sets. Given a pair of maps f, g : S‚ Ñ T‚, a simplicial
homotopy from f to g is a map of simplicial sets h : S‚ ˆ∆1 Ñ T‚ such that h|S‚ˆt0u “ f

and h|S‚ˆt1u “ g. We will say that f and g are simplicially homotopic if there exists a
simplicial homotopy from f to g. If T‚ is a Kan complex, then this is an equivalence relation.
We let hKan denote the category whose objects are Kan complexes, where the morphisms
from S‚ to T‚ in hKan are the simplicial homotopy classes of maps from S‚ to T‚. We will
refer to hKan as the homotopy category of Kan complexes.

Remark 0.2.1.5. The homotopy category of Kan complexes is equivalent to the homotopy
category of CW complexes. More precisely, one can prove the following:

• For every topological space X, the singular simplicial set Sing‚X is a Kan complex
(this follows from the observation that each horn |Λni | is a retract of the corresponding
n-simplex |∆n|; see Remark 0.2.1.3). Moreover, if f, g : X Ñ Y are homotopic maps
between topological spaces X and Y , then the induced maps Sing‚pfq,Sing‚pgq :
Sing‚pXq Ñ Sing‚pY q are simplicially homotopic. Consequently, construction X ÞÑ

Sing‚X determines a functor hT op Ñ hKan, where hT op is the homotopy category
of topological spaces.

• For every simplicial set S‚, the geometric realization |S‚| is a CW complex. Moreover,
if f, g : S‚ Ñ T‚ are maps of simplicial sets which are simplicially homotopic, then the
induced maps of topological spaces |f |, |g| : |S‚| Ñ |T‚| are homotopic. Consequently,
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the construction S‚ ÞÑ |S‚| determines a functor hKan Ñ hT opCW, where hT opCW

denotes the homotopy category of CW complexes.

• For any CW complex X, the counit map v : | Sing‚X| Ñ X is a homotopy equivalence.
For any Kan complex S‚, the unit map S‚ Ñ Sing‚ |S‚| is a simplicial homotopy
equivalence. Consequently, the functors

hT opCW | | //hKan
Sing‚
oo

are mutually inverse equivalences of categories.

Remark 0.2.1.6. From a spectral scheme pX,OXq, one can extract topological spaces of
two very different types:

paq The underlying topological space X. This space will typically be non-Hausdorff and
therefore very far from the type of spaces which are usually studied in algebraic
topology. Consequently, we will not be interested in the homotopy type of such a
space: it is primarily a device that allows us to talk about sheaves.

pbq The underlying spaces of the E8-rings OXpUq. These spaces should really be regarded
as only well-defined up to homotopy equivalence: in other words, all that we care
about is their homotopy type. For example, we would never want to consider sheaves
on such a space (other than locally constant sheaves), because the notion of sheaf is
not homotopy invariant.

To distinguish between these possibilities, we will usually regard objects of type pbq as Kan
complexes rather than as topological spaces. Unless otherwise specified, we use the term
“space” to refer to a Kan complex. When we wish to refer to a set equipped with a topology,
we will use the term “topological space.”

0.2.2 Higher Category Theory

For a reader trained in classical algebraic geometry, the most exotic feature of spectral
algebraic geometry is likely to be that all of its basic objects come equipped with an “internal”
homotopy theory. To fix ideas, let us introduce a bit of terminology:

Definition 0.2.2.1. Let C be a category. For every pair of objects X,Y P C, let MapCpX,Y q

denote the set of morphisms from X to Y . We will say that C is a topological category if each
of the sets MapCpX,Y q has been equipped with a topology for which the composition maps

MapCpY,Zq ˆMapCpX,Y q Ñ MapCpX,Zq

are continuous (for every triple of objects X,Y, Z P C).
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The collection of spectral schemes (and other more general geometric objects that we
study in this book) can be organized into a topological category SpSch. In particular, if
X and Y are spectral schemes, then there is a notion of a homotopy from a morphism
f : X Ñ Y to another morphism g : X Ñ Y : namely, a path in the topological space
MapSpSchpX,Y q. Consequently, there is an associated notion of homotopy equivalence: we
say that spectral schemes X and Y are equivalent if there exist morphisms f : X Ñ Y and
g : Y Ñ X such that f ˝ g is homotopic to the identity map idY and g ˝ f is homotopic to
the identity map idX .

Warning 0.2.2.2. Let X be a spectral scheme over the field C of complex numbers. Then
we can associate to X its set XpCq of C-valued points (which is the same as the set of
C-valued points of the underlying ordinary scheme of X). The set XpCq inherits the
structure of a topological space (from the usual topology on C), which we will refer to as
the complex-analytic topology. This topology is completely unrelated to the structure of
SpSch as a topological category. If f, g : X Ñ Y are homotopic morphisms between spectral
schemes over C, then they induce the same map at the level of underlying schemes, so that
the induced maps XpCq Ñ Y pCq are the same. In particular, if f : X Ñ Y is an equivalence
of spectral schemes over C, then the induced map on C-valued points XpCq Ñ Y pCq is
a homeomorphism (not merely a homotopy equivalence). In more informal terms: the
“internal” homotopy theory of a spectral scheme X is a purely infinitesimal datum, and
is invisible to all classical invariants of X (like the space XpCq with its complex-analytic
topology, or the underlying topological space of X with its Zariski topology).

The notion of homotopy plays a central role in the theory in the theory of spectral
algebraic geometry: all meaningful properties of spectral schemes are invariant under
equivalence, and all meaningful properties of morphisms between spectral schemes are
invariant under homotopy. This motivates the following definition:

Definition 0.2.2.3. Let C be a topological category. The homotopy category hC is defined
as follows:

• The objects of hC are the objects of C.

• For every pair of objects X,Y P hC, the set HomhCpX,Y q of morphisms from X to Y
in hC is the set of path components π0 MapCpX,Y q of morphisms from X to Y in C.

• For every triple of objects X,Y, Z P C, the composition law ˝ : HomhCpY, Zq ˆ

HomhCpX,Y q Ñ HomhCpX,Zq is the unique map for which the diagram

MapCpY,Zq ˆMapCpX,Y q
˝ //

��

MapCpX,Zq

��
HomhCpY,Zq ˆHomhCpX,Y q

˝ // HomhCpX,Zq
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commutes.

By definition, two morphisms of spectral schemes f, g : X Ñ Y are homotopic if and
only if they induce the same morphism in the homotopy category hSpSch, and a morphism
f : X Ñ Y is an equivalence if and only if it induces an isomorphism in hSpSch. Consequently,
one way to enforce the philosophy that all constructions should be homotopy invariant is
to restrict attention to constructions which can be described entirely in terms of hSpSch.
However, this turns out to be too restrictive:

Example 0.2.2.4. Let C be a topological category. By definition, commutative diagrams
in the homotopy category hC correspond to diagrams in C which commute up to homotopy.
For example, a diagram

X 1
f 1 //

g1

��

X

g

��
Y 1

f // Y

in hC is specified by giving maps f, f 1, g, and g1 (well-defined up to homotopy) for which
there exists a path α joining g ˝f 1 to f ˝g1 in the topological space MapCpX

1, Y q. In practice,
we are often interested not only in knowing that α exists, but in specifying a particular
choice of α. A choice of homotopy is not something that can be described in terms of the
homotopy category hC alone.

Example 0.2.2.5. Let f0 : X0 Ñ X and f1 : X1 Ñ X be morphisms of spectral schemes.
To the pair pf0, f1q, one can canonically associate a new spectral scheme which we will
denote by X0 ˆX X1 and refer to as the fiber product of X0 with X1 over X. However,
this object is usually not a fiber product of X0 with X1 over X in the homotopy category
hSpSch. In the language of topological categories, it is a homotopy fiber product, which can
be characterized as follows: there is a diagram of spectral schemes

X01
p0 //

p1
��

X0

f0
��

X1
f1 // X

and a path α from f0 ˝ p0 to f1 ˝ p1 in the topological space MapSpSchpX01, Xq which
enjoys the following universal property: for every spectral scheme Y , the induced map from
MapSpSchpY,X01q to the fiber product

MapSpSchpY,X0q ˆMapSpSchpY,Xq
MapSpSchpY,Xq

r0,1s ˆMapSpSchpY,Xq
MapSpSchpY,X1q

is a (weak) homotopy equivalence. In other words, the datum of a morphism from Y to X01
is equivalent to the data of a pair of morphisms g0 : Y Ñ X0 and g1 : Y Ñ X1 together with
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a homotopy β from g0 ˝ f0 to g1 ˝ f1. In general, different choices for the homotopy β give
rise to different morphisms Y Ñ X01 (even up to homotopy). Consequently, X01 is usually
not a fiber product of X0 with X1 over X in the homotopy category hSpSch (such a fiber
product usually does not exist). It enjoys an analogous universal property, but one which
cannot be formulated in terms of the homotopy category hSpSch alone.

Examples 0.2.2.4 and 0.2.2.5 illustrate that passage from a topological category C to its
homotopy category hC loses essential information about diagrams even of very simple shape
(indexed by a square). For more complicated diagrams, the situation is worse. To fix ideas,
let us suppose that we are given some index category J and a functor F : J Ñ hC, which
we interpret as a commutative diagram in hC. In practice, this is often not good enough:
many basic constructions require that we promote F to a homotopy coherent diagram F in
C. This involves supplying the following sort of data:

pD1q For every morphism v : X Ñ Y in J , a choice of point F pvq P MapCpF pXq, F pY qq be-
longing to the path component F pvq P HomhCpF pXq, F pY qq “ π0 MapCpF pXq, F pY qq.

pD2q For every composable pair of morphisms X v
ÝÑ Y

w
ÝÑ Z in C, a choice of path

αw,v : r0, 1s Ñ MapCpF pXq, F pZqq

which begins at the point F pw ˝ vq and ends at the point F pwq ˝F pvq. Note that such
a path always exist, since

F pw ˝ vq “ F pwq ˝ F pvq P HomhCpF pXq, F pZqq “ π0 MapCpX,Zq.

pD3q For every triple of composable morphisms

W
u
ÝÑ X

v
ÝÑ Y

w
ÝÑ Z,

a continuous map of topological spaces r0, 1s2 Ñ MapCpW,Zq whose restriction to the
boundary of the square r0, 1s2 is as indicated in the diagram

F pw ˝ v ˝ uq
αw,v˝u //

αw˝v,u

��

F pwq ˝ F pv ˝ uq

F pwq˝αv,u
��

F pw ˝ vq ˝ F puq
αw,v˝F puq // F pwq ˝ F pvq ˝ F puq.

Beware that the existence of such a map might depend on the choices made in pD2q.

pDnq An analogous datum for every n-tuple of composable morphisms

X0
u1
ÝÑ X1

u2
ÝÑ ¨ ¨ ¨

un´1
ÝÝÝÑ Xn´1

un
ÝÑ Xn,

taking the form of a map of topological spaces r0, 1sn´1 Ñ MapCpX0, Xnq whose
restriction to the boundary Br0, 1sn´1 is determined by the data pDmq for m ă n.
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To give a precise and succinct formulation of pDnq, it is useful to introduce a bit of
terminology.

Construction 0.2.2.6. Let n ě 0 be an integer and let rns denote the linearly ordered set
t0 ă 1 ă . . . ă nu. We define a topological category T n as follows:

• The objects of T n are the elements of rns.

• Given a pair of objects i, j P T n, the space of maps from i to j is given by

MapT n
pi, jq “

#

H if i ą j

tf P r0, 1sti,i`1,...,ju : fpiq “ fpjq “ 1u if i ď j.

• For 0 ď i ď j ď k ď n, the composition law

˝ : MapT n
pj, kq ˆMapT n

pi, jq Ñ MapT n
pi, kq

is given by the formula pf ˝ gqptq “
#

fptq if j ď t ď k

gptq if i ď t ď j.

If C is a topological category, we let NpCqn denote the collection of all functors F : T n Ñ C
which are continuous (meaning that the induced map MapT n

pi, jq Ñ MapCpF piq, F pjqq is
continuous for i, j P rns.

Example 0.2.2.7. Let C be a topological category. Then:

• An element of NpCq0 is given by an object X of C.

• An element of NpCq1 is given by a morphism f : X Ñ Y in C.

• An element of NpCq2 is given by a (non-commuting) diagram

Y
g

��
X

f
>>

h // Z

in C together with a path α from h to g ˝ f (which “witnesses” that the diagram
commutes up to homotopy).

Remark 0.2.2.8. For each n ě 0, the topological category T n appearing in Construction
0.2.2.6 can be regarded as a “thickened version” of the partially ordered set rns “ t0 ă
1 ă ¨ ¨ ¨ ă nu (regarded as a category): each of the nonempty mapping spaces in T n is
contractible, and the homotopy category of T n can be identified with rns.
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Construction 0.2.2.9 (Homotopy Coherent Nerve: [45], [44]). Let m,n ě 0 be integers
and suppose we are given a nondecreasing map ρ : rms Ñ rns. Then we can extend ρ to a
(continuous) functor T m Ñ T n, which is given on morphisms by the construction

pf P MapT m
pi, jqq ÞÑ pρpfq P MapT n

pρpiq, ρpjqqq

ρpfqptq “ suppt0u Y tfptquρptq“tq.

If C is a topological category, then composition with ρ induces a map NpCqn Ñ NpCqm.
Using this construction, we can regard the construction rns ÞÑ NpCqn as a simplicial set. We
will denote this simplicial set by NpCq‚ and refer to it as the homotopy coherent nerve of C.

Example 0.2.2.10. Let C be any category. Then we can regard C as a topological category
by equipping each of the morphism sets HomCpX,Y q with the discrete topology. In this case,
we will refer to the homotopy coherent nerve NpCq‚ simply as the nerve of C. Unwinding
the definitions, we see that for each n ě 0, the set NpCqn can be identified with the set of all
diagrams

X0
f1
ÝÑ X1

f2
ÝÑ X2 Ñ ¨ ¨ ¨

fn
ÝÑ Xn

consisting of n-tuples of composable morphisms in C.

Using Construction 0.2.2.9, one can formulate the notion of a homotopy coherent diagram
in a very simple way:

Definition 0.2.2.11. Let J and C be topological categories. A homotopy coherent diagram
in C indexed by J is a map of simplicial sets NpJ q‚ Ñ NpCq‚.

Remark 0.2.2.12. When J is an ordinary category (regarded as a topological category
with the discrete topology), Definition 0.2.2.11 supplies a precise formulation of the incom-
plete definition sketched earlier (note that Definition 0.2.2.11 incorporates some additional
requirements regarding identity morphisms that we did not mention earlier: for example,
a homotopy coherent diagram should send each identity morphism in J to an identity
morphism in C).

Definition 0.2.2.11 illustrates a general phenomenon. Working with a topological cate-
gory C in a homotopy-invariant way often requires us to introduce definitions which seem
complicated because they involve a bottomless hierarchy of coherences (conditions which
hold up to homotopy, which must be specified and which must satisfy further conditions, but
only up to homotopy, which must also be specified, and so forth). However, these definitions
can often be expressed in a simple and efficient way in terms of the homotopy coherent
nerve NpCq‚, using the language of simplicial sets. For many purposes, it is convenient to
discard the topological category C and work directly with the simplicial set NpCq. It turns
out that passage to the homotopy coherent nerve does not lose any essential information.
For ordinary categories, it does not lose any information:
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Example 0.2.2.13. Let C be an ordinary category. Then C can be recovered (up to
canonical isomorphism) from its nerve NpCq‚. For example, the objects of C are just the
0-simplices of NpCq‚, and the morphisms of C are just the 1-simplices of NpCq‚. Given a pair
of composable morphisms X f

ÝÑ Y
g
ÝÑ Z in C, the composition g ˝ f is the unique morphism

h : X Ñ Z for which there exists a 2-simplex in NpCq whose boundary is given by

Y
g

  
X

f
>>

h // Z.

Elaborating on Example 0.2.2.13, one can prove the following:

Proposition 0.2.2.14. The construction C ÞÑ NpCq‚ determines a fully faithful embedding
from the category Cat of small categories to the category Set∆ of simplicial sets. The essential
image of this embedding consists of those simplicial sets S‚ with the following property:

p˚q For every pair of integers 0 ă i ă n and every map σ0 : Λn
i Ñ S‚, there is a unique

map σ : ∆n Ñ S‚ extending σ0.

Remark 0.2.2.15. In the special case i “ 1 and n “ 2, condition p˚q of Proposition 0.2.2.14
corresponds to the assertion that every composable pair of morphisms f : X Ñ Y and
g : Y Ñ Z uniquely determine a commutative diagram

Y
g

  
X

f
>>

h // Z.

Note that condition p˚q of Proposition 0.2.2.14 bears a striking resemblance to the
definition of a Kan complex (Definition 0.2.1.4). However, there are two important differences:
in the definition of a Kan complex, one requires that horns σ0 : Λni Ñ S‚ can be extended to
simplices σ : ∆n Ñ S‚ whenever 0 ď i ď n, not only for the “inner” horns where 0 ă i ă n.
On the other hand, the definition of a Kan complex only requires the existence of σ, not
its uniqueness. Neither of these conditions implies the other: the nerve of a category C is
not a Kan complex if there are non-invertible morphisms in C, and the singular complex of
a topological space X is not the nerve of a category if there are nonconstant paths in X.
However, these definitions admit a common generalization:

Definition 0.2.2.16. Let S‚ be a simplicial set. We will say that S‚ is an 8-category if it
satisfies the following condition:

p‹q For every pair of integers 0 ă i ă n and every map σ0 : Λni Ñ S‚, there exists a map
σ : ∆n Ñ S‚ extending σ0.
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Definition 0.2.2.16 was introduced originally by Boardman and Vogt in their work on
homotopy invariant algebraic structures (see [?]). They referred to condition p‹q as the
weak Kan condition and to simplicial sets S‚ satisfying p‹q as weak Kan complexes. The
theory was developed more extensively by Joyal, who refers to simplicial sets satisfying p‹q
as quasicategories (see, for example, [106], [107], and [108]).

Example 0.2.2.17. Every Kan complex is an8-category. In particular, if X is a topological
space, then the singular simplicial set Sing‚X is an 8-category. More informally, this means
any topological space X can be regarded as an 8-category (by passing to its singular
simplicial set), so that the theory of 8-categories subsumes the classical homotopy theory of
spaces.

Example 0.2.2.18. For every ordinary category C, the nerve NpCq‚ is an 8-category. More
informally, this means that any category C can be regarded as an 8-category (by passing
to its nerve). By virtue of Proposition 0.2.2.14, this involves no loss of information. We
will sometimes abuse terminology by not distinguishing between a category C and the
corresponding 8-category NpCq‚.

We will make extensive use of the theory of 8-categories in this book. For the reader’s
convenience, we include a brief account of some of the most important definitions and
notations; for a much more extensive discussion (which includes proofs of all of the assertions
made in this section), we refer the reader to [138].

Notation 0.2.2.19. We will typically denote 8-categories by caligraphic letters like C and
D, emphasizing the perspective that an 8-category is a kind of generalized category. If C is
an 8-category, we will refer to the 0-simplices of C as objects and to the 1-morphisms of C as
morphisms. If e : ∆1 Ñ C is a 1-simplex of C, then X “ e|t0u and Y “ e|t1u are 0-simplices
of C, and we will say that e is a morphism from X to Y and write e : X Ñ Y . For every
object X P C, we let idX denote the 1-simplex of C given by the composition ∆1 Ñ ∆0 X

ÝÑ C.
Then idX is a morphism from X to itself, which we will refer to as the identity morphism.

If C is an 8-category, then one can associate to every pair of objects X,Y P C a space
of map MapCpX,Y q, which we will regard as a Kan complex. In fact, there are several
natural constructions of this space which yield homotopy equivalent (but nonisomorphic)
results. Perhaps the easiest is this: one can define MapCpX,Y q as the Kan complex whose
n-simplices are maps ∆n ˆ∆1 to C which carry ∆n ˆ t0u to the vertex X and ∆n ˆ t1u to
the vertex Y . By definition, a vertex of MapCpX,Y q is a morphism f : X Ñ Y in C. We
wil say that two morphisms f, g : X Ñ Y are homotopic if the belong to the same path
component of MapCpX,Y q.
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Let σ be a 2-simplex in an 8-category C whose boundary is given as follows:

Y
g

  
X

f
>>

h // Z.

In this case, we will say that σ exhibits h as a composition of g with f and write h “ g ˝ f .
This is an abuse of notation: neither the 2-simplex σ nor the morphism h are uniquely
determined by f and g. However, one can show that h is determined uniquely up to homotopy
(and that the homotopy class of h depends only on the homotopy classes of f and g).

To every 8-category C one can associate an ordinary category hC, called the homotopy
category of C. The objects of hC are the objects of C, and a morphism from X to Y in hC is
a homotopy class of morphisms from X to Y in C. There is a canonical map of simplicial
sets C Ñ NphCq‚, and the homotopy category hC is universal with respect to this property.
We will say that a morphism in C is an equivalence if its image in hC is an isomorphism. We
say that two objects X,Y P C are equivalent if there exists an equivalence from X to Y .

If C and D are 8-categories, then a functor from C to D is a map of simplicial sets
F : C Ñ D. For every pair of simplicial sets C and D, we let FunpC,Dq denote the simplicial
set parametrizing maps from C to D: that is, FunpC,Dq is characterized by the existence of
a canonical bijection HomSet∆pS,FunpC,Dqq » HomSet∆pS ˆ C,Dq. If D is an 8-category,
then FunpC,Dq is also an 8-category. If C and D are both 8-categories, then we will refer
to FunpC,Dq as the 8-category of functors from C to D.

Let F : C Ñ D be a functor of 8-categories. We say that F is an equivalence of
8-categories if there exists a functor G : D Ñ C such that G ˝ F is equivalent to idC in the
8-category FunpC, Cq and F ˝G is equivalent to idD in the 8-category FunpD,Dq. In this
case, the functor G is also an equivalence of 8-categories, and we will say that the functors
F and G are mutually inverse.

The construction of homotopy coherent nerves establishes a close connection between
the theory of 8-categories and the theory of topological categories. One can show that the
construction C ÞÑ NpCq admits a left adjoint S‚ ÞÑ |CpS‚q| (modulo a slight technicality: one
needs to adjust Definition 0.2.2.1 to work in the setting of compactly generated topological
spaces, rather than arbitrary topological spaces). Moreover, one has the following:

piq For every8-category D, the unit map D Ñ Np|CpDq|q is an equivalence of8-categories.

piiq For any topological category C, the counit map v : |CpCq| Ñ C is a weak equivalence
of topological categories. More precisely, it is bijective on objects, and for each pair of
maps X,Y P C the induced map

vX,Y : Map|CpCq|pX,Y q Ñ MapCpX,Y q
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is a weak homotopy equivalence (that is, it induces isomorphisms on all homotopy
groups). If MapCpX,Y q has the homotopy type of a CW complex, then vX,Y is a
homotopy equivalence.

Assertions piq and piiq imply that the notions of topological category and 8-category
are, in some sense, equivalent. However, the latter theory is often much simpler to work
with in practice. For example, if C and D are 8-categories, then the 8-category FunpC,Dq
of functors from C to D is very easy to define, but the corresponding construction in the
setting of topological categories is much more involved.

We close this section by mentioning some of the most important examples of 8-categories:

Example 0.2.2.20. The collection of all Kan complexes can be organized into an8-category,
which we will denote by S and refer to as the 8-category of spaces. It is obtained by applying
a variant of Construction 0.2.2.9 to the category Kan of Kan complexes (which is enriched
in simplicial sets). In low degrees, it can be described explicitly as follows:

• A 0-simplex of S is a Kan complex X.

• A 1-simplex of S is a map of simplicial sets f : X Ñ Y , where X and Y are Kan
complexes.

• A 2-simplex of S is given by a (non-commuting) diagram of Kan complexes

Y
g

��
X

f
>>

h // Z

together with a simplicial homotopy from h to g ˝ f .

One can obtain an equivalent (but nonisomorphic) 8-category by applying the homotopy
coherent nerve to the (topological) category T opCW of CW complexes.

Example 0.2.2.21. The collection of all (small) 8-categories can be organized into an
8-category, which we will denote by Cat8 and refer to as the 8-category of 8-categories.
In low degrees, it can be described explicitly as follows:

• A 0-simplex of Cat8 is an 8-category C.

• A 1-simplex of Cat8 is a functor of 8-categories F : C Ñ D.

• A 2-simplex of Cat8 is given by a (non-commuting) diagram of 8-categories

D
G

��
C

F

??

H // E
together with an equivalence u : H Ñ G ˝ F in the 8-category FunpC, Eq.
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0.2.3 Stable Homotopy Theory and Structured Ring Spectra

Let X and Y be finite CW complexes equipped with base points x P X and y P Y .
One of the primary aims of algebraic topology is to describe the set rX,Y s of homotopy
classes of pointed maps from X to Y . This is generally quite difficult, even in the case
where X and Y are relatively simple spaces (such as spheres). A more reasonable (but still
difficult) problem is to determine the set rX,Y ss of stable homotopy classes of maps from X

to Y , which is defined as the direct limit lim
ÝÑ
rΣnX,ΣnY s; here ΣnX and ΣnY denote the

n-fold suspensions of X and Y , respectively. To study these invariants systematically, it is
convenient to introduce the following definition:

Definition 0.2.3.1. The Spanier-Whitehead category SW is defined as follows:

• An object of the category SW consists of a pair pX,mq, where X is a pointed finite
CW complex and m P Z is an integer.

• Given a pair of objects pX,mq, pY, nq P SW , the set of morphisms from pX,mq to pY, nq
is given by the direct limit lim

ÝÑk
rΣm`kX,Σn`kY s (note that the set rΣm`kX,Σn`kY s

is well-defined as soon as m` k and n` k are both nonnegative).

Given a pointed finite CW complex X and an integer m P Z, one should think of the
object pX,mq P SW as playing the role of the suspension ΣmX. Note that m is allowed to
be negative: the Spanier-Whitehead category enlarges the homotopy category of pointed
finite CW complexes by allowing “formal desuspensions.”

Example 0.2.3.2. For each integer n P Z, we let Sn denote the object of the Spanier-
Whitehead category given by pS0, nq, where S0 is the 0-sphere. We will refer to Sn as the
n-sphere. Note that for n ě 0, the object Sn can be identified with the pair pSn, 0q.

Remark 0.2.3.3. Let X and Y be pointed finite CW complexes, and let us abuse notation
by identifying X and Y with the objects pX, 0q, pY, 0q P SW. Then we have HomSWpX,Y q

is the set rX,Y ss of stable homotopy classes of maps from X to Y .

Remark 0.2.3.4. For any pair of objects pX,mq, pY, nq P SW , it follows from the Freuden-
thal suspension theorem that the diagram of sets trΣm`kX,Σn`kY su is eventually constant:
that is, the natural map

rΣm`kX,Σn`kY s Ñ rΣm`k`1X,Σn`k`1Y s

is bijective for k " 0.

Let H denote the category whose objects are pointed finite CW complexes and whose
morphisms are homotopy classes of pointed maps. Then the construction X ÞÑ ΣX
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determines a functor Σ from the category H to itself. Unwinding the definitions, the
Spanier-Whitehead category can be described as the direct limit of the sequence of categories

¨ ¨ ¨ Ñ H Σ
ÝÑ H Σ

ÝÑ H Σ
ÝÑ H Σ

ÝÑ HÑ ¨ ¨ ¨ .

The category H arises naturally as the homotopy category of an 8-category: namely,
the 8-category Sfin

˚ whose objects are pointed Kan complexes X for which the geometric
realization |X| has the homotopy type of a finite CW complex. Moreover, the suspension
functor Σ : HÑ H is obtained from a functor from Sfin

˚ to itself, which we will also denote
by Σ. It follows that the Spanier-Whitehead category SW can also be described as the
homotopy category of an 8-category: namely, the direct limit of the sequence

¨ ¨ ¨ Ñ Sfin
˚

Σ
ÝÑ Sfin

˚

Σ
ÝÑ Sfin

˚

Σ
ÝÑ Sfin

˚

Σ
ÝÑ Sfin

˚ Ñ ¨ ¨ ¨ .

We will denote this direct limit by Spfin and refer to it as the 8-category of finite spectra.
The set rX,Y ss of stable homotopy classes of maps from X to Y is generally easier to

compute than the set rX,Y s. This is in part because the problem is more structured: for
example, the set rX,Y ss has the structure of an abelian group. In fact, one can say much
more: the Spanier-Whitehead category SW is an example of a triangulated category in the
sense of Verdier (see [?]). The next definition axiomatizes those features of the 8-category
Spfin that are responsible for this phenomenon:

Definition 0.2.3.5. Let C be an 8-category. We will say that C is stable if it satisfies the
following axioms:

paq The 8-category C admits finite colimits.

pbq The 8-category C has an object which is both initial and final (we will refer to such
an object as a zero object of C and denote it by 0 P C).

pcq The suspension functor Σ : C Ñ C (given by the formula ΣX “ 0>X 0) is an equivalence
of 8-categories.

Example 0.2.3.6. The 8-category Sfin
˚ satisfies axioms paq and pbq of Definition 0.2.3.5:

axiom pbq follows from the fact that we are working with pointed spaces (so that the one-point
space is both initial and final), and axiom paq follows from from the observation that the
pointed finite spaces are precisely those that can be built from the 0-sphere S0 by means of
finite colimits. However, the 8-category Sfin

˚ does not satisfy pcq: for example, the 0-sphere
S0 cannot be obtained as the suspension of another space. The 8-category Spfin of finite
spectra can be regarded as remedy for the fact that Sfin

˚ does not satisfy pcq: it satisfies
property pcq by construction, and inherits properties paq and pbq from Sfin

˚ . Consequently,
Spfin is a stable 8-category.
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Remark 0.2.3.7. If C is a stable 8-category, then its homotopy category hC inherits the
structure of a triangulated category. Moreover, essentially all of the triangulated categories
which arise naturally can be described as the homotopy category of a stable 8-category.

Remark 0.2.3.8. Suppose we are given a commutative diagram σ :

X //

��

Y

��
W // Z

in a stable 8-category C. Then σ is a pullback square if and only if it is a pushout square.

Remark 0.2.3.9. Let C be an 8-category with a zero object 0, and suppose we are given a
commutative diagram σ :

X
f //

��

Y

g

��
0 // Z

in C. If σ is a pullback square, we abuse terminology by saying that the diagram

X
f
ÝÑ Y

g
ÝÑ Z

is a fiber sequence (here we are implicitly referring to the entire diagram σ, which we can think
of as supplying the morphisms f and g together with a nullhomotopy of the composition
g ˝ f). Similarly, if σ is a pushout square, then we abuse terminology by saying that the
diagram

X
f
ÝÑ Y

g
ÝÑ Z

is a cofiber sequence. If the 8-category C is stable, then the fiber sequence and cofiber
sequences in C are the same.

For many purposes, the 8-category Spfin of finite spectra is too small: it admits finite
limits and colimits, but does not admit many other categorical constructions such as infinite
products. One can remedy this by passing to a larger 8-category.

Construction 0.2.3.10. Let C be a small8-category. Then one can form a new8-category
IndpCq, called the 8-category of Ind-objects of C. This 8-category admits two closely related
descriptions:

paq It is obtained from C by formally adjoining filtered colimits. In particular, every object
of IndpCq can be written as the colimit lim

ÝÑ
Cα of some filtered diagram tCαu in C, and

the mapping spaces in IndpCq can be described informally by the formula

MapIndpCqplimÝÑCα, limÝÑDβq » lim
ÐÝ
α

lim
ÝÑ
β

MapCpCα, Dβq.
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pbq If C admits finite colimits, then IndpCq can be described as the full subcategory of
FunpCop,Sq spanned by those functors which preserve finite limits.

We let Sp denote the 8-category IndpSpfinq. We will refer to Sp as the 8-category of
spectra. A spectrum is an object of the 8-category Sp.

Remark 0.2.3.11. If C is a stable 8-category, then the 8-category IndpCq is also stable.
In particular, the 8-category Sp is stable, so the homotopy category hC is triangulated.

Definition 0.2.3.12. For each n P Z, let Sn P CW be defined as in Example 0.2.3.2 and
regard Sn as an object of the 8-category Sp. In the special case n “ 0, we will denote Sn

simply by S and refer to it as the sphere spectrum.
Let E be an arbitrary spectrum and let n P Z be an integer. Since the homotopy category

hSp is additive, the set HomhSppS
n, Eq “ π0 MapSppS

n, Eq has the structure of an abelian
group. We will denote this group by πnE and refer to it as the nth homotopy group of E.
We say that a spectrum E is connective if the homotopy groups πnE vanish for n ă 0. We
let Spcn denote the full subcategory of Sp spanned by the connective spectra.

There are many different ways of looking at the notion of a spectrum (most of which lead
to alternative definitions of the 8-category Sp). Let us summarize a few of the most useful:

Spectra are infinite loop spaces: Let E be a spectrum. For each integer n P Z, we let
Ω8´nE denote the mapping space MapSppS

´n, Eq. We refer to Ω8´nE as the nth
space of E. Note that each Ω8´nE can be identified with the loop space of Ω8´n´1E.
Consequently, the construction E ÞÑ tΩ8´nEunPZ determines a functor from the
8-category Sp to the inverse limit of the tower of 8-categories

¨ ¨ ¨
Ω
ÝÑ S˚ Ω

ÝÑ S˚ Ω
ÝÑ S˚ Ω

ÝÑ S˚ Ω
ÝÑ ¨ ¨ ¨ .

One can show that this functor is an equivalence of 8-categories. In other words, the
data of a spectrum E is equivalent to the data of an infinite loop space: that is, a
sequence of pointed spaces tEpnqunPZ which are equipped with homotopy equivalences
Epnq » ΩEpn` 1q.

Spectra are cohomology theories: Let E be a spectrum. For every space X, let EnpXq
denote the set π0 MapSpX,Ω8´nEq of homotopy classes of (unpointed) maps from X

into the nth space of E. We will refer to EnpXq as the nth cohomology group of X with
coefficients in E. One can show that the construction X ÞÑ tEnpXqunPZ (which extends
in a canonical way to an invariant of pairs of spaces A Ď X) is a generalized cohomology
theory: that is, it satisfies all of the Eilenberg-Steenrod axioms characterizing singular
cohomology, with the exception of the dimension axiom. Moreover, the converse is true
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as well: according to the Brown representability theorem, every generalized cohomology
theory arises in this way. More precisely, this construction yields a bijection

t Spectra u{ equivalence » t Cohomology theories u{ isomorphism .

Spectra are generalized abelian groups: Let E be a spectrum. Then the 0th space
Ω8E is an example of an E8-space: that is, it can be equipped with an addition law

` : Ω8E ˆ Ω8E Ñ Ω8E

which is unital, commutative, and associative up to coherent homotopy. Moreover,
the construction E ÞÑ Ω8E restricts to an equivalence from the 8-category Spcn of
connective spectra to the 8-category CAlggppSq of grouplike E8-spaces (an E8-space
A is said to be grouplike if the addition on A exhibits the set of connected components
π0A as an abelian group).

Spectra are the universal stable 8-category: The 8-category Sp is stable, admits
small colimits, and contains a distinguished object S (the sphere spectrum). Moreover,
it is universal with respect to these properties: if C is any stable 8-category which
admits small colimits and LFunpSp, Cq denotes the full subcategory of FunpSp, Cq
spanned by those functors which preserve small colimits, then the construction F ÞÑ

F pSq induces an equivalence of 8-categories e : LFunpSp, Cq Ñ C. In particular, for
each object C P C, there is an essentially unique functor F : Sp Ñ C which preserves
small colimits and satisfies F pSq “ C.

Let X be a spectrum. We will say that X is discrete if the homotopy groups πnX
vanish for n ‰ 0. In this case, X is determined (up to canonical equivalence) by the abelian
group π0X. More precisely, the construction X ÞÑ π0X induces an equivalence from the full
subcategory Sp♥ Ď Sp spanned by the discrete spectra to the ordinary category of abelian
groups (which we can regard as an 8-category by taking its nerve). We can use an inverse
of this equivalence to identify the category of abelian groups with the full subcategory
Sp♥ Ď Sp. If A is an abelian group, then the image of A under this identification is called
the Eilenberg-MacLane spectrum of A. As an infinite loop space, it is given by the sequence
tKpA,nqu; here KpA,nq denotes the Eilenberg-MacLane space characterized by the formula

π˚KpA,nq “

#

A if ˚ “ n

0 otherwise.

The corresponding cohomology theory is ordinary cohomology with coefficients in A.
Throughout this book, we will will often abuse notation by identifying an abelian group A

with its corresponding Eilenberg-MacLane spectrum.
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It follows from the universal property of the 8-category Sp that there is an essentially
unique functor b : Spˆ Sp Ñ Sp which preserves small colimits separately in each variable
and satisfies S b S “ S. We will refer to this functor as the smash product. Using the
universal property of the 8-category Sp, one can show that the smash product functor
endows Sp with the structure of a symmetric monoidal 8-category: that is, the functor b is
commutative, associative, and unital up to coherent homotopy.

Definition 0.2.3.13. For any symmetric monoidal 8-category C, we let CAlgpCq denote the
8-category of commutative algebra objects of C. Roughly speaking, an object of CAlgpCq
is given by an object A P C equipped with a multiplication m : A b A Ñ A which is
commutative, associative, and unital up to coherent homotopy. In the special case where C
is the 8-category of spectra (equipped with the symmetric monoidal structure given by the
smash product), we will denote CAlgpCq simply by CAlg. We will refer to the objects of
CAlg as E8-rings and to the 8-category C as the 8-category of E8-rings.

Remark 0.2.3.14. Let E be a spectrum, so that E determines a cohomology theory which
assigns to each space X a graded abelian group E˚pXq. If E is an E8-ring, then the
associated cohomology theory is multiplicative: that is, it assigns to each space X a graded
ring E˚pXq which is commutative in the graded sense (meaning that xy “ p´1qmnyx for
x P EmpXq and y P EnpXq). However, the converse fails dramatically: there are many
examples of multiplicative cohomology theories which cannot be represented by E8-rings.
Roughly speaking, one expects a cohomology theory E˚ to be represented by an E8-ring if it
is can be equipped with a multiplicative structure for which commutativity and associativity
can be seen (at least up to coherent homotopy) at the level of cochains, rather than merely
at the level of cohomology.

Let E be an E8-ring. Then the collection of homotopy groups π˚E “ E´˚ptxuq has
the structure of a graded-commutative ring. In particular, π0E is a commutative ring and
each πnE can be regarded as a module over π0E. We will say that E is connective if it
is connective when regarded as a spectrum (that is, the homotopy groups πnE vanish for
n ă 0) and we will say that E is discrete if it is discrete when regarded as a spectrum (that
is, the homotopy groups πnE vanish for n ‰ 0). We let CAlgcn denote the full subcategory
of CAlg spanned by the connective E8-rings, and we let CAlg♥ denote the full subcategory
of CAlg spanned by the discrete E8-rings.

Remark 0.2.3.15. The construction A ÞÑ Ω8A induces an equivalence from the 8-category
of connective spectra to the 8-category of grouplike E8-spaces. We can phrase this more
informally as follows: giving a connective spectrum is equivalent to giving a space X which
behaves like an abelian group up to coherent homotopy. This heuristic can be extended
to E8-rings: a connective E8-ring A can be thought of as a space X which behaves like a
commutative ring up to coherent homotopy.
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Remark 0.2.3.16. The construction A ÞÑ π0A determines an equivalence from the 8-
category CAlg♥ to the ordinary category of commutative rings (regarded as an 8-category
via its nerve). We will generally abuse notation by using this equivalence to identify CAlg♥

with the category of commutative rings, so that every commutative ring R is regarded as an
E8-ring. In terms of the heuristic of Remark 0.2.3.15, this corresponds to regarding R as a
space equipped with the discrete topology.

By virtue of Remark 0.2.3.16, we can regard the theory of E8-rings as a generalization of
classical commutative algebra. Moreover, it is a robust generalization: all of the basic results,
constructions, and ideas that are needed to set up the foundations of classical algebraic
geometry have analogues in the setting of E8-rings, which we will make use of throughout
this book.

0.3 Overview

This book is divided into nine parts, each of which is devoted to exploring some facet of
the relationship between algebraic geometry and structured ring spectra. Our first goal is to
establish foundations for the subject. We begin in Part I by introducing “spectral” versions of
various algebro-geometric objects (such as schemes, algebraic spaces, and Deligne-Mumford
stacks) and studying how these objects are related to their classical counterparts. We
also explain how to associate to every spectral scheme X (or, more generally, any spectral
Deligne-Mumford stack) a stable 8-category QCohpXq of quasi-coherent sheaves on X,
which is closely related to the abelian categories of quasi-coherent sheaves which appear in
classical algebraic geometry.

Part II is concerned with proper morphisms in the setting of spectral algebraic geometry.
In some sense, there is very little to say here: a morphism f : pX,OXq Ñ pY,OY q of
spectral schemes is proper if and only if the underlying morphism of ordinary schemes
f0 : pX,π0 OXq Ñ pY, π0 OY q is proper. However, some aspects of the theory work more
smoothly in the spectral setting. For example, many important foundational results about
proper morphisms between Noetherian schemes (for example, the direct image theorem,
the theorem on formal functions, the Grothendieck existence theorem, and Grothendieck’s
formal GAGA principle) admit generalizations to the setting of spectral algebraic geometry
which do not require any Noetherian assumptions (see Theorem 5.6.0.2, Lemma 8.5.1.1,
Theorem 8.5.0.3, and Corollary 8.5.3.4).

The subject of Part III is the following general question: to what extent can an algebro-
geometric object X can be recovered from the stable 8-category QCohpXq? We address
this question by proving several “Tannaka reconstruction” type results which assert that, in
many circumstances, we can recover X as a kind of “spectrum” of QCohpXq (much like an
affine scheme pY,OY q can be recovered as the spectrum of its coordinate ring ΓpY ; OY q). We
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also show that there is a close relationship between stable 8-categories C equipped with an
action of QCohpXq and sheaves of stable 8-categories on X (categorifying the relationship
between quasi-coherent sheaves on an affine scheme pY,OY q and modules over the coordinate
ring ΓpY ; OY q.

A standard heuristic principle of deformation theory asserts that over a field κ of
characteristic zero, one can describe a formal neighborhood of any algebro-geometric object
X near a point x P X in terms of a differential graded Lie algebra. In Part IV, we
will formulate this principle precisely by introducing an 8-category Moduliκ of formal
moduli problems over κ and constructing an equivalence of Moduliκ with an 8-category of
differential graded Lie algebras over κ. We also study variants of this principle in the setting
of noncommutative geometry (which are valid in any characteristic). Part IV is mostly
independent of the first three parts (they are relevant mainly because they provide examples
of formal moduli problems which can be analyzed using the formalism of Part IV).

In Part ?? we study representability problems in the setting of spectral algebraic geometry.
Suppose we are given a functor h : CAlgcn Ñ S, where CAlgcn denotes the 8-category of
connective E8-rings and S denotes the 8-category of spaces. We might then ask if there
exists a spectral scheme X (or some other sort of algebro-geometric object) which represents
the functor h, in the sense that there exist homotopy equivalences hpAq » MappSpecA,Xq
depending functorially on A (such an X is uniquely determined up to equivalence, as we will
see in Part I). In the setting of classical algebraic geometry, this sort of question can often
be addressed using Artin’s representability theorem, which gives necessary and sufficient
conditions for a functor to be representable by an algebraic stack which is locally of finite
presentation over a (sufficiently nice) commutative ring R. The main goal of Part ?? is to
formulate and prove an analogous statement in the spectral setting.

The basic objects of study in classical and spectral algebraic geometry can be described
in a very similar way: they are given by pairs pX,OXq, where X is a topological space (or
some variant thereof: in the theory of Deligne-Mumford stacks, it is convenient to allow X

to be a topos; when studying higher Deligne-Mumford stacks, it is convenient to allow X

to be an 8-topos) and OX is a “structure sheaf” on X. The difference between classical
and spectral algebraic geometry lies in what sort of sheaf OX is: in the classical case, OX

is a sheaf of commutative rings; in the spectral case, it is a sheaf of E8-rings. In Part VI,
we introduce general formalism of “8-topoi with structure sheaves” which is intended to
capture the spirit of these types of definitions in a broad degree of generality. Part VI
does not depend on any of the earlier parts of this book (logically, it could precede Part
I; however, most readers will probably find it easier to digest the theory of CAlg-valued
sheaves than the general sheaf theory of Part VI).

In Part VII, we study several variants of spectral algebraic geometry:

• derived differential topology, whose basic objects (derived manifolds) are analogous
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to smooth manifolds in the same way that spectral schemes are analogous to smooth
algebraic varieties.

• derived complex analytic geometry, whose basic objects (derived complex-analytic
spaces) are analogous to complex-analytic manifolds in the same way that spectral
schemes are analogous to smooth algebraic varieties.

• derived algebraic geometry, a variant of spectral algebraic geometry which uses simplicial
commutative rings in place of E8-rings. The resulting theory is equivalent to spectral
algebraic geometry in characteristic zero, but is quite different (and more closely
connected to classical algebraic geometry) in positive and mixed characteristic.

Each of these variants can be regarded as an instance of the general paradigm of Part VI.
However, we give an exposition in each instance which can be read independently, referring
occasionally to the formalism of Part VI for the verification of some routine details.

The term “derived algebraic geometry” is meant to evoke an analogy with the theory of
derived categories, which perhaps merits some explanation. To fix ideas, suppose that we
are given a commutative ring A and an A-module M . Then:

• The construction N ÞÑ HomApM,Nq determines a functor from the category of A-
modules to itself which is left exact but generally not right exact. In order to account
for the failure of right exactness, it is often useful to consider the right derived functors
tN ÞÑ ExtnApM,Nquně0.

• The construction N ÞÑM bA N determines a functor from the category of A-modules
to itself which is right exact but generally not left exact. In order to account for
the failure of left exactness, it is often useful to consider the left derived functors
tN ÞÑ TorAn pM,Nquně0.

To study either of these derived functors, it is useful to consider the derived category DpAq
which obtained from the category of chain complexes of A-modules by formally inverting
all quasi-isomorphisms. Let DpAqě0 denote the subcategory of DpAq consisting of those
chain complexes whose homology groups are concentrated in nonnegative degrees, and define
DpAqď0 similarly. One can then consider total derived functors

RHomApM, ‚q : DpAqď0 Ñ DpAqď0 M bLA ‚ : DpAqě0 Ñ DpAqě0

which, when restricted to an ordinary A-module N (regarded as chain complexes concentrated
in degree zero), yield chain complexes whose (co)homology groups recover the invariants
ExtnApM,Nq and TornApM,Nq, respectively.

The relationship between the theory of derived schemes and the classical theory of
schemes is somewhat analogous to the relationship between the derived category DpAqď0
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and the abelian category of A-modules. The 8-category of derived schemes can be regarded
as an enlargement of the category of schemes, and certain left exact constructions on schemes
(such as the formation of fiber products) admit refinements in the setting of derived schemes
in a way that retains additional (and often useful) information. The theory of algebraic
stacks provides another enlargement of the category of schemes which is quite different, but
in some sense formally dual. The 2-category of algebraic stacks is an enlargement of the
category of schemes in which one has improved versions of certain right exact constructions,
such as the formation of quotients by group actions (such quotients sometimes do not exist
in the category of schemes, and when they do exist they are often badly behaved). In this
respect, the relationship between the theory of algebraic stacks and the theory of schemes
is somewhat analogous to the relationship between the derived category DpAqě0 and the
abelian category of A-modules (to make the analogy stronger, one can further enlarge the
category of schemes by considering algebraic n-stacks for n ą 1).

In Part VIII we will discuss the theory of derived stacks, an extension of classical algebraic
geometry which provides a common generalization of the theory of derived schemes and the
theory of (higher) algebraic stacks (in much the same way that the full derived category DpAq
contains both DpAqď0 and DpAqě0 as full subcategories). Many important foundational
results concerning ordinary algebraic stacks can be extended to the setting of derived stacks.
In particular, we will prove a version of Artin’s representability theorem, which establishes
necessary and sufficient conditions for a functor to be representable by a derived stack
(Theorem ??) and which can be used to produce many examples of geometric objects which
fit into the framework of this book.

In [170], Quillen showed that the homotopy theory of simply connected spaces whose
homotopy groups are rational vector spaces is equivalent to the theory of connected differential
graded Lie algebras over Q. Quillen’s work provided an early clue to the significance of
differential graded Lie algebras, and partially inspired the study of their applications to
deformation theory. In Part IX we will reverse this logic, explaining how Quillen’s result
is related to (and can be deduced from) the theory developed in Part IV. We also discuss
Mandell’s p-adic analogue of rational homotopy theory and describe a natural extension
which makes use of algebro-geometric ideas. Part IX is primarily self-contained, and can be
read independently of the rest of this book.

This book includes several appendices discussing background material needed in the body
of the text. In Appendix A, we review of the theory of Grothendieck sites and sheaves in
the setting of higher category theory, introduce the notion of a coherent 8-topos (and prove
an 8-categorical analogue of Deligne’s completeness theorem: for every coherent 8-topos
X , the hypercompletion X hyp has enough points). In Appendix B we discuss several specific
examples of Grothendieck topologies which arise in spectral algebraic geometry (such as the
Nisnevich and étale topologies associated to a commutative ring) and their relationship to
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one another, reviewing some of the requisite commutative algebra along the way. Appendix
C introduces the theory of prestable 8-categories, a generalization of the notion of stable
8-category which will play an important role in Part III. In Appendix D, we study the
notion of an R-linear (pre)stable 8-category, where R is a ring spectrum, and combine
the results of Appendices B and C to prove several descent theorems (both for objects
of R-linear 8-categories and for R-linear 8-categories themselves). Finally, Appendix E
contains an exposition of profinite homotopy theory, which is needed for the discussion of
p-adic homotopy theory in Part IX.

0.4 What is not in this book?

Even in a book as long as this, we could not hope to give a comprehensive account of
the various ways in which homotopy theoretic ideas have influenced algebraic geometry. In
this section, we present an (incomplete) list of ideas which are thematically related to the
subject of spectral algebraic geometry, but which will not make an appearance in this book
(at least in its present form).

Virtual fundamental classes: One of the primary motivations for developing the lan-
guage of spectral algebraic geometry is to provide a natural setting for the theory of
virtual fundamental classes described in the introduction. In this book, we will discuss
some of the relevant formal ingredients (we discuss quasi-smoothness in §?? and virtual
dimension in §??). However, we will not discuss virtual fundamental classes (or the
cohomological framework in which they naturally reside) here. The subject has been
treated in the literature from a variety of perspectives: see, for example, [120], [18],
[131], and [191].

Elliptic cohomology: The theory of spectral algebraic geometry plays a central role in
understanding the moduli-theoretic interpretation of the theory of topological modular
forms (see Example 0.1.1.15) and other related constructions in the setting of chromatic
homotopy theory. We will discuss these applications in a sequel to this book. For an
informal outline in the case of elliptic cohomology we refer the reader to [140]; see also
[21] for a discussion of the more general theory of topological automorphic forms.

Higher stacks outside of derived algebraic geometry: Part VIII of this book is de-
voted to the theory of higher algebraic stacks in the setting of derived algebraic
geometry. One can develop an analogous theory in any setting where one has a good
notion of smooth morphism, including the theory of spectral algebraic geometry (using
the notion of differential smoothness that we discuss in §11.2). However, we will not
consider such objects in this book. A general framework which incorporates the theory
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of derived algebraic stacks and many other variants has been developed by Toën and
Vezzosi; see [214].

Separated Deligne-Mumford stacks: Throughout this book, we will say an algebro-
geometric object X is separated if the diagonal map δ : X Ñ X ˆ X is a closed
immersion. This convention means that X is forbidden to exhibit any “stacky” behavior:
an algebraic stack for which δ is a closed immersion is automatically an algebraic space.
Many basic results about separated (spectral) algebraic spaces can be generalized
to larger classes of (spectral) Deligne-Mumford stacks. We generally ignore such
generalizations, except in cases where they require no additional effort to prove.

Global deformation theory: Let X be an algebro-geometric object (such as a scheme or
a spectral scheme) defined over the field C of complex numbers. In Part IV of this book,
we study the formal completion of X at a C-valued point x P XpCq and show that it
is determined by a differential graded Lie algebra. One could ask for something more
ambitious: suppose we are given instead an arbitrary closed embedding ι : X0 ãÑ X:
how can one describe the formal completion of X along the image of ι in a manner
that is completely intrinsic to X0? We refer the reader to [77] for an approach this
problem, using a theory of “derived” Lie algebroids.

Ind-Coherent Sheaves and Grothendieck Duality: Let f : X Ñ Y a morphism be-
tween schemes of finite type over a field. To f , one can associate an exceptional
inverse image functor f ! : D`pY q Ñ D`pXq which is a right adjoint to the (derived)
pushforward f˚ in the case where f is proper, and is left adjoint to f˚ in the case where
f is étale. Here D`pXq and D`pY q denote the (cohomologically) “bounded below”
derived categories of X and Y , respectively. The theory of Grothendieck duality can
be generalized to the setting of spectral algebraic geometry. However, the assumption
that objects be “cohomologically bounded below” objects is particularly annoying in
the spectral setting (for example, it need not be satisfied by the structure sheaves of X
and Y ). To eliminate this assumption (and achieve a more robust theory), one needs
to replace the stable 8-category QCohpXq of quasi-coherent sheaves studied in this
book by the closely related 8-category IndpCohpXqq of Ind-coherent sheaves on X.
For a discussion these issues (over fields of characteristic zero) we refer the reader to
[76].

Shifted symplectic structures: One feature of spectral algebraic geometry that distin-
guishes it from classical algebraic geometry is that finiteness conditions on spectral
schemes are more strongly reflected in their deformation theory. For example, if X is
a spectral scheme of finite presentation over C, then the cotangent complex LX{Spec C
is perfect: that is, it is a dualizable object of QCohpXq (the analogous statement
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for ordinary C-schemes holds only when X is a local complete intersection). There
are some cases in which the cotangent complex LX{Spec C is not only dualizable, but
self-dual (up to a shift). An antisymmetric identification of LX{Spec C with its shifted
dual ΣnL_X{Spec C can be viewed as a kind of “shifted 2-form on X.” When this 2-form
is closed (in a suitable sense), we say that X has a n-shifted symplectic structure. The
theory of shifted symplectic structures is still in its infancy (at the time of this writing),
but seems to capture an essential feature which is common to many interesting moduli
spaces (once they have been appropriately “derived”). For more details, see [164], [37],
[166], [34].

0.5 Notation and Terminology

We will assume general familiarity with the terminology of [138] and [139]. For the
reader’s convenience, we now review some cases in which the conventions of this book differ
from those [138], [139], or the established mathematical literature.

• We will generally not distinguish between a category C and its nerve NpCq. In particular,
we regard every category C as an 8-category.

• We will generally abuse terminology by not distinguishing between an abelian group
M and the associated Eilenberg-MacLane spectrum: that is, we view the ordinary
category of abelian groups as a full subcategory of the 8-category Sp of spectra.
Similarly, we regard the ordinary category of commutative rings as a full subcategory
of the 8-category CAlg of E8-rings.

• Let A be an E8-ring. We will refer to A-module spectra simply as A-modules. The
collection of A-modules can be organized into a stable 8-category which we will
denote by ModA and refer to as the 8-category of A-modules. This convention has
an unfortunate feature: when A is an ordinary commutative ring, it does not reduce
to the usual notion of A-module. In this case, ModA is not the abelian category of
A-modules but is closely related to it: the homotopy category hModA is equivalent
to the derived category DpAq. Unless otherwise specified, the term “A-module” will
be used to refer to an object of ModA, even when A is an ordinary commutative ring.
When we wish to consider an A-module M in the usual sense, we will say that M is a
discrete A-module or an ordinary A-module.

• Let A be a commutative ring and let M P ModA be an A-module. Using the equivalence
of categories hModA » DpAq, we can identify M with a chain complex of A-modules.
This identification has the potential to lead to confusion: beware that the homotopy
groups of M (if we regard M as a spectrum) correspond to the homology groups of
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M (if we regard M as a chain complex). We will usually denote these groups by
tπnMunPZ and refer to them as the homotopy groups of M : that is, we favor the
perspective that M is a spectrum with an action of A, rather than a chain complex.

• Unless otherwise specified, all algebraic constructions we consider in this book should
be understood in the “derived” sense. For example, if we are given discrete modules
M and N over a commutative ring A, then the tensor product M bA N denotes the
derived tensor product M bLA N . This may not be a discrete A-module: its homotopy
groups are given by πnpM bA Nq » TorAn pM,Nq. When we wish to consider the
usual tensor product of M with N over A, we will denote it by TorA0 pM,Nq or by
π0pM bA Nq.

• If M and N are spectra, we will denote the smash product of M with N by M bN ,
rather than M ^ N . More generally, if M and N are modules over an E8-ring A,
then we will denote the smash product of M with N over A by M bA N , rather than
M ^AN . Note that when A is an ordinary commutative ring and the modules M and
N are discrete, this agrees with the preceding convention.

• If C is a triangulated category (such as the homotopy category of a stable 8-category),
we will denote the shift functor on C by X ÞÑ ΣX, rather than X ÞÑ Xr1s.

• If C and D are 8-categories which admit finite limits, we let FunlexpC,Dq denote the
full subcategory of FunpC,Dq spanned by those functor which are left exact: that is,
those functors which preserve finite limits. If instead C and D admits finite colimits, we
let FunrexpC,Dq “ FunlexpCop,Dopqop denote the full subcategory of FunpC,Dq spanned
by the right exact functors: that is, those functors which preserve finite colimits.

• If C is an 8-category, we let C» denote the largest Kan complex contained in C: that
is, the 8-category obtained from C by discarding all non-invertible morphisms.

• We will say that a functor f : C Ñ D between 8-categories is left cofinal if, for every
object D P D, the 8-category CˆD DD{ is weakly contractible (this differs from the
convention of [138], which refers to a functor with this property simply as cofinal;
see Theorem HTT.4.1.3.1 ). We will say that f is right cofinal if the induced map
Cop Ñ Dop is left cofinal, so that f is right cofinal if and only if the 8-category
CˆD D{D is weakly contractible for each D P D.

• We let T op denote the category whose objects are topological spaces X, with maps
given by continuous functions f : X Ñ Y . We let 8T op denote the 8-category whose
objects are 8-topoi X (in the sense of [138]) and whose morphisms are geometric
morphisms f˚ : X Ñ Y (that is, functors which admit a left adjoint f˚ which preserves
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finite limits). This notation is intended to suggest that 8T op be viewed as an
enlargement of T op (which is roughly correct; see §1.5).

• If X is an 8-topos, we will say that a collection of objects tUα P X u is a covering of
X if the coproduct >Uα is 0-connective: that is, if the map >Uα Ñ 1 is an effective
epimorphism, where 1 denotes a final object of X .

• If C is an 8-category, we will often write C♥ to denote some full subcategory of C
which forms an ordinary category. We will mainly use this notation in the following
three (closely related) cases:

– If X is an 8-topos, then we let X♥ denote the full subcategory of X spanned by
the discrete objects of X . This is an ordinary Grothendieck topos, which we will
refer to as the underlying topos of X .

– If C is a stable 8-category equipped with a t-structure pCě0, Cď0q, then we let
C♥ denote the intersection Cě0X Cď0. This is an abelian category, which we refer
to as the heart of C.

– If R is an E8-ring, we let CAlgR denote the 8-category of E8-algebras over
R. When R is connective, we let CAlg♥

R denote the full subcategory of CAlgR
spanned by the discrete objects, so that CAlg♥

R can be identified with the ordinary
category of commutative rings A equipped with a ring homomorphism π0RÑ A.

• If C is an essentially small 8-category, we let IndpCq denote the 8-category of Ind-
objects of C introduced in §HTT.5.3.5 . We will generally regard IndpCq as a full
subcategory of the 8-category FunpCop,Sq by identifying each Ind-object of C with
the functor that it represents on C. Note that the Yoneda embedding j : C Ñ
FunpCop,Sq factors through the full subcategory IndpCq Ď FunpCop,Sq. By slight
abuse of terminology, we will refer to the induced map j : C Ñ IndpCq also as the
Yoneda embedding.

• If C is an essentially small 8-category, we let PropCq denote the 8-category IndpCopqop.
We will refer to PropCq as the 8-category of Pro-objects of C. We will view PropCq as
a full subcategory of FunpC,Sqop. As in the case of Ind-objects, there is a canonical
map C ãÑ PropCq which we will (by slight abuse of terminology) refer to as the Yoneda
embedding.

• Let R be a commutative ring. In classical algebraic geometry, the notation SpecR is
often used to refer to several different (but closely related) mathematical objects:

piq The topological space X whose points are prime ideals p Ď R, equipped with the
Zariski topology having a basis consisting of open sets of the form Uf “ tp Ď R :
f R pu.
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piiq The affine scheme pX,OXq, where X is the topological space defined above and
OX is the sheaf of commutative rings given on basic open sets by the formula
OXpUf q “ Rrf´1s.

piiiq The functor t commutative rings u Ñ t sets u repesented by the affine scheme
pX,OXq, which assigns to each commutative ring A the set HompR,Aq of ring
homomorphisms from R to A.

Note that piiq and piiiq are equivalent data, and we will often abuse terminology by
not distinguishing between them. To avoid confusing piq and piiq, we denote the affine
scheme pX,OXq by SpecR and its underlying topological space X by |SpecR|. More
generally, we sometimes use the notation |Y | to denote the “underlying topological
space” of some geometric object Y (such as a scheme, algebraic space, or some variant
thereof).
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Our goal in Part I is to set up foundations for the theory of spectral algebraic geometry
that we will develop in this book. We begin in Chapter 1 by introducing the central
definitions. After a brief review of Grothendieck’s theory of schemes, we describe two
of its extensions: the theory of spectral schemes (obtained from the classical theory by
replacing ordinary commutative rings by E8-rings) and the theory of Deligne-Mumford
stacks (obtained from the classical theory by replacing the Zariski topology with the étale
topology). These extensions admit a common generalization: the theory of spectral Deligne-
Mumford stacks, which are our principal objects of interest in this book. By definition, a
spectral Deligne-Mumford stack X is a pair pX ,OX q, where X is an 8-topos (in the sense
of [138]) and OX is a sheaf of E8-rings on X , which is required to satisfy a certain local
condition (namely, we require that the pair pX ,OX q can be described locally as the étale
spectrum of a connective E8-ring: see Definition 1.4.2.5). The resulting theory has the
following features:

• The collection of spectral Deligne-Mumford stacks can be organized into an 8-category
SpDM, which we will refer to as the 8-category of spectral Deligne-Mumford stacks.

• The 8-category SpDM of spectral Deligne-Mumford stacks contains the 2-category
DM of ordinary Deligne-Mumford stacks as a full subcategory (see Remark 1.4.8.3).
In particular, it contains the ordinary category Sch of schemes as a full subcategory.

• To every spectral Deligne-Mumford stack X “ pX ,OX q, one can associate an ordinary
Deligne-Mumford stack pX♥, π0 OX q, which we all the underlying Deligne-Mumford
stack of X (Remark 1.4.8.2). This construction determines a forgetful functor SpDM Ñ

DM, which is left homotopy inverse to the inclusion DM ãÑ SpDM).

In Chapter 2, we study quasi-coherent sheaves in spectral algebraic geometry. To each
spectral Deligne-Mumford stack X “ pX ,OX q, we associate a stable 8-category QCohpXq
whose objects we will refer to as quasi-coherent sheaves (Definition 2.2.2.1). The stable
8-category QCohpXq comes equipped with a t-structure whose heart QCohpXq♥ can be
identified with the abelian category of quasi-coherent sheaves on the ordinary Deligne-
Mumford stack pX♥, π0 Oq. In some sense, the distinction between QCohpXq and its heart
QCohpXq♥ measures the difference between classical and spectral algebraic geometry: when
X arises from a “classical” geometric object (like a quasi-compact separated scheme), the
stable 8-category QCohpXq can be obtained from the abelian category QCohpXq♥ by passing
to the derived 8-category of §?? (see Proposition ??, or Corollary ?? for a closely related
assertion).

Let X be a scheme. If R is a commutative ring, then we define an R-valued point of
X to be a map of schemes SpétR Ñ X. The collection of R-valued points of X forms
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a set XpRq “ HomSchpSpecR,Xq, and the construction R ÞÑ XpRq determines a functor
from the category of commutative rings to the category of sets. The situation in spectral
algebraic geometry is analogous. To every connective E8-ring R, one can associate a spectral
Deligne-Mumford stack SpétR which we call the étale spectrum of R (in the case where R
is an ordinary commutative ring, this is simply the image of the affine scheme SpecR under
the fully faithful embedding ι : Sch ãÑ SpDM). If X is a spectral Deligne-Mumford stack,
then we define an R-valued point of X to be a morphism of spectral Deligne-Mumford stacks
SpétR Ñ X. However, there is a vital difference between classical and spectral algebraic
geometry: the collection of spectral Deligne-Mumford stacks forms an 8-category, rather
than an ordinary category. Consequently, the collection of R-valued points of a spectral
Deligne-Mumford stack X forms a space MapSpDMpSpétR,Xq, rather than a set. In Chapter
3, we will study the situation where the mapping space MapSpDMpSpétR,Xq is discrete
whenever R is an ordinary commutative ring; in this case, we say that X is a spectral algebraic
space. Roughly speaking, this condition means that X is forbidden to exhibit any “stacky”
behavior (beware, however, that the space MapSpDMpSpétR,Xq will usually have a nontrivial
homotopy type if R is not discrete, even if X arises from an ordinary scheme).

Remark 0.6.0.1. Our theory of spectral algebraic geometry is closely related to the theory of
homotopical algebraic geometry introduced by Toën and Vezzosi, and the material presented
here has substantial overlap with their work (see [202], [213], [214], and [215]). The primary
difference in our exposition is that we stick closely to the classical view of scheme as a
kind of ringed space, while Toën and Vezzosi put more emphasis on the “functor of points”
philosophy described above.



Chapter 1

Schemes and Deligne-Mumford
Stacks

In this section, we will introduce the basic objects of study in this book: spectral Deligne-
Mumford stacks. The collection of spectral Deligne-Mumford stacks can be organized into an
8-category SpDM, which contains the usual category of schemes as a full subcategory. Recall
that a scheme is defined to be a topological space X together with a sheaf of commutative
rings O on X for which the pair pX,Oq is isomorphic, locally on X, to the spectrum SpecR
of a commutative ring R. Our definition of spectral Deligne-Mumford stack is similar in
spirit, but differs in three significant ways:

paq Rather than working with sheaves of ordinary commutative rings, we work with sheaves
taking values in the larger 8-category CAlg of E8-rings (see §HA.7 for an introduction
to the theory of E8-rings, and Definition 1.3.1.4 for the definition of a CAlg-valued
sheaf).

pbq In place of a topological space X, we consider an arbitrary 8-topos X . This affords us
a great deal of flexibility in forming certain categorical constructions, like quotients by
group actions, which can be useful for some applications (such as studying the moduli
of objects which admit nontrivial symmetries).

pcq Rather than requiring pX ,Oq to be locally equivalent to an affine model of the form
SpecR, where R is a commutative ring, we consider instead models of the form SpétA,
where A is an E8-ring and SpétA is its étale spectrum (see Definitions 1.2.3.3 and
1.4.2.5). In other words, we will consistently work locally with respect to the étale
topology, rather than the Zariski topology.

The ideas required to carry out modification paq are logically independent from those
required to carry out modifications pbq and pcq, so we will first discuss them separately from
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one another. We will begin in §1.1 by considering paq alone. This leads us to the notion of
a spectral scheme: that is, a topological space X equipped with a sheaf of E8-rings O for
which pX,Oq is locally equivalent to SpecA, where A is a connective E8-ring (see Definition
1.1.2.8 and Corollary 1.1.6.2). We will show that the collection of spectral schemes can be
organized into an 8-category SpSch, which contains the usual category of schemes as a full
subcategory (Proposition 1.1.8.4).

In §1.2, we will discuss a completely different enlargement of the category of schemes: the
2-category of Deligne-Mumford stacks. We will view Deligne-Mumford stacks as ringed topoi
pX ,OX q, which are locally equivalent to the étale spectrum of an affine scheme (Definition
1.2.4.1).

To adapt the notion of Deligne-Mumford stack to the setting of spectral algebraic
geometry, we will need a theory of sheaves of E8-rings on topoi (or, more generally, on
8-topoi). In §1.3, we will show how to associate to every 8-topos X another 8-category
ShvSppX q, whose objects are sheaves of spectra on X (or, equivalently, spectrum objects of
X ). The 8-category ShvSppX q is symmetric monoidal, and the commutative algebra objects
of ShvSppX q form an 8-category ShvCAlgpX q. We will refer to the objects of ShvCAlgpX q as
sheaves of E8-rings on X . We then define a spectrally ringed 8-topos to be a pair pX ,OX q,
where X is an 8-topos and OX is a sheaf of E8-rings on X .

In §1.4, we will introduce the notion of a spectral Deligne-Mumford stack: that is, a
spectrally ringed 8-topos pX ,OX q which is locally equivalent to the étale spectrum of a
(connective) E8-ring. The collection of spectral Deligne-Mumford stacks can be organized
into an 8-category SpDM, which we show to be an enlargement of the usual 2-category of
Deligne-Mumford stacks (Remark 1.4.8.3).

In this book, we adopt the point of view that a Deligne-Mumford stack is a ringed topos
pX ,OX q satisfying certain local assumptions. Another perspective (which is more common
in the literature) is to view a Deligne-Mumford stack as a groupoid-valued functor on the
category of commutative rings (or a certain type of fibered category). We will establish the
equivalence of these perspectives in §1.2 (see Theorem 1.2.5.9). In §1.6, we will describe
a similar approach to the theory of spectral Deligne-Mumford stack. To every spectral
Deligne-Mumford stack (or spectral scheme) X, one can assign a S-valued functor hX on
the 8-category S of E8-rings. We will show that the construction X ÞÑ hX is fully faithful
(Proposition 1.6.4.2). Combining this fact with some elementary observations about the
relationship between topological spaces and 8-topoi (which we review in §1.5), we show
that the 8-category of spectral schemes can be identified with a full subcategory of the
8-category of spectral Deligne-Mumford stacks. For this reason, we will primarily focus our
attention on spectral Deligne-Mumford stacks throughout the rest of this book.
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1.1 Spectral Schemes

1.1.1 Review of Scheme Theory

Our primary objective in this book is to develop the theory of spectral algebraic geometry:
a variant of algebraic geometry which uses structured ring spectra in the place of ordinary
commutative rings. Before we begin this undertaking, it will be helpful to review some of
the foundational definitions of the classical theory.

Definition 1.1.1.1. A ringed space is a pair pX,OXq, where X is a topological space and
OX is a sheaf of commutative rings on X. In this case, we will say that OX is the structure
sheaf of X. We will regard the collection of all ringed spaces as the objects of a category
T opCAlg♥ , where a morphism from pX,OXq to pY,OY q in T opCAlg♥ consists of a pair pπ, φq,
where π : X Ñ Y is a continuous map of topological spaces and φ : OY Ñ π˚OX is a map
between sheaves of commutative rings on Y .

Example 1.1.1.2. Let R be a commutative ring. We let | SpecR| denote the set of all
prime ideals of R. For every ideal I Ď R, we set VI “ tp P |SpecR| : I Ď pu, and refer to VI
as the vanishing locus of I. We will regard |SpecR| as a topological space, where a subset
of | SpecR| is closed if and only if it has the form VI for some ideal I Ď R. We will refer to
the resulting topology on | SpecR| as the Zariski topology.

For each element x P R, let Ux “ tp P | SpecR| : x R pu denote the complement of the
vanishing locus of the principal ideal pxq. We will say that an open set U Ď |SpecR| is
elementary if it has the form Ux, for some element x P R. The collection of elementary open
sets forms a basis for the topology of |SpecR|.

The structure sheaf of |SpecR| is a sheaf of commutative rings O on | SpecR| with the
following properties:
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paq There is a ring homomorphism φ : RÑ Γp| SpecR|; Oq “ Op| SpecR|q.

pbq For each element x P R, the composite map R
φ
Ñ Op| SpecR|q Ñ OpUxq carries x to

an invertible element of OpUxq, and induces an isomorphism of commutative rings
Rrx´1s » OpUxq. In particular, the map α itself is an isomorphism.

Since the open sets Ux form a basis for the topology of R, property pbq determines the
structure sheaf O up to unique isomorphism, once the map α : RÑ Op| SpecR|q has been
fixed (for the existence of O, see Example 1.1.4.7 below).

Remark 1.1.1.3. It is customary to abuse notation by identifying the spectrum SpecR
of a commutative ring R with its underlying topological space | SpecR|. However, we will
avoid this abuse of notation for the time being.

Definition 1.1.1.4. Let pX,OXq be a ringed space. For every open subset U Ď X, we let
OX |U denote the restriction of OX to open subsets of U (which we regard as a sheaf of
commutative rings on U). Then pX,OX |U q is itself a locally ringed space.

We say that pX,OXq is a scheme if, for every point x P X, there exists an open subset
U Ď X containing x such that pU,OX |U q is isomorphic to SpecR for some commutative
ring R (in the category of ringed spaces). We say that a scheme pX,OXq is affine if it is
isomorphic (in the category T opCAlg♥ of ringed spaces) to SpecR, for some commutative
ring R.

1.1.2 Spectrally Ringed Spaces

Our goal in this section is to introduce an 8-categorical generalization of the theory of
schemes, which we will refer to as the theory of spectral schemes. For this, we will need
to work with topological spaces equipped with a sheaf of E8-rings, rather than a sheaf of
ordinary commutative rings.

Definition 1.1.2.1. Let X be a topological space and let UpXq denote the partially ordered
set of all open subsets of X (which we will regard as a category). For any 8-category C, a
C-valued presheaf on X is a functor F : UpXqop Ñ C. We will say that a C-valued presheaf
F is a sheaf if it satisfies the following condition:

• Let tUαu be a collection of open subsets of X having union U , and let U 1 “ tV P UpXq :
pDαqrV Ď Uαsu. Then the functor F exhibits F pUq as a limit of the diagram F |U 1 op

(in other words, F induces an equivalence F pUq » lim
ÐÝV PU 1 F pV q in the 8-category

C).

We let ShvCpXq denote the full subcategory of FunpUpXqop, Cq spanned by those functors
which are C-valued sheaves on X..
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Construction 1.1.2.2. Let C be an 8-category, and let π : X Ñ Y be a continuous map
of topological spaces. Let F : UpXqop Ñ C be a C-valued presheaf on X. Then we can
define another C-valued presheaf pπ˚F q : UpY qop Ñ C, given on objects by the formula
pπ˚F qpUq “ F pπ´1Uq. If F is a C-valued sheaf on X, then π˚F is a C-valued sheaf on
Y . Moreover, the construction F ÞÑ π˚F determines a functor π˚ : ShvCpXq Ñ ShvCpY q,
given by precomposition with the map of partially ordered sets π´1 : UpY q Ñ UpXq. We
will refer to π˚ as the pushforward functor associated to π.

We can regard the construction X ÞÑ ShvCpXq
op as a functor from the category T op of

topological spaces to the category of simplicial sets, which carries a continuous map map
π : X Ñ Y to the pushforward functor π˚ : ShvCpXq

op Ñ ShvCpY q
op. We let T opC denote

the relative nerve of this functor, in the sense of Definition HTT.3.2.5.2 . Then T opC is an
8-category equipped with a coCartesian fibration T opC Ñ T op, having the property that
each fiber T opC ˆT optXu is canonically isomorphic to the 8-category ShvCpXq

op.

Remark 1.1.2.3. Let C be an 8-category. Then the objects of T opC are given by pairs
pX,OXq, where X is a topological space and OX is a C-valued sheaf on X. A morphism
from pX,OXq to pY,OY q in T opC is given by a pair pπ, αq, where π : X Ñ Y is a continuous
map of topological spaces and α : OY Ñ π˚OX is a morphism in the 8-category ShvCpY q.

Example 1.1.2.4. Let CAlg♥ denote the category of commutative rings (regarded as an
8-category). Then T opCAlg♥ is equivalent to the category of ringed spaces.

Definition 1.1.2.5. Let CAlg denote the 8-category of E8-rings. A spectrally ringed space
is a pair pX,OXq, where X is a topological space and OX is a CAlg-valued sheaf on X. In
this case, we will refer to OX as the structure sheaf of X. We will refer to T opCAlg as the
8-category of spectrally ringed spaces.

Notation 1.1.2.6. Let X be a topological space, and let F be a sheaf on X with values
in the 8-category Sp of spectra. For each integer n, the construction U ÞÑ πnpF pUqq

determines a presheaf of abelian groups on X. We let πn F denote the sheafification of this
presheaf. If OX is a sheaf of E8-rings on X, then π0 OX is a sheaf of commutative rings on
X, and each πn OX can be regarded as a sheaf of π0 OX -modules on X.

The construction pX,OXq ÞÑ pX,π0 OXq determines a functor from the 8-category
T opCAlg of spectrally ringed spaces to the category of ringed spaces. We will refer to
pX,π0 OXq as the underlying ringed space of pX,OXq.

Warning 1.1.2.7. Let pX,OXq be a spectrally ringed space. For every integer n and every
open set U Ď X, there is a canonical map of abelian groups

πnpOXpUqq Ñ pπn OXqpUq,

which is generally not an isomorphism.
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We are now ready to introduce our main objects of interest.

Definition 1.1.2.8. A spectral scheme is a spectrally ringed space pX,OXq which satisfies
the following conditions:

p1q The underlying ringed space pX,π0 OXq is a scheme.

p2q Each of the sheaves πn OX is quasi-coherent (when viewed as a sheaf of π0 OX -modules
on X).

p3q Let U be an open subset of X for which the scheme pU, pπ0 OXq|U q is affine. Then, for
each integer n, the canonical map πnpOXpUqq Ñ pπn OXqpUq is an isomorphism.

p4q The sheaves πn OX vanish when n ă 0.

Variant 1.1.2.9. We will say that a spectrally ringed space pX,OXq is a nonconnective
spectral scheme if it satisfies conditions p1q, p2q, and p3q of Definition 1.1.2.8.

Remark 1.1.2.10. If pX,OXq is a nonconnective spectral scheme, then the ringed space
pX,π0 OXq is a scheme. We will refer to pX,π0 OXq as the underlying scheme of pX,OXq.

1.1.3 Digression: Hypercompleteness

We next show that condition p3q of Definition 1.1.2.8 admits an alternate formulation,
and is automatically satisfied in many cases of interest (see Corollary 1.1.3.6).

Definition 1.1.3.1. Let F be a spectrum-valued sheaf on a topological space X. We will
say that F is hypercomplete if the functor U ÞÑ Ω8F pUq determines a hypercomplete
object of the 8-topos ShvSpXq (see §HTT.6.5.2 ).

Remark 1.1.3.2. Let X be a topological space. Then the collection of hypercomplete
objects of ShvSppXq is closed under small limits and under suspensions (see Proposition
1.3.3.3). Moreover, the condition that an object F P ShvSppXq be hypercomplete can be
tested locally on X (Corollary 1.3.3.8).

Remark 1.1.3.3. Let u : F Ñ F 1 be a morphism of hypercomplete spectrum-valued
sheaves on a topological space X. Then u is an equivalence if and only if it induces an
isomorphism πn F Ñ πn F 1 (in the category of sheaves of abelian groups) for every integer
n. The “only if” direction is obvious. To prove the converse, it suffices to show that the map
un : Ω8pΣn F q Ñ Ω8pΣn F 1q is an equivalence in the 8-topos ShvSpXq for every integer
n. This is clear, since un is a morphism between hypercomplete objects of ShvSpXq which
induces an isomorphism on homotopy sheaves.

Proposition 1.1.3.4. Let pX,OXq be a spectrally ringed space satisfying the following
conditions:
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p1q The underlying ringed space pX,π0 OXq is a scheme.

p2q Each of the sheaves πn OX is quasi-coherent (when viewed as a sheaf of π0 OX-modules
on X).

p31q The structure sheaf OX is hypercomplete.

Then pX,OXq is a nonconnective spectral scheme.

Proof. For each integer n, let τďn OX denote the n-truncation of OX with respect to the
natural t-structure on the 8-category ShvSppXq (see Proposition 1.3.2.7). We then have
fiber sequences

Σnpπn OXq Ñ τďn OX Ñ τďn´1 OX ,

where we abuse notation by identifying the sheaf of abelian groups πn OX with the cor-
responding object in the heart of ShvSppXq. Passing to global sections and extracting
homotopy groups, we obtain a long exact sequence

Hn´mpU ; pπn OXq|U q Ñ πmpτďn OXqpUq Ñ πmpτďn´1 OXpUqq Ñ Hn´m`1pU ; pπn OXq|U q

for each open subset U Ď X. Assumption p2q implies that the cohomology groups
HipU ; pπn OXq|U q vanish whenever U is affine and i ą 0. Moreover, for an open subset
U Ď X, the spectra pτďn OXqpUq and pτďn´1 OXqpUq are n-truncated and pn´1q-truncated,
respectively. It follows that if U is affine, our long exact sequence degenerates to supply
isomorphisms

πmpτďn OXqpUq »

$

’

’

&

’

’

%

0 if m ą n

pπn OXqpUq if m “ n

pτďn´1 OXqpUq if m ă n.

Set O 1X “ lim
ÐÝn

τďn OX P ShvSppXq. We have an evident map u : OX Ñ O 1X , and the
above calculation shows that this map induces an equivalence pπn OXqpUq Ñ πnpO

1
XpUqq

for every affine open subset U Ď X. In particular, u induces an isomorphism of sheaves
πn OX Ñ πn O 1X for every integer n. The S-valued sheaf Ω8O 1X is hypercomplete by
construction, and the S-valued sheaf Ω8OX is hypercomplete by virtue of assumption p31q.
It follows that the map u is an equivalence, so that pπn OXqpUq » πnpOXpUqq for each affine
open subset U Ď X. That is, pX,OXq satisfies condition p3q of Definition 1.1.2.8, and is
therefore a nonconnective spectral scheme.

Remark 1.1.3.5. The converse of Proposition 1.1.3.4 is also true: if pX,OXq is a non-
connective spectral scheme, then the structure sheaf OX is hypercomplete (see Corollary
1.1.6.2).



74 CHAPTER 1. SCHEMES AND DELIGNE-MUMFORD STACKS

Corollary 1.1.3.6. Let pX,OXq be a spectrally ringed space, and suppose that X is a
Noetherian topological space of finite Krull dimension. Then pX,OXq is a nonconnective
spectral scheme if and only if pX,π0 OXq is a scheme and each homotopy group πn OX is a
quasi-coherent sheaf on pX,π0 OXq.

Proof. If X is a Noetherian topological space of finite Krull dimension, then the 8-topos
ShvSpXq has finite homotopy dimension, so that every object of ShvSpXq is hypercomplete
(see §HTT.7.2.4 ; we will prove a generalization of this statement in §3.7). The desired result
now follows from Proposition 1.1.3.4.

Remark 1.1.3.7. Let pX,OXq be a spectrally ringed 8-topos which satisfies conditions
p1q and p2q of Definition 1.1.2.8. Then we can obtain a nonconnective spectral scheme by
replacing the sheaf OX with its hypercompletion. This replacement does not change the
underlying scheme pX,π0 OXq or any of the quasi-coherent sheaves πn OX .

1.1.4 The Spectrum of an E8-Ring

Our next goal is to produce some examples of spectral schemes.

Definition 1.1.4.1. Let A be an E8-ring. We let | SpecA| denote the Zariski spectrum of
the underlying commutative ring R “ π0A. We will say that an open subset U Ď |SpecA|
is affine if it is affine when regarded as an open subset of the affine scheme SpecR.

Let A be an E8-ring. We wish to construct a CAlg-valued sheaf on the topological space
| SpecA|, analogous to the structure sheaf on the spectrum of an ordinary commutative ring.
First, we review the theory of localizations in the setting of E8-rings.

Remark 1.1.4.2. Let f : A Ñ B be a map of E8-rings, and let a P π0A. We will say
that f exhibits B as a localization of A by a P π0A if the map f is étale and f induces
an isomorphism of commutative rings pπ0Aqra

´1s » π0B. In this case, we will denote B
by Ara´1s. Theorem HA.7.5.0.6 guarantees that Ara´1s exists and is well-defined up to
equivalence (in fact, up to a contractible space of choices). The localization map AÑ Ara´1s

can be characterized by either of the following conditions (see Corollary HA.7.5.4.6 ):

p1q The map AÑ Ara´1s induces an isomorphism of graded rings pπ˚Aqra´1s Ñ π˚Ara
´1s.

p2q For every E8-ring B, the induced map MapCAlgpAra
´1s, Bq Ñ MapCAlgpA,Bq restricts

to a homotopy equivalence of MapCAlgpAra
´1s, Bq with the summand of MapCAlgpA,Bq

spanned by those maps AÑ B which carry a P π0A to an invertible element of π0B.

Proposition 1.1.4.3. Let A be an E8-ring and let R “ π0A be its underlying commutative
ring. Then there exists a CAlg-valued sheaf O on the topological space |SpecA| and a
morphism φ : AÑ Op| SpecA|q of E8-rings which satisfies the following conditions:
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paq For every element x P R defining an elementary open subset Ux “ tp P |SpecA| : x R pu,
the composite map A

φ
Ñ Op| SpecA|q Ñ OpUxq induces an equivalence of E8-rings

Arx´1s » OpUxq.

pbq The canonical map

R “ π0A
α
Ñ π0pOp| SpecA|qq Ñ pπ0 Oqp|SpecA|q

induces an isomorphism of π0 O with the structure sheaf of the affine scheme SpecR.

pcq The pair p| SpecA|,Oq is a nonconnective spectral scheme. If A is connective, then
p| SpecA|,Oq is a spectral scheme.

We will deduce the existence of the sheaf O from the following general principle:

Proposition 1.1.4.4. Let X be a topological space, let C be an 8-category which admits
small limits, and let Ue denote a collection of open subsets of X satisfying the following
conditions:

piq The sets belonging to Ue form a basis for the topology of X. That is, for every point
x P X and every open set U containing x, there exists an open set V P Ue such that
x P V Ď U .

piiq For every pair of open sets U, V P Ue, the intersection U X V belongs to Ue.

piiiq Each of the open sets U P Ue is quasi-compact.

Then a functor F : UpXqop Ñ C is a C-valued sheaf on X if and only if the following
conditions are satisfied:

p1q The functor F is a right Kan extension of F |Uop
e

.

p2q Let U1, U2, . . . , Un P Ue be a finite collection of open sets whose union U “
Ť

Ui
also belongs to Ue. For each S Ď t1, . . . , nu, let US “

Ş

iPS Ui. Then F induces an
equivalence F pUq Ñ lim

ÐÝH‰S
F pUSq, where the limit is taken over the partially ordered

set of all nonempty subsets S Ď t1, . . . , nu.

Corollary 1.1.4.5. Under the hypotheses of Proposition 1.1.4.4, the restriction map

ShvCpXq Ñ FunpUop
e , Cq

is a fully faithful embedding, whose essential image is the collection of those functors Uop
e Ñ C

which satisfy condition p2q of Proposition 1.1.4.4.

Proof. Combine Propositions 1.1.4.4 and HTT.4.3.2.15 .
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Before proving Proposition 1.1.4.4, let us describe some of its applications.

Example 1.1.4.6. Let X be a topological space and let Ue be a collection of open subsets
of X satisfying conditions piq, piiq, and piiiq of Proposition 1.1.4.4. Applying Proposition
1.1.4.4 in the special case C “ S, we obtain an equivalence of 8-topoi ShvpXq » ShvpUeq,
where we regard Ue as equipped with the Grothendieck topology given by those sieves
tUα Ď Uu for which U “

Ť

Uα.

Example 1.1.4.7. Let R be a commutative ring, let X “ | SpecR|, let Ue denote the
collection of all elementary open subsets of X, and let C be the category of commutative
rings. Using Corollary 1.1.4.5, we see that the structure sheaf O of the affine scheme SpecR
is essentially unique, and its existence reduces to the following basic assertion of commutative
algebra: if x1, . . . , xn is a collection of elements of R which generate the unit ideal in R,
then we have an equalizer diagram

R //
ś

1ďiďnRrx
´1
i s

////
ś

1ďiăjďnRrx
´1
i , x´1

j s

in the category of commutative rings.

Proof of Proposition 1.1.4.3. Let X “ |SpecA|, let Ue denote the collection of open affine
subsets of X, and let O denote the structure sheaf of the affine scheme SpecR. For every
affine open subset U Ď X, the commutative ring OpUq is étale as an R-algebra. Let
Oe denote the restriction of the sheaf O to the partially ordered set Ue, so that we can
regard Oe as a functor from Uop

e to the category of étale R-algebras. Applying Theorem
HA.7.5.0.6 , we see that there is an essentially unique functor Oe : Uop

e Ñ CAlgA such that
OepUq “ π0 OepUq, and each of the A-algebras OepUq is flat over A.

Let O : UpXqop Ñ CAlg be a right Kan extension of the functor Oe. We claim that O is
a CAlg-valued sheaf on X. To prove this, it will suffice to show that the functor O satisfies
condition p2q of Proposition 1.1.4.4. Let U1, . . . , Un be a collection of open affine subsets
of X whose union U “

Ť

1ďiďn Ui is also open. For each S Ď t1, . . . , nu, let US denote the
intersection

Ş

iPS Ui. We wish to show that the canonical map

µ : OpUq Ñ lim
ÐÝ
S‰H

OpUSq

is an equivalence.
Since the open sets Ui form an affine open covering of U , the map OpUq Ñ

ś

1ďiďn OpUiq

is faithfully flat. It follows that
ś

1ďiďn OpUiq is faithfully flat over OpUq. Consequently, to
prove that µ is an equivalence, it will suffice to show that µ induces an equivalence

µi : OpUiq Ñ OpUiq bOpUq lim
ÐÝ
S‰H

OpUSq,
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for 1 ď i ď n. The operation M ÞÑ OpUiq bOpUq M is an exact functor between stable
8-categories, and therefore preserves finite limits. Consequently, we may identify µi with
the canonical map

OpUiq Ñ lim
ÐÝ
S‰H

pOpUiq bOpUq OpUSqq » lim
ÐÝ
S‰H

OpUSYtiuq.

Note that the functor S ÞÑ OpUSYtiuq is a right Kan extension of its restriction to the
partially ordered set P “ tS Ď t1, . . . , nu : i P Su, so that µi is equivalent to the map
OpUiq Ñ lim

ÐÝSPP
OpUSq. This map is an equivalence, since the partially ordered set P

contains tiu as a least element. This completes the proof of paq.
By construction, the functor U ÞÑ π0pOpUqq determines a presheaf of commutative rings

on | SpecA| which agrees with O on every affine open subset of |SpecA|. Since the affine
open subsets of | SpecA| form a basis for the topology of | SpecA|, we obtain an isomorphism
O » π0 O of sheaves of commutative rings on | SpecA|. This proves pbq.

We now prove pcq. Let m be an integer, and let M “ πmA. Then we can regard M as
a (discrete) R-module. Let F be the associated quasi-coherent sheaf on the affine scheme
SpecR, so that F pUq » OpUqbRM for every affine open subset U Ď |SpecA|. Since OpUq

is flat over A, we obtain isomorphisms

F pMq » OpUq bRM » π0 OpUq bπ0A πmA » πm OpUq,

depending functorially on U P Ue. Since Ue forms a basis for the topology of | SpecA|, it
follows that the sheaf πm O is isomorphic to F (as a sheaf of O-modules), and is therefore
quasi-coherent. Condition p3q of Definition 1.1.2.8 follows immediately from our construction,
so that p| SpecA|,Oq is a nonconnective spectral scheme. If A is connective, then the above
calculation gives πm O » F » 0 for m ă 0, so that p| SpecA|,Oq is a spectral scheme.

Definition 1.1.4.8. Let A be an E8-ring, and let O be the sheaf of E8-rings on |SpecA|
constructed in the proof of Proposition 1.1.4.3. We will refer to O as the structure sheaf
of |SpecA|. The pair p| SpecA|,Oq is a spectrally ringed space, which we will denote by
SpecA and refer to as the spectrum of A. We will say that a nonconnective spectral scheme
pX,OXq is affine if it is equivalent to SpecA for some E8-ring A.

Warning 1.1.4.9. Let R be a commutative ring. Then we can regard R as a discrete
E8-ring. In this case, the notation introduced in Definition 1.1.4.8 is potentially ambiguous:
we write SpecR to denote both the affine scheme p| SpecR|,O0q of Example 1.1.1.2 and the
spectral scheme p| SpecR|,Oq of Proposition 1.1.4.3. These two objects are not quite the
same: O0 is a sheaf of commutative rings on X “ |SpecR|, while O is a sheaf of E8-rings on
X. However, they are interchangeable data: the sheaf of commutative rings O0 isomorphic
to π0 O, and the sheaf of E8-rings O can be recovered as the sheafification of O0 (regarded as
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a presheaf of E8-rings on X). Moreover, we have an equivalence O0pUq » OpUq whenever U
is an affine subset of X, which extends to an isomorphism O0pUq » π0 OpUq for every open
subset U Ď X. However, the E8-rings OpUq are generally not discrete: we have canonical
isomorphisms

π´n OpUq » HnpU ; O0 |U q.

Proof of Proposition 1.1.4.4. Suppose first that F is a C-valued sheaf on X. Let tUαuαPA
be any collection of open subsets of X, and set U “

Ť

α Uα, and let U 1 denote the subset
of UpXq given by those open sets V which are contained in Uα for some α P A. Let P pAq
denote the partially ordered set of all nonempty finite subsets of A. For each S P P pAq, we
set US “

Ş

αPS Uα. The construction S ÞÑ US determines a right cofinal map P pAq Ñ U 1 op.
Invoking our hypothesis that F is a sheaf, we deduce that the canonical maps

F pUq Ñ lim
ÐÝ
V PU 1

F pV q Ñ lim
ÐÝ

SPP pAq

F pUSq

are equivalences in the 8-category C. This immediately implies condition p2q.
To verify condition p1q, we must show that for any open subset U Ď X, the canonical

map
F pUq Ñ lim

ÐÝ
V PUeXUpUq

F pV q

is an equivalence. Since Ue forms a basis for the topology of X, we can write U “
Ť

γPA Uγ
where each γ belongs to Ue. Let U 1 be defined as above, so that we have a commutative
diagram

F pUq //

��

lim
ÐÝV PUeXUpUqF pV q

��
lim
ÐÝV PU 1 F pV q

// lim
ÐÝV PUeXU 1 F pV q.

The left vertical map is an equivalence by virtue of our assumption that F is a C-valued
sheaf. Similarly, the assumption that F is a sheaf implies that the functor F |pUeXUpUqop

is a right Kan extension of F |pUeXU 1qop , which shows that the right vertical map is also
an equivalence. We are therefore reduced to proving that the bottom horizontal map an
equivalence. For this, it suffices to show that the inclusion of simplicial sets UeXU 1 ãÑ U 1 is
left cofinal. This is equivalent to the assertion that for each V P U 1, the partially ordered
set T “ tW P UeXU 1 : V Ď W u has weakly contractible nerve. This is clear, since T is
nonempty and closed under finite intersections.

Now suppose that F satisfies conditions p1q and p2q; we will show that F is a C-valued
sheaf on X. Fix an open set U Ď X and an open covering tUγuγPA of U . Let U 1 be as above;
we wish to show that the canonical map F pUq Ñ lim

ÐÝV PU 1 F pV q is an equivalence in C.
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Since F satisfies condition p1q, the functor F |U 1 op is a right Kan extension of F |pUeXU 1qop .
It will therefore suffice to show that the composite map

F pUq Ñ lim
ÐÝ
V PU 1

F pV q Ñ lim
ÐÝ

V PUeXU 1
F pV q

is an equivalence. Since assumption p1q supplies an equivalence F pUq » lim
ÐÝV PUeXUpUqF pV q,

it will suffice to show that F |pUeXUpUqqop is a right Kan extension of F |pUeXU 1q
op. For this,

let us fix an open set V P Ue with V Ď U ; we wish to show that the map

θ : F pV q Ñ lim
ÐÝ

WPUeXU 1,WĎV
F pW q

is an equivalence.
It follows from assumption piiiq that V is quasi-compact, so we can write V as a finite

union V1 Y ¨ ¨ ¨ Y Vn where each Vi belongs to U 1XUe. Let U2 denote the collection of all
open subsets of X which belong to Ue and are contained in one of the open sets Vi. We will
prove:

p˚q The functor O |pUeXUpV qqop is a right Kan extension of O |U2 op .

Assuming p˚q, the map θ fits into a commutative diagram

OpV q
θ //

&&

lim
ÐÝWPUeXU 1,WĎV OpW q

uu
lim
ÐÝV PU2 OpV q

where the vertical maps are equivalences, so that θ is an equivalence. To prove p˚q, we must
show that for every open set W P Ue with W Ď V , the canonical map

φ : F pW q Ñ lim
ÐÝ

W 1ĎW,W 1PU2
F pW 1q

is an equivalence. Let Q denote the partially ordered set of all nonempty subsets of t1, . . . , nu.
For each subset S Ď t1, . . . , nu, let WS denote the intersection W X

Ş

iPS Vi. Since the
construction S ÞÑ WS induces a right cofinal functor S Ñ UpW q X U2, we can identify φ

with the map
F pW q Ñ lim

ÐÝ
H‰S

F pWSq,

which is an equivalence by virtue of assumption p2q.
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1.1.5 The Universal Property of SpecA

If R is a commutative ring, then the affine scheme SpecR can be characterized by a
universal mapping property. To formulate it, we need to work in the setting of locally ringed
spaces.

Definition 1.1.5.1. Let X be a topological space and let OX be a sheaf of commutative
rings on X. We say that OX is local if, for every point x P X, the stalk π0 OX,x is a local
ring (we will give a quick review of the theory of local rings in §1.4). We say that a ringed
space pX,OXq is locally ringed if OX is local.

The collection of locally ringed spaces can be organized into a category T oploc
CAlg♥ , where

a map of locally ringed spaces pX,OXq Ñ pY,OY q is given by a continuous map π : X Ñ Y

together with a map of sheaves OY Ñ π˚OX satisfying the following locality condition:
for every point x P X, the induced ring homomorphism OY,fpxq Ñ OX,x is local (that is, it
carries noninvertible elements of OY,fpxq to noninvertible elements of OX,x).

Example 1.1.5.2. Every scheme pX,OXq is a locally ringed space. To prove this, we
may work locally on X and thereby reduce to the case where pX,OXq “ SpecR for some
commutative ring R. In this case, the stalk of the structure sheaf OX at a point p P |SpecR|
can be identified with the local ring Rp.

Definition 1.1.5.1 has an obvious generalization to the setting of CAlg-valued sheaves:

Definition 1.1.5.3. Let pX,OXq be a spectrally ringed space. We will say that pX,OXq is
a locally spectrally ringed space if the underlying ringed space pX,π0 OXq is locally ringed.
We let T oploc

CAlg denote the subcategory of T opCAlg whose objects are locally spectrally
ringed spaces pX,OXq, and whose morphisms are maps pX,OXq Ñ pY,OY q for which the
underlying map pX,π0 OXq Ñ pY, π0 OY q is morphism in the category of locally ringed
spaces.

Every spectral scheme pX,OXq is a locally spectrally ringed space. This allows us to
organize the collection of spectral schemes into an 8-category:

Definition 1.1.5.4. Let pX,OXq and pY,OY q be nonconnective spectral schemes. A
morphism of nonconnective spectral schemes from pX,OXq to pY,OY q is a map pX,OXq Ñ

pY,OY q in the category T oploc
CAlg of locally spectrally ringed spaces. In other words, a

morphism from pX,OXq to pY,OY q consists of a pair pf, αq, where f : X Ñ Y is a
continuous map of topological spaces and α : OY Ñ f˚OX is a morphism in ShvCAlgpY q

which induces a local homomorphism of commutative rings pπ0 OY qfpxq Ñ pπ0 OXqx for each
x P X.

Let SpSchnc denote the subcategory of T opCAlg whose objects are nonconnective spectral
schemes and whose morphisms are morphisms of nonconnective spectral schemes. Let
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SpSch denote the full subcategory of SpSchnc spanned by the spectral schemes. We will
refer to SpSch as the 8-category of spectral schemes, and to SpSchnc as the 8-category of
nonconnective spectral schemes.

If pX,OXq is a locally ringed space and R is a commutative ring, then there is a canonical
bijection

HomT oploc
CAlg♥

ppX,OXq, SpecRq » HomCAlg♥pR,OXpXqq.

In the setting of spectral algebraic geometry, we have an analogous statement:

Proposition 1.1.5.5. Let pX,OXq be a locally spectrally ringed space, let A be an E8-ring,
and write SpecpAq “ p| SpecA|,Oq. Then composition with the canonical map φ : A Ñ

Op| SpecA|q induces a homotopy equivalence

MapT oploc
CAlg

ppX,OXq, SpecAq Ñ MapCAlgpA,OXpXqq.

Proof. Let φ : AÑ OXpXq be a morphism of E8-rings; we wish to show that the homotopy
fiber

Z “ MapT oploc
CAlg

ppX,OXq, SpecAq ˆMapCAlgpA,OXpXqq
tφu

is contractible. Let R denote the commutative ring π0R. For each point x P X, let κpxq
denote the residue field of the local ring pπ0 OXqx, so that φ determines a ring homomorphism
R Ñ κpxq whose kernel is a prime ideal px Ď R. Let f : X Ñ |SpecA| be the map given
by fpxq “ px. We first claim that f is continuous. To prove this, it will suffice to show
that for every element r P R, the set U “ tx P X : r R pxu is an open subset of X. Suppose
that x P U , so that φ carries r to an invertible element of the local ring pπ0 OXqx. Let
s P pπ0 OXqx denote the multiplicative inverse of this element. Then there exists an open
set V Ď X containing x and an element s P π0pOXpV qq lifting s. Shrinking V if necessary,
we may suppose that s is a multiplicative inverse of the image of r under the composite
map R

φ
Ñ π0 OXpXq Ñ π0 OXpV q. This implies that V Ď U , so that U contains an open

neighborhood of x.
Suppose we are given a map of spectrally ringed spaces from pX,OXq to SpecA, given

by a map of topological spaces g : X Ñ |SpecA| and a morphism γ : O Ñ g˚OX . For each
x P X, the composite map R Ñ π0 OXpXq Ñ pπ0 OXqx Ñ κpxq factors through Rgpxq, so
that fpxq Ď gpxq (as prime ideals of the commutative ring R). Moreover, pg, γq is a morphism
of locally spectrally ringed spaces if and only if equality holds for each x P X. We may
therefore identify Z with the homotopy fiber of the map MapShvCAlgp| SpecA|qpO, g˚OXq Ñ

MapCAlgpA,OXpXqq over the point φ.
Let Ue denote the collection of all elementary open subsets of | SpecA| and define

C “ FunpUop
e ,CAlgq. It follows from Corollary 1.1.4.5 that the restriction functor T :

ShvCAlgp| SpecA|q Ñ C is a fully faithful embedding. We may therefore identify Z with the
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homotopy fiber of the map MapCpT O, T g˚OXq Ñ MapCAlgpA,OXpXqq over the point φ.
Let CAlg♥

R denote the category of commutative R-algebras. Since OpUq is a localization of
A for each U P Ue, we can use Theorem HA.7.5.4.2 to identify Z with the set of maps

HomFunpUop
e ,CAlg♥

Rq
pπ0T O, π0Tg˚OXq.

For each element r P R, let Ur denote the elementary open subset tp P | SpecA| : r R pu Ď
| SpecA|, so that π0 OpUrq » Rrr´1s. Consequently, to prove that Z is contractible, it will
suffice to show that for each r P R, the image of r is invertible in the commutative ring
π0pg˚OXqpUrq.

Let φprq denote the image of r under the map RÑ π0 OXpXq, so that multiplication by
r induces a map mr from OX to itself (as a Sp-valued sheaf on X). Let U “ g´1Ur. For
each point x P U , the image of r in the local ring pπ0 OXqx is invertible. We may therefore
choose an open set V Ď X containing x such that the image of r in π0 OXpV q is invertible,
so that mr induces an equivalence from OX |V to itself. It follows that fibpmrq vanishes on
U , so that multiplication by r induces an isomorphism from π0 OXpUq to itself. It follows
that the image of r in π0pg˚OXqpUrq is invertible, as desired.

Remark 1.1.5.6. The global sections functor pX,OXq ÞÑ OXpXq determines a forgetful
functor T oploc

CAlg Ñ CAlgop. It follows from Proposition 1.1.5.5 that this functor admits a
right adjoint, given on objects by A ÞÑ SpecA. In particular, the spectrally ringed space
SpecA depends functorially on A.

Remark 1.1.5.7. Let A and B be E8-rings. Using the universal property of SpecB, we
obtain a homotopy equivalence MapT oploc

CAlg
pSpecA, SpecBq » MapCAlgpB,Op| SpecA|qq,

where O denotes the structure sheaf of SpecA. Under this homotopy equivalence, the
canonical map MapCAlgpB,Aq Ñ MapT oploc

CAlg
pSpecA,SpecBq is given by composition with

the equivalence α : AÑ Op| SpecA|q appearing in Proposition 1.1.4.3. It follows that the
functor Spec : CAlgop Ñ SpSchnc is fully faithful.

1.1.6 Characterization of Affine Spectral Schemes

Let pX,OXq be a locally spectrally ringed space. Proposition 1.1.5.5 asserts that every
map of E8-rings α : AÑ OXpXq induces a map f : pX,OXq Ñ SpecA in the 8-category
T oploc

CAlg. Our next result gives a criterion for this map to be an equivalence:

Proposition 1.1.6.1. Let pX,OXq be a locally spectrally ringed space, let A be an E8-ring,
and let f : pX,OXq Ñ SpecA be a morphism of locally spectrally ringed spaces. Assume
that:

paq The map f induces an equivalence of E8-rings α : AÑ OXpXq.
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pbq The underlying ringed space pX,π0 OXq is an affine scheme.

pcq For each integer n, the sheaf πn OX is quasi-coherent.

Then the following conditions are equivalent:

p1q The map f is an equivalence.

p2q The sheaf OX is hypercomplete.

p3q The spectrally ringed space pX,OXq is a nonconnective spectral scheme.

Corollary 1.1.6.2. Let pX,OXq be a spectrally ringed space. Suppose that the ringed space
pX,π0 OXq is a scheme, and that πn OX is a quasi-coherent sheaf of pπ0 OXq-modules on X

for every integer n. The following conditions are equivalent:

p1q The structure sheaf OX is hypercomplete.

p2q The pair pX,OXq is a nonconnective spectral scheme.

p3q For each point x P X, there exists an open set U Ď X containing x such that the
spectrally ringed space pU,OX |U q is an affine nonconnective spectral scheme (that is,
there exists an equivalence pU,OX |U q » SpecA for some E8-ring A).

Proof. The implication p1q ñ p2q follows from Proposition 1.1.3.4. We next show that
p2q ñ p3q. Assume that pX,OXq is a nonconnective spectral scheme, and let x P X. Since
the ringed space pX,π0 OXq is a scheme, we can choose an open subset U Ď X containing
X such that pU, pπ0 OXq|U q is an affine scheme. Set A “ OXpUq, so that Proposition 1.1.5.5
supplies a map of locally spectrally ringed spaces f : pU,OX |U q Ñ SpecA. Using condition
p1q and Proposition 1.1.6.1, we conclude that f is an equivalence.

We now complete the proof by showing that p3q ñ p1q. The assertion that OX is
hypercomplete can be tested locally on X (see Corollary 1.3.3.8). Using p3q, we are reduced
to proving that OX is hypercomplete in the special case where pX,OXq » SpecA for some
E8-ring A, which follows from Proposition 1.1.6.1.

Corollary 1.1.6.3. Let pX,OXq be a nonconnective spectral scheme. Then pX,OXq is
affine if and only if the underlying scheme pX,π0 OXq is affine.

Corollary 1.1.6.4. Let pX,OXq be a spectrally ringed space. Then the condition that X is
a nonconnective spectral scheme can be tested locally on X. That is, if each point x P X has
an open neighborhood U Ď X such that pU,OX |U q is a nonconnective spectral scheme, then
pX,OXq is a nonconnective spectral scheme.
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Proof of Proposition 1.1.6.1. Let O denote the structure sheaf of the nonconnective spectral
scheme SpecA. To prove that p1q implies p2q, it will suffice to show that O is hypercomplete.
We will prove this by exhibiting O as an inverse limit lim

ÐÝn
On, where each On is a sheaf of

spectra on | SpecA| taking values in the full subcategory Spďn Ď Sp of n-truncated spectra.

Let τě0A denote the connective cover of A, and let O 1 denote the structure sheaf of
Specpτě0Aq (which we also regard as a sheaf of E8-rings on the topological space |SpecA|).
Let Ue denote the collection of all affine open subsets ofX, and define functors F ˝

n : Uop
e Ñ Sp

by the formula F ˝
npUq “ τďn OpUq. We claim that each F ˝

n satisfies hypothesis p2q of
Proposition 1.1.4.4. To prove this, it suffices to observe that we have a canonical equivalence
F ˝

npUq » pτďnAq bτě0A O 1pUq, and that the N ÞÑ pτďnAq bτě0A N commutes with finite
limits. Let Fn : Up| SpecA|qop Ñ Sp be a right Kan extension of F ˝

n, so that Fn is a
Sp-valued sheaf on |SpecA| (by Proposition 1.1.4.4). By construction, we have a canonical
map O Ñ lim

ÐÝn
Fn, which is an equivalence when evaluated on each affine open subset of X

and therefore an equivalence (since the functors O and lim
ÐÝn

Fn are right Kan extensions of
their restrictions to Uop

e , by Proposition 1.1.4.4). By construction, the spectrum FnpUq is
n-truncated for any affine open subset U Ď X. Since the collection of n-truncated spectra is
closed under small limits, it follows that FnpUq is n-truncated for all U Ď X, so that Fn

is an n-truncated object of ShvSpp| SpecA|q. This completes the proof of the implication
p1q ñ p2q.

The implication p2q ñ p3q follows from Proposition 1.1.3.4. We will complete the
proof by showing that p3q ñ p1q. Suppose that pX,OXq is a nonconnective spectral
scheme. Using pbq, we can write pX,π0 OXq » SpecR for some commutative ring R. For
each integer n, set Mn “ πn OX . It follows from pcq that Mn is a quasi-coherent sheaf
on the scheme pX,π0 OXq. We may therefore choose a discrete R-module Mn such that
MnpUq “ pπ0 OXqpUqbRMn for each affine open subset U Ď X. Using p2q, we deduce that
the canonical map πnpOXpUqq ÑMnpUq is an isomorphism whenever U is affine. Using
paq, we obtain isomorphisms

πnA
α
» πn OXpXq »Mn.

Taking n “ 0, we conclude that the canonical map π0A Ñ R is an isomorphism, so that
f induces a homeomorphism X Ñ | SpecR|. Let O denote the structure sheaf of SpecA;
let us abuse notation by identifying O with a CAlg-valued sheaf on X. To complete
the proof, it will suffice to show that f induces an equivalence O Ñ OX in ShvCAlgpXq.
Using Corollary 1.1.4.5, we are reduced to proving that the map OpUq Ñ OXpUq is an
equivalence for each open subset U Ď X. Equivalently, we must show that each of the maps
θn : πn OpUq Ñ πn OXpUq is an isomorphism. This is clear, since θn fits into a commutative
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diagram
pπ0 OXqpUq bRMn

vv ))
πn OpUq // πn OXpUq.

where the vertical maps are isomorphisms.

1.1.7 Truncations of Spectral Schemes

The difference between an E8-ring A and the ordinary commutative ring π0A is controlled
by the remaining homotopy groups tπnAun‰0: if these vanish, then the data of A and π0A

are interchangeable. We now make some analogous remarks for sheaves of E8-rings.

Definition 1.1.7.1. Let X be a topological space and let OX be a sheaf of E8-rings on X.
We will say that OX is connective if the sheaves πn OX vanish for n ă 0. We let Shvcn

CAlgpXq

denote the full subcategory of ShvCAlgpXq spanned by the connective sheaves of E8-rings
on X.

If OX is a sheaf of E8-rings on X and n is an integer, then we will say that OX

is n-truncated if the E8-ring OXpUq is n-truncated, for every open subset U Ď X. We
let ShvCAlgpXq

ďn denote the full subcategory of Shvcn
CAlgpXq spanned by the n-truncated

sheaves of E8-rings on X, and Shvcn
CAlgpXq

ďn the intersection Shvcn
CAlgpXqXShvCAlgpXq

ďn.

Warning 1.1.7.2. Let OX be a sheaf of E8-rings on a topological space X. The condition
that OX is connective does not imply that the E8-rings OXpUq are connective for U Ď X.
Nevertheless, there is an equivalence of 8-categories ρ : Shvcn

CAlgpXq Ñ ShvCAlgcnpXq, given
on objects by the formula pρOqpUq “ τě0pOpUqq; see Proposition 1.3.5.7.

Remark 1.1.7.3. Let pX,OXq be a nonconnective spectral scheme. Then pX,OXq is a
spectral scheme if and only if the structure sheaf OX is connective.

Remark 1.1.7.4. Let pX,OXq be a spectrally ringed space. If OX is n-truncated for some
integer n, then the sheaves πm OX are trivial for m ą n. The converse holds provided that
OX is hypercomplete. In particular, if pX,OXq is a nonconnective spectral scheme, then
OX is n-truncated if and only if πm OX » 0 for m ą n.

Our next goal is to describe the relationship between the 8-category SpSch of spectral
schemes and the larger 8-category SpSchnc of nonconnective spectral schemes. For this, we
will need a few general remarks about CAlg-valued sheaves on topological space. We will
defer the proofs until §1.3, where we will give a more systematic treatment of spectrum-valued
sheaves.

Fix a topological space X. Then:
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pT1q The inclusion functor Shvcn
CAlgpXq ãÑ ShvCAlgpXq admits a right adjoint, which we will

denote by OX ÞÑ τě0 OX (see Remark 1.3.5.4). Moreover, a map α : OX Ñ O 1X induces
an equivalence τě0 OX Ñ τě0 O 1X if and only if α induces an equivalence of CAlgcn-
valued sheaves on X (that is, if and only if the induced map τě0 OXpUq Ñ τě0 O 1XpUq

is an equivalence, for each open set U Ď X; see Proposition 1.3.5.10). In particular,
the canonical map τě0 OX Ñ OX induces isomorphisms πmpτě0 OXq Ñ πm OX for
m ě 0.

pT2q For each n ě 0, the inclusion functor Shvcn
CAlgpXq

ďn ãÑ Shvcn
CAlgpXq admits a left

adjoint, which we will denote by OX ÞÑ τďn OX . Moreover, for every connective CAlg-
valued sheaf OX on X, the canonical map πm OX Ñ πmpτďn OXq is an isomorphism
for m ď n (see Remark 1.3.5.6).

pT3q The construction OX ÞÑ π0 OX induces an equivalence of the8-category Shvcn
CAlgpXq

ď0

with the ordinary category of sheaves of commutative rings on X (see Remark 1.3.5.6).

Proposition 1.1.7.5. Let pX,OXq be a nonconnective spectral scheme, and let τě0 OX

denote a connective cover of OX in the 8-category ShvCAlgpXq. Then pX, τě0 OXq is a
spectral scheme. Moreover, it has the following universal property: for every spectrally ringed
8-topos pY,OY q where OY is connective, the canonical map

θ : MapT opCAlg
ppX, τď0 OXq, pY,OY qq Ñ MapT opCAlg

ppX,OXq, pY,OY qq

is a homotopy equivalence. If pY,OY q is locally spectrally ringed, then the map θ restricts to
a homotopy equivalence

MapT oploc
CAlg

ppX, τď0 OXq, pY,OY qq Ñ MapT oploc
CAlg

ppX,OXq, pY,OY qq.

Corollary 1.1.7.6. The inclusion functor SpSch ãÑ SpSchnc admits a left adjoint, given by
pX,OXq ÞÑ pX, τě0 OXq.

Proof of Proposition 1.1.7.5. Let pX,OXq be an arbitrary spectrally ringed space, and
let pY,OY q be a spectrally ringed space where OY is connective. The canonical map
τě0 OX Ñ OX is an equivalence after applying the functor Ω8 : ShvCAlgpXq Ñ ShvSpXq.
It follows that the canonical map α : f˚pτě0 OXq Ñ f˚OX is an equivalence after applying
the functor Ω8 : ShvCAlgpY q Ñ ShvSpY q. In particular, α induces an equivalence of
connective covers, so that composition with α induces a homotopy equivalence

MapShvCAlgpY qpOY , f˚pτě0 OXqq Ñ MapShvCAlgpY qpOY , f˚OXq.

Passing to the disjoint union over all continuous maps f : X Ñ Y , we conclude that the map

θ : MapT opCAlg
ppX, τě0 OXq, pY,OY qq Ñ MapT opCAlg

ppX,OXq, pY,OY qq.
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If OX and OY are local, then τě0 OX is also local (since we have an isomorphism π0pτě0 OXq Ñ

π0 OX), and it follows immediately from the definitions that θ restricts to a homotopy equiv-
alence

MapT oploc
CAlg

ppX, τě0 OXq, pY,OY qq Ñ MapT oploc
CAlg

ppX,OXq, pY,OY qq.

To complete the proof, it will suffice to show that if pX,OXq is a nonconnective spectral
scheme, then pX, τě0 OXq is a spectral scheme. This assertion can be tested locally on
X: we may therefore assume without loss of generality that pX,OXq “ SpecA for some
E8-ring A. Let B “ τě0A. Then SpecB is a spectral scheme, so the canonical map
pX,OXq Ñ SpecB factors as a composition pX,OXq Ñ pX, τě0 OXq

φ
Ñ SpecB. The natural

map B Ñ A induces an isomorphism of commutative rings and therefore a homeomorphism
f : | SpecA| Ñ | SpecB|. Let O 1 denote the structure sheaf of SpecB; we wish to show
that φ induces a map O 1 Ñ f˚OX which exhibits O 1 as a connective cover of f˚OX . Since
B is connective, O 1 is connective (Proposition 1.1.4.3); by virtue of pT1q, it will suffice
to show that the map O 1 Ñ f˚OX induces an equivalence of CAlgcn-valued sheaves on
X (after composing pointwise with the truncation functor τě0 : CAlg Ñ CAlgcn). Using
Proposition 1.1.4.4, we are reduced to showing that the map τě0 O 1pUq Ñ τě0 OXpf

´1Uq is
an equivalence for every elementary open subset U Ď | SpecB|. In other words, we must
show that the map τě0Bra

´1s Ñ τě0Ara
´1s is an equivalence for each a P π0A, which is

clear.

Remark 1.1.7.7. The proof of Proposition 1.1.7.5 shows that if pX,OXq is an affine
nonconnective spectral scheme, then the associated spectral scheme pX, τě0 OXq is the
spectrum of a connective E8-ring. In particular, if A is an E8-ring and SpecA is a spectral
scheme, then A must be connective.

Definition 1.1.7.8. Let pX,OXq be a spectral scheme, and let n ě 0 be an integer. We
will say that pX,OXq is n-truncated if the structure sheaf OX is n-truncated (when regarded
as a connective CAlg-valued sheaf on X). We let SpSchďn denote the full subcategory of
SpSch spanned by the n-truncated spectral schemes.

Example 1.1.7.9. Let A be a connective E8-ring and write SpecA “ pX,OXq. For every
elementary open subset U Ď X, the E8-ring OXpUq has the form Ara´1s for some a P π0A.
It follows that if A is n-truncated, then OXpUq is n-truncated for each elementary open
subset U Ď X (and therefore for every open subset U Ď X by virtue of Proposition 1.1.4.4),
so that pX,OXq is an n-truncated spectral scheme. Conversely, if pX,OXq is an n-truncated
spectral scheme, then A » OXpXq is an n-truncated connective E8-ring.

Proposition 1.1.7.10. Let pX,OXq be a spectral scheme. For each n ě 0, the truncation
pX, τďn OXq is also a spectral scheme. Moreover, it has the following universal property: for
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every spectrally ringed space pY,OY q for which OY is n-truncated, the canonical map

θ : MapT opCAlg
ppY,OY q, pX, τďn OXqq Ñ MapT opCAlg

ppY,OY q, pX,OXqq

is a homotopy equivalence. Moreover, if pY,OY q is locally spectrally ringed, then θ restricts
to a homotopy equivalence

MapT oploc
CAlg

ppY,OY q, pX, τďn OXqq Ñ MapT oploc
CAlg

ppY,OY q, pX,OXqq.

Corollary 1.1.7.11. For each integer n ě 0, the inclusion SpSchďn ãÑ SpSch admits a
right adjoint, given on objects by pX,OXq ÞÑ pX, τďn OXq.

Proof of Proposition 1.1.7.10. Suppose first that pX,OXq and pY,OY q are arbitrary spec-
trally ringed space for which OX is connective and OY is n-truncated. For every continuous
map f : Y Ñ X, we have a commutative diagram

MapShvCAlgpXqpτďn OX , τě0f˚OY q //

��

MapShvCAlgpXqpOX , τě0f˚OY q

��
MapShvCAlgpXqpτďn OX , f˚OY q //MapShvCAlgpXqpOX , f˚OY q.

Here the vertical maps are homotopy equivalences since OX and τďn OX are connective, and
the universal property of τďn OX guarantees that the upper horizontal map is a homotopy
equivalence. It follows that the lower horizontal map is a homotopy equivalence. Passing to
a disjoint union over all continuous maps f : Y Ñ X, we conclude that the map

θ : MapT opCAlg
ppY,OY q, pX, τďn OXqq Ñ MapT opCAlg

ppY,OY q, pX,OXqq

is a homotopy equivalence, from which we immediately deduce that θ restricts to a homotopy
equivalence

MapT oploc
CAlg

ppY,OY q, pX, τďn OXqq Ñ MapT oploc
CAlg

ppY,OY q, pX,OXqq.

We now complete the proof by showing that if pX,OXq is a spectral scheme, then
pX, τďn OXq is a spectral scheme. The assertion The assertion is local on X. We may
therefore assume without loss of generality that pX,OXq is affine, hence of the form SpecA
for some E8-ring A. It follows from Remark 1.1.7.7 that A is connective. Let B “ τďnA.
Then SpecB is an n-truncated spectral scheme (Example 1.1.7.9), so the canonical map
SpecB Ñ SpecA » pX,OXq factors as a composition

SpecB φ
Ñ pX, τďn OXq Ñ pX,OXq.
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To complete the proof, it will suffice to show that φ is an equivalence. We will prove this by
showing that for every locally spectrally ringed space pY,OY q where OY is connective and
n-truncated, the horizontal map in the diagram

MapT oploc
CAlg

ppY,OY q, SpecBq //

**

MapT oploc
CAlg

ppY,OY q, pX, τďn OXqq

tt
MapT oploc

CAlg
ppY,OY q, pX,OXqq

is a homotopy equivalence. Here the right vertical map is a homotopy equivalence by the
first part of the proof, and we can use Proposition 1.1.5.5 to identify the left horizontal map
with the map ψ appearing in the diagram

MapCAlgpB, τě0pOY pY qqq
ψ1 //

��

MapCAlgpA, τě0pOY pY qqq

��
MapCAlgpB,OY pY qq

ψ //MapCAlgpA,OY pY qq

Here the universal property of B ensures that ψ1 is a homotopy equivalence (since τě0 OY pY q

is n-truncated), and the vertical maps are homotopy equivalences because A and B are
connective.

1.1.8 Comparing Spectral Schemes with Schemes

We now consider the relationship between our theory of spectral schemes and the classical
theory of schemes.

Proposition 1.1.8.1. Let pX,OXq and pY,OY q be spectrally ringed spaces. Suppose that
OX is 0-truncated and OY is connective. Then the canonical map

MapT opCAlg
ppX,OXq, pY,OY qq Ñ HomppX,π0 OXq, pY, π0 OY qq

is a homotopy equivalence, where right hand side denotes the (discrete) set of morphisms
from pX,π0 OXq to pY, π0 OY q in the category of ringed spaces.

Proof. Let C denote the category of sheaves of commutative rings on Y . Fix a continuous
map f : X Ñ Y ; we wish to show that the map

MapShvCAlgpY qpOY , f˚OXq Ñ HomCpπ0 OY , f˚π0 OXq.

Since OX is 0-truncated, the presheaf of commutative rings U ÞÑ π0pOXpUqq is a sheaf, so
that the canonical map π0pOXpUqq Ñ pπ0 OXqpUq is an isomorphism for every open subset
U Ď X. For each open subset V Ď Y , we the canonical map

π0ppf˚OXqpV qq “ π0pOXpf
´1V qq » pπ0 OXqpf

´1V q “ pf˚pπ0 OXqqpV q
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is an isomorphism. It will therefore suffice to show that the canonical map

θA : MapShvCAlgpY qpOY ,A q Ñ HomCpπ0 OY , π0 A q

is a homotopy equivalence, where A “ f˚OX . In fact, we will prove more generally
that the map θA is an equivalence whenever A is a 0-truncated object of ShvCAlgpY q.
Since OY is connective, we can use pT1q to replace A by its connective cover τě0 A and
thereby reduce to the case where A is connective. We can then use pT2q to identify the
mapping space MapShvCAlgpY qpOY ,A q with MapShvCAlgpY qpτď0 OY ,A q, which is equivalent
to HomCpπ0 OY , π0 A q by pT3q.

Corollary 1.1.8.2. Let C denote the full subcategory of T opCAlg spanned by those spectrally
ringed spaces pX,OXq where OX is connective and 0-truncated. Then the construction
pX,OXq ÞÑ pX,π0 OXq induces an equivalence from C to the category of ringed spaces.

Proof. It follows from Proposition 1.1.8.1 that the construction pX,OXq ÞÑ pX,π0 OXq is
fully faithful when restricted to spectrally ringed spaces pX,OXq for which OX is connective
and 0-truncated. To verify the essential surjectivity, it will suffice to show that for every
topological space X and every sheaf of commutative rings A on X, there exists a connective
0-truncated object OX P ShvCAlgpXq such that A is isomorphic to π0 OX . This follows
from assertion pT3q.

Corollary 1.1.8.3. Let Cloc denote the full subcategory of T oploc
CAlg spanned by those locally

spectrally ringed spaces pX,OXq where OX is connective and 0-truncated. Then the con-
struction pX,OXq ÞÑ pX,π0 OXq induces an equivalence from Cloc to the ordinary category
of locally ringed spaces.

Let Sch denote the category of schemes.. Passage to the underlying scheme determines a
functor from SpSchnc Ñ Sch, given on objects by pX,OXq ÞÑ pX,π0 OXq.

Proposition 1.1.8.4. The construction pX,OXq ÞÑ pX,π0 OXq induces an equivalence of
8-categories SpSchď0 Ñ Sch.

Proof. Corollary 1.1.8.3 implies that the functor pX,OXq ÞÑ pX,π0 OXq is fully faithful
when restricted to SpSchď0. Moreover, it implies that for every scheme pX,Oq, we can
write O “ π0 OX for some object OX P ShvCAlgpXq which is connective and 0-truncated.
To complete the proof, it will suffice to show that pX,OXq is a spectral scheme. Since
OX is connective, it will suffice to show that pX,OX is a nonconnective spectral scheme.
We will prove this by verifying the hypotheses of Proposition 1.1.3.4. The ringed space
pX,π0 OXq » pX,Oq is a scheme by construction. The sheaves πn OX either vanish (if
n ‰ 0) or are isomorphic to O (if n “ 0), and are therefore quasi-coherent. Finally, the
assumption that OX is 0-truncated immediately implies that OX is hypercomplete.
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Remark 1.1.8.5. We can regard a homotopy inverse to the equivalence SpSchď0 Ñ Sch as
supplying a fully faithful functor Sch Ñ SpSch. In other words, we can identify the category
of schemes with a full subcategory of the 8-category of spectral schemes: namely, the full
subcategory spanned by the 0-truncated spectral schemes.

1.2 Deligne-Mumford Stacks

Let E be an elliptic curve over the field C of complex numbers. Then E is classified
up to isomorphism by its j-invariant jpEq P C. The theory of the j-invariant supplies a
complete classification of elliptic curves over C: two elliptic curves E and E1 are isomorphic
if and only if jpEq “ jpE1q, and every complex number arises as the j-invariant of some
curve over C.

If we wish to classify families of elliptic curves, the situation becomes more complicated.
Suppose that X is an algebraic variety over C and that E is a family of elliptic curves over
X (in other words, we have a proper smooth morphism π : E Ñ X equipped with a section,
whose fibers are elliptic curves). For each point x P XpCq, let Ex denote the fiber product
Spec CˆXE, so that Ex is an elliptic curve over C. The construction x ÞÑ jpExq is a regular
function on X, which we can view as a map of algebraic varieties jE : X Ñ A1. However,
the function jE does not determine E up to isomorphism in general.

Example 1.2.0.1. Let E be an elliptic curve over C, let rX be an algebraic variety over C
equipped with a fixed-point free involution σ, and let X denote the quotient of rX by the
action of σ. Then σ determines involutions σ` and σ´ on the product rX ˆSpec C E, given
on C-points by the formulae

σ`prx, yq “ pσprxq, yq σ´prx, yq “ pσprxq,´yq.

Let E` denote the quotient of rXˆSpec CE by the action of the involution σ`, and define E´
similarly. We have obvious projection maps π˘ : E˘ Ñ X, each fiber of which is isomorphic
to the original elliptic curve E. It follows that E` and E´ determine the same j-invariant

X Ñ tjpEqu ãÑ A1 .

However, E` and E´ are never isomorphic as elliptic curves over X unless the variety rX is
disconnected.

It follows from Example 1.2.0.1 that there can be no fine moduli space of elliptic curves:
that is, there cannot exist a scheme M such that elliptic curves over an arbitrary scheme
X are classified up isomorphism by maps from X into M . In fact, this phenomenon is
ubiquitous: a similar problem arises whenever we wish to classify objects which admit
nontrivial symmetries. To address this issue, Deligne and Mumford introduced a new type
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of algebro-geometric object which now bears their names: the Deligne-Mumford stack. The
collection of Deligne-Mumford stacks can be organized into a 2-category DM, which contains
the usual category of schemes as a full subcategory. Moreover, it also contains more exotic
objects such as the moduli stack of elliptic curves M1,1, which has the property that for
any scheme X, the category HomDMpX,M1,1q can be identified with the category of elliptic
curves π : E Ñ X (with morphisms given by isomorphisms of elliptic curves).

Our goal in this section is to give a brief overview of the classical theory of Deligne-
Mumford stacks. In §1.4, we will explain how the ideas presented here can be generalized to
the setting of spectral algebraic geometry and thereby obtain a notion of spectral Deligne-
Mumford stack (Definition 1.4.4.2), which will play a central role throughout this book.

Remark 1.2.0.2. For a detailed introduction to the theory of algebraic stacks, we refer the
reader to [129].

Warning 1.2.0.3. Our presentation of the theory of Deligne-Mumford stacks differs from
the presentation given in [129] (and most others in the literature) in two major respects:

piq We will define a Deligne-Mumford stack to be a ringed topos pX ,OX q satisfying a
“local affineness” condition which parallels the usual definition of a scheme (Definition
1.1.1.4). The equivalence of this perspective with the “functor-of-points” approach will
be established at the end of this section (Theorem 1.2.5.9).

piiq We do not include any separatedness hypotheses in our definition of Deligne-Mumford
stack (so that we allow, for example, classifying stacks for infinite discrete groups).

Roughly speaking, the definition of a Deligne-Mumford stacks is obtained by modifying
the definition of a scheme pX,OXq in two ways:

paq In place of the topological space X, we allow an arbitrary Grothendieck topos X .

pbq In place of the requirement that pX,OXq be locally isomorphic to the spectrum of a
commutative ring, we require that pX ,OX q be locally equivalent to SpétA, where A
is an E8-ring and SpétA denotes its spectrum with respect to the étale topology (see
Construction 1.2.3.3).

1.2.1 Local Rings in a Topos

We begin by reviewing the theory of locally ringed topoi.

Definition 1.2.1.1. A ringed topos consists of a pair pX ,OX q, where X is a Grothendieck
topos and OX is a commutative ring object of X . Given a pair of ringed topoi pX ,OX q and
pY,OYq, we define a category Map1T opCAlg♥ ppX ,OX q, pY,OYqq as follows:
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• The objects of Hom1T opCAlg♥ ppX ,OX q, pY,OYqq are pairs pf˚, αq, where f˚ : X Ñ Y
is a geometric morphism of topoi (in other words, f˚ is a functor which admits a
left adjoint f˚ which preserves finite limits) and α : OY Ñ f˚OX is a morphism of
commutative ring objects of Y.

• A morphism from pf˚, αq to pf 1˚, α1q in Hom1T opCAlg♥ ppX ,OX q, pY,OYqq is a natural
transformation of functors β : f 1˚ Ñ f˚ for which the diagram

OY
α1

{{

α

##
f 1˚OX

βpOX q // f˚OX

commutes.

We will regard the collection of all ringed topoi as a (strict) 2-category 1T opCAlg♥ , with the
categories of morphisms defined above and the evident composition law.

Example 1.2.1.2. Let X be a topological space and let OX be a sheaf of commutative
rings on X. Then we can regard OX as a commutative ring object of the topos ShvSetpXq

of set-valued sheaves on X. The pair pShvSetpXq,OXq is a ringed topos.

Notation 1.2.1.3. Let pX ,OX q be a ringed topos, and let U P X be an object. We let
OX |U denote the product U ˆ OX , which we view as a commutative ring object of the
topos X {U . Then pX {U ,OX |U q is another ringed topos, equipped with an evident morphism
pX {U ,OX |U q Ñ pX ,OX q.

We now review what it means for a commutative ring object of a topos X to be local.
Let R be a commutative ring. For every element r P R, we let prq denote the principal
ideal generated by r. If r is not a unit, then prq ‰ R, so (by Zorn’s lemma) prq is contained
in a maximal ideal m Ă R. We say that R is local if it contains a unique maximal ideal
mR. In this case, the above reasoning shows that mR can be described as the collection of
non-invertible elements of R. The ring R is local if and only if the collection of non-units
R´Rˆ forms an ideal in R. Since R´Rˆ is clearly closed under multiplication by elements
of R, this is equivalent to the requirement that R´Rˆ is an additive subgroup of R. That
is, R is local if and only if the following pair of conditions is satisfied:

paq The element 0 belongs to R´Rˆ. In other words, 0 is not a unit in R: this is equivalent
to the requirement that 0 ‰ 1 in R.

pbq If r, r1 P R´Rˆ, then r` r1 P R´Rˆ. Equivalently, if r` r1 is a unit, then either r or
r1 is a unit. This is equivalent to the following apparently weaker condition: if s P R,
then either s or 1´ s is a unit in R (to see this, take s “ r

r`r1 , so that s is invertible if
and only if r is invertible and 1´ s » r1

r`r1 is invertible if and only if r1 is invertible).
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If R and R1 are local commutative rings, then we say that a ring homomorphism
f : RÑ R1 is local if it carries mR into mR1 : that is, if an element x P R is invertible if and
only if its image fpxq P R1 is invertible.

All of these notions admit generalizations to the setting of commutative ring objects of
an arbitrary Grothendieck topos:

Definition 1.2.1.4. Let X be a topos with final object 1, and let O be a commutative ring
object of X . Let Oˆ denote the group object of X given by the units of O, so that we have
a pullback diagram

Oˆ //

��

O ˆO

m
��

1 1 // O

where m denotes the multiplication on O,
We will say that O is local if the following conditions are satisfied:

paq The sheaf OX is locally nontrivial. That is, if 0 : 1 Ñ O denotes the zero section of O,
then the fiber product 1ˆO Oˆ is an initial object of X .

pbq Let e : Oˆ ãÑ O denote the inclusion map. Then the maps e and 1´ e determine an
effective epimorphism Oˆ >Oˆ Ñ O in the topos X .

If α : O Ñ O 1 is a map between commutative ring objects of X , then we say that α is
local if the diagram

Oˆ //

��

O 1ˆ

��
O // O 1

is a pullback square in X .
We let 1T oploc

CAlg♥ denote the subcategory of 1T opCAlg♥ whose objects are ringed topoi
pX ,OX q where OX is local, and whose morphisms maps pf˚, αq : pX ,OX q Ñ pY,OYq for
which α classifies a local map f˚OY Ñ OX . We will refer to 1T oploc

CAlg♥ as the 2-category
of locally ringed topoi.

Example 1.2.1.5. Let pX,OXq be a ringed space. Then OX is local (in the sense of
Definition 1.2.1.4) if and only if pX,OXq is a locally ringed space (in the sense of Definition
1.1.5.1): that is, if and only if each stalk OX,x is a local ring. Moreover, if pX,OXq and
pY,OY q are locally ringed spaces, then a map of ringed spaces pX,OXq Ñ pY,OY q is a
map of locally ringed spaces (in the sense of Definition 1.1.5.1) if and only if the induced
map of ringed topoi pShvSetpXq,OXq Ñ pShvSetpY q,OY q is local (in the sense of Definition
1.2.1.4).
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Remark 1.2.1.6. Let O be a commutative ring object of a topos X , and let U “ 1ˆO Oˆ

be the fiber product appearing in condition paq of Definition 1.2.1.4. Then U is a subobject
of the final object 1 P X and is maximal among those subobjects V Ď 1 for which the
restriction O |V is trivial. If f˚ : Y Ñ X is a geometric morphism of topoi, then:

piq The pullback f˚O is trivial (as a commutative ring object of Y) if and only if the
geometric morphism f˚ factors through the open immersion of topoi X {U Ñ X
determined by U .

piiq The pullback f˚O satisfies condition paq of Definition 1.2.1.4 if and only if the geometric
morphism f˚ factors through the closed subtopos of X complementary to U .

Remark 1.2.1.7. Let X be a topos and suppose we are given a commutative diagram

O 1

β

  
O

α

>>

γ // O2

of commutative ring objects of X . Then:

paq If α and β are local, then γ is local.

pbq If β and γ are local, then α is local.

pcq If α and γ are local and α is an effective epimorphism, then β is local.

Proposition 1.2.1.8. Let X be a topos and let α : O Ñ O 1 be a morphism between
commutative ring objects of X . Then:

p1q If O 1 is local and α is local, then O is local.

p2q If O is local and α is an effective epimorphism, then the following conditions are
equivalent:

paq The commutative ring object O 1 is local.
pbq The commutative ring object O 1 satisfies condition paq of Definition 1.2.1.4.
pcq The morphism α is local.

Proof. Consider first the commutative diagram σ :

Oˆ >Oˆ //

v
��

O 1ˆ >O 1ˆ

v1

��
O

α // O 1
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where the vertical maps are defined as condition pbq of Definition 1.2.1.4. If α is local, then
σ is a pullback square. If, in addition, the commutative ring object O 1 is local, then v1 is an
effective epimorphism. It follows that v is also an effective epimorphism. Since 1ˆO 1 O

1ˆ is
an initial object of X , the existence of a morphism

1ˆO Oˆ Ñ 1ˆO Oˆ

shows that 1ˆO Oˆ is also initial in X . This completest the proof of p1q.
To prove p2q, assume that O is local and that α is an effective epimorphism. The

implication paq ñ pbq is trivial, and the implication pbq ñ paq follows by inspecting the
commutative diagram σ (if v and α are effective epimorphisms, it follows that v1 is an
effective epmorphism as well). We next prove that pcq ñ pbq. Assume that α is local. Then
the induced map

β : 1ˆO Oˆ Ñ 1ˆO 1 O
1ˆ

is a pullback of α, and therefore an effective epimorphism. Our assumption that O is local
guarantees that the domain of β is an initial object of X . It follows that the codomain of β
is also an initial object of X , so that assertion pbq is satisfied.

We now complete the proof by showing that pbq implies pcq. Fix an object X P X and a
morphism f : X Ñ O, which we regard as an element of the commutative ring HomX pX,Oq.
Let αX : HomX pX,Oq Ñ HomX pX,O

1q be the homomorphism of commutative rings deter-
mined by α. We wish to show that if αXpfq is invertible, then f is invertible. Let g : X Ñ O 1

be a multiplicative inverse of αXpfq in the commutative ring HomX pX,O
1q. Since α is an

effective epimorphism, we can (after passing to a covering of X) assume without loss of
generality that g “ αXpgq for some g : X Ñ O. Since O is local, we can (after passing to a
further covering of X) assume that either fg or 1´ fg is invertible in the commutative ring
HomX pX,Oq. In the first case, we conclude that f is invertible as desired. In the second
case, it follows that αXp1´ fgq “ 0 is invertible in the commutative ring HomX pX,O

1q, so
that condition pbq guarantees that X is an initial object of X . In this case, HomX pX,Oq is
the zero ring (so that f is tautologically invertible).

1.2.2 Strictly Henselian Rings in a Topos

To develop the theory of Deligne-Mumford stacks, we will need to work with ringed
topoi satisfying stronger locality requirements, related to the étale topology rather than the
Zariski topology.

Notation 1.2.2.1. Let X be a topos, let OX be a commutative ring object of X , and
let CAlg♥ denote the category of commutative rings. For every commutative ring R, let
SolRpOX q denote an object of X having the following universal property: for every object
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U P X , there is a canonical bijection

HomX pU,SolRpOX qq » HomCAlg♥pR,HomX pU,OX qq.

Remark 1.2.2.2. Let f : pX ,OX q Ñ pY,OYq be a map of ringed topoi and let R be a
commutative ring. Then we have a canonical map f˚ SolRpOYq Ñ SolRpOX q in the topos
X , which is an isomorphism if OX » f˚OY and R is finitely generated as a commutative
ring.

Example 1.2.2.3. Let pX ,OX q be as in Notation 1.2.2.1 and let R be the zero ring. Then
SolRpOX q can be identified with the fiber product U “ 1 ˆOX OˆX in Remark 1.2.1.6. In
particular, if OX is local, then SolRpOX q is an initial object of X .

Example 1.2.2.4. Let pX ,OX q be as in Notation 1.2.2.1 and let R be a commutative ring
which factors as a Cartesian product R0 ˆR1. The projection maps R0 Ð RÑ R1 induce
morphisms

SolR0pOX q Ñ SolRpOX q Ð SolR1pOX q.

Unwinding the definitions, we have

SolRipOX q ˆSolRpOX q SolRj pOX q » SolRibRRj pOX q

»

#

SolRipOX q if i “ j

Sol0pOX q if i ‰ j.

In particular, if OX satisfies condition paq of Definition 1.2.1.4, then the SolRipOX q are
disjoint subobjects of SolRpOX q, so we have a monomorphism

SolR0pOX q > SolR1pOX q Ñ SolRpOX q.

If OX satisfies condition pbq of Definition 1.2.1.4, then this map is an epimorphism. Conse-
quently, if OX is local, then the construction R ÞÑ SolRpOX q carries finite products in the
category of commutative rings to finite coproducts in the topos X .

Definition 1.2.2.5. Let X be a topos and let OX be a commutative ring object of X . We
will say that OX is strictly Henselian if the following condition is satisfied:

p˚q For every commutative ring R and every finite collection of étale maps RÑ Rα which
induce a faithfully flat map RÑ

ś

αRα, the induced map
ž

α

SolRαpOX q Ñ SolRpOX q

is an effective epimorphism.
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We let 1T opsHen
CAlg♥ denote the full subcategory of 1T oploc

CAlg♥ spanned by those ringed topoi
pX ,OX q where OX is strictly Henselian.

Remark 1.2.2.6. In the situation of Definition 1.2.2.5, it suffices to verify condition p˚q in
the case where the commutative ring R is finitely generated (this follows immediately from
the structure theory of étale ring homomorphisms; see Proposition B.1.1.1).

Remark 1.2.2.7. Let f˚ : X Ñ Y be a geometric morphism of topoi, and let OY be a
commutative ring object of Y . If OY is strictly Henselian, then f˚OY is a strictly Henselian
commutative ring object of X . This follows immediately from Remarks 1.2.2.2 and 1.2.2.6.

Example 1.2.2.8. Let X “ Set be the category of sets, and let OX be a commutative
ring object of X , which we can identify with a commutative ring A. For every finitely
generated commutative ring R, we can identify SolRpOX q with the set HompR,Aq of ring
homomorphisms from R to A. Applying Corollary B.3.5.4, we deduce that OX is strictly
Henselian (in the sense of Definition B.3.5.1) if and only if the commutative ring A is strictly
Henselian (in the sense of Definition B.3.5.1).

Remark 1.2.2.9. Let X be a topos, and let OX be a commutative ring object of X . If OX
is strictly Henselian, then OX is local. Conversely, if OX is local, then (by virtue of Example
1.2.2.4) it is strictly Henselian if and only if it satisfies the following a priori weaker version
of condition p˚q:

p˚1q For every commutative ring R and every faithfully flat étale map RÑ R1, the induced
map SolR1pOX q Ñ SolRpOX q is an effective epimorphism in the topos X .

Remark 1.2.2.10. Let X be a topos, and suppose that X has enough points. If OX is
a commutative ring object of X , then OX is strictly Henselian if and only if, for each
point x˚ : X Ñ Set of X , the pullback x˚OX is a strictly Henselian commutative ring. In
particular, if X is a topological space and OX is a sheaf of commutative rings on X, then
OX is strictly Henselian (as a commutative ring object of the topos ShvSetpXq) if and only
if each stalk OX,x is a strictly Henselian ring.

Example 1.2.2.11. Let pX,OXq be a complex analytic space. Then OX is strictly Henselian
(when viewed as a commutative ring object of the topos ShvSetpXq).

Proposition 1.2.2.12. Let f : pX ,OX q Ñ pY,OYq be a morphism of locally ringed topoi
and let v : AÑ B be an étale morphism of commutative rings. If OY is strictly Henselian
and OX is local, then the induced diagram σ :

f˚ SolBpOYq //

��

SolBpOX q

��
f˚ SolApOYq // SolApOX q
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is a pullback square in the topos X .

Proof. Using Proposition B.1.1.1, we can choose a pushout diagram

A0 //

v0
��

A

v

��
B0 // B

in the category of commutative rings, where v0 is étale and A0 is finitely generated (so that
B0 is also finitely generated). In this case, σ fits into a commutative diagram

f˚ SolBpOYq //

��

SolBpOX q

��

// SolB0pOX q

��
f˚ SolApOYq // SolApOX q // SolA0pOX q

where the square on the right is a pullback. It will therefore suffice to show that the outer
rectangle in the diagram

f˚ SolBpOYq //

��

f˚ SolB0pOYq

��

// SolB0pOX q

��
f˚ SolApOYq // f˚ SolA0pOYq // SolA0pOX q

is a pullback square. Since the square on the left is a pullback, we are reduced to showing
that the square on the right is a pullback. Using Remark 1.2.2.2, we can rewrite this diagram
as

SolB0pf
˚OYq //

��

SolB0pOX q

��
SolA0pf

˚OYq // SolA0pOX q.

Replacing v by v0 and OY by f˚OY , we are reduced to proving Proposition 1.2.2.12 in the
special case where X “ Y (and f˚ is the identity map).

For each point x P | SpecA|, let κpxq denote the residue field of A at x and let dpxq “
dimκpxqpκpxq bA Bq. Note that there exists an integer n ě 0 such that dpxq ď n for each
x P |SpecA|. Our proof will proceed by induction on n. Note that if n “ 0, then B » Ar0´1s

and the desired result follows from our assumption that f is local. We now treat the case
n “ 0. The ring homomorphism v induces a map of Zariski spectra u : | SpecB| Ñ | SpecA|.
Let U Ď |SpecA| be the image of u, so that U is quasi-compact and open (Corollary B.2.2.5).
Write U “

Ť

1ďiďn |SpecAr 1
ai
s| for some elements a1, . . . , an P A. Since U contains the
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image of |SpecB|, the elements vpaiq generate the unit ideal in B. Since OX is local, it
follows that the map

ž

1ďiďn
SolBrvpaiq´1spOX q Ñ SolBpOX q

is an effective epimorphism in X . It will therefore suffice to show that each of the induced
maps

θi : SolBpOYq ˆSolBpOX SolBrfpaiq´1spOX q Ñ SolApOYq ˆSolApOX q SolBrfpaiq´1spOX q

is an isomorphism. We have a commutative diagram

SolBrfpaiq´1spOYq

θ1i
��

// SolBpOYq ˆSolBpOX q SolBrfpaiq´1spOX q

θi

��
SolAra´1

i s
pOYq ˆSol

Ara´1
i
s
pOX q SolBrfpaiq´1spOX q // SolApOYq ˆSolApOX q SolBrfpaiq´1spOX q,

where the horizontal maps are isomorphisms by virtue of our assumption that the map
OY Ñ OX is local. It will therefore suffice to show that each of the maps θ1i is an isomorphism.
Replacing A by Ara´1

i s and B by Brfpaiq
´1s, we are reduced to the case where the map

u : | SpecB| Ñ |SpecA| is surjective. In this case, B is étale and faithfully flat over A. Since
OY is strictly Henselian, the map SolBpOYq Ñ SolApOYq is an effective epimorphism. We
are therefore reduced to proving that the pullback map

SolBpOYq ˆSolApOY q SolBpOYq
ψ
Ñ SolBpOYq ˆSolApOY q pSolApOYq ˆSolApOX q SolBpOX qq

» SolBpOYq ˆSolBpOX q pSolBpOX q ˆSolApOX q SolBpOX qq

is an isomorphism. We may therefore replace v by the induced map B Ñ B bA B, and
thereby reduce to proving Proposition 1.2.2.12 in the special case where v admits a left
inverse B Ñ A. Set C “ B bA B, so that ψ can be identified with the canonical map

SolCpOYq Ñ SolBpOYq ˆSolBpOX q SolCpOX q.

Our assumption that v is étale guarantees that C factors as a direct product B ˆ C 1 in the
category CAlg♥

B. Since both OY and OX is local, we can factor ψ as a direct product of
maps

ψ0 : SolBpOYq Ñ SolBpOYq ˆSolBpOX q SolBpOX q

ψ1 : SolC1pOYq Ñ SolBpOYq ˆSolBpOX q SolC1pOX q.

Here the map ψ0 is obviously an equivalence, and the map ψ1 is an equivalence by virtue of
our inductive hypothesis (note that dimκpxqpκpxq bB C

1q “ dimκpxqpκpxq bB Cq ´ 1 ă n for
each x P |SpecB|).
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Remark 1.2.2.13. In the statement of Proposition 1.2.2.12, we do not need the full strength
of our assumption that OX is local: for example, if X has enough points, it is enough to
assume that each stalk OX ,x has the property that the Zariski spectrum | Spec OX ,x | is
connected.

Proposition 1.2.2.14. Let X be a topos and let α : O Ñ O 1 be an effective epimorphism
between local commutative ring objects of X . If O is strictly Henselian, then O 1 is strictly
Henselian.

Proof. By virtue of Remark 1.2.2.9, it will suffice to show that for every faithfully flat étale
morphism φ : AÑ B of commutative rings, the induced map ρ : SolBpO 1q Ñ SolApO 1q is an
effective epimorphism in X . Using the structure theory of étale morphisms (see Proposition
B.1.1.3) we can choose a pushout diagram of commutative rings

A0 //

φ0
��

A

φ
��

B0 // B

where φ0 is étale and A0 » Zrx1, . . . , xns is a polynomial ring over Z. Let U Ď | SpecA0|

denote the (open) image of the map | SpecB0| Ñ |SpecA0| and choose elements tfi P
A0u1ďiďm such that U “

Ť

1ďiďm | SpecA0rf
´1
i s|. Then the images of fi in A generate the

unit ideal. Since O 1 is local, the bottom horizontal map in the diagram

š

1ďiďm SolBrf´1
i s
pO 1q //

��

SolBpO 1q

ρ

��
š

1ďiďm SolArf´1
i s
pO 1q // SolApO 1q

is an effective epimorphism. Consequently, to show that ρ is an effective epimorphism, it will
suffice to show that each of the induced maps SolBrf´1

i s
pO 1q Ñ SolArf´1

i s
pO 1q is an effective

epimorphism. Using the existence of a pullback square

SolBrf´1
i s
pO 1q //

��

SolArf´1
i s
pO 1q

��
SolB0rf

´1
i s
pO 1q // SolA0rf

´1
i s
pO 1q,

we can replace A by A0rf
´1
i s (note that the map A0rf

´1
i s Ñ B0rf

´1
i s is faithfully flat because

| SpecA0rf
´1
i s| is contained in U).
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Consider the diagram

SolBpOq
ρ //

��

SolApOq

u
��

// SolA0pOq

v
��

SolBpO 1q
ρ // SolApO 1q // SolA0pO

1q.

Since A0 is isomorphic to the polynomial ring Zrx1, . . . , xns, we can identify v with the map
αn : On Ñ O 1n. Our assumption that α is an effective epimorphism now guarantees that v
is an effetive epimorphism. Since α is local, the right square in this diagram is a pullback,
so that u is also an effective epimorphism. Our assumption that O is strictly Henselian
guarantees that ρ is an effective epimorphism. It now follows by inspection of the above
diagram that ρ is an effective epimorphism as desired.

1.2.3 The Étale Spectrum of a Commutative Ring

Let R be a commutative ring and let SpecR “ pX,OXq be the associated affine scheme.
Then we can regard OX as a commutative ring object of the topos ShvSetpXq. This
commutative ring object is local, but is usually not strictly Henselian. To remedy this, one
can replace the Zariski spectrum SpecR by a slightly more sophisticated object, which we
will refer to as the étale spectrum of R.

Definition 1.2.3.1 (The Étale Topos of a Commutative Ring). Let R be a commutative
ring. We let CAlg♥

R denote the category of commutative R-algebras, and CAlgét
R the full

subcategory of CAlgR spanned by the étale R-algebras. The (opposite of) the 8-category
CAlgét

R is equipped with a Grothendieck topology, where a family of maps tAÑ Aαu generates
a covering sieve if and only if there exists some finite collection of indices α1, α2, . . . , αn
such that the map AÑ

ś

1ďiďnAαi is faithfully flat (this is an immediate consequence of
Proposition A.3.2.1). We will refer to this Grothendieck topology as the étale topology.

We let ShvSetpCAlgét
Rq denote the full subcategory of FunpCAlgét

R ,Setq spanned by those
functors which are sheaves with respect to the étale topology. We will refer to ShvSetpCAlgét

Rq

as the étale topos of R.

Proposition 1.2.3.2. Let R be a commutative ring, and let O : CAlgét
R Ñ Set be the

forgetful functor (which assigns to each étale R-algebra A its underlying set). Then O is a
sheaf for the étale topology, and can therefore be identified with a commutative ring object of
the topos ShvSetpCAlgét

Rq. Moreover, O is strictly Henselian.

Proof. The assertion that O is an étale sheaf is equivalent to the assertion that for every
étale R-algebra R1 and every faithfully flat étale map R1 Ñ R2, the diagram

R1 Ñ R2 Ñ R2 bR1 R
2
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is an equalizer in the category of sets (see Proposition A.3.3.1). We now show that O is
strictly Henselian. Suppose we are given a commutative ring A and a faithfully flat étale map
AÑ

ś

1ďiďnAi. We wish to show that the induced map θ :
š

1ďiďn SolAipOq Ñ SolApOq
is an epimorphism in the topos ShvSetpCAlgét

Rq. To prove this, suppose we are given an
étale R-algebra R1 and a point η P SolApOqpR1q, which we can identify with an algebra
homomorphism A Ñ R1. For 1 ď i ď n, let R1i “ Ai bA R

1, and let ηi denote the image
of η in SolApOqpR1iq. Then

ś

1ďiďnR
1
i is faithfully flat and étale over R, and is therefore

generates a covering sieve on the object R1 P pCAlgét
Rq

op. Moreover, each of the points ηi
can be lifted to a point ηi P SolAipOqpR1iq, so that θ is an epimorphism as desired.

Definition 1.2.3.3. Let R be a commutative ring, and let O be as in Proposition 1.2.3.2.
We will denote the ringed topos pShvSetpCAlgét

Rq,Oq by SpétR, and refer to it as the étale
spectrum of the commutative ring R.

If pX ,OX q is a ringed topos, we let ΓpX ; OX q denote the commutative ring HomX p1,OX q,
where 1 denotes a final object of X . We will refer to the construction pX ,OX q ÞÑ ΓpX ; OX q

as the global sections functor..

Proposition 1.2.3.4. Let pX ,OX q be a ringed topos for which OX is strictly Henselian,
and let R be a commutative ring. Then the global sections functor induces an equivalence of
categories

Map1T opsHen
CAlg♥

ppX ,OX q,SpétRq Ñ HomCAlg♥pR,ΓpX ; OX qq

(where the set on the right hand side is interpreted as a discrete category, having only identity
morphisms).

Corollary 1.2.3.5. The global sections functor

1T opsHen
CAlg♥ Ñ pCAlg♥qop

pX ,OX q ÞÑ ΓpX ; OX q

admits a right adjoint, given on objects by R ÞÑ SpétR.

Remark 1.2.3.6. If R is a commutative ring and SpétR “ pX ,OX q, then the unit map
RÑ ΓpX ; OX q is an equivalence. It follows that the construction R ÞÑ SpétR determines
a fully faithful functor from (the opposite of) the category of commutative rings to the
2-category 1T opsHen

CAlg♥ .

In particular, we can regard the construction R ÞÑ SpétR as a contravariant functor
from the category of commutative rings to the 2-category 1T opsHen

CAlg♥ Ď 1T opCAlg♥ .
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Remark 1.2.3.7. Let R be a commutative ring, and let pX ,OX q denote the étale spectrum
SpétR. For every étale R-algebra A, let hA : CAlgét

R Ñ Set denote the functor corepresented
by A, which we regard as an object of the topos X . Then there is a canonical equivalence of
ringed topoi

pX {hA ,OX |hAq » SpétA.

This can be deduced either from the universal properties of SpétR and SpétA (Proposition
1.2.3.4), or directly from the construction of the étale spectra.

Proof of Proposition 1.2.3.4. Fix a ring homomorphism φ : RÑ ΓpX ; OX q, and let C denote
the fiber product

Map1T opsHen
CAlg♥

ppX ,OX q, SpétRq ˆHomCAlg♥ pR,ΓpX ;OX qq tφu.

We will show that the category C is trivial (that is, it is equivalent to the category having a
single object and a single morphism).

Write SpétR “ pY,OYq. Let 1X and 1Y denote final objects of the topoi X and Y,
respectively. For every étale R-algebra A, let hA P Y Ď FunpCAlgét

R ,Setq denote the functor
corepresented by A, so that hA fits into a pullback diagram σA:

hA //

��

SolApOYq

��
1Y // SolRpOYq.

We also define an object XA P X so that we have a pullback diagram τA :

XA
//

��

SolApOX q

��
1X // SolRpOX q,

where the bottom horizontal map is determined by the ring homomorphism φ : R Ñ

HomX p1X ,OX q.
Let f “ pf˚, αq be a map of ringed topoi from pX ,OX q to pY,OYq which induces the

ring homomorphism φ upon passage to global sections. For every étale R-algebra A, the map
α determines a natural transformation of diagrams f˚σA Ñ τA, which gives in particular
a map νf,A : f˚hA Ñ XA. If pf˚, αq belongs to C, then the maps νf,A are isomorphisms
(Proposition 1.2.2.12). In particular, if we are given two objects pf˚, αq and pf 1˚, α1q in C,
then for each A P CAlgét

R there is a unique isomorphism θA : f˚hA » f 1˚hA for which the
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diagram
f˚hA

θA //

νf,A

""

f 1˚hA

νf 1,A

||
XA

commutes. In particular, for each X P X , we have bijections

pf 1˚XqpAq » HomYph
A, f 1˚Xq

» HomX pf
1˚hA, Xq

» HomX pf
˚hA, Xq

» HomYph
A, f˚Xq

» pf˚XqpAq.

These bijections depend functorially on X and A, and therefore supply an isomorphism γ

between the functors f 1˚ and f˚. We claim that γ is the unique morphism from pf˚, αq to
pf 1˚, α

1q in the category C. Uniqueness is clear from the definition. To prove that γ is a
morphism in C, let us abuse notation by identifying γ with the adjoint natural transformation
f˚ Ñ f 1˚; we must show that the diagram

f˚OY
γpOY q //

##

f 1˚OY

{{
OX

commutes. Writing OY as a colimit of representable functors, we are reduced to proving
that for each map hA Ñ OY in the topos Y (classified by an element a P A), the diagram

f˚hA
γphAq //

��

f 1˚hA

��
f˚OY

##

f 1˚OY

{{
OX

commutes. This is because the vertical compositions can be identified (using the maps νf,A
and νf 1,A) with the composite map XA ãÑ SolApOX q

a
Ñ OX .

It follows from the above argument that for every pair of objects C,C 1 P C, the set
HomCpC,C

1q contains a unique element (which is also an isomorphism in C). To complete
the proof, it will suffice to show that the category C is nonempty. To this end, we define
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a functor f˚ : X Ñ FunpCAlgét
R ,Setq by the formula f˚pXqpAq “ HomX pXA, Xq. The

assumption that OX is strictly Henselian implies that f˚ factors through the full subcategory
Y Ď FunpCAlgét

R ,Setq. We claim that f˚ is a geometric morphism of topoi: that is,
it admits a left adjoint f˚ which commutes with finite limits. The existence of a left
adjoint f˚ follows from the adjoint functor theorem (since f˚ is an accessible functor which
preserves small limits). By construction, we have a canonical isomorphism f˚hA » XA

for each A P CAlgét
R . To prove that f˚ preserves finite limits, it suffices to show that the

construction A ÞÑ f˚hA » XA carries finite colimits in CAlgét
A to finite limits in X (see

Lemma HTT.6.4.5.6 ), which follows immediately from the construction.
Unwinding the definitions, we obtain for each A P CAlgét

R a canonical ring homomorphism

AÑ HomX pSolApOX q,OX q Ñ HomX pXA,OX q “ pf˚OX qpAq.

These ring homomorphisms depend functorially on R, and therefore give rise to a homo-
morphism α : OY Ñ f˚OX of commutative ring objects of Y. We may therefore regard
pf˚, αq as a map of ringed topoi from pX ,OX q to SpétR. It is clear from the construction
that the induced ring homomorphism R » ΓpY; OYq Ñ ΓpX ; OX q coincides with φ. To
complete the proof that pf˚, αq is an object of the category C, it will suffice to show that the
underlying map f˚OY Ñ OX is local. To prove this, fix an object X P X and an element
ζ of the commutative ring HomX pX, f

˚OYq; we wish to show that if the image of ζ in
HomX pX,OX q is invertible, then ζ is invertible. This assertion can be tested locally on X:
we may therefore assume that the map ζ factors as a composition

X
ζ0
Ñ XA » f˚hA

f˚ζ1
ÝÑ f˚OY ,

for some étale R-algebra A. In this case, we can identify ζ1 with an element a P A and
ζ0 with a map of R-algebras φX : A Ñ HomX pX,OX q, in which case the image of ζ in
HomX pX,OX q can be identified with φXprq. If this element of HomX pX,OX q is invertible,
then φX extends to an R-algebra homomorphism φX : Ara´1s Ñ HomX pX,OX q. In this
case, ζ0 factors through the subobject XAra´1s Ď XA. We are therefore reduced to proving

that the composite map XAra´1s Ñ XA » f˚hA
f˚ζ1
ÝÝÝÑ f˚OY determines an invertible

element r of the commutative ring

HomX pXAra´1s, f
˚OYq » HomYph

Ara´1s, f˚f
˚OYq » pf˚f

˚OYqpAra
´1sq.

This is clear, since r is the image of r under the composite map

AÑ Ara´1s “ OYpAra
´1sq Ñ pf˚f

˚OYqpAra
´1sq.
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1.2.4 Deligne-Mumford Stacks as Ringed Topoi

By definition, a scheme is a ringed space pX,OXq which is locally isomorphic to the
Zariski spectrum SpecR of a commutative ring R. We now consider an analogous definition,
replacing the Zariski spectrum SpecR by the étale spectrum SpétR of Definition 1.2.3.3.

Definition 1.2.4.1. Let pX ,OX q be a ringed topos. We will say that pX ,OX q is a Deligne-
Mumford stack if there exists a collection of objects Uα P X satisfying the following conditions:

p1q The objects Uα cover X . That is, the natural map >αUα Ñ 1 is an epimorphism in X ,
where 1 denotes the final object of X .

p2q For each index α, the ringed topos pX {Uα ,OX |Uαq is equivalent (in the 2-category
1T opCAlg♥) to a ringed topos of the form SpétRα, where Rα is a commutative ring.

Note that conditions p1q and p2q imply that OX is strictly Henselian. We let DM denote the
full subcategory of 1T opsHen

CAlg♥ spanned by those ringed topoi pX ,OX q which are Deligne-
Mumford stacks.

Definition 1.2.4.2. Let pX ,OX q be a Deligne-Mumford stack. We will say that pX ,OX q is
affine if it is equivalent to SpétR for some commutative ring R. We will say that an object
U P X is affine if the ringed topos pX {U ,OX |U q is affine.

Remark 1.2.4.3. Let pX ,OX q be a Deligne-Mumford stack. Then X is generated by affine
objects. That is, for every object X P X , there exists an effective epimorphism >Uα Ñ X,
where each Uα is affine. This assertion can be tested locally on X : we may therefore assume
without loss of generality that pX ,OX q is affine, in which case the desired result follows
from Remark 1.2.3.7.

Remark 1.2.4.4. Let pX ,OX q be a ringed topos. Then pX ,OX q is a Deligne-Mumford
stack if and only if, for each object X P X , there exists an effective epimorphism >Uα Ñ X

where each of the ringed topoi pX {Uα ,OX |Uαq is an affine Deligne-Mumford stack. The
“only if” direction follows immediately from the definition, and the “if” direction follows from
Remark 1.2.4.3.

Remark 1.2.4.5. Let pX ,OX q be a ringed topos. The condition that pX ,OX q be a Deligne-
Mumford stack can be tested locally on X . More precisely:

piq If pX ,OX q is a Deligne-Mumford stack, then any ringed topos of the form pX {U ,OX |U q

is a Deligne-Mumford stack.

piiq If the topos X admits a covering by objects Uα such that each of the ringed topoi
pX {Uα ,OX |Uαq is a Deligne-Mumford stack, then pX ,OX q is a Deligne-Mumford stack.
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Both of these assertions follow immediately from the characterization of Deligne-Mumford
stacks supplied by Remark 1.2.4.4.

Proposition 1.2.4.6. Let X “ pX ,OX q be a Deligne-Mumford stack. Then the collection
of affine objects of X is closed under fiber products.

Proof. For each object U P X , let XU denote the Deligne-Mumford stack pX {U ,OX |U q. The
functor R ÞÑ SpétR determines a fully faithful embedding pCAlg♥qop Ñ DM which preserves
small limits (since it is a right adjoint), so that its essential image is closed under small
limits. The desired result now follows from the observation that the construction U ÞÑ XU
determines a functor from X to DM which preserves fiber products.

Proposition 1.2.4.7. Let pX ,OX q and pY,OYq be ringed topoi. If OX is strictly Henselian
and pY,OYq is a Deligne-Mumford stack, then the category MapT opsHen

CAlg♥
ppX ,OX q, pY,OYqq

is a groupoid.

Proof. Let pf˚, αq and pf 1˚, α1q be maps from pX ,OX q to pY,OYq in 1T opsHen
CAlg♥ , and let γ be a

morphism from pf˚, αq to pf 1˚, α1q. Let us identify γ with a natural transformation from f˚ to
f 1˚. We wish to prove that γ is an isomorphism. Fix a covering of Y by objects tUβuβPI such
that each pY{Uβ ,OY |Uβ q is equivalent to SpétRβ for some commutative ring Rβ . Then the
objects f 1˚Uβ cover the topos X . The assertion that γ is an isomorphism can be tested locally
on X ; we may therefore replace pX ,OX q by ringed topoi of the form pX {f˚Uβ ,OX |f˚Uβ q

and thereby reduce to the case where there exists a map u : 1X Ñ f˚Uβ in the topos X , for
some index β. In this case, the map u (and the induced map u1 : 1X Ñ f 1˚Uβq determine
factorizations of f and f 1 through the ringed topos pY{Uβ ,OY |Uβ q. We may therefore reduce
to the case where pY,OYq » SpétRβ is affine, in which case the desired result follows from
Proposition 1.2.3.4.

Corollary 1.2.4.8. The 2-category DM of Deligne-Mumford stacks is a p2, 1q-category. In
other words, every 2-morphism in DM is invertible.

Remark 1.2.4.9. Let C denote the simplicial category whose objects are Deligne-Mumford
stacks pX ,OX q, with morphism spaces given by

MapCppX ,OX q, pY,OYqq “ NpMapDMppX ,OX q, pY,OYqqq.

It follows from Corollary 1.2.4.8 that C is a fibrant simplicial category, so that its homotopy
coherent nerve NpCq is an 8-category. We will denote this 8-category by NpDMq, and refer
to it as the 8-category of Deligne-Mumford stacks.
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1.2.5 Deligne-Mumford Stacks as Functors

We now compare Definition 1.2.4.1 with the more traditional “functor-of-points” approach
to the theory of Deligne-Mumford stacks.

Notation 1.2.5.1. Let τď1 S denote the 8-category of 1-truncated spaces (in other words,
the 8-category of groupoids). Let X “ pX ,OX q be a Deligne-Mumford stack. We define
a functor hX : CAlg♥ Ñ τď1 S by the formula hXpRq “ Map1T opsHen

CAlg♥
pSpétR,Xq. We will

refer to hX as the functor of points of X.

Proposition 1.2.5.2. The construction X ÞÑ hX determines a fully faithful embedding of
8-categories NpDMq Ñ FunpCAlg♥, τď1 Sq.

Proof of Proposition 1.2.5.2. Let X and Y be Deligne-Mumford stacks. Write X “ pX ,OX q.
For each object U P X , set XU “ pX {U ,OX |U q and consider the canonical map

θU : MapNpDMqpXU ,Yq Ñ MapFunpCAlg♥,τď1 SqphXU , hYq.

Let us say that an object U P X is good if θU is a homotopy equivalence. We wish to show
that the final object of X is good. In fact, we will show that every object of X is good. The
proof proceeds in several steps:

piq The construction U ÞÑ θU carries coproducts in X to products. Consequently, the
collection of good objects of X is closed under small coproducts.

piiq Suppose that f : U0 Ñ X is an effective epimorphism of X , and let U‚ denote its Čech
nerve. Then θX can be identified with the totalization of the cosimplicial object θU‚ in
Funp∆1,Sq. Consequently, if each of the objects Um is good, then X is good.

piiiq Every affine object of X is good (this follows from Yoneda’s lemma).

pivq Let f : X Ñ Y be a monomorphism in X . If Y is affine, then X is good. To prove
this, choose an effective epimorphism g : U0 Ñ X, where U0 is a coproduct of affine
objects Uα (see Remark 1.2.4.3). Let U‚ be the Čech nerve of g. By virtue of piiq, it
will suffice to show that each Um is good. Using piq, we are reduced to showing that
each fiber product Uα0 ˆX ¨ ¨ ¨ ˆX Uαm is good. Since f is a monomorphism, we have
an equivalence

Uα0 ˆX ¨ ¨ ¨ ˆX Uαm » Uα0 ˆY ¨ ¨ ¨ ˆY Uαm .

It follows from Proposition 1.2.4.6 that this object is affine, so that the desired result
follows from piiiq.
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pvq Let f : X Ñ Y be an arbitrary morphism in X . If Y is affine, then X is good. To
prove this, choose an effective epimorphism g : U0 Ñ X, where U0 is a coproduct of
affine objects Uα (see Remark 1.2.4.3). Let U‚ be the Čech nerve of g. By virtue of
piiq, it will suffice to show that each Um is good. Using piq, we are reduced to showing
that each fiber product Uα0 ˆX ¨ ¨ ¨ ˆX Uαm is good. This follows from pivq, since there
exists a monomorphism

Uα0 ˆX ¨ ¨ ¨ ˆX Uαm ãÑ Uα0 ˆY ¨ ¨ ¨ ˆY Uαm

whose codomain is affine by virtue of Proposition 1.2.4.6.

pviq Every object X P X is good. To prove this, choose an effective epimorphism g : U0 Ñ X,
where U0 is a coproduct of affine objects Uα (see Remark 1.2.4.3). Let U‚ be the
Čech nerve of g. By virtue of piiq, it will suffice to show that each Um is good. Using
piq, we are reduced to showing that each fiber product Uα0 ˆX ¨ ¨ ¨ ˆX Uαm is good.
This follows from pvq, since the projection map Uα0 ˆX ¨ ¨ ¨ ˆX Uαm Ñ Uα0 has affine
codomain.

For the remainder of this section, we will abuse notation by not distinguishing between
a Deligne-Mumford stack and its image under the fully faithful embedding of Proposition
1.2.5.2 (in other words, we will identify a Deligne-Mumford stack X “ pX ,OX q with the
functor hX).

Definition 1.2.5.3. Let R be a commutative ring and write SpétR “ pX ,OX q. For each
object U P X “ ShvSetpCAlgét

Rq, we let SpétU R denote the ringed topos pX {U ,OX |U q. Then
SpétU R is a Deligne-Mumford stack equipped with a canonical map SpétU RÑ SpétR.

If f : X Ñ Y is an arbitrary morphism in FunpCAlg♥, τď1 Sq, we will say that f is
representable and étale if, for every commutative ring R and every point η P Y pRq, the fiber
product SpétRˆY X is equivalent to SpétU pRq, for some object U P ShvSetpCAlgét

Rq.

Remark 1.2.5.4. In the situation of Definition 1.2.5.3, a map f : X Ñ Y is representable
and étale if and only if, for each point η P Y pRq, the fiber product SpétRˆYX is representable
by an algebraic space which is étale over SpétR. The veracity of this assertion requires that
we adopt a slightly more general definition of algebraic space than the one given in [117].

Suppose that X “ SpétU pRq for some sheaf U P ShvSetpCAlgét
Rq. Choosing a set of

sections ηα P UpRαq which generate U , we obtain an effective epimorphism > SpétRα Ñ X

in the category of étale sheaves on (the opposite of) the category CAlgét
R . However, the

maps vα : SpétRα Ñ X need not be relatively representable by schemes. Nevertheless, the
maps vα are relatively representable in the special case where there exists a monomorphism



1.2. DELIGNE-MUMFORD STACKS 111

X ãÑ SpétA, for some étale R-algebra A. In this case, each fiber product SpétBˆX SpétRα
can be identified with the functor corepresented by B bA Rα.

In the general case, each fiber product Xα,β “ SpétRα ˆX SpétRβ is again étale over
SpétR (in the sense of Definition 1.2.5.3), and admits a monomorphism

Xα,β ãÑ SpétRα ˆSpétR SpétRβ » SpétpRα bR Rβq.

It follows that each Xα,β is a representable by an algebraic space in the sense of [117], so
that the maps vα : SpétRα Ñ X are relatively representable by algebraic spaces.

Remark 1.2.5.5. Let Y “ pY,OYq be a Deligne-Mumford stack, and suppose we are given
a morphism f : X Ñ Y in FunpCAlg♥, τď1 Sq. Assume further that X is a sheaf for the
étale topology. Then the following conditions are equivalent:

p1q The functor X is equivalent (as an object of the 8-category FunpCAlg♥, τď1 Sq{Y ) to
a Deligne-Mumford stack of the form pY{U ,OY |U q for some object U P Y.

p2q The map f is representable and étale (in the sense of Definition 1.2.5.3).

The implication p1q ñ p2q follows immediately from the definitions. The converse follows by
using p2q to construct the object U P Y locally, and then invoking the assumption that X is
an étale sheaf.

Remark 1.2.5.6. Let f : X Ñ Y be a morphism in FunpCAlg♥, τď1 Sq, and suppose that
both X and Y are sheaves for the étale topology. Then f is étale and representable if and
only if, for every Deligne-Mumford stack Z “ pZ,OZq equipped with a map Z Ñ Y , the
fiber product Z ˆY X is equivalent to to pZ{U ,OZ |U q for some object U P Z. The “if”
direction is obvious, and the converse follows from Remark 1.2.5.5. It follows from this
characterization that the collection of representable étale morphisms (between étale sheaves)
is closed under composition.

Proposition 1.2.5.7. Let φ : A Ñ B be a homomorphism of commutative rings. The
following conditions are equivalent:

p1q The ring homomorphism φ is étale (see §B.1).

p2q The induced map of Deligne-Mumford stacks SpétB Ñ SpétA is representable and
étale (here we abuse terminology by identifying SpétA and SpétB with the functors
they represent).

In other words, if A is a commutative ring, then an object U P ShvSetpCAlgét
Aq is affine

if and only if U is corepresentable by an étale A-algebra B.
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Proof. The implication p1q ñ p2q follows immediately from the construction of SpétB.
Conversely, suppose that p2q is satisfied. Write SpétA “ pX ,OX q, so that SpétB »

pX {U ,OX |U q for some object U P X . For each étale A-algebra A1, let hA1 P X denote the
functor corepresented by A1. The objects hA1 generate the topos X under colimits. We
may therefore choose a collection of étale A-algebras tAαuαPI and an effective epimorphism
>αPIh

Aα Ñ U in X . Under the identification of X {U with ShvSetpCAlgét
Bq, we can identify

each hAα with an object Vα P ShvSetpCAlgét
Bq. These objects cover the topos ShvSetpCAlgét

Bq.
We may therefore choose a finite collection of indices α1, α2, . . . , αn and a faithfully flat
étale map B Ñ

ś

1ďiďnBi such that each VαipBiq is nonempty. Set A1 “
ś

1ďiďnAαi and
B1 “

ś

Bi, so that we morphisms of Deligne-Mumford stacks

SpétB1 Ñ SpétA1 Ñ SpétB Ñ SpétA,

induced by a sequence of ring homomorphisms A φ
Ñ B Ñ A1 Ñ B1. It follows that B1 is a

retract of A1 bB B1 in the category of A-algebras. Since B1 is étale over B and A1 is étale
over A, A1 bB B1 is étale over A, so that B1 is étale over A. Since the map B Ñ B1 is étale
and faithfully flat, we conclude that B is also étale over A (see Proposition B.1.4.1).

Definition 1.2.5.8. Let fα : Xα Ñ Y be a collection of representable étale morphisms
in the 8-category FunpCAlg♥, τď1 Sq. We will say that the set tfαu is jointly surjective
if, for every commutative ring R and every point η P Y pRq, if we write SpétR ˆY Xα as
SpétUα R for some Uα P ShvSetpCAlgét

Rq, then the objects Uα comprise a covering of the
topos ShvSetpCAlgét

Rq.
We will say that a single representable étale morphism f : X Ñ Y is surjective if the set

tfu is jointly surjective.

Remark 1.2.5.5 admits the following converse:

Theorem 1.2.5.9. Let X : CAlg♥ Ñ Sď1 be a functor. The following conditions are
equivalent:

p1q The functor X is (representable by) a Deligne-Mumford stack.

p2q The functor X is a sheaf for the étale topology, and there exists a jointly surjective col-
lection of representable étale morphisms fα : Uα Ñ X, where each Uα is (representable
by) an affine Deligne-Mumford stack SpétRα.

p3q The functor X is a sheaf for the étale topology, and there exists a jointly surjective col-
lection of representable étale morphisms fα : Uα Ñ X, where each Uα is (representable
by) a Deligne-Mumford stack.

p4q The functor X is a sheaf for the étale topology, and there exists a representable étale
surjection f : U0 Ñ X, where U0 is (representable by) a Deligne-Mumford stack.
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Example 1.2.5.10. Let X : CAlg♥ Ñ Set be a functor which is representable by a
scheme. Then X satisfies condition p2q of Theorem 1.2.5.9 (in fact, we can take the maps
uα : SpecRα Ñ X to be any open covering of X by affine schemes). Theorem 1.2.5.9 implies
that the essential image of the functor NpDMq ãÑ FunpCAlg♥, τď1 Sq includes all functors
which are representable by schemes. We therefore obtain a fully faithful embedding from
the category Sch of schemes to the 2-category DM of Deligne-Mumford stacks, given on
affine schemes by SpecR ÞÑ SpétR. Note that this embedding is not given by the formula
pX,OXq ÞÑ pShvSetpXq,OXq, because the structure sheaf of a scheme is usually not strictly
Henselian. Instead, the Deligne-Mumford stack associated to a scheme pX,OXq can be
viewed as the classifying topos for strict Henselizations of OX : see §1.6 for more details).

Proof of Theorem 1.2.5.9. Let X : CAlg♥ Ñ τď1 S be the functor represented by a Deligne-
Mumford stack pX ,OX q. Fix a commutative ring A and write SpétA “ pY,OYq. For every
étale A-algebra A1, let hA1 P ShvSetpCAlgét

Aq denote the functor corepresented by A1. Then
the restriction of X to CAlgét

A is given by the formula

XpA1q “ MapDMppY{hA1 ,OY |hA1 q, pX ,OX q,

from which it follows easily that the restriction of X to CAlgét
A is an étale sheaf. It follows

that X is a sheaf for the étale topology, so that the implication p1q ñ p2q follows immediately
from the definition of Deligne-Mumford stack.

The implication p2q ñ p3q is trivial, and the implication p3q ñ p4q follows by taking
U0 to be the coproduct of the Uα (in the 2-category of Deligne-Mumford stacks). We will
complete the proof by showing that p4q ñ p1q. Let U0 be a functor which is representable by
a Deligne-Mumford stack pU0,OU0q, let f : U0 Ñ X be a representable étale surjection, and
let U‚ be the Čech nerve of f (formed in the 8-category FunpCAlg♥, τď1 Sq). Since f is an
effective epimorphism of étale sheaves, we can identify X with the geometric realization of U‚
in the 8-category of τď1 S-valued étale sheaves on CAlg♥. Each Um admits a representable
étale map to U0, and is therefore representable by a Deligne-Mumford stack pUm,OUmq.
We can view U‚ as a simplicial object in the 2-category of Grothendieck topoi; let X
denote its geometric realization (so that the objects of X can be identified with sequences
tXm P Umumě0 which are compatible with one another under pullback). Since each of the
maps Um Ñ Un is étale, the collection of structure sheaves tOUmumě0 can be identified with
a commutative ring object OX P X .

For each integerm, the inclusion rms ãÑ rm`1s determines a representable étale surjection
map Um`1 Ñ Um. We may therefore choose an object Vm P Um and an equivalence

pUm`1,OUm`1q » pUm{Vm ,OUm |Vmq.

The objects Vm are compatible under pullback, and therefore determine an object V of the
topos X . Since each Vm covers the final object of Um, the object V covers the final object of
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X . Moreover, we can identify pX {V ,OX |V q with the geometric realization of the simplicial
ringed topos

pU‚{V‚ ,OU‚ |V‚q » pU‚`1,OU‚`1q,

which is equivalent to pU0,OU0q. It follows from Remark 1.2.4.4 that pX ,OX q is a Deligne-
Mumford stack. Let X 1 : CAlg♥ Ñ τď1 S denote the functor represented by pX ,OX q. Let
f 1 : U0 Ñ X 1 be the canonical map. The natural isomorphism f˚V » V0 shows that U‚ is
the Čech nerve of the map f 1, so that f 1 factors as a composition

U0
f
Ñ |U‚| » X

g
Ñ X 1,

where g is a monomorphism. To complete the proof, it will suffice to show that f 1 is an
epimorphism of étale sheaves. This follows from the observation that V covers the final
object of the topos X .

1.2.6 Quasi-Coherent Sheaves on a Deligne-Mumford Stack

We close this section with a brief discussion of quasi-coherent sheaves on a Deligne-
Mumford stack, which will play a role in §1.4:

Definition 1.2.6.1. Let pX ,OX q be a Deligne-Mumford stack, and let F be a OX -
module object of X . For each object U P X , we let OX pUq denote the commutative ring
HomX pU,OX q, and F pUq the module HomX pU,F q. We will say that F is quasi-coherent
if the following condition is satisfied:

p˚q For every morphism U Ñ V between affine object of X , the induced map

OX pUq bOX pV q F pV q Ñ F pUq

is an isomorphism of modules over the commutative ring OX pUq.

Example 1.2.6.2. Let A be a commutative ring and let write SpétA “ pShvSetpCAlgét
Aq,Oq.

Proposition 1.2.5.7 implies that a O-module F in ShvSetpCAlgét
Aq is quasi-coherent if and

only if, for every morphism B Ñ C of étale A-algebras, the induced map CbBF pBq Ñ F pCq

is an equivalence. In other words, F is quasi-coherent if and only if there exists a (discrete)
A-module M for which F is given by the formula F pBq “ B bAM . Conversely, for any
discrete A-module M , the theory of faithfully flat descent implies that the construction
B ÞÑ B bA M determines a sheaf for the étale topology on CAlgét

A . We summarize the
situation as follows: the category of quasi-coherent sheaves on SpétA is equivalent to the
category of (discrete) A-modules.

Proposition 1.2.6.3. Let pX ,OX q be a Deligne-Mumford stack, and let F be a OX -module
object of X . The condition that F be quasi-coherent can be tested locally on X . More
precisely, if there exists a covering of X by objects Uα such that each restriction F |Uα is a
quasi-coherent sheaf on pX {Uα ,OX |Uαq, then F is quasi-coherent.
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Proof. Let f : V Ñ W be a morphism between affine objects of X ; we wish to show that
the induced map OX pV q bOX pW q F pW q Ñ F pV q is an isomorphism. Replacing X by
pX {W ,OX |W q, we may assume that pX ,OX q “ SpétA for some commutative ring A. Let
us identify X with ShvSetpCAlgét

Aq, so that we can view F as a functor from CAlgét
A to the

category of sets. To prove that F is quasi-coherent, it will suffice to show that for every
étale A-algebra B, the natural map B bA F pAq Ñ F pBq is an isomorphism (see Example
1.2.6.2).

We may assume without loss of generality that each Uα is affine and therefore associated
to some étale A-algebra Aα. Since the objects Uα cover X , we may choose a finite set of
indices α1, . . . , αn for which the product

ś

1ďiďnAαi is faithfully flat over A. Our assumption
on F guarantees that for any morphism of étale A-algebras C Ñ C 1, if C admits the structure
of an Aα-algebra for some index α, then the induced map C 1 bC F pCq Ñ F pC 1q is an
isomorphism.

For any étale A-algebra B, the hypothesis that F is an étale sheaf (and the flatness of
B as an A-module) supplies a commutative diagram of short exact sequences

0 // B bA F pAq //

θ

��

ś

1ďiďnB bA F pAαiq //

θ1

��

ś

1ďi,jďnB bA F pAαi bA Aαj q

θ2

��
0 // F pBq //

ś

1ďiďn F pB bA Aαiq //
ś

1ďi,jďn F pB bA Aαi bA Aαj q.

Since θ1 and θ2 are isomorphisms, we conclude that θ is also an isomorphism.

1.3 Sheaves of Spectra

In §1.1, we introduced the notion of a spectrally ringed space: that is, a pair pX,OXq

where X is a topological space and OX is a sheaf of E8-rings on X. The language of
spectrally ringed spaces is adequate for describing many of the algebro-geometric objects
which we are interested in studying (such as the spectral schemes of Definition 1.1.2.8).
However, to accommodate more exotic objects (such as the spectral Deligne-Mumford stacks
of §1.4), it will be useful to work with a more general notion of CAlg-valued sheaf. In this
section, we will study pairs pX ,OX q where X is an 8-topos and OX is a sheaf of E8-rings
on X .

1.3.1 Sheaves on 8-Topoi

Let C be an 8-category. In §1.1, we introduced the notion of a C-valued sheaf on a
topological space X (Definition 1.1.2.1). This definition can be generalized to an arbitrary
Grothendieck site:
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Definition 1.3.1.1. Let T be an essentially small 8-category. Recall that a Grothendieck
topology on T is a Grothendieck topology on the homotopy category hT , in the sense of
classical category theory (see §HTT.6.2.2 for a detailed discussion). Let C be an arbitrary
8-category. We will say that a functor O : T op Ñ C is a C-valued sheaf on T if the following
condition is satisfied: for every object U P T and every covering sieve T 0

{U Ď T {U , the
composite map

pT 0
{U q

Ÿ Ď pT {U qŸ Ñ T
Oop
Ñ Cop

is a colimit diagram in Cop. We let ShvCpT q denote the full subcategory of FunpT op, Cq
spanned by the C-valued sheaves on T .

More informally, a functor O : T op Ñ C is a C-valued sheaf if, for every object U P T
and every covering sieve T 0

{U of U , the canonical map

OpUq Ñ lim
ÐÝ

V PT 0
{U

OpV q

is an equivalence in C.

Example 1.3.1.2. Let X be a topological space, let C be an8-category, and let ShvCpXq be
the 8-category of C-valued sheaves on X (Definition 1.1.2.1). Then ShvCpXq “ ShvCpUpXqq,
where UpXq is the partially ordered set of all open subsets of X, which is endowed with
the usual Grothendieck topology (so that a collection of inclusions tUα Ď Uu generates a
covering sieve on U if and only if U “

Ť

Uα).

Example 1.3.1.3. Let T be a small 8-category equipped with a Grothendieck topology
and let S denote the 8-category of spaces. Then we will denote the 8-category ShvSpT q
simply by ShvpT q and refer to it as the 8-category of sheaves on T . The 8-category
ShvpT q is an accessible left-exact localization of the presheaf 8-category FunpT op,Sq, and
is therefore an 8-topos (see §HTT.6.2 ).

In the situation of Definition 1.3.1.1, the 8-category ShvCpT q does not depend on the
exact details of the Grothendieck site T : it depends only on the associated 8-topos ShvpT q.
To see this, it will be convenient to introduce a site-independent version of Definition 1.3.1.1
(which also makes sense for 8-topoi which do not arise as sheaves on a Grothendieck site).

Definition 1.3.1.4. Let X be an 8-topos and let C be an arbitrary 8-category. A C-valued
sheaf on X is a functor X op Ñ C which preserves small limits. We let ShvCpX q denote the
full subcategory of FunpX op, Cq spanned by the C-valued sheaves on X .

Warning 1.3.1.5. Let X be an 8-topos, and let C be an arbitrary 8-category. Then the
8-category ShvCpX q introduced in Definition 1.3.1.4 generally does not coincide with the
8-category C-valued sheaves with respect to a Grothendieck topology on X (for example,
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the canonical topology on X ). Consequently, the conventions of Definition 1.3.1.4 and 1.3.1.1
conflict with one another. However, there should be little danger of confusion: for example,
an 8-topos X is never essentially small as an 8-category, unless X is a contractible Kan
complex.

Remark 1.3.1.6. Let C be a presentable 8-category and X an 8-topos. Then the 8-
category ShvCpX q can be identified with the tensor product CbX introduced in §HA.4.8.1 .
In particular, ShvCpX q is a presentable 8-category.

We now show that Definitions 1.3.1.1 and 1.3.1.4 are compatible with one another, at
least when the 8-category C admits small limits. For any 8-category T , we let PpT q denote
the 8-category FunpT op,Sq of S-valued presheaves on T , and j : T Ñ PpT q the Yoneda
embedding.

Proposition 1.3.1.7. Let T be a small 8-category equipped with a Grothendieck topology.
Let j : T Ñ PpT q denote the Yoneda embedding and L : PpT q Ñ ShvpT q a left adjoint to
the inclusion. Let C be an arbitrary 8-category which admits small limits. Then composition
with L ˝ j induces an equivalence of 8-categories ShvCpShvpT qq Ñ ShvCpT q.

Corollary 1.3.1.8. Let X be a topological space and let C be an 8-category which ad-
mits small limits. Then there is a canonical equivalence of 8-categories ShvCpXq »

ShvCpShvpXqq, where the left hand side is given by Definition 1.1.2.1 and the right hand
side by Definition 1.3.1.4.

Proof of Proposition 1.3.1.7. According to Theorem HTT.5.1.5.6 , composition with j in-
duces an equivalence of8-categories Fun0pPpT qop, Cq Ñ FunpT op, Cq, where Fun0pPpT qop, Cq
denotes the full subcategory of FunpPpT qop, Cq spanned by those functors which preserve
small limits. According to Proposition HTT.5.5.4.20 , composition with L induces a fully
faithful embedding ShvCpShvpT qq Ñ Fun0pPpT qop, Cq. The essential image of this embed-
ding consists of those limit-preserving functors F : PpT qop Ñ C such that, for every X P T
and every covering sieve T 0

{X Ď T {X , the induced map F pjXq Ñ F pY q is an equivalence in
C, where Y is the subobject of jX corresponding to the sieve T 0

{X . Unwinding the definitions,
this translates into the condition that the composition

pT 0
{Xq

Ź Ď pT {XqŹ Ñ T
j
Ñ PpT q F

Ñ Cop

is a colimit diagram. It follows that the composition

ShvCpShvpT qq Ñ Fun0pPpT qop, Cq Ñ FunpT op, Cq

is fully faithful, and its essential image is the full subcategory ShvCpT q.
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1.3.2 Sheaves of Spectra

In this book, are primarily interested in C-valued sheaves when C “ Sp is the 8-category
of spectra.

Definition 1.3.2.1. Let X be an 8-topos. A sheaf of spectra on X is a sheaf on X with
values in the 8-category Sp of spectra. We let ShvSppX q denote the full subcategory of
FunpX op, Spq spanned by the sheaves of spectra on X .

Remark 1.3.2.2. Let X be an 8-topos and let ShvSpX q denote the full subcategory of
FunpX op,Sq spanned by those functors which preserve small limits. Recall that the 8-
category Sp of spectra can be defined as the full subcategory of FunpSfin

˚ ,Sq spanned by
those functors E : Sfin

˚ Ñ S which are reduced and excisive; here Sfin
˚ denotes the 8-category

of pointed finite spaces (Definition HA.1.4.3.1 ). We therefore obtain an isomorphism
of ShvSppX q with the full subcategory of FunpSfin

˚ ,ShvSpX qq spanned by those functors
which are reduced and excisive. Since the Yoneda embedding induces an equivalence
of 8-categories X Ñ ShvSpX q (Proposition HTT.5.5.2.2 ), we obtain an equivalence of
ShvSppX q with the 8-category SppX q of spectrum objects of X (see Definition HA.1.4.2.8 ).
In particular, ShvSppX q is a presentable stable 8-category. Moreover, we have a forgetful
functor Ω8 : ShvSppX q Ñ X , which is obtained by pointwise composition with the forgetful
functor Ω8 : Sp Ñ S (together with the identification X » ShvSpX q).

Notation 1.3.2.3. Let X be an 8-topos and let X♥ “ τď0X denote its underlying topos.
Composing the forgetful functor functor ShvSppX q Ñ ShvSpX q » X with the truncation
functor τď0 : X Ñ X♥, we obtain a functor π0 : ShvSppX q Ñ X♥. More generally, for any
integer n, we let πn : ShvSppX q Ñ τď0X denote the composition of the functor π0 with
the shift functor Ωn : ShvSppX q Ñ ShvSppX q. Note that πn can also be described as the
composition

ModSppX q
Ωn´2
ÝÑ ModSppX q Ñ ShvS˚pX q » X ˚

π2
Ñ τď0X .

It follows that πn can be regarded as a functor from ShvSppX q to the category of abelian
groups objects of X♥.

Example 1.3.2.4. In the situation of Notation 1.3.2.3, suppose that X “ ShvpXq for some
topological space X, and let F be an object of ShvSppShvpXqq » ShvSppXq. For each
integer n, we can identify πn F with the sheaf of abelian groups on X given by sheafifying
the presheaf U ÞÑ πnpF pUqq.

Definition 1.3.2.5. For every integer n, the functor Ω8´n : Sp Ñ S induces a functor
ShvSppX q Ñ ShvSpX q » X , which we will also denote by Ω8´n. We will say that an object
F P ShvSppX q is n-truncated if Ω8`n F is a discrete object of X . We will say that a sheaf
of spectra F P ShvSppX q is n-connective if the homotopy groups πm F vanish for m ă n.
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We will say that M is connective if it is 0-connective (equivalently, M is connective if the
object Ω8´m F P X is m-connective for every integer m). We let ShvSppX qěn denote the
the full subcategory of ShvSppX q spanned by the n-connective objects, and ShvSppX qďn the
full subcategory of ShvSppX q spanned by the n-truncated objects. In the special case n “ 0,
we will denote ShvSppX qě0 by ShvSppX qcn.

Remark 1.3.2.6. Let X be an 8-topos and let F be a sheaf of spectra on X . Then F is
n-truncated if and only if, for every object U P X , the spectrum F pUq is n-truncated.

The classes of 0-truncated and 0-connective spectrum-valued sheaves determine a t-
structure:

Proposition 1.3.2.7. Let X be an 8-topos.

p1q The full subcategories pShvSppX qě0,ShvSppX qď0q determine a t-structure on ShvSppX q.

p2q The t-structure on ShvSppX q is compatible with filtered colimits (that is, the full
subcategory ShvSppX qď0 Ď ShvSppX q is closed under filtered colimits).

p3q The t-structure on ShvSppX q is right complete.

p4q The functor π0 of Notation 1.3.2.3 determines an equivalence of categories from the
heart of ShvSppX q to the category of abelian group objects of X♥.

Proof. It follows from Proposition HA.1.4.3.4 that ShvSppX q admits a t-structure given
by the pair pC,ShvSppX qď0q, where C is the collection of objects F P ShvSppX q for which
the mapping space MapShvSppX qpF ,ΩpG qq is contractible for every coconnective object
F P ShvSppX qď0. Fix F P ShvSppX q; using Remark 1.3.2.2 we can identify F with a
sequence of pointed objects F pnq P X ˚ and equivalences γn : F pnq » Ω F pn ` 1q. Set
F 1pnq “ τďn´1 F pnq; the equivalences γn induce equivalences γ1n : F 1pnq » Ω F 1pn` 1q, so
we can regard tF 1pnqu as an object F 1 P ShvSppX q. We have a canonical map F Ñ F 1. If
G is a coconnective object of ShvSppX qď0, then we have

MapShvSppX qpF ,Ω G q » lim
ÐÝ

MapX˚pF pnq,Ω
8`1´n G q

» lim
ÐÝ

MapX˚pF
1pnq,Ω8`1´n G q

» MapShvSppX qpF
1,G q.

On the other hand, Ω´1M 1 is a 0-truncated object of ShvSppX q. It follows that F P C if
and only if F 1 » 0. This is equivalent to the requirement that each F 1pnq » τďn´1 F pnq is
a final object of X ˚: that is, the requirement that each F 1pnq is n-connective. This proves
that C “ ShvSppX qě0 so that assertion p1q holds.
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We observe that the loop functor Ω : X ˚ Ñ X ˚ preserves filtered colimits (Example
HTT.7.3.4.7 ), so that Ω8`1 : ShvSppX q Ñ X ˚ preserves filtered colimits for each n. It
follows that the homotopy fiber of Ω8`1 (over the zero object ˚ P X ˚) is closed under filtered
colimits, so that p2q is satisfied. It follows easily that ShvSppX qď0 is stable under countable
coproducts. Any object F P

Ş

n ShvSppX qď´n has the property that Ω8´n F P X ˚ is
final for each n, so that M is a zero object of ShvSppX q. Assertion p3q now follows from
Proposition HA.1.2.1.19 .

Let us identify ShvSppX q with the homotopy inverse limit of the tower of 8-categories

¨ ¨ ¨ Ñ X ˚
Ω˚
Ñ X ˚

Ω˚
Ñ X ˚ .

Under this identification, the heart ShvSppX q♥ Ď ShvSppX q corresponds to the homotopy
inverse limit of the tower

¨ ¨ ¨ Ñ EM2pX q Ω
Ñ EM1pX q Ω

Ñ EM0pX q “ X♥,

where EMnpX q Ď X ˚ denotes the full subcategory spanned by the Eilenberg-MacLane
objects (that is, objects which are both n-truncated and n-connective; see Definition
HTT.7.2.2.1 ). Assertion p4q follows from the observation that EMnpX q is equivalent
to the category of abelian group objects of the underlying topos of X for n ě 2 (Proposition
HTT.7.2.2.12 ).

Remark 1.3.2.8. Let g˚ : X Ñ Y be a geometric morphism of 8-topoi (that is, a functor
which preserves small colimits and finite limits). Then g˚ is left exact, and therefore induces
a functor ShvSppX q » SppX q Ñ SppYq » ShvSppYq. We will abuse notation by denoting this
functor also by g˚. It is a left adjoint to the pushforward functor g˚ : ShvSppYq Ñ ShvSppX q,
given by pointwise composition with g˚ : X Ñ Y.

Since the functor g˚ : X Ñ Y preserves n-truncated objects and n-connective objects for
every integer n, we conclude that the functor g˚ : ShvSppX q Ñ ShvSppYq is t-exact: that is,
it carries ShvSppX qěn into ShvSppYqěn and ShvSppX qďn into ShvSppYqďn. It follows that
g˚ is left t-exact: that is, g˚ ShvSppYqďn Ď ShvSppX qďn. The functor g˚ is usually not right
t-exact.

1.3.3 8-Connective Sheaves of Spectra

The t-structure on ShvSppX q is not left complete in general. For example, there may
exist nonzero objects F P ShvSppX q whose homotopy groups πn F vanish for all integers n.

Definition 1.3.3.1. Let X be an 8-topos and let F P ShvSppX q be a sheaf of spectra on
X . We will say that F is 8-connective if it is n-connective for every integer n. In other
words, F is 8-connective if πn F » 0 for every integer n.
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Remark 1.3.3.2. Let X be an 8-topos and let X hyp Ď X be the full subcategory spanned
by the hypercomplete objects. Then the inclusion map f˚ : X hyp Ñ X is a geometric
morphism of 8-topoi, which admits a left exact left adjoint f˚ : X Ñ X hyp. Applying
Remark 1.3.2.8, we obtain a pair of adjoint functors

ShvSppX q
f˚ //ShvSppX hypq.
f˚
oo

Note that an object F P ShvSppX q is 8-connective if and only if f˚F » 0. Since the
inclusion X hyp ãÑ X is fully faithful, the functor f˚ : ShvSppX hypq Ñ ShvSppX q is also fully
faithful.

Proposition 1.3.3.3. Let X be an 8-topos and let F P ShvSppX q. The following conditions
are equivalent:

p1q The object Ω8F P X is hypercomplete.

p2q The sheaf of spectra F belongs to the essential image of the fully faithful embedding
ShvSppX hypq Ñ ShvSppX q.

p3q For every 8-connective object G P ShvSppX q, the mapping space MapShvSppX qpG ,F q

is contractible.

p4q For every 8-connective object G P ShvSppX q, every map u : G Ñ F is nullhomotopic.

Proof. We first show that p1q and p2q are equivalent. The implication p2q ñ p1q is imme-
diate. Conversely, suppose that F satisfies condition p1q. To show that F belongs to the
essential image of the fully faithful embedding, it will suffice to show that Ω8´n F P X is
hypercomplete for each n ě 0. Proceeding by induction on n, we are reduced to proving
that Ω8´1 F is hypercomplete. We have a fiber sequence

Ω8´1 F Ñ π´1 F Ñ Ω8pΣ2pτě0 F qq.

Since π´1 F is a discrete object of X (and therefore hypercomplete), we are reduced to
proving that the object U “ Ω8pΣ2pτě0 F qq P X is hypercomplete. Let U 1 denote its
hypercomplete; we wish to show that the map U Ñ U 1 is an equivalence in X . Since U
and U 1 are 2-connective pointed objects of X , it will suffice to show that the induced map
Ω2U Ñ Ω2U 1 is an equivalence. Since the formation of hypercompletions is left exact, we
can identify Ω2U 1 with the hypercompletion of Ω2U . We are therefore reduced to proving
that Ω2U » Ω8F is hypercomplete, which follows from assumption p1q.

The implication p2q ñ p3q follows from Remark 1.3.3.2, and the implication p3q ñ p4q is
immediate. We will complete the proof by showing that p4q ñ p2q. Suppose that F satisfies
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condition p4q, and consider the adjoint functors

ShvSppX q
f˚ //ShvSppX hypq.
f˚
oo

appearing in Remark 1.3.3.2. To prove p2q, it will suffice to show that the unit map
u : F Ñ f˚f

˚F is an equivalence. Since the functor f˚ is fully faithful, the pullback f˚u is
an equivalence. Since f˚ is an exact functor, we conclude that f˚ fibpuq » 0: that is, the
fiber fibpuq is 8-connective. Using p4q, we deduce that the canonical map fibpuq Ñ F is
nullhomotopic. It follows that cofibpuq is a retract of f˚f˚F in the8-category ShvSppX q. In
particular, Ω8´npcofibpuqq is a retract of the hypercomplete object Ω8´npf˚f˚F q for every
integer n, and is therefore hypercomplete. Since the homotopy groups of Ω8´npcofibpuqq
vanish, we conclude that Ω8´npcofibpuqq is a final object of X . It follows that cofibpuq » 0,
so that u is an equivalence as desired.

Definition 1.3.3.4. Let X be an 8-topos. We will say that an object F P ShvSppX q is
hypercomplete if it satisfies the equivalent conditions of Proposition 1.3.3.3.

Remark 1.3.3.5. Let X be an 8-topos. Then the full subcategories of ShvSppX q spanned
by the 8-connective and hypercomplete objects determine a t-structure on ShvSppX q (with
trivial heart). In particular, every object F P ShvSppX q fits into an essentially unique fiber
sequence F 1 Ñ F Ñ F 2 where F 1 is 8-connective and F 2 is hypercomplete.

The condition of hypercompleteness can be tested locally:

Proposition 1.3.3.6. Let X be an 8-topos. The property that an object X P X is hyper-
complete can be tested locally on X . In other words, if there exists a collection of objects
tUα P X u such that >αUα is 0-connective and each product X ˆUα is a hypercomplete object
of the 8-topos X {Uα, then X is hypercomplete.

Proof. Let U “ >Uα, so that XˆU is a hypercomplete object of the8-topos X {U »
ś

αX {Uα .
Let U‚ be the simplicial object of X given by the Čech nerve of the effective epimorphism
U Ñ 1, where 1 denotes a final object of X .

Let f : Y Ñ Z be an 8-connected morphism in X ; we wish to prove that the induced
map α : MapX pZ,Xq Ñ MapX pY,Xq is a homotopy equivalence. We can obtain α as the
totalization of a map of cosimplicial spaces

α‚ : MapX pZ ˆ U‚, Xq Ñ MapX pY ˆ U‚, Xq.

It will therefore suffice to show that each αn is an equivalence. Replacing Y by Y ˆUn and Z
by ZˆUn, we can reduce to the case where α “ 0. In this case, α0 can be identified with the
map MapX {U pZˆU,XˆUq Ñ MapX {U pY ˆU,XˆUq. This map is an equivalence because
X ˆU is a hypercomplete object of X {U , and the map Z ˆU Ñ Y ˆU is 8-connected.
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Corollary 1.3.3.7. Let X be an 8-topos, and let F P ShvSppX q. If there exists a 0-
connective object >Uα in X such that each pullback u˚α F P ShvSppX {Uαq is hypercomplete
(where uα : X {Uα Ñ X denotes the étale geometric morphism determined by Uα), then F is
hypercomplete.

Corollary 1.3.3.8. Let X be a topological space and let F P ShvSppXq. If there exists
an open covering Uα of X such that each restriction F |Uα is hypercomplete, then F is
hypercomplete.

Under some mild hypotheses on X , one can show that the t-structure on ShvSppX q is
left complete.

Definition 1.3.3.9. Let X be an 8-topos, and let n ě 0 be an integer. We will say that X
is locally of cohomological dimension ď n if there exists a collection of objects tUαu of X
which generate X under small colimits, such that each of the8-topoi X {Uα has cohomological
dimension ď n (see Definition HTT.7.2.2.18 ).

Proposition 1.3.3.10. Let X be an 8-topos and let n ě 2 be an integer. The following
conditions are equivalent:

p1q The 8-topos X is locally of homotopy dimension ď n (see Definition HTT.7.2.1.8 ).

p2q The 8-topos X is hypercomplete and locally of cohomological dimension ď n.

If these conditions are satisfied and U is an object of X , then X {U is of homotopy dimension
ď n if and only if it is of cohomological dimension ď n.

Proof. Let U be an object of X . If X {U is of homotopy dimension ď n, then X {U is of
cohomological dimension ď n (Corollary HTT.7.2.2.30 ). It follows that if X is locally of
homotopy dimension ď n, then X is locally of cohomological dimension ď n. The implication
p1q ñ p2q now follows from Corollary HTT.7.2.1.12 . For the converse, suppose that p2q is
satisfied. We will complete the proof by showing that for each object U P X , if X {U has
cohomological dimension ď n, then X {U is of homotopy dimension ď n. Replacing X by
X {U , we are reduced to the problem of showing that X has homotopy dimension ď n.

Let 1 denote the final object of X , and let F P X be n-connective. We wish to prove
that the mapping space MapX p1,F q is nonempty. We begin by constructing a compatible
sequence of maps φm : 1 Ñ τďm F . The construction proceeds by induction on m, the
case m ă n being trivial. If m ě n and φm´1 has already been constructed then the fiber
product 1ˆτďm´1 F τďm F is an m-gerbe in X . Our assumption that X has cohomological
dimension ď n ď m guarantees that this gerbe is automatically trivial, so that φm´1 lifts to
a map φm. Together, the maps tφmumě0 determine a map φ : 1 Ñ xF , where xF denotes
the limit lim

ÐÝm
τďm F . To complete the proof, it will suffice to show that the canonical
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map θ : F Ñ xF is an equivalence. Because X is hypercomplete, this is equivalent to the
assertion that θ induces an equivalence θm : τďm F Ñ τďmxF for each m ě 0. Note that θm
is a right homotopy inverse to the canonical map

γ : τďmxF Ñ τďmpτďm F q » τďm F .

It will therefore suffice to prove that γ is an equivalence: that is, the projection γ : xF Ñ

τďm F exhibits τďm F as an m-truncation of xF . In fact, we claim that the map γ is
pm` 1q-connective.

The map γ factors as a composition xF
γ1
ÝÑ τďm`n F

γ2
ÝÑ τďm F . Because γ2 is pm` 1q-

connective, we are reduced to showing that γ1 is pm` 1q-connective. To prove this, it will
suffice to show that X is generated under small colimits by objects V for which the map

MapX pV,
xF q Ñ MapX pV, τďm`n F q

is pm ` 1q-connective. In fact, we claim that this condition holds whenever X {V has
cohomological dimension ď n. To prove this, it suffices to show that each of the maps
ψ : MapX pV, τďt`1`n F q Ñ MapX pV, τďt`n F q is pt ` 1q-connective. Choose a point η P
MapX pV, τďt`n F q and let V “ V ˆτďt`n F τďt`1`n F , so that the homotopy fiber of ψ over
the point η can be identified with MapX {V pV, V q. By construction, V is an pt` 1` nq-gerbe
in X {V banded by some abelian group object A of X {V . Since X {V has cohomological
dimension ď n, the cohomology group Ht`2`npX {V ; F q vanishes, so that V is a trivial gerbe.
We therefore obtain isomorphisms

πj MapX {V pV, V q » Ht`1`n´jpX {V ; A q.

Since X {V has cohomological dimension ď n, this group vanishes for j ď t, so that
MapX {V pV, V q is pt` 1q-connective as desired.

Corollary 1.3.3.11. Let X be an 8-topos. Assume that X is hypercomplete and locally of
cohomological dimension ď n, for some integer n. Then the t-structure on ShvSppX q is left
complete.

Proof. Without loss of generality, we may assume that n ě 2. According to Proposition
1.3.3.10, X is locally of homotopy dimension ď 2. It follows from Proposition HTT.7.2.1.10
that X is Postnikov complete (in the sense of Definition A.7.2.1). From this we immediately
deduce that ShvSppX qě0 is Postnikov complete, so that ShvSppX q is left complete.

1.3.4 Sheafification and Tensor Products

Our next objective is to describe a symmetric monoidal structure on the 8-category
ShvSppX q. Roughly speaking, this symmetric monoidal structure is given by levelwise smash
product, followed by sheafification. We begin by discussing the latter procedure.
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Remark 1.3.4.1. Let D and C be small 8-categories, and assume that D admits finite
colimits. Composition with the Yoneda embeddings Dop Ñ PpDopq and C Ñ IndpCq yields
functors

Fun˚pPpDopq,PpCopqq Ñ FunlexpDop,PpCopqq » FunpC, IndpDqq Ð Fun1pIndpCq, IndpDqq.

Here Fun˚pPpDopq,PpCopqq denotes the full subcategory of FunpPpDopq,PpCopqq spanned
by those functors which preserve small colimits and finite limits, FunlexpDop,PpCopqq the full
subcategory of FunpDop,PpCopqq spanned by those functors which preserve finite limits, and
Fun1pIndpCq, IndpDqq the full subcategory of FunpIndpCq, IndpDqq spanned by those functors
which preserve filtered colimits. Each of these functors is an equivalence of 8-categories (see
Propositions HTT.6.1.5.2 and HTT.5.3.5.10 ; the middle equivalence is an isomorphism of
simplicial sets obtained by identifying both sides with a full subcategory of FunpDopˆ C,Sq).

Assume that both C and D admit finite colimits, so that IndpCq and IndpDq are compactly
generated presentable 8-categories. The presheaf 8-categories PpCopq and PpDopq are
classifying 8-topoi for IndpCq-valued and IndpDq-valued sheaves, respectively. The above
argument shows that every geometric morphism between classifying 8-topoi arises from
a functor IndpCq Ñ IndpDq which preserves filtered colimits. Put more informally, every
natural operation which takes IndpCq-valued sheaves and produces IndpDq-valued sheaves is
determined by a functor IndpCq Ñ IndpDq which preserves filtered colimits.

Suppose now that we are given 8-categories C and D which admit finite colimits, and
let f : IndpCq Ñ IndpDq be a functor which preserves filtered colimits. Remark 1.3.4.1
guarantees the existence of an induced functor θ : ShvIndpCqpX q Ñ ShvIndpDqpX q for an
arbitrary 8-topos X , which depends functorially on X . In the special case where X “ PpUq
is an 8-category of presheaves on some small 8-category U , we can write down the functor
θ very explicitly: it fits into a homotopy commutative diagram

ShvIndpCqpX q //

��

ShvIndpCqpX q

��
FunpUop, IndpCqq ˝f // FunpUop, IndpDqq,

where the vertical maps are equivalences of 8-categories given by composition with the
Yoneda embedding U Ñ PpUq. More generally, if we assume only that we are given a
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geometric morphism PpUq Ñ X , then we obtain a larger (homotopy commutative) diagram

ShvIndpCqpX q // ShvIndpDqpX q

ShvIndpCqpPpUqq

OO

//

��

ShvIndpDqpPpUqq

OO

��
FunpUop, IndpCqq ˝f // FunpUop, IndpDqq.

The existence of this diagram immediately implies the following result:

Lemma 1.3.4.2. Let U be a small 8-category and suppose we are given a geometric
morphism of 8-topoi g˚ : PpUq Ñ X . Let C be a small 8-category which admits finite
colimits, and let TC denote the functor FunpUop, IndpCqq » ShvIndpCqpPpUqq Ñ ShvIndpCqpX q
induced by g˚. Let D be another small 8-category which admits finite colimits, and define
TD similarly. Suppose that f : IndpCq Ñ IndpDq is a functor which preserves small filtered
colimits. Then if α : F Ñ G is a morphism in FunpUop, IndpCqq such that TCpαq is an
equivalence, then the induced map α1 : pf ˝F q Ñ pf ˝ G q also has the property that TDpα

1q

is an equivalence.

Lemma 1.3.4.3. Let X be an 8-topos and C a presentable 8-category. Then the inclusion
i : ShvCpX q Ď FunpX op, Cq admits a left adjoint L.

Proof. The proof does not really require that X is an 8-topos, only that X is a presentable
8-category. Under this assumption, we may suppose without loss of generality that X “
IndκpX 0q, where κ is a regular cardinal and X 0 is a small 8-category which admits κ-small
colimits. Then i is equivalent to the composition

ShvCpX q
GC
Ñ Fun1pX op

0 , Cq
i1

Ď FunpX op
0 , Cq

G1C
Ñ FunpX op, Cq,

where Fun1pX op
0 , Cq is the full subcategory of FunpX op

0 , Cq spanned by those functors which
preserve κ-small limits, GC is the functor given by restriction along the Yoneda embedding
j : X 0 Ñ X , and G1C is given by right Kan extension along j. The functor GC is an
equivalence of 8-categories (Proposition HTT.5.5.1.9 ), and the functor G1C admits a left
adjoint (given by composition with j). Consequently, it suffices to show that the inclusion i1

admits a left adjoint. This follows immediately from Lemmas HTT.5.5.4.17 , HTT.5.5.4.18 ,
and HTT.5.5.4.19 .

Lemma 1.3.4.4. Let X be an 8-topos, and let f : C Ñ D be a functor between compactly
generated presentable 8-categories. Assume that f preserves small filtered colimits. Let LC :
FunpX op, Cq Ñ ShvCpX q and LD : FunpX op,Dq Ñ ShvDpX q be left adjoints to the inclusion
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functors. Then composition with f determines a functor F : FunpX op, Cq Ñ FunpX op,Dq
which carries LC-equivalences to LD-equivalences.

Remark 1.3.4.5. In the situation of Lemma 1.3.4.4, the functor F descends to a functor
ShvCpX q Ñ ShvDpX q, given by the composition LD ˝ F . This is simply another description
of the construction arising from Remark 1.3.4.1.

Proof. We use notation as in the proof of Lemma 1.3.4.3. For κ sufficiently large, the
full subcategory X 0 Ď X is stable under limits, so that (by Proposition HTT.6.1.5.2 ) we
have a geometric morphism g˚ : PpX 0q Ñ X . Then the functor LC can be realized as the
composition of the restriction functor rC : FunpX op, Cq Ñ FunpX op

0 , Cq with the functor
TC : FunpX op

0 , Cq » ShvCpPpX 0qq Ñ ShvCpX q induced by g˚, and we can similarly write
LD “ TD˝rD. If α is a morphism in the8-category FunpX op, Cq such that LCpαq “ TCprCpαqq

is an equivalence, then Lemma 1.3.4.2 shows that LDpF pαqq “ TDprDpFαqq is an equivalence,
as required.

We will regard the 8-category Sp of spectra as endowed with the smash product
monoidal structure defined in §HA.4.8.2 . This symmetric monoidal structure induces a
symmetric monoidal structure on the 8-category FunpK,Spq, for any simplicial set K
(Remark HA.2.1.3.4 ); we will refer to this symmetric monoidal structure as the pointwise
smash product monoidal structure.

Proposition 1.3.4.6. Let X be an 8-topos, and let L : FunpX op,Spq Ñ ShvSppX q be a left
adjoint to the inclusion. Then L is compatible with the pointwise smash product monoidal
structure, in the sense of Definition HA.2.2.1.6 : that is, if f : F Ñ F 1 is an L-equivalence
in FunpX op, Spq and G P FunpX op,Spq, then the induced map F bG Ñ F 1bG is also
an L-equivalence in FunpX op, Spq. Consequently, the 8-category ShvSppX q inherits the
structure of a symmetric monoidal 8-category, with respect to which L is a symmetric
monoidal functor (Proposition HA.2.2.1.9 ).

Proof. Apply Lemma 1.3.4.4 to the tensor product functor b : Spˆ Sp Ñ Sp.

We will henceforth regard the 8-category ShvSppX q as endowed with the symmetric
monoidal structure of Proposition 1.3.4.6, for any 8-topos X . We will abuse terminology by
referring to this symmetric monoidal structure as the smash product symmetric monoidal
structure.

Proposition 1.3.4.7. Let X be an 8-topos, and let L : FunpX op,Spq Ñ ShvSppX q be a
left adjoint to the inclusion. Regard FunpX op,Spq as endowed with the t-structure induced
by the natural t-structure on Sp. Then:

p1q The functor L is t-exact: that is, L carries FunpX op, Spě0q into ShvSppX qě0 and
FunpX op, Spď0q into ShvSppX qď0.
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p2q The smash product symmetric monoidal structure on ShvSppX q is compatible with the
t-structure on ShvSppX q. In other words, the full subcategory ShvSppX qcn Ď ShvSppX q
contains the unit object and is stable under tensor products.

Proof. The construction of Lemma 1.3.4.3 shows that (for sufficiently large κ) we can
factor L as the composition of a restriction functor FunpX op, Spq Ñ FunpX op

0 ,Spq with
the functor FunpX op

0 ,Spq » ShvSppPpX 0qq Ñ ShvSppX q induced by a geometric morphism
g˚ : PpX 0q Ñ X . Assertion p1q now follows from Remark 1.3.2.8. To prove p2q, we show
that if we are given a finite collection of connective objects tF iu1ďiďn of ShvSppX q, then
the tensor product F 1b ¨ ¨ ¨ bFn is connective. Choose fiber sequences F 1

i Ñ F i Ñ F 2
i

in FunpX op,Spq, where F 1
i P FunpX op, Spě0q and F 2

i P FunpX op,Spď´1q. It follows from
p1q that LF 1

i P ShvSppX qě0 and LF 2
i P ShvSppX qď´1. We have fiber sequences

LF 1
i Ñ LF i Ñ LF 2

i

in ShvSppX q. Since LF i » F i is connective, we deduce that the map LF 1
i Ñ LF i » F i

is an equivalence for every index i. Using Proposition 1.3.4.6, we deduce that the tensor
product F 1b ¨ ¨ ¨bFn in the 8-category ShvSppX q can be written as LpF 1

1b ¨ ¨ ¨bF 1
nq. By

virtue of p1q, it will suffice to show that F 1
1b ¨ ¨ ¨bF 1

n is a connective object of FunpX op,Spq,
which follows because the smash product monoidal structure on Sp is compatible with its
t-structure (Lemma HA.7.1.1.7 ).

1.3.5 Sheaves of E8-Rings

We now study sheaves with values in the 8-category CAlg of E8-rings.

Remark 1.3.5.1. The forgetful functor CAlg “ CAlgpSpq Ñ Sp is conservative and
preserves small limits (see Lemma HA.3.2.2.6 and Corollary HA.3.2.2.5 ). It follows that for
any 8-topos X , we have a canonical equivalence of 8-categories (even an isomorphism of
simplicial sets) ShvCAlgpX q » CAlgpShvSppX qq.

Remark 1.3.5.2. Let X be an 8-topos and O : X op Ñ CAlg a sheaf of E8-rings on X .
Composing with the forgetful functor CAlg Ñ Sp, we obtain a sheaf of spectra on X ; we
will generally abuse notation by denoting this sheaf of spectra also by O. In particular, we
can define homotopy groups πn O as in Notation 1.3.2.3. These homotopy groups have a bit
more structure in this case: π0 O is a commutative ring object in the underlying topos of X ,
while each πn O has the structure of a π0 O-module.

Definition 1.3.5.3. Let X be an 8-topos. We will say that a sheaf O of E8-rings on X
is connective if it is connective when regarded as a sheaf of spectra on X : that is, if the
homotopy groups πn O vanish for n ă 0. We let ShvCAlgpX qcn denote the full subcategory
of ShvCAlgpX q spanned by the connective sheaves of E8-rings on X .
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Remark 1.3.5.4. Let X be an 8-topos. Combining Proposition 1.3.4.7 with Remark
HA.2.2.1.5 , we deduce that the inclusion ShvCAlgpX qcn ãÑ ShvCAlgpX q admits a right
adjoint. In other words, if O is an arbitrary sheaf of E8-rings on X , then we can find a
connective sheaf of E8-rings O 1 equipped with a map α : O 1 Ñ O having the following
universal property: for every object A P ShvCAlgpX qcn, composition with α induces a
homotopy equivalence

MapShvCAlgpX qpA ,O 1q Ñ MapShvCAlgpX qpA ,Oq.

In this case, we will say that O 1 is a connective cover of O, or that α exhibits O 1 as a
connective cover of O. Moreover, the map α exhibits O 1 as a connective cover of O in the
8-category ShvSppX q; in particular, it induces isomorphisms

πm O 1 »

#

πm O if m ě 0
0 if m ă 0.

We will generally denote the connective cover of O by τě0 O.

Definition 1.3.5.5. Let X be an 8-topos, let O be a connective sheaf of E8-rings on X ,
and let n ě 0 be an integer. We will say that O is n-truncated if the underlying spectrum-
valued sheaf of O is n-truncated. We will say that O is discrete if it is 0-truncated. We
let ShvCAlgpX qcn

ďn denote the full subcategory of ShvCAlgpX qcn spanned by the n-truncated
objects of ShvCAlgpX qcn.

Remark 1.3.5.6. Let X be an 8-topos and let n ě 0 be an integer. Then we can
identify ShvCAlgpX qcn

ďn with the 8-category of commutative algebra objects of the symmetric
monoidal8-category ShvSppX qcn

ďn. In particular, when n “ 0, we can identify ShvCAlgpX qcn
ďn

with the ordinary category of commutative ring objects of the underlying topos of X (see
Proposition 1.3.2.7).

Combining Proposition 1.3.4.7 with Proposition HA.2.2.1.9 , we deduce that the inclusion
functor

ShvCAlgpX qcn
ďn ãÑ ShvCAlgpX qcn

ďn

admits a left adjoint. In other words, if O is an arbitrary connective sheaf of E8-rings on
X , then we can find an n-truncated connective sheaf of E8-rings O 1 equipped with a map
α : O Ñ O 1 having the following universal property: for every object A P ShvCAlgpX qcn

ďn,
composition with α induces a homotopy equivalence

MapShvCAlgpX qpO
1,A q Ñ MapShvCAlgpX qpO,A q.

In this case, we will say that O 1 is an n-truncation of O, or that α exhibits O 1 as an n-
truncation of O. Moreover, the map α exhibits O 1 as an n-truncation of O in the 8-category
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ShvSppX q; in particular, it induces isomorphisms

πm O 1 »

#

πm O if m ď n

0 if m ą n.

We will generally denote the n-truncation of O by τďn O.

Let X be an 8-topos and let F be a spectrum-valued sheaf on X . The condition
that F be connective does not guarantee that F pUq is connective for each object U P X .
Nevertheless, there is a close relationship between connective Sp-valued sheaves on X and
Spcn-valued sheaves on X :

Proposition 1.3.5.7. Let X be an 8-topos. Then composition with the truncation functor
τě0 : Sp Ñ Spcn induces an equivalence of 8-categories ShvSppX qcn Ñ ShvSpcnpX q.

We will deduce Proposition 1.3.5.7 from the following more general principle:

Proposition 1.3.5.8. Let C be a compactly generated presentable 8-category. Let C0 Ď C
be a full subcategory which is closed under the formation of colimits and which is generated
under small colimits by compact objects of C. Let X be an 8-topos. Then:

p1q The 8-category C0 is presentable and compactly generated.

p2q The inclusion C0 Ď C admits a right adjoint g which commutes with filtered colimits.

p3q Composition with g determines a functor G : ShvCpX q Ñ ShvC0pX q.

p4q The functor G admits a fully faithful left adjoint F .

Remark 1.3.5.9. In the situation of Proposition 1.3.5.8, an object F P ShvCpX q belongs
to the essential image of the full faithful embedding ShvC0pX q Ñ ShvCpX q if and only if
the canonical map GpF q Ñ F is an L-equivalence in FunpX op, Cq, where L denotes a left
adjoint to the inclusion ShvCpX q ãÑ FunpX op, Cq.

Proof of Proposition 1.3.5.7. Let Spcn denote the full subcategory of Sp spanned by the
connective spectra. Then Spcn is stable under small colimits in Sp, and is generated
under small colimits by the sphere spectrum S P Spcn (which is a compact object of the
8-category Sp). Consequently, Proposition 1.3.5.8 supplies a fully faithful embedding
F : ShvSpcnpX q Ñ ShvSppX q for every 8-topos X , which is right homotopy inverse to the
functor ShvSppX q Ñ ShvSpcnpX q given by composition with τě0 : Sp Ñ Spcn. To complete
the proof, it will suffice to show that ShvSppX qcn is the essential image of the functor F .

Let F P ShvSppX q, so that we have a fiber sequence τě0 F
φ
Ñ F Ñ τď´1 F in the 8-

category FunpX op, Spq. Let L : FunpX op,Spq Ñ ShvSppX q be a left adjoint to the inclusion.



1.3. SHEAVES OF SPECTRA 131

According to Remark 1.3.5.9, the object F belongs to the essential image of F if and only if
Lpφq is an equivalence. Since the functor L is t-exact, this is equivalent to the requirement
that F P ShvSppX qcn.

Many variations on Proposition 1.3.5.7 are possible:

Proposition 1.3.5.10. Let X be an 8-topos. Then composition with the functor τě0 :
CAlg Ñ CAlgcn induces an equivalence of 8-categories ShvCAlgpX qcn Ñ ShvCAlgcnpX q.

It is possible to deduce Proposition 1.3.5.10 from the fact the the equivalence of Propo-
sition 1.3.5.7 respects the symmetric monoidal structures on ShvSppX qcn and ShvSpcnpX q.
However, we will give an alternate argument which appeals to Proposition 1.3.5.8.

Proof of Proposition 1.3.5.10. The 8-category CAlgcn is a colocalization of CAlg, which is
generated under small colimits by the compact object Sym˚pSq, where S denotes the sphere
spectrum and Sym˚ : Sp Ñ CAlg denotes a left adjoint to the forgetful functor. Proposition
1.3.5.8 gives a fully faithful embedding F : ShvCAlgcnpX q Ñ ShvCAlgpX q for every 8-topos
X , which is right homotopy inverse to the functor ShvCAlgpX q Ñ ShvCAlgcnpX q given by
composition with the functor τě0 CAlg Ñ CAlg. To complete the proof, it will suffice to
show that the essential image of F coincides with ShvCAlgpX qcn.

Let O P ShvCAlgpX q be a sheaf of E8-rings on X , and let τě0 O P FunpX op,CAlgq
be the presheaf of E8-rings obtained by pointwise passage to the connective cover. Let
O 1 P ShvCAlgpX q be a sheafification of the presheaf τě0 O, so that the evident map τě0 O Ñ O

induces a map of sheaves α : O 1 Ñ O. According to Remark 1.3.5.9, the sheaf O belongs
to the essential image of F if and only if α is an equivalence. Let u : CAlg Ñ Sp denote
the forgetful functor. Since u preserves small limits, composition with u induces a forgetful
functor U : ShvCAlgpX q Ñ ShvSppX q. Since u is conservative, the functor U is also
conservative, so that α is an equivalence if and only if Upαq is an equivalence. Since
u preserves filtered colimits, Lemma 1.3.4.4 implies that UpO 1q can be identified with a
sheafification of u ˝ τě0 O » τě0pu ˝ Oq. The proof of Proposition 1.3.5.7 guarantees that
Upαq is an equivalence if and only if UpOq is connective as a sheaf of spectra: that is, if and
only if O belongs to ShvCAlgpX qcn.

Proof of Proposition 1.3.5.8. Since C0 is stable under small colimits in C, the inclusion
i : C0 Ď C preserves small colimits so that i admits a right adjoint g : C Ñ C0 by Corollary
HTT.5.5.2.9 . Let D Ď C0 be the full subcategory spanned by those objects of C0 which are
compact in C. Any such object is automatically compact in C0, so we have a fully faithful
embedding q : IndpDq Ñ C0 (Proposition HTT.5.3.5.11 ). Since C0 is generated under small
colimits by objects of D, we deduce that q is an equivalence of 8-categories; this proves p1q.
Moreover, it shows that the collection of compact objects in C0 is an idempotent completion
of D; since D is already idempotent complete, we deduce that every compact object of C0 is
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also compact in C. Assertion p2q now follows from Proposition HTT.5.5.7.2 . Assertion p3q
is obvious (since g preserves small limits; see Proposition HTT.5.2.3.5 ).

Let L : FunpX op, Cq Ñ ShvCpX q be a left adjoint to the inclusion, and define L0 similarly.
We observe that G is equivalent to the composition

ShvpCq Ď FunpX op, Cq G
1

Ñ FunpX op, C0q
L0
Ñ ShvC0pX q,

where G1 is given by composition with g. It follows that G admits a left adjoint F , which
can be described as the composition

ShvpCq L
Ð FunpX op, Cq Ě FunpX op, C0q Ě ShvC0pX q.

To complete the proof, it suffices to show that F is fully faithful. In other words, we wish to
show that for every object F P ShvC0pX q, the unit map F Ñ pG ˝F qpF q is an equivalence.
In other words, we wish to show that the map α : F Ñ LF becomes an equivalence
after applying the functor G1. Since G1pF q » F and G1pLF q belong to ShvC0pX q, this is
equivalent to the requirement that G1pαq is an L0-equivalence in the8-category FunpX op, C0q.
This follows from p3q and Lemma 1.3.4.4, since α is an L-equivalence in FunpX op, Cq.

1.4 Spectral Deligne-Mumford Stacks

In §1.1 and §1.2 we introduced two different generalizations of the notion of scheme:
the notion of spectral scheme (Definition 1.1.2.8) and the notion of Deligne-Mumford stack
(Definition 1.2.4.1). These two generalizations serve rather different purposes:

• The 8-category SpSch of spectral schemes can viewed roughly as a “left-derived”
version of the category of schemes. More precisely, though the category Sch and the
8-category SpSch both admit fiber products, the inclusion Sch ãÑ SpSch does not
preserve fiber products. If f : X Ñ Y and f 1 : X 1 Ñ Y are morphisms of schemes,
then we can form a fiber product pZ,OZq of X and X 1 over Y in the 8-category
SpSch, whose underlying ordinary scheme pZ, π0 OZq is the fiber product X ˆY X 1 in
the category of schemes. However, the structure sheaf OZ need not be 0-truncated, so
that pZ,OZq need not be an ordinary scheme. This is not a bug, but a feature: the
sheaves πn OZ carry useful geometric information which can detect (and help correct
for) the failure of the maps f and f 1 to be transversal with respect to one another.

• The collection of Deligne-Mumford stacks is organized into a 2-category DM which
can be regarded as a “right-derived” enlargement of the category of schemes. More
precisely, there is a fully faithful embedding Sch ãÑ C which is not compatible with
certain very basic colimit constructions, such as passage to quotients under the action
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of a finite group. If X is a scheme equipped with an action of a finite group G, then
one can consider either the quotient X{G in the category of schemes (which exists
under mild hypotheses on X), or the stack-theoretic quotient X{{G in the 2-category
C. The usual quotient X{G can be recovered as the “coarse moduli space” of the
Deligne-Mumford stack X{{G, but they are generally not the same unless G acts
freely on X. Once again, this should be regarded as a feature rather than a bug:
the stack-theoretic quotient X{{G carries useful geometric information about the
subgroups of G which stabilize points of X; this information is forgotten when passing
to the usual quotient X{G.

For some purposes, it is useful to enlarge the category of schemes simultaneously in
both of these directions. To accomplish this, we will introduce the notion of a spectral
Deligne-Mumford stack (Definition 1.4.4.2). Roughly speaking, the definition of a spectral
Deligne-Mumford stacks is obtained by modifying the definition of a scheme pX,OXq in
three different ways:

piq For every topological space X, the 8-category ShvpXq of sheaves of spaces on X is
an 8-topos. Moreover, if the topological space X is sober (that is, if every irreducible
closed subset of X has a unique generic point), then we can recover X from ShvpXq:
the points x P X can be identified with isomorphism classes of geometric morphisms
x˚ : ShvpXq Ñ S, and open subsets of X can be identified with subobjects of the
unit object 1 P ShvpXq. In other words, the space X and the 8-topos ShvpXq are
interchangable: either one canonically determines the other. The situation described
above can be summarized by saying that we can regard the theory of 8-topoi as a
generalization of the classical theory of topological spaces (more precisely, of the theory
of sober topological spaces). For this reason, we opt to dispense with topological spaces
altogether and work instead with a general 8-topos X .

piiq In place of the sheaf OX of commutative rings on X, we consider an arbitrary sheaf
OX of E8-rings on X .

piiiq In place of the requirement that pX,OXq be locally isomorphic to the spectrum of a
commutative ring, we require that pX ,OX q be locally equivalent to SpétA, where A
is an E8-ring and SpétA denotes its spectrum with respect to the étale topology (see
Proposition 1.4.2.4).

1.4.1 Spectrally Ringed 8-Topoi

We begin with a discussion of CAlg-valued rings on 8-topoi.

Definition 1.4.1.1. A spectrally ringed 8-topos is a pair pX ,Oq, where X is an 8-topos
and O P ShvCAlgpX q is a sheaf of E8-rings on X .
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Remark 1.4.1.2. Let X “ pX ,Oq be a spectrally ringed 8-topos. We will often refer to O

as the structure sheaf of X. We will often denote the structure sheaf O by OX or OX (the
latter notation is convenient when we wish to distinguish between spectrally ringed 8-topoi
having the same underlying 8-topos).

Construction 1.4.1.3. Precomposition with a geometric morphism of 8-topoi f˚ : X Ñ Y
induces a pushforward functor f˚ : ShvCAlgpX q Ñ ShvCAlgpYq. We may therefore view
the construction X ÞÑ ShvCAlgpX qop as determining a functor ShvCAlg : 8T op Ñ yCat8,
where 8T op denotes the 8-category of 8-topoi. This functor classifies a coCartesian
fibration 8T opCAlg Ñ 8T op. More informally, the objects of 8T opCAlg are spectrally
ringed 8-topoi pX ,OX q, and a morphism from pX ,OX q to pY,OYq in 8T opCAlg is given by
a pair pf˚, φq, where f˚ : X Ñ Y is a geometric morphism of 8-topoi and φ : OY Ñ f˚OX
is a morphism of sheaves of E8-rings on Y . We will refer to 8T opCAlg as the 8-category of
spectrally ringed 8-topoi.

Remark 1.4.1.4. Let X be an 8-topos and let X♥ denote the underlying topos of X . For
any sheaf of E8-rings OX on X , we can regard π0 OX as a commutative ring object of X♥.
We will refer to pX♥, π0 OX q as the underlying ringed topos of pX ,OX q. The construction

pX ,OX q ÞÑ pX♥, π0 OX q

determines a functor from the homotopy 2-category of8T opCAlg to the 2-category 1T opCAlg♥

of ringed topoi.

Remark 1.4.1.5. Let pX ,OX q be a ringed topos, and let ShvSpX q denote the 1-localic
8-topos associated to X (see §HTT.6.4.5 ). Remark 1.3.5.6 supplies an equivalence from
the category of commutative ring objects of X to the 8-category of connective 0-truncated
sheaves of E8-rings on ShvSpX q. We let O denote the image of OX under this equivalence.
Then pShvSpX q,Oq is a spectrally ringed 8-topos. Moreover, the construction pX ,OX q ÞÑ

pShvSpX q,Oq determines a fully faithful embedding from the 8-category of ringed topoi
(obtained from the 2-category 1T opCAlg♥ by discarding noninvertible 2-morphisms) to the
8-category 8T opCAlg of spectrally ringed 8-topoi. The essential image of this fully faithful
embedding consists of those spectrally ringed 8-topoi pY,OYq where Y is 1-localic and the
structure sheaf OY is connective and 0-truncated.

Remark 1.4.1.6. For every topological space X, Example 1.3.1.2 supplies an equivalence
of 8-categories ShvCAlgpShvSpXqq Ñ ShvCAlgpXq, which depends functorially on X. It
follows that there is a commutative diagram of 8-categories

T opCAlg
φ //

��

8T opCAlg

��
T op φ // 8T op,
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where φ : T op Ñ8T op is the functor which carries a topological space X to its associated
8-topos ShvSpXq.

1.4.2 The Étale Spectrum of an E8-Ring

In §1.2, we constructed the étale spectrum SpétR of a commutative ring R (Definition
1.2.2.5). We now introduce an analogous construction in the setting of E8-rings.

Definition 1.4.2.1. Let X be an 8-topos and let OX be a sheaf of E8-rings on X . We
will say that OX is local if π0 OX is local, when regarded as a commutative ring object of
the topos X♥ (see Definition 1.2.1.4). We will say that OX is strictly Henselian if π0 OX is
strictly Henselian, in the sense of Definition 1.2.2.5.

If f : O Ñ O 1 is a morphism of CAlg-valued sheaves on X , we will say that f is local if
it induces a local morphism π0 O Ñ π0 O 1 of commutative ring objects of the topos X♥, in
the sense of Definition 1.2.1.4.

We let 8T oploc
CAlg denote the subcategory of 8T opCAlg whose objects are spectrally

ringed8-topoi pX ,OX q for which OX is local, and whose morphisms are maps f : pX ,OX q Ñ

pY,OYq for which the associated map f˚OY Ñ OX is a local morphism of CAlg-valued
sheaves on X . We let 8T opsHen

CAlg denote the full subcategory of 8T oploc
CAlg spanned by those

pairs pX ,OX q where OX is strictly Henselian. We will say that a spectrally ringed 8-topos
pX ,OX q is local if it belongs to 8T oploc

CAlg, and strictly Henselian if it belongs to 8T opsHen
CAlg.

Remark 1.4.2.2. Let pX,OXq be a spectrally ringed space. If OX is strictly Henselian
(when regarded as a CAlg-valued sheaf on the 8-topos ShvSpXq), then OX is local (in the
sense of Definition 1.1.5.3).

The equivalence of 8-categories CAlgop » 8T opCAlgˆ8T optSu determines a fully
faithful embedding CAlgop ãÑ 8T opCAlg, which carries each E8-ring A to the spectrally
ringed 8-topos pS,OAq where OA P ShvCAlgpSq is characterized by existence of an equiv-
alence OAp˚q » A. This embedding admits a left adjoint, which carries a pair pX ,OX q

to the E8-ring OX p1q, where 1 is a final object of X . We will denote this left adjoint by
pX ,OX q ÞÑ ΓpX ; OX q, and refer to it as the global sections functor.

We will need the following analogue of Remark 1.1.5.6:

Proposition 1.4.2.3. The global sections functor

8T opsHen
CAlg Ñ CAlgop

pX ,OX q ÞÑ ΓpX ; OX q

admits a right adjoint Spét : CAlgop Ñ8T opsHen
CAlg.
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Proposition 1.4.2.3 asserts that for every E8-ring R, there exists a strictly Henselian
spectrally ringed 8-topos pX ,OX q and a map θ : RÑ ΓpX ; OX q with the following universal
property: for every strictly Henselian spectrally ringed 8-topos pY,OYq, composition with
θ induces a homotopy equivalence

Map8T opsHen
CAlg

ppY,OYq, pX ,OX qq Ñ MapCAlgpR,ΓpY; OYqq.

The spectrally ringed8-topos pX ,OX q is uniquely determined up to equivalence and depends
functorially on R. A more explicit description of pX ,OX q is given by the following:

Proposition 1.4.2.4. Let R be an E8-ring, and let O : CAlgét
R Ñ CAlg denote the forgetful

functor. Then:

p1q The functor O is a sheaf with respect to the étale topology of Notation ??.

p2q When regarded as a sheaf of E8-rings on the 8-topos Shvét
R (see Proposition 1.3.1.7),

the sheaf O is strictly Henselian.

By construction, we have a canonical equivalence

α : ΓpShvét
R; Oq » OpRq “ R.

p3q Let pX ,OX q be an arbitrary object of 8T opsHen
CAlg. Then composition with α induces a

homotopy equivalence

Map8T opsHen
CAlg

ppX ,OX q, pShvét
R,Oqq Ñ MapCAlgpR,ΓpX ; OX qq.

We postpone the proof for the moment.

Definition 1.4.2.5. Let R be an E8-ring. We let SpétR denote the spectrally ringed
8-topos pShvét

R ,Oq appearing in Proposition 1.4.2.4. We will refer to SpétR as the étale
spectrum of R.

Warning 1.4.2.6. Let R be a commutative ring. We now have two definitions for the étale
spectrum of R:

paq We can regard R as an ordinary commutative ring, and consider the ringed topos
pShvSetpCAlgét

Rq,O0q introduced in Definition 1.2.3.3.

pbq We can regard R as a discrete E8-ring, and consider the spectrally ringed 8-topos
pShvét

R ,Oq of Definition 1.4.2.5.

However, there should be little risk of confusion: these two mathematical objects are essen-
tially identical with one another. More precisely, the spectrally ringed 8-topos pShvét

R ,Oq is
the image of pShvSetpCAlgét

Rq,O0q under the fully faithful embedding described in Remark
??.



1.4. SPECTRAL DELIGNE-MUMFORD STACKS 137

Remark 1.4.2.7. It follows from the third assertion of Proposition 1.4.2.4 that the con-
struction R ÞÑ SpétR can be regarded as a right adjoint to the global sections functor
Γ : 8T opsHen

CAlg Ñ CAlgop; in particular, the étale spectrum SpétR depends functorially on
R.

1.4.3 Solution Sheaves

We now introduce some terminology which will be useful for the proof of Proposition
1.4.2.4.

Notation 1.4.3.1. Let pX ,OX q be a spectrally ringed 8-topos. For each E8-ring R, the
construction pU P X q ÞÑ MapCAlgpR,OX pUqq determines a S-valued sheaf on X . We let
SolRpOX q denote an object of X which represents this functor.

Example 1.4.3.2. Let R “ Sym˚pSnq denote the free E8-ring on a single generator in
degree n. If OX is a sheaf of E8-rings on an 8-topos X , then there is a canonical equivalence
SolRpOX q » Ω8`n OX in the 8-topos X .

Remark 1.4.3.3 (Functoriality in R). Let X be an 8-topos and let OX be a sheaf of
E8-rings on X . Then the construction R ÞÑ SolRpOX q is contravariantly functorial in R.
Moreover, it carries colimits (in the 8-category CAlg of E8-rings) to limits (in the 8-topos
X ).

Remark 1.4.3.4 (Functoriality in OX ). Let X be an 8-topos and let R be an E8-ring.
Then the construction OX ÞÑ SolRpOX q determines a functor ShvCAlgpX q Ñ ShvpX q which
preserves small limits.

Remark 1.4.3.5 (Functoriality in X ). Let f˚ : X Ñ Y be a geometric morphism of 8-topoi
and let R be an E8-ring. Then the diagram

ShvCAlgpX q
SolR //

f˚
��

X

f˚

��
ShvCAlgpYq

SolR // Y

commutes (up to canonical equivalence).

Remark 1.4.3.6. In the situation of Notation 1.4.3.1, suppose that R is connective. Then
for any object OX P ShvCAlgpX q, the canonical map SolRpτě0 OX q Ñ SolRpOX q is an
equivalence in X .

It follows from Remark 1.4.3.5 that for any geometric morphism of 8-topoi f˚ : X Ñ Y
and any E8-ring R, there is a canonical natural transformation of functors f˚ SolR Ñ SolR f˚

from ShvCAlgpYq to ShvCAlgpX q.
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Lemma 1.4.3.7. Let R be a compact object of CAlg. Then, for any geometric morphism of
8-topoi f˚ : X Ñ Y and any sheaf OY of E8-rings on Y, the canonical map f˚ SolRpOYq Ñ

SolRpf˚OYq is an equivalence in X .

Proof. Let C Ď CAlgR be the full subcategory spanned by those objects R for which the
natural map f˚ SolR Ñ SolR f˚ is an equivalence of functors from ShvCAlgpYq to X . Then C
is closed under retracts, and it follows from Remark 1.4.3.3 (together with the left exactness
of f˚) that C is closed under finite colimits in CAlgR. To prove that C contains all compact
objects of CAlgR, it will suffice to show that it contains all free algebras of the form Sym˚pSnq,
which follows from Example 1.4.3.2.

Lemma 1.4.3.8. Let f : AÑ B be an étale morphism between connective E8-rings, and
let OX be a connective sheaf of E8-rings on an 8-topos X . Then the diagram

SolBpOX q //

��

SolBpπ0 OX q

��
SolApOX q // SolApπ0 OX q

is a pullback square in X .

Proof. Using Proposition B.1.1.3, we can choose a pushout diagram

A0 //

f0
��

A

f
��

B0 // B

in CAlg, where f0 is étale and the E8-rings A0 and B0 are compact and connective. Using
Remark 1.4.3.3, we can replace f by f0 and thereby reduce to the case where A and B are
compact. Because X is an 8-topos, we can choose a small 8-category C and a geometric
morphism φ˚ : X Ñ PpCq which exhibits X as a left exact localization of PpCq. We then
have equivalences

OX » φ˚pτě0φ˚OX q π0 OX » φ˚pπ0φ˚OX q.

Using Lemma 1.4.3.7, we can replace OX by τě0pφ˚OX q and thereby reduce to the case
where X “ PpCq is an 8-category of presheaves. In this case, we are reduced to proving
that for every object C P C, the diagram of mapping spaces

MapCAlgpB,OX pCqq //

��

MapCAlgpB, π0 OX pCqq

��
MapCAlgpA,OX pCqq //MapCAlgpA, π0 OX pCqq

is a pullback square, which follows from Theorem HA.7.5.4.2 .
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Lemma 1.4.3.9. paq Let pX ,OX q be a spectrally ringed 8-topos. Then OX is strictly
Henselian if and only if, for every E8-ring A and every faithfully flat étale morphism
AÑ

ś

1ďiďnAi, the induced map
ž

1ďiďn
SolAipOX q Ñ SolApOX q

is an effective epimorphism in X .

pbq Let f : pX ,OX q Ñ pY,OYq be a morphism of spectrally ringed 8-topoi, where OX and
OY are strictly Henselian. Then f is a morphism in 8T opsHen

CAlg if and only if, for
every étale morphism of E8-rings AÑ B, the associated diagram

f˚ SolBpOYq //

��

SolBpOX q

��
f˚ SolApOYq // SolApOX q.

Proof. We first prove the “only if” direction of paq. Assume that OX is strictly Henselian
and that we are given a collection of étale morphisms tAÑ Aiu1ďiďn for which the induced
map AÑ

ś

1ďiďnAi is faithfully flat. We wish to prove that the induced map
ž

1ďiďn
SolAipOX q Ñ SolApOX q

is an effective epimorphism. Note that each of the maps AÑ Ai is flat, and therefore fits
into a pushout square of E8-rings

τě0A //

��

τě0Ai

��
A // Ai.

Using Remark 1.4.3.3, we obtain a pullback diagram
š

1ďiďn SolAipOX q //

��

SolApOX q

��
š

1ďiďn Solτě0AipOX q // Solτě0ApOX q.

Consequently, to prove the the upper horizontal map in this diagram is an effective epimor-
phism, it will suffice to show that the lower horizontal map is an effective epimorphism. We
may therefore replace A by τě0A (and each Ai with τě0Ai) and thereby reduce to the case
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where A is connective. In this case, there is no loss of generality in assuming that OX is
connective (Remark 1.4.3.6). Lemma 1.4.3.8 now supplies a pullback diagram

š

1ďiďn SolAipOX q //

��

SolApOX q

��
š

1ďiďn SolAipπ0 OX q // SolApπ0 OX q,

where the bottom horizontal map is an effective epimorphism (between discrete objects of
X ) by virtue of our assumption that π0 OX is strictly Henselian.

We now prove the “if” direction of paq. Assume that OX has the property described
by paq; we wish to show that for every commutative ring R and every finite collection of
étale morphisms tRÑ Riu1ďiďn for which the induced map RÑ

ś

Ri is faithfully flat, the
induced map >SolRipπ0 OX q Ñ SolRpπ0 OX q is an effective epimorphism (between discrete
objects of X ). Writing R as a direct limit of its finitely generated subrings, we may assume
without loss of generality that R is finitely generated: that is, there exists a surjection
of commutative rings P Ñ R, where P is a polynomial ring over Z. Using the structure
theory of étale morphisms of commutative rings (see Proposition B.1.1.3), we can lift each
Ri to an étale P -algebra Pi. Let U Ď SpecP be the union of the images of the maps
SpecPi Ñ SpecP . Since étale morphisms have open images, the set U is open with respect
to the Zariski topology. It is clearly quasi-compact, so we can choose a collection of elements
t1, . . . , tk P P for which U is covered by the open subsets SpecP rt´1

j s Ď SpecP . Because
the map RÑ

ś

Ri is faithfully flat, the map SpecRÑ SpecP factors through U . We may
therefore choose coefficients cj P R for which the sum c1t1 ` ¨ ¨ ¨ ` cktk “ 1 in R; here we
abuse notation by identifying each tj with its image in R. Using the surjectivity of the map
P Ñ R, we can lift each cj to an element cj P P . Let u “ c1t1 ` ¨ ¨ ¨ ` cktk. Then the map
P ru´1s Ñ

ś

Piru
´1s is faithfully flat and the map P Ñ R factors through P ru´1s. We may

therefore replace R by P ru´1s and thereby reduce to the case where the commutative ring
R has the form Zrx1, . . . , xmsru

´1s for some u P Zrx1, . . . , xms.
Let R denote the E8-ring given by Stx1, . . . , xmuru

´1s, so that R “ π0R. Since the
composite map

ž

1ďiďn
SolRipOX q

ρ
Ñ SolRpOX q

ρ1
Ñ SolRpπ0 OX q » SolRpπ0 OX q

factors through >1ďiďn SolRipπ0 OX q, it will suffice to show that ρ and ρ1 are effective
epimorphisms. The map ρ is an effective epimorphism by virtue of our assumption that OX
satisfies the condition described in paq. The map ρ1 is an effective epimorphism because it is
a pullback of the mth power of the effective epimorphism Ω8OX Ñ π0 OX . This completes
the proof of paq.
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We now prove pbq. Suppose first that f is a morphism in 8T opsHen
CAlg; we wish to show

that if φ : AÑ B is an étale morphism of E8-rings, then the diagram

f˚ SolBpOYq //

��

SolBpOX q

��
f˚ SolApOYq // SolApOX q

is a pullback square in X . As in the first part of the proof, it will suffice to prove this in the
special case where A and B are connective. Remark 1.4.3.6 then allows us to replace OX
and OY by their connective covers, and thereby reduce to the case where they are connective
as well. In this case, we have a commutative diagram

f˚ SolBpOYq //

��

SolBpOX q

��

// SolBpπ0 OX q

��
f˚ SolApOYq // SolApOX q // SolApπ0 OX q

where the right square is a pullback by Lemma 1.4.3.8. It will therefore suffice to show that
the outer rectangle is a pullback. This rectangle also appears in the commutative diagram

f˚ SolBpOYq //

��

f˚ SolBpπ0 OYq

��

// SolBpπ0 OX q

��
f˚ SolApOYq // f˚ SolApπ0 OYq // SolApπ0 OX q

where the left square is a pullback (Lemma 1.4.3.8). We are then reduced to showing that the
right square is a pullback diagram (of discrete objects of X ), which follows from Proposition
1.2.2.12.

For the converse, suppose that f satisfies the condition described in pbq; we claim that
induced map f˚OY Ñ OX is local. Fix an object X P X and a map e : X Ñ π0f

˚OY ,
and let e denote the composite map X

e
Ñ π0f

˚OY Ñ π0 OX . We must show that if e is
invertible when regarded as an element of the commutative ring π0 MapX pX,π0 OX q, then e
is invertible when regarded as an element of the commutative ring π0 MapX pX,π0f

˚OYq.
This assertion is local X: we may therefore assume without loss of generality that e factors
through a map X Ñ f˚OY . In this case, the desired result follows by inspecting the diagram

f˚ SolBpOYq //

��

SolBpOX q

��

// SolBpπ0 OX q

��
f˚ SolApOYq // SolApOX q // SolApπ0 OX q

in the special case A “ Stxu and B “ Stxurx´1s; here the left square is a pullback by virtue
of our hypothesis on f and the right square is a pullback by virtue of Lemma 1.4.3.8.
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Proof of Proposition 1.4.2.4. Let R be an E8-ring and let O : CAlgét
R Ñ CAlg be the

forgetful functor. It follows from Theorem D.6.3.5 that O is a CAlg-valued sheaf (with respect
to the étale topology on CAlgét

R). Note that π0 O can be identified with the sheafification of
the presheaf of commutative rings given by the composite map CAlgét

R
π0
Ñ CAlg♥, which is

the structure sheaf of the Deligne-Mumford stack SpétR. It follows from Proposition 1.2.3.2
that π0 O is strictly Henselian, so that the sheaf O is strictly Henselian.

Let X be an arbitrary 8-topos and let OX be a strictly Henselian CAlg-valued sheaf
on X . The construction A ÞÑ SolApOX q determines a functor Sol‚pOX q : CAlgét

R Ñ X op.
Applying Proposition HTT.6.1.5.2 , we can identify the mapping space Map8T oppX ,Shvét

Rq

with the full subcategory of FunpCAlgét
A ,X q» spanned by those functors χ : pCAlgét

Rq
op Ñ X

which satisfy the following conditions:

piq The functor χ preserves finite limits.

piiq For every faithfully flat étale morphism AÑ
ś

1ďiďnAi in CAlgét
R , the induced map

>χpAiq Ñ χpAq is an effective epimorphism in the 8-topos X .

If χ is a functor satisfying these conditions and f˚ : X Ñ Shvét
R is the associated geometric

morphism, then we can identify the direct image f˚OX with the CAlg-valued sheaf on
CAlgét

R given by CAlgét
R

χ
ÝÑ X op OX

ÝÝÑ CAlg. We may therefore identify the mapping space
MapShvCAlgpShvét

R q
pO, f˚OX q with the mapping space MapFunppCAlgét

R q
op,X qpχ,Sol‚pOX qq.

Let 1X denote a final object of X . Fix a morphism of E8-rings φ : R Ñ ΓpX ; OX q,
which we can identify with a map 1X Ñ SolRpOX q. For each object A P CAlgét

R , let
Sol0ApOX q denote the fiber product 1X ˆSolRpOX q SolApOX q, and regard the construction
A ÞÑ Sol0ApOX q as a functor Sol0‚ : pCAlgét

Rq
op Ñ X . The above analysis shows that the

homotopy fiber of the canonical map

θ : Map8T opCAlg
ppX ,OX q, SpétRq Ñ FunppCAlgét

Aq
op,X q» ˆMapCAlgpR,ΓpX ,OX qq

over the pair pχ, φq can be identified with the mapping space MapFunppCAlgét
R q

op,X qpχ,Sol0‚pOX qq.
It follows from Lemma 1.4.3.9 that this identification carries the homotopy fiber of the
restriction

Map8T opsHen
CAlg

ppX ,OX q,SpétRq Ñ FunppCAlgét
Rq

op,X q» ˆMapCAlgpR,ΓpX ,OX qq

to the subspace of MapFunppCAlgét
A q

op,X qpχ,Sol0‚pOX qq spanned by the equivalences. It follows
that the fiber product

Map8T opsHen
CAlg

ppX ,OX q,SpétRq ˆMapCAlgpR,ΓpX ,OX qq tφu

is either empty or contractible. We will complete the proof by explicitly constructing a
point of this fiber product, given by a morphism of ringed 8-topoi pX ,OX q Ñ SpétR. Let
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χ : pCAlgét
Rq

op Ñ X be the functor A ÞÑ Sol0ApOX q. The construction A ÞÑ SolApOX q carries
colimits in CAlg to limits in X . It follows that the functor Sol‚pOX q preserves pullbacks, so
that Sol0‚pOX q also preserves pullbacks. By construction, the functor Sol0‚pOX q carries R to
a final object of X , so that Sol0‚pOX q preserves finite limits. Since OX is strictly Henselian,
Lemma 1.4.3.9 implies that the functor χ “ Sol0‚pOX q satisfies condition piiq above, and
therefore determines a geometric morphism of 8-topoi f˚ : X Ñ Shvét

R . The preceding
analysis shows that the projection map Sol0‚pOX q Ñ Sol‚pOX q determines a morphism of
CAlg-valued sheaves α : O Ñ f˚OX , so that we can regard f “ pf˚, αq as a morphism of
spectrally ringed topoi from pX ,OX q into SpétA. We will complete the proof by showing
that f is a morphism in the 8-category 8T opsHen

CAlg. To this end, fix an object U P X and
an element x P π0 MapX pU, f

˚pπ0 Oqq whose image in π0 MapX pU, π0 OX q is invertible; we
wish to show that x is invertible. For each object A P CAlgét

R , let hA P Shvét
R denote the

sheaf corepresented by B. Since the objects hA generate Shvét
R under small colimits, we

can therefore choose an effective epimorphism >hAα Ñ π0 O, which induces an effective
epimorphism

š

f˚hAα Ñ f˚π0 O. Working locally on U , we may assume that the map
x : U Ñ f˚π0 O factors as a composition U

ψ
ÝÑ f˚hA

f˚y
ÝÝÑ f˚π0 O, where ψ : U Ñ f˚hA »

Sol0ApOX q classifies an R-algebra morphism φ : AÑ OX pUq, and y : hA Ñ π0 O is a map of
discrete objects of Shvét

R which we can identify with an element of the commutative ring
π0 OpAq “ π0A. Applying φ to y, we obtain an element φpyq P π0pOX pUqq whose image
in MapX pU, π0 OX q is an equivalence. It follows that multiplication by φpyq induces an
equivalence from OX |U to itself, so that φpyq is invertible in OX |U . Consequently, the
map ψ admits an (essentially unique) lift to a map ψ : U Ñ Sol0Ary´1spOX q » f˚hAry

´1s, so

that x factors as a composition U
ψ
ÝÑ f˚hAry

´1s f˚y
ÝÝÑ f˚π0 O, and is therefore invertible, as

desired.

1.4.4 Spectral Deligne-Mumford Stacks

We are now ready to introduce the main objects of study in this book.

Notation 1.4.4.1. Let X be an 8-topos, let C be an arbitrary 8-category, and let OX be
a C-valued sheaf on X . For each object U P X , we let OX |U denote the composite functor

pX {U qop Ñ X op OX
Ñ C,

so that OX |U is a C-valued sheaf on the 8-topos X {U . We will refer to OX |U as the
restriction of OX to U .

Definition 1.4.4.2. A nonconnective spectral Deligne-Mumford stack is a spectrally ringed
8-topos X “ pX ,OX q for which there exists a collection of objects Uα P X satisfying the
following conditions:
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piq The objects Uα cover X . That is, the coproduct >αUα is 0-connective.

piiq For each index α, there exists an E8-ring Aα and an equivalence of spectrally ringed
8-topoi pX {Uα ,OX |Uαq » SpétAα.

We let SpDMnc denote the full subcategory of 8T opsHen
CAlg spanned by the nonconnective

spectral Deligne-Mumford stacks.
A spectral Deligne-Mumford stack is a nonconnective spectral Deligne-Mumford stack

pX ,OX q for which the structure sheaf OX is connective. We let SpDM denote the full
subcategory of SpDMnc spanned by the spectral Deligne-Mumford stacks.

Remark 1.4.4.3. Let A be an E8-ring, and let O be the sheaf of E8-rings on Shvét
A given

in Proposition 1.4.2.4. If A is connective, then any étale A-algebra is also connective. It
follows that O is a connective sheaf of E8-rings on Shvét

A , so that SpétA is a spectral
Deligne-Mumford stack.

Remark 1.4.4.4. Let f : X Ñ Y be an étale morphism of spectrally ringed 8-topoi. If Y
is a (nonconnective) spectral Deligne-Mumford stack, then so is X. The converse holds if f
is an étale surjection.

1.4.5 Connective Covers

Our next goal is to compare the theory of spectral Deligne-Mumford stacks with the
more general theory of nonconnective spectral Deligne-Mumford stacks. To this end, we
start by establishing an analogue of Proposition 1.1.7.5:

Proposition 1.4.5.1. Let pX ,OX q be a nonconnective spectral Deligne-Mumford stack.
Then pX , τě0 OX q is a spectral Deligne-Mumford stack. Moreover, it has the following
universal property: for every object pY,OYq P 8T opsHen

CAlg, if OY is connective, then the
canonical map

Map8T opsHen
CAlg

ppX , τě0 OX q, pY,OYqq Ñ Map8T opsHen
CAlg

ppX ,OX q, pY,OYqq

is a homotopy equivalence.

Corollary 1.4.5.2. The inclusion functor SpDM ãÑ SpDMnc admits a left adjoint, given
on objects by pX ,OX q ÞÑ pX , τě0 OX q.

Proof of Proposition 1.4.5.1. Let pY,OYq be an arbitrary spectrally ringed 8-topos for
which OY is connective. For every geometric morphism f˚ : X Ñ Y, the pullback f˚OY is
also connective so that the natural map

MapShvCAlgpX qpf
˚OY , τě0 OX q Ñ MapShvCAlgpX qpf

˚OY ,OX q
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is a homotopy equivalence. It follows that the homotopy fibers of the vertical maps in the
diagram

Map8T opCAlg
ppX , τě0 OX q, pY,OYqq

**

θ //Map8T opCAlg
ppX ,OX q, pY,OYqq

tt
Map8T oppX ,Yq

are homotopy equivalent to one another, so that θ is a homotopy equivalence. If OY is
strictly Henselian, then θ restricts to a homotopy equivalence

Map8T opsHen
CAlg

ppX , τě0 OX q, pY,OYqq Ñ Map8T opsHen
CAlg

ppX ,OX q, pY,OYqq

(since π0pτě0 OX q is isomorphic to π0 OX ).
To complete the proof, it will suffice to show that if pX ,OX q is a nonconnective spectral

Deligne-Mumford stack, then pX , τě0 OX q is a spectral Deligne-Mumford stack. The assertion
is local on X . We may therefore assume without loss of generality that pX ,OX q has the form
SpétA for some E8-ring A. Let B “ τě0A. Then SpétB is a spectral Deligne-Mumford
stack (Remark 1.4.4.3), so the canonical map pX ,OX q Ñ SpétB factors as a composition

pX ,OX q
φ
Ñ pX , τě0 OX q

ψ
Ñ SpétB.

To complete the proof, it will suffice to show that ψ is an equivalence. Using the explicit
description of the functor Spét supplied by Proposition 1.4.2.4, we can identify both X and
the underlying 8-topos of SpétB with Shvét

A . The structure sheaf O of SpétB is given by
OpA1q “ τě0A

1, from which it immediately follows that O is a connective cover of OX (so
that ψ is an equivalence).

Corollary 1.4.5.3. Let A be an E8-ring. If SpétA is a spectral Deligne-Mumford stack,
then A is connective.

Proof. Write SpétA “ pX ,OX q. The proof of Proposition 1.4.5.1 shows that pX , τě0 OX q »

Spétpτě0Aq. Passing to global sections, we deduce that the canonical map τě0A »

ΓpX ; τě0 OX q Ñ ΓpX ; OX q » A is an equivalence, so that A is connective.

1.4.6 Truncated Spectral Deligne-Mumford Stacks

We now study the formation of Postnikov towers in the setting of spectral Deligne-
Mumford stacks.

Definition 1.4.6.1. Let X “ pX ,OX q be a spectral Deligne-Mumford stack, and let n ě 0
be an integer. We will say that X is n-truncated if OX is n-truncated when regarded as a
sheaf of spectra on X . We let SpDMďn denote the full subcategory of SpDM spanned by
the n-truncated spectral Deligne-Mumford stacks.
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Example 1.4.6.2. Let A be an E8-ring. Then A can be recovered as the E8-ring of
global sections of the structure sheaf of SpétA. Consequently, if SpétA is an n-truncated
spectral Deligne-Mumford stack, then A is connective (see Corollary 1.4.5.3) and n-truncated.
Conversely, if A is connective and n-truncated, then the explicit description of SpétA given
by Proposition 1.4.2.4 shows that SpétA is an n-truncated spectral Deligne-Mumford stack.

Proposition 1.4.6.3. Let pX ,OX q be a spectral Deligne-Mumford stack. For each n ě 0,
the truncation pX , τďn OX is also a spectral Deligne-Mumford stack. Moreover, it has the
following universal property: for every object pY,OYq P 8T opsHen

CAlg, if OY is connective and
n-truncated, then the canonical map

Map8T opsHen
CAlg

ppY,OYq, pX , τďn OX qq Ñ Map8T opsHen
CAlg

ppY,OYq, pX ,OX qq

is a homotopy equivalence.

Corollary 1.4.6.4. For each integer n ě 0, the inclusion SpDMďn ãÑ SpDM admits a
right adjoint, given on objects by pX ,OX q ÞÑ pX , τďn OX q.

Notation 1.4.6.5. If X “ pX ,OX q is a spectral Deligne-Mumford stack and n ě 0 is an
integer, we let τďn X denote the spectral Deligne-Mumford stack given by pX , τďn OX q. We
will refer to τďn X as the n-truncation of X

Proof of Proposition 1.4.6.3. Let pY,OYq be an arbitrary spectrally ringed 8-topos for
which OY is n-truncated. For every geometric morphism f˚ : Y Ñ X , the pushforward
f˚OY is also n-truncated. We therefore have a commutative diagram

MapShvCAlgpX qpτďn OX , τě0f˚OYq //

��

MapShvCAlgpX qpOX , τě0f˚OYq

��
MapShvCAlgpX qpτďn OX , f˚OYq //MapShvCAlgpX qpOX , f˚OYq

where the vertical maps are homotopy equivalences (since OX is connective) and the upper
horizontal map is a homotopy equivalence (since τě0f˚OY is connective and n-truncated). It
follows that the lower horizontal map is also an equivalence. Allowing f to vary, we deduce
that the homotopy fibers of the vertical maps in the diagram

Map8T opCAlg
ppY,OYq, pX , τďn OX qq

))

θ //Map8T opCAlg
ppY,OYq, pX ,OX qq

uu
Map8T oppY,X q

are homotopy equivalent to one another, so that θ is a homotopy equivalence. If OY is
strictly Henselian, then θ restricts to a homotopy equivalence

Map8T opsHen
CAlg

ppY,OYq, pX , τďn OX qq Ñ Map8T opsHen
CAlg

ppY,OYq, pX ,OX qq
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(since π0pτďn OX q is isomorphic to π0 OX ).
To complete the proof, it will suffice to show that if pX ,OX q is a spectral Deligne-

Mumford stack, then pX , τďn OX q is also a spectral Deligne-Mumford stack. The assertion
is local on X . We may therefore assume without loss of generality that pX ,OX q has the
form SpétA for some E8-ring A. It follows from Corollary 1.4.5.3 that A is connective.
Let B “ τďnA. Then SpétB is an n-truncated spectral Deligne-Mumford stack (Example
1.4.6.2), so the canonical map SpétB Ñ SpétA » pX ,OX q factors as a composition

SpétB φ
Ñ pX , τďn OX q Ñ pX ,OX q.

To complete the proof, it will suffice to show that φ is an equivalence. Using the explicit
description of the functor Spét supplied by Proposition 1.4.2.4 and Theorem HA.7.5.0.6 ,
we can identify both X and the underlying 8-topos of SpétB with Shvét

A . Under this
identification structure sheaf O of SpétB corresponds to the functor CAlgét

A given by
OpA1q “ τďnA

1, from which we immediately deduce that φ is an equivalence.

1.4.7 Affine Spectral Deligne-Mumford Stacks

Let X “ pX ,OX q be a nonconnective spectral Deligne-Mumford stack. We will say that
X is affine it is equivalent to SpétA, for some E8-ring A.

Remark 1.4.7.1. Arguing as in Remark 1.1.5.7, we see that the construction A ÞÑ SpétA
determines a fully faithful embedding Spét : CAlgop Ñ SpDMnc, whose essential image is the
full subcategory of SpDMnc spanned by the affine nonconnective spectral Deligne-Mumford
stacks.

Our main goal is to establish the following characterization of affine spectral Deligne-
Mumford stacks:

Proposition 1.4.7.2. Let pX ,OX q be a spectrally ringed 8-topos which satisfies the follow-
ing conditions:

paq Let X♥ denote the underlying topos of X . Then the ringed topos pX♥, π0 OX q is
equivalent to SpétR for some commutative ring R.

pbq The 8-topos X is 1-localic (that is, the natural geometric morphism X Ñ ShvSpX♥q »

Shvét
R is an equivalence).

pcq For each integer n, the pπ0 OX q-module πn OX is quasi-coherent (in the sense of
Definition 1.2.6.1).

pdq The sheaf OX is hypercomplete.
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Then pX ,OX q is equivalent to SpétA, for some E8-ring A.

Corollary 1.4.7.3. Let pX ,OX q be a nonconnective spectral Deligne-Mumford stack. Then
pX ,OX q is affine if and only if the 0-truncated spectral Deligne-Mumford stack pX , π0 OX q

is affine.

Corollary 1.4.7.4. Suppose we are given a commutative diagram of spectral Deligne-
Mumford stacks

X f //

��

Y

��
Z,

and suppose that the underlying map XˆZτď0 Z Ñ YˆZτď0 Z is an equivalence. Then f is
an equivalence.

Proof. The assertion is local on Y; we may therefore assume without loss of generality
that Y “ SpétA and Z » SpétR are affine. Our assumption guarantees that f induces an
equivalence of 0-truncations, so that τď0 X is affine. Applying Corollary 1.4.7.3, we deduce
that X » SpétB is affine. Let K denote the cofiber of the map A Ñ B (formed in the
8-category ModR). We wish to prove that K » 0. Assume otherwise. Since K is connective,
there exists a smallest integer n such that πnK is nontrivial. In this case, we have

πnK » Torπ0R
0 pπ0R, πnKq » πnpπ0RbR Kq » πn cofibpπ0RbR AÑ π0RbR Bq » 0,

and obtain a contradiction.

The proof of Proposition 1.4.7.2 will require some preliminaries.

Lemma 1.4.7.5. Let X be an 8-topos and let n ě ´1 be an integer. Suppose we are given
a collection of morphisms fα : Uα Ñ X in X with the following properties:

piq Each of the morphisms fα is pn´ 1q-truncated.

piiq Each of the objects Uα is n-truncated.

piiiq The induced map f : >αUα Ñ X is an effective epimorphism in X .

Then X is n-truncated.

Proof. Without loss of generality, we may assume that X is given as a left exact localization
of PpCq “ FunpCop,Sq, for some small 8-category C. Let L : PpCq Ñ X be a left adjoint to
the inclusion. For each object C P C, let X 1pCq Ď XpCq denote the union of those connected
components which meet the image of one of the maps UαpCq Ñ XpCq, so that we have an
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effective epimorphism f 1 : >αUα Ñ X 1 in the 8-topos PpCq. It follows from piiiq that the
functor L carries X 1 to X. Since L is left exact, it will suffice to prove that X 1 is n-truncated.
We may therefore replace X by X 1, and thereby reduce to the case where X “ PpCq is an
8-category of presheaves. Working objectwise, we may reduce to the case where C » ∆0, so
that X is the 8-category S of spaces.

If n “ ´1, then either X is empty or one of the maps hα is an equivalence; in either
case, we immediately conclude that X is p´1q-truncated. Suppose that n ě 0. We wish
to prove that πmpX,xq »q for each integer m ą n and each base point x P X. Using piiiq,
we may assume that x “ fαpxq for some point x P Uα. In this case, condition piq implies
that the map πmpUα, xq Ñ πmpX,xq is an isomorphism, and condition piiq implies that
πmpUα, xq » 0.

Remark 1.4.7.6. In the situation of Lemma 1.4.7.5, we can replace piiq by the following
apparently weaker condition:

pii1q The map fα factors as a composition Uα Ñ Vα Ñ X, where Vα is n-truncated.

Indeed, if this condition is satisfied, then Uα can be realized as a retract of Uα ˆX Vα. If
fα satisfies condition piq, then the projection map Uα ˆX Vα Ñ Vα is pn ´ 1q-truncated.
Since Vα is n-truncated, we conclude that Uα ˆX Vα is n-truncated, and therefore Uα is
n-truncated.

Lemma 1.4.7.7. Let X be an 8-topos containing an object X and let n ě 0 be an integer.
Then:

p1q If the 8-topos X is pn`1q-localic and X {X is n-localic, then the object X is n-truncated.

p2q If the 8-topos X is n-localic and X is n-truncated, then the 8-topos X {X is n-localic.

p3q If the 8-topos X {X is pn ` 1q-localic and the object X is both n-truncated and 0-
connective, then X is pn` 1q-localic.

Proof. We first prove p1q. If X is pn`1q-localic, then we can choose an effective epimorphism
>Vα Ñ X where each Vα is an n-truncated object of X . If X {X is n-localic, then we can
choose effective epimorphisms >Uα,β Ñ Vα, where each Uα,β is an pn´ 1q-truncated object
of X {X . Applying Remark 1.4.7.6, we conclude that X is n-truncated.

We now prove p2q. If X is n-localic, then we can write X as a topological localization of
PpCq, for some small n-category C (see the proof of Proposition HTT.6.4.5.7 ). Let us identify
X with the corresponding subcategory of PpCq. Then X {X is a topological localization of
PpCq{X . According to Proposition HTT.6.4.5.9 , it will suffice to show that the 8-topos
PpCq{X is n-localic. The presheaf X : Cop Ñ S classifies a right fibration of 8-categories
θ : rC Ñ C. Since X is n-truncated, the fibers of θ are n-truncated Kan complexes, so
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that rC is also an n-category. We complete the proof by observing that there is a canonical
equivalence of 8-categories PpCq{X » PprCq.

We now prove p3q. Suppose that X is n-truncated and 0-connective and that X {X is
pn` 1q-localic. Let f˚ : X Ñ Y be a geometric morphism which exhibits Y as an pn` 1q-
localic reflection of X . Then the associated pullback functor f˚ restricts to an equivalence
τďn Y Ñ τďnX . In particular, we can assume without loss of generality that X “ f˚Y

for some n-truncated object Y P Y. By construction, the pullback functor f˚ induces an
equivalence of 8-categories pτďn Yq{Y Ñ pτďnX q{X . Restricting to n-truncated objects on
both sides, we see that f˚ induces an equivalence of 8-categories τďnpY{Y q Ñ τďnpX {Xq.
It follows from p2q that Y{Y is pn ` 1q-localic and the 8-topos X {X is pn ` 1q-localic by
assumption, so that f˚ induces an equivalence Y{Y Ñ X {X .

We will show that the counit map v : f˚f˚ Ñ idX is an equivalence (that the unit map
u : idY Ñ f˚f

˚ is an equivalence can be proven by the same argument). Let X 1 be an object
of X ; we wish to show that the natural map vX 1 : f˚f˚X 1 Ñ X 1 is an equivalence. Since X
is 0-connective, it will suffice to show that

vX 1 ˆ idX : pf˚f˚X 1q ˆX Ñ X 1 ˆX

is an equivalence. Unwinding the definitions, we see that this map factors as a composition

pf˚f˚X
1q ˆX » f˚pf˚X

1 ˆ Y q

» f˚f˚pX
1 ˆXq

Ñ X 1 ˆX,

where the last map is an equivalence by virtue of our assumption that f˚ and f˚ induce
mutually inverse equivalences between Y{Y and X {X .

Proof of Proposition 1.4.7.2. We proceed as in the proof of Proposition 1.1.3.4. For each
integer n, we have a fiber sequence of spectrum-valued sheaves

Σnpπn OX q Ñ τďn OX Ñ τďn´1 OX ,

where we abuse notation by identifying the sheaf of abelian groups πn OX with the cor-
responding object in the heart of ShvSppX q. Passing to global sections and extracting
homotopy groups, we obtain a long exact sequence

Hn´mpX {U ; pπn OX q|U q Ñ πmpτďn OX qpUq Ñ πmpτďn´1 OX pUqq Ñ Hn´m`1pX {U ; pπn OX q|U q

for each object U P X . Using assumptions paq, pbq, and pcq, we see that the groups
HipX {U ; pπn OX q|U q vanish if U P X♥ is affine and i ą 0 (see §HTT.7.2.2 for a discussion
of the cohomology of an 8-topos, Remark HTT.7.2.2.17 for a comparison with the usual
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theory of sheaf cohomology, and §D.3 for a closely related discussion). Since pτďn OX qpUq

and pτďn´1 OX qpUq are n-truncated and pn´ 1q-truncated, respectively, we conclude that
our long exact sequence degenerates to give isomorphisms

πmpτďn OX qpUq »

$

’

’

&

’

’

%

0 if m ą n

pπn OX qpUq if m “ n

pτďn´1 OX qpUq if m ă n.

when U P X♥ is affine.
Set O 1X “ lim

ÐÝn
τďn OX P ShvSppX q. We have an evident map u : OX Ñ O 1X , and the

above calculation shows that this map induces an equivalence pπn OX qpUq Ñ πnpO
1
X pUqq

for every affine object U P X♥. In particular, u induces an isomorphism of sheaves πn OX Ñ

πn O 1X for every integer n. Since O 1X is hypercomplete by construction, condition pdq implies
that u is an equivalence. It follows that the canonical map πnpOX pUqq Ñ pπn OX qpUq is an
isomorphism for each affine object U P X♥.

Set A “ ΓpX ; OX q. Then Proposition 1.4.2.4 supplies a map of spectrally ringed 8-topoi
f : pX ,OX q Ñ SpétA. Condition paq implies that the final object of X is affine, so that the
canonical map πnAÑ ΓpX♥;πn OX q is an isomorphism for every integer n. In particular,
π0A can be identified with the ring of global sections of π0 OX , so that paq supplies an
equivalence X♥ » ShvSetpCAlgét

π0Aq. Combining this observation with pbq, we deduce that f
induces an equivalence of the underlying 8-topoi. Then f supplies a morphism of structure
sheaves α : O Ñ f˚OX ; we wish to show that this map is an equivalence. Since Shvét

A is
generated under small colimits by corepresentable functors hB, we are reduced to proving
that α induces an equivalence

B » OphBq Ñ OX pf
˚hBq

for each object B P CAlgét
A . We will prove that for each integer n, the map πnB Ñ

πn OX pf
˚hBq is an isomorphism of abelian groups. Since f˚hB is an affine object of X♥,

we can identify πn OX pf
˚hBq with the abelian group HomX ♥pf˚hB, πn OX q. Assumption

pbq implies that πn OX is a quasi-coherent sheaf on the affine Deligne-Mumford stack
pX♥, π0 OX q, so that we can identify HomX ♥pf˚hB, πn OX q with

π0B bπ0A ΓpX♥, πn OX q » π0B bπ0A πnA » πnB.

We close this section with a remark about affine “opens” in an arbitrary spectral
Deligne-Mumford stack.
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Definition 1.4.7.8. Let pX ,OX q be a nonconnective spectral Deligne-Mumford stack. We
will say that an object U P X is affine if the nonconnective spectral Deligne-Mumford stack
pX {U ,OX |U q is affine.

Proposition 1.4.7.9. Let pX ,OX q be an nonconnective spectral Deligne-Mumford stack,
and let X 0 be the full subcategory of X spanned by the affine objects. Then X is generated
by X 0 under small colimits (in other words, X is the smallest full subcategory of itself which
contains X 0 and is closed under small colimits).

Proof. Let X 1 Ď X be a full subcategory containing X 0 and closed under small colimits. We
wish to prove that X 1 contains every object X P X . We first prove this under the additional
assumption that there exists a morphism X Ñ Y , where Y P X is affine. In this case, we can
replace pX ,OX q by pX {Y ,OX |Y q, and thereby reduce to the case where pX ,OX q » SpétR
is affine. In this case, we can identify X with Shvét

R . It follows that X is generated under
small colimits by corepresentable functors hA (where A ranges over étale R-algebras), each
of which is affine.

We now treat the general case. Let 1 denote the final object of X . Choose an effective
epimorphism U “ >αUα Ñ 1, where each Uα is affine. Let U‚ be the Čech nerve of the
map U Ñ 1, so that |U‚| » 1. Then X is the geometric realization of the simplicial object
|X ˆ U‚|. It will therefore suffice to show that each of the objects X ˆ Un belongs to X 1.
Note that there exists a map Un Ñ U , so that we can write XˆUn as a coproduct of objects
of the form X ˆ Un ˆU Uα. We conclude by observing that each of these objects admits a
morphism to the affine object Uα P X , and therefore belongs to X 1 by the first part of the
proof.

1.4.8 A Recognition Criterion for Spectral Deligne-Mumford Stacks

We now give a concrete characterization of the class of spectral Deligne-Mumford stacks
which is more in the spirit of Definition 1.1.2.8.

Theorem 1.4.8.1. Let pX ,OX q be a spectrally ringed 8-topos, and let X♥ denote underlying
topos of X . Then pX ,OX q is a nonconnective spectral Deligne-Mumford stack if and only if
the following conditions are satisfied:

p1q The ringed topos pX♥, π0 OX q is a Deligne-Mumford stack, in the sense of Definition
1.2.4.1.

p2q The canonical geometric morphism φ˚ : X Ñ ShvSpX♥q (which exhibits ShvSpX♥q as
a 1-localic reflection of X ) is étale.

p3q For each integer n, the homotopy group πn OX is a quasi-coherent sheaf on pX♥, π0 OX q,
in the sense of Definition 1.2.6.1.
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p4q The structure sheaf OX is hypercomplete (see Definition 1.3.3.4).

Remark 1.4.8.2. Let pX ,OX q be a nonconnective spectral Deligne-Mumford stack. Then
Theorem ?? implies that the ringed topos pX♥, π0 OX q is a Deligne-Mumford stack. We will
refer to pX♥, π0 OX q as the underlying Deligne-Mumford stack of pX ,OX q.

Remark 1.4.8.3. Let pX ,OX q be a ringed topos, and let pShvSpX q,Oq be the associated
spectrally ringed 8-topos (see Remark 1.4.1.5). Then the 8-topos ShvSpX q is 1-localic, the
groups πn O vanish for n ‰ 0, and O is hypercomplete (since it is 0-truncated). Consequently,
the spectrally ringed 8-topos pShvSpX q,Oq automatically satisfies conditions p2q, p3q, and
p4q of Theorem 1.4.8.1. It follows that pShvSpX q,Oq is a spectral Deligne-Mumford stack if
and only if pX ,OX q is a Deligne-Mumford stack. In particular, the construction

pX ,OX q ÞÑ pShvSpX q,Oq

determines a fully faithful embedding DM Ñ SpDM, whose essential image consists of those
spectral Deligne-Mumford stacks pX ,OX q for which the 8-topos X is 1-localic and the
structure sheaf OX is 0-truncated.

Remark 1.4.8.4. Let pX ,OX q be an arbitrary spectral Deligne-Mumford stack, let pX♥, π0 OX q

be its underlying Deligne-Mumford stack, and let pY,OYq be the spectral Deligne-Mumford
stack associated to pX♥, π0 OX q (Remark 1.4.8.3). Then we have a canonical diagram of
spectral Deligne-Mumford stacks

pX ,OX q
g
Ð pX , π0 OX q

f
Ñ pY,OYq.

Here the map f is étale (by Theorem 1.4.8.1), and the map g exhibits pX ,OX q as an
“infinitesimal thickening” of pX , π0 OX q.

Remark 1.4.8.5. If pX ,OX q is a 0-truncated spectral Deligne-Mumford stack, then Remark
1.4.8.4 supplies an étale map pX ,OX q Ñ pY,OYq, where pY,OYq is a 0-truncated, 1-localic
spectral Deligne-Mumford stack.

Proof of Theorem 1.4.8.1. Suppose first that pX ,OX q is a nonconnective spectral Deligne-
Mumford stack. Assertion p2q follows from Theorem ??. Choose a covering of X by
objects Uα for which each of the spectrally ringed 8-topoi pX {Uα ,OX |Uαq has the form
SpétRα for some E8-ring Rα. Using p2q, we see that each of the geometric morphisms
φα˚ : X {Uα Ñ ShvSpX♥q is étale, so that we can choose equivalences X {Uα » ShvSpX♥q{Vα
for some objects Vα P ShvSpX♥q{Vα . The underlying 8-topos of SpétRα is 1-localic by
construction, so that each Vα is 1-truncated by virtue of Lemma 1.4.7.7. Since ShvSpX♥q is
1-localic, it is generated (under small colimits) by discrete objects. In particular, we can
choose effective epimorphisms uα : V 1α Ñ Vα, where each V 1α is a discrete object of ShvSpX♥q.
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Since Vα is 1-truncated, we see that each of the maps uα : V 1α Ñ Vα is 0-truncated. We
therefore have an equivalence

ShvSpX♥q{V 1α » pShvét
Rαq{Wα

for some discrete objects Wα in Shvét
Rα . Let O denote the structure sheaf of SpétRα, so

that we obtain equivalences of ringed topoi

pShvSetpCAlgét
Rq{Wα

, pπ0 Oq|Wαq » pX 0{V 1α , pπ0 OX q{V 1αq.

Since pShvSetpCAlgét
Rq, π0 Oq » Spétpπ0Rq is a Deligne-Mumford stack, it follows from

Remark 1.2.4.5 that pX♥, π0 OX q is also a Deligne-Mumford stack. This completes the
proof of p1q. Moreover, the above argument shows that we have a canonical isomorphism
of sheaves pπn OX q|V 1α » F |Wα , where F denotes the quasi-coherent sheaf on Spétpπ0Rq

associated to the π0R-module πnR (see Example 1.2.6.2). Assertion p3q now follows from
Proposition 1.2.6.3. To prove p4q, we may work locally on X (by virtue of Proposition
1.3.3.6) and thereby reduce to the case where pX ,OX q “ SpétA for some E8-ring A. We
may further assume that A is connective. In this case, OX can be written as the inverse
limit of the structure sheaves of the spectral Deligne-Mumford stacks SpétpτďnAq, each of
which is truncated and therefore hypercomplete.

Now suppose that conditions p1q through p4q are satisfied; we wish to prove that pX ,OX q is
a nonconnective spectral Deligne-Mumford stack. Using p2q, we can write X “ ShvSpX♥q{X
for some object X P ShvSpX♥q. Using p1q, we can choose an effective epimorphism >Uα Ñ X

in ShvSpX♥q, where each Uα is an affine object of X♥. Then each Uα can be identified with
an object Vα P X . To complete the proof, it will suffice to show that each pX {Vα ,OX |Vαq

has the form SpétA, for some E8-ring A. This follows from Proposition 1.4.7.2.

1.4.9 Postnikov Towers of Spectral Deligne-Mumford Stacks

Let X “ pX ,OX q be a spectral Deligne-Mumford stack. In §1.4.6, we saw that each
truncation τďn X “ pX , τďn OX q is also a spectral Deligne-Mumford stack. We now show
that X is determined by the collection of truncations tτďn Xuně0.

Proposition 1.4.9.1. The 8-category SpDM is a homotopy limit of the tower

¨ ¨ ¨ Ñ SpDMď3 τď2
ÝÝÑ SpDMď2 τď1

ÝÝÑ SpDMď1 τď0
ÝÝÑ SpDMď0 .

Proof. Let G denote the evident functor SpDM Ñ lim
ÐÝ

SpDMďn. We first claim that G is
fully faithful. Unwinding the definitions, we must show that if X “ pX ,OX q and Y “ pY,OYq

are spectral Deligne-Mumford stacks, then the canonical map

θ : MapSpDMpX,Yq Ñ lim
ÐÝ

MapSpDMppX , τďn OX q,Yq
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is a homotopy equivalence. Let K “ Fun˚pY,X q» denote the space of geometric morphisms
from the underlying 8-topos of X to the underlying 8-topos of Y. We will show that θ
induces a homotopy equivalence after passing to the homotopy fiber over any point of K,
corresponding to a geometric morphism f˚ : Y Ñ X . In this case, we wish to show that the
canonical map

φ : MapShvCAlgpX qpf
˚OY ,OX q Ñ lim

ÐÝ
MapShvCAlgpX qpf

˚OY , τďn OX q

induces a homotopy equivalence on the summands corresponding to local maps between
strictly Henselian sheaves of E8-rings on X . This follows from the following pair of assertions:

paq The map φ is a homotopy equivalence. In fact, the canonical map OX Ñ lim
ÐÝ

τďn OX
is an equivalence of sheaves of E8-rings on X : this follows from the proof of Theorem
1.4.8.1.

pbq A map f˚OY Ñ OX is local if and only if each of the induced maps f˚OY Ñ τďn OX
is local. Both conditions are equivalent to the assertion that the underlying map

π0f
˚OY Ñ π0 OX

is local (Definition 1.4.2.1).

It remains to prove that G is essentially surjective. Suppose we are given an object of
lim
ÐÝn

SpDMďn, given by a sequence of spectral Deligne-Mumford stacks

pX 0,O0q Ñ pX 1,O1q Ñ pX 2,O2q Ñ ¨ ¨ ¨

with the following property: each of the maps pX i,O iq Ñ pX i`1,O i`1q induces an equivalence
pX i,O iq » τďipX i`1,O i`1q. It follows that the sequence of 8-topoi X 0 Ñ X 1 Ñ ¨ ¨ ¨ is
equivalent to the constant sequence taking the value X “ X 0. To complete the proof, it will
suffice to verify the following:

pcq The spectrally ringed 8-topos X “ pX , lim
ÐÝ

Onq is a spectral Deligne-Mumford stack.

pdq For every integer n, the canonical map pX ,Onq Ñ X induces an equivalence pX ,Onq Ñ

τďn X.

Both of these assertions are local on X. We may therefore assume without loss of
generality that pX ,O0q is affine. It follows that each pair pX,Onq is affine (Corollary 1.4.7.3),
so that the sequence of spectral Deligne-Mumford stacks above is determined by a tower of
connective E8-rings

¨ ¨ ¨A2 Ñ A1 Ñ A0

which induces equivalences τďnAn`1 Ñ An for each n ě 0. Since the 8-category CAlgcn

is Postnikov complete (see Definition A.7.2.1 and Proposition HA.7.1.3.19 ), we can the
limit A “ lim

ÐÝn
An is a connective E8-ring with An » τďnA for every integer n. A simple

calculation now shows that X » SpétA, from which assertions pcq and pdq follow easily.
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1.4.10 Étale Morphisms of Spectral Deligne-Mumford Stacks

In the setting of spectral Deligne-Mumford stacks, there are two a priori different notions
of étale morphism f : pX ,OX q Ñ pY,OYq that one could consider: one could require that
f is étale as a morphism of spectrally ringed 8-topoi (see Definition 1.4.10.1 below), or
one could require that f is obtained locally by applying the spectrum functor Spét to an
étale morphism of E8-rings. Our next goal is to show that these definitions are equivalent
(Corollary 1.4.10.3).

Definition 1.4.10.1. Let f : pX ,OX q Ñ pY,OYq be a morphism of spectrally ringed
8-topoi. We will say that f is étale if the following conditions are satisfied:

paq The underlying geometric morphism f˚ : X Ñ Y is étale: that is, it induces an
equivalence X » Y{U for some object U P Y (see §HTT.6.3.5 ).

pbq The induced map f˚OY Ñ OX is an equivalence of sheaves of E8-rings on X .

We will say that f is an étale surjection if, in addition, the object U P Y appearing in
paq is 0-connective.

Theorem 1.4.10.2. Let φ : AÑ B be a map of E8-rings. Then φ is étale if and only if
the induced map SpétB Ñ SpétA is an étale morphism of nonconnective spectral Deligne-
Mumford stacks.

Corollary 1.4.10.3. Let f : X Ñ Y be a map between nonconnective spectral Deligne-
Mumford stacks. The following conditions are equivalent:

piq The map f is étale.

piiq For every commutative diagram

SpétB //

��

X

f
��

SpétA // Y

in which the horizontal maps are étale, the underlying map of E8-rings A Ñ B is
étale.

Proof of Theorem 1.4.10.2. We proceed as in the proof of Proposition 1.2.5.7. The im-
plication p1q ñ p2q follows immediately from the construction of SpétB (see Definition
1.2.3.3). Conversely, suppose that p2q is satisfied. Write SpétA “ pX ,OX q, so that
SpétB » pX {U ,OX |U q for some object U P X . Choose an effective epimorphism >iPIVi Ñ U ,
where each Vi P X is the functor corepresented by an étale A-algebra Ai. We can identify
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each Vi with an object of the 8-topos X {U » Shvét
B . We may therefore choose an effective

epimorphism >jPJWj Ñ U , where each Wj is corepresented by an étale B-algebra Bj , and
each of the maps Wj Ñ U factors through Vαpiq for some map α : J Ñ I. Without loss of
generality, we may assume that the set J is finite. Replacing I by J and α by the identity
map, we can assume that I is finite as well. Set V “ >iPIVi and W “ >jPJWj , so that V is
corepresented by an étale A-algebra A1 (when regarded as an object of Shvét

A), and W is
corepresented by an étale B-algebra B1 (when regarded as an object of Shvét

B . We therefore
have maps of spectral Deligne-Mumford stacks

SpétB1 Ñ SpétA1 Ñ SpétB Ñ SpétA.

Applying Remark 1.4.7.1, we obtain maps of E8-rings

AÑ B Ñ A1 Ñ B1.

It follows that B1 is a retract of A1 bB B1 in the 8-category category of A-algebras. Since
B1 is étale over B and A1 is étale over A, the algebra A1 bB B1 is étale over A, so that B1 is
étale over A (Remark ??). Since the map B Ñ B1 is étale and faithfully flat, we conclude
that B is also étale over A (Proposition B.1.4.1).

1.4.11 Limits of Spectral Deligne-Mumford Stacks

We close this section with a few remarks about the formation of limits in the 8-category
SpDM of spectral Deligne-Mumford stacks.

Proposition 1.4.11.1. p1q The 8-category SpDMnc of nonconnective spectral Deligne-
Mumford stacks admits finite limits, and the inclusion functor SpDMnc ãÑ8T opsHen

CAlg
preserves finite limits.

p2q Suppose we are given a pullback diagram of nonconnective spectral Deligne-Mumford
stacks

X1 //

φ1

��

X
φ
��

Y1 // Y .
If φ is étale, so is φ1.

p3q The functor Spét : CAlgop Ñ SpDMnc preserves finite products. That is, if R is an
E8-ring and A,B P CAlgR, then the canonical map

SpétpAbR Bq Ñ pSpétAq ˆSpétR pSpétBq

is an equivalence.
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p4q Suppose we are given a pullback diagram of nonconnective spectral Deligne-Mumford
stacks

X1 //

φ1

��

X
φ
��

Y1 // Y .
If X, Y, and Y1 are spectral Deligne-Mumford stacks, then X1 is a spectral Deligne-
Mumford stack.

Proof. Assertion p1q is a special case of Proposition ?? (see Remark ??), which we will prove
in Part VI. Assertion p2q follows from Remark 21.4.6.7. Assertion p3q follows because the
functor Spét is right adjoint to the global sections functor. To prove p4q, we can use p2q to
reduce to the case where X, Y, and Y1 are affine. In this case, the desired result follows from
p3q.

Corollary 1.4.11.2. The 8-category SpDMnc of nonconnective spectral Deligne-Mumford
stacks is idempotent complete.

Proof. The 8-category 8T opsHen
CAlg admits filtered limits (this is a special case of Proposition

21.4.3.2, but is also easy to verify directly) and is therefore idempotent complete. Con-
sequently, it will suffice to show that the 8-category SpDMnc is closed under retracts in
8T opsHen

CAlg. Suppose we are given a commutative diagram

pY,OYq

r

%%
pX ,OX q

i
99

id // pX ,OX q

in 8T opsHen
CAlg, where pY,OYq is a nonconnective spectral Deligne-Mumford stack; we wish

to show that pX ,OX q is also a nonconnective spectral Deligne-Mumford stack. We will show
that pX ,OX q satisfies the criteria of Theorem 1.4.8.1:

p1q Let X♥ and Y♥ denote the topoi of discrete objects of X and Y, respectively. Then
the ringed topos pX♥, π0 OX q is a retract of pY♥, π0 OYq in the 2-category 1T opsHen

CAlg♥ .
Theorem 1.4.8.1 implies that pY♥, π0 OYq is a Deligne-Mumford stack. Since the
2-category of Deligne-Mumford stacks admits finite limits, it is idempotent complete;
it follows that pX♥, π0 OX q is also a Deligne-Mumford stack.

p2q We have a commutative diagram of 8-topoi

X //

��

Y //

��

X

��
ShvSpX♥q // ShvSpY♥q // ShvSpX♥q.
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It follows from Theorem 1.4.8.1 that the middle vertical map is étale. Consequently,
the fiber product Z “ Y ˆShvSpY♥q ShvSpX♥q (formed in the 8-category 8T op of
8-topoi) is étale over ShvSpX♥q. Since X is a retract of Z in 8T op{ShvSpX ♥q, it
follows that the geometric morphism X Ñ ShvSpX♥q is also étale.

p3q Let j : pX♥, π0 OX q Ñ pY♥, π0 OYq be the map of Deligne-Mumford stacks determined
by i, and let j˚ denote the associated pullback functor on quasi-coherent sheaves.
Theorem 1.4.8.1 implies that πn OY is quasi-coherent (when regarded as an object of
the abelian category of π0 OY -modules in Y♥), so that j˚πn OY is a quasi-coherent
sheaf on pX♥, π0 OX q. The homotopy group πn OX is a retract and therefore a direct
summand of j˚πn OY , and therefore also quasi-coherent.

p4q Theorem 1.4.8.1 implies that OY is hypercomplete (when regarded as a sheaf of spectra
on Y), so that r˚OY is hypercomplete (when regarded as a sheaf of spectra on X ).
Since OX is a retract (and therefore a direct summand, when regarded as a sheaf of
spectra) of the direct image r˚OY , it is also hypercomplete.

1.5 Digression: Topological Spaces and 8-Topoi

To every topological space X, one can associate an 8-topos ShvpXq “ ShvSpXq of
S-valued sheaves on X. In this section, we will review a closely related construction, which
assigns to each 8-topos X an underlying topological space |X |. These ideas will play an
important role when we discuss the relationship between spectral schemes and spectral
Deligne-Mumford stacks in §1.6.

1.5.1 Locales

We begin with a brief review of “pointless” topology. For a more detailed discussion, we
refer the reader to [105].

Definition 1.5.1.1. Let Λ be a partially ordered set. We say that Λ is a locale if it satisfies
the following pair of conditions:

p1q Every subset S Ď Λ has a least upper bound
Ž

S P Λ.

Note that condition p1q implies that every subset S Ď Λ also has a greatest lower bound
Ź

S P Λ (namely, the least upper bound of the set T “ tU P Λ : p@V P SqU ď V u). In
particular, every pair of elements U, V P Λ have a greatest lower bound U ^ V .

p2q For every subset tUαu Ď Λ and every element V P Λ, we have p
Ž

Uαq^V “
Ž

pUα^V q.
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Remark 1.5.1.2. In the situation of Definition 1.5.1.1, we can replace p2q by the following
apparently weaker condition:

p21q For every subset tUαu Ď Λ and every element V P Λ, we have

p
ł

Uαq ^ V ď
ł

pUα ^ V q.

The reverse inequality is automatic.

Remark 1.5.1.3. Let Λ be a locale. Then Λ is a distributive lattice (see Proposition
A.1.4.4): that is, it satisfies a distributive law

p
ľ

UPS

Uq _ V “
ľ

UPS

pU _ V q

whenever S is a finite subset of Λ.

Example 1.5.1.4. Let X be a topological space, and let UpXq denote the collection of all
open subsets of X. Then UpXq is a locale (when regarded as partially ordered by inclusion).

Definition 1.5.1.5. Let Λ and Λ1 be locales. A morphism of locales from Λ to Λ1 is a
functor f˚ : Λ1 Ñ Λ satisfying the following conditions:

p1q The function f˚ preserves joins. That is, for every subset S Ď Λ1, we have f˚p
Ž

Sq “
Ž

pf˚Sq.

p2q The function f˚ preserves finite meets. That is, for every finite subset S Ď Λ1, we have
f˚p

Ź

Sq “
Ź

pf˚Sq.

The collection of locale morphisms is closed under composition. We may therefore organize
the collection of locales into a category, which we will denote by Loc.

Example 1.5.1.6. Let f : X Ñ Y be a continuous map of topological spaces. Then f

induces a morphism of locales UpXq Ñ UpY q, which carries an open subset U Ď Y to its
inverse image f´1U Ď X. We may therefore regard the construction X ÞÑ UpXq as a functor
from the category T op of topological spaces to the category Loc of locales.

1.5.2 Points of a Locale

The functor described in Example 1.5.1.6 admits a left adjoint. To describe it, we need
to introduce a bit more terminology.

Definition 1.5.2.1. Let Λ be a locale. We will say that an object U P Λ is indecomposable
if, whenever U “

Ź

S for some finite subset S Ď Λ, we have U P S.
We let |Λ| denote the set of all indecomposable elements of Λ. For each element U P Λ,

we let |Λ|U denote the subset tV P |Λ| : U ę V u.
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Proposition 1.5.2.2. Let Λ be a locale. Then the set |Λ| of indecomposable elements of Λ
has the structure of a topological space, whose open sets are those of the form |Λ|U . Moreover,
the construction U ÞÑ |Λ|U determines a morphism of locales v˚ : Up|Λ|q Ñ Λ.

Proof. We claim the following:

p1q For every subset S Ď Λ, we have

|Λ|ŽS “
ď

UPS

|Λ|U .

p2q For every finite subset S Ď Λ, we have

|Λ|ŹS “
č

UPS

|Λ|U .

It follows from p1q that the collection of subsets of |Λ| which have the form |Λ|U is closed
under unions, and from p2q that the same collection is closed under finite intersections.
Moreover, p1q and p2q immediately imply that v˚ is a morphism of locales.

Assertion p1q is an immediate consequence of the definitions: we have
Ž

S ę V if and
only if U ę V for some U P S. To prove p2q, we must show that if S Ď Λ is finite and V is
indecomposable, then

Ź

S ę V if and only if U ę V for all U in S. The “only if” direction is
clear (and does not require the assumption that V is indecomposable). Conversely, suppose
that U ę V for all U in S. Then V ‰ U _ V for all U P S. Since V is indecomposable, we
conclude that

Ź

UPSpU _ V q ‰ V . Applying Remark 1.5.1.3, we can rewrite the left hand
side as p

Ź

Sq _ V , so that
Ź

S ę V .

Proposition 1.5.2.3. Let Λ be a locale and let X be a topological space. Then composition
with the locale morphism v˚ : Up|Λ|q Ñ Λ of Proposition 1.5.2.2 induces a bijection

θ : HomT oppX, |Λ|q Ñ HomLocpUpXq,Λq.

Proof. We first show that θ is injective. Suppose that f, g : X Ñ |Λ| are continuous maps of
topological spaces with f ‰ g. Then there exists a point x P X such that fpxq ‰ gpxq. Let
us regard fpxq and gpxq as indecomposable elements of Λ. Without loss of generality we
may assume that fpxq ę gpxq. We then ahve

fpxq P |Λ|fpxq gpxq R |Λ|fpxq.

It follows that f´1|Λ|fpxq ‰ g´1|Λ|fpxq, so that θpfq ‰ θpgq.
We now prove that θ is surjective. Suppose we are given a morphism of locales from UpXq

to Λ, given by a map f˚ : Λ Ñ UpXq. For each point x P X, let Sx “ tU P Λ : x R f˚Uu.
Since f˚ preserves infinite joins, Sx contains a largest element Ux “

Ž

Sx. We claim that
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Ux is indecomposable. For suppose that Ux “
Ź

T , where T Ď Λ is finite. We then have
f˚pUxq “

Ş

V PT f
˚pV q. Since x R f˚pUxq, it follows that x R f˚pV q for some V P T . Then

V P Sx, so that V “ Ux.
Let f : X Ñ |Λ| be the map given by fpxq “ Ux. For each point x P X and each element

V P Λ, we have

x P f´1|Λ|V ô Ux P |Λ|V
ô V ę Ux

ô V R Sx

ô x P f˚pV q.

It follows that for V P Λ, the inverse image f´1|Λ|V coincides with the open set f˚pV q Ď X,
so that f is a continuous map. Moreover, our calculation immediately implies that θpfq “
f˚.

Corollary 1.5.2.4. The functor X ÞÑ UpXq admits a left adjoint, given on objects by the
formula Λ ÞÑ |Λ|. In particular, the topological space |Λ| depends functorially on the locale
Λ.

Definition 1.5.2.5. Let Λ be a locale. We will say that Λ is spatial if the counit map
v˚ : Up|Λ|q Ñ Λ is an isomorphism of locales.

Remark 1.5.2.6. Let Λ be a locale. By definition, every open subset of |Λ| has the form
|Λ|U , for some element U P Λ. Consequently, the counit map v˚ : Up|Λ|q Ñ Λ is automatically
surjective (when regarded as a map of sets from Λ to Up|Λ|q). The condition that Λ is spatial
is equivalent to the condition that v˚ is surjective: that is, that |Λ|U ‰ |Λ|V for U ‰ V .

Corollary 1.5.2.7. The construction Λ ÞÑ |Λ| determines a fully faithful embedding
Locspa Ñ T op, where Locspa denotes the full subcategory of Loc spanned by the spatial
locales.

Remark 1.5.2.8. Let X be a topological space. Then the locale UpXq is automatically
spatial: an open subset U P UpXq can be recovered as the inverse image of |UpXq|U under
the unit map X Ñ |UpXq|. Consequently, if |UpXq|U “ |UpXq|V , then U “ V .

It follows that the construction Λ ÞÑ Up|Λ|q determines a right adjoint to the inclusion
functor Locspa ãÑ Loc. In particular, the category of spatial locales is a colocalization of the
category of locales.

1.5.3 Sober Topological Spaces

Our next goal is to describe the essential image of the embedding Locspa ãÑ T op.
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Definition 1.5.3.1. Let X be a topological space. A closed subset K Ď X is said to be
irreducible if it is nonempty and cannot be written as a union K´ YK` of proper closed
subsets K´,K` Ĺ K. A point x P K is said to be a generic point of K if K is the closure of
txu. The space X is said to be sober if every irreducible closed subset of X has a unique
generic point.

Remark 1.5.3.2. Let X be a topological space. For every point x P X, the closure of the
set txu is irreducible.

Example 1.5.3.3. Every Hausdorff topological space X is sober (the only irreducible closed
subsets of X are singletons).

Proposition 1.5.3.4. Let Λ be a locale. Then the topological space |Λ| is sober.

Proof. Let U be an indecomposable element of Λ. For each V P Λ, we have U R |Λ|V if and
only if V ď U . In particular, |Λ|U is the largest open subset of |Λ| which does not contain
U , and is therefore the complement of the closure tUu. If U 1 is another indecomposable
element of Λ having the same closure in |Λ|, then for each V P Λ we have

U R |Λ|V ô U 1 R |Λ|V ,

so that V ď U ô V ď U 1 and therefore U “ U 1.
Let K be an irreducible closed subset of |Λ|. The above argument shows that K has at

most one generic point. We will complete the proof by showing that there exists a generic
point of K. Set S “ tU P Λ : K “ |Λ| ´ |Λ|Uu. Since K is closed, the set S is nonempty. It
follows that S contains a largest element U . We will complete the proof by showing that U
is indecomposable, so that K “ |Λ| ´ |Λ|U is the closure of U .

Suppose that T is a finite subset of Λ satisfying U “
Ź

V PT V . We wish to show that U P T .
Suppose otherwise: then, by the maximality of U , each of the open sets |Λ|V has nontrivial
intersection with K. Since K is irreducible, it follows that the intersection

Ş

V PT |Λ|V has
nontrivial intersection with K, contradicting our assumption that |Λ|U XK “ H.

Proposition 1.5.3.5. Let X be a topological space. The following conditions are equivalent:

p1q The topological space X is sober.

p2q The unit map u : X Ñ |UpXq| is a homeomorphism.

Proof of Proposition 1.5.3.5. The implication p2q ñ p1q follows immediately from Proposi-
tion 1.5.3.4. For the converse, suppose that p1q is satisfied. Note that an open set U P UpXq
is indecomposable if and only if the complement X ´U is irreducible. Consequently, we can
identify |UpXq| with the collection of irreducible closed subsets of X. Under this identifica-
tion, the map u carries a point x P X to the closure of txu. The assumption that X is sober
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implies that the map u is bijective. To complete the proof that u is a homeomorphism, it
will suffice to note that every open subset U Ď X is the inverse image (under the map u) of
the open subset |UpXq|U Ď UpXq.

Remark 1.5.3.6. Combining Propositions 1.5.3.4 and 1.5.3.5, we conclude that the category
T opsob of sober topological spaces is a localization of the category T op of all topological
spaces. The inclusion T opsob ãÑ T op admits a left adjoint, given by X ÞÑ |UpXq|. We refer
to the topological space |UpXq| as the soberification of X. The points of |UpXq| can be
identified with irreducible closed subsets of X.

The above arguments show that the adjoint functors

T op
U //Loc
||

oo

restrict to an equivalence between the category T opsob of sober topological spaces and the
category Locspa of spatial locales. T opsob » Locspa

Algebraic geometry furnishes plenty of examples of sober topological spaces.

Proposition 1.5.3.7. Let X be a topological space. Then:

paq If X is sober, then any open subset U Ď X is sober.

pbq If X can be written as a union of sober open subsets Uα, then X is sober.

Proof. We first prove paq. Let K Ď U be an irreducible closed subset of U , and let K be its
closure in X. We first claim that K is irreducible. Suppose otherwise: then we can write
K “ K´ YK` for some proper closed subsets K´,K` Ď K. In this case, we also have
K “ pU XK´q Y pU XK`q. The irreducibility of K then implies that K “ U XK´ or
K “ U XK`. Since K is dense in K, this contradicts our assumption that either K´ and
K` are proper subsets of K.

If X is irreducible, we conclude that K has a unique generic point x P X. Then x belongs
to the nonempty open subset U XK “ K of K, and therefore belongs to U . It follows that
x is a generic point of K in U . We claim that this generic point is unique. To see this,
suppose that y is any other generic point of K in U . Then y P K Ď K, so that the closure
of tyu in X is contained in K. However, the closure of tyu in X contains K and therefore
contains K. It follows that y is a generic point of K in X, so that y “ x by virtue of our
assumption that X is sober. This completes the proof of paq.

We now prove pbq. Suppose that X admits a covering by sober open subsets tUαuαPA.
Let K Ď X be an irreducible closed subset. Then K is nonempty, so that the intersection
Kα “ Uα XK is nonempty for some α P A. Then we can write K “ Kα Y pK X pX ´ Uαqq.
Using the irreducibility of K, we deduce that K “ Kα: that is, Kα is dense in K. We now
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claim that Kα is an irreducible closed subset of Uα. To see this, suppose that Kα “ K´YK`
for some closed subsets K´,K` Ă Kα. Then K “ K´ YK`, so that the irreducibility of
K implies that K “ K´ or K`. Since K´ and K` are closed in Uα, we conclude that
Kα “ Uα XK is equal to either K´ or K`.

Since Uα is irreducible, the set Kα has a unique generic point x P Uα. Then the closure
of txu in X is given by Kα “ K, so that x is a generic point of K. Let y be any other
generic point of K. Then y is contained in the nonempty open subset Kα Ď K, so that
y P Uα. It follows that y is a generic point of Kα in Uα, so that y “ x by virtue of our
assumption that Uα is sober. This completes the proof of pbq.

Corollary 1.5.3.8. Let pX,OXq be a nonconnective spectral scheme. Then the topological
space X is sober.

Proof. Using Proposition 1.5.3.7 and Corollary 1.1.6.2, we can reduce to the case where
pX,OXq » SpecA for some connective E8-ring A, so that X is homeomorphic to | SpecR|
for R “ π0A. In this case, every closed set K Ď X can be realized as the vanishing locus of
a radical ideal I Ď R. Moreover, K is irreducible if and only if I is a prime ideal, in which
case I is the unique generic point of K (when regarded as an element of | SpecR|).

1.5.4 Locales Associated to 8-Topoi

We now discuss another class of examples of locales:

Definition 1.5.4.1. Let X be an 8-topos. We let SubpX q denote the collection of equiva-
lence classes of p´1q-truncated objects of X . For each p´1q-truncated object U P X , we let
rU s P SubpX q denote the equivalence class of U . We regard SubpX q as a partially ordered
set, with rU s ď rV s if there exists a morphism from U to V in the 8-topos X . Then SubpX q
is a locale, which we refer to as the underlying locale of X (see §HTT.6.4.2 ).

Remark 1.5.4.2. The construction X ÞÑ SubpX q determines a functor Sub : 8T op Ñ Loc.
This is a localization functor: that is, it admits a fully faithful right adjoint ι : Loc ãÑ8T op,
whose essential image is spanned by the 0-localic 8-topoi (see §HTT.6.4.5 .

Definition 1.5.4.3. Let X be an 8-topos. We let |X | denote the underlying topological
space | SubpX q| of the locale SubpX q. We will say that X is spatial if the locale SubpX q is
spatial.

Example 1.5.4.4. Let X be a topological space, and let ShvpXq denote the 8-topos of
S-valued sheaves on X. Then we can identify SubpShvpXqq with the locale UpXq of open
subsets of X. It follows that the topological space |ShvpXq| can be identified with the
soberification of X. In particular, there is a canonical map X Ñ |ShvpXq|, which is a
homeomorphism if and only if X is sober.
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Example 1.5.4.5. Let X be an 8-topos. Every geometric morphism f˚ : S Ñ X induces a
continuous map |S | Ñ |X |, which we can identify with a point ηf of the topological space
|X |. Let U be a p´1q-truncated object of X . Then for each point f˚ : S Ñ X , the space
f˚U is either empty or contractible, depending on whether or not ηf belongs to |X |U . If V
is another p´1q-truncated object of X satisfying |X |V , it follows that the canonical maps

f˚U Ð f˚pU ˆ V q Ñ f˚pV q

are homotopy equivalences. If the 8-topos X has enough points (see §A.4), we conclude
that the projection maps U Ð U ˆ V Ñ V are equivalences, so that rU s “ rV s P SubpX q. It
follows that every 8-topos with enough points is spatial.

Proposition 1.5.4.6. Let R be an E8-ring. Then the 8-topos Shvét
R is spatial. Moreover,

there is a canonical homeomorphism |Shvét
R | » | SpecR|.

Proof. Let X “ | SpecR|, and let UpXq be the collection of all open subsets of X. Let
C “ pCAlgét

Rq
op denote the opposite of the 8-category of étale R-algebras, so that Shvét

R is
the full subcategory of FunpCop,Sq spanned by the étale sheaves. It follows that SubpShvét

Rq

can be identified with the partially ordered set P of sieves Cp0q Ď C which are saturated in
the following sense: if A is an étale R-algebra, and there exists an étale covering tAÑ Aiu

for which each Ai belongs to Cp0q, then A belongs to Cp0q.
For each open set U Ď X, let λpUq denote the full subcategory of C spanned by those

objects A for which the map | SpecA| Ñ |SpecR| factors through U . We will complete the
proof by showing that the construction U ÞÑ λpUq determines an isomorphism of partially
ordered sets λ : UpXq Ñ P .

For each element a P π0R, let Ua “ tp P |SpecR| : a R pu. We first claim that if U and
V are open subsets of X such that λpUq Ď λpV q, then U Ď V . Since U is the union of basic
open sets of the form Ua, we may assume that U “ Ua for some a P π0R. Then Rra´1s P

λpUq Ď λpV q, so that V contains the image of the map | SpecRra´1s| Ñ |SpecR| “ X

(which coincides with U).
The above argument shows that λ is an isomorphism of UpXq onto a partially ordered

subset of P . To complete the proof, it will suffice to show that λ is surjective. To this end,
choose a saturated sieve Cp0q Ď C; we wish to show that Cp0q lies in the image of λ. For
every étale R-algebra A, let UA denote the image of the map | SpecA| Ñ |SpecR|; this is
an open subset of X (Corollary B.2.2.5). Let U be the smallest open subset of X which
contains UA for each A P Cp0q. By construction, we have Cp0q Ď λpUq. To complete the proof,
it suffices to show that this inclusion is an equality. That is, we must show that if A is an
étale R-algebra such that the image of the map θ : | SpecA| Ñ |SpecR| “ X is contained in
U , then A P Cp0q. Since the image of θ is quasi-compact, it is contained in a finite union of
Ť

1ďiďn UBi , where each Bi P Cp0q. It follows that the map AÑ
ś

1ďiďnpBi bR Aq is étale
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and faithfully flat. Since Cp0q is a saturated sieve containing each Bi, it must also contain
A.

Remark 1.5.4.7. Let φ : T op Ñ8T op be the functor of Remark 1.4.1.6, which carries a
topological space X to the 8-topos ShvpXq. Then φ factors as a composition

T op U
Ñ Loc ι

Ñ8T op,

where ι is the fully faithful embedding of Remark 1.5.4.2, and U is the functor of Example
1.5.1.6. It follows that φ is fully faithful when restricted to sober topological spaces (Remark
1.5.3.6). Consequently, the functor φ : T opCAlg Ñ 8T opCAlg of Remark 1.4.1.6 is fully
faithful when restricted to spectrally ringed spaces pX,OXq for which X is sober. In
particular, φ is fully faithful when restricted to nonconnective spectral schemes (Corollary
1.5.3.8).

1.6 The Functor of Points

In classical algebraic geometry, we can often describe algebraic varieties (or schemes)
as solutions to moduli problems. For example, the n-dimensional projective space Pn

can be characterized as follows: it is universal among schemes over which there is a line
bundle L generated by pn ` 1q global sections. In particular, for any commutative ring
A, the set HompSpecA,Pnq can be identified with the set of isomorphism classes of pairs
pL, η : An`1 Ñ Lq where L is an invertible A-module and η is a surjective A-module
homomorphism (such a pair is determined up to unique isomorphism by the submodule
kerpηq Ď An`1q.

More generally, any scheme X determines a covariant functor hX from commutative
rings to sets, given by the formula hXpAq “ HompSpecA,Xq. We refer to hXpAq as the set
of A-valued points of X, and to hX as the functor of points of X. This functor determines X
up to canonical isomorphism. More precisely, the construction X ÞÑ hX determines a fully
faithful embedding from the category of schemes to the presheaf category FunpCAlg♥,Setq.
Consequently, it is possible to think of schemes as objects of FunpCAlg♥,Setq, rather than
the category of locally ringed spaces. This point of view is often valuable: it is sometimes
easier to describe the functor represented by a scheme X than it is to provide an explicit
construction of X as a locally ringed space. Moreover, the “functor of points” perspective
becomes essential when we wish to study more general algebro-geometric objects such as
algebraic stacks.

1.6.1 The Case of a Spectrally Ringed Space

We begin by associating a functor to each spectrally ringed space.
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Definition 1.6.1.1. Let pX,OXq be a locally spectrally ringed space. We define a functor
hnc
X : CAlg Ñ S by the formula

hnc
X pRq “ MapT oploc

CAlg
pSpecR, pX,OXqq,

where T oploc
CAlg denotes the 8-category of locally spectrally ringed spaces (see Definition

1.1.5.3). We let hX denote the restriction of hnc
X to the full subcategory CAlgcn Ď CAlg

spanned by the connective E8-rings. We will refer to both hX and hnc
X as the functor of

points of pX,OXq.

Warning 1.6.1.2. The notation of Definition 1.6.1.1 is abusive: if pX,OXq is a locally
spectrally ringed 8-topos, then the functors hnc

X and hX depend on the structure sheaf OX ,
and not only on the underlying topological space X.

1.6.2 Flat Descent

Our first main result in this section can be stated as follows:

Theorem 1.6.2.1. Let pX,OXq be a locally spectrally ringed space. Then the functor
hnc
X : CAlg Ñ S is a hypercomplete sheaf with respect to the fpqc topology of Proposition

B.6.1.3.

Since the construction Spec : CAlgop Ñ T oploc
CAlg is fully faithful (Remark 1.1.5.7), the

functor A ÞÑ hnc
SpecA coincides with the Yoneda embedding CAlgop Ñ FunpCAlg,Sq. We

may therefore view Theorem D.6.3.5 (which asserts that the fpqc topology on CAlgop is
subcanonical) as a special case of Theorem 1.6.2.1. This observation does not supply a new
proof of Theorem D.6.3.5, because Theorem D.6.3.5 is one of the main ingredients in our
proof of Theorem 1.6.2.1. The other main ingredient is the compatibility of the Zariski
topology with flat descent, which can be formulated more precisely as follows:

Proposition 1.6.2.2. For every E8-ring A, let UpAq be the collection set of open subsets
of the topological space |SpecA|. Then A ÞÑ UpAq determines a functor U : CAlg Ñ Set.
This functor is a sheaf (of sets) with respect to the fpqc topology on CAlgop.

Remark 1.6.2.3. The sheaf U : CAlg Ñ Set of Proposition 1.6.2.2 can be regarded as
a discrete object in the 8-category of S-valued sheaves on CAlgop. Consequently, it is
automatically hypercomplete.

Proof of Proposition 1.6.2.2. We will show that the functor U : CAlg Ñ Set satisfies condi-
tions p1q and p2q of Proposition A.3.3.1. To verify p1q, we must show that for every finite
collection of E8-rings tAiu1ďiďn, the map Up

ś

Aiq Ñ
ś

UpAiq is bijective. This follows
from the observation that there is a canonical homeomorphism | Specp

ś

iAiq| » >i| SpecAi|.
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We now prove p2q. Let f : AÑ B be a faithfully flat morphism of E8-rings; we wish to
prove that

UpAq // UpBq //// UpB bA Bq

is an equalizer diagram in the category of sets. We can divide this assertion into two parts:

paq The map UpAq Ñ UpBq is injective. To prove this, we must show that an open
subset U Ď | SpecA| is determined by its inverse image in | SpecB|. This is clear,
since the assumption that A Ñ B is faithfully flat guarantees the induced map
|SpecB| Ñ | SpecA| is surjective.

pbq Let φ0, φ1 : | SpecB bA B| Ñ |SpecB| be the two projection maps. We claim that if
Z Ď |SpecB| is a closed subset with φ´1

0 Z “ φ´1
1 Z, then Z “ φ´1V for some closed

subset V Ď | SpecB|. Choose an ideal I Ď π0B such that Z “ tp Ď π0B : I Ď pu,
and let J “ f´1I Ď π0A. Set V “ tq Ď π0A : J Ď qu. Then φ´1V “ tp Ď π0B :
fpJqπ0B Ď pu. To prove that φ´1V “ Z, it suffices to show that fpJqπ0B and I

have the same nilradical. Let R denote the commutative ring π0A{J and R1 the
commutative ring π0B{Jπ0B, and let I 1 denote the image of I in R1. Then RÑ R1 is
faithfully flat and the composite map RÑ R1 Ñ R1{I 1 is injective; we wish to prove
that every element x P I 1 is nilpotent. Since φ´1

0 Z “ φ´1
1 Z, we deduce that the ideals

I 1 bR R
1 and R1 bR I

1 have the same radical in R1 bR R
1. Consequently, since xb 1

belongs to I 1 bR R1, some power xn b 1 belongs to R1 bR I 1. It follows that the image
of xn vanishes in R1 bR R1{I 1. Since R1 is flat over R, the injection RÑ R1{I 1 induces
an injection R1 Ñ R1 bR R

1{I 1. It follows that xn “ 0 in R1, as desired.

Proposition 1.6.2.4. p1q The functor Spec : CAlgop Ñ T oploc
CAlg preserves finite coprod-

ucts.

p2q Let R be an E8-ring, and let R‚ be a cosemisimplicial E8-ring which is a hypercovering
of R with respect to the fpqc topology (see Definition A.5.7.1). Then SpecR is a colimit
of the diagram tSpecR‚u in T oploc

CAlg.

Proof. Let T opCAlg denote the 8-category of spectrally ringed spaces (Definition 1.1.2.5)
and let T op denote the ordinary category of topological spaces and continuous maps, so
that we have forgetful functors

T oploc
CAlg

j
ãÑ T opCAlg

q
Ñ T op .

We will deduce assertion p1q from the following three claims:

p11q The functor q ˝ j ˝ Spec : CAlgop Ñ T op preserves finite coproducts.
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p12q The functor j ˝ Spec : CAlgop Ñ T opCAlg carries finite coproducts to q-coproducts.

p13q The functor Spec : CAlgop Ñ T oploc
CAlg carries finite coproducts to j-coproducts.

To prove these claims, let tRiu1ďiďn be a finite collection of E8-rings having product
R. Let Xi “ |SpecRi| and let X “ | SpecR|, so that we can write SpecRi “ pXi,OXiq

and SpecR “ pX,OXq. For each index i, let φi : Xi Ñ X denote the map induced by
the projection R Ñ Ri. Assertion p11q was established as part of Proposition 1.6.2.2. By
virtue of Proposition HTT.4.3.1.9 , assertion p12q is equivalent to the requirement that the
canonical map OX Ñ

ś

ipφiq˚OXi is an equivalence of CAlg-valued X. Note that X has a
basis of open sets of the form Uf “ tp Ă π0R : f R pu, where f “ pf1, . . . , fnq ranges over
the elements of π0R » π0R1ˆ¨ ¨ ¨ˆπ0Rn. Since this basis is stable under finite intersections,
it suffices to observe that the canonical map

Rrf´1s » OXpUf q Ñ p
ź

pφiq˚OXiqpUf q »
ź

OXipUf ˆX Xiq »
ź

Rirf
´1
i s

is an equivalence of E8-rings.
Unwinding the definitions, we can formulate assertion p13q as follows: a morphism

g : pX,OXq Ñ pY,OY q in T opCAlg belongs to T oploc
CAlg if and only if, for 1 ď i ď n, the

induced map gi : pXi,OXiq Ñ pY,OY q belongs to T oploc
CAlg. This follows immediately from

the definitions, since OXi can be identified with the restriction OX |Xi .
We now prove p2q. Let R‚ : ∆s,` Ñ CAlgR be an fpqc hypercovering of R “ R´1 in

the 8-category CAlgop. Reasoning as above, we are reduced to proving the following three
assertions:

p21q The composition q ˝ j ˝ Spec ˝R‚ is a colimit diagram in the 8-category T op.

p22q The composition j ˝ Spec ˝R‚ is a q-colimit diagram in the 8-category T opCAlg.

p23q The composition Spec ˝R‚ is a j-colimit diagram in the 8-category T oploc
CAlg.

By virtue of p11q and Proposition A.5.7.2, assertion p21q is equivalent to the requirement
that the functor

q ˝ j ˝ Spec : CAlg Ñ T opop

is a hypercomplete sheaf with respect to the fpqc topology. Because T op is an ordinary
category, it will suffice to show that q ˝ j ˝ Spec is a sheaf with respect to the fpqc topology,
which follows from Proposition 1.6.2.2. We now prove p22q. Let X “ |SpecR|, so that we
can write SpecR “ pX,OXq. For every nonnegative integer n let Xn “ |SpecRn| and write
SpecRn “ pXn,OXnq. Let Fn denote the pushforward of OXn along the canonical map
Xn Ñ X. Then F ‚ is a cosemisimplicial object in the 8-category ShvCAlgpXq. By virtue of
Proposition HTT.4.3.1.9 , condition 232q is equivalent to the requirement that the canonical
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map α : OX Ñ lim
ÐÝ

F ‚ is an equivalence. We note that X has a basis of open sets of the
form Uf “ tp Ă π0R

´1 : f R pu. Since this collection is stable under finite intersection, to
prove that α is an equivalence it suffices to show that α induces an equivalence of E8-rings
OXpUf q Ñ lim

ÐÝ
F ‚pUf q, for each f P π0R. Replacing R‚ by R‚rf´1s, we can reduce to the

case where Uf “ X. In this case, we need to show that the map

R » OpXq Ñ lim
ÐÝ

F ‚pXq » lim
ÐÝ

OX‚pX‚q » lim
ÐÝ

R‚

is an equivalence of E8-rings, which follows from Theorem D.6.3.5.
It remains to prove p23q. Unwinding the definitions, we must show that if pY,OY q is

an object of T oploc
CAlg, then a map φ : SpecRÑ pY,OY q in T opCAlg belongs to T oploc

CAlg if
and only if the induced map φ0 : pY,OY q Ñ SpecR0 belongs to T oploc

CAlg. Let f : X Ñ Y

be the map of topological spaces underlying φ, and set O 1 “ f˚OY P ShvCAlgpXq. Let
g : X0 Ñ X denote the projection map. We are then reduced to proving the following: a
morphism of sheaves of rings α : π0 OX Ñ π0 O 1 is local if and only if the composite map
g˚π0 O 1

α
Ñ g˚π0 OX Ñ π0 OX0 is a local map (between sheaves of local rings on X0). This

follows immediately from the observation that the map g : X0 Ñ X is surjective (since the
underlying map of commutative rings π0RÑ π0R

0 is assumed to be faithfully flat).

Proof of Theorem 1.6.2.1. Combine Proposition 1.6.2.4 with Proposition A.5.7.2.

1.6.3 The Functor of Points of a Spectral Scheme

We now use Theorem 1.6.2.1 to investigate the functor of points of a (possibly noncon-
nective) spectral scheme.

Proposition 1.6.3.1. Let Shvfpqc Ď FunpCAlg,Sq and Shvcn
fpqc Ď FunpCAlgcn,Sq denote

the full subcategories spanned by those functors which are sheaves for the fpqc topology. Let
pX,OXq be a spectrally ringed space. For each open set U Ď X, let us regard pU,OX |U q as
a spectrally ringed space which represents functors hnc

U P Shvfpqc and hU P Shvcn
fpqc. Then:

p1q The construction U ÞÑ hnc
U determines a Shvop

fpqc-valued sheaf on X.

p2q The construction U ÞÑ hU determines a pShvcn
fpqcq

op-valued sheaf on X.

Proof. We will prove p1q; the proof of p2q is similar. Let tUαu be a collection of open subsets
of X, let U “

Ť

Uα, and let U be the collection of open subsets of X which are contained in
some Uα. We wish to prove that hnc

U is a colimit of the diagram thnc
V uV PU in the 8-category

Shvfpqc. Let Y Ď FunpCAlg, pSq denote the full subcategory spanned by those functors which
are sheaves with respect to the fpqc topology. Then Y is an 8-topos (in a larger universe),
and Shvfpqc is a full subcategory of Y. It will therefore suffice to show that hnc

U is a colimit
of the diagram thnc

V uV PU in the 8-category Y.
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Let j : CAlgop Ñ FunpCAlg, pSq denote the Yoneda embedding. Then j factors through
Y (Theorem D.6.3.5), and sheaves of the form jpRq generate Y under colimits. It will
therefore suffice to show that for every map φ : jpRq Ñ hnc

U , the canonical map

lim
ÝÑ
V PU

pjpRq ˆhnc
U
hnc
V q Ñ jpRq

is an equivalence in Y. Note that φ determines a continuous map of topological spaces
f : | SpecR| Ñ U , and that jpRqˆhnc

U
hnc
V can be identified with the subfunctor jV pRq Ď jpRq

which carries an E8-ring A to the summand of MapCAlgpR,Aq spanned by those maps RÑ A

for which the induced map of topological spaces | SpecA| Ñ |SpecR| factors through f´1pV q.
Let Cp0q Ď Y{jpRq denote the sieve generated by the collection of morphisms tjV pRq ãÑ

jpRquV PU . Then the construction V ÞÑ jV pRq determines a left cofinal map from U into
Cp0q. Consequently, to prove that jpRq » lim

ÝÑV PU jV pRq, it will suffice to show that Cp0q is
a covering sieve with respect to the canonical topology on Y (see §HTT.6.2.4 ). Because
the open sets Uα cover U , we can choose elements tai P π0Ru1ďiďn which generate the unit
ideal, such that each of the maps | SpecRra´1

i s| Ñ |SpecR| factors through some f´1Uαi .
Then the sieve Cp0q contains the maps jpRra´1

i sq Ñ jpRq, and is therefore a covering sieve
since the map RÑ

ś

Rra´1
i s is faithfully flat.

Remark 1.6.3.2. In the statement and proof of Proposition 1.6.3.1, we can replace the
fpqc topology with the Zariski topology.

Corollary 1.6.3.3. p1q The construction pX,OXq ÞÑ hnc
X determines a fully faithful em-

bedding SpSchnc Ñ FunpCAlg,Sq.

p2q The construction pX,OXq ÞÑ hX determines a fully faithful embedding SpSch Ñ

FunpCAlgcn,Sq.

Proof. We will prove p1q; the proof of p2q is similar. Let pX,OXq and pY,OY q be nonconnec-
tive spectral schemes. For each open set U Ď X, let us regard pU,OX |U q as a nonconnective
spectral scheme, which represents a functor hnc

U : CAlg Ñ S. Let us say that an open subset
U Ď X is good if the canonical map

θU : MapT oploc
CAlg

ppU,OX |U q, pY,OY qq Ñ MapFunpCAlg,Sqph
nc
U , h

nc
Y q

is an equivalence. We will complete the proof by showing that every open subset of X is
good. The main step is the following:

p˚q Let U be an open subset of X which is given as a union
Ť

αPA Uα, and suppose that
each finite intersection Uα1 X ¨ ¨ ¨ X Uαn is good. Then U is good.
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Assertion p˚q follows immediately from Theorem 1.6.2.1 and Proposition 1.6.3.1, which
implies that θU can be obtained as a limit of maps of the form θV where V has the form
Uα1 X ¨ ¨ ¨ X Uαn .

We now complete the argument as follows:

paq Every affine open subset U Ď X is good (this follows immediately from the definitions).

pbq Let U Ď X be an open set which is contained in an affine open set V . Then we can
write U as a union of affine open sets tUαu. Since the collection of affine open subsets
of V is closed under finite intersections, it follows from paq that every finite intersection
Uα1 X ¨ ¨ ¨ X Uαn is good. Invoking p˚q, we conclude that U is good.

pcq Let U Ď X be an arbitrary open set, and write U as a union of affine open subsets
Uα. Then each intersection Uα1 X ¨ ¨ ¨Uαn is contained in Uα1 , and therefore good (by
virtue of pbq). Applying p˚q, we deduce that U is good.

1.6.4 The Functor of Points of a Spectrally Ringed 8-Topos

We now introduce a variant of Definition 1.6.1.1, which is designed to accommodate
spectral Deligne-Mumford stacks as well as spectral schemes.

Definition 1.6.4.1. Let X “ pX ,OX q be a locally spectrally ringed 8-topos. For every
E8-ring R, we let hnc

X pRq denote the mapping space Map8T oploc
CAlg

pSpétR,Xq. Then the

construction R ÞÑ hnc
X pRq determines a functor hnc

X : CAlg Ñ pS. We let hX denote the
restriction of hnc

X to the full subcategory CAlgcn Ď CAlg spanned by the connective E8-rings.
We refer to both hnc

X and hX as the functor of points of the spectrally ringed 8-topos X.

We have the following analogue of Corollary 1.6.3.3:

Proposition 1.6.4.2. p1q Let X be a nonconnective spectral Deligne-Mumford stack.
Then, for every E8-ring R, the space hnc

X pRq “ Map8T oploc
CAlg

pSpétR,Xq is essentially
small.

p2q The construction X ÞÑ hnc
X determines a fully faithful embedding SpDMnc Ñ FunpCAlg,Sq.

p3q The construction X ÞÑ hX determines a fully faithful embedding SpDM Ñ FunpCAlgcn,Sq.

Proof. This is a special case of Theorem ??, which we will prove in Part VI. See Remarks
?? and ??. (See also Theorem 8.1.5.1 for a generalization of p1q and p3q).
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1.6.5 The Spatial Case

We have now given introduced a “functor of points” in two different contexts: locally
spectrally ringed spaces (Definition ??), and locally spectrally ringed 8-topoi (Definition
1.6.4.1). These two definitions are not identical, but we will show that they are closely
related to one another (Remark 1.6.5.13).

Construction 1.6.5.1. Let X be a spatial 8-topos. Then the construction U ÞÑ |X |U
determines an equivalence from the full subcategory τď´1X of p´1q-truncated objects of X
to the partially ordered set Up|X |q of open subsets of |X |.

Let C be an 8-category, and let O P ShvCpX q be a C-valued sheaf on X . We let Ospa

denote the composite functor

Up|X |qop » pτď´1X qop ãÑ X op O
Ñ C .

Proposition 1.6.5.2. Let X be a spatial 8-topos, let C be an 8-category, and let O :
X op Ñ C be a C-valued sheaf on X . Then Ospa : Up|X |qop Ñ C is a C-valued sheaf on the
topological space |X |.

Proof. Let tUαu be a collection of open subsets of |X | with union U , and let U be the
collection of open subsets of |X | which are contained in some Uα. We wish to show that
the functor Ospa exhibits OspapUq as a limit of the diagram tOspapV quV PU .

Let us abuse notation by identifying open subsets of |X | with p´1q-truncated objects
of X , so that we are required to prove that O exhibits OpUq as a limit of the diagram
tOpV quV PU . Since O is a sheaf, it will suffice to show that the canonical map lim

ÝÑV PU V Ñ U

is an equivalence in the 8-topos X . Since the Uα cover U , this is equivalent to the assertion
that each of the induced maps UαˆU plimÝÑV PU V q Ñ Uα is an equivalence in X . Since colimits
are universal in X , we can rewrite the domain of this map as a colimit lim

ÝÑV PU pUα ˆU V q.
Let Uα denote the subset of U consisting of those open sets which are contained in Uα. Since
the functor V ÞÑ Uα ˆU V is a left Kan extension of its restriction to Uα, we are reduced to
proving that the canonical map θ : lim

ÝÑV PUα
pUα ˆU V q Ñ Uα is an equivalence. Because Uα

contains Uα as a final object, we can identify θ with the projection map Uα ˆU Uα Ñ Uα,
which is an equivalence because the map Uα Ñ U is p´1q-truncated.

Remark 1.6.5.3. Let X be an 8-topos. If X is spatial, then we can identify Shvp|X |q
with the 0-localic reflection of X , so that we have an evident geometric morphism of 8-topoi
f˚ : X Ñ Shvp|X |q. If C is an 8-category which admits small limits and O P ShvCpX q,
then Ospa can be identified with the pushforward f˚O under the equivalence of 8-categories
ShvCpShvp|X |qq » ShvX p|X |q of Proposition 1.3.1.7.

Remark 1.6.5.4. Let X be an 8-topos. There is an evident map from the locale of open
subsets of |X | to the locale SubpX q, which is an equivalence if and only if X is spatial.
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Passing to the associated 8-topoi, we obtain a commutative diagram of geometric morphisms

X f˚
Ñ X 0

g˚
Ð Shvp|X |q,

where f˚ exhibits X 0 as a 0-localic reflection of X , and g˚ is an equivalence if and only if X
is spatial. In good cases, we can associate to each sheaf O on the 8-topos X another sheaf
Ospa on |X |, given by g˚f˚O. However, unless X is spatial, there is no obvious description
of the sections of Ospa over an open subset U Ď |X |.

Remark 1.6.5.5. Let X be a topological space and let C be an 8-category. Then the
canonical map ε : X Ñ |ShvpXq| induces an isomorphism from the lattice of open subsets
of |ShvpXq| to the lattice of open subsets of X, so that the pushforward functor ε˚ :
ShvCpXq Ñ ShvCp|ShvpXq|q is an isomorphism of simplicial sets. Suppose that C admits
small limits. Then the pushforward functor ε˚ can be identified with the composition of
the equivalence ShvCpXq » ShvCpShvpXqq of Proposition 1.3.1.7 and the functor O ÞÑ Ospa

of Construction 1.6.5.1. In particular, we see that the construction O ÞÑ Ospa induces an
equivalence of 8-categories ShvCpShvpXqq Ñ ShvCp|ShvpXq|q.

Definition 1.6.5.6. Let X “ pX ,OX q be a spectrally ringed 8-topos. We will say that X
is spatial if the 8-topos X is spatial (Definition 1.5.4.3). In this case, we let Xspa denote the
spectrally ringed space p|X |,Ospa

X q.

Example 1.6.5.7. Let R be an E8-ring. Then SpétR is spatial, and Proposition 1.5.4.6
supplies a canonical homeomorphism |Shvét

R | » | SpecR|. Under this equivalence, an open
set Ua “ tp P |SpecR| : a R pu corresponds to the sheaf hRra´1s P Shvét

R corepresented by
Rra´1s. Let O denote the structure sheaf of SpétR, so that Ospa is given on basic open
sets by the formula OspapUaq “ Rra´1s, and therefore coincides with the structure sheaf of
SpecR (see the proof of Proposition 1.1.4.3). Consequently, we obtain an equivalence of
spectrally ringed spaces pSpétRqspa » SpecR, which depends functorially on R.

Proposition 1.6.5.8. Let X be a spatial 8-topos and let X “ |X | denote its underlying
topological space. If O P ShvCAlgpX q is local (in the sense of Definition 1.4.2.1), then
pX,Ospaq is a locally spectrally ringed space. The converse holds if X is 0-localic.

Proof. Suppose that O P ShvCAlgpX q is local; we wish to prove that Ospa is local. To
prove this, fix an open set U Ď X and a collection of elements tfi P pπ0 OspaqpUqu1ďiďn
satisfying

ř

1ďiďn fi “ 1. We wish to prove that we can write U as a union of open sets
tUiu1ďiďn, such that the image of fi is invertible in pπ0 OspaqpUiq. The assertion is local
on U ; we may therefore assume without loss of generality that each fi can be lifted to a
section f i P π0pO

spapUqq, and that these sections satisfy
ř

1ďiďn f i “ 1 P π0pO
spapUqq. Let
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us identify U with a p´1q-truncated object of X , so that each f i determines a morphism
U Ñ π0 O in the topos of discrete objects of X . Form pullback diagrams

Ui //

��

U

��
pπ0 Oqˆ // π0 O .

Then each of the maps Ui Ñ U is p´1q-truncated, so that we can identify each Ui with
an open subset of X. The assumption that π0 O is local guarantees that the Ui form a
covering of X. Replacing X by one of the X {Ui , we may assume that X “ Ui for some i.
In this case, the image of f i in pπ0 OqpXq is invertible. Refining our covering if necessary,
we may suppose that f i is invertible in π0pOpXqq » π0pO

spapXqq, so that fi is invertible in
pπ0 OspaqpXq.

Now suppose that X is 0-localic and that pX,Ospaq is locally ringed; we will show that
O is local. For this, it will suffice to show that for any discrete object Y P X and any
finite collection of sections tgi P pπ0 OqpY qu satisfying

ř

gi “ 1 P pπ0 OqpY q, we can choose
an effective epimorphism >Yi Ñ Y such that each gi is invertible when restricted to Yi.
The assertion is local on Y . Using the assumption that X is 0-localic, we can assume that
Y is p´1q-truncated and that each gi can be lifted to a section gi P π0pOpY qq satisfying
ř

gi “ 1 P π0pOpY qq. In this case, we can identify Y with an open subset of X, and each gi
determines an element of pπ0 OspaqpY q. Using the assumption that Ospa is local, we conclude
that Y can be written as a union of open subsets Ui, such that each gi has invertible image
in pπ0 OspaqpUiq. Working locally on Y , we may assume that Y is equal to some Ui, and that
gi has invertible image in π0pO

spapUiqq “ π0pOpUiqq. It then follows that gi is invertible.

We will also need a variant of Proposition 1.6.5.8 for morphisms of spectrally ringed
8-topoi:

Proposition 1.6.5.9. Let φ : pX ,OX q Ñ pY,OYq be a morphism of spectrally ringed 8-
topoi. Assume that X and Y are spatial, and that OX and OY are local. If f is local, then
the induced map p|X |,Ospa

X q Ñ p|Y |,Ospa
Y q is a morphism of locally spectrally ringed spaces.

The converse holds if Y is 0-localic.

Proof. Let X “ |X | and Y “ |Y |, so that φ induces a continuous map of topological
spaces f : X Ñ Y . Suppose first that the underlying map α : φ˚OY Ñ OX is local. We
wish to show that for each point x P X, the induced map pπ0 Ospa

Y qfpxq Ñ pπ0 Ospa
X qx is a

local homomorphism of local commutative rings. Fix an element u P pπ0 Ospa
Y qfpxq whose

image in pπ0 Ospa
X qx is invertible. Choose an open subset V Ď Y containing fpxq and an

element u P π0pO
spa
Y pV qq » π0pOYpV qq lifting u. Then there exists an open set U Ď f´1pV q

containing x such that the image of u in π0pO
spa
X pUqq » π0pOX pUqq is invertible. Since α is
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local, we conclude that there exists a subset V 1 Ď V containing fpxq such that the image of
u in π0pO

spa
Y pV 1qq » π0pOYpV

1qq is invertible, which immediately implies that u is invertible.
For the converse, assume that X is 0-localic and that that φ induces a morphism

φspa : pX,Ospa
X q Ñ pY,Ospa

Y q of locally spectrally ringed spaces; we wish to prove that α is
local. Equivalently, we wish to show that the diagram

φ˚pπ0 OYq
ˆ //

��

pπ0 OX q
ˆ

��
φ˚π0 OY // π0 OX

is a pullback square of discrete objects of X . We prove more generally that for every
object V P Y equipped with a map u : V Ñ π0 OY , if we let V ˆ denote the fiber product
V ˆπ0 OY pπ0 OYq

ˆ, then the diagram

φ˚V ˆ //

��

pπ0 OX q
ˆ

��
φ˚V // π0 OX

is a pullback square in X . This assertion can be tested locally on V . Using our assumption
that Y is 0-localic, we may reduce to the case where V is p´1q-truncated (so that V ˆ is
also p´1q-truncated) and where u lifts to an element u P π0pOYpV qq. Let U denote the
fiber product φ˚V ˆπ0 OX pπ0 OX q

ˆ, so that U is a p´1q-truncated object of X (which we
can identify with an open subset of X). We have an inclusion f´1pV ˆq Ď U , and we wish
to show that this inclusion is an equality. For this, it suffices to show that every point
x P U Ď X is contained in f´1V ˆ. Note that if x P U , then the image of u is invertible in
the commutative ring pπ0 Ospa

X qx. Since φspa is local, we conclude that the image of u in
pπ0 Ospa

Y qfpxq is invertible, so that fpxq P V ˆ as desired.

Let X “ pX ,OX q be a spatial locally spectrally ringed 8-topos, and write Xspa “

p|X |,Ospa
X q. By functoriality (and Example 1.6.5.7), we obtain a canonical map

hnc
X pRq “ Map8T oploc

CAlg
pSpétR,Xq

Ñ MapT oploc
CAlg

ppSpétRqspa,Xspaq

» MapT oploc
CAlg

pSpecR,Xspaq

“ hnc
|X |pRq,

depending functorially on R. Here the domain is given by Definition 1.6.4.1, and the
codomain by Definition ??.
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Theorem 1.6.5.10. Let X “ pX ,OX q be a spatial locally spectrally ringed 8-topos. If X is
0-localic, then the above construction induces an equivalence of functors hnc

X Ñ hnc
|X | from

CAlg to pS.

Theorem 1.6.5.10 is an immediate consequence of the following more general assertion:

Proposition 1.6.5.11. Let X “ pX ,OX q and Y “ pY,OYq be locally spectrally ringed
8-topoi. Suppose that X and Y are spatial and that Y is 0-localic. Then the canonical map

Map8T oploc
CAlg

pX,Yq Ñ MapT oploc
CAlg

pXspa,Yspaq

is a homotopy equivalence.

Corollary 1.6.5.12. Let 8T op˝CAlg denote the full subcategory of 8T opCAlg spanned by
those spectrally ringed 8-topoi pX ,OX q where X is spatial and 0-localic. Then the construc-
tion X ÞÑ Xspa induces a fully faithful embedding 8T op˝CAlg Ñ T opCAlg, whose essential
image consists of those spectrally ringed spaces pX,OXq for which X is sober.

Proof. The full faithfulness follows from Proposition 1.6.5.11. For the essential surjectivity,
we note that if X is sober, then we have X » |ShvpXq| (Example 1.5.4.4), in which case
the desired result follows from Remark 1.6.5.5 and Proposition 1.6.5.8.

Remark 1.6.5.13. Let pX,OXq be a locally spectrally ringed space. If X is sober, then
Corollary 1.6.5.12 implies that we can write pX,OXq “ Xspa, where X is a locally spectrally
ringed 8-topos which is spatial and 0-localic (moreover, X is unique up to a contractible
space of choices). It follows from Theorem 1.6.5.10 that the functor of points hnc

X of
pX,OXq is equivalent to the functor of points hnc

X of X. Restricting to the full subcategory
CAlgcn Ď CAlg, we obtain also an equivalence hX » hX. It follows that we can regard
Definition 1.6.1.1 as a special case of Definition 1.6.4.1 (at least if we restrict our attention
to locally spectrally ringed spaces pX,OXq for which X is sober).

Proof of Proposition 1.6.5.11. We have a commutative diagram of spaces

Map8T oploc
CAlg

pX,Yq θ //

��

MapT oploc
CAlg

pXspa,Yspaq

��
Map8T oppX ,Yq

θ0 // HomT opp|X |, |Y |q.

To prove that θ is a homotopy equivalence, it will suffice to show that θ0 is a homotopy
equivalence, and that θ induces a homotopy equivalence after passing to vertical homotopy
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fibers over any chosen point φ˚ P Map8T oppX ,Yq. To prove the latter claim, we first note
that since Y is 0-localic, Remark 1.6.5.5 supplies a homotopy equivalence

MapShvCAlgpYqpOY , φ˚OX q » MapShvCAlgp|Y |qpO
spa
Y , pφ˚OX q

spaq

» MapShvCAlgp|Y |qpO
spa
Y , f˚Ospa

X q,

where f : |X | Ñ |Y | denotes the continuous map of topological spaces determined by the
geometric morphism φ˚. It now suffices to observe that a map of spectrally ringed 8-topoi
pX ,OX q Ñ pY,OYq is local if and only if the induced map of spectrally ringed spaces is
local, by virtue of Proposition 1.6.5.9.

To complete the proof, it suffices to show that θ0 is an equivalence. Note that θ0 factors
as a composition

Map8T oppX ,Yq
θ10
Ñ HompSubpX q, SubpYqq

θ20
Ñ HomT opp|X |, |Y |q,

where the middle term is the set of maps from SubpX q to SubpYq in the category of 0-topoi
(see §HTT.6.4.2 ). Our assumption that Y is 0-localic guarantees that θ10 is a homotopy
equivalence, and our assumption that X and Y are spatial guarantees that θ20 is bijective
(see Remark 1.5.3.6).

1.6.6 Comparison of Zariski and Étale Topologies

Our next goal is to show that there is a fully faithful embedding from the 8-category
SpSchnc of nonconnective spectral schemes to the 8-category SpDMnc of nonconnective
spectral Deligne-Mumford stacks. In terms of the functor of points, this embedding is the
identity: we will show that for any (nonconnective) spectral scheme X, the functor hX
represented by X is also representable by a spectral Deligne-Mumford stack (Corollary
1.6.6.3).

Remark 1.6.6.1. Let X “ pX ,OX q be a nonconnective spectral Deligne-Mumford stack.
Then the 8-topos X is spatial, so that the spectrally ringed space Xspa “ p|X |,Ospa

X q is
well-defined. To prove this, it suffices to show that the hypercompletion X hyp is spatial,
which follows from Corollary ?? and Example 1.5.4.5.

Theorem 1.6.6.2. Let pX,OXq be a nonconnective spectral scheme. Then there exists a
nonconnective spectral Deligne-Mumford stack X and an equivalence of spectrally ringed
spaces α : Xspa » pX,OXq with the following universal property: for every spectrally ringed
8-topos Y “ pY,OYq for which Y is spatial and OY is strictly Henselian, composition with
α induces a homotopy equivalence

Map8T opsHen
CAlg

pY,Xq Ñ MapT oploc
CAlg

pYspa, pX,OXqq.
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Corollary 1.6.6.3. Let SpSch1 nc Ď FunpCAlg,Sq be the essential image of the fully faith-
ful embedding hnc : SpSchnc ãÑ FunpCAlg,Sq introduced in Definition 1.6.4.1, and let
SpDM1nc Ď FunpCAlg,Sq be the essential image of the fully faithful embedding hnc :
SpSchnc ãÑ FunpCAlg,Sq of Definition 1.6.4.1. Then SpSch1 nc Ď SpDM1 nc.

Proof. Let pX,OXq be a nonconnective spectral scheme representing a functor hnc
X : CAlg Ñ

S, and let X P SpDMnc be as in Theorem 1.6.6.2, so that X represents a functor hnc
X :

CAlg Ñ S. Taking Y “ SpétR in the statement of Theorem 1.6.6.2, we conclude that the
canonical map hnc

X pRq Ñ hnc
X pRq is a homotopy equivalence. It follows that the functor hnc

X

is representable by X, and therefore belongs to SpDM1 nc.

We now turn to the proof of Theorem 1.6.6.2. The main ingredient is the following
general fact, which we will establish in Part VI (see Theorem ??):

Proposition 1.6.6.4. The inclusion functor 8T opsHen
CAlg ãÑ8T oploc

CAlg admits a right adjoint
Specét

Zar : 8T oploc
CAlg Ñ8T opsHen

CAlg.

Proof of Theorem 1.6.6.2. Let pX,OXq be a nonconnective spectral scheme. Then X is
sober (Corollary 1.5.3.8), so Corollary 1.6.5.12 allows us to write pX,OXq » Yspa where
X1 “ pShvpXq,Oq is a locally spectrally ringed 8-topos. Let X “ Specét

Zar X1, so that
X “ pX ,OX q is a spectrally ringed 8-topos for which OX is locally ringed. We have evident
map ρ : X Ñ X1 in 8T oploc

CAlg. We will complete the proof by verifying the following:

p1q The spectrally ringed 8-topos X is a nonconnective spectral Deligne-Mumford stack.
In particular, X is spatial.

p2q The canonical map X Ñ Y induces an equivalence of spectrally ringed spaces α :
Xspa » X1 spa » pX,OXq.

p3q For every spectrally ringed 8-topos Y “ pY,OYq for which Y is spatial and OY is
strictly Henselian, composition with α induces a homotopy equivalence

Map8T opsHen
CAlg

pY,Xq Ñ MapT oploc
CAlg

pYspa, pX,OXqq.

Note that, by virtue of Proposition ??, assertion p3q is equivalent to the requirement that
the canonical map Map8T opsHen

CAlg
pY,Xq Ñ Map8T oploc

CAlg
pY,X1q is a homotopy equivalence,

which follows immediately from the construction of X.
Let f˚ : X Ñ ShvpXq be the geometric morphism underlying ρ. For each open subset

U Ď X, we let f˚U denote the corresponding p´1q-truncated object of X . It follows
immediately from the definitions that we can identify Xf˚U “ pX {f˚U ,OX |f˚U q with the
relative spectrum Specét

ZarpShvpUq,O |U q. Consequently, to prove assertions p1q and p2q, we
can work locally on X and thereby reduce to the case where pX,OXq “ SpecR is affine.



1.6. THE FUNCTOR OF POINTS 181

In this case, the universal properties of SpecR and SpétR (see Propositions 1.1.5.5 and
1.4.2.4) supply an equivalence Specét

Zar X1 » SpétR. It follows that X is an affine spectral
Deligne-Mumford stack, which proves p1q. Assertion p2q follows from Example 1.6.5.7.

Remark 1.6.6.5. The proof of Theorem 1.6.6.2 shows that the fully faithful embedding
ι : SpSchnc Ñ SpDMnc carries SpSch into SpDM. Moreover, if pX,OXq is an n-truncated
spectral scheme, then ιpX,OXq is an n-truncated spectral Deligne-Mumford stack. In
particular, we obtain a fully faithful embedding from the 8-category of 0-truncated spectral
schemes into the 8-category of 0-truncated Deligne-Mumford stacks. This can be identified
with the usual embedding of the category of schemes into the 2-category of Deligne-Mumford
stacks, using the fully faithful embeddings of Proposition 1.1.8.4 and Remark 1.4.8.3.

1.6.7 Schematic Spectral Deligne-Mumford Stacks

It follows from Corollary 1.6.6.3 that there is a fully faithful embedding of 8-categories
ι : SpSchnc Ñ SpDMnc, which carries each nonconnective spectral scheme pX,OXq to a

nonconnective spectral Deligne-Mumford stack X satisfying hnc
X » hnc

X . We will say that a
nonconnective spectral Deligne-Mumford stack X is schematic if it belongs to the essential
image of this fully faithful embedding.

Remark 1.6.7.1. It is often convenient to abuse notation and identify SpSchnc with
its essential image under the functor ι: in other words, to not distinguish between a
nonconnective spectral scheme and the associated schematic nonconnective spectral Deligne-
Mumford stack.

We next give a characterization of the class of schematic spectral Deligne-Mumford
stacks. For this, we need to introduce a bit of terminology.

Definition 1.6.7.2. Suppose that j : U Ñ X “ pX ,OX q is a map of nonconnective spectral
Deligne-Mumford stacks. We will say that j is an open immersion if it factors as a composition

U j1
Ñ pX {U ,OX |U q

j2
Ñ pX ,OX q

where j1 is an equivalence and j2 is the étale morphism associated to a p´1q-truncated object
U P X . In this case, we will also say that U is an open substack of X.

Proposition 1.6.7.3. Let X “ pX ,OX q be a nonconnective spectral Deligne-Mumford stack.
The following conditions are equivalent:

p1q There exists a collection of open immersions tjα : Uα Ñ Xu which are mutually
surjective (that is, each Uα has the form pX {Uα ,OX |Uαq, and the coproduct >Uα is a
0-connective object of X ), where each Uα is affine.
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p2q The spectrally ringed space pX,OXq » Xspa is a nonconnective spectral scheme, and
the identity map id : Xspa » pX,OXq satisfies the requirements of Theorem 1.6.6.2.

p3q The nonconnective spectral Deligne-Mumford stack X is schematic.

Proof. The equivalence of p2q and p3q is a tautology. Let us abuse notation by identifying
p´1q-truncated objects of X with open subsets of the topological space X. If p2q is satisfied,
then X admits a covering by p´1q-truncated objects Uα such that each pUα,OX |Uαq is
an affine nonconnective spectral scheme SpecRα. Arguing as in the proof of Theorem
1.6.6.2, we conclude that pX {Uα ,OX |Uαq is equivalent to the affine nonconnective spectral
Deligne-Mumford stack SpétR, so that p1q is satisfied.

We complete the proof by showing that p1q ñ p2q. Note that assertion p2q can be tested
locally on the topological space X. We are therefore free to replace X by an open substack
and thereby to reduce to the case where X “ SpétR is affine, in which case the desired result
follows from Example 1.6.5.7.

Corollary 1.6.7.4. Let X “ pX ,OX q be a nonconnective spectral Deligne-Mumford stack.
Then X is schematic if and only if the 0-truncated spectral Deligne-Mumford stack pX , π0 OX q

is schematic.

Proof. This follows from Proposition 1.6.7.3, since a nonconnective spectral Deligne-Mumford
stack pU ,OU q is affine if and only if pU , π0 OU q is affine (see Corollary 1.4.7.3).

According to Proposition 1.4.11.1, the 8-category SpDMnc of nonconnective spectal
Deligne-Mumford stacks admits finite limits. One can use the same reasoning to prove that
the 8-category SpSchnc of nonconnective spectral schemes admits finite limits. However,
the details are somewhat tedious; instead, we can deduce the statement about schemes
from Proposition 1.4.11.1, using the characterization of schematic spectral Deligne-Mumford
stacks supplied by Proposition 1.6.7.3.

Corollary 1.6.7.5. Let C denote the full subcategory of SpDMnc spanned by the schematic
nonconnective spectral Deligne-Mumford stacks. Then C is closed under finite limits in
SpDMnc (which exist by virtue of Proposition 1.4.11.1).

Proof. The final object SpétS P SpDMnc is affine, and therefore schematic. To complete the
proof, it will suffice to show that for every pullback diagram

X1 //

��

X

��
Y1 // Y

in SpDMnc, if X, Y, and Y1 are schematic, then X1 is also schematic. Write Y “ pY,OYq,
write X1 “ pX 1,OX 1q, and let f˚ : Y Ñ X 1 be the underlying geometric morphism of 8-topoi.
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Using Proposition 1.6.7.3, we see that Y admits a covering by affine p´1q-truncated objects
Uα. Note that each pullback f˚Uα is a p´1q-truncated object of X 1. Using the criterion of
Proposition 1.6.7.3, we see that to prove that X1 is schematic, it will suffice to show that
each pX 1{f˚Uα ,OX 1 |f˚Uαq is schematic. We may therefore replace Y by pY{Uα ,OY |Uαq, and
thereby reduce to the case where Y » SpétA is affine. Using a similar argument, we can
reduce to the case where X » SpétB and Y1 » SpétA1 are affine. In this case, we conclude
that X1 » pSpétA1q ˆSpétA SpétB » SpétpA1 bA Bq is affine, and therefore schematic.

Corollary 1.6.7.6. The 8-category SpSchnc of nonconnective spectral schemes admits finite
limits.

1.6.8 Spectral Deligne-Mumford n-Stacks

Recall that a spectral Deligne-Mumford stack X “ pX ,OX q is said to be n-localic if
the underlying 8-topos X is n-localic (Definition ??). We now show that for n ą 0, this
condition can be formulated directly in terms of the functor hX represented by X.

Definition 1.6.8.1. Let n ě 0. A spectral Deligne-Mumford n-stack is a spectral Deligne-
Mumford stack X with the following property: for every commutative ring R, the mapping
space MapSpDMpSpétR,Xq is n-truncated. A spectral algebraic space is a spectral Deligne-
Mumford 0-stack.

Example 1.6.8.2. For every connective E8-ring A, the étale spectrum SpétA is a spectral
algebraic space.

Remark 1.6.8.3. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. The condition
that X be a spectral Deligne-Mumford n-stack depends only on the underlying 0-truncated
spectral Deligne-Mumford stack pX , π0 OX q.

Remark 1.6.8.4. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 //

��

X

��
Y1 // Y .

Assume that X and Y1 are spectral Deligne-Mumford n-stacks for some n ě 0, and that Y is
a spectral Deligne-Mumford pn` 1q-stack. Then X1 is a spectral Deligne-Mumford n-stack.
In particular, if Y1 and Y are affine and X is a spectral Deligne-Mumford n-stack, then X1 is
a spectral Deligne-Mumford n-stack.

Proposition 1.6.8.5. Let X “ pX ,OX q be a spectral Deligne-Mumford stack, and let n ě 1
be an integer. Then X is n-localic if and only if it is a spectral Deligne-Mumford n-stack.
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Proposition 1.6.8.5 does not hold when n “ 0. For example, if X “ SpétA is affine, then
X is a spectral algebraic space (Example 1.6.8.2), but is usually not 0-localic. However, we
do have the following:

Corollary 1.6.8.6. Let X be a spectral algebraic space. Then X is 1-localic.

The proof of Proposition 1.6.8.5 depends on a few general observations about n-localic
8-topoi.

Lemma 1.6.8.7. Let X and Y be 8-topoi, and suppose that X is n-localic for some n ě 0.
Let Fun˚pX ,Yq denote the full subcategory of FunpX ,Yq spanned by the geometric morphisms
f˚ : X Ñ Y. Then Fun˚pX ,Yq is equivalent to an n-category.

Proof. Let τďn´1X and τďn´1 Y denote the underlying n-topoi of X and Y. Since X is
n-localic, we can identify Fun˚pX ,Yq with the full subcategory of Funpτďn´1X , τďn´1 Yq
spanned by those functors which preserve small colimits and finite limits. The desired result
now follows from the observation that τďn´1 Y is equivalent to an n-category.

Lemma 1.6.8.8. Let X “ pX ,OX q and Y “ pY,OYq be spectral Deligne-Mumford stacks.
Assume that OY is n-truncated, and that X is n-localic. Then the mapping space MapSpDMpY,Xq
is n-truncated.

Proof. There is an evident forgetful functor θ : MapSpDMpY,Xq Ñ Fun˚pX,Yq», where the
codomain of θ is n-truncated by Lemma 1.6.8.7. It will therefore suffice to show that the
homotopy fiber of θ over every geometric morphism f˚ : X Ñ Y is n-truncated. Unwinding
the definitions, we see that this fiber can be identified with a summand of the mapping
space MapShvCAlgpYqpf

˚OX ,OYq, which is n-truncated by virtue of our assumption that OY
is n-truncated.

Remark 1.6.8.9. Using exactly same argument, we can deduce an analogous result for
spectral schemes. In particular, every spectral scheme represents a functor which carries
discrete E8-rings to discrete spaces, so that every schematic spectral Deligne-Mumford stack
is a spectral algebraic space.

Proof of Proposition 1.6.8.5. The implication p1q ñ p2q follows from Lemma 1.6.8.8. As-
sume now that p2q is satisfied. Replacing OX by π0 OX , we may assume that OX is discrete.
It follows from Theorem 1.4.8.1 that there exists a 1-localic spectral Deligne-Mumford
stack Y “ pY,OYq and a 2-connective object U P Y such that X » pY{U ,OY |U q. To
prove that X is n-localic, it will suffice to show that the object U is n-truncated (Lemma
1.4.7.7). Let Y0 be the full subcategory of Y spanned by those objects Y P Y such that
MapYpY, Uq is n-truncated. We wish to show that Y0 “ Y. Since Y0 is closed under
small colimits in Y, it will suffice to show that Y0 contains every object Y for which
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pY{Y ,OY |Y q » SpétR is affine (note that in this case, R is automatically discrete). We now
observe that MapYpY,Uq can be identified with the homotopy fiber of the forgetful map
MapSpDMpSpétR,Xq Ñ MapSpDMpSpétR,Yq. Here MapSpDMpSpétR,Xq is n-truncated by
assumption p2q, and MapSpDMpSpétR,Yq is 1-truncated by Lemma 1.6.8.8, so that the
homotopy fiber is also n-truncated.



Chapter 2

Quasi-Coherent Sheaves

To every spectral Deligne-Mumford stack X “ pX ,OX q, one can associate a theory of
quasi-coherent sheaves on X. The collection of quasi-coherent sheaves on X can be organized
into a stable 8-category which we will denote by QCohpXq. The 8-category QCohpXq is
our principal object of study in this section.

We begin in a more general setting. Let pX ,Oq be an arbitrary spectrally ringed 8-topos.
In §2.1, we will introduce a stable 8-category ModO , whose objects are O-module objects in
the 8-category SppX q » ShvSppX q of sheaves of spectra on X . Our main result (Corollary
2.1.2.4) implies that if O is discrete and X is 1-localic (for example, if pX ,Oq is an ordinary
Deligne-Mumford stack: see Proposition ??), then ModO contains the (bounded below)
derived 8-category DpAqă8 as a full subcategory, where A is the abelian category of discrete
sheaves of O-modules on X .

Suppose now that X “ pX ,Oq is a spectral Deligne-Mumford stack. In §2.2, we will
introduce a full subcategory QCohpXq Ď ModO , which we call the 8-category of quasi-
coherent sheaves on X. It is uniquely characterized by the following properties:

paq Let F P ModO be a sheaf of O-modules on X . Then the condition that F be quasi-
coherent is of a local nature on X . In particular, F is quasi-coherent if and only if,
for every affine U P X, the restriction F |U is a quasi-coherent sheaf on the spectral
Deligne-Mumford stack pX {U ,O |U q (Remark 2.2.2.3).

pbq Suppose that X “ SpétA is affine. Then the global sections functor Γ : ModO Ñ ModA
admits a fully faithful left adjoint, whose essential image is the full subcategory
QCohpXq Ď ModO (Proposition 2.2.3.3).

We will see that the collection of quasi-coherent sheaves admits several other characterizations
(see Definition 2.2.2.1, Proposition 2.2.4.3, and Proposition 2.2.6.1).

In many situations, we will need to understand the global sections functor pF P

QCohpXqq ÞÑ ΓpX; F q in the case where X is not affine. To ensure that this construction
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has reasonable behavior, one generally needs to make some assumptions about X. In §2.3,
we discuss a hierarchy of “compactness” conditions on X (analogous to quasi-compactness
and quasi-separatedness in the setting of classical algebraic geometry) which are relevant for
this purpose.

If X “ pX ,OX q is an affine spectral Deligne-Mumford stack, then the global sections
functor F ÞÑ ΓpX; F q induces an equivalence from the 8-category QCohpXq to the 8-
category ModΓpX;OX q of modules over the E8-ring ΓpX; OX q. In §2.4, we will show that
this is true more generally under the assumption that X is quasi-affine: that is, if X is
quasi-compact and admits an open immersion into an affine spectral Deligne-Mumford stack
(Proposition 2.4.1.4). In other words, if we work at the level of stable 8-categories and
E8-rings (rather than abelian categories and ordinary commutative rings), then quasi-affine
spectral Deligne-Mumford stacks behave to a large extent as if they are affine. As another
illustration of this philosophy, we show that if X “ pX ,OX q is quasi-affine, then its functor
of points hX is corepresented by the (possibly nonconnective) E8-ring ΓpX ; OX q (Corollary
2.4.2.2). In particular, the construction X ÞÑ ΓpX ; OX q determines a fully faithful embedding
from (the opposite of) the 8-category of quasi-affine spectral Deligne-Mumford stacks to
the 8-category of E8-rings. In §2.6, we give a description of the image of this fully faithful
embedding, following work of Bhatt and Halpern-Leistner ([27]).

Let f : pX ,OX q Ñ pY,OYq be a map of spectrally ringed 8-topoi. Then f determines a
pair of adjoint functors

ModOY

f˚ //ModOX .
f˚
oo

If X “ pX ,OX q and Y “ pY,OYq are spectral Deligne-Mumford stacks, then the pullback
functor f˚ carries quasi-coherent sheaves on Y to quasi-coherent sheaves on X. In §2.5,
we will study conditions on f which guarantee that the pushforward f˚ also preserves
quasi-coherence. In particular, we will show that f˚ preserves coherence when the morphism
f is quasi-affine (Corollary 2.5.4.6). We will deduce this from a more general statement
(Proposition 2.5.4.3) which we will apply in Chapter 3 to prove analogous results in the
setting of quasi-compact, quasi-separated spectral algebraic spaces.

The theory of quasi-coherent sheaves on spectral Deligne-Mumford stacks can be regarded
as a global analogue of the theory of modules over E8-rings. In particular, if P is any
property of modules which can be tested locally with respect to the étale topology (see
Definition 2.8.4.1), then it makes sense to ask if a quasi-coherent sheaf has the property P .
In §2.8, we will study a number of properties which can be defined in this way. Many of these
properties involve finiteness conditions on modules over E8-rings, which we study in detail
in §2.7. A particularly important example is the property of invertibility: a quasi-coherent
sheaf F on a spectral Deligne-Mumford stack pX ,OX q is said to be invertible if there exists
another quasi-coherent sheaf F´1 such that F bF´1 » OX . The collection of (equivalence
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classes of) invertible quasi-coherent sheaves can be organized into an abelian group Pic:pXq,
the extended Picard group of X, which we will study in §2.9.
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2.1 Sheaves on a Spectrally Ringed 8-Topos

Let X be a topological space and let O be a sheaf of commutative rings on X. A
sheaf of O-modules is a sheaf of abelian groups F on X such that F pUq is equipped with
the structure of a module over the commutative ring OpUq for every open subset U Ď X,
depending functorially on U . Our goal in this section is to introduce an 8-categorical
analogue of the theory of sheaves of modules. We will replace the topological space X with
an arbitrary 8-topos X , and O by an arbitrary sheaf of E8-rings on X .

Definition 2.1.0.1. Let X be an 8-topos and let O P ShvCAlgpX q be a sheaf of E8-rings
on X . Recall that O can be identified with a commutative algebra object of the symmetric
monoidal 8-category ShvSppX q of sheaves of spectra on X (see §??). We let ModO denote
the 8-category ModOpShvSppX qq of O-module objects of ShvSppX q. Then ModO can be
regarded as a symmetric monoidal 8-category with respect to the relative tensor product
bO (see §HA.3.4.4 ). We will refer to the objects of ModO as sheaves of O-modules on X , or
sometimes just as O-modules.
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Warning 2.1.0.2. Let X be a topological space and let O be a sheaf of commutative rings
on X. Then we can identify O with a sheaf of E8-rings on the 8-topos ShvpXq. In this
case, Definition 2.1.0.1 does not recover the classical theory of sheaves of O-modules on X,
because we allow ourselves to consider sheaves of spectra rather than sheaves of abelian
groups. However, we will prove below that the 8-category ModO is stable and equipped with
a natural t-structure (Proposition 2.1.1.1). The classical theory of sheaves of O-modules can
be recovered by taking the heart Mod♥

O of the 8-category ModO . Moreover, the 8-category
ModO is closely related to the derived 8-category of its heart (see Corollary 2.1.2.3).

The next proposition summarizes some of the basic formal properties of Definition ??:

Proposition 2.1.0.3. Let X be an 8-topos and O a sheaf of E8-rings on X . Then:

p1q The 8-category ModO is stable.

p2q The 8-category ModO is presentable and the tensor product bO : ModO ˆModO Ñ

ModO preserves small colimits separately in each variable.

p3q The forgetful functor θ : ModO Ñ ShvSppX q is conservative and preserves small limits
and colimits.

Proof. Assertion p1q follows from Proposition HA.7.1.1.4 , assertion p2q follows from Theorem
HA.3.4.4.2 , and assertion p3q follows from Corollaries HA.3.4.3.2 and HA.3.4.4.6 .

Notation 2.1.0.4. Let pX ,Oq be a spectrally ringed 8-topos, and suppose we are given
objects F ,F 1 P ModO . For every integer n, we let ExtnOpF ,F 1q denote the abelian group
ExtnModO

pF ,F 1q of homotopy classes of maps from F to Σn F 1 in ModO .

Remark 2.1.0.5. Let pX ,Oq be a spectrally ringed 8-topos. Then the construction
pU P X q ÞÑ ModO |U determines a functor from X op into the 8-category yCat8 of (not
necessarily small) 8-categories. Moreover, this functor preserves small limits.

To see this, consider the coCartesian fibration p : Funp∆1,X q Ñ Funpt1u,X q » X
given by evaluation at t1u Ď ∆1. This coCartesian fibration is classified by a functor
χ : X Ñ PrL, which assigns to each object U P X the 8-topos X {U . We claim that this
functor preserves small colimits. To prove this, it suffices to show that the opposite functor
χ : X op Ñ PrLop

» PrR preserves small limits; this functor classifies p as a Cartesian
fibration, and is a limit diagram by virtue of Theorems HTT.6.1.3.9 and HTT.5.5.3.18
together Proposition HTT.5.5.3.13 . For any presentable 8-category C, we obtain a new
functor given by the composition

X χ
Ñ PrL b C

Ñ PrL,
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which assigns to each object U P X the 8-category ShvCpX {U q (see Remark 1.3.1.6). The
same reasoning yields a limit-preserving functor X op Ñ PrLop

» PrR which, by virtue of
Theorem HTT.5.5.3.18 , gives a limit-preserving functor χrCs : X op ÑyCat8.

The evident forgetful functor Mod Ñ CAlg determines a natural transformation of
functors χrMods Ñ χrCAlgs from X op to yCat8. Every sheaf O of E8-rings on X determines
a natural transformation ˚ Ñ χrCAlgs, where ˚ denotes the constant functor X op ÑyCat8
taking the value ∆0. Forming a pullback diagram

φ //

��

χrMods

��
˚ // χrCAlgs,

we obtain a new limit-preserving functor φ : X op ÑyCat8. Unwinding the definitions, we
see that φ assigns to each object U P X the 8-category ModO |U , and to every morphism
f : U Ñ V in X the associated pullback functor f˚ : ModO |V Ñ ModO |U . Since χrCAlgs
and χrMods preserve small limits, so does φ.

2.1.1 The t-Structure on ModO

Let X be an 8-topos and let O be a sheaf of E8-rings on X . We will say that a O-module
F is connective if it is connective when viewed as a sheaf of spectra on X : that is, if the
homotopy sheaves πn F vanish for n ă 0. We let Modcn

O denote the full subcategory of
ModO spanned by the connective O-modules. This notion is primarily useful in the case
where the sheaf O is itself connective.

Proposition 2.1.1.1. Let X be an 8-topos and let O be a connective sheaf of E8-rings on
X . Then:

paq The 8-category ModO admits a t-structure pModcn
O , pModOqď0q, where pModOqď0 is

the inverse image of ShvpSpqď0 under the forgetful functor θ : ModO Ñ ShvSppX q.

pbq The t-structure on pModcn
O , pModOqď0q is compatible with the symmetric monoidal

structure on ModO . In other words, the full subcategory pModcn
O Ď ModO contains the

unit object of ModO and is closed under the relative tensor product bO .

pcq The t-structure pModcn
O , pModOqď0q is right complete and compatible with filtered

colimits (in other words, the full subcategory pModOqď0 is stable under filtered colimits
in ModO).

Proof. We first prove paq. It follows immediately from the definitions that the full subcategory
Modcn

O Ď ModO is closed under small colimits and extensions. Using Proposition HA.1.4.4.11 ,
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we deduce the existence of an accessible t-structure ppModcn
O ,Mod1Oq on ModO . To complete

the proof, it will suffice to show that Mod1O “ pModOqď0. Suppose first that F P Mod1O .
Then the mapping space MapModO

pG ,F q is discrete for every object G P pModOqě0. In
particular, for every connective sheaf of spectra M P ShvSppX qě0, the mapping space
MapModO

pMbO,F q » MapShvSppX qpM, θpF qq is discrete, so that θpF q P ShvSppX qď0
and therefore F P pModOqď0.

Conversely, suppose that F P pModOqď0. We wish to prove that F P Mod1O . Let
C denote the full subcategory of ModO spanned by those objects G P ModO for which
the mapping space MapModO

pG ,F q is discrete. We wish to prove that C contains Modcn
O .

Condition p3q shows that θ induces a functor Modcn
O Ñ ShvSppX qě0 which is conservative

and preserves small colimits; moreover, this functor has a left adjoint F , given informally by
the formula F pMq » O bM. Using Proposition HA.4.7.3.14 , we conclude that Modcn

O is
generated under geometric realizations by the essential image of F . Since C is stable under
colimits, it will suffice to show that C contains the essential image of F . Unwinding the
definitions, we are reduced to proving that the mapping space

MapModO
pF pMq,F q » MapShvSppX qpM, θpF qq

is discrete for every connective sheaf of spectraM on X , which is equivalent to our assumption
that θpF q P ShvSppX qď0. This completes the proof of paq.

We now prove pbq. The unit object of ModO is the sheaf O (regarded as a module
over itself), which is connective by assumption. We claim that for every pair of objects
F ,G P Modcn

O , the relative tensor product F bO G is also connective. Note that, as a sheaf
of spectra, the relative tensor prouct F bO G can be identified with the geometric realization
of a simplicial object whose entires are iterated tensor products F bO b ¨ ¨ ¨ bO bG . Since
F , G , and O are connective, the above tensor product is connective (Proposition 1.3.4.7);
because ModSppX qě0 is closed under colimits we conclude that F bO G is connective.

We now prove pcq. Since the forgetful functor θ : ModO Ñ ShvSppX q preserves filtered
colimits (Proposition 2.1.0.3) and the full subcategory ShvSppX qď0 Ď ShvSppX q is closed
under filtered colimits (Proposition 1.3.2.7), it follows that the full subcategory pModOqď0 Ď

ModO is closed under filtered colimits. By virtue of Proposition HA.1.2.1.19 , to show
that the t-structure pModcn

O , pModOqď0q is right-complete, it is sufficient to show that it is
right-separated: that is, that the intersection

č

pModOqď´n » θ´1p
č

ShvSppX qď´nq

contains only zero objects of ModO . This follows from the conservativity of the functor θ,
since the intersection

Ş

ShvSppX qď´n contains only zero objects of ShvSppX q (Proposition
1.3.2.7).
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Warning 2.1.1.2. The t-structure of Proposition 2.1.1.1 is generally not left complete or
even left separated. However, it is left complete (left separated) whenever the t-structure
pModSppX qě0,ModSppX qď0q is left complete (left separated). For example, if X is hyper-
complete, then ModO is left separated; if Postnikov towers in X are convergent, then ModO

is left complete.

2.1.2 The Derived 8-Category of Mod♥
O

Let X be an 8-topos and let O be a connective sheaf of E8-rings on X . We let
Mod♥

O Ď ModO denote the heart of the t-structure described in Proposition 2.1.1.1 (that is,
the intersection Modcn

O XpModOqď0).

Remark 2.1.2.1. Unwinding the definitions, we can identify π0 O as a commutative ring
object in the underlying topos X♥, and Mod♥

O with the abelian category of pπ0 Oq-module
objects of X♥.

According to Remark HA.1.3.5.23 , the inclusion ι : Mod♥
O ãÑ ModO admits an essentially

unique extension to a t-exact functor DpMod♥
Oqă8 Ñ ModO , where DpMod♥

Oqă8 denotes
the derived 8-category of Mod♥

O (see §HA.1.3.2 ). If the 8-topos X is hypercomplete,
then the t-structure on ModO is left separated (Warning 2.1.1.2), so Theorem C.5.4.9
implies that ι admits an essentially unique extension to a colimit-preserving t-exact functor
ρ : DpMod♥

Oq Ñ ModO .

Theorem 2.1.2.2. Let pX ,Oq be a spectrally ringed 8-topos satisfying the following condi-
tions:

paq The structure sheaf O is discrete.

pbq For each object X P X , there exists an effective epimorphism U Ñ X where U is a
discrete object of X .

pcq The 8-topos X is hypercomplete.

Then the functor ρ : DpMod♥
Oq Ñ ModO supplied by Theorem C.5.4.9 is an equivalence of

8-categories.

Before giving the proof of Theorem 2.1.2.2, let us note some of its consequences.

Corollary 2.1.2.3. Let pX ,Oq be a spectrally ringed 8-topos satisfying the following con-
ditions:

paq The structure sheaf O is discrete.

pbq For each object X P X , there exists an effective epimorphism U Ñ X where U is a
discrete object of X .
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Then the inclusion Mod♥
O ãÑ ModO extends to a fully faithful embedding ι : DpMod♥

Oq ãÑ

ModO , whose essential image is the full subcategory of hypercomplete O-module objects of
ShvSppX q.

Proof. Let f˚ : X Ñ X hyp be a left adjoint to the inclusion. Then the spectrally ringed 8-
topos pX hyp, f˚Oq satisfies the hypotheses of Theorem 2.1.2.2, so that we have an equivalence
of 8-categories

DpMod♥
Oq » DpMod♥

f˚ Oq » Modf˚ OpShvSppX hypqq.

We now define ι to be the composition of this equivalence with the pushforward functor

f˚ : Modf˚ OpShvSppX hypqq Ñ ModOpShvSppX qq “ ModO

(which is a fully faithful embedding whose essential image is spanned by the hypercomplete
O-module objects of ShvSppX q).

Corollary 2.1.2.4. Let pX ,Oq be a spectrally ringed 8-topos satisfying the following con-
ditions:

paq The structure sheaf O is discrete.

pbq For each object X P X , there exists an effective epimorphism U Ñ X where U is a
discrete object of X .

Then the functor ι : DpMod♥
Oqă8 Ñ ModO supplied by Remark HA.1.3.5.23 is a fully faithful

embedding, whose essential image is the union
Ť

ně0pModOqďn.

We begin by proving Theorem 2.1.2.2 in the special case where X is a presheaf 8-topos.

Proposition 2.1.2.5. Let C be a category, let O P FunpCop,CAlg♥q be a presheaf of
commutative rings on C, and let ModO “ ModOpFunpCop,Spqq be the 8-category of O-
modules on the hypercomplete 8-topos FunpCop,Sq. Then the canonical map ρ : DpMod♥

Oq Ñ

ModO (supplied by Corollary ??) is an equivalence of 8-categories.

Proof. For each object C P C, let hC : Cop Ñ Set Ă S be the functor represented by C

(given on objects by the formula hCpDq “ HomCpD,Cq) and let FC P ModO be the tensor
product O bΣ8` phCq, given on objects by the formula FCpDq »

À

η:DÑC OpDq. Note that
FC belongs to the heart of ModO .

For any object G P ModO , we have a canonical homotopy equivalence

MapModO
pFC ,G q » MapFunpCop,SpqpΣ8`hC ,G q

» MapFunpCop,SqphC ,Ω8 G q

» Ω8 G pCq.
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Note that if G P pModOqě1, then we have π0 MapModO
pFC ,G q » 0: that is, FC is a projec-

tive object of the 8-category Modcn
O , and in particular is a projective object of the abelian

category Mod♥
O . For an arbitrary object G P ModO , the induced map

À

ηPπ0 G pCqFC Ñ G is
an epimorphism on π0. It follows that the abelian category Mod♥

O has enough projective ob-
jects, so that the derived8-category DpMod♥

Oq is left complete (see Proposition HA.1.3.5.24 ).
The presheaf 8-topos FunpCop,Sq is Postnikov complete (in the sense of Definition A.7.2.1),
the t-structure on ModO is also left complete (Warning 2.1.1.2). Consequently, to show that
the functor ρ is an equivalence of 8-categories, it will suffice to show that the underlying
map

ρă8 : DpMod♥
Oqă8 Ñ pModOqă8

is an equivalence of 8-categories. Using the dual of Proposition HA.1.3.3.7 , we are reduced
to proving the following:

p˚q For every pair of objects G ,G 1 P Mod♥
O , there exists an epimorphism θ : F Ñ G in

Mod♥
O for which the groups ExtnOpF ,G 1q vanish for n ą 0.

This is clear: we can take θ to be the epimorphism
À

ηPπ0 G pCqF pCq Ñ G described
above.

The proof of Theorem 2.1.2.2 will require a brief digression. Let X be an 8-topos and O

a connective sheaf of E8-rings on X . Then for every object X P X , we let O |X denote the
composition of O with the forgetful functor π : X {X Ñ X , so that O |X is a sheaf of E8-rings
on the 8-topos X {X . Composition with π determines a pullback functor ModO Ñ ModO |X ,
which we will denote by π˚. The functor π˚ preserves small limits and colimits, and therefore
admits a left adjoint π! : ModO |X Ñ ModO (Corollary HTT.5.5.2.9 ).

Lemma 2.1.2.6. Let X be an 8-topos, O a connective sheaf of E8-rings on X , and X a
discrete object of X . Then the functor π! : ModO |X Ñ ModO is t-exact (with respect to the
t-structures introduced in Proposition 2.1.1.1).

Proof. The functor π! is obviously right t-exact (since it is the left adjoint of the t-exact
pullback functor π˚ : ModO Ñ ModO |X ). It will therefore suffice to show that π! is left
t-exact: that is, that π! carries pModO |X qď0 to pModOqď0.

Without loss of generality, we may assume that X is an accessible left-exact localization
of a presheaf 8-category PpCq “ FunpCop,Sq for some small 8-category C; we will identify X
with the corresponding discrete object of PpCq. Then O can be obtained as the pullback of a
connective sheaf of E8-rings O 1 P ShvCAlgpPpCqq » FunpCop,CAlgq. We have a commutative
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diagram of 8-categories

ModO 1 |X

π1! //

g˚

��

ModO 1

f˚

��
ModO |X

π! //ModO ,

where the vertical maps are given by pullback along the geometric morphisms

f˚ : X ãÑ PpCq g˚ : X {X ãÑ PpCq{X

(and are therefore t-exact). For any object F P pModO |X qď0, there exists an object
F 1 P pModO 1 |X qď0 such that F » g˚F 1: for example, we can take F 1 to be the pushforward
g˚F . Since the functor f˚ is t-exact, to prove that π! F P pModOqď0, it will suffice to
show that π1! F

1 P pModO 1qď0. In other words, we wish to show that for every object
C P C, the O 1pCq-module spectrum pπ1! F

1qpCq belongs to Spď0. Since X is discrete, we
may assume without loss of generality that X is a Set-valued functor on Cop. Note that
pπ1! F

1qpCq can be written as a coproduct >ηPXpCqF 1pCηq where Cη P PpCq{X denotes map
jpCq Ñ X representing η P XpCq, where j : C Ñ PpCq is the Yoneda embedding. Since
F 1 P pModO 1 |X qď0, each of the spectra F 1pCηq P pSpqď0, so that pπ! F

1qpCq P Spď0 as
desired.

Proposition 2.1.2.7. Let pX ,Oq be a spectrally ringed 8-topos and let n ě 0 be an integer.
Suppose that the following conditions are satisfied:

paq For every object X P X , there exists an effective epimorphism U Ñ X where U is a
discrete object of X .

pbq The structure sheaf O is connective and n-truncated.

Then the 8-category Modcn
O is n-complicial (see Definition C.5.3.1).

Proof. Using paq and the presentability of X , we can choose a collection of discrete objects
tUαu of X with the following property: for every object X P X , there exists an effective
epimorphism X Ñ X, where X can be written as a coproduct of objects belonging to tUαu.
For each index α, let πα! : ModO |Uα

Ñ ModO denote the functor of Lemma 2.1.2.6 and set
Oα “ πα!pO |Uαq. Since each Uα is discrete, Lemma 2.1.2.6 (and assumption pbq) imply that
each Oα is an n-truncated object of Modcn

O .
Let F be an object of ModO . Unwinding the definitions, we see that each element

η P π0 F pUαq determines a homotopy class of maps fη : Oα Ñ F in the 8-category ModO .
Amalgamating these maps as α and η vary, we obtain a map f :

À

ηPπ0 F pUαq
Oα Ñ F .

By construction, the morphism f induces an epimorphism on π0 and the domain of f is
n-truncated. Allowing F to vary, we conclude that Modcn

O is n-complicial.
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Proof of Theorem 2.1.2.2. Let pX ,Oq be a spectrally ringed 8-topos. It follows from Theo-
rem C.5.4.9 that the inclusion Mod♥

O ãÑ Modcn
O admits an essentially unique extension to a

functor λ : DpMod♥
Oqě0 Ñ Modcn

O which preserves small colimits and finite limits. Suppose
that O is discrete and that for every object X P X , there exists an effective epimorphism
U Ñ X where U is discrete. Applying Proposition 2.1.2.7, we deduce that the 8-category
Modcn

O is 0-complicial (in the sense of Definition C.5.3.1). If the 8-topos X is hypercomplete,
then Modcn

O is also separated (in the sense of Definition C.1.2.12). Since DpMod♥
Oqě0 is also

0-complicial (Proposition C.5.3.2) and separated, Proposition C.5.4.5 implies that λ is an
equivalence of 8-categories. Passing to stabilizations, we obtain a t-exact equivalence

DpAq » SppDpAqě0q
„
ÝÑ SppModcn

O q » ModO .

We close this section by proving a variant of Theorem 2.1.2.2 for morphisms between
spectrally ringed 8-topoi.

Theorem 2.1.2.8. Let f : pX ,OX q Ñ pY,OYq be a morphism of spectrally ringed 8-topoi
which satisfy conditions paq and pbq of Corollary 2.1.2.4 and let f♥

˚ : Mod♥
OX
Ñ Mod♥

OY
be

the functor of abelian categories given at the level of objects by the formula f♥
˚ F “ π0pf˚F q.

Then the pushforward functor

DpMod♥
OX
qă8 »

ď

n

pModOX qďn
f˚
ÝÑ

ď

n

pModOY qďn » DpMod♥
OY
qă8

is a right derived functor of f♥
˚ (see Example HA.1.3.3.4 ).

Proof. Let F be an injective object of the abelian category Mod♥
OX

. We wish to show
that the pushforward f˚F belongs to the heart of ModOY . Fix an object Y P Y and an
element x P πnppf˚F qpY qq; we wish to prove that if n ‰ 0, then we can choose an effective
epimorphism Y 1 Ñ Y such that the image of x vanishes in πnppf˚F qpY 1qq. In fact, we
will prove something stronger: the group πnppf˚F qpY 1qq vanishes whenever Y 1 is a discrete
object of Y (note that there exists an effective epimorphism Y 1 Ñ Y with Y 1 discrete by
virtue of our assumption that Y satisfies condition pbq of Corollary 2.1.2.4). Set X “ f˚Y 1;
we wish to prove that πn F pXq P X vanishes. Let π! : ModOX |X Ñ ModOX be as Lemma
2.1.2.6. Since X “ f˚Y 1 is discrete, the functor π! is t-exact. It follows that π!pOX |Xq

belongs to Mod♥
OX

. Using Corollary 2.1.2.4 and the injectivity of F , we obtain

πn F pXq » Ext´nModOX |X
pOX |X ,F |Xq » Ext´nModOX

pπ! OX |X ,F q » 0.
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2.2 Quasi-Coherent Sheaves on Spectral Deligne-Mumford
Stacks

Let pX,OXq be a scheme. Recall that a (discrete) sheaf F of OX -modules on X is said
to be quasi-coherent if it satisfies the following condition:

p˚q For every pair of affine open subsets U Ď V Ď X, the canonical map

OXpUq bOXpV q F pV q Ñ F pUq

is an isomorphism.

The theory of quasi-coherent sheaves plays an essential role in classical algebraic geometry.
Our goal in this section is to introduce an analogous theory in the setting of spectral algebraic
geometry.

Let X “ pX ,OX q be a spectrally ringed 8-topos. In §2.1, we defined a stable 8-category
ModOX whose objects are sheaves of OX -module spectra on X . In the special case where
X is a nonconnective spectral Deligne-Mumford stack, we will define a full subcategory
QCohpXq Ď ModOX , which we will refer to as the 8-category of quasi-coherent sheaves on
X. The condition that a sheaf F P ModOX is quasi-coherent can be expressed in several
different ways:

paq The triple pX ,OX ,F q is locally equivalent to the spectrum (in the sense of Corollary
2.2.1.5 below) of a pair pA,Mq, where A is an E8-ring and M is an A-module spectrum.

pbq The sheaf F satisfies the analogue of condition p˚q above: for any morphism U Ñ V

between affine objects of X , the induced map OXpUq bOXpV q F pV q Ñ F pUq is an
equivalence.

pcq Each homotopy group πn F is a quasi-coherent sheaf over the underlying ordinary
Deligne-Mumford stack pX♥, π0 OX q, and the sheaf F is hypercomplete.

We will adopt characterization paq as our definition of quasi-coherent sheaf, and prove
its equivalence with pbq and pcq later in this section (Propositions 2.2.4.3 and 2.2.6.1,
respectively).

2.2.1 The Étale Spectrum of a Module

Let pX ,Oq be a spectrally ringed 8-topos and let F P ModO be a O-module object of
ShvSppX q. Then we can view the pair pO,F q as a single sheaf on X :



2.2. QUASI-COHERENT SHEAVES ON SPECTRAL DELIGNE-MUMFORD STACKS199

Notation 2.2.1.1. Let Mod “ ModpSpq denote the 8-category of pairs pA,Mq, where A
is an E8-ring and M is an A-module spectrum. We let 8T opMod denote the 8-category
whose objects are 8-topoi X together with a Mod-valued sheaf on X . More precisely, we let
8T opMod denote an 8-category equipped with a coCartesian fibration 8T opMod Ñ8T op,
which is classified by the functor

8T op ÑyCat8

X ÞÑ ShvModpX qop.

We can describe the 8-category 8T opMod more informally as follows:

• The objects of 8T opMod are triples pX ,O,F q, where X is an 8-topos, O is a sheaf
of E8-rings on X , and F is a sheaf of O-module spectra on X .

• A morphism from pX ,O,F q to pX 1,O 1,F 1q in 8T opMod consists of a triple pφ˚, α, βq,
where φ˚ : X Ñ X 1 is a geometric morphism of 8-topoi, α : O 1 Ñ φ˚O is a morphism
of CAlg-valued sheaves, and β : F 1 Ñ φ˚F is a morphism of O 1-modules.

Notation 2.2.1.2. We can identify the fiber product 8T opModˆT op8tSu with the 8-
category ShvModpSqop » Modop. The induced functor Modop Ñ 8T opMod admits a left
adjoint, given on objects by pX ,O,F q ÞÑ pΓpX ; Oq,ΓpX ; F qq. We will refer to this left
adjoint as the global sections functor, and denote it by Γ : 8T opMod Ñ Modop.

Notation 2.2.1.3. There is an evident forgetful functor 8T opMod Ñ8T opCAlg, given on
objects by pX ,O,F q ÞÑ pX ,Oq. We let 8T opsHen

Mod denote the fiber product

8T opModˆ8T opCAlg 8T opsHen
CAlg,

so that 8T opsHen
Mod is a subcategory of 8T opMod whose objects are triples pX ,O,F q for

which the sheaf O is strictly Henselian.

Proposition 2.2.1.4. Let A be an E8-ring and let M be an A-module. Let

ρ : CAlgét
A Ñ Mod

denote the functor given on objects by B ÞÑ pB,B bAMq. Then:

p1q The functor ρ is a sheaf with respect to the étale topology on CAlgét
A, and can therefore

be identified with a Mod-valued sheaf pO,F q on the 8-topos Shvét
A (see Proposition

1.3.1.7).

p2q The sheaf of E8-rings O is strictly Henselian, so that we can view pShvét
A ,O,F q as

an object of 8T opsHen
Mod .
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p3q Let Γ : 8T opMod Ñ Modop be the global sections functor, so that ΓpShvét
A ,O,F q »

pA,Mq. For every object X P 8T opsHen
Mod , the canonical map

θ : Map8T opsHen
Mod
pX, pShvét

A ,O,F qq Ñ MapModppA,Mq,ΓpXqq

is a homotopy equivalence.

Proof of Proposition 2.2.1.4. Assertion p1q follows from Theorems D.6.3.5 and ??. Assertion
p2q from Proposition ??. To prove p3q, write X “ pX ,OX ,F X q and observe that we have a
commutative diagram

Map8T opsHen
Mod
pX, pShvét

A ,O,F qq
θ //

��

MapModppA,Mq,ΓpXqq

��
Map8T opsHen

CAlg
ppX ,OX q, pShvét

A ,Oqq
θ0 //MapCAlgpA,ΓpX ; Oqq

where the map θ0 is a homotopy equivalence by virtue of Proposition 1.4.2.4. Consequently,
in order to prove that θ is a homotopy equivalence, it will suffice to show that it induces a
homotopy equivalence after taking the homotopy fibers of the vertical maps over a point
corresponding to a map of spectrally ringed 8-topoi η : pX ,OX q Ñ pShvét

A ,Oq. Unwinding
the definitions, we are reduced to proving that the formation of global sections induces a
homotopy equivalence

φM : MapModO
pF , η˚F X q Ñ MapModApM,ΓpX ; F X qq.

Let us say that an A-module M is good if the map φM is a homotopy equivalence for every
choice of sheaf F X P ModOX . We wish to show that every A-module M is good. The
collection of good A-modules span a stable subcategory of ModA which is closed under
colimits. Consequently, we can reduce to the case M “ A, in which case F is equivalent to
the structure sheaf of SpétA and the desired result is obvious.

Corollary 2.2.1.5. Let ΓsHen : 8T opsHen
Mod Ñ Modop denote the restriction of the global

sections functor Γ : 8T opMod Ñ Modop to the subcategory 8T opsHen
Mod Ď 8T opMod. Then

ΓsHen admits a right adjoint

SpétMod : Modop Ñ8T opsHen
Mod .

Remark 2.2.1.6. Given an E8-ring A and an A-module M , the object SpétModpA,Mq can
be described explicitly using the construction of Proposition 2.2.1.4. In particular, we see
that the underlying spectrally ringed 8-topos of SpétModpA,Mq can be identified with the
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étale spectrum SpétA. It follows that the diagram of 8-categories

8T opsHen
Mod

//

��

Modop

��
8T opsHen

CAlg
// CAlgop

is right adjointable, so that the diagram

ModopSpétMod//

��

8T opsHen
Mod

��
CAlgop Spét // 8T opsHen

CAlg

commutes up to canonical homotopy.

2.2.2 Quasi-Coherence

We are now ready to introduce our main objects of interest.

Definition 2.2.2.1. Let X “ pX ,Oq be a nonconnective spectral Deligne-Mumford stack
and let F be a sheaf of O-modules on X . We will say that F is quasi-coherent if there exists
a collection of objects Uα P X which cover X (that is, the map >αUα Ñ 1 is an effective
epimorphism) satisfying the following condition:

p˚q For each α, there exists an E8-ring Aα, an Aα-module Mα, and an equivalence

pX {Uα ,O |Uα ,F |Uαq » SpétModpAα,Mαq

in the 8-category 8T opsHen
Mod .

We let QCohpXq denote the full subcategory of ModO spanned by the quasi-coherent sheaves
of O-modules on X .

Remark 2.2.2.2. The existence of a covering tUαu satisfying condition p˚q guarantees that
pX ,Oq is a nonconnective spectral Deligne-Mumford stack.

Remark 2.2.2.3. Let X “ pX ,Oq be a nonconnective spectral Deligne-Mumford stack, and
let F be a sheaf of O-modules on X . The condition that F be quasi-coherent is local on X .
In other words:

• For every morphism U Ñ V in X , if F |V is a quasi-coherent sheaf on pX {V ,O |V q,
then F |U is a quasi-coherent sheaf on pX {U ,O |U q.

• Conversely, if we are given an effective epimorphism >αUα Ñ V and each restriction
F |Uα is a quasi-coherent sheaf on pX {Uα ,O |Uαq, then F |V is a quasi-coherent sheaf
on pX {V ,O |V q.
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2.2.3 The Affine Case

Our next goal is to describe quasi-coherent sheaves over affine spectral Deligne-Mumford
stacks. We begin with a few general remarks.

Lemma 2.2.3.1. Let A be an E8-ring, let M be an A-module, and set pX ,O,F q “
SpétModpA,Mq. Let U P X be affine. Then the canonical map OpUq bAM Ñ F pUq is an
equivalence.

Proof. Since U is affine, Theorem 1.4.10.2 implies that U P X » Shvét
A can be identified

with the functor corepresented by an étale A-algebra B. In this case, the desired result
follows immediately from the construction of pX ,O,F q supplied by Proposition 2.2.1.4.

Lemma 2.2.3.2. Let pX ,Oq » SpétA be an affine nonconnective spectral Deligne-Mumford
stack. Let F be a quasi-coherent O-module and let M “ ΓpX ; F q be the global sections of F ,
regarded as an A » ΓpX ; Oq-module. Then the canonical map pX ,O,F q Ñ SpétModpA,Mq

is an equivalence (in the 8-category 8T opsHen
Mod ).

Proof. Using Proposition 1.4.2.4, we can identify X with the 8-category Shvét
A . Since F

is quasi-coherent, there exists a collection of objects Uα P X covering X for which each
pX {Uα ,O |Uα ,F |Uαq has the form SpétModpAα,Mαq for some object pAα,Mαq P Mod. In
particular, pX {Uα ,O |Uαq » SpétpAαq is an affine nonconnective spectral Deligne-Mumford
stack, so that Aα is an étale A-algebra by Theorem 1.4.10.2. Without loss of generality, we
may assume that the set of indices α is finite. Let B “

ś

Bα so that SpétB » pX {U ,O |U q
for U “ >αUα. We now observe that pX {U ,O |U ,F |U q » SpétModpB,Nq where B “

ś

Aα
and N “

ś

Mα.
Let us abuse notation by identifying the pair pO,F q with the underlying functor

CAlgét
A Ñ Mod. Using Lemma 2.2.3.1, we deduce that the canonical map F pRq bR

R1 Ñ F pR1q is an equivalence whenever R Ñ R1 is a morphism in CAlgét
A for which the

étale map A Ñ R factors through B. Let B‚ be the Čech nerve of the faithfully flat
morphism A Ñ B. Since F is a sheaf, we have M “ F pAq “ lim

ÐÝ
F pB‚q. The proof of

Theorem D.6.3.1 shows that the canonical map M bA B Ñ F pBq is an equivalence, so that
M bA RÑ F pRq is an equivalence for any étale map AÑ R which factors through B. Let
SpétModpA,Mq » pX ,O,F 1q, so that the map M Ñ F pAq induces a morphism of sheaves
of O-modules F 1 Ñ F . Using Lemma 2.2.3.1, we deduce that α induces an equivalence
F 1pRq Ñ F pRq whenever AÑ R is an étale map which factors through B. Since F 1 and
F are sheaves, they are determined by their restriction to the sieve generated by B, so that
α is an equivalence as desired.

Proposition 2.2.3.3. Let X “ pX ,Oq » SpétA be an affine nonconnective spectral Deligne-
Mumford stack. Then the global sections functor ΓpX ; ‚q : ModO Ñ ModA admits a fully
faithful left adjoint, whose essential image is the full subcategory QCohpXq Ď ModO .
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Proof. Let F : ModA Ñ ModO denote the functor given on objects by by the formula
SpétModpA,Mq » pX ,O, F pMqq. Unwinding the definitions, we deduce immediately that F
is a left adjoint to ΓpX ; ‚q. It is clear that F carries A-modules to quasi-coherent O-modules.
Conversely, Lemma 2.2.3.2 implies that every quasi-coherent O-module belongs to the
essential image of F . To prove that F is fully faithful, it suffices to show that for every
A-module M , the unit map M Ñ ΓpX ;F pMqq is an equivalence, which is a special case of
Lemma 2.2.3.1.

2.2.4 The General Case

We now use Proposition 2.2.3.3 together with the fact that quasi-coherence can be
tested locally to establish some pleasant features of quasi-coherent sheaves on arbitrary
nonconnective spectral Deligne-Mumford stacks.

Proposition 2.2.4.1. Let X “ pX ,Oq be a nonconnective spectral Deligne-Mumford stack.
Then:

p1q The 8-category QCohpXq is closed under small colimits in ModO .

p2q The 8-category QCohpXq is stable.

p3q The 8-category QCohpXq is presentable.

Proof. We first prove p1q. Suppose we are given a small diagram tFαu of quasi-coherent
O-modules, having a colimit F P ModO . We wish to prove that F is quasi-coherent. The
assertion is local on X : it therefore suffices to show that F |U » lim

ÝÑ
Fα |U is a quasi-coherent

sheaf on X {U whenever pX {U ,O |U q is affine. Replacing X by X {U , we may assume that
pX ,Oq is affine. In this case, the desired result follows from Proposition 2.2.3.3. Using
exactly the same argument, we deduce that QCohpXq is closed under shifts in the stable
8-category ModO . Assertion p2q now follows from Lemma HA.1.1.3.3 .

To prove p3q, we let X 0 Ď X denote the full subcategory spanned by those objects
U for which the 8-category QCohpXU q is presentable. We wish to prove that X 0 “ X .
According to Remark 2.1.0.5, the construction U ÞÑ ModO |U defines a limit-preserving
functor χO : X op ÑyCat8. This functor is classified by a Cartesian fibration p : rX Ñ X . Let
rX
1 denote the full subcategory of rX spanned by those objects X which correspond to quasi-

coherent sheaves on X {ppXq. Remark 2.2.2.3 guarantees that p|rX 1 is also a Cartesian fibration,
which is classified by another functor χ1O : X op ÑyCat8 (given informally by U ÞÑ QCohpXU q).
Since the condition of quasi-coherence is local (Remark 2.2.2.3), Proposition HTT.3.3.3.1
shows that χ1O is again a limit diagram. The functor χ1O evidently factors through the
subcategory yCat

1

8 Ď
yCat8 spanned by those 8-categories which admit small colimits and

those functors which preserve small colimits. The8-category PrL of presentable8-categories
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can be identified with a full subcategory of yCat
1

8, so that X op
0 “ pχ1Oq

´1 PrL. Since χ1O
preserves small limits, it follows from Proposition HTT.5.5.3.13 that X 0 is stable under
small colimits in X . It will therefore suffice to show that X 0 contains every object U P X
such that pX {U ,O |U q is affine, which follows immediately from Proposition 2.2.3.3.

Proposition 2.2.4.2. Let X “ pX ,Oq be a nonconnective spectral Deligne-Mumford stack.
Then the full subcategory QCohpXq Ď ModO contains the unit object O and is stable under
tensor products, and therefore inherits a symmetric monoidal structure from the symmetric
monoidal structure on ModO (see Proposition HA.2.2.1.1 ).

Proof. The assertion is local, so we may assume that X “ SpétA is an affine nonconnective
spectral Deligne-Mumford stack. Let F : ModA Ñ ModO be the functor described in
Proposition 2.2.3.3, so that the essential image of F is the full subcategory QCohpXq Ď ModO .
Then F pAq » O, so that O is quasi-coherent. To show that QCohpXq is stable under tensor
products, it suffices to show that F pMq bO F pNq is quasi-coherent, for every pair of A-
modules M,N P ModA.

Let us identify the 8-topos X with Shvét
A Ď FunpCAlgét

A ,Sq. For any sheaf of O-modules
F , we can identify the pair pO,F q with a Mod-valued sheaf CAlgét

A Ñ Mod. Using the
construction supplied by Proposition 2.2.1.4, we see that F pMq and F pNq are given by the
formulas

F pMqpBq “M bA B F pNqpBq “ N bA B.

It follows that F pMq bO F pNq is the sheafification of the presheaf

B ÞÑ F pMqpBq bOpBq F pNqpBq » pM bA Bq bB pN bA Bq » pM bA Nq bA B.

According to Proposition 2.2.1.4, this presheaf is already a sheaf which we will denote
by F . We have F pAq » M bA N so the above formula shows that the canonical map
F pAq bA B Ñ F pBq is an equivalence for every étale A-algebra B; in other words, the
counit map F pΓpX ; F qq Ñ F is an equivalence, so that F belongs to the essential image
QCohpXq Ď ModO of the functor F .

Our next result can be regarded as a non-affine analogue of Proposition 2.2.3.3:

Proposition 2.2.4.3. Let pX ,Oq be a nonconnective spectral Deligne-Mumford stack and
let F be a sheaf of O-modules on X . The following conditions are equivalent:

p1q The sheaf F is quasi-coherent.

p2q Let f : U Ñ V be a morphism in X such that pX {U ,O |U q and pX {V ,O |V q are affine.
Then the canonical map F pV q bOpV q OpUq Ñ F pUq is an equivalence.
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Proof. Assume first that p1q is satisfied. To prove p2q, we are free to replace X by X {V and
thereby reduce to the case where pX ,Oq is affine. It follows that pX ,O,F q » SpétModpA,Mq

for some pA,Mq P Mod (Lemma 2.2.3.2), so that assertion p2q follows from Lemma 2.2.3.1.
Now suppose that p2q is satisfied; we wish to prove that F is quasi-coherent. The

assertion is local on X : we may therefore assume without loss of generality that pX ,Oq is an
affine nonconnective spectral Deligne-Mumford stack SpétA. Let M “ ΓpX ; F q, regarded
as an A » ΓpX ; Oq-module. Then the identity map M Ñ ΓpX ; F q induces a morphism
pX ,O,F q Ñ SpétModpA,Mq » pX ,O,F 1q in the 8-category 8T opsHen

Mod . To complete the
proof, it will suffice to show that this map induces an equivalence of spectrum-valued sheaves
F 1 Ñ F . Since X is generated under small colimits by the full subcategory X 0 Ď X spanned
by those objects U P X for which pX {U ,O |U q is affine (Lemma ??), it will suffice to show
that F 1pUq Ñ F pUq is an equivalence when U is affine. This follows from the observation
that we have a commutative diagram

M bA OpUq
φ

&&

ψ

xx
F 1pUq // F pUq

where φ is an equivalence by Lemma 2.2.3.1 and ψ is an equivalence by assumption p2q.

2.2.5 Truncations of Quasi-Coherent Sheaves

We now restrict our attention to the case of spectral Deligne-Mumford stacks X “ pX ,Oq:
that is, we assume that the structure sheaf O is connective. In this case, the 8-category
QCohpXq inherits a t-structure.

Lemma 2.2.5.1. Let A be a connective E8-ring, let SpétA “ pX ,Oq, and let F : ModA Ñ
ModO be the fully faithful embedding of Proposition 2.2.3.3. Then F is t-exact.

Proof. The functor F is left adjoint to the global sections functor F ÞÑ ΓpX ; F q, which is
obviously left t-exact. It follows formally that F is right t-exact. To complete the proof, we
will show that F is left t-exact: that is, if M P pModAqď0, then F pMq P pModOqď0. Let X 0
be the full subcategory of X spanned by those objects U P X such that F pMqpUq P Spď0.
We wish to prove that X 0 “ X . Since F is a sheaf and the full subcategory Spď0 Ď Sp
is stable under limits, we deduce that X 0 is stable under colimits in X . It will therefore
suffice to show that X 0 contains all objects U P X such that pX {U ,O |Uq is an affine
spectral Deligne-Mumford stack SpétB (Lemma ??). We have a canonical equivalence
F pMqpUq » M bA B. The desired result now follows from Theorem HA.7.2.2.15 , since
Theorem 1.4.10.2 guarantees that B is étale (and in particular flat) over A.
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Proposition 2.2.5.2. Let X “ pX ,Oq be a spectral Deligne-Mumford stack. Then the full
subcategory QCohpXq Ď ModO is compatible with the t-structure of Proposition 2.1.1.1.
More precisely, if F P ModO is quasi-coherent, then the truncations τěn F and τďn F

are quasi-coherent, for every integer n. Consequently, the full subcategories QCohpXqě0 “

QCohpXq X pModOqě0 and QCohpXqď0 “ QCohpXq X pModOqď0 determine a t-structure on
the 8-category QCohpXq.

Proof. Replacing F by its translates if necessary, it will suffice to show that if F is quasi-
coherent, then τě0 F and τď´1 F are quasi-coherent. This assertion is local on X ; we
may therefore assume that pX ,Oq » SpétA is an affine spectral Deligne-Mumford stack
(where A is a connective E8-ring). Let F : ModA Ñ ModO be the functor described in
Proposition 2.2.3.3. Since F is quasi-coherent, we may assume without loss of generality
that F “ F pMq for some A-module M . Since A is connective, there is a fiber sequence

M 1 ÑM ÑM2

where M 1 is a connective A-module and M2 P pModAqď´1. Applying the exact functor F ,
we obtain a fiber sequence

F pM 1q Ñ F Ñ F pM2q

in ModO . Lemma 2.2.5.1 guarantees that F pM 1q P pModOqě0 and F pM2q P pModOqď´1.
We therefore obtain identifications F pM 1q » τě0 F and F pM2q » τď´1 F which proves that
τě0 F and τď´1 F are quasi-coherent.

Notation 2.2.5.3. If X “ pX ,Oq is a spectral Deligne-Mumford stack, we let QCohpXqcn

denote the full subcategory QCohpXqě0 Ď QCohpXq defined in Proposition 2.2.5.2. We will
say that a quasi-coherent sheaf F is connective if it belongs to QCohpXqcn.

The basic properties of the t-structure on QCohpXq can be summarized as follows:

Proposition 2.2.5.4. Let X “ pX ,Oq be a spectral Deligne-Mumford stack. Then:

p1q The t-structure on QCohpXq is accessible (see Definition HA.1.4.4.12 ).

p2q The t-structure on QCohpXq is compatible with filtered colimits: that is, the full
subcategory QCohpXqď0 is closed under filtered colimits.

p3q The t-structure on QCohpXq is both right and left complete.

Proof. Assertion p1q is equivalent to the statement that QCohpXqcn is presentable (Propo-
sition HA.1.4.4.13 ). This follows from Proposition HTT.5.5.3.12 , since QCohpXqcn can
be identified with the fiber product QCohpXq ˆModO

Modcn
O . Assertion p2q follows from

Proposition 2.2.4.1 together with the corresponding result for ModO (Proposition 2.1.1.1).
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We now prove p3q. Since ModO is right-complete (Proposition 2.1.1.1), we deduce that
Ş

n QCohpXqď´n Ď
Ş

npModOqď´n contains only zero objects. Combining this observation
with p2q, we deduce that QCohpXq is right-complete (see Proposition HA.1.2.1.19 ).

The proof that QCohpXq is left-complete requires a bit more effort (note that ModO

need not be left complete). Consider the full subcategory X 0 Ď X spanned by those objects
U P X for which the t-structure on QCohpX {U q is left-complete. To complete the proof, it
will suffice to show that X 0 “ X . Using Proposition 2.2.3.3, Lemma 2.2.5.1, and Proposition
HA.7.1.1.13 , we deduce that X 0 contains every affine object U P X . It will therefore suffice
to show that X 0 is closed under small colimits in X (Lemma ??). Since the conditions of
being quasi-coherent and n-truncated are local, the proof of Proposition 2.2.4.1 shows that
the constructions

U ÞÑ QCohpXU q U ÞÑ QCohpXU qďn
determine limit-preserving functors X op ÑyCat8. If tUαu is a diagram in X having a colimit
U P X , we have a commutative diagram

QCohpXU q //

��

lim
ÐÝα

QCohpXUαq

θ

��
lim
ÐÝn

QCohpXU qďn // lim
ÐÝn,α

QCohpXUαqďn.

where the vertical maps are equivalences. If each Uα belongs to X 0, then the right vertical
map is also an equivalence, so the left vertical map is an equivalence as well and U P X 0 as
desired.

2.2.6 Discrete Quasi-Coherent Sheaves

Let X “ pX ,Oq be a spectral Deligne-Mumford stack. The truncation map O Ñ π0 O

induces an equivalence of abelian categories Mod♥
π0 O Ñ Mod♥

O . Using the criterion for
quasi-coherence supplied by Proposition 2.2.4.3, we see that this equivalence respects the
property of quasi-coherence: that is, we have an equivalence of abelian categories

QCohpX , π0 Oq♥ » QCohpXq♥.

(for a more general assertion of this nature, see Corollary 2.5.9.2).
Let X♥ be the underlying topos of X , so that we can identify π0 O with a commutative ring

object of X♥. Then we can identify Mod♥
O with the abelian category of π0 O-module objects

of X♥. Under this identification, the full subcategory QCohpXq♥ » QCohpX , π0 Oq♥ Ď

Mod♥
π0 O corresponds to the abelian category of quasi-coherent sheaves on the ordinary

Deligne-Mumford stack pX♥, π0 Oq, in the sense of Definition 1.2.6.1 (this follows immediately
from the characterization of Proposition 2.2.4.3).

In the non-discrete case, there is a similar characterization of quasi-coherence:
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Proposition 2.2.6.1. Let X “ pX ,Oq be a nonconnective spectral Deligne-Mumford stack
and let F be a sheaf of O-modules on X . Then F is quasi-coherent if and only if it satisfies
the following conditions:

p1q For every integer n, the homotopy sheaf πn F is quasi-coherent (in the sense of
Definition 1.2.6.1) when viewed as a π0 O-module object of the underlying topos X♥.

p2q The object Ω8F P ShvSpX q » X is hypercomplete.

Corollary 2.2.6.2. Let X “ pX ,Oq be a spectral Deligne-Mumford stack. Assume that X
is 1-localic and that the structure sheaf O is discrete. Then there is a canonical equivalence
of 8-categories QCohpXq » DpMod♥

Oqqc, where DpMod♥
Oqqc denotes the full subcategory of

the derived 8-category DpMod♥
Oq spanned by those chain complexes of O-module objects of

X♥ whose homologies are quasi-coherent (in the sense of Definition 1.2.6.1).

Proof. Combine Proposition 2.2.6.1 with Corollary 2.1.2.3.

Remark 2.2.6.3. Under some slightly stronger hypotheses, one can show that the 8-
category QCohpXq is equivalent to the derived 8-category of its heart: see Corollary
10.3.4.13.

Proof of Proposition 2.2.6.1. Replacing O by its connective cover if necessary, we may
assume that O is connective. If F is quasi-coherent, then Proposition 2.2.5.2 implies that
each homotopy group πn F is quasi-coherent as a O-module. To prove that p2q is satisfied,
it suffices to work locally on X ; we may therefore assume that pX ,Oq » SpétA for some
connective E8-ring A. Let F be the functor of Proposition 2.2.3.3, so that F » F pMq for
some A-module M . Let us identify the pair pO,F q with the sheaf CAlgét

A Ñ Mod given by
B ÞÑ pB,B bAMq. We note that for each B P CAlgét

A , we have

F pMqpBq » B bAM » lim
ÐÝ

τďnpB bAMq » lim
ÐÝ

B bA pτďnMq » lim
ÐÝ

F pτďnMqpBq.

It follows that F » F pMq » lim
ÐÝ

F pτďnMq is a limit of truncated objects of ModO (Lemma
2.2.5.1), so that Ω8F is a limit of truncated objects of X and therefore hypercomplete.

Now suppose that F P ModO satisfies conditions p1q and p2q. We wish to prove that F

is quasi-coherent. Note that F » lim
ÝÑ

τě´n F by Proposition 2.2.5.4. Since the collection of
quasi-coherent sheaves is closed under colimits in ModO , it suffices to prove that each τě´n F

is quasi-coherent. Replacing F by Σnpτě´n F q, we may assume that F is connective. Since
the condition of being quasi-coherent is local on X , we may suppose that pX ,Oq » SpétA
is an affine spectral Deligne-Mumford stack, where A is a connective E8-ring; let C and
F : ModA Ñ ModO be defined as above.

We now argue by induction on m that each truncation τďm F is quasi-coherent. For
m ă 0, this is obvious. If m ě 0, it follows from the existence of a fiber sequence

τďm´1 F Ñ τďm F Ñ Σmpπm F q.



2.3. COMPACTNESS HYPOTHESES ON SPECTRAL DELIGNE-MUMFORD STACKS209

Using Proposition 2.2.3.3, we may suppose that the tower tτďm F u is obtained from a
tower of A-modules tMmumě0. Using Lemma 2.2.5.1, we deduce that for m ď m1, the
map Mm1 Ñ Mm exhibits Mm as an m-truncation τďmMm1 . Since ModA is left complete
(Proposition HA.7.1.1.13 ), the A-module M » lim

ÐÝ
Mm has the property that τďmM »Mm

for every integer m. For every flat A-algebra B, we also obtain an equivalence τďmpMbABq »
Mm bA B, so that M bA B » lim

ÐÝ
pMm bA Bq. It follows that F pMq » lim

ÐÝm
F pMmq »

lim
ÐÝ

τďm F in the 8-category ModO . In particular, we obtain a map α : F Ñ F pMq. To
prove that F is quasi-coherent, it will suffice to show that α is an equivalence. Since F

and F pMq are both connective, this is equivalent to the requirement that α induces an
equivalence Ω8F Ñ Ω8F pMq in ShvSpX q » X . Since Ω8F is hypercomplete (by p2q) and
Ω8F pMq » lim

ÐÝ
Ω8F pMmq is hypercomplete (since it is an inverse limit of truncated objects

of X ), it will suffice to show that the map Ω8pαq : Ω8F Ñ Ω8F pMq is 8-connective.
This is clear, since for every integer m ě 0, the truncation τďmΩ8pαq is homotopic to the
composition of equivalences

τďmΩ8F » Ω8pτďm F q » Ω8F pMmq » Ω8F pτďmMq » Ω8τďmF pMq » τďmΩ8F pMq.

2.3 Compactness Hypotheses on Spectral Deligne-Mumford
Stacks

Let pX,OXq be a scheme. Recall that X is said to be quasi-compact if every open
covering of X has a finite subcovering, and quasi-separated if the collection of quasi-compact
open subsets of X is closed under pairwise intersections. In this section, we will study
analogous conditions in the setting of spectral Deligne-Mumford stacks.

2.3.1 Quasi-Compactness (Absolute Case)

Throughout this section, we will assume that the reader is familiar with the theory of
coherent 8-topoi developed in §A.2 (see Definition A.2.0.12).

Definition 2.3.1.1. Let X “ pX ,OX q be a nonconnective spectral Deligne-Mumford stack
and let n ě 0 be an integer. We will say that X is n-quasi-compact if the 8-topos X is
n-coherent (see §A.2). We will say that X is quasi-compact if it is 0-quasi-compact. We will
say that X is 8-quasi-compact if it is n-quasi-compact for every integer n.

Proposition 2.3.1.2. Let A be an E8-ring. Then the nonconnective spectral Deligne-
Mumford stack SpétA is 8-quasi-compact.

Proof. Combine Propositions A.3.1.3 and 1.4.2.4.
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Corollary 2.3.1.3. Let pX ,OX q be a nonconnective spectral Deligne-Mumford stack. Then
the 8-topos X is locally coherent (see Definition A.2.1.6).

Corollary 2.3.1.4. Let pX ,OX q be a nonconnective spectral Deligne-Mumford stack. Then
the hypercompletion X hyp has enough points.

Proof. Combine Corollary 2.3.1.3 with Theorem A.4.0.5.

2.3.2 Quasi-Compactness (Relative Case)

Recall that if pX ,OX q is a nonconnective spectral Deligne-Mumford stack, then we say
an object U P X is affine if the nonconnective spectral Deligne-Mumford stack pX {U ,OX |U q

is affine.

Proposition 2.3.2.1. Let f : pX ,OX q Ñ pY,OYq be a morphism of nonconnective spectral
Deligne-Mumford stacks. Let n ě 0 be an integer. The following conditions are equivalent:

p1q For every n-coherent object U P Y, the pullback f˚U is n-coherent.

p2q For every affine object U P Y, the pullback f˚U is an n-coherent object of X .

p3q There exists a full subcategory Y0 Ď Y with the following properties:

paq Each object U P Y0 is n-coherent.

pbq For each U P Y0, the pullback f˚pUq is n-coherent.

pcq For each object Y P Y, there exists an effective epimorphism >Yi Ñ Y , where
each Yi P Y0.

Moreover, if n ą 0, then these conditions imply:

p4q For every relatively pn´ 1q-coherent morphism u : U Ñ Y in Y, the pullback f˚puq is
a relatively pn´ 1q-coherent morphism in X .

Definition 2.3.2.2. Let f : pX ,OX q Ñ pY,OYq be a morphism of nonconnective spectral
Deligne-Mumford stacks. We will say that f is n-quasi-compact if it satisfies the equivalent
conditions of Proposition 2.3.2.1. We will say that f is quasi-compact if it is 0-quasi-compact,
and 8-quasi-compact if it is n-quasi-compact for every integer n ě 0.

Proof of Proposition 2.3.2.1. We proceed by induction on n. The implication p1q ñ p2q is
immediately from Proposition 2.3.1.2. To see that p2q ñ p3q, we take Y0 to be the collection
of all objects U P Y such that pY{U ,OY |U q is affine. We next show that p3q ñ p4q if n ą 0.
Let u : U Ñ Y be an pn ´ 1q-coherent morphism in Y; we wish to show that f˚puq is a
relatively pn´ 1q-coherent morphism in X . Choose an effective epimorphism >iPIYi Ñ Y ,
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where each Yi P Y . Using Corollary A.2.1.5, we are reduced to proving that the induced map
f˚pU ˆY >iPIYiq Ñ f˚p>iPIYiq is relatively pn´ 1q-coherent. We may therefore replace Y by
some Yi and thereby reduce to the case where Y is n-coherent. Then U is pn´ 1q-coherent.
Using p2q together with the inductive hypothesis, we deduce that f˚Y is n-coherent and
that f˚U is pn´ 1q-coherent, so that f˚puq is relatively pn´ 1q-coherent as desired.

We now prove that p3q implies p1q. Fix an n-coherent object U P Y; we wish to prove
that f˚pUq is an n-coherent object of X . Choose an effective epimorphism >iPIUi Ñ U

where each Ui P Y0. Since U is quasi-compact, we may assume without loss of generality
that I is finite. Using p2q and Remark A.2.0.16, we conclude that >f˚pUiq is an n-coherent
object of X . Moreover, the map >f˚pUiq Ñ f˚pUq is an effective epimorphism which is
pn´ 1q-coherent if n ą 0 (by virtue of p4q). Using Proposition A.2.1.3 we conclude that f˚U
is n-coherent as desired.

Remark 2.3.2.3. Let f : pX ,OX q Ñ pY,OYq be a morphism of nonconnective spectral
Deligne-Mumford stacks and let n ě 0 be an integer. Suppose that f is n-quasi-compact.
Then:

paq The pullback functor f˚ carries compact objects of τďn´1 Y to compact objects of
τďn´1X .

pbq The pushforward functor f˚ : τďn´1X Ñ τďn´1 Y commutes with filtered colimits.

Assertion paq follows from Proposition 2.3.2.1 and Remark A.2.3.3, and assertion pbq follows
from paq and Proposition HTT.5.5.7.2 .

Example 2.3.2.4. Let f : X Ñ Y be a map between affine nonconnective spectral Deligne-
Mumford stacks. Then f is 8-quasi-compact; this follows immediately from Proposition
2.3.1.2.

Remark 2.3.2.5. Let f : X Ñ Y be a map of nonconnective spectral Deligne-Mumford
stacks and let 0 ď n ď 8. The following conditions are equivalent:

p1q The map f is n-coherent.

p2q For every étale morphism SpétAÑ Y, the fiber product SpétAˆY X is n-coherent.

Proposition 2.3.2.6. Let X be a quasi-compact nonconnective spectral Deligne-Mumford
stack, and let n ą 0. The following conditions on X are equivalent:

p1q For every pair of maps SpétAÑ X Ð SpétB, the fiber product SpecAˆX SpétB is
pn´ 1q-coherent.

p2q Every map f : SpétAÑ X is pn´ 1q-coherent.
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p3q For every pair of maps SpétA Ñ X u
Ð SpétB where u is étale, the fiber product

SpétAˆX SpétB is pn´ 1q-coherent.

p4q Every étale map f : SpétAÑ X is pn´ 1q-coherent.

p5q For every pair of étale maps SpétAÑ X Ð SpétB, the fiber product SpétAˆX SpétB
is pn´ 1q-coherent.

p6q The nonconnective spectral Deligne-Mumford stack X is n-coherent.

Proof. The equivalences p1q ô p2q and p3q ô p4q are obvious. The equivalences p2q ô p3q
and p4q ô p5q follow from Remark 2.3.2.5, and the equivalence p5q ô p6q follows from
Corollary A.2.1.4.

Proposition 2.3.2.7. Let X be a spectral Deligne-Mumford n-stack. If X is pn` 1q-quasi-
compact, then X is 8-quasi-compact.

Proof. It will suffice to show that if X is pn ` 1q-quasi-compact, then it is also pn ` 2q-
quasi-compact. We proceed by induction on n. The case n “ 0 will be established in §3.4
(Proposition 3.4.1.2). Assume that n ą 0. To prove that X is pn` 2q-quasi-compact, it will
suffice to show that for every pullback diagram

Y //

��

SpétA

��
SpétB // X,

the spectral Deligne-Mumford stack Y is pn` 1q-quasi-compact (Proposition 2.3.2.6). This
follows from the inductive hypothesis, since Y is a spectral Deligne-Mumford pn´ 1q-stack
(Remark 1.6.8.4).

2.3.3 Pullbacks of Quasi-Compact Morphisms

Our next result describes the behavior of n-quasi-compact morphisms with respect to
base change:

Proposition 2.3.3.1. Suppose we are given a pullback diagram of nonconnective spectral
Deligne-Mumford stacks

X1

f 1

��

g1 // X

f

��
Y1 g // Y,

and let 0 ď n ď 8. If f is n-quasi-compact, then f 1 is n-quasi-compact. The converse holds
if g is quasi-compact and surjective (see Definition 3.5.5.5).
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We begin by establishing the first half of Proposition 2.3.3.1.

Lemma 2.3.3.2. Suppose we are given a pullback diagram σ :

pX 1,OX 1q
f 1 //

g1

��

pY 1,OY 1q

g

��
pX ,OX q

f // pY,OYq

of nonconnective spectral Deligne-Mumford stacks. If f is n-quasi-compact, then f 1 is
n-quasi-compact.

Proof. Let Y 10 be the full subcategory of Y 1 spanned by those objects Y 1 P Y 1 with the
following properties:

piq The pair pY 1{Y 1 ,OY 1 |Y 1q is affine.

piiq There exists an object Y P Y and a map Y 1 Ñ g˚Y , where pY{Y ,OY |Y q is affine.

This subcategory satisfies requirements paq, pbq, and pcq of Proposition 2.3.2.1; it will therefore
suffice to show that f 1˚Y is an n-coherent object of X 1.

Replacing σ by the diagram

pX 1{f 1˚Y 1 ,OX 1 |f 1˚Y 1q
f 1 //

��

pY 1{Y 1 ,OY 1 |Y 1q

g

��
pX {f˚Y ,OX |f˚Y q

f // pY{Y ,OY |Y q,

we can reduce to the case where pY,OYq and pY 1,OY 1q are affine. Since f is n-quasi-compact,
the 8-topos X is n-coherent; we wish to prove that X 1 is n-coherent. To prove this, it
suffices to show that the map g1 is n-quasi-compact. This assertion is local on X ; we may
therefore assume that pX ,OX q is affine. Since σ is a pullback diagram, we conclude that
pX 1,OX 1q is affine and the desired result follows from Example 2.3.2.4.

Corollary 2.3.3.3. Let f : pX ,OX q Ñ pY,OYq be a map of nonconnective spectral Deligne-
Mumford stacks. Assume that pY,OYq is affine. Then f is n-quasi-compact if and only if
pX ,OX q is n-quasi-compact.

Proof. The “only if” direction is obvious (and requires only that pY,OYq be n-quasi-compact).
Conversely, suppose that pX ,OX q is affine. Let U P Y be such that pY{U ,OY |U q is affine.
We wish to prove that f˚U is an n-coherent object of X . We have a pullback diagram

pX {f˚U ,OX |f˚U q //

g

��

pY{U ,OY |U q

g1

��
pX ,OX q // pY,OYq.
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The map g1 is n-quasi-compact by Example 2.3.2.4, so that Lemma 2.3.3.2 guarantees that g
is n-quasi-compact. Since the final object 1 P X is n-coherent, we conclude that g˚1 P X {f˚U
is n-coherent: that is, f˚U is an n-coherent object of X .

Proof of Proposition 2.3.3.1. The first assertion follows from Proposition 2.3.3.2. To prove
the second, we may assume without loss of generality that Y “ SpétA is affine. If the map
g : Y1 Ñ Y is quasi-compact, then it follows that Y1 is also quasi-compact. We may therefore
choose an étale surjection SpétB Ñ Y1. Replacing Y1 by SpétB, we may assume that Y1 is
also affine.

Write X “ pX ,OX q and X1 “ pX 1,OX 1q. Our assumption that f 1 is n-quasi-compact is
equivalent to the assumption that X 1 is n-coherent, and we wish to prove that X is also
n-coherent (Corollary 2.3.3.3). We claim more generally that if X P X is an object such that
g1˚X P X 1 is m-coherent, then X is m-coherent. The proof proceeds by induction on m. We
begin with the case m “ 0. Suppose that we are given an effective epimorphism >iPIUi Ñ X

in the 8-topos X . Then the induced map >iPIg1˚Ui Ñ g1˚X is an effective epimorphism
in X 1. If g1˚X is quasi-compact, then we can choose a finite subset I0 Ď I such that the
induced map >iPI0g1˚Ui Ñ g1˚X is an effective epimorphism. Since the map g1 is surjective,
it follows that the map >iPI0Ui Ñ X is also an effective epimorphism.

We now treat the case m ą 0. According to Corollary A.2.1.4, it will suffice to show that
if we are given affine objects U, V P X {X , then the fiber product U ˆX V is pm´ 1q-coherent.
By the inductive hypothesis, it suffices to show that g1˚pU ˆX V q » g1˚U ˆg1˚X g1˚V is
pm ´ 1q-coherent. This follows from the m-coherence of g1˚X, since f˚U and f˚V are
affine.

2.3.4 The Schematic Case

We now discuss the relationship of Definition 2.3.1.1 with classical scheme theory.

Lemma 2.3.4.1. Let X be a topological space. The following conditions are equivalent:

p1q The 8-topos ShvpXq is coherent.

p2q The 8-topos ShvpXq is 1-coherent.

p3q The collection of quasi-compact open subsets of X is closed under finite intersections
and forms a basis for the topology of X.

Proof. The implication p1q ñ p2q is obvious. We prove that p2q ñ p3q. For each U Ď X, let
χU P ShvpXq be the sheaf given by the formula

χU pV q “

#

∆0 if V Ď U

H otherwise.
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We note that χU is a quasi-compact object of X if and only if U is quasi-compact as a
topological space. If ShvpXq is 1-coherent, then the collection of quasi-compact objects of
ShvpXq are closed under products. Since the construction U ÞÑ χU carries finite intersections
to finite products, we conclude that the collection of quasi-compact open subsets of X is
closed under finite intersections. We claim that the quasi-compact open subsets form a
basis for the topology of X. To prove this, choose an arbitrary open subset U Ď X. Since
ShvpXq is 1-coherent, there exists an effective epimorphism θ : >F i Ñ χU , where each F i

is a quasi-compact object of ShvpXq. For each index i, we have τď´1 F i » χUi for some
open set Ui Ď X. It follows that θ induces an effective epimorphism >iχUi Ñ χU , so that
U “

Ť

Ui. We claim that each Ui is quasi-compact: equivalently, each of the sheaves χUi is
a quasi-compact object of ShvpXq. This follows from the observation that we have effective
epimorphisms F i Ñ χUi .

We now complete the proof by showing that p3q implies p1q. Assume that X is a coherent
topological space. Let C Ď ShvpXq be the full subcategory spanned by objects of the form
χU , where U is a quasi-compact open subset of X. Since the quasi-compact open subsets
of X form a basis for the topology of X, the 8-category C generates ShvpXq under small
colimits. It will therefore suffice to show that C consists of coherent objects of ShvpXq.
We prove by induction on n that the objects of C are n-coherent. The case n “ 0 is clear.
Assume that the objects of C are known to be n-coherent for n ě 0. We wish to prove that if
U Ď X is a quasi-compact open subset, then χU is pn` 1q-coherent. According to Corollary
A.2.1.4, it will suffice to show that for every pair of objects χV , χV 1 P C, every fiber product
χV ˆχU χV 1 is n-coherent. Unwinding the definitions, this is equivalent to the statement
that V X V 1 is quasi-compact, which follows from our assumption that the quasi-compact
open subsets of X are closed under finite intersections.

Proposition 2.3.4.2. Let pX,OXq be a spectral scheme and let pX ,OX q “ Specét
ZarpX,OXq

be the associated schematic spectral Deligne-Mumford stack. Then:

p1q The spectral Deligne-Mumford stack pX ,OX q is quasi-compact if and only if the
topological space X is quasi-compact.

p2q For 1 ď n ď 8, the spectral Deligne-Mumford stack pX ,OX q is n-quasi-compact if and
only if X is quasi-compact and quasi-separated.

Proof. Assertion p1q and the “only if” direction of p2q follow immediately from Lemma ??.
To prove the converse, we prove by induction on n ą 0 that if X is quasi-compact and
quasi-separated, then X is n-coherent. To carry out the inductive step, it will suffice to
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show that for every pullback diagram

pY,OYq //

��

SpétA

u

��
SpétB v // pX ,OYq,

the spectral Deligne-Mumford stack pY,OYq is pn´ 1q-quasi-compact (Proposition 2.3.2.6).
By virtue of Corollary ??, the maps u and v are induced by maps of spectral schemes
u0 : SpecAÑ pX,OXq and v0 : SpecB Ñ pX,OXq. It follows that we can write pY,OYq »

Specét
ZarpY,OY q, where pY,OY q denotes the fiber product SpecA ˆpX,OXq SpecB in the

8-category of spectral schemes. We then have a pullback diagram of ordinary schemes

pY, π0 OY q //

��

Specπ0A

��
Specπ0B // pX,π0 OXq.

Since X is quasi-compact and quasi-separated, Y is also quasi-compact and quasi-separated.
Applying the inductive hypothesis (or part p1q, if n “ 1), we conclude that pY,OYq is
pn´ 1q-quasi-compact as desired.

2.3.5 Transitivity Properties of Quasi-Compactness

We now discuss the closure of n-quasi-compact morphisms under composition.

Proposition 2.3.5.1. Let f : X Ñ Y be a morphism of nonconnective spectral Deligne-
Mumford stacks and let 0 ď n ď 8. Then:

p1q If Y is n-quasi-compact and f is n-quasi-compact, then X is n-quasi-compact.

p2q If X is n-quasi-compact and Y is pn` 1q-quasi-compact, then f is n-quasi-compact.

Proof. We proceed by induction on n. We begin with assertion p1q. Assume that f and Y
are n-quasi-compact; we wish to prove that X is n-quasi-compact. Choose an étale surjection
SpétR Ñ Y. Then the fiber product X1 “ SpétR ˆY X is n-coherent. We have an étale
surjection X1 Ñ X, so that X is quasi-compact. This completes the proof when n “ 0.
Assume now that n ą 0. By virtue of Proposition 2.3.2.6, it will suffice to show that every
map SpétA Ñ X is pn ´ 1q-quasi-compact. Using Proposition 2.3.3.1, we are reduced to
showing that the induced map

u : SpétRˆY SpétAÑ X1
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is pn ´ 1q-quasi-compact. Since X1 is n-quasi-compact and SpétR ˆY SpétA is pn ´ 1q-
quasi-compact (using Proposition 2.3.2.6 and the n-quasi-compact of Y), the pn´ 1q-quasi-
compactness of u follows from the inductive hypothesis.

We now prove p2q. Assume that X is n-quasi-compact and that Y is pn`1q-quasi-compact.
We wish to show that for every map SpétR Ñ Y, the fiber product X1 “ SpétR ˆY X is
n-quasi-compact. By p1q, it will suffice to show that the projection map X1 Ñ X is n-quasi-
compact. This follows from Proposition 2.3.3.1, since the map SpétRÑ Y is n-quasi-compact
by Corollary 2.3.2.4.

Corollary 2.3.5.2. Suppose we are given maps f : X Ñ Y and g : Y Ñ Z of nonconnective
spectral Deligne-Mumford stacks. Then:

piq If f and g are n-quasi-compact, then g ˝ f is n-quasi-compact.

piiq If g is pn` 1q-quasi-compact and g ˝ f is n-quasi-compact, then f is n-quasi-compact.

Corollary 2.3.5.3. Let Z be a quasi-compact nonconnective spectral Deligne-Mumford stack
and let n ě 0. Then Z is pn ` 1q-quasi-compact if and only if the following condition is
satisfied: for every pair of maps X Ñ Z Ð Y where X and Y are n-quasi-compact, the fiber
product XˆZ Y is n-quasi-compact.

Proof. The “if” direction follows immediately from Proposition 2.3.2.6 (take X and Y to be
affine). Conversely, suppose that Z is pn` 1q-quasi-compact. If X is n-quasi-compact, then
the map X Ñ Z is n-quasi-compact. It follows from Proposition 2.3.3.1 that the projection
map XˆZ Y Ñ Y is n-quasi-compact. Since Y is also n-quasi-compact, Proposition 2.3.5.1
implies that XˆZ Y is n-quasi-compact.

Corollary 2.3.5.4. The collection of 8-quasi-compact nonconnective spectral Deligne-
Mumford stacks is closed under the formation of fiber products.

2.4 Quasi-Affine Spectral Deligne-Mumford Stacks

Recall that a scheme X is said to be quasi-affine if it is quasi-compact and there exists
an open immersion j : X ãÑ Y , where Y is an affine scheme. In this section, we will study
the analogous condition in the setting of spectral Deligne-Mumford stacks. Our main results
are that quasi-affine spectral Deligne-Mumford stacks behave, in many respects, as if they
were affine:

paq If X “ pX ,OX q is a quasi-affine spectral Deligne-Mumford stack, then X can be
functorially recovered from the E8-ring ΓpX ; OX q of global sections of its structure
sheaf (Corollary 2.4.2.2).
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pbq If pX ,OX q is a quasi-affine spectral Deligne-Mumford stack and F is a quasi-coherent
sheaf on X , then F can be functorially recovered from its spectrum of global sections
ΓpX ; F q, regarded as a module over the E8-ring ΓpX ; OX q (Proposition 2.4.1.4).

2.4.1 The Nonconnective Case

We with a study of quasi-affine objects in the setting of nonconnective spectral Deligne-
Mumford stacks.

Definition 2.4.1.1. Let X be a nonconnective spectral Deligne-Mumford stack. We say that
X is quasi-affine if X is quasi-compact and there exists an open immersion j : X ãÑ SpétR
for some E8-ring R (see Definition 1.6.7.2).

Remark 2.4.1.2. Let X be a nonconnective spectral Deligne-Mumford stack. If X is
quasi-affine, then it is schematic.

Suppose that X is a quasi-affine nonconnective spectral Deligne-Mumford stack. Then
there exists an open immersion j : X Ñ X1, where X1 is affine. The following pair of results
asserts that there is a canonical choice of X1, for which the 8-categories QCohpXq and
QCohpX1q are equivalent.

Proposition 2.4.1.3. Let X “ pX ,OX q be a quasi-compact nonconnective spectral Deligne-
Mumford stack. The following conditions are equivalent:

p1q The nonconnective spectral Deligne-Mumford stack X is quasi-affine.

p2q The canonical map X Ñ Spét ΓpX ; OX q is an open immersion.

Proposition 2.4.1.4. Let X “ pX ,OX q be a quasi-affine nonconnective spectral Deligne-
Mumford stack. The global sections functor F ÞÑ ΓpX ; F q induces an equivalence of
8-categories e : QCohpXq Ñ ModΓpX ;OX q.

The proofs of Propositions 2.4.1.3 and 2.4.1.4 depend on the following technical result:

Proposition 2.4.1.5. Let X be a quasi-compact nonconnective spectral Deligne-Mumford
stack and let j : X Ñ SpétR be an open immersion. Then:

p1q The global sections functor Γ : QCohpXq Ñ ModR commutes with small colimits.

p2q Suppose that R is connective. Then there exists an integer n such that ΓpQCohpXqě0q Ď

pModRqě´n.
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p3q Suppose we are given a pullback diagram of nonconnective spectral Deligne-Mumford
stacks

X1 j1 //

f 1

��

SpétR1

f

��
X j // SpétR.

Then the associated diagram of 8-categories

ModR
j˚ //

��

QCohpXq

��
ModR1

j1˚ // QCohpX1q

is right adjointable.

Corollary 2.4.1.6. Let X “ pX ,OX q be a quasi-compact nonconnective spectral Deligne-
Mumford stack and let j : X Ñ SpétR be an open immersion. Then the global sections
functor Γ : QCohpXq Ñ ModR is fully faithful.

Proof. Let j˚ : ModR Ñ QCohpXq denote a left adjoint to Γ and let F P QCohpXq; we will
show that the counit map j˚ΓpX ; F q Ñ F is an equivalence. The open immersion j is
determined by an open subset U Ď |SpecR|. Write U as a union

Ť

1ďiďn Ui, where each Ui
is the open subset given by |SpecRrx´1

i s| for some xi P π0R. For 1 ď i ď n, let gi : Ui Ñ X
be the open immersion determined by the inclusion Ui Ď U . It will therefore suffice to show
that each of the induced maps θi : pj ˝ giq˚ΓpX ; F q Ñ g˚i ΓpX ; F q is an equivalence. This
follows immediately from Proposition 2.4.1.5, since the projection map UiˆSpétR X Ñ Ui is
an equivalence.

Proof of Proposition 2.4.1.3. The implication p2q ñ p1q is obvious. We will show that
p1q ñ p2q. Assume therefore that there exists an open immersion j : X Ñ SpétR. Set
A “ ΓpX ; OX q, so that j determines a map of E8-rings φ : RÑ A. Then XˆSpétR SpétA
is an open substack of SpétA. We will complete the proof by showing that the projection
map p : XˆSpétR SpétAÑ X is an equivalence. The map j determines an open subset U of
the Zariski spectrum | SpecR|. Since X is quasi-compact, this open subset can be written as
a union

Ť

1ďiďn |SpecRrx´1
i s| for some elements xi P π0R. To show that p is an equivalence,

it will suffice to show that each of the induced projection maps

pi : SpétRrx´1
i s ˆSpétR SpétAÑ SpétRrx´1

i s

is an equivalence.
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Let x “ xi. We wish to prove that the map θ : Rrx´1s Ñ Rrx´1sbRA is an equivalence of
E8-rings. Let O 1 denote the structure sheaf of SpétR. For every open subset V Ď |SpecR|,
let V0 denote the intersection of V with the open set |SpecRrx´1s|, and let fV denote the
canonical map Rrx´1s bR O 1pV q Ñ O 1pV0q. We note that fU is left inverse to θ. It will
therefore suffice to show that fU is an equivalence, which is a special case of Proposition
2.4.1.5.

Proof of Proposition 2.4.1.4. Let X “ pX ,OX q be a quasi-affine nonconnective spectral
Deligne-Mumford stack. Proposition 2.4.1.3 implies that the map j : X Ñ Spét ΓpX ; OX q is
an open immersion, so that the global sections functor Γ : QCohpXq Ñ ModΓpX ;OX q is fully
faithful by Corollary 2.4.1.6. Consequently, to prove that Γ is an equivalence of 8-categories,
it will suffice to show that the unit map uM : M Ñ ΓpX ; j˚Mq is an equivalence for every
A-module M . Since Γ commutes with small colimits (Proposition 2.4.1.5), the collection
of those A-modules M for which uM is an equivalence is closed under small colimits. It
will therefore suffice to show that uM is an equivalence in the case where M has the form
ΣnΓpX ; OX q, for some integer n. We may easily reduce to the case n “ 0, in which case the
desired result is a tautology.

Proof of Proposition 2.4.1.5. The open immersion j is determined by an open subset U Ď
| SpecR|. For every open subset V Ď U , let ΓV : QCohpXq Ñ ModR be the functor given
by evaluation at V (which we can identify with a p´1q-truncated object of the underlying
8-topos X of X). Given a pair of open sets V 1, V 2 Ď U , we obtain a pullback diagram of
functors σ:

ΓV 1YV 2 //

��

ΓV 2

��
ΓV 1 // ΓV 1XV 2 .

To prove p1q, it will suffice to show that for every quasi-compact open subset V Ď U , the
functor ΓV commutes with filtered colimits. Since V is quasi-compact, we can write V as a
union

Ť

1ďiďn Vi where each Vi Ď |SpecR| is given by |SpecRrx´1
i s| for some xi P π0R. We

proceed by induction on n. If n “ 0, then V is empty and the result is obvious. If n ą 0,
we let V 1 “ V1 and V 2 “

Ť

1ăiďn Vi so that V “ V 1 Y V 2. The inductive hypothesis implies
that ΓV 2 and ΓV 1XV 2 commute with filtered colimits. Using the pullback diagram σ, we are
reduced to proving that ΓV 1 commutes with filtered colimits. This is clear, since ΓV 1 is given
by the composition

QCohpXq Ñ QCohpSpétRrx´1
1 sq » ModRrx´1

1 s
Ñ ModR .

We now prove p2q. Assume that R is connective. We will show that if V Ď U is an open
subset which can be written as a union

Ť

1ďiďn Vi, where each Vi is of the form | SpecRrx´1
i s|,
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then ΓV carries QCohpXqě0 to pModRqě1´n. We proceed by induction on n. In the case
n “ 0, V “ H and there is nothing to prove. Assume therefore that n ą 0 and define
subsets V 1, V 2 Ď V as above. If M P QCohpXqě0, then the pullback diagram σ gives a fiber
sequence

ΓV pMq Ñ ΓV 1pMq ‘ ΓV 2pMq Ñ ΓV 1XV 2pMq

and therefore an exact sequence of abelian groups

πm`1ΓV 1XV 2pMq Ñ πmΓV pMq Ñ πmΓV 1pMq ‘ πmΓV 2pMq.

The functor ΓV 1 is given by the composition

QCohpXq Ñ QCohpSpétRrx´1
1 sq » ModRrx´1

1 s
Ñ ModR .

and is therefore t-exact. Using the inductive hypothesis, we deduce that if m ď ´n, then

πm`1ΓV 1XV 2pMq » πmΓV 2pMq » 0,

from which it follows that πmΓV pMq » 0.
We now prove p3q. Let π : | SpecR1| Ñ | SpecR| be the continuous map of topological

spaces induced by the map of E8-rings R Ñ R1. For every open set V Ď U , let Γπ´1V :
QCohpX1q Ñ ModR1 be defined as above. Let us say that an open subset V Ď U is good if
the canonical map R1bR ΓV Ñ Γπ´1V is an equivalence of functors from QCohpXq to ModR1 .
Note that if V 1, V 2 Ď U , then the canonical map

Γπ´1pV 1YV 2q Ñ Γπ´1pV 1q ˆΓπ´1pV 1XV 2q
Γπ´1pV 2q

is an equivalence. It follows that if V 1, V 2, and V 1 X V 2 are good, then V 1 Y V 2 is good.
We will prove that every quasi-compact open subset V Ď U is good. Write V “

Ť

1ďiďn Vi
as above; we proceed by induction on n. When n “ 0, V “ H and there is nothing to
prove. If n ą 0, we define V 1, V 2 Ď V as above, so that V 2 and V 1 X V 2 are good by the
inductive hypothesis. We may therefore replace V by V 1 and thereby reduce to the case
XV “ SpétRrx´1

1 s, in which case the desired result follows from Lemma D.3.5.6.

2.4.2 The Connective Case

Let X “ pX ,OX q be a quasi-affine spectral Deligne-Mumford stack and let A “ ΓpX ; OX q.
Then the canonical map j : X Ñ SpétA is an open immersion (Proposition 2.4.1.3). However,
A is usually not connective:

Proposition 2.4.2.1. Let X “ pX ,OX q be a quasi-affine spectral Deligne-Mumford stack.
If A “ ΓpX ; OX q is connective, then X is affine.
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Proof. The open immersion j : X ãÑ SpétA of Proposition 2.4.1.3 determines a quasi-
compact open subset U Ď | SpecA|, consisting of those prime ideals which fail to contain
some finitely generated ideal I “ px1, . . . , xnq Ď π0A. Let M “ pπ0Aq{I, which we regard
as a discrete A-module. Then M rx´1

i s » 0 for 1 ď i ď n, so that M is annihilated by the
pullback functor ModA » QCohpSpétAq j

˚

Ñ QCohpXq. Proposition 2.4.1.4 implies that the
pullback functor j˚ is an equivalence of 8-categories, so that M » 0. It follows that I is the
unit ideal in π0A, so that j is an equivalence.

Corollary 2.4.2.2. Let X “ pX ,OX q be a quasi-affine nonconnective spectral Deligne-
Mumford stack, let A “ ΓpX ; OX q, and let j : X Ñ SpétA be the open immersion of
Proposition 2.4.1.3. For every spectral Deligne-Mumford stack Y, composition with j induces
a homotopy equivalence

θ : MapSpDMncpY,Xq Ñ MapSpDMncpY, SpétAq.

Proof. The assertion is local on Y; we may therefore assume that Y is affine, so that
Y » SpétR for some connective E8-ring R. Since j is an open immersion, the map θ exhibits
MapSpDMpY,Xq as a summand of MapSpDMpY,SpétAq. It will therefore suffice to show that
every map f : SpétRÑ SpétA factors through j. Form a pullback diagram

pX 1,OX 1q
j1 //

��

SpétR

��
X // SpétA

so that j1 is an open immersion. Since A » ΓpX ; OX q, Proposition 2.4.1.5 implies that
the induced map RÑ ΓpX 1; OX 1q is an equivalence. Since R is connective, it follows from
Proposition 2.4.2.1 that j1 is an equivalence.

In spite of Proposition 2.4.2.1, every quasi-affine spectral Deligne-Mumford stack admits
an open immersion into the spectrum of a connective E8-ring:

Proposition 2.4.2.3. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. The following
conditions are equivalent:

p1q There exists a connective E8-ring R and an open immersion j : X Ñ SpétR.

p2q The spectral Deligne-Mumford stack X is quasi-affine.

p3q The discrete spectral Deligne-Mumford stack pX , π0 OX q is quasi-affine.
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Proof. The implication p1q ñ p2q is obvious. To prove p2q ñ p3q, we note that if j : X Ñ
SpétR is an open immersion, then j induces an open immersion pX , π0 OX q Ñ Spétpπ0Rq.

It remains to prove that p3q ñ p1q. For each i ě 0, we let Ri denote the E8-ring
ΓpX ; τďi OX q, and let R “ ΓpX ; OX q » lim

ÐÝi
Ri. Applying Proposition 2.4.1.5 to the quasi-

affine spectral Deligne-Mumford stack pX , π0 OX q, we deduce that there exists an integer
n such that ΓpX ; F q P Spě´n whenever F belongs to the heart of QCohpXq. The fiber
sequence

Σmpπm OX q Ñ τďm OX Ñ τďm´1 OX

yields a fiber sequence of spectra

ΣmΓpX ;πm OX q Ñ Rm Ñ Rm´1

so that the map πiRm Ñ πiRm´1 is an isomorphism for m ą n` i. It follows that each of
the maps πiRÑ πiRn`i is an isomorphism.

Since condition p3q is satisfied, Proposition 2.4.1.3 implies that the canonical map
j0 : pX , π0 OX q Ñ SpétR0 is an open immersion, corresponding to some quasi-compact open
subset U Ď | SpecR0|. For each x P π0R0, let Ux “ tp P | SpecR0| : x R pu. We next prove
the following:

p˚q Let x be an element of π0R0 such that Ux Ď U . Then there exists an integer m ą 0
such that xm can be lifted to an element of π0R.

For every pair of integers i ď i1, let φi1,i : π0Ri1 Ñ π0Ri be the canonical map. To prove
p˚q, we show that for each i ě 0, some positive power xm of x lies in the image of the map
φi,0 : π0Ri Ñ π0R0. Since π0R » π0Rn, p˚q will follow if we prove this in the case i “ n. We
proceed by induction on i, the case i “ 0 being trivial. Assume therefore that there exists an
integer m ą 0 such that xm “ φi,0pyq for some y P π0Ri. We will prove that some positive
power of y lies in the image of the map φi`1,i. Using Theorem HA.7.4.1.26 , we deduce
that τďi`1 OX is a square-zero extension of τďi OX by the module Σi`1pπi`1 OX q. It follows
that Ri`1 is a square-zero extension of Ri by the module ΓpX ; Σi`1πi`1 OX q. In particular,
the image of the map φi`1,i is the kernel of a derivation d : π0Ri Ñ π´i´2ΓpX ;πi`1 OX q.
We wish to prove that dpym1q “ 0 for some m1 ą 0. Since d is a derivation, we have
dpym

1

q “ m1ym
1´1dy. It will therefore suffice to show that dy P π´i´2ΓpX ;πi`1 OX q is

annihilated by some power of y. Note that ΓpX ;πi`1 OX q has the structure of a module
over R0. Moreover, Corollary 2.4.1.6 implies that j˚0 ΓpX ;πi`1 OX q is equivalent to πi`1 OX ,
which a discrete sheaf of spectra on X . Since Ux Ď U , we deduce that ΓpX ;πi`1 OX qrx

´1s is
discrete. Since i` 2 ‰ 0, it follows that every element of π´i´2ΓpX ;πi`1 OX q is annihilated
by a power of x, and therefore by a power of y. This completes the proof of p˚q.

Write U as a union of open sets
Ť

1ďiďn Uxi for some elements xi P π0R0. Using p˚q, we
may assume without loss of generality that each xi is the image of some element yi P π0R.
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For 1 ď i ď n, let Vi denote the open subset tp P |SpecR| : yi R pu, and let V “
Ť

1ďiďn Vi.
Let V denote the open substack of SpétR corresponding to V , and for 1 ď i ď n let Vi
denote the open substack of V corresponding to Vi. Since V is the inverse image of U in
| SpecR|, the canonical map j : X Ñ SpétR factors through V. We claim that j induces
an equivalence X Ñ V. To prove this, it suffices to show that each of the induced maps
XˆV Vi Ñ Vi is an equivalence. By virtue of Proposition 2.4.1.5, this is equivalent to the
assertion that Xˆ is affine. This follows from Remark ??, since the 0-truncation of XˆV Vi
is given by SpétR0rx

´1
i s.

2.4.3 Descent

Let X be a quasi-affine spectral Deligne-Mumford stack. Combining Corollary 2.4.2.2 with
Theorem D.6.3.5, we deduce that the functor R ÞÑ MapSpDMpSpétR,Xq is a hypercomplete
sheaf with respect to the flat topology on CAlgcn. In fact, we have the following stronger
assertion:

Proposition 2.4.3.1. Let X be quasi-affine nonconnective spectral Deligne-Mumford stack,
and let hX “ hnc,ét

X denote the functor of points of X (see Definition ??). Then hX is a
hypercomplete sheaf with respect to the flat topology on CAlg.

Proof. Choose an open immersion j : X ãÑ SpétA, for some E8-ring A. It follows from
Theorem D.6.3.5 that the functor

R ÞÑ MapSpDMncpSpétR,SpétAq » MapCAlgpA,Rq

is a hypercomplete sheaf with respect to the flat topology on CAlg. According to Lemma
D.4.3.2, it will suffice to show that for every map η : SpétR Ñ SpétA, the fiber product
X1 “ XˆSpétA SpétR represents a hypercomplete sheaf with respect to the flat topology
on CAlgR. We can identify X1 with an open substack of SpétR, classified by an open set
U Ď |SpecR|. Unwinding the definitions, we are reduced to showing that if φ : B Ñ B1

is a faithfully flat morphism in CAlgR such that the map | SpecB1| Ñ | SpecR| factors
through U , then |SpecB| Ñ | SpecR| also factors through U . This is clear, since the map
| SpecB1| Ñ |SpecB| is a surjection.

In fact, we can prove an even stronger version of Proposition 2.4.3.1. For every E8-ring R,
let SpDMnc

R denote the 8-category SpDMnc
{SpétR of nonconnective spectral Deligne-Mumford

stacks X equipped with a map f : X Ñ SpétR. Let QAffnc
R denote the full subcategory of

SpDMnc
R spanned by those maps f : X Ñ SpétR where X is quasi-affine. If R is connective,

we let QAffR denote the full subcategory of QAffnc
R spanned by those morphisms where X is

a spectral Deligne-Mumford stack.
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Proposition 2.4.3.2 (Effective Descent for Quasi-Affine Morphisms). The functor R ÞÑ
QAffnc

R , is a hypercomplete sheaf (with values in yCat8) with respect to the flat topology on
CAlg. The functor R ÞÑ QAffR is a hypercomplete sheaf with respect to the flat topology on
CAlgcn.

Proof. For every E8-ring R, let Affnc
R denote the full subcategory of SpDMnc

R spanned
by those morphisms f : X Ñ SpétR where X is an affine nonconnective spectral Deligne-
Mumford stack. We have an equivalence of8-categories pAffnc

R q
op » CAlgop

R . Using Corollary
D.6.3.3, we deduce that the functor R ÞÑ Affnc

R is a hypercomplete sheaf with respect to the
flat topology.

For every E8-ring R, let Y pRq denote the full subcategory of Funp∆1,SpDMnc
R q spanned

by those morphisms f : U Ñ X, where U is affine and f is an open immersion. Let us regard
Y as a functor CAlg ÑyCat8. We claim that Y is a hypercomplete sheaf with respect to
the flat topology. Evaluation at t1u Ď ∆1 determines a map Y pRq Ñ Affnc

R , depending
functorially on R. Using Lemma D.4.3.2, we are reduced to verifying the following assertion:

p˚q Let R be an E8-ring, let f : SpétA Ñ SpétR be a map of affine spectral Deligne-
Mumford stacks, and let F : CAlgR Ñ yCat8 be the functor which assigns to each
R-algebra R1 the 8-category of open substacks of SpétR1 ˆSpétR SpétA. Then F is a
hypercomplete sheaf with respect to the flat topology.

This follows easily from Proposition 1.6.2.2.
For every E8-ring R, let Y 1pRq denote the full subcategory of Y pRq spanned by those

morphisms f : U Ñ X where U is quasi-compact. Let us regard Y 1 as a functor CAlg ÑyCat8.
We claim that Y 1 is a hypercomplete sheaf with respect to the flat topology. Since Y is a
sheaf with respect to the flat topology, we may use Lemma D.4.3.2 to reduce to proving the
following concrete assertion:

p˚1q Let f : A Ñ A1 be a faithfully flat map of E8-rings, and let U Ď |SpecA| be an
open subset. If the inverse image of U in |SpecA1| is quasi-compact, then U is
quasi-compact.

This is clear, since the map | SpecA1| Ñ |SpecA| is surjective.
For every E8-ring R, let Y 2pRq denote the full subcategory of Y 1pRq spanned by those

morphisms f : pU ,OU q Ñ SpétA which induce an equivalence of E8-rings AÑ ΓpU ; OU q.
Let us regard Y 2 as a functor CAlg ÑyCat8. We claim that Y 2 is a hypercomplete sheaf
with respect to the flat topology. This follows easily from Lemma D.4.3.2 and Corollary
2.5.4.6.

Evaluation at t0u Ď ∆1 induces a functor φR : Y 2pRq Ñ QAffnc
R , depending functorially

on R. Proposition 2.4.1.3 implies that each of these functors is an equivalence of 8-categories.
It follows that R ÞÑ QAffnc

R is a hypercomplete sheaf with respect to the flat topology on
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CAlg. To prove that the functor R ÞÑ QAffR is a hypercomplete sheaf with respect to the
flat topology on CAlgcn, we invoke Lemma D.4.3.2 to reduce to the following assertion:

p˚2q Suppose we are given a map of nonconnective spectral Deligne-Mumford stacks U Ñ
SpétR. Assume that R is connective and that there exists a faithfully flat morphism
RÑ R1 such that the fiber product UˆSpétR SpétR1 is a spectral Deligne-Mumford
stack. Then U is a spectral Deligne-Mumford stack (that is, its structure sheaf is
connective).

This follows immediately from Example 2.8.3.8.

2.4.4 Affine and Quasi-Affine Morphisms

We conclude this section by introducing a relative version of the notion of a quasi-affine
spectral Deligne-Mumford stack.

Definition 2.4.4.1. Let f : X Ñ Y be a map of nonconnective spectral Deligne-Mumford
stacks. We will say that f is affine if, for every map SpétR Ñ Y, the fiber product
XˆY SpétR is affine. We will say that f is quasi-affine if, for every map SpétRÑ Y, the
fiber product XˆY SpétR is quasi-affine.

Remark 2.4.4.2. Let f : pX ,OX q Ñ pY,OYq be a morphism of spectral Deligne-Mumford
stacks. Then f is affine (quasi-affine) if and only if the underlying map of 0-truncated spectral
Deligne-Mumford stacks pX , π0 OX q Ñ pY, π0 OYq is affine (quasi-affine); see Corollary
1.4.7.3 (Proposition 2.4.2.3).

The following assertions regarding affine and quasi-affine morphisms follow immediately
from the definition:

Proposition 2.4.4.3. p1q Any equivalence of nonconnective spectral Deligne-Mumford
stacks is affine. Any affine morphism is quasi-affine.

p2q Let f : X Ñ Y be a map of nonconnective spectral Deligne-Mumford stacks, and suppose
that Y is affine. Then f is affine (quasi-affine) if and only if X is affine (quasi-affine).

p3q Suppose we are given a pullback diagram of nonconnective spectral Deligne-Mumford
stacks

X1 //

f 1

��

X
f
��

Y1 // Y .

If f is affine (quasi-affine), then f 1 is affine (quasi-affine).
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2.5 Pullbacks and Pushforwards of Quasi-Coherent Sheaves

Let f : pY,OYq Ñ pX ,OX q be a map of spectrally ringed 8-topoi. Combining the
pushforward functor f˚ : ShvSppYq Ñ ShvSppX q with restriction of scalars along the
underlying map OX Ñ f˚OY of CAlg-valued sheaves on X , we obtain a pushforward functor
f˚ : ModOY Ñ ModOX . This functor admits a left adjoint ModOX Ñ ModOY which we will
generally denote by f˚.

Warning 2.5.0.1. Any geometric morphism of 8-topoi f˚ : Y Ñ X induces a pullback
functor f˚Sp : ShvSppX q Ñ ShvSppX q on spectrum-valued sheaves. If f˚ is promoted to
a morphism of spectrally ringed 8-topoi pY,OYq Ñ pX ,OX q, then the pullback functor
f˚ : ModOX Ñ ModOY is usually not compatible with f˚Sp. That is, the diagram of
8-categories σ :

ModOX

f˚ //

��

ModOY

��
ShvSppX q

f˚Sp // ShvSppYq

generally does not commute. Instead we have a commutative diagram

ModOY

f˚ //

��

ModOX

��
ShvSppYq

f˚ // ShvSppX q,

which is left adjointable if and only if the morphism f exhibits OY as the pullback of OX .

Proposition 2.5.0.2. Let f : pY,OYq Ñ pX ,OX q be a morphism of nonconnective spectral
Deligne-Mumford stacks. Then the pullback functor f˚ : ModOX Ñ ModOY carries quasi-
coherent sheaves on X to quasi-coherent sheaves on Y.

Proof. The assertion is local on X and Y. We may therefore assume that both pX ,OX q

and pY,OYq are affine, in which case the desired result follows immediately from the
characterization of quasi-coherent sheaves given by Proposition 2.2.3.3.

Our goal in this section is to study conditions which guarantee that a pushforward
functor f˚ preserves quasi-coherence.

2.5.1 The Affine Case

We begin by proving Proposition 2.5.0.2 in the case where the morphism f : Y Ñ X is
affine, in the sense of Definition 2.4.4.1.
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Proposition 2.5.1.1. Let f : Y Ñ X be an affine morphism of nonconnective spectral
Deligne-Mumford stacks. Then:

p1q The direct image functor f˚ : ModOY Ñ ModOX carries quasi-coherent sheaves on Y
to quasi-coherent sheaves on X.

p2q The functor f˚ : QCohpYq Ñ QCohpXq preserves small colimits.

p3q If Y and X are spectral Deligne-Mumford stacks, then the functor f˚ is t-exact.

Proof. The assertion is local on X, so we may assume without loss of generality that
X “ SpétA is affine. In this case, the affineness of f guarantees that Y “ SpétB is also
affine. Let F P QCohpYq be the quasi-coherent sheaf associated to some B-module M ,
and let F 1 P QCohpXq denote the quasi-coherent sheaf associated to the image of M under
the forgetful functor ModB Ñ ModA. The counit map B bAM Ñ M determines a map
f˚F 1 Ñ F , which is adjoint to a map of OY-modules F 1 Ñ f˚F . We claim that this map
is an equivalence. For this, we must show that u : F 1pUq Ñ pf˚F qpUq » F pf˚Uq is an
equivalence of spectra for each object U P X ; here X denotes the underlying 8-topos of
X. The collection of those objects U which satisfy this condition is stable under colimits.
We may therefore assume that U is representable by an étale A-algebra A1. In this case, u
can be identified with the canonical equivalence M bA A

1 »M bB pB bA A
1q. This proves

p1q, and shows that the induced map f˚ : QCohpYq Ñ QCohpXq can be identified with
the forgetful functor ModB Ñ ModA. Assertions p2q and p3q follow immediately from this
identification.

We can use Proposition 2.5.1.1 to classify affine morphisms of spectral Deligne-Mumford
stacks. Let X be a spectral Deligne-Mumford stack and let AffX denote the full subcategory
of SpDM{X spanned by the affine morphisms f : Y Ñ X. It follows from Proposition ?? that
the construction

pf : Y Ñ Xq ÞÑ pf˚OY P CAlgpQCohpXqcnqq

determines a functor λ : Affop
X Ñ CAlgpQCohpXqcnq.

Proposition 2.5.1.2. Let X be a spectral Deligne-Mumford stack. Then the functor λ :
Affop

X Ñ CAlgpQCohpXqcnq described above is an equivalence of 8-categories.

Proof. The assertion is local on X. We may therefore reduce to the case where X “ SpétA
is affine, in which case λ is a homotopy inverse to the evident equivalence

CAlgpQCohpXqcnq » CAlgpModcn
A q

» CAlgcn
A

Spét
ÝÝÝÑ AffSpétA .



2.5. PULLBACKS AND PUSHFORWARDS OF QUASI-COHERENT SHEAVES 229

Construction 2.5.1.3. [The Relative Spectrum] Let X be a spectral Deligne-Mumford
stack. We let

SpétX : CAlgpQCohpXqcnq Ñ Affop
X Ď SpDMop

{X

denote a homotopy inverse to the equivalence λ of Proposition 2.5.1.2. Given an object
A P CAlgpQCohpXqcnq, we will refer to SpétXpA q as the spectrum of A relative to X.

Example 2.5.1.4. For any spectral Deligne-Mumford stack X, we have a canonical equiva-
lence SpétX OX » X.

Example 2.5.1.5. Let X “ SpétA be an affine spectral Deligne-Mumford stack. Then the
relative spectrum functor SpétX can be identified with the functor

CAlgpQCohpXqcnq » CAlgcn
A

Spét
ÝÝÝÑ SpDMop

{SpétA

appearing in the proof of Proposition 2.5.1.2.

2.5.2 Excision Squares

Let X be an 8-topos, and let U P X be a p´1q-truncated object. We let X {U denote
the full subcategory of X spanned by those objects X P X for which the projection map
X ˆ U Ñ U is an equivalence. Then X {U is itself an 8-topos, and the inclusion functor
i˚ : X {U Ñ X is a geometric morphism of 8-topoi. Recall that a geometric morphism
f˚ : Y Ñ X is a closed immersion if it factors as a composition

Y g˚
Ñ X {U i˚

Ñ X ,

where U is a p´1q-truncated object of X and g˚ is an equivalence. For a more thorough
discussion, we refer the reader to §HTT.7.3.2 .

Proposition 2.5.2.1. Let X be an 8-topos and suppose we are given a diagram σ :

U
f //

��

U 1

��
V

f 1 // V 1,

in X . The following conditions are equivalent:

p1q The diagram σ is both a pushout square and a pullback square, and the map f 1 is
p´1q-truncated.

p2q The diagram σ is a pushout square and the map f is p´1q-truncated.
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p3q The diagram σ is a pullback square, f 1 is p´1q-truncated, and if we let i˚ : X {V 1 Ñ
X {V 1 {V denote the corresponding closed immersion, then i˚U 1 is a final object of
X {V 1 {V .

Proof. The equivalence of p1q and p3q is a matter of unwinding definitions, and the implication
p1q ñ p2q is obvious. We will show that p2q ñ p1q. Since X is an 8-topos, there exists a
fully faithful geometric morphism i˚ : X Ñ PpCq, for some small 8-category C. Form a
pushout diagram τ :

i˚U //

��

i˚U
1

��
i˚V

g1 //W

in PpCq. Then σ » i˚pτq. It will therefore suffice to show that τ is a pullback diagram and
that g1 is p´1q-truncated. In other words, we may replace X by PpCq and thereby reduce to
the case where X is an 8-category of presheaves. Working pointwise, we can reduce to the
case X “ S. In this case, the condition that f is p´1q-truncated guarantees that U 1 » U >X

for some space X, in which case V 1 » V >X and the result is obvious.

Definition 2.5.2.2. We will say that a diagram

U //

��

U 1

��
V // V 1

in an 8-topos X is an excision square if it satisfies the equivalent conditions of Proposition
2.5.2.1.

Variant 2.5.2.3. Suppose we are given a commutative diagram σ :

U //

��

U1

��
V // V1

of spectrally ringed 8-topoi. We will say that σ is an excision square if it is equivalent to a
diagram of the form

pX {U ,OX |U q //

��

pX {U 1 ,OX |U 1q

��
pX {V ,OX |V q // pX {V 1 ,OX |V 1q
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for some spectrally ringed 8-topos pX ,OX q and some excision square

U //

��

U 1

��
V // V 1

in X . In this case, we may assume without loss of generality that V 1 is a final object of X
(otherwise, we can replace X by X {V 1).

2.5.3 Scallop Decompositions

Let X be a quasi-compact quasi-separated scheme. Then we can choose a finite collection
of affine open subsets U1, . . . , Un Ď X which cover X. Many basic results in the theory of
schemes can be proven by considering the filtration of X by open subschemes

H Ď U1 Ď U1 Y U2 Ď U1 Y U2 Y U3 Ď ¨ ¨ ¨ Ď U1 Y ¨ ¨ ¨ Y Un “ X.

We now introduce an analogous device for analyzing (spectral) algebraic spaces which are
not schematic.

Definition 2.5.3.1. Let pX ,OX q be a nonconnective spectral Deligne-Mumford stack. A
scallop decomposition of X consists of a sequence of p´1q-truncated morphisms

U0 Ñ U1 Ñ ¨ ¨ ¨ Ñ Un

in X satisfying the following conditions:

paq The object U0 P X is initial and the object Un P X is final.

pbq For 1 ď i ď n, there exists an excision square

V //

��

X

��
Ui´1 // Ui

where X is affine and V is quasi-compact.

In this case, we will refer to n as the length of the scallop decomposition.

Remark 2.5.3.2. In the situation of Definition 2.5.3.1, each of the objects Ui in X determines
an open substack Ui “ pX {Ui ,OX |Uiq of X. In this case, we will also refer to the sequence of
open immersions

H » U0 ãÑ ¨ ¨ ¨ ãÑ Un » X

as a scallop decomposition of X.
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Example 2.5.3.3. Let X be a quasi-affine nonconnective spectral Deligne-Mumford stack.
Then X admits a scallop decomposition.

Remark 2.5.3.4. We will show later that a spectral Deligne-Mumford stack admits a
scallop decomposition if and only if it is a quasi-compact, quasi-separated spectral algebraic
space (Theorem 3.4.2.1).

Before stating our next result, we need to introduce a bit of terminology. Let pX ,OX q be
a nonconnective spectral Deligne-Mumford stack. We say that an object U P X is semiaffine
if it is quasi-compact and there exists a p´1q-truncated map U Ñ X in X , where X is affine.
We will say that a morphism f : U Ñ V in X is semiaffine if the fiber product U ˆV X is
semiaffine, whenever X P X is affine.

Proposition 2.5.3.5. Let pX ,OX q be a nonconnective spectral Deligne-Mumford stack
which admits a scallop decomposition. Suppose that C Ď X is a full subcategory satisfying
the following conditions:

p0q The 8-category C is closed under equivalence in X .

p1q Initial objects of X belong to C.

p2q If we are given an excision square

U //

��

U 1

��
V // V 1

of semiaffine morphisms in X where U 1 is affine and U, V P C, then V 1 P C.

Then C contains the final objects of X .

Corollary 2.5.3.6. Let X “ pX ,OX q be a nonconnective spectral Deligne-Mumford stack
which admits a scallop decomposition. Suppose that C Ď X is a full subcategory which
contains all affine objects of X and is closed under pushouts. Then C contains the final
object of X .

Proof of Proposition 2.5.3.5. It follows immediately from p1q and p2q that every affine object
of X belongs to C. We next show that if U P X is semiaffine, then U P C. Choose a p´1q-
truncated map j : U Ñ X where X is affine, so that pX {X ,OX |Xq » SpétR. Then we can
identify U with an open subset of the topological space | SpecR|. Since U is quasi-compact,
we can write U as a finite union

Ť

1ďiďn | SpecRrx´1
i s| for some elements xi P π0R. Choose

n as small as possible. We proceed by induction on n. If n “ 0, then U is an initial
object of X and therefore U P C by virtue of p1q. Assume therefore that n ą 0. Let
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U0 “
Ť

1ďiăn | SpecRrx´1
i s|, let U1 “ |SpecRrx´1

n s|, and let U01 “ U0 XU1. We identify U0,
U1, and U01 with p´1q-truncated objects of X , so that we have an excision square

U01 //

��

U1

��
U0 // U.

Since U01, U0 P C be the inductive hypothesis and U1 is affine, we deduce that U P C by p2q.
Choose a scallop decomposition

U0 Ñ U1 Ñ ¨ ¨ ¨ Ñ Un

for X . We prove by induction on i that each Ui belongs to C. When i “ 0, this follows from
p1q. Taking i “ n we will obtain the result. To carry out the inductive step, suppose that
Ui P C. Choose an excision square

V //

��

X

��
Ui // Ui`1

where X is affine and V is quasi-compact. The map V Ñ X is p´1q-truncated, so that V is
semiaffine and therefore V P C. It follows from p2q that Ui`1 P C, as desired.

2.5.4 Pushforwards of Quasi-Coherent Sheaves

We next introduce a hypothesis on morphisms f : X Ñ Y which will guarantee that the
pushforward f˚ preserves quasi-coherence (Proposition 2.5.4.3).

Definition 2.5.4.1. Let f : X Ñ Y be a morphism of nonconnective spectral Deligne-
Mumford stacks. We will say that f is relatively scalloped if, for every map SpétRÑ Y, the
fiber product XˆY SpétR admits a scallop decomposition.

Example 2.5.4.2. Every quasi-affine morphism is relatively scalloped (see Example 2.5.3.3).

Proposition 2.5.4.3. Let f : X “ pX ,OX q Ñ pY,OYq “ Y be a relatively scalloped
map of nonconnective spectral Deligne-Mumford stacks. Then the pushforward functor
f˚ : ModOX Ñ ModOY carries quasi-coherent sheaves to quasi-coherent sheaves. Moreover,
the induced functor f˚ : QCohpXq Ñ QCohpYq commutes with small colimits.

Proof. The assertion is local on Y; we may therefore assume without loss of generality
that Y “ SpétR is affine. For each object U P X , let ΓU : ModOX Ñ ModOY denote the
composite functor

ModOX Ñ ModOX |U pShvSppX {U qq Ñ ModOY .
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Let us say that U is good if ΓU restricts to a colimit-preserving functor from QCohpXq into
QCohpYq. The construction U ÞÑ ΓU carries pushout square to pullback squares. It follows
that the collection of good objects of X is stable under finite colimits. Since every affine
object of X is good (Proposition 2.5.1.1) and X admits a scallop decomposition, Corollary
2.5.3.6 implies that the final object of X is good.

In the situation of Proposition 2.5.4.3, we can also bound the cohomological amplitude
of the pushforward functor f˚:

Proposition 2.5.4.4. Let f : X “ pX ,OX q Ñ pY,OYq “ Y be a relatively scalloped map of
spectral Deligne-Mumford stacks. Assume that Y is quasi-compact. Then there exists an
integer n such that the pushforward functor f˚ : QCohpXq Ñ QCohpYq carries QCohpXqě0
into QCohpYqě´n.

Proof. Since Y is quasi-compact, we can choose an étale surjection SpétR Ñ Y for some
connective E8-ring R. Replacing Y by SpétR, we may assume that Y is affine so that X
admits a scallop decomposition. We define the class of good objects U P X as in the proof of
Proposition 2.5.4.3. For every good object U P X , let ΓU : QCohpXq Ñ QCohpYq be defined
as in the proof of Proposition 2.5.4.3. Let us say that U is n-good if ΓU pQCohpXqě0q Ď

QCohpYqě´n. Note that if we are given a pushout diagram

U //

��

U 1

��
V // V 1

in X , then we have a fiber sequence of functors

ΓU 1 ‘ ΓV Ñ ΓV 1 Ñ ΣΓU .

It follows that if U 1 and V are n-good and U is pn´ 1q-good, then V 1 is also n-good. Let us
say that a good object U P X is very good if it n-good for some integer n ě 0. It follows
that the collection of very good objects of X is closed under pushouts. Any affine object
of X is 0-good, and therefore very good. Using Corollary 2.5.3.6, we deduce that the final
object of X is very good, which implies the desired result.

The formation of pushforwards along a relatively scalloped morphism is compatible with
base change:

Proposition 2.5.4.5. Suppose we are given a pullback diagram of nonconnective spectral
Deligne-Mumford stacks

X1

f 1

��

g1 // X
f
��

Y1 g // Y
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where f (and therefore f 1) is relatively scalloped. Then the diagram of 8-categories

QCohpYq f˚ //

��

QCohpXq

��
QCohpY1q f 1˚ // QCohpX1q

is right adjointable. In other words, for every object F P QCohpXq, the canonical map
λ : g˚f˚F Ñ f 1˚g

1˚F is an equivalence in QCohpY1q.

Proof. The assertion is local on Y “ pY,OYq and Y1 “ pY 1,OY 1q; we may therefore assume
that Y “ SpétR and Y1 “ SpétR1 are affine. Write X “ pX ,OX q and X1 “ pX 1,OX 1q. Let
U P X be an object and U 1 “ g1˚U its pullback to X1. Define functors ΓU : ModOX Ñ ModOY

and ΓU 1 : ModOX 1
Ñ ModOY1

as in the proof of Proposition 2.5.4.3. Let us say that U P X
is good if the canonical map λU : g˚ΓU pF q Ñ ΓU 1pf 1˚F q is an equivalence of OY 1-modules.
Since the construction U ÞÑ λU carries finite colimits to finite limits, the collection of good
objects of X is closed under finite colimits. We wish to prove that the final object of X
is good. Since X admits a scallop decomposition, it will suffice to show that every affine
object of X is good (Corollary 2.5.3.6). We may therefore reduce to the case where X (and
therefore also X 1) are affine, in which case the desired assertion is a special case of Lemma
D.3.5.6.

Corollary 2.5.4.6. Let f : X Ñ Y be a quasi-affine map of nonconnective spectral Deligne-
Mumford stacks. Then the pushforward functor f˚ restricts to a colimit-preserving functor
f˚ : QCohpXq Ñ QCohpYq. Moreover, for every pullback diagram

X1 //

��

X

��
Y1 // Y,

the induced diagram

QCohpYq f˚ //

��

QCohpXq

��
QCohpY1q f 1˚ // QCohpX1q

is right adjointable.

Proof. Combine Proposition 2.5.4.3, Proposition 2.5.4.5, and Example 2.5.4.2.
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2.5.5 Categorical Digression

If f : pX ,OX q Ñ pY,OYq is an arbitrary morphism of spectrally ringed 8-topoi, then
the direct image functor f˚ : ModOX Ñ ModOY is lax symmetric monoidal. This is a
consequence of the following general categorical observation:

Proposition 2.5.5.1. Let F : Cb Ñ Db be a symmetric monoidal functor between sym-
metric monoidal 8-categories, and suppose that the underlying functor f : C Ñ D admits a
right adjoint g. Then g is lax symmetric monoidal: that is, it extends naturally to a map of
8-operads G : Db Ñ Cb.

Proof. Consider the diagram

Cb F //

p

##

Db

{{
F in˚ .

For every object xny P F in˚, the induced map Cb
xny Ñ D

b
xny can be identified with fn : Cn Ñ

Dn, and therefore admits a right adjoint gn : Dn Ñ Cn. Since F carries p-coCartesian
morphisms to q-coCartesian morphisms, Proposition HA.7.3.2.6 guarantees the existence of
a functor G : Db Ñ Cb which is a right adjoint of F relative to F in˚. In particular, G|D is
a right adjoint to f and we may therefore assume that G|D “ g. To see that G is a map of
8-operads, it suffices to observe that for every injection xmy˝ ãÑ xny˝, the diagram

Cn //

��

Dn

��
Cm // Dm

is right adjointable.

Remark 2.5.5.2. In the situation of Proposition 2.5.5.1, F and G determine adjoint functors

CAlgpCq //CAlgpDq.oo

Corollary 2.5.5.3. Let F : Cb Ñ Db be a symmetric monoidal functor between symmetric
monoidal 8-categories, and suppose that the underlying functor f : C Ñ D admits a right
adjoint g; let G : Db Ñ Cb be the resulting map of 8-operads. Then:

p1q If 1 denotes the unit object of D, then A “ gp1q has the structure of a commutative
algebra object of C.

p2q The functor G factors as a composition

Db » Mod1pDqb Ñ ModApCqb Ñ Cb .
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Example 2.5.5.4. Let f : X Ñ Y be a morphism of spectrally ringed 8-topoi. Then the
direct image functor f˚ : ModOX Ñ ModOY is lax symmetric monoidal, and therefore factors
as a composition

ModOX Ñ Modf˚ OX Ñ ModOY .

If X and Y are spectral Deligne-Mumford stacks and f is relatively scalloped, then the
induced map f˚ : QCohpXq Ñ QCohpYq is lax symmetric monoidal, and canonically factors
as a composition QCohpXq Ñ Modf˚ OXpQCohpYqq Ñ QCohpYq.

2.5.6 The Quasi-Affine Case

We now describe some consequences of Proposition 2.5.4.5 in the case where f : X Ñ Y
is a quasi-affine morphism of spectral Deligne-Mumford stacks.

Proposition 2.5.6.1. Let f : X “ pX ,OX q Ñ Y be a quasi-affine map of spectral Deligne-
Mumford stacks. Then the induced functor QCohpXq Ñ Modf˚ OX pQCohpYqq is an equiva-
lence of 8-categories.

Proof. The assertion is local on Y. We may therefore assume that Y “ SpétR is affine, so
that X is quasi-affine and the desired result follows from Proposition 2.4.1.4.

Proposition 2.5.6.2. Let f : X Ñ Y be a quasi-affine morphism between spectral Deligne-
Mumford stacks, and let F be a quasi-coherent sheaf on X. Then F belongs to QCohpXqď0
if and only if the direct image f˚F belongs to QCohpYqď0.

Proof. Since the pullback functor f˚ is right t-exact, the right adjoint f˚ is left t-exact.
Consequently, the “only if” direction is tautological (and does not require the assumption
that f is quasi-affine). Conversely, suppose that f˚F belongs to QCohpYqď0; we wish to
show that F belongs to QCohpXqď0. By virtue of Proposition 2.5.4.5, we can work locally
on Y and thereby reduce to the case where Y “ SpétA for some connective E8-ring A. Since
f is quasi-affine, we can factor f as a composition

X f 1
Ñ SpétB f2

Ñ SpétA

for some connective E8-ring B, where f 1 is a quasi-compact open immersion. Since the
functor f2˚ is t-exact and conservative, it follows that f 1˚F belongs to QCohpSpétBqď0.
Because f 1 is an open immersion, the diagram

X id //

id
��

X
f 1

��
X f 1 // SpétB
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is a pullback square. Applying Proposition 2.5.4.5, we deduce that F can be identified
with the pullback f 1˚f 1˚F , and therefore belongs to f 1˚QCohpSpétBqď0 Ď QCohpXqď0 as
desired.

Corollary 2.5.6.3. Let f : X Ñ Y be a quasi-affine morphism between spectral Deligne-
Mumford stacks. Then QCohpXqcn is the smallest full subcategory of QCohpXq which is closed
under colimits and extensions and contains the pullback f˚F for each F P QCohpYqcn.

Proof. By virtue of Proposition HA.1.4.4.11 , the 8-category QCohpXq admits a t-structure
pQCoh1pXq,QCoh2pXqq, where QCoh1pXq is the smallest full subcategory of QCohpXq which
is closed under colimits and extensions and contains f˚QCohpYqcn, and QCoh2pXq is the full
subcategory of QCohpXq spanned by those sheaves G having the property that the groups
ExtnQCohpXqpf

˚F ,G q vanish for n ă 0 and every connective object F P QCohpYq. Using
the identification ExtnQCohpXqpf

˚F ,G q » ExtnQCohpYqpF , f˚ G q, we deduce that G belongs to
QCoh2pXq if and only if f˚ G P QCohpYqď0. Applying Proposition 2.5.6.2, we deduce that
QCoh2pXq “ QCohpXqď0, so that the t-structure pQCoh1pXq,QCoh2pXqq coincides with the
t-structure of Proposition 2.2.5.2 and therefore QCoh1pXq “ QCohpXqcn.

Corollary 2.5.6.4. Let X “ pX ,OX q be a quasi-affine spectral Deligne-Mumford stack.
Then QCohpXqcn is the smallest full subcategory of QCohpXq which contains the unit object
OX and is closed under colimits and extensions.

Proof. Apply Corollary 2.5.6.3 in the special case where Y “ SpétS, where S denotes the
sphere spectrum.

2.5.7 Compositions of Quasi-Affine Morphisms

We now show that the collection of quasi-affine morphisms is closed under composition.

Lemma 2.5.7.1. Let f : X Ñ Y be a quasi-affine morphism of spectral Deligne-Mumford
stacks, and set A “ τě0f˚OX. Then the canonical map X Ñ Specét

Y A (see Construction
2.5.1.3) is a quasi-compact open immersion.

Proof. The assertion is local on Y. We may therefore assume that Y is affine, in which case
the desired result follows from Proposition 2.4.1.3 (and the proof of Proposition 2.4.2.3).

Lemma 2.5.7.2. Let f : X Ñ Y be an affine morphism of spectral Deligne-Mumford stacks.
If Y is quasi-affine, then X is quasi-affine.
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Proof. Set A “ ΓpY; OYq and B “ ΓpX; OXq, so that we have a commutative diagram of
nonconnective spectral Deligne-Mumford stacks σ :

X

f

��

g // SpétB

��
Y g0 // SpétA.

Note that B can be identified with the image of f˚OX under the equivalence QCohpYq »
ModA of Proposition 2.5.6.1. Write Y “ pY,OYq. For every affine object U P Y, we obtain
an equivalence

OXpf
˚Uq » pf˚OXqpUq » OYpUq bA B,

so that the outer rectangle in the associated diagram

XˆY YU //

��

X

f
��

g // SpétB

��
YU // Y g0 // SpétA

is a pullback square, where YU “ pY{U ,OY |U q. Allowing U to vary, we deduce that σ is a
pullback square. Since the map g0 is a quasi-compact open immersion (Proposition 2.4.1.3),
it follows that g is a quasi-compact open immersio, so that X is quasi-affine as desired.

Proposition 2.5.7.3. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Suppose that Y is quasi-affine and that f is quasi-affine. Then X is quasi-affine.

Proof. Set A “ τě0f˚OX. Regard A as a a commutative algebra object of QCohpYqcn,
and set X1 “ SpétY A (see Construction 2.5.1.3). Lemma 2.5.7.1 implies that the canonical
map X Ñ X1 is a quasi-compact open immersion. It will therefore suffice to show that X1 is
quasi-affine, which follows from Lemma 2.5.7.2.

Proposition 2.5.7.4. Suppose we are given a commutative diagram of spectral Deligne-
Mumford stacks

Y
g

��
X

f
??

h // Z,

where g is quasi-affine. Then f is quasi-affine if and only if h is quasi-affine.

Proof. Suppose first that f is quasi-affine; we wish to show that h is quasi-affine. Equivalently,
we wish to show that for every map SpétR Ñ Z, the fiber product SpétR ˆZ X is quasi-
affine. Our hypothesis on g guarantees that SpétR ˆZ Y is quasi-affine. The projection
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map SpétR ˆZ X Ñ SpétR ˆZ Y is a pullback of f and is therefore quasi-affine, so that
SpétRˆZ X is quasi-affine by virtue of Proposition 2.5.7.3.

Now suppose that h is quasi-affine; we wish to show that f has the same property.
Choose a map η : SpétR Ñ Y; we wish to show that the fiber product SpétR ˆY X is
quasi-affine. Our hypotheses on g and h imply that the fiber products XR “ SpétR ˆZ X
and YR “ SpétRˆZ Y are quasi-affine, and we have a pullback diagram

SpétRˆY X //

��

SpétR

��
XR // YR .

Since YR is quasi-affine, the right vertical map is affine. It follows that the left vertical map
is also affine, so that SpétRˆY X is quasi-affine by virtue of Lemma 2.5.7.2.

2.5.8 Pushforwards of Truncated Quasi-Coherent Sheaves

If we are willing to restrict our attention to truncated quasi-coherent sheaves on spectral
Deligne-Mumford stacks, then we can verify the quasi-coherence of direct images under
conditions much weaker than those of Proposition 2.5.4.3:

Theorem 2.5.8.1. Let f : pY,OYq Ñ pX ,OX q be a map of spectral Deligne-Mumford
stacks which is 8-quasi-compact. Then the induced functor f˚ : ModOY Ñ ModOX carries
QCohpYqď0 into QCohpX qď0.

The proof of Theorem 2.5.8.1 will require the following somewhat technical definition:

Definition 2.5.8.2. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. We let Mod♥
OX

denote the heart of the 8-category ModOX : it can be identified with (the nerve of) the
abelian category of sheaves of discrete modules over π0 OX . We will say that an object
of Mod♥

OX
is quasi-coherent if it belongs to QCohpXq♥ “ QCohpXq XMod♥

OX
. We will say

that an object F P Mod♥
OX

is semicoherent if, for every affine object U P X , there exists a
composition series

0 “ F 0 ãÑ F 1 ãÑ ¨ ¨ ¨ ãÑ Fn “ F |U

such that each quotient F i {F i´1 is a subobject of some quasi-coherent object G i P

QCohpUq♥, where U “ pX {U ,OX |U q.

Theorem 2.5.8.1 admits the following refinement:

Theorem 2.5.8.3. Let f : pY,OYq Ñ pX ,OX q be an n-quasi-compact morphism between
spectral Deligne-Mumford stacks. Let F P pModOY qď0 be sheaf of OY -modules satisfying the
following conditions:
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paq For 0 ď i ă n, π´i F is quasi-coherent.

pbq The sheaf π´n F is semicoherent.

Then the direct image f˚F also satisfies conditions paq and pbq.

Proof of Theorem 2.5.8.1. Combine Theorem 2.5.8.3 with the quasi-coherence criterion of
Proposition 2.2.6.1.

The proof of Theorem 2.5.8.3 will require a few preliminaries. Let X “ pX ,OX q be a
spectral Deligne-Mumford stack. Since the t-structure on ModOX restricts to a t-structure
on the full subcategory QCohpXq, we can identify QCohpXq♥ with a full subcategory of
the abelian category Mod♥

OX
which is closed under the formation of kernels, cokernels, and

extensions. Our first goal is to extend these observations to semicoherent sheaves.

Lemma 2.5.8.4. Let X “ pX ,Oq be a spectral Deligne-Mumford stack, and suppose we are
given a morphism α : F Ñ G in the abelian category Mod♥

O . If F is quasi-coherent and G

is semicoherent, then the kernel kerpαq and the image impαq (formed in the abelian category
Mod♥

O) are quasi-coherent.

Proof. The assertion is local on X ; we may therefore assume that X is affine so that there
exists a finite filtration

0 “ G 0 ãÑ G 1 ãÑ ¨ ¨ ¨ ãÑ G n “ G

such that each quotient G i {G i´1 is a subobject of a quasi-coherent object H i P QCohpXq♥.
Let Ki denote the kernel of the composite map

F
α
Ñ G Ñ G {G i .

For each index i, α induces a monomorphism

Ki {Ki´1 ãÑ G i {G i´1 Ñ H i .

Thus Ki´1 can be identified with the kernel of a map Ki Ñ H i. Note that Kn » F is
quasi-coherent. It follows by descending induction on i that each Ki is quasi-coherent. In
particular, K0 “ kerpαq is quasi-coherent. Using the exact sequence

0 Ñ kerpαq Ñ F Ñ impαq Ñ 0,

we see that impαq is quasi-coherent as well.

Lemma 2.5.8.5. Let X “ pX ,Oq be a spectral Deligne-Mumford stack, and suppose we are
given an exact sequence

0 Ñ F 1 Ñ F Ñ F 2 Ñ 0

in the abelian category Mod♥
O .
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paq If F 1 and F 2 are psuedo-coherent, then F is semicoherent.

pbq If F is semicoherent, then F 1 is semicoherent.

pcq If F 1 is quasi-coherent and F is semicoherent, then F 2 is semicoherent.

Proof. Assertion paq follows immediately from the definitions. We next prove pbq. Without
loss of generality, we may assume that X is affine. Then F admits a finite filtration

0 “ F 0 ãÑ ¨ ¨ ¨ ãÑ Fn “ F

and a collection of monomorphisms F i {F i´1 ãÑ G i, where G i P QCohpXq♥. Let us regard
F i and F 1 as subobjects of F , and set F 1

i “ F iXF 1. Then we have a filtration

0 “ F 1
0 ãÑ ¨ ¨ ¨ ãÑ F 1

n “ F 1

where each quotient F 1
i {F

1
i´1 is equivalent to a subobject of F i {F i´1, and therefore to a

subobject of G i. This proves that F 1 is semicoherent.
It remains to prove pcq. Again we may assume without loss of generality that X is

affine, so that F and F 1 admit composition series as indicated above. We first prove by
descending induction on i that each F 1

i is quasi-coherent. The result is obvious for i “ n,
since F 1

n » F 1. For the inductive step, we note that F 1
i can be described as the kernel of a

map F 1
i`1 Ñ F i`1 {F i ãÑ G i, and is therefore quasi-coherent. It follows that each of the

quotients F 1
i {F

1
i´1 is quasi-coherent. Form a short exact sequence

0 Ñ F 1
i {F

1
i´1 Ñ G i Ñ H i Ñ 0,

so that each H i is quasi-coherent. Let F 2
i denote the image of F i in F 2. Then we have a

finite filtration
0 “ F 2

0 ãÑ ¨ ¨ ¨ ãÑ F 2
n “ F 2 .

For each index i, the monomorphism F i {F i´1 ãÑ G i induces a monomorphism F 2
i {F

2
i´1 Ñ

H i. It follows that F 2 is semicoherent, as desired.

Lemma 2.5.8.6. Let f : pY,OYq Ñ pX ,OX q be an affine morphism between spectral
Deligne-Mumford stacks. Let F P pModOY qď0 be such that π0 F is semicoherent. Then
pf˚F q P pModOX qď0, and π0pf˚F q is semicoherent.

Proof. We first note that the pushforward functor f˚ is left t-exact. Let F P pModOY qď0 be
such that π0 F is semicoherent; we wish to prove that π0pf˚F q is semicoherent. Since f˚ is
left t-exact, the map f˚pτě0 F q Ñ f˚F induces an equivalence π0f˚pτě0 F q Ñ π0pf˚F q.
We may therefore replace F by τě0 F and thereby reduce to the case F P Mod♥

OY
. We may

assume without loss of generality that pX ,OX q is affine. Since f is affine, we deduce that
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pY,OYq is affine, so that F » π0 F admits a composition series F » π0 F is semicoherent,
we can choose a composition series

0 “ F 0 ãÑ ¨ ¨ ¨ ãÑ Fn » F

where each quotient admits a monomorphism F i {F i´1 ãÑ G i foe some quasi-coherent
object G i P Mod♥

OY
. Since f˚ is left t-exact, we get an induced filtration

0 “ π0f˚F 0 ãÑ ¨ ¨ ¨ ãÑ π0f˚Fn “ π0f˚F

where each successive quotient pπ0f˚F iq{pπ0f˚F i´1q admits a monomorphism

pπ0f˚F iq{pπ0f˚F i´1q ãÑ π0f˚pF i {F i´1q ãÑ π0f˚ G i .

It now suffices to observe that π0f˚ G i is a quasi-coherent OX -module (Corollary 2.5.4.6).

Proof of Theorem 2.5.8.3. Without loss of generality, we may assume that pX ,OX q is affine.
We proceed by induction on n. Then the 8-topos Y is n-coherent, and in particular
quasi-compact. We may therefore choose an effective epimorphism u : U0 Ñ 1 in Y, where
1 denotes the final object and pY{U0 ,OY |U0q is affine. Let U‚ denote the Čech nerve of
u. For each k ě 0, let fk : pY{Uk ,OY |Ukq Ñ pX ,OX q be the map induced by f , and let
G k “ fk˚ pF |Ukq P pModOX qď0. We obtain a cosimplicial object G ‚ of pModOX qď0 whose
totalization is equivalent to f˚F . Applying Proposition HA.1.2.4.5 and Variant HA.1.2.4.9 ,
we deduce the existence of a spectral sequence tEp,qr , drurě1 in the abelian category Mod♥

OX
with the following properties:

piq We have Ep,q1 » π´q G p for p, q ě 0, and Ep,q1 » 0 otherwise.

piiq The differentials dr have bidegree pr, 1´ rq: that is, they carry Ep,qr into Ep`r,q´r`1
r .

piiiq The spectral sequence tEp,qr , drurě1 converges to π´p´qf˚F in the following sense: for
every integer k ě 0, there exists a finite filtration

0 “ F´1π´kpf˚F q ãÑ F 0π´kpf˚F q ãÑ ¨ ¨ ¨ ãÑ F kπ´kpf˚F q “ π´kpf˚F q

in the abelian category Mod♥
OX

such that each successive quotient F qπ0pf˚F q{F q´1π0pf˚F q

is isomorphic to Ek´q,qr for r " 0.

Since Y is n-coherent, each of the objects Uq P Y is pn´ 1q-coherent. Using the inductive
hypothesis and piq, we deduce:

pivq The objects Ep,q1 are quasi-coherent for q ă n´ 1 and semicoherent for q “ n´ 1.

When p “ 0 we can do a bit better: since pY{U0 ,OY |U0q is affine, Lemma 2.5.8.6 gives:
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pvq The objects E0,q
1 are quasi-coherent for q ă n and semicoherent for q “ n.

We now prove the following statement by induction on r:

p˚q The object Ep,qr is psuedo-coherent if p` q “ n, and quasi-coherent if p` q ă n.

In the case r “ 1, assertion p˚q follows from pivq, pvq, and piq. In the general case, we can
describe Ep,qr as the cohomology of a cochain complex

Ep´r,q`r´1
r´1

α
Ñ Ep,qr´1

β
Ñ Ep`r,q´r`1

r´1 .

so that we have an exact sequence

0 Ñ impαq Ñ kerpβq Ñ Ep,qr Ñ 0.

If p` q ă n, then Ep,qr´1 and Ep´r,q`r´1
r´1 are quasi-coherent and Ep`r,q´r`1

r´1 is semicoherent
(by the inductive hypothesis). It follows that impαq and kerpβq are quasi-coherent (Lemma
2.5.8.5), so that Ep,qr is quasi-coherent. If p`q “ n, then the inductive hypothesis guarantees
instead that Ep´r,q`r´1

r´1 is quasi-coherent and Ep,qr is semicoherent. Lemma 2.5.8.4 then
guarantees that impαq is quasi-coherent and Lemma 2.5.8.5 guarantees that kerpβq is
semicoherent, so that Ep,qr is semicoherent by Lemma 2.5.8.5.

Using p˚q and p3q, we deduce that π´kf˚F admits a finite filtration by objects of
Mod♥

OX
which are quasi-coherent if k ă n and semicoherent if k “ n. Since the classes of

quasi-coherent and semicoherent objects of Mod♥
OX

are stable under extensions (Lemma
2.5.8.5), we conclude that π´kf˚F is quasi-coherent for k ă n and semicoherent for k “ n,
as desired.

2.5.9 Connectivity Hypotheses

We conclude this section with a few remarks about the behavior of the pushforward
functor f˚ in the case where f : X Ñ Y is a “highly connected” affine morphism.

Proposition 2.5.9.1. Let X “ pX ,OX q and Y “ pY,OYq be spectral Deligne-Mumford
stacks. Let f : X Ñ Y be an affine morphism, let n ě 0 be an integer, and suppose that the
fiber of the map OY Ñ f˚OX is n-connective. Then:

p1q The pushforward functor f˚ : QCohpXqcn
ďn Ñ QCohpYqcn

ďn is fully faithful.

p2q The pushforward functor f˚ : QCohpXqcn
ďn´1 Ñ QCohpYqcn

ďn´1 is an equivalence of
8-categories.

Proof. The assertion is local on Y, so we may assume without loss of generality that Y is
affine. Write Y “ SpétA for some connective E8-ring A. Since f is affine, we can assume
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X “ SpétB for some connective A-algebra B. Let u : AÑ B denote the underlying map of
E8-rings, so that fibpuq is an n-connective spectrum. To prove p1q, we must show that the
forgetful functor φn : pModcn

B qďn Ñ pModcn
A qďn is fully faithful. We observe that φn has a left

adjoint ψn, given by M ÞÑ τďnpBbAMq. We wish to show that the counit map ψn ˝φn Ñ id
is an equivalence. Unwinding the definitions, we must show that if M P pModcn

B qďn, then
the canonical map θ : B bAM ÑM exhibits M as an n-truncation of B bAM . Since M is
n-truncated, this is equivalent to the requirement that fibpθq is pn` 1q-connective. Let θ0 be
the multiplication map B bA B Ñ B, so that fibpθq » fibpθ0q bB M . Since M is connective,
it will suffice to show that fibpθ0q is pn` 1q-connective. Note that θ0 admits a section s, so
we can identify fibpθ0q with the cofibpsq “ B bA cofibpuq. We complete the proof of p1q by
observing that cofibpuq “ Σ fibpuq is pn` 1q-connective.

We now prove p2q. Let φn´1 and ψn´1 be defined as above; we wish to show that
the unit map id Ñ φn´1 ˝ ψn´1 is an equivalence. In other words, we wish to show that
if N P pModcn

A qďn´1, then the canonical map N Ñ B bA N induces an isomorphism
πiN Ñ πipB bA Nq for i ă n. We have a long exact sequence

πipfibpuq bA Nq Ñ πiN Ñ πipB bA Nq Ñ πi´1pfibpuq bA Nq.

It therefore suffices to show that the homotopy groups πipfibpuq bA Nq vanish for i ă n.
This is clear, since fibpuq is n-connective and N is connective.

Corollary 2.5.9.2. Let X “ pX ,OX q and Y “ pY,OYq be spectral Deligne-Mumford stacks.
Let f : X Ñ Y be a morphism which induces an equivalence of 8-topoi X » Y and an
equivalence of n-truncations τďn OY » τďnf˚OX . Then the pushforward functor f˚ induces
an equivalence of 8-categories QCohpXqcn

ďn » QCohpYqcn
ďn.

Proof. Let τďn X “ pX , τďn OX q and define τďn Y similarly, so that we have a commutative
diagram

τďn X //

φ
��

τďn Y
ψ
��

X // Y
where the upper horizontal map is an equivalence. It will therefore suffice to show that the
vertical maps induce equivalences of 8-categories

φ˚ : QCohpτďn Xqcn
ďn Ñ QCohpXqcn

ďn ψ˚ : QCohpτďn Yqcn
ďn Ñ QCohpYqcn

ďn.

Both of these assertions follow immediately from Proposition 2.5.9.1.

Corollary 2.5.9.3. Let X “ pX ,OXq be a spectral Deligne-Mumford stack. For each n ě 0,
set Xn “ pX , τďn OXq. Then the canonical maps in : Xn Ñ X induce an equivalence
QCohpXqcn Ñ lim

ÐÝ
QCohpXnqcn.

Proof. Combine Corollary 2.5.9.2 with Proposition 2.2.5.4.



246 CHAPTER 2. QUASI-COHERENT SHEAVES

2.6 Classification of Quasi-Affine Spectral
Deligne-Mumford Stacks

It follows from Corollary 2.4.2.2 that a quasi-affine spectral Deligne-Mumford stack
pX ,OX q can be recovered from the E8-ring ΓpX ; OX q of global sections of its structure sheaf.
Our goal in this section is to prove a more precise result of Bhatt and Halpern-Leistner (see
[27]). First, we recall a bit of terminology.

Definition 2.6.0.1. Let R be an E8-ring. We will say that an object A P CAlgR is
idempotent if the multiplication map m : AbR AÑ A is an equivalence.

Theorem 2.6.0.2. Let QAff denote the full subcategory of SpDM spanned by the quasi-affine
spectral Deligne-Mumford stacks. Then the construction pX ,OX q ÞÑ ΓpX ; OX q determines
fully faithful functor ρ : QAffop Ñ CAlg. Moreover, the following conditions on an object
A P CAlg are equivalent:

p1q The E8-ring A belongs to the essential image of the functor ρ.

p2q The E8-ring A is p´nq-connective for n " 0 and A is a compact idempotent object of
CAlgτě0A.

p3q The E8-ring A is p´nq-connective for n " 0 and there exists a connective E8-ring R
and a morphism RÑ A which exhibits A as a compact idempotent object of CAlgR.

We will deduce Theorem 2.6.0.2 from the following more precise result, which we will
prove at the end of this section.

Proposition 2.6.0.3. Let R be a connective E8-ring and let SpecR “ p|SpecR|,Oq be
its Zariski spectrum (Example 1.1.1.2). Then the construction U ÞÑ OpUq determines a
fully faithful embedding from the set of quasi-compact open subsets of |SpecA| (ordered
by reverse inclusion) to the full subcategory of CAlgR spanned by those object which are
compact, idempotent, and p´nq-connective for some n " 0.

Proof of Theorem 2.6.0.2 from Proposition 2.6.0.3. If X “ pX ,OX q and Y “ pY,OYq are
spectral Deligne-Mumford stacks for which pX ,OX q is quasi-affine, then the canonical map

MapSpDMpY,Xq Ñ MapSpDMncpY, Spét ΓpX ; OX qq » MapCAlgpΓpX ; OX q,ΓpY; OYq

is a homotopy equivalence by virtue of Corollary 2.4.2.2. This proves that the global sections
functor ρ : QAffop Ñ CAlg is fully faithful.

According to Proposition 2.4.2.3, a spectral Deligne-Mumford stack X “ pX ,OX q is
quasi-affine if and only if there exists a quasi-compact open immersion X ãÑ SpétR, for some
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connective E8-ring R. Consequently, the equivalence of conditions p1q and p3q follows from
Proposition 2.6.0.3. The implication p2q ñ p3q is obvious, and the implication p1q ñ p2q
follows from Proposition 2.6.0.3 together with the observation that if X is quasi-affine, then
the canonical map the canonical map X Ñ Spét τě0ΓpX ; OX q is an open immersion (see
Proposition 2.4.1.3).

2.6.1 The Case of a Noetherian Commutative Ring

We begin by discussing the classification of idempotent R-algebras in the case where R is
a Noetherian commutative ring, following Hopkins and Neeman (see [98], [160], and [197]).

Notation 2.6.1.1. Let R be a connective E8-ring. For each point x P |SpecR|, we let
κpxq denote the residue field of the commutative ring π0R at the point x. If A P CAlgR is
idempotent, we let SupppAq denote the set tx P |SpecR| : AbR κpxq ‰ 0u. We will refer to
SupppAq as the support of A.

Theorem 2.6.1.2. Let R be a commutative Noetherian ring. Then the construction A ÞÑ

SupppAq induces an equivalence from the full subcategory CAlgIdem
R Ď CAlgR spanned by the

idempotent objects to the collection of U Ď |SpecR| which are closed under generalization
(meaning that x P tyu X U implies y P U), ordered by reverse inclusion.

The proof of Theorem 2.6.1.2 will require some preliminaries.

Lemma 2.6.1.3. Let R be a Noetherian commutative ring and let M P ModR. Assume
that, for every residue field κ of R, the tensor product κbRM vanishes. Then M » 0.

Proof. We will prove that for every ideal I Ď R, the tensor product R{I bR M vanishes.
Since R is Noetherian, we may proceed by induction: to prove that R{I bRM » 0, we may
assume that R{J bRM » 0 for every ideal I 1 Ď R containing I. Replacing R by R{I and
M by R{I bRM , we may assume that R{I 1 bRM » 0 for every nonzero ideal I 1 Ď R, and
we wish to prove that M » 0.

Let J Ď R be maximal among those ideals for which the tensor product JbRM vanishes.
We wish to prove that J “ R. Assume otherwise. Then R{J has an associated prime p of
R, so that p occurs as the annihilator of an element element x P R{J . Let J 1 Ď R denote
the inverse image of the cyclic module Rx Ď R{I, so that J 1 is an ideal of R which properly
contains J . We have a short exact sequence of discrete R-modules

0 Ñ J Ñ J 1 Ñ R{pÑ 0,

hence a fiber sequence
J bRM Ñ J 1 bRM Ñ R{pbRM.
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To obtain a contradiction, it will suffice to show that J 1 bRM vanishes. Since J bRM » 0,
we are reduced to proving that R{p bRM » 0. We may therefore replace R by R{p and
thereby reduce to the case where R is an integral domain.

Since R is an integral domain, we have a short exact sequence of discrete R-modules

0 Ñ R
y
Ñ RÑ R{Ry Ñ 0.

It follows that R{Ry bRM is the cofiber of the map φy : M ÑM given by multiplication
by y. Since Ry is a nonzero ideal of R, the tensor product R{Ry bRM vanishes. It follows
that φy is invertible.

Let K denote the fraction field of R. Then K is flat as an R-module, so the canonical
map K bR π˚M Ñ π˚pK bRMq is an isomorphism. Since every nonzero element of R acts
invertibly on π˚R, it follows that the map π˚M Ñ π˚pK bRMq is an isomorphism. Then
M » K bRM » 0, since K is a residue field of R.

Corollary 2.6.1.4. Let R be a Noetherian E8-ring and let M be an almost connective
R-module. Suppose that for every residue field κ of π0R, the tensor product κbRM vanishes.
Then M » 0.

Proof. Assume that M ‰ 0. There exists some smallest integer n such that πnM is nonzero.
Then πnpπ0RbRMq » πnM is also nonzero. Invoking Lemma 2.6.1.3, we deduce that there
exists a residue field κ of π0R such that

κbπ0R pπ0RbRMq » κbRM

is nonzero.

Warning 2.6.1.5. In the situation of Corollary 2.6.1.4, the hypothesis that M is almost
connective cannot be removed. For example, let K denote the complex K-theory spectrum
and let K{p denote the cofiber of the map K Ñ K given by multiplication by a prime
number p. Then K{p can be regarded as a module over the sphere spectrum S, and this
module has the property that κ bS K{p “ κ bK{p » 0 for every field κ (in other words,
spectrum K{p has vanishing homology with coefficients in any field).

Lemma 2.6.1.6. Let κ be a field and let A P CAlgκ be an idempotent object. Then either
A » 0 or the unit map e : κÑ A is an equivalence.

Proof. Since A is idempotent, the canonical map A » Abκ κÑ Abκ A is an equivalence.
Passing to cofibers, we deduce that Abκ cofibpeq » 0. If A is nonzero, then it contains κ as
a direct summand (in the 8-category Modκ) so that κbκ cofibpeq » cofibpeq vanishes and
therefore e is an equivalence.
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Lemma 2.6.1.7. Let R be a Noetherian commutative ring and let φ : AÑ B be a morphism
in CAlgR. If A and B are idempotent and SupppAq “ SupppBq, then φ is an equivalence.

Proof. By virtue of Lemma 2.6.1.3, it will suffice to show that φ induces an equivalence
AbR κÑ B bR κ for every residue field κ of R. This follows from Lemma 2.6.1.6 and our
assumption that SupppAq “ SupppBq.

Proof of Theorem 2.6.1.2. We first note that if A,B P CAlgR and A is idempotent, then
the mapping space MapCAlgRpA,Bq is either empty or contractible: this follows from the
observation that the diagonal map

MapCAlgRpA,Bq Ñ MapCAlgRpA,Bq ˆMapCAlgRpA,Bqq » MapCAlgRpAbR A,Bq

is a homotopy equivalence. It will therefore suffice to verify the following:

paq For A,B P CAlgIdem
R , the mapping space MapCAlgRpA,Bq is nonempty if and only if

SupppAq Ě SupppBq.

pbq A subset U Ď |SpecR| has the form SupppAq for some A P CAlgIdem
R if and only if U

is closed under generalization.

We first prove paq. Let A and B be idempotent E8-algebras over R. If there exists
a morphism φ : A Ñ B, then for every residue field κ of π0A there is an induced map
A bR κ Ñ B bR κ. Consequently, if A bR κ » 0, then we also have B bR κ. This proves
that SupppAq Ě SupppBq.

For the converse, suppose that SupppAq Ě SupppBq. Then SupppAbR Bq “ SupppAq X
SupppBq “ SupppBq. It follows from Lemma 2.6.1.7 that the natural map B Ñ A bR B

is an equivalence, so that there exists a morphism AÑ AbR B » B. This completes the
proof of paq.

We now prove pbq. Suppose first that A P CAlgIdem
R : we will show that the support

SupppAq is closed under generalization. Choose points x, y P | SpecR| such that x P
tyu X SupppAq; we wish to show that y P SupppAq. Using Lemma ??, we can choose a
ring homomorphism R Ñ R1, where R1 is a discrete valuation ring and the induced map
| SpecR1| Ñ |SpecR| carries the closed point of |SpecR1| to x and the generic point of
| SpecR1| to y. Replacing A by AbR R1 P CAlgR1 , we can reduce to the case where R “ R1

is a discrete valuation ring. Let π be a uniformizer of R. If SupppAq does not contain
the generic point of | SpecR|, then Arπ´1s » 0 and therefore multiplication by π is locally
nilpotent on π0A. Since A ‰ 0, it follows that π0A contains a nonzero element which is
annihilated by π. Using the exactness of the sequence

π1pAbR pR{πqq Ñ π0A
π
ÝÑ π0A,
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we conclude that π1pAbR pR{πqq ‰ 0. This contradicts Lemma 2.6.1.6, since AbR pR{πq is
an idempotent E8-algebra over the residue field R{π.

Now suppose that U Ď | SpecR| is stable under generalization; we wish to prove that
U “ SupppAU q for some AU P CAlgIdem

R . We first consider the case where U is an open
subset of | SpecR|. Since R is Noetherian, the open set U is automatically quasi-compact
and therefore determines a quasi-affine open substack U Ď SpétR. Let AU denote the
E8-algebra of global sections of the structure sheaf of U. Note that the diagonal map
U Ñ UˆSpétR U is an equivalence. Using Proposition 2.5.4.5 (and Example 2.5.3.3), we
deduce that AU is an idempotent object of CAlgR satisfying SupppAU q “ U .

We now treat the general case. Let U be a subset of | SpecR| which is stable under
generalization. For every open set V Ď |SpecR| containing U , let AV P CAlgIdem

R be defined
as above. Then the construction V ÞÑ AV is functorial (this follows from assertion paq;
alternatively, we can observe that AV is the value of the structure sheaf of SpétR on V ).
Then A “ lim

ÝÑUĎV
AV is a filtered colimit of idempotent objects of CAlgR, hence idempotent.

Unwinding the definitions, we deduce that SupppAq “
Ş

UĎV SupppAV q “
Ş

UĎV V , where
the intersection is taken over all open neighborhoods of U in |SpecR|. Since U is closed
under generalization, this intersection is equal to U .

Warning 2.6.1.8. If R is a non-Noetherian commutative ring, then the support of an
idempotent object A P CAlgR need not be stable under generalization. For example, if R is
a valuation ring with value group Q, then the residue field of R is an idempotent R-algebra
which is supported at the closed point of |SpecR|.

2.6.2 The Case of a Commutative Ring

If R is a non-Noetherian commutative ring, then it is not so easy to describe the
idempotent objects of CAlgR. However, there is still a simple classification of compact
idempotent objects:

Proposition 2.6.2.1. Let R be a connective E8-ring and let O P ShvCAlgp| SpecR|q denote
the structure sheaf of SpecR (regarded as a spectral scheme). Then the construction U ÞÑ

OpUq induces a fully faithful embedding from the category of quasi-compact open subsets
of | SpecR| (ordered by reverse inclusion) to the full subcategory of CAlgR spanned by the
compact idempotent objects. If R is discrete, then this functor is an equivalence.

Proof. Unwinding the definitions, we must verify the following:

paq For every quasi-compact open subset U Ď |SpecR|, the algebra OpUq P CAlgR is
compact and idempotent.

pbq For every pair of quasi-compact open subsets U, V Ď |SpecR|, the mapping space
MapCAlgRpOpUq,OpV qq is contractible if V Ď U and empty otherwise.
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pcq If R is discrete, then every compact idempotent object A P CAlgR has the form OpUq

for some quasi-compact open subset U Ď |SpecR|.

We begin by verifying paq. Note that each open subset U Ď | SpecR| determines an open
substack U of SpétR, and we can identify OpUq with the E8-ring of global sections of the
structure sheaf of U. If U is quasi-compact, then U is quasi-affine. Applying Proposition
2.5.4.5 and Example 2.5.3.3, we can identify OpUq bR OpUq with the E8-ring of global
sections of the structure sheaf of UˆSpétR U. Since the diagonal map U Ñ UˆSpétR U is an
equivalence, it follows that OpUq P CAlgR is idempotent.

We next show that OpUq is a compact object of CAlgR. Since U is quasi-compact, it
can be identified with the complement of the vanishing locus of a finitely generated ideal
I “ px1, . . . , xnq Ď π0R. For 1 ď i ď n, let cofibpxiq P ModR denote the cofiber of the map
xi : R Ñ R, and let K denote the tensor product cofibpx1q bR ¨ ¨ ¨ bR cofibpxnq. We will
prove the following:

p˚q For any object A P CAlgR, we have

MapCAlgRpOpUq, Aq »

#

H if AbR K ‰ 0
˚ if AbR K » 0.

It follows from this description (and the fact that K P ModR is perfect) that the functor
A ÞÑ MapCAlgRpOpUq, Aq commutes with filtered colimits.

We now prove p˚q. By construction, the image of K under the equivalence ModR »
QCohpSpétRq is a quasi-coherent sheaf which vanishes on U , so the tensor product OpUqbR
K vanishes. It follows that if A bR K ‰ 0, then there do not exist any R-algebra maps
OpUq Ñ A. We wish prove the converse: if A bR K “ 0, then the mapping space
MapCAlgRpOpUq, Aq is nonempty (it is then automatically contractible, since OpUq is an
idempotent object of CAlgR). Note that we have canonical maps OpUq Ñ AbR OpUq

v
ÐÝ A.

Consequently, to show that there exists an R-algebra morphism from OpUq to A, it will
suffice to show that v is an equivalence, or equivalently that A bR cofibpR Ñ OpUqq » 0.
This is a consequence of the following more general assertion:

p˚1mq Let M be an R-module satisfying M rx´1
i s » 0 for 1 ď i ď m. Then A bR

cofibpxm`1q bR ¨ ¨ ¨ bR cofibpxnq bRM » 0.

We prove p˚1mq using induction on m. The case m “ 0 follows from our assumption that
A bR K » 0. To carry out the inductive step, suppose that m ą 0 and that M satisfies
M rx´1

i s for 1 ď i ď m, and set N “ A bR cofibpxm`1q bR ¨ ¨ ¨ bR cofibpxnq bR M » 0.
Our inductive hypothesis implies that N bR cofibpxmq » 0: that is, the multiplication map
xm : N Ñ N is an equivalence. It follows that the unit map N Ñ N rx´1

m s is an equivalence.



252 CHAPTER 2. QUASI-COHERENT SHEAVES

Since M rx´1
m s vanishes, we conclude that N rx´1

m s » 0, so that N » 0 as desired. This
completes the proof of paq.

We now prove pbq. Because O is a functor, it is immediate that the mapping space
MapCAlgRpOpUq,OpV qq is nonempty whenever V Ď U (in which case it is automatically
contractible, since OpUq is idempotent). It will therefore suffice to show that if V is not
contained in U , then the mapping space MapCAlgRpOpUq,OpV qq is empty. Choose a point
x P V which does not belong to U , and let κpxq denote the residue field of the commutative
ring π0R at x. Since the mapping space MapCAlgRpOpV q, κpxqq is nonempty, it will suffice
to show that MapCAlgRpOpUq, κpxqq is empty. This follows immediately from p˚q, since

π0pκpxq bR Kq » κpxq{px1, . . . , xnq » κpxq ‰ 0

by virtue of our assumption that x R U .
We now prove pcq. Assume that R is discrete and let A P CAlgR be a compact object.

Writing R as a direct limit of its finitely generated subrings, we can apply Theorem ?? to
write A “ RbR0 A0, where R0 Ď R is a finitely generated subalgebra and A0 is a compact
object of CAlgR0 . Let m0 : A0 bR0 A0 Ñ A0 be the multiplication map. If A is idempotent,
then the morphism m0 becomes an equivalence after applying the extension-of-scalars functor
CAlgR0 Ñ CAlgR. Applying Theorem ?? again, we deduce that there is a finitely generated
subring R1 Ď R containing R0 such that the multiplication A1bR1A1 Ñ A1 is an equivalence,
where A1 “ R1 bR0 A0. Then A1 is a compact idempotent object of CAlgR1 . We may
therefore replace the object A P CAlgR by A1 P CAlgR1 and thereby reduce to the case
where the commutative ring R is Noetherian. Let U “ SupppAq. The proof of Theorem
2.6.1.2 shows that we can write A “ lim

ÝÑ
OpV q where the colimit is taken over all open

subsets V Ď |SpecR| which contain U . Since A P CAlgR is compact, it follows that A is a
retract of some OpV q and is therefore equivalent to OpV q (since every morphism from OV

to itself is homotopic to the identity, every retract of OpV q is equivalent to OpV q itself).

2.6.3 The General Case

It follows from Proposition 2.6.2.1 that if R is a commutative ring, then every compact
idempotent object A P CAlgR arises from a quasi-compact open subset U Ď |SpecR|. For
more general (connective) E8-rings, this need not be true:

Example 2.6.3.1. Let R “ Sym˚
QpΣ2 Qq be the free E8-algebra over Q on a single generator

of degree 2, so that we have a canonical isomorphism π˚R » Qrts where t P π2R. Then
| SpecR| consists of a single point. However, the localization Rrt´1s is a compact idempotent
object of CAlgR which is not equivalent to 0 or R.

Example 2.6.3.2. Let R “ Sppq be the p-local sphere spectrum. Then | SpecR| »
| Spec Zppq | has exactly three open subsets, which determine compact idempotent objects
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0,Q, Sppq P CAlgR. However, there are many other compact idempotent objects of CAlgR,
given by telescopic localizations of the sphere spectrum (see, for example, [171]).

We can rule out the sort of “wild” idempotents appearing in Examples 2.6.3.1 and 2.6.3.2
by imposing connectivity hypotheses.

Proof of Proposition 2.6.0.3. Let R be a connective E8-ring and let A be a compact idem-
potent object of CAlgR. By virtue of Proposition 2.6.2.1, it will suffice to prove that the
following conditions on A are equivalent:

piq The E8-ring A is p´nq-connective for n " 0.

piiq There exists a quasi-compact open subset U Ď |SpecR| and an equivalence A » OpUq,
where O denotes the structure sheaf of the spectral scheme SpecR.

The implication piiq ñ piq follows immediately from Proposition 2.5.4.4. We now prove the
converse. Let A be a compact idempotent object of CAlgR and set A0 “ pπ0Rq bR A, so
that A0 is a compact idempotent object of CAlgπ0R. Let O0 denote the structure sheaf of
the spectral scheme Specπ0R. Applying Proposition 2.6.2.1, we deduce that A0 “ O0pUq

for some quasi-compact open subset U Ď | Specπ0R| » | SpecR|. Set A1 “ OpUq. We will
complete the proof by showing that if A satisfies piq, then A and A1 are equivalent objects
of CAlgR. More precisely, we will show that the canonical maps

A
u
ÝÑ AbR A

1 v
ÐÝ A1

are both equivalences in CAlgR. Using the implication piiq ñ piq, we see that A1 also satisfies
condition piq, so that the tensor product AbRA1 satisfies piq as well. It follows that cofibpuq
and cofibpvq are p´nq-connective for n " 0. Consequently, to show that cofibpuq and cofibpvq
vanish, it will suffice to show that the tensor products cofibpuqbRpπ0Rq and cofibpvqbRpπ0Rq

vanish. In other words, it suffices to show that u and v are equivalences after extension of
scalars along the map RÑ π0R, which is immediate from our construction.

2.7 Finiteness Properties of Modules

Let A be an E8-ring and let M be an A-module. Recall that M is said to be perfect
if it is a compact object of ModA (see §HA.7.2.4 ). If A is discrete, then we can identify
ModA with the derived 8-category of the abelian category Mod♥

A of discrete A-modules
(Remark HA.7.1.1.16 ). In this case, an object K P ModA » DpMod♥

Aq is perfect if and
only if it can be represented by a bounded chain complex of finitely generated projective
A-modules. In this section, we will study some weaker finiteness conditions on A-modules,
which correspond (in the case where A is discrete) to chain complexes which are required to
be finitely generated and projective only in a certain range of degrees.
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Definition 2.7.0.1. Let A be a connective E1-ring and let M be a left A-module. We
will say that M is perfect to order n if, for every filtered diagram tNαu in pLModAqď0, the
canonical map lim

ÝÑα
ExtiApM,Nαq Ñ ExtiApM, lim

ÝÑ
Nαq injective for i “ n and bijective for

i ă n.

Remark 2.7.0.2. If A is a connective E1-ring, then a left A-module M is almost perfect
(see Definition HA.7.2.4.10 ) if and only if it is perfect to order n for every integer n.

Example 2.7.0.3. Let A be a connective E1-ring. If M P LModA is pn ` 1q-connective,
then it is perfect to order n.

The following reformulation of Definition 2.7.0.1 is often convenient:

Proposition 2.7.0.4. Let A be a connective E1-ring, let M be a left A-module, and let n
be an integer. The following conditions are equivalent:

p1q The left A-module M is perfect to order n, in the sense of Definition 2.7.0.1.

p2q For every filtered diagram tNαu in LModA where each Nα is 0-truncated and each transi-
tion map π0Nα Ñ π0Nβ is a monomorphism, the canonical map lim

ÝÑα
MapLModApM,ΣnNαq Ñ

MapLModApM, lim
ÝÑ

ΣnNαq is a homotopy equivalence.

p3q The module M is almost connective. Moreover, if tNαu is a filtered diagram in LMod♥
A

having the property that each transition map Nα Ñ Nβ is a monomorphism, then the
canonical map lim

ÝÑα
MapLModApM,ΣnNαq Ñ MapLModApM, lim

ÝÑ
ΣnNαq is a homotopy

equivalence.

Proof. Without loss of generality we may assume n “ 0. We first show that p1q implies
p2q. Suppose first that M is perfect to order n, and let tNαu be as in p2q. Since each of
the transition maps π0Nα Ñ π0Nβ is an monomorphism, it follows that each of the maps
π0Nα Ñ π0N is a monomorphism. For each index α, form a cofiber sequence Nα Ñ N Ñ Kα,
so that Kα is 0-truncated. Applying our hypothesis that M is perfect to order 0 to the
filtered diagram tKαu, we conclude that the canonical map

lim
ÝÑ

ExtiApM,Kαq Ñ ExtiApM, lim
ÝÑ

Kαq » ExtiApM, 0q » 0

is injective for i “ 0 and bijective for i ă 0: that is, the abelian groups lim
ÝÑ

ExtiApM,Kαq

vanish for i ď 0. It follows that the space lim
ÝÑα

MapLModApM,Kαq is contractible. Using the
evident fiber sequence

lim
ÝÑ
α

MapLModApM,Nαq
ρ
ÝÑ MapLModApM,Nq Ñ lim

ÝÑ
α

MapLModApM,Kαq,

we deduce that ρ is a homotopy equivalence.
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Note that ifM satisfies condition p2q, then the canonical map lim
ÝÑk

MapLModApM, τě´kpτď0Mqq Ñ

MapLModApM, τď0Mq is a homotopy equivalence. In particular, the canonical map M Ñ

τď0M factors through some truncation τě´kτď0M , which implies that M is p´kq-connective.
This shows that p2q ñ p3q.

We now complete the proof by showing that p3q ñ p1q. Assume that M satisfies
condition p3q, and let tNαu be a filtered diagram of 0-truncated A-modules having some
colimit N . We wish to show that the canonical map lim

ÝÑ
ExtiApM,Nαq Ñ ExtiApM,Nq is

bijective for i ă 0 and injective for i “ 0. Equivalently, we wish to show that the canonical
map θ : lim

ÝÑα
MapLModApM,Nαq Ñ MapLModApM,Nq has p´1q-truncated homotopy fibers.

Choose an integer k " 0 for which M is p´kq-connective. We can then replace tNαu by
tτě´kNαu, and thereby reduce to the case where each Nα is p´mq-connective for some fixed
m ě 0. We now proceed by induction on m. Assume that m ą 0. Set N 1α “ τě1´mNα and
N2α “ τď´mNα, so that we have a commutative diagram of fiber sequences

lim
ÝÑα

MapLModApM,N 1αq
θ1 //

��

MapLModApM,N 1q

��
lim
ÝÑα

MapLModApM,Nαq
θ //

��

MapLModApM,Nq

��
lim
ÝÑα

MapLModApM,N2αq
θ2 //MapLModApM,N2q

where N 1 “ lim
ÝÑ

N 1α and N2 “ lim
ÝÑ

N2α. Since the map θ1 has p´1q-truncated homotopy fibers
by our inductive hypothesis, we are reduced to proving that the map θ2 has p´1q-truncated
homotopy fibers. The map θ2 is obtained by applying the functor Ωm to the canonical
map lim

ÝÑα
MapLModApM,π´mNαq Ñ MapLModApM,π´mNq. Replacing tNαu by tπ´mNαu,

we may reduce to the case m “ 0.
Let us regard each Nα as a discrete left module over the associative ring π0A. Without

loss of generality, we may assume that the diagram tNαu is indexed by a filtered partially
ordered set I. For α ď β in I, let Kα,β denote the kernel of the transition map Nα Ñ Nβ.
For fixed α, we can regard tKα,βuβěα as a filtered diagram of discrete A-modules whose
transition maps are monomorphisms, whose colimit Kα “ lim

ÝÑβěα
Kα,β can be identified

with the kernel of the map Nα Ñ N . Applying assumption p3q, we deduce that the canonical
map lim

ÝÑβěα
MapLModApM,Kα,βq Ñ MapLModApM,Kαq is a homotopy equivalence. Set

N 1α “ Nα{Kα » impNα Ñ Nq, so that we have a fiber sequence of spaces

lim
ÝÑ
βěα

MapLModApM,Kα,βq Ñ MapLModApM,Nαq Ñ MapLModApM,N 1αq.

Applying assumption p3q to the diagram tN 1αuαPI , we deduce that the canonical map
lim
ÝÑα

MapLModApM,N 1αq Ñ MapLModApM,Nq is a homotopy equivalence. It follows that the
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map θ fits into a fiber sequence

lim
ÝÑ
αPI

lim
ÝÑ
βěα

MapLModApM,Kα,βq Ñ lim
ÝÑ
α

MapLModApM,Nαq
θ
ÝÑ MapLModApM,Nq.

The first term is contractible, since the transition map Kα,β Ñ Kα1,β1 vanishes for α1 ě β.
It follows that θ is p´1q-truncated, as desired.

Remark 2.7.0.5. Let A be a connective E1-ring, let M be a left A-module, and let n be
an integer. Then:

paq If τďnM is a compact object of τďn LModA, then M is perfect to order n.

pbq If M is perfect to order n, then τďn´1M is a compact object of τďn´1 LModA.

Remark 2.7.0.6. Let A be a connective E1-ring, and let M be a left A-module which is
perfect to order n for some integer n. Then M P pLModAqě´m for some m. This follows
immediately from Remark 2.7.0.5.

Remark 2.7.0.7. Let A be a connective E1-ring and suppose we are given a fiber sequence
of left A-modules M 1 ÑM ÑM2. If M 1 is perfect to order n, then M is perfect to order n
if and only if M2 is perfect to order n. This follows immediately from an inspection of the
associated long exact sequence of Ext-groups.

Remark 2.7.0.8. Suppose we are given a finite collection of connective E1-rings tAiu1ďiďn
having product A. Let M be a left A-module, so that M »

ś

Mi where each Mi is a left
module over Ai. Then M is perfect to order n if and only if each Mi is perfect to order n.

2.7.1 Finitely n-Presented Modules

We now consider a slight variant of Definition 2.7.0.1.

Definition 2.7.1.1. Let A be a connective E1-ring, let M be a left A-module, and let n be
an integer. We will say that M is finitely n-presented if M is n-truncated and perfect to
order pn` 1q.

Remark 2.7.1.2. Let A be a connective E1-ring, and suppose we are given a map of left
A-modules f : M ÑM 1 such that the induced map πiM Ñ πiM

1 is surjective when i “ n

and bijective for i ă n. Let N P pLModAqď0. Then the induced map ExtiApM 1, Nq Ñ

ExtiApM,Nq is injective for i “ n and bijective for i ă n. It follows that if M is perfect to
order n, so is M 1.

Remark 2.7.1.3. Let A be a connective E1-ring. If M is a left A-module which is perfect
to order n` 1, then τďnM is also perfect to order n` 1 (this is a special case of Remark
2.7.1.2), and is therefore finitely n-presented.
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Remark 2.7.1.4. Let A be a connective E1-ring and let M be a compact object of
pLModAqďn. Since LModA is compactly generated, we deduce that M is a retract of
τďnM

1 for some compact object M 1 P LModA. It follows from Remark 2.7.1.3 that M is
finitely n-presented. Conversely, if M is finitely n-presented, then it is a compact object of
pLModAqďn by virtue of Remark 2.7.0.5.

Proposition 2.7.1.5. Let A be discrete E1-ring and let M be a left A-module. The following
conditions are equivalent:

p1q The left A-module M is finitely 0-presented and, for every discrete right A-module N ,
the abelian group π1pN bAMq vanishes.

p2q The left A-module M is perfect and of Tor-amplitude ď 0.

Proof. We will show that p1q implies p2q; the reverse implication is obvious. It follows from
Remark ?? that the module M is p´nq-connective for n " 0. We proceed by induction on
n. If n “ 0, then M is a discrete A-module. Condition p1q then implies that the group
TorA1 pN,Mq » 0 for every discrete A-module N , so that M is flat over A. Since it is also
finitely presented as a left A-module, it is a projective module of finite rank, hence perfect
and of Tor-amplitude ď 0.

We now carry out the inductive step. Suppose that M is p´nq-connective for n ą 0.
It follows from Remark 2.7.0.5 that π´nM is a finitely generated module over π0A. We
can therefore choose a map α : Σ´nAk ÑM which is surjective on π´n, so that cofibpαq is
p1´ nq-connective. Remark 2.7.0.7 implies that cofibpαq is perfect to order 1, and for m ą 0
the exact sequence πmM Ñ πm cofibpαq Ñ πm´1Σ´nAk shows that cofibpαq is 0-truncated.
If N is a discrete right A-module, the existence of a short exact sequence

π1pN bAMq Ñ π1pN bA cofibpαqq Ñ π0pN bA Σ´nAq

implies that π1pN bA cofibpαqq » 0. Applying our inductive hypothesis, we deduce that
cofibpαq is perfect of Tor-amplitude ď 0. Using the fiber sequence Σ´nAk ÑM Ñ cofibpαq,
we deduce that M is also perfect of Tor-amplitude ď 0.

2.7.2 Alternate Characterizations

Our next result gives a formulation of Definition 2.7.0.1 which is well-adapted to making
inductive arguments:

Proposition 2.7.2.1. Let A be a connective E1-ring and let M be a connective left A-module.
Then:

p1q The module M is perfect to order 0 if and only if π0M is finitely generated as a module
over π0A.
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p2q Let n ą 0 and suppose we are given a map of A-modules φ : Ak ÑM which induces a
surjection π0A

k Ñ π0M . Then M is perfect to order n if and only if fibpφq is perfect
to order pn´ 1q.

Proof. We first prove p1q. For each N P pLModAqď0, we have ExtiApM,Nq » 0 for i ă 0,
and Ext0

ApM,Nq is the abelian group of π0A-module homomorphisms from π0M into π0N .
Consequently, M is perfect to order 0 if and only if, for every filtered diagram of discrete
π0A-modules Nα having colimit N , the canonical map

lim
ÝÑ
α

Ext0
π0Apπ0M,Nαq Ñ Ext0

π0Apπ0M,Nq

is injective. If π0M is finitely generated as a π0A-module, then we can choose a surjection
pπ0Aq

k Ñ π0M , in which case the domain and codomain of θ can be identified with subgroups
of the abelian group Nk; this proves the “if” direction of p1q. For the converse, suppose
that M is perfect to order 0. Let tNαu be the (filtered) diagram of all quotients of the form
pπ0Mq{S, where S is a finitely generated submodule of π0M . Then lim

ÝÑ
Nα » 0. It follows

that lim
ÝÑα

Ext0
π0Apπ0M,Nαq » 0, so that the canonical epimorphism π0M Ñ Nα is the zero

map for some index α. This implies that π0M is finitely generated.
We now prove p2q. Choose a fiber sequence of connective A-modules

M 1 Ñ Ak ÑM,

and suppose we are given a filtered diagram tNαu in pLModAqď0 having a colimit N . For
every pair of object X,Y P LModA, let MorpX,Y q denote the spectrum of maps from X

to Y in LModA, so that ExtiApX,Y q “ π´i MorpX,Y q. Let F pXq denote the fiber of the
canonical map lim

ÝÑα
MorpX,Nαq Ñ MorpX,Nq. Note that F pAq » 0. We have a fiber

sequence of spectra
F pM 1q Ñ F pAkq Ñ F pMq,

so that F pMq can be identified with the suspension of F pM 1q. In particular, πiF pMq » 0
for i ě n if and only if πiF pM 1q » 0 for i ě n´ 1, from which p2q follows.

Corollary 2.7.2.2. Let A be a connective E1-ring and let M be a left A-module. The
following conditions are equivalent:

p1q The left module M is perfect to order n.

p2q There exists a perfect left A-module P of Tor-amplitude ď n and a morphism P ÑM

whose fiber is n-connective.

p3q There exists a perfect left A-module P and a morphism P Ñ M whose fiber is n-
connective.
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Proof. The implication p2q ñ p3q is obvious. We next show that p3q ñ p1q. Let α : P ÑM

be a morphism of left A-modules, where P is perfect and fibpαq is n-connective. Then
cofibpαq » Σ fibpαq is perfect to order n (Example 2.7.0.3). Applying Remark 2.7.0.7 to the
fiber sequence P ÑM Ñ cofibpαq, we deduce that M is perfect to order n.

Note that if p1q is satisfied Remark D.7.7.4 implies that M is k-connective for some
k ! 0. To prove that p1q ñ p2q, we may (after replacing M by Σ´kM and n by n ´ k)
reduce to the case where M is connective. We now proceed by induction on n. If n ă 0,
there is nothing to prove (by Example 2.7.0.3). Let us therefore suppose that n ě 0. Using
Proposition 2.7.2.1, we can choose a finitely generated free A-module F and a fiber sequence

M 1 α
Ñ F ÑM

where M 1 is connective. Applying Remark 2.7.0.7 to the shifted sequence

F ÑM Ñ ΣM 1,

we deduce that ΣM 1 is perfect to order n, so that M 1 is perfect to order pn´ 1q. By virtue
of the inductive hypothesis, there exists a perfect A-module P of Tor-amplitude ď n ´ 1
and a map β : P Ñ M with pn ´ 1q-connective fiber. Set Q “ cofibpβ ˝ αq. Then Q is a
perfect left A-module of Tor-amplitude ď n equipped with a map γ : QÑM . We have a
commutative diagram of fiber sequences

fibpβq //

��

P //

��

M

��
0 //

��

F //

��

F

��
fibpγq // Q //M

which supplies an equivalence fibpγq » Σ fibpβq, so that fibpγq is n-connective.

Corollary 2.7.2.3. Let A be a connective E1-ring and let M be a left A-module. Assume
that A is left Noetherian (that is, each homotopy group πnA is Noetherian when viewed as a
left module over π0A). Then M is perfect to order n if and only if it satisfies the following
conditions:

p1q The homotopy groups πiM vanish for i ! 0.

p2q For each m ď n, the homotopy group πmM is finitely generated as a module over π0A.

Proof. The necessity of condition p1q follows from Remark ??. We may therefore assume
without loss of generality that p1q is satisfied. Replacing M by ΣpM and n by n` p and
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thereby reduce to the case where M is connective. We now proceed by induction on n. If
n ă 0 there is nothing to prove and if n “ 0 the desired result follows from Proposition
2.7.2.1. Let us therefore assume that n ą 0. Note that if M is perfect to order n, then it is
perfect to order 0 and therefore π0M is finitely generated as a module over π0A. We may
therefore assume without loss of generality that there exists a fiber sequence

M 1 Ñ Am ÑM

of connective left A-modules. For each i ě 0, we have a short exact sequence

pπi`1Aq
m Ñ πi`1M Ñ πiM

1 Ñ pπiAq
m.

Since π0A is a left Noetherian ring and the modules πiA and πi`1A are finitely generated, it
follows that πi`1A is finitely generated over π0A if and only if πiM 1 is finitely generated over
π0A. Allowing i to vary, we deduce that M satisfies condition p2q if and only if the homotopy
groups πiM 1 are finitely generated for i ă n. By virtue of the inductive hypothesis, this is
equivalent to the requirement that M 1 is perfect to order pn´ 1q. The desired result now
follows from Proposition 2.7.2.1.

Corollary 2.7.2.4. Let A be a connective E1-ring, let M be a connective left module over
A, and let n ě 0 be an integer. The following conditions are equivalent:

paq The module M is perfect to order n.

pbq There exists a simplicial object M‚ of the 8-category LModcn
A such that |M‚| » M

and each of the modules Mk is finitely generated and free for k ď n.

pcq There exists a simplicial object M‚ of the 8-category LModcn
A such that |M‚| » M

and, for each 0 ď k ď n, the module Mk is perfect to order n´ k.

Proof. Suppose first that paq is satisfied. Using Proposition 2.7.2.1, we can choose a free
A-module of finite rank P0 and a map φ0 : P0 Ñ M whose fiber is 0-connective. We will
extend this to a diagram

P0 Ñ P1 Ñ P2 Ñ ¨ ¨ ¨

in pModAq{M , where each Pm is perfect and each of the structure morphisms φm : Pm ÑM

has m-connective fiber. The construction proceeds by induction. Assume that φm : Pm ÑM

has been constructed for some m ě 0. If m ă n, then the cofiber cofibpφmq is pm ` 1q-
connective and perfect to order pm` 1q, so we can choose a free left A-module F of finite
rank and a morphism Σm`1F Ñ cofibpφmq which is surjective on πm`1. We then define
Pm`1 to be the fiber product Σm`1F ˆcofibpφmqM , so that we have a canonical fiber sequence

Pm Ñ Pm`1 Ñ Σm`1F
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which immediately shows that Pm`1 is perfect. If m ě n, we simply set Pm`1 “M .
Applying Theorem HA.1.2.4.1 , we see that there exists a simplicial object M‚ of LModA

for which the diagram

P0 Ñ P1 Ñ P2 Ñ ¨ ¨ ¨ Ñ Pn ÑM ÑM ÑM Ñ ¨ ¨ ¨

agrees with the skeletal filtration of |M‚|. In particular, we have |M‚| »M , and each Mk

can be identified with a direct sum of finitely many copies of modules of the form P0 and
Σ´m cofibpPm´1 Ñ Pmq for m ď k. It follows from the above construction that Mk is a free
left A-module of finite rank for k ď n, so that condition pbq is satisfied.

The implication pbq ñ pcq is obvious. We will complete the proof by showing that pcq
implies paq. Let M‚ be a simplicial object of LModcn

A satisfying the requirements of pcq, and
let

P0 Ñ P1 Ñ P2 Ñ P3 Ñ ¨ ¨ ¨

be the associated filtered object of LModA (see Theorem HA.1.2.4.1 ). We then have a fiber
sequence

Pn ÑM Ñ K

where K is pn` 1q-connective. It follows from Example 2.7.0.3 that K is perfect to order n.
Consequently, to prove that M is perfect to order n, it will suffice to show that Pn is perfect
to order n (Remark 2.7.0.7). We will prove more generally that Pm is perfect to order n for
each m ď n. The proof proceeds by induction on m. In the case m “ 0, we simply note
that P0 »M0 is perfect to order n by assumption. To carry out the inductive step, we note
that if m ą 0 then we have a fiber sequence

Pm´1 Ñ Pm Ñ ΣmN

where N denotes the mth term in the normalized chain complex associated to the simplicial
object M‚ of the homotopy category hLModA. If m ď n, then N is perfect to order pn´mq
(since it is a direct summand of Mn) and therefore the suspension ΣmN is perfect to order
n. Since Pm´1 is also perfect to order n by our inductive hypothesis, it follows from Remark
2.7.0.7 that Pm is also perfect to order n.

2.7.3 Extension of Scalars

We now study the behavior of finiteness conditions on modules with respect to base
change.

Proposition 2.7.3.1. Let f : AÑ B be a map of connective E1-rings and let M be a left
A-module. If M is perfect to order n as an A-module, then B bAM is perfect to order n as
a B-module. The converse holds if B is faithfully flat (as a right module) over A.
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Proof. Assume first that M is perfect to order n as an A-module. We wish to show that
BbAM is perfect to order n as a B-module. Remark ?? implies that M P pLModAqě´m for
some m " 0. Replacing M by ΣmM (and n by n`m) we may assume that M is connective
and that n ě 0. We proceed by induction on n. If n “ 0, then we are reduced to proving
that π0pB bAMq » Torπ0A

0 pπ0B, π0Mq is finitely generated as a module over π0B, which
follows because π0M is finitely generated over π0A. If n ą 0, then we can choose a fiber
sequence of connective left A-modules

M 1 Ñ Ak ÑM.

Tensoring with B, we obtain a fiber sequence of connective left B-modules

B bAM
1 Ñ Bk Ñ B bAM

Using Proposition 2.7.2.1, we deduce that M 1 is perfect to order pn´ 1q as an A-module.
The inductive hypothesis implies that B bAM 1 is perfect to order pn´ 1q as a B-module.
Using Proposition 2.7.2.1 again, we deduce that BbAM is perfect to order n as a B-module.

We now prove the converse. Assume that f is faithfully flat and that B bA M is
perfect to order n as a B-module. Then there exists an integer m such that πipB bAMq »
Torπ0A

i pπ0B, πiMq vanishes for i ă ´m. Since π0B is faithfully flat over π0A, we deduce
that πiM » 0 for i ă ´m. Replacing M by ΣmpMq and n by n`m, we may assume that
M is connective and that n ě 0. We prove that M is perfect to order n using induction on n.
We first treat the case n “ 0. We must show that π0M is finitely generated as a module over
π0A. Our assumption that B bAM is perfect to order 0 guarantees that Torπ0A

0 pπ0B, π0Mq

is finitely generated as a module over π0B. We may therefore choose a finitely generated
submodule M0 Ď π0M such that the induced map Torπ0A

0 pπ0B,M0q Ñ Torπ0A
0 pπ0B, π0Mq

is surjective, so that Torπ0A
0 pπ0B, pπ0Mq{M0qq » 0. Since π0B is faithfully flat over π0A, we

deduce that pπ0Mq{M0 » 0. It follows that π0M »M0 is finitely generated.
Now suppose that n ą 0. The argument above shows that π0M is finitely generated, so

we can choose a fiber sequence of connective left A-modules

M 1 Ñ Ak ÑM.

Tensoring with B, we obtain a fiber sequence of connective left B-modules

B bAM
1 Ñ Bk Ñ B bAM.

Since B bAM is perfect to order n, Proposition 2.7.2.1 implies that B bAM 1 is perfect to
order n´ 1. It follows from the inductive hypothesis that M 1 is perfect to order n´ 1, so
that M is perfect to order n by Proposition 2.7.2.1.

Proposition 2.7.3.1 admits the following converse:
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Proposition 2.7.3.2. Let f : A Ñ A1 be a map of connective E1-rings. Assume that the
underlying map of associative rings π0AÑ π0A

1 is a surjection whose kernel is a nilpotent
ideal I Ď π0A. Let M be a connective left A-module, and set M 1 “ A1 bAM . Then:

paq The A-module M is perfect to order n over A if and only if the A1-module M 1 is perfect
to order n.

pbq The A-module M is almost perfect if and only if the A1-module M 1 is almost perfect.

pcq The A-module M has Tor-amplitude ď k if and only if the A1-module M 1 has Tor-
amplitude ď k.

pdq The A-module M is perfect if and only if the A1-module M 1 is perfect.

peq The A-module M is n-connective if and only if the A1-module M 1 is n-connective.

Proof. The “only if” directions of assertions paq through pde are clear. To complete the
proof of paq, suppose that M 1 is perfect to order n as a left A1-module. We will prove that
M is perfect to order n as an A-module. The proof proceeds by induction on n. If n ă 0,
there is nothing to prove (since M is assumed to be connective). If n “ 0, we must show
that π0M is finitely generated as a module over π0A. Our assumption that M 1 is perfect
to order 0 guarantees that π0M

1 » pπ0Mq{Ipπ0Mq is finitely generated as a module over
π0A

1 » pπ0Aq{I. The desired result now follows from our assumption that I is nilpotent.
Assume now that n ą 0 and that M 1 is perfect to order n over A. The argument above

shows that π0M is finitely generated as a module over π0A, so we can choose a fiber sequence

N Ñ Ak ÑM

where N is connective. Applying Proposition 2.7.2.1, we deduce that A1 bA N is perfect
to order pn ´ 1q over A1. The inductive hypothesis now shows that N is perfect to order
pn´ 1q over A, so that M is perfect to order n over A (by Proposition 2.7.2.1 again). This
completes the proof of paq.

Assertion pbq follows immediately from paq. We now prove pcq. Suppose that M 1 has
Tor-amplitude ď k over A1, and let N be a discrete right A-module. Then N can be written
as a finite extension of (discrete) modules over the form IkN{Ik`1N , each of which can be
regarded as a module over A1. Our assumption that M 1 has Tor-amplitude ď k guarantees
that each tensor product pIkN{Ik`1Nq bAM » pIkN{I`1Nq bA1 M

1 is k-truncated. Since
the collection of k-truncated spectra is closed under extensions, we conclude that N bAM
is k-truncated. Allowing N to vary, we conclude that M has Tor-amplitude ď k over A.

Assertion pdq follows from pbq and pcq, by virtue of Proposition HA.7.2.4.23 . To prove
peq, we proceed by induction on n. The case n ď 0 is trivial (since M is assumed to be
connective). To carry out the inductive step, assume that M 1 is pn` 1q-connective for some
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n ě 0; we will prove that M is also pn` 1q-connective. Our inductive hypothesis guarantees
that M is n-connective. It follows that we have an isomorphism πnM

1 » pπnMq{IpπnMq.
The pn` 1q-connectivity of M 1 then guarantees that πnM “ IpπnMq. Since I is a nilpotent
ideal, it follows that πnM » 0, so that M is pn` 1q-connective as desired.

Proposition 2.7.3.3. Let f : AÑ B be a morphism of connective E1-rings and let n ě 0
be an integer. The following conditions are equivalent:

p1q The morphism f exhibits B as a left A-module which is perfect to order n.

p2q Let M be a connective left B-module. If M is perfect to order n as a left B-module,
then it is also perfect to order n as a left A-module.

Proof. The implication p2q ñ p1q is immediate (take M “ B). For the converse, we proceed
by induction on n. Assume that p1q is satisfied and let M be a connective left B-module
which is perfect to order n over B. If n “ 0, then π0B is finitely generated as a left module
over π0B, and therefore also as a left module over π0A. Consequently, M is perfect to
order 0 over A (Proposition 2.7.2.1). Let us therefore assume that n ą 0. Choose a map
α : Br ÑM which is surjective on π0. Then fibpαq is connective and perfect to order pn´ 1q
over B, so our inductive hypothesis guarantees that fibpαq is perfect to order pn´ 1q over A.
We then have a fiber sequence Br ÑM Ñ Σ fibpαq where both Br and Σ fibpαq are perfect
to order n over A, so that M is also perfect to order n over A.

2.7.4 Fiberwise Connectivity Criterion

Let A be a commutative ring and let M be a finitely generated (discrete) A-module. It
follows from Nakayama’s lemma that if the fiber of M vanishes at some point of x P |SpecA|,
then the module M itself vanishes in some neighborhood of x. We now formulate a “derived”
analogue of this observation:

Proposition 2.7.4.1. Let A be a connective E8-ring, let M be an A-module which is perfect
to order n for some integer n ě 0, and let κ be the residue field of A at some prime ideal
p Ď A. The following conditions are equivalent:

paq There exists an element a P π0A which is not contained in p for which the localization
M ra´1s is pn` 1q-connective.

pbq The tensor product κbAM is pn` 1q-connective.

Proof. The implication paq ñ pbq is trivial. Suppose that pbq is satisfied. For each k ď n,
we will prove that there exists an element a P pπ0Aq ´ p such that the localization M ra´1s

is pk ` 1q-connective. Note that this condition is automatically satisfied for k ! 0 by virtue
of Remark ??. To carry out the inductive step, let us assume that k ď n and that there
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exists b P pπ0Aq ´ p such that M rb´1s is k-connective. Replacing A by Arb´1s and M by
M rb´1s, we may assume that M itself is k-connective. It follows from Proposition 2.7.2.1
that πkM is a finitely generated module over π0A. Assumption pbq guarantees that

Torπ0A
0 pκ, πkMq » πkpκbAMq » 0.

Applying Nakayama’s lemma, we deduce that πkM is annihilated by some element a P
pπ0Aq ´ p, so that M ra´1s is pk ` 1q-connective.

Corollary 2.7.4.2. Let A be a connective E8-ring and let M be an A-module which is
perfect to order n for some integer n ě 0. The following conditions are equivalent:

paq The module M is pn` 1q-connective.

pbq For every residue field κ of A, the tensor product κbAM is pn` 1q-connective.

Corollary 2.7.4.3. Let A be a connective E8-ring, let M be an A-module which is almost
perfect, and let n be an integer. Then M is n-connective if and only if, for every residue
field κ of A, the tensor product κbAM is n-connective.

Corollary 2.7.4.4. Let A be a connective E8-ring and let M be an A-module which is
almost perfect. Then M » 0 if and only if, for every residue field κ of A, the tensor product
κbAM vanishes.

2.8 Local Properties of Quasi-Coherent Sheaves

Let X be a spectral Deligne-Mumford stack. In §2.2, we introduced the 8-category
QCohpXq of quasi-coherent sheaves on X. In this section, we will study some examples
properties of quasi-coherent sheaves on X which can be tested locally on X.

2.8.1 Étale-Local Properties of Spectral Deligne-Mumford Stacks

We begin with some general remarks about local conditions on spectral Deligne-Mumford
stacks.

Definition 2.8.1.1. Let Y be a nonconnective spectral Deligne-Mumford stack. We will
say that a collection of morphisms tfα : Xα Ñ Yu is jointly surjective if the induced map
>α Xα Ñ Y is surjective (see Definition 3.5.5.5).

Definition 2.8.1.2. Let P be a property of nonconnective spectral Deligne-Mumford stacks.
We will say that P is local for the étale topology if the following conditions hold:

piq For every étale morphism of nonconnective spectral Deligne-Mumford stacks f : X Ñ Y,
if Y has the property P , then X also has the property P .
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piiq Given a jointly surjective collection of étale morphisms tXα Ñ Yu, if each Xα has the
property P , then Y has the property P .

Remark 2.8.1.3. Let P be a property of nonconnective spectral Deligne-Mumford stacks
which is local for the étale topology. A nonconnective spectral Deligne-Mumford stack
pX ,OX q has the property P if and only if, for every affine U P X , the affine nonconnective
spectral Deligne-Mumford stack pX {U ,OX |U q has the property P . Consequently, P is
determined by the full subcategory CAlgpP q Ď CAlg spanned by those E8-rings A such
that SpétA has the property P . Moreover, the full subcategory CAlgpP q has the following
properties:

piq If f : AÑ A1 is an étale morphism of E8-rings and A P CAlgpP q, then A1 P CAlgpP q.

piiq Given a finite collection of étale maps tAÑ Aαu such that AÑ
ś

αAα is faithfully
flat, if each Aα P CAlgpP q, then A P CAlgpP q.

Conversely, given a full subcategory CAlgpP q Ď CAlg, we obtain a property P of nonconnec-
tive spectral Deligne-Mumford stacks as follows: a pair pX ,OX q has the property P if and
only if, whenever we have an equivalence pX {U ,OX |U q » SpétA, the E8-ring A belongs to
CAlgpP q. If CAlgpP q satisfies conditions piq and piiq, then the property P is local for the
étale topology.

Recall that an E8-ring A is said to be Noetherian if A is connective, π0A is a Noetherian
commutative ring, and πnA is a finitely generated module over π0A for every integer n.

Definition 2.8.1.4. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. We will say
that X is locally Noetherian if, whenever U P X is affine so that pX {U ,OX |U q » SpétA, the
E8-ring A is Noetherian.

Proposition 2.8.1.5. The property of being a locally Noetherian spectral Deligne-Mumford
stack is local for the étale topology.

Lemma 2.8.1.6. Let f : AÑ B be a faithfully flat map of E8-rings. If B is Noetherian,
then A is Noetherian.

Proof. We first show that π0A is a Noetherian commutative ring. We claim that the
collection of ideals in π0A satisfies the ascending chain condition. To prove this, it will
suffice to show that the construction I ÞÑ Ipπ0Bq determines an injection from the partially
ordered set of ideals of π0A to the partially ordered set of ideals of π0B. Since π0B is flat
over π0A, the map I bπ0A π0B is an injection with image Ipπ0Bq. Given a pair of ideals
I, J Ď π0A we have an exact sequence of π0A-modules

0 Ñ I X J Ñ I ‘ J Ñ I ` J Ñ 0.
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This sequence remains exact after tensoring with π0B, so that pI X Jqpπ0Bq “ Ipπ0Bq X

Jpπ0Bq. It follows that if Ipπ0Bq “ Jpπ0Bq, then the inclusion pI X Jqpπ0Bq ãÑ Ipπ0Bq is
bijective, so that I{pI X Jq bπ0A π0B » 0. Since π0B is faithfully flat over π0A, this implies
that I{pI X Jq “ 0, so that I Ď J . A similar argument shows that J Ď I, so that I “ J .
This completes the proof that π0A is a Noetherian commutative ring.

Since f is faithfully flat, we have πnB » πnAbπ0A π0B. Since πnB » 0 for n ă 0, the
faithful flatness of π0B over π0A implies that πnA » 0. This proves that A is connective.
To complete the proof, we must show that each πnA is finitely generated as a module over
π0A. Since πnB is finitely generated as a π0B-module, we can choose a finitely generated
submodule M Ď πnA such that the map

M bπ0A π0B Ñ πnAbπ0A π0B » πnB

is surjective. The cokernel of this map is given by pπnAq{Mbπ0AπnB. Since π0B is faithfully
flat over π0A, we deduce that pπnAq{M » 0, so that πnA » M is finitely generated as a
module over π0A.

Proof of Proposition 2.8.1.5. By virtue of Remark 2.8.1.3, it will suffice to prove the following
assertions:

piq If f : AÑ A1 is an étale morphism of E8-rings and A is Noetherian, then A1 is also
Noetherian.

piiq Given a finite collection of étale maps tAÑ Aαu such that AÑ
ś

αAα is faithfully
flat, if each Aα is Noetherian, then A is Noetherian.

Assertion piq is obvious, and assertion piiq follows immediately from Lemma 2.8.1.6.

We now turn our attention to properties of morphisms of spectral Deligne-Mumford
stacks.

Definition 2.8.1.7. Let P be a property of morphisms between nonconnective spectral
Deligne-Mumford stacks. We will say that P is local on the source with respect to the étale
topology. if the following conditions hold:

piq For every composable pair of morphisms X f
Ñ Y g

Ñ Z . if f is étale and g has the
property P , then g ˝ f has the property P .

piiq Given a jointly surjective collection of étale maps tfα : Xα Ñ Yu and a morphism
g : Y Ñ Z, if each of the composite maps g ˝ fα has the property P , then g has the
property P .

Example 2.8.1.8. Let P be the property of being an étale morphism between nonconnective
spectral Deligne-Mumford stacks. Then P is local on the source with respect to the étale
topology.
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2.8.2 Flat Morphisms

Let f : pX,OXq Ñ pY,OY q is a morphism of schemes. Recall that f is said to be flat if
the underlying map of local commutative rings OY,fpxq Ñ OX,x is flat for each x P X. We
now study an analogous condition in the setting of spectral algebraic geometry.

Definition 2.8.2.1. Let f : X Ñ Y be a map of nonconnective spectral Deligne-Mumford
stacks. We will say that f is flat if the following condition is satisfied:

p˚q For every commutative diagram

SpétB //

��

X

f
��

SpétA // Y

in which the horizontal maps are étale, the underlying map of E8-rings AÑ B is flat.

Lemma 2.8.2.2. Let φ : A Ñ B be an étale morphism of E8-rings, and let M be a
B-module spectrum. If M is flat over A, then it is flat over B.

Proof. If M is flat over A, then the tensor product B bA M » pB bA Bq bB M is flat
over B. Since φ is étale, B is a retract of B bA B, so that M » B bB M is a retract of
pB bA Bq bB M and therefore also flat over B.

Proposition 2.8.2.3. Let φ : AÑ B be a map of E8-rings. The following conditions are
equivalent:

p1q The map φ is flat.

p2q The map φ induces a flat morphism SpétB Ñ SpétA of nonconnective spectral
Deligne-Mumford stacks.

Proof. The implication p2q ñ p1q is obvious. Conversely, suppose that p1q is satisfied.
Suppose we are given a commutative diagram

SpétB1 //

��

SpétB

��
SpétA1 // SpétA

where the horizontal maps are étale; we wish to prove that B1 is flat over A1. Using Theorem
1.4.10.2, we deduce that the map of E8-rings B Ñ B1 is étale. It follows that B1 is flat
over A. Since A1 is étale over A (Theorem 1.4.10.2), the desired result follows from Lemma
2.8.2.2.
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Proposition 2.8.2.4. The property of being a flat morphism (between nonconnective spectral
Deligne-Mumford stacks) is local on the source with respect to the étale topology.

Proof of Proposition 2.8.2.4. Condition piq of Definition 2.8.1.7 follows immediately from
the definition. To prove piiq, suppose we are given a morphism g : Y Ñ Z and a jointly
surjective collection of étale maps fα : Xα Ñ Z such that each composition g ˝ fα is flat. We
wish to show that g is flat. Choose a commutative diagram

SpétB //

��

Y
g

��
SpétA // Z

where the horizontal maps are étale. We wish to show that B is flat over A. Since the maps
fα are jointly surjective, we can choose a finite collection of étale maps tB Ñ Bβu such
that B Ñ

ś

β Bβ is faithfully flat, and each of the induced maps SpétBβ Ñ SpétB Ñ Y
factors through some Xα. Since g ˝ fα is assumed to be flat, we deduce that Bβ is flat as an
A-module. It follows that

ś

β Bβ is flat as an A-module. Using Lemma B.1.4.2, we deduce
that B is flat over A.

Remark 2.8.2.5. Let k be a commutative ring, regarded as a discrete E8-ring. Let
X “ pX ,OX q be a nonconnective spectral Deligne-Mumford stack equipped with a morphism
φ : X Ñ Spét k. We will say that X is flat over k if the morphism φ is flat, in the sense of
Definition 2.8.2.1. In this case, the structure sheaf OX is automatically discrete. Suppose
that X is 1-localic and OX is discrete, so we may identify pX ,OX q with an ordinary Deligne-
Mumford stack X. Then X is flat over k if and only if X is flat over k (in the sense of classical
algebraic geometry). Consequently, Proposition ?? furnishes an equivalence between the
8-category of spectral Deligne-Mumford 1-stacks which are flat over k with the 8-category
of ordinary Deligne-Mumford stacks which are flat over k.

Remark 2.8.2.6. Suppose we are given a pullback diagram

X1 //

f 1

��

X
f
��

Y1 // Y

of nonconnective spectral Deligne-Mumford stacks. If f is flat, then f 1 is flat.

Remark 2.8.2.7. Suppose we are given morphisms of nonconnective spectral Deligne-
Mumford stacks X f

Ñ Y g
Ñ Z. If f and g are flat, then the composition g ˝ f is flat. To prove
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this, suppose we are given a commutative diagram

SpétC //

��

X

��
SpétA // Z

where the horizontal maps are étale; we wish to show that C is flat over A. This assertion is
local on SpétC with respect to the étale topology (Proposition 2.8.2.4), so we may assume
that the map SpétC Ñ SpétAˆZY factors as a composition SpétC Ñ SpétB u

Ñ SpétAˆZY
where u is étale. Since f is flat, C is flat over B. Because g is flat, B is flat over A. It
follows from Lemma B.1.4.2 that C is flat over A.

Remark 2.8.2.8. Let k1 be an E8-ring and let k “ τě0k
1 be its connective cover. The

proof of Proposition ?? shows that if A is an E8-algebra over k1 with SpétA “ pX ,OX q,
then pX , τě0 OX q is a spectral Deligne-Mumford stack which can be identified with the
spectrum of τě0A. In particular, if pX ,OX q is flat over k1, then pX , τě0 OX q is flat over k.
By reduction to the affine case, we obtain the more general global assertion: if pX ,OX q is a
flat over k1, then pX , τě0 OX q is flat over k.

Definition 2.8.2.9. Let A be an E8-ring. A (nonconnective) spectral Deligne-Mumford
stack over A is a (nonconnective) spectral Deligne-Mumford stack X equipped with a
map φ : X Ñ SpétA. We let SpDMnc

A denote the 8-category SpDMnc
{SpétA of nonconnective

spectral Deligne-Mumford stacks over A. Let SpDM5
A denote the full subcategory of SpDMnc

A

spanned by those objects for which the map φ is flat.

Proposition 2.8.2.10. Let f : A Ñ B be a morphism of E8-rings, and suppose that f
induces an isomorphism πnpAq Ñ πnpBq for n ě 0. Then the pullback functor

X ÞÑ XˆSpétA SpétB

induces an equivalence of 8-categories f˚ : SpDM5
B Ñ SpDM5

A.

Proof. It follows from Remark 2.8.2.6 that if X is flat over A, then f˚ X is flat over B. Let
A denote a connective cover of A (which is also a connective cover of B, since πnA » πnB

for n ě 0). We have a commutative diagram of pullback functors

SpDM5
B

//

%%

SpDM5
A

yy
SpDM5

A
.
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It will therefore suffice to prove that the vertical functors are equivalences of 8-categories.
We may therefore reduce to the case where f exhibits A as a connective cover of B. In this
case, the functor f˚ has a right adjoint G, given informally by the formula GpX ,OX q “

pX , τě0 OX q (this functor preserves flatness by Remark 2.8.2.8). Consequently, it suffices to
show that the unit and counit transformations

FGpX ,OX q Ñ pX ,OX q pY,OYq Ñ GF pX ,OX q

are equivalences whenever pX ,OX q is a nonconnective spectral Deligne-Mumford stack which
is flat over B or pY,OYq is a spectral Deligne-Mumford stack which is flat over A. These
assertions are local on X and Y; we may therefore reduce to the affine case, where the
desired result follows from Proposition HA.7.2.2.24 .

2.8.3 Fpqc-Local Properties of Spectral Deligne-Mumford Stacks

We now study an analogue of Definition 2.8.1.2 for the flat topology.

Definition 2.8.3.1. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks. We will
say that f is a flat covering if the following conditions are satisfied:

p1q The map f is flat.

p2q For every quasi-compact open substack V ãÑ Y, there exists a quasi-compact open
substack U ãÑ X such that f induces a surjection U Ñ V.

Example 2.8.3.2. Let f : X Ñ Y be an étale surjection. Then f is a flat covering. Condition
p1q of Definition 2.8.3.1 is obvious. To prove p2q, we first replace Y by V and thereby reduce to
the case where Y is quasi-compact. Choose an étale surjection SpétAÑ Y. Write SpétAˆYX
as pX ,OX q. For every affine object X P X , we can write pX {X ,OX |Xq » SpétB for some
étale A-algebra B, so that the map | SpecB| Ñ | SpecA| has image given by some open
subset UX Ď | SpecA| (Proposition ??). Since f is surjective, the open sets UX cover
| SpecA|. Since | SpecA| is quasi-compact, this open cover has a finite subcover. Taking the
disjoint union of the corresponding objects of X , we obtain an affine object X P X such that
the induced map pX {X ,OX |Xq Ñ SpétA is surjective. Since X is quasi-compact, the image
of pX {X ,OX |Xq in X is a quasi-compact open substack U Ď X having the desired properties.

Proposition 2.8.3.3. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 //

g1

��

Y1

g

��
X f // Y,

where g1 is étale and f is a flat covering. Then g is étale.
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Proof. Without loss of generality we may assume that Y “ SpétA and Y1 “ SpétA1 are
affine. Replacing X by a quasi-compact open substack, we can assume that there exists
an étale surjection SpétB Ñ X, so that B is faithfully flat over A. Our hypothesis that
g1 is étale guarantees that B1 “ B bA A

1 is étale over B. In particular, B1 is locally of
finite presentation over B, so that A1 is locally of finite presentation over A (see Proposition
4.2.1.5). We have B bA LA1{A » LB1{B » 0, so that LA1{A » 0 by virtue of our assumption
that B is faithfully flat over A. It follows from Lemma B.1.3.3 that A1 is étale over A, as
desired.

Corollary 2.8.3.4. Suppose we are given a pullback diagram

X1 //

g1

��

Y1

g

��
X f // Y,

where g1 is an equivalence and f is a flat covering. Then the following conditions are
equivalent:

piq The morphism g is an equivalence.

piiq There exists an integer n " 0 such that g is a relative spectral Deligne-Mumford
n-stack (that is, Y1ˆY SpétR is a spectral Deligne-Mumford n-stack for every map
SpétRÑ Y).

Proof. The implication piq ñ piiq is obvious. Assume that piiq is satisfied. It follows from
Proposition 2.8.3.3 that g is étale. Set Y “ pY,OYq, so that we can write Y1 as pY{U ,OY |U q

for some object U P Y . Assumption piiq implies that U is n-truncated for some integer n " 0.
We proceed by induction on n. Applying our inductive hypothesis to the diagonal map
Y1 Ñ Y1ˆY Y1, we deduce that the diagonal map U Ñ U ˆU is an equivalence: that is, U is
a p´1q-truncated object of Y, so that g is an open immersion. The map f is surjective and
factors up to homotopy through g, so that g is a surjective open immersion and therefore an
equivalence.

Warning 2.8.3.5. In the situation of Corollary 2.8.3.4, condition piiq is not automatic. For
example, let κ be a field and write Spétκ “ pX ,OX q. If U P X is an 8-connective object,
then the projection map g : pX {U ,OX |U q Ñ pX ,OX q “ Spétκ becomes an equivalence after
pulling back along the faithfully flat SpétκÑ Spétκ, where Spétκ is an algebraic closure of
κ. However, g is not an equivalence unless U is a final object of X (which need not be the
case: see Warning HTT.7.2.2.31 ).

Definition 2.8.3.6. Let P be a property of nonconnective spectral Deligne-Mumford stacks.
We will say that P is local for the flat topology if the following conditions hold:
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piq For every flat morphism of nonconnective spectral Deligne-Mumford stacks f : X Ñ Y,
if Y has the property P , then X also has the property P .

piiq Given a collection of flat morphisms tXα Ñ Yu, if each Xα has the property P and the
induced map >Xα Ñ Y is a flat covering, then Y has the property P .

Proposition 2.8.3.7. Let P be a property of nonconnective spectral Deligne-Mumford stacks.
Then P is local for the flat topology if and only if the following conditions are satisfied:

p1q The property P is local for the étale topology (Definition 2.8.3.6).

p2q If f : AÑ B is a flat morphism of E8-rings such that SpétA has the property P , then
SpétB has the property P . The converse holds provided that f is faithfully flat.

Proof. If P is local for the flat topology, then condition p2q is obvious and condition p1q
follows from Example 2.8.3.2. Conversely, suppose that conditions p1q and p2q are satisfied.
We first verify condition piq of Definition 2.8.3.6. Let f : X Ñ Y be a flat morphism of
spectral Deligne-Mumford stacks, and assume that Y has the property P . We wish to show
that X has the property P . By virtue of assumption p1q, this condition is local with respect
to the étale topology on X. We may therefore assume that X » SpétB and that the map f

factors as a composition X Ñ SpétA f2
Ñ Y where f2 is étale. Then SpétA has the property

P . Since f is flat, B is flat over A. It then follows from p2q that X » SpétB has the property
P , as desired.

We now verify condition piiq. Let f : X Ñ Y be a flat covering and suppose that X
has the property P ; we wish to show that Y has the property P . The assertion is local
with respect to the étale topology on Y, so we may suppose that Y » SpétA is affine. In
particular, Y is quasi-compact. Replacing X by an open substack if necessary (and using
p1q), we can reduce to the case where X is quasi-compact. We can then choose an étale
surjection SpétB Ñ X. Then SpétB has the property P (by p1q) and B is faithfully flat
over A, so that SpétA has the property P by p2q.

Example 2.8.3.8. Let P be the property of being a spectral Deligne-Mumford stack, so
that a nonconnective spectral Deligne-Mumford stack pX ,OX q has the property P if and
only if the structure sheaf OX is connective. Then P is local with respect to the flat topology.

Example 2.8.3.9. Let P be the property of being an n-truncated spectral Deligne-Mumford
stack, so that pX ,OX q has the property P if and only if the structure sheaf OX is connective
and n-truncated. Then P is local with respect to the flat topology.

We now consider a relative version of Definition 2.8.3.6.

Definition 2.8.3.10. Let P be a property of morphisms between nonconnective spectral
Deligne-Mumford stacks. We will say that P is local on the source with respect to the flat
topology if the following conditions hold:
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piq For every composable pair of morphisms X f
Ñ Y g

Ñ Z, if f is flat and g has the property
P , then g ˝ f has the property P .

piiq Given a collection of flat morphisms tfα : Xα Ñ Yu which determine a flat covering
>α Xα Ñ Y and a morphism g : Y Ñ Z, if each of the composite maps g ˝ fα has the
property P , then g has the property P .

Proposition 2.8.3.7 has the following analogue for properties of morphisms between
nonconnective spectral Deligne-Mumford stacks, which is proven in the same way:

Proposition 2.8.3.11. Let P be a property of morphisms between nonconnective spectral
Deligne-Mumford stacks. Then P is local on the source for the flat topology if and only if
the following conditions are satisfied:

p1q The property P is local on the source for the étale topology (Definition 2.8.3.6).

p2q Suppose we are given a pair of maps SpétB f
Ñ SpétA g

Ñ Z such that B is flat over
A. If g has the property P , then g ˝ f has the property P . The converse holds if B is
faithfully flat over A.

Example 2.8.3.12. The property of being a flat morphism is local on the source with
respect to the flat topology. By virtue of Proposition 2.8.2.4, it will suffice to show that
the property of flatness satisfies condition p2q of Proposition 2.8.3.11. The first assertion
is obvious (since the collection of flat morphisms is closed under composition, by Remark
2.8.2.7). Conversely, suppose that B is faithfully flat over A and that we are given a map
g : SpétAÑ Z such that the composite map SpétB Ñ SpétAÑ Z is flat. We wish to show
that g is flat. This follows immediately from the definitions, together with Lemma B.1.4.2.

2.8.4 Fpqc-Local Properties of Modules

We now consider properties of quasi-coherent sheaves which can be tested locally with
respect to the flat topology.

Definition 2.8.4.1. Let P be a property of pairs pA,Mq, where A is a connective E8-ring
and M is an A-module. We will say that P is local for the flat topology if the following
conditions are satisfied:

p1q Let f : A Ñ B be a flat morphism of connective E8-rings, let M be an A-module.
If pA,Mq has the property P , then pB,B bAMq has the property P . The converse
holds if f is faithfully flat.

p2q Suppose we are given a finite collection of pairs pAi,Miq P CAlgcnˆCAlg Mod, each of
which has the property P . Then the product p

ś

Ai,
ś

Miq P C has the property P .
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We now illustrate Definition 2.8.4.1 with some examples:

Proposition 2.8.4.2. The following conditions on a pair pA,Mq P ModˆCAlg CAlgcn are
local for the flat topology:

p1q The condition that M is n-connective (when regarded as a spectrum), where n is a
fixed integer.

p2q The condition that M is almost connective: that is, that M is p´nq-connective for
n " 0.

p3q The condition that M is n-truncated (that is, that πiM » 0 for i ą n), where n is a
fixed integer.

p4q The condition that M is truncated (that is, that πiM » 0 for i " 0).

p5q The condition that M is has Tor-amplitude ď n, where n is a fixed integer.

p6q The condition that M is flat.

p7q The condition that M is perfect to order n over A, where n is a fixed integer.

p8q The condition that M is finitely n-presented over A, where n ě 0 is a fixed integer.

p9q The condition that M is almost perfect over A.

p10q The condition that M is perfect over A.

Lemma 2.8.4.3. Let f : AÑ B be a faithfully flat morphism of connective E8-rings and let
M be a left A-module. If BbAM has Tor-amplitude ď n over B, then M has Tor-amplitude
ď n over A (see Definition HA.7.2.4.21 ).

Proof. Let N be a discrete A-module; we wish to show that M bA N is n-truncated. Since
B is faithfully flat over A, it suffices to show that

B bA pM bA Nq » pB bAMq bB pB bA Nq

is n-truncated. This follows from our assumption that B bA M has Tor-amplitude ď n,
since B bA N is a discrete B-module.

Proof of Proposition 2.8.4.2. Assertions p1q and p3q follow from Proposition HA.7.2.2.13 ,
and assertions p2q and p4q follow immediately from p1q and p3q. Assertion p5q follows from
Lemma 2.8.4.3. Assertion p6q follows from p5q and p1q. Assertion p7q follows from Proposition
2.7.3.1 and Remark 2.7.0.8. Assertion p8q follows from p1q, p3q, and p7q. Assertion p9q follows
from p7q. Assertion p10q follows p5q, p9q, and Proposition HA.7.2.4.23 .
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Definition 2.8.4.4. Let P be a property of pairs pA,Mq, where A is a connective E8-ring
and M is an A-module, and assume that P is local for the flat topology. Let X be a spectral
Deligne-Mumford stack and let F P QCohpXq. We will say that F has the property P if,
for every étale morphism f : SpétA Ñ F , the pullback f˚F P QCohpSpétAq » ModA
corresponds to an A-module M for which the pair pA,Mq has the property P .

Let us spell out the contents of Definition 2.8.4.4 in the examples provided by Proposition
2.8.4.2. Let F be a quasi-coherent sheaf on a spectral Deligne-Mumford stack X. We say
that F is:

p1q n-connective if, for every étale morphism f : SpétAÑ X, the pullback f˚F P ModA
is n-connective. This is equivalent to the requirement that F P QCohpXqěn.

p2q almost connective if, for every étale morphism f : SpétAÑ X, the pullback f˚F P

ModA is almost connective. If X is quasi-compact, then this condition is equivalent to
the requirement that F P QCohpXqě´n for some integer n.

p3q n-truncated if, for every étale morphism f : SpétAÑ X, the pullback f˚F P ModA is
n-truncated. This is equivalent to the requirement that F P QCohpXqďn.

p4q locally truncated if, for every étale morphism f : SpétA Ñ X, the pullback f˚F P

ModA is n-truncated for some integer n. If X is quasi-compact, this is equivalent to
the requirement that F P QCohpXqďn for some integer n.

p5q of Tor-amplitude ď n if, for every étale morphism f : SpétA Ñ X, the pullback
f˚F P ModA is of Tor-amplitude ď n.

p6q flat if, for every étale morphism f : SpétAÑ X, the pullback f˚F P ModA is flat.

p7q perfect to order n if, for every étale morphism f : SpétA Ñ X, the pullback f˚F P

ModA is perfect to order n.

p8q finitely n-presented if, for every étale morphism f : SpétAÑ X, the pullback f˚F P

ModA is finitely n-presented.

p9q almost perfect if, for every étale morphism f : SpétAÑ X, the pullback f˚F P ModA
is almost perfect.

p10q perfect if, for every étale morphism f : SpétAÑ X, the pullback f˚ P ModA is perfect.

Remark 2.8.4.5. In case p4q, our terminology does not quite conform to the general
convention of Definition 2.8.4.4. We use the term “locally truncated” rather than “truncated”
to emphasize the possibility that if F P QCohpXq is a quasi-coherent sheaf whose pullback
f˚F is truncated for every étale map f : SpétA Ñ X, then F need not belong to
Ť

QCohpXqďn unless we assume that X is quasi-compact.
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Remark 2.8.4.6. In the setting of classical scheme theory, the notions of perfect to order n
and almost perfect were introduced by Illusie in [101], who refers to an object F P QCohpXq
as n-pseudo-coherent if it is perfect to order n (in our terminology), and as pseudo-coherent
it is almost perfect (in our terminology).

We have the following analogue of Proposition 2.8.1.7, which can be proven by exactly
the same argument:

Proposition 2.8.4.7. Let P be a property of pairs pA,Mq, where A is a connective E8-ring
and M is an A-module, and assume that P is local for the flat topology. Let X be a spectral
Deligne-Mumford stack and let F be a quasi-coherent sheaf on X. Then:

p1q If f : Y Ñ X is a flat morphism and F has the property P , then f˚F has the
property P . In particular, if F is n-connective (almost connective, n-truncated, locally
truncated, of Tor-amplitude ď n, flat, perfect to order n, finitely n-presented, almost
perfect, perfect), then f˚F has the same property.

p2q If we are given a collection of flat maps tfα : Yα Ñ Xu which induces a flat covering
>Yα Ñ X, and each pullback f˚α F has the property P , then F has the property P .
In particular, if each f˚α F is n-connective (almost connective, n-truncated, locally
truncated, of Tor-amplitude ď n, flat, perfect to order n, finitely n-presented, almost
perfect, perfect), then F has the same property.

2.9 Vector Bundles and Invertible Sheaves

Let X be a scheme. One of the most important invariants of X is its Picard group
PicpXq: the group of isomorphism classes of invertible sheaves on X. Our goal in this section
is to extend the theory of the Picard group to the setting of spectral algebraic geometry.

2.9.1 Locally Free Modules

We begin with a more general discussion of locally free sheaves.

Definition 2.9.1.1. Let A be a connective E8-ring and let M be an A-module. We will
say that M is locally free of finite rank if there exists an integer n such that M is a direct
summand of An.

Remark 2.9.1.2. Let A be a connective E8-ring. Using Proposition HA.7.2.4.20 , we
conclude that an A-module M is locally free of finite rank if and only if M is flat and almost
perfect.
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Corollary 2.9.1.3. Let A be a connective E1-ring and let M be a left A-module of Tor-
amplitude ď 0. If M is perfect to order 1, then it is perfect. If, in addition, M is connective,
then it is locally free of finite rank.

Proof. Using Proposition 2.7.3.2, we can reduce to the case where A is discrete. In this case,
the first assertion follows from Proposition 2.7.1.5, and the second from Remark 2.9.1.2.

Combining Proposition 2.8.4.2, Proposition 6.2.5.2, and Remark 2.9.1.2, we obtain the
following:

Proposition 2.9.1.4. The property of being a locally free module of finite rank is stable
under base change and local with respect to the flat topology.

Our next result gives another characterization of the class of locally free modules:

Proposition 2.9.1.5. Let R be a connective E8-ring and let M be a connective R-module.
The following conditions are equivalent:

p1q The module M is locally free of finite rank.

p2q The module M is a dualizable object of the symmetric monoidal 8-category Modcn
R .

Proof. The collection of dualizable objects of Modcn
R is evidently closed under the formation

of retracts and direct sums. Since the unit object R P Modcn
R is dualizable, we conclude

that p1q ñ p2q. Conversely, suppose that M is a dualizable object of Modcn
R . Then M

is a dualizable object of ModR, and therefore a perfect R-module (Proposition 6.2.6.2).
Let M_ denote the dual of M . For any discrete R-module N , we have isomorphisms
πipM bR Nq » πi MapModRpM

_, Nq for i ě 0. Since M_ is connective, we deduce that
πipM bR Nq vanishes for i ą 0. It follows that M is flat, so that M is locally free of finite
rank by Proposition HA.7.2.4.20 .

2.9.2 The Rank of a Locally Free Module

We now restrict our attention to modules which are locally free of a particular rank
n P Zě0.

Definition 2.9.2.1. Let R be a connective E8-ring, let M be an R-module, and let n ě 0
be an integer. We will say that M is locally free of rank n if the following conditions are
satisfied:

paq The module M is locally free of finite rank (equivalently, M is flat and almost perfect
as an R-module: see Proposition HA.7.2.4.20 ).

pbq For every field κ and every map of E8-rings RÑ κ, the vector space π0pκbRMq has
dimension n over κ.
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Remark 2.9.2.2. To verify condition pbq of Definition 2.9.2.1, we are free to pass to any field
extension of κ. We may therefore assume without loss of generality that κ is algebraically
closed.

The terminology of Definitions 2.9.1.1 and 2.9.2.1 is motivated by the following observa-
tion:

Proposition 2.9.2.3. Let R be a connective E8-ring and let M be an R-module which is
locally free of finite rank. Then there exists a sequence of elements x1, . . . , xm P π0R which
generate the unit ideal, such that each of the modules M rx´1

i s “ Rrx´1
i s bR M is free of

rank ni over Rrx´1
i s. If M is locally free of rank n, then we can assume that ni “ n for

every integer i.

Proof. Let us say that an element x P π0R is good if M rx´1s is a free module of finite rank
over Rrx´1s (which is of rank n in the case where M is locally free of rank n). To complete
the proof, it will suffice to show that the collection of good elements of π0R generate the
unit ideal in π0R. Assume otherwise; then there exists a maximal ideal m of π0R which
contains every good element of R. Let κ “ pπ0Rq{m denote the residue field of π0R at m.
Then π0pκbRMq is a finite dimensional vector space over k (which is of dimension n in the
case M is locally free of rank n). Let n1 be the dimension of this vector space, and choose
elements y1, . . . , yn1 P π0M whose images form a basis for π0pκbRMq. Since π0M is finitely
generated as a module over π0R, Nakayama’s lemma implies that the images of the elements
yi generate the localization pπ0Mqm. We may therefore choose an element x P pπ0Rq ´ m

such that the elements yi generate the module pπ0Mqrx
´1s. It follows that there is a map

a map φ : Rrx´1sn
1

Ñ M which induces a surjection pπ0Rrx
´1sqn

1

Ñ π0M rx
´1s. Since M

is projective, the map φ admits a right homotopy inverse ψ : M rx´1s Ñ Rrx´1sn
1 . The

composite map ψ ˝ φ : Rrx´1sn
1

Ñ Rrx´1sn
1 determines an n1-by-n1 matrix Aij with values

in the commutative ring π0Rrx
´1s. Let D denote the determinant of this matrix, and choose

an element x1 P π0R with xaD “ x1. Since φ induces an isomorphism of vector spaces
kn
1

» π0pκbRMq, the element x1 does not belong to m. We note that the image of D in
π0Rrx

´1, x1´1s is invertible, so that φ induces an equivalence Rrx´1, x1´1sn
1

ÑM rx´1, x1´1s.
It follows that xx1 P π0R is good. Since the product xx1 does not belong to m, we obtain a
contradiction.

Proposition 2.9.2.4. The condition that an R-module M be locally free of rank n is stable
under base change and local with respect to the flat topology (see Definitions 2.8.4.1 and
6.2.5.1).

Proof. According to Proposition 2.9.1.4, the condition of being locally free of finite rank is
stable under base change and local with respect to the flat topology. It will therefore suffice
to prove the following:
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p˚q Let R be a connective E8-ring, M a locally free R-module of finite rank, and R Ñ
ś

1ďiďmRi a faithfully flat map of E8-rings. If each tensor product Ri bRM satisfies
condition pbq of Definition 2.9.2.1, then so does M .

To prove p˚q, let us suppose we are given a field κ and a map R Ñ κ; we wish to prove
that π0pκbRMq is a κ-vector space of dimension n. Since RÑ

ś

1ďiďmRi is faithfully flat,
there exists an index i such that κbR Ri ‰ 0. Let κ1 be a residue field of the commutative
ring κbR Ri. Then κ1 is a field extension of κ, so it will suffice to show that π0pκ

1 bRMq

has dimension n over κ1 (Remark 2.9.2.2). This follows from the existence of an isomorphism

π0pκ
1 bRMq » π0pκ

1 bRi pRi bRMqq,

since Ri bRM is locally free of rank n over Ri.

2.9.3 Locally Free Sheaves

Using Proposition 2.9.2.4, we can introduce a global version of Definition 2.9.2.1.

Notation 2.9.3.1. Let X be a spectral Deligne-Mumford stack. We say that a quasi-coherent
sheaf F P QCohpXq is locally free of rank n if, for every étale morphism f : SpétA Ñ X,
the pullback f˚F P QCohpSpétAq » ModA is locally free of rank n when regarded as an
A-module. Note that if this condition is satsified, then g˚F P ModB is locally free of rank
n for every map g : SpétB Ñ X.

For perfect quasi-coherent sheaves, local freeness is an open condition:

Proposition 2.9.3.2. Let X be a spectral Deligne-Mumford stack and let F P QCohpXq be
perfect. Then:

p1q For every integer n, there exists a largest open substack in : Xn ãÑ X such that i˚n F is
locally free of rank n.

p2q The sheaf F is locally free of finite rank if and only if the canonical map θ : >n Xn Ñ X
is an equivalence of spectral Deligne-Mumford stacks.

p3q Let f : Y Ñ X be a map of spectral Deligne-Mumford stacks. Then f factors through
Xn if and only if f˚F is locally free of rank n.

In particular, if F is locally free of finite rank, then each of the maps in is a clopen
immersion (see Definition 3.1.7.2).

Lemma 2.9.3.3. Let X be a spectral Deligne-Mumford stack, and let F be an almost perfect
quasi-coherent sheaf on X. For every integer n, there exists quasi-compact open immersion
i : U Ñ X with the following property: a morphism of spectral Deligne-Mumford stacks
f : X1 Ñ X factors through U if and only if f˚F is n-connective.
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Proof. The assertion is local on X. We may therefore assume without loss of generality that
X is quasi-compact, so that F is m-connective for some integer m. We proceed by induction
on the difference n´m. If n´m ď 0, then we can take U “ X. Assume that m ă n. Using
the inductive hypothesis, we can choose a quasi-compact open immersion j : V Ñ X such
that a map X1 Ñ X factors through j if and only if f˚F is pn´ 1q-connective. Replacing X
by V, we may assume that F is pn´ 1q-connective. Since the assertion is local on X, we
may assume without loss of generality that X “ SpétR is affine, so that F corresponds to
an pn´ 1q-connective R-module M . Since F is almost perfect, πn´1M is finitely presented
over π0R. We may therefore choose a presentation

pπ0Rq
m1 T
Ñ pπ0Rq

m Ñ πn´1M » 0.

Let I Ď π0R be the ideal generated by all m-by-m minors of the matrix representing
the map T . Let U “ tp P |SpecR| : I Ę pu Ď |SpecR| and let U be the corresponding
open substack of X. We claim that U has the desired properties. To prove this, it suffices
to observe that a map SpétR1 Ñ X factors through U if and only if the abelian group
Torπ0R

0 pπ0R
1, πn´1Mq » πn´1pR

1 bRMq vanishes.

Lemma 2.9.3.4. Let X be a spectral Deligne-Mumford stack, and let F be a perfect quasi-
coherent sheaf on F . Then there exists a quasi-compact open immersion i : U Ñ X with
the following property: a morphism of spectral Deligne-Mumford stacks f : X1 Ñ X factors
through U if and only if f˚F is locally free of finite rank.

Proof. Since F is perfect, it is a dualizable object of QCohpXq (Proposition 6.2.6.2); let us
denote its dual by F_. Note that F is locally free of finite rank if and only if both F and
F_ are connective (Proposition HA.7.2.4.20 ). The desired result now follows from Lemma
2.9.3.3.

Proof of Proposition 2.9.3.2. Assertion p1q follows immediately from Proposition 2.9.2.4,
and the “if” direction of p2q is immediate. Conversely, suppose that F is locally free of finite
rank; we wish to show that the map θ is an equivalence. The map θ is evidently étale, and
is surjective by virtue of Proposition 2.9.2.3. To prove that θ is an equivalence, it will suffice
to show that the diagonal map

>n Xn Ñ p>n Xnq ˆX p>n Xnq » >m,npXmˆX Xnq

is an equivalence. Since each in is an open immersion, each of the maps Xn Ñ XnˆX Xn is an
equivalence. It will therefore suffice to show that XmˆX Xn is trivial for m ‰ n. Equivalently,
we must show that if R is a connective E8-ring and M is a locally free R-module of rank m
which is also of rank n ‰ m, then R » 0. Assume otherwise, and let κ be a residue field
of π0R. We obtain an immediate contradiction, since π0pκbRMq is a vector space over k
which is dimension m and also of dimension n ‰ m.
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It remains to prove p3q. Using Lemma 2.9.3.4, we may reduce to the case where F is
locally free of finite rank, so that the above argument shows that θ is an equivalence. Let
f : Y Ñ X be such that f˚F is locally free of rank n. Then we can write f as a coproduct
of maps fm : Ym Ñ Xm. Then pim ˝ fmq˚F is locally free of rank m and locally free of
rank n. It follows that Ym is empty for m ‰ n, so that Yn » Y and f factors through in as
desired.

2.9.4 Line Bundles

We now consider quasi-coherent sheaves which are locally free of rank 1.

Definition 2.9.4.1. Let X be a spectral Deligne-Mumford stack. We will say that a quasi-
coherent sheaf F P QCohpXq is a line bundle if it is locally free of rank 1. We let PicpXq
denote the full subcategory of QCohpXq» spanned by the line bundles on X, and we let
PicpXq “ π0 PicpXq collection of homotopy equivalences classes of line bundles on X. We
will refer to PicpXq as the Picard group of X.

Proposition 2.9.4.2. Let X be a spectral Deligne-Mumford stack and let F P QCohpXq.
The following conditions are equivalent:

p1q The quasi-coherent sheaf F is a line bundle on X.

p2q The quasi-coherent sheaf F is an invertible object of the symmetric monoidal 8-
category QCohpXqcn.

Proof. Suppose first that p1q is satisfied. Then F is locally free of finite rank, and therefore
a dualizable object of QCohpXqcn (see Proposition 2.9.1.5). Let us denote its dual by F_,
and let e : F bF_ Ñ O be the evaluation map (where O denotes the structure sheaf of
X). We claim that e is an equivalence. To prove this, it suffices to show that e induces an
equivalence of R-modules η˚pF bF_q Ñ R for every map η : SpétRÑ X. The assertion
is local on | SpecR|, so we can apply Proposition 2.9.2.3 to reduce further to the case where
η˚F » R, in which case the result is obvious.

We now prove p2q. Assume that F is an invertible object in QCohpXqcn. We wish to
show that for every point η P XpRq, the pullback M “ η˚F P QCohpSpecRq » ModR is
locally free of rank 1. Note that M is a dualizable object of Modcn

R and therefore locally
free of finite rank (Proposition 2.9.1.5). In particular, for every map from R to a field κ,
the tensor product κbRM can be identified with a finite dimensional vector space over κ,
which is invertible as an object of Modcn

κ . It follows easily that κ bRM has dimension 1
over κ, so that M is locally free of rank 1.
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2.9.5 Invertible Sheaves

For some purposes, it is convenient to consider a slight enlargement of the Picard group
PicpXq.

Definition 2.9.5.1. Let X be a spectral Deligne-Mumford stack, and let F P QCohpXq.
We will say that F is invertible if it is invertible as an object of the symmetric monoidal
8-category QCohpXq: that is, if there exists another object F 1 P QCohpXq such that F bF 1

is equivalent to the unit object of QCohpXq. We let Pic:pXq denote the full subcategory of
QCohpXq» spanned by the invertible objects, and we let Pic:pXq denote the set of connected
components π0 Pic:pXq. We will refer to Pic:pXq as the extended Picard group of X.

Remark 2.9.5.2. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. Then Pic:pXq Ď
QCohpXq is essentially small. To prove this, choose a regular cardinal κ for which the global
sections functor F ÞÑ ΓpX; F q commutes with κ-filtered colimits. If L is an invertible object
of QCohpXq, then the canonical equivalence MapQCohpXqpL,F q » ΓpX;L´1bF q shows that
L is a κ-compact object of QCohpXq. Since the full subcategory of QCohpXq spanned by
the κ-compact objects is essentially small, it follows that Pic:pXq is essentially small.

Remark 2.9.5.3. Let X be a spectral Deligne-Mumford stack. It follows from Proposition
2.9.4.2 that every line bundle on X is an invertible object of QCohpXq, so that we have
inclusions

PicpXq ĎPic:pXq PicpXq Ď Pic:pXq.

It follows from Remark 2.9.5.2 that PicpXq is essentially small, and that the sets PicpXq
and Pic:pXq are small.

Remark 2.9.5.4. Let C be a symmetric monoidal 8-category, and let E denote the full
subcategory of C» spanned by the invertible objects of C. Then E inherits the structure of
a symmetric monoidal 8-category. It can therefore be viewed as grouplike commutative
monoid object of the 8-category S of spaces. It follows from Remark HA.5.2.6.26 that E
is an infinite loop space; in particular, the symmetric monoidal structure on C determines
an abelian group structure on π0 E . Applying this observation to the symmetric monoidal
8-categories QCohpXqcn and QCohpXq (where X is a spectral Deligne-Mumford stack), we
conclude that PicpXq and Pic:pXq are infinite loop spaces, and that the sets PicpXq and
Pic:pXq can be regarded as abelian groups.

Remark 2.9.5.5. Let X “ pX ,OX q be a spectral Deligne-Mumford stack, and let F P

QCohpXq. Then F is invertible if and only if F is dualizable, and the evaluation map
F bF_ Ñ OX is an equivalence. It follows that the condition that F be invertible is local
with respect to the flat topology on X.

We next describe the relationship between line bundles and invertible sheaves.
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Proposition 2.9.5.6. Let X be a spectral Deligne-Mumford stack, and let F P QCohpXq be
perfect. For each integer n P Z, let Xn denote the largest open substack of X for which the
restriction of Σn F to Xn is a line bundle (see Proposition 2.9.3.2). Then:

p1q The canonical map j : >nPZ Xn Ñ X is an open immersion.

p2q Let g : Y Ñ X be a map of spectral Deligne-Mumford stacks. Then g factors through j
if and only if g˚F is invertible.

Corollary 2.9.5.7. Let X be a spectral Deligne-Mumford stack and let F P QCohpXq. The
following conditions are equivalent:

p1q There exists an equivalence X » >nPZ Xn such that, for each n P Z, the restriction of
Σn F to Xn is a line bundle.

p2q There exists a mutually surjective collection of étale maps fα : Uα Ñ X, integers nα,
and line bundles Lα P PicpUαq such that f˚α F » Σnα Lα.

p3q There exists a mutually surjective collection of étale maps fα : Uα Ñ X, such that each
f˚α F is invertible.

p4q The object F is invertible.

Proof. The implications p1q ñ p2q ñ p3q are immediate, and p3q ñ p4q follows from Remark
2.9.5.5. Suppose that p4q is satisfied. Then F is perfect, so that condition p1q follows from
Proposition 2.9.5.6.

Remark 2.9.5.8. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. Using Corollary
2.9.5.7, we obtain an isomorphism of abelian groups

Pic:pXq » PicpXq ˆ ΓpX ; Zq,

where Z denotes the constant sheaf on X taking the value Z. In other words, Pic:pXq is
the product of PicpXq with the abelian group of locally constant Z-valued functions on X.
In particular, if X is connected, we obtain an isomorphism Pic:pXq » PicpXq ˆ Z: that is,
every invertible object of QCohpXq can be written uniquely in the form Σn L, where n is an
integer and L is a line bundle on X.

Proof of Proposition 2.9.5.6. We first claim that j is an open immersion. Arguing as in the
proof of Proposition 2.9.3.2, we are reduced to proving that the fiber product XmˆX Xn is
empty for m ‰ n. Suppose otherwise; then there exists a field κ and a map η : SpétκÑ X
which factors through both Xm and Xn. Then π0η

˚Σm F is a 1-dimensional vector space
over κ (since η factors through Xm) and also a 0-dimensional vector space over κ (since η
factors through Xn), so we obtain a contradiction. This proves p1q.
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The “only if” direction of p2q is obvious. For the converse, suppose we are given a map
g : Y Ñ X such that g˚F is invertible; we wish to show that g factors through j. Without
loss of generality, we may suppose that Y “ SpétR is affine. Let us identify g˚F with an
invertible R-module M . To prove that g factors through j, it will suffice to show that for
every maximal ideal m Ď π0R, there exists an element a P π0R which does not belong to m

and an integer n such that Σ´nM ra´1s is locally free of rank 1.
Let κ “ pπ0Rq{m. Then κ bRM is an invertible κ-module, so that π˚pκ bRMq is an

invertible object in the symmetric monoidal category of graded vector spaces over κ. It
follows that there exists an integer n such that

πipκbRMq »

#

κ if i “ n

0 otherwise.

Since M is an invertible R-module, it is nonzero and perfect. It follows that there exists a
smallest integer m such that πmM ‰ 0. If m ă n, then pπmMq{mpπmMq » πmpκbRMq » 0.
Since πmM is finitely generated as a module over π0R, it follows from Nakayama’s lemma
that there exists an element a P pπ0Rq ´m such that πmM ra´1s “ 0. Replacing R by the
localization Rra´1s, we may reduce to the case where πmM “ 0. Iterating this procedure,
we may reduce to the case where πmM » 0 for m ă n. Applying a similar argument to the
dual M_ of M , we may suppose that πmM_ » 0 for m ă ´n: that is, M has Tor-amplitude
ě n. It then follows from Remark 2.9.1.2 that Σ´nM is locally free of finite rank. Using
Proposition 2.9.3.2 we may suppose (after further localization) that Σ´nM is locally free of
rank 1, as desired.

2.9.6 The Affine Case

Let X be a spectral Deligne-Mumford stack and let X0 be its underlying ordinary Deligne-
Mumford stack. Every line bundle on X determines a line bundle on X0, so there is a natural
map from the Picard group of X (in the sense of Definition 2.9.4.1) to the Picard group
of X0 (in the sense of classical algebraic geometry). In general, this map need not be an
isomorphism. However, it is an isomorphism whenever X is affine (Proposition 2.9.6.2).

Notation 2.9.6.1. Let R be a connective E8-ring. We define

PicpRq “PicpSpétRq Pic:pRq “Pic:pSpétRq

PicpRq “ PicpSpétRq Pic:pRq “ Pic:pSpétRq.

We will refer to PicpRq and Pic:pRq as the Picard group of R and the extended Picard group
of R, respectively.
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Proposition 2.9.6.2. Let R be a connective E8-ring. Then the canonical maps

α : PicpRq Ñ Picpπ0Rq β : Pic:pRq Ñ Pic:pπ0Rq

are isomorphisms.

Proof. By virtue of Remark 2.9.5.8, it will suffice to prove that α is an isomorphism, which
follows from Corollary HA.7.2.2.19 .

Corollary 2.9.6.3. Let R be a connective E8-ring. Then the canonical maps

PicpRq Ñ lim
ÐÝ

PicpτďnRq Pic:pRq Ñ lim
ÐÝ

PicpτďnRq

are homotopy equivalences.

Proof. Using Proposition 2.9.6.2, we see that the maps

πm PicpRq Ñ πm PicpτďnRq πm Pic:pRq Ñ πm Pic:pτďnRq

are isomorphisms as soon as n ě m´ 1.



Chapter 3

Spectral Algebraic Spaces

Recall that a spectral Deligne-Mumford stack X is a spectral algebraic space if the
mapping space MapSpDMpSpétR,Xq is discrete for every commutative ring R (Definition
1.6.8.1). In this section, we will develop some foundations for the theory of spectral algebraic
spaces. Our main technical result (Theorem 3.4.2.1) asserts that every quasi-compact,
quasi-separated spectral algebraic space admits a scallop decomposition, in the sense of
Definition 2.5.3.1. This has a number of pleasant consequences: for example, it implies that
if f : pX ,OX q Ñ pY,OYq is a morphism of quasi-compact, quasi-separated spectral algebraic
spaces, then the pushforward functor f˚ : ModOX Ñ ModOY preserves quasi-coherence
(Corollary 3.4.2.2).

Our proof of Theorem 3.4.2.1 will require a long detour through some of the fundamentals
of spectral algebraic geometry. We begin in §3.1 by introducing the notion of a closed
immersion between spectral Deligne-Mumford stacks (Definition 3.1.0.1). We will say
that a spectral algebraic space X is separated if the diagonal map X Ñ XˆX is a closed
immersion. In §3.2, we prove a slightly weaker version of Theorem 3.4.2.1: every quasi-
compact, separated spectral algebraic space admits a scallop decomposition (Proposition
3.2.3.1). As a consequence, we will see that for any morphism between quasi-compact,
separated spectral algebraic spaces f : X Ñ Y, there is a well-behaved pushforward operation
f˚ on quasi-coherent sheaves (Corollary 3.2.3.3). We will apply this result in §3.3 to develop
a theory of quasi-finite morphisms between spectral Deligne-Mumford stacks. In particular,
we will prove the following version of Zariski’s Main Theorem: if f : X Ñ Y is quasi-compact,
separated, and locally quasi-finite, then f is quasi-affine (Theorem 3.3.0.2). We will apply this
result in §3.4 to prove the existence of scallop decompositions for arbitrary quasi-compact,
quasi-separated spectral algebraic spaces, and describe some applicatoins.

In §3.6, we study the underlying topological space |X | of a spectral Deligne-Mumford
stack X “ pX ,OX q. We define |X | to be the space of points of the locale underlying the
8-topos X . More or less by definition, we can identify open subsets of |X | with open

287
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substacks of X. However, it is not immediately clear how to describe the points of X. In
the special case where X is a quasi-separated spectral algebraic space, we will use Theorem
3.4.2.1 to show that there is a bijection between points of |X | and (equivalence classes of)
geometric points of X: that is, maps ι : SpétκÑ X, where κ is a separably closed field. The
latter are closely related to points of the underlying 8-topos X , which we study in §3.5.

The topology on the space |X | can be regarded as an analogue of the Zariski topology in
the setting of spectral algebraic spaces. There is a version of the Nisnevich topology as well,
which we will discuss in §3.7. In particular, we prove that the class of Nisnevich sheaves can
be characterized by an excision property, just as with ordinary schemes (Theorem 3.7.5.1).

Contents
3.1 Closed Immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

3.1.1 Classification of Closed Immersions . . . . . . . . . . . . . . . . . 290
3.1.2 Closed Immersions of Spectral Deligne-Mumford Stacks . . . . . 291
3.1.3 Closed Immersion of 8-Topoi . . . . . . . . . . . . . . . . . . . . 293
3.1.4 The Proof of Theorem 3.1.2.1 . . . . . . . . . . . . . . . . . . . . 295
3.1.5 Example: Schematic Images . . . . . . . . . . . . . . . . . . . . . 299
3.1.6 Reduced Closed Substacks . . . . . . . . . . . . . . . . . . . . . . 300
3.1.7 Clopen Immersions . . . . . . . . . . . . . . . . . . . . . . . . . . 300

3.2 Separated Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
3.2.1 Properties of Separated Morphisms . . . . . . . . . . . . . . . . . 302
3.2.2 Configuration Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 304
3.2.3 Existence of Scallop Decompositions (Separated Case) . . . . . . 307

3.3 Quasi-Finite Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
3.3.1 Relative Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 310
3.3.2 Zariski’s Main Theorem . . . . . . . . . . . . . . . . . . . . . . . 313

3.4 Quasi-Separated Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . 316
3.4.1 Quasi-Separatedness . . . . . . . . . . . . . . . . . . . . . . . . . 316
3.4.2 Existence of Scallop Decompositions (Quasi-Separated Case) . . 318
3.4.3 The Proof of Theorem 3.4.2.1 . . . . . . . . . . . . . . . . . . . . 320

3.5 Geometric Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
3.5.1 Strictly Henselian E8-Rings . . . . . . . . . . . . . . . . . . . . . 324
3.5.2 Points of Affine Spectral Deligne-Mumford Stacks . . . . . . . . . 325
3.5.3 Minimal Geometric Points . . . . . . . . . . . . . . . . . . . . . . 326
3.5.4 Comparison of Points with Geometric Points . . . . . . . . . . . 327
3.5.5 Existence of Geometric Points . . . . . . . . . . . . . . . . . . . . 330

3.6 Points of Spectral Algebraic Spaces . . . . . . . . . . . . . . . . . . . . . 332



3.1. CLOSED IMMERSIONS 289

3.6.1 The Underlying Topological Space . . . . . . . . . . . . . . . . . 332

3.6.2 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

3.6.3 Comparison of PtpXq with |X | . . . . . . . . . . . . . . . . . . . 335

3.6.4 Comparison of PtpXq with PtgpXq . . . . . . . . . . . . . . . . . . 338

3.7 The Nisnevich Topology of a Spectral Algebraic Space . . . . . . . . . . . 340

3.7.1 Nisnevich Coverings . . . . . . . . . . . . . . . . . . . . . . . . . 340

3.7.2 The Affine Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

3.7.3 The Noetherian Case . . . . . . . . . . . . . . . . . . . . . . . . . 343

3.7.4 Nisnevich Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 344

3.7.5 Nisnevich Excision . . . . . . . . . . . . . . . . . . . . . . . . . . 346

3.7.6 Height and Krull Dimension . . . . . . . . . . . . . . . . . . . . . 349

3.7.7 A Vanishing Theorem for Nisnevich Sheaves . . . . . . . . . . . . 350

3.7.8 Proof of the Vanishing Theorem . . . . . . . . . . . . . . . . . . . 351

3.1 Closed Immersions

Let f : X Ñ Y be a morphism of schemes. Recall that f is said to be a closed immersion
if it induces a homeomorphism from the underlying topological space of X to a closed
subset of the underlying topological space of Y , and an epimorphism of structure sheaves
f´1 OY Ñ OX . In this section, we will develop an analogous theory of closed immersions in
the setting of spectral algebraic geometry.

Definition 3.1.0.1. Let f : pX ,OX q Ñ pY,OYq be a morphism of spectrally ringed8-topoi.
We will say that f is a closed immersion if the following conditions are satisfied:

paq The underlying geometric morphism f˚ : X Ñ Y is a closed immersion of 8-topoi.
That is, f˚ induces an equivalence X Ñ Y {U , for some p´1q-truncated object U P Y
(see Notation ??).

pbq The structure sheaves OX and OY are connective.

pcq Let f´1 : ShvSppYq Ñ ShvSppX q denote the left adjoint of the pushforward functor
f˚. Then the underlying map f´1 OY Ñ OX has a connective fiber. In other words,
the induced map f´1π0 OY Ñ π0 OX is an epimorphism (in the abelian category of
abelian group objects of X♥).
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3.1.1 Classification of Closed Immersions

In the setting of locally spectrally ringed 8-topoi, closed immersions having a fixed
codomain admit a reasonably simple description.

Proposition 3.1.1.1. Let pX ,OX q be a locally spectrally ringed 8-topos. Assume that
the structure sheaf OX is connective and let α : OX Ñ O 1 be a morphism of connective
sheaves of E8-rings on X which induces an epimorphism π0 OX Ñ π0 O 1. Then there exists
a closed immersion f : pY,OYq Ñ pX ,OX q in 8T oploc

CAlg and an equivalence β : O 1 » f˚OY
in ShvCAlgpX qOX { with the following universal property: for every morphism of locally
spectrally ringed 8-topos h : pZ,OZq Ñ pX ,OX q, composition with β induces a homotopy
equivalence

Mapp8T oploc
CAlgq{pX ,OX q

ppZ,OZq, pY,OYqq Ñ Mapp8T opCAlgq{pX ,OX q
ppZ,OZq, pX ,O 1qq

» MapShvCAlgpX qOX {
pO 1, h˚OZq.

Proof. Let U denote the p´1q-truncated object of X given by 1ˆπ0 O 1 pπ0 O 1qˆ (see Remark
1.2.1.6), let f˚ : Y Ñ X be the closed immersion of 8-topoi complementary to U (so that
Y can be identified with the full subcategory X {U Ď X spanned by those objects X for
which U ˆX is initial in X ), and let OY “ f˚O 1. Since the restriction O 1 |U vanishes, the
unit map β : O 1 Ñ f˚OY is an equivalence. It follows from Proposition 1.2.1.8 that the
spectrally ringed 8-topos pY,OYq is local.

Note that if h : pZ,OZq Ñ pX ,O 1q is any morphism of spectrally ringed 8-topoi, the
pullback h˚U admits a morphism to the fiber product V “ 1ˆπ0 OZ pπ0 OZq

ˆ in the 8-topos
Z. If OZ is local, then V is initial in Z, so that U is also initial in Z so that the underlying
map of 8-topoi h˚ : Z Ñ X must factor as a composition Z g˚

Ñ Y f˚
Ñ X . In this case, we

can promote g˚ to a morphism of spectrally ringed 8-topoi g : pZ,OZq Ñ pY,OYq. To
complete the proof, it will suffice to show that g is local if and only if h is local, which is an
immediate consequence of Remark 1.2.1.7.

Remark 3.1.1.2. Let h : pY,OZq Ñ pX ,OX q be an arbitrary closed immersion in
8T oploc

CAlg. Then the induced map OX Ñ h˚OZ induces an epimorphism α : π0 OX Ñ

π0h˚OZ . Let f : pY,OYq Ñ pX ,OX q be the closed immersion obtained by applying Propo-
sition 3.1.1.1 to α. The universal property of f guarantees that h factors as a composition
pZ,OZq

g
Ñ pY,OYq

f
Ñ pX ,OX q. A simple calculation shows that g is an equivalence. It

follows that every closed immersion h : pY,OZq Ñ pX ,OX q can be obtained using the
construction of Proposition 3.1.1.1.

Corollary 3.1.1.3. Let pX ,OX q be a locally spectrally ringed 8-topos where OX is con-
nective. Let C Ď p8T oploc

CAlgq{pX ,OX q denote the subcategory spanned by those maps f :
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pY,OYq Ñ pX ,OX q which are closed immersions. Then the construction

pf : pY,OYq Ñ pX ,OX qq ÞÑ f˚OY

determines a fully faithful embedding θ : Cop Ñ ShvCAlgpX qOX {. Moreover, the essential
image of θ is the full subcategory C1 Ď ShvCAlgpX qOX { spanned by those maps α : OX Ñ O 1

where O 1 is connective and fibpαq is connective.

Proof. It follows from Proposition 3.1.1.1 that the functor θ : Cop Ñ C1 is essentially
surjective. To prove that it is fully faithful, suppose we are given closed immersions

f : pY,OYq Ñ pX ,OX q g : pZ,OZq Ñ pX ,OX q

in 8T oploc
CAlg; we wish to show that θ induces a homotopy equivalence

ρ : Mapp8T oploc
CAlgq{pX ,OX q

ppZ,OZq, pY,OYqq Ñ MapShvCAlgpX qOX {
pf˚OY , g˚OZq.

To prove this, it suffices to show that the closed immersion f enjoys the universal property
described in Proposition 3.1.1.1, which follows from Remark 3.1.1.2.

Remark 3.1.1.4. Let f : pY,OYq Ñ pX ,OX q be a closed immersion in 8T oploc
CAlg. If OX is

strictly Henselian, then OY is strictly Henselian (this follows immediately from Proposition
1.2.2.14).

3.1.2 Closed Immersions of Spectral Deligne-Mumford Stacks

Let R be a commutative ring. Then the construction I ÞÑ SpecR{I induces a bijective
correspondence between ideals I Ď R and closed subschemes of the affine scheme SpecR.
Our main goal in this section is to establish an analogous correspondence in the setting of
spectral algebraic geometry:

Theorem 3.1.2.1. Let A be a connective E8-ring and let f : pX ,Oq Ñ SpétA be a map of
spectral Deligne-Mumford stacks. The following conditions are equivalent:

p1q The map f is a closed immersion.

p2q The spectral Deligne-Mumford stack pX ,Oq is affine and the canonical map A Ñ

ΓpX ; Oq induces a surjection of commutative rings π0AÑ π0ΓpX ; Oq.

Remark 3.1.2.2. The condition that a morphism f : X Ñ Y of spectral Deligne-Mumford
stacks be a closed immersion is local on the target with respect to the étale topology (see
Definition 6.3.1.1). Together with Theorem 3.1.2.1, this observation completely determines
the class of closed immersions between spectral Deligne-Mumford stacks.



292 CHAPTER 3. SPECTRAL ALGEBRAIC SPACES

Before giving the proof of Theorem 3.1.2.1, let us describe some of its consequences.

Corollary 3.1.2.3. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 //

f
��

X
f
��

Y1 // Y .

If f is a closed immersion, so is f 1.

Proof. The assertion is local on Y and Y1. We may therefore assume without loss of generality
that Y » SpétA is affine, so that Theorem 3.1.2.1 implies that X has the form SpétB for
some connective E8-ring A1 for which the map φ : AÑ B is 0-connective. Similarly, we may
assume that Y1 » SpétA1 for some connective E8-ring A1. According to Theorem 3.1.2.1,
it will suffice to show that the map φ1 : A1 Ñ B bA A

1 is connective. This is clear, since
fibpφ1q » fibpφq bA A1.

Corollary 3.1.2.4. Suppose we are given a commutative diagram of spectral Deligne-
Mumford stacks

X

h   

f // Y

g~~
Z .

If g is a closed immersion, then f is a closed immersion if and only if h is a closed immersion.

Proof. The assertion is local on Z. We may therefore assume without loss of generality that
Z » SpétC for some connective E8-ring C. It follows from Theorem 3.1.2.1 that Y » SpétB
is affine, and that the map π0C Ñ π0B is surjective. Theorem 3.1.2.1 also implies that if
either f or h is a closed immersion, then X has the form SpétA, for some connective E8-ring
A. The desired result now follows from the observation that a map π0B Ñ π0A is surjective
if and only if the composite map π0C Ñ π0B Ñ π0A is surjective.

Remark 3.1.2.5. Corollaries 3.1.2.3 and 3.1.2.4 are true in the more general setting of
spectrally ringed 8-topoi. See Corollary ?? and Remark ??.

Warning 3.1.2.6. In the setting of classical algebraic geometry, every closed immersion is
a monomorphism. The analogous statement is not true in spectral algebraic geometry. If
f : Y Ñ X is a closed immersion of spectral Deligne-Mumford stacks and R is a connective
E8-ring, then it is generally not true that the induced map

θ : MapSpDMpSpétR,Yq Ñ MapSpDMpSpétR,Xq
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is the inclusion of a summand. However, this is true in the special case where R is discrete.
To prove this, fix a map η : SpétRÑ X and apply Theorem 3.1.2.1 to write the fiber product
SpétRˆX Y can be written as SpétA, where A is an E8-algebra over R for which the map
φ : RÑ π0A is surjective. It follows that the fiber product

MapSpDMpSpétR,Yq ˆMapSpDMpSpétX,Xq tηu

is either empty (if kerpφq ‰ 0) or contractible (if kerpφq » 0).

Remark 3.1.2.7. Let X “ pX ,OX q be a spectral Deligne-Mumford stack, and suppose we
are given a closed immersion f : pY,OYq Ñ pX ,OX q in the 8-category 8T oploc

CAlg of locally
spectrally ringed 8-topoi. The following conditions are equivalent:

p1q The spectrally ringed 8-topos pY,OYq is a spectral Deligne-Mumford stack.

p2q The direct image f˚OY is quasi-coherent as an OX -module.

To prove this, we may assume that X “ SpétA is affine. If condition p1q is satisfied, then
Theorem 3.1.2.1 guarantees that pY,OYq » SpétB for some connective E8-algebra A over
B, in which case the direct image f˚OY can be identified with the quasi-coherent sheaf
associated to the A-module B. Conversely, suppose that p2q is satisfied. Then f˚OY can
be regarded as a commutative algebra object of QCohpXqcn » Modcn

A which we can identify
with a connective A-algebra B for which the map π0AÑ π0B is surjective. It then follows
from Corollary 3.1.1.3 that pY,OYq is equivalent to the affine spectral Deligne-Mumford
stack SpétB.

3.1.3 Closed Immersion of 8-Topoi

The proof of Theorem 3.1.2.1 will require a number of preliminaries. We begin by with
general remarks about the topological properties of closed immersions.

Lemma 3.1.3.1. Let X be an 8-topos and let f˚ : Y Ñ X be a closed immersion of 8-topoi.
If X is n-coherent (for some n ě 0), then Y is n-coherent.

Proof. The proof proceeds by induction on n. In the case n “ 0, we must show that if X is
quasi-compact then Y is also quasi-compact. Assume that X is quasi-compact and choose an
effective epimorphism θ : >iPIYi Ñ 1 in Y, where 1 denotes the final object of Y. We wish
to show that there exists a finite subset I0 Ď I such that the induced map >iPI0Yi Ñ 1 is an
effective epimorphism. If I is empty, we can take I0 “ I. Otherwise, we can use Lemma
3.1.3.2 (since f˚ is a closed immersion) to see that the induced map >iPIf˚pYiq Ñ f˚1 is
effective epimorphism in X . Since X is quasi-compact, there exists a finite subset I0 Ď I

such that the map >iPI0f˚pYiq Ñ f˚1 is an effective epimorphism, so that >iPI0Yi Ñ 1 is an
effective epimorphism in Y.
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Now suppose that n ą 0. The inductive hypothesis guarantees that the pullback functor
f˚ carries pn´ 1q-coherent objects of X to pn´ 1q-coherent objects of Y . Assume that X is
pn´ 1q-coherent. Let Y0 Ď Y be the collection of all objects of the form f˚X, where X P X
is pn´ 1q-coherent. Then Y0 is stable under products in Y and every object Y P Y admits
an effective epimorphism >Yi Ñ Y , where each Yi P Y0. Applying Corollary A.2.1.4, we
deduce that Y is n-coherent.

Lemma 3.1.3.2. Let X be an 8-topos containing a p´1q-truncated object U , and let
i˚ : X Ñ X {U and j˚ : X Ñ X {U be the associated geometric morphisms. Suppose we are
given a family of morphisms tαi : Xi Ñ Xu in X . Then the composite map >Xi Ñ X is an
effective epimorphism if and only if the corresponding maps

>i˚Xi Ñ f˚X > j˚Xi Ñ g˚X

are effective epimorphisms in X {U and X {U , respectively.

Proof. Since i˚ and j˚ commute with coproducts, we can replace the family tXi Ñ Xu

by the single map α : X0 Ñ X, where X0 “ >iXi. Let X‚ be the Čech nerve of α and
let X 1 be its geometric realization. Then α is an effective epimorphism if and only if it
induces an equivalence β : X 1 Ñ X. Similarly, f˚pαq and g˚pαq are effective epimorphisms
if and only if i˚pβq and j˚pβq are equivalences. The desired result now follows from Lemma
HA.A.5.11 .

Lemma 3.1.3.3. Let f˚ : Y Ñ X be a closed immersion of 8-topoi. Then:

p1q The functor f˚ carries n-connective objects of Y to n-connective objects of X .

p2q The functor f˚ carries n-connective morphisms of Y to n-connective morphisms of X .

p3q The functor f˚ induces a left t-exact pushforward functor ShvSppYq Ñ ShvSppX q.

Proof. Since f˚ carries final objects of Y to final objects of X , assertion p1q follows from
p2q. Assertion p3q is an immediate consequence of p1q. It will therefore suffice to prove p2q.
We proceed by induction on n: when n “ 0, the desired result follows from Lemma 3.1.3.2.
Assume that n ą 0, and let u : X Ñ Y be an n-connective morphism in Y . We wish to show
that f˚puq is n-connective. We have already seen that f˚puq is an effective epimorphism;
it will therefore suffice to show that the diagonal map f˚pXq Ñ f˚pXq ˆf˚pY q f˚pXq is
pn ´ 1q-connective. This follows from the inductive hypothesis, since the diagonal map
X Ñ X ˆY X is pn´ 1q-connective.
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Lemma 3.1.3.4. Suppose we are given a commutative diagram

X

h˚ ��

f˚ // Y

g˚��
Z

in T op8, where g˚ and h˚ are closed immersions of 8-topoi. Then f˚ is a closed immersion
of 8-topoi.

Proof. Without loss of generality, we may assume that X “ Z {U and Y “ Z {V for some
p´1q-truncated objects U, V P Z. The commutativity of the diagram implies Z {U Ď Z {V .
An object Z P Z belongs to Z {U if and only if the projection map p : Z ˆ U Ñ U is an
equivalence. Using Lemma HA.A.5.11 , we see that this is equivalent to the assertion that
Z P Y {V and that g˚ppq is an equivalence. Thus f˚ induces an equivalence from X to
Y {g˚U and is therefore a closed immersion.

Lemma 3.1.3.5. Let X be an n-localic 8-topos. Then any closed subtopos of X is also
n-localic.

Proof. Any closed subtopos of X is a topological localization of X (Proposition HTT.7.3.2.3 )
and therefore n-localic by virtue of Proposition HTT.6.4.5.9 .

3.1.4 The Proof of Theorem 3.1.2.1

We will deduce Theorem 3.1.2.1 from the following slightly weaker assertion:

Proposition 3.1.4.1. Let φ : A Ñ B be a map of connective E8-rings which induces a
surjection π0AÑ π0B. Then the corresponding map f : SpétB Ñ SpétA induces a closed
immersion of the underlying 8-topoi.

Remark 3.1.4.2. Proposition 3.1.4.1 is essentially a theorem of commutative algebra: it
follows from (and implies) the statement that a surjection of commutative rings induces a
closed immersion of their étale topoi.

Proof of Proposition 3.1.4.1. Using Proposition 1.4.2.4, we can identify the underlying 8-
topoi of SpétA and SpecétB with Shvét

A Ď FunpCAlgét
A ,Sq and Shvét

B Ď FunpCAlgét
B ,Sq,

respectively. Under these identifications, the functor f˚ is given by composition with the
extension-of-scalars functor

CAlgét
A Ñ CAlgét

B A1 ÞÑ A1 bA B.
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Let U P CAlgét
A Ñ S be the functor described by the formula

UpA1q “

#

∆0 if A1 bA B » 0
H otherwise.

Then U is a p´1q-truncated object of Shvét
A , and the pushforward functor f˚ carries the

8-category Shvét
B into the full subcategory Shvét

A {U Ď Shvét
A . We will complete the proof

by showing that the adjoint functors

Shvét
A {U

f˚ //Shvét
B

f˚
oo

are mutually inverse equivalences of8-categories. Note that CAlgét
A and CAlgét

B are equivalent
to the nerves of ordinary categories, by Theorem HA.7.5.0.6 . It follows that Shvét

A and Shvét
B

are 1-localic 8-topoi. Using Lemma 3.1.3.5, we conclude that Shvét
A {U is also a 1-localic

8-topos. Consequently, it will suffice to show that the adjoint functors pf˚, f˚q induce
mutually inverse equivalences when restricted to discrete objects of Shvét

A {U and Shvét
B .

We begin by showing that the functor f˚ is conservative. Let α : F Ñ F 1 be a morphism
in Shvét

B such that f˚pαq is an equivalence. We will show that α induces an equivalence
F pB1q Ñ F 1pB1q for every étale B-algebra B1. Using Proposition B.1.1.3, we deduce the
existence of a pushout diagram

Atx1, . . . , xmu
g //

��

B

��
Aty1, . . . , ymur∆´1s // B1,

where the left vertical map carries each xi to some polynomial fipy1, . . . , ymq P π0Aty1, . . . , ymu

and ∆ P π0Aty1, . . . , ymu denotes the determinant of the Jacobian matrix r B fi
B yj
s1ďi,jďm.

Since the map A Ñ B is surjective on π0, the map g factors through A. Set A1 “

AbAtx1,...,xmu Aty1, . . . , ymur∆´1s. Then A1 is an étale A-algebra. Since f˚pαq is an equiva-
lence, we deduce that the natural map

F pB1q » pf˚F qpA1q Ñ pf˚F 1qpA1q » F 1pB1q

is an equivalence, as desired.
To complete the proof, it will suffice to show that if F is a discrete object of Shvét

Aq{U ,
then the unit map u : F Ñ f˚f

˚F is an equivalence. Since both F and f˚f˚F are discrete
objects of Shvét

A , they are hypercomplete: it will therefore suffice to show that the map u is
8-connective. According to Theorem A.4.0.5, the 8-topos pShvét

Aq
hyp has enough points. It

will therefore suffice to show that for every geometric morphism η˚ : Shvét
A Ñ S, the map

η˚puq is a homotopy equivalence.
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According to Corollary 3.5.2.2, the geometric morphism η˚ corresponds to a strictly
Henselian A-algebra A1 which can be written as a filtered colimit lim

ÝÑ
A1α, where each A1α

is étale over A. More precisely, the functor η˚ is given by the formula η˚ G » lim
ÝÑ

G pA1αq.
There are two cases to consider:

p1q Suppose that A1 bA B » 0. Then 1 “ 0 in π0pA
1 bA Bq » lim

ÝÑ
π0pA

1
α bA Bq, so that

A1αbAB » 0 for some α. Reindexing our diagram, we may suppose that A1αbAB » 0
for all α. Thus η˚ G » lim

ÝÑ
G pA1αq is contractible whenever G P Shvét

A {U . In particular,
η˚puq is a map between contractible spaces and therefore a homotopy equivalence.

p2q The tensor product A1bAB ‰ 0. Note that A1bAB » lim
ÝÑ

A1αbAB is a filtered colimit
of étale B-algebras. The map A1 Ñ A1bAB induces a surjection π0A

1 Ñ π0pA
1bABq.

It follows from Corollary B.3.3.2 that A1 bA B is strictly Henselian, and therefore
determines a map η1˚ : Shvét

B Ñ S. Moreover, the composite map pShvp˚q, A1bABq Ñ
pShvp˚q, A1q Ñ SpétA determines the same point of the 8-topos Shvét

A ; it follows that
η˚ » η1˚ ˝ f˚. We therefore have a chain of equivalences

η˚pf˚f
˚F q » lim

ÝÑ
pf˚f

˚F qpA1αq

» lim
ÝÑ
pf˚F qpA1α bA Bq

» η1
˚
f˚F

» η˚F

whose composition is a homotopy inverse to η˚puq.

Lemma 3.1.4.3. Let f : pX ,OX q Ñ pY,OYq be a map of spectral Deligne-Mumford stacks,
and assume that the underlying geometric morphism X Ñ Y is a closed immersion in T op8.
Then the pushforward functor f˚ : ModOX Ñ ModOY carries quasi-coherent sheaves to
quasi-coherent sheaves.

Proof. Note that f˚ is left t-exact and commutes with small limits. It follows that if
F P ModOX is quasi-coherent, then

f˚F » f˚ lim
ÐÝ
pτďn F q » lim

ÐÝ
f˚τďn F

is the limit of a tower of truncated objects of ModOX , and therefore hypercomplete. According
to Proposition 2.2.6.1, it will suffice to show that each homotopy group πnf˚F is quasi-
coherent. Since f˚ is right t-exact (Lemma 3.1.3.3), we can replace F by τďn F . The desired
result now follows from Corollary ??, since Lemma 3.1.3.1 implies that f is k-quasi-separated
for every integer k ě 0.
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Proof of Theorem 3.1.2.1. We must prove two things:

p1q If φ : A Ñ B is a morphism of connective E8-rings which induces a surjective ring
homomorphism π0A Ñ π0B, then the induced map SpétB Ñ SpétA is a closed
immersion of spectral Deligne-Mumford stacks.

p2q Every closed immersion pX ,Oq Ñ SpétA arises in this way.

We first prove p1q. For every connective E8-ring R, let SpétR “ pXR,ORq. It follows
from Proposition 3.1.4.1 that if φ : A Ñ B induces a surjection π0A Ñ π0B, then the
corresponding map f : pXB,OBq Ñ pXA,OAq induces a closed immersion of 8-topoi
XB Ñ XA. It remains to show that the map f´1 OA Ñ OB has a connective fiber. Since
f˚ is a closed immersion, it suffices to show that the adjoint map OA » f˚f

´1 OA Ñ f˚OB

has a connective fiber. It follows from Lemma 3.1.4.3 that f˚OB is a quasi-coherent sheaf
on pXA,OAq. Since the equivalence QCohpXAq » ModA is t-exact, it suffices to show that
the map

A » ΓpXA; OAq Ñ ΓpXA; f˚OBq » ΓpXB; OBq » B

has a connective fiber, which follows from our assumption on φ.
We now prove p2q. Suppose we are given a closed immersion of spectral Deligne-Mumford

stacks f : pX ,Oq Ñ pXA,OAq. Let B “ ΓpX ; Oq » ΓpXA; f˚Oq. Using Lemmas 3.1.3.3
and 3.1.4.3, we deduce that f˚O is a connective quasi-coherent sheaf on pXA,OAq, so
that B is a connective A-algebra. Moreover, since f is a closed immersion, the map
f˚OA Ñ O is an epimorphism on π0. Since f is a closed immersion, the adjoint map
OA » f˚f

˚OA Ñ f˚O is a map of quasi-coherent sheaves with connective fiber. Since the
equivalence ModA » QCohpXAq is t-exact, we conclude that the map AÑ B is surjective
on π0. The universal property of SpétB gives a commutative diagram

pX ,Oq

f %%

f 1 // SpétB

f2yy
SpétA.

Part p1q shows that f2 is a closed immersion of spectral Deligne-Mumford stacks. Using
Lemma 3.1.3.4, we see that f 1 induces a closed immersion of 8-topoi X Ñ XB. Moreover,
f 1 induces a map of quasi-coherent sheaves OB Ñ f 1˚O which induces an equivalence on
global sections; it follows that OB » f 1˚O. We will complete the proof by showing that f 1

induces an equivalence of 8-topoi X » XB. We have an equivalence X » XB {U for some
p´1q-truncated object U P XB; we wish to show that U is an initial object of XB. The
proof of Proposition 1.4.2.4 shows that we can identify XB with the 8-topos Shvét

B . If U is
not an initial object, then UpB1q is nonempty for some nonzero étale B-algebra B1. The
equivalences B1 » OBpB

1q » pf 1˚OqpB1q » 0 now yield a contradiction.
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3.1.5 Example: Schematic Images

Let f : X Ñ Y be a quasi-compact morphism of schemes. Then there is a smallest closed
subscheme Y0 Ď Y such that f factors through Y0. The closed subscheme Y0 Ď Y is called
the schematic image (or scheme-theoretic image) of the morphism f . We now describe a
slight generalization of this construction.

Construction 3.1.5.1 (Schematic Images). Let f : X “ pX ,OX q Ñ pY,OYq “ Y be a
morphism of spectral Deligne-Mumford stacks. Assume that the map f is 8-quasi-compact
and that the structure sheaf OX is discrete. Then the direct image f˚OX P ModOY is
quasi-coherent (Theorem 2.5.8.1) and 0-truncated. It follows that the unit map OY Ñ f˚OX
factors as a composition

OY Ñ π0 OY
α
ÝÑ π0 OX Ñ OX .

Let A denote the image of α: then A is a connective commutative algebra object of QCohpYq
for which the unit map OY Ñ A is an epimorphism. Using Corollary 3.1.1.3 and Remark
3.1.2.7, we see that there exists an essentially unique closed immersion ι : Y0 ãÑ pY,OYq for
which A is the direct image of the structure sheaf of Y0. Note that Y0 is 0-truncated, and
Proposition 3.1.1.1 shows that f admits an essentially unique factorization X f 1

ÝÑ Y0
ι
ÝÑ Y.

We will refer to Y0 as the schematic image of f .

Warning 3.1.5.2. The term “schematic image” is potentially misleading: in general, the
spectral Deligne-Mumford stack Y0 which appears in Construction 3.1.5.1 will not be
schematic. However, it is schematic if Y is schematic (since it is affine over Y).

Remark 3.1.5.3. In the situation of Construction 3.1.5.1, it is not necessary to assume
that f is 8-quasi-compact: we really only need the quasi-coherence of the ideal sheaf kerpαq,
which requires only that f is quasi-compact.

Remark 3.1.5.4. In the situation of Construction 3.1.5.1, we do not need to require that
Y is 0-truncated. However, there is no harm in doing so: if X is 0-truncated, then any map
f : X Ñ Y automatically factors through the 0-truncation τď0 Y, and the schematic image
of f is equivalent to the schematic image of the induced map X Ñ τď0 Y. In other words,
Construction 3.1.5.1 really belongs to the setting of classical algebraic geometry.

Remark 3.1.5.5. Let X be a 0-truncated spectral Deligne-Mumford stack. Then the
schematic image of an 8-quasi-compact morphism f : X Ñ Y is initial among 0-truncated
closed substacks Y0 of Y such that f factors through Y0.

Remark 3.1.5.6. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Assume that X is 0-truncated and that f is 8-quasi-compact, and let Y0 denote the
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schematic image of f . Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 f 1 //

��

Y1

g

��
X f // Y .

If g is flat, then X1 is also 0-truncated, and we can identify the fiber product Y10 “ Y1ˆY Y0
with the schematic image of f 1. Beware that this is generally not true if g is not flat.

3.1.6 Reduced Closed Substacks

If X is a topological space, then there is a bijection from the set of closed subsets of X
to the set of open subsets of X, given by Y ÞÑ X ´Y . In algebraic geometry, the situation is
more subtle. Every closed subscheme Y of a scheme X has an open complement U “ X ´Y .
However, this construction is not bijective: a closed subset of X generally admits many
different scheme structures. Nevertheless, we can recover a bijective correspondence by
restricting our attention to reduced closed subschemes of X. There is an entirely analogous
picture in the setting of spectral algebraic geometry.

Definition 3.1.6.1. Let X be a spectral Deligne-Mumford stack. We will say that X is
reduced if, for every étale map SpétR Ñ X, the E8-ring R is discrete and the underlying
commutative ring.

Remark 3.1.6.2. The condition that a spectral Deligne-Mumford stack X be reduced is
local with respect to the étale topology.

Proposition 3.1.6.3. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. Let C denote
the full subcategory of SpDM{X spanned by the closed immersions i : X0 Ñ X, where X0 is
reduced. For every object pi : X0 Ñ Xq of SpDM{X, let Xc0 denote the pushforward i˚pHq,
where H denotes an initial object in the underlying 8-topos of X0. Then the construction
pi : X0 Ñ Xq ÞÑ Xc0 determines an equivalence of 8-categories C » pτď´1X qop.

Remark 3.1.6.4. We can state Proposition 3.1.6.3 more informally as follows: there is an
order-reversing bijection between equivalence classes of reduced closed substacks of X and
open substacks of X.

3.1.7 Clopen Immersions

In some cases, closed immersions are also open immersions:

Proposition 3.1.7.1. Let X be an 8-topos containing a p´1q-truncated object U , and let
i˚ : X {U Ñ X be the corresponding closed immersion of 8-topoi. The following conditions
are equivalent:
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p1q The geometric morphism i˚ is étale.

p2q The p´1q-truncated object U is complemented: that is, there exists an object U 1 P X
such that the coproduct U > U 1 is a final object of X .

Proof. The implication p2q ñ p1q is clear: if U>U 1 is a final object of X , then the construction
X ÞÑ U >X determines an equivalence of 8-categories X {U 1 Ñ X {U . Conversely, suppose
that p2q is satisfied. Then the pullback functor i˚ : X Ñ X {U admits a left adjoint i!. Let 1
denote a final object of X and let V “ i!i

˚1. Then

U ˆ V » U ˆ i!i
˚1 » i!pi

˚U ˆ i˚1q » i!i
˚pUq.

Since i˚pUq is an initial object of X {U , the object U ˆ V » i!i
˚U is an initial object of X .

Let U 1 “ τď´1V , so that U ˆ U 1 is an initial object of X . It follows that U > U 1 is also a
p´1q-truncated object of X . The identity map id : i!i˚1 Ñ V induces a map i˚1 Ñ i˚V in
X {U , which determines a map

1 » i˚i
˚1 Ñ i˚i

˚V » U >UˆV V » U > V.

Composing with the projection map V Ñ τď´1V , we obtain a map 1 Ñ U > U 1, so that
U > U 1 is a p´1q-truncated, 0-connective object of X and therefore a final object of X .

Definition 3.1.7.2. Let f˚ : X Ñ Y be a geometric morphism of 8-topoi. We will say
that f˚ is a clopen immersion if it satisfies the equivalent conditions of Proposition 3.1.7.1:
that is, if it is both étale and a closed immersion. We will say that a map of nonconnective
spectral Deligne-Mumford stacks f : pX ,OX q Ñ pY,OYq is a clopen immersion if it is étale
and the underlying geometric morphism f˚ : X Ñ Y is a clopen immersion of 8-topoi.

Remark 3.1.7.3. Every clopen immersion of spectral Deligne-Mumford stacks is also a
closed immersion; in particular, it is an affine map. Let R be a connective E8-ring. A map
of spectral Deligne-Mumford stacks X Ñ SpétR is a clopen immersion if and only if X has
the form SpétRre´1s, where e is an idempotent element in the commutative ring π0R.

Proof. The assertion is local on X. We may therefore assume without loss of generality that
X “ SpétR is affine. Using Theorem 3.1.2.1, we see that every closed immersion i : X0 Ñ X
is induced by a map of connective E8-rings RÑ R1 which induces a surjection π0RÑ π0R

1.
Moreover, X0 is reduced if and only if R1 is a discrete commutative ring of the form pπ0Rq{I

for some radical ideal I Ď π0R. It follows that SubredpXq is equivalent to the the nerve of
the partially ordered set of closed subsets of the Zariski spectrum |SpecR|. The desired
equivalence now follows from Lemma ??.
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3.2 Separated Morphisms

Recall that a scheme X is said to be separated if the diagonal map X Ñ X ˆX is a
closed immersion. In this section, we will study the analogous condition in the setting of
spectral algebraic geometry.

Definition 3.2.0.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. We
will say that f is separated if the diagonal morphism X Ñ XˆY X is a closed immersion. We
will say that a spectral Deligne-Mumford stack X is separated if it the morphism X Ñ SpétS
is separated; here S denotes the sphere spectrum. In other words, X is separated if the
absolute diagonal X Ñ XˆX is a closed immersion.

Warning 3.2.0.2. Our Definition 3.2.0.1 is somewhat nonstandard. In the theory of
algebraic stacks, it is traditional to say that a map X Ñ Y is separated if the diagonal map
X Ñ XˆY X is proper, rather than a closed immersion. Our Definition 3.2.0.1 corresponds
to the usual notion of a separated representable morphism of stacks: that is, a separated
morphism whose fibers are algebraic spaces.

3.2.1 Properties of Separated Morphisms

We begin with some general observations about Definition 3.2.0.1.

Remark 3.2.1.1. Let f : X Ñ Y be a separated morphism of spectral Deligne-Mumford
stacks. It follows from Warning 3.1.2.6 that for every discrete commutative ring R, the map
MapSpDMpSpétR,Xq Ñ MapSpDMpSpétR,Yq is 0-truncated. In particular, if Y is a spectral
algebraic space, then X is also a spectral algebraic space. In particular, every separated
spectral Deligne-Mumford stack is a spectral algebraic space.

Remark 3.2.1.2. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks, and
let δ : X Ñ XˆY X be the diagonal map. Write X “ pX ,OX q and XˆY X “ pZ,OZq.
The map δ´1 OZ Ñ OX admits a right inverse, and therefore induces an epimorphism
π0δ

´1 OZ Ñ π0 OX . It follows f is separated if and only if the underlying geometric
morphism of 8-topoi δ˚ : X Ñ Z is a closed immersion.

Remark 3.2.1.3. If j : U Ñ X is an open immersion of spectral Deligne-Mumford stacks,
then the diagonal map U Ñ UˆX U is an equivalence. It follows that every open immersion
between spectral Deligne-Mumford stacks is separated. In particular, if X is a separated
spectral algebraic space, then U is also a separated spectral algebraic space.
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Remark 3.2.1.4. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 f 1 //

��

X
f
��

Y1 g // Y .

If f is separated, then so is f 1; this follows immediately from Corollary 3.1.2.3. The converse
holds if g is an étale surjection (see Remark 3.1.2.2).

Remark 3.2.1.5. Suppose we are given a commutative diagram

X
f

��

h

��
Y g // Z

of spectral Deligne-Mumford stacks. If g is separated, then f is separated if and only if h is
separated. In particular, the collection of separated morphisms is closed under composition.
To see this, consider the diagram

X δ // XˆY X δ1 //

��

XˆZ X

��
Y δ2 // YˆZ Y .

Since g is separated, δ2 is a closed immersion. It follows from Corollary 3.1.2.3 that δ1 is a
closed immersion, so that δ is a closed immersion if and only if δ1 ˝ δ is a closed immersion
(Corollary 3.1.2.4).

Remark 3.2.1.6. Suppose we are given morphisms of spectral Deligne-Mumford stacks
X f
Ñ Y g

Ð Z. If f and g are separated, then the induced map XˆY Z Ñ Y is also separated.
This follows immediately from Remarks 3.2.1.5 and 3.2.1.4.

Remark 3.2.1.7. Let f : pX ,OX q Ñ pY,OYq be a morphism of spectral Deligne-Mumford
stacks. The condition that f be separated depends only the underlying morphism of
0-truncated spectral Deligne-Mumford stacks pX , π0 OX q Ñ pY, π0 OYq.

Example 3.2.1.8. Let R be a connective E8-ring. Then the multiplication map RbRÑ R

induces a surjection π0pRbRq Ñ π0R. It follows from Theorem 3.1.2.1 that the diagonal
map SpétRÑ SpétRˆ SpétR is a closed immersion, so that SpétR is separated.
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Example 3.2.1.9. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks. Suppose
that, for every commutative ringR, the induced map MapSpDMpSpétR,Xq Ñ MapSpDMpSpétR,Yq
is p´1q-truncated. It follows that the diagonal map

MapSpDMpSpétR,Xq Ñ MapSpDMpSpétR,XˆY Xq

is a homotopy equivalence for every discrete commutative ring R. The map X Ñ XˆY X
induces an equivalence between the underlying 0-truncated spectral Deligne-Mumford stacks,
and is therefore a closed immersion (Remark 3.2.1.7). It follows that f is separated.

Remark 3.2.1.10. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks. Assume
that Y is separated. Then X is separated if and only if f is separated: this follows immediately
from Remark 3.2.1.5. In particular, if we are given a map f : X Ñ SpétR for some connective
E8-ring R, then X is separated if and only if f is separated: that is, if and only if the
diagonal map X Ñ XˆSpétR X is a closed immersion.

Example 3.2.1.11. Let f : X Ñ Y be a quasi-affine morphism between spectral Deligne-
Mumford stacks. Then f is separated. To prove this, we may work locally on Y to reduce
to the case where Y is affine, in which case the result follows from Remark 3.2.1.10 and
Examples 3.2.1.8 and 3.2.1.9.

3.2.2 Configuration Spaces

Let X be a separated spectral Deligne-Mumford stack. Then the diagonal map δ : X Ñ
XˆX is a closed immersion, which is complementary to an open substack Conf2pXq Ď XˆX.
Informally, we can regard Conf2pXq as a “parameter space” for pairs of distinct points of
X. We now consider a variant of this construction where we work relative to a base Y, and
contemplate n-tuples of points in place of pairs of points:

Construction 3.2.2.1. Suppose we are given a separated morphism f : X Ñ Y of spectral
Deligne-Mumford stacks. Let X “ pX ,OX q and XˆY X “ pZ,OZq, so that the diagonal
map induces a closed immersion of 8-topoi δ˚ : X Ñ Z. Let H denote an initial object of X
and let U “ δ˚pHq, so that U is a p´1q-truncated object of Z and δ˚ induces an equivalence
of 8-topoi X Ñ Z {U .

For every finite set I, let ConfIYpXq denote the I-fold product of X with itself in the
8-category SpDM{Y. For every pair of distinct elements i, j P I, we obtain an evaluation
map

pi,j : ConfIYpXq Ñ XˆY X .

Let V denote the product
ś

i‰j p
˚
i,jpUq in the underlying 8-topos of ConfIYpXq. We let

ConfIYpXq denote the open substack of ConfIYpXq corresponding to the p´1q-truncated object
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V . We will refer to ConfIYpXq as the spectral Deligne-Mumford stack of I-configurations in
X (relative to Y).

Note that ConfIYpXq depends functorially on I. In particular, it is acted on by the group
of all permutations of I, and (up to equivalence) depends only on the cardinality of the set
I. When I “ t1, 2, . . . , nu, we will denote ConfIYpXq by ConfnYpXq, so that ConfnYpXq carries
an action of the symmetric group Σn.

Remark 3.2.2.2. In the situation of Construction 3.2.2.1, the projection map ConfIYpXq Ñ Y
is separated by Remark 3.2.1.6. The open immersion ConfIYpXq Ñ ConfIYpXq is separated
(Remark 3.2.1.3), so the projection ConfIYpXq Ñ Y is also separated (Remark 3.2.1.5).

Notation 3.2.2.3. Let X be a spectral Deligne-Mumford stack. If G is a discrete group, an
action of G on X is a diagram χ : BGÑ SpDM carrying the base point of BG to X. Since
every morphism in BG is an equivalence, χ is automatically a diagram consisting of étale
morphisms in SpDM, so there exists a colimit lim

ÝÑ
pχq of the diagram χ (Proposition ??).

We will denote this colimit by X {G, and refer to it as the quotient of X by the action of G.
There is an evident étale surjection X Ñ X {G. Moreover, there is a canonical equivalence

XˆX {G X » >gPG X .

The main property of Construction 3.2.2.1 we will need is the following:

Proposition 3.2.2.4. Let Y be a separated spectral algebraic space and let f : X Ñ Y be an
étale map, where X is affine. For every n ą 0, the quotient ConfnYpXq{Σn is affine.

We will deduce Proposition 3.2.2.4 from the following general observation:

Proposition 3.2.2.5. Let R be an E8-ring equipped with an action of a finite group G, and
let RG denote the E8-ring of invariants. Suppose that the action of G on the commutative
ring π0R is free (see Definition B.7.1.2). Then the canonical map pSpétRq{GÑ SpétRG is
an equivalence of spectral Deligne-Mumford stacks. In particular, the quotient pSpétRq{G is
affine.

Proof. Let X‚ be the Čech nerve of the map SpétRÑ pSpétRq{G, and let Y‚ be the Čech
nerve of the map SpétRÑ SpétRG. It follows from Corollary ?? that the map RG Ñ R is
faithfully flat and étale, so that the vertical maps in the diagram

|X‚ | //

��

|Y‚ |

��
pSpétRq{G // SpétRG

are equivalences. It will therefore suffice to show that the canonical map Xn Ñ Yn is an
equivalence for every integer n. Since X‚ and Y‚ are groupoid objects of SpDM, we only
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need to consider the cases n “ 0 and n “ 1. When n “ 0, the result is obvious. When n “ 1,
we must show that the canonical map

>gPG X Ñ SpecpRbRG Rq

is an equivalence. Equivalently, we must show that the canonical map

RbRG RÑ
ź

gPG

R

is an equivalence of E8-rings, which follows from Corollary ??.

Lemma 3.2.2.6. Let f : X Ñ Y be a map of spectral algebraic spaces. If f is separated,
then the mapping space MapSpDMpSpétR,ConfnYpXqq is discrete for every commutative ring
R and every integer n ě 0. If R is nonzero, then the symmetric group Σn acts freely on the
set π0 MapSpDMpSpétR,ConfnYpXqq.

Proof. For any commutative ringR, the map θ : MapSpDMpSpétR,Xq Ñ MapSpDMpSpétR,Yq
has discrete homotopy fibers (Remark 3.2.1.1). Since the codomain of θ is discrete, we
conclude that the domain of θ is also discrete. Let S “ π0 MapSpDMpSpétR,Xq and T “

π0 MapSpDMpSpétR,Yq. There is an evident injection from π0 MapSpDMpSpétA,ConfnYpXqq
to the set K “ S ˆT ¨ ¨ ¨ ˆT S given by the n-fold fiber power of S over T . If σ P Σn is a
nontrivial permutation which fixes an element ps1, . . . , snq of K, then we must have si “ sj
for some i ‰ j, in which case the corresponding map SpétRÑ ConfnYpXq Ñ XˆY X factors
through the diagonal. By construction, the fiber product XˆXˆY X ConfnYpXq is empty, which
is impossible unless R » 0.

Remark 3.2.2.7. Let f : X Ñ Y be a separated étale morphism of spectral Deligne-
Mumford stacks. Then the diagonal map X Ñ XˆY X is a clopen immersion (see Definition
3.1.7.2). If we write XˆY X “ pZ,OZq and define U P Z as in Construction 3.2.2.1, then it
follows that U has a complement (in the underlying locale of Z). It follows that for any
finite set I, the object V “

ś

i‰j p
˚
i,jpUq appearing in Construction 3.2.2.1 has a complement

in the underlying locale of ConfIYpXq, so that the open immersion ConfIYpXq Ñ ConfIYpXq is
also a clopen immersion.

Proposition 3.2.2.8. Let Y be a separated spectral algebraic space. Suppose we are given
an étale map X Ñ Y. If X is affine, then ConfnYpXq is affine for every n ą 0.

Proof. Since the diagonal of Y is affine, the fiber product

ConfnYpXq » XˆY ¨ ¨ ¨ ˆY X

is affine. The desired result now follows from Remarks 3.2.2.7 and 3.1.7.3.
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Proof of Proposition 3.2.2.4. Let f : X Ñ Y be an étale morphism of separated spectral
algebraic spaces, where X is affine. Proposition 3.2.2.8 implies that ConfnYpXq is affine, hence
of the form SpétR for some connective E8-ring R. According to Proposition 3.2.2.5, it will
suffice to show that the action of the symmetric group Σn on R is free, which follows from
Lemma 3.2.2.6.

3.2.3 Existence of Scallop Decompositions (Separated Case)

We can now state the main result of this section:

Proposition 3.2.3.1. Let Y be a quasi-compact separated spectral algebraic space. Then Y
admits a scallop decomposition (see Definition 2.5.3.1).

Remark 3.2.3.2. In §3.4, we will prove that the hypothesis of separatedness can be replaced
by quasi-separatedness; see Theorem 3.4.2.1.

Corollary 3.2.3.3. Let f : X “ pX ,OX q Ñ Y “ pY,OYq be a quasi-compact separated
morphism of spectral Deligne-Mumford stacks. Then:

p1q The pushforward functor f˚ : ModOX Ñ ModOY carries quasi-coherent sheaves to
quasi-coherent sheaves.

p2q The induced functor QCohpXq Ñ QCohpYq commutes with small colimits.

p3q For every pullback diagram

X1

f 1

��

g1 // X

f

��
Y1 g // Y,

the associated diagram of 8-categories

QCohpYq f˚ //

��

QCohpXq

��
QCohpY1q f 1˚ // QCohpX1q

is right adjointable. In other words, for every object F P QCohpXq, the canonical map
λ : g˚f˚F Ñ f 1˚g

1˚F is an equivalence in QCohpY1q.

Proof. Combine Propositions 2.5.4.3, 2.5.4.5, and 3.2.3.1.

We now turn to the proof of Proposition 3.2.3.1. We will need a bit of commutative
algebra.
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Lemma 3.2.3.4. Let f : R Ñ R1 be an étale morphism of commutative rings. For every
prime ideal p Ď R, let κppq denote the residue field of R at the prime ideal p, and let rppq
denote the dimension of the κppq-vector space R1 bR κppq. Then:

p1q For every integer n, the set tp P | SpecR| : rppq ą nu is quasi-compact and open in
|SpecR|.

p2q The function r is constant with value n P Z if and only if f exhibits R1 as a locally
free R-module of degree n.

p3q The function r is bounded above.

Proof. We will prove p1q and p2q using induction on n. We begin with the case n “ 0. In
this case, assertion p2q is obvious, and assertion p1q follows from the fact that the map
| SpecR1| Ñ | SpecR| has quasi-compact open image.

Now suppose n ą 0. We first prove p1q. Let U “ tp P | SpecR| : rppq ą 0u. and let
V “ tp P | SpecR| : rppq ą nu. The inductive hypothesis implies that U is open, so it will
suffice to show that V is a quasi-compact open subset of U . Using Proposition 1.6.2.2, we
deduce that the map φ : |SpecR1| Ñ U is a quotient map; it will therefore suffice to show
that φ´1U is a quasi-compact open subset of |SpecR1|. Since f is étale, the tensor product
R1 bR R

1 factors as a product R1 ˆR2. Then the set

φ´1U “ tq P |SpecR1| : dimκpqqpR
2 bR1 κpqqq ą n´ 1u

is open by the inductive hypothesis.
It remains to prove p2q. The “only if” direction is obvious. For the converse, assume

that r is a constant function with value n ą 0. Then U “ |SpecR|, so f is faithfully flat.
It therefore suffices to show that R1 bR R1 is a locally free R1-module of rank n. This is
equivalent to the requirement that R2 be a locally free R1-module of rank pn´ 1q, which
follows from the inductive hypothesis.

We now prove p3q. Using p1q, we see that each of the sets tp P |SpecR| : rppq ą nu is
closed with respect to the constructible topology on | SpecR| (see §4.3). Since

č

n

tp P |SpecR| : rppq ą nu “ H

and |SpecR| is compact with respect to the constructible topology, we conclude that there
exists an integer n such that tp P |SpecR| : rppq ą nu “ H.

Proof of Proposition 3.2.3.1. Since Y is quasi-compact, we can choose an étale surjection
u : X Ñ Y, where X is affine. For every map η : SpétAÑ Y, the pullback XˆY SpétA has
the form SpétA1, for some étale A-algebra A1. Let rη : | SpecA| Ñ Zě0 be defined by the
formula

rηppq “ dimκppqpA
1 bA κppqq.
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Using Lemma 3.2.3.4, we can define open immersions Vi ãÑ Y so that the following universal
property is satisfied: a map η : SpétAÑ Y factors through Vi if and only if rηppq ě i for
every prime ideal p Ď π0A. Lemma 3.2.3.4 implies that the fiber product SpétAˆY Vi is
empty for i " 0. Using the quasi-compactness of Y, we conclude that there exists an integer
n such that Vn`1 is empty. The surjectivity of u guarantees that V1 » Y. For 0 ď i ď n, let
Ui P Y be the p´1q-truncated object corresponding to the open substack Vn`1´i. We claim
that the sequence of morphisms

U0 Ñ U1 Ñ ¨ ¨ ¨ Ñ Un

gives a scallop decomposition of Y.
Note that each 0 ď i ă n, the étale map Confn´iY pXq{Σn´i Ñ Y determines an object

Xi P Y. It follows from Proposition 3.2.2.4 that Xi is affine. Choose an equivalence
Confn´iY pXq{Σn´i » SpétRi, so that we have an étale map vi : SpétRi Ñ Y. For every map
η : SpétAÑ Y, choose an equivalence SpétAˆY pConfn´iY pXq{Σiq » SpétApiq, and define a
function r

piq
η : |SpecA| Ñ Zě0 by the formula

rpiqη ppq “ dimκppqpA
piq bA κppqq.

An easy calculation shows that rpiqη ppq is equal to the binomial coefficient
`

rηppq
n´i

˘

. In particular,
r
piq
η ppq takes positive values if and only if rp1qη ppq ě n´ i for every p P | SpecA|. It follows

that the map vi factors through Vi. Form a pullback diagram σi:

Xi ˆUi`1 Ui
//

��

Xi

��
Ui // Ui`1.

Note that there is an effective epimorphism

>0ďjăiXi ˆXj Ñ Xi ˆUi`1 Ui.

Since Y is separated, each product Xi ˆXj is affine and therefore quasi-compact, so that
Xi ˆUi`1 Ui is quasi-compact.

To complete the proof, it will suffice to show that each σi is an excision square. For this,
we may replace Y by the reduced closed substack Ki of Ui`1 which is complementary to Ui,
and thereby reduce to the case where the function rη takes the constant value i, for every
η : SpétA Ñ Y. In this case, the function r

piq
η is constant with value 1, so that the map

AÑ Apiq is finite étale of degree 1 and therefore an equivalence (Lemma 3.2.3.4). It follows
that the map SpétRi Ñ Y is also an equivalence, as desired.
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3.3 Quasi-Finite Morphisms

Recall that a morphism φ : AÑ B of commutative rings is said to be quasi-finite if the
following conditions are satisfied:

piq The commutative ring B is finitely generated as an A-algebra.

piiq For each residue field κ of A, the fiber TorA0 pB, κq is a finite-dimensional vector space
over κ.

Remark 3.3.0.1. Assuming piq, condition piiq is equivalent to the requirement that the
induced map of topological spaces | SpecB| Ñ |SpecA| has finite fibers.

A morphism of schemes f : X Ñ Y is said to be locally quasi-finite if, for every point
x P X, there exist affine open neighborhoods SpecB » U Ď X of x and SpecA » V Ď Y

such that fpUq Ď V and the induced ring homomorphism AÑ B is quasi-finite. Our goal in
this section is generalize the notion of locally quasi-finite morphism to the setting of spectral
algebraic geometry. Our main result is the following version of Zariski’s Main Theorem:

Theorem 3.3.0.2. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Assume that f is quasi-compact, separated, and locally quasi-finite. Then f is quasi-affine.

3.3.1 Relative Dimension

We will assume that the reader is familiar with the theory of relative dimension for
homomorphisms of commutative rings (see §B.2 for an overview). We now describe a
“globalized” version of the relative dimension:

Definition 3.3.1.1. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks and let
d ě 0 be an integer. We will say that f is of relative dimension ď d if the following condition
is satisfied: for every commutative diagram

SpétB //

��

X

f
��

SpétA // Y

in which the horizontal maps are étale, the induced map of commutative rings π0AÑ π0B

is of relative dimension ď d (Definition B.2.3.1). We will say that f is locally quasi-finite if
it is locally of relative dimension ď 0.

Example 3.3.1.2. Every étale morphism of spectral Deligne-Mumford stacks is locally
quasi-finite.
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Example 3.3.1.3. Every closed immersion of spectral Deligne-Mumford stacks is locally
quasi-finite.

Proposition 3.3.1.4. For every nonnegative integer d ě 0, the condition that a map of
spectral Deligne-Mumford stacks f : X Ñ Y be of relative dimension ď d is local on the
source with respect to the étale topology (see Definition 2.8.1.7). In particular, the condition
that f is locally quasi-finite is local on the source with respect to the étale topology.

Proof. It is clear that if f : X Ñ Y is of relative dimension ď d and g : U Ñ X is étale, then
the composite map f ˝ g is of relative dimension ď d. To complete the proof, let us suppose
that f : X Ñ Y is arbitrary and that we are given a jointly surjective collection of étale
morphisms tgα : Uα Ñ Xu such that each composition f ˝ gα is locally of relative dimension
ď d. We wish to show that f has the same property. Choose a commutative diagram

SpétB //

��

X

f

��
SpétA // Y

where the horizontal maps are étale. We wish to show that π0B is of relative dimension d

over π0A. It follows from Proposition 4.2.1.1 that π0B is finitely generated as an algebra
over π0A. Fix a prime ideal p Ď π0B and let q be its inverse image in π0A. We wish to show
that the local ring R “ pπ0Bqp{qpπ0Bqp has dimension ď d (see Corollary B.2.3.10). Since
the maps gα are jointly surjective, we can choose an étale map B Ñ B1 and a prime ideal
p1 Ď π0B

1 lying over p for which the composite map SpétB1 Ñ SpétB Ñ X factors through
some Uα. Invoking our assumption that f ˝ gα is of relative dimension ď d, we conclude that
the local ring R1 “ pπ0B

1qp1{qpπ0Aqp1 has dimension ď d. Since R1 is étale and faithfully flat
over R, it follows that R also has dimension ď d (Variant B.2.2.4).

Corollary 3.3.1.5. Suppose we are given a morphisms of spectral Deligne-Mumford stacks

X f
Ñ Y g

Ñ Z .

If f is of relative dimension ď d and g is of relative dimension ď d1, then the composition
g ˝ f is of relative dimension ď pd` d1q. In particular, if f and g are locally quasi-finite,
then so is g ˝ f .

Proof. Suppose we are given a commutative diagram

SpétC //

��

X

��
SpétA // Z
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where the horizontal maps are étale. We wish to show that π0C is of relative dimension
ď pd` d1q over π0A. The proof of Proposition 3.3.1.4 shows that this condition is étale local
on C; we may therefore assume that the map SpétC Ñ SpétAˆZ Y factors through some
étale map SpétB Ñ SpétAˆZ Y. Since f and g are of relative dimension ď d and ď d1, the
ring homomorphisms π0B Ñ π0C and π0AÑ π0B have relative dimensions ď d and ď d1,
respectively. The desired result now follows from Proposition B.2.3.7.

Proposition 3.3.1.6. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks and let
d ě 0 be an integer. Then:

p1q The map f is of relative dimension ď d if and only if, for every étale map SpétAÑ Y,
the induced map SpétAˆY X Ñ SpétA is of relative dimension ď d.

p2q Assume that Y » SpétA is affine. Then f is of relative dimension ď d if and only if,
for every étale map SpétB Ñ X, the induced map of commutative rings π0AÑ π0B

is of relative dimension ď d.

p3q Assume that Y » SpétA and X » SpétB are both affine. Then f is of relative
dimension ď d if and only if the underlying map of commutative rings π0AÑ π0B is
of relative dimension ď d.

Proof. Assertion p1q follows immediately from the definition, and the “only if” directions of
p2q and p3q are obvious. To complete the proof of p2q, assume that Y » SpétA and consider
an arbitrary commutative diagram

SpétB //

��

X

f

��
SpétA1 // SpétA

where the horizontal maps are étale. If π0B is of relative dimension ď d over π0A, then it is
also of relative dimension ď d over π0A

1 (Remark B.2.3.4). The proof of p3q is similar.

Proposition 3.3.1.7. The condition that a map of spectral Deligne-Mumford stacks f :
X Ñ Y be of relative dimension ď d (locally quasi-finite) is local on the target with respect
to the étale topology. That is, if we are given a jointly surjective collection of étale maps
Uα Ñ Y for which each of the projections XˆY Uα Ñ Uα is of relative dimension ď d (locally
quasi-finite), then f is of relative dimension ď d (locally quasi-finite).

Proof. Using Example 3.3.1.2 and Corollary 3.3.1.5, we see that each of the induced maps
UαˆY X Ñ Y is of relative dimension ď d. Applying Proposition 3.3.1.4, we deduce that f
is of relative dimension ď d.
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Proposition 3.3.1.8. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 //

f 1

��

X
f
��

Y1 g // Y .

If f is of relative dimension ď d (locally quasi-finite), then so is f 1. The converse holds if g
is faithfully flat and quasi-compact.

Proof. Assume first that f is of relative dimension ď d; we wish to show that f 1 has the
same property. Using Proposition 3.3.1.7 we can reduce to the case where Y “ SpétA is
affine, and the map g factors as a composition

Y1 Ñ SpétA0
g1
Ñ Y,

where g1 is étale. Replacing Y by SpétA0, we may assume that Y is affine. Using Proposition
3.3.1.4, we may further suppose that X “ SpétB0 is affine, so that X1 » SpétpAbA0 B0q is
also affine. In this case, the desired result follows from Proposition B.2.3.5.

Now suppose that g is faithfully flat and quasi-compact and that f 1 is locally quasi-finite;
we wish to show that f is locally quasi-finite. Using Propositions 3.3.1.4 and 3.3.1.7, we
may assume that Y “ SpétA0 and X “ SpétB0 are affine. Replacing Y1 by an étale cover if
necessary, we may suppose that Y1 “ SpétA for some flat A0-algebra A. In this case, the
desired result again follows from Proposition B.2.3.5.

We have the following converse to Corollary 3.3.1.5:

Proposition 3.3.1.9. Suppose we are given morphisms of spectral Deligne-Mumford stacks

X f
Ñ Y g

Ñ Z .

If g ˝ f is of relative dimension ď d (locally quasi-finite), then so is f .

Proof. Using Propositions 3.3.1.4 and 3.3.1.7, we can reduce to the case where X “ SpétC,
Y “ SpétB, and Z “ SpétA are affine, in which case the desired result follows from Remark
B.2.3.4.

3.3.2 Zariski’s Main Theorem

The essential step in the proof of Theorem 3.3.0.2 is the following:

Proposition 3.3.2.1. Let f : X “ pX ,OX q Ñ pY,OYq “ Y be a morphism of spectral
Deligne-Mumford stacks. Suppose that:
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paq The map f is quasi-compact, separated and locally quasi-finite.

pbq The unit map OY Ñ f˚OX exhibits OY as a connective cover of f˚OX .

Then f is an open immersion.

Remark 3.3.2.2. It follows from Corollary 3.2.3.3 that condition pbq of Proposition 3.3.2.1
is stable under flat base change.

The proof will require a few preliminaries.

Definition 3.3.2.3. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks. We will
say that f is finite étale of degree n if, for every morphism SpétRÑ Y, the fiber product
XˆY SpétR has the form SpétR1, where R1 is a étale R-algebra which is locally free of
degree n.

Example 3.3.2.4. Let f : X Ñ Y be a finite étale map of spectral Deligne-Mumford stacks
of degree n. Then f is separated, so the configuration stack ConfnYpXq is defined and carries
an action of the symmetric group Σn. We claim that the canonical map ConfnYpXq{Σn Ñ Y
is an equivalence. To prove this, we may work locally on Y and thereby reduce to the case
where Y “ SpétR and X “ SpétRn. In this case, the result follows from a simple calculation
(note that ConfnYpXq » >σPΣn SpétR).

Proposition 3.3.2.5. Let f : X Ñ Y be a finite étale morphism of degree n ą 0 between
spectral Deligne-Mumford stacks. Assume that Y is a spectral algebraic space and that X is
affine. Then Y is affine.

Proof. Example 3.3.2.4 implies that Y can be described as the quotient ConfnYpXq by the
action of the symmetric group Σn. Note that ConfnYpXq admits a clopen immersion (Definition
3.1.7.2) into the iterated fiber product XˆY Xˆ ¨ ¨ ¨ ˆY X. Since n ą 0, we have a finite étale
projection map XˆY ¨ ¨ ¨ ˆY X Ñ X. Since X is affine, it follows that XˆY ¨ ¨ ¨ ˆY X is affine
and therefore ConfnYpXq » SpétA is affine. To complete the proof, it will suffice to show
that the action of Σn on SpétA is free, which follows from Lemma 3.2.2.6.

Remark 3.3.2.6. Let f : X Ñ Y be a finite étale map of spectral Deligne-Mumford
stacks. Then f determines a decomposition Y » >ně0 Yn, where each of the induced maps
XˆY Yn Ñ Yn is finite étale of degree n.

Proof of Proposition 3.3.2.1. The assertion is local on Y; we may therefore reduce to the
case where Y “ SpétR is affine (so that X is a separated spectral algebraic space). Then X
is quasi-compact, so we can choose an étale surjection u : SpétAÑ X. Let p P |SpecA| and
let q be its image in | SpecR|. We will show that there exists an open set Uq Ď |SpecR|
such that, if Uq denotes the corresponding open substack of Y, then the projection map
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XˆY Uq Ñ Uq is an equivalence. Let U “
Ť

pP|SpecA| Uq and let U be the corresponding
open substack of Y. Then the projection XˆY U Ñ U is an equivalence. Moreover, the
open substack UˆY SpétA is equivalent to SpétA. Since u is surjective, it follows that
XˆY U » X, so that we can identify f with the open immersion U ãÑ Y.

It remains to construct the open set Uq. Let κ denote the residue field of π0R at the
prime ideal q. Since f is locally quasi-finite and u is étale, the map of commutative rings
π0RÑ π0A is quasi-finite. It follows from Corollary B.3.4.5 that the map π0RÑ κ factors
as a composition π0R Ñ R10 Ñ κ, where R10 is an étale pπ0Rq-algebra and pπ0Aq bπ0R R

1
0

decomposes as a product B10 ˆ B20 , where B1 is a finite R10-module and TorR
1
0

0 pB
2, κq » 0.

Using Theorem HA.7.5.0.6 , we can choose an étale R-algebra R1 with π0R
1 » R10, so that

A bR R
1 decomposes as a product B1 ˆ B2 with π0B

1 » B10 and π0B
2 » B20 . Since the

map |SpecR1| Ñ | SpecR| is open and its image contains q, we can replace R by R1 and
thereby assume that A » B1 ˆB2, where π0B

1 is a finitely generated module over π0R and
B2 bR κ » 0. Since AbR κ ‰ 0, it follows that B1 bR κ ‰ 0. The composite map

u1 : SpétB1 Ñ SpétAÑ X

is étale. Since X is separated, the map u1 is affine. Since π0B
1 is finitely generated as a

π0R-module, we deduce that u1 is finite étale. Using Remark 3.3.2.6, we deduce that X
admits a decomposition X » >ně0 Xn, where each of the induced maps SpétB1 ˆX Xn Ñ Xn
is finite étale of degree n. Each fiber product SpétB1 ˆX Xn is a summand of SpétB1, and
therefore affine. It follows from Proposition 3.3.2.5 that Xn is also affine for n ą 0. Since
X is quasi-compact, the stacks Xn are empty for n " 0. It follows that X1 “ >ną0 Xn is
an affine open substack of X. Note that since SpétκˆSpétR SpétB1 is nonempty, the fiber
product SpétκˆSpétR X1 is also nonempty.

Using pbq, we can choose an idempotent element e P π0R which vanishes on X0 but not
on X1. Since Spétκ ˆSpétR X1 ‰ H, we must have e R q. We may therefore replace R by
Rre´1s and thereby reduce to the case where X0 is empty. In this case, X » X1 is affine.
Using pbq again, we deduce that f is an equivalence.

Proof of Theorem 3.3.0.2. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford
stacks which is separated, quasi-compact, and locally quasi-finite; we wish to show that f
is quasi-affine. The assertion is local on Y; we may therefore assume that Y » SpétR is
affine. Let pX ,OX q, and let A be the connective cover f˚OX P CAlgR. Then f factors as a
composition X f 1

Ñ SpétA f2
Ñ SpétR. Since f is locally quasi-finite, the morphism f 1 is also

locally quasi-finite (Proposition 3.3.1.9). Using Proposition 3.3.2.1, we deduce that f 1 is an
open immersion, so that X can be identified with a quasi-compact open substack of SpétA
and is therefore quasi-affine.
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3.4 Quasi-Separated Morphisms

Recall that a scheme X is said to be quasi-separated if the diagonal map X Ñ X ˆX is
quasi-compact. In this section, we will investigate the analogous condition in the setting of
spectral Deligne-Mumford stacks (Definition 3.4.0.1). Our main result (Theorem 3.4.2.1)
asserts that a spectral Deligne-Mumford stack X admits a scallop decomposition (see
Definition 2.5.3.1) if and only it is is a quasi-compact, quasi-separated spectral algebraic
space. From this we will deduce a number of consequences concerning the global sections
functor ΓpX; ‚q on the 8-category QCohpXq of quasi-coherent sheaves on X.

Definition 3.4.0.1. Let f : X Ñ Y be a map of nonconnective spectral Deligne-Mumford
stacks. We will say that f is quasi-separated if the diagonal map X Ñ XˆY X is quasi-
compact. We say that a nonconnective spectral Deligne-Mumford stack X is quasi-separated
if the map X Ñ SpétS is quasi-separated, where S denotes the sphere spectrum. In other
words, X is quasi-separated if the absolute diagonal X Ñ XˆX is quasi-compact.

Example 3.4.0.2. If f : X Ñ Y is a separated morphism of spectral Deligne-Mumford
stacks. Then the diagonal map δ : X Ñ XˆY X is a closed immersion, hence affine, and in
particular quasi-compact. It follows that f is quasi-separated.

3.4.1 Quasi-Separatedness

We begin by summarizing some easy formal properties of Definition 3.4.0.1.

Proposition 3.4.1.1. Let X “ pX ,OX q be a nonconnective spectral Deligne-Mumford stack.
The following conditions are equivalent:

p1q The nonconnective spectral Deligne-Mumford stack X is quasi-separated.

p2q For every E8-ring R and every pair of maps f, g : SpétR Ñ X, the fiber product
SpétRˆX SpétR is quasi-compact.

p3q For every pair of maps f : SpétRÑ X, g : SpétR1 Ñ X, the fiber product SpétRˆX
SpétR1 is quasi-compact.

p4q For every pair of étale maps maps f : SpétRÑ X, g : SpétR1 Ñ X, the fiber product
SpétRˆX SpétR1 is quasi-compact.

p5q For every pair of affine objects U, V P X , the product U ˆ V P X is quasi-compact.

p6q For every pair of quasi-compact objects U, V P X , the product U ˆ V P X is quasi-
compact.
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Proof. The implications p1q ô p2q ð p3q ñ p4q ô p5q ð p6q are obvious. We next prove
that p2q ñ p3q. Suppose we are given a pair of maps f : SpétRÑ X, g : SpétR1 Ñ X. Let
A “ RbR1, so that f and g define maps f 1, g1 : SpétAÑ X. Note that

SpétRˆX SpétR1 » pSpétAˆX SpétAq ˆSpétpAbAq SpétA.

If p2q is satisfied, then there exists an étale surjectiion SpétB Ñ SpétAˆX SpétA. It follows
that there is an étale surjection

SpétpB bAbA Aq Ñ SpétRˆX SpétR1,

so that SpétRˆX SpétR1 is quasi-compact.
We next show that p4q ñ p3q. Assume we are given arbitrary maps f : SpétRÑ X and

g : SpétR1 Ñ X. Choose a faithfully flat étale map R Ñ A such that the composite map
SpétA Ñ SpétR f

Ñ X factors through some étale map SpétB Ñ X, and a faithfully flat
étale map R1 Ñ A1 such that the composite map SpétA1 Ñ SpétR1 g

Ñ X factors through an
étale map SpétB1 Ñ X. Condition p4q implies that SpétB ˆX SpétB1 is quasi-compact, so
there is an étale surjection SpétT Ñ SpétB ˆX SpétB1. It follows that the composite map

SpétpT bBbB1 pAbA2qq Ñ SpétAˆX SpétA1 Ñ SpétRˆX SpétR1

is an étale surjection, so that SpétRˆX SpétR1 is also quasi-compact.
We complete the proof by showing that p5q ñ p6q. Assume U, V P X are quasi-compact.

Then there exist effective epimorphisms U 1 Ñ U and V 1 Ñ V , where U 1 and V 1 are affine.
Condition p5q implies that U 1ˆV 1 is quasi-compact. Since we have an effective epimorphism
U 1 ˆ V 1 Ñ U ˆ V , it follows that U ˆ V is quasi-compact.

Proposition 3.4.1.2. Let X “ pX ,OX q be a quasi-compact, quasi-separated spectral alge-
braic space. Then the 8-topos X is coherent.

Proof. We first suppose that X is separated. Using Corollary A.2.1.4, it suffices to show that
if we are given affine objects U, V P X , then the product U ˆ V P X is coherent. Let U and
V be the spectral Deligne-Mumford stacks determined by U and V . We claim that U ˆ V is
affine. This follows from Theorem 3.1.2.1, since Y » UˆX V admits a closed immersion into
the affine spectral Deligne-Mumford stack UˆV.

We now treat the general case. Once again, it suffices to show that if U, V P X are affine,
then U ˆV is coherent. By the first part of the proof, we are reduced to proving that UˆX V
is separated. For this, it suffices to show that the map UˆX V Ñ UˆV is separated, which
follows from Example 3.2.1.9 (since X is a spectral algebraic space).

Proposition 3.4.1.3. Let X be a quasi-separated spectral algebraic space. Suppose we are
given étale maps SpétR Ñ X Ð SpétR1. Then the fiber product Y » SpétR ˆX SpétR1 is
quasi-affine.
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Proof. Since X is quasi-separated, the spectral Deligne-Mumford stack Y is quasi-compact.
Because X is a spectral algebraic space, the canonical map

MapSpDMpSpétA,Yq Ñ MapSpDMpSpétA,SpétpRbR1qq

is p´1q-truncated for any commutative ring A. In particular, MapSpDMpSpétA,Yq is discrete,
so that Y is a spectral algebraic space. It follows from Example 3.2.1.9 that the map Y is
separated. The projection map Y Ñ SpétR is étale and therefore locally quasi-finite. It
follows from Theorem 3.3.0.2 that Y is quasi-affine.

Remark 3.4.1.4. In the situation of Proposition 3.4.1.3, Remark 2.4.1.2 implies that the
fiber product SpétRˆX SpétR1 is schematic. It follows that the full subcategory of SpDM
spanned by the quasi-separated, 0-truncated spectral algebraic spaces is equivalent to the
category of algebraic spaces introduced in [117].

3.4.2 Existence of Scallop Decompositions (Quasi-Separated Case)

We can now state the main result of this section.

Theorem 3.4.2.1. Let Y “ pY,OYq be a spectral Deligne-Mumford stack. Then Y admits
a scallop decomposition if and only if it is a quasi-compact, quasi-separated spectral algebraic
space.

We defer the proof of Theorem 3.4.2.1 until later in this section. First, let us summarize
some of its consequences.

Corollary 3.4.2.2. Let f : X “ pX ,OX q Ñ Y “ pY,OYq be a morphism of spectral Deligne-
Mumford stacks. Assume that f is a relative spectral algebraic space which is quasi-compact
and quasi-separated. Then:

p1q The pushforward functor f˚ : ModOX Ñ ModOY carries quasi-coherent sheaves to
quasi-coherent sheaves.

p2q The induced functor QCohpXq Ñ QCohpYq commutes with small colimits.

p3q For every pullback diagram

X1

f 1

��

g1 // X

f

��
Y1 g // Y,
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the associated diagram of 8-categories

QCohpYq f˚ //

��

QCohpXq

��
QCohpY1q f 1˚ // QCohpX1q

is right adjointable. In other words, for every object F P QCohpXq, the canonical map
λ : g˚f˚F Ñ f 1˚g

1˚F is an equivalence in QCohpY1q.

Proof. Combine Theorem 3.2.3.1 with Propositions 2.5.4.3 and 2.5.4.5.

Corollary 3.4.2.3. Let X be a quasi-compact, quasi-separated spectral algebraic space. Then
there exists an integer n such that the global sections functor Γ : QCohpXq Ñ Sp carries
QCohpXqě0 into Spě´n.

Proof. Combine Proposition 2.5.4.4 with Theorem 3.4.2.1.

Corollary 3.4.2.4. Let X be a quasi-separated spectral algebraic space. If X is nonempty,
then there exists an open immersion j : SpétRÑ X for some nonzero connective E8-ring R.

Proof. Replacing X by an open substack if necessary, we may suppose that X is quasi-
compact. Choose a scallop decomposition U0 Ñ U1 Ñ ¨ ¨ ¨ Ñ Un of X. Let i be the smallest
integer such that Ui is nonempty. Then Ui is an affine open substack of X.

Another consequence of Theorem 3.4.2.1 is that it is possible to choose a “Nisnevich
neighborhood” around any point of quasi-separated spectral algebraic space.

Corollary 3.4.2.5. Let Y be a quasi-separated spectral algebraic space. Let κ be a field, and
suppose we are given a map η : SpétκÑ Y. Then η admits a factorization

Spétκ η1
Ñ SpétR η2

Ñ Y,

where η1 is étale.

Remark 3.4.2.6 (Projection Formula). Let f : X Ñ Y be a quasi-compact, quasi-separated
morphism of spectral Deligne-Mumford stacks, and assume that SpétRˆY X is a spectral
algebraic space for every map SpétR Ñ Y. Suppose we are given quasi-coherent sheaves
F P QCohpXq and G P QCohpYq. The counit map f˚f˚F Ñ F induces a morphism
f˚pf˚F bG q » f˚f˚F bf˚ G Ñ F bf˚ G , which is adjoint to a map θ : f˚F bG Ñ

f˚pF bf˚ G q. We claim that θ is an equivalence. To prove this, we may work locally on Y
and thereby reduce to the case where Y “ SpétR is affine. The collection of those objects
G P QCohpYq » ModR for which θ is an equivalence is stable under shifts and colimits in
QCohpYq. It will therefore suffice to show that θ is an equivalence in the special case where
G corresponds to the unit object R P ModR » QCohpYq, which is obvious.
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3.4.3 The Proof of Theorem 3.4.2.1

Our proof of Theorem 3.4.2.1 will require a number of preliminaries.

Lemma 3.4.3.1. Let X “ pX ,OX q be a quasi-affine spectral Deligne-Mumford stack acted
on by a finite group G. Assume that the action of G is free in the following sense: for
every nonzero commutative ring R, G acts freely on the set π0 MapSpDMpSpétR,Xq. Then
there exist a finite collection of G-equivariant p´1q-truncated objects tUi P X u1ďiďn with the
following properties:

p1q For 1 ď i ď n, let Ui denote the open substack pX {Ui ,OX |Uiq of X. Then each of the
quotients Ui {G is affine.

p2q The objects Ui cover X . That is, if 1 denotes a final object of X , then the canonical
map >1ďiďnUi Ñ 1 is an effective epimorphism.

Proof. Let R denote the connective cover of the E8-ring ΓpX ; OX q » OX p1q. Since X is
quasi-affine, the canonical map j : X Ñ SpétR is an open immersion (Proposition 2.4.1.3),
classified by some quasi-compact open subset U Ď |SpecR|. Then U “ tp P |SpecR| : I Ę pu

for some radical ideal I Ď π0R. Note that the finite group G acts on the commutative
ring π0R and the ideal I is G-invariant. For every point p P U , none of the prime ideals
tσppquσPG contains I. Consequently, there exists an element x P I such that σpxq R p for
each σ P G. Replacing x by

ś

σPG σpxq if necessary, we may suppose that x is G-invariant.
Let Up “ tq P |SpecR| : x R qu. Then Up is an open subset of U containing the point p.
The collection of open sets tUpupPU is an open covering of U . Since U is quasi-compact,
there exists a finite subcovering by open sets Up1 , . . . , Upn , which we can identify with
p´1q-truncated objects U1, . . . , Un P X . It is clear that these objects satisfy condition p2q.
To verify p1q, we note that each of the open substacks Ui “ pX {Ui ,OX |Uiq of X has the form
| SpecRrx´1s| for some G-invariant element x P π0R. Since G acts freely on X, it also acts
freely on the open substack Ui, so that Ui {G is affine by virtue of Lemma 3.4.3.1.

Lemma 3.4.3.2. Let u : X Ñ Y be a map of spectral algebraic spaces. If X is separated,
then u is separated.

Proof. The map u factors as a composition X u1
Ñ XˆY u2

Ñ Y. Since X is separated, the
morphism u2 is separated. The morphism u1 is a pullback of the diagonal map δ : Y Ñ YˆY.
Since Y is a spectral algebraic space, Example 3.2.1.9 implies that δ is separated. It follows
that u1 is separated, so that u “ u2 ˝ u1 is also separated.

Lemma 3.4.3.3. Let j : U Ñ X be a map of spectral Deligne-Mumford stacks. Assume that
j is separated, quasi-compact, and that for every map SpétκÑ X where κ is a field, the fiber
product UˆX Spétκ is either empty or equivalent to Spétκ. Then j is an open immersion.
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Proof. The assertion is local on X, so we may assume that X is affine. In this case, Theorem
3.3.0.2 implies that U is quasi-affine. Choose a covering of U by affine open substacks Ui,
and for each index i let Vi be the open substack of X given by the image of Ui. Then each Vi
is quasi-affine and therefore a separated spectral algebraic space. Since Ui is affine, the maps
ui : Ui Ñ Vi are affine and étale. Our condition on the fibers of j guarantee that each ui is
finite étale of degree 1 and therefore an equivalence. It follows that j induces an equivalence
from U to the open substack of X given by the union of the open substacks Vi.

We will say that a diagram of spectral Deligne-Mumford stacks

rU j //

g

��

rY

��
U // Y

is an excision square if it is a pushout square, where j is an open immersion and g is étale
(see Definition 2.5.2.2).

Lemma 3.4.3.4. Let Y be a spectral Deligne-Mumford stack. Suppose that there exists an
excision square of spectral Deligne-Mumford stacks σ :

rU //

��

rY

��
U // Y

where U is a quasi-compact quasi-separated spectral algebraic space, rY is affine, and rU is
quasi-compact. Then Y is a quasi-compact quasi-separated spectral algebraic space.

Proof. The map U >rY Ñ Y is an étale surjection. Since rY and U are quasi-compact, it
follows immediately that Y is quasi-compact. We next prove that Y is quasi-separated.
Choose maps V0,V1 Ñ Y, where V0 and V1 are affine. We wish to prove that the fiber
product V0ˆY V1 is quasi-compact. Passing to an étale covering of V0 and V1 if necessary
we may suppose that the maps Vi Ñ Y factor through either U or rY. There are three cases
to consider:

paq Suppose that both of the maps Vi Ñ Y factor through U. Then V0ˆY V1 » V0ˆU V1
is quasi-compact by virtue of our assumption that U is quasi-separated.

pbq Suppose that the map V0 Ñ Y factors through U and the map V1 Ñ Y factors through
rY.

V0ˆY V1 » V0ˆUpUˆY V1q » V0ˆUprUˆrY V1q.

Since rU is quasi-compact and rY is quasi-separated, the fiber product rUˆ
rY V1 is quasi-

compact. Using the quasi-separateness of U we deduce that V0ˆY V1 is quasi-compact.
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pcq Suppose that both of the maps Vi Ñ Y factor through rY. Since σ is an excision square,
the map

rY > prUˆY rUq Ñ rY ˆY rY

is an étale surjection. We therefore obtain an étale surjection

pV0ˆ
rY V1q > ppV0ˆ

rY
rUq ˆU pV1ˆ

rY
rUqq Ñ V0ˆY V1 .

The fiber product V0ˆ
rY V1 is affine and therefore quasi-compact. Since rU is quasi-

compact, the fiber products Viˆ
rY
rU are quasi-compact. Using the quasi-separateness

of U, we deduce that the fiber product pV0ˆ
rY
rUq ˆU pV1ˆ

rY
rUq is quasi-compact, so

that V0ˆY V1 is also quasi-compact.

It remains to prove that Y is a spectral algebraic space. We wish to show that the
mapping space MapSpDMpSpétR,Yq is discrete for every commutative ring R. For every map
f : SpétRÑ Y, the fiber product UˆY SpétR is an open substack of SpétR corresponding to
an open subset Vf Ď |SpecR|. Fix an open set V Ď |SpecR|, and let MapVSpDMpSpétR,Yq
denote the summand of MapSpDMpSpétR,Yq spanned by those maps f with Vf “ V .
Then MapSpDMpSpétR,Yq » >V MapVSpDMpSpétR,Yq, so it will suffice to show that each
MapVSpDMpSpétR,Yq is discrete.

Let V denote the open substack of SpétR corresponding to V . Write Y “ pY,OYq and
SpétR “ pX ,OX q, so we can identify V with a p´1q-truncated object of X . The étale map
rY Ñ Y determines an object rY P Y. Every map f : SpétR Ñ Y determines an object
f˚ rY P X . This construction determines a functor θ fitting into a commutative diagram

MapVSpDMpSpétR,Yq //

θ

��

MapSpDMpV,Uq

θ0

��
X // X {V .

Since rU Ñ U is a map between spectral algebraic spaces, the homotopy fibers of the induced
map

MapSpDMpSpétR1, rUq Ñ MapSpDMpSpétR1,Uq

are discrete for every étale R-algebra R1. It follows that θ0 factors through the full subcategory
τď0X {V Ď X {V spanned by the discrete objects. Let X 0 denote the full subcategory of X
spanned by those objects X such that the image of X in X {V is a final object, so that θ
factors through X 0. Using Proposition HA.A.8.15 , we deduce that the homotopy fiber of
the forgetful functor X 0 Ñ X {V over an object rV P X {V can be identified with the space
MapX {V pV,

rV q; in particular, it is discrete if rV is discrete. It follows that the map

MapSpDMpV,Uq ˆX {V X Ñ MapSpDMpV,Uq
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has discrete homotopy fibers. Since the structure sheaf of V is discrete and U is a spectral
algebraic space, the mapping space MapSpDMpV,Uq is discrete. We conclude that the Kan
complex MapSpDMpV,Uq ˆX {V X is discrete. To complete the proof, it will suffice to show
that the canonical map

φ : MapVSpDMpSpétR,Yq Ñ MapSpDMpV,Uq ˆX {V X

has discrete homotopy fibers. To this end, we fix an object rX P X having image rV P X {V ;
we will show that the map

φ
rX

: MapVSpDMpSpétR,Yq ˆX t rXu Ñ MapSpDMpV,Uq ˆX {V t
rV u

has discrete homotopy fibers. To prove this, we observe that φ
rX

is a pullback of the map

MapVSpDMp
rX, rYq Ñ MapSpDMp

rV, rUq,

where MapVSpDMp
rX, rYq is the summand of MapSpDMp

rX, rYq corresponding to those maps
satisfying rV » rUˆ

rY
rX. It now suffices to observe that MapVSpDMp

rX, rYq and MapSpDMp
rV, rUq

are both discrete, since both rX and rV have discrete structure sheaves and both rY and rU are
spectral algebraic spaces.

Proof of Theorem 3.4.2.1. If Y is a spectral Deligne-Mumford stack which admits a scallop
decomposition, then Lemma 3.4.3.2 immediately implies that Y is a quasi-compact, quasi-
separated spectral algebraic space (using induction on the length of the scallop decomposition).
We will prove the converse using a slightly more complicated version of the proof of
Proposition 3.2.3.1. Assume that Y is a quasi-compact, quasi-separated spectral algebraic
space. Since Y is quasi-compact, we can choose an étale surjection u : X Ñ Y where X
is affine. Lemma 3.4.3.2 implies that u is separated. For i ě 1, each of the evaluation
maps Conf iYpXq Ñ X is étale, separated, and quasi-compact (since Y is assumed to be
quasi-separated). Since X is affine, we conclude that Conf iYpXq is quasi-affine (Theorem
3.3.0.2). Using the quasi-compactness of Y, we deduce the existence of an integer n such that
Confn`1

Y pXq is empty. For 0 ď i ă n, we can use Lemma 3.4.3.1 to obtain a finite covering of
Confn´iY pXq by Σi-invariant open substacks tUi,ju1ďjďmi such that each quotient Ui,j {Σn´i

is affine. Let m “
ř

0ďiănmi. If 1 ď k ď m, then we can write k “ m0 ` ¨ ¨ ¨ `mi´1 ` j

where 1 ď j ď mi, and we let Uk denote the spectral Deligne-Mumford stack Ui,j . For
0 ď k ď m, we let Vk denote the open substack of Y given by the image of the étale map
>1ďk1ďk Uk1 Ñ Y. We claim that the sequence of open immersions

V0 Ñ V1 Ñ ¨ ¨ ¨ Ñ Vm

is a scallop decomposition of Y. Since u is surjective, it is clear that Vm » Y, and V0 is
empty by construction. Let 0 ă k ď m, and write k “ m0 ` ¨ ¨ ¨ `mi´1 ` j for 1 ď j ď mi.
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Form a pullback square
W //

��

Ui,j {Σn´i

q

��
Vk´1 // Vk .

We claim that this diagram is an excision square. To prove this, can replace Y by the
reduced closed substack complementary to Vk´1, and thereby reduce to the case where
Confn´i`1

Y pXq is empty. In this case, we wish to show that q is an equivalence. Since q is an
étale surjection by construction, it suffices to show that the map Ui,j {Σn´i Ñ Y is an open
immersion. In fact, we claim that the map j : Confn´iY pXq{Σn´i Ñ Y is an open immersion:
this follows from Lemma 3.4.3.3 (since Confn´i`1

Y pXq is empty).

3.5 Geometric Points

Let X be an 8-topos. Recall that a point of X is a geometric morphism x˚ : X Ñ S,
where S denotes the 8-category of spaces. Our goal in this section is to give an explicit
description of the points of X in the special case where X is the underlying 8-topos of a
spectral Deligne-Mumford stack X “ pX ,OX q.

3.5.1 Strictly Henselian E8-Rings

We begin by introducing some terminology.

Definition 3.5.1.1. Let A be an E8-ring. We will say that A is strictly Henselian if the
commutative ring π0A is strictly Henselian, in the sense of Definition B.3.5.1.

Remark 3.5.1.2. An E8-ring A is strictly Henselian if and only if it is strictly Henselian
when regarded as a sheaf of E8-rings on the 8-topos S, in the sense of Definition 1.4.2.1.

Remark 3.5.1.3. Let A be an E8-ring. Then A is strictly Henselian if and only if it
satisfies the following condition: for every collection of étale morphisms tφα : A Ñ Aαu

which generate a covering sieve on A with respect to the étale topology, one of the maps φα
admits a left homotopy inverse. To prove this, we can use Theorem HA.7.5.0.6 to reduce to
the case where A is discrete, in which case it follows from Proposition B.3.5.3.

Proposition 3.5.1.4. Let f : A Ñ A1 be a map of E8-rings which induces a surjective
ring homomorphism π0AÑ π0A

1. If A is strictly Henselian and A1 ‰ 0, then A1 is strictly
Henselian.

Proof. This follows from Corollary B.3.3.2, since the local rings π0A and π0A
1 have the same

residue field.
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3.5.2 Points of Affine Spectral Deligne-Mumford Stacks

Fix an E8-ring A. Let CAlgét
A denote the full subcategory of CAlgA spanned by the E8-

algebras which are étale over A, and Shvét
A the full subcategory of FunpCAlgét

A ,Sq spanned
by those functors which are sheaves with respect to the étale topology. By definition, a
point of the 8-topos Shvét

A is a geometric morphism f˚ : Shvét
A Ñ S. Composition with

the Yoneda embedding pCAlgét
Aq

op ãÑ FunpCAlgét
A ,Sq induces an equivalence between the

8-category of points of the presheaf 8-topos FunpCAlgét
A ,Sq with the full subcategory

IndpCAlgét
Aq Ď FunpCAlgét

Aq
op,Sq (Proposition HTT.6.1.5.2 ). We will say that an A-algebra

B is Ind-étale if it is a filtered colimit of étale A-algebras. Since every étale A-algebra is a
compact object of CAlgA (Corollary HA.7.5.4.4 ), we can identify IndpCAlgét

Aq with a full
subcategory CAlgInd´ét

A Ď CAlgA spanned by the Ind-étale A-algebras.

Proposition 3.5.2.1. Let A be an E8-ring, let B be an Ind-étale A-algebra, and let
η˚ : S Ñ FunpCAlgét

A ,Sq be the geometric morphism determined by B. The following
conditions are equivalent:

p1q The geometric morphism η˚ factors through the full subcategory Shvét
A Ď FunpCAlgét

A ,Sq.

p2q The E8-ring B is strictly Henselian.

Proof. Using Proposition HTT.6.2.3.20 , we see that p1q is equivalent to the following
condition:

p˚q Let A1 be an étaleA-algebra, and suppose we are given a finite collection of étale maps
tA1 Ñ A1αu such that AÑ

ś

αAα is faithfully flat (see Definition B.6.1.1). Then any
A-algebra map A1 Ñ B factors (up to homotopy) through A1α for some index α.

The implication p2q ñ p˚q follows immediately by applying Remark 3.5.1.3 to the family of
morphisms tB Ñ B bA1 A

1
αu (which generate a covering sieve on B with respect to the étale

topology). Conversely, suppose that p˚q is satisfied. We will prove that B is strictly Henselian
by verifying the criterion of Remark 3.5.1.3. Suppose we are given a finite collection of étale
morphisms tB Ñ Bαu which induce a faithfully flat map θ : B Ñ

ś

αBα; we wish to show
that there is an index α and a map of B-algebras Bα Ñ B.

Write B as a filtered colimit of étale A-algebras Bpβq. Using the structure theorem
for étale morphisms (Proposition B.1.1.3), we can choose an index β and étale morphisms
tBpβq Ñ Bpβqαu such that Bα » B bBpβq Bpβqα. The image of the induced map

>α|SpecBpβqα| Ñ | SpecBpβq|

is a quasi-compact open subset U Ď |SpecBpβq| (Proposition ??) corresponding to a radical
ideal I Ď π0Bpβq. Since θ is faithfully flat, the image of I generates the unit ideal in
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π0B. Changing our index β, we may suppose that I is the unit ideal, so that the map
Bpβq Ñ

ś

αBpβqα is faithfully flat. It follows from p˚q that there exists an index α and a
map of Bpβq-algebras Bpβqα Ñ B, which determines a map of B-algebras Bα Ñ B.

Proposition 3.5.2.1 yields the following description for points of an affine spectral Deligne-
Mumford stacks:

Corollary 3.5.2.2. Let A be an E8-ring, and let C be the full subcategory of FunpShvét
A ,Sq

spanned by those functors which are left exact and preserve small colimits. Then composition
with the Yoneda embedding pCAlgét

Aq
op ãÑ Shvét

A induces an equivalence of C with the full
subcategory of IndpCAlgét

Aq » CAlgInd´ét
A Ď CAlgA spanned by those A-algebras which are

strictly Henselian and Ind-étale over A.

Remark 3.5.2.3. Let A be an E8-ring and let pX ,Oq “ SpétpAq be the corresponding
spectral Deligne-Mumford stack. Let f˚ : X Ñ Shvp˚q “ S be a point of X , which
corresponds under the equivalence of Corollary 3.5.2.2 to a strictly Henselian A-algebra
A1 » lim

ÝÑ
A1α, where each A1α is an étale A-algebra. Let C be an arbitrary compactly generated

8-category, and let F P ShvCpX q » ShvCppCAlgét
Aq

opq. Unwinding the definitions, we obtain
a canonical equivalence f˚F » lim

ÝÑ
F pA1αq in the 8-category ShvCp˚q » C. In particular,

A1 can be identified with the stalk of the structure sheaf f˚O P ShvCAlgpSq » CAlg.

Remark 3.5.2.4. Let A be an E8-ring and let pX ,Oq “ SpétpAq. Let B be a strictly
Henselian E8-ring; let us identify B with the corresponding object of ShvCAlgpSq, so that
pS, Bq is an object of 8T opét

CAlg. We then have a canonical homotopy equivalence

Map8T opét
CAlg

ppS, Bq, pX ,Oqq Ñ MapCAlgpA,Bq.

Under the equivalence of Corollary 3.5.2.2, this assertion translates as follows: every map of
E8-rings f : AÑ B factors uniquely as a composition

A
f 1
Ñ A1

f2
Ñ B,

where A1 is strictly Henselian, f 1 is Ind-étale, and f2 is local. We will refer to A1 as the
strict Henselization of A along f .

3.5.3 Minimal Geometric Points

It is often convenient to describe points of spectral Deligne-Mumford stacks by Henselizing
the spectra of separably closed fields.

Definition 3.5.3.1. Let X be a spectral Deligne-Mumford stack. A geometric point of X
is a morphism of spectral Deligne-Mumford stacks η : SpétκÑ X, where κ is a separably
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closed field. We will say that a geometric point η : SpétκÑ X is minimal if it factors as a
composition

Spétκ η1
Ñ SpétA η2

Ñ X

where η2 is étale and η1 induces a map of commutative rings φ : π0AÑ κ which exhibits κ
as a separable algebraic extension of some residue field of π0A.

For each object X P SpDM, we let PtgpXq denote the full subcategory of SpDM{X spanned
by the minimal geometric points η : X0 Ñ X.

Remark 3.5.3.2. Let X be a spectral Deligne-Mumford stack and let η : SpétκÑ X be a
minimal geometric point of X. For every factorization

Spétκ η1
Ñ SpétA η2

Ñ X

of η where η2 is étale, the map η1 exhibits κ as a separable closure of the residue field κppq

for prime ideal p Ď π0A.

Remark 3.5.3.3. Let φ : U Ñ X be an étale map of spectral Deligne-Mumford stacks, and
suppose we are given a geometric point η : SpétκÑ U. Then η is a minimal geometric point
of U if and only if φ ˝ η is a minimal geometric point of X.

Remark 3.5.3.4. Suppose we are given a commutative diagram of fields

κ
φ

��

ψ

  
κ

θ // κ2.

If φ and ψ exhibit κ1 and κ2 as separable closures of κ, then θ is an isomorphism. It
follows that if X is a spectral Deligne-Mumford stack, then every morphism between minimal
geometric points of X is an equivalence: that is, the 8-category PtgpXq is a Kan complex.

3.5.4 Comparison of Points with Geometric Points

Let η : X0 Ñ X be a geometric point of a connective spectral Deligne-Mumford stack
X “ pX ,OX q. Then X0 is the spectrum of a separably closed field, so that underlying
8-topos of X0 is canonically equivalent to S. Consequently, the pullback functor η˚ can be
viewed as a geometric morphism X Ñ S.

Remark 3.5.4.1. Let X “ pX ,OX q be a spectral Deligne stack. Let U P X be an object of
let U “ pX {U ,OX |U q. The étale map of spectral Deligne-Mumford stacks φ : U Ñ X induces
a map of Kan complexes θ : PtgpUq Ñ PtgpXq. Using Remark 3.5.3.3, we deduce that the
homotopy fiber of θ over a point η P PtgpXq can be identified with the space η˚pUq P S.
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Proposition 3.5.4.2. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. The construc-
tion

pη : X0 Ñ Xq ÞÑ pη˚ P FunpX ,Sqq

determines an equivalence from the 8-category PtgpXq of minimal geometric points of X to
the subcategory Fun˚pX ,Sq» Ď FunpX ,Sq whose objects are functors which preserve small
colimits and finite limits and whose morphisms are equivalences.

Proof. For each object U P X , let XU denote the spectral Deligne-Mumford stack pX {U ,OX |U q.
We let Fun˚pX {U ,Sq» denote the subcategory of FunpX {U ,Sq whose objects are functors
which preserve small colimits and finite limits and whose morphisms are equivalences. For
each U P X , we have a canonical map of Kan complexes PtgpXU q Ñ FunpX {U ,Sq». Let us
say that U is good if θU is a homotopy equivalence. For any morphism U Ñ V in X , Remark
3.5.4.1 implies that the diagram

PtgpXU q
θU //

��

FunpX {U ,Sq»

��
PtgpXV q

θV // FunpX {V ,Sq»

is a pullback square. Since colimits in S are universal, we conclude that for every diagram
tUαu in X having colimit U , the induced diagram

lim
ÝÑ

PtgpXUαq //

��

lim
ÝÑ

FunpX {Uα ,Sq»

��
PtgpUq

θU // FunpX {U ,Sq»

is a pullback square. It follows from Proposition HTT.6.3.5.5 that the right vertical map
in this diagram is a homotopy equivalence, so that the left vertical map is a homotopy
equivalence as well. Consequently, if each Uα is good, then U is good. We wish to prove
that every object U P X is good. By virtue of Proposition 1.4.7.9, it will suffice to treat
the case where U is affine. Replacing X by XU , we may assume that X “ SpétA for some
connective E8-ring A.

Let X0 “ Spétpπ0Aq. The underlying 8-topoi of X and X0 are the same, and the
canonical map

MapSpDMpSpétκ,X0q Ñ MapSpDMpSpétκ,Xq

is a homotopy equivalence for every discrete E8-ring κ. We may therefore replace A by π0A

and thereby reduce to the case where A is a discrete E8-ring.
Let Fun˚pX ,Sq denote the full subcategory of FunpX ,Sq spanned by those functors

which preserve small colimits and finite limits. Using Corollary 3.5.2.2, we can identify
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Fun˚pX ,Sq with the full subcategory of C Ď CAlgA whose objects are A-algebras B which
are strictly Henselian and can be written as a filtered colimit of étale A-algebras. We can
identify PtgpXq with the groupoid consisting of those A-algebras κ which are separable
closures of some residue field of A. We will denote the functor θ : PtgpXq Ñ C by κ ÞÑ Aκ.
This construction can be characterized by the following universal property: for every object
κ P PtgpXq and every étale A-algebra B, we have a canonical bijection

HomApB,Aκq » HomkpB bA κ, κq » HomApB, κq.

Here HomRpR
1, R2q denotes the set of R-algebra maps from R1 to R2. Note that this bijection

extends naturally to the case where B is a filtered colimit of étale A-algebras.
For every object B P C, let pB denote the inverse image in A of the maximal ideal of

B. Any morphism B Ñ B1 in C determines an inclusion of prime ideals pB1 Ď pB. We let
C0 denote the subcategory of C consisting of those morphisms B Ñ B1 for which pB “ pB1 .
Since C0 contains all equivalences in C, the map θ factors through C0. We will show that
θ induces an equivalence PtgpXq Ñ C0. From this, it will follow that C0 is a Kan complex,
hence that C0 is the largest Kan complex contained in C and therefore that θ exhibits PtgpXq
as equivalent to the largest Kan complex contained in C.

Let κ P PtgpXq, and let p “ pAk . Note that HomApAru
´1s, Aκq is empty if and only if

u P p. It follows that p is the kernel of the map AÑ κ, so that κ is a separable closure of
the residue field κppq of A. Since Aκ is a filtered colimit of étale A-algebras, the quotient
pAκ{pAκq » Aκ bA κppq is a filtered colimit of finite étale algebras over κppq. Since Aκ is
strictly Henselian, the quotient Aκ{pAκ is also strictly Henselian and therefore a separable
closure of the residue field κppq. Let κ1 be another separable closure of κppq. The canonical
map

v : HomApκ, κ
1q » MapPtgpXqpκ, κ

1q Ñ MapCpAκ, Aκ1q » HomApAκ, Aκ1q » HomApAκ, κ
1q

is given by composition with a map v0 : Aκ{pAκ Ñ κ. Here v0 is a κppq-algebra map between
separable closures of κppq, and therefore an isomorphism. It follows that v is bijective, which
proves that θ : PtgpXq Ñ C0 is fully faithful.

It remains to prove that θ is essentially surjective. Let B P C and let p “ pB. Then
κ “ B{pB » B bA κppq is a filtered colimit of étale κppq-algebras. Since κ is strictly
Henselian, we deduce that κ is a separable closure of κppq. In particular, pB is the maximal
ideal of B, and we can identify κ with an object of PtgpXq. For every étale A-algebra B1, we
have a canonical map

HomApB
1, Bq Ñ HomApB

1, B{pBq “ HomApB
1, κq » HomApB

1, Aκq.

Since B is Henselian, this map is bijective. Since B and Aκ can both be obtained as a
filtered colimit of étale A-algebras, we conclude that B » Aκ.



330 CHAPTER 3. SPECTRAL ALGEBRAIC SPACES

Remark 3.5.4.3. Let X be a spectral Deligne-Mumford stack, and suppose we are given
a morphism η : Spétκ Ñ X, where κ is a separably closed field. Then η factors as a
composition Spétκ η1

Ñ U η2
Ñ X, where U is affine and η2 is étale. Write U “ SpétA, so that η1

determines a map of E8-rings AÑ κ. The image of the map of commutative rings π0AÑ κ

generates a subfield of κ1 Ď κ. Let κ0 Ď κ denote the separable closure of κ1 in κ. Then η

factors as a composition SpétκÑ Spétκ0
η0
Ñ X, where η0 is a minimal geometric point of X

and the inclusion κ0 Ď κ is an extension of separably closed fields.

3.5.5 Existence of Geometric Points

Let X “ pX ,OX q be a spectral Deligne-Mumford stack. We will say that X is empty if
X is a contractible Kan complex (that is, if X is equivalent to the 8-category of sheaves on
the empty topological space). Otherwise, we will say that X is nonempty.

Remark 3.5.5.1. A spectral Deligne-Mumford stack X is empty if and only if it is an initial
object of the 8-category SpDM of spectral Deligne-Mumford stacks.

Lemma 3.5.5.2. Let X be a spectral Deligne-Mumford stack. The following conditions are
equivalent:

p1q The spectral Deligne-Mumford stack X is not empty.

p2q There exists a nonzero connective E8-ring A and an étale map SpétAÑ X.

p3q There exists a minimal geometric point SpétκÑ X.

Proof. The implications p2q ñ p3q and p3q ñ p1q are obvious. We prove that p1q ñ p2q.
Assume that p1q is satisfied. Write X “ pX ,OX q, so that there exists an object of X which
is not initial. It follows that there exists an affine object U P X which is not initial. Then
pX {U ,OX |U q is equivalent to SpétA for some connective E8-ring A. We therefore have
an étale map SpétAÑ X. Since U is not an initial object of X , A is nonzero; this proves
p2q.

Remark 3.5.5.3. The implication p1q ñ p3q of Lemma 3.5.5.2 can also be deduced from
Proposition 3.5.4.2 and Theorem A.4.0.5.

Proposition 3.5.5.4. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
The following conditions are equivalent:

p1q Let X and Y denote the underlying 8-topoi of X and Y, respectively. Then every
geometric morphism of 8-topoi η˚ : S Ñ Y factors through the geometric morphism
f˚ : X Ñ Y.
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p2q For every field κ and every map η : SpétκÑ Y, there exists a field extension κ1 of κ
such that the composite map Spétκ1 Ñ SpétκÑ Y factors through f .

p3q For every field κ and every map η : Spétκ Ñ Y, the fiber product Spétκ ˆY X is
nonempty.

Definition 3.5.5.5. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. We
will say that f is surjective if it satisfies the equivalent conditions of Proposition 3.5.5.4.

Remark 3.5.5.6. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 //

f 1

��

X
f
��

Y1 // Y .
If f is surjective, then f 1 is surjective.

Remark 3.5.5.7. Suppose we are given maps of spectral Deligne-Mumford stacks

X f
Ñ Y g

Ñ Z,

where f is surjective. Then g is surjective if and only if g ˝ f is surjective.

Example 3.5.5.8. Let f : X Ñ Y “ pY,OYq be an étale morphism of spectral Deligne-
Mumford stacks, so that X » pY{U ,OY |U q for some object U P Y. The following conditions
are equivalent:

piq The object U P Y is 0-connective.

piiq The morphism f is surjective.

Proof of Proposition 3.5.5.4. The implication p2q ñ p3q is obvious, and the implication
p3q ñ p1q follows from Lemma 3.5.5.2. We will show that p1q ñ p2q. Let η : SpétκÑ Y be
a morphism of spectral Deligne-Mumford stacks. We wish to show that, after enlarging κ if
necessary, the map η factors through X. Without loss of generality, we may assume that κ
is separably closed. Note that η determines a geometric morphism of 8-topoi η˚ : S Ñ Y.
Using condition p1q, we deduce that η˚ factors as a composition S

η1˚
Ñ X f˚

Ñ Y . According to
Proposition 3.5.4.2, the geometric morphism η1˚ is determined by a minimal geometric point
η1 : Spét k1 Ñ X. Using Remark 3.5.4.3, we see that η and f ˝ η1 admit factorizations

SpétκÑ Spétκ0
η0
Ñ Y Spétκ1 Ñ Spétκ10

η10
Ñ Y,

where κ0 and κ10 are separably closed subfields of κ and κ1, respectively, and η0 and η10 are
minimal geometric points of Y. By construction, the pushforward functors pη0q˚, pη

1
0q˚ : S Ñ
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Y are homotopic. It follows from Proposition 3.5.4.2 that there is an isomorphism of fields
κ0 » κ10 such that the diagram

Spétκ0
η0

##

// Spétκ10
η10

{{
Y

commutes up to homotopy. Let κ2 be any residue field of the tensor product κbκ0 κ
1. Then

the composite map Spétκ2 Ñ Spétκ η
Ñ Y factors through f ˝ η, and therefore lifts to a map

Spétκ2 Ñ X.

3.6 Points of Spectral Algebraic Spaces

Let X “ pX ,OX q be a spectral Deligne-Mumford stack. In §3.5, we studied the Kan
complex Fun˚pX ,Sq» of points of the 8-topos X, and proved that it was equivalent to the
8-category PtgpXq of minimal geometric points of X (Proposition 3.5.4.2). In this section,
we will study an a priori different notion of point, given by points of the locale τď´1X of
p´1q-truncated points of X. In good cases, one can show that |X | can be identified with the
set of isomorphism classes of minimal geometric points of X (Corollary 3.6.4.4).

3.6.1 The Underlying Topological Space

In §1.5, we associated to each 8-topos X a topological space |X | (see Definition 1.5.4.3).
In this section, we will be interested in the case where X is the underlying 8-topos of a
spectral Deligne-Mumford stack.

Definition 3.6.1.1. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. We |X | denote
the underlying topological |X | of the 8-topos X . We will refer to |X | as the underlying
topological space of X.

More concretely, an element x P |X | can be identified with an equivalence class of open
substacks Ux ãÑ X having the following property:

p˚q Given a finite collection tVi Ď Xu1ďiďn of open substacks of X having intersection Ux,
we have Ux “ Vi for some i.

Here we should think of Ux as the open substack of X given by the complement of the closure
of the point x. We will regard |X | as a topological space, having open sets of the form
tx P |X | : U Ę Uxu where U ranges over open substacks of X.
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Remark 3.6.1.2. In this section, we are primarily interested in studying the topological
space |X | in the case where X is a quasi-separated spectral algebraic space. All of our results
can be deduced immediately from their counterparts in the classical theory of algebraic
spaces (see, for example, [117]). We include proofs here for the sake of completeness.

Remark 3.6.1.3. Let X “ pX ,OX q be a spectral Deligne-Mumford stack. The 8-topos X
is locally coherent, so that the hypercompletion X hyp has enough points (Theorem A.4.0.5).
It follows immediately that the locale of open substacks of X has enough points: that is,
there is a one-to-one correspondence between open subsets of the topological space |X | and
equivalence classes of open substacks of X.

Example 3.6.1.4. Let R be an E8-ring. Then there is a bijective correspondence between
equivalence classes of open substacks of SpétR and open subsets of the topological space
| SpecR| (see Lemma ??). Since every irreducible closed subset of | SpecR| has a unique
generic point, we obtain a canonical homeomorphism | SpétR| » |SpecR|. In particular, if
R is a field, then the topological space | SpétR| consists of a single point.

Example 3.6.1.5. Let X be a schematic spectral algebraic space, and let pX,OXq be the
associated spectral scheme (see Definition ??). Then |X | is homeomorphic to X (see Remark
1.1.2.10).

Proposition 3.6.1.6. Let f : X Ñ Y be a morphism of quasi-separated spectral algebraic
spaces. Assume that X is 0-truncated and quasi-compact, and let Y0 be the schematic image
of f (see Construction 3.1.5.1). Then the image of the closed immersion |Y0 | ãÑ |Y | is the
closure of the image of the map |f | : |X | Ñ |Y |.

Proof. Replacing Y by Y0, we can reduce to the case where Y is 0-truncated and the unit
map u : OY Ñ π0f˚OX is a monomorphism (here OX and OY denote the structure sheaves
of X and Y, respectively). In this case, we wish to show that the map |X | Ñ |Y | has dense
image. Assume otherwise: then there exists a nonempty open subset U Ď |Y | which does
not intersect the image of f . Let U denote the open substack of Y corresponding to U . Using
Remark 3.1.5.6, we can replace Y by U and thereby reduce to the case where X is empty. In
this case, the assertion that u is a monomorphism guarantees that OY » 0, contradicting
our assumption that U ‰ H.

3.6.2 Points

Let X “ pX ,OX q be a spectral Deligne-Mumford stack. Every point of the 8-topos X
determines a point of the topological space |X |. This observation determines a map of sets
θ : π0 PtgpXq Ñ |X |, where PtgpXq denotes the space of geometric points of X (Proposition
3.5.4.2). In good cases, one can show that the map θ is bijective. One of our goals in this
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section is prove this in the case where X is a quasi-separated spectral algebraic space. To do
so, it will be convenient to describe the elements of |X | in a different way.

Definition 3.6.2.1. Let X be a spectral algebraic space. A point of X is a morphism
η : X0 Ñ X with the following properties:

p1q The object X0 P SpDM is equivalent to the spectrum of a field κ.

p2q For every commutative ring R, the map

HomCAlg♥pκ,Rq » π0 MapSpDMpSpétR,X0q Ñ π0 MapSpDMpSpétR,Xq

is injective.

Example 3.6.2.2. Let R be a connective E8-ring. A map η : SpétκÑ SpétR is a point
of R if and only if κ is a field and the underlying map RÑ κ exhibits κ as the residue field
of the commutative ring π0R at some prime ideal p Ď π0R.

Remark 3.6.2.3. Let X be a quasi-separated spectral algebraic space, and suppose we are
given a point η : Spétκ Ñ X. Choose any étale map u : SpétR Ñ X, and let Y denote
the fiber product SpétκˆX SpétR. Since the diagonal of X is quasi-affine, Y has the form
Spétκ1 for some étale κ-algebra κ1. We may therefore write κ1 as a finite product

ś

α κ
1
α,

where each κ1α is a finite separable extension of the field κ. Each of the induced maps
Spétκ1α Ñ Spétκ1 Ñ SpétR is a point of SpétR, so that each κ1α can be identified with
a residue field of the commutative ring π0R (Example 3.6.2.2) at some prime ideal pα.
Moreover, the prime ideals pα are distinct from one another.

Remark 3.6.2.4. Let X be a quasi-separated spectral algebraic space, and suppose we are
given a commutative diagram

Spétκ θ //

η
""

Spétκ1

η1||
X

where η is a point of X and κ1 is a field. Choose an étale map u : SpétR Ñ X such that
Y “ Spétκ1 ˆX SpétR is nonempty, so that Y has the form Spétκ2 for some nonzero étale
κ1-algebra κ2. Then SpétκˆX SpétR is the spectrum of the commutative ring κbκ1 κ2. It
follows from Remark 3.6.2.3 that the composite map π0RÑ κ2 Ñ κbκ1 κ

2 is surjective. In
particular, the map κ2 Ñ κbκ1 κ

2 is surjective, so we must have κ1 » κ: that is, the map θ
is an equivalence.
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Notation 3.6.2.5. Let X be a quasi-separated spectral algebraic space, and let PtpXq be the
full subcategory of SpDM{X spanned by the points of X. Remark 3.6.2.4 implies that PtpXq
is a Kan complex, and it follows immediately from the definition that all mapping spaces
in PtpXq are either empty or contractible. It follows that PtpXq is homotopy equivalent to
the discrete space π0 PtpXq. We will generally abuse notation by identifying PtpXq with
π0 PtpXq. If η P PtpXq corresponds to a morphism Spétκ Ñ X, we will refer to κ as the
residue field of X at the point η, and denote it by κpηq.

Remark 3.6.2.6. Let i : X0 Ñ X be a closed immersion of quasi-separated spectral algebraic
spaces, and let j : U Ñ X be the complementary open immersion. Then the induced maps
π0 PtpX0q Ñ π0 PtpXq Ð π0 PtpUq determine a bijection π0 PtpX0q > π0 PtpUq Ñ π0 PtpXq.

3.6.3 Comparison of PtpXq with | X |

Let X be a spectral algebraic space. For every point η : SpétκÑ X, the induced map of
topological spaces | Spétκ| Ñ |X | determines an element of |X | (see Example 3.6.1.4). This
construction determines a map of sets π0 PtpXq Ñ |X |. Under mild hypotheses, this map is
bijective:

Proposition 3.6.3.1. Let X “ pX ,OX q be a quasi-separated spectral algebraic space. Then
construction above determines a bijection of sets θ : π0 PtpXq Ñ |X |.

Proof. The topological space |X | is sober: that is, every irreducible closed subset of |X |
has a unique generic point. It will therefore suffice to show that for every irreducible closed
subset K Ď |X |, there is a unique equivalence class of points η : SpétκÑ X which determine
a generic point of K. Using Proposition 3.1.6.3, we can assume that K is the image of
|X0 | for some closed immersion X0 Ñ X. Replacing X by X0, we may suppose X is reduced
and that |X | is itself irreducible. In particular, X is nonempty; we may therefore choose
an open immersion j : SpétRÑ X for some nonzero E8-ring R (Corollary 3.4.2.4). Since
X is reduced, R is an ordinary commutative ring. Then the Zariski spectrum | SpecR| is
homeomorphic to nonempty open subset of |X | and is therefore irreducible. It follows that
R is an integral domain. Let η P |X | be the image of the zero ideal p0q P |SpecR|, so that η
corresponds to the point given by the composition

SpétκÑ SpétRÑ X

where κ is the fraction field of R. We claim that η is a generic point of |X |: that is, that η
belongs to every nonempty open subset V Ď |X |. To see this, we note that because |X | is
irreducible, the inverse image of V in | SpecR| is nonempty and therefore contains the ideal
p0q. This proves the surjectivity of θ. To prove injectivity, let us suppose we are given any
other point η1 : Spétκ1 Ñ X which determines a generic point of |X1 |. Since η1 determines



336 CHAPTER 3. SPECTRAL ALGEBRAIC SPACES

a generic point of |X |, it must factor through the nonempty open substack SpétR of X.
We may therefore identify κ1 with the residue field of R at some prime ideal p Ď R. which
belongs to every nonempty open subset of |SpecR|. It follows that for every nonzero element
x P R, p P |SpecRrx´1s| and therefore x R p. This proves that p coincides with the zero
ideal p0q, so that η1 » η.

We now describe some consequences of Proposition 3.6.3.1.

Corollary 3.6.3.2. Suppose we are given a pullback diagram

X1 //

��

X

��
Y1 // Y

of quasi-separated spectral algebraic spaces. Then the induced map |X1 | Ñ |X | ˆ|Y | |Y1 | is
a surjection of topological spaces.

Proof. Every point η : |X | ˆ|Y | |Y1 | can be lifted to a commutative diagram

Spétκ //

��

Spétκ1

��

Spétκ2oo

��
X // Y Y1oo

where κ, κ1, and κ2 are fields. To prove that η can be lifted to a point of |X |, it suffices to
observe that |SpétκˆSpétκ1 Spétκ2| is nonempty: that is, that commutative ring κbκ1 κ2

is nonzero.

Proposition 3.6.3.3. Let X be a quasi-separated spectral algebraic space. Then:

p1q The topological space |X | is sober, and is quasi-compact if X is quasi-compact.

p2q The topological space |X | has a basis consisting of quasi-compact open sets.

p3q The topological space |X | is quasi-separated (that is, if U and V are quasi-compact
open subsets of |X |, then the intersection U X V is also quasi-compact).

Moreover, if f : X Ñ Y is a quasi-compact morphism of quasi-separated spectral algebraic
spaces, and U Ď |Y | is quasi-compact, then f´1U Ď |X | is quasi-compact.

Corollary 3.6.3.4. Let X be a quasi-compact, quasi-separated spectral algebraic space. Then
the topological space |X | is coherent. Consequently, |X | is homeomorphic to the spectrum
SppUpXqq, where UpXq denotes the collection of all quasi-compact open subsets of |X | (see
Proposition A.1.5.10).
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Remark 3.6.3.5. Let X be a spectral Deligne-Mumford stack. Assume that X is locally
Noetherian and quasi-compact. Then the topological space |X | is Noetherian: that is, every
open subset of |X | is quasi-compact. To prove this, choose an E8-ring R and an étale
surjection SpétR Ñ X. Since the lattice of open subsets of |X | injects into the lattice of
open subsets of | SpétR| » |SpecR|, we are reduced to proving that the topological space
| SpecR| is locally Noetherian. This follows immediately from our assumption that π0R is
Noetherian.

Proof of Proposition 3.6.3.3. Assertion p1q follows immediately from the definitions. Let
X “ pX ,OX q, and identify the collection of open sets in |X | with the collection of (equivalence
classes of) p´1q-truncated objects of X . For every object U P X , if we write XU “

pX {U ,OX |U q, then the open subset of |X | corresponding to τď´1U can be described as the
image of the map |XU | Ñ |X |. Since X is generated under small colimits by affine objects,
we see that |X | has a basis of open sets given by the images of maps |U | Ñ |X |, where U is
an affine spectral algebraic space which is étale over X. In this case, |U | is quasi-compact
by p1q, so that |X | has a basis of quasi-compact open sets.

We now prove that |X | is quasi-separated. Suppose we are given quasi-compact open
sets U, V Ď |X |; we wish to show that U X V is quasi-compact. Without loss of generality,
we may assume that U and V are the images of maps |U | Ñ |X | and |V | Ñ |X |, where U
and V are affine spectral algebraic spaces which are étale over X. Using Corollary 3.6.3.2, we
see that U X V is the image of the map θ : |UˆX V | Ñ |X |. Since X is quasi-separated, the
fiber product UˆX V is quasi-compact, so that the underlying topological space |UˆX V | is
also quasi-compact by p1q. It follows that the image of θ is quasi-compact, as desired.

Now suppose that f : X Ñ Y is a quasi-compact morphism between quasi-separated
spectral algebraic spaces and let U Ď |Y | be a quasi-compact open set; we wish to show
that its inverse image is a quasi-compact open subset of |X |. Without loss of generality,
we may suppose that U is the image of a map |U | Ñ |Y |, where U is affine and étale over
Y. Using Corollary 3.6.3.2 we see that the inverse image of U is the image of the map
θ : |UˆY X | Ñ |X |. Since f is quasi-compact, UˆY X is quasi-compact. It follows from p1q
that the topological space |UˆY X | is quasi-compact, from which it follows that the image
of θ is quasi-compact.

Proposition 3.6.3.6. Let f : X Ñ Y be a faithfully flat, quasi-compact morphism between
quasi-separated spectral algebraic spaces. Then the induced map |X | Ñ |Y | is a quotient
map of topological spaces.

Proof. Writing Y as a union of its quasi-compact open substacks, we can reduce to the case
where Y (and therefore also X) is quasi-compact. Choose an étale surjection SpétR Ñ Y
and an étale surjection SpétR1 Ñ SpétR ˆY X. Then R1 is faithfully flat over R, so that
| SpecR1| Ñ |SpecR| is a quotient map (Proposition 1.6.2.2). It will therefore suffice to
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show that the vertical maps appearing in the diagram

| SpecR1| //

φ1

��

| SpecR|

φ

��
|X | // |Y |

are quotient maps. We will prove that φ is a quotient map; the proof for φ1 is similar. Fix
a subset U Ď Y, and suppose that φ´1U is an open subset of |SpecR|. Then the inverse
images of φ´1U under the two projection maps |SpétRˆY SpétR| Ñ | SpétR| coincide, so
that φ´1U “ φ´1V for some open set V Ď |Y |. Since φ is surjective, we obtain

U “ φpφ´1Uq “ φpφ´1V q “ V,

so that U is open.

3.6.4 Comparison of PtpXq with PtgpXq

We close this section with a discussion of the relationship between points of a spectral
algebraic space X and geometric points of X.

Notation 3.6.4.1. Let X be a quasi-separated spectral algebraic space. Recall that PtgpXq
denotes the full subcategory of SpDM{X spanned by the minimal geometric points of X (see
Definition 3.5.3.1). We let Ptg

1pXq denote the full subcategory of Funp∆1,SpDM{Xq whose
objects are equivalent to commutative diagrams

Spétκ //

η1 ""

Spétκ

η
||

X

where η is a point of X and η1 is a minimal geometric point of X.

Proposition 3.6.4.2. Let X be a quasi-separated spectral algebraic space. Then the forgetful
functor Ptg

1pXq Ñ PtgpXq is an equivalence of 8-categories.

More informally, Proposition 3.6.4.2 asserts that every geometric point of a quasi-
separated spectral algebraic space X determines a point of X.

Proof. It is clear that the forgetful functor θ : Ptg
1pXq Ñ PtgpXq is fully faithful. We must

prove that θ is essentially surjective. Fix a geometric point η : SpétκÑ X. Replacing X by
an open substack if necessary, we may suppose that X is quasi-compact. Using Theorem
3.4.2.1, we can choose a scallop decomposition

H “ U0 Ñ U1 Ñ ¨ ¨ ¨ Ñ Un » X .
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Let i be the smallest integer such that η factors through Ui. Let K be the reduced closed
substack of Ui complementary to Ui´1. Since κ is a field and η does not factor through
Ui´1, it must factor through K. Note that K » SpétR is affine. It follows that η factors as a
composition

SpétκÑ SpétκÑ SpétRÑ Ui Ñ X

where κ is the residue field of π0R at some prime ideal p Ď π0R. We now observe that the
map SpétκÑ X is a point of X.

Proposition 3.6.4.3. Let X be a quasi-separated spectral algebraic space, let η : SpétκÑ X
be a point of X, and let κ be a field extension of κ. The following conditions are equivalent:

p1q The field κ is a separable closure of κ.

p2q The composite map η1 : SpétκÑ SpétκÑ X is a minimal geometric point of X.

Proof. We may assume without loss of generality that κ is separably closed (since this
follows from both p1q and p2q). Choose an étale map u : SpétR Ñ X such that the fiber
product SpétR ˆX Spétκ is nonempty. Using Remark 3.6.2.3, we deduce that there is a
commutative diagram

Spétκ1 u1 //

��

SpétR

��
Spétκ // X

where κ1 is a finite separable extension of κ, and u1 exhibits κ1 as a residue field of the
commutative ring π0R. Since κ is separably closed, we can choose a map of κ-algebras
κ1 Ñ κ, so that η1 factors as a composition

Spétκ v
Ñ SpétR v1

Ñ X .

Then η1 is a geometric point of X if and only if v exhibits κ as a separable closure of the
residue field of π0R: that is, if and only if κ is a separable closure of κ1. Since κ1 is a
separably algebraic extension of κ, this is equivalent to the requirement that κ be a separable
closure of κ.

Combining Proposition 3.6.4.3, Proposition 3.6.4.2, and the discussion of Notation 3.6.2.5,
we deduce:

Corollary 3.6.4.4. Let X be a quasi-separated spectral algebraic space. Then the 8-
category PtgpXq is canonically equivalent to the groupoid whose objects are pairs pη, κq, where
η P π0 PtpXq is a point of X and κ is a separable closure of the residue field κpηq.

Corollary 3.6.4.5. Let f : X Ñ Y be a surjective map between quasi-separated spectral
algebraic spaces. Then the induced map |X | Ñ |Y | is surjective.
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3.7 The Nisnevich Topology of a Spectral Algebraic Space

Let X be a quasi-projective algebraic variety of dimension d over a field κ. Then, for
any (discrete) quasi-coherent sheaf F on X, the cohomology groups HnpX; F q vanish for
n ą d. This is a special case of a much more general assertion:

Theorem 3.7.0.1 (Grothendieck). Let X be a Noetherian topological space of Krull dimen-
sion ď d. Then the cohomology groups HnpX; F q vanish for every integer n ą d and every
sheaf F of abelian groups on X.

Unfortunately, Theorem 3.7.0.1 does not apply directly in the case where X is an algebraic
space, rather than a scheme. Nevertheless, we do have the following result:

Theorem 3.7.0.2. Let X be a quasi-compact locally Noetherian spectral algebraic space and
let F be a connective quasi-coherent sheaf on X. If the underlying topological space |X | has
Krull dimension ď d, then the homotopy groups π´nΓpX; F q vanish for n ą d.

Our goal in this section is to give a proof of Theorem 3.7.0.2 by deducing it from a
variant of Theorem 3.7.0.1. Write X “ pX ,OX q, so that we have a geometric morphism
of 8-topoi π˚ : X Ñ Shvp|X |q which induces a pushforward functor on spectrum-valued
sheaves π˚ : ShvSppX q Ñ ShvSpp|X |q. Note that if U Ď |X | is an open set which determines
an affine substack of X, then our assumption that F is connective and quasi-coherent
guarantees that the spectrum pπ˚F qpUq is connective. Consequently, when X is schematic,
the pushforward π˚F is connective when viewed as a sheaf of spectra on |X |, so the desired
result follows (modulo issues of convergence) from Theorem 3.7.0.1. If X is not schematic,
then the pushforward π˚F is not necessarily connective and this argument does not apply.
We will prove Theorem 3.7.0.2 in the general case by instead comparing X with the 8-topos
ShvNispXq of Nisnevich sheaves on X. This 8-topos shares the good features of the Zariski
site in the schematic case:

• Every quasi-compact, quasi-separated spectral algebraic space X admits a finite Nis-
nevich covering by affine spectral algebraic spaces (Example 3.7.1.5), so that connective
quasi-coherent sheaves on X remain quasi-coherent when viewed as a sheaves for the
Nisnevich topology (Example ??).

• If X is quasi-compact, locally Noetherian, and |X | has Krull dimension ď d, then the
8-topos ShvNispXq has homotopy dimension ď d (Theorem 3.7.7.1).

3.7.1 Nisnevich Coverings

We begin by defining the Nisnevich site of a spectral algebraic space X “ pX ,OX q. Note
that there is no loss of generality in restricting to the case of an ordinary algebraic space:
replacing X by its 0-truncation pX , π0 OX q has no effect on the theory of Nisnevich sheaves.
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Definition 3.7.1.1. Let X be a quasi-compact, quasi-separated spectral algebraic space,
and suppose that we are given a collection of étale morphisms tuα : Xα Ñ Xu. We will say
that the morphisms uα generate a Nisnevich covering of X if there exists a sequence of open
immersions

H » U0 ãÑ ¨ ¨ ¨ ãÑ Un » X

with the following property:

p˚q For 1 ď i ď n, let Ki denote the reduced closed substack of Ui complementary to Ui´1.
Then the composite map Ki Ñ Ui Ñ X factors through some uα.

Notation 3.7.1.2. Let X be a quasi-compact, quasi-separated spectral algebraic space. We
let T X denote the full subcategory of SpDM{X spanned by those maps u : U Ñ X where u is
étale and U is a quasi-compact, quasi-separated spectral algebraic space.

Remark 3.7.1.3. Let X “ pX ,OX q be a quasi-compact, quasi-separated spectral algebraic
space. Then the construction U ÞÑ pX {U ,OX |U q determines a fully faithful embedding
X Ñ SpDM{X, whose essential image is spanned by the étale maps U Ñ X. Under this
equivalence of 8-categories, T X corresponds to the full subcategory of X spanned by those
objects which are coherent and discrete. In particular, T X is essentially small.

Remark 3.7.1.4 (Functoriality). Let f : X Ñ Y be a morphism between quasi-compact,
quasi-separated spectral algebraic spaces. If tYα P T Yu is a Nisnevich covering of Y, then
the collection of fiber products tYαˆY X P T Xu is a Nisnevich covering of X.

Example 3.7.1.5. Let X be a quasi-compact, quasi-separated spectral algebraic space.
Choose a scallop decomposition H » U0 ãÑ U1 ãÑ ¨ ¨ ¨ ãÑ Un » X, so that each of the open
immersions Ui´1 ãÑ Ui fits into an excision square

Vi //

��

SpétRi

��
Ui´1 // Ui

(such a decomposition of X can always be found, by virtue of Theorem 3.4.2.1). Then the
collection of maps SpétRi Ñ X generate a Nisnevich covering of X. In particular, X admits
a Nisnevich covering by finitely many affine spectral algebraic spaces.

3.7.2 The Affine Case

Definition 3.7.1.1 is closely related to the theory of Nisnevich coverings of E8-rings which
was introduced in §B.4:
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Proposition 3.7.2.1. Suppose we are given a collection of étale morphisms tuα : Xα Ñ Xu
between quasi-compact, quasi-separated spectral algebraic spaces. The following conditions
are equivalent:

p1q The morphisms uα generate a Nisnevich covering of X, in the sense of Definition
3.7.1.1.

p2q For every map SpétAÑ X, where A is a connective E8-ring, there exists a collection
of étale maps tAÑ Aβu such that each of the composite maps SpétAβ Ñ SpétAÑ X
factors through some uα, and the underlying ring homomorphisms tπ0AÑ π0Aβu are
a Nisnevich covering in the sense of Definition B.4.1.1.

p3q For every étale map SpétA Ñ X, where A is a connective E8-ring, there exists a
collection of étale maps tAÑ Aβu such that each of the composite maps SpétAβ Ñ
SpétAÑ X factors through some uα, and the underlying ring homomorphisms tπ0AÑ

π0Aβu are a Nisnevich covering in the sense of Definition B.4.1.1.

Proof. We first prove that p1q ñ p2q. Assume that the morphisms uα generate a Nisnevich
covering of X. Then we can choose a sequence of open immersions

H » U0 ãÑ ¨ ¨ ¨ ãÑ Un » X

having the property that for 1 ď i ď n, if we let Ki denote the reduced closed substack of
Ui complementary to Ui´1, then each of the maps Ki Ñ X factors through some uαi .

Fix a map f : SpétA Ñ X, where A is connective E8-ring. For 1 ď i ď n, the fiber
product UiˆX SpétA can be identified with an open substack of SpétA, corresponding to a
quasi-compact open set Ui Ď |SpecA|. Choose a scallop decomposition

H » Vi,0 ãÑ ¨ ¨ ¨ ãÑ Vi,mi » Xαi ˆX SpétA,

so that we have excision squares

Wi,j
//

��

SpétAi,j

��
Vi,j´1 // Vi,j .

We can identify each Vi,j with an open substack of SpétA, which corresponds to a quasi-
compact open subset Vi,j Ď |SpecA|. Write each union V 1i,j “ Ui´1YVi,j as the complement
of the vanishing locus of a finitely generated ideal Ii,j Ď π0A. Without loss of generality, we
may assume that there are inclusions

p0q “ I1,0 Ď I1,1 Ď ¨ ¨ ¨ Ď I1,m1 “ I2,0 Ď ¨ ¨ ¨ Ď In,mn “ π0A.
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We may therefore choose a finite set of elements a1, . . . , a` P π0A, such that each of the
ideals Ii,j is generated by the elements taku1ďkďk0 for some integer k0 (which depends on
i and j). For 1 ď k ď `, set Bk “ pπ0Aq{pa1, . . . , ak´1qra

´1
k s. By construction, each of

the maps SpétBk Ñ SpétA f
Ñ X factors through SpétRi,j for some pair of integers i and

j. It follows that the the maps tπ0AÑ π0Ai,ju form a Nisnevich covering in the sense of
Definition B.4.1.1, so that p2q is satisfied.

The implication p2q ñ p3q is obvious. We will complete the proof by showing that
p3q ñ p1q. Using Theorem 3.4.2.1, we can choose a scallop decomposition

H » U0 ãÑ ¨ ¨ ¨ ãÑ Un » X,

so that each of the maps Ui´1 ãÑ Ui fits into an excision square

U1i´1 //

��

SpétBi

��
Ui´1 // Ui .

If condition p3q is satisfied, then for each of the E8-rings Bi we can choose a finite collection
of étale maps Bi Ñ Bi,j for which the underlying ring homomorphisms tπ0Bi Ñ π0Bi,ju are
a Nisnevich covering (in the sense of Definition B.4.1.1) and each of the composite maps

SpétBi,j Ñ SpétBi Ñ Ui Ñ X

factors through some uα. We can therefore assume that for each 1 ď i ď n, we can choose a
sequence of elements bi,1, . . . , bi,mi P π0Bi which generate the unit ideal, such that each of
the induced maps

Spétpπ0Biq{pbi,1, . . . , bi,j´1qrb
´1
i,j s Ñ SpétBi Ñ Ui Ñ X

factors through some Uα. Passing to refinement of our original scallop decomposition, we
may assume that for 1 ď i ď n, the composite map Ki Ñ Ui Ñ X factors through some uα,
where Ki denotes the reduced closed substack of Ui complementary to Ui´1. This completes
the proof of p1q.

3.7.3 The Noetherian Case

We will primarily be interested in studying Nisnevich coverings in the setting where X is
locally Noetherian. In this case, Definition 3.7.1.1 can be simplified:

Proposition 3.7.3.1. Let tuα : Xα Ñ Xu be a collection of étale morphisms between
quasi-compact, quasi-separated spectral algebraic spaces. If X is locally Noetherian, then the
following conditions are equivalent:
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p1q For each point x P |X |, there exists an index α and a point xα P |Xα | such that
uαpxαq “ x, and uα induces an isomorphism of residue fields κpxq Ñ κpxαq.

p2q The collection of morphisms uα determine a Nisnevich covering of X.

Proof. Suppose that p2q is satisfied. Then the collection of morphisms Spétκpxq ˆX Xα is a
Nisnevich covering of Spétκpxq (Remark 3.7.1.4). It follows immediately from the definitions
that one of the projection maps Spétκpxq ˆX Xα Ñ Spétκpxq admits a section, which
determines a point xα P |Xα | having the desired properties. This proves that p2q ñ p1q
(note that this argument does not require the assumption that X is locally Noetherian).

We now prove that p1q ñ p2q. Assume that p1q is satisfied. We will prove that
the collection of morphisms uα form a Nisnevich covering of X by verifying the third
condition of Proposition 3.7.2.1. Let f : SpétA Ñ X be an étale map. Since X is locally
Noetherian, the E8-ring A is Noetherian. It will therefore suffice to show that for every
point y P |SpecA|, there exists an étale A-algebra A1 and a point y1 P |SpecA1| lying over y
such that κpy1q » κpyq, and the induced map SpétA1 Ñ SpétAÑ X factors through some
Xα (Proposition B.4.3.1). Let x P |X | denote the image of y. Using assumption p1q, we can
factor the composite map Spétκpyq Ñ Spétκpxq Ñ X through uα for some α, so that we
obtain a map Spétκpyq Ñ SpétA ˆX Xα. The desired result now follows from Corollary
3.4.2.5.

3.7.4 Nisnevich Sheaves

Using Definition 3.7.1.1, we can associate a Grothendieck site to every quasi-compact,
quasi-separated spectral algebraic space.

Proposition 3.7.4.1. Let X be a quasi-compact, quasi-separated spectral algebraic space.
Then there is a Grothendieck topology on the 8-category T X which can be characterized as
follows: for each object X1 P T X, a sieve Cp0q Ď T X1 » pT Xq{X1 is covering if and only if it is
is a Nisnevich covering of X1, in the sense of Definition 3.7.1.1.

We will refer to the Grothendieck topology of Proposition 3.7.4.1 as the Nisnevich
topology on T X.

Remark 3.7.4.2. Let X be a quasi-compact, quasi-separated spectral algebraic space. Then
the Nisnevich topology on T X is finitary, in the sense of Definition A.3.1.1.

Proof of Proposition 3.7.4.1. It follows immediately from the definitions that each T X1 is a
covering sieve of itself, and Remark 3.7.1.4 implies that the collection of covering sieves is
closed under pullbacks. To verify transitivity, it will suffice to establish the following:
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p˚q Suppose we are given a Nisnevich covering tYα Ñ YuαPS and, for each index α P S,
another Nisnevich covering tYα,β Ñ Yαu. Then the collection of composite maps
Yα,β Ñ Yα Ñ Y is a Nisnevich covering of Y.

We will prove p˚q by verifying that the collection of maps tYα,β Ñ Yu satisfies condition
p3q of Proposition 3.7.2.1. Fix a map f : SpétA Ñ Y. Applying Proposition 3.7.2.1, we
conclude that A admits a Nisnevich covering tA Ñ Aiu such that each of the composite
maps SpétAi Ñ SpétAÑ Y factors through some Yαi . Applying Proposition 3.7.2.1 again,
we conclude that each Ai admits a Nisnevich covering tAi Ñ Ai,ju for which each of the
composite maps SpétAi,j Ñ SpétAi Ñ Yαi factors through some Yαi,β. We now conclude
by observing that the collection of maps tAÑ Ai,ju is a Nisnevich covering (Proposition
B.4.2.3).

Definition 3.7.4.3. Let X be a quasi-compact, quasi-separated spectral algebraic space
and let F : T op

X Ñ C be a functor from T op
X to another 8-category C. We will say that F is

a Nisnevich sheaf if it is a sheaf with respect to the Nisnevich topology of Proposition 3.7.4.1.
We let ShvNispXq denote the full subcategory of FunpT op

X ,Sq spanned by the Nisnevich
sheaves; we will refer to ShvNispXq as the Nisnevich 8-topos of X.

Example 3.7.4.4. Let X “ pX ,OX q be a quasi-compact, quasi-separated spectral algebraic
space and let us identify T X with the full subcategory of X spanned by the coherent 0-
truncated objects (Remark 3.7.1.3). Then the 8-topos X is 1-localic (Corollary 1.6.8.6) and
the underlying topos X♥ is coherent. It follows that the restricted Yoneda embedding

pX P X q ÞÑ phX P FunpT op
X ,Sqq hXpUq “ MapX pU,Xq

is fully faithful. The essential image of the construction X ÞÑ hX consists of those functors
T op

X Ñ S which are sheaves with respect to the étale topology. Since every covering for
the Nisnevich topology is also a covering for the étale topology, we obtain a fully faithful
geometric morphism ρ˚ : X Ñ ShvNispXq.

In the special case where X is affine, Definition 3.7.4.3 recovers the theory studied in
§B.4:

Proposition 3.7.4.5. Let A be a connective E8-ring, let X “ SpétA, and let F : T op
X Ñ S

be a functor. Then F is a sheaf with respect to the Nisnevich topology of Proposition 3.7.4.1
if and only if it satisfies the following conditions:

p1q Let θ : CAlgét
A Ñ T op

X denote the functor given by B ÞÑ SpétB. Then F ˝θ P

FunpCAlgét
A ,Sq is a sheaf with respect to the Nisnevich topology of Definition B.4.2.2.

p2q The functor F is a right Kan extension of its restriction to the essential image of θ.
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Corollary 3.7.4.6. Let A be a connective E8-ring and let X “ SpétA. Then we have a
canonical equivalence of 8-categories ShvNispXq » ShvNis

A .

Proof. Combine Propositions 3.7.4.5 and HTT.4.3.2.15 .

Proof of Proposition 3.7.4.5. Suppose first that F satisfies conditions p1q and p2q; we will
show that F is a sheaf with respect to the Nisnevich topology. Let Y P T X and let C Ď T Y
be a covering sieve for the Nisnevich topology; we must show that the canonical map
F pYq Ñ lim

ÐÝZPC F pZq is an equivalence. Let D be the the full subcategory of T Y spanned
by those maps Z Ñ Y where Z is affine. Using condition p2q, we deduce that F |Cop is a right
Kan extension of F |pCXDqop . It will therefore suffice to show that F pYq is a limit of the
diagram F |pCXDqop (Lemma HTT.4.3.2.7 ). Using condition p1q and Proposition 3.7.2.1, we
see that F |Dop is a right Kan extension of F |pCXDqop . Using Lemma HTT.4.3.2.7 again,
we are reduced to proving that the map F pYq Ñ lim

ÐÝ
F |Dop is an equivalence, which follows

from p2q.
Now suppose that F is a sheaf with respect to the Nisnevich topology. We first claim

that F satisfies p1q. Let B be an étale A-algebra, and let C Ď pCAlgét
Bq

op be a covering sieve
with respect to the Nisnevich topology; we wish to show that the canonical map

F pSpétBq Ñ lim
ÐÝ
CPC

F pSpétCq

is a homotopy equivalence. To this end, we let D Ď T SpétB denote the sieve generated
by the objects tSpétCuCPC. Then the construction C ÞÑ SpétC determines a left cofinal
functor Cop Ñ D, so it will suffice to show that F pSpétBq is a limit of the diagram F |Dop .
This follows from our assumption that F is a Nisnevich sheaf, since D is a covering sieve
for the Nisnevich topology (by virtue of Proposition 3.7.2.1).

We now prove that F satisfies p2q. Let F 1 : T op
X Ñ S be a right Kan extension of F ˝θ

along the functor θ, so that we have a canonical map α : F Ñ F 1 which is an equivalence
on affine objects of T X. Since F satisfies condition p1q, the functor F 1 satisfies conditions
p1q and p2q, and is therefore a Nisnevich sheaf by the first part of the proof. Invoking
Propositions 3.7.5.3 and 3.7.5.2, we conclude that α is an equivalence, so that F is a right
Kan extension of F ˝θ along θ.

3.7.5 Nisnevich Excision

We next prove a global analogue of Theorem B.5.0.3.

Theorem 3.7.5.1. [Morel-Voevodsky] Let X be a quasi-compact, quasi-separated spectral
algebraic space and let F : T op

X Ñ S be a functor. The following conditions are equivalent:

p1q The functor F is a sheaf with respect to the Nisnevich topology of Proposition 3.7.4.1.
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p2q The space F pHq is contractible and for every excision square

U1 //

��

Y1

��
U // Y

in T X, the diagram of spaces

F pU1q F pY1qoo

F pUq

OO

F pYqoo

OO

is a pullback square.

The proof of Theorem 3.7.5.1 will require some preliminaries. We first show that
p1q ñ p2q:

Proposition 3.7.5.2. Let X be a quasi-compact, quasi-separated spectral algebraic space,
and let F : T op

X Ñ S be a sheaf for the Nisnevich topology. Then for every excision square

U1 //

��

Y1

��
U // Y

in T X, the diagram of spaces
F pU1q F pY1qoo

F pUq

OO

F pYqoo

OO

is a pullback square.

Proof. For each object Y P T X, let hY : T op
X Ñ S denote the functor represented by Y.

To prove Proposition 3.7.5.2, it will suffice to show that the construction Y ÞÑ hY carries
excision square in T X to pushout diagrams in ShvpT Xq. This follows immediately from
Proposition 2.5.2.1.

Proposition 3.7.5.3. Let X be a quasi-compact, quasi-separated spectral algebraic space,
and let α : F Ñ F 1 be a natural transformation between functors F ,F 1 : T op

X Ñ S. Assume
that F and F 1 satisfy condition p2q of Theorem 3.7.5.1. If α induces a homotopy equivalence
F pYq Ñ F 1pYq whenever Y P T X is affine, then α is an equivalence.
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Proof. Let Y be an arbitrary object of T X; we wish to show that α induces a homotopy
equivalence αY : F pYq Ñ F 1pYq. We first treat the case where Y is quasi-affine. In this case,
Y admits an open covering by finitely many affine open substacks tUiu1ďiďn. We proceed
by induction on n, the case n ď 1 being trivial. To carry out the inductive step, we let Y1

denote the open substack of Y given by the union of the open substacks tUiu1ďiăn, so that
we have an excision square

UnˆY Y1 //

��

Un

��
Y1 // Y .

It follows from the inductive hypothesis that αY1 , αUn , and αUnˆY Y1 are homotopy equiva-
lences. Since F and F 1 satisfy condition p2q of Theorem 3.7.5.1, we conclude that αY is a
homotopy equivalence.

We now treat the general case. Using Theorem 3.4.2.1, we can choose a scallop decom-
position H “ V0 ãÑ ¨ ¨ ¨ ãÑ Vm » Y where each Vi fits into an excision square

Wi
//

��

SpétRi

��
Vi´1 // Vi .

The argument given above shows that the maps αWi
and αSpétRi are homotopy equivalences.

Using our assumption on F and F 1 together with induction on i, we conclude that each of
the maps αVi is a homotopy equivalence. Taking i “ m, we deduce that αY is a homotopy
equivalence, as desired.

Proof of Theorem 3.7.5.1. The implication p1q ñ p2q follows immediately from Proposition
3.7.5.2. Conversely, suppose that F satisfies p2q. We begin by treating the case where
X “ SpétA is affine. Let F 0 : CAlgét

A Ñ S be the functor given by F 0pBq “ F pSpétBq.
If F satisfies condition p2q, then F 0 satisfies Nisnevich excision (Definition B.5.0.1) and
is therefore a sheaf with respect to the Nisnevich topology on CAlgét

A (Theorem B.5.0.3).
Let F 1 : T op

X Ñ S be a right Kan extension of F 0 along the fully faithful embedding
Spét : CAlgét

A ãÑ T op
X . Then F 1 is a Nisnevich sheaf (Proposition 3.7.4.5) and the canonical

map α : F Ñ F 1 is an equivalence on all affine objects U P T X. It follows from Proposition
3.7.5.3 that α is an equivalence, so that F is also a Nisnevich sheaf.

We now treat the general case. Let α : F Ñ F 1 be a natural transformation of functors
which exhibits F 1 as a sheafification of F with respect to the Nisnevich topology. The
first part of the proof shows that for every affine object Y P T X, the restriction of F to
T op

Y is already a Nisnevich sheaf. It follows that α induces an equivalence F pYq Ñ F 1pYq.
Invoking Proposition 3.7.5.3, we conclude that α is an equivalence, so that F is a Nisnevich
sheaf.
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3.7.6 Height and Krull Dimension

We now study the dimension theory of spectral algebraic spaces.

Definition 3.7.6.1. Let X be a quasi-separated spectral algebraic space. We will say that
a point x P |X | has height ď n if the following condition is satisfied:

p˚q For every sequence of points x “ x0, x1, . . . , xm P |X | having the property that
xi P txi`1u ´ txi`1u for 0 ď i ă m, we have m ď n.

We say that x is of finite height if it has height ď n for some integer n ě 0. In this case, we
define the height of x to be the smallest nonnegative integer n ě 0 such that x has height
ď n. We let htpxq denote the height of x.

Proposition 3.7.6.2. Let X be a quasi-separated spectral algebraic space, let A be a Noethe-
rian E8-ring, and let f : SpétAÑ X be an étale map. Let p Ď π0A be a prime ideal, and let
x denote the image of p under the continuous map | SpecA| Ñ |X | determined by f . Then
the height of x is equal to the Krull dimension of the local commutative ring π0Ap.

Corollary 3.7.6.3. Let X be a locally Noetherian spectral algebraic space. Then every point
x P |X | has finite height.

Corollary 3.7.6.4. Let f : X Ñ Y be an étale morphism between locally Noetherian spectral
algebraic spaces. Then for every point x P |X |, we have htpxq “ htpfpxqq.

Proof. Combine Proposition 3.7.6.2 with Variant B.2.2.4.

Proof of Proposition 3.7.6.2. Replacing X by an open substack if necessary, we may assume
without loss of generality that X is quasi-compact. Let n denote the Krull dimension of the
local ring π0Ap. Suppose we are given a chain of distinct points x “ x0, x1, . . . , xm P |X |,
where each xi is contained in the closure of xi`1. Applying Corollary 4.3.4.4 repeatedly, we
can choose a descending chain of ideals

p “ p0 Ľ p1 Ľ ¨ ¨ ¨ Ľ pm

in π0A, so that m ď n. It follows that x has height ď n. To prove that equality holds, we
note that π0A contains a descending chain of ideals

p “ p0 Ľ p1 Ľ ¨ ¨ ¨ Ľ pn,

whose image in |X | is a chain of points x “ x0, x1, . . . , xn for which each xi is contained
in the closure of xi`1. To complete the proof, it suffices to show that the points xi are
distinct from one another. Suppose that xi “ xj . Then the pair ppi, pjq can be lifted to
a point of | SpétA ˆX SpétA| (Corollary 3.6.3.2). We can therefore choose an étale map
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u : SpétB Ñ SpétAˆX SpétA and a prime ideal q Ď π0B lying over ppi, pjq. Since the map
f : SpétA Ñ X is étale, the map u determines a pair of étale morphisms A Ñ B. Using
Variant B.2.2.4 we obtain

n´ i “ dim π0Api “ dim π0Bq “ dim π0Apj “ n´ j,

so that i “ j as desired.

Definition 3.7.6.5. Let X be a locally Noetherian spectral algebraic space. We will say
that X has Krull dimension ď n if every point x P |X | has height ď n.

Remark 3.7.6.6. Let X be a spectral algebraic space which is quasi-compact and locally
Noetherian. Then |X | is a Noetherian topological space (Remark 3.6.3.5). The spectral
algebraic space X has Krull dimension ď n if and only if every chain of irreducible closed
subsets

K0 Ĺ K1 Ĺ K2 Ĺ ¨ ¨ ¨ Ĺ Km Ď |X |

has length m ď n. In other words, the Krull dimension of X is the same as the Krull
dimension of the topological space |X |; see §HTT.7.2.4 .

Remark 3.7.6.7. Let X be a locally Noetherian spectral algebraic space. The condition
that X be of Krull dimension ď n is local with respect to the étale topology (Corollary
3.7.6.4).

3.7.7 A Vanishing Theorem for Nisnevich Sheaves

Let X be a spectral algebraic space which is quasi-compact, locally Noetherian, and of
Krull dimension ď n. Combining Remark 3.7.6.6 with Corollary HTT.7.2.4.17 , we see that
the 8-topos Shvp|X |q has homotopy dimensional ď n. At the end of this section, we will
prove the following analogue for Nisnevich sheaves:

Theorem 3.7.7.1. Let X be a spectral algebraic space which is quasi-compact, locally
Noetherian, and of Krull dimension ď n. Then the 8-topos ShvNispXq has homotopy
dimension ď n.

In the situation of Theorem 3.7.7.1, the 8-topos ShvNispXq is generated under colimits
by objects U for which ShvNispXq{U » ShvNispUq, where U is étale over X and therefore also
of Krull dimension ď n. We therefore obtain the following variant:

Corollary 3.7.7.2. Let X be a spectral algebraic space which is quasi-compact, locally
Noetherian, and of Krull dimension ď n. Then the 8-topos ShvNispXq is locally of homotopy
dimension ď n.
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Corollary 3.7.7.3. Let X be a spectral algebraic space which is quasi-compact, locally
Noetherian, and of finite Krull dimension. Then the 8-topos ShvNispXq is Postnikov
complete (Definition A.7.2.1). In particular, the 8-topos ShvNispXq is hypercomplete.

Proof. Combine Theorem 3.7.7.1, Proposition HTT.7.2.1.10 , and Proposition ??.

Proof of Theorem 3.7.0.2. Let X be a quasi-compact locally Noetherian spectral algebraic
space of Krull dimension ď d and let F P QCohpXqcn. We wish to show that the homotopy
groups π´npX; F q vanish for n ą d. The quasi-coherent sheaf F determines a Nisnevich
sheaf

G : T op
X Ñ S G pYq “ Ω8´nΓpY; F |Yq.

Since F is connective and quasi-coherent, the space G pYq is n-connective whenever Y is
affine. Since every object of T X admits a Nisnevich covering by affine objects of T X (Example
3.7.1.5), the sheaf G is n-connective when viewed as an object of the 8-topos ShvNispXq.
Theorem 3.7.7.1 asserts that ShvNispXq has homotopy dimension ď d, so that the space
G pXq is pn´ dq-connective. In particular, we have π´nΓpX; F q » π0 G pXq » 0.

3.7.8 Proof of the Vanishing Theorem

We now give the proof of Theorem 3.7.7.1. It involves some variants of the ideas used
in §B.5 which might be of independent interest (from the proof, one can extract stronger
versions of Theorem 3.7.0.2).

Definition 3.7.8.1. Let X be a spectral algebraic space which is quasi-compact and locally
Noetherian. Given a morphism α : F Ñ F 1 in ShvpT Xq and a point u P F 1pUq, we let
F u P ShvpT Uq denote the sheaf given by F upVq “ F pVq ˆF 1pVq tuu. We will say that α is
weakly n-connective if the following condition is satisfied:

p˚q For each point u P F 1pUq, each x P |U |, and each map of spaces Sk Ñ F upUq where
´1 ď k ă n´htpxq, there exists a map g : U1 Ñ U, a point x1 P |U1 | with gpx1q “ x and
κpxq » κpx1q for which the composite map Sk Ñ F upUq Ñ F upU1q is nullhomotopic
(when k “ ´1, this means that F upU1q is nonempty).

Remark 3.7.8.2. In the situation of Definition 3.7.8.1, the collection of weakly n-connective
morphisms in ShvpT Xq is closed under pullbacks.

Lemma 3.7.8.3. Let X be a spectral algebraic space which is quasi-compact and locally
Noetherian, and let n ě 0. Then a morphism θ : F Ñ F 1 in ShvpT Xq is weakly n-connective
if and only if the following conditions are satisfied:
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p1q For every point u P F 1pUq, and every point x P |U | of height ď n, there exists a map
there exists a map g : U1 Ñ U, a point x1 P |U1 | with gpx1q “ x and κpxq » κpx1q for
whcih F upU1q is nonempty.

p2q If n ą 0, then the diagonal map F Ñ F ˆF 1 F is weakly pn´ 1q-connective.

The proof is a simple matter of unravelling definitions (see the proof of Lemma B.5.2.5).

Remark 3.7.8.4. Let X be a quasi-compact, locally Noetherian spectral algebraic space.
Then every n-connective morphism in ShvpT Xq is weakly n-connective. This follows imme-
diately by induction on n, using the criteria of Lemma 3.7.8.3.

Lemma 3.7.8.5. Let X be a spectral algebraic space which is quasi-compact and locally
Noetherian. For each object U P T X, let hU P ShvpT Xq Ď FunpT op

X ,Sq denote the functor
represented by U. If θ : F Ñ hX is a weakly n-connective morphism in ShvpT Xq, then
there exists a finite collection of points tx1, . . . , xmu Ď |X | of height ą n and a commutative
diagram σ :

F
θ

  
hU

>>

// hX

where U denote the open substack of X corresponding to the open subset U “ |X | ´
Ť

1ďiďm txiu.

Proof. We proceed as in the proof of Lemma 3.7.8.5, using induction on n. When n “ ´1,
we take x1, . . . , xm to be the set of generic points of X, so that U “ H and the existence of
the diagram σ is automatic. Assume now that n ě 0 and that the result is known for the
integer n´ 1, so that we can choose a commutative diagram

F
θ

!!
hV

φ
>>

// hX.

Here V denotes the open substack of X corresponding to an open set V “ |X |´
Ť

1ďiďm txiu

where the points xi have height ě n. Reordering the points xi if necessary, we may assume
that x1, x2, . . . , xk have height n while xk`1, . . . , xm have height ą n. We assume that this
data has been chosen so that k is as small as possible. We will complete the induction by
showing that k “ 0. Otherwise, the point x1 has height n. Since θ is weakly n-connective,
there exists a map f : X1 Ñ X and a point x1 P |X1 | such that fpx1q “ x1, κpxq » κpx1q, and
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F p|X1 |q is nonempty. We may therefore choose a commutative diagram

F
θ

  
hX1

ψ
==

f // hX

Let V1 denote the open substack of X corresponding to the open set |X | ´
Ť

2ďiďm txiu.
Replacing X1 by an open substack if necessary, we may suppose that there is an excision
square

VˆX X1 //

��

X1

��
V // V1 .

It follows from Lemma 3.7.8.3 that the canonical map

hV ˆF hX1 Ñ hVˆX X1

is weakly pn´ 1q-connective. Applying the inductive hypothesis, we deduce that there is a
finite collection of points y1, . . . , ym1 P |VˆX X1 | of height ě n and a commutative diagram

hV ˆF hX1

&&
hW //

::

hVˆX X1 ,

where W is the open substack of VˆX X1 corresponding to the open subset |VˆX X1 |´
Ť

tyju.
Replacing X1 by the open substack complementary to the closures of the points yj (which
contains x1, since x1 is a point of height n and therefore cannot lie in the closure of any
other point of height n), we may assume that W “ VˆX X1, so that the maps φ and ψ are
homotopic when restricted to VˆX X1. It follows that φ and ψ can be amalgamated to a
map hV1 Ñ F , contradicting the minimality of k.

Proof of Theorem 3.7.7.1. Let F be an n-connective object of ShvpT Xq; we wish to prove
that the canonical map α : F Ñ hX admits a section. Remark 3.7.8.4 shows that α is
weakly n-connective. The desired result now follows from Lemma 3.7.8.5, combined with the
observation that |X | does not contain any points of height ą n (by virtue of our assumption
that X has Krull dimension ď n).



Part II

Proper Morphisms
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Recall that a continuous map f : X Ñ Y of Hausdorff topological spaces is said to be
proper if it is closed (that is, for every closed subset K Ď X, the image fpKq Ď Y is also
closed) and, for every point y P Y , the fiber Xy “ f´1tyu is compact. In the setting of
schemes, Grothendieck introduced the following analogous notion:

Definition 3.7.0.1. Let f : X Ñ Y be a morphism of schemes. We say that f is proper if
it satisfies the following conditions:

p1q The morphism f is quasi-compact: that is, for every quasi-compact open subset V Ď Y ,
the inverse image f´1V Ď X is also quasi-compact.

p2q The morphism f is separated: that is, the diagonal map δ : X Ñ X ˆY X is a closed
immersion.

p3q The morphism f is locally of finite type: that is, for every affine open subscheme
SpecB » U Ď X for which f |U factors through an affine open subscheme SpecA »
V Ď Y , the commutative ring B is finitely generated as an A-algebra.

p4q The morphism f is universally closed: that is, for every pullback diagram of schemes

X 1

f 1

��

// X

f

��
Y 1 // Y,

the underlying map of topological spaces X 1 Ñ Y 1 is closed.

Definition 3.7.0.1 plays a central role in the theory of schemes, thanks in part to the
following foundational results of Grothendieck:

Theorem 3.7.0.2 (Direct Image Theorem). Let f : X Ñ Y be a proper morphism between
Noetherian schemes, and let F be a coherent sheaf on X. Then, for every integer n ě 0,
the higher direct image Rnf˚F is a coherent sheaf on Y .

Theorem 3.7.0.3 (Grothendieck Existence Theorem). Let R be a Noetherian ring which is
complete with respect to an ideal I, let f : X Ñ SpecR be a proper morphism of schemes,
and for m ě 0 set Xm “ SpecpR{Imq ˆSpecR X. Let CohpXq and CohpXmq denote the
abelian categories of coherent sheaves on X and Xm, respectively. Then the canonical map
CohpXq Ñ lim

ÐÝ
tCohpXmqu is an equivalence of categories.
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Our primary goal in Part II is to adapt Definition 3.7.0.1 to the setting of spectral
algebraic geometry and to prove analogues of Theorems 3.7.0.2 and 3.7.0.3 in the spectral
setting. Some of the groundwork has already been laid in Part I, where we discussed the
notions of quasi-compact and separated morphisms of spectral algebraic spaces (see Definitions
2.3.2.2 and 3.2.0.1). The next thing we need is an analogue of condition p3q of Definition
3.7.0.1. Here, we take our cue from classical algebraic geometry: we say that a morphism of
spectral Deligne-Mumford stacks f : X Ñ Y is locally of finite type if the underlying map
of ordinary algebraic spaces locally of finite type. However, this definition comes with an
important caveat. In classical algebraic geometry, if f : X Ñ Y is locally of finite type
and Y is locally Noetherian, then X is also locally Noetherian. The analogous statement
in spectral algebraic geometry is false: if f : X Ñ Y is a morphism of spectral algebraic
spaces, then the hypothesis that f is locally of finite type imposes a finiteness condition
only on π0 OX, and not on the higher homotopy sheaves on OX. To ensure that finiteness
properties of the structure sheaf OY are inherited by OX, one needs to impose the stronger
condition that f is locally almost of finite presentation (see Definition 4.2.0.1). There is a
significant difference between demanding that f be locally of finite type and demanding that
it be locally almost of finite presentation: in fact, there is an entire hierarchy of finiteness
conditions intermediate between the two, which we will study in detail in Chapter 4.

In Chapter 5, we define the notion of proper morphism of spectral algebraic spaces by
direct analogy with Definition 3.7.0.1: a morphism f : X Ñ Y is said to be proper if it is
quasi-compact, separated, locally of finite type, and universally closed (equivalently, f is
proper if the underlying map of ordinary algebraic spaces is proper; see Definition 5.1.2.1).
To provide examples, we give a construction of projective spaces over an arbitrary connective
E8-ring R (Construction 5.4.1.3). We then prove an analogue of Chow’s lemma, which
shows that arbitrary proper morphism of spectral algebraic spaces can be approximated by
projective morphisms (Theorem 5.5.0.1). Using this result, we prove a spectral analogue of
Theorem 3.7.0.2: if f : X Ñ Y is proper and locally almost of finite presentation, then the
direct image functor f˚ : QCohpXq Ñ QCohpYq carries almost perfect objects of QCohpXq
to almost perfect objects of QCohpYq (Theorem 5.6.0.2).

In practice, the assertion that the direct image functor f˚ : QCohpXq Ñ QCohpYq
preserves almost perfect objects is often not good enough: for many applications, one wants
to know that f˚ carries perfect objects of QCohpXq to perfect objects of QCohpYq. This is
generally not true if we assume only that f is proper (even if X and Y are Noetherian). In
Chapter 6, we introduce the notion of a morphism of finite Tor-amplitude (Definition 6.1.1.1)
and show that the direct image functor f˚ preserves perfect objects whenever f is proper,
locally almost of finite presentation, and of finite Tor-amplitude (Theorem 6.1.3.2; see also
Theorem 11.1.4.1 for a converse). Under the same assumptions, we develop a version of
Grothendieck duality: there is a quasi-coherent sheaf ωX {Y P QCohpXq, which we call the
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dualizing sheaf of f , which satisfies pf˚F q_ » f˚pF
_bωX {Yq for each F P QCohpXqperf .

The remainder Part ?? is devoted to establishing a spectral analogue of Theorem
3.7.0.3. Let X be a spectral algebraic space (or, more generally, a spectral Deligne-Mumford
stack). In Chapter 8, we will associate to each (cocompact) closed subset K Ď |X |
another algebro-geometric object X^K , which we call the formal completion of X along K
(Definition ??). To this object, we can associate an 8-category of quasi-coherent sheaves
QCohpX^Kq and a restriction functor ρ : QCohpXq Ñ QCohpX^Kq. Our main result asserts
that if f : X Ñ SpétR is proper and locally almost of finite presentation, the closed set
K Ď |X | is defined by the vanishing locus of a finitely generated ideal I Ď π0R, and the
E8-ring R is I-complete (see Definition 7.3.0.5), then ρ restricts to an equivalence of 8-
categories QCohpXqaperf Ñ QCohpX^Kqaperf , where QCohpXqaperf denote the full subcategory
of QCohpXq spanned by the almost perfect objects and QCohpX^Kqaperf is defined similarly
(Theorem 8.5.0.3). The proof will require a detailed study of completions in the setting
of E8-rings and their modules, which we carry out in Chapter 7 (in somewhat greater
generality).

Remark 3.7.0.4. If f : X Ñ SpétR is a proper morphism between locally Noetherian
spectral algebraic spaces, then f is automatically locally almost of finite presentation (Remark
4.2.0.4). In this case, it is not difficult to deduce Theorems 5.6.0.2 and 8.5.0.3 from Theorems
3.7.0.2 and 3.7.0.3 (or, more precisely, from the analogous statements for algebraic spaces),
applied to the underlying map of ordinary algebraic spaces τď0 X Ñ Specpπ0Rq. However,
one pleasant feature of the spectral setting is that Theorems 5.6.0.2 and 8.5.0.3 do not
require any Noetherian hypotheses, provided that F is locally almost of finite presentation.
In the setting of classical algebraic geometry, the resulting generalization of Theorem 3.7.0.2
is due to Illusie (in the projective case) and Kiehl (in general); see [101] and [116].



Chapter 4

Morphisms of Finite Presentation

Let A be a commutative ring and let X be an A-scheme. Recall that X is said to be
locally of finite type over A if, for every affine open subscheme SpecB Ď X, the commutative
ring B is finitely generated as an A-algebra. The scheme X is said to be locally of finite
presentation over A if, for every open affine subscheme SpecB Ď X, the commutative ring
B is finitely presented as an A-algebra. Our goal in this section is to study some analogous
finiteness conditions in the setting of spectral algebraic geometry.

We begin by considering finiteness conditions which can be imposed on a morphism
φ : A Ñ B of connective E8-rings. Here the situation is more subtle than in classical
commutative algebra. If A is a commutative ring, then one can specify a commutative
A-algebra B by writing down generators and relations: that is, by writing B as the cofiber
of a map of polynomial algebras Ar~ys Ñ Ar~xs. In the setting of E8-rings, the naive analogue
of this statement is false: not every E8-algebra B over A can be obtained as the cofiber of a
map of free A-algebras At~yu Ñ At~xu. In general, one needs to specify not only generators
and relations, but relations among the relations, relations among those, and so forth. As
a consequence, there is an entire hierarchy of natural finiteness conditions which can be
thought of as intermediate between “finite type” and “finite presentation.” We will study
these conditions (and their interrelatinoships) in §4.2.

In §4.2, we apply the ideas of §4.1 to introduce several conditions on a morphism
f : X Ñ Y of spectral Deligne-Mumford stacks (see Definition 4.2.0.1):

paq The condition that f is locally of finite presentation.

pbq The condition that f is locally almost of finite presentation.

pcq The condition that f is locally of finite generation to order n, for some integer n ě 0.

Condition pbq will be the most useful to us in this book: the role of “almost finite presentation”
in spectral algebraic geometry can be regarded as analogous to the role of “finite presentation”
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in classical scheme theory (condition paq is a bit too strong to play this role: for example,
if f : X Ñ Y is a morphism of finite presentation of Noetherian schemes, then f need not
satisfy condition paq when regarded as a morphism of spectral Deligne-Mumford stacks,
but will always satisfy condition pbq). The role of condition pcq is more technical: it is
equivalent to pbq if both X and Y are locally Noetherian, but otherwise provides a sequence
of weaker finiteness conditions which “converge” to pbq (a morphism f is locally almost of
finite presentation if and only if it is locally of finite generation to order n for every n ě 0).

One of the useful features of finite presentation in classical algebraic geometry is that it
enables arguments by Noetherian approximation. If A is a commutative ring and X is an
A-scheme of finite presentation, then one can always find a finitely generated subring A0 Ď A

and an isomorphism X » SpecAˆSpecA0X0, where X0 is an A0-scheme of finite presentation.
This observation can be used to reduce many questions about arbitrary schemes to questions
about Noetherian schemes, where they can be addressed using tools that are specific to
the Noetherian case (such as dimension theory). In §4.4, we will adapt the technique of
Noetherian approximation to the setting of spectral algebraic geometry. Here we encounter
a new complication: the structure sheaf of a spectral Deligne-Mumford stack pX ,OX q has
infinitely many homotopy sheaves tπm OX umě0, and it is hard to approximate all of them
simultaneously. We will therefore restrict our attention to Noetherian approximation in the
setting of n-truncated spectral Deligne-Mumford stacks, where n ě 0 is a fixed integer. For
this purpose, the refined finiteness conditions studied in §4.2 will play an essential role.

Let A0 Ď A and X » SpecAˆSpecA0 X0 be as above. To employ Noetherian approxima-
tion effectively, we often want to arrange that X0 reflects whatever features of X we are
interested in. This leads to questions of the following sort:

Question 4.0.0.1. Let F be a quasi-coherent sheaf on X. Under what conditions can we
arrange that F is the pullback of a quasi-coherent sheaf F 0 on X0?

Question 4.0.0.2. Suppose that the scheme X has some property P . Under what conditions
can we arrange that the scheme X0 also has the property P?

We will discuss the analogues of Questions 4.0.0.1 and 4.0.0.2 in spectral algebraic
geometry in §4.5 and §4.6, respectively. In the latter case, we will need some elementary
facts about constructible subsets of (spectral) algebraic spaces, which we review in §4.3.
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4.1 Finiteness Conditions on E8-Algebras

In the setting of classical commutative algebra, there are two natural finiteness conditions
one can impose on a ring homomorphism φ : AÑ B:

piq One can demand that φ is of finite type: that is, that it exhibits B as a finitely generated
A-algebra (so that B is isomorphic, as an A-algebra, to a quotient Arx1, . . . , xns{I for
some n " 0 and some ideal I Ď Arx1, . . . , xns).

piiq One can demand that φ is of finite presentation: that is, it exhibits B as a finitely pre-
sentedA-algebra (so thatB is isomorphic, as anA-algebra, to a quotientArx1, . . . , xns{I

for some n " 0 and some finitely generated ideal I Ď Arx1, . . . , xns).
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There are analogous demands that one can make on a morphism φ : AÑ B of connective
E8-rings:

pi1q We will say that φ is of finite type if the underlying ring homomorphism π0AÑ π0B

is of finite type. Equivalently, φ is of finite type if there exists a morphism of
Atx1, . . . , xnu Ñ B of E8-algebras over A which is surjective on π0.

pii1q We say that φ is of finite presentation if B can be built (as an object of the 8-category
CAlgA) from the free algebra Atxu using finite colimits (see Definition HA.7.2.4.26 ).

However, the passage from ordinary commutative algebra to the theory of (connective)
E8-rings introduces a number of subtleties which will require us to study finiteness conditions
that are intermediate between conditions pi1q and pii1q:

• Let φ : AÑ B be a morphism of connective E8-rings. The condition that φ is of finite
presentation is not local (either on A or on B) with respect to the Zariski topology. It
is often more convenient to require that φ : AÑ B is locally of finite presentation: that
is, that the functor C ÞÑ MapCAlgApB,Cq commutes with filtered colimits (Definition
HA.7.2.4.26 ). This condition is local with respect to the étale topology on A and
B (see Remark 4.1.4.2), and is closely related to the condition that φ is of finite
presentation (the morphism φ is locally of finite presentation if and only if it becomes
of finite presentation after passing to some Zariski covering of B).

• If φ : AÑ B is a homomorphism of commutative Noetherian rings, then conditions
piq and piiq are equivalent (the Hilbert basis theorem guarantees that every ideal
I Ď Arx1, . . . , xns). However, these conditions do not guarantee that φ is of finite
presentation (or even locally of finite presentation) when regarded as a morphism of
E8-rings. Nevertheless, they do guarantee that φ is almost of finite presentation (see
Definition HA.7.2.4.26 ): that is, that the construction C ÞÑ MapCAlgApB,Cq preserves
filtered colimits when restricted to n-truncated connective A-algebras, for each n " 0.

• If φ : AÑ B is a homomorphism of commutative rings, then we can think of B as built
from A by generators and relations: condition piq asserts that we need only finitely
many generators, and condition piiq asserts that we need finitely many generators
and finitely many relations. In the setting of connective E8-rings, one should instead
imagine that B is built from A by successively attaching n-cells for different values
of n ě 0: these can be thought as generators in the case n “ 0 and relations in the
case n “ 1, but we generally need higher-dimensional cells as well. We can use the
language of cell attachments to give informal descriptions of the finiteness conditions
introduced above:
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– The morphism φ is of finite type if B can be built using only finitely many 0-cells
(but possibly infinitely many cells of each positive dimension).

– The morphism φ is almost of finite presentation if B can be built using only
finitely many cells of each dimension.

– The morphism φ is of finite presentation if B can be built using only finitely
many cells in total.

For many applications (for example, in our study of Noetherian approximation in §4.4) it
will be useful to consider a hierarchy of finiteness conditions which interpolate between pi1q
and pii1q. For each n ě 0, we will define a class of morphisms which we call morphisms of
finite generation to order n (Definition 4.1.1.1). Roughly speaking, a morphism φ : AÑ B is
of finite generation to order n if the E8-ring B can be built from A using only finitely many
cells of dimension ď n (but possibly infinitely many cells of higher dimension). When n “ 0,
this reduces to the condition that φ is of finite type. On the other hand, the morphism φ is
almost of finite presentation if and only if it is of finite generation to order n for all n ě 0
(Remark 4.1.1.5).

The relationship between the various finiteness conditions on a morphism φ : AÑ B are
summarized in the following diagram:

φ of finite generation to order 0 ks +3 π0φ of finite type

φ of finite generation to order 1 +3

KS

π0φ of finite presentation

KS

p˚q
ow

¨ ¨ ¨

KS

φ almost of finite presentation

KS

φ locally of finite presentation

KS

φ of finite presentation

KS

where the conditions on the right hand side are formulated in classical commutative algebra,
and the implication p˚q holds under the assumption that both A and B are Noetherian.

4.1.1 Morphisms of Finite Generation

We now give a precise formulation of the finiteness conditions to be studied in this
section.

Definition 4.1.1.1. Let φ : AÑ B be a morphism of connective E8-rings and let n ě 0.
We will say that φ is of finite generation to order n if the following condition is satisfied:
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p˚q Let tCαu be a filtered diagram of connective E8-rings over A having colimit C. Assume
that each Cα is n-truncated and that each of the transition maps πnCα Ñ πnCβ is a
monomorphism. Then the canonical map

lim
ÝÑ
α

MapCAlgApB,Cαq Ñ MapCAlgApB,Cq

is a homotopy equivalence.

In this case, we will also say that B is of finite generation to order n over A.
We will say that φ is of finite type if it is of finite generation to order 0. In this case, we

will also say that B is of finite type over A.

Remark 4.1.1.2. Let φ : A Ñ B be a morphism of connective E8-rings. It is possible
formulate the condition that φ is of finite generation to order n using the language of cell
attachments. However, it will be more convenient to adopt Definition 4.1.1.1, which does
not require us to make auxiliary choices (such as presentation of B as an object of CAlgcn

A ).

In the case n “ 0, Definition 4.1.1.1 can be made very concrete:

Proposition 4.1.1.3. Let φ : AÑ B be a morphism of connective E8-rings. The following
conditions are equivalent:

paq The morphism φ is of finite type (in the sense of Definition ??).

pbq The commutative ring π0B is finitely generated as an algebra over π0A.

Proof. Write π0B as a (filtered) direct limit of subalgebras tCαu which are finitely generated
as algebras over π0A. If condition paq is satisfied, then the canonical map lim

ÝÑα
MapCAlgApB,Cαq Ñ

MapCAlgApB, π0Bq is a homotopy equivalence. In particular, the canonical map B Ñ π0B

factors through some Cα. It follows that Cα “ π0B, so that π0B is finitely generated as an
algebra over π0A.

Conversely, suppose that pbq is satisfied. Let tCαu be any filtered diagram in CAlgA,
where each Cα is discrete and each of the transition maps Cα Ñ Cβ is a monomorphism.
Set C “ lim

ÝÑ
Cα. By abuse of notation, we can identify each Cα with its image in C. Since

C is discrete, we have a commutative diagram

lim
ÝÑ

HomCAlg♥
π0A
pπ0B,Cαq

ρ //

��

HomCAlg♥
π0A
pπ0B,Cq

��
lim
ÝÑ

MapCAlgApB,Cαq
ρ //MapCAlgApB,Cq

where the vertical maps are homotopy equivalences. Consequently, to show that ρ is a
homotopy equivalence, it will suffice to show that ρ is bijective. In other words, we must
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show that every morphism φ : π0B Ñ C of pπ0Aq-algebras factors through some Cα. This is
clear: condition pbq implies that there exists a finite collection of elements b1, . . . , bk P π0B

which generate π0B as an algebra over π0A, so it suffices to consider any Cα which contains
the elements tφpbiqu1ďiďk.

Remark 4.1.1.4. Let φ : A Ñ B be a morphism of connective E8-rings and let n ě 0.
Then:

p1q If τďnB is a compact object of τďn CAlgA, then φ is of finite generation to order n.

p2q If φ is of finite generation to order pn`1q, then τďnB is a compact object of τďn CAlgA.

In particular, if φ is of finite generation to order n for any n ą 0, then π0B is finitely
presented as a commutative algebra over π0A in the sense of classical commutative algebra.

Remark 4.1.1.5. Using Remark 4.1.1.4, we see that a morphism φ : AÑ B of connective
E8-rings is almost of finite presentation (see Definition HA.7.2.4.26 ) if and only if it is of
finite generation to order n, for each n ě 0.

Remark 4.1.1.6. Suppose we are given a finite collection tfα : Aα Ñ Bαu of morphisms
between connective E8-rings. Let f :

ś

αAα Ñ
ś

αBα be the induced map. Then f is
of finite generation to order n (almost of finite presentation, locally of finite presentation)
if and only if each of the morphisms fα is of finite generation to order n (almost of finite
presentation, locally of finite presentation).

Remark 4.1.1.7. Suppose we are given a commutative diagram of connective E8-rings

B
ψ

  
A

φ
??

φ1 // B1.

Let n ě 0, and assume that the map ψ induces a surjection πnB Ñ πnB
1 and a bijection

πiB Ñ πiB
1 for i ă n. If φ is of finite generation to order n, then so is φ1. To prove this,

consider any filtered diagram tCαu of n-truncated objects of CAlgA having colimit C, and
suppose that each of the transition maps πnCα Ñ πnCβ is a monomorphism. Then each of
the maps πnCα Ñ πnC is a monomorphism. It follows from our assumption on ψ that the
diagram

lim
ÝÑ

MapCAlgApB
1, Cαq //

��

MapCAlgApB
1, Cq

��
lim
ÝÑ

MapCAlgApB,Cαq
//MapCAlgApB,Cq

is a pullback square. If φ is of finite generation to order n, then the bottom horizontal map
is a homotopy equivalence, so the upper horizontal map is a homotopy equivalence as well.
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Remark 4.1.1.8. Let f : A Ñ B be a map of connective E8-rings which is of finite
generation to order n ą 0. Then the induced map AÑ τďn´1B is also of finite generation
to order n (this is a special case of Remark 4.1.1.7).

Remark 4.1.1.9. Let f : AÑ B be a map of connective E8-rings which exhibits B as a
compact object of τďn´1 CAlgcn

A (for some n ą 0). Then B is a retract of τďn´1B
1 for some

compact object B1 P CAlgcn
A . Since the map AÑ B1 is of finite generation to order n, so is

the map AÑ B (by Remark 4.1.1.8). It follows that an object B P τďn´1 CAlgcn
A is compact

if and only if the map AÑ B is of finite generation to order n.

4.1.2 Differential Characterization

Let φ : AÑ B be a morphism of connective E8-rings. According to Theorem HA.7.4.3.18 ,
the morphism φ is almost of finite presentation if and only if it exhibits π0B as a finitely
presented algebra over π0A and the relative cotangent complex LB{A is almost perfect. We
will need the following more refined statement:

Proposition 4.1.2.1. Let f : AÑ B be a map of connective E8-rings and let n ą 0. Then
f is of finite generation to order n if and only if the following conditions are satisfied:

p1q The commutative ring π0B is finitely presented over π0A.

p2q The relative cotangent complex LB{A is perfect to order n as an B-module (see Defini-
tion 2.7.0.1).

Proof. First suppose that f is of finite generation to order n. Since n ą 0, condition p1q
follows from Remark 4.1.1.4. To prove p2q, we will show that the relative cotangent complex
LB{A satisfies the third criterion of Proposition 2.7.0.4. Choose a filtered diagram tNαu in
Mod♥

B, where each of the transition maps Nα Ñ Nβ is a monomorphism. We wish to show
that the canonical map

ρ : lim
ÝÑ
α

MapModB pLB{A,Σ
nNαq Ñ MapModB pLB{A,Σ

n lim
ÝÑ

Nαq

is a homotopy equivalence. This follows from the observation that ρ fits into a pullback
square

lim
ÝÑ

MapModB pLB{A,Σ
nNαq

ρ //

��

MapModB pLB{A,Σ
n lim
ÝÑ

Nαq

lim
ÝÑ

MapCAlgApB, pτďnBq ‘ ΣnNαq //MapCAlgApB, pτďnBq ‘ Σn lim
ÝÑ

Nαq,

where the lower horizontal map is a homotopy equivalence by virtue of our assumption that
f is of finite generation to order n.
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Now suppose that conditions p1q and p2q are satisfied and choose a filtered diagram tCαu

in CAlgcn
A having colimit C. Assume that each Cα is n-truncated and that the transition

maps πnCα Ñ πnCβ are monomorphisms. For 0 ď i ď n, let θi denote the canonical map

lim
ÝÑ
α

MapCAlgApB, τďiCαq Ñ MapCAlgApB, τďiCq.

We will prove that θi is a homotopy equivalence for 0 ď i ď n using induction on i. When
i “ 0, the desired result follows from p1q. Assume that 0 ă i ď n and that θi´1 is a homotopy
equivalence. Using the results of §HA.7.4.1 , we obtain a map of fiber sequences

lim
ÝÑα

MapCAlgApB, τďiCαq
θi //

��

MapCAlgApB, τďiCq

��
lim
ÝÑα

MapCAlgApB, τďi´1Cαq
θi´1 //

��

MapCAlgApB, τďi´1Cq

��
lim
ÝÑα

MapModB pLB{A,Σ
i`1πiCαqq

φ //MapModB pLB{A,Σ
i`1πiCqq.

Set Dα “ fibpΣi`1πiCα Ñ Σi`1πiCq, so that each Dα is n-truncated and lim
ÝÑ

Dα » 0.
Assumption p2q implies that the canonical map lim

ÝÑ
ExtiBpLB{A, Dαq Ñ ExtiBpLB{A lim

ÝÑ
Dαq

is bijective for i ă 0 and injective when i “ 0: that is, the groups lim
ÝÑ

ExtiBpLB{A, Dαq

vanish, so that the direct limit Z “ lim
ÝÑ

MapModB pLB{A, Dαq is contractible. Each nonempty
homotopy fiber of φ is homotopy equivalent to Z, so the morphism φ is p´1q-truncated.
Our hypothesis that θi´1 is a homotopy equivalence now implies that θi is also a homotopy
equivalence, as desired.

4.1.3 Persistence of Finite Generation

We now use Proposition 4.1.2.1 to establish some elementary formal properties of
Definition 4.1.1.1.

Proposition 4.1.3.1. Suppose we are given maps f : AÑ B and g : B Ñ C of connective
E8-rings. Assume that f is of finite generation to order n. Then g is of finite generation to
order n if and only if g ˝ f is of finite generation to order n.

Proof. If n “ 0, then the desired result follows immediately from Proposition 4.1.1.3. Let
us therefore assume that n ą 0. Then π0B is finitely presented as an algebra over π0A. It
follows that π0C is finitely presented over π0B if and only if it is finitely presented over
π0A. Using Proposition 4.1.2.1, we are reduced to proving that LC{A is perfect to order n if
and only if LC{B is perfect to order n. This follows by applying Remark 2.7.0.7 to the fiber
sequence CbB LB{A Ñ LC{A Ñ LC{B, since CbB LB{A is perfect to order n by Proposition
4.1.2.1 and Proposition 2.7.3.1.
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Proposition 4.1.3.2. Suppose we are given a pushout diagram of connective E8-rings σ :

A
f //

��

B

��
A1

f 1 // B1.

If f is of finite generation to order n, then f 1 is of finite generation to order n.

Proof. Using Proposition HA.7.2.2.13 , we obtain an isomorphism of commutative rings
π0B

1 » Torπ0A
0 pπ0B, π0A

1q. It follows that if π0B is finitely generated (finitely presented)
as a commutative ring over π0A, then π0B

1 is finitely generated (finitely presented) as a
commutative ring over π0A

1. This completes the proof when n “ 0 (Proposition 4.1.1.3). If
n ą 0, we must also show that LB1{A1 » B1 bB LB{A is perfect to order n as a B1-module
(Proposition 4.1.2.1), which follows from Proposition 2.7.3.1 (since LB{A is perfect to order
n as a B-module, by Proposition 4.1.2.1).

Corollary 4.1.3.3. Let R be a connective E8-ring, and suppose we are given a pushout
diagram of connective E8-algebras over R:

A
f //

��

B

��
A1

f 1 // B1.

If A, B, and A1 are of finite generation to order n over R, then B1 is of finite generation to
order n over R.

Proof. Since A1 is of finite generation to order n over R, it will suffice to show that f 1 is of
finite generation to order n (Proposition 4.1.3.1). Using Proposition 4.1.3.2, we are reduced
to proving that f is of finite generation to order n. This follows from Proposition 4.1.3.1,
since A and B are both of finite generation to order n over R.

Proposition 4.1.3.4. Let f : AÑ B be a map of connective E8-rings, let B0 “ π0AbAB,
and let n ě 0. Then f is of finite generation to order n if and only if the induced map
f0 : π0AÑ B0 is of finite generation to order n.

Proof. We have π0B0 “ π0pπ0A bA Bq » π0B, so that π0B0 is finitely generated (finitely
presented) over π0A if and only if π0B is finite generated (finitely presented) over π0A. This
completes the proof when n “ 0 (see Proposition 4.1.1.3). If n ą 0, then the assertion that
either f or f0 is of finite generation to order n guarantees that π0B is finitely presented over
π0A. Using Proposition 4.1.2.1, we are reduced to proving that LB{A is perfect to order
n over B if and only if LB0{π0A » B0 bB LB{A is perfect to order n is perfect to order n
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over B0. According to Proposition 2.9.4.2, both of these conditions are equivalent to the
requirement that π0B bB LB{A is perfect to order n as a module over π0B.

Corollary 4.1.3.5. Let f : AÑ B be a map of connective E8-rings, let B0 “ π0AbA B,
and let n ě 0. Then f is almost of finite presentation if and only if the induced map
f0 : π0AÑ B0 is almost of finite presentation.

4.1.4 Local Nature of Finite Generation

For applications in spectral algebraic geometry, we need to understand how the finiteness
conditions introduced in Definition 4.1.1.1 behave with respect to the étale topology. Note
that if f : A Ñ B is a morphism of connective E8-rings which exhibits B as a compact
object of CAlgA, then f is of finite generation to order n. In particular, any étale morphism
of of finite generation to order n (Corollary HA.7.5.4.4 ).

Proposition 4.1.4.1. Let f : AÑ B be a morphism of connective E8-rings. Then:

p1q For every étale morphism B Ñ B1, if f is of finite generation to order n, then so is
the composite map AÑ B Ñ B1.

p2q Suppose we are given a finite collection of étale maps B Ñ Bα such that the composition
B Ñ

ś

αBα is faithfully flat. If each of the composite maps AÑ B Ñ Bα is of finite
generation to order n, then f is of finite generation to order n.

Proof. Assertion p1q is immediate from Proposition 4.1.3.1, since étale morphisms are of
finite generation to order n. Let us prove p2q. We first treat the case n “ 0. Let B1 “

ś

αBα.
Since each π0Bα is finitely generated as an algebra over π0A, we deduce that π0B

1 is finitely
generated over π0A. The map of commutative rings π0B Ñ π0B

1 is étale. Using the structure
theory of étale morphisms (see Proposition B.1.1.3), we can choose a subalgebra R Ď π0B

which is finitely generated over π0A and a faithfully flat étale R-algebra R1 fitting into a
pushout diagram

π0B //

��

π0B
1

��
R // R1.

Since π0B
1 is finitely generated, we may assume (after enlarging R if necessary) that the

map R1 Ñ π0B
1 is surjective. Then R1 bR pπ0B{Rq » 0, so (by faithful flatness) we deduce

that π0B “ R is finitely generated as a π0A-algebra.
Assume now that n ą 0. We will show that the map AÑ B satisfies conditions p1q and

p2q of Proposition 4.1.2.1. We first show that π0B is finitely presented as a π0A-algebra.
We have already seen that π0B is finitely generated as a π0A-algebra, so we can choose an



4.1. FINITENESS CONDITIONS ON E8-ALGEBRAS 369

isomorphism π0B » R{I where R is a polynomial algebra over π0A. Write I as a filtered
colimit of finitely generated ideals Iα Ď I. Using the structure theory of étale morphisms, we
can choose a finitely generated ideal J Ď I and a faithfully flat étale map R{J Ñ S such that
π0B

1 » S bR{J R{I. Then π0B
1 is the quotient of S by the ideal IS. Since π0B

1 is finitely
presented as an π0A-algebra, we deduce that π0B

1 » S{I0S for some finitely generated ideal
I0 Ď I containing J . Since S is faithfully flat over R{J , the map I{I0 Ñ IS{I0S » 0 is
injective. Thus I “ I0 is a finitely generated ideal and π0B is finitely presented over π0A as
desired.

It remains to verify condition p2q of Proposition 4.1.2.1. We have a fiber sequence of
B1-modules B1 bB LB{A Ñ LB1{A Ñ LB1{B. Since B1 is étale over B, the relative cotangent
complex LB1{B vanishes. It follows that LB1{A » B1 bB LB{A. Proposition 4.1.2.1 implies
that LB1{A is perfect to order n as a B1-module, so that LB{A is perfect to order n as a
B-module by Proposition 2.7.3.1.

Remark 4.1.4.2. In the situation of part p2q of Proposition 4.1.4.1, suppose that each Bα
is locally of finite presentation over A (see Definition HA.7.2.4.26 ). Then B is locally of
finite presentation over A. To prove this, we note that it follows from Proposition 4.1.4.1
that B is almost of finite presentation over A. It will therefore suffice to show that LB{A
is perfect as a module over B. Using Proposition 2.8.4.2, we are reduced to proving that
each BαbB LB{A is perfect as a module over Bα. This is clear, since the vanishing of LBα{B
implies that the canonical map Bα bB LB{A Ñ LBα{A is an equivalence.

Proposition 4.1.4.3. Let f : AÑ B be a morphism of connective E8-rings. Suppose that
there exists a finite collection of flat morphisms AÑ Aα with the following properties:

p1q The map AÑ
ś

αAα is faithfully flat.

p2q Each of the maps fα : Aα Ñ Aα bA B is of finite generation to order n (almost of
finite presentation, locally of finite presentation).

Then f is of finite generation to order n (almost of finite presentation, locally of finite
presentation).

Proof. Let A1 “
ś

αAα, let B1 “ A1bA B, and let f 1 : A1 Ñ B1 be the induced map. Let us
first suppose that each fα is of finite type. Then f 1 is of finite type (Remark 4.1.1.6), so that
π0B

1 “ π0A
1 bπ0A π0B is finitely generated as a commutative algebra over π0A

1. We may
therefore choose a finite collection of elements x1, . . . , xn P π0B which generate π0B

1 as an
algebra over π0A

1. Let R denote the polynomial ring pπ0Aqrx1, . . . , xns, so we have a map of
commutative rings φ : RÑ π0B which induces a surjection π0A

1 bπ0A RÑ π0A
1 bπ0A π0B.

Since π0A
1 is faithfully flat over π0A, we deduce that φ is surjective, so that π0B is finitely

generated as a commutative ring over π0A and therefore f is of finite type.
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Now suppose that each fα is of finite generation to order 1. Using Remark 4.1.1.6 and
Proposition 4.1.2.1, we deduce that π0B

1 is finitely presented as an algebra over π0A
1. Define

φ : RÑ π0B be the surjection defined above. Let I “ kerpφq. Since A1 is flat over A, we can
identify I bπ0A π0A

1 with the kernel of the surjection π0A
1bπ0A RÑ π0B

1. The assumption
that π0B

1 is of finite presentation over π0A
1 implies that this kernel is finitely generated.

We may therefore choose a finitely generated submodule J Ď I such that the induced map
J bπ0A π0A

1 Ñ I bπ0A π0A
1 is surjective. Since A1 is faithfully flat over A, we deduce that

I “ J is finitely generated, so that π0B » R{I is finitely presented as a commutative ring
over π0A. Suppose that we wish to prove that f is of finite generation to order n ě 1 (almost
of finite presentation, locally of finite presentation). Using Proposition 4.1.2.1 and Theorem
HA.7.4.3.18 , we are reduced to proving that the relative cotangent complex LB{A is perfect
to order n (almost perfect, perfect) as a module over B. Using Remark 4.1.1.6 we deduce
that B1 bB LB{A » LB1{A1 is perfect to order n (almost perfect, perfect) as a module over
B1. Since B1 is faithfully flat over B, the desired result follows from Proposition 2.8.4.2.

4.2 Finiteness Conditions on Spectral Deligne-Mumford
Stacks

Our goal in this section is to translate the ideas of §4.1 into the language of spectral
Deligne-Mumford stacks.

Definition 4.2.0.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. We
will say that f is locally of finite generation to order n (locally almost of finite presentation,
locally of finite presentation) if the following condition is satisfied: for every commutative
diagram

SpétB //

��

X

f
��

SpétA // Y

where the horizontal maps are étale, the E8-ring B is of finite generation to order n (almost
of finite presentation, locally of finite presentation) over A. We will say that f is locally of
finite type if it is locally of finite generation to order 0.

Example 4.2.0.2. A map of spectral Deligne-Mumford stacks f : X Ñ Y is locally of finite
type if and only if the underlying map of ordinary Deligne-Mumford stacks is locally of finite
type (in the sense of classical algebraic geometry).

Example 4.2.0.3. If f : X Ñ Y is a morphism of spectral Deligne-Mumford stacks which is
of finite generation to order 1, then the underlying map of ordinary Deligne-Mumford stacks
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is locally of finite presentation (in the sense of classical algebraic geometry). The converse
holds if the structure sheaf of X is 0-truncated.

Remark 4.2.0.4. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks, and
suppose that Y is locally Noetherian. Then the following conditions are equivalent:

paq The morphism f is locally of finite type and X is locally Noetherian.

pbq The morphism f is locally almost of finite presentation.

To prove this, we can reduce to the case where X and Y are affine, in which case the desired
result follows from Theorem HA.7.2.4.31 .

Warning 4.2.0.5. Let f : X Ñ Y be a morphism of Deligne-Mumford stacks which is
locally of finite presentation in the sense of classical algebraic geometry. If Y is not locally
Noetherian, then f need not be locally almost of finite presentation when regarded as a
morphism of 0-truncated spectral Deligne-Mumford stacks. The latter condition corresponds,
in the terminology of [101], to the condition that f is pseudo-coherent: see Corollary 5.2.2.3
and Remark 5.2.2.4.

4.2.1 Morphisms Locally of Finite Generation

We begin by establishing some formal properties of Definition 4.2.0.1.

Proposition 4.2.1.1. The condition that a morphism f : X Ñ Y of spectral Deligne-
Mumford stacks be locally of finite generation to order n (locally almost of finite presentation,
locally of finite presentation) is local on the source and target with respect to the étale topology
(see Definition 2.8.1.7).

Proof. It is clear that if f is locally of finite generation to order n (locally almost of finite
presentation, locally of finite presentatiion) and g : U Ñ X is étale, f ˝ g is locally of finite
generation to order n (locally almost of finite presentation, locally of finite presentation).
To complete the proof, let us suppose that g : Y Ñ Z is arbitrary and that we are given a
jointly surjective collection of étale maps tfα : Xα Ñ Yu such that each composition g ˝ fα
is locally of finite generation to order n (locally almost of finite presentation, locally of
finite presentation). We wish to show that g has the same property. Choose a commutative
diagram

SpétB //

��

Y

��
SpétA // Z

where the horizontal maps are étale. We wish to show that B is of finite generation to order
n (almost of finite presentation, locally of finite presentation) over A. Since the maps fα are
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jointly surjective, we can choose an étale covering tB Ñ Biu such that each of the composite
maps SpétBi Ñ SpétB Ñ Y factors through some Xα. Using our assumption on g ˝ fα, we
deduce that each Bi is of finite generation to order n (almost of finite presentation, locally
of finite presentation) over A. The desired result now follows from Proposition 4.1.4.1 and
Remark 4.1.4.2.

Remark 4.2.1.2. Let f : X Ñ SpétR be a map of spectral Deligne-Mumford stacks. Then
f is locally of finite generation to order n (locally almost of finite presentation, locally of
finite presentation) if and only if the following condition is satisfied:

p˚q For every étale map SpétA Ñ X, the E8-ring A is of finite generation to order n
(almost of finite presentation, locally of finite presentation) over R.

The “only if” direction is obvious. Conversely, suppose that p˚q is satisfied and we are given
a commutative diagram

SpétA //

��

X

��
SpétR1 // SpétR

where the horizontal maps are étale. Using condition p˚q, we deduce that A is of finite
generation to order n (almost of finite presentation, locally of finite presentation) over R.
It follows from Theorem 1.4.10.2 that R1 is étale over R, and therefore locally of finite
presentation over R. The desired result now follows from Proposition 4.1.3.1 and Remark
HA.7.2.4.29 .

Remark 4.2.1.3. Let f : SpétA Ñ SpétR be a map of affine spectral Deligne-Mumford
stacks. Then f is locally of finite generation to order n (locally almost of finite presentation,
locally of finite presentation) if and only if A is of finite generation to order n (almost of
finite presentation, locally of finite presentation) over R. The “only if” direction follows
immediately from the definitions. To prove the converse, it suffices to observe that if A is of
finite generation to order n (almost of finite presentation, locally of finite presentation) over
R and A1 is an étale A-algebra, then A1 is of finite generation to order n (almost of finite
presentation, locally of finite presentation) over R.

Remark 4.2.1.4. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks. Then
f is locally of finite generation to order n (locally almost of finite presentation, locally
of finite presentation) if and only if, for every étale map SpétR Ñ Y, the induced map
XˆY SpétR Ñ SpétR is locally of finite generation to order n (locally almost of finite
presentation, locally of finite presentation).

Proposition 4.2.1.5. The condition that a morphism f : X Ñ Y of spectral Deligne-
Mumford stacks be locally of finite generation to order n (locally almost of finite presentation,
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locally of finite presentation) is local on the target with respect to the flat topology. That is, if
there exists a flat covering tYα Ñ Yu such that each of the induced maps fα : YαˆY X Ñ Yα
is locally of finite generation to order n (locally almost of finite presentation, locally of finite
presentation), then f has the same property.

Proof. Choose a commutative diagram

SpétB //

��

X

f

��
SpétA // Y

where the horizontal maps are étale; we wish to show that A is of finite generation to
order n (almost of finite presentation, locally of finite presentation) over A. Since the map
>Yα Ñ Y is a flat covering, there exists a faithfully flat map A Ñ

ś

1ďiďnAi such that
each of the maps SpétAi Ñ SpétAÑ Y factors through an étale map SpétAi Ñ Yα. Using
our hypothesis on Yα, we deduce that Ai bR B is of finite generation to order n (almost
of finite presentation, locally of finite presentation) over Ai. We now conclude by invoking
Proposition 4.1.4.3.

Proposition 4.2.1.6. Suppose we are given a pullback diagram

X1 //

f 1

��

X
f
��

Y1 // Y

of spectral Deligne-Mumford stacks. If f is locally of finite generation to order n (locally
almost of finite presentation, locally of finite presentation), then so is f 1.

Proof. Proposition 4.2.1.5 implies that the assertion is local on Y1; we may therefore assume
without loss of generality that Y1 “ SpétR1 is affine and that the map Y1 Ñ Y factors as
a composition SpétR1 Ñ SpétR u

Ñ Y, where u is étale. Replacing Y by SpétR, we may
assume that Y is also affine. Proposition 4.2.1.1 implies that the assertion is local on X1 and
therefore local on X; we may therefore suppose that X “ SpétA is affine. Then X1 “ SpétA1,
where A1 “ R1 bR A. Using Remark 4.2.1.3, we are reduced to proving that A1 is of finite
generation to order n (almost of finite presentation, locally of finite presentation) over R1.
This follows from Proposition 4.1.3.2, since A is of finite generation to order n (almost of
finite presentation, locally of finite presentation) over R.

Proposition 4.2.1.7. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which satisfies the following conditions:
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p1q The spectral Deligne-Mumford stack Y is locally Noetherian.

p2q The map f is quasi-compact, separated, and locally of finite type.

p3q For every field κ and every morphism SpétκÑ Y, the projection map XˆY SpétκÑ
Spétκ is an equivalence.

Then f is an equivalence.

Proof. The assertion is local on Y. We may therefore assume without loss of generality that
Y “ SpétR for some Noetherian E8-ring R. For every étale map SpétA Ñ X and every
residue field κ of π0R, condition p3q implies that AbR κ is étale over κ. Using this together
with p2q, we deduce that f is locally quasi-finite. Invoking Theorem 3.3.0.2, we deduce that X
is quasi-affine. Let R1 be the E8-ring of global sections of the structure sheaf of X. Corollary
3.4.2.3 now guarantees that R1 is almost connective. Using condition p3q and Proposition
2.5.4.5, we deduce that the canonical map θ : RÑ R1 induces an equivalence κÑ R1 bR κ

for every residue field κ of π0R. Corollary 2.6.1.4 implies that θ is an equivalence, so that f
is an equivalence by Proposition ??.

4.2.2 Digression: Bounds on the Relative Dimension

Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks and let d ě 0 be a
nonnegative integer. The condition that f has relative dimension ď d is local with respect
to the étale topology on X (see Proposition 3.3.1.4). Consequently, there exists a largest
open substack U Ď X such that f |U : U Ñ X is of relative dimension ď d. We will refer to
U as the relative dimension ď d locus of the morphism f . Note that if we are given any
pullback diagram

X1 //

f 1

��

X

f

��
Y1 // Y,

then we can identify UˆX X1 with an open substack of X1, and the restriction of f 1 to this
open substack is also of relative dimension d (Corollary 3.3.1.5). It follows that UˆX X1

is contained in the relative dimension ď d locus of f 1. Under mild hypotheses, we have
equality:

Proposition 4.2.2.1 (Universality of the Relative Dimension ď d Locus). Suppose we are
given a pullback diagram of spectral Deligne-Mumford stacks

X1 g //

f 1

��

X
f
��

Y1 // Y
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where f and f 1 are locally of finite type. If U Ď X is the relative dimension ď d locus of f ,
then UˆX X1 is the relative dimension ď d locus of f 1.

Proof. Without loss of generality, we may assume that Y » SpétA and Y1 » SpétA1 are
affine. Similarly, we may assume that X » SpétB is affine, so that X1 » SpétB1 for
B1 “ A1 bA B. Let x1 P | SpecB1| be a point which belongs to the relative dimension ď d

locus of f 1; we wish to show that x “ gpx1q P |SpecB| belongs to the relative dimension ď d

locus of f . Let κpx1q denote the residue field of B1 at x1 and let κpxq denote the residue
field of B at x. Set R “ π0pκpxq bA Bq. Our assumption that f is locally of finite type
guarantees that R is finitely generated as an algebra over κpxq. Moreover, the canonical
map B Ñ κpxq determines an augmentation ε : RÑ κpxq whose kernel is a maximal ideal
m Ď R. Set R1 “ κpx1q bκpxq R, so that ε determines an augmentation ε1 : R1 Ñ κpx1q whose
kernel is a maximal ideal m1 Ď R1. Let h and h1 denote the Krull dimensions of the local
rings Rm and R1m1 . It follows from Theorem B.2.1.2 that h “ h1 (note that Rm and R1m1

have the same Hilbert-Samuel polynomials). Our assumption that x1 belongs to the relative
dimension ď d locus of f 1 guarantees that h1 ď d. It follows that h ď d. Applying Corollary
B.2.4.8, we deduce that there exists an element b P π0B which does not vanish at x such
that Brb´1s has relative dimension ď d over A, so that x belongs to the relative dimension
ď d locus of f as desired.

4.2.3 Morphisms Locally of Finite Presentation

Roughly speaking, the condition that a morphism of spectral Deligne-Mumford stacks
pX ,OX q Ñ pY,OYq be locally of finite generation to order pn ` 1q can be viewed as a
finiteness condition on the homotopy groups πiOX for i ď n. In practice, it is often useful to
use this notion in conjunction with another hypothesis which controls the homotopy groups
πi OX for i ą n.

Definition 4.2.3.1. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks. We will
say that X “ pX ,OX q is locally finitely n-presented over Y if the following conditions are
satisfied:

piq The structure sheaf OX is n-truncated.

piiq The map f is locally of finite generation to order n` 1.

In this case, we will also say that the morphism f is locally finitely n-presented.

Example 4.2.3.2. Let f : pX ,OX q Ñ pY,OYq be a morphism of spectral Deligne-Mumford
stacks. Then f is locally finitely 0-presented if and only if the following conditions are
satisfied:

piq The structure sheaf OX is discrete.
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piiq The induced map of ordinary Deligne-Mumford stacks pX♥,OX q Ñ pY♥, π0 OYq, when
is locally of finite presentation, in the sense of classical algebraic geometry.

We now summarize some of the formal properties of Definition 4.2.3.1.

Proposition 4.2.3.3. Fix an integer n ě 0.

p1q The condition that a map f : X Ñ Y be locally finitely n-presented is local on the
source with respect to the étale topology.

p2q The condition that a map f : X Ñ Y be locally finitely n-presented is local on the target
with respect to the flat topology.

p3q Suppose given a pair of maps f : X Ñ Y and g : Y Ñ Z. Assume that g is locally
finitely n-presented. Then f is locally finitely n-presented if and only if g ˝ f is locally
finitely n-presented.

Proof. Assertion p1q follows from Proposition 4.2.1.1 and Example 2.8.3.9, assertion p2q fol-
lows from Proposition 4.2.1.5 and Example 2.8.3.9, and assertion p3q follows from Proposition
4.1.3.1.

We conclude with the following observation:

Proposition 4.2.3.4. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Then f is étale if and only if the following three conditions are satisfied:

p1q The morphism f is flat.

p2q The diagonal map δ : X Ñ XˆY X is flat.

p3q The morphism f is locally almost of finite presentation.

Proof. The necessity of conditions p1q, p2q, and p3q is clear. Conversely, suppose that p1q,
p2q and p3q are satisfied; we wish to show that f is étale. Choose étale maps SpétAÑ Y
and SpétB Ñ SpétA ˆY X; we wish to show that B is étale over A. Then the induced
map SpétB Ñ SpétpB bA Bq ˆXˆY X X is étale, so condition p2q guarantees that B is flat
over B bA B. Set R “ π0pB bA Bq and let I deote the kernel of the underlying ring
homomorphism R Ñ π0B. Condition p3q guarantees that π0B is finitely generated as an
algebra over π0A, so the ideal I is finitely generated. It follows that π0B is finitely presented
and flat as a module R. Using Lazard’s theorem, we deduce that π0B is a projective module
over R. It follows that the canonical map RÑ π0B splits, so we can write I “ peq for some
idempotent element e P R. It now follows from p1q and p3q that B is étale over A, as desired
(see Definition HA.7.5.0.4 ).
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4.2.4 The Locally Noetherian Case

In the setting of locally Noetherian spectral Deligne-Mumford stacks, Definition 4.2.3.1
can be dramatically simplified:

Proposition 4.2.4.1. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks. Assume
that Y is locally Noetherian. Then f is locally finitely n-presented if and only if the following
conditions are satisfied:

p1q The morphism f is locally of finite type.

p2q The spectral Deligne-Mumford stack X “ pX ,OX q is locally Noetherian.

p3q The structure sheaf OX is n-truncated.

Warning 4.2.4.2. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks which is
locally finitely n-presented. If Y is not locally Noetherian, then f need not be locally finitely
m-presented for m ą n.

We will deduce Proposition 4.2.4.1 from the following general categorical fact:

Lemma 4.2.4.3. Let C be a projectively generated 8-category containing an object X and
let n ě 0 be an integer. The following conditions are equivalent:

piq The truncation τďnX is compact when viewed as an object of τďn C.

piiq There exists a compact object Y P C and a morphism Y Ñ X which induces an
equivalence τďnY Ñ τďnX.

In particular, every compact object of τďn C has the form τďnY for some compact object
Y P C.

Proof of Proposition 4.2.4.1. We may assume without loss of generality that Y » SpétA
and X » SpétB are affine. Assume first that f is locally finitely n-presented. Conditions
p1q and p3q are obvious. To prove p2q, we note that B is a compact object of τďn CAlgA
(Remark 4.1.1.9), so that B » τďnB

1 for some A-algebra B1 which is of finite presentation
over A (Lemma 4.2.4.3). It follows from Proposition HA.7.2.4.31 that B1 is Noetherian, so
that B is also Noetherian.

Now suppose that p1q, p2q, and p3q are satisfied. Using p1q, p2q, and Proposition
HA.7.2.4.31 , we deduce that the map AÑ B is locally almost of finite presentation, and in
particular of finite generation to order pn` 1q over A. Combining this with p3q, we deduce
that f is finitely n-presented as desired.
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Remark 4.2.4.4. Let C be a projectively generated 8-category. Recall that a morphism
X Ñ Y in C exhibits Y as an n-truncation of X if and only if, for every compact projective
object P P C, the induced map MapCpP,Xq Ñ MapCpP, Y q exhibits the space MapCpP, Y q

as an n-truncation of MapCpP,Xq. Consequently, if we are given a pullback diagram

X0

α

��

// X1

β
��

Y0 // Y1

in C where Y0 is n-truncated and β exhibits Y1 as an n-truncation of X1, then α exhibits Y0
as an n-truncation of X0 (to prove this, it suffices to verify the analogous assertion in the
8-category of spaces, which follows from the observation that the homotopy fibers of α are
pn` 1q-connective provided that the homotopy fibers of β are pn` 1q-connective).

Proof of Lemma 4.2.4.3. The implication piiq ñ piq is clear. To prove the converse, let
E Ď τďn C denote the full subcategory spanned by those objects X with the following
property:

p˚q For every object X P C equipped with an equivalence τďnX » X, there exists
a compact object Y P C and a morphism Y Ñ X which induces an equivalence
τďnY Ñ τďnX » X.

It is clear that every object of E is compact in τďn C. To complete the proof, it will suffice
to show that every compact object of τďn C belongs to E . The main step will be to show
that E is closed under finite colimits in τďn C. Assuming this for the moment, let E denote
the full subcategory of C spanned by those compact objects X for which τď nX belongs
to E . Note that E contains the truncation τďnP for every compact projective object P P C
(for any object X equipped with an equivalence α : τďnX » τďnP , the projectivity of P
guarantees that the map P Ñ τďnP

α´1
Ñ τďnX can be lifted to a map P Ñ X). Since C is

generated under small colimits by its compact projective objects, the 8-category τďn C is
generated by E under filtered colimits so that every compact object of τďn C is a retract of
an object of E . But E is equivalent to an pn` 1q-category, so the existence of finite limits in
E guarantees that it is idempotent complete.

It remains to prove that E is closed under finite colimits. We have already observed
that it contains the initial object of τďn C (since the initial object can be computed as the
n-truncation of the initial object of C, which is compact and projective). It will therefore
suffice to show that E is closed under pushouts. Suppose we are given a pushout diagram

X01 //

��

X0

��
X1 // X
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where X01, X0, and X1 belong to E . We wish to show that X belongs to E . Choose
an object X equipped with a map X Ñ X which exhibits X as an n-truncation of X.
Set X0 “ X ˆX X0 and X1 “ X ˆX X1. It follows from Remark 4.2.4.4 that the maps
X0 Ñ X0 and X1 Ñ X1 exhibit X0 and X1 as n-truncations of X0 and X1, respectively.
Our assumption that X0 and X1 satisfy condition p˚q guarantees that we can choose compact
objects Y0, Y1 P C equipped with maps Y0 Ñ X0 and Y1 Ñ X1 which induce equivalences
τďnY0 Ñ τďnX0 and τďnY1 Ñ τďnX1. Set

X01 “ Y0 ˆX0
X01 ˆX1

Y1.

It follows from two applications of Remark 4.2.4.4 that the projection map X01 Ñ X01
exhibits X01 as an n-truncation of X01. Because X01 satisfies condition p˚q, we can choose a
compact object Y01 P C and a map Y01 Ñ X01 which induces an equivalence τďnY01 » τďnX01.
Let Y denote the pushout Y0 >Y01 Y1. Then Y is a compact object of C equipped with a map
Y Ñ X which induces an equivalence τďnY » τďnX.

4.2.5 Morphisms of Finite Presentation

We now combine the local finiteness condition of Definition 4.2.3.1 with some global
considerations.

Definition 4.2.5.1. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks and let
n ě 0 be an integer. We will say that f is finitely n-presented if the following conditions are
satisfied:

p1q The map f is locally finitely n-presented (see Definition 4.2.3.1).

p2q For every map SpétAÑ Y, the fiber product SpétAˆYX is a spectral Deligne-Mumford
m-stack for some integer m ě 0.

p3q The morphism f is 8-quasi-compact (see Definition 2.3.2.2).

Remark 4.2.5.2. In the situation of Definition 4.2.5.1, assume that Y is quasi-compact.
Then condition p2q is equivalent to the following:

p21q The map f : X Ñ Y is a relative spectral Deligne-Mumford m-stack for some m ě 0.

In this case, Proposition 2.3.2.7 implies that condition p3q is equivalent to the following a
priori weaker condition:

p31q The morphism f is pm` 1q-quasi-compact.

If m “ 0 (in other words, if f : X Ñ Y is a relative spectral algebraic space), then p31q is
equivalent to the following:
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p32q The morphism f is quasi-compact and quasi-separated.

Remark 4.2.5.3. Suppose we are given maps of spectral Deligne-Mumford stacks

X f
Ñ Y g

Ñ Z .

Assume that g is finitely n-presented. Then f is finitely n-presented if and only if g is finitely
n-presented (combine Proposition 4.2.3.3 with Corollary 2.3.5.2).

The property of being finitely n-presented is not stable under arbitrary base change.
Given a pullback diagram

Y1 //

f 1

��

Y
f
��

X1 g // X
where f is finitely n-presented, the morphism f 1 need not be finitely n-presented without
some flatness assumption on the morphism g. We can correct this difficulty by truncating
the structure sheaf of the spectral Deligne-Mumford stack Y1.

Proposition 4.2.5.4. Suppose we are given a pullback diagram

X1

f 1

��

// X
f
��

Y1 // Y

of spectral Deligne-Mumford stacks. If τďn X is finitely n-presented over Y, then τďn X1 is
finitely n-presented over Y1.

Proof. We may assume without loss of generality that Y » SpétA and Y1 » SpétA1 are
affine. Then X is an 8-quasi-compact spectral Deligne-Mumford m-stack for some m ě 0. It
follows that X1 is also an 8-quasi-compact spectral Deligne-Mumford m-stack (see Remark
1.6.8.4 and Corollary 2.3.5.4). To complete the proof, it will suffice to show that f 1 is
locally finitely n-presented. Replacing X by τďn X, we may assume that X “ pX ,OX q is
locally of finite generation to order pn` 1q over A. It follows that X1 “ pX 1,OX 1q is locally
of finite generation to order pn ` 1q over SpétA1. Using Remark 4.1.1.8, we deduce that
pX 1, τďn OX 1q is also locally of finite generation to order pn` 1q over SpétA1, hence locally
finitely n-presented over SpétA1.

Corollary 4.2.5.5. Suppose we are given a commutative diagram of spectral Deligne-
Mumford stacks

X0 //

  

X

��

X1oo

~~
Y
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where X0, X1, and X are finitely n-presented over Y. Then τďnpX0ˆX X1q is finitely n-
presented over Y.

Proof. Using Remark 4.2.5.3, we see that X0 is finitely n-presented over X. It follows from
Proposition 4.2.5.4 that τďnpX0ˆX X1q is finitely n-presnented over X1, and hence also
finitely n-presented over X (Remark 4.2.5.3).

4.3 Constructible Sets

Let pX,OXq be a quasi-compact, quasi-separated scheme. A subset K Ď X is said to be
constructible if it can be written as a finite union of sets of the form U ´ V , where U and
V Ď U are quasi-compact open subsets of X. Constructible sets are ubiquitous in algebraic
geometry: for many important properties P of points of X, one can show that the locus
of points x P X satisfying P is constructible. For example, if f : Y Ñ X is a morphism of
schemes which is of finite presentation, then Chevalley’s constructibility theorem asserts that
the image of f is a constructible subset of X (see Theorem 4.3.3.1 and Corollary 4.3.4.2).

Our goal in this section is to review the theory of constructible sets. We will work in
the setting of spectral algebraic spaces, though this represents no real gain in generality
(the underlying topological space |X | of a spectral algebraic space X depends only on the
ordinary algebraic space τď0 X).

4.3.1 The Constructible Topology

We begin with some general remarks. We will assume that the reader is familiar with
the theory of distributive lattices and Boolean algebras; for a brief review, see §A.1.

Proposition 4.3.1.1. Let Lat denote the category of distributive lattices (see Definition
A.1.5.3) and let BAlg Ď Lat denote the full subcategory spanned by the Boolean algebras
(Definition A.1.6.4). Then BAlg is a localization of Lat: that is, the inclusion functor
BAlg ãÑ Lat admits a left adjoint.

Proof. Note that the categories Lat and BAlg are presentable. By virtue of the adjoint
functor theorem (Corollary HTT.5.5.2.9 ), it will suffice to show that the inclusion functor
BAlg ãÑ Lat preserves small limits and filtered colimits. The first of these assertions follows
immediately from the definitions. To prove the second, it will suffice to show that if tΛαu is
a filtered diagram of Boolean algebras having colimit Λ “ lim

ÝÑ
Λα in the category Lat, then

Λ is also a Boolean algebra. Note that every element x P Λ is the image of an element xα of
some Λα. Since xα complemented, x is complemented (Remark A.1.6.3).

Combining Theorem A.1.6.11 and Proposition A.1.5.10, we obtain the following conse-
quence of Proposition 4.3.1.1:
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Corollary 4.3.1.2. Let T opcoh denote the category whose objects are coherent topological
spaces and whose morphisms are quasi-compact continuous maps (Definition A.1.5.9) and
let T opSt Ď T opcoh denote the full subcategory spanned by the Stone spaces (Definition
A.1.6.8). Then the inclusion functor T opSt ãÑ T opcoh admits a right adjoint.

Notation 4.3.1.3. We will denote the right adjoint to the inclusion functor T opSt ãÑ T opcoh
by X ÞÑ Xc. If X is a coherent topological space, then Xc is another topological space
equipped with a continuous map φ : Xc Ñ X, which is characterized up to homeomorphism
by the following pair of conditions:

paq The topological space Xc is a Stone space and the map φ is quasi-compact.

pbq For every Stone space Y , composition with φ induces a bijection from the set
of continuous maps HomT oppY,Xcq to the set of quasi-compact continuous maps
HomT opcohpY,Xq.

Proposition 4.3.1.4. Let X be a coherent topological space. Then the canonical map
φ : Xc Ñ X is a bijection.

Proof. Let ˚ denote the topological space consisting of a single point, so that ˚ P T opSt. As
a map of sets, φ is given by the composition of bijections

Xc » HomT opStp˚, Xcq » HomT opcohp˚, Xq » X.

Remark 4.3.1.5. Let X be a coherent topological space. We will use Proposition 4.3.1.4 to
identify the underlying sets of the topological spaces X and Xc. We may therefore view Xc
as the space X endowed with a new topology, which we refer to as the constructible topology.
We say that a subset K Ď X is constructible if it is compact and open when regarded as a
subset of Xc.

4.3.2 Constructible Open Sets

Let X be a coherent topological space. Then we can describe the class of constructible
sets as the smallest Boolean algebra of subsets of X which contains every quasi-compact
open subset of X. In particular, every quasi-compact open subset of X is constructible. The
following converse is often useful:

Proposition 4.3.2.1. Let X be a coherent topological space and let U be a subset of X.
Then U is quasi-compact and open if and only if it satisfies the following conditions:

paq The set U is constructible.
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pbq The set U is stable under generalization. That is, if x P U and x belongs to the closure
of a point y P X, then y P U .

Corollary 4.3.2.2. Let X be a coherent topological space, and let U be an open subset of
X. Then U is constructible if and only if it is quasi-compact.

Proof of Proposition 4.3.2.1. It is clear that conditions paq and pbq necessary. We will show
that they are sufficient using the following:

p˚q For every constructible subset V Ď X, we have V “
Ť

xPV txu.

Assertion p˚q implies that for any constructible subset U Ď X, the interior of U is given by
X ´

Ť

xRU txu, so that U is open if U satisfies pbq.
The collection of constructible sets K satisfying condition p˚q is closed under finite unions.

Consequently, to prove p˚q in general, it will suffice to prove p˚q in the special case where
K “ V 1 X pX ´W q, where V 1 and W are quasi-compact open subsets of X. Replacing X
by X ´W , we may assume that V is a quasi-compact open subset of X.

Fix a point y P V . Let tVαu denote the collection of all open subsets of V of the form
U X V , where U is an open subset of X which contains y. Then each Vα is quasi-compact
and nonempty (by virtue of our assumption that y P V ). Moreover, the collection of open
sets tVαu is closed under finite intersections. Applying Remark A.1.5.11, we conclude that
there exists a point x P

Ş

Vα. Then x is a point of V which belongs to every quasi-compact
open subset of X which contains y, so that y P txu.

4.3.3 Chevalley’s Constructibility Theorem

We will need the following classical theorem of Chevalley:

Theorem 4.3.3.1. Let f : AÑ B be a homomorphism of commutative rings such that B
is finitely presented as an A-algebra. Then the induced map φ : | SpecB| Ñ |SpecA| carries
constructible subsets of | SpecB| to constructible subsets of | SpecA|.

Proof. Let Y be a constructible subset of | SpecB|; we wish to show that φpY q is a con-
structible subset of | SpecA|. Since B is finitely presented over A, we can choose a finitely
generated subring A0 Ď A and a pushout diagram of commutative rings

A0 //

f0
��

A

f
��

B0 // B,

where B0 is a finitely presented A0-algebra. Enlarging A0 if necessary, we may assume that
Y is the inverse image of a constructible subset Y0 Ď |SpecB0| (Corollary 4.3.5.2). Let
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φ0 : | SpecB0| Ñ |SpecA0| be the map determined by f0, so that φpY q is the inverse image
of φ0pY0q. It will then suffice to show that φ0pY0q is a constructible subset of |SpecA0|.
Replacing f by f0, we are reduced to proving Theorem 4.3.3.1 in the special case where the
ring A is finitely generated. In particular, we may assume that A is Noetherian.

Write f as a composition of maps

A “ A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ An “ B,

where each Ai is generated as an Ai´1-algebra by a single element. It will then suffice to show
that each of the maps |SpecAi| Ñ | SpecAi´1| carries constructible sets to constructible
sets. We may therefore assume without loss of generality that B “ Arxs{I for some ideal
I Ď Arxs. Since A is Noetherian, the ideal I is finitely generated. It follows that the closed
immersion |SpecB| Ñ | SpecArxs| carries constructible sets to constructible sets. We may
therefore reduce to the case where B “ Arxs.

Let Y Ď | SpecArxs| be a constructible set; we wish to show that φpY q Ď | SpecA| is
constructible. Writing Y as a finite union of locally closed subsets of |SpecArxs|, we can
reduce to the case where Y is locally closed. We now proceed by Noetherian induction
on A. Let us say that an ideal I Ď A is good if the inverse image of φpY q in |SpecA{I| is
constructible. We claim that every ideal I Ď |SpecA| is good. Assume otherwise. Since A
is Noetherian, we can choose an ideal I Ď A which is maximal among those ideals which are
not good. Replacing A by A{I, we may reduce to the case where every nonzero ideal in A is
good. It follows immediately that the ring A is reduced. If A » 0, there is nothing to prove.
Otherwise, we can choose a minimal prime ideal p Ď A, so that the localization Ap is a field
K.

Since Y is locally closed, we can write Y “ Z ´ Z 1, where Z is the vanishing locus of
a radical ideal J Ď Arxs and Z 1 is the vanishing locus of a radical ideal J 1 Ď Arxs which
contains J . Then the localizations Jp and J 1p are ideals in the polynomial ring Krxs. We
distinguish three cases:

paq The ideals Jp and J 1p are equal to one another. In this case, we can choose an element
a P A´ p such that Jra´1s “ J 1ra´1s. Let U Ď |SpecA| denote the open subset given
by | SpecAra´1s|, so that U ˆ|SpecA| Z “ U ˆ|SpecA| Z

1 and therefore φpY q X U “ H.
The inductive hypothesis implies that φpY q is a constructible when regarded as a subset
of | SpecA{paq|, and therefore constructible when regarded as a subset of |SpecA|.

pbq The ideal Jp is zero, and J 1p is not zero. Since Krxs is a principal ideal domain, the
ideal J 1p is generated by some (square-free) monic polynomial fpxq P Krxs. Let us
lift fpxq to a monic polynomial fpxq with coefficients in the ring Ara´1s, for some
a P A ´ p. Modifying the choice of a if necessary, we may assume that Jra´1s “ 0
and J 1ra´1s is the ideal generated by fpxq. In this case, φpY q contains the open
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set U “ | SpecAra´1s|. Since φpY q X | SpecA{paq| is constructible by our inductive
hypothesis, it follows that φpY q “ U Y pφpY q X | SpecA{paq|q is also constructible.

pcq The ideal J 1p is generated by some (square-free) monic polynomial fpxq, the ideal Jp
is generated by a product fpxqgpxq, where gpxq is a square-free monic polynomial
which is relatively prime to fpxq having degree ą 0. In this case, the polynomials
fpxq and gpxq generate the unit ideal in Krxs. Let us lift fpxq and gpxq to monic
polynomial fpxq and gpxq with coefficients in the ring Ara´1s, for some a P A ´ p.
Modifying a if necessary, we may assume that Jra´1s and J 1ra´1s are generated by
fpxqgpxq and fpxq, respectively, and that the polynomials fpxq and gpxq generate the
unit ideal in Ara´1srxs. Let U “ |SpecAra´1s|. Then we can identify Y ˆ|SpecA| U

with the vanishing locus of the polynomial gpxq. Since g is a monic polynomial of
positive degree, it follows that the projection map Y ˆ| SpecA| U Ñ U is surjective.
Since φpY q X | SpecA{paq| is constructible by our inductive hypothesis, it follows that
φpY q “ U Y pφpY q X | SpecA{paq|q is also constructible.

4.3.4 Constructibility in Algebraic Geometry

Let X be a quasi-compact, quasi-separated spectral algebraic space. Then the topological
space |X | is coherent (Proposition 3.6.3.3). It therefore makes sense to consider constructible
subsets of |X |. It follows from Chevalley’s constructibility theorem that this condition can
be tested locally in a very strong sense:

Proposition 4.3.4.1. Let X be a spectral algebraic space which is quasi-compact and quasi-
separated, and let K be a subset of |X |. The following conditions are equivalent:

p1q The set K is constructible.

p2q For every quasi-compact, quasi-separated spectral algebraic space Y and every map
f : Y Ñ X, the inverse image f´1K Ď |Y | is constructible.

p3q There exists an étale surjection f : SpétRÑ X for which the inverse image f´1K Ď

|SpétR| » |SpecR| is constructible.

p4q There exists a quasi-compact, quasi-separated algebraic space Y and a surjection
f : Y Ñ X such that τď0 Y is locally finitely 0-presented over X (see Definition 4.2.3.1),
and f´1K is a constructible subset of |Y |.

Proof. The implication p1q ñ p2q follows from Proposition 3.6.3.3, and the implications
p2q ñ p3q and p3q ñ p4q are obvious. We will complete the proof by showing that p4q ñ p1q.
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Suppose that f : Y Ñ X is a surjective morphism of quasi-compact, quasi-separated spectral
algebraic spaces for which τď0 Y is finitely 0-presented over X, and that K Ď |X | is a subset
for which f´1K Ď |Y | is constructible. We wish to prove that K is constructible. Applying
Theorem 3.4.2.1, we can choose a scallop decomposition

H “ U0 ãÑ U1 ãÑ ¨ ¨ ¨ ãÑ Un “ X

of the spectral algebraic space |X |. Then each |Ui | determines a quasi-compact open subset
Ui Ď |X |. We will prove that the intersection K X Ui is a constructible subset of |X |, using
induction on i. The case i “ 0 is trivial. To carry out the inductive step, assume that i ą 0
and that K X Ui´1 is a constructible subset of |X |. Choose an excision square

V j //

��

SpétA

v

��
Ui´1 // Ui

for some connective E8-ring A. Let V “ |V |, so that the open immersion j allows us to
identify V with a quasi-compact open subset of | SpecA|. Then v induces a continuous map
φ : |SpecA| Ñ Ui, which restricts to a homeomorphism from |SpecA| ´ V to Ui ´ Ui´1. It
follows that

K X Ui “ pK X Ui´1q Y φpφ
´1pK X Uiq ´ V q

is constructible if and only if φ´1pK X Uiq ´ V is a constructible subset of |SpecA|. To
prove this, it suffices to show that φ´1K Ď |SpecA| is constructible. Replacing X by SpétA,
Y by SpétAˆX Y, and K by φ´1K, we may reduce to the case where X “ SpétA is affine.

Since Y is quasi-compact, we can choose an étale surjection g : SpétB Ñ Y. Since
f´1K is a constructible subset of |Y |, Proposition 3.6.3.3 implies that L “ g´1pf´1Kq is a
constructible subset of | SpecB|. Since f and g are surjective, we can identify K with the
image of L under the continuous map | SpecB| Ñ |SpecA|. Our assumption that τď0 Y is
locally finitely 0-presented over X guarantees that π0B is finitely presented as a commutative
algebra over π0A, so that the constructibility of K follows from Theorem 4.3.3.1.

Using Proposition 4.3.4.1, we immediately deduce the following “global” version of
Theorem 4.3.3.1:

Corollary 4.3.4.2. Let f : Y Ñ X be a map of quasi-compact, quasi-separated algebraic
spaces which is locally of finite generation to order 1. Then the induced map φ : |Y | Ñ |X |
carries constructible subsets of |Y | to constructible subsets of |X |.

Proof. Let K Ď |Y | be constructible; we wish to show that φpKq is a constructible subset
of |X |. Since X is quasi-compact and quasi-separated, we can choose étale surjections

SpétAÑ X SpétB Ñ SpétAˆX Y,
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which determine a commutative diagram of topological spaces

|SpecB| φ1 //

ψ1

��

// | SpecA|

ψ

��
|Y | φ // |X |.

Our assumption on f implies that π0B is finitely presented as a commutative algebra
over π0A, so that Theorem 4.3.3.1 guarantees that ψ1pψ1´1Kq is a constructible subset of
| SpecA|. Corollary 3.6.3.2 supplies an equality ψ´1φpKq “ φ1pψ1´1Kq, so that ψ´1φpKq is
constructible. It follows from Proposition 4.3.4.1 that φpKq Ď |X | is constructible.

Corollary 4.3.4.3. Let f : Y Ñ X be a morphism of quasi-compact, quasi-separated spectral
algebraic spaces. Suppose that f is flat and exhibits τď0 Y as locally finitely 0-presented over
X. Then the induced map of topological spaces φ : |Y | Ñ |X | is open.

Proof. Let U Ď |Y | be an open subset of |Y |; we wish to prove that φpUq Ď |X | is open.
Writing U as a union of quasi-compact open subsets of |Y |, we may assume that U is
quasi-compact. Then U determines a quasi-compact open substack U ãÑ Y. Replacing Y by
U, we are reduced to proving that the map φ has open image.

Choose an étale surjection SpétAÑ X, which induces a continuous map ψ : |SpecA| Ñ
|X |. It follows from Proposition 3.6.3.6 that ψ is a quotient map. It will therefore suffice
to show that ψ´1φp|Y |q is an open subset of |SpecA|. Using Corollary 3.6.3.2, we can
replace X by SpétA and Y by SpétA ˆX Y, and thereby reduce to the case where X is
affine. Choosing an étale surjection SpétB Ñ Y, we are reduced to proving that the map
ν : | SpecB| Ñ | SpecA| has open image. Since π0B is finitely presented as an algebra over
π0A, the image of ν is a constructible subset of | SpecA| (Theorem 4.3.3.1). It will therefore
suffice to show that the image of ν is stable under generalization (Proposition 4.3.2.1). This
follows from Theorem B.2.2.1, since π0B is flat over π0A.

Corollary 4.3.4.4. Let f : Y Ñ X be an étale morphism between quasi-compact, quasi-
separated spectral algebraic spaces. Then f has the going down property: that is, if y P |Y |
is a point for which fpyq P |X | lies in the closure of of some point x P |X |, then we can
write x “ fpxq for some point x P |Y | for which x lies in the closure of txu.

Proof. Let K be the closure of txu in |X |. Then f´1K Ď |Y | is a closed set containing
f´1txu. Since f is an open map (Corollary 4.3.4.3), any open subset U Ď |Y | which
intersects f´1K has the property that K intersects fpUq, so that x P fpUq and therefore
f´1txu intersects U . It follows that f´1K is the closure of the set f´1txu. Since f is étale
and quasi-compact, the set f´1txu is finite. Consequently, y P K belongs to the closure of
some point x P f´1txu, as desired.
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4.3.5 Constructible Subsets of Inverse Limits

We conclude this section with a few observations about the behavior of the constructible
topology with respect to direct limits.

Proposition 4.3.5.1. For every commutative ring R, let UpRq denote the distributive lattice
of quasi-compact open subsets of the Zariski spectrum | SpecR|. Then the functor R ÞÑ UpRq
commutes with filtered colimits.

Proof. The partially ordered set of all open subsets of |SpecR| is isomorphic to the partially
ordered set of radical ideals I Ď R. Under this isomorphism, UpRq corresponds to the
collection of radical ideals I such that I “

?
J for some finitely generated ideal J Ď R.

Let tRαuαPA be a diagram of commutative rings indexed by a filtered partially ordered
set A, and let R be a colimit of this diagram. We wish to show that the canonical map
φ : lim
ÝÑ
UpRαq Ñ UpRq is surjective. The surjectivity of φ follows from the observation that

every finitely generated ideal J Ď R has the form JαR, where Jα is a finitely generated ideal
in Rα for some α P A. To prove the injectivity, we must show that if J, J 1 Ď Rα are two
finitely generated ideals such that JR and J 1R have the same radical, then JRβ and J 1Rβ
have the same radical for some β ě α. Choose generators x1, . . . , xn P Rα for the ideal J ,
and generators y1, . . . , ym P Rα for the ideal J 1. Let ψ : Rα Ñ R be the canonical map. The
equality

?
JR “

?
J 1R implies that there are equations of the form

ψpxiq
ci “

ÿ

j

λi,jψpyjq ψpyjq
dj “

ÿ

i

µi,jψpxiq

in the commutative ring R, where ci and dj are positive integers. Choose β ě α such that
the coefficients λi,j and µi,j can be lifted to elements λi,j , µi,j P Rβ. Let ψβ : Rα Ñ Rβ be
the canonical map. Enlarging β if necessary, we may assume that the equations

ψβpxiq
ci “

ÿ

j

λi,jψβpyjq ψβpyjq
dj “

ÿ

i

µi,jψβpxiq

hold in the commutative ring Rβ, so that
a

JRβ “
a

J 1Rβ as desired.

Corollary 4.3.5.2. For every commutative ring R, let BpRq denote the Boolean algebra
consisting of constructible subsets of |SpecR|. Then the functor R ÞÑ BpRq commutes with
filtered colimits.

Proof. Let R ÞÑ UpRq be the functor of Proposition 4.3.5.1. Using Proposition 4.3.1.4, we
see that B is given by the composition CAlg♥ U

Ñ Lat U
Ñ BAlg, where U is as in Proposition

4.3.1.1. The functor U commutes with all colimits (since it is a left adjoint), and the functor
U commutes with filtered colimits by Proposition 4.3.5.1.
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Corollary 4.3.5.3. Let tRαuαPA be a diagram of commutative rings having colimit R,
indexed by a filtered partially ordered set A Let α P A and let K Ď |SpecRα| be a constructible
subset. Suppose that the inverse image of K in |SpecR| is empty. Then there exists β ě α

in A such that the inverse image of K in |SpecRβ| is empty.

Corollary 4.3.5.4. Let A0 be a commutative ring, and let tAαu be a filtered diagram
of commutative A0-algebras having colimit A. Suppose that B0 is an A0-algebra of finite
presentation, set B “ π0pB0 bA0 Aq, and assume that the map | SpecB| Ñ |SpecA| is
surjective. Then there exists an index α such that the map |SpecBα| Ñ |SpecAα| is
surjective, where Bα “ π0pB0 bA0 Aαq.

Proof. Combine Theorem 4.3.3.1 with Corollary 4.3.5.3.

Proposition 4.3.5.5. Let R be a connective E8-ring and let X be a quasi-compact quasi-
separated spectral algebraic space over R. For every map of connective E8-rings RÑ R1, let
XR1 “ SpétR1 ˆSpétR X, and let UXpR

1q denote the distributive lattice of quasi-compact open
subsets of |XR1 |. Then:

p1q The functor R1 ÞÑ UXpR
1q commutes with filtered colimits.

p2q The functor R1 ÞÑ |XR1 | carries filtered colimits of R-algebras to filtered limits of
topological spaces.

Proof. By virtue of Remark A.1.5.12 and Corollary 3.6.3.4, assertion p2q follows from p1q.
We now prove p1q. Since X is quasi-compact, we can choose an étale surjection SpétA0 Ñ X.
Since X is quasi-separated, we can choose an étale surjection SpétA1 Ñ SpétA0 ˆX SpétA0.
For every commutative ring B, let UpBq be defined as in Proposition 4.3.5.1. Then for
R1 P CAlgcn

R , we have an equalizer diagram of sets

UXpR
1q // Upπ0pR

1 bR A
0qq //// Upπ0pR

1 bR A
1qq.

Since U commutes with filtered colimits, we conclude that UX commutes with filtered
colimits.

4.4 Noetherian Approximation

Let X be a scheme of finite presentation over a commutative ring R. Then there
exists a finitely generated subring R0 Ď R, an R0-scheme X0 of finite presentation, and an
isomorphism of schemes X » SpecRˆSpecR0 X0. This observation is the basis of a technique
called Noetherian approximation: one can often reduce questions about the scheme X to
questions about the scheme X0, which may be easier to answer because X0 is Noetherian.
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Our goal in this section is to adapt the technique of Noetherian approximation to the
setting of spectral algebraic geometry. More specifically, we would like to address questions
like the following:

Question 4.4.0.1. Let X be a spectral Deligne-Mumford stack over a connective E8-ring
R, and suppose that R is given as a filtered colimit lim

ÝÑ
Rα of connective E8-rings. Can

we find an index α, a spectral Deligne-Mumford stack Xα over Rα, and an equivalence of
spectral Deligne-Mumford stacks X » SpétRˆSpétRα Xα?

To have a chance at an affirmative answer, we need to make some finiteness assumptions
on X. However, even with finiteness assumptions in place, Question 4.4.0.1 is more subtle
than its classical analogue. The main issue is that the data of a spectral Deligne-Mumford
stack X “ pX ,OX q is infinitary in nature, because the structure sheaf OX may have an
infinite number of nonzero homotopy sheaves πm OX . When looking for “approximations”
to X, we can generally only control finitely many of these homotopy groups at one time. We
can attempt to avoid the issue by studying truncations of X. Recall that for each n ě 0,
τďn X denotes the spectral Deligne-Mumford stack pX , τďn OX q. A more reasonable version
of Question 4.4.0.1 is the following:

Question 4.4.0.2. Let X be a spectral Deligne-Mumford stack over a connective E8-ring
R. Suppose that R is given as a filtered colimit lim

ÝÑ
Rα, and let n ě 0 be an integer. Can

we find an index α, a spectral Deligne-Mumford stack Xα over Rα, and an equivalence of
spectral Deligne-Mumford stacks τďn X » τďnpSpétRˆSpétRα Xαq?

Our main result (Theorem 4.4.2.2) supplies an affirmative answer in the case where X
is finitely n-presented over R, in the sense of Definition 4.2.5.1. Moreover, in this case, we
can assume that Xα is finitely n-presented over Rα, in which case Xα is essentially unique
(more precisely, any two choices for Xα become equivalent after extending scalars along some
transition map Rα Ñ Rβ of our filtered diagram).

4.4.1 Approximation in the Affine Case

We begin by discussing the special case of Questions 4.4.0.1 and 4.4.0.2 in which X is
assumed to be affine. In this case, we can formulate the following slight variant of Question
4.4.0.1:

Question 4.4.1.1. Let φ : RÑ A be a morphism of connective E8-rings, and suppose that
R is given as the colimit of a filtered diagram of connective E8-rings tRαu. Can we find an
index α, an object Aα P CAlgcn

Rα , and an equivalence A » RbRα Aα?

We will address Question 4.4.1.1 using the following general categorical principle:

Proposition 4.4.1.2. Let C be a compactly generated 8-category. Then:
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p1q For each object C P C, the 8-category CC{ is compactly generated.

p2q Let f : C Ñ D be a morphism in C. Then f is compact when viewed as an object of
CC{ if and only if there exists a pushout diagram

C0 //

��

D0

��
C // D,

where C0 and D0 are compact objects of C.

p3q Let D denote the full subcategory of Funp∆1, Cq spanned by those morphisms f : C Ñ D

which are compact when viewed as objects of CC{. Then evaluation at t0u Ď ∆1 induces
a coCartesian fibration D Ñ C. Moreover, this coCartesian fibration is classified by a
functor χ : C Ñ Cat8 which commutes with filtered colimits.

Before giving the proof of Proposition 4.4.1.2, let us describe some consequences.

Corollary 4.4.1.3. For every connective E8-ring R, let CAlgfp
R denote the full subcategory

of CAlgcn
R spanned by those E8-algebras which are locally of finite presentation over R. Then

the construction R ÞÑ CAlgfp
R commutes with filtered colimits.

Corollary 4.4.1.4. For every connective E8-ring R, let CAlgn´fpR denote the full subcate-
gory of CAlgR spanned by those connective E8-algebras over R which are n-truncated and
of finite generation to order pn ` 1q. Then the construction R ÞÑ CAlgn´fpR determines a
functor CAlgcn Ñ Cat8 which commutes with filtered colimits.

Proof. Using Remark 4.1.1.9, we can identify CAlgn´fpR with the full subcategory of
τďn CAlgcn

R » τďn CAlgcn
τďnR spanned by the compact objects. The desired result now follows

by applying Proposition 4.4.1.2 to the 8-category τďn CAlgcn of n-truncated connective E8-
rings (together with the observation that the truncation functor τďn : CAlgcn Ñ τďn CAlgcn

commutes with filtered colimits).

We will deduce Proposition 4.4.1.2 from the following:

Proposition 4.4.1.5. Let C be a presentable 8-category, and let χ : C Ñ PrL classify the
coCartesian fibration Funp∆1, Cq Ñ Funpt0u, Cq » C (so that χpCq » CC{). Then χ preserves
K-indexed colimits, for every small weakly contractible simplicial set K.

Proof. The forgetful functor q : Funp∆1, Cq Ñ Funpt0u, Cq » C as a Cartesian fibration
which is classified by a map χ1 : Cop Ñ PrR. Let K be a small simplicial set which is
weakly contractible. To show that χ preserves K-indexed colimits, it will suffice to show
that χ1 preserves Kop-indexed limits (Corollary HTT.5.5.3.4 ). For this purpose, it does not
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matter whether we regard χ1 as a functor taking values in PrR or in the larger 8-category
yCat8 (Theorem HTT.5.5.3.18 ). Without loss of generality, we may suppose that K is an
8-category. Choose a colimit diagram p : KŹ Ñ C. We will show that the induced map

Funp∆1, Cq ˆC K
Ź Ñ KŹ

satisfies the dual version of the hypotheses of Proposition HA.5.2.2.36 :

paq Let v denote the cone point of KŹ. We must show that the collection of forgetful
functors Cqpvq{ Ñ Cqpkq{ is jointly conservative (here k varies over the collection of
all vertices of k). This is clear, since K is nonempty and each of these functors is
individually conservative.

pbq Let p0 : K Ñ Funp∆1, Cq be a functor which carries each edge of K to a q-Cartesian
morphism in Funp∆1, Cq and satisfies q ˝ p0 “ p|K . Since q is a presentable fibration,
we can extend p0 to a q-colimit diagram p with q ˝ p “ p. We claim that p carries
every morphism in KŸ to a q-Cartesian morphism in Funp∆1, Cq. To prove this, let us
identify p with a map P : KŹ ˆ∆1 Ñ C, so that p “ P |KŹˆt0u. Let L denote the full
subcategory of KŹ ˆ∆1 obtained by removing the final vertex. Since p is a colimit
diagram, P |L is a left Kan extension of P |Kˆ∆1 . Because p is a q-colimit diagram, P
is a colimit diagram. Using Lemma HTT.4.3.2.7 , we conclude that P exhibits P pv, 1q
as a colimit of P |Kˆ∆1 . Because the inclusion K ˆ t1u ãÑ K ˆ∆1 is left cofinal, this
implies that P |KŹˆt1u is a colimit diagram. Since p carries each morphism in K to
a q-Cartesian morphism in Funp∆1, Cq, P carries each morphism in K ˆ t1u to an
equivalence in C. Applying Corollary HTT.4.4.4.10 (and the weak contractibility of
K), we conclude that P carries each morphism in KŹ ˆ t1u to an equivalence in C, so
that p carries each morphism in KŸ to a q-Cartesian morphism in C.

Proof of Proposition 4.4.1.2. First note that if f0 : C0 Ñ D0 is a morphism between compact
objects of C, then f0 is compact when viewed as an object of CC0{, since the functor
corepresented by f is given by

E ÞÑ fibpMapCpD0, Eq Ñ MapCpC0, Eqq.

If g : C0 Ñ C is any map between objects of C, then composition with g determines a
functor CC{ Ñ CC0{ which preserves filtered colimits (Proposition HTT.4.4.2.9 ), so that the
construction D0 ÞÑ C >C0 D0 preserves compact objects (Proposition HTT.5.5.7.2 ). This
proves the “if” direction of p2q.

We now prove p1q. Fix an object C P C, and let E Ď CC{ denote the full subcategory
spanned by the compact objects. Then the inclusion E ãÑ CC{ extends to a fully faithful
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embedding F : IndpEq ãÑ CC{ which preserves small colimits (Proposition HTT.5.5.1.9 ).
To prove p1q, it will suffice to show that F is an equivalence of 8-categories. By virtue of
Corollary HTT.5.5.2.9 , the functor F admits a right adjoint G. We are therefore reduced to
proving that G is conservative. Let u : D Ñ E be a morphism in CC{ such that Gpuq is an
equivalence. Then u inducs a homotopy equivalence

MapCC{pX,Dq Ñ MapCC{pX,Eq

for every compact object X P CC{. In particular, if X0 is a compact object of C, then we
can take X to be the coproduct C >X0 to deduce that u induces a homotopy equivalence
MapCpX0, Dq Ñ MapCpX0, Eq. Since C is compactly generated, this proves that u is an
equivalence.

Assertion p3q follows from p1q, Proposition 4.4.1.5, and Lemma HA.7.3.5.11 . We complete
the proof by verifying the “only if” direction of p2q. Let f : C Ñ D be a morphism in C
which is compact as an object of CC{; we wish to prove the existence of a pushout diagram

C0
f0 //

��

D0

��
C

f // D

where C0 and D0 are compact. Since C is compactly generated, we can write C as the colimit
of a filtered diagram tCαu of compact objects of C. Using p3q, we see that there exists an
index α and a pushout diagram

Cα
fα //

��

Dα

��
C

f // D

where fα is compact when viewed as an object of CCα{. We will complete the proof by
showing that Dα is a compact object of C. To prove this, suppose we are given a filtered
diagram tEβu in C, having colimit E. We wish to show that the upper horizontal map in
the diagram

lim
ÝÑ

MapCpDα, Eβq //

��

MapCpDα, Eq

��
lim
ÝÑCpCα, Eβq

//MapCpCα, Eq

is a homotopy equivalence. Since Cα is a compact object of C, the lower horizontal map is
a homotopy equivalence. We are therefore reduced to proving that the upper horizontal
map induces a homotopy equivalence after passing to the homotopy fiber over any point of
the direct limit lim

ÝÑCpCα, Eβq, which follows from our assumption that fα is compact as an
object of CCα{.
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4.4.2 Approximation in the General Case

We now formulate an answer to Question 4.4.0.2 in the case where X is not assumed to
be affine.

Construction 4.4.2.1. Let R be a connective E8-ring. We let DMfp
n pRq denote the full

subcategory of SpDM{SpétR spanned by those maps X Ñ SpétR which exhibit X as finitely
n-presented over R. We will regard the construction R ÞÑ DMfp

n pRq as a functor from
CAlgcn to the 8-category yCat8. More precisely, we let DMfp

n be a functor which classifies
the Cartesian fibration p : C Ñ pCAlgcnqop, where C denotes the full subcategory of

Funp∆1, SpDMq ˆFunpt1u,SpDMq pCAlgcnqop

spanned by those morphisms X Ñ SpétR where R is a connective E8-ring and X is a
spectral Deligne-Mumford stack which is finitely n-presented over SpétR (it follows from
Proposition 4.2.5.4 that p is indeed a Cartesian fibration). To every morphism f : AÑ B of
connective E8-rings, the functor DMfp

n associates the map DMfp
n pAq Ñ DMfp

n pBq given on
objects by the formula X ÞÑ τďnpSpétB ˆSpétA Xq.

Our main result can be stated as follows:

Theorem 4.4.2.2. Let n ě 0 be an integer, and let DMfp
n : CAlgcn Ñ yCat8 be as in

Construction 4.4.2.1. Then:

p1q For every connective E8-ring R, the 8-category DMfp
n pRq is essentially small.

p2q The functor DMfp
n commutes with small filtered colimits.

Before embarking on the proof of Theorem 4.4.2.2, let us describe one of its consequences.
Fix a connective E8-ring R and finitely n-presented morphism X Ñ SpétR. For any
n-truncated R-algebra A, we have a canonical homotopy equivalence

MapDMfp
n pAq

pSpétA, τďnpSpétAˆSpétR Xqq » MapSpDM{ SpétA
pSpétA,SpétAˆSpétR Xq

» MapSpDM{ SpétR
pSpétA,Xq.

The domain and codomain of this equivalence depend functorially on A, and Theorem 4.4.2.2
implies that the domain commutes with filtered colimits (as a functor of A). We therefore
deduce the following consequence:

Proposition 4.4.2.3. Let R be a connective E8-ring, let f : X Ñ SpétR be a finitely
n-presented morphism of spectral Deligne-Mumford stacks, and let hX : τďn CAlgcn

R Ñ S
be the functor represented by X, given by the formula hXpAq “ MapSpDM{ SpétR

pSpétA,Xq.
Then the functor hX commutes with filtered colimits.
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In what follows, we will show that the converse is true: that is, Theorem 4.4.2.2 can
be deduced from Proposition 4.4.2.3. We will give an independent proof of Proposition
4.4.2.3 in §17.4. In fact, we will prove a stronger statement: the conclusion of Proposition
4.4.2.3 is valid provided that f is locally of finite generation to order pn ` 1q and X is
a Deligne-Mumford m-stack for m " 0 (in other words, we need not assume that X is
n-truncated or 8-quasi-compact); see Proposition 17.4.3.1.

Remark 4.4.2.4. In the special case where X is affine, Proposition 4.4.2.3 follows immedi-
ately from Remarks 4.1.1.9 and 4.2.1.3.

4.4.3 Deduction of Theorem 4.4.2.2 from Proposition 4.4.2.3

Let us say that a map f : X Ñ Y of spectral Deligne-Mumford is a quasi-monomorphism
if, for every commutative ring A, the induced map

MapSpDMpSpétA,Xq Ñ MapSpDMpSpétA,Yq

is p´1q-truncated. For m ě 0 and any connective E8-ring R, let DMfp
n,mpRq denote the

full subcategory of DMfp
n pRq spanned by those maps f : X Ñ SpecR which are finitely

n-presented, where X is a spectral Deligne-Mumford m-stack. Let DMfp
n,´1pRq Ď DMfp

n pRq

be the full subcategory spanned by those maps f : X Ñ SpétR which fit into a commutative
diagram of spectral Deligne-Mumford stacks

X
f

""

u // SpétA

yy
SpétR

where u is a quasi-monomorphism and A is finitely n-presented over R. Let DMfp
n,´2pRq Ď

DMfp
n pRq denote the full subcategory spanned by those maps f : X Ñ SpétR where X is affine.

Note that if RÑ R1 is a map of connective E8-rings, then the associated base-change functor
DMfp

n pRq Ñ DMfp
n pR

1q carries DMfp
n,mpRq into DMfp

n,mpR
1q, for each m ě ´2. Consequently,

we have functors DMfp
n,m : CAlgcn Ñ yCat8 for each m ě ´2, and DMfp

n » lim
ÝÑm

DMfp
n,m.

Theorem 4.4.2.2 is therefore an immediate consequence of the following:

Proposition 4.4.3.1. Let n ě 0 and m ě ´2 be integers. Then:

p1q For every connective E8-ring R, the 8-category DMfp
n,mpRq is essentially small.

p2q The functor R ÞÑ DMfp
n,mpRq commutes with filtered colimits.

Proof. We proceed by induction on m. In the case m “ ´2, the desired result follows from
Corollary 4.4.1.4. Suppose therefore that m ą ´2, and let f : X Ñ SpétR be an object of
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DMfp
n,mpRq for some connective E8-ring R. Then X is quasi-compact, so we can choose an

étale surjection u : X0 Ñ X where X0 is affine. Let X‚ denote the Čech nerve of u in the
8-category of n-truncated spectral Deligne-Mumford stacks. We claim that each Xi belongs
to DMfp

n,m´1pRq. For m ą 0 this is clear. When m “ 0, we let Y denote n-truncation of the
i-fold fiber power of X0 over SpétR. Then Y is affine, and the canonical map Xi Ñ Y is a
quasi-monomorphism. If m “ ´1, we can choose a commutative diagram

X
f

""

v // SpétA

yy
SpétR

where v is a quasi-monomorphism and A is finitely n-presented over R. Let X1‚ be the Čech
nerve of the composite map pv ˝ uq : X0 Ñ SpétA. Since v is a quasi-monomorphism, the
induced map X‚ Ñ X1‚ induces an equivalence of 0-truncations. Since each X1i is affine, each
Xi is affine by Theorem 1.4.8.1.

We now prove p1q. Fix a connective E8-ring R. Since DMfp
n,m´1pRq is essentially small

by the inductive hypothesis, the 8-category of simplicial objects of DMfp
n,m´1pRq is also

essentially small. The above argument shows that every object of DMfp
n,mpRq can be obtained

as the geometric realization (in SpDM{SpétR) of a simplicial object X‚ of DMfp
n,m´1pRq, so

that DMfp
n,mpRq is essentially small.

We now prove p2q. Choose a filtered diagram of connective E8-rings tRαu having colimit
R, and consider the functor θ : lim

ÝÑα
DMfp

n,mpRαq Ñ DMfp
n,mpRq. We first show that θ is

fully faithful. We may assume without loss of generality that the diagram tRαu is indexed
by the nerve of a filtered partially ordered set P (Proposition HTT.5.3.1.18 ). Fix objects
Xα,Yα P DMfp

n,mpRαq. For β ě α, let Xβ and Yβ denote the images of Xα and Yα in
DMfp

n,mpRβq, and let X and Y denote the images of Xα and Yα in DMfp
n,mpRq. We wish to

show that the canonical map

ρ : lim
ÝÑ
βěα

MapSpDM{ SpétRβ
pXβ,Yβq Ñ MapSpDM{ SpétR

pX,Yq

is a homotopy equivalence. Unwinding the definitions, we see that ρ can be identified with
the canonical map

lim
ÝÑ
βěα

MapSpDM{ SpétRα
pXβ,Yαq Ñ MapSpDM{ SpétRα

pX,Yαq

In what follows, let us regard the object Yα as fixed; we wish to prove the following:

p˚q For every object Xα P DMfp
n,m1pRαq, the canonical map

lim
ÝÑ
βěα

MapSpDM{ SpétRα
pXβ,Yαq Ñ MapSpDM{ SpétRα

pX,Yαq
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is a homotopy equivalence.

The proof of p˚q proceeds by induction on m1. Suppose first that m1 “ ´2, so that
Xα » SpétAα for some connective E8-algebra Aα over Rα. Unwinding the definitions, we
see that Xβ » τďnpAαbRαRβq and that X » τďnpAαbRαRq. Since R » lim

ÝÑ
Rβ , we conclude

that the canonical map

lim
ÝÑ
βěα

τďnpAα bRα Rβq Ñ τďnpAα bRα Rq

is an equivalence. Assertion p˚q now follows from Proposition 4.4.2.3.
Now suppose that m1 ą ´2. Choose an étale surjection u : Xα,0 Ñ Xα where Xα,0 is

affine, and let Xα,‚ be the Čech nerve of u. Define Xβ,‚ and X‚ as above. We wish to show
that the canonical map

φ : lim
ÝÑ
βěα

lim
ÐÝ
rpsP∆

MapSpDM{ SpétRα
pXβ,p,Yαq Ñ lim

ÐÝ
rpsP∆

MapSpDM{ SpétR
pXp,Yαq

is a homotopy equivalence. Choose an integer k ě m,n, so all of the mapping spaces above
are k-truncated (Lemma 1.6.8.8). Arguing as in the proof of Lemma HA.1.3.3.10 , we can
identify φ with the map

lim
ÝÑ
βěα

lim
ÐÝ

rpsP∆s,ďk`1

MapSpDM{ SpétR
pXβ,p,Yq Ñ lim

ÐÝ
rpsP∆s,ďk`1

MapSpDM{ SpétR
pXp,Yq.

Since filtered colimits in S commute with finite limits, φ is a finite limit of morphisms

φp : lim
ÝÑ
βěα

MapSpDM{ SpétR
pXβ,p,Yq Ñ MapSpDM{ SpétR

pXp,Yq.

Since Xα,p P DMfp
n,m´1pRαq, the map φp is an equivalence by the inductive hypothesis. This

completes the proof that θ is fully faithful.
It remains to prove that θ is essentially surjective. Fix an object X P DMfp

n,mpRq and
choose an étale surjection u : X0 Ñ X, where X0 is affine. Let X‚ be the Čech nerve of u.
Choose k ě m,n, so that the 8-category DMfp

n,m´1pRq is equivalent to a pk ` 1q-category
(Lemma 1.6.8.8). It follows that X‚ is a right Kan extension of Xt‚ “ X‚ |∆op

ďk`3
(Proposition

A.8.2.6), which is an pk` 2q-skeletal category object of DMfp
n,m´1pRq (see Definition A.8.2.2).

Since DMfp
n,m´1pRq » lim

ÝÑα
DMfp

n,m´1pRαq by the inductive hypothesis and the simplicial set
Np∆op

ďk`3q has a finite pk` 2q-skeleton, Xt‚ is the image of a pk` 3q-skeletal simplicial object
Xt‚ of DMfp

n,m´1pRαq for some index α. Enlarging α if necessary, we may assume that Xt‚ is a
pk ` 3q-skeletal category object of DMfp

n,m´1pRαq. Let X‚ : ∆op Ñ DMfp
n,m´1 be a right Kan

extension of Xt‚. Using Propositions 4.4.2.3 and A.8.2.7, we deduce that X‚ is a category
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object of DMfp
n,m´1. Enlarging α if necessary, we may assume that X‚ is a groupoid object of

DMfp
n,m´1pRαq, and that the projection maps X1 Ñ X0 are étale. Then X‚ has a geometric

realization X in SpDM{SpétRα . We will prove that, after enlarging α if necessary, we have
X P DMfp

n,mpRαq. It will then follow that X is a preimage of X P DMfp
n,mpRq and the proof

will be complete.
Since we have an étale surjection X0 Ñ X, it is clear that X is locally finitely n-presented

over Rα. We next prove that the underlying 8-topos X of X is coherent. The étale map
X0 Ñ X corresponds to an object U P X . Since X0 and X1 belong to DMfp

n pRαq, U and UˆU
are coherent objects of X . Example A.2.1.2 shows that the projection map U ˆ U Ñ U is
relatively i-coherent for every integer i. Let 1 denote the final object of X . Since p : U Ñ 1
is an effective epimorphism, we deduce that p is relatively i-coherent for every integer i
(Corollary A.2.1.5). Using the i-coherence of U , we deduce that X is i-coherent. Allowing i
to vary, we deduce that X is coherent.

Let us now treat the case m “ ´1. Choose a commutative diagram

X
f

""

u // SpétA

yy
SpétR

where u is a quasi-monomorphism and A is finitely n-presented over R. Applying Corollary
4.4.1.4, we may assume that A “ τďnpA bRα Rq for some n-truncated A which is finitely
n-presented over Rα. It follows from p˚q that we may assume (after enlarging α if necessary)
that u is the image of a map u : X Ñ SpétA in SpDM{SpétRα . To complete the proof, it will
suffice to show that u is a quasi-monomorphism. That is, we must show that the diagonal
map X Ñ X ˆSpétA X induces an equivalence of 0-truncations. This assertion is local on
X: it therefore suffices to show that the map φ : X1 » X0 ˆX X0 Ñ X0 ˆSpecA X0. Note
that the domain and codomain of φ are affine and that the image of φ under the natural
map DMfp

0,´2pRαq Ñ DMfp
0,´2pRq is an equivalence (by virtue of our assumption that u is a

quasi-monomorphism). Applying Corollary 4.4.1.4 again, we deduce that there exists β ě α

such that the image of φ in DMfp
0,´2pRβq is an equivalence. Replacing α by β, we deduce

that u is a quasi-monomorphism as desired.
Assume now that m ě 0. To complete the proof that X P DMfp

n,m, we must show that for
every discrete commutative ring A, the mapping space MapSpDMpSpétA,Xq is m-truncated.
For every étale map AÑ A1, set

F pA1q “ MapSpDMpSpétA1,Xq F ‚pA
1q “ MapSpDMpSpétA1,X‚q.

Then F is a sheaf for the étale topology; we will prove that it is m-truncated. The projection
X0 Ñ X induces an effective epimorphism of étale sheaves F 0 Ñ F . Since X0 is affine,
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we may assume (enlarging α if necessary) that X0 is affine, so that F 0 is 0-truncated. If
m ą 0, it suffices to prove that F 1 “ F 0ˆF F 0 is pm´1q-truncated, which follows because
X1 P DMfp

n,m´1. If m “ 0, we must work a bit harder: to show that F is discrete, we must
show that F 1 is an equivalence relation on F 0 (note that each F i is a discrete étale sheaf on
A when m ď 1). For this, it suffices to show that the diagonal map v : F 1 Ñ F 1ˆF0ˆF0 F 1
is an equivalence. Consider the diagonal map δ : X1 Ñ X1 ˆX0ˆX0

X1. Since X is a spectral
algebraic space, the map δ : X1 Ñ X1ˆX0ˆX0 X1 induces an equivalence of 0-truncations.
Our earlier argument shows that DMfp

0,´1pRq » lim
ÝÑβěα

DMfp
0,´1pRβq, so we may assume

(after enlarging α if necessary) that δ also induces an equivalence of 0-truncations. It follows
that v is an equivalence, as desired.

4.4.4 Approximation without Truncation

We conclude this section by describing a useful variant of Theorem 4.4.2.2.

Proposition 4.4.4.1. Let R be a connective E8-ring, let f : X Ñ SpétR be a morphism of
spectral algebraic spaces, and let n ě 0 be an integer. The following conditions are equivalent:

paq The truncation τďn X is finitely n-presented over R.

pbq There exists a commutative diagram of spectral algebraic spaces σ :

X //

f
��

X0

f0
��

SpétR // SpétR0

where R0 is finitely presented over the sphere spectrum S, the morphism f0 is almost
of finite presentation, and σ induces an equivalence τďn X Ñ τďnpX0ˆSpétR0 SpétRq.

Proof. The implication pbq ñ paq is obvious. For the converse, assume that paq is satisfied.
Write R as a filtered colimit lim

ÝÑ
Rα, where each Rα is a connective E8-ring which is of finite

presentation over the sphere spectrum S. Using Theorem 4.4.2.2, we deduce that there
exists an index α and a diagram σ1:

τďn X g //

��

Xα
fα
��

SpétR // SpétRα

with the following properties:

paq The morphism fα exhibits Xα as finitely n-presented over SpétRα.
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pbq The diagram σ1 induces an equivalence τďn X Ñ τďnpXαˆSpétR0 SpétRq.

It follows from pbq and Remark 2.4.4.2 that the morphism g is affine. Set R0 “ Rα. Since
R0 is finitely presented over the sphere spectrum S, it is Noetherian. Consequently, the
morphism fα is almost of finite presentation and Xα is locally Noetherian (see Proposition
4.2.4.1). Applying Proposition 17.1.6.1, we can extend σ1 to a commutative diagram σ1:

τďn X //

��

Xα
f 1α
��

X
f
��

// X0

f2α
��

SpétR // SpétR0

where X0 is locally Noetherian and the morphism f 1α induces an equivalence τďn Xα » τďn X0.
Since fα is of finite type, it follows that f2α is of finite type. Using Remark 4.2.0.4, we deduce
that f2α is almost of finite presentation, so that the lower half of the diagram σ1 witnesses
assertion pbq.

4.5 Approximation of Quasi-Coherent Sheaves

Let X be spectral Deligne-Mumford stack which is finitely n-presented over a connective
E8-ring R, and suppose that R is given as a filtered colimit of connective E8-rings tRαu.
Theorem 4.4.2.2 implies that we can write X as a truncated fiber product τďnpSpétRˆSpétRα
Xαq for some index α and some spectral Deligne-Mumford stack Xα which is finitely n-
presented over Rα. In this section, we will prove a linear analogue of Theorem 4.4.2.2,
which relates quasi-coherent sheaves on X (satisfying suitable finiteness hypotheses) to
quasi-coherent sheaves on Xα.

4.5.1 Approximation of Modules

We begin by studying the quasi-coherent sheaves on affine spectral Deligne-Mumford
stacks. In this case, we wish to answer the following:

Question 4.5.1.1. Let tRαu be a filtered diagram of connective E8-rings having colimit
R “ lim

ÝÑ
Rα. What is the relationship between the 8-category ModR and the diagram of

8-categories tModRαu?

To answer Question 4.5.1.1, it is convenient to begin by studying the analogous question
for E1-rings. Note that if M is a spectrum and R is an E1-ring, then giving a left action
of R on M is equivalent to giving a morphism of E1-rings φ : RÑ EndpMq. If R is given
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as the colimit of a diagram tRαu in the 8-category Alg of E1-rings, then we can think
of a morphism φ : R Ñ EndpMq as equivalent to supplying a compatible family of maps
φα : Rα Ñ EndpMq: that is, to equipping M with a compatible family of left Rα-module
structures. We can formulate this idea more precisely as follows:

Proposition 4.5.1.2. Let tRαu be a diagram of E1-rings indexed by a contractible sim-
plicial set K, having colimit R. Then the forgetful functor LModR Ñ lim

ÐÝ
tLModRαu is an

equivalence of 8-categories.

Proof. Combine Lemma HA.7.3.5.12 , Corollary HTT.5.5.3.4 , and Proposition HTT.5.5.3.18 .

In the situation of Proposition 4.5.1.2, suppose that each Rα is connective, so that R
is likewise connective. It follows that the forgetful functor LModcn

R Ñ lim
ÐÝ
tLModcn

Rαu is an
equivalence of 8-categories, and that for each n ě 0 the forgetful functor pLModRqďn Ñ
lim
ÐÝ
tpLModRαqďnu is an equivalence of 8-categories. This immediately implies the following:

Corollary 4.5.1.3. The construction R ÞÑ LModcn
R determines a functor Algcn Ñ PrL

which preserves colimits indexed by small weakly contractible simplicial sets.

Corollary 4.5.1.4. For each integer n, the construction R ÞÑ pLModcn
R qďn determines a

functor Algcn Ñ PrL which preserves colimits indexed by small weakly contractible simplicial
sets.

Since the forgetful functor CAlg Ñ Alg commutes with filtered colimits, we immediately
obtain the following variants:

Corollary 4.5.1.5. The construction R ÞÑ ModR determines a functor CAlg Ñ PrL which
commutes with filtered colimits.

Corollary 4.5.1.6. The construction R ÞÑ Modcn
R determines a functor CAlgcn Ñ PrL

which preserves small filtered colimits.

Corollary 4.5.1.7. For each integer n, the construction R ÞÑ pModcn
R qďn determines a

functor CAlgcn Ñ PrL which preserves small filtered colimits.

Combining these results with Lemma HA.7.3.5.11 , we obtain the following:

Corollary 4.5.1.8. The construction R ÞÑ Modperf
R determines a functor CAlg Ñ Cat8

which commutes with filtered colimits.

Corollary 4.5.1.9. The construction R ÞÑ Modcn
R XModperf

R determines a functor CAlgcn Ñ

Cat8 which commutes with filtered colimits.
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Corollary 4.5.1.10. Let n ě 0 be an integer. For every connective E8-ring R, let Modn´fpR

denote the full subcategory of ModR spanned by those R-modules which are connective,
n-truncated, and perfect to order pn ` 1q (that is, the full subcategory spanned by the
compact objects of τďn Modcn

R ). Then the construction R ÞÑ Modn´fpR determines a functor
CAlgcn Ñ Cat8 which commutes with filtered colimits.

4.5.2 The Non-Affine Case

Let R be a connective E8-ring and n ě 0 an integer. Recall that a connective R-module
M is said to be finitely n-presented if it is a compact object of the 8-category pModRqďn:
equivalently, M is finitely n-presented if it is n-truncated and perfect to order pn ` 1q
(Definition 2.7.1.1). If X is a spectral Deligne-Mumford stack and F P QCohpXq, we see that
F is finitely n-presented if, for every étale map η : SpétRÑ X, the pullback η˚F is finitely
n-presented when regarded as an object of ModR » QCohpSpétRq (see Definition 2.8.4.4).

Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks, and let F be a quasi-
coherent sheaf on Y which is finitely n-presented. If f is flat, then f˚F is a finitely
n-presented quasi-coherent sheaf on X. In the non-flat case, this need not be true. However,
we do have the following analogue of Proposition 4.2.5.4:

Proposition 4.5.2.1. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks, and let
F P QCohpYq be finitely n-presented. Then τďnf

˚F is finitely n-presented.

Proof. Since F is perfect to order pn` 1q, we deduce that f˚F is perfect to order pn` 1q.
It follows that τďnf˚F is also perfect to order pn` 1q (see Remark 2.7.1.3). Since τďnf˚F

is obviously n-truncated, it is finitely n-presented.

Construction 4.5.2.2. The functor X ÞÑ QCohpXq classifies a Cartesian fibration θ : C Ñ
SpDM. We can identify objects of C with pairs pX,F q, where X is a spectral Deligne-
Mumford stack and F is a quasi-coherent sheaf on X. Let n ě 0 be an integer, and
let Cn´fp denote the full subcategory of C spanned by those pairs pX,F q, where F is
connective and finitely n-presented. It follows from Proposition 4.5.2.1 that θ restricts to
a Cartesian fibration Cn´fp Ñ SpDM. This Cartesian fibration is classified by a functor
QCohn´fp : SpDMop ÑyCat8. We can describe this functor concretely as follows:

paq To every spectral Deligne-Mumford stack X, QCohn´fppXq can be identified with the
full subcategory of QCohpXq spanned by those quasi-coherent sheaves F which are
connective and finitely n-presented.

pbq To every map f : X Ñ Y of spectral Deligne-Mumford stacks, the functor

QCohn´fppfq : QCohn´fppYq Ñ QCohn´fppXq

is given on objects by the construction F ÞÑ τďnf
˚F .
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The remainder of this section is devoted to the proof of the following result:

Theorem 4.5.2.3. Let R be a connective E8-ring and let X be a spectral Deligne-Mumford
m-stack over R, for some integer m ă 8. Assume that X is 8-quasi-compact and let n ě 0
be an integer. Then:

p1q The 8-category QCohn´fppXq is essentially small.

p2q Suppose we are given a filtered diagram tRαu of connective E8-algebras over R having
colimit R1. Let Xα “ XˆSpétR SpétRα, and let X1 “ XˆSpétR SpétR1. Then the
canonical map

θ : lim
ÝÑ
α

QCohn´fppXαq Ñ QCohn´fppX1q

is an equivalence of 8-categories.

4.5.3 The Proof of Theorem 4.5.2.3

The proof of Theorem 4.5.2.3 will require the following general observation.

Lemma 4.5.3.1. Filtered colimits are left exact in the 8-category Cat8 of small 8-
categories.

Proof. Let G : Cat8 Ñ Funp∆op,Sq be the fully faithful embedding of Proposition
HA.A.7.10 , given by GpCqprnsq “ MapCat8p∆

n, Cq. Since filtered colimits in Funp∆op,Sq
are left exact (Example HTT.7.3.4.7 ), it will suffice to show that G preserves finite limits and
filtered colimits. The first assertion is obvious, and the second follows from the observation
that each ∆n is a compact object of Cat8.

Proof of Theorem 4.5.2.3. Let X be a spectral Deligne-Mumford stack over a connective
E8-ring R. Consider the following hypothesis for m ě ´2:

p˚mq If m ě 0, then X is a spectral Deligne-Mumford m-stack. If m “ ´1, then there exists
a quasi-monomorphism X Ñ SpétA for some connective E8-algebra A over R (see the
proof of Theorem 4.4.2.2). If m “ ´2, then X is affine.

The hypothesis of Theorem 4.5.2.3 is that X satisfies p˚mq for m sufficiently large.
We proceed by induction on m, beginning with the case m “ ´2. In this case, we can
write X “ SpétA for some connective E8-ring A. Using Remark 2.7.1.4, we deduce that
QCohn´fppXq is equivalent to the 8-category of compact objects of the presentable 8-
category pModcn

A qďn, which proves p1q. Assertion p2q follows from Corollary 4.5.1.10.
Now suppose that m ě ´1. Since X is quasi-compact, we can choose an étale surjection

u : X0 Ñ X, where X0 is affine. Let X‚ be the Čech nerve of u. Then each Xp satisfies p˚m´1q.
Using the equivalence of 8-categories QCohn´fppXq » lim

ÐÝ
QCohn´fppX‚q and the inductive
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hypothesis, we deduce that QCohn´fppXq is essentially small; this proves p1q. To prove p2q,
we let X‚,α denote the simplicial spectral Deligne-Mumford stack given by X‚ˆSpétR SpétRα,
and X1‚ the simplicial spectral Deligne-Mumford stack given by X‚ˆSpétR SpétR1. We have
a commutative diagram

lim
ÝÑα

QCohn´fppXαq θ //

��

QCohn´fppX1q

��
lim
ÝÑα

lim
ÐÝrksP∆ QCohn´fppXk,αq //

��

lim
ÐÝrksP∆ QCohn´fppX1kq

��
lim
ÝÑα

lim
ÐÝrksP∆s,ďn`2

QCohn´fppXk,αq
φ // lim

ÐÝrksP∆s,ďn`2
QCohn´fppX1kq.

Here the vertical maps are equivalences by virtue of the observation that the functor
QCohn´fp takes values in the full subcategory of yCat8 spanned by those 8-categories which
are equivalent to pn` 1q-categories (since QCohpYqcn

ďn is equivalent to an pn` 1q-category,
for every spectral Deligne-Mumford stack Y), and that this subcategory of yCat8 is itself
equivalent to an pn ` 2q-category. Consequently, to prove that θ is an equivalence of 8-
categories, it will suffice to show that φ is an equivalence of 8-categories. The functor φ fits
into a commutative diagram

lim
ÝÑα

lim
ÐÝrksP∆s,ďn`2

QCohn´fppXk,αq

φ

��

φ1

++
lim
ÐÝrksP∆s,ďn`2

lim
ÝÑα

QCohn´fppXk,αq.

φ2ss
lim
ÐÝrksP∆s,ďn`2

QCohn´fppX1kq

Here φ1 is an equivalence of 8-categories by Lemma 4.5.3.1, and φ2 is an equivalence of
8-categories by the inductive hypothesis.

4.6 Descent of Properties along Filtered Colimits

Let f : X Ñ Y be a a map of spectral Deligne-Mumford stack which are finitely n-
presented over a connective E8-ring A, and suppose that A is given as the colimit of
a filtered diagram of connective E8-rings tAαu. Using Theorem 4.4.2.2, we deduce the
existence of an index α and a map fα : Xα Ñ Yα of spectral Deligne-Mumford stacks which
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are finitely n-presented over Aα, such that f is equivalent to the induced map

τďnpSpétAˆSpétAα Xαq Ñ τďnpSpétAˆSpétAα Yαq.

Our goal in this section is to prove a variety of results which assert that if f has some
property P , then we can arrange that fα also has the property P . Our results can be
summarized as follows:

paq If f is affine, then fα can be chosen to be affine (Proposition 4.6.1.1).

pbq If f is surjective, then fα can be chosen to be surjective (Proposition 4.6.1.2).

pcq If f is a closed immersion, then fα can be chosen to be a closed immersion (Proposition
4.6.1.3).

pdq If f is separated, then fα can be chosen to be separated (Corollary 4.6.1.4).

peq If f is étale, then fα can be chosen to be étale (Proposition 4.6.2.1).

pfq If f is an open immersion, then fα can be chosen to be an open immersion (Corollary
4.6.2.2).

4.6.1 Examples of Descent

We begin by handling the easy cases.

Proposition 4.6.1.1. Let A0 be a connective E8-ring. Suppose we are given a filtered
diagram of connective A0-algebras tAαu having colimit A. Let n ě 0 be an integer, let
f0 : X0 Ñ Y0 be a morphism in DMfp

n pA0q. Let f : X Ñ Y be the image of f0 in DMfp
n pAq.

Suppose that f is affine. Then there exists an index α such that the image of f0 in DMfp
n pAαq

is affine.

Proof. Since Y0 is quasi-compact, we can choose an étale surjection Y10 Ñ Y0, where
Y10 » SpétB0 is affine. Replacing Y0 by Y10, we can reduce to the case where Y0 is affine,
so that X is also affine. Corollary 4.4.1.4 shows that there exists an index α and an affine
spectral Deligne-Mumford stack Z P DMfp

n pAαq having image X in DMfp
n pAq. Let Xα denote

the image of X0 in DMfp
n pAαq. Then Xα and Z have equivalent images in DMfp

n pAq. Altering
our choice of α, we may assume with Xα is equivalent to Z (Theorem 4.4.2.2), so that Xα is
affine and therefore the image of f0 in DMfp

n pAαq is affine.

Proposition 4.6.1.2. Let A0 be a connective E8-ring. Suppose we are given a filtered
diagram of connective A0-algebras tAαu having colimit A. Let n ě 0 be an integer, let
f0 : X0 Ñ Y0 be a morphism in DMfp

n pA0q. Let f : X Ñ Y be the image of f0 in DMfp
n pAq.

Suppose that f is surjective. Then there exists an index α such that the image of f0 in
DMfp

n pAαq is surjective.
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Proof. We may assume without loss of generality that the diagram tAαu is indexed by a
filtered partially ordered set. Since Y0 is quasi-compact, we can choose an étale surjection
Y10 Ñ Y0, where Y10 is quasi-compact. Replacing Y0 by Y10, we can reduce to the case where
Y0 » SpétB0 is affine. Similarly, we can assume that X0 » SpétC0 is affine. Our assumption
implies that the map of topological spaces

| Spec Torπ0A0
0 pπ0C0, π0Aq| Ñ | Spec Torπ0A0

0 pπ0B0, π0Aq|

is surjective. Using Corollary 4.3.5.4, we deduce the existence of an index α such that the
map

| Spec Torπ0A0
0 pπ0C0, π0Aαq| Ñ | Spec Torπ0A0

0 pπ0B0, π0Aαq|

is surjective. It follows that the image of f0 in DMfp
n pAαq is a surjective map of spectral

Deligne-Mumford stacks.

Proposition 4.6.1.3. Let A0 be a connective E8-ring. Suppose we are given a filtered
diagram of connective A0-algebras tAαu having colimit A. Let n ě 0 be an integer, let
f0 : X0 Ñ Y0 be a morphism in DMfp

n pA0q. Let f : X Ñ Y be the image of f0 in DMfp
n pAq.

Suppose that f is a closed immersion. Then there exists an index α such that the image of
f0 in DMfp

n pAαq is a closed immersion.

Proof. Since Y0 is quasi-compact, we can choose an étale surjection Y10 Ñ Y0, where
Y10 » SpétB0 is affine. Replacing Y0 by Y10, we can reduce to the case where Y0 is affine.
Using Proposition 4.6.1.1, we may assume that X0 » SpétC0 is also affine. The condition
that f is a closed immersion guarantees that the map

lim
ÝÑ

Torπ0A0
0 pπ0Aα, π0B0q Ñ lim

ÝÑ
Torπ0A0

0 pπ0Aα, π0C0q

is surjective. Since π0C0 is a finitely presented algebra over π0B0, we deduce that there is
an index α such that the image of the map

Torπ0A0
0 pπ0Aα, π0B0q Ñ Torπ0A0

0 pπ0Aα, π0C0q

contains the image of π0C0, and is therefore surjective. It follows that the image of f0 in
DMfp

n pAαq is a closed immersion.

Corollary 4.6.1.4. Let A0 be a connective E8-ring. Suppose we are given a filtered diagram
of connective A0-algebras tAαu having colimit A. Let n ě 0 be an integer, let f0 : X0 Ñ Y0
be a morphism in DMfp

n pA0q. Let f : X Ñ Y be the image of f0 in DMfp
n pAq. Suppose that

f is separated. Then there exists an index α such that the image of f0 in DMfp
n pAαq is

separated.

Proof. Apply Proposition 4.6.1.3 to the diagonal map X0 Ñ X0ˆY0 X0.
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4.6.2 Descending Étale Morphisms

The final result of this section is somewhat more difficult.

Proposition 4.6.2.1. Let A0 be a connective E8-ring. Suppose we are given a filtered
diagram of connective A0-algebras tAαu having colimit A. Let n ě 0 be an integer, let
f0 : X0 Ñ Y0 be a morphism in DMfp

n pA0q. Let f : X Ñ Y be the image of f0 in DMfp
n pAq.

Suppose that f is étale. Then there exists an index α such that the image of f0 in DMfp
n pAαq

is étale.

Corollary 4.6.2.2. Let A0 be a connective E8-ring. Suppose we are given a filtered diagram
of connective A0-algebras tAαu having colimit A. Let n ě 0 be an integer, let f0 : X0 Ñ Y0
be a morphism in DMfp

n pA0q. Let f : X Ñ Y be the image of f0 in DMfp
n pAq. Suppose that f

is an open immersion. Then there exists an index α such that the image of f0 in DMfp
n pAαq

is an open immersion.

Proof. Using Proposition 4.6.2.1, we can reduce to the case where f0 is étale. Let δ0 denote
the diagonal map X0 Ñ X0ˆY0 X0. Then the image of δ0 in DMfp

n pAq is an equivalence.
Theorem 4.4.2.2 implies that there exists an index α such that the image of δ0 in DMfp

n pAαq

is an equivalence. It follows that the image of f0 in DMfp
n pAαq is an open immersion.

The proof of Proposition 4.6.2.1 will require some preliminaries.

Remark 4.6.2.3. Let B be a connective E8-ring and let n ě 0 be an integer. The
truncation map B Ñ τďnB is pn ` 1q-connective. Consequently, Theorem HA.7.4.3.1
supplies an p2n`3q-connective map pτďnBbB τěn`1Bq Ñ Σ´1LτďnB{B . The map τěn`1B Ñ

pτďnB bB τěn`1Bq is p2n` 2q-connective, so that the induced map τěn`1B Ñ Σ´1LτďnB{B
determines isomorphisms θm : πmB Ñ πm`1LτďnB{B for n ă m ă 2n` 2 and a surjection
when m “ 2n` 2.

Let f : AÑ B be a map of connective E8-rings, and let B : Σ´1LτďnB{B Ñ LB{A be the
associated boundary map. Unwinding the definitions, we see that for m ą n, the composition

πmB
θm
Ñ πm`1LτďnB{B

B
Ñ πmLB{A

is induced by the universal A-linear derivation d : B Ñ LB{A. In particular (taking n “ 0),
we conclude that the induced maps πmB Ñ πmLB{A is π0B-linear for m ą 0.

Lemma 4.6.2.4. Let f : A Ñ B be a map of connective E8-rings, and let n ě 0. The
induced map τďnAÑ τďnB is étale if and only if the following conditions are satisfied:

p1q The commutative ring π0B is finitely presented over π0A.

p2q The relative cotangent complex LB{A is pn` 1q-connective.
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p3q Let d : B Ñ LB{A be the universal derivation (so that d is a map of A-module spectra).
Then d induces a surjection πn`1B Ñ πn`1LB{A.

Proof. Suppose first that τďnB is étale over τďnA. Then π0B is étale over π0A, which
immediately implies p1q. Using Theorem HA.7.5.0.6 , we can choose an étale A-algebra A1

and an isomorphism α : π0A
1 » π0B. Theorem HA.7.5.4.2 implies that α can be lifted to

a map of A-algebras α : A1 Ñ B. Since LA1{A » 0, we conclude that the canonical map
LB{A Ñ LB{A1 is an equivalence. Note that α induces an equivalence τďnA1 Ñ τďnB, and
is therefore n-connective. Using Corollary HA.7.4.3.2 , we deduce that LB{A » LB{A1 is
pn ` 1q-connective, thereby proving p2q. To prove p3q, we note that the composite map
A1 Ñ B Ñ τďnB is pn ` 1q-connective, so that LτďnB{A » LτďnB{A1 is pn ` 2q-connective.
We have a fiber sequence

pτďnBq bB LB{A Ñ LτďnB{A Ñ LτďnB{B.

The vanishing of πn`1LτďnB{A implies that the boundary map

θ : πn`2LτďnB{B Ñ πn`1pτďnB bB LB{Aq » πn`1LB{A

is surjective. Using Remark 4.6.2.3, we deduce that the universal derivation d : B Ñ LB{A
induces a surjection πn`1B Ñ πn`1LB{A, so that p3q is satisfied.

Now suppose that conditions p1q, p2q, and p3q hold. We wish to prove that τďnB is étale
over τďnA. Consider the fiber sequence

pτďnBq bB LB{A Ñ LτďnB{A Ñ LτďnB{B.

It follows from condition p2q that pτďnBq bB LB{A is pn ` 1q-connective, and we have a
canonical isomorphism πn`1pτďnBbB LB{Aq » πn`1LB{A. Using Remark 4.6.2.3, we deduce
that LτďnB{B is pn ` 2q-connective and obtain a canonical isomorphism πn`2LτďnB{B »

πn`1B. It follows that LτďnB{A is pn` 1q-connective, and we have a short exact sequence of
abelian groups

πn`1B Ñ πn`1LB{A Ñ πn`1LτďnB{A Ñ 0.

Using condition p3q, we conclude that LτďnB{A is pn ` 2q-connective. Invoking Lemma

B.1.3.2, we see that f factors as a composition A
f 1
ÝÑ A1

f2
ÝÑ B where f 1 is étale and f2 is

pn` 1q-connective. It follows that τďnB » τďnA
1 is étale over τďnA, as desired.

We now prove Proposition 4.6.2.1 in the affine case.

Lemma 4.6.2.5. Let A0 be a connective E8-ring. Suppose we are given a filtered diagram
of connective A0-algebras tAαu having colimit A. Let f : A0 Ñ B0 be a map of connective
E8-rings which is of finite generation to order n` 1 for some n ě 0. Let Bα “ Aα bA0 B0
and let B “ lim

ÝÑ
Bα » AbA0 B0. Suppose that τďnB is étale over τďnA. Then there exists

an index α such that τďnBα is étale over τďnAα.
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Proof. Using Lemma 4.6.2.4, we see that LB{A » B bB0 LB0{A0 is pn` 1q-connective. Using
Theorem 4.5.2.3, we deduce that there exists an index α such that BαbB0 LB0{A0 is pn` 1q-
connective. Since B0 is of finite generation to order pn` 1q over A0, the relative cotangent
complex LB0{A0 is perfect to order pn ` 1q so that πn`1LB0{A0 is finitely generated as a
module over π0B0. Choose a finite collection of generators x1, . . . , xk for πn`1LB0{A0 , and
let x11, . . . , x1k denote their images in πn`1LB{A. Lemma 4.6.2.4 implies that the universal
derivation B Ñ LB{A induces a surjection

φ : lim
ÝÑ

πn`1Bα » πn`1B Ñ πn`1LB{A.

It follows that there exists an index α and elements y1, . . . , yk P πn`1Bα such that φpyiq “ x1i
for 1 ď i ď k. Let x2i denote the image of xi in πn`1LBα{Aα . Enlarging α if necessary,
we may assume that the universal derivation dα : Bα Ñ LBα{Aα carries each yi to x2i .
Note that πn`1LBα{Aα » Torπ0B0

0 pπ0B, πn`1LB0{A0q, so that the elements x2i generate
πn`1LBα{Aα as a module over π0Bα. Since the universal derivation induces a π0Bα-linear
map πn`1Bα Ñ πn`1LBα{Aα (see Remark 4.6.2.3), we deduce that this map is surjective.
Applying Lemma 4.6.2.4, we conclude that τďnBα is étale over τďnAα, as desired.

Proof of Proposition 4.6.2.1. Since Y0 is quasi-compact, we can choose an étale surjection
Y10 Ñ Y0, where Y10 is affine. Replacing Y0 by Y10 and X0 by the fiber product X0ˆY0 Y10, we
can assume that Y0 is affine. Since X0 is quasi-compact, we can choose an étale surjection
X10 Ñ X0, where X10 is affine. We may therefore replace X0 by X10 and thereby reduce to
the case where X0 is also affine. The desired result now follows immediately from Theorem
1.4.10.2 and Lemma 4.6.2.5.



Chapter 5

Proper Morphisms in Spectral
Algebraic Geometry

Let f : X Ñ Y be a morphism of schemes. Recall that f is said to be proper if it is
separated, of finite type, and universally closed (Definition 3.7.0.1). Our goal in this section
is to study the same hypothesis in the setting of spectral algebraic geometry. We begin in
§5.1 by introducing the notion of a proper morphism between spectral Deligne-Mumford
stacks f : X Ñ Y (Definition 5.1.2.1).

In the setting of classical algebraic geometry, there are two important sources of examples
of proper morphisms:

paq Every closed immersion of schemes is proper. More generally, any finite morphism of
schemes f : X Ñ Y is proper (recall that f : X Ñ Y is said to be finite if, for every
affine open subscheme SpétA » U Ď Y , the inverse image f´1pUq Ď X is an affine
scheme of the form SpecB, where B is finitely generated as an A-module).

pbq For any commutative ring R, the projection map Pn
R Ñ SpecR is proper, where Pn

R

denotes projective space of dimension n over R.

In §5.2, we will see that the theory of finite morphisms can be generalized to the setting
of spectral algebraic geometry in a straightforward way. The case of projective space is more
subtle. In §5.4, we will associate to each connective E8-ring R a spectral algebraic space
Pn
R, which we call projective space of dimension n over R (Construction 5.4.1.3). These

projective spaces share many of the pleasant features of their classical counterparts: for
example, Serre’s calculation of the cohomology of line bundles on projective space extends
to the spectral setting without essential change (Theorem 5.4.2.6). However, there are a
few surprises: for example, the projective spaces of Construction 5.4.1.3 are somewhat rigid
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objects (unlike projective spaces in classical algebraic geometry, which are homogeneous
spaces).

Most (but not all) examples of proper morphisms of schemes can be obtained by combining
paq and pbq. Recall that a complex algebraic variety X is said to be proper if the projection
map X Ñ Spec C is proper, and is said to be projective if there exists a closed immersion
X ãÑ Pn

C for some n ě 0 (or, equivalently, if there exists a finite morphism X Ñ Pn
C for

some n ě 0). Every projective algebraic variety is proper, but not every proper algebraic
variety is projective. However, a general proper algebraic variety X is not far from being
projective: according to Chow’s lemma, one can always choose a projective birational map
π : X Ñ X, where the variety X is projective. In §5.5, we establish a version of Chow’s
lemma in the setting of spectral algebraic geometry (Theorem 5.5.0.1).

Recall that scheme X is determined (up to canonical isomorphism) by its functor of points
hX : CAlg♥ Ñ Set. In particular, the condition that a morphism of schemes f : X Ñ Y

is proper depends only the induced natural transformation hX Ñ hY . If we assume that
f is of finite type, then we can be more explicit: according to Grothendieck’s valuative
criterion of properness, f is proper if and only if, for every valuation ring V with fraction
field K, the induced map hXpV q Ñ hXpKq ˆhY pKq hY pV q is a bijection. In §5.3, we discuss
an analogous valuative criterion in the setting of spectral algebraic spaces (see Theorem
5.3.0.1 and Corollary 5.3.1.2).

Remark 5.0.0.1. The material described in §5.1 through §5.3 really has nothing to do with
spectral algebraic geometry. If f : X Ñ Y is a morphism of spectral algebraic spaces and
f0 : X0 Ñ Y0 is the underlying map of classical algebraic spaces, then:

• The morphism f is proper if and only if f0 is proper (Remark 5.1.2.2).

• The morphism f is finite if and only if f0 is finite (Remark 5.2.0.2).

• The morphism f satisfies the valuative criterion of properness (or separatedness) if and
only if the morphism f0 satisfies the valuative criterion of properness (or separatedness).

Let X be a topological space and let O be a sheaf of commutative rings on X. Recall that
a sheaf F of (discrete) O-modules is said to be coherent if F is locally finitely generated and,
for any open subset U Ď X and any map α : On |U Ñ F |U , the kernel of α is also locally
finitely generated. In §??, we extend the definition of coherence to sheaves of module spectra
on a spectrally ringed 8-topos X “ pX ,Oq (Definition ??). In the case where X is a locally
Noetherian spectral Deligne-Mumford stack, we show that an object F P ModO is coherent
and hypercomplete if and only if it is quasi-coherent and almost perfect (Proposition ??).
Consequently, we can view the theory of almost perfect sheaves as providing an extension of
the theory of coherent sheaves to non-Noetherian settings. Alternatively, we can view the
theory of coherent sheaves as an extension of the theory of almost perfect sheaves to settings
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outside of algebraic geometry (such as the setting of derived complex analytic geometry,
which we study in §??).

If f : X Ñ Y is a proper morphism between Noetherian schemes, then Grothendieck’s
direct image theorem asserts that the derived direct image functors Rif˚ carry coherent
sheaves on X to coherent sheaves on Y . This theorem was generalized to the setting
of algebraic spaces by Knutson ([117]). In the language of spectral algebraic geometry,
Knutson’s result asserts that if f : X Ñ Y is a proper morphism between 0-truncated
spectral algebraic spaces, then the direct image functor f˚ : QCohpXq Ñ QCohpYq carries
coherent objects to coherent objects, or equivalently (by virtue of Proposition ??) that f˚
carries almost perfect objects of QCohpXq to almost perfect objects of QCohpYq. In §5.6, we
will prove a more general assertion: for any morphism of spectral Deligne-Mumford stacks
f : X Ñ Y which is proper and locally almost of finite presentation, the direct image functor
f˚ : QCohpXq Ñ QCohpYq carries almost perfect objects to almost perfect objects (Theorem
5.6.0.2). When X and Y are locally Noetherian, this is an elementary consequence of the
direct image theorem of classical algebraic geometry (in the setting of algebraic spaces).
We will prove Theorem 5.6.0.2 in general by reduction to the Noetherian case, using the
approximation techniques of Chapter 4.

Remark 5.0.0.2. In the setting of classical algebraic geometry, Theorem 5.6.0.2 was proven
by Illusie in the case where f : X Ñ Y is projective, and by Kiehl in general. See [101] and
[116].

Warning 5.0.0.3. The notion of proper morphism that we consider in this section is
more restrictive than the standard notion in the stack-theoretic literature: for a morphism
f : X Ñ Y to be proper, we require that the relative diagonal δ : X Ñ XˆY X be a closed
immersion. This excludes many examples of geometric interest (such as moduli stacks of
stable curves).
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5.1 Properness

5.1.1 Universally Closed Morphisms

Let f : X Ñ Y be a separated morphism of spectral algebraic spaces. Then, for every
pullback diagram

X1 //

f 1

��

X
f
��

Y1 // Y

the map f 1 is also separated. It follows that if Y1 is a quasi-separated spectral algebraic
space, then X1 is also a quasi-separated spectral algebraic space. In this case, f 1 induces a
map of topological spaces |X1 | Ñ |Y1 |.

Proposition 5.1.1.1. Let f : X Ñ Y be a separated morphism of spectral algebraic spaces.
The following conditions are equivalent:
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paq For every pullback diagram of spectral Deligne-Mumford stacks

X1 //

��

X
f
��

SpétR // Y,

the induced map of topological spaces |X1 | Ñ |SpétR| » |SpecR| is closed.

pbq For every pullback diagram of spectral Deligne-Mumford stacks

X1 //

��

X
f
��

Y1 // Y

where Y1 is a quasi-separated spectral algebraic space, the induced map of topological
spaces |X1 | Ñ |Y1 | is closed.

Definition 5.1.1.2. Let f : X Ñ Y be a separated morphism of spectral Deligne-Mumford
stacks. We will say that f is universally closed if it satisfies the equivalent conditions of
Proposition 5.1.1.1.

Proof of Proposition 5.1.1.1. The implication pbq ñ paq is obvious. Conversely, suppose
that paq is satisfied and that we are given a pullback square

X1 //

��

X

��
Y1 // Y,

where Y1 is a quasi-separated spectral algebraic space. We wish to show that the natural
map |X1 | Ñ |Y1 | is closed. Writing Y1 as a union of its quasi-compact open substacks, we
can reduce to the case where Y1 is quasi-compact. Choose an étale surjection SpétRÑ Y1,
and form a pullback diagram

X2 //

��

X1

��
SpétR // Y1 .

We then obtain a diagram of topological spaces

|X2 | ψ //

φ1

��

|X1 |

φ
��

| SpecR| ψ1 // |Y1 |.
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Let K Ď |X1 | be closed; we wish to show that φpKq is closed. Since ψ´1K is a closed subset
of |X1 |, condition paq implies that φ1pψ´1Kq is a closed subset of | SpecR|. Corollary 3.6.3.2
gives ψ1´1pφpKqq “ φ1pψ´1Kq, so that ψ1´1pφpKqq is a closed subset of | SpecR|. Since ψ1 is
a quotient map (Proposition 3.6.3.6), we conclude that φpKq is a closed subset of |Y1 |.

Remark 5.1.1.3. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 //

f 1

��

X

f

��
Y1 // Y,

where the vertical maps are separated. If f is universally closed, then so is f 1.

Remark 5.1.1.4. Let f : X Ñ Y be a morphism of quasi-compact, quasi-separated algebraic
spaces, and let φ : |X | Ñ |Y | be the underlying map of topological spaces. Then the fibers of
φ are quasi-compact. It follows that for any filtered collection of closed subsets tKα Ď |X |u,
we have φp

Ş

Kαq “
Ş

φpKαq. Since |X | has a basis of quasi-compact open subsets, every
closed set K Ď |X | can be obtained as a (filtered) intersection of closed subsets with
quasi-compact complements. Consequently, to prove that φ is closed, it will suffice to show
that φpKq Ď |Y | is closed whenever K Ď |X | is the complement of a quasi-compact open
subset of |X |.

Remark 5.1.1.5. Let f : X Ñ SpétR be a morphism of quasi-compact, quasi-separated
spectral algebraic spaces. Suppose we wish to verify that f is universally closed. Let
R Ñ R1 be an arbitrary map of connective E8-rings and set X1 “ XˆSpétR SpétR1; we
wish to prove that the map φ : |X1 | Ñ | SpecR1| is closed. According to Remark 5.1.1.4, it
suffices to show that φpKq Ď |SpecR1| is closed whenever K Ď |X1 | is the complement of
a quasi-compact open subset of |X1 |. Write R1 “ lim

ÝÑ
Rα in CAlgcn

R , where each Rα is of
finite presentation over R, and set Xα “ XˆSpétR SpétRα. According to Proposition 4.3.5.5,
every quasi-compact open subset of |X1 | is the inverse image of a quasi-compact open subset
of some |Xα |. It will therefore suffice to show that the map φα : |Xα | Ñ | SpecRα| is closed.
In other words, to verify condition paq of Proposition 5.1.1.1, it suffices to treat the case
where R1 is finitely presented over R. In particular, if R is Noetherian, we may assume that
R1 is also Noetherian (Proposition HA.7.2.4.31 ).

5.1.2 Proper Morphisms

We can now introduce the main definition of interest to us in this section:

Definition 5.1.2.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
We will say that f is proper if it is quasi-compact (Definition 2.3.2.2, separated (Definition
3.2.0.1), locally of finite type (Definition 4.2.0.1), and universally closed (Definition 5.1.1.2).
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Remark 5.1.2.2. The condition that a morphism of spectral Deligne-Mumford stacks
f : pX ,OX q Ñ pY,OYq be proper depends only on the induced map of 0-truncated spectral
Deligne-Mumford stacks pX , π0 OX q Ñ pY, π0 OYq. If pX ,OX q and pY,OYq are spectral
algebraic spaces, then f is proper if and only if the induced map pX , π0 OX q Ñ pY, π0 OYq

is proper when regarded as a map of algebraic spaces, in the sense of [117].

Warning 5.1.2.3. When restricted to 0-truncated, 1-localic spectral Deligne-Mumford
stacks, Definition 5.1.2.1 does not recover the usual notion of proper morphism between
ordinary Deligne-Mumford stacks (because Definition 5.1.2.1 requires that the diagonal of a
proper morphism X Ñ Y is a closed immersion). It is possible to introduce a less restrictive
version of Definition 5.1.2.1, which agrees with the usual notion of proper morphism in the
classical case. However, this more general concept of properness will not be needed in this
book.

Example 5.1.2.4. Let f : X Ñ Y be a closed immersion of spectral Deligne-Mumford
stacks. Then f is proper.

5.1.3 Pullbacks of Proper Morphisms

We now study the behavior of proper morphisms under base change.

Proposition 5.1.3.1. Suppose we are given a pullback diagram

X1 //

f 1

��

X
f
��

Y1 g // Y

of spectral Deligne-Mumford stacks. Then:

paq If f is proper, then f 1 is also proper.

pbq If f 1 is proper, f is separated, and g is a flat covering (Definition 2.8.3.1), then f is
proper.

Proof. Assertion paq follows from the fact that the collections of separated, locally finite
type, quasi-compact, and universally closed morphisms are stable under pullbacks (Remark
3.2.1.4, Proposition 4.2.1.6, Proposition 2.3.3.1, and Remark 5.1.1.3). Let us prove pbq.
Assume that f 1 is proper, f is separated, and that g is a flat covering. We wish to prove that
f is proper. It follows from Proposition 4.2.1.5 that f is locally of finite type. We wish to
show that f is quasi-compact and universally closed. In other words, we wish to show that
for any map Y0 Ñ Y where Y0 is affine, the fiber product X0 “ Y0ˆY X is quasi-compact
and the projection map |X0 | Ñ |Y0 | is closed. Since g is a flat covering, we can choose an
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étale map Y10 Ñ Y1ˆY Y0 where Y10 is affine and the map Y10 Ñ Y0 is flat and surjective.
Set X10 “ Y10ˆY X. Since f 1 is quasi-compact, we conclude that X10 is quasi-compact, so that
X0 is quasi-compact by virtue of Proposition 2.3.3.1. We have a commutative diagram of
topological spaces

|X10 |
ψ //

φ1

��

|X0 |

φ

��
|Y10 |

ψ1 // |Y0 |.

Let K Ď |X0 | be closed; we wish to show that φpKq Ď |Y0 | is closed. Since ψ´1K is a
closed subset of |X10 |, our hypothesis that f 1 is proper guarantees that φ1pψ´1Kq is a closed
subset of | SpecR|. Corollary 3.6.3.2 gives ψ1´1pφpKqq “ φ1pψ´1Kq, so that ψ1´1pφpKqq is a
closed subset of |Y10 |. Since ψ1 is a quotient map (Proposition 3.6.3.6), we conclude that
φpKq is a closed subset of |Y0 | as desired.

Corollary 5.1.3.2. The condition that a morphism f : X Ñ Y be proper is local on the
target with respect to the étale topology. That is, if we are given an étale surjection for which
the projection map XˆY Y1 Ñ Y1 is proper, then f is proper.

Proof. Combine Remark 3.2.1.4 with Proposition 5.1.3.1.

Remark 5.1.3.3. Suppose we are given a collection of proper morphisms tfα : Xα Ñ Yαu.
Then the induced map >Xα Ñ >Yα is proper.

5.1.4 Composition of Proper Morphisms

We conclude this section by studying the behavior of proper morphisms under composi-
tion.

Proposition 5.1.4.1. Suppose we are given a commutative diagram of spectral Deligne-
Mumford stacks

X f //

  

Y

g~~
Z .

Then:

p1q If f and g are proper, then g ˝ f is proper.

p2q If g ˝ f is proper and g is separated, then f is proper.

p3q If g ˝ f is proper, g is separated and locally of finite type, and f is surjective, then g is
proper.
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Proof. We first prove p1q. Assume that f and g are proper. Using Remark 3.2.1.6, Proposition
2.3.5.1, and Proposition 4.1.3.1, we see that g ˝ f is separated, quasi-compact, and locally
of finite type. It will therefore suffice to show that g ˝ f is universally closed. Choose a
morphism Z0 Ñ Z, where Z0 is quasi-separated spectral algebraic space; we wish to show
that the composite map

|Z0ˆZ X | φÝÑ |Z0ˆZ Y | ψÝÑ |Z0 |

is closed. This is clear: our assumption that f is universally closed guarantees that φ is
closed, and our assumption that g is universally closed guarantees that ψ is closed.

We now prove p2q. Assume that g is separated and that g ˝ f is proper. The map f

factors as a composition

X f 1
Ñ XˆZ Y f2

Ñ Y .

The map f2 is a pullback of g ˝ f and therefore proper (Proposition 5.1.3.1). The map f 1 is
a pullback of the diagonal map Y Ñ YˆZ Y, and is therefore a closed immersion by virtue
of our assumption that g is separated. It follows that f 1 is proper (Example 5.1.2.4), so that
f “ f2 ˝ f 1 is proper by assertion p1q.

We now prove p3q. The assertion is local on Z, so we may assume without loss of generality
that Z “ SpétR is affine. Then X is quasi-compact. Since f is surjective, we deduce that Y
is quasi-compact (Proposition 2.3.3.1), so that the morphism g is quasi-compact. We will
complete the proof by showing that g is universally closed. Let R1 be a connective R-algebra;
we wish to show that the map | SpétR1 ˆSpétR Y | Ñ | SpecR1| is closed. Replacing Z by
SpétR1, we are reduced to proving that the map |Y | Ñ |Z | is closed. Let K Ď |Y | be a
closed subset. Since f is surjective, and g˝f is proper, we deduce that gpKq “ pg˝fqpf´1Kq

is a closed subset of |Z |, as desired.

5.2 Finite Morphisms

Let f : X Ñ Y be a morphism of schemes. Recall that f is said to be finite if, for
every map SpecAÑ Y , the fiber product X ˆY SpecA is isomorphic to an affine scheme
SpecB, where B is finitely generated as an A-module. This notion admits a straightforward
extension to the setting of spectral algebraic geometry:

Definition 5.2.0.1. Let f : pX ,OX q Ñ pY,OYq be a morphism of spectral Deligne-Mumford
stacks. We will say that f is finite if it satisfies the following pair of conditions:

p1q The morphism f is affine.

p2q The pushforward f˚OX is perfect to order 0 (as a quasi-coherent sheaf on pY,OYq).
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Remark 5.2.0.2. Let f : pX ,OX q Ñ pY,OYq be a morphism of spectral Deligne-Mumford
stacks. Then f is finite if and only if the induced map f0 : pX , π0 OX q Ñ pY, π0 OYq is finite
(see Remark 2.4.4.2). In particular, a morphism of spectral algebraic spaces is finite if and
only if it induces a finite morphism between the underlying ordinary algebraic spaces, in the
sense of classical algebraic geometry.

5.2.1 Finite Morphisms and Proper Morphisms

Definitions 5.2.0.1 and 5.1.2.1 are closely related:

Proposition 5.2.1.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
The following conditions are equivalent:

p1q The morphism f is finite.

p2q The morphism f is proper and locally quasi-finite.

p3q The morphism f is proper and quasi-affine.

p4q The morphism f is proper and affine.

The proof of Proposition 5.2.1.1 depends on the following bit of commutative algebra:

Proposition 5.2.1.2 (“Lying Over”). Let f : RÑ R1 be a homomorphism of commutative
rings. Suppose that f is injective and integral (that is, every element of R1 is integral over
R). Then the induced map | SpecR1| Ñ | SpecR| is surjective.

Proof. Let p be a prime ideal of R; we wish to show that p lies in the image of the map
| SpecR1| Ñ | SpecR|. Replacing R by the localization Rp (and R1 by the ring Rp bR R

1),
we may assume that R is a local ring and that p is its maximal ideal. We wish to show that
there is a prime ideal of R1 which lies over p: in other words, that the quotient R1{pR1 is
not zero. Assume otherwise: then pR1 “ R1. We can therefore choose a finitely generated
R1-subalgebra R2 Ď R1 such that pR2 “ R2. Since every element of R1 is integral over R,
the ring R2 is finitely generated as an R-module. Applying Nakayama’s lemma, we deduce
that R2 » 0. Since the composite map RÑ R2 Ñ R1 is injective, we conclude that R » 0,
contradicting our assumption that R is local.

Corollary 5.2.1.3. Let f : AÑ B be a morphism of connective E8-rings. The following
conditions are equivalent:

paq Every element of the commutative ring π0B is integral over π0A.

pbq The induced map SpétB Ñ SpétA is universally closed. In other words, for every
connective A-algebra A1, the induced map of topological spaces |SpecA1 bA B| Ñ
|SpecA1| is closed.
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Proof. We first show that paq ñ pbq. Replacing A and B by A1 and B1, it will suffice to
show that condition paq implies that the map φ : |SpecB| Ñ | SpecA| is closed. Let K be a
closed subset of | SpecB|; we wish to show that φpKq Ď |SpecA| is closed. Write K as the
image of |SpecB{I| for some ideal I Ď B. Set J “ f´1pIq Ď A. We wish to show that the
composite map K » |SpecB{I| φ0

ÝÑ | SpecA{J | ψÝÑ |SpecA| has closed image. This is clear,
since ψ has closed image and the map φ0 is surjective by virtue of Proposition 5.2.1.2.

We now show that pbq implies paq. Assume that f satisfies condition pbq and let x be an
element of π0B; we wish to show that x is integral over π0A. Since f is universally closed,
the map

| Specpπ0Bqrys| » |Specpπ0Aqrys bA B| Ñ |Specpπ0Aqrys|

is closed. Set R “ pπ0Bqrx
´1s, so that we can identify R with the quotient of pπ0Bqrys by the

ideal generated by the element 1´ xy. It follows that the map |SpecR| Ñ |Specpπ0Aqrys|

has closed image, which can be described as the vanishing locus of some ideal J Ď pπ0Aqrys.
Note that K does not intersect the vanishing locus of the principal ideal pyq Ď pπ0Aqpyq

(since the image of y in R is invertible), so that J and pyq generate the unit ideal in pπ0Aqrys.
It follows that J contains some polynomial of the form 1 ` a1y ` ¨ ¨ ¨ ` any

n, where the
coefficients ai belong to π0A. Raising this polynomial to a suitable power, we may assume
that its image in R vanishes: that is, we have 1`a1x

´1`¨ ¨ ¨`anx
´n “ 0 in R “ pπ0Bqrx

´1s.
It follows that It follows that xm`n ` a1x

m`n´1 ` ¨ ¨ ¨ ` anx
m vanishes in π0B for m " 0, so

that x is integral over π0A as desired.

Proof of Proposition 5.2.1.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford
stacks. Note that each of the conditions appearing in the statement of Proposition 5.2.1.1 can
be tested locally on Y; we may therefore assume without loss of generality that Y » SpétA
is affine.

We first show that p1q ñ p2q. Assume that f is finite, so that X » SpétB for some
connective E8-ring B for which π0B is finitely generated as a module over π0A. We claim
that f is proper. It is clear that f is quasi-compact, separated, and locally of finite type. We
claim that it is universally closed: that is, for every connective A-algebra A1, the induced
map of topological spaces | SpecpA1 bA Bq| Ñ |SpecA1| is closed. This is an immediate
consequence of Corollary 5.2.1.3 (since every element of π0pA

1 bA Bq » Torπ0A
0 pπ0A

1, π0Bq

is integral over π0A
1). To complete the proof of the implication p1q ñ p2q, it suffices to

observe that every finite morphism of commutative rings is quasi-finite (Example B.2.4.4).
The implication p2q ñ p3q follows from Theorem 3.3.0.2. We next show that p3q ñ p4q.

Assume that f is proper and quasi-affine, so there exists a quasi-compact open immersion
j : X Ñ SpétB for some connective E8-algebra B over A. The projection map SpétA Ñ
SpétR is separated, so that j induces a closed immersion γ : X Ñ XˆSpétA SpétB. Since f
is proper, the canonical map |XˆSpétA SpétB| Ñ |SpétB| is closed. It follows that j has
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closed image in the topological space | SpétB| » |SpecB|, so that j is a clopen immersion
and therefore X is affine.

We now complete the proof by showing that p4q ñ p1q. Assume that f is proper and
affine, so that we can write X “ SpétB for some connective E8-ring B. Since f is locally of
finite type, the commutative ring π0B is finitely generated as an algebra over π0A. Corollary
5.2.1.3 shows that every element of π0B is integral over π0A, so that π0B is also finitely
generated as a π0A-module.

5.2.2 Stronger Finiteness Conditions

Let f : AÑ B be a homomorphism of commutative rings which exhibits B as a finitely
generated A-module. Then B is finitely presented as an A-module if and only if it is finitely
presented as an A-algebra. This observation generalizes to the setting of spectral algebraic
geometry:

Proposition 5.2.2.1. Let f : X “ pX ,OX q Ñ Y be a finite morphism of spectral Deligne-
Mumford stacks and let n ě 0. The following conditions are equivalent:

p1q The morphism f is locally finitely n-presented (Definition 4.2.3.1)

p2q The direct image f˚OX is finitely n-presented as an object of QCohpYq (Definition
2.8.4.4).

Corollary 5.2.2.2. Let f : X “ pX ,OX q Ñ Y be a finite morphism of spectral Deligne-
Mumford stacks. The following conditions are equivalent:

p1q The morphism f is locally almost of finite presentation.

p2q The direct image f˚OX is almost perfect as an object of QCohpYq.

Corollary 5.2.2.3. Let φ : AÑ B be a morphism of commutative rings. Then the following
conditions are equivalent:

paq The morphism φ is almost of finite presentation when regarded as a morphism of
E8-rings.

pbq The morphism φ factors as a composition AÑ Arx1, . . . , xns
φ1
ÝÑ B, where φ exhibits

B as an almost perfect module over Arx1, . . . , xns.

Proof. Suppose first that pbq is satisfied. Corollary 5.2.2.2 implies that the map φ1 :
Arx1, . . . , xns Ñ B is almost of finite presentation, so we are reduced to showing that
the map A Ñ Arx1, . . . , xns is almost of finite presentation. Since the condition of being
almost of finite presentation is stable under base change, we may assume without loss of
generality that A “ Z, in which case the desired result follows from Theorem HA.7.2.4.31 .
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Now suppose that paq is satisfied. Then B is of finite type over A, so there exists a
surjection of A-algebras φ1 : Arx1, . . . , xns Ñ B. Since B and Arx1, . . . , xns are both almost
of finite presentation over A, the morphism φ1 is almost of finite presentation (Corollary
HA.7.4.3.19 ). It follows from Corollary 5.2.2.2 that φ1 exhibits B as an almost perfect
Arx1, . . . , xns-module, so that condition pbq is satisfied.

Remark 5.2.2.4. In the language of [101], Corollary 5.2.2.3 asserts that φ is almost of
finite presentation if and only if the induced map of affine schemes SpecB Ñ SpecA is
pseudo-coherent.

Corollary 5.2.2.5. Let f : AÑ B be a morphism of connective E8-rings which exhibits A
as a square-zero extension of B by a connective B-module M . If M is almost perfect as a
B-module, then f is almost of finite presentation.

Proof. By virtue of Corollary 5.2.2.2, it will suffice to show that B is almost perfect as an
A-module. We argue that, for every integer n ě 0, B is perfect to order n as an A-module.
The proof proceeds by induction on n. The case n “ 0 is trivial (since the map π0AÑ π0B

is surjective). To carry out the inductive step, let us assume n ą 0 and that B is perfect to
order pn´ 1q as an A-module. It follows from Proposition 2.7.3.3 that M is also perfect to
order pn´ 1q as an A-module. The cofiber sequence of A-modules A Ñ B Ñ ΣpMq then
shows that B is perfect to order n as an A-module, as desired.

The proof of Proposition 5.2.2.1 will require the following category-theoretic fact:

Lemma 5.2.2.6. Let C be a symmetric monoidal 8-category which admits filtered colimits,
and suppose that the tensor product b : Cˆ C Ñ C preserves filtered colimits. Let A P

CAlgpCq. Assume that C is equivalent to an n-category for some integer n ě 1, and that
each tensor power Abm is a compact object of C. Then A is a compact object of CAlgpCq.

Proof. Let P be a filtered partially ordered set, let PŹ be the partially ordered set obtained
from P by adjoining a new largest element which we will denote by ω, and suppose we are
given a diagram B : NpPŹq Ñ CAlgpCq. We wish to prove that the canonical map

lim
ÝÑ
αPP

MapCAlgpCqpA,Bpαqq Ñ MapCAlgpCqpA,Bpωqq

is a homotopy equivalence.
For each element α P PŹ, we let PŹěα denote the subset of PŹ consisting of elements

which are ě α, and let Běα be the restriction of B to NpPŹěαq. Let Commb denote the
commutative 8-operad, and let q : Cb Ñ Commb exhibit Cb as a symmetric monoidal
8-category. Since C is equivalent to an n-category, we may assume without loss of generality
that the simplicial set Cb is pn` 2q-coskeletal.
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For each index α P PŹ, let Cpαqb denote the 8-operad Cb
{Běα

Commb
described in Theorem

HA.2.2.2.4 , so that we have canonical equivalences

CAlgpCpαqq » CAlgpCq{Běα » CAlgpCq{Bpαq

for each α P PŹ. We are therefore reduced to proving that the canonical map

lim
ÝÑ
αPP

CAlgpCpαqq ˆCAlgpCq tAu Ñ CAlgpCpωqq ˆCAlgpCq tAu

is a homotopy equivalence.
For each α in PŹ, let Bpαqb denote the fiber product CommbˆCb Cpαqb. We wish to

prove that the canonical map lim
ÝÑαPP

CAlgpBpαqq Ñ CAlgpBpωqq is a homotopy equivalence.
Since the pn`2q-skeleton of Commb is a finite simplicial set, the construction Db ÞÑ CAlgpDq
commutes with filtered colimits when restricted to8-operads which are pn`2q-coskeletal. We
are therefore reduced to proving that the map θ : lim

ÝÑαPP
Bpαqb Ñ Bpωqb is an equivalence

of 8-operads. This follows easily from our assumption that each tensor power Abm is
compact when regarded as an object of C.

Proof of Proposition 5.2.2.1. Let f : X “ pX ,OX q Ñ Y be a finite morphism of spectral
Deligne-Mumford stacks; we wish to show that f is locally finitely n-presented if and only if
the direct image f˚OX P QCohpYq is finitely n-presented. Both assertions can be tested
locally on Y, so we may assume without loss of generality that Y » SpétA is affine. Since f is
finite, we can write X » SpétB for some connective E8-algebra B over A. Suppose first that
f is locally almost of finite presentation; we wish to show that B is finitely n-presented as an
A-module. Write A as a filtered colimit lim

ÝÑ
Aα, where each Aα is a compact object of CAlgcn

and therefore Noetherian. Using Corollary ??, we can choose an index α and an equivalence
B » τďnpA bAα Bαq, where Bα is finitely n-presented over Aα. Let x1, . . . , xn P π0Bα be
a collection of elements which generate π0Bα as an algebra over π0Aα. Let xi denote the
image of xi in π0B. Since π0B is a finitely generated module over π0A, each xi is integral
over π0A and therefore is therefore the solution to some polynomial equation f ipxiq “ 0
where the coefficients of f i lie in π0A. Enlarging α if necessary, we can assume that each f i
can be lifted to a polynomial fi having coefficients in π0Aα and that fipxiq “ 0. It follows
that each xi is integral over π0Aα, so that π0Bα is finitely generated as a module over π0Aα.
We may therefore replace A by Aα and B by Bα, thereby reducing to the case where A is
Noetherian. In this case, B is also Noetherian. It follows that each homotopy group πiB

is finitely generated as a module over π0B, and therefore also as a module over π0A (since
π0B is a finitely generated π0A-module). It follows from Corollary 2.7.2.3 that B is finitely
n-presented over A, as desired.

Now suppose that B is finitely n-presented as an A-module; we wish to show that f is
locally finitely n-presented. Let C denote the full subcategory of ModA spanned by those
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A-modules which are connective and n-truncated. Note that C inherits a symmetric monoidal
structure, whose tensor product is given by the construction pM,Nq ÞÑ τďnpM bANq. Then
B is compact when viewed as an object of C, and we wish to show that B is compact when
viewed as an object of CAlgpCq. This follows from Lemma 5.2.2.6, since C is equivalent to
an pn ` 1q-category and the collection of compact objects of C is stable under the tensor
product on C.

5.2.3 Finite Flat Morphisms

We close this section by introducing the class of finite flat morphisms between spectral
Deligne-Mumford stacks.

Definition 5.2.3.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. We
will say that f is finite flat if f is finite and the direct image f˚OX P QCohpYq is locally
free of finite rank (see Notation 2.9.3.1). We will say that f is finite flat of degree d if it is
finite flat and the direct image f˚OX is locally free of rank d.

Example 5.2.3.2. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. If f
is finite étale of degree d (Definition 3.3.2.3), then it is finite flat of degree d.

Proposition 5.2.3.3. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Then f is finite flat (in the sense of Definition 5.2.3.1) if and only if f is proper, flat, locally
quasi-finite, and locally almost of finite presentation over Y.

Proof. Suppose first that f is finite flat. Then f is finite, hence proper and locally quasi-finite
(Proposition 5.2.1.1). Since f is affine and the direct image f˚OX is flat, we conclude that f
is flat. Finally, f is locally almost of finite presentation because f˚OX P QCohpYq is almost
perfect (Corollary 5.2.2.2).

For the converse, suppose that f is proper, flat, locally quasi-finite, and locally almost of
finite presentation over Y. Then f is finite (Proposition 5.2.1.1), and in particular affine.
The flatness of f then guarantees that A “ f˚OX is flat. Moreover, our assumption that f
is locally almost of finite presentation guarantees that f˚OX is almost perfect. Applying
Proposition HA.7.2.4.20 , we deduce that A is locally free of finite rank.

Warning 5.2.3.4. The hypothesis that f be locally almost of finite presentation is necessary
in Proposition 5.2.3.3. A morphism f : X Ñ Y which is both finite and flat need not be
finite flat. For example, if X is a totally disconnected compact Hausdorff space, R is the
commutative ring of locally constant C-valued functions on X, and ε : RÑ C is the map
given by evaluation at some point x P X, then the induced map Spét C Ñ SpétR is both
finite and flat, but exhibits C as a projective R-module only when x is an isolated point of
X (otherwise, the field C is not finitely presented over R).
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Remark 5.2.3.5. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 //

f 1

��

X
f
��

Y1 // Y .
If f is finite flat (of degree d), then f 1 is finite flat (of degree d). The converse holds if g is a
flat covering.

Remark 5.2.3.6. Let f : X Ñ Y and g : Y Ñ Z be morphisms of spectral Deligne-Mumford
stacks. If f is finite flat (of degree d) and g is finite flat (of degree d1), then the composition
g ˝ f is also finite flat (of degree dd1). To prove this, we can assume without loss of generality
that Z » SpétA is affine, so that Y » SpétB for some E8-algebra which is locally free of
rank d1 as an A-module, and X » SpétC for some E8-algebra C which is locally free rank d
as a B-module; it then follows that C is locally free of rank dd1 as an A-module.

5.3 Valuative Criteria

Let f : X Ñ Y be a morphism of schemes which is separated and of finite type. According
to the valuative criterion of properness, the morphism f is proper if and only if it satisfies
the following condition:

p˚q For every valuation ring V with fraction field K and every commutative diagram

SpecK //

��

X

f

��
SpecV //

;;

Y,

there exists a dotted arrow as indicated, rendering the diagram commutative (since f
is separated, the dotted arrow is essentially unique).

Our goal in this section is to prove the following analogue in the setting of spectral
Deligne-Mumford stacks:

Theorem 5.3.0.1 (Valuative Criterion for Properness). Let f : X Ñ Y be a quasi-compact,
separated map of spectral Deligne-Mumford stacks which is locally of finite type. Then f is
proper if and only if the following condition is satisfied:

p˚q For every valuation ring V with fraction field K and every commutative diagram

SpétK //

��

X

��
SpétV //

;;

Y,
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there exists a dotted arrow as indicated, rendering the diagram commutative.

Moreover, if Y is locally Noetherian, then it suffices to verify condition p˚q in the special
case where V is a discrete valuation ring.

Remark 5.3.0.2. In the statement of Theorem 5.3.0.1, there is no loss of generality in
assuming that Y is a spectral algebraic space (or even that Y is affine), in which case X is
also a spectral algebraic space. In this case, the condition that f : X Ñ Y is proper depends
only on the underlying map f0 : τď0 X Ñ τď0 Y of ordinary algebraic spaces. Consequently,
Theorem 5.3.0.1 follows immediately from the analogous statement for ordinary algebraic
spaces (see [129] for a more general statement, which does not require that the diagonal of
f is a closed immersion).

5.3.1 The Valuative Criterion for Separatedness

Before giving the proof of Theorem 5.3.0.1, let us describe some easy consequences:

Proposition 5.3.1.1 (Valuative Criterion for Separatedness). Let f : X Ñ Y be a quasi-
separated map of spectral Deligne-Mumford stacks which represent functors X,Y : CAlgcn Ñ

S. Assume that f is a relative spectral algebraic space (that is, that the induced map
XpRq Ñ Y pRq has discrete homotopy fibers, for every commutative ring R). The following
conditions are equivalent:

p1q The map f is separated.

p2q The diagonal map δ : X Ñ XˆY X is proper.

p3q For every valuation ring V with fraction field K, the canonical map XpV q Ñ XpKqˆY pKq
Y pV q is p´1q-truncated (that is, it is the inclusion of a summand).

Moreover, if f is locally of finite type and Y is locally Noetherian, then it suffices to verify
condition p3q in the special case where V is a discrete valuation ring.

Proof. The implication p1q ñ p2q is immediate (since any closed immersion is proper).
Let Z “ XˆY X, and let δ1 : X Ñ XˆZ X be the diagonal of the map δ. Since f is a
relative spectral algebraic space, the map δ1 induces an equivalence between the underlying
0-truncated spectral Deligne-Mumford stacks, and is therefore a closed immersion. It follows
that δ is separated. Since X is quasi-separated, the map δ is quasi-compact. Since δ admits
a left homotopy inverse, it is locally of finite type. Using Theorem 5.3.0.1, we see that δ is
proper if and only if the following condition is satisfied:

p21q Let Z : CAlgcn Ñ S be the functor represented by Z. Then, for every valuation ring
V with fraction field K, the canonical map XpV q Ñ XpKq ˆZpKq ZpV q is surjective
on connected components.
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The equivalence p21q ô p3q now follows by inspection.
Write Z “ pZ,OZq and Z0 “ pZ, π0 OZq. Note that δ is proper if and only if the induced

map XˆZ Z0 Ñ Z0 is proper. If f is locally of finite type and Y is locally Noetherian, then
Z0 is locally Noetherian. Using Theorem 5.3.0.1, we deduce that δ is proper if and only if
condition p21q is satisfied whenever V is a discrete valuation ring (which is equivalent to the
requirement that p3q is satisfied whenever V is a discrete valuation ring).

To complete the proof, it will suffice to show that p2q ñ p1q. Assume that δ is proper.
Since δ is locally quasi-finite, we conclude that δ is finite (Proposition 5.2.1.1). Choose a
map SpétRÑ Z, so that XˆZ SpétR » SpétR1 for some R-algebra R1. We wish to prove
that the underlying map of commutative rings π0RÑ π0R

1 is surjective. Replacing R by
π0R, we may assume that R is a commutative ring. Since a map of discrete R-modules
M Ñ N is surjective if and only if it surjective after localization at any prime ideal p of
R, we may replace R by Rp and thereby reduce to the case where R is local. Since π0R

1

is finitely generated as a module over R, we may use Nakayama’s lemma to replace R by
its residue field and thereby reduce to the case where R is a field κ. Then π0R

1 is a finite
dimensional algebra over κ. We will complete the proof by showing that the dimension of
π0R

1 is ď 1. For this, it suffices to show that the inclusion of the first factor induces an
isomorphism

π0R
1 Ñ pπ0R

1q bκ pπ0R
1q » π0pR

1 bκ R
1q.

This follows immediately from our observation that δ1 induces an equivalence on the under-
lying 0-truncated spectral Deligne-Mumford stacks.

Corollary 5.3.1.2. Let f : X Ñ Y be a map of quasi-compact, quasi-separated morphism
of spectral Deligne-Mumford stacks which is locally of finite type. Let X,Y : CAlgcn Ñ S
denote the functors represented by X and Y, and suppose that f is a relative spectral algebraic
space. Then f is proper if and only if, for every valuation ring V with fraction field K,
the induced map XpV q Ñ XpKq ˆY pKq Y pV q is a homotopy equivalence. Moreover, if Y is
locally Noetherian, then it suffices to verify this condition in the special case where V is a
discrete valuation ring.

Proof. Combine Theorem 5.3.0.1 with Proposition 5.3.1.1.

5.3.2 Interlude

We now review some commutative algebra which will be needed in the proof of Theorem
5.3.0.1.

Theorem 5.3.2.1 (Krull-Akizuki). Let R be a Noetherian integral domain of Krull dimen-
sion ď 1, let K denote the fraction field of R, and let R1 be the integral closure of R in K.
Then R1 is a Dedekind ring.
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Proof. We first show that R1 is Noetherian. Let I Ď R1 be an ideal; we wish to show
that I is finitely generated. If I “ p0q, there is nothing to prove. Otherwise, we can
choose some nonzero element x P I Ď R1. The element x is integral over R, so we have
xn` a1x

n´1` ¨ ¨ ¨ ` an “ 0 for some elements taiu1ďiďn in R. Choose n as small as possible,
so that an ‰ 0. Then t “ rn is a nonzero element of I XR.

Since R has Krull dimension ď 1, the quotient R{tR is an R-module of finite length. For
every R-module M of finite length, let `pMq denote the length of M . Note that if A Ď R1 is
a finitely generated R-subalgebra, then A is finitely generated as an R-module (since every
element of R1 is integral over R), so that A{tmA is a finitely generated module over R{tmR
and is therefore an R-module of finite length for each m ě 0. We have an exact sequence of
R-modules R{tmRÑ A{tmAÑ A{pR` tmAq Ñ 0, which gives inequalities

m`pA{tAq “ `pA{tmAq ď `pR{tmRq ` `pA{pR` tmAqq ď m`pR{tRq ` `pA{Rq.

Since R-module A{R has finite length (it is finitely generated and vanishes after extending
scalars to K), it follows that `pA{tAq ď `pR{tRq. In particular, the image of the map
A Ñ R1{tR1 is a module of finite length which is bounded above by an integer `pR{tRq
which does not depend on A. Writing R1 as a union of its finitely generated R-subalgebras,
we deduce that R1{tR1 is an R-module of finite length (bounded above by `pR{tRq. It
follows that the quotient I{tR1 is finitely generated as an R-module (and therefore also as
an R1-module), so that the ideal I is finitely generated as desired.

To complete the proof, we must show that the Noetherian ring R1 is a Dedekind ring.
Since R1 is integrally closed by construction, it will suffice to show that R1 has Krull dimension
ď 1. To prove this, it will suffice to show that if I Ď R1 is a prime ideal and t P R is chosen
as above, then I is minimal among prime ideals of R1 containing ptq. In fact, the quotient
R1{tR1 is an Artinian ring, since it of finite length as an R-module (and therefore also as an
pR1{tR1q-module).

Proposition 5.3.2.2. Let R be a commutative ring, let K be a field, and let φ : RÑ K be
a ring homomorphism. Let p Ď R be a prime ideal containing kerpφq. Then there exists a
valuation subring V Ď K (with fraction field K) such that φpRq Ď V and p “ φ´1m, where
m denotes the maximal ideal of V . Moreover, if R is Noetherian, p ‰ kerpφq, and K is
a localization of a finitely generated R-algebra, then we can arrange that V is a discrete
valuation ring.

Proof. We first treat the general case (where R is not assumed to be Noetherian). Replacing
R by the localization Rp, we may assume that R is a local ring with maximal ideal p. Let P
denote the partially ordered consisting of subrings A Ď K which contain φpRq and satisfy
pA ‰ A. Using Zorn’s lemma, we deduce that P has a maximal element, which we will
denote by V . We will show that V has the desired properties.
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We first claim that V is a local ring. Choose elements x, y P V with x ` y “ 1; we
must show that either x or y is invertible in V . Since V {pV ‰ 0, one of the localizations
pV {pV qrx´1s and pV {qV qry´1s must be nonzero. Without loss of generality, we may assume
that pV {qV qrx´1s ‰ 0, so that V rx´1s ‰ qV rx´1s. The maximality of V then implies that
V “ V rx´1s, so that x is invertible in V .

Let m denote the maximal ideal of V . Since pV is a proper ideal of V , we have pV Ď m

and therefore p Ď φ´1m. Since p is a maximal ideal of R, we conclude that p “ φ´1m.
We now complete the proof by showing that V is a valuation ring with fraction field

K. Let x be a nonzero element of K; we wish to show that either x or x´1 belongs to V .
If x´1 does not belong to V , then the subring V 1 Ď K generated by V and x´1 is strictly
larger than V and therefore satisfies V 1 “ pV 1. In particular, we can write 1 “

ř

0ďiďn cix
´i

for some coefficients ci P pV Ď m. Then xn “
ř

1ďiďn
ci

1´c0x
n´i so that x is integral over

V . If x does not belong to V , then the subring V 2 Ď K generated by V and x properly
contains V and is finitely generated as an V -module. The maximality of V implies that
V 2 “ pV 2. Using Nakayama’s lemma, we deduce that V 2 “ 0 and obtain a contradiction.
This completes the proof of the first assertion.

Now suppose that R is Noetherian, p ‰ kerpφq, and that K is finitely generated over R.
Replacing R by its image in K, we may suppose that R is a subring of K. Let x1, . . . , xn P K

be a transcendence basis for K over the fraction field of R. Replacing R by Rrx1, . . . , xns

and p by prx1, . . . , xns, we may reduce to the case where K is a finite algebraic extension of
the fraction field of R. Replacing R by the localization Rp, we may assume that R is a local
ring with maximal ideal p. Since R is Noetherian, we can choose a finite set of generators
y1, . . . , ym P p for the ideal p. For 1 ď i ď m, let Ri denote the subring of K generated by
R together with the elements yj

yi
. We now claim:

p˚q There exists 1 ď i ď m such that yi is not invertible in Ri.

Suppose that p˚q is not satisfied: that is, y´1
i P Ri for every index i. Then each y´1

i can be
written as a polynomial (with coefficients in R) in the variables yj

yi
. Clearing denominators,

we deduce that there exists an integer a such that yai P pa`1 for every index i. It follows
that pb Ď pb`1 for b ą apm ´ 1q. Since R is Noetherian with maximal ideal p, the Krull
intersection theorem (Corollary 7.3.6.10) implies that

Ş

bě0 p
b “ 0, so that pb “ 0 for

b ą apm ´ 1q. In particular, p consists of nilpotent elements of R. Since R Ď K is an
integral domain, we deduce that p “ 0, contradicting our assumption that p ‰ kerpφq. This
completes the proof of p˚q.

Using p˚q, let us choose an index i such that yi is not invertible in Ri. Let q be minimal
among prime ideals of Ri which contain yi. Then q contains each yj , so that qXR contains
p. Since p is a maximal ideal of R, we deduce that qX R “ p. We may therefore replace
R by pRiqq (which is Noetherian, since it is finitely generated over R) and thereby reduce
to the case where the prime ideal p of R is minimal among prime ideals containing some
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element x P R. It follows that R is a local Noetherian ring of dimension ď 1 (Theorem
B.2.1.2). Let R1 denote the integral closure of R in K, so that R1 is a Dedekind domain
(Theorem 5.3.2.1). Since R1 is integral over R, the maximal ideal p of R can be lifted to
a maximal ideal p1 of R1 (Proposition 5.2.1.2). Then V “ R1p1 is a discrete valuation ring
having the desired properties.

Lemma 5.3.2.3. Let V and tWiu1ďiďn be valuation rings having the same fraction field K.
If Wi Ę V for 1 ď i ď n, then

Ş

Wi Ę V .

Proof. Set R “ V X
Ş

1ďiďnWi. Let p Ď R denote the inverse image of the maximal ideal
of V , and for 1 ď i ď n let qi Ď R denote the inverse image of the maximal ideal of Wi. We
will show that p Ę qi for 1 ď i ď n. It then follows from prime avoidance that there exists
an element x P p which does not belong to any qi. Then 1

x P K belongs to each Wi but does
not belong to V .

It remains to show that p Ę qi. To prove this, choose an element y PWi which does not
belong to V . We claim that there exists an integer d such that y´1

yd´1 belongs to qi but does
not belong to p (note that y R V guarantees that y is not a root of unity in K, so that y´1

yd´1
is well-defined). To guarantee this, it will suffice to ensure the following:

paq The element y´1
yd´1 belongs to V and to each Wi (and is therefore an element of A).

pbq The product y y´1
yd´1 belongs to V .

Note that y´1
yd´1 has a multiplicative inverse yd´1` ¨ ¨ ¨ ` 1 PWi, and therefore cannot belong

to the prime ideal qi. On the other hand, if paq and pbq are satisfied, then y´1
yd´1 does belong

to p: otherwise, it would be an invertible element of the valuation ring V , so that pbq would
imply y P V . We now complete the proof by observing that conditions paq and pbq are
satisfied for any d ě 2 for which y does not represent a dth root of unity in the residue field
of any of the valuation rings V , tWiu1ďiďn to which it belongs.

Proposition 5.3.2.4. Let V be a valuation ring with maximal ideal m and fraction field
K, let K 1 be a finite product of finite algebraic extension fields of K, and let R be a subring
of K 1 containing V . Then there are at most finitely many prime ideals q Ď R such that
qX V “ m.

Proof. Write K 1 “
ś

1ďiďmKi, where each Ki is finite algebraic extension field of K. For
1 ď i ď n, let pi Ď R denote the kernel of the composite map R ãÑ K 1 Ñ Ki. Note that
every prime ideal q Ď R contains one of the prime ideals pi (otherwise, we could choose
elements xi P pi ´ q for 1 ď i ď m, in which case we have 0 “

ś

1ďiďm xi R q). It will
therefore suffice to show that for 1 ď i ď m, there are only finitely many prime ideals q Ď R
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such that pi Ď q and qX V “ m. To prove this, we can replace K 1 by Ki and R by its image
in Ki, and thereby reduce to the case where K 1 is a finite algebraic extension of K.

If K is a field of characteristic p, let Kperf denote the perfect closure of K, given as the
direct limit of the sequence K x ÞÑxp

ÝÝÝÑ K
x ÞÑxp
ÝÝÝÑ K Ñ ¨ ¨ ¨ , and define K 1perf , V perf and Rperf

similarly. Then we have a commutative diagram

|SpecRperf | //

��

| SpecR|

��
| SpecV perf | // | SpecV |

where the horizontal maps are bijective. We may therefore replace K by Kperf in the
statement of Corollary 5.3.2.4, and thereby reduce to the case where K is perfect. Then K 1

is a separable extension of K. Enlarging K 1 if necessary, we may assume that K 1 is a Galois
extension of K with Galois group G.

For every prime ideal q Ď R, there exists a valuation ring V 1 Ď K 1 with fraction field K 1

and maximal ideal m1 such that R Ď V 1 and q “ RXm1 (Proposition 5.3.2.2). In particular,
it follows that m “ m1 X V , so we can recover V as V 1 XK. We will complete the proof by
showing that there are only finitely many such valuation rings V 1 Ď K 1. More precisely, we
claim that if W0 and W1 are valuation rings in K 1 satisfying W0 XK “W1 XK, then W0
and W1 are conjugate by the action of the Galois group G. To prove this, we first note that
if gpW0q ĘW1 for all g P G, then Lemma 5.3.2.3 supplies an element x P

Ş

gPG gpW0q which
does not belong to W1. This is a contradiction, since the product

ś

gPG gpxq belongs to
W0 XK but not to W1 XK. We therefore have gpW0q ĎW1 for some g P G, and similarly
hpW1q ĎW0 for some h P G. This yields a chain of inclusions

W0 Ě hpW1q Ě hgpW0q Ě hghpW1q Ě ¨ ¨ ¨ Ě phgq
npW0q “W0,

where n denotes the order of the element hg P G. It follows that equality holds throughout,
so that W1 and W0 are conjugate by the action of G.

5.3.3 The Proof of Theorem 5.3.0.1

Fix a morphism f : X Ñ Y of spectral Deligne-Mumford stacks which is separated,
quasi-compact, and locally of finite type. We wish to show that f is proper if and only if it
satisfies the valuative criterion:

p˚q For every valuation ring V with fraction field K and every commutative diagram

SpétK //

��

X

��
SpétV //

;;

Y,
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there exists a dotted arrow as indicated, rendering the diagram commutative.

We first prove that condition p˚q is satisfied when f is proper. Without loss of generality,
we may replace Y by SpétV . Let K denote the fraction field of V ; we wish to show that if
f : X Ñ SpétV is proper, then every map φ : SpétK Ñ X (of spectral algebraic spaces over
V ) can be extended to a map SpétV Ñ X. The map φ determines a point η P |X |. Let Z
denote the smallest closed subset of |X | containing the point η. Let Z denote the reduced
closed substack of X corresponding to the subset Z.

Lemma 5.3.3.1. In the situation above, the composite map Z ãÑ X f
Ñ SpétV is locally

quasi-finite.

Proof. This assertion is local on X. Let us therefore choose an étale map g : SpétA Ñ X,
and set

SpétK ˆX SpétA » SpétK 1 ZˆX SpétA » SpétB.

Since g is étale, K 1 is a product
ś

1ďiďnKi of separable algebraic extension fields of K.
Similarly, SpétB Ñ Z is étale, so that B is a reduced commutative ring. By construction,
the map SpétK Ñ Z induces an injective map of commutative rings B ãÑ K 1. Since f is
locally of finite type, B is finitely generated as a commutative ring over V . To show that
Z Ñ SpétV is locally quasi-finite, we wish to that for every prime ideal p Ď V , there are
only finitely many prime ideals of B lying over p. Replacing V by Vp, we may reduce to
the case where p is the maximal ideal of V . In this case, the desired result follows from
Proposition 5.3.2.4.

Returning the proof of Theorem 5.3.0.1, we note that the map f |Z : Z Ñ SpétV is both
proper and locally quasi-finite. It follows that it is finite: that is, we can write Y » SpétR
for some commutative ring R which is finitely generated as a V -module (see Proposition
5.2.1.1). Moreover, the map SpétK Ñ Y induces an injection RÑ K. We may therefore
identify R with a subalgebra of K which is finitely generated as a module over V . Since
V is a valuation ring of K, it is integrally closed in K. It follows that R » V , so that the
inclusion Z ãÑ X gives the desired extension of φ.

Suppose now that p˚q is satisfied and that we are given a pullback diagram

X1 //

��

X

��
SpétR // Y;

we wish to prove that the induced map of topological spaces |X1 | Ñ | SpecR| is closed. Let
Z be a closed subset of |X1 | and let Z be the corresponding reduced closed substack of X1.
Choose an étale surjection SpétB Ñ Z (so that B is a reduced commutative ring) and let I
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denote the kernel of the induced map of commutative rings π0RÑ B. We will prove that
ψpZq Ď |SpecR| agrees with the image of the closed embedding | Specpπ0Rq{I| ãÑ |SpecR|.
To this end, let q be a prime ideal of π0R containing the ideal I; we wish to show that
q belongs to ψpZq. Using Zorn’s lemma, we see that there is a prime ideal p Ď q of
π0R which is minimal among prime ideals which contain I. The injection of commutative
rings pπ0Rq{I ãÑ B induces an injection ppπ0Rq{Iqp Ñ Bp, so that the localization Bp is
nonzero. It follows that Bp contains a prime ideal, which is the localization of a prime
ideal p1 Ď B. Note that the image of p1 in |SpecR| belongs to the image of the inclusion
| Specppπ0Rq{Iqp| ãÑ |SpecR|. By construction, the ring ppπ0Rq{Iqp contains a unique prime
ideal, whose image in | SpecR| coincides with p. It follows that the map |SpecB| Ñ | SpecR|
carries p1 to p.

Let K denote the fraction field of B{p1 and let ψ : π0RÑ K be the induced map. Using
Proposition 5.3.2.2, we can choose a valuation ring V Ď K with fraction field K and maximal
ideal m, such that ψ´1m “ q. This determines a commutative diagram

SpétK //

��

X1

��
SpétV //

i

99

SpétR.

Applying condition p˚q, we deduce the existence of a dotted arrow as indicated in the diagram.
Since the map SpétK Ñ X1 factors through the closed immersion Z ãÑ X1, the map i also
factors through Z. It follows that ψpY q contains the image of the map | SpecV | Ñ |SpecR|,
which includes the point q P |SpecR|. This completes the proof that f is proper.

Now let us assume that Y is locally Noetherian, and that condition p˚q is satisfied
whenever V is a discrete valuation ring. We wish to show that f is proper. The assertion is
local on Y; we may therefore assume that Y “ SpétR for some Noetherian E8-ring R. We
wish to show that for every pullback diagram

X1 //

��

X

��
SpétR1 // SpétR,

the induced map of topological spaces |X1 | Ñ |SpecR1| is closed. Using Remark 5.1.1.5,
we assume without loss of generality that R1 is Noetherian. Replacing R by R1, we are
reduced to proving that the map |X | Ñ |SpecR| is closed. The proof now proceeds as in
the previous case, using the second part of Proposition 5.3.2.2 to arrange that the valuation
ring V is actually discrete.
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5.4 Projective Spaces

For each n ě 0, the complex projective space CPn can be defined as the set of 1-
dimensional subspaces of the vector space Cn`1. The set CPn can be regarded as an
algebraic variety: more precisely, it can be identified with the set of C-valued points of a
smooth C-scheme Pn

C, which (by slight abuse of terminology) we also refer to as complex
projective space. In fact, this scheme can be defined over Z: that is, there exists a smooth
Z-scheme Pn

Z and an isomorphism Pn
C » Spec CˆSpec ZPn

Z. In the setting of spectral
algebraic geometry, one can ask for more:

Question 5.4.0.1. Can projective spaces be defined over the sphere spectrum? In other
words, can we write Pn

Z “ Spec ZˆSpecSPn
S for some spectral scheme Pn

S defined over S?

Our first goal in this section is to supply an affirmative answer to Question 5.4.0.1 by
means of an explicit construction (Construction 5.4.1.3). However, this answer comes with
some caveats:

paq The projective spaces Pn
S of Construction 5.4.1.3 are not as nicely behaved as their

classical counterparts. For example, projective spaces in classical algebraic geometry
are homogeneous: if k is a field, then for any two k-valued points x and y of Pn

Z, there
exists an automorphism of Pn

k “ Spec k ˆSpec Z Pn
Z which carries x to y. However, the

spectral schemes Pn
S are much more rigid: for example, one can define S-valued points

t0, 1,8u of P1
S , but there is no automorphism of P1

S which exchanges 0 and 1.

pbq The projective space Pn
Z can be characterized by a universal property: it represents a

functor F : CAlg♥ Ñ Set which assigns to each commutative ring R the collection of
all direct summands of Rn`1 which are locally free of rank 1. The functor F admits a
canonical extension F : CAlgcn Ñ S. However, the functor F is not represented by
the spectral scheme Pn

S of Construction 5.4.1.3 (the functor F is representable by a
spectral scheme Pn

sm, but Pn
sm is not flat over S: it follows that we cannot recover the

classical projective space Pn
Z as the fiber product Spec ZˆSpecSPn

sm).

Remark 5.4.0.2. In §19.2.6, we will describe a different notion of projective space in the
setting of spectral algebraic geometry which does not share problems paq and pbq (but suffers
from its own defects; see Remark 19.2.6.7.

5.4.1 Projective Spaces in Spectral Algebraic Geometry

We begin by introducing some definitions.

Notation 5.4.1.1. Let R be an E8-ring. For every space X, we let RrXs denote the R-
module given by RbΣ8`X. The construction X ÞÑ RrXs determines a symmetric monoidal
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functor S Ñ ModR. Consequently, it induces a functor CAlgpSq Ñ CAlgpModRq » CAlgR,
which we will also denote by X ÞÑ RrXs. In particular, if X is a commutative monoid
(regarded as a commutative algebra object of S by endowing X with the discrete topology),
then we can regard RrXs as an E8-algebra over R. We will refer to RrXs as the monoid
algebra of X over R.

Remark 5.4.1.2. Let R be an E8-ring and let X be a set (regarded a space equipped with
the discrete topology). Then we can identify RrXs with the coproduct

À

xPX R. If X has
the structure of a commutative monoid, then RrXs is a flat R-algebra, whose underlying
commutative ring π0RrXs can be identified with the monoid algebra pπ0RqrXs (in the sense
of classical commutative algebra).

Construction 5.4.1.3 (Projective Space). Let rns denote the set t0 ă 1 ă . . . ă nu, let
P prnsq denote the collection of all subsets of rns, and let P ˝prnsq Ď P prnsq denote the
collection of all nonempty subsets of rns. For every subset I Ď rns, set MI denote the
subset of Zn`1 consisting of those tuples pk0, . . . , knq satisfying k0 ` ¨ ¨ ¨ ` kn “ 0 and ki ě 0
for i R I. Then MI is a commutative monoid which depends functorially on I. If R is a
connective E8-ring, we let RrMIs denote the associated monoid algebra (Notation 5.4.1.1).
Note that the construction I ÞÑ RrMIs determines a functor from P prnsq to the 8-category
CAlgcn

R of connective E8-algebras over R, so the construction I ÞÑ SpétRrMIs determines a
functor P prnsqop Ñ SpDM. Note that if H ‰ I Ď J Ď rns, then the map RrMIs Ñ RrMJ s

exhibits RrMJ s as a localization of RrMIs, so the induced map SpétRrMJ s Ñ SpétRrMIs is
étale (in fact, an open immersion). We let Pn

R denote the colimit lim
ÝÑIPP ˝prnsqop SpétRrMIs,

formed in the 8-category SpDM of spectral Deligne-Mumford stacks. We will refer to Pn
R

as projective space of dimension n over R.

Remark 5.4.1.4. Let R be a connective E8-ring. Then the commutative ring π0RrZn`1s

can be identified with the ring of Laurent polynomials pπ0Rqrx
˘1
0 , x˘1

1 , . . . , x˘1
n s. For ev-

ery subset I Ď rns, the inclusion MI ãÑ Zn`1 induces a monomorphism π0RrMIs Ñ

pπ0Rqrx
˘1
0 , . . . , x˘1

n s whose image is the pπ0Rq-subalgebra generated by xj
xi

where i P I. In
what follows, we will generally abuse notation by identifying xj

xi
with an element of π0RrMIs.

If we are given subsets I Ď J Ď rns and an element i P I, then we can identify RrMJ s

with the localization of RrMIs obtained by inverting the elements xj
xi

, where j P J . If follows
that for any pair of subsets I, J Ď rns having nonempty intersection, the diagram

RrMIXJ s //

��

RrMIs

��
RrMJ s // RrMIYJ s

is a pushout diagram of E8-rings.
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Remark 5.4.1.5. When the set I Ď rns is empty, the monoid MI is trivial and we have
RrMIs » R. Consequently, the diagram

P prnsqop Ñ SpDM I ÞÑ SpétRrMIs

determines a tautological map q : Pn
R “ lim

ÝÑI‰H
SpétRrMis Ñ SpétRrMHs » SpétR. It

follows from Remark 5.4.1.4 that for each I Ď rns, the E8-algebra RrMIs is flat over R;
consequently, the spectral Deligne-Mumford stack Pn

R is flat over R.

Remark 5.4.1.6. Construction 5.4.1.3 is compatible with base change in R: for any
morphism RÑ R1 of connective E8-rings, we have a canonical pullback diagram

Pn
R1

//

q1

��

Pn
R

q

��
SpétR1 // SpétR,

where q is defined as in Remark 5.4.1.5 and q1 is defined similarly.

Proposition 5.4.1.7. Let R be a connective E8-ring and let Pn
R be projective space of

dimension n over R. For each nonempty subset I Ď rns, let RrMIs be as in Construction
5.4.1.3, so that we have a tautological map φI : SpétRrMIs Ñ Pn

R.

paq For 0 ď i ď n, the map φtiu : SpétRrMtius Ñ Pn
R is an open immersion.

pbq For each nonempty subset I Ď rns, the map φI : SpétRrMIs Ñ Pn
R is an open

immersion, whose image is the intersection of the images of the maps tφtiuuiPI .

pcq The spectral Deligne-Mumford stack Pn
R is schematic. In particular, it is a spectral

algebraic space.

Proof. We first prove paq. Fix an element i P rns, let P ˝prns ´ tiuq be the collection of all
nonempty subsets of rns ´ tiu, and let X denote the colimit lim

ÝÑIPP ˝prns´tiuqop SpétRrMIs.
For each I P P ˝prns ´ tiuq, Remark 5.4.1.4 implies that SpétRrMIYtius can be identified
with an open substack of SpétRrMIs, and that for I Ď J the induced diagram

SpétRrMJYtius
//

��

SpétRrMIYtius

��
SpétRrMJ s // SpétRrMIs

is a pullback square. It follows that the colimit lim
ÝÑIPP ˝prns´tiuqop SpétRrMIYtius. can be

identified with an open substack U Ď X, and that for each I P P ˝prns ´ tiuq the diagram

SpétRrMIYtius
//

��

SpétRrMIs

��
U j // X
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is a pullback square. Unwinding the definitions, we see the projective space Pn
R fits into a

pushout diagram of spectral Deligne-Mumford stacks σ :

U j //

��

X

��
SpétRrMtius

φtiu // Pn
R

in which all morphisms are étale. Since j is an open immersion, it follows that σ is an excision
square: in particular, it is a pullback square and the map φtiu is an open immersion (see
Proposition 2.5.2.1). This proves paq, and shows that for every nonempty subset I Ď rns´tiu,
the diagram

SpétRrMIYtius
//

��

SpétRrMIs

��
SpétRrMtius

// Pn
R

is a pullback square. Assertion pbq now follows by induction on the size of I, and assertion
pcq follows from paq together with Proposition 1.6.7.3 (since the open immersions φtiu are
mutually surjective).

Example 5.4.1.8. Let R be a commutative ring. Then Pn
R is schematic (Proposition

5.4.1.7) and 0-truncated (since it is flat over R by virtue of Remark 5.4.1.5), and can
therefore be identified with an ordinary scheme. Proposition 5.4.1.7 shows that this scheme
can be covered by affine open subschemes U0, . . . , Un Ď Pn

R, where Ui » SpecRrMtius »

Rrx0
xi
, x1
xi
, . . . , xi´1

xi
, xi`1
xi
, . . . , xnxi s is an n-dimensional affine space over R, which are “glued

together” along the intersections Ui X Uj » SpecRrMti,jus. From this description, we see
that Construction 5.4.1.3 recovers the usual definition of projective space of dimension n

over R.

Remark 5.4.1.9. Using a more elaborate version of Construction 5.4.1.3, one can develop
a theory of toric varieties over any connective E8-ring R, generalizing the classical theory of
toric varieties over commutative rings (as described, for example, in [72]).

5.4.2 Line Bundles on Projective Space

Let n ě 0 be an integer. By definition, there is a bijective correspondence between points
x P CPn and 1-dimensional subspaces Lx Ď Cn`1. The construction x ÞÑ Lx determines
a complex analytic vector bundle of rank 1 over CPn. This vector bundle is algebraic:
that is, it arises from line bundle Op´1q on the scheme Pn

C. For every integer m, we let
Opmq denote the tensor power Op´1qb´m. Our next goal is to show that the line bundles
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Opmq are “defined over the sphere”: that is, they are the pullbacks of line bundles on the
spectral algebraic space Pn

S . To produce these line bundles, we will need a slight variant of
Construction 5.4.1.3.

Construction 5.4.2.1. Let n ě 0 be an integer and let R be a connective E8-ring. For
each subset I Ď rns and each integer m, we let MIpmq denote the subset of Zn`1 consisting of
those tuples pk0, . . . , knq satisfying k0`¨ ¨ ¨` kn “ m and ki ě 0 for i R I. We regard MIpmq

as a set equipped with an action of the monoid MI “ MIp0q appearing in Construction
5.4.1.3.

Note that if I ‰ H, then MIpmq is free module over MI on a single generator. More
precisely, it is freely generated by any tuple pk0, . . . , knq PMIpmq which satisfies ki “ 0 for
i R I. From this description, we see that if pk0, . . . , knq freely generates MIpmq as a module
over MI , then it freely generates MJpmq as a module over MJ for any J Ě I. It follows
that the inclusion MIpmq ãÑMJpmq induces an equivalence of RrMJ s bRrMI s

RrMIpmqs Ñ

RrMJpmqs in the 8-category of RrMJ s-modules. We may therefore regard the diagram
I ÞÑ RrMIpmqs as an object of the 8-category

lim
ÐÝ

IPP ˝prnsq

ModRrMis
» lim

ÐÝ
IPP ˝prnsq

QCohpSpétRrMisq » QCohpPn
Rq.

We will denote this object by Opmq.

Remark 5.4.2.2. In the situation of Construction 5.4.2.1, the module RrMIpmqs is free of
rank 1 over RrMIs for every nonempty subset I Ď rns. It follows that Opmq P QCohpPn

Rq is
a line bundle on Pn

R.

Remark 5.4.2.3. Construction 5.4.2.1 does not really depend on the choice of E8-ring R:
if f : RÑ R1 is a morphism of E8-rings and we let

OpmqR P QCohpPn
Rq OpmqR1 P QCohpPn

R1q

denote the line bundles obtained by applying Construction 5.4.2.1 to R and R1, respectively,
then we have a canonical equivalence OpmqR1 » F ˚OpmqR, where F : Pn

R1 Ñ Pn
R denotes

the map induced by f .

Example 5.4.2.4. In Construction 5.4.2.1, we have MHpmq “ tpk0, k1, . . . , knq P Zn`1
ě0 :

k0 ` ¨ ¨ ¨ ` kn “ mu. It follows that MHpmq is a finite set of cardinality
`

m`n
n

˘

if m ě 0, and
is empty for m ă 0.

In the situation of Construction 5.4.2.1, we let ΓpPn
R; Opmqq denote the spectrum of global

section of the line bundle Opmq on Pn
R. In the case where R is an ordinary commutative
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ring, we can regard Opmq as a sheaf of abelian groups on Pn
R, and the homotopy groups of

ΓpPn
R; Opmqq are given by

π˚ΓpPn
R; Opmqq “ H´˚pPn

R; Opmqq.

The cohomology groups on the right hand side were computed by Serre in [187] (with two
slight caveats: [187] considers cohomology with respect to the Zariski topology rather than
the étale topology, and restricts attention to the case where R is an algebraically closed
field).

Our next goal is to reproduce Serre’s calculation over an arbitrary connective E8-ring R.
We begin by constructing some global sections of the line bundles Opmq.

Construction 5.4.2.5. Let n ě 0 be an integer and let R be a connective E8-ring. Let
~k “ pk0, . . . , knq P Zn`1

ě0 , and set m “ k0 ` ¨ ¨ ¨ ` kn. Then ~k can be regarded as an element
of MIpmq for every subset I Ď rns, and therefore determines a map

R » lim
ÐÝ

IPP ˝prnsq

Rrt~kus Ñ lim
ÐÝ

IPP ˝prnsq

RrMIpmqs » ΓpPn
R; Opmqq.

We will denote this map by x~k : RÑ ΓpPn
R; Opmqq.

We can now formulate Serre’s result as follows:

Theorem 5.4.2.6 (Serre). Let R be a connective E8-ring, let n ě 0 be an integer, and let
Opmq be the line bundle on Pn

R given by Construction 5.4.2.1. Then:

p1q If m ě 0, then the maps x~k : RÑ ΓpPn
R; Opmqq induce an equivalence

À

~kPMHpmq
R »

ΓpPn
R; Opmqq. In particular, ΓpPn

R; Opmqq is a free R-module of rank
`

m`n
n

˘

(see
Example 5.4.2.4).

p2q If m ă 0, then ΓpPn
R; Opmqq is equivalent to a direct sum of

`

´m´1
n

˘

copies of Σ´nR.
In particular, ΓpPn

R; Opmqq vanishes for ´n ď m ď ´1.

Proof. For each element ~k “ pk0, . . . , knq P Zn`1 and each I Ď rns, set MIp
~kq “ MI X t

~ku.
Then MIp

~kq is either empty (if ki ă 0 for some i R I) or consists of the single element t~ku.
Let Q Ď P ˝prnsq be the partially ordered subset consisting of those nonempty sets I Ď rns
such that MIp

~kq is empty.
Let us regard the construction I ÞÑ RrMIp

~kqs as a functor λ~k : P ˝prnsq Ñ ModR. Let
R : P ˝prnsq Ñ ModR denote the constant functor with the value R. We have a canonical map
u : λ~k Ñ R. Note that the canonical map RÑ cofibpuq is an equivalence when restricted to
Q, and that cofibpuq is a right Kan extension of its restriction to Q. Consequently, we have
lim
ÐÝIPP ˝prnsq

cofibpuqpIq » lim
ÐÝIPQ

R » RNpQq, where RNpQq denotes the function spectrum of
maps NpQq Ñ R. It follows that lim

ÐÝ
λ~k can be identified with the fiber of the diagonal map

RÑ RNpQq. We now distinguish three cases:
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paq All of the integers ki are nonnegative. In this case, Q “ H, and we have lim
ÐÝ

λ~k » R.

pbq Some of the integers ki are negative and some are not. In this case, we claim that the
simplicial set NpQq is weakly contractible, so that lim

ÐÝ
λ~k » 0. To prove this, fix i P rns

such that ki ě 0, and let Q1 Ď Q consist of those elements I P Q which contain i.
Then the inclusion Q1 ãÑ Q admits a left adjoint (given by I ãÑ I Y tiu) and therefore
induces a weak homotopy equivalence NpQ1q ãÑ NpQq. We are therefore reduced to
proving that NpQ1q is weakly contractible. This is clear, since the singleton tiu is a
least element of Q1.

pcq All of the integers ki are negative. In this case, Q is the collection of all nonempty,
proper subsets of rns. It follows that the simplicial set NpQq can be identified with the
subdivision of B∆n, so we obtain an equivalence lim

ÐÝ
λ~k » fibpRÑ RNpQq » RB∆n

q »

Σ´nR.

Unwinding the definitions, we have

ΓpPn
R; Opmqq » lim

ÐÝ
IPP ˝prnsq

RrMIpmqs

» lim
ÐÝ

IPP ˝prnsq

à

~kPMrnspmq

RrMIp
~kqs

»
à

~kPMrnspmq

lim
ÐÝ

IPP ˝prnsq

RrMIp
~kqs

»
à

~kPMrnspmq

lim
ÐÝ

λ~k.

We now distinguish two cases:

p1q If m ě 0, then no element ~k PMrnspmq can satisfy pcq, and for those which satisfy pbq
the corresponding summand lim

ÐÝ
λ~k vanishes. The remaining summands are indexed

by the finite set MHpmq, and each summand is equivalent to R. We therefore obtain a
decomposition ΓpPn

R; Opmqq »
À

~kPMHpmq
, given by the maps x~k : RÑ ΓpPn

R; Opmqq
of Construction 5.4.2.5.

p2q If m ă 0, then no element ~k PMrnspmq can satisfy paq, and for thiose which satisfy pbq
the corresponding summand lim

ÐÝ
λ~k vanishes. The remaining summands are indexed

by the finite set T “ tpk0, . . . , knq P Zn`1
ă0 : k0 ` ¨ ¨ ¨ ` kn “ mu of size

`

´m´1
n

˘

,
and each summand is equivalent to Σ´nR. We therefore obtain an equivalence
ΓpPn

R; Opmqq »
À

~kPT
Σ´nR.
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5.4.3 The Universal Property of Projective Space

Let Pn
R be projective space of dimension n over a connective E8-ring R. We will refer to

the line bundle Op´1q P QCohpPn
Rq as the tautological line bundle over Pn

R. Construction
5.4.2.5 produces a finite collection of elements

x0, . . . , xn P π0ΓpPn
R; Op1qq “ π0 MapQCohpPnRq

pOp´1q,Oq,

which we can identify with a single map e : Op´1q Ñ On`1 (here O “ Op0q denote the
structure sheaf of Pn

R). It is not hard to see that the cofiber cofibpeq is a vector bundle of
rank n on Pn

R. In the setting of classical algebraic geometry, the projective space Pn
R is

universal with respect to these features:

Theorem 5.4.3.1. Let A be a commutative ring and let XpAq denote the set of submodules
L Ď An`1 for which the quotient An`1{L is a locally free A-module of rank n (from which it
follows that L is locally free of rank 1). Then the construction

pf : SpétAÑ Pn
Sq ÞÑ pimpf˚peq Ď An`1q

induces a homotopy equivalence (of discrete spaces) MapSpDMpSpétA,Pn
Sq » XpAq; here S

denotes the sphere spectrum and e : Op´1q Ñ On`1 is defined as above.

Remark 5.4.3.2. In the statement of Theorem 5.4.3.1, we can replace the sphere spectrum
S with the ring Z of integers (or any connective E8-ring R satisfying π0R » Z).

Warning 5.4.3.3. Theorem 5.4.3.1 does not extend (at least in a naive way) to the case
where A is a connective E8-ring. A slight refinement of Construction 5.4.2.1 shows that we
can regard the construction m ÞÑ Opmq as a symmetric monoidal functor from the set Z of
integers (regarded as a category with no non-identity morphisms) to the8-category PicpPn

Sq

of line bundles on the projective space Pn
S (see Definition 2.9.4.1). Consequently, for any

map f : SpétA Ñ Pn
S , the construction m ÞÑ f˚Opmq determines a symmetric monoidal

functor Z Ñ PicpAq. This symmetric monoidal functor equips the invertible A-module
L “ f˚Op´1q with some additional structures: for example, it supplies a nullhomotopy of
the automorphism of LbA L given by “swapping” the factors of L. In the setting of spectral
algebraic geometry, this structure is not automatic.

In §19.2, we will show that there is a variant of the projective space Pn
S (which is not

given by Construction 5.4.1.3) for which Theorem 5.4.3.1 does extend to the setting of
E8-rings (see Definition 19.2.6.3).

Proof of Theorem 5.4.3.1. For every commutative ringA, set Y pAq “ MapSpDMpSpétA,Pn
Sq,

which we will regard as a set (since A is discrete and Pn
S is a spectral algebraic space), so

that the construction f ÞÑ impf˚peqq determines a map γpAq : Y pAq Ñ XpAq; we wish to
show that γpAq is a bijection.
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For every nonempty I Ď rns, let XIpAq denote the subset of XpAq consisting of those
submodules L Ď An`1 for which the composite map L ãÑ An`1 pi

ÝÑ A is an isomorphism
for each i P I; here pi : An`1 Ñ A denotes the projection onto the ith factor. Let YIpAq
denote the subset of Y pAq consisting of those maps SpétA Ñ Pn

S which factor through
the open immersion φI : SpétSrMIs ãÑ Pn

S of Proposition 5.4.1.7. Note that the map
γpAq : Y pAq Ñ XpAq restricts to give maps γIpAq : YIpAq Ñ XIpAq for every nonempty
I Ď rns. Given an element L P XIpAq, the construction

Given an element pL,α0, . . . , αnq inXIpAq, the construction pk0, . . . , knq ÞÑ p
Â

0ďiďnppi|Lq
bkiq

determines a monoid homomorphism

MI Ñ HomApL
bk0`¨¨¨`kn , Abk0`¨¨¨`knq » HomApA,Aq » A

(where we regard A as monoid with respect to multiplication multiplication). This construc-
tion determines a map

XIpAq Ñ MapCAlg♥pZrMIs, Aq » MapCAlgpSrMIs, Aq » YIpAq

which is easily seen to be inverse to γIpAq. It follows that each of the maps γIpAq is a
bijection.

We now prove that the map γpAq is injective. Suppose we are given elements f, g P Y pAq
satisfying γpAqpfq “ γpAqpgq; we wish to show that f “ g. To prove this, we can work
locally with respect to the Zariski topology on SpecA and thereby reduce to the case
where f P YtiupAq and g P YtjupAq for some i, j P rns. Then γpAqpfq “ γpAqpgq belongs
to XtiupAq XXtjupAq “ Xti,jupAq. It follows from the above arguments that we can write
γpAqpfq “ γpAqphq “ γpAqpgq for some h P Yti,jupAq. The injectivity of γtiupAq then shows
that f “ h, and the injectivity of γtjupAq shows that h “ g. It follows by transitivity that
f “ g, as desired.

Note that the constructions A ÞÑ XpAq and A ÞÑ Y pAq are both sheaves with respect
to the Zariski topology, and the construction A ÞÑ γpAq determines a morphism of sheaves.
Consequently, to complete the proof, it will suffice to show that the natural transformation
γ : X Ñ Y is an effective epimorphism of Zariski sheaves. For each i P rns, the constructions
A ÞÑ XtiupAq and A ÞÑ YtiupAq determine Zariski sheaves Xtiu and Ytiu, and the maps γtiupAq
induce an isomorphism Xtiu » Ytiu. It follows that the natural map ρ : >0ďiďnYtiu Ñ Y

factors through γ. Since the map ρ is an effective epimorphism of Zariski sheaves, it follows
that γ is also an effective epimorphism of Zariski sheaves.

Corollary 5.4.3.4. Let R be a connective E8-ring. Then the projection map Pn
R Ñ SpétR

is proper and locally almost of finite presentation.

Warning 5.4.3.5. If the E8-ring R is not a Q-algebra, then the morphism Pn
R Ñ SpétR

is not locally of finite presentation.
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Proof of Corollary 5.4.3.4. Using Remark 5.4.1.6, we can reduce to the case where R “ S is
there sphere spectrum. For 0 ď i ď n, the monoid Mtiu of Construction 5.4.1.3 is isomorphic
to Zně0, so that π˚SrMtius is isomorphic to a polynomial ring pπ˚Sqry1 . . . , yns. It follows
that SrMtius is Noetherian and of finite type over S. Since Pn

S can be covered by open
substacks of the form SpétSrMtius, it is locally Noetherian and locally of finite type over S.
Applying Remark 4.2.0.4, we deduce that Pn

S is locally almost of finite presentation over S.
It follows from Proposition 5.4.1.7 that Pn

S is a spectral algebraic space. Moreover, it
is covered by finitely many open immersions φtiu : SpétSrMtius Ñ Pn

S for which the fiber
products

SpétSrMtius ˆPnS SpétSrMtjus » SpétSrMti,jus

are affine. It follows that Pn
S is quasi-compact and that the diagonal of Pn

S is affine. In
particular, Pn

S is quasi-separated.
To complete the proof of Corollary 5.4.3.4, it will suffice to show that the projection

map Pn
S Ñ S satisfies the valuative criterion of properness (see Corollary 5.3.1.2). That

is, we must show that if V is a valuation ring with fraction field K, then the induced map
MapSpDMpSpétV,Pn

Sq Ñ MapSpDMpSpétK,Pn
Sq is a homotopy equivalence. Equivalently,

we must show that the restriction map XpV q Ñ XpKq is bijective, where X is defined as in
the statement of Theorem 5.4.3.1. We must show that if L is a 1-dimensional subspace of
Kn`1, then there is a unique V -submodule L0 Ď LXV n`1 such that V n`1{L0 is locally free
of rank n. Choose a nonzero vector x P L Ď Kn`1, and write x “ px0, . . . , xnq. Since V is a
valuation ring, the fractional ideal generated by the elements txiu0ďiďn is principal: that is,
we can choose i P rns such that xj “ λjxi for some coefficients λj P V . A simple calculation
shows that the unique candidate for L0 is the free V -submodule of V n`1 generated by the
vector pλ0, λ1, . . . , λnq.

5.5 Chow’s Lemma

In the setting of classical algebraic geometry (even over the field C of complex numbers),
there are many examples of algebraic varieties which are not quasi-projective. However,
Chow’s lemma asserts that for every complex algebraic variety X, there exists a projective
birational map π : rX Ñ X, where rX is quasi-projective. Our goal in this section is to
establish the following variant of Chow’s lemma in the setting of spectral algebraic geometry:

Theorem 5.5.0.1 (Chow’s Lemma for Spectral Algebraic Spaces). Let R be a connective
E8-ring, let X be a quasi-compact separated algebraic space over R, and suppose that the
underlying ordinary algebraic space τď0 X is finitely 0-presented over R. Then there exists a
finite sequence of closed immersions

H “ Y0 Ñ Y1 Ñ Y2 Ñ ¨ ¨ ¨ Ñ Yn Ñ X
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with the following properties:

paq Each of the closed immersions Yi Ñ X is locally almost of finite presentation.

pbq The closed immersion Yn Ñ X induces an equivalence of the underlying ordinary
algebraic spaces τď0 Yn Ñ τď0 X.

pcq For 1 ď i ď n, there exists an integer di ě 0 and a closed immersion hi : rYi Ñ
YiˆSpétRPdi

R such that hi is locally almost of finite presentation, the composite map
rYi

hi
ÝÑ YiˆSpétRPdi

R Ñ Pdi
R is locally quasi-finite, and the projection map rYi ˆYi Ui Ñ

Ui is an equivalence, where Ui denotes the open substack of Yi complementary to the
closed immersion Yi´1 Ñ Yi.

Remark 5.5.0.2. Many refinements of Theorem 5.5.0.1 are possible. For example, we can
arrange that each of the maps rYi

hi
ÝÑ YiˆSpétRPdi

R Ñ Pdi
R is an immersion (meaning that it

factors as as a closed immersion followed by an open immersion), and the hypothesis that
the base SpétR be affine can be considerably weakened. However, Theorem 5.5.0.1 will be
sufficient for our needs in this book.

Remark 5.5.0.3. In the situation of Theorem 5.5.0.1, each of the natural maps rYi Ñ X
factors as a composition

ĂYi
hi
ÝÑ YiˆSpétRPdi

R Ñ XˆSpétRPdi
R

q
ÝÑ X,

where the first two maps are closed immersions which are locally almost of finite presentation
and q is a pullback of the projection map Pdi

R Ñ SpétR, which is proper and locally almost
of finite presentation by virtue of Corollary 5.4.3.4. It follows that each map rYi Ñ X is
proper and locally almost of finite presentation.

Remark 5.5.0.4. In the situation of Theorem 5.5.0.1, each of the natural maps ρi : rYi Ñ Pdi
R

factors as a composition

ĂYi
hi
ÝÑ YiˆSpétRPdi

R Ñ XˆSpétRPdi
R

q1
ÝÑ Pdi

R ,

where the first two maps are closed immersions which are locally almost of finite presentation
and q1 is given by projection onto the second factor. Consequently:

piq If X is proper over R, then the map ρi : rYi Ñ Pdi
R is proper. Since ρi is also locally

quasi-finite, it follows that ρi is finite.

piiq If X is locally almost of finite presentation over R, then the map ρi is locally almost of
finite presentation.
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The remainder of this section is devoted to the proof of Theorem 5.5.0.1. Our strategy
is to use the Noetherian approximation techniques of Chapter 4 to reduce to the case where
R is Noetherian and X is locally Noetherian. In this case, the canonical map τď0 X Ñ X
is locally almost of finite presentation. We can therefore replace X by τď0 X and thereby
reduce to proving Theorem 5.5.0.1 for ordinary algebraic spaces. Here we follow the strategy
of Knutson in [117] (where a variant of Theorem 5.5.0.1 appears as Theorem IV.3.1).

5.5.1 Digression on Projective Space

We begin by reviewing some auxiliary constructions which will be useful for proving the
analogue of Theorem 5.5.0.1 in the setting of classical algebraic geometry.

Notation 5.5.1.1. Let n ě 0 be an integer. For every commutative ring R, let Rrxsďn
denote the subset of Rrxs consisting of polynomials of degree ď n. We let PnpRq denote the
collection of R-submodules L Ď Rrxsďn which have the following properties:

paq As an R-module, L is projective of rank 1.

pbq The R-module L is a direct summand of Rrxsďn (in other words, the quotient Rrxsďn{L
is also projective).

We will regard the construction R ÞÑ PnpRq as a functor from the category of commutative
rings to the category of sets.

Remark 5.5.1.2. Since Rrxsďn is isomorphic (as an R-module) to Rn`1, Theorem 5.4.3.1
shows that the functor Pn : CAlg♥ Ñ Set of Notation 5.5.1.1 is represented by the algebraic
space Pn

Z.

Remark 5.5.1.3. Let R be a commutative ring and let fpxq P Rrxs be a polynomial of
degree ď n. Then the cyclic submodule Rfpxq Ď Rrxsďn is an element of PnpRq if and only
if the coefficients of fpxq generate the unit ideal in R (in other words, if and only if fpxq
has nonzero image in κrxs, for each residue field κ of R.

Construction 5.5.1.4. Let R be a commutative ring. For every pair of integers m,n ě 0,
multiplication of polynomials determines a map Rrxsďm bR Rrxsďn Ñ Rrxsďm`n. If
L Ď Rrxsďm and L1 Ď Rrxsďn are submodules satisfying conditions paq and pbq of Notation
5.5.1.1, then the image of the composite map

Lb L1 Ñ Rrxsďm bR Rrxsďn Ñ Rrxsďm`n

is a submodule which also satisfies conditions paq and pbq of Notation 5.5.1.1. We will denote
this image by LL1. The construction pL,L1q ÞÑ LL1 determines a map PmpRq ˆPnpRq Ñ

Pm`npRq. Iterating this construction, we obtain maps

Pk1pRq ˆPk2pRq ˆ ¨ ¨ ¨ ˆPknpRq Ñ Pk1`¨¨¨`knpRq.
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We will be particularly interested in the case k1 “ k2 “ ¨ ¨ ¨ “ kn “ k for some integer k, in
which case we obtain a map γpRq : PkpRqn Ñ PknpRq. The maps γpRq determine a natural
transformation of functors γ : pP1qn Ñ Pn, which (by virtue of Remark 5.5.1.2) we can view
as a morphism of algebraic spaces Pk

Z ˆSpét Z ¨ ¨ ¨ ˆSpét Z Pk
Z Ñ Pkn

Z .

Proposition 5.5.1.5. For each k, n ě 0, the morphism of algebraic spaces γ : Pk
Z ˆSpec Z

¨ ¨ ¨ ˆSpec Z Pk
Z Ñ Pkn

Z of Construction 5.5.1.4 is finite.

Proof. Since the domain and codomain of γ are proper over Z (Corollary 5.4.3.4), the
morphism γ is automatically proper. It will therefore suffice to show that the fibers of γ are
finite. This can be checked at the level of κ-valued points, where κ is an algebraically closed
field. The desired result now follows from the observation that, if fpxq P κrxs is a nonzero
polynomial of degree ď kn, then up to rescaling there are only finitely many factorizations
fpxq “ f1pxq ¨ ¨ ¨ fnpxq into polynomials of degree ď k (since κrxs is a unique factorization
domain).

Notation 5.5.1.6. Let φ : AÑ B be a homomorphism of commutative rings which is finite
flat of rank n. Then the induced map of polynomial rings Arxs Ñ Brxs is also finite flat of
rank n. We therefore have a well-defined norm map NmBrxs{Arxs : Brxs Ñ Arxs. Unwinding
the definitions, we see that the norm map NmBrxs{Arxs carries Brxsďk into Arxsďkn.

Lemma 5.5.1.7. Let φ : AÑ B be as in Remark 5.5.1.6, and let L Ď Brxsďk be an element
of PkpBq, and let NmB{ApLq denote the A-submodule of Arxsďnk generated by elements of
the form NmBrxs{Arxspfq where f P L. Then NmB{ApLq P PnkpAq.

Proof. The assertion is local with respect to the Zariski topology on A. We may therefore
assume without loss of generality that L is free of rank 1, generated by a polynomial
fpxq P Brxs of degree ď k. Since NmBrxs{Arxspλfpxqq “ NmB{ApλqNmBrxs{Arxspfpxqq

for λ P B, we can identify NmB{ApLq with the A-submodule of Arxsďkn generated by
NmBrxs{Arxspfpxqq. We wish to show that this submodule is an element of PnkpAq. Using
Remark 5.5.1.3, we can reduce to the case where A “ κ is a field, in which case we wish to
show that NmBrxs{Arxspfpxqq has invertible image in the fraction field κpxq of the polynomial
ring κrxs. To prove this, it will suffice to show that fpxq has invertible image in the tensor
product Brxs bκrxs κpxq, which follows from the criterion of Remark 5.5.1.3.

Construction 5.5.1.8. Let u : U Ñ X be a morphism of algebraic spaces which is finite
flat of degree n, and suppose we are given a morphism f : U Ñ Pk

Z. For every A-valued
point η of X, our assumption that q is finite flat of degree n implies that we can write
UˆX SpétA “ SpétB for some B which is finite flat of degree n over A. The composite
map SpétB Ñ U f

ÝÑ Pk
Z then determines an element Lη P PkpBq, so that Lemma 5.5.1.7

produces an element NmB{ApLηq P PknpAq. The construction η ÞÑ NmB{ApLηq depends
functorially on A and is therefore classified by a map of algebraic spaces Nmqpfq : X Ñ Pkn

Z .
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We will need the following compatibility between Constructions 5.5.1.4 and 5.5.1.8:

Proposition 5.5.1.9. Let q : U Ñ X be a morphism of algebraic spaces which is finite étale
of rank n, let f : U Ñ Pk

Z be a morphism of algebraic spaces, and let ConfnXpUq be as in
Construction 3.2.2.1. Then the diagram

ConfnXpUq //

��

UˆX ¨ ¨ ¨ ˆX U f // Pk
Z ˆSpét Z ¨ ¨ ¨ ˆSpét Z Pk Z

γ

��
X

Nmqpfq // Pkn
Z

commutes, where Nmqpfq is the map defined in Construction 5.5.1.8 and γ is the map
defined in Construction 5.5.1.4.

Proof. The assertion is local with respect to the étale topology on X. We may therefore
assume without loss of generality that X “ SpétA is affine, that U “ SpétAn, and that
the map f : U Ñ Pk

Z is given by an element L P PkpAnq which is free as an An-module:
that is, it is given by an n-tuple of elements f1pxq, . . . , fnpxq P Arxsďk. The result now
follows from the observation that for every permutation σ of the set t1, . . . , nu, the norm
NmAnrxs{Arxspf1pxq, . . . , fnpxqq coincides with the product

ś

1ďiďn fσpiqpxq.

Warning 5.5.1.10. The constructions of this section (specifically, Constructions 5.5.1.4
and 5.5.1.8) have no obvious analogue in the setting of spectral algebraic geometry: they
use special features of commutative rings that do not hold for E8-rings.

5.5.2 Chow’s Lemma in Classical Algebraic Geometry

Our next goal is to prove the following version of Chow’s lemma in classical algebraic
geometry:

Proposition 5.5.2.1. Let R be a commutative ring and let X be an algebraic space which
is nonempty, quasi-compact, separated, and locally of finite type over R. Then there exists a
commutative diagram of algebraic spaces σ :

rX φ //

ψ

��

Pn
R

��
X // SpétR

with the following properties:

paq The diagram σ induces a closed immersion rX ãÑ XˆSpétRPn
R.
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pbq There exists a nonempty open substack U Ď X for which the projection map ψU :
rX ˆX U Ñ U is an equivalence.

pcq The map φ is locally quasi-finite.

Proof. Let us regard the commutative ring R as fixed. For each k ě 0, we let Pk denote
the projective space Pk

R of dimension k over R, and Ak the affine space SpétRrt1, . . . , tks of
dimension k over R. All products are formed in the (ordinary) category of algebraic spaces
over R (so that we write XˆY in place of τď0pXˆSpétR Yq, if X and Y are 0-truncated
spectral algebraic spaces over R).

We now follow the proof of Chow’s lemma given in [117]. Since X is quasi-compact,
we can choose a surjective étale map u : U Ñ X, where U is affine. Since X is separated,
the morphism u is affine. For each point x P |X |, let κpxq denote the residue field of X
at x (see Notation 3.6.2.5). Then the fiber u´1pxq “ Spétκpxq ˆX U has the form SpétTx,
where Tx is an étale κpxq-algebra (that is, a finite product of finite separable field extensions
of κpxq). Let rpxq denote the dimension of Tx as a κpxq-algebra. It follows from Lemma
3.2.3.4 that the function r : |X | Ñ Zě0 is lower semicontinuous and bounded above. Set
n “ suptrpxq : x P |X |u, and note that n ą 0 (since U is nonempty). Let X0 Ď X
be the open substack corresponding to the open subset Choose a nonempty open subset
tx P |X | : rpxq “ nu Ď |X |. Note that X0 is quasi-compact (Lemma 3.2.3.4). Let U0 Ď U
denote the inverse image of X0 in U. Then u restricts to a map u0 : U0 Ñ X0, and Lemma
3.2.3.4 implies that u0 is finite étale of rank n (in particular, it is finite flat of rank n).

Since U is affine and locally of finite type over R, we can choose a closed immersion
e : U Ñ Ak for some k " 0. Let e denote the composite map X e

ÝÑ Ak ãÑ Pk, and let
ρ : X0 Ñ Pkn denote the norm Nmu0pe|U0q (see Construction 5.5.1.8). Let v : X0 ãÑ X
denote the inclusion map. We define rX to be the schematic image (see Construction 3.1.5.1)
of the map pv, ρq : X0 Ñ XˆPkn. By construction, we have an evident commutative diagram

rX φ //

ψ

��

Pkn

��
X // SpétR.

We claim that this diagram satisfies the requirements of Theorem 5.5.2.1. Condition paq is
obvious (since rX is defined as a closed substack of XˆPkn). To verify pbq, it will suffice to
show that the projection map ψ0 : X0ˆXrX Ñ X0 is an isomorphism. Using Remark 3.1.5.6,
we see that the fiber product X0ˆXrX can be identified with the schematic image of the map
pid, ρq : X0 Ñ X0ˆPkn. This map is already a closed immersion (since Pkn is separated), so
its schematic image is equivalent to X0.
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It remains to prove that the map φ : X Ñ Pkn is locally quasi-finite. Let Y0 “ ConfnX0pU0q

(see Construction 3.2.2.1). Proposition 5.5.1.9 supplies a commutative diagram

Y0
ρ //

π

��

pPkqn

γ

��
X0

ρ // Pn

where γ : pPkqn Ñ Pkn is defined in Construction 5.5.1.4. Let Y denote the schematic image
of the map pv ˝ π, ρq : Y0 Ñ XˆpPkqn. We then have a commutative diagram

Y0 //

π

��

Y i //

π
��

XˆpPkqn //

��

pPkqn

γ

��
X0 // rX i // XˆPkn // Pkn.

The map γ is finite (Proposition 5.5.1.5) and therefore induces a closed map of topological
spaces |XˆpPkqn| Ñ |XˆPkn| (Proposition 5.2.1.1). It follows that |Y | has closed image
in |XˆPkn|. Since π is surjective, it follows from Proposition 3.6.1.6 that the image of |Y |
contains |X |: that is, the map π : Y Ñ X is surjective. Consequently, to show that to show
that φ is locally quasi-finite, it will suffice to show that φ ˝ π is quasi-finite. Let φ denote
the composite map Y i

ÝÑ XˆpPkqn Ñ pPkqn. Then φ ˝ π “ γ ˝ φ. Since γ is finite, it will
suffice to show that φ is locally quasi-finite.

For 1 ď j ď n, let Vj Ď pPkqn denote the inverse image of Ak under the jth projection
pPkqn “ Pk, and let Yj denote the open substack of Y given by Yj ˆpPkqn Vj . To complete
the proof of Theorem 5.5.2.1, it will suffice to verify the following:

paq For 1 ď j ď n, the restriction φ|Yj : Yj Ñ Vj is locally quasi-finite.

pbq The open substacks tYju1ďjďn cover Y.

We begin with the proof of paq. Using Remark 3.1.5.6, we can identify Yj with the
schematic image of the map pv ˝ π, ρq : Y0 Ñ XˆVj . Unwinding the definitions (and
identifying Vj with the product AkˆpPkqn´1, we see that this map factors as a composition

Y0 Ñ UˆpPkqn´1 hj
ÝÑ XˆAkˆpPkqn´1,

where hj is the product of the map pu, eq : U Ñ XˆAk with the identity map on pPkqn´1.
The map pu, eq is a closed immersion (since e is a closed immersion and X is separated), so
hj is a closed immersion. We can therefore identify Yj with a closed substack of the product
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UˆpPkqn´1. Consequently, to show that φ|Yj is locally quasi-finite, it will suffice to show
that the composition

UˆpPkqn´1 hj
ÝÑ XˆAkˆpPkqn´1 Ñ AkˆpPkqn´1

is locally quasi-finite. In fact, this composition is a closed immersion (since it is a pullback
of the closed immersion e : U ãÑ Ak).

We now prove pbq. Since the map u : U Ñ X is surjective, it will suffice to show that
UˆX Y is covered by the open substacks tUˆX Yju1ďjďn. Using Remark 3.1.5.6, we see
that UˆX Y0 » U0ˆX0 Y0 is dense in UˆX Y. Since the map u0 : U0 Ñ X0 is finite étale
of rank n, it is split after base change along the map Y0 “ ConfnX0pU0q: that is, we can
identify the fiber product U0ˆX0 Y0 with a disjoint union >1ďjďn Y0. For 1 ď j ď n, let
Zj Ď |U0ˆX0 Y0 | denote the jth summand, and let Zj denote the closure of Zj in |UˆX Y |.
Using Proposition 3.6.1.6, we see that the closed sets Zj cover |UˆX Y |. Consequently, it
will suffice to show that each Zj is contained in |UˆX Yj |. To prove this, we observe that
|UˆXˆPk Y | is a closed subspace of |UˆX Y | which is contained in |UˆX Yj | and contains
Zj .

5.5.3 Chow’s Lemma in Spectral Algebraic Geometry

We now turn to the proof of Theorem 5.5.0.1. We begin by considering the case of
ordinary algebraic spaces over a Noetherian commutative ring. In this case, we will use
Proposition 5.5.2.1 to establish the following special case of Theorem 5.5.0.1.

Proposition 5.5.3.1. Let R be a Noetherian commutative ring and let X be an algebraic
space which is quasi-compact, separated, and locally of finite type over R. In the category of
algebraic spaces over R, there exist closed immersions

H “ Y0 ãÑ Y1 ãÑ Y2 ãÑ ¨ ¨ ¨ ãÑ Yn “ X

and hi : rYi ãÑ YiˆSpétRPdi
R such that each composite map rYi

hi
ÝÑ YiˆSpétRPdi

R Ñ Pdi
R is

locally quasi-finite and each projection map rYi ˆYi Ui Ñ Ui is an equivalence, where Ui
denotes the open substack of Yi complementary to the closed immersion Yi´1 ãÑ Yi.

Proof. Proceeding by Noetherian induction, we may suppose that the conclusion of Proposi-
tion 5.5.3.1 is satisfied for every closed subspace X1 Ĺ X. If X is empty, then there is nothing
to prove. Otherwise, let σ :

rX φ //

ψ

��

Pk
R

��
X // SpétR
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and U Ď X satisfy the requirements of Proposition 5.5.2.1 and let X1 be the reduced closed
substack of X complementary to U. Applying our inductive hypothesis to X1, we deduce the
existence of closed immersions

H “ Y0 ãÑ Y1 ãÑ Y2 ãÑ ¨ ¨ ¨ ãÑ Yn “ X1

and hi : rYi ãÑ YiˆSpétRPdi
R satisfying the requirements of Proposition 5.5.3.1 for X1. We

then obtain a proof of Proposition 5.5.3.1 by setting Yn`1 “ X and taking hn`1 : rX Ñ

Yn`1ˆSpétRPk
R to be the map classifying σ.

Proof of Theorem 5.5.0.1. Let f : X Ñ SpétR be a quasi-compact, separated morphism
of spectral algebraic spaces which exhibits τď0 X as finitely 0-presented over R. Applying
Proposition 4.4.4.1, we can choose a diagram σ :

X //

f
��

X0

f0
��

SpétR // SpétR0

where R0 is finitely presented over the sphere spectrum S, the morphism f0 is almost of
finite presentation, and σ induces an equivalence τď0 X Ñ τď0pX0ˆSpétR0 SpétRq. Using
Corollary 4.6.1.4, we may further assume (after replacing R0 by an extension if necessary)
that X0 is a separated spectral algebraic space. Applying Proposition 5.5.3.1 to the map
of ordinary algebraic spaces τď0 X0 Ñ Spétπ0R, we deduce the existence of a sequence of
closed immersions

H “ Y10 ãÑ Y11 ãÑ Y12 ãÑ ¨ ¨ ¨ ãÑ Y1n “ τď0 X0 .

and
h1i : rY

1

i ãÑ Y1iˆSpétπ0R0P
di
π0R0

» Y1ˆSpétR0P
di
R0

of 0-truncated algebraic spaces over R0 for which the induced maps ei : rY
1

i Ñ Pdi
π0R0

are
locally quasi-finite and the projection maps rY

1

i ˆY1i U1i Ñ U1i are equivalences, where U1i
denotes the open substack of Y1i complementary to Y1i´1. We now set Yi “ XˆX0 Y1i and
rY
1

i “ XˆX0
rY
1

i. By construction, we have closed immersions of spectral algebraic spaces

H “ Y0 Ñ Y1 Ñ ¨ ¨ ¨ Ñ Yn “ XˆX0τď0 X0
g
ÝÑ X,

where g induces an equivalence of the underlying ordinary algebraic spaces. Each of the closed
immersions Yi Ñ X is a pullback of the closed immersion Y1i Ñ X0, which is automatically
almost of finite presentation because Y1i and X0 are locally Noetherian (Remark 4.2.0.4).
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Finally, each of the maps h1i fits into a commutative diagram

rYi
hi//

��

YiˆSpétRPdi
R

��
rY
1

i

h1i// Y1iˆSpétR0P
di
R0
.

Since h1i is a closed immersion of locally Noetherian algebraic spaces, it is automatically
locally almost of finite presentation when regarded as a morphism of spectral algebraic
spaces (Remark refontinet), so that hi is also a closed immersion which is locally almost of
finite presentation. Since the projection maps rY

1

i ˆY1i U1i Ñ U1i are equivalences, it follows
that the maps hi induce equivalences rYi ˆYi Ui » Ui, where Ui » U1iˆY1i Yi is the open
substack of Yi complementary to the image of Yi´1. We conclude by observing that each
of the composite maps rYi

hi
ÝÑ YiˆSpétRPdi

R is locally quasi-finite, since it is a pullback of
the composition rY

1

i
ei
ÝÑ Pdi

π0R0
u
ÝÑ Pdi

R where ei is locally quasi-finite by construction and the
map u is locally quasi-finite since it induces an equivalence of 0-truncations.

5.5.4 Application: Noetherian Approximation for Properness

We close this section by describing typical application of Chow’s lemma.

Proposition 5.5.4.1. Let A0 be a connective E8-ring. Suppose we are given a filtered
diagram of connective A0-algebras tAαu having colimit A. Let n ě 0 be an integer, let
X0 P DMfp

n pA0q. For each index α, let Xα denote the image of X0 in DMfp
n pAαq, and let X

denote the image of X0 in DMfp
n pAq. If X is proper over SpétA, then there exists an index

α such that Xα is proper over SpétAα.

We begin with an easier version of Proposition 5.5.4.1.

Lemma 5.5.4.2. Let A0 be a connective E8-ring. Suppose we are given a filtered diagram
of connective A0-algebras tAαu having colimit A. Let n ě 0 be an integer, let X0 P DMfp

n pA0q.
For each index α, let Xα denote the image of X0 in DMfp

n pAαq, and let X denote the image
of X0 in DMfp

n pAq. If X is finite over SpétA, then there exists an index α such that Xα is
finite over SpétAα.

Remark 5.5.4.3. By virtue of Proposition 5.2.1.1, Lemma 5.5.4.2 is an immediate conse-
quence of Propositions 5.5.4.1 and 4.6.1.1. However, we will use Lemma 5.5.4.2 in our proof
of Proposition 5.5.4.1.

Proof of Lemma 5.5.4.2. Using Proposition 4.6.1.1, we see that there exists an index α such
that Xα is affine: that is, we can write Xα “ SpétBα for some Bα which is finitely n-presented
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over A. Choose a finite collection of elements x1, . . . , xn P π0Bα which generate π0Bα as an
algebra over π0Aα. Since X is finite over A, the commutative ring π0pAbAα Bαq is finitely
generated as a module over π0A. It follows that the image of each xi in π0pAbAα Bαq is
integral over π0A. Modifying α if necessary, we may assume that each xi is integral over
π0Aα. It then follows that π0Bα is finitely generated as a module over π0Aα, so that Xα is
finite over Aα.

Proof of Proposition 5.5.4.1. Using Remark 5.1.2.2, we may reduce to the case where n “ 0.
Using Corollary 4.6.1.4, we may assume without loss of generality that X0 is a separated
spectral algebraic space of finite type over A0. Choose closed immersions

H “ Y10 Ñ ¨ ¨ ¨ Ñ Y1n Ñ X0

and h1i : rY
1

i Ñ Y1iˆSpétA0P
di
A0

. satisfying the requirements of Theorem 5.5.0.1. Set Yi “
Y1iˆX0 X and rYi “ rY

1

i ˆX0 X, so that the maps h1i induce closed immersions hi : rYi Ñ
YiˆSpétAPdi

A . Since X is proper over A, it follows from Remark 5.5.0.4 that each of the
induced maps rYi Ñ Pdi

A is finite. Using Lemma 5.5.4.2, we can assume (after replacing A0

by some Aα) that each of the maps rY
1

i Ñ Pdi
A0

is finite. Combining Proposition 5.2.1.1 with
Corollary 5.4.3.4, we deduce that each rY

1

i is proper over SpétA0. Since the map >rY
1

i Ñ X0
is surjective, it follows from Proposition 5.1.4.1 that X0 is also proper over SpétA0.

5.6 The Direct Image Theorem

Recall the direct image theorem for proper morphisms of Noetherian algebraic spaces
(see [117]):

Theorem 5.6.0.1. Let f : X Ñ Y be a proper morphism between Noetherian algebraic
spaces and let F be an object in the abelian category of coherent sheaves on X. Then, for
each i ě 0, the higher direct image Rif˚F is a coherent sheaf on Y .

If we regard X and Y as spectral algebraic spaces, then the higher direct images Rif˚F

are just the homotopy sheaves of the (derived) direct image f˚F . By virtue of Corollary
2.7.2.3, the requirement that these homotopy sheaves are coherent (in the sense of classical
algebraic geometry) is equivalent to the requirement that f˚F is almost perfect (in the
sense of Definition 2.8.4.4). Consequently, Theorem 5.6.0.1 can be regarded as a special case
of the following more general assertion:

Theorem 5.6.0.2. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which is proper and locally almost of finite presentation. Then the pushforward functor
f˚ : QCohpXq Ñ QCohpYq carries almost perfect objects of QCohpXq to almost perfect
objects of QCohpYq.
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Our goal in this section is to give a proof of Theorem 5.6.0.2. We will employ the
same basic strategy used by Knutson to prove Theorem 5.6.0.1 in [117] (and earlier by
Grothendieck to establish the special case of Theorem 5.6.0.1 where X and Y are schemes):
namely, we use Chow’s lemma to reduce to the case where X is a projective space over Y, in
which case the desired result can be deduced from Serre’s calculation of the cohomology of
line bundles on projective space (Theorem 5.4.2.6). However, the proof of Theorem 5.6.0.2
is a bit more subtle, because we do not make any Noetherian assumptions on X and Y.

Remark 5.6.0.3. In the setting of classical algebraic geometry, Theorem 5.6.0.2 was proven
by Illusie in the special case where f is projective (see [101]), and by Kiehl for a general
proper morphism (see [116]).

5.6.1 The Case of a Finite Morphism

We begin with an easy special case of Theorem 5.6.0.2.

Proposition 5.6.1.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which is finite and locally almost of finite presentation. Then an object F P QCohpXq is
almost perfect if and only if the direct image f˚F P QCohpYq is almost perfect.

We will deduce Proposition 5.6.1.1 from the following:

Lemma 5.6.1.2. Let f : AÑ B be a morphism of connective E1-rings, and let M be a left
B-module. Suppose that B is almost perfect when regarded as a left A-module. Then, for
every integer n, the module M is perfect to order n over B if and only if it is perfect to
order n over A. In particular, M is almost perfect when regarded as a left B-module if and
only if it is almost perfect when regarded as a left A-module.

Proof. Note that if M is perfect to order n as a left module over either A or B, then M is
p´mq-connective for m " 0. Replacing M by ΣmM (and n by n`m), we may assume that
M is connective. We now proceed by induction on n. If n ă 0, there is nothing to prove.
Let us therefore assume that n ě 0. Note that since B is almost perfect as a left A-module,
the homotopy group π0B is finitely generated as a left A-module. It follows that π0M is
finitely generated as a left module over π0A if and only if it is finitely generated as a module
over π0B. If neither of these conditions is satisfied, then M is not perfect to order n as
either a left A-module or as a left B-module, and the proof is complete. Otherwise, we can
choose a fiber sequence of left B-modules M 1 Ñ Bn Ñ M , where M 1 is connective. Note
that Bn is almost perfect both as a left A-module and as a left B-module. It follows that
M is perfect to order n (as a left module over either A or B) if and only if M 1 is perfect to
order pn´ 1q (as a left module over either A or B); see Remark 2.7.0.7. The desired result
now follows by applying our inductive hypothesis to M 1.
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Proof of Proposition 5.6.1.1. Let F P QCohpXq; we wish to show that F is almost perfect if
and only if f˚F is almost perfect. Both conditions are local on Y, so we may assume without
loss of generality that Y “ SpétA is affine. In this case, our assumption that f is finite
guarantees that X » SpétB is also affine. Since f is locally almost of finite presentation,
the E8-ring B is almost perfect when regarded as an A-module (Proposition 5.2.2.2). The
desired result now follows from Lemma ??.

5.6.2 The Case of Projective Space

We begin by establishing the following special case of Theorem 5.6.0.2:

Proposition 5.6.2.1. Let R be a connective E8-ring, let n ě 0 be an integer, and let
q : Pn

R Ñ SpétR denote the projection map. Then the direct image functor carries almost
perfect objects of QCohpPn

Rq to almost perfect objects of QCohpSpétRq » ModR.

We will deduce Proposition 5.6.2.1 from Theorem 5.4.2.6 and the following:

Lemma 5.6.2.2. Let R be a connective E8-ring and let F P QCohpPn
Rq

cn. Then there
exists a fiber sequence F 1 Ñ G Ñ F in QCohpPn

Rq, where G »
À

α Opdαq is a coproduct of
copies of the line bundles Opdq described in Construction 5.4.2.1, and F 1 is connective.

Proof. Let us denote the monoid algebraRrZn`1
ě0 s byRrx0, . . . , xns. Set X “ SpétRrx0, . . . , xns.

Let U Ď X denote the open substack complementary to the vanishing locus of the ideal
px0, . . . , xnq Ď π0Rrx0, . . . , xns. For 0 ď i ď n, let Ui Ď U Ď X denote the open substack
complementary to the vanishing locus of pxiq, and for each I Ď rns let UI denote the
intersection

Ş

iPI Ui. Since the open stack U is covered by tUiu0ďiďn, we can write U as the
colimit lim

ÝÑH‰IĎrns
UI (formed in the 8-category of spectral Deligne-Mumford stacks).

For each subset I Ď rns, set M`
I “ tpk0, . . . , knq P Zn`1 : pki ă 0q ñ pi P Iqu, so we have

a canonical equivalence UI » SpétRrM`
I s. Let MI ĎM`

I denote the subset consisting of
those tuples pk0, . . . , knq satisfying k0 ` ¨ ¨ ¨ ` kn “ 0. The inclusion MI ãÑ M`

I induces a
morphism of E8-algebras RrMIs Ñ RrM`

I s. These morphisms depend functorially on I and
therefore induce a map

q : U » lim
ÝÑ

H‰IĎrns

UI “ lim
ÝÑ

H‰IĎrns

SpétRrM`
I s Ñ lim

ÝÑ
H‰IĎrns

SpétRrMIs » Pn
R.

Write X “ pX ,OX q and U “ pU ,OU q, and let j : U ãÑ X denote the inclusion map. Since
X is affine, there exists a set A and a morphism ρX :

À

αPA OX Ñ j˚q
˚F which induces an

epimorphism π0p
À

OX q Ñ π0pj˚q
˚F q in the abelian category QCohpXq♥. Restricting to

U, we obtain a map ρU :
À

αPA OU Ñ q˚F in QCohpUq which induces an epimorphism on
π0. Let us identify ρU with a map

à

αPA

Op0q Ñ q˚q
˚F » F bq˚OU ,
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which classifies a family of maps tρα : Op0q Ñ F bq˚OUuαPA. Unwinding the definitions,
we see that q˚OU can be identified with the direct sum

À

mPZ Opmq. Since Pn
R is a quasi-

compact and quasi-separated spectral algebraic space, the global section functor on Pn
R

commutes with filtered colimits. It follows that for each α P A, there exists a constant
cα ě 0 such that ρα factors as a composition

Op0q ρ1α
ÝÑ

à

|m|ďcα

F bOpmq Ñ
à

mPZ
F bOpmq » F bq˚OU .

Each of the maps ρ1α can in turn be identified with a finite collection of maps tρ1α,m :
Op´mq Ñ F u|m|ďcα in the 8-category QCohpPn

Rq. Set G “
À

αPA,|m|ďcα
Op´mq, and let

µ : G Ñ F be the amalgam of the maps ρ1α,m. We claim that the fiber of µ is connective.
Since the map q : U Ñ Pn

R is faithfully flat, it will suffice to show that the pullback q˚µ has
connective fiber: that is, that q˚µ induces an epimorphism π0q

˚ G Ñ π0q
˚F . This is clear,

since the map ρU factors through q˚µ.

Remark 5.6.2.3. In the situation of Lemma 5.6.2.2, suppose that the quasi-coherent sheaf
F is perfect to order 0. Using the quasi-compactness of Pn

R, we can choose a finite set of
indices tα1, . . . , αku such that the composite map

À

1ďiďk Opdαiq Ñ G Ñ F has connective
fiber. In other words, we can assume that G is a coproduct of finitely many line bundles of
the form Opnq. In this case, the existence of a fiber sequence F 1 Ñ G Ñ F implies that
if F is perfect to order m ` 1 for m ě 0, then F 1 is perfect to order m (see Proposition
2.7.2.1). In particular, if F is almost perfect, then F 1 is almost perfect.

Proof of Proposition 5.6.2.1. Let F P QCohpPn
Rq be almost perfect and let q : Pn

R Ñ SpétR
be the projection map. We wish to show that the direct image q˚F P QCohpSpétRq » ModR
is almost perfect. Replacing F by a suspension if necessary, we may assume without loss of
generality that F is connective. In this case, the desired result follows from the following
family of assertions.

p˚mq Let F P QCohpPn
Rq be connective and almost perfect. Then q˚F P QCohpSpétRq »

ModR is perfect to order m.

Corollary 3.4.2.3 implies that there exists an integer k ! 0 such that for every connective
object F P QCohpPn

Rq, the direct image q˚F is k-connective (in fact, we can take k “ ´n,
since Pn

R is a separated spectral algebraic space which admits an open cover by pn ` 1q
affine open substacks). Consequently, assertion p˚mq is automatic for m ă k. We prove p˚mq
in general using induction on m. Suppose that F P QCohpPn

Rq is connective and almost
perfect. Using Remark 5.6.2.3, we can choose a fiber sequence F 1 Ñ G Ñ F , where G

is a direct sum of finitely many line bundles of the form Opaq and F 1 is also connective
and almost perfect. We then have a fiber sequence of R-modules q˚F 1 Ñ q˚ G Ñ q˚F .
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Theorem 5.4.2.6 shows that q˚ G is a perfect R-module and our inductive hypothesis implies
that q˚F 1 is perfect to order pm´ 1q, so that q˚F is perfect to order m as desired.

Remark 5.6.2.4. The proof of Proposition 5.6.2.1 yields the following slightly stronger
assertion:

p˚q Let F P QCohpPn
Rq be connective and perfect to order m for m ě 0, and let q : Pn

R Ñ

SpétR denote the projection map. Then q˚F P QCohpSpétRq » ModR is perfect to
order m´ n.

5.6.3 Sheaves Supported on a Closed Subset

Let f : X Ñ Y be a morphism of complex algebraic varieties, and let F be a coherent
sheaf on X. To guarantee the coherence of the higher direct images Rif˚F , it is not
necessary to assume that f is proper: it is enough to know that the restriction of f |K is
proper, where K Ď X is the support of F . To prove an analogous generalization of Theorem
5.6.0.2, we will need the following:

Proposition 5.6.3.1. Let X “ pX ,OX q be a quasi-compact, quasi-separated spectral al-
gebraic space, let i : pY,OYq Ñ X be a closed immersion which is locally almost of finite
presentation, let j : U ãÑ X be the complementary open immersion, and let I denote
the fiber of the unit map OX Ñ i˚OY . Suppose we are given quasi-coherent sheaves
F ,G P QCohpXq such that F is almost perfect, G is truncated, and j˚ G » 0. Then the
direct limit lim

ÝÑ
MapQCohpXqpIbnbF ,G q vanishes.

Proof. For each object U P X , set XU “ pX {U ,OX |U q and let TG pUq denote the direct
limit lim

ÝÑ
MapQCohpX |U qpI

bn |U bF |U ,G |U q. Since filtered colimits in S are left exact, the
construction U ÞÑ TG pUq carries finite colimits in X to finite limits in S. It follows that
the collection of those objects U P X for which TG pUq is contractible is closed under finite
colimits. We wish to show that TG p1q is contractible, where 1 denotes a final object of X .
By virtue of Proposition 2.5.3.5 (and Theorem 3.4.2.1), it will suffice to show that TG pUq is
contractible when U P X is affine. Replacing X by XU , we may assume that X is affine. Let
us now denote TG p1q simply by TG .

Our assumption that i is locally almost of finite presentation guarantees that the sheaf
I is almost perfect (Corollary 5.2.2.2). Consequently, each of the sheaves IbnbF is almost
perfect. It follows that the the construction G ÞÑ TG commutes with filtered colimits when
restricted to n-truncated objects of QCohpXq, for any integer n. It will therefore suffice
to show that the space Tτěm G is contractible for every integer m. This is automatic for
m " 0 (since G is truncated). We handle the general case by descending induction on m. To
carry out the inductive step, we note that the fiber sequence τěm`1 G Ñ τěm G Ñ Σmπm G
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induces a fiber sequence of spaces

Tτěm`1 G Ñ Tτěm G Ñ TΣmπm G .

We are therefore reduced to showing that TΣmπm G is contractible. Replacing F by Σ´m F

and G by πm G , we are reduced to proving that TG is contractible in the special case where
G P QCohpXq♥.

Write X “ SpétA, so that F corresponds to an almost perfect A-module M and G to
a discrete A-module N . Writing N as a colimit of its finitely generated submodules, we
can reduce to the case where N is finitely generated. Let I Ď π0A be the ideal given by
the kernel of the map π0AÑ π0ΓpY; OYq. Since I is almost perfect, the ideal I is finitely
generated. Our assumption that j˚ G » 0 guarantees that every element x P I has a locally
nilpotent action on N . Since I and N are finitely generated, it follows that IkN “ 0 for
some k " 0. Then the multiplication map IbkbG Ñ G is nullhomotopic, so the transition
map MapQCohpXqpIbnbF ,G q Ñ MapQCohpXqpIbn`kbF ,G q is nullhomotopic. Passing
to the direct limit, we deduce that TG » lim

ÝÑ
MapQCohpXqpIbnbF ,G q is contractible, as

desired.

Example 5.6.3.2. In the situation of Proposition 5.6.3.1, suppose that F P QCohpXq is
almost perfect and j˚F » 0. Then, for every integer n, there exists k " 0 such that the
composite map IbkbF Ñ F Ñ τďn F is nullhomotopic.

Proposition 5.6.3.3. Let i : Y Ñ X and f : X Ñ Z be morphisms of quasi-compact, quasi-
separated spectral algebraic spaces. Suppose that i is a closed immersion which is locally almost
of finite presentation, let j : U ãÑ X be the complementary open immersion, and let K Ď |X |
denote the image of |Y |. Assume that the direct image functor pf˝iq˚ : QCohpYq Ñ QCohpZq
carries almost perfect objects of QCohpYq to almost perfect objects of QCohpZq. Suppose
that F P QCohpXq is almost perfect and that j˚F » 0. Then f˚F P QCohpZq is almost
perfect.

Proof. Fix an integer n; we will show that τďnf˚F P QCohpZq is finitely n-presented.
Enlarging n if necessary, we may assume that n ě 0 and that the functor f˚ : QCohpXq Ñ
QCohpZq carries QCohpXqě0 into QCohpZqě´n. Let I be as in the statement of Proposition
5.6.3.1. Using Example 5.6.3.2, we deduce that there exists an integer k " 0 such that
the multiplication map IbkbF

v
ÝÑ F Ñ τď2n F is nullhomotopic. It follows that the

truncation map u : F Ñ τď2n F factors through cofibpvq. We have a fiber sequence
f˚pτě2n`1 F q Ñ f˚F

f˚u
ÝÝÑ f˚pτď2n F q whose first term belongs to QCohpZqěn`1, so that

f˚puq induces an equivalence τďnf˚F » τďnf˚pτď2n F q. It follows that τďnf˚F is a retract
of τďnf˚ cofibpvq. It will therefore suffice to show that τďnf˚pcofibpvqq is finitely n-presented.
In fact, we claim that f˚pcofibpvqq is almost perfect. This a special case of the following
assertion:
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p˚q For every G P QCohpXq almost perfect and each k ě 0, the functor f˚ carries
cofibpIbkbG Ñ G q to an almost perfect object of QCohpZq.

The proof of p˚q proceeds by induction on k, the case k “ 0 being trivial. To carry out
the inductive step, we observe that the multiplication map v : IbkbG Ñ G factors as a
composition

IbkbG
v1
ÝÑ I bG

v2
ÝÑ G ,

so we have a fiber sequence cofibpv1q Ñ cofibpvq Ñ cofibpv2q. Since the direct image
f˚ cofibpv1q is almost perfect by our inductive hypothesis, we are reduced to showing that the
direct image f˚ cofibpv2q. This is clear, since we have an equivalence f˚ cofibpvq » pf ˝iq˚i˚ G ,
and the functors pf ˝ iq˚ and i˚ both preserve almost perfect objects.

5.6.4 The Proof of Theorem 5.6.0.2

We are now ready to give the proof of Theorem 5.6.0.2. Suppose that f : X Ñ Z is a
morphism of spectral Deligne-Mumford stacks which is proper and locally almost of finite
presentation. We wish to show that the direct image functor f˚ : QCohpXq Ñ QCohpZq
carries almost perfect objects of QCohpXq to almost perfect objects of QCohpZq. To prove
this, we can assume without loss of generality that Z “ SpétR is affine. Applying Theorem
5.5.0.1, we deduce the existence of a sequence of closed immersions

H “ Y0 Ñ Y1 Ñ Y2 Ñ ¨ ¨ ¨ Ñ Yn Ñ X

and hi : rYi Ñ YiˆSpétRPdi
R which are locally almost of finite presentation, where the

map Yn Ñ X induces a homeomorphism |Yn | » |X |, where each of the induced maps
ρi : rYi Ñ Pdi

R is finite and locally almost of finite presentation (Remark 5.5.0.4), and
each of the projection maps rYi ˆYi Ui Ñ Ui is an equivalence, where Ui denotes the open
substack of Yi complementary to Yi´1. For 0 ď i ď n, let vi : Yi Ñ X be the corresponding
closed immersion. By virtue of Proposition 5.6.3.3, to prove that the functor f˚ carries
almost perfect objects to almost perfect objects, it will suffice to show that the functor
pvn ˝ fq˚ : QCohpYnq Ñ QCohpSpétRq carries almost perfect objects to almost perfect
objects. This is a special case of the following:

p˚iq The functor pf ˝ viq˚ : QCohpYiq Ñ QCohpSpétRq carries almost perfect objects to
almost perfect objects.

The proof of p˚iq proceeds by induction on i, the case i “ 0 being trivial. To carry
out the inductive step, let F P QCohpYq be almost perfect. Let u : rYi Ñ Yi denote the
composition

rYi
hi
ÝÑ YiˆSpétRPdi

R Ñ Yi .
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It follows from Propositions 5.6.1.1 and 5.6.2.1 that the functor u˚ : QCohprYiq Ñ QCohpYiq
carries almost perfect objects to almost perfect objects. Form a fiber sequence F 1 Ñ F Ñ

u˚u
˚F . Note that pf ˝viq˚u˚u˚F can be identified with the direct image of u˚F under the

composite map rYi
ρi
ÝÑ Pdi

R Ñ SpétR, and is therefore almost perfect by virtue of Propositions
5.6.1.1 and 5.6.2.1. Consequently, to show that pf ˝ viq˚F is almost perfect, it will suffice
to show that pf ˝ viq˚F 1 is almost perfect. This follows from p˚i´1q and Proposition 5.6.3.3,
since the restriction F 1 |Ui vanishes (by virtue our assumption that the projection map
rYi ˆYi Ui Ñ Ui is an equivalence). This completes the proof of Theorem 5.6.0.2.

5.6.5 The Direct Image Theorem for Sheaves with Proper Support

We close this section with a slight generalization of Theorem 5.6.0.2.

Definition 5.6.5.1. Let X be a spectral Deligne-Mumford stack, let K Ď |X | be a closed
subset, and let j : U Ñ X be the complementary open immersion. We will say that K is
cocompact if the map j is quasi-compact. Note that this is equivalent to the assertion that,
for every map φ : SpétA Ñ X, the inverse image of K in | SpecA| can be written as the
vanishing locus of a finitely generated ideal I Ď π0A.

Proposition 5.6.5.2. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which is locally almost of finite presentation, let K Ď |X | be a cocompact closed subset, let K
be the reduced closed substack of X corresponding to K, and suppose that the composite map
K Ñ X f

ÝÑ Y is proper. If F P QCohpXq is almost perfect and supported on K (meaning
that j˚F » 0, where j : U ãÑ X is an open immersion complementary to K), then the direct
image f˚F P QCohpYq is almost perfect.

Proof. The assertion is local on Y, so we may assume without loss of generality that
Y “ SpétR is affine. Using Proposition 4.4.4.1, we can choose a commutative diagram

X //

f
��

X0

f0
��

SpétR // SpétR0

where R0 is Noetherian, f0 is locally almost of finite presentation, and the map X Ñ

SpétR ˆSpétR0 X0 induces an equivalence of 0-truncations. Using Proposition 4.3.5.5 we
can assume (after modifying R0 if necessary) that K is the inverse image of a closed subset
K0 Ď |X0 | (automatically cocompact, since X0 is locally Noetherian). Let K0 denote the
reduced closed substack of X0 corresponding to K0. Since X0 is locally Noetherian, the
closed immersion K0 Ñ X0 is locally almost of finite presentation. Set K1 “ K0ˆX0 X, so
we have a closed immersion i : K1 Ñ X which locally almost of finite presentation. Note
that we can identify K with the underlying reduced substack of K1, so our assumption that
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K is proper over R guarantees that K1 is also proper over R. Applying Theorem 5.6.0.2,
we deduce that the functor pf ˝ iq˚ : QCohpK1q Ñ QCohpYq carries almost perfect objects
to almost perfect objects. It now follows from Proposition 5.6.3.3 that if F P QCohpXq is
almost perfect and supported on K, then f˚F is almost perfect.

5.6.6 Application: Proper Descent for Quasi-Coherent Sheaves

Let f : X Ñ Y be a morphism of schemes which is faithfully flat and quasi-compact.
Using Grothendieck’s theory of faithfully flat descent, one can identify the abelian category
QCohpY q♥ of quasi-coherent sheaves on Y with the abelian category of quasi-coherent
sheaves on X which are equipped with descent data: in other words, QCohpY q♥ is equivalent
to the totalization of the cosimplicial abelian category

QCohpXq♥ // // QCohpX ˆY Xq♥
////// QCohpX ˆY X ˆY Xq

//////// ¨ ¨ ¨

It follows from Corollary D.6.3.3 that a similar statement holds at the “derived” level: that
is, we can identify the stable 8-category QCohpYq with the totalization of the cosimplicial
8-category QCohpX‚q; here X and Y denote the spectral algebraic spaces associated to X
and Y , and X‚ denotes the Čech nerve of the map f : X Ñ Y.

Let us now consider the analogous descent questions in the case where f : X Ñ Y is a
proper surjection of schemes. Here, the failure of f to be flat creates two (related) difficulties:

paq The pullback functor f˚ : QCohpY q♥ Ñ QCohpXq♥ need not be an exact functor,
and therefore need not coincide with the “derived” pullback functor f˚ : QCohpYq Ñ
QCohpXq.

pbq The fiber product X ˆY X, formed in the category of schemes, need not agree with
the fiber product XˆY X formed in the 8-category of spectral algebraic spaces.

Because of paq and pbq, it is difficult to formulate a theory of proper descent purely in
the language of classical algebraic geometry. However, in the setting of spectral algebraic
geometry, we have the following:

Theorem 5.6.6.1 (Proper Descent For Quasi-Coherent Sheaves). Let f : X Ñ Y be a
surjective proper morphism of spectral Deligne-Mumford stacks, and let X‚ denote the Čech
nerve of f . Assume that Y is locally Noetherian and that the structure sheaf OY is truncated.
Then the pullback functor QCohpYq Ñ Tot QCohpX‚q is an equivalence of 8-categories.

Warning 5.6.6.2. In the statement of Theorem 5.6.6.1, the structure sheaves of the iterated
fiber products XˆY ¨ ¨ ¨ ˆY X need not be truncated, even if the structure sheaves OX and
OY are truncated.

The proof of Theorem 5.6.6.1 is based on the following:
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Proposition 5.6.6.3. Let R be a truncated Noetherian E8-ring, let f : X Ñ SpétR be a
proper surjection of spectral algebraic spaces, and let C denote the smallest stable subcategory
of ModR which contains ΓpX; F q for each F P QCohpXq and is closed under retracts. Then
C “ ModR.

Proof. Since R is truncated, every R-module M admits a finite filtration whose successive
quotients are of the form pπnRq bRM . Because C is closed under extensions, it will suffice
to show that C contains the essential image of the forgetful functor Modπ0R Ñ ModR. We
may therefore replace R by π0R and thereby reduce to the case where R is discrete.

Let us say that an ideal I Ď R is good if C contains the essential image of the forgetful
functor ModR{I Ñ ModR. To complete the proof, it will suffice to show that the zero ideal
p0q Ď R is good. Assume otherwise: then, since R is Noetherian, we can choose an ideal
I Ď R which is maximal among those ideals which are not good. Replacing R by R{I, we
can reduce to the case where every nonzero ideal of R is good.

Since R is Noetherian, every finitely generated discrete R-module N admits a finite
filtration whose successive quotients have the form R{p, for some prime ideal p Ď R. Applying
this observation in the case R “ N , we deduce that each object M P ModR admits a finite
filtration whose successive quotients have the form pR{pq bRM . Consequently, to show that
M P C, it will suffice to show that each tensor product pR{pq bRM belongs to C. By virtue
of our assumption on R, this is automatic unless p “ p0q. We may therefore assume without
loss of generality that R is an integral domain.

Let K be the fraction field of R. Our assumption that f is surjective guarantees that we
can choose a closed point x of the generic fiber |XˆSpétR SpétK|. Let X1 be the schematic
closure of x in X, and let us abuse notation by identifying the structure sheaf OX1 with a
(discrete) quasi-coherent sheaf on X. Set N “ ΓpX1; OX1q. It follows from Theorem 5.6.0.2
(or from Theorem 5.6.0.1) that N is an almost perfect R-module. Moreover, KbRN » κpxq

is a finite extension field of K; in particular, it is a free K-module of finite rank. We can
therefore choose elements x1, . . . , xd P π0N whose images form a basis for K bR N as a
vector space over K. These elements determine a map ρ : Rd Ñ N whose fiber fibpρq satisfies
KbRfibpρq » 0. Note that the R-module fibpρq is 0-truncated and almost perfect, so that the
homotopy groups πi fibpρq are finitely generated R-modules which vanish for all but finitely
many integers i. It follows that fibpρq admits a finite filtration whose successive quotients
have the form ΣipR{pq, where p is a nonzero prime ideal in R. Our hypothesis on R then
guarantees that for any R-module M , the tensor product fibpρqbRM belongs to C. Note that
the projection formula for f gives an equivalence NbRM » f˚pOX1 bf

˚Mq, so that NbRM
also belongs to C. Using the evident fiber sequence fibpρq bRM Ñ Rd bRM Ñ N bRM ,
we conclude that RdbRM »Md belongs to C. Since C is closed under retracts, we conclude
that M P C.
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Proposition 5.6.6.4. Let f : X Ñ Y be a proper surjection of spectral Deligne-Mumford
stacks. Assume that Y is locally Noetherian and that the structure sheaf OY is truncated.

Then the adjunction QCohpYq
f˚ //QCohpXq
f˚
oo is comonadic: that is, it induces an equivalence

of QCohpYq with the 8-category of comodules for the comonad f˚f˚ on QCohpXq (see
Definition HA.4.7.3.4 ).

Proof. By virtue of the Barr-Beck theorem (Theorem HA.4.7.3.5 ), it will suffice to verify
the following:

piq The pullback functor f˚ : QCohpYq Ñ QCohpXq is conservative.

piiq The pullback functor f˚ : QCohpYq Ñ QCohpXq preserves totalizations of f˚-split
cosimplicial objects.

Both of these assertions are local on Y, so we may assume without loss of generality that
Y » SpétR is affine.

We first prove piq. Suppose we are given an R-module N P ModR » QCohpYq such that
f˚N » 0. Let C Ď ModR be the full subcategory spanned by those R-modules M such
that M bR N » 0. For each F P QCohpXq, we have ΓpX; F q bR N » ΓpX; F bf˚Nq » 0,
so that ΓpX; F q belongs to C. Since C is evidently a stable subcategory of ModR which is
closed under retracts, Proposition 5.6.6.3 guarantees that R P C, so that N » RbR N » 0.

The proof of piiq is similar. Suppose that N‚ is an f˚-split cosimplicial object of ModR »
QCohpYq. Let D Ď ModR be the full subcategory spanned by those R-modules M for which
the tautological map f˚pTotpM bR N

‚qq Ñ Totpf˚pM bR N
‚qq is an equivalence. Note

that for each F P QCohpXq, the cosimplicial R-module ΓpX; F q bR N‚ » ΓpX; F bf˚N‚q

is split, so that ΓpX; F q belongs to D. Because D is a stable subcategory of ModR which is
closed under retracts, Proposition 5.6.6.3 guarantees that R P D, so that the canonical map
f˚pTotpN‚qq Ñ Totpf˚N‚q is an equivalence.

Proof of Theorem 5.6.6.1. Let f : X Ñ Y be a proper morphism of spectral Deligne-Mumford
stacks, where Y is locally Noetherian and OY is truncated. Let X‚ denote the Čech nerve of f ,
which we regard as an augmented simplicial object of SpDM (so that X0 » X and X´1 » Y).
We wish to show that the augmented cosimplicial 8-category QCohpX‚q determines a limit
diagram ∆` ÑyCat8. Using (the dual of) Corollary HA.4.7.5.3 , it will suffice to verify the
following:

paq The adjunction QCohpYq
f˚ //QCohpXq
f˚
oo is comonadic.

pbq The augmented cosimplicial 8-category QCohpX‚q satisfies the Beck-Chevalley condi-
tion. More precisely, for every morphism α : rms Ñ rns in ∆`, the diagram of pullback



464 CHAPTER 5. PROPER MORPHISMS IN SPECTRAL ALGEBRAIC GEOMETRY

functors
QCohpXmq //

��

QCohpXm`1q

��
QCohpXnq // QCohpXn`1q

is right adjointable.

Assertion paq follows from Proposition 5.6.6.4, and assertion pbq is a special case of Corollary
3.4.2.2.

In the statement of Theorem 5.6.6.1, the truncatedness hypothesis on OY is necessary. For
example, let R “ Sym˚

QpΣ2 Qq be the free E8-algebra over Q on a single generator t P π2R.
Then the truncation map RÑ π0R » Q induces a proper morphism f : Spét Q Ñ SpétR.
However, the pullback functor f˚ : QCohpSpétRq Ñ QCohpSpét Qq is not conservative: for
example, it annihilates the localization Rrt´1s. If we restrict our attention to connective
quasi-coherent sheaves, this difficulty does not arise:

Corollary 5.6.6.5. Let f : X Ñ Y be a proper morphism of spectral Deligne-Mumford
stacks and let X‚ denote the Čech nerve of f . If Y is locally Noetherian, then the induced
map QCohpYqcn Ñ TotpQCohpX‚qcnq is fully faithful.

Warning 5.6.6.6. In the setting of Corollary 5.6.6.5, the pulback functor QCohpYqcn Ñ

Tot QCohpX‚qcn need not be an equivalence of 8-categories, even when the structure sheaves
of OX and OY are both discrete. In other words, given an object F P QCohpYq whose
pullback f˚F P QCohpXq is connective, we cannot conclude that F is connective (for a
counterexample, take Y “ Spét Crx, ys to be an affine space of dimension 2, X to be the
C-scheme obtained from Y by a blow-up at the origin, and F to be the (derived) pushforward
j˚OU, where j : U ãÑ Y is the open immersion complementary to the origin).

Proof of Corollary 5.6.6.5. Write X “ pX ,OXq and Y “ pY,OYq. For each n ě 0, set
Xpnq “ pX , τďn OXq and Ypnq “ pY, τďn OYq. Then f induces a proper morphism fpnq :
Xpnq Ñ Ypnq having a Čech nerve Xpnq‚. We then have a commutative diagram of pullback
functors

QCohpYqcn //

��

Tot QCohpX‚qcn

��
lim
ÐÝn

QCohpYpnqqcn // lim
ÐÝn

Tot QCohpXpnq‚q.

It follows from Corollary 2.5.9.3 that the vertical maps are equivalences of 8-categories.
Since each Ypnq has a truncated structure sheaf, the bottom horizontal map is fully faithful
by virtue of Theorem 5.6.6.1.
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Remark 5.6.6.7. In the statements of Theorem 5.6.6.1 and Corollary 5.6.6.5, we do not
need the full strength of the assumption that Y is locally Noetherian: it is sufficient to
assume that the 0-truncation of Y is locally Noetherian.



Chapter 6

Grothendieck Duality

Let X be a smooth projective variety of dimension n over a field κ, and let Ωn
X denote

the canonical bundle of X: that is, the top exterior power of the cotangent bundle of X.
The celebrated Serre duality theorem asserts the following:

paq There is a canonical trace map tr : HnpX; Ωn
Xq Ñ κ, which is an isomorphism if X is

connected.

pbq If E is any vector bundle on X, then the bilinear map

HipX; E q ˆHn´ipX; Ωn
X b E _q Ñ HnpX; Ωn

Xq
tr
ÝÑ κ

is a perfect pairing for every integer i: that is, we have canonical isomorphisms
HipX; E q_ » Hn´ipX; Ωn

X b E _q.

Serre duality was generalized by Grothendieck to the setting where X is not assumed to
be smooth. In general, one needs to replace the line bundle Ωn

X by the dualizing complex
ωX , which is an object of the derived category DpXq (when X is smooth of dimension n, we
take ωX “ Ωn

Xrns). In this case, assertion pbq generalizes as follows:

pb1q For every quasi-coherent sheaf F on X, there is a canonical isomorphism HipX; F q_ »
HomDpXqpF ris, ωXq.

Moreover, Grothendieck’s work placed the duality theory of coherent sheaves in a more
general context: rather than restricting attention to projective algebraic varieties over a
field, he developed a relative theory of duality for any proper morphism f : X Ñ S of
separated Noetherian schemes. In this case, one should replace the dualizing complex ωX
by the relative dualizing complex ωX{Y of the morphism f , in which case pb1q admits the
following further generalization:

466
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pb2q For every object F of the derived category DpXq, there is a canonical isomorphism
HomDpXqpF , ωX{Y q » HomDpY qRf˚F ,OY q.

The relative dualizing sheaf ωX{Y P DpXq is characterized up to isomorphism by the
property described in pb1q: more precisely, it can be described as the image of OY under
a functor f ! : DpY q Ñ DpXq which is right adjoint to the (derived) direct image functor
Rf˚ : DpXq Ñ DpY q. We refer the reader to [?] for a detailed exposition.

Our goal in this chapter is to describe an generalization of Grothendieck duality to the
setting of spectral algebraic geometry. Let f : X Ñ Y be any morphism of quasi-compact,
quasi-separated spectral algebraic spaces. Then the direct image functor f˚ : QCohpXq Ñ
QCohpYq preserves small colimits (Corollary 3.4.2.2). It follows from the adjoint functor
theorem (Corollary HTT.5.5.2.9 ) that f˚ admits a right adjoint. In general, this right
adjoint is a somewhat pathological construction (for example, it cannot be computed locally,
even on Y). Roughly speaking, one would expect the functor f˚ to have a well-behaved right
adjoint only in cases where we can guarantee that the construction F ÞÑ f˚F preserves
finiteness conditions (see, for example, Proposition HTT.5.5.7.2 ). One such case was studied
in Chapter 5: if the morphism f : X Ñ Y is proper and locally almost of finite presentation,
then the direct image functor f˚ : QCohpXq Ñ QCohpYq carries almost perfect objects
of QCohpXq to almost perfect objects of QCohpYq (Theorem 5.6.0.2). In this case, we
will denote the right adjoint to f˚ by f ! and refer to it as the exceptional inverse image
functor associated to f . In §6.4 we will use Theorem 5.6.0.2 to show that the functor f ! is
well-behaved, at least when restricted to truncated objects of QCohpYq (see Proposition
6.4.1.4 and Corollary 6.4.1.9).

To obtain a robust duality theory for unbounded quasi-coherent sheaves, it is necessary
to impose stronger finiteness assumptions on the direct image functor f˚. If we assume
that f : X Ñ Y is proper and locally almost of finite presentation and that F P QCohpXq
is perfect, then Theorem 5.6.0.2 guarantees that the direct image f˚F is almost perfect.
However, it need not be perfect (this fails, for example, when f is the closed immersion
Spét Z {2 Z ãÑ Spét Z {4 Z). To address this issue, we introduce in §6.1 the notion of a
morphism of finite Tor-amplitude. Our main goal is to show that if f is proper, locally
almost of finite presentation, and of finite Tor-amplitude, then the direct image functor
f˚ : QCohpXq Ñ QCohpYq carries perfect objects to perfect objects (Theorem 6.1.3.2; for a
converse, see Theorem 11.1.4.1). In §6.4.1, we will show that under the same assumptions,
the exceptional inverse image functor f ! is given by the formula f ! F » ωX {Y b f˚F ,
(Corollary 6.4.2.7), where ωX {Y P QCohpXq is the relative dualizing sheaf of f (Definition
6.4.2.4).

The second half of this chapter is devoted to studying the notion of an absolute dualizing
sheaf in the setting of Noetherian spectral algebraic spaces. Roughly speaking, an object
ωX P QCohpXq is a dualizing sheaf for X if the construction F ÞÑ Map

OX
pF , ωXq is involutive
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when restricted to coherent sheaves (see Definition 6.6.1.1 and Theorem 6.6.1.8). In §6.6, we
show that such objects often exist (see Theorems 6.6.4.1 and 6.6.4.3) and are unique up to
invertible twists (Proposition 6.6.2.1). Our exposition will rely on a few facts about injective
dimension of quasi-coherent sheaves in the setting of spectral algebraic geometry, which we
discuss in §6.5.

Warning 6.0.0.1. In this book, we define the exceptional inverse image functor f ! :
QCohpYq Ñ QCohpXq only in the case where f : X Ñ Y is proper (and locally almost
of finite presentation). It is possible to develop a more elaborate theory of Grothendieck
duality for non-proper morphisms, (which is essential if one wishes to carry out a local study
of relative dualizing sheaves ωX {Y), but the construction requires some rather elaborate
categorical constructions which we do not wish to undertake here. For more details (in
a different but closely related context), we refer the reader to the work of Gaitsgory and
Rozenblyum ([77]).
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6.1 Morphisms of Finite Tor-Amplitude

Let f : X Ñ Y be a proper map of spectral Deligne-Mumford stacks which is locally
almost of finite presentation. According to Theorem 5.6.0.2, the pushforward functor f˚
carries almost perfect objects of QCohpXq to almost perfect objects of QCohpYq. It is natural
for additional conditions which guarantee that the pushforward functor f˚ : QCohpXq Ñ
QCohpYq also preserves perfect objects. In this section, we will show that it is sufficient to
assume that the morphism f has finite Tor-amplitude (Theorem 6.1.3.2). In §11.1, we will
see that this condition is also necessary, at least if Y is affine (see Theorem 11.1.4.1).

6.1.1 Tor-Amplitude

Let φ : AÑ B be a morphism of connective E8-rings. Recall that φ is said to be flat if
it exhibits B as a flat A-module. More generally, if n ě 0 is an integer, we will say that φ
has Tor-amplitude ď n if B has Tor-amplitude ď n as an A-module: in other words, if the
extension of scalars functor

ModA Ñ ModB M ÞÑ B bAM

carries Mod♥
A into pModBqďn. This condition can be globalized as follows:
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Definition 6.1.1.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks and
let n ě 0 be an integer. We will say that f has Tor-amplitude ď n if, for every commutative
diagram

SpétB //

��

X

f

��
SpétA // Y

where the horizontal maps are étale, the E8-ring B has Tor-amplitude ď n as an A-module
(see Definition HA.7.2.4.21 ). We say that f has finite Tor-amplitude if it has Tor-amplitude
ď n for some integer n.

Example 6.1.1.2. Let κ be a field, and let f : X Ñ Spétκ be a morphism of spectral
Deligne-Mumford stacks. Then f has Tor-amplitude ď n if and only if X is n-truncated.

Example 6.1.1.3. A morphism of spectral Deligne-Mumford stacks f : X Ñ Y has Tor-
amplitude ď 0 if and only if f is flat.

When restricted to affine spectral Deligne-Mumford stacks, Definition 6.1.1.1 recovers
the algebraic notion of Tor-amplitude:

Proposition 6.1.1.4. Let f : SpétB Ñ SpétA be a morphism between affine spectral
Deligne-Mumford stacks and let n ě 0. Then f has Tor-amplitude ď n if and only if B has
Tor-amplitude ď n as an A-module.

Lemma 6.1.1.5. Let f : X Ñ SpétA be a morphism of spectral Deligne-Mumford stacks,
and let n ě 0. The following conditions are equivalent:

p1q The morphism f has Tor-amplitude ď n.

p2q For every étale morphism SpétB Ñ X, B has Tor-amplitude ď n as an A-module.

Proof. It is clear that p1q ñ p2q. Conversely, suppose that p2q is satisfied, and suppose
we are given an étale map g : SpétB Ñ X such that f ˝ g factors as a composition
SpétB Ñ SpétA1 Ñ SpétA, for some A1 which is étale over A. We wish to show that B
has Tor-amplitude ď n as an A1-module. Since A1 is étale over A, B is a retract (as an
A1-module) of A1 bA B, which is of Tor-amplitude ď n over A1 by virtue of p2q.

Lemma 6.1.1.6. Let f : A Ñ B be a morphism of connective E1-rings, and let M be a
left B-module. Suppose that B has Tor-amplitude ď m as a left A-module, and the M

has Tor-amplitude ď n as a left B-module. Then M has Tor-amplitude ď m` n as a left
A-module.
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Proof. Let N P pLModAqďp; we wish to show that N bRM is pp`m` nq-truncated. We
have N bAM » pN bA Bq bBM . The desired result now follows from the observation that
N bA B is pp`mq-truncated.

Proof of Proposition 6.1.1.4. It follows immediately from the definitions that if f : SpétB Ñ
SpétA is a morphism of Tor-amplitude ď n, then B has Tor-amplitude ď n as an A-module.
Conversely, suppose that B has Tor-amplitude ď n as an A-module; we wish to show that f
has Tor-amplitude ď n. By virtue of Lemma 6.1.1.5, it will suffice to show that every étale
B-algebra B1 has Tor-amplitude ď n as an A-module. This is an immediate consequence of
Lemma 6.1.1.6, since B1 is flat (and therefore of Tor-amplitude ď 0) over B.

6.1.2 Pullback and Composition of Morphisms of Finite Tor-Amplitude

We now summarize some of the formal properties enjoyed by the class of morphisms of
finite Tor-amplitude.

Proposition 6.1.2.1. For each n ě 0, the condition that a morphism of spectral Deligne-
Mumford stacks f : X Ñ Y be of Tor-amplitude ď n is local on the source with respect to the
flat topology (see Definition 2.8.3.10).

Proof. First suppose that f has Tor-amplitude ď n, and that we are given a flat map
g : X1 Ñ X. We wish to show that g ˝ f has Tor-amplitude ď n. Consider a commutative
diagram

SpétC //

��

X1

��
SpétA // Y;

we wish to show that C has Tor-amplitude ď n as an A-module. In other words, we wish
to show that if M is a discrete A-module, then C bAM is n-truncated. This assertion is
local on C with respect to the étale topology. We may therefore suppose that the map
SpétC Ñ SpétAˆY X factors as a composition

SpétC Ñ SpétB u
Ñ SpétAˆY X,

where u is étale. Since f has Tor-amplitude ď n, we see that B bAM is n-truncated. Then
C bAM » C bB pB bAMq is n-truncated because C is flat over B.

Now suppose that we are given a flat covering tgα : Xα Ñ Xu such that each gα ˝ f has
Tor-amplitude ď n; we wish to show that f has Tor-amplitude ď n. We may assume without
loss of generality that Y “ SpétA is affine. Choose an étale map SpétB Ñ X; we wish to
show that B has Tor-amplitude ď n over A (see Lemma 6.1.1.5). Since the gα form a flat
covering, we can find finitely many étale maps SpétCα Ñ XαˆX SpétB such that C “

ś

Cα
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is faithfully flat over B. If M is a discrete A-module, then C bAM » C bB pB bAMq is
n-truncated; it follows that B bAM is n-truncated so that B has Tor-amplitude ď n over
A.

Proposition 6.1.2.2. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1

f 1

��

// X
f
��

Y1 g // Y .

If f has Tor-amplitude ď n, so does f 1. The converse holds if g is a flat covering.

Proof. Suppose first that f has Tor-amplitude ď n. To prove that f 1 has Tor-amplitude ď n,
we may assume without loss of generality that Y1 “ SpétA1 is affine. Choose a faithfully flat
étale morphism A1 Ñ A2 such that the composite map

SpétA2 Ñ SpétA1 Ñ Y

factors through an étale map SpétA Ñ Y. Using Proposition 6.1.2.1, we are reduced to
proving that for every étale map SpétB1 Ñ XSpétA1 SpétA2, B1 has Tor-amplitude ď n over
A1. Using Proposition 6.1.2.1 we may further reduce to the case where the map

SpétB1 Ñ SpétAˆY X

factors through some étale map SpétB Ñ SpétA ˆY X. The map A1 Ñ B1 factors as a
composition A1 Ñ A2 Ñ A2 bA B Ñ B1, where the first and third map are étale, and the
middle map has Tor-amplitude ď n. It follows that B1 has Tor-amplitude ď n over A1, as
desired.

Now suppose that g is a flat covering and that f 1 has Tor-amplitude ď n; we wish to show
that f has the same property. We may assume without loss of generality that Y “ SpétA
is affine. Using Proposition 6.1.2.1 we can further reduce to the case where X “ SpétB is
affine. Since g is a flat covering, we can choose an étale map SpétA1 Ñ Y1 such that A1

is faithfully flat over B. Because f 1 has Tor-amplitude ď n, we deduce that A1 bA B has
Tor-amplitude ď n over A1. It then follows from Lemma 2.8.4.3 that B has Tor-amplitude
ď n over A.

In the locally Noetherian case, Proposition 6.1.2.2 admits a converse:

Proposition 6.1.2.3. Let f : X Ñ Y be a morphism spectral Deligne-Mumford stacks and
let n ě 0 be an integer. Assume that Y is locally Noetherian. The following conditions are
equivalent:
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paq The morphism f has Tor-amplitude ď n.

pbq For every field κ and every pullback diagram

X1 //

f 1

��

X

f

��
Spétpκq // Y,

the morphism f 1 has Tor-amplitude ď n.

pcq For every field κ and every morphism Spétpκq Ñ Y, the fiber product Spétpκq ˆY X is
n-truncated.

The equivalence pbq ô pcq follows from Proposition 6.1.1.2, and the implication paq ñ pbq

from Proposition 6.1.2.2. The nontrivial implication pbq ñ paq reduces immediately to the
affine case, which follows from the following more general assertion:

Lemma 6.1.2.4. Let A be a Noetherian E8-ring and let M be an A-module. The following
conditions are equivalent:

piq The module M has Tor-amplitude ď n.

piiq For each residue field κ of A, the tensor product κbAM is n-truncated.

Proof. The implication piq ñ piiq is immediate. For the converse, assume that piiq is satisfied.
We wish to show that, for every discrete A-module N , the tensor product N bAM is n-
truncated. Writing N as a filtered colimit of finite generated submodules, we may assume
that N is finitely generated as a module over π0pAq. Let Y Ď |SpecpAq| be the support of
N . Proceeding by Noetherian induction, we may assume that N 1 bAM is n-truncated for
every discrete A-module N 1 whose support is strictly contained in Y . Writing N as a finite
extension of modules of the form π0pAq{pi, where pi Ď π0pAq is prime, we can reduce to the
case where N “ π0pAq{p for some prime ideal p Ď π0pAq. Replacing A by π0pAq{p (and M

by pπ0pAq{pq bAM), we can reduce to the case where A is an integral domain (regarded as
a discrete E8-ring) and N “ A; in this case, we wish to show that M itself is n-truncated.
Let K denote the fraction field of A. Then K{A can be written as a filtered colimit of
finitely generated submodules having support smaller than Y . It follows from our inductive
hypothesis that the tensor product pK{Aq bAM is n-truncated. Assumption p2q guarantees
that K bAM is also n-truncated, so that M » fibpK bAM Ñ pK{AqbAMq is n-truncated
as desired.

Proposition 6.1.2.5. Let f : X Ñ Y and g : Y Ñ Z be maps of spectral Deligne-Mumford
stacks. If f has Tor-amplitude ď m and g has Tor-amplitude ď n, then g ˝ f has Tor-
amplitude ď m` n.
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Proof. Using Propositions 6.1.2.1 and 6.1.2.2, we can reduce to the case where X, Y, and
Z are affine. In this case, the desired result follows from Lemma 6.1.1.6 and Proposition
6.1.1.4.

Remark 6.1.2.6. Let f : X Ñ SpétR be a map of spectral Deligne-Mumford stacks, and
form a pullback square

X0

f0
��

// X
f
��

Spétπ0R // SpétR.

Then f has Tor-amplitude ď n if and only if f0 has Tor-amplitude ď n.

6.1.3 Direct Images of Perfect Quasi-Coherent Sheaves

Our main result is a simple consequence of Theorem 5.6.0.2 together with the following:

Proposition 6.1.3.1. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks which is
of Tor-amplitude ď n. Assume that f is quasi-compact, quasi-separated, and exhibits X are
a relative spectral algebraic space over Y. Let F P QCohpXq be a quasi-coherent sheaf which
is locally of Tor-amplitude ď k. Then the pushforward f˚F P QCohpYq has Tor-amplitude
ď n` k.

Proof. The assertion is local on Y; we may therefore suppose that Y » SpétR is affine.
Write X “ pX ,OX q. Let us say that an object U P X is good if F pUq is of Tor-amplitude
ď n` k over R. It follows from Lemma 6.1.1.6 that every affine object of X is good, and
Proposition HA.7.2.4.23 implies that the collection of good objects of X is closed under
pushouts. Using Theorem 3.4.2.1 and Corollary 2.5.3.6, we conclude that the final object of
X is good, so that f˚F has Tor-amplitude ď n` k.

Theorem 6.1.3.2. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks which
is proper, locally almost of finite presentation, and of finite Tor-amplitude. Then the
pushforward functor f˚ carries perfect objects of QCohpXq to perfect objects of QCohpYq.

Proof. Let F P QCohpXq be perfect; we wish to show that f˚F P QCohpYq is perfect. This
assertion is local on Y, so we may assume without loss of generality that Y is affine. Since
the morphism f is proper, X is quasi-compact. It follows that F has Tor-amplitude ď n for
some n, so that f˚F has finite Tor-amplitude by virtue of Proposition 6.1.3.1. Since f˚F

is almost perfect (by virtue of Theorem 5.6.0.2), it follows from Proposition HA.7.2.4.23
that f˚F is perfect.

Remark 6.1.3.3. In the setting of classical algebraic geometry, Theorem 6.1.3.2 appears in
[134].
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6.1.4 Tor Amplitude at a Point

Let f : pX,OXq Ñ pY,OY q be a morphism of schemes, let x P X be a point, and
let y “ fpxq P Y . Recall that f is said to be flat at x if the induced map of local rings
OY,y Ñ OX,x is flat. We then have the following:

piq The morphism f is flat if and only if it is flat at x, for each point x P X.

piiq If f is locally of finite presentation, then the collection of points x P X at which f is
flat is an open subset of X.

We now describe generalizations of piq and piiq, where flatness is replaced by a bound on
Tor-amplitude. For simplicity, we will restrict our attention to the affine case.

Notation 6.1.4.1. If A is an E8-ring and p Ď π0A is a prime ideal, we let Ap denote the
localization ArS´1s, where S “ π0A´ p. For any A-module M , we let Ap denote the tensor
product Ap bAM .

Definition 6.1.4.2. Let φ : A Ñ B be a morphism of connective E8-rings and let M
be a B-module. For each integer n and each prime ideal p Ď π0B, we say that M has
Tor-amplitude ď n over A at p if the localization Mp has Tor-amplitude ď n as an A-module.
If M is connective, then we M is flat over A at p if the localization Mp is a flat A-module.

Remark 6.1.4.3. In the situation of Definition 6.1.4.2, we can regard Mp as a module over
the localization Aq, where q Ď π0A is the inverse image of p. Then M has Tor-amplitude
ď n over A at p if and only if the localization Mp has Tor-amplitude ď n as a module over
Aq.

Proposition 6.1.4.4. Let φ : AÑ B be a morphism of connective E8-rings, let M be an
B-module, and let n be an integer. Then the following conditions are equivalent:

paq The A-module M has Tor-amplitude ď n.

pbq The module M has Tor-amplitude ď n over A at p for each prime ideal p Ď π0B.

Proof. Suppose that paq is satisfied, and let p Ď π0B be a prime ideal. Since Mp can be
obtained as a filtered colimit of copies of M , it follows that Mp also has Tor-amplitude ď n

as an A-module. Conversely, suppose that pbq is satisfied. Let N be a discrete A-module; we
wish to prove that πmpM bA Nq » 0 for m ą n. Let us regard M bA N as a module over
B. It will therefore suffice to show that πmpM bR Nqp for each prime ideal p Ď π0B. This
follows from pbq, since we have a canonical isomorphism πmpM bANqp » πmpMpbANq.

We have the following generalization of piiq:
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Proposition 6.1.4.5. Let m ě n ě 0 be integers, let A be a commutative ring, let B be an
E8-algebra over A which is of finite generation to order n` 1, and let M be a connective
B-module which is finitely m-presented. Let p Ď π0B be a prime ideal, and let q Ď A denote
its inverse image, and let κ denote the residue field of A at q. Then the following conditions
are equivalent:

paq The module M has Tor-amplitude ď n over A at p.

pbq The homotopy groups πipM bA κqp vanish for n ă i ď m` 1.

Moreover, the collection of prime ideals p Ď π0B which satisfy these conditions is an open
subset of | SpecB|.

Before giving the proof of Proposition 6.1.4.5, let us describe some of its consequences.
Taking B “ A in Proposition 6.1.4.5, we obtain the following:

Corollary 6.1.4.6. Let m ě n ě 0 be integers, let A be a commutative ring, and let M
be a connective A-module which is finitely m-presented. For each prime ideal p Ď A, the
following conditions are equivalent:

paq The localization Mp has Tor-amplitude ď n over A.

pbq The homotopy groups πipM bA κqp vanish for n ă i ď m ` 1, where κ denotes the
residue field of A at p.

Moreover, the collection of those prime ideals p Ď A which satisfy these conditions is an
open subset of | SpecA|.

Corollary 6.1.4.7. Let n ě 0 be an integer, let A be a connective E8-ring, and let M be an
almost perfect A-module. Then M has Tor-amplitude ď n if and only if, for every maximal
ideal m Ď π0A with residue field κ “ pπ0Aq{m, the homotopy groups πipM bA κq vanish for
i ą n.

Proof. The “only if” direction is obvious. For the converse, we can use Remark 6.1.2.6 to
reduce to the case where A is discrete. Fix m ě n. For every maximal ideal m Ď π0A with
residue field κ “ pπ0Aq{m, the natural map πipM bA κq Ñ πipτďmM bA κq is surjective for
i “ m` 1 and bijective for i ď m. It follows that πipτďmM bA κq » 0 for n ă i ď m` 1.
Applying Corollary 6.1.4.6 and Proposition 6.1.4.4, we deduce that τďmM has Tor-amplitude
ď n over A. Since A is discrete, this implies that τďmM is n-truncated. Allowing m to vary,
we deduce that M is n-truncated, so that M » τďnM has Tor-amplitude ď n over A.

Corollary 6.1.4.8. Let n ě 0 and let f : X Ñ Y be a morphism between spectral Deligne-
Mumford stacks which is locally almost of finite presentation. The following conditions are
equivalent:
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p1q The morphism f is of Tor-amplitude ď n.

p2q For every field κ and every map SpétκÑ Y, the fiber SpétκˆY X is n-truncated.

Proof. The implication p1q ñ p2q follows from Proposition 6.1.2.2 and Example 6.1.1.2. To
prove the converse, we can work locally and thereby reduce to the case where Y “ SpétA
and X “ SpétB are affine. Assume that p2q is satisfied; we wish to prove that B has
Tor-amplitude ď n over A. Using Remark 6.1.2.6, we can replace A by π0A and B by
π0AbA B, and thereby reduce to the case where A is discrete. It follows from Propositions
6.1.4.5 and 6.1.4.4 that for each m ě n, the truncation τďmB has Tor-amplitude ď n over
A. In particular, we deduce that πiB » 0 for n ă i ď m. Since m is arbitrary, we conclude
that A is n-truncated. It follows that A » τďnA has Tor-amplitude ď n over R.

Corollary 6.1.4.8 immediately implies the following classical result:

Corollary 6.1.4.9 (Fiberwise Flatness Criterion). Suppose given a commutative diagram
of spectral Deligne-Mumford stacks

X f //

��

Y

��
Z,

where f is locally almost of finite presentation. The following conditions are equivalent:

p1q The morphism f is flat.

p2q For every field κ and every map Spétκ Ñ Z, the induced map fκ : Spétκ ˆZ X Ñ

SpétκˆZ Y is flat.

Corollary 6.1.4.10. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which is proper and locally almost of finite presentation. The following conditions are
equivalent:

p1q The morphism f is finite flat.

p2q For every field κ and every morphism SpétκÑ Y, the projection map SpétκˆY X Ñ
Spétκ is finite flat.

Proof. Combine Corollary 6.1.4.9 with Proposition 5.2.3.3.

Corollary 6.1.4.11. Let f : X Ñ Y be a morphism between spectral Deligne-Mumford
stacks. Then f is étale if and only if it satisfies the following conditions:

p1q The morphism f is locally almost of finite presentation.
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p2q For every field κ and every map SpétκÑ Y, the projection map SpétκˆY X Ñ Spétκ
is étale.

Proof. Combine Corollary 6.1.4.8 with Proposition 4.2.3.4.

Corollary 6.1.4.12. Let f : X Ñ Y be a morphism between spectral Deligne-Mumford
stacks. Then f is an equivalence if and only if it satisfies the following conditions:

p1q The morphism f is locally almost of finite presentation.

p2q For every field κ and every map SpétκÑ Y, the projection map SpétκˆY X Ñ Spétκ
is an equivalence.

p3q The morphism f is a relative n-stack for some n " 0 (see Definition 6.3.1.11).

Proof. The necessity of conditions p1q through p3q is obvious. To prove the converse, suppose
that conditions p1q through p3q are satisfied; we wish to show that f is an equivalence. Using
p1q and p2q, we deduce that f is étale. Write Y “ pY,OYq, so that we have X » pY{U ,OY |U q

for some object U P Y . Using p2q and Proposition 3.5.4.2, we deduce that η˚U is contractible
for every point η˚ P Fun˚pY,Sq. Since the hypercompletion of Y has enough points (Theorem
A.4.0.5), it folows that U is 8-connective (see Proposition A.4.2.1). Condition p3q guarantees
that U is n-truncated for n " 0, so that U is a final object of Y and f is an equivalence as
desired.

6.1.5 The Proof of Proposition 6.1.4.5

The proof of Proposition 6.1.4.5 is fairly technical. We begin by discussing the case
where A is Noetherian, in which case the desired result is a minor modification of Theorem
11.1.1 of [90].

Lemma 6.1.5.1. Let R be a commutative ring, let M be a connective R-module spectrum,
and suppose that M is pn` 1q-truncated for some integer n ě 0. The following conditions
are equivalent:

paq The R-module spectrum M has Tor-amplitude ď n over R.

pbq For every discrete R-module N , the homotopy group πn`1pM bR Nq vanishes.

Proof. The implication paq ñ pbq is immediate. We will prove the converse using induction
on n. Suppose first that n “ 0. Applying pbq in the case N “ R, we deduce that M is a
discrete R-module. Condition pbq then asserts that that TorR1 pM,Nq » 0 for every discrete
R-module N (see Corollary HA.7.2.1.22 ), so that the functor N ÞÑ TorR0 pM,Nq is exact
and therefore M is flat over R. Assume now that n ą 0. Choose a free R-module P and a
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map φ : P ÑM which induces a surjection π0P Ñ π0M . Then φ fits into a fiber sequence
M 1 Ñ P ÑM . Consequently, to prove that M has Tor-amplitude ď n, it will suffice to show
that M 1 has Tor-amplitude ď n´1. Using the exact sequence πm`1M Ñ πmM

1 Ñ πmP , we
deduce that M 1 is pn´ 1q-truncated. By virtue of the inductive hypothesis, we are reduced
to proving that πnpM 1 bR Nq » 0 for any discrete R-module N . We have a short exact
sequence πn`1pM bR Nq Ñ πnpM

1 bR Nq Ñ πnpP bR Nq. Since P is a free R-module and
N is discrete, πnpP bRNq. Consequently, if condition pbq is satisfied, then πnpM 1bRNq » 0
as desired.

Lemma 6.1.5.2. Let m ą n ě 0 be integers, let A be a Noetherian commutative ring, let
B be a connective E8-algebra which is almost of finite presentation over A, and let M be a
B-module which is of finite presentation to order m. Let p Ď π0B be a prime ideal, let q

denote its inverse image in A, and let κ “ κpqq denote the residue field of A at q. Then the
following conditions are equivalent:

paq The module M has Tor-amplitude ď n over A at p.

pbq The homotopy groups πipM bA κqp vanish for n ă i ď m.

Proof. The implication paq ñ pbq is immediate. Conversely, suppose that pbq is satisfied;
we will show that Mp has Tor-amplitude ď n over A. Proceeding by descending induction
on n, we can reduced to the case m “ n ` 1. According to Lemma 6.1.5.1 (and Remark
6.1.4.3), it will suffice to show that πn`1pMp bAq Nq » 0 for every discrete Aq-module
N . Writing N as a filtered colimit of finitely generated submodules, we may reduce to
the case where N is finitely generated. The collection of those Aq-modules N for which
πn`1pMp bRq Nq » 0 is closed under extensions. We may therefore reduce to the case
N “ Aq{I, where I is a prime ideal in Aq. Proceeding by Noetherian induction, we may
assume that πn`1pMp bAq Aq{Jq » 0 whenever J is a prime ideal of Rq properly containing
I.

Let A1 “ Aq{I. If A1 is a field, then I is the maximal ideal of Aq and the desired result
follows from pbq. Otherwise, we can choose a nonzero element x belonging to the maximal ideal
of A1. Note that A1{pxq can be written as a finite extension of Aq-modules of the form Aq{J ,
where J is a prime ideal of Aq properly containing I. It follows that πn`1pMpbAqA

1{pxqq » 0,
so that multiplication by x induces a surjection from πn`1pMp bAq A

1q to itself. Note that
MpbAq A

1 is almost perfect as a module over Bp. Proposition HA.7.2.4.31 implies that B is
Noetherian, so that Bp is Noetherian and therefore πn`1pMp bAq A

1q is finitely generated as
a discrete module over the local ring π0Bp. The image of x in π0Bp belongs to the maximal
ideal. Applying Nakayama’s lemma, we deduce that πn`1pMp bAq A

1q » 0, as desired.

We now wish to study the loci of prime ideals p Ď π0B which satisfy the conditions
appearing in Lemma 6.1.5.2.



480 CHAPTER 6. GROTHENDIECK DUALITY

Lemma 6.1.5.3. Let X be a sober Noetherian topological space and let U Ď X be a subset.
Then U is open if and only if it satisfies the following conditions:

paq The set U is stable under generalization: that is, if points x, y P X satisfy x P tyu and
x belongs to U , then y also belongs to U .

pbq For every point x P U , the intersection U X txu contains an nonempty open subset of
txu.

Proof. The necessity of conditions paq and pbq are obvious. Conversely, suppose that paq and
pbq are satisfied; we wish to show that U is open. Let U˝ denote the interior of U . Replacing
X by X ´ U˝ and U by U ´ U˝, we can reduce to the case where U˝ “ H. Writing X

as a union of its irreducible components, we may assume that X is irreducible. If U is
empty, there is nothing to prove; otherwise, there exists a point x P U . Using paq, we deduce
that the generic point of X belongs to U . It then follows from pbq that the interior of U is
nonempty, contrary to our assumptions.

Lemma 6.1.5.4 (Generic Freeness). Let A be a Noetherian integral domain, let B be a
finitely generated (discrete) A-algebra, and let M be a finitely generated B-module. Then
there exists a nonzero element a P A such that M ra´1s is a free Ara´1s-module.

Proof. Choose a finite collection of elements b1, . . . , bn P B which generate B as an A-algebra.
We proceed by induction on n. In the case n “ 0, M is a finitely generated A-module.
Let K denote the fraction field of A, so that K bAM is a finitely generated vector space
over K. We can then choose finitely many elements x1, . . . , xk P M whose images form
a basis for K bA M . The elements txiu1ďiďk determine a map φ : Ak Ñ M such that
K bA kerpφq » 0 » K bA cokerpφq. Since A is Noetherian, the kernel and cokernel of φ are
finitely generated. We can therefore choose an element a P A which annihilates kerpφq and
cokerpφq, so that φ induces an isomorphism Ara´1sk »M ra´1s.

We now treat the case n ą 0. Let B0 denote the A-subalgebra of B generated by
b1, . . . , bn´1. Let M0 Ď M be a finitely generated B0-submodule which generates M as a
B-module. For i ě 0, set Mi “M0 ` bnM0 ` ¨ ¨ ¨ ` b

i
mM0 ĎM , so that we have M “

Ť

Mi.
For each i ě 0, multiplication by bi`1

n induces a surjection M0 ÑMi`1{Mi whose kernel is
a submodule Ni ĎM0. The ring B0 is Noetherian (by virtue of the Hilbert basis theorem)
and M0 is a finitely generated module over B0. It follows that the ascending chain of
submodules N0 Ď N1 Ď ¨ ¨ ¨ eventually stabilizes. In other words, there exists an integer
i ě 0 for which the maps bjn : Mi`1{Mi Ñ Mi`j`1{Mi`j are isomorphisms for each j ě 0.
Using our inductive hypothesis repeatedly, we can choose a nonzero element a P A for which
each of the localizations M0ra

´1s, pM1{M0qra
´1s, pM2{M1qra

´1s, . . . , pMi`1{Miqra
´1s is a

free module over Ara´1s, so that pMj`1{Mjqra
´1s is a free Ara´1s-module for all i. It follows

that each of the exact sequences 0 ÑMjra
´1s ÑMj`1ra

´1 Ñ pMj`1{Mjqra
´1s Ñ 0 splits,
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so that M ra´1s » M0ra
´1s ‘

À

jě0pMj`1{Mjqra
´1s is also a free module over Ara´1s, as

desired.

Lemma 6.1.5.5. Let m ą n ě 0 be integers, let A be a Noetherian commutative ring, let
B be a connective E8-algebra which is almost of finite presentation over A, and let M be
a B-module which is of finite presentation to order m. Let U Ď | SpecB| denote the set
consisting of those prime ideals p Ď π0B such that M has Tor-amplitude ď n over A at p.
Then U is open.

Proof. Since A is Noetherian, the E8-ring B is also Noetherian (Theorem HA.7.2.4.31 ) so
that the topological space | SpecB| is Noetherian. It will therefore suffice to show that the
set U satisfies conditions paq and pbq of Lemma 6.1.5.3. Condition paq is obvious: if we are
given prime ideals p Ď p1 Ď π0B, then the localization Mp can be obtained as a filtered
colimit of copies of Mp1 , so that if Mp1 has Tor-amplitude ď n as an A-module then Mp also
has Tor-amplitude ď n as an A-module.

We now verify condition pbq. Choose p P U , and let q Ď A be the inverse image of
p. Set A1 “ A{q, B1 “ A1 bA B, and M 1 “ B1 bB M . Our assumption that p belongs
to U guarantees that the homotopy groups πiM 1

q vanish for n ă i ď m. Since each of
these homotopy groups is a finitely generated module over π0B, we can choose an element
b P pπ0Bq ´ q such that πiM 1rb´1s vanishes for n ă i ď m. Using Lemma 6.1.5.4, we
can choose a nonzero element a P A1 such that πiM 1rb´1sra´1s is a free A1ra´1s-module
for 0 ď i ď n. Choose an element a P A lifting a P A1, and let us abuse notation by
identifying a with its image in π0B. We will complete the proof by showing that U contains
every prime ideal p1 Ď pπ0Bq such that p Ď p1 and a, b R p1 (note that the collection of
such prime ideals forms an open subset of the closure of p in |SpecB|). To prove this,
let q1 Ď A be the inverse image of p1, and let κ be the residue field of A at q1. Using
the criterion of Lemma 6.1.5.2, we are reduced to showing that the homotopy groups
πipM bA κqq1 » πipM

1 bA1 κqq1 vanishes for n ă i ď m. Note that these homotopy groups
are localizations of πipM 1rb´1a´1s bA1ra´1s κq. Proposition HA.7.2.1.19 supplies a spectral
sequence tEs,tr , drurě2 with second page Es,t2 “ TorA1ra´1

s pπtM
1rb´1a´1s, κq converging to

πs`tpM
1rb´1a´1s bA1ra´1s κ It now suffices to observe that Es,t2 vanishes for n ă s` t ď m

(since the modules πtM 1rb´1a´1s are free for 0 ď t ď n and vanish for n ă t ď m).

Lemma 6.1.5.6. Let m ě n ě 0 be integers, let A0 be a Noetherian commutative ring, let B0
be an E8-algebra over A0 which is finitely m-presented, and let M0 be a connective B0-module
which is finitely m-presented. Suppose we are given a diagram tAαuαPI of discrete Noetherian
A0-algebras indexed by a filtered partially ordered set I, and set A “ lim

ÝÑ
Aα (so that A need

not be Noetherian). For each α P I, set Bα “ τďmpAα bA0 B0q and Mα “ τďmpBα bB0 M0q,
and set B “ τďmpAbA0 B0qq » lim

ÝÑ
Bα and M “ τďmpB bB0 M0q » lim

ÝÑ
Mα. Let p Ď π0BA

be a prime ideal having inverse images q Ď A, pα Ď π0Bα, and qα Ď Aα. Let κ denote the
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residue field of R at q, and for each α P I let κα denote the residue field of Aα at qα. Then
the following conditions are equivalent:

paq The module M has Tor-amplitude ď n over A at p.

pa1q There exists an index α P I such that Mα has Tor-amplitude ď n over Aα at pα.

pbq The homotopy groups πipM bA κqp vanish for n ă i ď m` 1.

pb1q There exists an index α P I such that the homotopy groups πipMα bAα καqpα vanish
for n ă i ď m` 1.

Proof. We will show that paq ñ pbq ñ pb1q ñ pa1q ñ paq. The implication paq ñ pbq is
immediate from the definitions.

We now show that pb1q ô pa1q. For each α P I, the commutative ring Aα is Noetherian
and Bα is finitely m-presented over Aα; it follows from Proposition 4.2.4.1 that Bα is almost
of finite presentation over Aα. In particular, Bα is Noetherian. Consequently, the assumption
that Mα is finitely m-presented over Bα guarantees that it is also finitely pm` 1q-presented
over Bα. The desired result now follows from Lemma 6.1.5.2 (applied to the pair of integers
m` 1 ą n).

Note that for each α P I, we have an equivalence M » τďmpAbAαMαq, and therefore an
equivalence Mp » τďmpAbAα Mαpαqp. If Mα has Tor-amplitude ď n over Aα at pα, then
the tensor product A bAα Mαpα is n-truncated, and therefore also m-truncated. It then
follows that Mp is a localization of AbAα Mαpα , and is therefore of Tor-amplitude ď n over
A. This proves that pa1q ñ paq.

We now complete the proof by showing that pbq implies pb1q. Let p0 and q0 denote the
inverse images of p in the commutative rings π0B0 and A0, respectively. Let κ0 denote the
residue field of A0 at p and define

K0 “ κ0 bA0 M0 Kα “ κα bAα Mα K “ κbAM.

By construction, we have pm` 1q-connective maps Aα bA0 M0 ÑMα and AbA0 M0 ÑM ,
so that the induced maps

ρi : κbκ0 pπiK0q Ñ πiK ρi,α : κbκ0 pπiK0q Ñ κbκα pπiKαq

are isomorphisms for i ď m and surjections for i “ m` 1. For n ă i ď m` 1, condition pbq
implies that pπiKqp » 0. It follows that the map ρi vanishes after localization at p. Since
πiK0 is a finitely generated module over π0pκ0 bA0 B0q, we conclude that the image of ρi is
annihilated by some element b P pπ0Bq ´ p. Without loss of generality, we may assume that
there exists an element αi P I such that b is the image of some element b P π0Bαi . Enlarging
αi if necessary, we may assume that multiplication by b annihilates the image of the map
ρi,αi . Consequently, condition pb1q is satisfied for any α P I which is an upper bound for
tαn`1, αn`2, . . . , αm`1u.
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Proof of Proposition 6.1.4.5. Let m ě n ě 0 be integers, let A be a commutative ring, let
B be a connective E8-algebra over A which is of finite generation to order pm` 1q, and let
M be a connective B-module which is finitely m-presented. Let p Ď π0B be a prime ideal,
let q Ď A be its inverse image, and let κ denote the residue field of A at q. We wish to show
that M has Tor-amplitude ď n over A at p if and only if the homotopy groups πipκbAMpq

vanish for n ă i ď m ` 1. To prove this, we are free to replace B by τďmB and thereby
reduce to the case where B is finitely m-presented over A.

Write A as a union of its finitely generated subalgebras tAαuαPI . Using Corollary 4.4.1.4,
we see that there exists an index α P I, an E8-algebra Bα which is finitely m-presented
over Aα, and an equivalence B » τďmpAbAα Bαq. Using Corollary 4.5.1.10, we can (after
enlarging α if necessary) assume that there exists a Bα-module Mα which is connective and
finitely m-presented and an equivalence M » τďmpBbBαMαq. The desired equivalence now
follows from Lemma 6.1.5.6

For each β ě α, set Bβ “ τďmpAβ bAα Bαq and Mβ “ τďmpBβ bBα Mαq. Let U denote
the subset of | SpecB| consisting of those prime ideals p such that M has Tor-amplitude
ď n over A at p, and let Uβ denote the subset of | SpecBβ| consisting of those prime ideals
p such that Mβ has Tor-amplitude ď n over Aβ at p. It follows from Lemma 6.1.5.5 that
each Uβ is an open subset of | SpecBβ|. Lemma 6.1.5.6 implies that U is the union of the
inverse images of the sets Uβ, so that U is an open subset of | SpecB|.

6.1.6 Tor-Amplitude and Filtered Colimits

We close this section by mentioning a few consequences of Proposition 6.1.4.5.

Proposition 6.1.6.1. Let m ě n ě 0 be integers, let A0 be a commutative ring and
let B0 be an E8-algebra over A0 which is finitely m-presented. Suppose we are given a
diagram tAαuαPI of discrete A0-algebras indexed by a filtered partially ordered set I, and
set A “ lim

ÝÑ
Aα. Set Bα “ τďmpAα bA0 B0q and B “ τďmpA bA0 B0q » lim

ÝÑ
Bα. If B has

Tor-amplitude ď n over A, then there exists an index α such that Bα has Tor-amplitude
ď n over A.

Warning 6.1.6.2. In the statement of Proposition 6.1.6.1, the hypothesis that the diagram
tAαu consists of commutative rings (rather than connective E8-rings) cannot be eliminated.

Proof of Proposition 6.1.6.1. Write A as a union of finitely generated subalgebras tRβuβPJ .
Using Corollary 4.4.1.4, we conclude that there exists an index β P J , an E8-algebra Sβ
which is is finitely m-presented over Rβ , and an equivalence B » τďmpAbRβ Sβq. For each
β1 ě β, set Sβ1 “ τďmpRβ1 bRβ Sβq, and let Uβ1 Ď | SpecSβ1 | be the set consisting of those
prime ideals p such that Sβ1 has Tor-amplitude ď n over Rβ1 at p. Then each Uβ1 is an open
subset of |SpecSβ1 | (Lemma 6.1.5.5). It follows from Lemma 6.1.5.6 (and our assumption
that B has Tor-amplitude ď n over A) that |SpecB| is covered by the the inverse images
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of the open sets Uβ1 . Since |SpecB| is quasi-compact, it follows that there exists β1 ě β

for which the map | SpecB| Ñ |SpecSβ1 | factors through Uβ1 . Using Proposition 4.3.5.1, we
deduce that there exists β2 ě β1 such that the map |SpecSβ2 | Ñ |SpecSβ1 | factors through
Uβ1 . It then follows that Uβ2 “ | SpecSβ2 |, so that Sβ2 has Tor-amplitude ď n over Rβ2
(Proposition 6.1.4.4).

Since Rβ2 is finitely presented as a commutative ring, the inclusion Rβ1 Ñ A must factor
through Aα for some α P I. Set B1α “ Aα bRβ2 Sβ2 , so that B1α has Tor-amplitude ď n

over Aα. Note that Bα and B1α are E8-algebras which are finitely m-presented over Aα and
we have a canonical equivalence τďmpAbAα Bαq » B » τďmpAbAα B

1
αq. Using Corollary

4.4.1.4, we can assume (after enlarging α if necessary) that Bα and B1α are equivalent as
E8-algebras over Aα, so that Bα has Tor-amplitude ď n over Aα.

Corollary 6.1.6.3. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Suppose that there exists an integer n such that f is locally of finite generation to order
pn` 1q and of Tor-amplitude ď n. Then f is locally almost of finite presentation.

Proof. The assertion is local on X and Y, so we may assume without loss of generality
that Y “ SpétA and X “ SpétB are affine. We wish to show that B is almost of finite
presentation over A. By virtue of Proposition 4.1.3.4, we can replace A by π0A and B by
the tensor product B bA π0A, and thereby reduce to the case where A is discrete. Since B
is of Tor-amplitude ď n over A, it is n-truncated. It is therefore finitely n-presented over A.

Write A as a filtered colimit its finitely generated subrings and applying Corollary
4.4.1.4, we deduce that there exists a finitely generated subring A0 Ď A and an equivalence
B » τďnpA bA0 B0q, where B0 is finitely n-presented over A0. By virtue of Proposition
6.1.6.1, we may assume (after enlarging A0 if necessary) that B0 has Tor-amplitude ď n over
A0. It follows that the tensor product AbA0 B0 is n-truncated, and is therefore equivalent
to B. Replacing A by A0 and B by B0, we can reduce to the case where A is Noetherian.
In this case, Proposition 4.2.4.1 implies that B is Noetherian and of finite type over A, so
that B is almost of finite presentation over A by virtue of Remark 4.2.0.4.

Corollary 6.1.6.4. Let f : X Ñ Y “ pY,OYq be a morphism of spectral Deligne-Mumford
stacks. The following conditions are equivalent:

p1q The map f is flat and locally almost of finite presentation.

p2q Let Y0 “ pY, π0 OYq, and let X0 “ XˆY Y0. Then the projection map X0 Ñ Y0 is flat
and locally finitely 0-presented.

Proof. The implication p1q ñ p2q is clear. For the converse, we may assume without loss
of generality that X » SpétB and Y » SpétA are affine. Condition p2q then guarantees
that B0 “ B bA pπ0Aq is flat and finitely 0-presented over π0A. It follows immediately
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that B is flat over A. We will complete the proof by showing that B is almost of finite
presentation over A. Using assumption p2q and Proposition 4.1.2.1, we deduce that the
cotangent complex LB0{π0A » B0bB LB{A is perfect to order 1 as a B0-module (Proposition
4.1.2.1). Using Proposition 2.7.3.2, we see that LB{A is perfect to order 1 as a module over
B. Since π0B is finitely presented as an algebra over π0A, Proposition 4.1.2.1 implies that
B is of finite generation to order 1 over A. Using the flatness of B over A and Corollary
6.1.6.3, we deduce that B is almost of finite presentation over A, as desired.

Corollary 6.1.6.5. Let f : R Ñ A be a morphism of connective E8-rings. Suppose that
there exists a faithful flat morphism g : A Ñ B such that g and g ˝ f are almost of finite
presentation. Then f is almost of finite presentation.

Proof. We first show that π0A is finitely generated as an algebra over π0R. Write π0A as a
filtered colimit of commutative rings tAαu which are finitely presented over π0R. Since π0B »

π0AbA B is almost of finite presentation over π0A, we can write π0B » τď0pπ0AbAα Bαq

for some Bα which is finitely 0-presented over Aα. Using Proposition 6.1.6.1 and Proposition
4.6.1.2, we may assume without loss of generality that Bα is faithfully flat over Aα; in
particular, Bα is discrete. Choose a finite collection of elements x1, . . . , xn which generate
π0B as an algebra over π0R. Changing α if necessary, we may suppose that each xi can
be lifted to an element xi in Bα. Then the map ψ : Bα Ñ π0B is surjective. Since Bα is
faithfully flat over Aα, we conclude that the map Aα Ñ π0A is surjective, so that π0A is
finitely generated over π0R.

Let I denote the kernel of the map Aα Ñ π0A. Then IBα is the kernel of ψ. Since ψ is
a surjection between finitely presented π0R-algebras, kerpψq is finitely generated. Since Bα
is faithfully flat over Aα, we conclude that I is finitely generated, so that π0A » Aα{I is
finitely presented as a commutative ring over π0R.

To complete the proof that A is almost of finite presention over R, it will suffice to show
that LA{R is almost perfect as an A-module (Proposition 4.1.2.1). Since B is faithfully flat
over A, it will suffice to prove that B bA LA{R is almost perfect as a B-module (Proposition
2.8.4.2). This follows from the existence of a fiber sequence B bA LA{R Ñ LB{R Ñ LB{A,
since LB{A and LB{R are almost perfect by virtue of Proposition 4.1.2.1.

6.2 Digression: Quasi-Coherent Sheaves on a Functor

In §2.2, we introduced the notion of a quasi-coherent sheaf on a spectral Deligne-
Mumford stack X. Every spectral Deligne-Mumford stack X determines a “functor of points”
hX : CAlgcn Ñ S, given on objects by the formula hXpRq “ MapSpDMpSpétR,Xq. According
to Proposition ??, the spectral Deligne-Mumford stack X is determined (up to canonical
equivalence) from the functor hX. In particular, the 8-category QCohpXq is depends only
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on the functor hX. Our goal in this section is to make the passage from hX to QCohpXq
explicit. To accomplish this, we will associate to any functor X : CAlgcn Ñ S an 8-category
QCohpXq, which we call the 8-category of quasi-coherent sheaves on the functor X. Roughly
speaking, an object F P QCohpXq can be viewed as a rule which assigns to each point
η P XpRq an R-module F pηq, which depends functorially on R in the following sense:
if φ : R Ñ R1 is a map of connective E8-rings and η1 denotes the image of η in XpR1q,
then we have a canonical equivalence R1 bR F pηq » F pη1q. Moreover, we require that
this equivalence is compatible with composition of morphisms in CAlgcn, up to coherent
homotopy. The first part of this section is devoted to converting the above discussion into a
precise definition (Definition 6.2.2.1). We then show that, in the special case where X is the
functor represented by a spectral Deligne-Mumford stack X, there is a canonical equivalence
of 8-categories QCohpXq » QCohpXq (Proposition 6.2.4.1).

6.2.1 Categorical Digression

Our first goal is to make turn the heuristic description of QCohpXq sketched above into
a precise definition. For this, we will need to develop a bit of categorical machinery. In what
follows, we will assume that the reader is familiar with the theory of Cartesian fibrations
developed in §HTT.2.4 .

Definition 6.2.1.1. Let q : D Ñ E be a Cartesian fibration of simplicial sets. Given another
map of simplicial sets e : C Ñ E , we let FunEpC,Dq denote the8-category FunpC,DqˆFunpC,Eq
teu whose objects are maps F : C Ñ D which fit into a commutative diagram

C
e

  

F // D
q

~~
E .

We will say that such an object F is q-Cartesian if it carries every edge of C to a q-Cartesian
edge of D. Funcart

E pC,Dq denote the full subcategory of FunEpC,Dq spanned by the Cartesian
maps.

Remark 6.2.1.2. As our notation suggests, we will be primarily interested in the special
case of Definition 6.2.1.1 where C, D, and E are 8-categories. However, Definition 6.2.1.1
makes sense in greater generality: the assumption that q is a Cartesian fibration guarantees
that FunEpC,Dq and Funcart

E pC,Dq are 8-categories, regardless of whether or not C, D, or E
are 8-categories.

Remark 6.2.1.3. In the situation of Definition 6.2.1.1, suppose that q : D Ñ E is a right
fibration. Then every edge of D is q-Cartesian, so we have Funcart

E pC,Dq “ FunEpC,Dq.
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In the situation of Definition 6.2.1.1, the assumption that q : D Ñ E is a Cartesian
fibration means that we can regard the construction pE P Eq ÞÑ DE “ DˆEtEu as a con-
travariant functor from D to the 8-category Cat8 of small 8-categories. Using Proposition
HTT.3.3.3.1 , we can identify the 8-category Funcart

E pC,Dq with a limit of the composite
functor Cop Ñ Dop Ñ Cat8. We now study the naturality of this identification, focusing on
the special case where the map e : C Ñ E is a right fibration.

Notation 6.2.1.4. Let Set∆ denote the category of simplicial sets. Given a simplicial set E ,
we let pSet∆q

˝
{ E denote the full subcategory of pSet∆q{ E whose objects are right fibrations

e : C Ñ E . We will regard pSet∆q
˝
{ E as a simplicial category, with mapping spaces given by

MappSet∆q
˝
{ E
pC,Dq “ FunEpC,Dq “ Funcart

E pC,Dq

(see Remark 6.2.1.3). Note that the simplicial category pSet∆q
˝
{ E is fibrant: that is, for

every pair of objects C,D P pSet∆q
˝
{ E , the mapping space FunEpC,Dq is a Kan complex.

Let NpSet∆q
˝
{ E denote the homotopy coherent nerve of the simplicial category pSet∆q

˝
{ E . It

follows from Proposition HTT.1.1.5.10 that NpSet∆q
˝
{ E is an 8-category. We will refer to

NpSet∆q
˝
{ E as the 8-category of right fibrations over E .

Remark 6.2.1.5. Let E be a simplicial set. Then we can regard pSet∆q
˝
{ E as the full

subcategory of pSet∆q{ E spanned by those objects which are fibrant with respect to the
contravariant model structure described in §HTT.2.1.4 (note that such objects are also
cofibrant: every object pSet∆q{ E is cofibrant with respect to the contravariant model
structure). Consequently, we can regard NpSet∆q

˝
{ E is the underlying 8-category of the

simplicial model category pSet∆q{ E .

Remark 6.2.1.6. Let E be a simplicial set. Then Proposition HTT.5.1.1.1 supplies canonical
equivalences of 8-categories FunpEop,Sq „

ÐÝ P2pEq „ÝÑ NpSet∆q
˝
{ E , where P2pEq denotes the

8-category underlying the model category of simplicial presheaves on the simplicial category
CrEs (see §HTT.1.1.5 )

Construction 6.2.1.7. Recall that the 8-category Cat8 of small 8-categories is defined
as the homotopy coherent nerve of the simplicial category Cat∆

8, where the objects of Cat∆
8

are (small) 8-categories and the mapping spaces are given by MapCat∆
8
pC,Dq “ FunpC,Dq»

Let q : D Ñ E be a Cartesian fibration of simplicial sets. Then the construction C ÞÑ
Funcart

E pC,Dq determines a contravariant simplicial functor pSet∆q
˝
{ E Ñ pCat∆

8q. Passing to
homotopy coherent nerves, we obtain a functor of 8-categories Φ0 : pNpSet∆q

˝
{ Eq

op Ñ Cat8.
Composing this functor with the equivalence FunpEop,Sq » NpSet∆q

˝
{ E of Remark 6.2.1.6,

we obtain a functor Φpqq : FunpEop,Sqop Ñ Cat8, which is well-defined up to (canonical)
homotopy.
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Remark 6.2.1.8. Let q : D Ñ E be a Cartesian fibration of simplicial sets and let
X : Eop Ñ S be a functor. Then the functor Φpqq of Construction 6.2.1.7 carries X to
the 8-category Funcart

E pC,Dq, where e : C Ñ E is a right fibration classified by X. More
informally, the 8-category ΦpqqpXq can be described as the limit lim

ÐÝEPE,ηPXpEqDE : in other
words, an object of ΦpqqpXq is a rule F which assigns to each object E P E and each point
η P XpEq an object F pηq P DE , which depends functorially on E and η.

The functor Φpqq of Construction 6.2.1.7 can be characterized by a universal mapping
property:

Proposition 6.2.1.9. Let q : D Ñ E be a Cartesian fibration of simplicial sets which is
classified by a functor χ : Eop Ñ Cat8, let j : Eop Ñ FunpEop,Sqop be the Yoneda embedding,
and let let Φpqq : FunpEop,Sqop Ñ Cat8 be as in Construction 6.2.1.7. Then Φpqq is a right
Kan extension of χ along j.

Remark 6.2.1.10. There are evident dual versions of the constructions described above. If
q : D Ñ E is a coCartesian fibration of simplicial sets and we are given a map e : C Ñ E , then
we will say that a functor F P FunEpC,Dq is q-coCartesian if it carries every edge of C to a
q-coCartesian edge of D. We let Funccart

E pC,Dq denote the full subcategory of FunEpC,Dq
spanned by the q-coCartesian maps. Using a dual version of Construction 6.2.1.7, we see
that the construction C ÞÑ Funccart

E pC, Eq determines a functor Φ1pqq : FunpE ,Sqop Ñ Cat8.
If χ : E Ñ Cat8 is a functor classifying the coCartesian fibration q, then Proposition
6.2.1.9 implies that Φ1pqq is a right Kan extension of χ along the Yoneda embedding
j : E Ñ FunpE ,Sqop.

Remark 6.2.1.11. Remark 6.2.1.10 has an evident analogue in the setting of simplicial
sets and 8-categories that are not necessarily small. If q : D Ñ E is a coCartesian fibration
between simplicial sets which are not necessarily small, then q is classified by a functor
χ : S Ñ yCat8. Performing Construction 6.2.1.7 in a larger universe, we obtain a functor
Φ1pqq : FunpE , pSqop ÑyCat8, which we can identify with a right Kan extension of χ along
the Yoneda embedding E Ñ FunpE , pSqop.

We now turn to the proof of Proposition 6.2.1.9. By virtue of Lemma HTT.5.1.5.5 , it
will suffice to verify the following pair of assertions:

Lemma 6.2.1.12. Let q : D Ñ E be a Cartesian fibration of simplicial sets. Then the
functor Φpqq : FunpEop,Sqop Ñ Cat8 of Construction 6.2.1.7 commutes with small limits.

Lemma 6.2.1.13. Let q : D Ñ E be a Cartesian fibration of simplicial sets, let Φpqq :
FunpEop,Sqop Ñ Cat8 be as in Construction 6.2.1.7, and let j : E Ñ FunpEop,Sq denote the
Yoneda embedding. Then the composition pΦpqq ˝ jopq : Eop Ñ Cat8 classifies the Cartesian
fibration q.
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Note that the statement of Lemma 6.2.1.13 involves the functor Φpqq of Construction
6.2.1.7, which is in turn defined using the equivalence FunpEop,Sq » NpSet∆q

˝
{ E of Remark

6.2.1.6. Consequently, any proof of Lemma 6.2.1.13 will require us to analyze this equivalence,
which was established using the straightening and unstraightening construction of §HTT.3.2 .
In the proof that follows, we will assume that the reader is familiar with these constructions
(a reader who does not wish to be burdened with these technical matters can regard
Proposition 6.2.1.9 as providing alternative definition of the functor Φpqq and proceed
directly to Definition 6.2.2.1, where we will return to the study of algebraic geometry).

Proof of Lemma 6.2.1.13. We begin by recalling the definition of the Yoneda embedding j.
Choose a weak equivalence of simplicial categories φ : CrEs Ñ Cop, where C is fibrant (that
is, the mapping space MapCpX,Y q is a Kan complex for every pair of objects X,Y P C).
The construction X ÞÑ MapCpX, ‚q determines a simplicial functor F : Cop Ñ pSetC

∆q
0,

which (after composing with φ) yields a map of simplicial sets f : E Ñ NpSetC
∆q
0; here

we regard SetC
∆ as endowed with the projective model structure and we let pSetqC∆q˝

denote the full of SetC
∆ spanned by the fibrant-cofibrant objects. The Yoneda embedding

j is obtained by composing f with the equivalences θ : NpSetC
∆q
0 Ñ NpSetCrE

ops
∆ q0 and

θ1 : NpSetCrE
ops

∆ q0 Ñ FunpEop,Sq The functor Φpqq is obtained by composing a homotopy
inverse to θ1, the equivalence U : NpSetCrE

ops
∆ q0 Ñ NpSet∆q

˝
{ E induced by the unstraightening

functor UnE of §HTT.3.2.1 , and the functor Φ0 of Construction 6.2.1.7. It therefore suffices
to show that the composition Φpqq ˝ j » Φ0 ˝U ˝ θ ˝ f “ Φ0 ˝Unφ ˝f classifies the Cartesian
fibration q.

Without loss of generality, we may suppose that D » Un`φ χ, where χ is a fibrant-
cofibrant object of pSet`∆qC (Theorem HTT.3.2.0.1 ). Then the composition Φ0 ˝ Unφ :
NpSetC

∆q
0 Ñ Cat8 is given by the homotopy coherent nerve of the simplicial functor F ÞÑ

Map
pSet`∆q{S

pUn`φ F 7,Un`φ χq, which is equivalent to the functor F ÞÑ Map
pSet`∆qC

pF 7, χq;
here F 7 : C Ñ Set`∆ denotes the functor given by F 7pCq “ F pCq7. In particular, if
F is representable by an object C P C, the classical (simplicially enriched) version of
Yoneda’s lemma gives a canonical isomorphism Map

pSet`∆qC
pF 7, χq » χpCq. We conclude

that Φpqq ˝ j » Φ0 ˝Unφ ˝f is adjoint to the simplicial functor CrEops Ñ C χ
Ñ Cat∆

8, so that
Φpqq ˝ j classifies the Cartesian fibration q as desired.

We now turn to Lemma 6.2.1.12. In comparison with Lemma 6.2.1.13, the proof is
relatively formal.

Lemma 6.2.1.14. Let S be a simplicial set. Let pSet`∆q{S denote the category of marked
simplicial sets equipped with a map to S, which we regard as endowed with the Cartesian
model structure (see §HTT.3.1 ). Let F : pSet∆q{S Ñ pSet`∆q{S be the functor given by
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X ÞÑ X7, and regard pSet∆q{S as endowed with the contravariant model structure (see
§HTT.2.1.4 ). Then:

p1q The functor F carries fibrant objects of pSet∆q{S (with respect to the contravariant
model structure) to fibrant objects of pSet`∆q{S, and therefore induces a functor of 8-
categories f : NpSet∆q

0
{S Ñ NpSet`∆q0{S. Here pSet`∆q˝{S denotes the simplicial category

of fibrant objects of pSet`∆q{S, and NpSet`∆q0{S denotes its homotopy coherent nerve.

p2q The functor f preserves small limits and colimits.

Proof. Assertion p1q follows immediately from Proposition HTT.2.4.2.4 . To prove p2q, we
observe that f fits into a homotopy commutative diagram

NppSet∆q
CrSsop

q0
f 1 //

��

NppSet`∆qCrSs
op
q0

��
NpSet∆q

0
{S

f // NpSet`∆q0{S

where the vertical maps are given by the unstraightening functors of §HTT.2.2.1 and
§HTT.3.2.1 , and therefore equivalences of 8-categories. It therefore suffices to prove that
the map f 1 preserves small limits. Using Proposition HTT.4.2.4.4 , we can identify f2 with
the map FunpSop,Sq Ñ FunpSop, Cat8q induced by the inclusion i : S Ñ Cat8. It therefore
suffices to show that i preserves small and colimits, which follows from the observation that
i admits left and right adjoints.

Proof of Lemma 6.2.1.12. Let q : D Ñ E be a Cartesian fibration of simplicial sets. To show
that the functor Φpqq : FunpEop,Sqop Ñ Cat8 commutes with small limits, it will suffice
to show that the functor Φ0 : NpSet∆q

0
{ E Ñ Cat8 appearing in Construction 6.2.1.7 has

the same property (since Φpqq is obtained from Φq by precomposition with an equiavalence
of 8-categories). By definition, the functor Φ0 can be obtained by composing the functor
f : NpSet∆q

0
{ E Ñ NpSet`∆q0{ E of Lemma 6.2.1.14 with the functor G0 : NpSet`∆q0{S Ñ pSet`∆q0

induced by the right adjoint to the left Quillen functor K ÞÑ K ˆ S7 from Set`∆ to pSet`∆q{S .
Since the functor G0 preserves small limits, it follows from Lemma 6.2.1.14 that the functor
Φ0 also preserves small limits.

6.2.2 Application: Quasi-Coherent Sheaves

We now consider Construction 6.2.1.7 (or, rather, of the variant of Remark 6.2.1.11) in a
concrete example.

Definition 6.2.2.1. Let CAlgcnˆCAlg Mod denote the 8-category whose objects are pairs
pA,Mq, where A is a connective E8-ring and M is an A-module spectrum. Let q :
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CAlgcnˆCAlg Mod Ñ CAlgcn denote the projection onto the first factor, so that q is a
coCartesian fibration. We let QCoh : FunpCAlgcn, pSqop Ñ yCat8 denote the functor Φ1pqq
obtained by applying Remark 6.2.1.11 to q; here pS denotes the 8-category of spaces which
are not necessarily small, and yCat8 is defined similarly.

If X : CAlgcn Ñ pS is any functor, we will refer to QCohpXq PyCat8 as the 8-category
of quasi-coherent sheaves on X.

Remark 6.2.2.2. There is no real need to restrict to connective E8-rings in Definition
6.2.2.1. Using exactly the same procedure, we can associate to any functor X : CAlg Ñ pS an
8-category QCoh1pXq of quasi-coherent sheaves on X. In some sense, this definition is strictly
more general than that of Definition 6.2.2.1: if X0 : CAlgcn Ñ pS is any functor, then there
is a canonical equivalence of 8-categories QCohpX0q » QCoh1pXq, where X : CAlg Ñ pS is
a left Kan extension of X0. However, for most of our applications it will be convenient to
consider functors which are defined only on the full subcategory CAlgcn Ď CAlg spanned by
the connective E8-rings.

Notation 6.2.2.3. Let R be a connective E8-ring. We let SpecR : CAlgcn Ñ S Ď pS denote
the functor corepresented by R, given by the formula pSpecRqpAq “ MapCAlgpR,Aq. We
will sometimes refer to SpecR as the spectrum of R.

Remark 6.2.2.4. If R is a connective E8-ring, then we can identify SpecR with the functor
represented by the affine spectral Deligne-Mumford stack SpétR. In other words, the fully
faithful embedding h : SpDM Ñ FunpCAlgcn,Sq carries SpétR to SpecR.

Remark 6.2.2.5. Lemma 6.2.1.13 implies that the composition of the Yoneda embedding
CAlgcn Ñ FunpCAlgcn, pSqop with the functor QCoh : FunpCAlgcn, pSqop Ñ yCat8 classifies
the coCartesian fibration CAlgcnˆCAlg Mod Ñ CAlgcn. In other words, for every E8-ring R
we have an equivalence of 8-categories QCohpSpecRq » ModR, which depends functorially
on R.

Notation 6.2.2.6. If f : X Ñ X 1 is a natural transformation between functors X,X 1 :
CAlgcn Ñ pS, then f determines a functor QCohpX 1q Ñ QCohpXq. We will denote this
functor by f˚, and refer to it as the functor given by pullback along f .

Remark 6.2.2.7. By construction, if X : CAlgcn Ñ pS is a functor classifying a left
fibration C Ñ CAlg, then the 8-category QCohpXq of quasi-coherent sheaves on F can be
identified with the 8-category Funccart

CAlgpC,Modq of Construction 6.2.1.7. More informally,
we can think of an object F P QCohpXq as a functor which assigns to every connective
E8-ring R and every point η P XpRq (encoded by an object rR P C lifting R) an R-module
F pηq P ModR. These modules are required to depend functorially on R in the following
strong sense: if φ : RÑ R1 is a map of connective E8-rings and η1 P XpR1q is the image of
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η under φ (so that we have a morphism rf : rRÑ rR1 in C), then we obtain a q-coCartesian
morphism F pηq Ñ F pη1q in Mod, which we can view as an equivalence of R1-modules
R1 bR F pηq

„
ÝÑ F pη1q.

Note that we can identify with a choice of point η P XpRq with a natural transformation
of functors SpecRÑ X. Then F pηq can be identified with the the image of F under the
composition QCohpXq η

˚

Ñ QCohpSpecRq » ModR, where the equivalence QCohpSpecRq »
ModR is supplied by Remark 6.2.2.5. Motivated by this observation, we will sometimes
denote the R-module F pηq by η˚F .

6.2.3 Formal Properties of QCohpXq

Let yShvfpqc denote the full subcategory of FunpCAlgcn, pSq spanned by those functors
which are sheaves with respect to the fpqc topology of Variant B.6.1.7.

Proposition 6.2.3.1. Let L : FunpCAlgcn, pSq Ñ yShvfpqc denote a left adjoint to the
inclusion functor. Then:

paq The canonical map QCoh ˝LÑ QCoh is an equivalence of functors from FunpCAlgcn, pSqop

to yCat8.

pbq The restriction QCoh |
pyShvfpqcqop : yShv

op
fpqc ÑyCat8 preserves small limits.

Proof. Since the functor QCoh preserves limits (Lemma 6.2.1.12), Proposition 1.3.1.7 implies
that the functor QCoh factors through L if and only if the composition of QCoh with the
Yoneda embedding CAlgcn j

ÝÑ FunpCAlgcn, pSqop is a yCat8-valued sheaf on CAlgcn. Assertion
paq now follows from Corollary D.6.3.3, and pbq is an immediate consequence of paq.

Remark 6.2.3.2. We can restate Proposition 6.2.3.1 as follows: if X : CAlgcn Ñ pS is any
functor and X 1 is the sheafification of F with respect to the fpqc topology, then the pullback
map QCohpX 1q Ñ QCohpXq is an equivalence of 8-categories.

Remark 6.2.3.3. We can strengthen Proposition 6.2.3.1 slightly: the 8-category QCohpXq
of quasi-coherent sheaves on a functor X : CAlgcn Ñ pS depends only on the hypercompletion
of the sheaf LpXq P yShvfpqc.

We now summarize some formal properties enjoyed by8-categories of the form QCohpXq:

Proposition 6.2.3.4. p1q For every functor X : CAlgcn Ñ pS, the 8-category QCohpXq
is stable and admits small colimits.

p2q For every natural transformation morphism α : X Ñ X 1 in FunpCAlgcn, pSq, the
pullback functor α˚ : QCohpX 1q Ñ QCohpXq preserves small colimits. In particular,
it is exact.
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p3q Suppose that X P yShvfpqc belongs to the smallest full subcategory of yShvfpqc which is
closed under small colimits and contains the essential image of the Yoneda embedding.
Then the 8-category QCohpXq is presentable.

Proof. Let C denote the subcategory of yCat8 spanned by those 8-categories which are
stable and admit small colimits, and those functors which preserve small colimits. Then C
admits limits, and the inclusion C ãÑyCat8 preserves limits. Since the coCartesian fibration
CAlgcnˆCAlg Mod Ñ CAlgcn is classified by a functor χ : CAlgcn Ñ C, it follows from
Proposition 6.2.1.9 that QCoh factors through C. This proves p1q and p2q. To prove p3q,
we let C0 denote the full subcategory of C spanned by the presentable 8-categories. Using
Proposition HTT.5.5.3.13 , we deduce that C0 is stable under small limits in C, so that
QCoh´1 C0 is stable under small colimits in yShvfpqc. It therefore suffices to observe that
QCohpXq is presentable whenever X is corepresented by a connective E8-ring R: this follows
from the equivalence QCohpXq » ModR of Remark 6.2.2.5.

6.2.4 Comparison with the Geometric Definition

We now show that when we restrict our attention to functors which are (representable
by) spectral Deligne-Mumford stacks, Definition 6.2.2.1 recovers the theory of quasi-coherent
sheaves developed in Chapter 2.

Proposition 6.2.4.1. Let X be a spectral Deligne-Mumford stack and let hX : CAlgcn Ñ S
denote the functor represented by X (given by the formula hXpAq “ MapSpDMpSpétA,Xq).
Then there is a canonical equivalence of 8-categories QCohpXq » QCohphXq, where QCohpXq
is given by Definition 2.2.2.1 and QCohphXq by Definition 6.2.2.1.

Proof. To avoid confusion, let us temporarily denote the8-category of quasi-coherent sheaves
on a spectral Deligne-Mumford stack X by QCoh1pXq, so that the construction X ÞÑ QCoh1pXq
determines a functor QCoh1 : SpDMop Ñ yCat8. Let h : SpDM Ñ FunpCAlgcn, pSq be the
fully faithful embedding of Proposition 1.6.4.2. Lemma 6.2.1.13 shows that the functors
QCoh1 and QCoh ˝h are equivalent when restricted to the full subcategory Aff Ď SpDM
spanned by the affine spectral Deligne-Mumford stacks. Since the functor h is fully faithful,
Proposition 6.2.1.9 implies that QCoh ˝h is a right Kan extension of its restriction to Aff,
so we obtain a natural transformation of functors α : QCoh1 Ñ QCoh ˝h (which is an
equivalence when restricted to affine spectral Deligne-Mumford stacks). We will complete
the proof by showing that α is an equivalence: that is, for every spectral Deligne-Mumford
stack X “ pX ,OX q, the induced map αpXq : QCoh1pXq Ñ QCohphXq is an equivalence.

For each object U P X , let XU denote the spectral Deligne-Mumford stack given by
pX {U ,OX |U q, so that α determines a functor αpXU q : QCoh1pXU q Ñ QCohphXU q. Let
X 0 denote the full subcategory of X spanned by those objects U for which αpXU q is an
equivalence. We will complete the proof by showing that X 0 “ X . By construction, X 0
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contains every affine object U P X . By virtue of Proposition 1.4.7.9, it will suffice to show
that X 0 is closed under small colimits in X . To prove this, suppose we are given a small
diagram tUαu in the 8-category X 0 having a colimit U P X . We then have a commutative
diagram of 8-categories

QCoh1pXU q
αpXU q //

��

QCohphXU q

φ

��
lim
ÐÝ

QCoh1pXUαq // lim
ÐÝ

QCohphXUα q.

The lower horizontal map is an equivalence by virtue of our assumption that each Uα belongs
to X 0, and the left vertical map is an equivalence by the proof of Proposition 2.2.4.1. It
will therefore suffice to show that the functor φ is an equivalence. Using Lemma ??, we see
that XU can be identified with the colimit of the diagram tXUαu in the 8-category yShvét
of étale sheaves. It follows that LXU can be identified with the colimit of the diagram
tLXUαu in the 8-category yShvfpqc, where L : FunpCAlgcn, pSq Ñ yShvfpqc is a left adjoint to
the inclusion. The desired result now follows from Proposition 6.2.3.1.

6.2.5 Local Properties of Quasi-Coherent Sheaves

Many of the local properties of quasi-coherent sheaves discussed in §2.8 make sense in
the context of quasi-coherent sheaves on an arbitrary functor.

Definition 6.2.5.1. Let P be a condition on pairs pA,Mq, where A is a connective E8-ring
and M is an A-module. We will say that P is stable under base change if, whenever a
pair pA,Mq has the property P and f : AÑ B is a map of connective E8-rings, the pair
pB,B bAMq also has the property P .

Proposition 6.2.5.2. The following conditions on a pair pA,Mq P CAlgcnˆCAlg Mod are
stable under base change:

p1q The condition that M is n-connective (when regarded as a spectrum), where n is a
fixed integer.

p2q The condition that M is almost connective: that is, M is p´nq-connective for n " 0.

p3q The condition that M is has Tor-amplitude ď n, where n is a fixed integer.

p4q The condition that M is flat.

p5q The condition that M is perfect to order n over A, where n is a fixed integer.

p6q The condition that M is almost perfect over A.
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p7q The condition that M is perfect over A.

p8q The condition that M is locally free of finite rank over A.

Proof. Assertions p1q, p2q, and p7q are obvious. Assertion p3q follows from Lemma 2.8.4.3 and
assertion p5q from Proposition 2.7.3.1. Assertions p4q and p6q are immediate consequences of
p1q, p3q, and p5q, and assertion p8q follows from p4q and p7q.

Definition 6.2.5.3. Let P be a condition on objects pA,Mq P CAlgcnˆCAlg Mod which
is stable under base change and let X : CAlgcn Ñ pS be a functor. We will say that an
object F P QCohpXq has the property P if, for every connective E8-ring R and every point
η P XpRq, the pair pR,F pηqq has the property P , where F pηq P ModR is the R-module of
Remark 6.2.2.7.

Remark 6.2.5.4. Let P be a condition on pairs pA,Mq P CAlgcnˆCAlg Mod which is
stable under base change and let α : X Ñ X 1 be a natural transformation between functors
X,X 1 : CAlgcn Ñ pS. If F P QCohpX 1q has the property P , then α˚F P QCohpXq has the
property P .

Example 6.2.5.5. Let R be a connective E8-ring and let SpecR : CAlgcn Ñ S be the
functor corepresented by R, so that Remark 6.2.2.5 gives an equivalence of 8-categories
θ : QCohpSpecRq » ModR. If P is a property of objects of CAlgcnˆCAlg Mod which is
stable under base change, then an object F P QCohpSpecRq has the property P if and only
if the pair pR, θpF qq has the property P .

Remark 6.2.5.6. Let α : X Ñ X 1 be a natural transformation between functors X,X 1 :
CAlgcn Ñ pS, and suppose that α induces an equivalence after sheafification with respect to
the flat topology. Proposition 6.2.3.1 implies that the pullback functor α˚ : QCohpX 1q Ñ
QCohpXq is an equivalence of8-categories. If P is a property of objects of CAlgcnˆCAlg Mod
which is stable under base change and F P QCohpX 1q has the property P , then the pullback
α˚F P QCohpXq has the property P (Remark 6.2.5.4). The converse holds provided that
P is local with respect to the flat topology, in the sense of Definition 2.8.4.1.

Example 6.2.5.7. Let X : CAlgcn Ñ pS be a functor and let F P QCohpXq. We say
that F is connective if, for every point η P XpRq, the R-module F pηq is connective. We
let QCohpXqcn denote the full subcategory of QCohpXq spanned by the connective quasi-
coherent sheaves on X. It is clear that QCohpXqcn is closed under small colimits and
extensions in QCohpXq, and is therefore a prestable 8-category in the sense of Definition
C.1.2.1.

Remark 6.2.5.8. Let X : CAlgcn Ñ pS be a functor which satisfies condition p3q of
Proposition 6.2.3.4. Arguing as in the proof of Proposition 6.2.3.4, we deduce that the 8-
category QCohpXqcn is presentable. It follows from Proposition HA.1.4.4.11 that the pair of
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subcategories pQCohpXqcn,QCohpXqď0q determines an accessible t-structure on QCohpXq,
where QCohpXqď0 denotes the full subcategory of QCohpXq spanned by those objects G

for which the mapping space MapQCohpXqpΣ F ,G q is contractible for all F P QCohpXqcn.

Warning 6.2.5.9. In the situation of Remark 6.2.5.8, there is no obvious way to test
that whether an object F P QCohpXq belongs to QCohpXqď0. For example, the inclusion
F P QCohpXq does not imply that F pηq P pModRqď0 when η P XpRq, since the property
of being 0-truncated is not stable under base change. In general, the t-structure of Remark
6.2.5.8 is generally not compatible with filtered colimits, and the prestable 8-category
QCohpXqcn is not a Grothendieck prestable8-category (see Definition C.1.4.2). To guarantee
that the t-structure of Remark 6.2.5.8 is well-behaved, we typically need to impose some
additional assumptions on X (like the assumption that X is representable by a spectral
Deligne-Mumford stack, or admits a flat covering by a spectral Deligne-Mumford stack).

Proposition 6.2.5.10. Let X be a spectral Deligne-Mumford stack, let X : CAlgcn Ñ S
denote the functor represented by X, and let θ : QCohpXq » QCohpXq be the equivalence sup-
plied by the proof of Proposition 6.2.4.1. Let P be a property of objects of CAlgcnˆCAlg Mod
which is stable under base change and local for the flat topology. An object F P QCohpXq
has the property P if and only if θpF q P QCohpF q has the property P .

Proof. The “only if” direction is obvious. For the converse, let us suppose that F has the
property P . Let A be a connective E8-ring and let f : SpétA Ñ X be a map of spectral
Deligne-Mumford stacks; we wish to show that the pair pA, f˚F q has the property P . In
verifying this, we are free to replace X by any open substack through which f factors; we
may therefore assume without loss of generality that X is quasi-compact. Choose an étale
surjection u : U Ñ X, where U » SpétR is affine. We can then choose a faithfully flat étale
map AÑ A1 such that the composite map SpétA1 Ñ SpétA f

Ñ X factors through U. Since
P is local for the flat topology, we may replace A by A1 and thereby reduce to the case
where f factors through U . Then f˚F » AbR u

˚F . Since P is stable under base change,
we are reduced to proving that the pair pR, u˚F q has the property P , which follows from
our assumption that F has the property P .

6.2.6 Tensor Products of Quasi-Coherent Sheaves

Let CAlgpyCat8q denote the 8-category of (not necessarily small) symmetric monoidal
8-categories. We have an evident forgetful functor θ : CAlgpyCat8q ÑyCat8 which preserves
limits. The functor R ÞÑ ModR factors as a composition

CAlgcn U
Ñ CAlgpyCat8q θ

ÑyCat8,

where U assigns to each connective E8-ring the symmetric monoidal 8-category ModbR (see
§HA.4.5.3 ). Let QCohb : FunpCAlgcn, pSqop Ñ CAlgpyCat8q be a right Kan extension of U
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along the Yoneda embedding pCAlgcnqop Ñ FunpCAlgcn, pSqop. Then the functor QCohb

assigns to each functor X : CAlgcn Ñ pS a symmetric monoidal 8-category QCohpXqb,
whose underyling 8-category can be identified with QCohpXq. We can describe the situation
more informally by saying that for every functor X : CAlgcn Ñ pS, the 8-category QCohpXq
admits a symmetric monoidal structure. Unwinding the definitions, we see that the tensor
product on QCohpXq is given pointwise: that is, it is described by the formula

pF bF 1qpηq » F pηq bR F 1pηq

for η P XpRq. It follows that the tensor product on QCohpXq preserves small colimits
separately in each variable.

Notation 6.2.6.1. For any functor X : CAlgcn Ñ pS, we let OX denote the unit object
of QCohpXq (with respect to the symmetric monoidal structure defined above). More
informally, OX assigns to each point η P XpRq the spectrum R, regarded as a module over
itself. We will refer to OX as the structure sheaf of the functor X.

Proposition 6.2.6.2. Let X : CAlgcn Ñ pS be a functor, and let F P QCohpXq. The
following conditions are equivalent:

p1q The quasi-coherent sheaf F is perfect.

p2q The quasi-coherent sheaf is a dualizable object of the symmetric monoidal 8-category
QCohpXq.

Proof. Using Proposition HA.4.6.1.11 , we can reduce to the case where X is corepresentable
by a connective E8-ring R. In this case, we can identify F with an R-module M . We wish
to show that M is a dualizable object of ModR if and only if M is perfect. The collection
of dualizable objects of ModR forms a stable subcategory which is closed under retracts.
Since R P ModR is dualizable, it follows that every perfect object of ModR is dualizable.
Conversely, suppose that M admits a dual M_. Then the functor N ÞÑ MapModRpM,Nq

is given by N ÞÑ Ω8pM_ bR Nq, and therefore commutes with filtered colimits. It follows
that M is a compact object of ModR, and therefore perfect (Proposition HA.7.2.4.2 ).

Note that for any functor X : CAlgcn Ñ pS, the full subcategory QCohpXqcn Ď QCohpXq
contains OX and is closed under tensor products, and therefore inherits the structure of a
symmetric monoidal 8-category.

Proposition 6.2.6.3. Let X : CAlgcn Ñ pS be a functor and let F P QCohpXqcn. Then F

is a dualizable object of QCohpXqcn if and only if F is locally free of finite rank.

Proof. Combine Propositions HA.4.6.1.11 and 2.9.1.5.
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6.3 Relative Representability

Let X and Y be functors CAlgcn Ñ S. In this section, we will study natural transfor-
mations f : X Ñ Y which are relatively representable, meaning that the fiber of f over
any representable functor SpecR is representable by a spectral Deligne-Mumford stack
(Definition 6.3.2.1).

6.3.1 Étale-Local Properties of Morphisms

We begin by introducing some terminology.

Definition 6.3.1.1. Let P be a property of morphisms f : X Ñ Y between spectral Deligne-
Mumford stacks. We will say that f is local on the target with respect to the étale topology if
the following conditions are satisfied:

p1q Suppose we are given a pullback diagram of spectral Deligne-Mumford stacks

X1 //

f 1

��

X
f
��

Y1 g // Y

where g is étale. If f has the property P , then f 1 also has the property P .

p2q Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks, and suppose we are given
a surjective étale morphism >α Yα Ñ Y . If each of the induced maps YαˆY X Ñ Yα
has the property P , then f has the property P .

Remark 6.3.1.2. Let P be a property of morphisms between spectral Deligne-Mumford
stacks which is local on the target with respect to the étale topology. Then a morphism
f : X Ñ Y has the property P if and only if, for every étale map u : SpétR Ñ Y, the
pullback SpétRˆY X Ñ SpétR has the property P .

Remark 6.3.1.3. Suppose we are given a property P0 of morphisms of spectral Deligne-
Mumford stacks having the form Z Ñ SpétR. Let f : X Ñ Y be an arbitrary morphism
of spectral Deligne-Mumford stacks. We will say that f locally has the property P0 if, for
every étale map SpétRÑ Y, the induced map SpétRˆY X Ñ SpétR has the property P0.
Suppose that P0 satisfies the following conditions:

piq Let f : Z Ñ SpétR be a map of spectral Deligne-Mumford stacks and u : R Ñ R1

an étale morphism of E8-rings. If f has the property P0, then the induced map
SpétR1 ˆSpétR Z Ñ SpétR has the property P0. The converse holds if u is faithfully
flat.
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piiq If we are given a finite collection of morphisms tZi Ñ SpétRiu having the property
P0, then the induced map >Zi Ñ Spétp

ś

Riq has the property P0.

Then the condition that a morphism f locally has the property P0 is local on the target
with respect to the étale topology, in the sense of Definition 6.3.1.1. Moreover, a morphism
f : Z Ñ SpétR satisfies this condition if and only if f has the property P0 (this follows
immediately from piq). Combining this observation with Remark 6.3.1.2, we obtain a bijective
correspondence between the following:

paq Properties P of arbitrary morphisms f : X Ñ Y of spectral Deligne-Mumford stacks,
which are local on the target with respect to the étale topology.

pbq Properties P0 of morphisms of the form f : Z Ñ SpétR which satisfy conditions piq
and piiq.

Example 6.3.1.4. The condition that a morphism f : X Ñ Y of spectral Deligne-Mumford
stacks is étale is local on the target with respect to the étale topology.

Example 6.3.1.5. The condition that a morphism f : X Ñ Y of spectral Deligne-Mumford
stacks is an equivalence is local on the target with respect to the étale topology.

Example 6.3.1.6. The condition that a morphism f : X Ñ Y of spectral Deligne-Mumford
stacks is an open immersion is local on the target with respect to the étale topology. This
follows from Examples 6.3.1.4 and 6.3.1.5, since f is an open immersion if and only if f is
étale and the diagonal map X Ñ XˆY X is an equivalence.

Example 6.3.1.7. The condition that a morphism f : X Ñ Y of spectral Deligne-Mumford
stacks is surjective is local on the target with respect to the étale topology (see Proposition
3.5.5.4).

Example 6.3.1.8. The condition that a morphism f : X Ñ Y of spectral Deligne-Mumford
stacks is flat is local on the target with respect to the étale topology.

Example 6.3.1.9. For 0 ď n ď 8, the condition that a morphism f : X Ñ Y of spectral
Deligne-Mumford stacks is n-quasi-compact is local on the target with respect to the étale
topology (Proposition 2.3.3.1).

Example 6.3.1.10. For every integer n ě 0, the condition that a map of spectral Deligne-
Mumford stacks f : pX ,OX q Ñ pY,OYq induce an equivalence pX , τďnOX q Ñ pY, τďnOYq

is local on the target with respect to the étale topology.

Definition 6.3.1.11. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks and
let n ě ´2 be an integer. We will say that f is a relative n-stack if, for every discrete
commutative ring R, the induced map

MapSpDMpSpétR,Xq Ñ MapSpDMpSpétR,Yq



500 CHAPTER 6. GROTHENDIECK DUALITY

has n-truncated homotopy fibers. We will say that f is a relative spectral algebraic space if
it is a relative 0-stack.

Example 6.3.1.12. When n “ ´2, a map of spectral Deligne-Mumford stacks f : pX ,OX q Ñ

pY,OYq is a relative Deligne-Mumford n-stack if and only if, for every discrete commutative
ring R, the map

MapSpDMpSpétR, pX ,OX qq Ñ MapSpDMpSpétR, pY,OYqq

is a homotopy equivalence. This is equivalent to the requirement that f induces an equivalence
pX , π0OX q Ñ pY, π0OYq.

Remark 6.3.1.13. The condition that a map f : pX ,OX q Ñ pY,OYq be a relative Deligne-
Mumford n-stack depends only on the underlying map of 0-truncated spectral Deligne-
Mumford stacks pX , π0OX q Ñ pY, π0OYq.

Remark 6.3.1.14. If n ě 0, then a morphism f : X Ñ Y is a relative Deligne-Mumford
n-stack if and only if, for every discrete commutative ring R and every map u : SpétRÑ Y,
the pullback SpétRˆY X is a spectral Deligne-Mumford n-stack (Definition 1.6.8.1). Using
Remark 6.3.1.13, we see that this is equivalent to assertion that for every connective E8-ring
R and every map u : SpétRÑ Y, the pullback SpétRˆY X is a spectral Deligne-Mumford
n-stack.

Proposition 6.3.1.15. Let n ě ´2 be an integer. The condition that a map f : X Ñ Y of
spectral Deligne-Mumford stacks be a relative spectral Deligne-Mumford n-stack is local on
the target with respect to the étale topology.

Proof. The proof proceeds by induction on n. When n “ ´2, the desired result follows
from Examples 6.2.2.7 and 6.3.1.9. If n ą ´2, we observe that f : X Ñ Y is a relative
spectral Deligne-Mumford n-stack if and only if the diagonal map X Ñ XˆY X is a relative
Deligne-Mumford pn´ 1q-stack.

Proposition 6.3.1.16. The condition that a map f : X Ñ Y of spectral Deligne-Mumford
stacks be affine is local on the target with respect to the étale topology.

Proof. Using Remark 6.3.1.3, we are reduced to verifying the following assertion:

p˚q Let f : X Ñ SpétR be a map of spectral Deligne-Mumford stacks, and suppose
there exists a faithfully flat étale morphism R Ñ R0 such that the fiber product
X0 “ SpétR0 ˆSpétR X is affine. Then X is affine.

To prove p˚q, let R‚ be the Čech nerve of the map RÑ R0 (in the 8-category CAlgop). For
each n ě 0, the fiber product SpétRn ˆSpétR X is an affine spectral Deligne-Mumford stack,
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of the form SpétAn for some E8-ring An. Let A denote the totalization of the cosimplicial
E8-ring A‚. It follows from Theorem D.6.3.1 that A‚ is the Čech nerve of the morphism
AÑ A0 » R0 bR A. Write X “ pX ,OX q, so that the simplicial spectral Deligne-Mumford
stack X‚ corresponds to a simplicial object U‚ in X , whose geometric realization is a final
object 1 P X . Then we have a chain of equivalences

OX p1q “ OX p|U‚|q » lim
ÐÝ
OX pU‚q » lim

ÐÝ
A‚ » A.

The composite equivalence determines a map θ : X Ñ SpétA. The map θ is an equivalence,
since it can be obtained as the geometric realization of an equivalence of simplicial spectral
Deligne-Mumford stacks X‚ » SpétA‚. This proves that X is affine, as desired.

Proposition 6.3.1.17. The condition that a morphism of spectral Deligne-Mumford stacks
f : X Ñ Y be quasi-affine is local on the target with respect to the étale topology.

Proof. Using Remark 6.3.1.3, we are reduced to proving the following:

p˚q Let f : X Ñ SpétR be a map of spectral Deligne-Mumford stacks, and suppose
there exists a faithfully flat étale morphism R Ñ R0 such that the fiber product
X0 “ SpétR0 ˆSpétR X is quasi-affine. Then X is quasi-affine.

Write X “ pX ,OX q. We first claim that the pushforward f˚OX is a quasi-coherent sheaf on
SpétR. This assertion can be tested locally with respect to the étale topology on SpétR,
and therefore follows from Corollary 2.5.4.6. We can identify f˚OX with an E8-algebra over
R. Let A denote the connective cover of this E8-algebra. The map AÑ f˚OX classifies a
map of spectral Deligne-Mumford stacks g : X Ñ SpétA. We claim that g is a quasi-compact
open immersion. Since this assertion is local on the target with respect to the étale topology
(Examples 6.3.1.6 and 6.3.1.9), we may replace R by R1 and thereby reduce to the case
where X is quasi-affine. In this case, the desired result follows from Proposition 2.4.1.3 (see
the proof of Proposition 2.4.2.3).

6.3.2 Representable Morphisms of Functors

Recall that the 8-category SpDM of spectral Deligne-Mumford stacks can be iden-
tified with a full subcategory of FunpCAlgcn,Sq (the identification is given by carry-
ing a spectral Deligne-Mumford stack X to the functor given informally by the formula
R ÞÑ MapSpDMpSpétR,Xq). Many of the properties of morphisms considered above can be
generalized to the setting of natural transformations between functors X,Y : CAlgcn Ñ S.

Definition 6.3.2.1. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ pS. We will say that f is representable if, for every connective E8-ring R and
every natural transformation SpecR Ñ Y (corresponding to a choice of point η P Y pRq),
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the fiber product X ˆY SpecR is representable by a spectral Deligne-Mumford stack (here
SpecR denotes the functor corepresented by R).

Proposition 6.3.2.2. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ pS. Assume that Y is representable by a spectral Deligne-Mumford stack Y. Then
f is representable (in the sense of Definition 6.3.2.1) if and only if X is representable by a
spectral Deligne-Mumford stack.

The proof of Proposition 6.3.2.2 will require the following general observation about
sheaves.

Proof of Proposition 6.3.2.2. Let yShvét be the full subcategory of FunpCAlgcn,Sq spanned
by those functors which are sheaves with respect to the étale topology. Since the 8-category
of spectral Deligne-Mumford stacks admits fiber products, it is clear that if X is representable
by a spectral Deligne-Mumford stack, then f is representable. To prove the converse, write
Y “ pY,OYq. For every object U P Y , let YU denote the functor represented by the spectral
Deligne-Mumford stack YU “ pY{U ,OY |U q, and let XU “ X ˆY YU . Let us say that U is
good if XU is representable by a spectral Deligne-Mumford stack XU . Assuming that f is
representable by spectral Deligne-Mumford stacks, we will show that every object U P Y.
Our assumption immediately implies that every affine object U P Y is good. It will therefore
suffice to show that the collection of good objects of Y is closed under small colimits (Lemma
??). To this end, suppose we are given a diagram of object tUαu in Y having a colimit U ,
and that each XUα is representable by a spectral Deligne-Mumford stack XUα . Note that
for every morphism Uα Ñ Uβ in our diagram, the induced map XUα Ñ XUβ is étale(since
it is a pullback of the étale morphism YUα Ñ YUβ ). It follows from Proposition ?? that
the diagram tXUαu has a colimit XU in the 8-category SpDM. Moreover, XU represents a
functor F : CAlgcn Ñ pS which is the colimit of the diagram tXUαu in the 8-category yShvét
spanned by the étale sheaves (Lemma ??). To prove that U is good, it will suffice to show
that F » XU : that is, that XU is the colimit of the diagram tXUαu in yShvét. Since colimits
in yShvét are universal, we are reduced to proving the following pair of assertions:

paq The functor X is a sheaf with respect to the étale topology.

pbq The functor YU is a colimit of the diagram tYUαu in yShvét.

Assertion paq follows from Lemma D.4.3.2, and assertion pbq follows from Lemma ??.

Corollary 6.3.2.3. Suppose we are given natural transformations X f
Ñ Y

g
Ñ Z of functors

X,Y, Z : CAlgcn Ñ pS, and assume that g is representable. Then f is representable if and
only if g ˝ f is representable.
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Proof. Without loss of generality, we may assume that Z is corepresentable by a connective
E8-ring R. Then Y is representable by a spectral Deligne-Mumford stack Y. The desired
equivalence now follows immediately from Proposition 6.3.2.2.

6.3.3 Properties Stable Under Base Change

We now consider properties of morphisms f : X Ñ Y in FunpCAlgcn, pSq which can be
tested “fiberwise”: that is, after base change along an arbitrary map SpecRÑ Y .

Definition 6.3.3.1. Let P be a property of morphisms of spectral Deligne-Mumford stacks.
We will say that P is stable under base change if, for every pullback diagram of spectral
Deligne-Mumford stacks

X1 //

f 1

��

X
f
��

Y1 // Y
such that f has the property P , the morphism f 1 also has the property P .

Remark 6.3.3.2. Let P be a property of morphisms of spectral Deligne-Mumford stacks
which is local on the target with respect to the étale topology. Then P is stable under base
change if and only if, for every pullback diagram

X1 //

f 1

��

X

f

��
SpétR1 // SpétR

such that f has the property P , the morphism f 1 also has the property P .

Definition 6.3.3.3. Let P be a property of morphisms of spectral Deligne-Mumford stacks
which is local on the target with respect to the étale topology and stable under base
change. Let f : X Ñ Y be a representable morphism between functors X,Y : CAlgcn Ñ
pS. We will say that f has the property P if, for every connective E8-ring R and every
natural transformation SpecR Ñ Y (determined by a point η P Y pRq), the fiber product
SpecRˆY X is representable by a spectral Deligne-Mumford stack Xη such that the induced
map Xη Ñ SpétR has the property P .

Remark 6.3.3.4. In the situation of Definition 6.3.3.3, the natural transformation f : X Ñ

Y has the property P if and only if the following apparently stronger condition holds: for
every pullback diagram of functors

X 1 //

��

X

��
Y 1 // Y,
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if Y 1 is representable by a spectral Deligne-Mumford stack Y (so that X 1 is representable
by a spectral Deligne-Mumford stack X, by virtue of Proposition 6.3.2.2), the induced map
X Ñ Y has the property P .

Remark 6.3.3.5. Let P a property of morphisms of spectral Deligne-Mumford stacks which
is local on the target with respect to the étale topology and stable under base change. Let
φ : X Ñ Y be a morphism of spectral Deligne-Mumford stacks, let X,Y : CAlgcn Ñ S be
the functors represented by X and Y, and let f : X Ñ Y be the natural transformation
determined by φ. Then f has the property P if and only if φ has the property P .

Example 6.3.3.6. The following conditions on a morphism of spectral Deligne-Mumford
stacks f : X Ñ Y are local for the étale topology and stable under base change:

p1q The condition that f is étale.

p2q The condition that f is an equivalence.

p3q The condition that f is an open immersion.

p4q The condition that f is flat.

p5q The condition that f is a relative Deligne-Mumford n-stack, where n ě ´2 is some
fixed integer (see Definition 6.3.1.11).

p6q The condition that f : pX ,OX q Ñ pY,OYq induces an equivalence pX , τďnOX q Ñ

pY, τďnOYq, where n ě 0 is some fixed integer.

p7q The condition that f is a relative spectral algebraic space.

p8q The condition that f is surjective.

p9q The condition that f is affine.

p10q The condition that f is quasi-affine.

p11q The condition that f is quasi-compact.

p12q The condition that f is quasi-separated.

p13q The condition that f is locally almost of finite presentation.

p14q The condition that f is proper.

Consequently, we make make sense of each of these conditions for an arbitrary representable
morphism f : X Ñ Y between functors X,Y : CAlgcn Ñ S.
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Definition 6.3.3.7. Let f : X Ñ Y be a representable morphism of functors X,Y :
CAlgcn Ñ S. We will say that f is faithfully flat if it is flat and surjective (in the sense of
Example 6.3.3.6).

Remark 6.3.3.8. Let f : X Ñ Y be a representable natural transformation of functors
X,Y : CAlgcn Ñ pS. Assume that Y is a sheaf with respect to the fpqc topology. Then X

is also a sheaf with respect to the fpqc topology (see Proposition ??). Moreover, if f is
faithfully flat and quasi-compact, then it is an effective epimorphism of fpqc sheaves.

Remark 6.3.3.9. Let P be a property of morphisms of spectral Deligne-Mumford stacks
which is local on the target with respect to the étale topology and stable under base change.
Let f : X Ñ Y be a natural transformation of functors X,Y : CAlgcn Ñ pS, and suppose
that Y is given as the colimit of a diagram tYαu in FunpCAlgcn, pSq. Then f is representable
and has the property P if and only if each of the induced maps X ˆY Yα Ñ Yα satisfies
the same conditions. The “only if” direction is obvious, and the converse follows from the
observation that every map map SpétAÑ Y factors through some Yα.

6.3.4 Direct Image Functors

Let f : X Ñ Y be a natural transformation between functors X,Y : CAlgcn Ñ pS. In
§6.2, we introduced 8-categories QCohpXq and QCohpY q of quasi-coherent sheaves on X

and Y and the pullback functor f˚ : QCohpY q Ñ QCohpXq. Under mild hypotheses, the
functor f˚ admits a right adjoint.

Proposition 6.3.4.1. Let f : X Ñ Y be a morphism in FunpCAlgcn, pSq which is quasi-
compact, quasi-separated relative spectral algebraic space. Then:

paq The functor f˚ : QCohpY q Ñ QCohpXq admits a right adjoint f˚ : QCohpXq Ñ
QCohpY q.

pbq For every pullback diagram

X 1
g1 //

f 1

��

X

f
��

Y 1
g // Y

in FunpCAlgcn, pSq, the associated diagram of 8-categories

QCohpY q f˚ //

g˚

��

QCohpXq

g1˚

��
QCohpY 1q f 1˚ // QCohpX 1q
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is right adjointable: that is, the Beck-Chevalley transformation g˚f˚ Ñ f 1˚g
1˚ is an

equivalence of functors from QCohpXq to QCohpY 1q.

Proof. Write Y as the colimit of a diagram q : S Ñ FunpCAlgcn, pSq, where each qpsq »

SpecAs is affine. Our hypothesis on f guarantees that each of the fiber products XˆY SpecAs
is representable by a spectral algebraic space Xs which is quasi-compact and quasi-separated.
Every edge sÑ s1 in S determines a pullback diagram

Xs //

��

Xs1

��
SpétAs // SpétAs1 .

Using Corollary ??, we deduce that the associated diagram of pullback functors

QCohpSpecAs1q //

��

QCohpXs1q

��
QCohpSpecAsq // QCohpXsq

is right adjointable. Since QCohpXq » lim
ÐÝ

QCohpXsq and QCohpY q » lim
ÐÝ

QCohpSpecAsq,
Corollary HA.4.7.4.18 implies the following:

piq The functor f˚ : QCohpY q Ñ QCohpXq admits a right adjoint.

piiq For each s P S, the diagram

QCohpY q f˚ //

��

QCohpXq

��
QCohpSpétAsq

f˚s // QCohpXsq

is right adjointable.

This proves paq. Moreover, we can assume that every morphism SpecAÑ Y appears as a
map qpsq Ñ Y for some s P S, so that piiq implies that pbq is satisfied whenever Y 1 is affine.
To prove pbq in general, consider a pullback square σ :

X 1
g1 //

f 1

��

X

f
��

Y 1
g // Y
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and let F P QCohpXq; we wish to show that the Beck-Chevalley map θ : g˚f˚F Ñ f 1˚g
1˚F

is an equivalence. To prove this, it will suffice to show that for every map h : SpecAÑ Y 1,
the pullback h˚pθq is an equivalence in QCohpSpecAq. Extending σ to a rectangular diagram

X2
h1 //

f2

��

X 1
g1 //

f 1

��

X

f

��
SpecA h // Y 1

g // Y

where both squares are pullbacks, we see that h˚pθq fits into a commutative diagram

h˚f 1˚g
1˚F

θ1

''
h˚g˚f˚F

h˚pθq
77

θ2 // f2˚h
1˚g1˚F ,

where θ1 and θ2 are equivalences by virtue of the fact that pbq holds in the special case where
Y 1 is corepresentable.

Warning 6.3.4.2. The existence of the right adjoint f˚ follows from Corollary HTT.5.5.2.9
if QCohpXq and QCohpY q are presentable. However, it is generally a poorly behaved
construction (and is not compatible with base change) without additional hypotheses on f

(such as those which appear in the statement of Proposition 6.3.4.1).

Corollary 6.3.4.3 (Projection Formula). Let f : X Ñ Y be a morphism in FunpCAlgcn, pSq
which is quasi-compact, quasi-separated relative spectral algebraic space. Then:

p1q The direct image functor f˚ : QCohpXq Ñ QCohpY q preserves small colimits.

p2q For every pair of objects F P QCohpXq and G P QCohpY q, the canonical map
F bf˚ G Ñ f˚pf

˚F bG q is an equivalence.

Proof. Using assertion pbq of Proposition 6.3.4.1, we can reduce to the case where Y “ SpecR
is affine. In this case, assertion p1q follows from Corollary 3.4.2.2 and assertion p2q from
Remark 3.4.2.6.

Corollary 6.3.4.4. Let f : X Ñ Y be a morphism in FunpCAlgcn, pSq which is representable,
proper, and locally almost of finite presentation. Then the functor f˚ : QCohpXq Ñ QCohpY q
of Proposition 6.3.4.1 carries almost perfect objects of QCohpXq to almost perfect objects of
QCohpY q.

Proof. Combine Proposition 6.3.4.1 with Theorem 5.6.0.2.
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Proposition 6.3.4.5. Let X : CAlgcn Ñ pS be a functor and let Aff{X denote the full
subcategory of FunpCAlgcn, pSq spanned by those morphisms f : Y Ñ X which are affine (in
the sense of Example 6.3.3.6). Then the construction Y ÞÑ f˚OY induces an equivalence of
8-categories Aff{X Ñ CAlgpQCohpXqcnq.

Proof. Writing X as a colimit of representable functors, we can reduce to the case where
X “ SpecA is corepresentable, in which case the desired result follows from Proposition
2.5.1.2.

In the situation of Proposition 6.3.4.1, the direct image functor f˚ : QCohpXq Ñ
QCohpY q is lax symmetric monoidal (Proposition 2.5.5.1) and therefore admits a canonical
factorization QCohpXq Ñ Modf˚ OX pQCohpY qq Ñ QCohpY q (Corollary 2.5.5.3).

Proposition 6.3.4.6. Let f : X Ñ Y be a morphism in FunpCAlgcn, pSq which is repre-
sentable and quasi-affine. Then the induced map QCohpXq Ñ Modf˚OX

pQCohpY qq is an
equivalence of 8-categories.

Proof. When Y is a corepresentable functor, the desired result follows from Corollaries 2.5.4.6
and ??. In general, we can write Y as the colimit of a diagram q : S Ñ FunpCAlgcn, pSq,
where each qpsq » SpétAs is affine. Since f is representable and quasi-affine, each of the
fiber products XˆY qpsq is representable by a quasi-affine spectral algebraic space Xs. Using
Proposition 6.3.4.1, we deduce that f˚OX is a quasi-coherent sheaf on Y whose restriction
to each SpecAs is given by Bs “ pfsq˚Os, where Os denotes the structure sheaf of Xs. It
follows that the functor QCohpXq Ñ Modf˚ OX pQCohpY qq is given by a limit of equivalences
QCohpXsq Ñ ModBspQCohpSpétAsqq, and is therefore an equivalence.

Corollary 6.3.4.7. Suppose we are given a pullback diagram

X

��

Y
foo

X 1

g

OO

Y 1

g1

OO

f 1oo

in FunpCAlgcn, pSq, where f is representable and quasi-affine. Assume that QCohpXq and
QCohpX 1q are presentable. Then the diagram of symmetric monoidal 8-categories

QCohpXq //

��

QCohpY q

��
QCohpX 1q // QCohpY 1q

is a pushout square in CAlgpPrLq.
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6.4 Grothendieck Duality

Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks and suppose that, for
every map SpétR Ñ Y, the fiber XR “ SpétR ˆY X is a quasi-compact, quasi-separated
spectral algebraic space. It follows from Corollary 3.4.2.2 that the direct image functor
f˚ : QCohpXq Ñ QCohpYq preserves small colimits. Using the adjoint functor theorem
(Corollary HTT.5.5.2.9 ), we deduce that the functor f˚ admits a right adjoint. We will be
interested in the following special case:

Definition 6.4.0.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which is proper and locally almost of finite presentation. We let f ! : QCohpYq Ñ QCohpXq
denote a right adjoint to the direct image functor f˚. We refer to f ! as the exceptional
inverse image functor associated to f .

Warning 6.4.0.2. To guarantee that the direct image functor f˚ : QCohpXq Ñ QCohpYq
admits a right adjoint, we need much weaker assumptions than those of Definition 6.4.0.1.
However, we will denote the right adjoint of f˚ by f ! only when f is proper and locally
almost of finite presentation (see Remark ??).

Example 6.4.0.3. Let φ : A Ñ B be a finite morphism of E8-rings. Then φ induces a
morphism f : SpétB Ñ SpétA which is proper (Proposition 5.2.1.1) and locally almost
of finite presentation (Corollary 5.2.2.2). The functor f ! : ModA » QCohpSpétAq Ñ
QCohpSpétBq » ModB is right adjoint to the restriction of scalars functor ModB Ñ ModA.
At the level of spectra, it is given by the construction M ÞÑ Map

A
pB,Mq.

Example 6.4.0.4. Let A be a commutative ring and let a P A be a regular element, so that
the sequence of A-modules 0 Ñ A

a
ÝÑ AÑ A{paq Ñ 0 is exact. Let f : SpétA{paq Ñ SpétA

be the associated closed immersion. Then the functor f ! : ModA Ñ ModA{paq is given by

M ÞÑ Map
A
pA{paq,Mq » fibpM a

ÝÑMq » ΩppA{paqq bAMq.

In particular, there is an equivalence of functors f ! » Ωf˚. Beware that this equivalence
depends on the choice of a (and not only on the closed immersion f).

Remark 6.4.0.5. The definition exceptional inverse image functor f ! : QCohpYq Ñ
QCohpXq admits a natural generalization to non-proper morphisms f : X Ñ Y (which
are still assumed to be locally almost of finite presentation). However, the definition requires
some care (in the case where f is not proper, the functor f ! is not right adjoint to the direct
image functor f˚), so we will confine our attention in this book to the case where f is proper.

The goal of this section is to study the functor f ! of Definition 6.4.0.1 and to establish
some of its basic formal properties. Our principal results can be summarized as follows:
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paq Let f : X Ñ Y be any morphism of spectral Deligne-Mumford stacks which is proper
and locally almost of finite presentation. When restricted to truncated quasi-coherent
sheaves, the exceptional inverse image functor f ! is compatible with base change along
morphisms g : Y1 Ñ Y which are of finite Tor-amplitude (Proposition 6.4.1.4). In
particular, it is compatible with étale base change: that is, it is “local” on Y.

pbq If X and Y are locally Noetherian, then the functor f ! : QCohpYq Ñ QCohpXq carries
truncated coherent sheaves on Y to truncated coherent sheaves on X (Proposition
6.4.3.4).

pcq Suppose that f : X Ñ Y is proper, locally almost of finite presentation, and locally
of finite Tor-amplitude. Then there is a canonical equivalence f ! F » f˚F bωX {Y
for F P QCohpYq (Corollary 6.4.2.7), where ωX {Y is the relative dualizing sheaf of F

(Definition 6.4.2.4).

pdq Under the hypotheses of pcq, the relative dualizing sheaf ωX {Y is almost perfect and
of finite Tor-amplitude over X (Proposition 6.4.4.1). Moreover, the construction
F ÞÑ f˚pF bωX {Yq determines a left adjoint to the pullback functor f˚ : QCohpYq Ñ
QCohpXq (Proposition 6.4.5.3).

6.4.1 The Exceptional Inverse Image Functor

Our first goal is to show that the exceptional inverse image functor of Definition 6.4.0.1
behaves well with respect to base change, under some mild additional assumptions.

Notation 6.4.1.1. Let X “ pX ,OXq be a spectral Deligne-Mumford stack. Recall that a
quasi-coherent sheaf F P QCohpXq is locally truncated if, for every affine U P X , the object
F pUq P ModOXpUq is truncated (if X is quasi-compact, this is equivalent to the requirement
that F P QCohpXqďn for some n " 0). We let QCohpXqltr denote the full subcategory of
QCohpXq spanned by those objects which are locally truncated.

Remark 6.4.1.2. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. If
f is locally of finite Tor-amplitude, then the pullback functor f˚ : QCohpYq Ñ QCohpXq
carries QCohpYqltr into QCohpXqltrq.

Remark 6.4.1.3. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks which
is proper and locally almost of finite presentation. If Y is affine, then Corollary 3.4.2.3
guarantees that there exists an integer n for which the direct image functor f˚ carries
QCohpXqě0 into QCohpYqě´n. It follows that the exceptional inverse image functor f !

carries QCohpYqď0 into QCohpXqďn. In particular, f ! carries QCohpYqltr into QCohpXqltr.

Proposition 6.4.1.4. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which is proper and locally almost of finite presentation. Then:
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p1q The exceptional inverse image functor f ! : QCohpYq Ñ QCohpXq carries QCohpYqltr
into QCohpXqltr.

p2q Suppose we are given a pullback diagram

X1

f 1

��

g1 // X

f

��
Y1 g // Y,

where g is locally of finite Tor-amplitude. Then the commutative diagram of 8-
categories

QCohpXqltr
f˚ //

g1˚

��

QCohpYqltr
g˚

��
QCohpX1qltr

f 1˚ // QCohpY1qltr

is right adjointable. In other words, for every truncated quasi-coherent sheaf F P

QCohpYqltr, the canonical map g1˚f ! F Ñ f 1!g˚F is an equivalence in QCohpX1q.

The proof of Proposition 6.4.1.4 will require some preliminaries. We begin by analyzing
the case where Y is affine.

Lemma 6.4.1.5. Let f : X Ñ SpétA be a morphism of spectral algebraic spaces which is
proper and locally almost of finite presentation. Then the exceptional inverse image functor
f ! : ModA » QCohpSpétAq Ñ QCohpXq commutes with filtered colimits when restricted to
pModAqď0.

Proof. According to Proposition 9.6.1.1, the 8-category QCohpXq is compactly generated
and an object of QCohpXq is compact if and only if it is perfect. It will therefore suffice to
show that for every perfect object F P QCohpXq, the construction

pM P pModAqď0q ÞÑ MapQCohpXqpF , f !Mq Ñ MapModApΓpX; F q;Mq

commutes with filtered colimits. To prove this, it suffices to observe that ΓpX; F q is almost
perfect when regarded as an A-module, by virtue of Theorem 5.6.0.2.

Remark 6.4.1.6. Lemma 6.4.1.5 is essentially a reformulation of Theorem 5.6.0.2.

Construction 6.4.1.7. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which is proper and locally almost of finite presentation. Suppose we are given quasi-
coherent sheaves F ,G P QCohpYq. Then the projection formula of Remark 3.4.2.6 supplies
an equivalence θ : pf˚f ! F q b G Ñ f˚pf

! F bf˚ G q. The inverse equivalence θ´1 then
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determines a morphism θ1 : f ! F bf˚ G Ñ f !ppf˚f
! F q b G q. Composing with the counit

map f˚f
! F Ñ F , we obtain a natural map ρF ,G : f ! F bf˚ G Ñ f !pF bG q, depending

naturally on F and G .

Lemma 6.4.1.8. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which is proper and locally almost of finite presentation. Suppose that Y is affine. Let
F P QCohpYq be truncated and let G P QCohpYq be of finite Tor-amplitude. Then the map
ρF ,G : f ! F bf˚ G Ñ f !pF bG q of Construction 6.4.1.7 is an equivalence.

Proof. Without loss of generality, we may assume that F P QCohpYqď0 and that G has
Tor-amplitude ď 0. Using Proposition 9.6.7.1, we can write G as the colimit of a filtered
diagram tG αu, where each G α P QCohpYq is perfect and of Tor-amplitude ď 0. Then each
tensor product F bG α is 0-truncated. Using Lemma 6.4.1.5, we can identify ρF ,G with the
colimit of the diagram tρF ,Gαu in the 8-category Funp∆1,QCohpXqq. We may therefore
replace G by G α and thereby reduce to the case where G is perfect.

Let us regard F as fixed. Let C Ď QCohpYq be the full subcategory of QCohpYq spanned
by those objects G for which the morphism ρF ,G is an equivalence. We will complete the
proof by showing that every perfect object of QCohpYq belongs to C. Since the construction
G ÞÑ ρF ,G is exact, the 8-category C is a stable subcategory of QCohpYq which is closed
under retracts. By virtue of our assumption that Y is affine, it will suffice to show that
C contains the structure sheaf OY, which follows immediately from the construction of
ρF ,G .

Proof of Proposition 6.4.1.4. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford
stacks which is proper and locally almost of finite presentation. Write Y “ pY,OYq. For
each U P Y, set YU “ pY{U ,OY |U q and XU “ XˆY YU , and let fU : XU Ñ YU denote the
projection onto the second factor. Let us say that U P Y is good if it satisfies the following
condition:

p˚q For every morphism h : SpétA Ñ YU which is locally of finite Tor-amplitude, the
diagram of 8-categories

QCohpXU qltr
fU˚ //

��

QCohpYU qltr

h˚

��
QCohpSpétAˆYU XU qltr // QCohpSpétAqltr

is right adjointable.

Note that p˚q implies in particular that the direct image functor fU˚ : QCohpXU qltr Ñ
QCohpYU qltr admits a right adjoint, which we will denote by f :U .

Our first step is to prove the following:
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paq If V Ñ U is a morphism of good objects of Y, then the diagram of 8-categories

QCohpXU qltr
fU˚ //

��

QCohpYU qltr

��
QCohpXV qltr

fV ˚ // QCohpYV qltr
is right adjointable.

Let F P QCohpYU q be truncated; we wish to show that the canonical map ξ : pf :U F q|XV Ñ

f :V pF |YV q is an equivalence. To prove this, it will suffice to show that for every map W Ñ V

where W P Y is affine, the map ξ becomes an equivalence after restriction to XW . This
follows from our assumption that U and V are good (applying condition p˚q to the maps
YW Ñ YV and YW Ñ YU ).

We next prove:

pbq The collection of good objects of Y is closed under small colimits.

To prove pbq, suppose that tUαu is a small diagram of good objects of Y having colimit U P Y .
Combining paq with Corollary HA.4.7.4.18 , we deduce that the functor fU˚ : QCohpXU qltr Ñ
QCohpYU qltr admits a right adjoint f :U and that the diagram

QCohpXU qltr
fU˚ //

��

QCohpYU qltr

��
QCohpXUαqltr

fV ˚ // QCohpYUαqltr

is right adjointable for each index α. To complete the proof of pbq, we must show that for
each u : SpétAÑ YU , the diagram appearing in condition p˚q is right adjointable. Using
Lemma 6.4.1.8, we see that this assertion can be tested locally with respect to the étale
topology on SpétA, so we may assume that u factors through YUα for some index α. In this
case, the desired result follows from our assumption that Uα is good.

It follows from Lemma 6.4.1.8 that every affine object U P Y is good. Combining pbq
with Proposition 1.4.7.9, we deduce that every object of Y is good. In particular, the final
object of Y is good. That is, we have the following:

p˚1q For every morphism h : SpétA Ñ Y which is locally of finite Tor-amplitude, the
diagram of 8-categories

QCohpXqltr
f˚ //

��

QCohpYqltr

h˚

��
QCohpSpétAˆY Xqltr // QCohpSpétAqltr

is right adjointable.
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In particular, the functor f˚ : QCohpXqltr Ñ QCohpYqltr admits a right adjoint f : :
QCohpYqltr Ñ QCohpXqltr. We next prove:

pcq For each F P QCohpYqltr, the counit map v : f˚f :F Ñ F induces an equivalence
f :F Ñ f ! F . In other words, f : coincides with the restriction of f ! to QCohpYqltr.

To prove pcq, it will suffice to show that for each object G P QCohpXq (not necessarily lo-
cally truncated), composition with v induces a homotopy equivalence ρ : MapQCohpXqpG , f

:F q Ñ

MapQCohpYqpf˚ G ,F q. More generally, for each U P Y, composition with v induces a map
ρU : MapQCohpXU qpG |XU , pf

:F q|XU q Ñ MapQCohpYU qppf˚ G qYU ,F |YU q. Note that the col-
lection of those objects U P Y for which ρU is an equivalence is closed under small colimits.
By virtue of Proposition 1.4.7.9, it will suffice to show that ρU is an equivalence when U P Y
is affine. Using paq, we can replace Y by YU and thereby reduce to the case where Y is affine.
In this case, Remark 6.4.1.3 implies that f ! F is locally truncated, so that assertion pcq is
clear.

Assertion p1q of Proposition 6.4.1.4 is an immediate consequence of pcq. To prove p2q,
suppose we are given a pullback square

X1 //

f 1

��

g1 // X

f

��
Y1 g // Y,

where g is locally of finite Tor-amplitude. We wish to show that for each F P QCohpYqltr,
the canonical map u : g1˚f ! F Ñ f 1!g˚F is an equivalence. Fix an étale morphism h :
SpétAÑ Y1; we will show that h˚puq is an equivalence. This follows from the commutativity
of the diagram

QCohpXqltr
f˚ //

g1˚

��

QCohpYqltr
g˚

��
QCohpX1qltr

f 1˚ //

��

QCohpY1qltr

h˚

��
QCohpSpétAˆY1 X1qltr // QCohpSpétAqltr,

since the lower square and outer rectangle are right adjointable by virtue of p˚1q.

Using Proposition 6.4.1.4, we immediately deduce “global” analogues of Lemmas 6.4.1.5
and 6.4.1.8:

Corollary 6.4.1.9. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks which
is proper and locally almost of finite presentation. Then:
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p1q The exceptional inverse image functor f ! : QCohpYq Ñ QCohpXq commutes with
filtered colimits when restricted to QCohpYqď0.

p2q If F P QCohpYq is truncated and G P QCohpYq is of finite Tor-amplitude, then the
map ρF ,G : f ! F bf˚ G Ñ f !pF bG q of Construction 6.4.1.7 is an equivalence.

Proof. Using Proposition 6.4.1.4, we can reduce to the case where Y is affine, in which case
the desired results follow from Lemmas 6.4.1.5 and 6.4.1.8.

6.4.2 The Relative Dualizing Sheaf

When restricted to morphisms of finite Tor-amplitude, the exceptional inverse image
functor of Definition 6.4.0.1 is particularly well-behaved. In particular, we will see that it is
compatible with base change, and therefore makes sense more generally for morphisms of
(not necessarily representable) functors.

Proposition 6.4.2.1. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ pS. Assume that f is representable, proper, locally almost of finite presentation,
and locally of finite Tor-amplitude. Then:

paq The direct image functor f˚ : QCohpXq Ñ QCohpY q admits a right adjoint f ! :
QCohpY q Ñ QCohpXq.

pbq For every pullback diagram of functors

X 1 //

��

X

��
Y 1 // Y,

the commutative diagram of 8-categories

QCohpXq f˚ //

g1˚

��

QCohpY q

g˚

��
QCohpX 1q

f 1˚ // QCohpY 1q

(supplied by Proposition 6.3.4.1) is right adjointable. In other words, for every quasi-
coherent sheaf F P QCohpY q, the canonical map g1˚f ! F Ñ f 1!g˚F is an equivalence
in QCohpX 1q.

As in the proof of Proposition 6.4.1.4, we begin with an analysis of the affine case.
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Lemma 6.4.2.2. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks which
is proper, locally almost of finite presentation, and locally of finite Tor-amplitude. Assume
that Y is affine. Then:

p1q The exceptional inverse image functor f ! : QCohpYq Ñ QCohpXq commutes with small
colimits.

p2q For every pair of objects F ,G P QCohpYq, the map ρF ,G : f ! F bf˚ G Ñ f !pF bG q

of Construction 6.4.1.7 is an equivalence in QCohpXq.

Remark 6.4.2.3. In the statement of Lemma 6.4.2.2, the assumption that Y is affine is
superfluous; see Corollary 6.4.2.7 below.

Proof of Lemma 6.4.2.2. Note that X is a quasi-compact, quasi-separated spectral algebraic
space. It follows that QCohpXq is compactly generated, and that an object F P QCohpXq is
compact if and only if it is perfect (Proposition 9.6.1.1). Using Theorem 6.1.3.2, we deduce
that the direct image functor f˚ : QCohpXq Ñ QCohpYq carries compact objects to compact
objects. Applying Proposition HTT.5.5.7.2 , we deduce that the exceptional inverse image
functor f ! : QCohpYq Ñ QCohpXq commutes with filtered colimits, and therefore with all
small colimits (since it is an exact functor of stable 8-categories); this completes the proof
of p1q.

To prove p2q, let us regard F P QCohpYq as fixed, and let C Ď QCohpYq be the full
subcategory spanned by those objects G for which the map ρF ,G is an equivalence. Using
p1q, we see that C is a stable subcategory of QCohpYq which is closed under small colimits.
Since Y is affine, to show that C “ QCohpYq it will suffice to show that C contains the
structure sheaf OY, which follows immediately from the definition given in Construction
6.4.1.7.

Proof of Proposition 6.4.2.1. We proceed as in the proof of Proposition 6.3.4.1. Let f :
X Ñ Y be a morphism of functors which is representable, proper, locally almost of finite
presentation, and locally of finite Tor-amplitude. Write Y as the colimit of a diagram
q : S Ñ FunpCAlgcn, pSq, where each qpsq » SpecAs is affine. Our hypothesis on f guarantees
that each of the fiber products X ˆY SpecAs is representable by a spectral algebraic space
Xs which is proper, locally almost of finite presentation, and locally of finite Tor-amplitude
over As. Every edge sÑ s1 in S determines a pullback diagram

Xs //

fs
��

Xs1

fs1
��

SpétAs // SpétAs1 .



6.4. GROTHENDIECK DUALITY 517

Using Lemma 6.4.2.2, we deduce that the associated diagram of pullback functors

QCohpXs1q
fs˚ //

��

QCohpSpétAs1q

��
QCohpXsq

fs˚ // QCohpSpétAsq

is right adjointable. Since QCohpXq » lim
ÐÝ

QCohpXsq and QCohpY q » lim
ÐÝ

QCohpSpecAsq,
Corollary HA.4.7.4.18 implies the following:

piq The direct image functor f˚ : QCohpXq Ñ QCohpY q admits a right adjoint f !.

piiq For each s P S, the diagram

QCohpXq f˚ //

��

QCohpY q

��
QCohpXsq

fs˚ // QCohpSpétAsq

is right adjointable.

This proves paq. Moreover, we can assume that every morphism SpecAÑ Y appears as a
map qpsq Ñ Y for some s P S, so that piiq shows that pbq is satisfied whenever Y 1 is affine.
To prove pbq in general, consider a pullback square σ :

X 1
g1 //

f 1

��

X

f
��

Y 1
g // Y

and let F P QCohpY q; we wish to show that the Beck-Chevalley map θ : g1˚f ! F Ñ f 1!g˚F

is an equivalence in QCohpX 1q. To prove this, it will suffice to show that for every map
h : SpecAÑ Y 1, the image of θ in QCohpX 1 ˆY 1 SpecAq is an equivalence. Extending σ to
a rectangular diagram

X2
h1 //

f2

��

X 1
g1 //

f 1

��

X

f

��
SpecA h // Y 1

g // Y

where both squares are pullbacks, we see that h1˚pθq fits into a commutative diagram

h1˚f 1!g˚F

θ1

''
h1˚g1˚f ! F

h1˚pθq
77

θ2 // f2!h˚g˚F ,
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where θ1 and θ2 are equivalences by virtue of the fact that pbq holds in the special case where
Y 1 is corepresentable.

Definition 6.4.2.4. Let f : X Ñ Y be a morphism of functors X,Y : CAlgcn Ñ S which is
representable, proper, locally almost of finite presentation, and locally of finite Tor-amplitude.
We let ωX{Y denote the quasi-coherent sheaf f ! OY P QCohpXq. We will refer to ωX{Y as
the relative dualizing sheaf of the morphism f .

Variant 6.4.2.5. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks which
is proper and locally almost of finite presentation. In this case, we let ωX {Y denote the
quasi-coherent sheaf f ! OY P QCohpXq. We will refer to ωX {Y as the relative dualizing sheaf
of the morphism f . Note that if f is locally of finite Tor-amplitude, then this definition
agrees with Definition 6.4.2.4 (where we abuse notation by identifying X and Y with the
corresponding representable functors).

Remark 6.4.2.6. Suppose we are given a pullback diagram

X 1
g //

��

X

f
��

Y 1 // Y

in the 8-category FunpCAlgcn, pSq, where f is representable, proper, locally almost of finite
presentation, and locally of finite Tor-amplitude. In this case, Proposition 6.4.1.4 supplies a
canonical equivalence g˚ωX{Y » ωX 1{Y 1 .

If we are given a pullback diagram of spectral Deligne-Mumford stacks

X1 g //

��

X
f
��

Y1 g1 // Y .

where f is proper and locally almost of finite presentation, then there is a canonical map
ρ : g˚ωX {Y Ñ ωX1 {Y1 . This map need not be an equivalence. However, it is an equivalence if
either f or g1 has finite Tor-amplitude (Propositions 6.4.2.1 and 6.4.1.4).

Corollary 6.4.2.7. Let f : X Ñ Y be a morphism between functors X,Y P FunpCAlgcn, pSq
which is representable, proper, locally almost of finite presentation, and locally of finite
Tor-amplitude. Then, for any quasi-coherent sheaf F P QCohpY q, we have a canonical
equivalence ωX{Y b f˚F » f ! F in the 8-category QCohpXq.

Proof. Arguing as in Construction 6.4.1.7, we have a canonical map

ρ : ωX{Y b f˚F » pf ! OY q b pf
˚F q Ñ f !pOY bF q » f ! F .
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We claim that this map is an equivalence. By virtue of Proposition 6.4.2.1, the assertion is
local on Y. We may therefore assume that Y is affine, in which case the desired result is a
special case of Lemma 6.4.2.2.

Corollary 6.4.2.8. [Transitivity] Let f : X Ñ Y and g : Y Ñ Z be morphisms between
functors X,Y, Z P FunpCAlgcn, pSq which are representable, proper, locally almost of finite
presentation, and locally of finite Tor-amplitude. Then there is a canonical equivalence
ωX{Z » ωX{Y b ωY {Z in the 8-category QCohpXq.

Example 6.4.2.9. Let A be a commutative ring, let Y “ SpétA, and let X denote the closed
subspace of Y given by the vanishing locus of an ideal I Ď A. If I is generated by a regular
sequence a1, a2, . . . , an P A, then Example 6.4.0.4 supplies an equivalence ωX {Y » Σ´n OX
(which depends on the choice of regular sequence a1, . . . , an).

6.4.3 Preservation of Coherence

Our next goal is to establish a finiteness property enjoyed by the exceptional inverse
image functor f ! of Definition 6.4.0.1. First, we need to introduce a bit of terminology.

Definition 6.4.3.1. Let X be a locally Noetherian spectral Deligne-Mumford stack. We
will say that an object F P QCohpXq is coherent if, for every integer n, the truncation τěn F

is almost perfect. We let CohpXq denote the full subcategory of QCohpXq spanned by the
coherent sheaves.

Example 6.4.3.2. Let X “ SpétA be an affine spectral algebraic space and let F P

QCohpXq be the quasi-coherent sheaf corresponding to the A-module M “ ΓpX; F q. Then
F is coherent if and only if each homotopy group πnM is finitely generated as a module
over π0A.

Warning 6.4.3.3. In Definition 6.4.3.1, we impose no boundedness conditions on F .

Proposition 6.4.3.4. Let f : X Ñ Y be a proper morphism between locally Noetherian
spectral Deligne-Mumford stacks and let F P QCohpYq. If F is coherent and locally
truncated, then f ! F is coherent and locally truncated.

The proof of Proposition 6.4.3.4 will require some preliminaries.

Lemma 6.4.3.5. Let A be a Noetherian E8-ring, let M be an almost perfect A-module,
and let N be a truncated A-module whose homotopy groups are finitely generated over π0A.
Then the groups ExtiApM,Nq are finitely generated modules over π0A.

Proof. Replacing M and N by suitable suspensions, we can assume that N is 0-truncated
and that i “ 0. Choose an integer m such that M is m-connective. We proceed by
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descending induction on m. Note that if m ą 0, then Ext0
ApM,Nq » 0 and there is nothing

to prove. Otherwise, the assumption that M is almost perfect guarantees the existence of
a fiber sequence ΣmAk Ñ M Ñ M 1, where M 1 is pm ` 1q-connective. We have an exact
sequence of π0A-modules Ext0

ApM
1, Nq Ñ Ext0

ApM,Nq Ñ Ext0
ApΣmAk, Nq. The inductive

hypothesis implies that Ext0
ApM

1, Nq is finitely generated over π0A, and we have a canonical
isomorphism Ext0

ApΣmAk, Nq » pπmNq
k. It follows that Ext0

ApM,Nq is finitely generated
over π0A.

Corollary 6.4.3.6. Let f : X Ñ Y be a finite morphism of locally Noetherian spectral
Deligne-Mumford stacks. Then the functor f ! : QCohpYq Ñ QCohpXq carries locally
truncated coherent objects of QCohpYq to locally truncated coherent objects of QCohpXq.

Proof. By virtue of Proposition 6.4.1.4, the assertion is local on Y; we may therefore assume
without loss of generality that Y “ SpétA is affine. In this case, the desired result follows
immediately from Lemma 6.4.3.5.

Lemma 6.4.3.7. Let f : AÑ B be a map of Noetherian E8-rings, Suppose that the induced
map π0A Ñ π0B is a surjection of commutative rings whose kernel I Ď π0A is nilpotent.
Let K be a truncated A-module, and suppose that the homotopy groups πiMap

A
pB,Kq are

finitely generated modules over π0B. Then the homotopy groups πiK are finitely generated
modules over π0A.

Proof. We may assume without loss of generality that K is 0-truncated. We prove that the
homotopy groups π´nK are finitely generated over π0A using induction on n, the case n ă 0
being trivial. For each integer k ě 1, let Mpkq denote the submodule of π0K consisting of
elements which are annihilated by Ik. Since π0A is Noetherian, there exists a finite set of
generators x1, . . . , xn for the ideal I. Multiplication by the elements xi determines a map
Mpkq Ñ Mpk ´ 1qn, which fits into an exact sequence 0 Ñ Mp1q Ñ Mpkq Ñ Mpk ´ 1qn

Note that Mp1q » π0Map
A
pB,Kq is finitely generated over π0A. It follows by induction

on k that each Mpkq is finitely generated over π0A. Since the ideal I is nilpotent, we have
Mpkq » π0K for k " 0, so that π0K is finitely generated over π0A. This completes the
proof when n “ 0. If n ą 0, we apply Lemma 6.4.3.5 to deduce that the homotopy groups
of Map

A
pB, π0Kq are finitely generated over π0A, and therefore finitely generated over π0B.

Let K 1 “ Σpτď´1Kq, so that we have a fiber sequence of A-modules π0K Ñ K Ñ Σ´1K 1.
It follows that the homotopy groups of π0Map

A
pB,K 1q are finitely generated over π0B.

Applying the inductive hypothesis, we deduce that π´nK » π1´nK
1 is finitely generated

over π0A, as desired.

Corollary 6.4.3.8. Let X “ pX ,OXq be a locally Noetherian spectral Deligne-Mumford
stack, let X0 “ pX , π0 OXq be the 0-truncation of X, and let i : X0 Ñ X denote the associated
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closed immersion. If F P QCohpXq is locally truncated and i! F P QCohpX0q is coherent,
then F is coherent.

Proof. Using Proposition 6.4.1.4, we can reduce to the case where X is affine, in which case
the desired result follows from Lemma 6.4.3.7.

Proof of Proposition 6.4.3.4. Let f : X Ñ Y be a proper morphism of locally Noetherian
spectral Deligne-Mumford stacks and let F P QCohpYq be truncated and coherent. Then
f ! F is locally truncated by virtue of Proposition 6.4.1.4; we wish to show that it is also
coherent. Let X0 and Y0 denote the 0-truncations of X and Y, respectively, so that we have
a commutative diagram

X0
i //

f0
��

X
f
��

Y0
i1 // Y

where the horizontal maps are closed immersions. To show that f ! F is locally truncated,
it will suffice (by virtue of Corollary 6.4.3.8) to show that i!f ! F » f !

0i
1! F is coherent. It

follows from Corollary 6.4.3.6 that i1! F P QCohpY0q is truncated and coherent. We may
therefore replace f by f0 and thereby reduce to the case where X and Y are 0-truncated.

Using Proposition 6.4.1.4, we see that the assertion that f ! F is coherent can be tested
locally with respect to the étale topology of Y. We may therefore assume without loss
of generality that Y “ SpétA for some Noetherian commutative ring A. Choose an étale
surjection u : U Ñ X where U » SpétB is affine; we will show that u˚f ! F is coherent.
Since the morphism f is of finite type, the commutative ring B is finitely generated as an
A-algebra. We can therefore choose a surjection of A-algebras φ : Arx1, . . . , xns Ñ B. Set
Y1 “ SpétArx1, . . . , xns and form a pullback square

X1

f 1

��

g1 // X
f
��

Y1 g // Y .

Amalgamating u and φ, we obtain a map u : U Ñ X1. By construction, f 1 ˝ u is a closed
immersion. Since f 1 is separated, it follows that u is a closed immersion.

Locally on X1, the morphism u exhibits U as the closed substack of X1 given by the
vanishing locus of a regular sequence (of length n). It follows that the morphism u has finite
Tor-amplitude. Moreover, Example 6.4.2.9 (and Proposition 6.4.1.4) imply that relative
dualizing sheaf ωU {X1 has the form Σ´n L , where L is a line bundle on U. Consequently, to
show that u˚f ! F is coherent, it will suffice to show that the tensor product ωU {X1 b u

˚f ! F
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is coherent Using Corollary 6.4.2.7 and Proposition 6.4.1.4, we obtain equivalences

ωU {X1 b u
˚f ! F » ωU {X1 b u

˚g1˚f ! F

» u!g1˚f ! F

» u!f 1!g˚F .

We may therefore replace Y by Y1, F by g˚F , and f by the map pf 1˝uq : U Ñ Y1 determined
by φ, and thereby reduce to proving Proposition 6.4.3.4 in the special case where f is a
closed immersion. In this case, the desired result follows from Corollary 6.4.3.6.

6.4.4 Finiteness Properties of ωX{Y
We now apply Proposition 6.4.3.4 to study the finiteness properties of relative dualizing

sheaves. Our goal is to prove the following:

Proposition 6.4.4.1. Let f : X Ñ Y be a morphism of functors which is representable,
proper, locally almost of finite presentation, and locally of finite Tor-amplitude. Then the
relative dualizing sheaf ωX{Y P QCohpXq is almost perfect.

The proof of Proposition 6.4.4.1 will require some preliminaries.

Lemma 6.4.4.2. Let X be a spectral algebraic space which is quasi-compact and separated, let
F P QCohpXq, and let n be an integer. Suppose that, for every perfect object G P QCohpXq
having Tor-amplitude ď 0, the groups ExtiQCohpXqpG ,F q vanish for i ą n. Then F is
p´nq-connective.

Proof. Let f : SpétAÑ X be an étale morphism; we wish to show that ΓpSpétA; f˚F q P

ModA is p´nq-connective. Note that we have canonical equivalences ΓpSpétA; f˚F q »

ΓpX; f˚f˚F q » ΓpX; pf˚OSpétAq b F q. Since f is affine, the direct image f˚OSpétA P

QCohpXq is connective. Using Proposition 9.6.1.2, we can write f˚OSpétA as the colimit
of a filtered diagram tG αu, where each G α P QCohpXq is connective and almost perfect.
Since the global sections functor ΓpX; ‚q commutes with filtered colimits, we are reduced to
showing that each of the spectra ΓpX; G αbF q is p´nq-connective: in other words, that the
homotopy groups

π´iΓpX; G αbF q » ExtiQCohpXqpG
_
α ,F q

vanish for i ą n. This follows from our hypothesis on F , since each G_α has Tor-amplitude
ď 0.

Lemma 6.4.4.3. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks which
is proper, locally almost of finite presentation, and of Tor-amplitude ď n. Then the relative
dualizing sheaf ωX {Y is p´nq-connective.
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Proof. By virtue of Proposition 6.4.2.1, the assertion is local on Y; we may therefore
assume without loss of generality that Y » SpétA is affine. Using Lemma 6.4.4.2, we
are reduced to showing that if G P QCohpXq is perfect of Tor-amplitude ď 0, then the
groups ExtiQCohpXqpG , ωX {Yq vanish for i ą n. Set N “ ΓpX; G q, so that N is a perfect
A-module (Theorem 6.1.3.2) and we have a canonical isomorphism ExtiQCohpXqpG , ωX {Yq »

ExtiApN,Aq » π´iN
_. It will therefore suffice to show that N_ is p´nq-connective, or

equivalently that N has Tor-amplitude ď n as an A-module. Let M P Mod♥
A, and let

F “ f˚M P QCohpXq be the associated quasi-coherent sheaf on X. Then we have a
canonical equivalence M bA N » ΓpX; F bG q. Since f has Tor-amplitude ď n, the quasi-
coherent sheaf F is n-truncated. Since G has Tor-amplitude ď 0, the tensor product F bG

is n-truncated, so that the A-module M bA N » ΓpX; F bG is also n-truncated. Allowing
M to vary, we conclude that N has Tor-amplitude ď n as desired.

Proof of Proposition 6.4.4.1. Assume that f : X Ñ Y is representable proper, locally almost
of finite presentation, and locally of finite Tor-amplitude; we wish to show that ωX{Y is
almost perfect. By virtue of Remark 6.4.2.6, the assertion is local on Y ; we may therefore
assume without loss of generality that Y » SpecA is affine. Then X is representable by a
spectral algebraic space X which is proper over A. In particular, X is quasi-compact, so there
exists an integer n for which f has Tor-amplitude ď n. Using Lemma 6.4.4.3, we deduce
that ωX{Y is p´nq-connective. Set X0 “ XˆSpétA Spétpπ0Aq, and let i : X0 Ñ X be the
evident closed immersion. To complete the proof that ωX{Y is almost perfect, it will suffice
to show that i˚ωX{Y is almost perfect (Proposition 2.7.3.2). Using Proposition 6.4.2.1, we
can replace f by the projection map X0 Ñ Spétpπ0Aq and thereby reduce to the case where
A is discrete.

Write A as the colimit of a filtered diagram tAαu, where each Aα is a finitely generated
commutative ring. Using Theorem 4.4.2.2, we deduce that there exists an index α, a finitely
n-presented morphism fα : Xα Ñ SpétAα, and an identification of X with the n-truncation of
XαˆSpétAα SpétA. Enlarging α if necessary, we can assume that fα is proper (Proposition
5.5.4.1) and of Tor-amplitude ď n (Proposition 6.1.6.1), so that f is a pullback of fα.
Applying Remark 6.4.2.6 again, we can replace f by fα and thereby reduce to the case where
A is Noetherian. In this case, Corollary 6.4.3.6 implies that ωX{Y P QCohpXq is coherent.
In particular, the truncation τě´nωX{Y is almost perfect. Since ωX{Y is p´nq-connective
(Lemma 6.4.4.2), we conclude that ωX{Y is almost perfect.

Warning 6.4.4.4. In the situation of Proposition 6.4.4.1, the relative dualizing sheaf ωX{Y
need not be perfect: in other words, it need not be of finite Tor-amplitude over X. However,
it is always locally of finite Tor-amplitude over Y . In other words, for every commutative
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diagram
SpecB g //

��

X

f

��
SpecA g1 // Y

for which the induced map SpecB Ñ SpecA ˆY X is étale, the pullback g˚ωX{Y P

QCohpSpecBq » ModB has finite Tor-amplitude when regarded as an A-module. To
prove this, we may replace Y by SpecA and thereby reduce to the case where g1 is an
equivalence. Then there exists an integer n for which the exceptional inverse image func-
tor f ! : ModA » QCohpY q Ñ QCohpXq carries pModAqď0 into QCohpXqďn (see Remark
6.4.1.3). Using Corollary 6.4.2.7, we deduce that ωX{Y b f˚M » f !M is n-truncated for
every discrete A-module M , so that ωX{Y has Tor-amplitude ď n over A.

6.4.5 The Functor f`

Let f : X Ñ Y be a morphism of functors X,Y : CAlgcn Ñ pS which is representable,
proper, locally almost of finite presentation, and locally of finite Tor-amplitude. Let ωX{Y
denote the relative dualizing sheaf of f . According to Corollary 6.4.2.7, the construction

pF P QCohpY qq ÞÑ pωX {Y b f
˚F P QCohpXqq

determines a right adjoint to the direct image functor f˚. In this section, we will discuss a
closely related (but formally dual) feature of the sheaf ωX{Y : it can be used to construct a
left adjoint to the pullback functor f˚.

Construction 6.4.5.1. Let f : X Ñ Y be a morphism of functors X,Y : CAlgcn Ñ pS
which is representable, proper, locally almost of finite presentation, and locally of finite
Tor-amplitude. We let f` : QCohpXq Ñ QCohpY q denote the functor given by the formula
f`F “ f˚pωX{Y b F q. Let v0 : f˚ωX{Y “ f˚f

! OY Ñ OY denote the counit for the
adjunction between f˚ and f !. For each object F P QCohpY q, v0 induces a map

f`f
˚F “ f˚pωX{Y b f

˚F q » pf˚ωX{Y q bF
idbv0
ÝÝÝÝÑ F .

This construction depends functorially on F , and therefore determines a natural transfor-
mation of functors f`f˚ Ñ idQCohpY q.

Remark 6.4.5.2. Let f : X Ñ Y be as in Construction 6.4.5.1. Then:

paq If F P QCohpXq is locally of finite Tor-amplitude, then f`F P QCohpY q is locally of
finite Tor-amplitude.

pbq If F P QCohpXq is almost perfect, then f`F P QCohpY q is almost perfect.
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pcq If F P QCohpXq is perfect, then f`F P QCohpY q is perfect.

Assertion paq follows from Proposition 6.4.4.1 and Theorem 5.6.0.2, assertion pbq follows
from Warning 6.4.4.4, and assertion pcq is an immediate consequence of paq and pbq.

Proposition 6.4.5.3. Let f : X Ñ Y as in Construction 6.4.5.1. Then the natural
transformation v : f`f˚ Ñ idQCohpY q of Construction 6.4.5.1 exhibits the functor f` as a
left adjoint of the functor f˚.

Proof. Let F P QCohpXq and G P QCohpY q; we wish to show that the composite map

ρF ,G : MapQCohpXqpF , f˚ G q Ñ MapQCohpY qpf`F , f`f
˚ G q

v
ÝÑ MapQCohpY qpf`F ,G q

is a homotopy equivalence. Writing Y as a colimit of representable functors, we can reduce
to the case where Y “ SpecA is affine. In this case, X is representable by a spectral
algebraic space X which is quasi-compact and quasi-separated. Applying Proposition 9.6.1.1,
we can write F as the colimit of a filtered diagram tFαu, where each Fα P QCohpXq is
perfect (Proposition 9.6.1.1). It follows that ρF ,G can be identified with the limit of the
diagram tρFα,G u. It will therefore suffice to show that each ρFα,G is a homotopy equivalence.
Replacing F by Fα, we may reduce to the case where F is perfect.

The assumption that F is perfect guarantees that f`F is also perfect (Remark 6.4.5.2).
In this case, we can write ρF ,G “ Ω8ρF ,G , where ρF ,G denotes the map of spectra given by
the composition

ΓpX; F_bf˚ G q
Γ
ÝÑ pY; pf`F q_ b pf`f

˚ G qq
v
ÝÑ ΓpSpétA; pf`F q_ b G q.

Let us regard F as fixed, and let C denote the full subcategory of QCohpY q spanned by
those objects G for which the map ρF ,G is an equivalence. Then C is a stable subcategory of
QCohpY q. Our assumption that F is perfect guarantees that f`F is also perfect (Remark
6.4.5.2), so that the 8-category C is closed under filtered colimits. Consequently, to show
that C “ QCohpY q, it will suffice to show that C contains the structure sheaf OY (by virtue
of our assumption that Y is affine). We may therefore assume without loss of generality that
G “ OY . In this case, ρF ,G is a morphism of perfect A-modules, whose dual can be identified
with a morphism ψ : f`F Ñ pf˚F_q_ in the 8-category QCohpY q. To complete the proof,
it will suffice to show that for every object H P QCohpY q, composition with ψ induces
a homotopy equivalence ψH : MapQCohpY qpH , f`F q Ñ MapQCohpY qpH , pf˚F_q_q. We
now complete the proof by observing that ψH can be identified with the composition of
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homotopy equivalences

MapQCohpY qpH , f`F q “ MapQCohpY qpH , f˚pωX{Y bF qq

» MapQCohpXqpf
˚H , ωX{Y bF q

» MapQCohpXqppf
˚H q bF_, ωX{Y q

“ MapQCohpXqppf
˚H q bF_, f ! OY q

» MapQCohpY qpf˚pf
˚H bF_q,OY q

» MapQCohpY qpH bf˚F_,OY q

» MapQCohpY qpH , pf˚F_q_q.

We now study the behavior of the functor f` with respect to base change. With an eye
toward future applications, we work in a slightly different setting:

Proposition 6.4.5.4. Let f : X Ñ Y be a map between quasi-compact, quasi-separated
spectral algebraic spaces.

p1q Suppose that the pushforward functor f˚ carries perfect objects of QCohpXq to perfect
objects of QCohpYq. Then the pullback functor f˚ : QCohpYq Ñ QCohpXq admits a
left adjoint f` : QCohpXq Ñ QCohpYq, whose restriction to QCohpXqperf is given by
f`pF q “ pf˚F_q_.

p2q Suppose we are given a pullback diagram of spectral Deligne-Mumford stacks

X1 g1 //

f 1

��

X

f

��
Y1 g // Y,

where f and f 1 satisfy the assumptions of p1q. Then the diagram of 8-categories

QCohpYq f˚ //

g˚

��

QCohpXq

g1˚

��
QCohpY1q f 1˚ // QCohpX1q

is left adjointable. In other words, the canonical natural transformation f 1` ˝ g
1˚ Ñ

g˚ ˝ f` is an equivalence of functors from QCohpXq to QCohpY1q.
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Remark 6.4.5.5. The hypotheses of Proposition 6.4.5.4 are satisfied when f is proper,
locally almost of finite presentation, and locally of finite Tor-amplitude (Theorem 6.1.3.2);
in this case, Proposition 6.4.5.3 guarantees that the functor f` appearing in Proposition
6.4.5.4 agrees with the functor appearing in Construction 6.4.5.1. We will later see that the
converse holds under some mild additional hypotheses (see Theorem 11.1.4.1); our proof of
this will make use of Proposition 6.4.5.4.

Proof of Proposition 6.4.5.4. We first prove p1q. The collection of those objects F P

QCohpXq for which the functor G ÞÑ MapQCohpXqpF , f˚ G q is corepresentable by an object
of QCohpYq is closed under small colimits in QCohpXq. Consequently, to verify the existence
of f`, it will suffice to show prove the corepresentability in the case where F P QCohpXq is
perfect. In this case, we have canonical homotopy equivalences

MapQCohpXqpF , f˚ G q » Ω8ΓpX; F_bf˚ G q

» Ω8ΓpY; f˚pF_bf˚ G qq

» Ω8ΓpY; pf˚F_q b G q

» MapQCohpYqppf˚F_q_,G q.

We now prove p2q. Since the functors f`, f 1`, g1˚, and g˚ preserve filtered colimits,
it suffices to show that the base change map f 1`g

1˚F Ñ g˚f`F is an equivalence when
F P QCohpXq is perfect, in which case the desired result follows immediately from the
description of f` and f 1` on compact objects.

Remark 6.4.5.6. Let R be a connective E8-ring, let f : X Ñ SpétR exhibit X as a quasi-
compact quasi-separated spectral algebraic space over R, and suppose that the pushforward
functor f˚ carries QCohpXqperf into Modperf

R . Regard QCohpXq as tensored over the 8-
category ModR. For every object F P QCohpXq and every R-module M , we have a
canonical map

γM : f`pM bR F q Ñ f`pM bR pf
˚f`F qq » f`f

˚pM bR f`F q ÑM bR f`F .

The map γM is clearly an equivalence when M “ R. As functors of M , both sides are exact
and preserve small colimits. It follows that γM is an equivalence for all M P ModR.

Remark 6.4.5.7. Suppose we are given a pullback diagram

X1 g1 //

f 1

��

X

f

��
SpétR1 g // SpétR,
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where the pushforward functors preserve perfect objects. Proposition 6.4.5.4 supplies an
equivalence g˚f` » f 1`g

1˚, which is adjoint to a natural transformation α : f`g1˚ Ñ g˚f
1
`.

We claim that the natural transformation α is also an equivalence. To prove this, we first
observe that the collection of objects F P QCohpX1q such that α induces an equivalence
αF : f`g1˚F Ñ g˚f

1
`F is closed under small colimits in QCohpX1q. Since QCohpX1q »

ModR1pQCohpXqq is generated under small colimits by the essential image of the pullback
functor g1˚, it will suffice to show that αF is an equivalence when F “ g1˚ G , for some
G P X. In this case, we can use Proposition 6.4.5.4 to identify αF with the canonical map

f`pR
1 bR F q » f`pg

1
˚g
1˚F q Ñ g˚g

˚f`F » R1 bR f`F ,

appearing in Remark 6.4.5.6.

6.5 Digression: Injective Dimension of Quasi-Coherent
Sheaves

Our goal in this section is to review some general facts about injective dimension of
quasi-coherent sheaves on Noetherian spectral algebraic spaces which will be needed for our
discussion of absolute dualizing sheaves in §6.6.

6.5.1 Injective Dimension

We begin by introducing some terminology.

Definition 6.5.1.1. Let C be a presentable stable 8-category equipped with a t-structure
pCě0, Cď0q which is right complete and compatible with filtered colimits. Let n be an integer.
We will say that an object C P C has injective dimension ď n if, for every object D P C♥,
the abelian groups ExtiCpD,Cq vanish for i ą n.

Example 6.5.1.2. Let C be as in Definition 6.5.1.1. Then an object C P C is injective (in
the sense of Definition C.5.7.2) if and only if it belongs to Cď0 and has injective dimension
ď 0.

Remark 6.5.1.3. Let C be as in Definition 6.5.1.1. Then an object C P C has injective
dimension ď n if and only if the suspension ΣkC has injective dimension ď n´ k.

Remark 6.5.1.4. Let C be as in Definition 6.5.1.1 and suppose we are given a fiber sequence
C 1 Ñ C Ñ C2 in C. Using the exactness of the sequence ExtiCp‚, C 1q Ñ ExtiCp‚, Cq Ñ
ExtiCp‚, C2q, we deduce the following:

• If C 1 and C2 have injective dimension ď n, then C has injective dimension ď n.
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Combining this observation with Remark 6.5.1.3, we also have:

• If C has injective dimension ď n and C2 has injective dimension ď n´ 1, then C 1 has
injective dimension ď n.

• If C has injective dimension ď n and C 1 has injective dimension ď n` 1, then C2 has
injective dimension ď n.

Remark 6.5.1.5. Let C be as in Definition 6.5.1.1 and let C be an object of C. Then C

has injective dimension ď n if and only if the following condition is satisfied:

p˚q For every object D P Cďm, the groups ExtiCpD,Cq vanish for i ą n`m.

The “if” direction is obvious. To prove the converse, we may assume (replacing C by a
suspension if necessary) that i ď 0. Assume that C has injective dimension ď n and
that D P Cďm; we will show that the mapping pace MapCpD,Cq is p´m ´ nq-connective.
Since the t-structure on C is right complete, we can identify MapCpD,Cq with the limit
of a tower of spaces tMapCpτěkD,CqukPZ. Note that when k ą m, the truncation τěkD

vanishes, so the space MapCpτěkD,Cq is contractible. It will therefore suffice to show that
for k ď m, the transition map ρ : MapCpτěkD,Cq Ñ MapCpτěk`1D,Cq has p´m ´ nq-
connective homotopy fibers. This is clear, since each nonempty homotopy fiber of ρ is
equivalent to MapCpΣkpπkDq, Cq, whose sth homotopy group is given by Ext´s´kC pπ´kD,Cq

and therefore vanishes for s ă ´m´ n ď ´k ´ n (by virtue of our assumption that C has
injective dimension ď n).

Example 6.5.1.6. Let C be as in Definition 6.5.1.1, let C P C be an object, and suppose
we are given a morphism u : C Ñ Q where Q P C is injective. Using Remark 6.5.1.4, we
deduce that if n ą 0, then C has injective dimension ď n if and only if cofibpuq has injective
dimension ď n´ 1.

6.5.2 The Case of QCohpXq

We will be primarily interested in studying the notion of injective dimension for truncated
objects F P QCohpXq, where X is a spectral algebraic space. To ensure that this notion is
well-behaved, we will need some mild assumptions.

Definition 6.5.2.1. Let X be a spectral algebraic space. We will say that X is Noetherian
if it is locally Noetherian (Definition 2.8.1.4), quasi-compact, and quasi-separated.

Proposition 6.5.2.2. Let f : X Ñ Y be an étale morphism between Noetherian spectral
algebraic spaces and let F be a truncated object of QCohpYq. Then:

paq If F has injective dimension ď n, then f˚F has injective dimension ď n.
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pbq If f is surjective and f˚F has injective dimension ď n, then F has injective dimension
ď n.

Proof. Replacing F by a suitable suspension ΣkpF q (and replacing n by n´ k), we may
assume that F belongs to QCohpYqď0. Note that if n ă 0, then F has injective dimension
ď n if and only if F » 0 (and similarly for f˚F ), so that assertions paq and pbq are obvious.
The proof in general proceeds by induction on n. In the case n “ 0, the desired result follows
from Theorem 10.5.3.4, Remark 10.5.3.3, and Example 6.5.1.2. Suppose that n ą 0, and
choose a morphism u : F Ñ G in QCohpYq which exhibits G as an injective hull of F (see
Example C.5.7.9). Then f˚ G P QCohpXq is injective (by virtue of our inductive hypothesis).
Our inductive hypothesis also implies that if cofibpuq has injective dimension ď n´ 1, then
f˚ cofibpuq has injective dimension ď n´ 1; moreover, the converse holds if f is surjective.
The desired result now follows from Example 6.5.1.6.

Remark 6.5.2.3. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks which
is proper and locally almost of finite presentation and let f ! : QCohpYq Ñ QCohpXq be
the exceptional inverse image functor of Definition 6.4.0.1. If F P QCohpYq has injective
dimension ď n, then f ! F in QCohpXq has injective dimension ď n: this follows immediately
from the characterization of injective dimension supplied by Remark 6.5.1.5 (and the left
t-exactness of the direct image functor f˚).

Using Proposition 6.5.2.2, we can often reduce questions about the injective dimension of
sheaves F P QCohpXq to the case where X is affine. In this case, the following observation
is convenient:

Proposition 6.5.2.4. Let A be a Noetherian E8-ring, let K be a truncated A-module, and
let n be an integer. The following conditions are equivalent:

paq The A-module K has injective dimension ď n.

pbq For every prime ideal p Ď π0A, the groups ExtiAppπ0Aq{p,Kq vanish for i ą n.

Proof. The implication paq ñ pbq is immediate. To prove the converse, we may replace K by
a suitable desuspension to reduce to the case where K P pModAqď0. In this case, we proceed
by induction on n. We first treat the case n “ 0. Suppose that condition pbq is satisfied, and
let M P Mod♥

A be finitely generated as a module over π0A. Then M admits a finite filtration
by pπ0Aq-modules of the form pπ0Aq{p, so condition pbq implies that ExtiApM,Kq » 0 for
i ą 0. Applying Proposition C.6.10.1, we deduce that K is an injective object of ModA.

Now suppose that n ą 0. Choose a map α : K Ñ Q which exhibits Q as an injective
hull of K (Example C.5.7.9). For every prime ideal p Ď π0A, we have short exact sequences

ExtiAppπ0Aq{p, Qq Ñ ExtiAppπ0Aq{p, cofibpαqq Ñ Exti`1
A ppπ0Aq{p,Mq.
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It follows from assumption pbq that the groups ExtiAppπ0Aq{p, cofibpαqq vanish for i ě n.
Applying our inductive hypothesis, we deduce that cofibpαq has injective dimension ď n´ 1.
Using the fiber sequence K Ñ QÑ cofibpαq, we conclude that K has injective dimension
ď n.

Proposition 6.5.2.5. Let X be a Noetherian spectral algebraic space and let F P QCohpXq.
If F is truncated and of injective dimension ď m and OX is n-truncated, then F P

QCohpXqě´m´n.

Proof. Replacing F by a suitable desuspension, we may assume that F P QCohpXqď0.
We now proceed by induction on m. Suppose first that m “ 0: that is, F P QCohpXq is
injective; we wish to prove that F P QCohpXqě´n. By virtue of Proposition 6.5.2.2, this
assertion can be tested locally on X. We may therefore assume without loss of generality
that X “ SpétA for some n-truncated Noetherian E8-ring. In this case, the Grothendieck
prestable 8-category QCohpXqcn » Modcn

A is n-complicial (Example C.5.3.5), so that F is
p´nq-connective by virtue of Proposition C.5.7.11.

We now carry out the inductive step. Assume that m ą 0 and that F has injective
dimension ď m. Let α : F Ñ G be a morphism in QCohpXqď0 which exhibits G as an
injective hull of F (Example C.5.7.9). Then cofibpαq has injective dimension ď m ´ 1.
Applying our inductive hypothesis, we deduce that G and cofibpαq belong to QCohpXqě1´m´n.
The fiber sequence F Ñ G Ñ cofibpαq then shows that F P QCohpXqě´m´n, as desired.

6.5.3 Internal Mapping Sheaves

Let pX ,Oq be a spectrally ringed 8-topos. Then the symmetric monoidal 8-category
ModO is closed: that is, for every pair of objects F ,G P ModO , there exists an object
Map

O
pF ,G q P ModO with the following universal property: for every object E P ModO ,

there is a canonical homotopy equivalence

MapModO
pE ,Map

O
pF ,G qq » MapModO

pE bO F ,G q.

We now discuss some circumstances in which the construction pF ,G q ÞÑ Map
O
pF ,G q

preserves quasi-coherence, in the case where X is a spectral Deligne-Mumford stack. We
begin with some general observations.

Remark 6.5.3.1. Let pX ,Oq be a spectrally ringed8-topos and let F ,G P ModO . For each
U P X , we have a canonical homotopy equivalence Ω8Map

O
pF ,G qpUq » MapModO |U

pF |U ,G |U q

(this follows immediately from the universal property of Map
O
pF ,G q, applied in the special

case where E is the the image of O |U under the left adjoint to the restriction functor
ModO Ñ ModO |U ).
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Variant 6.5.3.2. If A is an E8-ring, then the symmetric monoidal 8-category ModA is
closed. Given objects M,N P ModA we let Map

A
pM,Nq P ModA denote a classifying object

for morphisms from M to N in the 8-category ModA: that is, Map
A
pM,Nq is an A-module

with the following universal property: there exists a map e : Map
A
pM,Nq bA M Ñ N

such that, for every A-module M 1, composition with e induces a homotopy equivalence
MapModApM

1,Map
A
pM,Nqq Ñ MapModApM

1 bAM,Nq. Note that this is really a special
case of the construction pF ,G q ÞÑ Map

O
pF ,G q, where we take the 8-topos X to be the

8-category S of spaces.

Example 6.5.3.3. Let pX ,Oq be a spectrally ringed 8-topos and let A “ ΓpX ; Oq be the
E8-ring of global sections of O. For every pair of objects F ,G P ModO , the global sections
functor ΓpX ; ‚q : ModO ÞÑ ModA induces a map

θF ,G : ΓpX ; Map
O
pF ,G qq ÞÑ Map

A
pΓpX ; F q,ΓpX ; G qq.

The map θF ,G is an equivalence in either of the following cases:

paq The sheaf F coincides with O.

pbq The pair X “ pX ,Oq is an affine spectral Deligne-Mumford stack and the sheaf F is
quasi-coherent.

Assertion paq follows easily from Remark 6.5.3.1. To prove pbq, we observe that for fixed
G , the construction F ÞÑ θF ,G carries colimits in ModO to limits in Funp∆1,ModAq.
Consequently, the objects F P ModO for which the morphism θF ,G is an equivalence span a
stable subcategory of ModO which is closed under colimits. This subcategory contains O by
paq, and therefore contains all quasi-coherent sheaves on X.

Remark 6.5.3.4. Let X “ pX ,Oq be a spectral Deligne-Mumford stack and let F ,G P

ModO . Assume that F is quasi-coherent. Combining Proposition 2.2.4.3 with Example
6.5.3.3, we deduce that Map

O
pF ,G q is quasi-coherent if and only if the following condition

is satisfied:

p˚q For every morphism U Ñ V in X , where U and V are affine, the natural map

OpUq bOpV q Map
OpV q

pF pV q,G pV qq Ñ Map
OpUq

pF pUq,G pUqq

is an equivalence of OpUq-modules.

If G is also quasi-coherent, then we can rephrase p˚q as follows:

p˚1q For every morphism U Ñ V in X , where U and V are affine, the natural map

OpUq bOpUq Map
OpV q

pF pV q,G pV qq Ñ Map
OpV q

pF pV q,OpUq bOpV q G pV qq

is an equivalence of OpUq-modules.
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Proposition 6.5.3.5. Let f : X Ñ Y be a proper morphism between Noetherian spectral
Deligne-Mumford stacks. Then the direct image functor f˚ : QCohpXq Ñ QCohpYq carries
CohpXq into CohpYq.

Proof. We first note that f is locally almost of finite presentation (Remark 4.2.0.4). We wish
to show that for every integer n, the truncation τěnf˚F is almost perfect. Using Corollary
3.4.2.3, we can replace F by τě´m F for some m " 0. In this case, F is almost perfect, so
that f˚F is also almost perfect (Theorem 5.6.0.2). Since Y is locally Noetherian, it follows
that the truncation τěnf˚F is also almost perfect.

Proposition 6.5.3.6. Let X “ pX ,Oq be a spectral Deligne-Mumford stack and let F ,G P

QCohpXq. Then Map
O
pF ,G q is quasi-coherent under any of the following additional as-

sumptions:

paq The quasi-coherent sheaf F is perfect.

pbq The quasi-coherent sheaf F is almost perfect and G is truncated.

pcq The spectral Deligne-Mumford stack X is a Noetherian spectral algebraic space, each
truncation τě´n F is almost perfect, and G is truncated and of finite injective dimen-
sion.

The proof of Proposition 6.5.3.6 rests on the following:

Lemma 6.5.3.7. Let A be a connective E8-ring, and suppose we are given modules
M,N,P P ModA. Assume that M is almost perfect, that N is truncated, and that P
has finite Tor-amplitude. Then the canonical map

θM : P bA Map
A
pM,Nq Ñ Map

A
pM,P bA Nq

is an equivalence.

Proof. Replacing N and P by suitable suspensions, we may assume without loss of generality
that that N is 0-truncated and that P has Tor-amplitude ď 0. Fix an integer n. Since
M is almost perfect, we can choose a fiber sequence M 1 ÑM ÑM2 where M 1 is perfect
and M2 is n-connective (Corollary 2.7.2.2). We then have a fiber sequence of A-modules
fibpθM2q

α
ÝÑ fibpθM q Ñ fibpθM 1q. Since M 1 is perfect, the map θM 1 is an equivalence. It

follows that fibpθM 1q » 0 and therefore α is an equivalence. Since N is 0-truncated and P

has Tor-amplitude ď 0, the tensor product P bA N is also 0-truncated. Applying Remark
9.5.3.1, we deduce that Map

A
pM2, Nq and Map

A
pM2, P bA Nq are p´nq-truncated. Using

our assumption that P has Tor-amplitude ď 0, we conclude that PbAMap
A
pM2, Nq is p´nq-

truncated. The map θM2 has p´nq-truncated domain and codomain, so that fibpθM2q is also
p´nq-truncated. Since α is an equivalence, it follows that fibpθM q is p´nq-truncated. Since
n is arbitrary, we conclude that fibpθM q » 0, so that θM is an equivalence as desired.
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Proof of Proposition 6.5.3.6. Let X “ pX ,Oq be a spectral Deligne-Mumford stack and let
F ,G P QCohpXq. We will show that if any of the conditions paq, pbq, or pcq is satisfied, then
the pair pF ,G q satisfies hypothesis p˚1q of Remark 6.5.3.4. Fix a morphism U Ñ V between
affine objects of X , so that we have equivalences pX {V ,O |V q » SpétA and pX {U ,O |U q »
SpétB for some E8-rings A and B. Set M “ F pV q and N “ G pV q; we wish to show that
the canonical map ρ : B bA Map

A
pM,Nq Ñ Map

A
pM,B bA Nq is an equivalence. This is

trivial in case paq, and follows from Proposition 6.5.3.6 in case pbq. To handle case pcq, we
may assume without loss of generality that G has injective dimension ď 0. Using Proposition
6.5.2.2, we deduce that N has injective dimension ď 0 as an object of the 8-category ModA
and that B bA N has injective dimension ď 0 as an object of the 8-category ModB (hence
also as an object of the 8-category ModA, since B is flat over A). For each integer n, we
have a commutative diagram

B bA Map
A
pM,Nq

ρ //Map
A
pM,B bA Nq

��
B bA Map

A
pτě´nM,Nq

ρ1 //Map
A
pτě´nM,B bA Nq.

The map ρ1 is an equivalence by virtue of pbq, and the vertical maps induce isomorphisms on πn.
It follows that ρ induces an isomorphism πnpBbA Map

A
pM,Nqq Ñ πnpMap

A
pM,BbANqq.

Since n was arbitrary, the morphism ρ is an equivalence as desired.

Remark 6.5.3.8. Let X “ pX ,Oq be a spectral Deligne-Mumford stack. Then QCohpXq
is a presentable 8-category and the tensor product b : QCohpXq ˆQCohpXq Ñ QCohpXq
preserves small colimits separately in each variable. It follows that the symmetric monoidal
structure on QCohpXq is closed: that is, for every pair of objects F ,G P QCohpXq,
there exists an object MapQCohpXqpF ,G q P QCohpXq with the following universal prop-
erty: for every quasi-coherent sheaf E P QCohpXq, there is a canonical homotopy equiva-
lence MapModO

pE ,Map
O
pF ,G qq » MapModO

pE bO F ,G q. It follows immediately from the
definitions that there is a canonical map θ : MapQCohpXqpF ,G q Ñ Map

O
pF ,G q, which ex-

hibits MapQCohpXqpF ,G q as universal among quasi-coherent sheaves E equipped with a map
E Ñ Map

O
pF ,G q. In particular, the morphism θ is an equivalence if and only if Map

O
pF ,G q

is quasi-coherent. Beware that if θ is not an equivalence, then MapQCohpXqpF ,G q is badly
behaved in general: for example, it need not be compatible with étale base change.

6.5.4 !-Fibers and Injective Dimension

For later use, we record a facts about the relationship between the Krull dimension of
Noetherian spectral algebraic space X and the injective dimension of coherent sheaves on X.
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Notation 6.5.4.1. Let X be a Noetherian spectral algebraic space, let x be a point of the
underlying topological space |X |. Let κpxq denote the residue field of X at the point x and
let X0 Ď X be the schematic image of the associated map i : Spétκpxq Ñ |X | (that is, the
reduced closed subspace of X corresponding to the closed subset txu Ď |X |), so that the
map i factors as a composition Spétκpxq i1

ÝÑ X0
i2
ÝÑ X. If F P QCohpXqltr, we let F !

x denote
the image of F under the composite functor

QCohpXq i2!
ÝÑ QCohpX0q

i1˚
ÝÑ QCohpSpétκpxqq » Modκpxq .

We will refer to F !
x as the !-fiber of F at the point x. In the special case where F “ OX,

we will denote F !
x by O !

X,x.

Our next result summarizes some of the formal properties of the formation of !-fibers:

Proposition 6.5.4.2. Let X be a Noetherian spectral algebraic space, let x P |X |, and let
U : QCohpXqltr Ñ Modκ be the functor given by F ÞÑ F !

x. Then:

p1q The functor U commutes with filtered colimits when restricted to QCohpXqď0.

p2q The functor U is left t-exact.

p3q If F P QCohpXqltr is coherent, then F !
x is coherent: that is, each homotopy group

πi F
!
x is finite-dimensional when regarded as a vector space over κpxq.

Proof. Assertion p1q follows from Proposition 6.4.1.4, assertion p2q follows from the observa-
tion that the map i1 : Spétκpxq Ñ X0 appearing in Notation 6.5.4.1 is flat, and assertion p3q
follows from Proposition 6.4.3.4.

Remark 6.5.4.3. Let X be a Noetherian spectral algebraic space, let x P |X |, and let
F ,G P QCohpXq. If F is truncated and G has finite Tor-amplitude, then Corollary 6.4.1.9
supplies a canonical equivalence F !

xbκpxq G x » pF bG q!x, where G x denotes the fiber of G

at x (that is, the image of G under the pullback functor QCohpXq Ñ QCohpSpétκpxqq »
Modκpxq).

Remark 6.5.4.4. Let f : X Ñ Y be a morphism between Noetherian spectral algebraic
spaces which is locally of finite Tor-amplitude. Let x be a point of |X |, let y “ fpxq be the
image of x in |Y |, and let Xy denote the fiber product XˆY Spétκpyq. Then, for every object
F P QCohpYqltr, we have a canonical equivalence pf˚F q!x » F !

y bκpyqO
!
Xy ,x in Modκpxq.

This follows by applying Proposition 6.4.1.4 to the upper square and bottom right square of
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the commutative diagram

Spétκpxq // X0ˆY0 Spétκpyq //

��

X0

��
Xy //

��

XˆY Y0 //

��

X

��
Spétκpyq // Y0 // Y;

here X0 and Y0 denote the schematic images of Spétκpxq and Spétκpyq in X and Y, respec-
tively.

Example 6.5.4.5. Let f : X Ñ Y be a flat morphism of Noetherian spectral algebraic
spaces, let x P |X | be a point having image y “ fpxq P |Y |, and suppose that the diagram

Spétκpxq //

��

X

��
Spétκpyq // Y

is a pullback square. Then, for every object F P QCohpYqltr, Remark 6.5.4.4 supplies an
equivalence pf˚F q!x » F !

y bκpyqκpxq.

Example 6.5.4.6. Let X “ SpétA, where A is a Noetherian commutative ring, and let
x P |X | “ |SpecA| be a point corresponding to a prime ideal p Ď A for which Ap is a regular
Noetherian ring of Krull dimension d. Then O !

X,x » Σ´dκpxq.

Lemma 6.5.4.7. Let X be Noetherian spectral algebraic space, let x P |X |, and let F P

CohpXq. Suppose that F is n-truncated and that the coherent sheaf πn F does not vanish
at x. Then πm F !

x ‰ 0 for some m ě n ´ htpxq, where htpxq denotes the height of x (see
Definition 3.7.6.1).

Proof. Using Example 6.5.4.5, we can reduce to the case where X “ SpétA where A is
a local Noetherian E8-ring and x is the closed point of |SpecA|. Set d “ htpxq, and let
a1, . . . , ad P π0A be a system of parameters for π0A. For 1 ď i ď d, let Npiq P ModA
denote the cofiber of the multiplication map ai : A Ñ A. Set M “ ΓpX; F q and set
K “M bA Np1q bA ¨ ¨ ¨ bA Npdq. Note that each Npiq has Tor-amplitude ď 1, so that K is
pn` dq-truncated. Applying Nakayama’s lemma repeatedly, we deduce that πnK ‰ 0. Let s
be the largest integer for which πsK is nonzero. Then πsK is an Artinian module over π0A,
so there exists a nonzero map ρ : κpxq Ñ πsK. Set

Nκpiq “ κpxq bA Npiq » cofibpai : κpxq Ñ κpxqq » κpxq ‘ Σκpxq



6.5. DIGRESSION: INJECTIVE DIMENSION OF QUASI-COHERENT SHEAVES 537

Then we can identify ρ with a nonzero element of

πsMap
A
pκpxq,Kq » πspF

!
xbκpxqNκp1q bκpxq ¨ ¨ ¨ bκpxq Nκpdq

» πs
à

JĎt1,...,du
Σ|J |F !

x

»
à

JĎt1,...,du
πs´|J |F

!
x .

It follows that πm F !
x does not vanish for some m ě s´ d ě n´ d “ n´ htpxq.

Proposition 6.5.4.8. Let X be a Noetherian spectral algebraic space, let F P QCohpXq be
truncated and coherent, and let x P |X |. The following conditions are equivalent:

paq The stalk of the sheaf F vanishes at the point x.

pbq The !-fiber F !
x vanishes.

Proof. The implication paq ñ pbq is obvious, and the converse follows from Lemma 6.5.4.7.

Proposition 6.5.4.9. Let X be a Noetherian spectral algebraic space, let F P QCohpXqltr,
and let n be an integer. The following conditions are equivalent:

p1q The sheaf F has injective dimension ď n.

p2q For every point x P |X |, the homotopy groups πi F !
x vanish for i ă ´n.

Proof. Suppose first that condition p1q is satisfied. Let x P |X | and let X0 be the schematic
image of the map Spétκpxq Ñ X. Let i : X0 ãÑ X be the tautological closed immersion.
Since the direct image functor i˚ is t-exact, the sheaf i! F P QCohpX0q has injective
dimension ď n. The structure sheaf of X0 is 0-truncated, so Proposition 6.5.2.5 implies
that i! F P QCohpX0qě´n. Restricting to the generic point of X0, we deduce that F !

x is
p´nq-connective.

Now suppose that condition p2q is satisfied; we wish to show that F has injective
dimension ď n. Using Proposition 6.5.2.2 and Remark 6.5.4.4, we can work locally on X
and thereby reduce to the case where X “ SpétA is affine. In this case, we can identify
F with the truncated A-module M “ ΓpX; F q. Let us say that an ideal I Ď π0A is good
if the module Map

A
ppπ0Aq{I,Mq is p´nq-connective. To prove p1q, it will suffice to show

that every prime ideal p Ă π0A is good (Proposition 6.5.2.4). Suppose otherwise: then,
by virtue of our assumption that A is Noetherian, there exists an ideal I Ď π0A which
is maximal among those ideals which are not good. Replacing A by pπ0Aq{I and K by
Map

A
ppπ0Aq{I,Mq, we may assume that A is discrete and that I “ p0q. If A is not an

integral domain, then the maximality of I implies that every prime ideal of A is good, so
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that M has injective dimension ě ´n by virtue of Proposition 6.5.2.4, which contradicts our
assumption that I “ p0q is not good. We may therefore assume without loss of generality
that A is an integral domain and that every nonzero ideal of A is good.

Since I “ p0q is not good, the module M is not p´nq-truncated. We may therefore
choose a nonzero element u P πmM for m ă ´n. Let K denote the fraction field of
A. Applying assumption p2q (in the case where x is the generic point of X) we deduce
that K bA pπmMq » πm F !

x » 0. It follows u is annihilated by some nonzero element
a P A. The exactness of the sequence πmMap

A
pA{paq,Mq Ñ πmM

a
ÝÑ πmM then shows

that πmMap
A
pA{paq,Mq ‰ 0, contradicting our assumption that the nonzero ideal paq is

good.

Corollary 6.5.4.10 (Serre). Let A be a regular Noetherian ring of Krull dimension ď n.
Then A has injective dimension ď n (when regarded as an object of ModA).

Proof. Combine Proposition 6.5.4.9 with Example 6.5.4.6.

6.6 Absolute Dualizing Sheaves

In his work on the duality theory of coherent sheaves, Grothendieck introduced the
notion of a dualizing complex on a Noetherian scheme X (see [94]). Our goal in this section
is to adapt the theory of dualizing complexes to the setting of spectral algebraic geometry.
If X is a Noetherian spectral algebraic space, we define the notion of a dualizing sheaf
ωX P QCohpXq (Definition 6.6.1.1). Specializing to the case where X “ SpétA is affine and
using the equivalence QCohpXq » ModA, we obtain the notion of a dualizing module for A.
Our principal results can be summarized as follows:

• Let X be a Noetherian spectral algebraic space and let CohpXq Ď QCohpXq denote
the full subcategory spanned by those objects having coherent homotopy (Definition
??). If X admits a dualizing sheaf ωX, then the construction F ÞÑ MapQCohpXqpF , ωXq

determines an equivalence of the 8-category CohpXq with its opposite (Theorem
6.6.1.8).

• If X is a Noetherian spectral algebraic space which admits a dualizing sheaf ωX, then
ωX is unique up to tensor product with an invertible object of QCohpXq (Proposition
6.6.2.1).

• Let f : X Ñ Y be a proper morphism between Noetherian spectral algebraic spaces.
Then the functor f ! : QCohpYq Ñ QCohpXq of Definition 6.4.0.1 carries dualizing
sheaves on Y to dualizing sheaves on X (Proposition 6.6.3.1). In particular, if Y admits
a dualizing sheaf, then so does X.
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• A Noetherian E8-ring A admits a dualizing module if and only if the commutative
ring π0A admits a dualizing module (Theorem 6.6.4.1).

• Let φ : A Ñ B be a morphism of Noetherian E8-rings which is almost of finite
presentation. If A admits a dualizing module, then so does B (Theorem 6.6.4.3).

Warning 6.6.0.1. In the setting of classical algebraic geometry, the term dualizing complex
is commonly used to refer to what we call a dualizing sheaf (or dualizing module). Our choice
of terminology is consistent with our convention of using the term quasi-coherent sheaf to
refer to any object of the stable 8-category QCohpXq, as opposed to objects which belong
to the heart QCohpXq♥. Note also that the term “complex” is potentially misleading: if X
is not 0-truncated, then the stable 8-category QCohpXq cannot be recovered as the derived
8-category of its heart; consequently, it is unreasonable to expect a dualizing sheaf ωX to
admit an explicit representative as a chain complex.

6.6.1 Dualizing Sheaves

We begin by introducing the central definition of this section:

Definition 6.6.1.1. Let X be a Noetherian spectral algebraic space. We will say that an
object ωX P QCohpXq is a dualizing sheaf if it satisfies the following conditions:

p1q The sheaf ωX is truncated (that is, the homotopy sheaves πnωX vanish for n " 0).

p2q The sheaf ωX is coherent: that is, each truncation τě´nωX is almost perfect.

p3q The sheaf ωX has finite injective dimension (Definition 6.5.1.1).

p4q The unit map OX Ñ Map
OX
pωX, ωXq is an equivalence.

If A is a Noetherian E8-ring, we will say that an object K P ModA is a dualizing module
if it is the image of a dualizing sheaf under the equivalence QCohpSpétAq » ModA.

Remark 6.6.1.2. In the situation of Definition 6.6.1.1, conditions p1q, p2q and p3q guarantee
that the sheaf Map

OX
pωX, ωXq is quasi-coherent (Proposition 6.5.3.6).

Remark 6.6.1.3. Let f : X Ñ Y be an étale morphism between Noetherian spectral
algebraic spaces and let ωY P QCohpYq. Then:

• If ωY is a dualizing sheaf for Y, then f˚ωY is a dualizing sheaf for X.

• If f is surjective and f˚ωY is a dualizing sheaf for Y, then ωY is a dualizing sheaf for
Y.
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In fact, the corresponding assertions hold for each of the properties p1q through p4q which
appear in Definition 6.6.1.1. For properties p1q, p2q and p4q this is obvious, and for p3q it
follows from Proposition 6.5.2.2.

Remark 6.6.1.4. Let X “ pX ,OXq be a Noetherian spectral algebraic space. Using Remark
6.6.1.3, we see that an object ωX P QCohpXq is a dualizing module if and only if ωXpUq is a
dualizing module for OXpUq for every affine object U P X .

Remark 6.6.1.5. In the situation of Definition 6.6.1.1, condition p4q can be rephrased as
follows:

p41q For every object F P ModOX , the canonical map MapModOX
pF ,OXq Ñ MapModOX

pF bωX, ωXq

is a homotopy equivalence.

p42q For every object F P QCohpXq, the canonical map MapQCohpXqpF ,OXq Ñ MapQCohpXqpF bωX, ωXq

is a homotopy equivalence.

The implications p4q ô p41q ñ p42q are tautological, and the implication p42q ñ p41q follows
from the quasi-coherence of Map

OX
pωX, ωXq (see Remarks 6.5.3.8 and 6.6.1.2).

Construction 6.6.1.6 (Grothendieck Duality). Let X be a Noetherian spectral algebraic
space and suppose that we have fixed a dualizing sheaf ωX P QCohpXq. For each F P CohpXq,
we let DpF q denote the sheaf given by Map

OX
pF , ωXq (note that the quasi-coherence of

DpF q follows from Proposition 6.5.3.6). We will refer to DpF q as the Grothendieck dual of
F .

Warning 6.6.1.7. The Grothendieck dual DpF q depends on a choice of dualizing sheaf
ωX P QCohpXq.

The terminology of Definition 6.6.1.1 is motivated by the following observation:

Theorem 6.6.1.8. Let X be a Noetherian spectral algebraic space and let ωX be a dualizing
sheaf on X. Then:

p1q The construction F ÞÑ DpF q induces a contravariant equivalence of CohpXq with
itself.

p2q For F P CohpXq, the canonical map F Ñ DpDpF qq is an equivalence.

Proof. We first show that if F P CohpXq, then DpF q P CohpXq. This assertion is local
on X, so we may assume that X “ SpétA is affine. Set M “ ΓpX; F q P ModA and
K “ ΓpX;ωXq P ModA. It follows from Proposition 6.5.3.6 that DpF q is quasi-coherent, and
is therefore determined by the A-module ΓpX;DpF qq » Map

A
pM,Kq. We wish to show



6.6. ABSOLUTE DUALIZING SHEAVES 541

that each homotopy group πiMap
A
pM,Kq “ Ext´iA pM,Kq is finitely generated as a module

over π0A. Replacing M by a suitable suspension, we can assume that i “ 0.
Choose an integer n such that K P ModA has injective dimension ď n, and choose a

fiber sequence M 1 ÑM ÑM2 where M 1 is p´nq-connective and M2 is p´n´ 1q-truncated.
We have an exact sequence Ext0

ApM
2,Kq Ñ Ext0

ApM,Kq Ñ Ext0
ApM

1,Kq, where the first
term vanishes by virtue of Remark Remark 6.5.1.5. Since the commutative ring π0A is
Noetherian, it will suffice to show that Ext0

ApM
1,Kq is finitely generated as a module over

π0A. Replacing M by M 1, we may reduce to the case where there exists an integer k
such that M is k-connective. We now proceed by descending induction on k. If k " 0,
then Ext0

ApM,Kq » 0 (since K is truncated). To carry out the inductive step, choose a
map α : ΣkAa Ñ M which induces a surjection pπ0Aq

a Ñ πkM and set N “ cofibpαq.
Then N is pk ` 1q-connective, so that Ext0

ApN,Kq is finitely generated by our inductive
hypothesis. Using the exact sequence Ext0

ApN,Kq Ñ Ext0
ApM,Kq Ñ pπkKq

a, we deduce
that Ext0

ApM,Kq is also finitely generated as a module over π0A as desired.
To complete the proof of p1q, it will suffice to prove p2q (so that the duality functor

F ÞÑ DpF q is homotopy inverse to itself). Let F P CohpXq; we wish to show that the
biduality map uF : F Ñ DpDpF qq is an equivalence. Once again, the assertion is local,
so that we may assume that X “ SpétA is affine so that F is determined by the module
M “ ΓpX; F q P ModA. We wish to show that for every integer i, the map uF induces an
isomorphism πiM Ñ πiMap

A
pMap

A
pM,Kq,Kq. Replacing M by a suspension if necessary,

we may again suppose that i “ 0.
Choose an integer m such that K is m-truncated. Then for every k-truncated A-module

N , the dual Map
A
pN,Kq is p´n´ kq-connective (Remark 6.5.1.5), so that the double dual

Map
A
pMap

A
pM,Kq,Kq is pm` n` kq-truncated. Choose k so that both k and m` n` k

are negative. Then the fiber sequence τěk`1M
ρ
ÝÑM Ñ τďkM gives rise to a fiber sequence

Map
A
pMap

A
pτěk`1M,Kq,Kq

ρ1
ÝÑ Map

A
pMap

A
pM,Kq,Kq Ñ Map

A
pMap

A
pτďkM,Kq,Kq,

where ρ and ρ1 both induce isomorphisms on π0. We may therefore replace M by τěk`1M

and thereby reduce to showing that the map uF is an equivalence whenever M is almost
connective. Replacing M by a suitable suspension, we are reduced to proving the following:

p˚q Let M P ModA be connective and almost perfect. Then the biduality map θM : M Ñ

Map
A
pMap

A
pM,Kq,Kq is an equivalence.

To prove p˚q, we show that the morphism θM is p-connective for every integer p. Since
M is connective, the dual Map

A
pM,Kq is m-truncated, so that Map

A
pMap

A
pM,Kq,Kq

is p´n ´mq-connective. Our claim therefore follows automatically if p ă 0,´n ´m. We
proceed in general using induction on p. Since π0M is finitely generated as a π0A-module,
we can choose a fiber sequence N Ñ Aa Ñ M where N P ModA is connective and almost
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perfect. We therefore have a fiber sequence fibpθN q Ñ fibpθAqa Ñ fibpθM q. The definition
of a dualizing complex guarantees that uA is an equivalence, so we obtain an equivalence
fibpθM q » Σ fibpθN q. The inductive hypothesis implies that Σ fibpθN q is pp´ 1q-connective,
so that fibpθM q is p-connective as desired.

In the situation of Theorem 6.6.1.8, there is a close relationship between properties of a
sheaf F P CohpXq and properties of its Grothendieck dual DpF q:

Proposition 6.6.1.9. Let X be a Noetherian spectral algebraic space, let ωX be a dualizing
sheaf on X, and let F P CohpXq. Then:

paq The sheaf F is almost perfect if and only if DpF q is truncated.

pbq If F has finite Tor-amplitude, then the dual DpF q has finite injective dimension.

pcq The sheaf F is perfect if and only if DpF q is truncated and of finite injective dimension.

Lemma 6.6.1.10. Let X be a Noetherian spectral algebraic space, let F ,G P QCohpXq, and
assume that F is coherent.

p1q If F is m-connective and G is n-truncated, then Map
OX
pF ,G q is pn´mq-truncated.

p2q If F has Tor-amplitude ď m and G has injective dimension ď n, then Map
OX
pF ,G q

has injective dimension ď n`m.

Proof. For each object H P QCohpXq, we have canonical isomorphisms

Ext˚QCohpXqpH ,Map
OX
pF ,G qq » Ext˚QCohpXqpF bH ,G q.

If the hypothesis of p1q is satisfied and H is connective, then F bH is m-connective, so that
our assumption that G is n-truncated guarantees that the groups Ext˚QCohpXqpF bH ,G q

vanish for ˚ ă ´n`m, so that Map
OX
pF ,G q is pn´mq-truncated. If the hypothesis of p2q is

satisfied and H is 0-truncated, then the tensor product F bH is m-truncated. Our assump-
tion that G has injective dimension ď n guarantees that the groups Ext˚QCohpXqpF bH ,G q

vanish for ˚ ą n`m, so that Map
OX
pF ,G q has injective dimension ď n`m.

Proof of Proposition 6.6.1.9. Let X be a Noetherian spectral algebraic space which admits
a dualizing sheaf ωX. Replacing ωX by a shift if necessary, we may assume that ωX is
0-truncated and has injective dimension ď n, for some integer n. If F is almost perfect, then
it is p´mq-connective for some m " 0, so that DpF q is m-truncated by virtue of Lemma
6.6.1.10. Conversely, suppose that DpF q is k-truncated for some integer k. We claim that
DpDpF qq is p´k ´ nq-connective, so that F is p´k ´ nq-connective (by virtue of Theorem
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6.6.1.8). To prove this, we can work locally (Proposition 6.5.3.6) and thereby reduce to the
case where X » SpétA is affine. In this case, it suffices to show that the homotopy groups

π´iΓpX;DpDpF qqq » ExtiQCohpXqpDpF q, ωXq

vanish for i ą k ` n, which follows from our assumption that DpF q is k-truncated and ωX
has injective dimension ď n (see Remark 6.5.1.5). This completes the proof of paq.

If F has Tor-amplitude ď k, then Lemma 6.6.1.10 guarantees that DpF q has injective
dimension ď k ` n, which proves pbq.

If F is perfect, then it is both almost perfect and of finite Tor-amplitude, so that DpF q
is truncated and of finite injective dimension by virtue of paq and pbq. We will complete the
proof by establishing the converse. Assume that DpF q is truncated and of finite injective
dimension; we wish to show that F is perfect. This assertion can be tested locally on X
(see Propositions 6.5.2.2 and 6.5.3.6), so we may assume without loss of generality that
X » SpétA is affine.

Choose an integer k such that DpF q has injective dimension ď k. Applying Corollary
2.7.2.2, we can choose a fiber sequence F 1 Ñ F

α
ÝÑ F 2 in QCohpXq, where F 1 is perfect and

F 2 is pk ` 1q-connective. Lemma 6.6.1.10 then implies that the Grothendieck dual DpF 2q

is p´k ´ 1q-truncated. Invoking our assumption that DpF q has injective dimension ď k

(and Remark 6.5.1.5), we conclude that the map Dpαq : DpF 2q Ñ DpF q is nullhomotopic.
Theorem 6.6.1.8 implies that α is nullhomotopic, so that F is equivalent to a direct summand
of F 1 and is therefore perfect, as desired.

Let X be a Noetherian spectral algebraic space with dualizing sheaf ωX. If F P CohpXq
is perfect, then the Grothendieck dual DpF q is given by the tensor product F_bωX, where
F_ is the OX-linear dual of F . Note that the construction F ÞÑ F_ induces an equivalence
of the 8-category QCohpXqperf with its opposite. Combining this observation with Theorem
6.6.1.8 and Proposition 6.6.1.9, we obtain the following:

Corollary 6.6.1.11. Let X be a Noetherian spectral algebraic space with dualizing sheaf ωX.
Then the construction F ÞÑ F bωX determines a fully faithful embedding QCohpXqperf Ñ

CohpXq, whose essential image is spanned by those objects G P CohpXq which are truncated
and of finite injective dimension.

6.6.2 Uniqueness of Dualizing Sheaves

If X is a Noetherian spectral algebraic space which admits a dualizing sheaf ωX, then ωX
is essentially unique.

Proposition 6.6.2.1. Let X be a Noetherian spectral algebraic space and let ωX be a dualizing
sheaf for X. Then an arbitrary object ω1X P QCohpXq is a dualizing sheaf if and only if there
exists an equivalence ω1X » ωX bL , where L is an invertible object of QCohpXq.
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Remark 6.6.2.2. In the situation of Proposition 6.6.2.1, the invertible sheaf L P QCohpXq
is uniquely determined up to equivalence: it can be recovered as Map

OX
pωX, ω

1
Xq. In fact, we

have the following more precise assertion: if X admits a dualizing sheaf ωX, then the functor
L ÞÑ ωX bL determines an equivalence from the full subcategory of QCohpXq spanned by
the invertible objects to the full subcategory of QCohpXq spanned by the dualizing sheaves
(this follows by combining Proposition 6.6.2.1 with Corollary 6.6.1.11).

Lemma 6.6.2.3. Let A be a Noetherian E8-ring, let K be a dualizing module for A, and
let Q be an R-module of finite injective dimension. For every almost perfect R-module M ,
the canonical map

fM : MbAMap
A
pK,Qq » Map

A
pMap

A
pM,Kq,KqbRMap

A
pK,Qq Ñ Map

A
pMap

A
pM,Kq, Qq

is an equivalence.

Proof. Replacing M by a shift, we may assume without loss of generality that M is connective.
Let K be m-truncated and let Q have injective dimension ď n. Remark 6.5.1.5 implies
that Map

A
pK,Qq is p´n ´mq-connective, so that the tensor product M bA Map

A
pK,Qq

is p´n ´ mq-connective. Similarly, the connectivity of M implies that Map
A
pM,Kq is

m-truncated, so that Map
A
pMap

A
pM,Kq, Qq is also p´n´mq-connective. It follows that

the morphism fM is p´n´m´ 1q-connective. We prove that fM is k-connective for every
integer k, using induction on k. Since π0M is a finitely generated module over π0A, we can
choose a fiber sequence M 1 Ñ Aa ÑM , where M 1 is connective. We therefore obtain a fiber
sequence fibpfM 1q Ñ fibpfAqa Ñ fibpfM q. It follows immediately from the definitions that
fA is an equivalence, so that fibpfM q » Σ fibpfM 1q. The inductive hypothesis implies that
fibpfM 1q is pk ´ 1q-conncetive, so that fibpfM q is k-connective as desired.

Proof of Proposition 6.6.2.1. It follows immediately from the definitions that if ωX is a
dualizing sheaf on X and ω1X » ωX bL for some invertible object L P QCohpXq, then ω1X
is also a dualizing sheaf on X. To prove the converse, suppose that ωX, ω

1
X P QCohpXq are

both dualizing sheaves. Set L “ Map
OX
pωX, ω

1
Xq. It follows from Lemma 6.6.2.3 that if

F P QCohpXq is almost perfect, then the canonical map

F bL Ñ Map
OX
pMap

OX
pF , ωXq, ω

1
Xq

is an equivalence. Taking F “ Map
OX1
pω1X, ωXq (which is almost perfect by Proposition

6.6.1.9), we obtain an equivalence F bL » Map
OX
pω1X, ω

1
Xq » OX, so that L is an invertible

object of QCohpXq. To complete the proof, it will suffice to show that the canonical map
ωXbL Ñ ω1X is an equivalence. This is a consequence of the following more general assertion
(applied in the case G “ ωX):
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p˚q For every object G P CohpXq, the canonical map uG : G bL Ñ Map
OX
pMap

OX
pG , ωXq, ω

1
Xq

is an equivalence.

To prove p˚q, it will suffice to show that uG induces an isomorphism of homotopy sheaves

πipG bL q Ñ πiMap
OX
pMap

OX
pG , ωXq, ω

1
Xq

for every integer i. Replacing G by a shift, we may suppose that i “ 0. Let F be defined
as above, so that we can identify the domain of uG with Map

OX
pF ,G q. Choose an integer

a such that F is a-connective. For every integer k, the spectrum Map
OX
pF , τďk G q is

pa ` kq-truncated. Let ωX have injective dimension ď n, so that Map
OX
pτďk G , ωXq is

p´n ´ kq-connective (Remark 6.5.1.5). Choose m such that ω1X is m-truncated, so that
Map

ωX
pMap

OX
pτďk G , ωXq, ω

1
Xq is pk `m` nq-truncated. It follows that if k ă ´a,´m´ n,

then the maps
π0ppτěk G q bL q Ñ π0pG bL q

π0Map
OX
pMap

OX
pτďk G , ωXq, ω

1
Xq Ñ π0Map

OX
pMap

OX
pG , ωXq, ω

1
Xq

are isomorphisms. We may therefore replace G with τěk G , in which case the desired result
follows from Lemma 6.6.2.3.

6.6.3 Base Change of Dualizing Sheaves

If f : X Ñ Y is a proper morphism of Noetherian spectral algebraic spaces, then there is
a close relationship between dualizing sheaves on X and dualizing sheaves on Y:

Proposition 6.6.3.1. Let f : X Ñ Y be a proper morphism of Noetherian spectral algebraic
spaces, and let f ! : QCohpYq Ñ QCohpXq be the exceptional inverse image functor of
Definition 6.4.0.1. If ωY is a dualizing sheaf on Y, then f !ωY is a dualizing sheaf on X. In
particular, if Y admits a dualizing sheaf, then so does X.

Proof. Set ωX “ f !ωY. It follows from Proposition 6.4.3.4 that ωX is truncated and coherent,
and it follows from Remark 6.5.2.3 that ωX has finite injective dimension. To complete the
proof, it will suffice to show that the canonical map OX Ñ Map

OX
pωX, ωXq is an equivalence.

Equivalently, we must show that for each object F P QCohpXq, tensor product with ωX
induces a homotopy equivalence

θ : MapQCohpXqpF ,OXq Ñ MapQCohpXqpF bωX, ωXq » MapQCohpYqpf˚pF bωXq, ωYq.

Writing F as a filtered colimit of perfect objects of QCohpXq (Proposition 9.6.1.1), we can
assume that F is perfect. Let F_ “ Map

OX
pF ,OXq. We then have a canonical equivalence

f˚pF bωXq » f˚Map
OX
pF_, ωXq

» f˚Map
OX
pF_, f !ωYq

» Map
OY
pf˚F_, ωYq.
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Under this equivalence, the map θ is obtained from the biduality map θ1 : f˚F_ Ñ

Map
OY
pMap

OY
pf˚F_, ωYqωYq by passing to global sections. It follows from Theorem

5.6.0.2 that f˚F_ P QCohpYq is almost perfect, so that θ1 is an equivalence by virtue of
Theorem 6.6.1.8.

Corollary 6.6.3.2. Let f : X Ñ Y be a morphism of Noetherian spectral algebraic spaces
which is proper and locally of finite Tor-amplitude. Suppose that Y admits a dualizing sheaf
ωY. Then the tensor product ωX {Y b f

˚ωY is a dualizing sheaf for X.

Proof. Combine Proposition 6.6.3.1 with Corollary 6.4.2.7.

In the special case where X and Y are affine, Proposition 6.6.3.1 specializes to the
following:

Corollary 6.6.3.3. Let A be a Noetherian E8-ring which admits a dualizing module K.
Let f : AÑ B be a morphism of connective E8-rings which exhibits B as an almost perfect
A-module. Then K 1 “ Map

A
pB,Kq is a dualizing module for B.

Corollary 6.6.3.4. Let A be a Noetherian E8-ring. If A admits a dualizing module, then
the commutative ring π0A admits a dualizing module.

Corollary 6.6.3.5. Let X be a Noetherian spectral algebraic space and let ω P QCohpXq
be a dualizing sheaf. Then, for each x P |X | with residue field κpxq, the !-fiber ω!

x is an
invertible object of Modκpxq (that is, it is equivalent to some suspension Σdκpxq).

Proof. Using Remark 6.6.1.3, we can reduce to the case where X “ SpétA is affine, so
M “ ΓpX;ωq is a dualizing module for A and the point x corresponds to some prime ideal
p Ď A. Using Corollary 6.6.3.3, we may replace A by pπ0Aq{p and M by Map

A
ppπ0Aq{p,Mq

and further reduce to the case where A is an integral domain and p “ p0q. Let K “ κpxq be
the fraction field of A, so that we can identify ω!

x with the tensor product K bAM . Our
assumption that M is a dualizing module guarantee that the homotopy groups πnM are
finitely generated modules over A which vanish for n " 0, and Proposition 6.5.2.5 guarantees
that they also vanish for n ! 0. Using Lemma ??, we deduce that the canonical map

θ : K bA Map
A
pM,Mq Ñ Map

A
pM,K bAMq » Map

K
pK bAM,K bAMq

is an equivalence. Since M is a dualizing module for A, we can identify the domain of θ
with K. It follows that K bA M is an indecomposable K-module (that is, it is nonzero
and cannot be nontrivially decomposed as a direct sum). Since K is a field, it follows that
ω!
x » K bAM an invertible object of ModK .
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6.6.4 Reduction to Commutative Algebra

Our next goal is to establish a converse of Corollary 6.6.3.4:

Theorem 6.6.4.1. Let A be a Noetherian E8-ring. If π0A admits a dualizing module, then
A admits a dualizing module.

Example 6.6.4.2. Let S denote the sphere spectrum. Since π0S » Z admits a dualizing
module, S also admits a dualizing module. In fact, we can describe this dualizing module
explicitly. Let I P Sp be the Brown-Comenetz dual of the sphere spectrum (see Example
HA.?? ). Then I is an injective object of Sp, which is characterized up to equivalence by the
formula

πnMap
S
pM, Iq » Hompπ´nM,Q {Zq

for every integer n and every spectrum M . In particular, we have

πnI »

$

’

’

&

’

’

%

0 if n ą 0
Q {Z if n “ 0
Hompπ´nS,Q {Zq if n ă 0.

Let Q denote the field of rational numbers, which we regard as a discrete spectrum. The
map of abelian groups Q Ñ Q {Z induces a map of spectra α : Q Ñ I. We let K denote
the fiber of α. Then

Map
S
pZ,Kq » fibpMap

S
pZ,Qq Ñ Map

S
pZ, Iqq » fibpQ Ñ Q {Zq » Z

is a dualizing module for Z. It follows from Proposition 6.6.4.6 that K is a dualizing module
for S. The spectrum K is often called the Anderson dual of the sphere spectrum. Its
homotopy groups are given by

πnK »

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if n ą 0
Z if n “ 0
0 if n “ ´1
HompπkS,Q {Zq if n “ ´k ´ 1, k ą 0.

Before turning the proof of Theorem 6.6.4.1, let us note the following consequence:

Theorem 6.6.4.3. Let A be a Noetherian E8-ring, and let B P CAlgcn
A be almost of finite

presentation over A. If A admits a dualizing module, then B admits a dualizing module.

Remark 6.6.4.4. Since the sphere spectrum S admits a dualizing module (Example 6.6.4.2),
it follows from Theorem 6.6.4.3 that every E8-ring B which is almost of finite presentation
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over S also admits a dualizing module. In particular, every connective E8-ring R can be
written as a filtered colimit of Noetherian E8-rings which admit dualizing modules. This
fact can be quite useful in combination with the Noetherian approximation techniques of
Chapter ??.

Proof of Theorem 6.6.4.3. It follows from Theorem HA.7.2.4.31 that B is Noetherian. We
wish to show that B admits a dualizing module. Using Corollary 6.6.3.4 and Theorem 6.6.4.1,
we can replace A and B by π0A and π0B, and thereby reduce to the case where B is a
commutative ring which is finitely presented as an algebra over the Noetherian commutative
ring A. Choose a surjection Arx1, . . . , xns Ñ B. To prove that A admits a dualizing module,
it will suffice to show that Arx1, . . . , xns admits a dualizing module (Proposition 6.6.3.3),
or equivalently that the affine space SpétArx1, . . . , xns admits a dualizing sheaf. Note that
there exists an open immersion j : SpétArx1, . . . , xns ãÑ Pn

A. By virtue of Remark 6.6.1.3, it
will suffice to show that Pn

A admits a dualizing sheaf. This follows from Proposition 6.6.4.6,
since the projection map Pn

A Ñ SpétA is proper (Corollary 5.4.3.4).

Remark 6.6.4.5. In the proof of Theorem 6.6.4.3, we can be more precise: if A is a
Noetherian commutative ring and K is a dualizing module for A, then Krx1, . . . , xns “

K bA Arx1, . . . , xns is a dualizing module for Arx1, . . . , xns.

Our proof of Theorem 6.6.4.1 is based on the following recognition criterion:

Proposition 6.6.4.6. Let f : AÑ B be a map of Noetherian E8-rings. Suppose that the
induced map π0A Ñ π0B is a surjection of commutative rings whose kernel I Ď π0A is
nilpotent. Let K be a truncated A-module, and suppose that Map

A
pB,Kq is a dualizing

module for B. Then K is a dualizing module for A.

Proof. Let f : A Ñ B be a morphism of Noetherian E8-rings which exhibits π0B as the
quotient of π0A by a nilpotent ideal I Ď π0A, and suppose that K P ModA has the property
that f :K “ Map

K
pB,Aq is a dualizing module for B. It follows from Lemma 6.4.3.7 that

the homotopy groups of πiK are finitely generated over π0A. Choose n " 0 such that
Map

A
pB,Kq has injective dimension ď n as a B-module. We claim that K has injective

dimension ď n as an A-module. Let M be a discrete A-module; we wish to prove that the
groups ExtiApM,Kq vanish for i ą n. Since I is nilpotent, the module M is annihilated
by Ik for some integer k ě 1. We proceed by induction on k. We have an exact sequence
0 Ñ IM ÑM ÑM{IM Ñ 0 of discrete π0A-modules, giving rise to short exact sequences
ExtiApM{IM,Kq Ñ ExtiApM,Kq Ñ ExtiApIM,Kq. The groups ExtiApIM,Kq vanish for
i ą n by the inductive hypothesis. The quotient M{IM has the structure of a module
over π0B, so that ExtiApIM,Kq » ExtiBpIM,Map

A
pB,Kqq vanishes since Map

A
pB,Kq has

injective dimension ď n. It follows that ExtiApM,Kq vanishes, as desired.
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To complete the proof, it will suffice to show that the biduality map AÑ Map
A
pK,Kq is

an equivalence. We will prove more generally that for every almost perfect A-module M , the
canonical map uM : M Ñ Map

A
pMap

A
pM,Kq,Kq is an equivalence. For this, it suffices to

show that uM induces an isomorphism πiM Ñ πiMap
A
pMap

A
pM,Kq,Kq for every integer

i. Replacing M by a shift, we can assume that i “ 0. Choose an integer m such that K
is m-truncated. For every integer k, the module Map

A
pτěkM,Kq is pm´ kq-truncated, so

that Map
A
pMap

A
pτěkM,Kq,Kq is pk ´ n´mq-connective (Remark 6.5.1.5). If k ą n`m,

it follows that the canonical map

π0Map
A
pMap

A
pM,Kq,Kq Ñ π0Map

A
pMap

A
pτďk´1M,Kq,Kq

is an isomorphism. Assuming also that k is positive (so that π0M » π0τďk´1M), we may
replace M by τďk´1M and thereby reduce to the case where M is truncated. It will therefore
suffice to show that uM is an equivalence whenever M is truncated and almost perfect. In
this case, M is a successive extension of A-modules which are concentrated in a single degree.
It will therefore suffice to show that uM is an equivalence when M is discrete A-module
which is finitely generated over π0A. Since I is nilpotent, we can write M as a successive
extension of discrete A-modules which are annihilated by I. We may therefore assume that
M is annihilated by I, and therefore admits the structure of a B-module. In this case, we
have

Map
A
pMap

A
pM,Kq,Kq » Map

A
pMap

B
pM,K 1q,Kq » Map

B
pMap

B
pM,K 1q,K 1q,

where K 1 “ Map
A
pB,Kq. The assertion that uM is an equivalence now follows from Theorem

6.6.1.8.

Notation 6.6.4.7. For every connective E8-ring A, let pModAqă8 denote the full subcate-
gory of ModA spanned by the truncated A-modules (that is, pModAqă8 “

Ť

npModAqďn).
If f : AÑ B be a morphism fo connective E8-rings, we let f : : ModA Ñ ModB denote

the right adjoint to the forgetful functor ModB Ñ ModA, given by f :M “ Map
A
pB,Mq.

Note that the functor f : : ModA Ñ ModB carries pModAqă8 into pModBqă8.

Lemma 6.6.4.8. Suppose we are given a pullback diagram of connective E8-rings τ :

A1
f 1 //

g1

��

A

g

��
B1

f // B,
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where f and g induce surjections π0AÑ π0B, π0B
1 Ñ π0B. Then the induced diagram σ :

pModA1qă8
f 1: //

g1:

��

pModAqă8
g:

��
pModB1qă8

f: // pModBqă8

is a pullback square of 8-categories.

Proof. Let C denote the fiber product pModAqă8 ˆpModBqă8 pModB1qă8. Unwinding the
definitions, we can identify the objects of C with triples pM,N,αq, where M is a truncated A-
module, N is a truncated B1-module, and α : Map

A
pB,Mq Ñ Map

B1
pB,Nq is an equivalence

of B1-modules. The diagram σ determines a functor G : pModA1qă8 Ñ C; we wish to prove
that G is an equivalence. We note that G has a left adjoint F , given on objects by the
formula F pM,N,αq “M >Map

A
pB,Mq N . We first prove that the counit map v : F ˝GÑ id

is an equivalence from pModA1qă8 to itself. Unwinding the definitions, we must show that if
M is a truncated A1-module, then the diagram

Map
A1
pB,Mq //

��

Map
A1
pA,Mq

��
Map

A1
pB1,Mq //Map

A1
pA1,Mq

is a pushout square of A1-modules. This follows from our assumption that τ is a pullback
square.

Since v is an equivalence, we deduce that the functor G is fully faithful. To complete the
proof, it will suffice to show that F is conservative. Since F is an exact functor between stable
8-categories, it will suffice to show that if pM,N,αq is an object of C which is annihilated
by F , then M and N are both trivial. Suppose otherwise. Then there exists a smallest
integer n such that πiM » πiN » 0 for i ą n. Then πnM and πnN cannot both vanish;
without loss of generality, we may assume that πnN ‰ 0. We have an exact sequence

0 Ñ πnMap
A
pB,Mq Ñ πnM ‘ πnN Ñ πnF pM,N,αq.

Since πnF pM,N,αq vanishes, we deduce that the map πnMap
A
pB,Mq Ñ πnM ‘ πnN is an

isomorphism. This contradicts the nontriviality of πnN , since the map πnMap
A
pB,Mq »

πnM is injective (because the homotopy groups πiM vanish for i ą n).

Lemma 6.6.4.9. Let B be a Noetherian E8-ring, and let A be a square-zero extension of
B by a connective, almost perfect B-module M . Suppose that B admits a dualizing module
K. Then there exists a dualizing module K 1 for A and an equivalence K » Map

A
pB,K 1q.
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Proof. We will show that there exists a truncated A-module K 1 and an equivalence K »

Map
A
pB,K 1q. Then K 1 is automatically a dualizing module for A, by Proposition 6.6.4.6.

We have a pullback diagram of E8-rings

A //

��

B

η

��
B

η0 // B ‘ ΣM.

By virtue of Lemma 6.6.4.8, it will suffice to show that η:K and η:0K are equivalent as
modules over B ‘ΣM . Both η:K and η:0K are dualizing modules for B ‘ΣM (Proposition
6.6.3.1). It follows that there exists an invertible module P for B ‘ ΣM and an equivalence
η:0K » η:K bB‘ΣM P . To complete the proof, it will suffice to show that P is trivial. Let
p : B ‘ ΣM Ñ B denote the projection map. Then

K » p:η:0K » p:pη:K bB‘ΣM P q » pp:η:Kq bB‘ΣM P » K bB‘ΣM P.

Invoking Remark 6.6.2.2, we deduce that P bB‘ΣM B is equivalent to B (as an B-module).
In particular, there exists an isomorphism

π0P » π0pP bB‘ΣM Bq » π0B.

Lifting the unit element of π0B under such an isomorphism, we obtain an element e P π0P ,
which determines a map γ : B ‘ ΣM Ñ P of pB ‘ ΣMq-modules. Then fibpγq bB‘ΣM B

vanishes, so that fibpγq bB‘ΣM N » 0 whenever N admits the structure of a B-module.
SInce B ‘ ΣM can be obtained as an extension of two pB ‘ ΣMq-modules which admit
B-module structures, we deduce htat

fibpγq » fibpγq bB‘ΣM pB ‘ ΣMq

vanishes, so that γ is an equivalence and P » B ‘ ΣM as desired.

Proof of Theorem 6.6.4.1. Let A be a Noetherian E8-ring, and let Kp0q be a dualizing
module for π0A. Without loss of generality, we may assume that Kp0q is 0-truncated. We will
show that there exists a 0-truncated A-module K and an equivalence Kp0q » Map

A
pπ0A,Kq.

It will then follow from Proposition 6.6.4.6 that K is a dualizing module for A.
Since each truncation τďn`1A is a square-zero extension of τďnA, Lemma 6.6.4.9 allows

us to choose a sequence Kpnq of dualizing modules for τďnA, together with equivalences

Kpnq » Map
τďn`1A

pτďnA,Kpn` 1qq.

It then follows by induction on n that each Kpnq is 0-truncated. Moreover, we have canonical
fiber sequences

Kpn´ 1q βnÑ Kpnq Ñ Map
τďn`1A

pΣnpπnAq,Kpnqq,
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so that cofibpβnq is p´nq-truncated for every integer n. Let K “ lim
ÝÑn

Kpnq, where the
colimit is taken in the 8-category ModA. Then K is a 0-truncated R-module, and we have
a canonical map of π0A-modules α : Kp0q Ñ K. We will complete the proof by showing
that α induces an equivalence e : Kp0q Ñ Map

A
pπ0A,Kq. Fix an integer n ě 0, so that e is

given by the composition

Kp0q » Map
τďnA

pπ0A,Kpnqq
e1
Ñ Map

τďnA
pπ0A,Map

A
pτďnA,Kqq » Map

A
pπ0A,Kq.

Here e1 is induced by the map f : Kpnq Ñ Map
A
pτďnA,Kq. Let f 1 : Map

A
pτďnA,Kq Ñ K

be the canonical map, so that cofibpf 1q » Map
A
pτěn`1A,Kq is p´n´ 1q-truncated. Since

each of the maps βm has p´mq-truncated cofiber, we deduce that cofibpf 1 ˝ fq is p´n´ 1q-
truncated. It follows that cofibpfq is p´n ´ 1q-truncated, so that cofibpe1q » cofibpeq is
p´n´ 1q-truncated. Since we can choose n to be arbitrarily large, we conclude that e is an
equivalence.

6.6.5 Gorenstein Spectral Algebraic Spaces

Let X be a Noetherian spectral algebraic space. Then the structure sheaf OX automatically
satisfies conditions p2q and p4q of Definition 6.6.1.1: that is, it is a coherent sheaf for which
the unit map OX Ñ Map

OX
pOX,OX is an equivalence. This motivates the following:

Definition 6.6.5.1. Let X be a spectral algebraic space. We say that X is Gorenstein if X
is Noetherian and the structure sheaf OX is a dualizing sheaf for X (see Definition 6.6.1.1).
We say that a connective E8-ring A is Gorenstein if the spectral algebraic space SpétA is
Gorenstein.

Remark 6.6.5.2. Gorenstein conditions in the setting of (not necessarily commutative)
differential graded algebras have been investigated by a number of authors (see, for example,
[63] and [66]). Gorenstein conditions on ring spectra are studied Dywer-Greenlees-Iyengar
([55]), though the context differs from the one we consider here (the reference [?] formulates
a local version of Gorenstein duality, for ring spectra which need not be connective or
commutative).

Remark 6.6.5.3. Unwinding the definitions, we see that a Noetherian spectral algebraic
space X is Gorenstein if and only if the structure sheaf OX is truncated and of finite injective
dimension.

Example 6.6.5.4. Let A be a regular Noetherian ring of finite Krull dimension. Then A is
Gorenstein (Corollary 6.5.4.10).

Remark 6.6.5.5. Let X be a Noetherian spectral algebraic space. Using Proposition 6.5.4.9,
we deduce that X is Gorenstein if and only if there exists integers m,n " 0 which satisfy the
following conditions:



6.6. ABSOLUTE DUALIZING SHEAVES 553

paq The structure sheaf OX is m-truncated.

pbq For each point x P |X | having residue field κpxq, the !-fiber O !
X,x P Modκpxq is p´nq-

connective.

If these conditions are satisfied, then Corollary 6.6.3.5 guarantees that for each x P |X |,
there is an equivalence O !

X,x » Σdpxqκpxq for some ´n ď dpxq ď m. Note that Lemma 6.5.4.7
guarantees that dpxq ě ´htpxq, where htpxq denotes the height of the point x P |X |.

Remark 6.6.5.6. Let X be a quasi-compact spectral algebraic space. The condition that X
is Gorenstein can be tested locally (with respect to the étale topology) on X. More precisely,
suppose that f : U Ñ X is an étale morphism of spectral algebraic spaces, where U is
quasi-compact (and therefore also Noetherian). If X is Gorenstein, then U is also Gorenstein;
the converse holds if f is surjective (this is an immediate consequence of Remark 6.6.1.3).

Warning 6.6.5.7. In the setting of classical algebraic geometry, Definition 6.6.5.1 is not
standard. Condition paq of Remark 6.6.5.5 is automatic in classical algebraic geometry, but
many authors replace pbq by the following a priori weaker condition:

pb1q For each point x P |X |, the !-fiber O !
X,x is an invertible object of Modκpxq.

Note that if Lemma 6.5.4.7 then guarantees that O !
X,x » Σdκpxq for some d ě ´htpxq,

where htpxq denotes the height of the point x P |X |. It follows that if |X | has finite Krull
dimension, then conditions pbq and pb1q are equivalent.

The Gorenstein property is geometric, in the following sense:

Proposition 6.6.5.8. Let κ be a field, let f : X Ñ Spétκ be a morphism between Noetherian
spectral algebraic spaces which is of finite type, and let κ1 be an extension field of κ. Then X
is Gorenstein if and only if X1 “ XˆSpétκ Spétκ1 is Gorenstein.

Proof. Without loss of generality, we may assume that the structure sheaf OX is truncated
(so that OX1 is also truncated). Let q : X1 Ñ X be the projection map. Since the pullback
functor q˚ is t-exact, the direct image functor q˚ carries objects of QCohpX1q of injective
dimension ď n to objects of QCohpXq of injective dimension ď n. Consequently, if X1 is
Gorenstein, then q˚OX1 has finite injective dimension. It then follows that OX has finite
injective dimension (since it is a direct summand of q˚OX1), so that X is also Gorenstein.

For the converse, assume that X is Gorenstein; we wish to show that X1 is also Gorenstein.
Without loss of generality, we may assume that X “ SpétA is affine (Remark 6.6.5.6), so
that X1 » SpétA1 for A1 “ κ1 bκ A. Choose an integer d such that π0A is generated as a
κ-algebra by d elements. Our assumption that X is Gorenstein guarantees that there exists
an integer n " 0 such that O !

X,x is p´nq-connective for each point x P |X | (Remark 6.6.5.5).
For each point x1 P |X1 | having image x P |X |, let X1x “ Spétκpxq ˆX X1. Note that κpxq is
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a finitely generated field extension of κ, and can therefore be identified with the fraction
field of a reduced closed subvariety Y Ď Pm

κ for some m " 0. Let ω “ ωY {Spétκ denote
the relative dualizing sheaf of the projection map Y Ñ Spétκ, so that ω P QCohpYq is also
an (absolute) dualizing sheaf (Proposition 6.6.3.1). Set Y1 “ YˆPmκ Pm

κ1 and let g : Y1 Ñ Y
be the projection map, so that g˚ω » ωY1 {Spétκ1 is a dualizing sheaf for Y1 (Proposition
6.6.3.1 and Remark 6.4.2.6). It follows from Corollary 6.6.3.5 that the restriction of ω to
the generic point Spétκpxq of Y is an invertible object of QCohpModκpxqq, so pg˚ωq|X1x is
an invertible object of |X1x |. Since g˚ω is a dualizing sheaf on Y1, it has finite injective
dimension; the criterion of Proposition 6.5.4.9 then shows that pg˚ωq|X1x P QCohpX1xq is
also of finite injective dimension, so that X1x is Gorenstein. Since X1x has Krull dimension
ď d, the !-fiber O !

X1x,x1
for each point x1 P |X1 | lying over x. Remark 6.5.4.4 then supplies

an equivalence O !
X1,x1 » O !

X,xbκpxqO
!
X1x,x1

, which shows that O !
X1,x1 is p´n´ dq-connective.

Using the criterion of Remark 6.6.5.5, we deduce that X1 is Gorenstein.

6.6.6 Gorenstein Morphisms

We now introduce a relative version of Definition ??.

Definition 6.6.6.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. We
will say that f is Gorenstein if the following conditions are satisfied:

paq The morphism f is locally almost of finite presentation and locally of finite Tor-
amplitude.

pbq For every field κ and every morphism η : Spétκ Ñ Y, the fiber product Xη “
XˆY Spétκ is locally Gorenstein: that is, for every étale morphism SpétAÑ Xη, the
E8-ring A is Gorenstein (Definition 6.6.5.1).

Warning 6.6.6.2. In Definition 6.6.6.1, we do not require that the morphism f : X Ñ Y
is flat: an assumption of flatness would exclude many examples of interest (for example,
quasi-smooth morphisms in the setting of derived algebraic geometry; see Example ??).

Remark 6.6.6.3. In the situation of Definition 6.6.6.1, suppose that Y is a quasi-separated
spectral algebraic space. Then it suffices to check the following a priori weaker version of
condition pbq:

pb1q For every point y P |Y | with residue field κpyq, the fiber product Xy “ Spétκpyq ˆY X
is Gorenstein.

This follows from Proposition 6.6.5.8.
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Proposition 6.6.6.4. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 //

f 1

��

X
f
��

Y1 g // Y .
If f is Gorenstein, so is f 1. The converse holds if g is a flat covering.

Proof. The first assertion follows immediately from Propositions 4.2.1.6 and 6.1.2.2. For the
converse, assume that g is flat cover and that f 1 is Gorenstein. Using Propositions 4.2.1.5
and 6.1.2.2, we deduce that f is locally of finite Tor-amplitude and locally almost of finite
presentation. To complete the proof that f is Gorenstein, it will suffice to show that for
every field κ and every morphism η : Spétκ Ñ Y, the fiber product Xη “ Spétκ ˆY X is
locally Gorenstein. Using Proposition 6.6.5.8, we can enlarge the field κ and thereby reduce
to the case where η factors through g, in which case the desired result follows from our
assumption that f 1 is Gorenstein.

Proposition 6.6.6.5. Let f : X Ñ Y be a morphism of Noetherian spectral algebraic spaces.
Assume that f is locally of finite type, that f is of finite Tor-amplitude, and that OY is
truncated. If Y is Gorenstein and the morphism f is Gorenstein, then X is Gorenstein. The
converse holds if f is surjective.

Proof. Suppose first that Y is Gorenstein and that f is Gorenstein; we wish to prove that X
is Gorenstein. Without loss of generality, we may suppose that Y » SpétA and X “ SpétB
are affine. Choose integers a, b ě 0 such that A is a-truncated and f has Tor-amplitude
ď b, so that B is pa` bq-truncated. Since f is locally of finite type, we can choose a finite
collection of elements b1, . . . , bd P π0B which generate π0B as an algebra over π0A. Since
Y is Gorenstein, there exists an integer n " 0 such that O !

Y,y is p´nq-connective for each
y P |Y |. Let x P |X |, let κpxq denote the residue field of x. Set y “ fpxq P |Y | and
Xy “ Spétκpxq ˆY X. Since Xy » SpétpκbA Bq has Krull dimension ď d, our assumption
that f is Gorenstein guarantees that O !

Yy ,x is p´dq-connective (see Remark 6.6.5.5). It
follows Using Remark 6.5.4.4, we obtain a canonical equivalence O !

X,x » O !
Y,y bκpyqO

!
Xy ,x, so

that O !
X,x is p´n´ dq-connective. Applying Remark 6.6.5.5, we deduce that X is Gorenstein.

Now suppose that f is surjective and that X is Gorenstein. Choose an integer m such
that O !

X,x is p´mq-connective for every point x P |X |. For each y P |Y |, we can choose
some x P |X | lying over y. Then O !

Xy ,x is nonzero and b-truncated (Proposition 6.5.4.8).
Using the equivalence O !

X,x » O !
Y,y bκpyqO

!
Xy ,x of Remark 6.5.4.4, we deduce that O !

Y,y is
p´m´ bq-connective. Applying Remark 6.6.5.5, we conclude that Y is Gorenstein. Similarly,
since O !

Y,y is nonzero and a-truncated, we deduce that O !
Yy ,x is p´m ´ aq-connective for

each x P |X | lying over y, so that the fiber product XˆY Spétκpyq is Gorenstein (Remark
6.6.5.5). Using Remark 6.6.6.3, we conclude that f is Gorenstein.
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Corollary 6.6.6.6. Let f : X Ñ Y and g : Y Ñ Z be morphisms of spectral Deligne-Mumford
stacks. If f and g are Gorenstein, then the composition g ˝ f is Gorenstein.

Proof. It follows from Proposition 4.2.3.3 that pg ˝ fq is locally almost of finite presentation
and from Proposition 6.1.2.5 that pg ˝ fq is locally of finite Tor-amplitude. To complete the
proof, it will suffice to show that for every field κ and every map η : SpétκÑ Z, the fiber
product Xη “ SpétκˆZ X is Gorenstein. Set Yη “ SpétκˆZ Y. Since g is Gorenstein, the
fiber Yη is Gorenstein. The projection map fη : Xη Ñ Yη is a pullback of f and is therefore
Gorenstein by virtue of Proposition 6.6.6.4. Applying Proposition 6.6.6.4, we deduce that
Xη is also Gorenstein.

In the case of a proper morphism, Definition 6.6.6.1 admits a reformulation in terms of
the relative dualizing complex:

Proposition 6.6.6.7. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which is proper, locally almost of finite presentation, and locally of finite Tor-amplitude. The
following conditions are equivalent:

paq The morphism f is Gorenstein, in the sense of Definition 6.6.6.1.

pbq The relative dualizing sheaf ωX {Y is an invertible object of QCohpXq.

The proof of Proposition 6.6.6.7 will require the following:

Lemma 6.6.6.8. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks and let
F P QCohpXq. Assume that:

piq The quasi-coherent sheaf F is almost perfect.

piiq The morphism f has finite Tor-amplitude and the quasi-coherent sheaf F has finite
Tor-amplitude over Y (see Warning 6.4.4.4).

piiiq For every field κ and every map η : Spétκ Ñ Y, the restriction of F to the fiber
Xη “ SpétκˆY X is an invertible object of QCohpXηq.

Then F is an invertible object of QCohpXq.

Proof. The assertion is local on X. We may therefore assume without loss of generality,
we may assume that Y » SpétA and X » SpétB are affine. Set M “ ΓpX; F q; we wish
to show that M is an invertible object of ModA. Fix a point x P |X | » |SpecA| and let
κpxq denote the residue field of A at x. It follows from piiiq that κpxq ˆBM is an invertible
κpxq-module. Replacing M by a suitable suspension, we may assume that κpxqbBM » κpxq.
Using our assumption that M is almost perfect, we can assume (after replacing X by an
open neighborhood of x if necessary) that M is connective (Proposition 2.7.4.1). Choose
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an element u P π0M having nonzero image in π0pκpxq bA Mq, so that u determines an
A-module map α : B ÑM . We will show that, after replacing X by a smaller neighborhood
of x if necessary, we can assume that α is an equivalence. To prove this, we are free to
replace B by π0B, the E8-ring A by the tensor product pπ0Bq bB A, and the module M by
the tensor product pπ0Bq bB M . In this case, assumption piiq guarantees that cofibpαq is
n-truncated for some n " 0. Since κpxq bB cofibpαq » 0, we can arrange (after replacing X
by a smaller neighborhood of x) that cofibpαq is pn` 1q-connective (Proposition 2.7.4.1), so
that cofibpαq » 0. It follows that α is an equivalence, so that M is an invertible object of
ModA.

Proof of Proposition 6.6.6.7. Suppose first that paq is satisfied. It follows from Proposition
6.4.4.1 and Warning 6.4.4.4 that ωX {Y is almost perfect and of finite Tor-amplitude over Y.
For every map η : SpétκÑ Y, set Xη “ SpétκˆY X. Remark 6.4.2.6 supplies an equivalence
ωXη {Spétκ » ωX {Y|Xη . Proposition 6.6.3.1 guarantees that ωXη {Spétκ is a dualizing sheaf for
Xη, and is therefore invertible by virtue of assumption paq. Using Lemma 6.6.6.8, we deduce
that ωX {Y is invertible.

Now suppose that pbq is satisfied. We wish to show that for every field κ and every
map η : Spétκ Ñ Y as above, the fiber Xη “ Spétκ ˆY X is Gorenstein. Assumption pbq
guarantees that ωXη {Spétκ » ωX {Y|Xη is an invertible object of QCohpXηq. Since ωXη {Spétκ
is a dualizing object sheaf for Xη (Proposition 6.6.3.1), Proposition 6.6.2.1 guarantees that
OXη is also a dualizing sheaf for Xη, so that Xη is Gorenstein as desired.



Chapter 7

Nilpotent, Local, and Complete
Modules

Let X be a spectral Deligne-Mumford stack and let j : U Ñ X be a quasi-compact
open immersion, corresponding to an open subset U Ď |X |. Then the pushforward functor
j˚ : QCohpUq Ñ QCohpXq is fully faithful. Roughly speaking, we can think of the 8-
category QCohpXq as built from two parts: sheaves coming from the open set U (that is,
those sheaves which lie in the essential image of j˚), and sheaves coming from the closed
subset K “ |X | ´ U . In this section, we will develop some language which allows us to
articulate this idea more precisely.

We begin in §7.1 by studying support conditions on quasi-coherent sheaves. We say that a
sheaf F P QCohpXq is supported on the closed set K Ď |X | if the pullback j˚F P QCohpUq
vanishes. The quasi-coherent sheaves which are supported on K form a full subcategory
QCohKpXq Ď QCohpXq. We will be particularly interested in the case where X “ SpétR
is affine. In this case, we can identify K Ď |X | » | SpecR| with the vanishing locus of an
ideal I Ď π0R. A quasi-coherent sheaf F P QCohpXq is supported on K if and only if the
R-module M “ ΓpX; F q is I-nilpotent: that is, if and only the action of each element x P I
is locally nilpotent on π˚M . We let ModNilpIq

R denote the full subcategory of ModR spanned
by the I-nilpotent R-modules, so that the equivalence of 8-category QCohpSpétRq » ModR
restricts to an equivalence QCohKpSpétRq » ModNilpIq

R .
We will say that an R-module M is I-local if, for every I-nilpotent R-module N , the

mapping space MapModRpN,Mq is contractible. The collection of I-local R-modules span a
full subcategory ModLocpIq

R Ď ModR. In §7.2, we will show that the pair of subcategories
pModNilpIq

R ,ModLocpIq
R q determine a semi-orthogonal decomposition of the stable 8-category

ModR (Definition 7.2.0.1): in other words, every R-module M fits into an essentially unique
fiber sequence ΓIM ÑM Ñ LIM , where ΓIM is I-nilpotent and LIM is I-local. This is
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essentially a formal consequence of the observation that the collection of I-nilpotent objects
of ModR is closed under colimits: modulo set-theoretic technicalities, one can construct
ΓIM as the colimit lim

ÝÑNÑM
N , where N ranges over all I-nilpotent objects of pModRq{M .

Alternatively, when the ideal I is finitely generated, then the construction M ÞÑ LIM can
be identified with the localization functor F ÞÑ j˚j

˚F , where j : U ãÑ SpétR is the open
immersion complementary to the vanishing locus of I.

We will say that an R-module M is I-complete if, for every I-local R-module N ,
the mapping space MapModRpN,Mq is contractible. If the ideal I is finitely generated,
then the pair of subcategories pModLocpIq

R ,ModCplpIq
R q determine another semi-orthogonal

decomposition of the stable 8-category ModR: in other words, every R-module M fits
into an essentially unique fiber sequence M 1 ÑM ÑM^

I , where M 1 is I-local and M^
I is

I-complete. We will refer to the R-module M^
I as the I-completion of M . In §7.3, we will

make a detailed study of the construction M ÞÑM^
I and its relationship with the classical

I-adic completion functor M ÞÑ lim
ÐÝ
tM{InMu on the category Mod♥

R of discrete R-modules.

Remark 7.0.0.1. By definition, and R-module M is I-nilpotent if and only if, for each
x PM , the colimit of the sequence

M
x
ÑM

x
ÑM Ñ ¨ ¨ ¨

vanishes. Similarly, an R-module M is I-complete if and only if, for each x P I, the inverse
limit of the tower

¨ ¨ ¨ ÑM
x
ÑM

x
ÑM

vanishes. The conditions of I-nilpotence and I-completeness are two different ways of making
precise the idea that an R-module M should be concentrated on the vanishing locus of the
ideal I. In fact, the 8-categories of I-nilpotent and I-complete R-modules are canonically
equivalent (Proposition 7.3.1.7), though they do not coincide as subcategories of ModR.

The semi-orthogonal decompositions pModNilpIq
R ,ModLocpIq

R q and pModLocpIq
R ,ModCplpIq

R q

of ModR can be viewed as “linear” incarnations of a geometric idea: namely, that the affine
spectral Deligne-Mumford stack X “ SpétR is obtained by “gluing” a formal neighborhood
of the closed set K Ď |X | to the open substack U Ď X complementary to K. In §7.4, we
will make this idea more precise by establishing an 8-categorical Beauville-Laszlo theorem
(Theorem 7.4.0.1): if we take pR “ R^I to be the I-completion of R and pU the inverse image
of U in Spét pR, then the diagram of 8-categories

QCohpSpétRq //

��

QCohpUq

��

QCohpSpét pRq // QCohppUq
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is a pullback square.
Though our main interest in this section is in studying R-modules, many of the notions

we introduce in this section (such as I-nilpotence, I-locality, and I-completeness) make
sense in greater generality. With an eye toward later applications, we frame most of our
definitions in the context of R-linear 8-categories, where R is an E2-ring. For a review of
the relevant definitions, we refer the reader to Appendix D
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7.1 Nilpotence and Support Conditions

Let X be a topological space, let Y Ď X be a closed subset, and let F be a sheaf of
abelian groups on X. We will say that F is supported on Y if the restriction F |U » 0, where
U Ď X is the complement of Y . If X “ SpecR is an affine scheme, Y is the vanishing locus
of an ideal I Ď R, and F is the quasi-coherent sheaf associated to an R-module M “ F pXq,
then F is supported on Y if and only if each element x P I determines a locally nilpotent
map M x

ÝÑM : that is, if and only if the localization M rx´1s vanishes for x P I. Our goal in
this section is to study an analogous condition in the setting of spectral algebraic geometry.

7.1.1 I-Nilpotent Objects

We begin with some general remarks. In what follows, we will assume that the reader is
familiar with the language of R-linear prestable 8-categories developed in Appendix D.

Definition 7.1.1.1. Let R be a connective E2-ring, let x P π0R, and let C be a prestable
R-linear 8-category (see Definition D.1.2.1). For each object C P C, we let Crx´1s denote
the relative tensor product Rrx´1s bR C (which we will regard either as an object of C or of
Rrx´1sbR C “ LModRrx´1spCq, depending on the context). We will say that C is x-nilpotent
if the localization Crx´1s vanishes.

Example 7.1.1.2. We will be primarily interested in the special case of Definition 7.1.1.1
where C “ LModR is the 8-category of left R-modules. In this case, an object M P C is
x-nilpotent if and only if the action of x on π˚M is locally nilpotent: that is, if and only
if for each y P πkM , there exists an integer n " 0 such that xny “ 0 (in the abelian group
πkM).

Remark 7.1.1.3. Let R be a connective E2-ring and let M be a left R-module. Then the
canonical maps

Rrx´1s bRM Ñ Rrx´1s bRM bR Rrx
´1s ÐM bR Rrx

´1s

are equivalences. Consequently, the localization M rx´1s can be obtained from M by tensoring
with Rrx´1s on either the left or the right.

Remark 7.1.1.4. Let R be a connective E2-ring, let x P π0R, and let C be a prestable
R-linear 8-category. If C P C is x-nilpotent, then the tensor product M bR C vanishes for
any left R-module M for which the map M

x
ÝÑM is an equivalence. In this case, the unit

map M ÑM rx´1s is also an equivalence, so we have

M bR C »M rx´1s bR C »M bR Rrx
´1s bR C »M bR Crx

´1s » 0.
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Proposition 7.1.1.5. Let R be a connective E2-ring, let C be a prestable R-linear 8-
category, and let C P C be an object. Then the set I “ tx P π0R :C is x-nilpotent u is a
radical ideal in the commutative ring π0R.

Proof. For x, y P π0R, we have Crpxyq´1s » pCrx´1sqry´1s, so that x P I ñ xy P I. We
next show that I is closed under addition. Choose elements x, y P π0R, so that we have a
cofiber sequence of connective R-modules

Rrpx` yq´1s Ñ Rrpx` yq´1, x´1s ‘Rrpx` yq´1, y´1s Ñ Rrpx` yq´1, x´1, y´1s,

hence a cofiber sequence

Crpx` yq´1s Ñ Crx´1srpx` yq´1s ‘ Cry´1srpx` yq´1s Ñ Crx´1sry´1srpx` yq´1s.

If x and y belong to I, then the second terms in this fiber sequence vanish, so that the first
does as well. This completes the proof that I is an ideal. We conclude by observing that
for each x P π0R, we have Crx´1s » Crpxnq´1s for any n ą 0, so that x P I if and only if
xn P I.

Definition 7.1.1.6. Let R be a connective E8-ring, let C be a prestable R-linear8-category,
and let I Ď π0R be an ideal. We say that an object C P C is I-nilpotent if it is x-nilpotent
for each x P I (in other words, if I is contained in the radical ideal of Proposition 7.1.1.5).
We let CNilpIq denote the full subcategory of C spanned by the I-nilpotent objects.

Example 7.1.1.7. Let R be a connective E2-ring and let I Ď π0R be a finitely generated
ideal. Then a left R-module M is I-nilpotent if and only if every element of π˚M is
annihilated by some power of I.

Remark 7.1.1.8. Let R be a connective E8-ring and let C be a prestable R-linear 8-
category. The condition that an object C P C is I-nilpotent depends only on the nilradical of
I (Proposition 7.1.1.5). In other words, it depends only on the closed subset of | Specπ0R|

given by the vanishing locus of I.

Remark 7.1.1.9. Let R be a connective E2-ring, let C be an R-linear prestable 8-category,
and let I Ď π0R be the sum of a collection of ideals Iα Ď π0R. Then an object C P C is
I-nilpotent if and only if C is Iα-nilpotent for each α.

Remark 7.1.1.10. Let φ : RÑ R1 be a morphism of connective E2-rings, let I Ď π0R be
an ideal, and let I 1 denote the ideal of π0R

1 generated by the image of I. Let C be a R1-linear
prestable 8-category, which we regard as an R-linear prestable 8-category by restriction of
scalars. Then an object C P C is I 1-nilpotent if and only if it is I-nilpotent.
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Remark 7.1.1.11. If we restrict our attention to the case where C is stable, then Definition
7.1.1.6 makes sense without the assumption that R is connective (see Variant D.1.5.1).
However, this does not really result in any additional generality: by virtue of Remark
7.1.1.10, the I-nilpotence of an object C P C does not depend on whether we regard C as an
R-linear 8-category or as a pτě0Rq-linear 8-category.

Proposition 7.1.1.12. Let R be a connective E8-ring, let C be a prestable R-linear 8-
category, and let I Ď π0R be an ideal. Then:

paq The 8-category CNilpIq is presentable and is closed under colimits and extensions in C,
and is therefore a Grothendieck prestable 8-category.

pbq For every left R-module M , the construction C ÞÑM bR C carries I-nilpotent objects
of C to I-nilpotent objects of C. Consequently, CNilpIq inherits the structure of an
R-linear prestable 8-category.

pcq If C is stable, then CNilpIq is stable.

pdq The full subcategory CNilpIq is closed under finite limits. Consequently, the inclusion
functor CNilpIq ãÑ C is left exact.

peq If C is compactly generated and I is finitely generated, then CNilpIq is also compactly
generated. Moreover, the inclusion CNilpIq ãÑ C preserves compact objects.

Proof. Assertion paq is obvious, and assertion pbq follows from the calculation

pM bR Cqrx
´1s » Rrx´1s bRM bR C

» M rx´1s bR C

» M bR Rrx
´1s bR C

» M bR Crx
´1s;

see Remark 7.1.1.3. Assertion pcq is an immediate consequence of paq, since the collection
of I-nilpotent objects of C is closed under desuspension. To prove pdq, it suffices to show
that for each x P π0R, the collection of x-nilpotent objects of C is closed under finite limits.
This follows from the fact that filtered colimits in C are left exact (so that the construction
C ÞÑ Crx´1s “ lim

ÝÑ
pC

x
ÝÑ C

x
ÝÑ C

x
ÝÑ ¨ ¨ ¨ q commutes with finite limits).

We now prove peq. Assume that C is compactly generated; we will prove that CNilpIq is
compactly generated by verifying the criterion of Corollary C.6.3.3. Let C be a nonzero
I-nilpotent object of C; we wish to show that there exists a nonzero map C0 Ñ C, where C0 is
a compact object of CNilpIq. Applying the criterion of Corollary C.6.3.3 to the 8-category C,
we deduce that there exists a nonzero map ρ : C 1 Ñ C, where C 1 is a compact object of C. For
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each x P I, the localization Crx´1s vanishes so that the composite map C 1
ρ
Ñ C Ñ Crx´1s

is nullhomotopic. Realizing Crx´1s as the colimit of the sequence

C
x
Ñ C

x
Ñ C

x
Ñ ¨ ¨ ¨ ,

we deduce that the composite map C 1 ρ
Ñ C

xk
Ñ C vanishes for k " 0. Using the commutativity

of the diagram
C 1

ρ //

xk

��

C

xk

��
C 1

ρ // C,

we deduce that ρ factors through the cofiber cofibpxk : C 1 Ñ C 1q We may therefore replace
C 1 by cofibpxk : C 1 Ñ C 1q and thereby reduce to the case where C 1rx´1s » 0. Applying this
procedure repeatedly, we can reduce to the case where C 1rx´1

i s » 0 for some finite sequence
x1, . . . , xn P I which generates the ideal I. Then C 1 is I-nilpotent (Proposition 7.1.1.5), so
that ρ : C 1 Ñ C is a nonzero morphism in CNilpIq whose domain is compact.

The preceding argument shows that every nonzero object C P CNilpIq admits a nonzero
map where C 1 P D is compact as an object of C. The collection of such objects is closed
under finite colimits and extensions, and therefore forms a set of compact generators for
CNilpIq (see Proposition C.6.3.1 and Corollary C.6.3.3). It follows immediately that CNilpIq

is compactly generated and that the inclusion CNilpIq ãÑ C preserves compact objects, as
desired.

Variant 7.1.1.13. Let R be a connective E8-ring, let C be an abelian R-linear 8-category
(see Definition D.1.4.1), and let I Ď π0R be an ideal. Then CNilpIq is also an R-linear abelian
category.

Example 7.1.1.14. Let R be a connective E2-ring and let I Ď π0R be an ideal. Then
the 8-category LModNilpIq

R is bitensored over LModR. More precisely, if M P LModR is
I-nilpotent and N P LModR is arbitrary, then M bR N and N bRM are I-nilpotent.

Remark 7.1.1.15. Let R be a connective E2-ring, and let F : C Ñ D be an R-linear functor
between prestable R-linear 8-categories. For every ideal I Ď π0R, F restricts to an R-linear
functor FNilpIq : CNilpIq Ñ DNilpIq. It follows from assertion pdq of Proposition 7.1.1.12 that
if F is left exact, then FNilpIq is left exact.

Remark 7.1.1.16. Let R be a connective E2-ring and let C be an R-linear prestable 8-
category. For each x P π0R and each C P C, we have canonical isomorphisms πnCrx´1s »

pπnCqrx
´1s in the abelian category C♥. Consequently, if C is separated and I Ď π0R is an

ideal, then an object C P C is I-nilpotent if and only if πnC P C♥ is I-nilpotent for each
n ě 0. In this case, the prestable 8-category CNilpIq is also separated. If C is complete, the
CNilpIq is also complete.
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Remark 7.1.1.17. Let R be a connective E2-ring and let C be an R-linear stable8-category
equipped with a t-structure that is right complete and compatible with filtered colimits (so
that Cě0 is a prestable R-linear 8-category and C » SppCě0q). For every ideal I Ď π0R, the
following conditions on an object C P C are equivalent:

paq The object C P C is I-nilpotent.

pbq For every integer n, the truncations τěnC and τďnC are I-nilpotent.

pcq For every integer n, the truncation τěnC is I-nilpotent.

It follows that the pair pCNilpIq
ě0 , CNilpIq

ď0 q “ pCNilpIqX Cě0, CNilpIqX Cď0q is a right compete
t-structure on CNilpIq which is compatible with filtered colimits. In particular, we have
CNilpIq » SppCNilpIq

ě0 q.
If the t-structure on C is separated (meaning that

Ş

Cěn consists only of zero objects of
C), then conditions paq, pbq, and pcq are equivalent to the following a priori weaker condition:

pdq For each n P Z, the object πnC P C♥ is I-nilpotent.

Remark 7.1.1.18. Let R be connective E2-ring and let I Ď π0R be an ideal. Let us say
that a prestable R-linear 8-category C is I-nilpotent if C “ CNilpIq: that is, if every object
C P C is I-nilpotent. Let LinCatPSt

R denote the 8-category of prestable R-linear 8-categories
(Definition D.1.4.1), and let LinCatNilpIq

R denote the full category of LinCatPSt
R spanned by

the I-nilpotent prestable R-linear 8-categories. It follows from Remark 7.1.1.15 that if C
is I-nilpotent, then any R-linear functor F : C Ñ D factors through the full subcategory
DNilpIq. Consequently, we can view the construction C ÞÑ CNilpIq as a right adjoint to the
inclusion LinCatNilpIq

R ãÑ LinCatPSt
R .

7.1.2 Local Cohomology

Let R be a commutative ring containing an ideal I Ď R. Every (discrete) R-module M
contains a largest I-nilpotent submodule M0 ĎM , given by M0 “ tx PM : p@y P Iqrynx “
0 for n " 0u. We now discuss a generalization of this construction.

Definition 7.1.2.1. Let R be a connective E2-ring, let I Ď π0R be an ideal, and let C
be a prestable R-linear 8-category. We let ΓI : C Ñ CNilpIq denote a right adjoint to the
inclusion functor ι : CNilpIq ãÑ C (note that the existence of ΓI is guaranteed by Corollary
HTT.5.5.2.9 , since ι is a colimit preserving functor between presentable 8-categories).

Warning 7.1.2.2. The notation of Definition 7.1.2.1 is potentially ambiguous: the functor
ΓI depends not only on the ideal I, but also on the prestable R-linear 8-category C. When
the 8-category C is not clear from the context, we will denote the functor ΓI by ΓC

I .
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Our next goal is to show that the operation ΓI is reasonably well-behaved when the ideal
I is finitely generated. We begin by treating the case where I is a principal ideal:

Proposition 7.1.2.3. Let R be a connective E2-ring, let x be an element of π0R, and let
C be a prestable R-linear 8-category. For every object C P C, we have a fiber sequence
(depending functorially on C) ΓpxqC Ñ C Ñ Crx´1s.

Proof. Let u : C Ñ Crx´1s denote the canonical map (obtained from the localization
map R Ñ Rrx´1s by tensoring with C). Since filtered colimits in C are left exact, we
have fibpuqrx´1s “ fibpCrx´1s Ñ pCrx´1sqrx´1sq » 0: that is, the fiber fibpuq is pxq-
nilpotent. For any pxq-nilpotent object D P C, the mapping space MapCpD,Crx

´1sq »

MapLModRrx´1spCqpDrx
´1s, Crx´1sq is contractible. It follows that the map MapCpD,fibpuqq Ñ

MapCpD,Cq is a homotopy equivalence, so that fibpuq » ΓpxqC.

Remark 7.1.2.4. Let R be a connective E2-ring, let C be a prestable R-linear 8-category,
and let I, J Ď π0R be ideals. It follows from Remark 7.1.1.9 that we have CNilpI`Jq “

pCNilpIqqNilpJq. Consequently, the inclusion CNilpI`Jq ãÑ C factors as a composition pCNilpIqqNilpJq ãÑ

CNilpIq ãÑ C. It follows that the functor ΓC
I`J : C Ñ CNilpI`Jq decomposes as compositions

C
ΓC
I
ÝÑ CNilpIq ΓCNilpIq

J
ÝÝÝÝÝÑ pCNilpIqqNilpJq “ CNilpI`Jq .

Corollary 7.1.2.5. Let R be a connective E2-ring, let I Ď π0R be a finitely generated ideal,
and let C be a prestable R-linear 8-category. Then the functor ΓI : C Ñ CNilpIq commutes
with filtered colimits.

Proof. Using Remark 7.1.2.4, we can reduce to the case where I is generated by a single
element, in which case the desired result follows from Proposition 7.1.2.3.

Remark 7.1.2.6. In the situation of Corollary 7.1.2.5, suppose that the 8-category C
is stable. Then the full subcategory CNilpIq Ď C is also stable (Proposition 7.1.1.12).
Consequently, the assumption that I is finitely generated implies that we can regard
ΓI : C Ñ CNilpIq as an R-linear functor (Remark D.1.5.3).

Corollary 7.1.2.7. Let R be a connective E2-ring and let I Ď π0R be a finitely generated
ideal. Then there exists a left R-module V such that the functor M ÞÑ M bR V is right
adjoint to the inclusion LModNilpIq

R ãÑ LModR.

Proof. Using Remark 7.1.2.6, we see that the functor ΓI : LModR Ñ LModNilpIq
R is given by

M ÞÑM bR ΓIpRq.

Corollary 7.1.2.8. Let R be a connective E2-ring, let I Ď π0R be a finitely generated ideal,
and let F : C Ñ D be an R-linear functor between prestable R-linear 8-categories. If F
is compact (Definition C.3.4.2), then the induced map FNilpIq : CNilpIq Ñ DNilpIq is also
compact.
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Proof. The commutative diagram of 8-categories

CNilpIq

FNilpIq
��

// C

F
��

DNilpIq // D

yields a commutative diagram of right adjoints

CNilpIq C
ΓC
Ioo

DNilpIq

G1

OO

D .

G

OO

ΓD
Ioo

Since F is compact, the functor G commutes with filtered colimits. Using Corollary 7.1.2.5,
we deduce that the functor pΓC

I ˝G » G1 ˝ ΓD
I q : D Ñ CNilpIq commutes with filtered colimits.

Restricting to the full subcategory DNilpIq Ď D, we conclude that G1 commutes with filtered
colimits, so that FNilpIq is compact.

Remark 7.1.2.9. In the special case where C is compactly generated, Corollaries 7.1.2.5
and 7.1.2.8 can also be deduced from part peq of Proposition 7.1.1.12 (see Proposition
HTT.5.5.7.2 ).

Corollary 7.1.2.10. Let R be a connective E2-ring, let I Ď π0R be a finitely generated
ideal, and let F : C Ñ D be an R-linear functor between prestable R-linear 8-categories. If
F is left exact, then the diagram

CNilpIq

FNilpIq
��

// C

F
��

DNilpIq // D

is right adjointable. In particular, we have a canonical equivalence FNilpIq ˝ ΓC
I » ΓD

I ˝ F .

Proof. Using Remarks 7.1.2.4 and 7.1.1.15, we can reduce to the case where I “ pxq is
generated by a single element. In this case, the desired result follows from the explicit
description of the functors ΓC

I and ΓD
I given by Proposition 7.1.2.3.

Corollary 7.1.2.11. Let R be a connective E2-ring and let I Ď π0R be a finitely generated
ideal. For any prestable R-linear 8-category C, the canonical map

θ : pLModcn
R q

NilpIq bR C Ñ LModcn
R bR C » C

is a fully faithful embedding, whose essential image is the full subcategory CNilpIq Ď C.
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Proof. Note that if M P LModcn
R is I-nilpotent, then the tensor product MbRC is I-nilpotent

for each C P C. It follows that the functor θ factors as a composition

pLModcn
R q

NilpIq bR C
θ0
ÝÑ CNilpIq ãÑ C

Since the inclusion pLModcn
R q

NilpIq ãÑ LModcn
R is left exact (Proposition 7.1.1.12), Proposition

C.4.4.1 shows that the functor θ is left exact. Since CNilpIq is closed under finite limits in C
(Proposition 7.1.1.12) we conclude that θ0 is left exact. It follows that the induced map of
stabilizations

Sppθ0q : SpppLModcn
R q

NilpIq bR Cq Ñ SppCNilpIqq

is t-exact. Consequently, to show that θ0 is an equivalence of 8-categories, it will suffice to
show that Sppθ0q is an equivalence of 8-categories. For this, we can replace C by SppCq and
thereby reduce to the case where C is stable, and we can identify Sppθq with the canonical
map

LModNilpIq
R bR C Ñ LModRbR C » C .

Let us regard the inclusion ι : LModNilpIq
R ãÑ LModR and the functor ΓI : LModR Ñ

LModNilpIq
R of Definition 7.1.2.1 as linear with respect to the right actions of LModR on

LModR and LModNilpIq
R (Remark 7.1.2.6). It follows that ΓI induces a functor

φ : SppCq » LModRbR SppCq Ñ LModNilpIq
R bR SppCq

which we can regard as a right adjoint to Sppθq. Since the unit map idLModNilpIq
R

Ñ ΓI ˝ ι
is an equivalence, it follows that the unit map id Ñ φ ˝ Sppθq is also an equivalence: that
is, the functor Sppθq is fully faithful. It will therefore suffice to show that the essential
image of Sppθq coincides with CNilpIq. Equivalently, we wish to show that an object C P C is
I-nilpotent if and only if it can be obtained as a colimit of objects of the form M bR C

1,
where C 1 P C is arbitrary and M P LModR is I-nilpotent. The “only if” direction is clear. To
prove the converse, we first note that the construction M ÞÑM bRC determines an R-linear
functor LModR Ñ C. If C is I-nilpotent, then Corollary 7.1.2.10 supplies an equivalence

C » ΓC
I pCq “ ΓC

I pRbR Cq » ΓLModR
I pRq bR C,

where ΓLModR
I pRq is I-nilpotent

Remark 7.1.2.12. In the statements of Proposition 7.1.2.3 (and Corollaries 7.1.2.5, 7.1.2.7,
7.1.2.8, 7.1.2.10, and 7.1.2.11), the hypothesis that I is finitely generated can be weakened:
it is sufficient to assume that there exists a finitely generated ideal J Ď I having the same
radical as I (see Remark 7.1.1.8).
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7.1.3 The Locally Noetherian Case

We now specialize Definition 7.1.1.6 to the locally Noetherian case.

Proposition 7.1.3.1. Let R be a connective E2-ring, let A be an abelian R-linear 8-
category, and let I Ď π0R be an ideal. If A is locally Noetherian, then ANilpIq is locally
Noetherian.

Proof. It follows from Variant 7.1.1.13 that ANilpIq is an abelian R-linear 8-category. If
A is locally Noetherian, then every object X P ANilpIq can be written as a filtered colimit
of Noetherian subobjects X 1 Ď X. Since X is I-nilpotent, any such subobject is also
I-nilpotent, and is therefore a Noetherian object of ANilpIq.

Corollary 7.1.3.2. Let R be a connective E2-ring, let C be an prestable R-linear 8-category,
and let I Ď π0R be an ideal. If C is locally Noetherian (see Definition C.6.9.1), then CNilpIq

is locally Noetherian.

Proof. Proposition 7.1.3.1 shows that the heart of CNilpIq is locally Noetherian. Moreover, an
object X P CNilpIq♥ is Noetherian if and only if it is Noetherian when regarded as an object
of C♥ (since the partially ordered set of isomorphism classes of subobjects of X does not
depend on whether we view X as an object of C♥ or CNilpIq♥). In this case, our assumption
that C is locally Noetherian guarantees that X is a compact object of τďn C for each n ě 0,
and therefore also compact when viewed as an object of the 8-category τďn CNilpIq.

Remark 7.1.3.3. Let R be a connective E2-ring, let C be a prestable R-linear 8-category,
and let I Ď π0R be a finitely generated ideal. It follows immediately from the definitions
that the functor ΓI : SppCq Ñ SppCqNilpIq carries injective objects of SppCqď0 to injective
objects of SppCqNilpIq

ď0 .

Proposition 7.1.3.4. Let R be a connective E2-ring, let C be a prestable R-linear 8-
category, and let I Ď π0R be an ideal. Suppose that I is finitely generated and that C
is locally Noetherian. Then the inclusion map SppCNilpIqq » SppCqNilpIq ãÑ SppCq carries
injective objects of SppCNilpIqq to injective objects of SppCq (see .Definition C.5.7.2).

Proof. Proceeding by induction on the number of generators of I (and using Remark 7.1.2.4),
we can reduce to the case where I is generated by a single element. Let Q be an injective
object of SppCNilpIqqď0; we wish to show that Q is also injective when viewed as an object of
SppCq. By virtue of Proposition C.6.10.1, it will suffice to show that the group ExtnSppCqpX,Qq

vanishes for n ą 0 when X is a Noetherian object of C♥. Let X 1 denote the kernel of the
map u : X Ñ Xrx´1s, and let X2 be the image of u. We then have an exact sequence
ExtnSppCqpX

2, Qq Ñ ExtnSppCqpX,Qq Ñ ExtnSppCqpX
1, Qq, where the third term vanishes since
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X 1 belongs to the heart of CNilpIq. We may therefore replace X by X2 and thereby reduce
to the case where the multiplication map x : X Ñ X is a monomorphism.

Since C is locally Noetherian, the object X is compact in τďn C, so the construction

Y ÞÑ ExtnSppCqpX,Y q » π0 MapCpX,Ω8´nY q

commutes with filtered colimits when restricted to SppCqď0. In particular, the vanishing
of Qrx´1s guarantees that the action of x on ExtnSppCqpX,Qq is locally nilpotent. It follows
that every element of ExtnSppCqpX,Qq lies in the image of the natural map ExtnSppCqpcofibpxk :
X Ñ Xq, Qq Ñ ExtnSppCqpX,Qq for k " 0. We conclude by observing that the abelian group
ExtnSppCqpcofibpxk : X Ñ Xq, Qq vanishes, since cofibpxk : X Ñ Xq is I-nilpotent and Q is
an injective object of SppCNilpIqqď0.

Remark 7.1.3.5. Let R be a commutative ring, let I Ď R be a finitely generated ideal, and
let A be an abelian R-linear category which is locally Noetherian. Combining Proposition
7.1.3.4 with Theorem C.5.7.4, we deduce that the inclusion functor ANilpIq ãÑ A carries
injective objects to injective objects.

7.1.4 The Case of a Derived 8-Category

Let A be a Grothendieck abelian category, and let DpAq be its derived 8-category
(see §HA.?? ). In what follows, we will abuse notation by identifying A with the full
subcategory DpAq♥ Ď DpAq. If A is equipped with an action of a connective E8-ring
R, then DpAq inherits an action of R (Example D.1.3.9). If I Ď π0R is an ideal, we will
say that an object X P A is I-nilpotent if it is I-nilpotent when regarded as an object of
DpAq. Let ANilpIq denote the full subcategory of A spanned by the I-nilpotent objects.
Then ANilpIq » DpAqNilpIq

ě0 X DpAqNilpIq
ď0 is the heart of t-structure pDpAqNilpIq

ě0 ,DpAqNilpIq
ď0 q

of Remark 7.1.1.17. In particular, ANilpIq is a Grothendieck abelian category which is
stable under extensions in A, and the inclusion ANilpIq ãÑ A is an exact functor. Using
Theorem C.5.4.9, we see that the inclusion ANilpIq ãÑ DpAqNilpIq extends to a t-exact functor
DpANilpIqq Ñ DpAqNilpIq.

Theorem 7.1.4.1. Let R be a commutative ring, let I Ď R be an ideal, and let A be an
abelian R-linear 8-category. Suppose that A is locally Noetherian and that I is finitely
generated. Then the map θ : DpANilpIqq Ñ DpAqNilpIq described above is an equivalence of
8-categories.

Remark 7.1.4.2. In the statement of Theorem 7.1.4.1, the assumption that R is discrete is
irrelevant: the same conclusion is valid for any connective E2-ring R (see Example D.1.3.6).

We are primarily interested in the following special case of Theorem 7.1.4.1:
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Corollary 7.1.4.3. Let R be a Noetherian commutative ring, let I Ď R be an ideal,
and let Mod♥ NilpIq

R denote the abelian category of discrete, I-nilpotent R-modules. Then
the inclusion Mod♥ NilpIq

R ãÑ ModNilpIq
R extends to a t-exact equivalence of 8-categories

DpMod♥ NilpIq
R q Ñ ModNilpIq

R .

The proof of Theorem 7.1.4.1 will require some preliminaries.

Proposition 7.1.4.4. Let R be a connective E2-ring, let C be a prestable R-linear 8-category,
let n ě 0 be an integer, and let I Ď π0R be a finitely generated ideal. Then:

paq If C is locally Noetherian and weakly n-complicial, then CNilpIq is weakly n-complicial.

pbq If C is locally Noetherian and n-complicial, then CNilpIq is n-complicial.

Proof. We first prove paq. Assume that C is locally Noetherian and weakly n-complicial; we
wish to show that CNilpIq is weakly n-complicial. By virtue of Proposition C.5.7.11, it will
suffice to show that every injective object Q P SppCNilpIqq belongs to SppCNilpIqqě´n. Our
assumption that C is locally Noetherian guarantees that Q is also injective when viewed as
an object of SppCq (Proposition 7.1.3.4). The desired result now follows from Proposition
C.5.7.11, since C is assumed to be weakly n-complicial.

We now prove pbq. Assume that C is locally Noetherian and n-complicial; we wish to
show that CNilpIq is also n-complicial. Proceeding by induction on the number of generators
of I, we can reduce to the case where I “ pxq is a principal ideal. Fix an object X P CNilpIq;
we wish to prove that there exists a map f : Y Ñ X which induces an epimorphism on
π0, where Y is an n-truncated object of CNilpIq. Writing X as a filtered colimit of objects
of the form fibpxn : X Ñ Xq, we can reduce to the case where the map xn : X Ñ X is
nullhomotopic. Our assumption that C is n-complicial guarantees that we can find a map
g : Z Ñ X which induces an epimorphism on π0, where Z is an n-truncated object of C.
Then g factors as a composition Z Ñ Z 1

g1
ÝÑ X, where Z 1 “ cofibpxn : Z Ñ Zq. Since Z is

n-truncated, the object Z 1 is pn` 1q-truncated. We now apply paq to deduce the existence of
an n-truncated object Y P CNilpIq and a morphism h : Y Ñ Z 1 which induces an epimorphism
on π0. We complete the proof by setting f “ g1 ˝ h.

Proof of Theorem 7.1.4.1. Combine Proposition 7.1.4.4 with Remark C.5.4.11.

Remark 7.1.4.5. In the situation of Theorem 7.1.4.1, it follows from Remark 7.1.3.3 that
the functor ΓI |D`pAq : D`pAq Ñ D`pANilpIqq can be identified with the right derived functor
of the left exact functor of abelian categories Γ♥

I : A Ñ ANilpIq, in the sense of Example
HA.1.3.3.4 .
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Example 7.1.4.6. Let R be a Noetherian commutative ring and let I Ď R be an ideal.
Applying Remark 7.1.4.5 to the abelian category A “ Mod♥

R, we see that the functor
ΓI : ModR Ñ ModNilpIq

R can be identified with the right derived functor of Γ♥
I : Mod♥

R Ñ

Mod♥ NilpIq
R given by Γ♥

I M “ tx PM : Inx “ 0 for n " 0u ĎM . In other words, Definition
7.1.2.1 reproduces Grothendieck’s theory of local cohomology (see, for example, [?]).

7.1.5 Supports of Quasi-Coherent Sheaves

Let R be a connective E8-ring, let I Ď π0R be an ideal, and let M be an R-module.
We now observe that the condition M is I-nilpotent (Definition 7.1.1.6) has a geometric
interpretation: it is equivalent to the requirement that the quasi-coherent sheaf associated
to M is supported on the vanishing locus of I (Proposition 7.1.5.3).

Definition 7.1.5.1. Let X be a spectral Deligne-Mumford stack, let K Ď |X | be a closed
subset, and let j : U Ñ X be the complementary open immersion. We will say that a
quasi-coherent sheaf F P X is supported on K if j˚F is a zero object of QCohpUq. We let
QCohKpXq denote the full subcategory of QCohpXq spanned by those quasi-coherent sheaves
which are supported on K.

Remark 7.1.5.2. Let X be a spectral Deligne-Mumford stack, let K Ď |X | be a closed
subset, and let F P QCohpXq. Then F is supported on K if and only if each of the homotopy
sheaves πi F is supported on K. It follows that the full subcategories

QCohKpXqě0 “ QCohKpXq XQCohpXqě0 QCohKpXqď0 “ QCohKpXq XQCohpXqď0

determine a t-structure on QCohKpXq.

In the case where X is affine, Definition 7.1.5.1 reduces to Definition 7.1.1.6:

Proposition 7.1.5.3. Let X “ SpétA be an affine spectral Deligne-Mumford stack, let
I Ď π0A be an ideal, and let K Ď |X | » |SpecA| be the vanishing locus of I. Then the
equivalence of 8-categories QCohpXq » ModA restricts to an equivalence of 8-categories
QCohKpXq » ModNilpIq

A .

Proof. Let U be the open substack of X complementary to K. Note that U can be written
as a union of open substacks of the form SpétArx´1s, where x P I. Let F P QCohpXq
be a quasi-coherent sheaf with image M P ModA. Then F P QCohKpXq if and only if
Arx´1s bAM » 0 for each x P I: that is, if and only if the action of each x P I is locally
nilpotent on π˚M .

Definition 7.1.5.4. Let X be a spectral Deligne-Mumford stack and let F be a quasi-
coherent sheaf on X. The collection of closed subsets K Ď |X | such that F is supported on
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K is closed under intersections. It follows that there is a smallest closed subset K Ď |X |
such that F P QCohKpXq. We will refer to the set K as the support of F and denote it by
SupppF q.

In general, the support SupppF q of a quasi-coherent sheaf is not a very well-behaved
invariant: for example, it is not stable under base change. However, the situation is better if
we assume that F is perfect.

Proposition 7.1.5.5. Let X be a spectral Deligne-Mumford stack, and let F P QCohpXq be
perfect. Then:

paq The support SupppF q is cocompact. That is, if U denotes the open substack of X
complementary to SupppF q, then the open immersion U ãÑ X is quasi-compact.

pbq For every field κ and every map η : SpétκÑ X, the resulting point of |X | belongs to
SupppF q if and only if η˚F ‰ 0.

Corollary 7.1.5.6. Let X be a spectral Deligne-Mumford stack, and let F ,G P QCohpXq
be perfect. Then SupppF bG q “ SupppF q X SupppG q. In particular, if F P QCohpXq
is perfect and EndpF q » F bF_ P AlgpQCohpXqq classifies endomorphisms of F , then
SupppEndpF qq “ SupppF q.

Corollary 7.1.5.7. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks, and let
F P QCohpYq be perfect. Then Supppf˚F q Ď |X | is the inverse image of SupppF q Ď |Y |
under the induced map |f | : |X | Ñ |Y |.

Proof of Proposition 7.1.5.5. We first claim that there exists a unique closed subset K Ď |X |
with the following property:

pb1q For every field κ and every map η : SpétκÑ X, the resulting point of |X | belongs to
K if and only if η˚F ‰ 0.

Moreover, we claim that K is cocompact.
To prove these assertions, we can work locally on X and thereby reduce to the case where

X “ SpétA for some connective E8-ring A, and that F corresponds to perfect A-module M
under the equivalence QCohpXq » ModA. Replacing A by π0A and M by pπ0Aq bAM , we
may assume that A is discrete. Write A as a union of finitely generated subrings Aα. Using
Lemma HA.7.3.5.13 , we can write M “ A bAα Mα, for some index α and some perfect
Aα-module Mα. We may therefore replace A by Aα, and thereby reduce to the case where
A is a finitely generated discrete commutative ring. In particular, A is Noetherian.

Since M is an almost perfect A-module, each homotopy group πnM is a finitely generated
as a discrete module over A (Proposition HA.7.2.4.17 ). Since A is discrete, every A-module
of finite Tor-amplitude (and therefore every perfect A-module) is m-truncated for m " 0. It
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follows that π˚M is a finitely generated A-module. Let I Ď A be the annihilator of π˚M .
Then I determines a closed subset K Ď |SpecA| » |X | (which is automatically cocompact,
since A is Noetherian). We claim that K satisfies pb1q.

Suppose first that we are given a field κ and a ring homomorphism φ : AÑ κ for which
the induced map |Spétκ| Ñ |X | does not factor through K. Then I contains an element a
such that φpaq ‰ 0. Since a P I, we have M ra´1s » 0. Then κbAM » κbAra´1sM ra

´1s » 0.
Conversely, suppose that φ : A Ñ κ is a ring homomorphism such that φpIq “ 0. We

wish to prove that κ bAM ‰ 0. Let p “ kerpφq. Since φpIq “ 0, the localization pπ˚Mqp
does not vanish. Let n be the smallest integer such that pπnMqp is nonzero. Then the
direct sum

À

măn πmM is a finitely generated A-module whose tensor product with Ap

vanishes. It follows that there exists an element a R p such that πmM ra´1s » 0 for m ă n.
Replacing A by Ara´1s and M by M ra´1s, we may assume that πmM » 0 for m ă n. In this
case, Corollary HA.7.2.1.23 supplies a canonical isomorphism πnpκbAMq » TorA0 pκ, πnMq.
Since pπnMqp is a nonzero and finitely generated over Ap, Nakayama’s lemma implies that
TorA0 pκ, πnMq ‰ 0, so that κbAM ‰ 0. This completes the proof of pb1q.

To complete the proof of Proposition 7.1.5.5, it will suffice to show that K “ SupppF q.
The inclusion K Ď SupppF q follows immediately from pb1q. To prove the reverse inclusion, it
will suffice to show that if U is the open substack of X complementary to K, then F |U » 0.
Replacing X by U, we are reduced to proving that K “ H implies F » 0. The desired
conclusion F » 0 can be tested locally on X, so we may assume as above that X » SpétA
is affine and that F corresponds to a perfect A-module M . Suppose that M is nonzero.
Since M is perfect, there exists a smallest integer n such that πnM ‰ 0. For every prime
ideal p Ď π0A, let κppq denote the residue field of π0A at p. Since SupppMq “ H, Corollary
HA.7.2.1.23 supplies an isomorphism Torπ0A

0 pκppq, πnMq » πnpκppq bAMq » 0 for every
prime ideal p Ď π0A. Since πnM is a finitely generated module over π0A, Nakayama’s
lemma implies that the localization pπnMqp vanishes. Since p is arbitrary, we deduce that
πnM » 0, contrary to our assumption that M ‰ 0.

7.2 Semi-Orthogonal Decompositions

Let X be a topological space, let Y Ď X be a closed subset, and let U “ X ´ Y denote
the complement of Y . Let i : Y ãÑ X and j : U ãÑ X be the corresponding closed and open
immersions. Then the direct image functors

i˚ : ShvSppY q Ñ ShvSppXq j˚ : ShvSppUq Ñ ShvSppXq

are fully faithful. Moreover, for every spectrum-valued sheaf F on X, we have a canonical
fiber sequence i˚i! F Ñ F Ñ j˚j

˚F , where i! denotes the right adjoint to i˚. The following
definition allows us to describe the situation axiomatically:
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Definition 7.2.0.1. Let C be a stable 8-category. We will say that a pair pC`, C´q of full
subcategories C`, C´ Ď C is a semi-orthogonal decomposition of C is the following axioms
are satisfied:

paq The full subcategories C` and C´ are closed under finite limits and colimits (in
particular, they are stable).

pbq For every object C P C` and every object D P C´, the mapping space MapCpC,Dq is
contractible.

pcq Every object C P C, there exists a fiber sequence C` Ñ C Ñ C´, where C` P C` and
C´ P C´.

Remark 7.2.0.2. Let C be a stable 8-category. Unwinding the definitions, we see that a
semi-orthogonal decomposition of C is a t-structure pC`, C´q on C such that C` and C´ are
stable subcategories of C (see Definition HA.1.2.1.1 ). It follows that for each object C P C,
the fiber sequence C` Ñ C Ñ C´ whose existence is asserted by part pcq of Definition
7.2.0.1 is essentially unique, and depends functorially on C: the construction C ÞÑ C` is
right adjoint to the inclusion C` ãÑ C, and the construction C ÞÑ C´ is left adjoint to the
inclusion C´ ãÑ C.

Example 7.2.0.3. Let X be a topological space, let i : Y ãÑ X be a closed immersion, and
let j : U ãÑ X be the complementary open immersion. Then the 8-category ShvSppXq

admits a semiorthogonal decomposition pShvSppXq`,ShvSppXq´q, where ShvSppXq` is the
essential image of the fully faithful embedding i˚ : ShvSppY q Ñ ShvSppXq and ShvSppXq´
is the essential image of the fully faithful embedding j˚ : ShvSppUq Ñ ShvSppXq.

Our goal in this section is to review the theory of semi-orthogonal decompositions and
to describe some examples which arise naturally in algebraic geometry.

7.2.1 Semi-Orthogonal Decompositions of Stable 8-Categories

We begin with a few general categorical remarks.

Definition 7.2.1.1. Let C be an 8-category and let D Ď C be a subcategory. We define
full subcategories KD Ď C Ě DK as follows:

• An object X P C belongs to KD if and only if, for every object Y P D, the mapping
space MapCpX,Y q is contractible.

• An object Y P C belongs to DK if and only if, for every object X P D, the mapping
space MapCpX,Y q is contractible.
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We will refer to KD as the left orthogonal to the full subcategory D Ď C, and to DK as the
right orthogonal to D Ď C.

Example 7.2.1.2. Let C be a stable 8-category equipped with a t-structure pCě0, Cď0q.
Then for every integer n, we have K Cěn “ Cďn´1 and CKďn “ Cěn`1. In particular, if
pC`, C´q is a semi-orthogonal decomposition of C, then C´ “ K C` and C` “ CK´.

Remark 7.2.1.3. Let C be a stable 8-category and let D be a stable subcategory of C.
Then the left and right orthogonals KD and DK are stable subcategories of C, and we have
evident inclusions KpDKq Ě D Ď pKDqK. Moreover, the subcategory DK is closed under all
limits which exist in C, and the subcategory KD is closed under all colimits which exist in C.

Proposition 7.2.1.4. Let C be a stable 8-category and let D Ď C be a stable subcategory
which is closed under equivalence. Then the following conditions are equivalent:

p1q There exists a semi-orthogonal decomposition pC`, C´q of C with C` “ D.

p2q There exists a t-structure pCě0, Cď0q on C with Cě0 “ D.

p3q The inclusion functor ι : D Ñ C admits a right adjoint.

Proof. The implications p1q ñ p2q ñ p3q are clear. Conversely, suppose that p3q is satisfied.
Set C` “ D and C´ “ DK; we claim that pC`, C´q is a semi-orthogonal decomposition of C.
Note that C` is a stable subcategory of C by assumption and that C´ is a stable subcategory
of C by virtue of Remark 7.2.1.3. The definition of C´ guarantees that MapCpC`, C´q is
contractible for all C` P C`, C´ P C´. To complete the proof, it will suffice to show that
for every object C P C, there exists a cofiber sequence C` α

ÝÑ C Ñ C´ where C` P C` and
C´ P C´. Assumption p3q guarantees that we can choose such a fiber sequence for which α

exhibit C` as a D-colocalization of C: that is, such that α induces a homotopy equivalence
MapCpD,C

1q Ñ MapCpD,Cq for each D P D. It follows that fibpαq P DK “ C´, so that
C´ “ Σ fibpαq also belong to C´.

Remark 7.2.1.5. In the situation of Proposition 7.2.1.4, the t-structure pCě0, Cď0q is
uniquely determined by the requirement Cě0 “ D (and is therefore automatically a semi-
orthogonal decomposition).

Remark 7.2.1.6. Let C be a stable 8-category equipped with a t-structure pCě0, Cď0q.
Using Proposition 7.2.1.4, we see that the following conditions are equivalent:

piq The t-structure pCě0, Cď0q is a semi-orthogonal decomposition of C.

piiq The full subcategory Cě0 Ď C is closed under desuspension.

piiiq The full subcategory Cď0 Ď C is closed under suspension.
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Not that conditions piiq and piiiq are both equivalent to the requirement that the heart
C♥ “ Cě0X Cď0 contains only zero objects of C.

Replacing C by its opposite8-category, we obtain the following dual version of Proposition
7.2.1.4:

Corollary 7.2.1.7. Let C be a stable 8-category, let D Ď C be a stable subcategory which is
closed under equivalence. Then the following conditions are equivalent:

p1q There exists a semi-orthogonal decomposition pC`, C´q of C with C´ “ D.

p2q There exists a t-structure pCě0, Cď0q on C with Cď0 “ D.

p3q The inclusion functor ι : D Ñ C admits a left adjoint.

Corollary 7.2.1.8. Let C be a stable 8-category, let D be a stable subcategory of C, and let
ι : D Ñ C be the inclusion functor. If ι admits a right adjoint, then the inclusion D Ď KpDKq
is an equivalence of 8-categories. If ι admits a left adjoint, then the inclusion D Ď pKDqK

is an equivalence of 8-categories.

Proof. Without loss of generality, we may assume that D coincides with the essential image
of ι. By symmetry, it will suffice to prove the first assertion. Using Proposition 7.2.1.4, we see
that there exists a semi-orthogonal decomposition pC`, C´q of C with C` “ D, so that C´ “
DK. It follows that the inclusion DK ãÑ C admits a left adjoint. Applying Corollary 7.2.1.7,
we deduce that there exists a semi-orthogonal decompositions pC1`, C1´q of C with C1´ “ DK,
so that C1` “ KpDKq. Since C1´ “ C´, we conclude that D “ C` “ C1` “ KpDKq.

Example 7.2.1.9. Let C be a presentable stable 8-category, let D Ď C be a stable
subcategory which is also presentable, and let ι : D ãÑ C denote the inclusion map. Then:

paq If D is closed under small colimits in C, then Corollary HTT.5.5.2.9 implies that ι
admits a left adjoint, so that pD,DKq is a semi-orthogonal decomposition of C and
D “ KpDKq.

pbq Suppose there exists a regular cardinal κ such that D is closed under small limits and
under κ-filtered colimits in C. Then Corollary HTT.5.5.2.9 implies that ι admits a right
adjoint, so that pKD,Dq is a semi-orthogonal decomposition of C and D “ pKDqK.

Proposition 7.2.1.10. Let C be a stable 8-category, let D Ď C be a stable subcategory,
and suppose that the inclusion map ι : D Ñ C admits both a left and a right adjoint. Let
F : C Ñ DK be a left adjoint to the inclusion (which exhibits by virtue of Proposition 7.2.1.4).
Then F induces an equivalence of 8-categories KD Ñ DK.
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Proof. Let F0 : KD Ñ DK be the restriction of F . Corollary 7.2.1.7 implies that the
inclusion KD ãÑ C admits a right adjoint G. Let G0 denote the restriction of G to DK.
Then G0 is given by the composition DK ãÑ C G

Ñ KD, and is therefore right adjoint to F0.
We claim that G0 is homotopy inverse to F0. To prove this, we will show that the unit
map u : id Ñ G0 ˝ F0 is an equivalence of functors from KD to itself; the proof that the
counit map v : F0 ˝G0 Ñ id is an equivalence follows by the same argument. Fix an object
C P KD; we wish to show that the canonical map α : C Ñ GpF pCqq is an equivalence.
Unwinding the definitions, we see that α is obtained by composing a homotopy inverse to
the equivalence GpCq Ñ C with the canonical map α1 : GpCq Ñ GpF pCqq. We are therefore
reduced to proving that α1 is an equivalence. By construction, we have a fiber sequence
D Ñ C Ñ F pCq, where D P D. Since G is an exact functor, we are reduced to proving that
GpDq » 0, which follows immediately from the definitions.

7.2.2 Example: Quasi-Coherent Sheaves on the Projective Line

Our next result describes an elementary example of a semi-orthogonal decomposition in
algebraic geometry:

Theorem 7.2.2.1. Let R be a connective E8-ring and let q : P1
R Ñ SpétR be the projection

map. Then:

p1q For every integer n, the construction F ÞÑ Opnq b q˚F induces a fully faithful
embedding QCohpSpétRq Ñ QCohpP1

Rq, whose essential image we will denote by
Epnq.

p2q For every integer n, the pair pEpnq, Epn´ 1qq is a semi-orthogonal decomposition of
the 8-category QCohpP1

Rq.

The proof of Theorem 7.2.2.1 will require a brief digression. Fix a connective E8-ring R,
and consider the projective space Pn

R of dimension n over R. Construction 5.4.2.5 provides
canonical maps x0, x1, . . . , xn : Op0q Ñ Op1q in QCohpPn

Rq. Taking the tensor product of
these maps, we obtain a cubical diagram

P prnsq Ñ QCohpPn
Rq J ÞÑ

â

jPJ

Op1q » Op|J |q,

where P prnsq denotes the collection of all subsets of rns.

Lemma 7.2.2.2. For every connective E8-ring R and every n ě 0, the functor P prnsq Ñ
QCohpPn

Rq described above is a colimit diagram: that is, it classifies an equivalence ρ :
lim
ÝÑJĹrns

Op|J |q Ñ Opn` 1q in the 8-category QCohpPn
Rq.
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Proof. It will suffice to show that ρ is an equivalence after pulling back along each of the
open immersions φI : SpétRrMIs Ñ Pn

R appearing in Proposition 5.4.1.7. This is clear,
since the map φ˚I Op0q xi

ÝÑ φ˚I Op1q is an equivalence for any i P I.

Specializing Lemma 7.2.2.2 to the case n “ 1, we deduce the existence of a pushout
diagram

Op0q //

��

Op1q

��
Op1q // Op2q

in the 8-category QCohpP1
Rq. Tensoring with Opmq, we obtain the following:

Lemma 7.2.2.3. For every integer m, there exists a fiber sequence Opmq Ñ Opm` 1q ‘
Opm` 1q Ñ Opm` 2q in the 8-category QCohpP1

Rq.

Proof of Theorem 7.2.2.1. To prove p1q, we may assume without loss of generality that n “ 0
(since the construction G ÞÑ Opnq b G induces an equivalence from QCohpP1

Rq to itself).
In this case, we wish to show that the pullback functor q˚ : QCohpSpétRq Ñ QCohpP1

Rq

is fully faithful: that is, that the unit map uF : F Ñ q˚q
˚F is an equivalence for each

F P QCohpSpétRq. Note that the collection of those objects F P QCohpSpétRq » ModR
for which uF is an equivalence is closed under colimits and desuspensions. It will therefore
suffice to show that uF is an equivalence when F is the structure sheaf of SpétR, which
follows from Theorem 5.4.2.6.

We now prove p2q. Once again, it will suffice to treat the case n “ 0. We will show
that the pair of subcategories pEp0q, Ep´1qq satisfies conditions paq, pbq and pcq of Definition
7.2.0.1:

paq Since the functors F ÞÑ q˚F and F ÞÑ Op´1q b q˚F are fully faithful and exact,
their essential images Ep0q and Ep´1q are stable subcategories of QCohpP1

Rq.

pbq Let F and G be objects of QCohpSpétRq; we wish to prove that the mapping space

MapQCohpP1
Rq
pq˚F ,Op´1q b q˚ G q » MapQCohpSpétRqpF , q˚pOp´1q b q˚ G qq

» MapQCohpSpétRqpF , pq˚Op´1qq b G q

is contractible. This follows from the vanishing of q˚Op´1q (Theorem 5.4.2.6).

pcq Let F be an object of QCohpP1
Rq, and form a cofiber sequence q˚q˚F Ñ F Ñ G .

We claim that G belongs to Ep´1q: that is, that the counit map v : q˚q˚pOp1q b G q Ñ

Op1qbG is an equivalence. Note that the domain of v belongs to Ep0q and therefore to
K Ep1q (by virtue of pbq), and that the codomain of v belongs to K Ep1q since G P K Ep0q
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by construction. It follows that cofibpvq P K Ep1q, and we also have cofibpvq P K Ep0q.
In particular, we have

Ext˚QCohpP1
Rq
pOp0q, cofibpvqq » 0 » Ext˚QCohpP1

Rq
pOp1q, cofibpvqq.

It follows from Lemma 7.2.2.3 the groups Ext˚QCohpP1
Rq
pOpnq, cofibpvqq vanish for every

integer n. It follows from Lemma 5.6.2.2 that there exists a morphism α : H Ñ cofibpvq
which induces an epimorphism π˚H Ñ π˚ cofibpvq, where H can be written as a direct
sum of sheaves of the form Σm Opnq. Then the map α is automatically nullhomotopic,
so π˚ cofibpvq » 0 and therefore v is an equivalence as desired.

Remark 7.2.2.4. In the situation of Theorem 7.2.2.1, each of the full subcategories Epnq Ď
QCohpP1

Rq is canonically equivalent to QCohpSpétRq » ModR. Moreover, we have K Epnq “
Epn` 1q and EpnqK “ Epn´ 1q.

7.2.3 Example: Closed and Open Subspaces

We now consider an algebro-geometric version of Example 7.2.0.3.

Proposition 7.2.3.1. Let j : U Ñ X be a quasi-compact open immersion of spectral
Deligne-Mumford stacks, and let K Ď |X | denote the complement of the image of j. Then:

p1q The pushforward functor j˚ : QCohpUq Ñ QCohpXq is fully faithful. Let us denote its
essential image by E Ď QCohpXq.

p2q The left orthogonal KE coincides with QCohKpXq.

p3q The pair pQCohKpXq, Eq is a semi-orthogonal decomposition of QCohpXq.

p4q The inclusion ι : QCohKpXq ãÑ QCohpXq admits a left adjoint.

p5q The 8-category E coincides with the right orthogonal QCohKpXqK.

Proof. Since the morphism j is quasi-affine, it is is relatively scalloped (Example 2.5.3.3).
Applying Proposition 2.5.4.5 to the pullback diagram

U //

��

U
j
��

U j // X,



7.2. SEMI-ORTHOGONAL DECOMPOSITIONS 581

we deduce that the counit map j˚j˚ Ñ idQCohpUq is an equivalence, so that j˚ is fully faithful.
This proves p1q. To prove p2q, we note that a quasi-coherent sheaf F P QCohpXq belongs to
KE if and only if the mapping space

MapQCohpXqpF , j˚ G q » MapQCohpUqpj
˚F ,G q

is contractible for every object G P QCohpUq, which is equivalent to the vanishing of j˚F .
Assertion p3q now follows from Corollary 7.2.1.7, and p4q and p5q are formal consequences of
p3q (see Corollary 7.2.1.8).

7.2.4 Example: Nilpotent and Local Objects

In the special case where X “ SpétR is affine, then the full subcategory QCohKpXq Ď
QCohpXq appearing in Proposition 7.2.3.1 can be identified with the subcategory ModNilpIq

R Ď

ModR, where I Ď π0R is an ideal defining the closed subset K Ď |SpecR| (Proposition
7.1.5.3). We now consider a more general situation:

Definition 7.2.4.1. Let R be an E2-ring, let I Ď π0R be an ideal, and let C be a stable
R-linear 8-category. We will say that an object C P C is I-local if, for every I-nilpotent
object D P C, the mapping space MapCpD,Cq is contractible. We let CLocpIq denote the full
subcategory of C spanned by the I-local objects.

Remark 7.2.4.2. In the situation of Definition 7.2.4.1, the 8-category CLocpIq is the right
orthogonal of the full subcategory CNilpIq Ď C of Definition 7.1.1.6. In particular, CLocpIq is a
stable subcategory of C which is closed under small limits (Remark 7.2.1.3).

Example 7.2.4.3. Let R be a connective E8-ring, let I Ď π0R be a finitely generated ideal,
and let U be the open substack of SpétA complementary to the vanishing locus of I. Using
Proposition 7.2.3.1, we deduce that the global sections functor Γ : QCohpUq Ñ ModA is a
fully faithful embedding, whose essential image is the full subcategory ModLocpIq

A Ď ModA.

Combining Proposition 7.1.1.12 with Example 7.2.1.9, we obtain the following:

Proposition 7.2.4.4. Let R be an E2-ring and let C be a stable R-linear 8-category. For
every ideal I Ď π0R, the pair pCNilpIq, CLocpIqq is a semi-orthogonal decomposition of C.

Example 7.2.4.5. Let R be an E2-ring, let C be a stable R-linear 8-category, and let
I, J Ď π0R be ideals satisfying I`J “ π0R. Then Remark 7.1.2.4 shows that pCNilpIqqNilpJq “

CNilpI`Jq contains only zero objects of C. It follows that pCNilpIqqLocpJq “ CNilpIq. In other
words, every I-nilpotent object of C is J-local.

Notation 7.2.4.6. In the situation of Proposition 7.2.4.4, the inclusion functor CLocpIq Ñ C
admits a left adjoint, which we will denote by LI : C Ñ CLocpIq. If we regard LI as a
functor from C to itself, then it fits into a canonical fiber sequence ΓI Ñ idC Ñ LI , where
ΓI : C Ñ CNilpIq Ď C is as in Definition 7.1.2.1.
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Remark 7.2.4.7. Let φ : RÑ R1 be a morphism of E2-rings, let I Ď π0R be an ideal, and
let I 1 Ď π0R

1 be the ideal generated by the image of I. Suppose that C is a stable R1-linear
8-category, which we can also regard as a stable R-linear 8-category (by restriction of
scalars). Then CNilpIq “ CNilpI 1q (Remark 7.1.1.10), so CLocpIq “ CLocpI 1q. In particular, the
notion of I-local object does not change if we replace an E2-ring R by its connective cover
τě0R.

Remark 7.2.4.8. Let R be a commutative ring, let I Ď R be a finitely generated ideal, and
let A be a locally Noetherian abelian category equipped with an action of R. It follows from
Remark 7.1.3.3 that the functor ΓI : DpAq Ñ DpAqNilpIq Ď DpAq carries injective objects A
to injective objects of ANilpIq. Consequently, if Q P A is injective, then the canonical map
Γ♥
I Q “ π0ΓIQÑ ΓIQ is an equivalence, where Γ♥

I : AÑ ANilpIq denotes a right adjoint to
the inclusion (so that we can identify Γ♥

I X with the largest I-nilpotent subobject of X, for
any object X P Aq. It follows that the functor LI also carries injective objects of A to the
heart DpAq: that is, LI : DpAq Ñ DpAq is derived from the left exact functor of abelian
categories X ÞÑ π0LIpXq.

We will be interested primarily in the case where the ideal I is finitely generated.

Proposition 7.2.4.9. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and
let C be a stable R-linear 8-category. Then:

p1q The functor LI of Notation 7.2.4.6 preserves small colimits, when viewed as a functor
from C to itself.

p2q The full subcategory CLocpIq Ď C is closed under small colimits.

p3q For every left R-module M and every I-local object C P C, the tensor product M bR C

is I-local. Consequently, CLocpIq inherits the structure of a stable R-linear 8-category
(for which the inclusion CLocpIq ãÑ C is R-linear).

p4q Let F : C Ñ D be an R-linear functor between stable R-linear 8-categories. Then F

carries I-local objects of C to I-local objects of D.

Remark 7.2.4.10. In the situation of Proposition 7.2.4.9, we can regard CLocpIq as an
R-linear 8-category even if the ideal I is not finitely generated. However, in general it is not
true that the inclusion CLocpIq ãÑ C is an R-linear functor (since it need not commute with
filtered colimits). However, we can always regard LI : C Ñ CLocpIq as an R-linear functor.

Proof of Proposition 7.2.4.9. Assertion p1q follows from Corollary 7.1.2.5 and the fiber
sequence ΓI Ñ idC Ñ LI of Notation 7.2.4.6. Assertion p2q follows immediately from p1q,
and assertion p3q follows from p2q: if C P C is I-local, then the collection of those left
R-modules M such that M bR C is I-local contains R and is closed under colimits and
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desuspensions, and therefore contains all left R-modules. To prove p4q, we note that an
object C P C is I-local if and only if ΓIC » 0. In this case, Corollary 7.1.2.10 implies that
ΓIF pCq » F pΓICq » 0, so that F pCq is an I-local object of D.

Remark 7.2.4.11. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and let C
be a stable R-linear 8-category. Proposition 7.2.4.9 implies that the inclusion CLocpIq ãÑ C
commutes with filtered colimits. Applying Proposition HTT.5.5.7.2 , we deduce that the
functor LI : C Ñ CLocpIq carries compact objects of C to compact objects of CLocpIq. In
particular, if C is compactly generated, then CLocpIq is also compactly generated.

Corollary 7.2.4.12. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and let
M and N be left R-modules. If either M or N is I-local, then the tensor product M bR N

is I-local.

Proof. The case where N is I-nilpotent follows from Proposition 7.2.4.9, and the other case
follows by symmetry.

7.2.5 Spectral Decompositions of Injective Objects

Let R be a connective E8-ring and let C be an additive R-linear 8-category. We can
think of the action of R on C as providing a kind of spectral decomposition for the 8-category
C, breaking C into pieces parametrized by the topological space | SpecR|. We now make this
heuristic a bit more precise.

Definition 7.2.5.1. Let R be a connective E2-ring, let C be a prestable R-linear 8-category,
and let C be an object of C. We will say that C is centered if, for every element x P π0R,
one of the following conditions holds:

piq The object C is pxq-nilpotent: that is, the localization Crx´1s vanishes.

piiq The object C is pxq-local: that is, the canonical map C Ñ Crx´1s is an equivalence.

Warning 7.2.5.2. In the situation of Definition 7.2.5.1, the condition that an object C P C
be centered depends on the chosen action of R on C.

Remark 7.2.5.3. In the situation of Definition 7.2.5.1, the zero object 0 P C is always
centered: it satisfies both conditions piq and piiq, for any element x P π0R. This is a somewhat
degenerate situation: note that a nonzero object C P C cannot satisfy simultaneously satisfy
conditions piq and piiq.

Example 7.2.5.4. In the situation of Definition 7.2.5.1, suppose that R is a field. Then
every object C P C is centered: it is pxq-nilpotent for x “ 0 and pxq-local for x ‰ 0.
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Remark 7.2.5.5. Let R be a connective E2-ring, let C be a prestable R-linear 8-category
and let C be a nonzero object of C. Set p “ tx P π0R : Crx´1s » 0u. It follows from
Proposition 7.1.1.5 that p is an ideal of π0R. If C is centered, then the complement of p is
the set tx P π0R : C » Crx´1su, which is closed under multiplication. It follows that p is a
prime ideal of π0R.

Motivated by Remark 7.2.5.5, we introduce the following slight refinement of Definition
7.2.5.1:

Definition 7.2.5.6. Let R be a connective E2-ring, let C be a prestable R-linear 8-category.
Suppose we are given an object C P C and a prime ideal p Ď π0R. We will say that C is
centered at p if C is pxq-nilpotent for x P p and pxq-local for x R p. We let Crps denote the
full subcategory of C spanned by those objects of C which are centered at p.

Remark 7.2.5.7. In the situation of Definition 7.2.5.6, suppose that C P C is nonzero.
Then C is centered (in the sense of Definition 7.2.5.1) if and only if it is centered at p, for
some p P |SpecR| (in the sense of Definition 7.2.5.6). Moreover, the prime ideal p is uniquely
determined (Remark 7.2.5.5).

The zero object 0 P C is centered at every point p P |SpecR|.

Remark 7.2.5.8. Let R be a connective E2-ring, let C be a prestable R-linear 8-category,
and let p P | SpecR|. Then the full subcategory Crps Ď C is closed under small colimits,
finite limits, and extensions. Moreover, it follows from Proposition HTT.5.4.7.10 that Crps
is accessible. It follows that Crps is also an R-linear Grothendieck prestable 8-category.

Example 7.2.5.9. Let R “ Crxs and let V be a discrete R-module, which we identify with
a complex vector space equipped with a C-linear endomorphism x : V Ñ V . Let p be a
closed point of | SpecR| corresponding to the prime ideal px´ λq, for some complex number
λ. Then V is centered at p if and only if multiplication by px´ λq is locally nilpotent on V :
in other words, if and only if every element v P V is a generalized eigenvector for x with
eigenvalue λ.

If V is a finite-dimensional vector space over C, then V admits an (essentially unique)
decomposition V »

À

Vα into submodules which are centered at closed points of | SpecR|.
However, such a decomposition need not exist if V is not finite dimensional (for example,
the module V “ R does not contain any nonzero submodules which are centered).

Remark 7.2.5.10. In the situation of Definition 7.2.5.6, suppose that we are given object
C P Crps and D P Crqs. If p Ĺ q, then we can choose an element x P p ´ q for which
C is pxq-nilpotent and D is pxq-local. It follows that the mapping space MapCpC,Dq is
contractible.
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Proposition 7.2.5.11. Let R be a connective E2-ring, let C be a prestable R-linear 8-
category, and let Q be an indecomposable injective object of SppCq. If C is locally Noetherian,
then Q is centered.

Proof. Fix an object x P π0R, let I Ď π0R denote the principal ideal generated by pxq,
and set Q1 “ ΓIpQq. Since the inclusion SppCNilpIqq ãÑ SppCq is t-exact, Q1 is an injective
object of SppCNilpIqq. Applying Proposition 7.1.3.4, we conclude that Q1 is an injective object
of SppCq. Since Qrx´1s P SppCqď0, we have Ext1

SppCqpQrx
´1s, Q1q » 0. It follows that the

fiber sequence Q1 Ñ QÑ Qrx´1s splits: that is, Q1 is a direct summand of Q. Since Q is
indecomposable, it follows that either Q1 » Q (in which case Q is pxq-nilpotent) or Q1 » 0
(in which case Q is pxq-local).

Corollary 7.2.5.12. Let R be a connective E2-ring, let C be a prestable R-linear 8-category,
and let Q be an injective object of SppCq. If C is locally Noetherian, then there exists a
decomposition

Q »
à

pP|SpecR|
Qppq,

where each Qppq is an injective object of SppCq which is centered at p.

Proof. Combine Propositions 7.2.5.11 and C.6.10.6.

Corollary 7.2.5.13. Let R be a connective E2-ring, let C be a prestable R-linear 8-category,
and let Q be an injective object of SppCq. Let I Ď π0R be a finitely generated ideal. If C is
locally Noetherian, then the fiber sequence ΓIpQq Ñ Q Ñ LIQ splits. In particular, both
ΓIpQq and LIQ are injective objects of SppCq.

Proof. Using Corollary 7.2.5.12, we can assume that Q is centered at some point p P |SpecR|.
In this case, we either have ΓIpQq » 0 (if I Ĺ p) or LIQ » 0 (if I Ď p).

Corollary 7.2.5.14. Let R be a connective E2-ring, let C be a prestable R-linear 8-category,
and let f : X Ñ Q be a morphism in SppCq which exhibits Q as an injective hull of X (see
Example C.5.7.9). If X is centered at a point p P |SpecR|, then Q is also centered at p.

Proof. Fix an element x P π0R and let I “ pxq be the principal ideal generated by x. If
x P p, then X is pxq-nilpotent, so the map f factors as a composition X Ñ ΓIQ

f 1
ÝÑ Q. It

follows from Corollary 7.2.5.13 that the map f 1 exhibits ΓIQ as a direct summand of Q.
Since π0Q is an essential extension of π0X, the map f 1 must be an equivalence, so that Q is
also pxq-nilpotent.

If x R p, then X is I-local. In this case, π0pΓIQq is a subobject of π0Q whose intersection
with π0X vanishes. Since π0Q is an essential extension of π0X, it follows that π0pΓIQq » 0.
Using Theorem C.5.7.4, we conclude that ΓIQ » 0, so that Q is I-local.
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Example 7.2.5.15. Let R be a Noetherian E8-ring. For every prime ideal p Ď π0R, let
Qp P ModR be an injective hull of the residue field κppq. According to Example C.6.10.7,
every indecomposable injective R-module Q has the form Qp, for some p Ď π0R. It follows
from Corollary 7.2.5.14 that Qp is centered at p.

Consequently, in the case C “ Modcn
R we obtain a stronger version of Proposition 7.2.5.11:

for every point p P | SpecR| there is a unique indecomposable injective object of SppCq (up
to equivalence) which is centered at p.

Lemma 7.2.5.16. Let R be a connective E2-ring, let I Ď π0R be an ideal, let C be a
prestable R-linear 8-category, and let C P C be an I-nilpotent object. Suppose we are given
elements x, y P π0R such that x ” yMod I. Then C is pxq-local if and only if it is pyq-local.

Proof. Consider the commutative diagram

C
α //

β
��

Crx´1s

β1

��
Cry´1s

α1 // Crpxyq´1s.

We wish to show that α is an equivalence if and only if β is an equivalence. To prove
this, it will suffice to show that α1 and β1 are equivalences. We will show that α1 is an
equivalence (the proof that β1 is an equivalence is similar). For this, we note that Cry´1s

is an Iry´1s-nilpotent object of LModRry´1spCq, so that multiplication by x is invertible on
Cry´1s by virtue of Example 7.2.4.5.

Proposition 7.2.5.17. Let φ : R Ñ R1 be an étale morphism of connective E2-rings let
p1 Ď π0R

1 be a prime ideal, and let p “ φ´1p1 Ď π0R. Let C be a prestable R-linear 8-
category and set C1 “ R1 bR C. If φ induces an isomorphism of residue fields κppq Ñ κpp1q,
then restriction of scalars induces an equivalence of 8-categories C1rp1s Ñ Crps.

Proof. Replacing R1 by a localization R1rb´1s for suitably chosen b R p1, we can arrange
that p1 is the only prime ideal of R1 lying over p. In this case, the canonical map κppq Ñ

pπ0R
1q bπ0R κppq is an isomorphism. Using a direct limit argument, we deduce that there

exists a finitely generated ideal I Ď p and an element a P pπ0Rq ´ p for which the induced
map ξ : pπ0Rq{Ira

´1s Ñ pπ0R
1q{Ira´1s is also an isomorphism. Replacing R by Rra´1s (and

R1 by R1ra´1s), we can reduce to the case where we have an excision square of spectral
Deligne-Mumford stacks

U1 //

��

SpétR1

��
U // SpétR,
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so that restriction of scalars induces an equivalence of 8-categories ρ : C1NilpIq Ñ CNilpIq. To
complete the proof, it will suffice to show that if C is an I-nilpotent object of C1 and ρpCq

is centered at p, then C is centered at p1. Note that since p1 is generated by the image of
p, our assumption that ρpCq is p-nilpotent guarantees that C is p1-nilpotent. To complete
the proof, it will suffice to show that C is pxq-local for each x P pπ0R

1q ´ p1. Since ξ is an
isomorphism, we can find an element y P π0R such that x ” φpyqMod p1. In this case, our
assumption that ρpCq is centered at p guarantees that the object ρpCq P C is pyq-local, or
equivalently that C P C1 is pφpyqq-local. Applying Lemma 7.2.5.16, we deduce that C is also
pxq-local, as desired.

Remark 7.2.5.18. In the situation of Proposition 7.2.5.17, suppose that Q P SppCq is an
injective object centered at p. Let θ : SppC1q Ñ SppCq be the restriction of scalars functor,
so that we can write Q “ θpQ1q for some object Q1 P SppC1q centered at p1. We claim that
Q1 is an injective object of SppC1q. To prove this, choose a morphism f : Q1 Ñ Q2 in SppC1q
which exhibits Q2 as an injective hull of Q1. Then Q2 is also centered at p (Corollary ??).
It follows from Proposition ?? that the induced map θpfq : Q » θpQ1q Ñ θpQ2q exhibits
π0θpQ

1q as an essential extension of π0θpQ
2q. Moreover, the object θpQ2q P SppCq is injective

(since the functor θ is right adjoint to the t-exact functor X ÞÑ R1 bR X). It follows that
θpfq exhibits θpQ2q as an injective hull of Q in the 8-category SppCq. Since Q is injective,
the map θpfq must be an equivalence (see Example C.5.7.9). Applying Proposition 7.2.5.17,
we deduce that f is an equivalence, so that Q1 P SppC1q is injective as desired.

Corollary 7.2.5.19. Let φ : AÑ B be an étale morphism of connective E8-rings, let C be
a prestable A-linear 8-category, and let Q be an injective object of SppCq. If C is locally
Noetherian, then B bA Q is an injective object of SppB bA Cq » LModBpSppCqq.

Proof. Suppose first that φ : AÑ B is a finite étale morphism. In this case, there exists a
B-linear equivalence B » B_, where B_ denotes the A-linear dual of B. It follows that the
extension of scalars functor F : SppCq Ñ LModBpSppCqq is right adjoint to the restriction of
scalars functor G : LModBpSppCqq Ñ SppCq. Since G is t-exact, it follows that functor F
carries injective objects to injective objects.

We now treat the general case. Using Corollaries 7.2.5.12 and C.6.10.3, we can reduce
to the case where Q is centered at some point p P |SpecA|. Using Corollary B.3.4.5,
we can choose an étale morphism A Ñ A1 and a prime ideal p1 P |SpecA1| lying over
p such that κppq » κpp1q and the tensor product B1 “ A1 bA B factors as a Cartesian
product B10 ˆB11, where B10 is finite étale over A1 and B11 bA1 κpp

1q » 0. Using Proposition
7.2.5.17, we can lift Q to an object Q1 P SppA1 bA Cq which is centered at p1. Moreover,
the object Q1 is injective (Remark 7.2.5.18). Then B bA Q is the image of B1 bA1 Q1 under
the restriction of scalars functor θ : LModB1pSppCqq Ñ LModBpSppCqq. Since B1 is flat
over B, the extension of scalars functor LModBpSppCqq Ñ LModB1pSppCqq is t-exact, so
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the functor θ carries injective objects to injective objects. We will complete the proof
by showing that B1 bA1 Q1 P LModB1pSppCqq is injective. Equivalently, we will show that
B10 bA1 Q

1 is an injective object of LModB10pSppCqq and that B11 bA1 Q1 is an injective object
of LModB11pSppCqq. In the former case, this follows from the first part of the proof (since B10
is finite étale over A1); in the latter, it follows from our assumption that Q1 is centered at p1

(so that B11 bA1 Q1 » 0).

We close by proving a converse to Corollary 7.2.5.19, which implies that injectivity can
be tested locally with respect to the étale topology:

Proposition 7.2.5.20. Let φ : A Ñ B be a faithfully flat étale morphism of connective
E8-rings, let C be a prestable A-linear 8-category, and let Q be an object of SppCq. If C is
locally Noetherian and B bA Q is an injective object of SppB bA Cq » LModBpSppCqq, then
Q is an injective object of SppCq.

Proof. Using Propositions B.1.1.3 and 4.6.1.2, we can reduce to the case where A and B

are Noetherian. Let I Ď π0A be an ideal which is maximal with respect to the property
that LIQ P SppCq is injective. Since the collection of injective objects of SppCq is closed
under extensions, to show that Q P SppCq is injective, it will suffice to show that ΓIQ is
injective. We may therefore replace Q by ΓIQ (note that this does not injure our hypothesis
that B bA Q P LModBpSppCqq is injective, by virtue of Corollary 7.2.5.13) and thereby
reduce to the case where Q is I-nilpotent. If I “ π0A, then Q » 0 and there is nothing to
prove. Otherwise, choose p Ď π0A which is minimal among prime ideals containing I. Using
Corollary B.3.4.5, we can choose an étale morphism AÑ A1 and a prime ideal p1 P |SpecA1|
lying over p such that κppq » κpp1q and the tensor product B1 “ A1 bA B factors as a
Cartesian product B10ˆB11, where B10 is finite étale over A1 and B11bA1 κpp1q » 0. Replacing
A1 by a localization if necessary, we may assume that B10 is faithfully flat over A1 and that
the map of affine schemes j : Specpπ0A

1q{Ipπ0A
1q Ñ Specπ0A{Ipπ0Aq is an open immersion.

Combining our assumption that B bA Q is an injective object of LModBpSppCqq with
Corollary 7.2.5.19, we deduce that B10 bA Q is an injective object of LModB10pSppCqq. Since
the forgetful functor LModB10pSppCqq Ñ LModA1pSppCqq admits a t-exact left adjoint, it
follows that B10 bA Q is an injective object of LModA1pSppCqq. Since B10 is faithfully flat
and finite étale over A1, the unit map A1 Ñ B10 admits a left homotopy inverse in the
8-category ModA1 . It follows that A1 bA Q is a retract of B1 bA Q in the 8-category
LModA1pSppCqq, so that A1bAQ is also an injective object of LModA1pSppCqq. The forgetful
functor LModA1pSppCqq Ñ SppCq admits a t-exact left adjoint, and therefore carries injective
objects to injective objects. It follows that A1 bA Q is an injective object of SppCq. Since
Q is I-nilpotent and the map j is an open immersion, we can identify A1 bA Q with the
localization LI 1Q, where I 1 Ě I is an ideal in π0A whose vanishing locus is complementary
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to the image of j. The injectivity of LI 1Q now contradicts our maximality assumption on
I.

7.3 Completions of Modules

Let R be a commutative ring, let I Ď R be an ideal, and let M be a (discrete) R-module.
We let CplpM ; Iq denote the inverse limit of the tower

¨ ¨ ¨ ÑM{I4M ÑM{I3M ÑM{I2M ÑM{IM,

formed in the abelian category Mod♥
R of discrete R-modules. We will refer to CplpM ; Iq as

the I-adic completion of M . We say that M is I-adically complete if the canonical map
M Ñ CplpM ; Iq is an isomorphism.

If the ring R is Noetherian and we restrict our attention to finitely generated R-modules,
then the I-adic completion M ÞÑ CplpM ; Iq has excellent formal properties: for example, it
is an exact functor of M . If we are given a short exact sequence of R-modules 0 ÑM 1 Ñ

M ÑM2 Ñ 0, then we obtain a short exact sequence

0 Ñ K Ñ CplpM ; Iq Ñ CplpM2; Iq Ñ 0,

where K denotes the completion of M 1 with respect to topology given by the descending
sequence of submodules tM 1XInMuně0. If R is Noetherian and M is finitely generated, then
the Artin-Rees lemma allows us to identify K with the I-adic completion of M 1. However,
this fails in general: even when R “ Z and I “ ppq for some prime number p, the theory of
I-adic completions can exhibit some bad behavior:

Example 7.3.0.1. The p-adic completion functor on abelian groups is not left exact. For
example, let M “ Qp {Zp, and let M 1 be the submodule of M generated by 1

p P Qp (so that
M 1 is a cyclic group of order p). Then the p-adic completion of M vanishes (since pM “M),
but the p-adic completion of M 1 is isomorphic to M 1. Consequently, the inclusion M 1 ãÑM

does not induce an injection of p-adic completions.

Example 7.3.0.2. The p-adic completion functor on abelian groups is not right exact. To
see this, consider the exact sequence

0 Ñ
à

ně0
pn Z β

ÝÑ
à

ně0
Z α
ÝÑ

à

ně0
Z {pn Z Ñ 0.

Then:

• The p-adic completion of
À

ně0 Z can be identified with the submodule N Ď
ś

ně0 Zp
consisting of those sequences tλn P Zpuně0 which converge p-adically to zero.
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• The p-adic completion of
À

ně0 p
n Z can be identified with the submodule N 1 Ď

ś

ně0 Zp consisting of those sequences tλn P Zpuně0 for which each λn is divisible by
pn and the sequence p´nλn converges p-adically to zero.

• The p-adic completion of
À

ně0 Z {pn Z can be identified with the image N2 of N in
the product

ś

ně0 Z {pn Z.

• The p-adic completion of α is surjection whose kernel is given by the product
ś

ně0 p
n Zp Ď N .

Consequently, the sequence of I-adic completions 0 Ñ N 1
pβ
ÝÑ N

pα
ÝÑ N2 Ñ 0 is not exact in

the middle: that is, we have imppβq Ĺ kerppαq.

Example 7.3.0.3. The collection of p-adically complete abelian groups is not closed under
the formation of cokernels. For example, if pβ : N 1 ãÑ N is as in Example 7.3.0.3, then the
cokernel of pβ is not p-adically complete (the p-adic completion of cokerppβq can be identified
with N2).

Example 7.3.0.4. The collection of p-adically complete abelian groups is not closed under
extensions. For example, in the situation of Example 7.3.0.1, we have a short exact sequence
of abelian groups

0 Ñ kerppαq{ imppβq Ñ cokerppβq Ñ N2 Ñ 0

where the outer terms are p-adically complete, but the middle term is not.

When working with modules which are not finitely generated or rings which are not
Noetherian, it is often convenient to consider a different notion of completion.

Definition 7.3.0.5. Let R be a commutative ring, let M be a (discrete) R-module, and let
I Ď R be a finitely generated ideal. We will say that M is I-complete if, for every x P I, we
have Ext0

RpRrx
´1s,Mq » 0 » Ext1

RpRrx
´1s,Mq.

Remark 7.3.0.6. The vanishing conditions Ext0
RpRrx

´1s,Mq » 0 » Ext1
RpRrx

´1s,Mq are
equivalent to the requirement that every short exact sequence

0 ÑM Ñ N Ñ Rrx´1s Ñ 0

admits a unique splitting. Note that the groups ExtiRpRrx´1s,Mq automatically vanish for
i ą 1, since Rrx´1s is an R-module of projective dimension ď 1.

Remark 7.3.0.7. In the situation of Definition 7.3.0.5, if I “ px1, . . . , xnq, then to verify that
an R-module M is I-complete it suffices to have Ext0

RpRrx
´1
i s,Mq » 0 » Ext1

RpRrx
´1
i s,Mq

for 1 ď i ď n (see Remark 7.3.4.2).



7.3. COMPLETIONS OF MODULES 591

We now summarize some of the pleasant features of Definition 7.3.0.5:

• Let R be a commutative ring, let I Ď R be a finitely generated ideal, and let A Ď Mod♥
R

be the full subcategory of spanned by the I-complete R-modules. Then A is closed
under the formation of kernels, cokernels, and extensions in Mod♥

R. In particular, A
is an abelian category, and the inclusion A ãÑ Mod♥

R is an exact functor (Corollary
7.3.4.6).

• Every I-adically complete R-module M is I-complete. Conversely, if M is I-complete
and I-adically separated (meaning that

Ş

ně0 I
nM “ t0u), then M is I-adically

complete (Corollary 7.3.6.3). However, in general there can exist R-modules M which
are I-complete but not I-adically separated (and therefore not I-adically complete):
for example, the module cokerppβq appearing in Example 7.3.0.3.

• The inclusion A ãÑ Mod♥
R admits a left adjoint L : Mod♥

R Ñ A (Remark 7.3.4.7).
For any R-module M , there is a canonical epimorphism LM Ñ CplpM ; Iq (Corollary
7.3.6.2), which is an isomorphism in many cases (for example, if M is a Noetherian
R-module; see Proposition 7.3.6.1).

Since the inclusion A ãÑ Mod♥
R is an exact functor, it follows formally that that the

functor L : Mod♥
R Ñ A is right exact (unlike the formation of I-adic completions; see

Example 7.3.0.2). However, it is usually not left exact. To obtain a more complete picture,
it is convenient to work at the derived level: that is, to replace the abelian category Mod♥

R

of discrete R-modules by the 8-category ModR of all R-modules. In this section, we will
introduce a full subcategory ModCplpIq

R Ď ModR whose objects we will refer to as I-complete
R-modules (Definition 7.3.1.1), whose intersection with Mod♥

R consists of those discrete
R-modules which are I-complete in the sense of Definition 7.3.0.5 (Corollary 7.3.4.6). We
will see inclusion functor ModCplpIq

R ãÑ ModR admits a left adjoint, which we will refer
to as I-completion and denote by M ÞÑ M^

I (Notation 7.3.1.5). The localization functor
L : Mod♥

R Ñ A is then given by the construction M ÞÑ π0M
^
I (Remark 7.3.4.7). When R is

Noetherian, we can be more precise: the stable 8-category ModCplpIq
R agrees (up to right

completion) with the derived 8-category of the abelian category A (Proposition 7.3.7.3), and
the I-completion functor M ÞÑM^

I agrees with the left derived functor of L : Mod♥
R Ñ A

(Corollary 7.3.7.5).

7.3.1 Completeness

We begin by discussing completions in a very general setting.

Definition 7.3.1.1. Let R be an E2-ring, let C be a stable R-linear 8-category, and let
I Ď π0R be an ideal. We will say that an object C P C is I-complete if, for every I-local
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object D P C (Definition 7.2.4.1), the mapping space MapCpD,Cq is contractible. We let
CCplpIq denote the full subcategory of C spanned by the I-complete objects.

Remark 7.3.1.2. In the situation of Definition 7.3.1.1, suppose that I, J Ď π0R are two
ideals having the same radical. Then an object C P C is I-complete if and only if it is
J-complete.

Remark 7.3.1.3. Let φ : R Ñ R1 be a morphism of E2-rings, let C be a stable R1-linear
8-category. Let I Ď π0R be an ideal and let I 1 Ď π0R

1 be the ideal generated by the image
of I. Then an object C P C is I 1-complete if and only if it is I-complete (where we regard C
as a stable R-linear 8-category via restriction of scalars).

We will generally be interested in Definition 7.3.1.1 only in the special case where I is
finitely generated (or at least contains a finitely generated ideal with the same radical). In
this case, we have the following:

Proposition 7.3.1.4. Let R be an E2-ring, let C be a stable R-linear 8-category, and let
I Ď π0R be a finitely generated ideal. Then the pair pCLocpIq, CCplpIqq is a semi-orthogonal
decomposition of C. In particular, every object C P C fits into an (essentially unique) fiber
sequence C 1 Ñ C Ñ C2, where C 1 is I-local and C2 is I-complete.

Proof. Our assumption that I is finitely generated implies that CLocpIq is closed under small
colimits in C (Proposition 7.2.4.9). The desired result now follows from Example 7.2.1.9.

Notation 7.3.1.5. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and let
C be a stable R-linear 8-category. It follows from Proposition 7.3.1.4 that the inclusion
CCplpIq ãÑ C admits a left adjoint. We will refer to this left adjoint as the I-completion
functor, and denote it by C ÞÑ C^I .

Remark 7.3.1.6. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and let C
be a stable R-linear 8-category. For each object C P C, the diagram σC :

C //

��

C^I

��
LIpCq // LIpC

^
I q

is a pullback square. To see this, we observe that the fibers of the vertical maps are
I-nilpotent, while the fibers of the horizontal maps are I-local. It follows that the total
homotopy fiber of σC is both I-nilpotent and I-local, and therefore vanishes.

Proposition 7.3.1.7. Let R be an E2-ring, let C be a stable R-linear 8-category, and let
I Ď π0R be a finitely generated ideal. Then the functors C ÞÑ C^I and C ÞÑ ΓIC induce
mutually inverse equivalences CNilpIq //CCplpIq .

ΓI
oo
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Proof. Combine Propositions 7.2.1.10 and 7.3.1.4.

Remark 7.3.1.8. In the situation of Proposition 7.3.1.7, we can regard CNilpIq as a stable
R-linear 8-category (Proposition 7.1.1.12). Consequently, there is an essentially unique
action of R on the 8-category CCplpIq for which the equivalence of Proposition 7.3.1.7 is
R-linear. Note that the composition of this equivalence with the I-completion functor
C Ñ CCplpIq can be identified with the functor ΓI : C Ñ CNilpIq, which is R-linear by virtue
of Remark 7.1.2.6. It follows that we can regard the I-completion functor C Ñ CCplpIq as an
R-linear functor.

Warning 7.3.1.9. In the situation of Proposition 7.3.1.7, the inclusion CCplpIq ãÑ C is
usually not an R-linear functor (where we regard CCplpIq as a stable R-linear 8-category as
in Remark 7.3.1.8), because it need not commute with filtered colimits.

Warning 7.3.1.10. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and let
F : C Ñ D be an R-linear functor between stable R-linear 8-categories. Then the functor
F need not carry I-complete objects of C to I-complete objects of D. However, the functor
F admits a right adjoint G which carries I-complete objects of D to I-complete objects of C
(since F carries I-local objects of C to I-local objects of D; see Proposition 7.2.4.9).

7.3.2 The Case of a Principal Ideal

We now study the I-completion functor C ÞÑ C^I in the situation where the ideal I is
generated by a single element. In this case, we have the following dual version of Proposition
7.1.2.3.

Proposition 7.3.2.1. Let R be an E2-ring, let C be a stable R-linear 8-category, and let
x P π0R be an element. For any object C P C, let T pCq denote the limit of the tower

¨ ¨ ¨
x
ÝÑ C

x
ÝÑ C

x
ÝÑ C

x
ÝÑ C.

Then the pxq-completion of C can be identified with the cofiber of the canonical map θ :
T pCq Ñ C.

Proof. For any object D P C, we can identify the mapping space MapCpD,T pCqq with the
homotopy limit of the tower of spaces

¨ ¨ ¨
x
ÝÑ MapCpD,Cq

x
ÝÑ MapCpD,Cq

x
ÝÑ MapCpD,Cq

x
ÝÑ MapCpD,Cq.

If D is pxq-local, then each of the transition maps in this diagram is a homotopy equivalence.
It follows that composition with θ induces a homotopy equivalence MapCpD,T pCqq Ñ

MapCpD,Cq, so that MapCpD,fibpθqq is contractible. Allowing D to vary, we deduce that
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fibpθq is pxq-complete, so that cofibpθq “ Σ fibpθq is also pxq-complete. For any pxq-complete
object E P C, we have a canonical fiber sequence

MapCpcofibpθq, Eq α
ÝÑ MapCpC,Eq Ñ MapCpT pCq, Eq.

It is not difficult to see that T pCq is pxq-local, so the third term in this fiber sequence is
contractible and therefore α is a homotopy equivalence. It follows that the natural map
C Ñ cofibpθq exhibits cofibpθq as an pxq-completion of C.

Corollary 7.3.2.2. Let R be an E2-ring, let C be a stable R-linear 8-category, and let
x P π0R. The following conditions on an object C P C are equivalent:

p1q The module C is pxq-complete.

p2q The limit of the tower
¨ ¨ ¨

x
ÝÑ C

x
ÝÑ C

x
ÝÑ C

x
ÝÑ C.

vanishes.

Corollary 7.3.2.3. Let R be an E2-ring, let C be a stable R-linear 8-category, let I Ď π0R

be an ideal, and let x P π0R. Then the pxq-completion functor C ÞÑ C^
pxq carries I-complete

objects of C to I-complete objects of C.

Proof. Combine the description of the functor C ÞÑ C^
pxq given by Proposition 7.3.2.1 with

the observation that CCplpIq is closed under limits in C.

We now study the exactness properties of the pxq-completion functor in the case C “
LModR.

Corollary 7.3.2.4. Let R be an E2-ring, let x P π0R, and let M be a left R-module.

p1q If M is connective, then M^
pxq is connective.

p2q If M P pLModRqď0, then M^
pxq belongs to pLModRqď1.

Proof. Let T pMq be as in the statement of Proposition 7.3.2.1, so that we have an exact
sequence πkM Ñ πkM

^
pxq Ñ πk´1T pMq. In case p1q, the desired result follows from the

observation that πk´1T pMq » 0 for k ă 0. In case p2q, we observe instead that πk´1T pMq » 0
for k ą 1.
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7.3.3 The Case of a Finitely Generated Ideal

We now show that many of the preceding results can be generalized from principal ideals
to finitely generated ideals. Our starting point is the following observation:

Lemma 7.3.3.1. Let R be an E2-ring, let C be a stable R-linear 8-category, and suppose
we are given a pair of ideals I, J Ď π0R. Assume that either I or J is finitely generated.
Then the full subcategory CLocpI`Jq is generated under extensions by the full subcategories
CLocpIq, CLocpJq Ď CLocpI`Jq.

Proof. Suppose that I is finitely generated and let C be an object of CLocpI`Jq. Using
Proposition 7.2.4.4, we can choose a fiber sequence C 1 Ñ C Ñ C2 where C 1 is J-nilpotent
and C2 is J-local. Then C2 is also pI ` Jq-local, that C 1 is pI ` Jq-local. Consider the
fiber sequence ΓIC 1 αÝÑ C 1

L
ÝÑI C

1. Since I is finitely generated, the functor ΓI is R-linear
(Remark 7.1.2.6) and therefore carries J-nilpotent objects of C to J-nilpotent objects of
C (Proposition 7.1.1.12). Consequently, ΓIC 1 is both I-nilpotent and J-nilpotent, and is
therefore pI ` Jq-nilpotent (Remark 7.1.1.9). Since C 1 is pI ` Jq-local, the morphism α is
nullhomotopic. It follows that C 1 is a direct summand of LIC 1 and is therefore I-local. It
follows that C can be written as an extension of a J-local object of C by an I-local object of
C.

Proposition 7.3.3.2. Let R be an E2-ring, let C be a stable R-linear 8-category, let I Ď π0R

be a finitely generated ideal, and let I 1 Ď π0R be the ideal generated by I together with an
element x P π0R. For each object C P C, the composite map

C
α
ÑM^

I
β
Ñ pM^

I q
^
pxq

exhibits pC^I q^pxq as an I 1-completion of M .

Proof. It is clear that pC^I q^pxq is pxq-complete, and Corollary 7.3.2.3 shows that it is also
I-complete. Using Lemma 7.3.3.1 we deduce that pC^I q^pxq is I 1-complete. It will therefore
suffice to show that the fiber of β ˝ α is I 1-local. This follows because the fibers fibpαq and
fibpβq are both I 1-local: in fact, fibpαq is I-local and fibpβq is pxq-local.

Corollary 7.3.3.3. Let R be an E2-ring, let C be a stable R-linear 8-category, and let
I Ď π0R be a finitely generated ideal. The following conditions on an object C P C are
equivalent:

p1q The object C is I-complete.

p2q For each x P I, the object C is pxq-complete.

p3q There exists a set of generators x1, . . . , xn for the ideal I such that C is pxiq-complete
for 1 ď i ď n.
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Proof. The implications p1q ñ p2q ñ p3q are obvious. We prove that p3q ñ p1q. Assume
that p3q is satisfied. For 0 ď i ď n, let Ipiq be the ideal generated by x1, . . . , xi. We prove
that C is Ipiq-complete by induction on i, the case i “ 0 being trivial. Assume that i ă n

and that M is Ipiq-complete. Then the map α : M ÑM^
Ipiq is an equivalence. Since M is

xi`1-complete, the map β : M ÑM^
pxi`1q

is also an equivalence. Using Proposition 7.3.3.2,
we deduce that the map M ÑM^

Ipi`1q is an equivalence, so that M is Ipi` 1q-complete.

Corollary 7.3.3.4. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and let
F : C Ñ D be an R-linear functor between stable R-linear 8-categories. Suppose that F
commutes with sequential inverse limits. Then:

paq The functor F carries I-complete objects of C to I-complete object of D.

pbq The functor F commutes with I-completion: that is, for every object C P C, the
canonical map F pCq Ñ F pC^I q exhibits F pC^I q as an I-completion of F pCq.

Proof. To prove paq, we can use Corollary 7.3.3.3 to reduce to the case where I is generated
by a single element, in which case the desired result follows from the criterion of Corollary
7.3.2.2. To prove pbq, let C P C be an object and let α : C Ñ C^I be the canonical map.
Then fibpαq is an I-local object of C, so that F pfibpαqq » fibpF pαqq is an I-local object of D
by virtue of Proposition 7.2.4.9. Since the codomain of F pC^I q is I-complete, it follows that
F pαq exhibits F pC^I q as an I-completion of C.

Corollary 7.3.3.5. Let φ : RÑ R1 be a morphism of E2-rings, let C be a stable R-linear
8-category, and let C1 “ R1 bR C “ LModR1pCq be the stable R1-linear 8-category obtained
from C by extension of scalars. Let I Ď π0R be a finitely generated ideal, and let I 1 Ď π0R

1

be the ideal generated by the image of I. Then:

p1q An object C P C1 is I 1-complete if and only if its image under the forgetful functor
ρ : C1 Ñ C is I-complete.

p2q For each object C P C1, the canonical map C Ñ C^I 1 exhibits ρpC^I 1 q as an I-completion
of ρpCq.

Proof. Assertion p2q follows from Corollary 7.3.3.4 and Remark 7.3.1.3. Assertion p1q is a
consequence of p2q, since the functor ρ is conservative.

Corollary 7.3.3.6. Let φ : R Ñ R1 be a morphism of E2-rings, let I Ď π0R be a finitely
generated ideal, and let I 1 Ď π0R

1 be the ideal generated by the image of I. Then:

p1q A left R1-module M is I 1-complete if and only if it is I-complete (when regarded as an
R-module).
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p2q For every left R1-module M , the canonical map M Ñ M^
I 1 exhibits M^

I 1 as an I-
completion of M (when regarded as a morphism of R-modules).

Example 7.3.3.7. Let φ : RÑ R1 be a morphism of E2-rings and let M be a left R1-module.
Then, when regarded as an R-module, M is complete with respect to any finitely generated
ideal I Ď π0R which is annihilated by φ.

7.3.4 Completeness and Homotopy Groups

We now show that the completeness of modules over an E2-ring can be tested at the
level of homotopy groups:

Theorem 7.3.4.1. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and let
M be a left R-module. The following conditions are equivalent:

paq The left R-module M is I-complete, in the sense of Definition 7.3.1.1.

pbq For every integer k, the homotopy group πkM is I-complete when regarded as a discrete
module over the commutative ring A “ π0R, in the sense of Definition 7.3.0.5. That
is, for each x P I, we have Ext0

ApArx
´1s, πkMq » 0 » Ext1

ApArx
´1s, πkMq.

Proof. Fix an element x P π0R, and let T pMq denote the limit of the tower

¨ ¨ ¨
x
ÝÑM

x
ÝÑM

x
ÝÑM

x
ÝÑM

as in Proposition 7.3.2.1. For each integer k, let Dk denote the tower of abelian groups

¨ ¨ ¨
x
ÝÑ πkM

x
ÝÑ πkM

x
ÝÑ πkM

x
ÝÑ πkM,

so that we have Milnor exact sequences

0 Ñ lim
ÐÝ

1Dk`1 Ñ πkT pMq Ñ lim
ÐÝ

0Dk Ñ 0.

Writing Arx´1s as the direct limit of the sequence A x
ÝÑ A

x
ÝÑ A

x
ÝÑ ¨ ¨ ¨ , we obtain canonical

isomorphisms

lim
ÐÝ

1Dk`1 » Ext1
ApArx

´1s, πk`1Mq lim
ÐÝ

0Dk » Ext0
ApArx

´1s, πkMq.

Consequently, the groups ExtiApArx´1s, πkMq vanish for all k P Z and i P t0, 1u if and only
if T pMq » 0: that is, if and only if M is pxq-complete (Corollary 7.3.2.2). The equivalence
of paq and pbq now follows from Corollary 7.3.3.3.

Remark 7.3.4.2. In the situation of Theorem 7.3.4.1, if x1, . . . , xn P I is a set of generators
for I, then it suffices to verify condition pbq in the special case x “ xi (Corollary 7.3.3.3).
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Corollary 7.3.4.3. Let R be a connective E2-ring and let I Ď π0R be a finitely generated
ideal. If M P LModR is I-complete, then the truncations τěnM and τďnM are I-complete
for every integer n.

Proposition 7.3.4.4. Let R be a connective E2-ring, let I Ď π0R be a finitely generated
ideal, and set

pLModCplpIq
R qď0 “ pLModRqď0XLModCplpIq

R pLModCplpIq
R qě0 “ pLModRqě0XLModCplpIq

R .

Then:

p1q The pair ppLModCplpIq
R qě0, pLModCplpIq

R qď0q determines a t-structure on the stable 8-
category LModCplpIq

R which is both left and right complete.

p2q The inclusion functor LModCplpIq
R ãÑ LModR is t-exact.

p3q The I-completion functor LModR Ñ LModCplpIq
R is right t-exact.

p4q If I is generated by n elements, then the I-completion functor LModR Ñ LModCplpIq
R

carries pLModRqď0 into pLModCplpIq
R qďn.

Proof. Assertion p1q follows immediately from Corollary 7.3.4.3 (and the left and right
completeness for the standard t-structure on LModR), assertion p2q immediate from the
definition, and assertion p3q is a formal consequence of p2q. To prove p4q, choose a set
of generators x1, . . . , xn for the ideal I. Proposition 7.3.3.2 implies that the I-completion
functor can be obtained by composing the pxiq-completion functors for 1 ď i ď n. We can
therefore reduce to the case where I “ pxq is generated by a single element, in which case
the desired result follows from Corollary 7.3.2.4.

Warning 7.3.4.5. In the situation of Proposition 7.3.4.4, the t-structure on LModCplpIq
R is

usually not compatible with filtered colimits. For example, suppose that R “ Z and set
I “ ppq for some prime number p. The direct system of abelian groups

pp´1 Zq{Z ãÑ pp´2 Zq{Z ãÑ pp´3 Zq{Z ãÑ pp´4 Zq{Z ãÑ ¨ ¨ ¨

can be regarded as a diagram in the heart of ModCplpIq
Z . However, the colimit of this diagram

in ModCplpIq
Z is given by the I-completion of Zrp´1s{Z » Qp {Zp, which is the suspension

of Zp P ModCplppq
Z .

Corollary 7.3.4.6. Let R be a commutative ring, let I Ď R be a finitely generated ideal,
and let M be a discrete R-module. The following conditions are equivalent:
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paq The R-module M is I-complete in the sense of Definition 7.3.1.1: that is, the mapping
space MapModRpN,Mq is contractible whenever N P ModR is I-local.

pbq The R-module M is I-complete in the sense of Definition 7.3.0.5: that is, we have
Ext0

RpRrx
´1s,Mq » 0 » Ext1

RpRrx
´1s,Mq for every x P I.

Moreover, the collection of those R-modules M which satisfy these conditions span an abelian
subcategory A Ď Mod♥

R which is closed under kernels, cokernels, and extensions.

Remark 7.3.4.7. In the situation of Corollary 7.3.4.6, the inclusion A ãÑ Mod♥
R admits a

left adjoint, given by the construction M ÞÑ π0M
^
I .

Proposition 7.3.4.8. Let R be a connective E2-ring, let I Ď π0R be a finitely generated
ideal, and let x P π0R be an element whose image in pπ0Rq{I is invertible. If M is an
I-complete left R-module, then multiplication by x induces an equivalence from M to itself.

Proof. Using Proposition 7.3.1.7, we can write M “ N^I for some I-nilpotent left R-module
N . It will now that the map x : N Ñ N induces an isomorphism on each homotopy group,
which follows from Example 7.2.4.5.

Corollary 7.3.4.9. Let R be an E2-ring which is complete with respect to a finitely generated
ideal I Ď π0R, and let x P π0R be an element whose image in pπ0Rq{I is invertible. Then x

is invertible in π0R.

Remark 7.3.4.10. We can rephrase Corollary 7.3.4.9 as follows: if R is an E2-ring which
is complete with respect to a finitely generated ideal I Ď π0R, then I is contained in the
Jacobson radical of π0R.

7.3.5 Monoidal Structures

Let R be an E2-ring. We now show that if I Ď π0R is a finitely generated ideal, then
the 8-category LModCplpIq

R inherits the structure of a monoidal 8-category.

Proposition 7.3.5.1. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and
let α : M ÑM 1 be a morphism of left R-modules which induces an equivalence M^

I »M 1^
I .

Then, for any left R-module N , the induced maps

pM bA Nq
^
I Ñ pM 1 bA Nq

^
I pN bAMq

^
I Ñ pN bAM

1q^I

are equivalences.

Proof. Note that α induces an equivalence of I-completions if and only if the fiber fibpαq
is I-local. Consequently, we can view Proposition 7.3.5.1 as a reformulation of Corollary
7.2.4.12.
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Combining Proposition 7.3.5.1 with Proposition HA.2.2.1.9 , we obtain the following:

Corollary 7.3.5.2. Let R be an E2-ring and let I Ď π0R be a finitely generated ideal. Then
there is an essentially unique monoidal structure on the 8-category LModCplpIq

R for which
the I-completion functor M ÞÑM^

I is monoidal.

Warning 7.3.5.3. In the situation of Corollary 7.3.5.2, the inclusion functor LModCplpIq
R ãÑ

LModR is generally not monoidal (however, it has the structure of a lax monoidal functor,
since it is right adjoint to the monoidal completion functor LModCplpIq

R Ñ LModR). To
emphasize that the tensor product on LModCplpIq

R differs from the tensor product on LModR,
it is convenient to denote the former by pM,Nq ÞÑM pbRN . Concretely, it is given by the
formula M pbRN “ pM bR Nq

^
I . Similarly, the unit object of LModCplpIq

R is given by R^I .

Remark 7.3.5.4. In the situation of Corollary 7.3.5.2, the monoidal I-completion functor
LModR Ñ LModCplpIq

R determines an action of R on the stable 8-category LModCplpIq
R . It

is not difficult to see that this action of R agrees with the action given in Remark 7.3.1.8.

Remark 7.3.5.5. In the situation of Corollary 7.3.5.2, the I-completion functor LModR Ñ
LModCplpIq

R can be regarded as morphism between associative algebra objects of PrSt.
Consequently, it induces a functor

LModLModCplpIq
R

pPrStq Ñ LModLModRpPrStq » LinCatSt
R .

It is not difficult to see that this functor is a fully faithful embedding, whose essential image
is spanned by those stable R-linear 8-categories C which are I-nilpotent in the sense of
Remark 7.1.1.18. In particular, if C is a stable R-linear 8-category which is I-nilpotent,
then we can regard C as an 8-category which is left-tensored over LModCplpIq

R .

Variant 7.3.5.6. Let R be an Ek`1-ring for 1 ď k ď 8, so that the 8-category LModR
inherits the structure of an Ek-monoidal 8-category. Let I Ď π0R be a finitely generated
ideal. Using Proposition 7.3.5.1, we see that LModCplpIq

R inherits the structure of an Ek-
monoidal 8-category for which the I-completion functor LModCplpIq

R is Ek-monoidal. In
particular, if R is an E8-ring, then we can regard ModCplpIq

R as a symmetric monoidal
8-category (with respect to the I-completed tensor product pbR of Warning 7.3.5.3) and the
construction M ÞÑM^

I as a symmetric monoidal functor ModR Ñ ModCplpIq
R .

Let R be an E2-ring, let I Ď π0R a finitely generated ideal, and let M be a left R-module.
Using Proposition 7.3.5.1, we see that the canonical map M » RbRM Ñ R^I bRM induces
an equivalence of I-completions. We therefore obtain a canonical map R^I bRM ÑM^

I .

Proposition 7.3.5.7. Let R be a connective E2-ring, let I Ď π0R be a finitely generated
ideal, and let M be an almost perfect R-module. Then the canonical map R^I bRM ÑM^

I

is an equivalence. In particular, if R is I-complete, then M is I-complete.
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Proof. Fix an integer n; we will show that the map φM : R^I bRM ÑM^
I is n-connective.

Since M is almost perfect, there exists a perfect R-module N and an n-connective map
N ÑM . We have a commutative diagram

R^I bR N
φN //

��

N^I

��
R^I bRM

φM //M^
I .

Since the I-completion functor is right t-exact (Proposition 7.3.4.4), the vertical maps in this
diagram are n-connective. It will therefore suffice to show that the map φN is n-connective.
Let C Ď LModR be the full subcategory spanned by those objects N for which φN is an
equivalence. Then C is a stable subcategory which is closed under the formation of retracts.
Consequently, to show that C contains all perfect R-modules, it suffices to show that C
contains R, which is clear.

7.3.6 Comparison with I-adic Completions

Let R be a commutative ring and let M be a discrete R-module. If I Ď R is a finitely
generated ideal, we let CplpM ; Iq denote the I-adic completion of M : that is, the limit of
the tower

¨ ¨ ¨ ÑM{I4M ÑM{I3M ÑM{I2M ÑM{IM.

Here we can form the limit either in the abelian category Mod♥
R of discrete R-modules

or in the larger 8-category ModR: the result is the same, since the group lim
ÐÝ

1tM{InMu

vanishes by virtue of the surjectivity of the transition maps M{In`1M Ñ M{InM . Note
that each quotient M{InM can be regarded as a module over the ring R{In and is therefore
complete with respect to the ideal In (Example 7.3.3.7), hence also with respect to I.
It follows that the I-adic completion CplpM ; Iq is I-complete (in the sense of Definition
7.3.1.1), so that the canonical map M Ñ CplpM ; Iq admits an essentially unique factorization
M Ñ M^

I
α
ÝÑ CplpM ; Iq. The map α is generally not an equivalence. However, it is an

equivalence under some mild finiteness assumptions:

Proposition 7.3.6.1. Let R be a connective E2-ring, let I Ď π0R be a finitely generated
ideal, and let M be a discrete R-module. Assume that M is Noetherian: that is, that every
submodule of M is finitely generated. For every set S, the canonical map M 1^

I Ñ CplpM 1; Iq
is an equivalence, where M 1 “

À

βPSM . In particular, we have M^
I » CplpM ; Iq

Proof. We proceed by induction on the minimal number of generators of I. If I “ p0q there
is nothing to prove. Otherwise, we may assume that I “ J ` pxq for some x P π0A and
that M 1^

J “ CplpM 1; Jq. Using Proposition 7.3.3.2, we deduce that M 1^
I » pCplpM 1; Jqq^

pxq.
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For m,n ě 0, we let Xm,n denote the cofiber of the map M 1{JmM 1 ÑM 1{JmM 1 given by
multiplication by xn. Then πiXm,n vanishes for i R t0, 1u, and Proposition 7.3.2.1 implies that
M 1^

I » lim
ÐÝ
tXm,nu. It follows that there is a canonical isomorphism π1M

1^
I » lim

ÐÝ
tπ1Xm,nu

and a short exact sequence

0 Ñ lim
ÐÝ

1tπ1Xm,nu Ñ π0M
1^

I Ñ lim
ÐÝ
tπ0Xm,nu Ñ 0.

To complete the proof, it will suffice to show that lim
ÐÝ
tπ1Xm,nu » lim

ÐÝ
1tπ1Xm,nu » 0. In fact,

we claim that tπ1Xm,num,ně0 is trivial as a pro-object in the category of abelian groups. To
prove this, it suffices to show that for each m,n ě 0, there exists n1 ě n such that the induced
map π1Xm,n1 Ñ π1Xm,n is zero. For each k ě 0, let Y pkq “ ty P M{ImM : xky “ 0u.
Since M is Noetherian, the quotient M{ImM is also Noetherian, so the ascending chain of
submodules

0 “ Y p0q Ď Y p1q Ď Y p2q Ď ¨ ¨ ¨

must eventually stabilize. It follows that there exists k ě 0 such that if y P M{ImM is
annihilated by xk`1, then it is annihilated by xk. It follows that the map π1Xm,n`k Ñ π1Xm,n

is zero, as desired.

Corollary 7.3.6.2. Let R be a commutative ring, let I Ď R be a finitely generated ideal,
and let M be a discrete R-module. Then the canonical map M^

I Ñ CplpM ; Iq induces a
surjection π0M

^
I Ñ CplpM ; Iq.

Proof. Choose a finite set px1, . . . , xnq of generators for I. Replacing R by the subring
generated by the txiu, we can reduce to the case where R is Noetherian. Choose a surjection
α : P ÑM , where P is a free R-module. We then have a commutative diagram

π0P
^
I

//

��

π0M
^
I

��
CplpP ; Iq // CplpM ; Iq.

The left vertical map is an isomorphism by virtue of Proposition 7.3.6.1 and the lower
horizontal map is surjective because α is surjective. It follows from a diagram chase that
the right vertical map is also surjective.

Corollary 7.3.6.3. Let R be a commutative ring, let I Ď R be a finitely generated ideal,
and let M be a discrete R-module. The following conditions are equivalent:

paq The module M is I-adically complete (that is, the canonical map M Ñ CplpM ; Iq is
an isomorphism).

pbq The module M is I-complete and I-adically separated (that is, the canonical map
M Ñ CplpM ; Iq is injective).
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Proof. The implication paq ñ pbq is obvious. Conversely, suppose that pbq is satisfied. Then
the canonical map M Ñ CplpM ; Iq is an injection by virtue of our assumption that M is
I-adically separated, and a surjection by virtue of Corollary 7.3.6.2.

Corollary 7.3.6.4. Let R be a commutative ring and let I Ď R be a finitely generated ideal.
If R is I-complete, then the canonical map ε : RÑ CplpR; Iq “ lim

ÐÝ
R{In is a surjection and

the kernel kerpεq is nilpotent.

Proof. The surjectivity of ε follows from Corollary 7.3.6.2. Write I “ px1, . . . , xnq. We will
complete the proof by showing that every element t P kerpεq satisfies tn`1 “ 0. For 1 ď i ď n

and m ě 0, let Ki,m denote the cofiber of the map xmi : RÑ R, and set Km “
Â

1ďiďnKi,m

(that is, Km is the Koszul complex of the sequence pxm1 , . . . , xmn q). Note that each homotopy
group of Km is annihilated by some power of I, and is therefore annihilated by t. It follows
that, for each k ě 0, multiplication by t annihilates the Pro-object tπkKmumě0, so that the
map tτěkKmumě0

t
ÝÑ tτěkKmumě0 factors through the tower tτěk`1Kmumě0. Invoking this

observation repeatedly, we deduce that each of the maps ts : tKmumě0 Ñ tKmumě0 factors
through the tower tτěsKmumě0, which vanishes for s ą n. It follows that multiplication
by tn`1 annihilates the Pro-object tKmumě0 and therefore annihilates its inverse limit
lim
ÐÝ

Km » R.

Corollary 7.3.6.5. Let R be a commutative ring which is I-complete for some finitely
generated ideal I Ď R. Then the pair pR, Iq is Henselian.

Proof. Let J “
Ş

n I
n be the kernel of the map RÑ lim

ÐÝ
R{In. Then J is a nilpotent ideal

(Corollary 7.3.6.4), so the pair pR, Jq is Henselian (Corollary B.3.1.5). We may therefore
replace R by R{J (Corollary B.3.3.3) and thereby reduce to the case where R » lim

ÐÝ
R{In

is I-adically complete in the classical sense, in which case the desired result follows from
Hensel’s lemma (Proposition B.3.1.4).

Corollary 7.3.6.6. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and let
M P LModR. Assume that each of the homotopy groups πnM is Noetherian when regarded
as a (discrete) module over π0R. Then, for each integer n, there is a canonical isomorphism
πnM

^
I » CplpπnM ; Iq.

Proof. Using Corollary 7.3.3.6, we can reduce to the case where R is connective. Then
each homotopy group πnM can be regarded as a module over R. Using Corollary 7.3.3.6
and Proposition 7.3.6.1, we deduce that the completion pπnMq^I can be identified with
CplpπnM ; Iq. In particular, pπnMq^I is a discrete R-module. We will complete the proof
by producing isomorphisms πnpM^

I q » pπnMq
^
I . We have a fiber sequence of R-modules

τěn`1M Ñ M Ñ τďnM, hence a fiber sequence of I-complete R-modules pτěn`1Mq
^
I Ñ

M^
I Ñ pτďnMq

^
I . Since the functor of I-completion is right t-exact, the associated long
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exact sequence of homotopy groups gives an isomorphism πnM
^
I » πnpτďnMq

^
I . We may

therefore replace M by τďnM and thereby reduce to the case where M is n-truncated.
Let N “ τďn´1M , so that we have a fiber sequence ΣnpπnMq Ñ M Ñ N , hence a fiber
sequence of I-completions ΣnpπnMq

^
I Ñ M^

I Ñ N^I . Using the associated long exact
sequence, we are reduced to proving that N^I is pn ´ 1q-truncated. We first prove by
descending induction on k that pτěkNq^I is pn´ 1q-truncated. For k ě n, there is nothing to
prove. Assume therefore that k ă n. pτěk`1Nq

^
I Ñ pτěkNq

^
I Ñ ΣkpπkNq

^
I . The inductive

hypothesis implies that pτěk`1Nq
^
I is pn´ 1q-truncated, and Proposition 7.3.6.1 implies that

pπkNq
^
I is discrete. It follows that pτěkNq^I is pn´ 1q-truncated. We have a fiber sequence

pτěkNq
^
I Ñ N^I Ñ pτďk´1Nq

^
I . For k ! 0, Proposition 7.3.4.4 implies that pτďk´1Nq

^
I is

pn´ 1q-truncated, so that N^I is pn´ 1q-truncated as desired.

Remark 7.3.6.7. Let R be a Noetherian E8-ring, let I Ď π0R be an ideal, and suppose
that π0R is I-adically complete: that is, that the canonical map π0R Ñ lim

ÐÝn
pπ0Rq{I

n is
an isomorphism of commutative rings. Proposition 7.3.6.1 implies that π0R is I-complete.
Using Propositions HA.7.2.4.17 and 7.3.5.7, we deduce that every finitely generated discrete
module over π0R is I-complete. It then follows from Theorem 7.3.4.1 that R is I-complete.

Remark 7.3.6.8. Let R be a Noetherian E8-ring and suppose we are given a pair of ideals
I Ď J Ď π0pRq. If R is I-complete and π0pRq{I is pJ{Iq-complete, then R is J-complete. To
prove this, it will suffice to show that every finitely generated π0pRq-module M is J-complete.
Our assumption that R is I-complete guarantees that M is I-complete (Proposition 7.3.6.1)
and therefore I-adically complete (Corollary 7.3.6.6). Realizing M as the limit of the
tower M{IkM , we are reduced to showing that each M{IkM is J-complete. Proceeding by
induction on k, we are reduced to showing that Ik´1M{IkM is J-complete. This follows
from Proposition 7.3.6.1, since π0pRq{I is pJ{Iq-complete and Ik´1M{IkM is almost perfect
as a module over π0pRq{I.

Corollary 7.3.6.9. Let R be a Noetherian E8-ring and let I Ď π0R be an ideal. Then the
completion R^I is flat over R.

Proof. Let M be a discrete R-module; we wish to show that R^I bRM is discrete. Since
the construction M ÞÑ R^I bRM commutes with filtered colimits, we can assume that M
is finitely presented (when regarded as a module over the commutative ring π0R). In this
case, M is almost perfect as an R-module (Proposition HA.7.2.4.17 ), so that R^I bRM can
be identified with the I-completion M^

I (Proposition 7.3.5.7). The discreteness of M^
I now

follows from Proposition 7.3.6.1.

Corollary 7.3.6.10 (Krull Intersection Theorem). Let R be a local Noetherian ring and let
I Ĺ R be an ideal. Then R is I-adically separated: that is, the

Ş

ně0 I
n “ t0u.
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Proof. Let m denote the maximal ideal of R, so that I Ď m. The canonical map RÑ R{m

factors through R{I, and therefore also through R^I . It follows that the flat map φ : RÑ R^I
of Corollary 7.3.6.9 is faithfully flat, and is therefore injective. It follows from Proposition
7.3.6.1 that we can identify R^I with the I-adic completion lim

ÐÝ
tR{Inu, so that

Ş

ně0 I
n “

kerpφq “ p0q.

7.3.7 Complete Modules as a Derived Category

Let R be a connective E2-ring and let I Ď π0R be a finitely generated ideal. We let
LMod♥ CplpIq

R denote the full subcategory of LModR spanned by those R-modules M which
are both discrete and I-complete. Then LMod♥ CplpIq

R is the heart of the t-structure on
LModCplpIq

R described in Proposition 7.3.4.4. In particular, it is an abelian category.

Remark 7.3.7.1. In the situation described above, the inclusion functor LModCplpIq
R ãÑ

LModR is t-exact and therefore restricts to an exact functor LMod♥ CplpIq
R ãÑ LMod♥

R. In
particular, if α : M Ñ N is a morphism of discrete I-complete R-modules, then α is a
monomorphism (epimorphism) in the abelian category LMod♥ CplpIq

R if and only if it is
injective (surjective) when regarded as a homomorphism of abelian groups.

Proposition 7.3.7.2. Let R be a connective E2-ring and let I Ď π0R be a finitely generated
ideal. Then the abelian category LMod♥ CplpIq

R has enough projective objects.

Proof. Let M be a left R-module which is discrete and I-complete. Choose a morphism
α : P Ñ M in LModR which is surjective on π0, where P is a direct sum of copies of R.
Since M is I-complete, the morphism α factors as a composition P Ñ P^I

β
ÝÑM . Since M

is discrete, the morphism β factors as a composition P^I Ñ π0P
^
I

γ
ÝÑM . Note that π0P

^
I is

discrete and I-complete (Corollary 7.3.4.3), so we can regard γ as an epimorphism in the
abelian category LMod♥ CplpIq

R (Remark 7.3.7.1). We will complete the proof by showing
that π0P

^
I is a projective object of LMod♥ CplpIq

R . Let u : N 1 Ñ N be an epimorphism in
LMod♥ CplpIq

R ; we wish to show that the left vertical map in the diagram

MapLModRpπ0P
^
I , N

1q

��

//MapLModRpP,N
1q

��
MapLModRpπ0P

^
I , Nq

//MapLModRpP,Nq

is surjective on connected components. Since N and N 1 are discrete and I-complete, the
horizontal maps are homotopy equivalences. It will therefore suffice to show that the right
vertical map is surjective on connected components. This is clear: the right vertical map
can be identified with a direct product of copies of the underlying map N 1 Ñ N , which is a
surjection of abelian groups (Remark 7.3.7.1).
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In the situation of Proposition 7.3.7.2, the existence of enough projective objects in the
abelian category LMod♥ CplpIq

R allows us to consider the derived8-categoryD´pLMod♥ CplpIq
R q.

Since the t-structure on LModCplpIq
R is left complete, Theorem HA.1.3.3.2 and Remark

HA.1.3.3.6 imply that the inclusion map LMod♥ CplpIq
R ãÑ LModCplpIq

R admits an essentially
unique extension to a t-exact functor F : D´pLMod♥ CplpIq

R q Ñ LModCplpIq
R .

Proposition 7.3.7.3. Let R be a Noetherian commutative ring and let I Ď R be an ideal.
Then the functor F : D´pMod♥ CplpIq

R q Ñ ModCplpIq
R is a fully faithful embedding whose

essential image is the full subcategory
Ť

npModCplpIq
R qě´n consisting of right-bounded objects

of ModCplpIq
R .

Proof. By virtue of Proposition HA.1.3.3.7 , it will suffice to show that the abelian groups
ExtiRpX,Y q vanish for i ą 0 if X and Y are objects of Mod♥ CplpIq

R with X projective. The
proof of Proposition 7.3.7.2 shows that there exists an epimorphism π0P

^
I Ñ X, where P

is a direct sum of copies of R. Since X is projective, this epimorphism splits. Since R is
Noetherian, Proposition 7.3.6.1 implies that P^I is discrete. It follows that X is a direct
summand of P^I . It will therefore suffice to show that the groups ExtiRpP^I , Y q » ExtiRpP, Y q
vanish for i ą 0. This is clear, since Y is discrete and P is a direct sum of copies of R.

Warning 7.3.7.4. In the situation of Proposition 7.3.7.3, the abelian category Mod♥ CplpIq
R

is usually not a Grothendieck abelian category.

Corollary 7.3.7.5. Let R be a Noetherian commutative ring, let I Ď R be an ideal, and let
ρ : Mod♥

R Ñ Mod♥ CplpIq
R be the functor of abelian categories given by ρpMq “ π0M

^
I . Then:

p1q The functor ρ preserves small colimits. In particular, it is right exact.

p2q If M is a projective R-module, there is a canonical isomorphism ρpMq » CplpM ; Iq.

p3q The diagram of 8-categories

D´pMod♥
Rq

��

Lρ // D´pMod♥ CplpIq
R q

��

ModR //ModCplpIq
R

commutes up to canonical homotopy, where the vertical maps are the full faithful
embeddings provided by Proposition 7.3.7.3, Lρ denotes the left derived functor of ρ
(see Example ??), and the bottom horizontal map is given by I-completion.

Remark 7.3.7.6. Let R be a Noetherian commutative ring, let M be a discrete R-module,
and choose a projective resolution

¨ ¨ ¨ Ñ P3 Ñ P2 Ñ P1 Ñ P0 ÑM.
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It follows from Corollary 7.3.7.5 that for any ideal I Ď R, the completion M^
I is represented

by the chain complex of R-modules

¨ ¨ ¨ Ñ CplpP3; Iq Ñ CplpP2; Iq Ñ CplpP1; Iq Ñ CplpP0; Iq.

Proof of Corollary 7.3.7.5. Assertion p1q follows from the right t-exactness of the functor
M ÞÑM^

I and assertion p2q follows from Proposition 7.3.6.1. Assertion p3q follows from p2q
and Theorem HA.1.3.3.2 .

7.3.8 Complete Noetherian Rings

We conclude this section by reviewing a few standard facts about the completion of
Noetherian rings.

Proposition 7.3.8.1. Let R be a commutative ring and let I Ď R be a finitely generated
ideal. Suppose that R is I-adically complete: that is, that the canonical map RÑ lim

ÐÝ
tR{Inu

is an isomorphism. If R{I is Noetherian, then R is Noetherian.

Proof. For each n ě 0, set An “ In{In`1, and let A denote the graded ring
À

An. Choose
a finite set of generators x1, . . . , xk for the ideal I, and let x1, . . . , xk denote their images in
A1 “ I{I2. The elements xi generate A as an algebra over A0 “ R{I. It follows from the
Hilbert basis theorem that A is Noetherian.

Let J Ď R be an arbitrary ideal; we wish to show that J is finitely generated. For each
n ě 0, set Jn “ pJ X Inq{pJ X In`1q, which we regard as a submodule of An. The direct
sum

À

ně0 Jn is an ideal in the commutative ring A. Since A is Noetherian, this ideal is
finitely generated. Choose a finite set of homogeneous generators y1, . . . , ym P

À

ně0 Jn,
where yi P Jdi . For 1 ď i ď m, let yi denote a lift of yi to JXIn. We claim that the elements
y1, . . . , ym P J generate the ideal J .

Let d “ maxtdiu. We will prove the following:

p˚q For each z P J X In, we can find coefficients ci P R such that ci P In´d if n ą d, and
z ´

ř

1ďiďm ciyi belongs to In`1.

To prove p˚q, we let z denote the image of z in Jn. Since the elements yi generate
À

Jn
as an A-module, we can write z “

ř

ciyi for some homogeneous elements ci P A of degree
n´ di. For 1 ď i ď m, choose ci P In´di to be any lift of ci; then the elements ci have the
desired property.

Now let z P J be an arbitrary element. We will define a sequence of elements z0, z1, . . . , P J

such that z ´ zq P Iq. Set z0 “ 0. Assuming that zq has been defined, we apply p˚q to write

z ´ zq ”
ÿ

1ďiďm
ci,qyi pmod Iq`1q
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where ci,q P Iq´d for q ě d. Now set zq`1 “ z ´ zq ´
ř

1ďiďm ci,qyi. For each 1 ď i ď m,
the sum

ř

qě0 ci,q converges I-adically to a unique element ci P R. We now observe that
z “

ř

ciyi belongs to the ideal generated by the elements yi, as desired.

Corollary 7.3.8.2. Let R be a Noetherian ring, let I Ď R be an ideal, and let CplpR; Iq “
lim
ÐÝ
tR{Inu denote the I-adic completion of R. Then CplpR; Iq is Noetherian.

Proof. For each integer n, let Jn denote the ideal of CplpR; Iq given by lim
ÐÝ

In{In`m, so that
the canonical map φ : RÑ CplpR; Iq induces isomorphisms R{In Ñ CplpR; Iq{Jn for each
n ě 0. It follows that the canonical map CplpR; Iq Ñ lim

ÐÝ
CplpR; Iq{Jn is an isomorphism.

We will show that Jn “ In CplpR; Iq for each n ě 0. Assuming this, we deduce that J1 is
finitely generated, that CplpR; Iq is J1-adically complete, and that CplpR; Iq{J1 » R{I is
Noetherian. It then follows from Proposition 7.3.8.1 that CplpR; Iq is Noetherian.

Choose a finite set of generators x1, . . . , xk for the ideal In and an arbitrary z P Jn,
given by a compatible sequence of elements tzm P In{In`mumě0. Lift each zm to an element
zm P I

n. Then zm`1 ´ zm P I
n`m, so we can write

zm`1 “ zm `
ÿ

1ďiďk
cm,ixi

for some cm,i P Im. For 1 ď i ď k, the residue classes of the partial sums t
ř

jďm cj,iumě0
determine an element ci P CplpR; Iq. Then z “ φpz0q `

ř

ciφpxiq, so that z belongs to the
ideal In CplpR; Iq.

Corollary 7.3.8.3. Let R be a Noetherian E8-ring and let I Ď π0R be an ideal. Then the
completion R^I is a Noetherian E8-ring.

Proof. Corollary 7.3.6.6 implies that π0R
^
I is the I-adic completion of the Noetherian

commutative ring π0R, and therefore a Noetherian commutative ring (Corollary 7.3.8.2). To
complete the proof, it will suffice to show that each πkR

^
I is a finitely generated module

over π0R
^
I . Since AÑ A^I is flat (Corollary 7.3.6.9), we have a canonical isomorphism

πkR
^
I » Torπ0R

0 pπ0R
^
I , πkRq.

It will therefore suffice to show that πkR is a finitely generated module over π0R, which
follows from our assumption that A is Noetherian.
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7.4 The Beauville-Laszlo Theorem

Let A be a commutative ring containing an element x and let pA “ lim
ÐÝ

A{xnA denote
the pxq-adic completion of A. We then have a diagram of commutative rings

A //

��

pA

��

Arx´1s // pArx´1s,

which determines a diagram of categories σ :

Modlf
A

//

��

Modlf
pA

��
Modlf

Arx´1s
//Modlf

pArx´1s
;

here Modlf
R denotes the category whose objects are projective R-modules of finite rank. The

Beauville-Laszlo theorem asserts that if x is not a zero-divisor in A, then the diagram σ

is a (homotopy) pullback diagram of categories (see [?]). In other words, the data of a
projective A-module of finite rank is equivalent to the data of a triple pM0,M1, αq, where
M0 and M1 are projective modules of finite rank over Arx´1s and pA, respectively, and
α : pArx´1s bArx´1sM0 »M1rx

´1s is an isomorphism of pArx´1s-modules. Heuristically, the
Beauville-Laszlo theorem is one expression of the idea that the diagram of affine schemes

SpecA Spec pAoo

SpecArx´1s

OO

Spec pArx´1soo

OO

exhibits X “ SpecR as obtained from the open subscheme U “ SpecRrx´1s by “gluing in”
a formal neighborhood of the divisor D “ X ´ U .

Our goal in this section is to establish the following variant of the Beauville-Laszlo
theorem:

Theorem 7.4.0.1. Let φ : A Ñ B be a map of connective E8-rings, let I Ď π0A be a
finitely generated ideal, and let U denote the quasi-compact open substack of SpétA which is
complementary to the vanishing locus of I, and form a pullback diagram

V //

��

U

��
SpétB // SpétA.
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If φ induces an equivalence of I-completions A^I Ñ B^I , then the diagrams of 8-categories

QCohpSpétAq //

��

QCohpSpétBq

��
QCohpUq // QCohpVq

is a pullback square.

Example 7.4.0.2. Let A be a connective E8-ring, let I Ď π0A be a finitely generated ideal,
let U be the open substack of SpétA complementary to the vanishing locus of I, and form
pullback diagrams

V //

��

U

��
SpétA^I // SpétA.

Then Theorem 7.4.0.1 implies that the diagram of 8-categories

QCohpSpétAq //

��

QCohpSpétA^I q

��
QCohpUq // QCohpVq

is a pullback square.

7.4.1 Proof of the Beauville-Laszlo Theorem

Theorem 7.4.0.1 is an immediate consequence of the following more general result
(together with the description of the 8-category of quasi-coherent sheaves on a quasi-affine
spectral Deligne-Mumford stack given by Proposition 2.4.1.4):

Proposition 7.4.1.1. Let R be an E2-ring and let I Ď π0R be a finitely generated ideal. Let
φ : AÑ B be a morphism of E1-algebras over R, and suppose that φ induces an equivalence
of I-completions A^I Ñ B^I . Then, for every stable R-linear 8-category C, the diagram

LModApCq //

��

LModBpCq

��
LModLIpAqpCq // LModLIpBqpCq

is a pullback square of 8-categories.
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Lemma 7.4.1.2. Let R be an E2-ring, let I Ď π0R be a finitely generated ideal, and let
φ : AÑ B be a morphism of E1-algebras over R which induces an equivalence A^I Ñ B^I .
Let C be a stable R-linear 8-category. Then, for every object M P LModApCq, the diagram
σ :

M //

��

B bAM

��
LIM // LIpB bAMq

is a pullback square.

Proof. Let K denote the fiber of the map

M Ñ pB bAMq ˆLIpBbAMq LIpMq.

Then K^
I » 0 (since the horizontal maps in the diagram σ are equivalences after I-completion)

and LIpKq » 0 (since the vertical maps in the diagram σ are equivalences after applying
the functor LI). It follows that K » 0, so that σ is a pullback diagram as desired.

Proof of Proposition 7.4.1.1. Form a pullback diagram of 8-categories

D //

��

LModBpCq

��
LModLIpAqpCq // LModLIpBqpCq,

and let us identify objects of D with triples pP,Q, αq, where P is a left B-module object
of C, Q is a left LIpAq-module object of C, and α : LIpBq bB P Ñ LIpBq bLIpAq Q is an
equivalence. Let F denote the canonical map from LModApCq to D, given on objects by

M ÞÑ pB bAM,LIpAq bA N, idLIpBqbAM q.

Then F admits a right adjoint G, given by GpP,Q, αq “ P ˆLIBbLIAQ Q. We first claim
that F is fully faithful: that is, that the unit map uM : M Ñ pG ˝ F qpMq is an equivalence
for each M P LModApCq. This follows immediately from Lemma 7.4.1.2. To complete the
proof that F is an equivalence of 8-categories, it will suffice to show that the functor G is
conservative. Since G is an exact functor between stable 8-categories, we are reduced to
proving that if GpP,Q, αq » 0, then P » Q » 0. Note that for any M in LModR, we have a
canonical equivalence LIM » LIRbRM . In particular, the canonical map B Ñ LIB is an
equivalence after tensoring with LIR. It follows that for every object P P LModBpCq, the
canonical map P Ñ LIpBq bB P becomes equivalence (in C) after tensoring with LIR. We
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conclude that the projection map GpP,Q, αq Ñ Q becomes an equivalence after tensoring
with LIpRq. We then have

Q » LIpAq bLIpAq Q

» pLIRbR LIpAqq bLIpAq Q

» LIRbR Q

» LIRbR GpP,Q, αq

» 0.

It follows that the projection map GpP,Q, αq Ñ P is an equivalence, so that P » 0 as
well.

Remark 7.4.1.3. In the situation of Proposition 7.4.1.1, suppose that the R-linear 8-
category C is compactly generated. For every object R1 P AlgR, let LModR1pCqc denote
the full subcategory of LModR1pCq spanned by the compact objects, so that we have a
commutative diagram of 8-categories τ :

LModApCqc //

��

LModBpCqc

��
LModLIpAqpCq

c // LModLIpBqpCq
c

Then τ is a pullback square. That is, the functor F appearing in the proof of Proposition
7.4.1.1 restricts to an equivalence of 8-categories

F c : LModApCqc Ñ LModBpCqc ˆLModLI pBqpCq
c LModLIpAqpCq

c.

It follows immediately from Proposition 7.4.1.1 that F c is fully faithful. The essential
surjectivity follows from the observation that every object of the fiber product

LModBpCqc ˆLModLI pBqpCq
c LModLIpAqpCq

c

is compact when viewed as an object of LModBpCq ˆLModLI pBqpCq
LModLIpAqpCq.

7.4.2 The Case of Vector Bundles

To recover the classical Beauville-Laszlo theorem, we would like to know that the pullback
diagram

QCohpSpétAq //

��

QCohpSpétBq

��
QCohpUq // QCohpVq
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remains a pullback square if we restrict our attention to the full subcategories spanned by
the locally free sheaves. This is a consequence of the following:

Proposition 7.4.2.1. Let P be one of the following properties of quasi-coherent sheaves:

paq The property of being perfect.

pbq The property of being perfect with Tor-amplitude ď n.

pcq The property of being perfect and n-connective.

pdq The property of being locally free of finite rank.

For every spectral Deligne-Mumford stack X, let QCohpXqP denote the full subcategory of
QCohpXq spanned by those quasi-coherent sheaves having the property P . Let φ : AÑ B be
a map of connective E8-rings, let I Ď π0A be a finitely generated ideal, and define

V //

��

U
u
��

SpétB v // SpétA.

as in Theorem 7.4.0.1. If φ induces an equivalence A^I Ñ B^I , then the diagram of 8-
categories

QCohpSpétAqP //

��

QCohpSpétBqP

��
QCohpUqP // QCohpVqP

is a pullback square.

Remark 7.4.2.2. In the situation of Proposition 7.4.2.1, suppose that A is Noetherian and
that B “ A^I . Then the map φ : AÑ B is flat (Corollary 7.3.6.9), so that the induced map

SpétB > U Ñ SpétA

is a flat covering (see Definition 2.8.3.1). It follows that the conclusion of Proposition 7.4.2.1
is valid for any property P which is local with respect to the flat topology.

Proof of Proposition 7.4.2.1. By virtue of Theorem 7.4.0.1, it will suffice to show that if
F P QCohpSpétAq is a quasi-coherent sheaf such that u˚F and v˚F have the property P ,
then F has the property P . We have four cases to consider.

paq Suppose that u˚F and v˚F are perfect. Then u˚F and v˚F are compact objects
of QCohpUq and QCohpSpétBq (Theorem ??), so that F is a compact object of
QCohpSpétAq (Remark 7.4.1.3) and is therefore perfect.
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pbq Suppose that u˚F and v˚F are perfect with Tor-amplitude ď n, for some integer
n. It follows from paq that F is perfect. We wish to show that F has Tor-amplitude
ď n, for some integer n. Replacing F by a shift if necessary, we may suppose that
F is connective. Using Corollary 6.1.4.7, we are reduced to proving that η˚F is
n-truncated, for any map η : SpétκÑ SpétA where κ is a field. Then η determines a
map of commutative rings π0AÑ κ, whose kernel is a prime ideal p Ď π0A. If I Ď p,
then η factors through v, and the desired result follows from our assumption that v˚F

has Tor-amplitude ď n. If I Ę p, then η factors through u, and the desired result
follows from our assumption that u˚F has Tor-amplitude ď n.

pcq Suppose that u˚F and v˚F are perfect and n-connective. It follows from paq that
F is perfect, and therefore a dualizable object of QCohpSpétAq. Let F_ denote its
dual. Then u˚F_ and v˚F_ have Tor-amplitude ď ´n, so that pbq implies that F_

has Tor-amplitude ď ´n, and therefore F is n-connective.

pdq Suppose that u˚F and v˚F are locally free of finite rank. It follows from pbq and pcq
that F is flat and perfect, hence locally free of finite rank.

We conclude by recording a concrete consequence of Remark 7.4.2.2, which we will need
in §??:

Corollary 7.4.2.3. Let A be a Noetherian commutative ring containing an element a and let
pA denote the completion of A with respect to the principal ideal paq. Suppose we are given a

discrete Ara´1s-module N and a discrete pA-module xM , together with a map α : N » xM ra´1s

which induces an isomorphism α : pAra´1s bAra´1s N Ñ xM ra´1s. Then the canonical map
µ : N‘xM Ñ xM ra´1s is surjective. Moreover, if N and xM are finitely generated over Ara´1s

and pA, respectively, then kerpµq is a finitely generated A-module.

Proof. Using Theorem 7.4.0.1, we deduce that there exists an A-module M equipped with
equivalences xM » pA bA M and N » M ra´1s, compatible with the map α. Tensoring
M with the fiber sequence A Ñ pA ‘ Ara´1s Ñ pAra´1s, we obtain a fiber sequence M Ñ

xM ‘ N
µ
Ñ xM ra´1s. Since the property of being discrete is local with respect to the flat

topology (Proposition 2.8.4.2), we deduce that M is discrete (Remark 7.4.2.2), so that µ is
surjective and M » kerpµq. Now suppose that N and xM are finitely generated over Ara´1s

and pA, respectively. Since the property of being perfect to order 0 is local with respect to
the flat topology (Proposition 2.8.4.2), we deduce that M is perfect to order 0 (Remark
7.4.2.2) and therefore finitely generated as a module over A.



Chapter 8

Formal Spectral Algebraic
Geometry

In Chapter 7, we studied the operation of completing a module M over an E8-ring
R with respect to a finitely generated ideal I Ď π0R. In this chapter, we will study a
geometric counterpart of this operation. Given a spectral Deligne-Mumford stack X and a
(cocompact) closed subset K Ď |X |, we will associate a new object X^K which we call the
formal completion of X along K (Definition 8.1.6.1). The formal completion X^K can be
considered from (at least) two different perspectives:

paq If X is given as a spectrally ringed 8-topos pX ,OXq, then we can identify X^K with a
spectrally ringed ringed 8-topos pXK ,O^X q, where XK denotes the closed subtopos of
X determined by K and O^X is obtained from OX by a suitable completion construction.

pbq If we identify X with its functor of points hX : CAlgcn Ñ S, then we can identify the
formal completion X^K with a subfunctor of hX: namely, the functor which assigns to
each connective E8-ring R the summand X^KpRq Ď MapSpDMpSpétR,Xq consisting
of those maps φ : SpétR Ñ X for which the underlying map of topological spaces
|SpecR| Ñ |X | factors through K.

The formal completion X^K is generally not a spectral Deligne-Mumford stack. However,
it is a prototypical example of a more general type of geometric object called a formal spectral
Deligne-Mumford stack, which we introduce in §8.1 (Definition 8.1.3.1). Following the same
outline as in Chapter 1, we begin from the “geometric” perspective (defining a formal
spectral Deligne-Mumford to be a spectrally ringed 8-topos X “ pX ,OXq satisfying certain
local requiremets) and then establish the equivalence with the “functorial” perspective (by
showing that a formal spectral Deligne-Mumford stack X is determined by its functor of
points hX : CAlgcn Ñ S: see Theorem 8.1.5.1).

615



616 CHAPTER 8. FORMAL SPECTRAL ALGEBRAIC GEOMETRY

In Chapter 6, we defined the 8-category QCohpXq of quasi-coherent sheaves on an
arbitrary functor X : CAlgcn Ñ S (see Definition 6.2.2.1). In the special case where X
is representable by a spectral Deligne-Mumford stack X, we established an equivalence of
QCohpXq with the 8-category QCohpXq Ď ModOX of quasi-coherent OX-modules (Proposi-
tion 6.2.4.1). Our main goal in this first half of this chapter is to prove a variant of this
result for formal spectral Deligne-Mumford stacks. In §8.2, we associate to each formal
spectral Deligne-Mumford stack X a full subcategory QCohpXq Ď ModOX

of quasi-coherent
sheaves of OX-modules (Definition 8.2.4.7); this can be regarded as a globalization of the
theory of complete modules developed in Chapter 7. In §8.3, we show that if X “ hX is the
functor represented by a formal spectral Deligne-Mumford stack X, then there is a canonical
restriction map QCohpXq Ñ QCohpXq which is an equivalence when restricted to connective
quasi-coherent sheaves (Theorem 8.3.4.4).

The formal completion construction X ÞÑ X^K is easiest to analyze in the case where
X “ SpétA is affine. The hypothesis that K Ď |X | is cocompact guarantees that it can
be described as the vanishing locus of a finitely generated ideal I Ď π0A. In this case,
we will denote the formal completion X^K by Spf A and refer to it as the formal spectrum
of A. In this case, the 8-category QCohpSpf Aq can be identified with the 8-category
ModCplpIq

A of I-complete A-modules (Corollary 8.2.4.15). If A itself is I-complete, then this
restricts to an equivalence QCohpSpf Aqaperf » Modaperf

A of almost perfect quasi-coherent
sheaves on Spf A with almost perfect modules over A. In §8.5, we apply the results
of Chapter 5 to prove a much stronger result: if A is I-complete and f : X Ñ SpétA
is a morphism which is proper and almost of finite presentation, then the restriction
functor QCohpXq Ñ QCohpSpf AˆSpétAXq induces an equivalence on almost perfect objects
(Theorem 8.5.0.3). This can be regarded as a derived version of the classical Grothendieck
existence theorem, and has many useful consequences: for example, it implies that the formal
completion construction X ÞÑ Spf A ˆSpétA X is fully faithful when restricted to spectral
algebraic spaces which are proper and locally almost of finite presentation over A (Corollary
8.5.3.4).

One pleasant feature of the present framework is that the Grothendieck existence theorem
and its corollaries (such as the theorem on formal functions and the formal GAGA principle)
do not require any Noetherian hypotheses on A. However, the price we pay for working
with non-Noetherian rings is that we get statements only at the “derived” level (that is,
at the level of 8-categories), rather than at the level of abelian categories. For a general
spectral Deligne-Mumford stack X, the 8-category QCohpXqaperf does not have a (useful)
t-structure. However, the situation is better if X is locally Noetherian: in this case, the full
subcategory QCohpXqaperf Ď QCohpXq is closed under truncations, and therefore inherits
a t-structure from QCohpXq. In §8.4, we show that an analogous situation holds in the
setting of formal spectral algebraic geometry. More precisely, we introduce a notion of
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locally Noetherian formal spectral Deligne-Mumford stack (Definition 8.4.2.1) and show
that, if X is locally Noetherian, then the 8-category QCohpXqaperf of almost perfect quasi-
coherent sheaves on X is closed under truncations (in the larger 8-category ModOX

) and
therefore inherits a t-structure (Corollary 8.4.2.4). Moreover, the heart of QCohpXqaperf

can be identified with the abelian category of coherent sheaves on the underlying classical
formal stack (for a precise statement, see 8.4.3.5 and Example 8.4.3.6). Specializing to
the case where A is a Noetherian E8-ring which is I-complete for some I Ď π0A and
X “ Spf A ˆSpétA X for some X which is proper and almost of finite presentation over A,
the equivalence QCohpXqaperf » QCohpXqaperf of Theorem 8.5.0.3 is t-exact (Proposition
8.4.2.10) and therefore induces equivalence of abelian categories, from which one can extract
the classical Grothendieck existence theorem (Theorem 8.5.0.1).

Remark 8.0.0.1. In non-Noetherian situations, the failure of the Grothendieck existence
theorem at the level of abelian categories is only to be expected, since the operation of
I-completion M ÞÑM^

I does not have good exactness properties.

In classical algebraic geometry, one very useful consequence of the Grothendieck existence
theorem (or, more precisely, of Grothendieck’s theorem on formal functions) is Zariski’s
connectedness theorem: if f : X Ñ Z is a proper morphism of Noetherian schemes, then f

admits a Stein factorization X
g
ÝÑ Y

h
ÝÑ Z where h is a finite morphism and g has connected

(geometric) fibers. In §8.7, we discuss Stein factorizations and show that an analogous
assertion holds in spectral algebraic geometry (Theorem ??). We also discuss a related
construction which we call the reduced Stein factorization (Definition 8.7.3.2). The theory
of reduced Stein factorizations will require some basic facts about geometrically reduced
morphisms of spectral Deligne-Mumford stacks, which we discuss in §8.6.
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8.1 Formal Spectral Deligne-Mumford Stacks

Let us begin with a brief review of the theory of the classical theory of (locally Noetherian)
formal schemes.

Construction 8.1.0.1 (The Formal Spectrum). Let A be a Noetherian commutative ring
and let I Ď A be an ideal. The formal spectrum of A (with respect to I) is the ringed space
p| Spf A|,O |Spf A|q given as follows:
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• The underlying topological space |Spf A| is the closed subset of the Zariski spectrum
|SpecA| given by the vanishing locus of the ideal I: that is, the collection of those
prime ideals p Ď A which contain I. We endow | Spf A| with the subspace topology, so
that it has a basis of open sets of the form Ux “ tp Ď A : I Ď p, x R pu for x P X.

• The structure sheaf O |Spf A| is given on basic open sets by the formula O |Spf A|pUxq “

lim
ÐÝ
pA{Inqrx´1s. In other words, O |Spf A| is the inverse limit of the structure sheaves of

the affine schemes SpecA{In, each of which has underlying topological space | Spf A|.

Remark 8.1.0.2. In the setting of Construction 8.1.0.1, it is not necessary to assume that
A is I-adically complete. However, it is harmless to add this assumption: replacing A by its
I-adic completion lim

ÐÝ
A{In does not change the ringed space p| Spf A|,O |Spf A|q.

Definition 8.1.0.3. Let pX,OXq be a ringed space. We say that pX,OXq is a locally
Noetherian formal scheme if there exists a covering of X by open subsets Uα such that each
of the ringed spaces pUα,OX |Uαq has the form p| Spf Aα|,O |Spf Aα|q, for some Noetherian
ring Aα (and some ideal Iα Ď Aα).

Our goal in this section is to introduce a variant of Definition 8.1.0.3 to the setting of
spectral algebraic geometry. We begin in §8.1.1 by introducing the formal spectrum Spf A of
an E8-ring A with respect to an ideal I Ď π0A (Construction 8.1.1.10). Our definition is
loosely modeled on Construction 8.1.0.1, with a few important differences:

paq In Construction 8.1.1.10, we allow A to be a connective E8-ring (rather than an
ordinary commutative ring).

pbq In Construction 8.1.1.10, we do not require A to be Noetherian (however, we do require
the ideal I Ď π0A to be finitely generated).

pcq In place of the topological space |Spf A| (which is a closed subset of the Zariski
spectrum |SpecA|), we consider an 8-topos Shvad

A (which is a closed subtopos of the
8-topos Shvét

A). In other words, we work locally with respect to the étale topology,
rather than the Zariski topology.

Warning 8.1.0.4. In Construction 8.1.0.1, the hypothesis that A is Noetherian is not
necessary. However, when applied to non-Noetherian rings, Construction 8.1.0.1 yields a
notion of formal spectrum which is not compatible with Construction 8.1.1.10. Roughly
speaking, this is because Construction 8.1.0.1 involves the I-adic completion functor A ÞÑ
lim
ÐÝ

A{In, while Construction 8.1.1.10 involves the I-completion functor A ÞÑ A^I of Notation
7.3.1.5. We refer the reader to §7.3 for a comparison of these two notions of completion (and
some indication of why the latter might be preferable in non-Noetherian contexts).



620 CHAPTER 8. FORMAL SPECTRAL ALGEBRAIC GEOMETRY

In §8.1.3, we define a notion of formal spectral Deligne-Mumford stack (Definition 8.1.3.1).
Here we take our cue from Definition 8.1.0.3: a formal spectral Deligne-Mumford stack is a
spectrally ringed 8-topos X which is locally of the form Spf A, for some connective E8-ring
A (and some finitely generated ideal I Ď π0A).

The collection of formal spectral Deligne-Mumford stacks can be organized into an
8-category fSpDM, which contains the 8-category SpDM of spectral Deligne-Mumford
stacks as a full subcategory. An underlying theme of this section is that an object X P fSpDM
can be “built from” the ordinary spectral Deligne-Mumford stacks which map to X. In
§8.1.3, we will give a precise articulation of this idea in the case where X “ Spf A is a formal
spectrum: in this case, we can identify X with the direct limit lim

ÝÑ
SpétB, where B ranges

over all connective A-algebras for which the ideal Ipπ0Bq is nilpotent; here the direct limit is
formed in the 8-category of locally spectrally ringed 8-topoi (Proposition 8.1.2.1). In §8.1.5,
we use this result to show that a formal spectral Deligne-Mumford stack X is determined by
its “functor of points” R ÞÑ MapfSpDMpSpétR,Xq (Theorem 8.1.5.1).

For our purposes, the theory of formal spectral Deligne-Mumford stacks is primarily
of interest as a tool for proving results about ordinary spectral Deligne-Mumford stacks.
In §8.1.6, we will define the formal completion X^K of a spectral Deligne-Mumford stack X
along a (cocompact) closed subset K Ď |X | (Definition 8.1.6.1). Roughly speaking, X^K is
a formal spectral Deligne-Mumford stack which encodes the behavior of X “infinitesimally
close” to K. This language will play an essential role when we discuss the Grothendieck
existence theorem in §8.5.

8.1.1 Adic E8-Rings and Formal Spectra

We start by reviewing some terminology from commutative algebra.

Definition 8.1.1.1. Let A be a commutative ring. Every ideal I Ď A determines a topology
on A, which has a basis of open sets of the form x` In Ď A where x P A and n ě 0. We
will refer to this topology as the I-adic topology.

If A is a topological commutative ring, we say that an ideal I Ď A is an ideal of definition
if the topology on A coincides with the I-adic topology.

An adic ring is a commutative ring A equipped with a topology which admits a finitely
generated ideal of definition. We let CAlg♥

ad denote the category whose objects are adic
rings and whose morphisms are continuous ring homomorphisms.

Warning 8.1.1.2. Definition 8.1.1.1 is not standard: many authors allow topological com-
mutative rings which admit an ideal of definition I Ď A, without imposing the requirement
that I is finitely generated. Additionally, it is common to also require that A is I-adically
complete (that is, that the canonical map AÑ lim

ÐÝ
A{In is an isomorphism), which we do

not assume.
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Remark 8.1.1.3. Let A and A1 be adic rings having finitely generated ideals of definition
I Ď A and I 1 Ď A1. Then a ring homomorphism φ : A Ñ A1 is continuous if and only if
φpInq Ď I 1 for some n " 0. Equivalently, φ is continuous if and only if the induced map
| SpecA1| Ñ |SpecA| carries the vanishing locus of I 1 to the vanishing locus of I.

Remark 8.1.1.4. Let A be a commutative ring. For any finitely generated ideal I Ď A,
we can regard A as an adic ring by equipping it with the I-adic topology. Note that if
I, J Ď A are finitely generated ideals, then the I-adic topology and J-adic topology coincide
if and only if In Ď J and Jn Ď I for n " 0. Equivalently, the I-adic topology and J-adic
topology coincide if and only if I and J have the same vanishing locus in the Zariski spectrum
| SpecA|.

Definition 8.1.1.5. An adic E8-ring is a connective E8-ring together with a topology on
the commutative ring π0A, which makes π0A into an adic ring (in the sense of Definition
8.1.1.1). We let CAlgcn

ad denote the fiber product CAlg♥
adˆCAlg♥ CAlgcn. We will refer to

CAlgcn
ad as the 8-category of adic E8-rings.

Remark 8.1.1.6. Put more informally: the objects of CAlgcn
ad are adic E8-rings, and the

morphisms in CAlgcn
ad are morphisms φ : AÑ A1 of E8-rings for which the underlying ring

homomorphism π0AÑ π0A
1 is continuous.

Remark 8.1.1.7. Let A be a connective E8-ring. Using Remark 8.1.1.4, we see that there
is a canonical bijection between the following data:

• Topologies on π0A which admit a finitely generated ideal of definition.

• Closed subsets X Ď |SpecA| with quasi-compact complement.

By means of this bijection, we can identify adic E8-rings with pairs pA,Xq, where A is a
connective E8-ring and X Ď |SpecA| is a closed set with quasi-compact complement. Under
this identification, a morphism of adic E8-rings from pA,Xq to pA1, X 1q is a morphism of
E8-rings φ : AÑ A1 for which the induced map |SpecA1| Ñ | SpecA| carries X 1 into X.

Notation 8.1.1.8. Let A be an adic E8-ring and let Shvét
A denote the8-category of functors

F : CAlgét
A Ñ S which are sheaves with respect to the étale topology. Let X Ď | SpecA| be

the vanishing locus of an ideal of definition of π0A. We let Shvad
A denote the closed subtopos

of Shvét
A corresponding to the closed subset X Ď | SpecA|. More precisely, we let Shvad

A

denote the full subcategory of Shvét
A spanned by those sheaves F having the property that

F pBq is contractible whenever X ˆ|SpecA| | SpecB| is empty.

Remark 8.1.1.9. Let A be an adic E8-ring and let I Ď π0A be a finitely generated ideal
of definition. Using Proposition 3.1.4.1, we obtain a canonical equivalence of 8-categories
Shvad

A » Shvét
pπ0Aq{I

.
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Construction 8.1.1.10. Let A be an adic E8-ring and let OSpétA be the structure sheaf of
the étale spectrum SpétA, which we identify with the inclusion functor CAlgét

A ãÑ CAlgA. Let
I Ď π0A be a finitely generated ideal of definition. We let OSpf A : CAlgét

A Ñ CAlgA denote
the composition of OSpétA with the I-completion functor, given by B ÞÑ B^I . Note that
OSpf A is still a sheaf with respect to the étale topology (since the formation of I-completions
preserves small limits). Moreover, OSpf ApBq “ B^I vanishes whenever I generates the unit
ideal of π0B. It follows that we can regard OSpf A as a CAlgA-valued sheaf on the closed
subtopos Shvad

A Ď Shvét
A . We let Spf A denote the spectrally ringed 8-topos pShvad

A ,OSpf Aq.
We will refer to Spf A as the formal spectrum of A.

Example 8.1.1.11. In the situation of Construction 8.1.1.10, suppose that I is nilpotent:
that is, the commutative ring π0A is equipped with the discrete topology. Then the formal
spectrum Spf A is equivalent to the étale spectrum SpétA.

Remark 8.1.1.12. Let A be an adic E8-ring. Then the inclusion functor Shvad
A ãÑ Shvét

A

admits a (left exact) left adjoint i˚ : Shvét
A Ñ Shvad

A . We will say that an object U P Shvad
A is

affine if it has the form i˚U , where U P Shvét
A is affine (in other words, U is corepresentable

by some object B P CAlgét
Aq.

Note that U P Shvad
A is affine if and only if its image under the equivalence Shvad

A »

Shvét
pπ0Aq{I

of Remark 8.1.1.9 is affine.

Proposition 8.1.1.13. Let A be an adic E8-ring and let Spf A “ pShvad
A ,OSpf Aq be its

formal spectrum (Construction 8.1.1.10). Then the structure sheaf OSpf A is connective and
strictly Henselian.

The proof of Proposition 8.1.1.13 will require an elementary observation about the
formation of completions:

Lemma 8.1.1.14. Let R Ñ R1 be an étale morphism of connective E8-rings and let S
be a connective E8-algebra over R which is I-complete for some finitely generated ideal
I Ď π0S. Then the canonical map ρ : MapCAlgRpR

1, Sq Ñ MapCAlgRpR
1, pπ0Sq{Iq is a

homotopy equivalence.

Proof. Without loss of generality we may assume that S is discrete. Proceeding by induction
on the number of generators of I, we can assume that I “ pxq is a principal ideal. For
each n ě 1, let Sn denote the tensor product S bZrxs Zrxs{pxnq. Then we have a canonical
isomorphism S{I » π0S1, and the map ρ factors as a composition

MapCAlgRpR
1, Sq

ρ1
ÝÑ lim
ÐÝ
ně1

MapCAlgRpR
1, Snq

ρ2
ÝÑ MapCAlgRpR

1, S1q
ρ3
ÝÑ MapCAlgRpR

1, S{Iq.

The map ρ1 is a homotopy equivalence by virtue of our assumption that S is I-complete, the
map ρ2 is a homotopy equivalence since each Sn`1 is a square-zero extension of Sn, and the
map ρ3 is an equivalence since S1 is a square-zero extension of S{I.
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Proof of Proposition 8.1.1.13. Let A be an adic E8-ring. Note that if U P Shvad
A is affine

(in the sense of Remark 8.1.1.12), then OSpf ApUq » B^I for some étale A-algebra B and
is therefore connective. Since Shvad

A is generated under small colimits by affine objects, it
follows that OSpf A is connective. We now argue that OSpf A is strictly Henselian. Let R
be a commutative ring, let tR Ñ Rαu be a finite collection of étale maps for which the
map RÑ

ś

Rα is faithfully flat, and suppose we are given a map ρ : RÑ pπ0 OSpf AqpUq

for some object U P Shvad
A . We wish to show that there exists a covering tUα Ñ Uu of U

such that each of the composite maps RÑ pπ0 OSpf AqpUq Ñ pπ0 OSpf ApUαq factors through
Rα. Without loss of generality, we may assume that R is a finitely generated commutative
ring. The desired conclusion is local on U , so we may further and that ρ is given by a map
ρ : RÑ π0pOSpf ApUqq. Let i˚ : Shvét

A Ñ Shvad
A be a left adjoint to the inclusion. Localizing

further, we may assume that U is affine: that is, we have U » i˚hB, where hB denotes the
functor corepresented by some étale A-algebra B. In this case, we can regard ρ as a ring
homomorphism RÑ π0pB

^
I q. For each index α, set Cα “ Rα bR pπ0Bq{Ipπ0Bq. Using the

classification of étale morphisms (Proposition B.1.1.3), we can write each Cα as a tensor
product Bα bB pπ0Bq{Ipπ0Bq, where Bα is étale over B. Setting Uα “ i˚Bα, we obtain a
covering tUα Ñ Uu in the 8-topos Shvad

A . We will complete the proof by showing that each
of the composite maps R ρ

ÝÑ π0pOSpf ApUqq Ñ π0pOSpf ApUαqq » π0pBαq
^
I factors through

Rα. Set S “ π0pBαq
^
I . Then S is I-complete (Theorem 7.3.4.1), so Lemma 8.1.1.14 implies

that the map HomRpRα, Sq Ñ HomRpRα, S{ISq is bijective. We conclude by observing that
the codomain of this map is nonempty (since S{IS is isomorphic to Cα).

8.1.2 Functoriality of the Formal Spectrum

Let A be an adic E8-ring and let I Ď π0A be a finitely generated ideal of definition I.
Roughly speaking, we can think of the formal spectrum Spf A as the “formal completion” of
SpétA along the vanishing locus K Ď |SpecA| of the ideal I. We now articulate this idea
more precisely by showing that Spf A can be identified with the colimit lim

ÝÑ
SpétB, where B

ranges over all connective A-algebras for which the underlying map | SpecB| Ñ |SpecA|
factors through K (we will revisit the same idea in §8.1.6).

Proposition 8.1.2.1. Let 8T oploc
CAlg denote the 8-category introduced in Definition 1.4.2.1,

whose objects are spectrally ringed 8-topoi pX ,Oq, where O is strictly Henselian. The étale
spectrum functor Spét : pCAlgcnqop Ñ 8T oploc

CAlg admits a left Kan extension along the
inclusion pCAlgcnqop ãÑ pCAlgcn

adq
op. This left Kan extension is given on objects by the

construction A ÞÑ Spf A.

The proof of Proposition 8.1.2.1 will require some preliminaries.
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Lemma 8.1.2.2. Let A be an adic E8-ring having a finitely generated ideal of definition
I Ď π0A. Then there exists a tower ¨ ¨ ¨ Ñ A4 Ñ A3 Ñ A2 Ñ A1 in the 8-category CAlgA
with the following properties:

paq Each Ai is a connective E8-algebra over A, and each of the maps Ai`1 Ñ Ai induces
a surjection π0Ai`1 Ñ π0Ai with nilpotent kernel.

pbq For every connective E8-ring B, the canonical map lim
ÝÑn

MapCAlgpAn, Bq Ñ MapCAlgpA,Bq

induces a homotopy equivalence of lim
ÝÑn

MapCAlgpAn, Bq with the summand of MapCAlgpA,Bq

consisting of those maps φ : AÑ B which annihilate some power of the ideal I.

pcq Each of the E8-rings An is almost perfect when regarded as an A-module.

Proof. Choose any element x P π0A. We will construct a tower of E8-algebras over A

¨ ¨ ¨ Ñ Apxq3 Ñ Apxq2 Ñ Apxq1

having the following properties:

paxq Each Apxqi is a connective E8-ring, and each of the maps Apxqi`1 Ñ Apxqi determines
a surjection π0Apxqi`1 Ñ π0Apxqi with nilpotent kernel.

pbxq That is, for every connective E8-ring B, the canonical map lim
ÝÑn

MapCAlgpApxqn, Bq Ñ

MapCAlgpA,Bq induces a homotopy equivalence of lim
ÝÑn

MapCAlgpApxqn, Bq with the
summand of MapCAlgpA,Bq consisting of those maps φ : A Ñ B which annihilate
some power of x.

pcxq Each of E8-rings Apxqn is almost perfect when regarded as an A-module.

Assuming that this can be done, choose a finite set of generators x1, . . . , xk for the ideal I.
Setting An “ Apx1qn bA Apx2qn bA ¨ ¨ ¨ bA Apxkqn, we obtain a tower of E8-algebras over
A satisfying conditions paq, pbq, and pcq.

It remains to construct the tower tApxqnu. For each integer n ą 0, let Attnu denote a
free E8-algebra over A on one generator tn. We have A-algebra morphisms αn : Attnu Ñ A

and βn : Attnu Ñ A, determined uniquely up to homotopy by the requirements that
tn ÞÑ xn P π0A and tn ÞÑ 0 P π0A. Moreover, we have maps γn : Attnu Ñ Attn´1u

determined up to homotopy by the requirement that tn ÞÑ xtn´1 P π0Attn´1u. For each
n ě 0, the diagram

A
id // A

Attnu

αn

OO

βn
��

γn // Attn´1u

αn´1

OO

βn´1
��

A
id // A
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commutes up to homotopy and can therefore be lifted to a commutative diagram in CAlgA
(since it is indexed by a partially ordered set whose nerve has dimension ď 2).

¨ ¨ ¨ // A
id // A

id // A

¨ ¨ ¨

OO

��

// Att3u
γ3 //

α3

OO

β3
��

Att2u

α2

OO

β2
��

γ2 // Att1u

α1

OO

β1
��

¨ ¨ ¨ // A
id // A

id // A.

For each n ą 0, let Apxqn denote the colimit of the nth column of this diagram, so that we
have a tower

¨ ¨ ¨ Ñ Apxq3 Ñ Apxq2 Ñ Apxq1

where Apxqn » A bAttnu A is the A-algebra obtained by freely “coning off” the element
xn P π0A. In particular, we have π0Apxqn » pπ0Aq{px

nq, thereby verifying condition paxq.
To verify pcxq, it will suffice to show that A is almost perfect when regarded as an Attnu-
module via β. For this, it suffices to show that the sphere spectrum is almost perfect when
regarded as an Sttnu-module via the map of E8-rings Sttnu Ñ S given by tn ÞÑ 0 P π0S.
Since Sttnu is Noetherian (Proposition HA.7.2.4.31 ), this is equivalent to the assertion
that each homotopy group πkS is finitely generated as a module over the commutative
ring π0pSttnuq » Zrtns (Proposition HA.7.2.4.17 ). This is clear, since the stable homotopy
groups of spheres are finitely generated abelian groups.

To verify pbxq, we note that if φ : A Ñ B is a map of connective E8-rings, then the
homotopy fiber of the map lim

ÝÑn
MapCAlgpApxqn, Bq Ñ MapCAlgpA,Bq over the point φ is

given by a sequential colimit lim
ÝÑn

Pn, where each Pn can be identified with a space of paths
in Ω8B joining the base point to a suitably chosen representative for the image of xn in π0B.
Let y P π0B be the image of x under φ. If y is not nilpotent, then each Pn is empty. Assume
otherwise; we wish to show that P8 “ lim

ÝÑ
Pn is contractible. Note that if Pn contains

some point pn, the we have canonical isomorphisms πkpPn, pnq » πk`1B. For m ě n, let
pm denote the image of pn in Pm, and let p8 denote the image of pn in P8. Note that the
induced map

πk`1B » πkpPn, pnq Ñ πkpPm, pmq Ñ πk`1B

is given by multiplication by ym´n. Since y is nilpotent, this map is trivial for m " n. It
follows that πkpP8, p8q » lim

ÝÑ
πkpPm, pmq is trivial. Since pn was chosen arbitrarily, we

conclude that P8 is contractible as desired.

Lemma 8.1.2.3. Let A be an adic E8-ring, let I Ď π0A be a finitely generated ideal of
definition, and let tAnuně1 be as in Lemma 8.1.2.2. For every connective A-module M , the
canonical map M Ñ lim

ÐÝ
pAn bAMq exhibits lim

ÐÝ
pAn bAMq as an I-completion of M .
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Proof. For each R-module M , set UpMq “ lim
ÐÝ
pAn bA Mq. Note that each An bA M

is I-complete (since I generates a nilpotent ideal in An), so that UpMq is I-complete.
Consequently, the canonical map M Ñ UpMq factors as a composition M ÑM^

I
βM
ÝÝÑ UpMq.

We wish to show that βM is an equivalence when M is connective.
Choose an element x P I, and let Cpxnq denote the cofiber of the map of A-modules

AÑ A given by multiplication by xn. Since fibpβM q is I-complete, we have

fibpβM q » lim
ÐÝ

fibpβM q bA Cpxnq;

it will therefore suffice to show that each tensor product fibpβM q bA Cpxnq vanishes. Since
Cpxnq can be obtained as a successive extension of n copies of Cpxq, we may suppose that
n “ 1. Note that fibpβM q bA Cpxq » fibpβMbACpxqq. Consequently, to show that βM is an
equivalence, it suffices to show that βMbACpxq is an equivalence.

Choose generators x1, . . . , xn P I for the ideal I. Using the above argument repeatedly,
we are reduced to proving that βN is an equivalence when N “ M bA Cpx1q bA Cpx2q b

¨ ¨ ¨ bA Cpxnq. For 1 ď i ď n, we observe that N can be obtained as a successive extension
of 2n´1 (shifted) copies of M bA Cpxiq. Since the homotopy groups of M bA Cpxiq are
annihilated by multiplication by x2

i , we conclude that each of the homotopy groups of N
is annihilated by multiplication by x2n

i . We are therefore reduced to proving the following
special case of Lemma 8.1.2.3:

p˚q Let M be a connective A-module, and suppose that there exists an integer k such that
each homotopy group πiM is annihilated by the ideal Ik Ď π0A. Then βM : M^

I Ñ

UpMq is an equivalence.

To prove p˚q, it suffices to show that for every integer j ě 0, the map πjM^
I Ñ πjUpMq

is an isomorphism of abelian groups. Both M^
I and UpMq are right t-exact functors of M .

We may therefore replace M by τďjM and thereby reduce to proving p˚q under the additional
assumption that M is p-truncated for some integer p. We now proceed by induction on p.
If p ă 0, then M » 0 and there is nothing to prove. Otherwise, we have a map of fiber
sequences

ΣppπpMq
^
I

//

��

M^
I

��

// pτďp´1Mq
^
I

��
ΣpUpπpMq // UpMq // Upτďp´1Mq

where the right vertical map is an equivalence by our inductive hypothesis. We may therefore
replace M by πpM and thereby reduce to the case where M is discrete. In this case, M has
the structure of a module over the discrete A-algebra R “ pπ0Aq{I

k.
For n ě 1, set Rn “ An bA R. Since I generates a nilpotent ideal in R, the tower of

R-algebras tRnuně1 is equivalent (as a Pro-object of CAlgcn
R ) to the constant diagram taking



8.1. FORMAL SPECTRAL DELIGNE-MUMFORD STACKS 627

the value R. It follows that we can identify βM with the canonical map

M »M^
I Ñ UpMq » lim

ÐÝ
tAn bAMu » lim

ÐÝ
tRn bRMu » RbRM,

which is evidently an equivalence.

Proof of Proposition 8.1.2.1. Let A be an adic E8-ring. We will show that the functor
Spét : pCAlgcnqop Ñ8T opsHen

CAlg admits a left Kan extension to pCAlgcn
adq

op at A, whose value
at A can be identified with Spf A. Let tAnuną0 be a tower of A-algebras which satisfies the
requirements of Lemma 8.1.2.2, so that the construction n ÞÑ An determines a right cofinal
map

NpZop
ą0q Ñ CAlgcnˆCAlgcn

ad
pCAlgcn

adqA{.

It will therefore suffice to show that we can identify Spf A with a colimit of the diagram
tSpétAnuną0 in the 8-category 8T opsHen

CAlg.
Since each of the transition maps An`1 Ñ An induces a surjective ring homomorphism

π0An`1 Ñ π0An with nilpotent kernel, the spectrally ringed 8-topoi tSpétAnuną0 all have
the same underlying 8-topos, which we can identify with Shvad

A (see Remark 8.1.1.9). Let
us use this identification to view each structure sheaf OSpétAn as a CAlg-valued sheaf on
Shvad

A , given by the functor

CAlgét
A Ñ CAlg B ÞÑ pAn bA Bq.

Applying Lemma 8.1.2.3, we see that OSpf A can be identified with the limit of the tower
tOSpétAnu in the 8-category ShvCAlgpShvad

A q. It follows that we can identify Spf A with
the colimit lim

ÝÑ
SpétAn in the 8-category 8T opCAlg of all spectrally ringed 8-topoi. To

show that it is also a colimit of the diagram tSpétAnuną0 in the subcategory 8T oploc
CAlg,

we must verify the following:

p˚q Let X “ pX ,Oq be an object of 8T oploc
CAlg. Then a morphism of spectrally ringed

8-topoi f : Spf AÑ X is local if and only if each of the composite maps SpétAn Ñ
Spf A f

ÝÑ X is local.

To prove this, it suffices to show that each of the maps OSpf A Ñ OSpétAn is local (see
Remark 1.2.1.7), which follows immediately from Lemma 8.1.1.14.

Remark 8.1.2.4. Let A be an adic E8-ring with a finitely generated ideal of definition
I Ď π0A, and let pA denote the I-completion A^I . Choose a tower tAnuną0 satisfying the
requirements of Lemma 8.1.2.2 for A. The fiber of the unit map u : AÑ pA is I-local and
each An is I-nilpotent, so the tensor product fibpuqbAAn vanishes. It follows that u induces
equivalences An Ñ pAbA An, from which we deduce that the tower tAnuną0 also satisfies
the requirements of Lemma 8.1.2.2 for pA (which we regard as an adic E8-ring by equipping
π0 pA with the pI-adic topology for pI “ Ipπ0 pAq).



628 CHAPTER 8. FORMAL SPECTRAL ALGEBRAIC GEOMETRY

It follows from Proposition 8.1.2.1 that u induces an equivalence of formal spectra
Spfpuq : Spf pA Ñ Spf A (both the domain and codomain of Spfpuq can be identified with
the colimit of the diagram tSpétAnuną0 in the 8-category 8T oploc

CAlg).

8.1.3 Formal Spectral Deligne-Mumford Stacks

We are now ready to introduce our main objects of interest.

Definition 8.1.3.1. Let X “ pX ,OXq be a spectrally ringed 8-topos. We will say that X

is an affine formal spectral Deligne-Mumford stack if there exists an equivalence X » Spf A,
where A is an adic E8-ring.

More generally, we will say that X is a formal spectral Deligne-Mumford stack if there
exists a covering of X by objects tUα P X u such that each pX {Uα ,OX |Uαq is an affine formal
spectral Deligne-Mumford stack. We let fSpDM denote the full subcategory of 8T oploc

CAlg
spanned the formal spectral Deligne-Mumford stacks.

Any spectral Deligne-Mumford stack X is a formal spectral Deligne-Mumford stack: this
follows from Example 8.1.1.11. Moreover, X is affine as a formal spectral Deligne-Mumford
stack if and only if it is affine as a spectral Deligne-Mumford stack. This is an immediate
consequence of the following:

Proposition 8.1.3.2. Let A be an adic E8-ring with finitely generated ideal of definition
I Ď π0A. The following conditions are equivalent:

p1q The ideal I is nilpotent.

p2q The canonical map Spf AÑ SpétA is an equivalence of spectrally ringed 8-topoi.

p3q The formal spectrum Spf A is a spectral Deligne-Mumford stack.

Proof. The implications p1q ñ p2q ñ p3q are immediate. We will complete the proof by show-
ing that p3q ñ p1q. Note that Spf A is a quasi-compact, quasi-separated spectral algebraic
space (the quasi-compactness and quasi-separatedness follow from the fact that the underlying
8-topos of Spf A is Shvad

A , and the fact that Spf A is a spectral algebraic space follows from
Proposition 8.1.5.2). It follows that the global sections functor Γ : QCohpSpf Aq Ñ ModA
commutes with filtered colimits. Every element x P I determines a global section of OSpf A
which is nowhere invertible. It follows that OSpf Arx

´1s » 0, so that the unit element 1 P π0A

has vanishing image in ΓpSpf A; OSpf Arx
´1sq » ΓpSpf A; OSpf Aqrx

´1s “ Arx´1s. It follows
that x is nilpotent. Allowing x to vary (and invoking our assumption that I is finitely
generated), we conclude that I is nilpotent.

The condition of being a formal spectral Deligne-Mumford stack is local:
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Proposition 8.1.3.3. Let X “ pX ,OXq be a spectrally ringed 8-topos. Then:

paq If X is a formal spectral Deligne-Mumford stack, then XU “ pX {U ,OX |U q is also a
formal spectral Deligne-Mumford stack for any object U P X .

pbq If there exists a covering tUαu of X such that each XUα is a formal spectral Deligne-
Mumford stack, then X is a formal spectral Deligne-Mumford stack.

Proof. Assertion pbq follows immediately from the definitions. To prove paq, let us assume
that X is a formal spectral Deligne-Mumford stack and choose any object U P X ; we
wish to show that XU is also a formal spectral Deligne-Mumford stack. By virtue of pbq,
this can be tested locally on X. We may therefore assume that X is affine: that is, there
exists an equivalence X » Spf A for some adic E8-ring A with a finitely generated ideal
of definition I Ď π0A. Let us identify X with the 8-topos Shvad

A . Then X is generated
under small colimits by objects which are affine (in the sense of Remark 8.1.1.12). We may
therefore assume without loss of generality that U is affine: that is, it is the sheafification
of the functor corepresented by some étale A-algebra B P CAlgét

A . In this case, we have an
equivalence XU » Spf B (where we regard B as an adic E8-ring by taking Ipπ0Bq as an
ideal of definition).

Definition 8.1.3.4. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack. We will
say that an object U P X is affine if pX {U ,OX |U q is an affine formal spectral Deligne-Mumford
stack.

Example 8.1.3.5. Let X “ pX ,OXq be a spectral Deligne-Mumford stack. Then an object
U P X is affine in the sense of Definition 8.1.3.4 if and only if it is affine in the sense of
Definition 1.4.7.8: this follows from Proposition 8.1.3.2.

Proposition 8.1.3.6. Let A be an adic E8-ring and consider the formal spectrum Spf A “
pShvad

A ,OSpf Aq. Then an object U P Shvad
A is affine in the sense of Definition 8.1.3.4 if and

only if it is affine in the sense of Remark 8.1.1.12: that is, if and only if it the pullback of
an affine object of Shvét

A.

Proof. The “if” direction follows immediately from the definitions. To prove the converse,
suppose that X “ ppShvad

A q{U ,OSpf A |U q is equivalent to Spf B for some adic E8-ring B.
Without loss of generality, we may assume that B is complete (Remark 8.1.2.4) so that
the projection map XÑ Spf A is determined by a morphism of adic E8-rings f : AÑ B.
Let I Ď π0A and J Ď π0B be ideals of definition, and set A0 “ pπ0Aq{I. Let U 1 denote
the image of U under the equivalence of 8-topoi Shvad

A » Shvét
A0 of Example 8.1.1.9; we

wish to show that U 1 is affine. Set U “ ppShvét
A0q{U 1 ,OSpétA0 |U 1q, so that U is a spectral
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Deligne-Mumford stack which fits into a pullback diagram

U //

��

Spf B

��
SpétA0 // Spf A

in the 8-category 8T opsHen
CAlg. Set B0 “ A0 bA B, and regard B0 as an adic E8-ring by

equipping π0B0 with the J-adic topology. It follows from Proposition 8.1.5.2 that U and
Spf B0 represent the same functor CAlgcn Ñ S, and are therefore equivalent as spectrally
ringed 8-topoi (Theorem 8.1.5.1). Invoking Example 8.1.3.5, we deduce that U 1 P pShvét

A0q

is affine, as desired.

We have the following analogue of Proposition 1.4.7.9:

Proposition 8.1.3.7. Let pX ,Oq be an formal spectral Deligne-Mumford stack, and let X 0
be the full subcategory of X spanned by the affine objects. Then X is generated by X 0 under
small colimits (in other words, X is the smallest full subcategory of itself which contains X 0
and is closed under small colimits).

Proof. Let X 1 be the smallest full subcategory of X which contains X 0 and is closed under
small colimits. Fix an object X P X ; we wish to show that X P X 1. Our assumption
that pX ,Oq is a formal spectral Deligne-Mumford stack guarantees that we can choose an
effective epimorphism u : U Ñ X, where each U is a coproduct of objects belonging to X 0.
Let U‚ be the Čech nerve of u. Since X » |U‚|, it will suffice to show that each Un belongs
to X 1. Choose a projection map v : Un Ñ U . Since U is a coproduct of objects belonging to
X 0, we can write Un as a coproduct of objects V which admit a map V ÑW , for W P X 0.
We may therefore replace X by X {W and thereby reduce to the case where pX ,Oq is affine,
in which case the desired result is obvious (Proposition 8.1.3.6).

8.1.4 The Reduction of a Formal Spectral Deligne-Mumford Stack

Let pX,OXq be a scheme. Then we can associate to X a reduced scheme Xred having
the same underlying topological space, whose structure sheaf is given by Ored

X “ OX { I,
where I Ď OX is the subsheaf of (locally) nilpotent sections of OX . The scheme Xred is
then universal among reduced schemes equipped with a map to X. We now generalize this
construction to the setting of formal spectral Deligne-Mumford stacks:

Definition 8.1.4.1. Let f : X0 Ñ X be a morphism of formal spectral Deligne-Mumford
stacks. We will say that f exhibits X0 as a reduction of X if the following pair of conditions
is satisfied:
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paq The formal spectral Deligne-Mumford stack X0 is a reduced spectral Deligne-Mumford
stack.

pbq For every reduced spectral Deligne-Mumford stack Y, composition with f induces a
homotopy equivalence

MapSpDMpY,X0q Ñ MapfSpDMpY,Xq.

Remark 8.1.4.2. It follows immediately from the definitions that if a formal spectral
Deligne-Mumford stack X admits a reduction X0, then X0 is uniquely determined (up to
equivalence) and depends functorially on X. We will indicate this dependence by denoting
X0 by Xred.

Remark 8.1.4.3. In the situation of Definition 8.1.4.1, it suffices to verify condition pbq in
the special case where Y is affine.

We now show that every formal spectral Deligne-Mumford stack X admit a reduction:

Proposition 8.1.4.4. Let X be a formal spectral Deligne-Mumford stack. Then there exists
a morphism f : Xred Ñ X which exhibit Xred as a reduction of X. Moreover, the morphism f

is an equivalence of the underlying 8-topoi.

Example 8.1.4.5. Let X “ pX ,OXq be a spectral Deligne-Mumford stack. Then Xred is
given by pX ,Ored

X q, where Ored
X denotes the quotient of π0 OX by the subsheaf I Ď π0 OX of

(locally) nilpotent sections of π0 OX.

We begin by treating the affine case:

Lemma 8.1.4.6. Let A be an adic E8-ring with finitely generated ideal of definition
I Ď π0pAq, and set R “ pπ0Aq{I. Then the canonical map f : SpétpRredq Ñ SpfpAq exhibits
SpétpRredq as a reduction of the affine formal spectral Deligne-Mumford stack SpfpAq.

Proof. Since SpétpRredq is reduced, it will suffice to show that f satisfies condition pbq of
Definition 8.1.4.1: that is, that the canonical map

θ : MapSpDMpY, SpétpRredqq Ñ MapfSpDMpY, SpfpAqq

is a homotopy equivalence for every reduced spectral Deligne-Mumford stack Y. Using
Remark 8.1.4.3, we can reduce to the case Y “ SpétpBq, where B is a reduced commutative
ring. In this case, we can identify θ with the composition

MapCAlgpR
red, Bq

θ1
ÝÑ MapCAlgpR,Bq

θ2
ÝÑ MapCAlg♥

ad
pπ0A,Bq

θ3
ÝÑ MapCAlgcn

ad
pA,Bq.
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The map θ1 is a homotopy equivalence since B is reduced and the map θ3 is a homotopy
equivalence since B is discrete. To prove that θ2 is a homotopy equivalence, we must show
that a ring homomorphism ρ : π0AÑ B which satisfies ρpInq “ 0 for n " 0 must annihilate
the ideal I itself. This is clear: each element x P I satisfies ρpxqn “ ρpxnq P ρpInq “ t0u, so
that ρpxq “ 0 by virtue of our assumption that B is reduced.

Lemma 8.1.4.7. Suppose we are given a pullback diagram of formal spectral Deligne-
Mumford stacks

X0 //

f
��

Y0

g

��
X

h // Y,

where h is étale. If g exhibits Y0 as a reduction of Y, then f exhibits X0 as a reduction of X.

Proof. Since h is étale, the morphism X0 Ñ Y0 is also étale. Using the assumption that Y0
is a reduced spectral Deligne-Mumford stack, we deduce that X0 is also a reduced spectral
Deligne-Mumford stack. If Z is any reduced spectral Deligne-Mumford stack, we have a
pullback diagram

MapSpDMpZ,X0q //

��

MapSpDMpZ,Y0q

��
MapSpDMpZ,Xq //MapSpDMpZ,Yq.

Our hypothesis guarantees that the right vertical map is a homotopy equivalence, so the left
vertical map is a homotopy equivalence as well.

Proof of Proposition 8.1.4.4. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack.
For each object U P X , let XU “ pX {U ,OX |U q. Let us say that U is good if the formal spectral
Deligne-Mumford stack XU admits a reduction Xred

U . It follows from Lemma 8.1.4.6 that every
affine object of X is good. We claim that every object of X is good. By virtue of Proposition
8.1.3.7, it will suffice to show that the collection of good objects of X is closed under colimits.
To prove this, suppose we are given a diagram tUαu in X , having colimit U . We then have
a diagram of reduced spectral Deligne-Mumford stacks tXred

Uα u, where the transition maps
are étale (Lemma 8.1.4.7). This diagram therefore has a colimit Xred

U in the 8-category
of spectral Deligne-Mumford stacks. The universal property of the colimit yields a map
f : Xred

U Ñ XU . We claim that f exhibits Xred
U as a reduction of XU . It is immediate from the

construction that Xred
U is reduced. It will therefore suffice to show that f satisfies condition

pbq of Definition 8.1.4.1: that is, for every reduced spectral Deligne-Mumford stack Y and
every morphism g : Y Ñ XU , the homotopy fiber F “ MapSpDMpY,Xred

U ˆMapfSpDMpY,XU qtgu

is contractible. This assertion can be tested locally on Y; we may therefore assume without
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loss of generality that the map g factors through some gα : Y Ñ XUα . Note that the diagram
of formal spectral Deligne-Mumford stacks

Xred
Uα

//

��

Xred
U

��
XUα // XU

is a pullback square, so we can identify F with the homotopy fiber MapSpDMpY,Xred
Uα ˆMapfSpDMpY,XUα qtgαu.

The contractibility of F now follows from our assumption that Xred
Uα is a reduction of XUα .

This completes the proof that every object of X is good. In particular, the final object of X
is good, so that X admits a reduction Xred. To complete the proof, we must show that the
natural map Xred Ñ X induces an equivalence at the level of underlying 8-topoi. By virtue
of Lemma 8.1.4.7, this assertion can be tested locally on X. We may therefore assume without
loss of generality that X “ SpfpAq for some adic E8-ring A. Let I Ď π0A be a finitely
generated ideal of definition, and set R “ pπ0Aq{I. Then we can identify the underlying
8-topos of X with the closed subtopos Shvad

A Ď Shvét
A given by the vanishing locus of I,

and Lemma 8.1.4.6 allows us to identify the underlying 8-topos of Xred with Shvét
Rred . The

equivalence of these 8-topoi follows from Proposition 3.1.4.1 (and its proof).

8.1.5 The Functor of Points

Recall that if X is a locally spectrally ringed 8-topos, then X represents a functor
hX : CAlgcn Ñ pS, given by the formula hXpRq “ Map8T oploc

CAlg
pSpétR,Xq (Definition

1.6.4.1). Our next goal is to prove the following:

Theorem 8.1.5.1. Let X be a formal spectral Deligne-Mumford stack. Then, for every
connective E8-ring R, the space hXpRq “ Map8T oploc

CAlg
pSpétR,Xq is essentially small.

Moreover, the construction X ÞÑ hX determines a fully faithful embedding fSpDM Ñ

FunpCAlgcn,Sq.

We will give the proof of Theorem 8.1.5.1 at the end of this section. Our first step is to
analyze the case of an affine formal spectral Deligne-Mumford stack.

Proposition 8.1.5.2. Let A be an adic E8-ring with a finitely generated ideal of definition
I Ď π0A, let R be an arbitrary E8-ring, and let

θ : Map8T oploc
CAlg

pSpétR,Spf Aq Ñ Map8T oploc
CAlg

pSpétR,SpétAq » MapCAlgpA,Rq

by given by composition with the evident map ι : Spf AÑ SpétA. Then θ induces a homotopy
equivalence from Map8T oploc

CAlg
pSpétR,Spf Aq to the summand of MapCAlgpA,Rq spanned by

those morphisms φ : AÑ R which annihilate some power of the ideal I.
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Proof. Fix a morphism of E8-rings φ : AÑ R and let Xφ denote the homotopy fiber of θ
over the point φ. Note that if φ does not annihilate a power of I, then the induced map
of topological spaces | SpecR| Ñ | SpecA| does not factor through the vanishing locus of
I, so that Xφ is empty. We will complete the proof by showing that if φ does annihilate a
power of I, then the space Xφ is contractible. Let f : SpétRÑ SpétA be the morphism of
spectral Deligne-Mumford stacks determined by φ. Our assumption that φ annihilates some
power of I guarantees that the underlying geometric morphism f˚ : Shvét

R Ñ Shvét
A factors

through the closed subtopos Shvad
A Ď Shvét

A . Note that any lift of f to a map of spectrally
ringed 8-topoi f : SpétRÑ Spf A is automatically local (Lemma 8.1.1.14). It follows that
we can identify Xφ with the mapping space MapFunpCAlgét

A ,CAlgAqOSpétA {
pOSpf A, f˚OSpétRq.

To show that this space is contractible, it will suffice to show that the direct image f˚OSpétR
takes values in I-complete A-modules: that is, that the tensor product RbAB is I-complete
for any étale R-algebra B. This is clear, since I generates a nilpotent ideal in π0R.

Definition 8.1.5.3. Let A be an adic E8-ring. We will say that A is complete if it is
I-complete, where I Ď π0A is an ideal of definition.

Corollary 8.1.5.4. Let A and B be adic E8-rings. If B is complete, then the canonical
map MapCAlgcn

ad
pA,Bq Ñ Map8T oploc

CAlg
pSpf B, Spf Aq is a homotopy equivalence.

Proof. Let tBnuną0 be a tower of E8-algebras over B satisfying the requirements of Lemma
8.1.2.2. We then have a commutative diagram

MapCAlgcn
ad
pA,Bq //

��

Map8T oploc
CAlg

pSpf B, Spf Aq

��
lim
ÐÝ

MapCAlgcn
ad
pA,Bnq // lim

ÐÝ
Map8T oploc

CAlg
pSpétBn,Spf Aq.

The left vertical map is a homotopy equivalence by virtue of our assumption that B is
complete (see Lemma 8.1.2.3), the right vertical map is a homotopy equivalence by virtue of
Proposition 8.1.2.1, and the bottom horizontal map is a homotopy equivalence by virtue of
Proposition 8.1.5.2.

Proof of Theorem 8.1.5.1. Let yShv denote the full subcategory of FunpCAlgcn, pSq spanned
by those functors which are sheaves with respect to the étale topology, and let Shv denote
the full subcategory spanned by those sheaves F such that F pRq is essentially small for
each R P CAlgcn. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack. For
each U P X , set XU “ pX {U ,OX |U q. Then XU is also a formal spectral Deligne-Mumford
stack (Proposition 8.1.3.3), so the structure sheaf OX |U is strictly Henselian (Proposition
8.1.1.13). It follows that the construction U ÞÑ hXU determines a functor X Ñ yShv which
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commutes with small colimits. Note that if XU is affine, then hXU belongs to the subcategory
Shv Ď yShv. Since Shv is closed under small colimits in yShv, it follows from Proposition
8.1.3.7 that hX P Shv.

Now suppose that we are given another formal spectral Deligne-Mumford stack Y.
We wish to show that the canonical map θ : Map8T opsHen

CAlg
pX,Yq Ñ MapShvphX, hYq is

a homotopy equivalence. In fact, we will show more generally that the canonical map
θU : Map8T opsHen

CAlg
pXU ,Yq Ñ MapShvphXU , hYq is an equivalence for each U P X . Note that

the collection of objects U P X for which θU is a homotopy equivalence is closed under small
colimits. Using Proposition 8.1.3.7, we can reduce to the case where X “ Spf A is affine. Let
tAnuną0 be a tower of E8-algebras over A which satisfies the hypotheses of Lemma 8.1.2.2.
We then have a commutative diagram

Map8T opsHen
CAlg

pSpf A,Yq θ //

��

MapShvphX, hYq

��
lim
ÐÝ

Map8T opsHen
CAlg

pSpétAn,Yq // lim
ÐÝ

MapShvphSpétAn , hYq.

The vertical maps are homotopy equivalences by virtue of Propositions 8.1.5.2 and 8.1.2.1.
We are therefore reduced to showing that the lower horizontal map is an equivalence, which
follows from Yoneda’s lemma.

8.1.6 Example: Formal Completions

Motivated by Proposition 8.1.5.2, let us introduce the following definition:

Definition 8.1.6.1. Let X be a spectral Deligne-Mumford stack and let K Ď |X | be a
cocompact closed subset. We will say that a morphism of formal spectral Deligne-Mumford
stacks i : XÑ X exhibits X as a formal completion of X along K if the following universal
property is satisfied: for every connective E8-ring R, composition with i induces a homotopy
equivalence from hXpRq to the summand of hXpRq spanned by those maps f : SpétRÑ |X |
for which the underlying map of topological spaces | SpecR| Ñ |X | factors through K.

Remark 8.1.6.2. In the situation of Definition 8.1.6.1, the formal spectral Deligne-Mumford
stack X depends only on X and the closed subset K Ď |X |. We will indicate this dependence
by writing X “ X^K .

Remark 8.1.6.3. Let X be a spectral Deligne-Mumford stack, let K Ď |X | be a co-
compact closed subset, and let X^K be the formal completion of X along K. Then,
for every spectral Deligne-Mumford stack Y, the canonical map Map8T opsHen

CAlg
pY,X^Kq Ñ

Map8T opsHen
CAlg

pY,Xq induces a homotopy equivalence from Map8T opsHen
CAlg

pY,X^Kq to the sum-
mand of Map8T opsHen

CAlg
pY,Xq spanned by those maps f : Y Ñ X for which the underlying

map of topological spaces |Y | Ñ |X | factors through K.
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Example 8.1.6.4. Let A be a connective E8-ring and let K Ď | SpecA| be a cocompact
closed subset. Then we can regard A as an adic E8-ring (by equipping π0A with the I-adic
topology, for some finitely generated ideal I with vanishing locus K). Using Proposition
8.1.5.2, we can identify the formal spectrum Spf A with the formal completion of SpétA
along K.

Example 8.1.6.5. Let X “ pX ,OXq be a spectral Deligne-Mumford stack and let f : X “
pX 1,OXq Ñ X be a morphism of formal spectral Deligne-Mumford stacks which exhibits X

as a formal completion of X along a cocompact closed subset K Ď |X |. For every object
U P X , the induced map fU : XU “ pX 1{f˚U ,OX |f˚U q Ñ pX {U ,OX |U q “ XU exhibits XU as
a formal completion of XU along the inverse image of K.

Proposition 8.1.6.6. Let X be a spectral Deligne-Mumford stack and K Ď |X | be a
cocompact closed subset. Then there exists a map of formal Deligne-Mumford stacks i : XÑ X
which exhibits X as a formal completion of X along K.

Proof. Write X “ pX ,OXq. For each object U P X , set XU “ pX {U ,OX |U q and let KU Ď

|XU | be the inverse image of K. Let us say that U is good if there exists a formal completion
of XU along KU . Let X 0 Ď X be the full subcategory of X spanned by the good objects.
Note that every affine object of X is good (Example 8.1.6.4). To complete the proof, it will
suffice to show that X 0 is closed under small colimits in X (Proposition 8.1.3.7). Let tUαuαPI
be a small diagram in X 0 having colimit U P X . The construction pα P Iq ÞÑ pXUαq^Kα
determines a diagram of formal spectral Deligne-Mumford stacks in which the transition
maps are étale (as morphisms of spectrally ringed 8-topoi; see Example 8.1.6.5). Let
XU denote the colimit of this diagram in 8T opsHen

CAlg, so that we have an étale surjection
>αpXUαq^Kα Ñ XU (see Proposition 21.4.6.4). It follows that XU is also a formal spectral
Deligne-Mumford stack (Proposition 8.1.3.3). Moreover, the functor hXU represented by XU
can be identified with the colimit lim

ÝÑ
hpXUα q^Kα

in the 8-category Shv Ď FunpCAlgcn,Sq of
functors which are sheaves with respect to the étale topology, from which it is easy to see
that XU is a formal completion of XU along KU .

Remark 8.1.6.7. Let X “ pX ,OXq be a spectral Deligne-Mumford stack, let K Ď |X | be
a cocompact closed subset, and let X^K be a formal completion of X along K. Then the
underlying 8-topos of X can be identified with the closed subtopos of X corresponding to
K. To prove this, we can use Example 8.1.6.5 to reduce to the case where X “ SpétA is
affine, in which case the desired result follows from Example 8.1.6.4 (and the construction of
Spf A).

8.1.7 Fiber Products

We close this section by establishing an analogue of Proposition 1.4.11.1:
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Proposition 8.1.7.1. The 8-category fSpDM of formal spectral Deligne-Mumford stacks
admits finite limits.

Warning 8.1.7.2. The inclusion functor fSpDM ãÑ 8T opsHen
CAlg does not preserve finite

limits: the formation of fiber products in the setting of formal spectral Deligne-Mumford
stacks requires the formation of “completed” tensor products at the level of E8-rings.

We begin by establishing a simple special case of Proposition 8.1.7.1. First, we observe
that the 8-category CAlgcn

ad of adic E8-rings admits pushouts: given a diagram of adic
E8-rings AÐ RÑ B (with finitely generated ideals of definition I Ď π0A and J Ď π0B),
the tensor product A bR B inherits the structure of an adic E8-ring (where we equip
π0pAbR Bq with the K-adic topology, where K Ď π0pAbR Bq is the ideal generated by the
images of I and J).

Lemma 8.1.7.3. The construction A ÞÑ Spf A carries pushouts diagrams of adic E8-rings
to pullback diagrams of formal spectral Deligne-Mumford stacks.

Proof. Suppose we are given a pushout diagram of adic E8-rings σ :

R //

��

A

��
B // AbR B.

We wish to show that the associated diagram of formal spectra τ :

Spf R Spf Aoo

Spf B

OO

Spf AbR Boo

OO

is a pullback square. By virtue of Theorem 8.1.5.1, it will suffice to show that τ is a pullback
square in the larger 8-category of functors FunpCAlgcn,Sq. Using Proposition 8.1.5.2, we
are reduced to showing that for any connective E8-ring C (which we regard as an adic
E8-ring by equipping π0C with the discrete topology), the diagram of spaces

MapCAlgcn
ad
pR,Cq MapCAlgcn

ad
pA,Cqoo

MapCAlgcn
ad
pB,Cq

OO

MapCAlgcn
ad
pAbR B,Cqoo

OO

is a pullback square, which follows immediately from our assumption that σ is a pullback
square.
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Proof of Proposition 8.1.7.1. It is clear that the 8-category fSpDM admits a final object
(given by SpétS, where S is the sphere spectrum). We will complete the proof by showing
that every diagram of formal spectral Deligne-Mumford stacks X

f
ÝÑ Y

g
ÐÝ Z admits a

pullback in fSpDM. Write Y “ pY,OYq. For each object U P Y, set YU “ pY{U ,OY |U q,
XU “ pX {f˚U ,OX |f˚U q, and ZU “ pZ{g˚U ,OZ |g˚U q. Let us say that U P Y is good if the
fiber product XU ˆYU ZU is representable by a formal spectral Deligne-Mumford stack WU .
Note that if tUαu is a small diagram of good objects of Y having colimit U , then tWUαu is a
diagram of formal spectral Deligne-Mumford stacks with étale transition maps. This diagram
has some colimit WU P 8T opsHen

CAlg (Proposition 21.4.6.4). The evident map >αWUα ÑWU

is an étale surjection, so Proposition 8.1.3.3 guarantees that WU is also a formal spectral
Deligne-Mumford stack. If we let Shv Ď FunpCAlgcn,Sq denote the 8-category of functors
which are sheaves with respect to the étale topology, then hWU

is the colimit of the diagram
thWUα

u in the 8-category Shv. Applying the same argument to hXU , hYU , and hZU (and
using the fact that colimits are universal in the 8-category Shv) we conclude that the
diagram of functors

hWU
//

��

hXU

��
hZU

// hYU

is a pullback square. Theorem 8.1.5.1 implies we can identify WU with a fiber product
XU ˆYU ZU in the 8-category fSpDM, so that U is good.

The preceding argument shows that the collection of good objects of Y is closed under
small colimits. By virtue of Proposition 8.1.3.7, to show that all objects of Y are good, it
will suffice to show that all affine objects of Y are good. We are therefore reduced to proving
Proposition 8.1.7.1 in the special case where Y » Spf R is affine. Using a simliar argument,
we may assume that X » Spf A and Z » Spf B are affine. Without loss of generality, we
may also assume that A and B are complete (Remark 8.1.2.4), so that f and g are obtained
from morphisms of adic E8-rings AÐ RÑ B (Corollary 8.1.5.4). In this case, the desired
result follows from Lemma 8.1.7.3.

8.2 Quasi-Coherent Sheaves on Formal Stacks

Let A be an adic E8-ring and let I Ď π0A be a finitely generated ideal of definition.
In Chapter 7, we saw that the stable 8-category ModA admits a pair of semi-orthogonal
decompositions

pModNilpIq
A ,ModLocpIq

A q pModLocpIq
A ,ModCplpIq

A q,

where ModNilpIq
A ,ModLocpIq

A ,ModCplpIq
A Ď ModA denote the full subcategories spanned by the

I-nilpotent, I-local, and I-complete A-modules, respectively. In this section, we will develop
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an analogous picture in the setting of sheaves on a formal spectral Deligne-Mumford stack
X. Our principal results can be summarized as follows:

• In §8.2.3, we introduce the notion of a weakly quasi-coherent sheaf on a formal spectral
Deligne-Mumford stack X (Definition 8.2.3.1). The weakly quasi-coherent sheaves
span a full subcategory WCohpXq Ď ModOX

with good closure properties (for example,
stability under small colimits and tensor products).

• The stable 8-category WCohpXq admits a pair of semi-orthogonal decompositions
pNilCohpXq,WCoh˝pXqq and pWCoh˝pXq,QCohpXqq (Corollaries 8.2.3.7 and 8.2.4.10).
We refer to NilCohpXq and QCohpXq as the 8-categories of nilcoherent and quasi-
coherent sheaves on X, respectively. Moreover, the 8-categories NilCohpXq and
QCohpXq are canonically equivalent to one another (Corollary 8.2.4.12), though they
are usually distinct as subcategories of WCohpXq Ď ModOX

.

• In the special case where X “ Spf A for some adic E8-ring A with finitely generated
ideal of definition I Ď π0A, passage to global sections induces equivalences of 8-
categories

ΓpX; ‚q : NilCohpXq Ñ ModNilpIq
A ΓpX; ‚q : QCohpXq Ñ ModCplpIq

A

(see Proposition 8.2.1.3 and Corollary 8.2.4.15).

• In the special case where X is an ordinary spectral Deligne-Mumford stack, we have
NilCohpXq “ WCohpXq “ QCohpXq (and all three coincide with the full subcategory
ModOX

spanned by those sheaves which are quasi-coherent in the sense of Definition
2.2.2.1.

Warning 8.2.0.4. In the special case where X “ Spf A is affine, the 8-categories WCohpXq
and WCoh˝pXq are typically much larger than ModA and ModLocpIq

A , respectively: see
Proposition 8.3.2.2.

8.2.1 Nilcoherent Sheaves

We begin by globalizing the notion of I-nilpotent module over an adic E8-ring A.

Definition 8.2.1.1. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and let
F P ModOX

. We will say that F is nilcoherent if it satisfies the following pair of conditions:

paq For each affine object U P X , the spectrum F pUq is I-nilpotent when regarded as a
module over OXpUq, where I is an ideal of definition of OXpUq.

pbq For every morphism U Ñ V between affine objects of X , the induced map OXpUqbOXpV q

F pV q Ñ F pUq is an equivalence.
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We let NilCohpXq denote the full subcategory of ModOX
spanned by the nilcoherent objects.

Example 8.2.1.2. Let X “ pX ,OXq be a spectral Deligne-Mumford stack. Then every
object F P ModOX satisfies condition paq of Definition 8.2.1.1 (see Example 8.1.3.5), and
condition pbq is equivalent to the requirement that F is quasi-coherent (Proposition 2.2.4.3).
We therefore have NilCohpXq “ QCohpXq.

We begin by analyzing Definition 8.2.1.1 in the affine case.

Proposition 8.2.1.3. Let A be an adic E8-ring with a finitely generated ideal of definition
I Ď π0A. Then the global sections functor ΓpSpf A; ‚q induces an equivalence of 8-categories
Γ : NilCohpSpf Aq Ñ ModI´nilA .

Proof. We begin by explicitly constructing a homotopy inverse to the functor Γ. Let us
identify OSpf A with the commutative algebra object of FunpCAlgét

A , Spq given by B ÞÑ B^I .
For every A-module M , we let ĂM denote the OSpf A-module object of FunpCAlgét

A ,Spq given
by B ÞÑ B^I bAM .

Note that if M is I-nilpotent, then we can identify ĂM with the functor B ÞÑ B bAM :
that is, with the quasi-coherent sheaf on SpétA given by the construction of §2.2.1. In this
case, ĂM is a sheaf for the étale topology on CAlgét

A , which vanishes when I generates the
unit ideal of π0B (by virtue of our assumption that M is I-nilpotent). We can therefore
regard ĂM as a OSpf A-module object of the 8-category SppShvad

A q. Using the description
of affine objects of Shvad

A supplied by Proposition 8.1.3.6, we immediately deduce that
ĂM is nilcoherent. Consequently, we can regard the construction M ÞÑ ĂM as a functor
F : ModI´nilA Ñ NilCohpSpf Aq. It follows immediately from the definitions that F is left
adjoint to the global sections functor Γ, and that the unit map M Ñ ΓpSpf A;F pMqq is
equivalence for M P ModI´nilA . To complete the proof, it suffices to observe that the functor Γ
is conservative, which is an immediate consequence of condition pbq of Definition 8.2.1.1.

Remark 8.2.1.4. In the situation of Proposition 8.2.1.3, the functor F is t-exact when
viewed as a functor from ModI´nilA to ModOSpf A . It follows that the subcategory NilCohpSpf Aq Ď
ModOSpf A is closed under the formation of truncations. In particular, the stable 8-category
NilCohpSpf Aq inherits a t-structure from ModOSpf A , and the equivalence NilCohpSpf Aq »
ModI´nilA is t-exact.

The condition of nilcoherence can be tested locally:

Proposition 8.2.1.5. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and let
F P ModOX

. For each object U P X , set XU “ pX {U ,OX |U q. Then:

paq The sheaf F is nilcoherent if and only if F |U ModOX |U
is nilcoherent for each affine

object U P X .
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pbq If F is nilcoherent, then F |U P ModOX |U
is nilcoherent for every object U P X .

pcq If there exists a covering of X by objects tUαu for which each restriction F |Uα P

ModOX |Uα
is nilcoherent, then F is nilcoherent.

Proof. Assertion paq follows immediately from the definitions, and pbq is an immediate
consequence of paq. To prove pcq, we can use paq to reduce to the case where X has the form
Spf A, for some adic E8-ring A. Let I Ď π0A be a finitely generated ideal of definition and
let tUαu be a covering of X for which each restriction F |Uα is nilcoherent. Without loss of
generality, we may assume that each Uα is affine, corresponding to some étale A-algebra
Bα. Let i : Spf A Ñ SpétA be the canonical map and let i˚F P ModOSpétA be the direct
image of F . Using Proposition 8.2.1.3, we deduce that pi˚F q|SpétBα is quasi-coherent and
supported on the vanishing locus of Ipπ0Bq. Moreover, it follows immediately from the
definition that pi˚F q|V vanishes, where V is the open substack of SpétA complementary to
the vanishing locus of I. Since SpétA is covered by tSpétBαu and V, it follows that i˚F is
quasi-coherent and supported on the vanishing locus of I: that is, it is the quasi-coherent
sheaf associated to some I-nilpotent A-module M . It follows that F » ĂM P NilCohpSpf Aq,
where ĂM is defined as in the proof of Proposition 8.2.1.3.

Corollary 8.2.1.6. Let X be a spectral Deligne-Mumford stack, let K Ď |X | be a cocompact
closed subset, and let i : XÑ X be a morphism of formal spectral Deligne-Mumford stacks
which exhibits X as a formal completion of X along K. Then the direct image functor i˚
induces an equivalence of 8-categories NilCohpXq Ñ QCohKpXq, where QCohKpXq is the
8-category of quasi-coherent sheaves on X which are supported on K.

Proof. By virtue of Proposition 8.2.1.5, we can work locally on X and thereby reduce to
the case where X is affine. In this case, the desired result is a reformulation of Proposition
8.2.1.3.

Proposition 8.2.1.7. Let X be a formal spectral Deligne-Mumford stack and let F ,G P

ModOX
. If F and G are nilcoherent, then the tensor product F bOX

G is nilcoherent.

Proof. Using Proposition 8.2.1.5, we can reduce to the case where X is affine. Write
X » Spf A for some adic E8-ring A with finitely generated ideal of definition I Ď π0A. The
construction M ÞÑ ĂM appearing in the proof of Proposition 8.2.1.3 determines a nonunital
symmetric monoidal functor ModNilpIq

A Ñ ModOX
. Since this functor is fully faithful, its

essential image is closed under tensor products.

We now establish a generalization of Proposition 2.2.4.1:

Proposition 8.2.1.8. Let X be a formal spectral Deligne-Mumford stack. Then:

p1q The 8-category NilCohpXq is closed under small colimits in ModOX
.
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p2q The 8-category NilCohpXq is stable.

p3q The 8-category NilCohpXq is presentable.

Proof. To prove p1q, we can use Proposition 8.2.1.5 to reduce to the case where X “ Spf A is
affine. In this case, the proof of Proposition 8.2.1.3 shows that NilCohpXq can be identified
with the essential image of a fully faithful functor F : ModNilpIq

A Ñ ModOX
which preserves

small colimits, and is therefore closed under small colimits.
Write X “ pX ,OXq. For each object U P X , set XU “ pX {U ,OX |U q. Using Proposition

8.2.1.5, we see that the construction U ÞÑ NilCohpXU q determines a functor X op ÑyCat8
which carries colimits in X to limits in yCat8. Using p1q, we see that each of the 8-categories
NilCohpXU q admits small colimits and that each of the transition maps NilCohpXU q Ñ
NilCohpXV q preserves small colimits. Using Proposition HTT.5.5.3.13 and Theorem HA.?? ,
we see that the collection of those objects U P X for which NilCohpXU q is stable and
presentable is closed under small colimits in X . We may therefore use Proposition 8.1.3.7
to reduce the proofs of p2q and p3q to the case where X is affine, in which case the desired
result follows from Proposition 8.2.1.3.

8.2.2 Approximate Units for NilCohpXq

Let X be a formal spectral Deligne-Mumford stack. The structure sheaf OX is not
necessarily nilcoherent: in fact, it is nilcoherent if and only if X is a spectral Deligne-
Mumford stack. However, it can be closely approximated by nilcoherent sheaves.

Definition 8.2.2.1. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack. A
approximate unit for NilCohpXq is a pair pO«X , αq where O«X is a nilcoherent sheaf on X and
α : O«X Ñ OX is a morphism with the following property:

p˚q For every object F P NilCohpXq, the map α induces an equivalence

F bOX
O«X

idbα
ÝÝÝÑ F bOX

OX » F .

Remark 8.2.2.2. In the situation of Definition 8.2.2.1, we will often abuse terminology
by simply referring to the object O«X as an approximate unit for NilCohpXq, or say that α
exhibits O«X as an approximate unit for NilCohpXq.

Example 8.2.2.3. Let A be an adic E8-ring and let I Ď π0A be an ideal of definition.
Then we can choose a fiber sequence of A-modules ΓIpAq u

ÝÑ A Ñ LIpAq where ΓIpAq is
I-nilpotent and LIpAq is I-local. For each A-module M , let ĂM P ModOSpf A be as in the
proof of Proposition 8.2.1.3, and set O«Spf A “

ČΓIpAq. Then u induces a map

α : O«Spf A “
ČΓIpAq Ñ rA “ OSpf A .
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For any A-module M , we have a canonical fiber sequence ΓIpAq bAM
uM
ÝÝÑ AbAM Ñ

LIpAq bA M . If M is I-nilpotent, then the third term vanishes, so that uM induces an
equivalence ΓIpAq bAM ÑM . It follows that α induces an equivalence O«Spf AbOSpf A

ĂM Ñ

ĂM , so that pO«Spf A, αq is an approximate unit for NilCohpSpf Aq.

Example 8.2.2.4. Let X be a spectral Deligne-Mumford stack. Then a morphism α : O«X Ñ

OX is an approximate unit for NilCohpXq “ QCohpXq if and only if α is an equivalence.

We now prove show that approximate units always exist and are essentially unique:

Proposition 8.2.2.5. Let X be a formal spectral Deligne-Mumford stack and let C denote
the full subcategory of NilCohpXq ˆModOX

pModOX
q{OX

spanned by those objects which are
approximate units for NilCohpXq. Then C is a contractible Kan complex. In particular, there
exists an approximate unit for NilCohpXq.

Proof. Assume first that C is nonempty: that is, there exists an approximate unit α0 : O«X Ñ

OX. For every object F P C, we have a commutative diagram σF :

O«X bOX
F //

��

OXbOX
F

��
O«X bOX

OX
// OXbOX OX,

where the left vertical map and upper horizontal map are equivalences. The diagram σF then
determines an equivalence of O«X with F in the 8-category pModOX {

q{OX
. This equivalence

depends functorially on F : that is, the construction σF determines an equivalence from the
identity functor idC to the constant functor with the value O«X , so that C is a contractible
Kan complex as desired.

We now treat the general case. Let X “ pX ,OXq be a formal spectral Deligne-Mumford
stack. For each object U P X , set XU “ pX {U ,OX |U q. Let us say that a morphism
α : O« Ñ OX |U in ModOX |U

is a universal approximate unit if, for every map V Ñ U in X ,
the induced map O« |V Ñ OX |V is an approximate unit for NilCohpXV q. Let CU denote
the full subcategory of pModOX |U

q{OX |U
spanned by the universal approximate units. Then

the construction U ÞÑ CU carries colimits in X to limits in yCat8, and Lemma ?? guarantees
that CU is either empty or a contractible Kan complex for each U P X . It follows that the
collection of objects U P X for which CU is nonempty is closed under small colimits. By
virtue of Proposition 8.1.3.7, it will suffice to show that CU is nonempty in the special case
where U is affine. This follows from Example 8.2.2.3 (note that if A is an adic E8-ring with
finitely generated ideal of definition I, then the approximate unit ΓIpAq of Example 8.2.2.3
is a universal approximate unit, since ΓIpAq bA B » ΓIπ0BpBq for any E8-algebra B over
A).
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Remark 8.2.2.6. It follows from the proof of Proposition 8.2.2.5 that every approximate
unit for X is a universal approximate unit: that is, it remains an approximate unit after
pullback along any étale morphism.

8.2.3 Weakly Quasi-Coherent Sheaves

We now introduce an enlargement of the 8-category of nilcoherent sheaves.

Definition 8.2.3.1. Let X be a formal spectral Deligne-Mumford stack. We will say that a
sheaf F P ModOX

is weakly quasi-coherent if F bOX
O«X is nilcoherent. Here O«X denotes an

approximate unit for NilCohpXq. We let WCohpXq denote the full subcategory of ModOX

spanned by the weakly quasi-coherent sheaves.

Example 8.2.3.2. Let X be a formal spectral Deligne-Mumford stack. If F P ModOX
is

nilcoherent, then it is weakly quasi-coherent (in this case, the tensor product F bOX
O«X is

equivalent to F ).

Example 8.2.3.3. Let X be a formal spectral Deligne-Mumford stack. Then the structure
sheaf OX is weakly quasi-coherent (the nilcoherence of the tensor product OXbOX

O«X » OX«

is part of the definition of approximate unit).

Example 8.2.3.4. Let X be a spectral Deligne-Mumford stack. Then a sheaf F P ModOX

is weakly quasi-coherent if and only if it is quasi-coherent (combine Examples 8.2.1.2 and
8.2.2.4).

Remark 8.2.3.5. Let X be a formal spectral Deligne-Mumford stack. Then the 8-category
WCohpXq is closed under small colimits and desuspensions in ModOX

. In particular, it is a
stable 8-category. It is also a presentable 8-category: this follows from Propositions 8.2.1.8
and HTT.5.5.3.13 .

Proposition 8.2.3.6. Let X be a formal spectral Deligne-Mumford stack. Then the inclusion
NilCohpXq ãÑ WCohpXq admits a right adjoint, given by the construction F ÞÑ O«X bOX

F .

Proof. Let α : O«X Ñ OX exhibit O«X as an approximate unit for OX and let L : WCohpXq Ñ
NilCohpXq Ď WCohpXq be the functor given by tensor product with O«X . Then α induces a
natural transformation of functors u : LÑ id. Note that the essential image of L coincides
with NilCohpXq (since L is equivalent to the identity when restricted to NilCohpXq). By
virtue of Proposition HTT.5.2.7.4 , it will suffice to prove the following:

paq For each object F P WCohpXq, the map upLF q : LpLF q Ñ LF is an equivalence.

pbq For each object F P WCohpXq, the map LpupF qq : LpLF q Ñ LF is an equivalence.



8.2. QUASI-COHERENT SHEAVES ON FORMAL STACKS 645

Assertion paq follows from the definition of an approximate unit (since LF P NilCohpXq).
Assertion pbq follows from paq together with the observation that LpuF qq is equivalent to
the composition of upLF q with the automorphism of

LpLF q » O«X bOX
O«X bOX

F

given by permuting the two factors of O«X .

Corollary 8.2.3.7. Let X be a formal spectral Deligne-Mumford stack. Then the 8-
category WCohpXq admits a semi-orthogonal decomposition pNilCohpXq,WCoh˝pXqq, where
WCoh˝pXq is the full subcategory of ModOX

spanned by those objects F such that O«X bOX
F

vanishes.

Proof. Combine Propositions 8.2.3.6 and 7.2.1.4.

Remark 8.2.3.8. Corollary 8.2.3.7 implies in particular that each weakly quasi-coherent
sheaf F P WCohpXq fits into an essentially unique fiber sequence F 1 u

ÝÑ F Ñ F 2, where
F 1 P NilCohpXq and F 2 P WCoh˝pXq. Here F 1 can be identified with the tensor product
O«X bOX

F , and u is obtained by tensoring the canonical map O«X Ñ OX with the identity
on F .

The condition of weak quasi-coherence can be tested locally:

Proposition 8.2.3.9. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and let
F P ModOX

. For each object U P X , set XU “ pX {U ,OX |U q. Then:

p1q If F is weakly quasi-coherent, then F |U P ModOX |U
is weakly quasi-coherent for every

object U P X .

p2q If there exists a covering of X by objects tUαu for which each restriction F |Uα P

ModOX |Uα
is weakly quasi-coherent, then F is weakly quasi-coherent.

Proof. Combine Proposition 8.2.1.5 with Remark 8.2.2.6.

Proposition 8.2.3.10. Let X be a formal spectral Deligne-Mumford stack. Then WCohpXq
is a symmetric monoidal subcategory of ModOX

: that is, it contains the unit object and
is closed under tensor products. In particular, there is an essentially unique symmetric
monoidal structure on WCohpXq for which the inclusion functor WCohpXq ãÑ ModOX

is
symmetric monoidal.

Proof. The first assertion follows from Example 8.2.3.3. To complete the proof, we must
show that if F ,G P ModOX

are weakly quasi-coherent, then the tensor product F bOX
G is

weakly quasi-coherent. Let O«X be an approximate unit for NilCohpXq. We then have

O«X bOX
F bOX

G » pO«X bOX
O«X q bOX

F bOX
G

» pO«X bOX
F q bOX

pO«X bOX
G q.
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Our assumption that F and G are weakly quasi-coherent implies that the tensor products
O«X bOX

F and O«X bOX
G are nilcoherent. Applying Proposition 8.2.1.7, we conclude that

O«X bOX
F bOX

G is also nilcoherent, so that F bOX
G is weakly quasi-coherent.

Remark 8.2.3.11. Let X be a formal spectral Deligne-Mumford stack. Then the full
subcategory NilCohpXq Ď WCohpXq is closed under tensor products (but usually does not
contain the unit object). It follows that NilCohpXq inherits the structure of a nonunital
symmetric monoidal functor, which is determined uniquely by the requirement that the
inclusion ι : NilCohpXq ãÑ WCohpXq be a nonunital symmetric monoidal functor. This
nonunital symmetric monoidal structure on NilCohpXq can be promoted (in an essentially
unique way) to a symmetric monoidal structure, with unit object given by O«X (see Corollary
HA.5.4.4.7 ). However, the inclusion ι is usually not a symmetric monoidal functor.

We have the following criterion for weak quasi-coherence:

Proposition 8.2.3.12. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and
let F P ModOX

. Then F is weakly quasi-coherent if and only if it satisfies the following
condition:

p˚q For every morphism U Ñ V between affine objects of X , the induced map OXpUqbOXpV q

F pV q Ñ F pUq has IU -local fiber, where IU Ď π0 OXpUq is a finitely generated ideal
of definition.

Remark 8.2.3.13. In the situation of Proposition 8.2.3.12, if F satisfies condition paq of
Definition 8.2.1.1, then p˚q is equivalent to condition pbq of Definition 8.2.1.1. From this
point of view, the 8-category WCohpXq appears as a natural enlargement of NilCohpXq
(where we relax the nilpotence requirements on the local sections of F which are imposed
by Definition 8.2.1.1).

Proof of Proposition 8.2.3.12. Using Proposition 8.2.3.9, we can reduce to the case where
X is affine. Write X “ Spf A, where A is a complete adic E8-ring. Let I Ď π0A be a finitely
generated ideal of definition. Let us identify OX with the functor

CAlgét
A Ñ CAlgA B ÞÑ B^I ,

and view F as a OX-module object of the presheaf 8-category FunpCAlgét
A , Spq. Set

M “ ΓpX; F q P ModA. Then we can rephrase condition p˚q as follows:

p˚1q For every étale A-algebra B, the canonical map B^I bAM Ñ F pBq has a fiber which
is I-local.

Suppose first that p˚1q is satisfied; we will show that F is weakly quasi-coherent. Note that
we can identify the approximate unit O«X with the OX-module object of FunpCAlgét

A , Spq
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given by the construction B ÞÑ ΓIpB^I q » ΓIpBq (see Example 8.2.2.3). It follows that the
tensor product O«X bOX

F is obtained by sheafifying the functor F ˝ : CAlgét
B Ñ Sp given

by F ˝pBq “ ΓIpB^I q bB^I F pBq. It follows from p˚1q that the functor F ˝ is also given the
formula

F ˝pBq “ ΓIpB^I q bB^I pB
^
I bAMq » ΓIpB^I q bAM » B^I bA ΓIpMq.

This functor is already a sheaf, which is the image of ΓIpMq under the equivalence ModNilpIq
A »

NilCohpXq supplied by Proposition 8.2.1.3.
We now prove the converse. Suppose that F is weakly quasi-coherent; we wish to show

that condition p˚1q is satisfied. Choose a collection of elements x1, . . . , xn P π0A which
generate the ideal I. For 1 ď i ď n, we note that F satisfies condition p˚1q if and only if
the cofiber of the map xi : F Ñ F also satisfies condition p˚1q. We may therefore replace
F by cofibpxi : F Ñ F q, and thereby reduce to the case where F pBq is pxiq-nilpotent for
each B P CAlgét

A . Applying this argument for 1 ď i ď n, we can reduce to the case where
F pBq is I-nilpotent for each B P CAlgét

A . In this case, the canonical map F ˝ Ñ F is an
equivalence of OX-module objects of FunpCAlgét

A , Spq. It follows that F » O«X bOX
F , so

our assumption that F is weakly quasi-coherent guarantees that it is nilcoherent. In this
case, the desired result follows immediately from the definitions.

8.2.4 Quasi-Coherent Sheaves

We are now almost ready to introduce the main objects of interest in this section.

Construction 8.2.4.1 (Completions of Weakly Quasi-Coherent Sheaves). Let X be a
formal spectral Deligne-Mumford stack and let α : O«X Ñ OX be an approximate unit for
X (Proposition 8.2.2.5). For every weakly quasi-coherent sheaf F P NilCohpXq, we let
F^ denote the sheaf Map

OX
pO«X ,F q P ModOX

(see §6.5.3). We will refer to F^ as the
completion of F . Note that α induces a canonical map αF : F Ñ F^.

Remark 8.2.4.2. Construction 8.2.4.1 is compatible with localization: if X “ pX ,OXq,
then for each U P X and F P NilCohpXq we a canonical equivalence F^ |U » pF |U q

^ (see
Remark 6.5.3.1). In particular, there is a canonical homotopy equivalence

Ω8F^pUq » MapModOX |U
pO«X |U ,F |U q.

Remark 8.2.4.3. Let X be a formal spectral Deligne-Mumford stack and let F P WCohpXq.
Using Remark 8.2.4.2, we see that the canonical map O«X bOX

F Ñ F induces an equivalence
of completions pO«X bOX

F q^ Ñ F^.

Example 8.2.4.4. Let X be a spectral Deligne-Mumford stack. Then the structure sheaf
OX is an approximate unit for NilCohpXq, so the completion functor F ÞÑ F^ is equivalent
to the identity.
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We begin by analyzing the completion functor in the affine case.

Proposition 8.2.4.5. Let A be an adic E8-ring, let F P NilCohpSpf Aq, and let I Ď π0A

be a finitely generated ideal of definition. Then the canonical map F Ñ F^ exhibits F^

as an I-completion of F (in the A-linear stable 8-category ModOSpf A). In other words,
for every object U P Shvad

A , the canonical map u : F pUq Ñ F^pUq exhibits F^pUq as an
I-completion of F pUq.

Proof. The assertion is local on U (since the formation of I-completions commutes with
small limits). We may therefore assume without loss of generality that U is affine. Using
Remark 8.2.4.2, we can further reduce to the case where U is the final object of Shvad

A . In
this case, we have canonical equivalences

F^pUq » ΓpSpf A; Map
OSpf A

pO«Spf A,F qq

» Map
A
pΓpSpf A; O«Spf Aq,ΓpSpf A; F qq

» Map
A
pΓIpAq,Mq.

If N P ModA is I-local, we obtain MapModApN,F
^pUqq » MapModApN bA ΓIpAq,Mq » 0,

since N bA ΓIpAq » ΓIpNq » 0. It follows that F^pUq is I-complete. To complete the
proof, it will suffice to show that the fiber fibpuq » Map

A
pLIpAq,Mq is I-local. This is clear:

if N 1 is I-nilpotent, then the mapping space

MapModApN
1,Map

A
pLIpAq,Mqq » MapModApN

1 bA LIpAq,Mq » MapModApLIpN
1q,Mq

is contractible (since LIpN 1q » 0).

Corollary 8.2.4.6. Let X be a formal spectral Deligne-Mumford stack and let F P WCohpXq
be a weakly quasi-coherent sheaf. Then the completion F^ is also weakly quasi-coherent.
Moreover, the canonical map F Ñ F^ induces an equivalence O«X bOX

F Ñ O«X bOX
F^.

Proof. By virtue of Remark 8.2.4.3, we can assume without loss of generality that F is
nilcoherent. Using Remark 8.2.4.2 and Proposition 8.2.3.9, we can further assume that X is
affine. In this case, the desired result follows from Proposition 8.2.4.5.

Definition 8.2.4.7. Let X be a formal spectral Deligne-Mumford stack. We will say that a
sheaf F P ModOX

is quasi-coherent if it belongs to the essential image of the completion
functor WCohpXq Ñ WCohpXq. We let QCohpXq denote the full subcategory of ModOX

spanned by the quasi-coherent sheaves.

Example 8.2.4.8. Let X be a spectral Deligne-Mumford stack. Then a sheaf F P ModOX

is quasi-coherent in the sense of Definition 8.2.4.7 if and only if it is quasi-coherent in the
sense of Definition 2.2.2.1 (see Examples 8.2.3.4 and 8.2.4.4).
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Proposition 8.2.4.9. Let X be a formal spectral Deligne-Mumford stack. Then the con-
struction F ÞÑ F^ is left adjoint to the inclusion QCohpXq ãÑ WCohpXq.

Proof. Let F be an object of WCohpXq; we claim that the canonical map α : F Ñ F^

exhibits F^ as a QCohpXq-localization of F . Since F^ is quasi-coherent, it will suffice to
show that for each object G P QCohpXq, composition with α induces a homotopy equivalence
ρ : MapWCohpXqpF

^,G q Ñ MapWCohpXqpF ,G q. Writing G “ G^0 for some G 0 P WCohpXq,
we can identify ρ with the natural map

MapWCohpXqpO
«
X bOX

F^,G 0q Ñ MapWCohpXqpO
«
X bOX

F ,G 0q,

which is a homotopy equivalence by virtue of Corollary 8.2.4.6.

Corollary 8.2.4.10. Let X be a formal spectral Deligne-Mumford stack. Then the 8-
category WCohpXq admits a semi-orthogonal decomposition pWCoh˝pXq,QCohpXqq, where
WCoh˝pXq is defined as in Corollary 8.2.3.7.

Remark 8.2.4.11. Corollary 8.2.4.10 asserts that every weakly quasi-coherent sheaf F

fits into an essentially unique fiber sequence F 1 Ñ F Ñ F 2, where F 1 P WCoh˝pXq and
F 2 is quasi-coherent. Here we can identify F 2 with the completion of F (in the sense of
Construction 8.2.4.1).

Proof of Corollary 8.2.4.10. By virtue of Propositions 8.2.4.9 and 7.2.1.4, it will suffice
to show that a weakly quasi-coherent sheaf F belongs to WCoh˝pXq if and only if the
completion F^ vanishes. The “if” direction follows from Corollary 8.2.4.6, and the “only if”
direction from Remark 8.2.4.3.

Corollary 8.2.4.12. Let X be a formal spectral Deligne-Mumford stack. Then the construc-
tion F ÞÑ F^ induces an equivalence of 8-categories NilCohpXq Ñ QCohpXq. The inverse
equivalence is given by the construction F ÞÑ O«X bOX

F .

Proof. Combine Corollary 8.2.4.10 with Proposition 7.2.1.10.

Corollary 8.2.4.13. Let X be a formal spectral Deligne-Mumford stack. Then the 8-
category QCohpXq of quasi-coherent sheaves on X is stable and presentable.

Proof. Combine Corollary 8.2.4.12 with Proposition 8.2.1.8.

Warning 8.2.4.14. In the situation of Corollary 8.2.4.13, the 8-category QCohpXq need
not be closed under colimits in ModOX

. However, it is closed under limits in the 8-category
WCohpXq (which is in turn closed under colimits in ModOX

).
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Corollary 8.2.4.15. Let A be an adic E8-ring and let I Ď π0A be a finitely generated ideal
of definition. Then the global sections functor ΓpSpf A; ‚q : ModOSpf A Ñ ModA induces an
equivalence of 8-categories QCohpSpf Aq Ñ ModCplpIq

A .

Proof. It follows from Lemma 8.2.4.5 that we have a commutative diagram of 8-categories

NilCohpSpf Aq //

Γ
��

QCohpSpf Aq

Γ
��

ModNilpIq
A

//ModCplpIq
A

where the horizontal maps are given by I-adic completion and the vertical maps are given by
passage to global sections. The upper horizontal map is an equivalence by Corollary 8.2.4.12,
the left vertical map is an equivalence by Proposition 8.2.1.3, and the bottom horizontal
map is an equivalence by Proposition 7.3.1.7. It follows that the right vertical map is also
an equivalence of 8-categories.

Remark 8.2.4.16. Let A be as in Corollary 8.2.4.15, let F P QCohpSpf Aq, and let
M “ ΓpSpf A; F q be the corresponding I-complete A-module. It follows from Corollary
8.2.4.15 that F is determined by M , up to canonical equivalence. Moreover, the proof of
Corollary 8.2.4.15 gives an explicit recipe for reconstructing F : as a functor from CAlgét

A to
the 8-category ModA, the sheaf F is given by the formula

F pBq “ pB bA ΓIpMqq^I » pB bAMq^I .

The condition of quasi-coherence can be tested locally:

Proposition 8.2.4.17. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and
let F P ModOX

. For each object U P X , set XU “ pX {U ,OX |U q. Then:

p1q If F is quasi-coherent, then F |U P ModOX |U
is quasi-coherent for every object U P X .

p2q If there exists a covering of X by objects tUαu for which each restriction F |Uα P

ModOX |Uα
is quasi-coherent, then F is quasi-coherent.

Proof. Combine Proposition 8.2.3.9 with Remark 8.2.4.2.

The class of quasi-coherent sheaves admits the following concrete characterization (com-
pare with Definition 8.2.1.1):

Proposition 8.2.4.18. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and let
F P ModOX

. Then F is quasi-coherent if and only if the following conditions are satisfied:
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paq For every affine object U P X , the OXpUq-module F pUq is I-complete, where I is an
ideal of definition of OXpUq.

pbq For every morphism U Ñ V between affine objects of X , the induced map OXpUqbOXpV q

F pV q Ñ F pUq exhibits F pUq as an I-completion of OXpUq bOXpV q F pV q, where I
is an ideal of definition of OXpUq.

Proof. By virtue of Proposition 8.2.4.17, we can assume without loss of generality that
X “ Spf A is affine. If F is quasi-coherent, then assertions paq and pbq follow immediately
from the description given in Remark 8.2.4.16. Conversely, suppose that conditions paq and
pbq are satisfied and set M “ ΓpSpf A; F q. Then M is I-complete (where I Ď π0A is a
finitely generated ideal of definition). It follows from pbq that, when regarded as a sheaf on
the 8-category CAlgét

A , the functor F is given by the formula F pBq “ pB^I bA^I Mq
^
I »

pB bA ΓIpMqq^I , so that F is quasi-coherent by virtue of Proposition 8.2.4.5.

Remark 8.2.4.19. In the situation of Proposition 8.2.4.18, if F satisfies condition paq,
then condition pbq can restated as follows:

pb1q The sheaf F is weakly quasi-coherent.

This follows from the criterion for weak quasi-coherence supplied by Proposition 8.2.3.12.

Corollary 8.2.4.20. Let X be a formal spectral Deligne-Mumford stack. Then the structure
sheaf OX is quasi-coherent.

We close this section with a few remarks about tensor products of quasi-coherent sheaves.

Proposition 8.2.4.21. Let X be a formal spectral Deligne-Mumford stack. Then the
completion functor

WCohpXq Ñ QCohpXq F ÞÑ F^

of Construction 8.2.4.1 is compatible (in the sense of Definition HA.2.2.1.6 ) with the
symmetric monoidal structure on the 8-category WCohpXq described in Proposition 8.2.3.10.

Proof. Using Corollary 8.2.4.10, we are reduced to showing that if F P WCoh˝pXq and
G P WCohpXq, then the tensor product F bOX

G belongs to WCoh˝pXq. This follows
immediately from the definition of the 8-category WCoh˝pXq (see Corollary 8.2.3.7).

Corollary 8.2.4.22. Let X be a formal spectral Deligne-Mumford stack. Then there exists
an essentially unique symmetric monoidal structure on the 8-category QCohpXq for which
the completion functor WCohpXq Ñ QCohpXq is symmetric monoidal.

Proof. Combine Propositions 8.2.4.21 and HA.2.2.1.9 .
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Notation 8.2.4.23. Let X be a formal spectral Deligne-Mumford stack. We will gener-
ally regard the 8-category QCohpXq as equipped with the symmetric monoidal struc-
ture described in Corollary 8.2.4.22. We denote the tensor product on QCohpXq by
pb : QCohpXq ˆ QCohpXq Ñ QCohpXq to distinguish it from the tensor product on
the larger 8-categories WCohpXq Ď ModOX

. Concretely, it is given by the formula
F pbG “ pF bOX

G q^. Moreover, the unit object of QCohpXq is the structure sheaf
OX (see Corollary 8.2.4.20).

Remark 8.2.4.24. Let X be a formal spectral Deligne-Mumford stack. Then the equivalence
NilCohpXq » QCohpXq of Corollary 8.2.4.12 can be promoted to an equivalence of symmetric
monoidal 8-categories, where QCohpXq is equipped with the symmetric monoidal structure
of Corollary 8.2.4.22 and NilCohpXq is equipped with the symmetric monoidal structure of
Remark 8.2.3.11.

8.2.5 Connectivity Conditions

We now study the behavior of sheaves on formal spectral Deligne-Mumford stacks with
respect to truncation. We begin with the nilcoherent case.

Proposition 8.2.5.1. Let X be a formal spectral Deligne-Mumford stack. Then:

paq If F P ModOX
is nilcoherent, then the truncations τěn F and τďn F are nilcoherent

for all n P Z.

pbq Define full subcategories NilCohpXqě0,NilCohpXqď0 Ď NilCohpXq by the formulae

NilCohpXqě0 “ NilCohpXqXpModOX
qě0 NilCohpXqď0 “ NilCohpXqXpModOX

qď0.

Then the pair pNilCohpXqě0,NilCohpXqď0q determines a t-structure on NilCohpXq.

pcq The t-structure of pbq is left and right complete and compatible with filtered colimits.

Proof. To prove paq, we can use Proposition 8.2.1.5 to reduce to the case where X is affine,
in which case the desired result follows from Remark 8.2.1.4. Assertion pbq follows formally
from paq. To prove pcq, we can again reduce to the case where X » Spf A is affine. In this
case, Proposition ?? supplies a t-exact equivalence NilCohpXq » ModNilpIq

A where I Ď π0A

is a finitely generated ideal of definition (see Remark 7.1.1.17).

Remark 8.2.5.2. Let X be a spectral Deligne-Mumford stack, let K Ď |X | be a cocompact
closed subset, and let i˚ : NilCohpX^Kq Ñ QCohKpXq be the equivalence of Corollary
8.2.1.6. Then i˚ is t-exact (where we regard NilCohpX^Kq as equipped with the t-structure
of Proposition 8.2.5.1 and QCohKpXq with the t-structure of Remark 7.1.5.2).
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Proposition 8.2.5.3. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack, let
F P WCohpXq be weakly quasi-coherent, and let F^ P QCohpXq be its completion. Suppose
that F is connective (when regarded as a sheaf of spectra on X). Then, for each affine object
U P X , the spectrum F^pUq is connective.

Proof. Without loss of generality, we may assume that U is the final object of X , so that
X » Spf A for some adic E8-ring A. Let us regard WCohpXq as a stable A-linear 8-
category. Let I Ď π0A be an ideal of definition which is generated by finitely many elements
x1, . . . , xn P π0A. Set M “ ΓpSpf A; F^q; we wish to show that M is connective.

Fix 1 ď i ď n. For m ě 0, let Mm denote the cofiber of the map xmi : M Ñ M . Since
M is I-complete, we have an equivalence M » lim

ÐÝ
Mm. Consequently, to prove that M is

connective, it will suffice to show that each Mm is connective and that each of the transition
maps π0Mm`1 Ñ π0Mm is surjective. Using the fiber sequence M1

xmi
ÝÝÑMm`1 ÑMm, we

are reduced to showing that M1 is connective. We may therefore replace F by the cofiber of
the map xi : F Ñ F and thereby reduce to the case where F is pxiq-nilpotent. Applying
this argument for 1 ď i ď n, we can assume that F is I-nilpotent, hence nilcoherent
(Corollary 8.3.2.3). Using Remark 8.2.1.4, we deduce that ΓpX; F q is connective, so that
the completion M » ΓpX; F q^I is also connective (Proposition 7.3.4.4).

Corollary 8.2.5.4. Let A be an adic E8-ring and let F P QCohpSpf Aq. The following
conditions are equivalent:

p1q The A-module ΓpSpf A; F q is connective.

p2q Write Spf A “ pX ,OSpf Aq. For each affine object U P X , the spectrum F pUq is
connective.

p3q The sheaf F is connective (when viewed as a sheaf of spectra on X ).

Proof. Let I Ď π0A be a finitely generated ideal of definition and set M “ ΓpSpf A; F q.
Using Example 8.1.3.5 and Remark 8.2.4.16, we see that for every affine object U P X , we
can write F pUq “ pB bAMq

^
I for some étale A-algebra B. Since the I-completion functor

is right t-exact (Proposition 7.3.4.4), it follows that p1q ñ p2q. The implication p2q ñ p3q
follows immediately from the definitions (since πn F is the sheafification of the functor
U ÞÑ πnpF pUqq), and the implication p3q ñ p1q follows from Proposition 8.2.5.3.

Corollary 8.2.5.5. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and let
F P QCohpXq be a quasi-coherent sheaf. The following conditions are equivalent:

p1q The sheaf F is connective when viewed as a Sp-valued sheaf on X : that is, the
homotopy sheaves πn F vanish for n ă 0.

p2q For each affine object U P X , the spectrum F pUq is connective.
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Definition 8.2.5.6. Let X be a formal spectral Deligne-Mumford stack. We will say that a
quasi-coherent sheaf F P QCohpXq is connective if it satisfies the equivalent conditions of
Corollary 8.2.5.5. We let QCohpXqcn denote the full subcategory of QCohpXq spanned by
the connective objects.

Variant 8.2.5.7. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack. We say
that a quasi-coherent sheaf F P QCohpXq is almost connective if, for every affine object
U P X , the spectrum F pUq is almost connective (that is, it is p´nq-connective for n " 0). We
let QCohpXqacn denote the full subcategory of QCohpXq spanned by the almost connective
objects.

Remark 8.2.5.8. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and let
F P QCohpXq. If Σn F is connective for some n " 0, then F is almost connective. The
converse holds if X is quasi-compact.

Remark 8.2.5.9. Let X be a formal spectral Deligne-Mumford stack and let WCohpXqcn

denote the full subcategory of WCohpXq spanned by those objects which are connective when
viewed as Sp-valued sheaves. It follows from Proposition 8.2.5.3 that the completion functor
WCohpXq Ñ QCohpXq of Construction 8.2.4.1 carries connective objects of WCohpXq to
connective objects of QCohpXq.

Proposition 8.2.5.10. Let X be a formal spectral Deligne-Mumford stack. Then:

p1q The 8-category QCohpXqcn contains the unit object of QCohpXq and is closed under
the completed tensor product functor pb : QCohpXq ˆQCohpXq Ñ QCohpXq.

p2q The 8-category QCohpXqcn is closed under colimits and extensions in QCohpXq.

p3q The 8-category QCohpXqcn is presentable.

Proof. Note that the 8-category WCohpXqcn is closed under small colimits and tensor
products (since the analogous assertions hold in the larger 8-category ModOX

). Assertions
p1q and p2q now follow from Remark 8.2.5.9. To prove p3q, it will suffice to show that the
8-category QCohpXqcn is accessible, which follows by applying Proposition HTT.5.4.6.6 to
the pullback diagram

QCohpXqcn //

��

QCohpXq

��
Modcn

OX
//ModOX

.

Corollary 8.2.5.11. Let X be a formal spectral Deligne-Mumford stack. Then the 8-
category QCohpXq admits an accessible t-structure pQCohpXqcn,QCoh1pXqq.
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Proof. Combine Propositions 8.2.5.10 and HA.1.4.4.11 .

Warning 8.2.5.12. The t-structure pQCohpXqcn,QCoh1pXqq of Corollary 8.2.5.11 is gener-
ally not well-behaved: for example, it is not compatible with filtered colimits. Moreover,
the inclusion functor QCohpXq ãÑ ModOX

is not t-exact (though it is right t-exact). These
difficulties can often be circumvented by restricting attention to almost perfect sheaves in
the locally Noetherian setting: see §8.4 for further discussion.

Warning 8.2.5.13. Let X be a formal spectral Deligne-Mumford stack. Then the equivalence
NilCohpXq Ñ QCohpXq of Corollary 8.2.4.12 is not t-exact, where we endow NilCohpXq
with the t-structure of Proposition 8.2.5.1 and QCohpXq with the t-structure of Corollary
8.2.5.11. However, it is right t-exact (by virtue of Remark 8.2.5.9).

8.3 Direct and Inverse Images

In §8.2, we introduced the 8-category QCohpXq of quasi-coherent sheaves on a formal
spectral Deligne-Mumford stack X. In this section, we study the behavior of quasi-coherent
sheaves as X varies. If f : X Ñ Y is a morphism of formal spectral Deligne-Mumford
stacks, then the pullback functor f˚ : ModOY

Ñ ModOX
does not necessarily preserve

quasi-coherence. However, in §8.3.2 we show that f˚ does preserve weak quasi-coherence
(Proposition 8.3.2.1). Using this observation, we define a completed pullback functor f‹ :
QCohpYq Ñ QCohpXq (Remark 8.3.2.10). Under mild hypotheses, we show that the
direct image functor f˚ preserves quasi-coherence, and therefore restricts to a functor
f˚ : QCohpXq Ñ QCohpYq which is right adjoint to f‹ (Proposition 8.3.3.1).

Let X be a formal spectral Deligne-Mumford stack and let X : CAlgcn Ñ S be the
functor represented by X. In §8.3.4, we use the completed pullback functors to define a
canonical map QCohpXq Ñ QCohpXq, where QCohpXq is the 8-category of quasi-coherent
sheaves on X introduced in Definition 6.2.2.1. Our main result asserts that this functor is
an equivalence when restricted to connective (or almost connective) quasi-coherent sheaves
(Theorem 8.3.4.4 and Corollary 8.3.4.6). In §??, we exploit this equivalence to study various
finiteness conditions on quasi-coherent sheaves, which will play an important role in §8.5.

8.3.1 Digression: Representable Morphisms

In §6.3.2, we introduced the notion of a representable morphism between functors
X,Y : CAlgcn Ñ S. We now specialize to the setting where X and Y are (representable by)
formal spectral Deligne-Mumford stacks.

Definition 8.3.1.1. Let f : X Ñ Y be a morphism of formal spectral Deligne-Mumford
stacks. We will say that f is representable (or representable by spectral Deligne-Mumford
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stacks) if, for every pullback diagram of formal spectral Deligne-Mumford stacks

X0 //

��

X

f
��

Y0 // Y

where Y0 is a spectral Deligne-Mumford stack, X0 is also a spectral Deligne-Mumford stack.

Remark 8.3.1.2. In the situation of Definition 8.3.1.1, the condition that X0 is a spectral
Deligne-Mumford stack can be tested locally on X0 (with respect to the étale topology).
Consequently, to show that a morphism f : XÑ Y is representable, it suffices to verify the
following a priori weaker condition:

p˚q For every map SpétR Ñ Y, the fiber product XˆY SpétR is a spectral Deligne-
Mumford stack.

Remark 8.3.1.3. Let f : XÑ Y be a morphism of formal spectral Deligne-Mumford stacks.
Then f is representable (in the sense of Definition 8.3.1.1) if and only if the map of functors
hX Ñ hY is representable (in the sense of Definition 6.3.2.1): this follows immediately from
Remark 8.3.1.2.

Remark 8.3.1.4. Let f : X Ñ Y and g : Y Ñ Z be morphisms of formal spectral
Deligne-Mumford stacks. If f and g are representable, then pg ˝ fq : XÑ Z is representable.

Remark 8.3.1.5. Suppose we are given a pullback diagram of formal spectral Deligne-
Mumford stacks

X1 //

f 1

��

X

f

��
Y1

g // Y .

If f is representable, then so is f 1. The converse holds if g is an étale surjection.

Remark 8.3.1.6. Let f : XÑ Y be an étale morphism of formal spectral Deligne-Mumford
stacks. Then f is representable.

We now specialize to the case of affine formal spectral Deligne-Mumford stacks.

Proposition 8.3.1.7. Let f : AÑ B be a morphism of adic E8-rings and let I Ď π0A be
a finitely generated ideal of definition. The following conditions are equivalent:

paq The ideal Ipπ0Bq Ď π0B is an ideal of definition for B.

pbq The map Spf f : Spf B Ñ Spf A is representable (Definition 8.3.1.1).
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Remark 8.3.1.8. It follows from Proposition 8.3.1.7 that condition paq is independent of
the choice of ideal of definition I Ď π0A.

Proof of Proposition 8.3.1.7. Suppose first that paq is satisfied; we will show that the map
Spf B Ñ Spf A satisfies condition p˚q of Remark 8.3.1.2. Choose a connective E8-ring R and
a map g : SpétRÑ Spf A, which we can identify with a morphism of E8-rings AÑ R which
annihilates some power of I (Proposition 8.1.5.2). Using Lemma 8.1.7.3 and assumption
paq, we can identify the fiber product pSpétRq ˆSpf A Spf B with SpfpB bA Rq, where we
endow π0pB bA Rq with the I-adic topology. Since I generates a nilpotent ideal in R, this
topology coincides with the discrete topology, so that SpfpB bA Rq » SpétpB bA Rq is an
(affine) spectral Deligne-Mumford stack.

Now suppose that pbq is satisfied. Set R “ pπ0Aq{I. Assumption pbq guarantees that
the fiber product pSpétRq ˆSpf A Spf B » SpfpB bA Rq is a spectral Deligne-Mumford
stack. Let J Ď π0B be a finitely generated ideal of definition. Then the J-adic topology
on π0pB bA Rq » pπ0Bq{Ipπ0Bq coincides with the discrete topology. It follows that
Jn Ď Ipπ0Bq for n " 0, so that Ipπ0Bq is also an ideal of definition for π0B.

Corollary 8.3.1.9. Let f : X Ñ Y be a morphism of formal spectral Deligne-Mumford
stacks. The following conditions are equivalent:

p1q The morphism f is representable.

p2q For every commutative diagram

Spf B //

f 1

��

X

f

��
Spf A // Y

where the horizontal maps are étale and f 1 is induced by a morphism of adic E8-rings
AÑ B, if I Ď π0A is a finitely generated ideal of definition, then Ipπ0Bq is an ideal
of definition for B.

Proof. Suppose first that p1q is satisfied and consider a diagram

Spf B //

f 1

��

X

f

��
Spf A // Y

as in p2q. Then f 1 can be written as a composition Spf B Ñ pXˆY Spf Aq Ñ Spf A, where
the first map is étale (and therefore representable by Remark 8.3.1.6) and the second map is
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representable by Remark 8.3.1.5. Applying Remark 8.3.1.4, we see that f 1 is representable,
so that Ipπ0Bq is an ideal of definition for π0B by virtue of Proposition 8.3.1.7.

Now suppose that p2q is satisfied; we wish to show that f is representable. Using Remark
8.3.1.5, we can reduce to the case where Y “ Spf A is affine. We wish to show that for any
morphism g : Y0 Ñ Y, where Y0 is a spectral Deligne-Mumford stack, the fiber product
XˆY Y0 is also a spectral Deligne-Mumford stack. Choose an étale surjection > Spf Bα Ñ X.
Then we have an étale surjection > Spf Bα ˆSpf A Y0 Ñ XˆY Y0. It will therefore suffice to
show that each fiber product Spf BαˆSpf AY0 is a spectral Deligne-Mumford stack. Without
loss of generality, we may assume that each Bα is complete (Remark 8.1.2.4), so that the
map Spf Bα Ñ Spf A is induced by a morphism of adic E8-rings A Ñ Bα (Corollary ??).
The desired result now follows from assumption p2q together with Proposition 8.3.1.7.

Corollary 8.3.1.10. Let f : X Ñ Y be a morphism of formal spectral Deligne-Mumford
stacks. If X is a spectral Deligne-Mumford stack, then f is representable.

Proof. Choose a commutative diagram

Spf B //

f 1

��

X

f

��
Spf A // Y

as in Corollary 8.3.1.9. Let I Ď π0A be a finitely generated ideal of definition. Our
assumption that X is a spectral Deligne-Mumford stack guarantees that the topology on
π0B is discrete, so the map AÑ B annihilates some power of I. It follows that Ipπ0Bq is a
nilpotent ideal (and therefore an ideal of definition for π0B).

Corollary 8.3.1.11. Let X be a formal spectral Deligne-Mumford stack. Then the diagonal
map XÑ XˆX is representable.

Proof. Let g : X Ñ XˆX be a morphism of formal spectral Deligne-Mumford stacks, where
X is a spectral Deligne-Mumford stack. Let Y denote the fiber product XˆXˆXX. We wish
to show that Y is a spectral Deligne-Mumford stack. Identifying g with a pair of maps
g0, g1 : X Ñ X, we have a pullback diagram

Y //

��

X
g0
��

X g1 // X .

The desired result now follows from the fact that g0 is representable (Corollary 8.3.1.10).
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Proposition 8.3.1.12. Let f : X Ñ Y be a representable morphism in the 8-category
FunpCAlgcn,Sq. If Y is representable by a formal spectral Deligne-Mumford stack, then X

is representable by a formal spectral Deligne-Mumford stack.

Proof. Let Y “ pY,OYq be a formal spectral Deligne-Mumford stack which represents
the functor Y . For each object V P Y, let YV “ pY{V ,OY |V q and let YV be the functor
represented by YU . Let us say that V P Y is good if the fiber product XˆY YV is representable
by a formal spectral Deligne-Mumford stack. The collection of good objects of Y is closed
under colimits. Consequently, it will suffice to show that every affine object U P Y is good
(Proposition 8.1.3.7). We may therefore reduce to the case where Y is affine.

Choose an equivalence Y » Spf A, where A is an adic E8-ring with finitely generated ideal
of definition I Ď π0A. Let tAnuną0 be a tower of A-algebras satisfying the requirements
of Lemma 8.1.2.2. Using our assumption that f is representable, we deduce that each
fiber product Xn “ X ˆY SpecAn is representable by a spectral Deligne-Mumford stack
Xn “ pX n,Onq. These spectral Deligne-Mumford stacks fit into pullback diagrams

Xn`1 //

��

Xn

��
SpétAn`1 // SpétAn.

Since each of the maps π0An`1 Ñ π0An is a surjection with nilpotent kernel, the underlying
geometric morphism X n`1 Ñ X n is an equivalence of 8-topoi. We may therefore identify
each X n with a single 8-topos X . Set OX “ lim

ÐÝ
On P ShvCAlgpX q and define X “ pX , pOq.

To complete the proof, it will suffice to show verify the following:

paq The spectrally ringed 8-topos X “ pX ,OXq is a formal spectral Deligne-Mumford
stack.

pbq The functor X is represented by X.

We begin by proving paq. Fix an object U P X such that pX {U ,O1 |U q is affine. Then
pX {U ,On |U q is affine for all n ą 0 (see Lemma 8.3.3.2). Write pX {U ,On |U q » SpétBn
for some An-algebra Bn. Let B be the image of the tower tBnuną0 under the (symmetric
monoidal) equivalence of 8-categories lim

ÐÝ
Modcn

An » pModCplpIq
A qcn supplied by Theorem

8.3.4.4, so that we have equivalences Bn » AnbAB. Let us regard B as an adic E8-ring with
ideal of definition Ipπ0Bq. Note that the tower tBnu satisfies the requirements of Lemma
8.1.2.2 for B, so the proof of Proposition 8.1.2.1 yields an equivalence pX {U ,OX |U q » Spf B.
Allowing U to vary, we deduce that X is a formal spectral Deligne-Mumford stack.

To prove pbq, let X 1 : CAlgcn Ñ S be the functor represented by X. For each n ą 0,
the projection map OX Ñ On determines a natural transformation of functors Xn Ñ X 1.
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These maps are compatible as n varies, and give rise to a map α : X “ lim
ÝÑn

Xn Ñ X 1.
For each object U P X , let X 1U denote the functor represented by pX {U ,OX |U q and set
XU “ X 1U ˆX 1 X. Using Proposition 8.1.5.2, we deduce that the projection map XU Ñ X 1U
is an equivalence whenever U is affine. Since the functors X and X 1 are both sheaves with
respect to the étale topology and the map >UX 1U Ñ X 1 is an effective epimorphism with
respect to the étale topology (where the coproduct is taken over all affine objects U P X ), it
follows that α is an equivalence, so that X is representable by X.

8.3.2 Inverse Images of Quasi-Coherent Sheaves

We now discuss the functorial dependence of the 8-categories NilCohpXq, WCohpXq,
and QCohpXq on the formal spectral Deligne-Mumford stack X. Recall that any morphism
of spectrally ringed 8-topoi f : XÑ Y determines a pair of adjoint functors

ModOY

f˚ //ModOX
.

f˚
oo

Proposition 8.3.2.1. Let f : XÑ Y be a morphism of formal spectral Deligne-Mumford
stacks. Then the functor f˚ : ModOY

Ñ ModOX
carries WCohpYq to WCohpXq.

The proof of Proposition 8.3.2.1 will require some preliminaries.

Proposition 8.3.2.2. Let A be an adic E8-ring with finitely generated ideal of definition
I Ď π0A, and regard ModOSpf A as a stable A-linear 8-category. Let F be a OSpf A-module.
Then F is I-local if and only if it belongs to the full subcategory WCoh˝pSpf Aq Ď ModOSpf A

appearing in Corollary 8.2.3.7.

Proof. Without loss of generality, we may assume that A is complete. Let us identify OX

with the functor
CAlgét

A Ñ CAlgA B ÞÑ B^I ,

and view F as a OX-module object of the presheaf 8-category FunpCAlgét
A ,Spq. Define F ˝ :

CAlgét
A Ñ Sp as in the proof of Proposition 8.2.3.12, so that F ˝pBq » ΓIpB^I q bB^I F pBq.

Then O«Spf AbOSpf A F can be identified with the sheafification of F ˝. If F is I-local, then
F ˝ » 0, so that O«Spf AbOSpf A F » 0 and F P WCoh˝pSpf Aq, as desired. Conversely,
suppose that F P WCoh˝pSpf Aq. Then F is weakly coherent. The proof of Proposition
8.2.3.12 shows that F ˝ is already a sheaf, so we have F ˝ » O«Spf AbOSpf A F » 0. It follows
that F ˝pBq » 0 for all B P CAlgét

A , which implies that F pBq is I-local. Allowing B to vary,
we conclude that F is I-local.

Corollary 8.3.2.3. Let A be an adic E8-ring with finitely generated ideal of definition
I Ď π0A, and regard WCohpSpf Aq as a stable A-linear 8-category. Then:
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paq An object F P WCohpSpf Aq is nilcoherent if and only if it is I-nilpotent.

pbq An object F P WCohpSpf Aq is quasi-coherent if and only if it is I-complete.

Proof. Combine Proposition 8.3.2.2 with Corollaries 8.2.3.7 and 8.2.4.10.

Corollary 8.3.2.4. Let f : X Ñ Y be a morphism of formal spectral Deligne-Mumford
stacks. Then the functor f˚ : ModOY

Ñ ModOX
carries WCoh˝pYq to WCoh˝pXq.

Proof. Without loss of generality, we can assume that X » Spf B and Y » Spf A are affine,
and that f is induced by a morphism of adic E8-rings. In this case, we can regard the
pullback f˚ : ModOY

Ñ ModOX
as an A-linear functor. Let I Ď π0A be a finitely generated

ideal of definition. Then f˚ carries I-local objects of ModOY
to I-local objects of ModOX

,
which are then also J-local for any finitely generated ideal of definition J Ď π0B. The
desired result now follows from the criterion of Proposition 8.3.2.2.

Proof of Proposition 8.3.2.1. Let f : X Ñ Y be a morphism of formal spectral Deligne-
Mumford stacks and let F P WCohpYq; we wish to show that f˚F is weakly quasi-coherent.
Using Corollary 8.2.3.7, we obtain a fiber sequence F 1 Ñ F Ñ F 2 where F 1 is nilcoherent
and F 2 P WCoh˝pYq. It follows from Proposition 8.3.2.2 that f˚F 2 is weakly quasi-
coherent. It will therefore suffice to show that f˚F 1 is weakly quasi-coherent. We may
therefore replace F by F 1 and thereby reduce to the case where F is nilcoherent.

Working locally on Y, we may further assume that Y » Spf A for some adic E8-ring
A. Let us regard ModOY

and ModOX
as A-linear stable 8-categories and f˚ as an A-linear

functor. Set M “ ΓpY; F q. Our assumption that F is nilcoherent guarantees that the
canonical map M bA OY Ñ F is an equivalence (see the proof of Proposition 8.2.1.3). We
therefore obtain equivalences

f˚F »M bA f
˚OY »M bA OX .

The full subcategory WCohpXq Ď ModOX
is closed under small colimits and desuspensions

(Remark 8.2.3.5), and is therefore an A-linear subcategory of ModOX
. The desired result

now follows from the weak quasi-coherence of the structure sheaf OX (Example 8.2.3.3).

In the case of a representable morphism, Proposition 8.3.2.1 admits the following
refinement:

Proposition 8.3.2.5. Let f : XÑ Y be a representable morphism of formal spectral Deligne-
Mumford stacks. Then the pullback functor f˚ : ModOY

Ñ ModOX
carries nilcoherent sheaves

on Y to nilcoherent sheaves on X.
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Proof. Working locally on X and Y, we can assume that Y “ Spf A and X “ Spf B are affine.
Moreover, we may assume without loss of generality that B is complete (Remark 8.1.2.4), so
that f is induced by a morphism of adic E8-rings AÑ B. Let us regard ModOY

and ModOX

as stable A-linear 8-categories (so that the pullback functor f˚ is A-linear). Let I Ď π0A

be a finitely generated ideal of definition. Let F P NilCohpYq and set M “ ΓpY; F q, so
that M is an I-nilpotent A-module and F »M bA OY.

f˚F »M bA pf
˚OYq »MB bB pf

˚OXq,

where MB “ M bA B. Note that M bA B is Ipπ0Bq-nilpotent. Our representability
assumption guarantees that Ipπ0Bq is an ideal of definition for π0B (Proposition 8.3.1.7), so
that f˚F is also nilcoherent.

In the case where f : XÑ Y is not representable, the conclusion of Proposition 8.3.2.5
generally does not hold without some additional assumptions. For example, we have the
following:

Proposition 8.3.2.6. Let X be a spectral Deligne-Mumford stack, let K Ď |X | be a cocom-
pact closed subset, and let i : X^K Ñ X exhibit X^K as a formal completion of X along K. If
F P QCohpXq is supported on K, then i˚F is nilcoherent.

Proof. The assertion is local, so we may assume without loss of generality that X » SpétA is
affine and that K is the vanishing locus of some finitely generated ideal I Ď π0A. In this case,
our assumption that F is supported on K guarantees that M “ ΓpX; F q is an I-nilpotent
A-module. We then have F » M bA OX, so that f˚F “ M bA OX^K is nilcoherent as
desired (see the proof of Proposition 8.2.1.3).

Remark 8.3.2.7. In the situation of Proposition 8.3.2.6, the pullback functor i˚ : QCohKpXq Ñ
NilCohpX^Kq is homotopy inverse to the equivalence i˚ : NilCohpX^Kq Ñ QCohKpXq of Corol-
lary 8.2.1.6.

We now consider the behavior of quasi-coherent sheaves with respect to pullback. Here,
the situation is a bit more subtle: if f : XÑ Y is a morphism of formal spectral Deligne-
Mumford stacks, then the pullback functor f˚ : WCohpYq Ñ WCohpXq need not carry
quasi-coherent sheaves to quasi-coherent sheaves. Nevertheless, there is a well-defined
completed pullback functor f‹ : QCohpYq Ñ QCohpXq.

Notation 8.3.2.8. Let 8T opsHen
Mod be the 8-category of Notation 2.2.1.3, whose objects

are triples pX ,O,F q where X is an 8-topos, O is a strictly Henselian sheaf of E8-rings
on X , and F is a O-module. We let fSpDMWCoh denote the full subcategory of 8T opsHen

Mod
spanned by those triples pX ,O,F q where pX ,Oq is a formal spectral Deligne-Mumford
stack and F is weakly quasi-coherent. It follows from Proposition 8.3.2.1 that the forgetful
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functor pX ,O,F q ÞÑ pX ,Oq determines a Cartesian fibration fSpDMWCoh Ñ fSpDM, whose
fiber over a formal spectral Deligne-Mumford stack X can be identified with the 8-category
WCohpXqop. We let fSpDMQCoh denote the full subcategory of fSpDMWCoh spanned by
those triples pX ,O,F q where F is quasi-coherent.

Proposition 8.3.2.9. The forgetful functor q : fSpDMQCoh Ñ fSpDM is a Cartesian
fibration.

Remark 8.3.2.10. We can summarize the contents of Proposition 8.3.2.9 more informally
as follows: the construction X ÞÑ QCohpXq can be regarded as a functor pfSpDMqop ÑyCat8,
which assigns to each morphism f : XÑ Y a functor f‹ : QCohpYq Ñ QCohpXq. We will
see below that the functor f‹ is given on objects by the formula f‹F “ pf˚F q^. We will
refer to f‹ as the completed pullback functor associated to f .

Proof of Proposition 8.3.2.9. Let f : Y “ pY,OYq Ñ pZ,OZq “ Z be a morphism of
formal spectral Deligne-Mumford stacks and let F P QCohpZq. Then f˚F is weakly
quasi-coherent, so its completion F 1 “ pf˚F q^ can be regarded as an object of QCohpYq.
The composite map u : F Ñ f˚f

˚F Ñ f˚F 1 determines a lift of f to a morphism
f : pY,OY,F

1q Ñ pZ,OZ,F q in the8-category fSpDMQCoh. We claim that f is q-Cartesian.
To prove this, we must show that for every morphism of formal spectral Deligne-Mumford
stacks g : XÑ Y and every object G P QCohpXq, composition with u induces a homotopy
equivalence

ρ : MapQCohpYqpF
1, g˚ G q Ñ MapQCohpZqpF , pf ˝ gq˚ G q.

Unwinding the definitions, we can identify ρ with the first map appearing in the fiber
sequence

MapWCohpXqpg
˚F 1,G q Ñ MapWCohpXqppf˝gq

˚F ,G q Ñ MapWCohpXqpg
˚ fibpf˚F Ñ F 1q,G q.

To prove that ρ is a homotopy equivalence, it will suffice to show that the mapping space
MapWCohpXqpg

˚ fibpf˚F Ñ F 1q,G q is contractible. By virtue of our assumption that G is
quasi-coherent, we are reduced to showing that g˚ fibpf˚F Ñ F 1q belongs to WCoh˝pXq
(Corollary 8.2.4.10). This follows from Proposition 8.3.2.2, since fibpf˚F Ñ F 1q belongs to
WCoh˝pYq (again by virtue of Corollary 8.2.4.10).

Remark 8.3.2.11. The inclusion functor fSpDMQCoh ãÑ fSpDMWCoh admits a right adjoint
relative to fSpDM. In particular, for every morphism f : XÑ Y of formal spectral Deligne-
Mumford stacks, the diagram of 8-categories

WCohpYq f˚ //

��

WCohpXq

��
QCohpYq f‹ // QCohpXq
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commutes up to canonical equivalence, where the vertical maps are given by the completion
functors of Construction 8.2.4.1. It follows that we can regard f‹ : QCohpYq Ñ QCohpXq
as a symmetric monoidal functor, where QCohpXq and QCohpYq are equipped with the
symmetric monoidal structure described in Corollary 8.2.4.22.

Remark 8.3.2.12. Let f : XÑ Y be a morphism of formal spectral Deligne-Mumford stacks.
If X is a spectral Deligne-Mumford stack, then the completion functor WCohpXq Ñ QCohpXq
is equivalent to the identity. Consequently, the completed pullback functor f‹ of Remark
8.3.2.10 coincides with the usual pullback functor f˚ (restricted to the8-category QCohpYq).

Remark 8.3.2.13. Let f : X Ñ Y be a morphism of formal spectral Deligne-Mumford
stacks. Then the completed pullback functor f‹ : QCohpYq Ñ QCohpXq is right t-exact:
that is, it carries QCohpYqcn into QCohpXqcn. This follows from Remark 8.2.5.9, since the
pullback functor f˚ : WCohpYq Ñ WCohpXq carries WCohpYqcn into WCohpXqcn.

8.3.3 Direct Images of Quasi-Coherent Sheaves

Let f : X Ñ Y be a morphism of formal spectral Deligne-Mumford stacks. Then f

determines a direct image functor f˚ : ModOX
Ñ ModOY

. In good cases, this functor
preserves quasi-coherence:

Proposition 8.3.3.1. Let f : XÑ Y be a morphism of formal spectral Deligne-Mumford
stacks. Assume that f is representable by quasi-compact, quasi-separated spectral algebraic
spaces: that is, for every map SpétRÑ Y, the fiber product SpétRˆYX is a quasi-compact,
quasi-separated spectral algebraic space. Then the direct image functor f˚ : ModOX

Ñ ModOY

carries QCohpXq into QCohpYq.

The proof depends on the following:

Lemma 8.3.3.2. Let A be an adic E8-ring with a finitely generated ideal of definition
I Ď π0A, and let f : X Ñ Spf A be a representable morphism of formal spectral Deligne-
Mumford stacks. The following conditions are equivalent:

paq The formal spectral Deligne-Mumford stack X is affine.

pbq The spectral Deligne-Mumford stack XˆSpf A Spétpπ0A{Iq is affine.

Proof. The implication paq ñ pbq is clear. Suppose that pbq is satisfied. Applying Lemma
17.1.3.7 repeatedly, we deduce the following stronger version of pbq:

pb1q Let J Ď π0A be an ideal containing In for some n " 0. Then the spectral Deligne-
Mumford stack XˆSpf A Spétpπ0A{Jq is affine.
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Let tAnuną0 be a tower of A-algebras satisfying the requirements of Lemma 8.1.2.2. Com-
bining pb1q with Corollary ??, we deduce that XˆSpf A SpétAn is affine for n ą 0. Write
XˆSpf A SpétAn » SpétBn for some Bn P CAlgcn

An . Then we can regard tBnuną0 as a
commutative algebra object of lim

ÐÝ
Modcn

An . Let B P CAlgcn
A denote the image of the tower

tBnuną0 under the (symmetric monoidal) equivalence lim
ÐÝ

Modcn
An » pModCplpIq

A qcn supplied
by Proposition 8.3.4.4. Let us regard B as an adic E8-ring with ideal of definition Ipπ0Bq. Us-
ing Proposition 8.1.5.2, we deduce that X and Spf B represent the same functor CAlgcn Ñ S,
and are therefore equivalent (Theorem 8.1.5.1).

Lemma 8.3.3.3. Let φ : AÑ B be a morphism of adic E8-rings and let f : Spf B Ñ Spf A
be the induced map of formal spectra. Assume that f is representable. Then the direct image
functor f˚ : ModOSpf B Ñ ModOSpf A carries QCohpSpf Bq to QCohpSpf Aq.

Proof. Let I Ď π0A be a finitely generated ideal of definition, so that Ipπ0Bq is an ideal of
definition for B. Let F P QCohpSpf Bq and set M “ ΓpSpf B; F q P ModB. As a spectrum-
valued functor on Shvad

B , we can identify F with the functor given by B1 ÞÑ pM bB B
1q^I

(see Remark 8.2.4.16). It follows that f˚F can be identified with the functor CAlgét
A Ñ Sp

given by A1 ÞÑ pM bB pB bA A
1q^I » pM bA A

1q^I , and is therefore quasi-coherent (Remark
8.2.4.16).

Proof of Proposition 8.3.3.1. Let f : X Ñ Y be a morphism of formal spectral Deligne-
Mumford stacks which is representable by quasi-compact, quasi-separated spectral algebraic
spaces and let F P QCohpXq; we wish to show that f˚F is quasi-coherent. This can be
tested locally on Y (Proposition 8.2.4.17), so we may assume without loss of generality
that Y “ Spf A is affine. Let I Ď π0A be a finitely generated ideal of definition and set
R “ pπ0Aq{I. Let X be the underlying 8-topos of X, and for each object U P X set
XU “ pX {U ,OX |U q and let fU : XU Ñ Y be the canonical map. Let us say that U is good if
fU˚pF |U q P ModOY

is quasi-coherent. The collection of good objects of X contains all affine
objects (Lemma 8.3.3.3) and is closed under finite colimits. Write SpétRˆY X » pX ,O0q.
Note that an object U P X is affine if and only if the spectral Deligne-Mumford stack
pX {U ,O0 |U q is affine. Since pX ,O0q is a quasi-compact, quasi-separated spectral algebraic
space, Combining Proposition 2.5.3.5 with Theorem 3.4.2.1, we deduce that the final object
of X is good, so that f˚F is quasi-coherent.

Remark 8.3.3.4. In the situation of Proposition 8.3.3.1, the direct image functor f˚ :
QCohpXq Ñ QCohpYq can be regarded as a right adjoint to the completed pullback functor
f‹ : QCohpYq Ñ QCohpXq of Remark 8.3.2.10.

Remark 8.3.3.5. In the situation of Proposition 8.3.3.1, if F P QCohpXq is almost con-
nective, then f˚F P QCohpYq is almost connective.
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Proposition 8.3.3.6. Suppose we are given a pullback diagram of formal spectral Deligne-
Mumford stacks

X1
g1 //

f 1

��

X

f

��
Y1

g // Y .

Assume that f is representable by quasi-compact, quasi-separated spectral algebraic spaces
(so that f 1 has the same property). Then the diagram of completed pullback functors

QCohpYq f‹ //

g‹

��

QCohpXq

g1‹

��
QCohpY1q g1‹ // QCohpX1q

is right adjointable. In other words, for every quasi-coherent sheaf F P QCohpXq, the
Beck-Chevalley map ρ : g‹f˚F Ñ f 1˚g

1‹F is an equivalence.

Proof. The assertion is local on both Y and Y1, so we can assume that Y » Spf A and
Y1 » Spf A1 are affine. Write X “ pX ,OXq. For each object U P X , set XU “ pX {U ,OX |U q

and X1U “ X1ˆXXU , so that we have a pullback diagram

X1U
g1U //

f 1U
��

XU

fU
��

Y1
g // Y .

Let us say that U is good if the induced map g‹fU˚F |U Ñ f 1U˚g
1‹
U F |U is an equivalence.

To complete the proof, it will suffice to show that the final object of X is good. Note that
the collection of good objects of X is closed under pushouts. Arguing as in the proof of
Proposition 8.3.3.1, we are reduced to showing that every affine object of X is good. We are
therefore reduced to proving Proposition 8.3.3.6 in the special case where X » Spf B is also
affine. Let I 1 Ď π0A

1 be a finitely generated ideal of definition, so that X1 » Spf B1, where
B1 “ A1bAB is regarded as an adic E8-ring with ideal of definition I 1pπ0B

1q. It now suffices
to observe that the domain and codomain of ρ can be identified with the quasi-coherent sheaf
on Spf A1 associated to the I 1-completion of A1 bA ΓpSpf B; F q » B1 bB ΓpSpf B; F q.

8.3.4 Quasi-Coherent Sheaves on Functors

In §6.2, we introduced the8-category QCohpXq of quasi-coherent sheaves on an arbitrary
functor X : CAlgcn Ñ pS (Definition 6.2.2.1). In the special case where X is representable
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by a spectral Deligne-Mumford stack X, we have a canonical equivalence of 8-categories
QCohpXq » QCohpXq (Proposition 6.2.4.1). We now prove a similar (but slightly weaker)
result in the setting of formal spectral Deligne-Mumford stacks.

Construction 8.3.4.1. Let fSpDM denote the 8-category of formal spectral Deligne-
Mumford stacks. It follows from Proposition 8.3.2.9 that we can regard the construction
XÑ QCohpXq as a functor QCoh : pfSpDMqop ÑyCat8. Moreover, the composite functor

CAlgcn Spét
ÝÝÝÑ pfSpDMqop NilCoh

ÝÝÝÝÑyCat8

can be identified with the functor A ÞÑ ModA (see Example 8.2.4.8) Note that this composite
functor admits a right Kan extension along the fully faithful embedding Spét : CAlgcn Ñ

pfSpDMqop, given by the construction X ÞÑ QCohphXq of Definition 6.2.2.1; here hX denotes
the functor represented by X. We therefore obtain a canonical map ΘX : QCohpXq Ñ
QCohphXq, which depends functorially on X and is an equivalence when X “ SpétA for
some connective E8-ring A.

Remark 8.3.4.2. Let X be a formal spectral Deligne-Mumford stack. Then the 8-category
QCohphXq can be described informally as follows: an object of QCohphXq is rule which
assigns to each map η : SpétRÑ X an R-module Mη, which is functorial in the sense that if
η1 : SpétR1 Ñ X is given by a composition SpétR1 Ñ SpétR η

ÝÑ X, then we have a canonical
equivalence Mη1 ˆ R1 bRMη. We can describe the functor ΘX of Construction 8.3.4.1 as
follows: if F P QCohpXq is a quasi-coherent sheaf on X, then ΘXpF q is the quasi-coherent
sheaf on hX given by ΘXpF qη “ ΓpSpétR; η˚F q.

Remark 8.3.4.3. In the special case where X is a spectral Deligne-Mumford stack, the
functor ΘX coincides with the equivalence QCohpXq » QCohphXq of Proposition 6.2.4.1.

We can now formulate our main result:

Theorem 8.3.4.4. Let X be a formal spectral Deligne-Mumford stack. Then the functor ΘX :
QCohpXq Ñ QCohphXq induces an equivalence of 8-categories QCohpXqcn Ñ QCohphXqcn.

Remark 8.3.4.5. We do not know if the connectivity hypotheses appearing in Theorem
8.3.4.4 can be dropped: that is, we do not know if the map ΘX is itself an equivalence of
8-categories. However, the analogous assertion holds in the setting of (formal) derived
algebraic geometry. In particular, one can show that the map ΘX is an equivalence if there
exists a map XÑ Spét Q.

Proof of Theorem 8.3.4.4. Without loss of generality, we may assume that X is affine. Choose
an equivalence X » Spf A, where A is an adic E8-ring. Let I Ď π0A be a finitely generated
idea l of definition and let tAnuną0 be a tower of E8-algebras over A which satisfies the
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requirements of Lemma 8.1.2.2. We then have an equivalence of functors hX » lim
ÝÑ

SpecAn,
hence an equivalence of 8-categories QCohphXq » lim

ÐÝ
ModAn . Corollary 8.2.4.15 supplies an

equivalence of8-categories QCohpXq » ModCplpIq
A . Under these equivalences, we can identify

ΘX with the functor F : ModCplpIq
A Ñ lim

ÐÝ
ModAn given on objects by M ÞÑ tAn bAMuną0.

This functor admits a right adjoint G, which carries a compatible system tMn P ModAnuně0
to the limit GptMnuq “ lim

ÐÝn
Mn P ModA. By assumption each of the maps An`1 Ñ An is

surjective on π0. It follows that if each Mk is connective, then each of the maps Mn`1 Ñ

AnbAn`1 Mn`1 ÑMn is surjective on π0. In particular, GptMnuq is a connective A-module
and each of the maps GptMnuq ÑMn is surjective on π0. Consequently, the restrictions of
F and G yield a pair of adjoint functors

ModCplpIq
A XModcn

A

F cn
// lim
ÐÝ

Modcn
AnGcn

oo .

We wish to show that F cn and Gcn are mutually inverse equivalences.
It follows from Lemma 8.1.2.3 that the unit map id Ñ Gcn ˝ F cn is an equivalence: that

is, the functor F cn induces a fully faithful embedding ModCplpIq
A XModcn

A Ñ lim
ÐÝ

Modcn
An . To

complete the proof, it will therefore suffice to show that the functor Gcn is conservative.
Since G is an exact functor between stable 8-categories, it will suffice to show that if tMnu is
an object of lim

ÐÝ
Modcn

An satisfying GptMnuq » 0, then each Mn P ModAn vanishes. We prove
by induction k that πiMn » 0 for i ď k. When k “ 0, this follows from our observation that
each of the maps π0GptMnuq Ñ π0Mn is surjective. If k ą 0, the inductive hypothesis implies
that tMnu is the k-fold suspension of an object tNnu P lim

ÐÝ
Modcn

An . Then GptNnuq » 0 and
we can apply the inductive hypothesis to deduce that πkMn » π0Nn » 0.

Corollary 8.3.4.6. Let X be a formal spectral Deligne-Mumford stack. Then the functor
ΘX : QCohpXq Ñ QCohphXq induces an equivalence of 8-categories F : QCohpXqacn Ñ

QCohphXqacn.

Proof. The assertion is local on X, so we may assume without loss of generality that X is
affine. In this case, we can write F as a filtered colimit of functors Fě´n : Σ´n QCohpXqcn Ñ

Σ´n QCohphXqcn, each of which is an equivalence by virtue of Theorem 8.3.4.4.

Under mild hypotheses, the equivalence of Theorem 8.3.4.4 is compatible with the
formation of direct images:

Proposition 8.3.4.7. Let f : XÑ Y be a morphism of formal spectral Deligne-Mumford
stacks. Assume that f is representable by quasi-compact, quasi-separated spectral algebraic
spaces (see Proposition 8.3.3.1). Let X,Y : CAlgcn Ñ S denote the functors represented by
X and Y, respectively, so that f determines a natural transformation F : X Ñ Y . Then the
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commutative diagram of 8-categories

QCohpYq f‹ //

ΘY

��

QCohpXq

ΘX

��
QCohpY q F˚ // QCohpXq

is right adjointable. In other words, for every quasi-coherent sheaf F P QCohpXq, the
canonical map ΘYpf˚F q Ñ F˚pΘX F q is an equivalence in QCohpXq.

Proof. Apply Proposition 8.3.3.6.

8.3.5 Finiteness Conditions on Quasi-Coherent Sheaves

We close this section by showing that the equivalence of Corollary 8.3.4.4 is compatible
with several natural finiteness conditions on quasi-coherent sheaves.

Definition 8.3.5.1. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and let
F P QCohpXqcn. Then:

• We say that F is perfect to order n if, for every affine object U P X , the spectrum
F pUq is perfect to order n when regarded as a module over OXpUq.

• We say that F is almost perfect if, for every affine object U P X , the spectrum F pUq

is almost perfect when regarded as a module over OXpUq.

• We say that F is perfect if, for every affine object U P X , the spectrum F pUq is
perfect when regarded as a module over OXpUq.

• We say that F is locally free of finite rank if, for every affine object U P X , the
spectrum F pUq is locally free of finite rank when regarded as a module over OXpUq.

Our main result can be formulated as follows:

Theorem 8.3.5.2. Let X be a formal spectral Deligne-Mumford stack and let F P QCohpXq
be a quasi-coherent sheaf on X. Assume that F is almost connective. Then the following
conditions are equivalent:

p1q The sheaf F is perfect to order n (almost perfect, perfect, locally free of finite rank),
in the sense of Definition 8.3.5.1.

p2q For every morphism f : X Ñ X, where X is a spectral Deligne-Mumford stack, the
pullback f˚F P QCohpXq is perfect to order n (almost perfect, perfect, locally free of
finite rank), in the sense of Definition 2.8.4.4.
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p3q The image of F under the equivalence QCohpXqacn Ñ QCohphXqacn of Corollary
8.3.4.6 is perfect to order n (almost perfect, perfect, locally free of finite rank), in the
sense of Definition 6.2.5.3).

Corollary 8.3.5.3. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack and let
F P QCohpXq. Then:

paq If F is perfect to order n (almost perfect, perfect, locally free of finite rank), then
F |U P QCohppX {U ,OX |U qq is also perfect to order n (almost perfect, perfect, locally
free of finite rank).

pbq If X admits a covering by objects tUαu such that each restriction F |Uα P QCohppX {Uα ,OX |Uαqq

is perfect to order n (almost perfect, perfect, locally free of finite rank), then F is also
perfect to order n (almost perfect, perfect, locally free of finite rank).

Proof. Assertion paq follows immediately from the definitions. To prove pbq, we can use
Theorem 8.3.5.2 to reduce to the case where X is a spectral Deligne-Mumford stack, in which
case the desired result follows from Propositions 2.8.4.7 and 2.9.1.4.

The proof of Theorem 8.3.5.2 will require some preliminaries. We begin with a somewhat
technical assertion.

Lemma 8.3.5.4. Suppose we are given a tower of connective E8-rings

¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1

having limit A, where each of the maps π0Ai`1 Ñ π0Ai is surjection whose kernel is a
nilpotent ideal of π0Ai`1. For every integer i ą 0, suppose we are given a connective Ai-
module Mi, and for i ą 1 a map of Ai´1-modules φi : Ai´1 bAi Mi Ñ Mi´1. Let n ě 0 be
an integer. Suppose that each of the spectra fibpφiq is n-connective, and that M1 is perfect
to order pn´ 1q if n ą 0. Then:

p1q If n ą 0, then M “ lim
ÐÝ

Mi is perfect to order pn´ 1q, when regarded as an A-module.

p2q For every integer i, let ψi : Ai bA M Ñ Mi be the canonical map. Then fibpψiq is
n-connective.

Proof. Since each Mi is connective and each of the maps π0Mi`1 Ñ π0Mi is surjective, we
deduce that M is connective and that each of the maps π0M Ñ π0Mi is surjective. This
proves p2q in the case n “ 0 (and condition p1q is automatic). We handle the general case
using induction on n. Assume that n ą 0. Then π0M1 is finitely generated as a module
over π0A1. We may therefore choose finitely many elements x1, . . . , xk P π0M whose images
generate π0M1. The elements xi determine a map of A-modules Ak Ñ M , which in turn
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determines a compatible family of Ai-module maps θi : Aki Ñ Mi. We claim that each of
the maps θi is surjective on connected components. This holds by hypothesis when i “ 0. If
i ą 0, then the image of θi generates π0Mi{Jπ0Mi » π0Mi´1, where J denotes the kernel of
π0Ai Ñ π0Ai´1, and therefore generates π0Mi by Nakayama’s lemma (since J is a nilpotent
ideal).

For i ě 0, form a fiber sequence Ni Ñ Aki Ñ Mi, so that each Ni is connective. Note
that if n ě 2, then N1 is perfect to order n ´ 2 as an A1-module. Moreover, we have
maps φ1i : Ai´1 bAi Ni Ñ Ni´1 such that fibpφ1iq » Σ´1 fibpφiq is pn ´ 1q-connective for
each i. Let N “ lim

ÐÝ
Ni. Applying our inductive hypothesis, we deduce that each of the

maps ψ1i : Ai bA N Ñ Ni is pn ´ 1q-connective. This proves p2q, since fibpψiq » Σ fibpψ1iq.
Note that N is connective, and is perfect to order n´ 2 if n ě 2. Using the fiber sequence
N Ñ Ak ÑM , we deduce that M is perfect to order n´ 1, which proves p1q.

Proposition 8.3.5.5. Let A be a connective E8-ring which is complete with respect to a
finitely generated ideal I Ď π0A, let M be an A-module which is I-complete and almost
connective, and let n be an integer. The following conditions are equivalent:

p1q The A-module M is perfect to order n.

p2q Set R “ pπ0Aq{I. Then the R-module RbAM is perfect to order n.

p3q For every morphism of connective E8-rings f : AÑ B which annihilates some power
of I, the B-module B bAM is perfect to order n.

Proof. The implication p1q ñ p2q follows from Proposition 2.7.3.1 and the implication
p2q ñ p3q from Proposition 2.7.3.2. We will complete the proof by showing that p3q implies
p1q. Replacing M by ΣkM (and n by n` k) for k " 0 and thereby reduce to the case where
M is connective and n ě 0. Choose a tower of A-algebras ¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1 satisfying
the requirements of Lemma 8.1.2.2. Since A and M are connective and I-complete, Lemma
8.1.2.3 supplies equivalences

A » lim
ÐÝ

Ai M » lim
ÐÝ

Ai bAM

(see Lemma 8.1.2.3). By virtue of Lemma 8.3.5.4, to show that M is perfect to order n,
it will suffice to show that A1 bR A is perfect to order n, which follows immediately from
assumption p3q.

Corollary 8.3.5.6. Let A be a connective E8-ring which is complete with respect to a
finitely generated ideal I Ď π0A and let M be an A-module which is almost connective. The
following conditions are equivalent:

p1q The A-module M is almost perfect.
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p2q Set R “ pπ0Aq{I. Then M is I-complete and the R-module RbAM is almost perfect.

p3q The A-module M is I-complete, and for every morphism of connective E8-rings
f : AÑ B which annihilates some power of I, the B-module BbAM is almost perfect.

Proof. Combine Propositions 7.3.5.7 and 8.3.5.5.

Proposition 8.3.5.7. Let A be a connective E8-ring which is complete with respect to a
finitely generated ideal I Ď π0A and let M P ModA be almost connective. The following
conditions are equivalent:

p1q The A-module M is locally free of finite rank.

p2q The A-module M is I-complete and the tensor product RbAM is locally free of finite
rank, where R “ pπ0Aq{I.

p3q The A-module M is I-complete and, for every morphism of connective E8-rings
f : AÑ B which annihilates some power of I, the B-module B bAM is locally free of
finite rank.

Proof. The implication p1q ñ p2q is follows from Proposition 7.3.5.7. If p2q is satisfied,
then the tensor product RbAM is connective, almost perfect, and of Tor-amplitude ď 0.
If f : A Ñ B is as in p3q, then B bA M is likewise connective, almost perfect (Corollary
8.3.5.6), and of Tor-amplitude ď 0 (Proposition 2.7.3.2). It follows that B bAM is locally
free of finite rank (Corollary 2.9.1.3), which proves p3q.

We now complete the proof by showing that p3q implies p1q. Assume that p3q is satisfied.
Using Theorem 8.3.4.4 and Corollary 8.3.4.6, we deduce that M is connective. Corollary
8.3.5.6 shows that M is almost perfect, so the homotopy group π0M is finitely presented as
a module over π0A. We may therefore choose a map u : An ÑM which induces a surjection
π0A

n Ñ π0M . To prove p1q, it will suffice to show that u admits a section. For this, it
suffices to show that the map

φ : MapModApM,Anq Ñ MapModApM,Mq

is surjective on π0. Letting K denote the cofiber of u, we are reduced to proving that the
mapping space MapModApM,Kq is connected. Choose a tower of E8-algebras

¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1

satisfying the requirements of Lemma 8.1.2.2. By virtue of Lemma 8.1.2.3, we can recover
K » K^

I as the limit of the tower tAi bA Ku. Then MapModApM,Kq is the limit of the
tower MapModApM,Ai ˆA Kq. It will therefore suffice to prove the following:

paq Each of the mapping spaces MapModApM,Ai bA Kq is connected.
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pbq Each of the maps ψi : MapModApM,Ai bA Kq Ñ MapModApM,Ai´1 bR Kq induces a
surjection of fundamental groups.

Note that K is 1-connective, so that Ai bA K is a 1-connective module over Ai. We
have a homotopy equivalence MapModApM,Ai bA Kq » MapModAi

pAi bA M,Ai bA Kq.
Consequently, assertion paq follows immediately from assumption p2q. To prove pbq, we note
that the homotopy fiber of ψi (over the base point) can be identified with MapModAi

pAi bA
M,J bAKq, where J “ fibpAi Ñ Ai´1q. Since J is connective, J bAK is 1-connective, and
the desired result follows from the projectivity of Ai bAM .

Corollary 8.3.5.8. Let A be a connective E8-ring which is complete with respect to a
finitely generated ideal I Ď π0A, let M P ModA be almost perfect, and let n be an integer.
The following conditions are equivalent:

p1q As an A-module, M has Tor-amplitude ď n.

p2q The tensor product RbAM has Tor-amplitude ď n over R, where R “ pπ0Aq{I.

p3q For every morphism of connective E8-rings f : AÑ B which annihilates some power
of I, the B-module B bAM has Tor-amplitude ď n.

Proof. Choose k such that M P pModRqě´k. Replacing M by ΣkM and n by n ` k, we
may reduce to the case where M is connective. The implication p1q ñ p2q is obvious, and
the implication p2q ñ p3q follows from Proposition 2.7.3.2. We will prove the implication
p3q ñ p1q using induction on n. When n “ 0, the desired result follows from Propositions
8.3.5.7 and HA.7.2.4.20 . If n ą 0, we can choose a fiber sequence

N Ñ Rm ÑM,

where N is connective. Then f˚N has Tor-amplitude ď n´ 1, so the inductive hypothesis
implies that N has Tor-amplitude ď n. Using Proposition HA.7.2.4.23 , we deduce that M
has Tor-amplitude ď n.

Corollary 8.3.5.9. Let A be a connective E8-ring which is complete with respect to a
finitely generated ideal I Ď π0A and let M P ModA be almost connective. The following
conditions are equivalent:

p1q The A-module M is perfect.

p2q Set R “ pπ0Aq{I. Then M is I-complete and the R-module RbAM is perfect.

p3q The A-module M is I-complete, and for every morphism of connective E8-rings
f : AÑ B which annihilates some power of I, the B-module B bAM is perfect.
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Proof. Combine Corollaries 8.3.5.8 and 8.3.5.6 with the criterion of Proposition HA.7.2.4.23 .

Proof of Theorem 8.3.5.2. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack
and let F P QCohpXqacn. We first show that p1q ñ p2q. Assume that F is perfect to order
n (almost perfect, perfect, locally free of finite rank) and let f : X Ñ X be a morphism where
X is a spectral Deligne-Mumford stack; we wish to show that f˚F P QCohpXq is also perfect
to order n (almost perfect, perfect, locally free of finite rank). By virtue of Proposition
2.8.4.7, this can be tested locally on X. We may therefore assume without loss of generality
that X “ SpétB is affine and that f factors as a composition SpétB f 1

ÝÑ Spf AÑ X, where
A “ OXpUq for some affine object U P X . In this case, the image of f˚F under the
equivalence QCohpSpétBq » ModB can be identified with the tensor product B bA F pUq.
Assumption p1q guarantees that F pUq is perfect to order n (almost perfect, perfect, locally
free of finite rank) as an A-module, so that BbA F pUq is perfect to order n (almost perfect,
perfect, locally free of finite rank) as a B-module.

The implication p2q ñ p3q follows immediately from the definitions. We will complete the
proof by showing that p3q implies p1q. Assume that the image of F under the equivalence
QCohpXqacn » QCohphXqacn is perfect to order n (almost perfect, perfect, locally free of
finite rank), and let U P X be affine. Set A “ OXpUq, let I Ď π0A be a finitely generated
ideal of definition, and set R “ pπ0Aq{I. We have an evident map f : SpétRÑ Spf AÑ X,
and assumption p3q guarantees that f˚F P QCohpSpétRq » ModR is perfect to order n
(almost perfect, perfect, locally free of finite rank). It follows that RbA F pUq is perfect to
order n (almost perfect, perfect, locally free of finite rank). Applying Proposition 8.3.5.5
(Corollary 8.3.5.6, Corollary 8.3.5.9, Proposition 8.3.5.7), we deduce that F pUq is perfect to
order n (almost perfect, perfect, locally free of finite rank) as an A-module. Allowing U to
vary, we conclude that F satisfies condition p1q.

Corollary 8.3.5.10. Let A be a complete adic E8-ring and let F P QCohpSpf Aq. The
following conditions are equivalent:

p1q The quasi-coherent sheaf F is perfect to order n (almost perfect, perfect, locally free
of finite rank).

p2q The A-module ΓpSpf A; F q is perfect to order n (almost perfect, perfect, locally free of
finite rank).

Proof. The implication p1q ñ p2q follows immediately from the definitions (note that
A » ΓpSpf A : OSpf Aq by virtue of our assumption that A is complete). To prove the
converse, we note that p2q implies that F is almost connective (Corollary 8.2.5.4). Using p2q
together with Proposition 8.3.5.5 (Corollary 8.3.5.6, Corollary 8.3.5.9, Proposition 8.3.5.7),
we deduce that the image of F under the equivalence QCohpSpf Aqacn » QCohphSpf Aq

acn
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is perfect to order n (almost perfect, perfect, locally free of finite rank). Assertion p1q now
follows from Theorem 8.3.5.2.

Warning 8.3.5.11. In the statement of Corollary 8.3.5.10, the assumption that A is
complete is essential (note that replacing A by its completion does not change the formal
spectrum Spf A, but can drastically alter the finiteness properties enjoyed by the A-module
M “ ΓpSpf A; F q).

8.4 The Noetherian Case

In §8.2, we introduced the stable 8-category of quasi-coherent sheaves QCohpXq on a
formal spectral Deligne-Mumford stack X (Definition 8.2.4.7). In the special case where
X “ Spf A for some adic E8-ring A, there is a canonical equivalence of 8-categories

ΓpSpf A; ‚q : QCohpXq » ModCplpIq
A ,

where I Ď π0A is a finitely generated ideal of definition. Note that the full subcategory
ModCplpIq

A Ď ModA of I-complete A-modules is stable under truncation (Corollary 7.3.4.3),
and therefore inherits a t-structure from ModA. A similar assertion holds in the non-
affine setting: for any formal spectral Deligne-Mumford stack X, the 8-category QCohpXq
comes equipped with a t-structure pQCohpXqcn,QCoh1pXq (see Corollary 8.2.5.11), where
QCohpXqcn denotes the full subcategory of QCohpXq spanned by the connective quasi-
coherent sheaves on X (Definition 8.2.5.6). However, this observation is generally not very
useful: we do not know a concrete description of the subcategory QCoh1pXq Ď QCohpXq
when X is not affine (beware that the requirement that a quasi-coherent sheaf F belongs to
QCoh1pXq is not local for the étale topology). In this section, we will show that the situation
improves considerably if we are willing to impose appropriate finiteness conditions on X

(by demanding that X is locally Noetherian; see Definition ??) and on the quasi-coherent
sheaves that we consider (by restricting our attention to the full subcategory QCohpXqaperf

of quasi-coherent sheaves which are almost perfect, in the sense of Definition 8.3.5.1). Our
main results can be summarized as follows:

• If X is a locally Noetherian formal spectral Deligne-Mumford stack, then the 8-
category QCohpXqaperf admits a t-structure pQCohpXqaperf

ě0 ,QCohpXqaperf
ď0 q, where

QCohpXqaperf
ě0 “ QCohpXqaperf XQCohpXqcn denotes the 8-category of quasi-coherent

sheaves on X which are connective and almost perfect (Corollary 8.4.2.4). Moreover,
this t-structure is compatible with étale localization.

• If X is a locally Noetherian formal spectral Deligne-Mumford stack, then the heart
QCohpXqaperf ♥ Ď QCohpXqaperf admits a concrete description: it is equivalent to the
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abelian category of finitely 0-presented sheaves on the functor hX represented by X

(see Proposition 8.4.3.5).

8.4.1 Almost Perfect Sheaves

We begin with some general remarks which do not require any Noetherian hypotheses.

Notation 8.4.1.1. Let X be a formal spectral Deligne-Mumford stack. We let QCohpXqaperf

denote the full subcategory of QCohpXq spanned by those quasi-coherent sheaves which are
almost perfect, in the sense of Definition 8.3.5.1.

If X “ Spf A is affine and A is complete, then Corollaries 8.3.5.10 and 8.2.4.15 supply
an equivalence of 8-categories ΓpX; ‚q : QCohpXqaperf » Modaperf

A . This functor admits an
explicit homotopy inverse:

Proposition 8.4.1.2. Let A be a complete adic E8-ring, set X “ Spf A, and regard
ModOSpf A as a stable A-linear 8-category. Then the construction M ÞÑM bA OX induces
an equivalence of 8-categories Modaperf

A Ñ QCohpXqaperf Ď ModOX
, which is homotopy

inverse to the equivalence ΓpX; ‚q : QCohpXqaperf Ñ Modaperf
A .

Proof. Let I Ď π0A be a finitely generated ideal of definition. Let us regard OX as a
commutative algebra object of the stable presheaf 8-category FunpCAlgét

A , Spq, given by the
formula OXpBq “ B^I . We can then identify ModOX

with a full subcategory of the8-category
of OX-module objects of FunpCAlgét

A , Spq. The equivalence ΓpX; ‚q : QCohpXq Ñ ModCplpIq
A

of Corollary 8.2.4.15 admits a homotopy inverse ρ, which carries an A-module M to the sheaf
given by B ÞÑ pM bA Bq

^
I » pM bA B

^
I q
^
I (see Remark 8.2.4.16). If M is almost perfect as

an A-module, then M bA B
^
I is almost perfect as a B^I -module and is therefore I-complete

(Proposition 7.3.5.7). It follows that we can identify ρpMq with the tensor product M bAOX

(in the 8-category ModOX
pFunpCAlgét

A ,Spqq, and therefore also in its localization ModOX
).

The desired result now follows from Corollary 8.2.4.15.

Corollary 8.4.1.3. Let X be a formal spectral Deligne-Mumford stack and let F ,G P

QCohpXqaperf . Then the tensor product F bOX
G (formed in the 8-category ModOX

) also
belongs to QCohpXqaperf .

Proof. The assertion is local on X, so we may assume without loss of generality that
X “ Spf A for some complete adic E8-ring A. Let us regard ModOX

as a stable A-linear
8-category. Proposition 8.4.1.2 supplies equivalences

F »M bA OX G » N bA OX
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for M,N P Modaperf
A . We then have

F bOX
G » pM bA OXq bOX

pN bA OXq

» pM bA Nq bA OX .

The desired result now follows from Proposition 8.4.1.2, since the tensor product M bAN is
an almost perfect A-module.

It follows from Corollary 8.4.1.3 that the completed tensor product of Notation 8.2.4.23
coincides with the usual tensor product:

Corollary 8.4.1.4. Let X be a formal spectral Deligne-Mumford stack, and let F ,G P

QCohpXqaperf . Then the canonical map F bOX
G Ñ F pbG is an equivalence in ModOX

.

Corollary 8.4.1.5. Let X be a formal spectral Deligne-Mumford stack. Then QCohpXqaperf

is a symmetric monoidal subcategory of QCohpXq (that is, it contains the unit object and
is closed under the completed tensor product functor pb). Moreover, the lax symmetric
monoidal inclusion functor QCohpXq ãÑ ModOX

is symmetric monoidal when restricted to
QCohpXqaperf .

We can similar reasoning to the pullback functor associated to a map f : X Ñ Y of
formal spectral Deligne-Mumford stacks.

Corollary 8.4.1.6. Let f : X Ñ Y be a morphism of formal spectral Deligne-Mumford
stacks. If F P ModOX

is quasi-coherent and almost perfect, then the pullback f˚F P ModOX

is quasi-coherent and almost perfect.

Proof. The desired conclusion can be tested locally on X. We may therefore assume without
loss of generality that X and Y are affine. Write Y “ Spf A and X “ Spf B, where A and B
are complete adic E8-rings. Then f is induced by a morphism of adic E8-rings φ : AÑ B.
Let us regard ModOY

and ModOX
as stable A-linear and B-linear 8-categories, respectively.

Using Proposition 8.4.1.2, we can write F “M bA OY. We then have an equivalence

f˚F » f˚pM bA OYq

» M bA f
˚OY

» M bA OX

» pM bA Bq bB OX .

Since MbAB is an almost perfect B-module (Proposition 2.7.3.1), it follows from Proposition
8.4.1.2 that f˚F is quasi-coherent and almost perfect.
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Corollary 8.4.1.7. Let f : X Ñ Y be a morphism of formal spectral Deligne-Mumford
stacks. If F P QCohpYq is almost perfect, then the completed pullback f‹F P QCohpXq
is also almost perfect. Moreover, the canonical map f˚F Ñ f‹F is an equivalence in
WCohpXq.

Corollary 8.4.1.8. Let f : XÑ Y be a representable morphism of formal spectral Deligne-
Mumford stacks. If F P QCohpYq is nilcoherent and almost perfect, then f‹F P QCohpXq
is nilcoherent and almost perfect.

Proof. Combine Corollary 8.4.1.7 with Proposition 8.3.2.5.

Proposition 8.4.1.9. Let f : XÑ Y be a morphism of formal spectral Deligne-Mumford
stacks. Suppose that f is representable, proper, and locally almost of finite presentation (that
is, for every map SpétR Ñ Y, the fiber product SpétR ˆX X is a spectral algebraic space
which is proper and locally almost of finite presentation over R). If F P QCohpXq is almost
perfect, then f˚F P QCohpYq is almost perfect.

Proof. Remark 8.3.3.5 implies that f˚F is almost connective. Using Proposition 8.3.3.6 and
Theorem 8.3.5.2, we can reduce to the case where X and Y are spectral Deligne-Mumford
stacks, in which case the desired result follows from Theorem 5.6.0.2.

8.4.2 Locally Noetherian Formal Spectral Deligne-Mumford Stacks

We now generalize Definition 2.8.1.4 to the setting of formal spectral Deligne-Mumford
stacks.

Definition 8.4.2.1. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack. We
will say that X is locally Noetherian if, for every affine object U P X , the E8-ring OXpUq is
Noetherian.

Proposition 8.4.2.2. Let A be a complete adic E8-ring. Then the formal spectrum Spf A
is locally Noetherian if and only if A is Noetherian.

Proof. It follows immediately from the definitions that if Spf A is locally Noetherian, then
A » ΓpSpf A; OSpf Aq is locally Noetherian. For the converse, suppose that A is Noetherian,
and let U P Shvad

A be affine. It follows from Proposition 8.1.3.6 that we have an equivalence
OSpf ApUq » B^I , where B is an étale A-algebra and I Ď π0A is a finitely generated ideal of
definition. Theorem HA.7.2.4.31 implies that B is Noetherian, so that B^I is also Noetherian
by virtue of Corollary 7.3.8.3.

Proposition 8.4.2.3. Let X be a locally Noetherian formal spectral Deligne-Mumford stack
and let F P ModOX

. Suppose that F is quasi-coherent and almost perfect. Then the
truncations τěn F and τďn F are also quasi-coherent and almost perfect.
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Proof. The assertion is local on X. We may therefore assume without loss of generality that
X “ Spf A for some complete adic E8-ring A. Our assumption that X is locally Noetherian
guarantees that A is Noetherian. It follows that the subcategory Modaperf

A Ď ModA of almost
perfect A-modules is closed under truncation, and therefore inherits a t-structure from
ModA. Proposition 8.4.1.2 implies that the construction M ÞÑM bA OX determines a fully
faithful embedding F : Modaperf

A Ñ ModOX
, whose essential image is the full subcategory

QCohpXqaperf . Consequently, to show that QCohpXqaperf is closed under truncations in
ModOX

, it will suffice to show that the functor F is t-exact. It follows immediately from
the definitions that F is right t-exact. To verify left t-exactness, we must show that if
M P pModaperf

A qď0, then the sheaf F “ M bA OX is 0-truncated. In fact, we claim that
F pUq is 0-truncated for every affine object U P Shvad

A . To prove this, it suffices to show that
M bA B

^
I is 0-truncated for every étale A-algebra B, where I Ď π0A is a finitely generated

ideal of definition. This is clear: our assumption that A is Noetherian guarantees that B
is Noetherian (Theorem HA.7.2.4.31 ), so that B^I is flat over B (Corollary 7.3.6.9) and
therefore also flat over A.

Corollary 8.4.2.4. Let X be a locally Noetherian formal spectral Deligne-Mumford stack.
Then the8-category QCohpXqaperf is equipped with a t-structure pQCohpXqaperf

ě0 ,QCohpXqaperf
ď0 q,

where QCohpXqaperf
ě0 “ QCohpXqaperf X pModOX

qě0 and QCohpXqaperf
ď0 “ QCohpXqaperf X

pModOX
qď0.

Remark 8.4.2.5. Let X “ pX ,OXq be a locally Noetherian formal spectral Deligne-Mumford
stack. For each affine object U P X , the construction F ÞÑ F pUq determines a t-exact
functor QCohpXqaperf Ñ Modaperf

OXpUq
(left t-exactness is clear from the definition, and right

t-exactness follows from the proof of Proposition 8.4.2.3). We can therefore describe the
t-structure of Corollary 8.4.2.4 as follows:

• A sheaf F P QCohpXqaperf belongs to QCohpXqaperf
ě0 if and only if F pUq is connective,

for each affine object U P X

• A sheaf F P QCohpXqaperf belongs to QCohpXqaperf
ď0 if and only if F pUq is 0-truncated,

for each affine object U P X .

Remark 8.4.2.6. Let X be a locally Noetherian formal spectral Deligne-Mumford stack.
Then the t-structure of Corollary 8.4.2.4 is left complete. To prove this, we can work locally
on X and thereby reduce to the case where X » Spf A, for some complete adic E8-ring A.
In this case, Proposition 8.4.1.2 supplies a t-exact equivalence QCohpXqaperf » Modaperf

A ,
and the t-structure on Modaperf

A is evidently left complete (see Proposition HA.7.2.4.17 ).
Beware that the t-structure on QCohpXqaperf is never right complete (except in trivial

cases). However, it is right bounded (see §HA.1.2.1 ) when X is quasi-compact.

Proposition 8.4.2.7. Let X “ pX ,OXq be a formal spectral Deligne-Mumford stack. Then:
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p1q If X is locally Noetherian, then XU “ pX {U ,OX |U q is locally Noetherian for each object
U P X .

p2q If there exists a collection of objects tUαu which cover X such that each XUα is locally
Noetherian, then X is locally Noetherian.

Proof. Assertion p1q follows immediately from the definitions. To prove p2q, suppose that
there exists a covering tUαu such that each XUα is locally Noetherian. Using Proposition
8.4.2.3, we deduce the following:

p˚q Let F P QCohpXqaperf . Then, for any integer n, the truncations τěn F and τďn F

also belong to QCohpXqaperf .

Let V P X be any affine object. We wish to show that OXpV q is Noetherian.
Replacing X by XV , we can reduce to the case where X » Spf A for some complete

adic E8-ring A. It follows from Proposition 8.4.1.2 that the construction M ÞÑM bA OX

determines an equivalence F : Modaperf
A Ñ QCohpXqaperf . Combining this observation with

p˚q, we deduce that the 8-category Modaperf
A admits a t-structure pCě0, Cď0q for which the

functor F is t-exact. Note that an object M P Modaperf
A belongs to Cě0 if and only if M

is connective (Corollary 8.2.5.4). In particular, every object M P Modaperf
A fits into a fiber

sequence M 1 Ñ M Ñ M2 where M 1 is n-connective and M2 P Cďn´1. Then F pM2q is a
pn ´ 1q-truncated object of ModOX

, so that M2 » ΓpX;F pM2qq is also pn ´ 1q-truncated.
We therefore have M 1 » τěnM and M2 » τďn´1M . Allowing M to vary, we deduce that
Modaperf

A is closed under truncations (when regarded as a subcategory of the 8-category
ModA), so that the E8-ring A is coherent (Proposition HA.7.2.4.18 ).

To complete the proof, it will suffice to show that the commutative ring π0A is Noetherian.
Let J Ď π0A be an ideal. Write J as a union of finitely generated ideals Jβ Ď J . Since A is
coherent, each Jα is almost perfect when regarded as an A-module (Proposition HA.7.2.4.17 ).
It follows that tF pJβqu can be regarded as a filtered diagram of subobjects of π0 OX in the
abelian category Mod♥

OX
. Choose a covering of X by affine objects tUiu1ďiďn such that each

OXpUiq is Noetherian. For 1 ď i ď n, we can regard tF pJβqpUiqu as a filtered diagram of
ideals in the Noetherian commutative ring pπ0 OXqpUiq » π0 OXpUiq. Each of these diagrams
must stabilize, so the diagram tF pJβqu must also stablize. Since F is an equivalence of
8-categories, we conclude that the diagram of ideals tJβu stabilizes: that is, the ideal J is
itself finitely generated. Allowing J to vary, we deduce that the commutative ring π0A is
Noetherian as desired.

Corollary 8.4.2.8. Let X be a locally Noetherian spectral Deligne-Mumford stack and let
K Ď |X | be a closed subset. Then the formal completion X^K is a locally Noetherian formal
spectral Deligne-Mumford stack.
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Proof. The assertion is local on X, so we may assume without loss of generality that
X “ SpétA for some Noetherian E8-ring A. Then K can be identified with the vanishing
locus of a (finitely generated) ideal I Ď π0A. Example 8.1.6.4 and Remark 8.1.2.4 then
supply equivalences X^K » Spf A » Spf A^I . By virtue of Proposition 8.4.2.2, it will suffice
to show that A^I is Noetherian, which follows from Corollary 7.3.8.3.

Example 8.4.2.9. Let X be a spectral Deligne-Mumford stack. Then X is locally Noetherian
in the sense of Definition 8.4.2.1 if and only if it is locally Noetherian in the sense of Definition
2.8.1.4.

Proposition 8.4.2.10. Let X be a locally Noetherian spectral Deligne-Mumford stack, let
K Ď |X | be a closed subset, and let i : X^K Ñ X be a morphism of formal spectral Deligne-
Mumford stacks which exhibits X^K as a formal completion of X along K. Then the pullback
functor i˚ : QCohpXqaperf Ñ QCohpX^Kqaperf is t-exact.

Proof. Without loss of generality, we may assume that X “ SpétA is affine and that K is
the vanishing locus of a finitely generated ideal I Ď π0A. Using Proposition 8.4.1.2, we can
identify i˚ with the functor Modaperf

A Ñ Modaperf
A^I

given by extension of scalars along the
canonical map φ : AÑ A^I . It now suffices to observe that φ is flat (Corollary 7.3.6.9).

8.4.3 The Heart of QCohpXqaperf

Let X be a locally Noetherian formal spectral Deligne-Mumford stack, and regard
QCohpXqaperf as equipped with the t-structure described in Corollary 8.4.2.4. Our next goal
is to describe the heart of QCohpXqaperf . More generally, we will describe the intersection
QCohpXqcn XQCohpXqaperf

ďn , for every integer n ě 0. First, we need to introduce a variant
of Definition 6.2.2.1.

Notation 8.4.3.1. Fix an integer n ě 0. For every connective E8-ring A, let Modn´fpA

denote the full subcategory of ModA spanned by those A-modules which are connective
and finitely n-presented (see Definition 2.7.1.1): in other words, the 8-category of compact
objects of τďn Modcn

A .
Let Mod “ ModpSpq denote the 8-category of pairs pA,Mq, where A is an E8-ring

and M is an A-module spectrum, and let Modn´fp denote the full subcategory of Mod
spanned by those pairs pA,Mq where A is connective and M P Modn´fpA . The construction
pA,Mq ÞÑ A determines a coCartesian fibration q : Modn´fp Ñ CAlgcn which is classified
by a functor CAlgcn Ñ Cat8 given by A ÞÑ Modn´fpA . If f : AÑ B is a map of connective
E8-rings, then the induced functor Modn´fpA Ñ Modn´fpB is given by the construction
M ÞÑ τďnpB bAMq.

Let QCohn´fp : FunpCAlgcn, pSqop ÑyCat8 denote the functor Φ1pqq obtained by applying
Remark 6.2.1.11 to the coCartesian fibration q; here pS denotes the 8-category of spaces
which are not necessarily small, and yCat8 is defined similarly.
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Example 8.4.3.2. By virtue of Proposition 6.2.1.9, we can regard the construction X ÞÑ

QCohn´fppXq as a right Kan extension of the construction A ÞÑ Modn´fpA along the Yoneda
embedding Spec : CAlgcn Ñ FunpCAlgcn, pSqop. In particular, for every connective E8-ring
A, we have a canonical equivalence QCohn´fppSpecAq » Modn´fpA .

Example 8.4.3.3. Let X be a spectral Deligne-Mumford stack representing a functor
hX : CAlgcn Ñ S. Arguing as in the proof of Proposition 6.2.4.1, we see that there is a
canonical equivalence QCohn´fppXq » QCohn´fpphXq, where the left hand side is defined
by Construction 4.5.2.2 and the right hand side is defined in Notation 8.4.3.1.

Remark 8.4.3.4. Let X P CAlgcn Ñ pS be a functor classifying a left fibration C Ñ CAlgcn.
We then have a canonical equivalence of8-categories QCohn´fppXq » Funccart

CAlgcnpC,Modn´fpq.
More informally, we can view an object F P QCohpXq as a rule which assigns to each
point η P XpAq an A-module F pηq P Modn´fpA , which depends functorially on A in the
following sense: for every morphism of connective E8-rings φ : AÑ A1 carrying η to a point
η1 P XpA1q, there is a canonical equivalence of A1-modules τďnpA1 bA F pηqq

„
ÝÑ F pη1q.

For any functor X : CAlgcn Ñ pS, we have an evident functor τďn : QCohpXqcn,aperf Ñ

QCohpXqn´fp, which is given pointwise by the construction pτďn F qpηq » τďnpF pηqq P

Modn´fpA for η P XpAq. Our main result is the following:

Proposition 8.4.3.5. Let X be a locally Noetherian formal spectral Deligne-Mumford stack
representing a functor X : CAlgcn Ñ S. For every integer n ě 0, the composite functor

QCohpXqcn XQCohpXqaperf
ďn ãÑ QCohpXqaperf

ě0 » QCohpXqaperf τďn
ÝÝÑ QCohn´fppXq

is an equivalence of 8-categories.

Example 8.4.3.6. Let X be a locally Noetherian formal spectral Deligne-Mumford stack.
Applying Proposition 8.4.3.5 in the case n “ 0, we obtain an equivalence of categories
QCohpXqaperf ♥ „

ÝÑ QCoh0´fppXq. Unwinding the definitions, we see that an object F P

QCoh0´fppXq can be identified with a rule which does the following:

paq To each morphism ηA : SpétAÑ X, F assigns a finitely presented (discrete) pπ0Aq-
module F pηAq.

pbq To every commutative diagram

SpétB α //

ηB

##

SpétA
ηA

{{
X,

the object F assigns a homomorphism of discrete A-modules uα : F pηAq Ñ F pηBq,
which induces an isomorphism π0pB bA F pηAqq » ηB (and depends only on the
homotopy class of α).
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pcq The homomorphisms uα appearing in pbq have the transitivity property uα˝β “ uβ ˝uα.
In particular, when B “ A and ηB “ ηA, we have uidSpétA “ idF pηAq.

Moreover, it suffices to specify the data of paq and pbq (and to verify the condition pcq ) for
maps ηA : SpétAÑ X where A is a commutative ring (since the abelian category of discrete
modules over an arbitrary connective E8-ring A is equivalent to the abelian category of
discrete modules over the commutative ring π0A).

Warning 8.4.3.7. In the situation of Example ??, the existence of an equivalence of
categories QCohpXqaperf ♥ „

ÝÑ QCoh0´fppXq implies that the category QCoh0´fppXq is
abelian. This is not obvious from the definition: for a general functor X : CAlgcn Ñ S, the
category QCoh0´fppXq is additive, but need not be abelian. For example, if X “ SpecR for
some commutative ring R, then QCoh0´fppXq can be identified with the category of finitely
presented R-modules (Example 8.4.3.2), which is abelian if and only if R is coherent.

8.4.4 The Proof of Proposition 8.4.3.5

The proof of Proposition 8.4.3.5 will require some preliminaries.

Lemma 8.4.4.1. Let R be a Noetherian E8-ring, and let M be a connective R-module. If
M is perfect to order n, then τďnM is almost perfect.

Proof. According to Remark HA.7.2.4.19 , it will suffice to prove that πiM is a finitely
generated module over π0R for 0 ď i ď n. We proceed by induction on n. When n “ 0,
the result is obvious. Assume therefore that n ą 0. Then there exists a fiber sequence
N Ñ Rk Ñ M where N is connective and perfect to order pn ´ 1q. For i ď n, we have
an exact sequence pπiRqk Ñ πiM Ñ πi´1N of modules over π0R. Since πi´1N is finitely
generated by the inductive hypothesis and pπiRqk is finitely generated (by virtue of our
assumption that R is Noetherian), we conclude that πiM is finitely generated, as desired.

Lemma 8.4.4.2. Let R be a Noetherian commutative ring, let I Ď R be an ideal, and let M
and N be discrete R-modules. Assume that N is I-nilpotent and that M is finitely generated.
Then every class η P ExtpRpM,Nq vanishes when restricted to ExtpRpImM,Nq for m " 0.

Proof. We proceed by induction on p. If p “ 0, the result is obvious. Otherwise, choose an
injective map u : N Ñ Q, where Q is an injective R-module. Let Q0 Ď Q be the submodule
consisting of elements which are annihilated by Ik for k " 0. Using Remark 7.1.3.5, we
deduce that Q0 is also an injective R-module. Since N is I-nilpotent, the map u factors
through Q0, so we have an exact sequence of I-nilpotent R-modules

0 Ñ N Ñ Q0 Ñ N 1 Ñ 0.
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Since p ą 0, we have ExtpRpM,Q0q » 0, so the boundary map B : Extp´1
R pM,N 1q Ñ

ExtpRpM,Nq is surjective. Write η “ Bpηq for some class η P Extp´1
R pM,N 1q. Applying the

inductive hypothesis, we deduce that η has trivial image in Extp´1
R pImM,N 1q for m " 0. It

follows that the image of η in ExtpRpM,Nq vanishes as well.

Lemma 8.4.4.3. Let R be a Noetherian commutative ring and let M be a finitely generated
discrete R-module. Let I Ď R be an ideal, and choose a tower

¨ ¨ ¨ Ñ A4 Ñ A3 Ñ A2 Ñ A1

of E8-algebras over R satisfying the requirements of Lemma 8.1.2.2. For every integer n ě 0,
the canonical map

θ : tτďnAi bRMuią0 Ñ tπ0pAi bRMquią0 » tM{I
jMujě0

is an equivalence of Pro-objects of the 8-category ModR.

Proof. Let C be denote the full subcategory of ModR spanned by those objects which are
connective, almost perfect, n-truncated, and I-nilpotent. Then the domain and codomain of
θ can be identified with Pro-objects of C. It will therefore suffice to show that θ induces a
homotopy equivalence

αN : lim
ÝÑ
ją0

MapModRpM{I
jM,Nq Ñ lim

ÝÑ
ią0

MapModRpτďnpAi bRMq, Nq

for every object N P C. Since N is n-truncated, we can identify the codomain of α
with lim

ÝÑią0 MapModRpAi bR M,Nq. The collection of those objects N P C for which αN
is a homotopy equivalence is closed under extensions; we may therefore suppose that
N “ ΣmN0, where N0 is a finitely generated discrete R-module and 0 ď m ď n. Since N
is I-nilpotent, N0 is a module over the quotient ring R{Ik for k " 0. It follows that the
codomain of αN can be rewritten as lim

ÝÑ
MapMod

R{Ik
ppR{IkbRAiqbRM,Nq. The projection

map Spf RˆSpétR SpétR{Ik Ñ SpétR{Ik is an equivalence, so the tower tR{Ik bR Aiu is
equivalent to R{Ik in the 8-category PropCAlgq. We can therefore identify the codomain of
αN with MapMod

R{Ik
pR{Ik bRM,Nq » MapModRpM,Nq. To prove that αN is a homotopy

equivalence, it will suffice to show that the direct limit lim
ÝÑjě0 MapModRpI

jM,Nq vanishes.
For this, it suffices to show for every integer p, the abelian group lim

ÝÑjě0 ExtpRpIjM,N0q

vanishes. This follows immediately from Lemma 8.4.4.2.

Remark 8.4.4.4. Let Ab denote the category of abelian groups, and PropAbq the category
of Pro-objects of Ab. Let R be a commutative ring and I Ď R an ideal. To any discrete
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R-module M , we can associate an object of PropAbq, represented by the inverse system
tM{InMuně0. Given an exact sequence of discrete R-modules

0 ÑM 1 φ
ÑM ÑM2 Ñ 0,

we obtain an exact sequence of Pro-objects

0 Ñ tM 1{φ´1pInMquně0 Ñ tM{InMuně0 Ñ tM2{InM2uně0 Ñ 0.

If R is Noetherian and M is a finitely generated R-module, then the Artin-Rees lemma
allows us to identify the term on the left side with the Pro-abelian group tM 1{InM 1uně0. It
follows that we have an exact sequence

0 Ñ tM 1{InM 1uně0 Ñ tM{InMuně0 Ñ tM2{InM2uně0 Ñ 0

in the abelian category PropAbq. We can summarize the above discussion as follows:
if R is a Noetherian commutative ring and I Ď R is an ideal, then the construction
M ÞÑ tM{InMuně0 determines an exact functor from the category of finitely generated
R-modules to the category PropAbq.

Lemma 8.4.4.5. Let R be a Noetherian E8-ring, let I Ď π0R be a finitely generated ideal,
and choose a tower of R-algebras

¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1

satisfying the requirements of Lemma 8.1.2.2. Let M be an almost perfect R-module. For
every integer n, the canonical map

θMn : tπnpAi bRMquią0 Ñ tTorπ0R
0 pπ0Ai, πnMquią0 » tpπnMq{I

jpπnMqują0

is an isomorphism in the category PropAbq of Pro-abelian groups.

Proof. Let us say that an R-module M is n-good if the map θMn is an isomorphism, and
that M is good if it is n-good for every integer n. Note that M is n-good if and only if the
truncation τďnM is n-good. Consequently, to prove that every almost perfect R-module M
is good, it will suffice to treat the case where M is truncated.

Suppose we are given a fiber sequence of R-modules M 1 ÑM ÑM2. We then obtain a
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commutative diagram

tπn`1pAi bRM
2quią0

��

θM
2

n`1 // tpπn`1M
2q{Ijpπn`1M

2qują0

��
tπnpAi bRM

1quią0

��

θM
1

n // tpπnM
1q{IjpπnM

1qują0

��
tπnpAi bRMquią0

��

θMn // tpπnMq{I
jpπnMqują0

��
tπnpAi bRM

2quią0

��

θM
2

n // tpπnM
2q{IjpπnM

2qują0

��
tπn´1pAi bRM

1quią0
θM

1

n´1 // tpπn´1M
1q{Ijpπn´1M

1qują0

in the category PropAbq. The left column is obviously exact. If M , M 1, and M2 are almost
perfect, then Remark 8.4.4.4 shows that the right column is also exact. Applying the five
lemma, we deduce that if M 1 and M2 are good, then M is also good. Consequently, the
collection of almost perfect good R-modules is closed under extensions. To prove that every
truncated almost perfect R-module M is good, it will suffice to treat the case where M is
discrete. In this case, we can regard M as a module over the discrete commutative ring π0R.
Replacing R by π0R (and the tower tAiuią0 with tπ0RbR Aiuią0), we can assume that R
is also discrete. In this case, the desired result follows immediately from Lemma 8.4.4.3.

Lemma 8.4.4.6. Let R be a Noetherian E8-ring which is complete with respect to a
ideal I Ď π0R and let X : CAlgcn Ñ S be the functor represented by the formal spectra
Spf R (given by XpBq “ MapCAlgcn

ad
pR,Bq). For every integer n ě 0, the canonical map

f : Modn´fpR Ñ QCohn´fppXq is an equivalence of 8-categories.

Proof. Choose a tower of R-algebras

¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1

satisfying the requirements of Lemma 8.1.2.2, so that R » lim
ÐÝ

Ai and Spf R » lim
ÝÑ

SpétAi.
Then the 8-category QCohn´fppXq can be identified with the limit of the tower of 8-
categories tModn´fpAi

uią0. The functor f is given by the restriction of a functor F :
pModRqďn Ñ lim

ÐÝ
pModAiqďn. The functor F admits a right adjoint G, which carries a

compatible family of n-truncated Ai-modules tMiu to the limit lim
ÐÝ

Mi. If each Mi is
connective, then the maps

π0Mi Ñ Torπ0Ai
0 pπ0Ai´1, π0Miq » π0Mi´1



8.5. THE GROTHENDIECK EXISTENCE THEOREM 687

are surjective, so that GtMiu “ lim
ÐÝ

Mi is also connective. If, in addition, each Mi is almost
perfect, then Lemma 8.3.5.4 implies that GtMiu is perfect to order n. Since GtMiu is
n-truncated, we conclude that GtMiu is almost perfect (Lemma 8.4.4.1). It follows that the
functor G restricts to a functor g : lim

ÐÝ
Modn´fpAi

Ñ Modn´fpR , so we have an adjunction

Modn´fpR

f // lim
ÐÝ

Modn´fpAi
.

g
oo

It follows immediately from Lemma 8.3.5.4 that the counit map f ˝ g Ñ id is an equivalence.
We wish to prove that the unit map id Ñ g˝f is also an equivalence. In other words, we wish
to show that if M P Modn´fpR , then the map uM : M Ñ lim

ÐÝ
τďnpAibRMq is an equivalence.

Let K denote the fiber of u and note that K is n-truncated. The proof of Theorem 8.3.4.4
shows that M » lim

ÐÝ
pAi bR Mq, so that K » lim

ÐÝ
τěn`1pAi bR Mq. It follows that K is

n-connective and that πnK » lim
ÐÝ

1 πn`1pAi bR Mq. It will therefore suffice to show that
the abelian group lim

ÐÝ
1 πn`1pAi bRMq vanishes. This follows from the observation that the

inverse system tπn`1pAi bRMquiě0 is trivial as an object of PropAbq, because πn`1M » 0
(Lemma 8.4.4.5).

Proof of Proposition 8.4.3.5. Let X be a locally Noetherian formal spectral Deligne-Mumford
stack, let X : CAlgcn Ñ S be the functor represented by X, and let n ě 0 be an integer; we
wish to show that the composite functor

QCohpXqcn XQCohpXqaperf
ďn ãÑ QCohpX^Kq

aperf
ě0

τďn
ÝÝÑ QCohn´fppXq

is an equivalence of 8-categories. The assertion is local on X. We may therefore reduce
to the case where X “ Spf A for some complete adic E8-ring A, in which case the desired
result follows from Lemma 8.4.4.6.

8.5 The Grothendieck Existence Theorem

Let R be a commutative ring, let X be an R-scheme, and let I Ď R be an ideal. For
each n ě 0, let Xn denote the fiber product SpecR{In ˆSpecR X (formed in the category of
schemes). Each Xn can be regarded as a closed subscheme of X, so we restriction functors

QCohpXq♥ Ñ QCohpXnq
♥ F ÞÑ F |Xn .

These restriction functors are compatible as n varies, and therefore define a restriction
functor QCohpXq♥ Ñ lim

ÐÝně0 QCohpXnq
♥. A fundamental theorem of Grothendieck (see

Theorem 5.1.4 and Corollary 5.1.6 of [89]) asserts that, if we impose appropriate finiteness
conditions, then this restriction functor becomes an equivalence of categories:
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Theorem 8.5.0.1 (Grothendieck Existence Theorem). Let R be a Noetherian ring which
is complete with respect to an ideal I, let X be a proper R-scheme, and for m ě 0 define
Xm “ X ˆSpecR SpecpR{Imq as above. Let CohpXq and CohpXmq denote the abelian
categories of coherent sheaves on X and Xm, respectively. Then the canonical map CohpXq Ñ
lim
ÐÝ
tCohpXmqu is an equivalence of categories.

Remark 8.5.0.2. In the language of formal schemes, Theorem 8.5.0.1 asserts that the
category of coherent sheaves on X is equivalent to the category of coherent sheaves on the
formal scheme X^ obtained by completing X along the inverse image of the closed subset
| SpecR{I| Ď |SpecR|.

Our goal in this section is to prove an analogue of Theorem 8.5.0.1 in the setting of
spectral algebraic geometry. Our result can be stated as follows:

Theorem 8.5.0.3. [Derived Grothendieck Existence Theorem] Let R be an E8-ring which
is I-complete for some finitely generated ideal I Ď π0R, let X be a spectral algebraic space
which is proper and locally almost of finite presentation over R, and let X^ “ Spf RˆSpecRX
denote the formal completion of X along the vanishing locus of I. Then the restriction
functor QCohpXqaperf Ñ QCohpX^qaperf is an equivalence of 8-categories.

The classical Grothendieck existence theorem is an immediate consequence of Theorem
8.5.0.3:

Proof of Theorem 8.5.0.1. Let R be a Noetherian ring which is complete with respect to
an ideal I and let X be a proper R-scheme (or, more generally, a proper algebraic space
over R). Let us identify X with a 0-truncated spectral algebraic space X over R (which is
automatically locally almost of finite presentation over R in the sense of spectral algebraic
geometry: see Remark 4.2.0.4). Choose a tower of E8-algebras ¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1
satisfying the requirements of Lemma 8.1.2.2, so that each of the commutative rings π0An
can be identified with the quotient R{Jn for some ideal Jn Ď R. Let X^ denote the
formal completion XˆSpétR Spf R. Theorem 8.5.0.3 implies that the restriction functor
QCohpXqaperf Ñ QCohpX^qaperf is an equivalence of 8-categories. Proposition 8.4.2.10
implies that this restriction functor is t-exact, where we regard QCohpX^qaperf as endowed
with the t-structure of Corollary 8.4.2.4. We therefore obtain an equivalence of hearts
QCohpXqaperf ♥ Ñ QCohpX^qaperf ♥. Using the description of these hearts supplied by
Proposition 8.4.3.5, we obtain an equivalence of categories

QCoh0´fppXq Ñ QCoh0´fppX^q » lim
ÐÝ

QCoh0´fppXˆSpétR SpétAnq.

We now observe that the left hand side of this equivalence can be identified with the abelian
category CohpXq of coherent sheaves on X, while the right hand side can be identified
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with the limit lim
ÐÝ
tCohpXnquną0, where Xn denotes the fiber product X ˆSpecR SpecpR{Jnq

formed in the category of schemes (which is the underlying scheme of the spectral algebraic
space XˆSpétR SpétAn). Theorem 8.5.0.1 now follows by observing that the sequences of
ideals tJnuną0 and tImumě0 are mutually cofinal.

Remark 8.5.0.4. One feature which distinguishes Theorem 8.5.0.3 from its classical ana-
logue is that it does need any Noetherian hypotheses on the E8-ring R. However, this
generality comes at a price: Theorem 8.5.0.3 asserts the existence of an equivalence of
8-categories, but does not a priori tell us anything at the level of abelian categories: in
general the 8-category QCohpXqaperf is not closed under truncation, and therefore does not
inherit a t-structure from QCohpXq.

Remark 8.5.0.5. In the situation of Theorem 8.5.0.3, an object F P QCohpXqaperf is perfect
if and only if the restriction F |X^ P QCohpX^qaperf is perfect. The “only if” direction is
obvious. Conversely, if F |X^ is perfect, then it is dualizable as an object of QCohpX^qaperf ,
so that (by virtue of Theorem 8.5.0.3) the sheaf F is dualizable as an object of QCohpXqaperf .
It then follows that F is dualizable as an object of QCohpXq, and is therefore perfect by
virtue of Proposition 6.2.6.2.

8.5.1 Full Faithfulness

As a first step towards the proof of Theorem 8.5.0.3, we show that the restriction functor
QCohpXqaperf Ñ QCohpX^qaperf is fully faithful (Proposition 8.5.1.2). As we will see in a
moment, this is essentially a formal consequence of the direct image theorem for proper
morphisms (Theorem 5.6.0.2).

Lemma 8.5.1.1 (Derived Theorem on Formal Functions). Let R be a connective E8-
ring which is I-complete for some finitely generated ideal I Ď π0R. Let X be a spectral
algebraic space which is proper and locally almost of finite presentation over SpétR, let
X^ “ Spf R ˆSpétR X be the formal completion of X along the vanishing locus of I, and
let f : X^ ãÑ X denote the canonical map. If F P QCohpXq is almost perfect, then the
restriction map θ : ΓpX; F q Ñ ΓpX^; f‹F q is an equivalence of spectra.

Proof. Using Proposition 8.3.3.6, we can replace F by f˚F and thereby reduce to the case
where X “ SpétR (note that f˚F P QCohpSpétRq is almost perfect by virtue of Theorem
5.6.0.2). In this case, Lemma 8.1.2.3 implies that the map θ exhibits ΓpX^; f˚F q as an
I-completion of ΓpX; F q. We conclude by observing that ΓpX; F q is already I-complete:
this follows from Proposition 7.3.5.7, since the E8-ring R is assumed to be I-complete.

Proposition 8.5.1.2. Let R be a connective E8-ring which is I-complete for some finitely
generated ideal I Ď π0R. Let X be a spectral algebraic space which is proper and locally almost
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of finite presentation over SpétR, and let X^ “ Spf RˆSpétRX denote the formal completion
of X along the closed substack determined by I, and let f : X^ Ñ X be the canonical map.
Let F ,G P QCohpXq, and assume that G is almost perfect. Then the canonical map

MapQCohpXqpF ,G q Ñ MapQCohpX^qpf
‹F , f‹ G q

is a homotopy equivalence.

Corollary 8.5.1.3. In the situation of Proposition 8.5.1.2, the complted pullback func-
tor f‹ : QCohpXq Ñ QCohpX^q is fully faithful when restricted to the full subcategory
QCohpXqaperf Ď QCohpXq spanned by the almost perfect objects.

Proof of Proposition 8.5.1.2. Let us first regard G as fixed, and regard the morphism

θF : MapQCohpXqpF ,G q Ñ MapQCohpX^qpf
‹F , f‹ G q

as a functor of F . This functor carries colimits in QCohpXq to limits in Funp∆1,Sq.
Consequently, the collection of those objects F P QCohpXq for which θF is a homotopy
equivalence is closed under colimits. Using Theorem ??, we are reduced to proving that
θF is an equivalence in the special case where F is perfect. In this case, F is a dualizable
object of QCohpXq; let us denote its dual by F_. Replacing G by F_bG , we can reduce
to the case where F “ OX. In this case, we can identify θF with the restriction map
ΓpX; G q Ñ ΓpX^; f‹ G q, which is an equivalence by virtue of Lemma 8.5.1.1.

If the E8-ring R appearing in Proposition 8.5.1.2 is not Noetherian, then we generally do
not have good t-structures on the 8-categories QCohpXqaperf and QCohpX^qaperf . However,
we nevertheless have the following exactness property (compare with Proposition 8.4.2.10):

Proposition 8.5.1.4. Let R be a connective E8-ring which is I-complete for some finitely
generated ideal I Ď π0R. Let X be a spectral algebraic space which is proper and locally
almost of finite presentation over SpétR, let F P QCohpXqaperf , and let X^ denote the
formal completion Spf RˆSpétR X. Then F is connective if and only if F |X^ is connective.

Proof. The “only if” direction is trivial. To prove the converse, let us suppose that F is not
connective. Since X is quasi-compact, there exists some smallest integer n ă 0 such that
πn F does not vanish. Let K Ď |X | be the support of X. Then K ‰ H. Since f is proper,
the image fpKq is a nonempty closed subset of | SpecR|. Let y be a closed point of | SpecR|
which is contained in fpKq, and let x P |X | be a point lying over y. Then we can choose an
étale map u : SpétAÑ X such that x lifts to a point x P |SpecA|. Let κ denote the residue
field of π0A at the point x. Since F is n-connective and almost perfect, πnu˚F is a finitely
generated module over π0A. Using Nakayama’s lemma and our assumption x P SupppF q,
we deduce that πnpκbA u˚F q ‰ 0. Note that Remark 7.3.4.10 implies that the composite
map SpétκÑ SpétA u

ÝÑ X factors through X^, so that F |X^ is not connective.
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8.5.2 The Grothendieck Existence Theorem

Our goal in this section is to give the proof of Theorem 8.5.0.3. We begin by treating
the projective case. First, we note the following slight variant of Theorem 7.2.2.1:

Lemma 8.5.2.1. Let R be a connective E8-ring, let n ě 0, and let q : Pn
R Ñ SpétR be the

projection map. Suppose that F P QCohpPn
Rq is a quasi-coherent sheaf having the property

that the direct images q˚pF bOpiqq vanish for 0 ď i ď n. Then F » 0.

Proof. We will show that πm F » 0 for every integer m. Replacing F by Σ´m F , we may
assume that m “ 0. Using Lemma 5.6.2.2, we can choose a map γ :

À

α Opdαq Ñ F which
induces an epimorphism on π0. It will therefore suffice to show that γ is nullhomotopic. In fact,
we claim that the mapping space MapQCohpPnR

pOpdq,F q » MapModRpR, q˚pF bOp´dqqq is
contractible for every integer d. To prove this, let S be the collection of integers i for which
q˚pF bOp´dqq vanishes. By hypothesis, S contains the set t0,´1, . . . ,´nu. Lemma 7.2.2.2
implies that whenever S contains the set tk, k ´ 1, . . . , k ´ nu, it also contains k ` 1 and
k ´ n´ 1. An easy induction now shows that S contains all integers.

Proposition 8.5.2.2. Let R be an E8-ring which is I-complete for some finitely generated
ideal I Ď π0R, let X be a spectral algebraic space which is equipped with a map f : X Ñ Pn

R

which is finite and locally almost of finite presentation, and let X^ “ Spf RˆSpétR X denote
the formal completion of X along the vanishing locus of I. Then the restriction functor
θ : QCohpXqaperf Ñ QCohpX^qaperf is an equivalence of 8-categories.

Proof. Let A denote the direct image f˚OX, which we regard as a commutative al-
gebra object of QCohpPn

Rq. Our assumption that f is finite and locally almost of fi-
nite presentation guarantees that A P QCohpPn

Rq is almost perfect (Corollary 5.2.2.2).
Let us abuse notation by identifying A with its image under the restriction functor
QCohpPn

Rq
aperf Ñ QCohpPn

RˆSpétRSpf Rqaperf . Since f is affine, it follows from Propositions
2.5.6.1, 5.6.1.1, and Corollary 8.3.4.6 that we have a commutative diagram of 8-categories

QCohpXqaperf θ //

��

QCohpX^qaperf

��
ModA pQCohpPn

Rq
aperfq //ModA pQCohpPn

R ˆSpecR Spf Rqaperfq

where the vertical maps are equivalences. We may therefore replace X by Pn
R and thereby

reduce to the case where X is a projective space over R.
Let q : X Ñ SpétR denote the projection map and let pq : X^ Ñ Spf R denote its

restriction to X^. Consider the following assertion for m ě ´1:

p˚mq If F P QCohpX^qaperf has the property that pq˚pF bθpOpiqq P QCohpSpf Rqaperf

vanishes for 0 ď i ď m, then F belongs to the essential image of θ.
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Note that assertion p˚´1q is equivalent to Proposition 8.5.2.2 (since the restriction functor
θ is already known to be fully faithful by virtue of Corollary 8.5.1.3). We will prove
assertion that p˚mq holds for all m ď n using descending induction on m. The case
m “ n follows from Lemma 8.5.2.1. To carry out the inductive step, let us assume that
p˚mq is satisfied, and let F P QCohpX^qaperf satisfy the hypotheses of p˚m´1q. Set G “

pq˚pF bOpmqq P QCohpSpf Rqaperf and form a cofiber sequence pq‹ G bOp´mq
α
ÝÑ F Ñ F 1.

It follows from Theorem 5.4.2.6 (and the vanishing of pq˚pF bOpiqq for 0 ď i ă m) that α
induces an equivalence pq˚ppq

‹ G bOpi´mqq Ñ pq˚pF bOpiqq for 0 ď i ď m. Applying our
inductive hypothesis to F 1, we deduce that F 1 belongs to the essential image of θ. It will
therefore suffice to show that G belongs to the essential image of θ, which follows from the
commutativity of the diagram

QCohpSpétRqaperf //

q˚

��

QCohpSpf Rqaperf

pq‹

��
QCohpXqaperf θ // QCohpX^qaperf

(note that the upper horizontal map is an equivalence of 8-categories by virtue of Corollary
??).

We now prove the general form of the Grothendieck existence theorem.

Proof of Theorem 8.5.0.3. Let R be a connective E8-ring which is complete with respect to
a finitely generated ideal I Ď π0R, let q : X Ñ SpétR be a morphism of spectral algebraic
spaces which is proper and locally almost of finite presentation, and let X^ “ Spf RˆSpétRX
denote the formal completion of X along the vanishing locus of I. We wish to show that
the restriction functor θ : QCohpXqaperf Ñ QCohpX^qaperf is an equivalence of 8-categories.
Note that we have already seen that θ is fully faithful (Corollary 8.5.1.3).

Applying Chow’s Lemma (Theorem ?? and Remarks 5.5.0.3 and 5.5.0.4), we can choose
a finite sequence of closed immersions

H “ Y0 Ñ Y1 Ñ Y2 Ñ ¨ ¨ ¨ Ñ Yn Ñ X

and closed immersions hi : rYi Ñ YiˆSpétRPdi
R which are almost of finite presentation

satisfying the following conditions:

piq The closed immersion Yn Ñ X induces a homeomorphism |Yn | Ñ |X |.

piiq The projection maps rYi Ñ Pdi
R are finite (and locally almost of finite presentation).

piiiq The projection maps h1i : rYi Ñ Yi induce equivalences rYi ˆYi Ui Ñ Ui, where Ui is the
open substack of Yi complementary to Yi´1.
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For 0 ď i ď n, let Yi Ď |X | denote the image of |Yi |. We will prove the following:

p˚iq Let F P QCohpX^qaperf and let G P QCohpXqaperf be supported on Yi. Then the
tensor product F bθpG q belongs to the essential image of θ.

Note that p˚nq implies Theorem 8.5.0.3 (since piq implies we can take G “ OX) and that
p˚0q is trivial. To complete the proof, it will suffice to show that if 1 ď i ď n and p˚i´1q is
satisfied, then p˚iq is also satisfied.

Let v denote the closed immersion Yi Ñ X. We first establish the following special case
of p˚iq:

p˚1q For every object F P QCohpX^qaperf , the tensor product F bθpv˚OYiq belongs to the
essential image of θ.

To prove p˚1q, let G denote the fiber of the unit map OYi Ñ h1i˚O
rYi , so that we have a fiber

sequence
F bθpv˚ G q Ñ F bθpv˚OYiq Ñ F ˆθppv ˝ h1iq˚O

rYiq.

Assumption piiiq guarantees that v˚ G is supported on Yi´1, so that F bθpv˚ G q belongs to
the essential image of θ by virtue of our inductive hypothesis p˚i´1q. Let rY

^

i denote the formal
completion rYi ˆSpétR Spf R, so that pv ˝ h1iq induces a map pu : rY

^

i Ñ X^. The projection
formula (Corollary 6.3.4.3) then supplies an equivalence F ˆθppv ˝ h1iq˚O

rYiq » pu˚pu
‹F .

Using the commutativity of the diagram

QCohprYiqaperf

pv˝h1iq˚
��

// QCohprY
^

i q
aperf

pu˚
��

QCohpXqaperf θ // QCohpX^qaperf

and the observation that the upper horizontal map is an equivalence (by virtue of piiq and
Proposition 8.5.2.2), we see that pu˚pu

‹F belongs to the essential image of θ. Since the
essential image of θ is closed under extensions, we deduce that F bθpv˚OYiq is contained
in the essential image of θ. This competes the proof of p˚1q.

We now return to the proof of p˚iq. Let us henceforth regard F as a fixed object of
QCohpX^qaperf , which we assume to be connective. Let I denote the fiber of the unit map
OX Ñ v˚OYi . Fix an integer m ě 0. It follows from p˚1q that the cofiber of each of the
natural maps

F bθpIbmq Ñ F bθpIbm´1q Ñ ¨ ¨ ¨ Ñ F bθpIq Ñ F

belongs to the essential image of θ. Since the essential image of θ is closed under extensions,
we can choose a cofiber sequence F bθpIbmq Ñ F Ñ θpFmq for some objects Fm P

QCohpXqaperf (which are then automatically connective, by virtue of Proposition 8.5.1.4).
To complete the proof, it will suffice to verify the following:
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paq For every connective object G P QCohpXqaperf which is supported on Yi, the towers
tFmbG umě0 and tθpFmbG qumě0 admit limits in the 8-categories QCohpXqaperf X

QCohpXqcn and QCohpX^qaperf XQCohpX^qcn, respectively.

pbq Let G be as in paq. Then the canonical maps

F bθpG q Ñ lim
ÐÝ
m

θpFmbG q Ð θplim
ÐÝ
m

pFmbG qq

are equivalences in the 8-category QCohpX^qaperf .

Note that we have a commutative diagram of 8-categories

QCohpXqaperf XQCohpXqcn //

��

QCohpX^qaperf XQCohpXqcn

��
lim
ÐÝk

QCohk´fppXq // lim
ÐÝk

QCohk´fppX^q,

where the vertical maps are equivalences of8-categories (see Notation 8.4.3.1). Consequently,
in order to prove paq and pbq, it will suffice to verify the following analogous assertions, for
each k ě 0:

pakq For every connective object G P QCohYipXq
aperf , the diagrams tτďkpFmbG qumě0

and tθkpτďkpFmbG qqumě0 both admit limits in the 8-categories QCohk´fppXq and
QCohk´fppX^q, respectively. Here θk : QCohk´fppXq Ñ QCohk´fppX^q denotes the
restriction map.

pbkq Let G be as in pakq. Then the canonical maps

τďkpF bθpG qq
α
ÝÑ lim
ÐÝ
m

θkpτďkpFmbG qq Ð θkplimÐÝ
m

τďkpFmbG qq

are equivalences in the 8-category QCohk´fppX^q.

Since G is almost perfect and is supported on Yi, it follows from Proposition ?? that there
exists an integer t " 0 for which the composite map IbtbG

e
ÝÑ G Ñ τďk G is nullhomotopic.

It follows that τďk G is retract of τďkpcofibpeqq. We may therefore replace G by cofibpeq and
thereby reduce to the case where G can be written as a finite extension of objects belonging
to the essential image of the functor v˚ : QCohpYiqaperf Ñ QCohpXqaperf . Consequently, it
will suffice to prove the following:

pa1q For every connective object G P QCohpXqaperf which can be written as a finite extension
of objects belonging to the essential image of v˚, the towers the towers tFmbG umě0
and tθpFmbG qqumě0 are constant when regarded as Pro-objects of QCohpXqaperf

and QCohpX^qaperf , respectively.



8.5. THE GROTHENDIECK EXISTENCE THEOREM 695

pb1q Let G be as in pa1q. Then the canonical maps

F bθpG q
α
ÝÑ lim
ÐÝ
m

θpFmbG q
β
ÐÝ θplim

ÐÝ
m

pFmbG qq

are equivalences in the 8-category QCohpX^qaperf (note that both limits are well-
defined by virtue of pa1q).

Note that the collection of those objects G P QCohpXqaperf for which the conclusions
of pa1q and pb1q are satisfied is closed under extensions. We may therefore assume that
G “ v˚ G 0 for some object G 0 P QCohpYiqaperf . We then have a fiber sequence of towers in
QCohpX^qaperf

tF bθpIbmbv˚ G 0qumě0 Ñ tF bθpv˚ G 0qumě0 Ñ tθpFmbv˚ G 0qumě0.

Here the tower on the left is trivial as a Pro-object (since it has vanishing transition maps)
and the tower in the middle is constant already as a diagram, so the tower on the right
as constant as Pro-object. This shows that α is an equivalence and, since the functor θ is
fully faithful (Corollary 8.5.1.3), that the tower the tower tFmbv˚ G 0umě0 is constant as a
Pro-object of QCohpXqaperf . It follows formally that the tower tθpFmbv˚ G 0qumě0 is also
a constant Pro-object and that the comparison map β is an equivalence.

8.5.3 The Formal GAGA Theorem

Let R be a Noetherian commutative ring which is complete with respect to an ideal
I Ď R. One of the most useful consequences of the classical Grothendieck existence theorem
is that a proper R-scheme X is determined by its completion along the vanishing locus of I:
that is, by the direct system of closed subschemes tSpecR{In ˆSpecR Xuně0. In the setting
of spectral algebraic geometry, we have the following parallel result:

Theorem 8.5.3.1. Let R be an E8-ring which is complete with respect to a finitely generated
ideal I Ď π0R, let X be a spectral algebraic space which is proper and locally almost of finite
presentation over R, and let X^ “ Spf RˆSpétR X denote the formal completion of X along
the vanishing locus of I. Let Y be a spectral algebraic space which is quasi-separated. Then
the restriction map MapSpDMpX,Yq Ñ MapfSpDMpX^,Yq is a homotopy equivalence.

Proof. Writing Y as a union of quasi-compact open substacks (and using the quasi-compactness
of X and X^), we can reduce to the case where Y is quasi-compact. We have a commutative
diagram

MapSpDMpX,Yq //

��

MapfSpDMpX^,Yq

��
FunbpQCohpYqperf ,QCohpXqperfq // FunbpQCohpYqperf ,QCohpX^qperfq.
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It follows from Corollary 9.6.4.2 and Theorem 8.1.5.1 that the vertical maps are fully faithful
embeddings, and that their essential images are the full subcategories of FunbpQCohpYqperf ,QCohpXqperfq

and FunbpQCohpYqperf ,QCohpX^qperfq spanned by those symmetric monoidal functors
which are exact. To complete the proof, it suffices to observe that the restriction map
QCohpXqperf Ñ QCohpX^qperf is an equivalence of 8-categories (by virtue of Theorem
8.5.0.3 and Remark 8.5.0.5).

Remark 8.5.3.2. The conclusion of Theorem 8.5.3.1 is valid for many algebro-geometric
objects Y other than quasi-separated algebraic spaces; see, for example, Corollary 9.5.5.3.

Corollary 8.5.3.3. Let R be an E8-ring which is complete with respect to a finitely generated
ideal ideal I Ď π0R. Let X and Y be spectral algebraic spaces over R, and let X^ and Y^

denote their formal completions along the vanishing locus of I. Assume that X is proper
and locally almost of finite presentation over R and that Y is quasi-separated. Then the
restriction map

MapSpDM{ SpétR
pX,Yq Ñ MapfSpDM{ Spf R

pX^,Y^q

is a homotopy equivalence.

Corollary 8.5.3.4 (Formal GAGA Theorem). Let R be an E8-ring which is complete with
respect to a finitely generated ideal I Ď π0R, and let C be the full subcategory of SpDM{SpétR
spanned by those spectral Deligne-Mumford stacks which are proper and locally almost of
finite presentation over R. Then the construction X ÞÑ Spf RˆSpétR X determines a fully
faithful embedding C Ñ fSpDM{Spf R.

Remark 8.5.3.5. In the setting of spectral algebraic geometry, Theorem 8.5.3.1 (and
Corollaries 8.5.3.3 and 8.5.3.4) do not require any Noetherian hypotheses on R. However,
if R is not Noetherian, then the formation of I-completions generally does not have good
exactness properties. Consequently, even if R is an ordinary commutative ring and X is
an ordinary algebraic space over R, the formal completion X^ which appears in Theorem
8.5.3.1 might differ from its classical analogue (which is simply the direct limit of the closed
subspaces SpecR{In ˆSpecR X Ď X).

Remark 8.5.3.6. Let R be an adic E8-ring and let X be a formal spectral Deligne-Mumford
stack equipped with a map f : XÑ Spf R. We will say that X is algebraizable if there exists
a pullback square

X //

��

X

��
Spf R // SpétR,

where X is a spectral algebraic space which is proper and locally almost of finite presentation
over R. It follows from Corollary 8.5.3.4 that if such a diagram exists, then it is uniquely
determined (up to a contractible space of choices).
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8.6 Digression: Geometrically Reduced Morphisms

Let f : X Ñ Y be a morphism of schemes. Recall that f is said to be geometrically
reduced if f is flat and the geometric fibers of f are reduced. This definition extends to the
setting of spectral algebraic geometry without essential change:

Definition 8.6.0.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. We
will say that f is geometrically reduced if f is flat and, for every pullback diagram

Xκ //

��

X

f
��

Spétκ // Y

where κ is a field, the fiber Xκ is reduced (Definition 3.1.6.1).

Our goal in this section is to establish some elementary properties of geometrically reduced
morphisms in spectral algebraic geometry (most of which are immediate consequences of the
analogous facts in classical algebraic geometry).

8.6.1 Geometrically Reduced Algebras over a Field

We begin by reviewing the classical theory of geometrically reduced algebras over a field.

Definition 8.6.1.1. Let κ be a field and let A P CAlg♥
κ be a commutative algebra over κ.

We will say that A is geometrically reduced over κ if, for every extension field κ1 of κ, the
tensor product Abκ κ1 is reduced.

Remark 8.6.1.2. Let κ be a field and let A P CAlg♥
κ be geometrically reduced over κ.

Then every localization of A is geometrically reduced over κ.

Remark 8.6.1.3. Let κ be a field and let A P CAlg♥
κ . If A is geometrically reduced over κ,

then every κ-subalgebra of A is geometrically reduced over κ. Conversely, if every finitely
generated κ-subalgebra of A is geometrically reduced over κ, then A is geometrically reduced
over κ.

Lemma 8.6.1.4. Let κ1 be a finitely generated extension of a field κ, and suppose that the
module of Kähler differentials Ωκ1{κ vanishes. Then κ1 is a finite separable extension of κ.

Proof. Suppose first that κ1 is generated, as a field extension of κ, by a single element x P κ1.
If x is trancendental over κ, then κ1 is the fraction field of κrxs, so that dx is a nonzero
element of Ωκ1{κ. We may therefore assume that x is algebraic over κ, so that we can write
κ1 “ κrxs{pfpxqq for some nonzero polynomial fpxq. Then Ωκ1{κ can be identified with the
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cokernel of the map κ1 f
1pxq
ÝÝÝÑ κ1, where f 1 denotes the derivative of f with respect to x. The

vanishing of Ωκ1{κ then implies that f 1pxq ‰ 0, so that κ1 is a separable extension of κ.
We now handle the general case. Suppose that κ1 is generated, as a field extension of κ,

by a sequence of elements x1, . . . , xn P κ
1. We proceed by induction on n, the case n “ 0

being trivial. To handle the inductive step, let κ10 Ď κ1 be the subfield generated by κ

together with the elements x1, . . . , xn´1. Since Ωκ1{κ10
is a quotient of Ωκ1{κ, we deduce that

Ωκ1{κ10
vanishes. The first part of the proof shows that κ1 is a finite separable extension of κ10.

It follows that the canonical map κ1 bκ10 Ωκ10{κ
Ñ Ωκ1{κ is an isomorphism. Our vanishing

assumption then gives Ωκ10{κ
» 0, so that κ10 is a finite separable extension of κ by our

inductive hypothesis. By transitivity, we conclude that κ1 is a finite separable extension of
κ.

Proposition 8.6.1.5. Let κ1 be an extension of a field κ. The following conditions are
equivalent:

paq The field κ1 is geometrically reduced over κ.

pbq Either κ has characteristic zero, or κ has characteristic p ą 0 and the tensor product
κ

1
pn bκ κ

1 is reduced for all n ą 0 (here κ
1
pn denotes a copy of the field κ, regarded as

a κ-algebra by the nth power of the Frobenius map).

Moreover, if κ1 is a finitely generated field extension of κ, then both these conditions are
equivalent to the following:

pcq The field κ1 is a finite separable extension of a free extension κpx1, . . . , xmq for some
m ě 0.

Proof. Writing κ1 as a union of finitely generated subextensions (and using Remark 8.6.1.3),
we can assume that κ1 is finitely generated as an extension field of κ. The implication
paq ñ pbq is obvious. If pcq is satisfied, then κ1 is étale over κpx1, . . . , xmq for some m ě 0.
Writing κpx1, . . . , xmq as a direct limit of localizations of κrx1, . . . , xns and using the structure
theory of étale morphisms (Proposition B.1.1.3), we can choose an étale κrx1, . . . , xns-algebra
A and an isomorphism κ1 » Abκrx1,...,xns κpx1, . . . , xnq. By virtue of Remark 8.6.1.2, it will
suffice to show that A is geometrically reduced over κ. Note that for every field extension
κ2 of κ, the tensor product Abκ κ2 is étale over the polynomial ring κ2rx1, . . . , xms, and is
therefore reduced. This shows that pcq ñ paq.

We now complete the proof by showing that pbq implies pcq. Assume that pbq is satisfied
and let Ωκ1{κ denote the module of Kähler differentials of κ1 over κ. Since κ1 is a finitely
generated field extension of κ, Ωκ1{κ is finite-dimensional as a vector space over κ. We can
therefore choose elements x1, . . . , xm P κ

1 such that tdxi P Ωκ1{κu1ďiďm forms a basis for
Ωκ1{κ. Let κ denote the subfield of κ1 generated by κ and the elements txiu1ďiďm. Since the
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elements dxi generate Ωκ1{κ, it follows that Ωκ1{κ » 0. Applying Lemma 8.6.1.4, we deduce
that κ1 is a finite separable extension of κ. To complete the proof, it will suffice to show that
κ » κpx1, . . . , xmq: that is, that the elements x1, . . . , xm are algebraically independent over
κ. Assume otherwise: then there exists a nonzero polynomial fpt1, . . . , tmq P κrt1, . . . , tms
satisfying fpx1, . . . , xmq “ 0. Let us assume that the we have chosen f so that its degree is
minimal. Note that we have

0 “ dfpx1, . . . , xmq “
ÿ B f

B ti
px1, . . . , xmqdxi P Ωκ1{κ,

so that each of the polynomials B f
B ti

vanishes on px1, . . . , xmq. It follows from the minimality
of f that the polynomials B f

B ti
vanish identically. Consequently, the field κ must have

characteristic p ą 0 and we can write fpt1, . . . , tmq “ gptp
n

1 , . . . , tp
n

m q for some n ą 0. Choose
n as large as possible, so that g has at least one nonvanishing partial derivative. Let
h P κ

1
pn rt1, . . . , tms be the polynomial obtained from g by taking the pnth root of each

coefficient. We then have 0 “ fpx1, . . . , xmq “ hpx1, . . . , xmq
pn in the tensor product

R “ κ
1
pn bκ κ

1. Since R is reduced, it follows that hpx1, . . . , xmq “ 0. As above, we compute

0 “ dhpx1, . . . , xmq “
ÿ B h

B ti
px1, . . . , xmqdxi P Ω

R{κ
1
pn
.

Since the elements dxi form a basis for Ωκ1{κ as a κ1-module, they also form a basis for Ω
R{κ

1
pn

as an R-module. It follows that B h
B ti
px1, . . . , xmq vanishes in R for each i. By assumption,

there exists an index i such that hi “ B h
B ti

is not identically zero. Then the polynomial
hipt1, . . . , tnq

pn has coefficients in κ and vanishes when evaluated on x1, . . . , xn, contradicting
the minimality of the degree of f .

Remark 8.6.1.6. Let κ be a field and let A be a κ-algebra. Then:

paq If κ has characteristic zero and A is reduced, then it is geometrically reduced over κ.

pbq If κ has characteristic p ą 0 and κ1 bκ A is reduced for every finite purely inseparable
extension κ1 of κ, then A is geometrically reduced over κ.

To see this, we can use Remark 8.6.1.3 to reduce to the case where A is finitely generated
over κ. Then A is a reduced Noetherian ring, so we have an injective map AÑ

ś

1ďiďnApi

where tp1, . . . , pnu are the minimal prime ideals of A. Using Remark 8.6.1.3 again, it will
suffice to show that paq and pbq hold for each of the localizations Api , which is a finitely
generated extension field of κ. In this case, the desired result follows from Proposition
8.6.1.5.

Corollary 8.6.1.7. Let κ be a field, let A be a finitely generated algebra over κ, and let p

be a prime ideal in A. The following conditions are equivalent:
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paq The localization Ap is geometrically reduced over κ.

pbq There exists elements a, b P A such that a R p, b is not a zero-divisor in Ara´1s, and
the localization Arb´1s factors as a product

ś

1ďiďnAi, where each Ai admits an étale
morphism κrx1, . . . , xms Ñ Ai (for some m ě 0).

Proof. Suppose that condition pbq is satisfied, and let κ1 be an extension field of κ. Then
κ1 bκ Arb

´1s can be identified with a subring of the product
ś

1ďiďn κ
1 bκ Ai, each factor

of which is an étale algebra over some polynomial ring κ1rx1, . . . , xms. It follows that
κ1bκArpabq

´1s is a localization of a subring of a reduced ring and therefore reduced. Since b
is not a zero-divisor in Ara´1s, we conclude that κ1bκ Ara´1s is also reduced. Consequently,
Ara´1s is geometrically reduced over κ, so the further localization Ap is geometrically reduced
over κ by Remark 8.6.1.2. This shows that pbq implies paq.

We now show that paq implies pbq. Assume that Ap is geometrically reduced over κ.
Let tq1, . . . , qnu be the minimal prime ideals of A which are contained in p. Then each
localization Aqi is a field Ki which is geometrically reduced over κ. Using Proposition 8.6.1.5,
we can assume that each Ki is a finite separable extension of κpxi,1, . . . , xi,miq for some
elements xi,1, . . . , xi,mi P Ki which are algebraically independent over κ. Choose an element
b P A´

Ť

qi such that each xi,j belongs to the image Ai of the natural map Arb´1s Ñ Ki. We
then have Ki » Ai bκrxi,1,...,xi,mi s κpxi,1, . . . , xi,miq. Since Ki is étale over κpxi,1, . . . , xi,miq,
we can assume (after changing b if necessary) that each Ai is étale over κrxi,1, . . . , xi,mis and
that the natural map Arb´1s Ñ

ś

Ai is an isomorphism. Let I “ tx P A : bx “ 0u. Since
Ap is reduced and b does not belong to any qi, the image of b in Ap is not a zero-divisor.
It follows that Ip » 0. Since A is Noetherian, the ideal I is finitely generated. We can
therefore choose a P A´ p such that Ira´1s » 0, so that the image of b in Ara´1s is not a
zero-divisor.

8.6.2 Geometrically Reduced Morphisms of Spectral Deligne-Mumford
Stacks

We now summarize some of the formal properties of Definition 8.6.0.1.

Proposition 8.6.2.1. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 //

f 1

��

X
f
��

Y1 g // Y .

If f is geometrically reduced, then f 1 is geometrically reduced. The converse holds if g is a
flat covering (Definition 2.8.3.1).
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Proof. The first assertion is immediate from the definitions. To prove the second, let us
assume that g is a flat covering and quasi-compact and that f 1 is geometrically reduced.
Then f 1 is flat, so f is flat. Suppose we are given a pullback diagram

Xκ //

��

X

f
��

Spétκ η // Y,

where κ is a field. We wish to show that Xκ is reduced. Choose an étale map SpétAÑ Xκ;
we will show that the E8-ring A is reduced. Since g is surjective, there exists an extension
field κ1 of κ such that η factors through g. In this case, we can obtain an étale map

Spétpκ1 bκ Aq Ñ Spétκ1 ˆY1 X1,

so our assumption that f 1 is geometrically reduced guarantees that the E8-ring κ1 bκ A is
reduced. In particular, the homotopy groups πnpκ1 bκ Aq » κ1 bκ πnA vanish for n ą 0, so
that A is discrete. Since the map AÑ κ1 bκ A is injective, it follows that A is reduced.

Proposition 8.6.2.2. Let X f
ÝÑ Y g

ÝÑ Z be morphisms of spectral Deligne-Mumford stacks.
If f is étale and g is geometrically reduced, then g ˝ f is geometrically reduced. If f is an
étale surjection and g ˝ f is geometrically reduced, then g is geometrically reduced.

Proof. Suppose first that f is étale and g is geometrically reduced. Then g is flat, so g ˝ f is
flat. Moreover, for any field κ and any map SpétκÑ Z, we have an étale map

XˆZ SpétκÑ YˆZ Spétκ.

Since the codomain of this map is reduced, so is the domain.
Now suppose that f is an étale surjection and that g ˝ f is geometrically reduced. Then

g ˝ f is flat (Proposition 2.8.2.4) and for every map SpétκÑ Z as above, we obtain an étale
surjection XˆZ SpétκÑ YˆZ Spétκ whose domain is reduced. Since the property of being
reduced is local for the étale topology (Remark 3.1.6.2) we deduce that the codomain is also
reduced.

Corollary 8.6.2.3. Any étale morphism of spectral Deligne-Mumford stacks is geometrically
reduced.

Definition 8.6.2.4. Let φ : AÑ B be a morphism of connective E8-rings. We will say that
φ is geometrically reduced if the map of spectral Deligne-Mumford stacks SpétB Ñ SpétA
is geometrically reduced. In other words, φ is geometrically reduced if it is flat and, for
every morphism of E8-rings AÑ κ where κ is a field, the commutative ring Bκ “ B bA κ

is reduced.
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Remark 8.6.2.5. Let φ : A Ñ B be a flat morphism of connective E8-rings. Then φ is
geometrically reduced if and only if, for every morphism of commutative rings π0AÑ κ, the
tensor product Bκ “ B bA κ is reduced.

Remark 8.6.2.6. In the case where A is a field, Definition 8.6.2.4 specializes to Definition
8.6.1.1.

Warning 8.6.2.7. To verify that a morphism φ : AÑ B is geometrically reduced, it is not
enough to show that the tensor product Bκ “ B bA κ is reduced for every residue field κ of
A. However, it is sufficient to restrict attention to those fields κ which occur as finite purely
inseparable extension fields of residue fields of A: this follows from Remark 8.6.1.6.

We now study the closure of geometrically reduced morphisms under composition.

Proposition 8.6.2.8. Let A be a reduced Noetherian ring and let φ : AÑ B be a geometri-
cally reduced morphism. Then B is a reduced commutative ring.

Proof. Since φ is flat, the E8-ring B is discrete. Let tp1, . . . , pnu be the minimal prime
ideals of A. The assumption that A is reduced implies that each of the localizations Api is a
field and that the localization map AÑ

ś

1ďiďnApi is injective. Since B is flat over A, the
induced map B Ñ

ś

1ďiďnpApi bA Bq is injective. Our assumption that φ is geometrically
reduced implies that each tensor product Api bA B is a reduced ring, so that B is also a
reduced ring.

Proposition 8.6.2.9. Let X f
ÝÑ Y g

ÝÑ Z be morphisms of spectral Deligne-Mumford stacks.
If f and g are geometrically reduced and g is locally of finite type, then the composition
pg ˝ fq is geometrically reduced.

Proof. Since f and g are flat, the composition g˝f is flat. Fix a field κ and a map SpétκÑ Z,
so that f induces a map fκ : XˆZ SpétκÑ YˆZ Spétκ. We wish to show that the domain
of fκ is reduced. Choose an étale map SpétB η

ÝÑ XˆZ Spétκ; we wish to show that the
E8-ring B is reduced. This property is local with respect to the étale topology on B; we may
therefore assume without loss of generality that the composite map fκ ˝ η factors through
an étale morphism SpétA Ñ YˆZ Spétκ. Since g is geometrically reduced and of finite
type, the E8-ring A is reduced and finitely generated as a κ-algebra. In particular, A is
Noetherian. Our assumption that f is geometrically reduced implies that the map AÑ B

is geometrically reduced, so that B is reduced by virtue of Proposition 8.6.2.8.

8.6.3 The Geometrically Reduced Locus

Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. Since the property
of being geometrically reduces is local on the domain with respect to the étale topology



8.6. DIGRESSION: GEOMETRICALLY REDUCED MORPHISMS 703

(Proposition 8.6.2.2), there exists a largest open substack U Ď X for which the restriction
f |U : U Ñ Y is geometrically reduced. Let us refer to U as the geometrically reduced locus of
f . Note that if we are given a pullback diagram of spectral Deligne-Mumford stacks

X1 //

f 1

��

X

f

��
Y1 // Y,

then we can identify UˆX X1 with an open substack of X1, and the restriction of f 1 to UˆX X1

is geometrically reduced (Proposition 8.6.2.1). Consequently, the fiber product UˆX X1 is
contained in the geometrically reduced locus for the map f 1. Under some mild assumptions,
we can say more:

Proposition 8.6.3.1 (Universality of the Geometrically Reduced Locus). Suppose we are
given a pullback diagram of spectral Deligne-Mumford stacks

X1 //

f 1

��

X
f
��

Y1 // Y

where f and f 1 are flat and locally almost of finite presentation. If U Ď X is the geometrically
reduced locus of f , then UˆX X1 is the geometrically reduced locus of f 1.

Proof. Using Proposition 8.6.2.1, we can reduce to the case where Y » SpétA and Y1 »
SpétA1 are affine. Using Proposition 8.6.2.2, we can further assume that X » SpétB is
affine, so that X1 » SpétB1 for B1 “ A1 bA B. Using Remark 8.6.2.5 we can replace A and
A1 by the commutative rings π0A and π0A

1 and thereby reduce to the case where A and
A1 are discrete. Then B is discrete and is finitely presented as a commutative algebra over
A. We can therefore choose a finitely generated subalgebra A0 Ď A and a finitely presented
A0-algebra B0 such that B » τď0pAbA0 B0q. Enlarging A0 if necessary, we may assume that
B0 is flat over A0 (Proposition 6.1.6.1). For each point x P | SpecB0|, let f0pxq P | SpecA0|

denote its image and let κpf0pxqq denote the residue field of A0 at the point f0pxq. Set

V “ tp P |SpecB0| : κpfpxqq bA0 B0p is geometrically reduced over κpf0pxqq u.

Unwinding the definitions, we see that U can be defined (as a subset of | SpecB|) as the
largest open set which is contained in V ˆ|SpecB0| | SpecB|, and the geometrically reduced
locus of f 1 can be identified (as a subset of |SpecB1|) with the largest open set which is
contained in V ˆ|SpecB0| | SpecB1|. Consequently, to complete the proof, it will suffice to
show that V is open in | SpecB0|. We will prove this by verifying the hypotheses of Lemma
6.1.5.3:
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paq The set V is stable under generalization. Suppose that x and x1 are points of |SpecB0|

such that x P V and x belongs to the closure of tx1u; we wish to show that x1 belongs
to V . Using Proposition 5.3.2.2, we can choose a discrete valuation ring R and a map
ρ : SpétRÑ SpétB0 which carries the closed point of |SpecR| to x and the generic
point of | SpecR| to x1. Let t be a uniformizer of R and set R “ R bA0 B0. Then ρ

determines an R-algebra homomorphism ε : R Ñ R such that p “ kerpεq is a prime
ideal of R lying over x1 and q “ ε´1ptq is a prime ideal of R lying over x. To show that
x1 belongs to V , we must show that the localization Rp is geometrically reduced as an
algebra over the fraction field K of R. Equivalently, we must show that Rp bK K 1 is
reduced, for every finite purely inseparable extension K 1 of K (see Remark 8.6.1.6).
Replacing R by a localization of the integral closure of R in K 1 (which is a Dedekind
ring, by virtue of the Krull-Akizuki theorem; see Theorem 5.3.2.1), we can are reduced
to showing that Rp is reduced. In fact, we claim that the localization Rq is reduced.
To prove this, let I denote the nilradical of Rq. Choose any element a P I, so that
an “ 0 for n " 0. Our assumption that x belongs to V guarantees that the quotient
Rq{tRq is reduced, so a belongs to the kernel of the reduction map Rq Ñ Rq{tRq. We
can therefore write a “ tb for some b P Rq. We then have tnbn “ an “ 0. Since R is
flat over R, it follows that bn “ 0. We therefore have b P I, so that a P tI. Since a
was chosen arbitrarily, we conclude that I Ď tI. Iterating this observation, we obtain
inclusions I Ď tI Ď t2I Ď t3I Ď ¨ ¨ ¨ , so that I Ď

Ş

mě0pt
mq. Since Rq is a Noetherian

local ring, it follows from the Krull intersection theorem (Corollary 7.3.6.10) that
I “ 0, so that Rq is reduced.

pbq For every point x P V , there exists an open subset of the closure txu which is contained
in V . Let us identify x with a prime ideal p Ď B0, and let q Ď A0 be the inverse image
of p. Replacing A0 by A0{q, we can assume that A0 is an integral domain and that
q “ 0. Let K be the fraction field of A0. Our assumption that x P V implies that
the localization B0p is geometrically reduced over K. Set BK “ K bA0 B0. Applying
Corollary 8.6.1.7, we may assume (after replacing B0 by a localization if necessary)
that there exists an element b P BK which is not a zero-divisor such that BKrb´1s

factors as a product
ś

1ďiďnBKi, where each BKi is étale over a polynomial ring
Krx1, . . . , xmis. Replacing A0 by a suitable localization, we may assume that b lies in
B0 (which we identify with a subring of BK) and that B0rb

´1s »
ś

1ďiďnB0i, where
each B0i is étale over a polynomial ring A0rx1, . . . , xmis. Let M denote the quotient
B0{bB0. Using Lemma 6.1.5.4, we may assume (after passing to a suitable localization
of A0) that M is free as an A0-module. It follows that, for every residue field κ of
A0, the exact sequence 0 Ñ B0

b
ÝÑ B0 Ñ M remains exact after tensoring with κ:

that is, that the image of b not a zero-divisor in κbA0 B0. Applying the criterion of
Corollary 8.6.1.7, we deduce that κbA0 B0 is geometrically reduced over κ, so that
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V “ |SpecB0|.

8.6.4 Geometric Connectivity

We now restrict our attention to proper geometrically reduced morphisms. In this case,
we have the following:

Proposition 8.6.4.1. Let f : X “ pX ,OX q Ñ pY,OYq “ Y be a morphism of spectral
Deligne-Mumford stacks which is proper, locally almost of finite presentation, and geometri-
cally reduced. The following conditions are equivalent:

p1q The morphism f is geometrically connected: that is, for every pullback square

Xκ //

��

X

f
��

Spétκ // Y

where κ is an algebraically closed field, the topological space |Xκ | is connected.

p2q Let u : OY Ñ f˚OX be the unit map. Then cofibpuq P QCohpYq has Tor-amplitude
ď ´1.

The proof of Proposition 8.6.4.1 will require some algebraic preliminaries.

Lemma 8.6.4.2. Let R be a commutative ring and let M be an R-module which is perfect
to order 1. Let p Ď R be a prime ideal and let κ denote the residue field at p. Then the
following conditions are equivalent:

paq There exists an element a P R which does not belong to p for which the localization
M ra´1s P ModRra´1s is 1-split (see Definition ??).

pbq The vector space π1pκbRMq vanishes.

Proof. The implication paq ñ pbq is obvious. Conversely, suppose that pbq is satisfied. Since
M is perfect to order 1, it is k-connective for every sufficiently small integer k. We proceed
by descending induction on k, beginning with the case k “ 1. If M is 1-connective, then we
have π1pκbRMq » TorR0 pκ, π1Mq. Our assumption that M is perfect to order 1 guarantees
that π1M is a finitely generated R-module. Consequently, if condition piiq is satisfied
then Nakayama’s lemma guarantees that π1M ra

´1s » 0 for some a R p, so that M ra´1s is
2-connective and condition paq follows.
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To carry out the inductive step, assume that k ď 0 and that M is k-connective. Then our
assumption that M is perfect to order 1 guarantees that πkM is a finitely presented R-module,
and the k-connectivity of M supplies an isomorphism πkpκbRMq » TorR0 pκ, πkMq. Choose
a collection of elements x1, . . . , xm P πkM whose images form a basis for TorR0 pκ, πkMq as
a vector space over κ. It follows from Nakayama’s lemma that, after localizing at some
element a P R ´ p, we may assume that x1, . . . , xm generate πkM as an R-module, and
therefore determine a map u : ΣkRm ÑM whose cofiber is pk ` 1q-connective. We have a
short exact sequence

π1pκbRMq Ñ π1pκbR cofibpuqq Ñ π0pκbR ΣkRmq
ρ
ÝÑ π0pκbRMq

where the third term vanishes for k ă 0 and ρ is injective when k “ 0. Consequently,
the cofiber cofibpuq also satisfies condition piiq. Applying the inductive hypothesis, we
deduce that cofibpuq satisfies condition piq. Localizing if necessary, we may assume that
cofibpuq splits as a direct sum M 1 ‘M2, where M 1 is 2-connective and M2 is perfect of
Tor-amplitude ď 1. Then M can be described as the fiber of a map θ : M 1‘M2 Ñ Σk`1Rm.
Since the codomain of θ is 1-truncated, the restriction θ|M 1 is nullhomotopic, so that
M »M 1 ‘ fibpθ|M2q is 1-split as desired.

Corollary 8.6.4.3. Let R be a connective E8-ring and let M be an almost perfect R-module.
The following conditions are equivalent:

paq The module M is perfect of Tor-amplitude ď 0.

pbq For every maximal ideal m of π0R with residue field κ “ pπ0Rq{m, the homotopy
groups πnpκbRMq vanish for n ą 0.

Proof. The implication paq ñ pbq is trivial. We will show that pbq ñ paq. Using Proposition
2.7.3.2, we can reduce to the case where R is discrete. Since the condition of being perfect
of Tor-amplitude ď 0 can be tested locally with respect to the étale topology (Proposition
2.8.4.2), we can use condition pbq and Lemma 8.6.4.2 to reduce to the case where M splits as
a direct sum M 1‘M2, where M 1 is perfect of Tor-amplitude ď 0 and M2 is 2-connective. We
will complete the proof by showing that M2 » 0. Assume otherwise: then there exists some
smallest integer n ě 2 such that πnM2 ‰ 0. Since M2 is a direct summand of M , it is almost
perfect as an R-module. Consequently, the first nonvanishing homotopy group πnM

2 is a
finitely generated R-module. For each maximal ideal m Ď R, the quotient pπnM2q{mpπnM

2q

appears as a direct summand of πnpκbRMq and therefore vanishes. Invoking Nakayama’s
lemma, we deduce that πnM2 » 0 and obtain a contradiction.

Proof of Proposition 8.6.4.1. Let f : X “ pX ,OX q Ñ pY,OYq “ Y be a morphism of
spectral Deligne-Mumford stacks which is proper, locally almost of finite presentation, and
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geometrically reduced, and let u : OY Ñ f˚OX be the unit map. We wish to show that f
has connected geometric fibers if and only if the cofiber cofibpuq has Tor-amplitude ď ´1.
Both assertions are local on Y, so we may assume without loss of generality that Y » SpétR
is affine. It follows from Theorem 5.6.0.2 that the cofiber cofibpuq is almost perfect. Using
Corollary 8.6.4.3, we can reformulate p2q as follows:

p21q For every map RÑ κ, where κ is an algebraically closed field, the homotopy groups
πnpκbR cofibpuqq vanish for n ě 0.

Consequently, to prove the equivalence of p1q and p21q, there is no loss of generality in
assuming that R “ κ is an algebraically closed field. In this case, X is a reduced spectral
algebraic space, so that πnf˚OX vanishes for n ą 0. Consequently, assertion p21q is equivalent
to the statement that the unit map e : κÑ π0f˚OX “ H0pX ; OX q is an isomorphism. If this
condition is satisfied, the H0pX ; OX q contains exactly two idempotent elements and therefore
the topological space |X | is connected. For the converse, we observe that H0pX ; OX q is
finite-dimensional as a vector space over κ. The connectedness of |X | implies that H0pX ; OX q

is a local Artinian ring. Since f is geometrically reduced, this Artinian ring is reduced and
is therefore a finite extension of κ. Since κ is algebraically closed, it follows that e is an
isomorphism.

8.7 Application: Stein Factorizations

Let f : X Ñ Z be a morphism of Noetherian schemes. Then f admits an essentially
unique factorization X g

ÝÑ Y
h
ÝÑ Z, where g induces an isomorphism OY Ñ g˚OX (where g˚

denotes the pushforward in the abelian category of quasi-coherent sheaves) and h is affine:
the scheme Y can be described as the spectrum of the quasi-coherent sheaf of algebras f˚OX

on Z. If the morphism f is proper, then one can say more:

piq The direct image f˚OX is a coherent sheaf of algebras on Z.

piiq The morphism h is finite.

piiiq The scheme Y is Noetherian.

pivq The morphism g has connected fibers.

Assertion piq is a special case of Theorem 5.6.0.1, the implications piq ñ piiq ñ piiiq are
obvious, and assertion pivq is Zariski’s connectedness theorem. In this case, we refer to the
pair pg, hq as the Stein factorization of the morphism f .

Stein factorizations are a very useful tool in algebraic geometry. However, one must take
care that the formation of Stein factorizations is not compatible with base change: given a
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pullback diagram of Noetherian schemes

X 1 //

f 1

��

X

f

��
Z 1

u // Z,

the associated comparison map α : u˚f˚OX Ñ f 1˚OX 1 need not be an isomorphism in general
(Warning 8.7.1.8). However, the situation is somewhat better if we make the additional
assumption that f is geometrically reduced (Definition ??): in this case, the scheme Y
appearing in the Stein factorization of f is étale over Z and is compatible with arbitrary
base change (Remark 8.7.3.4).

Our goal in this section is to discuss Stein factorizations in the setting of spectral
algebraic geometry. Here the situation is a bit more complicated. There are (at least) two
generalizations of the Stein factorization:

paq If f : X Ñ Z is a quasi-compact, quasi-separated morphism of spectral algebraic spaces,
then f admits an essentially unique factorization

X g
ÝÑ Y h

ÝÑ Z

where h is affine and g exhibits the structure sheaf of Y as the connective cover of the
(derived) direct image f˚OX (Theorem 8.7.1.5). If X and Z are locally Noetherian and
f is proper, then we can use Theorem 5.6.0.2 to see that Y is locally Noetherian and
the morphism h is finite, and we can use Theorem 8.5.0.3 to show that the geometric
fibers of g are connected, just as in classical algebraic geometry.

pbq If f : X Ñ Z is a morphism of spectral algebraic spaces which is proper, locally almost
of finite presentation, and geometrically reduced (Definition 8.6.0.1), then f admits an
essentially unique factorization X g1

ÝÑ Y1 h
1

ÝÑ Z, where h1 is finite étale and the geometric
fibers of g1 are connected (Theorem 8.7.3.1).

However, in the setting of spectral algebraic geometry, these factorizations are generally
distinct from one another. To distinguish them, we will refer to paq as the Stein factorization
of f (Definition 8.7.1.4) and to pbq as the reduced Stein factorization of f (Definition 8.7.3.2).

8.7.1 Stein Factorizations

We begin with some general observations.
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Proposition 8.7.1.1. Suppose we are given a commutative diagram of spectral Deligne-
Mumford stacks

X
g

��

// Z1

h
��

Y //

??

Z
satisfying the following conditions:

paq The morphism h is affine.

pbq The unit map OY Ñ f˚OX exhibits OY as a connective cover of g˚OX .

Then the mapping space MapSpDMX { { Z
pY,Z1q (which parametrizes dotted arrows as indicated

in the diagram above) is contractible.

Proof. The assertion can be tested locally with respect to the étale topology of Z. We may
therefore assume without loss of generality that Z » SpétA is affine. Since h is affine, it
follows that Z1 » SpétB is affine. Using the universal properties of SpétA and SpétB, we
obtain a fiber sequence

MapSpDMX { { Z
pY,Z1q Ñ MapCAlgApB,ΓpY; OYqq

ρ
ÝÑ MapCAlgApB; ΓpX ,OX qq.

It will therefore suffice to show that ρ is a homotopy equivalence. Since B is connective, this
follows immediately from pbq (which guarantees that the unit map ΓpY; OYq Ñ ΓpX ; OX q

induces an equivalence of connective covers).

Proposition 8.7.1.2. Let f : X Ñ Z be a morphism of spectral Deligne-Mumford stacks.
Assume that f is a quasi-compact, quasi-separated relative algebraic space. Then f factors
as a composition X g

ÝÑ Y h
ÝÑ Z, where h is affine and g satisfies condition pbq of Proposition

8.7.1.1.

Proof. Let OX denote the structure sheaf of X. It follows from Corollary 3.4.2.2 that
the direct image f˚OX P CAlgpQCohpZqq is quasi-coherent. Then A “ τě0f˚OX is a
connective quasi-coherent commutative algebra object of QCohpZq. Let Y denote the
spectrum of A relative to Z (see Notation ??). Then Y is equipped with affine map
h : Y Ñ Z (and is therefore a spectral Deligne-Mumford stack), and the canonical map
f˚A Ñ f˚f˚OX Ñ OX in CAlgpQCohpXqq classifies a morphism g : X Ñ Y in SpDM{Z.
Let OY denote the structure sheaf of Y; we wish to show that the unit map u : OY Ñ g˚OX
exhibits OY as a connective cover of g˚OX. Since h is affine, the direct image functor
h˚ : QCohpYq Ñ QCohpZq is conservative and t-exact. It will therefore suffice to show that
the map h˚puq : h˚OY Ñ h˚g˚OX » f˚OX exhibits h˚OY as the connective cover of f˚OX,
which follows immediately from the definition of Y.
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Remark 8.7.1.3. In the situation of Proposition 8.7.1.2, the morphism g : X Ñ Y is also a
quasi-compact, quasi-separated relative algebraic space.

Definition 8.7.1.4. Let f : X Ñ Z be a morphism of spectral Deligne-Mumford stacks
which is a quasi-compact, quasi-separated relative algebraic space. We will say that a
commutative diagram

X
g

��

f // Z

Y

h

??

is a Stein factorization of f if g and h satisfy the requirements of Proposition 8.7.1.2.

Theorem 8.7.1.5. Let SpDM˝ denote the subcategory of SpDM whose objects are spectral
Deligne-Mumford stacks and whose morphisms are quasi-compact, quasi-separated relative
algebraic spaces. Let SL denote the collection of morphisms f : pX ,OX q Ñ pY,OYq in
SpDM˝ which exhibit OY as a connective cover of f˚OX, and let SR denote the collection
of affine morphisms in SpDM˝. Then the pair pSL, SRq is a factorization system on the
8-category SpDM˝ (see Definition HTT.5.2.8.8 ).

Proof. Combine Propositions 8.7.1.1 and 8.7.1.2 (and Remark 8.7.1.3).

Remark 8.7.1.6. It follows from Theorem 8.7.1.5 that every quasi-compact, quasi-separated
relative algebraic space f : X Ñ Z admits a Stein factorization X g

ÝÑ Y h
ÝÑ Z, which is uniquely

determined up to a contractible space of choices (see Proposition HTT.5.2.8.17 ).

Proposition 8.7.1.7. Suppose we are given a diagram of spectal Deligne-Mumford stacks
σ :

X1 g1 //

��

Y1

r

��

h1 // Z1

q

��
X g // Y h // Z,

where all morphisms are quasi-compact, quasi-separated relative algebraic spaces, both squares
are pullbacks, and the pair pg, hq is a Stein factorization of f “ h ˝ g. If q is flat, then the
paif pg1, h1q is a Stein factorization of f 1 “ h1 ˝ g1.

Warning 8.7.1.8. Proposition 8.7.1.7 is usually not true if we do not assume that q is flat.
In other words, the formation of Stein factorizations is compatible with flat base change,
but not with arbitrary base change.

Proof of Proposition 8.7.1.7. It is clear that h1 is affine. It will therefore suffice to show
that the unit map e1 : OY1 Ñ g1˚OX1 exhibits OY1 as a connective cover of g1˚OX1 . Since the
structure sheaf OY1 is connective, this is equivalent to the requirement that cofibpe1q belongs
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to QCohpY1qď´1. Because both squares in the diagram σ are pullbacks, we can identify
cofibpe1q with r˚ cofibpeq, where e : OY Ñ g˚OX is the unit map determined by g. Since pg, hq
is a Stein factorization of f “ h˝g, the cofiber cofibpeq belongs to QCohpYqď´1. The desired
result now follows from the observation that the pullback functor r˚ : QCohpYq Ñ QCohpY1q
is t-exact (by virtue of our assumption that q is flat).

8.7.2 The Noetherian Case

Let f : X Ñ Z be a morphism of quasi-compact, quasi-separated spectral algebraic spaces.
It follows from Proposition 8.7.1.2 that f admits a Stein factorization X g

ÝÑ Y h
ÝÑ Z. However,

the spectral algebraic space Y which appears in this factorization is generally a somewhat
wild object, which one should not expect to have any good finiteness properties. The
situation is better if we assume that f is a proper morphism whose domain and codomain
are locally Noetherian:

Theorem 8.7.2.1. Let f : X Ñ Z be a proper morphism between locally Noetherian spectral
Deligne-Mumford stacks, and let X g

ÝÑ Y h
ÝÑ Z be a Stein factorization of X. Then:

paq The morphism h is finite.

pbq The spectral Deligne-Mumford stack Y is locally Noetherian.

pcq The morphism g is proper.

Proof. Since X and Z are locally Noetherian, it follows from Remark 4.2.0.4 that f is
locally almost of finite presentation. Applying Theorem 5.6.0.2, we deduce that the direct
image f˚OX is almost perfect. Since Z is locally Noetherian, it follows that the truncation
τě0f˚OX » h˚OY is almost perfect. Applying Corollary 5.2.2.2, we deduce that h is finite
and locally almost of finite presentation. This proves paq, and pbq follows from Remark
4.2.0.4. Assertion pcq now follows from Proposition 5.1.4.1.

In the situation of Theorem 8.7.2.1, the factorization X Y
ÝÑ

Z
ÝÑ enjoys several pleasant

features:

Theorem 8.7.2.2 (Zariski Connectedness Theorem). Let f : X Ñ Z be a proper morphism
between locally Noetherian spectral Deligne-Mumford stacks, and let X g

ÝÑ Y h
ÝÑ Z be a Stein

factorization of f . Then the morphism g is geometrically connected. That is, for every field
κ and every map η : SpétκÑ Y, the fiber product XˆY Spétκ is connected.

Proof. Without loss of generality, we may replace Z by Y and thereby reduce to the case
where pf, idq is the Stein factorization of f : that is, f exhibits OZ as the connective cover of
f˚OX. In this case, we wish to deduce that for every field κ and every map η : SpétκÑ Z,
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the fiber SpétκˆZ X is connected. Replacing κ by an extension field if necessary, we may
assume that η factors through an étale map q : SpétAÑ Z. Using Proposition 8.7.1.7, we
can replace Z by SpétA and thereby reduce to the case where Z “ SpétA is affine. The map
η is then classified by a homomorphism of commutative rings φ : π0A Ñ κ. Write κ as a
filtered colimit lim

ÝÑ
κα, where each κα is the fraction field of a finitely generated π0A-algebra.

Using Proposition 4.3.5.5, we see that in order to prove that XˆZ Spétκ is connected, it
will suffice to show that each fiber product XˆZ Spétκα is connected. We may therefore
replace κ by κα and reduce to the case where κ is the fraction field of the subring R Ď κ

generated by the elements txiu and the image of π0A.
Let ArZně0s denote the monoid algebra over A on the commutative monoid Zně0 (see

Notation 5.4.1.1), so we can write π0ArZ
n
ě0s » pπ0AqrX1, . . . , Xns. It follows that φ admits

a unique extension to a ring homomorphism φ : π0ArZně0s Ñ κ satisfying φpXiq “ xi. The
ring homomorphism φ classifies a map η : SpétκÑ SpétArZně0s. Since ArZně0s is flat over
A, we can use Proposition 8.7.1.7 to replace A by ArZně0s and η by η and thereby reduce to
the case where κ is the fraction field of the image of the map φ: in other words, φ exhibits κ
as the residue field of π0A as some prime ideal p Ď π0A. Let A^ denote the q-completion
of the localization Aq. Since Aq is Noetherian, A^ is flat over A (Corollary 7.3.6.9). Using
Proposition 8.7.1.7 again, we can replace A by A^ and thereby reduce to the case where
π0A is a complete local Noetherian ring with residue field q.

Set X0 “ XˆZ Spétκ. Then X0 is a proper algebraic space over κ, so the topological
space |X0 | is Noetherian (Remark 3.6.3.5). It follows that we can write X0 as a disjoint union
of finitely many connected components tKiu1ďiďm. Let X^ denote the formal completion of X
along the vanishing locus of q, so that the decomposition X0 » >Ki induces a decomposition
of X^ as a disjoint union >K^i . Lemma 8.5.1.1 implies that we can identify A with the
connective cover of ΓpX^; OX^q. Consequently, the decomposition X^ » >K^i determines
a direct product decomposition A »

ś

1ďiďmAi. Since A is local and each factor Ai is
nonzero, we must have m “ 1: that is, X0 is connected.

Theorem 8.7.2.3. Let f : X Ñ Z be a proper morphism between locally Noetherian, quasi-
compact, quasi-separated spectral algebraic spaces, let X g

ÝÑ Y h
ÝÑ Z be a Stein factorization of

f , and let x P |X | be a point. The following conditions are equivalent:

paq The point x is isolated in the fiber |X | ˆ|Z | txu.

pbq There exists an open substack U Ď Y which contains the image of x, for which the
projection map XˆY U Ñ U is an equivalence.

Proof. Since the morphism h is finite, the topological space |Y | ˆ|Z | txu is discrete (and
consists of finitely many points). Consequently, x is isolated in the fiber |X | ˆ|Z | txu if
and only if it is isolated in the fiber |X | ˆ|Y | txu. We may therefore replace Z by Y and
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thereby reduce to the case where h is an equivalence: that if, the morphism f exhibits OZ
as a connective cover of f˚OX. Take U to be the largest open substack of Y for which the
projection map XˆZ U Ñ U is an equivalence. We wish to show that |U | contains the image
of x. This assertion is local on Z: we may therefore assume without loss of generality that
Z » SpétR is affine, so we can identify the image of x in |Z | » |SpecA| with a prime ideal
p Ď π0R. To show that this point is contained in |U |, we must show that the projection map
fa : XˆSpétR SpétRra´1s Ñ SpétRra´1s is an equivalence for some a R p. Note that this is
equivalent to the requirement that fa is affine (since fa satisfies condition pbq of Proposition
8.7.1.1). Using Proposition 4.6.1.1 and Remark 2.4.4.2, we are reduced to showing that
the map XˆSpétR SpétRp Ñ SpétRp is affine. Consequently, we may replace R by Rp and
thereby reduce to the case where R is a local E8-ring with maximal ideal p; in this case,
we will show that f is an equivalence. Let R^ denote the completion of R with respect to
p. Since R is Noetherian, R^ is faithfully flat over R (Corollary 7.3.6.9). Using Corollary
2.8.3.4 and Proposition 8.7.1.7, we can replace R by R^ and thereby reduce to the case
where R is p-complete.

Let κ denote the residue field of R, let X0 “ Spétκ ˆSpétR X, and let X^ denote the
formal spectral Deligne-Mumford stack given by Spf R^ ˆSpecR X. Since x is isolated, the
topological space |X0 | has a single point, so that X0 is affine. Using Lemma 8.3.3.2, we
deduce that X^ is affine. Write X^ “ Spf A for some adic E8-ring A. Using Lemma 8.5.1.1,
we deduce that ΓpX; OXq » ΓpX^; OX^q » A is connective. It follows that the unit map
RÑ A is an equivalence, so that the projection X^ Ñ Spf R is an equivalence. Applying
Corollary 8.5.3.4, we deduce that the projection map X Ñ SpétR is also an equivalence, as
desired.

8.7.3 Reduced Stein Factorizations

We now show that all every proper geometrically reduced morphism which is locally
almost of finite presentation can be obtained by combining Corollary 8.6.2.3 with Proposition
8.6.4.1. More precisely, we have the following result:

Theorem 8.7.3.1. Let C denote the subcategory of SpDM spanned by all objects and those
morphisms f : X Ñ Z which are proper, geometrically reduced, and locally almost of finite
presentation. Then C admits a factorization system pSL, SRq, where SL consists of those
morphisms f which are geometrically connected (see Proposition 8.6.4.1) and SR consists of
those morphisms which are finite étale. In other words:
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paq For every commutative diagram
X //

f
��

Y
g
��

Z //

??

Z1

in C where f is geometrically connected and g is finite étale, the space MapCX { { Z1
pZ,Yq

(parametrizing dotted arrows which render the preceding diagram commutative) is
contractible.

pbq Every morphism f : X Ñ Z in C admits a factorization X f 1
ÝÑ Y f2

ÝÑ Z, where f 1 is
geometrically connected and f2 is finite étale.

Definition 8.7.3.2. Let f : X Ñ Z be a morphism of spectral Deligne-Mumford stacks
which is proper, geometrically reduced, and locally almost of finite presentation. We will
refer to the factorization X f 1

ÝÑ Y f2
ÝÑ Z whose existence is asserted by part pbq of Theorem

8.7.3.1 as the reduced Stein factorization of f . It follows from part paq of Theorem 8.7.3.1
(and Proposition HTT.5.2.8.17 ) that the reduced Stein factorization is well-defined up to a
contractible space of choices.

Warning 8.7.3.3. Let f : X Ñ Z be a morphism of spectral Deligne-Mumford stacks
which is proper, geometrically reduced, and locally almost of finite presentation, and let
X f 1
ÝÑ Y f2

ÝÑ Z be the Stein factorization of f (Definition 8.7.1.4). If OZ is 0-truncated, then
we will prove in a moment that pf 1, f2q is also a reduced Stein factorization of f (Proposition
8.7.4.2). However, if OZ is not 0-truncated, then pf 1, f2q is usually not a reduced Stein
factorization of f . Roughly speaking, the problem is that direct image of the homotopy
sheaves πn OX make “contributions” to the algebra τě0f˚OX in all degrees ď n, but to
obtain a spectral Deligne-Mumford stack which is étale over Z we will need to discard the
“contributions” in degrees ă n.

Remark 8.7.3.4 (Functoriality of Reduced Stein Factorizations). Suppose we are given a
pullback diagram of spectral Deligne-Mumford stacks σ :

X1

��

f 1 // Z1

��
X f // Z,

where the horizontal maps are proper, geometrically reduced, and locally almost of finite
presentation. Then f admits a reduced Stein factorization X g

ÝÑ Y h
ÝÑ Z. Define Y1 “ YˆZ Z1,



8.7. APPLICATION: STEIN FACTORIZATIONS 715

so that we can extend σ to a diagram

X1

��

g1 // Y1 h1 //

��

Z1

��
X g // Y h // Z .

The map h1 is defined as a pullback to h, and is therefore finite étale. Since the right square
and the outer rectangle are pullbacks, it follows that the left square is a pullback as well. In
particular, g1 is a pullback of g and is therefore proper, geometrically reduced, geometrically
connected, and locally almost of finite presentation. It follows that pg1, h1q is the reduced
Stein factorization of f 1.

8.7.4 The Proof of Theorem 8.7.3.1

We begin by proving part paq of Theorem 8.7.3.1. Note that by replacing Y by the fiber
product YˆZ1 Z, we may reduce to the case where Z1 “ Z. In this case, the desired result is
a consequence of the following more general assertion:

Proposition 8.7.4.1. Let f : X Ñ Z and g : Y Ñ Z be morphisms of spectral Deligne-
Mumford stacks. Assume that f is proper and geometrically connected (that is, it satisfies
condition p1q of Proposition 8.6.4.1) and that g is finite étale. Then composition with f

induces a homotopy equivalence

θ : MapSpDM{ Z
pZ,Yq Ñ MapSpDM{ Z

pX,Yq.

Proof. The assertion is local on Z. We may therefore assume without loss of generality that
Z is affine and that g exhibits Y as a disjoint union of n copies of Z (see Lemma B.7.6.3). In
this case, we can identify the domain of θ with the set of all decompositions of the topological
space |Z | into n open sets, and the codomain of θ with the set of all decompositions of the
topological space |X | into n open sets. To prove that θ is bijective, it will suffice to show
that the construction U ÞÑ f´1U induces a bijection from the set of closed and open subsets
of |Z | to the set of closed and open subsets of |X |. Since f is geometrically connected, the
underlying map of topological spaces |X | Ñ |Z | is surjective: consequently, an open set
U Ď |Z | is determined by its inverse image f´1U . To complete the proof, we must show
that if V Ď |X | is a closed and open subset, then V has the form f´1U where U Ď |Z | is a
closed an open subset. Since f is proper, the images fpV q and fp|X |´V q are closed subsets
of |Z |. The surjectivity of f implies that these subsets cover |Z |. If fpV qX fp|X |´V q were
nonempty, then we could choose a geometric point SpétκÑ Z of the intersection, in which
case V and |X |´V supply a nontrivial decomposition of the topological space |XˆZ Spétκ|,
contradicting our assumption that f is geometrically reduced. It follows that U “ fpV q is
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closed and open in |Z |. We have V Ď f´1U by definition, and the reverse inclusion follows
from

|X | ´ V Ď f´1fp|X | ´ V qqf´1p|Z | ´ Uq “ X´f´1U.

Proposition 8.7.4.2. Let f : X Ñ Z be a morphism of 0-truncated spectral Deligne-Mumford
stacks which is proper, geometrically reduced, and locally almost of finite presentation, and
let X f 1

ÝÑ Y f2
ÝÑ Z be a reduced Stein factorization of f (Definition 8.7.1.4). Then pf 1, f2q

is also a reduced Stein factorization of f : that is, the morphism f2 is finite étale and the
morphism f 1 satisfies the equivalent conditions of Proposition 8.6.4.1.

Proof. Using Proposition 8.7.1.7, we see that the desired conclusions can be tested locally
with respect to the étale topology on X. We may therefore assume without loss of generality
that Z » SpétR for some commutative ring R. Using Theorem 4.4.2.2, Proposition 5.5.4.1,
and Proposition 6.1.6.1, we can choose a finitely generated subring R0 Ď R and a pullback
square

X //

f
��

X0

f0
��

SpétR // SpétR0

where f0 is proper, flat, and locally almost of finite presentation. Let K Ď |X0 | be the
complement of the geometrically reduced locus of f0. Since f0 is proper, the image f0pKq is
a closed subset of |SpecR0| and is therefore defined by a finitely generated ideal I Ď R0.
Since the map f is geometrically reduced, Proposition 8.6.3.1 guarantees that f´1K Ď |X | is
empty. Consequently, IR is the unit ideal in R, so we have an equation 1 “ x1y1`¨ ¨ ¨`xkyk
in the ring R where each xi belongs to I. Enlarging R0 if necessary, we may assume that
each yi belong to I, so that I “ R0 and the map f0 is geometrically reduced. Regard
the pushforward f0˚OX0 as an object of ModR0 , so that we have a canonical equivalence
f˚OX » RbR0 f0˚OX0 . We therefore have a fiber sequence

RbR0 pτě0f0˚OX0q Ñ f˚OX Ñ RbR0 pτď´1f0˚OX0q.

Note that the first term of this sequence is connective. Consequently, if τď´1f0˚pOX0q has
Tor-amplitude ď ´1, then then the third term of this fiber sequence belongs to pModRqď´1,
so that we obtain equivalences

RbR0 pτě0f0˚OX0q » τě0f˚OX RbR0 pτď´1f0˚OX0q » τď´1f˚OX .

Consequently, to show that τě0f˚OX is finite étale over R and that τď´1f˚OX has Tor-
amplitude ď ´1, it will suffice to show that τě0f0˚OX0 is finite étale over R0 and that
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τď´1f0˚OX0 has Tor-amplitude ď ´1 over R0. We may therefore replace f by f0 and
thereby reduce to the case where the commutative ring R is Noetherian.

Applying Theorem 8.7.2.1, we deduce that A “ π0f˚OX is finitely generated as an
R-module, and therefore also as an R-algebra. Consequently, to show that A is finite étale
over R, it will suffice to show that the relative cotangent complex LA{R vanishes (Lemma
B.1.3.3). Since A is locally almost of finite presentation over R (Theorem HA.7.2.4.31 ), the
relative cotangent complex LA{R is almost perfect as an A-module, and therefore also as an
R-module (since A is finite over R). Note that Theorem 8.7.2.1 also guarantees that the
truncation τď´1f˚OX is almost perfect. Using Corollary 2.7.4.4 and Corollary 8.6.4.3, we
see that it will suffice to prove verify the following conditions for every ring homomorphism
ρ : RÑ κ, where κ is a field:

piq The tensor product κbR LA{R vanishes.

piiq The homotopy groups πnpκbR τď´1f˚OXq vanish for n ě 0.

In fact, it suffices to verify piq and piiq in the special case where κ is a finite extension of
some residue field of R (or even in the special case where κ itself is a residue field of R).
Set A0 “ π0pκbR f˚OX q, so that A0 is the ring of functions on fiber X0 “ XˆSpétR Spétκ.
Then A0 is a finite κ-algebra. Since f is geometrically reduced, A0 is a product of finite
separable extensions of κ. Replacing κ by a finite extension if necessary, we may assume
that there exists an isomorphism α0 : κm » A0 for some integer m, so that the fiber X0
decomposes as a disjoint union of connected components >1ďiďm X0,i.

Note that to verify piq and piiq, we are free to extend scalars along any flat map
v : RÑ R1 for which ρ factors through v. In particular, we may replace R by a polynomial
ring Rrx1, . . . , xks to ensure that κ is a residue field of R (rather than a finite extension
therefof). Set m “ kerpρq. Replacing R by the completion of the local ring Rm, we may
assume that R is a complete local ring with maximal ideal m and residue field κ. Let
X^ denote the formal completion of X along the vanishing locus of m. Using Theorem
8.5.0.3, we can identify A “ π0f˚OX with the endomorphism ring Ext0

QCohpX^mqpOX^ ,OX^q.
The decomposition X0 » >1ďiďm X0,i lifts to a decomposition of formal spectral Deligne-
Mumford stacks X^ » >1ďiďm X^i , so that the endomorphism ring A admits a corresponding
decomposition A »

ś

1ďiďmAi. Each Ai is an R-algebra, so that α0 lifts to a map of
R-algebras α : Rm Ñ A. Composing α with the natural map AÑ f˚OX, we obtain a fiber
sequence of R-modules

Rm
α
ÝÑ f˚OX ÑM

for some perfect R-module M . By construction, κbRM is the cofiber of the map κm » A0 Ñ

κbR f˚OXq and therefore belongs to pModκqď´1. Applying Corollary 8.6.4.3, we deduce
that M has Tor-amplitude ď ´1. In particular, since R is discrete, we have M P pModRqď´1,
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so that α exhibits Rm as the connective cover of f˚OX and M as the truncation τď´1f˚OX.
Assertions piq and piiq now follow immediately.

Proof of Theorem 8.7.3.1. Part paq follows immediately from Proposition 8.7.4.1. We will
prove pbq. Let f : X “ pX ,OXq Ñ pZ,OZq “ Z be a morphism of spectral Deligne-Mumford
stacks which is proper, geometrically reduced, and locally almost of finite presentation. We
wish to show that f admits a reduced Stein factorization. Consider the induced map of
0-truncated spectral Deligne-Mumford stacks

f0 : X0 “ pX , π0 OXq Ñ pZ, π0 OZq “ Z .

Using Proposition 8.7.4.2, we deduce that f0 admits a reduced Stein factorization X0
f 10
ÝÑ

Y0
f20
ÝÑ Z0. Then f20 is étale, so we can write Y0 “ pZ{U , pπ0 OZq|U q for some object

U P Z. The map f 10 determines a point η P ΓpX; f˚Uq, which in turn determines a map
f 1 : X Ñ pZ{U ,OZ |U q. The map f 1 fits into a commutative diagram

X0
f 10 //

��

pZ{U , π0 OZ |U q
f20 //

��

Z0

��
X f 1 // pZ{U ,OZ |U q

f2 // Z

where the outer rectangle is a pullback (by virtue of our assumption that f is flat) and
the right square is a pullback by inspection. It follows that the left square is a pullback
as well. Since f 10 is geometrically reduced, it follows from Remark 8.6.2.5 that the map
f 1 is geometrically reduced. The map f2 is finite étale by construction, so that f 1 is
proper by Proposition 5.1.4.1 and locally almost of finite presentation by Proposition 4.2.3.3.
Consequently, the pair pf 1, f2q is a reduced Stein factorization of f .
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Let X be a scheme and let ΓpX; OXq denote the ring of regular functions on X. We can
then ask to what extent the scheme X is determined by the commutative ring ΓpX; OXq.
More precisely, we ask the following:

Question 8.7.0.1. Let A be a commutative ring. Every morphism of schemes f : SpecAÑ
X determines a ring homomorphism f˚ : ΓpX; OXq Ñ A, given by pullback along f . The
construction f ÞÑ f˚ determines a map ρA from the set XpAq of A-valued points of X to
the set of ring homomorphisms HompΓpX; OXq, Aq. When is the function ρA a bijection?

Question 8.7.0.2. The construction F ÞÑ ΓpX; F q determines a functor ΓpX; ‚q from the
abelian category of quasi-coherent sheaves on X to the abelian category of ΓpX; OXq-modules.
When is the functor ΓpX; ‚q an equivalence of categories?

Roughly speaking, the answers each of these questions is “only if X is affine.” More
precisely, we have the following:

piq A scheme X is affine if and only if the map ρA of Question 8.7.0.1 is a bijection for
every commutative ring A (this is an immediate consequence of the universal property
characterizing the affine scheme Spec ΓpX; OXq).

piiq If X is affine, then the functor ΓpX; ‚q of Question 8.7.0.2 is an equivalence of categories.
The converse holds if X is quasi-compact and separated (this is one formulation Serre’s
affineness criterion; see Proposition 11.4.3.1 for a related statement).

Our goal in Part III is to study categorified versions of Questions 8.7.0.1 and 8.7.0.2,
informed by the following heuristic dictionary:

Remark 8.7.0.3.
Classical Notion Categorified Notion

Regular Function on X Quasi-Coherent Sheaf on X

Commutative Ring Symmetric monoidal 8-category

Ring homomorphism Symmetric monoidal functor

ΓpX; OXq QCohpXq

Quasi-coherent sheaf on X Quasi-coherent stack on X

ΓpX; OXq-Modules 8-Category Tensored over QCohpXq
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The central theme of Part III is that the categorified analogues of Questions 8.7.0.1 and
8.7.0.2 have affirmative answers for a much larger class of geometric objects X: roughly
speaking, we do not need to assume that X is affine, only that the diagonal map δ : X Ñ

X ˆX is affine (or, in some cases, quasi-affine).
Let us begin considering the analogue of Question 8.7.0.1. Let X : CAlgcn Ñ S

be a functor (for example, the functor represented by a scheme or some other algebro-
geometric object). Let QCohpXq denote the 8-category of quasi-coherent sheaves on
X (Definition 6.2.2.1). Given a connective E8-ring A and a point η P XpAq, we can
regard the pullback functor η˚ : QCohpXq Ñ QCohpSpecAq » ModA as an object of
the 8-category LFunbpQCohpXq,ModAq of symmetric monoidal functors from QCohpXq
to ModA which preserve small colimits. The construction η ÞÑ η˚ determines a functor
θ : XpAq Ñ LFunbpQCohpXq,ModAq, which we can regard as a categorified analogue of
the map ρA appearing in Question 8.7.0.1. In Chapter 9, we will show that the functor θ is
often very close to being an equivalence:

• If X is a quasi-compact, quasi-separated spectral algebraic space, then the functor θ is
always an equivalence (Theorem 9.6.0.1).

• If X is a quasi-geometric stack (see Definition 9.1.0.1; roughly speaking, this means
that X has quasi-affine diagonal), then the functor θ is always fully faithful (Theorem
9.2.0.2).

• For quasi-geometric stacks satisfying various auxiliary conditions, we can explicitly
describe the essential image of θ (see Theorems 9.3.0.3, 9.3.5.1, 9.3.7.1, 9.4.1.4, 9.4.4.7,
9.5.4.1, 9.5.4.2, and 9.7.2.1).

• If we restrict our attention to the case where X is a classical algebro-geometric object,
then there is analogous way to recover X from the abelian category QCohpXq♥ of
quasi-coherent sheaves on X (Theorem ??). In the special case where X “ BG is
the classifying stack of an affine group scheme G, this recovers the classical theory of
Tannaka duality for the group G (see Theorem 9.0.0.1).

The bulk of Chapter 10 is devoted studying the categorified analogue of Question 8.7.0.2.
Our first step is to introduce the notion of a quasi-coherent stack on a functor X : CAlgcn Ñ S
(see Construction 10.1.1.1). Roughly speaking, a stable quasi-coherent stack C on X is a
rule which assigns to each point η P XpRq an R-linear stable 8-category Cη, in the sense
of Appendix D. The collection of stable quasi-coherent stacks on X form an 8-category
QStkStpXq, which we can regard as a categorified analogue of the 8-category QCohpXq of
quasi-coherent sheaves on X. To each object C P QStkStpXq a stable8-category QCohpX; Cq
of quasi-coherent sheaves on X with values in C, which is endowed with an action of the
symmetric monoidal 8-category QCohpXq. Under mild assumptions on X, the construction
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C ÞÑ QCohpX; Cq detemrines a functor QCohpX; ‚q : QStkStpXq Ñ ModQCohpXqpPrStq,
which we regard as an analogue of the functor ΓpX; ‚q appearing in Question 8.7.0.2. One
of our main results asserts that if X is a quasi-compact, quasi-separated algebraic space,
then the functor QCohpX; ‚q is an equivalence of 8-categories. In fact, we establish a more
general result for prestable quasi-coherent stacks (Theorem 10.2.0.2), and slightly weaker
results for more general functors X (see Theorems 10.2.0.1, 10.4.2.3, and 10.6.2.1).

The results of Chapters 9 and 10 suggest in particular that any spectral algebraic space
X which is quasi-compact and quasi-separated can be viewed as the “spectrum” of the
8-category QCohpXq, which can regard as a commutative algebra object in the 8-category
PrSt of presentable stable 8-categories. In Chapter 11, we consider what happens if we
neglect the algebra structure on QCohpXq. More precisely, we ask the following:

Question 8.7.0.4. Let R be a connective E8-ring and let q : X Ñ SpétR be a morphism of
spectral algebraic spaces. To what extent is X controlled by the stable R-linear 8-category
QCohpXq (without its symmetric monoidal structure)?

Question 8.7.0.4 leads naturally to the subject of (derived) non-commutative geometry.
Although one generally needs the symmetric monoidal structure on QCohpXq in order to
recover X itself, some of the most important geometric conditions on X can be formulated
directly in terms of QCohpXq (while neglecting its tensor structure). Following ideas of
Kontsevich, we introduce the notions of smooth and proper stable R-linear 8-categories, and
show that the smoothness and properness of QCohpXq are closely related to the corresponding
geometric properties of the morphism q : X Ñ SpétR (see Theorems 11.1.4.1, 11.3.6.1, and
11.4.0.3).



Chapter 9

Tannaka Duality

Let G be an affine algebraic group over a field κ. For every commutative κ-algebra A,
let GpAq denote the group of A-valued points of G. Let ReppGq denote the abelian category
of finite-dimensional representations of G. By definition, for each V P ReppGq, we can
equip the tensor product Abκ V with an action of the group GpAq. This action depends
functorially on V : consequently, we can view the group GpAq as acting on the forgetful
functor e : ReppGq Ñ Modlf

A given by epV q “ Abκ V ; here Modlf
A denotes the category of

projective A-modules of finite rank. The theory of Tannaka duality (in its algebro-geometric
incarnation) asserts that this action can be used to recover the group GpAq:

Theorem 9.0.0.1 (Tannaka Duality). Let G be an affine algebraic group over a field κ,
let A be a commutative κ-algebra, and let e : ReppGq Ñ Mod♥

A be the functor given by
epV q “ Abκ V . Then the the above construction induces an isomorphism GpAq Ñ Autbpeq;
here Autbpeq denotes the automorphism group of e in the category of (symmetric) monoidal
functors from ReppGq to Modlf

A.

For a proof, we refer the reader to [48] (see also Corollaries 9.2.2.2 and 9.3.7.5).
It is often convenient to interpret Theorem 9.0.0.1 as a statement about the classifying

stack of the algebraic group G. For every commutative κ-algebra A, let NilpqGpAq denote
the category of G-torsors on the affine scheme SpecA (which we require to be locally trivial
with respect to the fpqc topology). The construction A ÞÑ NilpqGpAq determines a stack
(with respect to the fpqc topology) on the category of commutative κ-algebras, which we
denote by BG and refer to as the classifying stack of G. We can then identify ReppGq with
the category of quasi-coherent sheaves on BG which are locally free of finite rank.

If A is a commutative ring, then the datum of a map ε : SpecAÑ BG is equivalent to
the data of a pair pφ,Pq, where φ : κ Ñ A is a ring homomorphism and P is a G-torsor
on SpecA. For every commutative κ-algebra A, the trivial G-torsor on SpecA is classified
by a map ε0 : SpecAÑ BG. The fiber functor e appearing in Theorem 9.0.0.1 is given by

723
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pullback along ε0, and we can identify GpAq with the automorphism group of ε0 (equivalently,
the automorphism group of the trivial G-torsor on SpecA). Theorem 9.0.0.1 can then be
regarded as a special case of the following assertion:

Theorem 9.0.0.2. Let G be an affine algebraic group over a field κ and let A be a commu-
tative ring Then the construction

pε : SpecAÑ BGq ÞÑ pε˚ : ReppGq Ñ Mod♥
Aq

determines a fully faithful embedding from the category of A-valued points of BG to the
category of symmetric monoidal functors from ReppGq to Mod♥

A.

Our goal in this chapter is to discuss two questions which are inspired by Theorem
9.0.0.2:

Question 9.0.0.3. For which algebro-geometric objects X can one expect some analogue of
Theorem 9.0.0.2, asserting that a map f : SpecAÑ X can be recovered from the pullback
functor f˚ : QCohpXq Ñ ModA on quasi-coherent sheaves (or some variant thereof)?

Question 9.0.0.4. How can one characterize those symmetric monoidal functors F :
QCohpXq Ñ ModA which are of the form f˚, for some map f : SpecAÑ X?

Let us now outline the contents of this chapter. We begin in §9.1 by introducing the
notion of a quasi-geometric stack. Roughly speaking, a quasi-geometric stack is an object
which arises as the quotient of an affine spectral algebraic space SpecA by the action of
a groupoid which is flat and quasi-affine (see Definition 9.1.0.1 and Remark 9.1.1.6). The
class of quasi-geometric stacks includes all quasi-compact, quasi-separated spectral algebraic
spaces (Corollary 9.1.4.6), and also the classifying stack of any affine group scheme over a
field (see Example 9.1.1.7). Our motivation for introducing the notion of quasi-geometric
stack is that this notion provides an answer to Question 9.0.0.3. In §9.2, we will show
that if X is a quasi-geometric stack and A is a connective E8-ring, then the construction
pf : SpecA Ñ Xq ÞÑ pf˚ : QCohpXq Ñ ModAq determines a fully faithful embedding Θ
from the space XpAq of A-valued points of X to the 8-category FunbpQCohpXq,ModAq
of symmetric monoidal functors from QCohpXq to ModA (Proposition 9.2.2.1). Moreover,
we also address Question 9.0.0.4 by characterizing the essential image of Θ: according to
Theorem 9.2.0.2, it consists of those symmetric monoidal functors F which are right t-exact

and participate in an adjunction QCohpXq
F //ModA
G
oo of colimit-preserving functors which

satisfies a projection formula.
Theorem 9.2.0.2 can be regarded as an 8-categorical avatar of the classical theory of

Tannaka duality, and is the basic prototype of the sort of result we are interested in. The
remainder of this chapter is devoted to studying special classes of quasi-geometric stacks for
which stronger results are available:
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• In §9.3, we study the class of geometric stacks: quasi-geometric stacks X for which
the diagonal map δ : X Ñ X ˆX is affine. For geometric stacks, we give a different
characterization of the essential image of Θ: it consists of those symmetric monoidal
functors F : QCohpXq Ñ ModA which preserve small colimits, connective objects, and
flat objects (Theorem 9.3.0.3).

• In §9.4, we study the class of perfect stacks: quasi-geometric stacks X for which the
8-category QCohpXq has “enough” perfect objects (see also [23]). For perfect stacks,
the essential image of Θ admits an even simpler characterization: it consists of those
symmetric monoidal functors F : QCohpXq Ñ ModA which preserve small colimits
and connective objects (this was proven by Bhatt and Halpern-Leistner in [27]; we
include a proof here as Corollary 9.4.4.7);

• In §9.5, we study locally Noetherian stacks: quasi-geometric stacks X for which there
exists a faithfully flat map SpecAÑ X, where A is Noetherian. For locally Noetherian
geometric stacks, the essential image of Θ again admits a simple description: it again
consists of those symmetric monoidal functors F : QCohpXq Ñ ModA which preserve
small colimits and connective objects (Theorem 9.5.4.1; moreover, we prove a slightly
weaker statement in the quasi-geometric case as Theorem 9.5.4.2).

• In §9.6, we consider the case where X is a quasi-compact, quasi-separated algebraic
space. In this case, we have a further simplification: the essential image of Θ consists of
all symmetric monoidal functors F : QCohpXq Ñ ModA which preserve small colimits
(Theorem 9.6.0.1).

• In §9.7, we describe the relationship between the 8-categorical version of Tannaka dual-
ity studied in this section (which is formulated in terms of8-categories of quasi-coherent
sheaves) and its incarnation in classical algebraic geometry (which is formulated in
terms of abelian categories of quasi-coherent sheaves). We say that a quasi-geometric
stack X is 0-truncated if there exists a faithfully flat map SpecR Ñ X, where R
is a commutative ring (Definition 9.1.6.2). Any 0-truncated quasi-geometric stack
X can be regarded as a classical algebro-geometric object, in the sense that it can
be recovered from knowledge of its A-valued points where A ranges over ordinary
commutative rings (Proposition 9.1.6.9). In §9.7, we show that a 0-truncated geometric
stack X can also be recovered from its abelian category of quasi-coherent sheaves
QCohpXq♥ (Theorem 9.7.3.2). In fact, one can even recover X from the full sub-
category QCohpXq5 Ď QCohpXq♥ spanned by the flat quasi-coherent sheaves on X

(Theorem 9.7.2.1).

Remark 9.0.0.5. Many variations on the theme of this chapter have been explored in the
literature. For further discussion, we refer the reader to Bhatt ([26]), Bhatt-Halpern-Leistner
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([27]). Brandenburg-Chirvasitu ([33]), Fukuyama-Iwanari ([70]), Hall-Rydh ([92]), Iwanari
([102]), Lurie ([137]), Schäppi ([178], [180], [181], [182]), and Wallbridge ([221]).
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9.1 Quasi-Geometric Stacks

Our goal in this section is to set the stage for our discussion of Tannaka duality by
introducing the class of algebro-geometric objects that we are interested in:

Definition 9.1.0.1. A quasi-geometric stack is a functor X : CAlgcn Ñ pS which satisfies
the following conditions:

paq The functor X satisfies descent with respect to the fpqc topology.

pbq The diagonal map δ : X Ñ X ˆX is quasi-affine (in the sense of Example 6.3.3.6).

pcq There exists a connective E8-ring A and a faithfully flat morphism f : SpecAÑ X

(see Definition 6.3.3.7).

More informally, a quasi-geometric stack is an object which can be obtained as the
quotient (with respect to the fpqc topology) of an affine spectral scheme SpecA by the

action of a groupoid G
p //
q
// SpétA which is flat and quasi-affine (see Remark 9.1.1.6).

As we will see in §9.2, the hypotheses of Definition 9.1.0.1 guarantee that the functor X
can be functorially recovered from the 8-category QCohpXq of quasi-coherent sheaves on
X (Theorem 9.2.0.2). Moreover, these hypotheses are not terribly restrictive: the class of
quasi-geometric stacks includes most algebro-geometric objects which arise in practice:

paq Any quasi-compact, quasi-separated spectral algebraic space is a quasi-geometric stack
(when identified with its functor of points): see Corollary 9.1.4.6.
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pbq If G is an affine group scheme over a field κ, then the classifying stack BG can be
regarded as a quasi-geometric stack; this recovers the classical setting for Tannaka
duality (see Corollary 9.2.2.2).

pcq More generally, any quasi-compact Artin stack with quasi-affine diagonal (in the sense
of classical algebraic geometry) can be regarded as a quasi-geometric stack.

pdq The class of quasi-geometric stacks includes some “infinite-dimensional” algebraic
stacks which arise naturally in the study of chromatic homotopy theory, such as the
moduli stack of 1-dimensional formal groups and its homotopy-theoretic analogue (see
Examples ?? and 9.3.1.8).

Remark 9.1.0.2. In Definition 9.1.0.1, we allow the functor X to take values in the 8-
category pS of spaces which are not necessarily small. This is motivated by a set-theoretic
technicality: the class of functors X : CAlgcn Ñ S is not closed under sheafification with
respect to the fpqc topology. However, we will see later that if X is a quasi-geometric stack,
then the space XpRq is essentially small for every connective E8-ring R (Proposition 9.2.4.2).
Consequently, every quasi-geometric stack X can be regarded as a functor from CAlgcn to
the 8-category S of (small) spaces, so we can replace the 8-category pS by S in Definition
9.1.0.1 with no essential change.

9.1.1 Examples of Quasi-Geometric Stacks

Our first goal is to show that quasi-geometric stacks exist in great abundance. We begin
with some general remarks about the axiomatics of Definition 9.1.0.1:

Proposition 9.1.1.1. Let X : CAlgcn Ñ pS be a functor. The following conditions are
equivalent:

pbq The diagonal map X Ñ X ˆX is quasi-affine.

pb1q For every pair of connective E8-rings A and B equipped with maps SpecAÑ X Ð

SpecB, the fiber product SpecAˆX SpecB is quasi-affine (that is, it is representable
by a quasi-affine spectral Deligne-Mumford stack).

pb2q For every connective E8-ring A and every morphism f : SpecAÑ X, the morphism
f is quasi-affine.

Proof. The equivalence pb1q ô pb2q is clear. To show that pb1q ñ pbq, choose any morphism
SpecAÑ X ˆX, corresponding to a pair of maps f, g : SpecAÑ X. We have a pullback
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diagram
SpecAˆXˆX X //

��

SpecAˆX SpecA

��
SpecA // SpecAˆ SpecA

where the bottom horizontal map is affine, so the upper horizontal map is affine as well.
Condition pb1q implies that the codomain of the upper horizontal map is quasi-affine, so that
the domain is quasi-affine by virtue of Lemma 2.5.7.2. The implication pbq ñ pb1q follows
from the observation that for any pair of morphisms SpecA Ñ X Ð SpecB, we have an
equivalence

SpecAˆX SpecB » SpecpAbBq ˆXˆX X.

It follows from Proposition 9.1.1.1 that if X : CAlgcn Ñ pS is a functor with quasi-affine
diagonal, then any morphism SpecA Ñ X is quasi-affine. We will need the following
converse:

Proposition 9.1.1.2. Let X : CAlgcn Ñ pS be a functor which is a sheaf for the fpqc
topology and suppose that there exists a morphism f : SpecAÑ X which is representable
and faithfully flat. If f is quasi-affine, then the diagonal map δ : X Ñ X ˆX is quasi-affine.

Lemma 9.1.1.3. Suppose we are given a pullback diagram

X 1
f 1 //

��

Y 1

g

��
X

f // Y

in the 8-category yShvfpqc Ď FunpCAlgcn, pSq of fpqc sheaves. If f 1 is quasi-affine and g is
an effective epimorphism of fpqc sheaves, then f is quasi-affine.

Proof. Choose any map η : SpecR Ñ Y ; we wish to show that the fiber product Z “

SpecR ˆY X is quasi-affine. Since g is an fpqc surjection, we can choose a faithfully flat
map RÑ R0 such that η|SpecR0 factors through Y 1. Let R‚ denote the Čech nerve of the
faithfully flat map RÑ R0 (formed in the 8-category CAlgop) and set Z‚ “ SpecR‚ ˆY X.
By construction, each of the maps SpecRm Ñ Y factors through Y 1, so that each Zm is
quasi-affine by virtue of our assumption on f 1. Using Proposition 2.4.3.2, we can write
Z‚ “ SpecR‚ ˆSpecR Z

1 for some quasi-affine map Z 1 Ñ SpecR. Then both Z and Z 1 can
be identified with the geometric realization |Z‚| (formed in the 8-category yShvfpqc), so that
Z is quasi-affine as desired.
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Proof of Proposition 9.1.1.2. By virtue of Proposition 9.1.1.1, it will suffice to show that
every morphism g : SpecB Ñ X is quasi-affine. Using Lemma 9.1.1.3, we are reduced
to showing that the projection map SpecA ˆX SpecB Ñ SpecA is quasi-affine. This is
equivalent to the quasi-affineness of the fiber product SpecAˆX SpecB, which follows from
our assumption that f : SpecAÑ X is quasi-affine.

Proposition 9.1.1.4. Let X : CAlgcn Ñ pS be a functor which satisfies descent for the
fpqc topology, and suppose there exists a morphism f : X0 Ñ X satisfying the following
conditions:

paq The functor X0 : CAlgcn Ñ pS is a quasi-geometric stack.

pbq The morphism f is representable, quasi-affine, and faithfully flat.

Then X is a quasi-geometric stack.

Proof. Since X0 is a quasi-geometric stack, we can choose a connective E8-ring A and a
faithfully flat morphism g : SpecAÑ X0 (which is automatically representable and quasi-
affine, by virtue of Remark 9.1.1.1). Replacing f by f ˝ g, we can assume that X0 “ SpecA
is a corepresentable functor. Then the diagonal δ : X Ñ X ˆX is quasi-affine by virtue of
Proposition 9.1.1.2, so that X is a quasi-geometric stack.

Corollary 9.1.1.5. Let X‚ be a simplicial object of FunpCAlgcn, pSq satisfying the following
conditions:

paq The functor X0 : CAlgcn Ñ pS is a quasi-geometric stack.

pbq The functor X‚ is a groupoid object of FunpCAlgcn, pSq.

pcq The face map d0 : X1 Ñ X0 is representable, quasi-affine, and faithfully flat.

Then the geometric realization X “ |X‚| (formed in the 8-category yShvfpqc of fpqc sheaves)
is a quasi-geometric stack.

Proof. We have a pullback diagram

X1
d0 //

d1
��

X0

��
X0 // X

where the vertical maps are effective epimorphisms in yShvfpqc. It follows from pcq and
Lemma 9.1.1.3 that the map X0 Ñ X is quasi-affine and faithfully flat, so that X is a
quasi-geometric stack by virtue of Proposition 9.1.1.4.
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Remark 9.1.1.6 (Existence of Atlases). Every quasi-geometric stack X can be written
as a geometric realization |X‚|, where X‚ satisfies the hypotheses of Corollary 9.1.1.5 and
X0 is affine: to see this, we can take X‚ to be the Čech nerve of any faithfully flat map
SpecAÑ X.

Example 9.1.1.7 (The Classifying Stack of a Group Scheme). Let R be a commutative ring
and let G be a flat quasi-affine group scheme over R. For each n ě 0, let Xn : CAlgcn Ñ S
denote the functor represented by the R-scheme GˆSpecRGˆSpecR ¨ ¨ ¨ ˆSpecRG (where the
factor G appears n times). Using the group structure on G, we can regard the construction
rns ÞÑ Xn as a simplicial object X‚ of the 8-category yShvfpqc. We let BG denote the
geometric realization |X‚| in the 8-category yShvfpqc. It follows from Corollary 9.1.1.5 that
BG is a quasi-geometric stack, which we will refer to as the classifying stack of G.

Remark 9.1.1.8. Let R be a commutative ring and let G be a flat quasi-affine group
scheme over R. For every commutative ring A, we can identify BGpAq with the classifying
space for the groupoid of pairs pφ,Pq, where φ : R Ñ A is a ring homomorphism and P
is a G-torsor on the affine scheme SpecA (which is locally trivial with respect to the fpqc
topology).

9.1.2 Quasi-Geometric Morphisms

Definitions 9.1.0.1 and 9.3.0.1 can be relativized:

Definition 9.1.2.1. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ pS. We will say that f is quasi-geometric if, for every connective E8-ring A and
every morphism SpecA Ñ Y , the fiber product SpecA ˆY X is a quasi-geometric stack
(geometric stack).

Proposition 9.1.2.2. Suppose we are given a pullback square

X 1
f 1 //

��

Y 1

g

��
X

f // Y

in the 8-category yShvfpqc. If f is quasi-geometric, then f 1 is also quasi-geometric. The
converse holds if g is an effective epimorphism in yShvfpqc.

Proof. The first assertion is immediate. To prove the second, suppose we are given a map
SpecRÑ Y and set Z “ SpecRˆY X; we wish to show that Z is a quasi-geometric stack.
Since g is an effective epimorphism, we can choose a faithfully flat map RÑ R1 for which
the composite map SpecR1 Ñ SpecRÑ Y factors through Y 1. If f 1 is quasi-geometric, then
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the fiber product Z 1 “ SpecR1 ˆSpecR Z » SpecR1 ˆY 1 X 1 is a quasi-geometric stack. Since
the projection map Z 1 Ñ Z is affine and faithfully flat, it follows from Proposition 9.1.1.4
that Z is also a quasi-geometric stack.

Proposition 9.1.2.3. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ pS. If Y is a quasi-geometric stack and f is quasi-geometric, then X is a
quasi-geometric stack.

Proof. Choose a connective E8-ring A and a faithfully flat morphism u : SpecAÑ Y . Set
X0 “ SpecAˆY X. Since Y is quasi-geometric, the morphism u is quasi-affine. It follows
that the projection map u1 : X0 Ñ X is quasi-affine and faithfully flat. Our assumption
that f is quasi-geometric guarantees that X0 is a quasi-geometric stack, so that X is also a
quasi-geometric stack by virtue of Proposition 9.1.1.4.

Corollary 9.1.2.4. Let f : X Ñ Y and g : Y Ñ Z be quasi-geometric morphisms in
FunpCAlgcn, pSq. Then g ˝ f : X Ñ Z is also quasi-geometric.

Corollary 9.1.2.5. Let Y be a quasi-geometric stack and let f : X Ñ Y be a natural
transformation in FunpCAlgcn, pSq. If X is a quasi-geometric stack, then the morphism f is
quasi-geometric.

Proof. Suppose we are given a map u : SpecAÑ Y ; we wish to show that the fiber product
SpecA ˆY X is a quasi-geometric stack. Since Y is quasi-geometric, the morphism u is
quasi-affine, so the projection map SpecA ˆY X Ñ X is quasi-affine (and therefore also
quasi-geometric). Since X is a quasi-geometric stack, Proposition 9.1.2.3 implies that
SpecAˆY X is a quasi-geometric stack.

Corollary 9.1.2.6. Suppose we are given a pullback diagram

X 1 //

f 1

��

X

f
��

Y 1 // Y

in FunpCAlgcn, pSq. Assume that Y is a quasi-geometric stack. If X and Y 1 are quasi-
geometric stacks, then X 1 is also a quasi-geometric stack.

Proof. It follows from Corollary 9.1.2.5 that the morphism f is quasi-geometric, so that f 1

is also quasi-geometric. Since Y 1 is a quasi-geometric stack (geometric stack), Proposition
9.1.2.3 implies that X 1 is also a quasi-geometric stack.
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9.1.3 Quasi-Coherent Sheaves on a Quasi-Geometric Stack

We begin by showing that if X : CAlgcn Ñ pS is a quasi-geometric stack, then the
8-category of quasi-coherent sheaves QCohpXq is well-behaved. Our main result can be
expressed most efficiently using the formalism of prestable 8-categories developed in §C:

Proposition 9.1.3.1. Let X : CAlgcn Ñ pS be a quasi-geometric stack. Then QCohpXqcn

is a complete Grothendieck prestable 8-category. Moreover, the inclusion QCohpXqcn ãÑ

QCohpXq exhibits QCohpXq as a stabilization of QCohpXqcn.

Proof. Choose a faithfully flat map f : X0 Ñ X, where X0 “ SpecA for some connective
E8-ring A. Let X‚ denote the Čech nerve of f . Since f is faithfully flat, we can identify X
with the geometric realization of X‚ in the 8-category of fpqc sheaves. Using Proposition
6.2.3.1 (and the right cofinality of the inclusion map ∆s ãÑ ∆), we obtain equivalences

QCohpXq » lim
ÐÝ
rnsP∆s

QCohpXnq QCohpXqcn » lim
ÐÝ
rnsP∆s

QCohpXnq
cn.

Since the diagonal of X is quasi-affine, each Xn is (representable by) a quasi-affine spectral
Deligne-Mumford stack. It follows that each QCohpXnq

cn is a complete Grothendieck
prestable 8-category and that each of the inclusion maps QCohpXnq

cn ãÑ QCohpXnq

exhibits QCohpXnq as a stabilization of QCohpXnq
cn (Proposition 2.2.5.4). Moreover, for

every injective map rms Ñ rns of finite linearly ordered sets, the associated transition map
Xn Ñ Xm is flat (since it is a composition of pullbacks of the flat morphism f), so that the
associated pullback functor QCohpXmq

cn Ñ QCohpXnq
cn is left exact. Applying Proposition

C.3.2.4 to the semisimplicial 8-category of QCohpX‚qcn, we deduce that QCohpXqcn is
a Grothendieck prestable 8-category, which is automatically complete (see Proposition
C.3.6.3). The final assertion now follows from Corollary C.3.2.5.

Using Proposition C.1.4.1, we can reformulate Proposition 9.1.3.1 as follows:

Corollary 9.1.3.2. Let X : CAlgcn Ñ pS be a quasi-geometric stack. Then:

p1q The stable 8-category QCohpXq is presentable.

p2q There exists a t-structure pQCohpXqě0,QCohpXqď0q on QCohpXq, where QCohpXqě0 “

QCohpXqcn is the full subcategory of QCohpXq spanned by the connective objects.

p3q The t-structure on QCohpXq is compatible with filtered colimits: that is, QCohpXqď0
is closed under filtered colimits in QCohpXq.

p4q The t-structure on QCohpXq is both right and left complete.
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Remark 9.1.3.3. To prove Proposition 9.1.3.1 (or the equivalent Corollary 9.1.3.2), one
does not need the full strength of the assertion that X is a quasi-geometric stack: it is
enough to assume that there exists a morphism u : X0 Ñ X, where u is representable and
faithfully flat and X0 is (representable by) a spectral Deligne-Mumford stack. However, for
the moment we are primarily interested in the case of quasi-geometric stacks (we will study
some other variants in Part VIII).

Remark 9.1.3.4. Let X be a quasi-geometric stack and let f : SpecAÑ X be a faithfully
flat map. The proof of Proposition 9.1.3.1 shows that the pullback functor f˚ : QCohpXqcn Ñ

QCohpSpecAqcn » Modcn
A is left exact and conservative. Equivalently, the pullback functor

f˚ : QCohpXq Ñ QCohpSpecAq » ModA is t-exact and conservative. In particular, a
quasi-coherent sheaf F P QCohpXq belongs to QCohpXqď0 if and only if f˚F P ModA
belongs to pModAqď0.

We now consider a slight variant of Remark 9.1.3.4:

Proposition 9.1.3.5. Let P be a property of pairs pA,Mq P CAlgcnˆCAlg ModpSpq which
is stable under base change and local with respect to the flat topology. Let X be a quasi-
geometric stack, and choose a faithfully flat morphism f : SpecAÑ X. Let F P QCohpXq
and set M “ f˚F P QCohpSpecAq » ModA. Then F has the property P (in the sense of
Definition 6.2.5.3) if and only if the pair pA,Mq has the property P .

Proof. The “only if” assertion is obvious. Conversely, suppose that the pair pA,Mq has the
property P . Let B be a connective E8-ring, g : SpecB Ñ X be an arbitrary morphism,
and N “ g˚F P QCohpSpecBq » ModB. We wish to show that the pair pB,Nq has the
property P . Choose a flat surjection SpecC Ñ SpecAˆX SpecB. Since f is faithfully flat,
it follows that C is faithfully flat over B. Since P is local with respect to the flat topology,
we may B by C and thereby reduce to the case where the map g factors through f , in which
case the desired result follows from our assumption that P is stable under base change.

9.1.4 Quasi-Geometric Deligne-Mumford Stacks

We now consider a variant of Definition 9.1.2.1 in the setting of spectral Deligne-Mumford
stacks.

Definition 9.1.4.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. We
will say that f is quasi-geometric if it is quasi-compact and the diagonal map δ : X Ñ XˆY X
is quasi-affine.

We will say that a spectral Deligne-Mumford stack X is quasi-geometric if the map
X Ñ SpétS is quasi-geometric; here S denotes the sphere spectrum.
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Remark 9.1.4.2. The condition that a morphism f : X Ñ Y of spectral Deligne-Mumford
stacks be quasi-geometric is local on the target with respect to the étale topology and
stable under base change. This follows immediately from the corresponding assertions for
quasi-affine morphisms (see Example 6.3.3.6).

Let X be a spectral Deligne-Mumford stack and let hX : CAlgcn Ñ S denote the functor
represented by X. It follows immediately from the definitions that if the functor hX is
quasi-geometric (in the sense of Definition 9.1.0.1), then the spectral Deligne-Mumford stack
X is quasi-geometric (in the sense of Definition 9.1.4.1). It is not immediately obvious that
the converse holds: in general, the functor hX represented by a spectral Deligne-Mumford
stack X need not be a sheaf with respect to the fpqc topology. However, this problem does
not arise if X is quasi-geometric:

Proposition 9.1.4.3. Let X be a quasi-geometric spectral Deligne-Mumford stack, and let
X : CAlgcn Ñ S be the functor represented by X. Then X is a hypercomplete sheaf with
respect to the fpqc topology on CAlgcn.

Proof. Let yShv
hyp
fpqc denote the full subcategory of FunpCAlgcn, pSq spanned by those functors

which are hypercomplete sheaves with respect to the flat topology. The inclusion yShv
hyp
fpqc ãÑ

FunpCAlgcn, pSq admits a left exact left adjoint, which we will denote by L. Let Y “ LX P

FunpCAlgcn, pSq. We would like to show that the unit map X Ñ Y is an equivalence. We
first claim that for every connective E8-ring R, the map XpRq Ñ Y pRq is p´1q-truncated:
that is, it exhibits XpRq as a summand of Y pRq. To prove this, it will suffice to show that
for any pair of points x, x1 P XpRq, the induced map θ : txu ˆXpRq tx1u Ñ txu ˆY pRq tx

1u is
a homotopy equivalence. We note that x and x1 determine a pair of maps from SpétR to
X. Let X1 denote the fiber product SpétRˆX SpétR and let X 1 be the functor represented
by X1. To prove that θ is a homotopy equivalence, it will suffice to show that the canonical
map β : X 1 Ñ SpecR ˆY SpecR is an equivalence. Since the functor L is left exact, β
induces an equivalence LX 1 » SpecRˆY SpecR. It will therefore suffice to show that X 1

is a hypercomplete sheaf with respect to the flat topology. This follows from Proposition
2.4.3.1, since our hypothesis that X is quasi-geometric guarantees that X1 is quasi-affine.

Note that X and Y are both sheaves with respect to the étale topology on CAlgcn. To
complete the proof that the unit map X Ñ Y is an equivalence, it will suffice to show that
it is an effective epimorphism with respect to the étale topology. Choose a point η P Y pAq
for some connective E8-ring A. For every morphism of connective E8-rings AÑ B, let ηB
denote the image of η in Y pBq. We wish to prove that there exists a faithfully flat étale
map AÑ B such that ηB belongs to the essential image of the map XpBq Ñ Y pBq.

Since Y “ LX, there exists finite collection of flat maps AÑ Bα such that the induced
map AÑ

ś

αBα is faithfully flat and each ηBα belongs to the essential image of the map
XpBαq Ñ Y pBαq. Let B0 “

ś

αBα, and let B‚ be the cosimplicial object of CAlgcn given
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by the Čech nerve of the map AÑ B0. For every integer n, the point ηBn belongs to the
essential image of the fully faithful embedding XpBnq Ñ Y pBnq, and therefore classifies a
morphism of spectral Deligne-Mumford stacks φn : SpétBn Ñ X.

Choose an étale surjection U Ñ X, where U is affine. For each n ě 0, let Vn “
UˆX SpétBn. Since X is quasi-geometric, each Vn is a quasi-affine spectral Deligne-Mumford
stack over Bn. Using Proposition 2.4.3.2, we deduce that there exists a quasi-affine spectral
Deligne-Mumford stack V and a map V Ñ SpétA such that VˆSpétA SpétB‚ » V‚. Since
U Ñ X is surjective, the map V0 Ñ SpétB0 is surjective. Because B0 is faithfully flat over
A, the composite map V0 Ñ SpétB0 Ñ SpétA is surjective. It follows that V Ñ SpétA is
surjective. Using Proposition 2.8.3.3, we deduce that V Ñ SpétA is étale. Choose an étale
surjection SpétA1 Ñ V, so that A1 is a faithfully flat étale A-algebra. By construction, the
point ηA1 P Y pA1q lifts to XpA1q.

Corollary 9.1.4.4. Let X be a spectral Deligne-Mumford stack and let hX : CAlgcn Ñ S be
the functor represented by X. Then X is quasi-geometric (in the sense of Definition 9.1.4.1)
if and only if the functor hX is quasi-geometric (in the sense of Definition 9.1.0.1).

Corollary 9.1.4.5. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. Then
f is quasi-geometric if and only if the induced map hX Ñ hY is quasi-geometric.

Corollary 9.1.4.6. Let X : CAlgcn Ñ S be a functor which is represented by a quasi-
compact, quasi-separated spectral algebraic space. Then X is a quasi-geometric stack.

Proof. Combine Corollary 9.1.4.4 with Proposition 3.4.1.3.

9.1.5 Compact Objects of QCohpXq

Let X be a quasi-geometric stack and let F P QCohpXq be a quasi-coherent sheaf on
X. We now study the relationship between two natural finiteness conditions on F : the
condition that F is perfect (which can be tested locally on X), and the condition that F is
a compact object of QCohpXq (which is an a priori global condition).

Proposition 9.1.5.1. Let X be a quasi-geometric stack and let F P QCohpXq. The
following conditions are equivalent:

paq The sheaf F P QCohpXq is almost perfect.

pbq For every integer n, the functor G ÞÑ MapQCohpXqpF ,G q commutes with filtered
colimits when restricted to QCohpXqďn.

Proof. We first show that paq ñ pbq. Assume that F is almost perfect. Replacing F by
a suspension if necessary, we may assume that F is connective. Fix an integer n ě 0 and
let λ : QCohpXqďn Ñ Sďn be the functor given by λpG q “ MapQCohpXqpF ,G q; we wish to
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show that λ commutes with filtered colimits. Choose a faithfully flat Choose a faithfully
flat map u : X0 Ñ X, where X0 » SpecA is affine. Let X‚ denote the Čech nerve of u
and for each k ě 0 let uk : Xk Ñ X denote the projection map. Then the construction
G ÞÑ MapQCohpXkqpu

˚
k F , u˚k G q determines a functor λk : QCohpXqďn Ñ Sďn, and we can

identify λ with the totalization of the cosimplicial functor λ‚. Since Sďn is equivalent to an
pn` 1q-category, the totalization λ » Totpλ‚q can be identified with the partial totalization
Totn`1pλ‚q, which is a finite limit of the functors λk. It will therefore suffice to show that
each λk commutes with filtered colimits. We may therefore replace X by Xk and thereby
reduce to the case where Xk is quasi-affine. In particular, we may assume that X has affine
diagonal. Repeating the above argument, we can reduce to the case where X » SpecB is
affine, so that the equivalence QCohpXq » ModB carries F to an almost perfect B-module
M . In this case, the desired result follows immediately from the definitions.

We now show that pbq ñ paq. Assume that F satisfies condition pbq; we wish to show
that F is almost perfect. This is equivalent to the assertion that u˚F P QCohpX0q » ModA
is almost perfect: that is, that for every integer n, the functor

pModAqďn » QCohpX0qďn
MapQCohpX0qpu

˚F ,‚q
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ S

commutes with filtered colimits. Unwinding the definnitions, we see that this functor can be
rewritten as a composition

pModAqďn » QCohpX0qďn
u˚
ÝÑ QCohpXqďn

MapQCohpXqpF ,‚q
ÝÝÝÝÝÝÝÝÝÝÝÑ S .

The desired result now follows from pbq and the fact that u˚ commutes with filtered colimits
(see Corollary 6.3.4.3).

The analogue of Proposition 9.1.5.1 for perfect objects is more subtle.

Proposition 9.1.5.2. Let X be a quasi-geometric stack and let F be a compact object of
QCohpXq. Then F is perfect.

Proof. Choose a map f : SpecRÑ X; we wish to show that f˚F P QCohpSpecRq » ModR
is perfect. Since X is quasi-geometric, the morphism f is quasi-affine. It follows from
Proposition 6.3.4.1 and Corollary 6.3.4.3 that the pullback functor f˚ : QCohpXq Ñ
QCohpUq admits a right adjoint that preserves small colimits. It follows that the functor
f˚ carries compact objects of QCohpXq to compact objects of QCohpSpecRq (Proposition
HTT.5.5.7.2 ), so that f˚F is perfect as desired.

The converse of Proposition 9.1.5.2 is false in general.

Proposition 9.1.5.3. Let X be a quasi-geometric stack. The following conditions are
equivalent:
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p1q The quasi-geometric stack X has finite cohomological dimension. That is, there
exists an integer n " 0 for which the global sections functor F ÞÑ ΓpX; F q carries
QCohpXqě0 into Spě´n.

p2q The structure sheaf OX P QCohpXq is compact.

p3q The global sections functor ΓpX; ‚q : QCohpXq Ñ Sp commutes with small colimits.

p4q Every perfect object F P QCohpXq is compact.

p5q An object F P QCohpXq is compact if and only if it is perfect.

Remark 9.1.5.4. Let κ be a field and let X be an Artin stack of finite type over κ, in the
sense of classical algebraic geometry (see [129]). If the diagonal map X Ñ X ˆSpecκ X is
quasi-affine, then we can identify X with a quasi-geometric stack (by Kan extending along
the inclusion CAlg♥ ãÑ CAlgcn and then sheafifying with respect to the fpqc topology). In
this case, we see a sharp dichotomy:

• If the field κ has characteristic zero, then X always satisfies the equivalent conditions
of Proposition 9.1.5.3 (this is proven by Drinfeld and Gaitsgory; see [51]).

• If the field κ has characteristic p ą 0, then it is very rare for X to satisfy the conditions
of Proposition 9.1.5.3 (at least when X exhibits “stacky” behavior) . For example, if
X is the classifying stack of the finite group Z {pZ, then OX is not a compact object
of QCohpXq. If X “ BGa is the classifying stack of the additive group, then the
8-category QCohpXq does not contain any nonzero compact objects at all (see [93]).

Proof of Proposition 9.1.5.3. We first show that p1q ñ p2q. Assume that there exists an
integer n " 0 for which the functor F ÞÑ ΓpX; F q carries QCohpXqě0 into Spě´n. We
wish to show that the functor F ÞÑ MapQCohpXqpOX ,F q commutes with filtered colimits.
Equivalently, we wish to show that for every integer k ě 0, the construction

F ÞÑ πk MapQCohpXqpOX ,F q “ πkΓpX; F q

commutes with filtered colimits. Using the exactness of the sequence

πkΓpX; τěn`k`1 F q Ñ πkΓpX; F q Ñ πkΓpX; τďn`k F q Ñ πk´1ΓpX; τěn`k`1 F q

(where the outer terms vanish by virtue of assumption p1q), we are reduced to showing that
the construction

F ÞÑ πkΓpX; τďn`k F q » πk MapQCohpXqpOX , τďn`k F q

commutes with filtered colimits, which follows from Proposition 9.1.5.1 (since OX P QCohpXq
is almost perfect).
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We now show that p2q ñ p3q. The global sections functor Γ : QCohpXq Ñ Sp is an exact
functor of stable 8-categories, and therefore commutes with small colimits if and only if it
commutes with small filtered colimits: that is, if and only if for each integer n the composite
functor

QCohpXq Γ
ÝÑ Sp Ω8´n

ÝÝÝÝÑ S

preserves small filtered colimits. Unwinding the definitions, we see that this functor is given
by F ÞÑ MapQCohpXqpOX ,Σn F q, which commutes with filtered colimits if OX is compact.

We next show that p3q implies p4q. If F P QCohpXq is perfect, then it is a dualizable
object of QCohpXq (Proposition 6.2.6.2). It follows that for each G P QCohpXq, we have a
canonical homotopy equivalence

MapQCohpXqpF ,G q » Ω8ΓpX; F_bG q.

Consequently, if the global sections functor Γ commutes with small colimits, then F is
compact.

The implication p4q ñ p5q follows from Proposition 9.1.5.2. We now complete the
proof by showing that p5q ñ p1q. Assume, for a contradiction, that X does not have
finite cohomological dimension. It follows that for every integer n ě 0, we can choose an
n-connective object Fn P QCohpXqěn and a map ηn : OX Ñ Fn which is not nullhomotopy.
Since the t-structure on QCohpXq is left complete (Corollary 9.1.3.2), it follows that the
canonical map

À

ně0 Fn Ñ
ś

ně0 Fn is an equivalence. Consequently, the maps tηnuně0
determine a map η : OX Ñ

À

ně0 Fn. If p5q is satisfied, then OX is compact, so that η
factors through some finite sum

À

0ďnďN Fn. This guarantees that ηn is nullhomotopic for
n ą N , contrary to our assumption.

Corollary 9.1.5.5. Let X be a quasi-compact, quasi-separated spectral algebraic space. Then
an object F P QCohpXq is compact if and only if it is perfect.

Proof. Combine Corollary 3.4.2.2 with Proposition 9.1.5.3.

Proposition 9.1.5.6. Suppose we are given a morphism f : X Ñ Y in FunpCAlgcn,Sq,
where X is a quasi-geometric stack and Y » SpecR is affine. Assume that the structure
sheaf OX is a compact object of QCohpXq. Then:

paq The pullback functor f˚ : QCohpY q Ñ QCohpXq admits a right adjoint f˚.

pbq The functor f˚ commutes with small colimits.

pcq For every pair of sheaves F P QCohpY q and G P QCohpSpecXq, the canonical map

θF ,G : F bf˚ G Ñ f˚pf
˚F bG q

is an equivalence in QCohpY q.
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Proof. Since the 8-categories QCohpXq and QCohpY q are presentable (Corollary 9.1.3.2)
and the pullback functor f˚ preserves small colimits, assertion paq follows from the adjoint
functor theorem (Corollary HTT.5.5.2.9 ). To prove pbq, we note that the composite functor

QCohpXq f˚
ÝÑ QCohpY q ΓpY ;‚q

ÝÝÝÝÑ Sp

can be identified with the global sections functor ΓpX; ‚q, and therefore commutes with
filtered colimits by virtue of Proposition 9.1.5.3 (and our assumption that OX is compact).
Since Y is affine the functor ΓpY ; ‚q is conservative and preserves small colimits, so the
functor f˚ must preserve small colimits as well. This proves pbq. To prove pcq, we note
that if G is fixed, then the collection of those objects F P QCohpY q for which θF ,G is an
equivalence is a stable subcategory of QCohpY q which is closed under small colimits (by
virtue of pbq). To show that this subcategory coincides with QCohpY q, it will suffice (because
of our assumption that Y is affine) to show that it contains the structure sheaf OY . This is
clear, since θOY ,G is equivalent to the identity map from f˚ G to itself.

We now consider a variant of Proposition 9.1.5.6 where Y is not assumed to be affine.

Proposition 9.1.5.7. Let f : X Ñ Y be a morphism in FunpCAlgcn, pSq which satisfies the
following condition:

p˚q For every connective E8-ring R and every point η P Y pRq, the fiber product Xη “

SpecR ˆY X is a quasi-geometric stack and the structure sheaf OXη is a compact
object of QCohpXηq.

Then:

p1q The pullback functor f˚ : QCohpY q Ñ QCohpXq admits a right adjoint f˚ : QCohpXq Ñ
QCohpY q.

p2q The functor f˚ commutes with small colimits.

p3q For every pullback diagram

X 1

f 1

��

g1 // X

f
��

Y 1
g // Y

in FunpCAlgcn, pSq, the associated diagram of 8-categories

QCohpY q f˚ //

g˚

��

QCohpXq

g1˚

��
QCohpY 1q f 1˚ // QCohpX 1q
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is right adjointable: in other words, the Beck-Chevalley transformation g˚f˚ Ñ f 1˚g
1˚

is an equivalence of functors from QCohpXq to QCohpY 1q.

p4q For every pair of sheaves F P QCohpY q and G P QCohpSpecXq, the canonical map

θF ,G : F bf˚ G Ñ f˚pf
˚F bG q

is an equivalence in QCohpY q.

Proof. We proceed as in the proof of Proposition 6.3.4.1. Write Y as the colimit of a diagram
q : S Ñ FunpCAlgcn, pSq, where each Ys “ qpsq is affine. Hypothesis p˚q guarantees that each
of the fiber products Xs “ X ˆY Ys is a quasi-geometric stack for which OXs is a compact
object of QCohpXsq. Every edge sÑ s1 in S determines a pullback diagram

Xs
//

��

Xs1

��
Ys // Ys1 .

Using part pcq of Proposition 9.1.5.6, we deduce that the associated diagram of pullback
functors

QCohpYs1q //

��

QCohpXs1q

��
QCohpYsq // QCohpXsq

is right adjointable. Using the equivalences QCohpXq » lim
ÐÝ

QCohpXsq and QCohpY q »
lim
ÐÝ

QCohpYsq, Corollary HA.4.7.4.18 implies the following:

piq The functor f˚ : QCohpY q Ñ QCohpXq admits a right adjoint.

piiq For each s P S, the diagram

QCohpY q f˚ //

��

QCohpXq

��
QCohpYsq

f˚s // QCohpXsq

is right adjointable.

This proves p1q. Moreover, we can assume that every morphism SpecAÑ Y appears as a
map Ys Ñ Y for some s P S, so that piiq implies that p3q is satisfied whenever Y 1 is affine.
To prove p3q in general, consider a pullback square σ :

X 1
g1 //

f 1

��

X

f
��

Y 1
g // Y



742 CHAPTER 9. TANNAKA DUALITY

and let F P QCohpXq; we wish to show that the Beck-Chevalley map θ : g˚f˚F Ñ f 1˚g
1˚F

is an equivalence. To prove this, it will suffice to show that for every map h : SpecAÑ Y 1,
the pullback h˚pθq is an equivalence in QCohpSpecAq. Extending σ to a rectangular diagram

X2
h1 //

f2

��

X 1
g1 //

f 1

��

X

f

��
SpecA h // Y 1

g // Y

where both squares are pullbacks, we see that h˚pθq fits into a commutative diagram

h˚f 1˚g
1˚F

θ1

''
h˚g˚f˚F

h˚pθq
77

θ2 // f2˚h
1˚g1˚F ,

where θ1 and θ2 are equivalences by virtue of the fact that p2q holds in the special case where
Y 1 is affine. This completes the proof of p3q.

To prove p2q and p4q, we can use p3q to reduce to the special case where Y is affine. In
this case, the desired result follows from Proposition 9.1.5.6.

Proposition 9.1.5.8. Let f : X Ñ Y be a morphism of quasi-geometric stacks. If OX is a
compact object of QCohpXq, then f satisfies condition p˚q of Proposition 9.1.5.7.

Proof. Let R be a connective E8-ring, let η P Y pRq, and let XR “ X ˆY SpecR. We then
have a pullback diagram

XR
g1 //

��

X

��
SpecR g // Y.

Since Y is quasi-geometric, the map g is quasi-affine. It follows that g1 is also quasi-affine,
so the pullback functor g1˚ admits a right adjoint g1˚ : QCohpXRq Ñ QCohpXq which
preserves small colimits (Corollary 6.3.4.3). The global sections functor ΓpXR; ‚q factors as
a composition

QCohpXRq
g1˚
ÝÑ QCohpXq ΓpX;‚q

ÝÝÝÝÑ Sp,

and therefore also preserves small colimits. Applying Proposition 9.1.5.3, we deduce that
OXR is a compact object of QCohpXRq.
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9.1.6 Truncations of Quasi-Geometric Stacks

Let R be a commutative ring and let G be a quasi-affine group scheme over R. By our
definition, the classifying stack BG of Example 9.1.1.7 is a functor from the 8-category
CAlgcn of connective E8-rings to the 8-category pS of spaces. However, the classifying stack
BG is really a classical algebro-geometric object. Our goal in this section is to make this
idea more precise, and to show that no information is lost by restricting the domain of BG
to the full subcategory CAlg♥ Ď CAlgcn spanned by the ordinary commutative rings (which
is described in Remark 9.1.1.8).

Proposition 9.1.6.1. Let X be a quasi-geometric stack and let n ě 0 be an integer. The
following conditions are equivalent:

paq For every flat morphism f : SpecAÑ X, the E8-ring A is n-truncated.

pbq There exists a faithfully flat morphism SpecA Ñ X, where the E8-ring A is n-
truncated.

Proof. The implication paq ñ pbq is immediate. Conversely, suppose that pbq is satisfied,
so that there exists a faithfully flat map f : SpecA Ñ X where A is n-truncated. Let
g : SpecB Ñ X be any flat map, and form a pullback diagram

Y
f 1 //

g1

��

SpecB
g

��
SpecA f // X.

Since X is a quasi-geometric stack, the functor Y is (representable by) a quasi-affine spectral
Deligne-Mumford stack. Since g is flat, the morphism g1 is flat and therefore Y is n-truncated
(by virtue of our assumption that A is n-truncated). Since f 1 is faithfully flat, it follows that
SpecB is n-truncated: that is, the E8-ring B is n-truncated. This shows that pbq ñ paq.

Definition 9.1.6.2. Let X be a quasi-geometric stack and let n be a nonnegative integer.
We will say that X is n-truncated if it satisfies the equivalent conditions of Proposition
9.1.6.1.

Example 9.1.6.3. Let R be a commutative ring, let G be a flat quasi-affine group scheme
over R, and let BG denote the classifying stack of G (Example 9.1.1.7). Then BG is a
0-truncated quasi-geometric stack.

Example 9.1.6.4. Let X be a quasi-geometric Deligne-Mumford stack and let X : CAlgcn Ñ

S be the functor represented by X. Then X is n-truncated (in the sense of Definition 1.4.6.1)
if and only if X is n-truncated (in the sense of Definition ??).
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Definition 9.1.6.5. Let f : X Ñ Y be a morphism of quasi-geometric stacks and let n ě 0
be an integer. We will say that the morphism f exhibits X as an n-truncation of Y if the
following conditions are satisfied:

paq The quasi-geometric stack X is n-truncated.

pbq For every n-truncated quasi-geometric stackX 1, composition with f induces a homotopy
equivalence MapFunpCAlgcn,pSqpX

1, Xq Ñ MapFunpCAlgcn,pSqpX
1, Y q.

Let Y be a quasi-geometric stack. It follows immediately from Definition 9.1.6.5 that if
there exists a morphism f : X Ñ Y which exhibits X as the n-truncation of Y , then the
quasi-geometric stack X (and the morphism f) are uniquely determined up to equivalence.
For existence, we have the following result:

Proposition 9.1.6.6. Let f : X Ñ Y be a morphism of quasi-geometric stacks. Suppose
that f is affine and the unit map OY Ñ f˚OX exhibits f˚OX as an n-truncation of OY

in the 8-category QCohpY q. Then f exhibits X as an n-truncation of Y , in the sense of
Definition 9.1.6.5.

Proof. Choose a faithfully flat map g : Y0 Ñ Y , where Y0 » SpecA is affine. Form a pullback
diagram of quasi-geometric stacks

X0
f0 //

g1

��

Y0

g

��
X

f // Y.

Since f is affine, the map f0 is affine, so that X0 » SpecB is affine. Since f exhibits f˚OX

as an n-truncation of OY and the map g is flat, it follows that f0 exhibits f0˚OX0 as an
n-truncation of OY0 in QCohpY0q: in other words, we can identify B with the truncation
τďnA. The map g1 is a pullback of g and therefore faithfully flat. Since B is n-truncated, it
follows that the quasi-geometric stack X is n-truncated (Proposition 9.1.6.1).

Let X 1 be an n-truncated quasi-geometric stack; we wish to show that composition with
f induces a homotopy equivalence θ : MapFunpCAlgcn,SqpX

1, Xq Ñ MapFunpCAlgcn,SqpX
1, Y q.

Since the morphism f is affine, we can identify the homotopy fiber of θ over a point
h P MapFunpCAlgcn,SqpX

1, Y q with the mapping space MapCAlgpQCohpX 1qph
˚f˚OX ,OX 1q. Note

that the unit map u : OX 1 » h˚OY Ñ h˚f˚OX induces an equivalence of n-truncations.
Since OX 1 is n-truncated, it follows that composition with u induces a homotopy equivalence

MapCAlgpQCohpX 1qqph
˚f˚OX ,OX 1q » MapCAlgpQCohpX 1qqpOX 1 ,OX 1q,

so that the mapping space MapCAlgpQCohpX 1qqph
˚f˚OX ,OX 1q is contractible as desired.
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Corollary 9.1.6.7. Let Y be a quasi-geometric stack and let n ě 0 be an integer. Then there
exists a morphism f : X Ñ Y of quasi-geometric stacks which exhibits X as an n-truncation
of Y . Moreover, f is affine.

Proof. Combine Propositions 9.1.6.6 and 6.3.4.5.

Corollary 9.1.6.8. Let C Ď FunpCAlgcn, pSq denote the full subcategory spanned by the
quasi-geometric stacks, let n ě 0 be an integer, and let Cn Ď C denote the full subcategory
spanned by the n-truncated quasi-geometric stacks. Then the inclusion Cn ãÑ C admits a
right adjoint (which assigns to each quasi-geometric stack its n-truncation).

We now observe that an n-truncated quasi-geometric stack X is determined by its values
on n-truncated connective E8-rings.

Proposition 9.1.6.9. Let X be a quasi-geometric stack which is n-truncated for some
n ě 0, and let X 1 : CAlgcn Ñ pS be a left Kan extension of X|τďn CAlgcn . Then the canonical
map X 1 Ñ X exhibits X as a sheafification of X 1 with respect to the fpqc topology.

Proof. Choose a faithfully flat map f : X0 Ñ X, where X0 is affine. Let X‚ denote the
Čech nerve of f . For each k ě 0, let X 1k denote a left Kan extension of X|τďn CAlgcn . We
then have a commutative diagram

|X 1‚| //

��

|X‚|

��
X 1 // X,

where the geometric realizations are formed in the 8-category FunpCAlgcn, pSq. We wish to
show that the lower horizontal map induces an equivalence after sheafification with respect
to the fpqc topology. Since the vertical maps induce equivalences after sheafification for the
fpqc topology, it will suffice to prove that the upper horizontal map induces an equivalence
after fpqc sheafification. In other words, it will suffice to show that the conclusion of
Proposition 9.1.6.9 after replacing X by Xk, for each k ě 0. We may therefore assume
without loss of generality that X is (representable by) a quasi-affine spectral algebraic space.
In this case, the diagonal of X is affine. Repeating the above argument, we can reduce to
the case where X » SpecR for some connective E8-ring R. In this case, our assumption
that X is n-truncated guarantees that R is n-truncated, so that the map X 1 Ñ X is an
equivalence.

Corollary 9.1.6.10. Let X,Y : CAlgcn Ñ pS be functors, let n ě 0 be an integer, and
let X0, Y0 : τďn CAlgcn Ñ pS denote the restrictions of X and Y . If X is an n-truncated
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quasi-geometric stack and Y is a sheaf with respect to the fpqc topology, then the restriction
map

φ : MapFunpCAlgcn,pSqpX,Y q Ñ MapFunpτďn CAlgcn,pSqpX0, Y0q.

Proof. Let X 1 be as in Proposition 9.1.6.9. We then have a commutative diagram

MapFunpCAlgcn,pSqpX,Y q

φ

**
MapFunpCAlgcn,pSqpX

1, Y q

ψ
44

φ˝ψ //MapFunpτďn CAlgcn,pSqpX0, Y0q.

The map ψ is a homotopy equivalence by virtue of our assumption that Y is a sheaf for
the fpqc topology, and the composite map φ ˝ ψ is a homotopy equivalence because X 1 is
defined as a left Kan extension of X0. It follows that the map φ is a homotopy equivalence
as well.

Corollary 9.1.6.11. Let n ě 0 and let Cn Ď FunpCAlgcn, pSq denote the full subcat-
egory spanned by the n-truncated quasi-geometric stacks. Then the restriction functor
FunpCAlgcn, pSq Ñ Funpτďn CAlgcn, pSq is fully faithful when restricted to Cn.

9.2 Tannaka Duality for Quasi-Geometric Stacks

Our goal in this section is to address the following general question:

Question 9.2.0.1. Let X : CAlgcn Ñ pS be a functor. To what extent can X be recovered
from the 8-category QCohpY q of quasi-coherent sheaves on Y ?

Our main result addresses Question 9.2.0.1 in the special case whereX is a quasi-geometric
stack (see Definition 9.1.0.1):

Theorem 9.2.0.2 (Tannaka Duality for Quasi-Geometric Stacks). Let X,Y : CAlgcn Ñ pS
be functors. Assume that X is a quasi-geometric stack and that Y is (representable by)
a quasi-compact, quasi-separated spectral algebraic space. Let FunbpQCohpXq,QCohpY qq
denote the 8-category of symmetric monoidal functors from QCohpXq to QCohpY q. Then
the construction pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpY qq determines a fully faithful
embedding

MapFunpCAlgcn,pSqpY,Xq Ñ FunbpQCohpXq,QCohpY qq

whose essential image is spanned by those symmetric monoidal functors F : QCohpXq Ñ
QCohpY q which satisfy the following additional conditions:

paq The functor F admits a right adjoint G (equivalently, the functor F preserves small
colimits: see Corollary HTT.5.5.2.9 ).
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pbq The functor F carries connective objects of QCohpXq to connective objects of QCohpY q
(equivalently, the functor G : QCohpY q Ñ QCohpXq is left t-exact).

pcq The functor G preserves small colimits.

pdq For every pair of objects F P QCohpXq and G P QCohpY q, the canonical map

F bGpG q Ñ GpF pF q b G q

is an equivalence in QCohpXq (in other words, the adjoint functors QCohpXq
F //QCohpY q
G
oo

satisfy a projection formula).

9.2.1 Digression on Quasi-Affine Morphisms

Let yCat8 denote the 8-category of (not necessarily small) 8-categories. We let yCat
L

8

denote the subcategory of yCat8 whose objects are 8-categories which admit small colimits
and whose morphisms are functors which preserve small colimits. We will regard yCat

L

8 as
equipped with the symmetric monoidal described in §HA.4.8.1 : given a pair of objects C
and D in yCat

L

8, the tensor product CbD is universal among objects E P yCat
L

8 for which
there exists a functor CˆD Ñ E which preserves small colimits separately in each variable.
Note that we can identify commutative algebra objects of yCat

L

8 with symmetric monoidal
8-categories C for which C admits small colimits and the tensor product b : Cˆ C Ñ C
preserves small colimits separately in each variable.

For every functorX : CAlgcn Ñ pS, let QAffX be the full subcategory of FunpCAlgcn, pSq{X
spanned by the quasi-affine morphisms Y Ñ X. Our proof of Theorem 9.2.0.2 will make use
of the following:

Proposition 9.2.1.1. Let X : CAlgcn Ñ pS be a functor. Then the construction pf : Y Ñ
Xq ÞÑ QCohpY q determines a fully faithful embedding QAffX Ñ CAlgpyCat

L

8qQCohpXq{.

Lemma 9.2.1.2. Suppose we are given morphisms f : Y Ñ X, g : Z Ñ X in FunpCAlgcn, pSq.
Assume that f is quasi-affine, and let A “ f˚OY P CAlgpQCohpXqq. Then the canonical
map

θ : MapFunpCAlgcn,pSq{X
pZ, Y q Ñ MapCAlgpQCohpZqqpg

˚A ,OZq

is a homotopy equivalence.

Proof. When regarded as functors of Z, both the domain and codomain of θ carry colimits
of functors to limits of spaces. Writing Z as a colimit of corepresentable functors, we may
reduce to the case where Z is corepresentable by a connective E8-ring R. Replacing X by
Z and Y by the fiber product Y ˆX Z, we may reduce to the case where Y is representable
by a quasi-affine spectral Deligne-Mumford stack Y equipped with a map Y Ñ SpétR. In
this case, the desired result is a consequence of Proposition ??.
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Proof of Proposition 9.2.1.1. For every quasi-affine morphism f : Y Ñ X, let A Y “

f˚OX P CAlgpQCohpXqq. Proposition 6.3.4.6 supplies an equivalence of 8-categories
QCohpY q » ModA Y

pQCohpXqq. If we are given another quasi-affine morphism g : Z Ñ X,
then Corollary HA.4.8.5.21 supplies a homotopy equivalence

Map
CAlgpyCat

L

8qQCohpXq{
pQCohpY q,QCohpZqq » MapCAlgpQCohpXqqpA Y ,A Zq

» MapCAlgpQCohpZqqpg
˚A Y ,OZq.

The desired result now follows from Lemma 9.2.1.2.

Remark 9.2.1.3. Suppose we are given quasi-affine morphisms f : Y Ñ X and g : Z Ñ X in
the8-category FunpCAlgcn, pSq. Proposition 9.2.1.1 implies that if F : QCohpZq Ñ QCohpY q
is a QCohpXq-linear symmetric monoidal functor which preserves small colimits, then F is
given by pullback along some map h : Y Ñ Z such that h ˝ f » g. Moreover, if we are given
two such maps h, h1 : Y Ñ Z, then any QCohpXq-linear symmetric monoidal equivalence α
between h˚ and h1˚ can be lifted to a homotopy between h and h1. In fact, the assumption
that α is an equivalence is superfluous: any QCohpXq-linear symmetric monoidal functor
from h˚ to h1˚ is automatically an equivalence (Remark HA.4.8.5.9 ).

9.2.2 Weak Tannaka Duality

We are now ready to prove a preliminary version of Theorem 9.2.0.2.

Proposition 9.2.2.1. Let X,Y : CAlgcn Ñ pS be functors, and suppose that the diagonal
map δ : X Ñ X ˆX is quasi-affine. Then the canonical map

θ : MapFunpCAlgcn,pSqpY,Xq Ñ FunbpQCohpXq,QCohpY qq

is fully faithful. Here FunbpQCohpXq,QCohpY qq denotes the 8-category of symmetric
monoidal functors from QCohpXq to QCohpY q. In particular, for any pair of maps f, f 1 :
Y Ñ X, then any QCohpXq-linear symmetric monoidal natural transformation α : f˚ Ñ f 1˚

is an equivalence.

Before giving the proof of Proposition 9.2.2.1, let us explain its relationship to the
classical theory of Tannaka duality.

Let κ be a field, let G be an affine group scheme over κ, and let BG denote the classifying
stack of G (Example 9.1.1.7). In the situation of Notation ??, the classifying stack BG is
equipped with a canonical base point ε : SpecκÑ BG. For every commutative κ-algebra A,
let εA denote the composite map SpecAÑ SpecR ε

ÝÑ BG. Since the classifying space BG
has quasi-affine diagonal, Proposition 9.2.2.1 guarantees that the natural map

MapFunpCAlgcn,pSqpSpecA,BGq Ñ FunbpQCohpBGq,ModAq
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is fully faithful. In particular, we obtain a homotopy equivalence

tεAu ˆMapFunpCAlgcn,pSqpSpecA,BGq tεAu Ñ MapFunbpQCohpBGq,ModAqpε
˚
A, ε

˚
Aq.

Unwinding the definitions, we see that the domain of this homotopy equivalence can be
identified with the set GpAq of A-valued points of G. We therefore obtain the following:

Corollary 9.2.2.2 (Classical Tannaka Duality, Derived Version). Let G be an affine group
scheme over a field κ and let A be a commutative κ-algebra. Then the canonical map
GpAq Ñ MapFunbpQCohpBGq,ModAqpε

˚
A, ε

˚
Aq is a homotopy equivalence. More informally, we

can identify GpAq with the group of symmetric monoidal automorphisms of the functor
ε˚A : QCohpBGq Ñ ModA (moreover, every symmetric monoidal endomorphism of ε˚A is also
an isomorphism).

Remark 9.2.2.3. Corollary 9.2.2.2 is very similar Theorem 9.0.0.1. Unwinding the defini-
tions, we can identify the category ReppGq of finite-dimensional representations of G with
the full subcategory of QCohpBGq spanned by those quasi-coherent sheaves which are locally
free of finite rank. For any commutative κ-algebra A, the functor ε˚A restricts to a functor
e : ReppGq Ñ Modlf

A, where Modlf
A denotes the category of projective A-modules of finite

rank. Let Autbpε˚Aq denote the space of equivalences from ε˚A with itself as a symmetric
monoidal functor of 8-categories, and let Autbpeq denote the set of isomorphisms of e with
itself as a symmetric monoidal functor of ordinary categories. We then have a commutative
diagram

Autbpε˚Aq

&&
GpAq

99

// Autbpeq.
The classical version of Tannaka duality asserts that the bottom horizontal map is an
isomorphism (Theorem 9.0.0.1), while our derived version of Tannaka duality asserts that
the diagonal map on the left is a homotopy equivalence. To see that these assertions
are equivalent, it would suffice to show that the diagonal map on the right is also a
homotopy equivalence: that is, that the datum of a symmetric monoidal automorphism of
ε˚A : QCohpBGq Ñ ModA is equivalent to the datum of a symmetric monoidal automorphism
of ε˚A|ReppGq. We will discuss this comparison in §9.7; see Corollary 9.3.7.5.

Remark 9.2.2.4. It follows from Proposition 9.2.2.1 that many of the hypotheses of
Corollary 9.2.2.2 are superfluous:

paq We do not need to assume that the map εA : SpecAÑ BG factors through the base
point ε : SpecκÑ BG. The proof of Corollary 9.2.2.2 shows more generally that for
any pair of maps u, v : SpecAÑ BG, we obtain a homotopy equivalence

tuu ˆBGpAq tvu » MapFunbpQCohpBGq,ModAqpu
˚, v˚q.
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Here u and v classify G-torsors Pu and Pv over SpecA, and we can identify the fiber
product tuu ˆBGpAq tvu with the space of isomorphisms between Pu and Pv.

pbq We do not need to assume that A is a commutative ring: Corollary 9.2.2.2 is valid
more generally if A is a connective E8-algebra over κ.

pcq We do not need to assume that κ is a field: Corollary 9.2.2.2 remains valid if κ is an
arbitrary connective E8-ring, provided that G is flat over κ.

pdq We do not need to assume that G is affine: Corollary 9.2.2.2 is valid more generally if
G is quasi-affine.

Note however that for the additional generality described in pbq, pcq, and pdq, it is necessary
to work in the derived setting (rather than at the level of abelian categories, as in the
statement of Theorem 9.0.0.1).

Remark 9.2.2.5. We will be primarily interested in the special case of Proposition 9.2.2.1
where X is a quasi-geometric stack (in which case we can describe the essential image of the
embedding MapFunpCAlgcn,pSqpY,Xq ãÑ FunbpQCohpXq,QCohpY qq using Theorem 9.2.0.2).
However, there are algebro-geometric objects X of interest which are not quasi-geometric
but nonetheless satisfy the hypotheses of Proposition 9.2.2.1: for example, quasi-separated
spectral algebraic spaces which are not quasi-compact (see Warning ??).

Proof of Proposition 9.2.2.1. Fix a functor X : CAlgcn Ñ pS for which the diagonal δ : X Ñ

X ˆX is quasi-affine. The constructions

Y ÞÑ MapFunpCAlgcn,pSqpY,Xq Y ÞÑ FunbpQCohpXq,QCohpY qq

both carry colimits in FunpCAlgcn, pSq to limits of 8-categories. Writing Y as a colimit of
corepresentable functors, we may reduce to the case where Y “ SpecR for some connective
E8-ring R. Since δ is quasi-affine, any morphism Y Ñ X is automatically quasi-affine
(Proposition 9.1.1.1). Choose a pair of maps f, g : Y Ñ X, which we will identify with
objects Yf , Yg P FunpCAlgcn, pSq{X . Remark 9.2.1.3 implies that every symmetric monoidal
transformation from f˚ to g˚ is an equivalence. We have a commutative diagram

MapFunpCAlgcn,pSq{X
pYf , Ygq //

��

Map
CAlgpyCat

L

8qQCohpXq{
pQCohpY q,QCohpY qq

��
MapFunpCAlgcn,pSqpY, Y q

//Map
CAlgpyCat

L

8qSp {
pQCohpY q,QCohpY qq.

We wish to show that this diagram induces a homotopy equivalence between the homotopy
fibers of the vertical maps (taken over the points idY and idQCohpY q). To prove this, it
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suffices to show that the horizontal maps are equivalences. This follows from Proposition
9.2.1.1, since the maps f, g : Y Ñ X and the projection Y Ñ ˚ are all quasi-affine (here ˚
denotes the final object of FunpCAlgcn, pSq).

9.2.3 The Proof of Theorem 9.2.0.2

We now turn to the proof of Theorem 9.2.0.2. Suppose that we are given functors
X,Y : CAlgcn Ñ pS, where X is a quasi-geometric stack and Y is (representable by) a
quasi-compact, quasi-separated spectral algebraic space. Suppose we are given a morphism
f : Y Ñ X. Note that any morphism SpecRÑ X is quasi-affine (Proposition 9.1.1.1), so
the fiber product SpecR ˆX Y is quasi-affine over Y and is therefore also (representable
by) a quasi-compact, quasi-separated spectral algebraic space. It follows that the pullback
functor f˚ admits a right adjoint f˚ : QCohpY q Ñ QCohpXq (Proposition 6.3.4.1) which
preserves small colimits and satisfies the projection formula (Corollary 6.3.4.3); moreover,
the functor f˚ will be left t-exact (since f˚ preserves connective objects). Using Proposition
9.2.2.1, we deduce that the canonical map

MapFunpCAlgcn,pSqpY,Xq Ñ FunbpQCohpXq,QCohpY qq

is a fully faithful embedding whose image consists of functors F : QCohpXq Ñ QCohpY q
which satisfy the hypotheses of Theorem 9.2.0.2. To complete the proof, we must verify the
converse:

Proposition 9.2.3.1. Let X be a quasi-geometric stack, let Y be a quasi-compact, quasi-
separated spectral algebraic space, and let F : QCohpXq Ñ QCohpY q be a symmetric
monoidal functor satisfying the following conditions:

paq The functor F admits a right adjoint G.

pbq The functor F is right t-exact (so that G is left t-exact).

pcq The functor G preserves small colimits.

pdq For every pair of objects F P QCohpXq and G P QCohpY q, the canonical map

F bGpG q Ñ GpF pF q b G q

is an equivalence in QCohpXq.

Then there exists a map f : Y Ñ X and a symmetric monoidal equivalence F » f˚.

Proof. For every morphism g : Y 1 Ñ Y of quasi-compact, quasi-separated spectral algebraic
spaces, let Fg denote the composite functor QCohpXq F

ÝÑ QCohpY q g˚
ÝÑ QCohpY 1q. Note that
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if F satisfies conditions paq through pdq, then so does Fg (the functor Fg admits a right adjoint
given by the composition G ˝ g˚, which will preserve small colimits and satisfy the projection
formula by virtue of Corollary 3.4.2.2 and Remark 3.4.2.6). In this case, let χpY 1q denote
the homotopy fiber of the map MapFunpCAlgcn,pSqpY

1, Xq Ñ FunbpQCohpXq,QCohpY 1qq over
the point Fg. It follows from Proposition 9.2.2.1 that the space χpY 1q is either empty or
contractible. We wish to show that χpY q is nonempty. Since X is a sheaf with respect to
the fpqc topology, the construction Y 1 ÞÑ χpY 1q satisfies fpqc descent. Consequently, it will
suffice to show that there exists a faithfully flat morphism g : Y 1 Ñ Y such that χpY 1q is
nonempty. In particular, we may assume without loss of generality that Y “ SpecR is affine.

Since X is quasi-geometric, we can choose a faithfully flat morphism u : U Ñ X, where
U is affine. Set A “ u˚OU P CAlgpQCohpXqq. The key point is to prove the following:

p˚q There exists a faithfully flat, quasi-affine morphism v : Y 1 Ñ Y and an equivalence
F pA q » v˚OY 1 in CAlgpQCohpY qq.

Assume for the moment that p˚q is satisfied. Then Proposition 6.3.4.6 supplies (symmetric
monoidal) equivalences

QCohpUq » ModApQCohpXqq

QCohpY 1q » Modv˚ OY 1
pQCohpY qq » ModF pA qpQCohpY qq.

Consequently, F induces a symmetric monoidal functor F 1 : QCohpUq Ñ QCohpY 1q which
fits into a commutative diagram

QCohpXq F //

u˚

��

QCohpY q

v˚

��
QCohpUq F 1 // QCohpY 1q.

Since U is affine and Y 1 is quasi-affine, Proposition 9.2.1.1 implies the existence of a symmetric
monoidal equivalence F 1 » f 1˚ for some map f 1 : Y 1 Ñ U . It follows that there is a symmetric
monoidal equivalence Fv » pu ˝ f 1q˚, so that χpY 1q ‰ H and therefore χpY q ‰ H (since Y 1

is faithfully flat over Y ).
We now prove p˚q. Write Y “ SpecR for some connective E8-ring R, so that we

can identify F pA q with an E8-algebra A P CAlgR. Set B “ F pτě0 A q P CAlgR, so that
assumption pbq guarantees that B is connective. We first claim that there is an equivalence
F pA q » v˚OY 1 for some quasi-affine morphism v : Y 1 Ñ Y . By virtue of Theorem 2.6.0.2,
it will suffice to verify the following:

piq There exists an integer n " 0 such that A is p´nq-connective.

piiq The E8-ring A is a compact idempotent object of CAlgB.
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Note first that U ˆX U is quasi-affine, so that the spectrum

ΓpU ˆX U ; OUˆXU q » ΓpU ;u˚u˚OU q

is p´nq-connective for n " 0. Since U is affine, it follows that u˚u˚OU is p´nq-connective as
an object of QCohpUq. Since the map u is faithfully flat, it follows from Proposition 9.1.3.5
that A “ u˚OU is a p´nq-connective object of QCohpXq for n " 0, so that assertion piq
follows from our assumption pbq.

We now prove piiq. Note that the projection map q : U ˆX U Ñ U (onto either factor) is
quasi-affine, so that u˚A » q˚OUˆXU satisfies the equivalent conditions of Theorem 2.6.0.2.
In particular, u˚A is an idempotent algebra over its connective cover τě0u

˚A . That is,
the multiplication map

u˚A bτě0u˚A u
˚A Ñ u˚A

is an equivalence. Since u is faithfully flat, it follows that the multiplication map A bτě0 A A Ñ

A is an equivalence in QCohpXq. Applying the functor F , we deduce that the multiplication
AbB AÑ A is an equivalence, so that A is an idempotent object of CAlgB.

We now complete the proof of p2q by showing that A is a compact object of CAlgB.
Suppose we are given a filtered diagram tBαu in CAlgB; we wish to show that the canonical
map

lim
ÝÑ

MapCAlgB pA,Bαq Ñ MapCAlgB pA, limÝÑBαq

is a homotopy equivalence. Set C “ CAlgτě0 A pQCohpXqq. Unwinding the definitions, we
wish to show that the composite map

lim
ÝÑ

MapCpA , GpBαqq Ñ MapCpA , lim
ÝÑ

GpBαqq Ñ MapCpA , Gplim
ÝÑ

Bαqq

is a homotopy equivalence. The map on the right is a homotopy equivalence by virtue of our
assumption pcq. It will therefore suffice to show that A is a compact object of C. Note that
for any object A 1 P C, the mapping space MapCpA ,A 1q is either empty (if the unit map
e : A 1 Ñ A bτě0 A A 1 is not an equivalence) or contractible. Note that since u is faithfully
flat, the map e is an equivalence if and only if u˚peq is an equivalence. Consequently, to
show that A is a compact object of C, it will suffice to show that u˚A is a compact object
of CAlgτě0u˚A pQCohpUqq, which is a consequence of Theorem 2.6.0.2. This completes
our verification of piq and piiq, which establishes the existence of a quasi-affine morphism
v : Y 1 Ñ Y and an equivalence v˚OY 1 » F pA q.

We now show that v is flat. Since Y is affine, it will suffice to show that for each
F P QCohpY q♥, the pullback v˚F belongs to QCohpY 1qď0. Since Y 1 is quasi-affine, this
is equivalent to the statement that the spectrum ΓpY 1; v˚F q is 0-truncated. We have
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equivalences

ΓpY 1; v˚F q » ΓpY ; v˚v˚F q

» ΓpY ; v˚OY 1 bF q

» ΓpY ;F pA q bF q

» ΓpX;GpF pA q bF qq
γ
ÐÝ ΓpX; A bGpF qq

» ΓpX;u˚OU bGpF qq

» ΓpX;u˚u˚GpF qq
» ΓpU ;u˚GpF qq;

here the map γ is an equivalence by virtue of assumption pdq. The spectrum ΓpU ;u˚GpF qq
is 0-truncated because F is 0-truncated, the functor G is left t-exact (by virtue of pbq), and
the functor u˚ is t-exact. This completes the proof that v is flat.

It remains to show that v is faithfully flat. For this, it will suffice to show that for
F P QCohpY q♥ as above, the canonical map ρ : ΓpY ; F q Ñ ΓpY 1; v˚F q induces an injection
on π0 (in this case, the vanishing of v˚F guarantees the vanishing of π0ΓpY ; F q, hence also
the vanishing of F since Y is affine and F is discrete). Using the preceding calculation, we
can identify ρ with the canonical map ΓpX;GpF qq Ñ ΓpU ;u˚GpF qq, which is injective on
π0 since GpF q P QCohpXq is 0-truncated and the map u is faithfully flat.

9.2.4 Some Consequences of Tannaka Duality

We now collect a few easy consequences of Theorem 9.2.0.2.

Proposition 9.2.4.1. Let X : CAlgcn Ñ pS be a quasi-geometric stack. Then X is a
hypercomplete sheaf with respect to the fpqc topology on CAlgcn.

Proof. Our assumption that X is quasi-geometric guarantees that X is a sheaf with respect to
the fpqc topology. To show that X is hypercomplete, it will suffice (by virtue of Proposition
D.6.7.4) to show that for every connective E8-ring R and every pair of points η, η1 P XpRq,
the functor Y : CAlgcn

R Ñ S given by Y pAq “ tηu ˆXpAq tη1u is a hypercomplete sheaf with
respect to the fpqc topology. For each A P CAlgcn

R , let ηA, η1A : SpecA Ñ X denote the
maps determined by η and η1. By virtue of Proposition 9.2.2.1, the functor Y is given by
the formula Y pAq “ MapFunbpQCohpXq,ModAqpη

˚
A, η

1˚
A q. Since the construction A ÞÑ ModA

determines a hypercomplete sheaf (with values in the 8-category CAlgpyCat8q of symmetric
monoidal 8-categories) by virtue of Corollary D.6.3.3, it follows that Y is hypercomplete.
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Proposition 9.2.4.2. Let X : CAlgcn Ñ pS be a quasi-geometric stack. Then, for every
connective E8-ring A, the space XpAq is essentially small.

Proof. Proposition 9.1.3.1 guarantees that QCohpXq is a presentable 8-category. Conse-
quently, if τ is a sufficiently large regular cardinal, then there is an equivalence QCohpXq »
Indτ pQCohpXqτ q, where QCohpXqτ denotes the full subcategory of QCohpXq spanned by
the τ -compact objects. Enlarging τ if necessary, we may assume that the full subcat-
egory QCohpXqτ contains the unit object OX and is closed under tensor products. It
follows that QCohpXqτ inherits the structure of a symmetric monoidal 8-category. Let
ModτA denote the full subcategory of ModA spanned by the τ -compact objects, which we
also regard as a symmetric monoidal 8-category. Proposition HA.4.8.1.10 guarantees that
FunbpQCohpXqτ ,ModτAq can be identified with the full subcategory of FunbpQCohpXq,ModAq
spanned by those symmetric monoidal functors which preserve τ -filtered colimits and τ -
compact objects. Note that these conditions are automatically satisfied for any functor
F : QCohpXq Ñ ModA which admits a right adjoint that preserves small colimits (see Propo-
sition HTT.5.5.7.2 ). Consequently, Theorem 9.2.0.2 supplies a fully faithful embedding

XpAq » MapFunpCAlgcn,pSqpSpecA,Xq Ñ FunbpQCohpXqτ ,ModτAq.

Since the codomain of this embedding is essentially small, it follows that XpAq is essentially
small.

Proposition 9.2.4.3. Let X,Y : CAlgcn Ñ S be quasi-geometric stacks and let F :
QCohpXq Ñ QCohpY q be a t-exact symmetric monoidal equivalence of 8-categories. Then
we have F » f˚ for some equivalence f : Y „

ÝÑ X (uniquely determined up to equivalence,
by virtue of Proposition 9.2.2.1).

Proof. We claim that for every functor Z : CAlgcn Ñ pS and every natural transformation
g : Z Ñ Y , the composite functor QCohpXq F

ÝÑ QCohpY q g˚
ÝÑ QCohpZq is equivalent to

f˚Z , for some map fZ : Z Ñ X. Applying this result in the case Z “ Y , we deduce that
F » f˚ for some map f : Y Ñ X, in which case Theorem 9.2.0.2 shows that f induces
a homotopy equivalence Y pRq Ñ XpRq for every connective E8-ring R, and is therefore
an equivalence. To prove the existence of fZ , we can assume (by virtue of the uniqueness
provided by Proposition 9.2.2.1) write Z as a colimit of corepresentable functors and thereby
reduce to the case where Z is corepresentable. In this case, it will suffice to show that the
functor g˚ ˝ F satisfies criteria paq through pdq of Theorem 9.2.0.2. This is clear, since F is
a t-exact equivalence of 8-categories and g˚ satisfies conditions paq through pdq of Theorem
9.2.0.2.

Proposition 9.2.4.4. Let f : A Ñ B be a flat morphism of connective E8-rings and let
I Ď π0A be a finitely generated ideal. Let U Ď SpecA be the open subfunctor complementary
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to the vanishing locus of I (so that UpRq Ď MapCAlgpA,Rq is the subspace consisting of
those maps AÑ R which exhibit R as an I-local A-module, for each R P CAlgcn), and define
V “ U ˆSpecA SpecB Ď SpecB similarly. Suppose that f an equivalence of I-completions
A^I Ñ B^I . Then, for every quasi-geometric stack X, the diagram σ :

XpAq //

��

MapFunpCAlgcn,SqpU,Xq

��
XpBq //MapFunpCAlgcn,SqpV,Xq

is a pullback square.

Remark 9.2.4.5. Let A be a Noetherian E8-ring and let I Ď π0A be an ideal. Then the
canonical map AÑ A^I satisfies the hypotheses of Proposition 9.2.4.4 (see Corollary 7.3.6.9).

Proof of Proposition 9.2.4.4. It follows from Theorem 7.4.0.1 that the diagram of pullback
functors σ :

QCohpSpecAq //

��

QCohpUq

��
QCohpSpecBq // QCohpV q

is a pullback square of (symmetric monoidal) 8-categories. We therefore obtain a pullback
diagram

FunbpQCohpXq,QCohpSpecAqq //

��

FunbpQCohpXq,QCohpUqq

��
FunbpQCohpXq,QCohpSpecBqq // FunbpQCohpXq,QCohpV qq.

Combining this observation with Proposition 9.2.2.1, we immediately deduce that the natural
map

XpAq Ñ XpBq ˆMapFunpCAlgcn,SqpV,Xq
MapFunpCAlgcn,SqpU,Xq

is fully faithful. To verify essential surjectivity, it will suffice to show that if FA : QCohpXq Ñ
QCohpSpecAq is a symmetric monoidal functor having the property that the induced maps

FB : QCohpXq Ñ QCohpSpecBq

FU : QCohpXq Ñ QCohpUq

FV : QCohpXq Ñ QCohpV q

satisfy conditions paq through pdq of Theorem 9.2.0.2, then FA also satisfies conditions
paq through pdq of Theorem 9.2.0.2. We consider each of these conditions in turn:
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paq Suppose that the functors FB, FU , and FV admit right adjoints

GB : QCohpSpecBq Ñ QCohpXq

GU : QCohpSpecBq Ñ QCohpXq

GV : QCohpV q Ñ QCohpXq.

Then FB, FU , and FV preserve small colimits. Since σ is a pullback square, it fol-
lows that FA preserves small colimits, and therefore admits a right adjoint GA :
QCohpSpecAq Ñ QCohpXq by virtue of the adjoint functor theorem (Corollary
HTT.5.5.2.9 ). However, we do not need to appeal to the adjoint functor theorem: the
right adjoint GA can be given directly by the formula

GApF q » GBpF |SpecBq ˆGV pF |V q
GU pF |U q.

pbq Because f is flat, the maps SpecB Ñ SpecA Ð U comprise a flat covering. Conse-
quently, an object F P QCohpSpecAq is connective if and only if F |SpecB and F |U

are connective. Since FB and FU are right t-exact, it follows that FA is also right
t-exact.

pcq The functors GB, GV , and GU preserve small colimits. Using the canonical identifi-
cation GApF q » GBpF |SpecBq ˆGV pF |V

GU pF |U q, we deduce that the functor GA
also preserves small colimits.

pdq Suppose we are given a pair of objects F P QCohpXq and G P QCohpSpecAq. We
wish to show that the canonical map

θA : F bGApG q Ñ GApFApF q b G q

is an equivalence in QCohpXq. Unwinding the definitions, we see that there is a
pullback diagram

θA //

��

θU

��
θB // θV

in the 8-category Funp∆1,QCohpXqq, where

θB : F bGBpG |SpecBq Ñ GBpFBpF q b G |SpecBq

θV : F bGV pG |V q Ñ GV pFV pF q b G |V q

θU : F bGU pG |U q Ñ GU pFU pF q b G |U q

are the equivalences appearing in the projection formula for FB, FV , and FU , respec-
tively. It follows that θA is an equivalence, as desired.
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Example 9.2.4.6. Let f : AÑ B be a morphism of Noetherian E8-rings and let x P π0A be
an element for which f induces an equivalence A^

pxq Ñ B^
pxq. Then, for every quasi-geometric

stack X : CAlgcn Ñ S, the diagram

XpAq //

��

XpBq

��
XpArx´1sq // XpBrx´1sq

is a pullback square.

9.3 Geometric Stacks

In §9.1, we introduced the notion of a quasi-geometric stack X : CAlgcn Ñ S. The main
result of §9.2 implies that a quasi-geometric stack X can be functorially recovered from the
8-category QCohpXq. More precisely, Theorem 9.2.0.2 asserts that if Y is a quasi-compact,
quasi-separated algebraic space, then the datum of a map Y Ñ X is equivalent to the datum
of a symmetric monoidal, right t-exact functor F : QCohpXq Ñ QCohpY q which admits
a right adjoint G that preserves colimits and satisfies a projection formula. However, for
many applications, this characterization is inconvenient: one would prefer to have a more
direct description involving only properties of the functor F (which can be tested locally on
Y ), rather than its right adjoint G (which depends on the global structure of Y ). In this
section, we will study a special class of quasi-geometric stacks for which such a description
is possible:

Definition 9.3.0.1. A geometric stack is a functor X : CAlgcn Ñ S which satisfies the
following conditions:

paq The functor X satisfies descent with respect to the fpqc topology.

pbq The diagonal map δ : X Ñ X ˆX is affine.

pcq There exists a connective E8-ring A and a faithfully flat morphism f : SpecAÑ X.

Remark 9.3.0.2. A geometric stack X can be defined as a quasi-geometric stack (in the
sense of Definition 9.1.0.1) for which the diagonal map δ : X Ñ X ˆX is affine (see Remark
9.1.0.2). It follows from Proposition 9.2.4.1 that a geometric stack X is automatically a
hypercomplete sheaf with respect to the fpqc topology).

The main result of this section is the following variant of Theorem 9.2.0.2:
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Theorem 9.3.0.3. [Tannaka Duality for Geometric Stacks] Let X,Y : CAlgcn Ñ pS be
functors, and suppose that X is a geometric stack. Then the construction pf : Y Ñ Xq ÞÑ

pf˚ : QCohpXq Ñ QCohpY qq determines a fully faithful embedding

MapFunpCAlgcn,pSqpY,Xq Ñ FunbpQCohpXq,QCohpY qq,

whose essential image is spanned by those symmetric monoidal functors F : QCohpXq Ñ
QCohpY q which satisfy the following conditions:

paq The functor F preserves small colimits.

pbq The functor F carries connective objects of QCohpXq to connective objects of QCohpY q.

pcq The functor F carries flat objects of QCohpXq to flat objects of QCohpY q.

9.3.1 Examples of Geometric Stacks

We begin with some general remarks concerning Definition ??. First, we need an analogue
of Lemma 9.1.1.3:

Lemma 9.3.1.1. Suppose we are given a pullback diagram

X 1
f 1 //

��

Y 1

g

��
X

f // Y

in the 8-category yShvfpqc Ď FunpCAlgcn, pSq of fpqc sheaves. If f 1 is affine and g is an
effective epimorphism of fpqc sheaves, then f is affine.

Proof. Choose any map η : SpecR Ñ Y ; we wish to show that the fiber product Z “

SpecR ˆY X is affine. Since g is an fpqc surjection, we can choose a faithfully flat map
R Ñ R0 such that η|SpecR0 factors through Y 1. Let R‚ denote the Čech nerve of the
faithfully flat map RÑ R0 (formed in the 8-category CAlgop) and set Z‚ “ SpecR‚ ˆY X.
By construction, each of the maps SpecRm Ñ Y factors through Y 1, so we can write
Zm » SpecA‚ for some cosimplicial object A‚ of CAlgcn. Using Theorem D.6.3.5, we deduce
that A‚ » AbR R

‚ for some connective E8-algebra A over R. Then

Z » |Z‚| » |SpecA‚| » SpecAˆSpecR | SpecR‚| » SpecA

is affine, as desired.

Proposition 9.3.1.2. Let X : CAlgcn Ñ S be a quasi-geometric stack. The following
conditions are equivalent:
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p1q The diagonal map δ : X Ñ X ˆX is affine (that is, X is a geometric stack).

p2q For every pair of morphisms SpecAÑ X Ð SpecB, the fiber product SpecAˆXSpecB
is affine.

p3q Every morphism SpecAÑ X is affine.

p4q There exists a faithfully flat affine morphism f : SpecAÑ X.

Proof. The implication p1q ñ p2q follows from the existence of a pullback diagram

SpecAˆX SpecB //

��

SpecpAbBq

��
X // X ˆX,

and the equivalence p2q ô p3q is tautological. The implication p2q ñ p1q follows from the
observation that every map SpecAÑ X ˆX determines a pullback square

SpecAˆXˆX X //

��

SpecAˆX SpecA

��
SpecA // SpecAˆ SpecA.

The implication p3q ñ p4q follows from our assumption that X is quasi-geometric (which
guarantees the existence of a faithfully flat quasi-affine morphism SpecA Ñ X). We will
complete the proof by showing that p4q ñ p3q. Let f : SpecAÑ X be a faithfully flat affine
morphism and let g : SpecB Ñ X be arbitrary; we claim that g is affine. Form a pullback
square

Y //

g1

��

SpecA

f

��
SpecB g // X.

By virtue of Lemma 9.3.1.1, it will suffice to show that g1 is affine. This is clear, since our
assumption that f is affine guarantees that Y is affine.

Proposition 9.3.1.3. Let X : CAlgcn Ñ pS be a functor which satisfies descent for the
fpqc topology, and suppose there exists a morphism f : X0 Ñ X satisfying the following
conditions:

paq The functor X0 : CAlgcn Ñ pS is a geometric stack.

pbq The morphism f is representable, affine, and faithfully flat.
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Then X is a geometric stack.

Proof. The functor X is a quasi-geometric stack by virtue of Proposition 9.1.1.4. Choose
a faithfully flat map g : SpecA Ñ X0. Condition paq implies that g is affine (Proposition
9.3.1.2). It follows from pbq that the composition g ˝ f is affine, so that X is a geometric
stack by virtue of Proposition 9.3.1.2.

Corollary 9.3.1.4. Let X‚ be a simplicial object of FunpCAlgcn, pSq satisfying the following
conditions:

paq The functor X0 : CAlgcn Ñ pS is a geometric stack.

pbq The functor X‚ is a groupoid object of FunpCAlgcn, pSq.

pcq The face map d0 : X1 Ñ X0 is representable, affine, and faithfully flat.

Then the geometric realization X “ |X‚| (formed in the 8-category yShvfpqc of fpqc sheaves)
is a geometric stack.

Proof. We have a pullback diagram

X1
d0 //

d1
��

X0

��
X0 // X

where the vertical maps are effective epimorphisms in yShvfpqc. It follows from pcq and
Lemma 9.3.1.1 that the map X0 Ñ X is affine and faithfully flat, so that X is a geometric
stack by virtue of Proposition 9.3.1.3.

Remark 9.3.1.5 (Existence of Atlases). Every geometric stack X can be written as a
geometric realization |X‚|, where X‚ satisfies the hypotheses of Corollary 9.3.1.4 and X0
is affine: to see this, we can take X‚ to be the Čech nerve of any faithfully flat map
SpecAÑ X.

Example 9.3.1.6 (Classifying Stacks). Let R be a commutative ring and let G be a flat
affine group scheme over R. Then the classifying stack BG (see Example 9.1.1.7) is a
geometric stack.

Example 9.3.1.7 (The Moduli Stack of Formal Groups). Let R be a commutative ring.
We define the category FGLpRq of formal group laws over R as follows:

• An object of FGLpRq is a (commutative, 1-dimensional) formal group law over R:
that is, a power series fpx, yq P Rrrx, yss satisfying the identities

fpx, yq “ fpy, xq fpx, 0q “ x fpx, fpy, zqq “ fpfpx, yq, zq.
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• If f and f 1 are formal group laws over R, then a morphism from f to f 1 in FGLpRq is
an invertible formal power series gpxq P Rrrxss satisfying fpgpxq, gpyqq “ gpf 1px, yqq.

For each n ě 0, let NpFGLpRqqn denote the set of n-simplices of the nerve of the cate-
gory FGLpRq: that is, the collection of pn ` 1q-tuples of formal group laws f0, . . . , fn P

Rrrx, yss together with invertible power series g1, . . . , gn P Rrrxss satisfying fipgipxq, gipyqq “
gipfi`1px, yqq. The construction R ÞÑ NpFGLpRqqn determines a functor from the cate-
gory of commutative rings to the category of sets. It is not difficult to show that this
functor is corepresentable: that is, there exists a commutative ring Ln and a bijection
NpFGLpRqqn » HomCAlg♥pLn, Rq. Let SpecLn denote the functor corepresented by Ln on
the 8-category of connective E8-rings, so that we can regard SpecL‚ as a simplicial object
of yShvfpqc. It is not difficult to show that SpecL‚ satisfies the hypotheses of Corollary 9.3.1.4,
so that the geometric realization |SpecL‚| (formed in the 8-category yShvfpqc) is a geometric
stack. We will denote this geometric stack by FG and refer to it as the moduli stack of formal
groups. We will refer to the commutative ring L0 as the Lazard ring: by a theorem of Lazard,
it is isomorphic to a polynomial ring Zrv1, v2, . . .s on infinitely many variables. Concretely,
the geometric stack FG can be described as the quotient of the affine scheme SpecL0 by
the action of the affine group scheme Spec Zra˘1

1 , a2, a3, . . .s parametrizing invertible formal
power series gpxq “

ř

ną0 anx
n. For every commutative ring R, one can identify FGpRq with

(the nerve of) the groupoid of (commutative, 1-dimensional) formal groups G over R. This
category can be regarded as a slight enlargement of the category FGLpRq (more precisely,
there is a fully faithful embedding FGLpRq ãÑ FGpRq whose essential image consists of
those formal groups G over R whose Lie algebra is isomorphic to R).

Example 9.3.1.8 (The Derived Moduli Stack of Formal Groups). Let MP denote the
E8-ring of periodic complex bordism: that is, the Thom spectrum of the tautological virtual
complex vector bundle on the classifying space ZˆBU for complex K-theory. We let MP‚

denote the cosimplicial E8-ring given by the Čech nerve (in the 8-category CAlgop) of the
unit map S Ñ MP, so that MPn can be identified with the pn ` 1q-fold smash power of
MP. A celebrated theorem of Quillen supplies an isomorphism L0 „

ÝÑ π0 MP, where L0 is
the Lazard ring of Example 9.3.1.7 (see [169]). A slight elaboration of Quillen’s theorem
establishes an isomorphism of cosimplicial commutative rings L‚ „

ÝÑ π0 MP‚.
The cosimplicial E8-ring MP‚ does not quite fit into the framework of this section,

because the E8-rings MPn are not connective (in fact, each MPn even periodic: that is, we
have noncanonical isomorphisms π˚MPn » pπ0 MPnqru˘1s for some u P π2 MPn). We can
correct this by passing to connective covers: one can show that the spectrum Spec τě0 MP‚

is a simplicial object of yShvfpqc which satisfies the hypotheses of Corollary 9.3.1.4, so that
the geometric realization |Spec τě0 MP‚ | (formed in the 8-category yShvfpqc) is a geometric
stack, which we will denote by FGder. The geometric stack FGder can be regarded as a
“derived version” of the moduli stack of formal groups FG defined in Example 9.3.1.7: the
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isomorphisms L‚ » π0 MP‚ induce a morphism of geometric stacks FG Ñ FGder which
exhibit FG as the 0-truncation of FGder, in the sense of Definition ??.

Remark 9.3.1.9 (The Adams-Novikov Spectral Sequence). Let E be a spectrum, and
let MP‚ be the cosimplicial E8-ring appearing in Example 9.3.1.8. The construction
rns ÞÑ E bMPn determines an object FE P TotpModτě0 MP‚q » QCohpFGderq. Moreover,
we have a canonical map E Ñ TotpE bMP‚q » ΓpFGder; FEq, which is an equivalence in
many cases (for example, it is an equivalence whenever E is connective). For every integer n,
we can regard πn FE as an object of the abelian category QCohpFGderq♥ » QCohpFGq♥.
We will denote the homotopy groups π˚ΓpFG;πn FEq by H´˚pFG;πn FEq, and refer to
them as the cohomology groups of FG with coefficients in FE . The cosimplicial spectrum
E bMP‚ determines a Bousfield-Kan spectral sequence tEs,tr , drurě2, whose second page is
given by Es,t2 “ H´tpFG;πs FEq which, in good cases, converges to πs`tE. This spectral
sequence is known as the Adams-Novikov spectral sequence.

Example 9.3.1.10 (Closure Under Pullbacks). Suppose we are given a pullback diagram

X 1 //

f 1

��

X

f
��

Y 1 // Y

in yShvfpqc, where X and Y 1 are geometric stacks and Y is a quasi-geometric stack. Then X 1

is a geometric stack. To prove this, we first note that X 1 is a quasi-geometric stack (Corollary
9.1.2.6). It will therefore suffice to show that the diagonal map δX 1 : X 1 Ñ X 1 ˆX 1 is affine.
The map δX 1 factors as a composition X 1

u
ÝÑ X 1 ˆX X 1

v
ÝÑ X 1 ˆX 1, where u is a pullback

of the relative diagonal map u0 : Y 1 Ñ Y 1 ˆY Y
1 and v is a pullback of the diagonal map

δX : X Ñ XˆX. The diagonal δX is affine by virtue of our assumption that X is geometric,
so it will suffice to show that u0 is affine. For this, we note that u0 factors as a composition

Y 1
u10
ÝÑ pY 1 ˆY Y

1q ˆY 1ˆY 1 Y
1 u

2
0
ÝÑ pY 1 ˆY Y

1q

where u20 is a pullback of the diagonal δY 1 : Y Ñ Y ˆ Y and is therefore affine (since Y is
geometric). We are therefore reduced to showing that u10 is affine, which follows from the
observation that u10 is a pullback of the relative diagonal Y Ñ Y ˆYˆY Y of the diagonal
map δY : Y Ñ Y ˆ Y . Since Y is quasi-geometric, the map δY is quasi-affine, so its relative
diagonal is affine as desired.

9.3.2 Tannaka Duality for Geometric Stacks

Let X,Y : CAlgcn Ñ S be functors, and suppose that X is a geometric stack. Using
Proposition 9.2.2.1, we deduce that the construction

pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpY qq
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determines a fully faithful embedding MapFunpCAlgcn,SqpY,Xq Ñ FunbpX,Y q. To prove
Theorem 9.3.0.3, we must show that the essential image of this fully faithful embedding is
spanned by those symmetric monoidal functors F : QCohpXq Ñ QCohpY q which preserve
small colimits, connective objects, and flat objects. Writing Y as a colimit of corepresentable
functors, we can assume without loss of generality that Y » SpecA for some connective
E8-ring A. We are therefore reduced to proving the following:

Proposition 9.3.2.1. Let X be a geometric stack, let A be a connective E8-ring, and let
F : QCohpXq Ñ ModA be a symmetric monoidal functor which preserves small colimits and
connective objects. The following conditions are equivalent:

p1q There exists a point η P XpAq and a symmetric monoidal equivalence F » η˚.

p2q The functor F carries flat objects of QCohpXq to flat objects of ModA.

p3q For every faithfully flat morphism g : X0 Ñ X where X0 is affine, the A-algebra
F pg˚OX0q is faithfully flat.

p4q There exists a faithfully flat morphism g : X0 Ñ X where X0 is affine and the A-algebra
F pg˚OX0q is faithfully flat.

Proof. The implication p1q ñ p2q is obvious. We next show that p2q implies p3q. Let g : X0 Ñ

X be a faithfully flat morphism, where X0 is affine. Set B “ g˚OX0 P CAlgpQCohpXqq.
Since X is geometric, the morphism g is affine, so that B is a faithfully flat commutative
algebra object of QCohpXq. Using Lemma D.4.4.3, we see that the cofiber of the unit map
e : OX Ñ B is flat. Assumption p2q then implies that F pcofibpeqq P ModA is flat, so that
F pBq is faithfully flat over A (by virtue of Lemma D.4.4.3).

The implication p3q ñ p4q follows immediately from the existence of a faithfully flat
morphism g : X0 Ñ X, where X0 is affine (which follows from our assumption that X is
geometric). We will complete the proof by showing that p4q implies p1q. Let g : X0 Ñ X be
a faithfully flat where X0 is affine, and set B “ g˚OX0 as above. Since F preserves small
colimits, it follows from the adjoint functor theorem (Corollary HTT.5.5.2.9 ) that F admits
a right adjoint G. By virtue of Theorem 9.2.0.2, it will suffice to prove the following:

paq The functor G preserves small colimits.

pbq For every quasi-coherent sheaf F P QCohpXq and every object M P ModA, the
canonical map GpMq bF Ñ GpM bA F pF qq is an equivalence in QCohpXq.

Set A0 “ F pBq. Since F is exact and preserves flatness, it follows that the cofiber of
the unit map A Ñ A0 is a flat A-module: that is, A0 is faithfully flat over A (Lemma
D.4.4.3). Let B‚ denote the Čech nerve of the unit map OX Ñ B (computed the 8-
category CAlgpQCohpXqqop) and set A‚ “ F pB‚q. Let X‚ be the Čech nerve of g, so that
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we have an equivalence of cosimplicial 8-categories QCohpX‚q » ModB‚pQCohpXqq. Since
X is geometric, the map each of the functors Xk is corepresentable: that is, we can write
X‚ » SpecB‚ for some cosimplicial connective E8-ring B‚.

The functor F determines a natural transformation of cosimplicial 8-categories

F ‚ModB‚ » QCohpX‚q » ModB‚pQCohpXqq Ñ ModA‚pModAq » ModA‚ .

Using Lemma D.3.5.6, we deduce that for every map rms Ñ rns in ∆, the diagram of
8-categories

QCohpXmq
Fm //

��

ModAm

��
QCohpXnq

Fn //ModAn

is right adjointable; moreover, the right adjoint to Fn : QCohpXnq Ñ ModAn can be
identified with the forgetful functor Gn : ModAn Ñ ModBn induced by a map of E8-rings
Bn Ñ An. In particular, Gn commutes with small colimits.

Since X » |X‚| in yShvfpqc, we get a canonical equivalence QCohpXq » lim
ÐÝ

QCohpX‚q.
Corollary D.6.3.3 guarantees that ModA » lim

ÐÝ
ModA‚ , so that the functor F can be identified

with the limit of the functors Fn. It follows from Corollary HA.4.7.4.18 that each of the
diagrams

QCohpXq F //

��

ModA

��
QCohpXnq

Fn //ModAn

is right adjointable.
To prove that G : ModA Ñ QCohpXq » lim

ÐÝ
QCohpX‚q preserves small colimits, it

suffices to show that each of the composite functors ModA Ñ QCohpXq Ñ QCohpXnq

preserves small colimits. By the above, this is equivalent to the assertion that the composite
functor

ModA Ñ ModAn
Gn
ÝÑ QCohpXnq » ModBn pM ÞÑ GnpA

n bAMqq

preserves small colimits, which is clear (since Gn preserves small colimits). This completes
the proof of paq.

It remains to verify that the functor G : ModA Ñ QCohpXq satisfies pbq. Fix an A-
module M and a quasi-coherent sheaf F on X; we wish to show that the canonical map
α : GpMqbF Ñ GpM bAF pF qq is an equivalence in QCohpXq. Since the pullback functor
g˚ : QCohpXq Ñ QCohpX0q » ModB is conservative, it will suffice to show that the induced
map

g˚pαq : g˚GpMq b g˚F Ñ g˚GpM bA F pF qq
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is an equivalence of B-modules. This map fits into a commutative diagram

g˚GpMq b g˚F
g˚pαq //

��

g˚GpM bA F pF qq

��
G0pA

0 bAMq b g
˚F // G0pA

0 bAM b F pF qq

where the vertical maps are equivalences. We are therefore reduced to showing that the
bottom horizontal map is an equivalence, which follows from the projection formula for the

adjunction ModB
F 0
//ModA0

G0
oo .

9.3.3 The Resolution Property

Let X be a geometric stack, and let Y : CAlgcn Ñ S be some other functor According
to Theorem 9.3.0.3, we can identify maps f : Y Ñ X with symmetric monoidal functors
F : QCohpXq Ñ QCohpY q which preserve small colimits, connective objects, and flat objects.
There are some cases in which the last condition follows from the first two. For example, if
F P QCohpXq is locally free of finite rank, then F is dualizable as an object of QCohpXqcn

(Proposition 6.2.6.3). If F is symmetric monoidal and preserves connective objects, it follows
that F pF q is dualizable as an object of QCohpY qcn, hence locally free of finite rank (and in
particular flat). To fully exploit this observation, it will be useful to restrict our attention to
geometric stacks which have “enough” sheaves which are locally free of finite rank.

Notation 9.3.3.1. Let X : CAlgcn Ñ S be an arbitrary functor. We let VectpXq denote the
full subcategory of QCohpXq spanned by those quasi-coherent sheaves F which are locally
free of finite rank (equivalently, VectpXq is the full subcategory of QCohpXqcn spanned by
the dualizable objects: see Proposition 6.2.6.3).

Definition 9.3.3.2. Let X be a geometric stack. We will say that X has the resolution
property if, for every truncated object F P QCohpXq, the following condition is satisfied:

p˚q There exists a collection of objects tE αuαPI of VectpXq and a collection of maps
ρα : E α Ñ F for which the induced map

À

αPI π0 E α Ñ π0 F is an epimorphism in
the abelian category QCohpXq♥.

Remark 9.3.3.3. In the situation of Definition 9.3.3.2, it suffices to verify condition p˚q
when F is connective.

Remark 9.3.3.4. Let X be a 0-truncated geometric stack. In this case, we can identify
the QCohpXq with the completed derived 8-category of the abelian category QCohpXq♥
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(Proposition ??). Using this identification, we can represented each truncated object
F P QCohpXq by a chain complex

¨ ¨ ¨ Ñ I2
d2
ÝÑ I1

d1
ÝÑ I0

d0
ÝÑ I´1

d´1
ÝÝÑ I´2 Ñ ¨ ¨ ¨

of injective objects of QCohpXq♥, where In » 0 for n " 0. It follows that there exists a map
kerpd0q Ñ F which is an epimorphism on π0, where kerpd0q P QCohpXq♥. Consequently, in
the situation of Definition 9.3.3.2, it suffices to verify condition p˚q in the special case where
F P QCohpXq♥.

Remark 9.3.3.5. Let X be a geometric stack and suppose that X is locally Noetherian
(see Definition 9.5.1.1). Using Proposition 9.5.2.3 and Corollary ??, we see that every object
F P QCohpXqďn can be written as the colimit of a filtered diagram tF βu, where each
F β P QCohpXqďn is almost perfect. Consequently, to verify assertion p˚q of Definition
9.3.3.2 for X, it suffices to verify p˚q for each F β. Note that since F β is almost perfect,
a map

À

αPI E α Ñ F β induces an epimorphism on π0 if and only if there exists a finite
subset I0 Ď I for which the composite map

à

αPI0

E α Ñ
à

αPI

E α Ñ F β

is an epimorphism on π0. It follows that X has the resolution property if and only if every
truncated object F P QCohpXqaperf satisfies the following condition:

p˚1q There exists a map ρ : E Ñ F , where E P VectpXq and the induced map π0 E Ñ π0 F

is an epimorphism in the abelian category QCohpXq♥.

Remark 9.3.3.6. Let X be a geometric stack which is 0-truncated and locally Noetherian.
Combining Remarks 9.3.3.3, 9.3.3.4, and 9.3.3.5, we see that X has the resolution property if
and only if, for every object F P CohpXq♥ (Notation 9.5.2.1), there exists an epimorphism
E Ñ F with E P VectpXq. In the setting of Artin stacks, this condition has been studied
by many authors; see for example [217].

Proposition 9.3.3.7. Let X be a geometric stack, and suppose that the structure sheaf OX

is a compact object of QCohpXq. The following conditions are equivalent:

p1q The geometric stack X has the resolution property (Definition 9.3.3.2).

p2q The full subcategory VectpXq Ď QCohpXqcn is a generating subcategory for QCohpXqcn,
in the sense of Definition C.2.1.1. In other words, for every object F P QCohpXqcn,
there exists a collection of objects tE αuαPI of VectpXq and a map

À

αPI E α Ñ F

which is an epimorphism on π0.
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Proof. The implication p2q ñ p1q is immediate (and does not require the assumption
that OX is compact). To prove the converse, we note that the assumption that OX is
compact guarantees that there exists an integer n " 0 such that the functor G ÞÑ ΓpX; G q
carries QCohpXqě0 into Spě´n (Proposition 9.1.5.3). Let F be an arbitrary object of
QCohpXq. Using assumption p1q, we deduce the existence of objects E α P VectpXq and
maps ρα : E α Ñ τďn F which induce an epimorphism

À

π0 E α Ñ π0 F . Using the exactness
of the sequences

π0ΓpX; E _α bF q Ñ π0ΓpX; E _α bτďn F q Ñ π´1ΓpX; E _α bτěn`1 F q

(whose third terms vanishes, by virtue of our assumption on n), we see that each ρα
can be lifted to a map ρα : E α Ñ F . We conclude by observing that the induced map
À

αPI E α Ñ F is also surjective on π0.

Proposition 9.3.3.8. Let f : X Ñ Y be a morphism of geometric stacks. If f is quasi-affine
and Y has the resolution property, then X has the resolution property.

Proof. Let F be a truncated object of QCohpXq. Then f˚F is a truncated object of
QCohpY q. Since Y has the resolution property, we can choose objects E α P VectpY q and a
map ρ :

À

α E α Ñ f˚F which induces an epimorphism on π0. We can then identify ρ with
a map ρ1 :

À

α f
˚ E α Ñ F in QCohpXq. Since f is quasi-affine, it follows that ρ1 is also an

epimorphism on π0.

Corollary 9.3.3.9. Let X be a geometric stack. If X has the resolution property, then the
n-truncation of X also has the resolution property, for any n ě 0.

9.3.4 The Adams Condition

Let X be a geometric stack. It is somewhat difficult to verify that X has the resolution
property by proceeding directly from the definition: a priori, it would require us to “resolve”
every truncated quasi-coherent sheaf F on X by vector bundles. In this section, we will
show that (under mild hypotheses) the condition that X has the resolution property admits
an alternative formulation which is often much easier to verify.

Remark 9.3.4.1. For 0-truncated geometric stacks, the results of this section are due to
Schäppi. We will follow the presentation of [178] with some minor modifications.

Definition 9.3.4.2. Let X : CAlgcn Ñ S be a geometric stack. We will say that X satisfies
the Adams condition if there exists a faithfully flat map f : U Ñ X where U is affine and
the direct image f˚OU can be written as the colimit of a filtered diagram tFαu, where each
Fα P QCohpXq is locally free of finite rank.
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Remark 9.3.4.3. Definition 9.3.4.2 can be regarded as a “derived” version of the notion of
Adams stack introduced in [80]; it specializes to the definition given in [80] in the case when
X is 0-truncated (that is, when there exists a faithfully flat morphism SpecAÑ X, where
A is a commutative ring).

Remark 9.3.4.4. Let f : X Ñ Y be a morphism of geometric stacks. If f is affine and Y

satisfies the Adams condition, then X satisfies the Adams condition. To see this, suppose
that g : U Ñ Y is a faithfully flat morphism, where g˚OU can be written as the colimit
of a filtered diagram tFαu in QCohpY q with each Fα locally free of finite rank. Form a
pullback diagram

V //

g1

��

U

g

��
X

f // Y.

Our assumption that f is affine guarantees that V is affine, and the projection formula
allows us to identify g1˚OV with the colimit of the diagram tf˚Fαu in QCohpXq. Since g1

is faithfully flat and each f˚Fα is locally free of finite rank, it follows that X satisfies the
Adams condition.

Remark 9.3.4.5. Let X be a geometric stack and let n ě 0 be an integer. If X satisfies
the Adams condition, then the n-truncation X 1 of X satisfies the Adams condition: this
follows from Remark 9.3.4.4, since the canonical map X 1 Ñ X is affine (see Remark ??).

The terminology of Definition 9.3.4.2 is motivated by the following example, which based
on an observation of Adams:

Example 9.3.4.6 (The Derived Moduli Stack of Formal Groups). Let FGder denote the
derived moduli stack of formal groups (Example 9.3.1.8). Then FGder satisfies the Adams
condition. To see this, let MP denote the periodic complex bordism spectrum, given as the
Thom spectrum of the (universal) virtual complex vector bundle ξ over the space ZˆBU.
By construction, there exists a faithfully flat map f : U Ñ FGder, where U “ Spec τě0 MP is
affine. One can show that the direct image f˚OU P QCohpFGderq is the truncation τě0 FMP,
where FMP P QCohpFGderq is the quasi-coherent sheaf appearing in Remark 9.3.1.9. The
space ZˆBU can be written as a filtered homotopy colimit lim

ÝÑ
Fα, where each Fα is a

disjoint union of Grassmann manifolds Grp,q “ tV Ď Cp`q : dimpV q “ pu. For each index
α, let Eα denote the Thom spectrum of ξ|Fα , so that we have equivalences

lim
ÝÑ

Eα » MP lim
ÝÑ

FEα » FMP .

To prove the desired result, it suffices to observe that each τě0 FEα P QCohpFGderq is locally
free of finite rank. This is a consequence of the fact that each Grp,q admits a cell decomposition
which uses only cells of even dimension (for example, the Bruhat decomposition of Grp,q)
together with the fact that the homotopy groups of MP are concentrated in even degrees.



770 CHAPTER 9. TANNAKA DUALITY

Example 9.3.4.7 (The Moduli Stack of Formal Groups). Let FG denote the moduli stack
of formal groups (Example 9.3.1.7). Then FG satisfies the Adams condition. This follows
from Example 9.3.4.6 and Remark 9.3.4.5, since FG can be identified with the 0-truncation of
FGder. For a more direct proof (which does not appeal to Quillen’s work on the relationship
between formal group laws and complex bordism) we refer the reader to [80].

The Adams condition of Definition 9.3.4.2 is linked to the resolution property of Definition
9.3.3.2 by the following result:

Theorem 9.3.4.8. Let X be a geometric stack. Assume either that OX is a compact object
of QCohpXq or that X is n-truncated for some n ě 0. Then X has the resolution property
if and only if X satisfies the Adams condition.

Remark 9.3.4.9. When X is 0-truncated, Theorem 9.3.4.8 appears in [178].

Theorem 9.3.4.8 is a consequence of the following more precise assertions:

Proposition 9.3.4.10. Let X be a geometric stack. If X satisfies the Adams condition,
then X has the resolution property.

Proposition 9.3.4.11. Let X be a geometric stack. Assume either that OX is a compact
object of QCohpXq or that X is n-truncated for some n ě 0. Then, for any flat map
f : U Ñ X where U is affine, the direct image f˚OU can be written as the colimit of a
filtered diagram in VectpXq. In particular, X satisfies the Adams condition.

Remark 9.3.4.12. It follows from Propositions 9.3.4.10 and 9.3.4.11 that, if OX is compact
or X is n-truncated, then the statement of the Adams condition appearing in Definition
9.3.4.2 does not depend on the choice of the faithfully flat map f : U Ñ X (so long as U is
affine).

Proof of Proposition 9.3.4.10. Let X be a geometric stack. If X satisfies the Adams condi-
tion, then we can choose a there exists a faithfully flat morphism f : U Ñ X with U affine and
an equivalence of f˚OU with the colimit of a filtered diagram tE αu, where each E α belongs to
VectpXq. We wish to prove that X has the resolution property. Let F be a truncated object
of QCohpXq. Since U is affine, we can choose a map

À

βPI OU
u
ÝÑ f˚F which induces an

epimorphism on π0. For each β P I, we can identify the restriction of u to the corresponding
summand of

À

βPI OU with a map uβ : OX Ñ f˚f
˚F » F bf˚OU » lim

ÝÑ
F bE α. Using

Proposition 9.1.5.1 (and our assumption that F is truncated), we deduce that uβ factors

as a composition OX

u1β
ÝÑ F bE α Ñ F bf˚OU for some index α (which might depend

on β). Then u1β classifies a map vβ : E _α Ñ F . Amalgamating these, we obtain a map
v :

À

E _α Ñ F . By construction, the map u factors through f˚pvq. Since u induces an
epimorphism on π0, it follows that f˚pvq also induces an epimorphism on π0. The map f is
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faithfully flat, so that v must also induce an epimorphism on π0. Allowing F to vary, we
deduce that X has the resolution property.

The proof of Proposition 9.3.4.11 is more involved. We first establish the following:

Lemma 9.3.4.13. Let X be a geometric stack. Assume that X has the resolution property
and satisfies one of the following additional conditions:

piq The structure sheaf OX is a compact object of QCohpXq.

piiq There exists an integer n ě 0 such that X is n-truncated.

Let f : U Ñ X be a flat morphism, where U is affine. Then the 8-category VectpXqˆQCohpXq
QCohpXq{f˚ OU is filtered.

Proof. Suppose we are given a finite simplicial setK and a diagram q : K Ñ VectpXqˆQCohpXq
QCohpXq{f˚ OU ; we wish to show that q can be extended to a map q : KŹ Ñ VectpXqˆQCohpXq
QCohpXq{f˚ OU . For each vertex α P K, let us view qpαq as an object E α P VectpXq equipped
with a map uα : E α Ñ f˚OU , which we will identify with a map u1α : f˚ E α Ñ OU . Amal-
gamating the maps u1α, we obtain a map u1 : lim

ÝÑα
f˚ E α Ñ OU , which we can identify with

a map u1_ : OU Ñ lim
ÐÝα

f˚ E _α » f˚ lim
ÐÝα

E _α . We claim that there exists a collection of
objects tG βuβPI in VectpXq and a map v :

À

G β Ñ lim
ÐÝ

E _α in QCohpXq which induces an
epimorphism on π0. If condition piiq is satisfied, then there exists an integer n ě 0 such that
X is n-truncated, so that each E _α P VectpXq is also n-truncated and therefore lim

ÐÝα
E _α is an

n-truncated object of QCohpXq. In this case, the existence of v follows from our assumption
that X has the resolution property. If condition piq is satisfied, the existence of v follows
from Proposition 9.3.3.7.

Since U is affine, the structure sheaf OU is a compact projective object of QCohpUqcn. It
follows that we can choose a finite subset I0 Ď I for which the map u1_ factors as a composition
OU

w
ÝÑ

À

βPI0
f˚ G β

f˚v
ÝÝÑ f˚ lim

ÐÝα
F_

α . Set G “
À

βPI0
G β, so that G P QCohpXq is locally

free of finite rank. Then v0 “ v|G determines a morphism v_0 : lim
ÝÑα

E α Ñ G_ in the
8-category QCohpXq for which the map u1 factors as a composition

f˚ lim
ÝÑ
α

E α
f˚v_0
ÝÝÝÑ f˚ G_

w_
ÝÝÑ OU ;

a choice of such factorization can be identified with the desired extension q.

Proof of Proposition 9.3.4.11. Let X be a geometric stack satisfying the hypotheses of
Lemma 9.3.4.13 and let f : U Ñ X be a flat morphism, where U is affine. We wish
to show that f˚OU can be written as as the colimit of a filtered diagram in VectpXq.
Let C “ FunπpVectpXqop,Sq denote the full subcategory of FunpVectpXqop,Sq spanned
by those functors which preserve finite products. The construction pF P QCohpXqcnq ÞÑ
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MapQCohpXqp‚,F q determines a left exact functor of Grothendieck prestable 8-categories
G : QCohpXqcn Ñ C. The functor G admits a left adjoint F : C Ñ QCohpXqcn (which can
be characterized abstractly as the essentially unique extension of the inclusion VectpXq ãÑ

QCohpXqcn which commutes with sifted colimits). Unwinding the definitions, we see that
for each object F P QCohpXqcn, the counit map vF : pF ˝GqpF q Ñ F can be identified
with the natural map

lim
ÝÑ

E PVectpXqˆQCohpXqQCohpXq{F

E Ñ F .

If F “ f˚OU , then Lemma 9.3.4.13 implies that the domain of vF is the colimit of a filtered
diagram taking values in VectpXq. It will therefore suffice to show that vF is an equivalence.
We consider two cases:

piq Suppose that OX is compact. In this case, our assumption that X has the resolution
property guarantees that VectpXq is a generating subcategory of QCohpXqcn, in the
sense of Definition C.2.1.1 (see Proposition 9.3.3.7). Since QCohpXqcn is separated,
the 8-categorical Gabriel-Popescu theorem (Theorem C.2.1.6) implies that G is fully
faithful, so that vF is an equivalence for every object of F P QCohpXqcn.

piiq Suppose that X is n-truncated. Then every object E P VectpXq is n-truncated.
Combining our assumption that X has the resolution property with Propositions
C.2.5.2 and C.2.5.3, we deduce that F is left exact and that G is fully faithful
when restricted to n-truncated objects. In particular, for every n-truncated object
F P QCohpXqcn, the counit map vF : pF ˝GqpF q Ñ F is an equivalence. We now
conclude by observing that our assumption that X is n-truncated guarantees that
f˚OU P QCohpXqcn is n-truncated.

9.3.5 Consequences for Tannaka Duality

In the presence of the resolution property, Tannaka duality takes a particularly simple
form.

Theorem 9.3.5.1 (Tannaka Duality for Adams Stacks). Let X be a geometric stack, and
suppose that the 0-truncation of X has the resolution property. Then the construction
pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpY qq determines a fully faithful embedding

MapFunpCAlgcn,pSqpY,Xq Ñ FunbpQCohpXq,QCohpY qq,

whose essential image is spanned by those symmetric monoidal functors F : QCohpXq Ñ
QCohpY q which preserve small colimits and connective objects.
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Remark 9.3.5.2. In the situation of Theorem ??, the hypothesis that the 0-truncation
of X has the resolution property is satisfied whenever X itself has the resolution property
(Corollary 9.3.3.9).

Remark 9.3.5.3. Theorem 9.3.5.1 is a “derived” analogue of a result of Schäppi (see [178]),
which we will discuss in §9.7; see Theorem ??.

Proof of Theorem 9.3.5.1. Choose a faithfully flat map f : U Ñ X, where U is affine. By
virtue of Theorem 9.3.0.3, it will suffice to show that if F : QCohpXq Ñ QCohpY q is a
symmetric monoidal functor which preserves small colimits and connective objects, then
F pOU q P CAlgpQCohpY qq is faithfully flat. To verify this condition, we may assume without
loss of generality that Y » SpecA is affine. Let us abuse notation by identifying F with
a symmetric monoidal functor QCohpXq Ñ ModA. Set B “ F pπ0 OXq. Since F is right
t-exact, the canonical map A » F pOXq Ñ F pπ0 OXq “ B has 1-connective fiber. In
particular, it induces an isomorphism of commutative rings π0A Ñ π0B. It follows that
an A-algebra A1 is faithfully flat if and only if the tensor product B bA A1 is faithfully flat
over B. Note that F induces a functor F 1 : Modπ0 OX pQCohpXqq Ñ ModB which fits into a
commutative diagram

QCohpXq F //

��

ModA
BbA
��

Modπ0 OX pQCohpXqq F 1 //ModB .

Here we can identify Modπ0 OX pQCohpXqq with the 8-category of quasi-coherent sheaves
on the 0-truncation X0 of X. Replacing X by X0 and F by F 1, we are reduced to proving
Theorem 9.3.5.1 in the special case where X is 0-truncated. In this case, Proposition 9.3.4.11
implies that we can write f˚OU can be written as the colimit of a diagram tE αuαPI indexed
by a filtered partially ordered set I, where each E α belongs to VectpXq. Our assumption
that X is 0-truncated implies that each E α belongs to the heart of QCohpXq. Since OX is
a compact object of QCohpXq♥ (Proposition 9.1.5.1), we may assume that the unit map
e : OX Ñ f˚OU factors as a composition OX

eα
ÝÑ E α Ñ f˚OX for some α P I. For β ě α,

let eβ denote the composition of eα with the transition map E α Ñ E β, so that we have an
equivalence cofibpeq » lim

ÝÑβěα
cofibpeβq. By virtue of Lemma D.4.4.3, to prove that F pf˚OU q

is faithfully flat, it will suffice to show that cofibF peq » lim
ÝÑβěα

F pcofibpeβqq P ModA is
flat. Since the collection of flat objects of ModA is closed under filtered colimits, it will
suffice to show that each F pcofibpeβq P ModA is flat. In fact, we will prove that each
F pcofibpeβqq is locally free of finite rank: that is, that it is a dualizable object of Modcn

A (see
Proposition 6.2.6.3). By assumption, the functor F is symmetric monoidal and preserves
connective objects; it will therefore suffice to show that each cofibpeβq is a dualizable object
of QCohpXqcn.
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Note that the composite map f˚OX
f˚eβ
ÝÝÝÑ f˚ E α Ñ f˚f˚OU Ñ OU is an equivalence,

so that f˚eα admits a left homotopy inverse. It follows that cofibpf˚eαq » f˚ cofibpeβq is
a direct summand of f˚ E α, and is therefore locally free of finite rank. Since the map f is
faithfully flat, it follows that cofibpeβq is locally free of finite rank, and therefore dualizable
as an object of QCohpXqcn by virtue of Proposition 6.2.6.3.

9.3.6 Example: Classifying Stacks over Dedekind Rings

The following observation furnishes many examples of geometric stacks with the resolution
property:

Proposition 9.3.6.1. Let X be a geometric stack. Suppose that there exists a faith-
fully flat morphism q : SpecR Ñ X, where R is a Dedekind ring. Then the inclusion
VectpXq ãÑ QCohpXq induces an equivalence of 8-categories IndpVectpXqq » QCohpXq5;
here QCohpXq5 denotes the full subcategory of QCohpXq spanned by the flat objects.

Corollary 9.3.6.2. Let X be a geometric stack. If there exists a faithfully flat morphism
SpecRÑ X, where R is a Dedekind ring, then X has the resolution property.

Proof. Combine Propositions 9.3.6.1 and 9.3.4.10.

Example 9.3.6.3. Let R be a Dedekind ring and let G be a flat affine group scheme over
R. Then the classifying stack BG (see Example 9.1.1.7) has the resolution property.

Proof of Proposition 9.3.6.1. Let U : QCohpXq♥ Ñ QCohpXq♥ denote the functor given
by q˚q

˚. For any object G P QCohpXq♥, we can identify G with the totalization of the
cosimplicial object U‚`1 G . For each F P QCohpXq♥, we have a canonical bijection

HomQCohpXq♥pF ,G q » TotpHomQCohpXq♥pF , U‚`1 G q

» kerpHomQCohpXq♥pF , U G q Ñ HomQCohpXq♥pF , U2 G qq

» kerpHomMod♥
R
pq˚F , q˚ G q Ñ HomMod♥

R
pq˚F , q˚q˚q

˚ G qq.

If F is locally free of finite rank, then q˚F is compact as an object of Mod♥
R, so that the

constructions

G ÞÑ HomMod♥
R
pq˚F , q˚ G q G ÞÑ HomMod♥

R
pq˚F , q˚q˚q

˚ G q

commute with filtered colimits. It follows that the construction G ÞÑ HomQCohpXq♥pF ,G q

also commutes with filtered colimits: that is, F is a compact object of the abelian category
QCohpXq♥, and therefore also as an object of QCohpXq5. It follows that the construction
θ : IndpVectpXqq Ñ QCohpXq5 is fully faithful.
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We now prove that θ is essentially surjective. Let F P QCohpXq5, so that M “ q˚F is a
flat R-module. Write M as a union

Ť

Mα, where each Mα is a finitely generated submodule
of M . For each index α, set Fα “ F ˆq˚Mq˚Mα, where the fiber product is formed in
the abelian category QCohpXq♥. Since QCohpXq♥ is a Grothendieck abelian category, the
formation of filtered colimits in QCohpXq♥ commutes with finite limits. We therefore have
an equivalence F » lim

ÝÑ
Fα. To complete the proof, it will suffice to show that each Fα

is locally free of finite rank. In other words, we wish to show that q˚Fα is locally free
of finite rank when regarded as an R-module. Note that the projection map Fα Ñ F

induces a monomorphism q˚Fα Ñ q˚F » M which factors through Mα, so that q˚Fα

is a submodule of Mα. Since Mα is finitely generated and R is Noetherian, it follows that
q˚Fα is also finitely generated as an R-module. The flatness F guarantees that M “ q˚F

is a torsion free R-module, so that the submodule q˚Fα is also torsion-free and therefore a
locally free R-module (by virtue of our assumption that R is a Dedekind ring).

9.3.7 Restriction to Vector Bundles

Let X be a geometric stack. It follows from Proposition 9.2.2.1 that an A-valued point
η P XpAq is determined (up to contractible ambiguity) by the symmetric monoidal pullback
functor η˚ : QCohpXq Ñ ModA. In fact, we can often make do with less: if X has “enough”
vector bundles, then η is determined by the functor η˚|VectpXq.

Theorem 9.3.7.1 (Tannaka Duality, Vector Bundle Version). Let X be a geometric stack
which has the resolution property. Assume either that X is n-truncated for some integer
n ě 0 or that OX is a compact object of QCohpXq. Then, for any functor Y : CAlgcn Ñ S,
the construction pf : Y Ñ Xq ÞÑ pf˚ : VectpXq Ñ VectpY qq determines a fully faithful
embedding

MapFunpCAlgcn,SqpY,Xq Ñ FunbpVectpXq,VectpY qq

whose essential image is spanned by those symmetric monoidal functors f : VectpXq Ñ
VectpY q which satisfy the following condition:

p˚q The functor f preserves zero objects and, for every diagram σ :

E 1 //

��

E

��
0 // E 2

in VectpXq which is a cofiber sequence QCohpXqcn, the image fpσq is a cofiber sequence
in QCohpY qcn.

Remark 9.3.7.2. In the special case where X is 0-truncated, Theorem ?? was proven by
Schäppi in [178].
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Before giving the proof of Theorem 9.3.7.1, let us describe some of its consequences.

Corollary 9.3.7.3. Let R be a Dedekind ring, let G be a flat affine group scheme over R,
and let ReppGq denote the category of algebraic representations of G which are projective R-
modules of finite rank (which we identify with the full subcategory VectpBGq Ď QCohpBGq).
Let Y : CAlgcn Ñ S be an arbitrary functor. Then the canonical map

MapFunpCAlgcn,pSqpY,BGq Ñ FunbpReppGq,VectpY qq

is a fully faithful embedding, whose essential image is the full subcategory spanned by those
symmetric monoidal functors F : ReppGq Ñ VectpY q which carry exact sequences

0 Ñ V 1 Ñ V Ñ V 2 Ñ 0

in ReppGq to fiber sequences in QCohpY q.

Proof. Combine Theorem 9.3.7.1 with Proposition 9.3.6.1.

Warning 9.3.7.4. In the situation of Corollary 9.3.7.3, the exactness condition on the functor
F : ReppGq Ñ VectpY q is not automatic. For example, suppose that Y “ Spec Crx, ys is an
affine space of dimension 2, and that U Ď Y is the open subset obtained from Y by deleting
the origin. Then the restriction map VectpY q Ñ VectpUq is an equivalence of symmetric
monoidal categories. However, there can exist G-torsors P on U which do not extend to
G-torsors on Y . For example, if G “ Ga denotes the additive group (regarded as a group
scheme over C, say), then every G-torsor on Y is trivial (since Y is affine), while G-torsors
on U are classified up to isomorphism by the cohomology group H1pU ; OU q (which is an
infinite-dimensional vector space over C). Nontrivial elements of H1pU ; OU q are classified by
symmetric monoidal functors ReppGq Ñ VectpUq » VectpY q which carry exact sequences in
ReppGq to diagrams 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 in VectpY q which are not necessarily exact
(but are exact when restricted to U).

From Corollary ??, we immediately deduce a slightly stronger version of Theorem 9.0.0.1:

Corollary 9.3.7.5. Let R be a Dedekind ring, let G be a flat affine group scheme over R,
let A be a commutative R-algebra, and let e : ReppGq Ñ Modlf

A be the symmetric monoidal
functor given by V ÞÑ AbRV . Then the canonical map GpAq Ñ Autbpeq is an isomorphism,
where Autbpeq denotes the automorphism group of e in the category FunbpReppGq,Modlf

Aq

of symmetric monoidal functors from ReppGq to Modlf
A.

Corollary 9.3.7.6. Let X be a geometric stack which has the resolution property. Assume
either that X is n-truncated for some integer n ě 0 or that OX is a compact object of
QCohpXq. Let R be a connective E8-ring which is complete with respect to a finitely
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generated ideal I, let Y be a spectral algebraic spaces which is proper and almost of finite
presentation over R, and let Y^ “ YˆSpecR Spf R be the formal completion of Y along
the vanishing locus of I. Let us abuse notation by regarding Y and Y^ with the functors
CAlgcn Ñ S that they represent. Then the canonical map

MapFunpCAlgcn,SqpY, Xq Ñ MapFunpCAlgcn,SqpY^, Xq

is a homotopy equivalence.

Proof. By virtue of Theorem 9.3.7.1, it will suffice to show that the restriction map VectpYq Ñ
VectpY^q is an equivalence of 8-categories. Note that VectpYq and VectpY^q can be
identified with the full subcategories of QCohpYqaperf,cn and QCohpY^qaperf,cn spanned by
the dualizable objects. We conclude by observing that Theorem 8.5.0.3 (together with
Theorems 8.3.4.4 and 8.3.5.2) and Proposition 8.5.1.4 imply that the restriction functor
QCohpYqaperf,cn Ñ QCohpY^qaperf,cn is an equivalence of 8-categories.

The proof of Theorem 9.3.7.1 is based on the following:

Proposition 9.3.7.7. Let X be a geometric stack which has the resolution property. Assume
either that X is n-truncated for some integer n ě 0 or that OX is a compact object of
QCohpXq. Let G : QCohpXqcn Ñ FunπpVectpXqop,Sq be the functor given by GpF qpE q “
MapQCohpXqpE ,F q. Then, for every integer m ě 0, the functor G restricts to a fully faithful
embedding

QCohpXqcn
ďm ãÑ FunπpVectpXqop, τďm Sq

whose essential image is spanned by those functors λ : VectpXqop Ñ τďm S which satisfy the
following additional condition:

p‹q The space λp0q is contractible and, for every diagram σ :

E 1 //

��

E

��
0 // E 2

in VectpXq which is a cofiber sequence QCohpXqcn, the diagram λpσq is a pullback
square in S.

Proof. Set C “ FunπpVectpXqop,Sq, and let F : C Ñ QCohpXqcn be left adjoint to G. Using
our assumption that X has the resolution property (together with Proposition 9.3.3.7), we
see that VectpXq ãÑ QCohpXqcn satisfies the hypothesis p˚kq of Propositions C.2.5.2 and
C.2.5.3, where we take k “ 8 if OX is a compact object of QCohpXq, or any finite k ě n if
X is n-truncated. We therefore obtain the following:
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piq The functor F : C Ñ QCohpXqcn is left exact.

piiq The functor G is fully faithful when restricted to QCohpXqcn
ďm, for any m ě 0.

(moreover, if OX is compact, then the functor G itself is fully faithful).

Let C0 Ď C denote the full subcategory spanned by the m-truncated objects functors
which satisfy condition p‹q, and let C1 be the essential image of G|QCohpXqcn

ďm
. We wish

to show that C0 “ C1. The inclusion C1 Ď C0 follows immediately from the definition.
To prove the reverse inclusion, we observe that for every object C P C0, the unit map
u : C Ñ pG ˝ F qpCq is m-truncated (since the domain and codomain of u are m-truncated),
the codomain of u belongs to C1, and F puq is an equivalence (since the functor G is fully
faithful). It will therefore suffice to prove the following:

pakq Let f : C Ñ D be a k-truncated morphism between objects of C0. If F pfq is an
equivalence, then f is an equivalence.

Our proof of pakq proceeds by induction on k. If k “ ´2, then the assumption that f
is k-truncated guarantees that f is an equivalence, so there is nothing to prove. Let us
therefore assume that k ě ´1. Our assumption that f is k-truncated implies that the
diagonal map δ : C Ñ C ˆD C is pk ´ 1q-truncated. Using piq, we deduce that F pδq is an
equivalence, so that our inductive hypothesis guarantees that δ is an equivalence. It follows
that the morphism f : C Ñ D is p´1q-truncated: that is, it induces a homotopy equivalence
CpE q Ñ DpE q for each object E P VectpXq. To complete the proof that f is an equivalence,
it will suffice to show that each point η P DpE q can be lifted to a point of CpE q. To prove
this, we can replace D by E and C by the fiber product C ˆD E and thereby reduce to the
case where η classifies an equivalence E Ñ D in the 8-category C.

Choose a collection of objects tE iuiPI in VectpXq and morphisms φi : E i Ñ C which
induce an epimorphism π0p

À

E iq Ñ π0C in the abelian category C♥. Since F pfq is an
equivalence, it follows that the composite map

ψ :
à

iPI

E i
F pφiq
ÝÝÝÑ F pCq

F pfq
ÝÝÝÑ F pDq “ E

induces an epimorphism on π0 in the abelian category QCohpXq♥. We may therefore choose
a finite subset I0 Ď I for which ψ|À

iPI0
E i induces an epimorphism on π0. Set E “

À

iPI0
E i.

Amalgamating the maps tφiuiPI0 , we obtain a morphism φ : E Ñ E in VectpXq which
induces an epimorphism on π0, so that the fiber fibpφq belongs to VectpXq. Since C,D P C0,
we have a commutative diagram of fiber sequences

CpE q //

��

CpE q //

��

Cpfibpφqq

��
DpE q // DpE q // Dpfibpφqq
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where the vertical maps are induced by f and therefore have p´1q-truncated homotopy
fibers. By construction, the image of η in DpE q can be lifted to a point of CpE q, so that η
can be lifted to a point of CpE q as desired.

Proof of Theorem 9.3.7.1. Let X be a geometric stack with the resolution property. If D
is an 8-category which admits small colimits, we let FunbexpVectpXq,Dq denote the full
subcategory of FunbpVectpXq,Dq spanned by those symmetric monoidal functors f which
satisfy the following additional condition:

p˚Dq The functor f preserves initial objects and, for every diagram σ :

E 1 //

��

E

��
0 // E 2

in VectpXq which is a cofiber sequence QCohpXqcn, the image fpσq is a cofiber sequence
in QCohpY qcn.

Note that when D “ QCohpY qcn, then any symmetric monoidal functor f : VectpXq Ñ D
automatically factors through the full subcategory VectpY q Ď QCohpY qcn.

Assume now that either X is n-truncated for some integer n, or that the structure sheaf
OX is a compact object of QCohpXq. We wish to show that the canonical map

ρ : MapFunpCAlgcn,SqpY,Xq Ñ FunbexpVectpXq,QCohpY qcnq

is an equivalence of8-categories. Without loss of generality, we may assume that Y “ SpecR
is affine. Using Theorem 9.3.5.1, we can identify the domain of ρ with the 8-category
LFunbpQCohpXqcn,QCohpY qcnq of colimit-preserving symmetric monoidal functors from
QCohpXqcn to QCohpY qcn. In this case, we can identify ρ with the limit of a tower of
forgetful functors

ρm : LFunbpQCohpXqcn,QCohpY qcn
ďmq Ñ FunbexpVectpXq,QCohpY qcn

ďmq.

It will therefore suffice to show that each ρm is an equivalence of 8-categories.
Let C “ PΣpVectpXqq be the full subcategory FunπpVectpXqop,Sq Ď FunpVectpXqop,Sq

spanned by those functors which preserve finite products. Let us abuse notation by identifying
VectpXq with its essential image under the Yoneda embedding VectpXq Ñ C. Using the
results of §??, we see that if D is any presentable symmetric monoidal 8-category (whose
tensor product preserves small colimits separately in each variable), then the restriction
functor θ : LFunbpC,Dq Ñ FunbpVectpXq,Dq is fully faithful, and its essential image
is spanned by those symmetric monoidal functors VectpXq Ñ D which preserve finite
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coproducts. In particular, the inclusion VectpXq ãÑ QCohpXqcn determines an object
F : LFunbpC,QCohpXqcnq. Let LFunb0 pC,Dq denote the full subcategory of LFunbpC,Dq
spanned by those functors which satisfy condition p˚Dq, so that θ restricts to an equivalence
of 8-categories LFunb0 pC,Dq Ñ FunbexpVectpXq,Dq. Under this equivalence, we see can
identify ρm with the functor

FunbpQCohpXqcn,QCohpY qcn
ďmq Ñ Funb0 pC,QCohpY qcn

ďmq

given by composition with F . It follows from Proposition 9.3.7.7 that this functor is an
equivalence of 8-categories.

9.4 Perfect Stacks

Let X : CAlgcn Ñ S be a quasi-geometric stack. For every connective E8-ring R,
Theorem 9.2.0.2 supplies a fully faithful embedding XpRq ãÑ FunbpQCohpXq,ModRq, whose
essential image is spanned by those symmetric monoidal functors F : QCohpXq Ñ ModR
which satisfy the following conditions:

p1q The functor F preserves small colimits and is right t-exact.

p2q The functor F admits a right adjoint G which preserves small colimits and satisfies a
projection formula.

In this section, we will show that for a large class of quasi-geometric stacks X, condition
p2q is a formal consequence of p1q. To get a sense of the ideas involved, note that if
the stable 8-category QCohpXq is compactly generated, then a colimit-preserving functor
F : QCohpXq Ñ ModR preserves compact objects if and only if it has a right adjoint G which
preserves filtered colimits (hence all colimits, since G is an exact functor between stable 8-
categories). Consequently, to simplify the hypotheses of Theorem 9.2.0.2, it is convenient to
assume that the8-category QCohpXq is compactly generated. Following [23], we will say that
a quasi-geometric stack X is perfect if the canonical map IndpQCohpXqperfq Ñ QCohpXq is
an equivalence of8-categories (see Definition 9.4.4.1). A result of Bhatt and Halpern-Leistner
asserts that if X is perfect, then a symmetric monoidal functor F : QCohpXq Ñ QCohpY q
is given by pullback along a map f : Y Ñ X if and only if F preserves small colimits and
connective objects (Corollary 9.4.4.7). In this section, we will introduce several a priori
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weaker conditions on X which guarantee the same result, which are related as follows:

X is perfect

��
X is weakly perfect

��
QCohpXq is dualizable

��
X has the diagonal approximation property.

Remark 9.4.0.1. We do not know which (if any) of the above implications are reversible.

9.4.1 The Diagonal Approximation Property

Let PrSt denote the subcategory of yCat8 whose objects are presentable stable8-categories
and whose morphisms are functors which preserve small colimits. We will regard PrSt as
equipped with the symmetric monoidal structure described in §HA.4.8.2 : if C and D are
presentable stable8-categories, then the tensor product CbD is universal among presentable
stable 8-categories E for which there exists a map CˆD Ñ E which preserves small colimits
separately in each variable.

Construction 9.4.1.1. Let X,Y : CAlgcn Ñ S be quasi-geometric stacks, and consider the
projection maps X p

ÐÝ X ˆ Y
q
ÝÑ Y . For every pair of quasi-coherent sheaves F P QCohpXq

and G P QCohpY q, we let F b G denote the tensor product p˚F bq˚ G P QCohpX ˆ Y q.
We will refer to F b G as the external tensor product of F and G . The construction
pF ,G q ÞÑ F b G determines a functor b : QCohpXq ˆQCohpY q Ñ QCohpX ˆ Y q which
preserves colimits separately in each variable, and is therefore classified by a colimit-preserving
functor eX,Y : QCohpXq bQCohpY q Ñ QCohpX ˆ Y q.

Definition 9.4.1.2. Let X : CAlgcn Ñ S be a quasi-geometric stack. We will say that
X has the diagonal approximation property if the functor eX,X : QCohpXq ˆQCohpXq Ñ
QCohpX ˆXq of Construction 9.4.1.1 is an equivalence of 8-categories.

Remark 9.4.1.3. Let X be a quasi-geometric stack and let δ : X Ñ X ˆX denote the
diagonal map. The terminology of Definition 9.4.1.2 is motivated by the observation that if
X has the diagonal approximation property, then δ˚OX belongs to the essential image of
the functor eX,X : QCohpXq bQCohpXq Ñ QCohpX ˆXq (in other words, the structure
sheaf of the diagonal of X can be “built from” quasi-coherent sheaves which are arise as
pullbacks along the projection maps X Ð X ˆX Ñ X). We will see later that under a mild
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additional hypothesis, the converse holds: that is, if δ˚OX belongs to the essential image of
eX,X , then eX,X is an equivalence of 8-categories (Corollary 9.4.3.2).

Our main interest in Definition 9.4.1.2 is due to the following:

Theorem 9.4.1.4 (Tannaka Duality, Diagonal Approximation Version). Let X,Y : CAlgcn Ñ

S be functors. Assume that X is a quasi-geometric stack with the diagonal approximation
property. Then the construction pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpY qq determines a
fully faithful embedding

θ : MapFunpCAlgcn,SqpY,Xq Ñ FunbpQCohpXq,QCohpY qq

whose essential image is spanned by those symmetric monoidal functors F : QCohpXq Ñ
QCohpY q which preserve small colimits and connective objects.

Proof. Writing Y as a (not necessarily small) colimit of corepresentable functors, we can
reduce to the case where Y “ SpecR for some connective E8-ring R. In this case, Theorem
9.2.0.2 implies that the functor θ is a fully faithful embedding whose essential image is
spanned by those symmetric monoidal functors F : QCohpXq Ñ QCohpY q which preserve
small colimits, connective objects, and admit a right adjoint G which preserves small colimits
and satisfies the projection formula. To prove Theorem 9.4.1.4, it will suffice to verify the
following:

p˚q Let F : QCohpXq Ñ QCohpY q be a symmetric monoidal functor which preserves
small colimits. Then F admits a right adjoint G : QCohpY q Ñ QCohpXq which also
preserves small colimits. Moreover, the functor G is automatically QCohpXq-linear
(that is, G satisfies the projection formula).

To prove p˚q, we note that the functor F factors as a composition

QCohpXq F 1
ÝÑ QCohpXq bQCohpY q F 2

ÝÝÑ QCohpY q,

where F 1 is obtained by tensoring the identity functor idQCohpXq with the unit map e : Sp Ñ
QCohpY q classifying the structure sheaf OY , while F 2 classifies the functor QCohpXq ˆ
QCohpY q Ñ QCohpY q given by pF ,G q ÞÑ F pF q b G . Let us regard QCohpXq bQCohpY q
as a QCohpXq-module object of PrSt by allowing QCohpXq to act on the first factor (so
that QCohpXq bQCohpY q is the free QCohpXq-module generated by QCohpY q). To prove
p˚q, it will suffice to verify the following:

p˚1q The functor F 1 : QCohpXq Ñ QCohpXq b QCohpY q admits a right adjoint G1 :
QCohpXq bQCohpY q Ñ QCohpXq which preserves small colimits and is QCohpXq-
linear.
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p˚2q The functor F 2 : QCohpXq b QCohpY q Ñ QCohpY q admits a right adjoint G2 :
QCohpY q Ñ QCohpXq b QCohpY q which preserves small colimits and is QCohpXq-
linear.

To prove p˚1q, we note that the unit map e : Sp Ñ QCohpY q admits a right adjoint
Γ : QCohpY q Ñ Sp. Since Y is affine, the global sections functor Γ preserves small colimits,
and can therefore be identified with a morphism in the8-category PrSt. Tensoring Γ with the
identity functor idQCohpXq, we obtain a QCohpXq-linear functor G1 : QCohpXqbQCohpY q Ñ
QCohpXq, which is easily seen to be a left adjoint to F 1.

The proof of p˚2q is similar. Let C denote the tensor product QCohpXq b QCohpXq
and let m : C Ñ QCohpXq classify the tensor product functor b : QCohpXq ˆQCohpXq Ñ
QCohpXq. Note that the functor m factors as a composition

C “ QCohpXq bQCohpXq eX,X
ÝÝÝÑ QCohpX ˆXq δ˚

ÝÑ QCohpXq,

where eX,X is the functor given in Construction 9.4.1.1 and δ : X Ñ X ˆX is the diagonal.
Since X is quasi-geometric, the map δ is quasi-affine. It follows functor δ˚ has a right
adjoint given by the direct image functor δ˚ : QCohpXq Ñ QCohpX ˆ Xq (Proposition
6.3.4.1), which is colimit-preserving and QCohpX ˆXq-linear by virtue of Corollary 6.3.4.3.
Because X has the diagonal approximation property, the functor eX,X is an equivalence
of 8-categories. It follows that the functor m : C Ñ QCohpXq admits a right adjoint
m1 : QCohpXq Ñ C which preserves small colimits and is C-linear. Then m1 induces a
colimit-preserving, C-linear functor

QCohpY q » QCohpXq bC pQCohpXq bQCohpY qq
m1bid
ÝÝÝÝÑ CbCpQCohpXq bQCohpY qq
» QCohpXq bQCohpY q,

which is easily seen to be right adjoint to F 2.

9.4.2 Dualizability

We now record some observations relating the diagonal approximation property of
Definition 9.4.1.2 to the duality theory of presentable stable 8-categories.

Proposition 9.4.2.1. Let X be a quasi-geometric stack with the diagonal approximation
property. Then the 8-category QCohpXq is smooth when regarded as an algebra object of
PrSt (in the sense of Definition HA.4.6.4.13 ). That is, QCohpXq is dualizable when viewed
as a module over QCohpXq bQCohpXq.

Proof. Let δ : X Ñ X ˆ X be the diagonal map, and let A “ δ˚OX . Since δ is quasi-
affine, it induces an equivalence QCohpXq » ModA pQCohpX ˆXqq (Proposition 6.3.4.6).
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Consequently, QCohpXq is dualizable (in fact, it is self-dual) when viewed as a module over
QCohpX ˆXq (see Remark HA.4.8.4.8 ). If X has the diagonal approximation property,
it follows that QCohpXq is also dualizable when viewed as a module over QCohpXq b
QCohpXq.

Corollary 9.4.2.2. Let X be a quasi-coherent stack and let C P ModQCohpXqpPrStq be a
presentable stable 8-category equipped with an action of QCohpXq. If X has the diagonal
approximation property and C is dualizable as an object of PrSt, then it is also dualizable as
an object of ModQCohpXqpPrStq.

Corollary 9.4.2.3. Suppose we are given a pullback diagram of quasi-geometric stacks

X 1 //

f 1

��

X

f
��

Y 1 // Y.

If Y has the diagonal approximation property and QCohpY 1q is a dualizable object of PrSt,
then the diagram

QCohpX 1q QCohpXqoo

QCohpY 1q

OO

QCohpY q

OO

oo

is a pushout square in CAlgpPrStq: that is, the canonical map θ : QCohpY 1q bQCohpY q
QCohpXq Ñ QCohpX 1q is an equivalence of 8-categories.

Proof. Choose a faithfully flat map f : U0 Ñ X, where U0 is affine. Let U‚ be the Čech
nerve of f . Then X can be identified with the geometric realization |U‚| in the 8-category
yShvfpqc, and X 1 can be identified with the geometric realization |Y 1ˆY U‚| in the 8-category
yShvfpqc. In particular, we have equivalences

QCohpX 1q » Tot QCohpY 1 ˆY U‚q QCohpXq » Tot QCohpU‚q.

Using these equivalences, we can identify θ with the composition

QCohpY 1q bQCohpY q TotpQCohpU‚qq θ1
ÝÑ TotpQCohpY 1q bQCohpY q QCohpU‚qq
θ2
ÝÑ TotpQCohpY 1 ˆY U‚qq.

Since QCohpY q is dualizable as an object of PrSt, it is also dualizable as a module over
QCohpY q (Corollary 9.4.2.2). Consequently, the construction C ÞÑ QCohpY q bQCohpY 1q C
commutes with limits, so that θ1 is an equivalence of 8-categories. To show that θ2 is an
equivalence of 8-categories, it will suffice to show that the natural map QCohpY 1q bQCohpY q
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QCohpUkq Ñ QCohpY 1 bY Ukq is an equivalence for each k ě 0. In other words, to prove
Corollary 9.4.2.3 we are free to replace X by Uk, and thereby reduce to the case where
X is quasi-affine. In this case, our assumption that Y is quasi-geometric guarantees that
the morphism f is quasi-affine. Set A “ f˚OX , so that Proposition 6.3.4.6 supplies
an equivalence QCohpXq Ñ ModA pQCohpY qq. Similarly, using Proposition 6.3.4.6 and
Corollary 6.3.4.3 we obtain a compatible equivalence QCohpX 1q » ModA pQCohpY 1qq. Using
these equivalences, we can identify the functor θ with the natural map

QCohpY 1q bQCohpY q ModA pQCohpY qq Ñ ModA pQCohpY 1qq,

which is an equivalence of 8-categories by virtue of Theorem HA.4.8.4.6 .

Applying Corollary 9.4.2.3 in the special case where Y “ SpecS, we obtain the following:

Corollary 9.4.2.4. Let X and Y be quasi-geometric stacks. If QCohpXq is a dualizable
object of PrSt, then the map eX,Y : QCohpXq bQCohpY q Ñ QCohpX ˆ Y q of Construction
9.4.1.1 is an equivalence of 8-categories.

Corollary 9.4.2.5. Let X and Y be quasi-geometric stacks. If QCohpXq and QCohpY q
are dualizable objects of PrSt, then QCohpX ˆ Y q is a dualizable object of PrSt.

Corollary 9.4.2.6. Let X be a quasi-geometric stack. If QCohpXq is a dualizable object of
PrSt, then X has the diagonal approximation property.

Corollary 9.4.2.7. Let X,Y : CAlgcn Ñ S be functors. Assume that X is a quasi-
geometric stack and that QCohpXq is a dualizable object of PrSt. Then the construction
pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpY qq determines a fully faithful embedding

θ : MapFunpCAlgcn,SqpY,Xq Ñ FunbpQCohpXq,QCohpY qq

whose essential image is spanned by those symmetric monoidal functors F : QCohpXq Ñ
QCohpY q which preserve small colimits and connective objects.

Proof. Combine Corollary 9.4.2.6 with Theorem 9.4.1.4.

9.4.3 Weakly Perfect Stacks

One can ask if Proposition 9.4.2.4 has a converse: if X is a quasi-geometric stack with the
diagonal approximation property, then is the 8-category QCohpXq dualizable as an object
of PrSt? We next show that, under a mild additional hypothesis, the diagonal approximation
property ensures not only that QCohpXq is dualizable, but that it is (canonically) self-dual
(Proposition 9.4.3.1).
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Proposition 9.4.3.1. Let X be a quasi-geometric stack which satisfies the following condi-
tions:

p1q The structure sheaf OX is a compact object of QCohpXq.

p2q Let δ : X Ñ XˆX denote the diagonal map. Then δ˚OX belongs to the essential image
of the functor eX,X : QCohpXq bQCohpXq Ñ QCohpXq of Construction 9.4.1.1.

Let m : QCohpXq bQCohpXq Ñ QCohpXq classify the tensor product on QCohpXq. Then
the composite functor

e : QCohpXq bQCohpXq m
ÝÑ QCohpXq ΓpX;‚q

ÝÝÝÝÑ Sp

is a duality datum in the symmetric monoidal 8-category PrSt. In particular, QCohpXq is
a dualizable object of PrSt.

Corollary 9.4.3.2. Let X be a quasi-geometric stack and suppose that OX is a compact
object of QCohpXq. Then the following conditions are equivalent:

paq The 8-category QCohpXq is a dualizable object of PrSt.

pbq The quasi-geometric stack X has the diagonal approximation property.

pcq The object δ˚OX belongs to the essential image of the functor eX,X : QCohpXq b
QCohpXq Ñ QCohpX ˆXq.

Proof. The implication paq Ñ pbq follows from Proposition 9.4.2.4, the implication pbq ñ pcq

is tautological, and the implication pcq ñ paq follows from Proposition 9.4.3.1.

Definition 9.4.3.3. Let X : CAlgcn Ñ S be a functor. We will say that X is a weakly
perfect stack if it satisfies the equivalent conditions of Corollary 9.4.3.2: that is, if X is a
quasi-geometric stack with the diagonal approximation property and the structure sheaf OX

is a compact object of QCohpXq.

Proof of Proposition 9.4.3.1. Let X be a quasi-geometric stack and let C P QCohpXq b
QCohpXq satisfy eX,XpCq » δ˚OX . The object C classifies a colimit-preserving functor
c : Sp Ñ QCohpXq bQCohpXq. We will show that c is a coevaluation map compatible with
the functor ΓpX; ‚q ˝m: in other words, that the composition

QCohpXq cbid
ÝÝÝÑ QCohpXq bQCohpXq bQCohpXq
idbm
ÝÝÝÝÑ QCohpXq bQCohpXq
idbΓ
ÝÝÝÑ QCohpXq.

determines a functor λ : QCohpXq Ñ QCohpXq which is homotopic to the identity map.
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Let S denote the sphere spectrum and let p : X Ñ SpecS denote the projection map, so
that we have a pullback diagram of quasi-geometric stacks σ :

X ˆX
π1 //

π2
��

X

p

��
X

p // SpecS.

The construction pF ,G q ÞÑ F bπ˚2 G determines a functor QCohpX ˆXq ˆQCohpXq Ñ
QCohpX ˆXq which preserves small colimits separately in each variable, and is therefore
classified by a functor M : QCohpX ˆ Xq b QCohpXq Ñ QCohpX ˆ Xq. Consider the
diagram of 8-categories

QCohpXq

��

δ˚ OX b id

++
QCohpXq ˆQCohpXq bQCohpXq

eX,Xbid
//

idbm
��

QCohpX ˆXq bQCohpXq

M
��

QCohpXq bQCohpXq
eX,X //

idbΓpX;‚q
��

QCohpX ˆXq

π1˚
ss

QCohpXq.

We claim that it commutes up to canonical homotopy:

• The upper triangle commutes by the definition of c.

• The middle square commutes, since the composition in either direction classifies the
functor QCohpXq ˆ QCohpXq ˆ QCohpXq Ñ QCohpX ˆ Xq given on objects by
pF ,G ,H q ÞÑ π˚1 F bπ˚2 G bπ˚2 H .

• The commutativity of the lower triangle follows from the calculation

F bp˚p˚ G » F bπ1˚π
˚
2 G

» π1˚pπ
˚
1 F bπ˚2 G q

for F ,G P QCohpXq, where the equivalences are obtained by applying Proposition
9.1.5.7 to the pullback square σ.
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It follows that the functor λ : QCohpXq Ñ QCohpXq is given by the construction

λpF q “ π1˚pδ˚OX bπ
˚
2 F q

» π1˚pδ˚pOX bδ
˚π˚2 F q

» π1˚pδ˚pOX bF q

» π1˚δ˚pF q

» F ,

where the calculation uses the fact that π1˝δ and π2˝δ are both homotopic to the identity map
idX , together with the projection formula for the quasi-affine map δ (Corollary 6.3.4.3).

Corollary 9.4.3.4. Let X be a weakly perfect stack. Then the global sections functor
Γ : QCohpXq Ñ Sp exhibits QCohpXq as a Frobenius algebra object of the symmetric
monoidal 8-category PrSt (see Definition HA.4.6.5.1 ).

Corollary 9.4.3.5. Let X be a weakly perfect stack and suppose we are given a duality datum
e : CbQCohpXqD Ñ QCohpXq in the symmetric monoidal 8-category ModQCohpXqpPrStq.
Then the composite functor

CbD Ñ CbQCohpXqD
e
ÝÑ QCohpXq ΓpX;‚q

ÝÝÝÝÑ Sp

is a duality datum in PrSt.

Proof. Combine Corollary 9.4.3.4 with Corollary HA.4.6.5.14 .

In the situation of Corollary 9.4.3.5, the 8-category QCohpXq is also a smooth algebra
object of PrSt (Proposition 9.4.2.1). We therefore have the following converse to Corollary
9.4.3.5 (which is a more precise version of Corollary 9.4.2.2); see Remark HA.4.6.5.15 :

Corollary 9.4.3.6. Let X be a weakly perfect stack and let C P ModQCohpXqpPrStq. Suppose
that e : CbD Ñ Sp is a duality datum in PrSt. Then D can be equipped with an action of
QCohpXq for which the functor e factors as a composition

CbD Ñ CbQCohpXqD
e
ÝÑ QCohpXq ΓpX;‚q

ÝÝÝÝÑ Sp,

where e is a duality datum in ModQCohpXqpPrStq.

Remark 9.4.3.7. We can summarize Corollaries ?? and 9.4.3.6 more informally as follows:
if QCohpXq is a weakly perfect stack, then the forgetful functor ModQCohpXqpPrStq Ñ PrSt

is compatible with duality.
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Corollary 9.4.3.8. Suppose we are given a pullback diagram

X 1 //

f 1

��

X

f
��

Y 1 // Y

of quasi-geometric stacks, where Y is weakly perfect. Then:

paq If either QCohpXq or QCohpY 1q is dualizable as an object of PrSt, then the canonical
map QCohpY 1q bQCohpY q QCohpXq Ñ QCohpX 1q is an equivalence of 8-categories.

pbq If both QCohpXq and QCohpY 1q are dualizable as objects of PrSt, then QCohpX 1q is
also dualizable as an object of PrSt.

pcq If X and Y 1 are weakly perfect, then X 1 is weakly perfect.

Proof. Assertion paq is a special case of Corollary 9.4.2.3. To prove pbq, we first note
that if QCohpXq and QCohpY 1q are dualizable as objects of PrSt, then they are also
dualizable as modules over QCohpY q (Corollary 9.4.2.2). It follows from paq that QCohpX 1q »
QCohpY 1qbQCohpY qQCohpXq is also dualizable as a module over QCohpY q. Using Corollary
9.4.3.5, we deduce that QCohpX 1q is dualizable as an object of PrSt.

We now prove pcq. Assume that X and Y 1 are weakly perfect. Since OX is a compact
object of QCohpXq and Y is quasi-geometric, Proposition 9.1.5.8 implies that f satisfies
condition p˚q of Proposition 9.1.5.7. It follows that f 1 satisfies the same condition, so that
the pullback functor f 1˚ admits a right adjoint f˚ : QCohpX 1q Ñ QCohpY 1q which preserves
small colimits. The global sections functor ΓpX 1; ‚q factors as a composition

QCohpX 1q f˚
ÝÑ QCohpY 1q ΓpY 1;‚q

ÝÝÝÝÑ Sp,

so our assumption that OY is compact guarantees that ΓpX 1; ‚q commutes with small
colimits. Combining this with assertion pbq, we deduce that X 1 is weakly perfect.

9.4.4 Perfect Stacks

We now specialize to the study of quasi-geometric stacks X for which QCohpXq has
“enough” compact objects.

Definition 9.4.4.1. Let X : CAlgcn Ñ S be a functor. We will say that X is a perfect
stack if it satisfies the following conditions:

paq The functor X is a quasi-geometric stack (Definition 9.1.0.1).

pbq The structure sheaf OX is a compact object of QCohpXq.
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pcq Every quasi-coherent sheaf F P QCohpXq can be obtained as the colimit of a filtered
diagram tFαu, where each Fα is a perfect object of QCohpXq.

Remark 9.4.4.2. Definition 9.4.4.1 is a slight variant of the notion of perfect stack intro-
duced in [23]. There are three differences:

• For a functor X : CAlgcn Ñ S to be a perfect stack in the sense of Definition 9.4.4.1,
we require the existence of a faithfully flat map SpecA Ñ X for some connective
E8-ring A; in [23] this requirement does not appear.

• The definition of a perfect stack X given in [23] requires that the diagonal map
δ : X Ñ X ˆX is affine, while Definition 9.4.4.1 requires only that it is quasi-affine.

• Definition 9.4.4.1 requires a perfect stack to satisfy descent with respect to the fpqc
topology, while [23] requires descent only for the étale topology (though the difference
is immaterial if we are interested only in properties of the 8-category QCohpXq; see
Proposition 6.2.3.1).

Example 9.4.4.3. Let X : CAlgcn Ñ S be (the functor represented by) a quasi-compact,
quasi-separated algebraic space. In §9.6, we will show that X is a perfect stack (Proposition
9.6.1.1).

Example 9.4.4.4. Let G be an affine algebraic group defined over a field κ of characteristic
zero. Then the classifying stack BG is perfect. More generally, if X is quasi-projective
κ-scheme equipped with an action of G, then the (stack-theoretic) quotient X{G is a perfect
stack (see [23]).

We now consider some equivalent formulations of Definition 9.4.4.1:

Proposition 9.4.4.5. Let X be a quasi-geometric stack. The following conditions are
equivalent:

p1q The quasi-geometric stack X is perfect.

p2q The 8-category QCohpXq is compactly generated and the structure sheaf OX is a
compact object of QCohpXq.

p3q The inclusion QCohpXqperf ãÑ QCohpXq extends to an equivalence of 8-categories
IndpQCohpXqperfq Ñ QCohpXq.

Proof. Note that conditions p1q, p2q, and p3q all guarantee that OX is a compact object of
QCohpXq. It then follows that an object F P QCohpXq is compact if and only if it is perfect
(Proposition 9.1.5.3), from which the equivalences p1q ô p2q ô p3q follow immediately.
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Corollary 9.4.4.6. Let X be a perfect stack. Then X is weakly perfect. In particular, X
has the diagonal approximation property.

Proof. Since X is perfect, the 8-category QCohpXq is compactly generated (Proposition
9.4.4.5) and is therefore dualizable as an object of PrSt (Proposition D.7.2.3). The desired
result now follows from Corollary 9.4.3.2.

Combining Corollary 9.4.4.6 with Theorem 9.4.1.4, we obtain the following result of
Bhatt and Halpern-Leistner (see [27]):

Corollary 9.4.4.7 (Tannaka Duality, Perfect Stack Version). Let X,Y : CAlgcn Ñ S be
functors. If X is perfect, then the construction pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpY qq
determines a fully faithful embedding

θ : MapFunpCAlgcn,SqpY,Xq Ñ FunbpQCohpXq,QCohpY qq

whose essential image is spanned by those symmetric monoidal functors F : QCohpXq Ñ
QCohpY q which preserve small colimits and connective objects.

Remark 9.4.4.8. In the situation of Corollary 9.4.4.7, let LFunbpQCohpXq,QCohpY qq
denote the full subcategory of FunbpQCohpXq,QCohpY qq spanned by those symmetric
monoidal functors which preserve small colimits and let FunbexpQCohpXqperf ,QCohpY qperfq

denotes the full subcategory of FunbpQCohpXqperf ,QCohpY qperfq spanned by the sym-
metric monoidal functors which are exact. Since X is a perfect stack, composition
with the inclusion QCohpXqperf ãÑ QCohpXq induces an equivalence of 8-categories
LFunbpQCohpXq,QCohpY qq Ñ FunbexpQCohpXqperf ,QCohpY qperfq. However, it is not ob-
vious how to describe the essential image of MapFunpCAlgcn,SqpY,Xq under this equivalence,
since the full subcategory QCohpXqperf Ď QCohpXq need not be closed under truncations.

We conclude by observing a pleasant stability property of the class of perfect stacks:

Proposition 9.4.4.9. Suppose we are given a pullback diagram

X 1 //

f 1

��

X

f
��

Y 1 // Y

in FunpCAlgcn,Sq. If X and Y 1 are perfect stacks and Y is weakly perfect, then X 1 is perfect.

Proof. It follows from Corollary 9.4.3.8 that X 1 is weakly perfect and that the induced map

QCohpY 1q bQCohpY q QCohpXq Ñ QCohpX 1q
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is an equivalence of 8-categories. Combining this with the assumption that X and Y 1 are
perfect, we deduce that QCohpXq is generated under colimits by the essential image of the
composite functor

QCohpY 1qperf ˆQCohpXqperf Ñ QCohpY 1q bQCohpY q QCohpXq Ñ QCohpX 1q.

Since this composite functor factors through QCohpX 1qperf , it follows that X 1 is perfect.

9.5 Locally Noetherian Stacks

Let X be a geometric stack and let R be an E8-ring. According to Theorem 9.3.0.3, we
can identify R-valued points of X with symmetric monoidal functors F : QCohpXq Ñ ModR
which preserve small colimits, connective objects, and flat objects. In §9.4, we proved
that if X is perfect, then the third condition is superfluous: any symmetric monoidal
functor F : QCohpXq Ñ ModR which preserves small colimits and connective objects
automatically preserves flat objects (Corollary 9.4.4.7). The assumption X is perfect is
a kind of finiteness hypothesis: it guarantees that the 8-category QCohpXq has “enough”
perfect objects. In this section, we will study a different finiteness hypothesis: the condition
that X is locally Noetherian (Definition 9.5.1.1). Our main result asserts that if X is locally
Noetherian geometric stack, then Tannaka duality again takes a particularly simple form:
every symmetric monoidal functor F : QCohpXq Ñ ModR which preserves small colimits
and connective objects automatically preserves flat objects, and therefore arises from an
essentially unique R-valued point of X (Theorem 9.5.4.1). We also prove a slightly weaker
result in the case where X is quasi-geometric (Theorem 9.5.4.2).

9.5.1 Noetherian and Locally Noetherian Quasi-Geometric Stacks

We now introduce some finiteness conditions on quasi-geometric stacks.

Definition 9.5.1.1. Let X be a quasi-geometric stack. We will say that X is locally
Noetherian if there exists a faithfully flat map SpecR Ñ X, where R is a Noetherian
E8-ring.

Let X be a quasi-geometric stack. The condition that X is locally Noetherian guarantees
that there exists a faithfully flat map SpecRÑ X, where R is Noetherian. However, it does
not follow that for every faithfully flat map f : SpecRÑ X, the E8-ring R is Noetherian
(this condition is essentially never satisfied). However, we can do better if we assume some
finiteness conditions on f :

Proposition 9.5.1.2. Let X be a locally Noetherian quasi-geometric stack, and let f :
SpecRÑ X be a morphism which locally almost of finite presentation. Then R is Noetherian.
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Proof. Since X is locally Noetherian, we can choose a faithfully flat map g : SpecAÑ X,
where A is Noetherian. Form a pullback diagram

Y
g1 //

f 1

��

SpecR

f

��
SpecA g // X.

Then Y is (representable by) a quasi-affine spectral algebraic space. Choose an étale
surjection SpecB Ñ Y . Since f is locally almost of finite presentation, the E8-ring B is
almost of finite presentation over A and is therefore Noetherian (Proposition HA.7.2.4.31 ).
The map g is faithfully flat, so B is faithfully flat over R. Applying Lemma 2.8.1.6, we
deduce that R is Noetherian.

Corollary 9.5.1.3. Let X be a quasi-geometric stack and suppose that there exists a
morphism f : SpecAÑ X which is faithfully flat and locally almost of finite presentation.
Then the following conditions are equivalent:

paq For every morphism SpecB Ñ X which is locally almost of finite presentation, the
E8-ring B is Noetherian.

pbq The E8-ring A is Noetherian.

pcq The quasi-geometric stack X is locally Noetherian.

Proof. The implications paq ñ pbq ñ pcq are tautological, and the implication pcq ñ paq

follows from Proposition 9.5.1.2.

Definition 9.5.1.4. We will say that a quasi-geometric stackX is Noetherian if it satisfies the
equivalent conditions of Corollary 9.5.1.3 (that is, if there exists a morphism f : SpecAÑ X

which is faithfully flat and locally almost of finite presentation, where A is Noetherian).

Example 9.5.1.5. Let R be a Noetherian commutative ring and let G be a flat quasi-
affine group scheme over R. Then the classifying stack BG (see Example 9.1.1.7) is locally
Noetherian. If G is of finite presentation over R, then BG is Noetherian.

Example 9.5.1.6. Let FG be the moduli stack of formal groups (see Example 9.3.1.7).
Then FG is not locally Noetherian. For every prime number p and every integer n ě 1, the
open substack FGďn Ď FGˆSpec Z Spec Zppq classifying formal groups of height ď n (over
p-local rings) is locally Noetherian but not Noetherian.
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9.5.2 Noetherian Hypotheses and Quasi-Coherent Sheaves

We now show that ifX is a locally Noetherian quasi-geometric stack, then the Grothendieck
prestable 8-category QCohpXqcn is locally Noetherian (in the sense of Definition C.6.9.1).
We begin by isolating an appropriate finiteness condition on objects of the abelian category
QCohpXq♥.

Notation 9.5.2.1. Let X be a locally Noetherian quasi-geometric stack. We let CohpXq♥

denote the full subcategory of QCohpXq♥ spanned by those object F P QCohpXq♥ which
are almost perfect.

Remark 9.5.2.2. Let X be a locally Noetherian quasi-geometric stack and let f : SpecAÑ
X be a faithfully flat surjection, where A is a Noetherian E8-ring. Then the pullback functor
f˚ determines an exact functor of abelian categories QCohpXq♥ Ñ QCohpSpecAq♥ »

Mod♥
A, and an object F P QCohpXq♥ belongs to CohpXq♥ if and only if f˚F is finitely

generated when regarded as an A-module (Propositions 9.1.3.5 and HA.7.2.4.17 ). It follows
that CohpXq♥ is an abelian subcategory of QCohpXq♥ which is closed under extensions,
subobjects, and quotient objects.

Proposition 9.5.2.3. Let X be a locally Noetherian quasi-geometric stack. Then the
prestable 8-category QCohpXqcn is locally Noetherian (see Definition C.6.9.1). Moreover,
an object F P QCohpXq♥ is Noetherian if and only if it belongs to CohpXq♥.

Proof. Choose a faithfully flat map f : SpecAÑ X, where A is a Noetherian E8-ring. We
first claim that each object F P CohpXq♥ is a Noetherian object of QCohpXq♥. To prove
this, it will suffice to show that every ascending sequence of subobjects

F 0 Ď F 1 Ď F 2 Ď ¨ ¨ ¨

of F (in the abelian category QCohpXq♥) is eventually constant. Since the pullback functor
f˚ : QCohpXq Ñ QCohpSpecAq » ModA is t-exact, we can identify tf˚Fnuně0 as an
ascending sequence of subobjects of f˚F P Mod♥

A. Our assumption that F P CohpXq♥

guarantees that f˚F is finitely generated as a module over π0A. Since π0A is a Noetherian
ring, the chain of submodules tf˚Fnuně0 is eventually constant. Since the functor f˚ is
conservative, it follows that the ascending chain tFnuně0 is also eventually constant.

We now prove that every object F P QCohpXq♥ can be obtained as a filtered colimit
of Noetherian subobjects of F , using an argument of Deligne. Let us identify G “ f˚F

with a (discrete) module over the ring π0A. Write G as a filtered colimit lim
ÝÑ

G β , where each
G β is subobject of G which corresponds to a finitely generated module over π0A. Since
the direct image functor f˚ is left t-exact, we can identify each truncation τě0f˚ G β with
a subobject of τě0f˚ G . For each index β, let F β denote the subobject of F given by
the fiber product F ˆτě0f˚ G τě0f˚ G β. Since the functor f˚ preserves small colimits, we
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have f˚ G » lim
ÝÑ

f˚ G β. The t-structure on QCohpXq is compatible with filtered colimits
(Corollary 9.1.3.2), so we have τě0f˚ G » lim

ÝÑ
τě0f˚ G β and we can therefore identify F with

the colimit of the diagram tF βu. It will therefore suffice to show that each F β belongs to
CohpXq♥. Equivalently, we must show that the pullback f˚F β is finitely generated when
regarded as a (discrete) module over the commutative ring π0A. By construction, we have a
commutative diagram

f˚F β
//

��

f˚F

��
f˚τě0f˚ G β

//

��

f˚τě0f˚ G

��
G β

// G

in the abelian category QCohpSpecAq♥. The upper horizontal map in this diagram is a
monomorphism and the right vertical composition is an isomorphism. It follows by a diagram
chase that the left vertical composition is a monomorphism, so that we can regard f˚F β as
a subobject of G β . By construction, G β corresponds to a finitely generated module over π0A.
Since the commutative ring π0A is Noetherian, it follows that f˚F β also corresponds to a
finitely generated module over π0A, so that F β belongs to CohpXq♥ as desired (Remark
9.5.2.2).

Note that if F P QCohpXq♥ is Noetherian, then writing F » lim
ÝÑ

F β as above we
must have F » F β for some index β, so that F P CohpXq♥. Combining this with the
first part of the argument, we see that an object F P QCohpXq♥ is Noetherian if and
only if it belongs to CohpXq♥. Consequently, the above argument shows that each object
F P QCohpXq♥ is a filtered colimit of Noetherian subobjects of F , so that the abelian
category QCohpXq♥ is locally Noetherian. To complete the proof that QCohpXqcn is locally
Noetherian, it will suffice to show that every object F P CohpXq♥ is a compact object
of QCohpXqcn

ďn for each n ě 0. In other words, we wish to show that the construction
G ÞÑ MapQCohpXqpF ,G q determines a functor U : QCohpXq Ñ S which commutes with
filtered colimits when restricted to QCohpXqcn

ďn.
Let X‚ denote the Čech nerve of f , so that each Xm is (representable by) a quasi-

affine spectral Deligne-Mumford stack. For each m ě 0, let fm : Xm Ñ X denote
the projection map, and let Um : QCohpXq Ñ S denote the functor given by G ÞÑ

MapQCohpXmqpf
˚
m F , f˚m G q. Since f is faithfully flat, we have QCohpXq » TotpQCohpX‚qq,

so we can identify U with the functor TotpU‚q “ lim
ÐÝrmsP∆ Um » lim

ÐÝrmsP∆`
Um. Note

that, when restricted to QCohpXqcn
ďn, each of the functors Um takes values in τďn S. It

follows that the restriction map TotpU‚q Ñ lim
ÐÝrmsP∆`,ďn`1

Um is an equivalence when
restricted to QCohpXqcn

ďn. We may therefore identify U |QCohpXqcn
ďn

with the finite limit
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lim
ÐÝrmsP∆`,ďn`1

Um|QCohpXqcn
ďn

. It will therefore suffice to show that each of the functors Um

commutes with filtered colimits when restricted to QCohpXqcn
ďn. This is clear, since Xm is

(representable by) a quasi-affine spectral Deligne-Mumford stack and f˚m F P QCohpXmq is
almost perfect.

9.5.3 Digression: Internal Hom-Sheaves

Let X be a quasi-geometric stack. Then the 8-category QCohpXq is presentable
(Corollary 9.1.3.2) and the tensor product b : QCohpXq ˆQCohpXq Ñ QCohpXq preserves
small colimits separately in each variable. It follows that the symmetric monoidal structure
on QCohpXq is closed: that is, for every pair of quasi-coherent sheaves F ,G P QCohpXq,
we can define a new object MapQCohpXqpF ,G q P QCohpXq with the following universal
property: there is an evaluation map e : F bMapQCohpXqpF ,G q Ñ G such that, for every
object H P QCohpXq, the composite map

MapQCohpXqpH ,MapQCohpXqpF ,G qq Ñ MapQCohpXqpF bH ,F bMapQCohpXqpF ,G qq

e
ÝÑ MapQCohpXqpF bH ,G q

is a homotopy equivalence.

Remark 9.5.3.1. Let X be a quasi-geometric stack and suppose we are given quasi-coherent
sheaves F P QCohpXqě0 and G P QCohpXqď0. Then MapQCohpXqpF ,G q P QCohpXqď0.
To prove this, it suffices to observe that for H P QCohpXqě1, the mapping space

MapQCohpXqpH ,MapQCohpXqpF ,G qq » MapQCohpXqpF bH ,G q

is contractible.

Remark 9.5.3.2. In the special case where X “ SpecA is affine, we can identify F

and G with A-modules M and N . In this case, we can identify the mapping object
MapQCohpXqpF ,G q with an A-module which we will denote by Map

A
pM,Nq.

Suppose we are given a morphism f : Y Ñ X of quasi-geometric stacks, and quasi-
coherent sheaves F ,G P QCohpXq. Applying the pullback functor f˚ to the evaluation map
e, we obtain a map

f˚peq : f˚F bf˚MapQCohpXqpF ,G q Ñ f˚ G ,

which is classified by a morphism ρ : f˚MapQCohpXqpF ,G q Ñ MapQCohpY qpf
˚F , f˚ G q.

In general, the morphism ρ need not be an equivalence (in other words, the construction
pF ,G q ÞÑ MapQCohpXqpF ,G q is not “local” on X). However, we have the following:
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Proposition 9.5.3.3. Let f : Y Ñ X be a morphism of quasi-geometric stacks which is
quasi-affine and flat, let F P QCohpXq be almost perfect, and let G P QCohpXqď0. Then
the canonical map

ρ : f˚MapQCohpXqpF ,G q Ñ MapQCohpY qpf
˚F , f˚ G q

is an equivalence.

Remark 9.5.3.4. In the statement of Proposition 9.5.3.3, the hypothesis that f is quasi-
affine is not really needed. However, it will be satisfied in our case of interest, and will
slightly simplify the proof.

Remark 9.5.3.5. For a closely related result in a different context, see §6.5.3.

Proof of Proposition 9.5.3.3. Replacing F by a suspension if necessary, we may assume
that F is connective. Choose a faithfully flat map u : X0 Ñ X, where X0 is affine. Let
X‚ denote the Čech nerve of u0 and for n ě 0 let un : Xn Ñ X denote the evident
map. Set G n “ un˚u

˚
n G , so that G ‚ is a cosimplicial object of QCohpXqď0 and we have

a canonical equivalence G » TotpG ‚q. We can therefore identify MapQCohpXqpF ,G q with
the totalization TotpMapQCohpXqpF ,G ‚qq. Since the map f is flat, the pullback functor f˚

preserves totalizations of cosimplicial objects of QCohpXqď0. Using Remark 9.5.3.1, we
obtain equivalences

f˚ G » Totpf˚ G ‚q f˚TotpMapQCohpXqpF ,G ‚qq » Totpf˚MapQCohpXqpF ,G ‚qq.

Using these equivalences, we can identify ρ with the totalization of a cosimplicial map

ρ‚ : f˚MapQCohpXqpF ,G ‚q Ñ MapQCohpY qpf
˚F , f˚ G ‚q.

We may therefore replace G by G n and thereby reduce to the case where G » u˚ G 1 for some
G 1 P QCohpX0qď0. Form a pullback diagram

Y0
f0 //

v
��

X0

u
��

Y
f // X

so that we have equivalences

MapQCohpXqpF ,G q » u˚MapQCohpX0q
pu˚F ,G 1q

MapQCohpY qpf
˚F , f˚ G q » v˚MapQCohpY0q

pf˚0 u
˚F , f˚0 G q.
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Combining these equivalences with the projection formula of Corollary 6.3.4.3, we can
identify ρ with the direct image under v of the map

ρ0 : f˚0 MapQCohpX0q
pu˚F ,G 1q Ñ MapQCohpY0q

pf˚0 u
˚F , f˚0 G 1q.

Replacing f : Y Ñ X by f0 : Y0 Ñ X0, we may thereby reduce to the special case where
X “ SpecA is affine.

Let us identify QCohpXq with the 8-category ModA. Set B “ ΓpY ; OY q. Since f

is quasi-affine, the global sections functor ΓpY ; ‚q induces an equivalence of 8-categories
QCohpY q Ñ ModB (Proposition 2.4.1.4). Under this equivalence, the construction H ÞÑ

ΓpY ; f˚H q corresponds to the extension of scalars functor M ÞÑ B bAM . Since f is flat,
the construction H ÞÑ ΓpY ; f˚H q is left t-exact, so that B has Tor-amplitude ď 0 over A.
Set M “ ΓpX; F q and N “ ΓpX; G q. Unwinding the definitions, we are reduced to showing
that the canonical map

B bA Map
A
pM,Nq Ñ Map

A
pM,B bA Nq » Map

B
pB bAM,B bA Nq

is an equivalence of B-modules, which is a special case of Lemma 6.5.3.7.

Corollary 9.5.3.6. Let X be a quasi-geometric stack and let F ,G ,H P QCohpXq. Suppose
that F is almost perfect, G is 0-truncated, and H has Tor-amplitude ď 0. Then the canonical
map

θ : H bMapQCohpXqpF ,G q Ñ MapQCohpXqpF ,H bG q

is an equivalence.

Proof. Using Proposition 9.5.3.3, we can reduce to the case where X is affine, in which case
Corollary 9.5.3.6 is a reformulation of Lemma 6.5.3.7.

9.5.4 Tannaka Duality in the Locally Noetherian Case

We consider Tannaka duality in the locally Noetherian context. Our main results can be
stated as follows:

Theorem 9.5.4.1 (Tannaka Duality for Locally Noetherian Geometric Stacks). Let X,Y :
CAlgcn Ñ S be functors and suppose that X is a locally Noetherian geometric stack. Then
the construction pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpY qq determines a fully faithful
embedding

MapFunpCAlgcn,SpY,Xq Ñ FunbpQCohpXq,QCohpY qq,

whose essential image is spanned by those symmetric monoidal functors F : QCohpXq Ñ
QCohpY q which preserve small colimits and connective objects.
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For quasi-geometric stacks, we have the following slightly weaker result:

Theorem 9.5.4.2 (Tannaka Duality for Locally Noetherian Quasi-Geometric Stacks). Let
X,Y : CAlgcn Ñ S be functors and suppose that X is a locally Noetherian quasi-geometric
stack. Then the construction pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpY qq determines a
fully faithful embedding

MapFunpCAlgcn,SpY,Xq Ñ FunbpQCohpXq,QCohpY qq,

whose essential image is spanned by those symmetric monoidal functors F : QCohpXq Ñ
QCohpY q which preserve small colimits, connective objects, and almost perfect objects.

Remark 9.5.4.3. In the case where X is assumed to be Noetherian, Theorem 9.5.4.2 was
proven by by Bhatt and Halpern-Leistner in [27]; our proof will follow a similar strategy.

Remark 9.5.4.4. In the statements of Theorems 9.5.4.1 and 9.5.4.2, we can replace the
assumption that X is locally Noetherian by the weaker assumption that the 0-truncation of
X is locally Noetherian, or that there exists an affine map from the 0-truncation of X to a
locally Noetherian quasi-geometric stack. The last condition is automatically satisfied for a
large class of algebraic stacks (see [177]).

The main step in the proof of Theorems 9.5.4.1 and 9.5.4.2 is contained in the following:

Lemma 9.5.4.5. Let X be a 0-truncated quasi-geometric stack, let R be a connective
E8-ring, and let F : QCohpXq Ñ ModR be a functor which preserves small colimits and
connective objects. Let α : F Ñ F 1 be a morphism in QCohpXq, where F is almost perfect
and F 1 has Tor-amplitude ď 0. Then, for every object M P pModRqď0, the induced map
αM : M bR F pF q ÑM bR F pF

1q factors through an object of pModRqď0.

Proof. Set F_ “ MapQCohpXqpF ,OXq. Since F is almost perfect, OX is 0-truncated, and
F 1 has Tor-amplitude ď 0, it follows from Corollary 9.5.3.6 that the canonical map

ρ : F_bF 1 Ñ MapQCohpXqpF ,F 1q

is an equivalence. Let G “ τě0 F_ denote the connective cover of F_. Since F 1 has Tor-
amplitude ď 0, the natural map G bF 1 Ñ F_bF 1 induces an equivalence on connective
covers. It follows that we can choose a map c : OX Ñ G bF 1 which is determined (uniquely
up to homotopy) by the requirement that the composition

OX
c
ÝÑ G bF 1 Ñ F_bF 1 ρÝÑ MapQCohpXqpF ,F 1q

classifies α. The tautological pairing F bF_ Ñ OX determines an “evaluation map”
e : F bG Ñ OX . Unwinding the definitions, we see that the composite map

F
idbc
ÝÝÝÑ F bG bF 1 ebid

ÝÝÝÑ F 1
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is homotopic to α.
Set N “ Map

R
pF pG q,Mq. The evaluation morphism e determines a map eM : M bR

F pF qbRF pG q ÑM , which is classified by a morphism of R-modules β : M bRF pF q Ñ N .
Let γ denote the composite map

N
idbF pcq
ÝÝÝÝÝÑ N bR F pG q bR F pF

1q ÑM bR F pF
1q.

Using the fact that pe b idq ˝ pidbcq is homotopic to α, we deduce that the composition
γ ˝β is homotopic to αM . Because functor F preserves connective objects, so that R-module
F pG q is connective. Since M P pModRqď0, it follows that N P pModRqď0, so that pβ, γq
provides the desired factorization of α.

Proposition 9.5.4.6. Let X,Y : CAlgcn Ñ S be functors and let F : QCohpXq Ñ
QCohpY q be a symmetric monoidal functor which preserves small colimits and connec-
tive objects. If X is a locally Noetherian quasi-geometric stack and F P QCohpXq has
Tor-amplitude ď 0, then F pF q P QCohpY q has Tor-amplitude ď 0.

Proof. Without loss of generality we may assume that Y “ SpecR is affine, in which case we
can identify QCohpY q with the 8-category ModR. Let M be a discrete R-module; we wish
to show that M bR F pF q belongs to pModRqď0. Set R1 “ F pπ0 OXq. Since the functor F
preserves connective objects, the unit map R “ F pOXq Ñ F pπ0 OXq Ñ R1 has 1-connective
fiber and therefore induces an isomorphism on π0. Since M is discrete, it can be regarded
as an R1-module in an essentially unique way. Let v : X 1 Ñ X exhibit X 1 as a 0-truncation
of X. The functor F then induces a symmetric monoidal functor

F 1 : QCohpX 1q » Modπ0 OX pQCohpXqq F
ÝÑ ModR1

which preserves small colimits and connective objects. We have a canonical equivalence
M bR F pF q » M bR1 F

1pv˚F q. Replacing X by X 1, F by F 1, and F by v˚F , we may
reduce to the case where X is 0-truncated. In this case, the assumption that F has Tor-
amplitude ď 0 guarantees that it belongs to QCohpXqď0. Our assumption that X is locally
Noetherian guarantees that the prestable 8-category QCohpXqcn is locally Noetherian
(Proposition 9.5.2.3). Applying Corollary ??, we deduce that F can be written as the
colimit of a filtered diagram tFαu where each Fα is almost perfect (and 0-truncated, but
we will not need this). Since the functor F preserves colimits, we obtain an equivalence
M bRF pF q » lim

ÝÑ
pM bR F pFαqq. In particular, any element of πnpM bR F pF qq lies in the

image of the natural map πnpM bR F pFαqq Ñ πnpM bR F pF qq for some index α. These
maps vanish for n ą 0 by virtue of Lemma 9.5.4.5, so that M bRF pF q belongs to pModRqď0
as desired.
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Corollary 9.5.4.7. Let X,Y : CAlgcn Ñ S be functors and let F : QCohpXq Ñ QCohpY q
be a symmetric monoidal functor which preserves small colimits and connective objects. If
X is a locally Noetherian quasi-geometric stack, then F carries flat objects to flat objects.

Proof. If F P QCohpXq is flat, then F is connective and of Tor-amplitude ď 0. It follows
from Proposition 9.5.4.6 (and our assumption that F preserves connective objects) that
F pF q is connective and of Tor-amplitude ď 0, and is therefore flat.

Proof of Theorem 9.5.4.1. Combine Theorem 9.3.0.3 with Corollary 9.5.4.7.

Remark 9.5.4.8. The proof of Theorem 9.5.4.1 did not require full strength of the as-
sumption that X is locally Noetherian: only that every discrete object of QCohpXq can be
written as a filtered colimit of almost perfect objects of QCohpXq. This condition is also
satisfied when X is perfect, which gives an alternative proof of Corollary 9.4.4.7 (at least
when X has affine diagonal).

Proof of Theorem 9.5.4.2. We begin as in the proof of Theorem 9.2.0.2. Let X be a locally
Noetherian quasi-geometric stack and let Y : CAlgcn Ñ S be arbitrary. Note that the map
θY : MapFunpCAlgcn,SqpY,Xq Ñ FunbpQCohpXq,QCohpY qq is automatically fully faithful
(Proposition 9.2.2.1). It will therefore suffice to show that if F : QCohpXq Ñ QCohpY q is a
symmetric monoidal functor which preserves small colimits, connective objects, and almost
perfect objects, then there exists a symmetric monoidal equivalence F » f˚ for some map
f : Y Ñ X; the map f is then uniquely determined (up to a contractible space of choices).
Writing Y as a colimit of corepresentable functors, we can assume that Y “ SpecR for some
connective E8-ring R.

Since X is quasi-geometric, we can choose a faithfully flat morphism u : U Ñ X, where
U is affine (in fact, we can assume that U is corepresentable by a Noetherian E8-ring, but
we will not need this). Set A “ u˚OU P CAlgpQCohpXqq. As in the proof of Theorem
9.2.0.2, the main step is to establish the following:

p˚q There exists a faithfully flat, quasi-affine morphism v : Y 1 Ñ Y and an equivalence
F pA q » v˚OY 1 in CAlgpQCohpY qq.

Assuming p˚q, we can apply Proposition 6.3.4.6 to obtain symmetric monoidal equivalences

QCohpUq » ModApQCohpXqq

QCohpY 1q » Modv˚ OY 1
pQCohpY qq » ModF pA qpQCohpY qq.

Consequently, F induces a symmetric monoidal functor F 1 : QCohpUq Ñ QCohpY 1q which
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fits into a commutative diagram

QCohpXq F //

u˚

��

QCohpY q

v˚

��
QCohpUq F 1 // QCohpY 1q.

Since U is affine and Y 1 is quasi-affine, Proposition 9.2.1.1 implies the existence of a symmetric
monoidal equivalence F 1 » f 1˚ for some map f 1 : Y 1 Ñ U . It follows that v˚ ˝ F belongs to
the essential image of the fully faithful embedding θY 1 . Since v is faithfully flat, it will then
follow that F belongs to the essential image of θY , as desired.

We now prove p˚q. Using Proposition 6.3.4.5, we can write τě0 A as the direct image
u˚OU for some affine morphism of quasi-geometric stacks u : U Ñ X (beware that U is
not affine). The natural map τě0 A ãÑ A then determines a map j : U Ñ U . Since X
is a quasi-geometric stack, the map u is quasi-affine, so that j is a quasi-compact open
immersion. Let I Ď π0 A be the ideal sheaf whose vanishing locus is the reduced closed
substack of U complementary to j. Since X is locally Noetherian, we can write I as the
colimit of a filtered diagram tFαu in CohpXq♥ (Proposition 9.5.2.3). For each index α, the
we have a map eα : Fα Ñ I whose image generates an ideal sheaf Iα Ď I, whose vanishing
locus is complementary to an open subfunctor Uα Ď U . Note that U “

Ť

α Uα. Since j is
quasi-compact, we can choose an index α such that Uα “ U . Set F “ Fα and e “ eα, so
that we have a map e : F Ñ I in QCohpXq♥.

Set A “ F pτě0 A q P CAlgcn
R and set Y 1 “ SpecA. Note that e determines a map

F pF q
F peq
ÝÝÝÑ F pIq Ñ F pπ0 A q.

Since F is right t-exact, the projection map F pτě0 A q Ñ F pπ0 A q induces an isomorphism
on π0, so that F peq induces a map of discrete R-modules λ : π0F pF q Ñ π0A. Let J Ď π0A

be the ideal generated by the image of λ. The object F P QCohpXq is connective and
almost perfect, so that the R-module F pF q is connective and almost perfect. It follows
that π0F pF q is a finitely presented R-module, so that the ideal J is finitely generated. Let
Y 1 Ď Y

1 denote the open substack complementary to the vanishing locus of J . The affine
projection map v : Y 1 Ñ Y “ SpecR then restricts to a quasi-affine map v : Y 1 Ñ SpecR.
We will deduce p˚q from the following:

p˚1q There is a canonical equivalence F pA q » v˚OY 1 in the 8-category CAlgpQCohpY qq »
CAlgR.

By construction, we can identify v˚OY 1 with the J-localization of the E8-ring A “

F pτě0 A q. Set M “ fibpA Ñ F pA qq » F pΣpτď´1 A qq, so that we have a canonical fiber
sequence M Ñ A Ñ F pA q. To prove p˚1q, it will suffice to show that this fiber sequence
exhibits F pA q as a J-localization of A. This is equivalent to the following pair of assertions:
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piq The R-module M is J-nilpotent.

piiq The R-module F pA q is J-local.

We first prove piq. Note that we can write M as a successive extension of shifted copies
of objects of the form F pπm A q, where m ă 0. It will therefore suffice to show that
F pπm A q P ModR is J-nilpotent for m ă 0. Using Proposition 9.5.2.3, we can write πm A

as the colimit of a filtered diagram tG βu in the abelian category QCohpXq♥. For each index
β, let G`β denote the pπ0 A q-submodule of πm A generated by G β. Under the equivalence
QCohpUq » Modτě0 A pQCohpXqq, we can identify G`β with an object of QCohpUq♥ which
is perfect to order 0 and whose image in QCohpUq vanishes (since m ă 0). It follows that
there exists an integer n " 0 such that the composite map

FbnbG`β
enbid
ÝÝÝÝÑ pπ0 A q b G β Ñ G`β

is nullhomotopic. Applying the functor F , we deduce that the map F pFbnq b F pG`β q Ñ

F pG`β q is nullhomotopic, so that the graded pπ0Rq-module π˚F pG`β q is annihilated by the
ideal Jn and therefore F pG`β q is J-nilpotent. Writing F pπm A q » lim

ÝÑβ
F pG`β q, we deduce

that F pπm A q is J-nilpotent for m ă 0, which completes the proof of piq.
We now prove piiq. Let us identify the map e : F Ñ π0 A “ u˚pπ0 OU q with a map

e1 : u˚F Ñ π0 OU . By construction, the induced map e1|U : u˚F Ñ π0 OU induces an
epimorphism on π0. Since U is affine, it follows that we can choose a map s : OU Ñ u˚F

whose composition with e1|U is the identity section of π0 OU . The direct image of s along
u can be identified with a morphism A Ñ A bF of A -module objects of QCohpXq,
and therefore determines a morphism of R-modules F psq : F pA q Ñ F pA q bR F pF q. By
construction, the map F psq fits into a commutative diagram

F pA q
F psq

ww ''
F pA q bR F pF q // F pA q bA π0A.

It follows that the composite map F pA q Ñ F pA q bA pπ0Aq Ñ F pA q bA pπ0A{Jq is
nullhomotopic. Since this map is a morphism of E8-algebras, we conclude that F pA q bA
pπ0A{Jq. Since A is almost connective (Proposition 9.1.3.5) and the functor F is right
t-exact, the A-algebra F pA q is almost connective. Applying Lemma ??, we deduce that
F pA q is J-local, as desired. This completes the proof of piiq, and therefore also the proof of
p˚1q.

To complete the proof of p˚q, we must show that the map v : Y 1 Ñ Y is faithfully
flat. We first claim that v is flat. Since Y is affine, it will suffice to show that for each
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G P QCohpY q♥, the pullback v˚ G belongs to QCohpY 1qď0. Since Y 1 is quasi-affine, this is
equivalent to the statement that the spectrum ΓpY 1; v˚ G q is 0-truncated. We now compute

ΓpY 1; v˚ G q » ΓpY ; v˚v˚ G q

» ΓpY ; v˚OY 1 bG q

» ΓpY ;F pA q b G q.

It now suffices to observe that F pA qbG is 0-truncated, since G is 0-truncated by assumption
that F pA q has Tor-amplitude ď 0 by virtue of Proposition 9.5.4.6.

It remains to show that v is faithfully flat. For this, it will suffice to show that for
G P QCohpY q♥ as above, the canonical map ρ : ΓpY ; G q Ñ ΓpY 1; v˚ G q induces an injection
on π0 (in this case, the vanishing of v˚ G guarantees the vanishing of π0ΓpY ; G q, hence also
the vanishing of G since Y is affine and G is discrete). Using the preceding calculation,
we can identify ρ with the canonical map ΓpY ; G q Ñ ΓpY ;F pA q b G q, whose cofiber is
given by ΓpY ;F pcofibpOX Ñ A qq b G q. It will therefore suffice to show that the group
π1ΓpY ;F pcofibpOX Ñ A qq b G q vanishes. This is clear: the tensor product F pcofibpOX Ñ

A qq b G is 0-truncated, since G is 0-truncated by assumption and F pcofibpOX Ñ A qq has
Tor-amplitude ď 0 by virtue of Proposition 9.5.4.6.

9.5.5 Almost Perfect Sheaves

Let X be a locally Noetherian quasi-geometric stack. It follows from Proposition 9.5.2.3
that the 8-category QCohpXq contains many almost perfect objects. We now show that the
Tannaka duality results of §9.5.4 can be reformulated in terms of almost perfect sheaves.

Theorem 9.5.5.1. Let X,Y : CAlgcn Ñ S be functors and suppose that X is a locally
Noetherian geometric stack. Then the construction pf : Y Ñ Xq ÞÑ pf˚ : QCohpXqaperf Ñ

QCohpY qaperfq determines a fully faithful embedding

MapFunpCAlgcn,SqpY,Xq Ñ FunbpQCohpXqaperf ,QCohpY qaperfq,

whose essential image is spanned by those symmetric monoidal functors F : QCohpXqaperf Ñ

QCohpY qaperf which are exact and preserve connective objects.

Remark 9.5.5.2. Under the slightly stronger assumption that X is Noetherian, Theorem
9.5.5.1 was proven by Bhatt and Halpern-Leistner in [27].

Corollary 9.5.5.3. Let R be a connective E8-ring which is complete with respect to a
finitely generated ideal I, let Y be a spectral algebraic spaces which is proper and almost
of finite presentation over R, and let Y^ “ YˆSpecR Spf R be the formal completion of Y
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along the vanishing locus of I, which we regard as a functor CAlgcn Ñ S. Let X be a locally
Noetherian quasi-geometric stack. Then the restriction map

MapFunpCAlgcn,SqpY, Xq Ñ MapFunpCAlgcn,SqpY^, Xq

is a homotopy equivalence.

Proof. It follows from Theorem 8.5.0.3 (together with Corollary 8.3.4.6 and Theorem 8.3.5.2)
that the restriction functor QCohpYqaperf Ñ QCohpY^qaperf is an equivalence of8-categories,
and from Proposition 8.5.1.4 that an object F P QCohpYqaperf is connective if and only if
F |Y^ is connective. The desired result now follows from Theorem 9.5.5.1.

Proof of Theorem 9.5.5.1. Without loss of generality, we may assume that Y “ SpecR is
affine. Using Theorem 9.5.4.2, we can identify MapFunpCAlgcn,SpY,Xq with the full subcate-
gory

Funb0 pQCohpXq,QCohpY qq Ď FunbpQCohpXq,QCohpY qq

spanned by those symmetric monoidal functors which preserve small colimits, connective
objects, and almost perfect objects. Let Funb0 pQCohpXqaperf ,QCohpY qq denote the full sub-
category of FunbpQCohpXqaperf ,QCohpY qq spanned by those symmetric monoidal functors
which preserve finite colimits, connective objects, and almost perfect objects. We wish to
show that the restriction map

θ : Funb0 pQCohpXq,QCohpY qq Ñ Funb0 pQCohpXqaperf ,QCohpY qq

is an equivalence of 8-categories. To prove this, we may assume without loss of generality
that Y “ SpecR is affine.

Since X is locally Noetherian, the full subcategory QCohpXqaperf Ď QCohpXq is sta-
ble under truncation, and therefore inherits a t-structure pQCohpXqaperf

ě0 ,QCohpXqaperf
ď0 q

where QCohpXqaperf
ě0 “ QCohpXqaperf XQCohpXqě0 and QCohpXqaperf

ď0 “ QCohpXqaperf X

QCohpXqď0. Note that every almost perfect object of QCohpXq is p´nq-truncated for
n " 0, so that the t-structure pQCohpXqaperf

ě0 ,QCohpXqaperf
ď0 q is right-bounded. Set C “

IndpQCohpXqaperfq, so that C inherits a t-structure pCě0, Cď0q with Cě0 » IndpQCohpXqaperf
ě0 q

and Cď0 » IndpQCohpXqaperf
ď0 q. Moreover, the t-structure pCě0, Cď0q is right complete and

compatible with filtered colimits (Lemma C.2.4.3).
Let D be any symmetric monoidal 8-category which admits small colimits, for which

the tensor product DˆD Ñ D preserves small colimits separately in each variable. Using
Corollary HA.4.8.1.14 , we see that composition with the Yoneda embedding QCohpXqaperf ãÑ

C induces an equivalence of 8-categories

LFunbpC,Dq Ñ FunbrexpQCohpXqaperf ,Dq,
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where LFunbpC,Dq denotes the full subcategory of FunbpC,Dq spanned by those symmetric
monoidal functors which preserve small colimits, and FunbrexpQCohpXqaperf ,Dq denotes
the full subcategory of FunbrexpQCohpXqaperf ,Dq spanned by those functors which preserve
finite colimits. Applying this observation with D “ QCohpXq (and using the fact that
the t-structure on QCohpXq is compatible with filtered colimits), we see that the inclusion
QCohpXqaperf ãÑ QCohpXq admits an essentially unique extension λ : C Ñ QCohpXq which
commutes with small colimits; moreover, λ is t-exact. Similarly, taking D “ QCohpY q, we
obtain an equivalence of8-categories Funb0 pQCohpXqaperf ,QCohpY qq » Funb0 pC,QCohpY qq,
where Funb0 pC,QCohpY qq denotes the full subcategory of FunbpC,QCohpY qq spanned by
those symmetric monoidal functors which are right t-exact and preserve small colimits.
Under this equivalence, we can identify θ with the map Funb0 pQCohpXq,QCohpY qq Ñ
Funb0 pC,QCohpY qq given by precomposition with λ.

Let Funb0 pQCohpXqcn,QCohpY qcnq Ď FunbpQCohpXqcn,QCohpY qcnq be the full sub-
category spanned by those symmetric monoidal functors which preserve small colimits,
and define Funb0 pCě0,QCohpY qcnq similarly. Using Proposition C.3.1.1 (together with the
observation that the construction E ÞÑ SppEq determines a symmetric monoidal functor
Groth8 Ñ PrSt), we obtain a commutative diagram

Funb0 pQCohpXq,QCohpY qq θ //

��

Funb0 pC,QCohpY qq

��
Funb0 pQCohpXqcn,QCohpY qcnq

θ1 // Funb0 pCě0,QCohpY qcnq

where the vertical maps are equivalences. We will complete the proof by showing that θ1 is
an equivalence of 8-categories. Since the Grothendieck prestable 8-category QCohpY qcn »

Modcn
R is complete, it will suffice to show that the functor λ : Cě0 Ñ QCohpXqcn exhibits

QCohpXqcn as the completion of Cě0, in the sense of Proposition C.3.6.3. In other words,
it will suffice to show that for each n ě 0, the functor λ induces an equivalence of 8-
categories τďn Cě0 Ñ τďn QCohpXqcn. Note that the domain of this functor can be identified
with Indpτďn QCohpXqaperf

ě0 q. The desired result now follows from Corollary ?? (since the
Grothendieck prestable8-category QCohpXqcn is locally Noetherian by virtue of Proposition
9.5.2.3.

9.6 Tannaka Duality for Spectral Algebraic Spaces

Let X be a spectral algebraic space which is quasi-compact and quasi-separated. Through-
out this section, we will abuse notation by not distinguishing between X and the functor
hX : CAlgcn Ñ S represented by X. With this abuse, we can regard X as a quasi-geometric
stack (Corollary 9.1.4.6). It follows from Theorem 9.2.0.2 that X can be recovered from the
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symmetric monoidal 8-category QCohpXq of quasi-coherent sheaves on X, together with its
t-structure. In this section, we will show that even the t-structure is unnecessary, thanks to
the following refinement of Theorem 9.2.0.2:

Theorem 9.6.0.1 (Tannaka Duality for Spectral Algebraic Spaces). Let X and Y be spectral
Deligne-Mumford stacks. Assume that X is a quasi-compact, quasi-separated spectral algebraic
space. Then the construction pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpYqq induces a fully
faithful embedding MapSpDMpY,Xq Ñ FunbpQCohpXq,QCohpYqq, whose essential image is
spanned by those symmetric monoidal functors F : QCohpXq Ñ QCohpYq which preserve
small colimits.

Corollary 9.6.0.2. Let C Ď SpDM denote the full subcategory spanned by the quasi-compact,
quasi-separated algebraic spaces. Then the construction X ÞÑ QCohpXq determines a fully
faithful embedding Cop Ñ CAlgpPrLq.

9.6.1 Compact Generation of QCohpXq

Our first step in the proof of Theorem 9.6.0.1 is to establish the following:

Proposition 9.6.1.1. Let X be a quasi-compact, quasi-separated spectral algebraic space.
Then the 8-category QCohpXq is compactly generated. Moreover, an object of QCohpXq is
compact if and only if it is perfect. In other words, X is a perfect stack (Definition 9.4.4.1).

Combining Proposition 9.6.1.1 with Corollary 9.4.4.7, we immediately obtain the following
weaker version of Theorem 9.6.0.1:

p˚q If X is a quasi-compact, quasi-separated spectral algebraic space and Y is an arbi-
trary spectral Deligne-Mumford stack, then the construction pf : Y Ñ Xq ÞÑ pf˚ :
QCohpXq Ñ QCohpYqq determines an equivalence from MapSpDMpY,Xq to the full sub-
category of FunbpQCohpXq,QCohpYqq spanned by those symmetric monoidal functors
which are right t-exact and preserve small colimits.

To deduce Theorem 9.6.0.1 from p˚q, we will need to show that the hypothesis of right
t-exactness is automatically satisfied. To prove this, we will need the following variant of
Proposition 9.6.1.1:

Proposition 9.6.1.2. Let X be a quasi-compact, quasi-separated spectral algebraic space,
and let C Ď QCohpXq denote the full subcategory spanned by those quasi-coherent sheaves
which are perfect and connective. Then the inclusion C ãÑ QCohpXq extends to an equivalence
of 8-categories IndpCq » QCohpXqcn.

Before giving the proof of Proposition 9.6.1.2, let us describe some of its consequences.
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Corollary 9.6.1.3. Let X be a quasi-compact, quasi-separated spectral algebraic space, and
let F P QCohpXq be connective and n-truncated. Then F can be written as a filtered colimit
lim
ÝÑ

Fα, where each Fα is connective and finitely n-presented.

Proof. Using Proposition 9.6.1.2, we can write F as a filtered colimit lim
ÝÑα

G α, where each
G α is connective and perfect. Since F is n-truncated, we obtain F » τďn F » lim

ÝÑα
τďn G α,

where each τďn G α is connective and finitely n-presented.

Corollary 9.6.1.4. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks which
is proper, locally almost of finite presentation, and of relative dimension ď d. Then the
pushforward functor f˚ : QCohpXq Ñ QCohpYq carries QCohpXqě0 into QCohpYqě´d.

Proof. Let F be a connective quasi-coherent sheaf on X; we wish to show that f˚F is
p´dq-connective. This assertion is local on Y; we may therefore assume without loss of
generality that Y » SpétA for some connective E8-ring A. Under this assumption, X is
a quasi-compact quasi-separated spectral algebraic space. Using Proposition 9.6.1.2, we
can write F as the colimit of a filtered diagram tFαu in QCohpXq, where each Fα is
perfect and connective. Since the functor f˚ commutes with filtered colimits and the full
subcategory QCohpYqě´d Ď QCohpYq is closed under filtered colimits, it will suffice to show
that each pushforward f˚Fα belongs to QCohpYqě´d. We may therefore replace F by Fα

and thereby reduce to the case where F is perfect. In this case, f˚F P QCohpYq » ModA
is almost perfect (Theorem 5.6.0.2). Consequently, to prove that f˚F is n-connective, it
will suffice to show that for each residue field κ of A, the tensor product κ bA f˚F is
n-connective (Corollary 2.7.4.3). We may therefore replace A by κ and thereby reduce to the
case where A “ κ is a field. In this case, our assumption that f has relative dimension ď d

guarantees that X is a locally Noetherian spectral algebraic space of Krull dimension ď d

(Proposition 3.7.6.2), so that the f˚F » ΓpX; F q is p´dq-connective by virtue of Theorem
3.7.0.2.

Warning 9.6.1.5. Corollary 9.6.1.4 is not true if f is not assumed to be proper. For
example, every open immersion j : U ãÑ X has relative dimension ď 0, but the pushforward
functor j˚ is generally not right t-exact unless j is affine.

Proof of Proposition 9.6.1.1 from Proposition 9.6.1.2. Let X be a spectral algebraic space
which is quasi-compact and quasi-separated and let C denote the full subcategory of QCohpXq
spanned by the perfect objects. It follows from Corollary 9.1.5.5 that the inclusion C ãÑ

QCohpXq extends to a fully faithful embedding θ : IndpCq Ñ QCohpXq, whose essential
image is closed under small colimits. Let F P QCohpXq; we wish to show that F belongs to
the essential image of θ. Since the t-structure on QCohpXq is right-complete, we can write
F as a colimit of the sequence

¨ ¨ ¨ Ñ τě0 F Ñ τě´1 F Ñ τě´2 F Ñ ¨ ¨ ¨ .
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It therefore suffices to show that each truncation τě´n F belongs to the essential image of
θ, which follows immediately from Proposition 9.6.1.2.

Corollary 9.6.1.6. Let R be a connective E8-ring and let X be a quasi-compact, quasi-
separated spectral algebraic space over R. For every map of connective E8-rings RÑ A, let
XA denote the fiber product SpétAˆSpétRX, and let QCohpXAqperf denote the full subcategory
of QCohpXAq spanned by those quasi-coherent sheaves which are perfect. Then construction
A ÞÑ QCohpXAqperf determines a functor CAlgcn

R Ñ Cat8 which preserves small filtered
colimits.

Proof. Since X is perfect (Proposition 9.6.1.1), Corollary 9.4.2.3 supplies equivalences

QCohpXAq » ModAbModR QCohpXq.

Using Lemma HA.7.3.5.12 (and that the forgetful functor CAlgcn Ñ Alg preserves fil-
tered colimits), we deduce that the construction A ÞÑ QCohpXAq determines a functor
CAlgcn Ñ PrL which preserves small filtered colimits. Using Corollary 9.1.5.5, we can
identify QCohpXAqperf with the full subcategory of QCohpXAq spanned by the compact
objects. The desired result now follows from Lemma HA.7.3.5.11 .

9.6.2 The Proof of Proposition 9.6.1.2

If X is a spectral algebraic space, then QCohpXqcn is a Grothendieck prestable 8-category.
We wish to show that if X is quasi-compact and quasi-separated, then the 8-category
QCohpXqcn is compactly generated (note that an object of QCohpXqcn is compact if and only
if it is perfect, by virtue of Corollary 9.1.5.5 and Lemma C.6.1.3). By virtue of Corollary
C.6.3.3, Proposition 9.6.1.2 can be reformulated as follows:

Proposition 9.6.2.1. Let X be a quasi-compact, quasi-separated spectral algebraic space
and let F be a nonzero connective object of QCohpXq. Then there exists a connective perfect
object F 0 P QCohpXq and a morphism F 0 Ñ F which is not nullhomotopic.

The proof of Proposition 9.6.2.1 will require some preliminaries.

Lemma 9.6.2.2. Let A be a connective E8-ring, let I “ pa1, . . . , adq be a finitely generated
ideal in π0A, let M be an I-nilpotent A-module, and let K Ď π0M be a finitely generated
pπ0Aq-submodule. Then there exists a connective perfect I-nilpotent A-module P and a map
β : P ÑM which induces a surjection from π0P onto K. Moreover, if Q is an A-module of
Tor-amplitude ď 0 and we are given an element η P πnpM bA Qq for n ě 0, then we can
arrange that η lifts to a class ηP P πnpP bA Qq.
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Proof. We will prove that for each 0 ď i ď d, we can choose a connective perfect A-module
Pi which is pa1, . . . , aiq-nilpotent, and a map βi : Pi ÑM which induces a surjection from
π0Pi on K, and for which η is the image of some class ηi P πnpPi bA Qq.

We first treat the case i “ 0. Write τě0M as a colimit lim
ÝÑ

Nα indexed by a filtered
partially ordered set, where each Nα is perfect and connective. Since K is finitely generated,
we can choose α for which the image of the map π0Nα Ñ π0M contains K. The condition
that Q has Tor-amplitude ď 0 implies that the map πnpτě0M bA Qq Ñ πnpM bA Qq is
bijective. Enlarging α if necessary, we can arrange that η belongs to the image of the map
πnpNα bA Qq Ñ πnpM bA Qq. We can therefore take P0 “ Nα.

To carry out the inductive step, assume that βi´1 : Pi´1 Ñ M has been constructed.
Since Pi´1 is perfect, we can identify βi´1 with an element of π0pP

_
i´1 bAMq, where P_i´1

denotes the A-linear dual of Pi´1. Since M is I-nilpotent, the tensor product π0pP
_
i´1bAMq

is I-nilpotent. It follows that βi´1 is annihilated by aei for e " 0. Consequently, the map
βi´1 factors as a composition Pi´1 Ñ Pi

βi
ÑM, where Pi “ cofibpaei : Pi´1 Ñ Pi´1. We can

then take ηi to be the image of ηi´1.

Lemma 9.6.2.3. Let A be a connective E8-ring, let I “ pa1, . . . , adq be a finitely generated
ideal in π0A, and let M be a perfect A-module for which each localization M ra´1

i s is connective.
Then there exists a morphism of A-modules α : M 1 ÑM , where M 1 is perfect and connective
and cofibpαq is I-nilpotent.

Moreover, if Q is an A-module of Tor-amplitude ď 0 and η P π0pM bA Qq, then we
choose α so that η lifts to an element η1 P π0pM

1 bA Qq.

Proof. Since M is perfect, we can choose an integer n such that M is p´nq-connective. We
proceed by induction on n. If n ě 0, then M is connected and we can take α “ idM . Assume
therefore that n ă 0. Then π´nM is a finitely generated module over π0A, and each of the
localizations pπ´nMqra´1

i s vanishes. Replacing the ai by suitable powers, we may assume
without loss of generality that π´nM is annihilated by each ai. Let N denote the tensor
product of the A-modules cofibpai : AÑ Aq, so that π1pN bA pπ´nMqq is a direct sum of
finitely many copies of pπ´nMq, and therefore a finitely generated module over π0A.

Let ηN denote the image of η in π0pN bAM bA Qq. We have an exact sequence

π1´npN bA τě1´nMq
φ
Ñ π1´npN bAMq Ñ π1pN bA pπ´nMqq Ñ 0.

We can therefore choose a finitely generated submodule K Ď π1´npN bA Mq such that
K ` impφq “ π1´npN bAMq. Applying Lemma 9.6.2.2, we can choose a connective perfect
A-module P which is I-nilpotent and a map β : Σ1´nP Ñ NbAM which induces a surjection
π0P Ñ K Ď π1´npN bAMq, and for which ηN lifts to an element ηN P π0pΣ1´nP bA Qq.
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Form a pullback diagram
M2 //

��

Σ1´nP

β
��

M // N bAM.

Using the exactness of the sequence

π0pM
2 bA Qq Ñ π0pM bA Qq ‘ π0pΣ1´nP bA Qq Ñ π0pN bAM bA Qq,

we deduce that there exists an element η2 P π0pM
2 bA Qq lifting η.

It is clear from the construction that M2 is p´nq-connective, and we have an exact
sequence

π0P ‘ π1´nM
u
Ñ π1´npN bAMq Ñ π´nM

2 Ñ π´nM
v
Ñ π´npN bA V q.

By construction, u is surjective and v is bijective, so that π´nM2 » 0. Since N bAM and P
are I-nilpotent, the map M2 ÑM induces an equivalence M2ra´1

i s »M ra´1
i s for 1 ď i ď d.

Applying the inductive hypothesis, we conclude that there is a connective perfect A-module
M 1 with a map M 1 Ñ M2 which induces equivalences M 1ra´1

i s » M2ra´1
i s for 1 ď i ď d,

and for which η2 P pM2 bA Qq can be lifted to an element η1 P pM 1 bA Qq. The composite
map M 1 ÑM2 ÑM has the desired properties.

Lemma 9.6.2.4. Let A be a connective E8-ring, let I “ pa1, . . . , adq be a finitely generated
ideal in π0A, and let M be a perfect A-module for which each localization M ra´1

i s is connective.
Then there exists a morphism of A-modules α : M 1 ÑM , where M 1 is perfect and connective
and cofibpαq is I-nilpotent.

Proof. Since M is perfect, we can choose an integer n such that M is p´nq-connective. We
proceed by induction on n. If n ě 0, then M is connected and we can take α “ idM . Assume
therefore that n ă 0. Then π´nM is a finitely generated module over π0A, and each of the
localizations pπ´nMqra´1

i s vanishes. Replacing the ai by suitable powers, we may assume
without loss of generality that π´nM is annihilated by each ai. Let N denote the tensor
product of the A-modules cofibpai : AÑ Aq, so that π1pN bA pπ´nMqq is a direct sum of
finitely many copies of pπ´nMq, and therefore a finitely generated module over π0A. We
have an exact sequence

π1´npN bA τě1´nMq
φ
Ñ π1´npN bAMq Ñ π1pN bA pπ´nMqq Ñ 0.

We can therefore choose a finitely generated submodule K Ď π1´npN bA Mq such that
K ` impφq “ π1´npN bAMq. Applying Lemma 9.6.2.2, we can choose a connective perfect
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A-module P which is I-nilpotent and a map β : Σ1´nP Ñ NbAM which induces a surjection
π0P Ñ K Ď π1´npN bAMq. Form a pullback diagram

M2 //

��

Σ1´nP

β
��

M // N bAM.

It is clear from the construction that M2 is p´nq-connective, and we have an exact sequence

π0P ‘ π1´nM
u
Ñ π1´npN bAMq Ñ π´nM

2 Ñ π´nM
v
Ñ π´npN bA V q.

By construction, u is surjective and v is bijective, so that π´nM2 » 0. Since N bAM and P
are I-nilpotent, the map M2 ÑM induces an equivalence M2ra´1

i s »M ra´1
i s for 1 ď i ď d.

Applying the inductive hypothesis, we conclude that there is a connective perfect A-module
M 1 with a map M 1 Ñ M2 which induces equivalences M 1ra´1

i s » M2ra´1
i s for 1 ď i ď d.

The composite map M 1 ÑM2 ÑM has the desired properties.

Proof of Proposition 9.6.2.1. Let X be a quasi-compact, quasi-separated algebraic space and
let F P QCohpXq be nonzero and connective. Using Theorem 3.4.2.1, we can choose a
scallop decomposition

H » U0 ãÑ ¨ ¨ ¨ ãÑ Um » X .

For 0 ď i ď m, let F i denote the restriction of F to Ui. Let i0 be the smallest integer such
that F i0 ‰ 0. Then there exists an integer n ě 0 for which πn F i0 ‰ 0. Replacing F by
Ωn F , we can assume that π0 F i0 ‰ 0, while F i » 0 for i ă i0. We will complete the proof
by showing the following:

p˚q For i0 ď i ď m, there exists a perfect connective object G i P QCohpUiq and a nonzero
morphism βi : G i Ñ F i.

The proof proceeds by induction on i. Choose an excision square

V f //

g

��

SpétA

��
Ui´1 // Ui,

so that V is the quasi-compact open substack of SpétA complementary to the vanishing
locus of a finitely generated ideal I “ pa1, . . . , adq Ď π0A. Let M P ModA » QCohpSpétAq
denote the connective A-module given by the pullback of F i.

We begin by treating the base case i “ i0. In this case, we have F i´1 » 0 so that
the module M is I-nilpotent. By construction, we have π0M ‰ 0. Then Lemma 9.6.2.2
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guarantees the existence of a connective perfect I-nilpotent A-module P and a nonzero map
q : P Ñ M . It follows from Nisnevich descent that we can identify the 8-category of I-
nilpotent A-modules with the full subcategory of QCohpUiq consisting of objects which vanish
in QCohpUi´1q, so that q determines a map βi : G i Ñ F i having the desired properties.

We now carry out the inductive step. Assume that i ą i0 and that βi´1 : G i´1 Ñ F i´1
has already been constructed. Replacing G i´1 by G i´1‘Σ G i´1 if necessary, we may assume
that g˚ G i´1 » f˚N for some perfect object N P QCohpSpétAq (Lemma ??). In this case,
we can identify g˚βi´1 with a map v0 : f˚N Ñ f˚M .

Let u : M Ñ f˚f
˚M denote the unit map. Then fibpuq is I-nilpotent, and can therefore

be written as a filtered colimit of perfect I-nilpotent A-modules Kα. For each index α, let
Mα denote the cofiber of the map Kα Ñ N , so that f˚f˚M » lim

ÝÑ
Mα. The map v0 can

be identified with a map N Ñ f˚f
˚M » lim

ÝÑ
Mα. Since N is perfect, this map factors as a

composition N
p
ÑMα Ñ f˚f

˚M . Form a pullback diagram

N 1 //

��

N

��
M //Mα,

so that we have a fiber sequence Kα Ñ N 1 Ñ N . Replacing N by N 1, we can reduce to
the case where v0 lifts to a map v : N Ñ M . Applying Lemma 9.6.2.4, we may further
reduce to the case where N is connective. Using Nisnevich descent, we conclude that v and
βi´1 can be amalgamated to a morphism βi : G i Ñ F i in QCohpUiq having the desired
properties.

9.6.3 Generation of QCohpXq by a Single Object

Let X be a quasi-compact, quasi-separated spectral algebraic space. Proposition 9.6.1.1
asserts that the 8-category QCohpXq is compactly generated. In fact, we can say a bit more:
it can be generated (as a presentable stable 8-category) by a single compact object. This is
a consequence of the following:

Proposition 9.6.3.1. Let X be a quasi-compact, quasi-separated spectral algebraic space.
Then there exists an object F P QCohpXqperf with the following property:

p˚q Let C be the smallest full subcategory of QCohpXq which contains F and is closed
under colimits and extensions. Then QCohpXqě0 Ď C.

Corollary 9.6.3.2. Let X be a quasi-compact, quasi-separated spectral algebraic space. Then
the 8-category QCohpXq has a compact generator. More precisely, there exists an object
F P QCohpXqperf such that, for every nonzero object G P QCohpXq, the graded abelian group
Ext˚QCohpXqpF ,G q is nonzero.
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Corollary 9.6.3.3. Let X be a quasi-compact, quasi-separated spectral algebraic space. Then
there exists an E1-ring A and an equivalence of 8-categories QCohpXq » LModA.

Proof. Combine Corollary 9.6.3.2 with Theorem HA.7.1.2.1 .

Proof of Proposition 9.6.3.1. Let X be a quasi-compact, quasi-separated spectral algebraic
space. Using Theorem 3.4.2.1, we can choose a scallop decomposition

H “ U0 ãÑ U1 ãÑ ¨ ¨ ¨ ãÑ Un “ X .

For 0 ď i ď n, let Ki Ď |X | denote the closed subset complementary to the image of the
open immersion Ui ãÑ X. We will prove, by descending induction on i, that there exists
objects F i P QCohpXqperf and integers ci satisfying the following version of p˚q:

p˚iq Let Ci`1 be the smallest full subcategory of QCohpXq which contains F i and is closed
under colimits and extensions. Then QCohKipXqěci Ď C.

When i “ n, this is evident (since Kn “ H, we can take Fn “ 0), and when i “ 0 it implies
the desired result (take F “ Σ´c0 F 0). We now carry out the inductive step. Suppose that
i ă n, and that we are given a sheaf F i`1 P QCohpXqperf and an integer ci`1 satisfying
p˚i`1q. Choose an excision square

V j //

��

SpétA
g

��
Ui // Ui`1

where j is a quasi-compact open immersion. In what follows, we will abuse notation by
identifying quasi-coherent sheaves on SpétA with their images under the equivalence of
8-categories QCohpSpétAq » ModA. Let Y Ď |SpecA| denote the complement of the
image of j, so that Y is the vanishing locus of a finitely generated ideal px1, . . . , xdq Ď π0A.
For 1 ď k ď d, let Mk denote the fiber of the map xk : AÑ A, and set M “

Â

1ďkďdMk, so
that M is a perfect A-module whose restriction to V vanishes. We will identify M with the
corresponding quasi-coherent sheaf on SpétA, so that g˚M is a perfect object of QCohpUi`1q.
The proof of Theorem ?? shows that the direct sum g˚M ‘ Σg˚M can be written as the
restriction to Ui`1 of some object F 1 P QCohpXqperf .

Let g1 denote the composition of g with the inclusion map Ui`1 ãÑ X. Proposition
2.5.4.4 implies that there exists an integer n such that the pushforward functor g1˚ carries
QCohpSpétAqě0 into QCohpXqě´n (if X is separated, then g1 is an affine morphism and we
can take n “ 0). Let F 2 denote the cofiber of the canonical map F 1 Ñ g1˚M ‘Σg1˚M . Since
F 1 is perfect and g1˚ ‘ Σg1˚M P QCohpXqě´n, the sheaf F 2 belongs to ShvKi`1pXqě´m for
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some integer m. Choose an integer ci ě 0 such that ci ą ci`1 ` n and ci ě ci`1 `m, and
set F i “ F i`1‘F . We will prove that pF i, ciq satisfies p˚q.

Fir an object G P QCohKipXqěci ; we wish to show that G P Ci. We have a canonical fiber
sequence G 1 Ñ G Ñ g1˚g

1˚ G . Our choice of n guarantees that g1˚g1˚ G P QCohpXqěci´n Ď
QCohpXqěci`1`1, so that G 1 P QCohKi`1pXqěci`1 Ď Ci`1 Ď Ci. Since Ci is closed under
extensions, we are reduced to proving that g1˚g1˚ G P Ci. This follows from the following
more general claim:

p˚1q For every object N P QCohY pSpétAqěci , the direct image g1˚N belongs to Ci.

We will prove the following more general claim, using descending induction on k ď d:

p˚1kq For every objcet N P QCohY pSpétAqěci , the direct image g1˚pN bAM1bA ¨ ¨ ¨ bAMkq

belongs to Ci.

Assume that k ă d and that p˚1k`1q has been verified. Since N is supported on Y , the action
of xk`1 on π˚N is locally nilpotent. It follows that we can write N as a filtered colimit of
the A-modules fibpxtk`1 : N Ñ Nq. Since Ci is closed under colimits, we are reduced to
proving that g1˚Σ´kpfibpxtk`1 : N Ñ Nq bAM1 bA ¨ ¨ ¨ bAMkq P Ci for each t ě 0. Since Ci
is closed under extensions, we can reduce to the case where t “ 1, which follows from p˚1k`1q.

It remains to prove p˚1dq. Here, we prove the following more general claim:

p˚2q For every object N P QCohpSpétAqěci , the direct image g1˚pN bAM1 bA ¨ ¨ ¨ bAMdq

belongs to Ci.

Since QCohpSpétAqěci is generated under small colimits by the B-module ΣciA, it suffices
to prove p˚2q in the case N “ ΣciA. That is, we are reduced to proving that Σcig1˚M P Ci.
Since Ci is closed under retracts, it will suffice to show that Σcig1˚M ‘Σci`1g1˚M belongs to
Ci. We have a fiber sequence

Σci F 1 Ñ Σcig1˚M ‘ Σci`1g1˚M Ñ Σci F 2 .

Here Σci F 1 P Ci since ci ě 0, and

Σci F 2 P QCohKi`1pXqěci´m Ď QCohKi`1pXqěci`1 Ď Ci`1 Ď Ci .

Since Ci is closed under extensions, we conclude that Σcig1˚M‘Σci`1g1˚M P Ci as desired.

9.6.4 The Proof of Theorem 9.6.0.1

Let X and Y be spectral Deligne-Mumford stacks, where X is a quasi-compact, quasi-
separated algebraic space. Let

θ : MapSpDMpY,Xq Ñ FunbpQCohpXq,QCohpYqq
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denote the functor given by pf : Y Ñ Xq ÞÑ pf˚ : QCohpXq Ñ QCohpYqq. Using Proposition
9.6.1.1 and Corollary 9.4.4.7, we deduce that θ is a fully faithful embedding whose essential
image consists of those symmetric monoidal functors F : QCohpXq Ñ QCohpYq which satisfy
the following conditions:

paq The functor F preserves small colimits.

pbq The functor F carries connective objects of QCohpXq to connective objects of QCohpYq.

To prove Theorem 9.6.0.1, it will suffice to show that any symmetric monoidal functor
F : QCohpXq Ñ QCohpYq which satisfies paq automatically satisfies pbq as well. Note that
condition pbq can be tested locally on Y; we may therefore assume without loss of generality
that Y » SpétR is affine.

Since F is a symmetric monoidal functor, it carries dualizable objects of QCohpXq
to dualizable objects of QCohpYq » ModR. Consequently, for every perfect object F P

QCohpXq, the R-module F pF q is perfect.
Let F 0 P QCohpXq be a perfect object which satisfies the requirements of Proposition

9.6.3.1. Then F pF 0q P ModR is perfect. It follows that there exists an integer n such that
F pF 0q is p´nq-connective. Let C Ď QCohpXq denote the full subcategory spanned by those
objects F such that F pF q is p´nq-connective. Since F preserves small colimits, the full
subcategory C is closed under colimits and extensions, and therefore contains QCohpXqě0.
This proves the following weaker version of pbq:

pb1q There exists an integer n " 0 such that the functor F carries QCohpXqě0 into
QCohpYqě´n.

We now claim that F satisfies pbq. Fix a connective object F P QCohpXq; we wish to
show that F pF q is connective. Using paq and Proposition 9.6.1.2, we can assume that F

is perfect. Then F pF q is perfect. Suppose that F pF q is not connective: then there exists
some largest integer m such that π´mF pF q ‰ 0. Since π´mF pF q is a finitely generated
module over π0R, it follows from Nakayama’s lemma that there exists some residue field
κ of R for which π´mpκ bR F pF qq ‰ 0. Replacing F by Fbpn`1q, we can arrange that
m ą n, which contradicts pb1q. This completes the proof of Theorem 9.6.0.1.

Corollary 9.6.4.1. Let f : X Ñ Y be a morphism between quasi-compact, quasi-separated
spectral algebraic spaces. If the pullback functor f˚ : QCohpYq Ñ QCohpXq is an equivalence
of 8-categories, then f is an equivalence.

Corollary 9.6.4.2. Let X : CAlgcn Ñ S be a functor which is representable by a quasi-
compact, quasi-separated spectral algebraic space. Then for every functor Y : CAlgcn Ñ pS,
the canonical map

MapFunpCAlgcn,pSqpY,Xq Ñ FunbpQCohpXqperf ,QCohpY qperfq
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is a fully faithful embedding, whose essential image is spanned by the exact symmetric
monoidal functors from QCohpXqperf to QCohpY qperf .

Proof. The assertion is compatible with colimits in Y ; we may therefore assume without loss
of generality that Y is representable by an affine spectral Deligne-Mumford stack SpétR.
Note that every symmetric monoidal functor QCohpXqperf Ñ QCohpY q preserves dualizable
objects and therefore takes values in the full subcategory QCohpY qperf Ď QCohpXq. It will
therefore suffice to show that the canonical map

θ : MapFunpCAlgcn,pSqpY,Xq Ñ FunbpQCohpXqperf ,QCohpY qq

is a fully faithful embedding, whose essential image is spanned by the exact functors. Note
that θ factors as a composition

MapFunpCAlgcn,pSqpY,Xq
θ1
Ñ FunbpQCohpXq,QCohpY qq θ

2

Ñ FunbpQCohpXqperf ,QCohpY qq.

Theorem 9.6.0.1 implies that θ1 is a fully faithful embedding, whose essential image C is
spanned by those symmetric monoidal functors from QCohpXq to QCohpY q which preserve
small colimits. It follows from Proposition 9.6.1.1 that the restriction θ2|C is fully faithful,
and that its essential image is the full subcategory of FunbpQCohpXqperf ,QCohpY qq spanned
by those symmetric monoidal functors which preserve finite colimits.

9.6.5 Application: Serre’s Criterion for Affineness

We now use Tannaka duality to establish the following converse to Proposition ??:

Proposition 9.6.5.1 (Serre’s Affineness Criterion). Let X be a quasi-compact, quasi-
separated spectral algebraic space. Then X is affine if and only if the global sections functor
ΓpX; ‚q : QCohpXq Ñ Sp is t-exact.

Proof. If X » SpétA is affine, then the global sections functor ΓpX; ‚q can be identified with
the forgetful functor ModApSpq Ñ Sp and is therefore t-exact. Conversely, suppose that
ΓpX; ‚q is t-exact and set A “ ΓpX; OXq, so that A is a connective E8-ring. The identity
map AÑ ΓpX; OXq determines a map f : X Ñ SpétA which satisfies the following condition:

p˚q The pushforward functor f˚ : QCohpXq Ñ QCohpSpétAq » ModA is t-exact and the
unit map AÑ f˚OX is an equivalence.

We wish to show that condition p˚q implies that f is an equivalence. By virtue of Corollary
9.6.4.1, this is equivalent to the requirement that the pullback functor f˚ : ModA »

QCohpSpétAq Ñ QCohpXq is an equivalence of 8-categories. By construction, A is the
endomorphism ring of the compact object OX P QCohpXq. Using Theorem HA.7.1.2.1 and
Remark ??, it will suffice to show that the structure sheaf OX generates the stable8-category
QCohpXq: that is, that the global sections functor ΓpX; ‚q : QCohpXq Ñ Sp is conservative.

Our proof proceeds in several steps.
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paq Suppose first that A is a field κ. Then ΓpX; OXq ‰ 0, so X is nonempty. Since
X is a quasi-compact, quasi-separated spectral algebraic space, it admits a scallop
decomposition (Theorem 3.4.2.1). In particular, there a quasi-compact open substack
U Ĺ X which fits into an excision square

V j //

��

SpétB

��
U // X .

The image of j is a quasi-compact open subset of the Zariski spectrum | SpecB|, whose
complement K Ď |SpecB| can be identified with the vanishing locus of a finitely
generated ideal I Ď pπ0Bq. Let us identify the quotient pπ0Bq{I

2 with a quasi-coherent
sheaf on SpétB whose restriction to V vanishes. Since the diagram of 8-categories

QCohpXq //

��

QCohpUq

��
QCohpSpétBq // QCohpVq

is a pullback square, the quotient pπ0Bq{I
2 admits an essentially unique lift to an

object F P QCohpXq♥ satisfying F |U » 0. Note that the unit map π0 OX Ñ F is an
epimorphism in QCohpXq♥. Since the global sections functor ΓpX; ‚q is t-exact, the
induced map

κ » π0ΓpX; OXq » ΓpX;π0 OXq Ñ ΓpX; F q » pπ0Bq{I
2

is surjective. The assumption U ‰ X guarantees that pπ0Bq{I ‰ 0. Using the fact
that κ is a field, we deduce that the surjections κ Ñ pπ0Bq{I

2 Ñ pπ0Bq{I ‰ 0 are
also injective: that is, we have I2 “ I. Since I is finitely generated, it follows that
I is generated by an idempotent element e P π0B. We therefore have SpétB »

pSpétBre´1sq > V and therefore X » U > SpétBre´1s. Because ΓpX; OXq » κ is a field,
the spectral algebraic space X must be connected: we therefore have U » H and
X » SpétBre´1s is affine as desired.

pbq Suppose that A is a valuation ring and the map f : X Ñ SpétA admits a section
s : SpétAÑ X. Note that for every residue field κ of A, the induced map

fκ : XˆSpétA SpétκÑ Spétκ

also satisfies condition p˚q. It follows from paq that fκ is an equivalence. Consequently,
the map f induces a bijection |f | : |X | Ñ |SpétA| between the underlying topological
spaces of X and SpétA. Since f admits a section, the map |f | is a homeomorphism.
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Since X is a quasi-compact, quasi-separated spectral algebraic space, it admits a scallop
decomposition

H » U0 ãÑ U1 ãÑ ¨ ¨ ¨ ãÑ Un “ X .

We will prove that f is an equivalence using induction on n, the case n “ 0 being
trivial. Assume that n ą 0, so that Un´1 determines a quasi-compact open subset
of the topological space |X |. Since |f | is a homeomorphism, it follows that Un´1
can be identified with the inverse image of a quasi-compact open substack W Ď

SpétA. Since A is a valuation ring, we can write W » SpétArt´1s for some t P A.
Applying the inductive hypothesis to the map f0 : Un´1 Ñ W, we deduce that f0
is an equivalence. In particular, the pushforward functor f0˚ : QCohpUn´1q Ñ W is
conservative. Consequently, if F P QCohpXq satisfies f˚F » 0, then the restriction
F |U “ 0. Since the inclusion j : Un´1 Ñ X fits into an excision square σ :

V //

��

SpétB
g

��
Un´1

j // X,

it follows that we can write F “ g˚ G , where G P QCohpSpétBq is a quasi-coherent
sheaf satisfying G |V » 0. Since SpétB is affine, the vanishing of ΓpX; F q » ΓpSpétB; G q
guarantees that G » 0, so that F » g˚ G » 0.

pcq We next claim that any map of quasi-compact quasi-separated algebraic spaces f : X Ñ
SpétA satisfying condition p˚q is separated. To prove this, we will verify that f satisfies
the valuative criterion for separatedness (Corollary ??). Let V P CAlgA be a valuation
ring with residue field K suppose we are given a pair of maps g0, g1 : SpétV Ñ X
of spectral Deligne-Mumford stacks over A. We claim that g0 and g1 are homotopic
to one another. To prove this, we can replace A by V and X by the fiber product
SpétV ˆSpétA X and thereby reduce to the case where A “ V . In this case, the map f
admits a section (given by either g0 or g1), so that f is an equivalence by virtue of pbq.

pdq We now handle the general case. Let F P QCohpXq satisfy ΓpX; F q » 0; we wish to
prove that F » 0. Since ΓpX; ‚q is t-exact, we have ΓpX;πn F q » πnΓpX; F q » 0 for
each integer n. We may therefore replace F by πn F and thereby reduce to the case
where F P QCohpXq♥.

Fix a map η : SpétB Ñ X and let B P QCohpXq denote the direct image of the structure
sheaf of SpétB. Note that each element b P π0B determines a map φb : OX Ñ B.
We claim that the induced map

À

bPπ0B
OX Ñ B induces an epimorphism on π0 (in

the abelian category QCohpXq♥). To prove this, it will suffice to show that for every
map η1 : SpétB1 Ñ X, the induced map

À

bPπ0B
π0η

1˚OX Ñ π0η
1˚ B is a surjection of
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pπ0B
1q-modules. Write SpétB ˆX SpétB1 “ SpétR. Unwinding the definitions, we

wish to show that π0R is generated (as a module over π0B
1) by the elements of B:

that is, that the canonical map π0pB bA B
1q Ñ π0R is surjective. This is equivalent

to the statement that the map

SpétB ˆX SpétB1 Ñ SpétB ˆSpétA SpétB1

is a closed immersion, which follows from the separatedness of X over SpétA.

It follows that the map φb induce an epimorphism
à

bPπ0B

F »
à

bPπ0B

π0pOXbF q Ñ π0pBbF q » π0pη˚η
˚F q

in the abelian category QCohpXq♥. Using the t-exactness of the global sections functor
ΓpX; ‚q, we obtain a surjection

0 »
à

bPπ0B

ΓpX; F q Ñ ΓpX;π0η˚η
˚F q » π0ΓpSpétB; η˚F q.

Since SpétB is affine, this guarantees that π0η
˚F vanishes. Since the map η was

chosen arbitrarily, we conclude that π0 F » 0 and therefore F » 0, as desired.

9.6.6 Application: A Criterion for Quasi-Affineness

We now discuss a variant of Proposition 9.6.5.1, which characterizes the class of quasi-
affine spectral Deligne-Mumford stacks.

Proposition 9.6.6.1. Let X be a quasi-compact, quasi-separated spectral algebraic space.
The following conditions are equivalent:

p1q The spectral algebraic space X is quasi-affine.

p2q The structure sheaf OX generates the t-structure on QCohpXq, in the sense of Definition
C.2.1.1. That is, for every quasi-coherent sheaf F P QCohpXq, there exists a map
À

OX Ñ F which is an epimorphism on π0.

Proof. Suppose first that p1q is satisfied, so there exists a quasi-compact open immersion
j : X ãÑ SpétA for some connective E8-ring A. Let F be a quasi-coherent sheaf on X.
Choose a collection of elements fi P π0ΓpX; F q which generate π0ΓpX; F q as a module over
A. The elements fi classify a map

À

A Ñ ΓpX; F q in the 8-category ModA which is an
epimorphism on π0. Applying the functor j˚ : ModA » QCohpSpétAq Ñ X, we obtain a
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map
À

OX Ñ j˚ΓpX; F q » F which is an epimorphism on π0. Allowing F to range over
all quasi-coherent sheaves on X, we deduce that condition p2q is satisfied.

Now suppose that p2q is satisfied. Choose a morphism of E8-rings ρ : A Ñ ΓpX; OXq

which exhibits A as a connective cover of ΓpX; OXq, so that ρ classifies a morphism of spectral
Deligne-Mumford stacks f : X Ñ SpétA. It follows from assumption p2q and Theorem ?? that
the pullback functor f˚ : ModA » QCohpSpétAq Ñ QCohpXq is t-exact and that its right
adjoint f˚ : QCohpXq Ñ ModA is fully faithful. It follows that QCohpXq is idempotent as
an A-linear 8-category: that is, the multiplication map QCohpXq bA QCohpXq Ñ QCohpXq
is an equivalence of 8-categories. Combining this observation with Corollaries 9.4.2.3 and
9.6.4.1, we deduce that the diagonal map δ : X Ñ XˆSpétA X is an equivalence: in other
words, the map f is a monomorphism (in the 8-category of spectral algebraic spaces). It is
also flat (since the pullback functor f˚ is t-exact). We will complete the proof by establishing
the following:

p˚q Let f : X Ñ SpétA be a flat monomorphism between quasi-compact, quasi-separated
spectral algebraic spaces which exhibits A as the connective cover of ΓpX; OXq. Then
f is an open immersion.

To prove p˚q, we first apply Theorem 3.4.2.1 to choose a scallop decomposition

H » U0 ãÑ ¨ ¨ ¨ ãÑ Un » X

of X. We will prove that each of the maps f |Ui is an open immersion. The proof proceeds by
induction on i, the case i “ 0 being trivial. To carry out the inductive step, let us assume
that i ă n and that we have established that f |Ui is an open immersion; we wish to prove
that f |Ui`1 is an open immersion. Let p be a prime ideal of the commutative ring π0A

which belongs to the image of the map |Ui`1 | Ñ | SpétA| » | SpecA|; we will show that
there exists an open neighborhood of p over which the map f |Ui`1 is an equivalence. Let Ap

denote the localization of A at p. The projection morphism fp : SpétApˆSpétA X Ñ SpétAp

is a flat map whose image contains the closed point of |SpecAp|. It is therefore faithfully
flat. Since f is a monomorphism, the pullback of fp along the faithfully flat map fp is an
equivalence. Applying Proposition 2.8.3.3, we deduce that fp is an equivalence. In particular,
the restriction of fp to the fiber product SpétAp ˆSpétA Ui`1 is an open immersion. Since
the image of this open immersion contains the closed point of | SpecAp|, it is an equivalence:
that is, the inclusion map

SpétAp ˆSpétA Ui`1 ãÑ SpétAp ˆSpétA X

is an equivalence.
Let Z be the (reduced) closed substack of X complementary to the open immersion

Ui`1 ãÑ X, so that SpétAp ˆSpétA Z » H. Since Z is quasi-compact, it follows that there
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exists an element a P π0A which does not belong to p such that SpétAra´1s ˆSpétA Z » H.
Replacing A by Ara´1s, we may assume that Z “ H and therefore X “ Ui`1. It follows that
there exists an excision square σ :

V //

��

SpétB

��
Ui // X .

Let us regard B as an E8-algebra over A, and let Bp denote the tensor product Ap bA B.
Since fp is an equivalence, we see that σ determines another excision square

SpétAp ˆSpétA V //

��

SpétBp

��
SpétAp ˆSpétA Ui // SpétAp

.

In particular, the canonical map Ap Ñ Bp is étale. Using the structure theory of étale
morphisms (Proposition B.1.1.3), we can assume (replacing A by a localization Ara´1s if
necessary) that there exists an étale A-algebra B1 and a map φ : B1 Ñ B which induces an
equivalence after localization at p. We can therefore extend σ to a commutative diagram σ :

V //

��

SpétB

��

//

��

SpétB1

��
Ui // X // SpétA.

The outer rectangle in σ becomes an excision square after localization at p. We can therefore
replace A by a localization Ara´1s for some a P pπ0Aq ´ p and thereby reduce to the case
where the outer rectangle in σ is itself an excision square. Let OV denote the structure sheaf
of V. Passing to global functors, we obtain a commutative diagram

ΓpV; OVq Boo B1
φoo

ΓpUi; OX |Uiq

OO

ΓpX; OXq

OO

oo A
ρoo

OO

where the left square and the outer rectangle are pullback squares. It follows that the right
square is a pullback as well. Consequently, it induces a homotopy equivalence of spectra
cofibpρq » cofibpφq. Since ρ exhibits A as a connective cover of ΓpX; OXq, the cofiber cofibpρq
belongs to Spď´1. But φ is a morphism of connective spectra, so cofibpφq is connective. It
follows that cofibpφq » 0, so that φ is an equivalence. Since the right square in the diagram
σ is a pushout, we conclude that the map X Ñ SpétA is also an equivalence, as desired.
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9.6.7 Perfect Approximation for Sheaves of Tor-Amplitude ď 0

We close this section by proving a dual version of Proposition 9.6.1.2:

Proposition 9.6.7.1. Let X be a quasi-compact, quasi-separated spectral algebraic space.
Let C Ď QCohpXq denote the full subcategory spanned by those quasi-coherent sheaves F for
which F is perfect and of Tor-amplitude ď 0. Then the inclusion C ãÑ QCohpXq extends
to a fully faithful embedding IndpCq Ñ QCohpXq, whose essential image is spanned by those
quasi-coherent sheaves which have Tor-amplitude ď 0.

Lemma 9.6.7.2. Let X be a quasi-compact, quasi-separated spectral algebraic space, and let
α : F 0 Ñ F be a morphism in QCohpXq, where F 0 is perfect and F has Tor-amplitude ď 0.
Then α factors as a composition F 0 Ñ F 1

0 Ñ F , where F 1
0 is perfect and of Tor-amplitude

ď 0.

Proof. Write X “ pX ,OX q, and identify α with a point η P π0ΓpX; F_
0 bF q. For each object

U P X , set XU “ pX {U ,OX |U q, and let ηU denote the image of η in π0ΓpXU ; pF_
0 bF q|U q.

Using Theorem 3.4.2.1, we can choose a scallop decomposition

H » U0 ãÑ U1 ãÑ ¨ ¨ ¨ ãÑ Um “ X .

We will prove the following:

p˚iq There exists a connective perfect object G i P QCohpXUiq equipped with a map G i Ñ

F_
0 |Ui for which ηUi can be lifted to an element of π0ΓpXUi ; G ibF |Uiq.

Assuming that p˚mq is satisfied, we complete the proof by taking F 1
0 “ G_m. The proof

of p˚iq proceeds by induction on i, the case i “ 0 being trivial. Assume that i ą 0 and that
p˚i´1q is satisfied. Choose an excision square

W //

��

V

��
Ui´1 // Ui,

where V is affine and W is quasi-compact. Write XV “ SpétA, so that XW is the quasi-
compact open substack of SpétA complementary to the vanishing locus of a finitely generated
ideal I Ď π0A. Let GW denote the image of G i´1 in QCohpXW q. Replacing G i´1 by
G i´1‘Σ G i´1, we can assume that GW can be extended to a perfect object M P ModA »
QCohpXV q (Lemma ??).

Let N be the perfect A-module given by the restriction F_
0 |V , and let N 1 P ModA

denote the direct image of F_
0 |W . We have a canonical map N Ñ N 1, whose cofiber is

I-nilpotent. We may therefore write cofibpN Ñ N 1q as a filtered colimit lim
ÝÑ

N2γ , where each
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N2γ is perfect and I-nilpotent. The map G i´1 Ñ F_
0 |Ui´1 determines a map of A-modules

β : M Ñ N 1. Since M is perfect, the composite map M
β
Ñ N 1 Ñ lim

ÝÑ
N2γ factors through

some N2γ . Replacing M by fibpM Ñ N2γ q, we may suppose that β factors through a map
β : M Ñ N .

Let M 1 denote the direct image of GW in QCohpXV q, so that we have a canonical
map v : M Ñ N ˆN 1 M

1 such that cofibpvq is I-nilpotent. We may therefore write
cofibpvq » lim

ÝÑ
Lβ, where each Lβ is perfect and I-nilpotent. Let Q P ModA » QCohpXV q

denote the inverse image of F . Together, the points ηi´1 and ηV determine a point
η1 P π0ppN ˆN 1M

1qbAQq. Let η2 denote the image of η1 in π0pcofibpvqbAQq. Then η2 can
be lifted to a point of π0pLβ bA Qq for some index β. Replacing M by the fiber product
pN ˆN 1 M

1q ˆcofibpvq Lβ , we can assume that η1 lifts to an element η1 P π0pM bA Qq. Using
Lemma 9.6.2.3, we can reduce further to the case where M is connective. In this case, M
and G i´1 can be amalgamated to a connective perfect object G i P QCohpXUiq, and η1 and
ηi´1 can be amalgamated to an element ηi P π0ΓpXUi ; G ibF |Uiq.

Proof of Proposition 9.6.7.1. Let X be a quasi-compact, quasi-separated spectral algebraic
space and let C Ď QCohpXq be the full subcategory spanned by those objects which are
perfect and of Tor-amplitude ď 0. The inclusion C ãÑ QCohpXq extends to a functor
ρ : IndpCq Ñ QCohpXq. Since every object of C is compact in QCohpXq (Corollary 9.1.5.5),
the functor ρ is fully faithful. Let us denote its essential image by C1 Ď QCohpXq. Since the
collection of quasi-coherent sheaves of Tor-amplitude ď 0 is closed under filtered colimits,
we conclude that each object of C1 has Tor-amplitude ď 0. We wish to prove the converse.

For each object F P QCohpXq, let QCohpXqperf
{F denote the full subcategory of QCohpXq{F

spanned by those maps F 0 Ñ F where F 0 is perfect. Let UpF q denote a colimit of the
projection map QCohpXqperf

{F Ñ QCohpXq, so that we have a canonical map uF : UpF q Ñ F .
If F is perfect, then QCohpXqperf

{F has a final object, and the map uF is an equivalence. More
generally, the fact that each perfect object of QCohpXq is compact (Corollary 9.1.5.5) implies
that the functor F ÞÑ UpF q preserves filtered colimits, so that the collection of those objects
F P QCohpXq for which uF is an equivalence is closed under filtered colimits. Applying
Proposition 9.6.1.1, we see that uF is an equivalence for every object F P QCohpXq.

Suppose now that F has Tor-amplitude ď 0. Let E Ď QCohpXqperf
{F denote the full

subcategory spanned by those morphisms F 0 Ñ F where F 0 is perfect and of Tor-
amplitude ď 0. If K is a finite simplicial set and we are given a diagram q : K Ñ E ,
then K admits a colimit in the 8-category QCohpXqperf

{F , which we can identify with a
morphism F 0 Ñ F in QCohpXq. Applying Lemma 9.6.7.2, we can factor α as a composition
F 0 Ñ F 1

0 Ñ F , where F 1
0 is perfect and of Tor-amplitude ď 0, and therefore determines

an object of E . It follows that Eq{ is nonempty. Allowing q to vary over all finite diagrams,
we conclude that the 8-category E is filtered. It follows that the colimit of the composite
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map E ι
Ñ QCohpXqperf

{F Ñ QCohpXq belongs to the 8-category C1. Consequently, to prove
that F belongs to C1, it will suffice to show that the inclusion ι is left cofinal.

Fix an object F 0 P QCohpXqperf
{F . We wish to prove that the 8-category

EF0 { “ E ˆQCohpXqperf
{F
pQCohpXqperf

{F qF0 {

is weakly contractible. In fact, we claim that EF0 { is filtered. Let q : K Ñ EF0 { be a
diagram indexed by a finite simplicial set. Arguing as above, we see that q admits a colimit
in the 8-category QCohpXqperf

{F , which we can identify with a map β : F 1
0 Ñ F . Applying

Lemma 9.6.7.2, we deduce that β factors as a composition F 1
0 Ñ F 2

0 Ñ F , where F 2
0 is

perfect and of Tor-amplitude ď 0. It follows that pEF0 {qq{ is nonempty, as desired.

9.7 Tannaka Duality for Abelian Categories

Let X be a quasi-geometric stack. It follows from Theorem 9.2.0.2 that X can be
recovered, up to canonical equivalence, from the symmetric monoidal 8-category QCohpXq
(together with its t-structure). In this section, we study an analogous problem in a more
concrete setting: to what extent is X determined by the abelian category QCohpXq♥? Note
that the abelian category QCohpXq♥ depends only the the 0-truncation of X (see Remark
??), so at best we could only hope to recover the 0-truncation of X. In the positive direction,
we have the following:

Theorem 9.7.0.1. Let X be a 0-truncated geometric stack. For any commutative ring R,
the construction

pη P XpRqq ÞÑ pτď0η
˚ : QCohpXq♥ Ñ Mod♥

Rq

induces a fully faithful embedding XpRq Ñ FunbpQCohpXq♥,Mod♥
Rq whose essential image

is spanned by those symmetric monoidal functors F : QCohpXq♥ Ñ Mod♥
R with the following

properties:

p1q The functor F preserves small colimits. In other words, F is right exact and commutes
with arbitrary direct sums.

p2q The functor F carries flat quasi-coherent sheaves on X to flat R-modules.

p3q For every exact sequence 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 of flat quasi-coherent sheaves on
X, the sequence of R-modules

0 Ñ F pF 1q Ñ F pF q Ñ F pF 2q Ñ 0

is also exact.
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It is possible to prove Theorem ?? by imitating the proof of Theorem 9.3.0.3 at the level
of abelian categories (for a proof along these lines, we refer the reader to [137]). We will
give a different proof in §9.7.3 (see Theorem 9.7.3.2 and Example 9.7.3.4), which proceeds
by reducing Theorem ?? to Theorem 9.3.0.3. Though more circuitous than the direct
approach, our method has the virtue of yielding several other results of independent interest
(for example, we will show how to recover an arbitrary geometric stack X from the full
subcateegory QCohpXq5 of flat quasi-coherent sheaves on X; see Theorem 9.7.2.1).

9.7.1 Exact Functors on Flat Sheaves

For every geometric stack X, we let QCohpXq5 denote the full subcategory of QCohpXq
spanned by the flat quasi-coherent sheaves on X. According to Theorem 9.3.0.3, an arbitrary
map f : Y Ñ X is determined by the symmetric monoidal functor f˚ : QCohpXq Ñ
QCohpY q. In fact, we will show in a moment that f can be recovered from the restriction
f˚|QCohpXq5 : QCohpXq5 Ñ QCohpY q5. First, let us single out an important property enjoyed
by functors of this form.

Proposition 9.7.1.1. Let X : CAlgcn Ñ S be a geometric stack, let Y : CAlgcn Ñ S be
an arbitrary functor, and let F : QCohpXq5 Ñ QCohpY q5 be a symmetric monoidal functor
which preserves filtered colimits. Then the following conditions are equivalent:

p1q The functor F preserves finite direct sums and carries faithfully flat commutative
algebra objects of QCohpXq to faithfully flat commutative algebra objects of QCohpY q.

p2q The functor F preserves zero objects, and for every fiber sequence σ:

F 1 //

��

F

��
0 // F 2

in QCohpXq where F 1, F , and F 2 are flat, the image F pσq is a fiber sequence in
QCohpY q.

p3q The functor F preserves finite direct sums, and for every fiber sequence σ :

OX
//

��

F

��
0 // F 2

in QCohpXq where F and F 2 are flat, the image F pσq is a fiber sequence in QCohpY q.
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Remark 9.7.1.2. Condition p2q of Proposition 9.7.1.1 is automatically satisfied if F extends
to a right exact functor QCohpXqcn Ñ QCohpY qcn (or an exact functor QCohpXq Ñ
QCohpY q).

Motivated by Remark 9.7.1.2, we introduce the following terminology:

Definition 9.7.1.3. Let X be a geometric stack, let Y : CAlgcn Ñ S be an arbitrary
functor, and let F : QCohpXq5 Ñ QCohpY q5 be a symmetric monoidal functor which
preserves filtered colimits. We will say that F is exact if it satisfies the equivalent conditions
of Proposition 9.7.1.1.

Proof of Proposition 9.7.1.1. Let us assume that the functor F preserves zero objects. Note
that for every pair of objects F 1,F 2 P QCohpXq5, we have a fiber sequence σ :

F 1 //

��

F 1‘F 2

��
0 // F 2,

and that F pσq is a fiber sequence in QCohpY q if and only if F carries F pF 1‘F 2q to a direct
sum of F pF 1q and F pF 2q. It follows immediately that p2q ñ p3q. The implication p3q ñ p1q
follows from Lemma D.4.4.3. We will complete the proof by showing that p1q ñ p2q. Suppose
that condition p1q is satisfied, and that σ :

F 1 //

��

F

��
0 // F 2

is a pullback diagram in QCohpXq consisting of flat objects. We wish to show that F pσq
is a pullback square in QCohpY q. Since X is geometric, there exists a faithfully flat map
π : SpecA Ñ X for some connective E8-ring A. Set A “ f˚OSpecA P CAlgpQCohpXqq,
so that A is a faithfully flat commutative algebra object of QCohpXq. It follows from p1q
that F pA q is a faithfully flat object of QCohpY q. It will therefore suffice to show that F pσq
becomes a pullback square after tensoring with F pA q. Since F is a symmetric monoidal
functor, we are reduce to proving that F pπ˚π˚σq is a pullback square in QCohpY q.

Let us abuse notation by identifying QCohpSpecAq with ModA, so that π˚σ can be
identified with a fiber sequence of flat A-modules M 1 Ñ M Ñ M2. Using Theorem
HA.7.2.2.15 , we can write M2 as a filtered colimit lim

ÝÑ
M2
α, where each M2

α is a free A-
module. For each index α, set Mα “ M ˆM2 M2

α, so that we have a fiber sequence
τα : M 1 ÑMα ÑM2

α. Since M 1 is connective and M2
α is free, this sequence splits. It follows

that π˚τα is a split fiber sequence in QCohpXq. Since F preserves finite direct sums, we
conclude that F pπ˚ταq is a (split) fiber sequence in QCohpY q. Because F preserves filtered
colimits, the diagram F pπ˚π

˚σq » lim
ÝÑ

F pπ˚ταq is also a fiber sequence in QCohpY q.
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9.7.2 Recovering X from QCohpXq5

We can now formulate our main result.

Theorem 9.7.2.1 (Tannaka Duality, Flat Sheaf Version). Let X be a geometric stack and
let Y : CAlgcn Ñ S be an arbitrary functor. Then the construction pf : Y Ñ Xq ÞÑ pf˚ :
QCohpXq5 Ñ QCohpY q5q determines a fully faithful embedding

MapFunpCAlgcn,SqpY,Xq Ñ FunbpQCohpXq5,QCohpY q5q,

whose essential image is spanned by those symmetric monoidal functors F : QCohpXq5 Ñ
QCohpY q5 which preserve filtered colimits and are exact (in the sense of Definition 9.7.1.3).

We will deduce both Theorem 9.7.2.1 and Theorem ?? from the following result, whose
proof we defer until §??:

Theorem 9.7.2.2. Let X : CAlgcn Ñ S be a geometric stack, let 0 ď d ď 8, and
let R be a connective E8-ring which is d-truncated. Let C denote the full subcategory
of FunbpQCohpXqcn, pModcn

R qďdq spanned by those symmetric monoidal functors which
preserve small colimits and restrict to an exact functor QCohpXq5 Ñ Mod5R (in the sense of
Definition 9.7.1.3). Then the restriction functor C Ñ FunbpQCohpXq5, pMod5Rqďdq is a fully
faithful embedding. Its essential image is spanned by those symmetric monoidal functors
F : QCohpXq5 Ñ Mod5R which are exact and preserve filtered colimits.

Corollary 9.7.2.3. Let X : CAlgcn Ñ S be a geometric stack, let R be a connective E8-ring,
and let E denote the full subcategory of FunbpQCohpXq,ModRq spanned by those symmetric
monoidal functors which preserve small colimits, flat objects, and connective objects. Then the
restriction functor E Ñ FunbpQCohpXq5,Mod5Rq is a fully faithful embedding. Its essential
image is spanned by those symmetric monoidal functors F : QCohpXq5 Ñ Mod5R which are
exact and preserve filtered colimits.

Proof. Let PrL denote the 8-category of presentable 8-categories. We regard PrL as
equipped with the symmetric monoidal structure described in §HA.4.8.1 . Let PrSt denote
the full subcategory of PrSt spanned by the presentable stable 8-categories, so that PrSt

inherits a symmetric monoidal structure. The inclusion PrSt ãÑ PrL admits a symmetric
monoidal left adjoint, given by C ÞÑ SppCq. Consequently, if C and C1 are presentable
symmetric monoidal 8-categories for which the tensor product functors

b : Cˆ C Ñ C b : C1ˆ C1 Ñ C1

preserve small colimits separately in each variable, and C1 is stable, then we have a canonical
homotopy equivalence MapCAlgpPrLqpC, C1q » MapCAlgpPrStqpSppCq, C1q. Replacing C1 by
FunpK, C1q and allowing K to vary, we obtain an equivalence

Funb0 pC, C1q » Funb0 pSppCq, C1q,
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where Funb0 pC, C1q denotes the full subcategory of FunbpC, C1q spanned by those symmetric
monoidal functors which preserve small colimits, and Funb0 pSppCq, C1q is defined similarly.
Taking C “ QCohpXqcn, we observe that SppCq can be identified with QCohpXq (Proposition
9.1.3.1). It follows that the restriction functor

Funb0 pQCohpXq,ModRq Ñ Funb0 pQCohpXqcn,ModRq

is an equivalence of 8-categories. Under this equivalence, E can be identified with the full
subcategory of Funb0 pQCohpXq,ModRq spanned by those functors which preserve connective
and flat objects. The desired result now follows from Theorem 9.7.2.2 (applied in the case
d “ 8).

Proof of Theorem 9.7.2.1. Writing Y as a colimit of corepresentable functors, we can reduce
to the case where Y “ SpecR is affine. Let E Ď FunbpQCohpXq,ModRq be defined as in
Corollary 9.7.2.3. θ : XpRq Ñ FunbpQCohpXq5,Mod5Rq factors as a composition

XpRq
θ1
ÝÑ E θ2

ÝÑ FunbpQCohpXq5,Mod5Rq.

Corollary 9.7.2.3 implies that θ2 is a fully faithful embedding whose essential image is
spanned by those symmetric monoidal functors F : QCohpXq5 Ñ Mod5R which are exact
and preserve filtered colimits. We are therefore reduced to showing that θ1 is an equivalence
of 8-categories, which follows from Theorem 9.3.0.3.

9.7.3 The Truncated Case

Let X : CAlgcn Ñ S be a geometric stack. For every connective E8-ring R, Theorem
9.3.0.3 allows us to recover the space XpRq from the symmetric monoidal 8-category
QCohpXq. We now show that if R is n-truncated, we can recover XpRq from the full
subcategory QCohpXqcn spanned by the n-truncated objects.

Remark 9.7.3.1. If X is a geometric stack, then the symmetric monoidal structure on
QCohpXq is compatible with its t-structure. It follows that for each n ě 0, the 8-category
QCohpXqcn

ďn inherits the structure of a symmetric monoidal 8-category, with tensor product
given by pF ,G q ÞÑ τďnpF bG q.

Theorem 9.7.3.2. Let X : CAlgcn Ñ S be a geometric stack, let n ě 0 be an integer, let R be
a connective E8-ring which is n-truncated, and let θ : XpRq Ñ FunbpQCohpXqcn

ďn, pModcn
R qďnq

be the map which carries a point η P XpRq to the functor F ÞÑ τďnη
˚F . Then θ is a fully

faithful embedding, whose essential image is spanned by those symmetric monoidal functors
F : pQCohpXqcnqďn Ñ pModcn

R qďn with the following properties:

paq The functor F preserves small colimits.
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pbq The construction F ÞÑ F pτďn F q determines a functor from QCohpXq5 to Mod5R
which is exact (in the sense of Definition 9.7.1.3).

Remark 9.7.3.3. In the situation of Theorem 9.7.3.2, suppose that X is an n-truncated
geometric stack. Then every object F P QCohpXq5 is n-truncated. We can therefore
rephrase condition pbq as follows:

pb1q The construction F ÞÑ F pF q determines a functor from QCohpXq5 to Mod5R which is
exact (in the sense of Definition 9.7.1.3).

Example 9.7.3.4. Let X be a 0-truncated geometric stack. Applying Theorem 9.7.3.2 (and
Remark 9.7.3.3) in the case n “ 0, we deduce that for every commutative ring, the natural
map XpRq Ñ FunbpQCohpXq♥,Mod♥

Rq is a fully faithful embedding, whose essential image
is spanned by those symmetric monoidal functors F : QCohpXq♥ Ñ Mod♥

R which preserve
small colimits, flat objects, and exact sequences of flat objects. We can therefore regard
Theorem 9.7.3.2 as a generalization of Theorem ??.

Proof of Theorem 9.7.3.2. Let C Ď FunbpQCohpXqcn
ďn, pModcn

R qďnq be the full subcategory
spanned by those functors which satisfy conditions paq and pbq. It is clear that θ factors
through C.

Let Funb0 pQCohpXqcn
ďn, pModcn

R qďnq Ď FunbpQCohpXqcn
ďn, pModcn

R qďnq be the full sub-
category spanned by those functors which preserve small colimits, and define the 8-
category Funb0 pQCohpXqcn, pModcn

R qďnq similarly. Since pModcn
R qďn is equivalent to an

pn` 1q-category, Remark HA.4.8.2.17 implies that composition with the truncation map
τďn : QCohpXqcn Ñ pQCohpXqcnqďn induces an equivalence of 8-categories

Funb0 pQCohpXqcn
ďn, pModcn

R qďnq Ñ Funb0 pQCohpXqcn, pModcn
R qďnq.

This induces an equivalence of C with the full subcategory C1 Ď Funb0 pQCohpXqcn, pModcn
R qďnq

spanned by those functors which restrict to exact functors QCohpXq5 Ñ Mod5R. Using The-
orem 9.7.2.2 (and the theory of faithfully flat descent), we see that that the restriction
map C1 Ñ FunbpQCohpXq5,Mod5Rq is a fully faithful embedding, whose essential image is
the full subcategory C2 Ď FunbpQCohpXq5,Mod5Rq spanned by those symmetric monoidal
functors F : QCohpXq5 Ñ Mod5R which are exact and preserve filtered colimits. We have a
commutative diagram

C

XpRq

θ

66

θ1
((

// C1
„

>>

„

  
C2 .
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It will therefore suffice to show that θ1 is an equivalence of 8-categories, which follows from
Theorem 9.7.2.1.

9.7.4 The Proof of Theorem 9.7.2.2

We now provide a proof of Theorem 9.7.2.2. Let X be a geometric stack, let 0 ď d ď 8,
and let R be an E8-ring which is connective and d-truncated. Roughly speaking, Theorem
9.7.2.2 asserts that a well-behaved symmetric monoidal functor F : QCohpXqcn Ñ pModcn

R qďd

can be reconstructed from the restriction F 5 “ F |QCohpXq5 . Since the details of this
reconstruction process are somewhat involved, let us first sketch the basic idea. Suppose
that F P QCohpXqcn, and that we wish to describe F pF q using only the functor F 5. If X
is affine, then QCohpXqcn is freely generated under sifted colimits by the full subcategory
VectpXq Ď QCohpXqcn spanned by the locally free sheaves of finite rank. It follows that any
functor F : QCohpXqcn Ñ pModcn

R qďd which preserves small colimits (or even small sifted
colimits) can be recovered from its restriction to VectpXq Ď QCohpXq5 Ď QCohpXqcn. To
handle the general case, we will choose a faithfully flat map φ : U0 Ñ X, where U0 is affine.
Setting A “ φ˚OU0 , we see that F determines a symmetric monoidal functor

F0 : QCohpU0q
cn » ModA pQCohpXqcnq

F
ÝÑ pModcn

F pA qqďd.

Since U0 is affine, the functor F0 is determined by its restriction F 50 “ F0|QCohpU0q5 , and
therefore by F 5. We can then recover the functor F from F0 using faithfully flat descent (which
involves making an analogous argument for the iterated fiber products U0ˆXU0ˆX ¨ ¨ ¨ˆXU0).
Our implementation of this strategy will be complicated by the fact that we need to recover
F from F 5 not only as a functor, but as a symmetric monoidal functor. In what follows, we
will assume that the reader is familiar with the language of symmetric monoidal 8-categories
developed in [139].

Notation 9.7.4.1. For each n ě 0, we let xny denote the finite pointed set t1, 2, . . . , n, ˚u
(with base point ˚). Let F in˚ denote the category whose objects are pointed sets of the form
xny, and whose morphisms are maps α : xmy Ñ xny satisfying αp˚q “ ˚. Recall that if E is an
8-category which admits finite products, then a commutative monoid object of E is a functor
G : F in˚ Ñ E which satisfies the “Segal condition” that the natural map Gpxnyq Ñ Gpx1yqn

is an equivalence. In what follows, it will be convenient to identify symmetric monoidal
8-categories with commutative monoid objects of the 8-category yCat8 of (not necessarily
small) 8-categories.

Let X be a geometric stack, and choose a faithfully flat morphism φ : U0 Ñ X, where
U0 is affine. Let U‚ denote the Čech nerve of φ. We will regard U‚ as an augmented
simplicial object of FunpCAlgcn,Sq with U´1 “ X. For each n ě ´1, we will regard
QCohpUnqcn as a symmetric monoidal 8-category: that is, as an object of the 8-category
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MonCommpyCat8q Ď FunpF in˚,yCat8q spanned by the commutative monoid objects. The
construction rns ÞÑ QCohpUnqcn determines a functor

∆` Ñ MonCommpyCat8q Ď FunpF in˚,yCat8q,

which we can identify with a map ∆`ˆF in˚ ÑyCat8 classifying a coCartesian fibration of
8-categories p :M` Ñ ∆`ˆF in˚. We can describe the 8-category M` more informally
as follows:

• An object of M` is a tuple prms,F 1, . . . ,Fnq, where m ě ´1 and each F i is an
object of QCohpUmqcn.

• A morphism from prms,F 1, . . . ,Fnq to prm1s,F 1
1, . . . ,F

1
n1q in M` consists of a

nondecreasing map α : rms Ñ rm1s, a map of pointed finite sets β : xny Ñ xn1y, and a
collection of maps tq˚

À

βpiq“j F i Ñ F 1
ju1ďjďn1 in QCohpUm1q, where q : Um1 Ñ Um

denotes the map determined by α.

LetM5
` denote the full subcategory ofM` spanned by those objects prms,F 1, . . . ,Fnq

where each F i is flat (as a quasi-coherent sheaf on Um). The symmetric monoidal structure
on QCohpXqcn is encoded by a coCartesian fibration p´1 : QCohpXqcnb Ñ F in˚, where we
can identify QCohpXqcnb with the full subcategory of M` spanned by objects of the form
pr´1s,F 1, . . . ,Fnq Similarly, the symmetric monoidal structure on QCohpXq5 is encoded
by a coCartesian fibration QCohpXq5b Ñ F in˚, where we can identify QCohpXq5b with the
full subcategory of M5

` spanned by objects of the form pr´1s,F 1, . . . ,Fnq.

Notation 9.7.4.2. Let 0 ď d ď 8 and let R be a connective E8-ring which is d-truncated.
We let N denote the 8-category pModcn

R qďd. The symmetric monoidal structure on N is
encoded by a coCartesian fibration of 8-categories r : Nb Ñ F in˚. More concretely, the
objects of Nb can be identified with finite sequences pM1, . . . ,Mnq, where each Mi is a
connective d-truncated R-module; the functor r is given on objects by rpM1, . . . ,Mnq “ xny.

We will identify the 8-category FunbpQCohpXqcn, pModcn
R qďdq of symmetric monoidal

functors from QCohpXqcn to pModcn
R qďd with the full subcategory of FunF in˚pQCohpXqcnb,Nbq

spanned by those maps F : QCohpXqcnb Ñ Nb which carry p´1-coCartesian morphisms of
QCohpXqcnb to r-coCartesian morphisms of Nb. Similarly, let us identify the 8-category
FunbpQCohpXq5,Mod5Rq with a full subcategory of FunF in˚pQCohpXq5b,Nbq.

Let C Ď FunbpQCohpXqcn, pModcn
R qďdq be the full subcategory spanned by those sym-

metric monoidal functors which the underlying functor QCohpXqcn Ñ pModcn
R qďd preserves

small colimits and carries QCohpXq5 into Mod5R. Let C5 denote the full subcategory of
FunbpQCohpXq5, pModcn

R qďdq spanned by those objects for which the underlying functor
QCohpXq5 Ñ pModcn

R qďd factors through Mod5R, preserves small filtered colimits, and is
exact in the sense of Definition 9.7.1.3. To prove Theorem 9.7.2.2, we must show that the
evident restriction functor C Ñ C5 is an equivalence of 8-categories.
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Notation 9.7.4.3. Let M “ M`ˆ∆`
∆, and let M5 “ M5

`XM. Suppose we are
given a map F P FunF in˚pM5,Nbq whose restriction to trmsu ˆ∆M5 is a lax symmetric
monoidal functor, for each m ě 0. For each m ě 0, we can regard OUm as a commutative
algebra object of QCohpUmq5, so that F pOUmq can be regarded as a commutative algebra
object AmF P CAlgpN q » τďd CAlgcn

R . The construction rms ÞÑ AmF determines a functor
∆ Ñ τďd CAlgcn

R , which we will denote by A‚F . If F P FunF in˚pM,Nbq is a map whose
restriction to trmsuˆ∆M is lax symmetric monoidal for each m ě 0, then we let A‚

F
denote

the cosimplicial object A‚F , where F “ F |M5 .

Notation 9.7.4.4. We let D denote the full subcategory of FunF in˚pM,Nbq spanned by
those functors F :MÑ Nb which satisfy the following conditions:

paq For each m ě 0, the restriction of F to trmsu ˆ∆M is a lax symmetric monoidal
functor (that is, F carries inert morphisms in trmsuˆ∆M to inert morphisms in Nb).

pbq Let q :MÑ ∆ denote the projection map. Then F carries q-Cartesian morphisms in
M to equivalences in Nb.

pcq Let m ě 0, and let F pmq : QCohpUmq Ñ pModcn
R qďd denote the restriction of F to

QCohpUmqcn » tprms, x1yqu ˆ∆ˆF in˚M. Then F pmq preserves small colimits.

pdq The cosimplicial object A‚F of CAlgcn
R is 0-coskeletal: that is, for each m ě 0, the

inclusions tiu ãÑ rms induce an equivalence
Â

0ďiďmA
0
F Ñ AmF . Moreover, A0

F is
faithfully flat over R.

Similarly, we let D5 denote the full subcategory of FunF in˚pM5,Nbq spanned by those
functors F :M5 Ñ Nb which satisfy the following analogous conditions:

pa1q For each m ě 0, the restriction of F to trmsu ˆ∆M5 is a lax symmetric monoidal
functor from QCohpUmq5 to Mod5R.

pb1q Let q5 :M5 Ñ ∆ denote the projection map. Then F carries q5-Cartesian morphisms
in M5 to equivalences in Nb.

pc1q Let m ě 0, and let F pmq : QCohpUmq5 Ñ Mod5R denote the restriction of F to
QCohpUmq5 » tprms, x1yqu ˆ∆ˆF in˚M. Then F pmq preserves small filtered colimits
and finite direct sums.

pd1q The cosimplicial object A‚F of CAlgcn
R is 0-coskeletal: that is, for each m ě 0, the

inclusions tiu ãÑ rms induce an equivalence
Â

0ďiďmA
0
F Ñ AmF . Moreover, A0

F is
faithfully flat over R.

We will deduce Theorem 9.7.2.2 from the following assertions:
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Lemma 9.7.4.5. Let F P FunF in˚pM`,Nbq. The following conditions are equivalent:

piq The restriction F |QCohpXqcnb belongs to C, and F is an r-left Kan extension of
F |QCohpXqcnb.

piiq The restriction F |M belongs to D, and F is an r-right Kan extension of F |QCohpXqcnb .

Moreover, every functor F0 P C admits an r-left Kan extension F P FunF in˚pM`,Nbq, and
every functor F1 P D admits an r-right Kan extension F P FunF in˚pM`,Nbq.

Lemma 9.7.4.6. Let F P FunF in˚pM5
`,Nbq. The following conditions are equivalent:

pi1q The restriction F |QCohpXq5b belongs to C, and F is an r-left Kan extension of F |QCohpXq5b .

pii1q The restriction F |M5 belongs to D, and F is an r-right Kan extension of F |QCohpXq5b .

Moreover, every functor F0 P C5 admits an r-left Kan extension F P FunF in˚pM5
`,Nbq, and

every functor F1 P D5 admits an r-right Kan extension F P FunF in˚pM5
`,Nbq.

Lemma 9.7.4.7. A functor F P FunF in˚pM,Nbq belongs to D if and only if F |M5 belongs
to D5 and and F is an r-left Kan extension of F |M5

Lemma 9.7.4.8. Every functor F0 P D5 admits an r-left Kan extension F P FunF in˚pM,Nbq.

Proof of Theorem 9.7.2.2. Let E denote the full subcategory of FunF in˚pM`,Nbq spanned
by those functors which satisfy conditions piq and piiq of Lemma 9.7.4.5, and let E5 denote the
full subcategory of FunF in˚pM5

`,Nbq spanned by those functors which satisfy conditions pi1q
and pii1q of Lemma 9.7.4.6. We have a commutative diagram of 8-categories and restriction
maps

C

��

Eoo //

��

D

��
C5 E5oo // D5 .

Using Lemmas 9.7.4.5 and 9.7.4.6 together with Proposition HTT.4.3.2.15 , we deduce that
the horizontal maps in this diagram are equivalences. Consequently, to complete the proof,
it will suffice to show that the restriction map D Ñ D5 is an equivalence. This follows from
Lemmas 9.7.4.7 and 9.7.4.8, together with Proposition HTT.4.3.2.15 .

Proof of Lemma 9.7.4.8. Let F0 P D5; we wish to show that F admits an r-left Kan extension
F P FunF in˚pM,Nbq. Let M “ prms,F 1, . . . ,Fnq be an object ofM, and letM5

{M denote
the fiber product M5ˆMM{M . According to Lemma HTT.4.3.2.13 , it will suffice to show
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that the lifting problem

M5
{M

F0|M5
{M //

��

Nb

��
pM5

{M q
Ÿ

;;

// F in˚

admits a solution, where the dotted arrow is an r-colimit diagram. Let X denote the fiber
product

pM5
{M q ˆ∆{rmsˆF in˚{xny tpidrms, idxnyqu.

Note that the inclusion X ãÑM5
{M admits a left adjoint, and is therefore left cofinal.

Let f denote the composite map X ÑM5
{M ÑM5 F0

Ñ Nb. We are therefore reduced to
proving that f can be extended to an r-colimit diagram XŸ Ñ Nb

xny.
Unwinding the definitions, we can identify X with the product

ś

1ďiďn QCohpUmq5{F i
,

where QCohpUmq5{F i
denotes the full subcategory of QCohpUmq{F i

spanned by those maps
F 1

i Ñ F i where F 1
i P QCohpUmq is flat. Let VectpUmq{F i

be the full subcategory of
QCohpUmq{F i

spanned by those maps F 1
i Ñ F i where F 1

i is locally free of finite rank, so
that we can identify the product

ś

1ďiďn VectpUmq{F i
with a full subcategory X 0 Ď X . We

first claim that f is an r-left Kan extension of f0 “ f |X 0 . To prove this, fix an object M 1 P X ,
corresponding to a collection of maps F 1

i Ñ F i in QCohpUmq where each F 1
i is flat, and let

Y “ X 0ˆX X {M 1 . Then f induces a map g : YŸ Ñ Nb
xny Ď N

b; we wish to prove that g is
an r-colimit diagram. Note that Y can be identified with the product

ś

1ďiďn VectpUmq{F 1
i
.

In particular, the 8-category Y admits finite coproducts, and is therefore sifted. Since the
tensor product on pModcn

R qďd preserves small colimits separately in each variable, every
map of pointed finite sets xay Ñ xby induces a functor Nb

xay Ñ N
b
xby which preserves small

sifted colimits. Using Proposition HTT.4.3.1.10 , we see that g is an r-colimit diagram in
Nb if and only if it is a colimit diagram in the 8-category Nb

xny » pModcn
R q

n
ďd. Since F0

satisfies condition paq of Notation 9.7.4.4, we are reduced to proving that for 1 ď i ď n, the
composite map

YŸ Ñ VectpUmqŸ{F 1
i

gi
Ñ pModcn

R qďd

is a colimit diagram, where gi is induced by the map F0pmq : QCohpUmq Ñ Mod5R appearing
in assertion pc1q. Since VectpUmq{F 1

j
is weakly contractible for j ‰ i, we are reduced to

proving that each gi is a colimit diagram. In fact, we claim that the functor F0pmq is a left
Kan extension of its restriction to VectpUmq. This follows from Lemma HTT.5.3.5.8 , since
QCohpUmq5 » IndpVectpUmqq by Proposition HA.7.2.2.15 and the functor F0pmq preserves
small filtered colimits by virtue of our assumption that F0 satisfies pc1q.

Since f is an r-left Kan extension of f0, we are reduced to proving that f0 can be
extended to an r-colimit diagram XŸ0 Ñ Nbxny (Proposition HTT.4.3.2.8 ). Using Proposition
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HTT.4.3.1.10 , we are reduced to proving that f0 admits a colimit in the 8-category Nb
xny.

This is clear, since Nb
xny » pModcn

R q
n
ďd admits small colimits.

Our proof of Lemma 9.7.4.8 immediately yields the following variant of Lemma 9.7.4.7:

Lemma 9.7.4.9. Let F P FunF in˚pM,Nbq be a functor such that F |M5 belongs to D5. Then
F is an r-left Kan extension of F |M5 if and only if, for every object prms,F 1, . . . ,Fnq PM,
the canonical map

lim
ÝÑ

F 1
iPVectpUmq{Fi

F prms,F 1
1, . . . ,F

1
nq Ñ F prms,F 1, . . . ,Fnq

is an equivalence in Nb
xny » pModcn

R q
n
ďd.

Proof of Lemma 9.7.4.7. Let F P FunF in˚pM,Nbq be a functor such that F |M5 belongs to
D5. We will show that F P D if and only if F satisfies the criterion of Lemma 9.7.4.9. We
first establish the “only if” direction. Assume that F satisfies conditions paq through pdq of
Notation 9.7.4.4, and let prms,F 1, . . . ,Fnq PM; we wish to show that the canonical map

lim
ÝÑ

F 1
iPVectpUmq{Fi

F prms,F 1
1, . . . ,F

1
nq Ñ F prms,F 1, . . . ,Fnq

is an equivalence in pModcn
R q

n
ďd. Using paq and the weak contractibility of the simplicial sets

VectpUmq{F i
, we may reduce to the case n “ 1. In this case, we are reduced to proving that

the functor F pmq : QCohpUmqcn Ñ pModcn
R qďd appearing in pcq is a left Kan extension of its

restriction to VectpUmq. Since VectpUmq is a subcategory of compact projective generators
for QCohpUmqcn, it suffices to note that F pmq preserves small sifted colimits (see Proposition
HTT.5.5.8.15 and its proof), which follows from assumption pcq.

We now establish the “if” direction. Let F P FunF in˚pM,Nbq be such that F0 “ F |M5

belongs to D5, and assume that F satisfies the criterion of Lemma 9.7.4.9. We wish to prove
that F P D. For this, we must verify that F satisfies conditions paq through pdq of Notation
9.7.4.4:

paq Let α : xny Ñ xn1y be an inert morphism in F in˚, let m ě 0, and let α be an inert
morphism in trmsu ˆ∆M » QCohpUmqb lying over α; we wish to show that F pαq is
an inert morphism in Nb. Without loss of generality, α is given by

prms,F 1, . . . ,Fnq Ñ prms,Fα´1p1q, . . . ,Fα´1pn1qq.

Since F satisfies the criterion of p21q, we can identify F pαq with the canonical map

lim
ÝÑ

F 1
iPVectpUmq{Fi

F0prms,F
1
1, . . . ,F

1
nq Ñ lim

ÝÑ
F 1
iPVectpUmq{Fi

F0prms,F
1
α´1p1q, . . . ,F

1
α´1pn1qq,

which is an inert morphism by virtue of our assumption that F0 satisfies condition
pa1q.
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pcq Let m ě 0, and let F pmq : QCohpUmqcn Ñ pModcn
R qďd be the map induced by F .

We wish to show that F pmq preserves small colimits. By assumption, F pmq is a left
Kan extension of its restriction to VectpUmq. Using Proposition HTT.5.5.8.15 , we are
reduced to proving that F pmq|VectpUmq preserves finite coproducts, which follows from
our assumption that F0 satisfies pc1q.

pbq Let β : rms Ñ rm1s be a morphism in ∆, and let ψ : Um1 Ñ Um be the induced map
in FunpCAlgcn,Sq. We wish to show that, for every n-tuple of objects F 1, . . . ,Fn P

QCohpUm1qcn, the canonical map

F prms, ψ˚F 1, . . . , ψ˚Fnq Ñ F prm1s,F 1, . . . ,Fnq

is an equivalence of R-modules. Since F satisfies paq, we can reduce to the case
where n “ 1. That is, we must show that for F P QCohpU 1mqcn, the canonical map
ξF : F prms, ψ˚F q Ñ F prm1s,F q is an equivalence of R-modules. Since F satisfies
pbq, the collection of those F for which ξF is an equivalence is closed under small
colimits in QCohpUmqcn. It will therefore suffice to show that ξF is an equivalence
when F “ OUm , which follows from our assumption that F0 satisfies pb1q.

pdq By definition, we have A‚F “ A‚F0
, so that F satisfies condition pdq if and only if F0

satisfies condition pd1q.

Proofs of Lemmas 9.7.4.5 and 9.7.4.6. We will give the proof of Lemma 9.7.4.5. The proof
of Lemma 9.7.4.6 is similar, requiring only minor changes of notation. We begin by observing
that QCohpXqcnb is a colocalization of M`: that is, the inclusion QCohpXqcnb ãÑM`

admits a left adjoint ν, given on objects by

prms,F 1, . . . ,Fnq ÞÑ pr´1s, φm˚F 1, . . . , φm˚Fnq,

where φm : Um Ñ X denotes the projection map. Moreover, for every object M PM`, the
image in F in˚ of the canonical map νpMq ÑM is an equivalence in F in˚. We may therefore
assume without loss of generality that ν is the identity on QCohpXqb, and that the image
of each map νpMq Ñ M is an identity morphism in F in˚. It follows that every functor
F0 P FunF in˚pQCohpXqcnb,Nbq admits an r-left Kan extension F P FunF in˚pM`,Nbq,
given by F “ F0 ˝ ν. To show that piq implies piiq, we first show that if F0 P C, then F

satisfies conditions paq through pdq of Notation 9.7.4.4:

paq The assumption that F0 P C implies that F0 can be identified with a symmetric
monoidal functor from QCohpXqcn to pModcn

R qďd. To prove that the restriction of F
to trmsuˆ∆`

M` is lax symmetric monoidal, it suffices to observe that the restriction
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of ν to trmsu ˆ∆`
M` is a lax symmetric monoidal functor (which is clear from the

description of ν given above).

pbq Let α be a q-Cartesian morphism inM. We wish to prove that F pαq is an equivalence
in Nb. To prove this, it suffices to observe that µpαq is an equivalence in QCohpXqcn,b.

pcq Let m ě 0 and let F pmq : QCohpUmqcn Ñ pModcn
R qďd be the restriction of F . We wish

to prove that F pmq preserves small colimits. This follows from the observation that
F pmq is given by the composition of functors

QCohpUmqcn φm˚
ÝÝÝÑ QCohpXqcn F0

ÝÑ pModcn
R qďd,

each of which preserves small colimits.

pdq Let A “ φ˚OU0 P CAlgpQCohpXqq. Then φm˚OUm » A bm`1 for each m ě 0.
Since F0 is a symmetric monoidal functor, we obtain a canonical equivalence AmF »
F0pA qbm`1. It follows immediately that A‚F is 0-coskeletal. Moreover, since φ : U0 Ñ

X is faithfully flat, A is faithfully flat. Since F0 restricts to an exact symmetric
monoidal functor QCohpXq5 Ñ Mod5R, it follows that A0

F is faithfully flat.

To complete the proof that piq implies piiq, we show that if F0 P C, then F is an
r-right Kan extension of F |M. To prove this, it suffice to show that for each object
M “ pr´1s,F 1, . . . ,Fnq P QCohpXqcnb ĎM`, the composite map

pMˆM`
pM`qM{q

Ÿ ÑM`
F
Ñ Nb

is an r-limit diagram. Note that the construction rms ÞÑ prms, φ˚m F 1, . . . , φ
˚
m Fnq deter-

mines a right cofinal map ∆ Ñ pMˆM`
pM`qM{q. We are therefore reduced to proving

that F pMq is an r-limit of the diagram rms ÞÑ F prms, φ˚m F 1, . . . , φ
˚
m Fnq. Using Corol-

lary HTT.4.3.1.15 , we see that this is equivalent to the requirement that F pMq is a limit
of the diagram rms ÞÑ F prms, φ˚m F 1, . . . , φ

˚
m Fnq in Nb

xny. Equivalently, we must show
that for 1 ď i ď n, the map F exhibits F0pF iq as a totalization of the simplicial object
rms ÞÑ F prms, φ˚m F iq. Invoking the definition of F , we are reduced to proving that F0pF iq

is a limit of the diagram rms ÞÑ F0pφm˚φ
˚
m F iq in the 8-category pModcn

R qďd. In fact, we
claim that F0pF iq is a limit of the diagram rms ÞÑ F0pφm˚φ

˚
m F iq in the larger 8-category

ModR. To prove this, let A ‚ denote the cosimplicial object of CAlgpQCohpXqcnq given
by A m “ φm˚OUm , and let R1 “ F0pA

0q. Since F0 P C, R1 is a faithfully flat R-module,
and we can identify F0pA

mq with the pm` 1qst tensor power of R1 over R. We then have
canonical equivalences

F0pφm˚φ
˚
m F iq » F0pA

mbF iq » R1bpm`1q bR F pF iq.
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The desired result now follows from Corollary D.6.3.4. This completes the proof that
piq ñ piiq.

Now suppose that G P D Ď FunF in˚pM,Nbq. For each m ě 0, let Grms : QCohpUmqb Ñ
Nb denote the restriction of G to trmsu ˆ∆ M. Using the above arguments, we see
that G admits an r-right Kan extension G Ď FunF in˚pM`,Nbq, given on objects of
QCohpXqcnb ĎM` by the formula

Gpr´1s,F 1, . . . ,Fnq “ lim
ÐÝ
rmsP∆

Gprms, φ˚m F 1, . . . , φ
˚
m Fnq.

To prove that piiq implies piq, we first show that G is an r-left Kan extension of G|QCohpXqcnb .
Note that each Grms is a lax symmetric monoidal functor from QCohpUmq to pModcn

R qďd

carrying the unit object OUm to the commutative R-algebra AmG P CAlgcn
R , and therefore

induces a lax symmetric monoidal functor rGrms : QCohpUmqcn Ñ pModcn
AmG
qďd. We claim

that rGrms is actually a symmetric monoidal functor. It is clear that rGrms preserves unit
objects; it will therefore suffice to show that for every pair of objects F ,F 1 P QCohpUmqcn,
the canonical map rGrmspF q bAmG

rGrmspF
1q Ñ rGrmspF bF 1q exhibits rGrmspF bF 1q as a

d-truncation of rGrmspF q bR rGrmspF
1q. If we regard F as fixed, the collection of those

objects F 1 P QCohpUmqcn which satisfy this condition is closed under small colimits. Since
Um is corepresented by a connective E8-ring, the 8-category QCohpUmqcn is generated
under small colimits by the unit object OUm . We may therefore reduce to the case where
F 1 “ OUm . Similarly, we can reduce to the case where F “ OUm , in which case the result
is obvious.

Fix an objectM “ prms,F 1, . . . ,Fnq PM, so that νpMq “ pr´1s, φm˚F 1, . . . , φm˚Fnq.
We wish to show that the map γ : GpνpMqq Ñ GpMq “ GpMq is an equivalence. Unwinding
the definitions, we see that the left hand side is given by

GpνpMqq » lim
ÐÝ

rm1sP∆
Gprm1s, φ˚m1φm˚F 1, . . . , φ

˚
m1φm˚Fnq.

Using condition paq of Notation 9.7.4.4, we can reduce to the case where n “ 1. Set F “ F 1.
For each m1 ě 0, let ψm1 denote the projection map from Um ˆX Um1 » Um`m1`1 onto Um.
Using condition pbq, we can rewrite GpνpMqq as the limit

lim
ÐÝ

rm1sP∆
Gprms, ψm1˚ψ

˚
m1 F q » lim

ÐÝ
rm1sP∆

Gprms,F bψm1˚ψ
˚
m1 OUmq

» lim
ÐÝ

rm1sP∆
Gprms,F bpφ˚m A qbm

1`1q

» lim
ÐÝ

rm1sP∆
pGprms,F q bAmG B

bm`1

where B “ Gprms, φ˚m A q, and the limit (and tensor power) are computed in the 8-category
pModcn

AmG
qďd. Since φ is faithfully flat, φ˚m A is a faithfully flat commutative algebra object
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of QCohpUmq. It follows that the cofiber of the unit map OUm Ñ φ˚m A is flat (Lemma
D.4.4.3), and can therefore be written as a filtered colimit of finite direct sums of copies of
OUm (Theorem HA.7.2.2.15 ). Since Grms preserves filtered colimits and finite direct sums,
we conclude that B is a flat AmG -module. We now observe that γ is a left homotopy inverse
of the canonical map γ1 : Gprms,F q Ñ lim

ÐÝrm1sP∆Gprms,F q bAmG B
bm`1. Corollary D.6.3.4

impies that γ1 is an equivalence, so that γ is also an equivalence.
Let g : QCohpXqcnb Ñ Nb be the restriction of G to QCohpXqcnb. We will complete the

proof by showing that g P C. The description of g given above shows that it is a lax symmetric
monoidal functor. Let g1 denote the composition QCohpXqcnb φ˚0

Ñ QCohpU0q
cnb Gr0s

Ñ Nb,
so that g1 is also a lax symmetric monoidal functor, with g1pOXq “ A0

G. We have an
evident (lax symmetric monoidal) natural transformation g Ñ g1. In particular, for each
F P QCohpXqcn, we obtain a canonical map

θF : gpF q bR A0
G Ñ g1pF q bR g

1pOXq Ñ g1pF ˆOXq » g1pF q.

We will prove:

p˚q For each F P QCohpXqcn, the map θF is an equivalence.

Assuming p˚q for the moment, we show that the functor g belongs to C. First, we claim that
g is actually a symmetric monoidal functor: that is, that the canonical map

gpF 1q bR ¨ ¨ ¨ bR gpFnq Ñ gpF 1b ¨ ¨ ¨ bFnq

exhibits gpF 1b ¨ ¨ ¨ bFnq as a d-truncation of gpF 1q bR ¨ ¨ ¨ bR gpFnq for every sequence
of objects F 1, . . . ,Fn P QCohpXqcn. Since A0

G is faithfully flat over R, it will suffice to
prove that the induced map

gpF 1q bR ¨ ¨ ¨ bR gpFnq bR A
0
G Ñ gpF 1b ¨ ¨ ¨ bFnq bR A

0
G

exhibits gpF 1b ¨ ¨ ¨bFnqbRA
0
G as a d-truncation of gpF 1bR ¨ ¨ ¨ bR gpFnqbRA

0
G. Using

p˚q, we are reduced to proving that the map

g1pF 1q bA0
G
¨ ¨ ¨ b g1pFnq Ñ g1pF 1b ¨ ¨ ¨ bFnq

exhibits g1pF 1b ¨ ¨ ¨ bFnq as a d-truncation of g1pF 1qbA0
G
¨ ¨ ¨ bA0

G
g1pFnq. In other words,

we are reduced to proving that g1 induces a symmetric monoidal functor from QCohpXqcn

to pModcn
A0
G
qďd is a symmetric monoidal functor. This is clear, since the functors φ˚0 and

rGr0s are symmetric monoidal.
We next claim that the functor QCohpXqcn Ñ pModcn

R qďd determined by g preserves
small colimits. Since A0

G is faithfully flat over R, it suffices to show that the functor
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F ÞÑ gpF q bR A
0
G preserves small colimits. Using p˚q, we are reduced to proving that the

functor F ÞÑ g1pF q preserves small colimits. This is clear, since the pullback functor φ˚0
preserves small colimits, and Gr0s : QCohpU0q

cn Ñ pModcn
R qďd preserves small colimits by

virtue of our assumption that G satisfies condition pcq of Notation 9.7.4.4.
Finally, we claim that the functor g carries flat objects of QCohpXqcn to flat R-modules

(the exactness of the restriction g|QCohpXq5 is then automatic, by virtue of Remark 9.7.1.2).
Since A0

G is faithfully flat over R, it will suffice to show that gpF q bR A0
G is flat for each

F P QCohpXq5 (Proposition 2.8.4.2). Since φ˚0 carries QCohpXq5 into QCohpU0q
5, it will

suffice to show that the functor Gr0s carries QCohpU0q
5 into Mod5R. Condition pcq implies

that Gr0s : QCohpU0q
cn Ñ pModcn

R qďd preserves finite direct sums and filtered colimits. Since
QCohpU0q

5 is generated by OU0 under finite direct sums and filtered colimits (Theorem
HA.7.2.2.15 ), we are reduced to proving that Gr0spOU0q “ A0

G is a flat R-module, which
follows from our assumption that G satisfies condition pdq.

It now remains only to prove p˚q. Let us regard A‚G as defining a map ∆ Ñ CAlgpN q,
let Z denote the fiber product ∆ˆCAlgpN qModpN q. Let Γ “ Fun∆p∆,Zq denote the
8-category of sections of the projection map v : Z Ñ ∆. We have an evident functor
ι : pModcn

R qďd Ñ Γ, which carries an object M P pModcn
R qďd to the section of v given by

rms ÞÑM bR A
m
G . It follows from Corollary D.6.3.4 that the functor ι is fully faithful, and

that its essential image is the full subcategory Γ0 Ď Γ spanned by those sections which carry
each morphism in ∆ to a v-coCartesian morphism in Z. Note that the functor ι admits a
right adjoint ξ, which carries a section M‚ : ∆ Ñ Z to the limit of the underlying diagram
in pModcn

R qďd.
Every object F P QCohpXqcn determines an object M‚ P Γ, given by Mm “ rGrmspφ

˚
m F q.

Note that we have canonical equivalences gpF q » ξpM‚q and g1pF q »M0, which we can use
to identify θF : gpF q bR A0

G Ñ g1pF q with the map induced by the counit ιpξpM‚qq ÑM‚.
We will prove p˚q by showing that this counit map is an equivalence: that is, that M‚

belongs to the full subcategory Γ0 Ď Γ. For this, we must show that for every map rms Ñ rns

in ∆, the induced map Grmspφ
˚
m F q bAmG AnG Ñ Grnspφ

˚
n F q is an equivalence. This is a

consequence of the following more general claim: for every object F 1 P QCohpUmqcnq, the
canonical map GrmspF

1q bAmG
AnG Ñ Grnspγ

˚F 1q is an equivalence, where γ : Un Ñ Um
denotes the projection map. Since the functors Grms and Grns preserve small colimits, the
collection of those objects F 1 P QCohpUmq which satisfy this condition is closed under small
colimits in QCohpUmqcn. We may therefore reduce to the case where F 1 “ OUm , in which
case the result is obvious.



Chapter 10

Quasi-Coherent Stacks

Let X “ pX ,OXq be a spectral Deligne-Mumford stack. According to Proposition 6.2.4.1,
there are (at least) two different ways to define the notion of a quasi-coherent sheaf on X:

paq A quasi-coherent sheaf F on X can be viewed as a spectrum object of X which is
equipped with an action of the structure sheaf OX and satisfies certain local conditions.

pbq A quasi-coherent sheaf F on X can be viewed as a rule which assigns to each R-point
η : SpétRÑ X an R-module F pηq P ModR, depending functorially on the pair pR, ηq.

The equivalence of these two definitions relies on the fact that the construction R ÞÑ ModR is
a sheaf with respect to the étale topology. In Appendix D, we prove a categorified version of
this result. For every connective E8-ring R, let LinCatPSt

R denote the 8-category of R-linear
prestable 8-categories (Definition D.1.4.1). According to Theorem D.4.1.2, the construction
R ÞÑ LinCatPSt

R is also a sheaf for the étale topology. In §10.1, we will apply Theorem D.4.1.2
to develop a “global” version of the theory of prestable R-linear 8-categories. To every
spectral Deligne-Mumford stack X, we associate an 8-category QStkPStpXq, which we call
the 8-category of (prestable) quasi-coherent stacks on X (Definition 10.1.2.1). The definition
is suggested by pbq: in essence, a quasi-coherent stack on X is a rule which assigns to each
R-point η : SpétR Ñ X an R-linear 8-category Cη P LinCatR, depending functorially on
the pair pR, ηq.

Let X be a spectral Deligne-Mumford stack and let R “ ΓpX; OXq denote the E8-ring
of global functions on X. Then the construction F ÞÑ ΓpX; F q determines a functor
Γ : QCohpXq Ñ ModR. If X is affine, then this functor is an equivalence of 8-categories.
In §10.2, we will study the analogous construction for quasi-coherent stacks. To every
prestable quasi-coherent stack C on X, we will associate a Grothendieck prestable 8-
category QCohpX; Cq, whose objects we refer to as quasi-coherent sheaves on X with values
in C (Construction 10.1.7.1). The 8-category QCohpX; Cq is naturally tensored over the

842



843

8-category QCohpXqcn of connective quasi-coherent sheaves on X, and the construction
C ÞÑ QCohpX; Cq can be viewed as a “global sections functor”

QCohpX; ‚q : QStkPStpXq Ñ ModQCohpXqcnpGroth8q.

In the special case where X “ SpétR is affine, it follows easily from the definitions that this
functor is an equivalence of 8-categories: both the domain and codomain can be identified
with the 8-category LinCatPSt

R of prestable R-linear 8-categories studied in Appendix D.
The main result of §10.2 asserts that this is a much more general phenomenon: the functor
QCohpX; ‚q is an equivalence of 8-categories whenever X is a quasi-compact, quasi-separated
spectral algebraic space (Theorem 10.2.0.2).

To develop the theory of quasi-coherent stacks on X, the assumption that X is a spectral
Deligne-Mumford stack is not essential: the same definition makes sense for an arbitrary
functor X : CAlgcn Ñ S. For example, we could take X to be the classifying stack
BG, where G is a flat group scheme over a commutative ring A (see Example 9.1.1.7).
In this case, we would like to say that a prestable quasi-coherent stack on X can be
viewed as a prestable A-linear 8-category equipped with an “action” of the group scheme
G. However, we encounter a technical obstacle: Theorem D.4.1.2 guarantees that the
construction R ÞÑ LinCatPSt

R satisfies descent for the étale topology, but we do not know
if the analogous statement holds for the flat topology. To address this difficulty, it is
convenient to restrict our attention to prestable quasi-coherent stacks C P QStkPStpXq which
are complete in the sense that the prestable R-linear 8-category Cη is complete for each
point η P XpRq. The collection of complete prestable quasi-coherent stacks on X forms a full
subcategory QStkcomppXq Ď QStkPStpXq which we will study in §10.4. Our main result is
another local-to-global principle: if X is a geometric stack, then the global sections functor
QCohpX; ‚q : QStkcomppXq Ñ ModQCohpXqcnpGroth8q is a fully faithful embedding, whose
essential image admits admits a simple description (Theorem 10.4.2.3).

The definition of a complete quasi-coherent stack illustrates a general paradigm: given any
property P of Grothendieck prestable 8-categories, we say that a prestable quasi-coherent
stack C P QStkPStpXq has the property P if, for every connective E8-ring R and every point
η P XpRq, the 8-category Cη has the property P . In §10.3 and §10.5, we will illustrate this
paradigm in several examples, choosing P from among the properties introduced in Appendix
C. Our principal results again take the form of local-to-global principles, asserting that under
certain conditions a quasi-coherent stack C P QStkPStpXq has the property P if and only
if the 8-category QCohpX; Cq has the property P . For example, if X is a quasi-compact,
quasi-separated spectral algebraic space, we show that C is compactly generated if and only
if QCohpX; Cq is compactly generated (see Theorem 10.3.2.1).

Remark 10.0.0.1. Compact generation is a rather mild finiteness condition in the setting of
prestable 8-categories. In Chapter 11, we will study more sophisticated finiteness conditions
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on quasi-coherent stacks, whose local-to-global principles are more intimately tied to the
algebro-geometric properties of X.

Throughout this chapter, we will concentrate primarily on the study of prestable quasi-
coherent stacks on a functor X, which associate to each point η P XpRq a prestable R-linear
8-category. However, there is an entirely parallel story in a more familiar setting: we define
an abelian quasi-coherent stack on X to be a rule which assigns to each point η P XpRq
an R-linear Grothendieck abelian category Cη, depending functorially on the pair pR, ηq.
The collection of abelian quasi-coherent stacks can be organized into a 2-category which we
denote by QStkAbpXq (see Definition 10.1.2.1). In §10.6, we will establish a local-to-global
principle for abelian quasi-coherent stacks (Theorem 10.6.2.1) and study the relationship
between the abelian and prestable theories (the abelian theory is in some sense subsumed
by the prestable theory: see Theorem 10.6.6.1).

Remark 10.0.0.2. The study of abelian quasi-coherent stacks really belongs to classical
algebraic geometry, rather than spectral algebraic geometry: the notion of R-linear abelian
category depends only on the commutative ring π0R (see Example D.1.3.6), and similarly
the notion of abelian quasi-coherent stack on a functor X depends only the restriction of X
to the subcategory CAlg♥ Ď CAlgcn (see Remark 10.1.2.6).
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10.1 Sheaves of 8-Categories

Let R be a connective E8-ring. We define an additive R-linear 8-category to be a
presentable 8-category C which is tensored over Modcn

R and for which the action b :
Modcn

R ˆ C Ñ C preserves small colimits separately in each variable (see Definition D.1.2.1).
The collection of all additive R-linear 8-categories can be organized into an 8-category
LinCatAdd

R “ ModModcn
R
pPrLq. In Appendix D, we introduced full subcategories

LinCatSt
R ,LinCatPSt

R ,LinCatAb
R Ď LinCatAdd

R ,

whose objects are the stable R-linear 8-categories, prestable R-linear 8-categories, and
abelian R-linear 8-categories, respectively (Definition D.1.4.1). Our goal in this section
is to study global versions of these constructions, where the E8-ring R is replaced by an
arbitrary functor X : CAlgcn Ñ pS. We will primarily be interested in the cases where X is
(representable by) a spectral Deligne-Mumford stack, or where X is quasi-geometric (in the
sense of Definition 9.1.0.1).
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10.1.1 Quasi-Coherent Stacks on a Functor

Let X : CAlgcn Ñ pS be a functor. The 8-category QCohpXq of quasi-coherent sheaves
on X can be described informally as the inverse limit lim

ÐÝηPXpRq
ModR, taken over all R-

valued points η of X (see Definition 6.2.2.1). We now consider a variant of this definition,
where we replace R-modules by additive R-linear 8-categories.

Construction 10.1.1.1. Let LinCatAdd denote the 8-category CAlgcnˆAlgpPrLqModpPrLq

whose objects are pairs pR, Cq, where R is a connective E8-ring and C is an additive R-linear
8-category (Definition D.1.2.1). We let

QStkAdd : FunpCAlgcn, pSqop ÑyCat8

denote the functor obtained by applying Construction 6.2.1.7 to the projection map q :
LinCatAdd Ñ CAlgcn. Given a functor X : CAlgcn Ñ pS, we will refer to the QStkAddpXq as
the 8-category of additive quasi-coherent stacks on X.

Remark 10.1.1.2. According to Lemma 6.2.1.13, the functor QStkAdd : FunpCAlgcn, pSqop Ñ
yCat8 is characterized (up to equivalence) by the following properties:

piq The composition of QStkAdd with the Yoneda embedding CAlgcn Ñ FunpCAlgcn, pSqop

classifies the coCartesian fibration LinCatAdd Ñ CAlgcn. More informally, for every
connective E8-ring R, we have a canonical equivalence QStkAddpSpecRq » LinCatAdd

R .

piiq The functor QStkAdd preserves limits. Consequently, for every functor X : CAlgcn Ñ pS,
the canonical map

QStkAddpXq Ñ lim
ÐÝ

ηPXpRq

QStkAddpSpecRq » lim
ÐÝ

ηPXpRq

LinCatAdd
R

is an equivalence of 8-categories.

Remark 10.1.1.3. Let X : CAlgcn Ñ pS be a functor which classifies a left fibration
p : CAlgcn

X Ñ CAlgcn (so that an object of CAlgcn
X can be identified with a pair pR, ηq,

where R is a connective E8-ring and η P XpRq is an R-valued point of X). Then the
8-category QStkAddpXq of additive quasi-coherent stacks on X can be identified with the
full subcategory of FunCAlgcnpCAlgcn

X ,LinCatAddq spanned by those commutative diagrams

CAlgcn
X

%%

// LinCatAdd

q

xx
CAlgcn

where the horizontal map carries p-coCartesian morphisms of CAlgcn
X to q-coCartesian

morphisms of LinCatAdd. More informally, we can think of an object C P QStkAddpXq as
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a rule which assigns to each point η P XpAq an additive A-linear 8-category Cη which is
functorial in the following sense: if f : AÑ B is a map of connective E8-rings and η has
image f!pηq P XpBq, then there is a canonical equivalence

Cf!pηq » B bA Cη “ LModBpCηq

of additive B-linear 8-categories.

10.1.2 Stable, Prestable, and Abelian Quasi-Coherent Stacks

The theory of additive R-linear 8-categories is not particularly well-behaved from
an algebro-geometric point of view: for example, the construction R ÞÑ LinCatAdd

R does
not even satisfy descent with respect to the Zariski topology. Consequently, the functor
X ÞÑ QStkAddpXq of Construction 10.1.1.1 has poor formal properties. However, we can
remedy this by restricting our attention to additive quasi-coherent stacks which satisfy some
further conditions.

Definition 10.1.2.1. Let X : CAlgcn Ñ pS be a functor and let C P QStkAddpXq be an
additive quasi-coherent stack. For each point η P XpRq, let Cη P LinCatAdd

R be defined as in
Remark 10.1.1.3. Then:

• We will say that C is a stable quasi-coherent stack if, for each connective E8-ring R
and each point η P XpRq, the 8-category Cη is stable. We let QStkStpXq denote the
full subcategory of QStkAddpXq spanned by the stable quasi-coherent stacks.

• We will say that C is a prestable quasi-coherent stack if, for each connective E8-ring R
and each point η P XpRq, the 8-category Cη is a Grothendieck prestable 8-category.
Let QStkPStpXq denote the full subcategory of QStkAddpXq spanned by the prestable
quasi-coherent stacks.

• We will say that C is an abelian quasi-coherent stack if, for each connective E8-ring
R and each point η P XpRq, the 8-category Cη is a Grothendieck abelian category.
Let QStkAbpXq denote the full subcategory of QStkAddpXq spanned by the abelian
quasi-coherent stacks.

Remark 10.1.2.2. Every presentable stable 8-category is a Grothendieck prestable 8-
category. Consequently, for any functor X : CAlgcn Ñ pS, we have inclusions QStkStpXq Ď

QStkPStpXq Ď QStkAddpXq

Notation 10.1.2.3 (Pullback of Quasi-Coherent Stacks). If f : X Ñ Y is a morphism in
FunpCAlgcn, pSq, we let f˚ denote the induced functor QStkAddpY q Ñ QStkAddpXq, given
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concretely by the formula pf˚ Cqη “ Cfpηq for each point η P XpRq. Note that f˚ restricts to
functors

QStkStpY q Ñ QStkStpXq QStkPStpY q Ñ QStkPStpXq QStkAbpY q Ñ QStkAbpXq,

which we will also denote by f˚.

Remark 10.1.2.4. The constructions X ÞÑ QStkStpXq,QStkPStpXq,QStkAbpXq determine
functors

QStkSt,QStkPSt,QStkAb : FunpCAlgcn, pSqop ÑyCat8.

These functors are right Kan extensions of the constructions

R ÞÑ LinCatSt
R R ÞÑ LinCatPSt

R R ÞÑ LinCatAb
R

along the Yoneda embedding j : CAlgcn Ñ FunpCAlgcn, pSqop.

Example 10.1.2.5 (The Affine Case). Let R be connective E8-ring. Then we have canonical
equivalences

QStkAddpSpecRq » LinCatAdd
R QStkStpSpecRq » LinCatSt

R

QStkPStpSpecRq » LinCatPSt
R QStkAbpSpecRq » LinCatAb

R .

We will generally abuse terminology by using these equivalences to identify (additive, stable,
prestable, abelian) quasi-coherent stacks on SpecR with the corresponding (additive, stable,
prestable, abelian) R-linear 8-categories.

Remark 10.1.2.6. For every connective E8-ring R, extension of scalars induces an equiv-
alence of 8-categories LinCatAb

R » LinCatAb
π0R (see Remark D.1.4.6). In other words, the

functor R ÞÑ LinCatAb
R is a right Kan extension of its restriction to discrete E8-rings.

It follows that for any functor X : CAlgcn Ñ pS, the 8-category QStkAbpXq of abelian
quasi-coherent stacks on X depends only on the restriction of X to the full subcategory
of CAlgcn spanned by the discrete E8-rings. In particular, if X “ pX ,OX q is a spec-
tral Deligne-Mumford stack with 0-truncation X0 “ pX , π0 OX q, then the pullback map
QStkAbpXq Ñ QStkAbpX0q is an equivalence of 8-categories.

Construction 10.1.2.7 (Stabilization of Quasi-Coherent Stacks). For every connective E8-
ring R, the construction C ÞÑ SppCq determines a stabilization functor LinCatPSt

R Ñ LinCatSt
R .

These functors depend functorially on R and can therefore be extended to a functor
QStkPStpXq Ñ QStkStpXq for each X P FunpCAlgcn, pSq, which we will also denote by
C ÞÑ SppCq. More informally, this functor is given by the formula SppCqη “ SppCηq. It can is
a left adjoint to the inclusion QStkStpXq ãÑ QStkPStpXq of Remark 10.1.2.2.
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Construction 10.1.2.8 (Hearts of Quasi-Coherent Stacks). For every connective E8-ring
R, the construction C ÞÑ C♥ determines a functor LinCatPSt

R Ñ LinCatAb
R . These functors

depend functorially on R and can therefore be extended to a functor QStkPStpXq Ñ

QStkAbpXq for each X P FunpCAlgcn, pSq, which we will also denote by C ÞÑ C♥. More
informally, this functor is given by the formula pC♥qη “ pCηq♥.

Remark 10.1.2.9 (Descent for Prestable Quasi-Coherent Stacks). Let f : X Ñ Y be
a map in FunpCAlgcn, pSq which induces an equivalence after sheafification with respect
to the étale topology. Then the pullback functor f˚ : QStkPStpY q Ñ QStkPStpXq is an
equivalence of 8-categories. This follows immediately from Theorem D.4.1.2 (together with
the characterization of the functor QStkPSt supplied by Remark 10.1.2.4).

Remark 10.1.2.10 (Descent for Stable Quasi-Coherent Stacks). Let f : X Ñ Y be a map
in FunpCAlgcn, pSq which induces an equivalence after sheafification with respect to the étale
topology. Then the pullback functor f˚ : QStkStpY q Ñ QStkStpXq is an equivalence of
8-categories. This follows from Remark 10.1.2.9, together with the fact that the stability of
a prestable R-linear 8-category can be tested locally with respect to the étale topology on
R (Proposition D.5.1.1).

Remark 10.1.2.11 (Descent for Abelian Quasi-Coherent Stacks). Let f : X Ñ Y be a
map in FunpCAlgcn, pSq which induces an equivalence after sheafification with respect to the
fpqc topology. Then the pullback functor f˚ : QStkAbpY q Ñ QStkAbpXq is an equivalence
of 8-categories. This follows from Corollary D.6.8.4 (together with Remark 10.1.2.4).

10.1.3 Limits and Colimits of Prestable Quasi-Coherent Stacks

Let A be a connective E8-ring. Then the 8-category LinCatAdd
A of additive A-linear

8-categories admits small limits and colimits. Moreover, for every morphism f : AÑ B,
the extension of scalars functor LinCatAdd

A Ñ LinCatAdd
B preserves small limits and colimits.

From this, it follows formally that for any functor X : CAlgcn Ñ pS, the 8-category
QStkAddpXq of additive quasi-coherent stacks on X admits small limits and colimits (which
can be computed “levelwise”). However, if we restrict our attention to prestable quasi-
coherent stacks, then the situation is more delicate. In this case, the existence of limits and
colimits requires some additional hypotheses.

Definition 10.1.3.1. Let X : CAlgcn Ñ pS be a functor and let F : C Ñ D be a morphism
in QStkPStpXq. We will say that F is left exact if, for every connective E8-ring A and every
point η P XpAq, the underlying A-linear functor Fη : Cη Ñ Dη is left exact (see Proposition
C.3.2.1). We will say that F is compact if, for every connective E8-ring A and every point
η P XpAq, the underlying functor Fη : Cη Ñ Dη is compact (that is, the right adjoint of Fη
commutes with filtered colimits).
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We let QStklexpXq denote the subcategory of QStkPStpXq whose morphisms are left exact
morphisms in QStkPStpXq, and we let QStkcpXq denote the subcategory of QStkPStpXq

whose morphisms are compact morphisms in QStkPStpXq.

Remark 10.1.3.2. Let F : C Ñ D be a morphism between prestable quasi-coherent stacks
on a functor X : CAlgcn Ñ pS. If C is stable, then F is automatically left exact. Consequently,
we can regard the 8-category QStkStpXq as a full subcategory the 8-category QStklexpXq.

Remark 10.1.3.3. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ pS, and let F : C Ñ D be a morphism of quasi-coherent stacks on Y . If F is left
exact (compact), then so is the induced map f˚pF q : f˚ C Ñ f˚D. Conversely, if f : X Ñ Y

induces an effective epimorphism after sheafification with respect to the étale topology and
f˚ C is left exact (compact), then so is C: this follows from Proposition D.5.2.1 (D.5.2.2).

Proposition 10.1.3.4 (Limits of Prestable Quasi-Coherent Stacks). Let Y : CAlgcn Ñ pS
be a functor. Then:

paq The 8-category QStklexpY q admits small limits.

pbq The inclusion functor QStklexpY q ãÑ QStkAddpY q preserves small limits.

pcq For every map f : X Ñ Y , the pullback functor f˚ : QStklexpY q Ñ QStklexpXq

preserves small limits.

In particular, for every point η P Y pRq, the construction

pC P QStklexpY qq ÞÑ pCη P LinCatAdd
R q

preserves small limits.

Proof. In the case where Y “ SpecA is affine, assertions paq and pbq follow from Remark
D.1.6.1. If, in addition, X “ SpecB is affine, then assertion pcq follows from the observation
that Modcn

B is dualizable as an object of LinCatAdd
A (so that the extension of scalars functor

LinCatAdd
A Ñ LinCatAdd

B preserves all limits which exist in LinCatAdd
A ). The general case

reduces to the affine case by formal arguments.

Variant 10.1.3.5 (Limits of Stable Quasi-Coherent Stacks). Let Y : CAlgcn Ñ pS be a
functor. Then the collection of stable quasi-coherent stacks on Y is closed under small limits
in the 8-category QStklexpY q. Consequently, we have the following analogue of Proposition
10.1.3.4:

paq The 8-category QStkStpY q admits small limits.

pbq The inclusion functor QStkStpY q ãÑ QStkAddpY q preserves small limits.
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pcq For every map f : X Ñ Y , the pullback functor f˚ : QStkStpY q Ñ QStkStpXq

preserves small limits.

Variant 10.1.3.6 (Limits of Abelian Quasi-Coherent Stacks). Let Y : CAlgcn Ñ pS be
a functor and let F : C Ñ D be a morphism in QStkAbpY q. We will say that F is left
exact if, for every connective E8-ring A and every point η P Y pAq, the underlying A-linear
functor Fη : Cη Ñ Dη is a left exact (and therefore exact) functor of abelian categories. We
let QStkAb,lexpY q denote the subcategory of QStkAbpY q whose morphisms are left exact
functors. Arguing as in the proof of Proposition 10.1.3.4 (using Remark D.1.6.5 in place
of Remark D.1.6.1), we deduce that the 8-category QStkAb,lexpY q admits small limits
which can be computed levelwise (and are therefore preserved by pullback along any map
f : X Ñ Y ). Moreover, the construction C ÞÑ C♥ of Construction 10.1.2.8 restricts to a
functor QStklexpXq Ñ QStkAb,lexpXq which preserves small limits (see Remark D.1.6.8).

Proposition 10.1.3.7 (Filtered Colimits of Prestable Quasi-Coherent Stacks). Let Y :
CAlgcn Ñ pS be a functor. Then:

paq The 8-category QStkPStpY q admits small filtered colimits.

pbq The inclusion functor QStkPStpY q ãÑ QStkAddpY q preserves small filtered colimits.

pcq For every map f : X Ñ Y , the pullback functor f˚ : QStkPStpY q Ñ QStkPStpXq

preserves small filtered colimits.

In particular, for every point η P Y pRq, the construction

pC P QStkPStpY qq ÞÑ pCη Ñ LinCatPSt
R q

preserves small filtered colimits.

Proof. In the case where Y “ SpecA is affine, assertions paq and pbq follow from Remark
D.1.6.2. If, in addition, X “ SpecB is affine, then assertion pcq follows from the observation
that the extension of scalars functor LinCatAdd

A Ñ LinCatAdd
B preserves small colimits. The

general case reduces to the affine case by formal arguments.

Variant 10.1.3.8 (Colimits of Stable Quasi-Coherent Stacks). For any E8-ring A, the
8-category LinCatSt

A of stable A-linear 8-categories admits all small colimits, which are
preserved by the extension of scalars functor LinCatSt

A Ñ LinCatSt
B associated to any

morphism of E8-rings AÑ B, and by the inclusion functor LinCatSt
A ãÑ LinCatAdd

A whenever
A is connective. We therefore have the following analogue of Proposition 10.1.3.7:

paq For any functor Y : CAlgcn Ñ pS, the 8-category QStkStpY q admits small colimits.
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pbq For any functor Y : CAlgcn Ñ pS, the inclusion functors QStkStpY q ãÑ QStkAddpY q

preserves small colimits.

pcq For every natural transformation f : X Ñ Y between functors X,Y : CAlgcn Ñ pS, the
pullback functor f˚ : QStkStpY q Ñ QStkStpXq preserves small colimits.

Variant 10.1.3.9 (Filtered Colimits of Abelian Quasi-Coherent Stacks). Let Y : CAlgcn Ñ
pS be a functor. Then:

paq The 8-category QStkAbpY q admits small filtered colimits.

pbq The inclusion functor QStkAbpY q ãÑ QStkAddpY q preserves small filtered colimits.

pcq For every map f : X Ñ Y , the pullback functor f˚ : QStkAbpY q Ñ QStkAbpXq

preserves small filtered colimits.

This can be proven in the same way as Proposition 10.1.3.7, using Remark D.1.6.6 in place
of Remark D.1.6.2.

Remark 10.1.3.10. Let Y : CAlgcn Ñ pS be a functor. Then the8-categories QStkPSt,lexpY q

and QStkAb,lexpY q admit small filtered colimits, which are preserved by the inclusion functors

QStkPSt,lexpY q ãÑ QStkPStpY q QStkAb,lexpY q ãÑ QStkAbpY q.

To prove this, we can immediately reduce to the case where Y is affine, in which case the
desired result follows from Remarks D.1.6.2 and ??.

Remark 10.1.3.11. Let Y : CAlgcn Ñ pS be a functor. Then the constructions

QStkStpY q
Sp
ÐÝ QStkPStpY q

♥
ÝÑ QStkAbpY q

preserve small filtered colimits. To see this, we can reduce to the case where Y is affine, in
which case the desired result follows from Remark D.1.6.7.

If we restrict our attention to diagrams involving compact transition maps, then we can
obtain a stronger version of Proposition 10.1.3.7:

Proposition 10.1.3.12 (Colimits of Quasi-Coherent Stacks). Let Y : CAlgcn Ñ pS be a
functor. Then:

paq The 8-category QStkcpY q admits small colimits.

pbq The inclusion functor QStkcpY q ãÑ QStkPStpY q preserves small colimits.

pcq For every map f : X Ñ Y , the pullback functor f˚ : QStkcpY q Ñ QStkcpXq preserves
small colimits.
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In particular, for every point η P Y pRq, the construction

pC P QStkcpY qq ÞÑ pCη Ñ LinCatPSt
R q

preserves small colimits.

Proof. In the case where Y “ SpecA is affine, assertions paq and pbq follow from Remark
D.1.6.3. If, in addition, X “ SpecB is affine, then assertion pcq follows from the observation
that Modcn

B is dualizable as an object of LinCatPSt
A (so that the extension of scalars functor

LinCatPSt
A Ñ LinCatPSt

B preserves all colimits which exist in LinCatPSt
A ). The general case

reduces to the affine case by formal arguments.

Warning 10.1.3.13. In the situation of Proposition 10.1.3.12, the inclusion functor QStkcpY q ãÑ

QStkAddpY q usually does not preserve small colimits.

Warning 10.1.3.14. If Y : CAlgcn Ñ pS is a functor, then the stabilization construction
QStkcpY q Ď QStkPStpY q

Sp
ÝÑ QStkStpY q generally does not preserve small colimits, even

when Y is corepresentable (see Warning D.1.6.9).

10.1.4 Direct Images of Quasi-Coherent Stacks

Let f : X Ñ Y be a natural transformation between functors X,Y : CAlgcn Ñ pS. Given
a quasi-coherent stack C on X, one can attempt to define a quasi-coherent stack f˚ C on Y

with the following universal property: for every quasi-coherent stack D on Y , giving a map
of quasi-coherent stacks D Ñ f˚ C (on Y ) is equivalent to giving a map of quasi-coherent
stacks f˚D Ñ C (on X). At least heuristically, this construction can be given explicitly
by the formula pf˚ Cqη “ lim

ÐÝη
Cη, where η : SpecAÑ Y is an A-valued point of Y and the

limit on the right hand side is taken over all commutative diagrams σ :

SpecB η //

��

X

f

��
SpecA η // Y.

Here we encounter a technical point: the 8-category LinCatAdd
A admits all small limits, but

the collection of all commutative diagrams σ as above need not be small. To circumvent
this difficulty, we will make the following additional assumptions:

piq The morphism f : X Ñ Y representable, in the sense of Definition 6.3.2.1. That is, for
every map SpecAÑ Y , the fiber product XA “ X ˆY SpecA is (representable by) a
spectral Deligne-Mumford stack.
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piiq The quasi-coherent stack C is either prestable or abelian: that is, it belongs to a
class of objects which satisfy descent for the étale topology (see Remarks 10.1.2.9 and
10.1.2.11).

We will see below that under these assumptions, we do not need to take the limit of all
diagrams σ as above: it suffices to consider those diagrams which classify an étale morphism
SpecB Ñ XA.

Proposition 10.1.4.1. p1q Let f : X Ñ Y be a representable morphism between functors
X,Y : CAlgcn Ñ pS. Then the pullback functors

f˚ : QStkPStpY q Ñ QStkPStpXq f˚ : QStkAbpY q Ñ QStkAbpXq

admit right adjoints, which we will denote by f˚.

p2q Suppose we are given a pullback diagram

X 1

f 1

��

g1 // X

f
��

Y
g // Y

in FunpCAlgcn, pSq, where f is representable. Then the associated diagram

QStkPStpY q
f˚ //

g˚

��

QStkPStpXq

g1˚

��
QStkPStpY 1q

f 1˚ // QStkPStpX 1q

is right adjointable: that is, the canonical natural transformation g˚f˚ Ñ f 1˚g
1˚ is an

equivalence.

p21q Suppose we are given a pullback diagram

X 1

f 1

��

g1 // X

f
��

Y
g // Y

in FunpCAlgcn, pSq. Then the associated diagram

QStkAbpY q
f˚ //

g˚

��

QStkAbpXq

g1˚

��
QStkAbpY 1q

f 1˚ // QStkAbpX 1q
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is right adjointable: that is, the canonical natural transformation g˚f˚ Ñ f 1˚g
1˚ is an

equivalence.

Proof of Proposition 10.1.4.1. We will prove the existence of the pushforward f˚ : QStkPStpXq Ñ

QStkPStpY q and verify part p2q; the analogous assertions in the setting of abelian quasi-
coherent stacks can be proven using the same argument (with some slight changes in
notation). We begin by proving p1q in the special case where Y “ SpecA is affine. Let
us identify QStkPStpY q with the 8-category LinCatPSt

A of prestable A-linear 8-categories.
Our assumption that f is representable guarantees that X is (representable by) a spectral
Deligne-Mumford stack pX ,OXq.

Fix an object C P QStkPStpXq. For every object U P X , let XU denote the functor
represented by the spectral Deligne-Mumford stack pX {U ,OX |U q, let fU : XU Ñ Y be the
restriction of f , and let let CU P QStkPStpXU q denote the restriction of C. We define a
functor χU : pLinCatPSt

A qop Ñ pS by the formula χU pDq “ MapQStkPStpXU q
pf˚U D, CU q. Let us

say that a point η P χU pDq is left exact if, for every map V Ñ U in X where XV » SpecB
is affine, the image of η in the mapping space

χV pDq “ MapQStkPStpXV qpf
˚
V D, CV q » MapLinCatPSt

A
pD, CV q

determines a left exact functor from D to CV (here we abuse notation by identifying CV
with the associated prestable B-linear 8-category, regarded as a prestable A-linear 8-
category by restriction of scalars). Let χ1U pDq denote the summand of χU pDq consisting
of the left exact points, so that we can regard the construction D ÞÑ χ1U pDq as a functor
χ1U : pLinCatlex

A q
op Ñ pS.

Note that the construction U ÞÑ χU carries colimits in X to limits in the 8-category
FunppLinCatPSt

A qop, pSq. Using Proposition D.5.2.1, we see that the condition that a point
η P χU pDq is left exact can be tested locally on U , so that the functor U ÞÑ χ1U carries
colimits in X to limits in the 8-category FunppLinCatlex

A q
op, pSq Let X 0 Ď X be the full

subcategory spanned by those objects U for which the functor χ1U is representable by an
object of LinCatlex

A . Since the 8-categoy LinCatlex
A admits small limits (Remark D.1.6.1),

it follows that X 0 is closed under small colimits in X . Moreover, if U P X is affine so that
XU » SpecB for some connective A-algebra B, then we can regard CU as a prestable B-linear
8-category. In this case, the underlying prestable A-linear 8-category of CU represents the
functor χ1U , so that U P X 0. Since X is generated under small colimits by its affine objects
(see Lemma ??), it follows that X 0 “ X .

For each object U P X , let ΓpU ; Cq be a prestable A-linear 8-category which represents
the functor χ1U . Then we can regard the construction U ÞÑ ΓpU ; Cq as a functor from X op

to the 8-category LinCatlex
A which preserves small limits. By construction, each ΓpU ; Cq is

equipped with a map vU : f˚UΓpU ; Cq Ñ CU having the following universal property: for every
prestable A-linear 8-category D, composition with vU induces a homotopy equivalence from
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MapLinCatlex
A
pD,ΓpU ; Cqq to the summand of MapQStkPStpXU qpf

˚
U D, CU q consisting of the left

exact points. Let X 1 be the full subcategory of X spanned by those objects U having the
property that, for every prestable A-linear 8-category D, composition with vU also induces
a homotopy equivalence

MapLinCatPSt
A
pD,ΓpU ; Cqq Ñ MapQStkPStpXU qpf

˚
U D, CU q.

It follows immediately from the construction of ΓpU ; Cq given above that every affine object
of X is contained in X 1. Because the forgetful functor LinCatlex

A ãÑ LinCatPSt
A preserves

small limits (Remark D.1.6.1), the full subcategory X 1 Ď X is closed under small colimits.
Since X is generated under small colimits by its affine objects (Lemma ??), we conclude that
X 1 “ X . In particular, the final object 1 P X is good. Setting ΓpX; Cq “ Γp1; Cq, we deduce
the existence of a map v “ v1 : f˚ΓpX; Cq Ñ C which induces a homotopy equivalence

MapLinCatPSt
A
pD,ΓpX ; Cqq Ñ MapQStkPStpXqpf

˚D, Cq

for every prestable A-linear 8-category D. Allowing C to vary, we deduce that the pullback
functor f˚ : LinCatPSt

A Ñ QStkPStpXq admits a right adjoint, given on objects by the
construction C ÞÑ ΓpX; Cq.

We now prove p2q under the assumption that Y “ SpecA and Y 1 “ SpecA1 are both
affine. It follows that X and X 1 are representable by spectral Deligne-Mumford stacks
pX ,OXq and pX 1,OX 1q. For each U P X , let U 1 denote its inverse image in X 1, and let
ΓpU 1; ‚q : QStkPStpX 1q Ñ LinCatlex

A1 be defined as above. We will prove that for each
U P X , the canonical map αU : A1 bA ΓpU ; Cq Ñ ΓpU 1; g1˚ Cq. is an equivalence. When
regarded as a functors of U , both the domain and codomain of αU carry colimits in X to
limits in LinCatlex

A1 . It will therefore suffice to prove that αU is an equivalence when U is
affine. We may therefore reduce to the case where X » SpecB, so that X 1 “ SpecB1 for
B1 “ A1bA B. The desired result now follows from Lemma D.3.5.6, since the canonical map
Modcn

A1 bModcn
A

Modcn
B Ñ Modcn

B1 is an equivalence of 8-categories.
We now treat the general case of p1q. Write Y as the colimit of a (not necessarily

small) diagram q : S Ñ FunpCAlgcn, pSq, where each Ys “ qpsq is affine. For each s P S, set
Xs “ X ˆY Ys. Every edge sÑ s1 in S determines a pullback diagram

Xs
//

��

Xs1

��
Ys // Ys1 .

Using assertion p2q in the affine case, we deduce that the associated diagram of pullback
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functors
QStkPStpYs1q //

��

QStkPStpXs1q

��
QStkPStpYsq // QStkPStpXsq

is right adjointable. Since the construction Z ÞÑ QStkPStpZq carries colimits to limits,
Corollary HA.4.7.4.18 implies the following:

piq The functor f˚ : QStkPStpY q Ñ QStkPStpXq admits a right adjoint f˚.

piiq For each s P S, the diagram

QStkPStpY q
f˚ //

��

QStkPStpXq

��
QStkPStpYsq // QStkPStpXsq

is right adjointable.

This proves p1q. Moreover, we can assume without loss of generality that every morphism
SpecA Ñ Y appears as a map qpsq Ñ Y for some s P S, so that piiq implies that p2q is
satisfied whenever Y 1 is affine. To prove p2q in general, consider a pullback square σ :

X 1
g1 //

f 1

��

X

f
��

Y 1
g // Y

and let C P QStkPStpXq; we wish to show that the Beck-Chevalley map θ : g˚f˚ C Ñ f 1˚g
1˚ C

is an equivalence. Unwinding the definitions, this is equivalent to the assertion that for every
map h : SpecAÑ Y 1, the pullback h˚pθq is an equivalence in QStkPStpSpecAq. Extending
σ to a rectangular diagram

X2
h1 //

f2

��

X 1
g1 //

f 1

��

X

f

��
SpecA h // Y 1

g // Y

where both squares are pullbacks, we see that h˚pθq fits into a commutative diagram

h˚f 1˚g
1˚ C

θ1

&&
h˚g˚f˚ C

h˚pθq
88

θ2 // f2˚h
1˚g1˚ C,
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where θ1 and θ2 are equivalences by virtue of the fact that p2q holds in the special case
treated above.

10.1.5 Properties of the Direct Image

Proposition 10.1.4.1 establishes the existence of pushforwards in both the prestable and
abelian settings. We now show that these are compatible:

Proposition 10.1.5.1. Let f : X Ñ Y be a representable morphism between functors
X,Y : CAlgcn Ñ pS. Then the diagram

QStkPStpY q
f˚ //

♥
��

QStkPStpXq

♥
��

QStkAbpY q
f˚ // QStkAbpXq

is right adjointable. In other words, for every object C P QStkPStpXq, the canonical map
pf˚ Cq♥ Ñ f˚pC♥q is an equivalence of abelian quasi-coherent stacks on Y .

Proof. Using assertions p2q and p21q of Proposition 10.1.4.1, we can reduce to the case where
Y “ SpecA is affine. Since f is representable, the functor X is representable by some
spectral Deligne-Mumford stack pX ,OXq. For each U P X , define CU and ΓpU ; CU q as in
the proof of Proposition 10.1.4.1, and define pC♥qU and ΓpU ; pC♥qU q similarly, so that we
have an evident map θU : ΓpU ; CU q♥ Ñ ΓpU ; pC♥qU q. It follows from the definition of C♥

that the map θU is an equivalence whenever U is affine. Since the construction U ÞÑ θU
carries colimits in X to limits in LinCatAb,lex

A (see Remark D.1.6.8), it follows that θU is an
equivalence when U is a final object of X , which is an equivalent formulation of Proposition
10.1.5.1.

We now specialize Proposition 10.1.4.1 to the stable setting.

Proposition 10.1.5.2. Let f : X Ñ Y be a representable morphism between functors
X,Y : CAlgcn Ñ pS. Then the pushforward functor f˚ : QStkPStpXq Ñ QStkPStpY q of
Proposition 10.1.4.1 carries stable quasi-coherent stacks on X to stable quasi-coherent stacks
on Y .

Proof. Using Proposition 10.1.4.1, we can assume without loss of generality that Y “ SpecA
is affine. Since f is representable, the functor X is representable by some spectral Deligne-
Mumford stack pX ,OXq. For each U P X , define CU and ΓpU ; CU q as in the proof of
Proposition 10.1.4.1. Let X 0 be the full subcategory of X spanned by those objects U for
which the prestable A-linear 8-category ΓpU ; CU q is stable. The construction U ÞÑ ΓpU ; CU q
carries colimits in X to limits in LinCatPSt

A , and the full subcategory LinCatSt
A Ď LinCatPSt

A
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is closed under limits (since the inclusion admits a left adjoint). It follows that X 0 is closed
under small colimits in X . Our assumption that C is stable guarantees that X 0 contains all
affine objects of X . Using Lemma ??, we deduce that X 0 “ X . In particular, X 0 contains a
final object of X , so that f˚ C is stable.

Combining Propositions 10.1.4.1 and 10.1.5.2, we obtain the following:

Corollary 10.1.5.3. p1q Let f : X Ñ Y be a representable morphism between functors
X,Y : CAlgcn Ñ pS. Then the pullback functors f˚ : QStkStpY q Ñ QStkStpXq admits
a right adjoint f˚ : QStkStpXq Ñ QStkStpY q.

p2q Suppose we are given a pullback diagram

X 1

f 1

��

g1 // X

f
��

Y
g // Y

in FunpCAlgcn, pSq, where f is representable. Then the associated diagram

QStkStpY q
f˚ //

g˚

��

QStkStpXq

g1˚

��
QStkStpY 1q

f 1˚ // QStkStpX 1q

is right adjointable: that is, the canonical natural transformation g˚f˚ Ñ f 1˚g
1˚ is an

equivalence.

We also have the following analogue of Proposition 10.1.5.1:

Proposition 10.1.5.4. Let f : X Ñ Y be a representable morphism between functors
X,Y : CAlgcn Ñ pS. Then the diagram

QStkPStpY q
f˚ //

Sp
��

QStkPStpXq

Sp
��

QStkStpY q
f˚ // QStkStpXq

is right adjointable. In other words, for every object C P QStkPStpXq, the canonical map
Sppf˚ Cq Ñ f˚pSppCqq is an equivalence of stable quasi-coherent stacks on Y .
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Proof. Using Proposition 10.1.4.1, we can reduce to the case where Y “ SpecA is affine.
Since f is representable, the functor X is representable by some spectral Deligne-Mumford
stack pX ,OXq. For each U P X , let CU and ΓpU ; CU q be as in the proof of Proposition
10.1.4.1, and define SppCqU and ΓpU ; SppCqU q similarly. Let X 0 denote the full subcategory
of X for which the canonical map SppΓpU ; CU qq Ñ ΓpU ; SppCqU q is an equivalence. It follows
from Remark D.1.6.8 that the subcategory X 0 is closed under colimits in X , and it follows
from the definition of SppCq that X 0 contains every affine object of X . Applying Lemma ??,
we deduce that X 0 “ X . In particular, X 0 contains a final object of X , so that the canonical
map Sppf˚ Cq Ñ f˚pSppCqq is an equivalence.

10.1.6 Tensor Products of Quasi-Coherent Stacks

Let A be a connective E8-ring. If C and D are additive A-linear 8-categories, then the
relative tensor product CbAD of Construction D.2.1.1 inherits the structure of an additive
A-linear 8-category. By means of this construction, we obtain a symmetric monoidal
structure on the 8-category LinCatAdd

A » ModModcn
A
pPrLq of additive A-linear 8-categories

(see Remark D.2.3.1). This symmetric monoidal structure depends functorially on A: that is,
we can regard the construction A ÞÑ LinCatPSt

A as a functor from CAlgcn to the 8-category
CAlgpyCat8q of symmetric monoidal 8-categories. Taking a right Kan extension along the
Yoneda embedding CAlgcn ãÑ FunpCAlgcn, pSqop, we obtain a functor

QStkAdd : FunpCAlgcn, pSq Ñ CAlgpyCat8q.

It follows from Remark 10.1.1.2 that the composition of QStkAdd with the forgetful functor
CAlgpyCat8q ÑyCat8 agrees with Construction 10.1.1.1. We can summarize the situation
more informally as follows:

paq For every functor X : CAlgcn Ñ pS, the 8-category QStkAddpXq of additive quasi-
coherent stacks on X inherits the structure of a symmetric monoidal 8-category.

pbq For every map f : X Ñ Y in FunpCAlgcn, pSq, the pullback functor f˚ : QStkAddpY q Ñ

QStkAddpXq is symmetric monoidal.

pcq When X “ SpecA is a corepresentable functor, the symmetric monoidal structure on
QStkAddpXq » LinCatAdd

A is given by the relative tensor product pC,Dq ÞÑ CbAD.

Remark 10.1.6.1. Let X : CAlgcn Ñ pS be a functor. It follows from paq, pbq and pcq above
that the tensor product on QStkAddpXq is computed “pointwise” in the following sense: for
every connective E8-ring A and every point η P XpAq, we have a canonical equivalence of
A-linear 8-categories pCbDqη » Cη bADη.
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Example 10.1.6.2. Let X : CAlgcn Ñ pS be a functor. We let Qcn
X denote the unit object

of the symmetric monoidal 8-category QStkAddpXq. The quasi-coherent stack Qcn
X can be

described more informally as follows: to every point η P XpAq, it assigns the prestable
A-linear 8-category Modcn

A (which is the unit object of the symmetric monoidal 8-category
LinCatAdd

A “ ModModcn
A
pPrLq).

We now restrict our attention to tensor products of prestable, stable, and abelian
quasi-coherent stacks.

Proposition 10.1.6.3 (Tensor Products of Prestable Quasi-Coherent Stacks). Let X :
CAlgcn Ñ pS be a functor. Then the full subcategory QStkPStpXq Ď QStkAddpXq of prestable
quasi-coherent stacks on X contains the unit object Qcn

X P QStkAddpXq and is closed under
tensor products. Consequently, QStkPStpXq inherits the structure of a symmetric monoidal
8-category (for which the inclusion QStkPStpXq ãÑ QStkAddpXq is symmetric monoidal).

Proof. Using Remark 10.1.6.1, we can reduce to the case where X “ SpecA is affine, in
which case the desired result follows from Proposition D.2.2.1.

Proposition 10.1.6.4 (Tensor Products of Stable Quasi-Coherent Stacks). Let X : CAlgcn Ñ
pS be a functor, and let L : QStkAddpXq Ñ QStkStpXq be a left adjoint to the inclusion
(given by C ÞÑ SppCq). Then the localization functor L is compatible with the symmetric
monoidal structure on QStkAddpXq, in the sense of Definition HA.2.2.1.6 . Consequently,
the 8-category QStkStpXq inherits a symmetric monoidal structure, which is determined
(up to essentially unique equivalence) by the requirement that the functor L is symmetric
monoidal.

Proof. Unwinding the definitions, we must show that for every pair of objects C,D P

QStkAddpXq, the canonical map

SppCbDq Ñ SppSppCq b SppDqq

is an equivalence. Without loss of generality, we can assume that X “ SpecA is affine,
in which case the desired result follows from the observation that ModA is an idempotent
object in the symmetric monoidal 8-category LinCatAdd

A .

Remark 10.1.6.5. Let C and D be additive quasi-coherent stacks on a functor X : CAlgcn Ñ
pS. If either C or D is stable, then the tensor product CbD is stable. It follows that the
tensor product on QStkStpXq agrees with the tensor product on QStkAddpXq: in other
words, the diagram

QStkStpXq ˆQStkStpXq
b //

��

QStkStpXq

��
QStkAddpXq ˆQStkAddpXq

b // QStkAddpXq.
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However, the inclusion QStkStpXq ãÑ QStkAddpXq is not symmetric monoidal, because the
unit objects are different: the unit object of QStkStpXq is the stable quasi-coherent stack
QX “ SppQcn

X q, which can be described more informally as follows: to every point η P XpAq,
it assigns the stable A-linear 8-category ModA (which is the unit object of the symmetric
monoidal 8-category LinCatSt

A “ ModModApPrLq).

Remark 10.1.6.6. For each functor X : CAlgcn Ñ pS, the stabilization construction
QStkPStpXq Ñ QStkStpXq is symmetric monoidal functor. Moreover, it is given by the
construction C ÞÑ QX b C.

Remark 10.1.6.7. Let X : CAlgcn Ñ pS be a functor. Then the 8-category QStkStpXq

admits small colimits (see Variant 10.1.3.8) and the tensor product functor b : QStkStpXqˆ

QStkStpXq Ñ QStkStpXq preserves small colimits separately in each variable. However,
the analogous statement for prestable quasi-coherent stacks is false, even if we restrict our
attention to compact morphisms (see Warning ??).

Variant 10.1.6.8 (Tensor Products of Abelian Quasi-Coherent Stacks). For every connective
E8-ring A, the 8-category LinCatAb

A of abelian A-linear 8-categories is equipped with a
symmetric monoidal structure given by the construction pC,Dq ÞÑ CbAD (see Variant
D.2.3.2). Arguing as above, we see that for every functor X : CAlgcn Ñ pS, we can regard the
8-category QStkAbpXq as equipped with a symmetric monoidal structure, which depends
functorially on X and is given pointwise by the construction pCbDqη “ Cη bADη). In
particular, the tensor product on QStkAbpXq agrees with the tensor product on the larger
8-category QStkAddpXq. However, the inclusion functor QStkAbpXq ãÑ QStkAddpXq is not
a symmetric monoidal functor, because it does not preserve unit objects. We will denote the
unit object of QStkAbpXq by Q♥

X : it is given informally by the formula pQ♥
Xqη “ Mod♥

A for
each point η P XpAq.

Remark 10.1.6.9. For every functor X : CAlgcn Ñ pS, the functor

QStkPStpXq Ñ QStkAbpXq C ÞÑ C♥

of Construction 10.1.2.8 determines a symmetric monoidal functor QStkPStpXq to QStkAbpXq,
which depends functorially on X. We observe that this construction is given by the formula
C♥ “ Q♥

X b C, where the tensor product is formed in the 8-category QStkAddpXq.

Remark 10.1.6.10. Let f : X Ñ Y be a representable morphism in FunpCAlgcn,Sq. Then
the pullback functors

f˚ : QStkPStpY q Ñ QStkPStpXq f˚ : QStkAbpY q Ñ QStkAbpXq

are symmetric monoidal. It follows that the direct image functors

f˚ : QStkPStpXq Ñ QStkPStpY q f˚ : QStkAbpXq Ñ QStkAbpY q
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of Proposition 10.1.4.1 are lax symmetric monoidal. In particular, they carry commutative
algebra objects of QStkPStpXq and QStkAbpXq to commutative algebra objects of QStkAbpY q

and QStkAbpY q, respectively.

10.1.7 Global Sections of Quasi-Coherent Stacks

Let X be a spectral Deligne-Mumford stack and let X : CAlgcn Ñ S be the functor
represented by X (given by XpRq “ MapSpDMpSpétR,Xq). We define a (additive, stable,
prestable, abelian) quasi-coherent stack on X to be a (additive, stable, prestable, abelian)
quasi-coherent stack on the functor X, and we define

QStkAddpXq “ QStkAddpXq QStkStpXq “ QStkStpXq

QStkPStpXq “ QStkPStpXq QStkAbpXq “ QStkPStpXq.

Construction 10.1.7.1 (Global Sections of Quasi-Coherent Stacks). Let S denote the
sphere spectrum, so that we have a canonical equivalences

QStkPStpSpétSq » LinCatPSt
S » Groth8 QStkAbpSpétSq » LinCatAb

S » Grothab .

For every spectral Deligne-Mumford stack X, there is an essentially unique morphism
f : X Ñ SpétS which determines a representable morphism in FunpCAlgcn,Sq. Applying
Proposition 10.1.4.1, we obtain direct image functors

QStkPStpXq f˚
ÝÑ QStkPStpSpétSq » Groth8 QStkAbpXq f˚

ÝÑ QStkAbpSpétSq » Grothab .

We will refer to either of these functors as the global sections functor and denote it by
C ÞÑ QCohpX; Cq.

As the notation suggests, one can view QCohpX; Cq as the 8-category of quasi-coherent
sheaves on X with coefficients in the quasi-coherent stack C.

Example 10.1.7.2. Let X be a spectral Deligne-Mumford stack and let Qcn
X be the unit

object of QStkPStpXq (see Example 10.1.6.2). Then there is a canonical equivalence of
8-categories QCohpX;Qcn

X q » QCohpXqcn.

Variant 10.1.7.3. Let X be a spectral Deligne-Mumford stack and let K be a closed subset
of |X |. For every map φ : SpétAÑ X, the inverse image of K in | SpétA| » |SpecA| is the
vanishing locus of some ideal Iφ Ď π0A. Using Remark ??, we see that the construction

pφ : SpétAÑ Xq ÞÑ pModcn
A q

NilpIφq

determines a quasi-coherent stack on X. We will denote this quasi-coherent stack by Qcn
K .

By construction, we have a map of quasi-coherent stacks Qcn
K Ñ Qcn

X , which induces an
equivalence

QCohpX;Qcn
K q » QCohKpXqcn Ď QCohpXqcn “ ΓpX;Qcn

X q.
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Remark 10.1.7.4. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks,
and let C be a prestable or abelian quasi-coherent stack on X. Then we have a canonical
equivalence of 8-categories QCohpX; Cq » QCohpY; f˚ Cq.

Construction 10.1.7.5. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford
stacks and let C be a prestable or abelian quasi-coherent stack on Y. Then the unit map
uC : C Ñ f˚f

˚ C induces a functor

QCohpY; Cq Ñ QCohpY; f˚f˚ Cq » QCohpX; f˚ Cq.

We will refer to this functor as pullback along f and denote it by f˚ : QCohpY; Cq Ñ
QCohpX; f˚ Cq. It follows immediately from the definitions that the functor f˚ preserves
small colimits and therefore admits a right adjoint (see Corollary HTT.5.5.2.9 ), which we
will denote by f˚ : QCohpX; f˚ Cq Ñ QCohpY; Cq.

We now study the functorial behavior of Construction 10.1.7.5. To simplify the exposition,
we will restrict our attention to the setting of prestable quasi-coherent stacks. First, we need
to introduce some terminology.

Definition 10.1.7.6. Let X : CAlgcn Ñ pS be a functor and let u : C Ñ D be a morphism
of prestable quasi-coherent stacks on X. Then:

p1q We will say that u is left exact if, for every connective E8-ring A and every point
η P XpAq, the induced A-linear functor uη : Cη Ñ Dη is left exact.

p2q We will say that u is compact if, for every connective E8-ring A and every point
η P XpAq, the induced A-linear functor uη; Cη Ñ Dη is compact (that is, uη admits a
right adjoint which commutes with filtered colimits).

Remark 10.1.7.7. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ pS, and let u : C Ñ D be a morphism in QStkPStpY q. If u is left exact (compact),
then f˚puq is left exact (compact). The converse holds if f induces an effective epimorphism
after sheafification with respect to the étale topology (see Propositions D.5.2.1 and D.5.2.2).

Remark 10.1.7.8. Let A be a connective E8-ring and let u : C Ñ D be an A-linear functor
between prestable A-linear 8-categories. Then u is left exact (compact) if and only if it is
left exact (compact) when regarded as a morphism of prestable quasi-coherent stacks on
SpecA.

Proposition 10.1.7.9. Let f : X Ñ Y be a morphism in FunpCAlgcn, pSq which is repre-
sentable and flat. Then, for every prestable or abelian quasi-coherent stack C on Y , the unit
map C Ñ f˚f

˚ C is left exact.
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Proof. We will assume that C is prestable; the proof in the abelian case is the same. By
virtue of Proposition 10.1.4.1, we can reduce to the case where Y “ SpecA is affine. Then
X is representable by a spectral Deligne-Mumford stack pX ,OXq which is flat over A. For
each object U P X , let ΓpU ; f˚ Cq be defined as in the proof of Proposition 10.1.4.1. Let
us identify C and f˚f

˚ C with prestable A-linear 8-categories, and let X 0 Ď X be the full
subcategory spanned by those objects U for which the composite map

C Ñ f˚f
˚ C Ñ ΓpU ; f˚ Cq

is left exact. We wish to prove that X 0 contains the final object of X . Since the construction
U ÞÑ ΓpU ; f˚ Cq carries colimits in X to limits in LinCatlex

A , the 8-category X 0 is closed
under small colimits. It will therefore suffice to show that X 0 contains all affine objects of
X . In other words, we are reduced to proving Lemma 10.1.7.9 in the special case where
X » SpecB is also affine. In this case, we wish to show that the extension of scalars functor
C Ñ B bA C is left exact. Equivalently, we wish to show that the construction C ÞÑ B bA C

determines a left exact functor from C to itself. This is clear, since B is flat over A and
can therefore be written as a filtered colimit of free A-modules of finite rank (Proposition
HA.7.2.2.15 ).

Corollary 10.1.7.10. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
and let C be a prestable or abelian quasi-coherent stack on Y. If f is flat, then the induced
map f˚ : QCohpY; Cq Ñ QCohpX; f˚ Cq is left exact.

Proof. Combine Propositions 10.1.7.9 and 10.3.1.14.

Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks and let F : C Ñ D be
a morphism of prestable quasi-coherent stacks on Y. Then we have a commutative diagram
of unit maps

C uC //

F
��

f˚f
˚ C

f˚f˚F
��

D uD // f˚f
˚D .

Passing to global sections, we obtain a commutative diagram of 8-categories

QCohpY; Cq f˚ //

��

QCohpX; f˚ Cq

��
QCohpY;Dq f˚ // QCohpY;Dq.
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Proposition 10.1.7.11. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
and let F : C Ñ D be a morphism of prestable quasi-coherent stacks on Y. If f is flat and
that F is compact, then the diagram of 8-categories

QCohpY; Cq F //

f˚

��

QCohpY;Dq

f˚

��
QCohpX; f˚ Cq F // QCohpX; f˚Dq

is right adjointable.

We first verify Proposition 10.1.7.11 in the case where X and Y are affine.

Lemma 10.1.7.12. Let φ : AÑ B be a flat morphism between connective E8-rings, and
let F : C Ñ D be a compact A-linear functor between prestable A-linear 8-categories. Then
the diagram of 8-categories

C F //

��

D

��
B bA C F // B bA D

is right adjointable (here the vertical maps are given by extension of scalars).

Proof. Let G : D Ñ C be right adjoint to F . Unwinding the definitions, we wish to show that
for every object D P D, the canonical map ρ : B bA GpDq Ñ GpB bA Dq is an equivalence
in C. Our assumption that F is compact guarantees that the functor G commutes with
filtered colimits. Since B flat over A, we can write B as the colimit of a filtered diagram
tMαu where each Mα is a free A-module of finite rank (Proposition HA.7.2.2.15 ). It follows
that ρ can be written as a filtered colimit of maps ρα : Mα bA GpDq Ñ GpMα bA Dq, each
of which is an equivalence because the functor G commutes with finite products.

Proof of Proposition 10.1.7.11. We first treat the case where the morphism f is étale. Write
Y “ pY,OYq. For each object U P Y, define ΓpU ; Cq and ΓpU ;Dq as in the proof of
Proposition 10.1.4.1. Let us say that a morphism u : U Ñ V in Y is good if the diagram

ΓpV ; Cq F //

u˚

��

ΓpV ;Dq

u˚

��
ΓpU ; Cq F // ΓpU ;Dq

is right adjointable. We now proceed in several steps:

paq If U, V P Y are affine, then any morphism u : U Ñ V is good. This follows from
Lemma 10.1.7.12.
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pbq Suppose we are given a small diagram tUαu in the 8-category Y having a colimit
U . For each index α, let uα : Uα Ñ U denote the tautological map. If each of the
transition maps Uα Ñ Uβ is good, then each uα is good. This is a special case of
Corollary HA.4.7.4.18 .

pcq Suppose we are given morphisms tuα : Uα Ñ Uu and v : U Ñ V in the 8-category
Y, where the morphisms uα are good and the induced map

š

Uα Ñ U is an effective
epimorphism. Then v is good if and only if each composition v ˝ uα is good.

Let us say that an object V P Y is good if, for every affine object U P Y , every morphism
U Ñ V is good.

pdq Every affine object of Y is good: this is an immediate consequence of paq.

peq Let v : U Ñ V be a morphism in Y. If U and V are good, then v is good. To prove
this, choose a covering tuα : Uα Ñ Uu where each Uα is affine. Our assumption that U
is good now implies that each uα is good. Our assumption that V is good guarantees
that each composition v ˝ uα is good. Applying pcq, we deduce that v is good.

pfq Let tVαu be a small diagram in Y having a colimit V , and suppose that each Vα is
good. Then V is good. To prove this, choose an arbitrary map v : U Ñ V where U is
affine; we wish to show that v is good. Choose a covering tuβ : Uβ Ñ Uu, where each
Uβ is affine and each composition v ˝ uβ factors as a composition Uβ

vβ
ÝÑ Vα Ñ V for

some index α. Our assumption that Vα is good then guarantees that vβ is good. Using
pbq and peq, we deduce that the tautological map Vα Ñ V is good, so that v ˝ uβ is
good. It follows from paq that each of the maps uβ is good. Applying pcq, we deduce
that v is good.

pgq Every object of Y is good: this follows from pdq and pfq, together with Proposition
1.4.7.9.

phq Every morphism in Y is good: this follows from peq and pgq.

We now prove Proposition 10.1.7.11 for a general flat morphism f : X Ñ Y. Choose a
mutually surjective collection étale morphisms uα : Xα Ñ X, where each Xα is affine and each
of the composite maps Xα uα

ÝÑ X f
ÝÑ Y factors through some étale morphism vα : Yα Ñ Y,
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where Yα is affine. For each index α, we have a commutative diagram of 8-categories

QCohpY; Cq F //

f˚

��

QCohpY;Dq

f˚

��
QCohpX; f˚ Cq F //

u˚α
��

QCohpX; f˚Dq

u˚α
��

QCohpXα;u˚αf˚ Cq
F // QCohpXα;u˚αf˚Dq.

Applying phq to the spectral Deligne-Mumford stack X, we see that the lower square in this
diagram is right adjointable. Since the morphisms uα are mutually surjective, the pullback
functors u˚α : QCohpX; f˚ Cq Ñ QCohpX;u˚αf˚ Cq are mutually conservative. Consequently,
to show that the upper square is right adjointable, it will suffice to show that the outer
rectangle is right adjointable. Equivalently, we are reduced to showing that the outer
rectangle in the diagram

QCohpY; Cq F //

v˚α
��

QCohpY;Dq

f˚

��
QCohpYα; v˚α Cq

F //

��

QCohpYα; v˚αDq

v˚α
��

QCohpXα;u˚αf˚ Cq
F // QCohpXα;u˚αf˚Dq.

Applying phq again, we see that the upper square is right adjointable, and are therefore
reduced to verifying the right adjointability of the lower square. In other words, we may
replace X by Xα and Y by Yα, and thereby reduce to the case where Y » SpétA and
X » SpétB are affine.

Proposition 10.1.7.13. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
and let F : C Ñ D be a morphism of prestable quasi-coherent stacks on Y. Suppose that F
is left exact and that, for every morphism SpétR Ñ Y, the fiber product XˆY SpétR is a
quasi-compact, quasi-separated spectral algebraic space. Then the diagram of 8-categories

QCohpY; Cq f˚ //

F
��

QCohpX; f˚ Cq

F
��

QCohpY;Dqq f˚ // QCohpX; f˚Dq

is right adjointable.

We begin by proving Proposition 10.1.7.13 in the special case where Y is affine.
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Lemma 10.1.7.14. Let R be a connective E8-ring and let X be a quasi-compact, quasi-
separated spectral algebraic space equipped with a map f : X Ñ SpétR. Let C and D be
prestable R-linear 8-categories and let f˚ C and f˚D denote the associate prestable quasi-
coherent stacks on X. Suppose that F : C Ñ D is a left exact R-linear functor. Then the
diagram of 8-categories

C f˚ //

F
��

QCohpX; f˚ Cq

F
��

D f˚ // QCohpX; f˚Dq

is right adjointable.

Proof. Write X “ pX ,OXq. For each object U P X , set XU “ pX {U ,OX |U q, let fU : XU Ñ
SpétR be the tautological map, and let

ΓCpU ; ‚q : QCohpXU ; f˚U Cq Ñ C ΓDpU ; ‚q : QCohpXU ; f˚U Dq Ñ D

denote the pushforward functors associated to the map fU . Suppose we are given an object
C P QCohpX; f˚ Cq. For each object U P X , let CU denote the image of C in QCohpXU ; f˚U Cq
and let F pCU q P QCohpXU ; f˚U Dq be the image of CU under the functor determined by F .
Then we have a tautological map ρU : FΓpU ;CU q Ñ ΓpU ;F pCU qq, which is an equivalence
whenever U P X is affine. Since F is left exact, the collection of those objects U P X for
which ρU is an equivalence is closed under finite colimits. Applying Proposition 2.5.3.5 and
Theorem 3.4.2.1, we deduce that ρU is an equivalence when U is a final object of X , which
is equivalent to the statement of Lemma 10.1.7.14.

Lemma 10.1.7.15. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks and
let C be a prestable quasi-coherent stack on Y. Suppose that for every morphism SpétRÑ Y,
the fiber product XˆY SpétR is a quasi-compact, quasi-separated spectral algebraic space.
Then the unit map u : C Ñ f˚f

˚ C is a compact morphism of prestable quasi-coherent stacks
on Y.

Proof. The assertion is local on Y. We may therefore assume without loss of generality
that Y “ SpétR is affine, so that X is a quasi-compact, quasi-separated spectral algebraic
space. Write X “ pX ,OXq, and for each U P X define fU : XU Ñ SpétR and ΓpU ; ‚q :
QCohpXU ; f˚U Cq Ñ C as in the proof of Lemma 10.1.7.14. Let X 0 Ď X be the full subcategory
spanned by those objects U for which the functor ΓpU ; ‚q commutes with small filtered
colimits. Since C is a Grothendieck prestable 8-category, the formation of filtered colimits
in C commutes with finite colimits, so that X 0 is closed under finite colimits in X . Note
that if U P X is affine, then ΓpU ; ‚q is equivalent to the forgetful functor LModApCq Ñ C for
some connective E8-algebra A over R, so that ΓpU ; ‚q commutes with all small colimits; in
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particular, we have U P X 0. Applying Proposition 2.5.3.5 and Theorem 3.4.2.1, we deduce
that X 0 contains the final object of X , so that the unit map C Ñ f˚f

˚ C is compact as
desired.

Proof of Proposition 10.1.7.13. Set C1 “ f˚f
˚ C P QStkPStpYq andD1 “ f˚f

˚D P QStkPStpYq,
so that we have a commutative diagram

C //

��

C1

��
D // D1

in QStkPStpYq where the horizontal morphisms are compact (Lemma 10.1.7.15). Choose a
mutually surjective collection of étale morphisms uα : Yα Ñ Y, where each Yα is affine, and
consider the diagrams

QCohpY; Cq //

��

QCohpY; C1q

��
QCohpY;Dq //

��

QCohpY;D1q

��
QCohpYα;u˚αDq // QCohpYα, u˚αD1q.

We wish to show that the upper square is right adjointable. Note that each of the lower
squares are right adjointable (Proposition 10.1.7.11). Since the pullback functors u˚α :
QCohpY;Dq Ñ QCohpYα;u˚αDq are mutually conservative, it will suffice to show that the
outer rectangles are right adjointable. Equivalently, we are reduced to proving the right
adjointability of the outer rectangle in the diagram of 8-categories

QCohpY; Cq //

��

QCohpY; C1q

��
QCohpYα;u˚αq //

��

QCohpYα;u˚α C1q

��
QCohpYα;u˚αDq // QCohpYα, u˚αD1q.

Here the upper square is right adjointable by virtue of Proposition 10.1.7.11, so it will suffice
to show that the lower square is also right adjointable. In other words, to prove Proposition
10.1.7.13, we can replace Y by Yα and thereby reduce to the case where Y is affine, in which
case the desired result follows from Lemma 10.1.7.14.
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We close this section by establishing a relative version of Theorem 5.6.6.1:

Proposition 10.1.7.16. Let f : X Ñ Y be a surjective proper morphism of spectral Deligne-
Mumford stacks and let X‚ be the Čech nerve of f . For each n ě 0, let fn : Xn Ñ Y denote
the associated projection map. Assume that Y is locally Noetherian and that the structure
sheaf OY is truncated. Then, for any stable quasi-coherent stack C on Y, the pullback functors
f˚n induces an equivalence of 8-categories QCohpY; Cq Ñ Tot QCohpXn; f˚n Cq.

Proof. Let us regard X‚ as an augmented simplicial object of SpDM via the convention
X´1 “ Y. We wish to show that the augmented cosimplicial 8-category QCohpX‚; f˚n Cq
determines a limit diagram ∆` ÑyCat8. Using (the dual of) Corollary HA.4.7.5.3 , it will
suffice to verify the following:

paq The adjunction QCohpY; Cq
f˚ //QCohpX; f˚ Cq
f˚
oo is comonadic.

pbq The augmented cosimplicial 8-category QCohpX‚; f˚‚ Cq satisfies the Beck-Chevalley
condition. More precisely, for every morphism α : rms Ñ rns in ∆`, the diagram of
pullback functors

QCohpXm; f˚m Cq //

��

QCohpXm`1; f˚m`1 Cq

��
QCohpXn; f˚n Cq // QCohpXn`1; f˚n`1 Cq

is right adjointable.

Assertion pbq follows from Propositions 10.1.4.1 and 10.1.7.13. To prove paq, it will suffice (by
virtue of Theorem HA.4.7.3.5 ) to show that the functor f˚ : QCohpY; Cq Ñ QCohpX; f˚ Cq is
conservative and preserves totalizations of f˚-split cosimplicial objects of QCohpY; Cq. Both
of these assertions can be tested locally on Y. We may assume without loss of generality
that Y “ SpétR is affine. Let us abuse notation by identifying C with the corresponding
R-linear 8-category.

We proceed as in the proof of Proposition 5.6.6.4. We first show that the functor f˚

is conservative. Fix an object C P C, and suppose that f˚C P QCohpX; f˚ Cq vanishes.
E Ď ModR be the full subcategory spanned by those R-modules M such that M bR C » 0.
Let us regard QCohpX; f˚ Cq as tensored over the 8-category QCohpXq of quasi-coherent
sheaves on X (see §10.2). For each F P QCohpXq, we have ΓpX; F qbRC » f˚pF bf˚Cq » 0,
so that ΓpX; F q belongs to E . Since E is evidently a stable subcategory of ModR which is
closed under retracts, Proposition 5.6.6.3 guarantees that R P E , so that C » RbR C » 0.

Now suppose that D‚ is an f˚-split cosimplicial object of C. Let E 1 Ď ModR be the full
subcategory spanned by those R-modules M for which the tautological map f˚pTotpM bR
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C‚qq Ñ Totpf˚pM bR C
‚qq is an equivalence in QCohpX; f˚ Cq. Note that for each F P

QCohpXq, the cosimplicial object ΓpX; F qbRC‚ » ΓpX; F bf˚C‚q is split, so that ΓpX; F q
belongs to E 1. Because E 1 is a stable subcategory of ModR which is closed under retracts,
Proposition 5.6.6.3 guarantees that R P E 1, so that the canonical map f˚pTotpC‚qq Ñ
Totpf˚C‚q is an equivalence as desired.

10.2 Quasi-Coherent Stacks on Spectral Algebraic Spaces

Let X be a spectral Deligne-Mumford stack and let QCohpX; ‚q : QStkPStpXq Ñ Groth8
be the global sections functor of Construction 10.1.7.1. It follows from Remark 10.1.6.10 that
QCohpX; ‚q is a lax symmetric monoidal functor. In particular, it carries the unit object Qcn

X
to a commutative algebra object QCohpX;Qcn

X q of Groth8. Unwinding the definitions, we
see that this commutative algebra object can be identified with the 8-category QCohpXqcn

of connective quasi-coherent sheaves on X (equipped with its usual symmetric monoidal
structure). Consequently, we can promote the global sections functor QCohpX; ‚q to a
functor

QStkPStpXq » ModQcn
X
pQStkPStpXqq

QCohpX;‚q
ÝÝÝÝÝÝÑ ModQCohpX;Qcn

X q
pGroth8q

» ModQCohpXqcnpGroth8q.

We will abuse notation by denoting this functor also by C ÞÑ QCohpX; Cq. We can describe
the situation more informally as follows: for every quasi-coherent stack C on X, the 8-
category QCohpX; Cq of global sections of C is a Grothendieck prestable 8-category which is
tensored over 8-category QCohpXqcn of connective quasi-coherent sheaves on X, and the
action

b : QCohpXqcn ˆQCohpX; Cq Ñ QCohpX; Cq

preserves small colimits separately in each variable.
Our goal in this section is to show that, under some mild hypotheses on X, a prestable

quasi-coherent stack C P QStkPStpXq can be recovered from the 8-category QCohpX; Cq (as
an 8-category which is tensored over QCohpXqcn). Our main results can be formulated as
follows:

Theorem 10.2.0.1. Let X be a spectral Deligne-Mumford stack, and suppose that X is
quasi-geometric (that is, that X is quasi-compact and the diagonal map δ : X Ñ XˆX is
quasi-affine; see Definition 9.1.4.1). Then the global sections functor

QCohpX; ‚q : QStkPStpXq Ñ ModQCohpXqcnpGroth8q

is fully faithful.
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Theorem 10.2.0.2. Let X be a quasi-compact, quasi-separated spectral algebraic space.
Then the global sections functor

QCohpX; ‚q : QStkPStpXq Ñ ModQCohpXqcnpGroth8q

is an equivalence of 8-categories.

Corollary 10.2.0.3. Let f : X Ñ Y be a morphism in FunpCAlgcn, pSq which is representable
by quasi-compact, quasi-separated spectral algebraic spaces. Then the direct image functor f˚
of Proposition 10.1.4.1 induces an equivalence of 8-categories

QStkPStpXq Ñ Modf˚Qcn
X
pQStkPStpYqq.

Proof. Using Proposition 10.1.4.1, we can reduce to the case where Y is affine, in which case
the desired result reduces to Theorem 10.2.0.2.

10.2.1 Base Change Along Quasi-Affine Morphisms

In §C.4, we proved that the 8-category Groth8 of Grothendieck prestable 8-categories
admits a symmetric monoidal structure. For every spectral Deligne-Mumford stack, we can
regard the8-category QCohpXqcn as a commutative algebra object of the8-category Groth8
and study the associated 8-category of modules ModQCohpXqcnpGroth8q. However, since the
8-category Groth8 generally does not admit colimits, the study of modules in Groth8 can be
somewhat delicate. For example, it is not clear that the 8-category ModQCohpXqcnpGroth8q
inherits a symmetric monoidal structure: the standard procedure for constructing a tensor
product MbQCohpXqcn N involves forming the geometric realization of a two-sided bar
construction BarQCohpXqcnpM,N q‚, which might fail to exist.

One way to address this concern is to embed the 8-category Groth8 of Grothendieck
prestable 8-categories into some larger symmetric monoidal 8-category E which does admit
small colimits, and for which the tensor product b : E ˆ E Ñ E preserves small colimits
separately in each variable. In this case, the formation of relative tensor products

MbQCohpXqcn N » |BarQCohpXqcnpM,N q‚|

is a perfectly well-behaved operation in the larger 8-category E , and one can hope that in
good cases the resulting object is actually again a Grothendieck prestable 8-category.

There are (at least) two natural candidates for the 8-category E :

paq We can take E to be the 8-category the 8-category PrAdd » ModSpcnpPrLq of additive
presentable8-categories (see Corollary C.4.1.3), equipped with the symmetric monoidal
structure of Corollary C.4.1.4.
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pbq We can take E to be the 8-category Groth`8 of Remark ??, whose objects are pairs
pC, Cě0q where C is a presentable stable 8-category and Cě0 Ď C is a full subcategory
which is closed under small colimits and extensions. The 8-category Groth`8 can
be regarded as an enlargement of Groth8 (Remark ??) which admits small limits
and colimits (Remark C.3.1.7) and inherits a tensor product (Remark C.4.2.3) which
preserves small colimits separately in each variable (Proposition C.4.5.3).

In order to prove Theorems 10.2.0.1 and 10.2.0.2, we will need to study relative tensor
products of the form QCohcnpUqˆQCohcnpXq C, where f : U Ñ X is a quasi-affine morphism of
spectral Deligne-Mumford stacks. We now show that this construction is well-behaved if we
adopt convention pbq: that is, if we form the relative tensor product QCohcnpUqˆQCohcnpXqN
in the8-category Groth`8, then it belongs to the essential image of the fully faithful embedding
Groth8 ãÑ Groth`8 (Proposition 10.2.1.3). Beware that this is a priori different from the
relative tensor product in the 8-category PrAdd of presentable additive 8-categories: see
Warnings 10.2.5.4 and 10.2.1.5. However, we will see later that there is no difference when X
is a quasi-compact algebraic space with affine diagonal (Proposition 10.2.6.7).

Construction 10.2.1.1. Let f : U Ñ X be a quasi-affine morphism of spectral Deligne-
Mumford stacks and let C be a Grothendieck prestable 8-category equipped with an action
of QCohpXqcn (which we view as a commutative algebra object of the 8-category Groth8).
Then the stable 8-category SppCq inherits an action of the 8-category QCohpXq (viewed as
a commutative algebra object in the 8-category PrSt of presentable stable 8-categories).

Set A “ f˚OU P CAlgpQCohpXqq, let LModA pSppCqq denote the 8-category of A -
module objects of SppCq, and let LModA pSppCqqě0 be the smallest full subcategory of
LModA pSppCqq which contains the essential image of the composite functor

ρ : C Σ8
ÝÝÑ SppCq A b

ÝÝÑ LModA pSppCqq

and is closed under small colimits and extensions. Using Proposition HA.1.4.4.11 , we deduce
that the stable 8-category LModA pSppCqq admits an accessible t-structure

pLModA pSppCqqě0,LModA pSppCqqď0q.

Note that an object X P LModA pSppCqq belongs to LModA pSppCqqď0 if and only if the
abelian groups

ExtnLModA pSppCqqpρpCq, Xq » ExtnSppCqpΣ
8C,Xq

vanish for n ă 0: that is, if and only if the image of X in SppCq belongs to SppCqď0.
Since the forgetful functor θ : LModA pSppCqq Ñ SppCq commutes with filtered colim-
its and the t-structure on SppCq is compatible with filtered colimits, it follows that the
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t-structure pLModA pSppCqqě0,LModA pSppCqqď0q is also compatible with filtered colim-
its. In particular, LModA pSppCqqě0 is a Grothendieck prestable 8-category. Moreover,
the intersection

Ş

ně0 LModA pSppCqqď´n is the inverse image under θ of the intersec-
tion

Ş

ně0 SppCqď´n. Since the t-structure on SppCq is right complete and the functor
θ is conservative, it follows that the intersection

Ş

ně0 LModA pSppCqqď´n consists only
of zero object of LModA pSppCqq. Applying Proposition HA.1.2.1.19 , we deduce that
the t-structure pLModA pSppCqqě0,LModA pSppCqqď0q is right complete: that is, we can
identify LModA pSppCqq with the stabilization of the Grothendieck prestable 8-category
LModA pSppCqq.

Warning 10.2.1.2. In the situation of Construction 10.2.1.1, the full subcategory

LModA pSppCqqď0 Ď LModA pSppCqq

is the inverse image of SppCqď0 under the forgetful functor θ : LModA pSppCqq Ñ SppCq.
However, it is usually not true that we can identify LModA pSppCqqě0 with the inverse
image of SppCqě0 under the functor θ. In general, this holds only when the algebra object
A P QCohpXq is connective: that is, when the morphism f : U Ñ X is assumed to be affine.

Proposition 10.2.1.3. Let f : U Ñ X be a quasi-affine map and let C be a Grothendieck
prestable 8-category equipped with an action of QCohpXqcn. Then:

paq The pair pLModA pSppCqq,LModA pSppCqqě0q appearing Construction 10.2.1.1 can be
identified with the relative tensor product

pQCohpUq,QCohpUqcnq bpQCohpXq,QCohpXqcnq pSppCq,SppCqě0q

in the 8-category Groth`8.

pbq The Grothendieck prestable 8-category LModA pSppCqqě0 appearing in Construc-
tion 10.2.1.1 can be identified with the geometric of the two-sided bar construction
BarQCohpXqcnpQCohpUqcn, Cq in the 8-category Groth8; moreover, this geometric re-
alization is preserved by the fully faithful embedding Groth8 ãÑ Groth`8 of Remark
??.

Remark 10.2.1.4 (Relative Tensor Products in Groth`8). Let Groth`8 be the 8-category
introduced in Remark ??, equipped with the symmetric monoidal structure described in
Remark C.4.2.3. Suppose that pC, Cě0q is an algebra object of Groth`8, and let pM,Mě0q

and pN ,Ně0q be right and left modules over pC, Cě0q, respectively. More concretely, this
means that we have the following data:

paq A presentable stable 8-category C equipped with a monoidal structure m : Cˆ C Ñ C
which preserves small colimits separately in each variable.
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pbq A presentable stable 8-categoryM which is right-tensored over C for which the action
a :Mˆ C ÑM preserves small colimits separately in each variable.

pcq A presentable stable 8-category N which is left-tensored over C for which the action
map a1 : CˆN Ñ N preserves small colimits separately in each variable.

pdq Full subcategories
Mě0 ĎM Cě0 Ď C Ně0 Ď N

which are closed under colimits and extensions and satisfy

1C P Cě0 mpCě0ˆ Cě0q Ď Cě0

apMě0ˆ Cě0q ĎMě0 a1pCě0ˆNě0q Ď Ně0 .

Since the 8-category Groth`8 admits small colimits and the tensor product on Groth`8
preserves small colimits separately in each variable, the relative tensor product

pM,Mě0q bpC,Cě0q pN ,Ně0q

is well-defined, given by the geometric realization (as an object of the 8-category Groth`8) of
the two-sided bar construction BarpC,Cě0qppM,Mě0q, pN ,Ně0qq‚. Unwinding the definitions,
we see that this relative tensor product is given by the pair pMbC N , Eq, where the relative
tensor product MbC N is computed in the 8-category PrSt of presentable stable 8-
categories and E ĎMbC N is the smallest full subcategory which is closed under colimits
and extensions and contains the essential image of the composite map

Mě0ˆNě0 ÑMˆN ÑMbN ÑMbC N .

Proof of Proposition 10.2.1.3. Because f is quasi-affine, the pushforward functor f˚ induces
an equivalence of 8-categories QCohpUq » ModA pQCohpXqq (Corollary ??). Applying
Theorem HA.4.8.4.6 , we can identify the 8-category LModA pSppCqq with the tensor product

QCohpUq bQCohpXq SppCq

in the8-category PrSt of presentable stable8-categories. By virtue of Remark 10.2.1.4, it re-
mains only to prove that LModA pSppCqqě0 is the smallest full subcategory of LModA pSppCqq
which is closed under colimits and extensions and contains the essential image of the functor

ψ : QCohpUqcn ˆ C Ñ QCohpUq b SppCq Ñ LModA pSppCqq.

Here the only nontrivial point is to show that the functor ψ factors through LModA pSppCqqě0.
Fix an object C P C, and let QCoh1pUq be the full subcategory of QCohpUqcn spanned by those
sheaves F for which ψpF , Cq belongs to LModA pSppCqqě0. Then QCoh1pUq is closed under
colimits and extensions and contains the essential image of the functor f˚|QCohpXqcn . Since
f is quasi-affine, Corollary 2.5.6.3 guarantees that QCoh1pUq “ QCohpUqcn, as desired.
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Warning 10.2.1.5. Proposition 10.2.1.3 does not assert that the8-category LModA pSppCqqě0
is a geometric realization of the bar construction BarQCohpXqcnpQCohpUqcn, Cq in the 8-
category PrL of presentable stable 8-categories.

Remark 10.2.1.6. In the situation of Proposition 10.2.1.3, the pullback map f˚ : QCohpXqcn Ñ

QCohpUqcn induces a functor F : C Ñ QCohpUqcn bQCohpXqcn C which admits a right adjoint
G : QCohpUqcn bQCohpXqcn C Ñ C. We claim that G does not annihilate any nonzero objects
of QCohpUqcn bQCohpXqcn C. To prove this, we let LModA pSppCqq be as in Construction
10.2.1.1, so that we have a commutative diagram

LModA pSppCqq //

τě0

��

SppCq

Ω8
����

QCohpUqcn bQCohpXqcn C G // C .

Any object X of the tensor product QCohpUqcn bQCohpXqcn C satisfying GX » 0 can be
identified with an object X P LModA pSppCqqě0 which is annihilated by the composite
functor LModA pSppCqq Ñ SppCq Ω8

ÝÝÑ C. It follows that we can identify X with a left A -
module object of the subcategory SppCqď´1 Ď SppCq, so that X belongs to the intersection
LModA pSppCqqě0 X LModA pSppCqqď´1 and is therefore a zero object.

Example 10.2.1.7 (Pullback Diagrams). Suppose we are given a diagram of spectral
Deligne-Mumford stacks σ :

U1

f 1

��

// U
f
��

X1 // X
where the morphism f is quasi-affine. Proposition 10.2.1.3 guarantees the existence of
a relative tensor product QCohpUqcn bQCohpXqcn QCohpX1qcn in the 8-category Groth8 of
Grothendieck prestable 8-categories, and the diagram σ determines a colimit-preserving
functor

F : QCohpUqcn bQCohpXqcn QCohpX1qcn Ñ QCohpU1qcn.

If σ is a pullback diagram, then F is an equivalence. To prove this, it suffices to verify
conditions paq and pbq of Remark C.3.1.8:

paq The induced functor of stable 8-categories QCohpUq bQCohpXq QCohpX1q Ñ QCohpU1q
is an equivalence; this is a special case of Corollary 6.3.4.7.

pbq The right adjoint to F does not annihilate any nonzero objects of QCohpU1qcn. By
virtue of Remark 10.2.1.6, this is equivalent to the assertion that the pullback functor
f 1˚ : QCohpX1qcn Ñ QCohpU1qcn admits a right adjoint which does not annihilate any
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nonzero objects of QCohpU1qcn. Note that the right adjoint to f 1˚ is given by the
construction F ÞÑ τě0f

1
˚F , which annihilates an object F P QCohpU1qcn if and only

if the pushforward f 1˚F belongs to QCohpX1qď´1. Since f 1 is quasi-affine, this implies
that F belongs to QCohpU1qď´1 (Proposition 2.5.6.2), so that F » 0.

10.2.2 Compatibility with Inverse Limits

We next show that, under mild hypotheses, the relative tensor product of Proposition
10.2.1.3 is compatible with the formation of inverse limits.

Notation 10.2.2.1. Let X be a spectral Deligne-Mumford stack. We let Modlex
QCohpXqcnpGroth8q

denote the fiber product ModQCohpXqcnpGroth8q ˆGroth8 Grothlex
8 . More concretely, the ob-

jects of the 8-category Modlex
QCohpXqcnpGroth8q are Grothendieck prestable 8-categories

equipped with an action of QCohpXqcn, and the morphisms in Modlex
QCohpXqcnpGroth8q are

QCohpXqcn-linear functors which preserve small colimits and finite limits.

Remark 10.2.2.2. According to Proposition C.3.2.4, the 8-category Grothlex
8 admits

small limits which are preserved by the inclusion functor Grothlex
8 ãÑ Groth8. Combin-

ing this observation with Corollary HA.4.2.3.3 , we deduce that Modlex
QCohpXqcnpGroth8q

admits small limits, which are preserved by the inclusion functor Modlex
QCohpXqcnpGroth8q ãÑ

ModQCohpXqcnpGroth8q and also by the forgetful functor Modlex
QCohpXqcnpGroth8q Ñ Grothlex

8 Ď

Groth8.

Proposition 10.2.2.3. Let q : U Ñ X be a quasi-affine morphism between spectral Deligne-
Mumford stacks. Then:

p1q The tensor product construction C ÞÑ QCohpUqcn bQCohpXqcn C of Proposition 10.2.1.3
carries left exact morphisms in ModQCohpXqcnpGroth8q to left exact morphisms in
ModQCohpUqcnpGroth8q.

p2q The associated functor Modlex
QCohpXqcnpGroth8q Ñ Modlex

QCohpUqcnpGroth8q preserves
small limits.

Proof. We first prove p1q. Let f : C Ñ D be a left exact morphism between QCohpXqcn-
module objects of Groth8; we wish to show that the induced map

fU : QCohpUqcn bQCohpXqcn C Ñ QCohpUqcn bQCohpXqcn D

is also left exact. Let F : SppCq Ñ SppDq be the map of stable 8-categories determined
by f , which we regard as a morphism of QCohpXq-module objects of PrSt. Let A P

CAlgpQCohpXqq denote the direct image of the structure sheaf of U. Proposition 10.2.1.3
shows that we can identify the induced map FU : LModA pSppCqq Ñ LModA pSppDqq with
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the stabilization of the functor fU. To prove that fU is left exact, it will suffice to show that
the functor FU is left t-exact (Proposition C.3.2.1). Invoking the definition of the t-structure
on LModA pSppDqq (see Construction 10.2.1.1), we wish to prove that the composite functor

LModA pSppCqqď0 Ď LModA pSppCqq FU
Ñ LModA pSppDqq Ñ SppDq

factors through the full subcategory SppDqď0 Ď SppDq. This follows immediately from the
left exactness of F and the commutativity of the diagram

LModA pSppCqq FU //

��

LModA pSppDqq

��
SppCq F // SppDq.

We now prove p2q. Note that we have a commutative diagram of 8-categories

Modlex
QCohpXqcnpGroth8q //

QCohpUqcnbQCohpXqcn‚
��

ModQCohpXqpPrStq

QCohpUqbQCohpXq‚

��
Grothlex

8
// PrSt

where the horizontal maps are given by stabilization. We wish to show that the left vertical
map preserves small limits (this is equivalent to assertion p2q, since the forgetful functor
Modlex

QCohpUqcnpGroth8q Ñ Grothlex
8 is conservative and preserves small limits). Note that the

horizontal maps preserve small limits (Corollary C.3.2.5). Moreover, the right vertical map
preserves small limits: this follows from the fact that QCohpUq can be identified with the
module 8-category ModA pQCohpXqq (Corollary ??) and is therefore dualizable (in fact,
self-dual) when viewed as a QCohpXq-module object of PrSt.

Let tCαu be a small diagram in Modlex
QCohpXqcnpGroth8q having a limit C; we wish to prove

that the canonical map

θ : QCohpUqcn bQCohpXqcn C Ñ lim
ÐÝ
α

QCohpUqcn bQCohpXqcn Cα

is an equivalence of Grothendieck prestable8-categories. It follows from the above arguments
that θ induces an equivalence after passing to the stabilization of both sides: more concretely,
the stabilization of both sides can be identified with the 8-category LModA pSppCqq. To
complete the proof that θ is an equivalence, it suffices to show that the domain and codomain
of θ determine the same t-structure on the stable 8-category LModA pSppCqq. This follows
immediately from the construction: either t-structure can be characterized by the observation
that an object C of LModA pSppCqq belongs to LModA pSppCqqď0 if and only if, for each
index α, the image of C under the composite functor LModA pSppCqq Ñ SppCq Ñ SppCαq
belongs to the subcategory SppCαqď0 Ď SppCαq.
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10.2.3 Excision for QCohpXqcn-Modules

Let X be a spectral Deligne-Mumford stack. It follows from Remark 10.1.2.9 that the
theory of prestable quasi-coherent stacks on X satisfies descent for the étale topology, and
therefore also with respect to the Nisnevich topology. In particular, it we are given an
excision square

U1 //

��

X1

��
U // X

(see Variant 2.5.2.3), then a prestable quasi-coherent stack on X can be recovered from by
its restriction to X1 and U, together with an identification of their restrictions to U1. The
main step in our proof of Theorem 10.2.0.2 is to show that, under some mild assumptions,
the theory of QCohpXqcn-module objects of Groth8 has the same property.

Proposition 10.2.3.1. Let X be a quasi-compact, quasi-separated spectral algebraic space
and suppose we are given an excision square

U1 //

��

X1

f
��

U j // X

where the morphism j is a quasi-compact open immersion and the morphism f is étale
and quasi-affine. Let C be a Grothendieck prestable 8-category equipped with an action of
QCohpXqcn. Then the associated diagram σ:

QCohpU1qcn bQCohpXqcn C QCohpX1qcn bQCohpXqcn Coo

QCohpUqcn bQCohpXqcn C

OO

C

OO

oo

is a pullback square in the 8-category Grothlex
8 (hence also in the 8-category Groth8).

The proof of Proposition 10.2.3.1 will require some preliminaries.

Lemma 10.2.3.2. Let X be a quasi-compact, quasi-separated spectral algebraic space and
let C be a Grothendieck prestable 8-category equipped with an action of QCohpXqcn, so that
the presentable stable 8-category SppCq inherits an action of QCohpXq. Let F P QCohpXq
be a quasi-coherent sheaf having Tor-amplitude ď 0. Then the functor

pF b‚q : SppCq Ñ SppCq

is left t-exact.
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Proof. Let C be an object of SppCqď0; we wish to show that F bC also belongs to SppCqď0.
Using Proposition 9.6.7.1, we can write F as the colimit of a filtered diagram tFαu, where
each Fα is perfect and of Tor-amplitude ď 0. The assumption that the prestable 8-category
C is Grothendieck guarantees that SppCqď0 is closed under filtered colimits in SppCq; it
will therefore suffice to show that each tensor product FαbC belongs to SppCqď0. This is
equivalent to the assertion that the groups ExtnSppCqpD,FαbCq vanish for each D P SppCqě0
and each n ă 0. Since Fα is perfect, it admits a dual F_

α in the symmetric monoidal 8-
category QCohpXq. We are therefore reduced to proving that the groups ExtnSppCqpF

_
α bD,Cq

vanish for n ă 0. Because C is assumed to belong to SppCqď0, we are reduced to proving
that F_

α bD belongs to SppCqě0. This follows from the commutativity of the diagram

QCohpXqcn ˆ C b //

idˆΣ8
��

C

Σ8
��

QCohpXq ˆ SppCqb // SppCq,

since the assumption that Fα has Tor-amplitude ď 0 is equivalent to the statement that
F_

α is connective.

Lemma 10.2.3.3. Let f : U Ñ X be a flat quasi-affine morphism between quasi-compact,
quasi-separated spectral algebraic spaces and let C be a Grothendieck prestable 8-category
equipped with an action of QStkPStpXqcn. Then the induced map C Ñ QCohpUqcnbQCohpXqcnC
is left exact.

Proof. Let A P CAlgpQCohpXqq denote the direct image under f of the structure sheaf of
U. Using the description of QCohpUqcn bQCohpXqcn C supplied by Proposition 10.2.1.3 and
the criterion of Proposition C.3.2.1, we are reduced to showing that the functor

pA b‚q : SppCq Ñ LModA pSppCqq

is left t-exact. Here LModA pSppCqq is equipped with the t-structure appearing in the proof of
Construction 10.2.1.1, so that the forgetful functor LModA pSppCqq Ñ SppCq is conservative
and left t-exact. It will therefore suffice to show that the formation of tensor product with A

determines a left t-exact functor from SppCq to itself. By virtue of Lemma 10.2.3.2, we are
reduced to proving that the quasi-coherent sheaf A has Tor-amplitude ď 0. This assertion
can be tested locally on X, so we may assume without loss of generality that X » SpétR
is affine. In this case, we can identify A with a (nonconnective) E8-algebra A over R,
and the assertion that A has Tor-amplitude ď 0 is equivalent to the requirement that the
construction M ÞÑ A bRM determines a left t-exact functor from the 8-category ModR
to itself. Under the identification ModR » QCohpXq, we can identify this functor which
the composition f˚f

˚. We conclude by observing that the functors f˚ and f˚ are both left
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t-exact: in the first case, this is automatic; in the second it follows from our assumption
that f is flat.

Proof of Proposition 10.2.3.1. It follows from Lemma 10.2.3.3 that each of the functors
which appear in the diagram σ:

QCohpU1qcn bQCohpXqcn C QCohpX1qcn bQCohpXqcn Coo

QCohpUqcn bQCohpXqcn C

OO

C

OO

oo

are left exact.
Consequently, the diagram

QCohpX1qcn bQCohpXqcn C Ñ QCohpU1qcn bQCohpXqcn C Ð QCohpUqcn bQCohpXqcn C

admits a limit D in the 8-category Grothlex
8 , and the diagram σ determines a left exact,

colimit-preserving functor C Ñ D which we can identify (using Propositions C.3.1.1 and
C.3.2.1) with a t-exact functor from SppCq to SppDq. To complete the proof, it will suffice to
show that this functor is an equivalence: that is, that the image of σ under the stabilization
functor Grothlex

8 Ñ PrSt is a pullback diagram of stable 8-categories.
Let A P QCohpXq denote the direct image of the structure sheaf of X1 and let B P

QCohpXq denote the direct image of the structure sheaf of U. Then A and B are commutative
algebra objects of QCohpXq whose tensor product A bB is the direct image of the structure
sheaf of U1. The proof of Proposition ?? shows that we can identify the image of σ under
the stabilization functor with the diagram of stable 8-categories

LModA bBpSppCqq LModA pSppCqqBboo

LModBpSppCqq

A b

OO

SppCq.

A b

OO

Bboo

To prove that this diagram is a pullback square, we wish to show that the canonical map

u : SppCq Ñ LModA pSppCqq ˆLModA bBpSppCqq LModBpSppCqq

is an equivalence of 8-categories. Let us identify objects of the codomain of u with triples
pM,N, βq where M is a left A -module objects of SppCq, N is a left B-module object of
SppCq, and β : BbM » A bN is an equivalence of left A bB-module objects of SppCq.
Then the functor u admits a right adjoint v, given on objects by the formula

vpM,N, βq “M ˆBbM N.
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We first show that u is fully faithful by establishing that the unit map claim that the unit
map idSppCq Ñ v ˝ u is an equivalence of functors from SppCq to itself. For this, it suffices to
show that for each object C P SppCq, the diagram

C //

��

A bC

��
BbC // A bBbC

is a pullback diagram in SppCq. Since SppCq is stable, it suffices to show that this diagram is
a pushout square. Since the action QCohpXq on SppCq preserves colimits in each variable,
we are reduced to proving that the diagram

OX //

��

A

��
B // A bB,

is a pushout square in the 8-category QCohpXq. Using stability again, we are reduced to
proving that this diagram is a pullback square. This follows from our assumption that σ is
a pushout diagram (in the 8-category of spectral Deligne-Mumford stacks which are étale
over X).

To complete the proof that the functor u is an equivalence, it will suffice to show that
the functor v is conservative. Suppose we are given an object

pM,N, βq P LModA pSppCqq ˆLModA bBpSppCqq LModBpSppCqq

satisfying gpM,N, βq » 0. Since j is an open immersion, the commutative algebra object
B P QCohpXq is idempotent. It follows that the canonical map M Ñ BbM becomes an
equivalence after tensoring with B, so that the projection map gpM,N, βq Ñ N becomes
an equivalence after tensoring with B. Since N is a B-module, we deduce that

N » BbN » BbgpM,N, βq » Bb0 » 0.

It follows that BbM » A bN » 0, so that the projection map gpM,N, βq Ñ M is an
equivalence. Since gpM,N, βq » 0, we deduce that M » 0, so that pM,N, βq is a zero object
of the 8-category LModA pSppCqq ˆLModA bBpSppCqq LModBpSppCqq.

10.2.4 Proofs of Theorems 10.2.0.1 and 10.2.0.2

Let X be a spectral Deligne-Mumford stack, and suppose that the diagonal δ : X Ñ XˆX
is quasi-affine. To prove Theorem 10.2.0.1, we must show that every prestable quasi-coherent
stack C P QStkPStpCq can be recovered from the 8-category QCohpX; Cq: in other words,
that the “global sections” of C determine its “local sections.”
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Construction 10.2.4.1. Let X be a spectral Deligne-Mumford stack and let C be a quasi-
coherent stack on X. Then we can regard QCohpX; Cq as a module over QCohpXqcn in the
8-category Groth8. This construction depends functorially on X: if f : U Ñ X is a morphism
of spectral Deligne-Mumford stacks, then the unit map

QCohpX; Cq Ñ QCohpX; f˚f˚ Cq » QCohpU; f˚ Cq

can be regarded as morphism of QCohpXqcn-module objects of Groth8. In the special
case where f is quasi-affine, Proposition 10.2.1.3 allows us to “extend scalars” to obtain a
morphism

θ : QCohpUqcn bQCohpXqcn QCohpX; Cq Ñ QCohpU; f˚ Cq

of QCohpUqcn-module objects of Groth8.

Proposition 10.2.4.2. Let f : U Ñ X be a quasi-affine morphism of spectral Deligne-
Mumford stacks and let C P QStkPStpXq. Then the map

θC : QCohpUqcn bQCohpXqcn QCohpX; Cq Ñ QCohpU; f˚ Cq

of Construction 10.2.4.1 is an equivalence of Grothendieck prestable 8-categories.

Proof. Write X “ pX ,OX q. For each object V P X , set XV “ pX {V ,OX |V q, let gV : XV Ñ X
be the projection map, and let CV P QStkPStpXq be the quasi-coherent stack given by
gV ˚g

˚
V C. Let us say that an object V P X is good if the map θCV is an equivalence of

Grothendieck prestable 8-categories. To prove Proposition 10.2.4.2, it will suffice to show
that the final object of X is good. In fact, we will prove something stronger: every object of
X is good.

Note that the construction V ÞÑ CV determines a functor X op Ñ QStklexpXq which
preserves small limits. Combining this observation with Propositions 10.2.2.3 and 10.1.3.4,
we deduce that the constructions

V ÞÑ QCohpUqcn bQCohpXqcn QCohpX; CV q V ÞÑ QCohpU; f˚ CV q

carry colimits in X to limits in Grothlex
8 . Consequently, the collection of those objects

V P X for which θCV is an equivalence is closed under small colimits. Since X is generated
under small colimits by the collection of affine objects of X (Lemma ??), we are reduced to
proving that every affine object V P X is good. Let UV denote the fiber product XV ˆX U,
and note that UV is quasi-affine (since it admits a quasi-affine map to the affine spectral
Deligne-Mumford stack XV ). Using Example 10.2.1.7, we can identify the domain of the
functor θCV with the relative tensor product

QCohpUV qcn bQCohpXV qcn QCohpX; CV q » QCohpUV qcn bQCohpXV qcn QCohpXV ; g˚V Cq.
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Using Proposition 10.1.4.1, we can identify the codomain of θCV with the 8-category
QCohpUV ; f˚V g˚V Cq, where fV : UV Ñ XV is the projection onto the first factor. We may
therefore replace X by XV , the morphism f by fV , and the quasi-coherent stack C by its
pullback g˚V C and thereby reduce to the case where X is affine.

Since U is quasi-affine, we can cover U by finitely many affine open substacks U1, . . . ,Un Ď
U. We now proceed by induction on n. If n “ 1, then U and X are both affine and the
desired result follows immediately from the definitions. If n ą 1, we let V be open substack
of U given by the union of tUiu2ďiďn. Applying Proposition 10.2.3.1 to the diagram

VˆU U1 //

��

U1

��
V // U,

we deduce that the morphism θU can be identified with the fiber product of θV with θU1

over θVˆU U1 (as objects of the 8-category Funp∆1,Groth8q). Our inductive hypothesis
guarantees that the morphisms θV, θU1 , and θVˆU U1 are equivalences, so that θU is an
equivalence as well.

Construction 10.2.4.3. Let X be a spectral Deligne-Mumford stack and suppose that
the diagonal δ : X Ñ XˆX is quasi-affine. Let C be a Grothendieck prestable 8-category
equipped with an action of QCohpXqcn. If A is a connective E8-ring, then any map
η : SpétA Ñ X is quasi-affine. Define Cη “ Modcn

A bQCohpXqcn C, where the relative tensor
product is formed in the 8-category Groth8 (the existence of this tensor product follows
from Proposition ??). It is not difficult to see that the construction η ÞÑ Cη determines a
quasi-coherent stack on X, which we will denote by ΨXpCq. The construction C ÞÑ ΨXpCq
determines a functor

ΨX : ModQCohpXqcnpGroth8q Ñ QStkPStpXq.

If q : X Ñ SpétS is the projection map, then the functor ΨX can be described more
informally by the formula ΨXpCq “ q˚ Cbq˚q˚Qcn

X
Qcn

X . From this description, it is not hard
to see that ΨX is a left adjoint to the global sections functor QCohpX; ‚q : QStkPStpXq Ñ
ModQCohpXqcnpGroth8q.

Proof of Theorem 10.2.0.1. Let X be a quasi-geometric spectral Deligne-Mumford stack
and let C be a prestable quasi-coherent stack on X; we wish to show that the counit map
v : ΨX QCohpX; Cq Ñ C is an equivalence in QStkPStpXq. To prove this, it will suffice to
show that for every map of spectral Deligne-Mumford stacks η : U Ñ X where U » SpétA is
affine, the pullback

η˚pvq : QCohpUqcn bQCohpXqcn QCohpX; Cq Ñ QCohpU; η˚ Cq “ Cη
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is an equivalence of prestable A-linear 8-categories. This is a special case of Proposition
10.2.4.2, since our assumption that X is quasi-geometric guarantees that the map η is
quasi-affine.

Proof of Theorem 10.2.0.2. Let X be a quasi-compact, quasi-separated spectral algebraic
space; we wish to show that the global sections functor

QCohpX; ‚q : QStkPStpXq Ñ ModQCohpXqcnpGroth8q

is an equivalence of 8-categories. Since X is quasi-geometric, Theorem 10.2.0.1 guarantees
that the functor QCohpX; ‚q is fully faithful. To complete the proof, it will suffice to show
that the left adjoint ΨX : ModQCohpXqcnpGroth8q Ñ QStkPStpXq is conservative.

Write X “ pX ,OXq. For each object U P X , set XU “ pX {U ,OX |U q. Let us say that an
object U P X is good if it satisfies the following conditions:

paq The spectral Deligne-Mumford stack XU is a quasi-compact, quasi-separated spectral
algebraic space.

pbq The functor ΨXU : ModQCohpXU qcnpGroth8q Ñ QStkPStpXU q is conservative.

We wish to show that the final object of X is good. Since X admits a scallop decomposition
(Theorem 3.4.2.1), it will suffice to show that the collection of good objects of X satisfies the
hypotheses of Proposition 2.5.3.5. This follows immediately from Proposition 10.2.3.1.

Remark 10.2.4.4. Let X be a spectral Deligne-Mumford stack which is weakly perfect
(Definition 9.4.3.3). If C is a compactly generated stable 8-category equipped with an action
of QCohpXq, then C is dualizable as an object of PrSt and therefore also as an object of
ModQCohpXqpPrStq (Corollary ??). so that the construction D ÞÑ DbQCohpXq C commutes
with small limits. In particular, the unit

C » QCohpXq bQCohpXq C
» p lim

ÐÝ
η:SpétAÑX

ModAq bQCohpXq C

Ñ lim
ÐÝ

η:SpétAÑX
pModAbQCohpXq Cq

» lim
ÐÝ

η:SpétAÑX
pModcn

A bQCohpXqcn Cq

» QCohpX; ΨX Cq.

is an equivalence, where ΨX : ModQCohpXqcnpGroth8q Ñ QStkPStpXq is as in Construction
10.2.4.3. It follows that C belongs to the essential image of the fully faithful embedding

QCohpX; ‚q : QStkPStpXq Ñ ModQCohpXqcnpGroth8q

of Theorem 10.2.0.1.
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10.2.5 Digression: Relative Tensor Products in Groth8
Let X be a quasi-compact, quasi-separated spectral algebraic space. For applications, it

will be useful to know that the equivalence QCohpX; ‚q : QStkPStpXq Ñ ModQCohpXqcnpGroth8q
of Theorem 10.2.0.2 is compatible with tensor products. This requires a bit of care: as we
discussed in §10.2.1, it is not a priori clear that the tensor product of of QCohpXqcn-modules
is well-defined. However, it is well-defined in the case of interest to us, by virtue of the
following:

Proposition 10.2.5.1. Let C be a monoidal 8-category which satisfies the following condi-
tions:

paq The underlying 8-category C is a compactly generated Grothendieck prestable 8-
category.

pbq The unit object 1 P C is compact.

pcq The tensor product b : Cˆ C Ñ C preserves small colimits separately in each variable,
so that we can view C as an algebra object of the 8-category Groth8.

pdq For every compact object C P C, the image Σ8C P SppCq is dualizable.

Then:

p1q The monoidal structure on C exhibits C as an algebra object of the subcategory Grothc
8 Ď

Groth8 of Definition C.3.4.2. In other words, the multiplication and unit maps

Cb C Ñ C Spcn Ñ C

admit right adjoints which commute with filtered colimits.

p2q Let N be a left C-module object of Groth8. Then N is also a left C-module object of
Grothc

8. In other words, the action map a : CbN Ñ N admits a right adjoint which
commutes with filtered colimits.

p3q Let M and N be Grothendieck prestable 8-categories equipped with right and left
actions of the monoidal 8-category C, and suppose that the action maps

Mˆ C ÑM CˆN Ñ N

preserve small colimits separately in each variable. Then there exists a relative tensor
product MbC N in the 8-category Groth8 of Grothendieck prestable 8-categories. In
other words, the two-sided bar construction BarCpM,N q‚ of Construction HA.4.4.2.7
admits a geometric realization in the 8-category Groth8. Moreover, this geometric
realization is preserved by the (symmetric monoidal) embedding Groth8 ãÑ Groth`8 of
Remark ??.
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Remark 10.2.5.2. Let C be a monoidal 8-category satisfying conditions paq through pdq of
Proposition 10.2.5.1. Then an object C P C is compact if and only if Σ8pCq is a dualizable
object of SppCq. The “only if” direction follows from pdq. Conversely, if Σ8pCq is dualizable,
then the construction

D ÞÑ MapCpC,Dq

» MapSppCqpΣ8C,Σ8Dq
» MapSppCqpΣ81, pΣ8Cq_ b Σ8Dq
» MapCp1,Ω8ppΣ8Cq_ b Σ8Dq

commutes with filtered colimits, since the constructions

D ÞÑ Σ8D X ÞÑ pΣ8Cq_ bX

Y ÞÑ Ω8Y Z ÞÑ MapCp1, Zq

individually commute with filtered colimits; it follows that C P C is compact.

Example 10.2.5.3. Let X be a quasi-compact, quasi-separated spectral algebraic space. It
follows from Proposition 9.6.1.2 that the 8-category QCohpXqcn is compactly generated and
that an object F P QCohpXqcn is compact if and only if it is perfect: that is, if and only if it
is dualizable as an object in the larger 8-category QCohpXq. Consequently, the symmetric
monoidal 8-category QCohpXqcn satisfies conditions paq through pdq of Proposition 10.2.5.1.

Warning 10.2.5.4. Proposition 10.2.5.1 is closely related to Proposition D.2.2.1. If R
is a connective E2-ring, then the monoidal 8-category LModcn

R satisfies hypotheses paq
through pdq of Proposition 10.2.5.1. Consequently Proposition 10.2.5.1 asserts that if M
and N are Grothendieck prestable 8-categories equipped with right and left actions of
LModcn

R respectively, then there exists a relative tensor product N bLModcn
R
M in the 8-

category Groth8 of Grothendieck prestable 8-categories. This special case of assertion p3q of
Proposition 10.2.5.1 is a formal consequence of Proposition D.2.2.1 (moreover, the analogous
special cases of assertions p1q and p2q appear in our proof of Proposition D.2.2.1). However,
the assertion of Proposition D.2.2.1 is stronger: it guarantees not only the existence of
the relative tensor product MbLModcn

R
N in the 8-category Groth8, but that this tensor

product coincides with the analogous construction in larger 8-category PrL of presentable 8-
categories. For example, this implies that the tensor productMbLModcn

R
N is generated under

small colimits by the essential image of the multiplication map MˆN ÑMbLModcn
R
N .

In the situation of Proposition 10.2.5.1, we do not know if relative tensor product
MbC N is generated under small colimits by the essential image of the multiplication
map m :MˆN ÑMbC N . However assertion that the geometric realization of the bar
construction BarCpM,N q‚ is preserved by the embedding Groth8 ãÑ Groth`8 gives a slightly
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weaker statement: the 8-categoryMbC N is generated under small colimits and extensions
by the essential image of the functor m.

We will later see that this unpleasant phenomenon does not occur in the special case
C “ QCohpXqcn, where X is a quasi-compact spectral algebraic space with affine diagonal;
see Proposition 10.2.6.7.

Proof of Proposition 10.2.5.1. We first prove p2q. Let C be a monoidal 8-category satisfying
conditions paq through pdq and let N be a Grothendieck prestable 8-category equipped
with a left action of C. Since C is compactly generated, we can identify C with IndpC0q,
where C0 is the full subcategory of C spanned by the compact objects. Using Proposition
HA.4.8.1.17 , we can identify the tensor product CbN (formed in the 8-category PrL of
presentable 8-categories) with the 8-category RFunpCop,N q » FunlexpCop

0 ,N q of left exact
functors from Cop

0 to N . Since N is a Grothendieck prestable 8-category, the 8-category
FunlexpCop

0 ,N q is closed under filtered colimits in the ambient 8-category FunpCop
0 ,N q: in

other words, filtered colimits in FunlexpCop
0 ,N q can be computed pointwise. The right adjoint

to the action map CbN Ñ N determines a functor λ : N Ñ FunlexpCop
0 ,N q. For each

compact object C P C, let λC : N Ñ N denote the composition of λ with the functor
FunlexpCop

0 ,N q Ñ N given by evaluation at C. We wish to show that each of the functors
λC commutes with filtered colimits. Unwinding the definitions, we see that λC can be
identified with the right adjoint of the functor given by tensoring with the object C. Let us
regard the stable 8-category SppN q as equipped with a left action of SppCq. By virtue of
assumption pdq, the object Σ8C P SppCq admits a dual pΣ8Cq_. Using the prestability of
N , we compute

MapN pN,λCpN
1qq » MapN pC bN,N

1q

» MapSppN qpΣ8C b Σ8N,Σ8N 1q
» MapSppN qpΣ8N, pΣ8Cq_ b Σ8N 1q
» MapN pN,Ω8ppΣ8Cq_ b Σ8N 1qq.

It follows that we can identify λC with the composition of functors

N Σ8
ÝÝÑ SppN q pΣ

8Cq_b
ÝÝÝÝÝÝÑ SppN q Ω8

ÝÝÑ N ,

each of which commutes with filtered colimits, so that λC commutes with filtered colimits
as desired. This completes the proof of p2q.

We now prove p1q. Applying assertion p2q to the left action of C on itself, we deduce
that the multiplication map Cb C Ñ C admits a right adjoint which commutes with filtered
colimits. It will therefore suffice to show that if G : C Ñ Spcn is the right adjoint to the unit
map Spcn Ñ C, then G commutes with filtered colimits. Since the functor Ω8 : Spcn Ñ S is
conservative and commutes with filtered colimits, it will suffice to show that the composition
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C G
Ñ Spcn Ω8

Ñ S commutes with filtered colimits. Unwinding the definitions, we see that this
composite functor is corepresented by the unit object 1 P C; the desired result now follows
from our assumption that the object 1 is compact.

Now suppose that M and N are Grothendieck prestable 8-categories equipped with
right and left actions of C. It follows from assertions p1q and p2q that we can regard M and
N as right and left modules over C in the symmetric monoidal subcategory Grothc

8 Ď Groth8,
so that the bar construction BarCpM,N q‚ can be viewed as a simplicial object of Grothc

8.
Since the 8-category Grothc

8 admits small colimits which are preserved by the functors
Grothc

8 ãÑ Groth8 Ñ Groth`8 (Propositions C.3.5.1, Remark C.3.5.2, and Proposition
C.3.5.3), it follows that BarCpM,N q‚ admits a geometric realization in Groth8 which is
preserved by the functor Groth8 ãÑ Groth`8.

10.2.6 The Projection Formula for Quasi-Coherent Stacks

We now extract some easy consequences of Proposition 10.2.5.1 and Theorem 10.2.0.2.

Proposition 10.2.6.1. Let f : X Ñ Y be a morphism between quasi-compact, quasi-
separated spectral algebraic spaces. For any quasi-coherent stack C on Y, the canonical
map

QCohpY; Cq Ñ QCohpY; f˚f˚ Cq » QCohpX; f˚ Cq

extends to an equivalence of 8-categories

QCohpXqcn bQCohpYqcn QCohpY; Cq Ñ QCohpX; f˚ Cq;

here the left hand side is defined as in Proposition 10.2.5.1.

Proof. Unwinding the definitions, we wish to prove the left adjointability of the commutative
diagram of 8-categories

QStkPStpXq f˚ //

QCohpX;‚q
��

QStkPStpYq

QCohpY;‚q
��

ModQCohpXqcnpGroth8q //ModQCohpYqcnpGroth8q.

This is an immediate consequence of Theorem 10.2.0.2, which guarantees that the vertical
maps are equivalences (under the assumption that X and Y are quasi-compact, quasi-
separated spectral algebraic spaces).

Example 10.2.6.2. In the situation of Proposition 10.2.6.1, suppose that the morphism f is
affine and let A P CAlgpQCohpYqq denote the direct image direct image of the structure sheaf
of X. Then we can identify QCohpXqcn with the 8-category ModA pQCohpYqcnq. Combining
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this observation with Theorem HA.4.8.4.6 and Proposition 10.2.6.1, we obtain an equivalence
QCohpX; f˚ Cq » LModA pQCohpY; Cqq for any quasi-coherent stack C P QStkPStpYq. Under
this identification, the “pullback” functor

QCohpY; Cq Ñ QCohpY; f˚f˚ Cq » QCohpX; f˚ Cq

is given by forming the tensor product with A , which is right adjoint to the forgetful functor
LModA pQCohpY; Cqq Ñ QCohpY; Cq.

Corollary 10.2.6.3. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks

X1 f 1 //

g1

��

Y1

g

��
X f // Y .

If X and Y are quasi-compact, quasi-separated spectral algebraic spaces, then the induced map

QCohpXqcn bQCohpYqcn QCohpY1qcn Ñ QCohpX1qcn

is an equivalence of Grothendieck prestable 8-categories.

Remark 10.2.6.4. In the situation of Corollary 10.2.6.3, it follows that the induced map

QCohpXq bQCohpYq QCohpY1q Ñ QCohpX1q

is an equivalence of presentable stable 8-categories. This consequence is valid more generally
for pullback diagrams of weakly perfect stacks; see Corollary 9.4.3.8.

Proof of Corollary 10.2.6.3. Using Propositions 10.2.6.1 and 10.1.4.1, we compute

QCohpX1qcn » QCohpX; g1˚Qcn
X1q

» QCohpX; g1˚f 1˚Qcn
Y1q

„
Ð QCohpX; f˚g˚Qcn

Y1q
„
Ð QCohpXqcn bQCohpYqcn QCohpY; g˚Qcn

Y1q

» QCohpXqcn bQCohpYqcn QCohpY1qcn.

Corollary 10.2.6.5. Let X be a quasi-compact, quasi-separated spectral algebraic space. For
every pair of quasi-coherent stacks C,D P QStkPStpXq, the canonical map

QCohpX; Cq bQCohpXqcn QCohpX;Dq Ñ QCohpX; CbDq

is an equivalence of Grothendieck prestable 8-categories.
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Corollary 10.2.6.6 (Projection Formula). Let f : X Ñ Y be a morphism in FunpCAlgcn, pSq
which is representable by quasi-compact, quasi-separated spectral algebraic spaces. For every
pair of prestable quasi-coherent stacks C P QStkPStpY q, D P QStkPStpXq, the canonical map

θ : Cbpf˚Dq Ñ f˚f
˚pCbf˚Dq » f˚ppf

˚ Cq b pf˚f˚Dqq Ñ f˚ppf
˚ Cq bDq

is an equivalence of quasi-coherent stacks on Y .

Proof. Using Proposition 10.1.4.1, we can reduce to the case where Y “ SpecA is affine, so
that both X and Y are representable by quasi-compact, quasi-separated spectral algebraic
spaces. By virtue of Theorem 10.2.0.2, it will suffice to show that θ induces an equivalence
of Grothendieck prestable 8-categories

ρ : QCohpY ; Cbf˚Dq Ñ QCohpY ; f˚pf˚ CbDqq » QCohpX; f˚ CbDq.

Using Corollary 10.2.6.5 and Proposition 10.2.6.1, we can identify ρ with the evident
equivalence

QCohpY ; Cq bQCohpY qcn QCohpX;Dq

„

��
pQCohpY ; Cq bQCohpY qcn QCohpXqcnq bQCohpXqcn QCohpX;Dq.

We close this section by partially addressing the technical point raised in Warning
10.2.5.4. Suppose that X is a spectral Deligne-Mumford stack and that we are given a pair
of Grothendieck prestable 8-categories M and N equipped with actions of QCohpXqcn. If
X is a quasi-compact, quasi-separated spectral algebraic space, then Proposition 10.2.5.1
guarantees that the two-sided bar construction BarQCohpXqcnpM,N q‚ admits a colimit in
the 8-category Groth8. It also admits an a priori different colimit in the larger 8-category
PrL of all presentable 8-categories. However, these colimits agree whenever X has affine
diagonal:

Proposition 10.2.6.7. Let X be a quasi-compact spectral algebraic space and suppose that
the diagonal map δ : X Ñ XˆX is affine (this condition is satisfied, for example, if X is
separated). Let M and N be Grothendieck prestable 8-categories equipped with actions
of QCohpXqcn, and let BarQCohpXqcnpM,N q‚ be the simplicial object of Groth8 given by
applying the two-sided bar construction of Construction HA.4.4.2.7 . Then the inclusion
functor Groth8 ãÑ PrL preserves the geometric realization of BarQCohpXqcnpM,N q‚. In other
words, the geometric realization |BarQCohpXqcnpM,N q‚| in the 8-category PrL is again a
Grothendieck prestable 8-category.
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Proof. We proceed as in the proof of Proposition D.2.2.1. By virtue of Lemma HTT.6.5.3.7 ,
we can identify the geometric realization of BarQCohpXqcnpM,N q‚ with the colimit of the
underlying semisimplicial object of Groth8. To show that this colimit (formed in the
8-category PrL) is again a Grothendieck prestable 8-category, it will suffice to show
that this semisimplicial object satisfies the hypotheses of Remark C.3.5.4: that is, for
every injective map α : rms ãÑ rns, the associated functor fα : BarQCohpXqcnpM,N qn Ñ
BarQCohpXqcnpM,N qm admits a right adjoint which preserves small colimits. Factoring α as
a composition, we may reduce to the case m “ n ´ 1, so that fα is one of the face maps
of the simplicial object BarQCohpXqcnpM,N q‚. Unwinding the definitions, we see that fα is
obtained from one of the maps

m : QCohpXqcn bQCohpXqcn Ñ QCohpXqcn

a :MbQCohpXqcn ÑM a1 : QCohpXqcn bN Ñ N

by tensoring with some auxiliary object of Groth8; here the functor a is given by the action
of QCohpXqcn onM, the functor m is given by the tensor product of quasi-coherent sheaves,
and the functor a1 is given by the action of QCohpXqcn on N . By virtue of Remark C.4.4.5,
it will suffice to show that the functors a, m, and a1 admit right adjoints which preserve
small colimits. We will prove this for the functor a; the other cases then follow by symmetry.

Since X is a quasi-compact, quasi-separated spectral algebraic space, Theorem 10.2.0.2
implies that we can write M as the 8-category QCohpX; Cq for some quasi-coherent stack
C P QStkPStpXq. Let p : XˆX Ñ X denote the projection map onto the first factor. Using
Proposition 10.2.6.1, we can identify the tensor productMbQCohpXqcn with the8-category
QCohpXˆX; p˚ Cq. Under this identification, the map a corresponds to the functor

QCohpXˆX; p˚ Cq Ñ QCohpXˆX; δ˚δ˚p˚ Cq » QCohpXˆX; δ˚ Cq » QCohpX; Cq »M

given informally by “pullback along δ.” Since δ is an affine morphism, the desired result is a
consequence of Example 10.2.6.2.

10.3 Local Properties of Quasi-Coherent Stacks

We now study various local conditions which can be imposed on quasi-coherent stacks.

Definition 10.3.0.1. Let P be a condition on pairs pA, Cq, where A is a connective E8-ring
and C is a prestable A-linear 8-category. We will say that P is local for the étale topology if
the following conditions are satisfied:

piq Whenever a pair pA, Cq satisfies the condition P and φ : AÑ B is an étale morphism,
the pair pB,B bA Cq also satisfies condition P .



894 CHAPTER 10. QUASI-COHERENT STACKS

piiq Let A be a connective E8-ring and let C be a prestable A-linear 8-category. If there
exists a finite collection of étale morphisms tA Ñ Bαu for which the induced map
AÑ

ś

Bα is faithfully flat and each pair pBα, BαbA Cq satisfies the condition P , then
pA, Cq satisfies the condition P .

Example 10.3.0.2. The following conditions on a pair pA, Cq are local for the étale topology:

p1q The condition that C is stable (Proposition D.5.1.1).

p2q The condition that C is separated (Proposition D.5.1.2).

p3q The condition that C is complete (Proposition D.5.1.3).

p4q The condition that C is compactly generated (Theorem D.5.3.1).

p5q The condition that C is anticomplete (Theorems D.5.4.1 and D.5.4.9).

p6q The condition that C is weakly coherent (Theorem D.5.5.1 and Corollary D.5.5.11).

p7q The condition that C is locally Noetherian (Propositions D.5.6.1 and D.5.6.4).

p8q The condition that C is weakly n-complicial (Proposition D.5.7.1).

p9q The condition that C is anticomplete and n-complicial (Corollary D.5.7.3).

p10q The condition that C is separated and n-complicial (Corollary D.5.7.3).

We have the following easy analogue of Proposition 2.8.1.7:

Proposition 10.3.0.3. Let P be a condition on pairs pA, Cq, where A is connective E8-ring
and C is a prestable A-linear 8-category. Let X be a spectral Deligne-Mumford stack and
let C P QStkPStpXq be a prestable quasi-coherent stack on X. Suppose that P is local for
the étale topology (in the sense of Definition 10.3.0.1). Then the following conditions are
equivalent:

paq For every étale morphism η : SpétAÑ X, the pair pA, Cηq satisfies condition P .

pbq There exists mutually surjective collection of étale morphisms tηα : SpétAα Ñ Xu such
that each of the pairs pAα, Cηαq has the property P .

In the situation of Proposition 10.3.0.3, we will generally say that a quasi-coherent stack
C P QStkPStpXq has the property P if the equivalent conditions of Proposition 10.3.0.3 are
satisfied. Our goal in this section is to address the following:

Question 10.3.0.4. Let X be a spectral Deligne-Mumford stack, let C be a prestable
quasi-coherent stack on X, and let P be as in Proposition 10.3.0.3. If C has the property
P , then does the Grothendieck prestable 8-category QCohpX; Cq also have the property P?
Conversely, if QCohpX; Cq has the property P , then can we conclude that C has the property
P?
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10.3.1 Properties Stable Under Base Change

We begin by considering instances of Question 10.3.0.4 which make sense in somewhat
greater generality.

Definition 10.3.1.1. Let P be a condition on pairs pA, Cq, where A is a connective E8-ring
and C is a prestable A-linear 8-category. We will say that P is stable under base change
if, for every morphism φ : A Ñ B of connective E8-rings and every prestable A-linear
8-category C such that pA, Cq satisfies the condition P , the pair pB,B bA Cq also satisfies
the condition P .

Example 10.3.1.2. The following conditions on a pair pA, Cq are stable under base change
(in the sense of Definition 10.3.1.1):

p1q The condition that C is stable (Proposition D.5.1.1).

p2q The condition that C is separated (Proposition D.5.1.2).

p3q The condition that C is complete (Proposition D.5.1.3).

p4q The condition that C is compactly generated (Lemma D.5.3.3).

Beware that the other conditions mentioned in Example 10.3.0.2 are not stable under base
change.

Let X : CAlgcn Ñ pS be an arbitrary functor and let C be a prestable quasi-coherent stack
on X. If P is as in Definition 10.3.1.1, we will generally say that C satisfies the condition P

if, for every point η P XpAq, the pair pA, Cηq satisfies the condition P , where Cη P LinCatPSt
A

is as in Remark 10.1.1.3. Note that if P is local for the étale topology (in the sense of
Defintiion 10.3.0.1) and X is representable by a spectral Deligne-Mumford stack, then this
is equivalent to satisfying either of the conditions appearing in the statement of Proposition
10.3.0.3.

Specializing to the conditions appearing in Example 10.3.1.2, we obtain the following:

Definition 10.3.1.3. Let X : CAlgcn Ñ pS be a functor and let C be a prestable quasi-
coherent stack on X.

p1q We will say that C is stable if, for every connective E8-ring A and every point η P XpAq,
the A-linear 8-category Cη is stable (note that this agrees with Definition 10.1.2.1).

p2q We will say that C is separated if, for every connective E8-ring A and every point
η P XpAq, the A-linear 8-category Cη is separated.

p3q We will say that C is complete if, for every connective E8-ring A and every point
η P XpAq, the A-linear 8-category Cη is complete.
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p4q We will say that C is compactly generated if, for every connective E8-ring A and every
point η P XpAq, the A-linear 8-category Cη is compactly generated.

Remark 10.3.1.4. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ pS, and let C be a prestable quasi-coherent stack on Y . If C is stable (separated,
complete, compactly generated), then f˚ C is also stable (separated, complete, compactly
generated). The converse holds if f induces an effective epimorphism after sheafifying with
respect to the étale topology (since the conditions of being stable, separated, complete, and
compactly generated can be tested locally with respect to the étale topology: see Example
10.3.0.2.

Remark 10.3.1.5. Let A be a connective E8-ring and let C be a prestable A-linear 8-
category. Then C is stable (separated, complete, compactly generated) when regarded as a
Grothendieck prestable 8-category if and only if it is stable (separated, complete, compactly
generated) when regarded as a prestable quasi-coherent stack on SpecA.

Example 10.3.1.6. Let X be a spectral Deligne-Mumford stack, let K Ď |X | be a cocompact
closed subset, and let Qcn

K be as in Variant 10.1.7.3. Then the prestable quasi-coherent stack
QK P QStkPStpXq is compactly generated (see Proposition ??).

Proposition 10.3.1.7. Let f : X Ñ Y be a representable morphism between functors
X,Y : CAlgcn Ñ pS. Then:

paq If C P QStkPStpXq is stable, then f˚ C P QStkPStpY q is stable.

pbq If C P QStkPStpXq is separated, then f˚ C P QStkPStpY q is separated.

pcq If C P QStkPStpXq is complete, then f˚ C P QStkPStpY q is complete.

Proof. We will give the proof of pcq; the proofs of paq and pbq are similar. Using Proposition
10.1.5.1, we can reduce to the case where Y “ SpecA is affine. Since f is representable,
it follows that X is representable by a spectral Deligne-Mumford stack X “ pX ,OXq. For
each object U P X , let ΓpU ; Cq be as in the proof of Proposition 10.1.4.1. The construction
pU P X q ÞÑ ΓpU ; Cq determines a functor X op Ñ Grothlex

8 which preserves small limits. Let
X 0 Ď X be the full subcategory spanned by those objects U for which the Grothendieck
prestable 8-category ΓpU ; Cq is complete. Since the full subcategory of Grothlex

8 spanned by
the complete Grothendieck prestable 8-categories is closed under small limits, it follows
that X 0 Ď X is closed under small colimits. If C is complete, then X 0 contains all affine
objects of X . Applying Proposition 1.4.7.9, we deduce that X 0 “ X . In particular, X 0
contains the final object of X , which proves that the Grothendieck prestable 8-category
QCohpX; Cq » QCohpY ; f˚ Cq is complete. Applying Remark 10.3.1.5, we deduce that f˚ C
is complete.
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If X is a quasi-geometric spectral Deligne-Mumford stack, then Theorem 10.2.0.1 guaran-
tees that a prestable quasi-coherent stack C P QStkPStpXq is determined by the 8-category
of global sections QCohpX; Cq. In this case, there is a close relationship between local and
global properties of C.

Proposition 10.3.1.8. Let X be a spectral Deligne-Mumford stack and let C P QStkPStpXq.
Then:

paq If C is stable, then the Grothendieck prestable 8-category QCohpX; Cq is stable. The
converse holds if X is quasi-geometric.

pbq If C is separated, then the Grothendieck prestable 8-category QCohpX; Cq is separated.
The converse holds if X is quasi-geometric.

pcq If C is complete, then the Grothendieck prestable 8-category QCohpX; Cq is complete.
The converse holds if X is geometric.

Remark 10.3.1.9. The analogues of Propositions 10.3.1.7 and 10.3.1.8 for compactly
generated prestable quasi-coherent stacks are more subtle; we will discuss the matter in
§10.3.2.

Proof of Proposition 10.3.1.8. The first parts of assertions paq through pcq are special cases
of Proposition 10.3.1.7. To prove the converse assertions, let us assume that X is quasi-
geometric. In this case, Proposition 10.2.4.2 shows that we can recover the quasi-coherent
stack C from the 8-category QCohpX; Cq as follows: for any map η : SpétAÑ X, we have a
canonical equivalence of 8-categories

Cη » Modcn
A bQCohpXqcn QCohpX; Cq.

If QCohpX; Cq is stable, then the two-sided bar construction BarQCohpXqcnpModcn
A ,QCohpX; Cqq‚

is stable in each degree, so its geometric realization Cη is also stable; this proves paq.
We now prove pbq. Let η : SpétA Ñ X be as above and let A P CAlgpQCohpXqq be

the direct of the structure sheaf of SpétA. Since X is quasi-compact, Proposition 2.4.1.5
guarantees that there exists an integer n ě 0 such that A P QCohpXqě´n. Let E denote
the stabilization of the Grothendieck prestable 8-category QCohpX; Cq, so that E inherits
a t-structure pEě0, Eď0q and the functor Σ8 induces an equivalence QCohpX; Cq » Eě0.
Let us regard the 8-category LModApEq as endowed with the t-structure of Construction
10.2.1.1, so that Proposition 10.2.1.3 supplies a t-exact equivalence Cη » LModA pEqě0. By
definition, LModA pEqě0 is the smallest full subcategory of LModA pEq which is closed under
colimits and extensions and contains the tensor product AbE, for each object E P Eě0. It
follows that the forgetful functor LModA pEq Ñ E carries LModA pEqěk into Eěk´n for each
integer k. If QCohpX; Cq is separated, then the intersection

Ş

kPZ Eěk´n contains only zero
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objects of E . It follows that the intersection
Ş

kPZ LModA pEqěk contains only zero objects
of LModA pEq, so that the Grothendieck prestable 8-category Cη is also separated. This
completes the proof of pbq.

We now prove pcq. Assume that X is geometric and that the Grothendieck prestable
8-category QCohpX; Cq is complete; we wish to show that Cη is also complete, for any
morphism η : SpétAÑ X. The assumption that X is geometric guarantees that the algebra
A P CAlgpQCohpXqq is connective. In this case, the forgetful functor θ : LModA pEq Ñ E
is t-exact: left t-exactness is automatic, and right t-exactness follows from the observation
that the fiber product Eě0ˆE LModA pEq is a full subcategory of LModA pEq which is closed
under small colimits, extensions, and contains all objects of the form A bE where E P Eě0.
We will complete the proof by showing that the 8-category Eη P LModA pEqě0 satisfies the
criterion of Proposition HTT.5.5.6.26 : that is, that a diagram

X Ñ ¨ ¨ ¨ Ñ Xp3q Ñ Xp2q Ñ Xp1q Ñ Xp0q

in Cη is a Postnikov tower if and only if it exhibits each Xpnq as an n-truncation of Xpn` 1q
and induces an equivalence X Ñ lim

ÐÝně0Xpnq. Since the forgetful functor θ is t-exact,
conservative, and preserves small limits, it suffices to observe that the diagram

θX Ñ ¨ ¨ ¨ Ñ θXp3q Ñ θXp2q Ñ θXp1q Ñ θXp0q

in Eě0 is a Postnikov tower if and only if exhibit each θXpnq as the n-truncation of θXpn`1q
and induces an equivalence θX Ñ lim

ÐÝně0 θXpnq. This follows from our assumption that
QCohpX; Cq is complete.

Notation 10.3.1.10. Let X : CAlgcn Ñ pS be a functor. We let QStkcomppXq denote the
full subcategory of QStkPStpXq spanned by the complete prestable quasi-coherent stacks on
X, and we let QStkseppXq denote the full subcategory of QStkPStpXq spanned by the the
separated prestable quasi-coherent stacks on X.

Proposition 10.3.1.11. Let X : CAlgcn Ñ pS be a functor. Then:

paq The inclusion functor QStkcomppXq ãÑ QStkPStpXq admits a left adjoint which we
will denote by C ÞÑ pC. Moreover, if C is a prestable quasi-coherent stack on X, then
the canonical map C Ñ pC exhibits pCη as the completion of Cη for each point η P XpAq
(see §C.3.6).

pbq The inclusion functor QStkseppXq ãÑ QStkPStpXq admits a left adjoint which we will
denote by C ÞÑ Csep. Moreover, if C is a prestable quasi-coherent stack on X, then the
canonical map C Ñ Csep exhibits Csep

η as the separated quotient of Cη for each point
η P XpAq.
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Remark 10.3.1.12. For C P QStkPStpXq, we will refer to the quasi-coherent stacks pC and
Csep of Proposition 10.3.1.11 as the completion and separated quotient of C, respectively.

Proof. We will give the proof of paq; the proof of pbq is similar. Let LinCatAdd be as in
Definition 10.1.1.1, let LinCatPSt be the full subcategory of LinCatAdd spanned by those
pairs pA, Cq where A is a connective E8-ring and C is a prestable A-linear 8-category,
and let LinCatcomp Ď LinCatPSt be the full subcategory spanned by those pairs pA, Cq
where C is complete. Then the forgetful functor θ : LinCatPSt Ñ CAlgcn is a coCartesian
fibration which restricts to a coCartesian fibration θ1 : LinCatcomp Ñ CAlgcn (moreover,
every θ1-coCartesian morphism in LinCatcomp is a θ-coCartesian morphism in LinCatPSt: see
Proposition D.5.1.3). It follows from Proposition C.4.6.1 that for every connective E8-ring
A, the inclusion LinCatcomp

A ãÑ LinCatPSt
A admits a left adjoint, given by the completion

construction C ÞÑ pC. Moreover, if f : C Ñ D is an A-linear functor which induces an
equivalence of completions, then the induced map fB : B bA C Ñ B bA D also induces an
equivalence of completions, for any E8-algebra B over A. Applying Proposition HA.7.3.2.11 ,
we deduce that the inclusion functor LinCatcomp ãÑ LinCatPSt admits a left adjoint L
relative to CAlgcn (see Definition HA.7.3.2.2 ). If X : CAlgcn Ñ pS classifies a left fibration
of 8-categories E Ñ CAlgcn, then we can identify QStkPStpXq and QStkcomppXq with
the full subcategories of FunCAlgcnpE ,LinCatPStq and FunCAlgcnpE ,LinCatcompq spanned by
those functors which carry morphisms in E to θ-coCartesian morphisms in LinCatPSt and
θ1-coCartesian morphisms in LinCatcomp, respectively. Using these identifications, we see
that pointwise composition with L determines a functor QStkPStpXq Ñ QStkcomppXq having
the desired properties.

Proposition 10.3.1.7 has the following analogue for properties of morphisms between
quasi-coherent stacks:

Proposition 10.3.1.13. Let f : X Ñ Y be a representable morphism between functors
X,Y : CAlgcn Ñ pS and let u : C Ñ D be a morphism of prestable quasi-coherent stacks on
X. Then:

paq If u is left exact, then the induced map f˚puq : f˚ C Ñ f˚D is left exact.

pbq If u is compact, then the induced map f˚puq : f˚ C Ñ f˚D is compact.

We now consider the converse:

Proposition 10.3.1.14. Let X be a spectral Deligne-Mumford stack and let u : C Ñ D be a
morphism of prestable quasi-coherent stacks on X. Then:

paq If u is left exact, then the induced map QCohpX; Cq Ñ QCohpY;Dq is left exact. The
converse holds if X is quasi-geometric.
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pbq If u is compact, then the induced map QCohpX; Cq Ñ QCohpY;Dq is compact. The
converse holds if X is quasi-geometric.

Proof. The first parts of assertions paq and pbq follow immediately from Proposition ??.
For the converse, assume that X is quasi-geometric and that u induces a functor U :
QCohpX; Cq Ñ QCohpX;Dq which is left exact (compact); we wish to show that for each
map η : SpétAÑ X, the induced A-linear functor uη : Cη Ñ Dη is also left exact (compact).
As in the proof of Proposition 10.3.1.8, we can identify uη with the functor

Modcn
A bQCohpXqcn QCohpX; Cq Ñ Modcn

A bQCohpXqcn QCohpX;Dq

determined by U . Assertion paq is now a special case of Proposition 10.2.2.3. To prove pbq,
we can replace C and D by their stabilizations (see Proposition C.3.4.1). In this case, we
can identify uη with the functor LModA pQCohpX; Cqq Ñ LModA pQCohpX;Dqq determined
by U , where A P CAlgpQCohpXqq is the direct image of the structure sheaf of SpétA. Let
Gη denote the right adjoint to uη, so that Gη fits into a commutative diagram

LModA pQCohpX;Dqq
Gη //

��

LModA pQCohpX; Cqq

��
QCohpX;Dq G // QCohpX; Cq,

where G is left adjoint to U . Since U is compact, the functor G commutes with filtered
colimits. Since the vertical maps are conservative and commute with filtered colimits, it
follows that Gη also commutes with filtered colimits.

Corollary 10.3.1.15. Let X be a quasi-geometric spectral Deligne-Mumford stack and let
u : C Ñ D be a left morphism of prestable quasi-coherent stacks on X. The following
conditions are equivalent:

piq The functor u induces an equivalence of completions pC Ñ pD (see Proposition 10.3.1.11).

piiq The induced map of Grothendieck prestable 8-categories QCohpX; Cq Ñ QCohpX;Dq
induces an equivalence of completions.

Proof. The implication piq ñ piiq is immediate. Conversely, suppose that piiq is satisfied.
We wish to show that for every étale morphism η : SpétA Ñ X, the A-linear functor
uη : Cη Ñ Dη induces an equivalence of completions. Equivalently, we must show that uη
induces an equivalence on n-truncated objects for each n ě 0. For this, it will suffice to
show that the t-exact functor of stable 8-categories Sppuqη : SppCηq Ñ SppDηq induces an
equivalence on n-truncated objects. Let A be as in the proof of Proposition 10.3.1.13, so
that we have canonical equivalences

SppCηq » LModA pQCohpX; SppCqqq SppDηq » LModA pQCohpX; SppDqqq
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which restrict to equivalences

SppCηqďn » LModA pQCohpX; SppCqqďnq SppDηq » LModA pQCohpX; SppDqďnqq.

It will therefore suffice to show that the functor u induces an equivalence of 8-categories
QCohpX; SppCqqďn Ñ QCohpX; SppDqqďn, which follows immediately from assumption piiq.

10.3.2 Compact Generation

Let X be a quasi-compact, quasi-separated spectral algebraic space. Proposition 9.6.1.2 as-
serts that the 8-category QCohpXqcn of connective quasi-coherent sheaves on X is compactly
generated. Our goal in this section is to prove a relative version of this result:

Theorem 10.3.2.1. Let X be a spectral Deligne-Mumford stack and let C P QStkPStpXq be
a prestable quasi-coherent stack on X. Then:

paq If X is quasi-geometric and the 8-category QCohpX; Cq is compactly generated, then
the quasi-coherent stack C is compactly generated.

pbq If X is a quasi-compact, quasi-separated spectral algebraic space and the quasi-coherent
stack C is compactly generated, then the prestable 8-category QCohpX; Cq is compactly
generated.

Remark 10.3.2.2. In the special case where C is the unit object of QStkPStpXq, Theorem
10.3.2.1 reduces to Proposition 9.6.1.2.

Corollary 10.3.2.3. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks. Suppose
that f is representable by quasi-compact, quasi-separated spectral algebraic spaces. If C P
QStkPStpXq is compactly generated, then f˚ C P QStkPStpYq is compactly generated.

Proof. Using Proposition 10.1.4.1, we can reduce to the case where Y is affine, in which case
the desired result follows from Theorem 10.3.2.1.

As a first step towards a proof of Theorem 10.3.2.1, we establish a criterion for recognizing
compact objects in an 8-category of the form QCohpX; Cq.

Lemma 10.3.2.4. Let X be a spectral Deligne-Mumford stack, let C P QStkPStpXq be
compactly generated, and let C P QCohpX; Cq be an object. The following conditions are
equivalent:

p1q For every map η : SpétAÑ X, the image of C under the forgetful functor QCohpX; Cq Ñ
Cη is compact.
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p2q For every étale η : SpétAÑ X, the image of C under the forgetful functor QCohpX; Cq Ñ
Cη is compact.

p3q There exists a jointly surjective collection of étale maps ηα : SpétAα Ñ X such that
the image of C under each of the forgetful functors QCohpX; Cq Ñ Cηα is compact.

Proof. The implications p1q ñ p2q ñ p3q are obvious. We prove that p3q ñ p1q. Assume
that p3q is satisfied for some jointly surjective ηα : SpecAα Ñ X, and choose any map
ξ : SpecRÑ X. Then there exists a finite collection of étale maps tRÑ Rβu for which the
induced map RÑ

ś

β Rβ is faithfully flat, such that each of the induced maps SpecRβ Ñ
SpecR fits into a commutative diagram

SpecRβ //

��

SpecAα
ηα

��
SpecR ξ // X

for some index α. It follows that the image of C in ModRβ pCξq is compact for every index β.
Applying Remark D.5.2.3, we deduce that the image of C in Cξ is compact.

Definition 10.3.2.5. Let X be a spectral Deligne-Mumford stack and let C P QStkPStpXq
be compactly generated. We will say that an object of QCohpX; Cq is locally compact if it
satisfies the equivalent conditions of Lemma 10.3.2.4.

We now prove a decategorified version of Theorem 10.3.2.1:

Proposition 10.3.2.6. Let X be a spectral Deligne-Mumford stack, let C P QStkPStpXq be
compactly generated, and let C be an object of QCohpX; Cq. Then:

paq If X is quasi-geometric and C is a compact object of QCohpX; Cq, then C is locally
compact.

pbq If X is a quasi-compact, quasi-separated spectral algebraic space and C is locally
compact, then C is a compact object of QCohpX; Cq.

Proof. We first prove paq. Assume that X is quasi-geometric and let η : SpétAÑ X; we wish
to show that pullback along η determines a functor f : QCohpX; Cq Ñ QCohpSpétA; η˚ Cq “
Cη which preserves compact objects. In fact, we claim that the functor f is compact.
To prove this, it will suffice to show that the induced map of stable 8-categories F :
SppQCohpX; Cqq Ñ SppCηq admits a right adjoint G which commutes with small colimits
(see Proposition C.3.4.1). This follows from Propositions 10.2.4.2 and 10.2.1.3, which allow
us to identify G with the forgetful functor LModA pSppQCohpX; Cqqq Ñ SppQCohpX; Cqq,
where A P CAlgpQCohpXqq denotes the direct image of the structure sheaf of SpétA.
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We now prove pbq. Every object C P QCohpX; Cq determines a colimit-preserving functor
λ : Spcn Ñ QCohpX; Cq satisfying λpSq “ C (Example C.3.1.2), which we can identify with
a map of quasi-coherent stacks λ : Qcn

X Ñ C. Note that if C is locally compact, then the
morphism quasi-coherent stacks λ is compact. Invoking Proposition 10.3.1.14, we deduce
that the induced map of global sections

QCohpXqcn » QCohpX;Qcn
X q

QCohpX;λq
ÝÑ QCohpX; Cq

is compact. Unwinding the definitions, we see that this functor carries the structure sheaf of
X to the object C P QCohpX; Cq. We are therefore reduced to proving that the structure sheaf
of X is a compact object of QCohpXqcn, which is a special case of Proposition 9.6.1.1.

The proof of Theorem 10.3.2.1 will require the following more elaborate version of
Proposition D.5.3.4:

Lemma 10.3.2.7. Let R be a connective E2-ring, let C be a compactly generated prestable
R-linear 8-category, and let I Ď π0R be a finitely generated ideal. For each object C P SppCq,
set T pCq “ C‘ΣpCq. Suppose that C P SppCq is an object satisfying the following condition:

p˚q For every element a P I, the localization Cra´1s “ Rra´1s bR C is a compact object of
LModRra´1spSppCqqě0.

Then there exists an integer e ě 0 and a morphism α : D Ñ T epCq in SppCq, where D is a
compact object of SppCqě0 and α induces an equivalence Dra´1s Ñ T epCqra´1s for all a P I.

Proof. Since I is finitely generated, we can write I “ pa1, . . . , anq for some nonnegative
integer n. We proceed by induction on n. If n “ 0, then I “ p0q and there is nothing
to prove. Otherwise, set J “ pa1, . . . , an´1q. Applying the inductive hypothesis, we can
choose a compact object D0 P SppCqě0 and a map β : D0 Ñ T dpCq which induces an
equivalence D0ra

´1s » T dpCqra´1s for all a P J . Replacing C by T dpCq, we can assume
without loss of generality that d “ 0. Let C 1 “ cofibpβq. Then C 1ra´1

n s is a compact object
of LModRra´1

n s
pSppCqqě0. Arguing as in the proof of Proposition D.5.3.4, we deduce that

T pC 1ra´1
n sq can be written as Era´1

n s for some compact object E P SppCqě0. Replacing C
by T pCq, we may assume that C 1ra´1

n s » Era´1
n s, where E is a compact object of SppCqě0.

Fix 1 ď i ă n. By construction, we have C 1ra´1
i s » 0. Since C 1ra´1

n s is a compact object
of LModRra´1

n s
pSppCqq, it follows that the map ami : C 1ra´1

n s Ñ C 1ra´1
n s is nullhomotopic for

m " 0. Consequently, T pC 1ra´1
n sq is equivalent to E1ra´1

n s, where E1 “ cofibpami : E Ñ Eq

is a compact object of Cě0 satisfying Era´1
i s » 0. Replacing C by T pCq and E by E1, we

can assume that Era´1
i s » 0. Applying this argument repeatedly, we can arrange that

Era´1
i s » 0 for all i P t1, 2, . . . , n´ 1u.
Fix an equivalence γ0 : Era´1

n s » C 1ra´1
n s. Since E is a compact object of SppCq, we may

assume (after multiplying γ0 by a suitable power of an) that γ0 is induced by a morphism
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γ : E Ñ C 1 in the 8-category SppCq. We now define D to be the pullback C ˆC1 E. The
existence of a fiber sequence D0 Ñ D Ñ E shows that D is a compact object of SppCqě0.
We claim that the projection map e : D Ñ C induces an equivalence Dra´1s Ñ Cra´1s

whenever a P I. To prove this, we observe that the condition a P I guarantees that the map
Rra´1s Ñ

ś

1ďiďnRrpaaiq
´1s is étale and faithfully flat; it will therefore suffice to show that

e becomes an equivalence after tensoring with Rra´1
i s for 1 ď i ď n. For i ă n, this follows

from the fact that both sides vanish; when i “ n, it follows from our construction.

Proof of Theorem 10.3.2.1. We first prove paq. Suppose that X is a quasi-geometric spectral
Deligne-Mumford stack and let C P QStkPStpXq have the property that QCohpX; Cq is
compactly generated; we wish to show that the prestable quasi-coherent stack C is compactly
generated. Fix a map η : SpétA Ñ X; we will show that the A-linear 8-category Cη is
compactly generated. Set E “ SppQCohpX; Cqq, so E admits a t-structure pEě0, Eď0q with
Eě0 » QCohpX; Cq. Let A P CAlgpQCohpXqq denote the direct image of the structure
sheaf of SpétA and let us regard LModA pEq as equipped with the t-structure described in
Construction 10.2.1.1, so that Theorem 10.2.0.1 supplies an equivalence Cη » LModA pEqě0.
By definition, LModA pEqě0 is the smallest full subcategory of LModA pEq which is closed
under colimits and extensions and contains each tensor product A bE, where E P Eě0.
Since Eě0 » QCohpX; Cq is compactly generated, we can also describe LModA pEqě0 as the
smallest full subcategory of LModA pEq which is closed under colimits and extensions and
contains A bE where E is a compact object of Eě0. In this case, A bE is a compact object
of LModA pEq. Applying Proposition C.6.3.1, we deduce that the 8-category LModA pEqě0
is compactly generated.

We now prove pbq. Assume that X is a quasi-compact, quasi-separated spectral algebraic
space and let C P QStkPStpXq be compactly generated; we wish to prove that the Grothendieck
prestable 8-category QCohpX; Cq is compactly generated. We will show that QCohpX; Cq
satisfies the criterion of Corollary C.6.3.3: that is, for every nonzero object N P QCohpX; Cq,
we will show that there exists a nonzero map C Ñ N in QCohpX; Cq, where C is compact
(by virtue of Proposition 10.3.2.6, this is equivalent to the requirement that C is locally
compact).

Since X is a quasi-compact, quasi-separated spectral algebraic space, we can choose a
scallop decomposition H “ U0 Ñ U1 Ñ ¨ ¨ ¨ Ñ Un » X and excision squares

Vi //

��

SpétRi
ηi
��

Ui´1 // Ui;

see Theorem 3.4.2.1. For 0 ď i ď n, let CUi denote the restriction of C to the open substack
Ui Ď X and let Ni denote the image of N in the 8-category QCohpUi; CUiq. Since N ‰ 0,
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there exists some smallest integer i such that Ni ‰ 0. Since U0 “ H, we have i ą 0, and the
minimality of i guarantees that the image of Ni in QCohpUi´1; CUi´1q vanishes. It follows
that Ni has nonzero image in the prestable Ri-linear 8-category Cηi . Let us denote this
image by N 1. Our assumption that the quasi-coherent stack C is compactly generated
guarantees that the prestable 8-category Cηi is compactly generated. Let I Ď π0Ri be a
finitely generated ideal which defines the open substack Vi Ď SpétRi, so that the vanishing
of Ni´1 guarantees that N 1 is I-nilpotent. Proposition 7.1.1.12 guarantees that the collection
of I-nilpotent objects of Cηi form a compactly generated prestable 8-category. It then
follows from Corollary C.6.3.3 (or from the proof of Proposition 7.1.1.12) that there exists
a nonzero map ρ : M 1 Ñ N 1 in Cηi , where M 1 is compact and I-nilpotent (Proposition
7.1.1.12). Note that the domain and codomain of ρ vanish when restricted to the open
substack Vi Ď SpétRi. Using the pullback diagram of 8-categories

QCohpUi; CUiq
//

��

QCohpUi´1; CUi´1q

��
QCohpSpétRi; Cηiq // QCohpVi; CViq,

we can lift the map ρ : M 1 Ñ N 1 (in an essentially unique way) to a morphism ρi : Mi Ñ Ni

in the 8-category Mi P QCohpUi; Cq, where Mi has vanishing image in QCohpUi´1; CUiq. It
follows from Lemma 10.3.2.4 that the object Mi is locally compact.

We now prove the following assertion:

p˚q For i ď j ď n, there exists a nonzero morphism ρj : Mj Ñ Nj in QCohpUj ; CUj q, where
Mj is locally compact.

The proof proceeds by induction on j, the case j “ i having been handled above. When
j “ n, we will obtain a nonzero morphism from a locally compact object of QCohpX; Cq into
N , which will complete the proof of Theorem 10.3.2.1.

Let us assume that i ă j and that ρj´1 : Mj´1 Ñ Nj´1 has been constructed. We let
u denote the composite map Mj´1 ‘ ΣMj´1 Ñ Mj´1

ρj´1
ÝÑ Nj´1, and let u0 be the image

of u in QStkPStpVj ; CVj q. Let N2 denote the image of N in QCohpSpétRj ; Cηj q. Using the
pullback diagram

QCohpUj ; CUj q
//

��

QCohpUj´1; CUj´1q

g˚

��
QCohpSpétRj ; Cηj q

h˚ // QCohpVj ; CVj q,

we are reduced to proving that u0 can be lifted to a morphism v : M2 Ñ N2 in QCohpSpétRj ; Cηj q
for some compact object M2 P QCohpSpétRj ; Cq.

It follows from Lemma 10.3.2.7 that, after replacingMj´1 by the direct sumMj´1‘ΣMj´1
finitely many times, we can assume that the object g˚Mj´1 can be lifted to a compact object
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M2 P Cηj . Then we can regard u0 as a morphism from h˚M2 to h˚N2, which determines
a map v0 : M2 Ñ h˚h

˚N2 in the 8-category. Let K denote the cofiber of the unit map
N2 Ñ h˚h˚N2, letQ denote the cokernel of the composite map π0M

2 v0
Ñ π0ph˚h

˚N2q Ñ π0K

(formed in the abelian category C♥
ηj ), and let K0 denote the fiber of the map K Ñ π0K Ñ Q.

By construction, the object K P C♥
ηj is I-nilpotent (in the sense of Proposition 7.1.1.12).

For each x P I, we can identify Qrx´1s with a quotient of π0Krx
´1s. It follows that Q is

also I-nilpotent, so that the fiber K0 is I-nilpotent. Using Proposition 7.1.1.12, we can
write K0 as a filtered colimit of I-nilpotent compact objects Kα P Cα. By construction, the
composite map M2 Ñ h˚h

˚N2 Ñ K factors K0 and therefore (by virtue of the compactness
of M2) through some Kα. Let L denote the fiber of the map Kα Ñ K0, so that L is also an
I-nilpotent object of Cηj . Applying Proposition 7.1.1.12 again, we can write L as a filtered
colimit lim

ÝÑ
Lβ, where each Lβ is a compact I-nilpotent object. For each β, let Pβ P C♥

ηj be
the cokernel of the induced map π0pM

2 ‘ Lβq Ñ π0Kα. Then

lim
ÝÑ

Pβ » cokerpπ0pM
2 ‘ Lq Ñ π0Kαq » cokerpπ0pM

2q Ñ π0K0q » 0.

It follows that the map Kα Ñ π0Kα Ñ lim
ÝÑ

Pβ is nullhomotopic. Using the compactness of
Kα, we deduce that there exists an index β for which the composite map Kα Ñ π0Kα Ñ Pβ
is nullhomotopic: that is, the map ε : M2‘Lβ Ñ Kα is an epimorphism on π0. Let F denote
the fiber of ε, so that the fiber sequence F Ñ M2 ‘ Lβ Ñ Kα remains a fiber sequence
after applying the functor Σ8 : Cηj Ñ SppCηj q. Since M2, Lβ, and Kα are compact, the
object F is also compact. Moreover, since the objects Lβ and Kα are I-nilpotent, the map
F Ñ M2 induces an equivalence h˚F Ñ h˚M2. We may therefore replace M2 by F and
thereby reduce to the case where the composite map M2 v0

Ñ h˚h
˚N2 Ñ K is nullhomotopic,

so that v0 factors through the unit map h˚h
˚N2 as desired.

10.3.3 Anticomplete Quasi-Coherent Stacks

We now consider some more subtle variants of Definition 10.3.1.3.

Definition 10.3.3.1. Let X be a spectral Deligne-Mumford stack and let C be a prestable
quasi-coherent stack on X.

p1q We will say that C is anticomplete if, for every étale morphism η : SpétA Ñ X, the
A-linear 8-category Cη is anticomplete.

p2q We will say that C is weakly coherent if, for every étale morphism η : SpétAÑ X, the
A-linear 8-category Cη is weakly coherent.

Warning 10.3.3.2. In the situation of Definition 10.3.3.1, the assumption that η : SpétAÑ
X is étale plays an essential role: the condition that a prestable A-linear 8-category C is
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anticomplete (weakly coherent) is not preserved by arbitrary base change. Consequently,
Definition 10.3.3.1 makes sense when X is a spectral Deligne-Mumford stack, but not for an
arbitrary functor CAlgcn Ñ pS.

Remark 10.3.3.3. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks and
let C be a prestable quasi-coherent stack on Y. Then:

piq Suppose that f is flat and that the diagonal map δ : X Ñ XˆY X has finite Tor-
amplitude. If C is anticomplete, then f˚ C is anticomplete: this follows from Theorems
D.5.4.1 and D.5.4.9.

piiq Suppose that f is locally almost of finite presentation and locally quasi-finite. If C is
weakly coherent, then f˚ C is weakly coherent: this follows from Theorem D.5.5.1 and
Corollary D.5.5.11.

In particular, if f is étale and C is anticomplete (weakly coherent), then f˚ C is also
anticomplete (weakly coherent). The converse holds if f is an étale surjection (see Proposition
10.3.0.3).

Remark 10.3.3.4. Let A be a connective E8-ring and let C be a prestable A-linear 8-
category. Then C is anticomplete (weakly coherent) when regarded as a Grothendieck
prestable 8-category if and only if it is anticomplete (weakly coherent) when regarded as a
prestable quasi-coherent stack on SpétA.

We now establish a global analogue of Lemma D.5.4.5.

Proposition 10.3.3.5. Let X be a spectral Deligne-Mumford stack, let QStkPStpXqlex denote
the subcategory of QStkPStpXq whose morphisms are left exact, and let QStkchpXq denote
the full subcategory of QStkPStpXqlex whose objects are anticomplete prestable quasi-coherent
stacks on X (see Definition 10.3.3.1). Then:

paq The inclusion functor QStkchpXq ãÑ QStkPStpXqlex admits a right adjoint, which we
will denote by C ÞÑ qC.

pbq Let f : C Ñ D be a left exact morphism of prestable quasi-coherent stacks on X. Then f
induces an equivalence qC Ñ qD if and only if, for each étale morphism η : SpétAÑ X,
the induced A-linear functor fη : Cη Ñ Dη induces an equivalence of completions.

Proof. Write X “ pX ,OXq. For each object U P X , set XU “ pX {U ,OX |U q. Let us say that
U P X is good if the conclusions of Proposition 10.3.3.5 hold when X is replaced by XU . By
virtue of Proposition 1.4.7.9, it will suffice to prove the following:

piq Every affine object U P X is good.
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piiq The collection of good objects of X is closed under small colimits.

Assertion piq follows immediately from Lemma D.5.4.5. To prove piiq, suppose we are given
a small diagram ρ : J Ñ X having colimit X P X , where ρpJq is good for each object
J P J . The construction pJ P J q ÞÑ QStkPStpXρpJqqlex classifies a coCartesian fibration
of 8-categories q : E Ñ J op. Let us identify objects of E with pairs pJ, Cq, where J P J
and C is a prestable quasi-coherent stack on XρpJq. Let Ech denote the full subcategory of
E spanned by those pairs pJ, Cq where C is anticomplete. It follows from Remark 10.3.1.4
that the restriction q|Ech : Ech Ñ J op is also a coCartesian fibration, and that the inclusion
Ech ãÑ E carries q|Ech-coCartesian morphisms to q-coCartesian morphisms. Since each
ρpJq is good, each of the inclusion maps EchˆJ optJu ãÑ E ˆJ optJu admits a right adjoint.
Applying Proposition HA.7.3.2.6 , we deduce that the inclusion Ech ãÑ E admits a right
adjoint G : E Ñ Ech relative to J op. Using the fact that each XρpJq satisfies condition pbq
of Proposition 10.3.3.5, we see that the functor G carries q-coCartesian morphisms of E to
q|Ech-coCartesian morphisms of Ech. Using Proposition HTT.3.3.3.1 , we obtain equivalences

QStkPStpXXqlex » lim
ÐÝ
JPJ

QStkPStpXρpJqqlex » Fun1J oppJ op, Eq

QStkchpXXq » lim
ÐÝ
JPJ

QStkchpXρpJqq » Fun1J oppJ op, Echq,

where Fun1J oppJ op, Eq denotes the full subcategory of Fun1J oppJ op, Eq spanned by those
functors which carry every morphism in J op to a q-coCartesian morphism in E and
Fun1J oppJ op, Echq is defined similarly. Under these equivalences, pointwise composition
with G determines a functor QStkPStpXXqlex Ñ QStkchpXXq which is a right adjoint to the
inclusion, so that XX satisfies condition paq of Proposition 10.3.3.5. Moreover, the proof
yields the following version of pbq:

pb1q Let f : C Ñ D be a left exact morphism of prestable quasi-coherent stacks on XX . Then
f induces an equivalence qC Ñ qD if and only if, for each étale morphism η : SpétAÑ XX
which factors through XρpJq for some J P J , the induced A-linear functor fη : Cη Ñ Dη
induces an equivalence of completions.

To complete the proof, it suffices to observe that if f : C Ñ D satisfies the criterion of pb1q,
then the induced functor fη : Cη Ñ Dη induces an equivalence of completions for every
étale morphism η : SpétAÑ XX , since this can be checked locally with respect to the étale
topology on SpétA.

Let X be a spectral Deligne-Mumford stack on X and let C be a prestable quasi-coherent
stack on X. Unwinding the definitions, we see that the quasi-coherent stack qC is characterized
by the following:
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piq There exists a left exact morphism λ : qC Ñ C in QStkPStpCq.

piiq The morphism λ induces an equivalence of completions.

piiiq The prestable quasi-coherent stack qC is anticomplete.

Combining this observation with Remark 10.3.3.3, we obtain the following:

Corollary 10.3.3.6. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Assume that f is flat and that the diagonal map δ : X Ñ XˆY X has finite Tor-amplitude.
Then the diagram of 8-categories

QStkchpXq

f˚

��

// QStkPSt,lexpXq

f˚

��
QStkchpYq // QStkPSt,lexpYq

is right adjointable. In other words, for every prestable quasi-coherent stack C on Y, the
canonical map }f˚ C Ñ f˚pqCq is an equivalence in QStkPStpXq.

We now consider local-to-global principles which are satisfied by the notions introduced
in Definition 10.3.3.1.

Proposition 10.3.3.7. Let X be a quasi-compact, quasi-separated spectral algebraic space
and let C be a prestable quasi-coherent stack on X. The following conditions are equivalent:

paq The quasi-coherent stack C is anticomplete.

pbq The Grothendieck prestable 8-category QCohpX; Cq is anticomplete.

Proof. Let QStkPStpXqlex denote the subcategory of QStkPStpXq whose morphisms are left
exact and define ModQCohpXqcnpGroth8qlex Ď ModQCohpXqcnpGroth8q similarly. Let S be the
collection of those morphisms in QStkPSt,lexpXqlex which induce equivalences of completions
and define S1 Ď ModQCohpXqcnpGroth8qlex similarly. It follows from Proposition 10.3.1.14
that the equivalence

QCohpX; ‚q : QStkPStpXq Ñ ModQCohpXqcnpGroth8q

of Theorem 10.2.0.2 restricts to an equivalence of 8-categories

QStkPStpXqlex » ModQCohpXqcnpGroth8qlex,

and from Corollary 10.3.1.15 that this equivalence carries S to S1. Using Proposition
10.3.3.5, we see that a prestable quasi-coherent stack C on X is anticomplete if and only if
it is an S-local object of QStkPStpXq. Similarly, since QCohpXqcn is a compactly generated
prestable 8-category whose stabilization is locally rigid (see Proposition 9.6.1.2), Lemma
D.5.4.5 implies that QCohpX; Cq is anticomplete if and only if it is an S1-local object of
ModCohpXqcnpGroth8qlex.
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Lemma 10.3.3.8. Let X be a quasi-compact, quasi-separated spectral algebraic space and
let C be a prestable quasi-coherent stack on X. If C is anticomplete and weakly coherent, then
ΓpX; Cq is anticomplete and weakly coherent.

Proof. Applying Theorem C.6.7.1 (and the quasi-compactness of X), we see that C is
compactly generated, that the loop functor Ω : QCohpX; Cq Ñ QCohpX; Cq carries locally
compact objects to locally compact objects (Definition 10.3.2.5), and that every locally
compact object of QCohpX; Cq is truncated. Using Theorem 10.3.2.1 and Proposition 10.3.2.6,
we deduce that QCohpX; Cq is compactly generated and that an object of QCohpX; Cq is
compact if and only if it is locally compact. The desired result now follows from Theorem
C.6.7.1.

Proposition 10.3.3.9. Let X be a quasi-compact, quasi-separated spectral algebraic space
and let C be a prestable quasi-coherent stack on X. If C is weakly coherent, then ΓpX; Cq is
weakly coherent.

Proof. Let qC P QStkPStpXq be as in Proposition 10.3.3.5. Then the canonical map λ : qC Ñ C
induces an equivalence of completions. It follows from Corollary C.6.5.5 that qC is weakly
coherent, so that Lemma 10.3.3.8 implies that ΓpX; qCq is anticomplete and weakly coherent.
Since the induced map QCohpX; qCq Ñ QCohpX; Cq also induces an equivalence of completions,
Corollary C.6.5.5 guarantees that QCohpX; Cq is also weakly coherent.

10.3.4 Complicial Quasi-Coherent Stacks

Let X be a spectral Deligne-Mumford stack and let QCohpXq denote the 8-category of
quasi-coherent sheaves on X. Then QCohpXq is equipped with a t-structure, whose heart
QCohpXq♥ is the abelian category of quasi-coherent sheaves on the underlying ordinary
Deligne-Mumford stack of X (see §2.2.6). Using Theorem C.5.4.9, we see that the inclusion
QCohpXq♥ ãÑ QCohpXq admits an essentially unique extension to a colimit-preserving
t-exact functor

F : DpQCohpXq♥q Ñ QCohpXq.

We now consider the following:

Question 10.3.4.1. Let X be a spectral Deligne-Mumford stack. Under what conditions can
we assert that the functor F : DpQCohpXq♥q Ñ QCohpXq is an equivalence of 8-categories?

In the special case where X is schematic and 0-truncated, Question 10.3.4.1 was studied
by Bökstedt and Neeman. In this case, X can be identified with an ordinary scheme pX,OXq,
and the 8-category QCohpXq can be identified with the full subcategory DqcpMod♥

OX
q Ď

DpMod♥
OX
q spanned by chain complexes of OX -modules having quasi-coherent cohomology
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sheaves. Under the assumption that X is quasi-compact and separated, Bökstedt and
Neeman show that DqcpMod♥

OX
q can be recovered as the derived 8-category of its heart.

Our goal in this section is formulate and prove a relative version of the Bökstedt-Neeman
result (we recover a slight variant of their result as Corollary 10.3.4.13 below). We begin by
noting that for any spectral Deligne-Mumford stack X, the t-structure on QCohpXq is right
and left complete and compatible with filtered colimits (Proposition 2.2.5.4). Using Remark
C.5.4.11, we can reformulate Question 10.3.4.1 as follows:

Question 10.3.4.2. Let X be a spectral Deligne-Mumford stack. Under what conditions
can we assert that the Grothendieck prestable 8-category QCohpXqcn is 0-complicial (see
Definition C.5.3.1)?

Question 10.3.4.2 is an instance of the following more general question:

Question 10.3.4.3. Let X be a spectral Deligne-Mumford stack, let C be a quasi-coherent
stack on X, and let n ě 0 be an integer. Under what conditions can we assert that the
Grothendieck prestable 8-category QCohpX; Cq is n-complicial?

To address Question ??, we will need to introduce some terminology.

Definition 10.3.4.4. Let X be a spectral Deligne-Mumford stack, let n ě 0 be an integer,
and let C be a prestable quasi-coherent stack on X.

p1q We will say that C is weakly n-complicial if, for every étale morphism η : SpétAÑ X,
the A-linear 8-category Cη is weakly n-complicial.

p2q Assume that C is either separated or anticomplete. We will say that C is n-complicial if,
for every étale morphism η : SpétAÑ X, the A-linear 8-category Cη is n-complicial.

Warning 10.3.4.5. We do not know if the condition that a prestable A-linear 8-category
C is n-complicial can be tested locally with respect to the étale topology on A. However,
this is true if we restrict our attention to prestable A-linear 8-categories which are either
anticomplete or separated (Corollary D.5.7.3), which is why these conditions appear in part
p2q of Definition 10.3.4.4.

Remark 10.3.4.6. Let f : X Ñ Y be flat morphism of spectral Deligne-Mumford stacks
and let C be a prestable quasi-coherent stack on Y.

piq If C is weakly n-complicial, then f˚ C is weakly n-complicial.

piiq If C is separated and n-complicial, then f˚ C is separated and n-complicial.

piiiq If the diagonal map δ : X Ñ XˆY X has finite Tor-amplitude and C is anticomplete
and n-complicial, then f˚ C is anticomplete and n-complicial.
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In particular, if f is étale and C is weakly n-complicial (separated and n-complicial, anticom-
plete and n-complicial), then f˚ C is also weakly n-complicial (separated and n-complicial,
anticomplete and n-complicial). The converse holds if f is an étale surjection (see Proposition
10.3.0.3).

Remark 10.3.4.7. Let A be a connective E8-ring and let C be a prestable A-linear 8-
category. Then C is weakly n-complicial (separated and n-complicial, anticomplete and
n-complicial) when regarded as a Grothendieck prestable8-category if and only if it is weakly
n-complicial (separated and n-complicial, anticomplete and n-complicial) when regarded as
a prestable quasi-coherent stack on SpétA.

Example 10.3.4.8. Let X be a spectral Deligne-Mumford stack and let Qcn
X be the unit

object of QStkPStpXq (see Example 10.1.6.2). The following conditions are equivalent (see
Proposition C.5.5.15):

piq The structure sheaf OX is n-truncated.

piiq The quasi-coherent stack Qcn
X is weakly n-complicial.

piiiq The quasi-coherent stack Qcn
X is separated and n-complicial.

Proposition 10.3.4.9. Let X be a spectral Deligne-Mumford stack, let C be a prestable
quasi-coherent stack on X, and let n ě 0 be an integer. If X is geometric, then C is weakly
n-complicial if and only if the 8-category QCohpX; Cq is weakly n-complicial.

Proof. Using Remark C.5.5.14, we can replace C by its completion pC and thereby reduce to
the case where C is complete. In this case, Proposition 10.3.4.9 is a special case of Proposition
10.4.6.6, which we will discuss in §10.4.

Proposition 10.3.4.10. Let X be a quasi-compact, quasi-separated spectral algebraic space,
let C be a prestable quasi-coherent stack on X, and let n ě 0. Assume that the diagonal
map δ : X Ñ XˆX is affine. Then C is anticomplete and n-complicial if and only if the
Grothendieck prestable 8-category QCohpX; C is anticomplete and n-complicial.

Proof. Combine Propositions C.5.5.16, 10.3.3.7, and 10.3.4.9.

Proposition 10.3.4.11. Let X be a geometric spectral Deligne-Mumford stack, let C be a
prestable quasi-coherent stack on X, and let n ě 0. Then:

p1q If QCohpX; Cq is separated and n-complicial, then C is separated and n-complicial.

p2q If X is a quasi-compact, quasi-separated spectral algebraic space and C is separated and
n-complicial, then QCohpX; Cq is separated and n-complicial.
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Proof. We first prove p1q. Assume that QCohpX; Cq is separated and n-complicial. Applying
Proposition 10.3.1.8, we deduce that C is separated. To complete the proof, it will suffice to
show that for every étale morphism η : SpétAÑ X, the prestable A-linear 8-category Cη is
n-complicial. Set A “ η˚OSpétA P CAlgpQCohpXqcnq, so that Proposition 10.2.4.2 supplies
an equivalence Cη » LModA pQCohpX; Cqq. Let X be an object of Cη, which we will identify
with an A -module object of QCohpX; Cq. Our assumption that QCohpX; Cq is n-complicial
guarantees that there exists a morphism u : Y Ñ X in QCohpX; Cq which is surjective
on π0, where Y is n-truncated. Extending scalars, we can identify u with a morphism
u1 : A bY Ñ X whose domain is also n-truncated (since A P QCohpXqcn is flat) which is
also an epimorphism on π0. Allowing X to vary, we conclude that Cη » LModA pQCohpX; Cqq
is n-complicial, which completes the proof of p1q.

We now prove p2q. Assume that C is separated and n-complicial. Let λ : qC Ñ C be
as in Proposition 10.3.3.5 and qC

sep denote the separated quotient of qC (see Proposition
10.3.1.11). Applying Remark C.5.5.14, we deduce that qC is weakly n-complicial. Since
qC is anticomplete, it follows from Proposition C.5.5.16 that qC is n-complicial. Applying
Proposition C.5.3.3, we see that qC

sep is n-complicial. Because C is separated, the map λ

factors as a composition qC Ñ qC
sep µ
ÝÑ C. The domain and codomain of µ are both separated

and n-complicial. Since µ induces an equivalence of completions, it follows from Proposition
C.5.3.9 that µ is an equivalence: that is, the map λ exhibits C as the separated quotient
of qC. Passing to global sections, we obtain an equivalence QCohpX; Cq » QCohpX; qCqsep. It
follows from Proposition 10.3.4.10 that the 8-category QCohpX; qCq is n-complicial, so that
QCohpX; Cq is also n-complicial by virtue of Proposition C.5.3.3. We conclude the proof by
observing that QCohpX; Cq is also separated (Proposition 10.3.1.8).

Specializing to the case C “ Qcn
X , we obtain the following:

Corollary 10.3.4.12. Let X be a spectral Deligne-Mumford stack. Then:

p1q If X is geometric, then the structure sheaf OX is n-truncated if and only if the
Grothendieck prestable 8-category QCohpXqcn is weakly n-complicial.

p2q If X is a geometric spectral algebraic space, then the structure sheaf OX is n-truncated
if and only if the Grothendieck prestable 8-category QCohpXqcn is n-complicial.

Proof. Combine Example 10.3.4.8, Proposition 10.3.4.9, and Proposition 10.3.4.11.

Specializing to the case n “ 0, we obtain the following:

Corollary 10.3.4.13. Let X be a spectral Deligne-Mumford stack. Then:

p1q If X is 0-truncated and geometric, then the inclusion QCohpXq♥ ãÑ QCohpXq extends
to a t-exact equivalence pDpQCohpXq♥q » QCohpXq.
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p2q If X is a 0-truncated geometric spectral algebraic space, then the inclusion QCohpXq♥ ãÑ

QCohpXq extends ot an equivalence DpQCohpXq♥q » QCohpXq.

Remark 10.3.4.14. In the special case where X is schematic and separated, part p2q of
Corollary 10.3.4.13 was proven by Bökstedt and Neeman; see [29].

Proof of Corollary 10.3.4.13. Note that for any spectral Deligne-Mumford stack X, the
t-structure on QCohpXq is both left and right complete (Proposition 2.2.5.4). Assertion
p1q now follows from Corollaries 10.3.4.12 and C.5.9.7, while p2q follows from Corollaries
10.3.4.12 and C.5.8.11.

10.4 Complete Quasi-Coherent Stacks

Let X be a quasi-compact, quasi-separated spectral algebraic space. According to
Theorem 10.2.0.2, the global sections functor C ÞÑ QCohpX; Cq establishes an equivalence
between quasi-coherent stacks on X and Grothendieck prestable 8-categories equipped with
an action of QCohpXqcn. Our goal in this section is to establish an analogous result in the
case where X is replaced by a geometric stack X : CAlgcn Ñ S (Definition 9.3.0.1). More
precisely, we will prove (Theorem 10.4.2.3) that for every geometric stack X, the following
data are equivalent:

• Prestable quasi-coherent stacks on X which are complete (Definition 10.3.1.3).

• Complete Grothendieck prestable8-categories C equipped with an action of QCohpXqcn,
having the additional property that tensor product with any flat object of QCohpXqcn

determines a left exact functor from C to itself.

This equivalence can be regarded as a categorification of the fact that for an affine scheme
X, the category of quasi-coherent sheaves on X is equivalent to the category of modules over
the commutative ring ΓpX; OXq. However, our result requires a much weaker hypothesis:
we need affineness only for the diagonal X Ñ X ˆX, rather than for X itself.

10.4.1 The Global Sections Functor

Let S denote the sphere spectrum. For any functor X : CAlgcn Ñ S, the projection map
q : X Ñ SpecS induces a pullback functor

Groth8 » QStkPStpSpecSq q˚
ÝÑ QStkPStpXq.

When X is representable by a spectral Deligne-Mumford stack, Construction 10.1.7.1 shows
that this pullback functor admits a right adjoint QCohpX; ‚q : QStkPStpXq Ñ Groth8. We
would like to prove an analogous assertion in the case where X is a quasi-geometric stack.
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Here we encounter a technical obstacle: if X is representable by a Deligne-Mumford stack,
then we can use an étale surjection u : SpecA Ñ X and étale descent for Grothendieck
prestable 8-categories (Theorem D.4.1.2) to reduce to the case where X is affine. If X
is assumed only to be a quasi-geometric stack, then we can choose a faithfully flat map
u : SpecA Ñ X, but we generally cannot arrange that u is étale. We do not know if
the theory of Grothendieck prestable 8-categories satisfies descent for the flat topology.
Consequently, we will restrict our attention to complete Grothendieck prestable 8-categories
(where the requisite descent property follows from Proposition D.6.6.2).

Remark 10.4.1.1. The completeness hypotheses we use in this section can be removed if
we are willing to impose some mild additional hypotheses on X, like the requirement that
X admits a map u : SpecA Ñ X which both is faithfully flat and locally almost of finite
presentation (this condition is satisfied, for example, if X is obtained from an Artin stack in
classical algebraic geometry): in this case, we can use Theorem D.4.1.6 as a replacement for
Theorem D.4.1.2. However, completeness assumptions will be needed again to characterize
the essential image of the global sections functor QCohpX; ‚q (Theorem 10.4.2.3).

Notation 10.4.1.2. For each functor X : CAlgcn Ñ pS, we let QStkcomppXq denote the full
subcategory of QStkPStpXq spanned by the complete prestable quasi-coherent stacks on
X. It follows from Remark ?? that we can regard the construction X ÞÑ QStkcomppXq as
defining a functor QStkcomp : FunpCAlgcn, pSqop ÑyCat8.

Remark 10.4.1.3. Using Lemma 6.2.1.13, we see that the functor QStkcomp can be regarded
as a right Kan extension of the functor

CAlgcn ÑyCat8 A ÞÑ LinCatcomp
A

along the Yoneda embedding j : FunpCAlgcn, pSqop. Since the functor A ÞÑ LinCatcomp
A is a

sheaf with respect to the fpqc topology (Theorem D.6.8.1), it follows that the construction
QStkcomp factors through the formation of sheafification for the fpqc topology. In other
words, if f : X Ñ Y is a natural transformation between functors X,Y : CAlgcn Ñ pS
which induces an equivalence after sheafification with respect to the fpqc topology, then the
pullback functor f˚QStkcomppY q Ñ QStkcomppXq is an equivalence of 8-categories.

Proposition 10.4.1.4. Let X : CAlgcn Ñ S be a quasi-geometric stack, let S denote the
sphere spectrum, and let q : X Ñ SpecS be the projection map. Then the pullback functor

q˚ : Grothcomp
8 » QStkcomppSpétSq Ñ QStkcomppXq

admits a right adjoint QCohpX; ‚q : QStkcomppXq Ñ Grothcomp
8 .



916 CHAPTER 10. QUASI-COHERENT STACKS

Proof. Let X be a geometric stack and let q : X Ñ SpecS be the projection map. Fix an
object C P QStkcomppXq. We wish to show that the functor

F : Grothcomp
8 Ñ pS E ÞÑ MapQStkcomppXqpq

˚ E , Cq

is representable by an object of Grothcomp
8 . Choose a faithfully flat map f0 : U0 Ñ X

where U0 » SpecA0 is affine and let U‚ denote the Čech nerve of f0. For each n ě 0, let
fn : Un Ñ X be the tautological map and let Fn : Grothcomp

8 Ñ pS denote the functor given
by

E ÞÑ MapQStkcomppUnqpf
˚
nq
˚ E , f˚n Cq.

Note that each Fn is representable by the complete Grothendieck prestable 8-category
QCohpUn; f˚n Cq of Construction 10.1.7.1.

Since the natural map |U‚| Ñ X is an equivalence after sheafification for the fpqc topology,
the 8-category QStkcomppXq can be identified with the totalization of the cosimplicial 8-
category QStkcomppU‚q (see Remark 10.4.1.3), so that F » lim

ÐÝrnsP∆ Fn. Consequently, to
show that F is representable, it will suffice to show that the cosimplicial object rns ÞÑ
QCohpUn; f˚n Cq admits a limit in the 8-category Grothcomp

8 . Using the right cofinality of the
inclusion ∆s ãÑ ∆ (Lemma HTT.6.5.3.7 ) and the fact that Grothcomp

8 is closed under limits
in Groth8 (Proposition C.3.6.3), it will suffice to show that the underlying cosemisimplicial
object of Groth8 admits a limit. Note that if α : rms Ñ rns is a morphism in ∆`, then
the associated map Un Ñ Um is flat (since it is a composition of pullbacks of the flat map
f0 : U0 Ñ Xq, so that the associated pullback functor QCohpUm; f˚m Cq Ñ QCohpUn; f˚n Cq
is left exact (Corollary 10.1.7.10). It follows that the construction rns ÞÑ QCohpUn; f˚n Cq
determines a functor from ∆s to the subcategory Grothlex

8 Ď Groth8 of Notation C.3.2.3, so
the existence of the limit lim

ÐÝ
QCohpU‚; f˚‚ Cq follows from Proposition C.3.2.4.

Example 10.4.1.5. Let X be a geometric stack and C be a complete quasi-coherent stack
on X. The proof of Proposition 10.4.1.4 shows that the 8-category QCohpX; Cq can be
identified with the totalization lim

ÐÝ
QCohpU‚; f˚‚ Cq, where f‚ : U‚ Ñ X is the Čech nerve of

any faithfully flat map f0 : U0 “ SpecAÑ X. Taking C “ Qcn
X , we obtain an equivalence of

8-categories

QCohpX;Qcn
X q » lim

ÐÝ
QCohpU‚;Qcn

U‚q “ lim
ÐÝ

QCohpU‚qcn » QCohpXqcn.

10.4.2 Recovering C from QCohpX; Cq

Let A be a connective E8-ring and let LinCatcomp
A denote the 8-category of complete

A-linear prestable 8-categories. Then the inclusion LinCatcomp
A ãÑ LinCatPSt

A admits a
left adjoint L, given by the completion functor of Proposition C.3.6.3. This left adjoint
is compatible with the symmetric monoidal structure of Remark D.2.3.1 (in the sense of
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Definition HA.2.2.1.6 ). It follows that LinCatcomp
A inherits a symmetric monoidal structure,

whose tensor product pC,Dq ÞÑ C pbAD is the completion of the usual A-linear tensor product
CbAD (in the special case where A is the sphere spectrum, this is the completed tensor
product of Warning C.4.6.3). We can therefore regard the construction A ÞÑ LinCatcomp

A as a
functor from the 8-category CAlgcn of connective E8-rings to the 8-category CAlgpyCat8q
of (not necessarily small) symmetric monoidal 8-categories.

Construction 10.4.2.1. [Completed Tensor Products of Quasi-Coherent Stacks] The con-
struction X ÞÑ QStkcomppXq of Notation 10.4.1.2 can be regarded as a right Kan extension
of the functor A ÞÑ LinCatcomp

A along the Yoneda embedding CAlgcn ãÑ FunpCAlgcn, pSqop.
Since the forgetful functor CAlgpyCat8q ÑyCat8 commutes with limits, it commutes with the
formation of right Kan extensions along j. Consequently, for every functor X : CAlgcn Ñ pS,
we can regard QStkcomppXq as a symmetric monoidal 8-category.

Remark 10.4.2.2. LetX : CAlgcn Ñ pS be any functor. The tensor product on QStkcomppXq

is computed “pointwise” in the following sense: for every connective E8-ring A and ev-
ery point η P XpAq, we have a canonical equivalence of A-linear 8-categories pCbDqη »
Cη pbADη for any pair of complete prestable quasi-coherent stacks C,D P QStkcomppXq.

Suppose now that X is a quasi-geometric stack and let q : X Ñ SpecS be as in
Proposition 10.4.1.4. Then the pullback functor q˚ : Grothcomp

8 » QStkcomppSpecSq Ñ
QStkcomppXq is symmetric monoidal. It follows that the global sections functor QCohpX; ‚q :
QStkcomppXq Ñ Grothcomp

8 is lax symmetric monoidal. Consequently, we can promote the
functor QCohpX; ‚q to a functor

QStkcomppXq » ModQcn
X
pQStkcomppXqq

QCohpX;‚q
ÝÝÝÝÝÝÑ ModQCohpX;Qcn

X q
pGrothcomp

8 q

» ModQCohpXqcnpGrothcomp
8 q.

We will abuse notation by denoting this functor also by C ÞÑ QCohpX; Cq. We can describe
the situation more informally as follows: for every complete quasi-coherent stack C on X,
the 8-category QCohpX; Cq of global sections of C is tensored over 8-category QCohpXqcn

of connective quasi-coherent sheaves on X, and the action

QCohpXqcn ˆQCohpX; Cq Ñ QCohpX; Cq

preserves small colimits separately in each variable. We can now formulate the main result
of this section (which we will prove in §10.4.4):

Theorem 10.4.2.3. Let X be a geometric stack. Then the global sections functor

QCohpX; ‚q : QStkcomppXq Ñ ModQCohpXqcnpGrothcomp
8 q
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is fully faithful. Moreover, for an object E P ModQCohpXqcnpGrothcomp
8 q, the following condi-

tions are equivalent:

piq The 8-category E belongs to the essential image of the functor QCohpX; ‚q.

piiq For every flat quasi-coherent sheaf F P QCohpXq, the construction E ÞÑ F bE

determines a left exact functor from E to itself.

piiiq There exists a faithfully flat map η : SpecA Ñ X for which the construction E ÞÑ

F bE determines a left exact functor from E to itself, where F P QCohpXqcn is the
cofiber of the unit map OX Ñ η˚OSpecA.

10.4.3 Digression: Module Objects of Prestable 8-Categories

Our proof of Theorem 10.4.2.3 will use the following general observation about Grothendieck
prestable 8-categories:

Proposition 10.4.3.1. Let C and D be presentable 8-categories and suppose that we are
given a functor G : D Ñ C which is conservative and preserves small limits and colimits. If
C is a Grothendieck prestable 8-category, then so is D. Moreover, if C is stable (separated,
complete), then so is D.

Example 10.4.3.2. Let C be a Grothendieck prestable 8-category which is tensored over
a monoidal 8-category A. Suppose that A is an algebra object of A and that the functor

pC P Cq ÞÑ pAb C P Cq

commutes with small colimits. Then the forgetful functor LModApCq Ñ C is conservative
and preserves small limits and colimits (see Corollaries HA.4.2.3.3 and HA.4.2.3.5 ). It
follows from Proposition 10.4.3.1 that LModApCq is a Grothendieck prestable 8-category,
which is complete (separated, stable) whenever C is complete (separated, stable).

Remark 10.4.3.3. Proposition 10.4.3.1 can be deduced from Example 10.4.3.2: ifG : D Ñ C
is a functor between presentable 8-categories which preserves small limits and colimits,
then G admits a left adjoint F : C Ñ D. It follows that the composition T “ G ˝ F can be
regarded as an algebra object of the monoidal8-category FunpC, Cq. If G is conservative then
Theorem HA.4.7.3.5 supplies an equivalence D » LModT pCq under which G corresponds to
the forgetful functor LModT pCq Ñ C.

Proof of Proposition 10.4.3.1. Assume that C is a Grothendieck prestable 8-category. We
first prove that D is pointed. Let H and 1 denote initial and final objects of D, respectively,
so that there is an essentially unique map α : HÑ 1 in D. We wish to prove that α is an
equivalence. Since G preserves small limits and colimits, it preserves initial and final objects,
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so that Gpαq is a morphism from an initial object of C to a final object of C. Because C
is pointed, it follows that Gpαq is an equivalence. Since the functor G is conservative, it
follows that α is an equivalence.

We next claim that that the suspension functor ΣD : D Ñ D is fully faithful. Let D be
an object of D and let u : D Ñ ΩDΣDD be the unit map. Since the functor G commutes
with limits and colimits, we can identify Gpuq with the unit map GpDq Ñ ΩCΣCGpDq, which
is an equivalence by virtue of prestability of C. Since G is conservative, it follows that u is
an equivalence.

We now complete the proof that D is prestable by verifying condition pcq of Definition
??. Suppose we are given a morphism f : Y Ñ ΣDZ in the 8-category D. We can then
form a pullback diagram σ :

X //

��

Y

��
0 // ΣDZ.

Since G commutes with finite colimits, we can identify Gpσq with a diagram

GpXq //

��

GpY q

��
0 // ΣCGpZq.

Since G commutes with finite limits, the diagram Gpσq is a pullback square. Using the
prestability of C, we conclude that Gpσq is also a pushout square. Because G is conservative
and commutes with pushouts, it follows that σ is a pushout square in D. This completes
the proof that D is prestable.

We now claim that D is a Grothendieck prestable 8-category: that is, that filtered
colimits in D are left exact. Let K be a finite simplicial set and let lim

ÐÝK
: FunpK,Dq Ñ D

be a right adjoint to the diagonal map; we wish to show that lim
ÐÝK

commutes with filtered
colimits. Since the functor G is conservative and commutes with filtered colimits, it will

suffice to show that the composite functor FunpK,Dq
lim
ÐÝK
ÝÝÝÑ D G

ÝÑ C commutes with filtered
colimits. Because G commutes with finite limits, this functor also factors as a composition
FunpK,Dq G˝

ÝÝÑ FunpK, Cq Ñ C, which commutes with filtered colimits because G commutes
with all colimits and filtered colimits in C are left exact.

Suppose that C is stable; we wish to show that D is also stable. Equivalently, we wish to
show that for each object D P D, the counit map v : ΣDΩDD Ñ D is an equivalence. Since
the functor G commutes with limits and colimits, we can identify Gpvq with the counit map
ΣCΩCGpDq Ñ GpDq, which is an equivalence by virtue of the stability of C. Because G is
conservative, we conclude that v is also an equivalence, as desired.
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Suppose now that C is separated; we wish to prove that D is also separated. Fix an
object D P D satisfying τďnD » 0 for each n ě 0; we wish to prove that D » 0. For each
integer n ě 0, we have a cofiber sequence Dąn Ñ D Ñ τďnD in the 8-category D, where
Dąn belongs to the essential image of the iterated suspension functor Σn`1

D . Because the
functor G commutes with suspension, the object GDąn belongs to the essential image of
Σn`1

C . Because G is left exact, the object GpτďnDq P C is n-truncated. It follows that the
cofiber sequence GDąn Ñ GD Ñ GpτďnDq exhibits GpτďnDq as the n-truncation of the
object GD P C. Consequently, if τďnD vanishes in D for each n ě 0, then τďnGD vanishes in
C for each n ě 0. The separatedness of C then implies that GD » 0, and the conservativity
of G implies that D » 0.

Assume now that C is complete; we wish to prove that D is also complete. Suppose we
are given a tower

¨ ¨ ¨ Ñ Dp2q Ñ Dp1q Ñ Dp0q

be a tower of objects of D which exhibits each Dpnq as the n-truncation of Dpn` 1q, and set
D “ lim

ÐÝ
Dpnq. We wish to show that each of the maps D Ñ Dpnq induces an equivalence

τďnD Ñ Dpnq. By virtue of the fact that G is conservative, it will suffice to show that
the underlying map GpτďnDq Ñ GpDpnqq is an equivalence in C. The preceding argument
shows that the functor G commutes with n-truncation, so it will suffice to show that the
natural map D Ñ Dpnq exhibits GpDpnqq as an n-truncation of GpDq. This follows from
the completeness of C, because we can identify GpDq with the limit of the Postnikov tower

¨ ¨ ¨ Ñ GpDp2qq Ñ GpDp1qq Ñ GpDp0qq

in the 8-category C.

10.4.4 The Proof of Theorem 10.4.2.3

Let X be a geometric stack and let C P ModQCohpXqcnpGroth8q be a Grothendieck
prestable 8-category equipped with an action of QCohpXqcn. For every connective E8-ring
A and every point η P XpAq, let Cη denote the tensor product Modcn

A bQCohpXqcn C, formed
in the 8-category PrL of presentable 8-categories. Our assumption that X is a geometric
stack guarantees that η is an affine morphism, so that we can identify Modcn

A with the
8-category ModA pQCohpXqcnq where A P CAlgpQCohpXqcnq denotes the direct image of
the structure sheaf of SpétA. Applying Theorem HA.4.8.4.6 , we obtain an equivalence
Cη » LModA pCq. It follows from Example 10.4.3.2 that Cη is an (A-linear) Grothendieck
prestable 8-category, which is complete (separated, stable) if C is complete (separated,
stable). In particular, the construction C ÞÑ tCηuηPXpAq determines a functor

Φcomp
X : ModQCohpXqcnpGrothcomp

8 q Ñ QStkcomppXq.
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It is not difficult to see that the functor Φcomp
X is left adjoint to the global sections functor

QCohpX; ‚q : QStkcomppXq Ñ ModQCohpXqcnpGrothcomp
8 q.

Proof of Theorem 10.4.2.3. Let X be a geometric stack and choose a faithfully flat map
η : U0 Ñ X, where U0 » SpecA is affine. We first claim that the global sections functor

QCohpX; ‚q : QStkcomppXq Ñ ModQCohpXqcnpGrothcomp
8 q

is fully faithful. Let C be a complete quasi-coherent stack on X; we wish to show that
the counit map v : Φcomp

X QCohpX; Cq Ñ C is an equivalence of quasi-coherent stacks on X.
Since η is an effective epimorphism of fpqc sheaves, it will suffice to show that η˚pvq is an
equivalence (see Remark 10.4.1.3). Unwinding the definitions, we wish to prove that the
canonical map θ : Modcn

A bQCohpXqcn QCohpX; Cq Ñ Cη is an equivalence of A-linear prestable
8-categories. Let U‚ denote the Čech nerve of η, and for each n ě 0 let fn : Un Ñ X be
the canonical map. Then the proof of Proposition 10.4.1.4 supplies a canonical equivalence
QCohpX; Cq » lim

ÐÝ
QCohpU‚; f˚‚ Cq.

Set A “ η˚OU0 P CAlgpQCohpXqcnq. Since X is a geometric stack, the map η is affine
and we can identify Modcn

A with the 8-category ModA pQCohpXqcnq. It follows that Modcn
A

is self-dual as an object of the 8-category ModQCohpXqcnpGrothcomp
8 q, so that the formation of

tensor products with Modcn
A commutes with limits. We therefore have canonical equivalences

Modcn
A bQCohpXqcn QCohpX; Cq » LModA pQCohpX; Cqq

» lim
ÐÝ

LModA pQCohpU‚; f˚‚ Cqq
» QCohpU‚`1; f˚‚`1 Cq.

The statement that θ is an equivalence now follows from the observation that the augmented
simplicial object QCohpU‚`1; f˚‚`1 Cq is split.

We next show that for every complete quasi-coherent stack C P QStkcomppXq, the 8-
category QCohpX; Cq satisfies condition piiq of Theorem 10.4.2.3: that is, for every flat
object F P QCohpXqcn, the functor

F : QCohpX; Cq Ñ QCohpX; Cq E ÞÑ F bE

is left exact. For each n ě 0, we can write Un » SpecAn for some connective E8-ring An.
The proof of Proposition 10.4.1.4 shows that we can identify QCohpX; Cq with the totalization
of the cosemisimplicial object prns P ∆sq ÞÑ QCohpU‚; f˚‚ Cq of the 8-category Grothlex

8 . It
will therefore suffice to show that for each n ě 0, tensor product with f˚n F P QCohpUnqcn

induces a left exact functor from f˚n C to itself, where we regard f˚n C as a prestable An-linear
8-category. Since F is flat, the pullback f˚n F is a flat An-module and can therefore be
written as a filtered colimit lim

ÝÑ
Mα, where each Mα is a free An-module of finite rank.

Because f˚n C is a Grothendieck prestable 8-category, filtered colimits in f˚n C are left exact.
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It will therefore suffice to show that for each index α, tensor product with Mα determines a
left exact functor from f˚n C to itself. This is clear: the formation of tensor product with Mα

preserves all small limits (since it admits a right adjoint, given by tensor product with the
A-linear dual M_

α ).
The implication piiq ñ piiiq of Theorem 10.4.2.3 is clear. We will complete the proof by

showing that piiiq ñ piq. Let E be a complete Grothendieck prestable 8-category equipped
with an action of QCohpXqcn which satisfies the following condition:

p˚q Let F P QCohpXqcn denote the cofiber of the unit map OX Ñ A . Then the
construction E ÞÑ F bE determines a left exact functor from E to itself.

We wish to show that E belongs to the essential image of the global sections functor

QCohpX; ‚q : QStkcomppXq Ñ ModQCohpXqcnpGrothcomp
8 q.

Equivalently, we show that if E satisfies condition p˚q, then the unit map u : E Ñ
QCohpX; Φcomp

X Eq is an equivalence of 8-categories.
For each n ě 0, let A n P CAlgpQCohpXqcnq denote the direct image of the structure sheaf

of Un, so that f˚nΦcomp
X E can be identified with the 8-category En “ LModA npEq. Let us

regard A ‚ as an augmented cosimplicial object of CAlgpQCohpXqcnq by taking A ´1 “ OX ,
so that E´1 “ E . The proof of Proposition 10.4.1.4 then supplies an identification of
QCohpX; Φcomp

X Eq with the totalization of the underlying cosemisimplicial object of E‚.
Under this identification, the functor u is given by the natural map E´1 Ñ lim

ÐÝrnsP∆s
En is

an equivalence in the 8-category ModQCohpXqcnpGroth8q. Using Corollary HA.4.2.3.3 and
Proposition C.3.2.4, we see that this is equivalent to the assertion that E´1 is a limit of
the diagram tEnurnsP∆s

in yCat8. Let F : E “ E´1 Ñ E0 “ LModA pEq be the functor given
E ÞÑ A bE. Since the augmented cosimplicial 8-category E‚ satisfies the Beck-Chevalley
condition of Corollary HA.4.7.5.3 , we are reduced to proving the following concrete assertions:

paq The functor F is conservative.

pbq The functor F : E Ñ LModA pEq preserves limits of F -split cosimplicial objects.

To prove paq, it suffices to show that if E P E and F pEq » 0, then E » 0. Note that
condition p˚q implies that F is t-exact, so that F pπnEq » 0 for each integer n ě 0. Condition
p˚q then supplies a short exact sequence

0 Ñ πnE Ñ πnF pEq Ñ πnpF bEq Ñ 0

in the abelian category E♥. It follows that πnE » 0 for all n, so that E » 0 by virtue of our
assumption that E is complete.

We now prove pbq. Assumption p˚q guarantees that tensor product with A determines a
left exact functor from E to itself, which restricts to an exact functor T from the abelian
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category E♥ to itself. Similarly, tensor product with F determines an exact functor T 1 from
E♥ to itself, and we have an exact sequence of functors

0 Ñ id Ñ T Ñ T 1 Ñ 0

In particular, the functor T is conservative (as noted in our proof of paq).
Let E‚ be an F -split cosimplicial object of E . Then A bE‚ is a split cosimplicial object

of E . For every integer n, we obtain a cosimplicial object πnE‚ of the abelian category E♥,
which has an associated cochain complex

πnE
0 dn
Ñ πnE

1 Ñ πnE
2 Ñ ¨ ¨ ¨

After applying the functor T , this cochain complex becomes a split exact resolution of
πn lim
ÐÝ
pA bE‚q. Since T is exact and conservative, we conclude that the cochain complex

above is acyclic in positive degrees. Let E “ lim
ÐÝ

E‚; since E is complete, Corollary
HA.1.2.4.12 guarantees that the map E Ñ E0 induces an isomorphism πnE » kerpdnq for
each n ě 0 (in the abelian category E♥). We claim that the induced map F pEq Ñ lim

ÐÝ
F pE‚q

is an equivalence: in other words, that A bE » lim
ÐÝ
pA bE‚q. Because the prestable 8-

category E is separated, it will suffice to show that the induced map T pπnEq » πnpA bEq Ñ

πn lim
ÐÝ
pA bE‚q is an equivalence for each integer n. This follows immediately from Corollary

HA.1.2.4.12 and the exactness of the functor T .

10.4.5 Geometric Stacks with the Resolution Property

Let X : CAlgcn Ñ S be a geometric stack. Then Theorem 10.4.2.3 supplies a fully
faithful embedding QCohpX; ‚q : QStkcomppXq ãÑ ModQCohpXqcnpGrothcomp

8 q. In this section,
we consider two special cases in which we can prove that this functor is an equivalence of
8-categories:

Theorem 10.4.5.1. Let X be a geometric stack which either has the resolution property
(Definition 9.3.3.2) or is locally Noetherian (Definition 9.5.1.1). Then the global sections
functor

QCohpX; ‚q : QStkcomppXq Ñ ModQCohpXqcnpGrothcomp
8 q

of §10.4.2 is an equivalence of 8-categories.

Theorem 10.4.5.1 is an immediate consequence of Theorem 10.4.2.3 together with the
following pair of results:

Proposition 10.4.5.2. Let X be a geometric stack with the resolution property, let f :
SpecA Ñ X be a faithfully flat morphism, and let F P QCohpXqcn be the cofiber of the
unit map OX Ñ f˚OSpecA. Suppose that E is a Grothendieck prestable 8-category which
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is tensored over QCohpXqcn, and that the action map b : QCohpXqcn ˆ E Ñ E preserves
small colimits separately in each variable. Then the construction E ÞÑ F bE determines a
left exact functor from E to itself.

Proposition 10.4.5.3. Let X be a locally Noetherian geometric stack, let E be a separated
Grothendieck prestable 8-category which is tensored over QCohpXqcn, and suppose that the
action map b : QCohpXqcn ˆ E Ñ E preserves small colimits separately in each variable.
Then, for any flat object F P QCohpXqcn, the construction E ÞÑ F bE determines a left
exact functor from E to itself.

Proof of Proposition 10.4.5.2. By virtue of Proposition C.3.2.1, it will suffice to show that
for every discrete object E P E , the tensor product F bE is also discrete. Note that we
can promote E to a module over the commutative algebra object π0 OX P QCohpXqcn.
Replacing E by LModπ0 OX pEq and X by its 0-truncation (see §9.1.6), we can reduce to the
case where X is 0-truncated.

Let C “ VectpXq ˆQCohpXq QCohpXq{f˚ OSpecA be the 8-category of vector bundles
G on X equipped with a map G Ñ f˚OSpecA. According to Lemma 9.3.4.13, the 8-
category C is filtered. The proof of Proposition 9.3.4.11 shows that the canonical map
lim
ÝÑG PC G Ñ f˚OSpecA is an equivalence. Let us abuse notation by regarding the structure
sheaf OX as an object of C (by equipping it with the unit map OX Ñ f˚OSpecA), so that
COX { is also a filtered 8-category and the projection map COX { Ñ C is left cofinal. For each
object G P COX {, let G 1 denote the cofiber of the map e : OX Ñ G . Note that f˚peq admits
a left homotopy inverse, so that f˚ G 1 is a direct summand of f˚ G . We can therefore write
F “ cofibpOX Ñ f˚OSpecAq as the colimit of a filtered diagram tG 1uG PCOX {

. Consequently,
to show that F bE is a discrete object of E , it will suffice to show that G 1bE is a discrete
object of E for each G 1 P VectpXq. This is clear: every object G 1 P VectpXq is dualizable as
an object of QCohpXqcn, so the functor E ÞÑ G 1bE preserves small limits (since it has a
left adjoint, given by E ÞÑ G 1_bE).

We now prove Proposition ?? using the strategy outlined in §9.5.4. The main step is the
following variant of Lemma 9.5.4.5:

Lemma 10.4.5.4. Let X be a 0-truncated geometric stack, let E be a complete Grothendieck
prestable 8-category which is tensored over QCohpXqcn, and suppose that the action map
b : QCohpXqcnˆE Ñ E preserves small colimits separately in each variable. Let α : F Ñ F 1

be a morphism in QCohpXqcn, where F is almost perfect and F 1 is flat. Then, for every
object E P E♥, the induced map αE : F bE Ñ F 1bE factors through an object of E♥.

Proof. We proceed as in the proof of Lemma 9.5.4.5. Let F_ “ MapQCohpXqpF ,OXq P

QCohpXq be defined as in §9.5.3. Since F is almost perfect, the structure sheaf OX is
0-truncated, and F 1 has Tor-amplitude ď 0, it follows from Corollary 9.5.3.6 that the
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canonical map ρ : F 1bF_ Ñ MapQCohpXqpF ,F 1q is an equivalence in QCohpXq. Let
G “ τě0 F_ denote the connective cover of F_. Since F 1 is flat, we can identify F 1bG

with the connective cover of F 1bF_. It follows that we can choose a map c : OX Ñ F 1bG

which is determined (uniquely up to homotopy) by the requirement that the composition

OX
c
ÝÑ F 1bG Ñ F 1bF_ ρ

ÝÑ MapQCohpXqpF ,F 1q

classifies α. The tautological pairing F_bF Ñ OX determines an “evaluation map”
e : G bF Ñ OX . Unwinding the definitions, we see that the composite map

F
cbid
ÝÝÝÑ F 1bG bF

idbe
ÝÝÝÑ F 1

is homotopic to α.
Let E be a discrete object of E . The construction pE1 P Eq ÞÑ MapEpG bE

1, Eq carries
colimits in E to limits in S, and is therefore representable by an object of E which we will
denote by MappG , Eq. The evaluation map e induces a morphism eE : G bF bE Ñ E,
which is classified by a morphism of R-modules β : F bE Ñ MappG , Eq. Let γ denote the
composite map

MappG , Eq cbid
ÝÝÝÑ F 1bG bMappG , Eq Ñ F 1bE.

Using the fact that pidbeq ˝ pc b idq is homotopic to α, we deduce that the composition
γ ˝ β is homotopic to αE . We conclude by observing that since E is discrete, the mapping
space MapEpG bE

1, Eq is discrete for each E1 P E , so that MappG , Eq is also discrete.

Proof of Proposition ??. Let X be a locally Noetherian geometric stack, let E be a separated
Grothendieck prestable 8-category which is tensored over QCohpXqcn, and suppose that
the action map b : QCohpXqcn ˆ E Ñ E preserves small colimits separately in each variable.
Let F be a flat object of QCohpXq. We wish to show that the functor E ÞÑ F bE is a left
exact functor from E to itself. To prove this, it will suffice to show that if E P E is discrete,
then F bE is also discrete (Proposition C.3.2.1).

Set A “ π0 OX . Since E is discrete, it admits the structure of a A -module object of E .
We may therefore replace E by LModA pEq (which is prestable and separated by virtue of
Example 10.4.3.2) and thereby reduce to the case where the action of QCohpXqcn on E factors
through an action of ModA pQCohpXqcnq » QCohpX0q

cn, where X0 is the 0-truncation of
X (see §9.1.6). Replacing X by X0 (and F by its restriction F |X0), we can reduce to the
case where X is 0-truncated.

Since X is 0-truncated and F P QCohpXq is flat, the sheaf F is also 0-truncated.
Invoking our assumption that X is locally Noetherian, we deduce that F can be written as a
filtered colimit lim

ÝÑ
Fα where each Fα P QCohpXq♥ is almost perfect (Proposition 9.5.2.3).

It follows that for each n ě 0, we have an equivalence πnpF bEq » lim
ÝÑα

πnpFαbEq in
the abelian category E♥. Lemma 9.5.4.5 implies that for n ą 0, the maps πnpFαbEq Ñ
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πnpF bEq vanish for each index α. It follows that πnpF bEq vanishes for n ą 0. Since E is
separated, this implies that F bE is discrete as desired.

We close this section by discussing a variant of Theorem 10.4.5.1.

Theorem 10.4.5.5. Let X be a geometric stack with the resolution property. Assume either
that X is n-truncated for some integer n ě 0 or that OX is a compact object of QCohpXq.
Then the global sections functor C ÞÑ QCohpX; Cq determines a fully faithful embedding

QCohpX; ‚q : QStkcomppXq Ñ ModVectpXqpyCat8q

whose essential image is spanned by those 8-categories E with an action of VectpXq which
satisfy the following conditions:

piq The 8-category E is a complete Grothendieck prestable 8-category.

piiq If 0 P VectpXq is a zero object, then 0b E is a zero object of E for each E P E.

piiiq For every diagram
F 1 //

��

F

��
0 // F 2

in VectpXq which is a cofiber sequence in QCohpXq and every object E P E, the
resulting diagram

F 1bE //

��

F bE

��
0 // F 2bE

is a cofiber sequence in E.

Proof. Let C “ FunπpVectpXqop,Sq be the 8-category of functors VectpXqop Ñ S which
preserve finite products. Then C is a complete Grothendieck prestable 8-category (see
Proposition C.1.5.7). Since the tensor product on VectpXq preserves finite direct sums in
each variable, there is an essentially unique symmetric monoidal structure on C for which the
tensor product b : Cˆ C Ñ C preserves small colimits separately in each variable and the
Yoneda embedding j : VectpXq Ñ C is symmetric monoidal. Moreover, composition with j

induces a fully faithful embedding ρ : ModCpGrothcomp
8 q Ñ ModVectpXqpyCat8q whose essential

image consists of those complete Grothendieck prestable 8-categories E with an action of
VectpXq for which the action map a : VectpXqˆE Ñ E preserves finite coproducts in the first
variable and small colimits in the second variable. Note that since every object F P VectpXq
is dualizable, this second condition is automatic: the construction E ÞÑ F bE automatically
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preserves small colimits, since it is left adjoint to the construction E ÞÑ F_bE. It follows
that the essential image of ρ can be characterized as those objects E P ModVectpXqpyCat8q
which satisfy conditions piq, piiq, and the following weaker version of piii1q:

piii1q For every diagram
F 1 //

��

F

��
0 // F 2

in VectpXq which is a split cofiber sequence in QCohpXq and every object E P E , the
associated diagram

F 1bE //

��

F bE

��
0 // F 2bE

is also a (split) cofiber sequence in E .

Note that the inclusion functor VectpXq Ñ QCohpXqcn is symmetric monoidal, and therefore
admits an essentially unique extension to a symmetric monoidal functor F : C Ñ QCohpXqcn

which preserves small colimits. To prove Theorem 10.4.5.5, we must show that composition
with F induces a fully faithful embedding

θ : ModQCohpXqcnpGrothcomp
8 q Ñ ModCpGrothcomp

8 q,

whose essential image is spanned by those C-modules E which satisfy condition piiiq.
For each m ě 0, let Grothm denote the 8-category of Grothendieck abelian pm ` 1q-

categories (see Definition C.5.4.1). Then Theorem C.5.4.8 supplies an equivalence of
8-categories Grothcomp

8 » lim
ÐÝm

Grothm. It follows that we can identify θ with the limit of a
tower of functors

θm : ModQCohpXqcn
ďm
pGrothmq Ñ Modτďm CpGrothmq.

Let e : VectpXq Ñ τďm C be the symmetric monoidal functor given by epF q “ τďmjpF q. To
complete the proof, it will suffice to show that each θm is a fully faithful embedding, whose
essential image is spanned by those Grothendieck abelian pm ` 1q-categories E equipped
with an action of τďm C for which the induced action of VectpXq on E (via the functor e)
satisfies condition piiiq.

For every commutative diagram σ :

F 1 //

��

F

��
0 // F 2
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in VectpXq which is a pushout square in QCohpXq, let fσ : cofibpepF 1q Ñ epF qq Ñ epF 1q be
the induced map in the 8-category τďm C. Let S be the collection of all morphisms in τďm C
having the form fσ. Unwinding the definitions, we see that an object E P Modτďm CpGrothmq
satisfies condition piiiq if and only if the induced map τďm C Ñ FunpE , Eq factors through
the localization S´1pτďm Cq. To complete the proof, it will suffice to show that the functor F
induces an equivalence S´1pτďm Cq Ñ QCohpXqcn

ďm, which is a reformulation of Proposition
9.3.7.7.

10.4.6 Weakly Complicial Quasi-Coherent Stacks

We now generalize some of the results of §?? to the setting of geometric stacks.

Proposition 10.4.6.1. Let X : CAlgcn Ñ S be a quasi-geometric stack, let C be a quasi-
coherent stack on X, and let n be a nonnegative integer. The following conditions are
equivalent:

paq For every flat morphism η : SpecA Ñ X, the prestable A-linear 8-category Cη is
weakly n-complicial.

pbq There exists a faithfully flat morphism η : SpecA Ñ X such that Cη is weakly n-
complicial.

Proof. The implication paq ñ pbq is clear. Suppose that pbq is satisfied: that is, there exists a
faithfully flat map η : SpecAÑ X such that Cη is weakly n-complicial. Let η1 : SpecA1 Ñ X

be any flat map. Choose a faithfully flat map SpecB Ñ SpecAˆX SpecA1. The flatness
of η1 guarantees that B is flat over A, so that B bA Cη is weakly n-complicial (Proposition
D.5.7.1). Using the equivalence B bA Cη » B bA1 Cη1 , we conclude that B bA1 Cη1 is weakly
n-complicial. Since the morphism η is faithfully flat, B is faithfully flat over A1. Applying
Proposition D.5.7.1 again, we deduce that Cη1 is also weakly n-complicial.

Definition 10.4.6.2. Let X be a quasi-geometric stack and let C be a prestable quasi-
coherent stack on X. We will say that C is weakly n-complicial if it satisfies the equivalent
conditions of Proposition 10.4.6.1.

Remark 10.4.6.3. Let X be a quasi-geometric Deligne-Mumford stack and let C P QStkPStpXq.
We then C is weakly n-complicial in the sense of Definition 10.4.6.2 if and only if it is weakly n-
complicial in the sense of Definition 10.3.4.4 (this is an elementary consequence of Proposition
10.4.6.1).

Remark 10.4.6.4. Let f : X Ñ Y be a morphism of quasi-geometric stacks and let
C P QStkPStpY q. If C is weakly n-complicial and f is flat, then f˚ C P QStkPStpXq is weakly
n-complicial. Beware that this need not be true if we drop the assumption that f is flat.
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Example 10.4.6.5. Let X be a quasi-geometric stack and let Qcn
X be the unit object of

QStkPStpXq (see Example 10.1.6.2). Then Qcn
X is weakly n-complicial if and only if X is

n-truncated, in the sense of Definition 9.1.6.2: this follows from Proposition C.5.5.15.

We now establish a local-to-global principle for Definition 10.4.6.2:

Proposition 10.4.6.6. Let X be a geometric stack, let C be a complete prestable quasi-
coherent stack on X, and let n ě 0 be an integer. Then C is weakly n-complicial if and only
if the Grothendieck prestable 8-category QCohpX; Cq is weakly n-complicial.

Proof. Choose a faithfully flat map η : SpecA Ñ X and let Cη denote the corresponding
A-linear 8-category. Since η is flat, the pullback functor η˚ : SppQCohpX; Cqq Ñ SppCηq is
t-exact (Corollary 10.1.7.10). Consequently, the right adjoint η˚ : SppCηq Ñ SppQCohpX; Cqq
carries injective objects of SppCηqď0 to injective objects of SppQCohpX; Cqqď0 (see Definition
HA.?? ).

Suppose that QCohpX; Cq is weakly n-complicial. Using Proposition C.5.7.11, we deduce
that every injective object of SppQCohpX; Cqqď0 belongs to SppQCohpX; Cqqě´n. It follows
that if Q is an injective object of SppCηqď0, then η˚Q P SppQCohpX; Cqqě´n. Since η is
affine, the pushforward functor η˚ is t-exact and conservative. We therefore conclude that
every injective object of SppCηqď0 belongs to SppCηqě´n. Applying Proposition C.5.7.11
again, we conclude that Cη is weakly n-complicial, and therefore C is weakly n-complicial
(Proposition 10.4.6.1).

To prove the converse, we will need the following:

p˚q Every injective object Q of SppQCohpX; Cqqď0 is a direct summand of η˚Q, for some
injective object Q P SppCηqď0.

To prove p˚q, we note that the abelian category C♥
η has enough injectives, so there exists

an injective object I P C♥
η and a monomorphism ρ : π0η

˚QÑ I. Using Proposition HA.?? ,
we can write I “ π0Q for some injective object Q P SppCηqď0. The injectivity of Q implies
that the composite map π0η

˚Q
ρ
ÝÑ I Ñ Q can be extended to a map η˚QÑ Q, which we

can identify with a map ρ0 : QÑ η˚Q. By construction, η˚ρ0 induces a monomorphism on
π0. Since η is faithfully flat, it follows that ρ0 induces a monomorphism on π0. Since η˚Q is
an injective object of SppCηqď0, it follows that ρ0 admits a left homotopy inverse: that is, it
exhibits Q as a direct summand of η˚Q.

Now suppose that C is weakly n-complicial. Then every injective object of SppCηqď0
belongs to SppCηqě´n (Proposition C.5.7.11). Since the functor η˚ is t-exact, assertion
p˚q implies that every injective object of SppQCohpX; Cqqď0 belongs to SppQCohpX; Cqě´n.
Applying Proposition C.5.7.11 again, we conclude that QCohpX; Cq is weakly n-complicial.
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Specializing to the case C “ Qcn
X , we obtain the following:

Corollary 10.4.6.7. Let X be a geometric stack. Then X is n-truncated if and only if the
Grothendieck prestable 8-category QCohpXqcn is weakly n-complicial.

Proof. Combine Example 10.4.6.5 with Proposition 10.4.6.6.

Corollary 10.4.6.8. Let X be a geometric stack. Then the following conditions are equiva-
lent:

paq The structure sheaf OX is 0-truncated.

pbq The inclusion QCohpXq♥ ãÑ QCohpXq extends to a t-exact equivalence of 8-categories
pDpQCohpXq♥q » QCohpXq

Proof. Combine Corollaries 10.4.6.7 and C.5.9.7.

Warning 10.4.6.9. In general, the completion which appears in the statement of Corollary
10.4.6.8 is necessary. For example, if G is the classifying stack of the additive group Ga

over a field κ of characteristic p ą 0, then the derived 8-category DpQCohpXq♥q is not left
complete (see [93]).

10.5 Locally Noetherian Quasi-Coherent Stacks

Let C be a Grothendieck prestable 8-category. We say that C is locally Noetherian if the
abelian category C♥ is locally Noetherian and each Noetherian object C P C♥ is compact
when viewed as an object of τďn C, for each n ě 0 (see Proposition C.6.9.8). Our goal in this
section is to globalize the theory of locally Noetherian prestable 8-categories by introducing
the notion of a locally Noetherian quasi-coherent stack.

10.5.1 On Spectral Deligne-Mumford Stacks

It follows from Propositions D.5.6.1 and D.5.6.4 that the condition that a prestable
A-linear 8-category C is locally Noetherian can be tested locally with respect to the étale
topology on SpétA. This motivates the following:

Definition 10.5.1.1. Let X be a spectral Deligne-Mumford stack and let C be a prestable
quasi-coherent stack on X. We will say that C is locally Noetherian if, for every étale
morphism η : SpétAÑ X, the prestable A-linear 8-category Cη is locally Noetherian.

Remark 10.5.1.2. Let f : X Ñ Y be morphism of spectral Deligne-Mumford stacks and let
C be a prestable quasi-coherent stack on Y. If f is locally almost of finite presentation and C
is locally Noetherian, then f˚ C is locally Noetherian (see Proposition D.5.6.1). Conversely, if
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f is a flat covering and f˚ C is locally Noetherian, then C is locally Noetherian (Proposition
D.5.6.4).

Remark 10.5.1.3. Let A be a connective E8-ring and let C be a prestable A-linear 8-
category. Then C is locally Noetherian when regarded as a Grothendieck prestable8-category
if and only if it is locally Noetherian when regarded as a prestable quasi-coherent stack on
SpétA.

Example 10.5.1.4. Let X be a spectral Deligne-Mumford stack and let Qcn
X be the unit

object of QStkPStpXq (see Example 10.1.6.2). ThenQcn
X is locally Noetherian if and only X

is locally Noetherian (see Example C.6.9.4).

In the setting of Definition 10.5.1.1, we have the following local-to-global principle:

Proposition 10.5.1.5. Let X be a quasi-geometric spectral Deligne-Mumford stack and let
C be a prestable quasi-coherent stack on X. If C is locally Noetherian, then the Grothendieck
prestable 8-category QCohpX; Cq is locally Noetherian.

Remark 10.5.1.6. In the statement of Proposition 10.5.1.5, the hypothesis that X is quasi-
geometric can be weakened: it is enough to assume that X is 8-quasi-compact (Definition
2.3.1.1).

Proof of Proposition 10.5.1.5. Let pC be the completion of C, so that QCohpX; pCq is the
completion of QCohpX; Cq. It follows from Proposition 10.5.2.7 that QCohpX; pCq is locally
Noetherian. Invoking Remark C.6.9.2, we see that QCohpX; Cq is also locally Noetherian.

Proposition 10.5.1.7. Let X be a quasi-compact, quasi-separated spectral algebraic space
and let C be a prestable quasi-coherent stack on X. If X is schematic and QCohpX; Cq is
locally Noetherian, then C is locally Noetherian.

Proof. Since X is quasi-compact and schematic, it admits a finite covering by affine open
substacks Uα Ď X. By virtue of Remark 10.3.1.4, it will suffice to show that the restriction
of C to each Uα is locally Noetherian. Using Remark 10.5.1.3, we see that this is equivalent
to the assertion that each of the Grothendieck prestable 8-categories QCohpUα; C |Uαq is
locally Noetherian. Let j : Uα Ñ X be the inclusion map, so that we have a pair of adjoint
functors

QCohpX; Cq
j˚ //QCohpUα; C |Uαq
j˚
oo

which exhibit QCohpUα; C |Uαq as a left exact localization of QCohpX; Cq. The desired result
now follows from Proposition C.6.9.9.
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10.5.2 On Quasi-Geometric Stacks

We now adapt Definition 10.5.1.1 to the setting of quasi-geometric stacks.

Definition 10.5.2.1. Let X : CAlgcn Ñ S be a quasi-geometric stack and let C be a
prestable quasi-coherent stack on X. We will say that C is locally Noetherian if there exists
a faithfully flat morphism η : SpecAÑ X for which the prestable A-linear 8-category Cη is
locally Noetherian.

Warning 10.5.2.2. Let X be a quasi-geometric stack and let C P QStkPStpXq be locally
Noetherian. It does not follow that for every faithfully flat morphism η : SpecAÑ X, the
prestable A-linear 8-category Cη is locally Noetherian. This stronger condition is never
satisfied, except in trivial cases.

Remark 10.5.2.3. Let X be a quasi-geometric spectral Deligne-Mumford stack. We then
have two a priori different notions of locally Noetherian quasi-coherent stack on X: one
given by Definition 10.5.1.1 and one given by Definition 10.5.2.1. However, we will show in a
moment that these definitions are equivalent: this is an immediate consequence of Corollary
10.5.2.6.

Example 10.5.2.4. Let X be a spectral Deligne-Mumford stack and let Qcn
X be the unit

object of QStkPStpXq (see Example 10.1.6.2). Then Qcn
X is locally Noetherian if and only

X is locally Noetherian, in the sense of Definition 9.5.1.1: this follows immediately from
Example C.6.9.4.

In spite of Warning 10.5.2.2, we have the following:

Proposition 10.5.2.5. Let X be a quasi-geometric stack, let C P QStkPStpXq be locally
Noetherian, and let η : SpecA Ñ X be a morphism which is locally almost of finite
presentation. Then the prestable A-linear 8-category Cη is locally Noetherian.

Proof. Since C is locally Noetherian, we can choose a faithfully flat morphism η1 : SpecA1 Ñ
X such that Cη1 is locally Noetherian. Choose an étale surjection SpecB Ñ SpecAˆXSpecA1.
Since η is locally almost of finite presentation, the E8-ring B is almost of finite presentation
over A1. It follows from Proposition D.5.6.1 that the Grothendieck prestable 8-category
B bA1 Cη1 is locally Noetherian. Using the equivalence B bA1 Cη1 » B bA Cη, we deduce that
B bA Cη is locally Noetherian. Since η1 is faithully flat, the E8-ring B is faithfully flat over
A. Applying Proposition D.5.6.4, we deduce that Cη is locally Noetherian.

Corollary 10.5.2.6. Let X be a quasi-geometric stack and let C P QStkPStpXq. Suppose
that there exists a morphism η : SpecA Ñ X which is faithfully flat and locally almost
of finite presentation. Then C is locally Noetherian if and only if the prestable A-linear
8-category Cη is locally Noetherian.
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The following result can be regarded as a relative version of Proposition 9.5.2.3:

Proposition 10.5.2.7. Let X be a quasi-geometric stack and let C be a complete prestable
quasi-coherent stack on X. If C is locally Noetherian, then the Grothendieck prestable
8-category QCohpX; Cq is locally Noetherian.

Proof. We proceed as in the proof of Proposition D.5.6.4 (note that when X is affine,
Proposition 10.5.2.7 reduces to Proposition D.5.6.4). Choose a faithfully flat map η :
SpecAÑ X for which the prestable A-linear 8-category Cη is locally Noetherian. We wish
to prove that QCohpX; Cq is locally Noetherian.

We begin by showing that the abelian category QCohpX; Cq♥ is locally Noetherian.

Note that we have a pair of adjoint functors QCohpX; Cq
η˚ //Cηη˚
oo which are left exact, since

the morphism η is flat. Fix an object C P QCohpX; Cq♥. Since the Grothendieck abelian
category C♥

η is locally Noetherian, we can write η˚C P C♥
η as a union of Noetherian subobjects

tC 1αu. For each index α, set Cα “ C ˆη˚η˚C η˚C
1
α. Since filtered colimits in QCohpX; Cq

are exact, we have C “ lim
ÝÑ

Cα. We will show that each Cα is a Noetherian object of
QCohpX; Cq♥. Note that the functor η˚ induces an injection from the set of isomorphism
classes of subobjects of C to the set of isomorphism classes of subobjects of η˚C. It will
therefore suffice to show that η˚Cα is a Noetherian subobject of η˚C in the abelian category
C♥
η . This is clear, since the inclusion η˚Cα ãÑ η˚C factors through C 1α (which is a Noetherian

subobject of η˚C by construction).
To complete the proof that QCohpX; Cq is locally Noetherian, it will suffice to show

that if C is a Noetherian object of QCohpX; Cq♥, then C is compact when viewed as an
object of τďn QCohpX; Cq for each n ě 0 (see Proposition C.6.9.8). Fix a filtered diagram
tDαu of n-truncated objects of C having colimit D; we wish to show that the canonical
map ρ : lim

ÝÑ
MapQCohpX,CqpC,Dαq Ñ MapQCohpX,CqpC,Dq is a homotopy equivalence. We

will prove that the homotopy fibers of ρ are m-truncated for every integer m ě ´2. Note
that this is trivial when m “ n (since the domain and codomain of ρ are both n-truncated).
We will handle the general case using descending induction on m. For each index α, form a
cofiber sequence Dα Ñ η˚η

˚Dα Ñ D1α, and set D1 “ lim
ÝÑ

D1α. Note that since η is faithfully
flat, the objects D1α are also n-truncated. We have a commutative diagram of fiber sequences

lim
ÝÑ

MapQCohpX;CqpC,Dαq //

ρ

��

lim
ÝÑ

MapQCohpX;CqpC, η˚η
˚Dαq //

φ

��

lim
ÝÑ

MapQCohpX;CqpC,D
1
αq

ρ1

��
MapQCohpX;CqpC,Dq //MapQCohpX;CqpC, η˚η

˚Dq //MapQCohpX;CqpC,D
1q.

It follows from our inductive hypothesis that the map ρ1 has pm` 1q-truncated homotopy
fibers. Consequently, to show that the homotopy fibers of ρ are m-truncated, it will suffice



934 CHAPTER 10. QUASI-COHERENT STACKS

to show that φ is a homotopy equivalence. Unwinding the definitions, we can identify φ

with the canonical map lim
ÝÑ

MapCηpη
˚C, η˚Dαq Ñ MapCηpη

˚C, η˚Dq. To show that this
map is a homotopy equivalence, it will suffice to show that η˚C is an almost compact
object of Cη. Using Proposition C.6.9.3 and Corollary C.6.8.9 (and our assumption that
Cη is locally Noetherian), we are reduced to showing that η˚C is compact as an object
of C♥

η . This is clear: the functor η˚ commutes with filtered colimits, so the pullback
functor η˚ : QCohpX; Cq♥ Ñ C♥

η preserves compact objects (and C is a compact object of
QCohpX; Cq by virtue of Proposition C.6.8.7).

10.5.3 Injective and Locally Injective Objects

Let A be a connective E8-ring, let C be a prestable A-linear 8-category, and let Q be an
object of SppCq. If C is locally Noetherian, then Corollary 7.2.5.19 and Proposition 7.2.5.20
imply that the condition that Q is injective (in the sense of Definition C.5.7.2) can be tested
locally with respect to the étale topology on A. Motivated by this observation, we introduce
the following variant of Definition C.5.7.2:

Definition 10.5.3.1. Let X be a spectral Deligne-Mumford stack, let C be a locally Noethe-
rian prestable quasi-coherent stack on X, and let G be an object of the 8-category
QCohpX; SppCqq. We will say that G is locally injective if, for every étale morphism
η : SpétAÑ X, the object G η P SppCηq is injective.

Remark 10.5.3.2. Let A be a connective E8-ring, let C be a prestable A-linear 8-category,
and let Q be an object of SppCq. Then Q is injective (in the sense of Definition C.5.7.2) if
and only if it is locally injective when regarded as an object of QCohpSpétA; SppCqq (in the
sense of Definition 10.5.3.1). The “if” direction is obvious, and the converse follows from
Corollary 7.2.5.19.

Remark 10.5.3.3. Let f : X Ñ Y be an étale morphism between spectral Deligne-Mumford
stacks, let C P QStkPStpYq be locally Noetherian, and let G P QCohpY; SppCqq. If G is locally
injective, then f˚ G P QCohpX; Sppf˚ Cqq is also locally injective. The converse holds if f is
an étale surjection (this follows from Proposition 7.2.5.20).

Our goal in this section is to establish the following generalization of Remark 10.5.3.2:

Theorem 10.5.3.4. Let X be a quasi-compact, quasi-separated spectral algebraic space, let
C P QStkPStpXq be locally Noetherian, and let G P QCohpX; SppCqq » SppQCohpX; Cqq. Then
G is locally injective (in the sense of Definition 10.5.3.1) if and only if it is injective (in the
sense of Definition C.5.7.2).

The proof of Theorem 10.5.3.4 will require some preliminaries.
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Lemma 10.5.3.5. Let j : U ãÑ X be a quasi-compact open immersion between spectral
Deligne-Mumford stacks and let C P QStkPStpXq be locally Noetherian. If G P QCohpX; SppCqq
is locally injective, then the direct image j˚j˚ G and the fiber fibpG Ñ j˚j

˚q are also locally
injective objects of QCohpX; SppCqq.

Proof. Working locally on X, we can reduce to the case where X “ SpétA is affine, in which
case the desired result follows from Corollary 7.2.5.13.

Lemma 10.5.3.6. Let X be a quasi-compact, quasi-separated spectral algebraic space, let
C P QStkPStpXq be locally Noetherian, and let G P QCohpX; SppCqq » SppQCohpX; Cqq. If G

is locally injective, then G is injective.

Proof. Using Theorem 3.4.2.1, we can choose a scallop decomposition

H “ U0 ãÑ U1 ãÑ ¨ ¨ ¨ ãÑ Un “ X .

We will prove that G |Ui is an injective object of QCohpUi; C |Uiq for 0 ď i ď n. The proof
proceeds by induction on i, the case i “ 0 being trivial. To carry out the inductive step, let
us assume that i ą 0 and that G |Ui´1 is an injective object of QCohpUi´1; C |Ui´1q. Choose
an excision square σ :

V1 //

��

V
q

��
Ui´1

j // Ui,

where V is affine. Form a fiber sequence G 1 Ñ G |Ui Ñ j˚ G |Ui´1 in the 8-category
QCohpUi; SppC |Uiqq. Since the functor

j˚ : QCohpUi´1; SppC |Ui´1qq Ñ QCohpUi; SppC |Uiqq

has a t-exact left adjoint (Corollary 10.1.7.10), and therefore carries injective objects to
injective objects. It follows that j˚ G |Ui´1 is an injective object of QCohpUi; SppC |Uiqq. Since
the collection of injective objects is closed under extensions, it will suffice to show that
G 1 is an injective object of QCohpUi; SppC |Uiqq. Lemma 10.5.3.5 shows that G 1 is locally
injective. Since V is affine, the object q˚ G 1 P QCohpV; SppC |Vqq is injective. Since the
functor q˚ is t-exact (Corollary 10.1.7.10), the pushforward functor q˚ : QCohpV; SppC |Vqq Ñ
QCohpUi; SppC |Uiqq carries injective objects to injective objects. It follows that q˚q˚ G 1 is
an injective object of QCohpUi; SppC |Uiqq. We now complete the proof by observing that
the unit map G 1 Ñ q˚q

˚ G 1 is an equivalence (since σ is an excision square and j˚ G 1 » 0),
so that G 1 is also an injective object of QCohpUi; SppC |Uiqq.

Lemma 10.5.3.7. Let f : X Ñ Y be an étale morphism between quasi-compact, quasi-
separated spectral algebraic spaces. Let C be a locally Noetherian prestable quasi-coherent
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stack on Y and let G P QCohpX; Sppf˚ Cqq be locally injective. Then f˚ G P QCohpY; SppCqq
is also locally injective.

Proof. The assertion is local on Y, so we may assume without loss of generality that Y is
affine. Note that G is an injective object of QCohpX; Sppf˚ Cqq by virtue of Lemma 10.5.3.6.
Since the functor f˚ : QCohpX; Sppf˚ Cqq Ñ QCohpY; SppCqq admits a t-exact left adjoint
(Corollary 10.1.7.10), it carries injective objects to injective objects. In particular, the object
f˚ G P QCohpY; SppCqq is injective, and is therefore locally injective by virtue of Remark
10.5.3.2.

Proof of Theorem 10.5.3.4. Let X be a quasi-compact, quasi-separated spectral algebraic
space, let C be a locally Noetherian prestable quasi-coherent stack on X, and let G P

QCohpX; SppCqq » SppQCohpX; Cqq. We wish to show that G is locally injective if and only
if it is injective. The “only if” direction follows from Lemma 10.5.3.6. For the converse,
suppose that G is injective. Choose an étale surjection q : U Ñ X, where U is affine. Choose
a morphism f : q˚ G Ñ G 1 in QCohpU; Sppq˚ Cqq which exhibits G 1 as an injective hull of
q˚ G (see Example C.5.7.9), so that cofibpfq belongs to QCohpU; Sppq˚ Cqqď0. Let f 1 denote
the composite map

G
u
ÝÑ q˚q

˚ G
q˚pfq
ÝÝÝÑ q˚ G 1 .

Since q is surjective, we have cofibpuq P QCohpX; SppCqqď0. Since q˚ is right t-exact,
we also have cofibpq˚pfqq » q˚ cofibpfq P QCohpX; SppCqqď0. It follows that cofibpf 1q P
QCohpX; SppCqqď0. Since G is an injective object of QCohpX; SppCqq, it follows that u admits
a left homotopy inverse: that is, it exhibits G as a direct summand of q˚ G 1. Consequently,
to show that G is locally injective, it will suffice to show that q˚ G 1 is locally injective. This
is an immediate consequence of Lemma 10.5.3.7 (since the object G 1 P QCohpU; Sppf˚ Cqq is
locally injective by virtue of Remark 10.5.3.2).

10.5.4 Spectral Decompositions of Injective Objects

Let A be a connective E8-ring, let C be a prestable A-linear 8-category, and suppose
that C is locally Noetherian. In §7.2.5, we saw that to every indecomposable injective object
Q P SppCq, we can associate a unique prime ideal p P |SpecA| such that Q is centered at p

(Proposition 7.2.5.11). Our goal in this section is to prove a global version of Proposition
7.2.5.11, replacing SpétA by an arbitrary quasi-compact, quasi-separated spectral algebraic
space X (Proposition 10.5.4.6).

Definition 10.5.4.1. Let X be a quasi-compact, quasi-separated spectral algebraic space,
let C be a stable quasi-coherent stack on X, and let x be a point of the underlying topological
space |X |. We will say that an object F P QCohpX; Cq is centered at x if the following
condition is satisfied:
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p˚q Let U Ď |X | be a quasi-compact open subset corresponding to an open immersion
j : U ãÑ X. If x P U , then the unit map F Ñ j˚j

˚F is an equivalence. If x R U , then
the pullback j˚F is a zero object of QCohpU; C |Uq.

Example 10.5.4.2. In the situation of Definition 10.5.4.1, suppose that X “ SpétA is
affine and that x P |X | corresponds to a prime ideal p Ď π0A. Then F is centered at x (in
the sense of Definition 10.5.4.1) if and only if it is centered at p (in the sense of Definition
7.2.5.6).

Remark 10.5.4.3. In the situation of Definition 10.5.4.1, suppose that F P QCohpX; Cq is
nonzero. Then there is at most one point x P |X | such that F is centered at x. To prove this,
we note that if x and y are two distinct points of |X |, then we can choose a quasi-compact
open subset U Ď |X | which contains one but not the other. In this case, the assumption
that F is centered at both x and y guarantees that the unit map u : F Ñ j˚j

˚F is an
equivalence and that the codomain of u vanishes; here j : U ãÑ X denotes the open immersion
corresponding to U . This contradicts our assumption that F is nonzero.

Remark 10.5.4.4. Let X be a quasi-compact, quasi-separated spectral algebraic space, let
C be a stable quasi-coherent stack on X, and let x be a point of the underlying topological
space |X |. The collection of those objects F P QCohpX; Cq which are centered at x is a
stable subcategory of QCohpX; Cq which is closed under suspensions.

Remark 10.5.4.5. Let f : X Ñ Y be a morphism between quasi-compact, quasi-separated
spectral algebraic spaces, let C be a stable quasi-coherent stack on Y, and let x P |X |
be a point having image y “ fpxq P |Y |. If F P QCohpX; f˚ Cq is centered at x, then
f˚F P QCohpY; Cq is centered at y.

Proposition 10.5.4.6. Let X be a quasi-compact, quasi-separated spectral algebraic space,
let C P QStkPStpXq be locally Noetherian, and let F be an indecomposable injective object of
QCohpX; SppCqq. Then there exists a unique point x P |X | such that F is centered at x.

Corollary 10.5.4.7. Let X be a quasi-compact, quasi-separated spectral algebraic space, let
C P QStkPStpXq be locally Noetherian, and let F be an injective object of QCohpX; SppCqq.
Then F can be written as a coproduct

À

xP|X |F x, where each F x is an injective object of
QCohpX; SppCqq which is centered at x.

Proof. It follows from Proposition 10.5.1.5 that the Grothendieck prestable 8-category
QCohpX; Cq is locally Noetherian. Consequently, every injective object F P SppQCohpX; Cqq »
QCohpX; SppCqq can be written as a direct sum of indecomposable injective objects of
QCohpX; SppCqq (Proposition C.6.10.6). We can therefore reduce to the case where F is
indecomposable, in which case the desired result follows from Proposition 10.5.4.6.
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Warning 10.5.4.8. In the situation of Corollary 10.5.4.7, one can show that the summands
F x are determined by F up to equivalence. However, the decomposition F »

À

xP|X |F x

is not unique, since objects of the form
À

xP|X |F x can admit automorphisms which do not
preserve their direct sum decomposition.

Proof of Proposition 10.5.4.6. We proceed as in the proof of Lemma 10.5.3.6. Using Theorem
3.4.2.1, we can choose a scallop decomposition

H “ U0 ãÑ U1 ãÑ ¨ ¨ ¨ ãÑ Un “ X .

Let m be the smallest integer for which the restriction F |Um is nonzero and let j : Um ãÑ X
denote the inclusion map. Form a fiber sequence F 1 Ñ F Ñ j˚j

˚F in the 8-category
QCohpX; SppCqq. Using Theorem 10.5.3.4 and Lemma 10.5.3.5, we deduce that F 1 and
j˚j

˚F are also injective objects of QCohpX; SppCqq. It follows that F splits as a direct sum
F 1‘j˚j

˚F , where the second summand does not vanish (by virtue of our assumption that
F |Um ‰ 0). The indecomposability of F now guarantees that F 1 » 0, so that the unit map
u : F Ñ j˚j

˚F is an equivalence.
Choose an excision square σ :

V1 //

��

V
q

��
Um´1 // Um,

where V is affine. The minimality of m implies that F |Um´1 » 0, so that the unit map
u1 : F |Um Ñ q˚F |V is an equivalence. Theorem 10.5.3.4 guarantees that F |V is an injective
object of QCohpV; SppC |Vqq. Applying Corollary 7.2.5.12, we deduce that F |V splits as a
coproduct

À

vP|V | G v, where each G v is centered at v P |V |. It follows that F » j˚q˚F |V
splits as a direct sum

À

vP|V |F v where F v “ j˚q˚ G v. The indecomposability of F now
guarantees that exactly one of these summands does not vanish: that is, we have F » j˚q˚ G v

for some point v P |V |. Applying Remark 10.5.4.5, we deduce that F is centered at x,
where x denotes the image of v under the continuous map |V | j˝qÝÝÑ |X |.

10.6 Abelian Quasi-Coherent Stacks

Let X : CAlgcn Ñ S be a geometric stack. In §10.4, we proved that a complete prestable
quasi-coherent stack C on X can be recovered from its global sections QCohpX; Cq, regarded
as an 8-category tensored over QCohpXqcn (Theorem 10.4.2.3). Our primary goal in this
section is to prove an analogous statement in the setting of abelian quasi-coherent stacks.
Our main results can be summarized as follows:
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• Let q : X Ñ SpecS be the projection map. Then the pullback functor

q˚ : Grothab » QStkAbpSpecSq Ñ QStkAbpXq

admits a right adjoint QCohpX; ‚q : QStkAbpXq Ñ Grothab, which we will refer to as
the global sections functor (Proposition 10.6.1.1).

• For every abelian quasi-coherent stack C on X, the Grothendieck abelian category
QCohpX; Cq is equipped with an action of the abelian category QCohpXq♥. This action
depends functorially on C: that is, we can regard the construction C ÞÑ QCohpX; Cq as
a functor from the 8-category QStkAbpXq to the 8-category ModQCohpXq♥pGrothabq.

• The construction QCohpX; ‚q : QStkAbpXq Ñ ModQCohpXq♥pGrothabq is fully faithful,
and its essential image admits a simple description (see Theorem 10.6.2.1).

• The theory of abelian quasi-coherent stacks on X is closely related to the theory
of prestable quasi-coherent stacks on X. More precisely, there is a full subcategory
QStk%pXq Ď QStkPStpXq whose objects we will refer to as complicial quasi-coherent
stacks (Definition ??), for which the composite functor

QStk%pXq ãÑ QStkPStpXq
♥
ÝÑ QStkAbpXq

induces a homotopy equivalence QStk%pXq♥ Ñ QStkAbpXq♥ (Proposition ??).

Remark 10.6.0.1. According to Remark 10.1.2.6, the 8-category QStkAbpXq of abelian
quasi-coherent stacks on X depends only on the restriction of X to the category of ordinary
commutative rings (which we can regard as a full subcategory of the 8-category CAlgcn).
Consequently, the results of this section can be viewed as belonging to classical algebraic
geometry, rather than spectral algebraic geometry.

Remark 10.6.0.2. Many of the results we prove in this section for abelian quasi-coherent
stacks can be deduced from their counterparts for (complete) prestable quasi-coherent
stacks using the equivalence QStk%pXq» Ñ QStkAbpXq» of Proposition ??. However, this
approach is unnecessarily convoluted: it will be easier to instead to give direct proofs by
imitating the arguments used in §10.4.

10.6.1 Global Sections of Abelian Quasi-Coherent Stacks

We begin by establishing an analogue of Proposition 10.4.1.4:

Proposition 10.6.1.1. Let X : CAlgcn Ñ S be a quasi-geometric stack, let S denote
the sphere spectrum, and let q : X Ñ SpecS be the projection map. Then the pullback
functor q˚ : Grothab » QStkAbpSpecSq Ñ QStkAbpXq admits a right adjoint QCohpX; ‚q :
QStkAbpXq Ñ Grothab.
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Proof. Fix an object C P QStkAbpXq. We wish to show that the functor

F : Grothab Ñ pS E ÞÑ MapQStkAbpXqpq
˚ E , Cq

is representable by an object of Grothab.
Choose a faithfully flat map f0 : U0 Ñ X where U0 » SpecA is affine, and let U‚ denote

the Čech nerve of f0. For each n ě 0, let fn : Un Ñ X be the tautological map and let
Fn : Grothab Ñ pS denote the functor given by

E ÞÑ MapQStkAbpUnq
pf˚nq

˚ E , f˚n Cq.

Since each Un is representable by a spectral Deligne-Mumford stack, each of the functors
Fn is representable by the Grothendieck abelian category QCohpUn; f˚n Cq of Construction
10.1.7.1.

Since the natural map |U‚| Ñ X is an equivalence after sheafification for the fpqc topology,
the 8-category QStkAbpXq can be identified with the totalization of the cosimplicial 8-
category QStkAbpU‚q (see Remark 10.1.2.11), so that F » lim

ÐÝrnsP∆ Fn. Consequently, to
show that F is representable, it will suffice to show that the cosimplicial object rns ÞÑ f˚n C
admits a limit in the 8-category Grothab. Using the right cofinality of the inclusion ∆s ãÑ ∆
(Lemma HTT.6.5.3.7 ), it will suffice to show that the underlying cosemisimplicial object of
Grothab admits a limit. Note that if α : rms Ñ rns is a morphism in ∆`, then the associated
map Un Ñ Um is flat (since it is a composition of pullbacks of the flat map f0 : U0 Ñ Xq.
Using Corollary 10.1.7.10, we see that the natural map QCohpUm; f˚m Cq Ñ QCohpUn; f˚n Cq
is left exact. It follows that the construction rns ÞÑ f˚n determines a functor from ∆s to the
subcategory Grothlex

ab Ď Grothab of Definition C.5.4.1, so the existence of the limit lim
ÐÝ

f˚‚ C
follows from Proposition C.5.4.21.

Example 10.6.1.2. Let X be a quasi-geometric stack and C be an abelian quasi-coherent
stack on X. The proof of Proposition 10.6.1.1 shows that the 8-category QCohpX; Cq can
be identified with the totalization lim

ÐÝ
QCohpU‚; f˚‚ Cq, where f‚ : U‚ Ñ X is the Čech nerve

of any faithfully flat map f0 : U0 “ SpecAÑ X. Taking C “ Q♥
X , we obtain an equivalence

of Grothendieck abelian categories

QCohpX;Q♥
Xq » lim

ÐÝ
QCohpU‚;Q♥

U‚
q “ lim

ÐÝ
QCohpU‚q♥ » QCohpXq♥.

10.6.2 Recovering C from QCohpX; Cq

Let X be a quasi-geometric stack and let q : X Ñ SpecS be the projection map. Then
the pullback functor

q˚ : Grothab » QStkAbpSpecSq Ñ QStkAbpXq
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is symmetric monoidal. It follows that the global sections functor QCohpX; ‚q of Proposition
10.6.1.1 is lax symmetric monoidal. We can therefore promote QCohpX; ‚q to a functor

QStkAbpXq » ModQ♥
X
pQStkAbpXqq

QCohpX;‚q
ÝÝÝÝÝÝÑ ModQCohpX;Q♥

Xq
pGrothabq

» ModQCohpXq♥pGrothabq.

We will abuse notation by denoting this functor also by C ÞÑ QCohpX; Cq. We can describe
the situation more informally as follows: for every abelian quasi-coherent stack C on X,
the Grothendieck abelian category QCohpX; Cq is tensored over the Grothendieck abelian
category QCohpXq♥ of discrete quasi-coherent sheaves on X, and the action

QCohpXq♥ ˆQCohpX; Cq Ñ QCohpX; Cq

preserves small colimits separately in each variable.
We can now formulate the main result of this section.

Theorem 10.6.2.1. Let X be a geometric stack. Then the global sections functor

QCohpX; ‚q : QStkAbpXq Ñ ModQCohpXq♥pGrothabq

is a fully faithful embedding, whose essential image is spanned by those E P ModQCohpXq♥pGrothabq

which satisfy the following additional conditions:

p˚q Let F P QCohpXq♥. If F can be written as π0 G where G P QCohpXq is flat, then
the construction E ÞÑ F bE determines a left exact functor from the Grothendieck
abelian category E to itself.

p˚1q Suppose we are given an exact sequence

0 Ñ F 1 Ñ F Ñ F 2 Ñ 0

in the abelian category QCohpXq♥. If F 2 » π0 G where G P QCohpXq is flat, then
for every object E P E the sequence

0 Ñ F 1bE Ñ F bE Ñ F 2bE Ñ 0

is also exact.
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10.6.3 Digression: Module Objects of Grothendieck Abelian Categories

Our proof of Theorem 10.6.2.1 will require the following standard fact about Grothendieck
abelian categories:

Proposition 10.6.3.1. Let C and D be presentable categories and suppose we are given a
functor G : D Ñ C which is conservative and preserves small limits and colimits. If C is a
Grothendieck abelian category, then so is D.

Example 10.6.3.2. Let C be a Grothendieck abelian category which is tensored over a
monoidal 8-category A. Suppose that A is an algebra object of A and that the functor pC P
Cq ÞÑ pAbC P Cq commutes with small colimits. Then the forgetful functor LModApCq Ñ C is
conservative and preserves small limits and colimits (Corollaries HA.4.2.3.3 and HA.4.2.3.5 ).
It follows from Proposition 10.6.3.1 that LModApCq is also Grothendieck abelian category.

Proof of Proposition 10.6.3.1. We proceed as in the proof of Proposition 10.4.3.1. The first
step is to show that D is pointed. Let H and 1 denote initial and final objects of D,
respectively, so that there is a unique map α : H Ñ 1 in D. We wish to prove that α is
an isomorphism. Since G preserves small limits and colimits, it preserves initial and final
objects, so that Gpαq is a morphism from an initial object of C to a final object of C. Because
C is pointed, it follows that Gpαq is an equivalence. Since the functor G is conservative, it
follows that α is an equivalence.

We next claim that D is semiadditive: that is, for every pair of objects D,D1 P D, the
map

˜

idD 0
0 idD1

¸

: D >D1 Ñ D ˆD1

is an isomorphism. Since the functor G preserves small limits and colimits, we can identify

G

˜

idD 0
0 idD1

¸

with the natural map

˜

idGpDq 0
0 idGpD1q

¸

: GpDq >GpD1q Ñ GpDq ˆGpD1q,

which is an isomorphism by virtue of the fact that C is semiadditive. Since G is conservative,

it follows that the map
˜

idD 0
0 idD1

¸

is an isomorphism in D.

To complete the proof that D is additive, it will suffice to show that for every object
D P D, the “shearing” map

˜

idD idD
0 idD

¸

: D ‘D Ñ D ‘D
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is an isomorphism (see the proof of Theorem C.4.1.1). This follows from the fact that G is
conservative, since the map

G

˜

idD idD
0 idD

¸

“

˜

idGpDq idGpDq
0 idGpDq

¸

: GpDq ‘GpDq Ñ GpDq ‘GpDq

is an isomorphism by virtue of our assumption that the category C is additive.
We next show that D is abelian. Let f : D Ñ D1 be a morphism in D; we wish to

show that the natural map α : coimpfq Ñ impfq is an isomorphism in D. Since the functor
G preserves limits and colimits, it commutes with the formation of images and coimages.
Consequently, we can identify Gpαq with the canonical map from coimage of Gpfq to the
image of Gpfq. Since C is an abelian category, it follows that Gpαq is an isomorphism. Using
the fact that G is conservative, we conclude that α is an isomorphism.

We now complete the proof by showing that the abelian category D is Grothendieck. Since
D is assumed to be presentable, it will suffice to show that the collection of monomorphisms in
D is closed under filtered colimits. Suppose we are given a filtered diagram tfα : Dα Ñ D1αu

of monomorphisms in D having a colimit f : D Ñ D1. Since G commutes with limits, it
is left exact. Consequently, each Gpfαq is a monomorphism in C. Using the assumption
that C is a Grothendieck abelian category, we deduce that the colimit lim

ÝÑ
Gpfαq is also a

monomorphism in C. Because G commutes with colimits, we can identify lim
ÝÑ

Gpfαq with
Gpfq. Using the left exactness of G, we deduce that Gpkerpfqq » kerpGpfqq » 0. Since G is
conservative, it follows that kerpfq » 0, so that f is a monomorphism.

10.6.4 The Proof of Theorem 10.6.2.1

Let X be a geometric stack and let C P ModQCohpXq♥pGrothabq be a Grothendieck abelian
8-category equipped with an action of QCohpXq♥. For every connective E8-ring A and
every point η P XpAq, let Cη denote the tensor product Mod♥

A bQCohpXq♥ C, formed in the
8-category PrL of presentable 8-categories. Our assumption that X is a geometric stack
guarantees that η is an affine morphism, so that we can identify Mod♥

A with the 8-category

ModA pQCohpXqq♥ » Modπ0 A pQCohpXq♥q

where A “ η˚OSpecA P CAlgpQCohpXqcnq. Applying Theorem HA.4.8.4.6 , we obtain an
equivalence Cη » LModπ0 A pCq. It follows from Example 10.6.3.2 that Cη is an (A-linear)
Grothendieck abelian category.

The construction C ÞÑ tCηuηPXpAq determines a functor

ΦAb
X : ModQCohpXq♥pGrothabq Ñ QStkAbpXq.

It is not difficult to see that the functor ΦAb
X is left adjoint to the global sections functor

QCohpX; ‚q : QStkAbpXq Ñ ModQCohpXq♥pGrothabq appearing in the statement of Theorem
10.6.2.1.
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Proof of Theorem 10.6.2.1. Let X be a geometric stack and choose a faithfully flat map
η : U0 Ñ X, where U0 » SpecA is affine. We first show that the global sections functor

QCohpX; ‚q : QStkAbpXq Ñ ModQCohpXq♥pGrothabq

is fully faithful. Let C be an abelian quasi-coherent stack on X; we wish to show that the
counit map v : ΦAb

X QCohpX; Cq Ñ C is an equivalence of abelian quasi-coherent stacks on
X. Since η is an effective epimorphism of fpqc sheaves, it will suffice to show that η˚pvq is
an equivalence of A-linear abelian categories (Remark 10.1.2.11).

Unwinding the definitions, we wish to prove that the canonical map

θ : Mod♥
A bQCohpXq♥ QCohpX; Cq Ñ Cη

is an equivalence of A-linear abelian categories. Let U‚ denote the Čech nerve of η, so
that we can write U‚ » SpecA‚ for some cosimplicial E8-ring A‚. For each n ě 0,
let fn : Un Ñ X be the canonical map, and let us abuse notation by identifying each
pullback f˚n C with the corresponding (An-linear) Grothendieck abelian category. Then the
proof of Proposition 10.6.1.1 supplies a canonical equivalence QCohpX; Cq » lim

ÐÝ
f˚‚ C. Let

A P CAlgpQCohpXqcnq denote the direct image under η of the structure sheaf of SpecA.
Since X is a geometric stack, the map η is affine and we can identify Mod♥

A with the 8-
category ModA pQCohpXqq♥ » Modπ0 A pQCohpXq♥q. It follows that Mod♥

A is self-dual as
an object of the 8-category ModQCohpXq♥pGrothabq, so that the formation of tensor products
with Mod♥

A commutes with limits. We therefore have canonical equivalences

Mod♥
A bQCohpXq♥ QCohpX; Cq » LModπ0 A pQCohpX; Cqq

» lim
ÐÝ

LModA pQCohpU‚; f˚‚ Cqq
» QCohpU‚`1; f˚‚`1 Cq.

The statement that θ is an equivalence now follows from the observation that the augmented
simplicial object QCohpU‚`1; f˚‚`1 Cq is split.

We next show that for every abelian quasi-coherent stack C P QStkAbpXq, the Grothendieck
abelian category QCohpX; Cq satisfies conditions p˚q and p˚1q of Theorem 10.6.2.1. We
first verify p˚q. Let F P QCohpXq♥, and suppose that we can write F “ π0 G where
G P QCohpXq is flat. Let F : QCohpX; Cq Ñ QCohpX; Cq be the functor given by tensor
product with F . We wish to prove that the functor F is exact. Recall that we can identify
QCohpX; Cq with the inverse limit of the cosemisimplicial object f˚‚ C in the 8-category
Grothlex

ab (see the proof of Proposition 10.6.1.1); consequently, the functor F is exact if
and only if each of the composite functors QCohpX; Cq F

Ñ QCohpX; Cq f
˚
n
Ñ f˚n C is exact.

Rewriting this functor as a composition QCohpX; Cq f˚n
ÝÑ f˚n C

pf˚n F qb
ÝÝÝÝÝÑ f˚n C, we are reduced

to proving that tensor product with the object f˚n F P QCohpUnq♥ » Mod♥
An determines an
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exact functor Fn from the abelian category f˚n C to itself. To see this, we observe that we
can identify f˚n F with π0pf

˚
n G q. Since G is flat, Proposition HA.7.2.2.15 implies that we

can write f˚n as a filtered colimit of free An-modules of finite rank. Consequently, the functor
Fn can be written as a filtered colimit of endofunctors of f˚n C having the form C ÞÑ Ck, and
is therefore exact.

We now prove that QCohpX; Cq satisfies condition p˚1q. Suppose we are given an exact
sequence 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 in the abelian category QCohpXq♥, where F 2 » π0 G

for some flat object G P QCohpXq. We wish to show that for each object C P QCohpX; Cq,
the sequence

0 Ñ F 1bE Ñ F bE Ñ F 2bE Ñ 0

is exact. Arguing as above, it will suffice to show that the sequence σ :

0 Ñ f˚n pF
1bEq Ñ f˚n pF bEq Ñ f˚n pF

2bEq Ñ 0

is exact in the Grothendieck abelian category f˚n C for each n ě 0. Let En denote the image
of E in f˚n C, so that we can rewrite the sequence σ as

0 Ñ f˚n F 1bAnE
n Ñ f˚n F bAnE

n Ñ f˚n F 2bAnE
n Ñ 0.

Note that we can identify f˚n F 2 with π0f
˚
n G . Since the quasi-coherent sheaf G is flat,

Proposition HA.7.2.2.15 implies that we can write f˚n G as a filtered colimit of free An-
modules of finite rank. Consequently, we can write f˚n F 2 as a filtered colimit lim

ÝÑ
Mα, where

each M2
α is a free module over π0A

n. Set Mα “ f˚n F ˆf˚n F2M2
α, so that we can write σ as

a filtered colimit of complexes σα:

0 Ñ f˚n F 1bAnE
n ÑMα bAn E

n ÑM2
α bAn E

n Ñ 0.

Since f˚n C is a Grothendieck abelian category, the collection of exact sequences in f˚n C is
closed under filtered colimits. Consequently, to prove that the sequence σ is exact, it will
suffice to prove that each of the sequences σα is exact. In fact, we claim that σα is split exact.
This follows from the observation that σα is obtained by tensoring the object En P f˚n C with
the exact sequence

0 Ñ f˚n F 1 ÑMα ÑM2
α Ñ 0

in Mod♥
An , which is split by virtue of the fact that M2

α is a free module over the commutative
ring π0A

n.
To complete the proof of Theorem 10.6.2.1, we must show that if E is a Grothendieck

abelian category equipped with an action of QCohpXq♥ satisfying conditions p˚q and p˚1q,
then E belongs to the essential image of the global sections functor

QCohpX; ‚q : QStkAbpXq Ñ ModQCohpXq♥pGrothabq.
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Equivalently, we show that E satisfies conditions p˚q and p˚1q, then the unit map u : E Ñ
QCohpX; ΦAb

X Eq is an equivalence of abelian categories.
For each n ě 0, let A n P CAlgpQCohpXqq denote the direct image of the structure sheaf

of Un, so that f˚nΦAb
X E can be identified with the abelian category En “ LModπ0 A npEq. Let

us regard A ‚ as an augmented cosimplicial object of CAlgpQCohpXqq by taking A ´1 “ OX ,
so that E´1 “ E . The proof of Proposition 10.6.1.1 then supplies an identification of
QCohpX; ΦAb

X Eq with the totalization of the underlying cosemisimplicial object of E‚. Under
this identification, the functor u is given by the natural map E´1 Ñ lim

ÐÝrnsP∆s
En is an

equivalence in the 8-category ModQCohpXq♥pGrothabq. Using Corollary HA.4.2.3.3 and
Proposition C.5.4.21, we see that this map is an equivalence if and only if E´1 is a limit
of the diagram tEnurnsP∆s

in yCat8. Let F : E “ E´1 Ñ E0 “ LModπ0 A pEq be the functor
given E ÞÑ pπ0 A q b E. Since the augmented cosimplicial 8-category E‚ satisfies the
Beck-Chevalley condition of Corollary HA.4.7.5.3 , we are reduced to proving the following
concrete assertions:

paq The functor F is conservative.

pbq The functor F : E Ñ LModπ0 A pEq preserves totalizations of F -split cosimplicial
objects.

We first prove pbq. Note that E and LModπ0 A pEq are ordinary categories, so that the
limit of a cosimplicial object E‚ (in either setting) can be described as the equalizer of the
pair of coface maps d0, d1 : E0 Ñ E1. Consequently, to prove that condition pbq is satisfied,
it will suffice to show that the functor F preserves finite limits. Since the forgetful functor
G : LModπ0 A pEq Ñ E is conservative and preserves finite limits, we are reduced to proving
that the composite functor G ˝ F preserves finite limits. This follows from condition p˚q,
applied to the object π0 A P QCohpXq♥.

To prove paq, let e : OX Ñ A denote the unit map of the algebra A P CAlgpQCohpXqq.
Since the map η is faithfully flat, the cofiber cofibpeq P QCohpXq is flat. We have an exact
sequence

0 Ñ π0 OX Ñ π0 A Ñ π0 cofibpeq Ñ 0

in the abelian category QCohpXq♥. If E satisfies condition p˚q, then for every object E P E
the sequence

0 Ñ E Ñ pπ0 A q b E Ñ pπ0 cofibpeqq b E Ñ 0

is also exact. Consequently, if E P E is annihilated by the functor F , then E » 0. Applying
this observation to the kernel and cokernel of a morphism α : X Ñ Y in E (and using the
exactness of F established above), we deduce that if F pαq is an equivalence, then α is an
equivalence.
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10.6.5 The Resolution Property

For geometric stacks with the resolution property (see Definition 9.3.3.2), the statement
of Theorem 10.6.2.1 can be simplified:

Theorem 10.6.5.1. Let X be a geometric stack with the resolution property. Then the
global sections functor QCohpX; ‚q : QStkAbpXq Ñ ModQCohpXq♥pGrothabq is an equivalence
of 8-categories.

Proof. Without loss of generality, we may assume that X is 0-truncated. By virtue of
Theorem ??, it will suffice to show that for every object ρ : E P ModQCohpXq♥pGrothabq, the
unit map u : E Ñ QCohpX; ΦAb

X Eq is an equivalence of categories. Choose a faithfully flat
map f : U Ñ X, where U is affine, and set A “ f˚OU . Let F : E Ñ LModπ0 A pEq be a left
adjoint to the forgetful functor. Arguing as in the proof of Theorem ??, we see that ρ is an
equivalence if and only if the following conditions are satisfied:

paq The functor F is conservative.

pbq The functor F : E Ñ LModπ0 A pEq preserves totalizations of F -split cosimplicial
objects.

We first prove pbq. Note that E and LModπ0 A pEq are ordinary categories, so that the limit
of a cosimplicial object E‚ (in either setting) can be described as the equalizer of the pair
of coface maps d0, d1 : E0 Ñ E1. Consequently, to prove that condition pbq is satisfied, it
will suffice to show that the functor F preserves finite limits. Since the forgetful functor
G : LModπ0 A pEq Ñ E is conservative and preserves finite limits, we are reduced to proving
that the composite functor G ˝ F , given by E ÞÑ pπ0 A q b E, preserves finite limits.

We now proceed as in the proof of Proposition 10.4.5.2. Let C “ VectpXq ˆQCohpXq
QCohpXq{A be the 8-category of vector bundles F on X equipped with a map F Ñ A .
According to Lemma 9.3.4.13, the 8-category C is filtered. The proof of Proposition 9.3.4.11
shows that the canonical map lim

ÝÑFPC F Ñ A is an equivalence. It follows that we can
write G ˝ F as the colimit of a filtered diagram of functors of the form E ÞÑ pπ0 F q b E for
F P VectpXq. Each of these functors is left exact, since it admits a left adjoint (given by
the construction E ÞÑ pπ0 F_q b E).

We now prove paq. Since F is an exact functor, it will suffice to show that any object
E P E satisfying F pEq » 0 must itself be a zero object of E . Let us regard the structure
sheaf OX as an object of C (by equipping it with the unit map e : OX Ñ A ), so that
COX { is also a filtered 8-category and the projection map COX { Ñ C is left cofinal. It
follows that e can be written as the colimit of a filtered diagram of maps eα : OX Ñ Fα in
VectpXq, so that the unit map uE : E Ñ pG ˝ F qpEq can be computed as a filtered colimit
of maps uα : E Ñ pπ0 Fαq bE. Note that f˚peαq admits a left homotopy inverse, so that
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f˚ cofibpeαq is a direct summand of f˚Fα and therefore belongs to VectpUq. It follows that
the dual map e_α : F_

α Ñ OX is an epimorphism on π0. Unwinding the definitions, we see
that the composite map

pπ0 F_
α q b kerpuαq

e_αbid
ÝÝÝÝÑ kerpuαq Ñ E

vanishes. Since e_α b id is an epimorphism, it follows that the map kerpuαq Ñ E vanishes, so
that uα is a monomorphism. Because filtered colimits in E are left exact, we conclude that
the unit map uE : E Ñ pG ˝ F qpEq is also a monomorphism. Since pG ˝ F qpEq vanishes by
assumption, we conclude that E » 0 as desired.

We also have an abelian analogue of Theorem 10.4.5.5:

Theorem 10.6.5.2. Let X be a 0-truncated geometric stack with the resolution property.
Then the global sections functor C ÞÑ QCohpX; Cq determines a fully faithful embedding

QCohpX; ‚q : QStkAbpXq Ñ ModVectpXqpyCatq

whose essential image is spanned by those VectpXq-modules E satisfying the following
conditions:

piq The category E is Grothendieck abelian.

piiq If 0 P VectpXq is a zero object, then 0b E is a zero object of E for each E P E.

piiiq For every diagram 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 in VectpXq which is exact in the abelian
category QCohpXq♥ and every object E P E, the sequence

F 1bE Ñ F bE Ñ F 2bE Ñ 0

is exact in the abelian category E.

Proof of Theorem ??. Let C “ τď0 PΣpVectpXqq “ FunπpVectpXqop,Setq be the abelian
category of functors VectpXqop Ñ Set which preserve finite products. Let us abuse notation
by identifying VectpXq with its essential image under the Yoneda embedding VectpXq ãÑ C.
Since X has the resolution property, the Gabriel-Popescu theorem (Theorem C.2.2.1) implies
that the inclusion VectpXq ãÑ QCohpXq♥ extends to an exact functor F : C Ñ QCohpXq♥

which admits a fully faithful right adjoint G. Using Proposition 9.3.7.7, we see that G induces
an equivalence from QCohpXq♥ to the full subcategory C0 Ď C spanned by those functors
λ : VectpXqop Ñ Set which preserve finite products and satisfy the following additional
condition:

p‹q For every diagram 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 in VectpXq which is exact in the abelian
category QCohpXq♥, the diagram 0 Ñ λpF 2q Ñ λpF q Ñ λpF 1q is exact (in the
category of abelian groups).
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Since the tensor product on VectpXq preserves finite direct sums in each variable, it
admits an essentially unique extension to a symmetric monoidal structure on C for which
the tensor product b : Cˆ C Ñ C preserves small colimits separately in each variable.
Moreover, composition with the inclusion VectpXq ãÑ C determines a fully faithful functor
ρ : ModCpGrothabq Ñ ModVectpXqpyCatq whose essential image consists of those objects which
satisfy conditions piq, piiq, and the following weaker version of piii1q:

piii1q For every diagram 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 in VectpXq which is split exact in the
abelian category QCohpXq♥ and every object E P E , the sequence

F 1bE Ñ F bE Ñ F 2bE Ñ 0

is exact in the abelian category E .

Let Mod0
CpGrothabq denote the full subcategory of ModCpGrothabq spanned by those C-

modules E for which ρpEq satisfies condition piiiq. Using Theorem 10.6.5.1, we see that
Theorem 10.6.5.2 is equivalent to the statement that F induces an equivalence of 8-
categories ModQCohpXq♥pGrothabq Ñ Mod0

CpGrothabq. We are therefore reduced to showing
that a monoidal functor C Ñ LFunpE , Eq factors through F if and only if the induced action
of VectpXq on E satisfies condition piiiq, which follows immediately from p‹q.

10.6.6 Comparison with Prestable Quasi-Coherent Stacks

We now study the relationship between abelian and prestable quasi-coherent stacks in
greater detail. Let X : CAlgcn Ñ pS be an arbitrary functor. Then the construction C ÞÑ C♥

determines a functor QStkPStpXq Ñ QStkAbpXq (see Construction 10.1.2.8). This functor
carries left exact morphisms to left exact morphisms, and therefore restricts to a functor
QStkPStpXqlex Ñ QStkAbpXqlex; here QStkPStpXqlex is the subcategory of QStkPStpXqlex

whose morphisms are left exact and QStkAbpXqlex is defined similarly. We now prove a
relative version of Proposition C.5.5.20:

Theorem 10.6.6.1. Let X be a spectral Deligne-Mumford stack. Then Construction 10.1.2.8
determines a functor

QStkPStpXqlex Ñ QStkAbpXqlex C ÞÑ C♥

which admits a fully faithful left adjoint qD. The essential image of qD consists of those
prestable quasi-coherent stacks on X which are anticomplete and 0-complicial.

The proof of Theorem 10.6.6.1 will proceed by reduction to the case where X is affine, in
which case the desired result is a consequence of the following more general assertion:

Lemma 10.6.6.2. Let R be a connective E8-ring and let n be a nonnegative integer. Then:
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paq Suppose that A is a Grothendieck abelian pn`1q-category (Definition C.5.4.1) equipped
with an action of R. Then there exists an R-linear Grothendieck prestable 8-category
C and an R-linear equivalence A » τďn C, where C is anticomplete and n-complicial.

pbq Let C and D be R-linear Grothendieck prestable 8-categories, let LFunlex
R pC,Dq denote

the 8-category of left exact R-linear functors from C to D, and define the 8-category
LFunlex

R pτďn C, τďnDq similarly. If C is anticomplete and n-complicial, then the restric-
tion map LFunlex

R pC,Dq Ñ LFunlex
R pτďn C, τďnDq is an equivalence of 8-categories.

Proof. We first prove paq. Let A be a Grothendieck abelian pn ` 1q-category. Using
Proposition C.5.4.5, we deduce that there exists a Grothendieck prestable 8-category C
which is anticomplete and n-complicial and an equivalence A » τďn C. It then follows
from Proposition C.5.5.19 that the restriction functor ρ : LFunlexpC, Cq Ñ LFunlexpA,Aq
is an equivalence of monoidal 8-categories. An action of R on A can be identified with
a monoidal functor Modff

R Ñ LFunlexpA,Aq (see Definition D.1.1.1). Composing with a
homotopy inverse to ρ, we obtain a compatible action of R on the Grothendieck prestable
8-category C.

We now prove pbq. Let F : LinCatAdd
R “ ModModcn

R
pPrAddq Ñ PrAdd be the forgetful

functor. Then F admits a right adjoint G : PrAdd Ñ LinCatAdd
R , given by the construction

F pCq “ LFunpModcn
R , Cq » LModRpCq,

where the equivalence is given by Theorem HA.4.8.4.1 . The functor F is conservative
(by construction) and preserves small limits (Corollary HA.4.2.3.3 ). Applying Theorem

HA.4.7.3.5 , we see that the adjunction LinCatAdd
R

F //PrAdd
G
oo is comonadic: that is, it

exhibits LinCatAdd
R as the 8-category of comodules over the comonad U “ F ˝G : PrAdd Ñ

PrAdd. Note that an additive R-linear 8-category C is prestable if and only if its image
under F is prestable and that an R-linear functor is left exact if and only if its image under
F is left exact. Consequently, F and G restrict to a comonadic adjunction

LinCatPSt,lex
R

F0 //Grothlex
8

G0
oo .

. In particular, every objectD P LinCatPSt,lex
R can be written as a limit of objects which belong

to the essential image of the functor G0 (see Proposition HA.4.7.3.14 ). Consequently, to
prove pbq, we may assume without loss of generality that D “ G0pD0q for some Grothendieck
prestable 8-category D0. In this case, we are reduced to proving that the restriction map
LFunlexpC,D0q Ñ LFunlexpτďn C, τďnD0q is an equivalence of 8-categories, which follows
from Proposition C.5.3.9.
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Proof of Theorem 10.6.6.1. Write X “ pX ,OXq. For each object U P X , let XU denote the
spectral Deligne-Mumford stack pX {U ,OX |U q, and let EU denote the full subcategory of
QStkPStpXU qlex spanned by those prestable quasi-coherent stacks on XU which are anticom-
plete and 0-complicial. It follows from Corollary D.5.7.3 that the construction U ÞÑ EU
is (contravariantly) functorial in U . Moreover, for each U P X , the construction C ÞÑ C♥

determines a functor θU : EU Ñ QStkAbpXU qlex, which also depends functorially on U .
Let X 0 Ď X be the full subcategory spanned by those objects U P X for which the

functor θU is an equivalence of 8-categories. Since the condition of being anticomplete and
0-complicial can be tested locally with respect to the étale topology (Corollary D.5.7.3), the
construction U ÞÑ θU carries colimits in X to limits in the 8-category Funp∆1,yCat8q. It
follows that X 0 is closed under small colimits. Moreover, Lemma 10.6.6.2 shows that θU is
an equivalence whenever U is affine. Applying Proposition 1.4.7.9, we deduce that X 0 “ X .
In particular, X 0 contains a final object 1 P X .

Let qD : QStkAbpXqlex Ñ E1 Ď QStkPStpXqlex be a homotopy inverse to the equivalence θ1.
To complete the proof, it will suffice to show that the identification idQStkAbpXqlex » qDp‚q♥

is the unit of an adjunction. In other words, it will suffice to show that for every abelian
quasi-coherent stack A on X and every prestable quasi-coherent stack C on X, the canonical
map

ρ : MapQStkPStpXqlexpqDpAq, Cq Ñ MapQStkAbpXqlexpA, C♥q

is a homotopy equivalence. For every object U P X , we have an analogous map

ρU : MapQStkPStpXU qlexpqDpAq|XU , C |XU q Ñ MapQStkAbpXU qlexpA |XU , C
♥ |XU q.

Let X 1 Ď X be the full subcategory spanned by those objects for which ρU is a homotopy
equivalence. Since the construction U ÞÑ ρU carries colimits in X to limits in the 8-category
Funp∆1, pSq, the full subcategory X 1 is closed under small colimits. Lemma 10.6.6.2 shows
that X 1 contains all affine objects of X , so that X 1 “ X by virtue of Proposition 1.4.7.9. In
particular, X 1 contains a final object of X , which shows that ρ is a homotopy equivalence as
desired.

The functor QStkAbpXqlex Ñ QStkPStpXqlex can be regarded as a global version of the
construction A ÞÑ qDpAq studied in §C.5.8. We now consider analogous globalizations of the
related constructions A ÞÑ DpAq and A ÞÑ pDpAq:

Corollary 10.6.6.3. Let X be a spectral Deligne-Mumford stack and let QStkseppXqlex denote
the full subcategory of QStkPStpXqlex spanned by the separated prestable quasi-coherent stacks
on X. Then Construction 10.1.2.8 determines a functor

QStkseppXqlex Ñ QStkAbpXqlex C ÞÑ C♥

which admits a fully faithful left adjoint D. The essential image of D consists of those
prestable quasi-coherent stacks on X which are separated and 0-complicial.
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Proof. Let qD : QStkAbpXqlex Ñ QStkPStpXqlex be as in Theorem 10.6.6.1. Note that the
inclusion QStkseppXqlex ãÑ QStkPStpXqlex admits a left adjoint, given by the construction
C ÞÑ Csep of Proposition 10.3.1.11. It follows that the construction

pA P QStkAbpXqlexq ÞÑ pqDpAqsep P QStkseppXqlexq

is a left adjoint to the functor C ÞÑ C♥. To show that this functor is fully faithful, we must
show that for every abelian quasi-coherent stack A P QStkAbpXqlex, the composite map

A u
ÝÑ qDpAq♥ v

ÝÑ pqDpAqsepq♥

is an equivalence of abelian quasi-coherent stacks. Here u is the unit map for the adjunction
of Theorem 10.6.6.1, which is an equivalence since the functor qD is fully faithful. The map
u1 is also an, equivalence because the canonical map C Ñ Csep induces an equivalence on
hearts for any C P QStkPStpXq.

Note that if A is an abelian quasi-coherent stack on X, then the prestable quasi-coherent
stack qDpAq is 0-complicial (Theorem 10.6.6.1), so the separated quotient qDpAqsep is separated
and 0-complicial (Proposition C.5.3.3). Conversely, suppose that C P QStkPStpXqlex is
separated and 0-complicial. Then the counit map v : qDpC♥qsep Ñ C is left exact and induces
an equivalence on hearts. Since the domain and codomain of v are separated and 0-complicial,
it follows from Proposition C.5.4.5 that v is an equivalence, so that C belongs to the essential
image of the functor A ÞÑ qDpAqsep.

Corollary 10.6.6.4. Let X be a spectral Deligne-Mumford stack and let QStkcomppXqlex

denote the full subcategory of QStkPStpXqlex spanned by the complete prestable quasi-coherent
stacks on X. Then Construction 10.1.2.8 determines a functor

QStkcomppXqlex Ñ QStkAbpXqlex C ÞÑ C♥

which admits a fully faithful left adjoint pD. The essential image of pD consists of those
prestable quasi-coherent stacks on X which are complete and weakly 0-complicial.

Proof. Let qD : QStkAbpXqlex Ñ QStkPStpXqlex be as in Theorem 10.6.6.1. Note that the
inclusion QStkseppXqlex ãÑ QStkPStpXqlex admits a left adjoint, given by the construction
C ÞÑ pC of Proposition 10.3.1.11. Composing these left adjoints, we obtain a functor
pD : QStkAbpXqlex Ñ QStkcomppXqlex which is left adjoint to the formation of hearts. To
show that this functor is fully faithful, we must show that for every abelian quasi-coherent
stack A P QStkAbpXqlex, the composite map A u

ÝÑ qDpAq♥ u1
ÝÑ pDpAq♥ is an equivalence of

abelian quasi-coherent stacks. Here u is the unit map for the adjunction of Theorem 10.6.6.1,
which is an equivalence since the functor qD is fully faithful, and the map u1 is evidently an
equivalence as well.
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Note that if A is an abelian quasi-coherent stack on X, then the prestable quasi-coherent
stack qDpAq is weakly 0-complicial (Theorem 10.6.6.1), so its completion D̂pAq is complete
and weakly 0-complicial (Remark C.5.5.14). Conversely, suppose that C P QStkPStpXqlex is
complete and weakly 0-complicial. Then the counit map v : pDpC♥q Ñ C is left exact and
induces an equivalence on hearts. Since the domain and codomain of v are complete and
weakly 0-complicial, it follows from Proposition C.5.9.3 that v is an equivalence, so that C
belongs to the essential image of the functor pD.

Warning 10.6.6.5. The constructions qD,D, pD : QStkAbpXqlex Ñ QStkPStpXqlex of Theorem
10.6.6.1 and Corollaries 10.6.6.3 and 10.6.6.4 are in general not compatible with base change.
If A is an abelian quasi-coherent stack on X and f : Y Ñ X is a morphism of spectral
Deligne-Mumford stacks, then we have canonical maps

qv : qDpf˚Aq Ñ f˚ qDpAq v : Dpf˚Aq Ñ f˚DpAq pv : pDpf˚Aq Ñ f˚ pDpAq.

in QStkPStpYqlex which induce equivalences after passing to hearts. Using Remark 10.3.4.6,
we obtain the following:

piq The morphism qv is an equivalence if and only if f˚ qDpAq is anticomplete and 0-
complicial. This condition is satisfied whenever f is étale (or, more generally, when f

is flat and the diagonal map Y Ñ YˆX Y has finite Tor-amplitude).

piiq The morphism v is an equivalence if and only if f˚DpAq is separated and 0-complicial.
This condition is satisfied whenever f is flat.

piiiq The morphism pv is an equivalence if and only if f˚ pDpAq is complete and and weakly
0-complicial. This condition is satisfied whenever f is flat.

Because the constructions of Theorem 10.6.6.1 and Corollaries 10.6.6.3 and 10.6.6.4
are not stable under arbitrary base change, they do not extend to quasi-coherent stacks
on an arbitrary functor X : CAlgcn Ñ pS. However, Corollary ?? has an analogue for
quasi-geometric stacks:

Corollary 10.6.6.6. Let X : CAlgcn Ñ S be a quasi-geometric stack and let QStkcomppXqlex

be defined as in Corollary 10.6.6.4. Then Construction 10.1.2.8 determines a functor

QStkcomppXqlex Ñ QStkAbpXqlex C ÞÑ C♥

which admits a fully faithful left adjoint pD. The essential image of pD consists of those
prestable quasi-coherent stacks on X which are complete and weakly 0-complicial.

Proof. We proceed as in the proof of Theorem 10.6.6.1. For every quasi-geometric stack Y ,
let QStkp0qpY qlex denote the full subcategory of QStkcomppY qlex spanned by those prestable
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quasi-coherent stacks on Y which are complete and weakly 0-complicial. Note that the
construction Y ÞÑ QStkp0qpY qlex is contravariantly functorial for flat maps between quasi-
geometric stacks (Remark 10.4.6.4).

We first prove that the construction C ÞÑ C♥ induces an equivalence of 8-categories
θX : QStkp0qpXqlex Ñ QStkAbpXqlex. Choose a faithfully flat u : X0 Ñ X, where X0 »

SpecA is affine, and let X‚ denote the Čech nerve of u. Then the construction rns ÞÑ θXn
determines a cosemisimplicial object of Funp∆1,yCat8q. Since each Xn is representable by
a (quasi-affine) spectral Deligne-Mumford stack, Corollary 10.6.6.4 guarantees that each
of the functors θXn is an equivalence of 8-categories. It follows that θX » TotpθX‚q is
also an equivalence of 8-categories. In particular, θX admits a homotopy inverse pD :
QStkAbpXqlex Ñ QStkp0qpXqlex Ď QStkcomppXqlex. To complete the proof, it will suffice to
show that the natural map idQStkAbpXqlex Ñ pDp‚q♥ is the unit of an adjunction. In other
words, it will suffice to show that if A is an abelian quasi-coherent stack on X and C is
complete prestable quasi-coherent stack on X, then the canonical map

ρ : MapQStkPStpXqlexppDpAq, Cq Ñ MapQStkAbpXqlexpA, C♥q

is a homotopy equivalence. Note that ρ can be realized as the totalization of a map of
cosimplicial spaces

ρ‚ : MapQStkPStpX‚qlexppDpAq|X‚ , C |X‚q Ñ MapQStkAbpXqlexpA |X‚ , C♥ |X‚q.

It will therefore suffice to show that each of the maps ρn is a homotopy equivalence, which
follows from Corollary 10.6.6.4.



Chapter 11

Smooth and Proper Linear
8-Categories

Let X be a Noetherian scheme. A theorem of Gabriel ([74]) implies that X can be
recovered, up to canonical isomorphism, from the abelian category CohpXq of coherent
sheaves on X (this result has been extended to non-Noetherian schemes by Rosenberg). In
particular, any geometric condition on X can, at least in principle, be reformulated as a
condition on the category CohpXq.

Example 11.0.0.1. Let X be a quasi-projective variety over a field κ. Then X is pro-
jective if and only if, for every pair of coherent sheaves F ,G P CohpXq, the vector space
HomCohpXqpF ,G q has finite dimension over κ. The “only if” direction is a fundamental
finiteness theorem of Serre. The converse follows from the observation that if X is not
projective, then there exists a closed 1-dimensional subvariety C Ď X which is not projective,
so that the vector space HomCohpXqpOX ,OCq is isomorphic to the ring of functions on C

(and is therefore infinite-dimensional as a vector space over κ).

By a slight abuse of notation, we can regard every scheme X as a spectral algebraic space
and consider the stable 8-category QCohpXq introduced in Chapter 2. Let us assume for
simplicity that X is quasi-compact and separated, so that QCohpXq is the derived category
of usual abelian category QCohpXq♥ of quasi-coherent sheaves on X (Corollary 10.3.4.13).
It follows from Theorem 9.6.0.1 that we can recover X (up to canonical isomorphism) from
the 8-category QCohpXq, together with its symmetric monoidal structure. However, the
symmetric monoidal structure is now essential:

Example 11.0.0.2. Let X be an abelian variety dimension ą 0 over a field κ and let
X_ be the dual abelian variety. Then the Fourier-Mukai transform (see [158]) determines
an equivalence of 8-categories α : QCohpXq » QCohpX_q which is not induced by an
isomorphism of schemes X » X_ (for example, α is not t-exact).

955
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In general, the existence of an equivalence of stable 8-categories QCohpXq » QCohpY q
need not imply that X and Y are isomorphic. However, it does imply that X and Y have
many common geometric features. For example, if X and Y are quasi-projective varieties
over a field κ and there exists a κ-linear equivalence QCohpXq » QCohpY q, then X is
projective if and only if Y is projective. This is a consequence of the following slight variant
of Example 11.0.0.1:

Example 11.0.0.3. Let X be a quasi-projective variety over a field κ. Then X is projective
if and only if, for every pair of compact objects F ,G P QCohpXq, the mapping object
MapQCohpXqpF ,G q P Modκ is perfect (see Notation D.7.1.1).

Example illustrates one of the basic insights of (homological) non-commutative geometry:
important geometric features of an algebro-geometric object X can be reformulated as
conditions on the stable 8-category QCohpXq. Such reformulations allow us to apply
geometric ideas in the study of stable 8-categories which do not arise (directly) from
algebraic geometry. Though we will not delve deeply into the theory of non-commutative
geometry in this book, we devote this chapter to investigating some of the simplest examples
of this paradigm.

We begin in §11.1 by introducing the notion of a proper R-linear 8-category, where R is
an arbitrary E8-ring (or every E2-ring; see Definition 11.1.0.1). The definition is motivated
by Example 11.0.0.3: we say that C is proper if it is compactly generated and, for every
pair of compact objects C,D P C, the R-module MapCpC,Dq is perfect. Our main goal is
to establish the following more precise version of Example 11.0.0.3: if R is connective and
X is a spectral algebraic space which is quasi-compact, separated, and locally almost of
finite presentation over R, then QCohpXq is a proper R-linear 8-category if and only if X is
proper and of finite Tor-amplitude over R (Theorem 11.1.4.1).

Another essential notion from classical algebraic geometry is smoothness. Recall that
a map of schemes f : X Ñ Y is said to be smooth if it is locally of finite presentation and
satisfies the “infinitesimal lifting property”:

p˚q If φ : B Ñ B is a surjective morphism of commutative rings whose kernel kerpφq is a
nilpotent ideal of B, then every lifting problem

SpecB //

��

X

f

��
SpecB //

<<

Y

admits a solution.

In §11.2, we will study some analogues of condition p˚q in the setting of spectral algebraic
geometry. Here the situation is more complicated: there are (at least) two useful notions
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of smooth morphism, depending on whether one requires condition p˚q to hold only for
homomorphisms φ between ordinary commutative rings (and demand that f be flat), or
require the analogue of p˚q for more general E8-rings (which is generally incompatible with
the requirement that f be flat). These notions are equivalent in characteristic zero but
otherwise distinct; we will refer to them as fiber smoothness and differential smoothness,
respectively.

Let R be a connective E8-ring and let q : X Ñ SpétR be a morphism of spectral algebraic
spaces. In §11.3, we show that (under some mild additional hypotheses) the condition that q
is fiber smooth depends only on the structure of QCohpXq as an R-linear 8-category. More
precisely, we introduce the notion of a smooth R-linear 8-category (Definition 11.3.1.1) and
show that QCohpXq is smooth if and only if q is fiber smooth (Theorem 11.3.6.1).

The hypotheses of smoothness and properness for R-linear 8-categories are very powerful
when used in conjunction with one another. In §11.4, we will show that if X is a quasi-
compact, quasi-separated spectral algebraic space over R, then QCohpXq is smooth and
proper if and only if the structure map q : X Ñ SpétR is proper and fiber smooth (Theorem
11.4.2.1). In particular, the requirement that QCohpXq is smooth and proper guarantees
that X is almost of finite presentation over R.

One way to guarantee that a (compactly generated) R-linear 8-category C be smooth
and proper is to assume that it is invertible: that is, that there exists another R-linear
8-category C´1 such that CbR C´1 » ModR. The collection of all equivalences classes of
(compactly generated) invertible R-linear 8-categories can be organized into an abelian
group Br:pRq, which we will refer to as the extended Brauer group of R. In §11.5, we will
investigate the structure of invertible R-linear 8-categories and the extended Brauer group
Br:pRq. In particular, we will show that every invertible R-linear 8-category is locally
equivalent to ModR with respect to the étale topology (Theorem 11.5.5.1) and that Br:pRq
depends only on the commutative ring π0R (Proposition 11.5.5.6).

Remark 11.0.0.4. The notions of smooth and proper R-linear8-categories were introduced
by Kontsevich (at least when R is an ordinary commutative ring), using the language of
differential graded categories. They have subsequently been studied by a number of authors:
see, for example, [31], [207], [208], [211], [123], [212], and [163]. See also [2] for a discussion
in the setting where R is a structured ring spectrum, which has considerable overlap with
the material of this chapter.
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11.1 Properness for Linear 8-Categories and
Quasi-Coherent Stacks

Let R be an E2-ring and let C be a stable R-linear 8-category (Definition D.1.4.1). For
every pair of objects C,D P C, we let MapCpC,Dq denote the R-module of morphisms from
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C to D (see Example D.7.1.2), which is characterized by the following universal property:
for every left R-module M , we have a canonical homotopy equivalence

MapLModRpM,MapCpC,Dqq » MapCpM bR C,Dq.

Definition 11.1.0.1. Let R be an E2-ring and let C be a stable R-linear 8-category. We
will say that C is proper if the following conditions are satisfied:

p1q The 8-category C is compactly generated.

p2q For every pair of compact objects C,D P C, the left R-module MapCpC,Dq is perfect.

When restricted to R-linear 8-categories of the form LModA for A P AlgR, Definition
11.1.0.1 recovers the notion of proper R-algebra studied in §HA.4.6.4 :

Proposition 11.1.0.2. Let R be an E2-ring and let A be an E1-algebra over R. The
following conditions are equivalent:

p1q The algebra A is perfect when regarded as a left R-module (that is, the object A P AlgR
is proper).

p2q The stable R-linear 8-category LModA is proper.

Proof. Let C “ LModA. Then we can regard A as a compact object of C, with MapCpA,Aq »

A. It follows immediately that p2q ñ p1q. Conversely, suppose that p1q is satisfied. We must
show that if C and D are compact objects of C, then MapCpC,Dq is a perfect R-module. If
we regard D as fixed, then the collection of those objects C P C for which MapCpC,Dq is
perfect is a stable subcategory of C which is closed under retracts. Consequently, to prove
that MapCpC,Dq is perfect for every compact object C P C, it will suffice to treat the case
C “ A. Similarly, we may reduce to the case N “ A, so that MapCpM,Nq » A is perfect
provided that condition p1q is satisfied.

Our goal in this section is to study a relative version of Definition 11.1.0.1. We begin in
§11.1.1 by showing that the condition that a stable R-linear 8-category C is proper can be
tested locally with respect to the étale topology (Proposition 11.1.1.1). Consequently, there
is a robust notion of proper quasi-coherent stacks on an arbitrary spectral Deligne-Mumford
stack X (Definition 11.1.1.3). Our main objective is to establish the following direct image
theorem: if f : X Ñ Y is a morphism which is proper, locally almost of finite presentation,
and of finite Tor-amplitude, then the pushforward functor f˚ : QStkStpXq Ñ QStkStpYq
carries proper quasi-coherent stacks on X to proper quasi-coherent stacks on Y (Theorem
11.1.4.1).
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11.1.1 Proper Quasi-Coherent Stacks

Our next goal is to show collection of proper R-linear 8-categories is stable under base
change and satisfies étale descent.

Proposition 11.1.1.1. Let R be an E8-ring and let C be a stable R-linear 8-category.
Then:

p1q If C is proper as an R-linear 8-category and R Ñ R1 is an arbitrary morphism
of E8-rings, then the tensor product R1 bR C “ LModR1pCq is a proper R1-linear
8-category.

p2q Suppose there exists a finite collection of étale morphisms tR Ñ Rαu such that the
induced map RÑ

ś

αRα is faithfully flat. If R is connective and each Rα bR C is a
proper Rα-linear 8-category, then C is a proper R-linear 8-category.

Remark 11.1.1.2. Proposition 11.1.1.1 remains true (with an essentially identical proof)
in the setting of linear 8-categories over E2-rings.

Proof of Proposition 11.1.1.1. We first prove p1q. If C is proper, then it is compactly
generated and therefore LModR1pCq is compactly generated (Example ??). We must show
that for every pair of compact objects C,D P LModR1pCq, the R1-module MapLModR1 pCq

pC,Dq

is perfect. Let us first regard Y as fixed, and let X Ď LModR1pCq be the full subcategory
spanned by those compact objects X for which MapLModR1 pCq

pC,Dq is perfect. Then X is
an idempotent complete, stable subcategory of LModR1pCq. To show that it contains every
compact object of LModR1pCq, it will suffice to show that it contains every object of the
form R1 bR C0, where C0 is a compact object of C. Let us now regard C0 as fixed; we wish
to show that MapLModR1 pCq

pR1 bR C0, Dq » MapCpC0, Dq is a perfect R1-module for every
compact object D P LModR1pCq. Arguing as above, we may suppose that D » R1 bR D

for some compact object D P C. Using the compactness of C0, we obtain an equivalence of
R1-modules R1 bR MapCpC0, D0q Ñ MapLModR1 pCq

pC,Dq. It will therefore suffice to show
that MapCpC0, D0q is a perfect R-module, which follows from our assumption that C is
proper.

We now prove p2q. Assume that R is connective E8-ring and that each Rα bR C is a
proper Rα-linear 8-category, for some étale covering tRÑ Rαu. Using Theorem D.5.3.1,
we conclude that C is a compactly generated 8-category. Fix compact objects C,D P C. For
every index α, the tensor product

Rα bR MapCpC,Dq » MapLModRα pCq
pRα b C,Rα bDq

is a perfect module over Rα. Applying Proposition 2.8.4.2, we deduce that MapCpC,Dq is a
perfect R-module.
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Proposition 11.1.1.1 asserts that the condition of properness can be tested locally for the
étale topology. This motivates the following:

Definition 11.1.1.3. Let X be a spectral Deligne-Mumford stack and let C P QStkStpXq be
an stable quasi-coherent stack on X. We will say that C is proper if, for every connective
E8-ring R and every morphism η : SpétRÑ X, the stable R-linear 8-category Cη is proper.

Example 11.1.1.4. Let X » SpétR be an affine spectral Deligne-Mumford stack and let C
be a stable quasi-coherent stack on X. Then C is proper as a quasi-coherent stack on X if
and only if it is proper as an R-linear 8-category: this follows immediately from the first
assertion of Proposition 11.1.1.1.

Proposition 11.1.1.1 immediately implies the following:

Proposition 11.1.1.5. Let X be a spectral Deligne-Mumford stack and let C be a stable
quasi-coherent stack on X. Then:

p1q Let f : Y Ñ X be any map of spectral Deligne-Mumford stacks. If C is proper, then
f˚ C P QStkStpYq is proper.

p2q Suppose we are given a collection of étale maps tfα : Xα Ñ Xu which induce an étale
surjection

š

α Xα Ñ X. If each pullback f˚α C P QStkStpXαq is proper, then C is proper.

11.1.2 Digression: Perfect Objects with Prescribed Support

Let X be a quasi-separated spectral algebraic space. We say that a closed subset
K Ď |X | is cocompact if the complementary open set |X | ´K is quasi-compact. According
to Proposition 7.1.5.5, the support SupppF q Ď |X | is a cocompact closed set for every
perfect object F P QCohpXq. We will need the following converse:

Proposition 11.1.2.1. Let X be a quasi-compact, quasi-separated spectral algebraic space,
and let K be a cocompact closed subset of |X |. Then there exists a perfect object F P QCohpXq
such that K “ SupppF q.

We first treat the case where X is affine.

Lemma 11.1.2.2. Let A be a connective E8-ring, and let K be a cocompact closed subset
of | SpecA|. Then there exists a perfect A-module M such that SupppF q “ K, where F

denotes the image of M under the equivalence of 8-categories QCohpSpétAq » ModA.

Proof. Since K is cocompact, we can write K as the vanishing locus of an ideal I Ď π0A

generated by finitely many elements x1, . . . , xn P π0A. We can now take M to be the tensor
product of the cofibers of the maps xi : AÑ A.
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Proof of Proposition 11.1.2.1. Using Theorem 3.4.2.1, we can choose a scallop decomposition

H “ U0 ãÑ ¨ ¨ ¨ ãÑ Un “ X .

For 0 ď m ď n, let Km denote the inverse image of K in |Um |. We will prove by induction
on m that there exists a perfect object Fm P QCohpUmq with SupppFmq “ Km. The case
m “ 0 is trivial. To carry out the inductive step, suppose that Fm has been constructed for
m ă n and choose an excision square

V j //

φ
��

Y
ψ
��

Um // Um`1

where Y is affine and j is a quasi-compact open immersion. Let K 1 denote the inverse image
of K in |Y |. Using the argument of Theorem ?? (applied to the quasi-coherent stack QK),
we deduce that there exists an object G P QCohK1pYq with j˚ G » φ˚pFm‘Σ Fmq, so
that G and Fm‘Σ Fm can be glued to obtain a perfect object F 1 P QCohKm`1pUm`1q

whose support contains Km. Let Z “ Km`1 ´Km, so that Z is a closed subset of |Um`1 |

which does not intersect |Um |. Let Z 1 denote the inverse image of Z in |Y |. It follows from
descent that the pullback functor ψ˚ induces an equivalence of 8-categories

QCohZpUm`1q Ñ QCohZ1pYq.

Applying Lemma 11.1.2.2, we deduce the existence of a perfect object F 2 P QCohZpUm`1q

such that Supppψ˚F 2q “ Z 1. We now complete the proof by setting Fm`1 “ F 1‘F 2.

11.1.3 Properness and Dualizability

Let X be a quasi-compact, quasi-separated spectral algebraic space. Combining Theorem
10.2.0.2 with Proposition D.5.1.1, we deduce that the construction C ÞÑ QCohpX; Cq induces
an equivalence of 8-categories

QCohpX; ‚q : QStkStpXq Ñ ModQCohpXqpPrStq;

here PrSt denotes the 8-category of presentable stable 8-categories. Consequently, if C
is a stable quasi-coherent stack on X, then the condition that C is proper (in the sense of
Definition 11.1.1.3) depends only on the 8-category QCohpX; Cq (as an 8-category tensored
over QCohpXq). We now make this observation more explicit.

Construction 11.1.3.1. Let X be a quasi-compact, quasi-separated spectral algebraic space,
and let C be a stable quasi-coherent stack on X. Assume that C is compactly generated.
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Then the 8-category QCohpX; Cq is compactly generated (Theorem 10.3.2.1). Since the
8-category QCohpXq is locally rigid (Proposition 9.6.1.2), it follows that QCohpX; Cq is
dualizable as a module over QCohpXq (Proposition D.7.5.1 and Proposition HA.4.6.5.11 ).
Let us denote the its dual by _QCohpX; Cq, so that we have a duality datum

e : QCohpX; Cq bQCohpXq
_QCohpX; Cq Ñ QCohpXq.

Moreover, if λ : QCohpXq Ñ Sp denotes the global sections functor, then the composition

QCohpX; Cq b _QCohpX; Cq Ñ QCohpX; Cq bQCohpXq
_QCohpX; Cq e

ÝÑ QCohpXq λ
ÝÑ Sp

exhibits _QCohpX; Cq as a dual of QCohpX; Cq in the symmetric monoidal 8-category PrSt.
We may therefore use Proposition D.7.2.3 to identify _QCohpX; Cq with the 8-category
IndppQCohpX; Cqop

c q, where QCohpX; Cqc denotes the full subcategory of QCohpX; Cq spanned
by the compact objects.

Unwinding the definitions, we see that e restricts to a functor

MapC : QCohpX; Cqop
c ˆQCohpX; Cq Ñ QCohpXq,

pF ,G q ÞÑ MapCpF ,G q,

which is characterized by the universal property

MapQCohpXqpE ,MapCpF ,G qq » MapQCohpX;CqpE bF ,G q.

Remark 11.1.3.2. Let X be a quasi-compact, quasi-separated spectral algebraic space and
let C be a stable quasi-coherent stack on X. Assume that C is compactly generated and let
_QCohpX; Cq be as in Construction 11.1.3.1. Since the functor QCohpX; ‚q : QStkStpXq Ñ
ModQCohpXqpPrStq is a symmetric monoidal equivalence, we can write _QCohpX; Cq »
QCohpX;_Cq, where _C is a dual of C in the symmetric monoidal 8-category QStkStpXq.

Proposition 11.1.3.3. Let X be a quasi-compact, quasi-separated spectral algebraic space
and let C be a stable quasi-coherent stack on X. Assume that C is compactly generated, so
that C admits a dual _C in QStkStpXq. The following conditions are equivalent:

paq The stable quasi-coherent stack C is proper (in the sense of Definition 11.1.1.3).

pbq The evaluation map e : Cb_C Ñ QX is compact (in the sense of Definition 10.1.3.1).

pcq The evaluation map e1 : QCohpX; Cq bQCohpXq
_QCohpX; Cq Ñ QCohpXq is compact

(in the sense of Definition C.3.4.2).

pdq For every pair of compact objects F ,G P QCohpX; Cq, the object MapCpF ,G q (see
Construction 11.1.3.1) is perfect.
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Proof. The equivalence of pbq and pcq follows from Proposition 10.3.1.14, and the equivalence
of pbq and pcq follows from the observation that the 8-category of compact objects of
QCohpX; CqbQCohpXq

_QCohpX; Cq is generated (under finite colimits and retracts) by objects
of the form F bG , where F P QCohpX; Cqc and G P QCohpX; Cqop

c (see Construction
11.1.3.1). To prove the equivalence of paq and pbq, we can work locally on X and thereby
reduce to the case where X “ SpétR is affine. In this case, the desired result reduces to the
equivalence pbq ô pdq.

Remark 11.1.3.4. The equivalence paq ô pbq of Proposition 11.1.3.3 is valid for any
spectral Deligne-Mumford stack X.

11.1.4 Direct Images of Proper Quasi-Coherent Stacks

We now consider the relationship between properness of quasi-coherent stacks and proper
morphisms between spectral algebraic spaces.

Theorem 11.1.4.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Assume that f is quasi-compact, separated, and locally almost of finite presentation. Then
the following conditions are equivalent:

p1q The map f is proper and locally of Tor-amplitude ď n, for some integer n.

p2q For every proper object C P QStkStpXq, the pushforward f˚ C is also proper.

p3q The pushforward f˚QX P QStkStpYq is proper (here QX denotes the unit object of
QStkStpXq).

In the situation of Theorem 11.1.4.1, the implication p2q ñ p3q is immediate, and the
implication p1q ñ p3q is a reformulation of Theorem 6.1.3.2. The remaining implications are
consequences of the following three results:

Proposition 11.1.4.2. Let R be a connective E8-ring, let X be a spectral algebraic space
which is proper, locally almost of finite presentation, and of finite Tor-amplitude over R. If
C P QStkStpXq is a proper quasi-coherent stack on X, then QCohpX; Cq is a proper R-linear
8-category.

Proposition 11.1.4.3. Let R be a connective E8-ring, let X be a quasi-compact separated
spectral algebraic space which is locally almost of finite presentation over R, and suppose
that QCohpXq is a proper R-linear 8-category. Then X is proper over R.

Proposition 11.1.4.4. Let R be a connective E8-ring, let X be a quasi-compact, quasi-
separated spectral algebraic space which is locally almost of finite presentation over R, and
suppose that QCohpXq is a proper R-linear 8-category. Then X has Tor-amplitude ď n over
R, for some n ě 0.
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Proof of Proposition 11.1.4.2. Let X be a spectral algebraic space which is proper, locally
almost of finite presentation, and locally of Tor-amplitude ď n over a connective E8-ring
R, and let C be a proper quasi-coherent stack on X. It follows from Theorem 10.3.2.1
that QCohpX; Cq is a compactly generated R-linear 8-category, and Proposition 10.3.2.6
implies that an object of QCohpX; Cq is compact if and only if it is locally compact. It
will therefore suffice to prove that if F ,G P QCohpX; Cq are locally compact, then the
R-module MapQCohpX;CqpF ,G q P ModR is perfect. Unwinding the definitions, we see that
MapQCohpX;CqpF ,G q can be identified with the R-module of global sections of the quasi-
coherent sheaf MapCpF ,G q P QCohpXq described in Construction 11.1.3.1. The assumption
that C is proper guarantees that MapCpF ,G q is a perfect object of QCohpXq, so that the
desired result reduces to Theorem 6.1.3.2.

The proof of Proposition 11.1.4.3 will require some preliminaries.

Lemma 11.1.4.5. Let X “ pX ,OXq be a spectral Deligne-Mumford stack, let A be an
algebra object of QCohpXq, and let A “ ΓpX ; A q P Alg denote the E1-algebra of global
sections of A . Then A » 0 if and only if A » 0.

Proof. The “only if” direction is obvious. The converse follows from the observation that A

is a sheaf of A-module spectra on X , which automatically vanishes if A » 0.

Lemma 11.1.4.6. Let R be a connective E8-ring, let X be a spectral algebraic space over
R which is quasi-compact and quasi-separated, and assume that the R-linear 8-category
QCohpXq is proper. Then the map of topological spaces φ : |X | Ñ |SpecR| is closed.

Proof. Let K be a closed subset of |X |; we wish to show that φpKq Ď |SpecR| is closed.
Let U “ |X | ´ K, and write U as a union of quasi-compact open subsets Uα. For each
index α, let Uα be the corresponding open substack of X. Since X is quasi-separated, each of
the maps Uα Ñ X is quasi-compact, so that the closed sets Kα “ |X | ´ Uα are cocompact.
Since the fibers of φ are quasi-compact topological spaces, we have φpKq “

Ş

α φpKαq. It
will therefore suffice to show that each φpKαq is a closed subset of | SpecR|. Replacing
K by Kα, we may reduce to the case where K is cocompact, so that K “ SupppF q for
some perfect object F P QCohpXq (Proposition 11.1.2.1). Replacing F by EndpF q if
necessary, we may suppose that F is an algebra object of QCohpXq (Corollary 7.1.5.6). Let
A P AlgpModRq denote the R-module of global sections of F . Since QCohpXq is proper,
the algebra A “ MapQCohpXqpO,F q is a perfect R-module. We will complete the proof
by showing that φpKq “ SupppAq (where we abuse notation by identifying A with the
corresponding quasi-coherent sheaf on SpétR). Equivalently, we show that for any field κ

and any map of E8-rings R Ñ κ, the tensor product κ bR A vanishes if and only if the
pullback of F to X0 “ SpétκˆSpétR X vanishes. Replacing R by κ and X by X0, we deduce
the desired result from Lemma 11.1.4.5.
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Proof of Proposition 11.1.4.3. Let X be a spectral algebraic space which is separated and
locally almost finite presentation over a connective E8-ring R, and suppose that QCohpXq
is a proper R-linear 8-category. We wish to prove that X is proper over R. Equivalently,
we must show that every pullback diagram

X1 //

��

X

��
SpétR1 // SpétR,

induces a closed map of topological spaces |X1 | Ñ | SpecR1|. This follows from Lemma
11.1.4.6, since QCohpX1q » ModR1pQCohpXqq is a proper R1-linear 8-category (Proposition
11.1.1.1).

We now turn to the proof of Proposition 11.1.4.4.

Lemma 11.1.4.7. Let f : X Ñ Y be a morphism of quasi-compact, quasi-separated spec-
tral algebraic spaces. Suppose that the pushforward functor f˚ carries QCohpXqperf into
QCohpYqperf , and let f` : QCohpXq Ñ QCohpYq be as in Proposition 6.4.5.4. Then there
exists an integer n such that f` carries QCohpXqě0 into QCohpYqě´n.

Proof. Choose a perfect object F P QCohpXq satisfying the requirements of Proposition
9.6.3.1. Then f`F is a perfect object of QCohpYq. Since Y is quasi-compact, there exists
an integer n such that f`F P QCohpYqě´n. The collection of those objects G P QCohpXq
such that f` G P QCohpYqě´n contains F and is closed under colimits and extensions, and
therefore contains QCohpXqě0.

Lemma 11.1.4.8. Let R be a connective E8-ring, let X be a quasi-compact, quasi-separated
spectral algebraic space over R, and suppose that QCohpXq is a proper R-linear 8-category.
Then there exists an integer c with the following property:

p˚q Let φ : R Ñ R1 be a map of connective E8-rings, let X1 “ SpétR1 ˆSpétR X, and let
F P QCohpX1q be perfect. If F has Tor-amplitude ď n, then the R1-module ΓpX1; F q
has Tor-amplitude ď n` c.

Proof. According to Lemma ??, there exists an integer n such that the functor f` :
QCohpXq Ñ QCohpSpétRq » ModR carries QCohpXqě0 into pModRqě´c. We claim that c
has the desired property. For any map of connective E8-rings R Ñ R1, form a pullback
diagram

QCohpX1q

f 1

��

g1 // QCohpXq

��
SpétR1 // SpétR.
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The map g1 is affine, so that g1˚ is right t-exact. It follows that the composite functor
f` ˝ g

1
˚ carries QCohpX1qě0 into pModRqě´c. Using Remark 6.4.5.7, we deduce that g˚f 1`

carries QCohpX1qě0 into pModRqě´c, so that f 1` carries QCohpX1qě0 into pModR1qě´c. If
F P QCohpX1q is perfect of Tor-amplitudeď n, then F_ P QCohpX1qě´n, so that pf`F_q »

pf˚F q_ P pModR1qě´n´c, and therefore f˚F has Tor-amplitude ď n` c.

Proof of Proposition 11.1.4.4. Let R be a connective E8-ring, let X be a quasi-compact,
quasi-separated spectral algebraic space which is locally almost of finite presentation over R,
and assume that QCohpXq is proper as an R-linear 8-category. We wish to prove that X
has finite Tor-amplitude over R. Since X is quasi-compact, we can choose an étale surjection
SpétAÑ X. Our assumption that X is locally almost of finite presentation over R guarantees
that π0A is finitely generated as a commutative algebra over π0R. Choose a finite collection
of elements x1, . . . , xd P π0A which generate π0A as an algebra over π0R, and choose an
integer c satisfying condition p˚q of Lemma 11.1.4.8. We will prove that X has Tor-amplitude
ď c` d over R. By virtue of Corollary 6.1.4.8, it will suffice to show that for every field κ

and every map RÑ κ, the fiber product SpétκˆSpétR X is pc` dq-truncated. Replacing R
by κ, we may suppose that R is a field.

Using Theorem 3.4.2.1, we can choose a scallop decomposition

H “ U0 ãÑ U1 ãÑ ¨ ¨ ¨ ãÑ Un “ X

of X. We will prove that each Ui is pc ` dq-truncated, using induction on i. The case
i “ 0 is trivial. To carry out the inductive step, assume that 1 ď i ď n and that Ui´1 is
pc` dq-truncated; we wish to show that Ui is pc` dq-truncated. Choose an excision square
σ :

V f //

��

SpétB

u

��
Ui´1 // Ui .

The map f is an open immersion whose image is an open subset V Ď |SpecB|. Since
Ui´1 and SpétB constitute an étale covering of Ui, it will suffice to show that B is pc` dq-
truncated. Fix k ą c` d; we will show that πkB » 0. For this, it will suffice to show that
the localization πkBm » 0, for every maximal ideal m Ď π0B. Without loss of generality, we
may assume that m P |SpecB| does not belong to V (otherwise, the desired result follows
from our inductive hypothesis).

Our choice of c guarantees that the commutative ring π0B has Krull dimension at most c,
so we can choose a sequence of elements y1, . . . , yd belonging to the maximal ideal of π0Bm,
having the property that pπ0Bmq{py1, . . . , ydq is a finite-dimensional vector space over κ. For
1 ď i ď d, let Mi denote the Bm-module given by the cofiber of the map yi : Bm Ñ Bm, and let
M denote the tensor product

Â

1ďiďdMi (formed in the 8-category ModBm). Then M is a
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perfect Bm-module, which has Tor-amplitude ď d over Bm. Moreover, M is supported at the
closed point of | SpecBm|, so that each homotopy group πiM is finite-dimensional as a vector
space over κ. It follows that M is almost perfect as a B-module (Proposition HA.7.2.4.17 ).
Since Bm is flat over B, M has Tor-amplitude ď c as a B-module (Lemma 6.1.1.6). It follows
that M is perfect as a B-module (Proposition HA.7.2.4.23 ). By construction, the support
of M (as a B-module) is contained in the closed subset K “ |SpecB| ´ V .

Let K be the closed subset of |Ui | complementary to the open immersion Ui´1 ãÑ Ui.
Since σ is an excision square, the adjoint functors

QCohKpUiq
u˚ //QCohKpSpétBq
u˚
oo

are mutually inverse equivalence of 8-categories. In particular, we can write M as the image
of some sheaf F i P QCohKpUiq under the composite functor

QCohKpUiq
u˚
Ñ QCohKpSpétBq Ď QCohpSpétBq » ModB .

For j ě i, let F j denote the direct image of F i under the open immersion Ui Ñ Uj . We
will prove by induction on j that each F j is a perfect object of QCohpUjq of Tor-amplitude
ď d. In the case j “ i, we observe that SpétB and Ui´1 comprise an étale cover of Ui. Since
F |Ui » 0, it suffices to show that u˚F is a perfect object of Tor-amplitude ď c, which
follows from our construction. To carry out the inductive step, suppose that i ă j ď n, and
that F j´1 is perfect of Tor-amplitude ď d. We have an excision square τ :

V1 g1 //

v1

��

SpétC

v

��
Uj´1

g // Uj .

To prove that F j » g˚F j´1 is perfect of Tor-amplitude ď d, it will suffice to show that
g˚g˚F j´1 » F j´1 and v˚g˚F j´1 » g1˚v

1˚F j´1 are perfect of Tor-amplitude ď d. In
the former case, this follows from the inductive hypothesis. To handle the latter case, let
Y Ď |V1 | be the support of v1˚F j´1, and let Y denote the closure of Y in | SpecC|. Then
g1˚v

1˚F j´1 vanishes on the complement of Y and is perfect of Tor-amplitude ď d on V1. We
are therefore reduced to proving that V1 contains Y : that is, that Y is closed in |SpecC|.
Form a pullback diagram

Y h1 //

v2

��

V1

v1

��
SpétB h // Uj´1

.
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Then
v1˚F j´1 » v1˚h˚u

˚F i » h1˚v
2˚u˚F i .

Since u˚F i is supported on the set tmu Ď |SpecB|, v1˚F j´1 is supported on the closure
of v2ph1´1tmuq. However, v2 is a quasi-compact étale map, so h´1tmu consists of finitely
many points whose residue fields are finite extensions of κ. It follows that Y consists of
finitely many points of |V1 |, whose residue fields are finite extensions of κ, and therefore Y
is a closed subset of |SpecC|. This completes the proof the proof that each F j is perfect of
Tor-amplitude ď d. In particular, Fn P QCohpXq is perfect of Tor-amplitude ď d. It follows
that M » ΓpX; F q has Tor-amplitude ď c` d as a module over κ. In particular, we have
πkM » 0.

For 1 ď a ď d, let Mpaq denote the tensor product
Â

1ďiďaMi (formed in the 8-category
ModBm . We then have fiber sequences

Mpaq
ya`1
ÝÑ Mpaq ÑMpa` 1q,

hence short exact sequences

πkMpaq
ya`1
Ñ πkMpaq Ñ πkMpa` 1q.

Since πkMpdq » 0, it follows by descending induction on a (using Nakayama’s lemma) that
πkMpaq » 0 for all a. Taking a “ 0, we deduce that πkBm » 0, as desired.

11.1.5 Serre Functors and Relative Dualizing Sheaves

Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks which is proper, locally
almost of finite presentation, and locally of finite Tor-amplitude. Theorem ?? implies that
the direct image f˚QX is a proper quasi-coherent stack on Y. In this section, we show that
the relative dualizing sheaf ωX {Y of Definition 6.4.2.4 admits a categorical interpretation:
it controls the Serre functor of the quasi-coherent stack f˚QX (see Construction 11.1.5.1
below). To simplify the exposition, we will assume throughout this section that the spectral
Deligne-Mumford stack Y is affine (though all constructions we consider can be globalized).

Construction 11.1.5.1 (The Serre Functor). Let A be an E8-ring and let C be a proper
A-linear 8-category. In particular, C is compactly generated and is therefore dualizable as
an object of LinCatSt

A . Choose an A-linear functor e : CbA C_ Ñ ModA which exhibits C_

as a dual of C in the symmetric monoidal 8-category LinCatSt
A . Let eR : ModA Ñ CbA C_

be a right adjoint of e. Our assumption that C is proper guarantees that the functor e
preserves compact objects (Proposition 11.1.3.3), so that the functor eR commutes with
filtered colimits (Proposition HTT.5.5.7.2 ). Applying Remark D.1.5.3, we can regard eR as
an A-linear functor from ModA to CbA C_, which we can identify with an A-linear functor
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SC : C Ñ C. We will refer to SC as the Serre functor of C; it can be described as the
composition

C » ModAbA C eRbid
ÝÝÝÝÑ CbA C_bA C

idbe
ÝÝÝÑ CbA ModA » C .

Remark 11.1.5.2. In the situation of Construction 11.1.5.1, the Serre functor SC has
the following property: for every pair of compact objects C,D P C, there is a canonical
equivalence of A-modules MapCpC, SCpDqq » MapCpD,Cq

_. Note that this description
essentially characterizes the functor SC (if we ignore issues of A-linearity), by virtue of our
assumption that C is compactly generated.

We now specialize Construction 11.1.5.1 to the geometric setting:

Proposition 11.1.5.3. Let f : X Ñ Y be a morphism of spectral algebraic spaces which is
proper, locally almost of finite presentation, and locally of finite Tor-amplitude. Assume that
Y “ SpétA, so that QCohpXq is a proper A-linear 8-category (Proposition 11.1.4.2), and
let S : QCohpXq Ñ QCohpXq be its Serre functor (Construction 11.1.5.1). Then S is given
by the construction F ÞÑ F bωX {Y, where ωX {Y denotes the relative dualizing sheaf of f
(Definition 6.4.2.4).

Remark 11.1.5.4. Combining Remark 11.1.5.2 with Proposition 11.1.5.3, we see that for
F ,G P QCohpYqperf , we have a canonical equivalence of A-modules

MapQCohpXqpF ,G bωX {Yq » MapQCohpXqpG ,F q
_.

In the special case where G “ OX, this reduces to Serre-Grothendieck duality (which, in
the present setting, is essentially immediate from our definition of ωX {Y). The terminology
of Construction 11.1.5.1 is motivated by this observation: for a general proper A-linear
8-category C, the functor SC controls the “twist” which needs to be added for C to enjoy
some analogue of Serre-Grothendieck duality.

Proof of Proposition 11.1.5.3. Note that the A-linear 8-category QCohpXq is canonically
self-dual via the evaluation map e : QCohpXqbAQCohpXq Ñ ModA given by the composition

QCohpXq bA QCohpXq bÝÑ QCohpXq ΓpX;‚q
ÝÝÝÝÑ ModA .

For each n ě 0, let Xpnq denote the n-fold fiber power of X over Y. In what follows, we will
use Corollary 9.4.3.8 to identify QCohpXpnqq with the n-fold tensor power of QCohpXq in
the 8-category LinCatSt

A . Under this identification, the evaluation functor e corresponds
to the composition QCohpXp2qq δ˚

ÝÑ QCohpXq f˚
ÝÑ QCohpYq, where δ : X Ñ Xp2q denotes the

diagonal map. It follows that the right adjoint eR is given by the composition QCohpYq f !
ÝÑ
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QCohpXq δ˚
ÝÑ QCohpXp2qq. Let π : Xp2q Ñ X denote the projection onto the second factor,

so that we have a commutative diagram of stable A-linear 8-categories

QCohpXq
δ˚

''
QCohpXp2qq

δ˚
77

pidˆδq˚

''

QCohpXp2qq
π˚

''
QCohpXq

π!
88

QCohpXp3qq

pδˆidq˚
77

QCohpXq.

Unwinding the definitions, we see that the Serre functor SQCohpXq “ pidbeq ˝ peR b idq
can be described as the composition of the four lower arrows in this diagram. Using the
commutativity of the diagram (and the observation that π˚ ˝ δ˚ » pπ ˝ δq˚ is equivalent
to the identity functor), we see that the Serre functor SQCohpXq can be identified with the
composition δ˚ ˝ π!, which is given by F ÞÑ F bωX {Y by virtue of Corollary 6.4.2.7 and
Remark 6.4.2.6.

11.2 Smooth Morphisms in Spectral Algebraic Geometry

Let f : X Ñ Y be a morphism of schemes. Recall that f is said to be smooth if it is
locally of finite presentation and satisfies the following additional condition:

p˚q If φ : B Ñ B is a surjective morphism of commutative rings whose kernel kerpφq is a
nilpotent ideal of B, then every lifting problem

SpecB //

��

X

f

��
SpecB //

<<

Y

admits a solution.

Suppose that we wish to consider an analogous theory of smoothness in the setting of
spectral algebraic geometry. We first ask: in the formulation of condition p˚q, what is a
reasonable analogue of the hypothesis that kerpφq is nilpotent, if we allow φ to be a morphism
of E8-rings? Motivated by the philosophy that the spectrum of a connective E8-ring B
should be regarded as a infinitesimal enlargement the ordinary scheme Specπ0B, let us say
that a map of connective E8-rings B Ñ B is a nilpotent thickening if it induces a surjection
π0B Ñ π0B whose whose kernel is a nilpotent ideal of π0B. We might then demand that
the lifting criterion p˚q is satisfied whenever φ : B Ñ B is an infinitesimal thickening of
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E8-rings. This leads to the notion of a differentially smooth morphism f : X Ñ Y between
spectral Deligne-Mumford stacks.

A fundamental feature of classical algebraic geometry is that any morphism of schemes
f : X Ñ Y which is of finite presentation and satisfies condition p˚q is automatically flat
(see Proposition 11.2.4.1 below). In the setting of spectral algebraic geometry, the analogous
statement is false: a differentially smooth morphism of spectral Deligne-Mumford stacks
f : X Ñ Y is usually not flat. For example, if R is a commutative ring and Rtxu denotes
the free E8-algebra over R on one generator, then the induced map SpétRtxu Ñ SpétR
is differentially smooth, but is flat only if π0R is an algebra over the field Q of rational
numbers.

If f : X Ñ Y is a flat morphism of spectral Deligne-Mumford stacks, then it is generally
not reasonable to exact that f satisfies the lifting criterion p˚q for an arbitrary infinitesimal
thickening B Ñ B (unless f is étale or we work in characteristic zero). However, there is a
large class of flat morphisms which satisfy p˚q in the special case where B and B are discrete,
which we will refer to as fiber smooth morphisms.

Our goal in this section is to introduce the notions of differential smoothness and fiber
smoothness and to describe their relationships to one another (and to smoothness in classical
algebraic geometry). We will focus our attention primarily on the affine case, postponing
global definitions until §11.2.5 (see Definition 11.2.5.5).

11.2.1 Formally Smooth Morphisms of E8-Rings

Our first step is to formulate an infinitesimal lifting criterion in the setting of spectral
algebraic geometry.

Definition 11.2.1.1. Let f : R Ñ A be a map of connective E8-rings. We will say that
f is formally smooth if the following condition is satisfied: for every morphism B Ñ B in
CAlgcn

R , if the underlying map π0B Ñ π0B is a surjection whose kernel is a nilpotent ideal
of π0B, the induced map

MapCAlgRpA,Bq Ñ MapCAlgRpA,Bq

is surjective on connected components.

Formal smoothness can be characterized in terms of the cotangent complex:

Proposition 11.2.1.2. Let φ : R Ñ A be a morphism of connective E8-algebras. The
following conditions are equivalent:

p1q The morphism φ is formally smooth, in the sense of Definition 11.2.1.1.

p2q The relative cotangent complex LA{R is a projective A-module (Definition HA.7.2.2.4 ).
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Proof. Assume first that φ is formally smooth; we wish to show that LA{R is projective.
By virtue of Proposition HA.7.2.2.6 , it will suffice to show that for every cofiber sequence
N 1 Ñ N Ñ N2 of connective A-modules, the induced map θ : MapModApLA{R, Nq Ñ

MapModApLA{R, N
2q is surjective on connected components: in other words, we wish to

show that the homotopy fibers of θ are nonempty. Fix a map LA{k Ñ N2, corresponding to
a section of s the projection map A‘N2 Ñ A. Invoking the definition of LA{R, we see that
the homotopy fiber of θ over s can be identified with the homotopy fiber of the map

θ1 : MapCAlgRpA,A‘Nq Ñ MapCAlgRpA,A‘N
2q.

Since the map A‘N Ñ A‘N2 induces a surjection π0pA‘Nq Ñ π0pA‘N
2q with nilpotent

kernel, the homotopy fibers of θ1 are nonempty by virtue of p1q.
Now suppose that LA{R is projective. We wish to prove that φ is formally smooth. Let

B Ñ B be a map of connective E8-algebras over R which induces a surjection π0B Ñ π0B

having nilpotent kernel, and let η P MapCAlgRpA,Bq; we wish to show that η can be lifted
to a point of MapCAlgRpA,Bq. We define a tower of B-algebras

. . .Ñ Bp2q Ñ Bp1q Ñ Bp0q “ B

by induction as follows. Assume that Bpiq has been constructed, set Mpiq “ LBpiq{B, and let
d : Bpiq Ñ Bpiq ‘Mpiq be the tautological map. By construction, we have a commutative
diagram

B //

��

Bpiq

d0
�� ��

Bpiq
d // Bpiq ‘Mpiq;

here d0 corresponds to the trivial derivation. We now define Bpi` 1q to be the fiber product
Bpiq ˆBpiq‘Mpiq Bpiq.

Let I Ď π0B be the kernel of the surjection π0B Ñ π0B. We first claim:

p˚q For every integer n ě 0, the algebra Bpnq is connective. Moreover, the map π0B Ñ

π0Bpnq is a surjection, whose kernel is the ideal I2n .

The proof of p˚q proceeds by induction on n. Assume that p˚q holds for Bpnq, and let
K denote the fiber of the map B Ñ Bpnq. Condition p˚q guarantees that K is connective,
and that the image of the map π0K Ñ π0B is the ideal J “ I2n . We have a map of fiber
sequences

K //

��

B //

��

Bpnq

��
Σ´1Mpnq // Bpn` 1q // Bpnq,
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so the fiber K 1 of the map B Ñ Bpn` 1q can be identified with the fiber of the composition

K
β
Ñ K bB Bpnq

α
Ñ Σ´1Mpnq.

To prove p˚q, it will suffice to show that K 1 is connective and the image of the map
π0K

1 Ñ π0B is J2. We have a fiber sequence fibpβq Ñ K 1 Ñ fibpαq. Since K is connective,
Theorem HA.7.4.3.1 guarantees that fibpαq is 1-connective. It follows that the maps
πi fibpβq Ñ πiK

1 are surjective for i ď 0. To complete the proof, it will therefore suffice to
show that fibpβq is connective and the map π0 fibpβq Ñ π0B has image J2. This follows
from the observation that fibpβq » K ˆB K, so that π0 fibpβq » Torπ0B

0 pπ0K,π0Kq. Under
this identification, the map π0 fibpβq Ñ π0B corresponds to the bilinear multiplication map

π0K ˆ π0K Ñ J ˆ J Ñ π0B,

whose image generates the ideal J2 Ď π0B. This completes the proof of p˚q.
Choose any map of R-algebras AÑ Bpnq. Since LA{R is projective, the mapping space

MapModApLA{R,Mpnqq is connected. It follows that the homotopy fibers of the projection
map

MapCAlgRpA,Bpnq ‘Mpnqq Ñ MapCAlgRpA,Bpnqq

are connected. Consequently, for any derivation d : Bpnq Ñ Bpnq ‘Mpnq, the homotopy
fibers of the induced map

MapCAlgRpA,Bpnqq Ñ MapCAlgRpA,Bpnq ‘Mpnqq

are nonempty. It follows that the map MapCAlgRpA,Bpn` 1qq Ñ MapCAlgRpA,Bpnqq also
has nonempty homotopy fibers. Consequently, to prove that a point η P MapCAlgRpA,Bq “

MapCAlgRpA,Bp0qq can be lifted to MapCAlgRpA,Bq, we are free to replace B by Bpnq, for
any integer n ě 0. Since I is nilpotent, condition p˚q implies that π0B » π0Bpnq for n " 0.
We may therefore reduce to the case where π0B “ π0B.

We now return to our analysis of the tower

. . .Ñ Bp2q Ñ Bp1q Ñ Bp0q

defined above, and prove the following strengthening of p˚q:

p˚1q For n ě 0, the fiber of the map B Ñ Bpnq is 2n-connective.

The proof of p˚1q proceeds by induction on n, the case n “ 0 being obvious. Assume therefore
that B Ñ Bpnq is 2n-connective, and let K and K 1 be as in the proof of p˚q. We wish to
prove that K 1 is 2n`1-connective. As before, we have a fiber sequence

fibpαq Ñ K 1 Ñ fibpβq.
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Here fibpβq » K bB K, and is therefore 2n`1-connective since K is 2n-connective by the
inductive hypothesis. The map α is p2n`1 ` 1q-connective by Theorem HA.7.4.3.1 .

As before, each of the maps MapCAlgRpA,Bpn ` 1qq Ñ MapCAlgRpA,Bpnqq is surjec-
tive on connected components, so we can lift η to a point of lim

ÐÝ
MapCAlgRpA,Bpnqq »

MapCAlgRpA, limÐÝBpnqq. To complete, the proof, it suffices to show that the canonical map
B Ñ lim

ÐÝ
Bpnq is an equivalence. This follows from p˚1q, since the 8-category CAlgcn

R is
Postnikov complete (in the sense of Definition A.7.2.1; see Proposition HA.7.1.3.19 ).

11.2.2 Differentially Smooth Morphisms of E8-Rings

We now combine Definition 11.2.1.1 with a mild finiteness condition.

Proposition 11.2.2.1. Let φ : RÑ A be a map of connective E8-rings, and suppose that φ
exhibits π0A as a finitely presented commutative algebra over π0R. The following conditions
are equivalent:

p1q The map φ is formally smooth.

p2q The relative cotangent complex LA{R is a projective A-module.

p3q The relative cotangent complex LA{R is a projective A-module of finite rank.

p4q There exist elements a1, . . . , an P π0A which generate the unit ideal of π0A and a
collection of étale maps Rtx1, . . . , xmiu Ñ Ara´1

i s.

Here Rtx1, . . . , xku “ Sym˚
RpR

kq denotes the free E8-algebra over R on k generators.

Proof. The equivalence p1q ô p2q follows from Proposition 11.2.1.2, the implication p3q ñ p2q
is obvious, and the implication p2q ñ p3q follows from the observation that π0LA{R is the
module of Kähler differentials of π0A over π0R (Proposition HA.7.4.3.9 ) and therefore finitely
presented over π0A.

We will complete the proof by showing that p4q ô p3q. Assume first that p4q is
satisfied. The condition that LA{R is a projective A-module of finite rank is local with
respect to the étale topology on A (see Proposition 2.8.4.2); we may therefore assume that
A “ Rtx1, . . . , xmu for some integer m, in which case the result is obvious.

Now suppose that p3q is satisfied; we will prove p4q. Suppose that the module π0LA{R is
projective and of finite rank over π0A. Then there exist elements a1, . . . , an generating the
unit ideal in π0A such that each of the modules pπ0LA{Rqra

´1
i s is a free module of some rank

mi over pπ0Aqra
´1
i s. Replacing A by Ara´1

i s, we may suppose that π0LA{R is a free module
of some rank m ě 0. Proposition HA.7.4.3.9 allows us to identify π0LA{R with the module
of Kähler differentials of π0A over π0R. In particular, π0LA{R is generated (as an A-module)
by finitely many differentials tdxpu1ďpďq. The identification π0LA{k » pπ0Aq

m allows us to
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view the differentials tdxqu1ďpďq as an m-by-q matrix M . Let tbju be the collection of all
determinants of m-by-m square submatrices appearing in M . Since the elements tdxpu1ďpďq
generate pπ0Aq

m, the matrix M has rank m so that the elements bj generate the unit ideal in
A. It therefore suffices to prove that p4q is satisfied by each of the algebras Arb´1

j s. We may
therefore assume (after discarding some of the elements xi) that q “ m and that π0LA{R is
freely generated by the elements dxi. The choice of elements x1, . . . , xm P π0A determines a
map Rtx1, . . . , xmu Ñ A. The fiber sequence

AbRtx1,...,xnu LRtx1,...,xmu{R Ñ LA{R Ñ LA{Rtx1,...,xmu

shows that the relative cotangent complex LA{Rtx1,...,xmu vanishes. It follows from Lemma
B.1.3.3 that A is étale over Rtx1, . . . , xmu.

Definition 11.2.2.2. Let φ : RÑ A be a map of connective E8-rings. We will say that φ
is differentially smooth if it satisfies the equivalent conditions of Proposition 11.2.2.1. That
is, φ is differentially smooth if it is formally smooth and the commutative ring π0A is finitely
presented as an algebra over π0R.

Remark 11.2.2.3. Let φ : R Ñ A be a differentially smooth morphism of connective
E8-rings. Then φ is locally of finite presentation: that is, φ exhibits A as a compact object
of CAlgR. This follows immediately from characterization p4q of Proposition 11.2.2.1.

Conversely, suppose that φ is almost of finite presentation. Then φ is differentially
smooth if and only if LA{R is a flat A-module (Proposition HA.7.2.4.20 ).

Remark 11.2.2.4. Suppose we are given a pushout diagram of connective E8-rings

R

φ
��

// R1

φ1

��
A // A1.

If φ is differentially smooth, then φ1 is differentially smooth.

Example 11.2.2.5. Any étale morphism of connective E8-rings is differentially smooth.

Differential smoothness can be tested fiberwise:

Proposition 11.2.2.6. Let φ : RÑ A be a morphism of connective E8-rings, and suppose
that φ is almost of finite presentation. Then φ is differentially smooth if and only if, for
every field κ and every morphism RÑ κ, the tensor product κbR A is differentially smooth
over κ.

Lemma 11.2.2.7. Let A be a connective E8-ring, and let M be an A-module which is
connective and almost perfect. The following conditions are equivalent:
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paq The module M is projective of finite rank.

pbq For every field κ and every morphism AÑ κ, the tensor product κbAM is discrete.

Proof. It is clear that paq ñ pbq. Conversely, suppose that pbq is satisfied. To prove that M is
projective of finite rank, it will suffice to show that M is flat (Proposition HA.7.2.4.20 ). That
is, we must show that if N is a discrete A-module, then M bA N is also discrete. For this,
it suffices to show that the localization pM bA Nqp is discrete, for each prime ideal p Ď A.
Replacing A by the localization Ap, we may assume that A is local. Let κ denote the residue
field of A, and choose a collection of elements x1, . . . , xn PM whose images form a basis for
π0pκbAMq. These elements determine a map of A-modules f : An ÑM . By construction,
f induces a map κn Ñ κbAM which is an isomorphism on π0, and therefore a homotopy
equivalence (since condition pbq implies that πipκbAMq » 0 for i ‰ 0). Let K “ fibpfq. We
claim that K » 0, so that f is an equivalence and therefore M » An is projective. Assume
otherwise. Then, since K is almost perfect, there exists a smallest integer d such that
πdK ‰ 0. In this case, Nakayama’s lemma implies that πdpκbA Kq » Torπ0A

0 pκ, πdKq ‰ 0
and we obtain a contradiction.

Proof of Proposition 11.2.2.6. Since A is almost of finite presentation over R, the relative
cotangent complex LA{R is connective and almost perfect (Theorem HA.7.4.3.18 ). Conse-
quently, to prove that LA{R is a projective A-module of finite rank, it will suffice to show
that κbA LA{R is discrete, for every field κ and every map AÑ κ. Replacing A by κbR A,
we can reduce to the case where R is a field, in which case the desired result follows from
our assumption that κbR A is differentially smooth over κ.

Corollary 11.2.2.8. Let φ : R Ñ A be a morphism of connective E8-rings. Then φ is
differentially smooth if and only if the induced map φ0 : π0RÑ pπ0Rq bR A is differentially
smooth.

Proof. The “only if” direction is clear. Conversely, suppose that φ0 is differentially smooth.
Then φ0 is almost of finite presentation, so that φ is almost of finite presentation (Proposition
4.1.3.4). The desired result now follows immediately from Proposition 11.2.2.6.

Proposition 11.2.2.9. Let φ : A Ñ B and ψ : B Ñ C be morphisms of connective E8-
rings. If φ and ψ are formally smooth (differentially smooth), then ψ ˝ φ is also formally
smooth (differentially smooth).

Proof. Suppose first that φ and ψ are formally smooth. Using Proposition 11.2.1.2, we
deduce that LC{B and CbBLB{A are projective C-modules. It follows that the fiber sequence

C bB LB{A Ñ LC{A Ñ LC{B
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splits, so that LC{A » LC{B ‘ pC bB LB{Aq is also a projective C-module, and therefore
ψ ˝ φ is formally smooth (Proposition 11.2.1.2). If, in addition, φ and ψ are differentially
smooth, then φ and ψ are almost of finite presentation, so that ψ ˝ φ is also almost finite
presentation and therefore differentially smooth.

11.2.3 Fiber Smooth Morphisms of E8-Rings

From the perspective of classical algebraic geometry, the notion of differential smoothness
(Definition 11.2.2.2) suffers from two (closely related) defects:

paq A differentially smooth morphism of E8-rings need not be flat.

pbq A morphism of commutative rings which is smooth (in the sense of classical commutative
algebra) need not be differentially smooth (when regarded as a morphism of E8-rings).

We now consider a different notion of smoothness, which does not suffer from either of
these problems.

Definition 11.2.3.1. Let f : AÑ B be a map of connective E8-rings. We will say that f
is fiber smooth if the following conditions are satisfied:

p1q The morphism f is flat.

p2q The morphism f is almost of finite presentation.

p3q For every field κ and every morphism B Ñ κ, the vector space π1pκbB LB{Aq vanishes.

Example 11.2.3.2. Let f : A Ñ B be an étale morphism between connective E8-rings.
Then f is fiber smooth.

Remark 11.2.3.3. Let f : AÑ B be a morphism of E8-rings which is faithfully flat and
almost of finite presentation. Then f is a universal descent morphism (this follows from
Proposition D.3.3.1, since π0B is countably presented as a module over π0A). In particular,
if f is faithfully flat and fiber smooth, then f is a universal descent morphism.

We now establish some basic formal properties of fiber smoothness.

Proposition 11.2.3.4. p1q Let f : A Ñ B and g : B Ñ C be morphisms of connective
E8-rings. If f and g are fiber smooth, then g ˝ f is fiber smooth.

p2q Suppose we are given a pushout diagram of E8-rings

A

f
��

// A1

f 1

��
B // B1.

If f is fiber smooth, then f 1 is fiber smooth.
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Proof. Assertion p2q follows immediately from the definitions. We will prove p1q. Suppose
that f : A Ñ B and g : B Ñ C are fiber smooth. It is clear that g ˝ f is almost of finite
presentation and flat. Using the fiber sequence

C bB LB{A Ñ LC{A Ñ LC{B,

we deduce that for every field κ and every map C Ñ κ there is an exact sequence

π1pκbB LB{Aq Ñ π1pκbC LC{Aq Ñ π1pκbC LC{Bq,

from which we deduce that π1pκbC LC{Aq » 0.

Remark 11.2.3.5. Let f : RÑ A be a map of connective E8-rings, and form a pushout
diagram

R //

f
��

π0R

f 1

��
A // π0RbR A.

Then f is fiber smooth if and only if f 1 is fiber smooth. The “only if” direction follows from
Proposition 11.2.3.4, and the converse follows from Remarks 6.1.2.6 and Corollary 4.1.3.5.

We first show that fiber smoothness can be interpreted as a regularity condition on the
(geometric) fibers of a morphism.

Proposition 11.2.3.6. Let f : RÑ A be a map of connective E8-rings which is almost of
finite presentation. Then the following conditions are equivalent:

p1q The morphism f is fiber smooth.

p2q For every algebraically closed field κ and every map RÑ κ, the tensor product κbR A
is discrete, and is regular when regarded as a commutative ring.

Corollary 11.2.3.7. Every fiber smooth morphism of connective E8-rings is geometrically
reduced (see Definition 8.6.2.4).

Remark 11.2.3.8. Let f : RÑ A be a morphism of connective E8-rings which is almost
of finite presentation. It follows from Proposition ?? that f is fiber smooth if and only if,
for every residue field κ of A, the induced map κÑ κbA B is fiber smooth.

Lemma 11.2.3.9. Let R be a local Noetherian commutative ring with residue field κ. The
following conditions are equivalent:

paq The local ring R is regular. That is, the maximal ideal m Ď R is generated by a regular
sequence x1, . . . , xn P m.
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pbq The vector space π2Lκ{R vanishes.

Proof. Choose a sequence of elements x1, . . . , xn P m which form a basis for m{m2 as a vector
space over κ. Let RrX1, . . . , Xns be a polynomial ring over R on n variables, and define
φ0, φ : RrX1, . . . , Xns Ñ R by the formulas

φpXiq “ xi φ0pXiq “ 0.

Form a pushout diagram

RrX1, . . . , Xns
φ //

φ0
��

R

��
R // A

in the 8-category CAlgR, so that we have a canonical AÑ κ which induces an isomorphism
π0A » κ.

Let B “ RtX1, . . . , Xnu denote the free E8-algebra over R on n-variables, so that
π0B » RrX1, . . . , Xns. Then LB{R » Bn, so that

πipκbB LB{Rq »

#

κn if i “ 0
0 if i ą 0.

The truncation map B Ñ RrX1, . . . , Xns has 2-connective cofiber. Applying Corollary
HA.7.4.3.2 , we deduce that LRrX1,...,Xns{B is 2-connective. Using the fiber sequence

κbB LB{R Ñ κbRrX1,...,Xns LRrX1,...,Xns{R Ñ κbRrX1,...,Xns LRrX1,...,Xns{B,

we conclude that

πipκbRrX1,...,Xns LRrX1,...,Xns{Rq »

#

κn if i “ 0
0 if i “ 1.

Using the fiber sequence

κbRrX1,...,Xns LRrX1,...,Xns{R Ñ κbR LR{R Ñ κbR LR{RrX1,...,Xns,

we obtain isomorphisms

πipκbA LA{Rq » πipκbR LR{RrX1,...,Xnsq

» πi´1pκbRrX1,...,Xns LRrX1,...,Xns{Rq

»

#

κn if i “ 1
0 if i “ 2.
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Since the map AÑ κ has 2-connective cofiber, Lκ{A is 2-connective. Using the fiber sequence

κbA LA{R Ñ Lκ{R Ñ Lκ{A,

we obtain a short exact sequence

0 Ñ π2Lκ{R
α
Ñ π2Lκ{A Ñ κn

β
Ñ π1Lκ{R Ñ π1Lκ{A “ 0.

Theorem HA.7.4.3.1 supplies an isomorphism π1Lκ{R » m{m2, so that π1Lκ{R is an n-
dimensional vector space over κ. Since β is a surjection between vector spaces of the same
dimension, it is also injective. It follows that α is an isomorphism.

Suppose now that paq is satisfied. Then x1, . . . , xn is a regular sequence on R, so that
A » κ. It follows that π2Lκ{R » π2Lκ{A » 0.

We now prove the converse. Suppose that pbq is satisfied, so that π2Lκ{R » 0. Then
we also have π2Lκ{A » 0. Applying Corollary HA.7.4.3.2 , we deduce that π1A » 0. For
1 ď i ď n, let Mi denote the cofiber of the map xi : RÑ R in ModR, and for 0 ď i ď n let
Mpiq denote the tensor product

Â

jďiMi in ModR. Then Mpnq » A, so that π1Mpnq » 0.
To prove that x1, . . . , xn is a regular sequence in R, it suffices to show that each Mpiq is
discrete. Suppose otherwise, and choose a minimal integer i such that Mpiq is not discrete.
Using the fiber sequence

Mpi´ 1q xiÑMpi´ 1q ÑMpiq,

we deduce that Mpiq is 1-truncated and therefore π1Mpiq ‰ 0. Using the exact sequences

π1Mpjq
xj`1
Ñ π1Mpjq Ñ π1Mpj ` 1q,

and the fact that each π1Mpjq is a finitely generated R-module, we deduce that π1Mpjq ‰ 0
for j ě i. It follows that π1Mpnq “ π1A ‰ 0, a contradiction.

Proof of Proposition 11.2.3.6. Suppose first that f : R Ñ A is fiber smooth, and that we
are given a morphism RÑ κ, where κ is an algebraically closed field. Since f is flat, Aκ is
discrete. By assumption f is almost of finite presentation, so that Aκ is finitely generated
as an algebra over κ (and in particular Noetherian). We wish to show that Aκ is regular.
Let m be a maximal ideal of Aκ. It follows from Hilbert’s Nullstellensatz that the composite
map κÑ Aκ Ñ Aκ{m is an isomorphism. The fiber sequence

κbAκ LAκ{κ Ñ Lκ{κ Ñ Lκ{Aκ

therefore yields an isomorphism

π1pκbA LA{Rq » π1pκbAκ LAκ{κq » π2Lκ{Aκ .

Since f is fiber smooth, we conclude that π2Lκ{Aκ » 0, so that Aκ is regular at m by Lemma
11.2.3.9.
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Conversely, suppose that f satisfies condition p2q; we wish to show that f is fiber smooth.
The flatness of f follows from Proposition ??. To complete the proof, it will suffice to show
that for every field κ and every map AÑ κ, the vector space π1pκbA LA{Rq vanishes. We
may assume without loss of generality that κ is algebraically closed, define Aκ as above, and
let m denote the maximal ideal of Aκ given by the kernel of the canonical map Aκ Ñ κ.
Then we have a canonical isomorphism

π1pκbA LA{Rq » π1pκbAκ LAκ{κq » π2Lκ{Aκ .

Since Aκ is a regular Noetherian ring, π2Lκ{Aκ vanishes by Lemma 11.2.3.9.

11.2.4 Smoothness in Commutative Algebra

If we restrict our attention to ordinary commutative rings, then fiber smoothness reduces
to the classical notion of smooth morphism in commutative algebra. This admits several
alternative characterizations:

Proposition 11.2.4.1. Let f : RÑ A be a morphism of commutative rings which exhibits
A as a finitely presented algebra over R. The following conditions are equivalent:

p1q When regarded as a map of connective E8-rings, f is fiber smooth.

p2q For every field κ and every map AÑ κ, the vector space π1pκbA LA{Rq vanishes.

p3q The A-module π0LA{R is projective and π1LA{R vanishes.

p4q For every commutative R-algebra B and every nilpotent ideal I Ď B, the canonical
map HomRpA,Bq Ñ HomRpA,B{Iq is surjective (here the Hom-sets are computed in
the category of commutative R-algebras).

p5q There exists a finite collection of elements aα P A which generate the unit ideal, such
that each localization Ara´1

α s admits an étale map Rrx1, . . . , xnαs Ñ Ara´1
α s.

Proof. The implication p1q ñ p2q is obvious. We next show that p2q ñ p3q. Since A is
finitely presented as a commutative algebra over R, the map f : RÑ A is of finite generation
to order 1 (Remark 4.1.1.9), so that LA{R is perfect to order 1. It follows that P “ π0LA{R
is a finitely presented A-module. We wish to show that P is projective. This assertion
is local on |SpecA| with respect to the Zariski topology. It will therefore suffice to show
that for each maximal ideal m Ď A, there exists an element a P A´m such that P ra´1s is
projective as a module over M ra´1s. Choose elements x1, . . . , xn P P which form a basis for
the vector space P {mP over A{m. The elements xi determine an A-module homomorphism
θ : An Ñ P . Using Nakayama’s lemma, we see that this map is surjective after localization
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at m. Replacing A by a localization if necessary, we may suppose that θ is surjective. Let
κ “ A{p. Using the exact sequence

π1pκbA LA{Rq Ñ π1pκbA P q Ñ π0pκbA τě1LA{Rq

and p2q, we deduce that π1pκbA P q » 0, so that we have an exact sequence

0 Ñ π0pκbA kerpθqq Ñ π0pκbA A
nq Ñ π0pκbA P q Ñ 0.

It follows that π0pκ bA kerpθqq » 0. Since P is finitely presented, kerpθq is a finitely
generated A-module. Using Nakayama’s lemma, we deduce that kerpθqm » 0 and therefore,
after replacing A by a localization, we may suppose that kerpθq “ 0: that is, that θ is
an isomorphism. This completes the proof that P is projective. It follows that LA{R
splits as a direct sum P ‘ τě1LA{R. In particular, τě1LA{R is perfect to order 1, so that
Q “ π1LA{R is a finitely generated A-module. For every maximal ideal m of A, the quotient
Q{mQ » π1pA{m bA τě1LA{Rq is a direct summand of π1pA{m bA LA{Rq, and therefore
vanishes. It follows from Nakayama’s lemma that Q » 0. This completes the proof that
p2q ñ p3q.

We next prove that p3q ñ p4q. Assume that p3q is satisfied, let B be a commutative ring
with a map RÑ B, and let I Ď B be an ideal with Ik “ 0; we wish to show that the map
HomRpA,Bq Ñ HomRpA,B{Iq is surjective. Proceeding by induction on k, we can reduce
to the case where I2 “ 0. Fix an R-algebra map φ0 : A Ñ B{I; we wish to show that φ0
can be lifted to an R-algebra map φ : AÑ B. Replacing B by the pullback AˆB{I B, we
can assume that φ0 is an isomorphism, so that B is a square-zero extension of A by some
(discrete) B-module M , classified by a map η : LA{R Ñ ΣM . Using p3q, we deduce that
LA{R splits as a direct sum P ‘ τě2LA{R. Since MapModApτě2LA{R,ΣMq is contractible and
MapModApP,ΣMq is connected, we conclude that η is nullhomotopic, so that the square-zero
extension B Ñ A admits a section.

We next prove that p4q ñ p2q. Suppose that p4q is satisfied; we wish to show that for
every field κ and every map AÑ κ, we have π1pκbA LA{Rq » 0. Suppose otherwise: then
there exists a nonzero map of κ-modules κbA LA{R Ñ Σκ, which classifies a nonzero map
of A-modules LA{R Ñ Σκ. This map classifies a square-zero extension A of A by κ (in the
category of R-modules). It follows that the reduction map HomRpA,Aq Ñ HomRpA,Aq is
not surjective, contradicting assumption p4q.

We next show that p5q ñ p1q. Since the assertion that A is fiber smooth over R is
local with respect to the Zariski topology (Proposition 11.2.5.4), we may assume that there
exists an étale map ψ : Rrx1, . . . , xns Ñ A, for some integer n. The map ψ is fiber smooth
(Example 11.2.3.2). Using Proposition 11.2.3.4, we are reduced to proving that Rrx1, . . . , xns

is fiber smooth over R. Using Proposition 11.2.3.4 again, we can reduce to the case where R
is Noetherian. In this case, Proposition HA.7.2.4.31 implies that Rrx1, . . . , xns is almost of
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finite presentation as an object of CAlgR. Using Remark 11.2.3.8, we may further reduce
to the case where R is a field κ, and using Proposition 11.2.5.3 we may suppose that κ is
algebraically closed. It is clear that κrx1, . . . , xns is flat over κ. Moreover, the Nullstellensatz
guarantees that every maximal ideal κrx1, . . . , xns is generated by a regular sequence of the
form x1 ´ c1, . . . , xn ´ cn, for some scalars ci P κ.

We now complete the proof by showing that p3q ñ p5q. Suppose that p3q is satisfied;
in particular, this implies that π0LA{R is a projective A-module of finite rank. Note that
π0LA{R can be identified with the module of Kähler differentials ΩA{R; in particular, it is
generated by the set of elements tdauaPA (Proposition HA.7.4.3.9 ). Assertion p5q is local
with respect to the Zariski topology on | SpecA|. We may therefore assume without loss
of generality that there exist y1, . . . , yn P A such that the elements dyi freely generate
π0LA{R as a module over A. Let A0 “ RrY1, . . . , Yns, so that there is a unique R-algebra
homomorphism ξ : A0 Ñ A satisfying ξpYiq “ yi. We will complete the proof by showing
that ξ is étale.

We have a fiber sequence AbA0 LA0{R
α
Ñ LA{R Ñ LA{A0 . By construction, the map α

induces an isomorphism on π0. Since π1LA{R » 0, we conclude that π0LA{A0 » π1LA{A0 » 0.

Using Lemma B.1.3.2, we deduce that ξ factors as a composition A0
ξ1
Ñ A1

ξ2
Ñ A, where ξ1

is étale and fibpξ2q is 2-connective. Since A0 is discrete and ξ1 is étale, we conclude that
A1 is discrete. Then ξ2 is a map between discrete E8-rings which induces an isomorphism
π0A

1 Ñ π0A, and is therefore an equivalence. It follows that ξ “ ξ2˝ξ1 is étale, as desired.

Corollary 11.2.4.2. Let φ : RÑ A be a morphism of connective E8-rings. Suppose that φ
is flat and that φ exhibits π0A as a finitely presented commutative algebra over π0R. Then
the following conditions are equivalent:

p1q The morphism φ is fiber smooth.

p2q For every surjective map of commutative rings B Ñ B with nilpotent kernel, every
lifting problem

R //

��

B

��
A

??

// B

admits a solution.

p3q For every discrete A-module M , the abelian group π1pM bA LA{Rq vanishes.

p4q For every field κ and every morphism AÑ κ, the vector space π1pκbALA{Rq vanishes.

Proof. Using Remark 11.2.3.5, we can replace R by π0R and A by AbR π0R, and thereby
reduce to the case where R is discrete. Since A is flat over R, it is also discrete. The
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equivalence of p1q, p2q, and p4q follows from Proposition 11.2.4.1, and the implication
p3q ñ p4q is immediate. We complete the proof by showing that p1q ñ p3q. If p1q is
satisfied, then π1LA{R » 0 and π0LA{R is a flat A-module. It follows that the abelian groups
TorA0 pM,π1LA{Rq and TorA1 pM,π0LA{Rq vanish. Using the exact sequence

TorA0 pM,π1LA{Rq Ñ π1pM bA LA{Rq Ñ TorA1 pM,π0LA{Rq,

we see that π1pM bA LA{Rq vanishes as well.

We now consider the relationship between differential smoothness and fiber smoothness.

Proposition 11.2.4.3. Let φ : R Ñ A be a morphism of connective E8-rings. If φ is
differentially smooth, then the induced map of commutative rings π0RÑ π0A is fiber smooth.

Proof. This follows immediately from the criteria for smoothness provided by part p4q of
Proposition 11.2.2.1 and part p5q of Proposition 11.2.4.1.

In characteristic zero, fiber smoothness is equivalent to differential smoothness:

Proposition 11.2.4.4. Let φ : RÑ A be a morphism of connective E8-rings, and suppose
that π0R is an algebra over the field Q of rational numbers. Then φ is fiber smooth if and if
φ is differentially smooth.

Proof. Using Corollary 11.2.2.8 and Remark 11.2.3.5, we can reduce to the case where R is
discrete. By virtue of the criteria provided by part p4q of Proposition 11.2.2.1 and part p5q
of Proposition 11.2.4.1, it will suffice to show that for every integer n ě 0, the canonical map
θ : Rtx1, . . . , xnu Ñ Rrx1, . . . , xns is an equivalence in CAlgR. This follows from Proposition
HA.7.1.4.20 .

11.2.5 Smooth Morphisms of Spectral Deligne-Mumford Stacks

Let φ : A Ñ B be a morphism of connective E8-rings. Then the condition that φ is
differentially smooth (fiber smooth) is local with respect to the étale topology on SpétB,
and local with respect to the flat topology on SpétA:

Proposition 11.2.5.1. Let φ : AÑ B be a morphism of connective E8-rings, and suppose
we are given a finite collection of étale B-algebras Bα such that the induced map B Ñ

ś

αBα
is faithfully flat. Then φ is differentially smooth if and only if each of the induced maps
φα : AÑ Bα is differentially smooth.

Proof. If φ is differentially smooth, then it follows immediately from Proposition 11.2.2.9
and Example 11.2.2.5 that each φα is differentially smooth. Conversely, suppose that
each φα is differentially smooth. Using Proposition 4.1.4.1 we deduce that φ is almost of
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finite presentation. Consequently, we are reduced to proving that the relative cotangent
complex LB{A is flat over B (Remark 11.2.2.3). By virtue of Proposition 2.8.4.2, it will
suffice to show that each tensor product Bα bB LB{A is flat over Bα. This is clear, since
Bα bB LB{A » LBα{A , and Bα is assumed to be differentially smooth over A.

Proposition 11.2.5.2. Let φ : AÑ B be a morphism of connective E8-rings, and suppose
we are given a finite collection of A-algebras Bα such that the induced map AÑ

ś

αAα is
faithfully flat. If each of the induced maps φα : Aα Ñ AαbA B is differentially smooth, then
φ is differentially smooth.

Proof. It follows from Proposition 4.1.4.3 that φ is locally almost of finite presentation.
We wish to prove that LB{A is flat over B (Remark 11.2.2.3). It now suffices to note that
the flatness of LB{A can be tested locally with respect to the flat topology (Proposition
2.8.4.2).

Proposition 11.2.5.3. Let φ : AÑ B be a map of connective E8-rings. Suppose that there
exists a finite collection of A-algebras Aα, such that

ś

αAα is faithfully flat over A. If each
tensor product Aα bA B is fiber smooth over B, then B is fiber smooth over A.

Proof. It follows from Proposition 4.2.1.5 that B is almost of finite presentation over A,
and from Proposition 2.8.4.2 that B is flat over A. To complete the proof that B is fiber
smooth over A, it will suffice to show that for every field κ and every morphism B Ñ κ, the
vector space π1pκ bB LB{Aq vanishes. Enlarging κ if necessary, we may assume that the
composite map AÑ B Ñ κ factors through some Aα. Let Bα “ Aα bA B. Then we have
a canonical isomorphism π1pκbB LB{Aq » π1pκbBα LBα{Aαq, so the desired result follows
from our assumption that Bα is fiber smooth over Aα.

Proposition 11.2.5.4. Let φ : AÑ B be a map of connective E8-rings. Suppose that there
exists a finite collection of flat morphisms B Ñ Bα which are almost of finite presentation,
such that

ś

αBα is faithfully flat over B and each Bα is fiber smooth over A. Then B is
fiber smooth over A.

Proof. Set B1 “
ś

αBα. Then B1 is fiber smooth over A, and the map B Ñ B1 is almost
of finite presentation and faithfully flat. Applying Corollary 6.1.6.5, we deduce that B
is almost of finite presentation over A. We wish to prove that B is fiber smooth over A.
Using Remark 11.2.3.8, we can reduce to the case where A “ κ is a field. Using Proposition
11.2.5.3, we can reduce to the case where κ is algebraically closed. Since B1 is fiber smooth
over κ, it is discrete. The faithful flatness of B1 over B guarantees that B is also discrete.
Note that B is finitely generated as an algebra over κ; we wish to show that B is regular.
Let m be a maximal ideal of B; we will show that B{m is perfect as a B-module (see Lemma
11.3.3.3). Since B is Noetherian and B{m is a finitely generated B-module, it is almost
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perfect (Proposition HA.7.2.4.17 ). We are therefore reduced to proving that B{m has finite
Tor-amplitude as a B-module (Proposition HA.7.2.4.23 ).

Since B1 is faithfully flat over B, the map |SpecB1| Ñ |SpecB| is surjective. We may
therefore choose a maximal ideal m1 of B1 lying over m. Since κ is algebraically closed,
both B1{m1 and B{m are isomorphic to κ, so that the natural map B{m Ñ B1{m1 is an
isomorphism. Since B1 is flat over B, we are reduced to proving that B1{m1 has finite
Tor-amplitude as a B1-module (Lemma 6.1.1.6). This follows from Lemma 11.3.3.3, since B1

is a regular Noetherian ring.

Motivated by the preceding results, we introduce global versions of Definitions 11.2.2.2
and 11.2.3.1:

Definition 11.2.5.5. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
We will say that f is differentially smooth (fiber smooth) if, for every commutative diagram
of spectral Deligne-Mumford stacks

SpétB //

��

X

f

��
SpétA // Y

where the horizontal maps are étale, the underlying map of connective E8-rings AÑ B is
differentially smooth (fiber smooth).

Remark 11.2.5.6. Differential smoothness and fiber smoothness for maps of spectral
Deligne-Mumford stacks can also be defined in terms of infinitesimal lifting properties. We
defer a proof until §17 (see Proposition 17.3.9.4), where we will develop the global theory of
the cotangent complex.

Example 11.2.5.7. Let R be a connective E8-ring and let Pn
R be projective space of

dimension n over R (see Construction 5.4.1.3). Then the projection map Pn
R Ñ SpétR is

fiber smooth.

Remark 11.2.5.8. Let f : X Ñ Y be a fiber smooth morphism of spectral Deligne-Mumford
stacks. Then f is Gorenstein, in the sense of Definition 6.6.6.1. To prove this, we first
observe that f is flat and locally almost of finite presentation, so we may assume without loss
of generality that Y “ Spétκ for some field κ. The assertion is local on X, so we may assume
that X “ SpétA for some finitely generated (discrete) κ-algebra A. The fiber smoothness of
A over κ guarantees that A is a regular Noetherian ring (Proposition 11.2.3.6), and therefore
Gorenstein (Example ??).

We now summarize some formal properties of Definition 11.2.5.5:
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Proposition 11.2.5.9. p1q The condition that a morphism f : X Ñ Y of spectral Deligne-
Mumford stacks be differentially smooth (fiber smooth) is local on the target with respect
to the flat topology, and local on the source with respect to the étale topology.

p2q The collection of differentially smooth (fiber smooth) morphisms is closed under com-
position.

p3q Suppose are given a pullback diagram of spectral Deligne-Mumford stacks

X1

f 1

��

// X
f
��

Y1 // Y .

If f is differentially smooth (fiber smooth), so is f 1.

Proof. Assertion p1q follows from Propositions 11.2.5.3, 11.2.5.4, 11.2.5.1, and 11.2.5.2 (see
Remarks 2.8.1.3 and 6.3.1.3). Assertion p2q follows from Propositions 11.2.2.9 and 11.2.3.4,
and assertion p3q follows from Proposition 11.2.3.4 and Remark 11.2.2.4.

Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. Since the property
of being fiber smooth is local on the source with respect to the étale topology, there exists
a largest open substack U Ď X for which the restriction f |U : U Ñ Y is fiber smooth. We
will refer to U Ď X as the smooth locus of the morphism f . Note that if we are given any
pullback diagram

X1 //

f 1

��

X

f

��
Y1 // Y,

then we can identify UˆX X1 with an open substack of X1, and the restriction of f 1 to this
open substack is also fiber smooth (Proposition 11.2.5.9). It follows that UˆX X1 is contained
in the smooth locus of f 1. In good cases, we have equality:

Proposition 11.2.5.10 (Universality of the Smooth Locus). Suppose we are given a pullback
diagram of spectral Deligne-Mumford stacks

X1 g //

f 1

��

X
f
��

Y1 // Y

where f and f 1 are flat and locally almost of finite presentation. If U Ď X is the smooth
locus of f , then UˆX X1 is the smooth locus of f 1.
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Proof. Without loss of generality, we may assume that Y » SpétA and Y1 » SpétA1 are affine.
Similarly, we may assume that X » SpétB is affine, so that X1 » SpétB1 for B1 “ A1 bA B.
Let x1 P | SpecB1| be a point which belongs to the smooth locus of f 1; we wish to show that
x “ gpx1q P |SpecB| belongs to the smooth locus of f . Let κpx1q denote the residue field of
B1 at x1 and let κpxq denote the residue field of B at x. Then π0pκpx

1qbB LB{Aq is generated
as a vector space over κpx1q by the image of π0LB{A. We can therefore choose a collection
of elements u1, . . . , ud P π0LB{A whose images form a basis for π0pκpx

1q bB LB{Aq. Let us
identify the set tuiu1ďiďd with a morphism of B-modules u : Bd Ñ LB{A. Our assumption
that x1 belongs to the smooth locus of f 1 guarantees that κpx1qbB cofibpuq is 2-connective, so
that κpxq bB cofibpuq is 2-connective. The cofiber cofibpuq is almost perfect, so Proposition
2.7.4.1 guarantees the existence of an element b P π0B which does not vanish at x such that
cofibpuqrb´1s is 2-connective. Then f |SpétBrb´1s : SpétBrb´1s Ñ SpétA is smooth, so that x
is contained in the smooth locus of f as desired.

11.3 Smoothness for Linear 8-Categories

Let R be a connective E8-ring, and let X be a spectral algebraic space over R. We will
say that X is fiber smooth over R if the map X Ñ SpétR is fiber smooth, in the sense of
Definition 11.2.5.5. Our goal in this section is to show that (under some mild hypotheses) the
hypothesis that X is fiber smooth over R depends only on the R-linear 8-category QCohpXq.
For this end, we will introduce the notion of a smooth R-linear 8-category (Definition
11.3.1.1). Our main result asserts that if X is quasi-compact, quasi-separated, locally almost
of finite presentation, and of finite Tor-amplitude over R, then QCohpXq is smooth if and
only if X is separated and fiber smooth over R (Theorem 11.3.6.1).

11.3.1 Definition of Smoothness

We begin with some general remarks.

Definition 11.3.1.1. Let R be an E2-ring and let C be a stable R-linear 8-category. We
will say that C is smooth if the following conditions are satisfied:

p1q The 8-category C is compactly generated and is therefore left dualizable as a left
LModR-module object of PrSt (Corollary D.7.7.4). Let us denote its left dual by _C.

p2q Let c : Sp Ñ _C bR C be a morphism in PrSt which exhibits _C as a left dual of C.
Then the functor c preserves compact objects.

Warning 11.3.1.2. The condition that a stable R-linear 8-category C be smooth depends
not only on the underlying stable 8-category, but also on the action of ModR on C. We will
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sometimes emphasize this dependence by saying that C is smooth over R if it satisfies the
requirements of Definition 11.3.1.1.

Remark 11.3.1.3. In the situation of Definition 11.3.1.1, condition p2q is equivalent to the
a priori weaker hypothesis that the functor c : Sp Ñ _C bR C carries the sphere spectrum S

to a compact object of _C bR C.

Remark 11.3.1.4. Let R be an E2-ring, let C be an R-linear 8-category, and let RÑ R1

be a morphism of E2-rings. Then R1 bR C is a compactly generated R1-linear 8-category
(Corollary ??), whose left dual can be identified with the 8-category

_C bR R1 “ _C bLModR LModR1 .

Moreover, the canonical map

_C bR C Ñ _C bR LModR1 bR C » p_C bR R1q bR1 pR1 bR Cq

preserves compact objects. It follows that if C is smooth over R, then R1 bR C is smooth
over R1.

11.3.2 Comparison with Smooth Algebras

Let R be an E2-ring and let A be an E1-algebra over R. Then we can regard RModA
is a stable R-linear 8-category. We now show that the condition that RModA is smooth
over R admits a more concrete formulation in terms of the structure of A as an R-algebra
(Proposition 11.3.2.3).

Definition 11.3.2.1. Let R be an E2-ring and let A be an E1-algebra over R. We will say
that A is smooth over R if it is compact when viewed as an object of the stable 8-category
ABModApLModRq of A-A bimodule objects of LModR.

Remark 11.3.2.2. Suppose that R is an E8-ring, let A be an E1-algebra over R, and
let Arev denote the opposite algebra (Remark HA.4.1.1.7 ). Then we have an equivalence
of 8-categories ABModApModRq » LModAbRArev , so that the algebra A is compact when
viewed as an object of ABModApModRq if and only if it is perfect when regarded as left
module over AbR Arev. In other words, the algebra A is smooth in the sense of Definition
11.3.2.1 if and only if it is a smooth algebra object of ModR, in the sense of Definition
HA.4.6.4.13 .

Proposition 11.3.2.3. Let R be an E2-ring and let A be an E1-algebra over R. The
following conditions are equivalent:

paq The R-linear 8-category RModA is smooth over R (in the sense of Definition 11.3.1.1).
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pbq The algebra A is smooth over R (in the sense of Definition 11.3.2.1). That is, A is a
compact object of the 8-category ABModApLModRq.

Proof. Using Theorem HA.4.8.4.6 , we can identify the tensor product LModAbR RModA
with the 8-category ABModApLModRq. Under this identification, the coevaluation functor

c : Sp Ñ LModAbR RModA

carries the sphere spectrum S P Sp to the spectrum A, regarded as a bimodule over itself.

Proposition 11.3.2.3 asserts in particular that if A P AlgR is smooth, then the 8-category
RModA is smooth over R. In fact, all smooth R-linear 8-categories arise in this way:

Proposition 11.3.2.4. Let R be an E2-ring and let C be a stable R-linear 8-category. The
following conditions are equivalent:

p1q The 8-category C is smooth over R.

p2q There exists an R-linear equivalence C » RModA, where A P AlgR is smooth.

Proof. The implication p2q ñ p1q follows from Proposition 11.3.2.3. We now prove the
converse. Let C be a smooth R-linear 8-category. We will show that there exists a single
compact object C P C which generates C. It will then follow from Corollary D.7.6.4 that
C » RModA, where A is the endomorphism algebra of C. Proposition 11.3.2.3 then implies
that A P AlgR is smooth, so that p2q is satisfied.

We now prove the existence of C. By assumption, the 8-category C is compactly
generated. Choose a set tCtutPT of compact generators for C. For every finite subset T 1 Ď T ,
let CT 1 denote the smallest stable subcategory of C which contains the objects of T 1 and is
closed under small colimits. Fix an object X P CT 1 , and let DX be the full subcategory of
ModR spanned by those left R-modules M for which M b C belongs to CT 1 . Since CT 1 is
stable and closed under small colimits in C, DC is stable and closed under small colimits in
ModR. Since R P DT 1 , we conclude that DT 1 “ LModR: that is, the action of LModR on C
carries CT 1 into itself. We may therefore regard each CT 1 itself as an R-linear 8-category.

We next claim that the canonical map θ : lim
ÝÑT 1ĎS

CT 1 Ñ C is an equivalence in LinCatSt
R ;

here the colimit is taken over the collection of all finite subsets T 1 Ď T . Since the forgetful
functor LinCatSt

R Ñ PrL preserves small colimits, we are reduced to proving that C is a
colimit of the diagram tCT 1uT 1ĎT in PrL. For each finite subset T 1 Ď T , let C0

T 1 denote
the smallest stable subcategory of C containing T 1. Similarly, let C0 be the smallest stable
subcategory of C containing T . Let CatEx

8 denote the subcategory of Cat8 whose objects
are (small) stable 8-categories and whose morphisms are exact functors. Since each C0

T 1

consists of compact objects of C, the inclusion C0
T 1 ãÑ C extends to a fully faithful embedding

IndpC0
T 1q Ñ C which preserves small colimits. The essential image of this embedding is the
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full subcategory of C generated by C0
T 1 under small colimits, and therefore coincides with CT 1 .

Similarly, we can identify C with IndpC0
T 1q. We may therefore identify θ with the canonical

map
lim
ÝÑ
T 1ĎT

IndpC0
T 1q Ñ IndpC0q.

Since the functor Ind : CatEx
8 Ñ PrL preserves small colimits, we are reduced to showing that

C0 is the colimit of the diagram tC0
T 1uT 1ĎT , which follows immediately from the definitions

(note that the forgetful functor CatEx
8 Ñ Cat8 preserves filtered colimits).

Note that for every finite subset T 1 Ď T , the inclusion ι : CT 1 ãÑ C preserves compact
objects, and therefore admits a right adjoint G which preserves filtered colimits. Using
Remark D.1.5.3, we can regard G as an R-linear functor, and the unit map u : idCT 1 Ñ G ˝ ι

as an R-linear natural transformation. Since ι is fully faithful, u is an equivalence. Let
c : Sp Ñ _C bR C be the duality datum appearing in Definition 11.3.1.1. Then we can
identify the codomain of c with the colimit

lim
ÝÑ
T 1ĎT

_C bR CT 1 .

Let S P Sp be the sphere specturm. Since C is smooth, cpSq is a compact object of the tensor
product _CbR C and can therefore be lifted to a compact object of _CbR CT 1 for some finite
subset T 1 Ď T (Lemma HA.7.3.5.11 ). This object determines a map c : Sp Ñ _C bR CT”
which classifies an R-linear functor C Ñ CT 1 which is right homotopy inverse to the identity. It
follows that CT 1 “ C. We now complete the proof by observing that the object C “

À

tPT 1 Ct
is a compact generator of C.

11.3.3 Relationship with Fiber Smoothness

Let f : RÑ A be a morphism of E8-rings. Then, by neglect of structure, we can regard
A as an E1-algebra over R. We now show that the smoothness of A as an E1-algebra is
closely related to the fiber smoothness of the morphism f :

Proposition 11.3.3.1. Let f : RÑ A be a morphism of connective E8-rings. Then f is
fiber smooth if and only if it satisfies the following conditions:

p1q The morphism f has finite Tor-amplitude.

p2q The morphism f is almost of finite presentation.

p3q The algebra A is smooth as an E1-algebra over R (Definition 11.3.2.1). That is, A is
perfect when regarded as a module over AbR A.
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Warning 11.3.3.2. Hypothesis p1q of Proposition 11.3.3.1 is necessary. For example, let Q
denote the field of rational numbers (regarded as a discrete E8-ring) and let A “ Sym˚

QpΣ2 Qq
denote the free E8-algebra over Q on one generator in homological degree 2. Then A is
smooth over Q in the sense of Definition 11.3.2.1, but is not fiber smooth over Q (since it is
not flat over Q).

Lemma 11.3.3.3. [Serre’s Criterion] Let R be a local Noetherian E8-ring with residue
field κ. Assume that R is n-truncated for some integer n and that κ is perfect when regarded
as an R-module. Then π0R is a regular local ring and πmR » 0 for m ą 0.

Proof. If R » 0 there is nothing to prove. Otherwise, our assumption that R is truncated
guarantees the existence of a largest integer n such that πnR ‰ 0. We will prove that R is
discrete by showing that n “ 0. The regularity of π0R will then follow from Serre’s criterion
(see, for example, [148]).

If κ is a perfect R-module, then it has Tor-amplitude ď d for some integer d. It follows
that for every discrete R-module M , we have πd`1pκbRMq » 0. Using Corollary 6.1.4.7, we
deduce that if M is finitely generated as a module over π0R, then M also has Tor-amplitude
ď d.

Assume for a contradiction that n ą 0. Since R is Noetherian, πnR is a finitely generated
module over π0R. Let p Ď π0R be a minimal prime ideal belonging to the support of π0R, so
that πnRp ‰ 0. Note that the quotient M “ π0R{p has Tor-amplitude ď d as an R-module.
Then Mp can be identified with the fraction field of Rp, and therefore has Tor-amplitude
ď d as an Rp-module. We may therefore replace R by Rp, and thereby reduce to the case
where πnR is supported at the maximal ideal m Ď R (and is therefore an R-module of finite
length). In particular, we may assume that there exists a nonzero element x P πnR which is
annihilated by m.

To obtain a contradiction, it will suffice to prove the following:

p˚q Let N be a nonzero perfect R-module which is connective and of Tor-amplitude ě k.
Then πn`kN ‰ 0.

We prove p˚q using induction on k. If k “ 0, then N is a projective R-module, so that
πnN » pπnRqbπ0R pπ0Nq ‰ 0. Assume that k ą 0, and choose a finite collection of elements
x1, . . . , xm P π0N which generate π0pκ bR Nq as a vector space over κ. These elements
determine a fiber sequence of R-modules N 1 φ

Ñ Rm Ñ N . It follows from Nakayama’s lemma
that the map π0R

m Ñ π0N is surjective. Since N has Tor-amplitude ě k ą 0, the R-module
N 1 is nonzero and has Tor-amplitude ą k ´ 1. We have a short exact sequence of abelian
groups πn`kN Ñ πn`k´1N

1 ψ
Ñ πn`k´1R

m. It will therefore suffice to show that the map
ψ is not injective. If k ą 1 this is clear, since πn`k´1N

1 ‰ 0 by the inductive hypothesis,
and πn`k´1R » 0. In the case k “ 1, N 1 is a projective R-module. Since R is local, we
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have Ra » N 1 for some integer a ą 0. Then φ is given (up to homotopy) by a matrix of
coefficients tφi,j P π0Ru1ďiďa,1ďjďm. By construction, the map pπ0R

mq{mpπ0R
mq Ñ N{mN

is injective, so that the image of π0N
1 under φ is contained in mm Ď pπ0Rq

m. It follows that
each of the coefficients φi,j belongs to m, and therefore ψ annihilates the nonzero element
px, x, . . . , xq P πnR

a » πnN
1.

Proof of Proposition 11.3.3.1. Suppose first that f : R Ñ A is fiber smooth. Then f is
almost of finite presentation and of finite Tor-amplitude (in fact, it is flat). We must show
that A is smooth in the sense of Definition 11.3.2.1: that is, that it is perfect when regarded
as a module over AbR A. We first note that since A is almost of finite presentation over
R, the tensor product AbR A is also almost of finite presentation over R, and therefore A
is almost of finite presentation over AbR A. Using Corollary 5.2.2.2, we deduce that A is
almost perfect as a module over AbRA. To prove that A is perfect over AbRA, it will suffice
to show that A has finite Tor-amplitude over AbR A (Proposition HA.7.2.4.23 ). Choose a
finite collection of elements x1, . . . , xd P π0A which generate π0A as a commutative algebra
over π0R. We will show that A has Tor-amplitude ď d over AbR A. Using Proposition ??,
we are reduced to proving that for every algebraically closed field κ and every morphism
θ : AbR AÑ κ, the tensor product B “ AbAbRA κ is d-truncated. After replacing R by κ,
we can identify θ with a pair of morphisms φ0, φ1 : AÑ κ in CAlgκ, and B with the pushout
κ bA κ. To verify that B is d-truncated, it will suffice to show that κ has Tor-amplitude
ď d when regarded as an A-module (via either φ0). Let m denote the maximal ideal of A
given by the kernel of φ0. Since f is fiber smooth, the ring Am is regular, so that κ has
Tor-amplitude n as a module over Am, where n is the Krull dimension of Aκ. The inequality
n ď d follows from the fact that A is generated by ď d elements as a commutative algebra
over κ.

Now suppose that f : RÑ A is a morphism of E8-rings which satisfies conditions p1q,
p2q, and p3q; we wish to show that f is fiber smooth. Using Propositions ?? and 11.2.3.6, we
are reduced to proving that for every algebraically closed field κ and every morphism RÑ κ,
the tensor product κbRA is discrete and regular. Replacing R by κ, we may suppose that A
is almost of finite presentation over κ (and therefore Noetherian) and d-truncated for some
integer d. To prove that A is discrete and regular, it suffices to show that the localization
Am is discrete and regular, for every maximal ideal m Ď π0A. Since κ is algebraically closed,
the residue field π0A{m is isomorphic to κ and is therefore dualizable when regarded as a
κ-module. Since A is smooth as an object of Algκ, it follows that pπ0Aq{m is also dualizable
as an A-module (Proposition HA.4.6.4.12 ). The desired result now follows from Lemma
11.3.3.3.
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11.3.4 Smooth Quasi-Coherent Stacks

The condition of smoothness can be tested locally with respect to the étale topology:

Proposition 11.3.4.1. Let R be an E8-ring and let C be a stable R-linear 8-category.
Suppose that there exists a finite collection of étale maps R Ñ Rα such that

ś

αRα is
faithfully flat over R, and each of the 8-categories Rα bR C is smooth over Rα. Then C is
smooth over R.

Proof. It follows from Proposition ?? that the 8-category C is compactly generated. Let
c : Sp Ñ _C bR C be as in Definition 11.3.1.1; we wish to show that cpSq is a compact
object of the R-linear 8-category D “ _C bR C. Since each LModRαpCq is smooth over
Rα, we conclude that the image of cpSq is compact in each of the 8-categories LModRαpDq.
Applying Proposition ??, we conclude that cpSq itself is compact.

Corollary 11.3.4.2. For every E8-ring R, let LinCatsm
R denote the full subcategory of

LinCatSt
R spanned by the smooth R-linear 8-categories. Then the functor R ÞÑ LinCatsm

R is
a sheaf with respect to the étale topology on CAlgR.

Proof. Combine Theorem ?? with Proposition 11.3.4.1.

We now introduce a global version of Definition 11.3.1.1.

Definition 11.3.4.3. Let X be a spectral Deligne-Mumford stack and let C P QStkStpXq be
a quasi-coherent stack on X. We will say that C is smooth if it is stable and, for every map
η : SpétRÑ X, the pullback η˚ C P LinCatR is a smooth R-linear 8-category.

Remark 11.3.4.4. Let X » SpétR be an affine spectral Deligne-Mumford stack and let C
be a quasi-coherent stack on X. Then C is smooth (as a quasi-coherent stack on X) if and
only if the corresponding stable R-linear 8-category is stable and smooth over R, in the
sense of Definition 11.3.1.1: this follows from Remark 11.3.1.4.

Using Proposition 11.3.4.1, we deduce the following:

Proposition 11.3.4.5. Let X be a spectral Deligne-Mumford stack and let C be a quasi-
coherent stack on X. Then:

p1q Let f : Y Ñ X be any map of spectral Deligne-Mumford stacks. If C is smooth, then
f˚ C P QStkpYq is smooth.

p2q Suppose we are given a collection of étale maps tfα : Xα Ñ Xu which induce an étale
surjection

š

α Xα Ñ X. If each pullback f˚α C P QStkpXαq is smooth, then C is smooth.
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Remark 11.3.4.6. Let X be a spectral Deligne-Mumford stack and let C P QStkStpXq be
a stable quasi-coherent stack on X. Assume that C is compactly generated, so that it is
dualizable as an object of the symmetric monoidal 8-category QStkStpXq (see Corollary
D.7.7.4). Let c : QX Ñ Cb C_ be a duality datum in the symmetric monoidal 8-category.
QStkStpXq. Then C is smooth if and only if c is a compact morphism of quasi-coherent
stacks, in the sense of Definition 10.1.3.1.

Combining Remark 11.3.4.6, Theorem 10.2.0.2, and Proposition 10.3.1.14, we obtain the
following:

Proposition 11.3.4.7. Let X be a quasi-compact, quasi-separated spectral algebraic space
and let C be a stable quasi-coherent stack on X, so that QCohpX; Cq is a dualizable QCohpXq-
module of PrSt (see Construction 11.1.3.1). Then C is smooth if and only if the coevaluation
functor c : QCohpXq Ñ QCohpX; Cq bQCohpXq QCohpX; Cq_ preserves compact objects.

Remark 11.3.4.8. In the situation of Proposition 11.3.4.7, it suffices to show that the func-
tor c carries the structure sheaf OX to a compact object of the8-category QCohpX; CqbQCohpXq
QCohpX; Cq_ » QCohpX; Cb C_q.

11.3.5 Global Sections of Smooth Quasi-Coherent Stacks

We now establish a local-to-global principle for smooth quasi-coherent stacks.

Proposition 11.3.5.1. Let R be a connective E8-ring, and let X be a spectral algebraic
space over R which is quasi-compact, separated, and fiber smooth over R. Let C be a smooth
quasi-coherent stack on X. Then QCohpX; Cq is a smooth R-linear 8-category.

The proof of Proposition 11.3.5.1 will require some preliminaries.

Lemma 11.3.5.2. Let f : X Ñ Y be a fiber smooth morphism of spectral Deligne-Mumford
stacks. Then the diagonal map δ : X Ñ XˆY X is locally of finite Tor-amplitude.

Proof. The assertion is local on X and Y; we may therefore assume without loss of generality
that Y “ SpétR and X “ SpétA are affine. Using Remark 6.1.2.6, we can reduce to the case
where R is discrete. Using Proposition 11.2.4.1 (and the fact that the assertion is local on X
with respect to the étale topology) we can further reduce to the case where A “ Rrx1, . . . , xns

is a polynomial ring over R. In this case, we observe that A has Tor-amplitude ď n as a
module over AbR A.

Lemma 11.3.5.3. Let f : X Ñ Y be a map of spectral Deligne-Mumford stacks which
is separated and fiber smooth, and let δ : X Ñ XˆY X be the diagonal map. Then the
pushforward functor δ˚ carries perfect objects of QCohpXq to perfect objects of QCohpXˆY Xq.
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Proof. Since f is separated, δ is a closed immersion, and therefore a proper map. Since f is
fiber smooth, it is locally almost of finite presentation, so that δ is also locally almost of
finite presentation. Lemma 11.3.5.2 implies that δ is locally of finite Tor-amplitude, so the
desired result follows from Theorem 6.1.3.2.

Proof of Proposition 11.3.5.1. Let Γ : QCohpXq Ñ ModR be the global sections functor. We
first claim that Γ exhibits QCohpXq as a Frobenius algebra object of LinCatR: that is, that
the canonical map

e : QCohpXq bR QCohpXq bÑ QCohpXq Γ
Ñ ModR

is a duality datum in LinCatR. Since QCohpXq is compactly generated, it is dualizable as
an R-linear 8-category (Theorem D.7.0.7). Let us denote its dual by QCohpXq_, so that
we have a duality datum e : QCohpXq_ bR QCohpXq Ñ ModR. The universal property of e
implies that e factors as a composition

QCohpXq bR QCohpXq ubid
ÝÑ QCohpXq_ bR QCohpXq e

Ñ ModR .

We wish to prove that u : QCohpXq Ñ QCohpXq_ is an equivalence. According to Remark
D.7.7.6, the composite map

QCohpXq_ bQCohpXq Ñ QCohpXq_ bR QCohpXq e
Ñ ModR Ñ Sp

is a duality datum in PrSt. It will therefore suffice to show that

QCohpXq bQCohpXq Ñ QCohpXq bR QCohpXq e
Ñ ModR Ñ Sp

is also a duality datum in PrSt. This follows from Proposition D.7.5.1, since the 8-category
QCohpXq is locally rigid (Corollary ??).

Set D “ QCohpX; Cq. Arguing as in Construction 11.1.3.1, we see that D is dualizable as
a module over QCohpXq. Let β : D_bQCohpXqD Ñ QCohpXq be a duality datum. Applying
Corollary HA.4.6.5.14 , we deduce that the composite map

D_bRD
α
Ñ D_bQCohpXqD

β
Ñ QCohpXq Γ

Ñ ModR

is a duality datum in LinCatR.
We wish to prove that D is a smooth R-linear 8-category. Equivalently, we wish to

show that the composition γ ˝ β ˝ α is dual to an R-linear functor which preserves compact
objects. To prove this, we will show that α, β, and Γ are each R-linear duals of functors
which preserve compact objects:
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pαq Let E “ QCohpXq bR QCohpXq. According to Corollary ??, the canonical map

E Ñ QCohpXˆSpétR Xq

is an equivalence of symmetric monoidal 8-categories. In particular, E is locally rigid.
Note that α is obtained from a map α0 : E Ñ QCohpXq of E-modules by tensoring
over E with D_bRD. Since E is locally rigid, α0 is a morphism between dualizable
E-modules, and therefore admits a E-linear dual α_0 . It follows that the dual of α is
given by tensoring α_0 over E with D_bRD. Consequently, to show that the dual of
α preserves compact objects, it will suffice to show that α_0 preserves compact objects.

Since X is separated, the diagonal map δ : X Ñ XˆSpétR X is a closed immersion, and
in particular an affine map. Let A P CAlgpEq denote the direct image of the structure
sheaf of X, so that QCohpXq » LModA pEq. Then α0 can be identified with the free
module functor from E to LModA pEq. It follows that the dual α_0 can be identified
with the forgetful functor RModA pEq Ñ E : that is, with the pushforward functor δ˚.
Since X is fiber smooth over R, this functor preserves compact objects by Lemma
11.3.5.3.

pβq The stable 8-category D_ is tensored over QCohpXq and can therefore be written as
QCohpX; C_q for some stable quasi-coherent stack C_ P QStkpXq (Theorem 10.2.0.2).
Since the equivalence of Theorem 10.2.0.2 is symmetric monoidal, the quasi-coherent
stack C_ is a dual of C in QStkStpXq; in particular, C_ is smooth. Let c : QX Ñ Cb C_

be the associated coevaluation map, so that β is dual to the map

QCohpXq » QCohpX;QXq Ñ QCohpX; Cb C_q

determined by c. Since C is smooth, this functor carries perfect objects of QCohpXq to
locally compact objects of QCohpX; Cb C_q. It follows from Proposition 10.3.2.6 that
β_ preserves compact objects.

pΓq Since the global sections functor Γ : QCohpXq Ñ ModR exhibits QCohpXq as a
Frobenius algebra object of LinCatR, it follows immediately from the definitions that
the dual of Γ can be identified with the unit map ModR Ñ QCohpXq. Since perfect
objects of QCohpXq are compact, the dual of Γ preserves compact objects.

Remark 11.3.5.4. Let R be a connective E8-ring and suppose that X is a quasi-compact,
quasi-separated spectral algebraic space over R. The proof of Proposition 11.3.5.1 shows
that the global sections functor Γ : QCohpXq Ñ ModR exhibits X as a Frobenius algebra
object of LinCatR. That is, the composite map

QCohpXq bR QCohpXq bÑ QCohpXq Γ
Ñ ModR
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is a duality datum in LinCatR. Using Proposition 2.5.4.5, we see that a compatible
coevaluation map is given by the composition

ModR Ñ QCohpXq δ˚Ñ QCohpXˆSpétR Xq » QCohpXq bR QCohpXq

(where δ : X Ñ XˆSpétR X denotes the diagonal map).
Suppose that f : X Ñ Y is a map of quasi-compact, quasi-separated spectral algebraic

spaces over R, so that f˚ : QCohpYq Ñ QCohpXq is an R-linear functor. Using the duality
data described above, we can identify QCohpXq and QCohpYq with their own duals in
LinCatR. Then the dual of f˚ is an R-linear functor from QCohpXq to QCohpYq. Repeatedly
using Corollary ??, we can identify this dual with the composition

QCohpXq π˚
Ñ QCohpXˆSpétR Yq
δ˚
Ñ QCohpXˆSpétR YˆSpétR Yq
f 1˚
Ñ QCohpXˆSpétR XˆSpétR Yq
δ1˚
Ñ QCohpXˆSpétR Yq
π1˚
Ñ QCohpYq

where π and π1 denote the projection maps from XˆSpétR Y onto the first and second factor,
δ and δ1 are given by the diagonal embeddings, and f 1 is the product of f with the identity
maps on X and Y. We have a pullback diagram of spectral algebraic spaces

X idˆf //

idˆf
��

XˆSpétR Y

f 1˝δ1

�� ��
XˆSpétR Y δ // XˆSpétR YˆSpétR Y

Using Proposition 2.5.4.5, we can identify the dual of f˚ with the functor given by composing
pullback along the composition X idˆf

ÝÝÝÑ XˆSpétR Y π
Ñ X with pushforward along the

composition X idˆf
ÝÝÝÑ XˆSpétR Y π1

Ñ Y. The first composition is given by the identity map
from X to itself, and the second agrees with f . It follows that the dual of f˚ is given by f˚,
as an R-linear functor from QCohpXq to QCohpYq.

11.3.6 Direct Images of Smooth Quasi-Coherent Stacks

We can now formulate the main result of this section:

Theorem 11.3.6.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Assume that f is a quasi-compact, quasi-separated, locally almost of finite presentation,
locally of finite Tor-amplitude, and a relative spectral algebraic space. Then the following
conditions are equivalent:
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p1q The morphism f is separated and fiber smooth.

p2q For every smooth object C P QStkpXq, the direct image f˚ C P QStkpYq is smooth.

p3q The quasi-coherent stack f˚QX P QStkStpYq is smooth.

p4q Let δ : X Ñ XˆY X be the diagonal map. Then the direct image δ˚OX is perfect.

The main content of Theorem 11.3.6.1 is contained in Proposition 11.3.5.1, which we
proved in §11.3.5. We will also need the following:

Lemma 11.3.6.2. Let f : X Ñ Y be a quasi-affine morphism of spectral Deligne-Mumford
stacks. Suppose that f˚OX is perfect. Then f is affine. Suppose, in addition, that f satisfies
the following condition:

p˚q For every discrete E8-ring B, the map

MapSpDMpSpétB,Xq Ñ MapSpDMpSpétB,Yq

has p´1q-truncated homotopy fibers.

Then f is a closed immersion.

Proof. The assertion is local on Y. We may therefore assume without loss of generality that
Y “ SpétR is affine. Let us identify f˚OX with an object A P CAlgR. Assume first that
A is perfect; we wish to show that X is affine. According to Proposition ??, the canonical
map MapSpDMpSpétB,Xq Ñ MapCAlgpA,Bq is a homotopy equivalence for every connective
E8-ring B. It follows that if A is connective, then X » SpétA is affine.

Suppose, for a contradiction, that A is not connective. Then there exists an integer
n ă 0 such that πnA ‰ 0. Since A is perfect, there exists a smallest such integer n. Then
πnA is a finitely generated module over π0R. Using Nakayama’s lemma, we deduce that
there exists a maximal ideal m Ď π0R such that Torπ0R

0 pπnA, κq ‰ 0, where κ denotes the
residue field pπ0Rq{m. Then πnpAbR κq ‰ 0. Replacing R by κ, we can reduce to the case
where R is a field. In this case, since A is perfect over κ, π0A is a finite-dimensional vector
space over κ. It follows that | SpecA| is a finite set equipped with the discrete topology. In
particular, any open subset of | SpecA| is also closed. Using Proposition 2.4.1.3, we deduce
that X is an open substack of SpétA, and therefore affine. It follows that A “ ΓpX ; OXq is
connective, contradicting our assumption that πnA ‰ 0.

Now suppose that p˚q is satisfied; we wish to show that f is a closed immersion. Since A
is perfect and connective as an R-module, π0A is a finitely generated as a module over π0R.
We wish to prove that the unit map π0RÑ π0A is surjective. Using Nakayama’s lemma, we
are reduced to proving that the unit map κÑ Torπ0R

0 pπ0A, κq is surjective, for every residue
field κ of R. Replacing R by κ, we may suppose that R “ κ. Let B “ π0Abκ π0A. Then
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B is a discrete E8-ring, equipped with two R-algebra maps φ, φ1 : AÑ B. It follows from
p˚q that φ and φ1 are homotopic. In particular, for each x P π0A, we have xb 1 “ 1b x in
π0Abκ π0A, so that x is a scalar multiple of the identity.

Proof of Theorem 11.3.6.1. The implication p1q ñ p2q follows from Proposition 11.3.5.1,
and the implication p2q ñ p3q is obvious. Assume next that p3q is satisfied; we will prove
p4q. The assertion is local on Y; we may therefore suppose without loss of generality that
Y “ SpétR is affine. The proof of Proposition 11.3.5.1 shows that the composition

QCohpXq bModR QCohpXq bÑ QCohpXq f˚Ñ ModR
is a duality datum in LinCatR. Using Remark 11.3.5.4 and Corollary ??, we can identify
the dual of this map with the composition

ModR
f˚
Ñ QCohpXq δ˚Ñ QCohpXˆSpétR Xq.

If condition p3q is satisfied, then this functor preserves compact objects. In particular
δ˚OX » δ˚pf

˚Rq is perfect, so that condition p4q is satisfied.
We now prove that p4q ñ p1q. Assume that δ˚OX is perfect. It follows from Theorem

3.3.0.2 that δ is quasi-affine, so that Lemma 11.3.6.2 implies that δ is is a closed immersion.
This proves that X is separated.

We now prove that f is fiber smooth. The assertion is local on Y; we may therefore
assume that Y “ SpétR is affine. Choose an étale map u : SpétAÑ X; we will prove that
A is fiber smooth over R. Form a pullback diagram

SpétAˆX SpétA δ1 //

��

SpétAˆSpétR SpétA

��
X // XˆSpétR X .

Let O denote the structure sheaf of SpétAˆX SpétA. It follows from p3q that δ1˚O is perfect
when regarded as a module over AbR A. Since u is separated and étale, the diagonal map
SpétA Ñ SpétA ˆX SpétA is a clopen immersion. It follows that δ1˚O contains A as a
direct summand, so that A is perfect when regarded as a module over AbR A. That is, A is
a smooth R-algebra in the sense of Definition HA.4.6.4.13 . Since X is assumed to be locally
almost of finite presentation and of finite Tor-amplitude over R, Proposition 11.3.3.1 implies
that A is fiber smooth over R.

11.4 Smooth and Proper Linear 8-Categories

Let Y be a spectral Deligne-Mumford stack. In §11.3 and §11.1 we introduced the notions
of smooth and proper quasi-coherent stacks C P QStkStpYq. In this section, we will study
quasi-coherent stacks which possess both of these properties.
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Notation 11.4.0.1. Let X : CAlgcn Ñ S be a functor and let QStkStpXq be the 8-category
of stable quasi-coherent stacks on X. We let QStkcgpXq denote the full subcategory of
QStkStpXq whose objects are compactly generated stable quasi-coherent stacks (Definition
10.3.1.3) and whose morphisms are compact morphisms of quasi-coherent stacks (Definition
10.1.3.1). It follows from Lemma D.5.3.3 that the subcategory QStkcgpXq Ď QStkStpXq is
closed under the tensor product of Proposition 10.1.6.4, and therefore inherits the structure
of a symmetric monoidal 8-category.

Proposition 11.4.0.2. Let X be a spectral Deligne-Mumford stack. Then a stable quasi-
coherent stack C P QStkStpXq is smooth and proper if and only if it is a dualizable object of
the symmetric monoidal 8-category QStkcgpXq.

Proof. It follows from Theorem D.7.0.7 that C is dualizable as an object of the larger
symmetric monoidal 8-category QStkStpXq: that is, there exists a stable quasi-coherent
stack C_ on X and compatible maps

e : C_b C Ñ QX c : QX Ñ Cb C_

which exhibit C_ as a dual of C. Note that C_ is compactly generated (Remark D.7.7.6). It
follows from Proposition 11.1.3.3 and Remark 11.3.4.6 that the maps c and e are compact if
and only if C is smooth and proper.

Our main goal is to give a proof of the following result:

Theorem 11.4.0.3. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Assume that f is quasi-compact, quasi-separated, and that SpétRˆY X is a spectral algebraic
space for every map SpétRÑ Y. The following conditions are equivalent:

p1q The morphism f is proper and fiber smooth.

p2q The functor f˚ : QStkStpXq Ñ QStkStpYq carries smooth objects of QStkStpXq to
smooth objects of QStkStpYq and proper objects of QStkStpXq to proper objects of
QStkStpYq.

p3q The functor f˚ : QStkcgpXq Ñ QStkcgpYq carries dualizable objects of QStkcgpXq to
dualizable objects of QStkcgpYq, where QStkcgpXq and QStkcgpYq are defined as in
Notation 11.4.0.1.

p4q The quasi-coherent stack f˚QX P QStkStpYq is smooth and proper.

The implication p1q ñ p2q of Theorem 11.4.0.3 follows from Propositions 11.3.5.1 and
11.1.4.2, and the implications p2q ñ p3q ñ p4q follow from Proposition 11.4.0.2. It will
therefore suffice to show that p4q ñ p1q. This is a consequence of Theorem 11.4.2.1, which
we will prove in §11.4.2.
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11.4.1 Digression: Compactness Conditions on Associative Algebras

We now collect some auxiliary results (Propositions 11.4.1.1 and 11.4.1.3) which will be
needed to complete our proof of Theorem 11.4.0.3.

Proposition 11.4.1.1. Let R be a connective E8-ring, and let A P CAlgcn
R . Suppose that

A is almost compact when viewed as an object of Algcn
R : that is, for every integer n ě 0, the

truncation τďnA is a compact object of τďn Algcn
R . Then A is almost of finite presentation

over R.

Lemma 11.4.1.2. Let R be a connective E8-ring, and suppose that A,B P Algcn
R are almost

compact. Then the tensor product AbR B P Algcn
R is almost compact.

Proof. Write A as a filtered colimit lim
ÝÑ

Aα of compact objects of Algcn
R , and similarly

write B as a filtered colimit lim
ÝÑ

Bβ. We wish to show that, for each n ě 0, the tensor
product τďnpA bR Bq is a compact object of τďn Algcn

R . Since τďnA is a compact object
of τďn Algcn

R , the equivalence τďnA » lim
ÝÑα

pτďnAαq guarantees that τďnA is a retract of
τďnAα, for some index α. Similarly, τďnB is a retract of some τďnBβ . Then τďnpAbRBq »
τďnpτďnA bR τďnBq is a retract of τďnpAα bR Bαq » τďnpτďnAα bR τďnBβq. We may
therefore replace A by Aα and B by Bβ , and thereby reduce to the case where A and B are
compact. In this case, the desired result follows from Corollary HA.5.3.1.17 .

Proof of Proposition 11.4.1.1. Let C “ τďn Algcn
R . We will regard C as a symmetric monoidal

8-category, so that we have equivalences CAlgpCq » τďn CAlgpAlgcn
R q » τďn CAlgcn

R . It will
therefore suffice to show that τďnA is compact when regarded as a commutative algebra
object of C. Since A is almost compact as an object of Algcn

R , Lemma 11.4.1.2 implies that
each τďnA

bm is compact as an object of C. The desired result now follows from Lemma
5.2.2.6.

Proposition 11.4.1.3. Let X be a quasi-compact, quasi-separated spectral algebraic space
over a connective E8-ring R, let u : U Ñ X be a map which is affine and étale. For each
B P AlgR, let T pBq denote the full subcategory of LModBpQCohpUqq spanned by those objects
F such that u˚F is compact as an object of LModBpQCohpXqq. Then the construction
B ÞÑ T pBq» determines a functor AlgR Ñ S which commutes with filtered colimits.

Lemma 11.4.1.4. Let φ : RÑ A be an étale morphism of E8-rings. Then A is compact
when viewed as an object of AlgR.

Proof. Let Lp1qA denote the cotangent complex of A regarded as an associative algebra object
of AlgR, so that Lp1qA is an object of SpppAlgRq{Aq » ABModApRq. Theorem HA.7.3.5.1
supplies a fiber sequence Lp1qA Ñ AbR AÑ A. Since A is étale over R, this sequence splits,
so that Lp1qA can be regarded as a direct summand of AbR A.
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For every object B P Algcn
R and every integer n ą 0, we can regard τďnB as a square-zero

extension of τďn´1B by ΣnpπnBq (Theorem HA.7.4.1.23 ), so that we have a fiber sequence
of spaces

MapAlgRpA, τďnBq
φ
Ñ MapAlgRpA, τďn´1Bq Ñ Map

ABModApModRqpL
p1q
A ,Σn`1πnBq.

Since Lp1qA is a direct summand of AbR A, the space Map
ABModApModRqpL

p1q
A ,Σn`1πnBq is a

direct factor of an Eilenberg-MacLane space KpπnB,n` 1q. It follows that the map φ has
n-connective homotopy fibers. Since MapAlgRpA,Bq can be identified with the homotopy
limit of the tower

¨ ¨ ¨ Ñ MapAlgRpA, τď2Bq Ñ MapAlgRpA, τď1Bq Ñ MapAlgRpA, τď0Bq,

we conclude that each of the maps MapAlgRpA,Bq Ñ MapAlgRpA, τďnBq has pn ` 1q-
connective homotopy fibers, and therefore induces a homotopy equivalence

τďn MapAlgRpA,Bq Ñ τďn MapAlgRpA, τďnBq.

Now suppose that we are given a filtered diagram tBαu in AlgR having colimit B; we
wish to show that the induced map

θ : lim
ÝÑ

MapAlgRpA,Bαq Ñ MapAlgRpA,Bq

is a homotopy equivalence. Without loss of generality, we may assume that each Bα is
connective. It will suffice to show that for each m ě 0, the map

lim
ÝÑ

τďm MapAlgRpA,Bαq Ñ τďm MapAlgRpA,Bq

is a homotopy equivalence. We may therefore replace each Bα by τďmBα, and thereby
reduce to the case where there exists an integer n “ 0 such that each Bα is n-truncated.

We now proceed by induction on n. In the case n “ 0, each Bα is discrete. The desired
result is therefore equivalent to the fact that π0A is finitely presented when regarded as an
associative algebra over π0R. Let us therefore assume that n ą 0. We have a diagram of
fiber sequences

lim
ÝÑ

MapAlgRpA,Bαq
θ //

��

MapAlgRpA,Bq

��
lim
ÝÑ

MapAlgRpA, τďn´1Bαq
θ1 //

��

MapAlgRpA, τďn´1Bq

��

lim
ÝÑ

Map
ABModApModRqpL

p1q
A ,Σn`1πnBαq

θ2 //Map
ABModApModRqpL

p1q
A ,Σn`1πnBq.



11.4. SMOOTH AND PROPER LINEAR 8-CATEGORIES 1005

The inductive hypothesis implies that θ1 is a homotopy equivalence. Consequently, to show
that θ is a homotopy equivalence, it suffices to show that θ2 is a homotopy equivalence.
This follows from the observation that Lp1qA is a direct summand of AbR A, and therefore a
compact object of ABModApModRq.

Proof of Proposition 11.4.1.3. Let u : U Ñ X be an affine étale morphism between quasi-
compact, quasi-separated spectral algebraic spaces over R. Write X “ pX ,OXq. For each U P
X , let XU “ pX {U ,OX |U q, let UU denote the fiber product XU ˆX U. Let TU : AlgR Ñ Cat8
be the functor which assigns to each B P AlgR the full subcategory of LModBpQCohpUU qq
spanned by those objects whose direct image in LModBpXU q is locally compact (when
viewed as section over the quasi-coherent stack given by V ÞÑ LModBpQCohpXV qq). The
construction U ÞÑ TU pBq

» carries colimits in X to limits of 8-categories. Let X 0 denote
the full subcategory of X spanned by those objects U for which the functor B ÞÑ TU pBq

»

preserves filtered colimits. Then X 0 is closed under finite colimits in X . We wish to show
that X 0 contains the final object of X . Note that X admits a scallop decomposition (Theorem
3.4.2.1). Using Corollary 2.5.3.6, we are reduced to proving that X 0 contains all affine
objects U P X . Replacing X by XU , we may reduce to the case where X is affine. Replacing
R by the E8-ring of global sections of the structure sheaf of X if necessary, we may suppose
that X “ SpétR. In this case, we can write U “ SpétA, where A is étale over R.

Suppose we are given a diagram tBαu in AlgR which is indexed by a filtered partially
ordered sets and having colimit B. We have a commutative diagram of spaces

lim
ÝÑ

T pBαq
» //

��

T pBq»

��

lim
ÝÑ
pLModperf

Bα
q» // pLModperf

B q»,

where the bottom horizontal map is a homotopy equivalence by virtue of Proposition
HA.4.6.3.11 . To show that the top horizontal map is a homotopy equivalence, it will suffice
to show that it induces a homotopy equivalence after passing to the homotopy fibers of
the vertical maps over any point η P lim

ÝÑ
pLModperf

Bα
q», represented by an index α and a

perfect left Bα-module Mα. For each β ě α, let Mβ “ Aβ bAαMα, and let M “ BbBαMα.
Unwinding the definitions, we are reduced to proving that the map

θ : lim
ÝÑ
βěα

BβBModApModRq ˆLModBβ tMβu Ñ BBModApModRq ˆLModB tMu

is a homotopy equivalence.
For each β ě α, let Eβ P AlgR denote the endomorphism algebra of Mβ (where we

regard Mβ as an object of the R-linear 8-category LModBβ , and let E P AlgR denote the
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endomorphism algebra of M . Using Corollary HA.4.7.1.40 , we can identify θ with the
canonical map

lim
ÝÑ
βěα

MapAlgRpA,Eβq Ñ MapAlgRpA,Eq.

It follows from Proposition HA.4.6.3.11 that the natural map lim
ÝÑβěα

Eβ Ñ E is an equiv-
alence in AlgR. We now conclude by observing that A is compact as an object of AlgR
(Lemma 11.4.1.4).

11.4.2 The Proof of Theorem 11.4.0.3

We now complete the proof of Theorem 11.4.0.3 by establishing the following:

Theorem 11.4.2.1. Let f : X Ñ SpétR be a morphism of quasi-compact, quasi-separated
spectral algebraic spaces. If QCohpXq is smooth and proper as an R-linear 8-category, then
the morphism f is proper and fiber smooth.

Proof. Since QCohpXq is a smooth R-linear 8-category, the proof of Theorem 11.3.6.1 shows
that pushforward along the diagonal map δ : X Ñ XˆSpétR X carries the structure sheaf of
X to a perfect quasi-coherent sheaf on XˆSpétR X. Lemma 11.3.6.2 implies that δ is a closed
immersion, so that X is separated. Suppose, for the moment, that f is locally almost of finite
presentation. Since QCohpXq is a proper R-linear 8-category, Theorem 11.1.4.1 guarantees
that f is proper and has Tor-amplitude ď n, for some integer n. Applying Theorem 11.3.6.1,
we deduce that f is fiber smooth, thereby completing the proof of Theorem 11.4.2.1.

It remains to prove that f is locally almost of finite presentation. Choose an étale map
u : SpétAÑ X. We wish to prove that A is locally almost of finite presentation over R. By
virtue of Proposition 11.4.1.1, it will suffice to show that A is compact when regarded as an
object of AlgR.

For every morphism φ : AÑ B in AlgR, we can regard B as an object of the 8-category
BBModApModRq » LModBpQCohpSpétAqq. Let Fφ P LModBpQCohpXqq denote the image
of this object under the pushforward functor u˚. We claim that Fφ is a compact object of
LModBpQCohpXqq. To prove this, it will suffice (by Theorem ??) to show that for every étale
map v : SpétA1 Ñ X, the pullback v˚Fφ is a compact object of LModBpQCohpSpétA1qq »
BBModA1pModRq. Since X is separated, we can write SpétA1ˆX SpétA as SpétA2, for some
A2 P ModR. Unwinding the definitions, we can identify v˚Fφ with the tensor product
B bA A

2. Since δ˚ carries the structure sheaf of X to a perfect object of QCohpXˆSpétR Xq,
the E8-ring A2 is perfect when regarded as a module over A bR A1, so that B bA A2 is
perfect when regarded as a module over B bR A1.

For every algebra object B P AlgR, let CB denote the full subcategory of

BBModApModRq » LModBpQCohpSpétAqq
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spanned by those objects have compact image in LModBpQCohpXqq under the pushfor-
ward functor u˚. Since QCohpXq is proper, the global sections functor Γ : QCohpXq Ñ
ModR preserves compact objects, so that the induced functor ΓB : LModBpQCohpXqq »
LModB bModR QCohpXq Ñ LModB also preserves compact objects. It follows that the
composite functor

BBModApModRq
u˚
Ñ LModBpQCohpXqq ΓB

ÝÑ LModB

carries CB into LModperf
B . Applying Corollary HA.4.8.5.6 , we see that the construction

pφ : AÑ Bq ÞÑ Fφ

induces a homotopy equivalence of Kan complexes

MapAlgRpA,Bq Ñ C
»
B ˆLModperf

B
tBu.

According to Proposition HA.4.6.3.11 , the construction B ÞÑ LModperf
B commutes with

filtered colimits. To prove that A is compact as an object of AlgR, it will suffice to show that
the construction B ÞÑ C»B also preserves filtered colimits, which follows from Proposition
11.4.1.3.

11.4.3 Variant: Dualizability and Affineness

Let R be an E8-ring and let X be a quasi-compact, quasi-separated spectral algebraic
space over R. According to Theorem 11.4.2.1 Proposition 11.4.0.2, the spectral algebraic
space X is proper and fiber smooth over R if and only if QCohpXq is dualizable as an object
of the 8-category of compactly generated stable R-linear 8-categories (whose morphisms
are functors which preserve small colimits and compact objects). We now consider a variant
of this result, where we focus our attention on the prestable R-linear 8-category QCohpXqcn:

Theorem 11.4.3.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Assume that f is quasi-compact, quasi-separated, and that SpétRˆY X is a spectral algebraic
space for every map SpétRÑ Y. The following conditions are equivalent:

p1q The morphism f is affine.

p2q The pushforward functor f˚ : QStkPStpXq Ñ QStkPStpYq (see Corollary 10.3.2.3)
carries dualizable objects of QStkpXq to dualizable objects of QStkpYq.

p3q The quasi-coherent stack f˚Qcn
X P QStkPStpYq is a dualizable object of QStkPStpYq.

We will deduce Theorem 11.4.3.2 from Serre’s affineness criterion (Proposition 9.6.5.1)
together with following observation:
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Remark 11.4.3.2. Let R be a connective E8-ring and let C be a prestable R-linear
8-category. Then the forgetful functor Modcn

R Ñ Spcn exhibits Modcn
R as a symmetric

Frobenius algebra object of the symmetric monoidal 8-category ModSpcnpPrLq (see Remark
HA.4.6.5.7 ). It follows that C is dualizable as an object ModModcn

R
pPrLq if and only if it is

dualizable as an object of ModSpcnpPrLq. Moreover, if these conditions are satisfied, then
the dual of C as an object of ModModcn

R
pPrLq is equivalent to the dual of C as an object of

ModSpcnpPrLq. It follows that C is dualizable in LinCatPSt
R if and only if it is dualizable in

Groth8.

Proof of Theorem 11.4.3.1. We first show that p1q implies p2q. Assume that f : X Ñ Y is
affine and that C P QStkPStpXq is dualizable; we wish to show that f˚ C is dualizable in
QStkPStpYq. To prove this, we can work locally on Y and thereby reduce to the case where
Y » SpétA is affine. In this case, our assumption that f is affine guarantees that X » SpétB
is also affine. In this case, C with a B-linear prestable 8-category. By assumption, C admits
a dual in the 8-category LinCatPSt

B and we wish to show that the image of C in LinCatPSt
A

is also dualizable. This follows from Remark 11.4.3.2: both conditions are equivalent to the
requirement that C is dualizable as an object of Groth8.

The implication p2q ñ p3q is tautological. To prove that p3q ñ p1q, we can again reduce
to the case where Y » SpétR is affine. We will prove that X is also affine by verifying that
the global sections functor ΓpX; ‚q : QCohpXq Ñ Sp is t-exact (see Proposition 9.6.5.1).

Condition p3q guarantees that QCohpXqcn admits a dual in the 8-category LinCatPSt
R .

Applying Remark 11.4.3.2, we deduce that QCohpXqcn is dualizable as an object of Groth8.
Then we can choose a Grothendieck prestable 8-category C and (compatible) functors

e : QCohpXqcn b C Ñ Spcn c : Spcn Ñ QCohpXqcn b C

which exhibit C as a dual of QCohpXqcn in the 8-category Groth8. Since the stabilization
functor Spp‚q : Groth8 Ñ PrSt is symmetric monoidal, the induced maps

Sppeq : QCohpXq b SppCq Ñ Sp Sppcq : Sp Ñ QCohpXq b SppCq

exhibit SppCq as the dual of QCohpXq as a presentable stable 8-category. Since X is a
quasi-compact, quasi-separated spectral algebraic space, the monoidal stable 8-category
QCohpXq is locally rigid. Applying Proposition ??, we deduce that the composite functor

e1 : QCohpXq bQCohpXq bÑ QCohpXq ΓpX;‚q
ÝÝÝÝÑÑ Sp

exhibits QCohpXq as a dual of itself in PrSt. We can therefore choose an equivalence
α : SppCq » QCohpXq for which the functor Sppcq is given by

QCohpXq b SppCq α
Ñ QCohpXq bQCohpXq bÑ QCohpXq ΓpX;‚q

ÝÝÝÝÑ Sp .
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Let us identify C with a full subcategory of QCohpXq via the fully faithful embedding
C Σ8
Ñ SppCq α

Ñ QCohpXq. Using the commutativity of the diagram

QCohpXqcn b C e //

��

Spcn

��
QCohpXq bQCohpXq e1 // Sp,

we deduce that the spectrum ΓpX; F bG q is connective whenever F P QCohpXqcn and
G P C. Consequently, to prove that ΓpX; ‚q is right t-exact, it will suffice to show that the
structure sheaf OX of X is contained in C. Since ΓpX; ‚q is automatically left t-exact, this
will complete the proof of pcq.

Note that the action of QCohpXqcn on itself induces an action of QCohpXqcn on its dual
C. Using the equivalence QStkPStpXq » ModQCohpXqcnpGroth8q of Theorem 10.2.0.2, we
can write C “ QCohpX; Eq for some prestable quasi-coherent stack E P QStkPStpXq whose
stabilization is QX. To show that OX belongs to C, it will suffice to show that the unit map
Qcn

X Ñ QX factors through E . This assertion is local on X: it amounts to the assertion that,
for every étale map η : U Ñ X where U “ pU ,OUq is affine, the structure sheaf OU belongs
to the essential image of the inclusion Eη Ď pQXqη » QCohpUq. Let qU : UˆU Ñ U denote
the projection onto the first factor. Since U » SpétA is affine, the direct image functor
qU˚ : QCohpUˆUq Ñ QCohpUq carries the full subcategory

LModApEηq » Eη bQCohpUqcn Ď QCohpUq bQCohpUq » QCohpUˆUq

into Eη Ď QCohpUq.
Write UˆX U “ pY,OYq so that the diagonal map δ : U Ñ UˆU factors as a composition

U δ1
Ñ pY,OYq

δ2
Ñ UˆU. Since η is étale and separated, the diagonal map δ1 is a clopen

immersion so that δ1˚OU is a direct summand of OY. It follows that OY » qU˚δ˚OU »

qU˚δ
2
˚δ
1
˚OU is a direct summand of qU˚δ

1
˚OY. We are therefore reduced to proving that

δ1˚OY P QCohpUˆUq belongs to the essential image of the inclusion Eη bQCohpUqcn ãÑ

QCohpUˆUq. Note that we can identify δ1˚OY with the pullback pη ˆ ηq˚ε˚OX, where
ε : X Ñ XˆX is the diagonal map of X. Using the commutativity of the diagram

CbQCohpXqcn //

��

Eη bQCohpUqcn

��
QCohpXˆXq

pηˆηq˚ // QCohpUˆUq,

we see that it will suffice to show that ε˚OX belongs to the essential image of the inclusion
CbQCohpXqcn ãÑ QCohpXˆXq. The evaluation map e1 : QCohpXq b QCohpXq Ñ Sp
admits a compatible coevaluation c1 : Sp Ñ QCohpXq b QCohpXq » QCohpXˆXq, which
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carries the sphere spectrum S to the sheaf ε˚OX. The desired result now follows from the
commutativity of the diagram

Spcn c //

��

QCohpXqcn b C

��
Sp c1 // QCohpXq bQCohpXq.

11.4.4 Deforming Objects of R-Linear 8-Categories

We conclude this section with some convergence results concerning the deformation
theory of objects of smooth and proper R-linear 8-categories. In what follows, if C is a
compactly generated stable R-linear 8-category and A is an E1-algebra over R, we let
LModApCqc denote the full subcategory of LModApCq » LModAbModR C spanned by the
compact objects. Our goal is to prove the following:

Theorem 11.4.4.1. Let R be the limit of a tower of E8-rings

¨ ¨ ¨ Ñ R2 Ñ R1 Ñ R0

satisfying the following conditions:

p1q Each Rn is connective.

p2q Each of the maps Rn Ñ Rn´1 induces a surjection of commutative rings π0Rn Ñ

π0Rn´1, whose kernel is a nilpotent ideal in π0Rn.

p3q The canonical map π0RÑ lim0tπ0Rnu is an isomorphism. Equivalently, the abelian
group lim1tπ1Rnu vanishes.

Let C be a compactly generated stable R-linear 8-category. If C is proper, then the canonical
map θ : Cc Ñ lim

ÐÝ
LModRnpCqc is fully faithful. If C is smooth and proper, then θ is an

equivalence of 8-categories.

Example 11.4.4.2. Let R be an arbitrary connective E8-ring. Then the Postnikov tower

¨ ¨ ¨ Ñ τď2RÑ τď1RÑ τď0R

satisfies the hypotheses of Theorem 11.4.4.1. It follows that for every smooth and proper
R-linear 8-category C, the canonical map Cc Ñ lim

ÐÝ
LModτďnRpCqc is an equivalence of

8-categories.
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Example 11.4.4.3. Let R be a Noetherian commutative ring which is complete with respect
to an ideal I Ď R. Then the tower

¨ ¨ ¨ Ñ R{I3 Ñ R{I2 Ñ R{I

satisfies the hypotheses of Theorem 11.4.4.1. It follows that for every smooth and proper
R-linear 8-category C, the canonical map Cc Ñ lim

ÐÝ
LModR{InpCqc is an equivalence of

8-categories.

Example 11.4.4.4. Let R be a commutative ring, let p be a prime number which vanishes
in R, and let W pRq denote the ring of (p-typical) Witt vectors of R. Then W pRq is the
limit of a tower of commutative rings

¨ ¨ ¨ ÑW3pRq ÑW2pRq ÑW1pRq » R

which satisfies the hypotheses of Theorem 11.4.4.1. It follows that if C is a smooth and
proper W pRq-linear 8-category, then the canonical map Cc Ñ lim

ÐÝ
LModWnpRqpCqc is an

equivalence of 8-categories.

We begin by proving Theorem 11.4.4.1 in the special case C “ ModR.

Lemma 11.4.4.5. Let R be an associative ring, let I Ď R be a nilpotent two-sided ideal,
and let e be an endomorphism of the left R-module pR{Iqk such that e “ e2. Then e can be
lifted to an endomorphism e of Rk satisfying e2 “ e.

Proof. Without loss of generality, we may suppose that I2 “ 0. Let e1 be an arbitrary
endomorphism of Rk lifting e, so that e12 “ e1` q, where q is an endomorphism of Rk whose
image belongs to Ik. Then e12 ` e1q “ e13 “ e12 ` qe1, so that qe1 “ e1q. Using this, a simple
calculation shows that e “ e1 ` q ´ 2e1q has the desired property.

Lemma 11.4.4.6. Let R be the limit of a tower of E1-rings

¨ ¨ ¨ Ñ R2 Ñ R1 Ñ R0

satisfying the following conditions:

p1q Each Rn is connective.

p2q Each of the maps Rn Ñ Rn´1 induces a surjection of associative rings π0Rn Ñ π0Rn´1,
whose kernel is a nilpotent ideal in π0Rn.

Then the canonical map F : LModperf
R Ñ lim

ÐÝ
LModperf

Rn
is an equivalence of 8-categories.
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Proof. Let C denote the inverse limit lim
ÐÝ

LModperf
Rn

. We will identify objects of C with inverse
systems ~M “ tMn P LModperf

Rn
uně0 satisfying Rn´1 bRn Mn »Mn´1 for n ą 0. Let us say

that such an inverse system ~M is connective if M0 is connective.
We define a functor G : C Ñ ModR by the formula Gp ~Mq “ lim

ÐÝ
Mn. Note that G is a

right adjoint to F , in the sense that we have homotopy equivalences

MapLModRpN,Gp
~Mqq » MapCpF pNq, ~Mq

depending functorially on ~M P C, N P LModperf
R . Moreover, if N P LModR is perfect, then

the unit map N Ñ pG ˝ F qpNq can be identified with the tensor product of N with the
natural map RÑ lim

ÐÝ
Rn, and is therefore an equivalence. It follows that the functor F is

fully faithful.
We next claim that if ~M P C is connective, then each Mn is a connective module over Rn.

Suppose otherwise: then there exists some smallest integer m ă 0 such that πmMn ‰ 0. Then
we have an isomorphism Torπ0Rn

0 pπ0R0, πmMnq » πmM0 » 0. Since the map π0Rn Ñ π0R0
is a surjection with nilpotent kernel, we obtain a contradiction.

It follows that if ~M P C is connective, then the inverse system

¨ ¨ ¨ Ñ π0M2 Ñ π0M1 Ñ π0M0

consists of surjective maps. It follows that for any projective left R-module P , the maps

¨ ¨ ¨ Ñ MapLModRpP,M2q Ñ MapLModRpP,M1q Ñ MapLModRpP,M0q

are surjective on connected components, so that any map of R-modules P Ñ M0 can be
lifted to a map F pP q Ñ ~M in the 8-category C.

We now prove that the functor F is essentially surjective. Fix an object ~M P C; we
wish to show that ~M belongs to the essential image of F . Replacing ~M by a suspension
if necessary, we may suppose that ~M is connective. Since M0 is perfect as a left module
over R0, it has Tor-amplitude ď k for some integer k ě 0. We proceed by induction on k.
Suppose first that k ą 0. Since M0 is perfect and connective, π0M0 is finitely generated
as a module over π0R0. We may therefore choose a map of left R-modules Rk Ñ M0
which induces a surjection on π0. Using the preceding arguments, we can lift this to a map
α : F pRkq Ñ ~M in the 8-category C. Consequently, to show that ~M belongs to the essential
of F , it will suffice to show that fibpαq belongs to the essential image of F . This follows
from the inductive hypothesis, since fibpαq is connective and has Tor-amplitude ď k ´ 1.

It remains to treat the case where k “ 0: that is, the case where M0 is a finitely generated
projective module over R0. In particular, we can write π0M0 as the image of an idempotent
endomorphism e0 of pπ0R0q

k, for some integer k. Applying Lemma 11.4.4.5 repeatedly, we
lift e0 to idempotent endomorphisms en of pπ0Rnq

k, for each integer n ě 0. The inverse
system tenuně0 determines an idempotent endomorphism of Ak, where A “ lim

ÐÝ
π0Rn. Note
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that the map π0R Ñ A is a surjection, whose kernel I can be identified with lim1tπ1Rnu.
The action of π0R on I factors through A, so that I is nilpotent. Using Lemma 11.4.4.5
again, we can lift tenuně0 to an idempotent endomorphism e of pπ0Rq

k, whose image P0 is
a projective left module of finite rank over π0R. Applying Corollary HA.7.2.2.19 , we can
lift P0 to a projective left R-module P of finite rank. By construction, we have a a map of
R-modules P ÑM0, which we can lift to a map β : F pP q Ñ ~M . Replacing ~M by cofibpβq,
we can reduce to the case where M0 » 0. Then Σk ~M is a connective object of C for each
integer k. It follows that ΣkMn is a connective left Rn-module for every integer k, so that
each Mn is zero and ~M » 0 belongs to the essential image of F , as desired.

Proof of Theorem 11.4.4.1. We first show that canonical map θ : Cc Ñ lim
ÐÝn

LModRnpCqc is
fully faithful. Let X,Y P C be compact objects. Unwinding the definitions, we wish to show
that θ induces a homotopy equivalence

Ω8MapCpX,Y q Ñ lim
ÐÝ

Ω8MapLModRn pCq
pRn bX,Rn b Y q.

In fact, we claim that the map

φ : MapCpX,Y q Ñ lim
ÐÝ

MapLModRn pCq
pRn bX,Rn b Y q » lim

ÐÝ
MapCpX,Rn b Y q

is an equivalence of R-modules. Since X P C is compact, we can identify φ with the canonical
map R bR MapCpX,Y q Ñ lim

ÐÝ
pRn bR MapCpX,Y qq. Since C is proper, MapCpX,Y q is a

perfect R-module, so tensor product with MapCpX,Y q commutes with limits. We are
therefore reduced to proving that the canonical map RÑ lim

ÐÝ
Rn is an equivalence, which is

true by hypothesis.
We now prove that θ is essentially surjective. Since C is a smooth R-linear 8-category,

we can write C » RModA for some smooth E1-algebra A over R (Proposition 11.3.2.4). It
follows from Proposition 11.1.0.2 that A is also a proper E1-algebra over R, so that an object
of C » RModA is compact if and only if its image in ModR is compact. We therefore have a
commutative diagram

Cc θ //

��

lim
ÐÝ

LModτďnRpCqc

��

Modperf
R

θ1 // lim
ÐÝn

Modperf
τďnR

.

The map θ1 is an equivalence of 8-categories by Lemma 11.4.4.6. Consequently, to prove
that θ is essentially surjective, it will suffice to show that θ induces an essentially surjective
map

φ : CcˆModperf
R
tMu Ñ plim

ÐÝ
LModRnpCqcq ˆlim

ÐÝn
Modperf

Rn

tMu
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for every perfect R-module M . Using Theorem HA.4.7.1.34 , we can identify φ with the
canonical map

MapAlgRpA
rev,EndpMqq Ñ lim

ÐÝ
MapAlgRn

pRn bR A
rev,EndpRn bRMqq

» lim
ÐÝ

MapAlgRpA
rev, Rn b EndpMqq.

To prove that this map is a homotopy equivalence, it suffices to observe that the canonical
map EndpMq Ñ lim

ÐÝ
pRnbREndpMqq is an equivalence. Since EndpMq is a perfect R-module,

this again follows from our assumption that the map RÑ lim
ÐÝ

Rn is an equivalence.

11.5 Brauer Groups in Spectral Algebraic Geometry

For every associative ring A, we let ZpAq denote the center of A (that is, the subalgebra
consisting of those elements a P A such that ab “ ba for all b P A). Recall that a division
algebra is a nonzero associative ring A such that every nonzero element a P A is invertible.

Let κ be a field. A central division algebra over κ is a division algebra A equipped with
an isomorphism ι : κ » ZpAq which exhibits A as a finite-dimensional vector space over κ.
Let Brpκq denote the set of isomorphism classes of central division algebras over κ. We refer
to Brpκq as the Brauer group of the field κ. It is naturally endowed with the structure of an
abelian group, whose multiplication is characterized by the following requirement:

p˚q Let A, B, and C be central division algebras over κ and denote their isomorphism
classes by rAs, rBs, rCs P Brpκq. Then rAsrBs “ rCs if and only if there is a κ-linear
algebra isomorphism A bκ B » MnpCq; here MnpCq denotes the algebra of n-by-n
matrices over C.

The theory of the Brauer group was extended to the setting of arbitrary commutative
rings by Auslander and Goldman ([9]), following earlier work of Azumaya in the case of
local commutative rings ([10]). It was generalized further by Grothendieck, who associated
a Brauer group to an arbitrary scheme X ([91]). In fact, there are at least two natural
candidates for such an extension:

• The Brauer-Grothendieck group BrGrothpXq, whose elements are isomorphism classes
of quasi-coherent sheaves of Azumaya algebras on X.

• The cohomological Brauer group BrcohpXq, given by the étale cohomology group
H2

étpX; Gmq.

These groups are related as follows:

paq For any scheme X, there is a canonical monomorphism ρ : BrGrothpXq ãÑ BrcohpXq.
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pbq If X is a quasi-compact separated scheme equipped with an ample line bundle L , then
a theorem of Gabber asserts that the image of ρ is the torsion subgroup of BrcohpXq

(see [47]).

pcq If X is a regular Noetherian scheme, then the cohomological Brauer group BrcohpXq

is a torsion group.

In general, the map ρ need not be an isomorphism: that is, a general element α P
H2

étpX; Gmq need not be representable by an Azumaya algebra on X. To address this point,
Toën introduced a mild enlargement of the cohomological Brauer group BrcohpXq, which we
will refer to here as the extended Brauer group and denote by Br:pXq. This group admits
three different descriptions:

piq For any scheme X, the extended Brauer group Br:pXq can be defined as the group of
equivalence classes of stable quasi-coherent stacks on X (in the sense of Chapter 10)
which are invertible and compactly generated.

piiq For any scheme X, the extended Brauer group Br:pXq admits a cohomological interpre-
tation: it is canonically isomorphic to the Cartesian product H2

étpX; Gmq ˆH1
étpX; Zq.

In particular, if the group H1
étpX; Zq vanishes (for example, if X is a normal Noetherian

scheme), then the extended Brauer group Br:pXq agrees with the cohomological Brauer
group BrcohpXq.

piiiq If X is quasi-compact and quasi-separated, then Br:pXq can be defined as the group
of equivalence classes of derived Azumaya algebras on X (see Definition 11.5.3.1).

In [211], Toën proved the equivalence of piq, piiq, and piiiq in the setting of derived
algebraic geometry (based on simplicial commutative rings). His results were generalized to
the setting of spectral algebraic geometry (based on E8-rings) by Antieau-Gepner (see [2]).
In this section, we give an overview of the work of Antieau-Gepner and discuss an analogue
of the equivalence of piq and piiq for the (non-extended) cohomological Brauer group (see
Theorem 11.5.7.11 and the accompanying discussion).

11.5.1 The Brauer Group of a Field

We begin by reviewing the classical theory of the Brauer group in the case of a field.

Definition 11.5.1.1. Let κ be a field and let A P Alg♥
κ be an associative algebra over κ.

We will say that A is central simple if it satisfies the following conditions:

piq The structural map κÑ ZpAq is an isomorphism (that is, κ is the center of A).

piiq The algebra A is finite-dimensional as a vector space over κ.
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piiiq The algebra A is simple: that is, any nonzero two-sided ideal I Ď A is equal to A.

Definition 11.5.1.1 admits several convenient reformulations:

Proposition 11.5.1.2. Let κ be a field and let A be an associative algebra over κ. The
following conditions are equivalent:

p1q The algebra A is central simple over κ.

p2q There exists an isomorphism A »MkpDq, where D is a central division algebra over
κ and MkpDq denotes the algebra of k-by-k matrices over D.

Proof. We first show that p1q implies p2q. Assume that A is central simple over κ. Then A

is nonzero and is finite-dimensional as a vector space over κ. Let I Ď A be a nonzero right
ideal whose dimension over κ is minimal. Choose a collection of elements ta1, . . . , aku which
is maximal among those for which each aiI is nonzero and the collection of right ideals
taiIu1ďiďk is linearly independent over κ. Set J “ a1I ` ¨ ¨ ¨ ` akI. Then J is a nonzero
right ideal of A. For each element b P A, the maximality of ta1, . . . , aku implies that either
bI “ 0 or bI X J ‰ 0. In the latter case, we have dimκpbI X Jq ď dimκpbIq ď dimκpIq. The
minimality of dimκpIq then guarantees that equality must hold, so that bI Ď J . Allowing b
to vary, we deduce that J is also a left ideal of A. Our assumption that A is simple then
guarantees that J “ A.

Note that for 1 ď i ď k, right multiplication by ai determines a surjective A-module
homomorphism αi : I Ñ aiI. We then have 0 ă dimκpaiIq ď dimκpIq, so the minimality
of I guarantees that αi is an isomorphism. Consequently, the homomorphisms tαiu1ďiďk
induce a right A-module isomorphism α : Ik Ñ A. We can therefore identify A with the
endomorphism ring of Ik as a right A-module, which is given by MkpDq where D is the
endomorphism ring of I as a right A-module.

Note that if f : I Ñ I is a nonzero element of D, then impfq is a nonzero right ideal of
A which is contained in I. It follows from the minimality of dimκpIq that impfq “ I: that
is, the map f is surjective. Since I is finite-dimensional as a vector space over κ, it follows
that f is bijective: that is, it is an invertible element of D. This proves that D is a division
algebra, and the isomorphism ZpAq » ZpMkpDqq » ZpDq shows that D is central over κ.
This completes the proof of the implication p1q ñ p2q.

We now show that p2q ñ p1q. Suppose that we are given an isomorphism A »MkpDq,
where D is a central division algebra over κ. It is then clear that ZpAq » ZpMkpDqq »

ZpDq » κ and that A is finite-dimensional as a vector space over κ. To complete the proof,
it will suffice to show that A is central. Let us identify A with the endomorphism ring
EndDpV q, where V is a right D-module with basis tv1, . . . , vku. Let I Ď A be a nonzero
two-sided ideal; we wish to show that I “ A. Choose elements f P I and x P V such that
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fpxq ‰ 0. For w P V and 1 ď i ď k, we can choose elements gw, hi P A such that

gwpfpxqq “ w hipvjq “

#

x if i “ j

0 otherwise.
.

Then for any f 1 P A, we have f 1 “
ř

1ďiďk gf 1pviq ˝ f ˝ hi P I.

Remark 11.5.1.3. In the situation of Proposition 11.5.1.2, the division algebra D is well-
defined up to isomorphism: it can be recovered as the endomorphism ring of any simple
right A-module.

Proposition 11.5.1.4. Let κ be a field and let A and B be central simple algebras over κ.
Then Abκ B is also a central simple algebra over κ.

Proof. Let x be an element of the center ZpAbκ Bq. Choose a representation x “ a1 b b1 `

¨ ¨ ¨ ` an b bn where n is minimal, so that the set tb1, . . . , bnu is linearly independent over κ.
For each a P A, we have

0 “ ax´ xa “
ÿ

paai ´ aiaq b bi.

The linear independence of the set tb1, . . . , bnu then implies that we must have aai “ aia.
Allowing a to vary, we deduce that each ai belongs to the center ZpAq » κ. It follows that x
belongs to ZpAq bκ B » B. Since ZpBq » κ, we deduce that x is a scalar.

It is clear that Abκ B is finite-dimensional as a vector space over κ. To complete the
proof, it will suffice to show that every nonzero two-sided ideal I Ď Abκ B coincides with
Abκ B. To prove this, choose a nonzero element x “ a1 b b1 ` ¨ ¨ ¨ ` an b bn P I where n is
chosen as small as possible. Then a1 ‰ 0. Our assumption that A is simple guarantees that
we can write 1 “

ř

a1ja1a
2
j for some elements a1j , a2j P A. Replacing x by

ř

a1jxa
2
j , we can

assume that a1 “ 1. For each a P A, we then have

ax´ xa “ paa2 ´ a2aq b b2 ` ¨ ¨ ¨ ` paan ´ anaq b bn P I.

It follows from the minimality of n (and the linear independence of tb2, . . . , bnu) that we
have aai ´ aia “ 0 for each i. Using our assumption that A is central over κ, we conclude
that each ai belongs to κ. The linear independence of ta1, . . . , anu then implies that n “ 1:
that is, the element x has the form 1b b for some nonzero element b P B. The simplicity of
B then gives B “ BbB, so that I “ Abκ B.

Proposition 11.5.1.5. Let κ be a field and let A be an associative algebra over κ which
is nonzero and finite-dimensional as a vector space over κ. The following conditions are
equivalent:

p1q The algebra A is central simple over κ.
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p2q The left and right actions of A on itself induce an isomorphism ρ : A bκ Arev Ñ

EndκpAq; here Arev denotes the opposite algebra of A.

Proof. Suppose first that p1q is satisfied. It follows from Proposition 11.5.1.4 that Abκ Arev

is a central simple algebra over κ. Consequently, the two-sided ideal kerpρq Ď A bκ A
rev

must be zero, so that ρ is injective. Since the domain and codomain of ρ are vector spaces
of the same (finite) dimension over κ, the map ρ is an isomorphism.

Now suppose that p2q is satisfied. An element x P A belongs to the center ZpAq if and
only if ρpxb 1´ 1bxq “ 0. Since ρ is injective, we then conclude that xb 1´ 1bx vanishes
in A bκ A

rev, so that x belongs to κ. To complete the proof, it will suffice to show that
A is simple. Let I Ď A be a two-sided ideal. Then impρq is contained in the subspace of
EndκpAq consisting of those maps f : A Ñ A satisfying fpIq “ I. Since ρ is surjective, it
follows that I is stable under every endomorphism of A as a κ-vector space, so that either
I “ 0 or I “ A.

Proposition 11.5.1.6. Let κ be a field and let A and B be central simple algebras over κ.
The following conditions are equivalent:

p1q There is a central division algebra D over κ and isomorphisms A » MmpDq and
B »MnpDq for m,n ě 1.

p2q The tensor product Abκ Brev is isomorphic to a matrix algebra over κ.

Proof. To show that p1q “ p2q, we may assume without loss of generality that m “ n, in
which case the desired result follows immediately from Proposition 11.5.1.5. For the converse,
we may assume that A “ MmpDq and B “ MnpD

1q for some central division algebras
D,D1 P Alg♥

κ (Proposition 11.5.1.2). Proposition 11.5.1.4 guarantees that D bκ D1 rev is
central simple over κ, and is therefore isomorphic to MdpD

2q for some central division
algebra D2 over κ. We then have Abκ Brev »MdmnpD

2q, so condition p2q guarantees that
D2 » κ. We then have an isomorphism ρ : D bκ D1 rev » EndκpV q where V is a vector
space of dimension d over κ. Let us regard V as a D-D1 bimodule via the map ρ. We then
have dimDpV qdimκpDq “ dimκpV q “ dimD1pV qdimκpD

1q. Since ρ is an isomorphism, we
also have dimκpDq dimκpD

1q “ dimκpEndκpV qq “ dimκpV q
2. It follows that dimDpV q “

dimD1pV q “ 1, so that dimκpDq “ dimκ1pD
1q “ d. Moreover, the equality dimD1pV q “ 1

ensures that the endomorphism algebra of V as a right D1-module is isomorphic to D1,
so that ρ determines a κ-algebra homomorphism β : D Ñ D1. This map is automatically
injective (since D is a division algebra), and is therefore an isomorphism (since the domain
and codomain of β have the same dimension over κ).

Definition 11.5.1.7. Let κ be a field and let A,B P Alg♥
κ be central simple algebras over κ.

We will say that A and B are Morita equivalent if the equivalent conditions of Proposition
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11.5.1.6 are satisfied. We let Brpκq denote the set of Morita equivalence classes of central
simple algebras over κ. We will refer to Brpκq as the Brauer group of κ.

Remark 11.5.1.8. Let κ be a field. It follows immediately from characterization p1q of
Proposition 11.5.1.6 (together with Remark 11.5.1.3) that Morita equivalence defines an
equivalence relation on the collection of all (isomorphism classes of) central simple algebras
over κ. Moreover, we can also identify Brpκq with the set of all isomorphism classes of
central division algebras over κ.

Notation 11.5.1.9. Let κ be a field and let A be a central simple algebra over κ. We let
rAs denote the Morita equivalence class of A, which we regard as an element of the Brauer
group Brpκq.

Proposition 11.5.1.10. Let κ be a field. Then Brpκq has the structure of an abelian group,
with multiplication given by rAsrBs “ rAbκ Bs.

Proof. It follows immediately from the definition that the construction rAs, rBs ÞÑ rAbκ Bs

determines a multiplication Brpκq ˆ Brpκq Ñ Brpκq which is commutative and associative.
Moreover, it has a unit given by the Morita equivalence class rκs. For every central simple
algebra A over κ, Proposition 11.5.1.5 gives rAsrArevs “ rAbκ A

revs “ rEndκpAqs “ rκs, so
that rArevs is an inverse of rAs in Brpκq.

Remark 11.5.1.11 (Functoriality). Let f : κÑ κ1 be a homomorphism of fields. It follows
from Proposition 11.5.1.5 that if A is an associative algebra over κ, then A is central simple
over κ if and only if A1 “ κ1 bκ A is central simple over κ1. Consequently, the construction
A ÞÑ κ1 bκ A determines an abelian group homomorphism Brpκq Ñ Brpκ1q.

Proposition 11.5.1.12. Let κ be a separably closed field. Then the Brauer group Brpκq is
trivial.

Proof. Let D be a central division algebra over κ. We wish to show that D “ κ. Assume
otherwise: then there exists an element x P D which does not belong to κ. Let D0 be
the κ-subalgebra of D generated by x. Then D0 is commutative, and is therefore a finite
algebraic extension field of κ. Since κ is separably closed, the extension κ ãÑ D0 is purely
inseparable. It follows that κ has characteristic p ą 0 and that xpn P κ for n " 0. Choose n
as small as possible. Replacing x by xpn´1 , we can assume that xp P κ.

Let f : D Ñ D be the function given by fpyq “ xy´yx. Then fkpyq “
řk
i“0p´1qi

`

k
i

˘

xk´iyxi.
Since κ has characteristic p and xp P κ, we have fppyq “ xpy ´ yxp “ 0 for each y P D.
However, the map f is nonzero (since x R κ “ ZpDq). We can therefore choose an element
y P D such that fpyq ‰ 0 but f2pyq “ 0. Set u “ yfpyq´1x. Since fpyq´1 commutes with x,
we obtain xux´1 “ xyfpyq´1 “ pyx` fpyqqfpyq´1 “ yfpyq´1x` 1 “ u` 1.
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Let D1 Ď D be the κ-subalgebra generated by u. Since D1 is commutative, it is also a
purely inseparable algebraic extension of κ, so that upm P κ for m " 0. In particular, upm

commutes with x for m " 0, so that we obtain the contradiction

up
m
“ xup

m
x´1 “ pxux´1qp

m
“ pu` 1qpm “ up

m
` 1.

We conclude this section by recording another standard fact about associative algebras
which will be needed in §11.5.3.

Proposition 11.5.1.13. Let κ be a field and let A P Alg♥
κ be an associative algebra over

κ which is finite-dimensional as a vector space over κ. Then there are only finitely many
isomorphism classes of simple left A-modules.

Proof. Let M1,M2, . . . ,Mn P Mod♥
A be a collection of simple left A-modules which are

pairwise nonisomorphic. Choose a nonzero element xi P Mi for 1 ď i ď n, and set
x “ txiu1ďiďn P

À

1ďiďnMi. Let N Ď
À

1ďiďnMi be the cyclic submodule generated by
x. We claim that N “

À

1ďiďnMi. The proof proceeds by induction on n, the case n “ 0
being trivial. Assume that n ą 0, and consider the composite map φ : N ãÑ

À

1ďiďnMi Ñ
À

1ďiănMi. We have a diagram of short exact sequences

0 // kerpφq //

α

��

N //

β

��

impφq

γ

��

// 0

0 //Mn
//
À

1ďiďnMi
//
À

1ďiănMi
// 0

where the vertical maps are injective. Our inductive hypothesis guarantees that γ is surjective.
Consequently, to show that β is an isomorphism, it will suffice to show that α is surjective.
Assume otherwise. Then, since Mn is simple, the map α vanishes, so that kerpφq » 0.
It follows that φ is an isomorphism, so that the construction

À

1ďiănMi
φ´1
ÝÝÑ N Ñ Mn

determines a nonzero A-module homomorphism from
À

1ďiănMi to Mn. It follows that
there exists a nonzero map α : Mi ÑMn for some i ă n. Since Mi and Mn are simple, the
map α is an isomorphism, contradicting our assumption that the modules tMiu are pairwise
nonisomorphic.

It follows from the above argument that if M1,M2, . . . ,Mn are pairwise nonisomorphic
simple left A-modules, then we have

ř

dimκpMiq ď dimκpAq. In particular, there are at
most dimκpAq isomorphism classes of simple left A-modules.

11.5.2 The Extended Brauer Group

We now introduce our main objects of interest in this section.
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Definition 11.5.2.1. Let X : CAlgcn Ñ S be a functor and let QStkcgpXq be the 8-
category of compactly generated stable quasi-coherent stacks on X (Notation 11.4.0.1). We
let Br:pXq denote the full subcategory of QStkcgpXq» spanned by the invertible objects
of QStkcgpXq. We will refer to Br:pXq as the extended Brauer space of X. We let Br:pXq
denote the set π0 Br:pXq. We will refer to Br:pXq as the extended Brauer group of X.

If X is a spectral Deligne-Mumford stack. we let Br:pXq and Br:pXq denote the extended
Brauer group and extended Brauer space of the functor CAlgcn Ñ S represented by X. If
R is a connective E8-ring, we let Br:pRq and Br:pRq denote extended Brauer group and
extended Brauer space of the functor SpecR : CAlgcn Ñ S corepresented by R.

Remark 11.5.2.2. We will see below that if κ is a field, then the extended Brauer group
Br:pκq of Definition 11.5.2.1 coincides with the classical Brauer group Brpκq of Definition
11.5.1.7 (see Theorem 11.5.3.18).

Warning 11.5.2.3. In the situation of Definition 11.5.2.1, the 8-category QStkcgpXq need
not be small (and the8-category QStkStpXq need not even be locally small). Consequently, it
is not obvious from the definition that the extended Brauer space Br:pXq is essentially small,
or that the extended Brauer group Br:pXq is small. We will later see that these invariants are
small under some mild assumptions on X (see Remark 11.5.3.13 and Construction 11.5.5.3).

Example 11.5.2.4 (The Dualizing Gerbe). Let X “ pX ,OXq be a Noetherian spectral
algebraic space. Let us say that an object U P X is good if U is affine and the spectral
algebraic space XU “ pX {U ,OX |U q admits a dualizing sheaf (Definition 6.6.1.1). In this
case, we let CpUq denote the full subcategory of QCohpXU q spanned by those objects
which are coherent, truncated, and of finite injective dimension. If ωU is a dualizing
sheaf for XU , then Corollary 6.6.1.11 implies that the construction F ÞÑ F bωU induces
an equivalence QCohpXU qperf » CpUq, which extends to a OXpUq-linear equivalence of
8-category ModOXpUq » IndpCpUqq.

Suppose that X is covered by good objects: that is, that X admits a dualizing sheaf
locally. In this case, the construction U ÞÑ IndpCpUqq extends to a quasi-coherent stack on X
which is compactly generated and invertible, and can therefore be identified with an object
of Br:pXq. We will refer to this object as the dualizing gerbe of X. The associated element
of Br:pXq vanishes if and only if X admits a dualizing sheaf ωX.

Remark 11.5.2.5. Let R be a connective E8-ring and let C be a compactly generated
stable R-linear 8-category. Then C is a dualizable object of LinCatSt

R (Theorem D.7.0.7).
Let us denote its dual by C_, so that we have evaluation and coevaluation maps

e : C_bR C Ñ ModR c : ModR Ñ CbR C_ .

Then the following conditions are equivalent:
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paq The functor e is an equivalence of R-linear 8-categories.

pbq The functor c is an equivalence of R-linear 8-categories.

pcq As an object of LinCatSt
R , C is invertible.

Moreover, if these conditions are satisfied, then the inverse C´1 of C in LinCatSt
R is also

compactly generated (see Remark D.7.7.6), so that C P Br:pRq Ď LinCatR. In this case,
the functors e and c preserve compact objects, so that C is both smooth and proper as an
R-linear 8-category.

Remark 11.5.2.6. Let X : CAlgcn Ñ S be a functor. Since every invertible morphism in
QStkStpXq is compact, we can identify Br:pXq with the full subcategory of QStkStpXq»

spanned by those stable quasi-coherent stacks C on X which are compactly generated
and invertible as objects of QStkStpXq (the inverse of C is then automatically compactly
generated as well; see Remark 11.5.2.5). We do not know if there exist invertible objects of
QStkStpXq which are not compactly generated.

Remark 11.5.2.7. For every functor X : CAlgcn Ñ S, the symmetric monoidal structure
on QStkpXq restricts to a symmetric monoidal structure on Br:pXq: that is, we may regard
Br:pXq as a commutative monoid object of the 8-category pS of (not necessarily small)
spaces. By construction, this commutative monoid is grouplike. Neglecting issues of size, we
can regard Br:pXq as the zeroth space of a connective spectrum (see §HA.5.2.6 ), so that
Br:pXq “ π0 Br:pXq has the structure of an abelian group.

Remark 11.5.2.8 (Functoriality). Let f : X Ñ Y be a natural transformation between
functors X,Y : CAlgcn Ñ S. Then the pullback functor f˚ : QStkStpY q Ñ QStkStpXq

restricts to a map Br:pY q Ñ Br:pXq, and therefore induces a homomorphism of extended
Brauer groups Br:pY q Ñ Br:pXq.

Remark 11.5.2.9. Let X : CAlgcn Ñ S be a functor. The condition that an object
C P QStkStpXq belong to Br:pXq can be tested pointwise: that is, C P Br:pXq if and only if,
for every connective E8-ring R and every point η P XpRq, we have η˚ C P Br:pRq Ď LinCatSt

R .
The “only if” direction is obvious, and the “if” direction follows from Remark 11.5.2.5.

Remark 11.5.2.10. Using Theorem ??, we see that the functor R ÞÑ Br:pRq is a sheaf
with respect to the étale topology. Moreover, the functor Br: : FunpCAlgcn,Sqop Ñ pS is
a right Kan extension of the functor R ÞÑ Br:pRq along the Yoneda embedding CAlgcn Ñ

FunpCAlgcn,Sqop. It follows that if α : X Ñ Y is a natural transformation between functors
X,Y : CAlgcn Ñ pS which induces an equivalence after sheafification with respect to the
étale topology, then the pullback map α˚ : Br:pY q Ñ Br:pXq is a homotopy equivalence.
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Remark 11.5.2.11. Let R be an E8-ring. Every R-linear functor F from ModR to itself
is given by tensor product by an object M P ModR, and F is an equivalence of 8-categories
if and only if M is an invertible object of ModR. We therefore have a homotopy equivalence

Ω Br:pRq »Pic:pRq.

This homotopy equivalence depends functorially on R, and so globalizes to give an equivalence
Ω Br:pXq » Pic:pXq for any functor X : CAlgcn Ñ pS; here Pic:pXq denotes the full
subcategory of QCohpXq» spanned by the invertible objects.

Remark 11.5.2.12. The extended Brauer group Br:pRq of Definition 11.5.2.1 makes sense
for E8-rings R which are not connective. However, we will restrict our attention to the
connective setting in what follows.

11.5.3 Azumaya Algebras

Let R be a connective E8-ring and let Br:pRq be the extended Brauer group of R
(Definition 11.5.2.1). By definition, the elements of Br:pRq are equivalence classes of
invertible compactly generated stable R-linear 8-categories. Our next goal is to make this
definition more explicit by describing concrete representatives for extended Brauer classes.
Recall that when R is a field, the classical Brauer group BrpRq can be described as the
set of Morita equivalence classes of central simple algebras over R (Definition 11.5.1.7).
The theory of central simple algebras was generalized by Azumaya to the setting of local
commutative rings ([10]). We consider here a further generalization of Azumaya’s theory
to the setting of ring spectra, introduced by Toën in the setting of simplicial commutative
rings and Antieau-Gepner in the setting of E8-rings:

Definition 11.5.3.1. Let R be a connective E8-ring and let A be an E1-algebra over R.
We will say that A is an Azumaya algebra over R if it satisfies the following conditions:

p1q The algebra A is a compact generator of ModR.

p2q The left and right actions of A on itself induce an equivalence AbR Arev Ñ EndRpAq.

Warning 11.5.3.2. In the case where R is an ordinary commutative ring, Definition 11.5.3.1
does not reduce to the usual notion of Azumaya algebra in commutative algebra because
we do not require A to be a projective R-module (see Proposition 11.5.3.3 below). For this
reason, Toën refers to an algebra A P AlgR satisfying the requirements of Definition 11.5.3.1
as a derived Azumaya algebra. Other variants have appeared in the literature; see [133] and
[11].

Proposition 11.5.3.3. Let R be an E8-ring and let A be an Azumaya algebra over R. The
following conditions are equivalent:
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paq The algebra A is connective.

pbq The algebra A is a locally free of finite rank as an R-module.

Proof. The implication pbq ñ paq is obvious. For the converse, suppose that paq is satisfied.
Then A is a connective perfect R-module. To show that A is locally free of finite rank, it
will suffice to show that it has Tor-amplitude ď 0 (Remark 2.9.1.2). Equivalently, we must
show that the dual A_ is connective. Using Corollary 2.7.4.3, we can reduce to the case
where R “ κ is a field. In this case, our assumption that A is an Azumaya algebra supplies
an isomorphism of graded vector spaces

pπ˚Aq bκ pπ˚A
revq » π˚pAbκ A

revq » π˚ EndκpAq » pπ˚Aq b pπ˚A_q.

Since the left hand side is concentrated in nonnegative degrees, the right hand side must also
be concentrated in nonnegative degrees, from which it follows that A_ is connective.

The next result highlights the relevance of Definition 11.5.3.1 to the theory of Brauer
groups:

Proposition 11.5.3.4. Let R be a connective E8-ring and let A P AlgR. Then A is an
Azumaya algebra over R if and only if the stable R-linear 8-category RModA is an invertible
object of LinCatSt

R .

The proof of Proposition 11.5.3.4 will require a few preliminaries.

Lemma 11.5.3.5. Let R be an E8-ring and let M be a perfect R-module. The following
conditions are equivalent:

p1q The object M is a compact generator of ModR.

p2q Let C be the smallest stable subcategory of ModR which contains M and is idempotent
complete. Then C “ Modperf

R .

p3q The R-linear dual M_ is a compact generator of ModR.

Proof. Let C be as in p2q. Since M is perfect, C Ď Modperf
R , so the inclusion C ãÑ Modperf

R

extends to a fully faithful embedding θ : IndpCq Ñ IndpModperf
R q » ModR. Condition p1q is

equivalent to the requirement that θ is an equivalence of 8-categories. Since C is idempotent
complete, this is equivalent to condition p2q.

Let C_ “ tN_ : N P Cu. Then C “ Modperf
R if and only if C_ “ Modperf

R . Since C_ is the
smallest stable subcategory of ModR which contains M_ and is idempotent complete, we
deduce that p2q ô p3q.
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Lemma 11.5.3.6. Let R be an E8-ring, let A P AlgR, and let X P RModA. Let G :
ModR Ñ RModA be the R-linear functor given by GpMq “ M bR X. The following
conditions are equivalent:

p1q The functor G is an equivalence of 8-categories.

p2q The image of X under the forgetful functor RModA Ñ ModR is a compact generator of
ModR. Moreover, the right action of A on X induces an equivalence Arev Ñ EndRpXq
of E1-algebras over R.

Proof. Suppose first that p1q is satisfied, and let F : RModA Ñ ModR be a homotopy inverse
of G (so that F is also an R-linear functor). Let Y “ F pAq P ModR. According to Theorem
HA.4.8.4.1 , we can regard Y as a left A-module object of ModR, and the functor F is given
by the formula F pMq “M bA Y . Since A is a compact generator of RModA and F is an
equivalence of 8-categories, the object Y is a compact generator of ModR. In particular, Y is
dualizable as an R-module. Let us regard its R-linear dual Y _ as a left A-module. Then the
construction P ÞÑ P bR Y

_ determines an R-linear functor ModR Ñ RModA which is left
adjoint to G, and therefore equivalent to F . In particular, we obtain an equivalence of right
A-modules X “ F pRq » RbR Y

_ » Y _. Since Y is a compact generator of ModR, Lemma
11.5.3.5 implies that X » Y _ is also a compact generator of ModR. Moreover, the assertion
that the right action of A on X induces an equivalence Arev Ñ EndRpXq is equivalent to
the assertion that the left action of A on Y induces an equivalence AÑ EndRpY q. Since F
is an equivalence of 8-categories, this follows from the observation that A is a classifying
object for endomorphisms of itself, regarded as an object of RModA.

We now show that p2q ñ p1q. Suppose that X is a compact generator of ModR, and
let A “ EndRpXqop, so that we can regard X as a right A-module. We wish to show that
the functor M ÞÑM bR X induces an equivalence G : ModR Ñ RModA. Let Y denote the
R-linear dual of X, so that we can regard Y as a left A-module, and let F : RModA Ñ ModR
be given by F pNq “ N bA Y . Then F is left adjoint to G; it will therefore suffice to show
that F is an equivalence of 8-categories. We first claim that F is fully faithful. Let P and
Q be right A-modules; we wish to show that the canonical map

µP,Q : MapRModApP,Qq Ñ MapModRpP bA Y,QbA Y q

is a homotopy equivalence. If we fix P , the collection of those objects P P RModA for which
µP,Q is a homotopy equivalence is closed under small colimits. We may therefore reduce to
the case where P “ ΣdA for some integer d. In particular, P is a compact of RModA. Since
P bAM » ΣdY is a compact object of ModR, we conclude that the collection of those Q
for which µP,Q is an equivalence is closed under filtered colimits in Q. We may therefore
reduce to the case where Q is perfect. Since the collection of those Q for which µP,Q is an
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equivalence is closed under finite limits, we may further reduce to the case where Q “ Σd1A.
In this case, we must show that the canonical map

MapRModApΣ
dA,Σd1Aq Ñ MapModRpΣ

dY,Σd1

Y q

is a homotopy equivalence, which follows immediately from our assumption that the map
A » EndRpXqrev » EndRpY q is an equivalence.

It remains to show that the functor F is essentially surjective. Because F is fully faithful,
the essential image of F is a full subcategory of ModR which is closed under small colimits.
Since F pAq » Y “ X_ is a compact generator of ModR (Lemma 11.5.3.5), we conclude that
F pRModAq “ ModR.

Proof of Proposition 11.5.3.4. Let A be an arbitrary E1-algebra over R. According to
Remark HA.4.8.4.8 , the R-linear 8-category RModA is a dualizable object of LinCatSt

R ,
whose dual is given by LModA. More precisely, we can identify the tensor product
LModAbR RModA with the 8-category ABModApModRq of A-A bimodule objects of ModR.
The unit object A P ABModApModRq determines an R-linear functor

c : ModR Ñ LModAbR RModA,

which exhibits LModA as a dual of RModA in LinCatSt
R . Consequently, RModA is an

invertible object of LinCatSt
R if and only if the functor c is an equivalence. Proposition

11.5.3.4 now follows by applying Lemma 11.5.3.6 to the 8-category

LModAbRModA » ABModApModRq » RModAbRArev .

We now use Proposition 11.5.3.4 to give a concrete description of the extended Brauer
group Br:pXq, where X is a quasi-compact, quasi-separated spectral algebraic space. First,
we need a global version of Definition 11.5.3.1.

Definition 11.5.3.7. Let X : CAlgcn Ñ S be a functor and let A be an associative algebra
object of the 8-category QCohpXq. We will say that A is an Azumaya algebra if, for every
connective E8-ring R and every point η P XpRq, the object A η P AlgR is an Azumaya
algebra over R.

Example 11.5.3.8. Let R be a connective E8-ring and let A P AlgpQCohpSpecRqq. Then
A is an Azumaya algebra (in the sense of Definition 11.5.3.7) if and only if its image under
the equivalence AlgpQCohpSpecRqq » AlgR is an Azumaya algebra over R (in the sense of
Definition 11.5.3.1).
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Construction 11.5.3.9 (The Extended Brauer Class of an Azumaya Algebra). Let X :
CAlgcn Ñ S be a functor and let A P AlgpQCohpXqq be an Azumaya algebra. Then the
construction

pη P XpRqq ÞÑ pRModA η P LinCatSt
R q

determines a compactly generated stable quasi-coherent stack on X. It follows from Proposi-
tion 11.5.3.4 that this quasi-coherent stack is an invertible object of LinCatSt

R , and can there-
fore be identified with a point of the extended Brauer space Br:pXq. We let rA s P Br:pXq
denote the equivalence class of this quasi-coherent stack. We will refer to rA s as the extended
Brauer class of A .

In good cases, every element of Br:pXq can be represented by an Azumaya algebra:

Proposition 11.5.3.10. Let X be a spectral algebraic space which is quasi-compact and
quasi-separated. Then every element of Br:pXq has the form rA s, for some Azumaya algebra
A P AlgpQCohpXqq.

Proof. Let u be an element of Br:pXq. Choose a compactly generated invertible object
C P QStkStpXq which represents u. It follows from Theorem 10.3.2.1 that the 8-category
QCohpX; Cq is compactly generated. Choose a set of compact generators tCiuiPI for
QCohpX; Cq. Since X is quasi-compact, there exists an étale surjection η : SpétR Ñ X.
For each i P I, let η˚Ci denote the image of Ci in the stable R-linear 8-category Cη. It
follows from Remark 11.5.2.5 that Cη is smooth over R. It follows from the proof of Propo-
sition 11.3.2.4 that we can choose a finite subset I0 Ď I such that the objects tη˚CiuiPI0
generate Cη. Set C “

À

iPI0
Ci.

Let us regard the 8-category QCohpX; Cq as tensored over QCohpXq, and let A P

AlgpQCohpXqq be the endomorphism algebra of C. Let C1 P QStkStpXq be the stable quasi-
coherent stack on X given by the construction pη1 : SpétR1 Ñ Xq ÞÑ pRModη1˚A P LinCatSt

R1q.
The operation ‚ bA C determines a morphism of quasi-coherent stacks F : C1 Ñ C. Since
η˚C is a compact generator of Cη, the induced map functor Fη : C1η Ñ Cη is an equivalence
of R-linear 8-categories. In particular, the R-linear 8-category RModη˚A » C1η » Cη is an
invertible object of LinCatSt

R , so that Proposition 11.5.3.4 implies that η˚A P AlgR is an
Azumaya algebra over R. Since the map η is an étale surjection, it follows that A is an
Azumaya algebra on X and that F is an equivalence, so that u “ rA s.

In the situation of Proposition 11.5.3.10, the Azumaya algebra A is not determined by
its Brauer class rA s. However, the failure of uniqueness is addressed by the following:

Proposition 11.5.3.11. Let X : CAlgcn Ñ S be a functor and let A P AlgpQCohpXqq.
The following conditions are equivalent:

p1q The object A is an Azumaya algebra and the extended Brauer class rA s P Br:pXq
vanishes.
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p2q There exists an equivalence A » EndpF q “ F bF_, where F P QCohpXq has the
property that for each point η P XpRq, the object η˚F is a compact generator of
ModR.

Proof. Let C denote the stable quasi-coherent stack on X given by the construction pη P
XpRqq ÞÑ pRModη˚A P LinCatSt

R q. Using Proposition 11.5.3.4, we see that condition p1q is
equivalent to the following:

p11q There exists a map ρ : QSt
X Ñ C which is an equivalence of quasi-coherent stacks.

Note that giving a map of quasi-coherent stacks ρ : QSt
X Ñ C is equivalent to giving an

object G P QCohpX; Cq » RModA pQCohpXqq. Using Lemma ??, we see that the map ρ is
an equivalence if and only if G satisfies the following additional pair of conditions:

piq For each point η P XpRq, the R-module η˚ G is a compact generator of ModR.

piiq The right action of A on G induces an equivalence A Ñ EndpG qrev » EndpG_q.

Setting F “ G_ (and applying Lemma 11.5.3.5), we see that conditions p1q and p2q are
equivalent.

Remark 11.5.3.12. Let X : CAlgcn Ñ S be a functor. We can summarize Construction
??, Proposition ??, and Proposition 11.5.3.11 as follows:

paq Every Azumaya algebra A on X determines an element rA s P Br:pXq. If X is
(representable by) a quasi-compact, quasi-separated spectral algebraic space, then
every element of Br:pXq is obtained in this way.

pbq The collection of elements of Br:pXq having the form rA s comprise a subgroup of
Br:pXq. More explicitly, the multiplication on Br:pXq is given by rA srBs “ rA bBs,
the identity element of Br:pXq is given by rOXs, and the inverse of rA s is given
by rA revs (the last assertion follows from Proposition 11.5.3.11 together with the
equivalence A bA rev » EndpA q supplied by our assumption that A is an Azumaya
algebra).

pcq Given Azumaya algebras A ,B P AlgpQCohpXqq, we have rA s “ rBs in Br:pXq if
and only if there is an equivalence A bBrev » EndpF q for some F P QCohpXqperf

having the property that η˚F P ModR is a compact generator for each η P XpRq (in
this case, we can regard F as a A -B bimodule object of QCohpXq).

Remark 11.5.3.13. Let X be a spectral algebraic space which is quasi-compact and quasi-
separated. It follows from Proposition 11.5.3.10 that the Brauer group Br:pXq is small.
Combining this observation with Remarks ?? and 2.9.5.2, we deduce that the extended
Brauer space Br:pRq is essentially small. In fact, these assertions are valid for any spectral
Deligne-Mumford stack (see Construction 11.5.5.3).



11.5. BRAUER GROUPS IN SPECTRAL ALGEBRAIC GEOMETRY 1029

We now use Proposition 11.5.3.11 to relate the extended Brauer group of Definition
11.5.2.1 to the classical Brauer group of Definition 11.5.1.7. The key observation is the
following:

Proposition 11.5.3.14. Let κ be a field and let A P Algκ. Then:

paq The algebra A is an Azumaya algebra over κ (in the sense of Definition 11.5.3.1) if
and only if B “ π˚A is a central simple algebra over κ (in the sense of Definition
11.5.1.1).

pbq The algebra A is a connective Azumaya algebra over κ (in the sense of Definition
11.5.3.1) if and only A is discrete and is a central simple algebra over κ (in the sense
of Definition 11.5.1.1).

Warning 11.5.3.15. Assertion pbq of Proposition 11.5.3.14 follows immediately from Propo-
sitions 11.5.3.3 and 11.5.1.5. However, the proof of paq is a bit more subtle. Let A be an
E1-algebra over a field κ which is perfect as a κ-module. Then we can regard B “ π˚A as a
finite-dimensional associative algebra over κ. Using the left and right actions of A and B on
themselves, we obtain maps

ρA : Abκ Arev Ñ EndκpAq ρB : B bκ Brev Ñ EndκpBq.

On homotopy groups, ρA induces a map ρA : pπ˚Aq bκ pπ˚Arevq Ñ Endκpπ˚Aq which does
not agree with the map ρB. Given elements x P πaA, y P πbArev, z P πcA, we have

ρApxb yqpzq “ p´1qbcxzy ρBpxb yqpzq “ xzy.

In order to address the difficulties described in Warning 11.5.3.15, we will need a few
auxiliary results.

Lemma 11.5.3.16. Let κ be a field, let B “ ‘nPZBn be a graded associative algebra over κ
which is finite-dimensional as a vector space over κ, and let M P LMod♥

B be a left B-module.
Assume that M is absolutely simple (that is, the tensor product κbκM is a simple module
over κ bκ B, where κ is an algebraic closure of κ). Then M admits the structure of a
graded left module over B (that is, there exists a decomposition M “

À

nPZMn satisfying
bx PMm`n for b P Bm and x PMn).

Proof. For every commutative κ-algebra R, let GpRq denote the subgroup of RˆˆAutRpRbκ
Mq consisting of those pairs pλ, fq which satisfy the identity fpbxq “ λnbfpxq for all b P Bn
and x PM . The construction R ÞÑ GpRq determines an affine group scheme over κ, which
we can regard as a closed subgroup of the product Gm ˆ GLd for d “ dimκpMq. Let
π : G Ñ Gm be the projection map onto the first factor (given on R-valued points by
πpλ, fq “ λ).
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Set B “ κbκ B and M “ κbκM . For each λ P κˆ, we define a left B-module Mλ by
the following requirement: there exists an isomorphism of κ-vector spaces α : M ÑMλ, and
the actions of B on M and Mλ are related by the formula αpbxq “ λnbαpxq for b P Bn. Note
that λ P κˆ belongs to the image of the map π : Gpκq Ñ Gmpκq if and only if M and Mλ

are isomorphic. Since there are only finitely many isomorphism classes of simple B-modules
(Proposition 11.5.1.13), the image of the map Gpκq Ñ κˆ is a finite-index subgroup of κˆ,
and is therefore dense in the Zariski topology.

Our assumption that M is absolutely simple guarantees that the kernel kerpπq is isomor-
phic to the multiplicative group Gm. We therefore have an exact sequence 0 Ñ Gm Ñ G

π
ÝÑ

Gm Ñ 0 in the category of affine group schemes over κ. It follows that π admits a section,
which determines a grading of M which is compatible with the action of B.

Lemma 11.5.3.17. Let κ be a field and let A P Algκ. Suppose that there exists a finite-
dimensional graded vector space V over κ and an isomorphism of graded rings π˚A »

EndκpV q. Then there is a perfect κ-module V and an equivalence A » EndκpV q of E1-
algebras over κ.

Proof. Let tv1, . . . , vnu be a basis for V as a κ-vector space, where each vi is a homogeneous
element of degree di. For 1 ď i, j ď n, let ei,j P EndκpV q be the endomorphism given by

ei,jpvlq “

#

vj if i “ l

0 otherwise,

so that ei,j is homogeneous of degree dj ´ di. Let us abuse notation by identifying each ei,j
with its image under the isomorphism EndκpV q » π˚A.

For 1 ď i ď n, left multiplication by the element ei,i P π0A determines an idempotent
map from A to itself in the 8-category RModA. We let ei,iA denote the corresponding
direct factor of A, so that we have an equivalence A »

À

ei,iA in RModA. Note that each
ei,iA is a summand of A, and therefore a compact object of RModA. Moreover, the elements
ei,j P πdj´diA induce equivalences ej,jA » Σdi´djei,iA. It follows that each ei,iA is a compact
generator of RModA. Note that the unit map κÑ π˚ EndRModApei,iAq » ei,ipπ˚Aqei,i is an
isomorphism, so that the construction κ ÞÑ ei,iA extends to an equivalence of κ-linear stable
8-categories φ : Modκ Ñ RModA. Then φ´1pAq is a compact object of Modκ, and we have
an equivalence of E1-algebras A » EndRModApAq » EndModκpφ

´1Aq.

Proof of Proposition 11.5.3.14. Since assertion pbq follows from Propositions 11.5.3.3 and
11.5.1.5, it will suffice to prove paq (alternatively, we note that pbq is an easy consequence of
paq). Let A P Algκ and let B “ π˚A, which we regard as an associative algebra over κ. We
wish to show that A is an Azumaya algebra if and only if B is central simple. Without loss
of generality, we may assume that κ is algebraically closed (see Remark 11.5.1.11).



11.5. BRAUER GROUPS IN SPECTRAL ALGEBRAIC GEOMETRY 1031

Assume first that A is an Azumaya algebra. Then B is finite-dimensional as a vector space
over κ. Let M be a simple left B-module. Using Lemma 11.5.3.16, we can choose a grading
on M which is compatible with the grading on B. In this case, the left action of B on M

determines a map of graded rings f : B Ñ EndκpMq. Since κ is algebraically closed and M
is a simple B-module, the morphism f is surjective. We will complete the proof by showing
that that the graded two-sided ideal I “ kerpfq vanishes. Let ρA : B bκ Brev Ñ EndκpBq
be the map appearing in Warning 11.5.3.15. Note that ρA is an algebra homomorphism, if
we regard B bκ B

rev as equipped with the multiplication law given by

pxb yqpx1 b y1q “ p´1qij`ikpxx1 b y1yq,

where y, x1, and y1 are homogeneous elements of degree i, j, and k respectively. With respect
to this multiplication, the tensor product I bκ Brev is a two-sided ideal in B bκ B

rev. Our
assumption that A is an Azumaya algebra guarantees that ρA is an isomorphism, so that
B bκ B

rev is central simple over κ (Proposition 11.5.1.2). Since I ‰ B, it follows that I “ 0
as desired.

Now suppose that B is central simple. Using Proposition 11.5.1.12 (and our assumption
that κ is algebraically closed), we deduce that there exists an isomorphism α : B » EndκpV q,
where V is a finite-dimensional vector space over κ. Applying Lemma 11.5.3.17, we conclude
that A » EndκpV q for some perfect object V P Modκ, so that A is an Azumaya algebra by
virtue of Proposition 11.5.3.11.

Theorem 11.5.3.18. Let κ be a field. Then there is a canonical isomorphism from the
Brauer group Brpκq (Definition ??) to the extended Brauer group Br:pκq (Definition 11.5.2.1),
which carries the equivalence class rAs P Brpκq of a central simple algebra A over κ to class
rAs “ RModA P Br:pκq of Construction 11.5.3.9.

Proof. Let A and B be central simple algebras over κ. Using Proposition 11.5.3.11, we see
that the identity rAs “ rBs holds in Br:pκq if and only if the tensor product Abκ B can be
identified with the endomorphism algebra EndκpV q for some nonzero object V P Modperf

κ .
Note that in this case V must be discrete, so the equality rAs “ rBs holds in Br:pκq if and only
if it holds in Brpκq. We therefore obtain a well-defined monomorphism φ : Brpκq Ñ Br:pκq.

We now complete the proof by showing that φ is surjective. According to Proposition
11.5.3.10, every element of Br:pκq has the form rAs, where A P Algκ is an Azumaya algebra
over κ. Set B “ π˚A, which we regard as a (discrete) associative algebra over κ. Proposition
11.5.3.14 implies that B is central simple. We then have canonical isomorphisms

π˚pAbκ B
revq » pπ˚Aq bκ B

rev » B bκ B
rev » EndκpBq.

Using Lemma 11.5.3.17, we deduce that rAs “ rBs in Br:pκq.
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Warning 11.5.3.19. Let κ be a field and let φ : Brpκq Ñ Br:pκq be the isomorphism of
Theorem 11.5.3.18. The proof of Theorem 11.5.3.18 shows that the inverse isomorphism
φ´1 : Br:pκq Ñ Brpκq is given by the construction rAs ÞÑ rπ˚As. In particular, if A and B

are Azumaya algebras over κ, then the κ-algebras π˚pAbκBq and pπ˚Aqbκ pπ˚Bq are Morita
equivalent (and therefore isomorphic, since they have the same dimension over κ). This is
not a priori obvious: beware that the canonical identification π˚pAbκBq » pπ˚Aqbκ pπ˚Bq
is usually not an isomorphism of algebras.

11.5.4 Extended Brauer Groups of Direct and Inverse Limits

By virtue of Remark 11.5.2.8, we can regard the construction R ÞÑ Br:pRq as a functor
from the 8-category CAlgcn of connective E8-rings to the ordinary category of abelian
groups. We now study the compatibility of this functor with direct and inverse limits.

Proposition 11.5.4.1. The construction R ÞÑ Br:pRq commutes with filtered colimits.

The proof of Proposition 11.5.4.1 will require some preliminaries.

Remark 11.5.4.2. Let R be a connective E8-ring and let A P AlgR be an Azumaya algebra.
Then A is smooth and proper over R (Remark 11.5.2.5), and is therefore a compact object
of AlgR (Proposition HA.?? ).

Lemma 11.5.4.3. For each E2-ring R, let AlgcR denote the full subcategory of AlgR spanned
by the compact objects. Then the construction R ÞÑ AlgcR commutes with filtered colimits.

Proof. Let tRαu be a filtered diagram of E2-rings with colimit R. We wish to show that
the canonical map θ : lim

ÝÑ
AlgcRα Ñ AlgcR is an equivalence of 8-categories. It follows from

Lemma HA.?? that the domain and codomain of θ are both idempotent complete. Using
Lemma HA.5.3.2.9 , we are reduced to proving that θ exhibits IndpAlgcRq as a colimit of
the diagram tIndpAlgcRαqu in the 8-category PrL. In other words, we must show that
AlgR is a colimit of the diagram tAlgRαu in PrL. Using Theorem HTT.5.5.3.18 , we are
reduced to showing that the forgetful functors AlgR Ñ AlgRα exhibit AlgR as a limit
lim
ÐÝ

AlgRα in the 8-category yCat8. For this, it will suffice to prove that the canonical map
LModR Ñ lim

ÐÝ
LModRα is an equivalence in yCat8, which follows from Proposition HA.??

(and Theorem HTT.5.5.3.18 ).

Lemma 11.5.4.4. Let R be an E2-ring, let C be a compactly generated R-linear 8-category,
and let χ : AlgR Ñ Cat8 be the functor given by χpAq “ LModApCqc, where LModApCqc

denotes the full subcategory of LModApCq spanned by the compact objects. Then χ preserves
filtered colimits.
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Proof. Let tAαu be a filtered diagram in AlgR with colimit A. We wish to show that
the canonical map θ : lim

ÝÑ
LModAαpCqc Ñ LModApCqc is an equivalence of 8-categories.

It follows from Lemma HA.?? that the domain and codomain of θ are both idempotent
complete. Using Lemma HA.5.3.2.9 , we are reduced to proving that the LModApCq is a
colimit of the diagram tLModAαpCqu in the 8-category PrL. Using Theorem HA.4.8.4.6 ,
we are reduced to proving that LModAb C is a colimit of the diagram tLModAα bR Cu in
the 8-category LinCatR, which follows from Proposition HA.?? (since the tensor product
in LinCatR preserves small colimits separately in each variable).

Proof of Proposition 11.5.4.1. Let tRαu be a diagram of E8-rings indexed by a filtered
partially ordered set, having colimit R “ lim

ÝÑ
Rα. We wish to show that the canonical map

θ : lim
ÝÑ

Br:pRαq Ñ Br:pRq is an isomorphism. We first show that θ is injective. Fix an index
α and an Azumaya algebra Aα over Rα, and let A “ RbRα Aα. Suppose that rAs is trivial
in BrpRq. Then we can write A “ EndRpXq, where X is a compact generator of ModR.
Enlarging α if necessary, we can use Lemma 11.5.4.4 to write X “ RbRαXα for some perfect
Rα-module Xα. Let C Ď ModRα be the smallest stable subcategory of ModRα which contains
Xα and is closed under small colimits. For each β ě α, we can identify ModRβ bModRα C
with the smallest stable subcategory of ModRβ which contains Xβ “ Rβ bRα Xα and is
closed under small colimits. Since X is a compact generator of ModR, we conclude that
lim
ÝÑβěα

LModRβ pCq » ModR. Using Lemma 11.5.4.4, we conclude that there exists an index
β ě α and a compact object Yβ P Cβ such that RbRβ Yβ » R. Using Lemma 11.5.4.4 again,
we may suppose (after enlarging β) that Yβ » R, so that LModRβ pCq “ ModRβ . Replacing
α by β, we may reduce to the case where Xα is a compact generator of ModRα , so that
Bα “ EndRαpXαq is an Azumaya algebra. Remark 11.5.4.2 implies that Aα and Bα are
compact objects of AlgRα . Since the images of Aα and Bα in AlgR are equivalent, Lemma
11.5.4.3 implies that there exists γ ě α such that Rγ bRα Aα and Rγ bRα Bα are equivalent
in AlgRγ . It follows that the image of rAαs vanishes in Br:pRγq, and therefore represents
the trivial element in the domain of θ.

We now prove that θ is surjective. According to Proposition 11.5.3.10, every element of
Br:pRq can be written as rAs, where A is an Azumaya algebra over R. Then A is a compact
object of AlgR (Remark 11.5.4.2), so we can write A “ R bRα Aα for some index α and
some compact object Aα P AlgRα . Using the preceding argument, we may assume (after
enlarging α if necessary) that Aα is a compact generator of ModRα . The left and right
actions of Aα on itself induce a map u : Aα bRα Aop

α Ñ EndRαpAαq. We can regard u as a
morphism between perfect Rα-modules. Since A is Azumaya, the image of u in ModR is an
equivalence. Using Lemma 11.5.4.4, we deduce that there exists an index β ě α such that
the image of u in ModRβ is an equivalence. Then Aβ “ Rβ bRα Aα is an Azumaya algebra
over Rβ, so that rAs belongs to the image of the map Br:pRβq Ñ BrpRq.
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We now study the compatibility of the functor R ÞÑ Br:pRq with (certain) inverse limits.

Proposition 11.5.4.5. Let R be a Noetherian commutative ring which is complete with
respect to an ideal I. Then the map Br:pRq Ñ Br:pR{Iq is injective.

Proposition 11.5.4.6. Let R be a connective E8-ring. Then the map Br:pRq Ñ Br:pπ0Rq

is injective.

Remark 11.5.4.7. We will show later that the canonical map Br:pRq Ñ Br:pπ0Rq is an
isomorphism: see Proposition 11.5.5.6.

To prove Propositions 11.5.4.5 and 11.5.4.6, we will need a variant of Proposition 11.5.3.11
which can be used to verify the vanishing of an element η P Br:pRq.

Definition 11.5.4.8. Let R be a connective E8-ring, and let C P Br:pRq be an invertible
R-linear 8-category. We will say that a compact object X P C is a neutralization of C if the
unit map RÑ MapCpX,Xq is an equivalence.

Proposition 11.5.4.9. Let R be a connective E8-ring, let C P Br:pRq, and let X P C be
a compact object, so that X classifies an R-linear functor F : ModR Ñ C. The following
conditions are equivalent:

p1q The map F is an equivalence of 8-categories.

p2q The object X is a neutralization of C.

Proof. The implication p1q ñ p2q is clear. Conversely, suppose that p2q is satisfied. Since
F preserves small colimits and compact objects, it admits an R-linear right adjoint G
(Remark D.1.5.3). Since X is a neutralization of C, the functor F is fully faithful, so that
the unit map u : id Ñ G ˝ F is an equivalence. Let F 1 : C´1 Ñ ModR be the functor
obtained by tensoring F over ModR with C´1. It follows that F 1 admits an R-linear right
adjoint G1, and that the unit map u1 : id Ñ G1 ˝ F 1 is fully faithful. In particular, the
functor F 1 is fully faithful and preserves compact objects. Let Y be a compact generator
of C´1, and let M “ F 1pY q P Modperf

R . Since F 1 is fully faithful, the canonical map
MapC´1pY, Y q Ñ EndpMq is an equivalence in AlgR. It follows from Proposition 11.5.3.4
that EndpMq is an Azumaya algebra over R. In particular, EndpMq is a compact generator
of ModR. Since EndpMq »M_ bRM » F 1pM_ b Y q belongs to the essential image of F 1,
we deduce that F 1 is an equivalence of 8-categories. We conclude that the functor F is also
an equivalence.

Corollary 11.5.4.10. Let R be a connective E8-ring and let C P Br:pRq. Then rCs “ 0 in
Br:pRq if and only if there exists a neutralization of C.
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The proofs of Propositions 11.5.4.6 and 11.5.4.5 will also require a bit of deformation
theory.

Lemma 11.5.4.11. Suppose we are given a pullback diagram of connective E8-rings σ :

R //

��

R0

��
R1 // R01,

where the underlying maps of commutative rings π0R0 Ñ π0R01 Ð π0R1 are surjective. Let
C be an R-linear 8-category which is smooth and proper. Then the canonical map

θ : Cc Ñ LModR0pCqc ˆLModR01 pCq LModR1pCqc

is an equivalence of 8-categories.

Proof. We proceed as in the proof of Theorem 11.4.4.1. Since C is a smooth R-linear
8-category, we can write C » RModA for some smooth E1-algebra A over R (Proposition
11.3.2.4). It follows from Proposition 11.1.0.2 that A is also a proper E1-algebra over R, so
that an object of C » RModA is compact if and only if its image in ModR is compact. Let
A0 “ R0 bR A, and define A1 and A01 similarly. We have a commutative diagram

RModperf
A

θ //

��

RModperf
A0

ˆRModperf
A01

RModperf
A1

��

Modperf
R

θ1 //Modperf
R0

ˆModperf
R01

Modperf
R1

.

Proposition 16.2.1.1 implies that θ is fully faithful. Moreover, Theorem 16.2.0.2 and
Proposition 16.2.3.1 guarantee θ1 is an equivalence of 8-categories. Consequently, to prove
that θ is an equivalence, it will suffice to show that θ induces an essentially surjective map

φ : RModperf
A ˆModperf

R
tMu Ñ pRModperf

A0
ˆRModperf

A01
RModperf

A1
q ˆModperf

R
tMu

for every perfect R-module M . Let M0 “ R0 bR M P Modperf
R0

, and define M1 and M01
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similarly. Using Theorem HA.4.7.1.34 , we can identify φ with the canonical map

MapAlgRpA
rev,EndpMqq

Ó

MapAlgR0
pArev

0 ,EndpM0qq ˆMapAlgR01
pArev

01 ,EndpM01qq MapAlgR1
pArev

1 ,EndpM1qq

Ó

MapAlgRpA
rev,EndpM0qq ˆMapAlgR pA

rev,EndpM01qq MapAlgRpA
rev,EndpM1qq

Ó

MapAlgRpA
rev,EndpM0q ˆEndpM01q EndpM1qq

Ó

MapAlgRpA
rev, pR0 ˆR01 R1q bRMq.

Since σ is a pullback diagram, this map is an equivalence.

Lemma 11.5.4.12. Let R be a connective E8-ring, let R be a square-zero extension of R
by a connective R-module M , and let C P Br:pRq. Then any neutralization of LModRpCq
can be lifted to a neutralization of C.

Proof. Since R is a square-zero extension of R by M , we have a pullback diagram of E8-rings

R //

��

R

��
R // R‘ ΣM.

Applying Lemma 11.5.4.11, we obtain a pullback diagram of 8-categories

Cc //

��

LModRpCqc

β

��
LModRpCqc α // LModR‘ΣM pCqc.

Let X P LModRpCqc be a neutralization. We first claim that X can be lifted to a compact
object X P C. For this, it suffices to show that αpXq lies in the essential image of β. Using
Corollary 11.5.4.10, we can choose an R-linear equivalence LModRpCq » ModR, which
induces an equivalence LModR‘ΣM pCq » ModR‘ΣM . Under the latter equivalence, we can
identify αpXq with an invertible module L over R ‘ ΣM . Proposition 2.9.6.2 guarantees
that the base change map Pic:pRq Ñ Pic:pR‘ ΣMq is an isomorphism of abelian groups,
so that L belongs to the essential image of α.

It remains to prove that X is a neutralization of C. Let u : R Ñ MapCpX,Xq be the
unit map; we wish to show that u is an equivalence. Suppose otherwise. Then cofibpuq
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is a nonzero perfect module over R. It follows that there is a smallest integer m such
that πm cofibpuq ‰ 0. Using Nakayama’s lemma, we deduce that πmpR bR cofibpuqq ‰ 0,
contradicting our assumption that X is a neutralization of LModRpCq.

Proof of Proposition 11.5.4.5. Let C P Br:pRq, and suppose that LModR{IpCq represents
the zero element of Br:pR{Iq. Corollary 11.5.4.10 implies that there exists a neutralization
X1 of LModR{IpCq. Applying Lemma 11.5.4.12 repeatedly, we can choose a compatible
family of neutralizations Xn P LModR{InpCq. It follows from Theorem 11.4.4.1 that we can
write Xn » R{In b X for some compact object X P C. We will complete the proof by
showing that X is a neutralization of C. Let u : RÑ MapCpX,Xq be the unit map; we wish
to prove that cofibpuq » 0. Suppose otherwise. Since cofibpuq is a perfect R-module, there
exists some smallest integer m such that πm cofibpuq ‰ 0. Then πm cofibpuq is a finitely
generated module over R, and TorR0 pR{I, πm cofibpuqq » πmpR{I bR cofibpuqq » 0. Since R
is I-adically complete, it follows that πm cofibpuq » 0, contrary to our choice of m.

Proof of Proposition 11.5.4.6. Let C P Br:pRq, and suppose that LModπ0RpCq represents
the zero element of Br:pπ0Rq. Corollary 11.5.4.10 implies that there exists a neutralization
X0 of LModπ0RpCq. Applying Lemma 11.5.4.12 repeatedly, we can choose a compatible
family of neutralizations Xn P LModτďnRpCq. It follows from Theorem 11.4.4.1 that we can
write Xn » pτďnRq bX for some compact object X P C. We will complete the proof by
showing that X is a neutralization of C. Let u : RÑ MapCpX,Xq be the unit map; we wish
to prove that cofibpuq » 0. Suppose otherwise. Since cofibpuq is a perfect R-module, there
exists some smallest integer m such that πm cofibpuq ‰ 0. Then

0 ‰ πm cofibpuq » πmpπ0RbR cofibpuqq » 0

and we obtain a contradiction.

11.5.5 Cohomological Interpretation of the Extended Brauer Group

We can now formulate the main result of this section:

Theorem 11.5.5.1. Let X be a spectral Deligne-Mumford stack, and let u P Br:pXq. Then
there exists an étale surjection f : U Ñ X such that f˚u “ 0 in Br:pUq.

Remark 11.5.5.2. Theorem 11.5.5.1 was proven by Toën in the setting of simplicial
commutative rings ([211]) and by Antieau-Gepner in general ([2]). The proof we present
here is slightly different: it avoids theory of higher algebraic stacks in the setting of spectral
algebraic geometry, but relies on nontrivial input from commutative algebra (namely,
Popescu’s smoothing theorem; see Theorem ??).
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Proof of Theorem 11.5.5.1. Let X be a spectral Deligne-Mumford stack and let u P Br:pXq;
we wish to show that u vanishes after passing to an étale cover of X. Without loss of
generality that X “ SpétR for some connective E8-ring R. Using Proposition 11.5.4.6 (and
Theorem HA.7.5.0.6 ), we can replace R by π0R and thereby reduce to the case where R is
discrete. Write R as a union of its finitely generated subalgebras Rα. Using Proposition
11.5.4.1, we may assume that u is the image of some class uα P BrpRαq. Replacing R by Rα,
we may suppose that R is finitely generated commutative ring.

Let m Ď R be a maximal ideal. We will show that there exists an étale map RÑ Rpmq

such that the image of u in Br:pRpmqq vanishes, and m lies in the image of the induced map
θm : |SpecRpmq| Ñ |SpecR|. Assuming this, the union of the images of the maps θm is
an open subset of | SpecR| which contains all maximal ideals, and is therefore the whole
of | SpecR|. Since |SpecR| is quasi-compact, we can choose a finite collection of maximal
ideals m1, . . . ,mn such that |SpecR| “

Ť

1ďiďn θmip| SpecRpmiq|q. We may then complete
the proof by taking R1 “

ś

1ďiďnRpmiq.
Let κ “ R{m and let κ be a separable closure of κ. Using Theorem 11.5.3.18 and

Proposition 11.5.1.12, we deduce that the image of u in Br:pκq vanishes. It follows from
Proposition 11.5.4.1 that there exists a separable extension κ1 of κ having degree d ă 8,
such that the image of u in Br:pκ1q vanishes. Using the primitive element theorem, we can
write κ1 “ κrxs{pfpxqq, where f is a separable monic polynomial of degree d. Choose a
monic polynomial f P Rrxs of degree d lifting f . Replacing R by a localization if necessary,
we may suppose that Rrxs{pfpxqq is an étale R-algebra. Replacing R by Rrxs{pfpxqq, we
may reduce to the case where the image of u in Br:pκq vanishes.

Let Rm denote the localization of R at m, and let R^m denote the completion of Rm with
respect to its maximal ideal. It follows from Proposition 11.5.4.5 that the image of u in
Br:pR^mq vanishes. Since R is a finitely generated commutative ring, it is a Grothendieck
ring (Theorem ??). It follows that the map RÑ R^m is geometrically regular, so that we can
write R^m “ lim

ÝÑ
Aβ , where each Aβ is fiber smooth over R (Theorem ??) Using Proposition

11.5.4.1, we deduce that there exists an index β such that the image of u in Br:pAβq vanishes.
Replacing R by a localization if necessary, we may suppose that the map of affine schemes
SpecAβ Ñ SpecR is smooth and faithfully flat, and therefore admits an étale section. That
is, we can find a map Aβ Ñ R1, where R1 is étale and faithfully flat over R. By construction
the image of u vanishes in Br:pR1q.

Let us now describe some consequences of Theorem 11.5.5.1.

Construction 11.5.5.3 (The Extended Brauer Sheaf). Let X “ pX ,OXq be a spectral
Deligne-Mumford stack. For each object U P X , let XU denote the spectral Deligne-Mumford
stack pX {U ,OX |U q. The construction U ÞÑ BrpXU q determines a functor X op Ñ pS which
preserves small limits. Note that if U is affine, then Remark 11.5.3.13 implies that BrpXU q
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is essentially small. It follows that BrpXU q is essentially small for each U P X , so that that
the functor U ÞÑ Br:pXU q is representable by an object Br:X P X . We will refer to Br:X as
the extended Brauer sheaf of X.

Note that Br:X is a group-like commutative monoid of X . In particular, we can view each
homotopy group πn Br:X as an abelian group object in the topos X♥ of discrete objects of
X . Using Theorem 11.5.5.1, Remark 11.5.2.11, and Remark 2.9.5.8, we obtain isomorphisms

πn Br:X “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if n “ 0
Z if n “ 1
pπ0 OXq

ˆ if n “ 2
πn´2 OX if n ą 2,

where Z denotes the constant sheaf associated to the abelian group Z.

Remark 11.5.5.4. Let X “ pX ,OXq be a spectral Deligne-Mumford stack. Then the
invertible sheaf Σ OX determines a global section of the sheaf Ω Br:X, which we can identify
with a map α : KpZ, 1q Ñ Br:X of pointed objects of X ; here KpZ, 1q denotes the constant
sheaf on X whose value is the space KpZ, 1q » S1. Note that α can be identified with a
section of the truncation map Br:X Ñ τď1 Br:X » KpZ, 1q. Using the monoid structure on
Br:X, we see that α determines an equivalence

τě2 Br:XˆKpZ, 1q Ñ Br:X .

Beware that this equivalence is not compatible with the monoid structure on Br:X, because
the map α is not multiplicative.

Example 11.5.5.5. Let X “ pX ,OXq be a spectral Deligne-Mumford stack, and suppose
that the structure sheaf OX is 0-truncated. Then we can identify OX with a commutative
ring object of the topos of discrete objects of X ; let OˆX denote its group of units. Combining
the analysis of Construction 11.5.5.3 with Remark 11.5.5.4, we obtain an equivalence
Br:X » KpOˆX , 2q ˆ KpZ, 1q in the 8-topos X . Passing to global sections, we obtain a
bijection Br:pXq » H2pX ; OˆX q ˆ H1pX ; Zq. It is not hard to see that this bijection is
an isomorphism of abelian groups. In particular, if H1pX ; Zq vanishes (for example, if X
is a quasi-compact, quasi-separated spectral algebraic space which is normal and locally
Noetherian; see Theorem ??), then we obtain an isomorphism Br:pXq » H2pX ; OˆX q.

Using Theorem 11.5.5.1, we can prove the following refinement of Proposition 11.5.4.6:

Proposition 11.5.5.6. Let R be a connective E8-ring. Then the canonical map Br:pRq Ñ
Br:pπ0Rq is an isomorphism.
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Proof. Let X “ Shvét
R . For each integer n, let Fn denote the Brauer sheaf of Spét τďnR,

and regard Fn as a grouplike commutative monoid object of X . Let F denote the Brauer
sheaf of SpétR, and let F8 “ lim

ÐÝ
Fn, so that we have maps

F
α
Ñ F8

β
Ñ F 0 .

We will prove the following:

paq For every étale R-algebra R1, the map β induces an isomorphism π0pF8pR
1qq Ñ

π0pF 0pR
1qq.

pbq The map α is an equivalence.

Assuming paq and pbq, we deduce that the composition of α and β induces an isomorphism

Br:pRq » π0 F pRq
α
Ñ π0 F8pRq

β
Ñ π0 F 0pRq » Br:pπ0Rq.

We first prove paq. Note that we have an exact sequence

lim1tπ1 FnpR
1qu Ñ π0 F8pR

1q Ñ lim0tπ0 FnpR
1qu Ñ 0

where the left hand side vanishes by virtue of Proposition 2.9.6.2. Consequently, to prove paq,
it will suffice to show that each of the maps θ : π0 FnpR

1q Ñ π0 Fn´1pR
1q is an isomorphism.

Enlarging R if necessary, we may suppose that R1 “ R. Let O denote the structure sheaf
of SpétR. Using the description of the homotopy sheaves of Fn and Fn´1 supplied by
Construction 11.5.5.3, we deduce the existence of a fiber sequence

Fn Ñ Fn´1 Ñ Kpπn O, n` 3q

in the 8-topos X , so that we have a short exact sequence

Hn`2pX ;πn Oq Ñ π0 FnpRq
θ
Ñ π0 Fn´1pRq Ñ Hn`3pX ;πn Oq.

The desired result now follows from the vanishing of HipX ;πn Oq » 0 for i ą 0.
We now prove pbq. Using paq, we deduce that π0 F8 » π0 F 0. The map α induces an

isomorphism π0 F Ñ π0 F8 (both sides vanish by Theorem 11.5.5.1). Consequently, to
prove that α is an equivalence, it will suffice to show that α induces an equivalence of loop
objects Ω F Ñ Ω F8 » lim

ÐÝ
Ω Fn. This follows immediately from Remark 11.5.2.11 and

Corollary 2.9.6.3.
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11.5.6 Digression: Connectivity of Compact Objects

Let R be a connective E8-ring and let M be an R-module spectrum. If M is connective,
then the fiber κ bR M P Modκ is connective for every residue field κ of R. If M is a
perfect R-module, then the converse holds: if M is not connective, then there exists some
largest integer n ą 0 such that π´nM ‰ 0. Then π´nM is a finitely generated module
over π0R, so Nakayama’s lemma implies that there exists a residue field κ of R for which
0 ‰ Torπ0R

0 pκ, π´nMq » π´npκ bR Mq. We close this section by establishing a “relative
version” of this observation, which will be useful in §11.5.7:

Theorem 11.5.6.1. Let R be a connective E2-ring, let C be a compactly generated prestable
R-linear 8-category, and let C P SppCq be a compact object. Assume that the commutative
ring π0R is Noetherian. Then the following conditions are equivalent:

p1q The object C belongs to SppCqě0.

p2q For every residue field κ of π0R, the object κbR C belongs to pκbR SppCqqě0.

The proof of Theorem 11.5.6.1 will require some preliminaries. We first show that (under
very mild assumptions) the question can be reduced to the case where R is discrete:

Proposition 11.5.6.2. Let R be a connective E2-ring, let C be an R-linear prestable 8-
category, and set C1 “ pπ0Rq bR C. Let C be an object of SppCq which belongs to SppCqě´n
for some integer n. Then C belongs to SppCqě0 if and only if the image of C in SppC1q
belongs to SppC1qě0.

Remark 11.5.6.3. In the situation of Proposition 11.5.6.2, the assumption that C belongs
to SppCqě´n for some integer n is automatically satisfied if C is a compact object of SppCq:
the right completeness of SppCq guarantees that C can be realized as the colimit of the
sequence of truncations

¨ ¨ ¨ Ñ τě0C Ñ τě´1C Ñ τě´2C Ñ ¨ ¨ ¨ ,

so that the compactness of C implies that C is a retract of τě´nC for some n.

Proof of Proposition 11.5.6.2. The “only if” direction is obvious. To prove the converse, we
show that C P SppCqě´m for every nonnegative integer m using descending induction on
m. To carry out the inductive step, we note if C P SppCqě´m, then pτě1Rq bR C belongs to
SppCqě1´m, so that we have an exact sequence (in the abelian category C♥)

0 “ π´mppτě1Rq bR Cq Ñ π´mC Ñ π´mppπ0Rq bR Cq.

Our hypothesis guarantees that pπ0Rq bR C belongs to SppCqě0, so that π´mppπ0Rq bR Cq

vanishes for m ą 0. it follows that π´mC » 0 and therefore C P Cě1´m.
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Proposition 11.5.6.4. Let R be a commutative ring (which we regard as a discrete E2-ring),
let C be a compactly generated prestable R-linear 8-category. Let C P SppCq be a compact
object and let x be an element of R. Then C belongs to SppCqě0 if and only if both of the
objects Rrx´1s bR C and R{pxq bR C belong to SppCqě0.

Proof. The “only if” direction is clear. Conversely, suppose that both Rrx´1s bR C and
R{pxq bR C belong to SppCqě0. For every object D P SppCq, set Drx´1s “ Rrx´1s bR D P

LModRrx´1spSppCqq. Note that the object C belongs to SppCqě0 if and only if the direct
sum C ‘ ΣC belongs to SppCqě0. Using our assumption that Crx´1s is a compact object of
LModRrx´1spCq, we see that (after replacing C by C ‘ΣC if necessary) we may assume that
there exists a compact object D P SppCqě0 with α : Drx´1s » Crx´1s (Proposition D.5.3.4).
Arguing as in Proposition D.5.3.4, we see that after multipliying the equivalence α by a
suitable power of x, we can arrange that α arises from a morphism α0 : D Ñ C in SppCq.
Since the full subcategory SppCqě0 is closed under extensions, it will suffice to prove that
cofibpα0q belongs to SppCqě0. Replacing C by cofibpα0q, we can reduce to the case where
Crx´1s » 0.

The assumption that Crx´1s » 0 implies that the canonical map C Ñ Crx´1s is
nullhomotopic. Since C is a compact object of SppCq, it follows that the map xn : C Ñ C is
nullhomotopic for n " 0. Let M P ModR denote the cofiber of the map xn : RÑ R. Then

M bR C » cofibpxn : C Ñ Cq » C ‘ ΣpCq.

It will therefore suffice to show that MbRC belongs to SppCqě0. Note that M can be written
as a successive extension of finitely many copies of cofibpx : R Ñ Rq. We may therefore
reduce to the case n “ 1. Note that M » R bRrXs R has the structure of a connective
E8-algebra over R, with π0M » R{pxq. Our assumption that R{pxqbRC belongs to SppCqě0
implies that M bR C belongs to SppCqě0 by virtue of Proposition 11.5.6.2.

Proof of Theorem 11.5.6.1. Using Proposition 11.5.6.2 (and Remark 11.5.6.3), we can reduce
to the case where R is discrete. Suppose that C R SppCqě0. Since R is Noetherian, there
exists an ideal which is maximal among those ideals I for which R{I bR C does not belong
to pR{I bR SppCqqě0. Replacing R by R{I, we may assume that I “ p0q.

If R » 0, there is nothing to prove. Otherwise, we can choose an associated prime ideal
p of R which appears as the annihilator of a nonzero element x P R. In this case, we have a
short exact sequence of discrete R-modules 0 Ñ R{pÑ RÑ R{pxq Ñ 0. It follows from our
inductive hypothesis that R{pxq bR C belongs to SppCqě0. Since SppCqě0 is closed under
extensions, we are reduced to proving that R{pbR C belongs to SppCqě0. This follows from
our inductive hypothesis unless p “ p0q. We may therefore assume without loss of generality
that R is an integral domain.

Let κ denote the fraction field of R, so that κbRC is belongs to SppCqě0. Let E Ď pκbRCq
denote the full subcategory spanned by objects of the form κbR D, where D is a compact
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object of SppCqě0. Note that if D is a compact object of SppCq and D1 P SppCq is arbitrary,
then the mapping space

MapκbRSppCqpκbR D,κbR D
1q » MapCpD,κbR D

1q

can be identified with a filtered colimit of copies of the mapping space MapSppCqpD,D
1q,

indexed by the nonzero elements of R. Arguing as in the proof of Proposition D.5.3.4, we see
that E is closed under the formation of cofibers and extensions, so that every compact object
of κbR SppCqqě0 can be written as a retract of an object of E . In particular, we can write
pκbR Cq ‘E » κbRD for some compact object D P SppCqě0. Let f be the endomorphism
of κbR D which is nullhomotopic on κbR C and an equivalence on E. Since D is compact,
we may assume that f is induced by an endomorphism f0 : D Ñ D in the 8-category SppCq.
Then κbR cofibpf0q » κbR pC ‘ ΣpCqq.

Replacing C by C ‘ ΣpCq, we may reduce to the case where there exists a compact
object C 1 P SppCqě0 and an equivalence g : κ bR C 1 » κ bR C. Since C 1 is compact, we
can assume (after multiplying g by a nonzero element of R) that g is induced by a map
g0 : C 1 Ñ C. Form a fiber sequence C 1 g0

Ñ C Ñ C2. Then C belongs to SppCqě0 if and only
if C2 belongs to SppCqě0. Replacing C by C2, we may assume that κbR C » 0. It follows
that the natural map C Ñ κ bR C is nullhomotopic. Since C is compact, it follows that
there exists a nonzero element x P R such that the map x : C Ñ C is nullhomotopic. In this
case, C can be identified with a direct summand of R{pxq bR C » C ‘ΣpCq, which belongs
to SppCqě0 by virtue of our inductive hypothesis.

11.5.7 The Brauer Group

Let X be a spectral Deligne-Mumford stack. In §11.5.2 we introduced the extended
Brauer space Br:pXq, an infinite loop space whose first homotopy group π1 Br:pXq can be
identified with the extended Picard group Pic:pXq of invertible objects of QCohpXq. In this
section, we will discuss a variant of Br:pXq which bears an analogous relation to the usual
Picard group PicpXq of line bundles on X.

Definition 11.5.7.1. Let X : CAlgcn Ñ S be a functor and let QStkPStpXq denote the 8-
category of prestable quasi-coherent stacks on X. We let BrpXq denote the full subcategory
of QStkPStpXq» spanned by the invertible quasi-coherent stacks C P QStkPStpXq for which
C and C´1 are compactly generated. We will refer to BrpXq as the Brauer space of X. We
let BrpXq denote the set π0 BrpXq, which we will refer to as the Brauer group of X.

If X is a spectral Deligne-Mumford stack representing a functor X : CAlgcn Ñ S, we
will denote the Brauer space BrpXq and the Brauer group BrpXq by BrpXq and BrpXq,
respectively. If R is a connective E8-ring, we will denote BrpSpétRq and BrpSpétRq by
BrpRq and BrpRq, respectively.
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Remark 11.5.7.2. Let X : CAlgcn Ñ S be a functor. Then the Brauer space BrpXq
admits the structure of a symmetric monoidal 8-category in which every object and every
morphism is invertible. In other words, it is a grouplike E8-space. In particular, the set
BrpXq “ π0 BrpXq has the structure of an abelian group.

Remark 11.5.7.3. Let R be a connective E8-ring. Then the stabilization construction
C ÞÑ SppCq determines a symmetric monoidal functor LinCatPSt

R Ñ LinCatSt
R which preserves

compactly generated objects, and therefore induces a map of E8-spaces θ : BrpRq Ñ Br:pRq.
Let C be a stable R-linear 8-category which is compactly generated and invertible. Using

Proposition C.3.1.1, we see that the homotopy fiber θ´1tCu is discrete: more precisely, it can
be identified with the collection of all t-structures pCě0, Cď0q on C satisfying the following
conditions:

piq The t-structure pCě0, Cď0q is right complete and compatible with filtered colimits.

piiq The Grothendieck prestable 8-category Cě0 is an invertible object of LinCatPSt
R .

piiiq The Grothendieck prestable 8-category Cě0 and its inverse C´1
ě0 are compactly gener-

ated.

Note that condition piiiq implies that Cě0 is determined by its intersection with the 8-
category of compact objects of C. In particular, we deduce that the homotopy fibers of θ are
essentially small. Since Br:pRq is essentially small (Remark 11.5.3.13), it follows that the
Brauer space BrpRq is essentially small.

Remark 11.5.7.4. Let X be a spectral Deligne-Mumford stack. Then the canonical
equivalence Ω Br:pXq »Pic:pXq induces a map Ω BrpXq ÑPic:pXq which exhibits Ω BrpXq
as a summand of Pic:pXq. Unwinding the definitions, we see that this summand consists of
those invertible quasi-coherent sheaves L P QCohpXq having the property that for every
map η : SpétR Ñ X, tensor product with η˚L induces a t-exact equivalence from the
8-category Modcn

R to itself. We therefore obtain a homotopy equivalence Ω BrpXq »PicpXq,
where PicpXq is the Picard space of X (see Definition 2.9.4.1). In particular, we can identify
π1 BrpXq with the Picard group PicpXq.

In §11.5.3, we studied the relationship between the extended Brauer group Br:pXq and
the theory of Azumaya algebras on X. There is an analogous (but somewhat weaker)
connection between BrpXq and connective Azumaya algebras. We begin with an analogue
of Proposition 11.5.3.4.

Lemma 11.5.7.5. Let R be a connective E8-ring, let A P Algcn
R , and let M be a connective

right A-module. Let G : Modcn
R Ñ RModcn

A be the R-linear functor given by GpNq “ NbRM .
The following conditions are equivalent:
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p1q The functor G is an equivalence of 8-categories.

p2q As an R-module, M is locally free of rank ą 0 and the action of A on M induces an
equivalence Arev Ñ EndRpMq.

Proof. Suppose first that p2q is satisfied. Then M is a compact generator of the stable
8-category ModR. Applying Lemma ??, we deduce that the construction N ÞÑ N bRM

induces an equivalence of stable 8-categories ModR » RModA. Since an R-module N
is connective if and only if N bR M is connective, it follows that G is an equivalence of
8-categories.

Now suppose that p1q is satisfied. Then the induced map SppGq : ModR Ñ RModA
is an equivalence of stable 8-categories. Applying Lemma ??, we deduce that M is a
perfect R-module and that the canonical map Arev Ñ EndRpMq is an equivalence. We will
complete the proof by showing that the R-module M is locally free of rank ą 0. By virtue
of Proposition 2.9.3.2, it will suffice to show that κ bR M is locally free of rank ą 0, for
every residue field κ of R. We may therefore replace R by κ and thereby reduce to the case
where R “ κ is a field.

Note that R does not belong to the essential image of the suspension functor Σ : Modcn
R Ñ

Modcn
R . Using assumption p1q, we deduce that M “ GpRq does not belong to the essential

image of the suspension functor Σ : RModcn
A Ñ RModcn

A . It follows that π0M ‰ 0. If M is
not locally free as an R-module, then we must have πnM ‰ 0 for some n ą 0. It then follows
that π´npM_q » pπnMq

_ ‰ 0 and therefore π´npM bκM
_q ‰ 0. This is a contradiction,

since the tensor product M bκM
_ » Arev is connective by assumption.

Proposition 11.5.7.6. Let R be a connective E8-ring and let A P Algcn
R . Then A is an

Azumaya algebra if and only if RModcn
A is an invertible object of LinCatPSt

R .

Proof. If RModcn
A is an invertible object of LinCatPSt

R , then SppRModcn
A q » RModA is an

invertible object of LinCatSt
R , so that A is an Azumaya algebra by virtue of Proposition

11.5.3.4. Conversely, if suppose that A is an Azumaya algebra. Then we have an equiv-
alence RModcn

A » RModcn
Arev » RModcn

AbRArev » RModcn
EndRpAq. Since A is a locally free

R-module of rank ą 0 (Proposition 11.5.3.3), Lemma 11.5.7.5 supplies an R-linear equivalence
RModcn

EndRpAq » Modcn
R .

We now introduce a connective analogue of Construction 11.5.7.7:

Construction 11.5.7.7 (The Brauer Class of a Connective Azumaya Algebra). Let X :
CAlgcn Ñ S be a functor and let A P AlgpQCohpXqcnq be a connective Azumaya algebra.
Then the construction

pη P XpRqq ÞÑ pRModcn
A η
P LinCatPSt

R q
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determines a compactly generated prestable quasi-coherent stack on X. It follows from
Proposition 11.5.7.6 that this quasi-coherent stack is an invertible object of LinCatPSt

R (whose
inverse is also compactly generated), and can therefore be identified with a point of the
Brauer space BrpXq. We let rA s P BrpXq denote the equivalence class of this quasi-coherent
stack. We will refer to rA s as the Brauer class of A .

Warning 11.5.7.8. Let X : CAlgcn Ñ S be a functor and let A be a connective Azumaya
algebra on X. We have now assigned two different meanings to the symbol rA s: it can be
regarded as an element of the extended Brauer group Br:pXq (Construction 11.5.3.9) or as
an element of the Brauer group BrpXq (Construction ??). In practice, there is little danger
of ambiguity: the canonical map BrpXq Ñ Br:pXq (see Remark 11.5.7.3) carries the Brauer
class of A to the extended Brauer class of A .

Proposition 11.5.7.9. Let X : CAlgcn Ñ S be a functor and let A P AlgpQCohpXqq. The
following conditions are equivalent:

p1q The object A is a connective Azumaya algebra and the Brauer class rA s P BrpXq
vanishes.

p2q There exists an equivalence A » EndpE q “ E bE _, where E P VectpXq is a vector
bundle on X of rank ą 0.

Proof. We proceed as in the proof of Proposition 11.5.3.11. Let C denote the prestable
quasi-coherent stack on X given by the construction pη P XpRqq ÞÑ pRModcn

η˚A P LinCatPSt
R q.

Using Proposition 11.5.7.6, we see that condition p1q is equivalent to the following:

p11q There exists a map ρ : QPSt
X Ñ C which is an equivalence of prestable quasi-coherent

stacks on X.

Note that giving a map of quasi-coherent stacks ρ : QPSt
X Ñ C is equivalent to giving an

object G P QCohpX; Cq » RModcn
A pQCohpXqq. Using Lemma 11.5.7.5, we see that the map

ρ is an equivalence if and only if G is a vector bundle of rank ą 0 on X and ρ induces an
equivalence A » EndpG qrev » EndpG_q. Setting E “ G_, we see that conditions p1q and
p2q are equivalent.

Remark 11.5.7.10. Let X : CAlgcn Ñ S be a functor. Using Construction 11.5.3.9 and
Proposition 11.5.7.9, we arrive at the following analogue of Remark ??:

paq Every connective Azumaya algebra A on X determines an element rA s P BrpXq.

pbq The collection of elements of BrpXq having the form rA s comprise a subgroup of
BrpXq. More explicitly, the multiplication on BrpXq is given by rA srBs “ rA bBs,
the identity element of Br:pXq is given by rOXs, and the inverse of rA s is given by
rA revs.
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pcq Given connective Azumaya algebras A ,B P AlgpQCohpXqq, we have rA s “ rBs in
BrpXq if and only if there is an equivalence A bBrev » EndpE q for some vector
bundle E P VectpXq of positive rank (in this case, we can regard E as a A -B bimodule
object of VectpXq).

In contrast with Remark ??, it is generally not true that every element of BrpXq has the
form rA s for some connective Azumaya algebra A P AlgpQCohpXqq, even if we assume that
X is affine. For example, if X is an ordinary scheme, then the subgroup described in pbq
coincides with the Brauer-Grothendieck group of X, while the group BrpXq agrees with the
cohomological Brauer group H2

étpX; Gmq (see Example 11.5.7.15).

Our main result is the following analogue of Theorem 11.5.5.1:

Theorem 11.5.7.11. Let X be a spectral Deligne-Mumford stack, and let u P BrpXq. Then
there exists an étale surjection f : U Ñ X such that f˚u “ 0 in BrpUq.

Before giving the proof of Theorem 11.5.7.11, let us describe some of its consequences.

Corollary 11.5.7.12. Let X be a spectral Deligne-Mumford stack and let A P AlgpQCohpXqq
be a connective Azumaya algebra on X. Then there exists an étale surjection f : U Ñ X and
an equivalence f˚A » EndpE q, where E is a vector bundle on U of rank ą 0.

Proof. Combine Theorem 11.5.7.11 with Proposition 11.5.7.9.

Construction 11.5.7.13 (The Brauer Sheaf). Let X “ pX ,OXq be a spectral Deligne-
Mumford stack. For each object U P X , let XU denote the spectral Deligne-Mumford stack
pX {U ,OX |U q. The construction U ÞÑ BrpXU q determines a functor X op Ñ pS which preserves
small limits. Remark 11.5.7.3 implies that BrpXU q is essentially small whenever U is affine,
so that BrpXU q is essentially small for all objects U P X . It follows that the construction
U ÞÑ BrpXU q is representable by an object BrX P X . We will refer to BrX as the Brauer
sheaf of X.

Note that BrX is a grouplike commutative monoid of X . In particular, we can each
homotopy group πn BrX as an abelian group object in the topos X♥. Using Theorem
11.5.7.11 and Remark 11.5.7.4, we obtain isomorphisms

πn BrX “

$

’

’

&

’

’

%

0 if n ď 1
pπ0 OXq

ˆ if n “ 2
πn´2 OX if n ą 2.

Remark 11.5.7.14. Let X “ pX ,OXq be a spectral Deligne-Mumford stack. The forgetful
functor Br Ñ Br: determines a map of Brauer sheaves BrX Ñ Br:X. Combining the analyses
of Construction 11.5.5.3 and ??, we see that this map exhibits BrX as the 2-connective
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cover of Br:X. In particular, we have a canonical fiber sequence BrX Ñ Br:X Ñ KpZ, 1q of
grouplike commutative monoid objects of X (which admits a non-multiplicative splitting;
see Remark 11.5.5.4). Passing to global sections, we obtain a (split) short exact sequence of
abelian groups 0 Ñ BrpXq Ñ Br:pXq Ñ H1pX ; Zq Ñ 0.

Example 11.5.7.15. Let X “ pX ,OXq be a spectral Deligne-Mumford stack, and suppose
that OX is 0-truncated. Then we can identify OX with a commutative ring object of the
topos of discrete objects of X ; let OˆX denote its group of units. For each U P X , PicpXU q
is equivalent to the nerve of a groupoid, so that the extended Brauer space BrpXU q is
2-truncated. It follows that the Brauer sheaf BrX is 2-truncated, so that the analysis of
Construction 11.5.7.13 supplies an equivalence BrX » KpOˆX , 2q. Passing to global sections,
we obtain an isomorphism BrpXq » H2pX ; OˆX q. In other words, the Brauer group BrpXq of
Definition 11.5.7.1 agrees with the classical cohomological Brauer group of X.

Corollary 11.5.7.16. Let R be a connective E8-ring. Then the canonical map BrpRq Ñ
Brpπ0Rq is an isomorphism of abelian groups.

Proof. Combine Proposition 11.5.5.6 with Remark 11.5.7.14.

We now turn to the proof of Theorem 11.5.7.11. We will need a few preliminary results.

Lemma 11.5.7.17. For every E8-ring R, let AlgcR denote the full subcategory of AlgR
spanned by the compact objects. Then the construction R ÞÑ AlgcR commutes with filtered
colimits (when regarded as a functor from CAlg to Cat8).

Proof. The construction R ÞÑ AlgR carries each E8-ring R to a compactly generated 8-
category and each morphism RÑ R1 to an extension-of-scalars functor AlgR Ñ AlgR1 which
preserves compact objects. By virtue of Lemma HA.7.3.5.11 , it will suffice to show that
the construction R ÞÑ AlgR determines a functor ρ : CAlg Ñ PrL which commutes with
filtered colimits. Using Corollary ??, we can identify ρ with a functor ρ1 : CAlgop Ñ PrR,
which carries an E8-ring R to the 8-category AlgpModRq and a morphism RÑ R1 to the
restriction-of-scalars functor AlgpModR1q Ñ AlgpModRq. To show that ρ1 commutes with
filtered limits, it will suffice to show that the construction R ÞÑ ModR carries filtered colimits
in CAlg to filtered limits in PrR, which follows from Proposition 4.5.1.2.

Lemma 11.5.7.18. Let R be a connective E8-ring and let M be a connective perfect
R-module. Suppose that:

paq For every residue field κ of R, the vector space π0pκbRMq is nonzero.

pbq The R-module M generates ModR as a presentable stable 8-category: in other words,
if C Ď ModR is a full stable subcategory which is closed under small colimits, then
C “ ModR.
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Then M generates pModRqě0 under small colimits and extensions.

Proof. Write R as a colimit lim
ÝÑαPA

Rα indexed by a filtered partially ordered set A, where
each Rα is a compact object of CAlgcn (and, in particular, a Noetherian E8-ring). Using
Lemma 11.5.7.17, we can choose an index α, a connective perfect Rα-module Mα, and
an equivalence M » R bRα Mα. Then π0Mα is a finitely generated module over π0Rα.
Let I Ď π0Rα denote its annihilator ideal. Since Rα is Noetherian, the ideal I is finitely
generated. Using paq, we see that the image of I in π0R is nilpotent. Enlarging α if necessary,
we may assume that I is nilpotent.

For each β ě α, let Mβ “ Rβ bRαMα, and let Eβ denote the smallest stable subcategory
of ModRβ which contains Mβ . Then E “ lim

ÝÑ
Eβ is the smallest stable subcategory of ModR

which contains M . Since M is perfect, the inclusion E ãÑ ModR extends to a fully faithful
embedding IndpEq Ñ ModR, and condition pbq implies that this functor is an equivalence
of 8-categories. In particular, since R P ModR is compact, the E8-ring R itself can be
written as a retract of an object of E . It follows that there exists β ě α for which Rβ can be
written as a retract of some object of Eβ. Consequently, the module Mβ P ModRβ satisfies
conditions paq and pbq. We may therefore replace R by Rβ and thereby reduce to the case
where R is Noetherian.

Let Cě0 Ď ModR be the full subcategory generated by M under small colimits and
extensions. We wish to prove that Cě0 “ pModRqě0. Since M is connective, we clearly have
Cě0 Ď pModRqě0. To prove the reverse inclusion, it will suffice to show that Cě0 contains R.
It follows from Proposition C.6.3.1 that Cě0 is a compactly generated prestable 8-category.
Moreover, the action of Modcn

R on itself restricts to an action of Modcn
R on Cě0. Applying

Theorem 11.5.6.1, we are reduced to proving that Cě0 contains each residue field κ of R. This
is clear, since condition paq guarantees that κ is a retract of the tensor product κbRM .

Proof of Theorem 11.5.7.11. Without loss of generality, we may assume that X “ SpétR
is affine, so that u P BrpXq classifies a compactly generated prestable R-linear 8-category
Cě0 P LinCatPSt

R which admits a compactly generated inverse Dě0 P LinCatPSt
R . Using

Theorem 11.5.5.1, we can further assume that SppCě0q » ModR. Without loss of generality,
we can identify Cě0 with its essential image under the full faithful embedding

Σ8 : Cě0 » SppCě0q » ModR

and thereby reduce to the case where Cě0 is the connective part of a t-structure pCě0, Cď0q on
ModR; similarly, we may identify Dě0 with the connective part of a t-structure pDě0,Dď0q

on ModR. Because Cě0 and Dě0 are compactly generated, we can choose compact objects
tCαuαPA and tDβuβPB of ModR which generate Cě0 and Dě0 under small colimits. Then the
collection of tensor products Cα bDβ generates Cě0bDě0 » Modcn

R under small colimits.
For every pair of subsets A0 Ď A, B0 Ď B, let EA0,B0 be the smallest full subcategory
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of ModR which contains each tensor product tCα bR DβuαPA0,βPB0 and is closed under
finite colimits and extensions. Using Proposition C.6.3.1, we deduce that the inclusion
EA,B ãÑ ModR extends to an equivalence of 8-categories IndpEA,Bq » Modcn

R . It follows
that the module R appears as a direct summand of some object E P EA,B. Note that EA,B
can be written as a union

Ť

A0
EA0,B, where A0 ranges over all finite subsets of A. We

can therefore choose a finite subset A0 Ď A such that E P EA0,B. Let C1ě0 denote the full
subcategory of ModR generated by the objects tCαuαPA0 under small colimits and extensions.
Enlarging A0 if necessary, we may assume that C1ě0 contains ΣnR for n " 0. Applying
Proposition C.6.3.1, we deduce that C1ě0 is a compactly generated prestable 8-category with
stabilization ModR. It follows that the tensor product C1ě0bRDě0 is also a Grothendieck
prestable 8-category (Theorem C.4.2.1), so it embeds fully faithfully into its stabilization

SppC1ě0bRDě0q » SppC1ě0q bR SppDě0q » ModR .

By construction, the essential image of this embedding contains R, so that the natural map

C1ě0bRDě0 Ñ Cě0bRDě0

is an equivalence of R-linear Grothenieck prestable 8-categories. Using the invertibility of
Dě0 as an object of LinCatPSt

R , we deduce that the inclusion C1ě0 ãÑ Cě0 is an equivalence:
that is, the 8-category Cě0 is generated under colimits and extensions by a single perfect
R-module C “

À

αPA0
Cα. Similarly, the 8-category Dě0 is generated under colimits and

extensions by a perfect R-module D P Dě0.
Let p be a prime ideal of the commutative ring π0R and let κppq denote the residue

field of R at p. Since C generates ModR under shifts and colimits, the tensor product
κppq bR C is a nonzero perfect κppq-module. We let dCppq denote the smallest integer n
such that πnpκpxq bR Cq ‰ 0. We can then regard dC as a Z-valued function on | SpecR|.
We claim that dC is lower semicontinuous. To prove that, fix a point p P | SpecR| such
that dCppq “ n. We claim that there exists an element a P pπ0Rq ´ p such that Cra´1s is
n-connective (so that dCpqq ě n for all q P |SpecR| which do not contain A). To prove this,
we argue by induction on m ď n that we can choose am P pπ0Rq ´ p for which Cra´1

m s is
m-connective. For m ! 0 we can take am “ 1 (since C is perfect). In the general case, we
can use the inductive hypothesis to reduce to the case where C is pm´ 1q-connective. In
this case, πm´1C is a finitely generated pπ0Rq-module M satisfying Torπ0R

0 pκppq,Mq » 0,
so that M ra´1s » 0 for some a R p by virtue of Nakayama’s lemma.

Define functions dD, dCbD : |SpecR| Ñ Z similarly, so that we have

dC ` dD “ dCbD.

Since C b D is a connective R-module which generates pModRqě0 under colimits and
extensions, the function dCbD vanishes, so that dCppq “ ´dDppq. It follows from the
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above argument that dD is lower semi-continuous, so that dC is upper semi-continuous
and therefore continuous. Passing to a étale cover of SpecR, we can assume that dC is
the constant function taking some value n. It now follows from Lemma 11.5.7.18 that
Cě0 “ pModRqěn, which implies that u “ 0 P BrpRq.



Part IV

Formal Moduli Problems
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The following thesis plays a central role in deformation theory:

p˚q If X is a moduli space defined over a field κ of characteristic zero, then a formal
neighborhood of any point x P X can be described by a differential graded Lie algebra
over κ.

This idea has been developed in unpublished work of Deligne, Drinfeld, and Feigin, and has
powerfully influenced subsequent contributions of Hinich, Kontsevich-Soibelman, Manetti,
Pridham, and many others. Our goal in Part IV is to give a precise formulation (and proof)
of p˚q, together with some of its generalizations.

The first step in formulating p˚q is to decide exactly what we mean by a moduli space.
For simplicity, let us work for now over the field C of complex numbers. We will adopt
Grothendieck’s “functor of points” philosophy, and identify an algebro-geometric object X
(for example, a scheme) with the functor

R ÞÑ XpRq “ HompSpecR,Xq.

This suggests a very general definition:

Definition 11.5.0.1. Let CAlg♥
C denote the category of commutative C-algebras and let

Set denote the category of sets. A classical moduli problem is a functor X : CAlg♥
C Ñ Set.

Unfortunately, Definition 11.5.0.1 is not adequate four our needs. First of all, Definition
11.5.0.1 requires that the functor X take values in the category of sets. In many applications,
one would like to consider functors X which assign to each commutative ring R some
collection of geometric objects parametrized by the affine scheme SpecR. In such cases, it is
important to retain information about automorphisms of geometric objects.

Example 11.5.0.2. For every commutative C-algebra R, let XpRq denote the category of
elliptic curves E Ñ SpecR (morphisms in the category XpRq are given by isomorphisms
of elliptic curves). Then F determines a functor from CAlg♥

C to Gpd, where Gpd denotes
the 2-category of groupoids. In this case, X determines an underlying set-valued functor,
which assigns to each commutative ring R the set π0XpRq of isomorphism classes of elliptic
curves over R. However, the groupoid-valued functor X : CAlg♥

C Ñ Gpd is much better
behaved than the set-valued functor π0X : CAlg♥

C Ñ Set. For example, the functor X
satisfies descent (with respect to the flat topology on the category of commutative rings),
while the functor π0X does not: two elliptic curves which are locally isomorphic need not
be globally isomorphic.
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Because the functor X of Example 11.5.0.2 is not Set-valued, it cannot be represented
by a scheme. However, it is nevertheless a reasonable geometric object: it is representable
by a Deligne-Mumford stack. To accommodate Example 11.5.0.2, we would like to adjust
Definition 11.5.0.1 to allow groupoid-valued functors.

Variant 11.5.0.3. Let C be an 8-category. A C-valued classical moduli problem is a functor
of 8-categories X : CAlg♥

C Ñ C.

Remark 11.5.0.4. We recover Definition 11.5.0.1 as a special case of Variant 11.5.0.3, by
taking the 8-category C to be the ordinary category of sets. In practice, we will be most
interested in the special case where C is the 8-category S of spaces.

The next step in formulating p˚q is to decide what we mean by a formal neighborhood of
a point x in a moduli space X. Suppose, for example, that X “ SpecA is an affine algebraic
variety over the field C of complex numbers. Then a closed point x P X is determined by
a C-algebra homomorphism φ : A Ñ C, which is determined a choice of maximal ideal
m “ kerpφq Ď A. One can define the formal completion of X at the point x to be the functor
X^ : CAlg♥

C Ñ Set given by the formula

X^pRq “ tf P XpRq : fpSpecRq Ď txu Ď SpecAu.

In other words, X^pRq is the collection of commutative ring homomorphisms φ : A Ñ R

having the property that φ carries each element of m to a nilpotent element of R. Since m is
finitely generated, this is equivalent to the condition that φ annihilates mn for some integer
n " 0, so that the image of φ is a quotient of A by some m-primary ideal.

Definition 11.5.0.5. Let R be a commutative algebra over the field C of complex numbers.
We will say that R is a local Artinian if it is finite dimensional as a C-vector space and has
a unique maximal ideal mR. The collection of local Artinian C-algebras forms a category,
which we will denote by CAlg♥ art

C .

The above analysis shows that if X is an affine algebraic variety over C containing a
point x, then the formal completion X^ can be recovered from its values on local Artinian
C-algebras. This motivates the following definition:

Definition 11.5.0.6. Let C be an 8-category. A C-valued classical formal moduli problem
is a functor CAlg♥ art

C Ñ C.

If X is a set-valued classical moduli problem and we are given a point η P XpCq, we can
define a set-valued classical formal moduli problem X^ by the formula

X^pRq “ XpRq ˆXpR{mRq tηu.
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We will refer to X^ as the completion of X at the point η. If X is groupoid-valued, the same
formula determines a groupoid-valued classical formal moduli problem X^ (in this case, we
must interpret XpRq ˆXpR{mRq tηu as the homotopy fiber product of the relevant groupoids).

Example 11.5.0.7. For every commutative C-algebra R, let XpRq denote the groupoid
whose objects are smooth proper R-schemes and whose morphisms are isomorphisms of
R-schemes. Suppose we are given a point η P XpCq, corresponding to smooth and proper
algebraic variety Z over C. The formal completion X^ assigns to every local Artinian
C-algebra R the groupoid X^pRq of deformations over Z over R: that is, smooth proper
morphisms f : Z Ñ SpecR which fit into a pullback diagram

Z //

��

Z

��
Spec C // SpecR.

Example 11.5.0.7 is a typical example of the kind of formal moduli problem we would
like to study (see §??). Let us recall some well-known features of the functor X^ (see
Propositions 0.1.3.1 and 0.1.3.4):

paq The functor X^ carries the ring Crεs{pε2q to the groupoid of first-order deformations
of the variety Z. Every first order deformation of Z has an automorphism group which
is canonically isomorphic to H0pZ;TZq, where TZ denotes the tangent bundle of Z.

pbq The collection of isomorphism classes of first order deformations of Z can be canonically
identified with the cohomology group H1pZ;TZq.

pcq To every first order deformation Z of Z, we can assign an obstruction class ρpZq P
H2pZ;TZq which vanishes if and only if Z can be extended to a second-order deformation
of Z.

As we mentioned in §0.1.3, assertion pcq has a natural interpretation in the language of
spectral algebraic geometry. More precisely, the spectral language allows us to enlarge the
category on which functor X of Example 11.5.0.7 is defined. For every connective E8-algebra
R over C, we can define XpRq to be the underlying 8-groupoid of the 8-category of spectral
schemes which are proper and differentially smooth over R. If R is equipped with an
augmentation ε : R Ñ C, we let X^pRq denote the fiber product XpRq ˆXpCq tηu, which
we can think of as a classifying space for deformations of Z over SpecR. In the special case
where R is a (discrete) local Artinian C-algebra, this agrees with the groupoid described
in Example 11.5.0.7. However, we can obtain more information by evaluating the functor
X^ on E8-algebras over C which are not discrete. For example, let Crδs denote the trivial
square-zero extension C‘Σ C. According to As we will see later (Remark 19.4.3.5), there is



1056

a canonical isomorphism H2pZ;TZq » π0X
^pCrδsq (as we promised in Proposition 0.1.3.5).

The ordinary commutative ring Crεs{pε3q is a square-zero extension of Crεs{pε2q by the ideal
C ε2, and therefore fits into a pullback diagram of E8-algebras σ :

Crεs{pε3q //

��

Crεs{pε2q

��
C // Crδs.

In §16.3, we will show that this pullback square determines a pullback diagram of spaces

XpCrεs{pε3qq //

��

XpCrεs{pε2qq

��
XpCq // XpCrδsq,

and therefore a fiber sequence

X^pCrεs{pε3qq Ñ X^pCrεs{pε2qq ρ
ÝÑ X^pCrδsq.

Passing to connected components, we obtain the obstruction class map ρ : H1pZ;TZq Ñ
H2pZ;TZq which vanishes on precisely those elements of H1pZ;TZq classifying first-order
deformations of Z which can be extended to second-order deformations.

The preceding analysis of Example 11.5.0.7 cannot be carried out for an arbitrary classical
formal moduli problem (in the sense of Definition 11.5.0.6): it depends crucially on the fact
that we can extend the domain of the functor X^ to E8-rings which are not discrete (such
as Crδs “ C‘Σ C). Moreover, this extended functor needs to be reasonably well-behaved:
for example, it should carry the diagram σ to a pullback diagram of spaces. This motivates
another variant of Definition 11.5.0.1:

Definition 11.5.0.8. Let R be an E8-algebra over C. We will say that R is Artinian if it
is connective, π˚R is a finite-dimensional vector space over C, and π0R is a local ring. Let
CAlgart

C denote the 8-category whose objects are E8-algebras R over C
A formal moduli problem over C is a functor X : CAlgart

C Ñ S which satisfies the
following pair of conditions:

p1q The space XpCq is contractible.

p2q For every pullback diagram
R //

��

R0

��
R1 // R01
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in CAlgart
C for which the underlying ring homomorphisms π0R0 Ñ π0R01 Ð π0R1 are

surjective, the diagram
XpRq //

��

XpR0q

��
XpR1q // XpR01q

is a pullback square.

Warning 11.5.0.9. The terminology of Definition 11.5.0.8 is potentially misleading: it
might be more appropriate to refer to an object R P CAlgart

C as a local Artinian E8-algebra
over C. However, we will abuse terminology throughout Part IV by referring to such an
E8-algebra simply as Artinian (since we will have no cause to consider Artinian algebras
which are not local). See Warning 12.1.2.6.

Remark 11.5.0.10. Let CAlgcn
C denote the 8-category of connective E8-algebras over

the field C of complex numbers, and let X : CAlgcn
C Ñ S be a functor. Given a point

x P XpCq, we define the completion of X at the point x to be the functor X^ : CAlgart
C Ñ S

given by the formula X^pRq “ XpRq ˆXpCq txu. The functor X^ automatically satisfies
condition p1q of Definition 11.5.0.8. Condition p2q is not automatic, but holds for a wide
variety of functors; for example, it is satisfied whenever X is representable by a spectral
Deligne-Mumford stack (see Corollary ??).

Remark 11.5.0.11. Let X : CAlgart
C Ñ S be a formal moduli problem. Then X determines

a functor between ordinary categories X0 : hCAlgart
C Ñ Set, where hCAlgart

C denotes the
homotopy category of CAlgart

C , given by the formula X0pAq “ π0XpAq. It follows from
condition p2q of Definition 11.5.0.8 that if we are given maps of Artinian E8-algebras
R0 Ñ R01 Ð R1 which induce surjections π0R0 Ñ π0R01 Ð π0R1, then the induced map

X0pR0 ˆR01 R1q Ñ X0pR0q ˆX0pR01q X0pR1q

is a surjection of sets. There is a substantial literature on set-valued moduli functors of this
type; see, for example, [146] and [122].

Warning 11.5.0.12. If X is a formal moduli problem over C, then X determines a classical
formal moduli problem (with values in the 8-category S) simply by restricting the functor
X to the subcategory of CAlgart

C consisting of ordinary local Artinian C-algebras (which are
precisely the discrete objects of CAlgart

C ).
If X “ pX ,Oq is a spectral Deligne-Mumford stack over C equipped with a point η :

Specét C Ñ X and X is defined as in Remark 11.5.0.10, then the restriction X0 “ X|CAlg♥ art
C

depends only on the pair pX , π0Oq. In particular, the functor X cannot be recovered from
X0.
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In general, if we are given a classical formal moduli problem X0 : CAlg♥ art
C Ñ S, there

may or may not exist a formal moduli problem X such that X0 “ X|CAlg♥ art
C

. Moreover, if
X exists, then it need not be unique. Nevertheless, classical formal moduli problems X0
which arise naturally are often equipped with a natural extension X : CAlgart

C Ñ S (as in
our discussion of Example 11.5.0.7 above), which can be quite useful in the study of X0.

We are now ready to articulate a precise version of p˚q:

Theorem 11.5.0.13. Let ModuliC denote the full subcategory of FunpCAlgart
C ,Sq spanned

by the formal moduli problems, and let Liedg
C denote the category of differential graded

Lie algebras over C (see §13.1). Then there is a functor θ : Liedg
C Ñ Moduli with the

following universal property: for any 8-category C, composition with θ induces a fully
faithful embedding FunpModuli, Cq Ñ FunpLiedg

C , Cq, whose essential image is the collection
of all functors F : Liedg

C Ñ C which carry quasi-isomorphisms of differential graded Lie
algebras to equivalences in C.

Remark 11.5.0.14. An equivalent version of Theorem 11.5.0.13 has been established by
Pridham; we refer the reader to [165] for details.

Remark 11.5.0.15. Let W be the collection of all quasi-isomorphisms in the category
Liedg

C , and let Liedg
C rW

´1s denote the 8-category obtained from Liedg
C by formally inverting

the morphisms in W . Theorem 11.5.0.13 asserts that there is an equivalence of 8-categories
Liedg

C rW
´1s » Moduli. In particular, every differential graded Lie algebra over C determines

a formal moduli problem, and two differential graded Lie algebras g˚ and g1˚ determine
equivalent formal moduli problems if and only if they can be joined by a chain of quasi-
isomorphisms.

Theorem 11.5.0.13 articulates a sense in which the theories of commutative algebras
and Lie algebras are closely related. In concrete terms, this relationship is controlled by
the Chevalley-Eilenberg functor, which associates to a differential graded Lie algebra g˚ a
cochain complex of vector spaces C˚pg˚q. The cohomology of this cochain complex is the Lie
algebra cohomology of the Lie algebra g˚, and is endowed with a commutative multiplication.
In fact, this multiplication is defined at the level of cochains: the construction g˚ ÞÑ C˚pg˚q

determines a functor C˚ from the (opposite of) the category Liedg
C of differential graded Lie

algebras over C to the category CAlgdg
C of commutative differential graded algebras over

C. This functor carries quasi-isomorphisms to quasi-isomorphisms, and therefore induces a
functor of 8-categories

C˚ : Liedg
C rW

´1sop Ñ CAlgdg
C rW

1´1s;

here W is the collection of quasi-isomorphisms in Liedg
C (as in Remark 11.5.0.15) and

W 1 is the collection of quasi-isomorphisms in CAlgdg
C (here the 8-category CAlgdg

C rW
1´1s
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can be identified CAlgC of E8-algebras over C: see Proposition HA.7.1.4.11 ). Every
differential graded Lie algebra g˚ admits a canonical map g˚ Ñ 0, so that its Chevalley-
Eilenberg complex is equipped with an augmentation C˚pg˚q Ñ C˚p0q » C. We may
therefore refine C˚ to a functor Liedg

C rW
´1sop Ñ CAlgaug

C taking values in the 8-category
CAlgaug

C of augmented E8-algebras over C. We will see that this functor admits a left
adjoint D : CAlgaug

C Ñ Liedg
C rW

´1sop (Theorem 13.3.0.1). The functor θ : Liedg
C Ñ Moduli

appearing in the statement of Theorem 11.5.0.13 can then be defined by the formula

θpg˚qpRq “ MapLiedg
C rW

´1s
pDpRq, g˚q.

In more abstract terms, the relationship between commutative algebras and Lie algebras
suggested by Theorem 11.5.0.13 is an avatar of Koszul duality. More specifically, Theorem
11.5.0.13 reflects the fact that the commutative operad is Koszul dual to the Lie operad (see
[114]). This indicates that should be many other versions of Theorem 11.5.0.13, where we
replace commutative and Lie algebras by algebras over some other pair of Koszul dual operads.
For example, the Koszul self-duality of the En-operads (see [68]) suggests an analogue of
Theorem 11.5.0.13 in the setting of “noncommutative” derived algebraic geometry, which we
will also prove here (see Theorems 14.0.0.5 and 15.0.0.9).

Let us now outline the contents of Part IV. In Chapter 12, we will introduce the general
notion of a deformation theory: a functor of 8-categories D : Aop Ñ B satisfying a suitable
list of axioms (see Definitions 12.3.1.1 and 12.3.3.2). We will then prove an abstract version
of Theorem 11.5.0.13: every deformation theory D determines an equivalence B » ModuliA,
where ModuliA is a suitably defined 8-category of formal moduli problems (Theorem
12.3.3.5). This result is not very difficult in itself: it can be regarded as a distillation of
the purely formal ingredients needed for the proof of results like Theorem 11.5.0.13. In
practice, the hard part is to construct the functor D and to prove that it satisfies the axioms
of Definitions 12.3.1.1 and 12.3.3.2. We will give a detailed treatment of three special cases:

paq In Chapter 13, we treat the case where A is the 8-category CAlgaug
κ of augmented

E8-algebras over a field κ of characteristic zero, and use Theorem 12.3.3.5 to prove a
version of Theorem 11.5.0.13 (Theorem 13.0.0.2).

pbq In Chapter 14, we treat the case where A is the 8-category Algaug
κ of augmented

E1-algebras over a field κ (of arbitrary characteristic), and use Theorem 12.3.3.5 to
prove a noncommutative analogue of Theorem 11.5.0.13 (Theorem 14.0.0.5).

pcq In Chapter 15, we treat the case where A is the 8-category Algpnq,aug
κ of augmented

En-algebras over a field κ (again of arbitrary characteristic), and use Theorem 12.3.3.5
to prove a more general noncommutative analogue of Theorem 11.5.0.13 (Theorem
15.0.0.9).
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In each case, the relevant deformation functor D is given by some version of Koszul
duality, and our main result gives an algebraic model for the 8-category of formal moduli
problems ModuliA. In Chapter 16, we will use these results to study some concrete examples
of formal moduli problems which arise naturally in deformation theory.

Remark 11.5.0.16. The notion that differential graded Lie algebras should play an im-
portant role in the description of moduli spaces goes back to Quillen’s work on rational
homotopy theory ([220]), and was developed further in unpublished work of Deligne, Drinfeld,
and Feigin. Many other mathematicians have subsequently taken up these ideas: see, for
example, the book of Kontsevich and Soibelman ([122]).



Chapter 12

Deformation Theories: Axiomatic
Approach

Our in Part IV is to prove several variants of Theorem 11.5.0.13, which supply algebraic
descriptions of various 8-categories of formal moduli problems. Here is a basic prototype
for the kind of result we are after:

p˚q Let A be an 8-category of algebraic objects, let Aart Ď A be a full subcategory of
“Artinian” objects, and let ModuliA Ď FunpAart,Sq be the 8-category of functors
X : Aart Ñ S which satisfy a suitable gluing condition (as in Definition 11.5.0.8).
Then there is an equivalence of 8-categories ModuliA » B, where B is some other
8-category of algebraic objects.

Our goal in this section is to flesh out assertion p˚q. We begin in §12.1 by introducing the
notion of a deformation context (Definition 12.1.1.1). A deformation context is a presentable
8-category A equipped with some additional data (namely, a collection of spectrum objects
Eα P SppAq). Using this data, we define a full subcategory Aart Ď A of Artinian objects
of A (Definition 12.1.2.4) and a full subcategory ModuliA Ď FunpAart,Sq of formal moduli
problems (Definition 12.1.3.1). Our definition is quite general, but nevertheless sufficient to
guarantee the existence of a reasonable differential theory of formal moduli problems. In
§12.2 we will explain how to associate to every formal moduli problem X a collection of
spectra XpEαq, which we call the tangent complex(es) of X. The construction is functorial:
every map between formal moduli problems u : X Ñ Y can be differentiated to obtain maps
of spectra XpEαq Ñ Y pEαq. Moreover, if each of these maps is a homotopy equivalence,
then u is an equivalence (Proposition 12.2.2.6).

In §12.3, we will formulate a general version of p˚q. For this, we will introduce the
notion of a deformation theory. A deformation theory is a functor D : Aop Ñ B satisfying

1061
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a collection of axioms (see Definitions 12.3.1.1 and 12.3.3.2). Our main result (Theorem
12.3.3.5) can then be stated as follows: if D : Aop Ñ B is a deformation theory, then D

determines an equivalence of 8-categories B » ModuliA. The proof of this result will be
given in §12.5, using an 8-categorical variant of Quillen’s small object argument which we
review in §12.4.

Our work in this section should be regarded as providing a sort of formal outline for
proving results like Theorem 11.5.0.13. For practical purposes, the main difficulty is not in
proving Theorem 12.3.3.5 but in verifying its hypotheses: that is, in constructing a functor
D : Aop Ñ B which satisfies the axioms listed in Definitions 12.3.1.1 and 12.3.3.2. The later
chapters of Part IV are devoted to carrying this out in special cases (we will treat the case
of commutative algebras in Chapter 13, associative algebras in Chapter 14, and En-algebras
in Chapter 15).
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12.1 Formal Moduli Problems

In this section, we introduce a general axiomatic paradigm for the study of deformation
theory. Let us begin by outlining the basic idea. We are ultimately interesting in studying
some class of algebro-geometric objects (such as schemes, or algebraic stacks, or their spectral
analogues). Using the functor of points philosophy, we will view these geometric objects with
functors X : A Ñ S, where A denotes some 8-category of “test objects”. The main example
of interest (which we will study in detail in Chapter 13) is the case where A to be the
8-category CAlgaug

κ “ pCAlgκq{κ of augmented E8-algebras over a field κ of characteristic
zero. In any case, we will always assume that A contains a final object ˚; we can then
define a point of a functor X : A Ñ S to be a point of the space Xp˚q. Suppose that we
wish to study a formal neighborhood of X around some chosen point x P Xp˚q. This formal
neighborhood should encode information about the homotopy fiber products XpAqˆXp˚q txu
for every object A P A which is sufficiently “close” to the final object ˚. In order to make
this idea precise, we need to introduce some terminology.

12.1.1 Deformation Contexts

Let A be a presentable 8-category. We let SppAq denote the 8-category of spectrum
objects of A: that is, the full subcategory of FunpSfin

˚ ,Aq spanned by the reduced and excisive
functors (see Definition HA.1.4.2.8 ). For each integer n, we we let Ω8´n : SppAq Ñ A
denote the forgetful functor, given concretely by the formula Ω8´npXq “ ΩmXpSn`mq for
any m ě ´n. We recall that SppAq can also be described as the homotopy limit of the tower
of 8-categories

¨ ¨ ¨ Ñ A˚
Ω
Ñ A˚

Ω
Ñ A˚ Ñ ¨ ¨ ¨ ,

where A˚ denotes the 8-category of pointed objects of A.

Definition 12.1.1.1. A deformation context is a pair pA, tEαuαPT q, where A is a presentable
8-category and tEαuαPT is a set of objects of the 8-category SppAq.

Example 12.1.1.2. Let κ be an E8-ring, and let A “ CAlgaug
κ “ pCAlgκq{κ denote the

8-category of augmented E8-algebras over κ. Using Theorem HA.7.3.4.13 , we can identify
SppAq with the 8-category Modκ of modules over κ. Let E P SppAq be the object which
corresponds to κ P Modκ under this identification, so that for every integer n we can identify
Ω8´nE with the trivial square-zero extension κ‘Σnpκq of κ. Then the pair pCAlgaug

κ , tEuq

is a deformation context.

12.1.2 Artinian Objects

Let κ be a field and let A P CAlgaug
κ be a local augmented E8-algebra over κ. We will

say that A is said to be Artinian if A is connective and π˚A is a finite-dimensional vector
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space over κ. Our next goal is to show that the class of (local) Artinian objects of CAlgaug
κ

is determined by the deformation context of Example 12.1.1.2 (see Proposition 12.1.2.9).

Definition 12.1.2.1. Let pA, tEαuαPT q be a deformation context. We will say that a
morphism φ : A1 Ñ A in A is elementary if there exists an index α P T , an integer n ą 0,
and a pullback diagram

A1

φ
��

// ˚

φ0
��

A // Ω8´nEα.

Here φ0 corresponds to the image of Eα under the forgetful functor SppAq
Ω8´n˚
ÝÝÝÝÑ A˚.

Example 12.1.2.2. Let κ be a field and let pA, tEuq be the deformation context described
in Example 12.1.1.2. Suppose that φ : A1 Ñ A is a map between connective objects of
A “ CAlgaug

κ . Using Theorem HA.7.4.1.26 , we deduce that φ is elementary if and only if
the following conditions are satisfied:

paq There exists an integer n ě 0 and an equivalence fibpφq » Σnpκq in the 8-category
ModA1 (here we regard κ as an object of ModA1 via the augmentation map A1 Ñ κ).

pbq If n “ 0, then the multiplication map π0 fibpφq b π0 fibpφq Ñ π0 fibpφq vanishes.

If paq is satisfied for n “ 0, then we can choose a generator x for π0 fibpφq having image
x P π0A

1. Condition pb1q is automatic if x “ 0. If a ‰ 0, then the map π0 fibpφq Ñ π0A
1 is

injective, so condition pbq is equivalent to the requirement that x2 “ 0 in π0A
1.

Remark 12.1.2.3. Let pA, tEαuαPT q be a deformation context, and suppose we are given
an object A P A. Every elementary map A1 Ñ A in A is given by the fiber of a map
AÑ Ω8´nEα for some n ą 0 and some α P T . It follows that the collection of equivalence
classes of elementary maps A1 Ñ A is bounded in cardinality.

Definition 12.1.2.4. Let pA, tEαuαPT q be a deformation context. We will say that a
morphism φ : A1 Ñ A in A is small if it can be written as a composition of finitely many
elementary morphisms A1 » A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ An » A. We will say that an object A P A
is Artinian if the map AÑ ˚ (which is uniquely determined up to homotopy) is small. We
let Aart denote the full subcategory of A spanned by the Artinian objects.

Warning 12.1.2.5. Let pA, tEαuαPT q be a deformation context. The collection of Artinian
objects of A depends not only on the underlying 8-category A, but also on the collection
of spectrum objects tEαuαPT .
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Warning 12.1.2.6. The terminology of Definition 12.1.2.4 is motivated by the observation
that, if κ is a field, then the class of Artinian objects of CAlgaug

κ (in the sense of Definition
12.1.2.4) can be regarded as a “derived” version of the theory of augmented local Artinian
κ-algebras (in the sense of commutative algebra): see Proposition 12.1.2.9 below. However,
our terminology is potentially confusing for two reasons:

paq If A is an augmented commutative algebra over a field κ which is Artinian in the
sense of classical commutative algebra, then A will not be Artinian in the the sense
of Definition 12.1.2.4 unless it is local. For example, the product A “ κ ˆ κ is not
Artinian in the sense of Definition 12.1.2.4. (To avoid this confusion, it might be more
appropriate to refer to the objects of Aart as the local Artinian objects of A; however,
we would prefer to avoid unnecessarily convoluted language: see Warning 11.5.0.9)

pbq If κ is a commutative ring which is not a field, then we can still regard A “ CAlgaug
κ as

a deformation context (as in Example 12.1.1.2), but the condition that an augmented
commutative κ-algebra A belongs to Aart is generally unrelated to the condition that
A is Artinian (for example, the commutative ring κ itself is always Artinian in the
sense of Definition 12.1.2.4). In practice, this will not concern us: we will only consider
the deformation context of Example 12.1.1.2 in the case where κ is a field (usually of
characteristic zero).

Example 12.1.2.7. Let pA, tEαuαPT q be a deformation context. For every integer n ě 0
and every index α P T , we have a pullback diagram

Ω8´nEα //

��

˚

��
˚ // Ω8´n´1Eα.

It follows that the left vertical map is elementary. In particular, Ω8´nEα is an Artinian
object of A.

Remark 12.1.2.8. Let pA, tEαuαPT q be a deformation context. It follows from Remark
12.1.2.3 that the subcategory Aart Ď A is essentially small.

Proposition 12.1.2.9. Let κ be a field and let pA, tEuq be the deformation context of
Example 12.1.1.2. Then an object A P A “ CAlgaug

κ is Artinian (in the sense of Definition
12.1.2.4) if and only if the following conditions are satisfied:

p1q The homotopy groups πnA vanish for n ă 0 and n " 0.

p2q Each homotopy group πnA is finite-dimensional as a vector space over κ.
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p3q The commutative ring π0A is local.

Proof. Suppose first that A is Artinian, so that there there exists a finite sequence of maps

A “ A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ An » κ

where each Ai is a square-zero extension of Ai`1 by Σmipκq, for some ni ě 0. We prove that
each Ai satisfies conditions p1q, p2q, and p3q using descending induction on i. The case i “ n

is obvious, so let us assume that i ă n and that Ai`1 is known to satisfy conditions p1q, p2q,
and p3q. We have a fiber sequence of κ-module spectra

Σmipκq Ñ Ai Ñ Ai`1

which immediately implies that Ai satisfies p1q and p2q. The map φ : π0Ai Ñ π0Ai`1 is
surjective and kerpφq2 “ 0, from which it follows immediately that π0Ai is local.

Now suppose that A satisfies conditions p1q, p2q, and p3q. We will prove that A is
Artinian by induction on the dimension of the κ-vector space π˚A. Let n be the largest
integer for which πnA does not vanish. We first treat the case n “ 0. We will abuse notation
by identifying A with the underlying commutative ring π0A. Condition p3q asserts that A
is a local ring; let m denote its maximal ideal. Since A is a finite dimensional algebra over
κ, we have mi`1 » 0 for i " 0. Choose i as small as possible. If i “ 0, then m » 0 and
A » κ, in which case there is nothing to prove. Otherwise, we can choose a nonzero element
x P mi Ď m. Let A1 denote the quotient ring A{pxq. It follows from Example 12.1.2.2 that
the quotient map AÑ A1 is elementary. Since A1 is Artinian by the inductive hypothesis,
we conclude that A is Artinian.

Now suppose that n ą 0 and let M “ πnA, so that M has the structure of a module over
the ring π0A. Let m Ď π0A be as above, and let i be the least integer such that mi`1M » 0.
Let x P miM and let M 1 be the quotient of M by x, so that we have an exact sequence

0 Ñ κ
x
ÑM ÑM 1 Ñ 0

of modules over π0A. We will abuse notation by viewing this sequence as a fiber sequence
of A2-modules, where A2 “ τďn´1A. It follows from Theorem HA.7.4.1.26 that there is a
pullback diagram

A //

��

κ

��
A2 // κ‘ Σn`1pMq.

Set A1 “ A2 ˆκ‘Σn`1pM 1q κ. Then A » A1 ˆκ‘Σn`1pκq κ so we have an elementary map
A Ñ A1. Using the inductive hypothesis we deduce that A1 is Artinian, so that A is also
Artinian.



12.1. FORMAL MODULI PROBLEMS 1067

Remark 12.1.2.10. Let κ be a field and suppose that A P CAlgcn
κ has the property that

π˚A is a finite-dimensional vector space over κ and that π0A is a local ring with residue field
κ. Then the mapping space MapCAlgκpA, κq is contractible. In particular, A can be promoted
(in an essentially unique way) to an Artinian object of A “ CAlgaug

κ . Moreover, the forgetful
functor CAlgaug

κ Ñ CAlgκ is fully faithful when restricted to the full subcategory Aart Ď A.
We will denote the essential image of this restriction by CAlgart

κ . We refer to CAlgart
κ as

the 8-category of Artinian E8-algebras over κ. In the case where κ “ C, this recovers the
definition of CAlgart

C appearing in Definition 11.5.0.8.

Remark 12.1.2.11. Let pA, tEαuαPT q be a deformation context. Then the collection of
small morphisms in A is closed under composition. Consequently, if φ : A1 Ñ A is small and
A is Artinian, then A1 is also Artinian. In particular, if there exists a pullback diagram

B1 //

��

A1

φ
��

B // A

where B is Artinian and φ is small, then B1 is also Artinian.

12.1.3 Formal Moduli Problems

We are now ready to introduce the main objects of study in Part IV.

Definition 12.1.3.1. Let pA, tEαuαPT q be a deformation context. A formal moduli problem
is a functor X : Aart Ñ S satisfying the following pair of conditions:

paq The space Xp˚q is contractible (here ˚ denotes a final object of A).

pbq Let σ :
A1

��

// B1

φ
��

A // B

be a diagram in Aart. If σ is a pullback diagram and φ is small, then Xpσq is a pullback
diagram in S.

We let ModuliA denote the full subcategory of FunpAart,Sq spanned by the formal moduli
problems. We will refer to ModuliA as the 8-category of formal moduli problems.

Condition pbq of Definition 12.1.3.1 has a number of equivalent formulations:

Proposition 12.1.3.2. Let pA, tEαuαPT q be a deformation context, and let X : Aart Ñ S
be a functor. The following conditions are equivalent:
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p1q Let σ :
A1

��

// B1

φ
��

A // B

be a diagram in Aart. If σ is a pullback diagram and φ is small, then Xpσq is a pullback
diagram in S.

p2q Let σ be as in p1q. If σ is a pullback diagram and φ is elementary, then Xpσq is a
pullback diagram in S.

p3q Let σ be as in p1q. If σ is a pullback diagram and φ is the base point morphism
˚ Ñ Ω8´nEα for some α P T and n ą 0, then Xpσq is a pullback diagram in S.

Proof. The implications paq ñ pbq ñ pcq are clear. The reverse implications follow from
Lemma HTT.4.4.2.1 .

Example 12.1.3.3. Let pA, tEαuαPT q be a deformation context, and let A P A be an object.
Let SpfpAq : Aart Ñ S be the functor corepresented by A, given on Artinian objects of A
by the formula SpfpAqpBq “ MapApA,Bq. Then SpfpAq is a formal moduli problem. We
will refer to SpfpAq as the formal spectrum of A. Moreover, the construction A ÞÑ SpfpAq
determines a functor Spf : Aop Ñ ModuliA.

Warning 12.1.3.4. The notion of formal spectrum Spf A of Example 12.1.3.3 is different
from the notion of formal spectrum studied in Chapter 8. However, in many situations
where both notions are defined, they are interchangeable: see §??.

Remark 12.1.3.5. Let pA, tEαuαPT q be a deformation context. The 8-category Aart Ď A
is essentially small. It follows from Lemmas HTT.5.5.4.19 and HTT.5.5.4.18 that the 8-
category ModuliA is an accessible localization of the 8-category FunpAart,Sq. In particular,
the 8-category ModuliA is presentable.

Remark 12.1.3.6. Let pA, tEαuαPT q be a deformation context, and let X : Aart Ñ S be a
functor which satisfies the equivalent conditions of Proposition 12.1.3.2. For every point
η P Xp˚q, define a functor Xη : Aart Ñ S by the formula XηpAq “ XpAq ˆXp˚q tηu. Then
Xη is a formal moduli problem. We may therefore identify X as a family of formal moduli
problems parametrized by the space Xp˚q. Consequently, condition paq of Definition 12.1.3.1
should be regarded as a harmless simplifying assumption.

In the special case where A “ CAlgaug
C , Definition 12.1.3.1 agrees with Definition 11.5.0.8.

This is an immediate consequence of the following result:
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Proposition 12.1.3.7. Let κ be a field and let X : CAlgart
κ Ñ S be a functor. Then

conditions p1q, p2q, and p3q of Proposition 12.1.3.2 are equivalent to the following:

p˚q For every pullback diagram
R //

��

R0

��
R1 // R01

in CAlgart
κ for which the underlying maps π0R0 Ñ π0R01 Ð π0R1 are surjective, the

diagram
XpRq //

��

XpR0q

��
XpR1q // XpR01q

is a pullback square.

The proof of Proposition 12.1.3.7 will require the following elaboration on Proposition
12.1.2.9:

Lemma 12.1.3.8. Let κ be a field and let f : AÑ B be a morphism in CAlgart
κ . Then f is

small (when regarded as a morphism in CAlgaug
κ ) if and only if it induces a surjection of

commutative rings π0AÑ π0B.

Proof. Let K be the fiber of f , regarded as an A-module. If π0A Ñ π0B is surjective,
then K is connective. We will prove that f is small by induction on the dimension of the
graded vector space π˚K. If this dimension is zero, then K » 0 and f is an equivalence.
Assume therefore that π˚K ‰ 0, and let n be the smallest integer such that πnK ‰ 0. Let
m denote the maximal ideal of π0A. Then m is nilpotent, so mpπnKq ‰ πnK and we can
choose a map of π0A-modules φ : πnK Ñ κ. According to Theorem HA.7.4.3.1 , we have
p2n ` 1q-connective map K bA B Ñ Σ´1pLB{Aq. In particular, we have an isomorphism
πn`1LB{A » Torπ0A

0 pπ0B, πnKq so that φ determines a map LB{A Ñ Σn`1pκq. We can
interpret this map as a derivation B Ñ B ‘ Σn`1pκq; let B1 “ B ˆB‘Σn`1pκq κ. Then f

factors as a composition
A

f 1
Ñ B1

f2
Ñ B.

Since the map f2 is elementary, it will suffice to show that f 1 is small, which follows from
the inductive hypothesis.

Proof of Proposition 12.1.3.7. The implication p˚q ñ p3q is obvious, and the implication
p1q ñ p˚q follows from Lemma 12.1.3.8.
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Remark 12.1.3.9. The proof of Proposition 12.1.3.7 shows that condition p˚q is equivalent
to the a priori stronger condition that the diagram

R //

��

R0

��
R1 // R01

is a pullback square whenever one of the maps π0R0 Ñ π0R01 or π0R1 Ñ π0R01 is surjective.

12.2 The Tangent Complex

LetX be an algebraic variety over the field C of complex numbers, and let x : Spec C Ñ X

be a point of X. A tangent vector to X at the point x is a dotted arrow rendering the
diagram

Spec C x //

��

X

��
Spec Crεs{pε2q //

77

Spec C

commutative. The collection of tangent vectors to X at x comprise a vector space TX,x,
which we call the Zariski tangent space of X at x. If OX,x denotes the local ring of X at the
point x and m Ď OX,x its maximal ideal, then there is a canonical isomorphism of vector
spaces TX,η » pm{m2q_.

The tangent space TX,x is among the most basic and useful invariants one can use
to study the local structure of an algebraic variety X near a point x. Our goal in this
section is to generalize the construction of TX,x to the setting of an arbitrary formal moduli
problem, in the sense of Definition 12.1.3.1. Let us identify X with its functor of points,
given by XpAq “ HompSpecA,Xq for every C-algebra A (here the Hom is computed in
the category of schemes over C). Then TX,x can be described as the fiber of the map
XpCrεs{pε2qq Ñ XpCq over the point x P XpCq. Note that the commutative ring Crεs{pε2q
is given by Ω8E, where E is the spectrum object of CAlgaug

C appearing in Example 12.1.1.2.
This suggests a possible generalization:

Definition 12.2.0.1. Let pA, tEαuαPT q be a deformation context, and let Y : Aart Ñ S
be a formal moduli problem. For each α P T , the tangent space of Y at α is the space
Y pΩ8Eαq.

12.2.1 Delooping the Tangent Space

There is a somewhat unfortunate aspect to the terminology of Definition 12.2.0.1. By
definition, a formal moduli problem Y is a S-valued functor, so the evaluation of X on any
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object A P Aart might be called a “space”. The term “tangent space” in algebraic geometry
has a different meaning: if X is a complex algebraic variety with a base point x, then we
refer to TX,x as the tangent space of X not because it is equipped with a topology, but
because it has the structure of a vector space over C. In particular, TX,x is equipped with an
addition which is commutative and associative. This phenomenon is quite general: for any
formal moduli problem Y : Aart Ñ S, each tangent space Y pΩ8Eαq of Y is an infinite loop
space, and therefore equipped with a composition law which is commutative and associative
up to coherent homotopy.

Recall that if C is an 8-category which admits finite limits, then the 8-category SppCq
of spectrum objects of C is defined to be the full subcategory of FunpSfin

˚ , Cq spanned by
those functors which are reduced and excisive (Definition HA.1.4.2.8 ).

Proposition 12.2.1.1. Let pA, tEαuαPT q be a deformation context. For each α P T , we
identify Eα P SppAq with the corresponding functor Sfin

˚ Ñ A. Then:

p1q For every map f : K Ñ K 1 of pointed finite spaces which induces a surjection
π0K Ñ π0K

1, the induced map EαpKq Ñ EαpK
1q is a small morphism in A.

p2q For every pointed finite space K, the object EαpKq P A is Artinian.

Proof. We will prove p1q; assertion p2q follows by applying p1q to the constant map K Ñ ˚.
Note that f is equivalent to a composition of maps

K “ K0 Ñ K1 Ñ ¨ ¨ ¨ Ñ Kn “ K 1,

where each Ki is obtained from Ki´1 by attaching a single cell of dimension ni. Since π0K

surjects onto π0K
1, we may assume that each ni is positive. It follows that we have pushout

diagrams of finite pointed spaces

Ki´1 //

��

Ki

��
˚ // Sni .

Since Eα is excisive, we obtain a pullback square

EαpKi´1q //

��

EαpKiq

��
˚ // ΩniEα,

so that each of the maps EαpKi´1q Ñ EαpKiq is elementary.
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It follows from Proposition 12.2.1.1 that if pA, tEαuαPT q is a deformation context, then
each Eα can be regarded as a functor from Sfin

˚ to the full subcategory Aart Ď A spanned
by the Artinian objects. It therefore makes sense to compose Eα with any formal moduli
problem.

Proposition 12.2.1.2. Let pA, tEαuαPT q be a deformation context and let Y : Aart Ñ S
be a formal moduli problem. For every α P T , the composite functor

Sfin
˚

Eα
Ñ Aart Y

Ñ S

is reduced and excisive.

Proof. It is obvious that Y ˝Eα carries initial objects of Sfin
˚ to contractible spaces. Suppose

we are given a pushout diagram
K //

��

K 1

��
L // L1

of pointed finite spaces; we wish to show that the diagram σ :

Y pEαpKqq //

��

Y pEαpK
1qq

��
Y pEαpLqq // Y pEαpL

1qq

is a pullback square in S. Let K 1
` denote the union of those connected components of K 1

which meet the image of the map K Ñ K 1. There is a retraction of K 1 onto K 1
`, which

carries the other connected components of K 1 to the base point. Define L1` and the retraction
L1 Ñ L1` similarly. We have a commutative diagram of pointed finite spaces

K //

��

K 1 //

��

K 1
`

��
L // L1 // L1`

where each square is a pushout, hence a diagram of spaces

Y pEαpKqq //

��

Y pEαpK
1qq

��

// Y pEαpK
1
`qq

��
Y pEαpLqq // Y pEαpL

1qq // Y pEαpL
1
`qq.

To prove that the left square is a pullback diagrams, it will suffice to show that the right
square and the outer rectangle are pullback diagrams. We may therefore reduce to the case
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where the map π0K Ñ π0K
1 is surjective. Then the map π0LÑ π0L

1 is surjective, so that
EαpLq Ñ EαpL

1q is a small morphism in Aart (Proposition 12.2.1.1). Since Eα is excisive,
the diagram

EαpKq //

��

EαpK
1q

��
EαpLq // EαpL

1q

is a pullback square in A. Using the assumption that Y is a formal moduli problem, we
deduce that σ is a pullback square of spaces.

12.2.2 The Tangent Complex

Proposition 12.2.1.2 motivates the following:

Definition 12.2.2.1. Let pA, tEαuαPT q be a deformation context, and let Y : Aart Ñ S be
a formal moduli problem. For each α P T , we let Y pEαq denote the composite functor

Sfin
˚

Eα
Ñ Aart Y

Ñ S .

We will view Y pEαq as an object in the 8-category Sp “ SppSq of spectra, and refer to
Y pEαq as the tangent complex to Y at α.

Remark 12.2.2.2. In the situation of Definition 12.2.2.1, suppose that T has a single
element, so that tEαuαPT “ tEu for some E P SppAq (this condition is satisfied in all of the
main examples we will study in this paper). In this case, we will omit mention of the index
α and simply refer to Y pEq as the tangent complex to the formal moduli problem Y .

Remark 12.2.2.3. Let Y : Aart Ñ S be as in Definition 12.2.2.1. For every index α, we can
identify the tangent space Y pΩ8Eαq at α with the 0th space of the tangent complex Y pEαq.
More generally, there are canonical homotopy equivalences Y pΩ8´nEαq » Ω8´nY pEαq for
n ě 0.

Example 12.2.2.4. LetX “ SpecR be an affine algebraic variety over the field C of complex
numbers, and suppose we are given a point x of X (corresponding to an augmentation
ε : R Ñ C of the C-algebra R). Then X determines a formal moduli problem X^ “

Spf R : CAlgart
C Ñ S, given by the formula X^pAq “ MapCAlgaug

C
pR,Aq (here we work in the

deformation context pCAlgaug
C , tEuq of Example 12.1.1.2). Unwinding the definitions, we see

that the tangent complex X^pEq can be identified with the spectrum MorModRpLR{C,Cq
classifying maps from the cotangent complex LR{C into C (regarded as an R-module via
the augmentation ε). In particular, the homotopy groups of X^pEq are given by

πiX
^pEq » pπ´ipCbRLR{Cqq_.
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It follows that πiX^pEq vanishes for i ą 0, and that π0X
^pEq is isomorphic to the Zariski

tangent space pm{m2q_ of X at the point x. If X is smooth at the point x, then the negative
homotopy groups of πiX^pEq vanish. In general, the homotopy groups πiX^pEq encode
information about the nature of the singularity of X at the point x. One of our goals in
Part IV is to articulate a sense in which the tangent complex X^pEq encodes complete
information about the local structure of X near the point x.

Warning 12.2.2.5. The terminology of Definition 12.2.2.1 is potentially misleading. For a
general deformation context pA, tEαuαPT q and formal moduli problem Y : Aart Ñ S, the
tangent complexes Y pEαq are spectra. If κ is a field and pA, tEαuαPT q “ pCAlgaug

κ , tEuq is
the deformation context of Example 12.1.1.2, one can show that the tangent complex Y pEq
admits the structure of a κ-module spectrum, and can therefore be identified with a chain
complex of vector spaces over κ. This observation motivates our use of the term “tangent
complex.” In the general case, it might be more appropriate to refer to Y pEαq as a “tangent
spectrum” to the formal moduli problem Y .

The tangent complex of a formal moduli problem Y is a powerful invariant of Y . We
close this section with a simple illustration:

Proposition 12.2.2.6. Let pA, tEαuαPT q be a deformation context and let u : X Ñ Y be a
map of formal moduli problems. Suppose that u induces an equivalence of tangent complexes
XpEαq Ñ Y pEαq for each α P T . Then u is an equivalence.

Proof. Consider an arbitrary object A P Aart, so that there exists a sequence of elementary
morphisms

A “ A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ An » ˚

in A. We prove that the map upAiq : XpAiq Ñ Y pAiq is a homotopy equivalence using
descending induction on i, the case i “ n being trivial. Assume therefore that i ă n and
that upAi`1q is a homotopy equivalence. Since Ai Ñ Ai`1 is elementary, we have a fiber
sequence of maps

upAiq Ñ upAi`1q Ñ upΩ8´nEαq

for some n ą 0 and α P T . To prove that upAiq is a homotopy equivalence, it suffices to show
that upΩ8´nEαq is a homotopy equivalence, which follows immediately from our assumption
that u induces an equivalence XpEαq Ñ Y pEαq.

12.3 Deformation Theories

Let pA, tEαuαPT q be a deformation context. Our main goal in Part IV is to show that, in
many cases of interest, the 8-category ModuliA Ď FunpAart,Sq admits a concrete algebraic
description. To prove this, we will need to be able to address the following question:
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pQq Given an 8-category B, how can we recognize the existence of an equivalence
ModuliA » B?

12.3.1 Weak Deformation Theories

We take our first cue from Example 12.1.3.3. If pA, tEαuαPT is a deformation context,
then to every object A P A we can associate a formal moduli problem Spf A P ModuliA using
the formula pSpf AqpRq “ MapApA,Rq. Composing this construction with a prospective
equivalence ModuliA » B, we obtain a functor D : Aop Ñ B. We begin by axiomatizing
the expected properties of such a functor:

Definition 12.3.1.1. A weak deformation theory for a deformation context pA, tEαuαPT q
is a functor D : Aop Ñ B satisfying the following axioms:

pD1q The 8-category B is presentable.

pD2q The functor D admits a left adjoint D1 : B Ñ Aop.

pD3q There exists a full subcategory B0 Ď B satisfying the following conditions:

paq For every object K P B0, the unit map K Ñ DD1K is an equivalence.

pbq The full subcategory B0 contains the initial object H P B. It then follows from
paq that H » DD1H » Dp˚q, where ˚ denotes the final object of A.

pcq For every index α P T and every n ě 1, there exists an object Kα,n P B0 and
an equivalence Ω8´nEα » D1Kα,n. It follows that the base point of Ω8´nEα
determines a map

vα,n : Kα,n » DD1Kα,n » DpΩ8´nEαq Ñ Dp˚q » H.

pdq For every pushout diagram
Kα,n

//

vα,n

��

K

��
H // K 1

where α P T and n ą 0, if K belongs to to B0 then K 1 also belongs to B0.

Definition 12.3.1.1 might seem a bit complicated at a first glance. We can summarize
axioms pD2q and pD3q informally by saying that the functor D : Aop Ñ B is not far from
being an equivalence. Axiom pD2q requires that there exists an adjoint D1 to D, and axiom
pD3q requires that D1 behave as a homotopy inverse to D, at least on a subcategory B0 Ď B
with good closure properties.
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Example 12.3.1.2. Let pA, tEαuαPT q be a deformation context. The functor Spf : Aop Ñ

ModuliA of Example 12.1.3.3 satisfies conditions pD1q, pD2q and pD3q of Definition 12.3.1.1,
and therefore defines a weak deformation theory (we can define the full subcategory
ModuliA0 Ď ModuliA whose existence is required by pD3q to be spanned by objects of
the form SpfpAq, where A P Aart).

Example 12.3.1.3. Let κ be a field of characteristic zero and let pCAlgaug
κ , tEuq be the

deformation context described in Example 12.1.1.2. In Chapter 13, we will construct a
weak deformation theory D : pCAlgaug

κ qop Ñ Lieκ, where Lieκ denotes the 8-category
of differential graded Lie algebras over κ (Definition 13.1.4.1). Here the adjoint functor
D1 : Lieκ Ñ pCAlgaug

κ qop assigns to each differential graded Lie algebra g˚ its cohomology
Chevalley-Eilenberg complex C˚pg˚q (see Construction 13.2.5.1). In fact, the functor
D : pCAlgaug

κ qop Ñ Lieκ is even a deformation theory: it satisfies condition pD4q appearing
in Definition 12.3.3.2 below.

Remark 12.3.1.4. By virtue of Corollary HTT.5.5.2.9 and Remark HTT.5.5.2.10 , condition
pD2q of Definition 12.3.1.1 is equivalent to the requirement that the functor D preserves
small limits.

Remark 12.3.1.5. In the situation of Definition 12.3.1.1, the objects Kα,n P B0 are
determined up to canonical equivalence: it follows from paq that they are given by Kα,n »

DD1Kα,n » DpΩ8´nEαq. In particular, Definition 12.3.1.1 requires that the objects Ω8´nEα
belong to B0.

12.3.2 Formal Moduli Problems from Weak Deformation Theories

Let pA, tEαuαPT q. According to Example 12.3.1.2, we can always regard the formal
spectrum construction Spf : Aop Ñ ModuliA as a weak deformation theory. Our next goal
is to show that the functor Spf is actually universal with respect to this property:

Proposition 12.3.2.1. Let pA, tEαuαPT q be a deformation context, let D : Aop Ñ B a
weak deformation theory, and let j : B Ñ FunpBop,Sq denote the Yoneda embedding. Then:

paq For every object B P B, the composition

Aart Ď A D
ÝÑ Bop jpBq

ÝÑ S

is a formal moduli problem.

pbq The construction pB P Bq ÞÑ pjpBq ˝Dq|Aart determines a functor Ψ : B Ñ ModuliA.
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pcq The diagram

Aop Spf //

D

!!

ModuliA

B

Ψ
::

commutes up to (canonical) homotopy.

Proposition 12.3.2.1 is an easy consequence of the following result, which summarizes
some of the formal properties of Definition 12.3.1.1:

Proposition 12.3.2.2. Let pA, tEαuαPT q be a deformation context and D : Aop Ñ B a
weak deformation theory. Let B0 Ď B be a full subcategory which is stable under equivalence
and satisfies condition p3q of Definition 12.3.1.1. Then:

p1q The functor D carries final objects of A to initial objects of B.

p2q Let A P A be an object having the form D1pKq, where K P B0. Then the unit map
AÑ D1DpAq is an equivalence in A.

p3q If A P A is Artinian, then DpAq P B0 and the unit map AÑ D1DA is an equivalence
in A.

p4q Suppose we are given a pullback diagram σ :

A1

��

// B1

φ
��

A // B

in A, where A and B are Artinian and the morphism φ is small. Then Dpσq is a
pushout diagram in B.

Proof of Proposition 12.3.2.1. Part paq is an immediate consequence of assertions p1q and
p4q of Proposition 12.3.2.2, and pbq is a restatement of paq. To prove pcq, we note that for
A P A and A1 P Aart, we have canonical homotopy equivalences

ΨpDpAqqpA1q “ MapBpDpA
1q,DpAqq

» MapApA,D
1DpA1qq

„
ÐÝ MapApA,A

1q

“ pSpf AqpA1q

where the displayed arrow is a homotopy equivalence by virtue of assertion p3q of Proposition
12.3.2.2.
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Proof of Proposition 12.3.2.2. Let H denote an initial object of B. Then H P B0 so that
the adjunction map HÑ DD1H is an equivalence. Since D1 : B Ñ Aop is left adjoint to D,
it carries H to a final object ˚ P A. This proves p1q. To prove p2q, suppose that A “ D1pKq

for K P B0. Then the unit map u : A Ñ D1DA has a left homotopy inverse, given by
applying D1 to the the map v : K Ñ DD1K in B. Since v is an equivalence (part paq of
Definition 12.3.1.1), we conclude that u is an equivalence.

We now prove p3q. Let A P A be Artinian, so that there exists a sequence of elementary
morphisms

A “ A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ An » ˚.

We will prove that DAi P B0 using descending induction on i. If i “ n, the desired result
follows from p1q. Assume therefore that i ă n, so that the inductive hypothesis guarantees
that DpAi`1q P B0. Choose a pullback diagram σ :

Ai //

��

˚

φ
��

Ai`1
ψ // Ω8´nEα

where n ą 0, α P T , and φ is the base point of Ω8´nEα. Form a pushout diagram τ :

DpΩ8´nEαq
Dψ //

Dφ

��

DAi`1

��
Dp˚q // X

in B. There is an evident transformation ξ : σ Ñ D1pτq of diagrams in A. Since both σ and
D1pτq are pullback diagrams and the objects Ai`1, Ω8´nEα, and ˚ belong to the essential
image of D1|B0 , it follows from assertion p2q that ξ is an equivalence, so that Ai » D1pXq.
Assumption pdq of Definition 12.3.1.1 guarantees that X P B0, so that Ai lies in the essential
image of D1|B0 .

We now prove p4q. The class of morphisms φ for which the conclusion holds (for an
arbitrary morphism A Ñ B between Artinian objects of A) is evidently stable under
composition. We may therefore reduce to the case where φ is elementary, and further to the
case where φ is the base point map ˚ Ñ Ω8´nEα for some α P T and some n ą 0. Arguing
as above, we deduce that the pullback diagram σ :

A1 //

��

˚

φ
��

A // Ω8´nEα
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is equivalent to D1pτq, where τ is a diagram in B0 which is a pushout square in B. Then
Dpσq » DD1pτq » τ is a pushout diagram, by virtue of condition paq of Definition 12.3.1.1.

12.3.3 Deformation Theories

Our next goal is to formulate an additional hypothesis on a weak deformation theory
D : Aop Ñ B which is sufficient (but not necessary: see Warning 12.3.3.3) to guarantee that
the functor Ψ : B Ñ ModuliA is an equivalence of 8-categories. First, we note the following
immediate consequence of Propositions 12.3.2.1 and 12.2.1.2:

Proposition 12.3.3.1. Let pA, tEαuαPT q be a deformation context and D : Aop Ñ B a
weak deformation theory. For each α P T and each K P B, the composite map

Sfin
˚

Eα
ÝÑ A D

ÝÑ Bop jpKq
ÝÑ S

is reduced and excisive, and can therefore be identified with a spectrum which we will denote
by eαpKq. This construction determines a functor eα : B Ñ Sp “ SppSq Ď FunpSfin

˚ ,Sq.

Definition 12.3.3.2. Let pA, tEαuαPT q be a deformation context. A deformation theory
for pA, tEαuαPT q is a weak deformation theory D : Aop Ñ B which satisfies the following
additional condition:

pD4q For each α P T , let eα : B Ñ Sp be the functor described in Proposition 12.3.3.1. Then
eα preserves small sifted colimits. Moreover, a morphism f in B is an equivalence if
and only if each eαpfq is an equivalence of spectra.

Warning 12.3.3.3. Let pA, tXαuαPT q be a deformation context, and let Spf : Aop Ñ

ModuliA be given by the Yoneda embedding (see Example 12.3.1.2). The resulting functors
eα : ModuliA Ñ Sp are then given by evaluation on the spectrum objects Eα P SppAq, and are
therefore jointly conservative (Proposition 12.2.2.6) and preserve filtered colimits. However,
it is not clear that Spf is a deformation theory, since the tangent complex constructions
X ÞÑ XpEαq do not obviously commute with sifted colimits.

Remark 12.3.3.4. Let pA, tEuq be a deformation context, let D : Aop Ñ B be a defor-
mation theory for A, and let e : B Ñ Sp be as in Proposition 12.3.3.1. The functor e
preserves small limits, and condition pD4q of Definition 12.3.3.2 implies that e preserves
sifted colimits. It follows that e admits a left adjoint F : Sp Ñ B. The composite functor
e˝F has the structure of a monad U on Sp. Since e is conservative and commutes with sifted
colimits, Theorem HA.4.7.3.5 gives us an equivalence of 8-categories B » LModU pSpq with
the 8-category of algebras over the monad U . In other words, we can think of B as an
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8-category whose objects are spectra which are equipped some additional structure (namely,
a left action of the monad U).

More generally, if pA, tEαuαPT q is a deformation context equipped with a deformation
theory D : Aop Ñ B, the same argument supplies an equivalence B » LModU pSpT q: that
is, we can think of objects of B as determines by a collection of spectra (indexed by T ),
together with some additional structure.

We can now formulate the main result of this section:

Theorem 12.3.3.5. Let pA, tEαuαPT q be a deformation context and let D : Aop Ñ B be
a deformation theory. Then the functor Ψ : B Ñ ModuliA of Proposition 12.3.2.1 is an
equivalence of 8-categories.

The proof of Theorem 12.3.3.5 will be given in §12.5.

Remark 12.3.3.6. Let pA, tEαuαPT q be a deformation context and let D : Aop Ñ B a
deformation theory. Using the commutativity of the diagram

Aop Spf //

D

!!

ModuliA

B

Ψ
::

(see Proposition 12.3.2.1) and Theorem 12.3.3.5, we see that D can be identified (in an
essentially unique way) with the formal spectrum functor Spf : Aop Ñ ModuliA. In other
words, if the deformation context pA, tEαuαPT admits a deformation theory, then that
deformation theory is essentially unique. The existence is not automatic (see Warning
12.3.3.3): it is equivalent to the requirement that each of the tangent complex functors
ModuliA Ñ Sp commutes with sifted colimits.

Remark 12.3.3.7. Let pA, tEαuαPT q be a deformation context. Then the 8-category Aart

admits finite products. Let PΣpAart,opq be the full subcategory of FunpAart,Sq spanned by
those functors which preserve finite products. Using Proposition HTT.5.5.8.15 , we deduce
that for each index α P T , there is an essentially unique functor Fα : PΣpAart,opq Ñ Sp
which preserves sifted colimits, having the property that the composite functor

Aart,op j
ãÑ PΣpAart,opq

Fα
Ñ Sp

is given by A ÞÑ pSpfpAqqpEαq; here j denotes the Yoneda embedding. Note that the
8-category PΣpAart,opq contains ModuliA, and that each of the functors Fα is a left Kan
extension of its restriction to the full subcategory of ModuliA spanned by those formal
moduli problems of the form SpfpAq, where A P Aart. In particular, for every formal moduli
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problem X, we have a canonical map θX : FαpXq Ñ XpEαq. We claim that each of these
maps is an equivalence. To prove this, choose a smooth hypercovering X‚ of X, where each
Xn is prorepresentable. Then θX is a colimit of the maps θXn , each of which is a filtered
colimit of a collection of maps of the form θSpfpAq, hence an equivalence.

Let L : PΣpAart,opq Ñ ModuliA denote a left adjoint to the inclusion. We claim that the
following conditions are equivalent:

p1q For each α P T , the functor Fα carries L-equivalences to equivalences in the 8-category
Sp (in other words, each of the functors Fα factors through L, up to homotopy).

p2q For each α P T , the construction X ÞÑ XpEαq determines a functor ModuliA Ñ Sp
which commutes with sifted colimits.

p3q The deformation context pA, tEαuαPT q admits a deformation theory D : Aop Ñ B.

The equivalence p2q ô p3q follows from Remark 12.3.3.6. Note that p2q is equivalent
to the requirement that each of the constructions X ÞÑ pLXqpEαq determines a functor
F 1α : PΣpAart,opq Ñ Sp which commutes with sifted colimits. Note that Fα and F 1α agree on
objects of the form SpfpAq, so there is a canonical natural transformation µα : Fα Ñ F 1α.
Conditions p1q and p2q are both equivalent to the requirement that each µα is an equivalence.

12.4 Digression: The Small Object Argument

Let C be a category containing a collection of morphisms tfα : Cα Ñ Dαu, and let
g : X Ñ Z be another morphism in C. Under some mild hypotheses, Quillen’s small object
argument can be used to produce a factorization X

g1
Ñ Y

g2
Ñ Z where g1 is “built from”

the morphisms fα, and g2 has the right lifting property with respect to the morphisms
fα (see §HTT.A.1.2 for a more detailed discussion). The small object argument was used
by Grothendieck to prove that every Grothendieck abelian category has enough injective
objects (see [87] or Corollary HA.1.3.5.7 ). It is now a basic tool in the theory of model
categories. Our goal in this section is to formulate an 8-categorical version of the small
object argument (Proposition 12.4.2.1).

12.4.1 Lifting Properties and Saturation

We begin by introducing some terminology.

Definition 12.4.1.1. Let C be an 8-category. Let f : C Ñ D and g : X Ñ Y be morphisms
in C. We will say that g has the right lifting property with respect to f if every commutative
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diagram
C //

f
��

X

g

��
D // Y

can be extended to a 3-simplex of C, as depicted by the diagram

C //

f
��

X

g

��
D

>>

// Y.

In this case, we will also say that f has the left lifting property with respect to g.
More generally, if S is any set of morphisms in C, we will say that a morphism g has

the right lifting property with respect to S if it has the right lifting property with respect to
every morphism in S, and that a morphism f has the left lifting property with respect to S
if f has the left lifting property with respect to every morphism in S.

Definition 12.4.1.2. Let C be an 8-category and let S be a collection of morphisms in
C. We will say that a morphism f in C is a transfinite pushout of morphisms in S if there
exists an ordinal α and a diagram F : rαs Ñ C (here rαs denotes the linearly ordered set of
ordinals tβ : β ď αu) with the following properties:

p1q For every nonzero limit ordinal λ ď α, the restriction F |rλs is a colimit diagram in C.

p2q For every ordinal β ă α, the morphism F pβq Ñ F pβ ` 1q is a pushout of a morphism
in S.

p3q The morphism F p0q Ñ F pαq coincides with f .

Remark 12.4.1.3. Let C be an 8-category, and let S and T be collections of morphisms
in C. Suppose that every morphism belonging to T is a transfinite pushout of morphisms
in S. If f is a transfinite pushout of morphisms in T , then f is a transfinite pushout of
morphisms in S.

Definition 12.4.1.4. Let C be an 8-category and let S be a collection of morphisms in C.
We will say that S is weakly saturated if it has the following properties:

p1q If f is a morphism in C which is a transfinite pushout of morphisms in S, then f P S.

p2q The set S is closed under retracts. In other words, if we are given a commutative
diagram

C

f
��

// C 1

f 1

��

// C

f
��

D // D1 // D
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in which both horizontal compositions are the identity and f 1 belongs to S, then so
does f .

Remark 12.4.1.5. If C is the nerve of an ordinary category (which admits small colimits),
then Definition 12.4.1.4 reduces to Definition HTT.A.1.2.2 .

Remark 12.4.1.6. Let S be a weakly saturated collection of morphisms in an 8-category
C. Any identity map in C can be written as a transfinite composition of morphisms in S

(take α “ 0 in Definition 12.4.1.2). Condition p2q of Definition 12.4.1.4 guarantees that the
class of morphisms is stable under equivalence; it follows that every equivalence in C belongs
to S. Condition p1q of Definition 12.4.1.4 also implies that S is closed under composition
(take α “ 2 in Definition 12.4.1.2).

12.4.2 The Small Object Argument for 8-Categories

We can now formulate our main result:

Proposition 12.4.2.1 (Small Object Argument). Let C be a presentable 8-category and
let S be a small collection of morphisms in C. Then every morphism f : X Ñ Z admits a
factorizaton X

f 1
Ñ Y

f2
Ñ Z where f 1 is a transfinite pushout of morphisms in S and f2 has

the right lifting property with respect to S.

Warning 12.4.2.2. In contrast with the ordinary categorical setting (see Proposition
HTT.A.1.2.5 ), the factorization X

f 1
Ñ Y

f2
Ñ Z of Proposition 12.4.2.1 cannot generally be

chosen to depend functorially on f .

Proof of Proposition 12.4.2.1. Let S “ tgi : Ci Ñ DiuiPI . Choose a regular cardinal κ such
that each of the objects Ci is κ-compact. We construct a diagram F : rκs Ñ C{Z as the
union of maps tFα : rαs Ñ C{Zuαďκ; here rαs denotes the linearly ordered set of ordinals
tβ : β ď αu. The construction proceeds by induction: we let F0 be the morphism f : X Ñ Z,
and for a nonzero limit ordinal λ ď κ we let Fλ be a colimit of the diagram obtained
by amalgamating themaps tFαuαăλ. Assume that α ă κ and that Fα been constructed.
Then Fαpαq corresponds to a map X 1 Ñ Z. Let T pαq be a set of representantives for all
equivalence classes of diagrams equivalence classes of diagrams σt :

Ct //

gt

��

X 1

��
Dt

// Z,
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where gt is a morphism belonging to S. Choose a pushout diagram

>tPT pαqCt //

��

X 1

��
>tPT pαqDt

// X2

in C{Z . We regard X2 as an object of CX 1{ {Z . Since the map pC{ZqFα{ Ñ CX 1{ {Z is a trivial
Kan fibration, we can lift X 1 to an object of pC{ZqFα{, which determines the desired map
Fα`1.

For each α ď κ, let fα : Yα Ñ Z be the image F pαq P C{Z . Let Y “ Yκ and f2 “ fκ. We
claim that f2 has the right lifting property with respect to every morphism in S. In other
words, we wish to show that for each i P I and every map Di Ñ Z, the induced map

MapC{Z pDi, Y q Ñ MapC{Z pCi, Y q

is surjective on connected components. Choose a point η P MapC{Z pCi, Y q. Since Ci is
κ-compact, the space MapC{Z pCi, Y q can be realized as the filtered colimit of mapping spaces
lim
ÝÑα

MapC{Z pCi, Yαq, so we may assume that η is the image of a point ηα P MapC{Z pCi, Yαq

for some α ă κ. The point ηα determines a commutative diagram

Ci //

gi
��

Yα

��
Di

// Z

which is equivalent to σt for some t P T pαq. It follows that the image of ηα in MapC{Z pCi, Yα`1q

extends to Di, so that η lies in the image of the map MapC{Z pDi, Yα`1q Ñ MapC{Z pCi, Y q.
The morphism F p0q Ñ F pκq in C{Z induces a morphism f 1 : X Ñ Y in C; we will

complete the proof by showing that f 1 is a transfinite pushout of morphisms in S. Using
Remark 12.4.1.3, we are reduced to showing that for each α ă κ, the map Yα Ñ Yα`1 is a
transfinite pushout of morphisms in S. To prove this, choose a well-ordering of T pαq having
order type β. For γ ă β, let tγ denote the corresponding element of T pαq. We define a
functor G : rβs Ñ C so that, for each β1 ď β, we have a pushout diagram

>γăβ1Ctγ

��

// Yα

��
>γăβ1Dtγ

// Gpβ1q.

It is easy to see that G satisfies the conditions of Definition 12.4.1.2 and therefore exhibits
Yα Ñ Yα`1 as a transfinite pushout of morphisms in S.
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12.4.3 Applications of the Small Object Argument

To apply Proposition 12.4.2.1, the following observation is often useful:

Proposition 12.4.3.1. Let C be an 8-category and let T be a collection of morphisms in
C. Let S denote the collection of all morphisms in C which have the left lifting property with
respect to T . Then S is weakly saturated.

Proof. Since the intersection of a collection of weakly saturated collections is weakly saturated,
it will suffice to treat the case where T consists of a single morphism g : X Ñ Y . Note that
a morphism f : C Ñ D has the left lifting property with respect to g if and only if, for every
lifting of Y to Cf{, the induced map θf : Cf{ {Y Ñ CC{ {Y is surjective on objects which lie
over g P C{Y . Since θf is a left fibration, it is a categorical fibration; it therefore suffices to
show that object of CC{ {Y which lies over g is in the essential image of θf . We begin by
showing that S is stable under pushouts. Suppose we are given a pushout diagram σ :

C 1
f 1 //

λ
��

D1

��
C

f // D

in C, where f 1 P S. We wish to prove that f P S. Consider a lifting of Y to Cf{ which we
can lift further to Cσ{. The map θf is equivalent to the left fibration Cσ{ {Y Ñ Cλ{Y . Since
σ is a pushout diagram, this is equivalent to the map θ : Cf 1{ {Y ˆCC1{ {Y Cλ{ {Y Ñ Cλ{ {Y . It
will therefore suffice to show that every lifting of g to Cλ{ {Y lies in the essential image of
θ, which follows from our assumption that every lifting of g to CC1{ {Y lies in the essential
image of θf 1 .

We now verify condition p1q of Definition 12.4.1.4. Fix an ordinary α and a diagram
F : rαs Ñ C satisfying the hypotheses of Definition 12.4.1.2, and let f : F p0q Ñ F pαq be
the induced map. Choose a lifting of Y to Cf{ which we can lift further to CF {. Then θf is
equivalent to the map θ : CF { {Y Ñ CF p0q{ {Y . It will therefore suffice to show that every lift
of g to an object of X P CF p0q{ {Y lies in the image of θ. For each β ă α, we let Fβ “ F |rβs;
we will construct a compatible sequence of objects Xβ P CFβ{ {Y by induction on β. If β “ 0,
we take Xβ “ X. If β is a nonzero limit ordinal, then our assumption that Fβ is a colimit
diagram guarantees that the map CFβ{ {Y Ñ lim

ÐÝγăβ
CFγ{ {Y is a trivial Kan fibration so that

Xβ can be defined. It remains to treat the case of a successor ordinal: let β ă α and assume
that Xβ has been defined; we wish to show that the vertex Xβ lies in the image of the
map θβ : CFβ`1{ {Y Ñ CFβ{ {Y . Let u : F pβq Ñ F pβ ` 1q be the morphism determined by F ,
so that θβ is equivalent to the map θu. Since the image of Xβ in CF pβq{ {Y lies over g, the
existence of the desired lifting follows from our assumption that u P S.
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We now verify p2q. Consider a diagram σ : ∆2 ˆ∆1 Ñ C, given by

C

f
��

λ // C 1

f 1

��

// C

f
��

D // D1 // D.

Assume that f 1 P S; we wish to prove f P S. Choose a lifting of Y to Cf{, and lift Y further
to Cσ{ (here we identify f with σ|t2uˆ∆1 . Let X be a lifting of g to CC{ {Y ; we wish to
show that X lies in the image of θf . We can lift X further to an object rX P Cσ0{ {Y , where
σ0 “ σ|∆2ˆt0u. Let σ1 “ σ|∆1ˆ∆1 . The forgetful functor θ : Cσ1{ {Y Ñ Cλ{ {Y is equivalent to
θf 1 , so that the image of rX in Cλ{ {Y lies in the image of θ. It follows immediately that X
lies in the image of θf .

Corollary 12.4.3.2. Let C be a presentable 8-category, let S be a small collection of
morphisms of C, let T be the collection of all morphisms in C which have the right lifting
property with respect to every morphism in S, and let S_ be the collection of all morphisms
in C which have the left lifting property with respect to every morphism in T . Then S_ is
the smallest weakly saturated collection of morphisms which contains S.

Proof. Proposition 12.4.3.1 implies that S_ is weakly saturated, and it is obvious that
S_ contains S. Suppose that S is any weakly saturated collection of morphisms which
contains S; we will show that S_ Ď S. Let f : X Ñ Z be a morphism in S_, and choose a
factorization

X
f 1
Ñ Y

f2
Ñ Z

as in Proposition 12.4.2.1, so that f 1 P S and f2 P T . Since f P S_, the diagram

X

f
��

f 1 // Y

f2

����
Z

id // Z

can be extended to a 3-simplex

X

f
��

f 1 // Y

f2

��
Z

g
>>

id // Z.

We therefore obtain a commutative diagram

X

f
��

id // X

f 1

��

// X

f
��

Z
g // Y

f2 // Z



12.4. DIGRESSION: THE SMALL OBJECT ARGUMENT 1087

which shows that f is a retract of f 1 and therefore belongs to S as desired.

Recall that if C is an 8-category which admits finite limits and colimits, then every
simplicial object X‚ of C determines latching and matching objects LnpX‚q,MnpX‚q for
n ě 0 (see Remark HTT.A.2.9.16 ). The following result will play an important role in our
proof of Theorem 12.3.3.5:

Corollary 12.4.3.3. Let C be a presentable 8-category and let S be a small collection of
morphisms in C. Let Y be any object of C, and let φ : C{Y Ñ C be the forgetful functor. Then
there exists a simplicial object X‚ of C{Y with the following properties:

p1q For each n ě 0, let un : LnpX‚q Ñ Xn be the canonical map. Then φpunq is a
transfinite pushout of morphisms in S.

p2q For each n ě 0, let vn : Xn ÑMnpX‚q be the canonical map in C{Y . Then φpvnq has
the right lifting property with respect to every morphism in S.

Proof. We construct X‚ as the union of a compatible family of diagrams Xpnq‚ : ∆op
ďn Ñ C{Y ,

which we construct by induction on n. The case n “ ´1 is trivial (since ∆ď´1 is empty).
Assume that n ě 0 and that Xpn´1q

‚ has been constructed, so that the matching and
latching objects LnpXq, MnpXq are defined and we have a map t : LnpXq ÑMnpXq. Using
Proposition HTT.A.2.9.14 , we see that it suffices to construct a commutative diagram

Xn

vn

$$
LnpX‚q

un
;;

t //MnpX‚q

in C{Y . Since the map C{Y Ñ C is a right fibration, this is equivalent to the problem of
producing a commutative diagram

Kn

%%
φpLnpX‚qq

u

99

φptq // φpMnpX‚qq

in the 8-category C. Proposition 12.4.2.1 guarantees that we are able to make these choices
in such a way that p1q and p2q are satisfied.

Remark 12.4.3.4. In the situation of Corollary 12.4.3.3, let H denote the initial object
of C. Then for each n ě 0, the canonical map w : H Ñ φpXnq is a transfinite pushout
of morphisms in S. To prove this, we let P denote the full subcategory of ∆rns{ spanned
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by the surjective maps rns Ñ rms; we will regard P as a partially ordered set. For each
upward-closed subset P0 Ď P , we let ZpP0q denote a colimit of the induced diagram

P op
0 ÝÑ ∆op X‚

ÝÑ C{Y
φ
ÝÑ C .

Then ZpHq » H and ZpP q » φpXnq. It will therefore suffice to show that if P1 Ď P is
obtained from P0 by adjoining a new element given by α : rns Ñ rms, then the induced map
θ : ZpP0q Ñ ZpP1q is a transfinite pushout of morphisms in S. This follows from assertion
p1q of Corollary 12.4.3.3, since θ is a pushout of the map φpunq : φpLmpX‚qq Ñ φpXmq.

12.5 Proof of the Main Theorem

Let pA, tEαuαPT q be a deformation context which admits a deformation theory D : Aop Ñ

B. Our goal in this section is to prove Theorem 12.3.3.5, which asserts that the construction
K ÞÑ MapBpDp‚q,Kq induces an equivalence of 8-categories Ψ : B Ñ ModuliA. The key
step is to prove that every formal moduli problem X admits a “smooth atlas” (Proposition
12.5.3.3).

12.5.1 Digression: Atlases in Algebraic Geometry

We have seen that if X is an algebraic variety over the field C of complex numbers and
x : Spec C Ñ X is a point, then X determines a formal moduli problem X^ : CAlgart

C Ñ S
(Example 12.2.2.4). However, Definition 12.1.3.1 is far more inclusive than this. For example,
we can also obtain formal moduli problems by extracting the formal completions of algebraic
stacks.

Example 12.5.1.1. Let n ě 0 be an integer, and let A be a connective E8-ring. We say
that an A-module M is projective of rank n if π0M is a projective module over π0A of rank n,
and M is flat over A. Let XpAq denote the subcategory of ModA whose objects are modules
which are locally free of rank n, and whose morphisms are equivalences of modules. It is not
difficult to see that the 8-category XpAq is an essentially small Kan complex. Consequently,
the construction A ÞÑ XpAq determines a functor X : CAlgcn Ñ S.

Let η denote the point of XpCq corresponding to the complex vector space Cn. We
define the formal completion of X at η to be the functor X^ : CAlgart

C Ñ S given by
X^pRq “ XpRq ˆXpCq tηu. More informally, X^pRq is a classifying space for projective
R-modules M of rank n equipped with a trivialization CbRM » Cn. Then X^ is a formal
moduli problem (we will prove a more general statement to this effect in §16.5).

If A is a local commutative ring, then every projective A-module of rank of n is isomorphic
to An. If X is the functor of Example 12.5.1.1, we deduce that XpAq can be identified
with the classifying space for the group GLnpAq of automorphisms of An as an A-module.
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For this reason, the functor X is often denoted by BGLn. It can be described as the
geometric realization (in the 8-category of functors F : CAlgcn Ñ S which are sheaves
with respect to the Zariski topology) of a simplicial functor F‚, given by the formula
FmpAq “ GLnpAqm, where GLnpAq denotes the subspace of MapModApA

n, Anq spanned by
the invertible morphisms. Similarly, the formal completion X^ can be described as the
geometric realization of a simplicial functor F^‚ , given by F^mpRq “ fibpGLnpRq Ñ GLnpCqq
for R P CAlgart

C (after passing to formal completions, there is no need to sheafify with
respect to the Zariski topology: if R P CAlgart

C , then π0R is a local Artin ring, so that every
projective R-module of rank n is automatically free).

Remark 12.5.1.2. Example 12.5.1.1 can be generalized. Suppose that X is an arbitrary
Artin stack over C. Then X can be presented by an atlas, which is a (smooth) groupoid
object

¨ ¨ ¨
////// U1

//// U0.

in the category of C-schemes. Let η0 : Spec C Ñ U0 be any point, so that η0 determines
points ηn : Spec C Ñ Un for every integer n. We can then define formal moduli problems U^n :
CAlgart

C Ñ S by formally completing each Un at the point ηn. This gives a simplicial object
U^‚ in the 8-category FunpCAlgart

C ,Sq. The geometric realization |U^‚ | P FunpCAlgart
C ,Sq

is also a formal moduli problem which we will denote by X^. One can show that it is
canonically independent (up to equivalence) of the atlas U‚ chosen.

Our first goal in this section is to formulate a converse to Remark 12.5.1.2. Roughly
speaking, we would like to assert that every formal moduli problem Y : CAlgart

C Ñ S admits
a description that resembles the formal completion of an algebraic stack. However, the
precise context of Remark 12.5.1.2 is too restrictive in several respects:

paq We can associate formal completions not only to algebraic stacks, but also to higher
algebraic stacks. Consequently, rather than trying to realize Y as the geometric
realization of a groupoid object Y‚ of Moduli Ď FunpCAlgart

C ,Sq, we will allow more
general simplicial objects Y‚ of Moduli.

pbq We would like to exhibit Y as the geometric realization of a simplicial object Y‚ where
each Ym resembles the formal completion of a C-scheme near some point (which,
without loss of generality, we may take to be an affine scheme of the form SpétR).
Since the construction of the formal completion makes sense not only for schemes but
also for spectral Deligne-Mumford stacks (Remark 11.5.0.10), we should allow the
possibility that R is a nondiscrete E8-algebra over C.

pcq If R is an augmented E8-algebra over C, then A determines a formal moduli problem
Spf R : CAlgart

C Ñ S given by the formula A ÞÑ MapCAlgaug
C
pR,Aq. This functor is
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perhaps better understood (at least in the case where R is Noetherian) as the formal
spectrum of R^, where R^ denotes the completion of R along the augmentation ideal
in π0R. To incorporate a wider class of examples, we should allow arbitrary (possibly
infinite-dimensional) affine formal schemes, not only those which arise as the formal
completions of actual schemes.

12.5.2 Smooth Morphisms

We now translate some of the ideas of Remark 12.5.1.2 to the setting of an arbitrary
deformation context.

Proposition 12.5.2.1. Let pA, tEαuαPT q be a deformation context, and let u : X Ñ Y be
a map of formal moduli problems X,Y : Aart Ñ S. The following conditions are equivalent:

p1q For every small map φ : AÑ B in Aart, u has the right lifting property with respect
to Spfpφq : SpfpBq Ñ SpfpAq.

p2q For every small map φ : AÑ B in Aart, the induced map XpAq Ñ XpBq ˆY pBq Y pAq

is surjective on connected components.

p3q For every elementary map φ : AÑ B in Aart, the induced map XpAq Ñ XpBq ˆY pBq
Y pAq is surjective on connected components.

p4q For every α P T and every n ą 0, the homotopy fiber of the map XpΩ8´nEαq Ñ
Y pΩ8´nEαq (taken over the point determined by the base point of Ω8´nEα) is con-
nected.

p5q For every α P T , the map of spectra XpEαq Ñ Y pEαq is connective (that is, it has a
connective homotopy fiber).

Proof. The equivalence p1q ô p2q is tautological, and the implications p2q ñ p3q ñ p4q
are evident. Let S be the collection of all small morphisms A Ñ B in Aart for which the
map XpAq Ñ XpBq ˆY pBq Y pAq is surjective on connected components. The implication
p3q ñ p2q follows from the observation that S is closed under composition, and the implication
p4q ñ p3q from the observation that S is stable under the formation of pullbacks. The
equivalence p4q ô p5q follows from fact that a map of M ÑM 1 of spectra is connective if
and only if the induced map Ω8´nM Ñ Ω8´nM 1 has connected homotopy fibers for each
n ą 0.

Definition 12.5.2.2. Let pA, tEαuαPT q be a deformation context, and let u : X Ñ Y be a
map of formal moduli problems. We will say that u is smooth if it satisfies the equivalent
conditions of Proposition 12.5.2.1. We will say that a formal moduli problem X is smooth
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if the map X Ñ ˚ is smooth, where ˚ denotes the final object of ModuliA (that is, the
constant functor Aart Ñ S taking the value ˚ P S).

Remark 12.5.2.3. We can regard condition p5q of Proposition 12.5.2.1 as providing a
differential criterion for smoothness: a map of formal moduli problems X Ñ Y is smooth
if and only if it induces a connective map of tangent complexes XpEαq Ñ Y pEαq. This
should be regarded as an analogue of the condition that a map of smooth algebraic varieties
f : X Ñ Y induce a surjective map of tangent sheaves TX Ñ f˚TY .

12.5.3 Existence of Smooth Hypercoverings

Our next goal is to show that in the setting of an arbitrary deformation context, every
formal moduli problem admits a smooth hypercovering by “affine” objects.

Definition 12.5.3.1. Let pA, tEαuαPT q be a deformation context. We let PropAartq denote
the 8-category of pro-objects of Aart: that is, the smallest full subcategory of FunpAart,Sqop

which contains all corepresentable functors and is closed under filtered colimits. We will
say that a functor X : Aart Ñ S is prorepresentable if it belongs to the full subcategory
PropAartq Ď FunpAart,Sqop.

Remark 12.5.3.2. Let pA, tEαuαPT q be a deformation context. Since filtered colimits
in S are left exact (Example HTT.7.3.4.4 ), the full subcategory ModuliA is stable under
filtered colimits in FunpAart,Sq. Since every corepresentable functor is a formal moduli
problem (Example 12.1.3.3), we conclude that PropAartqop is contained in ModuliA (as a
full subcategory of FunpAart,Sq). That is, every prorepresentable functor Aart Ñ S is a
formal moduli problem.

Proposition 12.5.3.3. Let pA, tEαuαPT q be a deformation context and let X : Aart Ñ S
be a formal moduli problem. Then there exists a simplicial object X‚ in ModuliA{X with the
following properties:

p1q Each Xn is prorepresentable.

p2q For each n ě 0, let MnpX‚q denote the nth matching object of the simplicial object X‚
(computed in the 8-category ModuliA{X). Then the canonical map Xn Ñ MnpX‚q is
smooth.

In particular, X is equivalent to the geometric realization |X‚| in FunpAart,Sq.

The proof of Proposition 12.5.3.3 will use the following simple observation:

Lemma 12.5.3.4. Let pA, tEαuαPT q be a deformation context, and let S be the collection
of all morphisms in the 8-category ModuliA of the form SpfpBq Ñ SpfpAq, where the
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underlying map A Ñ B is a small morphism in Aart. Let f : X Ñ Y be a morphism
in ModuliA, and suppose that f is a transfinite pushout of morphisms in S. If X is
prorepresentable, then Y is prorepresentable.

Proof. Since the collection of prorepresentable objects of ModuliA is closed under filtered
colimits, it will suffice to prove the following:

p˚q If φ : AÑ B is a small morphism in ModuliA and we are given a pushout diagram

SpfpBq //

Spfpφq
��

X

f

��
SpfpAq // Y

where X is prorepresentable, then Y is also prorepresentable.

To prove p˚q, we note that X can be regarded as an object of PropAartqop
SpfpBq{ » IndppAart

{B q
opq.

In other words, we have X » lim
ÝÑβ

SpfpBβq for some filtered diagram tBβu in Aart
{B . Then

Y » lim
ÝÑ
pSpfpBβq >SpfpBq SpfpAqq.

For any formal moduli problem Z, we have

MapModuliApSpfpBβq >SpfpBq SpfpAq, Zq » ZpBβq ˆZpBq ZpAq » ZpBβ ˆB Aq

(since the map φ : A Ñ B is small), so that SpfpBβq >SpfpBq SpfpAq » SpfpBβ ˆB Aq is
corepresented by an object Bβ ˆB A. It follows that Y is prorepresentable, as desired.

Proof of Proposition 12.5.3.3. Let X be an arbitrary formal moduli problem. Applying
Proposition ??, we can choose a simplicial object X‚ of ModuliA{X such that each of the
maps Xn ÑMnpX‚q is smooth, and each of the maps LnpX‚q Ñ Xn is a transfinite pushout
of morphisms of the form Spf B Ñ Spf A, where AÑ B is an elementary morphism in Aart.
Using Remark 12.4.3.4 and Lemma 12.5.3.4, we conclude that each Xn is prorepresentable.
This proves p1q and p2q. To prove that X » |X‚| in FunpAart,Sq, it suffices to observe that
condition p2q implies that X‚pAq is a hypercovering of XpAq for every A P Aart.

12.5.4 The Proof of Theorem 12.3.3.5

Our proof of Theorem 12.3.3.5 will make use of the following:

Lemma 12.5.4.1. Let pA, tEαuαPT q be a deformation context and let D : Aop Ñ B be a
deformation theory. For every Artinian object A P Aart, DpAq is a compact object of the
8-category B.
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Proof. Since A is Artinian, there exists a sequence of elementary morphisms

A “ A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ An » ˚

in A. We will prove that DpAiq is a compact object of B by descending induction on i.
When i “ n, the desired result follows from the observation that D carries final objects
of A to initial objects of B (Proposition 12.3.2.2). Assume therefore that i ă n and that
DpAi`1q P B is compact. Since the map Ai Ñ Ai`1 is elementary, we have a pullback
diagram σ :

Ai //

��

˚

��
Ai`1 // Ω8´nEα

for some α P T and some n ą 0. It follows from Proposition 12.3.2.2 that Dpσq is a pushout
square in B. Consequently, to show that DpAiq is a compact object of B, it will suffice
to show that DpAi`1q, Dp˚q, and DpΩ8´nEαq are compact objects of B. In the first two
cases, this follows from the inductive hypothesis. For the third, we note that the functor
corepresented by DpΩ8´nEαq is given by the composition B eα

ÝÑ Sp Ω8´n
ÝÑ S, where eα is the

functor described in Proposition 12.3.3.1. Our assumption that D is a deformation theory
guarantees that eα commutes with sifted colimits. The functor Ω8´n : Sp Ñ S commutes
with filtered colimits, so the composite functor B Ñ S commutes with filtered colimits which
implies that Ω8´nEα is a compact object of B.

Proof of Theorem 12.3.3.5. Let pA, tEαuαPT q be a deformation context, let D : Aop Ñ B
be a deformation theory, and let Ψ : B Ñ ModuliA Ď FunpAart,Sq denote the functor given
by the formula ΨpKqpAq “ MapBpDpAq,Kq. We wish to prove that Ψ is an equivalence of
8-categories. It is clear that Ψ preserves small limits. It follows from Lemma 12.5.4.1 that
Ψ preserves filtered colimits and is therefore accessible. Using Corollary HTT.5.5.2.9 we
conclude that Ψ admits a left adjoint Φ. To prove that Ψ is an equivalence, it will suffice to
show:

paq The functor Ψ is conservative.

pbq The unit transformation u : idModuli Ñ Ψ ˝ Φ is an equivalence.

We begin with the proof of paq. Suppose we are given a morphism f : K Ñ K 1 in B have
that Ψpfq is an equivalence. In particular, for each α P T and each n ě 0, we have homotopy
equivalences

MapBpDpΩ8´nEαq,Kq » ΨpKqpDΩ8´nEαq
Ñ ΨpK 1qpDΩ8´nEαq
» MapBpDpΩ8´nEαq,K 1q.
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It follows that eαpKq » eαpK
1q, where eα : B Ñ Sp is the functor described in Proposition

12.3.3.1. Since the functors eα are jointly conservative (Definition 12.3.3.2), we conclude
that f is an equivalence.

We now prove pbq. Let X P ModuliA be a formal moduli problem; we wish to show that
u induces an equivalence X Ñ pΨ ˝ ΦqpXq. According to Proposition 12.2.2.6, it suffices to
show that for each α P T , the induced map

θ : XpEαq Ñ pΨ ˝ ΦqpXqpEαq » eαpΦXq

is an equivalence of spectra. To prove this, choose a simplicial object X‚ of ModuliA{X
satisfying the requirements of Proposition 12.5.3.3. For every object A P Aart, the simplicial
space X‚pAq is a hypercovering of XpAq so that the induced map |X‚pAq| Ñ XpAq is a
homotopy equivalence. It follows that X is a colimit of the diagram X‚ in the 8-category
FunpAart,Sq and therefore also in the 8-category ModuliA. Similarly, XpEαq is equivalent
to the geometric realization |X‚pEαq| in the 8-category FunpSfin

˚ ,Sq and therefore also in
the 8-category of spectra. Since Φ preserves small colimits and eα preserves sifted colimits,
we have

eαpΦpXqq » eαpΦ|X‚|q » |eαpΦX‚q|.

It follows that θ is a geometric realization of a simplicial morphism θ‚ : X‚pEαq Ñ eαpΦX‚q.
It will therefore suffice to prove that each θn is an equivalence, which is equivalent to the
requirement that u induces an equivalence Xn Ñ pΨ ˝ ΦqpXnq. In other words, we may
replace X by Xn, and thereby reduce to the case where X is prorepresentable. Since the
functors Φ and Ψ both commute with filtered colimits, we may further reduce to the case
where X “ SpfpAq for some A P Aart. Since ΦpSpfpAqq “ DpAq, it suffices to show that for
each B P Aart, the map

MapApA,Bq Ñ MapBpDpBq,DpAqq » MapApA,D
1DpBqq

is a homotopy equivalence, which follows immediately from Proposition 12.3.2.2.



Chapter 13

Moduli Problems for Commutative
Algebras

Let κ be a field of characteristic zero. We will say that an augmented E8-algebra
A P CAlgaug

κ is Artinian if it satisfies the conditions of Proposition 12.1.2.9: that is, if A is
connective, π˚A is a finite dimensional vector space over κ, and π0A is a local ring (note
that this terminology is slightly misleading, since it includes the hypothesis that A is local:
see Warning 12.1.2.6). We let CAlgart

κ denote the full subcategory of CAlgaug
κ spanned by

the Artinian E8-algebra over κ (which we can also identify with a full subcategory of the
8-category CAlgκ: see Remark 12.1.2.10).

Recall that a functor X : CAlgart
κ Ñ S is called a formal moduli problem if it satisfies

the following pair of conditions (see Proposition 12.1.3.7):

paq The space Xpκq is contractible.

pbq For every pullback square
R //

��

R0

��
R1 // R01

in CAlgart
κ , if both the maps π0R0 Ñ π0R01 Ð π0R1 are surjective, then the diagram

of spaces
XpRq //

��

XpR0q

��
XpR1q // XpR01q

is also a pullback square.

1095
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In this section, we will study the full subcategory Moduliκ Ď FunpCAlgart
κ ,Sq spanned by

the formal moduli problems.
We begin by applying the general formalism of §12.2. To every formal moduli problem

X P Moduliκ, we can associate a spectrum TX P Sp, which is given informally by the formula
Ω8´nTX “ Xpκ ‘ Σnpκqq for n ě 0. In particular, we can identify the 0th space Ω8TX
with Xpκrεs{pε2qq, an analogue of the classical Zariski tangent space. We refer to TX as the
tangent complex of the formal moduli problem X.

The construction X ÞÑ TX commutes with finite limits. In particular, we have a homotopy
equivalence of spectra Σ´1TX » TΩX , where ΩX denotes the formal moduli problem given
by the formula pΩXqpRq “ ΩXpRq (note that a choice of point η in the contractible space
Xpκq determines a base point of each XpRq, so the loop space ΩXpRq is well-defined). The
formal moduli problem ΩX is equipped with additional structure: it can be regarded as a
group object of Moduliκ. It is therefore natural to expect that the tangent complex TΩX
should behave somewhat like the tangent space to an algebraic group. We can formulate
this expectation more precisely as follows:

p˚q Let X P Moduliκ be a formal moduli problem. Then the shifted tangent complex
Σ´1TX » TΩX can be identified with the underlying spectrum of a differential graded
Lie algebra over κ.

Example 13.0.0.1. Suppose that A is a commutative κ-algebra equipped with an augmen-
tation ε : AÑ κ. Then R defines a formal moduli problem X over κ, which carries a Artinian
E8-algebra R over κ to the mapping space MapCAlgaug

κ
pA,Rq. When κ is of characteristic

zero, the tangent complex TX can be identified with the complex of Andre-Quillen cochains
taking values in κ. In this case, the existence of a natural differential graded Lie algebra
structure on Σ´1TX is proven in [183].

Assertion p˚q has a converse: every differential graded Lie algebra g˚ arises (up to
quasi-isomorphism) as the shifted tangent complex Σ´1TX of some X P Moduliκ. Moreover,
the formal moduli problem X is determined by g˚ up to equivalence. More precisely, we
have the following stronger version of Theorem 11.5.0.13:

Theorem 13.0.0.2. Let κ be a field of characteristic zero and let Lieκ denote the 8-
category of differential graded Lie algebras over κ (see Definition 13.1.4.1). Then there is
an equivalence of 8-categories Ψ : Lieκ Ñ Moduliκ. Moreover, the functor g˚ ÞÑ Σ´1TΨpg˚q
is equivalent to the forgetful functor Lieκ Ñ Sp (which carries a differential graded Lie
algebra g˚ to the generalized Eilenberg-MacLane spectrum determined by its underlying chain
complex).

Our main goal in this section is to prove Theorem 13.0.0.2. The first step is to construct
the functor Ψ : Lieκ Ñ Moduliκ. Let g˚ be a differential graded Lie algebra over κ, and
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let R P CAlgart
κ . Since κ has characteristic zero, we can identify R with an (augmented)

commutative differential graded algebra over κ; let us denote its augmentation ideal by
mR. The tensor product mR bκ g˚ then inherits the structure of a differential graded Lie
algebra over κ. Heuristically, Ψpg˚qpRq can be described as the space of Maurer-Cartan
elements of the differential graded Lie algebra mR bκ g˚: that is, the space of solutions to
the Maurer-Cartan equation dx “ rx, xs. There does not seem to be a homotopy-invariant
definition for the space MCpg˚q of Maurer-Cartan elements of an arbitrary differential
graded Lie algebra over κ: the well-definedness of MCpmR bκ g˚q relies on the nilpotence
properties of the tensor product mR bκ g˚ (which result from our assumption that R is
Artinian). Nevertheless, there is a well-defined bifunctor MC : CAlgaug

κ ˆLieκ Ñ S which is
given heuristically by pR, g˚q ÞÑ MCpmR bκ g˚q. This functor can be defined rigorously by
the formula MCpR, g˚q “ MapLieκpDpRq, g˚q, where D : pCAlgaug

κ qop Ñ Lieκ is the Koszul
duality functor that we will describe in §13.3. Roughly speaking, the Koszul dual of an
augmented E8-algebra R is a differential graded Lie algebra DpRq P Lieκ which corepresents
the functor g˚ ÞÑ MCpmR bκ g˚q. However, it will be more convenient for us to describe
DpRq instead by the functor that represents. We will define D as the right adjoint to the
functor C˚ : Lieκ Ñ pCAlgaug

κ qop, which assigns to each differential graded Lie algebra
g˚ the commutative differential graded algebra C˚pg˚q of Lie algebra cochains on g˚ (see
Construction 13.2.5.1).

Remark 13.0.0.3. For our purposes, the Maurer-Cartan equation dx “ rx, xs (and the
associated space MCpg˚q of Maurer-Cartan elements of a differential graded Lie algebra
g˚) are useful heuristics for understanding the functor Ψ appearing in Theorem 13.0.0.2.
However, they will play no further role in our discussion. For a construction of the functor
Ψ which makes direct use of the Maurer-Cartan equation, we refer the reader to the work of
Hinich (see [95]). We also refer the reader to the work of Goldman and Millson ([82] and
[83]).

Let us now outline the contents of this section. We begin in §13.1 with a brief review of
the theory of differential graded Lie algebras and a definition of the8-category Lieκ. In §13.2,
we will review the homology and cohomology of (differential graded) Lie algebras, which
are computed by the Chevalley-Eilenberg constructions g˚ ÞÑ C˚pg˚q and g˚ ÞÑ C˚pg˚q.
The functor C˚ carries quasi-isomorphisms of differential graded Lie algebras to quasi-
isomorphisms between (augmented) commutative differential graded algebras, and therefore
descends to a functor from the 8-category Lieκ to the 8-category pCAlgaug

κ qop. We will show
that this functor admits a right adjoint D and study its properties. The main point is to
show that D is a deformation theory (in the sense of Definition 12.3.3.2) on the deformation
context pCAlgaug

κ , tEuq of Example 12.1.1.2. We will use this fact in §13.3 to deduce Theorem
13.0.0.2 from Theorem 12.3.3.5.

To every formal modui problem X : CAlgart
κ Ñ S, we can introduce an 8-category
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QCohpXq of quasi-coherent sheaves on X. It follows from Theorem 13.0.0.2 that X is
completely determined by a differential graded Lie algebra g˚ (which is well-defined up
to quasi-isomorphism). In §13.4, we will show that QCohpXq can be identified with a
full subcategory of the 8-category of (differential graded) representations of g˚ (Theorem
13.4.0.1).
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13.1 Differential Graded Lie Algebras

Let κ be a field of characteristic zero. Theorem 13.0.0.2 asserts that the 8-category
Moduliκ of formal moduli problems over κ is equivalent to the 8-category Lieκ of differential
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graded Lie algebras over κ. Our goal in this section is to explain the definition of Lieκ and
establish some of its basic properties. Along the way, we will introduce some of the notation
and constructions which will play a role in our proof of Theorem 13.0.0.2.

13.1.1 Chain Complexes of Vector Spaces

We begin by reviewing some terminology.

Notation 13.1.1.1. Let κ be a field. We let Vectdg
κ denote the category of differential

graded vector spaces over κ: that is, the category whose objects are chain complexes

¨ ¨ ¨ Ñ V1 Ñ V0 Ñ V´1 Ñ ¨ ¨ ¨

and whose morphisms are maps of chain complexes. We will regard Vectdg
κ as a symmetric

monoidal category with respect to the tensor product of chain complexes described by the
formula

pV bW qp “
à

p“p1`p2
Vp1 bκWp2 ,

and the symmetry isomorphism V bW »WbV is the sum of the isomorphisms Vp1bκWp2 »

Wp2 bκ Vp1 , multiplied by the factor p´1qp1p2 .
Recall that the category Vectdg

κ admits a model structure, where:

pCq A map of chain complexes f : V˚ ÑW˚ is a cofibration it is degreewise monic: that is,
each of the induced maps Vn ÑWn is injective.

pF q A map of chain complexes f : V˚ Ñ W˚ is a fibration it is degreewise epic: that is,
each of the induced maps Vn ÑWn is surjective.

pW q A map of chain complexes f : V˚ Ñ W˚ is a weak equivalence if it is a quasi-
isomorphism: that is, if it induces an isomorphism of homology groups HnpV q Ñ HnpW q

for every integer n.

Moreover, the underlying 8-category of Vectdg
κ can be identified with the 8-category Modκ

of κ-module spectra (see Remark HA.7.1.1.16 ).

Notation 13.1.1.2. Let V be a graded vector space over κ. We let V _ denote the graded
dual of V , given by pV _qp “ HomκpV´p, κq. For each integer n, we let V rns denote the same
vector space with grading shifted by n, so that V rnsp “ Vp´n.

Definition 13.1.1.3. We let Algdg
κ denote the category of associative algebra objects of

Vectdg
κ , and CAlgdg

κ the category of commutative algebra objects of Vectdg
κ . We will refer to

objects of Algdg
κ as differential graded algebras over κ and objects of CAlgdg

κ as commutative
differential graded algebras over κ. According to Propositions HA.4.1.8.3 and HA.4.5.4.6 ,
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Algdg
κ and CAlgdg

κ admit combinatorial model structures, where a map f : A˚ Ñ B˚ of
(commutative) differential graded algebras is a weak equivalence or fibration if the underlying
map of chain complexes is a weak equivalence or fibration.

Remark 13.1.1.4. In more concrete terms, a differential graded algebra A is a chain
complex pA˚, dq together with a unit 1 P A0 and a collection of κ-bilinear multiplication
maps Ap ˆAq Ñ Ap`q satisfying

1x “ x1 “ x xpyzq “ pxyqz dpxyq “ dxy ` p´1qpxdy

for x P Ap, y P Aq, and z P Ar. The differential graded algebra A is commutative if
xy “ p´1qpqyx for x P Ap, y P Aq.

13.1.2 The Ordinary Category of Differential Graded Lie Algebras

We now introduce our main objects of interest.

Definition 13.1.2.1. A differential graded Lie algebra over κ is a chain complex pg˚, dq of
κ-vector spaces equipped with a Lie bracket r, s : gp bκ gq Ñ gp`q satisfying the following
conditions:

p1q For x P gp and y P gq, we have rx, ys ` p´1qpqry, xs “ 0.

p2q For x P gp, y P gq, and z P gr, we have

p´1qprrx, ry, zss ` p´1qpqry, rz, xss ` p´1qqrrz, rx, yss “ 0.

p3q The differential d is a derivation with respect to the Lie bracket. That is, for x P gp
and y P gq, we have drx, ys “ rdx, ys ` p´1qprx, dys.

Given a pair of differential graded Lie algebras pg˚, dq and pg1˚, d1q, a morphism of differential
graded Lie algebras from pg˚, dq to pg1˚, d1q is a map of chain complexes F : pg˚, dq Ñ pg1˚, d

1q

such that F prx, ysq “ rF pxq, F pyqs for x P gp, y P gq. With this notion of morphism, we can
regard the collection of differential graded Lie algebras over κ as a category which we will
denote by Liedg

κ .

Example 13.1.2.2. Let A˚ be a (possibly nonunital) differential graded algebra over κ.
Then A˚ has the structure of a differential graded Lie algebra, where the Lie bracket
r, s : Ap bκ Aq Ñ Ap`q is given by the graded commutator rx, ys “ xy ´ p´1qpqyx.

Remark 13.1.2.3. The construction of Example 13.1.2.2 determines a forgetful functor
Algdg

κ Ñ Liedg
κ . This functor admits a left adjoint U : Liedg

κ Ñ Algdg
κ , which assigns to every

differential graded Lie algebra g˚ its universal enveloping algebra Upg˚q. The universal
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enveloping algebra Upg˚q can be described as the quotient of the tensor algebra
À

ně0 g
bn
˚ by

the two-sided ideal generated by all expressions of the form pxb yq ´ p´1qpqpy b xq ´ rx, ys,
where x P gp and y P gq. The collection of such expressions is stable under the differential
on

À

ně0 g
bn
˚ , so that Upg˚q inherits the structure of a differential graded algebra.

The universal enveloping algebra Upg˚q admits a natural filtration

Upg˚q
ď0 Ď Upg˚q

ď1 Ď ¨ ¨ ¨ ,

where Upg˚qďn is the image of
À

0ďiďn g
bi
˚ in Upg˚q. The associated graded algebra of

Upg˚q is commutative (in the graded sense), so that the canonical map g˚ Ñ Upg˚q
ď1

induces a map of differential graded algebras θ : Sym˚
κ g˚ Ñ grUpg˚q. According to the

Poincare-Birkhoff-Witt theorem, the map θ is an isomorphism (see Theorem 2.3 of [220] for
a proof in the setting of differential graded Lie algebras).

Remark 13.1.2.4. Let g˚ be a differential graded Lie algebra over κ. For each integer n,
we let ψ : gbn˚ Ñ Upg˚q denote the multiplication map. For every permutation σ of the
set t1, 2, . . . , nu, let φσ denote the induced automorphism of gbn˚ . The map 1

n!
ř

σ ψ ˝ φσ
is invariant under precomposition with each of the maps φσ, and therefore factors as a
composition gbn˚ Ñ Symn

κpg˚q
Ψn
ÝÑ Upg˚q

ďn Ď Upg˚q. We observe that the composite map
Symn

κpg˚q
Ψn
ÝÑ Upg˚q

ďn Ñ grn Upg˚q coincides with the isomorphism of Remark 13.1.2.3. It
follows that the direct sum of the maps Ψn determines an isomorphism of chain complexes
θ : Sym˚

κpg˚q Ñ Upg˚q.

13.1.3 The Model Structure on Liedg
κ

We now show that the category of differential graded Lie algebras over a field κ of
characteristic zero admits a model structure.

Definition 13.1.3.1. Let f : g˚ Ñ g1˚ be a map of differential graded Lie algebras over κ.
We will say that f is a quasi-isomorphism if the underlying map of chain complexes is a
quasi-isomorphism: that is, if F induces an isomorphism on homology.

Proposition 13.1.3.2. Let κ be a field of characteristic zero. Then the category Liedg
κ of

differential graded Lie algebras over κ has the structure of a left proper combinatorial model
category, where:

pW q A map of differential graded Lie algebras f : g˚ Ñ g1˚ is a weak equivalence if and only
if it is a quasi-isomorphism (Definition 13.1.3.1).

pF q A map of differential graded Lie algebras f : g˚ Ñ g1˚ is a fibration if and only if it is
a fibration of chain complexes: that is, if and only if each of the induced maps gp Ñ g1p
is a surjective map of vector spaces over κ.
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pCq A map of differential graded Lie algebras f : g˚ Ñ g1˚ is a cofibration if and only if it
has the left lifting property with respect to every map of differential graded Lie algebras
which is simultaneously a fibration and a weak equivalence.

Remark 13.1.3.3. In the situation of Proposition 13.1.3.2, the forgetful functor Algdg
κ Ñ

Liedg
κ of Example 13.1.2.2 preserves fibrations and weak equivalences, and is therefore a right

Quillen functor. It follows that the universal enveloping algebra functor U : Liedg
κ Ñ Algdg

κ

is a left Quillen functor.

Lemma 13.1.3.4. Let f : g˚ Ñ g1˚ be a map of differential graded Lie algebras over κ. The
following conditions are equivalent:

p1q The map f is a quasi-isomorphism.

p2q The induced map Upg˚q Ñ Upg1˚q is a quasi-isomorphism of differential graded algebras.

Proof. We note that if g : V˚ ÑW˚ is any map of chain complexes of κ-vector spaces, then g
is a quasi-isomorphism if and only if g induces a quasi-isomorphism Sym˚

κpV˚q Ñ Sym˚
κpW˚q.

The desired assertion now follows immediately from Remark 13.1.2.4.

Proof of Proposition 13.1.3.2. The forgetful functor Liedg
κ Ñ Vectdg

κ has a left adjoint (the
free Lie algebra functor), which we will denote by Free : Vectdg

κ Ñ Liedg
κ . For every integer

n, let Epnq˚ denote the acyclic chain complex

¨ ¨ ¨ Ñ 0 Ñ 0 Ñ κ » κÑ 0 Ñ 0 Ñ ¨ ¨ ¨

which is nontrivial only in degrees n and pn´1q, and let BEpnq˚ be the subcomplex of Epnq˚
which is nontrivial only in degree pn´ 1q. Let C0 be the collection of morphisms in Liedg

k of
the form FreepBEpnq˚q Ñ FreepEpnq˚q, and let W be the collection of all quasi-isomorphisms
in Liedg

κ . We claim that the collection of morphisms C0 and W satisfy the hypotheses of
Proposition HTT.A.2.6.15 :

p1q The collectionW of quasi-isomorphisms is perfect, in the sense of Definition HTT.A.2.6.12 .
This follows immediately from Corollary HTT.A.2.6.14 , applied to the forgetful functor
Liedg

κ Ñ Vectdg
κ .

p2q The collection of weak equivalences is stable under pushouts of morphisms in C0. In
other words, if f : g˚ Ñ g1˚ is a quasi-isomorphism of differential graded Lie algebras
over κ and x P gn´1 is a cycle classifying a map FreepBEpnq˚q Ñ g˚, we must show
that the induced map

g˚ >FreepBEpnq˚q FreepEpnq˚q Ñ g1˚ >FreepBEpnq˚q FreepEpnq˚q
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is also a quasi-isomorphism of differential graded Lie algebras. Let A˚ “ Upg˚q, let
A1˚ “ Upg1˚q, and let F : A˚ Ñ A1˚ be the map induced by f . We will abuse notation
and identify x with its image in An´1. Using Lemma 13.1.3.4, we see that F is a
quasi-isomorphism, and we are reduced to showing that F induces a quasi-isomorphism
B˚ Ñ B1˚, where B˚ is the differential graded algebra obtained from A˚ by adjoining
a class y in degree n with dy “ x, and B1˚ is defined similarly. To prove this, we note
that B˚ admits an exhaustive filtration

A˚ » Bď0
˚ Ď Bď1

˚ Ď Bď2
˚ Ď ¨ ¨ ¨

where Bďm is the subspace of B spanned by all expressions of the form a0ya1y ¨ ¨ ¨ yak,
where k ď m and each ai belongs to the image of A˚ in B˚. Similarly, we have a
filtration

A1˚ » B1ď0
˚ Ď B1ď1

˚ Ď B1ď2
˚ Ď ¨ ¨ ¨

of B1˚. Since the collection of quasi-isomorphisms is stable under filtered colimits, it
will suffice to show that for each m ě 0, the map of chain complexes Bďm˚ Ñ B1ďm˚ is
a quasi-isomorphism. The proof proceeds by induction on m, the case m “ 0 being
true by assumption. If m ą 0, we have a diagram of short exact sequences of chain
complexes

0 // Bďm´1
˚

//

��

Bďm˚ //

��

Bďn˚ {Bďm´1
˚

//

φ
��

0

0 // B1ďm´1
˚

// B1ďm˚ // B1ďm˚ {B1ďm´1
˚

// 0.

The inductive hypothesis implies that the left vertical map is a quasi-isomorphism.
To complete the inductive step, it will suffice to show that φ is a quasi-isomorphism.
For this, we observe that the construction a0 b ¨ ¨ ¨ b an ÞÑ a0ya1y ¨ ¨ ¨ yam determines
an isomorphism of chain complexes Abm`1

˚ Ñ Bďm˚ {Bďm´1
˚ , and similarly we have

an isomorphism A1bm`1
˚ Ñ B1ďm˚ {B1ďm´1

˚ . Under these isomorphisms, φ corresponds
to the map Abm`1

˚ Ñ A1bm`1
˚ given by the pm` 1qst tensor power of F , which is a

quasi-isomorphism by assumption.

p3q Let f : g˚ Ñ g1˚ be a map of differential graded Lie algebras which has the right lifting
property with respect to every morphism in C0. We claim that f is a quasi-isomorphism.
To prove this, we must show that f induces an isomorphism θn : Hnpg˚q Ñ Hnpg

1
˚q for

every integer n (here Hnph˚q denotes the homology of the underlying chain complex
of h˚). We first show that θn is surjective. Choose a class η P Hnpg

1
˚q, represented

by a cycle x P g1n. Then x determines a map u : FreepEpnq˚q Ñ g1˚ which vanishes
on FreepBEpnq˚q. It follows that u “ f ˝ v, where v : FreepEpnq˚q Ñ g˚ is a map of
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differential graded Lie algebras which vanishes on FreepBEpn ´ 1q˚q. The map v is
determined by a cycle x P gn which represents a homology class lifting η.

We now prove that θn is injective. Let η P Hnpg˚q be a class whose image in Hnpg
1
˚q

vanishes. Then η is represented by a cycle x P gn such that fpxq “ dy, for some y P g1n`1.
Then y determines a map of differential graded Lie algebras u : FreepEpn` 1q˚q Ñ g1

such that u|FreepBEpn`1q˚q lifts to g˚. It follows that u “ f ˝ v, for some map of
differential graded Lie algebras FreepEpn`1q˚q Ñ g˚ such that v|FreepBEpn`1q˚q classifies
x. It follows that x is a boundary, so that η “ 0.

It follows from Proposition HTT.A.2.6.15 that Liedg
κ admits a left proper combinatorial

model structure having W as the class of weak equivalences and C0 as a class of generating
cofibrations. To complete the proof, it will suffice to show that a morphism u : g˚ Ñ g1˚
in Liedg

κ is a fibration if and only if it is degreewise surjective. Suppose first that u is a
fibration. For each integer n, let in : 0 Ñ FreepEpnq˚q be the evident map of differential
graded Lie algebras. Then in factors as a composition

0 Ñ 0 >FreepBEpn´1q˚q FreepEpn´ 1q˚q » FreepBEpnq˚q Ñ FreepEpnq˚q,

and is therefore a cofibration. The unit map κ » Up0q Ñ UpFreepEpnq˚qq »
À

mě0Epnq
bm
˚

is a quasi-isomorphism (since Epnq is acyclic and therefore each Epnqbm˚ is acyclic for m ą 0).
It follows that in is a trivial cofibration, so that u has the right lifting property with respect
to in. Unwinding the definitions, we conclude that the map gn Ñ g1n is surjective.

Now suppose that u is degreewise surjective; we wish to show that u is a fibration. Let
S be the collection of all trivial cofibrations in Liedg

κ which have the left lifting property
with respect to u. Let f : h˚ Ñ h2˚ be a trivial cofibration in Liedg

k ; we will prove that f P S.
Note that f contains each of the trivial cofibrations in : 0 Ñ FreepEpnq˚q above. Using
the small object argument, we can factor f as a composition h˚

f 1
Ñ h1˚

f2
Ñ h2˚ where f 1 P S

and f2 has the right lifting property with respect to each of the morphisms in: that is, f2

is degreewise surjective. Since f and f 1 are quasi-isomorphisms, we conclude that f2 is a
quasi-isomorphism. It follows that f2 is a trivial fibration in the category of chain complexes
and therefore a trivial fibration in the category Liedg

κ . Because f is a cofibration, the lifting
problem

h˚
f 1 //

f
��

h1˚

f2

��
g2˚

id //

??

g2˚

admits a solution. We conclude that f is a retract of f 1, and therefore also belongs to S.
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13.1.4 The 8-Category of Differential Graded Lie Algebras

For our purposes, it will be convenient to view the collection of differential graded Lie
algebras (over a field κ of characteristic zero) not as an ordinary category or as a model
category, but as an 8-category.

Definition 13.1.4.1. Let κ be a field of characteristic zero. We let Lieκ denote the
underlying 8-category of the model category Liedg

k . More precisely, Lieκ denotes an 8-
category equipped with a functor u : Liedg

κ Ñ Lieκ having the following universal property:
for every 8-category C, composition with u induces an equivalence from FunpLieκ, Cq to
the full subcategory of FunpLiedg

κ , Cq spanned by those functors F : Liedg
κ Ñ C which carry

quasi-isomorphisms in Liedg
κ to equivalences in C (see Definition HA.1.3.4.15 and Remark

HA.1.3.4.16 ). We will refer to Lieκ as the 8-category of differential graded Lie algebras over
κ.

Remark 13.1.4.2. Using Proposition HA.7.1.1.15 , we conclude that the underlying 8-
category of the model category Vectdg

κ can be identified with the 8-category Modκ “
ModκpSpq of κ-module spectra. The forgetful functor Liedg

κ Ñ Vectdg
κ preserves quasi-

isomorphisms, and therefore induces a forgetful functor Lieκ Ñ Modκ.

Proposition 13.1.4.3. Let J be a small category which is sifted (when viewed as an
8-category). The forgetful functor G : Liedg

κ Ñ Vectdg
κ preserves J -indexed homotopy

colimits.

Proof. Let G1 : Algdg
κ Ñ Vectdg

κ be the forgetful functor. It follows from Remark 13.1.2.4
that the functor G is a retract of G1 ˝U . It will therefore suffice to show that G1 ˝U preserves
J -indexed homotopy colimits. The functor U is a left Quillen functor (Remark 13.1.3.3)
and therefore preserves all homotopy colimits. We are therefore reduced to showing that G1

preserves J -indexed homotopy colimits, which is a special case of Lemma HA.4.1.8.13 .

Proposition 13.1.4.4. The 8-category Lieκ is presentable, and the forgetful functor θ :
Lieκ Ñ Modκ of Remark 13.1.4.2 preserves small sifted colimits.

Proof. The first assertion follows from Proposition HA.1.3.4.22 . Using Propositions HA.1.3.4.24 ,
HA.1.3.4.25 , and 13.1.4.3, we conclude that θ preserves colimits indexed by small cate-
gories J which are sifted (when viewed as 8-categories). Since any filtered 8-category I
admits a left cofinal map A Ñ I where A is a filtered partially ordered set (Proposition
HTT.5.3.1.18 ), we conclude that θ preserves small filtered colimits. Since θ also preserves
geometric realizations of simplicial objects, it preserves all small sifted colimits (Corollary
HTT.5.5.8.17 ).

Remark 13.1.4.5. The forgetful functor θ : Lieκ Ñ Modκ is monadic: that is, θ admits
a left adjoint Free : Modκ Ñ Lieκ, and induces an equivalence of Lieκ with LModT pModκq,
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where T is the monad on Modκ given by the composition θ˝Free. This follows from Theorem
HA.4.7.0.3 and Proposition 13.1.4.4.

13.2 Homology and Cohomology of Lie Algebras

Throughout this section, we fix a field κ, which we will assume to be of characteristic zero
unless otherwise specified. Let g be a Lie algebra over κ and let Upgq denote its universal
enveloping algebra. We can regard κ as a (left or right) module over Upgq, with each element
of g acting trivially on κ. The homology and cohomology groups of g are defined by

Hnpgq “ TorUpgqn pκ, κq Hnpgq “ ExtnUpgqpκ, κq.

These groups can be described more explicitly as the homology groups of chain complexes
C˚pgq and C˚pgq, called the (homological and cohomological) Chevalley-Eilenberg complexes
of g. In this section, we will review the definition of these chain complexes (in the more
general setting of differential graded algebras) and establish some of their basic properties.
These constructions will play an important role in the construction of the deformation theory
D : pCAlgaug

κ qop Ñ Lieκ required for the proof of Theorem 13.0.0.2.

13.2.1 The Homological Chevalley-Eilenberg Complex

Suppose that g is a Lie algebra over κ. To obtain a concrete description of the homology
and cohomology groups H˚pgq and H˚pgq, it is convenient to choose explicit resolution of
the ground field κ as a (left) module over the universal enveloping algebra Upgq. We can
obtain such a resolution by taking the universal enveloping algebra of an acyclic differential
graded Lie algebra which contains g.

Construction 13.2.1.1. Let g˚ be a differential graded Lie algebra over κ. We define
another differential graded Lie algebra Cnpgq˚ as follows:

p1q For each n P Z, the vector space Cnpgq˚ is given by gn ‘ gn´1. We will denote the
elements of Cnpgqn by x` εy, where x P gn and y P gn´1.

p2q The differential on Cnpgq˚ is given by the formula dpx` εyq “ dx` y ´ εdy.

p3q The Lie bracket on Cnpgq˚ is given by rx`εy, x1`εy1s “ rx, x1s`εpry, x1s`p´1qprx, y1sq,
where x P gp.

We will refer to Cnpgq˚ as the cone on g˚.

Remark 13.2.1.2. Let g˚ be a differential graded Lie algebra over κ. Then the underlying
chain complex Cnpgq˚ can be identified with the mapping cone for the identity id : g˚ Ñ g˚.
It follows that Cnpgq˚ is a contractible chain complex. In particular, the map 0 Ñ Cnpgq˚ is
a quasi-isomorphism of differential graded Lie algebras.
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Construction 13.2.1.3. Let g˚ be a differential graded Lie algebra over κ. The zero map
g˚ Ñ 0 induces a morphism of differential graded algebras Upg˚q Ñ Up0q » κ. There is
an evident map of differential graded Lie algebras g˚ Ñ Cnpgq˚. We let C˚pg˚q denote the
chain complex given by the tensor product UpCnpgq˚q bUpg˚q κ. We will refer to C˚pg˚q as
the homological Chevalley-Eilenberg complex of g˚.

Remark 13.2.1.4. Let g˚ be a differential graded Lie algebra over a field κ, and regard
the shifted chain complex g˚r1s as a graded Lie algebra with a vanishing Lie bracket. There
is an evident map of graded Lie algebras (without differential) g˚r1s Ñ Cnpgq˚. This map
induces a map of graded vector spaces Sym˚

κpg˚r1sq » Upg˚r1sq Ñ UpCnpgq˚q. Using the
Poincare-Birkhoff-Witt theorem, we obtain an isomorphism of graded right Upg˚q-modules

UpCnpgq˚q » Sym˚
κpg˚r1sq bκ Upg˚q,

hence an isomorphism of graded vector spaces φ : Sym˚
κpg˚r1sq Ñ C˚pg˚q. We will often

identify C˚pg˚q with the symmetric algebra Sym˚
κpg˚r1sq using the isomorphism φ. Note

that φ is not an isomorphism of differential graded vector spaces. Unwinding the definitions,
we see that the differential on C˚pg˚q is given by the formula

Dpx1 . . . xnq “
ÿ

1ďiďn
p´1qp1`¨¨¨`pi´1x1 . . . xi´1dxixi`1 . . . xn `

ÿ

1ďiăjďn
p´1qpippi`1`¨¨¨`pj´1qx1 . . . xi´1xi`1 . . . xj´1rxi, xjsxj`1 . . . xn.

Remark 13.2.1.5. Let g˚ be a differential graded Lie algebra over κ. The filtration of
Sym˚

κpg˚q by the subspaces Symďn
κ pg˚q »

À

iďn Symi
κpg˚q determines a filtration

κ » Cď0
˚ pg˚q ãÑ Cď1

˚ pg˚q ãÑ Cď2
˚ pg˚q ãÑ ¨ ¨ ¨

Using the formula for the differential on C˚pg˚q given in Remark 13.2.1.4, we deduce the
existence of canonical isomorphisms Cďn˚ pg˚q{C

ďn´1
˚ pg˚q » Symn

κpg˚q in the category of
differential graded vector spaces over κ.

13.2.2 Lie Algebra Homology

If g˚ is a differential graded Lie algebra, we will refer to the homology groups of the
chain complex C˚pg˚q as the Lie algebra homology groups of g˚. This is a quasi-isomorphism
invariant:

Proposition 13.2.2.1. Let f : g˚ Ñ g1˚ be a quasi-isomorphism between differential graded
Lie algebras over κ. Then the induced map C˚pg˚q Ñ C˚pg

1
˚q is a quasi-isomorphism of

chain complexes.
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Proof. Since the collection of quasi-isomorphisms is closed under filtered colimits, it will
suffice to show that the induced map θn : Cďn˚ pg˚q Ñ Cďn˚ pg1˚q is a quasi-isomorphism for
each n ě 0. We proceed by induction on n. When n “ 0, the map θ is an isomorphism and
there is nothing to prove. Assume therefore that n ą 0, so that we have a commutative
diagram of short exact sequences

0 // Cďn´1
˚ pg˚q //

θn´1
��

Cďn˚ pg˚q

θn
��

// Symn
κpg˚r1sq //

φ

��

0

0 // Cďn´1
˚ pg1˚q // Cďn˚ pg1˚q // Symn

κpg
1
˚r1sq // 0

Using the inductive hypothesis, we are reduced to showing that the map φ is a quasi-
isomorphism. Since κ is a field of characteristic zero, the map φ is a retract of the map
gbn˚ rns Ñ g1bn˚ rns, which is a quasi-isomorphism by virtue of our assumption that f is a
quasi-isomorphism.

Remark 13.2.2.2. Let g˚ be a differential graded Lie algebra over κ. Then UpCnpgq˚q
can be regarded as a cofibrant replacement for κ in the model category of differential
graded right modules over Upg˚q. The tensor product functor M˚ ÞÑ M˚ bUpg˚q κ is a
left Quillen functor. It follows that C˚pg˚q is an explicit model for the left derived tensor
product κbLUpg˚q κ. Equivalently, the image of C˚pg˚q in Modκ can be identified with the
8-categorical relative tensor product κbA κ, where A P Algκ is the image of Upg˚q under
the functor Algdg

κ Ñ Algκ.

13.2.3 The Case of a Free Algebra

If g˚ is a free differential graded Lie algebra, then the homology of g˚ is easy to describe.

Proposition 13.2.3.1. Let V˚ be a differential graded vector spaces over κ and let g˚ be
free differential graded Lie algebra generated by V˚. Then the inclusion of chain complexes

ξ : κ‘ V˚r1s ãÑ κ‘ g˚r1s » Cď1
˚ pg˚q ãÑ C˚pg˚q

is a quasi-isomorphism.

To prove Proposition 13.2.3.1, we will need some general observations about differential
graded algebras and their modules.

Lemma 13.2.3.2. Let A˚ be a differential graded algebra over a field κ (not necessarily
assumed to be of characteristic zero), and let f : M˚ Ñ N˚ be a map of differential graded
right modules over A˚. Assume that:
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p1q The differential graded module M˚ can be written as a union of submodules

0 “Mp0q˚ ĎMp1q˚ ĎMp2q˚ Ď ¨ ¨ ¨

where each successive quotient Mpnq˚{Mpn´1q˚ is isomorphic (as a differential graded
A˚-module) to a free differential graded module of the form

À

αA˚reαs.

p2q The chain complex N˚ is acyclic.

Then the map f is nullhomotopic. That is, there exists a map of graded A˚-modules
h : M˚ Ñ N˚`1 satisfying dh` hd “ f .

Proof. We construct a compatible family of nullhomotopies hpnq : Mpnq˚ Ñ N˚`1 for
the maps fpnq “ f |Mpnq˚ . When n “ 0, such a nullhomotopy exists and is unique (since
Mp0q˚ » 0). Assume therefore that n ą 0 and that hpn´1q has been constructed. Condition
p1q guarantees that Mpnq˚{Mpn´ 1q˚ is freely generated (as an A˚-module) by generators
xα P pMpnq{Mpn´ 1qqeα . Choose xα PMpnqeα representing xα. We compute

dpfpxαq ´ hpn´ 1qdxαq “ fpdxαq ´ dphpn´ 1qdxαq “ hpn´ 1qd2xα “ 0.

Since N˚ is acyclic, we can choose yα P Neα`1 with dyα “ fpxαq ´ hpn ´ 1qdxα. We now
define hpnq to be the unique map of graded A˚-modules from Mpnq˚ to N˚`1 which extends
hpn´ 1q and carries xα to yα; it is easy to see that hpnq has the desired properties.

Lemma 13.2.3.3. Let A˚ be a differential graded algebra over a field κ (not necessarily
assumed to be of chracteristic zero), and let M˚ be a chain complex of differential graded
right modules over A˚. Assume that M˚ is acyclic and satisfies condition p1q of Lemma
13.2.3.2. Then, for any differential graded left A˚-module N˚, the tensor product M˚bA˚N˚
is acyclic.

Proof. It follows from Lemma 13.2.3.2 that identity map id : M˚ ÑM˚ is chain homotopic
to zero: that is, there exists a map h : M˚ Ñ M˚`1 such that dh ` hd “ id. Then h

determines a contracting homotopy for M˚ bA˚ N˚, so that M˚ bA˚ N˚ is also acyclic.

Proof of Proposition 13.2.3.1. Note that the universal enveloping algebra Upg˚q can be
identified with the tensor algebra T pV˚q »

À

ně0 V
bn
˚ . Let M˚ Ď UpCnpgq˚q be the right

T pV˚q-submodule generated by κ ‘ V˚r1s. Unwinding the definitions, we see that M˚ is
isomorphic (as a chain complex) to the direct sum κ ‘M 1

˚, where M 1
˚ is isomorphic to

mapping cone of the identity map from
À

ně1 V
bn
˚ to itself. It follows that the inclusion

κ ãÑM˚ is a quasi-isomorphism. The composite inclusion κ ãÑM˚ Ñ UpCnpgq˚q is given
by applying the universal enveloping algebra functor U to the inclusion of differential graded
Lie algebras 0 Ñ Cnpgq˚, and is therefore a quasi-isomorphism by Remark 13.2.1.2 and
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Lemma 13.1.3.4. It follows that the inclusion M˚ Ď UpCnpgq˚q is a quasi-isomorphism, so
that the quotient Q˚ “ UpCnpgq˚q{M˚ is acyclic. It is not difficult to see that Q˚ satisfies
hypothesis p1q of Lemma 13.2.3.2; in particular, Q˚ is free as a graded A˚-module. It follows
that we have an exact sequence of chain complexes

0 ÑM˚ bT pV˚q κ
θ
Ñ UpCnpgq˚q bT pV˚q κÑ Q˚ bT pV˚q κÑ 0.

Lemma 13.2.3.3 guarantees that Q˚ bT pV˚q κ is acyclic, so that θ determines a quasi-
isomorphism κ‘ V˚r1s Ñ C˚pg˚q.

13.2.4 Compatibility with Colimits

It follows from Proposition 13.2.2.1 that the Chevalley-Eilenberg construction C˚ :
Liedg

κ Ñ Vectdg
κ induces a functor of 8-categories Lieκ Ñ Modκ, which we will also denote

by C˚. Note that C˚ carries the initial object 0 P Lieκ to C˚p0q » κ, and therefore induces
a functor Lieκ Ñ pModκqκ{. We will abuse notation by denoting this functor also by C˚.

Proposition 13.2.4.1. The functor of 8-categories C˚ : Lieκ Ñ pModκqκ{ preserves small
colimits.

Proof. By virtue of Corollary HTT.4.2.3.11 and Lemma HA.1.3.3.10 , it will suffice to show
that C˚ preserves finite coproducts and small sifted colimits. We begin by showing that C˚
preseres small sifted colimits. Using Lemma HTT.4.4.2.8 and Proposition HTT.4.3.1.5 , we
are reduced to showing that the composite functor Lieκ Ñ pModκqκ{ Ñ Modκ preserves small
sifted colimits. The proof of Proposition 13.2.2.1 shows that for each n ě 0, the functor Cďn˚
preserves quasi-isomorphisms and therefore induces a functor of 8-categories Lieκ Ñ Modκ.
Since the collection of quasi-isomorphisms in Vectdg

κ is closed under filtered colimits, every
colimit diagram in Vectdg

κ indexed by a filtered category determines a homotopy colimit
diagram in Vectdg

κ and therefore a colimit diagram in Modκ (Proposition HA.1.3.4.24 ). It
follows that the functor C˚ : Lieκ Ñ Modκ is a colimit of the functors Cďn˚ : Lieκ Ñ Modκ.
Using Proposition HTT.5.5.2.3 , we are reduced to proving that each of the functors Cďn˚
preserves small sifted colimits. We proceed by induction on n, the case n ă 0 being trivial.
Since the field κ has characteristic zero, the construction V˚ ÞÑ Symn

κ V˚ preserves quasi-
isomorphisms and therefore induces a functor Symn

κ : Modκ Ñ Modκ. Let θ : Lieκ Ñ Modκ
be the forgetful functor. Using Remark 13.2.1.5 and Corollary HA.1.3.2.16 , we obtain a
fiber sequence of functors

Cďn´1
˚ Ñ Cďn˚ Ñ Symn

κ ˝θr1s

from Lieκ to Modκ. Since Cďn´1
˚ preserves sifted colimits by the inductive hypothesis and

θr1s preserves sifted colimits by Proposition 13.1.4.4, it will suffice to show that the functor
Symn

κ preserves sifted colimits. Since the characteristic of κ is zero, the functor Symn
κ is a

retract of the functor V˚ ÞÑ V bn˚ , which evidently preserves sifted colimits.
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We now prove that C˚ : Lieκ Ñ pModκqκ{ preserves finite coproducts. Since C˚ preserves
initial objects by construction, it will suffice to show that C˚ preserves pairwise coproducts.
That is, we must show that for every pair of differential graded Lie algebras g˚ and g1˚ having
a coproduct g2˚ in Lieκ, the diagram σ :

κ //

��

C˚pg˚q

��
C˚pg

1
˚q

// C˚pg
2
˚q

is a pushout square in Modκ.
Let Free : Modκ Ñ Lieκ be a left adjoint to the forgetful functor. Using Proposition

HA.4.7.3.14 and Proposition 13.1.4.4, we deduce that g˚ can be obtained as the geometric
realization of a simplicial object pg˚q‚ of Lieκ, where each pg˚qn lies in the essential image
of Free. Similarly, we can write g1˚ as the geometric realization of a simplicial object
pg1˚q‚. Then pg2˚q‚ is the geometric realization of a simplicial object pg2˚q‚ of Lieκ, given by
rns ÞÑ pg˚qn > pg

1
˚qn. Since the functor C˚ commutes with geometric realization of simplicial

objects, it will suffice to show that the diagram

κ //

��

C˚ppg˚qnq

��
C˚ppg

1
˚qnq

// C˚ppg
2
˚qnq

is a pushout square in Modκ, for each n ě 0. We may therefore reduce to the case where
g˚ » FreepV˚q, g1˚ » FreepV 1˚q for some objects V˚, V 1˚ P Modκ. Then g2˚ » FreepV˚ ‘ V 1˚q.
Using Proposition 13.2.3.1, we can identify σ with the diagram

κ //

��

κ‘ V˚r1s

��
κ‘ V 1˚r1s // κ‘ V˚r1s ‘ V 1˚r1s,

which is evidently a pushout square in the 8-category Modκ.

13.2.5 The Cohomological Chevalley-Eilenberg Complex

We now turn our attention to the cohomology of (differential graded) Lie algebras.

Construction 13.2.5.1. Let g˚ be a differential graded Lie algebra over κ. We let C˚pg˚q
denote the linear dual of the chain complex dual to C˚pg˚q. We will refer to C˚pg˚q as the
cohomological Chevalley-Eilenberg complex of g˚. We will identify elements λ P Cnpg˚q with
the dual space of the degree n part of the graded vector space Sym˚

κpg˚r1sq.
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There is a natural multiplication on C˚pg˚q, which carries λ P Cppg˚q and µ P Cqpg˚q to
the element λµ P Cp`qpg˚q characterized by the formula

pλµqpx1 . . . xnq “
ÿ

S,S1

εpS, S1qλpxi1 . . . ximqµpxj1 . . . xjn´mq.

Here xi P gri denotes a sequence of homogeneous elements of g˚, the sum is taken over all
disjoint sets S “ ti1 ă . . . ă imu and S1 “ tj1 ă . . . ă jn´mu range with SYS1 “ t1, . . . , nu
and ri1`¨ ¨ ¨`rim “ p, and εpS, S1q “

ś

iPS1,jPS,iăjp´1qrirj . With this multiplication, C˚pg˚q
has the structure of a commutative differential graded algebra over κ.

Remark 13.2.5.2. Let g˚ be a differential graded Lie algebra over κ. Unwinding the
definitions, we can identify C˚pg˚q with the chain complex of right Upg˚q-linear maps from
UpCnpgq˚q into κ. Arguing as in Remark 13.2.2.2, we see that C˚pg˚q is a model for the
right derived mapping complex of right Upg˚q-module maps from κ to itself.

Remark 13.2.5.3. Let κ be a field of characteristic zero, let V˚ be a chain complex of vector
spaces over κ, and let g˚ be the free differential graded Lie algebra generated by V˚. The
quasi-isomorphism κ‘ V˚r1s Ñ C˚pg˚q of Proposition 13.2.3.1 induces a quasi-isomorphism
of chain complexes C˚pg˚q Ñ κ‘ V _˚ r´1s, where V _˚ denote the dual of the chain complex
V˚. In fact, this map is a quasi-isomorphism of commutative differential graded algebras
(where we regard κ‘ V _˚ r´1s as a trivial square-zero extension of κ).

Notation 13.2.5.4. If the field κ has characteristic zero, Proposition 13.2.2.1 implies that
the construction g˚ ÞÑ C˚pg˚q carries quasi-isomorphisms of differential graded Lie algebras
to quasi-isomorphisms of commutative differential graded algebras. Consequently, we obtain
a functor between 8-categories Lieκ Ñ CAlgop

κ , which we will also denote by C˚.
Note that the functor C˚ carries the initial object 0 P Lieκ to the final object κ P CAlgop

κ .
We therefore obtain a functor Lieκ Ñ pCAlgop

κ qκ{ » pCAlgaug
κ qop, where CAlgaug

κ “ pCAlgκq{κ
denotes the8-category of augmented E8-algebras over κ. We will abuse notation by denoting
this functor also by C˚.

Proposition 13.2.5.5. The functor C˚ : Lieκ Ñ pCAlgaug
κ qop preserves small colimits.

Proof. Using Corollary HA.3.2.2.5 , we are reduced to proving that the composite functor

Lieκ C˚
ÝÑ pCAlgaug

κ qop ÝÑ pModop
κ qκ{

preserves small colimits. We note that this composition can be identified with the functor

Lieκ
C˚
ÝÑ pModκqκ{

D
ÝÑ pModop

κ qκ{,

where D is induced by the κ-linear duality functor V˚ ÞÑ V _˚ from Vectdg
κ to itself. According

to Proposition 13.2.4.1, it will suffice to show that D preserves small colimits. Using
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Propositions HA.1.3.4.23 , HA.1.3.4.24 , and HA.1.3.4.25 , we are reduced to the problem of
showing that the functor V˚ ÞÑ V _˚ carries homotopy colimits in Vectdg

κ to homotopy limits
in Vectdg

κ , which is clear.

13.3 Koszul Duality

Let κ be a field of characteristic zero and let C˚ : Lieκ Ñ pCAlgaug
κ qop be the functor

constructed in Notation 13.2.5.4. Proposition 13.2.5.5 implies that C˚ preserves small colimits.
Since the 8-category Lieκ is presentable (Proposition 13.1.4.4), Corollary HTT.5.5.2.9 (and
Remark HTT.5.5.2.10 ) imply that C˚ admits a right adjoint D : pCAlgaug

κ qop Ñ Lieκ. We
will refer to the functor D as Koszul duality. The main goal of this section is to prove the
following result:

Theorem 13.3.0.1. Let κ be a field of characteristic zero and let pCAlgaug
κ , tEuq be the

deformation context of Example 12.1.1.2. Then the Koszul duality functor D : pCAlgaug
κ qop Ñ

Lieκ is a deformation theory (see Definition 12.3.3.2).

We will then deduce Theorem 13.0.0.2 by combining Theorems 13.3.0.1 and 12.3.3.5.

Remark 13.3.0.2. Let us temporarily distinguish in notation between the functor of
8-categories C˚ : Lieκ Ñ pCAlgaug

κ qop and the functor of ordinary categories Liedg
κ Ñ

pCAlgdg
κ q

op
{κ of Construction ??, denoting the latter by C˚dg. It follows from Proposition

13.2.5.5 and the adjoint functor theorem that the functor C˚ admits a right adjoint, the
Koszul duality functor D : pCAlgaug

κ qop Ñ Lieκ. Consequently, the functor C˚dg descends to a
functor from the homotopy category of Liedg

κ to the homotopy category of pCAlgdg
κ q

op
{κ which

admits a right adjoint. However, the functor C˚dg itself does not admit a right adjoint; in
particular, it is not a left Quillen functor. Consequently, it is not so easy to give a concrete
description of the functor D using the formalism of differential graded Lie algebras. To obtain
a more explicit construction of D, it is convenient to work in the setting of L8-algebras.
Since we will not need this construction, we do not describe it here.

Remark 13.3.0.3. We will often abuse notation by identifying the Koszul duality functor
D : pCAlgaug

κ qop Ñ Lieκ with the induced functor between opposite 8-categories CAlgaug
κ Ñ

Lieop
κ .

13.3.1 The Double Dual

To prove Theorem 13.3.0.1, we must show that the adjunction Lieκ
C˚ //

pCAlgaug
κ qop

D
oo is

not too far from being an equivalence of 8-categories. More precisely, we have the following
result:
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Proposition 13.3.1.1. Let g˚ be a differential graded Lie algebra over a field κ of charac-
teristic zero. Assume that:

paq For every integer n, the vector space gn is finite dimensional.

pbq The vector space gn is trivial for n ě 0.

Then the unit map u : g˚ Ñ DC˚pgq is an equivalence in Lieκ.

The proof of Proposition 13.3.1.1 will require some preliminaries.

Notation 13.3.1.2. Let F : pVectdg
κ q

op Ñ Vectdg
κ be the functor between ordinary categories

which carries each chain complex pV˚, dq to the dual chain complex pV _˚ , d_q, where V _n “

HomκpV´n, κq and the differential d_ is characterized by the formula d_pλqpvq`p´1qnλpdvq “
0 for λ P V _n . The construction V˚ ÞÑ V _˚ preserves quasi-isomorphisms and therefore induces
a functor Modop

κ Ñ Modκ, which we will denote by V ÞÑ V _. We will refer to this functor
as κ-linear duality.

Remark 13.3.1.3. For every pair of κ-module spectra V,W P Modκ, we have canonical
homotopy equivalences

MapModκpV,W
_q » MapModκpV bW,κq » MapModκpW,V

_q.

It follows that κ-linear duality, when regarded as a functor Modκ Ñ Modop
κ , is canonically

equivalent to the left adjoint of the κ-linear duality functor Modop
κ Ñ Modκ.

Let us now study the composite functor pCAlgaug
κ qop D

Ñ Lieκ θ
Ñ Modκ, where θ denotes

the forgetful functor. This composition admits a left adjoint Modκ Free
ÝÑ Lieκ C˚

ÝÑ pCAlgaug
κ qop,

which is in turn induced by the map of ordinary categories Vectdg
κ Ñ CAlgdg

κ given by V˚ ÞÑ
C˚pFreepV˚qq. Remark 13.2.5.3 supplies a (functorial) quasi-isomorphism of commutative
differential graded algebras C˚pFreepV˚qq Ñ κ ‘ V _˚ r´1s. It follows that the underlying
functor of 8-categories Modκ Ñ pCAlgaug

κ qop is given by composing the κ-linear duality
functor Modκ Ñ Modop

κ with the functor Modop
κ Ñ pCAlgaug

κ qop given by the formation of
square-zero extensions M ÞÑ κ‘ Σ´1M . Both of these functors admit left adjoints: in the
first case, the left adjoint is given by κ-linear duality (Remark 13.3.1.3), and in the second
it is given by the formation of the relative cotangent complex A ÞÑ Σ´1pLA{κ bA κq » Lκ{A
respectively. We have proven:

Proposition 13.3.1.4. Let κ be a field of characteristic zero and let θ : Lieκ Ñ Modκ be
the forgetful functor. Then the composite functor pCAlgaug

κ qop D
ÝÑ Lieκ θ

ÝÑ Modκ is given
on objects by A ÞÑ L_κ{A.
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To prove Proposition 13.3.1.1, we need to analyze the unit map g˚ Ñ DC˚pg˚q associated
to a differential graded Lie algebra g˚. We begin with a few preliminary remarks regarding
explicit models for the cotangent fiber of a commutative differential graded algebra.

Definition 13.3.1.5. Let A˚ be a commutative differential graded algebra over κ equipped
with an augmentation u : A˚ Ñ κ. The kernel of u is an ideal mA Ď A˚. We let IndecpAq˚
denote the quotient mA{m

2
A, which we regard as a complex of κ-vector spaces. We will refer

to IndecpAq˚ as the chain complex of indecomposables in A˚.

Remark 13.3.1.6. The construction V˚ ÞÑ κ‘ V˚ determines a right Quillen functor from
Vectdg

κ to pCAlgdg
κ q{κ, whose left adjoint is given by A˚ ÞÑ IndecpAq˚. It follows that the

functor IndecpAq˚ preserves weak equivalences between cofibrant objects of pCAlgdg
κ q{κ, and

induces a functor of 8-categories CAlgaug
κ Ñ Modκ. This functor is evidently left adjoint to

the formation of trivial square-zero extensions, and is therefore given by A ÞÑ LA{κ bA κ »

Σ´1Lκ{A. It follows that for every cofibrant augmented commutative differential graded
algebra A˚, the canonical map A˚ Ñ κ ‘ IndecpAq˚ induces an equivalence Σ´1Lκ{A˚ »

LA˚{κbA˚ κÑ IndecpAq˚ in Modκ (here we abuse notation by identifying A˚ with its image
in the 8-category CAlgaug

κ ).

Proof of Proposition 13.3.1.1. Let g˚ be a differential graded Lie algebra which is concen-
trated in negative degrees and finite-dimensional in each degree. We wish to show that
the unit map g˚ Ñ DC˚pgq is an equivalence in the 8-category Lieκ. Since the forgetful
functor Lieκ Ñ Modκ is conservative, it will suffice to show that u induces an equiva-
lence g˚ Ñ L_κ{C˚pg˚q in Modκ (see Proposition 13.3.1.4). This map admits a predual
u_ : LC˚pg˚q{κ bC˚pgq κÑ Σ´1g_˚ . We will prove that u_ is an equivalence.

Consider the isomorphism of graded vector spaces C˚pg˚q »
ś

ně0pSymn
κ g˚r1sq_. Choose

a basis ty1, . . . , ypu for the vector space g´1, and let tx1, . . . , xpu be the dual basis for g_1 ,
so that C0pg˚q can be identified with the power series ring κrrx1, . . . , xpss. Let A˚ “
À

ně0pSymn
κpg˚r1sqq_, and regard A˚ as a graded subalgebra of C˚pg˚q. It is easy to see

that A˚ is a differential graded subalgebra of C˚pg˚q, and that A0 contains the polynomial
ring κrx1, . . . , xps. Using paq and pbq, we deduce that A˚ is a graded polynomial ring
generated by g_˚ r´1s, and that the natural map

A˚ bκrx1,...,xps κrrx1, . . . , xpss Ñ C˚pg˚q

is an isomorphism of commutative differential graded algebras. Since κrrx1, . . . , xpss is flat
over κrx1, . . . , xps, it follows that for each n P Z we have an isomorphism in homology

HnpA˚q bκrx1,...,xps κrrx1, . . . , xpss Ñ HnpC
˚pg˚qq,
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so that the diagram
κrx1, . . . , xps //

��

κrrx1, . . . , xpss

��
A˚ // C˚pg˚q

is a pushout square in the 8-category CAlgκ. We therefore obtain equivalences

LC˚pg˚q{A˚ bC˚pg˚q κ » Lκrrx1,...,xpss{κrx1,...,xps bκrrx1,...,xpss κ » LR{κ » 0.

where R denotes the tensor product κrrx1, . . . , xpss bκrx1,...,xps κ » κ. It follows that u
can be identified with the map LA˚{κ bA˚ κ Ñ Σ´1g_˚ which classifies the morphism
A˚ Ñ κ ‘ g_˚ r´1s » κ ‘ IndecpAq˚. Since A˚ is a cofibrant differential graded algebra,
Remark 13.3.1.6 implies that u is an equivalence in Modκ.

13.3.2 The Main Theorem

The first step in our proof of Theorem 13.3.0.1 is to show that the Koszul duality functor
D : pCAlgaug

κ qop Ñ Lieκ is a weak deformation theory: that is, it satisfies axioms pD1q, pD2q,
and pD3q of Definition 12.3.1.1. Axioms pD1q and pD2q are easy: we have already seen
that Lieκ is presentable (Proposition 13.1.4.4), and the functor D admits a left adjoint by
construction. Axiom pD3q is a consequence of the following more precise assertion:

Proposition 13.3.2.1. Let κ be a field of characteristic zero and let g˚ be a differential
graded Lie algebra over κ. We will say that g˚ is good if it is cofibrant (with respect to the
model structure on Liedg

κ described in Proposition 13.1.3.2) and there exists a graded vector
subspace V˚ Ď g˚ satisfying the following conditions:

piq For every integer n, the vector space Vn is finite dimensional.

piiq For every nonnegative integer n, the vector space Vn is trivial.

piiiq The graded vector space V˚ freely generates g˚ as a graded Lie algebra.

Let C be the full subcategory of Lieκ spanned by those objects which can be represented by
good objects of Liedg

κ . Then C satisfies conditions paq, pbq, pcq, and pdq of Definition 12.3.1.1.

Proof. We verify each condition in turn:

paq Let g˚ P C; we wish to prove that the unit map g˚ Ñ DC˚pgq is an equivalence in
Lieκ. We may assume without loss of generality that g˚ is good, so there is a graded
subspace V˚ Ď g˚ satisfying conditions piq, piiq, and piiiq. As a graded vector space,
g˚ is isomorphic to a direct summand of the augmentation ideal in Upgq »

À

ně0 V
bn
˚ .

It follows that each gn is finite dimensional, and that gn » 0 for n ě 0. The desired
result now follows from Proposition 13.3.1.1.
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pbq The initial object 0 P Lieκ obviously belongs to C.

pcq We must show that for each n ě 0, the square-zero algebra κ ‘ Σnpκq P CAlgaug
κ is

equivalent to C˚pgq for some object g˚ P C. In fact, we can take g˚ to be the differential
graded Lie algebra freely generated by the complex κr´n´ 1s (see Remark 13.2.5.3).

pdq Suppose that n ď ´2 and that we are given a pushout diagram

Freepκrnsq α //

v

��

g˚

��
0 // g1˚

in the 8-category Lieκ. Here Free : Modκ Ñ Lieκ denotes the left adjoint to the
forgetful functor. We wish to show that if g˚ P C, then g1˚ P C. We may assume without
loss of generality that g˚ is good. Since Freepκrnsq is a cofibrant object of Liedg

κ and g˚
is fibrant, we can assume that α is given by a morphism Freepκrnsq Ñ g˚ in the category
Liedg

κ (determined by a cycle x P gn). The morphism v in Lieκ is represented by the
cofibration of differential graded Lie algebras j : FreepBEpn` 1q˚q ãÑ FreepEpn` 1q˚q
(see the proof of Proposition 13.1.3.2). Form a pushout diagram σ :

FreepBEpnq˚q //

j

��

g˚

j1

��
FreepEpn` 1q˚q // h˚.

Since j is a cofibration and g˚ is cofibrant, σ is a homotopy pushout diagram in Liedg
κ ,

so that h˚ and g1˚ are equivalent in Lieκ (Proposition HA.1.3.4.24 ). It will therefore
suffice to show that the object h˚ P Liedg

κ is good.

The differential graded Lie algebra h˚ is cofibrant by construction. Let V˚ Ď g be a
subspace satisfying conditions piq, piiq, and piiiq, and let y P hn`1 be the image of a
generator of Epn` 1qn`1. Let V 1˚ be the graded subspace of h˚ generated by V˚ and y.
It is trivial to verify that V 1˚ satisfies conditions piq, piiq, and piiiq.

Proof of Theorem 13.3.0.1. Proposition 13.3.2.1 shows that the functor D : pCAlgaug
κ qop Ñ

Lieκ is a weak deformation theory. We will show that it satisfies axiom pD4q of Definition
12.3.3.2. Let E P SppCAlgaug

κ q be the spectrum object of Example 12.1.1.2, so that Ω8´nE »
κ‘ Σnpκq. The proof of Proposition 13.3.2.1 shows that DpEq is given by the infinite loop
object tFreepκr´n ´ 1squně0 in Lieop

κ ; here Free : Modκ Ñ Lieκ denotes a left adjoint
to the forgetful functor θ : Lieκ Ñ Modκ. It follows that the functor e : Lieκ Ñ Sp



1118 CHAPTER 13. MODULI PROBLEMS FOR COMMUTATIVE ALGEBRAS

appearing in Definition 12.3.3.2 is given by ΣpF ˝ θq, where F : Modκ “ ModκpSpq Ñ Sp
and θ : Lieκ Ñ Modκ are the forgetful functors. Since F is conservative and commutes with
all colimits, it will suffice to observe that θ is conservative (which is obvious) and preserves
sifted colimits (Proposition 13.1.4.4).

Proof of Theorem 13.0.0.2. Let κ be a field of characteristic zero, and let Ψ : Lieκ Ñ
FunpCAlgart

κ ,Sq denote the functor given on objects by the formula

Ψpg˚qpRq “ MapLieκpDpRq, g˚q.

Combining Theorems 13.3.0.1 and 12.3.3.5, we deduce that Ψ is a fully faithful embedding
whose essential image is the full subcategory Moduliκ Ď FunpCAlgart

κ ,Sq spanned by the
formal moduli problems. Let X ÞÑ TX denote tangent complex functor Moduliκ Ñ Sp,
given by evaluation on the spectrum object E P SppCAlgart

κ q appearing in Example 12.1.1.2.
Then the functor g˚ ÞÑ Σ´1TΨpg˚q coincides with the functor Σ´1e, where e : Lieκ Ñ Sp
is the functor appearing in Definition 12.3.3.2. The proof of Theorem 13.3.0.1 supplies an
equivalence of Σ´1e with the forgetful functor Lieκ Ñ Modκ “ ModκpSpq Ñ Sp.

13.3.3 Classification of Prorepresentable Formal Moduli Problems

We close this section with an application of Theorem 13.3.0.1.

Proposition 13.3.3.1. Let κ be a field of characteristic zero and let X : CAlgart
κ Ñ S be a

formal moduli problem. Then following conditions are equivalent:

p1q The formal moduli problem X is prorepresentable (see Definition 12.5.3.1).

p2q Let TX denote the tangent complex of X. Then πiTX » 0 for i ą 0.

Proof. Suppose first that X is prorepresentable; we wish to show that the homotopy groups
πiTX vanish for i ą 0. The construction X ÞÑ πiTX commutes with filtered colimits. It will
therefore suffice to show that πiTX » 0 when X “ Spf A is the the functor corepresented by
an object A P CAlgart

κ . This is clear: the homotopy group πiTX » πi MapCAlgaug
κ
pA, κrεs{pε2qq

vanishes because A is connective and κrεs{pε2q is discrete.
We now prove the converse. Let X be a formal moduli problem such that πiTX » 0

for i ą 0; we wish to prove that X is prorepresentable. Let Ψ : Lieκ Ñ Moduliκ be the
equivalence of 8-categories of Theorem 13.0.0.2. Then we can assume that X “ Ψpg˚q for
some differential graded Lie algebra g˚ satisfying Hipg˚q » 0 for i ě 0 (here we let Hipg˚q

denote the ith homology group of the underlying chain complex of g˚, rather than the Lie
algebra homology of g˚ computed by the Chevalley-Eilenberg complex C˚pg˚q of §13.2).

We will construct a sequence of differential graded Lie algebras

0 “ gp0q˚ Ñ gp1q˚ Ñ gp2q˚ Ñ ¨ ¨ ¨
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equipped with maps φpiq : gpiq˚ Ñ g˚. For every integer n, choose a graded subspace
Vn Ď gn consisting of cycles which maps isomorphically onto the homology Hnpg˚q. Then we
can regard V˚ as a differential graded vector space with trivial differential. Let gp1q˚ denote
the free differential graded Lie algebra generated by V˚, and φp1q : gp1q˚ Ñ g˚ the canonical
map. Assume now that i ě 1 and that we have constructed a map φpiq : gpiq˚ Ñ g˚
extending φp1q. Then φpiq induces a surjection θ : Hnpgpiq˚q Ñ H˚pg˚q. Choose a collection
of cycles xα P gpiqnα whose images form a basis for kerpθq. Then we can write φpiqpxαq “ dyα
for some yα P gnα`1. Let gpi ` 1q˚ be the differential graded Lie algebra obtained from
gpiq˚ by freely adjoining elements Yα (in degrees nα ` 1) satisfying dYα “ xα. We let
φpi` 1q : gpi` 1q˚ Ñ g˚ denote the unique extension of φpiq satisfying φpi` 1qpYαq “ yα.

We will establish the following assertion for each integer i ě 1:

p˚iq The inclusion V´1 ãÑ gpiq´1 induces an isomorphism V´1 Ñ H´1pgpiq˚q, and the
groups gpiqn vanish for n ě 0.

Assertion p˚iq is easy when i “ 1. Let us assume that p˚iq holds, and let θ be defined as
above. Then θ is an isomorphism in degrees ě ´1, so that gpi`1q˚ is obtained from gpiq˚ by
freely adjoining generators Yα in degrees ď ´1. It follows immediately that gpi` 1qn » 0 for
n ě 0. Moreover, we can write gpi` 1q´1 » gpiq´1 ‘W , where W is the subspace spanned
by elements of the form Yα where nα “ ´2. By construction, the differential on gpi` 1q˚
induces a monomorphism from W to the quotient gpiq´2{dgpiq´1 Ď gpi` 1q´2{dgpiq´1, so
that the Lie algebras gpi` 1q˚ and gpiq˚ have the same homology in degree ´1.

Let g1˚ denote the colimit of the sequence tgpiq˚uiě0. The evident map g1˚ Ñ g˚
is surjective on homology (since the map gp1q˚ Ñ g˚ is surjective on homology). If
η P kerpH˚pg1˚q Ñ H˚pg˚q, then η is represented by a class η P kerpH˚pgpiq˚q Ñ H˚pg˚qq for
i " 0. By construction, the image of η vanishes in H˚pgpi` 1q˚q, so that η “ 0. It follows
that the map g1˚ Ñ g˚ is a quasi-isomorphism. Since the collection of quasi-isomorphisms
in Liedg

κ is closed under filtered colimits, we conclude that g˚ is a homotopy colimit of the
sequence tgpiq˚uiě0 in the model category Liedg

κ , and therefore a colimit of tgpiq˚uiě0 in the
8-category Lieκ. Setting Xpiq “ Ψpgpiq˚q P Moduliκ, we deduce that X » lim

ÝÑ
Xpiq. To

prove that X is prorepresentable, it will suffice to show that each Xpiq is prorepresentable.
We now proceed by induction on i, the case i “ 0 being trivial. To carry out the inductive

step, we note that each of the Lie algebras gpi`1q˚ is obtained from gpiq˚ by freely adjoining
a set of generators tYαuαPA of degrees nα ` 1 ď ´1, satisfying dYα “ xα P gpiqnα (this is
obvious when i “ 0, and follows from p˚iq when i ą 0). Choose a well-ordering of the set
A. For each α P A, we let găα˚ denote the Lie subalgebra of gpi ` 1q˚ generated by gpiq˚
and the elements Yβ for β ă α, and let gďα˚ be defined similarly. Set Xăα “ Ψpgăα˚ q and
Xďα “ Ψpgďα˚ q. For each α P A, we have a homotopy pushout diagram of differential graded
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Lie algebras
FreepBEpnα ` 1q˚q //

��

FreepEpnα ` 1q˚q

��
găα˚ // gďα˚ ,

hence a pushout diagram of formal moduli problems

Spfpκ‘ Σnα`1κq //

��

Spfpκq

��
Xăα // Xďα.

It follows that the map Xpiq Ñ Xpi ` 1q satisfies the criterion of Lemma 12.5.3.4. Since
Xpiq is prorepresentable, we conclude that Xpi` 1q is prorepresentable.

13.4 Quasi-Coherent Sheaves

Let κ be a field and let X : CAlgart
κ Ñ S be a formal moduli problem over κ. Following

the ideas introduced in §6.2, we can define a symmetric monoidal 8-category QCohpXq of
quasi-coherent sheaves on X. Roughly speaking, a quasi-coherent sheaf F on X is a rule
which assigns to each point η P XpRq an R-module η˚F P ModR, which is functorial in the
following sense: if φ : R Ñ R1 is a morphism in CAlgart

κ and η1 denotes the image of η in
XpR1q, then there is an equivalence η1˚F » R1 bR η

˚F in the 8-category ModR1 .
If the field κ has characteristic zero, Theorem 13.0.0.2 provides an equivalence of 8-

categories Ψ : Lieκ Ñ Moduliκ. In particular, every formal moduli problem X is equivalent
to Ψpg˚q, for some differential graded Lie algebra g˚ which is well-defined up to quasi-
isomorphism. In this section, we will explore the relationship between g˚ and the 8-category
QCohpXq. Our main result is the following:

Theorem 13.4.0.1. Let κ be a field of characteristic zero, let g˚ be a differential graded
Lie algebra over κ, and let X “ Ψpg˚q be the associated formal moduli problem. Then there
is a fully faithful symmetric monoidal embedding QCohpXq ãÑ Repg˚ , where Repg˚ denotes
the 8-category of representations of g˚ (see Notation 13.4.1.4).

Remark 13.4.0.2. It follows from Theorem 13.4.0.1 that the 8-category Repg˚ can be
regarded as a (symmetric monoidal) enlargement of the 8-category QCohpXq of quasi-
coherent sheaves on the formal moduli problem determined by g˚. This enlargement can
be described geometrically as the 8-category of Ind-coherent sheaves on X. We refer the
reader to §14.5 for a discussion of Ind-coherent sheaves in the noncommutative setting, and
to §14.6 for a noncommutative analogue of Theorem 13.4.0.1.
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13.4.1 Representations of Lie Algebras

We begin by reviewing some definitions.

Definition 13.4.1.1. Let κ be a field of characteristic zero and let g˚ be a differential
graded Lie algebra over κ. A representation of g˚ is a differential graded vector space V˚
equipped with a map g˚ bκ V˚ Ñ V˚ satisfying the identity rx, ysv “ xpyvq ` p´1qpqypxvq
for all x P gp, y P gq, and v P Vr. The representations of g˚ form a category which we will
denote by Repdg

g˚ .

Example 13.4.1.2. For every differential graded vector space V˚, the zero map g˚bκ V˚ Ñ

V˚ exhibits V˚ as a representation of g˚. In particular, taking V˚ “ κ (regarded as a graded
vector space concentrated in degree zero), we obtain a representation of g˚ on κ which we
call the trivial representation.

Note that a representation of a differential graded Lie algebra g˚ is the same data as a
(left) module over the universal enveloping algebra Upg˚q. Using Proposition HA.4.3.3.15 ,
we deduce the following:

Proposition 13.4.1.3. Let g˚ be a differential graded Lie algebra over a field κ. Then the
category Repdg

g˚ of representations of g˚ admits a combinatorial model structure, where:

pW q A map f : V˚ Ñ W˚ of representations of g˚ is a weak equivalence if and only if it
induces an isomorphism on homology.

pF q A map f : V˚ ÑW˚ of representations of g˚ is a fibration if and only if it is degreewise
surjective.

Notation 13.4.1.4. If g˚ is a differential graded Lie algebra over a field κ, we let Wg˚

denote the collection of all weak equivalences in Repdg
g˚ , and we let Repg˚ “ Repdg

g˚rW
´1
g˚ s

denote the 8-category obtained from Repdg
g˚ by formally inverting all quasi-isomorphisms:

that is, the underlying 8-category of the model category described in Proposition 13.4.1.3.
It follows from Theorem HA.4.3.3.17 that we can identify Repg˚ with the 8-category

LModUpg˚q of left modules over the universal enveloping algebra Upg˚q (which we regard as
an E1-ring). In particular, Repg˚ is a stable 8-category.

13.4.2 Cohomology with Coefficients

Let g˚ be a differential graded Lie algebra over a field κ and let V˚ be a representation of
g˚. We let C˚pg˚;V˚q denote the differential graded vector space of Upg˚q-module maps from
UpCnpgq˚q into V˚. We will refer to C˚pg˚;V˚q as the cohomological Chevalley-Eilenberg
complex of g˚ with coefficients in V˚.
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Remark 13.4.2.1. Unwinding the definitions, we see that the graded pieces Cnpg˚;V˚q can
be identified with the set of graded vector space maps Sym˚

κpg˚r1sq Ñ V˚r´ns.
We note that C˚pg˚;V˚q has the structure of a module over the differential graded algebra

C˚pg˚q. The action is given by κ-bilinear maps

Cppg˚q ˆ C
qpg˚;V˚q Ñ Cp`qpg˚;V˚q,

which carries a class λ P Cppg˚q and µ P Cqpg˚;V˚q to the element λµ P Cp`qpg˚;V˚q given
by the formula

pλµqpx1 . . . xnq “
ÿ

S,S1

εpS, S1qλpxi1 . . . ximqµpxj1 . . . xjn´mq,

as in Construction 13.2.5.1.

Remark 13.4.2.2. It follows from general nonsense that the (differential graded) endo-
morphism ring of the functor C˚pg˚; ‚q : Repdg

g˚ Ñ Moddg
κ is isomorphic to the (differential

graded) endomorphism ring of UpCnpgq˚q (regarded as a representation of g˚). In particular,
the action of C˚pg˚q on C˚pg˚; ‚q arises from an action of C˚pg˚q on UpCnpgq˚q, which
commutes with the left action of Upg˚q. For an alternative description of this action, we
refer the reader to the proof of Proposition 14.3.2.2.

Proposition 13.4.2.3. Let g˚ be a differential graded Lie algebra over a field κ of charac-
teristic zero. Then the functor V˚ ÞÑ C˚pg˚;V˚q preserves quasi-isomorphisms.

Proof. For each n ě 0 and each V˚ P Repdg
g˚ , we let FnpV˚q denote the quotient of C˚pg˚;V˚q

given by maps from Symďn
κ pg˚r1sq into V˚. Then C˚pg˚;V˚q is given by the inverse limit of

a tower of fibrations
¨ ¨ ¨ Ñ F2pV˚q Ñ F1pV˚q Ñ F0pV˚q.

It will therefore suffice to show that each of the functors Fn preserves quasi-isomorphisms.
We proceed by induction on n. If n “ 0, then Fn is the identity functor and the result is
obvious. Assume therefore that n ą 0. Let K : Repdg

g˚ Ñ Moddg
κ be the functor given by the

kernel of the surjection Fn Ñ Fn´1, so that we have a short exact sequence of functors

0 Ñ K Ñ Fn Ñ Fn´1 Ñ 0.

It will therefore suffice to show that the functor K preserves quasi-isomorphisms. Unwinding
the definitions, we see that K carries a representation V˚ to the chain complex of Σn-
equivariant maps from pg˚r1sqbn into V˚, regarded as objects of Moddg

κ . Since κ has
characteristic zero, the functor K is a direct summand of the functor K 1 : Repdg

g˚ Ñ Moddg
κ ,

which carries V˚ to the chain complex of maps from pg˚r1sqbn into V˚. This functor evidently
preserves quasi-isomorphisms.
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Remark 13.4.2.4. Let g˚ be a differential graded Lie algebra over a field κ of characteristic
zero, and let Moddg

C˚pg˚q
denote the category of differential graded modules over C˚pg˚q.

The functor C˚pg˚; ‚q : Repdg
g˚ Ñ Moddg

C˚pg˚q
preserves weak equivalences and fibrations.

Moreover, it has a left adjoint F , given by M˚ ÞÑ UpCnpgq˚q bC˚pg˚q M˚ (see Remark
13.4.2.2). It follows that C˚pg˚; ‚q is a right Quillen functor, which induces a map between
the underlying 8-categories Repg˚ Ñ ModC˚pg˚q. We will generally abuse notation by
denoting this functor also by C˚pg˚; ‚q. It admits a left adjoint f : ModC˚pg˚q Ñ Repg˚

(given by the left derived functor of F ).

13.4.3 Koszul Duality with Coefficients

In good cases, there is a close relationship between the representations of a differential
graded Lie algebra g˚ and the modules over its Chevalley-Eilenberg complex C˚pg˚q.

Proposition 13.4.3.1. Let κ be a field of characteristic zero and let g˚ be a differential
graded Lie algebra over κ. Assume that the underlying graded Lie algebra is freely generated
by a finite sequence of homogeneous elements x1, . . . , xn such that each dxi belongs to the
Lie subalgebra of g˚ generated by x1, . . . , xi´1. Let f : ModC˚pg˚q Ñ Repg˚ denote the left
adjoint to the functor C˚pg˚; ‚q (see Remark 13.4.2.4). Then f is a fully faithful embedding.

Lemma 13.4.3.2. Let κ be a field and let A˚ be an augmented differential graded algebra
over κ; we will abuse notation by identifying A˚ with its image in Modκ. Assume that
A˚ is freely generated (as a graded algebra) by a finite sequence of homogeneous elements
x1, . . . , xn, such that each dxi lies in the subalgebra generated by x1, . . . , xi´1. Then the field
κ is a compact object of the stable 8-category LModA˚.

Proof. Adding scalars to the elements xi if necessary, we may assume that the augmentation
A˚ Ñ κ annihilates each xi. For 0 ď i ď n, let Mpiq˚ denote the quotient of A˚ by the
left ideal generated by the elements x1, . . . , xi. We will prove that each Mpiq˚ is perfect as
a left A˚-module; taking i “ n, this will imply the desired result. The proof proceeds by
induction on i. If i “ 0, then Mpiq˚ » A˚ and the result is obvious. If i ą 0, then the image
of xi in Mpi´ 1q˚ is a cycle. It follows that right multiplication by xi induces a map of left
A˚-modules A˚ ÑMpi´ 1q˚, fitting into an exact sequence

0 Ñ A˚
xi
ÑMpi´ 1q˚ ÑMpiq˚ Ñ 0.

Since Mpi´ 1q˚ is perfect by the inductive hypothesis, we deduce that Mpiq˚ is perfect.

Proof of Proposition 13.4.3.1. We first show that f is fully faithful when restricted to the
full subcategory Modperf

C˚pg˚q
Ď ModC˚pg˚q spanned by the perfect C˚pg˚q-modules. Let M

and N be perfect C˚pg˚q-modules. We wish to show that f induces an isomorphism

θ : Ext˚C˚pg˚qpM,Nq Ñ Ext˚Upg˚qpfM, fNq.
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Regard M as fixed. The collection of those modules N for which θ is an isomorphism is
closed under retracts, shifts, and extensions. To prove that θ is an isomorphism for each
N P Modperf

C˚pg˚q
, it will suffice to prove that θ is an isomorphism for N “ C˚pg˚q. By the

same reasoning, we can reduce to the case where M “ C˚pg˚q. Then fM » UpCnpgq˚q and
fN » UpCnpg˚q » κ, so that Ext˚Upg˚qpfM, fNq » Ext˚Upg˚qpUpCnpgq˚q, κq is canonically
isomorphic to the Lie algebra cohomology of g˚. Under this isomorphism, θ corresponds to
the identity map.

We now prove that f is fully faithful in general. Since ModC˚pg˚q » IndpModperf
C˚pg˚q

q

and the functor f preserves filtered colimits, it will suffice to show that f carries objects
Modperf

C˚pg˚q
to perfect Upg˚q-modules. The collection of those M P ModC˚pg˚q for which fM

is perfect is closed under extensions, shifts, and retracts. It will therefore suffice to show
that fC˚pg˚q » κ is perfect as a Upg˚q-module, which follows from Lemma 13.4.3.2.

Notation 13.4.3.3. Let g˚ be a differential graded Lie algebra and let V˚ be a representation
of g˚. We will say that V˚ is connective if its image in Modκ is connective: that is, if the
homology groups of the chain complex V˚ are concentrated in non-negative degrees. We let
Repcn

g˚ denote the full subcategory of Repg˚ spanned by the connective g˚-modules.

Proposition 13.4.3.4. Let g˚ be as in the statement of Proposition 13.4.3.1, and assume
that each of the generators xi of g˚ has negative homological degree. Then the fully faithful
embedding f : ModC˚pg˚q Ñ Repg˚ induces an equivalence of 8-categories Modcn

C˚pg˚q
Ñ

Repcn
g˚.

Lemma 13.4.3.5. Let κ be a field and let A be a coconnective E1-algebra over κ (see
Definition 14.1.3.1), equipped with an augmentation ε : A Ñ κ. Let C Ď LModA be a full
subcategory which contains κ (regarded as a left A-module via the augmentation ε) and is
closed under colimits and extensions. Then C contains every left A-module whose underlying
spectrum is connective.

Proof. Let M be a left A-module whose underlying spectrum is connective. We will construct
a sequence of objects 0 “ Mp0q Ñ Mp1q Ñ Mp2q Ñ ¨ ¨ ¨ in C and a compatible family of
maps θpiq : Mpiq ÑM with the following property:

p˚q The groups πjMpiq vanish unless 0 ď j ă i, and the maps πjMpjq Ñ πjM are
isomorphisms for 0 ď j ă i.

Assume that i ě 0 and that we have already constructed a map θpiq satisfying p˚q. Let
M 1 “ fibpθpiqq, so that πjM 1 » 0 for j ă i´ 1. Using Proposition 14.1.4.1, we can construct
a map of left A-modules N Ñ M 1 which induces an isomorphism πi´1N Ñ πi´1M

1, with
πjN » 0 for j ‰ i´1. Let Mpi`1q denote the cofiber of the composite map N ÑM 1 ÑMpiq.
There is an evident map θpi` 1q : Mpi` 1q ÑM satisfying p˚q. We will complete the proof
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by showing that Mpi` 1q P C. We have a fiber sequence Mpiq ÑMpi` 1q Ñ ΣN . Lemma
?? implies that ΣN is equivalent to a direct sum of copies of Σipκq. Since C contains κ and
is closed under colimits, we conclude that ΣN P C. The module Mpiq belong to C by the
inductive hypothesis. Since C is closed under extensions, we deduce that Mpi` 1q P C.

Proof of Proposition 13.4.3.4. Since C˚pg˚q is connective, we can characterize as the smallest
full subcategory of Modcn

C˚pg˚q
which contains C˚pg˚q and is closed under colimits and

extensions. It follows that f induces an equivalence from Modcn
C˚pg˚q

to the smallest full
subcategory of Repcn

g˚ which contains fC˚pg˚q » κ and is closed under colimits and extensions.
It is clear that this full subcategory is contained in Repcn

g˚ , and the reverse inclusion follows
from Lemma 13.4.3.5.

13.4.4 Tensor Products of Lie Algebra Representations

If g˚ is a differential graded Lie algebra over a field κ, then the category Repdg
g˚ of

representations of g˚ has a natural symmetric monoidal structure: if V˚ and W˚ are repre-
sentations of g˚, then the tensor product V˚ bκW˚ can also be regarded as a representation
of g˚, with action given by the formula

xpv b wq “ pxvq b w ` p´1qpqv b pxwq

for homogeneous elements x P gp, v P Vq, and w PWr. For fixed V˚ P Repdg
g˚ , the construction

W˚ ÞÑ V˚ bκW˚ preserves quasi-isomorphisms. It follows from Proposition HA.4.1.7.4 that
the underlying 8-category Repg˚ “ Repdg

g˚rW
´1
g˚ s inherits a symmetric monoidal structure.

Remark 13.4.4.1. Let g˚ be a differential graded Lie algebra over a field κ. Then the
diagram

Repg˚ ˆRepg˚

b //

��

Repg˚

��
ModκˆModκ

b //Modκ

commutes up to equivalence. It follows that the tensor product functor b : Repg˚ ˆRepg˚ Ñ

Repg˚ preserves small colimits separately in each variable.

To discuss the functorial dependence of the symmetric monoidal structure of Remark
13.4.4.1 on g˚, it is convenient to introduce the following more elaborate construction:

Construction 13.4.4.2. Let κ be a field. We define a category Repbdg as follows:

p1q An object of Repbdg is a tuple pg˚, V 1
˚ , . . . , V

n
˚ q, where g˚ is a differential graded Lie

algebra over κ and each V i
˚ is a representation of g˚.
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p2q Given a pair of objects pg˚, V 1
˚ , . . . , V

m
˚ q, ph˚,W

1
˚ , . . . ,W

n
˚ q P Repbdg, a morphism

pg˚, V
1
˚ , . . . , V

m
˚ q Ñ ph˚,W

1
˚ , . . . ,W

n
˚ q

is given by a map α : xmy Ñ xny of pointed finite sets, a morphism φ : h˚ Ñ g˚ of
differential graded Lie algebras, and, for each 1 ď j ď n, a map

Â

αpiq“j V
i
˚ Ñ W j

˚

of representations of h˚ (here we regard each V i
˚ as a representation of h˚ via the

morphism φ).

The category Repbdg is equipped with an evident forgetful functor Repbdg Ñ pLiedg
κ q

op ˆ

F in˚, which induces a coCartesian fibration Repbdg Ñ pLiedg
κ q

op ˆ F in˚.

For our applications of Construction 13.4.4.2, we will need the following general result:

Proposition 13.4.4.3. Let p : C Ñ D be a coCartesian fibration of 8-categories. Suppose
that we are given, for each D P D, a collection of morphisms WD in the fiber CD. Suppose
further that for each morphism D Ñ D1 in D, the induced functor CD Ñ CD1 carries WD

into WD1. Let W “
Ť

DPD WD. Since p carries each morphism of W to an equivalence
in D, it factors as a composition C θ

Ñ CrW´1s
q
Ñ D. Replacing CrW´1s by an equivalent

8-category if necessary, we may assume that q is a categorical fibration. Then:

p1q The map q is a coCartesian fibration.

p2q The functor θ carries p-coCartesian morphisms in C to q-coCartesian morphisms in
CrW´1s.

p3q For each D P D, the map θ induces an equivalence CrW´1
D s Ñ pCrW´1sqD.

Corollary 13.4.4.4. Let κ be a field and let W be the collection of all morphisms in Repbdg
of the form α : pg˚, V 1

˚ , . . . , V
n
˚ q Ñ pg˚, V

11
˚ , . . . , V

1n
˚ q where the image of α in both Liedg

κ and
F in˚ is an identity map, and α induces a quasi-isomorphism V i

˚ Ñ V 1i˚ for 1 ď i ď n. Then
we have a coCartesian fibration RepbdgrW

´1s Ñ pLiedg
κ q

op ˆ F in˚. For every differential
graded Lie algebra g˚ over κ, we can identify the fiber RepbdgrW

´1sg˚,x1y with the 8-category
Repbg˚.

Proof of Proposition 13.4.4.3. Let χ : D Ñ Cat8 classify the Cartesian fibration p. For
each D P D, we have a canonical equivalence χpDq » CD; let W 1

D denote the collection of
morphisms in χpDq whose in CD are equivalent to morphisms belonging to WD. Then the
construction D ÞÑ pχpDq,W q determines a functor χW : D Ñ WCat8, where WCat8 is
defined as in Construction HA.4.1.7.1 . Composing with the left adjoint to the inclusion
Cat8 Ñ WCat8, we obtain a new functor χ1 : D Ñ Cat8, given on objects by χ1pDq “

χpDqrW 1´1
D s » CDrW´1

D s. The functor χ1 classifies a coCartesian fibration p1 : C1 Ñ D. We
have an evident natural transformation χÑ χ1, which determines a functor φ P FunDpC, C1q
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which carries p-coCartesian morphisms to p1-coCartesian morphisms. To complete the proof,
it will suffice to show that φ induces an equivalence CrW´1s Ñ C1. Equivalently, we must
show that for any 8-category E , composition with φ induces a fully faithful embedding
v : FunpC1, Eq» Ñ FunpC, Eq» whose essential image consists of those functors F : C Ñ E
which carry each morphism of W to an equivalence in E .

Evaluation at the vertex 0 P ∆1 induces a Cartesian fibration Funp∆1,Dq Ñ D. We
define a new simplicial set E 1 with a map r : E 1 Ñ D so that the following universal property
is satisfied: for every map of simplicial sets K Ñ D, we have a canonical bijection

HompSet∆q{DpK, E
1q “ HomSet∆pK ˆFunpt0u,Dq Funp∆1,Dq, Eq.

Using Corollary HTT.3.2.2.12 , we deduce that the map r : E 1 Ñ D is a coCartesian fibration.
The diagonal inclusion D Ñ Funp∆1,Dq induces a map K Ñ K ˆFunpt0u,Dq Funp∆1,Dq for
every map K Ñ D. Composition with these maps gives a functor u : E 1 Ñ E . We claim:

p˚q Let Fun1DpC, E 1q denote the full subcategory of FunDpC, E 1q spanned by those functors
which carry p-coCartesian morphisms to r-coCartesian morphisms. Then composition
with u induces a trivial Kan fibration Fun1DpC, E 1q Ñ FunpC, Eq

To prove p˚q, we note that FunDpC, E 1q can be identified with the 8-category

FunpCˆFunpt0u,Dq Funp∆1,Dq, Eq.

Under this identification, Fun1DpC, E 1q corresponds to the full subcategory spanned by those
functors F which are right Kan extensions of their restrictions to C ãÑ CˆFunpt0u,Dq Funp∆1,Dq.
Assertion p˚q now follows from Proposition HTT.4.3.2.15 . A similar argument gives:

p˚q Let Fun1DpC1, E 1q denote the full subcategory of FunDpC1, E 1q spanned by those functors
which carry p1-coCartesian morphisms to r-coCartesian morphisms. Then composition
with u induces a trivial Kan fibration Fun1DpC1, E 1q Ñ FunpC1, Eq.

It follows that we can identify v with the map Fun1DpC1, E 1q» Ñ Fun1DpC, E 1q». Let ν :
D Ñ Cat8 classify the coCartesian fibration r, so that v is given by the map MapFunpD,Cat8qpχ

1, νq Ñ

MapFunpD,Cat8qpχ, νq given by composition with the natural transformation α. The desired
result now follows from the construction of the natural transformation χ1.

13.4.5 Tensor Products and Cohomology

Let g˚ be a differential graded Lie algebra over a field κ. Then the Chevalley-Eilenberg
construction V˚ ÞÑ C˚pg˚;V˚q is a lax symmetric monoidal functor: for every pair of
representations V˚,W˚ P Repdg

g˚ , there is a canonical map

C˚pg˚;V˚q bκ C˚pg˚;W˚q Ñ C˚pg˚;V˚ bκW˚q,
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which classifies bilinear maps Cppg˚;V˚qˆCqpg˚;W˚q Ñ Cp`qpg˚;V˚bκW˚q carrying classes
λ P Cppg˚;V˚q and µ P Cqpg˚;W˚q to the product λµ P Cp`qpg˚;V˚ bκW˚q given by

pλµqpx1 . . . xnq “
ÿ

S,S1

εpS, S1qλpxi1 . . . ximq b µpxj1 . . . xjn´mq.

Remark 13.4.5.1. Taking V˚ and W˚ to be the trivial representation of g˚, we recover the
multiplication on C˚pg˚q described in Construction 13.2.5.1. Taking V˚ to be the trivial
representation, we recover the action of C˚pg˚q on C˚pg˚;W˚q described in Remark 13.4.2.1.
It follows from general nonsense that the multiplication maps

C˚pg˚;V˚q bκ C˚pg˚;W˚q Ñ C˚pg˚;V˚ bk W˚q

are C˚pg˚q-bilinear, and therefore descend to give maps

C˚pg˚;V˚q bC˚pg˚q C
˚pg˚;W˚q Ñ C˚pg˚;V˚ bκW˚q.

Notation 13.4.5.2. Let C be a symmetric monoidal 8-category. We let ModpCqb “

ModCommpCqb be as in Definition HA.3.3.3.8 : more informally, the objects of ModpCqb are
given by tuples pA,M1, . . . ,Mnq where A P CAlgpCq and each Mi is a module over A. Note
that if C is (equivalent to) an ordinary symmetric monoidal category, then ModpCqb is also
(equivalent to) an ordinary category.

The lax symmetric monoidal structure on the functor C˚pg˚; ‚q, and its dependence
on g˚, are encoded by a map of categories Repbdg Ñ ModpModdg

κ q
b, given on objects by

pg˚, V
1
˚ , . . . , V

n
˚ q ÞÑ pC˚pg˚q, C

˚pg˚;V 1
˚ q, . . . , C

˚pg˚;V n
˚ qq. Composing this with the map of

symmetric monoidal functor Moddg
κ Ñ Modκ, we obtain a map Repbdg Ñ ModpModκqb.

If the field κ has characteristic zero, then Proposition 13.4.2.3 implies that this functor
carries morphisms of W (where W is defined as in Corollary 13.4.4.4) to equivalences in
ModpModκqb, and therefore induces a lax symmetric monoidal functor

G : RepbdgrW
´1s Ñ pLiedg

κ q
op ˆCAlgκ ModpModκqb.

Proposition 13.4.5.3. Let κ be a field of characteristic zero, and consider the commutative
diagram

RepbdgrW
´1s

p

((

G // pLiedg
κ q

op ˆCAlgκ ModpModκqb
q

tt
pLiedg

κ q
op ˆ F in˚ .

Then:
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p1q The functor G admits a left adjoint F relative to pLiedg
κ q

op ˆ F in˚ (see Definition
HA.7.3.2.2 ).

p2q The functor F carries q-coCartesian morphisms to p-coCartesian morphisms.

Remark 13.4.5.4. We can summarize Proposition 13.4.5.3 more informally as follows.
For every differential graded Lie algebra g˚ over κ, the construction V˚ ÞÑ C˚pg˚;V˚q
determines a lax symmetric monoidal functor from Repg˚ to ModC˚pg˚q. This functor admits
a symmetric monoidal left adjoint f : ModC˚pg˚q Ñ Repg˚ . Moreover, the functor f depends
functorially on the differential graded Lie algebra g˚.

Proof of Proposition 13.4.5.3. We will prove the existence of F ; since F admits a right
adjoint relative to pLiedg

κ q
opˆF in˚, it will follow automatically that F carries q-coCartesian

morphisms to p-coCartesian morphisms (see Proposition HA.7.3.2.6 ). To prove the existence
of F , we will check that G satisfies the criterion of Proposition HA.7.3.2.11 . For each
differential graded Lie algebra g˚ and each xny P F in˚, the induced functor

Gg˚,xny : RepbdgrW
´1sg˚,xny Ñ pModC˚pg˚qq

b
xny

is equivalent to a product of n copies of the functor C˚pg˚; ‚q : Repg˚ Ñ ModC˚pg˚q, and
therefore admits a left adjoint fg˚ by Remark 13.4.2.4. Unwinding the definitions, we are
reduced to proving that for every finite sequence of C˚pg˚q-modules M1, . . . ,Mn, and every
map of differential graded Lie algebras h˚ Ñ g˚, the canonical map

fh˚pC
˚ph˚q bC˚pg˚qM1 bC˚pg˚q ¨ ¨ ¨ bC˚pg˚qMnq Ñ fg˚pM1q bκ ¨ ¨ ¨ bκ fg˚pMnq

is an equivalence. We observe that both sides are compatible with colimits in each Mi

(see Remark 13.4.4.1). Since ModC˚pg˚q is generated under small colimits by the modules
ΣkC˚pg˚q for k P Z, we can reduce to the case where Mi “ C˚pg˚q for 1 ď i ď n. In this
case, the result is obvious.

13.4.6 Quasi-Coherent Sheaves on a Formal Moduli Problem

We now define the stable 8-category QCohpXq associated to a formal moduli problem
X : CAlgart

κ Ñ S.

Construction 13.4.6.1. Let κ be a field. The coCartesian fibration ModpModκqb Ñ
CAlgκˆF in˚ is classified by a map χ : CAlgκ Ñ MonCommpyCat8q » CAlgpyCat8q, which
carries an E8-algebra A over κ to ModA, regarded as a symmetric monoidal 8-category.
Let χart denote the restriction of χ to the full subcategory CAlgart

κ Ď CAlgκ spanned by the
Artinian E8-algebras over κ. Applying Theorem HTT.5.1.5.6 , we deduce that χart admits
an essentially unique factorization as a composition

CAlgart
κ

j
Ñ FunpCAlgart

κ ,Sqop QCoh
ÝÑ CAlgpyCat8q,
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where the functor QCoh preserves small limits. For every functor X : CAlgart
κ Ñ S, we

will regard QCohpXq P CAlgpyCat8q as a symmetric monoidal 8-category, which we call the
8-category of quasi-coherent sheaves on X.

Remark 13.4.6.2. Let PrL ĎyCat8 denote the subcategory whose objects are presentable
8-categories and whose morphisms are colimit preserving functors, and regard PrL as
a symmetric monoidal 8-category as explained in §HA.4.8.1 . Note that the functor χ
of Construction 13.4.6.1 factors through CAlgpPrLq Ď CAlgpyCat8q. Since this inclusion
preserves small limits, we deduce that the functor

QCoh : FunpCAlgart
κ ,Sqop Ñ CAlgpyCat8q

also factors through CAlgpPrLq. In other words:

paq For every functor X : CAlgart
κ Ñ S, the 8-category QCohpXq is presentable.

pbq For every functor X : CAlgart
κ Ñ S, the tensor product b : QCohpXq ˆQCohpXq Ñ

QCohpXq preserves small colimits separately in each variable.

pcq For every natural transformation f : X Ñ Y of functors X,Y : CAlgart
κ Ñ S, the

pullback functor f˚ : QCohpY q Ñ QCohpXq preserves small colimits.

Remark 13.4.6.3. Let κ be a field and let X : CAlgart
κ Ñ S be a functor which classifies a

right fibration X Ñ CAlgart
κ . Then QCohpXq can be identified with the 8-category coCarte-

sian sections of the coCartesian fibration X ˆCAlgκ ModpModκq Ñ X . More informally, an
object F P QCohpXq is a rule which assigns to every point η P XpAq an A-module F η, and
to every morphism f : AÑ A1 carrying η to η1 P XpA1q an equivalence F η1 » A1 bA F η.

We now consider a variant of Construction 13.4.6.1:

Construction 13.4.6.4. Let κ be a field of characteristic zero. The coCartesian fibration
RepbdgrW

´1s Ñ pLiedg
κ q

op ˆ F in˚ of Corollary 13.4.4.4 classifies a functor χ0 : pLiedg
κ q

op Ñ

CAlgpyCat8q, given on objects by g˚ ÞÑ Repg˚ . If φ : h˚ Ñ g˚ is a quasi-isomorphism of
differential graded Lie algebras, then the induced map Uph˚q Ñ Upg˚q is an equivalence
in Algκ, so that the forgetful functor Repg˚ Ñ Reph˚ is an equivalence of 8-categories. It
follows that χ0 induces a functor χ : Lieop

κ Ñ CAlgpyCat8q.
We let χart

! : CAlgart
κ Ñ CAlgpyCat8q denote the composition of χ with the Koszul duality

functor D : pCAlgart
κ q

op Ñ Lieκ studied in §13.3. Applying Theorem HTT.5.1.5.6 , we deduce
that χart

! admits an essentially unique factorization as a composition

CAlgart
κ

j
Ñ FunpCAlgart

k ,Sqop QCoh!
ÝÑ CAlgpyCat8q,

where j denotes the Yoneda embedding and the functor QCoh! preserves small limits.
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Remark 13.4.6.5. If f : X Ñ Y is a natural transformation between functors X,Y :
CAlgart

κ Ñ S, we will denote the induced functor QCoh!pY q Ñ QCoh!pXq by f !.
The functor χart

! appearing in Construction 13.4.6.4 factors through the subcategory
CAlgpPrLq Ď CAlgpyCat8q. As in Remark 13.4.6.2, we deduce that the functor QCoh! factors
through CAlgpPrLq. That is, each of the 8-categories QCoh!pXq is presentable, each of
the functors f ! : QCoh!pY q Ñ QCoh!pXq preserves small colimits, and the tensor product
functors QCoh!pXq ˆ QCoh!pXq Ñ QCoh!pXq preserve small colimits separately in each
variable.

Remark 13.4.6.6. For A P Algart
κ , the biduality map AÑ C˚pDpAqq is an equivalence. It

follows that the functor χart of Construction 13.4.6.1 is given by the composition

CAlgart
κ

D
Ñ Lieop

κ
C˚
Ñ CAlgaug

κ Ñ CAlgκ
χ
Ñ CAlgpyCat8q.

The functor F of Proposition 13.4.5.3 induces a natural transformation χart Ñ χart
! , and there-

fore a natural transformation QCoh Ñ QCoh! of functors FunpCAlgart
κ ,Sqop Ñ CAlgpPrLq.

Let A P CAlgart
κ and let g˚ “ DpAq be its Koszul dual. Since A is Artinian, there exists

a sequence of maps A “ An Ñ An´1 Ñ ¨ ¨ ¨ Ñ A0 “ κ, where each Ai is a square-zero
extension of Ai´1 by Σnipκq for some ni ě 0. We therefore have a sequence of differential
graded Lie algebras

0 “ DpA0q Ñ DpA1q Ñ ¨ ¨ ¨ Ñ DpAnq » g˚,

where each DpAiq is obtained from DpAi´1q by adjoining a cell in dimension ´ni ´ 1. It
follows that, up to quasi-isomorphism, g˚ satisfies the hypotheses of Proposition 13.4.3.1
and Proposition 13.4.3.4. We conclude that the natural transformation χart Ñ χart

! induces
a (symmetric monoidal) fully faithful embedding

χartpAq » ModA » ModC˚pg˚q Ñ Repg˚ » χart
! pAq,

which restricts to an equivalence of 8-categories Modcn
A Ñ Repcn

g˚ . It follows that the natural
transformation QCoh Ñ QCoh! determines a (symmetric monoidal) fully faithful embedding
QCohpXq Ñ QCoh!pXq for each X P FunpCAlgart

κ ,Sq.

13.4.7 The Proof of Theorem 13.4.0.1

Let κ be a field of characteristic zero and let X : CAlgart
κ Ñ S be a formal moduli

problem, given by Ψpg˚q for some differential graded Lie algebra g˚. Remark 13.4.6.6
supplies a symmetric monoidal fully faithful embedding QCohpXq ãÑ QCoh!pXq. To prove
Theorem 13.4.0.1, it will suffice to establish the following:
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Proposition 13.4.7.1. Let κ be a field of characteristic zero, let g˚ be a differential
graded Lie algebra over κ and let X “ Ψpg˚q be the formal moduli problem given by
XpRq “ MapLieκpDpRq, g˚q. Then there is a canonical equivalence of symmetric monoidal
8-categories QCoh!pXq » Repg˚.

Lemma 13.4.7.2. Let κ be a field and let ν : Algop
κ ÑyCat8 classify the Cartesian fibration

LModpModκq Ñ Algκ (so that ν is given by the formula νpAq “ LModA). Then ν preserves
K-indexed limits for every weakly contractible simplicial set K.

Proof. Let PrR denote the subcategory of yCat8 whose objects are presentable 8-categories
and whose morphisms are functors which admit left adjoints, and define PrL ĎyCat8 similarly.
Note that the functor ν factors through PrR, and that the inclusion PrR ĎyCat8 preserves
small limits (Theorem HTT.5.5.3.18 ). It will therefore suffice to show that if K is weakly
contractible, then ν carries K-indexed limits in Algop

κ to K-indexed limits in PrR. Using
the equivalence PrL » pPrRqop of Corollary HTT.5.5.3.4 , we can identify ν with a functor
µ : Algκ Ñ PrL (the functor µ classifies the coCartesian fibration LModpModκq Ñ Algκ).
Theorem HA.4.8.5.11 implies that the functor Algκ » pAlgκqκ{ Ñ pPrLqModκ { admits a
right adjoint, and therefore preserves all small colimits. It therefore suffices to verify that
the forgetful functor pPrLqModκ { Ñ PrL preserves K-indexed colimits, which follows from
Proposition HTT.4.4.2.9 .

Lemma 13.4.7.3. Let κ be a field of characteristic zero, and let χ : Lieop
κ Ñ yCat8 be as

in Construction 13.4.6.4. Then χ preserves K-indexed limits for every weakly contractible
simplicial set K.

Proof. The functor χ factors as a composition Lieop
κ

U
Ñ Algop

κ
ν
Ñ yCat8, where ν preserves

K-indexed limits by Lemma 13.4.7.2, and U preserves all small limits (since it is right adjoint
to the forgetful functor Algop

κ Ñ Lieop
κ ).

Proof of Proposition 13.4.7.1. Let Ψ : Lieκ Ñ Moduliκ be the equivalence of 8-categories
appearing in Theorem 13.0.0.2, and let Ψ´1 denote a homotopy inverse to Ψ. Let L :
FunpCAlgart

κ ,Sq Ñ Moduliκ denote a left adjoint to the inclusion functor Moduliκ Ď
FunpCAlgart

κ ,Sq (see Remark 12.1.3.5), and let pD : FunpCAlgart
κ ,Sq Ñ Lieκ be the composi-

tion Ψ´1 ˝ L. The functor pD preserves small colimits, and the composition of pD with the
Yoneda embedding pCAlgart

κ q
op Ñ FunpCAlgart

κ ,Sq can be identified with the Koszul duality
functor D : pCAlgart

κ q
op Ñ Lieκ. Let χ : Lieop

κ Ñ CAlgpyCat8q be as in Construction 13.4.6.4
(given on objects by χpg˚q “ Repg˚), and let F : FunpCAlgart

κ ,Sqop Ñ CAlgpyCat8q denote
the composite functor

FunpCAlgart
κ ,Sqop pD

ÝÑ Lieop
κ

χ
Ñ CAlgpyCat8q.
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Let C denote the full subcategory of FunpCAlgart
κ ,Sq spanned by the corepresentable functors.

By construction, the functors F and QCoh! agree on the 8-category C, and by construction
QCoh! is a right Kan extension of its restriction to C. We therefore have a canonical natural
transformation α : F Ñ QCoh!. We will prove the following:

p˚q If X : CAlgart
κ Ñ S is a formal moduli problem, then α induces an equivalence of

8-categories F pXq Ñ QCoh!pXqq.

Taking X “ Ψpg˚q for A P Algaug
κ , we see that p˚q guarantees an equivalence of symmetric

monoidal 8-categories Repg˚ » F pXq Ñ QCoh!pXq.
It remains to prove p˚q. Let E Ď FunpCAlgart

κ ,Sq be the full subcategory spanned by those
functors X for which α induces an equivalence of 8-categories F pXq Ñ QCoh!pXq. The
localization functor L : FunpCAlgart

κ ,Sq Ñ Moduliκ, the equivalence Ψ´1 : Moduliκ Ñ Lieκ
both preserve small colimits. It follows from Lemma 13.4.7.3 that the functor χ : Lieop

κ Ñ

yCat8 preserves sifted limits, so that F preserves sifted limits. Since the functor QCoh!

preserves small limits, the 8-category E is closed under sifted colimits in FunpCAlgart
κ ,Sq.

Since E contains all corepresentable functors and is closed under filtered colimits, it contains
it contains all prorepresentable formal moduli problems (see Definition 12.5.3.1). Proposition
12.5.3.3 implies that every formal moduli problem X can be obtained as the geometric
realization of a simplicial object X‚ of FunpCAlgart

κ ,Sq, where each Xn is prorepresentable.
Since E is closed under geometric realizations in FunpCAlgart

κ ,Sq, we conclude that X P E
as desired.

13.4.8 Connectivity Conditions

Let X : CAlgart
κ Ñ S be a formal moduli problem and let F P QCohpXq be a quasi-

coherent sheaf on X, so that F determines an A-module F η for every η P XpAq (see
Remark 13.4.6.3). We will say that F is connective if each F η P ModA is connective. We
let QCohpXqcn denote the full subcategory of QCohpXq spanned by the connective objects.
It is easy to see that QCohpXqcn is a presentable 8-category which is closed under colimits
and extensions in QCohpXq, and therefore determines an accessible t-structure on QCohpXq
(see Proposition HA.1.4.4.11 ).

Proposition 13.4.8.1. Let κ be a field of characteristic zero, let g˚ be a differential graded
Lie algebra over κ and let X “ Ψpg˚q be the associated formal moduli problem. Then
the fully faithful embedding θ : QCohpXq Ñ Repg˚ induces an equivalence of 8-categories
QCohpXqcn Ñ Repcn

g˚.

Proof. If φ : h˚ Ñ g˚ is a map of differential graded Lie algebras over κ inducing a map of
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formal moduli problems Y Ñ X, then the diagram

QCohpXq //

��

Repg˚

��
QCohpY q // Repg˚

commutes up to canonical homotopy. Taking h˚ “ 0, we deduce that the composite functor
QCohpXq Ñ Repg˚ Ñ Modκ is given by evaluation at the base point η0 P Xpκq. In
particular, we deduce that θ carries QCohpXqcn into Repcn

g˚ “ Repg˚ ˆModκ Modcn
κ . To

complete the proof, it will suffice to show that if V P Modcn
g˚ , then V˚ belongs to the essential

image of θ. To prove this, it suffices to show that for every point η P XpAq classified by
a map of differential graded Lie algebras DpAq Ñ g˚, the image of V in RepDpAq belongs
to the essential image of the functor QCohpSpf Aq Ñ RepDpAq. Since V is connective, this
follows from Proposition 13.4.3.4 (note that DpAq satisfies the hypotheses of Propositions
13.4.3.1 and 13.4.3.4; see Remark 13.4.6.6.



Chapter 14

Moduli Problems for Associative
Algebras

Let A be a connective E8-ring. Recall that an A-module spectrum M is projective of
rank n if the following conditions are satisfied:

p1q The group π0M is a projective π0A-module of rank n.

p2q For every integer n, the canonical map Torπ0A
0 pπnA, π0Mq Ñ πnM is an isomorphism

(that is, M is flat over A).

Let XpAq denote the subcategory of ModA whose objects are A-modules which are projective
of rank n, and whose morphisms are equivalences. Then XpAq is an essentially small Kan
complex. The construction A ÞÑ XpAq determines a functor X : CAlgcn Ñ S.

Fix a field κ and a point η P Xpκq, corresponding to a vector space V of dimension
n over κ. The formal completion of X (at the point η) is the functor X^ : CAlgart

κ Ñ S
given by X^pAq “ XpAq ˆXpκq tηu. More informally, X^pAq is a classifying space for pairs
pM,αq, where M is a projective A-module of rank n and α : κbAM » V is an isomorphism
of κ-vector spaces. It is not difficult to see that the functor X^ : CAlgart

κ Ñ S is a formal
moduli problem (we will give a proof of a stronger assertion in §16.5).

Assume now that κ is a field of characteristic zero. According to Theorem 13.0.0.2,
the functor X^ : CAlgart

κ Ñ S is determined (up to equivalence) by a differential graded
Lie algebra g˚. Let TX^ denote the tangent complex of X^, so that Σ´1TX^ can be
identified with the spectrum underlying the chain complex of vector spaces g˚. Then
Ω8TX^ » X^pκrεs{pε2qq is a classifying space for the groupoid of order deformations of
the vector space V : that is, projective κrεs{pε2q-modules M equipped with an isomorphism
M{εM » V . Since any basis of V can be lifted to a basis for M , this groupoid has only
one isomorphism class of objects (which is represented by the module κrεs{pε2q bκ V ). We

1135
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conclude that Ω8TX^ is homotopy equivalent to the classifying space BG, where G is the
group of automorphisms of κrεs{pε2qbκV which reduce to the identity automorphism modulo
ε. Every such automorphism can be written uniquely as 1` εM , where M P EndpV q is an
endomorphism of V . From this we deduce that the homology of the chain complex g˚ is
isomorphic to EndpV q in degree zero and vanishes in positive degrees. It also vanishes in
negative degrees: this follows from the observation that each of the spaces X^pκ‘ Σnpκqq

is connected (any basis for V can be lifted to a basis for any pκ‘ Σnpκqq-module deforming
V ). It follows that g˚ is quasi-isomorphic to an ordinary Lie algebra g over κ (concentrated
in degree zero), whose underlying abelian group is isomorphic to EndpV q. With more effort,
we can show that the isomorphism g » EndpV q is an isomorphism of Lie algebras: that is,
the Lie bracket on g can be identified with the usual commutator bracket rA,Bs “ AB´BA

of κ-linear endomorphisms of V (see Example 16.5.4.3).
However, there is more to the story. If R P CAlgart

κ , then any connective R-module M
equipped with an equivalence κbRM » V is automatically projective of rank n. We can
therefore identify X^pRq with the fiber product LModcn

R ˆLModcn
κ
tV u. This description of

X^pRq makes no reference to the commutativity of R. We can therefore extend X^ to a
functor X^` : Algart

κ Ñ S, where Algart
κ denotes the 8-category of Artinian E1-algebras over

κ (see Definition 14.0.0.1 below). The existence of the extension X^` is a special property
enjoyed by the formal moduli problem X^. Since X^ is completely determined by the
Lie algebra EndpV q, we should expect that the existence of X^` reflects a special property
of EndpV q. In fact, there is something special about EndpV q: it is the underlying Lie
algebra of an associative algebra. We will see that this is a general phenomenon: if g˚ is a
differential graded Lie algebra and Y : CAlgart

κ Ñ S is the associated formal moduli problem
for E8-algebras over κ, then Y extends to a formal moduli problem Y` : Algart

κ Ñ S for
E1-algebras over κ if and only if g˚ is quasi-isomorphic to the underlying Lie algebra of a
(nonunital) differential graded algebra A˚ (see Example 13.1.2.2).

Our main goal in this section is to prove an analogue of Theorem 13.0.0.2 in the setting
of noncommutative geometry. Before we can state our result, we need to introduce a bit of
terminology.

Definition 14.0.0.1. Let κ be a field. We let Algκ denote the 8-category of E1-algebras
over κ. We will say that an object A P Algκ is Artinian if it satisfies the following conditions:

paq The algebra A is connective: that is, πiA » 0 for i ă 0.

pbq The algebra A is truncated: that is, we have πiA » 0 for i " 0.

pcq Each of the homotopy groups πiA is finite dimensional when regarded as a vector
space over field κ.
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pdq Let n denote the radical of the ring π0A. Then the canonical map κÑ pπ0Aq{n is an
isomorphism.

We let Algart
κ denote the full subcategory of Algκ spanned by the Artinian κ-algebras.

Warning 14.0.0.2. Let κ be a field and let A be a discrete κ-algebra. If A is Artinian in
the sense of Definition 14.0.0.1, then A is left (and right) Artinian in the usual sense of
noncommutative algebra: that is, the collection of left ideals of A satisfies the descending
chain condition. However, the converse is false: for example, the ring M2pκq of 2-by-2
matrices over κ does not satisfy condition pdq of Definition 14.0.0.1. One should instead
regard Definition 14.0.0.1 as a noncommutative (and derived) analogue of the condition
that a commutative κ-algebra A be a local Artinian ring with residue field κ: see Warning
12.1.2.6.

Remark 14.0.0.3. Let κ be a field and let A P Algart
κ . It follows from conditions paq and pdq

of Definition 14.0.0.1 that the mapping space MapAlgκpA, κq is contractible: that is, A admits
an essentially unique augmentation. Consequently, the projection map Algart

κ ˆAlgκ Algaug
κ Ñ

Algart
κ is an equivalence of 8-categories; here Algaug

κ “ pAlgκq{κ denotes the 8-category of
augmented E1-algebras over κ. Because of this, we will often abuse notation by identifying
Algart

κ with its inverse image in Algaug
κ .

Definition 14.0.0.4. Let κ be a field and let X : Algart
κ Ñ S be a functor. We will say

that X is a formal E1-moduli problem if it satisfies the following conditions:

p1q The space Xpκq is contractible.

p2q For every pullback diagram
R //

��

R0

��
R1 // R01

in Algart
κ for which the underlying maps π0R0 Ñ π0R01 Ð π0R1 are surjective, the

diagram
XpRq //

��

XpR0q

��
XpR1q // XpR01q

is a pullback square.

We let Modulip1qκ denote the full subcategory of FunpAlgart
κ ,Sq spanned by the formal

E1-moduli problems.
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We can now state our main result:

Theorem 14.0.0.5. Let κ be a field. Then there is an equivalence of 8-categories Ψ :
Algaug

κ Ñ Modulip1qκ .

Remark 14.0.0.6. Unlike Theorem 13.0.0.2, Theorem 14.0.0.5 does not require any as-
sumptions on the characteristic of the field κ.

Like Theorem 13.0.0.2, Theorem 14.0.0.5 is a reflection of Koszul duality: this time in
the setting of associative algebras. In §14.1, we will introduce the Koszul duality functor
Dp1q : pAlgaug

κ qop Ñ Algaug
κ . Roughly speaking, if ε : A Ñ κ is an augmented E1-algebra

over κ, then the Koszul dual Dp1qpAq is the (derived) endomorphism algebra of κ as a (left)
A-module. In §14.2, we will show that Dp1q is a deformation theory (in the sense of Definition
12.3.3.2). We will then deduce Theorem 14.0.0.5 from Theorem 12.3.3.5, using the functor
Ψ : Algaug

κ Ñ Modulip1qκ given by

ΨpAqpRq “ MapAlgaug
κ
pDp1qpRq, Aq.

For every field κ, there is an evident forgetful functor CAlgart
κ Ñ Algart

κ . Composition
with this forgetful functor determines a map θ : Modulip1qκ Ñ Moduliκ. In §14.3, we will show
that if the characteristic of κ is zero, then θ fits into a commutative diagram of 8-categories

Algaug
κ

θ1

��

//Modulip1qκ
θ

��
Lieκ //Moduliκ,

where the upper horizontal map is the equivalence of Theorem 14.0.0.5 and the lower
horizontal map is the equivalence of Theorem 13.0.0.2. Here θ1 is a functor which assigns to
each augmented E1-algebra ε : A Ñ κ its augmentation ideal mA “ fibpεq, equipped with
the commutator bracket (Proposition 14.3.1.1).

If X is a formal E1-moduli problem over κ, then we can associate to X a pair of 8-
categories QCohLpXq and QCohRpXq, which we call the 8-categories of (left and right)
quasi-coherent sheaves on X. Roughly speaking, an object F P QCohLpXq is a rule which
assigns to each point η P XpAq a left A-module F η, depending functorially on η (and
QCohRpXq is defined similarly, using right modules in place of left). In §14.5, we will
construct fully faithful embeddings

QCohLpXq ãÑ QCoh!
LpXq QCohRpXq ãÑ QCoh!

RpXq,

where QCoh!
LpXq and QCoh!

RpXq are the (left and right) 8-categories of Ind-coherent
sheaves on X. Our construction requires a “fiberwise” version of the construction of opposite
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categories C ÞÑ Cop, which we review in §14.4. In §14.6, we will use these constructions to
formulate and prove a noncommutative analogue of Theorem 13.4.0.1: if X “ ΨpAq is the
formal moduli problem associated to an augmented E1-algebra A over κ, then there are
canonical equivalences of 8-categories

QCoh!
LpXq » RModA QCoh!

RpXq » LModA

(Theorem 14.6.0.1). In particular, this gives fully faithful embeddings

QCohLpXq ãÑ RModA QCohRpXq ãÑ LModA,

which are equivalences when restricted to connective objects (Proposition 14.6.3.1).
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14.1 Koszul Duality for Associative Algebras

Let κ be a field, let A be an associative algebra over κ, and let M be a left A-module.
The commutant B of A in EndκpMq is defined to be the set of A-linear endomorphisms of
M . Then B can be regarded as an associative algebra over κ, and M admits an action of
the tensor product Abκ B. In many cases, one can show that the relationship between A

and B is symmetric. For example, if A is a finite dimensional central simple algebra over κ
and M is nonzero and of finite dimension over κ, then we can recover A as the commutant
of B in EndκpMq.

In this section, we will discuss the operation of Koszul duality in the setting of (augmented)
E1-algebras over a field κ. Roughly speaking, Koszul duality can be regarded as a derived
version of the formation of commutants. Suppose that A is an E1-algebra over κ equipped
with an augmentation ε : AÑ κ. Then ε determines an action of A on the κ-module M “ κ.
The Koszul dual of A is an E1-algebra B over κ which classifies A-linear maps from M to
itself. We have commuting actions of A and B on M , which can be encoded by a map
µ : Abκ B Ñ κ extending the augmentation ε. This suggests the following definition:

p˚q Let A be an augmented E1-algebra over a field κ. Then the Koszul dual of A is universal
among E1-algebras B equipped with an augmentation µ : Abκ B Ñ κ extending the
augmentation on A.

Our first goal in this section is to make p˚q more precise, and show that it determines a
(contravariant) functor Dp1q from the 8-category Algaug

κ of augmented E1-algebras over κ to
itself. Every augmentation µ : Abκ B Ñ κ restricts to augmentations on A and B, and is
classified by a map of augmented E1-algebras α : B Ñ Dp1qpAq. We will say that µ exhibits
B as a Koszul dual of A if the map α is an equivalence. The main results of this section
establish some basic formal properties of Koszul duality:

paq Let µ : A bκ B Ñ κ be an augmentation which exhibits B as the Koszul dual of A.
Under some mild hypotheses, there is a close relationship between the 8-categories
LModA and LModB of (left) modules over A and B, respectively (Theorem 14.1.3.2).
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pbq Let µ : A bκ B Ñ κ be an augmentation which exhibits B as the Koszul dual of A.
Under some mild hypotheses, it follows that µ also exhibits A as a Koszul dual of B
(Corollary 14.1.3.3). In other words, the double commutant map AÑ Dp1qDp1qpAq is
often an equivalence.

14.1.1 The Self-Pairing of Algaug
κ

We begin by reviewing some terminology. If C and D are 8-categories, a pairing of C
with D is an 8-category M equipped with a right fibration λ :MÑ CˆD (see §HA.?? ).
We say that such a pairing is left representable if, for each object C P C, there exists a final
object of the fiber MˆCtCu. In this case, we let DλpCq denote the image of that final
object in D; the construction C ÞÑ DλpCq determines a functor from Cop to D, which we
will refer to as the duality functor associated to the pairing pλ :MÑ CˆDq. Similarly, we
see that λ is right representable if, for each D P D, the fiber MˆDtDu has a final object; in
this case, we let D1λpCq denote the image of that final object in C. If λ is both right and left
representable, then the duality functors Dλ and D1λ are mutually adjoint (see Construction
HA.5.2.1.9 ).

Let us now specialize to the main example of interest.

Construction 14.1.1.1. Let κ be a field, let Algκ “ AlgpModκq denote the 8-category
of associative algebra objects of Modκ, and let Algaug

κ “ pAlgκq{κ denote the 8-category
of augmented associative algebra objects of Modκ. We will regard Algκ as a symmetric
monoidal 8-category (where the tensor product operation is computed pointwise). Let m :
AlgκˆAlgκ Ñ Algκ denote the tensor product functor, and let p0, p1 : AlgκˆAlgκ Ñ Algκ
denote the projection onto the first and second factor, respectively. Since the unit object
of Algκ is initial, we have natural transformations p0

α0
Ñ m

α1
Ð p1, which determine a map

AlgκˆAlgκ Ñ FunpΛ2
2,Algκq. We let Mp1q denote the fiber product

pAlgκˆAlgκq ˆFunpΛ2
2,Algκq FunpΛ2

2,Algaug
κ q.

More informally, the objects of Mp1q can be identified with triples pA,B, εq, where A and
B are E1-algebras over κ, and ε : A bκ B Ñ κ is an augmentation on the tensor product
Abκ B (which then induces augmentations on A and B, respectively). Note that evaluation
on the vertices 0, 1 P Λ2

2 induces a right fibration λ :Mp1q Ñ Algaug
κ ˆAlgaug

κ .

Proposition 14.1.1.2. Let κ be a field and let λ :Mp1q Ñ Algaug
κ ˆAlgaug

κ be the pairing of
8-categories described in Construction 14.1.1.1. Then λ is both left and right representable.

Proof. We will prove that λ is left representable; the proof of right representability is similar.
Fix an object A P Algaug

κ , and let F : pAlgaug
κ qop Ñ S be the functor given by

F pBq “ fibpMapAlgκpAbκ B, κq Ñ MapAlgκpA, κq ˆMapAlgκpB, κqq.
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We wish to show that the functor F is representable by an object of Algaug
κ . Define

F 1 : Algop
κ Ñ S by the formula

F 1pBq “ fibpMapAlgκpAbκ B, κq Ñ MapAlgκpA, κqq.

Corollary HA.5.3.1.15 implies that the functor F 1 is corepresented by an object B0 P Algκ,
given by a centralizer of the augmentation ε : A Ñ κ. In particular, we have a point of
η P F 1pB0q, which determines an augmentation µ : Abκ B0 Ñ κ. Let us regard B0 as an
augmented algebra object via the composite map B0 Ñ Abκ B0

µ
Ñ κ, so that η lifts to a

point η P F pB0q. To complete the proof, it will suffice to show that for each B P Algaug
κ ,

evaluation on η induces a homotopy equivalence θ : MapAlgaug
κ
pB,B0q Ñ F pBq. This map

fits into a map of fiber sequences

MapAlgaug
κ
pB,B0q //

��

MapAlgκpB,B0q //

θ1

��

MapAlgκpB, κq

θ2

��
F pBq // F 1pBq //MapAlgκpB, κq,

where θ1 and θ2 are homotopy equivalences (in the first case, this follows from our assumption
that η exhibits F 1 as the functor represented by B0).

Definition 14.1.1.3. Let κ be a field. We let Dp1q : pAlgaug
κ qop Ñ Algaug

κ denote the
functor obtained by applying Construction ?? to the left representable pairing λ :Mp1q Ñ

Algaug
κ ˆAlgaug

κ of Construction 14.1.1.1. We will refer to the functor Dp1q as Koszul duality.

Remark 14.1.1.4. Since the pairing λ :Mp1q Ñ Algaug
κ ˆAlgaug

κ of Construction 14.1.1.1 is
both left and right representable, it determines two functors pAlgaug

κ qop Ñ Algaug
κ . It follows

by symmetry considerations that these functors are (canonically) equivalent to one another;
hence there is no risk of confusion if we denote them both by Dp1q : pAlgaug

κ qop Ñ Algaug
κ .

Using Construction HA.5.2.1.9 we see that Dp1q is self-adjoint: more precisely, the functor
Dp1q : pAlgaug

κ qop Ñ Algaug
κ is right adjoint to the induced map between opposite8-categories

Algaug
κ Ñ pAlgaug

κ qop. More concretely, for any pair of objects A,B P Algaug
κ we have a

canonical homotopy equivalence

MapAlgaug
κ
pA,Dp1qpBqq » MapAlgaug

κ
pB,Dp1qpAqq.

In fact, both of these spaces can be identified with the homotopy fiber of the canonical map

MapAlgκpAbκ B, κq Ñ MapAlgκpA, κq ˆMapAlgκpB, κq.

Remark 14.1.1.5. Let κ be a field and let µ : Abκ B Ñ κ be a morphism in Algκ, which
we can identify with an object of the 8-category Mp1q of Construction 14.1.1.1. We say
that µ exhibits B as a Koszul dual of A if it is left universal in the sense of Definition ??:
that is, if it induces an equivalence B Ñ Dp1qpAq. Similarly, we say that µ exhibits A as a
Koszul dual of B if it is right universal: that is, if it induces an equivalence AÑ Dp1qpBq.
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14.1.2 The Pairing on Modules

We now discuss a linearized version of Koszul duality.

Construction 14.1.2.1. Let κ be a field and let µ : Abκ B Ñ κ be a morphism in Algκ.
Then extension of scalars along µ induces a functor

LModAˆLModB Ñ LModκ » Modκ .

We let LPairµ denote the fiber product pLModAˆLModBq ˆModκ pModκq{κ. We can think
of the objects of LPairµ as triples pM,N, εq, where M is a left module over A, N is a left
module over B, and ε : M bκ N Ñ κ is a map of left modules over Abκ B. The projection
map λ : LPairµ Ñ LModAˆLModB is a right fibration, so that we can regard LPairµ as a
pairing of 8-categories.

Proposition 14.1.2.2. Let κ be a field, let µ : A bκ B Ñ κ be a morphism in Algκ, and
let λ : LPairµ Ñ LModAˆLModB be the pairing of 8-categories of Construction 14.1.2.1.
Then λ is both left and right representable.

Proof. We will prove that λ is left representable; the proof of right representability is similar.
Fix an object M P LModA; we wish to show that that the functor N ÞÑ MapLModAbκB pMbκ

N,κq is representable by an object of LModB. Let us denote this functor by F . According
to Proposition HTT.5.5.2.2 , it will suffice to show that the functor F carries colimits in
LModB to limits in S. This follows from the observation that the construction N ÞÑMbκN

determines a functor LModB Ñ LModAbκB which commutes with small colimits.

Notation 14.1.2.3. Let κ be a field and let µ : A bκ B Ñ κ be a morphism in Algκ.
Combining Proposition 14.1.2.2 with Construction ??, we obtain duality functors

LModop
A

Dµ
ÝÑ LModB LModop

B

D1µ
ÝÑ LModA .

By construction, we have canonical homotopy equivalences

MapLModApM,D1µNq » MapLModAbκB pM bκ N,κq » MapLModB pN,DµMq.

Remark 14.1.2.4. Let κ be a field and let µ : AbκB Ñ κ be a morphism in Algκ. The proof
of Theorem HA.5.3.1.14 shows that µ exhibits B as a Koszul dual of A if and only if µ exhibits
B as a classifying object for morphisms from A to κ in ModAssoc

A pModκq » ABModApModκq
(here we regard ABModApModκq as left-tensored over the 8-category Modκ). This is
equivalent to the condition that ε exhibit B as a classifying object for morphisms from
κ » AbA κ to itself in ABModκpModκq » LModA: that is, that µ induces an equivalence of
left B-modules B Ñ DµD

1
µpBq » Dµpκq. Similarly, µ exhibits A as a Koszul dual of B if

and only if it induces an equivalence AÑ D1µpκq of left A-modules.
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14.1.3 Biduality

We would like to use Remark 14.1.2.4 to verify (in good cases) that the relation of Koszul
duality is symmetric. For this, we need to understand the linear duality functors Dµ and
D1µ associated to a pairing µ : Abκ B Ñ κ.

Definition 14.1.3.1. Let κ be a field. An object A P Algκ is coconnective if the unit map
κ Ñ A exhibits κ as a connective cover A. Equivalently, A is coconnective if π0A is a
1-dimensional vector space over κ generated by the unit element, and πnA » 0 for n ą 0.

If M P Modκ, we will say that M is locally finite if each of the homotopy groups πnM is
finite dimensional as a vector space over κ. We will say that an object A P Algκ is locally
finite if it is locally finite when regarded as an object of Modκ.

Our analysis of the Koszul duality functor rests on the following result, which we will
prove at the end of this section:

Theorem 14.1.3.2. Let κ be a field and let µ : AbκB Ñ κ be a morphism in Algκ. Assume
that A is coconnective and that µ exhibits B as a Koszul dual of A. Then:

p1q Let M be a left A-module such that πnM » 0 for n ą 0. Then πnDµpMq » 0 for
n ă 0.

p2q The E1-algebra B is connective.

p3q Let N be a connective B-module. Then πnD
1
µpNq » 0 for n ą 0.

p4q Let M be as in p1q and assume that M is locally finite. Then the canonical map
M Ñ D1µDµM is an equivalence in LModA.

Corollary 14.1.3.3. Let κ be a field, and let A P Algaug
κ be coconnective and locally

finite. Then the canonical map A Ñ Dp1qDp1qpAq is an equivalence. In other words, if
µ : Abκ B Ñ κ exhibits B as a Koszul dual of A, then µ also exhibits A as a Koszul dual of
B.

Proof. Let µ : A bκ B Ñ κ be a map which exhibits B as a Koszul dual of A. We wish
to prove that µ exhibits A as the Koszul dual of B. According to Remark 14.1.2.4, it will
suffice to show that the unit map AÑ D1µDµpAq is an equivalence of left A-modules. Since
A is coconnective and locally finite, this follows from Theorem 14.1.3.2.

14.1.4 Free Resolutions of Coconnective Modules

If A is a connective E1-ring, then the free A-modules of finite rank comprise compact
projective generators for the 8-category LModcn

A of connective left A-modules. It follows
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that every connective A-module M can be written as the geometric realization of a simplicial
object M‚ of LModcn

A , where each Mk is free. Our next goal is to prove an analogous (but
in some sense dual) result in the case where A is a coconnective E1-algebra over a field κ

(see Definition 14.1.3.1). This result will play an important role in our proof of Theorem
14.1.3.2:

Proposition 14.1.4.1. Let A be a coconnective E1-algebra over a field κ and let M be a
left A-module. Then there exists a sequence of left A-modules

0 “Mp0q ÑMp1q ÑMp2q Ñ ¨ ¨ ¨

with the following properties:

paq For each n ě 0, there exists a κ-module spectrum V pnq such that πiV pnq » 0 for i ě 0
and a cofiber sequence of left A-modules

Abκ V pnq ÑMpnq ÑMpn` 1q.

pbq There exists a map θ : lim
ÝÑ

Mpnq ÑM which induces an isomorphism πm lim
ÝÑ

Mpnq Ñ

πmM for m ď 0.

Remark 14.1.4.2. In the situation of Proposition 14.1.4.1, it follows easily by induction
on n that πmMpnq vanishes for m ą 0, so that the map θ : lim

ÝÑ
Mpnq ÑM is an equivalence

if and only if πmM » 0 for m ą 0.

Proof. Let M 1 be the underlying κ-module spectrum of M , and let V p1q “ τď0M
1. Since κ

is a field, the canonical map M 1 Ñ V p1q admits a section s. Set Mp1q “ AbκV p1q, so that s
determines a map of left A-modules Mp1q ÑM . By construction, the map πmMp1q Ñ πmM

is surjective for m ď 0 and bijective for m “ 0. We construct Mpnq P pLModAq{M for n ą 1
by induction on n. Assume that we have already constructed Mpn´ 1q P pLModAq{M , and
that the map em : πmMpn´ 1q Ñ πmM is bijective for m “ 0 and surjective for m ă 0. Let
Wm denote the kernel of em (as a vector space over κ), and let V pnq “

À

mă0 ΣmpWmq (as
a κ-module spectrum). We have an evident map of κ-modules V pnq Ñ fibpMpn´ 1q ÑMq,
hence a map of left A-modules f : pAbκ V pnqq Ñ fibpMpn´1q ÑMq. Let Mpnq denote the
cofiber of the map Abκ V pnq ÑMpn´ 1q, so that f determines a map Mpn´ 1q ÑMpnq

in pLModAq{M and we have a cofiber sequence

Abκ V pnq ÑMpn´ 1q ÑMpnq.

For each m P Z, let e1m : πmMpnq Ñ πmM be the evident map. It is clear that e1m is
surjective for m ă 0 (since em factors through e1m). We claim that e1m is bijective when
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m “ 0. To prove this, it suffices to show that the evident map π0Mpn ´ 1q Ñ π0Mpnq is
bijective. We have a long exact sequence

π1pAbκ V pnqq Ñ π0Mpn´ 1q e
1
n
Ñ π0Mpnq Ñ π0pAbκ V pnqq

φ
Ñ π´1Mpn´ 1q.

Since A is coconnective and πmV pnq » 0 for m ą 0, the vector space π1pAbκ V pnqq is trivial
and π0pAbκ V pnqq » π0V pnq » kerpπ´1Mpn´ 1q Ñ π´1Mq. It follows that φ is injective
so that e10 is an isomorphism.

It remains to prove that the map θ : lim
ÝÑ

Mpnq Ñ M induces an isomorphism on πm
for m ď 0. It is clear that the map ~em : πm lim

ÝÑ
Mpnq Ñ πmM is surjective for m ď 0. If

η belongs to the kernel of ~em, then η can be represented by an element of πmMpn ´ 1q
belonging to the kernel of em for some n " 0. By construction, the image of this class in
πmMpnq vanishes, so that η “ 0.

Corollary 14.1.4.3. Let A be a coconnective E1-algebra over a field κ, let M be a left
A-module, and let N be a right A-module. Suppose that πiM » πiN » 0 for i ą 0. Then
πipN bAMq » 0 for i ą 0. Moreover, the map pπ0Nq bκ pπ0Mq Ñ π0pN bκMq is injective.

Proof. Let tMpnquně0 be as in the proof of Proposition 14.1.4.1, so that M » lim
ÝÑ

Mpnq by
Remark 14.1.4.2. Then πipN bAMq » lim

ÝÑ
πipN bAMpnqq, and we have Mp1q » AbκM

so that
π0pN bAMp1qq » π0pN bκMq » pπ0Nq bκ pπ0Mq.

It will therefore suffice to show that πipN bAMp1qq » 0 for each i ą 0 and that the maps
π0pN bAMp1qq Ñ π0pN bAMpnqq are injective, for which we use induction on n. When
n “ 1, the result is obvious. Otherwise, we have a cofiber sequence

Abκ V pnq ÑMpn´ 1q ÑMpnq

where V pnq P pModκqď´1, whence a cofiber sequence of spectra

N bκ V pnq Ñ N bAMpn´ 1q Ñ N bAMpnq.

The desired result now follows from the inductive hypothesis, since πipN bκ V pnqq » 0 for
i ě 0.

Corollary 14.1.4.4. Let κ be a field and let φ : AÑ B be a map of coconnective E1-algebras
over κ. Let M be a left A-module such that πiM » 0 for i ą 0. Then the homotopy groups
πipB bAMq vanish for i ą 0, and the map π0M Ñ π0pB bAMq is injective.

Corollary 14.1.4.5. Let κ be a field and let φ : AÑ B be a map of coconnective E1-algebras
over κ. Let M be a left A-module such that πiM » 0 for i ą 0. If BbAM » 0, then M » 0.



14.1. KOSZUL DUALITY FOR ASSOCIATIVE ALGEBRAS 1147

14.1.5 Connectivity and Mapping Spaces

Let A be a connective E1-ring. Then the 8-category LModA of left A-modules admits a
t-structure ppLModAqě0, pLModAqď0q, where a left A-module M belongs to pLModAqě0 if
and only if the homotopy groups of M are concentrated in degrees ě 0, and a left A-module
N belongs to pLModAqď0 if and only if the homotopy groups of N are concentrated in
degrees ď 0 (see Proposition ??). In particular, if M,N P LModA are left A-modules and
there exists an integer m for which the groups π˚M vanish for ˚ ă m and the groups π˚N
vanish for ˚ ě m, then any morphism M Ñ N is automatically nullhomotopic. We now
prove an analogous (but dual) result in the case where A is a coconnective E1-algebra over
a field.

Proposition 14.1.5.1. Let A be a coconnective E1-algebra over a field κ. Let M and N be
left A-modules. Assume that πmM » 0 for m ą 0 and that πmN » 0 for m ď 0. Then any
map f : M Ñ N is nullhomotopic.

Proof. Let tMpnquně0 be as in the proof of Proposition 14.1.4.1, so that M » lim
ÝÑ

Mpnq by
Remark 14.1.4.2. We may therefore identify MapLModApM,Nq with the homotopy limit of
the tower

¨ ¨ ¨ Ñ MapLModApMp1q, Nq Ñ MapLModApMp0q, Nq.

To prove that MapLModApM,Nq is connected, it will suffice to show that each of the mapping
spaces MapLModApMpnq, Nq is connected, and that each map

π1 MapLModApMpnq, Nq Ñ π1 MapLModApMpn´ 1q, Nq

is surjective. We proceed by induction on n. Using the cofiber sequence

Abκ V pnq ÑMpn´ 1q ÑMpnq,

we obtain a fiber sequence of spaces

MapLModApMpnq, Nq Ñ MapLModApMpn´ 1q, Nq Ñ MapLModκpV pnq, Nq.

It will therefore suffice to show that π1 MapLModκpV pnq, Nq » 0. Since κ is a field, this
follows immediately from the our assumptions that πmV pnq » 0 for m ě 0 and πmN » 0
for m ď 0.

Corollary 14.1.5.2. Let A be a coconnective E1-algebra over a field κ. Let M and N be
left A-modules such that πmM » 0 for m ą 0 and πmN » 0 for m ă 0. Then the canonical
map θ : Ext0

ApM,Nq Ñ Homκpπ0M,π0Nq is surjective.
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Proof. We have an evident map of κ-module spectra π0M ÑM , which determines a map
of left A-modules Abκ pπ0Mq ÑM . Let K denote the fiber of this map, so that we have a
fiber sequence of spaces

MapLModApM,Nq
φ
Ñ MapModκpπ0M,Nq Ñ MapLModApK,Nq.

Since πmK » 0 form ě 0, Proposition 14.1.5.1 implies that the mapping space MapLModApK,Nq

is connected. It follows that φ induces a surjection

Ext0
ApM,Nq Ñ Ext0

Apπ0M,Nq » Homκpπ0M,π0Nq.

Corollary 14.1.5.3. Let A be a coconnective E1-algebra over a field κ, and let M be a left
A-module such that πmM » 0 for m ‰ 0. Suppose we are given a map of E1-algebras AÑ κ.
Then M lies in the essential image of the forgetful functor θ : Modκ » LModκ Ñ LModA.

Proof. Let V “ π0M , and regard V as a discrete κ-module spectrum. Corollary 14.1.5.2
implies that the evident isomorphism π0θpV q » π0M can be lifted to a map of left A-modules
θpV q ÑM , which is evidently an equivalence.

14.1.6 The Proof of Theorem 14.1.3.2

Let κ be a field and let µ : A bκ B Ñ κ be a morphism in Algκ. Assume that A is
coconnective and that µ exhibits B as a Koszul dual of A. We will verify each of the
assertions of Theorem 14.1.3.2:

p1q Let M be a left A-module satisfying πmM » 0 for m ą 0. We wish to show that
πnDµpMq » 0 for n ă 0. Using Proposition 14.1.4.1 and Remark 14.1.4.2, we can
write M as the colimit of a sequence of A-modules

0 “Mp0q ÑMp1q ÑMp2q Ñ ¨ ¨ ¨ ,

where each Mpnq fits into a cofiber sequence A bκ V pnq Ñ Mpnq Ñ Mpn ` 1q for
V pnq P pModκqď´1. Then DµpMq is a limit of the tower tDµpMpnqquně0. It will
therefore suffice to prove that πmDµpMpnqq » 0 for m ă 0 and that each of the maps
π0DµpMpnqq Ñ π0DµpMpn´ 1qq is surjective. Using the fiber sequences

DµpMpnqq Ñ DµpMpn´ 1qq Ñ DµpAbκ V pnqq,

we are reduced to showing that the groups πmDµpA bκ V pnqq vanish for m ď 0.
Unwinding the definitions, we must show that if m ď 0, then any map of A bκ B-
modules from pAbκ V pnqq bκ ΣmpBq to κ is nullhomotopic. This is equivalent to the
assertion that every map of κ-module spectra from ΣmV pnq into κ is nullhomotopic.
Since κ is a field, this follows from the observation that π0ΣmV pnq » π´mV pnq » 0.
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p2q Since µ : Abκ B Ñ κ exhibits B as a Koszul dual of A, the augmentation on B gives
a map κbκ B Ñ κ which induces an equivalence B Ñ Dµpκq. It follows from p1q that
B is connective.

p3q Let N be a connective B-module. We wish to show that the homotopy groups πnD1µpNq
vanish for n ą 0. Let C be the full subcategory of LModB spanned by those objects
N for which πnD

1
µpNq » 0 for n ą 0. Since D1µ : LModop

B Ñ LModA preserves small
limits, the 8-category C is stable under small colimits in LModB. Consequently, to
prove that C contains all connective left B-modules, it will suffice to show that B P C.
This is clear, since D1µpBq » κ.

p4q Let M be a left A-module which is locally finite and satisfies π˚M » 0 for ˚ ą 0.
We wish to show that the canonical map uM : M Ñ D1µDµM is an equivalence in
LModA. It follows from p1q that DµpMq is connective, so that πnD1µDµpMq » 0 for
n ą 0 by virtue of p3q. Set KM “ fibpuM q, so that πnKM » 0 for n ą 0. We prove
that πnKM » 0 for all n, using descending induction on n. Using Proposition 14.1.4.1,
we can choose a map of left A-modules v : M 1 Ñ M which induces an isomorphism
πmM

1 Ñ πmM for m ă 0 and satisfies πmM 1 » 0 for m ě 0. Let M2 denote the
cofiber of v, so that πmM2 » 0 for m ‰ 0 and therefore Corollary 14.1.5.3 guarantees
that M2 is a direct sum of (finitely many) copies of κ. The condition that µ exhibits
B as a Koszul dual of A guarantees that B » Dµpκq and therefore the unit map
uκ : κ » D1µpBq Ñ D1µDµpκq is an equivalence. It follows that uM2 is an equivalence.
The cofiber sequence M ÑM2 Ñ ΣM 1 induces an equivalence KM » Σ´1KΣM 1 . The
inductive hypothesis implies that πn`1KΣM 1 » 0, so that πnKM » 0 as desired.

14.1.7 Koszul Duality and Tensor Products

In Chapter 15, we will need the following slightly stronger version of Corollary 14.1.3.3:

Proposition 14.1.7.1. Let κ be a field and suppose given a finite collection of mapstµi :
Ai bκ Bi Ñ κu1ďiďm in Algκ. Assume that each Ai is coconnective and locally finite and
that each µi exhibits Bi as a Koszul dual of Ai. Let A “

Â

iAi, B “
Â

iBi, and let
µ : Abκ B Ñ κ be the tensor product of the maps µi. Then µ exhibits A as the Koszul dual
of B.

Warning 14.1.7.2. In the situation of Proposition 14.1.7.1, it is not necessarily true
that µ exhibits B as the Koszul dual of A. For example, suppose that m “ 2 and that
A1 “ A2 “ κ ‘ Σ´1pκq, endowed with the square-zero algebra structure. In this case,
the Koszul dual of A1 can be identified with the power series ring κrrx1ss, regarded as a
discrete E1-algebra. Similarly, the Koszul dual of A2 can be identified with κrrx2ss, and
the Koszul dual of the tensor product A1 bκ A2 is given by κrrx1, x2ss. The canonical map
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θ : κrrx1ss bκ κrrx2ss Ñ κrrx1, x2ss is not an isomorphism: however, Proposition 14.1.7.1
guarantees that θ induces an equivalence after applying the Koszul duality functor.

Proof. For 1 ď i ď m, let Di : LModop
Ai
Ñ LModBi be the duality functor determined

by µi, and let D1µ : LModop
B Ñ LModA be the duality functor associated to µ. For every

sequence of objects ~M “ tMi P LModAiu, we have a canonical map u ~M : M1bκ ¨ ¨ ¨bκMm Ñ

D1µpD1M1 bκ ¨ ¨ ¨ bκ DmMmq. We will prove the following:

p˚q If ~M “ tMiu1ďiďm P
ś

i LModAi is such that the homotopy groups πnMi » 0 vanish
for i ą 0 and each Mi is locally finite, then u ~M is an equivalence.

Fix 0 ď m1 ď m. We will show that assertion p˚q holds under the additional assumption
that Mi » κ for i ą m1. The proof proceeds by induction on m1. If m1 “ 0, then each
Mi » κ and the desired result follows immediately from our assumption that each µi exhibits
Bi as a Koszul dual of Ai. Let us therefore assume that m1 ą 0 and that condition p˚q holds
whenever Mi » κ for i ă m1.

Note that if ~M satisfies the hypotheses of p˚q, then Theorem 14.1.3.2 guarantees that
each DipMiq is connective and therefore that πnD1µpD1M1 bκ ¨ ¨ ¨ bκ DmMmq » 0 for n ą 0.
Let K ~M denote the fiber of u ~M , so that πnK ~M » 0 for n ą 0. We prove that πnK ~M » 0 for
all n, using descending induction on n. Using Proposition 14.1.4.1, we can choose a map of
left A-modules v : M 1 ÑMm1 which induces an isomorphism πpM

1 Ñ πpMm1 for p ă 0 and
satisfies πpM 1 » 0 for p ě 0. Let M2 denote the cofiber of v, so that πpM2 » 0 for p ‰ 0
and therefore Corollary 14.1.5.3 guarantees that M2 is a direct sum of (finitely many) copies
of κ. Let ~M2 be the sequence of modules obtained from ~M by replacing Mm1 with M2,
and let ~N be the sequence of modules obtained from ~M by replacing Mm1 with ΣM 1. The
inductive hypothesis implies that K ~M2 » 0. Using the cofiber sequence Mm1 ÑM2 Ñ ΣM 1,
we obtain an equivalence K ~M » Σ´1K ~N , so that πnK ~M » πn`1K ~N is trivial by the other
inductive hypothesis.

14.2 Formal Moduli Problems for Associative Algebras

Let κ be a field. In this section, we will use the Koszul duality functor Dp1q of §14.1 to
construct an equivalence of 8-categories Algaug

κ » Modulip1qκ , and thereby obtain a proof of
Theorem 14.0.0.5. The main point is to show that the functor Dp1q is a deformation theory
(in the sense of Definition 12.3.3.2).

14.2.1 Associative Algebras as a Deformation Context

We begin by discussing a variant of Example 12.1.1.2:
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Construction 14.2.1.1. Let κ be a field. Theorem HA.7.3.4.13 gives an equivalence
between SppAlgaug

κ q and the 8-category κBModκpModκq » Modκ of κ-module spectra. Let
E P SppAlgaug

κ q correspond to the unit object κ P Modκ under this equivalence (so we have
Ω8´nE » κ‘Σnpκq for every integer n). We regard pAlgaug

κ , tEuq as a deformation context
(see Definition 12.1.1.1).

We begin by showing that the deformation context pAlgaug
κ , tEuq of Construction 14.2.1.1

allows us to recover the notion of Artinian κ-algebra and formal E1-moduli problem via the
general formalism laid out in §12.1.

Proposition 14.2.1.2. Let κ be a field and let pAlgaug
κ , tEuq be the deformation context of

Construction 14.2.1.1. Then an object A P Algaug
κ is Artinian (in the sense of Definition

12.1.2.4) if and only if its image in Algκ is Artinian (in the sense of Definition 14.0.0.1);
that is, if and only if A satisfies the following conditions:

paq The algebra A is connective: that is, πiA » 0 for i ă 0.

pbq The algebra A is truncated: that is, we have πiA » 0 for i " 0.

pcq Each of the homotopy groups πiA is finite dimensional when regarded as a vector space
over field κ.

pdq Let n denote the radical of the ring π0A (which is a finite-dimensional associative
algebra over κ). Then the canonical map κÑ pπ0Aq{n is an isomorphism.

Proof. Suppose first that there there exists a finite sequence of maps

A “ A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ An » κ

where each Ai is a square-zero extension of Ai`1 by Σnipκq, for some ni ě 0. We prove that
each Ai satisfies conditions paq through pdq using descending induction on i. The case i “ n

is obvious, so let us assume that i ă n and that Ai`1 is known to satisfy conditions paq
through pdq. We have a fiber sequence of κ-module spectra

Σnipκq Ñ Ai Ñ Ai`1

which immediately implies that Ai satisfies paq, pbq, and pcq. To prove pdq, we note that the
map φ : π0Ai Ñ π0Ai`1 is surjective and kerpφq2 “ 0, so that the quotient of π0Ai by its
radical agrees with the quotient of π0Ai`1 by its radical.

Now suppose that A satisfies conditions paq through pdq. We will prove that A is Artinian
by induction on the dimension of the κ-vector space π˚A. Let n be the largest integer
for which πnA does not vanish. We first treat the case n “ 0. We will abuse notation by
identifying A with the underlying associative ring π0A. Let n denote the radical of A. If
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n “ 0, then condition pdq implies that A » κ so there is nothing to prove. Otherwise, we
can view n as a nonzero module over the associative algebra Abκ Aop. It follows that there
exists a nonzero element x P n which is annihilated by nbκ n. Using pdq again, we deduce
that the subspace κx Ď A is a two-sided ideal of A. Let A1 denote the quotient ring A{κx.
Theorem HA.7.4.1.23 implies that A is a square-zero extension of A1 by κ. The inductive
hypothesis implies that A1 is Artinian, so that A is also Artinian.

Now suppose that n ą 0 and let M “ πnA. Then M is a nonzero bimodule over the
finite dimensional κ-algebra π0A. It follows that there is a nonzero element x PM which is
annihilated (on both sides) by the action of the radical n Ď π0A. Let M 1 denote the quotient
of M by the bimodule generated by x (which, by virtue of pdq, coincides with κx), and let
A2 “ τďn´1A. It follows from Theorem HA.7.4.1.23 that there is a pullback diagram

A //

��

κ

��
A2 // κ‘ Σn`1pMq.

Set A1 “ κ ˆκ‘Σn`1pM 1q A
2. Then A » κ ˆκ‘Σn`1pκq A

1 so we have an elementary map
A Ñ A1. Using the inductive hypothesis we deduce that A1 is Artinian, so that A is also
Artinian.

We will also need a noncommutative analogue of Lemma 12.1.3.8:

Proposition 14.2.1.3. Let κ be a field and let f : AÑ B be a morphism in Algart
κ . Then

f is small (when regarded as a morphism in Algaug
κ ) if and only if it induces a surjection of

associative rings π0AÑ π0B.

Proof. The “only if” direction is obvious. For the converse, suppose that π0A Ñ π0B is
surjective, so that the fiber I “ fibpfq is connective. We will prove that f is small by
induction on the dimension of the graded vector space π˚I. If this dimension is zero, then
I » 0 and f is an equivalence. Assume therefore that π˚I ‰ 0, and let n be the smallest
integer such that πnI ‰ 0. Let LB{A denote the relative cotangent complex of B over A in
the setting of E1-algebras, regarded as an object of BBModBpModκq. Remark HA.7.4.1.12
supplies a fiber sequence LB{A Ñ B bA B Ñ B. In the 8-category LModB, this sequence
splits; we therefore obtain an equivalence of left B-modules

LB{A » cofibpB Ñ B bA Bq » B bA cofibpAÑ Bq » B bA ΣpIq.

The kernel of the map π0A Ñ π0B is contained in the radical of π0A and is therefore a
nilpotent ideal. It follows that πn`1LB{A » Torπ0B

0 pπ0A, πnIq is a nonzero quotient of of
πnI. Let us regard πn`1LB{A as a bimodule over π0B, and let n be the radical of π0B.
Since n is nilpotent, the two-sided submodule npπn`1LB{Aq` pπn`1LB{Aqn does not coincide
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with πn`1LB{A. It follows that there exists a map of π0B-bimodules πn`1LB{A Ñ κ, which
determines a map LB{A Ñ Σn`1pκq in the 8-category BBModBpModκq. We can interpret
this map as a derivation B Ñ B ‘ Σn`1pκq. Let B1 “ B ˆB‘Σn`1pκq κ be the associated

square-zero extension of B by Σnpκq. Then f factors as a composition A
f 1
Ñ B1

f2
Ñ B. Since

the map f2 is elementary, it will suffice to show that f 1 is small, which follows from the
inductive hypothesis.

Corollary 14.2.1.4. Let κ be a field and let X : Algart
κ Ñ S be a functor. Then X belongs

to the full subcategory Modulip1qκ of Definition 14.0.0.4 if and only if it is a formal moduli
problem in the sense of Definition 12.1.3.1.

Proof. The “if” direction follows immediately from Proposition 14.2.1.3. For the converse,
suppose that X satisfies the conditions of Definition 14.0.0.4; we wish to show that X is a
formal moduli problem. According to Proposition 12.1.3.2, it will suffice to show that for
every n ą 0 and every pullback diagram

A //

��

B

��
κ // κ‘ Σnpκq

in the 8-category Algart
κ , the associated diagram of spaces

XpAq //

��

XpBq

��
Xpκq // Xpκ‘ Σnpκqq

is also a pullback square. This follows immediately from condition p2q of Definition 14.0.0.4.

14.2.2 Koszul Duality as a Deformation Theory

We can now formulate our main result:

Theorem 14.2.2.1. Let κ be a field. Then the Koszul duality functor

Dp1q : pAlgaug
κ qop Ñ Algaug

κ

is a deformation theory (on the deformation context pAlgaug
κ , tEuq of Construction 14.2.1.1).

Proof of Theorem 14.0.0.5. Let κ be a field, and let Ψ : Algaug
κ Ñ FunpAlgart

κ ,Sq be the
functor given on objects by the formula ΨpAqpRq “ MapAlgaug

κ
pDp1qpRq, Aq. Combining
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Theorems 14.2.2.1 and 12.3.3.5, we deduce that Ψ is a fully faithful embedding whose
essential image is the full subcategory Modulip1qκ Ď FunpAlgart

κ ,Sq spanned by the formal
E1-moduli problems.

Proof of Theorem 14.2.2.1. The 8-category Algaug
κ is presentable by Corollary HA.3.2.3.5 ,

and Dp1q admits a left adjoint by Remark 14.1.1.4. Let B0 Ď Algaug
κ be the full subcategory

spanned by those algebras which are coconnective and locally finite (see Definition 14.1.3.1).
We will complete the proof that Dp1q is a weak deformation theory by showing that the
subcategory B0 satisfies conditions paq thorugh pdq of Definition 12.3.1.1:

paq For every object A P B0, the unit map A Ñ Dp1qDp1qpAq is an equivalence. This
follows from Corollary 14.1.3.3.

pbq The full subcategory B0 contains the initial object κ P Algaug
κ . This is clear from the

definitions.

pcq For each n ě 1, there exists an object Kn P B0 and an equivalence κ ‘ Σnpκq »

Dp1qpKnq. In fact, we can take Kn to be the free algebra
À

mě0 V
bm generated by

V “ Σ´n´1pκq (this is a consequence of Proposition 15.3.2.1, but is also not difficult
to verify by direct calculation).

pdq Let n ě 1 and suppose we are given a pushout diagram σ :

Kn
//

φ
��

κ

��
A // A1

in Algaug
κ , where Kn is as in pcq. We must show that if A P B0, then A1 P B0. Note

that σ is also a pushout diagram in Algκ. We will make use of the fact that Algκ is the
underlying 8-category of the model category Algdg

κ of differential graded algebras over
κ (for a different argument which does not use the theory of model categories, we refer
the reader to the proof of Theorem 15.3.3.1). Choose a cofibrant differential graded
algebra A˚ representing A, and let B˚ denote the free differential graded algebra
generated by a class x in degree p´n´ 1q. Since B˚ is cofibrant and A˚ is fibrant, the
map φ : Kn Ñ A can be represented by a map φ0 : B˚ Ñ A˚ of differential graded
algebras, which is determined by the element x1 “ φ0pxq P A´n´1. Let B1˚ denote the
free differential graded algebra generated by the chain complex Ep´nq˚ (see the proof
of Proposition 13.1.3.2): in other words, B1˚ is obtained from B˚ by freely adjoining an
element y P B1´n satisfying dy “ x. Then B1˚ is quasi-isomorphic to the ground field κ.
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Let ψ0 : B˚ Ñ B1˚ be the evident inclusion, and form a pushout diagram σ0 :

B˚
ψ0 //

φ0
��

B1˚

��
A˚ // A1˚

in the category Algdg
κ . Since A˚ is cofibrant and ψ0 is a cofibration, the diagram σ0 is

also a homotopy pushout square, so that the image of σ0 in Algκ is equivalent to the
diagram σ. It follows that the differential graded algebra A1˚ represents A1. We can
describe A1˚ explicitly as the differential graded algebra obtained from A˚ by adjoining
an element y1 in degree ´n satisfying dy1 “ x1. As a chain complex, A1˚ can be written
as a union of an increasing family of subcomplexes

A˚ “ A10˚ Ď A11˚ Ď A12˚ Ď ¨ ¨ ¨ ,

where A1m˚ denote the graded subspace of A1˚ generated by products of the form
a0ya1y ¨ ¨ ¨ am1yam. The successive quotients for this filtration are given byA1m˚ {A1m´1

˚ »

Abm`1
˚ r´nms. It follows that the homology groups of A1˚{A˚ can be computed by

means of a (convergent) spectral sequence tEp,qr , drurě2 with

Ep,q2 »

#

0 if p ď 0
pH˚pA˚qbp`1qq`p`np if p ě 1.

Since A is coconnective and n ą 0, the groups Ep,q2 vanish unless p` q ď ´np ă 0. It
follows that each homology group HmpA

1
˚{A˚q admits a finite filtration by subquotients

of the vector spaces Ep,q2 with p` q “ m, each of which is finite dimensional (since A
is locally finite), and that the groups HmpA

1
˚{A˚q vanish for m ě 0. Using the long

exact seuqence

¨ ¨ ¨ Ñ HmpA˚q Ñ HmpA
1
˚q Ñ HmpA

1
˚{A˚q Ñ Hm´1pA˚q Ñ ¨ ¨ ¨ ,

we deduce that HmpA
1
˚q is finite dimensional for all m and isomorphic to HmpA˚q for

m ě 0, from which it follows immediately that A1 P B0.

We now complete the proof of Theorem 14.2.2.1 by showing that the weak deformation
theory Dp1q satisfies axiom pD4q of Definition 12.3.3.2. For n ě 1, and A P Algaug

κ , we have
a canonical homotopy equivalence

ΨpAqpΩ8´npEqq “ MapAlgaug
κ
pDp1qpκ‘ Σnpκqq, Aq

» MapAlgaug
κ
pKn, Aq

» Ω8´n´1 fibpAÑ κq.
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These maps determine an equivalence from the functor e : Algaug
κ Ñ Sp with ΣpIq, where

I : Algaug
κ Ñ Sp denotes the functor which assigns to each augmented algebra ε : A Ñ κ

its augmentation ideal fibpεq. This functor is evidently conservative, and preserves sifted
colimits by virtue of Proposition HA.3.2.3.1 .

Remark 14.2.2.2. Let κ be a field, let ε : AÑ κ be an object of Algaug
κ , and let X “ ΨpAq

denote the formal E1-moduli problem associated to A via the equivalence of Theorem 14.0.0.5.
The proof of Theorem 14.2.2.1 shows that the shifted tangent complex Σ´1XpEq P Sp can
be identified with the augmentation ideal fibpεq of A.

14.2.3 Application: Prorepresentability

We close this section by proving a noncommutative analogue of Proposition 13.3.3.1.

Proposition 14.2.3.1. Let κ be a field and let X : Algart
κ Ñ S be a formal E1-moduli

problem over κ. The following conditions are equivalent:

p1q The functor X is prorepresentable (see Definition 12.5.3.1).

p2q Let XpEq denote the tangent complex of X. Then πiXpEq » 0 for i ą 0.

p3q The functor X has the form ΨpAq, where A P Algaug
κ is coconnective and Ψ : Algaug

κ Ñ

Modulip1qκ is the equivalence of Theorem 14.0.0.5.

Proof. The equivalence of p2q and p3q follows from Remark 14.2.2.2. We next prove that
p1q ñ p2q. Since the construction X ÞÑ XpEq commutes with filtered colimits, it will suffice
to show that πiXpEq » 0 for i ą 0 in the case when X “ Spf R is representable by an object
R P Algart

κ . In this case, we can write X “ ΨpAq where A “ Dp1qpRq belongs to the full
subcategory B0 Ď Algaug

κ appearing in the proof of Theorem 14.2.2.1. In particular, A is
coconnective, so that X satisfies condition p3q (and therefore also condition p2q).

We now complete the proof by showing that p3q ñ p1q. Let A P Algaug
κ be coconnective.

Choose a representative of A by a cofibrant differential graded algebra A˚ P Algdg
κ . Since A˚

is cofibrant, we may assume that the augmentation of A is determined by an augmentation
of A˚. We now construct a sequence of differential graded algebras

κ “ Ap´1q˚ Ñ Ap0q˚ Ñ Ap1q˚ Ñ Ap2q˚ Ñ ¨ ¨ ¨

equipped with maps φpiq : Apiq˚ Ñ A˚. For each n ă 0, choose a graded subspace
Vn Ď An consisting of cycles which maps isomorphically onto the homology HnpA˚q. We
regard V˚ as a differential graded vector space with trivial differential (which vanishes in
nonnegative degrees). Let Ap0q˚ denote the free differential graded Lie algebra generated by
V˚, and φp0q : Ap0q˚ Ñ A˚ the evident map. Assume now that we have constructed a map
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φpiq : Apiq˚ Ñ A˚ extending φp1q. Since A is coconnective, the map θ : HnpApiq˚q Ñ H˚pA˚q
is surjective. Choose a collection of cycles xα P Apiqnα whose images form a basis for kerpθq.
Then we can write φpiqpxαq “ dyα for some yα P Anα`1. Let Api` 1q˚ be the differential
graded algebra obtained from Apiq˚ by freely adjoining elements Yα (in degrees nα ` 1)
satisfying dYα “ xα. We let φpi` 1q : Api` 1q˚ Ñ A˚ denote the unique extension of φpiq
satisfying φpi` 1qpYαq “ yα.

We now prove the following assertion for each integer i ě 0:

p˚iq The inclusion V´1 ãÑ Apiq´1 induces an isomorphism V´1 Ñ H´1pApiq˚q, the unit
map κÑ Apiq0 is an isomorphism, and Apiqj » 0 for j ą 0.

Assertion p˚iq is obvious when i “ 0. Let us assume that p˚iq holds, and let θ be defined
as above. Then θ is an isomorphism in degrees ě ´1, so that Api`1q˚ is obtained from Apiq˚
by freely adjoining generators Yα in degrees ď ´1. It follows immediately that Api` 1qj » 0
for j ą 0 and that the unit map κÑ Api` 1q0 is an isomorphism. Moreover, we can write
Api ` 1q´1 » Apiq´1 ‘W , where W is the subspace spanned by elements of the form Yα
where nα “ ´2. By construction, the differential on Api`1q˚ induces a monomorphism from
W to the quotient Apiq´2{dApiq´1 Ď Api ` 1q´2{dApiq´1, so that the differential graded
algebras Api` 1q˚ and Apiq˚ have the same homology in degree ´1.

Let A1˚ denote the colimit of the sequence tApiq˚uiě0. The evident map g1˚ Ñ g˚
is surjective on homology (since the map Ap0q˚ Ñ g˚ is surjective on homology). If
η P kerpH˚pA1˚q Ñ H˚pA˚q, then η is represented by a class η P kerpH˚pApiq˚q Ñ H˚pA˚qq
for i " 0. By construction, the image of η vanishes in H˚pApi`1q˚q, so that η “ 0. It follows
that the map A1˚ Ñ A˚ is a quasi-isomorphism. Since the collection of quasi-isomorphisms
in Algdg

κ is closed under filtered colimits, we conclude that A˚ is a homotopy colimit of the
sequence tApiq˚uiě0 in the model category Algdg

κ . Let Apiq P Algaug
κ be the image of the

differential graded algebra Apiq˚ (equipped with the augmentation determined by the map
φpiq : Apiq˚ Ñ A˚), so that A » lim

ÝÑ
Apiq in Algaug

κ . Setting Xpiq “ ΨpApiq˚q P Modulip1qκ ,
we deduce that X » lim

ÝÑ
Xpiq. To prove that X is prorepresentable, it will suffice to show

that each Xpiq is prorepresentable.
We now proceed by induction on i, the case i “ ´1 being trivial. To carry out the

inductive step, we note that each of the Lie algebras Api`1q˚ is obtained from Apiq˚ by freely
adjoining a set of generators tYαuαPS of degrees nα ` 1 ď ´1, satisfying dYα “ xα P Apiqnα .
Choose a well-ordering of the set S. For each α P S, we let Aăα˚ denote the Lie subalgebra
of Api ` 1q˚ generated by Apiq˚ and the elements Yβ for β ă α, and let Aďα˚ be defined
similarly. Set Xăα “ ΨpAăα˚ q and Xďα “ ΨpAďα˚ q. For each integer n, let Bpnq˚ be the free
differential graded algebra generated by a class x in degree n and B1pnq˚ the free differential
graded algebra generated by a class x in degree n and a class y in degree n` 1 satisfying
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dy “ x. For each α P S, we have a homotopy pushout diagram of differential graded algebras

Bpnq˚ //

��

B1pnq˚

��
Aăα˚ // Aďα˚ ,

hence a pushout diagram diagram of formal E1-moduli problems

Spfpκ‘ Σnα`1pκqq //

��

Spfpκq

��
Xăα // Xďα.

It follows that the map Xpiq Ñ Xpi ` 1q satisfies the criterion of Lemma 12.5.3.4. Since
Xpiq is prorepresentable, we conclude that Xpi` 1q is prorepresentable.

14.3 Comparison with the Commutative Case

For every field κ, the forgetful functor CAlgκ Ñ Algκ carries Artinian E8-algebras over
κ to Artinian E1-algebras over κ and therefore induces a forgetful functor θ : CAlgart

κ Ñ

Algart
κ . If X : Algart

κ Ñ S is a formal E1-moduli problem over κ, then the composition
pX ˝ θq : CAlgart

κ Ñ S is a formal moduli problem over κ. Consequently, composition with θ
determines a functor φ : Modulip1qκ Ñ Moduliκ.

Suppose now that the field κ has characteristic zero. Theorems 14.0.0.5 and 13.0.0.2
supply equivalences of 8-categories

Algaug
κ » Modulip1qκ Lieκ » Moduliκ,

so that we can identify φ with a functor φ1 : Algaug
κ Ñ Lieκ. Our goal in this section is to

give an explicit description of the functor φ1.
Recall that the 8-category Algκ of E1-algebras over κ can be identified with the un-

derlying 8-category of the model category Algdg
κ of differential graded algebras over κ

(Proposition HA.7.1.4.6 ). Let pAlgdg
κ q{κ denote the category of augmented differential graded

algebras over κ. Then pAlgdg
κ q{κ inherits a model structure, and (because κ P Algdg

κ is
fibrant) the underlying 8-category of pAlgdg

κ q{κ can be identified with Algaug
κ . For every

object ε : A˚ Ñ κ of pAlgdg
κ q{κ, we let mA˚ “ kerpεq denote the augmentation ideal of

A˚. Then mA˚ inherits the structure of a nonunital differential graded algebra over κ.
In particular, we can view mA˚ as a differential graded Lie algebra over κ (see Example
13.1.2.2). The construction A˚ ÞÑ mA˚ determines a functor pAlgdg

κ q{κ Ñ Liedg
κ , which

carries quasi-isomorphisms to quasi-isomorphisms. We therefore obtain an induced functor
of 8-categories ψ : Algaug

κ Ñ Lieκ. We will prove that the functors ψ, φ1 : Algaug
κ Ñ Lieκ are

equivalent to one another. We can state this result more precisely as follows:
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Theorem 14.3.0.1. Let κ be a field of characteristic zero. The diagram of 8-categories

Algaug
κ

ψ //

��

Lieκ

��
Modulip1qκ

φ //Moduliκ
commutes (up to canonical homotopy). Here φ and ψ are the functors described above, and
the vertical maps are the equivalences provided by Theorems 13.0.0.2 and 14.0.0.5.

14.3.1 Comparison of Koszul Duality Functors

To prove Theorem 14.3.0.1, we need to construct a homotopy between two functors
Algaug

κ Ñ Moduliκ Ď FunpCAlgart
κ ,Sq. Equivalently, we must construct a homotopy between

the functors F, F 1 : Algaug
κ ˆCAlgart

κ Ñ S given by

F pA,Rq “ MapLieκpDpRq, ψpAqq F 1pA,Rq “ MapAlgaug
κ
pDp1qpRq, Aq.

Composing the Koszul duality functor D : pCAlgaug
κ qop Ñ Lieκ with the equivalence

of 8-categories Lieκ » Moduliκ, we obtain the functor Spf : pCAlgaug
κ qop Ñ Moduliκ of

Example 12.1.3.3. It follows from Yoneda’s lemma that this functor is fully faithful when
restricted to pCAlgart

κ q
op, so that D induces an equivalence from pCAlgart

κ q
op onto its essential

image C Ď Lieκ. The inverse of this equivalence is given by g˚ ÞÑ C˚pg˚q. It follows that we
can identify F and F 1 with functors G,G1 : Algaug

κ ˆ Cop Ñ S, given by the formulas

GpA, g˚q “ MapLieκpg˚, ψpAqq G1pA, g˚q “ MapAlgaug
κ
pDp1qC˚pg˚q, Aq.

Note that the forgetful functor pAlgdg
κ q{κ Ñ Liedg

κ is a right Quillen functor, with left
adjoint given by the universal enveloping algebra construction g˚ ÞÑ Upg˚q of Remark
13.1.2.3. It follows that the functor ψ admits a left adjoint Lieκ Ñ Algaug

κ , which we will
also denote by U . Then the functor G : Algaug

κ ˆ Cop Ñ S can be described by the formula
GpA, g˚q “ MapAlgaug

κ
pUpg˚q, Aq. To show that this functor is equivalent to G1, it will suffice

to show that there is a canonical equivalence Upg˚q » Dp1qC˚pg˚q for g˚ P C. Note that
g˚ P C guarantees that Upg˚q is coconnective and locally finite, so that the biduality map
Upg˚q Ñ Dp1qDp1qUpg˚q is an equivalence (Corollary 14.1.3.2). It will therefore suffice to
show that there exists a canonical equivalence of augmented E1-algebras Dp1qUpg˚q » C˚pg˚q.
In fact, such an equivalence can be defined for all g˚ P Lieκ:

Proposition 14.3.1.1. Let κ be a field of characteristic zero. Then the diagram of 8-
categories

pLieκqop C˚ //

U
��

CAlgaug
κ

��
pAlgaug

κ qop Dp1q // Algaug
κ
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commutes up to canonical homotopy.

14.3.2 Twisted Arrow 8-Categories

Before giving our proof of Proposition 14.3.1.1, we need to recall a bit of terminology
(see §HA.5.2.1 ).

Construction 14.3.2.1. Let C be a category. We define a new category TwArrpCq as
follows:

paq An object of TwArrpCq is given by a triple pC,D, φq, where φ : C Ñ D is a morphism
in C.

pbq Given a pair of objects pC,D, φq, pC 1, D1, φ1q P TwArrpCq, a morphism from pC,D, φq

to pC 1, D1, φ1q consists of a pair of morphisms α : C Ñ C 1, β : D1 Ñ D for which the
diagram

C
φ //

α
��

D

C 1
φ1 // D1

β

OO

commutes.

pcq Given a pair of morphisms

pC,D, φq
pα,βq
ÝÑ pC 1, D1, φ1q

pα1,β1q
ÝÑ pC2, D2, φ2q

in TwArrpCq, the composition of pα1, β1q with pα, βq is given by pα1 ˝ α, β ˝ β1q.

We will refer to TwArrpCq as the twisted arrow category of C. The construction
pC,D, φq ÞÑ pC,Dq determines a forgetful functor λ : TwArrpCq Ñ Cˆ Cop which exhibits
TwArrpCq as fibered in sets over Cˆ Cop (the fiber of λ over an object pC,Dq P Cˆ Cop can
be identified with the set HomCpC,Dq). In particular, λ is a pairing of 8-categories. This
pairing is both left and right representable, and the associated duality functors

Dλ : Cop Ñ Cop D1λ : C Ñ C

are equivalent to the identity.

Proposition 14.3.2.2. Let κ be a field of characteristic zero and letMp1q Ñ Algaug
κ ˆAlgaug

κ

be the pairing of 8-categories of Construction 14.1.1.1. There exists a left representable
map of pairings of 8-categories

TwArrpLiedg
κ q

T //

λ
��

Mp1q

��
Liedg

κ ˆpLiedg
κ q

op UˆC˚// Algaug
κ ˆAlgaug

κ .
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Here U and C˚ denote the (covariant and contravariant) functors from Liedg
κ to Algaug

κ

induced by the universal enveloping algebra and cohomological Chevalley-Eilenberg construc-
tions, respectively.

We first observe that Proposition 14.3.2.2 implies Proposition 14.3.1.1:

Proof of Proposition 14.3.1.1. As noted in Construction 14.3.2.1, the pairing of 8-categories

TwArrpLiedg
κ q Ñ Liedg

κ ˆpLiedg
κ q

op

induces the identity functor id : pLiedg
κ q

op Ñ pLiedg
κ q

op. Applying Proposition ?? to the
morphism of pairings T of Proposition 14.3.2.2, we obtain an equivalence between the
functors C˚ ˝ id,Dp1q ˝ U : pLiedg

κ q
op Ñ Algaug

κ . Since the canonical map

FunpLieop
κ ,Algop

κ q Ñ FunppLiedg
κ q

op,Algaug
κ q

is fully faithful, we obtain an equivalence between the functors C˚,Dp1q ˝ U : Lieop
κ Ñ

Algaug
κ .

14.3.3 The Proof of Proposition 14.3.2.2

Let g˚ be a differential graded Lie algebra over κ and let Cnpgq˚ be as in Construction
13.2.1.1. The universal enveloping algebra UpCnpgq˚q has the structure of a (differential
graded) Hopf algebra, where the comultiplication is determined by the requirement that
the image of Cnpgq˚ consists of primitive elements. In particular, we have a counit map
ε : Cnpgq˚ Ñ κ. Let EndpU Cnpgq˚q denote the chain complex of UpCnpgq˚q-comodule maps
from UpCnpgq˚q to itself. Since UpCnpgq˚q is cofree as a comodule over itself, composition
with the counit map ε : UpCnpgq˚q Ñ κ induces an isomorphism θ from EndpU Cnpgq˚q to
the κ-linear dual of U Cnpgq˚. We regard EndpU Cnpgq˚q as endowed with the opposite of
the evident differential graded Lie algebra structure, so that U Cnpgq˚ has the structure
of a right module over EndpU Cnpgq˚q. Let EndgpU Cnpgq˚q denote the subcomplex of
EndpU Cnpgq˚q consisting of right Upg˚q-module maps, so that θ restricts to an isomorphism
from EndgpU Cnpgq˚q to the κ-linear dual C˚pg˚q of C˚pg˚q » U Cnpgq˚ bUpg˚q κ. It is not
difficult to verify that this isomorphism is compatible with the multiplication on C˚pgq

described in Construction 13.2.5.1. It follows that U Cnpgq˚ is equipped with a right action
of C˚pg˚q, which is compatible with the right action of Upg˚q on U Cnpgq˚. Let M˚pg˚q

denote the κ-linear dual of U Cnpgq˚. Then M˚ is a contravariant functor, which carries a
differential graded Lie algebra g˚ to a chain complex equipped with commuting right actions
of Upg˚q and C˚pg˚q. Moreover, the unit map κÑ UEpg˚q determines a quasi-isomorphism
εg˚ : M˚pg˚q Ñ κ.

Note that the initial object κ P Algp1qκ can be identified with a classifying object for
endomorphisms of the unit object κ P Modκ. Using Theorem HA.4.7.1.34 and Proposition
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HA.4.7.1.39 , we can identify Algaug
κ with the fiber product LModpModκq ˆModκ tκu. Let

X Ď pModκq{κ denote the full subcategory spanned by the final objects, so that we have an
equivalence of 8-categories

α :Mp1q » pAlgκˆAlgκq ˆAlgκ LModpModκq ˆModκ X .

We define a more rigid analogue ofMp1q as follows: let Y Ď pVectdg
κ qκ{ be the full subcategory

spanned by the quasi-isomorphisms of chain complexes V˚ Ñ κ and let C denote the category

Algdg
κ ˆAlgdg

κ ˆAlgdg
κ

LModpVectdg
κ q ˆVectdg

κ
Y,

so that α determines a functor T 2 : C Ñ Mp1q. We will define T as a composition
TwArrpLiedg

κ q
T 1
Ñ C T 2

Ñ Mp1q. Here the functor T 1 assigns to each map γ : h˚ Ñ g˚ of
differential graded Lie algebras the object of C given by pUph˚q, C˚pg˚q,M˚pg˚q, εg˚q, where
M˚pg˚q is regarded as a left module over Uph˚q bκ C˚pg˚q by combining the commuting left
actions of Upg˚q and C˚pg˚q on M˚pg˚q (and composing with the map γ).

We now claim that the diagram σ :

TwArrpLiedg
κ q

T //

λ
��

Mp1q

��
Liedg

κ ˆpLiedg
κ q

op UˆC˚// Algaug
κ ˆAlgaug

κ

commutes up to canonical homotopy. Consider first the composition of T with the map
Mp1q Ñ Algaug

κ given by projection onto the first factor. Unwinding the definitions, we see
that this map is given by the composing the equivalence ξ : LModpModκqˆModκ X » Algaug

κ

with the functor T 10 : TwArrpLiedg
κ q Ñ LModpModκq ˆModκ X given by

T 10pγ : h˚ Ñ g˚q “ pUph˚q,M˚pg˚q, εg˚q.

The counit map Upg˚q Ñ κ determines a quasi-isomorphism of Uph˚q-modules κÑM˚pg˚q,
so that T 10 is equivalent to the functor T 10 given by T 10pγ : h˚ Ñ g˚q “ pUph˚q, κ, idκq, which
(after composing with ξ) can be identified with the map TwArrpLiedg

κ q Ñ Liedg
κ

U
Ñ Algaug

κ .
Now consider the composition of T with the map Mp1q Ñ Algaug

κ given by projection onto
the second factor. This functor is given by composing the equivalence ξ with the functor T 11 :
TwArrpLiedg

κ q Ñ LModpModκq ˆModκ X given by T 11pγ : h˚ Ñ g˚q “ pC
˚pgq,M˚pg˚q, εg˚q.

Note that εg is a map of C˚pgq-modules and therefore determines an equivalence of T 11 with
the functor T 11 given by T 11pγ : h˚ Ñ g˚q “ pC

˚pgq, κ, idκq. It follows that the composition
of T 11 with ξ can be identified with the composition

TwArrpLiedg
κ q Ñ pLiedg

κ q
op C˚
ÝÑ Algaug

κ .
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This proves the homotopy commutativity of the diagram σ. After replacing T by an
equivalent functor, we can assume that the diagram σ is commutative.

It remains to show that σ determines a left representable map between pairings of
8-categories. Let g˚ be a differential graded Lie algebra, and let EndpM˚pg˚qq denote
the differential graded algebra of endomorphisms of the chain complex M˚pg˚q. Since
M˚pg˚q is quasi-isomorphic to κ, the unit map κ Ñ EndpM˚pg˚qq is a quasi-isomorphism
of differential graded algebras. Unwinding the definitions, we must show that the map
θ : Upg˚q bκ C˚pg˚q Ñ EndpM˚pgqq exhibits C˚pg˚q as Koszul dual (as an E1-algebra) to
Upg˚q. Let A˚ denote the differential graded algebra of endomorphisms of U Cnpgq˚ (as a
chain complex). Then θ factors as a composition

Upg˚q bκ C
˚pg˚q

θ1
Ñ A˚

θ2
Ñ EndpM˚pg˚qq

where θ2 is a quasi-isomorphism. It will therefore suffice to show that θ1 exhibits C˚pg˚q
as Koszul dual to Upg˚q. Since UE˚pg˚q is a free Upg˚q-module, this is equivalent to
the requirement that θ1 induces a quasi-isomorphism φ : C˚pg˚q Ñ W˚, where W˚ is the
differential graded algebra of right Upg˚q-module maps from U Cnpgq˚ to itself. This is
clear, since φ admits a left inverse which given by composition with the quasi-isomorphism
U Cnpgq˚ Ñ κ.

14.4 Digression: Opposites of Cartesian Fibrations

For every 8-category C, the opposite simplicial set Cop is again an 8-category. For
many purposes, it is convenient to have a relative version of this construction. Suppose we
are given a Cartesian fibration of simplicial sets q : X Ñ S, so that the fibers Xs of q are
8-categories. Can we construct a new Cartesian fibration q1 : X 1 Ñ S, whose fibers are X 1s
are equivalent to the opposites of the 8-categories Xs? In this section, we will consider two
approaches to this question, the first abstract and the second more concrete.

14.4.1 Opposites of 8-Categories

As explained in §HTT.3.3.2 , homotopy equivalence classes of Cartesian fibrations q :
X Ñ S are in bijection with homotopy classes of maps Sop Ñ Cat8. By general nonsense, it
follows that every (functorial) procedure for converting one Cartesian fibration q : X Ñ S into
another Cartesian fibration q1 : X 1 Ñ S is given by a functor Cat8 Ñ Cat8. Consequently,
our problem is equivalent to that of showing there is a functor Cat8 Ñ Cat8 which carries
each 8-category to its opposite. The following theorem of Toën asserts that such a functor
exists and is unique up to contractible ambiguity:
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Theorem 14.4.1.1. [Toën] Let E denote the full subcategory of FunpCat8, Cat8q spanned
by those functors which are equivalences. Then E is equivalent to the pnerve of theq discrete
category tid, ru, where r : Cat8 Ñ Cat8 is a functor which associates to every 8-category
its opposite.

To prove Theorem 14.4.1.1, we will study an autoequivalence of Cat8 by analyzing
its restriction to the full subcategory spanned by objects of the form NpP q, where P is a
partially ordered set. The first step is to show that this full subcategory admits an intrinsic
description:

Proposition 14.4.1.2. Let C be an 8-category. The following conditions are equivalent:

p1q The 8-category C is equivalent to the nerve of a partially ordered set P .

p2q For every 8-category D and every pair of functors F, F 1 : D Ñ C such that F pxq »
F 1pxq for each object x P D, the functors F and F 1 are equivalent as objects of
FunpD, Cq.

p3q For every 8-category D, the map of sets

π0 MapCat8pD, Cq Ñ HomSetpπ0 MapCat8p∆
0,Dq, π0 MapCat8p∆

0, Cqq

is injective.

Proof. The implication p1q ñ p2q is obvious, and p3q is just a restatement of p2q. Assume
p2q; we will show that p1q is satisfied. Let P denote the collection of equivalence classes of
objects of C, where x ď y if the space MapCpx, yq is nonempty. There is a canonical functor
C Ñ NpP q. To prove that this functor is an equivalence, it will suffice to show the following:

p˚q For every pair of objects x, y P C, the space MapCpx, yq is either empty or contractible.

To prove p˚q, we may assume without loss of generality that C is the nerve of a fibrant
simplicial category C. Let x and y be objects of C such that the Kan complex K “ MapCpx, yq

is nonempty. We define a new (fibrant) simplicial category D so that D consists of a pair of
objects tx1, y1u, with

MapDpx
1, y1q » K MapDpx

1, x1q » ∆0 » MapDpy
1, y1q MapDpy

1, x1q » H.

We let F , F 1 : D Ñ C be simplicial functors such that F px1q “ F
1
px1q “ x, F py1q “

F
1
py1q “ y, where F induces the identity map from MapDpx

1, y1q “ K “ MapCpx, yq to itself,
while F 1 induces a constant map from K to itself. Then F and F 1 induce functors F and F 1

from NpDq to C. It follows from assumption p2q that the functors F and F 1 are equivalent,
which implies that the identity map from K to itself is homotopic to a constant map; this
proves that K is contractible.
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Corollary 14.4.1.3. Let σ : Cat8 Ñ Cat8 be an equivalence of 8-categories, and let C be
an 8-category pwhich we regard as an object of Cat8q. Then C is equivalent to the nerve of
a partially ordered set if and only if σpCq is equivalent to the nerve of a partially ordered set.

Lemma 14.4.1.4. Let σ, σ1 P tid∆, ru Ď Funp∆,∆q, where r denotes the reversal functor
from ∆ to itself. Then

HomFunp∆,∆qpσ, σ
1q “

#

H if σ “ σ1

tidu if σ “ σ1.

Proof. Note that σ and σ1 are both the identity at the level of objects. Let α : σ Ñ σ1 be a
natural transformation. Then, for each n ě 0, αrns is a map from rns to itself. We claim
that αrns is given by the formula

αrnspiq “

#

i if σ “ σ1

n´ i if σ ‰ σ1.

To prove this, we observe that a choice of i P rns determines a map r0s Ñ rns, which allows
us to reduce to the case n “ 0 (where the result is obvious) by functoriality.

It follows from the above argument that the natural transformation α is uniquely
determined, if it exists. Moreover, α is a well-defined natural transformation if and only if
each αrns is an order-preserving map from rns to itself; this is true if and only if σ “ σ1.

Proposition 14.4.1.5. Let P denote the category of partially ordered sets, and let σ : P Ñ P
be an equivalence of categories. Then σ is isomorphic either to the identity functor idP or
the functor r which carries every partially ordered set X to the same set with the opposite
ordering.

Proof. Since σ is an equivalence of categories, it carries the final object r0s P P to itself
(up to canonical isomorphism). It follows that for every partially ordered set X, we have a
canonical bijection of sets

ηX : X » HomPpr0s, Xq » HomPpσpr0sq, σpXqq » HomPpr0s, σpXqq » σpXq.

We next claim that σpr1sq is isomorphic to r1s as a partially ordered set. Since ηr1s
is bijective, the partially ordered set σpr1sq has precisely two elements. Thus σpr1sq is
isomorphic either to r1s or to a partially ordered set tx, yu with two elements, neither larger
than the other. In the second case, the set HomPpσpr1sq, σpr1sqq has four elements. This is
impossible, since σ is an equivalence of categories and HomPpr1s, r1sq has only three elements.
Let α : σpr1sq Ñ r1s be an isomorphism (automatically unique, since the ordered set r1s has
no automorphisms in P).
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The map α ˝ ηr1s is a bijection from the set r1s to itself. We will assume that this map is
the identity, and prove that σ is isomorphic to the identity functor idP . The same argument,
applied to σ ˝ r, will show that if α ˝ ηr1s is not the identity, then σ is isomorphic to r.

To prove that σ is equivalent to the identity functor, it will suffice to show that for every
partially ordered set X, the map ηX is an isomorphism of partially ordered sets. In other
words, we must show that both ηX and η´1

X are maps of partially ordered sets. We will
prove that ηX is a map of partially ordered sets; the same argument, applied to an inverse
to the equivalence σ, will show that η´1

X is a map of partially ordered sets. Let x, y P X
satisfy x ď y; we wish to prove that ηXpxq ď ηXpyq in σpXq. The pair px, yq defines a map
of partially ordered sets r1s Ñ X. By functoriality, we may replace X by r1s, and thereby
reduce to the problem of proving that ηr1s is a map of partially ordered sets. This follows
from our assumption that α ˝ ηr1s is the identity map.

Proof of Theorem 14.4.1.1. Let C be the full subcategory of Cat8 spanned by those 8-
categories which are equivalent to the nerves of partially ordered sets, and let C0 denote the
full subcategory of C spanned by the objects t∆nuně0. Corollary 14.4.1.3 implies that every
object σ P E restricts to an equivalence from C to itself. According to Proposition 14.4.1.5,
σ|C is equivalent either to the identity functor, or to the restriction r|C . In either case, we
conclude that σ also induces an equivalence from C0 to itself.

It follows from Proposition HA.A.7.10 that the full subcategory C0 Ď Cat8 is dense (see
Definition 20.4.1.7), so that the restriction functor E Ñ FunpC0, C0q is fully faithful (see
Remark 20.4.1.6). In particular, any object σ P E is determined by the restriction σ|C, so
that σ is equivalent to either id or r by virtue of Proposition 14.4.1.5. Since C0 is equivalent
to the nerve of the category ∆, Lemma 14.4.1.4 implies the existence of a fully faithful
embedding from E to the nerve of the discrete category tid, ru. To complete the proof, it
will suffice to show that this functor is essentially surjective. In other words, we must show
that there exists a functor R : Cat8 Ñ Cat8 whose restriction to C is equivalent to r.

To carry out the details, it is convenient to replace Cat8 by an equivalent 8-category
with a slightly more elaborate definition. Recall that Cat8 is defined to be the simplicial
nerve of a simplicial category Cat∆

8, whose objects are 8-categories, where MapCat∆
8
pX,Y q

is the largest Kan complex contained in FunpX,Y q. We would like to define R to be induced
by the functor X ÞÑ Xop, but this is not a simplicial functor from Cat∆

8 to itself; instead we
have a canonical isomorphism MapCat∆

8
pXop, Y opq » MapCat∆

8
pX,Y qop. However, if we let

CatT op
8 denote the topological category obtained by geometrically realizing the morphism

spaces in Cat∆
8, then i induces an autoequivalence of CatT op

8 as a topological category (via
the natural homeomorphisms |K| » |Kop|, which is defined for every simplicial set K).
We now define Cat18 to be the topological nerve of CatT op

8 (see Definition HTT.1.1.5.5 ).
Then Cat18 is an 8-category equipped with a canonical equivalence Cat8 Ñ Cat18, and the
involution i induces an involution I on Cat18, which carries each object D P Cat18 to the
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opposite 8-category Dop. We now define R to be the composition

Cat8 Ñ Cat18
I
Ñ Cat18 Ñ Cat8,

where the last map is a homotopy inverse to the equivalence Cat8 Ñ Cat18. It is easy to see
that R has the desired properties (moreover, we note that for every object D P Cat8, the
image RD is canonically equivalent with the opposite 8-category Dop).

14.4.2 Duals of Cartesian Fibrations

Let q : X Ñ S be a Cartesian fibration of simplicial sets, let χ : Sop Ñ Cat8 be a
diagram classifying q, and let r : Cat8 Ñ Cat8 be the nontrivial equivalence of Theorem
14.4.1.1. Then r ˝ χ classifies a Cartesian fibration q1 : X 1 Ñ S, whose fibers are equipped
with equivalences X 1s » Xop

s . The Cartesian fibration q1 is determined uniquely up to
equivalence. However, for many applications it is useful to have a more concrete description
of X 1 (which is well-defined up to isomorphism rather than equivalence). We now sketch
such a construction (for an alternative approach having a more combinatorial flavor, we
refer the reader to [14]).

Construction 14.4.2.1. Let p : X Ñ S be a map of simplicial sets. We define a new
simplicial set Dlppq equipped with a map Dlppq Ñ S so that the following universal property
is satisfied: for every map of simplicial sets K Ñ S, we have a bijection

HompSet∆q{S pK,Dlppqq » HomSet∆pK ˆS X,Sq.

Note that for each vertex s P S, the fiber Dlppqs “ Dlppq ˆS tsu is canonically isomorphic to
the presheaf 8-category FunpXs,Sq.

Assume that p is an inner fibration. We let Dl0ppq the full simplicial subset of Dlppq
spanned by those vertices which correspond to corepresentable functors Xs Ñ S, for some
s P S. If each of the 8-categories Xs admits finite limits, we let Dllexppq denote the full
simplicial subset of Dlppq spanned by those vertices which correspond to left exact functors
Xs Ñ S, for some vertex s P S,

Remark 14.4.2.2. Let p : X Ñ S be an inner fibration and assume that each of the fibers
Xs is an 8-category which admits finite limits. Then for each vertex s P S, we have a
canonical isomorphism Dllexppqs » IndpXop

s q.

The next result summarizes some of the essential features of Construction 14.4.2.1.

Proposition 14.4.2.3. Let p : X Ñ S be a map of simplicial sets. Then:
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p1q If p is a Cartesian fibration, then the map Dlppq Ñ S is a coCartesian fibration.
Moreover, for every edge e : sÑ s1 in S, the induced functor

FunpXs,Sq » Dlppqs Ñ Dlppqs1 » FunpXs1 ,Sq

is given by composition with the pullback functor e˚ : Xs1 Ñ Xs determined by p.

p2q If p is a coCartesian fibration, then the map Dlppq Ñ S is a Cartesian fibration.
Moreover, for every edge e : sÑ s1 in S, the induced functor

FunpXs1 ,Sq » Dlppqs1 Ñ Dlppqs » FunpXs,Sq

is given by composition with the functor e! : Xs Ñ Xs1 determined by p.

p3q Suppose p is a Cartesian fibration, that each fiber Xs of p admits finite limits and that
for every edge e : sÑ s1 in S, the pullback functor e˚ : Xs1 Ñ Xs is left exact. Then
the map Dllexppq Ñ S is a coCartesian fibration. Moreover, for every edge e : sÑ s1

in S, the induced functor

IndpXop
s q » Dllexppqs Ñ Dllexppqs1 » IndpXop

s1 q

is given by composition with the pullback functor e˚.

p4q If p is a coCartesian fibration, then the canonical map q : Dlppq Ñ S is a coCartesian
fibration, which restricts to a coCartesian fibration Dl0ppq Ñ S. If each fiber Xs admits
finite limits, then q also restricts to a coCartesian fibration Dllexppq Ñ S.

Proof. Assertion p1q and p3q follow from Corollary HTT.3.2.2.12 . The implication p1q ñ p2q
is immediate. We now prove p4q. Assume that p is a coCartesian fibration. Then p2q implies
that Dlppq Ñ S is a Cartesian fibration, and that each edge e : sÑ s1 induces a pullback
functor Dlppqs1 Ñ Dlppqs which preserves small limits and filtered colimits Using Corollary
HTT.5.5.2.9 , we deduce that this pullback functor admits a left adjoint FunpXs,Sq Ñ
FunpXs1 ,Sq, which is given by left Kan extension along the functor e! : Xs Ñ Xs1 . Corollary
HTT.5.2.2.5 implies that the forgetful functor q : Dlppq Ñ S is also a coCartesian fibration.
Since the operation of left Kan extension carries corepresentable functors to corepresentable
functors, we conclude that q restricts to a coCartesian fibration q0 : Dl0ppq Ñ S (and that a
morphism in Dl0ppq is q0-coCartesian if and only if it is q-coCartesian). Now suppose that
each fiber Xs of p admits finite limits. For each s P S, the 8-category Dllexppqs “ IndpXop

s q

can be identified with the full subcategory of Dlppqs “ PpXop
s q generated by Dl0ppqs under

filtered colimits. If e : sÑ s1 is an edge of S, then the functor e! : Dlppqs Ñ Dlppqs1 preserves
small filtered colimits and carries Dl0ppqs into Dl0ppqs1 , and therefore carries Dllexppqs into
Dllexppqs1 . It follows that q restricts to a coCartesian fibration Dllexppq Ñ S.
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Proposition 14.4.2.4. Let q : X Ñ S be a Cartesian fibration of simplicial sets with
essentially small fibers, so that q is classified by a functor χ : Sop Ñ Cat8, and let χ1 :
Sop Ñ Cat8 classify the induced Cartesian fibration q1 : Dl0pqq Ñ S. Then χ1 » χ ˝ r, where
r : Cat8 Ñ Cat8 is the functor which associates to each 8-category its opposite.

Proof. It suffices to treat the universal case where S “ Catop
8 and χ is the identity map.

Then we can identify χ1 with a functor Catop
8 Ñ Catop

8 ; we wish to show that χ1 is equivalent
to r. We first show that χ12 is equivalent to the identity. For this, it suffices to construct an
equivalence X Ñ Dl0pq1q of Cartesian fibrations over S; this equivalence is classified by the
tautological map

X ˆS Dl0pqq ãÑ X ˆS Dlpqq Ñ S .

It follows that χ1 is an equivalence of Catop
8 with itself. Note that χ1psq » Dlpqq0s » Xop

s for
each s P S. Choosing s P S so that Xs is not equivalent to its opposite, we conclude that
χ1 is not equivalent to the identity functor. Using Theorem 14.4.1.1, we deduce that χ1 is
equivalent to r.

14.4.3 The Compactly Generated Case

We conclude this section with a result which will be useful in §14.5:

Proposition 14.4.3.1. Let p : X Ñ S be a coCartesian fibration of simplicial sets. Assume
that:

paq For each s P S, the fiber Xs is compactly generated.

pbq For every morphism edge e : s Ñ s1 in S, the induced functor Xs Ñ Xs1 preserves
compact objects and small colimits.

Let Xc denote the full simplicial subset of X spanned by those vertices which are compact
objects of Xs for some s P S. Let pop : Xop Ñ Sop be the induced map between opposite
simplicial sets, and let pop

c : pXcqop Ñ Sop be the restriction of pop. Then the restriction
map φ : Dl0ppopq Ď Dllexppopq Ñ Dllexppop

c q is an equivalence of coCartesian fibrations over
Sop.

Proof. It follows from paq and pbq that each of the functors e! : Xs Ñ Xs1 admits a right
adjoint e˚, so that p is a Cartesian fibration and therefore pop is a coCartesian fibration.
Applying Proposition 14.4.2.3, we conclude that the projection map q : Dl0ppopq Ñ Sop is
a coCartesian fibration. It follows from pbq that the projection Xc Ñ S is a coCartesian
fibration whose fibers admit finite colimits, and that for every edge e : s Ñ s1 in S the
induced functor Xc

s Ñ Xc
s1 preserves finite colimits. Applying Proposition 14.4.2.3 again, we

deduce that the map q1 : Dllexppop
c q Ñ Sop is a coCartesian fibration. We next claim that φ
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carries q-coCartesian morphisms to q1-coCartesian morphisms. Unwinding the definitions,
this amounts to the following claim: if e : x Ñ x1 is a p-Cartesian edge lifting e : s Ñ s1,
then e induces an equivalence hx1 ˝ e! Ñ hx of functors Xop

s Ñ S, where hx : Xop
s Ñ S is

the functor represented by x and hx1 : Xop
s1 Ñ S is the functor represented by x1. This is an

immediate consequence of the definitions.
To complete the proof, it will suffice to show that for every vertex s P S, the functor φ

induces an equivalence of 8-categories Dl0ppopqs Ñ Dllexppop
c q. That is, we must show that

the composite functor

ψ : Xs Ñ FunpXop
s ,Sq Ñ FunppXc

sq
op,Sq “ IndpXc

sq

is an equivalence of 8-categories. This is clear, since ψ is right adjoint to the canonical map
IndpXc

sq Ñ Xs (which is an equivalence by virtue of our assumption that Xs is compactly
generated).

14.5 Quasi-Coherent and Ind-Coherent Sheaves

Let κ be a field and let X : CAlgart
κ Ñ S be a formal moduli problem. In §13.4, we

introduced a symmetric monoidal 8-category QCohpXq of quasi-coherent sheaves on X.
Our goal in this section is to study analogous definitions in the noncommutative setting. In
this case, it is important to distinguish between left and right modules. Consequently, if
X : Algart

κ Ñ S is a formal E1-moduli problem, then there are two natural analogues of the8-
category QCohpXq. We will denote these 8-categories by QCohLpXq and QCohRpXq, and
refer to them as the 8-categories of (left and right) quasi-coherent sheaves on X. We will also
study noncommutative counterparts of the fully faithful embedding QCohpXq Ñ QCoh!pXq

of Remark 13.4.6.6.
We will devote most of our attention to the case where X “ Spf A is corepresented by an

Artinian E1-algebra A over κ. At the end of this section, we will explain how to extrapolate
our discussion to the general case (Construction 14.5.5.1).

14.5.1 Artinian Modules

Let κ be a field. We will say that an object M P Modκ is Artinian if it is perfect as a
κ-module: that is, if π˚M has finite dimension over κ. If R is an E1-algebra over κ and M is
a right or left module over R, we will say that M is Artinian if it is Artinian when regarded
as an object of Modκ. We let LModart

R denote the full subcategory of LModR spanned by
the Artinian left R-modules, and RModart

R the full subcategory of RModR spanned by the
Artinian right R-modules.
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Remark 14.5.1.1. Let κ be a field, let R be an augmented E1-algebra over κ. Assume
that R is connective and that the kernel I of the augmentation map π0RÑ κ is a nilpotent
ideal in π0R. Then an object M P LModR is Artinian if and only if it belongs to the
smallest stable full subcategory C Ď LModR which contains κ » pπ0Rq{I and is closed under
equivalence. The “if” direction is obvious (and requires no assumptions on R), since the
full subcategory LModart

R Ď LModR is stable, closed under retracts, and contains κ. For the
converse, suppose that M is Artinian; we prove that M P C using induction on the dimension
of the κ-vector space π˚M . If M » 0 there is nothing to prove. Otherwise, there exists
some largest integer n such that πnM is nonzero. Since I is nilpotent, there exists a nonzero
element x P πnM which is annihilated by I. Then multiplication by x determines a map
of discrete R-modules κÑ πnM , which in turn determines a fiber sequence of R-modules
Σnpκq Ñ M Ñ M 1. The inductive hypothesis guarantees that M 1 P C and it is clear that
Σnpκq P C, so that M P C as desired.

We now show that if R is an E1-algebra over a field κ, then κ-linear duality determines
a contravariant equivalence between the 8-categories LModart

R and RModart
R .

Proposition 14.5.1.2. Let κ be a field and let R be an E1-algebra over κ. Define a functor
λ : RModop

R ˆLModop
R Ñ S by the formula λpM,Nq “ MapModκpM bR N,κq. Then:

p1q For every right R-module M , let λM : LModop
R Ñ S be the restriction of λ to tMu ˆ

LModop
R . Then λM is a representable functor.

p11q Let µ : RModop
R Ñ FunpLModop

R ,Sq be given by µpMqpNq “ λpM,Nq. Then µ is
homotopic to a composition RModop

R
µ0
Ñ LModR

j
Ñ FunpLModop

R ,Sq, where j denotes
the Yoneda embedding.

p2q For every left R-module M , let λN : RModop
R Ñ S be the restriction of λ to RModop

R ˆtNu.
Then λN is a representable functor.

p21q Let µ1 : LModop
R Ñ FunpRModop

R ,Sq be given by µ1pNqpMq “ λpM,Nq. Then µ1 is

homotopic to a composition LModop
R

µ10
Ñ RModR

j
Ñ FunpRModop

R ,Sq, where j denotes
the Yoneda embedding.

p3q The functors µ0 and µ10 determine mutually inverse equivalences between the 8-
categories RModart

R and pLModart
R q

op.

Proof. We first note that p11q and p21q are reformulations of p1q and p2q. We will prove p1q;
the proof of p2q is similar. Let M P RModR; we wish to show that λM is a representable
functor. Since LModR is a presentable 8-category, it will suffice to show that the functor
λM preserves small limits (Proposition HTT.5.5.2.2 ). This is clear, since the functor
N ÞÑM bR N preserves small colimits.
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Let µ0 : RModop
R Ñ LModR and µ10 : LModop

R Ñ RModR be as in p11q and p21q. We note
that µ10 can be identified with the right adjoint to µop

0 . Let M P RModR. For every integer
n, we have canonical isomorphisms

πnµ0pMq » π0 MapRModRpΣ
npRq, µ0pMqq » π0 MapModκpM bR ΣnpRq, κq » pπ´nMq

_,

where pπ´nMq_ denotes the κ-linear dual of the vector space π´nM . It follows that µ0
carries pRModart

R q
op into LModart

R . Similarly, µ10 carries pLModart
R q

op into RModart
R . To prove

p3q, it will suffice to show that for every pair of objects M P RModart
R , N P LModart

R , the
unit maps M Ñ µ10µ0pMq and N Ñ µ0µ

1
0pNq are equivalences in RModR and LModR,

respectively. Passing to homotopy groups, we are reduced to proving that the biduality
maps πnM Ñ ppπnMq

_q_ and πnN Ñ ppπnNq
_q_ are isomorphisms for every integer n.

This follows from the finite-dimensionality of the vector spaces πnM and πnN over κ.

14.5.2 Ind-Coherent Modules

Let κ be a field and let R P Algκ. If R is Artinian (in the sense of Definition 14.0.0.1),
then every perfect (left or right) R-module is perfect when viewed as a κ-module: that is,
we can regard LModart

R and RModart
R as enlargements of the 8-categories LModperf

R and
RModperf

R , respectively. We now introduce analogous enlargements of the 8-categories
LModR and RModR.

Definition 14.5.2.1. Let κ be a field and let R P Algart
κ be a Artinian E1-algebra over κ.

We let LMod!
R denote the full subcategory of FunpRModart

R ,Sq spanned by the left exact
functors, and RMod!

R the full subcategory of FunpLModart
R ,Sq spanned by the left exact

functors. We will refer to LMod!
R as the 8-category of Ind-coherent left R-modules, and

RMod!
R as the 8-category of Ind-coherent right R-modules.

Remark 14.5.2.2. Using the equivalence RModart
R » pLModart

R q
op of Proposition 14.5.1.2,

we obtain equivalences of8-categories LMod!
R » IndpLModart

R q and RMod!
R » IndpRModart

R q.

Our next goal is to study the dependence of the 8-categories LMod!
R and RMod!

R on
the choice of algebra R P Algart

κ .

Construction 14.5.2.3. Let κ be a field and let LModpModκq and RModpModκq denote
the 8-categories of left and right module objects of the symmetric monoidal 8-category
Modκ. That is, LModpModκq is an 8-category whose objects are pairs pR,Mq, where
R P Algκ and M is a left R-module, and RModpModκq is an 8-category whose objects are
pairs pR,Mq where R P Algκ and M is a left R-module. We let LModartpModκq denote
the full subcategory of LModpModκq spanned by those pairs pR,Mq where R P Algart

κ and
M P LModart

R , and define RModartpModκq Ď RModpModκq similarly. We have evident
forgetful functors

LModartpModκq
q
Ñ Algart

κ
q1
Ð RModartpModκq.
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We define RMod!pModκq “ Dllexpqq and LMod!pModκq “ Dllexpq1q, so that we have evident
forgetful functors

RMod!pModκq Ñ Algart
κ Ð LMod!pModκq.

Remark 14.5.2.4. It follows from Proposition 14.4.2.3 that the forgetful functors

LMod!pModκq Ñ Algart
κ Ð RMod!pModκq

are coCartesian fibrations. For every object R P Algart
κ , we can identify the fiber product

RMod!pModκq ˆAlgart
κ
tRu with the 8-category RMod!

R of Definition 14.5.2.1, and the fiber
product LMod!pModκq ˆAlgart

κ
tRu with the 8-category LMod!

R of Definition 14.5.2.1. If
f : R Ñ R1 is a morphism in Algart

κ , then f induces functors RMod!
R Ñ RMod!

R1 and
LMod!

R Ñ LMod!
R1 , both of which we will denote by f !.

14.5.3 Functoriality

Let κ be a field and let R be an Artinian κ-algebra (in the sense of Definition 14.0.0.1).
Then the inclusion RModperf

R Ď RModart
R induces a fully faithful embedding

ΦR : RModR » IndpRModperf
R q ãÑ IndpRModart

R q » RMod!
R .

However, this construction is badly behaved in some respects. For example, if f : RÑ R1 is
a morphism in Algart

κ , then the diagram of 8-categories

RModR
f˚ //

ΦR
��

RModR1

ΦR1
��

RMod!
R

f !
// RMod!

R1

generally does not commute up to homotopy (here f˚ denotes the base change functor
M ÞÑ M bR R

1). In what follows, we will instead consider the fully faithful embeddings
ΨR : RModR Ñ RMod!

R given by the composition

RModR » IndpRModperf
R q

» IndppLModperf
R qopq

ãÑ IndppLModart
R q

opq

» IndpRModart
R q

» RMod!
R .

Our next goal is to give a construction of this functor which is manifestly functorial in
R P Algart

κ .
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Construction 14.5.3.1. Let κ be a field, and let λ : RModpModκqˆAlgκLModartpModκq Ñ
S be the functor given by

λpM,R,Nq “ MapModκpκ,M bR Nq.

If we fix M and R, then the functor N ÞÑ MapModκpκ,M bRNq is left exact. It follows that
λ is determines a functor Ψ : RModpModκq ˆAlgκ Algart

κ Ñ RMod!pModκq.

Proposition 14.5.3.2. Let κ be a field, and consider the diagram

RModpModκq ˆAlgκ Algart
κ

Ψ //

p
))

RMod!pModκq

q
xx

Algart
κ

where p and q are the forgetful functors and Ψ is defined as in Construction 14.5.3.1. Then:

p1q The functor Ψ carries p-coCartesian morphisms to q-coCartesian morphisms.

p2q For every object R P Algart
κ , the induced functor ΨR : RModR Ñ RMod!

R preserves
small colimits.

p3q The functor Ψ is fully faithful.

Proof. We first prove p1q. Let α : pM,Rq Ñ pM 1, R1q be a p-coCartesian morphism in
RModpModκq. We wish to prove that Ψpαq is q-coCartesian. Unwinding the definitions, we
must show that for every Artinian R1-module N , the canonical map

MapModκpκ,M bR Nq Ñ MapModκpκ,M
1 bR1 Nq

is an equivalence. This is clear, since the map M bR N ÑM 1 bR1 N is an equivalence.
We now prove p2q. Fix an object R P Algart

κ . For every N P LModart
R , the functor

M ÞÑ MapModκpκ,M bR Nq commutes with filtered colimits and finite limits. It follows
that ΨR commutes with filtered colimits and finite limits. Since ΨR is a left exact functor
between stable 8-categories, it is also right exact. We conclude that ΨR commutes with
filtered colimits and finite colimits, and therefore with all small colimits.

We now prove p3q. By virtue of p1q, it will suffice to prove that for R P Algart
κ the functor

ΨR : RModR Ñ RMod!
R is fully faithful. Using p2q and Proposition HTT.5.3.5.11 , we are

reduced to proving that the restriction ΨR|RModperf
R

is fully faithful. Note that if M be a
perfect right R-module and M_ its R-linear dual (regarded as a perfect left R-module),
then ΨRpMq is the functor corepresented by M_ P LModperf

R Ď LModart
R . We can therefore

identify ΨR|RModperf
R

with the composition of fully faithful embeddings

RModperf
R » pLModperf

R qop Ď pLModart
R q

op j
ãÑ RMod!

R,

(here j denotes the Yoneda embedding).
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Remark 14.5.3.3. Construction 14.5.3.1 and Proposition 14.5.3.2 have evident dual versions,
which give a fully faithful embedding LModpModκq ˆAlgκ Algart

κ Ñ LMod!pModκq.

14.5.4 Connective Ind-Coherent Modules

Our next goal is to say something about the essential image of the functor ΨR : RModR Ñ
RMod!

R of Proposition 14.5.3.2.

Definition 14.5.4.1. Let R be an Artinian E1-algebra over a field κ, and let ε : RÑ κ be
the augmentation. We will say that an object M P RMod!

R is connective if ε!M is a connective
object of Modκ » Mod!

κ. We let RMod!,cn
R denote the full subcategory of RMod!

R spanned
by the connective objects. Similarly, we define a full subcategory LMod!,cn

R Ď LMod!
R.

Remark 14.5.4.2. Let R be an Artinian E1-algebra over a field κ. It follows from Proposi-
tion HTT.5.4.6.6 that RMod!,cn

R is an accessible subcategory of RMod!
R, which is evidently

closed under small colimits and extensions. Applying Proposition HA.1.4.4.11 , we con-
clude that there exists a t-structure on the stable 8-category RMod!

R with pRMod!
Rqě0 “

RMod!,cn
R .

Proposition 14.5.4.3. Let κ be a field, let R P Algart
κ . Then the fully faithful embedding

ΨR : RModR Ñ RMod!
R of Proposition 14.5.3.2 restricts to an equivalence of 8-categories

RModcn
R ãÑ RMod!,cn

R .

Proof. Let ε : RÑ κ be the augmentation map and let M P RMod!
R. We wish to show that

ε!M is connective if and only if M » ΨRpM
1q for some M 1 P RModcn

R . The “if” direction is
clear: if M » ΨRpM

1q, we have equivalences

ε!M » ε!ΨRpM
1q » Ψκpε

˚M 1q » κbRM
1.

For the converse, assume that ε!M is connective. Let C Ď RMod!
R denote the essential image

of ΨR|RModcn
R

; we wish to prove that M P C. It follows from Remark 14.5.4.2 that C is closed
under colimits and extensions in RMod!

R.
We begin by constructing a sequence of objects

0 “Mp0q ÑMp1q ÑMp2q Ñ ¨ ¨ ¨

in C and a compatible family of maps θpiq : Mpiq ÑM with the following property:

p˚q The groups πjε!Mpiq vanish unless 0 ď j ă i, and the maps πjε!Mpjq Ñ πjε
!M are

isomorphisms for 0 ď j ă i.

Assume that i ě 0 and that we have already constructed a map θpiq satisfying p˚q. Let
M 1 “ cofibpθpiqq, so that πjε!M 1 » 0 for j ă i. Let us regard M 1 as a functor LModart

R Ñ S,



1176 CHAPTER 14. MODULI PROBLEMS FOR ASSOCIATIVE ALGEBRAS

so that M 1pΣmpκqq is pm ` iq-connective for every integer i. It follows by induction that
for every m-connective object N P LModart

R , the space M 1pNq is pm ` iq-connective. In
particular, M 1pNq is connected when N denotes the cofiber of the map Σ´ipRq Ñ Σ´ipκq.
Using the fiber sequence

M 1pΣ´ipRqq ÑM 1pΣ´ipκqq ÑM 1pcofibpΣ´ipRq Ñ Σ´ipκqqq,

we deduce that the map π0M
1pΣ´ipRqq Ñ π0M

1pΣ´ipκqq is surjective. Let K “ ΨRpRq P

RMod!
R. Then ΣipKq “ ΨRpΣipRqq can be identified with the functor corepresented by

Σ´ipRq. We have proven the following:

p˚1q For every point η P πiε!M 1 » π0M
1pΣ´ipκqq, there exists a map ΣipKq ÑM such that

η belongs to the image of the induced map κ » πiε
!ΣipKq Ñ πiε

!M 1.

Choose a basis tvαuαPS for the κ-vector space πiε!M 1 » πiε
!M . Applying p˚1q repeatedly,

we obtain a map v :
À

αPS ΣipKq Ñ M 1. Let M2 “ cofibpvq and let Mpi ` 1q denote the
fiber of the composite map M ÑM 1 ÑM2. We have a fiber sequence

Mpiq ÑMpi` 1q Ñ
à

αPS

ΣipKq.

Since C is closed under colimits and extensions (and contains ΣipKq » ΨRΣipRq), we
conclude that Mpi` 1q P C. Using the long exact sequence of homotopy groups

πjε
!Mpiq Ñ πjε

!Mpi` 1q Ñ πjε
! à

αPS

ΣipKq Ñ πj´1ε
!Mpiq,

we deduce that the canonical map Mpi` 1q ÑM satisfies condition p˚q.
Let Mp8q “ lim

ÝÑ
Mpiq and let w : Mp8q Ñ M be the tautological map. Since C is

closed under colimits, we deduce that Mp8q P C. Using p˚q (and the vanishing of the groups
πjε

!M for j ă 0), we deduce that w induces an equivalence ε!Mp8q Ñ ε!M . Identifying M
and Mp8q with left exact functors LModart

R Ñ S, we conclude that w induces a homotopy
equivalence Mp8qpΣjpκqq Ñ MpΣjpκqq for every integer j. Since M and Mp8q are left
exact, the collection of those objects N P LModart

R for which Mp8qpNq Ñ MpNq is a
homotopy equivalence is closed under finite limits. Using Remark 14.5.1.1, we deduce that
every object N P LModart

R has this property, so that w is an equivalence and M »Mp8q P C
as desired.

Remark 14.5.4.4. Let R be an Artinian E1-algebra over a field κ. The natural t-structure
on the 8-category RModR is right complete. It follows from Proposition 14.5.4.3 that the
fully faithful embedding ΨR : RModR Ñ RMod!

R induces an equivalence from RModR to
the right completion of RMod!

R.
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14.5.5 Sheaves on Formal Moduli Problems

We now consider global analogues of the preceding constructions.

Construction 14.5.5.1. Let κ be a field. The coCartesian fibrations

RModpModκq ˆAlgκ Algart
κ

pR
ÝÑ Algart

κ
qR
ÐÝ RMod!pModκq

are classified by functors χ, χ! : Algart
κ ÑyCat8. Since yCat8 admits small limits, Theorem

HTT.5.1.5.6 implies that χ and χ! admit (essentially unique) factorizations as compositions

Algart
κ

j
ÝÑ FunpAlgart

κ ,Sqop QCohR
ÝÝÝÝÑyCat8 Algart

κ
j
ÝÑ FunpAlgart

κ ,Sqop QCoh!
R

ÝÝÝÝÑyCat8

where j denotes the Yoneda embedding and the functors QCohR and QCoh!
R preserve small

limits. Similarly, the coCartesian fibrations

LModpModκq ˆAlgκ Algart
κ ÑAlgart

κ Ð LMod!pModκq

are classified by maps χ1, χ1! : Algart
κ ÑyCat8, which admit factorizations

Algart
κ

j
ÝÑ FunpAlgart

κ ,Sqop QCohL
ÝÝÝÝÑyCat8 Algart

κ
j
ÝÑ FunpAlgart

κ ,Sqop QCoh!
L

ÝÝÝÝÑyCat8.

For each functor X : Algart
κ Ñ S, we will refer to QCohLpXq and QCohRpXq as the

8-categories of (left and right) quasi-coherent sheaves on X. Similarly, we will refer to
QCoh!

LpXq and QCoh!
RpXq as the 8-categories of (left and right) Ind-coherent sheaves on

X.

Remark 14.5.5.2. For every functor X : Algart
κ Ñ S, the 8-categories QCohLpXq,

QCohRpXq, QCoh!
LpXq, and QCoh!

RpXq are presentable and stable.

Remark 14.5.5.3. Let κ be a field, let X : Algart
κ Ñ S be a functor which classifies a

right fibration X Ñ Algart
κ . Then QCohRpXq and QCoh!

RpXq can be identified with the
8-categories of coCartesian sections of the coCartesian fibrations

X ˆAlgκ RModpModκq Ñ X Ð X ˆAlgart
κ

RMod!pModκq.

More informally, an object F P QCohRpXq is a rule which assigns to every point η P XpAq
a right A-module F η, and to every morphism f : A Ñ A1 carrying η to η1 P XpA1q

an equivalence F η1 » F η bAA
1. Similarly, an object of G P QCoh!

RpXq is a rule which
assigns to every point η P XpAq an Ind-coherent right R-module G η P RMod!

A, and to
every morphism f : A Ñ A1 carrying η to η1 P XpR1q an equivalence G η1 » f ! G η. The
8-categories QCohLpXq and QCoh!

LpXq admit similar descriptions, using left modules in
place of right modules.
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Notation 14.5.5.4. By construction, the8-categories QCohRpXq, QCohLpXq, QCoh!
RpXq,

and QCoh!
LpXq depend contravariantly on the object X P FunpAlgart

κ ,Sq. If α : X Ñ Y is a
natural transformation, we will denote the resulting functors by

α˚ : QCohRpY q Ñ QCohRpXq α! : QCoh!
RpY q Ñ QCoh!

RpXq

α˚ : QCohLpY q Ñ QCohLpXq α! : QCoh!
LpY q Ñ QCoh!

LpXq.

Remark 14.5.5.5. Let κ be a field. The fully faithful embedding Ψ of Proposition 14.5.3.2
induces a natural transformation QCohR Ñ QCoh!

R of functors FunpAlgart
κ ,Sq ÑyCat8. For

every functor X : Algart
κ Ñ S, we obtain a fully faithful embedding QCohRpXq Ñ QCoh!

RpXq

which preserves small colimits. Moreover, if α : X Ñ Y is a natural transformation of
functors, we obtain a diagram of 8-categories

QCohRpY q //

α˚

��

QCoh!
RpY q

α!

��
QCohRpXq // QCoh!

RpXq

which commutes up to canonical homotopy. Similarly, we have fully faithful embedding
QCohLpXq Ñ QCoh!

LpXq, which depend functorially on X in the same sense.

Notation 14.5.5.6. Let κ be a field and let X : Algart
κ Ñ S be a functor. We will

say that an object F P QCohRpXq is connective if F η P RModA is connective for every
point η P XpAq (see Notation 14.5.5.3). We let QCohRpXqcn denote the full subcategory
of QCohRpXq spanned by the connective right quasi-coherent sheaves, and define a full
subcategory QCohLpXqcn Ď QCohLpXq similarly.

We will say that an object G P QCoh!
R is connective if, for every point η P Xpκq, the

object G η P RMod!
κ » Modκ is connective. We let QCoh!

RpXq
cn denote the full subcategory

of QCoh!
RpXq spanned by the connective objects, and define QCoh!

LpXq
cn Ď QCoh!

LpXq

similarly.

Remark 14.5.5.7. Let X : Algart
κ Ñ S be a functor. The full subcategories

QCohLpXqcn Ď QCohLpXq QCohRpXqcn Ď QCohRpXq

QCoh!
LpXq

cn Ď QCoh!
LpXq QCoh!

RpXq
cn Ď QCoh!

RpXq

of Notation 14.5.5.6 are presentable and closed under extensions and small colimits. It follows
from Proposition HA.1.4.4.11 that they determine t-structures on QCohLpXq, QCohRpXq,
QCoh!

LpXq, and QCoh!
RpXq.

Using Proposition 14.5.4.3, we immediately deduce the following:
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Proposition 14.5.5.8. Let κ be a field and let X : Algart
κ Ñ S be a functor. Then the fully

faithful embeddings

QCohLpXq ãÑ QCoh!
LpXq QCohRpXq ãÑ QCoh!

RpXq

of Remark 14.5.5.5 induce equivalences of 8-categories

QCohLpXqcn » QCoh!
LpXq

cn QCohRpXqcn » QCoh!
RpXq

cn.

14.6 Koszul Duality for Modules

Our goal in this section is to prove the following non-commutative analogue of Theorem
13.4.0.1:

Theorem 14.6.0.1. Let κ be a field, let A P Algaug
κ , and let X : Algart

κ Ñ S be the
formal E1-moduli problem associated to A (see Theorem 14.0.0.5). Then there are canonical
equivalences of 8-categories

QCoh!
LpXq » RModA QCoh!

RpXq » LModA .

In particular, we have fully faithful embeddings

QCohLpXq ãÑ RModA QCohRpXq ãÑ LModA .

Remark 14.6.0.2 (Comparison with the Commutative Case). Let κ be a field of character-
istic zero and let θ : CAlgart

κ Ñ Algart
κ denote the forgetful functor. Let X : Algart

κ Ñ S be a
formal E1-moduli problem over κ, so that X ˝ θ is a formal moduli problem over κ. For each
R P CAlgart

κ , we have a canonical equivalence of 8-categories ModR » RModθpRq. Passing to
the inverse limit over points η P XpθpRqq, we obtain a functor QCohRpXq Ñ QCohpX ˝ θq.
According to Theorem 14.0.0.5, there exists an augmented E1-algebra A over κ such that X
is given by the formula XpRq “ MapAlgaug

κ
pDp1qpRq, Aq. Let mA denote the augmentation

ideal of A. Regard mA as an object of Lieκ, so that X ˝ θ is given by the formula

pX ˝ θqpRq “ MapLieκpDpRq,mAq

(see Theorem 14.3.0.1). Theorems 13.4.0.1 and 14.6.0.1 determine fully faithful embeddings

QCohRpXq ãÑ LModA QCohpX ˝ θq ãÑ RepmA .

We have an evident map of E1-algebras UpmAq Ñ A, which determines a forgetful functor
LModA Ñ LModUpmAq » RepmA . With some additional effort, one can show that the
diagram

QCohRpXq //

��

LModA

��
QCohpX ˝ θq // RepmA
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commutes up to canonical homotopy. That is, the algebraic models for quasi-coherent sheaves
provided by Theorems 13.4.0.1 and 14.6.0.1 in the commutative and noncommutative settings
are compatible with one another.

14.6.1 Reduction to the Representable Case

We will deduce Theorem 14.6.0.1 from the following:

Proposition 14.6.1.1. Let κ be a field, and let χ! : Algart
κ Ñ yCat8 be the functor given

by χ!pRq “ RMod!
R (see Construction 14.5.5.1), and let χ1 : Algop

κ Ñ yCat8 given by
χ1pRq “ LModR (so that χ1 classifies the Cartesian fibration LModpModκq Ñ Algκ). Then
χ! is homotopic to the composition

Algart
κ ãÑ Algaug

κ
Dp1q
ÝÑ pAlgaug

κ qop Ñ Algop
κ

χ1
ÑyCat8.

More informally: for every object R P Algart
κ , there is a canonical equivalence of 8-categories

RMod!
R » LModDp1qpRq.

Before giving the proof of Proposition 14.6.1.1, let us explain how it leads to a proof of
Theorem 14.6.0.1.

Proof of Theorem 14.6.0.1. Let X : Algart
κ Ñ S be the formal E1-moduli problem associated

to an object A P Algaug
κ . We will construct the equivalence QCoh!

RpXq » LModA; the
construction of the equivalence QCoh!

LpXq » RModA is similar. Let κ be a field and
let QCoh!

R : FunpAlgart
κ ,Sqop Ñ yCat8 be as in Construction 14.5.5.1. Let Ψ : Algaug

κ Ñ

Modulip1qκ be the equivalence of 8-categories provided by Theorem 14.0.0.5, and let Ψ´1

denote a homotopy inverse to Ψ. Let L : FunpAlgart
κ ,Sq Ñ Modulip1qκ denote a left adjoint

to the inclusion functor Modulip1qκ Ď FunpAlgart
κ ,Sq (see Remark 12.1.3.5), and let pDp1q :

FunpAlgart
κ ,Sq Ñ Algaug

κ be the composition of Ψ´1 ˝ L. The functor pDp1q preserves small
colimits, and the composition of pDp1q with the Yoneda embedding pAlgart

κ q
op Ñ FunpAlgart

κ ,Sq
can be identified with the Koszul duality functor Dp1q : pAlgart

κ q
op Ñ Algaug

κ . Let χ1 :
Algop

κ ÑyCat8 be as in Proposition 14.6.1.1 (given on objects by χ1pAq “ LModA), and let
F : FunpAlgart

κ ,Sqop ÑyCat8 denote the composite functor

FunpAlgart
κ ,Sqop pDp1q

ÝÑ pAlgaug
κ qop Ñ Algop

κ
χ1
ÑyCat8.

Let C denote the full subcategory of FunpAlgart
κ ,Sq spanned by the corepresentable functors.

Proposition 14.6.1.1 implies that there is an equivalence of functors α0 : F |Cop Ñ QCoh!
R |Cop .

Since QCoh!
R is a right Kan extension of its restriction to Cop, the equivalence α0 extends

to a natural transformation F Ñ QCoh!
R. We will prove:
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p˚q If X : Algart
κ Ñ S is a formal E1-moduli problem, then α induces an equivalence of

8-categories F pXq Ñ QCoh!
RpXq.

Taking X “ ΨpAq for A P Algaug
κ , we see that p˚q supplies an equivalence of 8-categories

βA : LModA » χ1pΨ´1ΨpAqq » F pΨpAqq Ñ QCoh!
RpXq.

It remains to prove p˚q. Let E Ď FunpAlgart
κ ,Sq be the full subcategory spanned by

those functors X for which α induces an equivalence of 8-categories F pXq Ñ QCoh!
RpXq.

The localization functor L : FunpAlgart
κ ,Sq Ñ Modulip1qκ , the equivalence Ψ´1 : Modulip1qκ Ñ

Algaug
κ , and the forgetful functor Algaug

κ Ñ Algκ preserve small colimits. Lemma 13.4.7.2
implies that the functor χ1 : Algop

κ ÑyCat8 preserves sifted limits. It follows that the functor
F preserves sifted limits. Since QCoh!

R preserves small limits, the 8-category E is closed
under sifted colimits in FunpAlgart

κ ,Sq. Since E contains all corepresentable functors and is
closed under filtered colimits, it contains all prorepresentable formal moduli problems (see
Definition 12.5.3.1). Proposition 12.5.3.3 implies that every formal E1-moduli problem X can
be obtained as the geometric realization of a simplicial object X‚ of FunpAlgart

κ ,Sq, where
each Xn is prorepresentable. Since E is closed under geometric realizations in FunpAlgart

κ ,Sq,
we conclude that X P E as desired.

14.6.2 The Proof of Proposition 14.6.1.1

Let κ be a field, and let χ1 : Algop
κ Ñ yCat8 be a functor which classifies the Carte-

sian fibration p : LModpModκq Ñ Algκ. Using Proposition 14.4.2.4, we see that χ1 also
classifies the coCartesian fibration Dl0ppopq Ñ Algop

κ . Let LModperfpModκq denote the full
subcategory of LModpModκq spanned by those pairs pA,Mq, where A P Algκ and M is
a perfect left module over A. Let pperf denote the restriction of p to LModperfpModκq.
Proposition 14.4.3.1 supplies an equivalence of Dl0ppopq » Dllexppop

perfq of coCartesian fi-
brations over Algop

κ . By construction, χ! : Algart
κ Ñ yCat8 classifies the coCartesian

fibration RMod!pModκq “ Dllexpqq Ñ Algart
κ , where q denotes the Cartesian fibration

LModartpModκq Ñ Algart
κ . Consequently, Proposition 14.6.1.1 is a consequence of the

following:

Proposition 14.6.2.1. Let κ be a field and let D : Algart
κ Ñ Algop

κ denote the composition

Algart
κ ãÑ Algaug

κ
Dp1q
ÝÑ pAlgaug

κ qop Ñ Algop
κ ,

where Dp1q is the Koszul duality functor of Definition 14.1.1.3. Then there is a pullback
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diagram of 8-categories

LModartpModκq

��

D1 // LModperfpModκqop

��
Algart

κ
D // Algop

κ .

We now proceed to construct the diagram appearing in the statement of Proposition
14.6.2.1.

Construction 14.6.2.2. Fix a field κ. We let Mp1q Ñ Algaug
κ ˆAlgaug

κ be the pairing of
8-categories defined in Construction 14.1.1.1. The objects of Mp1q are given by triple
pA,B, εq, where A,B P Algκ and ε : AbκB Ñ κ is an augmentation on AbκB (which then
determines augmentations on A and B). Set

M “ LModpModκq ˆAlgκM
p1qˆAlgκ LModpModκq,

so that M is an 8-category whose objects can be identified with quintuples pA,B, ε,M,Nq,
where A,B P Algκ, ε : A bκ B Ñ κ is an augmentation, M P LModA, and N P

LModB. There is an evident functor χ : Mop
Ñ S, given on objects by the formula

χpA,B, ε,M,Nq “ MapLModAbκB pM bκ N,κq. Then χ classifies a right fibration MLM Ñ

M. Let LModaugpModκq denote the fiber product LModpModκqˆAlgκAlgaug
κ , so that the for-

getful functorMLM Ñ LModaugpModκqˆLModaugpModκq is a right fibration and therefore
determines a pairing of LModaugpModκq with itself.

Proposition 14.6.2.3. Let κ be a field, let λ :Mp1q Ñ Algaug
κ ˆAlgaug

κ be the pairing of
Construction 14.1.1.1 and λ1 :MLM Ñ LModaugpModκq ˆ LModaugpModκq the pairing of
Construction 14.6.2.2. Then λ1 is both left and right representable. Moreover, the forgetful
functor MLM ÑMp1q is both left and right representable.

Proof. We will show that λ1 is left representable and MLM ÑMp1q is left representable;
the corresponding assertions for right representability will follow by symmetry. Fix an
object A P Algaug

κ and a left A-module M . Let B “ Dp1qpAq be the Koszul dual of A and
ε : Abκ B Ñ κ the canonical map. Proposition 14.1.2.2 implies that ε determines a duality
functor Dε : LModop

A Ñ LModB. We let N “ DεpMq, so that there is a canonical map of
left A bκ B-modules µ : M bκ N Ñ κ. The quintuple pA,B, ε,M,Nq is an object of the
8-category M of Construction 14.6.2.2, and µ determines a lifting to an object X PMLM.
We complete the proof by observing that X is left universal and has left universal image in
Mp1q.

It follows from Proposition 14.6.2.3 that the pairing

MLM Ñ LModaugpModκq ˆ LModaugpModκq



14.6. KOSZUL DUALITY FOR MODULES 1183

determines a duality functor DLM : LModaugpModκq Ñ LModaugpModκqop. Let D1 denote
the composite map

LModartpModκq Ñ LModaugpModκq DLM
ÝÑ LModaugpModκqop Ñ LModpModκqop.

By construction, we have a commutative diagram σ :

LModartpModκq

p

��

D1 // LModpModκqop

q

��
Algart

κ
D // Algop

κ .

We next claim that the functor D1 carries p-Cartesian morphisms to q-Cartesian mor-
phisms. Unwinding the definitions, we must show that if f : RÑ R1 is a morphism in Algart

κ

and M is an Artinian left R1-module, then the canonical map

θM : Dp1qpRq bDp1qpR1q Dµ1pMq Ñ DµpMq

is an equivalence, where Dµ : LModop
R Ñ LModDp1qpRq and Dµ1 : LModop

R1 Ñ LModDp1qpR1q

are the duality functors determined by the pairings µ : R bκ Dp1qpRq Ñ κ and µ1 : R1 bκ
Dp1qpR1q Ñ κ. The modules M P LModR1 for which θM is an equivalence span a stable
subcategory of LModR1 which includes κ, and therefore contains all Artinian R1-modules
(Lemma 14.5.1.1).

To complete the proof of Proposition 14.6.2.1, it suffices to show that the functor D1

carries LModartpModκq into LModperfpModκqop and induces an equivalence of 8-categories

LModartpModκq Ñ LModperfpModκqop ˆAlgop
κ

Algart
κ .

Using Corollary HTT.2.4.4.4 , we are reduced to proving that D1 induces an equivalence of
8-categories from LModart

R to the opposite of LModperf
Dp1qpRq

, for every R P Algart
κ . This is a

consequence of Remark 14.5.1.1 together with the following more general assertion:

Proposition 14.6.2.4. Let κ be a field and let µ : AbκB Ñ κ be a map of E1-algebras over
κ which exhibits B as a Koszul dual of A. Then the duality functor Dµ : LModop

A Ñ LModB
restricts to an equivalence C Ñ LModperf

B , where C denotes the smallest stable subcategory of
LModA which contains κ (regarded as a left A-module via the augmentation AÑ AbκB

µ
Ñ κ)

and is closed under retracts.

Proof. Let D1µ : LModop
B Ñ LModA be as in Notation 14.1.2.3, and let D denote the full

subcategory of LModA spanned by those objects M for which the unit map M Ñ D1µDµpMq

is an equivalence in LModA. It is clear that D is a stable subcategory of LModA which is
closed under retracts. Since µ exhibits B as a Koszul dual of A, the subcategory D contains
κ so that C Ď D. It follows that the functor Dµ|C is fully faithful. Moreover, the essential
image of Dµ|C is the smallest stable full subcategory of LModB which contains Dµpκq » B

and is closed under retracts: this is the full subcategory LModperf
B Ď LModB.
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14.6.3 Connectivity Conditions

Let κ be a field, let A P Algaug
κ , and let X : Algart

κ Ñ S be the formal E1-moduli problem
associated to A (see Theorem 14.0.0.5). We conclude this section with a discussion of
the exactness properties of equivalences QCoh!

LpXq » RModA and QCoh!
RpXq » LModA

appearing in Theorem 14.6.0.1. Let RModcn
A and LModcn

A denote the full subcategories
spanned by those right and left A-modules whose underlying spectra are connective. Note
that the equivalences of Theorem 14.6.0.1 depend functorially on A, and when A “ κ they
are equivalent to the identity functor from the 8-category Modκ to itself. Let ˚ denote the
final object of Modulip1qκ , so that we have a canonical map of formal moduli problems ˚ Ñ X

(induced by the map of augmented E1-algebras κÑ A). It follows that Theorem 14.6.0.1
gives an equivalence

QCoh!
LpXq

cn » QCoh!
LpXq ˆQCoh!

Lp˚q
QCoh!

Lp˚q
cn

» RModAˆRModκ RModcn
κ

» RModcn
A

and, by symmetry, an equivalence QCoh!
RpXq

cn » LModcn
A . Combining this observation

with Proposition 14.5.5.8, we obtain the following result:

Proposition 14.6.3.1. Let κ be a field, let A P Algaug
κ , and let X : Algart

κ Ñ S be the
formal E1-moduli problem associated to A (see Theorem 14.0.0.5). Then the fully faithful
embeddings

QCohLpXq ãÑ RModA QCohRpXq ãÑ LModA .

of Theorem 14.6.0.1 restrict to equivalences of 8-categories

QCohLpXqcn » RModcn
A QCohRpXqcn » LModcn

A .

Warning 14.6.3.2. If A is an arbitrary E1-ring, then the full subcategories

LModcn
A “ LModAˆSp Spcn Ď LModA RModcn

A “ RModAˆSp Spcn Ď RModA

are presentable, closed under small colimits, and closed under extensions. It follows from
Proposition HA.1.4.4.11 that the 8-categories LModA and RModA admit t-structures
with pLModAqě0 “ LModcn

A and pRModAqě0 “ RModcn
A . However, it is often difficult to

describe the subcategories pLModAqď0 Ď LModA and pRModAqď0 Ď RModA. In particular,
they generally do not coincide with the subcategories LModAˆSp Spď0 Ď LModA and
RModAˆSp Spď0 Ď RModA unless the E1-ring A is connective.



Chapter 15

Moduli Problems for En-Algebras

Let κ be a field. In Chapters 13 and 14 we studied the 8-categories Moduliκ and
Modulip1qκ consisting of formal moduli problems defined for commutative and associative
algebras over κ, respectively. In the 8-categorical context, there is a whole hierarchy of
algebraic notions lying between these two extremes. Recall that the commutative 8-operad
can be identified with the colimit of a sequence

Assocb » Eb1 Ñ Eb2 Ñ Eb3 Ñ ¨ ¨ ¨ ,

where Ebn denotes the Boardman-Vogt 8-operad of little n-cubes (see Corollary HA.5.1.1.5 ).
Consequently, the 8-category CAlgκ of E8-algebras over κ can be identified with the limit
of a tower of 8-categories

¨ ¨ ¨ Ñ Algp3qκ Ñ Algp2qκ Ñ Algp1qκ » Algκ,

where Algpnqκ denotes the 8-category of En-algebras over κ. Our goal in this section is to
prove a generalization of Theorem 14.0.0.5 in the setting of En-algebras, for an arbitrary
integer n ě 0. To formulate our result, we need a bit of terminology.

Definition 15.0.0.1. Let κ be a field, let n ě 1, and let A be an En-algebra over κ. We
will say that A is Artinian if its image in Algκ is Artinian, in the sense of Definition 14.0.0.1.
We let Algpnq,art

κ denote the full subcategory of Algart
κ spanned by the Artinian En-algebras

over κ.

Warning 15.0.0.2. The terminology of Definition 15.0.0.1 is potentially confusing: when
A is discrete and n ě 2, it corresponds to the condition that A is a local Artinian ring with
residue field κ, rather than merely an Artinian ring. See Warnings 12.1.2.6 and 14.0.0.2.

Remark 15.0.0.3. Let n ě 1 and let A be an En-algebra over κ. Then A is Artinian if and
only if it is connective, π˚A is finite-dimensional over κ, and the unit map κÑ pπ0Aq{m is
an isomorphism, where m denotes the radical of π0A.

1185
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Remark 15.0.0.4. Let κ be a field and let A be an En-algebra over κ, for n ě 0. An
augmentation on A is a map of En-algebras ε : AÑ κ. We let Algpnq,aug

κ “ pAlgpnqκ q{κ denote
the 8-category of augmented En-algebras over κ. Note that if n ě 1 and A P Algpnqκ is
Artinian, then the space MapAlgpnqκ

pA, κq of augmentations on A is contractible. It follows
that the projection map Algpnq,aug

κ ˆAlgpnqκ
Algpnq,art

κ Ñ Algpnq,art
κ is an equivalence of 8-

categories. We will henceforth abuse notation by using this equivalence to identify Algpnq,art
κ

with its inverse image in Algpnq,aug
κ .

Remark 15.0.0.5. It will be convenient to have a version of Definition 14.0.0.1 also in the
case n “ 0. We therefore adopt the following convention: we will say that an augmented
E0-algebra A over κ is Artinian if A is connective and π˚A is a finite dimensional vector
space over κ. We let Algp0q,art

κ denote the full subcategory of Algp0q,aug
κ spanned by the

Artinian augmented E0-algebras over κ.

Notation 15.0.0.6. Let κ be a field, let n ě 0, and let ε : A Ñ κ be an augmented
En-algebra over κ. We let mA denote the fiber of the map ε in the stable 8-category Modκ.
We will refer to mA as the augmentation ideal of A. The construction pε : A Ñ κq ÞÑ mA

determines a functor m : Algpnq,aug
κ Ñ Modκ. In the case n “ 0, this functor is an equivalence

of 8-categories.

Definition 15.0.0.7. Let κ be a field, let n ě 0 be an integer and let X : Algpnq,art
κ Ñ S

be a functor. We will say that X is a formal En-moduli problem if it satisfies the following
conditions:

p1q The space Xpκq is contractible.

p2q For every pullback diagram
R //

��

R0

��
R1 // R01

in Algart
κ for which the underlying maps π0R0 Ñ π0R01 Ð π0R1 are surjective, the

diagram
XpRq //

��

XpR0q

��
XpR1q // XpR01q

is a pullback square.

We let Modulipnqκ denote the full subcategory of FunpAlgpnq,art
κ ,Sq spanned by the formal

En-moduli problems.
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Example 15.0.0.8. It is not difficult to show that a functor X : Algp0q,art
κ Ñ S is a formal

E0 moduli problem if and only if it is reduced and excisive (see Definition HA.1.4.2.1 ): that
is, if and only if X carries the initial object of Algp0q,art

κ to a final object of S, and carries
pushout squares to pullback squares.

We can now state the main result of this section:

Theorem 15.0.0.9. Let κ be a field and let n ě 0 be an integer. Then there is an equivalence
of 8-categories Ψ : Algpnq,aug

κ Ñ Modulipnqκ . Moreover, the diagram

Algpnq,aug
κ

Ψ //

m

��

Modulipnqκ
Σ´nT
��

Modκ // Sp

commutes up to canonical homotopy, where T : Modulipnqκ Ñ Sp denotes the tangent complex
functor (so that Ω8´mTX » Xpκ‘ Σmpκqq for m ě 0) and m : Algpnq,aug

κ Ñ Modκ denotes
the augmentation ideal functor of Notation 15.0.0.6.

Example 15.0.0.10. When n “ 1, Theorem 15.0.0.9 follows from Theorem 14.0.0.5 and
Remark 14.2.2.2.

Remark 15.0.0.11. Suppose that κ is a field of characteristic zero. For each n ě 0,
there is an evident forgetful functor CAlgart

κ Ñ Algpnq,art
κ , which induces a forgetful functor

θ : Modulipnqκ Ñ Moduliκ. Using the equivalences

Lieκ » Moduliκ Modulipnqκ » Algpnq,aug
κ

of Theorems 13.0.0.2 and 15.0.0.9, we can identify θ with a functor from Algpnq,aug
κ to Lieκ.

We can summarize the situation informally as follows: if A is an augmented En-algebra over
κ, then the shifted augmentation ideal Σn´1mA inherits the structure of a differential graded
Lie algebra over κ. In particular, at the level of homotopy groups we obtain a Lie bracket
operation

r, s : πpmA ˆ πqmA Ñ πp`q`n´1mA.

One can show that this Lie bracket is given by the Browder operation on mA. If Free :
Modκ Ñ Algpnqκ denotes the free algebra functor (left adjoint to the forgetful functor
Algpnqκ Ñ Modκ), then the Browder operation is universally represented by the the map φ

appearing in the cofiber sequence of augmented En-algebras

FreepΣp`q`n´1pκqq
φ
Ñ FreepΣppκq ‘ Σqpκqq Ñ FreepΣppκqq bκ FreepΣqpκqq

supplied by Theorem HA.5.3.3.3 .
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The appearance of the theory of En-algebras on both sides of the equivalence

Algpnq,aug
κ » Modulipnqκ Ď FunpAlgpnq,art

κ ,Sq

is somewhat striking: it is a reflection of the Koszul self-duality of the little cubes operads Ebn
(see [68]). In particular, there is a Koszul duality functor Dpnq : pAlgpnq,aug

κ qop Ñ Algpnq,aug
κ .

This functor is not difficult to define directly : if A is an augmented En-algebra over κ, then
DpnqpAq is universal among En-algebras over κ for which the tensor product Abκ DpnqpAq
admits an augmentation extending the augmentation on A. The equivalence Ψ appearing
in the statement of Theorem 15.0.0.9 carries an augmented En-algebra A to the functor X
given by the formula XpRq “ MapAlgpnq,aug

κ
pDpnqpRq, Aq.

In §15.3, we will prove that the Koszul duality functor Dpnq is a deformation theory (in the
sense of Definition 12.3.3.2), so that Theorem 15.0.0.9 is a consequence of Theorem 12.3.3.5.
The main point is to produce a full subcategory B0 Ď Algpnq,aug

κ which satisfies axiom pD3q
of Definition 12.3.1.1. We will define B0 to be the full subcategory of Algpnq,aug

κ spanned
by those augmented En-algebras A which satisfy suitable finiteness and coconnectivity
conditions. We will then need to prove two things:

paq The full subcategory B0 Ď Algpnq,aug
κ has good closure properties.

pbq For every object A P B0, the biduality map AÑ DpnqDpnqpAq is an equivalence.

The verification of paq comes down to connectivity properties of free algebras over the
En-operad. We will establish these properties in §15.1, using topological properties of
configuration spaces of points in Euclidean space. We will prove pbq in §15.2. Our strategy is
to use the description of Koszul duality in terms of iterated bar constructions (see §HA.5.2.3 )
to reduce to the case n “ 1, which was analyzed in detail in Chapter 14.
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15.1 Coconnective En-Algebras

Let κ be a field and let n ě 0 be an integer. Our goal in this section is to study some
finiteness and coconnectivity conditions on En-algebras over κ which will be relevant to our
proof of Theorem 15.0.0.9.

Definition 15.1.0.1. Let κ be a field and let A be an E0-algebra over κ: that is, a κ-
module equipped with a unit map e : κÑ A. Let m be an integer. We will say that A is
m-coconnective if the homotopy groups πi cofibpeq vanish for i ą ´m.

More generally, if A is an En-ring equipped with a map of En-rings κÑ A, we will say
that A is m-coconnective if it is m-coconnective when regarded as an E0-algebra over κ (here
we need not require that A is an En-algebra over κ, though this will always be satisfied in
cases of interest to us).

Remark 15.1.0.2. If A is an E1-algebra over a field κ, then A is coconnective (in the sense
of Definition 14.1.3.1) if and only if it is 1-coconnective (in the sense of Definition 15.1.0.1).

Remark 15.1.0.3. If m ą 0, then an En-algebra A over κ is m-coconnective if and only
if the unit map κ Ñ A induces an isomorphism κ Ñ π0A and the homotopy groups πiA
vanish for i ą 0 and ´m ă i ă 0.

Notation 15.1.0.4. Let κ be a field and let n ě 0 be an integer. We let Freepnq : Modκ Ñ
Algpnqκ denote a left adjoint to the forgetful functor Algpnqκ Ñ Modκ. For any object V P Modκ,
the free algebra FreepnqpV q is equipped with a canonical augmentation ε : FreepnqpV q Ñ κ,
corresponding to the zero morphism V Ñ κ in Modκ.

Our main result can be stated as follows:

Theorem 15.1.0.5. Let κ be a field, let A be an En-algebra over κ, and let m ě n be an
integer. Suppose we are given a map φ : V Ñ A in Modκ, where πiV » 0 for i ě ´m, and
form a pushout diagram

FreepnqpV q φ1 //

ε

��

A

��
κ // A1
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where φ1 is the map of En-algebras determined by φ and ε is the augmentation of Notation
15.1.0.4. If A is m-coconnective, then A1 is also m-coconnective.

Our proof of Theorem 15.1.0.5 is somewhat indirect, and will require several digressions.

15.1.1 Dimensions of Configuration Spaces

Theorem 15.1.0.5 relies on having a good understanding of the free algebra functor
Freepnq : Modκ Ñ Algpnqκ . Recall that for V P Modκ, the underlying κ-module spectrum of
FreepnqpV q is given by

À

mě0 Symm
EnpV q, where Symm

EnpV q is the colimit of a diagram indexed
by the full subcategory Km,n Ď pEbn q{x1y spanned by the active morphisms xmy Ñ x1y in the
8-operad Ebn (see Proposition HA.3.1.3.13 ). The geometric input to our proof of Theorem
15.1.0.5 is the following geometric fact about the Kan complexes Km,n:

Proposition 15.1.1.1. Let m and n be positive integers. Then the Kan complex Km,n

defined above is homotopy equivalent to SingpXq, where X is a finite CW complex of
dimension ď pm´ 1qpn´ 1q.

Remark 15.1.1.2. The Kan complex Km,n appearing in Proposition 15.1.1.1 is homotopy
equivalent to the labelled configuration space ConfmpRnq parametrizing m-tuples of distinct
points in Rn. This space is contractible if m “ 1, and otherwise admits a fibration
ConfmpRnq Ñ Confm´1pRnq whose fibers are homotopy equivalent to a bouquet of spheres
having dimension pn´ 1q. One can use this observation to prove Proposition 15.1.1.1 using
induction on m. We will give a different argument below, which uses induction on n rather
than m.

Lemma 15.1.1.3. Fix an integer b ě 0, and let Qb denote the set of sequences pI1, . . . , Ibq,
where each Ij Ď p´1, 1q is a closed interval, and we have x ă y whenever x P Ii, y P Ij, and
i ă j. We regard Q as a partially ordered set, where pI1, . . . , Ibq ď pI

1
1, . . . , I

1
bq if Ij Ď I 1j for

1 ď i ď j. Then the nerve NpQbq is weakly contractible.

Proof. The proof proceeds by induction on b. If b “ 0, then Qb has a single element and
there is nothing to prove. Otherwise, we observe that “forgetting” the last coordinate
induces a Cartesian fibration q : NpQbq Ñ NpQb´1q. We will prove that the fibers of q are
weakly contractible, so q is left cofinal (Lemma HTT.4.1.3.2 ) and therefore a weak homotopy
equivalence. Fix an element x “ prt1, t11s, rt2, t12s, . . . , rtb´1.t

1
b´1sq P Qb´1. Then q´1txu can

be identified with the nerve of the partially ordered set Q1 “ tptb, t1bq : t1b´1 ă tb ă t1b ă 1u,
where ptb, t1bq ď psb, s1bq if tb ě sb and t1b ď s1b.

The map ptb, t1bq ÞÑ t1b is a monotone map from Q1 to the open interval pt1b´1, 1q. This
map determines a coCartesian fibration q1 : NpQ1q Ñ Npt1b´1, 1q. The fiber of q1 over a point
s can be identified with the opposite of the nerve of the interval pt1b´1, sq, and is therefore
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weakly contractible. It follows that q1 is a weak homotopy equivalence, so that NpQ1q is
weakly contractible as desired.

Proof of Proposition 15.1.1.1. For every topological space X, let SymmpXq denote the
quotient of Xm by the action of the symmetric group Σm, and let ConfmpXq denote
the subspace of SymmpXq corresponding to m-tuples of distinct points in X. Let ln “

p´1, 1qn denote an open cube of dimension n. Using Lemma HA.5.1.1.3 , we obtain a
homotopy equivalence Km,n » SingpConfmplnqq. It will therefore suffice to show that the
configuration space Confmplnq is homotopy equivalent to a finite CW complex of dimension
ď pm´ 1qpn´ 1q. If n “ 1, then Confmplnq is contractible and there is nothing to prove.
We prove the result in general by induction on n. Let us therefore assume that Km1,n´1 is
equivalent to the singular complex of a CW complex of dimension ď pm1 ´ 1qpn ´ 2q for
every integer m1 ě 1.

Let us identify ln with a product ln´1 ˆ p´1, 1q, and let p0 : ln Ñ ln´1 and
p1 : ln Ñ p´1, 1q be the projection maps. If I Ď p´1, 1q is a disjoint union of finitely many
closed intervals (with nonempty interiors), we let rts P π0I denote the connected component
containing t for each t P I. Then π0I inherits a linear ordering, with rts ă rt1s if and only
if t ă t1 and rts ‰ rt1s. Let P denote the partially ordered set of triples pI,„, µq, where
I Ď p´1, 1q is a nonempty disjoint union of finitely many closed intervals, „ is an equivalence
relation on π0I such that x ă y ă z and x „ z implies x „ y „ z, and µ : π0I Ñ Zą0
is a positive integer-valued function such that

ř

xPπ0I
µpxq “ m. We regard pI,„, µq as a

partially ordered set, with pI,„, µq ď pI 1,„1, µ1q if I Ď I 1, µ1pxq “
ř

y µpyq where the sum
is taken over all y P π0I contained in x, and rss „1 rts implies rss „ rts for all s, t P I. For
every pair pI,„, µq P P , we let ZpI,„, µq be the open subset of Confmplnq consisting of
subsets S Ď ln which are contained in ln´1 ˆ I0 (here I0 denotes the interior of I), have
the property that if s, s1 P S and rp1psqs „ rp1ps

1qs, then either s “ s1 or p0psq ‰ p0ps
1q, and

satisfy µpxq “ |ts P S : p1psq P xu| for x P π0I.
We next claim:

p˚q The Kan complex SingpConfmplnqq is a homotopy colimit of the diagram of simplicial
sets

tSingpZpI,„, µqqupI,„,µqPP .

To prove this, it will suffice (by Theorem HA.A.3.1 ) to show that for each point S P

Confmplnq, the partially ordered set PS “ tpI,„, µq P P : S P ZpI,„, µqu has weakly
contractible nerve. Let Q denote the collection of all equivalence relations „ on S with the
following properties:

piq If p1psq ď p1ps
1q ď p1ps

2q and s „ s2, then s „ s1 „ s2.

piiq If s „ s1, then either s “ s1 or p0psq ‰ p0ps
1q.
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We regard Q as a partially ordered set with respect to refinement. Pullback of equivalence
relations determines a forgetful functor φ : NpPSq Ñ NpQqop. It is easy to see that µ is a
Cartesian fibration. The simplicial set NpQq is weakly contractible, since Q has a smallest
element (given by the equivalence relation where s „ s1 if and only if s “ s1). We will
complete the proof of p˚q by showing that the fibers of φ are weakly contractible, so that φ
is left cofinal (Lemma HTT.4.1.3.2 ) and therefore a weak homotopy equivalence.

Fix an equivalence relation „P Q. Unwinding the definitions, we see that φ´1t„u can be
identified with the nerve of the partially ordered set R consisting of those subsets I Ď p´1, 1q
satisfying the following conditions:

paq The set I is a disjoint union of closed intervals in p´1, 1q.

pbq The set I contains p1pSq, and p1 induces a surjection S Ñ π0I.

pcq If p1psq and p1ps
1q belong to the same connected component of I, then s „ s1.

To see that NpRq is contractible, it suffices to observe that the partially ordered set Rop is
filtered: it has a cofinal subset given by sets of the form

Ť

sPSrp1psq ´ ε, p1psq ` εs for ε ą 0.
This completes the proof of p˚q.

We define a category J as follows:

• An object of J is a triple pras,„, µq where ras P ∆, „ is an equivalence relation on ras
such that i ă j ă k and i „ k implies that i „ j „ k, and µ : ras Ñ Zą0 is a function
satisfying m “

ř

0ďiďa µpiq.

• A morphism from pras,„, µq to pra1s,„1, µ1q in J is a nondecreasing map α : ras Ñ ra1s

such that αpjq „ αpj1q implies j „ j1 and µ1pjq “
ř

αpiq“j µpiq.

There is an evident forgetful functor q : P Ñ J , which carries a pair pI,„, µq to
pπ0I,„, µq where we abuse notation by identifying π0I with the linearly ordered set ras
for some a ě 0. Let Z 1 : J Ñ Set∆ be a homotopy left Kan extension of Z along q. For
each object pras,„, µq P J , we can identify Z 1pras,„, µq with the homotopy colimit of the
diagram Z|Pras,„,µ , where Pras,„,µ denotes the partially ordered set of quadruples pI, λ,„1, µ1q
where I Ď p´1, 1q is a disjoint union of closed intervals, λ : π0I Ñ ras is nondecreasing
surjection, „1 is an equivalence relation on π0I such that λprtsq „ λprt1sq implies rts „1 rt1s,
and µ1 : π0I Ñ Zą0 is a map satisfying µpiq “

ř

λpxq“i µ
1pxq for 0 ď i ď a. Let P 1

ras,„,µ be the
subset of Pras,„,µ consisting of those quadruples pI, λ,„1, µ1q where λ is a bijection and „1 is
the pullback of „ along λ. The inclusion NpP 1

ras,„,µq Ñ NpPras,„,µq admits a left adjoint and
is therefore left cofinal. It follows that Z 1pras,„, µq can be identified with a homotopy colimit
of the diagram Z|P 1

ras,„,µ
. Note that Z carries each morphism in P 1

ras,„,µ to a homotopy
equivalence of Kan complexes. Since P 1

ras,„ is weakly contractible (Lemma 15.1.1.3), we
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conclude that the map ZpI,„1, µ1q Ñ Z 1pras,„, µq is a weak homotopy equivalence for any
pI, λ,„1, µ1q P P 1

ras,„,µ.
It follows from condition p˚q that SingpKm,nq can be identified with a homotopy colimit

of the diagram Z 1. We may assume without loss of generality that Z 1 takes values in Kan
complexes, so that Z 1 determines a functor of 8-categories J Ñ S. We will abuse notation
by denoting this map also by Z 1. Note that if pras,„, µq P J , then m “

ř

0ďiďa µpiq ě

a` 1. For each object pras,„, µq P J , we define the complexity dpras,„, µq to be the sum
|ras{ „ | `

ř

0ďiďapµpiq ´ 1q. Since ras{ „ has at least one element, dpras,„, µq is bounded
below by 1 and bounded above by |ras| `

ř

0ďiďa µpiq ´ 1 “
ř

0ďiďa µpiq “ m. Note that for
every nonidentity morphism J Ñ J 1 in J , we have dpJq ă dpJ 1q. From this, we deduce that
every nondegenerate simplex in the nerve NpJ q, corresponding to a sequence of nonidentity
morphisms J0 Ñ ¨ ¨ ¨ Ñ Jb in J , is bounded in length by b ď m´ 1. It follows immediately
that the simplicial set NpJ q has only finitely many nondegenerate simplices. We will prove
that for every finite simplicial subset A Ď NpJ q, the colimit of the diagram Z 1|A is homotopy
equivalent to the singular complex of finite CW complex of dimension ď pn ´ 1qpm ´ 1q.
This is obvious when A “ H, and when A “ NpJ q it implies the desired result. To carry
out the inductive step, assume that A is nonempty so that there is a pushout diagram

B∆b //

��

∆b

σ

��
A0 // A

for some smaller simplicial subset A0 Ď NpJ q. The simplex σ carries the initial vertex
0 P ∆b to an object pras,„, µq P J , and we have a pushout diagram

Z 1pras,„, µq ˆ B∆b //

��

Z 1pras,„, µq ˆ∆b

��
lim
ÝÑ
pZ 1|A0q

// lim
ÝÑ
pZ 1|Aq

where lim
ÝÑ
pZ 1|A0q is homotopy equivalent to the singular complex of a finite CW complex

of dimension ď pn´ 1qpm´ 1q. Let I Ď p´1, 1q be a finite union of a` 1 closed intervals
and identify π0I with ras, so that Z 1pras,„, µq » ZpI,„, µq is homotopy equivalent to the
product

ś

xPras{„Confµxpln´1q, where µx “
ř

iPx µpiq. Using the inductive hypothesis, we
deduce that Z 1pras,„, µq is homotopy equivalent to the nerve of a CW complex of dimension
pm´ dqpn´ 2q, where d is the cardinality of the quotient ras{ „. It follows that lim

ÝÑ
pZ 1|Aq is

homotopy equivalent to the singular complex of a CW complex having dimension at most the
maximum of pm´1qpn´1q and pm´dqpn´2q`b ď pm´1qpn´2q`pm´1q “ pm´1qpn´1q,
as desired.



1194 CHAPTER 15. MODULI PROBLEMS FOR EN -ALGEBRAS

Remark 15.1.1.4. Let C be a presentable 8-category equipped with an En-monoidal
structure, and if n ą 0 assume that the tensor product on C preserves coproducts separately
in each variable.

Suppose now that X P C is a coproduct of objects tXsusPS . Let J be the subcategory of
F in˚ consisting of the object xmy and its automorphisms. Let J pSq be the category whose
objects are maps of sets t1, . . . ,mu Ñ S, and whose morphisms are given by commutative
diagrams

t1, . . . ,mu

$$

ν // t1, . . . ,mu

zz
S

where ν is bijective. There is an evident forgetful functor q : J pSq Ñ J . Let Km,n

be as in the statement of Proposition 15.1.1.1, and let Km,npSq denote the fiber product
Km,n ˆNpJ q NpJ pSqq.

According to Proposition HA.3.1.3.13 , the free algebra functor Freepnq : C Ñ Alg{EnpCq
carries an object X P C to the coproduct >mě0 Sympnq

En pXq, where Sympnq
En pXq denotes the

colimit of a diagram φX : Km,n Ñ C.
Then φX can be identified with the left Kan extension (along q) of a functor φtXsusPS :

J pSq Ñ J , where β carries an operation γ : xmy Ñ x1y in Ebn and a map α : xmy˝ Ñ S to
the object γ!pXαp1q, . . . , Xαpmqq P C (here γ! : Cm Ñ C denotes the functor determined by the
En-monoidal structure on C).

For every map µ : S Ñ Zě0 satisfying
ř

sPS µpsq “ m ă 8, let J pS, µq denote the full
subcategory of J pSq spanned by those maps α : xmy˝ Ñ S such that α´1tsu has cardinality
µpsq, and let Km,npS, µq denote the fiber product Km,npSq ˆNpJ pSqq NpJ pS, µqq. Then
Km,npSq is a disjoint union of the Kan complexes Km,npS, µq. It follows that Symm

EnpXq is
a coproduct >µ lim

ÝÑ
β|Km,npµq. Note that if T Ď S and µpsq “ 0 for s R T , then there is a

canonical equivalence

φtXsusPS |Km,npS,µq » φtXsusPT |Km,npT,µ|T q.

It follows that if the cardinality of S is larger than m, then Symm
EnpXq can be written as a

coproduct of objects, each of which is a summand of Symm
Enp>tPS´tsuXtq for some s P S.

15.1.2 Local Finiteness of Tensor Products

Let κ be a field. Recall that we say that an object M P Modκ is locally finite if each
homotopy group πiM is a finite-dimensional vector space over κ (Definition 14.1.3.1). We
will need the following closure property of locally finite modules under tensor products:
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Proposition 15.1.2.1. Let A be a coconnective E1-algebra over a field κ such that π´1A » 0.
Let M be a left A-module, let N be a right A-module. Suppose that A, M , and N are locally
finite, and that πiM » πiN » 0 for i ą 0. Then N bAM is locally finite.

Our proof of Proposition 15.1.2.1 will make use of the following:

Lemma 15.1.2.2. Let A be a coconnective E1-algebra over a field κ such that π´1A » 0,
and let M be a left A-module such that πiM » 0 for i ą 0. Assume that A and M are locally
finite. Then there exists a sequence of left A-modules

0 “Mp0q ÑMp1q ÑMp2q Ñ ¨ ¨ ¨

with the following properties:

p1q For each n ą 0, there exists a locally finite object V pnq P pModκqď´n and a cofiber
sequence of left A-modules Abκ V pnq ÑMpn´ 1q ÑMpnq.

p2q There exists an equivalence θ : lim
ÝÑ

Mpnq »M .

Proof. We construct Mpnq using induction on n, beginning with the case n “ 0 where we
set Mp0q “ 0. Assume that Mpn ´ 1q P pLModAq{M has been constructed, and let V pnq
denote the underlying κ-module of the fiber of the map Mpn ´ 1q Ñ M . We then define
Mpnq to be the cofiber of the induced map A bκ V pnq Ñ Mpn ´ 1q. This construction
produces a sequence of objects Mp0q ÑMp1q ÑMp2q Ñ ¨ ¨ ¨ in pLModAq{M , hence a map
θ : lim
ÝÑ

Mpnq ÑM . We claim that θ is an equivalence of left A-modules. To prove this, it
suffices to show that θ is an equivalence in Modκ. As an object of Modκ, we can identify
lim
ÝÑ

Mpnq with the direct limit of the sequence

Mp0q ÑMp0q{V p1q ÑMp1q ÑMp1q{V p2q Ñ ¨ ¨ ¨

It therefore suffices to show that the map lim
ÝÑ

Mpiq{V pi`1q ÑM is an equivalence in Modκ,
which is clear (since each cofiber Mpiq{V pi` 1q is equivalent to M). This proves p2q. We
next prove the following by a simultaneous induction on n:

panq The map Mpnq Ñ M induces an isomorphism πiMpnq Ñ πiM for i ą ´n and an
injection for i “ ´n.

pbnq Each Mpnq is locally finite.

pa1nq The κ-module V pn` 1q belongs to pModκqď´n´1.

pb1nq The κ-module V pn` 1q is locally finite.
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Assertions pa0q and pb0q are obvious, and the equivalences panq ô pa1nq and pbnq ô pb1nq

follow from the existence of a long exact sequence

¨ ¨ ¨ Ñ πiV pn` 1q Ñ πiMpnq Ñ πiM Ñ πi´1V pn` 1q Ñ ¨ ¨ ¨

We will complete the proof by showing that pa1nq and pb1nq imply pa1n`1q and pbn`1q. Assertion
pbn`1q follows from pb1nq by virtue of the existence of an exact sequence

¨ ¨ ¨ Ñ πipAbκ V pn` 1qq Ñ πiMpnq Ñ πiMpn` 1q Ñ πi´1pAbκ V pn` 1qq Ñ ¨ ¨ ¨

To prove pan`1q, we note that the identification M »Mpnq{V pnq gives a fiber sequence

pA{κq bκ V pnq ÑM
λ
ÑMpn` 1q

in Modκ, where λ is a right inverse to theA-module mapMpn`1q ÑM . We therefore have an
equivalence Mpn`1q »M‘ppA{κqbκΣpV pnqq in Modκ so that V pn`1q » ΣpA{κqbκV pnq.
Since πiA{κ » 0 for i ě ´1, it follows immediately that pa1nq ñ pa1n`1q.

Proof of Proposition 15.1.2.1. Let κ be a field, let A be a coconnective E1-algebra over κ
satisfying π1A » 0, and let M P LModA and N P RModA. Suppose that A, M , and N are
locally finite, and that πiM » πiN » 0 for i ą 0. We wish to show that NbAM is also locally
finite. Choose tMpnquně0 be as in Lemma 15.1.2.2. Then πipNbAMq » lim

ÝÑ
πipNbAMpnqq.

We have cofiber sequences AbκV pnq ÑMpn´1q ÑMpnq where V pnq P pModκqď´n, hence
also cofiber sequences N bκ V pnq Ñ N bAMpn´ 1q Ñ N bAMpnq in Modκ. Since each
πiV pnq is finite-dimensional, the homotopy groups of N bκ V pnq are finite-dimensional. It
follows by induction on n that N bAMpnq is locally finite. Since πipN bκ V pnqq » 0 for
i ą ´n, the maps πipN bAMpn ´ 1qq Ñ πipN bAMpnqq are bijective for i ą ´n ` 1. It
follows that πipN bAMq » lim

ÝÑ
πipN bAMpnqq is also a finite dimensional vector space over

κ.

15.1.3 The Algebra
ş

A

To prove Theorem 15.1.0.5, it will be convenient to introduce a device which can be used
to translate certain questions about En-algebras to questions about E1-algebras (which can
then be analyzed using ideas from Chapter 14).

Construction 15.1.3.1. Let κ be a field and let A be an En-algebra over κ. We let
ModEn

A “ ModEn
A pModκq denote the 8-category of En-modules over A (see §HA.3.3.3 ). Note

that ModEn
A is a presentable 8-category (Theorem HA.3.4.4.2 ) and the forgetful functor

θ : ModEn
A Ñ Modκ is conservative and preserves small limits and colimits (Corollaries

HA.3.4.3.3 , HA.3.4.3.6 , and HA.3.4.4.6 ). It follows that ModEn
A is a stable 8-category. The

composite functor
ModEn

A
θ
Ñ Modκ Ñ Sp Ω8

Ñ S
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preserves small limits and filtered colimits, and is therefore corepresentable by an object
M P ModEn

A (Proposition HTT.5.5.2.7 ). Since θ is conservative, the object M generates
ModEn

A in the following sense: an object N P ModEn
A vanishes if and only if the abelian groups

ExtnModEn
A

pM,Nq vanish for every integer n. Applying Theorem HA.7.1.2.1 (and its proof),

we see that there exists an E1-ring
ş

A and an equivalence of 8-categories LModş

A » ModEn
A

carrying
ş

A to the module M (this latter condition is equivalent to the requirement that
the composition

LModş

A » ModEn
A Ñ Modk Ñ Sp

is equivalent to the forgetful functor LModş

A Ñ Sp). The E1-ring
ş

A can be characterized
(up to equivalence) as the E1-ring of endomorphisms of M in the stable 8-category ModEn

A .

Remark 15.1.3.2 (Functoriality). In the situation of Construction 15.1.3.1, let ModEn

denote the 8-category of pairs pA,Mq, where A is an En-algebra over κ and M is an
En-module over A. We have a presentable fibration ModEn Ñ Algpnqκ , classified by a functor
χ : Algpnqκ Ñ PrL; here PrL denotes the 8-category whose objects are presentable 8-
categories and whose morphisms are functors which preserve small colimits. Since each
ModEn

A is stable, the functor χ factors as a composition

Algpnqκ
χ1
Ñ ModSppPrLq Ñ PrL

(see Proposition HA.4.8.2.15 ). Since χ carries the inital object κ P Algpnqκ to Modκ (see
Proposition HA.3.4.2.1 ), the canonical map Sp Ñ Modκ allows us to factor χ through a
functor χ2 : Algpnqκ Ñ ModSppPrLqSp {. According to Theorem HA.4.8.5.5 , the construction
B ÞÑ LModB determines a fully faithful embedding AlgpSpq Ñ ModSppPrLqSp {, and the
argument of Construction 15.1.3.1 implies that the functor χ2 factors through the essential
image of this embedding. It follows that we can regard the construction A ÞÑ

ş

A as a functor
ş

: Algpnqκ Ñ AlgpSpq.

Remark 15.1.3.3. Let κ be a field, and regard κ as an En-algebra over itself. Then the
forgetful functor ModEn

κ Ñ Modκ is an equivalence of 8-categories (Proposition HA.3.4.2.1 ),
so that we have a canonical equivalence of E1-rings κ »

ş

κ. For any En-algebra A over
κ, the unit map κÑ A is a map of En-algebras, and therefore induces a map of E1-rings
κ »

ş

κÑ
ş

A. In particular, the homotopy groups π˚A can be regarded as vector spaces
over the field κ.

With more effort, one can show that the map κ Ñ
ş

A is central: that is,
ş

A can be
regarded as an E1-algebra over κ. We will not need this fact.

Example 15.1.3.4. If n “ 0 and A is an En-algebra over κ, then the forgetful functor
ModEn

A Ñ Modκ is an equivalence Proposition HA.3.3.3.19 ). It follows that the map κÑ
ş

A

of Remark 15.1.3.3 is an equivalence. That is,
ş

: Algp0qκ Ñ Algp1q can be identified with the
constant functor taking the value κ.
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Example 15.1.3.5. If n “ 1 and A P Algpnqκ , then there is a canonical equivalence of
8-categories ModE1

A » ABModApModκq (Theorem HA.4.4.1.28 ). Using Corollary HA.?? ,
we obtain a canonical equivalence of E1-rings

ş

A » A bκ A
rev, where Arev denotes the

E1-algebra A equipped with the opposite multiplication.
More generally, for any integer n ě 1, the inclusion of 8-operads Eb1 Ñ Ebn determines

a forgetful functor AlgEnA Ñ AlgE1
A which induces a map of E1-rings Abκ Arev Ñ

ş

A. We
may therefore regard

ş

A as an A-A bimodule object of Modκ.

Remark 15.1.3.6. Let A be an En-algebra over a field κ. Theorem HA.7.3.5.1 supplies a
fiber sequence Σn´1LA{κ Ñ

ş

AÑ A of En-modules over A, where LA{κ denotes the relative
cotangent complex of A over κ in the setting of En-algebras. If A is connective, then LA{κ is
also connective. For n ě 1, it follows that

ş

A is also connective (this is also true for n “ 0;
see Example 15.1.3.4), so that the 8-category ModEn

A pModκq » Modş

A inherits a t-structure
from the t-structure on Modκ. For n ě 2, we deduce also that the map π0

ş

AÑ π0A is an
isomorphism, so that the forgetful functor ModEn

A pModκq Ñ LModA induces an equivalence
of abelian categories ModEn

A pModκq♥ » LMod♥
A.

Let κ be a field and let A be an En-algebra over κ. One can show that the E1-ring
ş

A is
given by the topological chiral homology

ş

Rn´t0uA defined in §HA.5.5.2 ). In what follows,
we will not use this description directly. However, we will need the following consequence,
for which we supply a direct proof:

Proposition 15.1.3.7. Let κ be a field and let n ě 0. The functor
ş

: Algpnqκ Ñ Algp1q

preserves small sifted colimits.

Proof. Let Θ : Algp1q Ñ ModSppPrLqSp { be the fully faithful embedding B ÞÑ LModB of
Theorem HA.4.8.5.5 . To prove that the functor

ş

preseves small sifted colimits, it will
suffice to show that the composite functor Θ ˝

ş

preserves small sifted colimits. Since
every sifted simplicial set is contractible, it suffices to show that the induced map Algpnqκ Ñ

ModSppPrLq preserves small sifted colimits (Proposition HTT.4.4.2.9 ). Using Theorem
HA.7.3.4.13 , we see that this functor classifies the stable envelope of the Cartesian fibration
θ : Funp∆1,Algpnqκ q Ñ Funpt1u,Algpnqκ q, classified by the functor ξ : Algpnqκ Ñ PrL given
informally by A ÞÑ pAlgpnqκ q{A. It will therefore suffice to show that ξ preserves small sifted
colimits. Using Theorem HTT.5.5.3.18 , we are reduced to showing that the composite
functor Algpnqκ

ξ
Ñ PrL » PrRop

ÑyCat
op
8 preserves small sifted colimits. This functor also

classifies the forgetful functor θ (this time as a Cartesian fibration). Fix a sifted 8-category
K and a colimit diagram f : KŹ Ñ Algpnqκ ; we wish to show that the Cartesian fibration
θ1 : Funp∆1,Algpnqκ q ˆFunpt1u,Algpnqκ q

KŹ is classified by limit diagram pKŹqop Ñ yCat8. Let
A P Algpnqκ denote the image under f of the cone point of KŹ, and for each vertex v P K let
Av “ fpvq. According to Proposition ??, it will suffice to verify the following:
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paq The pullback functors qv : pAlgpnqκ q{A Ñ pAlgpnqκ q{Av , given by B ÞÑ Av ˆA B, are
jointly conservative. Since K is nonempty, it will suffice to show that for each v P K,
the pullback qv is conservative. To this end, suppose we are given a map α : B Ñ B1 in
pAlgpnqκ q{A such that qvpαq is an equivalence. Since the fiber of α (as a map of spectra)
is equivalent to the fiber of qvpαq (by virtue of Corollary HA.3.2.2.5 ), we conclude
that α is an equivalence as well.

pbq Let h P FunAlgpnqκ
pK,Funp∆1,Algpnqκ qq be a map which carries each edge of K to a

θ-Cartesian morphism in the 8-category Funp∆1,Algpnqκ q, corresponding to a natural
transformation tBv Ñ AvuvPK , and let h P FunAlgpnqκ

pKŹ,Algpnqκ q be an θ-colimit
diagram extending h; we wish to show that h carries each edge of KŹ to a θ-Cartesian
morphism in Funp∆1,Algpnqκ q. Unwinding the definitions, we must show that if B “
lim
ÝÑ

Bv, then for each v P K the diagram σ :

Bv //

��

B

��
Av // A

is a pullback square in Algpnqκ . For each v P K, let Iv denote the fiber of the map
Bv Ñ Av in Modκ, and let I be the fiber of the map B Ñ A; we wish to show that
each of the canonical maps Iv Ñ I is an equivalence in Modκ. Our assumption on h

guarantees that the diagram v ÞÑ Iv carries each edge of K to an equivalence in Modκ.
It will therefore suffice to show that the canonical map lim

ÝÑ
Iv Ñ I is an equivalence

in Modκ. Since Modκ is stable, the formation of fibers commutes with colimits; it
will therefore suffice to show that A and B are colimits of the diagrams tAvuvPK and
tBvuvPK in Modκ, respectively. Since K is sifted, this follows because the forgetful
functor Algpnqκ Ñ Modκ preserves sifted colimits (Proposition HA.3.2.3.1 ).

15.1.4 The Main Step

We are now ready to prove a special case of Theorem 15.1.0.5:

Proposition 15.1.4.1. Let κ be a field, let A be an En-algebra over κ, and let m ě n be
an integer. Suppose we are given a map φ : V Ñ A in Modκ, where πiV » 0 for i ě ´m,
and form a pushout diagram

FreepnqpV q φ1 //

ε

��

A

��
κ // A1
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where φ1 is the map of En-algebras determined by φ and ε is the augmentation of Notation
15.1.0.4. Assume that A is m-coconnective and that

ş

A is pm` 1´ nq-coconnective. Then
A1 is m-coconnective, and

ş

A1 is pm` 1´ nq-coconnective. Moreover, if A,
ş

A, and V are
locally finite, then A1 and

ş

A1 are locally finite (see Definition 14.1.3.1).

Remark 15.1.4.2. We will show in a moment that the hypothesis
ş

A is pm ` 1 ´ nq-
connective is automatic (Proposition 15.1.5.1).

Proof of Proposition 15.1.4.1. We will assume n ą 0 (otherwise the result is trivial). Let
φ10 : FreepnqpV q Ñ A be the map of En-algebras induced by the zero map V Ñ A, so that A1

can be identified with the colimit of the coequalizer diagram FreepnqpV q
φ1 //
φ10

// A classified

by a functor u0 : ∆op
s,ď1 Ñ Algpnqκ . Let u : ∆op Ñ Algpnqκ be a left Kan extension of u0

along the inclusion ∆op
s,ď1 ãÑ ∆op, so that u determines a simplicial object A‚ in Algpnqκ with

A1 » |A‚| and Ap » A>FreepV pq for all p ě 0. Let R “
ş

A so that LModR » ModEn
A pModκq

is equipped with an En-monoidal structure, where the tensor product is given by the relative
tensor product over A. We will need the following estimate:

p˚q For each integer a ą 0, the iterated tensor product Rba belongs to pModκqď0. Moreover,
if A and

ş

A are locally finite, then Rba is locally finite.

Suppose first that n “ 1, so that R » Abκ A
rev (Example 15.1.3.5). Then Rba can be

identified with an iterated tensor product Abκ Abκ ¨ ¨ ¨ bκ A and assertion p˚q is obvious.
We may therefore assume that n ě 2. In this case, A is m ě n ě 2-coconnective, so the
desired result follows from Corollary 14.1.4.3 and Proposition 15.1.2.1.

Let V 1 “ RbκV denote the image of V in ModEn
A . For each p ě 0, Corollary HA.3.4.1.5 al-

lows us to identify Ap with the free En-algebra generated by V 1 in the En-monoidal8-category
ModEn

A . Using Proposition HA.3.1.3.13 , we obtain an equivalence Ap »
À

aě0 Syma
En V

1p

(where the symmetric powers are computed in ModEn
A ). Let Q denote the cofiber of the

map A Ñ A1 in the stable 8-category ModEn
A pModκq, so that Q is given by the geomet-

ric realization of a simplicial object Q‚ with Qp »
À

aą0 Syma
En V

1p. To show that A1 is
m-coconnective, it will suffice to show that πiQ » 0 for i ą ´m.

Using Remark HA.1.2.4.4 , we obtain a spectral sequence tEp,qr urě1 converging to πp`qQ,
where E˚,q1 is the normalized chain complex associated to the simplicial κ-vector space rps ÞÑ
À

aą0 πq Syma
EnpV

1pq. It follows from Remark 15.1.1.4 that the summand πq Syma
EnpV

1pq

lies in the image of the degeneracy maps of this simplicial vector space whenever p ą a.
Note that Syma

EnpV
1pq is the colimit of a diagram φV 1 : Ka,n Ñ ModEn

A pModκq whose
value on each vertex is given by pV 1pqba, where Ka,n is the Kan complex appearing in the
statement of Proposition 15.1.1.1. Since πiV » 0 for i ą ´m´ 1, condition p˚q guarantees
that πipV 1pqba » 0 for i ą p´m´ 1qa, and that the homotopy groups of pV 1pqba are finitely
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generated vector spaces over κ provided that A and R are locally finite. Combining this
with Proposition 15.1.1.1, we deduce that if a ą 0, then πq Syma

EnpV
1pq vanishes for

q ą pa´ 1qpn´ 1q ` p´m´ 1qa “ 1´ 2a´m` pn´mqpa´ 1q

and thus for q ą 1´ 2a´m.
If the vector space Ep,q1 is nonzero, there must be an integer a ą 0 such that p ď a and

q ď 1´ 2a´m, so that p` q ď 1´ a´m ď ´m. This proves that πiQ » 0 for i ą p` q,
so that A1 is m-coconnective. For any integer i, the inequality i “ p` q ď 1´ a´m implies
that a is bounded above by 1´m´ i, so that πiQ admits a finite filtration whose associated
graded vector space consists of subquotients of πi´p Syma

En V
1p where a ď 1 ´m ´ i and

p ď a. It follows that if A and R are locally finite, then Q is also locally finite, so that A1 is
locally finite.

To complete the proof, we must show that
ş

A1 is p1`m´ nq-coconnective, and that
ş

A1 is locally finite if A and
ş

A are locally finite. According to Proposition 15.1.3.7,
ş

A1

can be identified with the geometric realization of the simplicial E1-ring
ş

A‚. Let B be
an arbitrary En-ring, let W P Modκ and let W 1 “ p

ş

Bq bκ W denote the image of W in
ModEn

B » LModş

B. Then the coproduct B > FreepnqpW q can be identified with the free
En-algebra in ModEn

B generated by W 1, which is given by
À

aě0 Syma
EnpW

1q. If we let ZpW q
denote the cofiber in Modκ of the map B Ñ B > FreepnqpW q, then we obtain an equivalence
ş

B » lim
ÝÑb ÞÑ8

ΩbZpΣbκq. Taking B “ Ap, we obtain an equivalence
ż

Ap » lim
ÝÑ
b ÞÑ8

Ωbp
à

aě0
Syma

EnpV
1p ‘ Σbκqq{p

à

aě0
Syma

EnpV
1pqq.

Remark 15.1.1.4 gives a canonical decomposition

Syma
EnpV

1p ‘ Σbκq »
à

a“a1`a2
Fa1,a2pV

1p,Σbκq.

Note that Fa´1,1 is an exact functor of the second variable, and that if a2 ě 2, then
the colimit lim

ÝÑ
ΩbFa1,a2pV

1p,Σbκq vanishes. We therefore obtain an equivalence
ş

Ap »
À

aą0 Fa´1,1pV
1p, κq. Unwinding the definitions, we see that Fa´1,1pX,Y q is given by the

colimit of a diagram rKa,n Ñ ModEn
A pModκq, which carries each vertex to the iterated tensor

product pV 1pqba´1 bA R, here rKa,n is a finite-sheeted covering space of Km,n and therefore
equivalent to the singular complex of a finite CW complex of dimension ď pa´ 1qpn´ 1q
(Proposition 15.1.1.1). Since condition p˚q implies that πipV 1pqba´1 bA R vanishes for
i ą p´m´ 1qpa´ 1q, we conclude that πqFa´1,1pV

1p, κq » 0 for q ą p´m´ 1qpa´ 1q ` pn´
1qpa´ 1q “ pn´m´ 2qpa´ 1q and therefore for q ą 2´ 2a. Moreover, if A, V , and

ş

A are
locally finite, then each πqFa´1,1pV

1p, κq is a finite dimensional vector space over κ.
Let Q1 denote the spectrum given by the cofiber of the map

ş

AÑ
ş

A1, so that Q1 is the
geometric realization of a simplicial spectrum Q1‚ given by Q1p »

À

aě2 Fa´1,1pV
1p, κq. Using
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Remark HA.1.2.4.4 , we obtain a spectral sequence tE1p,qr urě1 converging to πp`qQ1, where
E1˚,q1 is the normalized chain complex associated to the simplicial κ-vector space rps ÞÑ
À

aě2 πqFa´1,1pV
1p, κq. Arguing as above, we deduce that the summand πqFa´1,1pV

1p, κq

lies in the image of the degeneracy maps of this vector space whenever p ě a. It follows that
if E1p,q1 is nonzero, then there exists an integer a ě 2 such that p ă a and q ď 2´ 2a, so that
p` q ă 2´ a ď 0. It follows that πiQ1 » 0 for i ě 0, from which we immediately conclude
that

ş

A1 is 1-coconnective. For any integer i, the inequality i “ p` q ď 2´ a implies that a
is bounded above by 2´ i, so that πiQ1 admits a finite filtration whose associated graded
vector space consists of subquotients of πi´pFa´1,1pV

1p, κq where 2 ď a ď 2´ i and p ă a.
If A and

ş

A are locally finite, then these subquotients are necessarily finite dimensional, so
that each πiQ

1 is a finite dimensional vector space. It then follows that
ş

A1 is locally finite
as desired.

15.1.5 The Proof of Theorem 15.1.0.5

Let κ be a field and let A be an m-connective En-algebra over κ, for some integers
m ě n ě 0. If the algebra

ş

A is pm` 1´ nq-coconnective, then the conclusion of Theorem
15.1.0.5 follows from Proposition 15.1.4.1. Consequently, to prove Theorem 15.1.0.5 in
general, it will suffice to establish the following:

Proposition 15.1.5.1. Let A be an En-algebra over a field κ, and assume that A is m-
coconnective for m ě n. Then the E1-ring

ş

A is pm` 1´ nq-coconnective.

Proof. Let A be an En-algebra over a field κ, and assume that A is m-coconnective for
m ě n. We wish to show that

ş

A is pm´ n` 1q-coconnective. The result is trivial if n “ 0
(Example 15.1.3.4); we will therefore assume that n ě 1. We construct a sequence of maps
Ap0q Ñ Ap1q Ñ ¨ ¨ ¨ in pAlgpnqκ q{A by induction. Let Ap0q “ κ. Assuming that Apiq has
already been defined, we let V piq denote the fiber of the map Apiq Ñ A (in Modκ) and
define Api` 1q so that there is a pushout square

FreepnqpV piqq φ1 //

ε

��

Apiq

��
κ // Api` 1q

as in the statement of Proposition 15.1.4.1. We prove the following statements by induction
on i:

paiq The En-algebra Apiq is m-coconnective.

pbiq The map π´mApiq Ñ π´mA is injective.
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pciq The E1-algebra
ş

A is pm` 1´ nq-coconnective.

pdiq We have πjV piq » 0 for j ě ´m.

It is clear that conditions pa0q, pb0q, and pc0q are satisfied. Note that paiq and pbiq
imply pdiq and that paiq, pciq and pdiq imply pai`1q and pci`1q by Proposition 15.1.4.1. It
will therefore suffice to show that paiq, pbiq, pciq, and pdiq imply condition pbi`1q. As in
the proof of Proposition 15.1.4.1, we can identify Api` 1q with the geometric realization
of a simplicial object A‚ of Algpnqκ , with Ap » Apiq > FreepnqpV piqpq. Let Q denote the
cofiber of the map Apiq Ñ Api ` 1q (as an object of ModEn

Ai
pκq) we have a canonical

map φ : Q Ñ cofibpApiq Ñ Aq » ΣV piq. We wish to prove that φ induces an injection
π´nQÑ π´n´1V piq, which follows immediately by inspecting the spectral sequence tEp,qr urě1
appearing in the proof of Proposition 15.1.4.1.

We now claim that the canonical map θ : lim
ÝÑ

Apiq Ñ A is an equivalence. Combining
this with assertions pciq and Proposition 15.1.3.7, we conclude that

ş

A » lim
ÝÑ

ş

Apiq is
pm` 1´nq-connective as desired. To prove that θ is an equivalence, we note that the image
of Apiq in Modκ can be identified with the colimit of the sequence

κ » Ap0q Ñ Ap0q{V p0q Ñ Ap1q Ñ Ap1q{V p1q Ñ ¨ ¨ ¨ ,

where each cofiber Apiq{V piq is equivalent to A.

15.2 Koszul Duality for En-Algebras

Our goal in this section is to study the operation of Koszul duality in the setting of
augmented En-algebras over a field κ. More precisely, we will construct a self-adjoint functor

Dpnq : pAlgpnq,aug
κ qop Ñ Algpnq,aug

κ .

Our main result asserts that for large class of augmented En-algebras A, the unit map
AÑ DpnqDpnqA is an equivalence (Theorem 15.2.2.1).

15.2.1 The Definition of Koszul Duality

We begin with the definition of the Koszul duality functor Dpnq. Let A be an En-
algebra over a field κ. An augmentation on A is a map of En-algebras A Ñ κ. We let
AugpAq “ MapAlgpnqκ

pA, κq denote the space of augmentations on A. If we are given a pair
of augmented En-algebras ε : AÑ κ and ε1 : B Ñ κ, we let PairpA,Bq denote the homotopy
fiber of the map AugpA bκ Bq Ñ AugpAq ˆ AugpBq, taken over the point pε, ε1q. More
informally, we can describe PairpA,Bq as the space of augmentations on A bκ B which
extend the given augmentations on A and B. We will refer to the points of PairpA,Bq as
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pairings of A with B. The starting point for our discussion of Koszul duality is the following
fact, which is a special case of Proposition HA.5.2.5.1 :

Proposition 15.2.1.1. Let κ be a field, n ě 0 an integer, and A be an augmented En-algebra
over κ. Then the construction B ÞÑ PairpA,Bq determines a representable functor from
pAlgpnq,aug

κ qop into S. That is, there exists an augmented En-algebra DpnqpAq and a pairing
ν : AbκDpnqpAq Ñ κ with the following universal property: for every augmented En-algebra
B, composition with ν induces a homotopy equivalence

MapAlgpnq,aug
κ

pB,DpnqpAqq Ñ PairpA,Bq.

In the situation of Proposition, we will refer to DpnqpAq as the Koszul dual of A. The
construction A ÞÑ DpnqpAq determines a functor Dpnq : pAlgpnq,aug

κ qop Ñ Algpnq,aug
κ , which we

will refer to as Koszul duality.

Remark 15.2.1.2. If A is an augmented En-algebra over a field κ, then the Koszul dual
DpnqpAq can be identified (using the formalism of §HA.5.3.1 ) with a centralizer of the
augmentation map ε : AÑ κ (see Example HA.5.3.1.5 ).

Example 15.2.1.3. Suppose that n “ 0. Then the construction V ÞÑ κ ‘ V defines an
equivalence from the 8-category Modκ of κ-module spectra to the 8-category Algpnqaug. If V
and W are objects of Modκ, then a pairing of V with W is a κ-linear map

φ : pκ‘ V q bκ pκ‘W q » κ‘ V ‘W ‘ pV bκW q Ñ κ

equipped with homotopies φ|κ » id, φ|V » 0 » φ|W . It follows that we can identify
Pairpκ‘ V, κ‘W q with the space MapModκpV bκW,κq. It follows that the Koszul duality
functor Dp0q is given by κ‘V ÞÑ κ‘V _, where V _ is the κ-linear dual of V (with homotopy
groups given by πiV _ » Homκpπ´iV, κq).

Example 15.2.1.4. When n “ 1, the Koszul duality functor Dp1q : pAlgaug
κ qop Ñ Algaug

κ

agrees with the functor studied in §14.1.

Remark 15.2.1.5. The construction A,B ÞÑ PairpA,Bq is symmetric in A and B. Conse-
quently, for any pair of augmented En-algebras A and B, we have homotopy equivalences

HomAlgpnq,aug
κ

pB,DpnqpAqq » PairpA,Bq » PairpB,Aq » HomAlgpnq,aug
κ

pA,DpnqpBqq.

In particular, the tautological pairing Abκ DpnqpAq Ñ κ can be identified with a point of
PairpDpnqpAq, Aq, which is classified by a biduality map uA : AÑ DpnqDpnqpAq. Our main
goal in this section is to study conditions which guarantee that uA is an equivalence.
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15.2.2 Koszul Biduality

We can now formulate the main result of this section:

Theorem 15.2.2.1. Let n ě 0 and let A be an augmented En-algebra over a field κ. If
A is n-coconnective and locally finite, then the biduality map uA : AÑ DpnqDpnqpAq is an
equivalence of augmented En-algebras over κ.

Remark 15.2.2.2. In the case n “ 0, Theorem 15.2.2.1 reduces to the statement that
for every finite-dimensional vector space V over κ, the biduality map V Ñ V __ is an
isomorphism (see Example 15.2.2.6 below). In the case n “ 1, Theorem 15.2.2.1 reduces to
Corollary 14.1.3.3.

Let A be an augmented En-algebra over a field κ which is n-coconnective and locally finite.
To establish Theorem 15.2.2.1, we must show that the biduality map AÑ DpnqDpnqpAq is
an equivalence. This is equivalent to the requirement that, for every augmented En-algebra
B over κ, the canonical map

MapAlgpnq,aug
κ

pB,Aq Ñ MapAlgpnq,aug
κ

pB,DpnqDpnqpAqq » MapAlgpnq,aug
κ

pDpnqpAq,DpnqpBqq

is a homotopy equivalence. Our strategy is to prove this using induction on n. To make
the induction work, we will need to strengthen our inductive hypothesis. Note that the
Koszul duality functor Dpnq : pAlgpnqκ qop Ñ Algpnqκ is lax symmetric monoidal (see Remark
HA.5.2.2.25 ). We will actually prove the following result, which immediately implies
Theorem 15.2.2.1:

Proposition 15.2.2.3. Let κ be a field, let n ě 0 be an integer, and suppose we are given
a finite collection tA1, . . . , Amu of augmented En-algebras over κ. Let B be an arbitrary
augmented En-algebra over κ. If each Ai is n-coconnective and locally finite, then the
canonical map

MapAlgpnq,aug
κ

pB,A1 bκ ¨ ¨ ¨ bκ Amq Ñ MapAlgpnq,aug
κ

pDpnqA1 bκ ¨ ¨ ¨ bκ D
pnqAm,D

pnqBq

is a homotopy equivalence.

Remark 15.2.2.4. The statement Proposition 15.2.2.3 can be reformulated as saying that
the canonical map

A1 bκ ¨ ¨ ¨ bκ Am Ñ DpnqpDpnqA1 bκ ¨ ¨ ¨ bκ D
pnqAmq

is an equivalence of augmented En-algebras over κ, provided that the En-algebras Ai are
coconnective and locally finite.
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Warning 15.2.2.5. In the situation of Proposition 15.2.2.3, the tensor product A “

A1 bκ ¨ ¨ ¨ bκ Am is also a locally finite n-coconnective augmented En-algebra over κ, so that
(by virtue of Theorem 15.2.2.1) the biduality map A Ñ DpnqDpnqA is an equivalence. It
follows that the natural map

A1 bκ ¨ ¨ ¨ bκ Am Ñ DpnqpDpnqA1 bκ ¨ ¨ ¨ bκ D
pnqAmq

can be identified with the Koszul dual of a map

θ : DpnqA1 bκ ¨ ¨ ¨ bκ D
pnqAm Ñ DpnqpAq.

With some further assumptions, one can show that θ is an equivalence (and thereby deduce
Proposition 15.2.2.3 from Theorem 15.2.2.1). For example, θ is an equivalence if each Ai is
pn` 1q-coconnective. However, θ is not an equivalence in general.

Example 15.2.2.6. For every vector space V over κ, let V _ “ HomκpV, κq denote the dual
vector space. For any object A P Algp0q,aug

κ , we have canonical isomorphisms πpDp0qpAq »
pπ´pAq

_ (see Example 15.2.1.3). It follows that if tAiu1ďiďm is a finite collection of locally
finite 0-connective objects of Algp0q,aug

κ , then canonical map
à

p“p1`¨¨¨`pm

â

i

pπpiAiq Ñ p
à

p“p1`¨¨¨`pm

p
â

i

pπpiAiq
_qq_

is an isomorphism for every integer p (since πpiAi » 0 for pi ą 0, each of the direct sums
is essentially finite, and the desired result follows immediately because each πpiAi is a
finite dimensional vector space over κ). Using Remark 15.2.2.4, we deduce that Proposition
15.2.2.3 is true when n “ 0.

15.2.3 Categorical Generalities

Our proof of Proposition 15.2.2.3 will use the following general observation (which we
formulate using the language of 8-operads developed in [139]):

Proposition 15.2.3.1. Let F : Cb Ñ Db be a lax symmetric monoidal functor between
symmetric monoidal 8-categories p : Cb Ñ NpF in˚q and q : Db Ñ NpF in˚q. Let C0 be a
full subcategory of C satisfying the following condition:

p˚q For every sequence of objects tCiu1ďiďm of C0 and every object C 1 P C, the canonical
map

MapCp
â

i

Ci, C
1q Ñ MapDp

â

i

F pCiq, F pC
1qq

is a homotopy equivalence.
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Let Ob be an 8-operad, and suppose we are given a sequence of algebra objects tAi P
AlgOpCqu1ďiďn such that, for each X P O and 1 ď i ď n, we have AipXq P C0. Then for
every object B P AlgOpCq, the canonical map

MapAlgOpCqp
â

i

Ai, Bq Ñ MapAlgOpDqp
â

i

F pAiq, F pBqq

is a homotopy equivalence.

Proof. Let ∆1 Ñ NpF in˚q classify the unique active morphism xny Ñ x1y, and let C “
FunNpF in˚qp∆1, Cbq. In what follows, we will abuse notation by identifying Cb

xny with
Cn. The 8-category C inherits a symmetric monoidal structure from C, and we have
symmetric monoidal forgetful functors pCnqb Ð Cb Ñ Cb. The sequence pA1, . . . , Anq can
be identified with a O-algebra object of Cn, and B determines a map Ob Ñ Cb. We let
C1b “ CbˆpCnqbˆCb Ob, so that we have a fibration of 8-operads C1b Ñ Ob and Alg{OpC1q
can be identified with the mapping space MapAlgOpCqp

Â

iAi, Bq. We define a fibration of 8-
operads D1b Ñ Ob similarly, so that MapAlgOpDqp

Â

i F pAiq, F pBqq » Alg{OpD1q. We wish
to show that F induces a homotopy equivalence of Kan complexes Alg{OpC1q Ñ Alg{OpD1q.
For this, it suffices to show that for every map of simplicial sets K Ñ Ob, the induced
map θ : FunObpK, C1bq Ñ FunObpK,D1bq is a homotopy equivalence of Kan complexes.
Working simplex-by-simplex, we can assume that K “ ∆p. Then the inclusion K 1 “

∆t0,1u >t1u ¨ ¨ ¨ >tp´1u ∆tp´1,pu ãÑ K is a categorical equivalence; we may therefore replace K
by K 1. Working simplex-by-simplex again, we can assume that K “ ∆p for p “ 0 or p “ 1.
When p “ 0, the desired result follows immediately from p˚q. In the case p “ 1, the map
∆p Ñ Ob determines a morphism α : X Ñ Y in Ob. Let α : xmy Ñ xm1y be the image of
α in NpF in˚q, so that X »

À

jPxmy˝ Xj and Y “
À

j1Pxm1y˝ Yj1 for some objects Xj , Yj1 P O.
Unwinding the definitions, we see that FunObp∆p, C1bq is given by the homotopy limit of
the diagram

ś

jPxmy˝ MapCp
Â

1ďiďnAipXjq, BpXjqq

))

ś

j1Pxm1y˝ MapCp
Â

1ďiďnAipYj1q, BpYj1qq

uu
ś

j1Pxm1y˝ MapCp
Â

1ďiďn,αpjq“j1 AipXjq, BpYj1qq.

Similarly, FunObp∆p,D1bq can be identified with the homotopy limit of the diagram
ś

jPxmy˝ MapDp
Â

1ďiďn FAipXjq, FBpXjqq

))

ś

j1Pxm1y˝ MapDp
Â

1ďiďn FAipYj1q, FBpYj1qq

uu
ś

j1Pxm1y˝ MapDp
Â

1ďiďn,αpjq“j1 FAipXjq, FBpYj1qq.

It now follows from p˚q that θ is a homotopy equivalence as desired.
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15.2.4 Proof of Proposition 15.2.2.3

Let κ be a field, let n ě 0 be an integer, and suppose we are given a finite collection
tA1, . . . , Am, Bu of augmented En-algebras over κ. We wish to show that if each Ai is
n-coconnective and locally finite, then the canonical map

MapAlgpnq,aug
κ

pB,A1 bκ ¨ ¨ ¨ bκ Amq Ñ MapAlgpnq,aug
κ

pDpnqA1 bκ ¨ ¨ ¨ bκ D
pnqAm,D

pnqBq

is a homotopy equivalence. We will proceed by induction on n. When n “ 0 the result is
trivial (see Example 15.2.2.6), and when n “ 1 it follows from Proposition 14.1.7.1. Let us
therefore assume that n ě 1 and that Proposition 15.2.2.3 is valid for En-algebras; we wish
to show that it is also valid for En`1-algebras.

Using Theorem HA.5.1.2.2 , we can identify Algpn`1q,aug
κ with the8-category AlgpAlgpnq,aug

κ q.
of algebra objects of Algpnq,aug

κ . Applying Example HA.5.2.3.13 , we see that under this
identification, the Koszul duality functor Dpn`1q corresponds to the composition

AlgpAlgpnq,aug
κ qop G

Ñ AlgppAlgpnq,aug
κ qopq

G1
Ñ AlgpAlgpnq,aug

κ q

where G is given by the bar construction of §HA.5.2.2 (given on objects by GpAq “ κbA κ)
and G1 is induced by the (lax monoidal) functor Dpnq : pAlgpnq,aug

κ qop Ñ Algpnq,aug
κ .

Assume that A P Algpn`1q,aug
κ is pn`1q-coconnective and locally finite. We have a cofiber

sequence of A-modules A Ñ κ Ñ Q where πiQ » 0 for i ą ´n. Using Corollary 14.1.4.3,
we deduce that πipκ bA Qq » 0 for i ą ´n so that GpAq is n-coconnective. Moreover,
Proposition 15.1.2.1 shows that GpAq is locally finite (here we use our assumption that
n ě 1).

Using the inductive hypothesis together with Proposition 15.2.3.1, we deduce that for
any sequence tAiu1ďiďm of pn` 1q-connective, locally finite objects of Algpn`1q,aug

κ and any
object C P AlgppAlgpnq,aug

κ qopq, the canonical map

MapAlgppAlgpnq,aug
κ qopq

pGpA1q b ¨ ¨ ¨GpAmq, Cq

��
MapAlgpAlgpnq,aug

κ q
ppG1GqpA1q b ¨ ¨ ¨ b pG

1GqpAmq, G
1pCqq

is a homotopy equivalence. Consequently, to prove Proposition 15.2.2.3, it will suffice to
show that for each B P Algpn`1q,aug

κ » AlgpAlgpnq,aug
κ q, the functor G induces a homotopy

equivalence
MapAlgpAlgpnq,aug

κ q
pB,A1 b ¨ ¨ ¨ bAmq

��
MapAlgppAlgpnq,aug

κ qopq
pGpA1q b ¨ ¨ ¨ bGpAmq, GpBqq.
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The formulaGpAq » κbAκ shows thatG is a monoidal functor, so thatGpA1qb¨ ¨ ¨bGpAmq »

GpAq with A » A1 b ¨ ¨ ¨ bAm. Note that A is locally finite and pn` 1q-coconnective. Let
F denote a left adjoint to G (given by the cobar construction; see Theorem HA.5.2.2.17 ).
Using Remark 15.2.2.4, we are reduced to proving that the counit map pF ˝GqpAq Ñ A is
an equivalence in AlgpAlgpnq,aug

κ qop.
The monoidal 8-category Algp0q,aug

κ admits geometric realizations and totalizations and
the unit object is a zero object, so Theorem HA.5.2.2.17 implies that the bar and cobar
constructions yield adjoint functors

AlgppAlgp0q,aug
κ qopq

F0 //AlgpAlgp0q,aug
κ qop

G0
oo .

Let φ : Algpnq,aug
κ Ñ Algp0q,aug

κ denote the forgetful functor. Then φ is a (symmetric) monoidal
functor which preserves geometric realizations of simplicial objects and totalizations of
cosimplicial objects, so that φ is compatible with the bar and cobar constructions (Example
HA.5.2.3.11 ). It will therefore suffice to show that the counit map pF0 ˝G0qpφAq Ñ φpAq

is an equivalence in AlgpAlgp0q,aug
κ qop. Equivalently, it suffices to show that for each B P

AlgpAlgp0q,aug
κ q, the canonical map

MapAlgpAlgp0q,aug
κ q

pB,φAq Ñ MapAlgppAlgp0q,aug
κ qopq

pG0pφAq, G0pBqq

is a homotopy equivalence. Let G10 : AlgppAlgp0q,aug
κ qopq Ñ AlgpAlgp0q,aug

κ q be the functor
given by composition with the lax monoidal functor Dp0q. Using Example 15.2.2.6 and
Proposition 15.2.3.1, we deduce that G10 induces a homotopy equivalence

MapAlgppAlgp0q,aug
κ qopq

pG0pφAq, G0pBqq Ñ MapAlgpAlgp0q,aug
κ q

ppG10G0qpφAq, pG
1
0G0qpBqq.

It will therefore suffice to show that the composite map

MapAlgpAlgp0q,aug
κ q

pB,φAq Ñ MapAlgpAlgp0q,aug
κ q

ppG10G0qpφAq, pG
1
0G0qpBqq

» MapAlgp1q,aug
κ

pDp1qpφAq,Dp1qpBqq

is a homotopy equivalence. This follows from our inductive hypothesis, since φA is 1-
connective (in fact, pn` 1q-coconnective) and locally finite.

15.3 Deformation Theory for En-Algebras

Let κ be a field. Our goal in this section is to prove Theorem 15.0.0.9, which asserts
that the 8-category Modulipnqκ of formal En-moduli problems over κ is equivalent to the
8-category Algpnq,aug

κ of augmented En-algebras over κ. We first introduce a suitable
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deformation context, and show that our discussion fits into the general paradigm described in
§12.1. We will then prove that the Koszul duality functor Dpnq : pAlgpnq,aug

κ qop Ñ Algpnq,aug
κ

of §15.2 is a deformation theory, in the sense of Definition 12.3.3.2 (Theorem 15.3.3.1). We
will then use this result to deduce Theorem 15.0.0.9 from Theorem 12.3.3.5.

15.3.1 Augmented En-Algebras as a Deformation Context

Let κ be a field and let n ě 0 be an integer. Using Theorem HA.7.3.4.13 and Proposition
HA.3.4.2.1 , we obtain equivalences of 8-categories

SppAlgpnq,aug
κ q » ModEn

κ pModκq » Modκ .

In particular, we can identify the unit object κ P Modκ with a spectrum object E P

SppAlgpnq,aug
κ q, given informally by the formula Ω8´mE “ κ‘ Σmpκq. We regard the pair

pAlgpnq,aug
κ , tEuq as a deformation context.

We will need the following generalization of Proposition 14.2.1.2:

Proposition 15.3.1.1. Let κ be a field, let n ě 1, and let pAlgpnq,aug
κ , tEuq be the defor-

mation context defined above. Then an object A P Algpnq,aug
κ is Artinian in the sense of

Definition 12.1.2.4 if and only if its image in Algpnqκ is Artinian in the sense of Definition
15.0.0.1: that is, if and only if A satisfies the following conditions:

paq The algebra A is connective: that is, πiA » 0 for i ă 0.

pbq The algebra A is truncated: that is, we have πiA » 0 for i " 0.

pcq Each of the homotopy groups πiA is finite dimensional when regarded as a vector space
over field κ.

pdq Let n denote the radical of the ring π0A (which is a finite-dimensional associative
algebra over κ). Then the canonical map κÑ pπ0Aq{n is an isomorphism.

Remark 15.3.1.2. Proposition 15.3.1.1 is also valid in the case n “ 0, provided that we
adopt the convention of Remark 15.0.0.5. That is, an object A P Algp0q,aug

κ is Artinian (in
the sense of Definition 12.1.2.4) if and only if it connective and π˚A is a finite-dimensional
vector space over κ.

Proof. The “only if” direction follows from Proposition 14.2.1.2 (note that if A is Artinian
as an augmented En-algebra, then its image in Algpnq,aug

κ is also Artinian). To prove the
converse, suppose that A P Algpnq,aug

κ satisfies conditions paq through pdq. We wish to prove
that there exists a finite sequence of maps A “ A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ Ad » κ, where each Ai
is a square-zero extension of Ai`1 by Σmipκq, for some mi ě 0. If n “ 1, this follows from
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Proposition 14.2.1.2. Let us therefore assume that n ě 2. We proceed by induction on the
dimension of the κ-vector space π˚A.

Let m be the largest integer for which πmA does not vanish. We first treat the case
m “ 0. We will abuse notation by identifying A with the underlying commutative ring π0A.
Let n denote the radical of A. If n “ 0, then condition pdq implies that A » κ so there is
nothing to prove. Otherwise, we can view n as a nonzero module over the commutative ring
A. It follows that there exists a nonzero element x P n which is annihilated by n. Using pdq
again, we deduce that the subspace κx Ď A is an ideal of A. Let A1 denote the quotient
ring A{κx. Theorem HA.7.4.1.26 implies that A is a square-zero extension of A1 by κ. The
inductive hypothesis implies that A1 is Artinian, so that A is also Artinian.

Now suppose that m ą 0 and let M “ πmA. Then M is a nonzero module over the
finite dimensional κ-algebra π0A. It follows that there is a nonzero element x PM which is
annihilated by the action of the radical n Ď π0A. Let M 1 denote the quotient of M by the
submodule generated by x (which, by virtue of pdq, coincides with κx), and let A2 “ τďn´1A.
It follows from Theorem HA.7.4.1.26 that there is a pullback diagram

A //

��

κ

��
A2 // κ‘ Σm`1pMq.

Set A1 “ κ ˆκ‘Σm`1pM 1q A
2. Then A » κ ˆκ‘Σm`1pκq A

1, so we have an elementary map
A Ñ A1. Using the inductive hypothesis we deduce that A1 is Artinian, so that A is also
Artinian.

Proposition 15.3.1.3. Let κ be a field and let f : A Ñ B be a morphism in Algpnq,art
κ .

Then f is small (when regarded as a morphism in Algpnq,aug
κ ) if and only if it induces a

surjection π0AÑ π0B.

Proof. If n “ 1, the desired result follows from Proposition 14.2.1.3. We will assume that
n ě 2, and leave the case n “ 0 to the reader. The “only if” direction follows from Proposition
14.2.1.3 (note that if f is small, then the induced map between the underlying E1-algebras
is also small). We first treat the case where B » A‘ΣjpMq, for some M P ModEn

A pModκq♥

and some j ě 1. According to Remark 15.1.3.6, the abelian category ModEn
A pModκq♥ is

equivalent to the category of modules over the commutative ring π0B. Since M is finite
dimensional as a vector space over κ, it admits a finite filtration

0 “M0 ĎM1 Ď ¨ ¨ ¨ ĎMm “M,

where each of the successive quotients Mi{Mi´1 is isomorphic to κ. This filtration determines
a factorization of f as a composition

A » A‘ ΣjpM0q Ñ A‘ ΣjpM1q Ñ ¨ ¨ ¨ Ñ A‘ ΣjpMmq “ B.
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Each of the maps A‘ ΣjpMiq Ñ A‘ ΣjpMi`1q is elementary, so that f is small.
We now treat the general case. Note that the map π0A ˆπ0B B Ñ B is a pullback of

the map π0AÑ π0B and therefore small (the map π0AÑ π0B is even small as a morphism
of E8-algebras over κ, by Lemma 12.1.3.8). It will therefore suffice to show that the map
AÑ π0Aˆπ0B B is small. We will prove that each of the maps

τďjAˆτďjB B Ñ π0Aˆπ0B B

is small; taking j " 0 we will obtain the desired result. The proof proceeds by induction
on j, the case j “ 0 being trivial. Assume that j ą 0; by the inductive hypothesis, we are
reduced to proving that the map θ : τďjAˆτďjB B Ñ τďj´1Aˆτďj´1B B is small.

Factor θ as a composition τďjAˆτďjB B
θ1
Ñ τďjAˆτďj´1B B

θ2
Ñ τďj´1Aˆτďj´1B B. The

map θ2 is a pullback of the truncation map u : τďjAÑ τďj´1A. It follows from Corollary
HA.7.4.1.28 that u exhibits τďjA as a square-zero extension of τďj´1A, so that we have a
pullback square

τďjA
u //

��

τďj´1A

��
τďj´1A

u0 // pτďj´1Aq ‘ Σj`1pπjAq.

Here the map u0 is small by the argument given above, so that u is small and therefore θ2 is
small. We will complete the proof by showing that θ1 is small. Note that θ1 is a pullback
of the diagonal map δ : τďjB Ñ τďjB ˆτďj´1B τďjB. Since τďjB is a square-zero extension
of τďj´1B by ΣjpπjBq (Corollary HA.7.4.1.28 ), the truncation map τďjB Ñ τďj´1B is
a pullback of the canonical map τďj´1B Ñ τďj´1B ‘ Σj`1pπjBqs. It follows that δ1 is a
pullback of the map

δ1 : τďj´1B Ñ τďj´1B ˆτďj´1B‘Σj`1pπjBq τďj´1B » τďj´1B ‘ ΣjpπjBq.

Since j ě 1, the first part of the proof shows that δ1 is small.

Corollary 15.3.1.4. Let κ be a field, let n ě 0 be an integer, and let and let X : Algpnq,art
κ Ñ

S be a functor. Then X belongs to the full subcategory Modulipnqκ of Definition 15.0.0.7 if
and only if it is a formal moduli problem in the sense of Definition 12.1.3.1.

Proof. The “if” direction follows immediately from Proposition 15.3.1.3. For the converse,
suppose that X satisfies the conditions of Definition 15.0.0.7; we wish to show that X is a
formal moduli problem. According to Proposition 12.1.3.2, it will suffice to show that for
every pullback diagram in Algpnq,art

κ

A //

��

B

��
κ // κ‘ Σmpκq
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satisfying m ą 0, the associated diagram of spaces

XpAq //

��

XpBq

��
Xpκq // Xpκ‘ Σmpκqq

is also a pullback square. This follows immediately from condition p2q of Definition 15.0.0.7.

15.3.2 Digression: The Koszul Dual of a Free Algebra

Let κ be a field, and let Freepnq : Modκ Ñ Algpnqκ be a left adjoint to the forgetful functor
(so that Freepnq assigns to every κ-module spectrum V the free En-algebra

À

ně0 Symn
EκpV q).

Note that Freepnqp0q » κ, so that Freepnq determines a functor

Freeaug : Modκ » pModκq{0 Ñ pAlgpnqκ q{κ » Algpnq,aug
κ .

Proposition 15.3.2.1. Let κ be a field and let Dpnq : pAlgpnq,aug
κ qop Ñ Algpnq,aug

κ be the
Koszul duality functor. Then the composition Dpnq ˝ Freeaug is equivalent to the functor
Modop

κ Ñ Algpnq,aug
κ given by V ÞÑ κ‘ Σ´npV _q, where V _ denotes the κ-linear dual of V .

Proof. The functor Dpnq ˝ Freeaug admits a left adjoint and is therefore left exact. Since the
8-category Modκ is stable, Proposition HA.1.4.2.22 implies that Dpnq ˝ Freepnq factors as a
composition

Modop
κ

T
ÝÑ SppAlgpnq,aug

κ q
Ω8
ÝÝÑ Algpnq,aug

κ .

Note that SppAlgpnq,aug
κ q is equivalent to Modκ, and that under this equivalence the functor

Ω8 : SppAlgpnq,aug
κ q Ñ Algpnq,aug

κ is given by the formation of square-zero extensions V ÞÑ κ‘

V (Theorem HA.7.3.4.7 ). It follows that we can identify T with the functor Modop
κ Ñ Modκ

given by the composition

Modop
κ

Freeaug
ÝÝÝÝÑ pAlgpnq,aug

κ qop Dpnq
ÝÝÝÑ Algpnq,aug

κ
I
ÝÑ Modκ,

where I denotes the functor which carries each augmented En-algebra A to its augmentation
ideal. The composition I ˝Dpnq assigns to each augmented En-algebra B its shifted tangent
fiber MapModEn

B

pΣnpLB{κq, κq (see Example HA.7.3.5.7 ), so that the composition I ˝Dpnq ˝

Freepnq is given by V ÞÑ pΣnpV qq_ » Σ´npV _q.

15.3.3 Koszul Duality as a Deformation Theory

We can now formulate the main result of this section.
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Theorem 15.3.3.1. Let κ be a field and let n ě 0 be an integer. Then the Koszul duality
functor Dpnq : pAlgpnq,aug

κ qop Ñ Algpnq,aug
κ is a deformation theory (in the sense of Definition

12.3.3.2).

Proof. We show that the Koszul duality functor Dpnq : Dpnq : pAlgpnq,aug
κ qop Ñ Algpnq,aug

κ

satisfies axioms pD1q through pD4q of Definitions 12.3.1.1 and 12.3.3.2:

pD1q The 8-category Algpnq,aug
κ is presentable: this follows from Corollary HA.3.2.3.5 .

pD2q The functor Dpnq admits a left adjoint. In fact, this left adjoint is given by the opposite
of Dpnq (see Remark 15.2.1.5).

pD3q Let B0 Ď Algpnq,aug
κ be the full subcategory spanned by those augmented En-algebras

A over κ, where A is coconnective and both A and
ş

A are locally finite. We will verify
that this subcategory satisfies the requirements of Definition 12.3.1.1:

paq For every object A P B0, the biduality map AÑ DpnqDpnqpAq is an equivalence.
This follows from Theorem 15.2.2.1.

pbq The subcategory B0 contains the initial object κ P Algpnq,aug
κ .

pcq For each m ě 1, there exists an object Km P B0 and an equivalence α : κ ‘
Σmpκq » DpnqKm. In fact, we can take Km to be the free En-algebra generated by
Σ´m´npκq. This belongs to B0 by virtue of Proposition 15.1.4.1, and Proposition
15.3.2.1 supplies the equivalence α.

pdq For every pushout diagram
Km

//

ε

��

A

��
κ // A1,

where A P B0 and ε is the canonical augmentation on Km, the object A1 also
belongs to B0. This follows immediately from Propositions 15.1.5.1 and 15.1.4.1.

pD4q Arguing as in the proof of Theorem 15.0.0.9, we see that the functor e : Algpnq,aug
κ Ñ Sp

appearing in Definition 12.3.3.2 is given by A ÞÑ ΣnmA, where mA denotes the
augmentation ideal of A. This functor is obviously conservative, and preserves sifted
colimits by Proposition HA.3.2.3.1 .

Proof of Theorem 15.0.0.9. Let κ be a field and let n ě 0 be an integer. Define a functor
Ψ : Algpnq,aug

κ Ñ FunpAlgpnq,art
κ ,Sq by the formula ΨpAqpRq “ MapAlgpnq,aug

κ
pDpnqpRq, Aq.

Combining Theorem 15.3.3.1, Theorem 12.3.3.5, and Corollary 15.3.1.4, we deduce that
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Ψ is a fully faithful embedding whose essential image is the full subcategory Modulipnqκ Ď

FunpAlgpnq,art
κ ,Sq spanned by the formal moduli problems. If m ě 0, then Proposition

15.1.4.1 implies that FreeaugpΣ´m´npκqq is n-coconnective and locally finite, so the the
biduality map

FreeaugpΣ´m´npκqq Ñ DpnqDpnq FreeaugpΣ´m´npκqq

is an equivalence (Theorem 15.2.2.1). Using Proposition 15.3.2.1, we obtain canonical
homotopy equivalences

ΨpAqpκ‘ Σmpκqq » ΨpAqpDpnq FreeaugpΣ´m´npκqqq
Ñ MapAlgpnq,aug

κ
pDpnqDpnq FreeaugpΣ´m´npκqq, Aq

Ñ MapAlgpnq,aug
κ

pFreeaugpΣ´m´npκqq, Aq

» Ω8´m´nmA,

where mA denotes the augmentation ideal of A. These equivalences are natural in m, and
therefore give rise to an equivalence of spectra TΨpAq » ΣnmA (depending functorially on
A).

Example 15.3.3.2. Suppose that n “ 0 in the situation of Theorem 15.0.0.9. Then the
Koszul duality functor Dp0q : pAlgp0q,aug

κ qop ÞÑ Algp0q,aug
κ is given by κ ‘ V ÞÑ κ ‘ V _ (see

Example 15.2.1.3). It follows that the functor Ψ : Algp0q,aug
κ Ñ Modulip0qκ is given by

Ψpκ‘W qpκ‘ V q “ MapAlgp0q,aug
κ

pκ‘ V _, κ‘W q

» MapModκpV
_,W q

» Ω8pV bκW q.

Here the last equivalence follows from the observation that V is a dualizable object of Modκ.
We can summarize the situation as follows: every object W P Modκ determines a formal

E0-moduli problem, given by the formula κ‘ V ÞÑ Ω8pV bκW q. Moreoever, every formal
E0-moduli problem arises in this way, up to equivalence.

15.3.4 Application: Prorepresentable Formal En-Moduli Problems

We close this section by proving a generalization of Proposition 14.2.3.1:

Proposition 15.3.4.1. Let κ be a field and let X : Algpnq,art
κ Ñ S be a formal En-moduli

problem over κ. The following conditions are equivalent:

p1q The functor X is prorepresentable (see Definition 12.5.3.1).

p2q Let XpEq denote the tangent complex of X. Then πiXpEq » 0 for i ą 0.
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p3q The functor X has the form ΨpAq, where A P Algpnq,aug
κ is n-coconnective coconnective

and Ψ : Algpnq,aug
κ Ñ Modulipnqκ is the equivalence of Theorem 15.0.0.9.

Lemma 15.3.4.2. Let A be an augmented En-algebra over a field κ. If A is connective,
then the Koszul dual DpnqpAq is n-coconnective.

Proof. Let ModEn
A denote the 8-category of En-modules over A in the 8-category Modκ,

and regard ModEn
A as tensored over Modκ. As an object of Modκ, we can identify DpnqpAq as

a classifying object (in Modκ) for morphisms from A to κ in ModEn
A (see Example HA.5.3.1.5

and Theorem HA.5.3.1.30 ). Theorem HA.7.3.5.1 supplies fiber sequence
ż

AÑ AÑ ΣnLA{κ

in the 8-category ModEn
A , where LA{κ denote the relative cotangent complex of A over κ as

an En-algebra. We therefore obtain a fiber sequence

MapModEn
A

pΣnLA{κ, κq Ñ DpnqpAq
εA
Ñ κ

in the 8-category Modκ. The map εA depends functorially on A and is an equivalence in
the case A “ κ, and can therefore be identified with the augmentation on DpnqpAq. We may
therefore identify the augmentation ideal mDpnqpAq with a classifying object for morphisms
from ΣnLA{κ to κ in ModEn

A . To prove that DpnqpAq is n-coconnective, it suffices to show
that the mapping space

MapModEn
A
pLA{κ, κq » MapAlgpnq,aug

κ
pA, κrεs{pε2qq

is discrete. This is clear, since A is connective and κrεs{pε2q is discrete.

Proof of Proposition 15.3.4.1. The equivalence of p2q and p3q follows from the observation
that for X “ ΨpAq, we have πiXpEq » πi´nmA, where mA is the augmentation ideal of
A. We next prove that p1q ñ p2q. Since the construction X ÞÑ XpEq commutes with
filtered colimits, we may reduce to the case where X “ Spf R is representable by an object
R P Algpnq,art

κ . Then R is connective and the desired result follows from Lemma 15.3.4.2.
We now complete the proof by showing that p3q ñ p1q. Let A P Algpnq,aug

κ be n-
coconnective, and choose a sequence of maps

κ “ Ap0q Ñ Ap1q Ñ Ap2q Ñ ¨ ¨ ¨

as in the proof of Proposition 15.1.5.1. Then A “ lim
ÝÑ

Apiq, so that X » lim
ÝÑ

Xpiq with
Xpiq “ ΨpApiqq. To prove that X is prorepresentable, it will suffice to show that each Xpiq
is prorepresentable. We proceed by induction on i, the case i “ 0 being trivial.
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Assume that Xpiq is prorepresentable. By construction, we have a pushout diagram

FreepnqpV q //

��

Apiq

��
κ // Api` 1q

where πjV » 0 for j ě ´n. For m ě n, form a pushout diagram

Freepnqpτě´mV q //

��

Apiq

��
κ // Api,mq,

so that Api ` 1q » lim
ÝÑm

Api,mq. Then Xpi ` 1q » lim
ÝÑm

ΨpApi,mqq, so we are reduced to
proving that each ΨpApi,mqq is prorepresentable. We proceed by induction on m. If m “ n,
then Api,mq » Apiq and the desired result follows from our inductive hypothesis. Assume
that m ą n and that ΨpApi,m´ 1qq is prorepresentable. Let W “ π´mV , so that we have
a pushout diagram

FreepnqpΣ´mW q //

��

Api,m´ 1q

��
κ // Api,mq.

Write W as a union of its finite-dimensional subspaces tWαu. For every finite dimensional
subspace Wα ĎW , form a pushout diagram

FreepnqpΣ´mWαq //

��

Api,m´ 1q

��
κ // Api,Wαq.

Then ΨpApi,mqq is a filtered colimit of the objects ΨpApi,Wαqq. It will therefore suffice to
show that each ΨpApi,Wαqq is prorepresentable. We proceed by induction on the dimension
of Wα; if that dimension is zero, then Api,Wαq » Api,m´ 1q and the result is clear. If Wα

has positive dimension, then we can choose a subspace W 1
α of codimension 1. Then we have

a pushout diagram
FreepnqpΣ´mpκqq //

��

Api,W 1
αq

��
κ // Api,Wαq,
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hence a pushout diagram of formal moduli problems

Spfpκ‘ Σm´npκqq //

��

Api,W 1
αq

��
Spfpκq // ΨpApi,Wαqq.

We conclude the proof by invoking Lemma 12.5.3.4.



Chapter 16

Examples of Formal Moduli
Problems

In this section, we will illustrate our theory of formal moduli problems by considering
some examples which arise naturally in algebraic geometry. We begin by considering the
formal deformation theory of algebraic varieties. Let Z be an algebraic variety defined over
a field κ. If R is a local Artin ring with residue field κ, then a deformation of Z over R
is a pair pZR, αq, where Z is a flat R-scheme and α is an isomorphism of Z with the fiber
product ZR ˆSpecR Specκ (see Example 11.5.0.7). The condition that ZR be flat over R is
equivalent to the requirement that the diagram

Z //

��

ZR

��
Specκ // SpecR

be a pullback square not only in the category of schemes, but also in the 8-category of
spectral algebraic spaces. This suggests the following more general definition: given a
connective E8-ring R equipped with a map RÑ κ, a deformation of Z over R is a spectral
algebraic space ZR over R, equipped with an equivalence Z » ZRˆSpétR Spétκ, where Z
denotes the spectral algebraic space over κ determined by Z (see Proposition ??). The
collection of all deformations of Z over R can be organized into an 8-groupoid MpRq. The
construction R ÞÑMpRq determines a functor M : CAlgart

κ Ñ S. In this situation, we will
show that the functor M is a formal moduli problem over κ (in the sense of Definition

1219
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12.1.3.1). In other words, we will show that for every pullback diagram

R //

��

R0

��
R1 // R01

in CAlgart
κ , if the maps π0R0 Ñ π0R01 Ð π0R1 are surjective, then MpRq can be identified

with the fiber product MpR0q ˆMpR01qMpR1q in the 8-category of spaces. More concretely,
this means that giving a deformation ZR of Z over R is equivalent to giving deformations
Z0 and Z1 over R0 and R1 respectively, together with an equivalence between the resulting
deformations of Z over R01. We will verify this in §16.3, using the fact that any such
deformation ZR can be reconstructed as the pushout Z0 >Z01 Z1, where Z01 “ SpétR01ˆSpétR0

Z0 » SpétR01 ˆSpétR1 Z1. The proof will use some general facts about pushouts of spectral
Deligne-Mumford stacks along closed immersions which we establish in §16.1, together with
an analysis of the 8-category of quasi-coherent sheaves on a pushout which we carry out in
§16.2.

Another important class of formal moduli problems arises from studying the deformation
theory of (quasi)-coherent sheaves on algebraic varieties. Let Z Ñ Specκ be as above, and
suppose we are given a (discrete) quasi-coherent sheaf F on Z. If R is a local Artinian
κ-algebra with residue field κ, a deformation of over R is a quasi-coherent sheaf FR over
the R-scheme ZR “ SpecR ˆSpecκ Z which is flat over R, together with an isomorphism
F » α˚FR, where α : Z Ñ ZR denotes the map of schemes determined by the augmentation
RÑ κ. Once again, the flatness of FR over R admits a natural formulation in the language
of spectral algebraic geometry: it is equivalent to the requirement that F be given by
the pullback of FR along α not only in the abelian category QCohpZq♥, but also in
the stable 8-category QCohpZq studied in Chapter I (here we abuse notation slightly by
identifying Z with the associated spectral algebraic space). By virtue of Corollary ??, we
can identify deformations of F with inverse images of F under the extension-of-scalars
functor LModRpQCohpZqq Ñ LModκpQCohpZqq » QCohpZq, where we regard QCohpZq as
a κ-linear 8-category.

More generally, let κ be a field and let C be any prestable κ-linear 8-category (see
Definition D.1.4.1). We can associate to C several deformation-theoretic problems:

paq Fix an object C P C, and let R P CAlgart
κ be an Artinian E8-algebra over κ. A

deformation of C over R is an object CR P LModRpCq, together with an equivalence
C » κbR CR. Let XpRq denote the 8-category LModRpCq ˆC tCu of deformations of
C over R.

pbq For R P CAlgart
κ , a deformation of C over R is a prestable R-linear 8-category CR
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equipped with an equivalence C » κ bR CR. Let Y pRq “ LinCatPSt
R ˆLinCatPSt

κ
tCu

denote the 8-category of deformations of C over R.

We will see later that for every object R P CAlgart
κ , the 8-categories XpRq and Y pRq are

essentially small Kan complexes. Consequently, we can view X and Y as functors from the
8-category CAlgart

κ to the 8-category S of spaces. Our goal in the latter part of this section
is to analyze the behavior of these functors. We immediately encounter an obstacle: the
functors X and Y need not be formal moduli problems, in the sense of Definition 12.1.3.1.
Suppose, for example, that we are given a pullback diagram σ :

R //

��

R0

��
R1 // R01

in CAlgart
κ , where the maps π0R0 Ñ π0R01 Ð π0R1 are surjective. If C P C and CR is a

deformation of C over R, then we will see that CR is uniquely determined by the objects
C0 “ R0 bR CR, C1 “ R1 bR CR1 , together with the evident equivalence

R01 bR0 C0 » R01 bR CR » R01 bR1 C1

(see Proposition 16.5.2.2). More precisely, the functor X described in paq determines a fully
faithful embedding (of Kan complexes)

XpRq Ñ XpR0q ˆXpR01q XpR1q,

but this map need not be essentially surjective (see Warning 16.2.0.3). The functor Y
described in pbq is even more problematic: the map

Y pRq Ñ Y pR0q ˆY pR01q Y pR1q

need not be fully faithful in general, but always has discrete homotopy fibers (Proposition
16.6.2.1): that is, we can regard Y pRq as a covering space of Y pR0q ˆY pR01q Y pR1q. To
accommodate these examples, it is useful to introduce a weaker version of the axiomatics
developed in Chapter 12. For every integer n ě 0, we will define the notion of a n-proximate
formal moduli problem (Definition 16.4.1.5). When n “ 0, we recover the notion of formal
moduli problem introduced in Definition 12.1.3.1. The requirement that a functor Z be an
n-proximate formal moduli problem becomes increasingly weak as n grows. Nonetheless,
we will show that an n-proximate formal moduli problem Z is not far from being a formal
moduli problem: namely, there exists an (essentially unique) formal moduli problem Z^ and
a natural transformation Z Ñ Z^ such that, for every test algebra R, the map of spaces
ZpRq Ñ Z^pRq has pn´ 1q-truncated homotopy fibers (Theorem 16.4.2.1).
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In §16.5, we will turn our attention to the functor X described above, which classifies
the deformations of a fixed object C P C. We begin by observing that the definition of
XpRq does not require the assumption that R is commutative. Rather, the functor X is
naturally defined on the 8-category Algart

κ of Artinian E1-algebras over κ. We may therefore
regard the construction R ÞÑ XpRq as a functor X : Algart

κ Ñ S, which we will prove is a
1-proximate formal moduli problem (Corollary 16.5.3.2). Using Theorem 16.4.2.1, we can
choose an embedding of X into a formal moduli problem X : Algart

κ Ñ S. According to
Theorem 14.0.0.5 (and its proof), the functor X is given by XpRq “ MapAlgaug

κ
pDp1qpRq, Aq,

for some augmented E1-algebra A over κ. Our main result (Theorem 16.5.4.1) characterizes
this algebra: the augmentation ideal mA can be identified (as a nonunital E1-algebra) with
the endomorphism algebra of the object C P C.

Remark 16.0.0.1. Efimov, Lunts, and Orlov have made an extensive study of a variant
of the deformation functor X described above. We refer the reader to [56], [57], and [58]
for details. The global structure of moduli spaces of objects of (well-behaved) differential
graded categories is treated in [212].

In §16.6, we will study the functor Y which classifies deformations of8-category C itself.
Once again, the definition of the space Y pRq does not require the assumption that R is
commutative: it requires only the ability to talk about prestable R-linear 8-category. We
can therefore regard the construction R ÞÑ Y pRq as a functor Y : Algp2q,art

κ Ñ S, which we
will prove to be a 2-proximate formal moduli problem (Corollary 16.6.2.4). Using Theorem
16.4.2.1, we deduce the existence of a formal moduli problem Y : Algp2q,art

κ Ñ S and a
natural transformation Y Ñ Y which induces a covering map Y pRq Ñ Y pRq for each
R P Algp2q,art

κ . According to Theorem 15.0.0.9 (and its proof), the functor Y is given by
Y pRq “ MapAlgp2q,aug

κ
pDp2qpRq, Aq for some augmented E2-algebra A over κ. Once again, our

main result gives an explicit description of the algebra A: its augmentation ideal mA can be
identified (as a nonunital E2-algebra) with the Hochschild cochain complex HC˚pCq of the
8-category C (Theorem 16.6.3.8).

Remark 16.0.0.2. For a more extensive discussion of the deformation theory of differential
graded categories, we refer the reader to [115]. See also [135] and [136].

Remark 16.0.0.3. It is possible to treat the functors X and Y introduced above simul-
taneously. Let A denote the 8-category whose objects are pairs pA1, A2q, where A2 is an
augmented E2-algebra over κ and A1 is an E1-algebra over A2 equipped with a map A1 Ñ κ

of E1-algebras over A2. We have spectrum objects E1, E2 P SppAq, given by

Ω8´nE1 “ pκ‘ Σnpκq, κq Ω8´nE2 “ pκ, κ‘ Σnpκqq.

Let us regard pA, tE1, E2uq as a deformation context (in the sense of Definition 12.1.1.1).
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Let C be a κ-linear 8-category and let C P C be an object. Given a pair pR1, R2q P A,
we let ZpR1, R2q denote a classifying space for pairs pC1, C2q, where C2 is an R2-linear
8-category deforming C, and C1 P LModR1pC2q is an object deforming C. The construction
pR1, R2q ÞÑ ZpR1, R2q determines a 2-proximate formal moduli problem. Using Theorem
16.4.2.1 we can complete Z to a formal moduli problem Z : Aart Ñ S.

Using a generalization of the techniques studied in Chapters 14 and 15, one can combine
the Koszul duality functors

Dp1q : pAlgaug
κ qop Ñ Algaug

κ Dp2q : pAlgp2q,aug
κ qop Ñ Algp2q,aug

κ

to obtain a deformation theory D : pAqop Ñ A. Using Theorem 12.3.3.5, we see that the
formal moduli problem Z is determined by an object pA1, A2q P A. One can show that the
augmentation ideals mA1 and mA2 are given by the endomorphism algebra EndpCq and the
Hochschild cochain complex HC˚pCq of C, respectively (note that HC˚pCq acts centrally on
EndpCq).

At the cost of a bit of information, we can be much more concrete. The construction
R ÞÑ ZpR,Rq determines a formal E2-moduli problem F : Algp2q,aug

κ Ñ S; for each R P

Algp2q,art
κ we have a fiber sequence XpRq Ñ F pRq Ñ Y pRq, where X and Y are the formal

E1 and E2-moduli problems described above. Applying Theorem 15.0.0.9, we deduce that F
is given by the formula F pRq “ MapAlgp2q,aug

κ
pDp2qpRq, Aq for some augmented E2-algebra A

over κ. Then the augmentation ideal mA can be identified with the fiber of the natural map
HC˚pCq Ñ EndpCq.
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16.1 Gluing along Closed Immersions

Let f : pX ,OX q Ñ pY,OYq be a morphism of spectral Deligne-Mumford stacks. Recall
that f is said to be a closed immersion if the underlying geometric morphism f˚ : X Ñ Y
is a closed immersion of 8-topoi and the map of structure sheaves f´1 OY Ñ OX induces
an epimorphism on π0 (see Definition ??). In this section, we will study the operation of
gluing spectral Deligne-Mumford stacks along closed immersions. Our main result can be
formulated as follows:
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Theorem 16.1.0.1. Suppose we are given a pair of closed immersions of spectral Deligne-
Mumford stacks f : X Ñ Y and g : X Ñ X1, and form a pushout diagram σ :

X f //

g
��

Y
f 1

��
X1 g1 // Y1

in the 8-category 8T opCAlg of spectrally ringed 8-topoi. Then:

p1q The pushout Y1 is a spectral Deligne-Mumford stack.

p2q The diagram σ is also a pushout square in the subcategory 8T oploc
CAlg Ď 8T opCAlg of

locally spectrally ringed 8-topoi (in particular, it is a pushout square in the 8-category
SpDM of spectral Deligne-Mumford stacks).

p3q The maps f 1 and g1 are closed immersions.

p4q If X1 and Y are affine, then Y1 is also affine.

Remark 16.1.0.2. Theorem 16.1.0.1 has an analogue in the setting of spectral schemes,
which can be proven in more or less the same way; we leave the details to the reader.

16.1.1 Closed Immersions of 8-Topoi

We begin with some generalities about gluing 8-topoi along closed immersions. Recall
that if U is an object of an 8-topos X , then X {U denotes the full subcategory of X
spanned by those objects V for which the projection map U ˆ V Ñ U is an equivalence (see
§HTT.7.3.2 ). We refer to X {U as the closed subtopos of X complementary to U .

Proposition 16.1.1.1. Let X be an 8-topos, let U be a subobject of the final object of X ,
and let X {U be the corresponding closed subtopos of X . Suppose we are given a geometric
morphism f˚ : X {U Ñ Y, and form a pushout diagram

X {U g˚ //

f˚
��

X

f 1˚
��

Y
g1˚ // Z

in the 8-category 8T op of 8-topoi. Let V “ f 1˚pUq P Z. Then:

p1q The functor f 1˚ induces an equivalence X {U » Z{V .

p2q The functor g1˚ is fully faithful and its essential image is Z {V . In particular, g1˚ is a
closed immersion.
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Proof. According to Proposition HTT.6.3.2.3 , we can identify Z with the homotopy fiber
product of X with Y over X {U (along the functors g˚ : X Ñ X {U and f˚ : Y Ñ X {U
adjoint to g˚ and f˚). Since g˚U is an initial object of X {U , there exists an object V 1 P Z
such that f 1˚V 1 » U and g1˚V 1 is an initial object of Y . For each Z P Z, we have a homotopy
pullback diagram of spaces

MapZpZ, V
1q //

��

MapX pf
1˚Z,Uq

��
MapYpg

1˚Z, g1˚V 1q //MapX {U pg
˚f 1˚Z, g˚Uq.

It follows that MapZpZ, V
1q is contractible if g1˚Z is an initial object of Y, and empty

otherwise. Consequently, the equivalence f 1˚V 1 » U is adjoint to an equivalence V 1 Ñ V .
We may therefore assume without loss of generality that V 1 “ V .

We now prove p1q. Note that the projection map Z{V Ñ Z is a fully faithful embedding,
whose essential image is the full subcategory Z0 Ď Z spanned by those objects Z P Z such
that g1˚Z is an initial object of Y. Similarly, the projection X {U Ñ X is a fully faithful
embedding whose essential image is the full subcategory X 0 Ď X spanned by those objects X
such that g˚X is an initial object of X {U . It will therefore suffice to prove that the functor
f 1˚ induces an equivalence of Z0 with X 0, which follows immediately from Proposition
HTT.6.3.2.3 .

We now prove p2q. We first claim that g1˚ carries Y into Z {V . That is, we claim that if
Y P Y, then the projection map pg1˚Y q ˆ V Ñ V is an equivalence. Let Z P Z be an object;
we wish to show that the map

MapZpZ, g
1
˚Y ˆ V q » MapYpg

1˚Z, Y q ˆMapZpZ, V q Ñ MapZpZ, V q

is a homotopy equivalence. If Z R Z0, then both sides are empty and the result is obvious.
If Z P Z0, then the result follows since g1˚Z is an initial object of Y.

Now suppose Z P Z {V . We claim that the unit map u : Z Ñ g1˚g
1˚Z is an equivalence

in Z. To prove this, we show that for each Z 1 P Z, composition with u induces a homotopy
equivalence

MapZpZ
1, Zq Ñ MapZpZ

1, g1˚g
1˚Zq » MapYpg

1˚Z 1, g1
˚
Zq.

This map fits into a homotopy pullback diagram

MapZpZ
1, Zq //

��

MapYpg
1˚Z 1, g1˚Zq

��
MapX pf

1˚Z 1, f 1˚Zq //MapX {U pg
˚f 1˚Z 1, g˚f 1˚Zq.
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It therefore suffices to show that the bottom horizontal map is a homotopy equivalence.
In other words, we are reduced to showing that the unit map f 1˚Z Ñ g˚g

˚f 1˚Z is an
equivalence in X , which follows from the observation that f 1˚ P X {U .

The argument of the preceding paragraph shows that g1˚ induces a fully faithful em-
bedding Z {V Ñ Y. To complete the proof, we show the functor g1˚|Z {V is essentially
surjective. Fix an object Y P Y, and let X “ f˚Y P X {U . Since g˚ is fully faithful, the
counit map g˚g˚X Ñ X is an equivalence. It follows that there exists an object Z P Z such
that g1˚Z » Y and f 1˚Z » g˚X. It remains only to verify that Z P Z {V : that is, that the
projection map Z ˆ V Ñ V is an equivalence. Using p1q, we are reduced to proving that the
map f 1˚pZ ˆ V q Ñ f 1˚V » U is an equivalence. In other words, we are reduced to proving
that f 1˚Z » g˚X belongs to X {U , which is clear.

Corollary 16.1.1.2. Suppose we are given a pushout diagram

X
g1˚ //

f 1˚
��

Y

f˚
��

X 1 g˚ // Y 1

in the 8-category 8T op of 8-topoi. If f˚ and g˚ are closed immersions, then f 1˚ and g1˚
are closed immersions.

Lemma 16.1.1.3. Let X be an 8-topos containing a pair of p´1q-truncated objects U and
V . Suppose that U ˆ V is an initial object of X . Then the coproduct U > V is also a
p´1q-truncated object of X .

Proof. We must prove that the diagonal map

U > V Ñ pU > V q ˆ pU > V q » pU ˆ Uq > pU ˆ V q > pV ˆ Uq > pV ˆ V q

is an equivalence. This map factors as as a composition

U > V Ñ pU ˆ Uq > pV ˆ V q Ñ pU ˆ Uq > pU ˆ V q > pV ˆ Uq > pV ˆ V q

where the first map is an equivalence since U and V are p´1q-truncated, and the second is
an equivalence since U ˆ V » V ˆ U is an initial object of X .

Proposition 16.1.1.4. Let X be an 8-topos containing a pair of p´1q-truncated object U
and V whose product U ˆ V is an initial object of X . Then the diagram

X {pU > V q //

��

X {U

��
X {V // X

is a pushout square in 8T op.
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Proof. Let f˚ : X Ñ X {U , g˚ : X Ñ X {V and h˚ : X Ñ X {pU > V q be the associated
pullback functors. Form a pushout diagram

X {pU > V q //

��

X {U

��
X {V // Y

in 8T op; we wish to prove that the induced geometric morphism φ˚ : Y Ñ X is an
equivalence of 8-topoi. We first claim that the pullback functor φ˚ is conservative. In
other words, we claim that a morphism u : X Ñ X 1 in X is an equivalence provided that
both f˚puq and g˚puq are equivalences. Indeed, either of these conditions guarantees that
h˚puq is an equivalence, so (by Lemma HA.A.5.11 ) it will suffice to show that u induces an
equivalence X ˆ pU > V q Ñ X 1 ˆ pU > V q. Since colimits in X are universal, it suffices to
show that uU : X ˆU Ñ X 1ˆU and uV : X ˆV Ñ X 1ˆV are equivalences. We prove that
uU is an equivalence; the proof that uV is an equivalence is similar. We have a commutative
diagram

X ˆ U
v //

��

pg˚g
˚Xq ˆ U

��
X 1 ˆ U

v1 // pg˚g
˚X 1q ˆ U.

Since the right vertical map is an equivalence, it will suffice to show that v and v1 are
equivalences. We will prove that v is an equivalence; the roof that v1 is an equivalence is
similar. Since g˚ is fully faithfully, the map g˚pvq is an equivalence. Using Lemma HA.A.5.11
again, we are reduced to proving that the map X ˆ U ˆ V Ñ pg˚g

˚Xq ˆ U ˆ V is an
equivalence. This is clear, since both X ˆU ˆ V and pg˚g˚Xq ˆU ˆ V are initial objects of
X .

To complete the proof that φ˚ is an equivalence, it suffices to show that the counit
map φ˚φ˚Y Ñ Y is an equivalence for each object Y P Y. Using Proposition HTT.6.3.2.3 ,
we can identify the 8-category Y with the fiber product X {U ˆX {pU>V q X {V . Thus
Y P Y corresponds to a pair of objects Y0 P X {U , Y1 P X {V together with an equivalence
g˚Y0 » f˚Y1 “ Y01 P X {pU > V q. Unwinding the definitions, we see that the pushforward
functor φ˚ is given by the formula φ˚Y “ f˚Y0 ˆh˚Y01 g˚Y1. Since a morphism in Y is an
equivalence if and only if its pullbacks to X {U and X {V are equivalences, we are reduced
to proving that the projection maps

α : f˚pf˚Y0 ˆh˚Y01 g˚Y1q Ñ Y0 β : g˚pf˚Y0 ˆh˚Y01 g˚Y1q Ñ Y1

are equivalences in X {U and X {V , respectively. We prove that α is an equivalence; the
proof for β is similar. The map α factors as a composition

f˚pf˚Y0 ˆh˚Y01 g˚Y1q
α1
Ñ f˚f˚Y0

α2
Ñ Y0.
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Since f˚ is fully faithful, the counit map α2 is an equivalence; it will therefore suffice
to show that α is an equivalence. Since f˚ is left exact, the map α1 is a pullback of
γ : f˚g˚Y1 Ñ f˚h˚Y01. It will therefore suffice to show that γ is an equivalence in X {U ,
which is an immediate translation of the condition that Y01 » f˚Y1 P X {pU >V q Ď X {U .

16.1.2 Spectrally Ringed 8-Topoi

Let 8T opCAlg denote the 8-category of spectrally ringed 8-topoi (see Construction
1.4.1.3). The 8-category 8T opCAlg admits small colimits: given a diagram of spectrally
ringed 8-topoi tpXα,Oαqu, the colimit is given by pX ,Oq, where X » lim

ÝÑ
Xα is the colimit

of the diagram tXαu in the 8-category 8T op of 8-topoi (which coincides with the limit of
the associated diagram of left adjoint functors in the 8-category yCat8), and O denotes the
limit lim

ÐÝ
φα˚Oα in the 8-category ShvCAlgpX q; here φα˚ : X Ñ Xα denotes the tautological

map.
In particular, given a diagram of spectrally ringed 8-topoi

pX ,OX q
f
ÝÑ pZ,OZq

g
ÐÝ pY,OYq,

the pushout in 8T opCAlg is given by pX ˆZ Y, g1˚OX ˆh˚ OZf
1
˚OYq (here the fiber product

X ˆZ Y is formed in yCat8), the functors f 1˚ and g1˚ are the right adjoints to the projections
of X ˆZ Y onto Y and X , and h˚ Z Ñ X ˆZ Y is defined similarly. We will primarily be
interested in the case where f and g are closed immersions:

Proposition 16.1.2.1. Let f : X Ñ Y and g : X Ñ X1 be closed immersions in the
8-category 8T oploc

CAlg, and form a pushout diagram σ :

X
f
��

g // Y
f 1

��
X1 g1 // Y1

in the 8-category 8T opCAlg. Then:

p1q The diagram σ is also a pushout square in 8T oploc
CAlg.

p2q The maps f 1 and g1 are closed immersions.

p3q Suppose that the structure sheaves of Y and X1 are strictly Henselian. Then the
structure sheaf of Y1 is also strictly Henselian.

Proof. We first prove p2q. Without loss of generality, it will suffice to show that f 1 is a
closed immersion. Using Proposition 16.1.1.1, we see that f 1 induces a closed immersion at
the level of the underlying 8-topoi. To complete the proof, we must show that the map
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θ : f 1˚OY1 Ñ OY has connective fiber. Set h “ f 1 ˝ g » g1 ˝ f , so that OY1 is given by the
fiber product

f 1˚OYˆh˚ OXg
1
˚OX1 .

Under this identification, θ is given by composing the equivalence f 1˚f 1˚OY Ñ OY with the
pullback of the projection map θ1 : f 1˚OYˆh˚ OXg

1
˚OX1 Ñ f 1˚OY. It will therefore suffice to

show that θ1 has connective fiber. Equivalently, we must show that the map g1˚OX1 Ñ h˚OX
has connective fiber. This is clear, since the map OX1 Ñ f˚OX has connective fiber (by
virtue of our assumption that f is a closed immersion), and the pushforward functor g1˚ is
right t-exact (since g1 is a closed immersion on the level of 8-topoi). This completes the
proof of p2q.

We next claim that the structure sheaf OY1 is local. To prove this, it will suffice to
show that f 1ast OY1 and g1˚OY1 are local, respectively. We will show that f 1˚OY1 is local;
the proof of the other case is similar. Write Y “ pY,OYq and X “ pX ,OX q. Since g is a
closed immersion, the geometric morphism g˚ induces an equivalence X » Y {U for some
p´1q-truncated object U P Y. Because f 1˚OY1 |U » OY |U is local by assumption, it will
suffice to show that the restriction of g˚f 1˚OY1 “ h˚OY1 P ShvCAlgpX q is local. We have a
pullback diagram

h˚OY1 //

��

g˚OY

��
f˚OX1 // OX

of CAlg-valued sheaves on X. Since f is a morphism in 8T oploc
CAlg, the lower horizontal map

in this diagram is local. It follows that the upper horizontal map is also local, so that the
locality of g˚OY implies that h˚OY1 is local (see Proposition 1.2.1.8), as desired.

We now complete the proof of p1q by showing that Y1 is a pushout of X1 and Y over X in
the 8-category 8T oploc

CAlg. Equivalently, we must show that if Z “ pZ,Oq is an object of
8T oploc

CAlg and r : Y1 Ñ Z is a morphism in 8T opCAlg, then r is a morphism in 8T oploc
CAlg if

and only if r ˝f 1 and r ˝g1 are morphisms in 8T oploc
CAlg. That is, we must show that the map

r˚O Ñ OY1 is local if and only if the induced maps pr ˝ f 1q˚O Ñ OX1 and pr ˝ g1q˚O Ñ OY
are local. This follows immediately from the observation that a section of π0 OY1 is invertible
if and only if the resulting sections of π0 OX1 and π0 OY are invertible.

We now prove p3q. Assume that OX, OX1 , and OY are strictly Henselian; we wish to
prove that OY1 is strictly Henselian. That is, we wish to show that if R is a finitely generated
commutative ring and tRÑ Rαu is a finite collection of étale morphisms which determine a
faithfully flat map RÑ

ś

αRα, then the induced map >α SolRαpπ0 OY1q Ñ SolRpπ0 OY1q is
an effective epimorphism. We have a fiber sequence OY1 Ñ g1˚OX1 ‘f

1
˚OY Ñ h˚OX, which

determines a short exact sequence of homotopy sheaves

h˚pπ1 OXq Ñ π0 OY1
ν
Ñ g1˚pπ0 OX1q ˆh˚pπ0 OXq f

1
˚pπ0 OYq Ñ 0
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In particular, ν is an epimorphism whose kernel is a square-zero ideal sheaf contained in
π0 OY1 . For each index α, the assumption that Rα is étale over R guarantees that the
diagram

SolRαpπ0 OY1q //

��

SolRαpg1˚pπ0 OX1q ˆh˚pπ0 OXq f
1
˚pπ0 OYqq

��
SolRpπ0 OY1q // SolRpg1˚pπ0 OX1q ˆh˚pπ0 OXq f

1
˚pπ0 OYqq

is a pullback square. We may therefore replace OY, OX1 , and OX by their truncations π0 OY,
π0 OX1 , and π0 OX, and thereby reduce to the case where the structure sheaves of X, Y, and
X1 are discrete (from which it follows that the structure sheaf of Y1 is also discrete).

We wish to prove that the map

θ : >α SolRαpg1˚OX1 ˆh˚ OXf
1
˚OYq Ñ SolRpg1˚OX1 ˆh˚ OXf

1
˚OYq

is an effective epimorphism. Let Y 1 denote the underlying 8-topos of Y1, and let U denote
the open subtopos of Y 1 complementary to the image of the closed immersion f 1. Then
the restriction of θ to U can be identified with the restriction of the effective epimorphism
>α SolRαpOX1q Ñ SolRpOY1q. A similar argument shows that θ is an effective epimorphism
when restricted to the complement of the closed immersion g1. It will therefore suffice to
show that h˚pθq is an effective epimorphism. Unwinding the definitions, we can identify
h˚pθq with the canonical map

>α SolRαpf˚OX1q ˆSolRα pOXq SolRαpg˚OYq Ñ SolRpf˚OX1q ˆSolRpOXq SolRpg˚OYq.

It follows from Proposition 1.2.2.12 that this map is a pullback of >α SolRαpOXq Ñ SolRpOXq,
hence an effective epimorphism (since OX is assumed to be strictly Henselisan).

16.1.3 Pushouts in the Affine Case

We now establish a special case of Theorem 16.1.0.1.

Proposition 16.1.3.1. Suppose we are given a pullback diagram of E8-rings

A1 //

��

A

f
��

B1
g // B

where A, B, and B1 are connective and the maps f and g induce surjective ring homomor-
phisms π0AÑ π0B and π0B

1 Ñ π0B. Then:

p1q The E8-ring A1 is connective.
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p2q The maps π0A
1 Ñ π0A and π0B

1 Ñ π0B are surjective.

p3q The induced diagram of spectral Deligne-Mumford stacks σ :

SpétB //

��

SpétB1

��
SpétA // SpétA1

is a pushout diagram in 8T oploc
CAlg.

Proof. Assertions p1q and p2q are obvious. For every E8-ring R, let XR denote the underlying
8-topos of SpétR (that is, the 8-topos of étale sheaves on CAlgét

R), and let OR denote the
structure sheaf of SpétR. By virtue of Proposition 16.1.2.1, it will suffice to show that σ is
a pushout square in 8T opCAlg. That is, we must show the following:

p31q The diagram of 8-topoi
XB //

��

h˚

""

XB1

f˚
��

XA
g˚ // XA1

is a pushout square in 8T op.

p32q The diagram
OA1

//

��

g˚OA

��
f˚OB1

// h˚OB

is a pullback square in ShvCAlgpXA1q.

We first prove p31q. Using p2q and Proposition 3.1.4.1, we deduce the existence of equivalences

XB1 » XA1 {U XA » XA1 {V XB » XA1 {W

for p´1q-truncated objects U, V,W P XA1 . Under the equivalence XA1 » Shvét
A1 Ď FunpCAlgét

A1 ,Sq,
the objects U , V , and W are given by the formulae

UpRq “

#

∆0 if RbA1 B1 » 0
H otherwise

V pRq “

#

∆0 if RbA1 A » 0
H otherwise

W pRq “

#

∆0 if RbA1 B » 0
H otherwise.

For any A-algebra R, we have a pullback diagram τR :

R //

��

RbA1 A

��
RbA1 B

1 // RbA1 B.
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It follows that if RbA1 A » RbA1 B
1 » 0, then R » 0; this proves that U ˆ V is an initial

object of XA1 . According to Lemma 16.1.1.3, the coproduct U > V in XA1 is p´1q-truncated.
There is an evident map j : U > V Ñ W . We will prove that j is an equivalence, so that
assertion p31q follows from Proposition 16.1.1.4. We must show that if R is an étale A1-algebra
such that W pRq is nonempty, then pU > V qpRq is nonempty. Indeed, if W pRq is nonempty
then we have RbA1 B » 0, so that the pullback diagram τR1 shows that R » R0 ˆR1 with
R0 “ R bA1 A and R1 “ R bA1 B

1q. Then R0 and R1 are also étale A1-algebras, and we
have pU > V qpRq » pU > V qpR0q ˆ pU > V qpR1q. It will therefore suffice to show that both
pU > V qpR0q and pU > V qpR1q are nonempty. We will prove that pU > V qpR0q is nonempty;
the proof in the other case is similar. Since we have a map UpR0q Ñ pU > V qpR0q, it is
sufficient to show that UpR0q is nonempty: that is, that R0 bA1 B

1 » 0. Let I Ď π0A
1 be

the kernel of the map π0A
1 Ñ π0B

1, and J Ď π0A
1 the kernel of the map π0A

1 Ñ π0A, so
that the ideal I ` J is the kernel of the map π0A

1 Ñ π0B. We now compute

π0pR0 bA1 B
1q » pπ0R0q{pIπ0R0q

» pπ0R{Jπ0Rq{Iπ0R0

» pπ0Rq{pI ` Jqπ0R

» π0pRbA1 Bq

» 0.

It remains to prove p32q. Unwinding the definitions, we are reduced to the evident
observation that if R P CAlgét

A1 , then the diagram

R //

��

RbA1 A

��
RbA1 B

1 // RbA1 B

is a pullback square of E8-rings.

Example 16.1.3.2. Let X be an object of 8T oploc
CAlg, and suppose we are given a morphism

ε : Spétκ Ñ X, where κ is a field. Let X : CAlgart
κ Ñ pS denote the functor given by the

formula
XpRq “ Map8T oploc

CAlg
pSpétR,Xq ˆMap

8T oploc
CAlg

pSpétR,Xq tεu.

It follows from Proposition 16.1.3.1 that for every pullback diagram

R //

��

R0

��
R1 // R01
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in CAlgart
κ for which the ring homomorphisms π0R0 Ñ π0R01 Ð π0R1 are surjective, the

associated diagram of spectral Deligne-Mumford stacks

SpétR SpétR0oo

SpétR1

OO

SpétR01oo

OO

is a pushout square in 8T oploc
CAlg (in fact, this is easier than Proposition 16.1.3.1, since the

underlying 8-topoi of these spectral Deligne-Mumford stacks are all the same). It follows
that the diagram of spaces

XpRq //

��

XpR0q

��
XpR1q // XpR01q

is a pullback square. Since Xpκq is evidently contractible, it follows that the functor X
is a formal moduli problem (modulo the technicality that the values of X might not be
essentially small: this issue does not arise in most cases of interest, for example if X is a
spectral Deligne-Mumford stack).

16.1.4 The Proof of Theorem 16.1.0.1

We now turn to the proof of our main result.

Lemma 16.1.4.1. Suppose we are given a closed immersion f : pX ,OX q Ñ pY,OYq of
spectral Deligne-Mumford stacks, where pY,OYq is affine. Let U P X be an object such that
pX {U ,OX |U q is also an affine Deligne-Mumford stack. Then there exists an equivalence
U » f˚V for some affine object V P Y.

Proof. Let pY,OYq » SpétA for some connective E8-ring A. Then pX ,OX q » SpétB for
some connective A-algebra B such that π0AÑ π0B is surjective. Using Theorem 1.4.10.2,
we see that the object U P X corresponds to an étale B-algebra B1. Using Proposition
B.1.1.3, we can write B1 » A1bA B for some étale A-algebra A1, which determines an object
V P Y with the desired properties.

Proof of Theorem 16.1.0.1. Suppose we are given a pushout diagram σ :

X f //

g
��

Y
f 1

��
X1 g1 // Y1



16.1. GLUING ALONG CLOSED IMMERSIONS 1235

in the 8-category 8T opCAlg of spectrally ringed 8-topoi. Assume that X, Y, and X1 are
spectral Deligne-Mumford stacks, and that f and g are closed immersions. It follows from
Proposition 16.1.2.1 that f 1 and g1 are closed immersions and that σ is also pushout diagram
in 8T oploc

CAlg. We wish to prove that Y1 is a spectral Deligne-Mumford stack.
Write X “ pX ,OX q, Y “ pY,OYq, X1 “ pX 1,OX 1q, and Y1 “ pY 1,OY 1q. The assertion that

pY 1,OY 1q is a spectral Deligne-Mumford stack is local on Y 1. Let Y 10 be the full subcategory
of Y 1 spanned by those objects Y for which pY 1{Y ,OY 1 |Y q is a spectral Deligne-Mumford
stack; it will suffice to show that there exists an effective epimorphism >Yi Ñ 1Y 1 , where
each Yi P Y 10 and 1Y 1 denotes a final object of Y 1. Since f 1 and g1 are closed immersions, we
can write X 1 » Y 1 {U and Y » Y 1 {V for some p´1q-truncated objects U, V P Y 1. Then

pY 1{U ,OY 1 |U q » pY{f 1˚U ,OY |f 1˚U q pY 1{V ,OY 1 |V q » pX 1{g1˚V ,OX 1 |g1˚V q

are spectral Deligne-Mumford stacks, so that U, V P Y 10. Let h˚ “ f˚ ˝ g1˚ : Y 1 Ñ X .
Using Lemma 3.1.3.2, we are reduced to proving the existence of an effective epimorphism
>Xi Ñ 1X , where each Xi belongs to the essential image h˚ Y 10 Ď X and 1X denotes the
final object of X .

Let X 0 be the full subcategory of X spanned by those objects X P X with the following
properties:

paq There exists an object Y P Y such that f˚Y » X and pY{Y ,OY |Y q is affine.

pbq There exists an object X 1 P X 1 such that g˚X 1 » X and pX 1{X 1 ,OX 1 |
1
Xq is affine.

Using Proposition HTT.6.3.2.3 , we see that every object X P X 0 has the form h˚Y 1 for some
Y 1 P Y such that pX 1

{g1˚Y 1 ,OX 1 |g1˚Y 1q and pY{f 1˚Y 1 ,OY |f 1˚Y 1q are affine. It then follows
from Proposition 16.1.3.1 that Y 1 P Y0, so that X P h˚ Y 10. It will therefore suffice to show
that there exists an effective epimorphism >Xi Ñ 1X , where each Xi P X 0.

Since pY,OYq is a spectral Deligne-Mumford stack, there exists an effective epimorphism
>iXi Ñ 1X where each Xi P X satisfies condition piq. Using our assumption that pX 1,OX 1q

is a spectral Deligne-Mumford stack, we can choose for each index i an effective epimorphism
θi : >jX 1i,j Ñ g˚Xi in X 1. Set Xi,j “ g˚X 1j , so that the maps θi induce effective epimorphisms

>i,jXi,j Ñ >iXi Ñ 1X .

It will therefore suffice to show that each Xi,j satisfies conditions paq and pbq. Condition pbq
is evident from the construction, and condition paq follows from Lemma 16.1.4.1 (together
with our assumption that Xi satisfies paq). This completes the proof that Y1 is a spectral
Deligne-Mumford stack.

We conclude the proof by observing that if X1 and Y are affine (so that X is also affine,
by virtue of Theorem 3.1.2.1), then Proposition 16.1.3.1 implies that Y1 is also affine.
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16.2 Clutching of Quasi-Coherent Sheaves

Suppose we are a diagram of spectral Deligne-Mumford stacks X0
f
Ðâ X01

g
ãÑ X1, where f

and g are closed immersions. In §16.1, we proved that there exists a pushout diagram

X01
f //

g

��

X0

g1

��
X1

f 1 // X

in the 8-category of spectral Deligne-Mumford stacks (Theorem 16.1.0.1). Our goal in this
section is to study the8-category QCohpXq of quasi-coherent sheaves on the pushout X. Note
that every quasi-coherent sheaf F P QCohpXq determines objects F 0 “ g1˚F P QCohpX0q

and F 1 “ f 1˚F P QCohpX1q, together with an equivalence α : f˚F 0 » g˚F 1 in the
8-category QCohpX01q. Our starting point is the observation that F is determined (up to
canonical equivalence) by the triple pF 0,F 1, αq. More precisely, we have the following:

Theorem 16.2.0.1. Suppose we are given a pushout diagram of spectral Deligne-Mumford
stacks σ :

X01
f //

g

��

X0

g1

��
X1

f 1 // X,

where f and g are closed immersions. Then the induced diagram of 8-categories

QCohpX01q QCohpX0qoo

QCohpX1q

OO

QCohpXq

OO

oo

determines a fully faithful embedding θ : QCohpXq Ñ QCohpX0q ˆQCohpX01q QCohpX1q.
Moreover, θ restricts to an equivalence of 8-categories

QCohpXqcn Ñ QCohpX0q
cn ˆQCohpX01qcn QCohpX1q

cn.

The assertion of Theorem 16.2.0.1 is local on X, so we can reduce to the case where
X “ SpétA is affine. In this case, Theorem 3.1.2.1 guarantees that X0, X1, and X01 are also
affine, so that the diagram σ is induced by a diagram of connective E8-rings τ :

A //

��

A0

��
A1 // A01.
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Since σ is a pushout diagram of closed immersions, τ is a pullback diagram of E8-rings, and
the maps π0A0 Ñ π0A01 Ð π0A1 are surjections. We can therefore reformulate Theorem
16.2.0.1 as follows:

Theorem 16.2.0.2. Suppose we are given a pullback diagram of E8-rings τ :

A //

��

A0

��
A1 // A01.

Then the induced functor θ : ModA Ñ ModA0 ˆModA01
ModA1 is fully faithful. If τ is a

pullback diagram of connective E8-rings and the map π0A0 Ñ π0A01 is surjective, then θ

restricts to an equivalence of 8-categories Modcn
A Ñ Modcn

A0 ˆModcn
A01

Modcn
A1.

Warning 16.2.0.3. The the situation of Theorem 16.2.0.2, the functor θ need not be an
equivalence, even when τ is a diagram of connective E8-rings which induces surjections
π0A0 Ñ π0A01 Ð π0A1. For example, let κ be a field and let A0 “ κrxs, A01 “ κ,
and A1 “ κrys (regarded as discrete E8-rings). Let M denote the A0-module given by
À

mPZ Σ2mA01, and let N be the A1-module given by
À

mPZ Σ2m`1A01. Then A01 bA0 M

and A01 bA1 N are both equivalent to the A01-module P “
À

iPZ ΣiA01. We may therefore
choose an equivalence α : A01 bA0 M » A01 bA1 N . The triple pM,N,αq can be regarded
as an object of the fiber product ModA0 ˆModA01

ModA1 which does not lie in the essential
image of the functor θ (since M ˆP N » 0).

16.2.1 Clutching in the Stable Case

The first assertion of Theorem 16.2.0.2 is a consequence of the following more general
claim:

Proposition 16.2.1.1. Let R be an E2-ring and let C be a stable R-linear 8-category.
Suppose we are given a pullback diagram τ :

A //

��

A0

��
A1 // A01

in AlgR. Then the induced functor

F : LModApCq Ñ LModA0pCq ˆLModA01 pCq LModA1pCq

is fully faithful.
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Proof. Let G denote a right adjoint to F and fix M P LModApCq; we wish to show that the
unit map M Ñ pG ˝ F qpMq is an equivalence. Unwinding the definitions, this is equivalent
to showing that the map

M Ñ pA0 bAMq ˆA01bAM pA1 bAMq

is an equivalence; that is, we must show that the diagram σ :

AbAM //

��

A0 bAM

��
A1 bAM // A01 bAM

is a pullback diagram in C. Since C is stable, this is equivalent to showing that σ is a pushout
diagram in C. The relative tensor product over A preserves colimits, so we need only verify
that τ is a pushout diagram in RModA. This equivalent to the requirement that τ be a
pushout diagram of spectra. Since the 8-category of spectra is stable, we reduce to our
assumption that τ is a pullback diagram (in either Sp or AlgR).

16.2.2 Clutching in the Prestable Case

To complete the proof of Theorem 16.2.0.2, we will need a refinement of Proposition
16.2.1.1 in the setting of prestable 8-categories.

Proposition 16.2.2.1. Let R be a connective E2-ring and let C be a prestable R-linear
8-category. Suppose we are given a pullback diagram

A //

��

A0

f
��

A1
g // A01

in Algcn
R . If C is separated and the map f induces a surjective ring homomorphism π0A0 Ñ

π0A01, then the inducted functor

f : LModApCq Ñ LModA0pCq ˆLModA01 pCq LModA1pCq

is an equivalence of 8-categories.

Proof of Theorem 16.2.0.2. Apply Proposition 16.2.2.1 to the special case where R “ A and
C “ Modcn

A .

Proof of Proposition 16.2.2.1. Passing to stabilizations, we obtain a functor

F : LModApSppCqq Ñ LModA0pSppCqq ˆLModA01 pSppCqq LModA1pSppCqq
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which admits a right adjoint G. We first claim that G carries the fiber product

LModA0pSppCqqě0 ˆLModA01 pSppCqqě0 LModA1pSppCqqě0

into LModApSppCqqě0. To see this, suppose we are given objects M P LModA0pSppCqqě0
and N P LModA1pSppCqqě0 and equivalences A01 bA0 M » P » A01 bA1 N in the 8-
category LModA01pSppCqqě0. We must show that the fiber product M ˆP N belongs to
LModApSppCqqě0. In the stable 8-category SppCq, we have a fiber sequence

M ˆP N ÑM ‘N Ñ P.

Since M , N , and P belong to SppCqě0, it will suffice to show that the map π0pM‘Nq Ñ π0P

is an epimorphism in the abelian category C♥. In fact, we claim that π0M Ñ π0P is an
epimorphism. Choose a cofiber sequence I Ñ A0

f
Ñ A01 in RModA0 . Since f induces a

surjective ring homomorphism π0A0 Ñ π0A01, the module I is connective. We therefore
have an induced cofiber sequence I bA0 M Ñ M Ñ P in SppCqě0, which proves that the
map π0M Ñ π0P is an epimorphism in C♥.

It follows from the above argument that F and G determine adjoint functors

LModApSppCqqě0
Fě0 //LModA0pSppCqqě0 ˆLModA01 pSppCqqě0 LModA1pSppCqqě0,
Gě0
oo

and the prestability of C guarantees that Fě0 can be identified with our original functor
f . We wish to prove that Fě0 is an equivalence of 8-categories. Proposition 16.2.1.1
implies that the functor F is fully faithful, so the functor Fě0 is automatically fully faithful.
To complete the proof, it will suffice to show that the functor Gě0 is conservative. Let
α : X Ñ Y be a morphism in the 8-category

LModA0pSppCqqě0 ˆLModA01 pSppCqqě0 LModA1pSppCqqě0

such that Gě0pαq is an equivalence. Then Gě0pcofibpαqq » 0. We will complete the proof
by showing that cofibpαq » 0, so that α is an equivalence.

Unwinding the definitions, we can identify cofibpαq with a triple of objects

M P LModA0pSppCqqě0 P P LModA01pSppCqqě0 N P LModA1pSppCqqě0

together with equivalences A01 bAM » P » A01 bA1 N . We will prove by induction on n

that M P LModApSppCqqěn and N P LModB1pSppCqqěn. Provided that this is true for all
n, our assumption that C is separated will imply that M » N » 0 so that cofibpαq » 0 as
desired.

In the case n “ 0, there is nothing to prove. Assume therefore that M P LModApCqěn
and N P LModApCqěn. Since Gpcofibpαqq “ M ˆP N » 0, we have an isomorphism
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πnM‘πnN Ñ πnP in the abelian category C♥. The first part of the proof shows that the map
πnM Ñ πnP is an epimorphism, so that πnN » 0. It follows that N P LModA1pSppCqqěn`1
and therefore P » A01 bA1 N belongs to LModA01pSppCqqěn`1. In particular, we have
πnP » 0, so that πnM » πnM ‘ πnN » πnP » 0 and therefore M P LModA0pSppCqqěn`1,
as desired.

We can use Proposition 16.2.2.1 to deduce a categorified version of Proposition 16.2.1.1,
which serves as a sort of counterpart to the descent results of §D.4 and D.6:

Corollary 16.2.2.2. For every connective E2-ring A, let LinCatsep
A denote the full subcate-

gory of LinCatPSt
A spanned by those prestable A-linear 8-categories C which are separated.

Let
A //

��

A0

f
��

A1
g // A01

be a pullback diagram of connective E2-rings, and suppose that f induces a surjective ring
homomorphism π0AÑ π0A01. Then the induced map

F : LinCatsep
A Ñ LinCatsep

A0
ˆLinCatsep

A01
LinCatsep

A1

is fully faithful.

Proof. We note that F is the restriction of a functor

F 1 : LModLModcn
A
pPrLq Ñ LModLModcn

A0
pPrLq ˆLModLModcn

A01
pPrLq LModLModcn

A1
pPrLq

which admits a right adjoint G1. To prove that F is fully faithful, it will suffice to show that
the unit map u : C Ñ pG1 ˝ F 1qpCq is an equivalence whenever C P LModLModcn

A
pPrLq is a

separated prestable A-linear 8-category. Unwinding the definitions, we can identify u with
the equivalence C Ñ LModA0pCq ˆLModA01 pCq LModA1pCq of Proposition 16.2.2.1.

16.2.3 Properties of Quasi-Coherent Sheaves

In the situation of Theorem 16.2.0.2, many important geometric properties of quasi-
coherent sheaves F P QCohpXq can be tested “piecewise”:

Proposition 16.2.3.1. Suppose we are given a pushout diagram of spectral Deligne-Mumford
stacks σ :

X01
i //

j

��

X0

j1

��
X1

i1 // X,
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where i and j are closed immersions. Let F P QCohpXq, and set

F 0 “ j1˚F P QCohpX0q F 1 “ i1˚F P QCohpX1q.

Then:

p1q The quasi-coherent sheaf F is n-connective if and only if F 0 and F 1 are n-connective.

p2q The quasi-coherent sheaf F is almost connective if and only if F 0 and F 1 are almost
connective.

p3q The quasi-coherent sheaf F has Tor-amplitude ď n if and only if F 0 and F 1 have
Tor-amplitude ď n.

p4q The quasi-coherent sheaf F is flat if and only if F 0 and F 1 are flat.

p5q The quasi-coherent sheaf is perfect to order n if and only if F 0 and F 1 are perfect to
order n.

p6q The quasi-coherent sheaf F is almost perfect if and only if F 0 and F 1 are almost
perfect.

p7q The quasi-coherent sheaf F is perfect if and only if F 0 and F 1 are perfect.

p8q The quasi-coherent sheaf F is locally free of finite rank if and only if F 0 and F 1 are
locally free of finite rank.

Proof. The “only if” directions follow immediately from Propositions 6.2.5.2 and 2.9.1.4. To
prove the reverse directions, we may work locally on X and thereby reduce to the case where
X “ SpétA is affine. Then σ is determined by a pullback square of E8-rings

A //

��

A0

��
A1 // A01

for which the maps π0A0 Ñ π0A01 Ð π0A1 are surjective. The quasi-coherent sheaf F

corresponds to an A-module M . Set

M0 “ A0 bAM M01 “ A01 bAM M1 “ A1 bAM.

To prove p1q, we may assume without loss of generality that n “ 0. The desired result
then follows from the first step in the proof of Proposition 16.2.2.1. Assertion p2q is a
consequence of p1q. Assertion p4q follows from p1q and p3q, assertion p6q follows from p5q,
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assertion p7q follows from p3q, p6q, and Proposition HA.7.2.4.23 , and assertion p8q follows
from p4q, p6q, and Proposition HA.7.2.4.20 .

We now prove p3q. Assume that M0 and M1 have Tor-amplitude ď n over A0 and A1,
respectively. We wish to show that M has Tor-amplitude ď n over A. Let N be a discrete
A-module; we wish to show that M bA N is n-truncated. Let I0 Ď π0A be the kernel of the
map π0A Ñ π0A0, and define I1 Ď π0A similarly. We have an exact sequence of discrete
A-modules 0 Ñ I0N Ñ N Ñ N{I0N Ñ 0. Note that N{I0N admits the structure of an
A0-module, so that M bA pN{I0Nq » M0 bA0 pN{I0Nq is n-truncated. We are therefore
reduced to proving that M bA I0N is n-truncated. We have a short exact sequence

0 Ñ I0I1N Ñ I0N Ñ I0N{I0I1N Ñ 0.

Since the quotient I0N{I0I1N admits the structure of an A1-module, we deduce that
M bA pI0N{I0I1Nq » M1 bA1 pI0N{I0I1Nq is n-truncated. We are therefore reduced to
proving that M bA I0I1N is n-truncated. Note that the ideal I0I1 belongs to the kernel
of the map π0A Ñ π0A0 ‘ π0A1, and therefore to the image of the map π1A01 Ñ π0A.
It follows that the ideal I0I1 has the structure of a module over π0A01, and is therefore
annihilated by I0. We conclude that I0I1N admits the structure of an A0-module, so that
M bA I0I1N »M0 bA0 I0I1N is n-truncated as desired.

It remains to prove p5q. Assume that M0 and M1 are perfect to order n; we wish to
show that M is perfect to order n. Using p2q, we deduce that M is almost connective.
Replacing M by a shift, we may assume that M is connective. We now proceed by induction
on n, the case n ă 0 being trivial. If n “ 0, we must show that π0M is finitely generated
as a module over π0A (Proposition 2.7.2.1). Since M0 and M1 are perfect to order 0 and
the maps π0M Ñ π0M0 and π0M Ñ π0M1, we can choose finitely many elements of π0M

whose images generate π0M0 and π0M1. This choice of elements determines a fiber sequence
M 1 Ñ Am Ñ M . Then A0 bAM

1 and A1 bAM
1 are connective, so that p1q implies that

M 1 is connective. It follows that the map π0A
m Ñ π0M is surjective, so that M is perfect

to order 0 as desired.
Now suppose that n ą 0. The argument above shows that π0M is finitely generated, so

we can choose a fiber sequence M 1 Ñ Am ÑM where M 1 is connective. Using Proposition
2.7.2.1, we deduce that A0 bAM

1 and A1 bAM
1 are perfect to order n´ 1 as modules over

A0 and A1, respectively. Invoking the inductive hypothesis, we conclude that M 1 is perfect
to order n´ 1, so that M is perfect to order n by Proposition 2.7.2.1.

16.3 Clutching for Spectral Deligne-Mumford Stacks

Suppose we are given a diagram of spectral Deligne-Mumford stacks X0
i
ÐÝ X01

j
ÝÑ X1,

where i and j are closed immersions. Theorem 16.1.0.1 implies that there exists a pushout
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diagram
X01

i //

j
��

X0

��
X1 // X

in the 8-category of spectral Deligne-Mumford stacks, and Theorem 16.2.0.1 implies that
there is a close relationship between quasi-coherent sheaves on X and quasi-coherent sheaves
on the individual constituents X0 and X1 (together with a compatibility over X01). In this
section, we will discuss the following nonlinear analogue:

Theorem 16.3.0.1. Suppose we are given a pushout diagram of spectral Deligne-Mumford
stacks

X01
i //

j

��

X0

��
X1 // X,

where i and j are closed immersions. Then the diagram

SpDM{X //

��

SpDM{X1

��
SpDM{X0

// SpDM{X01

is a pullback diagram of 8-categories.

16.3.1 Gluing and Base Change

Theorem 16.3.0.1 is a consequence of the following simple observation:

Proposition 16.3.1.1. Suppose we are given a pushout diagram of spectral Deligne-Mumford
stacks σ :

X01
i //

j

��

X0

��
X1 // X,

where i and j are closed immersions. Let f : Y Ñ X be a map of spectral Deligne-Mumford
stacks. Then the diagram σ1 :

YˆX X01
i1 //

j1

��

YˆX X0

��
YˆX X1 // Y
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is also a pushout square of spectral Deligne-Mumford stacks (note that the morphisms i1 and
j1 are also closed immersions, by Corollary 3.1.2.3).

Proof. The assertion is local on both X and Y. We may therefore assume without loss of
generality that X “ SpétA, so that σ is determined by a pullback diagram of connective
E8-rings

A //

��

A1

��
A0 // A01

where the maps π0A0 Ñ π0A01 Ð π0A1 are surjective. We may also assume that Y “ SpétR
is affine. In this case, σ1 is determined by the diagram of connective E8-rings τ :

R //

��

RbA A1

��
RbA A0 // RbA A01.

Since the operation of tensor product with R is exact, τ is a pullback diagram. The desired
result now follows from Proposition 16.1.3.1.

Proof of Theorem 16.3.0.1. Suppose we are given a pushout diagram

X01
i //

j

��

X0

��
X1 // X,

where i and j are closed immersions. We wish to prove that the canonical map

G : SpDM{X Ñ SpDM{X0 ˆSpDM{ X01
SpDM{X1

is an equivalence of 8-categories. Let us identify objects of the codomain of G with triples
pY0,Y1, αq, where Y0 P SpDM{X0 , Y1 P SpDM{X1 , and α : X01ˆX0 Y0 » X01ˆX1 Y1 is an
equivalence in SpDM{X01 . Given such a triple, let Y01 “ X01ˆX0 Y0. We have a commutative
diagram

Y0

��

Y01
j1 //i1oo

��

Y1

��
X0 X01

ioo j // X1
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where both squares are pullbacks. It follows that i1 and j1 are closed immersions, so that
there exists a pushout diagram

Y01
i1 //

j1

��

Y0

��
Y1 // Y

of spectral Deligne-Mumford stacks (Theorem 16.1.0.1). The construction pY0,Y1, αq ÞÑ Y
determines a functor F : SpDM{X0 ˆSpDM{ X01

SpDM{X1 Ñ SpDM{X which is left adjoint
to G. It follows from Proposition 16.3.1.1 that the counit map v : F ˝ G Ñ id is an
equivalence. We now prove that u is also an equivalence. Fix an object pY0,Y1, αq P

SpDM{X0 ˆSpDM{ X01
SpDM{X1 , so that we have a pushout diagram τ :

Y01
i1 //

j1

��

Y0

��
Y1 // Y

as above. We wish to prove that the induced maps

φ : Y0 Ñ X0ˆX Y ψ : Y1 Ñ X1ˆX Y

are equivalences. We will prove that φ is an equivalence; the proof that ψ is an equivalence
is similar. The assertion is local on X and Y; we may therefore assume that X » SpétA and
Y » SpétR are affine. It follows that X0, X1, and X01 are affine; write

X0 » SpétA0 X01 » SpétA01 X1 » SpétA1

Y0 » SpétR0 Y01 » SpétR01 Y1 » SpétR1.

Then α determines an equivalence β : A01 bA0 R0 » A01 bA1 R1, and we can identify the
triple pR0, R1, βq with an object of Modcn

A0 ˆModcn
A01

Modcn
A1 . Using Proposition 16.2.2.1, we

deduce that pR0, R1, βq is determined by an object M P Modcn
A . Then Proposition 16.1.3.1

supplies an equivalence θ : R » R0ˆR01R1 » pA0ˆA01A1qbAM »M . To prove that φ is an
equivalence, it will suffice to show that it induces an equivalence of E8-rings R0bR AÑ A0.
It now suffices to observe that the underlying map of spectra is given by the composition
R0 bR A

θ
» R0 bRM » A0.

16.3.2 Properties Persistant Under Clutching

In the situation of Proposition 16.3.1.1, many important properties of morphism f : Y Ñ
X can be tested after pullback along the closed immersions X0 ãÑ X Ðâ X1.
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Proposition 16.3.2.1. Suppose we are given a pushout diagram of spectral Deligne-Mumford
stacks σ :

X01
i //

j

��

X0

��
X1 // X,

where i and j are closed immersions. Let f : Y Ñ X be a map of spectral Deligne-Mumford
stacks. Set Y0 “ X0ˆX Y, Y1 “ X1ˆX Y, and let f0 : Y0 Ñ X0 and f1 : Y1 Ñ X1 be the
projection maps. Then:

p1q The map f is locally of finite generation to order n if and only if both f0 and f1 are
locally of finite generation to order n (for any n ě 0).

p2q The map f is locally almost of finite presentation if and only if both f0 and f1 are
locally almost of finite presentation.

p3q The map f is locally of finite presentation if and only if f0 and f1 are locally of finite
presentation.

p4q The map f is étale if and only if both f0 and f1 are étale.

p5q The map f is an equivalence if and only if both f0 and f1 are equivalences.

p6q The map f is an open immersion of and only if both f0 and f1 are open immersions.

p7q The map f is flat if and only if both f0 and f1 are flat.

p8q The map f is affine if and only if both f0 and f1 are affine.

p9q The map f is a closed immersion if and only if both f0 and f1 are closed immersions.

p10q The map f is separated if and only f0 and f1 are separated.

p11q The map f is n-quasi-compact if and only if f0 and f1 are n-quasi-compact, for
0 ď n ď 8.

p12q The map f is proper if and only if f0 and f1 are proper.

Proof. The “only if” directions are obvious. The converse assertions are all local on X, so we
may assume without loss of generality that X “ SpétA is affine. In this case, the diagram σ

is determined by a pullback square of connective E8-rings

A //

��

A1

��
A0 // A01,
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where the maps π0A0 Ñ π0A01 Ð π0A1 are surjective.
We first prove p1q. The assertion is local on Y, so we may assume that Y “ SpétR is

affine. By assumption, the E8-algebras R0 “ A0 bA R and R1 “ A1 bA R are of finite
generation to order n over A0 and A1, respectively. We wish to show that R is of finite
generation to order n over A. We first treat the case n “ 0. Then π0R0 and π0R1 are finitely
generated as commutative rings over π0A. Since the maps π0RÑ π0R0 and π0RÑ π0R1 are
surjective, we can choose a finite collection x1, . . . , xn P π0R whose images generate π0R0 and
π0R1 over π0A. Let B “ AtX1, . . . , Xnu denote the E8-algebra over A freely generated by
a collection of indeterminates X1, . . . , Xn, so that there is a map of E8-algebras φ : B Ñ R

which is determined uniquely up to homotopy by the requirement that φpXiq “ xi P π0R

for 1 ď i ď k. Let I denote the fiber of φ, and regard I as a R-module. Then A0 bA I and
A1 bA I can be identified with the fibers of the induced maps

A0tX1, . . . , Xku Ñ R0 A1tX1, . . . , Xku Ñ R1,

and are therefore connective. It follows that I is connective, so that φ induces a surjec-
tion π0B » pπ0AqrX1, . . . , Xks Ñ π0R. This proves that π0R is finitely generated as a
commutative ring over π0A, so that R is of finite generation to order 0 over A.

We next prove p1q in the case n ě 1. Assume that R0 and R1 are of finite generation to
order n over A0 and A1, respectively. Then the relative cotangent complexes

LR0{A0 » R0 bR LR{A LR1{A1 » R1 bR LR{A

are perfect to order n over R0 and R1, respectively. Using Proposition 16.2.3.1, we deduce
that LR{A is perfect to order n as an R-module. Consequently, to show that R is of finite
presentation to order n over A, it will suffice to show that π0R is finitely presented as a
commutative ring over π0A (Proposition 4.1.2.1). Let φ : B Ñ R and I “ fibpφq be defined
as above. We have surjective maps

π0I Ñ π0pA0 bA Iq Ñ kerppπ0A0qrX1, . . . , Xks Ñ π0R0q

π0I Ñ π0pA1 bA Iq Ñ kerppπ0A1qrX1, . . . , Xks Ñ π0R1q.

Since π0R0 and π0R1 are finitely presented as commutative rings over π0A0 and π0A1,
respectively, we can choose a finite collection of elements y1, . . . , ym P π0I whose images
generate the ideals

kerppπ0A0qrX1, . . . , Xks Ñ π0R0q kerppπ0A1qrX1, . . . , Xks Ñ π0R1q.

Let AtY1, . . . , Ymu be the corresponding free E8-algebra over A, so that the choice of
elements yi determine a commutative diagram of E8-rings

AtY1, . . . , Ymu //

��

A

��
B // R.
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Let B1 denote the pushout AbAtY1,...,YmuB, so that we obtain a map of E8-rings ψ : B1 Ñ R.
Then B1 is of finite presentation over A, so that π0B

1 is finitely presented as a commutative
ring over π0A. By construction, ψ induces a surjection π0B

1 Ñ π0R. Let J Ď π0B
1 denote

the kernel of this surjection. To complete the proof, it will suffice to show that J is a finitely
generated ideal in π0B

1.
Let B10 “ A0 bA B

1, and define B11 and B101 similarly. We have a pullback diagram of
connective E8-rings

B1 //

��

B10

��
B11

// B101.

By construction ψ induces isomorphisms π0B
1
0 » π0R0 and π0B

1
1 » π0R1. It follows that

J is contained in the kernel of the map π0B Ñ π0B
1
0 ˆ π0B

1
1, which is the image of the

boundary map π1B
1
01 Ñ π0B

1. It follows that the action of π0B
1 on J factors through the

acton of π0B
1
01. Since J belongs to the kernel of the map π0B

1 Ñ π0B
1
01, we deduce that

J2 “ 0. Consequently, the map J Ñ Torπ0B1

0 pπ0R, Jq » π0pR bB1 fibpψqq is bijective. To
prove that J is a finitely generated ideal in π0B

1, it suffices to show that π0pRbB1 fibpψqq
is finitely generated as a module over π0R. Applying Theorem HA.7.4.3.1 , we obtain a
canonical isomorphism π0pR bB1 fibpψqq » π1LR{B1 . Since LR{B1 is 1-connective, it will
suffice to show that LR{B1 is perfect to order 1 as an R-module. We have a fiber seqence

RbB1 LB1{A Ñ LR{A Ñ LR{B1 .

By construction, B1 is finitely presented over A, so that LB1{A is perfect as a B1-module.
Using Remark 2.7.0.7, we are reduced to showing that LR{A is perfect to order 1 as an
R-module, which was already proven above. This completes the proof of p1q.

Assertion p2q follows immediately from p1q. We now prove p3q. As before, we may
suppose that Y “ SpétR is affine. Then R0 and R1 are locally of finite presentation over A0
and A1, respectively, so that the relative cotangent complexes LR0{A0 » R0 bR LR{A and
LR1{A1 » R1 bR LR{A are perfect. Using Proposition 16.2.3.1, we deduce that LR{A is a
perfect R-module. Since R is almost of finite presentation over A (by p2q), we deduce from
Theorem HA.7.4.3.18 that R is locally of finite presentation over A.

We now prove p4q. Once again we may suppose that Y “ SpétR is affine. If R0 and R1
are étale over A0 and A1, then we obtain

R0 bR LR{A » LR0{A0 » 0 » LR1{A1 » R1 bR LR{A.

Using Theorem 16.2.0.2 we deduce that LR{A » 0. Since R is almost of finite presentation
over A (by p2q), it follows from Lemma B.1.3.3 that R is étale over A.
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Assertion p5q follows immediately from Theorem 16.3.0.1. Assertion p6q follows from
p4q and p5q, since f is an open immersion if and only if f is étale and the diagonal map
Y Ñ YˆX Y is an equivalence. To prove p7q, we may assume without loss of generality
that Y “ SpétR is affine. In this case, the desired result follows from Proposition 16.2.3.1.
Assertion p8q follows from Theorem 16.1.0.1.

We now prove p9q. Assume that f0 and f1 are closed immersions. It follows from p8q that
f is affine, so that Y » SpétR for some connective E8-ring R. We have a fiber sequence of
A-modules I Ñ AÑ R. The map f is a closed immersion if and only if the map π0AÑ π0R

is surjective, which is equivalent to the requirement that I is connective. Since f0 and f1
are closed immersions, the tensor products A0 bA I and A1 bA I are connective. It follows
from Proposition 16.2.3.1 that I is connective, as desired.

Assertion p10q follows by applying p9q to the diagonal map Y Ñ YˆX Y. To prove p11q,
it suffices to treat the case where n ă 8. We proceed by induction on n. If n ą 0, it suffices
to show that if we are given a pair of étale maps U Ñ Y Ð V where U and V are affine,
then UˆY V is pn´ 1q-quasi-compact. If Y0 and Y1 are n-quasi-compact, then the spectral
Deligne-Mumford stacks

X0ˆXpUˆY Vq X1ˆXpUˆY Vq

are pn´1q-quasi-compact, so that the desired result follows from the inductive hypothesis. It
therefore suffices to treat the case n “ 0. Suppose that Y can be described as the colimit of a
diagram of open substacks tYαuαPP indexed by a filtered poset P . Since Y0 is quasi-compact,
there exists an index α P P such that YαˆY Y0 » Y0. Enlarging α if necessary, we may
suppose that YαˆY Y1 » Y1. It then follows from p5q that the open immersion Yα ãÑ Y is
an equivalence.

We now prove p12q. Suppose that f0 and f1 are proper. Then p1q implies that f is locally
of finite type, p11q implies that f is quasi-compact, and p10q implies that f is separated. In
order to prove that f is proper, it will suffice to show that f is universally closed. Replacing
f by a pullback of f if necessary, we are reduced to showing that f is closed. Let K Ď |X |
be a closed subset; we wish to show that the image of fpKq Ď |Y | is closed. This follows
from the observation that fpKq is given by the union of the images of the sets K ˆ|X | |X0 |

and K ˆ|X | |X1 | along the closed maps

|X0 |
f0
ÝÑ |Y0 | ãÑ |Y | Ðâ |Y1 |

f1
ÐÝ |X1 |.

Corollary 16.3.2.2. Suppose we are given a pushout diagram of spectral Deligne-Mumford
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stacks
X01

i //

j
��

X0

��
X1 // X

where i and j are closed immersions. If X0 and X1 are separated, then X is also separated.

Proof. We wish to show that the diagonal map δ : X Ñ XˆX is a closed immersion. Using
Proposition 16.3.2.1, we may reduce to proving that each of the vertical maps appearing in
the diagram

X0

δ0
��

X01

δ01
��

//oo X1

δ1
��

X0ˆX X01ˆXoo // X1ˆX
is a closed immersion. We will prove that δ0 is a closed immersion; the proof in the other
two cases are similar. We can factor δ0 as a composition

X0
δ1
Ñ X0ˆX0

δ2
Ñ X0ˆX .

Here δ1 is a closed immersion (by virtue of our assumption that X0 is a separated spectral
algebraic space), and δ2 is a pullback of the closed immersion X0 Ñ X.

16.3.3 Application: Deformations of Spectral Deligne-Mumford Stacks

For every connective E8-ring R, let SpDMR “ SpDM{SpétR denote the 8-category of
spectral Deligne-Mumford stacks over R. The 8-category SpDMR depends functorially
on R. In particular, if we fix a spectral Deligne-Mumford stack X0 defined over a field κ,
then the construction R ÞÑ SpDMRˆSpDMκ

tX0u determines a functor M : CAlgart
κ ÑyCat8,

which assigns to each Artinian κ-algebra R the 8-category MpRq of deformations of X0 over
R: that is, the 8-category whose objects are pullback diagrams

X0 //

��

XR

��
Spétκ // SpétR.

If R is a nonzero connective E8-ring, then the 8-category SpDMR contains noninvertible
morphisms, and is not essentially small. However, if R is an Artinian E8-algebra over κ,
then the augmentation map RÑ κ determines a conservative functor SpDMR Ñ SpDMκ,
so that MpRq is a Kan complex.

Theorem 16.3.3.1. Let κ be a field and let X0 be a spectral Deligne-Mumford stack over κ.
Then the construction R ÞÑMpRq determines a formal moduli problem M : CAlgart

κ Ñ S.
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Proof. Let κ be a field and let X0 Ñ Spétκ be a map of spectral Deligne-Mumford stacks
over κ. For every pullback diagram

R //

��

R0

��
R1 // R01

in CAlgart
κ where the maps π0R0 Ñ π0R01 Ð π0R1 are surjective, we obtain a pushout

square of spectral Deligne-Mumford stacks

SpétR01 //

��

SpétR0

��
SpétR1 // SpétR

where the morphisms are closed immersions. It then follows from Theorem 16.3.0.1 that the
map MpRq Ñ MpR1q ˆMpR01qMpR1q is a homotopy equivalence. It follows immediately
from the definitions that Mpκq is contractible.

To complete the proof, it will suffice to show that the 8-groupoid MpRq is essentially
small for each object R P CAlgart

κ . Since R is Artinian, there exists a finite sequence of maps

R “ R0 Ñ R1 Ñ ¨ ¨ ¨ Ñ Rn » κ,

where each of the maps Ri Ñ Ri`1 fits into a pullback square

Ri //

��

Ri`1

��
κ // κ‘ Σmipκq.

We will prove that each MpRiq is essentially small, using descending induction on i. When
i “ n, MpRiq is contractible and there is nothing to prove. To carry out the inductive
step, we note that there is a fiber sequence MpRiq Ñ MpRi`1q Ñ Mpκ ‘ Σmipκqq. Since
MpRi`1q is essentially small and Mpκ‘Σmipκqq is locally small, it follows immediately that
MpRiq is essentially small.

Remark 16.3.3.2. Let κ be a field of characteristic zero, and let X0 be a spectral Deligne-
Mumford stack over κ. It follows from Theorems 16.3.3.1 and 13.3.0.1 that there exists a
differential graded Lie algebra g˚ over κ with the following universal property: for every
Artinian E8-algebra R over κ, there is a canonical homotopy equivalence

MapLieκpDpRq, g˚q » SpDMRˆSpDMκ
tX0u.
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That is, deformations of X0 are “controlled” by the differential graded Lie algebra g˚. It
is possible to describe the differential graded Lie algebra g˚ more explicitly: in good cases,
it can be obtained as the global sections of the tangent complex of X over κ. We refer the
reader to §19.4 for a more detailed discussion.

16.4 Approximations to Formal Moduli Problems

The notion of formal moduli problem introduced in Definition 12.1.3.1 is a very general
one, which includes (as a special case) the formal completion of any reasonable algebro-
geometric object at a point (see Example 16.1.3.2). However, there are also many functors
X : CAlgcn

κ Ñ S which do not quite satisfy the requirements of being a formal moduli
problem, but are nevertheless of interest in deformation theory. The deformation functors
that we will study in §16.5 and §16.6 are of this nature. In this section, we will introduce
a generalization of the notion of formal moduli problem (see Definition 16.4.1.5) which
incorporates these examples as well.

16.4.1 n-Proximate Formal Moduli Problems

We begin by introducing some terminology.

Definition 16.4.1.1. Let n ě ´2 be an integer. We will say that a diagram of spaces

X 1 //

��

Y 1

��
X // Y

is n-Cartesian if the induced map φ : X 1 Ñ X ˆY Y
1 is n-truncated (that is, the homotopy

fibers of φ are n-truncated).

Example 16.4.1.2. If n “ ´2, then a commutative diagram of spaces is n-Cartesian if and
only if it is a pullback square.

The following lemma summarizes some of the basic transitivity properties of Definition
16.4.1.1:

Lemma 16.4.1.3. Let n ě ´2 be an integer, and suppose we are given a commutative
diagram

X 1 //

��

Y 1

��

// Z 1

��
X // Y // Z

in S. If the right square is n-Cartesian, then the outer square is n-Cartesian if and only if
the left square is n-Cartesian.
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Using Lemma 16.4.1.3, we immediately deduce the following generalization of Proposition
12.1.3.2.

Proposition 16.4.1.4. Let pA, tEαuαPT q be a deformation context, and let X : Aart Ñ S
be a functor. Let n ě 0 be an integer. The following conditions are equivalent:

p1q Let σ :
A1

��

// B1

φ
��

A // B

be a diagram in Aart. If σ is a pullback diagram and φ is small, then Xpσq is an
pn´ 2q-Cartesian diagram in S.

p2q Let σ be as in p1q. If σ is a pullback diagram and φ is elementary, then Xpσq is an
pn´ 2q-Cartesian diagram in S.

p3q Let σ be as in p1q. If σ is a pullback diagram and φ is the base point morphism
˚ Ñ Ω8´mEα for some α P T and m ą 0, then Xpσq is an pn´ 2q-Cartesian diagram
in S.

Definition 16.4.1.5. Let pA, tEαuαPT q be a deformation context and let n ě 0 be an
integer. We will say that a functor X : Aart Ñ S is a n-proximate formal moduli problem if
Xp˚q is contractible and X satisfies the equivalent conditions of Proposition 16.4.1.4.

Example 16.4.1.6. A functor X : Aart Ñ S is a 0-proximate formal moduli problem if
and only if it is a formal moduli problem, in the sense of Definition 12.1.3.1.

Remark 16.4.1.7. Let pA, tEαuαPT q be a deformation context, and suppose we are given
a pullback diagram

X 1 //

��

Y 1

��
X // Y

in FunpAart,Sq. If X and Y 1 are n-proximate formal moduli problems and Y is an pn` 1q-
proximate formal moduli problem, then X 1 is an n-proximate formal moduli problem.

Definition 16.4.1.8. Let pA, tEαuαPT q be a deformation context and let f : X Ñ Y be a
natural transformation between functors X,Y : Aart Ñ S. We will say that f is n-truncated
if the induced map XpAq Ñ Y pAq is n-truncated, for each A P Art.
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16.4.2 Classification of n-Proximate Formal Moduli Problems

Let pA, tEαuαPT q be a deformation context and let n ě 0 be an integer. Roughly
speaking, a functor X : Aart Ñ S is an n-proximate formal moduli problem if the axioms of
Definition 12.1.3.1 are approximately satisfied (where the degree of approximation required
depends on n). The main result of this section asserts that, if A admits a deformation
theory, then this is equivalent to the requirement that X can be approximated by a functor
which satisfies the axioms of Definition 12.1.3.1 exactly.

Theorem 16.4.2.1. Let pA, tEαuαPT q be a deformation context which admits a deformation
theory, and let X : Aart Ñ S be a functor such that Xp˚q is contractible (here ˚ denotes the
final object of A). The following conditions are equivalent:

p1q The functor X is an n-proximate formal moduli problem.

p2q There exists an pn´ 2q-truncated map f : X Ñ Y , where Y is an n-proximate formal
moduli problem.

p3q Let L denote a left adjoint to the inclusion ModuliA Ď FunpAart,Sq (see Remark
12.1.3.5). Then the unit map X Ñ LX is pn´ 2q-truncated.

Remark 16.4.2.2. In the statement of Theorem 16.4.2.1, the implications p3q ñ p2q ñ p1q
do not require the assumption that pA, tEαuαPT q admits a deformation theory. We do not
know if the implication p1q ñ p3q holds in greater generality.

Remark 16.4.2.3. Let pA, tEαuαPT q be a deformation context which admits a deformation
theory, and let X : Aart Ñ S be an n-proximate formal moduli problem. It follows from
Theorem 16.4.2.1 that there exists an pn´ 2q-truncated natural transformation α : X Ñ Y ,
where Y is a formal moduli problem. In fact, the formal moduli problem Y (and the natural
transformation α) are uniquely determined up to equivalence. To prove this, we note that
α factors as a composition X

β
Ñ LX

γ
Ñ Y , where β is pn ´ 2q-truncated and γ is a map

between formal moduli problems. For each α P T and each m ě 0, we have homotopy
equivalences

ΩnXpΩ8´m´nEαq » ΩnLXpΩ8´m´nEαq » LXpΩ8´mEαq

ΩnXpΩ8´m´nEαq » ΩnY pΩ8´m´nEαq » Y pΩ8´mEαq.

From this it follows that γ induces an equivalence LXpΩ8´mEαq Ñ Y pΩ8´mEαq. Since
LX and Y are formal moduli problems, we conclude that γ is an equivalence.
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16.4.3 Approximating the Tangent Complex

The main ingredient in our proof of Theorem 16.4.2.1 is to show that if X : Aart Ñ S
is an n-proximate formal moduli problem and LX P ModuliA is the associated formal
moduli problem, then the tangent complex of LX can be computed directly from X. To
make this idea precise, we need to introduce a bit of notation. In what follows, let us
identify Sp “ SppSq with the 8-category of reduced and excisive functors Sfin

˚ Ñ S. Let
L0 : FunpSfin

˚ ,Sq Ñ Sp denote a left adjoint to the inclusion. If X : Aart Ñ S is any functor,
then the composition X ˝Eα is a functor from Sfin

˚ to S, and therefore determines a spectrum
L0pX ˝ Eαq.

Remark 16.4.3.1. Suppose that F : Sfin
˚ Ñ S is a functor which preserves final objects.

Using Example HA.6.1.1.28 , we see that L0F P Sp is given by the formula pL0F qpKq “

lim
ÝÑn

ΩnL0pΣnKq. In particular, the functor L0 is left exact when restricted to the full
subcategory Fun˚pSfin

˚ ,Sq Ď FunpSfin
˚ ,Sq spanned by those functors which preserve final

objects.

We will need the following:

Proposition 16.4.3.2. Let pA, tEαuαPT q be a deformation context which admits a deforma-
tion theory and let L denote a left adjoint to the inclusion functor ModuliA Ď FunpAart,Sq.
Suppose that X : Aart Ñ S is an n-proximate formal moduli problem for some n ě 0.

For each α P T , the canonical map XpEαq Ñ pLXqpEαq induces an equivalence of spectra
L0pX ˝ Eαq Ñ pLXq ˝ Eα.

Proof. The proof proceeds by induction on n. In this case n “ 0, X » LX and X ˝ Eα is
a spectrum, so there is nothing to prove. Assume therefore that n ą 0. Let C be the full
subcategory of FunpAart,Sq spanned by the pn´ 1q-proximate formal moduli problems, and
let C{X denote the fiber product CˆFunpAart,Sq FunpAart,Sq{X . By the inductive hypothesis,
the map L0pY ˝ Eαq Ñ pLY q ˝ Eα is an equivalence of spectra for each Y P C{X . It will
therefore suffice to prove the following assertions (for each α P T ):

paq The spectrum L0pX ˝ Eαq is a colimit of the diagram tL0pY ˝ EαquY PC{X in the
8-category Sp.

pbq The spectrum pLXq˝Eα is a colimit of the diagram tpLY q˝EαuY PC{X in the8-category
Sp.

To prove paq, we note that L0 preserves colimits (being a left adjoint) and that the
construction Y ÞÑ Y pEαq carries colimit diagrams in Fun˚pAart,Sq to colimit diagrams in
Fun˚pSfin

˚ ,Sq, where Fun˚pAart,Sq denotes the full subcategory of FunpAart,Sq spanned by
those functors which preserve final objects and Fun˚pSfin

˚ ,Sq is defined similarly. It will
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therefore suffice to show that X is a colimit of the diagram C{X Ñ FunpAart,Sq. (and
therefore also of the underlying functor C{X Ñ Fun˚pAart,Sq). We prove a more general
assertion: namely, that the identity functor from FunpAart,Sq to itself is a left Kan extension
of the inclusion C Ñ FunpAart,Sq. This follows from Proposition HTT.4.3.2.8 and Lemma
HTT.5.1.5.3 , since C contains the corepresentable functor Spf R for each R P Aart.

We now prove pbq. Fix an index α P T , and let F : C{X Ñ Sp be the functor given by
Y ÞÑ pLY q ˝ Eα. Let ˚ denote the final object of A and let X0 “ Spfp˚q denote the functor
corepresented by ˚, so that X0 is an initial object of Fun˚pAart,Sq. Let X‚ denote the Čech
nerve of the map X0 Ñ X, and let C0

{X denote the full subcategory of C{X spanned by those
maps Y Ñ X which factor through X0. We first prove:

p˚q The functors L|C{X : C{X Ñ ModuliA and F : C{X Ñ Sp are left Kan extensions of
L|C0

{X
and F |C0

{X
.

To prove p˚q, choose an object Y P C{X , and let C0
{Y be the full subcategory of C{Y spanned

by those morphisms Z Ñ Y which factor through Y0 “ X0 ˆX Y . We wish to prove that
LY P ModuliA and FY P Sp are colimits of the diagrams L|C0

{Y
and F |C0

{Y
, respectively. Let

Y‚ denote the simplicial object of C0
{Y given by the Cech nerve of the map Y0 Ñ Y , so that

Yn » Xn ˆX Y . The construction rns ÞÑ Yn determines a left cofinal map ∆op Ñ C0
{Y ; it

will therefore suffice to show that the canonical maps

u : |LY‚| Ñ LY v : |FY‚| Ñ FY

are equivalences. Using Theorem 12.3.3.5 and condition p4q of Definition 12.3.3.2, we deduce
that the construction Z ÞÑ Z ˝ Eα determines a functor ModuliA Ñ Sp which commutes
with sifted colimits. Consequently, to prove that u is an equivalence, it will suffice to show
that v is an equivalence for every choice of index α P T . It follows from Remark 16.4.1.7 that
each Ym is an pn´ 1q-proximate formal moduli problem. Using the inductive hypothesis,
we are reduced to showing that the canonical map θ : |L0pY‚ ˝ Eαq| Ñ L0pY pEαqq is an
equivalence of spectra. Note that Y‚ ˝ Eα is the Čech nerve of the natural transformation
Y0 ˝ Eα Ñ Y ˝ Eα in the 8-category Fun˚pSfin

˚ ,Sq. Since the functor L0 is left exact when
restricted to Fun˚pSfin

˚ ,Sq (Remark 16.4.3.1), we conclude that L0pY‚pEαqq is a Čech nerve
of the map L0pY0 ˝ Eαq Ñ L0pY ˝ Eαqq, so that θ is an equivalence as desired.

To prove pbq, we must show that pLXq ˝ Eα is a colimit of the diagram F . Since F is
a left Kan extension of F |C0

{X
, it will suffice to show that pLXq ˝ Eαq is a colimit of the

diagram F |C0
{X

(Lemma HTT.4.3.2.7 ). The simplicial object X‚ determines a left cofinal map
∆op Ñ C0

{X . We are therefore reduced to proving that the map |pLX‚q ˝ Eα| Ñ pLXq ˝ Eα
is an equivalence of spectra. Since the construction Z ÞÑ Z ˝ Eα determines a functor
ModuliA Ñ Sp which preserves sifted colimits, it will suffice to show that |LX‚| » LX in
ModuliA. This is equivalent to the assertion that LX is a colimit of the diagram L|C0

{X
.
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Using p˚q and Lemma HTT.4.3.2.7 , we are reduced to proving that LX is a colimit of the
diagram L|C{X . Since L preserves small colimits, this follows from the fact that X is a colimit
of the inclusion functor C{X ãÑ FunpAart,Sq.

16.4.4 The Proof of Theorem 16.4.2.1

Our proof of Theorem 16.4.2.1 will require a few more preliminaries.

Lemma 16.4.4.1. Let pA, tEαuαPT q be a deformation context and let X : Aart Ñ S be an
n-proximate formal moduli problem. For each α P T and each m ě 0, the canonical map
θ : XpΩ8´mEαq Ñ Ω8´mL0pX ˝ Eαqq is pn´ 2q-truncated.

Proof. We observe that θ is a filtered colimit of a sequence of morphisms

θm1 : XpΩ8´mEαq Ñ Ωm1XpΩ8´m´m1Eαq.

It will therefore suffice to show that each θm1 is pn ´ 2q-truncated. Each θm1 is given by
a composition of a finite sequence of morphisms XpΩ8´pEαq Ñ ΩXpΩ8´p´1Eαq, which
is pn´ 2q-truncated by virtue of our assumption that X is an n-proximate formal moduli
problem.

Lemma 16.4.4.2. Let pA, tEαuαPT q be a deformation context and let f : X Ñ Y be a natural
transformation between n-proximate formal moduli problems X,Y : Aart Ñ S. Assume that,
for every index α P T and each m ě 0, the map of spaces XpΩ8´mEαq Ñ Y pΩ8´mEαq is
pn´ 2q-truncated. Then, for each A P Aart, the map XpAq Ñ Y pAq is pn´ 2q-truncated.

Proof. Since A is Artinian, we can choose a sequence of elementary morphisms

A “ A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ Ap » ˚.

We will prove that the map θi : XpAiq Ñ Y pAiq is pn´2q-truncated by descending induction
on i. The case i “ p is clear (since θ is a morphism between contractible spaces and therefore
a homotopy equivalence). Assume therefore that i ă p and that θi`1 is pn´ 2q-truncated.
Since the map Ai Ñ Ai`1 is elementary, we have a fiber sequence Ai Ñ Ai`1 Ñ Ω8´mEα
in Aart. Let F be the homotopy fiber of the map XpAi`1q Ñ XpΩ8´mEαq, and let F 1 be
the homotopy fiber of the map Y pAi`1q Ñ Y pΩ8´mEαq. We have a map of fiber sequences

F //

ψ

��

XpAi`1q

θi`1
��

// XpΩ8´mEαq

φ
��

F 1 // Y pAi`1q // Y pΩ8´mEαq.

Since φ is pn´ 2q-truncated by assumption and θi`1 is pn´ 2q-truncated by the inductive
hypothesis, we conclude that ψ is pn´ 2q-truncated. The map θi factors as a composition
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XpAiq
θ1i
Ñ Y pAiqˆF 1 F

θ2i
Ñ Y pAiq, where θ2i is a pullback of ψ and therefore pn´2q-truncated.

It will therefore suffice to show that θ1i is pn ´ 2q-truncated. Since Y is an n-proximate
formal moduli problem, the map Y pAiq Ñ F 1 is pn ´ 2q-truncated, so the projection
Y pAiq ˆF 1 F Ñ F is pn´ 2q-truncated. It will therefore suffice to show that the composite
map XpAiq

θ1i
Ñ Y pAiq ˆF 1 F Ñ F is pn´ 2q-truncated, which follows from our assumption

that X is an n-proximate formal moduli problem.

Proof of Theorem 16.4.2.1. The implication p3q ñ p2q is obvious. We next show that
p2q ñ p1q. Let X : Aart Ñ S be a functor for which Xp˚q is contractible and there exists an
pn´ 2q-truncated map f : X Ñ Y , where Y is an n-proximate formal moduli problem. We
wish to show that X is an n-proximate formal moduli problem. Choose a pullback diagram

A1 //

��

A

φ
��

B1 // B

in Aart where φ is small; we wish to show that left square in the diagram of spaces

XpA1q //

��

XpAq

��

// Y pAq

��
XpB1q // XpBq // Y pBq

is pn ´ 2q-Cartesian. Our assumption that f is pn ´ 2q-truncated guarantees that the
right square is pn´ 2q-Cartesian; it will therefore suffice to show that the outer square is
pn´2q-Cartesian (Lemma 16.4.1.3). Using Lemma 16.4.1.3 again, we are reduced to showing
that both the left and right squares in the diagram

XpA1q //

��

Y pA1q

��

// Y pAq

��
XpB1q // Y pB1q // Y pBq

are pn´ 2q-Cartesian. For the left square, this follows from our assumption that f is pn´ 2q-
truncated; for the right square, it follows from our assumption that Y is an n-proximate
formal moduli problem.

We now complete the proof by showing that p1q ñ p3q. Assume that X : Aart Ñ S is an n-
proximate formal moduli problem and let L : FunpAart,Sq Ñ ModuliA be a left adjoint to the
inclusion; we wish to show that the canonical map X Ñ LX is pn´ 2q-truncated. According
to Lemma 16.4.4.2, it will suffice to show that the map φ : XpΩ8´mEαq Ñ LXpΩ8´mEαq is
pn´2q-truncated for each α P T and each m ě 0. Using Proposition 16.4.3.2, we can identify
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φ with the canonical map XpΩ8´mEαq Ñ Ω8´mL0pX ˝ Eαqq, which is pn´ 2q-truncated
by Lemma 16.4.4.1.

16.5 Deformations of Objects

Let X be an algebraic variety defined over a field κ and let E be an algebraic vector
bundle on X. A first order deformation of E is an algebraic vector bundle E over the scheme
X “ X ˆSpecκ Specκrεs{pε2q, together with an isomorphism i˚E Ñ E (where i denotes
the closed immersion X ãÑ X). Standard arguments in deformation theory show that
the collection of isomorphism classes of first-order deformations can be identified with the
cohomology group H1pX; EndpE qq, while the automorphism of each first order deformation
of E is given by H0pX; EndpE qq. Our goal in this section is to place these observations in a
more general context:

• In the definition above, we can replace the ring of dual numbers κrεs{pε2q by an arbitrary
R P CAlgart

κ to obtain a notion of a deformation of E over R. Let ObjDefE pRq denote
a classifying space for deformations of E over R. Then ObjDefE can be regarded as a
functor CAlgart

κ Ñ S. We will see below that this functor is a formal moduli problem.

• The isomorphisms

H0pX; EndpE qq » π1 ObjDefE pκrεs{pε
2qq H1pX; EndpE qq » π0 ObjDefE pκrεs{pε

2qq

follow from an identification of the ΓpX; EndpE qq with the (shifted) tangent complex
Σ´1TObjDefE

; here ΓpX; EndpE qq denotes the derived global sections of the vector
bundle EndpE q on X.

• The definition of ObjDefE pRq does not require R to be commutative. Consequently,
we can extend the domain of definition of ObjDefE to Algart

κ , and thereby regard
ObjDefE as a formal E1-moduli problem (see Definition 14.0.0.4). We will see that
the identification ΓpX; EndpE qq » Σ´1TObjDefE

is multiplicative: that is, it can be
regarded as an equivalence of nonunital E1-algebras (where Σ´1TObjDefE

is equipped
with the nonunital E1-algebra structure given by Remark 14.2.2.2).

• The definition of the formal moduli problem ObjDefE depends only on the algebraic
vector bundle E as an object of the stable 8-category QCohpXq of quasi-coherent
sheaves on X. We will therefore consider the more general problem of deforming an
object E of an arbitrary stable κ-linear 8-category C.
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16.5.1 Conventions

Let κ be a field and let Modκ denote the 8-category of κ-modules. Recall that a stable
κ-linear 8-category is a Modκ-module object of the 8-category PrSt of presentable stable
8-categories (see Variant D.1.5.1). Note that since Modκ is a symmetric monoidal 8-
category, there is no need to distinguish between left modules and right modules: any stable
κ-linear 8-category C can be regarded either as left-tensored or right-tensored over Modκ.
In particular, if A P Algκ is an E1-algebra over κ, then we can consider the 8-categories
LModApCq and RModApCq of left and right A-module objects of C, respectively. Suppose
we are given an object E of a stable κ-linear 8-category C. We will be interested in two
different relationships that E might bear to an E1-algebra over κ:

paq To every E1-algebra A over κ, we can associate a forgetful functor µ : LModApCq Ñ
LModκpCq » C, given by restriction of scalars along the unit map κÑ A. We define
a left action of A on E to be an object E P LModApCq together with an equivalence
E » µpEq. There is a universal example of such a left action: giving a left action of A
on E is equivalent to giving a morphism AÑ EndpEq in Algκ, where EndpEq denotes
the endomorphism algebra of E (see Corollary HA.4.7.1.41 ).

pbq To every augmented E1-algebra B over κ, we can associate a functor RModBpCq Ñ
RModκpCq » C, given by extension of scalars C ÞÑ C bB κ (along the augmentation
map B Ñ κ). We define a deformation of E over B to be an object EB P RModBpCq
together with an equivalence EB bB κ » E.

As we will see, these two notions are related by Koszul duality.

Remark 16.5.1.1. The reader might object that the distinction between right and left
modules in the above discussion is artificial. For every algebra object A P Algκ, there is a
canonical equivalence of 8-categories LModApCq » RModArevpCq, where Arev denotes the
algebra A equipped with the opposite multiplication (see Remark HA.4.1.1.7 ). Consequently,
we can replace left actions by right actions in paq, or right actions by left actions in pbq.
However, in what follows, it will be convenient not to make these replacements. When
analyzing a fixed object E P C, algebras A which act on E itself will act on the left, and
augmented algebras B over which we have a deformation of E will act on the right. This
will help us to avoid confusion in the discussion which follows, and has the added benefit
of being compatible with our conventions for the Koszul duality functor Dp1q studied in
Chapter 14.

16.5.2 Classifying Spaces of Deformations

We now observe that deformations of an object E P C depend functorially on the ring
they are defined over:
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Construction 16.5.2.1. Let κ be a field, let C be a stable κ-linear 8-category, and let
E P C be an object. Let RModpCq denote the 8-category of pairs pB,EBq where B P Algκ
and EB is a right B-module object of C. The forgetful functor

q : RModpCq Ñ Algκ pB,EBq ÞÑ B

is a coCartesian fibration. Let RModcoCartpCq denote the subcategory of RModpCq spanned
by the q-coCartesian morphisms, so that q restricts to a left fibration RModcoCartpCq Ñ Algκ.
We will abuse notation by identifying E with an object of RModcoCartpCq (via the equivalence
RModκpCq Ñ C). Set DeforrEs “ RModcoCartpCq{E . We will refer to DeforrEs as the 8-
category of deformations of E.

There is an evident left fibration θ : DeforrEs Ñ Algaug
κ , whose fiber over an object

B P Algaug
κ can be identified with the Kan complex pRModBpCq ˆC tEuq

» of deformations
of E over B. Consequently, we can view the construction B ÞÑ pRModBpCq ˆC tEuq

»

determining a functor ObjDef`E : Algaug
κ Ñ pS.

Let C be as in Construction 16.5.2.1. Proposition 16.2.1.1 implies that for every pullback
diagram

B //

��

B0

��
B1 // B01

in Algκ, the induced functor RModBpCq Ñ RModB0pCq ˆRModB01 pCq RModB1pCq is fully
faithful. This immediately implies the following:

Proposition 16.5.2.2. Let κ be a field, let C a stable κ-linear 8-category, and let E P C
be an object. Then, for every pullback diagram

B //

��

B0

��
B1 // B01

in Algaug
κ , the induced map ObjDef`EpBq Ñ ObjDef`EpB0q ˆObjDef`EpB01q

ObjDef`EpB1q has
p´1q-truncated homotopy fibers (that is, it induces a homotopy equivalence onto its essential
image).

Corollary 16.5.2.3. Let κ be a field, let C a stable κ-linear 8-category, let E P C an object,
and let ObjDef`E : Algaug

κ Ñ pS be as in Construction 16.5.2.1. Then:

p1q The space ObjDef`Epκq is contractible.

p2q Let V P Modκ. Then the space ObjDef`Epκ‘ V q is essentially small.
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p3q Let B P Algaug
κ be Artinian. Then the space ObjDef`EpBq is essentially small.

Proof. Assertion p1q is immediate from the definitions. To prove p2q, we note that for each
B P Algaug

κ , the space ObjDef`EpBq is locally small (when regarded as an 8-category). We
have a pullback diagram

κ‘ V //

��

κ

��
κ // κ‘ ΣpV q

so that Proposition 16.5.2.2 guarantees that ObjDef`Epκ‘V q is a summand of Ω ObjDef`Epκ‘
ΣpV qq, and therefore essentially small. We now prove p3q. Assume that B is Artinian, so
that there exists a finite sequence of maps B » B0 Ñ B1 Ñ ¨ ¨ ¨ Ñ Bn » κ and pullback
diagrams

Bi //

��

κ

��
Bi`1 // κ‘ Σmipκq.

Using p1q, p2q, and Proposition 16.5.2.2, we deduce that each ObjDef`EpBiq is essentially
small using descending induction on i.

16.5.3 Deformations as a Moduli Problem

We now restrict our attention to deformations of an object E P C over Artinian E1-
algebras.

Notation 16.5.3.1. Let κ be a field, let C be a stable κ-linear 8-category, and let E P C

an object. We let ObjDefE denote the composite functor Algart
κ ãÑ Algaug

κ

ObjDef`E
ÝÝÝÝÝÑ pS. It

follows from Corollary 16.5.2.3 that the functor ObjDefE takes essentially small values, and
can therefore be regarded as a functor from Algart

κ to S.
More informally: the functor ObjDefE assigns to each B P Algart

κ a classifying space for
pairs pEB, µq, where EB P RModBpCq and µ : EB bB κÑ E is an equivalence in C.

Combining Corollary 16.5.2.3 and Proposition 16.5.2.2, we obtain the following:

Corollary 16.5.3.2. Let κ be a field, let C be a stable κ-linear 8-category, and let E P C be
an object. Then the functor ObjDefE : Algart

κ Ñ S is a 1-proximate formal moduli problem
(see Definition 16.4.1.5).

Notation 16.5.3.3. Let κ be a field, and let L : FunpAlgart
κ ,Sq Ñ Modulip1qκ denote a left

adjoint to the inclusion. If C is a stable κ-linear 8-category and E P C is an object, we let
ObjDef^E denote the formal E1-moduli problem LpObjDefEq. By construction, we have a
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natural transformation ObjDefE Ñ ObjDef^E . It follows from Theorem 16.4.2.1 that this
natural transformation is p´1q-truncated: that is, it exhibits ObjDefEpRq as a summand
of ObjDef^EpRq, for each R P Algart

κ . Moreover, ObjDef^E is characterized up to equivalence
(as a formal E1-moduli problem) by this property: see Remark 16.4.2.3.

16.5.4 Statement of the Main Theorem

Let κ be a field and let C be a stable κ-linear 8-category. For each object E P C, we
let EndpEq P Modκ denote the classifying object for endomorphisms of M : that is, EndpEq
is an object of Modκ equipped with a map a : EndpEq b E Ñ E in C having the following
universal property: for every object V P Modκ, composition with a induces a homotopy
equivalence MapModκpV,EndpEqq » MapCpV bE,Eq. The existence of the object EndpEq
follows from Proposition HA.4.2.1.33 . Moreover, it follows from the results of §HA.4.7.1
show that we can regard EndpEq as an object of Algκ and E as a left module over EndpEq.
In what follows, it will be convenient to view EndpEq as a nonunital E1-algebra over κ, which
can be identified with the augmentation ideal of the augmented E1-algebra κ‘ EndpEq.

We can now state our main result:

Theorem 16.5.4.1. Let κ be a field, let C be a stable κ-linear 8-category, let E P C be
an object, and let Ψ : Algaug

κ Ñ Modulip1qκ be the equivalence of 8-categories of Theorem
14.0.0.5. Then there is a canonical equivalence of formal E1-moduli problems ObjDef^E »
Ψpκ‘ EndpEqq.

Remark 16.5.4.2. In the situation of Theorem 16.5.4.1, for each Artinian E1-algebra B
over κ, we have a p´1q-truncated map

ObjDefEpBq ãÑ ObjDef^EpBq » MapAlgaug
κ
pDp1qpBq, κ‘EndpEqq » MapAlgκpD

p1q
B ,EndpEqq.

In other words, to every deformation EB of E over B, we can associate a left action of the
Koszul dual Dp1qpBq on E which determines the deformation EB up to a contractible space
of choices. However, in some cases there exist actions of Dp1qpBq on E which do not arise in
this way (these actions correspond to a more general kind of deformation of E: see Remark
16.5.7.3).

Example 16.5.4.3. Let κ be a field and regard Modκ as a κ-linear 8-category. Let V be a
finite-dimensional vector space over κ and define ObjDefV as above. We will see below that
ObjDefV is a formal E1-moduli problem (Proposition 16.5.7.1), so that ObjDefV |CAlgart

κ

is a formal moduli problem over κ. Assume now that κ has characteristic zero, and let
Φ : Lieκ Ñ Moduliκ be the equivalence of Theorem 13.0.0.2. Combining Theorems 16.5.4.1
and 14.3.0.1, we deduce that ObjDefV |CAlgart

κ
corresponds, under the equivalence Φ, to the

matrix algebra EndpV q (equipped with its usual Lie bracket).
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Remark 16.5.4.4. Let κ be a field, let C be a stable κ-linear 8-category, and let E P C be
an object. For each R P Algart

κ , Theorem HA.4.8.4.1 yields a canonical homotopy equivalence

ObjDefEpRq “ RModRpCq» ˆC tEu » MapLinCatκpLModR, Cq» ˆC tEu.

It follows that ObjDefEpRq depends only on the κ-linear 8-category LModR, together with
the distinguished object κ P LModR (supplied by the augmentation R Ñ κ), so that the
construction R ÞÑ ObjDefEpRq enjoys some extra functoriality. This special feature of
ObjDefE is reflected in the structure of the associated formal E1-moduli problem ObjDef^E :
according to Theorem 16.5.4.1, ObjDef^E has the form ΨpAq, where A P Algaug

κ is an
augmented E1-algebra over κ whose augmentation ideal mA » EndpEq is itself unital.

16.5.5 Construction of the Equivalence

The equivalence ObjDef^E » Ψpκ‘ EndpEqq of Theorem 16.5.4.1 arises from a natural
transformation ObjDefE Ñ Ψpκ ‘ EndpEqq. We will obtain this natural transformation
from a somewhat elaborate construction.

Construction 16.5.5.1. Let κ be a field, let C be a stable κ-linear 8-category, and let
E P C be an object. We let λ :Mp1q Ñ Algaug

κ ˆAlgaug
κ denote the pairing of Construction

??, so that we can identify objects of Mp1q with triples pA,B, εq where A,B P Algκ and
ε : AbκB Ñ κ is an augmentation. We will also regard the 8-category C as bitensored over
Modκ.

Given an object pA,B, εq PMp1q and an object pB,EB, µq P DeforrEs, we regard AbκEB
as an object of the 8-category of bimodules ABModAbκBpCq, so that pAbκ EBq bAbκB κ
can be identified with an object of LModApCq whose image in C is given by EB bB κ » E.
This observation determines a functor ρ :Mp1qˆAlgaug

κ
DeforrEs Ñ LModpCq ˆC tEu, given

on objects by

pA,B, ε : Abκ B Ñ κ,EB, µ : EB bB κ » Eq ÞÑ pAb EBq bAbκB κ

(see Corollary HA.4.7.1.40 ). Let LModaugpCq denote the fiber product Algaug
κ ˆAlgκ LModpCq.

Since an augmentation on Abκ B induces an augmentation on A, we can lift ρ to a functor
ρ : DeforrEsˆAlgaug

κ
Mp1q Ñ DeforrEsˆpLModaugpCqˆC tEuq which factors as a composition

DeforrEs ˆAlgaug
κ
Mp1q i

Ñ ĂM
p1q λ1
Ñ DeforrEs ˆ pLModaugpCq ˆC tEuq

where i is an equivalence of 8-categories and λ1 is a categorical fibration. It is not difficult
to see that λ1 is a left representable pairing of 8-categories, which induces a duality functor
D
p1q
E : DeforrEsop Ñ LModaugpCqˆC tEu. Concretely, the functor Dp1qE assigns to each object

pB,EA, µq P DeforrEsop the object pDp1qpBq, Eq, where we regard E as a left Dp1qpBq-module
object of C via the equivalence E » EB bB κ » pD

p1qpBq bκ EBq bDp1qpBqbκB κ.
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Corollary HA.4.7.1.40 supplies an equivalence of 8-categories η : LModpCq ˆC tEu »

pAlgκq{EndpEq, hence also an equivalence LModaugpCq ˆC tEu » pAlgaug
κ q{κ‘EndpEq. We

therefore obtain a diagram of 8-categories

DeforrEsop //

��

pAlgaug
κ q{κ‘EndpEq

��
pAlgaug

κ qop Dp1q // Algaug
κ

which commutes up to canonical homotopy, where the vertical maps are right fibrations. This
diagram determines a natural transformation β` : ObjDef`E Ñ X, where X : Algp1q,art

κ Ñ

S denotes the functor given on objects by XpBq “ MapAlgaug
κ
pDp1qpBq, κ ‘ EndpEqq »

MapAlgκpD
p1qpAq,EndpEqq. Restricting to the case where B is Artinian, we obtain a natural

transformation β : ObjDefE Ñ Ψpκ ‘ EndpEqq, where Ψ : Algaug
κ Ñ Modulip1qκ is the

equivalence of Theorem 14.0.0.5.

16.5.6 The Proof of Theorem 16.5.4.1

Using Construction 16.5.5.1, we can formulate a more precise version of Theorem 16.5.4.1:

Proposition 16.5.6.1. Let κ be a field, let C be a stable κ-linear 8-category, and let E P C
be an object. Then the natural transformation β : ObjDefE Ñ Ψpκ‘EndpEqq of Construction
16.5.5.1 induces an equivalence of formal E1-moduli problems ObjDef^E » Ψpκ‘ EndpEqq.
In other words, for every object B P Algart

κ , the natural map

ObjDefEpBq Ñ Ψpκ‘ EndpEqqpBq » MapAlgaug
κ
pDp1qpBq, κ‘ EndpEqq

has p´1q-truncated homotopy fibers (see Remark 16.4.2.3).

To prove Proposition 16.5.6.1, it will suffice to show that the map ObjDef^E Ñ Ψpκ‘
EndpEqq induces an equivalence of tangent complexes (Proposition 12.2.2.6). Using the
description of the tangent complex of ObjDef^E supplied by Proposition 16.4.3.2, we are
reduced to proving the following special case of Proposition 16.5.6.1:

Proposition 16.5.6.2. Let κ be a field, let C be a stable κ-linear 8-category, and let E P C
be an object. For each m ě 0, the natural transformation β : ObjDefE Ñ Ψpκ‘ EndpEqq of
Construction 16.5.5.1 induces a p´1q-truncated map

ObjDefEpκ‘ Σmpκqq Ñ MapAlgaug
κ
pDp1qpκ‘ Σmpκqq, κ‘ EndpEqq

» MapAlgκpD
p1qpκ‘ Σmpκqq,EndpEqq.
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Proof. We have a commutative diagram

ObjDefEpκ‘ Σmpκqq //

��

MapAlgκpD
p1qpκ‘ Σmpκqq,EndpEqq

��
Ω ObjDefEpκ‘ Σm`1pκqq

θ // Ω MapAlgκpD
p1qpκ‘ Σm`1pκqq,EndpEqq,

where the left vertical map is p´1q-truncated by Corollary 16.5.3.2 and the right vertical map
is a homotopy equivalence. It will therefore suffice to show that θ is a homotopy equivalence.
Let B “ κ‘ Σm`1pκq and let EB “ E bκ B P RModBpCq. We can identify the domain of θ
with the homotopy fiber of the map ξ : MapRModBpCqpEB, EBq Ñ MapCqpE,Eq. We have a
fiber sequence Σm`1E Ñ EB Ñ E in RModBpCq, where B acts on E via the augmentation
B Ñ κ. It follows that the homotopy fiber of ξ is given by

MapRModBpCqpEB,Σ
m`1Eq » MapCpEB bB κ,Σm`1Eq

» MapCpE,Σm`1Eq

» MapModκpΣ
´m´1pκq,EndpEqq

The map θ is induced by a morphism ν : Σ´m´1pκq Ñ Dp1qpκ ‘ Σmpκqq in Modκ. Let
Freep1q : Modκ Ñ Algκ be a left adjoint to the forgetful functor, so that ν determines an
augmentation pκ‘Σmpκqqbκ Freep1qpΣ´m´1pκqq Ñ κ. This pairing exhibits κ‘Σmpκq as a
Koszul dual of Freep1qpΣ´m´1pκqq, and therefore also exhibits Freep1qpΣ´m´1pκqq as a Koszul
dual of κ‘ Σmpκq (see Theorem 14.1.3.2). It follows that θ is a homotopy equivalence, as
desired.

16.5.7 Connectivity Hypotheses

We conclude this section with a few observations concerning the discrepancy between
the deformation functor ObjDefE of Notation 16.5.3.1 and the associated formal E1-moduli
problem ObjDef^E of Notation 16.5.3.3. Under some mild additional hypotheses, one can
show that these two functors are equivalent:

Proposition 16.5.7.1. Let κ be a field, let C be a separated prestable κ-linear 8-category.
For every object E P SppCqě0, the functor ObjDefE : Algart

κ Ñ S of Notation 16.5.3.1 is a
formal E1-moduli problem.

Proof. LetB P Algart
κ . We first show that if pEB, µq P ObjDefEpBq, then EB P RModBpSppCqqě0.

Since B is Artinian, we can choose a finite sequence of maps

B » B0 Ñ B1 Ñ ¨ ¨ ¨ Ñ Bn » κ
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and pullback diagrams
Bi //

��

κ

��
Bi`1 // κ‘ Σmipκq

for some integers mi ą 0. We prove by descending induction on i that EB bB Bi belongs to
RModBipSppCqqě0. In this case i “ n, this follows from our assumption that E P SppCqě0.
If i ă n, it follows from the inductive hypothesis since we have a fiber sequence

Σmi´1pEq Ñ EB bB Bi Ñ EB bB Bi`1

in SppCq.
Proposition 16.2.2.1 implies that if

B //

��

B0

f
��

B1
g // B01

is a pullback diagram in Algart
κ where the maps f and g induce surjections π0B0 Ñ π0B01 Ð

π0B1, then the functor

RModBpSppCqqě0 Ñ RModB0pSppCqqě0 ˆRModB01 pSppCqqě0 RModB1pSppCqqě0

is an equivalence of 8-categories. It follows immediately that

ObjDefEpBq //

��

ObjDefEpB0q

��
ObjDefEpB1q // ObjDefEpB01q

is a pullback diagram in S.

Corollary 16.5.7.2. Let κ be a field, let C be separated prestable κ-linear 8-category, and
let E P SppCqě0. Then the natural transformation β : ObjDefE Ñ Ψpκ ‘ EndpEqq of
Construction 16.5.5.1 is an equivalence. In other words, ObjDefE : Algart

κ Ñ S is the formal
E1-moduli problem which corresponds, under the equivalence of Theorem 14.0.0.5, to the
augmented E1-algebra κ‘ EndpMq.

Proof. Combine Theorem 16.5.4.1, Corollary 16.5.3.2, and Theorem 16.4.2.1.

Remark 16.5.7.3. Let κ be a field. For B P Algart
κ , let RMod!

B denote the 8-category
of Ind-coherent right B-modules over B (see §14.5). One can show that RMod!

B has
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the structure of a κ-linear 8-category (depending functorially on B). For any κ-linear
8-category C, let RMod!

BpCq denote the relative tensor product CbModκ RMod!
B. The

equivalence RMod!
B » LModDp1qpBq of Proposition 14.6.1.1 is κ-linear, and (combined with

Theorem HA.4.8.4.6 ) determines an equivalence RMod!
BpCq » LModDp1qpBqpCq. Let E P C

and let X : Algart
κ Ñ S be the formal E1-moduli problem associated to κ‘ EndpEq. Then

X is given by the formula

XpBq “ MapAlgaug
κ
pDp1qpBq, κ‘ EndpEqq

» MapAlgκpD
p1qpBq,EndpEqq

» LModDp1qpBqpCq ˆC tEu

» RMod!
BpCq ˆC tEu.

In other words, the formal E1-moduli problem X assigns to each B P Algart
κ the classifying

space for pairs pEB, µq, where EB P RMod!
BpCq and µ is an equivalence of E with the image of

EB in the 8-category C. The p´1q-truncated map ObjDefEpBq ãÑ ObjDef^EpBq » XpBq is
induced by fully faithful embedding RModBpCq ãÑ RMod!

BpCq, which are in turn determined
by the fully faithful embeddings RModB ãÑ RMod!

B of Proposition 14.5.3.2. From this point
of view, we can view Proposition 16.5.7.1 as a generalization of Proposition 14.5.4.3: it
asserts that the fully faithful embedding RModBpCq ãÑ RMod!

BpCq induces an equivalence
on connective objects (where we declare an object of RMod!

BpCq to be connective if its image
in C is connective).

16.6 Deformations of Categories

Let κ be a field and let C be a stable κ-linear 8-category. In §16.5, we studied the
problem of deforming a fixed object E P C. In this section, we will study the problem
of the deforming the 8-category C itself. For every Artinian E2-algebra B over κ, we
will introduce a classifying space CatDefCpBq which parametrizes stable (right) B-linear
8-categoriers CB equipped with an equivalence C » CB bLModB Modκ. We will show
that, modulo size issues, the construction B ÞÑ CatDefCpBq is a 2-proximate formal E2-
moduli problem (Corollary 16.6.2.4; in good cases, we can say even more: see Theorems
?? and 16.6.10.2). Using Theorem 16.4.2.1, we deduce that there is a 0-truncated natural
transformation CatDefC Ñ CatDef^C , where CatDef^C is a formal E2-moduli problem (which
is uniquely determined up to equivalence: see Remark 16.4.2.3). According to Theorem
15.0.0.9, the formal moduli problem CatDef^C is given by R ÞÑ MapAlgp2q,aug

κ
pDp2qpRq, Aq

for an essentially unique augmented E2-algebra A over κ. The main result of this section
identifies the augmentation ideal mA (as a nonunital E2-algebra) with the κ-linear center of
the 8-category C (Theorem 16.6.3.8): in other words, with the chain complex of Hochschild
cochains on C.
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Remark 16.6.0.1. Our presentation in this section will follow that of §16.5: most of our
results are direct parallels of analogous (but easier) statements about the deformation theory
of an object E of a fixed κ-linear 8-category C.

16.6.1 Conventions on Deformations

Let R be an E2-ring. Then we can regard the 8-category LModR of left R-modules as
an associative algebra object of the 8-category PrSt of presentable stable 8-categories. We
define a stable left R-linear 8-category to be a left module over LModR in the 8-category
PrSt, and a stable right R-linear 8-category to be a right module over LModR in the
8-category PrSt.

Warning 16.6.1.1. Throughout the rest of this book, we use the term stable R-linear
8-category to refer to a stable left R-linear 8-category (see Variant D.1.5.1). However, in
this section it will be important to distinguish between left and right actions of LModR. Of
course, the difference is slight: the datum of a stable left R-linear 8-category is equivalent to
the datum of a stable right Rrev-linear 8-category, where Rrev denotes the E2-ring obtained
by reversing the multiplication on R (see Warning ??). In particular, when R is an E8-ring,
there is no difference between left and right R-linear 8-categories; in this case, we will refer
to either simply as a stable R-linear 8-category.

Let φ : A Ñ B be a morphism of E2-rings. If C is a stable (left or right) B-linear 8-
category, then we can regard C as a stable (left or right) A-linear 8-category by restriction of
scalars along φ. In either case, the restriction of scalars functor admits a left adjoint, which
we call extension of scalars along φ. If D is a stable right A-linear 8-category, we denote its
extension of scalars by DbAB “ DbLModA LModB or by RModBpDq. If D is a stable left
A-linear 8-category, we denote its extension of scalars by B bA D “ LModB bLModA D or
by LModBpDq.

Let κ be a field and let C be a stable κ-linear 8-category. Suppose that B be an E2-
algebra over κ equipped with an augmentation ε : B Ñ κ. We define a deformation of C over
B to be a pair pCB, µq, where CB is a stable right B-linear 8-category and µ : CB bBκÑ C
is an equivalence of stable κ-linear 8-categories. Our first observation is that the collection
of such deformations depends functorially on B.

Construction 16.6.1.2. Let κ be a field. We let RCatpκq denote the 8-category given
by the fiber product Algp2qκ ˆAlgpPrStqRModpPrStq. We view the objects of RCatpκq as
pairs pB,Dq, where B is an E2-algebra over κ and D is a stable right B-linear 8-category.
Projection onto the first factor furnishes a coCartesian fibration q : RCatpκq Ñ Algp2qκ . We let
RCatpκqcoCart denote the subcategory of RCatpκq spanned by the q-coCartesian morphisms
(so a morphism from pA, Cq to pB,Dq in RCatpκqcoCart consists of a morphism φ : AÑ B of
E2-algebras over κ together with a B-linear equivalence CbAB » D).
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Let C be a stable κ-linear 8-category and regard pκ, Cq as an object of RCatpκq. We let
DeforrCs denote the 8-category RCatpκqcoCart

{pκ,Cq . We will refer to DeforrCs as the 8-category
of deformations of C. This 8-category is equipped with an evident left fibration

ρ : DeforrCs Ñ pAlgp2qκ q{κ “ Algp2q,aug
κ ,

which is classified by a functor CatDef`C : Algp2q,aug
κ Ñ pS. Unwinding the definitions, we

see that if B is an augmented E2-algebra over κ, then we can identify CatDef`C pBq with
the underlying Kan complex of the 8-category RModLModB pPrStq ˆModModκ pPrStq tCu of
deformations of C over B.

16.6.2 Deformations as a Formal Moduli Problem

We now analyze the behavior of Construction 16.6.1.2 with respect to fiber products of
E2-algebras.

Proposition 16.6.2.1. Let κ be a field, let C be a stable κ-linear 8-category, and let
CatDef`C : Algp2q,aug

κ Ñ pS be as in Construction 16.6.1.2. Then for every pullback diagram

B //

��

B0

��
B1 // B01

in Algp2q,aug
κ , the induced map

θ : CatDef`C pBq Ñ CatDef`C pB0q ˆCatDef`C pB01q
CatDef`C pB1q

is 0-truncated (that is, the homotopy fibers of θ are discrete).

Proof. If A is an E2-ring and D and E are stable right A-linear 8-categories, we let
FunApD, Eq denote the 8-category of right LModA-linear functors from D to E .

If E is a stable right B-linear 8-category, then Proposition 16.2.1.1 implies that the
canonical map

E Ñ pE bBB0q ˆE bBB01 pE bBB1q

is fully faithful. Consequently, for any other stable right B-linear 8-category D, the induced
map

FunBpD, Eq Ñ FunBpD, E bBB0q ˆFunBpD,E bBB01q FunBpD, E bBB1q

» FunB0pDbBB0, E bBB0q ˆFunB01 pDbBB01,E bBB01q FunB1pDbBB1, E bBB1q
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is fully faithful. Passing to the underlying Kan complexes and taking D and E to be
deformations of C over B, we deduce that the commutative diagram

tDu ˆCatDef`C pBq
tEu //

��

tDu ˆCatDef`C pB0q
tEu

��
tDu ˆCatDef`C pB1q

tEu // tDu ˆCatDef`C pB01q
tEu

is p´1q-Cartesian (in the sense of Definition 16.4.1.1). Since this conclusion holds for every
pair of deformations D and E , we conclude that the diagram

CatDef`C pBq //

��

CatDef`C pB0q

��
CatDef`C pB1q // CatDef`C pB01q

is 0-Cartesian, as desired.

Corollary 16.6.2.2. Let κ be a field, let C be a stable κ-linear 8-category, and let CatDef`C :
Algp2q,aug

κ Ñ pS be as in Construction 16.6.1.2. Then:

p1q The space CatDef`C pκq is contractible.

p2q Let V P Modκ. Then CatDef`C pκ‘V q is locally small, when regarded as an 8-category.
In other words, each connected component of CatDef`C pκ‘ V q is essentially small.

p3q Let B P Algp2q,aug
κ be Artinian. Then the space CatDef`C pBq is locally small (that is,

each connected component of CatDef`C pBq is essentially small).

Proof. Assertion p1q is immediate from the definitions. To prove p2q, we note that for each
B P Algp2q,aug

κ and every point η P CatDef`C pBq corresponding to a pair pCB, µq, the space
Ω2pCatDef`C pBq, ηq can be identified with the homotopy fiber of the restriction map

MapFunBpCB ,CBqpid, idq Ñ MapFunκpC,Cqpid, idq

and is therefore essentially small. We have pullback diagrams

κ‘ V //

��

κ

��

κ‘ ΣpV q //

��

κ

��
κ // κ‘ ΣpV q κ // κ‘ Σ2pV q

so that Proposition 16.6.2.1 guarantees that the map CatDef`C pκ‘ V q Ñ Ω2 CatDef`C pκ‘
Σ2pV qq has discrete homotopy fibers. It follows that each path component of CatDef`C pκ‘V q
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is a connected covering space of the essentially small space Ω2 CatDef`C pκ‘ Σ2pV qq, and is
therefore essentially small.

We now prove p3q. Assume that B is Artinian, so that there exists a finite sequence of
maps B » B0 Ñ B1 Ñ ¨ ¨ ¨ Ñ Bn » κ and pullback diagrams

Bi //

��

κ

��
Bi`1 // κ‘ Σmipκq.

We prove that each CatDef`C pBiq is locally small using descending induction on i. Using
p1q, p2q, and the inductive hypothesis, we deduce that X “ CatDef`C pκq ˆCatDef`C pκ‘Σmi pκqq
CatDef`C pBi`1q is locally small. Proposition 16.6.2.1 implies that the map CatDef`C pBi`1q Ñ

X has discrete homotopy fibers. It follows that every connected component of CatDef`C pBi`1q

is a connected covering space of a path component of X, and is therefore essentially small.

Notation 16.6.2.3. Let κ be a field and let C be a stable κ-linear 8-category. We let
CatDefC : Algp2q,art

κ Ñ pS denote the composition of the functor CatDef`C of Construction
16.6.1.2 with the inclusion Algp2q,art

κ ãÑ Algp2q,aug
κ .

Corollary 16.6.2.4. Let κ be a field and let C be a stable κ-linear 8-category. Then there
exists a formal E2-moduli problem CatDef^C : Algp2q,art

κ Ñ S and a natural transformation
α : CatDefC Ñ CatDef^C which is 0-truncated. In particular, we can regard CatDefC :
Algp2q,art

κ Ñ pS as a 2-proximate formal E2-moduli problem (in a larger universe); see
Theorem 16.4.2.1.

Proof. Combining Corollary 16.6.2.2, Proposition 16.6.2.1, and Theorem 16.4.2.1, we deduce
the existence of a formal moduli problem CatDef^C : Algp2q,art

κ Ñ pS and a 0-truncated natural
transformation α : CatDefC Ñ CatDef^C . For each m ě 0, we see that the space

CatDef^C pκ‘ Σmpκqq » Ω2 CatDef^C pκ‘ Σm`2pκqq » Ω2 CatDefCpκ‘ Σm`2pκqq

is essentially small (see the proof of Corollary 16.6.2.2). For an arbitrary object B P Algp2q,art
κ ,

we can choose a finite sequence of maps B “ B0 Ñ B1 Ñ ¨ ¨ ¨ Ñ Bn » κ and pullback
diagrams

Bi //

��

κ

��
Bi`1 // κ‘ Σmipκq.

Using that CatDef^C is a formal E2-moduli problem, we deduce that each CatDef^C pBiq is
essentially small by descending induction on i, so that CatDef^C pBq is essentially small.

Remark 16.6.2.5. The formal E2-moduli problem CatDef^C appearing in Corollary 16.6.2.4
is unique (up to a contractible space of choices): see Remark 16.4.2.3.
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16.6.3 The Main Theorem

Let κ be a field, let C be a stable κ-linear 8-category, and let CatDef^C be the formal
E2-moduli problem of Corollary 16.6.2.4. Using Theorem 15.0.0.9 (and its proof), we see that
there exists an (essentially unique) augmented E2-algebra A over κ for which the functor
CatDef^C is given by CatDef^C pBq “ MapAlgp2q,aug

κ
pDp2qpBq, Aq. Our next goal is to make the

relationship between A and C more explicit.

Definition 16.6.3.1. Let κ be an E8-ring and let C be a stable κ-linear 8-category.
We let LCatpκq denote the fiber product Algp2qκ ˆAlgpPrStq LModpPrStq whose objects are
pairs pA,Dq, where A is an E2-algebra over κ and D is a stable left A-linear 8-category
(see Construction 16.6.1.2). The construction pA,Dq ÞÑ D determines a forgetful functor
LCatpκq Ñ LinCatSt

κ (here LinCatSt
κ denotes the 8-category of stable κ-linear 8-categories).

We let LCatpκqC denote the fiber product LCatpκq ˆLinCatκ tCu: that is, the 8-category
whose objects are E2-algebras A together with an action of A on C (in the sense of §D.1).
We will say that an object pA, Cq P LCatpκqC exhibits A as the κ-linear center of C if pA, Cq
is a final object of LCatpκqC .

Remark 16.6.3.2. In the situation of Definition 16.6.3.1 Corollary HA.4.7.1.42 implies
that the forgetful functor LModpLinCatκq ˆLinCatκ tCu Ñ AlgpLinCatκq is a right fibration.
It follows that the forgetful functor q : LCatpκqC Ñ Algp2qκ is also a right fibration, so that
an object pA, Cq P LCatpκqC is final if and only if the right fibration q is represented by
the object A P Algp2qκ . In other words, a κ-linear center A of C can be characterized by
the following universal property: for every A1 P Algp2qκ , the space MapAlgp2qκ

pA1, Aq can be
identified with the space LinCatA1 ˆLinCatκtCu parametrizing actions of A1 on C.

Proposition 16.6.3.3. Let κ be an E8-ring and let C be a stable κ-linear 8-category. Then
there exists an object pA, Cq P LCatpκqC which exhibits A as a κ-linear center of C.

Proof. Let E be an endomorphism object of C in LinCatκ: that is, E is the 8-category of
κ-linear functors from C to itself. We regard E as a monoidal 8-category, so that C is a left
E-module object of LinCatκ. According to Theorem HA.4.8.5.11 , the symmetric monoidal
functor

Algκ Ñ pLinCatκqModκ { A ÞÑ LModA

admits a right adjoint G. It follows that G induces a right adjoint G1 to the functor

Algp2qκ » AlgpAlgκq Ñ AlgppLinCatκqModκ {q » AlgpLinCatκq.

Unwinding the definitions, we see that A “ G1pEq is a κ-linear center of C.

Remark 16.6.3.4. Let κ be an E8-ring and C a κ-linear 8-category The proofs of Proposi-
tion 16.6.3.3 and Theorem HA.4.8.5.11 furnish a somewhat explicit description of the κ-linear
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center A of C, at least as an E1-algebra over κ: it can be described as the endomorphism
ring of the identity functor idC P E , where E denotes the 8-category of κ-linear functors
from C to itself.

Example 16.6.3.5. Let κ be the sphere spectrum and let C be a presentable stable 8-
category, which we view as a stable κ-linear 8-category. Then the center of C (in the sense
of Construction D.1.5.4) coincides with the κ-linear center of C.

Example 16.6.3.6. Let κ be an E8-ring, let R P Algκ be an E1-algebra over κ, and let
ZpRq “ ZE1pRq P Algp2qκ be a center of R (see Definition HA.5.3.1.12 ). Then ZpRq is a
κ-linear center of the 8-category LModRpModκq.

Remark 16.6.3.7. Let κ be an E8-ring, let C be a stable κ-linear 8-category, and let
A P Algp2qκ denote the κ-linear center of C. The homotopy groups πnA are often called
the Hochschild cohomology groups of C. In the special case where C “ LModRpModκq for
some R P Algκ, Example 16.6.3.6 allows us to identify the homotopy groups π˚A with
Ext´˚

RBModRpModκqpR,Rq.

We are now ready to formulate the main result of this section.

Theorem 16.6.3.8. Let κ be a field and let C be a stable κ-linear 8-category. Then the
functor CatDef^C : Algp2q,art

κ Ñ S of Corollary 16.5.3.2 is given by

ObjDef^C pBq “ MapAlgp2q,aug
κ

pDp2qpBq, κ‘ ZpCqq » MapAlgp2qκ
pDp2qpBq,ZpCqq.

where ZpCq denotes the κ-linear center of C.

16.6.4 Construction of the Equivalence

Let κ be a field and let C be a stable κ-linear 8-category. Theorem 16.6.3.8 predicts
the existence of a 0-truncated map ObjDefCpBq Ñ MapAlgp2qκ

pDp2qpBq,ZpCqq, depending
functorially on B P Algp2q,art

κ . Our proof begins with an explicit construction of this map.

Construction 16.6.4.1. Let κ be a field, and let λp2q :Mp2q Ñ Algp2q,aug
κ ˆAlgp2q,aug

κ be
the Koszul duality pairing on E2-algebras (so that the objects of Mp2q can be identified
with triples pA,B, εq, where A and B are E2-algebras over κ and ε : A bκ B Ñ κ is an
augmentation).

Let C be a stable κ-linear 8-category and let DeforrCs be as in Construction 16.6.1.2.
Given an object pA,B, εq PMp2q and an object pB, CB, µq P DeforrCs, we regard the tensor
product Abκ CB as an object of the 8-category

LModABModLModAbκB pLinCatκq,
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so that we can regard pAbκ CBqbAbκB κ as a stable left A-linear 8-category whose image in
LinCatκ coincides with C. This construction determines a functorMp2qˆAlgp2q,aug

κ
DeforrCs Ñ

LCatpκqC , where LCatpκqC as in Definition 16.6.3.1. The induced map

λ :Mp2qˆAlgp2q,aug
κ

DeforrCs Ñ LCatpκqC ˆDeforrCs

factors as a composition

Mp2qˆAlgp2q,aug
κ

DeforrCs i
Ñ ĂM

p2q λ1
Ñ LCatpκqC ˆDeforrCs

where i is an equivalence of 8-categories and λ1 is a categorical fibration. It is not difficult
to see that λ1 is a left representable pairing of 8-categories, which induces a duality
functor D

p2q
C : DeforrCsop Ñ LCatpκqC. Concretely, the functor D

p2q
C assigns to each object

pB, CB, µq P DeforrCsop the object pDp2qpBq, Cq, where we regard C as a stable left Dp2qpBq-
linear 8-category by means of the canonical equivalence C » pAbκ CBq bAbκB κ.

Let ZpCq denote the κ-linear center of C (Definition 16.6.3.1), so that we have a canonical
equivalence of 8-categories η : LCatpκqC » pAlgp2qκ q{ZpCq » pAlgp2q,aug

κ q{κ‘ZpCq. Composing
the equivalence η with the functor D

p2q
C , we obtain a diagram of 8-categories

DeforrCsop η˝D
p2q
C //

��

pAlgp2q,aug
κ q{κ‘ZpCq

��
pAlgp2q,aug

κ qop Dp2q // Algp2q,aug
κ

which commutes up to canonical homotopy, where the vertical maps are right fibrations. This
diagram determines a natural transformation β` : CatDef`C Ñ X`, where X` : Algp2q,aug

κ Ñ

S denotes the functor given by the formula

X`pBq “ MapAlgp2q,aug
κ

pDp2qpBq, κ‘ ZpCqq » MapAlgp2qκ
pDp2qpBq,ZpCqq.

16.6.5 The Proof of Theorem 16.6.3.8

By virtue of Remark 16.4.2.3, Theorem 16.6.3.8 is a formal consequence of the following
more precise assertion:

Proposition 16.6.5.1. Let κ be a field, let C be a stable κ-linear 8-category, and let
ZpCq P Algp2qκ denote a κ-linear center of C. Let X : Algp2q,aug

κ Ñ S denote the functor given
by the formula XpBq “ MapAlgp2qκ

pDp2qpBq,ZpCqq. Then the natural transformation β` of
Construction 16.6.4.1 induces a 0-truncated map β : CatDefC Ñ X.
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Since the functor X appearing in Proposition 16.6.5.1 is a formal E2-moduli problem, the
natural transformation β : CatDefC Ñ X factors as a composition CatDefC Ñ CatDef^C

β
ÝÑ

X. We wish to show that β is an equivalence of formal E2-moduli problems (which implies
Proposition 16.6.5.1, by virtue of Theorem 16.4.2.1). According to Proposition 12.2.2.6, it
will suffice to show that β induces an equivalence of tangent complexes. Using the description
of the tangent complex of CatDef^C supplied by Proposition 16.4.3.2, we are reduced to
proving the following special case of Proposition 16.6.5.1:

Proposition 16.6.5.2. Let κ be a field and let C be a stable κ-linear 8-category. For each
m ě 0, the natural transformation β` of Construction 16.6.4.1 induces a 0-truncated map
CatDefCpκ‘ Σmpκqq Ñ MapAlgp2qκ

pDp2qpκ‘ Σmpκqq,ZpCqq.

Proof. We have a commutative diagram

CatDefCpκ‘ Σmpκqq //

��

MapAlgp2qκ
pDp2qpκ‘ Σmpκqq,ZpCqq

��
Ω2 CatDefCpκ‘ Σm`2pκqq

θ // Ω2 MapAlgp2qκ
pDp2qpκ‘ Σm`2pκqq,ZpCqq,

where the left vertical map is 0-truncated by Corollary 16.6.2.4 and the right vertical map is
a homotopy equivalence. It will therefore suffice to show that θ is a homotopy equivalence.
Set B “ κ ‘ Σm`2pκq, let CB “ CbκB, let E denote the 8-category of κ-linear functors
from C to itself, and let EB denote the 8-category of B-linear functors from CB to itself, so
that we have a canonical equivalence γ : EB » RModBpEq. Let idC P E denote the identity
functor from C to itself. Under the equivalence γ, the identity functor from CB to itself can
be identified with the free module idC bκB P RModBpEq. Unwinding the definitions, we see
that the domain of θ can be identified with the homotopy fiber of the map

ξ : MapEB pidC bκB, idC bκBq » MapEpidC , idC bκBq Ñ MapEpidC , idCq.

We have a canonical fiber sequence Σm`2 idC Ñ idC bκB Ñ idC in the stable 8-category E ,
so that the homotopy fiber of ξ is given by

MapEpidC ,Σm`2 idCq » MapModκpΣ
´m´2pκq,ZpCqq.

The map θ is induced by a morphism ν : Σ´m´2pκq Ñ Dp2qpκ ‘ Σmpκqq in Modκ. Let
Freep2q : Modκ Ñ Algp2qκ be a left adjoint to the forgetful functor, so that ν determines an
augmentation pκ ‘ Σmpκqq bκ Freep2qpΣ´m´2pκqq Ñ κ. The proof of Proposition 15.3.2.1
shows that this pairing exhibits Freep2qpΣ´m´2pκqq as the Koszul dual of κ‘ Σmpκq, from
which it immediately follows that θ is a homotopy equivalence.
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16.6.6 Compactly Generated Deformations

Let κ be a field. To any stable κ-linear 8-category C, we can associate the 2-proximate
formal E2-moduli problem CatDefC : Algp2q,art

κ Ñ pS of Notation 16.6.2.3. By definition,
CatDefCpBq parametrizes arbitrary deformations of C over B. In practice, we might not
want to consider all deformations of C: for example, if C is compactly generated, then we
might want to restrict our attention to deformations which are compactly generated.

Notation 16.6.6.1. Let κ be a field and let C be a compactly generated stable κ-linear
8-category. For every object B P Algp2q,art

κ , we let CatDefcCpBq denote the summand of
CatDefCpBq given by deformations pCB, µ : CB bBκ » Cq for which the 8-category CB
is also compactly generated. It follows from Propositions C.6.2.1 and C.6.2.2 that this
condition is compatible with extension of scalars, so that the construction B ÞÑ CatDefcCpBq
determines a functor CatDefcC : Algp2q,art

κ Ñ pS.

Proposition 16.6.6.2. Let κ be a field and let C be a compactly generated stable κ-linear
8-category. For every object B P Algp2q,art

κ , the space CatDefcCpBq is essentially small.
Consequently, we can view CatDefcC as a S-valued functor on Algp2q,art

κ .

Proof. Since B is Artinian, we can choose a finite sequence of maps

B » B0 Ñ B1 Ñ ¨ ¨ ¨ Ñ Bn » κ

and pullback diagrams
Bi //

��

κ

��
Bi`1 // κ‘ Σmipκq

for some integers mi ą 0. We will show that each of the spaces CatDefcCpBiq is essentially
small using descending induction on i. For i ă n, Proposition 16.6.2.1 implies that the
canonical map

θ : CatDefCpBiq Ñ CatDefcCpκq ˆCatDefcCpκ‘Σmi pκqq CatDefcCpBi`1q

has discrete homotopy fibers, and the codomain of θ is essentially small by our inductive
hypothesis (note that CatDefcCpκ‘ Σmipκqq is locally small by virtue of Corollary 16.6.2.2).
It will therefore suffice to show that the homotopy fibers of θ are essentially small. Let η be
a point of the codomain of θ, given by a compatible triple of deformations

CBi`1 P CatDefcCpBi`1q Cκ‘Σmi pκq P CatDefcCpκ‘ Σmipκqq Cκ P CatDefcCpκq.

By assumption, these 8-categories are generated by their full subcategories of compact
objects

CcBi`1 Ď CBi`1 Ccκ‘Σmi pκq Ď Cκ‘Σmi pκq Ccκ Ď Cκ .
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To show that the homotopy fiber of θ over the point η is essentially small, it will suffice to
show there is only a bounded number of equivalence classes of full Bi-linear subcategories
CBi Ď CBi`1 ˆCκ‘Σmi pκq Cκ which are compactly generated and for which the projection maps
induce equivalences

CBi bBiBi`1 Ñ CBi`1 CBi bBiκÑ Cκ .

We conclude by observing that any such CBi is determined by its full subcategory of compact
objects, which is contained in the (essentially small) 8-category CcBi`1 ˆCc

κ‘Σmi pκq
Ccκ.

Remark 16.6.6.3. In the situation of Proposition 16.6.6.2, the inclusion CatDefcC ãÑ

CatDefC is p´1q-truncated. Using Corollary 16.6.2.4 and Theorem 16.4.2.1, we deduce
that CatDefcC is a 2-proximate formal moduli problem. Moreover, the composite map
CatDefcC Ñ CatDefC Ñ CatDef^C is 0-truncated, so that we can view CatDef^C as the formal
E2-moduli problem associated to both CatDefcC and CatDefC .

16.6.7 Tame Compact Generation

Let κ be a field and let C be a compactly generated stable κ-linear 8-category. One
advantage of working with the functor CatDefcC of Notation 16.6.6.1 is that it is generally
“closer” to being a formal E2-moduli problem than the functor CatDefC . Before making this
precise, we need to introduce a bit of terminology.

Definition 16.6.7.1. Let C be a stable 8-category. We will say that C is tamely compactly
generated if it satisfies the following conditions:

paq The 8-category C is compactly generated (that is, C is generated under filtered colimits
by the full subcategory Cc Ď C spanned by the compact objects).

pbq For every pair of compact objects C,D P C, the groups ExtnCpC,Dq vanish for n " 0.

Example 16.6.7.2. Let X be a quasi-compact, quasi-separated spectral algebraic space.
Then the 8-category QCohpXq is tamely compactly generated.

Theorem 16.6.7.3. Let κ be a field and let C be a stable κ-linear 8-category which is
tamely compactly generated. Then the functor CatDefcC of Notation 16.6.6.1 is a 1-proximate
formal moduli problem.

Remark 16.6.7.4. In the situation of Theorem 16.6.7.3, any compactly generated defor-
mation of C over an Artinian E2-algebra is automatically tamely compactly generated: see
Proposition 16.6.9.2.

We will give a proof of Theorem 16.6.7.3 a bit later in this section. First, let us consider its
consequences. Combining Theorems 16.6.7.3, 16.4.2.1, and 16.6.3.8, we obtain the following:
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Corollary 16.6.7.5. Let κ be a field and let C be a stable κ-linear 8-category which is
tamely compactly generated. Then, for every object B P Algp2q,art

κ , the canonical map

CatDefcCpBq Ñ CatDef^C pBq » MapAlgp2qκ
pDp2qpBq,ZpCqq

is p´1q-truncated.

Remark 16.6.7.6. If C is a stable κ-linear 8-category which is tamely compactly generated,
Corollary 16.6.7.5 asserts every compactly generated deformation of C over an algebra
B P Algp2q,art

κ is determined (up to essentially unique equivalence) by an action of the Koszul
dual Dp2qpBq on the 8-category C. Under much stronger assumptions, one can ensure that
the inclusion CatDefcC ãÑ CatDef^C is an equivalence, so that every action of Dp2qpBq on C
determines a deformation of C over B (see Theorem 16.6.10.2). In general, this is not the
case: there are actions of Dp2qpBq on C which do not arise from deformations of C (at least
heuristically, these correspond to curved deformations of the 8-category C).

16.6.8 Piecewise Compactness

Before giving the proof of Theorem 16.6.7.3, we need to establish a few facts about com-
pact objects of tamely compactly generated stable 8-categories. To maintain terminological
consistency with the rest of this book, we will use the term stable R-linear 8-category to
refer to a stable left R-linear 8-category (as in Variant D.1.5.1), though in our intended
application we will be interested in the case of right R-linear 8-categories.

Notation 16.6.8.1. If C is a compactly generated stable 8-category, we let Cc denote the
full subcategory of C spanned by the compact objects.

The main fact we will need is the following:

Proposition 16.6.8.2. Let A be a connective E2-ring and let C be a stable A-linear 8-
category which is tamely compactly generated. Suppose we are given a pullback diagram

A //

��

B

��
A1 // B1

of connective E2-rings which induces surjective maps π0B Ñ π0B
1 and π0A

1 Ñ π0B
1. Then

the natural map θc : Cc Ñ pB bA Cqc ˆpB1bACqc pA
1 bA Cqc is an equivalence of 8-categories.

The proof of Proposition 16.6.8.2 will require some preliminaries. Recall that if R is
an E2-ring and C is a stable R-linear 8-category, then we can regard C as enriched over
the monoidal 8-category LModR. In particular, to every pair of objects C,D P C we can
associate a mapping object MapCpC,Dq P LModR, characterized by the universal property
MapLModRpM,MapCpC,Dqq » MapCpM bR C,Dq.
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Lemma 16.6.8.3. Let R be an E2-ring and let C be a stable R-linear 8-category. If C P C
is compact, then the construction D ÞÑ MapCpC,Dq determines a colimit-preserving functor
C Ñ LModR.

Proof. It is clear that the construction D ÞÑ MapCpC,Dq commutes with limits and is
therefore an exact functor. To prove that it preserves colimits, it suffices to show that
it preserves filtered colimits. For this, it suffices to show that the construction D ÞÑ

Ω8MapCpC,Dq preserves filtered colimits (as a functor from C to S), which is equivalent to
the requirement that C is compact.

Let R be an E2-ring and let C be a stable R-linear 8-category. Given an object N P

LModR and a pair of objects C,D P C, the canonical map NbRMapCpC,DqbRC Ñ NbRD

in C is classified by a morphism of left R-modules λ : N bMapCpC,Dq Ñ MapCpC,N bRDq.

Lemma 16.6.8.4. Let R be an E2-ring and let C be an R-linear 8-category. Let C,D P C
and let N P LModR. If C is a compact object of C, then the map λ : N bR MapCpC,Dq Ñ

MapCpC,N bR Dq is an equivalence.

Proof. Using Lemma 16.6.8.3, we deduce that the functor N ÞÑ MapCpC,N bDq preserves
small colimits. It follows that the collection of objects N P LModR for which λ is an
equivalence is closed under colimits in LModR. We may therefore suppose that N » ΣnpRq

for some integer n, in which case the result is obvious.

Lemma 16.6.8.5. Suppose we are given a morphism of E2-rings RÑ R1, let C be a stable
R-linear 8-category, and let C1 “ R1 bR C » LModR1pCq. Let F : C Ñ C1 be a left adjoint
to the forgetful functor G : C1 Ñ C, given on objects by F pCq “ R1 bR C. For every pair of
objects C,D P C, the evaluation map MapCpC,Dq b C Ñ D induces a map

pR1 bR MapCpC,Dqq bR1 F pCq » F pMapCpC,Dq bR Cq Ñ F pDq,

which is classified by a morphism of left R1-modules α : R1bRMapCpC,Dq Ñ MapC1pF pCq, F pDqq.
If C P C is compact, then α is an equivalence.

Proof. The image of α under the forgetful functor LModR1 Ñ LModR coincides with the
equivalence R1 bR MapCpC,Dq Ñ MapCpC,R

1 bR Dq of Lemma 16.6.8.4.

Lemma 16.6.8.6. Suppose we are given a pullback diagram of E2-rings

A //

��

B

��
A1 // B1

Let C be a stable A-linear 8-category. Then an object C P C is compact if and only if its
images in A1 bA C and B bA C are compact.
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Proof. The “only if” direction is obvious, since the forgetful functors LModBpCq Ñ C Ð
LModA1pCq preserve filtered colimits. For the converse, suppose that C P C has compact
images CA1 P pA1 bA Cq and CB P pB bA Cq. Then the image of C in the fiber product
D “ pA1 bA Cq ˆpB1bACq pB bA Cq is compact. Since the natural map C Ñ D is fully faithful
(Proposition 16.2.1.1) and preserves filtered colimits, we conclude that C is compact.

Lemma 16.6.8.7. Let f : RÑ R1 be a morphism of connective E2-rings, let C be a stable
R-linear 8-category, and set C1 “ R1bR C » LModR1pCq. If C is tamely compactly generated,
then C1 is tamely compactly generated.

Proof. Let F : C Ñ C1 denote the canonical map, given by pC P Cq ÞÑ pR1 bR C P

LModR1pCq » C1q. We note that C1 is compactly generated: in fact, C1 is generated under
small colimits by the essential image of the composite functor map Cc ãÑ C F

Ñ C1, which
consists of compact objects (since F is left adjoint to a forgetful functor). It follows that
the 8-category C1c is the smallest stable full subcategory of C1 which contains F pCcq and
is closed under retracts. Let X Ď C1 be the full subcategory spanned by those objects C
such that for every D P C1c, we have ExtnC1pC,Dq » 0 for n " 0. It is easy to see that
X is stable and closed under retracts. Consequently, to show that C1c Ď X , it will suffice
to show that F pC0q P X for each C0 P Cc. Let us regard C0 as fixed, and let Y be the
full subcategory of C1 spanned by those objects D for which the groups ExtnC1pF pC0q, Dq

vanish for n " 0. Since Y is stable and closed under retracts, it will suffice to show that
F pD0q P Y for each D0 P Cc. In other words, we are reduced to proving that the homotopy
groups π´nMapCB

pF pC0q, F pD0qq vanish for n " 0. Using Lemma 16.6.8.5, we are reduced
to proving that the spectrum R1bR MapCpC0, D0q is p´nq-connective for some n " 0. Using
our assumption that R and R1 are connective, we are reduced to showing that MapCpC0, D0q

is p´nq-connective for n " 0, which follows from our assumption that C is tamely compactly
generated.

Proof of Proposition 16.6.8.2. Suppose we are given a pullback diagram

A //

��

B

��
A1 // B1

of connective E2-rings which induces surjective ring homomorphisms π0B Ñ π0B
1 and

π0A
1 Ñ π0B

1, and let C “ CA be a stable A-linear 8-category which is tamely compactly
generated. Define

CB “ B bA CA CB1 “ B1 bA CA CA1 “ A1 bA CA,
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and let θ : CA Ñ CB ˆCB1 CA1 be the fully faithful embedding of Proposition 16.2.1.1. Then
θ restricts to a fully faithful embedding θc : CcA Ñ CcB ˆCc

B1
CcA1 , and we wish to prove that

θc is essentially surjective.
Let us identify objects of CB ˆCB1 CA1 with triples pCB, CA1 , ηq where CB P CB , CA1 P CA1 ,

and η is an equivalence B1 bB CB » B1 bA1 CA1 . Given such a triple, we will denote the
object B1 bB CB » B1 bA1 CA1 by CB1 . Note that θ admits a right adjoint G, given by
pCB, CA1 , ηq ÞÑ CB ˆCB1 CA1 . By virtue of Lemma 16.6.8.6, it will suffice to show that
the counit transformation v : θ ˝ G Ñ id is an equivalence when restricted to objects of
CcB ˆCc

B1
CcA1 . Choose such an object pCB, CA1 , ηq (so that CB and CA1 are compact) and let

CA “ CB ˆCB1 CA1 ; we wish to show that the canonical maps

φ : B bA CA Ñ CB φ1 : A1 bA CA Ñ CA1

are equivalences. We will show that φ is an equivalence; the argument that φ1 is an equivalence
is similar. Let X Ď CB be the full subcategory spanned by those objects DB P CB such that
φ induces an equivalence φ0 : MapCB

pDB, B bA CAq Ñ MapCB
pDB, CBq. We wish to show

that X “ CB. Since X is closed under small colimits, it will suffice to show that X contains
B bA DA for every compact object DA P CA. Let DA1 and DB1 be the images of DA in CA1
and CB1 , respectively. Using Lemma 16.6.8.4, we can identify φ0 with the canonical map
B bA MapCA

pDA, CAq Ñ MapCB
pDB, CBq. Note that we have a pullback diagram

MapCA
pDA, CAq //

��

MapCB
pDB, CBq

��
MapCA1

pDA1 , CA1q //MapCB1
pDB1 , CB1q

and that Lemma 16.6.8.4 guarantees that the underlying maps

B1 bA1 MapCA1
pDA1 , CA1q Ñ MapCB1

pDB1 , CB1q Ð B1 bB MapCB
pDB, CBq

are equivalences. By virtue of Proposition 16.2.2.1, it will suffice to show that there exists
an integer n " 0 such that MapCB

pDB, CBq and MapCA1
pDA1 , CA1q belong to pLModBqě´n

and pLModA1qě´n, respectively. This follows from the fact that the 8-categories CB and
CA1 are tamely compactly generated (Lemma 16.6.8.7).

16.6.9 The Proof of Theorem 16.6.7.3

Let κ be a field and let C be a stable κ-linear 8-category which is tamely compactly
generated. Let CatDefcC : Algp2q,art

κ Ñ S be the functor defined in Notation 16.6.6.1.
For B P Algp2q,art

κ we let CatDeftcg
C pBq denote the summand of CatDefcCpBq consisting of

those deformations pCB, µ : CB bBκ » Cq for which CB is tamely compactly generated. It
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follows from Lemma 16.6.8.7 that the construction B ÞÑ CatDeftcg
C pBq determines a functor

CatDeftcg
C : Algp2q,art

κ Ñ S. Theorem 16.6.7.3 is an immediate consequence of the following
pair of assertions:

Proposition 16.6.9.1. Let κ be a field and let C be a stable κ-linear 8-category which is
tamely compactly generated. Then the functor CatDeftcg

C : Algp2q,art
κ Ñ S is a 1-proximate

formal E2-moduli problem.

Proposition 16.6.9.2. Let κ be a field and let C be a stable κ-linear 8-category which
is tamely compactly generated. Then CatDeftcg

C “ CatDefcC. In other words, if CB is a
deformation of C which is defined over an Artinian E2-algebra B and CB is compactly
generated, then it is automatically tamely compactly generated.

Proof of Proposition 16.6.9.2. Let D Ď CB denote the full subcategory spanned by those
objects D such that, for each C P CcB, the groups ExtnCB pC,Dq vanish for n " 0. Note that
if C,D P CcB, then

ExtnCB pC,D bB κq » ExtnRModκpCBqpC bB κ,D bB κq

vanishes for n " 0 by virtue of our assumption that C is tamely compactly generated. It
follows that D contains D bB κ for every compact object D P CB. Since B is Artinian, we
can choose a finite sequence B “ B0 Ñ ¨ ¨ ¨ Ñ Bn and pullback diagrams

Bi //

��

κ

��
Bi`1 // κ‘ Σmipκq.

In particular, we have fiber sequences of B-modules

Bi Ñ Bi`1 Ñ Σmipκq.

It follows by descending induction on i that DbB Bi belongs to D for every compact object
D P CB. Taking i “ 0, we deduce that every compact object of CB belongs to D, so that CB
is tamely compactly generated as desired.

Proof of Proposition 16.6.9.1. For every connective E2-ring R, let χpRq denote the subcate-
gory of RModLModRpPrStq whose objects are stable right R-linear 8-categories which are
tamely compactly generated and whose morphisms are R-linear functors which preserve
compact objects. It follows from Lemma 16.6.8.7 that the construction R ÞÑ χpRq determines
a functor Algp2q,cn ÑyCat8. We will prove the following:
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p˚q For every pullback diagram of connective E2-rings σ :

A //

��

B

��
A1 // B1

for which the maps π0B Ñ π0B
1 and π0A

1 Ñ π0B
1 are surjective, the induced functor

F : χpAq Ñ χpBq ˆχpB1q χpA
1q is fully faithful.

Assuming p˚q, we deduce that the induced map of spaces χpAq» Ñ χpBq» ˆχpB1q» χpA
1q»

is p´1q-truncated. Specializing to the case where σ is a pullback diagram of Artinian
E2-algebras over κ and passing to homotopy fibers over the point C P χpκq, we conclude
that the map CatDeftcg

C pAq Ñ CatDeftcg
C pBq ˆCatDeftcg

C pB1q CatDeftcg
C pA1q is p´1q-truncated,

so that CatDeftcg
C is a p´1q-proximate formal moduli problem (see Proposition 16.4.1.4).

It remains to prove p˚q. Let us identify objects of the fiber product χpBq ˆχpB1q χpA1q
with triples pDB,DA1 , ηq where DB is a stable right B-linear 8-category which is tamely
compactly generated, DA1 is a stable right A1-linear 8-category which is tamely compactly
generated, and η is a B1-linear equivalence DB bBB1 » DA1 bA1B1. Given such a triple, we
let DB1 denote the 8-category DB bBB1 » DA1 bA1B1. The functor F admits a right adjoint
G, which carries a triple pDB,DA1 , ηq to the full subcategory of DB ˆDB1

DA1 generated
under small colimits by DcB ˆDc

B1
DcA1 . We wish to show that the unit map u : id Ñ G ˝ F

is an equivalence. In other words, we wish to show that if pDB,DA1 , ηq “ F pDAq for some
tamely compactly generated stable right A-linear 8-category DA, then the canonical map
DA Ñ DB ˆDB1

DA1 is fully faithful and its essential image is the subcategory generated by
DcB ˆDc

B1
DcA under small colimits. This follows immediately from Proposition 16.6.8.2.

16.6.10 Unobstructible Objects

We can improve further on Theorem 16.6.7.3 if we are willing to to impose some stronger
conditions on the κ-linear 8-category C.

Definition 16.6.10.1. Let C be a presentable stable 8-category. We will say that an object
C P C is unobstructible if C is compact and the groups ExtnCpC,Cq vanish for n ě 2.

Theorem 16.6.10.2. Let κ be a field and let C be a stable κ-linear 8-category. Assume that
C is tamely compactly generated and that there exists a collection of unobstructible objects
tCαu which generates C under small colimits. Then the functor CatDefcC : Algp2q,art

κ Ñ S of
Notation 16.6.6.1 is a formal E2-moduli problem.

Corollary 16.6.10.3. Let κ be a field and let C be a stable κ-linear 8-category. Assume
that C is tamely compactly generated and that there exists a collection of unobstructible



16.6. DEFORMATIONS OF CATEGORIES 1285

objects tCαu which generates C under small colimits. Then the composite map

CatDefcC Ñ CatDefC Ñ CatDef^C

is an equivalence. Consequently, the functor CatDefcC is given by

CatDefcCpBq “ MapAlgp2qκ
pDp2qpBq,ZpCqq,

where ZpCq denotes the κ-linear center of C.

Proof. Combine Theorems 16.6.10.2 and 16.6.3.8 with Remarks 16.6.6.3 and 16.4.2.3.

Remark 16.6.10.4. In the situation of Corollary 16.6.10.3, for every Artinian E2-algebra
B over κ we obtain an equivalence

tCompactly generated deformations of C over Bu » tActions of Dp2qpBq on Cu.

In other words, C has no “curved” deformations (see Remark ??).

Warning 16.6.10.5. The hypotheses of Theorem 16.6.10.2 are very restrictive: many
κ-linear 8-categories of interest (such as the 8-categories of quasi-coherent sheaves on most
algebraic varieties of dimension ě 2) cannot be generated by unobstructible objects.

The proof of Theorem 16.6.10.2 will require some preliminaries. Our first lemma gives
an explanation for the terminology of Definition 16.6.10.1.

Lemma 16.6.10.6. Let κ be a field, let f : B Ñ B1 be a small morphism between augmented
E2-algebras over κ. Let CB be a tamely compactly generated B-linear 8-category, let
CB1 “ CB bBB1, and let C “ CB bBκ. Suppose that C P CB1 is a compact object whose
image in C is unobstructible. Then there exists a compact object CB P CB and an equivalence
CB1 » CB bB B

1 in CB1.

Proof. Let C P C denote the image of CB1 . Since f is small, we can choose a finite sequence
of morphisms B “ B0 Ñ ¨ ¨ ¨ Ñ Bn » B1 and pullback diagrams

Bi //

��

κ

��
Bi`1 // κ‘ Σmipκq

in Algp2q,aug
κ , where each mi ě 1. We prove by descending induction on i that CB1 can be

lifted to a compact object Ci P CB bBBi, the case i “ n being trivial. Assume that Ci`1 has
been constructed. Let C1 “ Cbκpκ‘ Σmipκqq. According to Proposition 16.6.8.2, we have
an equivalence of 8-categories Cci Ñ Cci`1ˆC1c Cc. Consequently, to show that Ci`1 can be
lifted to an object Ci P Cci , it will suffice to show that Ci`1 and C have the same image in
C1c. This is a special case of the following assertion:
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p˚q Let X,Y P C1 be objects having the same C P C. If C is unobstructible, then there is
an equivalence X » Y in C1.

To prove p˚q, we let ObjDefC : Algp1q,art
κ Ñ S be defined as in Notation 16.5.3.1; we wish

to prove that any two points of the space ObjDefCpκ‘ Σmipκqq belong to the same path
component. According to Proposition 16.5.6.2, ObjDefCpκ‘ Σmipκqq can be identified with
a summand of the mapping space MapAlgp1qκ

pDp1qpκ‘ Σmipκqq,EndpCqq. Since the Koszul
dual Dp1qpκ ‘ Σmipκqq is the free associative algebra generated by Σ´mi´1pκq, we have a
canonical isomorphism

π0 MapAlgp1qκ
pDp1qpκ‘ Σpmiqκ q,EndpCqq » π´mi´1 EndpCq » Extmi`1

C pC,Cq.

These groups vanish by virtue of our assumption that C is unobstructible.

Remark 16.6.10.7. In the situation of Lemma 16.6.10.6, if we assume that Ext1
CpC,Cq

vanishes, then lifting of CB1 to CB is unique up to equivalence: that is, C is undeformable.

Lemma 16.6.10.8. Let κ be a field, let B P Algp2q,aug
κ be an Artinian augmented E2-algebra

over κ, let CB be a tamely compactly generated B-linear 8-category, and let C “ CB bBκ.
Let tCαu be a collection of objects of C which generates C under small colimits, and suppose
that each Cα can be lifted to an object Cα P CB (so that Cα » CαbB κ). Then the collection
of objects tCαu generates CB under small colimits.

Proof. Let E be the full subcategory of CB generated by tCαu under small colimits. Then E
contains Cα bB M for every connective left B-module M . Taking M “ κ, we deduce that
E contains the images of the objects tCαu under the forgetful functor θ : C Ñ CB. Since θ
preserves small colimits, it follows that E contains the essential image of θ. In particular, E
contains CbB κ for each object C P CB . Since B is Artinian, we can choose a finite sequence

B “ B0 Ñ ¨ ¨ ¨ Ñ Bn » κ

and pullback diagrams
Bi //

��

κ

��
Bi`1 // κ‘ Σmipκq.

It follows by descending induction on i that E contains C bB Bi for each C P CB. Taking
i “ 0, we deduce that E “ CB.
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Proof of Theorem 16.6.10.2. Theorem 16.6.7.3 implies that CatDefcC is a 1-proximate formal
moduli problem. Suppose we are given a pullback diagram

B //

��

B0

��
B1 // B01

in Algp2q,art
κ which induces surjective maps π0B0 Ñ π0B01 Ð π0B1. Then the map

θ : CatDefcCpBq Ñ CatDefcCpB0q ˆCatDefcCpB01q CatDefcCpB1q

is p´1q-truncated, and we wish to show that it is a homotopy equivalence. Fix a point
of the fiber product CatDefcCpB0q ˆCatDefcCpB01q CatDefC,ωpB1q, which determines a pair
pCB0 , CB1 , ηq where CB0 is a compactly generated stable right B0-linear 8-category, CB1 is a
compactly generated stable right B1-linear 8-category, and η is a B01-linear equivalence
CB0 bB0B01 » CB1 bB1B01.

Let CB01 denote the 8-category CB0 bB0B01 » CB1 bB1B01, and let CB denote the full
subcategory of CB0 ˆCB01

CB1 generated under small colimits by CcB0 ˆCcB01
CcB1 . We wish

to show that CB is a deformation of C over B satisfying θpCBq » pCB0 , CB1 , ηq. Unwinding
the definitions, it suffices to show that the canonical maps q : CB bBB0 Ñ CB0 and
q1 : CB bBB1 Ñ CB1 are equivalences. We will show that q is an equivalence; the proof for
q1 is similar.

We first claim that q is fully faithful. Since the domain and codomain of q are compactly
generated and the functor q preserves compact objects, it will suffice to show that q is fully
faithful when restrict to compact objects. The collection of compact objects of CB bBB0
is generated, under retracts and finite colimits, by the essential image of the free functor
F : CB Ñ CB bBB0 » RModB0pCBq. It will therefore suffice to show that for every pair
of compact objects C,D P CB, the functor q induces an equivalence of left B0-modules
ξ : MapRModB0 pCBq

pF pCq, F pDqq Ñ MapCB0
pqF pCq, qF pDqq. We can identify CcB with

the fiber product CcB0 ˆCcB01
CcB1 , so that C and D correspond to triples pC0, C1, γq and

pD0, D1, δq, where C0, D0 P CcB0 , C1, D1 P CcB1 , and γ : C0 bB0 B01 » C1 bB1 B01 and
δ : D0 bB0 B01 » D1 bB1 B01 are equivalences in CB01 . Set C01 “ C0 bB0 B01 » C1 bB1 B01
and D01 “ D0 bB0 B01 » D1 bB1 B01.

Using Lemma 16.6.8.5, we can identify ξ with the natural map B0 bB MapCB
pC,Dq Ñ

MapCB0
pC0, D0q. Here we have an equivalence

MapCB
pC,Dq » MapCB0

pC0, D0q ˆMapCB01
pC01,D01q MapCB1

pC1, D1q.

Using Lemma 16.6.8.5 and Proposition 16.2.1.1, we are reduced to proving that MapCB0
pC0, D0q

and MapCB1
pC1, D1q are n-connective for some integer n. This follows because CB0 and CB1

are tamely compactly generated (Proposition 16.6.9.2).
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It remains to prove that the functor q is essentially surjective. Note that the essential
image of q is closed under small colimits. Using Lemma 16.6.10.6, it will suffice to show that
the essential image of q contains every object C P CcB0 whose image in C is unobstructible.
To prove this, it suffices to show that C bB0 B01 can be lifted to a compact object of CB1 ,
which is a special case of Lemma 16.6.10.6.
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Representability Theorems
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Let R be a commutative ring and let X be an R-scheme. Suppose that we want to
give an explicit presentation of X. We might achieve this by choosing a covering of X by
open subschemes tUαuαPI , where each Uα is an affine scheme given by the spectrum of a
commutative R-algebra Aα. Let us assume for simplicity that each intersection Uα X Uβ is
itself an affine scheme, which can be described as the spectrum of the localization Aαrx

´1
α,βs

for some element xα,β P Aα. To specify X, we need to supply the following data:

paq For each α P I, a commutative R-algebra Aα. If X is of finite presentation over R,
then the algebra Aα could be given by generators and relations as a quotient

Rrx1, . . . , xns{pf1px1, . . . , xnq, . . . , fmpx1, . . . , xmqq

for some collection of polynomials fi.

pbq For every pair of indices α, β P I, a pair of elements xα,β P Aα and xβ,α P Aβ , together
with an R-algebra isomorphism φα,β : Aαrx´1

α,βs » Aβrx
´1
β,αs.

Moreover, the isomorphisms φα,β should be the identity when α “ β, and satisfy the following
cocycle condition:

pcq Given α, β, γ P I, the commutative ring Aγrx´1
γ,β, φβ,γpxβ,αq

´1s should be a localization
of Aγrx´1

γ,αs. Moreover, the composite map

Aα Ñ Aαrx
´1
α,γs

φα,γ
ÝÝÝÑ Aγrx

´1
γ,αs Ñ Aγrx

´1
γ,β, φβ,γpxβ,αq

´1s

should be obtained by composing (localizations of) φα,β and φβ,γ .

In §1.1, we introduced the notion of a spectral scheme. The notion of a spectral scheme is
entirely analogous the classical notion of a scheme. However, the analogues of paq, pbq, and
pcq are much more complicated in the spectral setting. The data of an affine spectral scheme
over a commutative ring R is equivalent to the data of an E8-algebra over R. These are often
quite difficult to describe using generators and relations. For example, the polynomial ring
Rrxs generally does not have a finite presentation as an E8-algebra over R (unless we assume
that R has characteristic zero). These complications are amplified when we pass to the
non-affine situation. In the spectral setting, pbq requires us to construct equivalences between
E8-algebras, which are often difficult to specify concretely. Moreover, since E8-algebras
form an 8-category rather than an ordinary category, the analogue of the cocycle condition
described in pcq is not a condition but an additional datum (namely, a homotopy between
two E8-algebra maps Aα Ñ Aγrx

´1
γ,β, φβ,γpxβ,αq

´1s for every triple α, β, γ P I), which must
be supplemented by “higher” coherence data involving four-fold intersections and beyond.
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For these reasons, it can be difficult to provide “hands-on” constructions in the setting of
spectral algebraic geometry.

Fortunately, there is another approach to describing a scheme X. Rather than trying
to explicitly construct the commutative rings associated to some affine open covering
of X, one can instead consider the functor hX represented by X, given by the formula
hXpRq “ HompSpecR,Xq. The scheme X can be recovered from the functor hX (up to
canonical isomorphism). The situation for spectral schemes is again entirely analogous:
every spectral scheme X determines a functor hX : CAlgcn Ñ S, and the construction
X ÞÑ hX determines a fully faithful embedding from the 8-category of spectral schemes
to the 8-category FunpCAlgcn,Sq (Corollary ??). In many case, it is easier to describe a
spectral scheme (or spectral Deligne-Mumford stack) X by specifying the functor hX than
by specifying its structure sheaf OX. This motivates the following general question:

Question 16.0.0.1. Given a functor X : CAlgcn Ñ S, under what circumstances is X
representable by a spectral Deligne-Mumford stack?

In the setting of classical algebraic geometry, the analogous question is addressed by the
following theorem of Artin:

Theorem 16.0.0.2 (Artin Representability Theorem). Let R be a Grothendieck ring (see
Definition ??) and let X be functor from the category of commutative R-algebras to the
category of sets. Then X is representable by an algebraic space X which is locally of finite
presentation over R if the following conditions are satisfied:

p1q The diagonal map X Ñ X ˆSpecR X is representable by algebraic spaces (which must
be quasi-compact schemes, if we wish to require that X is quasi-separated).

p2q The functor X is a sheaf for the étale topology.

p3q If B is a complete local Noetherian R-algebra with maximal ideal m, then the natural
map XpBq Ñ lim

ÐÝ
XpB{mnq is bijective.

p4q The functor X admits an obstruction theory and a deformation theory, and satisfies
Schlessinger’s criteria for formal representability.

p5q The functor X commutes with filtered colimits.

This result is of both philosophical and practical interest. Since conditions p1q through
p5q are reasonable expectations for any functor X of a reasonably geometric nature, Theorem
16.0.0.2 provides evidence that the theory of algebraic spaces is natural and robust (in other
words, that it exactly captures some intuitive notion of “geometricity”). On the other hand,
if we are given a functor X, it is usually reasonably easy to check whether or not Artin’s
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criteria are satisfied. Consequently, Theorem 16.0.0.2 can be used to construct a great
number of moduli spaces.

Remark 16.0.0.3. We refer the reader to [4] for the original proof of Theorem 16.0.0.2.
Note that in Artin’s formulation, condition p3q is replaced by the weaker requirement that
the map XpBq Ñ lim

ÐÝ
XpB{mnq has dense image (with respect to the inverse limit topology).

Moreover, Artin’s proof required a stronger assumption on the commutative ring R; for a
careful discussion of the removal of this hypothesis, we refer the reader to [43].

Our goal in this paper is to prove an analogue of Theorem 16.0.0.2 in the setting of
spectral algebraic geometry. Let R be an Noetherian E8-ring such that π0R is a Grothendieck
ring, and suppose we are given a functor X : CAlgcn

R Ñ S. Our main result (Theorem
16.0.1) supplies necessary and sufficient conditions for X to be representable by a spectral
Deligne-Mumford n-stack which is locally almost of finite presentation over R. For the most
part, these conditions are natural analogues of the hypotheses of Theorem 16.0.0.2. The
main difference is in the formulation of condition p4q. In the setting of Artin’s original
theorem, a deformation and obstruction theory are auxiliary constructs which are not
uniquely determined by the functor X. The meaning of these conditions are clarified by
working in the spectral setting: they are related to the problem of extending the functor
X to E8-rings which are nondiscrete. In Chapter 17, we will make this idea more precise
by studying various conditions on a functor X : CAlgcn Ñ S which are necessary for
representability. We will be primarily interested in conditions of a deformation-theoretic
nature: that is, conditions which describe the relationship between XpAq and XpAq, where
A is a square-zero extension of A by some A-module M (see Definition HA.7.4.1.6 ). For
example:

paq Any representable functor X : CAlgcn Ñ S admits a cotangent complex LX P

QCohpXqcn (see Definition 17.2.4.2), which can be used to describe the relation-
ship between XpAq and XpAq in the case where A is the trivial square-zero extension
A‘M for some connnective A-module M .

pbq Any representable functor X : CAlgcn Ñ S is infinitesimally cohesive: that is, it
satisfies a gluing formula for infinitesimal thickenings (see Definition 17.3.1.5). In
combination with paq, this allows us to describe the relationship between XpAq and
XpAq for arbitrary square-zero-extensions (see Remark 17.3.1.8).

pcq Any representable functor X : CAlgcn Ñ S is nilcomplete (see Definition 17.3.2.1): for
any A P CAlgcn, the space XpAq can be realized as the limit of the tower of spaces

¨ ¨ ¨ Ñ Xpτď3Aq Ñ Xpτď2Aq Ñ Xpτď1Aq
X
ÝÑ pτď0Aq “ Xpπ0Aq.

This is useful in combination with paq and pbq, since each truncation τďnA can be
regarded as a square-zero extension of τďn´1A.
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pdq If X : CAlgcn Ñ S is representable by a spectral Deligne-Mumford n-stack (for
some n ă 8), then X is integrable (see Definition 17.3.4.1). If A is a complete local
Noetherian ring with maximal ideal m, the space XpAq can be realized as the limit of
the tower

¨ ¨ ¨ Ñ XpA{m4q Ñ XpA{m3q Ñ XpA{m2q
X
ÝÑ pA{mq.

This is again useful in combination with paq and pbq, since each quotient A{mn can be
realized as a square-zero extension of A{mn´1.

Roughly speaking, assertions paq and pbq correspond to Artin’s criterion p4q, while
assertion pdq corresponds to Artin’s criterion p3q (assertion pcq has no counterpart in classical
algebraic geometry, but is a natural companion to paq and pbq). In Chapter 18, we will use
these ideas to establish a spectral analogue of Theorem 16.0.0.2:

Theorem 16.0.1 (Spectral Artin Representability Theorem). Let X : CAlgcn Ñ S be a
functor, and suppose we are given a natural transformation X Ñ SpecR, where R is a
Noetherian E8-ring and π0R is a Grothendieck ring. Let n ě 0. Then X is representable by
a spectral Deligne-Mumford n-stack which is locally almost of finite presentation over R if
and only if the following conditions are satisfied:

p1q For every discrete commutative ring A, the space XpAq is n-truncated.

p2q The functor X is a sheaf for the étale topology.

p3q The functor X is nilcomplete, infinitesimally cohesive, and integrable.

p4q The functor X admits a connective cotangent complex LX .

p5q The natural transformation f is locally almost of finite presentation (see Definition
17.4.1.1).

Theorem 18.3.0.1 can be regarded as a spectral analogue of Artin’s representability
criterion in classical algebraic geometry (see Theorem 16.0.0.2). However, it plays a more
central role than its classical counterpart. Many moduli spaces of interest in classical algebraic
geometry can be constructed directly, without resorting to an abstract representability
theorem. In spectral algebraic geometry, direct constructions are more problematic: it is
difficult to specify geometric objects by explicitly describing their coordinate rings, so the
“functor of points” perspective becomes indispensable. In Chapter 19, we will illustrate this
point by describing several applications of Theorem 18.3.0.1 (we will meet more examples
in Part VIII, when we consider the analogue of Artin’s theorem in the setting of derived
algebraic geometry).



Chapter 17

Deformation Theory and the
Cotangent Complex

Let A be a commutative ring and let B be a commutative algebra over A. We let ΩB{A

denote the module of Kähler differentials of B relative to A. More precisely, ΩB{A is the
B-module generated by symbols tdxuxPB subject to the relations

dpx` yq “ dx` dy dpxyq “ xdy ` ydx dλ “ 0 if λ P A.

The theory of Kähler differentials can be relativized. To every morphism of schemes
f : X Ñ Y , one can associate a quasi-coherent sheaf ΩX{Y on X, called the sheaf of
relative Kähler differentials, which is essentially characterized by the formula ΩX{Y pUq »

ΩOXpUq{OY pV q whenever U Ď X is an affine open subset whose image fpUq is contained in
an affine open subset V Ď Y . The sheaf ΩX{Y plays a central role in classical algebraic
geometry: if f is smooth, then ΩX{Y is a locally free sheaf which plays the role of a relative
cotangent bundle for the morphism f .

The theory of Kähler differentials has an analogue in the setting of spectral algebraic
geometry. To every morphism φ : A Ñ B of E8-rings, one can associate an object
LB{A P ModB, which we refer to as the relative cotangent complex of φ, which is universal
among those B-modules M for which the projection map B ‘M Ñ B is equipped with a
section (in the 8-category CAlgA); see §?? for a more detailed discussion. Like the classical
theory of Kähler differentials, this construction can be relativized. In §17.1, we associate to
each morphism of spectral Deligne-Mumford stacks f : X Ñ Y a relative cotangent complex
LX {Y, which we can regard as a quasi-coherent sheaf on X (Proposition 17.1.2.1). The
relative cotangent complex LX {Y can be regarded as kind of “relative cotangent bundle” of
f , with the caveat that it is usually not a vector bundle: the relative cotangent complex
LX {Y is locally free of finite rank if f is differentially smooth, and the converse holds under
some mild finiteness hypotheses (Proposition 17.1.5.1).

1294
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Recall that a spectral Deligne-Mumford stack X is determined by the functor hX :
CAlgcn Ñ S represented by X (given by hXpRq “ MapSpDMpSpétR,Xq; see Proposition
1.6.4.2). It follows that for any morphism f : X Ñ Y of spectral Deligne-Mumford stacks,
the relative cotangent complex LX {Y P QCohpXq can be recovered from the associated
natural transformation hX Ñ hY. In §17.2, we make this observation explicit by associating
a relative cotangent complex LX{Y to any (sufficiently nice) natural transformation between
functors X,Y : CAlgcn Ñ S (Definition 17.2.4.2). This “functor of points” approach has
the advantage of making sense in many situations where the functors X and Y are not
representable, or not yet known to be representable. This will be crucial in our discussion of
representability questions in Chapter 18: the existence of a relative cotangent complex LX{Y
is often the main ingredient in showing that a map f : X Ñ Y is relatively representable
(see Theorems 18.1.0.2 and 18.3.0.1).

Let f : X Ñ Y be a natural transformation between functors X,Y : CAlgcn Ñ S. By
definition, the relative cotangent complex LX{Y (if it exists) is a quasi-coherent sheaf on X

with the property that, for every commutative diagram

SpecA η //

��

X

f

��
SpecpA‘Mq

99

// Y,

the space of dotted arrow rendering the diagram commutative can be identified with
MapModApη

˚LX{Y ,Mq. We can summarize the situation more informally with the following
slogan:

p˚q Lifting of trivial square-zero extensions along a morphism f : X Ñ Y are controlled
by the relative cotangent complex LX{Y .

For many applications, p˚q alone is not very useful: one would like to analyze more general
lifting problems of the form σ :

SpecA η //

��

X

f

��
SpecA

<<

// Y,

where A is an arbitrary square-zero extension of A by a (connective) A-module M (see
Definition HA.7.4.1.6 ). In this case, the general philosophy of deformation theory suggests
that there should be an obstruction class α P Ext1

Apη
˚LX{Y ,Mq which vanishes if only

if the lifting problem depicted in the diagram σ admits a solution; moreover, if such a
solution exists, then the space of solutions should form a torsor for the mapping space
MapModApη

˚LX{Y ,Mq. In §17.3, we will see that this expectation is correct under the
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additional assumption that X and Y are infinitesimally cohesive (see Definition 17.3.1.5
and Remark 17.3.1.8). We also introduce the related notions of cohesive, nilcomplete, and
integrable functors X : CAlgcn Ñ S (Definitions 17.3.1.1, 17.3.2.1, and 17.3.4.1). Taken
together, these conditions express the idea that X has a well-behaved deformation theory,
and can be studied effectively using “infinitesimal” methods.

The deformation-theoretic ideas studied in §17.3 can be regarded as a partial answer to
Question 16.0.0.1: they allow us to formulate a list of axioms on a natural transformation
f : X Ñ Y which are necessarily satisfied if f is relatively representable. In order to
guarantee that these axioms are also sufficient, it is necessary to introduce some finiteness
hypotheses on f . In §17.4, we introduce the notion of local almost finite presentation for a
natural transformation f : X Ñ Y (Definition 17.4.1.1). Under mild hypotheses, we prove
that this agrees with the notion of almost finite presentation studied in Chapter 4 in the
case where f is relatively representable (Corollary 17.4.2.2).

Recall that if Z is an algebraic variety over C, then the Zariski tangent space to Z at a
C-valued point z P ZpCq can be defined as the fiber product ZpCrεs{pε2qqˆZpCqtzu. In §17.5,
we consider an analogue of this construction in the setting of spectral algebraic geometry:
if f : X Ñ Y is an infinitesimally cohesive morphism of functors X,Y : CAlgcn Ñ S, then
we can associate a well-defined tangent complex TX{Y pηq P ModA to each point η P XpAq
(Definition 17.5.1.1). Under the assumption that f admits a cotangent complex, the tangent
complex TX{Y pηq can be described as the A-linear dual of η˚LX{Y . In §17.5, we establish
a partial converse: under appropriate hypotheses, the existence of LX{Y is equivalent to
the assumption that the tangent complexes TX{Y pηq satisfy some mild finiteness conditions
(Theorem 17.5.4.1).

Warning 17.0.0.1. Let f : X Ñ Y be a morphism of schemes, which we will identify with
the corresponding spectral Deligne-Mumford stacks. Our definition of the cotangent complex
LX{Y P QCohpXq is based on a globalization of topological André-Quillen homology, rather
than classical André-Quillen homology. Consequently, it generally does not agree with usual
cotangent complex studied in algebraic geometry (for example, in [99] and [100]), which we
will denote by Lalg

X{Y . There is a canonical map θ : LX{Y Ñ Lalg
X{Y , which is an equivalence if

X is a Q-scheme. In general, θ induces isomorphisms πnLX{Y Ñ πnL
alg
X{Y for n ď 1 and an

epimorphism when n “ 2. The algebraic cotangent complex Lalg
X{Y plays a central role in the

theory of derived algebraic geometry, which we will study in §VIII and §??.
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17.1 The Cotangent Complex of a Spectrally Ringed
8-Topos

In §HA.7.3 , we defined the relative cotangent complex LB{A of a morphism of E8-rings
φ : A Ñ B. In this section, we will study a generalization of the construction φ ÞÑ LB{A,
where we replace φ by a map of spectrally ringed 8-topoi pX ,OX q Ñ pY,OYq (which reduces
to the theory described in §HA.7.3 when we take X “ Y “ S “ Shvp˚q).
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17.1.1 Definitions

We begin by introducing some terminology. Let pX ,A q be a spectrally ringed 8-
topos, and let ShvCAlgpX qA { {A denote the 8-category of augmented A -algebra objects
of ShvSppX q. It follows from Theorem HA.7.3.4.7 that the 8-category ModA of A -
module objects of ShvSppX q can be identified with the stabilization of the 8-category
ShvCAlgpX qA { {A . In particular, there canonical map Ω8 : ModA Ñ ShvCAlgpX qA { {A . If
M is a A -module object of ModSppX q, we will denote its image under the functor Ω8 by
A ‘M , and refer to it as the trivial square-zero extension of A by M .

Definition 17.1.1.1. Let pX ,A q be a spectrally ringed 8-topos and let M P ModA .
A derivation of A into M is a section of the tautological map A ‘M Ñ A . We let
DerpA ,M q “ MapShvCAlgpX q{A

pA ,A ‘M q denote the space of derivations of A into M .

Remark 17.1.1.2. In the situation of Definition 17.1.1.1, a derivation of A into M can be
identified with a pair ps, hq, where s : A Ñ A ‘M is a morphism of CAlg-valued sheaves
on X and h is a homotopy from the composite map

A
s
ÝÑ A ‘M Ñ A

to the identity map idA . It follows that, as a morphism of Sp-valued sheaves on X , we
can identify s with a product of the identity map id : A Ñ A and some auxiliary map
d : A Ñ M . We will often abuse terminology by referring to the map d as a derivation of
A into M . Beware that this terminology is slightly misleading: the pair ps, hq is generally
not determined by d P MapShvSppX qpA ,M q, even up to homotopy. Roughly speaking, we
can think of the pair ps, hq as witnessing the fact that the map d : A Ñ M satisfies the
Leibniz rule, up to coherent homotopy.

Definition 17.1.1.3 (The Cotangent Complex). Let X be an 8-topos. We let

L : ShvCAlgpX q Ñ ModpShvSppX qq

denote the absolute cotangent complex functor defined in §HA.7.3.2 . To each object
A P ShvCAlgpX q, we let LA P ModA denote the image of A under the functor L. We refer
to LA as the absolute cotangent complex of A . The object LA can be characterized up
to equivalence as follows: there exists a derivation d P DerpA , LA q for which evaluation
on d induces a homotopy equivalence MapModA

pLA ,M q Ñ DerpA ,M q for every object
M P ModA . We will refer to d as the universal derivation.

Variant 17.1.1.4 (The Relative Cotangent Complex). Let X be an 8-topos and let
φ : A Ñ B be a morphism of CAlg-valued sheaves on X . Then the relative cotangent
complex LB {A is given by the cofiber of the map BbA LA Ñ LB determined by φ (see
§HA.7.3.3 ).
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The formation of cotangent complexes is compatible with pullback, in the following
sense:

Proposition 17.1.1.5. Let φ˚ : Y Ñ X be a geometric morphism of 8-topoi, let A P

CAlgpShvSppYqq, and let d : A Ñ A ‘LA be the universal derivation. Then the induced
map

φ˚A Ñ φ˚pA ‘LA q » φ˚A ‘φ˚LA

induces an equivalence φ˚LA Ñ Lφ˚A .

Proof. Let M P Modφ˚A ; we wish to show that the pullback of d induces a homotopy
equivalence

θ : MapModφ˚A
pφ˚LA ,M q Ñ MapShvCAlgpX q{φ˚A

pφ˚A , φ˚A ‘M q.

Unwinding the definitions, we can identify θ with the composite map

MapModA
pLA , φ˚M q

θ1
ÝÑ MapShvCAlgpYq{A

pA ,A ‘φ˚M q

θ2
ÝÑ MapShvCAlgpYq{φ˚φ˚A

pA , φ˚pφ
˚A ‘M qq.

The universal property of d implies that θ1 is a homotopy equivalence, and θ2 is a homotopy
equivalence because the diagram

A ‘φ˚M //

��

φ˚pφ
˚A ‘M q

��
A // φ˚φ

˚A

is a pullback square.

Example 17.1.1.6. Let C be a small 8-category, and let X “ PpCq “ FunpCop,Sq be the
8-category of presheaves on C. We can identify ShvSppX q with the 8-category FunpCop,Sq
of presheaves of spectra on C, and CAlgpShvSppX qq with the 8-category FunpCop,CAlgq
of presheaves of E8-rings on C. If A : Cop Ñ CAlg is such a presheaf, then Proposition
17.1.1.5 implies that LA is given pointwise by the formula LA pCq “ LA pCq for C P C; here
the right hand side denotes the A pCq-module given by the absolute cotangent complex of
the E8-ring A pCq.

Example 17.1.1.7. Let X an arbitrary 8-topos. Then there exists a small 8-category C
such that X is equivalent to an accessible left exact localization of PpCq. Let us identify
X with its image in PpCq, and let f˚ : PpCq Ñ X denote a left adjoint to the inclusion.
Let A be a sheaf of E8-rings on X , so that we can identify A with a functor Cop Ñ CAlg.
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Combining Example 17.1.1.6 with Proposition 17.1.1.5, we deduce that LA “ f˚M , where
M P ModA pFunpCop,Spqq is given by the formula M pCq “ LA pCq. In other words, LA is
the sheafification of the presheaf obtained from A by pointwise application of the algebraic
cotangent complex functor A ÞÑ LA defined in §HA.7.3.2 .

Definition 17.1.1.8. Let X “ pX ,OXq be a spectrally ringed 8-topos. We let LX denote
the absolute cotangent complex LOX P ModOX . We will refer to LX as the absolute cotangent
complex of X.

If Y “ pY,OYq is another spectrally ringed 8-topos and φ : X Ñ Y is a morphism of
spectrally ringed 8-topoi, we let LX {Y P ModOX denote the relative cotangent complex of
the morphism φ˚OY Ñ OX in CAlgpShvSppX qq; we refer to LX {Y as the relative cotangent
complex of the morphism φ.

Remark 17.1.1.9. Let φ : X Ñ Y be a map of spectrally ringed 8-topoi. If the structure
sheaf of X is the pullback of the structure sheaf of Y, then the relative cotangent complex
LX {Y vanishes. In particular, if φ is étale, then LX {Y » 0.

Remark 17.1.1.10. Suppose we are given morphisms of spectrally ringed 8-topoi X φ
Ñ

Y ψ
Ñ Z. Using Propositions 17.1.1.5 and HA.7.3.3.5 , we deduce that the diagram

φ˚LY {Z //

��

LX {Z

��
φ˚LY {Y // LX {Y

is a pushout square in the stable 8-category ModOX . Since LY {Y » 0, we obtain a fiber
sequence φ˚LY {Z Ñ LX {Z Ñ LX {Y.

17.1.2 The Cotangent Complex of a Spectral Deligne-Mumford Stack

When restricted to spectral Deligne-Mumford stacks, the constructions of §17.1 do not
leave the world of spectral algebraic geometry.

Proposition 17.1.2.1. Let X be a nonconnective spectral Deligne-Mumford stack. Then
the cotangent complex LX is a quasi-coherent sheaf on X.

Corollary 17.1.2.2. Let φ : X Ñ Y be a morphism of nonconnective spectral Deligne-
Mumford stacks. Then the relative cotangent complex LX {Y is a quasi-coherent sheaf on
X.

The proof of Proposition 17.1.2.1 will require some preliminary observations.
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Remark 17.1.2.3. Let φ : A Ñ B be an étale morphism of E8-rings. Then the relative
cotangent complex LB{A vanishes (Corollary HA.7.5.4.5 ). It follows that, for every E8-ring
R, every R-module M , and every map η : LR Ñ ΣM , the diagram of spaces

MapCAlgpB,R
ηq //

��

MapCpB,Rq

��
MapCAlgpA,R

ηq //MapCAlgpA,Rq

is a pullback square. In particular, taking η “ 0, we obtain a pullback square

MapCAlgpB,R‘Mq //

��

MapCpB,Rq

��
MapCAlgpA,R‘Mq //MapCAlgpA,Rq.

Remark 17.1.2.4. Let X be an 8-topos, let A be a sheaf of E8-rings on X , and let A

be a square-zero extension of A . Using Remark 17.1.2.3, we deduce:

paq If A is local (Henselian, strictly Henselian), then A is also local (Henselian, strictly
Henselian).

pbq Assume that A is local, and let B be another local sheaf of E8-rings on X . Then a
morphism φ : B Ñ A is local if and only if the composite map B

φ
Ñ A Ñ A is local.

In particular, the projection map A Ñ A is local.

Lemma 17.1.2.5. Let A be an E8-ring and let X “ pX ,Oq “ SpétA denote the corre-
sponding nonconnective spectral Deligne-Mumford stack. Then the cotangent complex LO

is a quasi-coherent sheaf on X. The equivalence ModA » QCohpSpétAq carries LA to the
absolute cotangent complex LO .

Proof. The universal derivation O Ñ O ‘LO induces a morphism

A » ΓpX ; Oq Ñ ΓpX ; O ‘LOq » A‘ ΓpX ;LOq

in CAlg{A, which is classified by a map of A-modules ε : LA Ñ ΓpX ;LOq. Let M denote a
preimage of LA under the equivalence QCohpXq » ModA, so that ε determines a morphism
ε1 : M Ñ LO in ModO . We will prove that ε1 is an equivalence. To prove this, let M 1 P ModO

be arbitrary. We wish to show that composition with ε1 induces a homotopy equivalence

θ : MapModO
pLO ,M

1q Ñ MapModO
pM ,M 1q » MapModApLA,ΓpX ; M 1qq.

Invoking the universal properties of LO and LA, we can identify θ with the map

θ1 : MapShvCAlgpX q{O
pO,O ‘M 1q Ñ MapCAlg{ApA,A‘ ΓpX ; M 1qq.
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It follows from Remark 17.1.2.4 (and the universal property of X “ SpétA) that this map is
a homotopy equivalence.

Proof of Proposition 17.1.2.1. The assertion is local on X (Proposition 17.1.1.5). We may
therefore assume without loss of generality that X is affine, in which case the result follows
from Lemma 17.1.2.5.

We note the following additional consequence of Lemma 17.1.2.5:

Proposition 17.1.2.6. Suppose we are given a pullback square

X1 //

φ
��

X

��
Y1 // Y

of nonconnective spectral Deligne-Mumford stacks. Then the canonical map

φ˚LX {Y Ñ LX1 {Y1

is an equivalence in QCohpX1q.

Proof. The assertion is local on Y; we may therefore assume without loss of generality that
Y “ SpétA is affine. Similarly, we can assume that Y1 “ SpétA1 and X1 “ SpétB are affine.
Then X1 » SpétB1, where B1 “ A1 bA B. Using Lemma 17.1.2.5, we are reduced to proving
that the canonical map B1 bB LB{A Ñ LB1{A1 is an equivalence of B1-modules, which is a
special case of Proposition HA.7.3.3.7 .

We close this section with a variant of Proposition 17.1.2.1:

Proposition 17.1.2.7. Let X be a formal spectral Deligne-Mumford stack (Definition
8.1.3.1). Then the cotangent complex LOX

P ModOX
is weakly quasi-coherent (see Definition

8.2.3.1).

Proof. The assertion is local on X, so we may assume without loss of generality that
X “ Spf A for some adic E8-ring A. Let f : X Ñ SpétA be the canonical map and let
us regard ModOX

as a stable A-linear 8-category. Then f˚LSpétA » LA bA OX is weakly
quasi-coherent, and we have a fiber sequence f˚LSpétA Ñ LX Ñ LX {SpétA. Consequently,
to show that LX is weakly quasi-coherent, it will suffice to show that LX {SpétA is weakly
quasi-coherent.

Let I Ď π0A be a finitely generated ideal of definition, so that we can identify the structure
sheaf OSpf A with the CAlg-valued presheaf given by pB P CAlgét

Aq ÞÑ B^I . Unwinding the
definitions, we see that LX {SpétA can be identified with the sheafification of the presheaf given
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by B ÞÑ LB^I {B . Note that if tBnuną0 is a tower of B-algebras satisfying the requirements of
Lemma 8.1.2.2, then the unit map Bn Ñ BnbB B

^
I is an equivalence for each n ą 0, so that

Bn bB LB^I {B » LpBnbBB^I q{Bn » 0.

Using Lemma 8.1.2.3, we deduce that the I-completion of LB^I {B vanishes: that is, each of
the relative cotangent complexes LB^I {B is I-local when regarded as an A-module. It follows
that the sheaf LX {SpétA is an I-local object of the stable A-linear 8-category ModOX

, and
is therefore weakly coherent by Proposition 8.3.2.2.

In the situation of Proposition 17.1.2.7, the cotangent complex LX is generally not
quasi-coherent. However, we can remedy this by passing to the completion:

Definition 17.1.2.8. Let X be a formal spectral Deligne-Mumford stack. We let L^X denote
the quasi-coherent sheaf on X obtained by applying Construction 8.2.4.1 to the cotangent
complex LX (which is weakly quasi-coherent by virtue of Proposition 17.1.2.7). We will refer
to L^X as the completed cotangent complex of X.

More generally, if f : XÑ Y is a morphism of formal spectral Deligne-Mumford stacks,
we let L^X {Y P QCohpXq denote the quasi-coherent sheaf obtained by applying Construction
8.2.4.1 to the relative cotangent complex LX {Y. Equivalently, we can described L^X {Y as the
cofiber of the canonical map f‹L^Y Ñ L^X .

Example 17.1.2.9. Let A be an adic E8-ring and let I Ď π0A be a finitely generated ideal
of definition. Then the equivalence QCohpSpf Aq » ModCplpIq

A of Corollary 8.2.4.15 carries
the completed cotangent complex L^Spf A to the A-module pLAq^I .

Example 17.1.2.10. Let X be a spectral Deligne-Mumford stack, let K Ď |X | be a
cocompact closed subset, and let X^K denote the formal completion of X along K (Definition
8.1.6.1). Then the completed cotangent complex L^X^K {X vanishes. To prove this, we can
work locally and thereby reduce to the case where X » SpétA is affine, in which case the
desired result follows from the proof of Proposition 17.1.2.7.

17.1.3 Square-Zero Extensions

We now discuss square-zero extensions which are not necessarily trivial.

Construction 17.1.3.1 (The Square-Zero Extension of a Derivation). Let X be an 8-
topos, A a sheaf of E8-rings on X , and M P ModA . Let η : LA Ñ Σ M be a morphism
of A -modules, so that η determines a derivation dη : A Ñ A ‘Σ M (in the 8-category
ShvCAlgpX q{A ). Similarly, the zero map LA Ñ Σ M classifies a map d0 : A Ñ A ‘Σ M .
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Form a pullback diagram
A η //

��

A

dη
��

A
d0 // A ‘Σ M .

We will refer to A η as the square-zero extension of A determined by η. By construction,
there is a canonical fiber sequence M Ñ A η Ñ A in the 8-category of Sp-valued sheaves
on X .

In general, the passage from a morphism η : LA Ñ Σ M to the associated square-zero
extension A η involves a loss of information. We now study a situation where this is not the
case:

Definition 17.1.3.2. Let X be an 8-topos and let n ě 0 be an integer. We will say that a
morphism φ : A Ñ A in CAlgpShvSppX qq is an n-small extension if the following conditions
are satisfied:

piq The sheaf A is connective.

piiq The fiber I “ fibpφq is n-connective (from which it follows that A is also connective).

piiiq The fiber I belongs to ShvSppX qď2n.

pivq The multiplication on A induces a nullhomotopic map I b I Ñ I.

The following result is a special case of Theorem HA.7.4.1.26 :

Theorem 17.1.3.3. Let X be an 8-topos, let A be a connective sheaf of E8-rings on X ,
and let n ě 0 be an integer. Let C denote the full subcategory of pModA qLA {

spanned by
morphisms of the form η : LA Ñ Σ I, where I is n-connective and p2nq-truncated. Then
the construction η ÞÑ A η determines a fully faithful embedding from C to ShvCAlgpX q{A ,
whose essential image is the collection of n-small extensions A Ñ A .

We now show that the class of spectral Deligne-Mumford stacks is closed under construc-
tion of square-zero extensions described in §17.1.3.

Proposition 17.1.3.4. Let X “ pX ,OX q be a spectral Deligne-Mumford stack, M a con-
nective quasi-coherent sheaf on X , and η : LX Ñ Σ M a morphism in QCohpXq. Then the
pair pX ,Oη

X q is also a spectral Deligne-Mumford stack. If X is locally Noetherian and M is
almost perfect, then pX ,Oη

X q is also locally Noetherian.

The proof of Proposition 17.1.3.4 will require some preliminaries.
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Lemma 17.1.3.5. Let A be a connective E8-ring, M a connective A-module, and η : LA Ñ
ΣM a map of A-modules which determines a square-zero extension Aη Ñ A. Then the base
change functor θ : CAlgét

Aη Ñ CAlgét
A is an equivalence of 8-categories.

Proof. We have a short exact sequence of abelian groups

π0A
η Ñ π0AÑ π´1M.

Since M is connective, the map π0A
η Ñ π0A is a surjection. Using the structure theory of

étale morphisms (Proposition B.1.1.3), we deduce that θ is essentially surjective. It remains
to show that θ is fully faithful. Let B and B

1 be étale Aη-algebras, and set B “ AbAηB

and B1 “ AbAη B
1. We wish to show that θ induces a homotopy equivalence

φ : MapCAlgAη{pB
1
, Bq Ñ MapCAlgAη{pB

1
, Bq » MapCAlgA{pB

1, Bq.

We have a pullback diagram of Aη-algebras

B //

��

B

��
B // pA‘ ΣMq bAη B.

We note that the lower right corner can be identified with the square-zero extension B‘ΣN ,
where N “ B bAM . It follows that φ is a pullback of the map

φ0 : MapCAlgAη{pB
1
, Bq Ñ MapCAlgAη{pB

1
, B ‘ ΣNq.

It will therefore suffice to show that φ0 is a homotopy equivalence. The projection B‘ΣN Ñ

B induces a map

ψ : MapCAlgAη{pB
1
, B ‘ ΣNq Ñ MapCAlgAη{pB

1
, Bq

which is left homotopy inverse to φ0. We claim that ψ is a homotopy equivalence. To prove
this, fix a map of Aη-algebras f : B1 Ñ B. We will show that the homotopy fiber of ψ
over f is contractible. This homotopy fiber is given by MapMod

B
1
pL

B
1
{Aη

,ΣNq, which is
contractible by virtue of our assumption that B1 is étale over Aη.

Lemma 17.1.3.6. Let A be a connective E8-ring, M a connective A-module, and η : LA Ñ
ΣM a map of A-modules which determines a square-zero extension Aη of A. Then the
induced map SpétAÑ SpétAη induces an equivalence of the underlying 8-topoi.

Proof. According to Lemma 17.1.3.5, we have an equivalence of 8-categories CAlgét
Aη »

CAlgét
A . Note that a morphism f : B1 Ñ B in CAlgét

Aη is faithfully flat if and only if its
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image f : B1 Ñ B in CAlgét
A is faithfully flat. The “only if” direction is obvious, and the “if”

direction follows from the observation that the map of commutative rings π0B Ñ π0B is a
surjection with nilpotent kernel, and therefore induces a bijection |SpecB| Ñ | SpecB|. It
follows that the equivalence CAlgét

Aη » CAlgét
A induces an equivalence after taking sheaves

with respect to the étale topology, and therefore induces an equivalence between the
underlying 8-topoi of SpétAη and SpétA (see Proposition 1.4.2.4).

Lemma 17.1.3.7. Let A be a connective E8-ring, let M be an A-module which is connective
as a spectrum, and let M be the corresponding quasi-coherent sheaf on SpétA “ pX ,Oq.
Suppose we are given a map η : LO Ñ Σ M which determines a square-zero extension Oη of
O. Passing to global sections (and using Lemma 17.1.2.5), we obtain a map of A-modules
η0 : LA Ñ ΣM which determines a square-zero extension Aη0 of A. Then there is a canonical
equivalence pX ,Oηq » SpétAη0 (in the 8-category RTop of spectrally ringed 8-topoi).

Proof. Remark 17.1.2.4 implies that Oη is strictly Henselian. Since Aη0 can be identified
with the E8-ring of global sections of Oη, the universal property of SpétAη0 gives a map of
spectrally ringed 8-topoi φ : pX ,Oηq Ñ SpétAη0 . Lemma 17.1.3.6 implies that φ induces
an equivalence at the level of the underlying 8-topoi. Write SpétAη0 as pX ,O 1q. We
can identify O 1 with the sheaf of E8-rings on pCAlgét

Aq
op given by a homotopy inverse of

the equivalence CAlgét
Aη0 Ñ CAlgét

A of Lemma 17.1.3.5. Then φ induces a map of sheaves
O 1 Ñ Oη; we wish to show that this map is an equivalence. Unwinding the definitions, we
are required to show that for every étale A-algebra B, if we let η1 : LB Ñ B bA ΣM denote
the map induced by η, then φ induces an equivalence of E8-rings O 1pBq Ñ Bη1 . Using
Lemma 17.1.3.5, we are reduced to proving that Bη1 is étale over Aη0 , and that the canonical
map AbAη0 Bη1 Ñ B is an equivalence. This is a special case of Proposition HA.7.4.2.5 .

Proof of Proposition 17.1.3.4. The assertion is local on X . We may therefore assume without
loss of generality that X “ SpétA is affine, that M is the quasi-coherent sheaf associated to
a connective A-module M , and we can identify η with an A-module map η0 : LA Ñ ΣM .
It follows from Lemma 17.1.3.7 that pX ,Oη

X q » SpétAη0 is an affine spectral Deligne-
Mumford stack. For every integer n, we have a short exact sequence of π0A

η0-modules
πnM Ñ πnA

η0 Ñ πnA. If A is Noetherian and M P ModA is almost perfect, then πnA

and πnM are Noetherian objects of the abelian category Mod♥
A, and therefore also of the

abelian category Mod♥
Aη0 . It follows that πnAη0 is also a Noetherian object of Mod♥

Aη0 .
In particular, π0A

η0 is a Noetherian ring and each homotopy group πnA
η0 is a finitely

generated module over π0A
η0 . It follows that Aη0 is a Noetherian E8-ring, so that the

spectral Deligne-Mumford stack pX ,Oη
X q » SpétAη0 is locally Noetherian as desired.
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17.1.4 Connectivity Estimates

Construction 17.1.4.1. Let X be an 8-topos and let f : A Ñ B be a morphism of
sheaves of E8-rings on X . The canonical map η : LB Ñ LB {A determines a square-zero
extension Bη of B by Σ´1LB {A . Since the restriction of η to LA vanishes, the associated
square-zero extension of A is split: that is, the map f factors as a composition

A
f 1
Ñ Bη f2

Ñ B .

In particular, we obtain a map of A -modules cofibpfq Ñ cofibpf2q, which induces a map of
B-modules

εf : BbA cofibpfq Ñ cofibpf2q » LB {A .

The following result is a special case of Theorem HA.7.4.3.12 :

Theorem 17.1.4.2. Let X be an 8-topos, let f : A Ñ B be a morphism between sheaves of
E8-rings on X , and let εf : BbA cofibpfq Ñ LB {A be defined as in Construction 17.1.4.1.
Assume that A and B are connective and that the cofiber cofibpfq is n-connective (as a
sheaf of spectra on X ). Then the morphism εf of Construction 17.1.4.1 is p2nq-connective:
that is, fibpεf q is a 2n-connective sheaf of spectra on X .

Let us collect up some consequences of Theorem 17.1.4.2:

Corollary 17.1.4.3. Let X be an 8-topos and let f : A Ñ B be a morphism of connective
sheaves of E8-rings on X . Assume that cofibpfq is n-connective for some n ě 0. Then LB {A

is n-connective. The converse holds provided that f induces an isomorphism π0 A Ñ π0 B.

Proof. Let εf : BbA cofibpfq Ñ LB {A be as in Construction 17.1.4.1, so that we have a
fiber sequence of B-modules: fibpεf q Ñ BbA cofibpfq εf

ÝÑ LB {A . To prove that LB {A

is n-connective, it will suffice to show that BbA cofibpfq is n-connective and that fibpεf q
is pn´ 1q-connective. The first assertion is obvious, and the second follows from Theorem
17.1.4.2 (since 2n ě n´ 1).

To prove the converse, let us suppose that cofibpfq is not n-connective. We wish to show
that LB {A is not n-connective. Let us assume that n is chosen as small as possible, so that
cofibpfq is pn ´ 1q-connective. By assumption, f induces an isomorphism π0 A Ñ π0 B,
so we must have n ě 2. Applying Theorem 17.1.4.2, we conclude that εf is p2n ´ 2q-
connective. Since n ě 2, we deduce in particular that εf is n-connective, so that the map
πn´1pBbA cofibpfqq Ñ πn´1LB {A is an isomorphism. Since cofibpfq is pn´ 1q-connective
and π0 A » π0 B, the map πn´1 cofibpfq Ñ πn´1pBbA cofibpfqq is an isomorphism. It
follows that πn´1 cofibpfq Ñ πn´1LB {A is also an isomorphism, so that πn´1LB {A is
nonzero.
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Corollary 17.1.4.4. Let X be a sheaf of E8-rings and let A be a connective sheaf of
E8-rings on X . Then the absolute cotangent complex LA is connective.

Proof. Let 1 denote the initial object of CAlgpShvSppX qq, and apply Corollary 17.1.4.3 to
the unit map 1 Ñ A .

Corollary 17.1.4.5. Let f : A Ñ B be a map of connective sheaves of E8-rings on
an 8-topos X . Assume that cofibpfq is n-connective for n ě 0. Then the induced map
Lf : LA Ñ LB has n-connective cofiber. In particular, the canonical map π0LA Ñ π0Lπ0 A

is an isomorphism.

Proof. The map Lf factors as a composition LA
g
Ñ BbA LA

g1
Ñ LB. We observe that

cofibpgq » cofibpfq bA LA . Since the cotangent complex LA is connective and cofibpfq is
n-connective, we conclude that cofibpgq is n-connective. It will therefore suffice to show
that cofibpg1q » LB{A is n-connective. Let εf be as Construction 17.1.4.1, so we have a
fiber sequence BbA cofibpfq εf

ÝÑ LB {A Ñ cofibpεf q. It therefore suffices to show that
BbA cofibpfq and cofibpεf q are n-connective. The first assertion follows immediately from
the n-connectivity of cofibpfq, and the second from Theorem 17.1.4.2 since 2n` 1 ě n.

17.1.5 Finiteness Conditions on LX {Y

Let φ : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. Many of the algebro-
geometric properties of φ studied earlier in this book (such as the properties of being étale,
fiber-smooth, differentially smooth, locally of finite presentation, and locally almost of finite
presentation) can be formulated as properties of the relative cotangent complex LX {Y:

Proposition 17.1.5.1. Let φ : X “ pX ,OXq Ñ pY,OYq “ Y be a morphism of spectral
Deligne-Mumford stacks. Then:

p1q If the morphism φ is étale, then the relative cotangent complex LX {Y vanishes.

p2q If the morphism φ is locally of finite presentation, then the relative cotangent complex
LX {Y P QCohpXq is perfect.

p3q If the morphism φ is locally almost of finite presentation, then the relative cotangent
complex LX {Y P QCohpXq is almost perfect.

p4q If the morphism φ is locally of finite generation to order n (see Definition 4.2.0.1),
then the relative cotangent complex LX {Y P QCohpXq is perfect to order n.

p5q If the morphism φ is differentially smooth, then the relative cotangent complex LX {Y P

QCohpXq is locally free of finite rank.
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p6q If the morphism φ is fiber-smooth, then φ is flat and, for every field κ and every
morphism ψ : SpétκÑ X, we have π1ψ

˚LX {Y » 0.

The converse assertions hold if we assume that φ exhibits pX , π0 OXq as locally finitely
0-presented over pY, π0 OYq (see Definition 4.2.3.1).

Proof. We may assume without loss of generality that X “ SpétA and Y “ SpétB are
affine. In this case, Lemma 17.1.2.5 allows us to identify LX {Y with the quasi-coherent sheaf
associated to the A-module LA{B . Assertion p1q now follows from Lemma B.1.3.3, assertions
p2q and p3q from Theorem HA.7.4.3.18 , assertion p4q from Proposition 4.1.2.1, assertion p5q
from the definition of differential smoothness (see Proposition 11.2.2.1), and assertion p6q
from Corollary 11.2.4.2.

Corollary 17.1.5.2. Let φ : X “ pX ,OXq Ñ pY,OYq “ Y be a morphism of spectral
Deligne-Mumford stacks. Then φ is an equivalence if and only if it satisfies the following
conditions:

paq The underlying map of 0-truncations pX , π0 OXq Ñ pY, π0 OYq is an equivalence.

pbq The relative cotangent complex LX {Y P QCohpXq vanishes.

17.1.6 Application: Noetherian Approximation

We conclude this section by applying the theory of the cotangent complex to prove
a technical result which was needed in §4.4.4. Recall that if X “ pX ,OXq is a spectral
Deligne-Mumford stack, then τďn X “ pX , τďn OXq denotes its n-truncation.

Proposition 17.1.6.1. Let n ě 0, and suppose we are given a commutative diagram σ :

τďn X

��

g // Y
f
��

X h // Z

of quasi-compact, quasi-separated spectral algebraic spaces. Assume the following:

piq The morphism g is affine.

piiq The morphism f is locally almost of finite presentation.

piiiq The spectral algebraic space Y is locally Noetherian.
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Then σ can be extended to a commutative diagram σ1:

τďn X

��

g // Y

i
��

X g //

id
��

Y1

f 1

��
X // Z

where Y1 is locally Noetherian and i induces an equivalence τďn Y Ñ τďn Y1.

Proof. Write Y “ pY,OYq. Let A “ f´1 OZ P Shvcn
CAlgpYq denote the pullback of the

structure sheaf of Z along the morphism f . Let C “ ShvCAlgpYqA { denote the 8-category
of A -algebra objects of ShvCAlgpYq. Using the morphism h, we can regard B “ g˚OX as an
object of C. The diagram σ determines a morphism upnq : OY Ñ τďn B in the 8-category
C. We will show that there exists a commutative diagram

¨ ¨ ¨

��

¨ ¨ ¨

��
OYpn` 2q

upn`2q //

��

τďn`2 B

��
OYpn` 1q

upn`1q //

��

τďn`1 B

��
OYpnq

upnq // τďn B

in the 8-category C which satisfies the following conditions:

paq The sheaf OYpnq coincides with OY and the morphism upnq coincides with u.

pbq Each of the pairs pY,OYpmqq is a locally Noetherian spectral algebraic space.

pcq Each of the maps OYpm` 1q Ñ OYpmq induces an equivalence of m-truncations.

Assuming this can be done, we define OY1 “ lim
ÐÝ

OYpmq P ShvCAlgpYq. It follows from pbq

and pcq that the pair Y1 “ pY,OY1q is a spectral algebraic space, and that the natural map
pY,OYpmqq Ñ pY,OY1q induces an equivalence on m-truncations for each m ě n (to prove
this, we can work locally and thereby reduce to the case where Y is affine, in which case the
result follows immediately from the Postnikov-completeness of the 8-category CAlgcn). In
particular, we conclude from pbq that Y1 “ pY,OYpmq is locally Noetherian (since this can be
tested at the level of m-truncations) and from pcq that the natural map i : Y Ñ Y1 induces
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an equivalence of n-truncations. Moreover, the inverse system tupmquměn determines a map
up8q : OY1 Ñ lim

ÐÝ
τďm B » B which classifies a morphism g : X Ñ Y1 having the desired

properties.
It remains to construct the maps upmq : OYpmq Ñ τďm B. We proceed by induction

on m, with the case m “ n handled by paq. To carry out the inductive step, let us assume
that upmq has been constructed for some m ě n. It follows from assumptions pbq, pcq,
and Remark 4.2.0.4 that the canonical map Y Ñ pY,OYpmqq is locally almost of finite
presentation. Combining this observation with piiq and Proposition 17.1.5.1, we deduce that
the relative cotangent complexes LOY {A , LOY {OYpmq P QCohpYq are almost perfect. Using
the fiber sequence

OYbOYpmqLOYpmq{A Ñ LOY {A Ñ LOY {OYpmq

and Proposition 2.7.3.2, we deduce that LOYpmq{A is almost perfect (when viewed as a
quasi-coherent sheaf on the spectral algebraic space pY,OYpmqq.

Set F “ g˚πm`1 OX. Let us regard F as a OYpmq-module via the morphism upmq, so
that it is a quasi-coherent sheaf on the spectral Deligne-Mumford stack pY,OYpmqq. Using
Proposition 10.5.1.5, we can write F as the colimit of a filtered diagram tFαu, where
each Fα P QCohpY,OYpmqq

♥ is almost perfect. It follows from Theorem 17.1.4.2 that we
can regard τďm`1 B as a square-zero extension of τďm B by Σm`1 F : that is, we have an
equivalence τďm`1 B » pτďm Bqη for some map η : Lτďm B {A Ñ Σm`2 F . Let η1 denote
the composite map

LOYpmq{A
upmq
ÝÝÝÑ Lτďm B {A

η
ÝÑ Σm`2 F .

Since LOYpmq{A is almost perfect, the morphism η1 factors as a composition

LOYpmq{A
η2
ÝÑ Σm`2 Fα Ñ Σm`2 F

for some index α. We let OYpm` 1q “ OYpmq
η2 denote the square-zero extension of OYpmq

by Σm`1 Fα determined by η2, so that upmq lifts to a morphism

upm` 1q : OYpm` 1q “ OYpmq
η2 Ñ pτďm Bqη » τďm`1 B .

By construction, we have a canonical fiber sequence Σm`1 Fα Ñ OYpm` 1q ρ
ÝÑ OYpmq,

so that the morphism ρ induces an equivalence on m-truncations. It follows from Proposition
17.1.3.4 that the pair pY,OYpm` 1qq is a locally Noetherian spectral Deligne-Mumford stack
(and therefore also a spectral algebraic space, since its m-truncation is a spectral algebraic
space).

17.2 The Cotangent Complex of a Functor

Let φ : X Ñ Y be a morphism of spectral Deligne-Mumford stacks, and let X “ hX
and Y “ hY be the functors represented by X and Y, respectively. The relative cotangent



1312 CHAPTER 17. DEFORMATION THEORY AND THE COTANGENT COMPLEX

complex LX {Y is a quasi-coherent sheaf on X (Proposition 17.1.2.1). According to Proposition
6.2.4.1, we can identify quasi-coherent sheaves on X with quasi-coherent sheaves on the
functor X. In particular, we can think of LX {Y as a rule which assigns an A-module
η˚LX {Y P QCohpSpétAq » ModA to each A-valued point η : SpétA Ñ X. Unwinding the
definitions, we see that if N is a connective A-module, then we can identify A-module maps
from η˚LX {Y into N with dotted arrows completing the diagram

SpétA η //

��

X

��
SpétpA‘Nq

99

// Y,

where the lower horizontal map is given by the composition

SpétpA‘Nq Ñ SpétA η
Ñ X Ñ Y .

The above analysis suggests the possibility of defining the relative cotangent complex
for a general natural transformation between functors X,Y : CAlgcn Ñ S. Our goal in this
section is to develop the theory of the cotangent complex in this setting, and to show that
it agrees with Definition 17.1.1.8 when we restrict to functors which are represented by
spectral Deligne-Mumford stacks (Proposition 17.2.5.1).

17.2.1 Almost Representable Functors

Suppose we are given a natural transformation f : X Ñ Y between functors X,Y :
CAlgcn Ñ S. In good cases, we would like to associate to f a relative cotangent complex
LX{Y P QCohpXq. LX{Y P QCohpXq. We can think of LX{Y as a rule which assigns to each
point η P XpAq an A-module Mη, which is compatible with base change. This module Mη

should have the following property: for every connective A-module N , MapModApMη, Nq is
given by the fiber of the canonical map

XpA‘Nq Ñ XpAq ˆY pAq Y pA‘Nq

(over the base point determined by η). In the special case where Mη is connective, this
mapping property determines Mη up to a contractible space of choices (by the 8-categorical
version of Yoneda’s lemma). However, for some applications this is unnecessarily restrictive:
the cotangent complex of an Artin stack (over a field of characteristic zero, say) is usually
not connective. We will therefore need a mechanism for recovering Mη given the functor
that it corepresents on the 8-category Modcn

A of connective A-modules.

Notation 17.2.1.1. Recall that if C and D are 8-categories which admit final objects, then
a functor F : C Ñ D is said to be reduced if it preserves final objects. If C admits finite
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colimits and D admits finite limits, we say that F is excisive if it carries pushout squares
in C to pullback squares in D. We let Exc˚pC,Dq denote the full subcategory of FunpC,Dq
spanned by those functors which are reduced and excisive.

Lemma 17.2.1.2. Let C be a stable 8-category equipped with a right-bounded t-structure.
Then the restriction functor θ : Exc˚pC,Sq Ñ Exc˚pCě0,Sq is a trivial Kan fibration.

Proof. Since θ is obviously a categorical fibration, it will suffice to show that θ is a categorical
equivalence. Note that Exc˚pC,Sq is the homotopy limit of the tower of 8-categories

¨ ¨ ¨ Ñ Exc˚pCě´2,Sq Ñ Exc˚pCě´1,Sq Ñ Exc˚pCě0,Sq.

It will therefore suffice to show that each of the restriction maps

Exc˚pCě´n,Sq Ñ Exc˚pCě0,Sq

is an equivalence of 8-categories. We have a commutative diagram

Exc˚pCě´n,Spq //

��

Exc˚pCě0,Spq

��
Exc˚pCě´n,Sq // Exc˚pCě0,Sq

where the vertical maps (given by composition with Ω8 : Sp Ñ S) are equivalences of
8-categories (Proposition HA.1.4.2.22 ). It will therefore suffice to show that the forgetful
functor

θ : Exc˚pCě´n,Spq Ñ Exc˚pCě0,Spq

is an equivalence of 8-categories. This is clear, since θ has a homotopy inverse given by the
construction F ÞÑ Ωn ˝ F ˝ Σn.

Example 17.2.1.3. Let C be a stable8-category equipped with a right-bounded t-structure,
let C P C be an object, and let F : C Ñ S be the functor corepresented by C. Then F is an
excisive functor. It follows from Lemma 17.2.1.2 that F is determined by the restriction
F |Cě0 , (up to a contractible space of choices). Combining this observation with Yoneda’s
lemma (Proposition HTT.5.1.3.2 ), we see that the object C can be recovered from F |Cě0

(again up to a contractible space of choices). More precisely, the construction C ÞÑ F |Cě0

determines a fully faithful embedding Cop Ñ Exc˚pCě0,Sq.

Example 17.2.1.4. Let A be a connective E8-ring. Recall that an A-module M is said
to be almost connective if it is n-connective for some n, and let Modacn

A denote the full
subcategory of ModA spanned by the A-modules which are almost connective. Example
17.2.1.3 determines a fully faithful embedding

θ : pModacn
A qop Ñ Exc˚pModcn

A ,Sq.
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We will say that a functor Modcn
A Ñ S is almost corepresentable if it belongs to the essential

image of the functor θ.

Proposition 17.2.1.5. Let A be connective E8-ring and let F : Modcn
A Ñ S be a functor.

Then F is almost corepresentable if and only if the following conditions are satisfied:

paq The functor F is reduced and excisive.

pbq There exists an integer n such that the functor M ÞÑ ΩnF pMq commutes with small
limits.

pcq The functor F is accessible: that is, F commutes with κ-filtered colimits for some
regular cardinal κ.

Proof. Assume that condition paq is satisfied, so that F extends to an left exact F` :
Modacn

A Ñ S (Lemma 17.2.1.2). Suppose that F` is represented by an almost connective
A-module N . Choose n such that ΣnN is connective. Then the functor

M ÞÑ ΩnF pMq » F`pΩnMq » MapModApN,Ω
nMq » MapModApΣ

nN,Mq

is corepresented by the object ΣnN P Modcn
A , and therefore preserves small limits. If N is a

κ-compact object of ModA, then F commutes with κ-filtered colimits, so that pcq is satisfied.
Conversely, suppose that pbq and pcq are satisfied. Choose n ě 0 as in pbq. Then the

restriction F`|pModAqě´n is given by the composition

pModAqě´n Σn
Ñ Modcn

A
F
Ñ S˚ Ωn

Ñ S,

and therefore commutes with small limits. Using Proposition HTT.5.5.2.7 , we deduce that
F`|pModAqě´n is corepresented by an object N P pModAqě´n. Using Lemma 17.2.1.2, we
deduce that F` is corepresented by N , so that F is almost corepresentable.

17.2.2 Digression: Local Representability

Let C be an 8-category. It follows from the 8-categorical version of Yoneda’s Lemma
(Proposition HTT.5.1.3.2 ) that an object C P C is determined (up to canonical equivalence)
by the functor MapCpC, ‚q : C Ñ S corepresented by C. We will need a relative version of
this assertion, which applies to an arbitrary coCartesian fibration p : X Ñ S.

Definition 17.2.2.1. Let p : X Ñ S be a coCartesian fibration of simplicial sets. We will
say that a map F : X Ñ S is locally corepresentable (with respect to p) if the following
conditions are satisfied:

p1q For every vertex s P S, there exists an object x of the 8-category Xs and a point
η P F pxq which corepresents the functor F |Xs in the following sense: for every object
y P Xs, evaluation on η induces a homotopy equivalence MapXspx, yq Ñ F pyq.
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p2q Let x P Xs and η P F pxq be as in p1q, let e : xÑ x1 be a coCartesian edge of X covering
an edge sÑ s1 in S. Let η1 P F px1q be the image of η under the map F pxq Ñ F px1q

determined by e. Then η1 corepresents the functor F |Xs1 (that is, for every y P Xs1 ,
evaluation on η1 induces a homotopy equivalence MapXs1 px

1, yq Ñ F pyq).

In the situation of Definition 17.2.2.1, condition p2q ensures that the object xs representing
the functors Fs “ F |Xs can be chosen to depend functorially on s P S. We can articulate
this idea more precisely as follows:

Proposition 17.2.2.2 (Relative Yoneda Lemma). Let p : X Ñ S be a coCartesian fibration
of simplicial sets and let C Ď FunSpS,Xq denote the full subcategory of FunSpS,Xq spanned
by those maps f : S Ñ X which carry each edge of S to a coCartesian edge of X. Then there
is fully faithful embedding Cop Ñ FunpX,Sq, whose essential image is the full subcategory of
FunpX,Sq spanned by the locally corepresentable functors.

Proof. Let χ : S Ñ Cat8 be a map classifying the coCartesian fibration p (given informally
by the formula χpsq “ Xs), so that C can be identified with the limit of the diagram χ in
the 8-category Cat8 (Proposition HTT.3.3.3.1 ). Let χ1 be the result of composing χ with
the “opposition” functor Cat8 Ñ Cat8.

Let Dlppq and Dl0ppq be defined as in Construction 14.4.2.1 (so that Dlppq Ñ S is a
Cartesian fibration whose fibers are given by Dlppqs “ FunpXs,Sq), and Dl0ppq is the full
simplicial subset whose fibers Dl0ppqs are the full subcategories of FunpXs,Sq spanned by
the corepresentable functors. Then the projection q : Dl0ppq Ñ S is a coCartesian fibration
classified by the map χ1 (Proposition 14.4.2.4). We have an isomorphism of simplicial
sets θ : FunSpS,Dlppqq » FunpX,Sq. A map F : X Ñ S is locally corepresentable if and
only if θ´1pF q : S Ñ Dlppq factors through Dl0ppq and carries edges of S to q-coCartesian
edges of Dl0ppq. Using Proposition HTT.3.3.3.1 , we can identify the limit lim

ÐÝ
χ1 with

the full subcategory of FunpX,Sq spanned by the locally corepresentable functors. We
conclude the proof by observing that there is a canonical equivalence of 8-categories
plim
ÐÝ

χqop » lim
ÐÝ

χ1.

17.2.3 Local Almost Representability

Suppose that f : X Ñ Y is a natural transformation between functors X,Y : CAlgcn Ñ S,
and η is a point of XpAq. Example 17.2.1.4 shows that if there exists an almost connective
A-module Mη which corepresents the functor

pN P Modcn
A q ÞÑ pfibXpA‘Nq Ñ XpAq ˆY pAq Y pA‘Nq P Sq,

then Mη is determined up to a contractible space of choices. However, we will need a stronger
statement in what follows: namely, that Mη can be chosen to depend functorially on the
pair pA, ηq. To prove this, we will need a variant of Proposition 17.2.2.2.
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Definition 17.2.3.1. Let p : X Ñ S be a coCartesian fibration of simplicial sets. Assume
that:

piq For each vertex s P S, the 8-category Xs is stable and equipped with a right-bounded
t-structure pXs,ě0, Xs,ď0q.

piiq For every edge e : s Ñ s1 in S, the associated functor Xs Ñ Xs1 is exact and right
t-exact.

Let Xě0 be the full simplicial subset of X spanned by those vertices which belong to Xs,ě0
for some vertex s P S.

We will say that a map F : Xě0 Ñ S is locally almost corepresentable (with respect to p)
if the following conditions are satisfied:

p1q For every vertex s P S, the induced map Xs,ě0 Ñ S is reduced and excisive.

p2q Let F` : X Ñ S be an extension of F such that F`|Xs is reduced and excisive for
each s P S (it follows from Lemma 17.2.3.4 that F` exists and is unique up to a
contractible space of choices). Then F` is locally corepresentable (in the sense of
Definition 17.2.2.1).

Proposition 17.2.3.2. Let p : X Ñ S be as in Definition 17.2.3.1, let C denote the full sub-
category of FunSpS,Xq spanned by those maps which carry each edge of S to a p-coCartesian
edge of X. Then there is a fully faithful functor Cop Ñ FunpXě0,Sq, whose essential image
is the full subcategory of FunpXě0,Sq spanned by the locally almost corepresentable functors.

Remark 17.2.3.3. In the situation of Proposition 17.2.3.2, the fully faithful functor Cop Ñ

FunpXě0,Sq is left exact. In particular, the essential image of this functor is closed under
finite limits.

Proposition 17.2.3.2 is an immediate consequence of Proposition 17.2.2.2 together with
the following relative version of Lemma 17.2.1.2:

Lemma 17.2.3.4. Let p : X Ñ S be as in Definition 17.2.3.1, let E Ď FunpX,Sq denote
the full subcategory of FunpX,Sq spanned by those functors whose restriction to each fiber
Xs is reduced and excisive, and define E0 Ď FunpXě0,Sq similarly. Then the restriction
functor E Ñ E0 is a trivial Kan fibration.

Proof. Since E Ñ E0 is obviously a categorical fibration, it will suffice to show that it is
an equivalence of 8-categories. For every map of simplicial sets φ : T Ñ S, let EpT q Ď
FunpX ˆS T,Sq denote the full subcategory spanned by those functors F : X ˆS T Ñ S
whose restriction to Xφptq is reduced and excisive for each vertex t P T , and define E0pT q

similarly. There is an evident restriction map ψpT q : EpT q Ñ E0pT q. We will prove that
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this map is an equivalence of 8-categories for every map φ : T Ñ S. Note that φpT q is
the homotopy limit of a tower of functors ψpskn T q for n ě 0. We may therefore assume
that T is a simplicial set of finite dimension n. We proceed by induction on n, the case
n “ ´1 being vacuous. Let K be the set of n-simplices of T . We have a pushout diagram of
simplicial sets

K ˆ B∆n //

��

K ˆ∆n

��
skn´1 T // T,

which gives rise to a homotopy pullback diagram of functors

ψpK ˆ B∆nq ψpK ˆ∆nqoo

ψpskn´1 T q

OO

ψpT q.

OO

oo

It will therefore suffice to prove that ψpskn´1 T q, ψpKˆB∆nq, and ψpKˆ∆nq are equivalences.
In the first two cases, this follows from the inductive hypothesis. In the third case, we can
write ψpK ˆ∆nq as a product of functors ψptvu ˆ∆nq indexed by the elements of K. We
are therefore reduced to proving the Lemma in the case S “ ∆n.

For 0 ď i ď n, let Xi denote the fiber of p over the ith vertex of S “ ∆n. Using
Proposition HTT.3.2.2.7 , we can choose a composable sequence of maps

θ : Xop
0 Ñ Xop

1 Ñ ¨ ¨ ¨ Ñ Xop
n

and a categorical equivalence Mpθqop Ñ X, where Mpθq denotes the mapping simplex of
the diagram θ (see §HTT.3.2.2 ). Note that each of the maps in the above diagram is exact
and right t-exact, so that θ restricts to a sequence of maps

θ0 : pX0,ě0q
op Ñ ¨ ¨ ¨ Ñ pXn,ě0q

op

and we have a categorical equivalence Mpθ0q
op Ñ Xě0. For every simplicial subset T Ď S “

∆n, let E 1pT q denote the full subcategory of FunpT ˆSMpθqop,Sq spanned by those functors
whose restriction to eachXi is reduced and excisive, and define E 10pT q Ď FunpTˆSMpθ0q

op,Sq
similarly. We have a commutative diagram

EpT q //

��

E0pT q

��
E 1pT q // E 10pT q

where the vertical maps are categorical equivalences. It follows from the inductive hypothesis
that the restriction map E 1pT q Ñ E 10pT q is a categorical equivalence for every proper
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simplicial subset T Ď S. To complete the proof, it will suffice to show that E 1pSq Ñ E 10pSq
is a categorical equivalence.

Let σ denote the face of S “ ∆n opposite the 0th vertex. We have a commutative
diagram

E 1pSq //

��

E 10pSq

��
E 1pσq // E 10pσq,

where the bottom horizontal map is a categorical equivalence. It will therefore suffice to
show that this diagram is a homotopy pullback square: that is, that the map

ρ : E 1pSq Ñ E 10pSq ˆE 10pσq E
1pσq

is a categorical equivalence. Let C “ X0 and Cě0 “ X0,ě0. Unwinding the definitions, we
see that ρ is a pullback of the canonical map

ρ0 : FunpS,Exc˚pC,Sqq Ñ FunpS,Exc˚pCě0,Sqq ˆFunpσ,Exc˚pCě0,Sqq Funpσ,Exc˚pC,Sqq.

It follows from Lemma 17.2.1.2 that this map is a trivial Kan fibration.

17.2.4 Functorial Definition of the Cotangent Complex

We now specialize the formal considerations of §17.2.1, §17.2.2, and §17.2.3 to the
situation of interest.

Notation 17.2.4.1. Let X : CAlgcn Ñ S be a functor. Let CAlgcn
Ñ CAlgcn be a left

fibration classified by X, and let ModX denote the fiber product ModpSpq ˆCAlg CAlgcn.
More informally, we let ModX denote the 8-categories whose objects are triples pA, η,Mq,
where A is a connective E8-ring, η P XpAq is a point, and M P ModA is an A-module
spectrum. Let ModXacn denote the full subcategory of ModX spanned by those triples
pA, η,Mq where M is almost connective (that is, M is n-connective for n ! 0). The forgetful
functor q : ModXacn Ñ CAlgcn is a coCartesian fibration. Moreover, the 8-category of
coCartesian sections of q is canonically equivalent to QCohpXqacn, the full subcategory
of QCohpXq spanned by the almost connective quasi-coherent sheaves on X (see Remark
6.2.2.7).

Let ModXcn denote the full subcategory of ModX spanned by those triples pA, η,Mq where
M is connective. Applying Proposition 17.2.3.2, we deduce that QCohpXqacn is equivalent
to the full subcategory of FunpModXcn,Sqop spanned by those functors ModXcn Ñ S which are
locally almost corepresentable (relative to q).
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Definition 17.2.4.2 (The Relative Cotangent Complex). Suppose we are given a natural
transformation α : X Ñ Y between functors X,Y : CAlgcn Ñ S. We define a functor
F : ModXcn Ñ S by the formula

F pA, η,Mq “ fibpXpA‘Mq Ñ XpAq ˆY pAq Y pA‘Mqq,

where the fiber is taken over the point of XpAq ˆY pAq Y pA‘Mq determined by η. We will
say that α admits a cotangent complex if the functor F is locally almost corepresentable
relative to q. In this case, we let LX{Y P QCohpXq denote a preimage for F under the fully
faithful embedding QCohpXqaperf Ñ FunpModXcn,Sqop given in Notation 17.2.4.1. We will
refer to LX{Y as the relative cotangent complex of X over Y .

In the special case where Y is a final object of FunpCAlgcn,Sq, we will say that X admits
a cotangent complex if the essentially unique map α : X Ñ Y admits a cotangent complex.
In this case, we will denote the relative cotangent complex LX{Y by LX and refer to it as
the absolute cotangent complex of X.

Remark 17.2.4.3. Let X : CAlgcn Ñ S and F : ModXcn Ñ S be functors. Unwinding
the definitions, we see that F is locally almost corepresentable if and only if the following
conditions are satisfied:

paq For every connective E8-ring A and every point η P XpAq, the induced functor
Fη : Modcn

A Ñ S is corepresented by an almost connective A-module Mη (which is
uniquely determined up to contractible ambiguity: see Example 17.2.1.4).

pbq Let η P XpAq be as in paq, and suppose we are given a map of connective E8-rings
AÑ A1. Let η1 P XpA1q denote the image of η. Then the functor Fη1 is corepresented
by A1 bAMη. More precisely, for every A1-module N , the canonical map

MapModA1 pA
1 bAMη, Nq » MapModApMη, Nq » FηpNq Ñ Fη1pNq

is a homotopy equivalence.

We can rephrase condition pbq as follows:

pb1q The functor F carries p-Cartesian morphisms in ModXcn to homotopy equivalences,
where p : ModXcn Ñ CAlgcn denotes the projection map (here CAlgcn is defined as in
Notation 17.2.4.1).

Example 17.2.4.4. Let X : CAlgcn Ñ S be a functor. Then X admits a cotangent complex
if and only if the following conditions are satisfied:

paq For every connective E8-ring A and every point η P XpAq, define Fη : Modcn
A Ñ S by

the formula FηpNq “ XpA‘Nq ˆXpAq tηu. Then the functor Fη is corepresented by
an almost connective A-module Mη.
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pbq For every map of connective E8-rings AÑ B and every connective B-module M , the
diagram of spaces

XpA‘Mq //

��

XpB ‘Mq

��
XpAq // XpBq

is a pullback square.

In this case, the absolute cotangent complex LX P QCohpXq is described by the formula
η˚LX “Mη P ModA for η P XpAq.

Using Proposition 17.2.1.5, we can reformulate condition paq as follows:

pa1q For every point η P XpAq, the functor Fη : Modcn
A Ñ S is reduced, excisive, and

accessible. Moreover, there exists an integer n ě 0 such that the functor M ÞÑ

ΩnFηpMq preserves small limits.

Remark 17.2.4.5. Fix an integer n and a functor X : CAlgcn Ñ S. Then QCohpXqěn is
a full subcategory of QCohpXqacn which is closed under small colimits. The construction
of Notation 17.2.4.1 determines a fully faithful embedding QCohpXqop

ěn Ñ FunpModXcn,Sq
which commutes with small limits. It follows that the essential image of this embedding is
closed under small limits. From this we deduce the following:

p˚q Let X : CAlgcn Ñ S be the limit of a diagram of functors tXα : CAlgcn Ñ Su. Assume
that each Xα admits a cotangent complex which is n-connective. Then X admits a
cotangent complex which is n-connective. Moreover, we have a canonical equivalence
LX » lim

ÝÑα
f˚αLXα , where fα : X Ñ Xα denotes the projection map.

Remark 17.2.4.6. Suppose we are given a pullback diagram

X 1
g //

f
��

X

f
��

Y 1 // Y

in the 8-category FunpCAlgcn,Sq. If f admits a cotangent complex, then f 1 also admits
a cotangent complex. Moreover, we have a canonical equivalence LX 1{Y 1 » g˚LX{Y in the
8-category QCohpX 1q.

Remark 17.2.4.6 admits the following converse:

Proposition 17.2.4.7. Let f : X Ñ Y be a morphism in the 8-category FunpCAlgcn,Sq.
Suppose that, for every corepresentable functor Y 1 : CAlgcn Ñ S and every natural transfor-
mation φ : Y 1 Ñ Y , the projection map Y 1 ˆY X Ñ Y 1 admits a cotangent complex. Then f

admits a cotangent complex.
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Proof. Let ModXcn be as in Definition 17.2.4.2, and let F : ModXcn Ñ S be given by the
formula F pR, η,Mq “ fibpXpR‘Mq Ñ XpRq ˆY pRq Y pR‘Mqq. We wish to show that F
is locally almost corepresentable. We will show that F satisfies conditions paq and pb1q of
Remark 17.2.4.3.

To verify condition paq, let us fix a point η P XpRq and consider the functor Fη :
Modcn

R Ñ S given by the restriction of F . Let Y 1 : CAlgcn Ñ S be the functor corepresented
by R. Then η determines a natural transformation Y 1 Ñ Y . Let X 1 “ Y 1 ˆY X, and let
F 1 : ModX 1cn Ñ S be the functor given by the formula

F 1pR0, η0,M0q “ fibpX 1pR0 ‘M0q Ñ X 1pR0q ˆY 1pR0q Y
1pR0 ‘M0qq.

Since the projection map X 1 Ñ Y 1 admits a cotangent complex, the functor F 1 is locally
almost corepresentable and therefore satisfies condition paq of Remark 17.2.4.3. We now
observe that η lifts canonically to a point η1 P X 1pRq. The restriction of F 1 to the fiber
of ModX 1cn over pR, η1q agrees with Fη. It follows that Fη is corepresentable by an almost
connective R-module, as desired.

We now verify condition pb1q. Choose a morphism α : pR, η,Mq Ñ pR1, η1,M 1q in ModXcn
which induces an equivalence R1 bRM ÑM 1. We wish to prove that F pαq is a homotopy
equivalence. Let F 1 : ModX 1cn Ñ S be defined as above, and observe that α lifts canonically
to a morphism α in ModX 1cn . Since F 1 is locally almost corepresentable, it satisfies condition
pb1q of Remark 17.2.4.3. It follows that F 1pαq is a homotopy equivalence. Since F 1 is the
composition of F with the forgetful functor ModX 1cn Ñ ModXcn, we deduce that F pαq is a
homotopy equivalence.

17.2.5 Comparison with the Geometric Definition

Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks. We now have two a
priori different definitions of the relative cotangent complex LX {Y: one given by Definition
17.1.1.8 (where we regard X and Y as spectrally ringed 8-topoi) and one given by Definition
17.2.4.2 (where we identify X and Y with the associated functors CAlgcn Ñ S). We now
show that these definitions are essentially equivalent (Corollary 17.2.5.4). We begin by
considering the case Y “ SpétS.

Proposition 17.2.5.1. Let X “ pX ,Oq be a formal spectral Deligne-Mumford stack, and let
X : CAlgcn Ñ S denote the functor represented by X. Then X admits a cotangent complex
LX . Moreover, we can identify LX with the image of the completed cotangent complex L^X
under the equivalence of 8-categories QCohpXqcn » QCohpXqcn of Theorem 8.3.4.4.

Proof. Let ModXcn denote the 8-category introduced in Definition 17.2.4.2. Let F : ModXcn be
the functor given by F pR, η,Mq “ XpR‘MqˆXpRq tηu. For each object pR, η,Mq P ModXcn,
let us regard Shvét

R as the underlying 8-topos of both SpétR and SpétpR‘Mq, let ĂM denote
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the quasi-coherent OSpétR-module corresponding to M , and regard η as a morphism of
spectrally ringed 8-topoi from SpétR to X. Unwinding the definitions, we obtain canonical
homotopy equivalences

F pR, η,Mq » MapfSpDMSpétR{
pSpétpR‘Mq,Xq

» MapShvCAlgpShvét
R q{OSpétR

pη´1 OX,OSpétpR‘Mqq

» MapShvCAlgpShvét
R q{OSpétR

pη´1 OX,OSpétR‘ĂMq

» MapModη´1 OX

pLη´1 OX
,ĂMq

» MapModη´1 OX

pη´1LOX
,ĂMq

» MapModOSpétR
pη˚LOX

,ĂMq

» MapQCohpSpétRqpη
˚L^X ,

ĂMq

» MapModRpΓpSpétR; η˚L^X q,Mq.

Proposition 17.2.5.2. Suppose we are given a commutative diagram

Y
g

��
X

f
>>

h // Z

in the 8-category FunpCAlgcn,Sq. Assume that g and h admit cotangent complexes. Then
f admits a cotangent complex. Moreover, we have a canonical fiber sequence f˚LY {Z Ñ
LX{Z Ñ LX{Y in the stable 8-category QCohpXq.

Proof. Let ModXcn be the 8-category introduced in Definition 17.2.4.2. We define functors
F 1, F, F 2 : ModXcn Ñ S by the formulae

F 1pR, η,Mq “ fibpXpR‘Mq Ñ Y pR‘Mq ˆY pMq XpMqq

F pR, η,Mq “ fibpXpR‘Mq Ñ ZpR‘Mq ˆZpMq XpMqq

F 2pR, η,Mq “ fibpY pR‘Mq Ñ ZpR‘Mq ˆZpMq Y pMqq,

so that we have a fiber sequence of functors F 1 Ñ F
α
Ñ F 2. Let θ : pQCohpXqacnqop Ñ

FunpModXcn,Sq be the fully faithful functor of Proposition 17.2.3.2. Since g and h admit
cotangent complexes, we have equivalences F » θpLX{Zq and F 2 » θpf˚LY {Zq. Since θ is
fully faithful, the natural transformation α is induced by a map β : f˚LY {Z Ñ LX{Z . It
follows from Remark 17.2.3.3 that F 1 is equivalent to θpcofibpβqq.
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Corollary 17.2.5.3. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S. Suppose that X and Y admit cotangent complexes LX and LY . Then f admits
a cotangent complex. Moreover, we have a canonical fiber sequence f˚LY Ñ LX Ñ LX{Y in
the stable 8-category QCohpXq.

Corollary 17.2.5.4. Let φ : X Ñ Y be a map of spectral Deligne-Mumford stacks, and
let f : X Ñ Y be the induced map between the functors X,Y : CAlgcn Ñ S represented
by X and Y. Then f admits a cotangent complex. Moreover, we can identify LX{Y with
the image of the relative cotangent complex LX {Y under the equivalence of 8-categories
QCohpXq Ñ QCohpXq.

Proof. Combine Corollary 17.2.5.3 with Proposition 17.2.5.1.

17.3 Cohesive, Nilcomplete, and Integrable Functors

For every spectral Deligne-Mumford stack X, let hX : CAlgcn Ñ S denote the functor
represented by X, given by the formula hXpRq “ MapSpDMpSpétR,Xq. According to Theorem
??, the construction X ÞÑ hX determines a fully faithful embedding from the 8-category
SpDM of spectral Deligne-Mumford stacks to the 8-category FunpCAlgcn,Sq of S-valued
functors on CAlgcn. This embedding h is useful in part because the target 8-category
FunpCAlgcn,Sq has very strong closure properties: for example, it admits all small limits
and colimits, while the 8-category SpDM does not. Beware, however, that there are several
naturally occurring colimits in the 8-category SpDM which are not preserved by the functor
h:

paq Let tXαu be a (small) diagram of spectral Deligne-Mumford stacks in which the
transition morphisms Xα Ñ Xβ are étale. Then there exists a colimit X “ lim

ÝÑ
Xα

in the 8-category of spectral Deligne-Mumford stacks. However, the canonical map
lim
ÝÑ

hXα Ñ hX is generally not an equivalence.

pbq Suppose we are given a pullback diagram of connective E8-rings

A1 //

��

A

f

��
B1

g // B,

where f and g induce surjective ring homomorphisms π0AÑ π0B Ð π0B
1. Then the

associated diagram of closed immersions

SpétA1 SpétAoo

SpétB1

OO

SpétBoo

OO



1324 CHAPTER 17. DEFORMATION THEORY AND THE COTANGENT COMPLEX

is a pushout square (see Proposition 16.1.3.1). However, this pushout square is usually
not preserved by the functor h : SpDM Ñ FunpCAlgcn,Sq.

pcq Let R be a connective E8-ring. Then the affine spectral algebraic space SpétR can
be identified with the colimit of the diagram tSpét τďnRuně0 (Proposition 17.3.2.3).
However, this colimit is not preserved by the functor h : SpDM Ñ FunpCAlgcn,Sq
unless R is truncated.

pdq Let R be a complete local Noetherian ring with maximal ideal m. Then the affine
spectral algebraic space SpétR can be identified with the colimit of the diagram
tSpétR{mnu in the 8-category of spectral algebraic spaces (Proposition 17.3.4.2).
However, this colimit is not preserved by the functor h unless m is nilpotent.

In case paq, we can remedy the situation by replacing the 8-category FunpCAlgcn,Sq
by the full subcategory ShvétpCAlgcnq spanned by those functors which are sheaves with
respect to the étale topology. Our goal in this section is to introduce the classes of cohesive,
nilcomplete, and integrable functors CAlgcn Ñ S (see Definitions 17.3.1.1, 17.3.2.1, and
17.3.4.1), which provide analogous remedies for pbq, pcq, and (a slight variant of) pdq.

17.3.1 Cohesive Functors

We begin by studying functors X : CAlgcn Ñ S which are, in some sense, compatible
with gluing along closed immersions.

Definition 17.3.1.1. Let X : CAlgcn Ñ S be a functor. We will say that X is cohesive if
it satisfies the following condition:

p˚q For every pullback diagram
A1 //

��

A

f
��

B1
g // B

in CAlgcn for which the maps π0AÑ π0B and π0B
1 Ñ π0B are surjective, the induced

diagram
XpA1q //

��

XpAq

Xpfq

��
XpB1q

Xpgq // XpBq

is a pullback square in S.
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Example 17.3.1.2. Let X be a locally spectrally ringed 8-topos, and let hX : CAlgcn Ñ S
be the functor given by hXpRq “ Map8T oploc

CAlg
pSpétR,Xq be the functor represented by X.

Then hX is cohesive (Proposition 16.1.3.1). In particular, any functor which is representable
by a (formal) spectral Deligne-Mumford stack is cohesive.

Example 17.3.1.3. Let X : CAlgcn Ñ S be a geometric stack, in the sense of Definition
9.3.0.1. Then X is cohesive: this follows by Theorem 9.3.0.3, Theorem 16.2.0.2, and
Proposition 16.2.3.1.

Remark 17.3.1.4. Using Proposition 16.1.3.1, we can reformulate condition p˚q of Definition
17.3.1.1 as follows:

p˚1q For every pushout diagram of spectral Deligne-Mumford stacks σ :

Y01
i //

j

��

Y0

��
Y1 // Y,

where i and j are closed immersions and Y is affine, the associated diagram

MapFunpCAlgcn,SqphY01 , Xq MapFunpCAlgcn,SqphY0 , Xq
oo

MapFunpCAlgcn,SqphY1 , Xq

OO

MapFunpCAlgcn,SqphY, Xqoo

OO

is a pullback square of spaces.

If X is cohesive and satisfies étale descent, then condition p˚1q holds more generally without
the assumption that Y is affine.

In the study of deformation theory, it will be useful to consider the following variant of
Definition 17.3.1.1:

Definition 17.3.1.5. Let X : CAlgcn Ñ S be a functor. We will say that X is infinitesimally
cohesive if the following condition is satisfied:

p˚q Suppose we are given a pullback diagram

A1 //

��

A

f
��

B1
g // B
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in CAlgcn, where the maps π0AÑ π0B and π0B
1 Ñ π0B are surjections of commutative

rings whose kernels are nilpotent ideals in π0A and π0B
1. Then the induced diagram

XpA1q //

��

XpAq

f

��
XpB1q

g // XpBq

is a pullback square in S.

Remark 17.3.1.6. Let X : CAlgcn Ñ S be a functor. If X is cohesive, then X is
infinitesimally cohesive. In particular, if X is representable by a (formal) spectral Deligne-
Mumford stack, then X is infinitesimally cohesive.

Remark 17.3.1.7. Let tXαuαPA be a filtered diagram of functors from CAlgcn to S having
colimit X. If each Xα is cohesive (infinitesimally cohesive), then so is X.

Remark 17.3.1.8. Let X : CAlgcn Ñ S. Let R be a connective E8-ring, and let rR be a
square-zero extension of R by a connective R-module M , classified by a map of R-modules
d : LR Ñ ΣM . We then have a commutative diagram of spaces σ :

Xp rRq //

��

XpRq

��
XpRq // XpR‘ ΣMq.

Let η be a point of XpRq and let Xp rRqη denote the fiber product Xp rRq ˆXpRq tηu. Suppose
that X admits a cotangent complex LX , so that we can identify η˚LX with an R-module.
Let ν denote the composite map η˚LX Ñ LR

d
Ñ ΣM . Then the diagram σ determines a

map θ : Xp rRqη Ñ P , where P denotes the space of paths from ν to the base point of the
mapping space MapModRpη

˚LX ,ΣMq. If X is infinitesimally cohesive, then σ is a pullback
diagram, so that θ is a homotopy equivalence. In this case, η can be lifted to a point of
Xp rRq if and only if ν represents the zero element of the abelian group Ext1

Rpη
˚LX ,Mq.

We can summarize Remark 17.3.1.8 informally as follows: if X : CAlgcn Ñ S is an
infinitesimally cohesive functor which admits a cotangent complex LX , then LX “controls”
the deformation theory of the functor X. We will later prove that the converse holds under
some additional assumptions (Proposition 17.3.6.1).

17.3.2 Nilcomplete Functors

We now study functors X : CAlgcn Ñ S which are determined by their values on
truncated E8-rings.
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Definition 17.3.2.1. Let X : CAlgcn Ñ S be a functor. We will say that X is nilcomplete
if, for every connective E8-ring R, the canonical map XpRq Ñ lim

ÐÝ
XpτďnRq is a homotopy

equivalence.

Remark 17.3.2.2. Let X “ pX ,OX q be a spectral Deligne-Mumford stack, and let X :
CAlgcn Ñ S be an arbitrary functor. For each n ě 0, let τďn X “ pX , τďn OX q. We then
have a canonical map

θ : MapFunpCAlgcn,SqphX, Xq Ñ lim
ÐÝ

MapFunpCAlgcn,Sqphτďn X, Xq.

If X is affine and X is nilcomplete, then the map θ is a homotopy equivalence. It follows
that if X is nilcomplete and satisfies étale descent, then θ is a homotopy equivalence for an
arbitrary spectral Deligne-Mumford stack X.

Proposition 17.3.2.3. Let X “ pX ,Oq be a locally spectrally ringed 8-topos, and assume
that the sheaf O is connective. Let X : CAlgcn Ñ pS be the functor represented by X (so that
X is given by the formula XpRq “ Map8T oploc

CAlg
pSpétR,Xq ). Then X is nilcomplete.

Proof. Fix a connective E8-ring R and write SpétR “ pY,OYq. We note that for every
integer n ě 0, we have an equivalence Spét τďnR » pY, τďn OYq. We wish to show that the
canonical map

Map8T oploc
CAlg

ppY,OYq,Xq Ñ lim
ÐÝ
n

Map8T oploc
CAlg

ppY, τďn OYq,Xq

is a homotopy equivalence. Note that a map of spectrally ringed 8-topoi pY,OYq Ñ X is
local if and only if the induced map pY, τď0 OYq Ñ X is local; it will therefore suffice to
show that the map

θ : MapRTopppY,OYq,Xq Ñ lim
ÐÝ
n

MapRTopppY, τďn OYq,Xq

is a homotopy equivalence. Let Fun˚pX ,Yq denote the full subcategory of FunpX ,Yq spanned
by the geometric morphisms f˚ : X Ñ Y . To prove that θ is a homotopy equivalence, it will
suffice to show that it induces a homotopy equivalence after passing to the homotopy fiber
over any geometric morphism f˚ P Fun˚pX ,Yq». In other words, we must show that the
canonical map MapShvCAlgpYqpf

˚O,OYq Ñ MapShvCAlgpYqpf
˚O, τďn OYq is an equivalence.

For this, it suffices to show that OY » lim
ÐÝ

τďn OY , which was established in the proof of
Theorem 1.4.8.1.

The following reformulation of Definition 17.3.2.1 is sometimes convenient:

Proposition 17.3.2.4. Let X : CAlgcn Ñ S be a functor. The following conditions are
equivalent:
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p1q The functor X is nilcomplete.

p2q Suppose we are given a tower of connective E8-rings

¨ ¨ ¨ Ñ Rp2q Ñ Rp1q Ñ Rp0q

satisfying the following condition: for every integer n, the tower of abelian groups

¨ ¨ ¨ Ñ πnRp2q Ñ πnRp1q Ñ πnRp0q

is eventually constant. Then the canonical map Xplim
ÐÝ

Rpnqq Ñ lim
ÐÝ

XpRpnqq is a
homotopy equivalence.

Proof. Let R be an arbitrary connective E8-ring. Then the Postnikov tower

¨ ¨ ¨ Ñ τď2RÑ τď1RÑ τď0R

satisfies the hypothesis appearing in condition p2q. It follows that p2q ñ p1q. For the
converse, let us assume that X is nilcomplete and let

¨ ¨ ¨ Ñ Rp2q Ñ Rp1q Ñ Rp0q

be a tower of connective E8-rings satisfying the hypothesis of p2q. Set R “ lim
ÐÝ

Rpnq. We
have a commutative diagram

XpRq //

��

lim
ÐÝn

XpRpnqq

��
lim
ÐÝm

XpτďmRq // lim
ÐÝn,m

XpτďmRpnqq

Since X is nilcomplete, the vertical maps in this diagram are homotopy equivalences.
Consequently, to show that the upper horizontal map is a homotopy equivalence, it suffices
to show that the lower horizontal map is a homotopy equivalence. For this, it suffices to show
that for every m ě 0, the map XpτďmRq Ñ lim

ÐÝn
XpτďmRpnqq is a homotopy equivalence.

This is clear, since the tower

¨ ¨ ¨ Ñ τďmRp2q Ñ τďmRp1q Ñ τďmRp0q

is eventually constant (with value τďmR).

The following result will be needed in §17.5:

Proposition 17.3.2.5. Let R be a connective E8-ring, let Y “ SpecR, let f : X Ñ Y

be a morphism in FunpCAlgcn,Sq, and let X0 : CAlgcn
R Ñ S denote the functor given by

X0pAq “ fibpXpAq Ñ Y pAqq. Suppose that the following conditions are satisfied:
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paq For every morphism AÑ B in CAlgcn
R every connective B-module M , the diagram

X0pA‘Mq //

��

X0pB ‘Mq

��
X0pAq // X0pBq

is a pullback square.

pbq For every truncated object A P CAlgcn
R and every point η P X0pAq, the functor Fη

given by FηpMq “ X0pA‘Mq ˆX0pAq tηu is corepresentable by an almost connective
A-module LX{Y pηq.

pcq The functor X is nilcomplete.

Then f admits a cotangent complex.

Proof. Using assumption paq and the argument of Example 17.2.4.4, we are reduced to
proving that for every A P CAlgcn

R and every point η P X0pAq, the functor Fη described
in pbq is almost corepresentable. For every integer n ě 0, let ηn denote the image of η
in X0pτďnAq. Then assumption pbq guarantees the existence of almost connective objects
LX{Y pηnq corepresenting the functors Fηn , and paq gives equivalences

τďn´1AbτďnA LX{Y pηnq » LX{Y pηn´1q

for n ą 0. Choose an integer m such that LXpη0q is m-connective. It follows that
each LX{Y pηnq is m-connective, and that the maps LX{Y pηnq Ñ LX{Y pηn´1q are pm` nq-
connective for n ą 0. Let N denote the limit of the tower

¨ ¨ ¨ Ñ LX{Y pη2q Ñ LX{Y pη1q Ñ LX{Y pη0q

in the 8-category ModA. Then N is m-connective, and the canonical map N Ñ LX{Y pηnq

is pm` n` 1q-connective for every integer n. Let M be a connective A-module. We may
assume without loss of generality that m ď 0. Using assumptions paq and pcq, we obtain
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homotopy equivalences

FηpMq » lim
ÐÝ
k

Fηpτďk`mMq

» lim
ÐÝ
k

Fηkpτďk`mMq

» lim
ÐÝ
k

MapModτďkA
pLX{Y pηkq, τďk`mMq

» lim
ÐÝ
k

MapModτďkA
pτďk`mLX{Y pηkq, τďk`mMq

» lim
ÐÝ
k

MapModApτďk`mLX{Y pηkq, τďk`mMq

» lim
ÐÝ
k

MapModApN, τďk`mMq

» MapModApN,Mq

depending functorially on M . It follows that the functor Fη is corepresented by the A-module
N .

17.3.3 Nilcompletion

The failure of a functor X : CAlgcn Ñ S to be nilcomplete can be corrected.

Definition 17.3.3.1. Let u : X Ñ pX be a natural transformation between functors
X, pX : CAlgcn Ñ S. We will say that u exhibits pX as a nilcompletion of X if the following
conditions are satisfied:

paq The functor pX is nilcomplete.

pbq For every nilcomplete functor Y : CAlgcn Ñ S, composition with u induces a homotopy
equivalence MapFunpCAlgcn,Sqp pX,Y q Ñ MapFunpCAlgcn,SqpX,Y q.

It is immediate from the definition that if a functor X : CAlgcn Ñ S admits a nilcomple-
tion pX, then pX is uniquely determined up to equivalence and depends functorially on X.
For existence, we note the following:

Proposition 17.3.3.2. Every functor X : CAlgcn Ñ S admits a nilcompletion pX, given
concretely by the formula pXpRq “ lim

ÐÝn
XpτďnRq.

Proof. Let C Ď CAlgcn denote the full subcategory spanned by the truncated objects. Note
that the canonical map XpRq Ñ pXpRq is a homotopy equivalence for R P C. It follows that pX

is nilcomplete. Moreover, if Y : CAlgcn Ñ S is nilcomplete, then Y is a right Kan extension
of Y |C . It follows that the canonical map MapFunpCAlgcn,Sqp pX,Y q Ñ MapFunpCAlgcn,SqpX,Y q

can be identified with MapFunpC,Sqp pX|C , Y |Cq Ñ MapFunpC,SqpX|C , Y |Cq.
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Remark 17.3.3.3. In the situation of Proposition 17.3.3.2, we can also write pXpRq »

lim
ÐÝ

XpRnq for any tower tRnu of truncated objects of CAlgcn
R , provided that the maps

RÑ Rn become m-connective for n " m.

We now show that the process of nilcompletion has a mild effect on the deformation
theory of a functor X.

Proposition 17.3.3.4. Let X : CAlgcn Ñ S be a functor and let pX be its nilcompletion. If
X is cohesive (infinitesimally cohesive), then pX has the same property.

Proof. We show that if X is cohesive, then pX is cohesive; the proof for infinitesimally
cohesive functors is the same. Suppose we are given a pullback diagram of connective
E8-rings

A1 //

��

A

f

��
B1

g // B,

where the ring homomorphisms π0A Ñ π0B and π0B
1 Ñ π0B are surjective. We wish to

show that the diagram σ :
pXpA1q //

��

pXpAq

��
pXpB1q // pXpBq

is a pullback square of spaces. Using the description of pX supplied by Proposition 17.3.3.2
(and Remark ??), we deduce that σ is the limit of a tower of diagrams σn :

XpτďnAˆτďnB τďnB
1q //

��

XpτďnAq

��
XpτďnB

1q // XpτďnBq,

each of which is a pullback square by virtue of our assumption that X is cohesive.

Proposition 17.3.3.5. Let X : CAlgcn Ñ S be a functor and let pX be its nilcompletion.
Then the restriction map QCohp pXq Ñ QCohpXq induces an equivalence of 8-categories
QCohp pXqacn Ñ QCohpXqacn.

Proof. Let C Ď CAlgcn be the full subcategory spanned by the truncated objects. We prove,
more generally, that for any natural transformation f : X Ñ Y between functors X,Y :
CAlgcn Ñ pS, if the induced map X|C Ñ Y |C is an equivalence, then the restriction functor
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QCohpY qacn Ñ QCohpXqacn is also an equivalence. For every functor U : CAlgcn Ñ pS, let
U 1 be a left Kan extension of U |C . We then have a commutative diagram of pullback functors

QCohpY qacn f˚ //

��

QCohpXqacn

��
QCohpY 1qacn // QCohpX 1qacn,

where the lower horizontal map is an equivalence. It will therefore suffice to show that the
vertical maps are equivalences. In other words, we are reduced to proving that for every
functor Y : CAlgcn Ñ pS, the restriction functor u˚Y : QCohpY qacn Ñ QCohpY 1qacn is an
equivalence. Note that the construction Y ÞÑ u˚Y carries colimits in FunpCAlgcn, pSq to limits
in Funp∆1,yCat8q. We can therefore reduce to the case where the functor Y “ hR is the
functor corepresented by an E8-ring R. In this case, we can identify u˚Y with the natural
map

Modacn
R Ñ lim

ÐÝ
n

Modacn
τďnR M ÞÑ tτďnRbRMu,

which is evidently an equivalence of 8-categories.

Proposition 17.3.3.6. Let X : CAlgcn Ñ S be a functor and let pX be its nilcompletion.
Suppose that X admits a cotangent complex LX . Then pX admits a cotangent complex
L

pX
P QCohp pXqacn.

Proof. We will show that the functor pX satisfies conditions paq and pbq of Remark 17.2.4.3.
Let A be a connective E8-ring and let η P pXpAq. Then η determines a compatible sequence
of points ηn P XpτďnAq. For each n ě 0, we regard η˚nLX as a module over τďnA. Choose an
integer m such that η˚0LX is p´mq-connective; it then follows that η˚nLX is p´mq-connective
for each n ě 0 (Proposition 2.7.3.2). Set K “ lim

ÐÝ
η˚nLX , so that K is a p´mq-connected

A-module and the canonical map pτďnAq bA K Ñ η˚nLX is an equivalence for each n. For
every A-module M , we have canonical homotopy equivalences

pXpA‘Mq ˆ
pXpAq

tηu » lim
ÐÝ
n

XppτďnAq ‘ pτďnMqq ˆXpτďnAq tηnu

» lim
ÐÝ
n

MapModτďnApη
˚
nLX , τďnMq

» lim
ÐÝ
n

MapModApK, τďnMq

» MapModApK,Mq.

This completes the verification of condition paq. To prove pbq, suppose we are given a
morphism of connective E8-rings AÑ A1. Let η1n denote the image of η in XpτďnA

1q and
set K 1 “ lim

ÐÝ
η1˚n LX . We wish to show that the canonical map θ : A1 bA K Ñ K 1 is an
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equivalence. To prove this, we note that for each n ě 0, the n-truncation of θ agrees with
the n-truncation of the canonical map pτďn`mA1qbτďn`mA η˚n`mLX Ñ η1˚n`mLX , which is an
equivalence by virtue of our assumption that X satisfies condition pbq of Remark 17.2.4.3.

Remark 17.3.3.7. In the situation of Proposition 17.3.3.6, the canonical map L
pX
|X Ñ LX

is an equivalence: in other words, the cotangent complex L
pX

is the image of LX under the
equivalence QCohpXqacn Ñ QCohp pXqacn of Proposition 17.3.3.5. In particular, the relative
cotangent complex L

X{ pX
vanishes.

17.3.4 Integrable Functors

Let A be a connective E8-ring which is complete with respect to a finitely generated ideal
I Ď π0A, and let Spf A denote the formal spectrum of A (Construction 8.1.1.10). According
to Theorem 8.5.3.1, the restriction map

MapSpDMpSpétA,Xq Ñ MapfSpDMpSpf A,Xq

is a homotopy equivalence whenever X is a quasi-separated spectral algebraic space. If A is
Noetherian and the ideal I Ď π0A is maximal, then the same assertion holds more generally
for any spectral Deligne-Mumford n-stack X (see Proposition 17.3.4.2 below). Motivated by
this observation, we introduce the following:

Definition 17.3.4.1. Let X : CAlgcn Ñ S be a functor. We will say that X is integrable if
the following condition is satisfied:

p˚q Let A be a local Noetherian E8-ring which is complete with respect to its maximal
ideal m Ď π0A. Then the inclusion of functors Spf A ãÑ SpecA induces a homotopy
equivalence

XpAq » MapFunpCAlgcn,SqpSpecA,Xq Ñ MapFunpCAlgcn,SqpSpf A,Xq.

Here we abuse notation by identifying the formal spectrum Spf A with the functor
that it represents (see Theorem 8.1.5.1).

Proposition 17.3.4.2. Let X be a spectral Deligne-Mumford n-stack for some n ă 8 and
let X denote the functor represented by X. Then X is integrable.

Proof. Let A be a local Noetherian E8-ring which is complete with respect to its maximal
ideal and let Spf A denote the formal spectrum of A, which we regard as an object of
FunpCAlgcn,Sq. Choose a tower of A-algebras

¨ ¨ ¨ Ñ A2 Ñ A1 Ñ A0
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satisfying the requirements of Lemma 8.1.2.2, so that Spf A » lim
ÝÑ

SpecAn (Proposition
8.1.5.2). Each of the maps π0Ai Ñ π0A0 is surjective with nilpotent kernel, and therefore
induces an equivalence of8-categories CAlgét

Ai Ñ CAlgét
A0 . For every functor Y : CAlgcn Ñ S

satisfying étale descent, let Y pmq P Shvét
A0 be the functor given by the composition

CAlgét
A0 » CAlgét

Am Ñ CAlgcn Y
Ñ S,

and let Y p8q denote the image of pY |CAlgét
A
q P Shvét

A under the pullback map Shvét
A Ñ Shvét

A0 .
Then the canonical map XpAq Ñ MapFunpCAlgcn,SqpSpf A,Xq Ñ lim

ÐÝmě0XpAmq can be
identified with the composition

XpAq
θ
Ñ Xp8qpA0q

θ1
Ñ lim
ÐÝ
m

XpmqpA0q.

Proposition B.3.1.4 implies that A is Henselian, so that θ is a homotopy equivalence by
Proposition B.6.5.4. To prove that θ1 is a homotopy equivalence, it will suffice to verify the
following assertion:

p˚q Let Y : CAlgcn Ñ S be a functor which is representable by a spectral Deligne-Mumford
n-stack. Then the canonical map φY : Y p8q Ñ lim

ÐÝ
Y pmq is an equivalence in the

8-topos Shvét
A0 .

To prove p˚q, choose an étale surjection u : Y0 Ñ Y , where Y0 is representable by a disjoint
union of affine spectral Deligne-Mumford stacks. Let Y‚ denote the Čech nerve of u, so that
Y » |Y‚|. Then φY can be identified with the composite map

Y p8q » |Y‚p8q|
φ
Ñ | lim

ÐÝ
m

Y‚pmq|
φ1

» lim
ÐÝ
m

Y pmq.

We first claim that φ1 is an equivalence. Note that the simplicial object lim
ÐÝm

Y‚ is given
by the Čech nerve of the map v : lim

ÐÝ
Y0pmq Ñ lim

ÐÝ
Y pmq. Since Shvét

A0 is an 8-topos, the
map φ1 is an equivalence if and only if v is an effective epimorphism. Let B0 be any étale
A0-algebra, so that B0 admits an essentially unique lift to an étale Am-algebra Bm for each
m. Since u is étale, the canonical map Y0pBmq Ñ Y0pB0q ˆY pB0q Y pBmq is a homotopy
equivalence for each m. It follows that v is a pullback of the map Y0 Ñ Y , which is an
effective epimorphism by virtue of our assumption that u is an étale surjective.

Using the above argument, we see that φY is an equivalence if and only if φ is an
equivalence. Consequently, to prove that φY is an equivalence, it will suffice to show that φYp
is an equivalence. We now proceed by induction on n. If n ą 1, then each Yp is representable
by a spectral Deligne-Mumford pn ´ 1q-stack, so that the desired result follows from the
inductive hypothesis. If n “ 1, then each Yp is representable by a spectral algebraic space; it
will therefore suffice to verify p˚q in the special case where Y is representable by a spectral
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algebraic space. In this case, for each p ě 0, the canonical map YppRq Ñ Y0pRq
p is injective

for every discrete commutative ring R. It will therefore suffice to verify p˚q under the
assumption that there exists a map Y Ñ Z which induces a monomorphism Y pRq Ñ ZpRq

for every discrete commutative ring R, where Z is representable by a disjoint union of affine
spectral Deligne-Mumford stacks. In this case, each Yp is itself a disjoint union of affine
spectral Deligne-Mumford stacks. It will therefore suffice to verify p˚q in the special case
Y “

š

α Yα, where each Yα is corepresented by a connective E8-ring Rα.
Let B0 be an étale A0-algebra; we wish to show that the canonical map γ : Y p8qpB0q Ñ

lim
ÐÝ

Y pmqpB0q is a homotopy equivalence. Without loss of generality, we may suppose that
the spectrum of B0 is connected. In this case, γ is given by a disjoint union of maps
γα : Yαp8qpB0q Ñ YαpmqpB0q. It will therefore suffice to show that each γα is a homotopy
equivalence. Let B be a finite étale A-algebra satisfying B0 » B bA A0 (see Proposition
B.6.5.2). We are then reduced to showing that the canonical map

MapCAlgpRα, Bq Ñ lim
ÐÝ
m

MapCAlgpRα, limÐÝpB bA Amqq

is a homotopy equivalence. To prove this, it suffices to show that B is given by the limit of
the diagram tBbAAmu. Since B is a finite flat A-module, this follows from the identification
A » lim

ÐÝm
Am.

17.3.5 An Integrability Criterion

In good cases, the integrability of a functor X : CAlgcn Ñ S can be tested at the level of
discrete commutative rings:

Proposition 17.3.5.1. Let X : CAlgcn Ñ S be a functor which is nilcomplete, infinitesi-
mally cohesive, and admits a cotangent complex. The following conditions are equivalent:

paq The functor X is integrable.

pbq For every complete local Noetherian ring A, the canonical map

XpAq » MapFunpCAlgcn,SqpSpecA,Xq Ñ MapFunpCAlgcn,SqpSpf A,Xq

is a homotopy equivalence. Here Spf A denotes the formal spectrum of A (with respect
to the maximal ideal of π0A), which we identify with an object of FunpCAlgcn,Sq.

pcq For every complete local Noetherian ring A with maximal ideal m, the canonical map

XpAq Ñ lim
ÐÝ
n

XpA{mnq

is a homotopy equivalence.
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The proof of Proposition 17.3.5.1 will require some preliminaries.

Lemma 17.3.5.2. Let A be a Noetherian commutative ring, let I Ď A be an ideal, and
let M be a finitely generated discrete A-module. For each integer n ą 0, the tower
tTorAn pA{Im,Mqumě0 is trivial as a Pro-object in the category of A-modules.

Proof. We proceed by induction on n. Since M is finitely generated, we can choose a
surjection φ : Ad Ñ M . Since A is Noetherian, the kernel K “ kerpφq is also finitely
generated. For each integer m, we have an exact sequence

0 “ TorAn pA{Im, Arq Ñ TorAn pA{Im,Mq Ñ TorAn´1pA{I
m,Kq

ψm
Ñ TorAn´1pA{I

m, Arq.

In particular, we obtain a monomorphism of Pro-objects

tTorAn pA{Im,Mqumě0 ãÑ tTorAn´1pA{I
m,Kqumě0.

If n ą 1, then the inductive hypothesis implies that tTorAn´1pA{I
m,Kqumě0 vanishes (as

a Pro-objects), so that tTorAn pA{Im,Mqumě0 also vanishes. If n “ 1, we are reduced to
proving that the maps ψm determine a monomorphism tK{ImKumě0 Ñ tpA{ImAqrumě0,
which follows from the Artin-Rees lemma.

Remark 17.3.5.3. Let B be a connective E8-ring, and suppose we are given a tower

¨ ¨ ¨ ÑM2 ÑM1 ÑM0

of discrete B-modules. Then tMmumě0 is a zero object of PropModBq if and only if, for
every integer k, there exists an integer k1 ě k such that the map Mk1 Ñ Mk vanishes. In
particular, if we are given a map of connective E8-rings φ : AÑ B, then the tower tMmumě0
vanishes as a Pro-object of ModB if and only if it vanishes as a Pro-object of ModA.

Lemma 17.3.5.4. Let A be a Noetherian commutative ring, let I Ď A be an ideal, and let
M be a connective A-module such that each homotopy group of M is annihilated by the ideal
I. Then, for every integer n ě 0, the tower tτďnpM bA A{I

mqumě0 is equivalent to τďnM
as a Pro-object of ModA.

Proof. We may assume without loss of generality that M is truncated (since τďkpMbAA{Imq
does not change if we replace M by τďkM). Writing M as as a successive extension of
modules of the form ΣdpπdMq, we may reduce to the case where M admits the structure of
a module over A{I.

Fix an integer n ě 0, and let C denote the full subcategory of ModA spanned by
those A-modules which are connective and n-truncated. We may assume without loss
of generality that M P C. We view C as a symmetric monoidal 8-category, with tensor
product bτ given by N bτ N 1 “ τďnpN bA N

1q. We wish to prove that the canonical map
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θM : M Ñ tM bτ A{Imumě0 is an equivalence in PropCq. Note that θM is given by tensoring
M with θA{I over A{I. It will therefore suffice to show that θA{I is an equivalence when
viewed as a morphism in PropModA{IpCqq. Unwinding the definitions, we are reduced to
proving that θA{I determines isomorphisms

tTorAd pA{I, A{Imqumě0 »

#

A{I if d “ 0
0 if 0 ă d ď n.

in the abelian category of Pro-objects in discrete A{I-modules. This is obvious when d “ 0,
and follows from Lemma 17.3.5.2 (together with Remark 17.3.5.3) when d ą 0.

Remark 17.3.5.5. Let f : A Ñ B be a morphism of connective E8-rings, and suppose
we are given a tower of morphisms tφm : Mm Ñ Nmu in the abelian category of discrete
B-modules. Then tφmu is an equivalence of Pro-objects of ModB if and only if it is an
equivalence of Pro-objects of ModA. This follows immediately from Remark 17.3.5.3, applied
to the towers tkerpφmqu and tcokerpφmqu.

Lemma 17.3.5.6. Let A be a Noetherian commutative ring, let I Ď A be an ideal, let R
be a connective A-algebra such that the image of I generates a nilpotent ideal in π0R, and
let n ě 0 be an integer. Then the tower tτďnpRbA A{Imqumě0 is equivalent to τďnR as a
Pro-object of CAlgR.

Proof. Replacing I by a power of I if necessary, we may assume that the image of I vanishes
in π0R. We proceed by induction on n, the case n “ 0 being trivial. To carry out the
inductive step, let us suppose that the canonical map

ρ : τďn´1RÑ tτďn´1pRbA A{I
mqumě0

is an equivalence of Pro-objects of CAlgR. For each integer m, set Km “ πnpR bA A{I
mq

and set K “ πnR. Applying Theorem HA.7.4.1.26 , we obtain a pullback diagram σ :

τďnR //

��

τďn´1R

��
τďn´1R // pτďn´1Rq ‘ Σn`1K

with a map into a tower of pullback diagrams σm :

τďnpRbA A{I
mq //

��

τďn´1pRbA A{I
mq

��
τďn´1pRbA A{I

mq // τďn´1pRbA A{I
mq ‘ Σn`1Km.
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Applying the inductive hypothesis, we are reduced to proving that the canonical map

θ : pτďn´1Rq ‘ Σn`1K Ñ tτďn´1pRbA A{I
mq ‘ Σn`1Kmumě0

is an equivalence of Pro-objects of CAlgR. The map θ factors as a composition

pτďn´1Rq ‘ Σn`1K
θ1
Ñ tτďn´1R‘ Σn`1Kmumě0

θ2
Ñ tτďn´1pRbA A{I

mq ‘ Σn`1Kmumě0

where θ2 is a pullback of ρ and therefore an equivalence by the inductive hypothesis. To prove
that θ1 is an equivalence, it will suffice to show that the canonical map ν : K Ñ tKmumě0 is
an equivalence of Pro-objects in τďn´1R. By virtue of Remark 17.3.5.5, it will suffice to show
that ν is an equivalence of Pro-objects in ModA, which follows from Lemma 17.3.5.4.

Lemma 17.3.5.7. Let A be a Noetherian commutative ring, let I Ď A be an ideal, and
choose a tower of A-algebras

¨ ¨ ¨ Ñ A2 Ñ A1 Ñ A0

satisfying the requirements of Lemma ??. Then, for every integer m ě 0, the tower
tτďnAmumě0 is equivalent (as a pro-object of CAlg) to the tower tA{Imumě0.

Proof. It will suffice to show that the canonical map tτďnAmumě0 Ñ tA{Imumě0 is an
equivalence of Pro-objects of τďn CAlgcn

A . Let R P τďn CAlgcn
A ; we wish to show that the

canonical map
θ : lim
ÝÑ

MapCAlgApA{I
m, Rq Ñ lim

ÝÑ
MapCAlgApAm, Rq

is a homotopy equivalence. If the image of I does not generate a nilpotent ideal in π0R,
then the domain and codomain of θ are both empty and there is nothing to prove. Let us
therefore suppose that the image of I generates a nilpotent ideal in R; we wish to show
that the direct limit lim

ÝÑ
MapCAlgApA{I

m, Rq is contractible. Since R is n-truncated, we
can rewrite this direct limit as lim

ÝÑ
MapCAlgRpτďnpRbA A{I

mq, Rq, which is contractible by
virtue of the fact that the tower tτďnpRbA A{Imqumě0 is equivalent to R as a Pro-object
of CAlgR (Lemma 17.3.5.6).

Proof of Proposition 17.3.5.1. The implication paq ñ pbq is obvious. We next prove that
pbq ñ paq. Let A be a local Noetherian E8-ring which is complete with respect to the
maximal ideal m Ď π0A. Choose a tower of A-algebras tAmumą0 satisfying the requirements
of Lemma 8.1.2.2, so that Spf A represents the functor lim

ÝÑm
SpecAm. For every connective

A-algebra B, we can regard B as an adic E8-ring (with ideal of definition mpπ0Bq), so that
the formal spectrum Spf B represents the functor lim

ÝÑm
SpecpAm bA Bq. Let θB denote the

canonical map XpBq Ñ lim
ÐÝm

XpAm bA Bq » MapFunpCAlgcn,SqpSpf B,Xq. We wish to show
that θA is a homotopy equivalence.
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Consider the diagram

XpAq //

��

lim
ÐÝn

XpτďnAq

��
lim
ÐÝm

XpAmq // lim
ÐÝm,n

XpAm bA τďnAq.

The upper horizontal map is a homotopy equivalence since X is nilcomplete, and the bottom
horizontal map is a homotopy equivalence by Proposition 17.3.2.4. It follows that θA can
be identified with the limit of the tower of maps tθτďnAuně0. It will therefore suffice to
show that each θτďnA is a homotopy equivalence. We may therefore replace A by τďnA and
thereby reduce to the case where A is n-truncated for some integer n.

If n “ 0, then A is discrete and the desired result follows from pbq. Let us therefore
assume that n ą 0. Let A1 “ τďn´1A and let M “ Σn`1pπnAq, so that A fits into a pullback
diagram

A //

��

A1

��
A1 // A1 ‘M.

Since X is infinitesimally cohesive, we obtain a pullback diagram

θA //

��

θA1

��
θA1 // θA1‘M

in the 8-category Funp∆1,Sq. The inductive hypothesis implies that θA1 is a homotopy
equivalence. It will therefore suffice to show that θA1‘M is a homotopy equivalence. Using
the inductive hypothesis, we are reduced to proving that the canonical map

ψ : XpA1 ‘Mq Ñ XpA1q ˆlim
ÐÝ

XpAmbAA1q lim
ÐÝ

XppAm bA A
1q ‘ pAm bAMqq.

Using the assumption that X is infinitesimally cohesive, we can identify the right side with
lim
ÐÝm

XpA1‘ pAmbAMqq. To show that ψ is a homotopy equivalence, it will suffice to show
that ψ induces a homotopy equivalence after passing to the fibers over any point η P XpA1q.
Since X admits a cotangent complex, this is equivalent to the assertion that the canonical
map

MapModA1 pη
˚LX ,Mq Ñ lim

ÐÝ
MapModA1 pη

˚LX , Am bAMq.

For this, it suffices to show that the canonical map M Ñ lim
ÐÝm

Am bAM is an equivalence.
Since M is connective, this is equivalent to the requirement that M is m-complete, where
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m denotes the maximal ideal of π0A (Remark ??). This completeness follows from our
assumption that A is complete, since M is an almost perfect A-module (Proposition 7.3.5.7).
This completes the proof that pbq ñ paq.

To prove that pbq and pcq are equivalent, it will suffice to show that for every com-
plete local Noetherian ring A with maximal ideal m, the canonical map ρ : XpAq Ñ
MapFunpCAlgcn,SqpSpf A,Xq is a homotopy equivalence if and only if the canonical map
XpAq Ñ lim

ÐÝn
XpA{mnq is a homotopy equivalence. To prove this, choose tAmumě0 as above.

Since X is nilcomplete, we can identify ρ with the composite map

XpAq Ñ MapFunpCAlgcn,SqpSpf A,Xq » lim
ÐÝ
m

XpAmq » lim
ÐÝ
m,n

XpτďnAmq.

The desired result now follows from Lemma 17.3.5.7.

17.3.6 A Differential Criterion for Infinitesimal Cohesiveness

Our next goal is to establish a converse to Remark 17.3.1.8:

Proposition 17.3.6.1. Let X : CAlgcn Ñ S be a nilcomplete functor which admits a
cotangent complex. The following conditions are equivalent:

p1q For every pullback diagram
A1 //

��

A

f

��
B1 // B,

of connective E8-rings, if the map f induces a surjection of commutative rings π0AÑ

π0B with nilpotent kernel, then the diagram of spaces

XpA1q //

��

XpAq

��
XpB1q // XpBq

is a pullback square.

p2q The functor X is infinitesimally cohesive.

p3q Let R be a connective E8-ring, M a connective R-module, η : LR Ñ ΣM a derivation,
and Rη the corresponding square-zero extension of R by M , so that we have a pullback
square

Rη //

��

R

��
R // R‘ ΣM.
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Then the diagram
XpRηq //

��

XpRq

��
XpRq // XpR‘ ΣMq

is a pullback square in S.

Before giving the proof of Proposition 17.3.6.1, let us sketch a sample application:

Proposition 17.3.6.2. Let f : X Ñ Y be a natural transformations between functors
X,Y : CAlgcn Ñ S. Assume that X and Y are nilcomplete, infinitesimally cohesive and
admit cotangent complexes, and that the relative cotangent complex LX{Y is pn`2q-connective
for some integer n ě 0. The following conditions are equivalent:

p1q For every commutative ring R (regarded as a discrete E8-ring), the map f induces a
homotopy equivalence XpRq Ñ Y pRq.

p2q For every n-truncated connective E8-ring R, the map f induces a homotopy equivalence
XpRq Ñ Y pRq.

Proof. The implication p2q ñ p1q is obvious. Conversely, suppose that p1q is satisfied. We
must show that for every n-truncated connective E8-ring A, the map f induces a homotopy
equivalence fA : XpAq Ñ Y pAq. The proof proceeds by induction on n. When n “ 0, the
desired result follows from p1q. If n ą 0, then τďnA is a square-zero extension of τďn´1A

(Corollary HA.7.4.1.28 ). We therefore have a pullback square of E8-rings

τďnA //

��

τďn´1A

��
τďn´1A // τďn´1A‘M,

where M “ Σn`1pπnAq. Since X and Y are infinitesimally cohesive, to prove that fτďnA is
a homotopy equivalence, it will suffice to show that fτďn´1A is a homotopy equivalence and
fτďn´1A‘M is p´1q-truncated (that is, it is equivalent to the inclusion of a summand). In
the first case, this follows from the inductive hypothesis. For the second case, consider the
commutative diagram

Xpτďn´1A‘Mq //

��

Y pτďn´1A‘Mq

��
Xpτďn´1Aq // Y pτďn´1Aq.
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We wish to prove that the upper horizontal map is p´1q-truncated. Since the bottom horizon-
tal map is a homotopy equivalence, it will suffice to prove that we obtain a p´1q-truncated
map after passing to the homotopy fibers over any point η P Xpτďn´1Aq. Unwinding the
definitions, we are reduced to proving that the canonical map

MapModτďn´1A
pη˚LX ,Mq Ñ MapModτďn´1A

pη˚f˚LY ,Mq

is p´1q-truncated. Using the fiber sequence η˚f˚LY Ñ η˚LX Ñ η˚LX{Y , we are reduced to
proving that η˚LX{Y is pn` 2q-truncated, which follows from our hypothesis.

Corollary 17.3.6.3. Let f : X Ñ Y be a natural transformations between functors X,Y :
CAlgcn Ñ S. Assume that X and Y are infinitesimally cohesive, nilcomplete, and admit
cotangent complexes. Then f is an equivalence if and only if the following conditions are
satisfied:

p1q For every commutative ring R (regarded as a discrete E8-ring), the map f induces a
homotopy equivalence XpRq Ñ Y pRq.

p2q The relative cotangent complex LX{Y is trivial.

Proof. It is clear that if f is an equivalence then conditions p1q and p2q are satisfied.
Conversely, suppose that p1q and p2q are satisfied. We wish to show that for every connective
E8-ring R, the canonical map θ : XpRq Ñ Y pRq is a homotopy equivalence. Since X and Y
are nilcomplete, the map θ is a limit of maps θn : XpτďnRq Ñ Y pτďnRq. It will therefore
suffice to show that each θn is a homotopy equivalence, which follows from Proposition
17.3.6.2.

We now turn to the proof of Proposition 17.3.6.1.

Lemma 17.3.6.4. Let f : AÑ B be a map of connective E8-rings. Suppose that f induces
a surjection of commutative rings π0A Ñ π0B whose kernel I is a nilpotent ideal of π0A.
Then we can write A as the limit of a tower

¨ ¨ ¨ Ñ Bp2q Ñ Bp1q “ B

in the 8-category CAlg{B with the following property: each Bpn ` 1q is a square-zero
extension of Bpnq by a Bpnq-module ΣknM , where M is discrete and kn ě 0. Moreover, we
can assume that the sequence of integers tknuně0 tends to infinity as n grows.

Proof. Choose an integer m such that Im “ 0. For k ď m, we define Bpkq by the formula
B ˆπ0B pπ0A{I

kq. Since π0A{I
k`1 is a square-zero extension of π0A{I

k by Ik{Ik`1, we
deduce that Bpk ` 1q is a square-zero extension of Bpkq by the discrete module Ik{Ik`1

for 0 ă k ă m. We next define Bpkq P CAlgA for k ą m using induction on k, so that the
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fiber of the map AÑ Bpkq is pk ´mq-connective. Assume that Bpkq has been defined for
k ě m, and let M “ πk´m fibpAÑ Bpkqq. Since the map π0AÑ π0Bpkq is an isomorphism,
Theorem HA.7.4.3.1 implies that LBpkq{A is pk ´ m ` 1q-connective and that there is a
canonical isomorphism πk´m`1LBpkq{A » M . In particular, there exists a map of Bpkq-
modules η : LBpkq{A Ñ Σk´m`1M which induces an isomorphism πk´m`1LBpkq{A »M . Let
Bpk ` 1q “ Bpkqη denote the square-zero extension of Bpkq by Σk´mM classified by η. We
now observe that by construction, the canonical map AÑ Bpk`1q has pk´m`1q-connective
fiber.

Proof of Proposition 17.3.6.1. The implications p1q ñ p2q and p2q ñ p3q are obvious (and
do not require any assumptions on X). Let us prove that p3q ñ p1q. Suppose we are given a
pullback square of connective E8-rings σ :

A1 //

��

A

��
B1 // B,

where the maps π0A Ñ π0B is a surjection with nilpotent kernel. We wish to show that
Xpσq is a pullback square in S. Choose a tower

¨ ¨ ¨ Ñ Bp3q Ñ Bp2q Ñ Bp1q “ B

satisfying the requirements of Lemma 17.3.6.4. For each integer n ě 1, let B1pnq “
Bpnq ˆB B

1, so that we have a pullback square σpnq :

B1pnq //

��

Bpnq

��
B1 // B.

Since X is nilcomplete, Proposition 17.3.2.4 implies that Xpσq is a limit of the tower
tXpσpnqquně1. It will therefore suffice to show that each Xpσpnqq is a pullback square in S.
The proof proceeds by induction on n, the case n “ 1 being trivial. If n ą 1, we consider
the commutative diagram

XpB1pnqq //

��

XpBpnqq

��
XpB1pn´ 1qq //

��

XpBpn´ 1qq

��
XpB1q // XpBq.
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The inductive hypothesis implies that the lower square is a pullback diagram. To prove
that the outer square is a pullback diagram, it suffices to show that the upper square is a
pullback diagram. By hypothesis, Bpnq is a square-zero extension of Bpn´1q by a connective
Bpn´ 1q-module M . We therefore have a commutative diagram

XpB1pnqq

��

// XpBpnqq //

��

XpBpn´ 1qq

��
XpB1pn´ 1qq // XpBpn´ 1qq // XpBpn´ 1q ‘ ΣMq

where the square on the right is a pullback diagram by virtue of assumption p3q. To prove
that the left square is a pullback, it will suffice to show that the outer rectangle is a pullback.
Note that the bottom horizontal composite admits a factorization

B1pn´ 1q Ñ B1pn´ 1q ‘ ΣM Ñ Bpn´ 1q ‘ ΣM.

We may therefore form a commutative diagram

B1pnq //

��

R //

��

Bpn´ 1q

��
B1pn´ 1q // B1pn´ 1q ‘ ΣM //

��

Bpn´ 1q ‘ ΣM

��
B1pn´ 1q // Bpn´ 1q

where every square is a pullback diagram. Since the vertical composition on the right is an
equivalence, it follows that the vertical compositon in the middle is an equivalence: that is,
we can identify R with Bpn´ 1q. Applying the functor X, we obtain a diagram of spaces

XpB1pnqq //

��

XpB1pn´ 1qq //

��

XpBpn´ 1qq

��
XpB1pn´ 1qq // XpB1pn´ 1q ‘ ΣMq //

��

XpBpn´ 1q ‘ ΣMq

��
XpB1pn´ 1qq // XpBpn´ 1qq.

The upper left square is a pullback diagram by assumption p3q. Since X admits a cotangent
complex, the lower right square is also a pullback diagram (Example 17.2.4.4). Since the
vertical composite maps are equivalences, the rectangle on the right is a pullback diagram.
It follows that the upper left square is a pullback square, so that the upper rectangle is a
pullback square as desired.
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17.3.7 Deformation-Theoretic Conditions on Morphisms

We now introduce relative versions of Definitions 17.3.1.1, 17.3.1.5, 17.3.2.1, and 17.3.4.1:

Definition 17.3.7.1. Let f : X Ñ Y be a natural transformation between functors
X,Y : CAlgcn Ñ S. We will say that f is:

paq cohesive if, for every pullback diagram

A1 //

��

A

��
B1 // B

of connective E8-rings such that π0A Ñ π0B and π0B
1 Ñ π0B are surjective, the

cubical diagram of spaces

XpA1q

��

//

$$

XpAq

��

##
Y pA1q

��

// Y pAq

��

XpB1q

$$

// XpBq

##
Y pB1q // Y pBq

is a limit.

pbq infinitesimally cohesive if, for every pullback diagram

A1 //

��

A

��
B1 // B

of connective E8-rings such that π0A Ñ π0B and π0B
1 Ñ π0B are surjections with
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nilpotent kernel, the diagram of spaces

XpA1q

��

//

$$

XpAq

��

##
Y pA1q

��

// Y pAq

��

XpB1q

$$

// XpBq

##
Y pB1q // Y pBq

is a limit cube.

pcq nilcomplete if, for every connective E8-ring A, the diagram

XpAq //

��

lim
ÐÝ

XpτďnAq

��
Y pAq // lim

ÐÝ
Y pτďnAq

is a pullback square.

pdq integrable if, for every complete local Noetherian E8-ring A, the diagram

XpAq //

��

MapFunpCAlgcn,SqpSpf A,Xq

��
Y pAq //MapFunpCAlgcn,SqpSpf A, Y q

is a pullback square; here Spf A denotes the formal spectrum of A, regarded as an
object of FunpCAlgcn,Sq.

Example 17.3.7.2. LetX : CAlgcn Ñ S be an arbitrary functor, and let Y : CAlgcn Ñ S be
the constant functor taking the value ˚ P S. Then there is a unique natural transformation f :
X Ñ Y (up to homotopy). Moreover, the natural transformation f is cohesive (infinitesimally
cohesive, nilcomplete, integrable) if and only if X is cohesive (infinitesimally cohesive,
nilcomplete, integrable).

Remark 17.3.7.3. Suppose we are given a diagram

Y
g

��
X

f
>>

h // Z
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in FunpCAlgcn,Sq, where g is cohesive (infinitesimally cohesive, nilcomplete, integrable).
Then f is cohesive (infinitesimally cohesive, nilcomplete, integrable) if and only if h is
cohesive (infinitesimally cohesive, nilcomplete, integrable).

Taking Z to be the final object of FunpCAlgcn,Sq, we deduce that if Y : CAlgcn Ñ S
is cohesive (infinitesimally cohesive, nilcomplete, integrable), then a morphism f : X Ñ Y

is cohesive (infinitesimally cohesive, nilcomplete, integrable) if and only if X is cohesive
(infinitesimally cohesive, nilcomplete, integrable).

Remark 17.3.7.4. Let f : X Ñ Y be a morphism in FunpCAlgcn,Sq. Suppose we are
given a field κ and a point η P Xpκq. We define a functor X^ : CAlgsm

κ Ñ S by the formula

X^pAq “ fibpXpAq Ñ Y pAq ˆY pκq Xpκqq.

If the morphism f is infinitesimally cohesive, then the functor X^ is a formal moduli
problem (in the sense of Definition 12.1.3.1) and therefore has a well-defined tangent complex
TX^ P Modκ (Definition 12.2.2.1). Unwinding the definitions, we see that this tangent
complex is characterized up to equivalence by the formula

MapModκpM
_, TX^q » X^pκ‘Mq » fibpXpκ‘Mq Ñ Y pκ‘Mq ˆY pκq Xpκqq,

where M varies over perfect connective κ-modules. If f admits a relative tangent cocomplex
LX{Y , then the right hand side can be identified with MapModκpη

˚LX{Y ,Mq. We can
therefore identify TX^ with the κ-linear dual pη˚LX{Y q_ of η˚LX{Y .

17.3.8 Relativization and Fibers

Roughly speaking, a morphism f : X Ñ Y in FunpCAlgcn,Sq is cohesive (infinitesimally
cohesive, nilcomplete, integrable) if and only if each fiber of f is cohesive (infinitesimally
cohesive, nilcomplete, integrable). We now articulate this idea more precisely.

Notation 17.3.8.1. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S. Given a point η P Y pRq, we let Xη : CAlgcn

R Ñ S given on objects by the
formula XηpAq “ XpAq ˆY pAq tηAu, where ηA P Y pAq denotes the image of η.

Suppose now that η induces an equivalence SpecR Ñ Y : that is, for every E8-ring
A, evaluation at η induces a homotopy equivalence MapCAlgpR,Aq Ñ Y pAq. In this case,
the construction X ÞÑ Xη induces an equivalence of 8-categories FunpCAlgcn,Sq{Y Ñ

FunpCAlgcn
R ,Sq (Corollary HTT.5.1.6.12 ).

Now let F : CAlgcn
R Ñ S be an arbitrary functor. The above discussion shows that there is

an equivalence F » Xη for some natural transformation f : X Ñ SpecR in FunpCAlgcn,Sq,
which is determined uniquely up to a contractible space of choices. In this case, we will denote
the functor X by F . We will say that F is cohesive (infinitesimally cohesive, nilcomplete,
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integrable) if the functor F is cohesive (infinitesimally cohesive, nilcomplete, integrable).
Since SpecR is cohesive and nilcomplete, we see from Remark 17.3.7.3 that F is cohesive
(infinitesimally cohesive, nilcomplete, integrable) if and only if the natural transformation f
is cohesive (infinitesimally cohesive, nilcomplete, integrable).

Remark 17.3.8.2. Let R be a connective E8-ring, let F : CAlgcn
R Ñ S be a functor, and

let F : CAlgcn Ñ S be as in Notation 17.3.8.1. If F classifies a left fibration p : C Ñ CAlgcn
R ,

then F classifies the left fibration given by the composite map C p
Ñ CAlgcn

R Ñ CAlgcn. More
informally: we can identify F pAq with a classifying space for pairs pφ, ηq, where φ : RÑ A

is a map of E8-rings and η P F pAq, where A is regarded as an R-algebra via the map φ.

Remark 17.3.8.3. Let R be a connective E8-ring and let F : CAlgcn
R Ñ S be a functor.

Unwinding the definitions, we deduce:

• The functor F is cohesive if and only if, for every pullback diagram

A1 //

��

A

f
��

B1
g // B

in CAlgcn
R for which the maps π0AÑ π0B and π0B

1 Ñ π0B are surjective, the induced
diagram

XpA1q //

��

XpAq

f

��
XpB1q

g // XpBq

is a pullback square in S.

• The functor F is infinitesimally cohesive if and only if, for every pullback diagram

A1 //

��

A

f
��

B1
g // B

in CAlgcn
R for which the maps π0A Ñ π0B and π0B

1 Ñ π0B are surjective with
nilpotent kernel, the induced diagram

XpA1q //

��

XpAq

f

��
XpB1q

g // XpBq

is a pullback square in S.
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• The functor F is nilcomplete if and only if, for every connective R-algebra A, the
canonical map F pAq Ñ lim

ÐÝ
F pτďnAq is a homotopy equivalence.

• The functor F is integrable if and only if, for every local Noetherian E8-algebra A
over R which is complete with respect to its maximal ideal m, the canonical map
F pAq Ñ MapFunpCAlgcn

R ,SqpY, F q, where Y : CAlgcn
R Ñ S is the functor which assigns

to each R-algebra B the full subcategory of MapCAlgRpA,Bq spanned by those maps
which annihilate some power of the maximal ideal m.

Proposition 17.3.8.4. Let f : X Ñ Y be a natural transformation between functors
X,Y : CAlgcn Ñ S. The following conditions are equivalent:

p1q The map f is cohesive (infinitesimally cohesive, nilcomplete, integrable).

p2q For every pullback diagram
X 1 //

f 1

��

X

��
Y 1 // Y

in FunpCAlgcn,Sq, the map f 1 is cohesive (infinitesimally cohesive, nilcomplete, inte-
grable).

p3q For every pullback diagram
X 1 //

f 1

��

X

��
Y 1 // Y

in CAlgcn where Y 1 is a corepresentable functor, the map f 1 is cohesive (infinitesimally
cohesive, nilcomplete,integrable).

p4q For every connective E8-ring R and every point η P Y pRq, the functor Xη : CAlgcn
R Ñ

S is cohesive (infinitesimally cohesive, nilcomplete,integrable).

Proof. The implications p1q ñ p2q ñ p3q are obvious, and the equivalence p3q ô p4q follows
from Remark 17.3.7.3. We will complete the proof by showing that p3q ñ p1q. For simplicity,
let us treat the assertion concerning nilcomplete functors; the proofs in the other cases are
essentially the same. Let R be a connective E8-ring; we wish to show that the diagram

XpRq //

��

lim
ÐÝ

XpτďnRq

��
Y pRq // Y pτďnRq
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is a pullback square. Equivalently, we wish to show that for every point η P Y pRq, the
induced map

XpRq ˆY pRq tηu Ñ lim
ÐÝ
pXpτďnRq ˆY pτďnRq tηuq

is a homotopy equivalence (here we abuse notation by identifying η with its image in
Y pτďnRq, for each n ě 0). The point η determines a natural transformation Y 1 Ñ Y , where
Y 1 : CAlgcn Ñ S is the functor corepresented by R. Since η lies in the essential image of the
map Y 1pRq Ñ Y pRq, we may replace f by the projection map f 1 : X ˆY Y 1 Ñ Y 1. In this
case, the desired result follows from p3q.

Corollary 17.3.8.5. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S, and suppose that f is relatively representable by spectral Deligne-Mumford
stacks. Then f is cohesive, nilcomplete, and admits a cotangent complex. Moreover, the
relative cotangent complex LX{Y P QCohpXq is connective.

Proof. The first two assertions follow from Proposition 17.3.8.4, Example 17.3.1.2, and
Proposition 17.3.2.3. For the third, we combine Propositions 17.2.4.7 and 17.2.5.1.

17.3.9 Cohesive Functors and the Relative Cotangent Complex

Using the notion of an infinitesimally cohesive morphism, we can formulate a useful
variant of Proposition 17.2.5.2:

Proposition 17.3.9.1. Let
Y

g

��
X

f
>>

h // Z

be a commutative diagram in FunpCAlgcn,Sq. Assume that g is infinitesimally cohesive and
admits a cotangent complex. Then f is infinitesimally cohesive and admits a cotangent
complex if and only if h is infinitesimally cohesive and admits a cotangent complex.

Proof. The “if” direction follows immediately from Remark 17.3.7.3 and Proposition 17.2.5.2.
For the converse, let us suppose that f is infinitesimally cohesive and admits a cotangent
complex. Remark 17.3.7.3 implies that h is infinitesimally cohesive. We will complete the
proof by showing that h admits a cotangent complex.

Let ModXcn be the 8-category defined in Example ??, and let F : ModXcn Ñ S be defined
by the formula

F pR, η,Mq “ fibpXpR‘Mq Ñ XpRq ˆZpRq ZpR‘Mqq.



17.3. COHESIVE, NILCOMPLETE, AND INTEGRABLE FUNCTORS 1351

We wish to prove that F is locally almost corepresentable. Define F 1, F 2 : ModXcn Ñ S by
the formulae

F 1pR, η,Mq “ fibpXpR‘Mq Ñ XpRq ˆY pRq Y pR‘Mqq

F 2pR, η,Mq “ fibpY pR‘Mq Ñ Y pRq ˆZpRq ZpR‘Mqq,

so that we have a fiber sequence of functors F 1 Ñ F Ñ F 2. Note that each of these functors
is naturally pointed, so we get a fiber sequence ΩF Ñ ΩF 2 Ñ F 1. Since f and g admit
cotangent complexes, the functors F 1 and F 2 are locally almost corepresentable. It follows
that ΩF is locally almost corepresentable (Remark 17.2.3.3). Since h is infinitesimally
cohesive, the functor F is given by the formula F pR, η,Mq » pΩF qpR, η,ΣMq and is
therefore also locally almost corepresentable.

Remark 17.3.9.2. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S. Suppose that f is infinitesimally cohesive and admits a cotangent complex
LX{Y P QCohpXq. Let A be a connective E8-ring and let A be a square-zero extension of
A by a connective A-module M , so that we have a pullback diagram of E8-rings

A //

��

A

��
A // A‘ ΣM.

This diagram satisfies the hypotheses of case pbq of Definition 17.3.7.1, so that we obtain a
limit diagram

XpAq

��

//

##

XpAq

��

((
Y pAq

��

// Y pAq

��

XpAq

##

// XpA‘ ΣMq

((
Y pAq // Y pA‘ ΣMq.

We can think of this as giving us a pullback square

XpAq //

��

XpAq

��
XpAq ˆY pAq Y pAq // XpA‘ ΣMq ˆY pA‘ΣMq Y pAq.
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Fixing a point η P XpAq having image η0 P Y pAq, we obtain a fiber sequence of spaces

tηu ˆXpAq XpAq Ñ tη0u ˆY pAq Y pAq Ñ MapModApη
˚LX{Y ,ΣMq.

We can summarize the situation as follows: to every point η0 P Y pAq lifting η0, we can
associate a class σ P Ext1

Apη
˚LX{Y ,Mq, which vanishes if and only if the lifting problem

SpecA η //

��

X

f

��
SpecA

η0 //

<<

Y

admits a solution.

Proposition 17.3.9.3. Let f : X Ñ Y be a natural transformation between functors
X,Y : CAlgcn Ñ S. Suppose that f is infinitesimally cohesive and that f admits a relative
cotangent complex LX{Y P QCohpXq. Let A be a connective E8-ring, and let A be a
square-zero extension of A by a connective A-module M . Then:

p1q If η˚LX{Y is a projective A-module for each η P XpAq, then the canonical map
XpAq Ñ XpAq ˆY pAq Y pAq is surjective on connected components.

p2q If LX{Y vanishes, then the canonical map XpAq Ñ XpAq ˆY pAq Y pAq is a homotopy
equivalence.

In the case of representable functors, we have the following converse:

Proposition 17.3.9.4. Let φ : X Ñ Y be a map of spectral Deligne-Mumford stacks
representing functors X,Y : CAlgcn Ñ S, and suppose that the underlying map τď0 X Ñ τď0 Y
is locally finitely 0-presented (see Definition 4.2.3.1). Then:

p1q The map φ is étale if and only if, for every connective E8-ring A and every square-zero
extension A of A by a connective A-module, the map XpAq Ñ XpAq ˆY pAq Y pAq is a
homotopy equivalence.

p2q The map φ is differentially smooth if and only if, for every connective E8-ring A

and every square-zero extension Aη of A by a connective A-module, the map XpAq Ñ
XpAq ˆY pAq Y pAq is surjective on connected components.

p3q The map φ is fiber-smooth if and only if φ is flat and, for every discrete E8-ring A
and every square-zero extension Aη of A by a discrete A-module, the map XpAq Ñ

XpAq ˆY pAq Y pAq is surjective on connected components.
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Proof. We first prove p1q. Applying Proposition 17.1.5.1, we see that φ is étale if and
only if the relative cotangent complex LX {Y vanishes. The “only if” direction now follows
immediately from Proposition 17.3.9.3. To prove the converse, fix an étale map η : SpétAÑ
X. If the canonical map XpA‘Mq Ñ XpAq ˆY pAq Y pA‘Mq is a homotopy equivalence,
then the mapping space MapModApη

˚LX {Y,Mq is contractible. Taking M “ η˚LX {Y, we
deduce that η˚LX {Y vanishes.

To prove the “if” directions of p2q and p3q, we can reduce to the case where X and Y
are affine, in which case the desired results follow from Propositions 11.2.2.1 and Corollary
11.2.4.2. The “only if” direction of p2q follows from Proposition 17.3.9.3 and 17.1.5.1. We will
complete the proof by verifying the “only if” direction of p3q. Suppose that φ is fiber-smooth,
and that we are given a lifting problem

SpétA η //

��

X

φ

��
SpétA //

<<

Y,

where A is a discrete E8-ring and A is a square-zero extension of A by a discrete A-module
M . To prove that this lifting problem admits a solution, it will suffice to show that the
group Ext1

Apη
˚LX {Y,Mq vanishes (see Remark 17.3.9.2). This follows from the fact that

τď1η
˚LX {Y is a projective A-module (see Proposition 17.1.5.1).

17.4 Finiteness Conditions on Morphisms

Let f : X Ñ Y be a morphism of schemes. Recall that f is said to be locally of finite
presentation if it satisfies either of the following equivalent conditions:

paq For every pair of affine open subsets SpecA » U Ď Y and SpecB » V Ď X ˆY U , the
morphism f exhibits B as a finitely presented A-algebra.

pbq For every filtered diagram of commutative rings tRαu having colimit R, the diagram

lim
ÝÑ

XpRαq //

��

XpRq

��
lim
ÝÑ

Y pRαq // Y pRq

is a pullback square.

In §4.2, we studied several finiteness conditions that can be placed on a morphism
f : X Ñ Y of spectral Deligne-Mumford stacks, which are defined using a variant of paq
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(see Definition 4.2.0.1). Our goal here is to provide alternative definitions for these notions
which are closer in spirit to pbq, and have the virtue of making sense for arbitrary functors
X,Y : CAlgcn Ñ S. The contents of this section can be summarized as follows:

piq In §17.4.1, we introduce several finiteness conditions on a natural transformation
f : X Ñ Y of functors X,Y : CAlgcn Ñ S: the conditions that f is locally of finite
presentation, locally almost of finite presentation, and locally of finite generation to
order n for n ě 0 (Definition 17.4.1.1).

piiq In §17.4.2, we show that if f : X Ñ Y is a functor which admits a cotangent complex
LX{Y , then there is a close relationship between finiteness conditions on f and finiteness
conditions on LX{Y . In particular, we show that if f is locally of finite presentation
(locally almost of finite presentation, locally of finite generation to order n), then LX{Y
is perfect (almost perfect, perfect to order n). Moreover, the converse assertions hold
under some mild additional assumptions (see Proposition 17.4.2.1, Corollary 17.4.2.2,
and Proposition 17.4.2.3).

piiiq In §17.4.3, we show that if X and Y are (representable by) spectral Deligne-Mumford
m-stacks for some m ă 8, then the finiteness conditions introduced in Definition
17.4.1.1 agree with the analogous finiteness conditions appearing in Definition 4.2.0.1
(Proposition 17.4.3.1).

17.4.1 Local Finite Presentation

We now introduce several finiteness conditions on a morphism f : X Ñ Y in the
8-category FunpCAlgcn,Sq.

Definition 17.4.1.1. Let f : X Ñ Y be a natural transformation between functors
X,Y : CAlgcn Ñ S. We will say that f is locally of finite presentation if the following
condition is satisfied:

paq Let tAαu be a filtered diagram of connective E8-rings with colimit A. Then the
canonical map

θ : lim
ÝÑ

XpAαq Ñ XpAq ˆY pAq lim
ÝÑ

Y pAαq

is a homotopy equivalence.

We say that f is locally almost of finite presentation if it satisfies the following weaker
condition:

pbq Let m ě 0, and let tAαu be a filtered diagram of m-truncated connective E8-rings
with colimit A. Then the canonical map

θ : lim
ÝÑ

XpAαq Ñ XpAq ˆY pAq lim
ÝÑ

Y pAαq
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is a homotopy equivalence.

If n ě 0, we say that f is locally of finite generation to order n if the following still weaker
condition is satisfied:

pcq Let tAαu be a filtered diagram of connective E8-rings having colimit A. Assume that
each Aα is n-truncated and that the transition maps πnAα Ñ πnAβ are monomor-
phisms. Then the canonical map

θ : lim
ÝÑ

XpAαq Ñ XpAq ˆY pAq lim
ÝÑ

Y pAαq

is a homotopy equivalence.

Remark 17.4.1.2. A morphism f : X Ñ Y in FunpCAlgcn,Sq is locally almost of finite
presentation if and only if it is locally of finite generation to order n for every integer n ě 0.

Remark 17.4.1.3. Suppose we are given a commutative diagram

Y
g

��
X

f
>>

h // Z

in FunpCAlgcn,Sq. Suppose that g is locally of finite presentation (locally almost of finite
presentation, locally of finite generation to order n). Then f is locally of finite presentation
(locally almost of finite presentation, locally of finite generation to order n) if and only if h is
locally of finite presentation (locally almost of finite presentation, locally of finite generation
to order n).

Remark 17.4.1.4. Let tXαu be a diagram in the 8-category FunpCAlgcn,Sq having colimit
X “ lim

ÝÑα
Xα, and let f : X Ñ Y be a natural transformation. If each each of the composite

maps Xα Ñ X
f
ÝÑ Y is locally of finite presentation (locally almost of finite presentation,

locally of finite generation to order n), then so is f .

We have the following counterpart of Proposition 17.3.8.4:

Proposition 17.4.1.5. Let f : X Ñ Y be a natural transformation between functors
X,Y : CAlgcn Ñ S. The following conditions are equivalent:

p1q The map f is locally of finite presentation (locally almost of finite presentation, locally
of finite generation to order n).
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p2q For every pullback diagram
X 1 //

f 1

��

X

f
��

Y 1 // Y

in FunpCAlgcn,Sq, the map f 1 is locally of finite presentation (locally almost of finite
presentation, locally of finite generation to order n).

p3q For every pullback diagram
X 1 //

f 1

��

X

f
��

Y 1 // Y

in FunpCAlgcn,Sq where Y 1 is a corepresentable functor, the map f 1 is locally of finite
presentation (locally almost of finite presentation, locally of finite generation to order
n).

Remark 17.4.1.6. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S. Suppose that there exists a connective E8-ring R and a point η P Y pRq which
exhibits Y as the functor corepresented by R. Let Xη : CAlgcn

R Ñ S be as in Notation
17.3.8.1. Then:

paq The map f is locally of finite presentation if and only if the functor Xη commutes
with filtered colimits.

pbq The map f is locally almost of finite presentation if and only if, for every integer
m ě 0, the restriction Xη|τďm CAlgcn

R
commutes with filtered colimits.

pcq The map f is locally of finite generation to order n if and only if, for every filtered
diagram tAαu of connective E8-rings having colimit A, if each Aα is n-truncated and
each of the transition maps πnAα Ñ πnAβ is a monomorphism, then the canonical
map lim

ÝÑ
XηpAαq Ñ XηpAq is a homotopy equivalence.

17.4.2 Finite Presentation and the Cotangent Complex

Let f : X Ñ Y be a morphism in the 8-category FunpCAlgcn,Sq. If f admits a
cotangent complex, then the finiteness conditions appearing in Definition 17.4.1.1 can often
be reformulated as conditions on LX{Y P QCohpXq.

Proposition 17.4.2.1. Let f : X Ñ Y be a natural transformation of functors X,Y :
CAlgcn Ñ S, and suppose that f admits a cotangent complex LX{Y . Then:
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p1q If f is locally of finite generation to order n, then the relative cotangent complex
LX{Y P QCohpXq is perfect to order n.

p2q Assume that f is infinitesimally cohesive and satisfies the following additional condition:

p˚q For every filtered diagram tAαu of commutative rings having colimit A, the
diagram of spaces

lim
ÝÑ

XpAαq //

��

XpAq

��
lim
ÝÑ

Y pAαq // Y pAq

is a pullback square.

If the relative cotangent complex LX{Y is perfect to order n, then f is locally of finite
generation to order n.

Corollary 17.4.2.2. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S. Assume that f admits a cotangent complex. Then:

p1q If f is locally almost of finite presentation, then the relative cotangent complex LX{Y P
QCohpXq is almost perfect.

p2q Assume that f is infinitesimally cohesive and satisfies condition p˚q of Proposition
17.4.2.1. If LX{Y is almost perfect, then f is locally almost of finite presentation.

Proof. Combine Proposition 17.4.2.1 with Remark 17.4.1.2

Proof of Proposition 17.4.2.1. Suppose first that f is locally of finite generation to order n.
Choose a connective E8-ring A and a point η P XpAq; we wish to show that η˚LX{Y P ModA
is perfect to order n. We will verify that η˚LX{Y satisfies the third criterion of Proposition
2.7.0.4. Let tMαu be a filtered diagram of discrete A-modules having colimit M , where the
transition maps Mα ÑMβ are monomorphisms; we wish to show that the canonical map
θ : lim
ÝÑ

MapModApη
˚LX{Y ,ΣnMαq Ñ MapModApη

˚LX{Y ,ΣnMq is a homotopy equivalence.
To prove this, we may replace A by τďnA and thereby reduce to the case where A is
n-truncated. Unwinding the definitions, we see that θ can be obtained from the commutative
diagram σ :

lim
ÝÑ

XpA‘ ΣnMαq //

��

XpAq ˆY pAq lim
ÝÑ

Y pA‘ ΣnMαq

��
XpA‘Mq // XpAq ˆY pAq Y pA‘ ΣnMαq
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by passing to homotopy fibers in the horizontal direction. We now conclude by observing
that our hypothesis that f is locally of finite generation to order n guarantees that σ is a
pullback square. This completes the proof of p1q.

We now prove p2q. Using Proposition 17.4.1.5, we can reduce to the case where the functor
Y is corepresentable by a connective E8-ring R. The assumption that f is infinitesimally
cohesive then implies that X is infinitesimally cohesive (Remark 17.3.7.3). Let Xη : CAlgcn

R Ñ

S be as in Remark 17.4.1.6. Assumption p˚q implies that the restriction of Xη to CAlg♥
R

commutes with filtered colimits. We will show that Xη satisfies condition pcq of Remark
17.4.1.6. Fix a diagram tAαu in CAlgcn

R indexed by a filtered partially ordered set I, where
where each Aα is n-truncated and the transition maps πnAα Ñ πnAβ are monomorphisms.
Set A “ lim

ÝÑα
Aα. For 0 ď i ď n, let θi : lim

ÝÑα
XηpAαq Ñ XηpAq denote the canonical map.

We will show that each of the maps θi is a homotopy equivalence. The proof proceeds by
induction on i. In the case i “ 0, this follows from assumption p˚q.

To carry out the inductive step, let us assume that i ą 0 and that θi´1 is a homotopy
equivalence. For each α, set A1α “ τďi´1Aα and Mα “ πiAα, so that we have a filtered
system of pullback diagrams

τďiAα //

��

A1α

��
A1α // A1α ‘ Σi`1Mα.

Set A1 “ lim
ÝÑα

A1α » τďi´1A and M “ lim
ÝÑα

Mα, and let ρ : lim
ÝÑ

XηpA
1
α ‘ Σi`1Mαq Ñ

XηpA
1 ‘Mq be the canonical map. Since the functor Xη is infinitesimally cohesive, we can

identify θi with the fiber product θi´1 ˆρ θi´1 in the 8-category Funp∆1,Sq. Consequently,
to show that θi is a homotopy equivalence, it will suffice to show that ρ has p´1q-truncated
homotopy fibers.

We have a commutative diagram

lim
ÝÑ

XηpA
1
α ‘ Σi`1Mαq

ρ //

u

��

XηpA
1 ‘ Σi`1Mq

v

��
lim
ÝÑ

XηpA
1
αq

θi´1 // XηpA
1q,

where the lower horizontal map is a homotopy equivalence by virtue of our inductive
hypothesis. It will therefore suffice to show that the map ρ induces a p´1q-truncated map
from each homotopy fiber of u to the corresponding homotopy fiber of v. Fix a point of
the space lim

ÝÑ
XηpA

1
αq, which we can represent by an element η P XηpA

1
αq for some α P I.

Unwinding the definitions, we see that the homotopy fiber of u over η can be identified
with the direct limit lim

ÝÑβěα
MapModA1α

pη˚LX{Y ,Σi`1Mβq, while the homotopy fiber of v
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over θi´1pηq can be identified with MapModA1α
pη˚LX{Y ,Σi`1Mq. We are therefore reduced

to showing that the map

lim
ÝÑ
βěα

MapModA1α
pη˚LX{Y ,Σi`1Mβq Ñ MapModA1α

pη˚LX{Y ,Σi`1Mq

has p´1q-truncated homotopy fibers. In other words, we wish to show that the colimit
lim
ÝÑβěα

MapModA1α
pη˚LX{Y ,Kβq is contractible, where Kβ denotes the fiber of the canonical

map Σi`1Mβ Ñ Σi`1M . Since each Kβ is n-truncated and the colimit lim
ÝÑ

Kβ vanishes, this
follows from our assumption that η˚LX{Y is perfect to order n as an A1α-module.

Proposition 17.4.2.3. Let f : X Ñ Y be a natural transformation between functors
X,Y : CAlgcn Ñ S, and assume that f admits a cotangent complex. Then:

p1q If f is locally of finite presentation, the relative cotangent complex LX{Y P QCohpXq
is perfect.

p2q Assume that f is nilcomplete, infinitesimally cohesive, and satisfies condition p˚q of
Proposition 17.4.2.1. If LX{Y is perfect, then f is locally of finite presentation.

Proof. We first prove p1q. Choose a connective E8-ring A and a point η P XpAq; we wish
to show that η˚LX{Y P ModA is perfect. Since LX{Y is locally almost connective, we can
choose an integer k such that η˚LX{Y P pModAqě´k. To prove that η˚LX{Y is perfect, it
will suffice to show that it is a compact object of pModAqě´k. For this, we note that the
functor corepresented by η˚LX{Y is given by

M ÞÑ Ωk fibpXpR‘ ΣkMq Ñ XpRq ˆY pRq Y pR‘ ΣkMqq,

which commutes with filtered colimits if f is locally of finite presentation.
We now prove p2q. Using Proposition 17.4.1.5, we may assume without loss of generality

that Y is corepresentable by a connective E8-ring R. Let X0 : CAlgcn
R Ñ S be the functor

given by the formula X0pAq “ fibpXpAq Ñ Y pAqq, as in Remark 17.4.1.6. We wish to prove
that X0 commutes with filtered colimits.

Let tAαu be a diagram of connective E8-rings indexed by a filtered partially ordered set
P , and set A “ lim

ÝÑ
Aα. We wish to prove that the canonical map lim

ÝÑ
X0pAαq Ñ X0pAq is a

homotopy equivalence. For this, it suffices to show that for every point η P X0pπ0Aq, the
induced map

θ : lim
ÝÑ

X0pAαq ˆX0pπ0Aq tηu Ñ X0pAq ˆX0pπ0Aq tηu

is a homotopy equivalence. Since X0|CAlg♥
R

commutes with filtered colimits, we may assume
that η is the image of a point ηα P X0pπ0Aαq for some α P P . For β ě α, let ηβ denote the
image of η in X0pπ0Aβq. Then we can identify θ with the canonical map

lim
ÝÑ
βěα

X0pAβq ˆX0pπ0Aβq tηβu Ñ X0pAq ˆX0pπ0Aq tηu.
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To prove that this map is a homotopy equivalence, it will suffice to show that for every
integer n ě 0, the induced map

θn : τďn lim
ÝÑ
βěα

pX0pAβq ˆX0pπ0Aβq tηβuq Ñ τďnpX0pAq ˆX0pπ0Aq tηuq

is a homotopy equivalence.
For every map of E8-rings Aα Ñ B, let ηB denote the image of ηα in X0pπ0Bq. Our

proof relies on the following assertion:

p‹q There exists an integer m ě 0 with the following property: for every map of connective
E8-rings Aα Ñ B, the canonical map

τďnpX0pBq ˆX0pπ0Bq tηBuq Ñ τďnpX0pτďmBq ˆX0pπ0Bq tηBuq

is a homotopy equivalence.

Let m satisfy the condition of p‹q. We have a commutative diagram

τďn lim
ÝÑβěα

pX0pAβq ˆX0pπ0Aβq tηβuq
θn //

��

τďnpX0pAq ˆX0pπ0Aq tηuq

��
τďn lim

ÝÑβěα
pX0pτďmAβq ˆXpπ0Aβq tηβuq

θ1n // τďnpX0pτďmAq ˆX0pπ0Aq tηuq

where the vertical maps are homotopy equivalences. Consequently, to prove that θn is a
homotopy equivalence, it suffices to show that θ1n is a homotopy equivalence. This follows
from the fact that the functor X is locally almost of finite presentation (which follows from
Corollary 17.4.2.2).

It remains to prove p‹q. Since LX{Y is perfect, η˚αLX{Y is a dualizable object of Modπ0Aα .
Let V denote a dual of η˚αLX{Y , and choose an integer k such that V is k-connective. We
claim that m “ n´ k satisfies the condition of p‹q. Choose a map of connective E8-rings
Aα Ñ B. We will prove that the map

X0pBq ˆX0pπ0Bq tηBu Ñ X0pτďmBq ˆX0pπ0Bq tηBu

is pn` 1q-connective.
Since the functor X is nilcomplete (Remark 17.3.7.3), X0pBq ˆX0pπ0Bq tηBu is the

homotopy inverse limit of the tower tX0pτďm1Bq ˆX0pπ0Bq tηBuum1ěm. It will therefore
suffice to show that the transition maps

γm1 : X0pτďm1`1Bq ˆX0pπ0Bq tηBu Ñ X0pτďm1Bq ˆX0pπ0Bq tηBu

are pn` 1q-connective for each m1 ě m.
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Set M “ πm1`1B, so that there is a pullback diagram of connective E8-rings

τďm1`1B //

��

τďm1B

��
τďm1B // τďm1B ‘ Σm1`2M.

Since X is infinitesimally cohesive (Remark 17.3.7.3), this diagram gives us a pullback square
of spaces

X0pτďm1`1Bq ˆX0pπ0Bq tηBu
γpm1q //

��

X0pτďm1Bq ˆX0pπ0Bq tηBu

��
X0pτďm1Bq ˆX0pπ0Bq tηBu

γ1 // X0pτďm1B ‘ Σm1`2Mq ˆX0pπ0Bq tηBu.

It will therefore suffice to show that the map γ1 is pn` 1q-connective. We note that γ1 has a
left homotopy inverse

ε : X0pτďm1B ‘ Σm1`2Mq ˆX0pπ0Bq tηBu Ñ X0pτďm1Bq ˆX0pπ0Bq tηBu.

Consequently, we are reduced to proving that the homotopy fibers of ε are pn`2q-connective.
Choose a point of X0pτďm1BqˆX0pπ0Bq tηBu, corresponding to a point η1 P X0pτďm1Bq lifting
ηB. Unwinding the definitions, we see that the homotopy fiber of ε over this point is given
by the mapping space

MapModτ
ďm1

B
pη1˚LX{Y ,Σm1`2Mq » MapModπ0B

pη˚BLX{Y ,Σm1`2Mq

» MapModπ0Aα
pη˚αLX{Y ,Σm1`2Mq

» Ω8pV bπ0Aα Σm1`2Mq.

Since V is k-connective, V bπ0Aα Σm1`2M is pk `m1 ` 2q-connective. It now suffices to
observe that k `m1 ` 2 ě n` 2, since m1 ě m “ n´ k.

17.4.3 Relationship with Geometric Finiteness Conditions

We conclude this section by studying the relationship of finiteness conditions of Definition
17.4.1.1 with the analogous conditions on morphisms of spectral Deligne-Mumford stacks
studied in Chapter 4.

Proposition 17.4.3.1. Let X and Y be spectral Deligne-Mumford stacks representing func-
tors X,Y : CAlgcn Ñ S, let φ : X Ñ Y be a morphism of spectral Deligne-Mumford stacks,
and let f : X Ñ Y be the natural transformation determined by φ. Assume that φ is a
relative Deligne-Mumford m-stack for some integer m " 0, and let f : X Ñ Y denote the
induced map of functors X,Y : CAlgcn Ñ S. Then:
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p1q For every integer n ě 0, the morphism f is locally of finite generation to order n (in
the sense of Definition 17.4.1.1) if and only if φ is locally of finite generation to order
n (in the sense of Definition 4.2.0.1).

p2q The map f is locally almost of finite presentation (in the sense of Definition 17.4.1.1)
if and only if φ is locally almost of finite presentation (in the sense of Definition
4.2.0.1).

p3q The map f is locally of finite presentation (in the sense of Definition 17.4.1.1) if and
only if φ is locally of finite presentation (in the sense of Definition 4.2.0.1).

The proof of Proposition 17.4.3.1 will require some preliminaries.

Lemma 17.4.3.2. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S and let n ě 0. Suppose that there exists an integer m ě ´2 which satisfies the
following condition:

p˚mq For every n-truncated object A P CAlgcn, the induced map XpAq Ñ Y pAq has pmq-
truncated homotopy fibers.

Let X 1, Y 1 : CAlgcn Ñ S denote the sheafification of X and Y with respect to the étale
topology. If f is locally of finite generation to order n, then the induced map f 1 : X 1 Ñ Y 1 is
also locally of finite presentation to order n.

Proof. We proceed by induction on m. In the case m “ ´2, the map f : XpAq Ñ Y pAq is an
equivalence whenever A is n-truncated, and the desired result is obvious. To carry out the
inductive step, let us assume that m ą ´2 and that f is locally of finite generation to order
n. It follows that the relative diagonal δ : X Ñ X ˆY X is also locally of finite generation
to order n. Since δ satisfies condition p˚m´1q, our inductive hypothesis guarantees that the
relative diagonal δ1 : X 1 Ñ X 1 ˆY 1 X

1 is locally of finite generation to order n.
Fix a connective E8-ring R and a point η P Y pRq, define Xη : CAlgcn

R Ñ S as in Notation
17.3.8.1, and define X 1η similarly. Note that we can identify X 1η with the sheafification of Xη

with respect to the étale topology. By virtue of Remark 17.4.1.6, it will suffice to proving
the following:

piq For every diagram tAαuαPI in CAlgcn
R indexed by a filtered partially ordered set I, where

each Aα is n-truncated and each transition map πnAα Ñ πnAβ is a monomorphism,
the canonical map ρ : lim

ÝÑ
X 1ηpAαq Ñ X 1ηpAq is a homotopy equivalence; here A “

lim
ÝÑαPI

Aα.

In the situation of piq, our hypothesis that δ1 is locally of finite generation to order n
guarantees that the relative diagonal of ρ is a homotopy equivalence: that is, the homotopy
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fibers of ρ are p´1q-truncated. It will therefore suffice to show that ρ is surjective on
connected components.

Fix a point x1 P X 1ηpAq. Since X 1η is the sheafification of Xη with respect to the étale
topology, there exists a finite collection of étale maps tAÑ Apiqu1ďiďn with the following
properties:

paq The map AÑ
ś

1ďiďnApiq is faithfully flat.

pbq For 1 ď i ď n, let x1i P X 1ηpApiqq denote the image of x. Then x1i lifts (up to homotopy)
to a point xi P XηpApiqq.

Using the structure theory of étale morphisms (Proposition B.1.1.3), we may choose an
index α P I and a collection of étale morphisms Aα Ñ Aαpiq, together with equivalences
Apiq » Aαpiq bAα A. Enlarging α, we may assume that the map Aα Ñ

ś

Aαpiq is faithfully
flat.

For β ě α, let us define a functor F β : CAlgét
Aα Ñ S by the formua F βpBq “

X 1ηpB bAα Aβq. Define F : CAlgét
Aα Ñ S by the formula F pBq “ X 1ηpB bAα Aq, so

that we have an evident map ψ : lim
ÝÑβěα

F β Ñ F . Since the map δ1 is locally of finite
generation to order n, the map ψ is p´1q-truncated. To complete the proof, it will suffice
to show that the point x1 P X 1ηpAq » F pAαq belongs to the essential image of the map
ψpAαq : lim

ÝÑβěα
F βpAαq Ñ F pAαq. Note that F and each F β are m-truncated sheaves

with respect to the étale topology on CAlgét
Aα , so that the colimit lim

ÝÑβěα
F β is also a

sheaf with respect to the étale topology. Consequently, the assertion that x1 belongs to the
essential image of ψpAαq can be tested locally with respect to the étale topology on Aα. We
may therefore replace Aα by Aαpiq and thereby reduce to the case where x1 belongs to the
essential image of the map XηpAq Ñ X 1ηpAq. In this case, the desired result follows from
our assumption that f is locally of finite presentation to order n.

Remark 17.4.3.3. In the statement of Lemma 17.4.3.2 (in in its applications given below),
we can replace the étale topology by the Zariski or Nisnevich topologies: the proof carries
over without essential change.

Recall that if R is an E8-ring, we let Shvét
R denote the full subcategory of FunpCAlgét

R ,Sq
spanned by those functors which are sheaves with respect to the étale topology.

Lemma 17.4.3.4. Let R be a connective E8-ring and let F be a truncated object of Shvét
R.

For every map of E8-rings RÑ A, let FA denote the image of F in the 8-category Shvét
A

(in other words, the pullback of F along the map SpétA Ñ SpétR). Then the functor
A ÞÑ FApAq commutes with filtered colimits.

Proof. Choose an integer m such that F is n-truncated. Let X : CAlgcn
R Ñ S be a

left Kan extension of F : CAlgét
R Ñ S. For every connective R-algebra A, we have
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XpAq » lim
ÝÑR1ÑA

F pR1q, where the colimit is taken over the full subcategory of CAlgR{ {A
spanned by those R1 which are étale over R. Since this 8-category is filtered, we deduce
that XpAq is m-truncated for every object A P CAlgcn

R . Because every étale R-algebra is
a compact object of CAlgR, the functor X commutes with filtered colimits. Note that the
functor A ÞÑ FApAq is the sheafification of X with respect to the étale topology. The
desired result now follows from Lemma 17.4.3.2.

Lemma 17.4.3.5. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S. Assume that f is a relative étale Deligne-Mumford n-stack: that is, for every
morphism Y 1 Ñ Y where Y 1 is representable by a connective E8-ring R, the fiber product
X ˆY Y

1 is representable by a spectral Deligne-Mumford n-stack which is étale over SpétR.
Then f is locally of finite presentation.

Proof. Using Propositon 17.4.1.5, we may suppose that Y is corepresentable. The desired
result now follows by combining the criterion of Remark 17.4.1.6 with Lemma 17.4.3.4.

Lemma 17.4.3.6. Let f : R Ñ A be a map of connective E8-rings, and assume that the
fiber of f is m-connective for m ě 0. If B is an n-truncated E8-ring, then the mapping
space MapCAlgRpA,Bq is pn´m´ 1q-truncated.

Proof. We define a diagram of objects R “ Rp0q Ñ Rp1q Ñ Rp2q Ñ ¨ ¨ ¨ in the 8-category
pCAlgRq{A by induction. Assuming that Rpiq has been defined, let Kpiq denote the fiber of
the map Rpiq Ñ A, and form a pushout diagram

Sym˚Kpiq //

��

R

��
Rpiq // Rpi` 1q.

We first claim that the canonical map lim
ÝÑ

Rpiq Ñ A is an equivalence of E8-algebras over
R. To prove this, it suffices to show that θ induces an equivalence in the 8-category of
R-modules. This is clear, since colimit tRpiqu agrees with the colimit of

Rp0q Ñ cofibpKp0q Ñ Rp0qq Ñ Rp1q Ñ cofibpKp1q Ñ Rp1qu Ñ ¨ ¨ ¨ ,

which contains a cofinal subsequence taking the constant value A.
We next claim that each Kpiq is m-connective. Equivalently, we claim that each of

the maps πjRpiq Ñ πjA is surjective for i “ m and bijective for i ă m. This is true
by hypothesis when i “ 0; we treat the general case using induction on i. Since Kpiq is
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m-connective, we have equivalences

τďm´1Rpi` 1q » τďm´1pRbSym˚Kpiq Rpiqq

» τďm´1pτďm´1Rbτďm´1 Sym˚Kpiq τďm´1Rpiqq

» τďm´1pτďm´1Rbτďm´1R τďm´1Rpiqq

» τďm´1Rpiq

» τďm´1A.

The surjectivity of the map πmRpiq Ñ πmA follows from the surjectivity of the map
πmRÑ πmA.

Note that MapCAlgRpA,Bq can be identified with the homotopy limit of the tower of
spaces tMapCAlgRpRpiq, Bquiě0, and that the mapping space MapCAlgRpR,Bq is contractible.
To prove that MapCAlgRpA,Bq is pn´ 1´mq-truncated, it will suffice to show that each of
the maps θi : MapCAlgRpRpi` 1q, Bq Ñ MapCAlgRpRpiq, Bq is pn´m´ 1q-truncated. Note
that θi is a pullback of the map

θ1i : ˚ » MapCAlgRpR,Bq Ñ MapCAlgRpSym˚Kpiq, Bq » MapModRpKpiq, Bq.

It will therefore suffice to show that each of the mapping spaces MapModRpKpiq, Bq is
pn´mq-truncated. This follows from our assumption that Kpiq is m-connective and B is
n-truncated.

Proof of Proposition 17.4.3.1. The implication p1q ñ p2q is obvious. Note that f is locally
of finite presentation if and only if it locally almost of finite presentation and LX{Y is perfect
(Proposition 17.4.2.3). To prove that p2q ñ p3q, it will suffice to show that φ is locally of
finite presentation if and only if it is locally almost of finite presentation and LX {Y is perfect.
This assertion is local on X and Y. We may therefore suppose that X and Y are affine, in
which case the desired result follows from Theorem HA.7.4.3.18 .

It remains to prove p1q. Using Proposition 17.4.1.5, we can reduce to the case where
Y “ SpétR is affine, so that X is a spectral Deligne-Mumford m-stack. Suppose first that f
is locally of finite generation to order n. Choose an étale map u : SpétAÑ X; we wish to
show that A is of finite generation to order n over R. Unwinding the definitions, we see that
this is equivalent to the requirement that the composite map SpecAÑ X

f
ÝÑ Y “ SpecR

is of finite generation to order n. This follows from Remark 17.4.1.3, since f is locally of
finite generation to order n (by assumption) and g is locally of finite presentation (Lemma
17.4.3.5).

We now prove the converse. We first treat the case where X is a coproduct of affine
spectral Deligne-Mumford stacks tXαuαPS , indexed by some finite set S. For every finite
subset T Ď S, let XT “

š

αPT Xα, and let XT denote the functor represented by XT . If X is
locally of finite generation to order n over Y, then each XT has the same property. Since
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each XT is affine, we conclude that the map XT Ñ Y is locally of of finite generation to
order n, so that the induced map lim

ÝÑTĎS
XT Ñ Y is locally of finite generation to order n

(here the colimit is taken over the filtered partially ordered set of finite subsets of S). Note
that X is the sheafification of lim

ÝÑTĎS
XT with respect to the étale topology. It follows from

Lemma 17.4.3.2 that X is locally of finite generation to order n over Y .
We now treat the general case. Choose an étale surjection u : X0 Ñ X, where X0 is

a coproduct of affine spectral Deligne-Mumford stacks. Let X0 : CAlgcn Ñ S denote the
functor represented by X0. For every connective E8-ring A, let X 1pAq denote the essential
image of the map X0pAq Ñ XpAq. Since u is an étale surjection, the inclusion X 1 ãÑ X

exhibits X as a sheafificaton of X 1 with respect to the étale topology. Using Lemma 17.4.3.2,
we are reduced to proving that the map X 1 Ñ Y is locally of finite generation to order n.
Choose a filtered diagram tAαu in CAlgcn having colimit A, where each Aα is n-truncated
and each of the transition maps πnAα Ñ πnAβ is a monomorphism; we wish to show that
the map θ : lim

ÝÑ
X 1pAαq Ñ X 1pAq ˆY pAq lim

ÝÑ
Y pAαq is a homotopy equivalence. The map θ

fits into a commutative diagram

lim
ÝÑ

X0pAαq //

θ1

��

X0pAq ˆY pAq lim
ÝÑ

Y pAαq

ψ

��
lim
ÝÑ

X 1pAαq
θ // X 1pAq ˆY pAq lim

ÝÑ
Y pAαq.

Lemma 17.4.3.5 implies that this diagram is a pullback square, and the fact that X0 is
a coproduct of affine spectral Deligne-Mumford stacks guarantees that θ1 is a homotopy
equivalence. We now complete the proof by observing that ψ is surjective on connected
components (by construction).

17.5 The Tangent Complex

Let f : X Ñ Y be a natural transformation between functors X,Y : CAlgcn Ñ S.
Suppose that we wish to show that f admits a relative cotangent complex LX{Y , in the sense
of Definition 17.2.4.2. As a starting point, we note that the dual of LX{Y is well-defined
under very mild hypotheses. In §17.5.1, we show that if f is infinitesimally cohesive, then
to each point η P XpAq we can associate an A-module TX{Y pηq, which we will refer to
as the relative tangent complex of X over Y at the point η (Construction 17.5.1.1). In
§17.5.2, we study conditions under which the formation of tangent complexes is compatible
with extension of scalars (Proposition 17.5.2.1), so that we can regard the construction
η ÞÑ TX{Y pηq as a quasi-coherent sheaf on X. Specializing to the case Y “ SpecR for some
Noetherian E8-ring R which admits a dualizing complex, we obtain an existence criterion for
the cotangent complex LX{Y (Theorem 17.5.4.1). The proof makes use of characterization of
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those functors Modcn
R Ñ S which are corepresentable by almost perfect R-modules (Theorem

17.5.3.1), which we establish using ideas from §6.6.

17.5.1 The Tangent Complex at a Point

In §18, we studied the tangent complex associated to a formal moduli problem X over a
field κ. We now introduce a “global” variant of this construction.

Construction 17.5.1.1. Let f : X Ñ Y be an infinitesimally cohesive natural transforma-
tion between functors X,Y : CAlgcn Ñ S. For every connective E8-ring A and every point
η P XpAq, let Fη : Modcn

A Ñ S denote the functor given by the formula

FηpMq “ fibpXpA‘Mq Ñ Y pA‘Mq ˆY pAq XpAqq,

where the fiber is taken over the point determined by η. Since f is infinitesimally cohesive, the
canonical map FηpMq Ñ ΩFηpΣMq is an equivalence for each M P Modcn

A , so that the functor
Fη is reduced and excisive (Proposition HA.1.4.2.13 ). Applying Lemma 17.2.1.2, we deduce
that Fη admits an essentially unique extension to a left exact functor F`η : Modacn

A Ñ S. We
can identify the restriction F`η |Modperf

A
with an object of IndppModperf

A qopq » IndpModperf
A q »

ModA (see §HA.7.2.4 ). We will denote the corresponding A-module by TX{Y pηq, and refer
to it as the relative tangent complex of f at the point η. It is characterized by the following
universal property: for every connective perfect A-module M , we have a canonical homotopy
equivalence FηpMq » Ω8pTX{Y pηq bAMq. In particular, we have a homotopy equivalence
Ω8´nTX{Y pηq » FηpΣnAq for each n ě 0.

Example 17.5.1.2. Let f : X Ñ Y be an infinitesimally cohesive morphism in FunpCAlgcn,Sq,
and suppose that f admits a relative cotangent complex LX{Y . For every point η P XpAq,
the functor Fη of Construction 17.5.1.1 is given by FηpMq “ MapModApη

˚LX{Y ,Mq. It
follows that the relative tangent complex TX{Y pηq can be identified with the A-linear dual
Map

A
pη˚LX{Y , Aq of η˚LX{Y .

Variant 17.5.1.3. In the situation of Construction 17.5.1.1, suppose we are given an almost
connective A-module N . The functor M ÞÑ F`η pM bA Nq is left exact, and therefore its
restriction to perfect A-modules determines an A-module TX{Y pη;Nq equipped with canonical
equivalences Ω8´nTX{Y pη;Nq » FηpΣnNq. Note that we have TX{Y pηq » TX{Y pη;Aq.
Moreover, the construction N ÞÑ TX{Y pη;Nq is an exact functor from ModA to itself.

Remark 17.5.1.4. Let f : X Ñ Y be an infinitesimally cohesive morphism in FunpCAlgcn,Sq,
let φ : AÑ A1 be a map of connective E8-rings, let η P XpAq and let η1 denote its image in
XpA1q. Define functors Fη : Modcn

A Ñ S and Fη1 : Modcn
A1 Ñ S as in Construction 17.5.1.1,

and let U : Modacn
A1 Ñ Modacn

A denote the forgetful functor. Then φ induces a natural
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transformation of reduced excisive functors Fη ˝ pU |Modcn
A
q Ñ Fη1 , which extends to a natural

transformation of left exact functors F`η ˝ U Ñ F`η1 . For every A1-module N , we obtain a
map of A-modules TX{Y pη;Nq Ñ TX{Y pη

1;Nq. This map is an equivalence if f is cohesive
and φ induces a surjection π0AÑ π0A

1.

Remark 17.5.1.5. Suppose we are given a pullback diagram

X //

��

X 1

��
Y // Y 1

in FunpCAlgcn,Sq, where the vertical maps are infinitesimally cohesive. Let A be a connective
E8-ring, let η P XpAq, and let η1 denote the image of η in X 1pAq. These is a canonical
equivalence of A-modules TX{Y pηq » TX 1{Y 1pη

1q.

17.5.2 Compatibility with Base Change

Let f : X Ñ Y be an infinitesimally cohesive morphism between functors X,Y :
CAlgcn Ñ S. Suppose that φ : AÑ A1 is a morphism of connective E8-rings. Let η be a
point of XpAq, and let η1 denote the image of η in XpA1q. Applying Remark 17.5.1.4 in the
special case N “ A1, we obtain a natural map A-modules

TX{Y pηq “ TX{Y pη;Aq Ñ TX{Y pη;A1q Ñ TX{Y pη
1, A1q “ TX{Y pη

1q.

Extending scalars along φ, we obtain a morphism of A1-modules ρ : A1 bA TX{Y pηq Ñ
TX{Y pη

1q. Our goal in this section is to prove the following:

Proposition 17.5.2.1. Let f : X Ñ Y be a morphism in FunpCAlgcn,Sq, where Y is
corepresentable by a Noetherian E8-ring R, and let X0 : CAlgcn

R Ñ S denote the functor
given by X0pAq “ fibpXpAq Ñ MapCAlgpR,Aqq. Assume that f is cohesive, nilcomplete, and
locally almost of finite presentation. The following conditions are equivalent:

p1q For every morphism φ : A Ñ B in CAlgcn
R and every connective B-module M , the

diagram
X0pA‘Mq //

��

X0pB ‘Mq

��
X0pAq // X0pBq

is a pullback square.

p2q For every point η P XpAq and every flat morphism φ : AÑ B carrying η to a point
η1 P XpBq, the natural map B bA TX{Y pηq Ñ TX{Y pη

1q is an equivalence, where η1

denotes the image of η in XpBq.
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p3q For every discrete integral domain A and every point η P XpAq which exhibits A as a
finitely generated algebra over π0R, the natural map Arxs bA TX{Y pηq Ñ TX{Y pη

1q is
an equivalence, where η1 denotes the image of η P XpArxsq.

p4q For every discrete integral domain A with fraction field K, every point η P XpAq which
exhibits A as a finitely generated algebra over π0R, and every extension field L of K,
the canonical map LbA TX{Y pηq Ñ TX{Y pη

1q is an equivalence, where η1 denotes the
image of η in XpLq.

Remark 17.5.2.2. If f satisfies the equivalent conditions of Proposition 17.5.2.1, then the
construction pη P XpAqq ÞÑ pTX{Y pηq P ModAq determines a quasi-coherent sheaf on the
functor X, which we will denote by TX{Y and refer to as the tangent complex of f .

Proof of Proposition 17.5.2.1. We first show that p1q ñ p2q. Fix a point η P XpAq, let B be
a flat E8-algebra over A, and let η1 P XpBq denote the image of η. Define Fη : Modcn

A Ñ S
and Fη1 : Modcn

B Ñ S as in Construction 17.5.1.1. To prove that the canonical map
B bA TX{Y pηq Ñ TX{Y pη

1q is an equivalence, it will suffice to show that for each n ě 0
the map θ : Ω8´npB bA TX{Y pηqq Ñ Ω8´nTX{Y pη1q is a homotopy equivalence of spaces.
Since B is flat over A, we can write B as a filtered colimit lim

ÝÑ
Pα, where each Pα is a free

A-module of finite rank (Theorem HA.7.2.2.15 ). We can then identify θ with the composite
map

Ω8´npB bA TX{Y pηqq » lim
ÝÑ

Ω8´npPα bA TX{Y pηqq
» lim

ÝÑ
FηpΣnPαq

θ1
Ñ FηpBq

θ2
Ñ Fη1pBq.

The map θ1 is a homotopy equivalence by virtue of our assumption that f is locally almost of
finite presentation, and the map θ2 is a homotopy equivalence by virtue of assumption p1q.

The implications p2q ñ p3q and p2q ñ p4q are obvious. We next show that p3q ñ p1q.
Choose a connective E8-ring R and a point η P Y pRq, and let X0 : CAlgcn

R Ñ S be as in
Notation 17.3.8.1. We wish to show that for every morphism φ : A Ñ B in CAlgcn

R and
every connective B-module M , the diagram σM :

X0pA‘Mq //

��

X0pB ‘Mq

��
X0pAq // X0pBq

is a pullback square. Since X is nilcomplete, σM is the limit of the diagrams στďnM . It will
therefore suffice to show that each στďnM is a pullback diagram. We proceed by induction
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on n, the case n “ 0 being trivial. If n ą 0, we have a fiber sequence of B-modules
τďnM Ñ τďn´1M Ñ Σn`1N where N » πnM is a discrete B-module. The square στďnM
fits into a larger diagram

X0pA‘ τďnMq //

��

X0pB ‘ τďnMq

��

// X0pB ‘ τďn´1Mq

��
X0pAq // X0pBq // X0pB ‘ Σn`1Nq

The right square in this diagram is a pullback since X is cohesive. It will therefore suffice to
show that the outer rectangle is a pullback diagram. That is, we must show that the outer
rectangle in the diagram

X0pA‘ τďnMq //

��

X0pA‘ τďn´1Mq

��

// X0pB ‘ τďn´1Mq

��
X0pAq // X0pA‘Kq // X0pB ‘ Σn`1Nq

is a pullback square. Since the left square is a pullback by virtue of our assumption that X
is cohesive, it suffices to show that the right square is also a pullback. This square fits into a
commutative diagram

X0pA‘ τďn´1Mq //

��

X0pB ‘ τďn´1Mq

��
X0pA‘ Σn`1Nq //

��

X0pB ‘ Σn`1Nq

��
X0pAq // X0pBq

where the outer rectangle is a pullback square by the inductive hypothesis. It will therefore
suffice to show that σΣn`1N is a pullback diagram.

Since N is a module over π0B, σΣn`1N fits into a commutative diagram

X0pA‘ Σn`1Nq //

��

X0pB ‘ Σn`1Nq //

��

X0pπ0B ‘ Σn`1Nq

��
X0pAq // X0pBq // X0pπ0Bq

The right square is a pullback diagram by virtue of our assumption that X is cohesive. It
will therefore suffice to show that the outer rectangle is a pullback. Equivalently, we must
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show that the outer rectangle in the diagram

X0pA‘ Σn`1Nq //

��

X0pπ0A‘ Σn`1Nq //

��

X0pπ0B ‘ Σn`1Nq

��
X0pAq // X0pπ0Aq // X0pπ0Bq

is a pullback square. Since the left square is a pullback (because X is cohesive), we are
reduced to proving that the right square is a pullback. In other words, we may replace A by
π0A and B by π0B, and thereby reduce to the case where A and B are discrete.

Write A as a filtered colimit of subalgebras Aα which are finitely generated over π0R.
Since f is locally almost of finite presentation, the functor X0 commutes with filtered colimits
when restricted to pn` 1q-connective R-algebras. It will therefore suffice to show that each
of the diagrams

X0pAα ‘ Σn`1Nq //

��

X0pB ‘ Σn`1Nq

��
X0pAαq // X0pBq.

We may therefore replace A by Aα and thereby reduce to the case where A is finitely
generated as an algebra over π0R. In particular, A is a Noetherian ring. Choose a surjection
of commutative A-algebras P Ñ B, where P is a polynomial ring over A. We then have a
commutative diagram

X0pA‘ Σn`1Nq //

��

X0pP ‘ Σn`1Nq //

��

X0pB ‘ Σn`1Nq

��
X0pAq // X0pP q // X0pBq.

The right square is a pullback since X0 is cohesive. It will therefore suffice to show that
the left square is a homotopy pullback. Write P » lim

ÝÑ
Pβ, where each Pβ is a polynomial

ring over A on finitely many generators. It will therefore suffice to show that each of the
diagrams

X0pA‘ Σn`1Nq //

��

X0pPβ ‘ Σn`1Nq

��
X0pAq // X0pPβq.

is a pullback square. Write Pβ “ Arx1, . . . , xks. Working by induction on k, we can reduce
to the case where k “ 1: that is, we are given a discrete Arxs-module N , and we wish to
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show that the diagram τ :

X0pA‘ Σn`1Nq //

��

X0pArxs ‘ Σn`1Nq

��
X0pAq // X0pArxsq

is a pullback square.
Let N0 denote the underlying A-module of N , and regard N0rxs as an Arxs-module.

We have a short exact sequence of discrete Arxs-modules 0 Ñ N0rxs Ñ N0rxs Ñ N Ñ 0,
hence a fiber sequence Σn`1N Ñ Σn`2N0rxs Ñ Σn`2N0rxs. It follows that τ fits into a
commutative diagram

X0pA‘ Σn`1Nq //

��

X0pArxs ‘ Σn`1Nq

��

// X0pArxs ‘ Σn`2N0rxsq

��
X0pAq // X0pArxsq // X0pArxs ‘ Σn`2N0rxsq.

Our assumption that X is cohesive guarantees that the right square is a pullback. It will
therefore suffice to show that the outer rectangle is also a pullback. Equivalently, we must
show that the outer rectangle in the diagram

X0pA‘ Σn`1Nq //

��

X0pA‘ Σn`2N0rxsq

��

// X0pArxs ‘ Σn`2N0rxsq

��
X0pAq // X0pA‘ Σn`2N0rxsq // X0pArxs ‘ Σn`2N0rxsq

is a pullback square. Since the left square is a pullback (because X is cohesive), it will suffice
to show that the right square is also a pullback. This square fits into a larger diagram

X0pA‘ Σn`2N0rxsq

��

// X0pArxs ‘ Σn`2N0rxsq

��
X0pA‘ Σn`2N0rxsq //

��

X0pArxs ‘ Σn`2N0rxsq

��
X0pAq // X0pArxsq.

It will therefore suffice to show that the lower square and the outer rectangle in this diagram
are pullback squares. For this, it suffices to verify the following general assertion: for every
discrete A-module T , the diagram τT :

X0pA‘ Σn`2T rxsq //

��

X0pArxs ‘ Σn`2T rxsq

��
X0pAq // X0pArxsq
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is a pullback square.
Since f is locally almost of finite presentation, the construction T ÞÑ τT commutes with

filtered colimits. Writing T as a filtered colimit of its finitely generated submodules, we are
reduced to proving that τT is an equivalence when T is finitely generated over A. Since A is
Noetherian, T is also Noetherian. Working by Noetherian induction, we can assume that for
every nonzero submodule T 1 Ď T , the diagram τT {T 1 is a pullback square. If T “ 0, there is
nothing to prove. Otherwise, T has an associated prime: that is, we can choose a nonzero
element x P T whose annihilator is a prime ideal p Ď A. Let T 1 denote the submodule of T
generated by x. The diagram τT fits into a commutative square

X0pA‘ Σn`2T rxsq //

��

X0pArxs ‘ Σn`2T rxsq //

��

X0pArxs ‘ Σn`2T {T 1rxsq

��
X0pAq // X0pArxsq // X0pArxs ‘ Σn`3T 1rxsq.

Since X is cohesive, the right square is a pullback. It will therefore suffice to show that the
outer rectangle is a pullback. This is equivalent to the outer rectangle in the diagram

X0pA‘ Σn`2T rxsq //

��

X0pA‘ Σn`2T {T 1rxsq //

��

X0pArxs ‘ Σn`2T {T 1rxsq

��
X0pAq // X0pA‘ Σn`3T 1rxsq // X0pArxs ‘ Σn`3T 1rxsq.

Since the left square in this diagram is a pullback (by virtue of the assumption that X is
cohesive), we are reduced to proving that the right square is also a pullback. To prove this,
we consider the rectangular diagram

X0pA‘ Σn`2T {T 1rxsq //

��

X0pArxs ‘ Σn`2T {T 1rxsq

��
X0pA‘ Σn`3T 1rxsq //

��

X0pArxs ‘ Σn`3T 1rxsq

��
X0pAq // X0pArxsq.

The inductive hypothesis implies that the outer rectangle is a pullback diagram. It will
therefore suffice to show that the lower square is also a pullback diagram.

Write T 1 “ A{p, and consider the diagram

X0pA‘ Σn`3T 1rxsq //

��

X0pArxs ‘ Σn`3T 1rxsq

��

// X0pArxs{p‘ Σn`3T 1rxsq

��
X0pAq // X0pArxsq // X0pArxs{pq.
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Since X is cohesive, the left square is a pullback. It will therefore suffice to show that the
outer rectangle is a pullback. Equivalently, we must show that the outer rectangle in the
diagram

X0pA‘ Σn`3T 1rxsq //

��

X0pA{p‘ Σn`3T 1rxsq

��

// X0pArxs{p‘ Σn`3T 1rxsq

��
X0pAq // X0pA{pq // X0pArxs{pq

is a pullback. Here the left square is a pullback by virtue of our assumption that X is
cohesive. We are therefore reduced to proving that the right square is a pullback diagram,
which follows assumption p3q.

We now complete the proof by showing that p4q ñ p3q. Suppose that p4q is satisfied. We
will prove the following more general version of p3q:

p˚q Let A be a commutative ring, let η P XpAq exhibit A as a finitely generated algebra
over π0R, and let M be a finitely generated (discrete) R-module. Let η1 denote the
image of η in XpArxsq. Then the canonical map

ψM : Arxs bA TX{Y pη;Mq » TX{Y pη;M rxsq Ñ TX{Y pη
1,M rxsq

is an equivalence (see Variant 17.5.1.3).

To prove p˚q, we first note that A is Noetherian, so that M is a Noetherian A-module.
Working by Noetherian induction, we may suppose that ψM{M 1 is an equivalence for every
nonzero submodule M 1 Ď M . If M “ 0 there is nothing to prove. Otherwise, M has an
associated prime ideal: that is, there is an exact sequence 0 ÑM 1 ÑM ÑM2 Ñ 0 where
M 1 » A{p for some prime ideal p Ď A. Since ψM2 is an equivalence by virtue of the inductive
hypothesis, we are reduced to proving that ψM 1 is an equivalence. Since f is cohesive, we
may replace A by A{p, and thereby reduce to the special case where A is an integral domain
and M “ A.

For each nonzero element a P A, we have an exact sequence 0 Ñ aM ÑM ÑM{aM Ñ 0.
The inductive hypothesis implies that ψM{aM is an equivalence. It follows that multiplication
by a induces an equivalence from cofibpψM q to itself. Let K denote the fraction field of A,
so that K bA cofibpψM q is equivalent to cofibpψM q. We are therefore reduced to proving
that ψM induces an equivalence Krxs bA TX{Y pηq Ñ Krxs bArxs TX{Y pη

1q.
Let hpxq P Arxs be a polynomial whose image Krxs is irreducible. Let B “ Arxs{phpxqq,

and let L “ Krxs{phpxqq be the fraction field of B. Let η1B denote the image of η in XpBq

and define η1L similarly. Since X is infinitesimally cohesive, can identify TX{Y pη
1
Bq with

the cofiber of the map hpxq : TX{Y pη1q Ñ TX{Y pη
1q. Using condition p4q, we can identify
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TX{Y pη
1
Lq with the cofiber of hpxq on KrxsbArxs TX{Y pη1q. We therefore have a commutative

diagram of fiber sequences

Krxs bA TX{Y pηq
hpxq //

��

Krxs bA TX{Y pηq //

��

LbA TX{Y pηq

��
Krxs bArxs TX{Y pη

1q
hpxq // Krxs bArxs TX{Y pη

1q // TX{Y pη
1
Lq

where condition p4q implies that the right vertical map is an equivalence. It follows that
multiplication by hpxq acts invertibly on cofibpψM q.

Let K 1 denote the fraction field of the integral domain Arxs. The reasoning above shows
that cofibpψM q » K 1 bArxs cofibpψM q. Consequently, to show that cofibpψM q » 0, it will
suffice to show that the horizontal map in the diagram

K 1 bA TX{Y pηq //

((

K 1 bArxs TX{Y pη
1q

vv
TX{Y pηK1q

is an equivalence, where ηK1 denotes the image of η in XpK 1q. It now suffices to observe
that condition p4q implies that both of the vertical maps are equivalences.

17.5.3 Digression: A Representability Criterion

Let R be a Noetherian E8-ring, let f : X Ñ SpecR be a natural transformation
of functors, and let X0 : CAlgcn

R Ñ S be the functor given by X0pAq “ fibpXpAq Ñ
MapCAlgpR,Aqq. Arguing as in Example 17.2.4.4, we see that f admits a relative cotangent
complex if and only if it satisfies the following pair of conditions:

paq For every connective E8-ring A and every point η P XpAq, define Fη : Modcn
A Ñ S by

the formula FηpMq “ X0pA‘Mq ˆX0pAq tηu. Then Fη is almost corepresentable (see
Example 17.2.1.4).

pbq For every map of connective E8-rings AÑ B and every connective B-module M , the
diagram of spaces

X0pA‘Mq //

��

X0pB ‘Mq

��
X0pAq // X0pBq

is a pullback square.
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Under some mild hypotheses, condition pbq is equivalent to the requirement that the
tangent complexes of f are preserved by flat base change (Proposition 17.5.2.1). Our goal in
this section is to prove a result which is helpful for verifying condition paq:

Theorem 17.5.3.1. Let R be a Noetherian E8-ring which admits a dualizing module K
and let F : Modcn

R Ñ S be a functor. Then F is corepresentable by an almost perfect (not
necessarily connective) R-module if and only if the following conditions are satisfied:

p1q The functor F is reduced and excisive (and therefore admits an essentially unique
extension to a left exact functor F` : Modacn

R Ñ S, by Lemma 17.2.1.2).

p2q For every connective R-module M , the canonical map F pMq Ñ lim
ÐÝ

F pτďnMq is an
equivalence.

p3q For every integer n, the restriction F |pModcn
R qďn

commutes with filtered colimits.

p4q There exists an integer n ě 0 such that F pMq is n-truncated for every discrete
R-module M .

p5q For every R-module M which is truncated and almost perfect, the abelian group
π0F

`pMq is finitely generated as a module over π0R.

Remark 17.5.3.2. Let R be a Noetherian E8-ring and let ModbR denote the full subcategory
of ModR spanned by those R-modules which are truncated and almost perfect. Then ModbR
is a stable subcategory of ModR, and the t-structure on ModR restricts to a bounded
t-structure ppModbRqě0, pModbRqď0q on ModbR. It follows that the 8-category IndpModbRq
inherits a t-structure pIndpModbRqě0, IndpModbRqě0q. Since ModR admits filtered colimits
(and the t-structure on ModR is stable under filtered colimits), the inclusion ModbR Ñ ModR
induces a t-exact functor F : IndpModbRq Ñ ModR. We claim that F induces an equivalence
Fď0 : IndpModbRqď0 Ñ pModRqď0. Since every object of pModbRqď0 is compact when viewed
as an object of pModRqď0, Proposition HTT.5.3.5.11 implies that the functor Fď0 is fully
faithful. To complete the proof, it will suffice to show that Fď0 is essentially surjective.
Since the image of Fď0 is closed under filtered colimits and every object M P pModRqď0 can
be written as the colimit of the diagram

τě0M Ñ τě´1M Ñ τě´2M Ñ ¨ ¨ ¨ ,

it suffice to show that every object M P pModRqď0 X pModRqě´n belongs to the essential
image of Fď0. We proceed by induction on n. When n “ 0, it suffices to observe that every
discrete R-module can be written as a filtered colimit of its finitely generated submodules,
which we can identify with objects of pModbRqď0. If n ą 0, then we have a fiber sequence
Σ´1pτď´1Mq

α
Ñ π0M Ñ M . The inductive hypothesis guarantees that α is the image of
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a morphism α in IndpModbRqď0. Note that the domain of α belongs to IndpModbRqď´1 (in
fact, it belongs to IndpModbRqď´2q, so that cofibpαq P IndpModbRqď0 Then M » cofibpαq “
F pcofibpαqq belongs to the essential image of Fď0, as desired.

Proof of Theorem 17.5.3.1. Suppose that the functor F : Modcn
R Ñ S is given by the formula

F pMq “ MapModRpN,Mq for some R-module N . Then conditions p1q and p2q are vacuous.
Condition p4q follows from assumption that N is almost connective, and condition p3q from
the condition that N is almost perfect. Moreover, if N is almost perfect, then condition p5q
follows from Lemma 6.4.3.5.

Now suppose that conditions p1q through p5q are satisfied. We wish to prove that F` is
corepresentable by an almost perfect R-module. Fix a dualizing module K P ModR. For every
R-module M , we let DpMq denote the R-module Map

R
pM,Kq. It follows from Theorem

6.6.1.8 and Proposition 6.6.1.9 that the construction M ÞÑ DpMq induces a contravariant
equivalence from the 8-category ModbR to itself. We define a functor G : pModbRqop Ñ S by
the formula GpMq “ F`pDpMqq. Assumption p1q implies that the functor G is left exact,
and can therefore be identified with an object of IndpModbRq.

We first claim that F satisfies the following stronger version of p4q:

p41q There exists an integer n such that F`pMq is pn`mq-truncated whenever M P Modacn
R

is m-truncated.

To prove p41q, we first apply Proposition HA.1.4.2.22 to factor F` as a composition Modacn
R

f
Ñ

Sp Ω8
Ñ S, where f is exact. Let M P ModR be m-truncated and k-connective; we will prove

that the spectrum fpMq is pn`mq-truncated. The proof proceeds by induction on m, the
case m ă k being trivial. We have a fiber sequence ΣmpπmMq Ñ M Ñ τďm´1M . Since
the functor f is exact, to prove that fpMq is pn`mq-truncated it will suffice to show that
fpτďm´1Mq and fpΣmpπmMqq are pn`mq-truncated. In the first case, this follows from the
inductive hypothesis. In the second, we must show that the spectrum fpπmMq is n-truncated.
Since n ě 0, this is equivalent to the assertion that the space Ω8fpπmMq » F pπmMq is
n-truncated, which follows from p4q.

Let n be an integer satisfying p41q. Choose an integer n1 such that K is n1-truncated. If
M P ModbR is pn` n1 ` 1q-connective, then DpMq is p´n´ 1q-truncated so that condition
p5q guarantees that GpMq “ F`DpMq is contractible (note that F`DpMq is automatically
nonempty). It follows that, as an object of IndpModbRq, G belongs to IndpModbRqďn`n1 .
Applying Remark 17.5.3.2, we conclude that G is the image of an object N P pModRqďn`n1
under the right adjoint to the functor IndpModbRq Ñ ModR appearing in Remark 17.5.3.2.
Unwinding the definitions, we deduce that N represents the functor G: that is, we have
homotopy equivalences GpMq » MapModRpM,Nq for M P ModbR which depend functorially
on M . In particular, we obtain bijections

πiN » π0 MapModRpτďn`n1pΣ
iRq, Nq » π0Gpτďn`n1pΣiRqq » π0F

`Dpτďn`n1ΣiRqq.
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It follows from p5q that each homotopy group of N is finitely generated as a module over
π0R. Using Proposition 6.6.1.9, we deduce that DpNq is an almost perfect R-module, and
that we have functorial homotopy equivalences

F`pMq “ GpDpMqq » MapModRpDpMq, Nq » MapModRpDpNq,Mq.

Let F 1 : Modacn
R Ñ S be the functor corepresented by DpNq. For every pair of integers a

and b, let Cpa, bq denote the full subcategory pModRqďaX pModRqěb, and let C0pa, bq denote
the full subcategory spanned by those R-modules M P Cpa, bq which are truncated and
almost perfect. Let C “

Ť

a,b Cpa, bq denote the full subcategory of ModR spanned by those
R-modules which are truncated and almost connective. Arguing as in Remark 17.5.3.2, we
deduce that the inclusion C0pa, bq Ñ Cpa, bq extends to an equivalence IndpC0pa, bqq Ñ Cpa, bq.
Since DpNq is almost perfect, F 1|Cpa,bq commutes with filtered colimits. Condition p3q implies
that F`|Cpa,bq commutes with filtered colimits. Using Proposition HTT.5.3.5.10 , we deduce
that the restriction map

MapFunpCpa,bq,SqpF
1|Cpa,bq, F

`|Cpa,bqq Ñ MapFunpC0pa,bq,SqpF
1|C0pa,bq, F

`|Cpa,bqq

is a homotopy equivalence. Passing to the homotopy inverse limit over pairs pa, bq, we obtain
a homotopy equivalence

MapFunpC,SqpF
1|C , F

`|Cq Ñ MapFunpModbR,Sq
pF 1|ModbR

, F`|ModbR
q.

In particular, the equivalence F 1|ModbR
» F`|ModbR

lifts to a natural transformation α : F 1|C Ñ
F`|C . Every object M P C belongs to Cpa, bq for some pair of integers a, b P Z. Since F 1|Cpa,bq
and F`|Cpa,bq both commute with filtered colimits, we deduce that αM : F 1pMq Ñ F`pMq

is a filtered colimit of equivalences F 1pM0q Ñ F`pM0q, where M0 is truncated and almost
perfect. It follows that α is an equivalence of functors.

To complete the proof that F` is corepresentable by an almost perfect R-module, it will
suffice to show that α lifts to an equivalence between F` and F 1. For this, it will suffice to
show that F` and F 1 are both right Kan extensions of their restrictions to C. We will need
the following criterion:

p˚q Let H : Modacn
R Ñ S be a functor. Then H is a right Kan extension of H|C if and only

if, for every almost connective R-module M , the canonical map HpMq Ñ lim
ÐÝ

HpτďnMq

is an equivalence.

It follows from p˚q that F 1 is a right Kan extension of F 1|C, and p˚q together with p2q
guarantee that F` is also a right Kan extension of F 1|C .

To prove p˚q, it will suffice to show that for every object M P Modacn
R , the Postnikov

tower tτďnMuně0 determines a right cofinal functor NpZě0q
op Ñ CˆModacn

R
pModacn

R qM{.
This is equivalent to the assertion that for every object N P C, the canonical map

lim
ÝÑ

MapModRpτďnM,Nq Ñ MapModRpM,Nq
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is a homotopy equivalence. This is clear, since the assumption thatN is truncated implies that
the map MapModRpτďnM,Nq Ñ MapModRpM,Nq is a homotopy equivalence for n " 0.

17.5.4 Application: Existence of the Cotangent Complex

Let R be an E8-ring and suppose we are given a morphism f : X Ñ SpecR in the
8-category FunpCAlgcn,Sq. Under some mild finiteness assumptions, the existence of a
cotangent complex for f is equivalent to good behavior of the tangent complex of f . More
precisely, we have the following result:

Theorem 17.5.4.1. Let R be a Noetherian E8-ring which admits a dualizing module
(Definition 6.6.1.1), let Y “ SpecR, and suppose we are given a morphism f : X Ñ Y

in FunpCAlgcn,Sq which is cohesive, nilcomplete, and locally almost of finite presentation.
Assume further that f satisfies the hypotheses of Proposition 17.5.2.1, and that there exists
an integer q such that XpAq is q-truncated for every discrete commutative ring A. Then the
following conditions are equivalent:

pAq The functor X admits a cotangent complex.

pBq For every Noetherian E8-ring A and every point η P XpAq, each homotopy group
πnTX{Y pηq is a finitely generated module over π0A.

pCq Let A be an integral domain, let η P XpAq exhibit A as a finitely generated module over
π0R. Then the homotopy groups πnTX{Y pηq are finitely generated as modules over A.

If these conditions are satisfied, then the relative cotangent complex LX{Y is almost perfect.
Moreover, if X is integrable, then pAq, pBq, and pCq are equivalent to either of the following
conditions:

pDq Let A be an integral domain and let η P XpAq exhibit A as a finitely generated
module over π0R. For every integer n, there exists a finite collection of elements
x1, x2, . . . , xp P πnTX{Y pηq and an element a P A such that, for every field K and
every ring homomorphism Ara´1s Ñ K carrying η in ηK P XpKq the images of the
elements x1, . . . , xp form a basis for the vector space πnTX{Y pηKq.

pEq Let A be an integral domain and let η P XpAq exhibit A as a finitely generated
module over π0R. For every integer n, there exists a nonzero element a P A such that
pπnTX{Y pηqqra

´1s is a free Ara´1s-module of finite rank.

The proof of Theorem 17.5.4.1 will require some preliminaries.

Proof of Theorem 17.5.4.1. Note that if f admits a relative cotangent complex LX{Y , then
LX{Y is almost perfect (since f is locally almost of finite presentation; see Corollary 17.4.2.2).
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Suppose first that pAq is satisfied; we will prove pBq. Assumption pAq implies that
the cotangent complex LX{Y exists and is almost perfect. For each point η P XpAq, the
tangent complex TX{Y pηq is given by the A-linear dual of η˚LX{Y (Example 17.5.1.2). In
particular, we have isomorphisms πnTX{Y pηq » Ext´nA pη˚LX{Y , Aq, so that πnTX{Y pηq is a
finitely generated module over π0A whenever A is Noetherian (Lemma 6.4.3.5).

The implication pBq ñ pCq is obvious. We next prove that pCq implies pAq. Suppose that
condition pCq is satisfied. To prove that X admits a cotangent complex, it will suffice to show
that the morphism f admits a cotangent complex (Proposition 17.3.9.1). Using Proposition
17.5.2.1, see that f satisfies conditions paq and pcq of Proposition 17.3.2.5. It will therefore
suffice to show that for every truncated object A P CAlgcn

R , the functor Fη : Modcn
A Ñ S

given by FηpMq “ X0pA‘Mq ˆX0pAq tηu is almost corepresentable. Write A as the colimit
of a filtered diagram tAαu of connective E8-algebras which are of finite presentation over R.
Choose m ě 0 such that A is m-truncated, so that A » lim

ÝÑ
τďmAα. Since f is locally almost

of finite presentation, we can assume that η is the image of a point ηα P X0pAαq for some
index α. Using condition paq of Proposition 17.3.2.5, we see that Fη factors as a composition
Modcn

A Ñ Modcn
τďnAα

Fηα
ÝÑ S. We may therefore replace A by Aα, and thereby reduce to the

case where A is almost of finite presentation over R. Then A admits a dualizing module
(Theorem 6.6.4.3). We will show that Fη is almost corepresentable by verifying conditions
p1q through p5q of Theorem 17.5.3.1:

p1q The functor Fη : Modcn
A Ñ S is obviously reduced. Since X is infinitesimally cohesive,

the canonical map FηpMq Ñ ΩFηpΣMq is an equivalence for every connective A-module
M , so that Fη is excisive by Proposition HA.1.4.2.13 .

p2q For every connective A-module M , we claim that the canonical map FηpMq Ñ

lim
ÐÝ

FηpτďnMq is a homotopy equivalence. This follows immediately from the nilcom-
pleteness of the functor X.

p3q We claim that Fη commutes with filtered colimits when restricted to pModAqďn. This
is an immediate consequence of our assumption that the map f is locally almost of
finite presentation.

p4q Choose an integer n such that XpBq is n-truncated for every commutative ring B. We
claim that FηpMq is n-truncated for every discrete A-module M . Since X is cohesive,
we can replace A by π0A and thereby reduce to the case where A is discrete. Then
FηpMq is the fiber of a map XpA‘Mq Ñ XpAq ˆY pAq Y pA‘Mq whose domain and
codomain are n-truncated, and therefore itself n-truncated.

p5q Using Lemma 17.2.1.2, we can extend Fη to an excisive F`η : Modacn
A Ñ S. We wish to

prove that for every object M P ModbA, the abelian group π0F
`
η pMq is finitely generated
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as a discrete module over π0A. Given a fiber sequence M 1 Ñ M Ñ M2 in ModbA,
we obtain an exact sequence of π0A-modules π0F

`
η pM

1q Ñ π0F
`
η pMq Ñ π0F

`
η pM

2q.
Consequently, to prove that π0F

`
η pMq is finitely generated, it suffices to prove the

corresponding assertions for M 1 and M2. We may therefore reduce to the case where
the module M is concentrated in a single degree k. Then πkM is a finitely generated
module over the Noetherian ring π0A, and therefore admits a finite composition
series with successive quotients of the form pπ0Aq{p, where p Ď π0A is a prime ideal.
We may therefore assume that πkM has the form pπ0Aq{p. Since X is cohesive,
we can replace A by the integral domain pπ0Aq{p, so that M » ΣkA. In this case,
π0F

`
η pMq » πkTX{Y pηq is finitely generated by virtue of assumption pCq.

We next show that pAq ñ pDq. Let A be a Noetherian integral domain equipped with a
point η P XpAq, and let n be an integer. Corollary 17.4.2.2 implies that η˚LX{Y is an almost
perfect A-module. In particular, the homotopy groups πmη˚LX{Y are finitely generated
A-modules, which vanish for m ! 0. We may therefore choose a nonzero element a P A
such that pπmη˚LX{Y qra´1s is a finitely generated free module over Ara´1s of rank rm for
m ď ´n. For each m ď ´n, choose a collection of elements txi,m P πmη

˚LX{Y u1ďiďrm
whose images form a basis for pπmη˚LX{Y qra´1s as a module over Ara´1s. These choices
determine a map

τě1´npη
˚LX{Y q ‘

à

mď´n

pΣmAqrm Ñ η˚LX{Y

which is an equivalence after inverting the element a. It follows that if M is an Ara´1s-module,
the canonical map

MapModApη
˚LX{Y ,Mq Ñ MapModApτě1´nη

˚LX{Y ,Mq ˆ
ź

mď´n

pΩ8´mMqrm .

In particular, given a ring homomorphism Ara´1s Ñ K carrying η to ηK P XpKq, taking
M “ Σ´nK gives a vector space isomorphism πnTX{Y pηKq » Ext´nA pη˚LX{Y ,Kq » Krn ,
given by evaluation on the elements txi,nu1ďiďrn .

We now show that pDq ñ pEq. Assume that X satisfies pDq, let A be an integral domain,
and let η P XpAq exhibit A as a finitely generated algebra over π0R. Since R admits a
dualizing module, so does A (Theorem 6.6.4.3), so that A has finite Krull dimension d

(Remark ??). Using pDq, we can choose a P A and, for n ´ 1 ď m ď n ` d ` 1, a finite
collection of elements tyi,m P πmTX{Y pηqu1ďiďrm with the following property: for every field
K equipped with a map Ara´1s Ñ K carrying η to ηK P XpKq, the images of the elements
tyi,mu1ďiďrm form a basis for the K-vector space πmpTX{Y pηKqq. For every commutative
Ara´1s-algebra B, let ηB denote the image of η in XpBq, so that the elements tyi,mu
determines a map of B-modules

À

n´1ďmďn`d`1pΣmBqrm Ñ TX{Y pηBq. Let us denote the
fiber of this map by FB. Note that if B is a field, then the homotopy groups πiFB vanish
for n´ 1 ď i ď n` d. We will prove the following assertion:
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p˚q Let B be a quotient ring of Ara´1s having Krull dimension ď d1. Then the homotopy
groups πiFB vanish for n´ 1 ď i ď n` d´ d1.

Taking B “ Ara´1s and d “ d1, we deduce that πn´1FAra´1s » πnFAra´1s » 0, so that the
map

πnp
à

n´1ďmďn`d`1
pΣmAra´1sqrmq Ñ πnTX{Y pηAra´1sq

is an isomorphism: that is, the images of the elements tyi,nu1ďiďrn comprise a basis for
pπnTX{Y pηqqra

´1s » πnTX{Y pηAra´1sq as a module over Ara´1s.
It remains to prove p˚q. We proceed by Noetherian induction on B. If B “ 0, there

is nothing to prove. Otherwise, let p be an associated prime of B, so that there exists a
nonzero ideal I Ď B which is isomorphic, as a B-module, to B{p. We then have an exact
sequence of B-modules 0 Ñ B{p Ñ B Ñ B{I Ñ 0 which determines a fiber sequence
FB{p Ñ FB Ñ FB{I . It follows from the inductive hypothesis that the homotopy groups
πiFB{I vanish for n´ 1 ď i ď n` d´ d1. It will therefore suffice to show that the homotopy
groups πiFB{p vanish for n ´ 1 ď i ď n ` d ´ d1. Replacing B by B{p, we can reduce to
the case where B is an integral domain. For every nonzero element b P B, the quotient
ring B{pbq has Krull dimension ď d1 ´ 1. Applying the inductive hypothesis, we deduce
that the homotopy groups πiFB{pbq vanish for n´ 1 ď i ď n` 1` d´ d1. Using the fiber
sequence FB b

Ñ FB Ñ FB{pbq, we deduce that multiplication by b induces an isomorphism
from πiFB to itself for n ´ 1 ď i ď n ` d ´ d1. It will therefore suffice to show that
K bB πiFB vanishes for n ´ 1 ď i ď n ` d ´ d1, where K denotes the fraction field of
B. This follows from our construction, since Proposition 17.5.2.1 supplies an equivalence
K bB πiFB » πipK bB FBq » πiFK .

We now complete the proof by showing that if X is integrable, then condition pEq implies
condition pCq. Assume that condition pEq is satisfied. We will show that for every Noetherian
commutative ring A, every point η P XpAq which exhibits A as a finitely generated algebra
over π0R, and every finitely generated A-module M , the homotopy groups πnTX{Y pη;Mq
are finitely generated A-modules. Proceeding by Noetherian induction, we may suppose
that this condition is satisfied for every quotient M{M 1 of M by a nonzero submodule M 1.

If M » 0 there is nothing to prove. Otherwise, M has an associated prime ideal: that
is, there exists a nonzero element x P M whose annihilator is a prime ideal p Ď A. Using
our inductive hypothesis, we can replace M by Ax and thereby reduce to the case where M
has the form A{p. Using our assumption that f is cohesive, we can replace A by A{p and
thereby reduce to the case where A is an integral domain and M “ A. For every ideal I Ď A,
let FI : Modcn

A{I Ñ S denote the functor given by FIpMq “ X0pA{I ‘Mq ˆX0pA{Iq tηIu.
Using the inductive hypothesis and the proof of the implication pCq ñ pAq, we see that FI
is corepresented by an almost perfect module over A{I for every nonzero ideal I Ď A.

Fix an integer n; we wish to show that πnTX{Y pηq is finitely generated. Using condition
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pEq, we can choose a nonzero element a P A such that the modules πn`1TX{Y pη
1q and

πnTX{Y pη
1q are finitely generated free modules over Ara´1s, where η1 denotes the image of η

in XpAra´1sq. Let pA “ lim
ÝÑ

A{panq denote the completion of A with respect to the principal
ideal paq. We have a pullback diagram of A-modules

A //

��

Ara´1s

��
pA // pAra´1s.

Let pη denote the image of η in Xp pAq, and define pη1 P Xp pAra´1sq similarly. Since X is
cohesive, we have a pullback square of tangent complexes

TX{Y pηq //

��

TX{Y pη
1q

��
TX{Y ppηq // TX{Y ppη

1q

and therefore a long exact sequence of A-modules

¨ ¨ ¨ Ñ πm`1TX{Y ppη
1q Ñ πmTX{Y pηq Ñ πmTX{Y pη

1q ‘ πmTX{Y ppηq
ρpmq
ÝÝÝÑ πmTX{Y ppη

1q Ñ ¨ ¨ ¨

We will prove that πnTX{Y ppηq and πn`1TX{Y ppηq are finitely generated modules over pA. Since
pAra´1s is flat over pA and Ara´1s, we can then apply Proposition 17.5.2.1 and Corollary
7.4.2.3 to conclude that ρpm`1q is surjective and kerpρpmqq is a finitely generated A-module,
so that πnTX{Y pηq is also finitely generated as an A-module.

For every integer k ě 0, let Lk P ModA{pakq corepresent the functor Fpakq. Since X is
locally almost of finite presentation, each Lk is almost perfect. Corollary 8.3.5.6 supplies
an equivalence of 8-categories Modaperf

pA
» lim
ÐÝk

Modaperf
A{pakq

. Under this equivalence, we can
identify the inverse system tLkukě0 with an almost perfect pA-module pL. For each m ě 0, let
ηk denote the image of η in XpA{pakqq. Set T “ Map

pA
ppL, pAq, so that we have a canonical

identification

lim
ÐÝ
k

TX{Y pηkq » lim
ÐÝ
k

Map
A{pakq

pLk, A{pa
kqq

» lim
ÐÝ
k

Map
pA
ppL,A{pakqq

» Map
pA
ppL, pAq

» T.

It follows from Lemma 6.4.3.5 that the homotopy groups of T are finitely generated modules
over pA. We will complete the proof by showing that the map ρ : TX{Y ppηq Ñ T is an
equivalence.
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Since f is cohesive, the canonical map pA{paqbATX{Y ppηq Ñ TX{Y pη1q is an equivalence. It
follows that ρ induces an equivalence after tensoring with pA{paq: that is, the homotopy groups
of fibpρq are modules over pAra´1s. Fix an integer m; we wish to show that πm fibpρq » 0.
For this, we study the exact sequence πm`1T

µ
Ñ πm fibpρq ν

Ñ πmTX{Y ppηq. We will show that
ν “ 0, so that µ is surjective. It then follows that πm fibpρq is a finitely generated module
over pA. Since a acts invertibly on πm fibpρq, it then follows from Nakayama’s lemma that
πm fibpρq “ 0, as desired.

Choose an element y0 P πmTX{Y ppηq belonging to the image of ν; we wish to show that
y0 “ 0. Note that y0 is a-divisible: that is, we can find elements y1, y2, . . . P πmTX{Y ppηq

such that ayi`1 “ yi. If y0 ‰ 0, then we can choose a maximal ideal m Ď pA such that the
image of y0 is nonzero in the localization pπmTX{Y ppηqqm. Let B denote the completion of pA

at the maximal ideal m, and let ηB denote the image of η in XpBq. Then B is faithfully flat
over pAm, so that the image of y0 is nonzero in B b

pA
πmTX{Y ppηq » πmTX{Y pηBq.

Let mB denote the maximal ideal of B, and choose a tower of E8-algebras tBkukě0
satisfying the requirements of Lemma ??. Using Lemma 17.3.5.7, we see that for every pair
of integers p ě q ě 0, we have an equivalence

tτďppBj ‘ ΣqBjqujě0 » tB{m
j
B ‘ ΣqB{mj

Bu

of pro-objects of CAlg. Since f is nilcomplete and integrable, it follows that the canonical
map TX{Y pηBq Ñ lim

ÐÝj
TX{Y pηB,jq is an equivalence, where ηB,j denotes the image of η in

XpB{mj
Bq. We therefore obtain an equivalence

TX{Y pηBq » lim
ÐÝ
j

Map
B{mjB

ppB{mj
Bq b pA

pL,B{mj
Bq

» lim
ÐÝ
j

Map
B
pB b

pA
pL,B{mj

Bq

» Map
B
pB b

pA
pL,Bq.

Since pL is almost perfect over pA, B b
pA
pL is almost perfect over B, so that the homotopy

groups of TX{Y pηBq are finitely generated B-modules by Lemma 6.4.3.5. Since the image of
a is contained in the maximal ideal B, it follows from Nakayama’s Lemma that πmTX{Y pηBq
does not contain any nonzero a-divisible elements. It follows that the image of y0 in
πmTX{Y pηBq » B b

pA
πmTX{Y p pAq is zero, contrary to our earlier assumption.



Chapter 18

Artin’s Representability Theorem

Our goal in this Chapter is to address the following question: given a functor X :
CAlgcn Ñ S, when is X representable by a spectral Deligne-Mumford stack? We have the
following necessary conditions:

paq If X is representable by a spectral Deligne-Mumford stack, then X has a well-behaved
deformation theory. More precisely, X must be nilcomplete, infinitesimally cohesive,
and must admit a cotangent complex (Propositions 17.3.2.3, 17.3.1.2, and 17.2.5.1).

pbq Let CAlg♥ denote the full subcategory of CAlgcn spanned by the discrete E8-rings
(so that we can identify CAlg♥ with the ordinary category of commutative rings). If
X is representable by a spectral Deligne-Mumford stack pX ,Oq, then the restriction
X0 “ X|CAlg♥ also representable by the 0-truncated Deligne-Mumford stack pX , τď0 Oq.

In §18.1, we will prove that conditions paq and pbq are also sufficient (Theorem 18.1.0.2).
This can be regarded as an illustration of the heuristic principle

tSpectral Algebraic Geometryu “ tClassical Algebraic Geometryu`tDeformation Theoryu.

The proof is a straightforward application of the deformation-theoretic ideas developed in
Chapter 17: it articulates the idea that any connective E8-ring A can be viewed as an
“infinitesimal thickening” of the ordinary commutative ring π0A, since the Postnikov tower
¨ ¨ ¨ Ñ τď3AÑ τď2AÑ τď1A Ñ τď0A “ π0A is a tower of square-zero extensions.

Using Theorem 18.1.0.2, we can reduce many representability questions in spectral
algebraic geometry to the analogous questions in classical algebraic geometry. These classical
questions can then be addressed using Artin’s representability theorem (Theorem 16.0.0.2).
However, this sort of reasoning is unnecessarily circuitous: the hypotheses of Artin’s theorem
are closely related to our condition paq, and are somewhat clarified in the setting of spectral
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algebraic geometry. The remainder of this chapter is devoted to proving the following
analogue of Artin’s theorem in the setting of spectral algebraic geometry:

p˚q Let R be a sufficiently nice E8-ring and suppose we are given a natural transformation
of functors f : X Ñ SpecR which is locally almost of finite presentation (Definition
17.4.1.1). Then X is representable by a spectral Deligne-Mumford n-stack if and
only if it is nilcomplete, infinitesimally cohesive, integrable, admits a connective
cotangent complex, and the homotopy groups πmXpAq vanish for A P CAlg♥ and
m ą n (Theorem 18.3.0.1).

Our proof of p˚q will use Artin’s strategy (together with some simplifications introduced
by Conrad and de Jong in [43]), which can be broken naturally into two steps:

piq Suppose first that we are given a κ-valued point x P Xpκq, where κ is a finitely
generated extension field of some residue field of R. We can then study the formal
completion pX of X at the point x.Adapting an argument of Schlessinger to the spectral
setting, we can choose a formally smooth map pu : Spfp pAq Ñ pX, where pA is a complete
local Noetherian E8-ring.

piiq Using approximation arguments, we show pu is “close” to being the formal completion
of a map u : SpecpAq Ñ X, where A is almost of finite presentation over R. The
techniques used to prove p1q can then be applied to approximate u by an étale map
u1 : SpecpA1q Ñ X, which plays the role of an étale neighborhood of the point x.

We will carry out step piq in §18.2. With an eye to future applications, we consider more
generally the problem of describing a formal neighborhood of a B-valued point of a functor
X, where B is a connective E8-ring which is not necessarily a field (or even Noetherian).
Step piiq is the subject of §18.3. Our proof makes essential use of Popescu’s smoothing
theorem, which we discuss in §??.
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18.1 From Classical to Spectral Algebraic Geometry

To every spectral scheme pX,OXq, we can associate an ordinary scheme pX,π0 OXq,
which we refer to as the underlying scheme of pX,OXq (see Remark 1.1.2.10). In this section,
we will study the problem of inverting this construction:

p˚q Given a scheme pX,OXq, how can one describe the collection of all spectral schemes
having underlying scheme pX,OXq?

The first observation is that this collection is always nonempty: every scheme pX,OXq

can be regarded as a spectral scheme, by identifying OX with a discrete sheaf of E8-rings on
X (Proposition 1.1.8.4). However, this representative might not be well-suited for a particular
application. Suppose, for example, that the scheme pX,OXq is given as the solution to a
moduli problem. In other words, suppose that we are given a functor F from the category
CAlg♥ of commutative rings to the category Set of sets, and that X is characterized by
the existence of a natural bijection F pRq » HomSchpSpecR, pX,OXqq. In many cases of
interest, there is a natural way to extend F to a functor of 8-categories F : CAlgcn Ñ S. If
F is represented by a spectral scheme pY,OY q, then the underlying scheme of pY, π0 OY q

represents the original functor F , and is therefore isomorphic to pX,OXq in the category
of schemes. Moreover, the data of pY,OY q is equivalent to the data of the functor F
(Proposition 1.6.4.2). We may therefore rephrase question p˚q as follows:

p˚1q Let F : CAlg♥ Ñ Set be a functor which is representable by a scheme, and let F :
CAlgcn Ñ S be a functor extending F . Under what circumstances is F representable
by a spectral scheme?

Question p˚1q is addressed by our first main result:

Theorem 18.1.0.1. Let X : CAlgcn Ñ S be a functor. Then X is representable by a
spectral scheme if and only if it is nilcomplete, infinitesimally cohesive, admits a cotangent
complex, and the functor X|CAlg♥ is representable by a scheme.

By virtue of Corollary 1.6.7.4, Theorem 18.1.0.1 is an immediate consequence of the
following more general result:



1388 CHAPTER 18. ARTIN’S REPRESENTABILITY THEOREM

Theorem 18.1.0.2. Let X : CAlgcn Ñ S be a functor. Then X is representable by a
spectral Deligne-Mumford stack if and only if the following conditions are satisfied:

p1q There exists a spectral Deligne-Mumford stack Y representing a functor Y : CAlgcn Ñ S
and an equivalence of functors X|CAlg♥ » Y |CAlg♥.

p2q The functor X admits a cotangent complex.

p3q The functor X is nilcomplete.

p4q The functor X is infinitesimally cohesive.

Remark 18.1.0.3. A version of Theorem 18.1.0.2 appears in the third appendix of [214].

18.1.1 A Criterion for Étale Descent

Our first step is to show that any functor X which satisfies the hypotheses of Theorem
18.1.0.2 is a sheaf for the étale topology. This is a consequence of the following more general
assertion:

Proposition 18.1.1.1. Let X : CAlgcn Ñ S be a functor which is nilcomplete, infinitesi-
mally cohesive, and admits a cotangent complex. The following conditions are equivalent:

p1q The functor X is a sheaf with respect to the étale topology.

p2q The functor X|CAlg♥ is a sheaf with respect to the étale topology.

Proof. The implication p1q ñ p2q is obvious. To prove the converse, let us suppose that
X|CAlg♥ is a sheaf with respect to the étale topology. We wish to prove that, for every
connective E8-ring R, the restriction XR “ X|CAlgét

R
is a sheaf with respect to the étale

topology. Since X is nilcomplete, XR is the limit of a tower of functors tXn
Runě0 given by

the formula Xn
RpAq “ XpτďnAq. It will therefore suffice to show that each Xn

R is a sheaf with
respect to the étale topology. Replacing R by τďnR, we may suppose that R is n-truncated.
We proceed by induction on n. When n “ 0, the desired result follows from assumption p2q.
Let us therefore assume that n ą 0, so that R is a square-zero extension of R1 “ τďn´1R by
M “ ΣnpπnRq. We have a pullback diagram of E8-rings

R //

��

R1

��
R1 // R1 ‘ ΣM.

Define functors YR, ZR : CAlgét
R Ñ S by the formulas

YRpAq “ XpAbR R
1q ZRpAq “ XpAbR R

1 ‘Mq.
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Since X is infinitesimally cohesive, we have a pullback diagram of functors

XR
//

��

YR

��
YR // ZR.

It follows from the inductive hypothesis that YR is a sheaf with respect to the étale topology.
To complete the proof, it will suffice to show that ZR is a sheaf with respect to the étale
topology. Applying Lemma D.4.3.2 to the projection map ZR Ñ YR, we are reduced to
proving the following:

p˚q For every étale R-algebra A and every point η P Xpτďn´1Aq, the construction

B ÞÑ fibpXpτďn´1B ‘ pB bRMq Ñ Xpτďn´1Bqqq

defines an étale sheaf F : CAlgét
A Ñ S.

Invoking the definition of the cotangent complex LX , we see that the functor F is given by
the formula F pBq “ MapModτďn´1A

pη˚LX , BbRMq. It follows from Corollary D.6.3.4 (and
Proposition A.5.7.2) that F is a hypercomplete sheaf with respect to the flat topology.

Remark 18.1.1.2. Proposition 18.1.1.1 has many variants which can be proven by the same
argument. Suppose that the functor X : CAlgcn Ñ S infinitesimally cohesive, nilcomplete,
and has a cotangent complex. Then X is a (hypercomplete) sheaf with respect to the Zariski
topology (flat topology, Nisnevich topology) if and only if the restriction X|CAlg♥ has the
same property.

Corollary 18.1.1.3. Let X : CAlgcn Ñ S be a functor which is nilcomplete, infinitesimally
cohesive, and which admits a cotangent complex. Let Y “ pY,Oq be a spectral Deligne-
Mumford stack, let F be a connective quasi-coherent sheaf on Y, and let Y1 denote the
spectral Deligne-Mumford stack pY,O ‘F q. Let Y, Y 1 : CAlgcn Ñ S denote the functors
represented by Y and Y 1, respectively, and let α : Y Ñ Y 1 be the canonical map. Suppose we
are given a map η : Y Ñ X. If X|CAlg♥ is a sheaf with respect to the étale topology, then
the canonical map

MapFunpCAlgcn,SqY {pY
1, Xq Ñ MapQCohpY qpη

˚LX , α
˚LY 1q Ñ MapQCohpY qpLX ,F q

is a homotopy equivalence.

Proof. It follows from Proposition 18.1.1.1 that X is a sheaf with respect to the étale
topology. The assertion is therefore local on Y, so we may reduce to the case where Y is
affine. In this case, the desired result follows immediately from the definition of LX .
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Remark 18.1.1.4. Let X “ pX ,Oq be a spectral Deligne-Mumford stack, let F P QCohpXq
be connective, and let η : LX Ñ Σ F be a map of quasi-coherent sheaves, classifying a
square-zero extension Oη of O. We have a commutative diagram of spectral Deligne-Mumford
stacks

pX ,O ‘Σ F q //

��

pX ,Oq

��
pX ,Oq // pX ,Oηq,

giving rise to a commutative diagram

X` //

��

X

��
X // Xη

in the 8-category FunpCAlgcn,Sq. Suppose that Y : CAlgcn Ñ S is an infinitesimally
cohesive functor which is a sheaf with respect to the étale topology. Then the induced
diagram

MapFunpCAlgcn,SqpX
`, Y q MapFunpCAlgcn,SqpX,Y qoo

MapFunpCAlgcn,SqpX,Y q

OO

MapFunpCAlgcn,SqpX
η, Y q

OO

oo

is a pullback square. To prove this, we use the fact that Y is a sheaf with respect to the
étale topology to reduce to the case where X is affine, in which case it follows from the
definition of an infinitesimally cohesive functor.

18.1.2 Approximations to Étale Morphisms

The main idea in the proof of Theorem 18.1.0.2 is to show that a map Y0 Ñ X which is
close to being étale can be approximated by another map Y Ñ X which is actually étale.
We can articulate this more precisely as follows:

Proposition 18.1.2.1. Let X : CAlgcn Ñ S be a functor which is nilcomplete, infinitesi-
mally cohesive, and admits a cotangent complex. Let Y0 be a functor which is representable
by a spectral Deligne-Mumford stack pY,O0q, and suppose we are given a map f0 : Y0 Ñ X

for which the relative cotangent complex LY0{X is 2-connective. Assume either that pY,O0q

is affine or that X satisfies étale descent. Then the map f0 factors as a composition

Y0
g
Ñ Y

f
Ñ X

where LY {X » 0, Y is representable by a spectral Deligne-Mumford stack pY,Oq, and g is
induced by a 1-connective map O Ñ O0.



18.1. FROM CLASSICAL TO SPECTRAL ALGEBRAIC GEOMETRY 1391

Proof. We will give the proof under the assumption that X satisfies étale descent; the same
argument works in general when pY,O0q is affine. We will construct O as the inverse limit
of a tower of CAlg-valued sheaves on Y

¨ ¨ ¨ Ñ O2 Ñ O1 Ñ O0,

where each pair pY,Okq is a spectral Deligne-Mumford stack representing a functor Yk :
CAlgcn Ñ S, equipped with a map fk : Yk Ñ X for which the relative cotangent complex
LYi{X is p2k ` 1q-connective.

Let us assume that Ok has been constructed and that the relative cotangent complex
LYk{X is p1` 2kq-connective. Let Ok`1 denote the square-zero extension of Ok classified by
the map u : LYk Ñ LYk{X in QCohpYkq » QCohpY,Okq. Let Zk be the functor represented
by pY,Ok‘LYk{Xq. We have a pushout diagram of spectral Deligne-Mumford stacks

pY,Ok‘LYk{Xq
//

��

pY,Okq

��
pY,Okq // pY,Ok`1q

(see Proposition 17.1.3.4), giving rise to a diagram of functors

Zk
δ //

δ1

��

Yk

��
Yk // Yk`1.

We have a canonical nullhomotopy of the restriction of u to f˚kLX , which gives a homotopy
between fk ˝ δ and fk ˝ δ1 (Corollary ??). Using Remark 18.1.1.4, we see that this homotopy
gives rise to a map fk`1 : Yk`1 Ñ X extending fk. We wish to prove that the relative
cotangent complex LYk`1{X is p2k`1` 1q-connective. Let i : Yk Ñ Yk`1 denote the canonical
map. Since LYk{X is p2k` 1q-connective, the projection map q : Ok`1 Ñ Ok is 2k connective,
and therefore induces an isomorphism π0 Ok`1 Ñ π0 Ok. It will therefore suffice to show
that i˚LYk`1{X is p2k`1 ` 1q-connective. This pullback fits into a fiber sequence

i˚LYk`1{X Ñ LYk{X
φ
Ñ LYk{Yk`1 .

We will prove that the map φ is p2k`1 ` 1q-connective. Unwinding the definitions, we see
that φ factors as a composition

LYk{X » cofibpqq φ
1

Ñ OkbOk`1 cofibpqq εqÑ LYk{Yk`1 ,

where εq is as in Lemma 17.1.4.2. Since cofibpqq is 2k ` 1-connective, the map q is 2k-
connective, so that the map φ1 is p2k`1 ` 1q-connective. Lemma 17.1.4.2 implies that εq is
p2k`1 ` 2q-connective, so that the composition φ is p2k`1 ` 1q-connective as desired.
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Let O denote the sheaf of E8-rings on Y given by lim
ÐÝ

Ok. Since each Ok is hypercomplete,
the inverse limit O is hypercomplete. For any affine object U P Y, we have a tower of
connective E8-rings

¨ ¨ ¨ Ñ O2pUq Ñ O1pUq Ñ O0pUq,

where the map Ok`1pUq Ñ OkpUq is 2k-connective. It follows that that the projection map
OpUq Ñ OkpUq is 2k-connective for each k, so that the projection map O Ñ Ok induces
an equivalence τď2k´1 O Ñ τď2k´1 Ok for each k ě 0. Applying the criterion of Theorem
1.4.8.1, we deduce that pY,Oq is a spectral Deligne-Mumford stack. Let Y : CAlgcn Ñ S
denote the functor represented by Y . Using the fact that X is a nilcomplete étale sheaf,
we deduce that the natural transformations βi : Yi Ñ X induce a natural transformation
β : Y Ñ X.

It is clear from the construction that the map O Ñ O0 is 1-connective. We will complete
the proof by showing that LY {X » 0. Fix an integer k; we will show that LY {X is 2k-
connective. Let i : Yk Ñ Y denote the canonical map; since O Ñ Ok is an equivalence, it
will suffice to show that i˚LY {X is 2k-connective. We have a fiber sequence

i˚LY {X Ñ LYk{X Ñ LYk{Y .

Since LYk{X is 2k-connective, it will suffice to show that LYk{Y is p2k ` 1q-connective. This
follows from Corollary 17.1.4.3, since the map O Ñ Ok is 2k-connective.

18.1.3 The Proof of Theorem 18.1.0.2

Before turning to the proof of Theorem 18.1.0.2, we record the following observation:

Lemma 18.1.3.1. Let X “ pX ,Oq be a spectral Deligne-Mumford stack, and assume that O

is discrete. Let X : CAlgcn Ñ S be the functor represented by X, and let X 1 : CAlgcn Ñ pS
be a left Kan extension of X|CAlg♥. Then the canonical map X 1 Ñ X exhibits X as a
sheafification of X 1 with respect to the étale topology.

Proof. For every object U P X , let XU denote the functor represented by the spectral
Deligne-Mumford stack pX {U ,O |U q, and let X 1U be a left Kan extension of XU |CAlg♥ . Let
X 0 denote the full subcategory of X spanned by those objects for which the canonical
map X 1U Ñ XU exhibits XU as a sheafification of X 1U with respect to the étale topology.
To complete the proof, it will suffice to show that X 0 “ X . If U is affine, then XU is
corepresented by an object of CAlg♥, so the canonical map X 1U Ñ XU is an equivalence; it
follows that U P X 0. Since X is generated by affine objects under small colimits (Lemma
??), it will suffice to show that X 0 is closed under small colimits. Suppose that U P X is
given as a colimit of a small diagram tUαu of objects of X 0. To prove that U P X 0, it will
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suffice to show that for every functor Y : CAlgcn Ñ pS, the canonical map

MapFunpCAlgcn,SqpXU , Y q
θU
ÝÑ MapFunpCAlgcn,SqpX

1
U , Y q

» MapFunpCAlg♥,SqpXU |CAlg♥ , Y |CAlg♥q

is a homotopy equivalence. This map fits into a commutative diagram

MapFunpCAlgcn,SqpXU , Y q
θU //

��

MapFunpCAlg♥,SqpXU |CAlg♥ , Y |CAlg♥q

��
lim
ÐÝ

MapFunpCAlgcn,SqpXUα , Y q
lim
ÐÝ

θUα// lim
ÐÝ

MapFunpCAlg♥,SqpXUα |CAlg♥ , Y |CAlg♥q.

Since each Uα belongs to X 0, the lower horizontal map is a homotopy equivalence. It will
therefore suffice to show that the vertical maps are homotopy equivalences. In other words,
we are reduced to proving that XU is a sheafification of lim

ÝÑ
XUα with respect to the étale

topology. This follows from Lemma ??.

Proof of Theorem 18.1.0.2. Let X : CAlgcn Ñ S be a functor which is nilcomplete, infinites-
imally cohesive, and admits a cotangent complex. Suppose that there exists a spectral
Deligne-Mumford stack pY,O0q which represents a functor Y0 such that X|CAlg♥ » Y0|CAlg♥ .
We wish to prove that X is representable by a spectral Deligne-Mumford stack.

Since Y0 is a sheaf for the étale topology, X|CAlg♥ is also a sheaf for the étale topology.
Applying Proposition 18.1.1.1, we deduce that X is a sheaf for the étale topology. Replacing
O0 by τď0 O0, we may assume without loss of generality that the structure sheaf O0 is
discrete. Let Y 10 : CAlgcn Ñ pS be a left Kan extension of Y0|CAlg♥ , so that the equivalence
Y0|CAlg♥ » X|CAlg♥ extends to a natural transformation α : Y 10 Ñ X. It follows from
Lemma 18.1.3.1 that the canonical map Y 10 Ñ Y0 exhibits Y0 as a sheafification of Y 10 with
respect to the étale topology. Since X is an étale sheaf, the map α factors as a composition
Y 10 Ñ Y0

f0
Ñ X.

We next prove:

p˚q The quasi-coherent sheaf f˚0 LX is connective, and the canonical map π0LY0 Ñ π0f
˚
0 LX

is an isomorphism.

To prove p˚q, choose an étale map η : SpétR Ñ pY,O0q; we will show that η˚f˚0 LX is
connective and the map π0η

˚LX Ñ π0η
˚f˚0 LX is an isomorphism. Note that η˚f˚0 LX is

almost connective; if it is not connective, then there exists a discrete R-module M and a
nonzero map η˚β˚0LX Ñ M rks for some integer k ă 0. It then follows that the mapping
space MapModRpη

˚f˚0 LX ,Mq is non-discrete. The quasi-coherent sheaf LY0 is connective,
so that for any discrete R-module M MapModRpη

˚LY0 ,Mq is a discrete space, homotopy
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equivalent to the abelian group of R-module maps from π0η
˚LY0 to M . We are therefore

reduced to proving that the canonical map

MapModRpη
˚f˚0 LX ,Mq Ñ MapModRpη

˚LY0 ,Mq

is a homotopy equivalence. This map is obtained by passing to vertical homotopy fibers in
the diagram

Y0pR‘Mq //

��

XpR‘Mq

��
Y0pRq // XpRq.

This diagram is a homotopy pullback square because the horizontal maps are homotopy
equivalences (the map f0 : Y0 Ñ X induces a homotopy equivalence after evaluation on any
commutative ring R, by assumption).

Since X and Y0 admit cotangent complexes, the morphism f0 : Y0 Ñ X admits a
cotangent complex, which fits into a fiber sequence f˚0 LX Ñ LY0 Ñ LY0{X (see Corollary
17.2.5.3). Using p˚q, we deduce that LY0{X is 1-connective. We will need the following
slightly stronger assertion:

p˚1q The relative cotangent complex LY0{X is 2-connective.

To prove p˚1q, we note that p˚q gives a short exact sequence π1f
˚
0 LX Ñ π1LY0 Ñ π1LY0{X Ñ 0

in the abelian category QCohpY0q
♥. Let F “ π1LY0{X . If F is nonzero, then we obtain

a nonzero map γ : LY0 Ñ LY0{X Ñ Σ F whose restriction to f˚0 LX vanishes. Choose an
étale map η : SpétRÑ X such that M “ η˚F is nonzero. Then γ determines a derivation
LR Ñ ΣM which classifies a square-zero extension Rγ of R by M . Since R and M are
discrete, the E8-ring Rγ is discrete. Since the derivation γ is nonzero, the point η P Y0pRq

cannot be lifted to a point of Y0pR
γq. However, the restriction of γ to f˚0 LX vanishes,

so that f0pηq can be lifted to a point of XpRγq. This is a contradiction, since the map
Y0pR

γq Ñ XpRγq is a homotopy equivalence.
Combining p˚1q with Proposition 18.1.2.1, we deduce that there exists a sheaf of E8-rings

O on Y equipped with a 1-connective map q : O Ñ O0, such that pY,Oq represents a functor
Y and f0 factors as a composition Y0 Ñ Y

f
Ñ X where LY {X » 0. The map q induces

an isomorphism π0 O Ñ π0 O0, so that f induces a homotopy equivalence Y pRq Ñ XpRq

whenever R is discrete. Applying Corollary 17.3.6.3, we deduce that f is an equivalence, so
that X is representable by the spectral Deligne-Mumford stack pY,Oq.

18.2 Schlessinger’s Criterion

Let i : X Ñ Y be a morphim of spectral Deligne-Mumford stacks, representing functors
X,Y : CAlgcn Ñ S. Assume that i is a closed immersion which is locally almost of finite
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presentation. Then the image of i is a cocompact closed subset K Ď |Y |. In §8.1.6, we
defined the formal completion Y of Y along K; this is a formal spectral Deligne-Mumford
stack which represents the functor

pY : CAlgcn Ñ S pY pRq “ tf : SpétpRq Ñ Y : fp| SpecpRq|q Ď Ku.

Note that a map f : SpétpRq Ñ Y has the property that fp| SpecpRq|q is contained in K if
and only if the composite map SpétpRredq Ñ SpétpRq f

ÝÑ Y factors through i (in which case
the factorization is unique). It follows that the functor pY can be described directly in terms
of X and Y via the formula

pY pRq “ Y pRq ˆY pRredq XpR
redq.

In this section, we will study an analogous construction in the case where the functors
X and Y are not representable (or not yet known to be representable). We begin in
§18.2.1 by introducing the relative de Rham space pX{Y qdR of an arbitrary morphism
i : X Ñ Y (Definition 18.2.1.1). In the case where i is locally almost of finite presentation
(in the sense of Definition 17.4.1.1), the functor pX{Y qdR is given by the preceding formula
pX{Y qdRpRq “ Y pRq ˆY pRredq XpR

redq (Example 18.2.1.5). Our main goal is to address the
following:

Question 18.2.0.1. Let i : X Ñ Y be a natural transformation of functors X,Y : CAlgcn Ñ

S. Under what circumstances is the relative de Rham space pX{Y qdR representable by a
formal spectral Deligne-Mumford stack?

To obtain a satisfying answer to Question 18.2.0.1, it is convenient to impose some
additional finiteness constraints. In §??, we introduce the notion of a formal thickening
of formal spectral Deligne-Mumford stacks (Definition 18.2.2.1). A formal thickening is
a closed immersion of formal spectral Deligne-Mumford stacks which is locally almost of
finite presentation and induces an equivalence of reductions (which we make precise in
§8.1.4). In §18.2.3, we address Question 18.2.0.1 by showing that if X is representable by a
formal spectral Deligne-Mumford stack and we set pY “ pX{Y qdR, then the map X Ñ pY

is (representable by) a formal thickening of formal spectral Deligne-Mumford stacks if and
only if the functor pY has a sufficiently well-behaved deformation theory, and the relative
cotangent complex L

X{pY
is 1-connective and almost perfect (Theorem 18.2.3.1). For this

result to be useful in practice, it is important to know that the formal thickenings of a
fixed formal spectral Deligne-Mumford stack X are “not too wild.” We address this point in
§18.2.4 by showing that if i : XÑ Y is a formal thickening, then X is locally Noetherian if
and only if Y is locally Noetherian (Corollary 18.2.4.4).

The results of this section will play an important role in our proof of the Artin rep-
resentability theorem in §18.3. Suppose that Y is a functor which is not yet known to
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be representable Roughly speaking, we would like to apply the results of this section to
show that (under some reasonable hypotheses) the functor Y becomes representable after
formally completing at any point. Here we encounter a technical obstacle: the points we are
interested in are κ-valued points: that is, morphisms i : Specpκq Ñ Y where κ is a field and
Specpκq denotes the functor corepresented by κ. In general, one does not expect the relative
cotangent complex LSpecpκq{Y of such a morphism to be 1-connective. We will address this
point in §18.2.5 by proving a more general version of Theorem 18.2.3.1 (at least in the affine
case) which can be used to show that, even without the connectivity of LX{Y , the functor pY

admits “smooth charts” by formal thickenings of X (Theorem 18.2.5.1).

18.2.1 The de Rham Space

Let X be a smooth algebraic variety defined over the field C of complex numbers. Let
us abuse notation by identifying X with its functor of points, regarded as a functor from
the category CAlg♥

C of commutative algebras over C to the category Set of sets. In [192],
Simpson introduced the de Rham space of X: this is another functor from CAlg♥

C to Set,
given by the construction R ÞÑ XpRredq. The terminology is motivated by a relationship
with the Grothendieck’s theory of algebraic de Rham cohomology: the algebraic de Rham
cohomology of X can be identified with the cohomology of the de Rham space of X (with
coefficients in its structure sheaf). In this section, we introduce a slight variant on this
construction:

Definition 18.2.1.1. Let X : CAlgcn Ñ S be a functor. The absolute de Rham space of X
is the functor XdR : CAlgcn Ñ S given by the formula XdRpRq “ lim

ÝÑI
Xpπ0pRq{Iq, where

the direct limit is taken over the filtered system of all nilpotent ideals I Ď π0pRq.
If f : X Ñ Y is a natural transformation between functors X,Y : CAlgcn Ñ S, we define

the relative de Rham space pX{Y qdR to be the fiber product XdR ˆYdR Y , given concretely
by the formula

pX{Y qdRpRq “ lim
ÝÑ
I

Xpπ0pRq{Iq ˆY pπ0pRq{Iq Y pRq;

here again the direct limit is taken over all nilpotent ideals of π0pRq.

Remark 18.2.1.2. Let f : X Ñ Y be a natural transformation of functors X,Y : CAlgcn Ñ

S. Then f factors as a composition

X
f 1
ÝÑ pX{Y qdR

f2
ÝÑ Y.

Remark 18.2.1.3. Let R be a connective E8-ring and let f : X Ñ SpecpRq be a morphism
in FunpCAlgcn,Sq, corresponding to a functor X 1 : CAlgcn

R Ñ S. Then the projection
map pX{SpecpRqqdR Ñ SpecpRq corresponds to the functor CAlgcn

R Ñ S given by A ÞÑ

lim
ÝÑI

Xpπ0pAq{Iq, where the colimit is taken over all nilpotent ideals of the commutative
ring π0pAq.
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Remark 18.2.1.4 (Compatibility with Base Change). Suppose we are given a pullback
diagram

X 1 //

f 1

��

X

f
��

Y 1 // Y

in FunpCAlgcn,Sq. Then the relative de Rham space pX 1{Y 1qdR can be identified with the
fiber product Y 1 ˆY pX{Y qdR.

Example 18.2.1.5. Let f : X Ñ Y be a natural transformation of functorsX,Y : CAlgcn Ñ

S, and suppose that f is locally of finite presentation to order 1 (Definition 17.4.1.1). Then,
for every connective E8-ring R, the diagram

lim
ÝÑI

Xpπ0pRq{Iq //

��

XpRredq

��
lim
ÝÑI

Y pπ0pRq{Iq // Y pRredq

is a pullback square, where the colimits are taken over the filtered system of all nilpotent
ideals of π0pRq. It follows that the relative de Rham space pX{Y qdR is given concretely by
the formula pX{Y qdRpRq “ Y pRq ˆY pRredq XpR

redq.

Definition 18.2.1.6. Let f : X Ñ Y be morphism of functors X,Y : CAlgcn Ñ S. We will
say that Y is formally complete along f if, for every commutative ring R, the canonical map
lim
ÝÑI

XpR{Iq Ñ lim
ÝÑI

Y pR{Iq is an equivalence.

Proposition 18.2.1.7. Let f : X Ñ Y be any natural transformation of functors X,Y :
CAlgcn Ñ S, and let f 1 : X Ñ pX{Y qdR be as in Remark 18.2.1.2. Then pX{Y qdR is
formally complete along f 1.

Proof. Let R be a commutative ring. Unwinding the definitions, we can identify the colimit
limit lim

ÝÑI
pX{Y qdRpR{Iq with lim

ÝÑIĎJ
Y pR{Iq ˆY pR{Jq XpR{Jq, where the latter colimit is

indexed by the partially ordered set P of pairs of nilpotent ideals I Ď J Ď R. Under this
identification, the canonical map lim

ÝÑI
XpR{Iq Ñ lim

ÝÑI
pX{Y qdRpR{Iq is given by the natural

map
lim
ÝÑ

pI,JqPP0

Y pR{Iq ˆY pR{Jq XpR{Jq Ñ lim
ÝÑ

pI,JqPP

Y pR{Iq ˆY pR{Jq XpR{Jq,

where P0 denotes the subset of P consisting of those pairs pI, Jq with I “ J . The desired
result now follows from the observation that the inclusion P0 ãÑ P is left cofinal.

Corollary 18.2.1.8. Let f : X Ñ Y be any natural transformation of functors X,Y :
CAlgcn Ñ S. The following conditions are equivalent:
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p1q The functor Y is formally complete along f .

p2q The map f induces an equivalence XdR Ñ YdR.

p3q The projection map pX{Y qdR Ñ Y is an equivalence.

Proof. The equivalence p1q ô p2q follows immediately from the definitions, the implication
p2q ñ p3q follows from the existence of a pullback diagram

pX{Y qdR //

��

Y

��
XdR // YdR,

and the implication p3q ñ p1q follows from Proposition 18.2.1.7.

Corollary 18.2.1.9. Let X : CAlgcn Ñ S be a functor, and let C Ď FunpCAlgcn,SqX{ be
the full subcategory spanned by those natural transformations f : X Ñ Y for which Y is
formally complete along X. Then the inclusion functor C ãÑ FunpCAlgcn,SqX{ admits a
right adjoint, given by the construction Y ÞÑ pX{Y qdR.

We now show that deformation-theoretic properties of a map f : X Ñ Y tend to be
inherited by the induced map X Ñ pX{Y qdR.

Proposition 18.2.1.10. Let X : CAlgcn Ñ S be a functor. Then the de Rham space
XdR : CAlgcn Ñ S is nilcomplete, infintiesimally cohesive, and admits a cotangent complex,
given by the zero object 0 P QCohpXdRq.

Proof. Let R be a connective E8-ring. Since each of the maps XdRpRq Ñ XdRpτďnRq is
a homotopy equivalence, the canonical map XdRpRq Ñ lim

ÐÝn
XdRpτďnRq is a homotopy

equivalence; this shows that X is infinitesimally cohesive. Given a pullback diagram of
connective E8-rings

R //

��

R0

��
R1 // R01

where the underlying ring homomorphisms π0pR0q Ñ π0pR01q Ð π0pR1q are surjective with
nilpotent kernel, the square

XdRpRq //

��

XdRpR0q

��
XdRpR1q // XdRpR01q
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is a homotopy pullback since each map is a homotopy equivalence. Finally, the existence and
vanishing of the cotangent complex LXdR follows from the observation that the projection
map XdRpR ‘Mq Ñ XdRpRq is a homotopy equivalence for every connective R-module
M .

Corollary 18.2.1.11. Let f : X Ñ Y be a natural transformation of functors X,Y :
CAlgcn Ñ S. Then:

p1q The induced map XdR Ñ YdR is nilcomplete, infinitesimally cohesive, and admits a
relative cotangent complex, given by the zero object 0 P QCohpXdRq.

p2q The projection map pX{Y qdR Ñ Y is nilcomplete, infinitesimally cohesive, and admits
a relative cotangent complex, given by the zero object 0 P QCohppX{Y qdRq.

p3q The map f is nilcomplete if and only if the induced map f 1 : X Ñ pX{Y qdR is
nilcomplete.

p4q The map f is infinitesimally cohesive if and only if the induced map f 1 : X Ñ pX{Y qdR
is infinitesimally cohesive.

p5q Suppose that f admits a cotangent complex LX{Y . Then the map f 1 : X Ñ pX{Y qdR
admits a cotangent complex, and the canonical map LX{Y Ñ LX{pX{Y qdR is an equiva-
lence in QCohpXq.

p6q Suppose that the map f 1 : X Ñ pX{Y qdR is infinitesimally cohesive and admits a
cotangent complex. Then f is infinitesimally cohesive and admits a cotangent complex.

Proof. Assertion p1q follows from Proposition 18.2.1.10, Remark 17.3.7.3, and Proposition
17.2.5.2. Assertion p2q follows from p1q, Proposition 17.3.8.4, and Remark 17.2.4.6. Assertions
p3q and p4q follow from p2q together with Remark 17.3.7.3. Assertion p5q follows from p2q
and Proposition 17.2.5.2. Assertion p6q follows from p2q and Proposition 17.3.9.1.

Proposition 18.2.1.12. Let f : X Ñ Y be a natural transformation of functors X,Y :
CAlgcn Ñ S. Assume that f is locally almost of finite presentation (locally of finite
presentation, locally of finite presentation to order n for n ě 1). Then the induced map
f 1 : X Ñ pX{Y qdR is locally almost of finite presentation (locally of finite presentation,
locally of finite presentation to order n for n ě 1).

Proof. We will treat the case where f is locally almost of finite presentation; the other cases
are the same. By virtue of Remark 17.4.1.3, it will suffice to show that the projection map
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pX{Y qdR Ñ Y is locally almost of finite presentation. Using the pullback square

pX{Y qdR //

��

Y

��
XdR // YdR,

we can further reduce to showing that the map XdR Ñ YdR is locally almost of finite
presentation (Proposition 17.4.1.5). Let tRαu be a filtered diagram of n-truncated connective
E8-rings; we wish to show that the diagram σ :

lim
ÝÑ

XdRpRαq //

��

XdRplimÝÑRαq

��
lim
ÝÑ

YdRpRαq // YdRplimÝÑRαq

is a pullback square. Using Example 18.2.1.5, we can identify σ with the diagram

lim
ÝÑ

XpRred
α q //

��

Xplim
ÝÑ

Rred
α q

��
lim
ÝÑ

Y pRred
α q // Y plim

ÝÑ
Rred
α q,

which is a pullback square by virtue of our assumption that f is locally almost of finite
presentation.

We close this section with a variant of Proposition 18.2.1.12:

Proposition 18.2.1.13. Let f : X Ñ Y be a natural transformation of functors X,Y :
CAlgcn Ñ S. Assume that f is nilcomplete, infinitesimally cohesive, and admits a relative
cotangent complex LX{Y P QCohpXq. The following conditions are equivalent:

p1q The relative cotangent complex LX{Y P QCohpXq is almost perfect.

p2q The induced map X Ñ pX{Y qdR is locally almost of finite presentation.

Warning 18.2.1.14. In the situation of Proposition 18.2.1.13, it is not necessarily true
that the map f : X Ñ Y is locally almost of finite presentation, or that the canonical map
pX{Y qdRpRq Ñ Y pRq ˆY pRredq XpR

redq is an equivalence for R P CAlgcn.

Proof of Proposition 18.2.1.13. Using Corollary 18.2.1.11, we can replace Y by the relative
de Rham space pX{Y qdR and thereby reduce to the case where Y is formally complete
along f . In this case, the implication p2q ñ p1q follows from Proposition 17.4.2.1. We will
prove the converse. Assume that f satisfies condition p1q; we wish to show that f is locally
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almost of finite presentation. Without loss of generality we may assume that the functor
Y “ SpecpRq is corepresentable by a connective E8-ring R, so that X determines a functor
X 1 : CAlgcn

R Ñ S. We wish to show that X 1 commutes with filtered colimits when restricted
to τďn CAlgcn

R , for every nonnegative integer n. Using Proposition 17.4.2.1 we can reduce to
the case n “ 0. We first prove the following:

p˚q Let tAsusPS be a diagram in CAlg♥
R indexed by a filtered partially ordered set S, with

transition maps αs,s1 : As Ñ As1 . Suppose we are given a collection of ideals Is Ď As
such that αs,s1pIsq Ď Is1 . If there exists an integer n ě 0 such that Ins “ p0q for all
s P S, then the diagram

lim
ÝÑ

X 1pAsq //

��

X 1plim
ÝÑ

Asq

��
lim
ÝÑ

X 1pAs{Isq // X 1plim
ÝÑ

As{Isq

is a pullback square.

Proceeding by induction on n, we can reduce to the case n “ 2, so that each As is a
square-zero extension of As{Is. In this case, Theorem HA.7.4.1.26 supplies a pullback
diagram of E8-rings

As //

��

As{Is

��
As{Is // pAs{Isq ‘ ΣIs,

depending functorially on s. Invoking our assumption that f is infinitesimally cohesive, we
are reduced to proving that the upper square in the diagram

lim
ÝÑ

X 1pAs{Isq //

��

X 1plim
ÝÑ

As{Isq

��
lim
ÝÑ

X 1ppAs{Isq ‘ ΣIsq //

��

X 1plim
ÝÑ
pAs{Isq ‘ ΣIsq

��
lim
ÝÑ

X 1pAs{Isq // X 1plim
ÝÑ

As{Isq

is a pullback. Since the vertical compositions are the identity, we are reduced to showing
that the bottom square is a pullback. This follows from our assumption that f : X Ñ Y

admits a cotangent complex which is almost perfect.
For every commutative ring A, let p´nilAq denote the (filtered) partially ordered set

consisting of nilpotent ideals of A. Our assumption that Y is formally complete along f
translates to the following assertion:
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p˚1q For every commutative ring A, the colimit lim
ÝÑIPp´nilAq

X 1pA{Iq is contractible.

Now suppose we are given a diagram tAsusPS in CAlg♥
R indexed by a filtered partially

ordered set S, having colimit A; we wish to show that the canonical map θ : lim
ÝÑsPS

XpAsq Ñ

XpAq is a homotopy equivalence. For each element t P S and every nilpotent ideal I Ď At,
assertion p˚q guarantees that the diagram σt,I :

lim
ÝÑsPS

X 1pAsq
θ //

��

X 1pAq

��
lim
ÝÑsět

X 1pAs{IAsq // X 1pA{IAq

is a pullback square. Passing to the colimit over t and I, we obtain a pullback square σ :

lim
ÝÑsPS

X 1pAsq
θ //

��

X 1pAq

��
lim
ÝÑsPS

lim
ÝÑIPp´nilAsq

X 1pAsq
θ1 // lim

ÝÑIP´nil0pAq
X 1pA{Iq,

where ´nil0pAq Ď p´nilAq is the subset consisting of those nilpotent ideals having the
form JA, where J is a nilpotent ideal of some As. Consequently, to complete the proof
of Proposition 18.2.1.13, it will suffice to show that the map θ1 is a homotopy equivalence.
In fact, we claim that the domain and codomain of θ are contractible. For the domain,
this follows immediately from p˚1q. For the codomain, it will suffice (by virtue of p˚1q) to
show that the canonical map lim

ÝÑIP´nil0pAq
X 1pA{Iq Ñ lim

ÝÑIPp´nilAq
X 1pA{Iq is a homotopy

equivalence. In fact, we claim that the functor

p´nilAq Ñ S I ÞÑ X 1pA{Iq

is a left Kan extension of its restriction to the subset ´nil0pAq Ď p´nilAq. Fix a nilpotent
ideal J Ď A; we wish to show that the canonical map ρ : lim

ÝÑIP´nil0pAq,IĎJ
X 1pA{Iq Ñ

X 1pA{Jq is a homotopy equivalence. To prove this, we observe that every finitely generated
nilpotent ideal of A belongs to ´nil0pAq, so that A{J can be written as the colimit of the
(filtered) diagram tA{IuIP´nil0pAq,IĎJ . Invoking p˚q, we deduce that ρ fits into a pullback
square

lim
ÝÑIP´nil0pAq,IĎJ

X 1pA{Iq
ρ //

��

X 1pA{Jq

��
lim
ÝÑIP´nil0pAq,IĎJ

X 1pA{Jq
ρ1 // X 1pA{Jq,

where the map ρ1 is obviously a homotopy equivalence.
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18.2.2 Formal Thickenings

We now study a special class of closed immersions between formal spectral Deligne-
Mumford stacks.

Definition 18.2.2.1. Let f : XÑ Y be a morphism of formal spectral Deligne-Mumford
stacks. We will say that f is a formal thickening if the following conditions are satisfied:

p1q The induced map Xred Ñ Yred is an equivalence (see §8.1.4).

p2q The morphism f is representable by closed immersions which are locally almost of
finite presentation. In other words, for every pullback diagram

X1 //

f 1

��

X

f

��
Y1 // Y

where Y1 is a spectral Deligne-Mumford stack, the fiber product X1 is also a spectral
Deligne-Mumford stack, and the morphism f 1 is a closed immersion which is locally
almost of finite presentation.

Remark 18.2.2.2. In the situation of Definition 18.2.2.1, we can restate condition p1q as
follows:

p11q For every reduced commutative ring R, composition with f induces a homotopy
equivalence

MapfSpDMpSpétpRq,Xq Ñ MapfSpDMpSpétpRq,Yq.

Remark 18.2.2.3. Suppose we are given a pullback diagram of formal spectral Deligne-
Mumford stacks

X1 //

f 1

��

X

f

��
Y1

g // Y .

If f is a formal thickening, then so is f 1. The converse holds if g is an étale surjection.

Remark 18.2.2.4. Let f : XÑ Y and g : YÑ Z be formal thickenings of formal spectral
Deligne-Mumford stacks. Then the composite map g ˝ f : XÑ Z is also a formal thickening.

Remark 18.2.2.5. Let f : X Ñ Y be a formal thickening of formal spectral Deligne-
Mumford stacks, and let X,Y : CAlgcn Ñ S denote the functors represented by X and Y,
respectively. Let us abuse notation by identifying f with the induced natural transformation



1404 CHAPTER 18. ARTIN’S REPRESENTABILITY THEOREM

X Ñ Y . Then Y is formally complete along f : X Ñ Y , in the sense of Definition 18.2.1.6.
To prove this, we observe that for every commutative ring R, our assumption that f is
locally almost of finite presentation guarantees that we have a pullback diagram

lim
ÝÑ

XpR{Iq //

��

XpRredq

��
lim
ÝÑ

Y pR{Iq // Y pRredq,

where the colimit is taken over all nilpotent ideals I Ď R. Since the map f induces an
equivalence Xred Ñ Yred, the right vertical map is a homotopy equivalence, so the left
vertical map is a homotopy equivalence as well.

Proposition 18.2.2.6. Let f : XÑ Y be a morphism of formal spectral Deligne-Mumford
stacks. Then f is a formal thickening if and only if it satisfies the following conditions:

p1q The morphism f is representable by affine spectral Deligne-Mumford stacks.

p2q The morphism f is locally almost of finite presentation.

p3q The completed cotangent complex L^X {Y P QCohpXq is 1-connective.

p4q The induced map Xred Ñ Yred is an equivalence.

Proof. The necessity of conditions p1q through p4q is clear. For the converse, suppose that
p1q through p4q are satisfied; we wish to show that f is representable by closed immersions.
To prove this, it will suffice to show that for every map SpétpAq Ñ Y, the projection map
SpétpAq ˆY X Ñ SpétpAq is a closed immersion. It follows from p1q that we can write
SpétpAq ˆY X “ SpétpBq for some connective E8-ring B. Condition p2q guarantees that
B is locally almost of finite presentation over A; in particular, π0B is finitely generated as
an algebra over π0A. Let x1, . . . , xn be a set of generators for π0B as an algebra over π0A.
It follows from p3q that we can arrange (after modifying each xi by an element of π0A if
necessary) that each xi is nilpotent in π0B. Then the map π0AÑ pπ0Bq{px1, . . . , xnq is a
surjection, whose kernel is a nilpotent ideal I Ď pπ0Aq. We therefore obtain a homomorphism
u : pπ0Bq Ñ pπ0Aq{I. Let v denote the composite map

pπ0Bq
u
ÝÑ pπ0Aq{I Ñ pπ0Bq{Ipπ0Bq,

and let v1 : pπ0Bq Ñ pπ0Bq{Ipπ0Bq be the tautological map. Then v and v1 agree on π0A.
Let J Ď pπ0Bq{Ipπ0Bq be the ideal generated by the elements tvpxiq ´ v1pxiqu1ďiďn. The
difference between v and v1 determines a pπ0Aq-linear derivation of pπ0Bq into J{J2, which
automatically trivial since condition p3q guarantees the vanishing of the module of Kähler
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differentials Ωπ0B{π0A » π0LB{A. It follows that J “ J2. Since each xi is nilpotent in pπ0Bq,
the ideal J is nilpotent, so the equation J “ J2 implies that J “ 0. It follows that v “ v1,
so that v is surjective. In particular, the map π0AÑ π0B induces a surjection modulo the
ideal I. Since the ideal I is nilpotent, it follows from Nakayama’s lemma that the map
π0AÑ π0B is surjective, as desired.

Proposition 18.2.2.7. Let f : AÑ B be a morphism of connective E8-rings which induces
a surjection π0AÑ π0B, and assume that f exhibits B as an almost perfect A-module. Let
I Ď π0A be a finitely generated ideal which contains the kernel of π0pfq. Let us regard π0A

as equipped with the I-adic topology and π0B as equipped with the Ipπ0Bq-adic topology.
Then the induced map SpfpBq Ñ SpfpAq is a formal thickening.

Proof. We have a pullback diagram

SpfpBq //

��

SpétpBq

��
SpfpAq // SpétpAq.

Our assumptions on f guarantee that the right vertical map is a closed immersion which
is locally almost of finite presentation (see Corollary 5.2.2.2), so that the left vertical map
is representable by closed immerions which are locally almost of finite presentation. We
will complete the proof by verifying condition p11q of Remark 18.2.2.2. Let R be a reduced
commutative ring equipped with a map g : SpétpRq Ñ SpfpAq; we wish to show that the
homotopy fiber F “ MapfSpDMpSpétpRq, SpfpBqq ˆMapfSpDMpSpétpRq,SpfpAqq tgu is contractible.
Let us identify g with a ring homomorphism ρ : π0A Ñ R which annihilates some power
of I; we wish to show that ρ factors through π0B. This is clear: the assumption that R is
reduced guarantees that ρ vanishes on I and therefore also on the kernel kerpπ0pfqq Ď I.

We now show that every formal thickening is locally of the form described by Proposition
18.2.2.7.

Proposition 18.2.2.8. Let A be a complete adic E8-ring and let f : X Ñ SpfpAq be a
formal thickening. Then there exists an equivalence X » SpfpBq, where B is an E8-algebra
which is almost perfect as an A-module, the map π0pAq Ñ π0pBq is surjective, and we regard
π0pBq as equipped with the Iπ0pBq-adic topology; here I Ď π0pAq is an ideal of definition
which contains the kernel of the map π0pAq Ñ π0pBq.

Proof. Choose a tower of connective E8-algebras over A

¨ ¨ ¨ Ñ A4 Ñ A3 Ñ A2 Ñ A1
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which satisfies the requirements of Lemma 8.1.2.2. Since f is a formal thickening, each fiber
product XˆSpfpAq SpétpAnq has the form SpétpBnq, where Bn is almost perfect as a module
over An and the map π0An Ñ π0Bn is a surjection. Set B “ lim

ÐÝ
Bn » ΓpX; OXq. Using

Proposition 8.4.1.2, we deduce that B is almost perfect as an A-module and the canonical
maps B bA An Ñ Bn are equivalences. Moreover, the fiber fibpAÑ Bq can be written as
the limit of a tower

¨ ¨ ¨ Ñ fibpA3 Ñ B3q Ñ fibpA2 Ñ B2q Ñ fibpA1 Ñ B1q

of connective A-modules whose transition maps are surjective on π0. It follows that the
fiber of the map AÑ B is connective: that is, B is connective and the ring homomorphism
π0AÑ π0B is surjective.

Choose a finite collection of elements xi which generate π0 fibpA1 Ñ B1q as a module
over the commutative ring π0A1. Each of the elements xi can be lifted to an element
xi P π0 fibpA Ñ Bq. Since f is a formal thickening, the canonical map A1 Ñ B1 induces
an isomorphism Ared

1 » Bred
1 . It follows that each each xi has nilpotent image in A1, so

that each xi has topologically nilpotent image in π0A. We can therefore choose a finitely
generated ideal of definition I Ď π0A which contains the image of each xi. Note that the
elements xi generate π0 fibpA Ñ Bq as a module over the commutative ring π0A, so that
I contains the kernel of the map π0A Ñ π0B. Let us regard B as an adic E8-ring, with
ideal of definition Ipπ0Bq. We will complete the proof by showing that the canonical map
X Ñ SpfpBq is an equivalence. To prove this, it will suffice to show that X and SpfpBq
represent the same functor on CAlgcn: that is, that the canonical map

θ : MapfSpDMpSpétpRq,Xq Ñ MapfSpDMpSpétpRq,SpfpBqq

is a homotopy equivalence for every connective E8-ring B (see Theorem 8.1.5.1). Fix a map
u : SpétpRq Ñ SpfpAq; we will show that the induced map

MapfSpDMpSpétpRq,Xq ˆMapfSpDMpSpétpRq,SpfpAqq tuu

θu

��
MapfSpDMpSpétpRq,SpfpBqq ˆMapfSpDMpSpétpRq,SpfpAqq tuu

is a homotopy equivalence. Without loss of generality, we may assume that u factors through
SpétpAnq for some n ě 0. We are therefore reduced to showing that the map

XˆSpfpAq SpétpAnq Ñ SpfpBq ˆSpfpAq SpétpAnq

is an equivalence of formal spectral Deligne-Mumford stacks. This is clear, since both sides
can be identified with SpétpBnq.
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Corollary 18.2.2.9. Let f : X Ñ Y be a formal thickening of formal spectral Deligne-
Mumford stacks. Then the completed relative cotangent complex L^X {Y P QCohpXq is
1-connective and almost perfect.

Proof. The assertion is local on Y, so we may assume without loss of generality that
Y “ SpfpAq for some connective E8-ring A which is complete with respect to a finitely
generated ideal I Ď π0A. Applying Proposition 18.2.2.8, we can write X » SpfpBq, where B
is almost perfect as an A-module and the map π0A Ñ π0B is surjective. Using Example
17.1.2.9, we see that L^X {Y is the quasi-coherent sheaf associated to the I-completion of
the relative cotangent complex LB{A. It now suffices to observe that LB{A is 1-connective
(since the map π0A Ñ π0B is surjective) and almost perfect (since B is almost of finite
presentation over A by virtue of Corollary 5.2.2.2).

18.2.3 Existence of Formal Thickenings

We can now formulate the main result of this section.

Theorem 18.2.3.1. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S. Assume that:

p0q The functor X is representable by a formal spectral Deligne-Mumford stack X.

p1q The functor Y is nilcomplete, infinitesimally cohesive, and admits a cotangent complex.

p2q The relative cotangent complex LX{Y P QCohpXq which is 1-connective and almost
perfect.

p3q The functor Y is a sheaf for the étale topology.

Then the relative de Rham space pX{Y qdR is representable by a formal thickening of X.

We will deduce Theorem 18.2.3.1 from the following more specific result, whose proof we
postpone until §18.2.5:

Theorem 18.2.3.2. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S, Assume that:

p0q The functor X is representable by an affine formal spectral Deligne-Mumford stack
SpfpBq.

p1q The functor Y is nilcomplete, infinitesimally cohesive, and admits a cotangent complex.

p2q The relative cotangent complex LX{Y P QCohpXq is almost perfect and 1-connective.

p3q The functor Y is formally complete along f , in the sense of Definition 18.2.1.6.
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Then Y is (representable by) an affine formal spectral Deligne-Mumford stack SpfpAq, and
the map SpfpBq Ñ SpfpAq is a formal thickening (in the sense of Definition 18.2.2.1).

Proof of Theorem 18.2.3.1 from Theorem 18.2.3.2. Let f : X Ñ Y be any natural transfor-
mation satisfying conditions p0q through p3q of Theorem 18.2.3.1. Without loss of generality,
we can replace Y by the relative de Rham space pX{Y qdR and thereby reduce to the case
where Y is formally complete along f (see Corollary 18.2.1.11). In this case, we wish to
show that Y is representable by a formal thickening of X.

Write X “ pX ,OXq. For each object U P X, let XU denote the functor represented
by XU “ pX {U ,OX |U q, and define a functor YU : CAlgcn Ñ S by the formula YU pRq “

Y pRq ˆY pRredq XU pR
redq. Let us say that U is good if the functor YU is representable by a

formal spectral Deligne-Mumford stack YU which is a formal thickening of XU . Note that f
is locally almost of finite presentation (Proposition 18.2.1.13), so we can identify Y with the
functor Y1 where 1 is the final object of X (Example 18.2.1.5). It will therefore suffice to
show that the object 1 P X is good. We will complete the proof by showing that every object
U P X is good. We first note that Theorem 18.2.3.2 guarantees that every affine object of
X is good. By virtue of Proposition 8.1.3.7, it will suffice to show that the collection of
good objects of X is closed under colimits. Let tUαu be a small diagram in X having colimit
U where each Uα is good. Then tYUαu is a diagram of formal spectral Deligne-Mumford
stacks with étale transition maps, and therefore has a colimit Z in the 8-category of formal
spectral Deligne-Mumford stacks. It is clear that the canonical map XU Ñ Z is a formal
thickening (since this is a local condition). We complete the proof by observing that YU is
the functor represented by Z: in fact, both functors can identified with the sheafification
(with respect to the étale topology) of lim

ÝÑα
YUα .

We close this section by noting another consequence of Theorem 18.2.3.2:

Corollary 18.2.3.3. Let f : X Ñ Y be a formal thickening of formal spectral Deligne-
Mumford stacks. Then X is affine if and only if Y is affine.

Proof. The “if” direction follows from Proposition 18.2.2.8. For the converse, suppose that
X is affine. Let X and Y denote the functors represented by X and Y, respectively, so that
f determines a natural transformation X Ñ Y . Then f satisfies the hypotheses of Theorem
18.2.3.2 (condition p2q follows from Corollary 18.2.2.9). It follows that Y is representable by
an affine formal spectral Deligne-Mumford stack Y1. Applying Theorem 8.1.5.1 we obtain
an equivalence Y » Y1, so that Y is affine.

18.2.4 The Noetherian Case

We now specialize to the study of locally Noetherian formal spectral Deligne-Mumford
stacks.
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Proposition 18.2.4.1. Let X be a formal spectral Deligne-Mumford stack. Then X is locally
Noetherian if and only if the following pair of conditions is satisfied:

p1q The reduction Xred is locally Noetherian.

p2q The canonical map Xred Ñ X is a formal thickening.

The proof of Proposition 18.2.4.1 will require some preliminaries.

Lemma 18.2.4.2. Let R be a commutative ring and let t be an element of R. Suppose that
R{tR is Noetherian and that R is ptq-complete (in the sense of Definition 7.3.0.5). Then R

is Noetherian.

Proof. For each m ě 0, let Im denote the kernel of the map R{tR
tk
ÝÑ tkR{tk`1R. We

then have 0 “ I0 Ď I1 Ď I2 Ď ¨ ¨ ¨ Ď R{tR. The assumption that R{tR is Noetherian
guarantees that this sequence stabilizes. Consequently, there exists an integer m ě 0 with
the following property: for any k ě m and any y P R, if tky belongs to tk`1R, then we can
write tmy “ tm`1y1 for some y1 P R.

For each integer k, let Jk denote the kernel of the map tk : R Ñ R. If k ě m and y

belongs to Jk, then tky “ 0 P tk`1R, so we can write tmy “ tm`1y1 for some y1 P R. Note
that y1 belongs to Jk`1 and that y ” ty1 pmod Jmq. It follows that Jk “ tJk`1 ` Jm. We
have a short exact sequence of Pro-abelian groups

0 Ñ tJmukěm Ñ tJkukěm Ñ tJk{Jmukěm Ñ 0,

where transition maps are given by multiplication by t. We therefore obtain a short exact
sequence of abelian groups

lim1tJmukěm Ñ lim1tJkukěm Ñ lim1tJk{Jmukěm

where the first term vanishes because tJmukěm is trivial as a Pro-object, and the third
term vanishes because the tower tJk{Jmukěm has surjective transition maps. It follows that
lim
ÐÝ

1tJkukěm » lim
ÐÝ

1tπ1 cofibptk : RÑ Rqukěm vanishes. Consequently, the assumption that
R is ptq-complete is equivalent to the assumption that R is classically ptq-adically complete:
that is, it is isomorphic to the inverse limit of the tower tR{tkRukě0. Applying Proposition
7.3.8.1, we deduce that R is Noetherian.

Variant 18.2.4.3. Let R be a commutative ring containing an element t and let M be a
discrete R-module. Assume that R and M are ptq-complete, that R{tR is a Noetherian ring,
and that M{tM is a finitely generated module over R{tR. Then M is a finitely generated
module over R.
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Proof. Applying Lemma 18.2.4.2 to the direct sum R ‘M , we deduce that R ‘M is a
Noetherian ring. In particular, the ideal M Ď R‘M is finitely generated as an pR‘Mq-
module, and therefore also as an R-module.

Proof of Proposition 18.2.4.1. The assertion is local on X; we may therefore assume without
loss of generality that X is affine. Write X “ SpfpAq, where A is a connective E8-ring
which is complete with respect to a finitely generated ideal I Ď π0A. Set R “ pπ0Aq{I.
Assume first that X is locally Noetherian, so that A is Noetherian. Then Xred » SpétpRredq

is also locally Noetherian. Moreover, Rred is almost perfect as an A-module (Proposition
HA.7.2.4.17 ), so that the map Xred Ñ X is a formal thickening by virtue of Proposition
18.2.2.7.

Now suppose that conditions p1q and p2q are satisfied; we will show that A is Noetherian.
Note that condition p2q guarantees that Rred is almost perfect as an A-module, so that the
kernel of the map π0A Ñ Rred is a finitely generated ideal J Ď π0A. We may therefore
replace I by J and thereby reduce to the case where R “ Rred. In this case, assumption p1q
guarantees that R is Noetherian. Write I “ px1, . . . , xnq. We proceed by induction on n.
Let us begin with the case n “ 0, so that R “ π0A. We wish to show that each homotopy
group of A are finitely generated as a module over R. Let J denote the fiber of the map
A Ñ R, so that J is 1-connective. It follows that each tensor power Jbk is k-connective,
so that the canonical map π˚AÑ π˚ cofibpJbk Ñ Aq is an isomorphism for ˚ ă k. It will
therefore suffice to prove the following:

p˚q For each integer k, each homotopy group of the cofiber cofibpJbk Ñ Aq is finitely
generated as an R-module.

We prove p˚q by induction on k, the case k “ 0 being trivial. To carry out the inductive
step, we observe that there is a cofiber sequence

Jbk bA RÑ cofibpJbpk`1q Ñ Aq Ñ cofibpJbk Ñ Aq.

We are therefore reduced to proving that each homotopy group JbkbAR Is finitely generated
as an R-module: in other words, that Jbk bAR is almost perfect over R. This is clear, since
assumption p2q guarantees that J is almost perfect as an A-module. This completes the
proof in the case n “ 0.

Let us now assume that n ą 0. Let S denote the sphere spectrum, and let Sttu denote
the free E8-ring on one generator, so that there is a morphism of E8-rings Sttu Ñ A given
by t ÞÑ xn. We next prove the following:

p˚q Let M be a connective Sttu-module. Assume that each homotopy group of M is
finitely generated as an abelian group and that the action of t on π˚M is locally
nilpotent. Then each homotopy group of AbSttuM is Noetherian when regarded as a
module over the commutative ring π0A.
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Note that the canonical map π˚pA bSttuMq Ñ π˚pA bSttu τďmMq is an isomorphism for
˚ ď m. Consequently, it will suffice to prove p˚q under the additional assumption that M is
truncated. Writing M as a successive extension of Sttu concentrated in a single degree, we
can further reduce to the case where M is discrete. In this case, our assumption that the
action of t is locally nilpotent allows us to write M as a successive extension of modules on
which the action of t is trivial. In this case, we have a short exact sequence of abelian groups

0 Ñ Za Ñ Zb ÑM Ñ 0,

which allows us to reduce to the case M “ Z. Set A1 “ AbSttu Z, so that the map AÑ R

factors through A1. Note that A1 is almost perfect as an A-module and is therefore I-complete,
and that Ipπ0A

1q “ px1, . . . , xn´1q is generated by fewer than n elements. Moreover, since
A1 and R are both almost of finite presentation over A, the map A1 Ñ R is almost of finite
presentation. It follows that we can regard SpfpA1q as a formal thickening of SpétpRq, so
our inductive hypothesis guarantees that A1 is Noetherian. In particular, each homotopy
group of A1 is Noetherian when viewed as a module over the commutative ring π0A, which
proves p˚q.

Note that Sttu is Noetherian (Proposition HA.7.2.4.31 ). In particular, each homotopy
group πmSttu is finitely generated as a module of the polynomial ring π0Sttu » Zrts. It
follows that the kernel and cokernel of multiplication by t on πmSttu are finitely generated
abelian groups, so that M “ cofibpt : Sttu Ñ Sttuq satisfies the hypotheses of p˚q. We
therefore obtain the following:

p˚1q Each homotopy group of the cofiber cofibpt : AÑ Aq is Noetherian when viewed as a
module over the commutative ring π0A.

Note that each quotient pπmAq{tpπmAq can be viewed as a submodule of πm cofibpt : AÑ Aq,
and is therefore also Noetherian as a module over π0A. It is therefore finitely generated
when viewed as a module over pπ0Aq{tpπ0Aq. Applying Lemma 18.2.4.2 and Variant 18.2.4.3,
we conclude that π0A is a Noetherian ring and that each πmA is a finitely generated module
over π0A, so that A is Noetherian as desired.

Corollary 18.2.4.4. Let f : X Ñ Y be a formal thickening of formal spectral Deligne-
Mumford stacks. Then X is locally Noetherian if and only if Y is locally Noetherian.

Proof. Suppose first that X is locally Noetherian. Applying Proposition 18.2.4.1, we deduce
that Xred is locally Noetherian and that the natural map i : Xred Ñ X is a formal thickening.
Then the canonical map Yred Ñ Y can be identified with the composition f ˝ i, which is a
formal thickening by virtue of Remark 18.2.2.4. Applying Proposition 18.2.4.1, we conclude
that Y is locally Noetherian.

Conversely, suppose that Y is locally Noetherian; we claim that X is also locally Noethe-
rian. This assertion is local on Y, so we may assume that Y is affine. Write Y “ SpfpAq,
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where A is Noetherian E8-ring which is complete with respect to a finitely generated ideal
I Ď π0A. Applying Proposition 18.2.2.8, we deduce that X » SpfpBq, where B is almost of
finite presentation over A and therefore also Noetherian (Proposition HA.7.2.4.31 ).

18.2.5 Existence of Formal Charts

We will deduce Theorem 18.2.3.2 from the following variant:

Theorem 18.2.5.1. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S, where X is corepresentable by a connective E8-ring B. Suppose that f admits
a relative cotangent complex LX{Y and that we are given a morphism α : F Ñ LX{Y in
QCohpXq, where F is perfect of Tor-amplitude ď 0. Assume that:

p1q The functor Y is nilcomplete, infinitesimally cohesive, and admits a cotangent complex.

p2q The functor Y is formally complete along f .

p3q The cofiber cofibpαq is 1-connective and almost perfect.

Then the map f factors as a composition X
f 1
ÝÑ U

f2
ÝÑ Y , where U is representable by an

affine formal spectral Deligne-Mumford stack SpfpAq, the map SpfpBq Ñ SpfpAq is a formal
thickening, f2 is locally almost of finite presentation, and α can be identified with the natural
map f 1˚LU{Y Ñ LX{Y .

Remark 18.2.5.2. Let f : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S satisfying conditions p1q and p2q of Theorem 18.2.5.1, and suppose that the
relative cotangent complex LX{Y is almost perfect. Then M “ ΓpX;LX{Y q P ModB is an
almost perfect B-module (assuming that the adic E8-ring B is complete), so Corollary
2.7.2.2 guarantees that there is a fiber sequence M 1 Ñ M Ñ M2, where M 1 is perfect
of Tor-amplitude ď 0, and M2 is 1-connective. It follows that there exists a morphism
α : F Ñ LX{Y in QCohpXq, where F is perfect of Tor-amplitude ď 0 and cofibpαq is
1-connective and almost perfect. Beware that the morphism α is not unique (for example,
we can always add a copy of the structure sheaf OX to F ).

To deduce Theorem 18.2.3.2 from Theorem 18.2.5.1, we will need the following general
observation (which will also be useful in the proof of Theorem 18.2.5.1 itself):

Lemma 18.2.5.3. Let f : X Ñ Y be a natural transformation of functors X,Y : CAlgcn Ñ

S. Assume that f is nilcomplete, infinitesimally cohesive, and admits a relative cotangent
complex LX{Y which vanishes in QCohpXq. If Y is formally complete along f , then f is an
equivalence.

Proof. Since X and Y are infinitesimally cohesive and LX{Y vanishes, Proposition 17.3.9.3
implies the following:
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p˚q Let rR Ñ R be a square-zero extension of a connective E8-ring R by a connective
R-module M . Then the diagram

Xp rRq //

��

XpRq

��
Y p rRq // Y pRq

is a pullback square. In particular, if XpRq Ñ Y pRq is a homotopy equivalence, then
so is Xp rRq Ñ Y p rRq.

Let R be a connective E8-ring; we wish to show that the map XpRq Ñ Y pRq is a homotopy
equivalence. Since X and Y are nilcomplete, we may assume without loss of generality that
R is n-connective for some integer n ě 0. We proceed by induction on n. If n ą 0, then R

is a square-zero extension of τďn´1R, so that the desired result follows from p˚q together
with our inductive hypothesis. We may therefore assume that n “ 0: that is, that R is an
ordinary commutative ring. Let tIαu be the collection of all nilpotent ideals of R. We have
a commutative diagram σ :

XpRq //

��

lim
ÝÑα

XpR{Iαq

��
Y pRq // lim

ÝÑα
Y pR{Iαq,

and our hypothesis that Y is formally complete along f guarantees that the right vertical
map is an equivalence. It will therefore suffice to show that σ is a pullback square. Writing
σ as a filtered colimit of diagrams σα :

XpRq //

��

XpR{Iαq

��
Y pRq // Y pR{Iαq

we are reduced to showing that each σα is a pullback square, which follows from iterated
application of p˚q.

Proof of Theorem 18.2.3.2 from Theorem 18.2.5.1. Let f : X Ñ Y be a natural transforma-
tion satisfying the hypotheses of Theorem 18.2.3.2, so that X » SpfpBq for some complete
connective adic E8-ring B. Using Lemma 8.1.2.2, we see that there exists an E8-algebra
B1 which is almost of finite presentation over B, where π0pB

1q is the quotient of π0pBq

by an ideal of definition. Set X 1 “ SpecpBq, so that LX 1{X P QCohpX 1q is 1-connective
and almost perfect. Using the fiber sequence LX{Y |X Ñ LX 1{Y Ñ LX 1{X , we conclude
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that LX 1{Y Is also 1-connective and almost perfect. Taking F “ 0 and applying Theorem

18.2.5.1, we conclude that the map X 1 Ñ X Ñ Y factors as a composition X 1
f 1
ÝÑ U

f2
ÝÑ Y ,

where U » SpfpAq is a formal thickening of X 1 » SpétpB1q, f2 is locally almost of finite
presentation, and the restriction LU{Y |X 1 vanishes. Since f2 is locally almost of finite
presentation, LU{Y P QCohpUq is almost perfect (Corollary 17.4.2.2); it follows that LU{Y
itself vanishes. Applying Lemma 18.2.5.3 to the morphism f2, we deduce that f2 is an
equivalence, so that Y » SpfpAq is a formal thickening of SpétpB1q. Note that the kernel of
the map π0pAq Ñ π0pB

1q is an ideal of definition for the topology on Spfpπ0pAqq, so that
the morphism f : SpfpBq Ñ SpfpAq is representable (by affine spectral Deligne-Mumford
stacks). Since f is locally almost of finite presentation (Proposition 18.2.1.13) and LX{Y is
1-connective, it follows from Proposition 18.2.2.6 that f is a formal thickening.

We now turn to the proof of Theorem 18.2.5.1. We will need several auxiliary results.

Lemma 18.2.5.4. Let R be a connective E8-ring, let rR be a square-zero extension of R by
a connective R-module I, let M be an R-module which is perfect of Tor-amplitude ď 0, let N
be an almost perfect rR-module, and let u : M Ñ Rb

rR
N be a morphism with 1-connective

cofiber. Then we can lift u to a morphism of rR-modules ru : ĂM Ñ N , where ĂM is perfect of
Tor-amplitude ď 0.

Proof. Since M is perfect, there exists an integer k such that M is p´kq-connective. We
proceed by induction on k. In the case k “ 0, M is a projective R-module of finite rank.
Using Corollary HA.7.2.2.19 , we can lift M to an rR-module ĂM which is projective of finite
rank. Since M and cofibpuq are connective, the tensor product Rb

rR
N is connective, which

guarantees that N is connective (Proposition 2.7.3.2). It then follows from the projectivity
of ĂM that the composite map ĂM ÑM Ñ Rb

rR
N can be lifted to a morphism of rR-modules

ru : ĂM Ñ N .
We now carry out the inductive step. Assume that k ą 0. Since M is perfect and

p´kq-connective, the homotopy group π´kM is finitely generated as a module over π0R. We
can therefore choose a map f : Σ´kRd ÑM which is surjective on π´k. Note that since M
and cofibpuq are p´kq-connective, the tensor product Rb

rR
N is p´kq-connective, so that N

is p´kq-connective (Proposition 2.7.3.2). We can therefore lift the composite map

Σ´k rRd Ñ Σ´kRd ÑM
u
ÝÑ rRbR N

to a map g : Σ´k rRd Ñ N . Let v denote the induced map cofibpfq Ñ Rb
rR

cofibpgq, so that
cofibpvq » cofibpuq is 1-connected. Note that cofibpfq is p1´ kq-connective, so our inductive
hypothesis guarantees that we can lift v to a map rv : K Ñ cofibpgq, where P P Mod

rR
is
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perfect of Tor-amplitude ď 0. Form a pullback diagram

ĂM
ru //

��

N

��
K

rv // cofibpfq.

It is now easy to see that ru : ĂM Ñ N has the desired properties.

The proof of Theorem 18.2.5.1 is based on the following:

Construction 18.2.5.5. Let f : X Ñ Y and α : F Ñ LX{Y be as in the statement of
Theorem 18.2.5.1, where X “ SpecpBq. We construct a sequence of natural transformations

SpecpB0q Ñ SpecpB1q Ñ SpecpB2q Ñ ¨ ¨ ¨ Ñ Y

and morphisms αn : Mn Ñ LSpecpBnq{Y in QCohpSpecpBnqq » ModBn , where Mn is perfect
of Tor-amplitude ď n and cofibpαnq is 1-connective, as follows:

• Set B0 “ B, equipped with the morphism f0 “ f0 : SpecpB0q Ñ Y ; we let M0 denote
the image of F under the equivalence QCohpXq » ModB0 and α0 : M0 Ñ LSpecpB0q{Y

the image of α.

• Assume that n ě 0 and that we have already specified a natural transformation
fn : SpecpBnq Ñ Y together with a morphism of Bn-modules αn : Mn Ñ LSpecpBnq{Y
with 1-connective cofiber. We let Bn`1 denote the square-zero extension of Bn by
Σ´1 cofibpαnq classified by the composite map LSpecpBnq Ñ LSpecpBnq{Y Ñ cofibpαnq.
The factorization of this composite map through the relative cotangent complex
LSpecpBnq{Y determines a factorization of fn as a composition

SpecpBnq Ñ SpecpBn`1q
fn`1
ÝÝÝÑ Y.

By construction, the canonical map LSpecpBnq{Y Ñ cofibpαnq factors as a composition

LSpecpBnq{Y Ñ LBn{Bn`1
ρ
ÝÑ cofibpαnq,

We therefore obtain a fiber sequence

LSpecpBn`1q{Y |SpecpBnq ÑMn
ν
ÝÑ fibpρq.

It follows from Theorem HA.7.4.3.12 that ρ is 2-connective. Since Mn is perfect of
Tor-amplitude ď 0, the map ν is nullhomotopic. It follows that the map αn factors as
a composition We can therefore factor αn as a composition

Mn
α1n
ÝÝÑ LSpecpBn`1q{Y |SpecpBnq Ñ LSpecpBnq{Y ;
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moreover, this factorization is unique up to homotopy (though not up to contractible
choice). We have a fiber sequence cofibpα1nq Ñ cofibpαnq

β
ÝÑ LBn{Bn`1 , where β

is surjective on π1 (Theorem HA.7.4.3.12 ), so that cofibpα1nq is also 1-connective.
Applying Lemma 18.2.5.4, we conclude that we can lift α1n to a morphism of Bn`1-
modules αn`1 : Mn`1 Ñ LSpecpBn`1q{Y , where Mn`1 is perfect of Tor-amplitude ď 0.
By construction, we have an equivalence Bn bBn`1 cofibpαn`1q » cofibpαnq, so that
cofibpαn`1q is 1-connective (Proposition 2.7.3.2).

We let U : CAlgcn Ñ S denote the functor given by the direct limit lim
ÝÑn

SpecpBnq. Finally,
we let U denote the nilcompletion of U , given by the formula

UpRq “ lim
ÐÝ
m

UpτďmRq “ lim
ÐÝ
m

lim
ÝÑ
n

MapCAlgpBn, τďmRq.

In the situation of Construction 18.2.5.5, the map f : X Ñ Y factors canonically as
a composition X

f 1
ÝÑ U

f2
ÝÑ Y . Our goal for the rest of this section is to prove that this

factorization satisfies the requirements of Theorem 18.2.5.1. This will require a somewhat
detailed analysis.

Lemma 18.2.5.6. In the situation of Construction 18.2.5.5, the functor U is nilcomplete,
cohesive, and admits a cotangent complex LU . Moreover, the canonical map LU{Y |X Ñ LX{Y
can be identified with α : F Ñ LX{Y .

Proof. The functor U is nilcomplete by construction. Each of the corepresentable functors
SpecpBnq preserves small limits, so that the functor U “ lim

ÝÑ
SpecpBnq preserves pullback

squares. In particular, U is cohesive, so that U is cohesive (Proposition 17.3.3.4). To show
that U admits a cotangent complex, it will suffice to show that U admits a cotangent complex
(Proposition 17.3.3.6). By virtue of Proposition 17.3.9.1, it will suffice to show that the map
U Ñ Y admits a relative cotangent complex. We will prove this by verifying condition paq
of Remark 17.2.4.3 (condition pbq is automatic, since Y admits a cotangent complex and U

preserves pullback squares). Fix a point η P UpRq, where R is a connective E8-ring, and
define F : Modcn

R Ñ S by the formula F pNq “ fibpUpR‘Nq Ñ Y pR‘Nq ˆY pRq UpRq; we
wish to show that F is corepresented by an almost connective R-module. Lift η to a point
ηn P SpecpBnqpRq for n " 0, which we identify with a morphism Bn Ñ R. Since each of the
maps SpecpBnq Ñ Y admits a cotangent complex, the functor F is given concretely by the
formula

F pNq “ lim
ÝÑ
n1ěn

MapModB
n1
pLSpecpBn1 q{Y , Nq » lim

ÝÑ
n1ěn

MapModRpRbBn1 LSpecpBn1 q{Y , Nq.

In other words, F pNq is represented by the Pro-object tRbBn1 LSpecpBn1 q{Y un1ěn of ModR.
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Let tαm : Mm Ñ LSpecpBmq{Y umě0 be as in Construction 18.2.5.5. Then the system
tαmumě0 induces a map of towers

θ : tRbBn1 Mn1un1ěn Ñ tRbBn1 LSpecpBn1 q{Y un1ěn,

whose domain is a constant tower. Consequently, to complete the proof of the existence of
LU{Y , it will suffice to show that θ is an equivalence of Pro-objects. For this, it will suffice
to show that for each of the diagrams

Mn1
α1
n1 //

id
��

LSpecpBn1`1q{Y
|SpecpBn1 q

��vv
Mn1

αn1 // LSpecpBn1 q{Y

appearing in Construction 18.2.5.5, there exists a dotted arrow as indicated, rendering the
diagram commutative, which is immediate from the construction.

Lemma 18.2.5.7. In the situation of Construction 18.2.5.5, each relative cotangent complex
LSpecpBnq{Y P QCohpSpecpBnqq » ModBn is almost perfect.

Proof. We proceed by induction on n. In the case n “ 0, this is one of the hypotheses
of Theorem 18.2.5.1. To carry out the inductive step, let us assume that n ą 0 and
that LSpecpBn´1q{Y is almost perfect. Then cofibpαn´1q is almost perfect, so that Bn is a
square-zero extension of Bn´1 by a (connective) almost perfect module over Bn´1. Applying
Corollary 5.2.2.5, we deduce that Bn´1 is almost of finite presentation over Bn, so that
LBn´1{Bn is almost perfect as a Bn´1-module. Using the fiber sequence

Bn´1 bBn LSpecpBnq{Y Ñ LSpecpBn´1q{Y Ñ LBn´1{Bn

together with our inductive hypothesis, we conclude that Bn´1 bBn LSpecpBnq{Y is almost
perfect as a Bn´1-module. Applying Proposition 2.7.3.2, we conclude that LSpecpBnq{Y is
almost perfect as a Bn-module.

Lemma 18.2.5.8. In the situation of Construction 18.2.5.5, each of the natural transfor-
mations fn : SpecpBnq Ñ Y is locally almost of finite presentation.

Proof. Since Y is formally complete along f , it is also formally complete along fn. The
desired result now follows from Lemma 18.2.5.7 and Proposition 18.2.1.13.

Lemma 18.2.5.9. In the situation of Construction 18.2.5.5, the natural transformation
U Ñ Y is locally almost of finite presentation.
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Proof. Since the functors U and U agree on truncated objects of CAlgcn, it will suffice to
show that the composite map U Ñ U Ñ Y is locally almost of finite presentation. This
follows by combining Lemma 18.2.5.8 with Remark 17.4.1.4.

Let us now specialize to the case where F “ 0.

Lemma 18.2.5.10. In the situation of Construction 18.2.5.5, if F “ 0, then the map
U Ñ Y is an equivalence.

Proof. Note that U and Y are infinitesimally cohesive and nilcomplete, and that the relative
cotangent complex LU{Y vanishes (Lemma 18.2.5.6). Since Y is formally complete along the
map U Ñ Y , the desired result follows from Lemma 18.2.5.3.

Notation 18.2.5.11. In the situation of Construction 18.2.5.5, suppose that F “ 0. Let
A denote the E8-ring ΓpY ; OY q. It follows from Lemma 18.2.5.10 that we have a canonical
equivalence

A “ ΓpY ; OY q

» ΓpU ; OU q

» ΓpU ; OU q

» lim
ÐÝ

ΓpSpecpBnq; OSpecpBnqq

» lim
ÐÝ

Bn.

In particular A is connective.

Lemma 18.2.5.12. In the situation of Construction 18.2.5.5, suppose that F “ 0 and
that LX{Y is m-connective for some positive integer m. Then, for each n ě 0, we have the
following:

panq The relative cotangent complex LSpecpBnq{Y is m-connective.

pbnq The fiber fibpBn`1 Ñ Bn is pm´ 1q-connective.

Proof. Note that pa0q equivalent to our hypothesis that LX{Y is m-connective. Moreover,
the implication panq ñ pbnq is immediate (since Bn`1 is a square-zero extension of Bn by
Σ´1LSpecpBnq{Y ). To complete the proof, it will suffice to show that panq and pbnq imply
pan`1q. Assume that panq and pbnq are satisfied, and consider the fiber sequence

Bn bBn`1 LSpecpBn`1q{Y Ñ LSpecpBnq{Y
u
ÝÑ LBn{Bn`1 .

Unwinding the definitions, we can identify u with the canonical map cofibpBn`1 Ñ Bnq Ñ

LBn{Bn`1 , whose fiber is p2m´ 1q-connective by Corollary HA.7.4.3.6 . Applying Proposition
2.7.3.2, we conclude that LSpecpBn`1q{Y is p2m´1q-connective, and therefore also m-connective
(since m ě 1).
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Lemma 18.2.5.13. In the situation of Construction 18.2.5.5, suppose that F “ 0 and that
LX{Y is m-connective for some m ą 0. Then:

p1q For every integer n ě 0, the fiber fibpAÑ Bnq is pm´ 1q-connective.

p2q The canonical map θ : fibpA Ñ Bq Ñ Σ´1LB{A Ñ Σ´1LSpecpBq{Y is surjective on
πm´1.

Proof. To prove p1q, we note that fibpAÑ Bq can be identified with the limit of the tower
tfibpBk Ñ Bnqukěn. To show that this limit is pm´1q-connective, it will suffice to show that
each transition map fibpBk Ñ Bnq Ñ fibpBk´1 Ñ Bnq has pm ´ 1q-connective homotopy
fiber. This homotopy fiber is given by fibpBk Ñ Bk´1q, which is pm ´ 1q-connective by
Lemma 18.2.5.12.

To prove p2q, we note that θ can be identified with the natural map fibpA Ñ B0q Ñ

fibpB1 Ñ B0q, whose homotopy fiber fibpAÑ B1q is pm´ 1q-connective by virtue of p1q.

Lemma 18.2.5.14. Let R be a connective E8-ring, let M be an almost perfect A-module,
and suppose we are given a tower

¨ ¨ ¨ Ñ N3 Ñ N2 Ñ N1 Ñ N0

of connective A-modules. Then the canonical map

ρM : M bA plimÐÝNkq Ñ lim
ÐÝ
pM bA Nkq

is an equivalence.

Proof. Since each Nk is connective, the limit lim
ÐÝ

Nk is p´1q-connective. It follows that if M
is n-connective, then the domain of ρM is pn´ 1q-connective. Similarly, if M is n-connective,
then each tensor product M bANk is also n-connective, so that the codomain lim

ÐÝ
pM bANkq

is pn´ 1q-connective. It follows that cofibpρM q is pn´ 1q-connective.
For any integer n, the assumption that n is almost perfect guarantees that we can choose

a fiber sequence M 1 Ñ M Ñ M2 where M 1 is perfect and M2 is n-connective (Corollary
2.7.2.2). We then have a cofiber sequence

cofibpρM 1q Ñ cofibpρM q Ñ cofibpρM2q

where the first term vanishes (since ρM 1 is an equivalence by virtue of our assumption
that M 1 is perfect) and the third term is pn ´ 1q-connective. It follows that cofibpρM q is
pn´ 1q-connective. Since n can be chosen arbitrarily, it follows that cofibpρM q » 0: that is,
ρM is an equivalence.
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Lemma 18.2.5.15. In the situation of Construction 18.2.5.5, suppose that F “ 0, and let
m be a positive integer. Then f fits into a commutative diagram

X
f

!!

fpmq// Y pmq

��

// SpecpApmqq

��
Y // SpecpAq,

where the right square is a pullback, the ring homomorphism π0AÑ π0Apmq is surjective,
the E8-algebra Apmq is almost perfect as an A-module, and the relative cotangent complex
LX{Y pmq is m-connective.

Proof. We proceed by induction on m. In the case m “ 1, we can take Apmq “ A and
Y pmq “ Y . To carry out the inductive step, let us suppose that m ě 1 and that we have
constructed a diagram

X
f

!!

fpmq// Y pmq

��

// SpecpApmqq

��
Y // SpecpAq,

satisfying the requirements of Lemma 18.2.5.15; we will show that it is possible to construct
a similar diagram with m replaced by m ` 1. Note that Y can be identified with the
nilcompletion of pU » lim

ÝÑ
SpecpBnq (Lemma 18.2.5.10), so that Y pmq can be identified with

the nilcompletion of the fiber product

SpecpApmqq ˆSpecpAq lim
ÝÑ
n

SpecpBnq » lim
ÝÑ
n

SpecpApmq bA Bnq.

Invoking Lemma 18.2.5.14, we deduce that the canonical map

Apmq » Apmq bA lim
ÐÝ
n

Bn

Ñ lim
ÐÝ
n

pApmq bA Bnq

» ΓpY pmq; OY pmqq.

is an equivalence.
Since the homomorphism π0A Ñ π0Apmq is surjective, the map SpecpApmqqpRq Ñ

SpecpAqpRq is a monomorphism for any ordinary commutative ringR, so the map Y pmqpRq Ñ
Y pRq is p´1q-truncated. If R is a reduced commutative ring, then the composite map

XpRq Ñ Y pmqpRq Ñ Y pRq

is a homotopy equivalence, so the map XpRq Ñ Y pmqpRq must also be a homotopy
equivalence. Note that Y pmq and X are both locally almost of finite presentation over Y , so
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that fpmq : X Ñ Y pmq is locally almost of finite presentation (Remark 17.4.1.3). It follows
that the map fpmq : X Ñ Y pmq also satisfies the hypotheses of Theorem 18.2.5.1 (with
F “ 0). We may therefore replace Y by Y pmq (and A by Apmq) and thereby reduce to the
case where LX{Y is m-connective.

Since LX{Y is almost perfect (Proposition 17.4.2.1). Let us view LX{Y as a B-module.
Then πmLX{Y is finitely generated as a module over the commutative ring π0B, and therefore
also as a module over the commutative ring π0A. It follows from Lemma 18.2.5.13 that the
canonical map πm´1 fibpAÑ Bq Ñ πmLB{A Ñ πmLSpecpBq{Y is surjective. We can therefore
choose a free A-module P of finite rank and a morphism u : Σm´1P Ñ fibpA Ñ Bq for
which the composite map

ρ : ΣmP
Σpuq
ÝÝÝÑ Σ fibpAÑ Bq Ñ LB{A Ñ LSpecpBq{Y

is surjective on πm. The map u determines a commutative diagram of connective E8-rings
σ :

Sym˚
ApΣm´1P q //

��

A

��
A // B.

Let Apm`1q denote the relative tensor product AbSym˚ApΣm´1P qA. By construction, Apm`1q
is of finite presentation as an E8-algebra over A and the natural map π0AÑ π0Apm` 1q
is surjective on π0. It follows from Corollary 5.2.2.2 that Apm` 1q is almost perfect as an
A-module. Moreover, the commutative diagram σ determines a homomorphism of A-algebras
Apm` 1q Ñ B, which allows us to construct a commutative diagram

X
f

$$

fpmq// Y pm` 1q

��

// SpecpApm` 1qq

��
Y // SpecpAq

where the right square is a pullback. Unwinding the definitions, we see that the relative
cotangent complex LX{Y pm`1q can be identified with the cofiber of the map ρ, and is therefore
pm` 1q-connective by construction.

Remark 18.2.5.16. In the situation of Lemma 18.2.5.15, the fiber fibpApmq Ñ Bq is
pm´ 1q-connected. To prove this, we can argue as in the proof of Lemma 18.2.5.15 to reduce
to the case Y “ Y pmq and A “ Apmq, in which case the desired result follows from Lemma
18.2.5.13.

Lemma 18.2.5.17. In the situation of Construction 18.2.5.5, suppose that F “ 0. Then
the map u : AÑ B is almost of finite presentation.
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Proof. It will suffice to show that B is of finite generation to order n over A, for each n ě 0.
Write u as a composition A

u1
ÝÑ Apn ` 2q u2

ÝÑ B, where Apn ` 2q is defined as in Lemma
18.2.5.15. Then the map u1 is almost of finite presentation (Corollary 5.2.2.2) and u2 induces
an equivalence τďnApn`2q Ñ τďnB (Remark 18.2.5.16), and is therefore of finite generation
to order n. Applying Proposition 4.1.3.1, we deduce that u is of finite generation to order
n.

In what follows, we will regard A as an adic E8-ring, by equipping π0A with the I-adic
topology for I “ kerpπ0A Ñ π0Bq. Note that I is a finitely generated ideal (this follows
from Lemma 18.2.5.17).

Lemma 18.2.5.18. In the situation of Construction 18.2.5.5, suppose that F “ 0. Then
the canonical map Y Ñ SpecpAq induces an equivalence g : Y » SpfpAq.

Proof. We first show that the map Y Ñ SpecpAq factors through SpfpAq. Let η be an
R-valued point of Y , for some connective E8-ring R; we wish to show that the induced map

η˚ : A “ ΓpY ; OY q Ñ ΓpSpecpRq; OSpecpRqq » R

carries I to a nilpotent ideal in π0R. Replacing R by π0R, we can assume that R is
discrete. In this case, Lemma 18.2.5.10 supplies an equivalence Y pRq » UpRq » pUpRq »

lim
ÝÑ

MapCAlgpBn, Rq. It follows that the map η˚ : AÑ R factors through Bn for some n ě 0.
The desired result now follows from the observation that Ipπ0Bnq is a nilpotent ideal in
π0Bn.

We next claim that the map g : Y Ñ SpfpAq is locally almost of finite presentation. To
prove this, we observe that Lemma 18.2.5.10 guarantees that Y agrees with U “ lim

ÝÑ
SpecpBnq

on truncated objects of CAlgcn. By virtue of Remark 17.4.1.4, it suffices to show that the
map SpecpBnq Ñ SpfpAq is locally almost of finite presentation. This follows from Lemma
18.2.5.17, applied to the map fpnq : SpecpBnq Ñ Y . Note that if R is a reduced commutative
ring, then g induces a homotopy equivalence Y pRq Ñ SpfpAqpRq; this follows by applying
the two-out-of-three property to the commutative diagram

Y pRq

&&
XpRq

„

;;

„ // SpfpAqpRq.

Consequently, to show that g is an equivalence, it will suffice to show that the relative
cotangent complex LY {SpfpAq » LY {SpecpAq vanishes (Lemma 18.2.5.3).
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Let m be any positive integer, and choose a commutative diagram

X
f

!!

fpmq// Y pmq

��

// SpecpApmqq

��
Y // SpecpAq,

satisfying the requirements of Lemma 18.2.5.15. We then have equivalences

LY {SpecpAq|X » LY pmq{SpecpApmqq|X

» fibpLX{Y pmq Ñ LB{Apmqq.

Here LX{Y pmq is m-connective by construction, and LB{Apmq is m-connective by virtue
of Remark 18.2.5.16. It follows that LY {SpecpAq|X is pm ´ 1q-connective. Allowing m to
vary, we conclude that LY {SpecpAq|X » 0. By virtue of Proposition 2.7.3.2, this guarantees
that LY {SpecpAq|SpecpBnq vanishes for each n ě 0, so that LY {SpecpAq|U » 0. Proposition
17.3.3.5 then implies that LY {SpecpAq|U » 0, so that LY {SpecpAq vanishes by virtue of Lemma
18.2.5.10.

Lemma 18.2.5.19. Let f : X Ñ Y be a morphism satisfying the hypotheses of Theorem ??
with F “ 0. Then Y is (representable by) a formal thickening of X “ SpecpBq.

Proof. Combine Lemma 18.2.5.18 with Proposition 18.2.2.7.

Proof of Theorem ??. Let f : SpecpBq “ X Ñ Y and α : F Ñ LX{Y be as in the statement
of Theorem ??. Applying Construction 18.2.5.5, we obtain a factorization of f as a
composition X f 1

ÝÑ U
f2
ÝÑ Y . It follows from Lemma 18.2.5.6 that the morphism f 1 : X Ñ U

also satisfies the hypotheses of Theorem ?? (with the sheaf F replaced by zero). Applying
Lemma 18.2.5.19, we conclude that U is (representable by) a formal thickening of X. We
conclude by observing that f2 : U Ñ Y is locally almost of finite presentation (Lemma
18.2.5.9) and that α can be identified with the map LU{Y |X Ñ LX{Y (Lemma 18.2.5.6).

18.3 Artin’s Representability Theorem

Let R be an excellent Noetherian ring and let X be a functor from the category of
commutative R-algebras to the category of sets. In [4], Artin supplied necessary and
sufficient conditions for X to be representable by an algebraic space which is locally of finite
presentation over R. Our goal in this section is to prove the following analogue of Artin’s
result:
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Theorem 18.3.0.1 (Spectral Artin Representability Criterion). Let X : CAlgcn Ñ S be a
functor and suppose we are given a natural transformation f : X Ñ SpecR, where R is a
Noetherian E8-ring and π0R is a Grothendieck ring. Let n ě 0. Then X is representable by
a spectral Deligne-Mumford n-stack which is locally almost of finite presentation over R if
and only if the following conditions are satisfied:

p1q For every discrete commutative ring A, the space XpAq is n-truncated.

p2q The functor X is a sheaf for the étale topology.

p3q The functor X is nilcomplete, infinitesimally cohesive, and integrable.

p4q The functor X admits a connective cotangent complex LX .

p5q The natural transformation f is locally almost of finite presentation.

18.3.1 Approximate Charts

Let X Ñ SpecR be a natural transformation satisfying the hypotheses of Theorem
18.3.0.1. We wish to show that X is representable by a spectral Deligne-Mumford stack: in
other words, that there is a good supply of étale morphisms u : SpecAÑ X, where A is a
connective E8-ring. We begin by looking for maps u which are “approximately” étale at
some point of | SpecA|.

Proposition 18.3.1.1. Let R be an E8-ring, let Y “ SpecR, and suppose we are given a
natural transformation q : X Ñ Y of functors X,Y P FunpCAlgcn,Sq satisfying the following
conditions:

p1q The functor X is infinitesimally cohesive, nilcomplete, and integrable.

p2q The E8-ring R is Noetherian and π0R is a Grothendieck commutative ring.

p3q The natural transformation q is locally almost of finite presentation.

p4q The map q admits a cotangent complex LX{Y .

Suppose we are given a field κ and a map f : Specκ Ñ X which exhibits κ as a finitely
generated field extension of some residue field of R. Then the map f factors as a composition
SpecκÑ SpecB Ñ X, where B is almost of finite presentation over R and the vector space
π1pκbB LSpecB{Xq vanishes.

Remark 18.3.1.2. Proposition 18.3.1.1 does not require any connectivity assumption on
the relative cotangent complex LX{Y . Consequently, it can be used to prove a generalization
of Theorem 18.3.0.1 to the setting of Artin stacks. We will return to this point in Part ??.
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Proof of Proposition 18.3.1.1. Since κ is a finitely generated field extension of some residue
field of R, the relative cotangent complex Lκ{R is an almost perfect κ-module. Since LX{SpecR
is almost perfect (Corollary 17.4.2.2), the fiber sequence f˚LX{SpecR Ñ Lκ{R Ñ LSpecκ{X
shows that the relative cotangent complex LSpecpκq{X is almost perfect.

Let pX denote the relative de Rham space of the morphism Specpκq Ñ X, given by the
formula pXpAq “ XpAq ˆXpAredq SpecpκqpAredq. Then we can identify the relative cotangent
complex LSpecpκq{X with LSpecpκq{ pX (see Corollary 18.2.1.11). Choose a fiber sequence

F
α
ÝÑ LSpecpκq{ pX Ñ G

in the 8-category QCohpSpecpκqq » Modκ, where F is perfect of Tor-amplitude ď 0
and G is 1-connective. Applying Theorem 18.2.5.1, we deduce that the canonical map
Specpκq Ñ pX factors as a composition Specpκq Ñ U Ñ pX, where U is representable by a
formal spectral Deligne-Mumford stack SpfpAq which is a formal thickening of Spétpκq, and
α can be identified with the canonical map L

U{ pX
|Specpκq Ñ LSpecpκq{ pX . Here A denotes some

connective E8-ring which is complete with respect to a finitely generated ideal I Ď π0A.
Using Proposition 18.2.4.1, we deduce that A is a Noetherian local E8-ring with residue
field κ. Since X is integrable and nilcomplete, the composite map U Ñ pX Ñ X induces a
map f : SpecpAq Ñ X which fits into a commutative diagram

Specpκq
f

$$

// SpecpAq
f

zz
X.

By construction, we have πnpκbA LSpecpAq{Xq » 0 for n ą 0.
Let A1 “ π0A. The canonical map AÑ A1 is 1-connective, so that LA1{A is 2-connective

(Corollary HA.7.4.3.2 ). Using the fiber sequence

κbA LSpecpAq{X Ñ κbA1 LSpecpA1q{X Ñ κbA1 LA1{A,

we deduce that π1pκbA1 LSpecpA1q{Xq » 0.
Let m denote the maximal ideal of A1, so that A1{m » κ. Let A2 be a subalgebra of A1

which is finitely generated over π0R with the following properties:

• The subalgebra A2 contains generators of the field κ over π0R: that is, κ is the fraction
field of the integral domain A2{pA2 Xmq.

• The subalgebra A2 contains a basis for the κ-vector space m{m2.

Let p denote the intersection A2Xm, and let pA2 denote the completion of the Noetherian
local ring A2p. The conditions above guarantee that the map v : A2p Ñ A1 induces an
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isomorphism of residue fields and a surjection of Zariski cotangent spaces. Since A1 is
complete with respect to its maximal ideal, v extends to a surjective map pv : pA2 Ñ A1. In
particular, as an E8-algebra over pA2, A1 is almost of finite presentation.

Since A2 is finitely generated over π0R, it is a Grothendieck ring (Theorem ??). It
follows that the map A2p Ñ

pA2 is geometrically regular. Applying Theorem ??, we deduce
that pA2 can be written as a colimit lim

ÝÑαPP
A2α indexed by a filtered partially ordered set

P , where each A2α is a smooth A2-algebra (in the sense of classical commutative algebra).
Using Theorem 4.4.2.2 (and Proposition 4.6.1.1), we see that there exists an index α and an
equivalence A1 » τď1pCα bA2α

pA2q, where Cα is an E8-ring which is finitely 1-presented over
A2α. For β ě α, let Cβ “ τď1pCα bA2α A

2
βq, so that

lim
ÝÑ
βěα

Cβ » τď1pCα bA2α lim
ÝÑ
βěα

A2βq » τď1pCα bA2α
pA2q » A1.

Since the map X Ñ SpecpRq is locally almost of finite presentation, the map SpecpA1q Ñ X

factors as a composition SpecpA1q Ñ SpecpA2βq
u1
Ñ X for some β ě α. Set B “ Cβ. We

will complete the proof by showing that the relative cotangent complex of u1 satisfies
π1pκbB LSpecpBq{Xq » 0.

We have an exact sequence

π2pκbA1 LA1{Bq Ñ π1pκbB LSpecpBq{Xq Ñ π1pκbA1 LSpecpA1q{Xq.

Since the third term vanishes, it will suffice to show that π2pκbA1 LA1{Bq vanishes. Let B1

denote the tensor product B bA2
β

pA2, so that A1 » τď1B
1. We have a short exact sequence

π2pκbB1 LB1{Bq Ñ π2pκbA1 LA1{Bq Ñ π2pκbB1 LA1{B1q.

Since the third term vanishes by virtue of Corollary ??, we are reduced to proving that the
homotopy group π2pκbB1 LB1{Bq » π2pκb

pA2
L

pA2{A2
β
q vanishes. For this, we use the exact

sequence
π2pκb

pA2
L

pA2{A2
q Ñ π2pκb

pA2
L

pA2{A2
β
q Ñ π1pκbA2

β
LA2

β
{A2q.

Note that the tensor product κ1 “ pA2 bA2 κ is equivalent to κ, so that κ b
pA2
L

pA2{A2
»

κbκ1 Lκ1{κ » 0. It will therefore suffice to show that the homotopy group π1pκbA2
β
LA2

β
{A2q

vanishes. Let D “ A2β bA2 κ. Then D is a commutative algebra over κ which is smooth (in
the sense of classical commutative algebra) and equipped with an augmentation D Ñ κ. We
have a canonical isomorphism π1pκbA2

β
LA2

β
{A2q » π1pκbD LD{κq. Note that the dual of

the vector space π1pκbD LD{κq is the set of homotopy classes of D-module maps from LD{κ
to Σκ. This set classifies the collection of all isomorphism classes of square-zero extensions
0 Ñ I Ñ rD Ñ D Ñ 0 (in the category of commutative algebras over κ) equipped with
an isomorphism of D-modules I » κ. Since D is smooth over κ, every such extension is
automatically split.



18.3. ARTIN’S REPRESENTABILITY THEOREM 1427

18.3.2 Refinement of Approximate Charts

Our next goal is to show that in the situation of Proposition 18.3.2.1, we can modify
the map SpecB Ñ X to obtain a map which is formally étale, in the sense that the relative
cotangent complex LSpecB{X vanishes.

Proposition 18.3.2.1. Let R be an E8-ring, let Y “ SpecR, and suppose we are given
a natural transformation q : X Ñ Y of functors X,Y P FunpCAlgcn,Sq. Assume that the
following conditions are satisfied:

p1q The functor X is infinitesimally cohesive, nilcomplete, and integrable.

p2q The E8-ring R is Noetherian and π0R is a Grothendieck commutative ring.

p3q The natural transformation q is locally almost of finite presentation.

p4q The map q admits a connective cotangent complex LX{Y .

Suppose we are given an a connective E8-ring A and a map f : SpecA Ñ X. Let p be a
prime ideal of | SpecA|, and let κppq denote the residue field of A at the point p. Then there
exists an étale A-algebra A1 and a prime ideal p1 of A1 lying over p such that the induced
map SpecA1 Ñ X factors as a composition SpecA1 Ñ SpecB Ñ X, where B is almost of
finite presentation over R, and the relative cotangent complex LSpecB{X vanishes.

Proof. Assume that q : X Ñ Y “ SpecR satisfies hypotheses p1q through p4q. Let f :
SpecA Ñ X be an arbitrary map which exhibits A as almost of finite presentation over
R, and let p be a prime ideal of π0A. We wish to show that, after passing to an étale
neighborhood of p, the map f factors as a composition SpecA Ñ SpecB g

Ñ X, where g
exhibits B as almost of finite presentation over R and LSpecB{X » 0. Note that, if these
conditions are satisfied, then g induces a homotopy equivalence

pSpecBqpAq Ñ pSpecBqpπ0Aq ˆXpπ0Aq XpAq.

We may therefore replace A by π0A, and thereby reduce to the case where A is discrete.
Write A as a filtered colimit of subalgebras Aα which are finitely generated as commutative

rings over π0R. Since X Ñ SpecR is locally almost of finite presentation, the map f factors
through SpecAα for some α. Replacing A by Aα and p by Aα X p, we may reduce to the
case where A is finitely generated as a commutative ring over R.

Let κ denote the residue field of A at p, and consider the composite map fκ : SpecκÑ
SpecA f

Ñ X. Applying Proposition 18.3.1.1, we see that fκ factors as a composition
Specκ j

Ñ SpecB g
Ñ X, where B is almost of finite presentation over R and the vector space

π1pκbB LSpecB{Xq vanishes. Since the relative cotangent complex LX{Y is connective, the
fiber sequence g˚LX{Y Ñ LB{R Ñ LSpecB{X shows that the map π0LB{R Ñ π0LSpecB{X is
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surjective. Since π0LSpecB{X is a finitely generated module over π0B (Corollary 17.4.2.2),
we can find a finite sequence of elements b1, . . . , bm P π0B such that the images of
db1, db2, . . . , dbm in π0LSpecB{X form a basis for the vector space π0pκbB LSpecB{Xq. The
choice of these elements determines a map of B-modules ψ : Bm Ñ LSpecB{X . The κ-module
κbB cofibpψq is 2-connective. Replacing B by a localization if necessary, we may suppose
that cofibpψq is 2-connective.

The map SpecB Ñ X is locally almost of finite presentation (Remark 17.4.1.3). Set
X 1 “ Specκ ˆX SpecB, so that the projection map q1 : X 1 Ñ Specκ satisfies hypotheses
p1q, p2q, and p3q. The map fκ determines a section s of q1. Applying Proposition 18.3.1.1
again, we deduce that s factors as a composition Specκ ν

Ñ SpecC g1
Ñ X 1 where C is

almost of finite presentation over κ and π1pκbC LSpecC{X 1q » 0. Using the fiber sequence
g1˚LX 1{κ Ñ LC{κ Ñ LSpecC{X 1 , we deduce that π1pκ b LC{κq » 0. It follows that the
ordinary scheme Specπ0C is smooth over κ at the point determined by ν. Replacing C by a
localization if necessary, we may suppose that the ordinary scheme Specπ0C is smooth over
κ.

For 1 ď i ď m, let ci denote the image of bi in the commutative ring π0C. Since
π1pκbC LSpecC{X 1q “ 0, the map π0pκbB LSpecB{Xq Ñ π0pκbC LSpecC{κq is injective: in
other words, as functions on the affine scheme Specpπ0Cq, the ci have linearly independent
derivatives and therefore induce a smooth map of ordinary schemes h : Specπ0C Ñ Am

κ .
The image of h is a nonempty open subscheme U of the affine space Am

κ . Let κ0 Ď κ

denote the prime field of κ. Then there exists a finite Galois extension κ10 of κ0 such
that U contains a point u which is rational over κ10. Let κ1 be a separable extension of κ
containing κ10, so that u defines a map of schemes Specκ1 Ñ U . Since h defines a smooth
surjection Specπ0C Ñ U , we may (after enlarging κ1 if necessary) assume that u factors as
a composition Specκ1 Ñ Specπ0C Ñ U . This determines a new map j1 : Specκ1 Ñ SpecB,
whose composition with g agrees with the composition

Specκ1 Ñ SpecκÑ SpecA f
Ñ X.

Since κ1 is a finite separable extension of κ, we can write κ1 “ κrxs{prpxqq for some
separable polynomial r. After localizing A, we can assume that r lifts to a separable
polynomial rpxq P pπ0Aqrxs. Then pπ0Aqrxs{prpxqq is a finite étale extension of π0A. Using
Theorem HA.7.5.0.6 , we can write pπ0Aqrxs{prpxqq » π0A

1, where A1 is a finite étale A-
algebra. Replacing A by A1, κ by κ1, and j by j1, we can reduce to the case where j is given
by a ring homomorphism π0B Ñ κ which carries each bi to an element λi P κ belongs to a
subfield κ10 Ď κ which is algebraic over the prime field κ0.

Choose an integer N and a finite étale ZrN´1s-algebra D such that κ10 » κ0 bZ D.
Enlarging N if necessary, we may suppose that each λi can be lifted to an element λi P D.
Replacing B by BrN´1s if necessary, we may suppose that N is invertible in π0B, so that
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pπ0Bq bZrN´1s D is a finite étale extension of π0B. Applying Theorem HA.7.5.0.6 , we
can write pπ0Bq bZrN´1s D » π0B for some finite étale extension B of B. Moreover, the
embedding κ10 ãÑ κ1 induces a map B Ñ κ, which annihilates the elements bi ´ λi P π0B.
Replacing B by B and the elements bi P B by the differences bi´ λi (note that this does not
change the differentials dbi), we may reduce to the case where the map j : SpecκÑ SpecB
annihilates each bi.

Let B0 “ B bStb1,...,bmu S denote the E8-algebra over B obtained by killing each bi.
We then have a fiber sequence B0 bB LSpecB{X Ñ LSpecB0{X Ñ LB0{B. We note that
LB0{B » ΣpBm

0 q, and the boundary map ΩLB0{B Ñ B0 bB LSpecB{X is induced by the map
ψ : Bm Ñ LSpecB{X given by the elements bi. Since cofibpψq is 2-connective, we deduce that
LSpecB0{X is 2-connective. The map j : SpecκÑ SpecB annihilates each bi, and therefore
factors through SpecB0. We may therefore replace B by B0, and thereby reduce to the case
where LSpecB{X is 2-connective.

Proposition 18.1.2.1 implies that the map g : SpecB Ñ X factors as a composition
SpecB Ñ SpecB Ñ X, where π0B » π0B and LB{X » 0. It follows from Corollary
17.4.2.2 that LB{B » LSpecB{X is an almost perfect module over B. Since B is almost of
finite presentation over R, LB{R is almost perfect. Using the fiber sequence B bB LB{R Ñ
LB{R Ñ LB{B, we deduce that B bB LB{R is almost perfect as a B-module. It follows from
Proposition 2.7.3.2 that LB{R is almost perfect as an B-module. Since π0B » π0B is finitely
presented as an commutative ring over π0R, Theorem HA.7.4.3.18 implies B is almost of
finite presentation over R. We may therefore replace B by B, and thereby reduce to the
case where LSpecB{X » 0.

We will now complete the proof by showing that there exists a finite étale A-algebra A1

with κbA A
1 ‰ 0, such that the induced map SpecA1 Ñ X factors through SpecB.

Let pA denote the completion of the local ring Ap at its maximal ideal, and let m denote
the maximal ideal of pA, so that pA{m » κ. Each quotient pA{mn`1 is a square-zero extension
of pA{mn. Since g is infinitesimally cohesive with LSpecB{X » 0, it follows that each of the
diagrams

pSpecBqp pA{mn`1q //

��

pSpecBqp pA{mq

��

Xp pA{mn`1q // Xp pA{mnq.

is a pullback square. Consequently, the diagram

lim
ÐÝ
pSpecBqp pA{mnq //

��

pSpecBqpκq

��
lim
ÐÝ

Xp pA{mnq // Xpκq
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is also a pullback square. Since both X and SpecB are integrable, we obtain a pullback
square

pSpecBqp pAq //

��

pSpecBqpκq

��
Xp pAq // Xpκq.

It follows that the map j : SpecκÑ SpecB admits an essentially unique factorization as a
composition SpecκÑ Spec pA

pj
Ñ SpecB, where pj fits into a commutative diagram

Spec pA
pj //

��

SpecB
g

��
SpecA f // X.

By assumption, π0R is a Grothendieck ring. Since A is finitely generated as an algebra
over π0R, it is also a Grothendieck ring (Theorem ??), so that the map Ap Ñ pA is
geometrically regular. Applying Theorem ??, we can write pA as a filtered colimit lim

ÝÑ
Aα,

where each Aα is smooth over Ap (in the sense of classical commutative algebra). Since
B is almost of finite presentation over R and the natural transformation X Ñ SpecR is
locally almost of finite presentation, the natural transformation g is locally almost of finite
presentation. It follows that for some index α, there exists a commutative diagram

SpecAα //

��

SpecB
g

��
SpecA // X.

Since Aα is smooth over Ap, we can choose a smooth A-algebra A over A such that
Aα » A bA Ap. Then Aα can be written as a filtered colimit of A-algebras of the form
Ara´1s, where a P A´ p. Using the fact that g is locally almost of finite presentation again,
we obtain a commutative diagram

SpecAra´1s //

��

SpecB
g

��
SpecA // X.

for some a P A´ p. Note that v : SpecAra´1s Ñ SpecA is a smooth map of affine schemes
whose image contains the prime ideal p. It follows that there exists an étale A-algebra A1

such that κ bA A1 ‰ 0, and the map SpecA1 Ñ SpecA factors through v. Then the map
SpecA1 Ñ SpecA f

Ñ X factors through the map g : SpecB Ñ X, as desired.
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18.3.3 The Proof of Artin Representability

We now turn to the proof of our main result. Let R be a connective E8-ring and let
X : CAlgcn Ñ S be a functor equipped with a natural transformation f : X Ñ SpecR.
Suppose that X is representable by a spectral Deligne-Mumford n-stack X which is locally
almost of finite presentation over R. In this case, it is easy to verify that the hypotheses of
Theorem 18.3.0.1 are satisfied:

p1q For every discrete commutative ring A, the space XpAq is n-truncated: this follows
from our assumption that X is a spectral Deligne-Mumford n-stack (Definition 1.6.8.1).

p2q The functor X is a sheaf for the étale topology: this also follows immediately from the
representability of X.

p3q The functor X is nilcomplete, infinitesimally cohesive, and integrable: this follows
from Proposition 17.3.2.3, Example 17.3.1.2, and Proposition 17.3.4.2.

p4q The natural transformation f admits a connective cotangent complex LX{SpecR: see
Proposition 17.2.5.1.

p5q The natural transformation f is locally almost of finite presentation: this follows from
Proposition 17.4.3.1.

Now suppose that R is Noetherian, that π0R is a Grothendieck ring, and that X satisfies
conditions p1q through p5q. We wish to prove that X is representable by a spectral Deligne-
Mumford stack X. Then X is automatically a spectral Deligne-Mumford n-stack (by virtue
of assumption p1q) which is locally almost of finite presentation over R (by condition p5q
and Proposition 17.4.3.1). To prove the existence of X, we first note that hypothesis p1q can
be restated as follows:

p11nq For every discrete commutative ring A, the map XpAq Ñ MapCAlgpR,Aq has n-
truncated homotopy fibers.

Note that condition p11q makes sense for all n ě ´2. We will show that for all n ě ´2, if
f : X Ñ SpecR satisfies conditions p11nq, p2q, p3q, p4q, and p5q, then X is representable by a
spectral Deligne-Mumford stack X.

Our proof now proceeds by induction on n. We begin by treating the case n “ ´2.
In this case, condition p11q asserts that the map XpAq Ñ MapCAlgpR,Aq is a homotopy
equivalence for every discrete commutative ring A. In this case, the existence of X follows
from Theorem 18.1.0.2.

Now suppose that n ě ´1. Let Shvét denote the full subcategory of FunpCAlgcn, pSq
spanned by those functors which are sheaves for the étale topology. Let S be a set of
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representatives for all equivalences classes of maps SpecBα Ñ X for which LSpecBα{X “ 0
and exhibit Bα as almost of finite presentation over R, and let X0 denote the coproduct
š

αPS SpecBα formed in the 8-category Shvét, and let X‚ denote the simplicial object of
Shvét given by the Čech nerve of the map X0 Ñ X. Note that each Xm is given as a
coproduct (in the 8-category Shvét)

ž

pα1,...,αmqPSm

Xα1,...,αm ,

Xα1,...,αm “ pSpecBα1q ˆX ¨ ¨ ¨ ˆX pSpecBαmq,

and therefore admits a map

Xα1,...,αm Ñ SpecpBα1 bR ¨ ¨ ¨ bR Bαmq

satisfying condition p11n´1q. Applying the inductive hypothesis, we deduce that each Xα1,...,αm

is representable by a spectral Deligne-Mumford stack, so that each Xm is representable by a
spectral Deligne-Mumford stack Xm. Proposition 17.4.3.1 implies that each Xm is locally
almost of finite presentation over R, so that each of the transition maps Xm Ñ Xm1 is locally
almost of finite presentation. By construction, we have LX0{X » 0, which implies that each
transition map Xm Ñ Xm1 has vanishing cotangent complex. Applying Proposition 17.1.5.1,
we deduce that each of the maps Xm Ñ Xm1 is étale. It follows that the simplicial object
X‚ admits a geometric realization |X‚ | in the 8-category of spectral Deligne-Mumford
stacks (Proposition ??). Lemma ?? implies that |X‚ | represents the functor |X‚|, where
the geometric realization is formed in the 8-category Shvét. To complete the proof that X
is representable, it will suffice to show that the canonical map |X‚| Ñ X is an equivalence.
Since Shvét is an 8-topos, this is equivalent to the requirement that the map X0 Ñ X is an
effective epimorphism of étale sheaves, which follows from Proposition 18.3.2.1.



Chapter 19

Applications of Artin
Representability

Let X : CAlgcn Ñ S be a functor from the 8-category of connective E8-rings to the
8-category of spaces. In Chapter 18, we established a version of Artin’s representability
theorem (Theorem 18.3.0.1), which supplies conditions which are sufficient (and, under mild
assumptions, also necessary) for the representability of X by a spectral Deligne-Mumford
stack X. In this chapter, we will sketch some applications of Theorem 18.3.0.1:

• Let X f
ÝÑ S g

ÝÑ S1 be morphisms of spectral algebraic spaces. In §19.1, we define the Weil
restriction ResS {S1pXq. Using Theorem 18.3.0.1, we show that if f is quasi-separated
and locally almost of finite presentation and g is proper, flat, and locally almost of
finite presentation, then the Weil restriction ResS {S1pXq is representable by a spectral
algebraic space (which is quasi-separated and locally almost of finite presentation over
S1); see Theorem 19.1.0.1.

• Let f : X Ñ SpétR be a morphism of spectral algebraic spaces which is equipped
with a section s : SpétRÑ X. In §19.2, we define the relative Picard functor PicsX {R
(Definition 19.2.0.2), which classifies line bundles L on X equipped with a trivializa-
tion of s˚L . Assuming that f is proper, flat, locally almost of finite presentation,
geometrically reduced, and geometrically connected, we show that PicsX {R is repre-
sentable by a spectrally algebraic space which is locally of finite presentation over
R (Theorem 19.2.0.5). We also study the representability of several related moduli
problems (parametrizing quasi-coherent sheaves of various flavors).

• Let X be a spectral Deligne-Mumford stack and let X denote the formal completion
of X along a cocompact closed subset K Ď |X | be a cocompact closed subset. In
§19.3, we study the relationship between modifications of X along K (that is, proper

1433
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morphisms X1 Ñ X which induce an equivalence over the complement of K) and
formal modifications of the formal completion X (Definition 19.3.1.3). Under mild
assumptions, we show that every formal modification of X arises from an (essentially
unique) modification of X (Theorem 19.3.1.8).

• In §19.4 we introduce a functor Var` whose R-valued points are spectral algebraic
spaces X which are proper, flat, and locally almost of finite presentation over R.
The functor Var` is not representable by a spectral Deligne-Mumford stack (for
two essentially different reasons: algebraic varieties can admit continuous families of
automorphisms, and formal algebraic spaces can fail to be algebraizable). Nevertheless,
we show that the functor Var` has a well-behaved deformation theory (which we will
exploit in Chapter ?? to prove the representability of several closely related functors.
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19.1 Existence of Weil Restrictions

Let X be an affine scheme defined over the complex numbers, and let XpCq denote the
collection of C-points of X. Then XpCq can be described as the set of R-points of an affine
R-scheme Y . For example, if X is given as a closed subscheme of affine space An defined
by a collection of polynomial equations fαpz1, . . . , znq “ 0 with complex coefficients, then Y
can be described as the closed subvariety of A2n defined by the real polynomial equations

<pfαpx1 ` iy1, . . . , xn ` iynqq “ 0 “ =pfαpx1 ` iy1, . . . , xn ` iynqq.

Here <pwq and =pwq denote the real and imaginary parts of a complex number w, respectively.
The scheme Y is called the Weil restriction of X along the morphism Spec C Ñ Spec R.
It is characterized by the following universal property: for every R-scheme Z, there is a
canonical bijection

HompZ, Y q » HompZ ˆSpec R Spec C, Xq,

where the Hom-set on the left is computed in the category R-schemes and the Hom-set on
the right is computed in the category of C-schemes.

In this section, we will study the operation of Weil restriction in the setting of spectral
algebraic geometry. Suppose that we are given a map of spectral Deligne-Mumford stacks
f : S Ñ S1 together with a map X Ñ S. A Weil restriction of X along f is another spectral
Deligne-Mumford stack Y equipped with a map Y Ñ S1 and a commutative diagram

YˆS2 S ρ //

##

X

��
S

satisfying the following universal property: for every map of spectral Deligne-Mumford
stacks Z Ñ S1, composition with ρ induces a homotopy equivalence

MapSpDM{ S1
pZ,Yq Ñ MapSpDM{ S

pZˆS1 S,Xq.

In this case, the spectral Deligne-Mumford stack Y is determined up to canonical equivalence,
and will be denoted by ResS {S1pXq. Our goal in this section is to prove the following result:

Theorem 19.1.0.1. Let f : S Ñ S1 be a morphism of spectral Deligne-Mumford stacks which
is proper, flat, and locally almost of finite presentation. Let X Ñ S be a relative spectral
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algebraic space which is quasi-separated and locally almost of finite presentation. Then
there exists a Weil restriction ResS {S1pXq. Moreover, the canonical map ResS {S1pXq Ñ S1

is a relative spectral algebraic space which is quasi-separated and locally almost of finite
presentation.

19.1.1 The Quasi-Affine Case

We begin by proving Theorem 19.1.0.1 in the special case where the morphism X Ñ S is
quasi-affine:

Proposition 19.1.1.1. Let φ : S Ñ S1 be a morphism of spectral Deligne-Mumford stacks
which is proper, flat, and locally almost of finite presentation, and let ρ : X Ñ S be a quasi-
affine morphism of spectral Deligne-Mumford stacks. Then there exists a Weil restriction
ResS {S1pXq. Moreover, the canonical map ρ1 : ResS {S1pXq Ñ S1 is quasi-affine. Moreover, if
ρ is affine, then ρ1 is affine.

In the case where ρ : X Ñ S is affine, Proposition 19.1.1.1 is an immediate consequence
of the following:

Proposition 19.1.1.2. Let φ : S Ñ S1 be a morphism between quasi-compact, quasi-
separated spectral algebraic spaces which is proper, flat, and locally almost of finite pre-
sentation. Then the pullback functor φ˚ : CAlgpQCohpS1qq Ñ CAlgpQCohpSqq admits a
left adjoint φ:. Moreover, the functor φ: carries connective objects of CAlgpQCohpSqq to
connective objects of CAlgpQCohpS1qq.

Proof. Let C denote the full subcategory of CAlgpQCohpSqq spanned by those objects A

for which the functor
B ÞÑ MapCAlgpQCohpSqqpA , φ˚Bq

is corepresentable by an object φ:pA q P CAlgpQCohpS1qq. To prove the existence of φ:, it
will suffice to show that C “ CAlgpQCohpSqq. Note that C is closed under small colimits in
CAlgpQCohpSqq. Let Sym˚

S : QCohpSq Ñ CAlgpQCohpSqq be a left adjoint to the forgetful
functor, and define Sym˚

S1 similarly. It follows from Proposition HA.4.7.3.14 that C is
generated under small colimits by the essential image of Sym˚

S. It will therefore suffice to
show that C contains the essential image of Sym˚

S. In other words, it suffices to show that
for each quasi-coherent sheaf F on S, the functor

B ÞÑ MapCAlgpQCohpYqqpSym˚
YpF q, φ

˚Bq » MapQCohpYqpF , φ˚Bq

is corepresentable.
According to Proposition 6.4.5.4, the pullback functor QCohpSq Ñ QCohpS1q admits a

left adjoint φ`. We then have

MapQCohpSqpF , φ˚Bq » MapQCohpS1qpφ`F ,Bq » MapCAlgpQCohpS1qqpSym˚
S1pφ`pF qq,Bq.
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It follows that Sym˚
SpF q belongs to C, and that we have a canonical equivalence

φ:pSym˚
SpF qq » Sym˚

S1pφ`F q “ Sym˚
S1pφ˚pF bωS {S1qq.

This completes the proof of the existence of φ:.
Now suppose that A P CAlgpQCohpYqq is connective; we wish to show that φ:pA q

is connective. Let B be the connective cover of φ:pA q, and let u : B Ñ φ:pA q be the
tautological map. Since φ is flat, the induced map φ˚puq : φ˚pBq Ñ φ˚φ:pA q exhibits φ˚pBq
as a connective cover of φ˚φ:pA q. Since A is connective, the unit map A Ñ φ˚φ:pA q

factors through φ˚pBq. It follows that the map u admits a section, so that φ:pA q is a retract
of B and is therefore connective, as desired.

Proof of Proposition 19.1.1.1. Let φ : S Ñ S1 be a morphism of spectral Deligne-Mumford
stacks which is proper, flat, and locally almost of finite presentation, and let ρ : X Ñ S be
quasi-affine. We wish to prove that the Weil restriction ResS {S1pXq exists and is quasi-affine
over S1. Working locally on S1, we can reduce to the case where S1 is affine. Then S is a
quasi-compact, quasi-separated spectral algebraic space. Let us regard A “ τě0ρ˚OX as a
connective object of CAlgpQCohpSqq, so that A determines an affine morphism ρ : X Ñ S.
The tautological map ρ˚A Ñ OX classifies a map j : X Ñ X, which is a quasi-compact open
immersion by virtue of our assumption that ρ is quasi-affine. Let φ:pA q P CAlgpQCohpS1qcnq

be as in Proposition 19.1.1.2. Then φ:pA q determines an affine spectral Deligne-Mumford
stack Y over S1 equipped with a map ψ : Y ˆS1 S Ñ X in SpDM{S.

Let K Ď |X| be the closed subset complementary to the image of j. Since the open
immersion j is quasi-compact, the set K is constructible. Let K 1 Ď |Y ˆS1 S | be the inverse
image of K, so that K 1 is also closed and constructible. Let K2 Ď |Y| be the image of K 1

under the projection map |Y ˆS1 S | Ñ |Y|. The map φ is proper and therefore universally
closed, so that K2 is closed. Choose an open immersion j1 : Y ãÑ Y complementary to K2.
Since φ is locally almost of finite presentation, the set K2 is constructible (Corollary 4.3.4.2),
so that j1 is quasi-compact. It follows that Y is quasi-affine over S1. By construction, the
map ψ restricts to a map ψ : YˆS1 S Ñ X. It follows immediately from the definitions that
ψ1 exhibits Y as the Weil restriction of X along φ. If the map ρ is affine, then K “ H so the
open immersion j1 is an equivalence, in which case Y is affine over X1.

19.1.2 Weil Restriction of Functors

To prove Theorem 19.1.0.1 in general, it will be convenient to first work in the more
general context of functors CAlgcn Ñ S, neglecting issues of representability.

Notation 19.1.2.1. Fix a functor Z : CAlgcn Ñ S. We will regard FunpCAlgcn,Sq{Z
as a symmetric monoidal 8-category with respect to the operation of Cartesian product.
Given objects X,Y P FunpCAlgcn,Sq{Z , we let Map

{Z
pX,Y q denote a classifying object for
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morphisms from X to Y (if such an object exists). More precisely, Map
{Z
pX,Y q denotes an

object of FunpCAlgcn,Sq{Z equipped with an evaluation map e : X ˆZ Map
{Z
pX,Y q Ñ Y

with the following universal property: for every object W P FunpCAlgcn,Sq{Z , composition
with e induces a homotopy equivalence

MapFunpCAlgcn,Sq{Z pW,Map
{Z
pX,Y qq Ñ MapFunpCAlgcn,Sq{Z pW ˆZ X,Y q.

Recall that a morphism f : X Ñ Y in FunpCAlgcn,Sq is representable if, for every
connective E8-ring R and every morphism SpecRÑ Y , the fiber product SpecRˆY X is
representable by a spectral Deligne-Mumford stack.

Proposition 19.1.2.2. Suppose we are given morphisms X Ñ Z Ð Y in FunpCAlgcn,Sq.
Assume that the functors Y and Z are sheaves with respect to the étale topology, and that
the map X Ñ Z is representable. Then a morphism object Map

{Z
pX,Y q exists. Moreover,

Map
{Z
pX,Y q is also a sheaf with respect to the étale topology.

Before proving Proposition 19.1.2.2, let us describe our application of interest:

Construction 19.1.2.3 (Weil Restriction). Let Shvét denote the full subcategory of
FunpCAlgcn,Sq spanned by those functors which are sheaves with respect to the étale
topology. Suppose that f : S Ñ S1 is a representable morphism in Shvét. Then f determines
a pullback functor pShvétq{S1 Ñ pShvétq{S , given by Z ÞÑ ZˆS1S. Using Proposition 19.1.2.2,
we deduce that this pullback functor admits a right adjoint ResS{S1 : pShvétq{S Ñ pShvétq{S1 ,
given by the formula ResS{S1pXq “ Map

{S1
pS,Xq ˆMap

{S1
pS,Sq S. We will refer to ResS{S1 as

the functor of Weil restriction along the map S Ñ S1.

Remark 19.1.2.4. In the special case where the functors S, S1, and X are representable by
spectral Deligne-Mumford stacks S, S1, and X, the Weil restriction ResS{S1pXq of Construction
19.1.2.3 is representable by the Weil restriction ResS {S1pXq defined in the introduction to
§19.1, provided that the latter Weil restriction exists. Consequently, Theorem 19.1.0.1 can
be regarded as an assertion about the representability of the functor ResS{S1pXq.

Proof of Proposition 19.1.2.2. Fix a functor Z : CAlgcn Ñ S, and regard FunpCAlgcn,Sq{Z
as a full subcategory of the 8-category C “ FunpCAlgcn, pSq{Z . The 8-category C can be
regarded as an 8-topos in a larger universe, so that the Cartesian monoidal structure on C
is closed. In particular, the morphism object Map

{Z
pX,Y q exists as an object of C. To prove

the first assertion, it will suffice to show that for every connective E8-ring R, the space
Map

{Z
pX,Y qpRq is essentially small. Since ZpRq is small, it will suffice to show that for every

point η P ZpRq, the homotopy fiber Map
{Z
pX,Y qpRqˆZpRqtηu is essentially small. The point

η determines a map of functors SpecRÑ Z, and we can identify Map
{Z
pX,Y qpRqˆZpRq tηu

with the mapping space MapCpSpecR,Map
{Z
pX,Y qq » MapCpSpecR ˆZ X,Y q. Since
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the morphism X Ñ Z is representable, the functor SpecR ˆZ X is representable by a
spectral Deligne-Mumford stack X “ pX ,OX q. For every object U P X , let XU denote the
functor represented by the spectral Deligne-Mumford stack pX {U ,OX |U q. The construction
U ÞÑ MapCpXU , Y q determines a functor F : X op Ñ pS. To complete the proof, it will suffice
to show that for each U P X , the space F pUq is essentially small. Since Y is a sheaf with
respect to the étale topology, the functor F preserves small limits. It will therefore suffice
to show that F pUq is essentially small when U P X is affine. In this case, we can write
XU “ SpecR1, and F pUq can be identified with a homotopy fiber of the map Y pR1q Ñ ZpR1q.

It remains to show that Map
{Z
pX,Y q is a sheaf with respect to the étale topology. Let

C0 denote the full subcategory of C spanned by those maps W Ñ Z where W : CAlgcn Ñ pS
is an étale sheaf, and let L : C Ñ C0 be a left adjoint to the inclusion. We wish to
show that Map

{Z
pX,Y q is L-local. Let α : W Ñ W 1 be a morphism in C such that

Lpαq is an equivalence; we wish to show that composition with α induces a homotopy
equivalence θ : MapCpW

1,Map
{Z
pX,Y qq Ñ MapCpW,Map

{Z
pX,Y qq. Using the universal

property of Map
{Z
pX,Y q, we can identify θ with the canonical map MapCpW

1 ˆZ X,Y q Ñ

MapCpW ˆZ X,Y q. Since Y P C0, we are reduced to proving that Lpβq is an equivalence,
where β : W ˆZ X ÑW 1 ˆZ X is the map induced by α. This follows from our assumption
that Lpαq is an equivalence, since the sheafification functor L is left exact.

19.1.3 Deformation-Theoretic Properties of Weil Restrictions

We now show that, under mild hypotheses, the constructions of §19.1.2 preserve the
deformation-theoretic properties studied in Chapter 17.

Proposition 19.1.3.1. Suppose we are given morphisms X f
Ñ Z

g
Ð Y in FunpCAlgcn,Sq.

Assume that the functors Y and Z are sheaves with respect to the étale topology and that the
map f : X Ñ Z is representable. Then:

p1q If the map g is cohesive, then the induced map Map
{Z
pX,Y q Ñ Z is cohesive.

p2q If the map g is infinitesimally cohesive, then the induced map Map
{Z
pX,Y q Ñ Z is

infinitesimally cohesive.

p3q If the map g is nilcomplete, then the induced map Map
{Z
pX,Y q Ñ Z is nilcomplete.

p4q Assume that f is representable by spectral algebraic spaces (that is, the map XpRq Ñ
ZpRq has discrete homotopy fibers for every discrete E8-ring R), quasi-compact,
and quasi-separated. If g is locally of finite presentation, then the induced map
Map

{Z
pX,Y q Ñ Z is locally of finite presentation.
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p5q Assume that f is representable by spectral algebraic spaces, quasi-compact, quasi-
separated, and locally of finite Tor-amplitude. If g is locally almost of finite presentation,
then the induced map Map

{Z
pX,Y q Ñ Z is locally almost of finite presentation.

Corollary 19.1.3.2. Let f : S Ñ S1 be a representable morphism in Shvét, and let p : X Ñ

S be an arbitrary morphism in Shvét. If p is cohesive (infinitesimally cohesive, nilcomplete,
locally almost of finite presentation), then the induced map q : ResS{S1pXq Ñ Z is cohesive
(infinitesimally cohesive, nilcomplete, locally almost of finite presentation).

Proof. We will show that if p is cohesive, then q is cohesive; the proof in the other three
cases is the same. We have a pullback diagram

ResS{S1pXq //

q

��

Map
{S1
pS,Xq

q1

��
S1 //Map

{S1
pS, Sq.

We may therefore reduce to proving that q1 is cohesive. For this, it suffices to show that both
of the projection maps Map

{S1
pS, Sq Ñ S1 Ð Map

{S1
pS,Xq are cohesive (Remark 17.3.7.3).

Using Proposition 19.1.3.1, we are reduced to showing that f and f ˝ p are cohesive. In the
case of f , this follows from Proposition ??. Because f and p are both cohesive, Remark
17.3.7.3 guarantees that f ˝ p is cohesive.

Proof of Proposition 19.1.3.1. Using Propositions 17.2.4.7, 17.3.8.4, and Remark 17.4.1.6,
we can reduce to the case where Z “ SpecR is a corepresentable functor, so that X is
representable by a spectral Deligne-Mumford stack X “ pX ,OX q. For each object U P X ,
let XU denote the functor represented by the spectral Deligne-Mumford stack pX {U ,OX |U q.
For the first three assertions, it will suffice to show that if Y is cohesive (infinitesimally
cohesive, nilcomplete) then Map

{Z
pXU , Y q has the same property, for each object U P X

(Remark 17.3.7.3). Since Y is a sheaf with respect to the étale topology, the construction
U ÞÑ Map

{Z
pXU , Y q carries colimits in X to limits in FunpCAlgcn,Sq. It will therefore

suffice to show that Map
{Z
pXU , Y q is cohesive (infinitesimally cohesive, nilcomplete) in the

special case where U P X is affine, so that XU » SpecR1 for some connective E8-ring R1.
Let F : CAlgcn

R Ñ S be the functor corresponding to Y under the equivalence of 8-categories
FunpCAlgcn,Sq{Z » FunpCAlgcn

R ,Sq. Unwinding the definitions, we see that Map
{Z
pXU , Y q

corresponds to the functor FU : CAlgcn
R Ñ S given by the formula FU pAq “ F pR1 bR Aq.

We now consider each case in turn:

p1q To prove that Map
{Z
pXU , Y q is cohesive, we must show that for every pullback diagram
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τ :
A //

��

A0

��
A1 // A01

in CAlgcn
R for which the maps π0A0 Ñ π0A01 Ð π0A1 are surjective, the induced

diagram σ :
FU pAq //

��

FU pA0q

��
FU pA1q // FU pA01q

is a pullback square in S. We can identify σ with the diagram

F pR1 bR Aq //

��

F pR1 bR A0q

��
F pR1 bR A1q // F pR1 bR A01q.

This is a pullback square by virtue of our assumption that Y is cohesive, since the
diagram of E8-rings τ 1 :

R1 bR A //

��

R1 bR A0

��
R1 bR A1 // R1 bR A01

is also a pullback square which induces surjections

π0pR
1 bR A0q Ñ π0pR

1 bR A01q Ð pR1 bR A1q.

p2q The argument is identical to that given in case p1q, noting that if the diagram τ

induces surjections π0A0 Ñ π0A01 Ð π0A1 with nilpotent kernels, then τ 1 has the
same property.

p3q Assume that Y is nilcomplete; we wish to show that Map
{Z
pXU , Y q is nilcomplete.

For this, it suffices to show that for every connective R-algebra A, the canonical map

FU pAq » F pR1 bR Aq Ñ lim
ÐÝ

F pR1 bR τďnAq » lim
ÐÝ

FU pτďnAq

is an equivalence. This follows from Proposition 17.3.2.4.

We now prove p4q. Assume that Y is locally of finite presentation over R, and that X is
a quasi-compact, quasi-separated spectral algebraic space. Let us say that an object U P X
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is good if the functor FU : CAlgcn
R Ñ S commutes with filtered colimits. It is easy to see that

the collection of good objects of X is closed under finite colimits; we wish to prove that the
final object of X is good. Using Proposition 2.5.3.5 and Theorem 3.4.2.1, we are reduced to
proving that every affine object U P X is good. In this case, we can write XU “ SpecR1 as
above, so that FU is given by the formula FU pAq “ F pA bR R

1q and therefore commutes
with filtered colimits as desired.

The proof of p5q is similar. It will suffice to show that if X is a quasi-compact,
quasi-separated spectral algebraic space of Tor-amplitude ď d over R, then the map
Map

{Z
pX,Y q Ñ Z is locally of finite presentation to order n. Let us say that a func-

tor G : CAlgcn
R Ñ S is good if it satisfies condition pbq of Remark 17.4.1.6, and let us say

that an object U P X is good if the functor FU is good. The collection of good functors
is closed under finite limits, so the collection of good objects of X is closed under finite
colimits. We wish to prove that the final object of X is good. Invoking Proposition 2.5.3.5
and Theorem 3.4.2.1 again, we are reduced to proving that every affine object U P X is
good. In this case, we can write XU “ SpecR1, where R1 is flat over R. Then FU is given by
the formula FU pAq “ F pAbR R

1q. If tAαu is a filtered diagram of m-truncated R-algebras
having colimit A, then tAα bR R1u is a filtered diagram of pm` dq-truncated R1-algebras
having colimit tAbR R1u. If the functor F is good, we deduce that the map

lim
ÝÑ

FU pAαq » lim
ÝÑ

F pAα bR R
1q Ñ F pAbR R

1q » FU pAq

is a homotopy equivalence, so that FU is also good.

19.1.4 The Cotangent Complex of a Weil Restriction

We now prove an analogue of Proposition 19.1.3.1 for the relative cotangent complex.

Proposition 19.1.4.1. Suppose we are given morphisms X f
Ñ Z

g
Ð Y in FunpCAlgcn,Sq.

Assume that f is representable, proper, locally almost of finite presentation, and locally of
finite Tor-amplitude, and that Y and Z are sheaves the étale topology. Set H “ Map

{Z
pX,Y q

and let e : X ˆZ H Ñ Y be the evaluation map, so that we have a commutative diagram

H

q

��

X ˆZ H
foo

q
��

e // Y

g

��
Z X

foo f // Z

where the left square is a pullback. Then:

p1q If g admits a relative cotangent complex LY {Z , then the projection map q : H Ñ Z

also admits a relative cotangent complex LH{Z .
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p2q The canonical map g˚LY {Z Ñ LXˆZH{X » f
˚
LH{Z induces an equivalence f`g˚LY {Z Ñ

LH{Z in the 8-category QCohpHq, where f` is given as in Construction 6.4.5.1. In
other words, we have a canonical equivalence LH{Z » f˚pq

˚ωX{Z b e˚LY {Zq, where
ωX{Z denotes the relative dualizing sheaf of f (Definition 6.4.2.4).

Proof. We will prove p1q by verifying conditions paq and pbq of Remark 17.2.4.3. We first
verify paq. Fix a connective E8-ring R and a point η P HpRq, and consider the functor
U : Modcn

R Ñ S given by the formula

UpMq “ fibpHpR‘Mq Ñ HpRq ˆZpRq ZpR‘Mqq.

Set XR “ X ˆZ SpecR, so that the point η determines a map ρ : XR Ñ Y . Let fR : XR Ñ

SpecR be the projection map. Then ρ and fR determine pullback functors

f˚R : ModR » QCohpSpecRq Ñ QCohpXRq ρ˚ : QCohpY q Ñ QCohpXRq.

Unwinding the definitions and applying Proposition 6.4.5.3, we see that the functor U is
given by the formula

UpMq “ MapQCohpXRqpρ
˚LY {Z , π

˚Mq » MapModRpfR`ρ
˚LY {Z ,Mq.

It follows that U is almost corepresented by the object fR`ρ˚LY {X (which is almost connective
by virtue of Proposition ??). This completes the verification of condition paq of Remark
17.2.4.3. Condition pbq follows from the second part of Proposition 6.4.5.4, and assertion p2q
follows from the construction.

Remark 19.1.4.2. In the situation of Proposition ??, suppose that the relative cotangent
complex LY {Z is perfect (almost perfect). Then the relative cotangent complex LH{Z is also
perfect (almost perfect). This follows from assertion p2q of Proposition ?? together with
Remark 6.4.5.2.

Proposition 19.1.4.3. Let f : S Ñ S1 be a morphism in Shvét which is representable,
proper, locally almost of finite presentation, and locally of finite Tor-amplitude. Let g : X Ñ S

be an arbitrary morphism in Shvét and let ResS{S1pXq denote the Weil restriction of X
along f , so that we have an evaluation map e : S ˆS1 ResS{S1pXq Ñ X which fits into a
commutative diagram

ResS{S1pXq
q

��

S ˆS1 ResS{S1pXq
e //foo

q

��

X

g

��
S1 S

id //foo S.

Suppose then g admits a relative cotangent complex. Then:
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paq The morphism q admits a relative cotangent complex.

pbq The canonical map

e˚LX{S Ñ LSˆS1ResS{S1 pXq{S » f
˚
LResS{S1 pXq{S1

induces an equivalence f`e˚LX{S Ñ LResS{S1 pXq{S1 in the8-category QCohpResS{S1pXqq.

pcq If LX{S is almost perfect, then LResS{S1 pXq{S1 is almost perfect.

Proof. Set H “ Map
{S1
pS,Xq and H0 “ Map

{S1
pS, Sq, so that we have a pullback diagram

ResS{S1pXq
u //

q

��

H

q1

��
S1 // H0.

The morphism f : S Ñ S1 is representable and therefore admits a cotangent complex
LS{S1 . Moreover, g is infinitesimally cohesive (Corollary 17.3.8.5). Applying Proposition
17.3.9.1 (and our assumption that g admits a relative cotangent complex), we deduce
that pf ˝ gq admits a relative cotangent complex LX{S1 . Let e : S ˆS1 H Ñ X and
e0 : S ˆS1 H0 Ñ S be the evaluation maps. and let p : H0 Ñ S1, fH : S ˆS1 H Ñ H, and
fH0 : S ˆS1 H0 Ñ H0 be the projection maps.Applying Proposition ??, we deduce that the
morphisms p and pp ˝ q1q admit relative cotangent complexes, given by fH0`e

˚
0LS{S1 and

fH`e
˚LX{S1 , respectively. Applying Proposition 17.2.5.2, we deduce that the map q1 admits

a relative cotangent complex, fH`e˚LX{S . Applying Remark 17.2.4.6, we deduce that q
admits a relative cotangent complex, which we can identify with u˚fH`e˚LX{S » f`e

˚LX{S .
This proves paq, and a diagram chase shows that this identification coincides with the map
f`e

˚LX{S Ñ LResS{S1 pXq{S1 appearing in pbq. Assertion pcq follows from pbq and Remark
6.4.5.2.

19.1.5 The Noetherian Case

We now study some cases in which we can use Artin’s representability theorem (in the
form of Theorem 18.3.0.1) to verify the representability of the functors given in Notation
19.1.2.1.

Proposition 19.1.5.1. Let R be a Noetherian E8-ring such that π0R is a Grothendieck
ring and set Z “ SpecR. Suppose we are given natural transformations X Ñ Z Ð Y for
some pair of functors X,Y : CAlgcn Ñ S satisfying the following conditions:

• The functor X is representable by a spectral algebraic space X which is proper, flat,
and locally almost of finite presentation over R.
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• The functor Y is representable by a spectral algebraic space Y which is quasi-separated
and locally almost of finite presentation over R.

Then the functor Map
{Z
pX,Y q is representable by a spectral Deligne-Mumford stack which

is locally almost of finite presentation over R.

Remark 19.1.5.2. In the situation of Proposition 19.1.5.1, it follows immediately from the
definitions that the spectral Deligne-Mumford stack representing Map

{Z
pX,Y q is a spectral

algebraic space, and it follows from Theorem 19.1.0.1 that it has quasi-affine diagonal (and
is therefore quasi-separated).

Proof. Set F “ Map
{Z
pX,Y q, and let F0 : CAlgcn

R Ñ S be given by the formula F0pAq “

fibpF pAq Ñ ZpAqq. We will show that F is representable by a spectral algebraic space by
verifying conditions p1q through p5q of Theorem 18.3.0.1:

p1q If A is a discrete commutative ring, then the space F pAq is discrete. To prove this,
it will suffice to show that the fibers of the map F pAq Ñ ZpAq are discrete (since
ZpAq » MapCAlgpR,Aq) is discrete. That is, we must show that if A is a discrete
E8-algebra over R, then F0pAq is discrete. Unwinding the definitions, we have

F0pAq “ MapFunpCAlgcn,Sq{Z pSpecAˆZ X,Y q.

Since X is flat over R, SpecA ˆZ X is representable by a spectral algebraic space
SpétA ˆSpétR X which is flat over A, and therefore 0-truncated. The desired result
now follows from Lemma 1.6.8.8.

p2q The functor F is a sheaf for the étale topology. This follows from Proposition 19.1.2.2.

p3q It follows from Proposition 19.1.3.1 that the forgetful functor F Ñ Z is nilcomplete
and infinitesimally cohesive (in fact, it is even cohesive). We claim that it is integrable.
To prove this, suppose that A is a local Noetherian E8-ring which is complete with
respect its maximal ideal. Let Spf A denote the formal spectrum of A, which we regard
as an object of FunpCAlgcn,Sq. We wish to show that the diagram

F pAq //

��

MapFunpCAlgcn,SqpSpf A,F q

��
ZpAq //MapFunpCAlgcn,SqpSpf A,Zq

is a pullback square. Unwinding the definitions, we must show that for every map of
E8-algebra RÑ A, the canonical map

MapFunpCAlgcn,Sq{Z pSpecAˆSpecR X,Y q Ñ MapFunpCAlgcn,Sq{Z pSpf AˆSpecR X,Y q

is a homotopy equivalence. This follows immediately from Theorem 8.5.3.1.
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p4q It follows from Proposition ?? that the natural transformation F Ñ Z admits a
relative cotangent complex LF {Z . Moreover, if η P F pAq is a point classifying a map
u : SpétAˆSpétRX Ñ Y and p : SpétAˆSpétRX Ñ SpétA denotes the projection map,
then we have a canonical equivalence η˚LF {Z » p`u

˚LY {SpétR. Since u˚LY {SpétR is
connective, it suffices to show that the functor p` is right t-exact. This is clear, since
p` is left adjoint to the pullback functor p˚ (which is left t-exact by virtue of our
assumption that X is flat over R).

p5q The map F Ñ Z is locally almost of finite presentation. This follows from Proposition
19.1.3.1, since the map Y Ñ Z is locally almost of finite presentation.

19.1.6 The Proof of Theorem 19.1.0.1

We will deduce Theorem 19.1.0.1 from the following non-Noetherian analogue of Propo-
sition 19.1.5.1:

Proposition 19.1.6.1. Suppose we are given functors X,Y, Z : CAlgcn Ñ S and natural
transformations f : X Ñ Z, g : Y Ñ Z. Assume that f is representable, proper, flat, and
locally almost of finite presentation. Assume that g is representable by spectral algebraic
spaces, quasi-compact, quasi-separated, and locally almost of finite presentation. Then the
map Map

{Z
pX,Y q Ñ Z is representable.

Proof. We may assume without loss of generality that Z “ SpecR for some connective E8-
ring R, so that X is representable by a spectral algebraic space X and Y is representable by a
quasi-separated spectral algebraic space Y. It follows from Propositions 19.1.3.1 and ?? that
the functor F “ Map

{Z
pX,Y q is nilcomplete, infinitesimally cohesive, and admits a cotangent

complex. According to Theorem 18.1.0.2, to show that F is representable by a spectral
Deligne-Mumford stack, it will suffice to show that the restriction F |CAlg♥ is representable
by a spectral Deligne-Mumford stack, where CAlg♥ denotes the full subcategory of CAlg
spanned by the discrete E8-rings. We may therefore replace R by π0R, and thereby reduce
to the case where R is discrete. Write R as the union of finitely generated subrings Rα.
Using Theorem 4.4.2.2, we can choose an index α and spectral Deligne-Mumford stacks Xα
and Yα which are finitely 0-presented over Rα, together with equivalences

X » τď0pSpétRˆSpétRα Xαq τď0 Y » τď0pSpétRˆSpétRα Yαq.

Enlarging α if necessary, we can ensure that Xα is a spectral algebraic space which is
proper and flat over Rα (Proposition 5.5.4.1 and Corollary 11.2.6.1 of [90]) and that Yα is
a spectral algebraic space. Then X » SpétR ˆSpétRα Xα. Set Y1 “ SpétR ˆSpétRα Yα, let
Y 1 be the functor represented by Y1, and set F 1 “ Map

{Z
pX,Y 1q. Then F |CAlg♥ » F 1|CAlg♥ .
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Consequently, we are free to replace Y by Y 1 and reduce the case where Y “ SpétRˆSpétRαYα.
We may then replace R by Rα, thereby reducing to the case where R is finitely generated
as a commutative ring. In particular, R is a Grothendieck ring (Theorem ??), so that the
desired result follows from Proposition 19.1.5.1.

We are now in a position to prove our main result.

Proof of Theorem 19.1.0.1. Let φ : S Ñ S1 be a morphism of spectral Deligne-Mumford
stacks which is proper, flat, and locally almost of finite presentation, let ψ : X Ñ S be
a relative spectral algebraic space which is quasi-separated and locally almost of finite
presentation. Then φ and ψ determine natural transformations X Ñ S Ñ S1 between
functors X,S, S1 : CAlgcn Ñ S. We wish to show that ResS{S1pXq is representable by
a quasi-separated spectral algebraic space which is locally almost of finite presentation
over S1. The assertion is local on S1, so we may assume without loss of generality that
S1 » SpétR is affine. Write X as a union of quasi-compact open substacks Xα, repre-
senting functors Xα : CAlgcn Ñ S. It follows from Proposition 19.1.6.1 that each of the
functors Map

{S1
pS,Xαq and Map

{S1
pS, Sq is representable by a quasi-separated spectral

algebraic space, so that ResS1{SpXαq “ Map
{S1
pS,Xαq ˆMap

S1
pS,Sq S

1 is also representable
by a quasi-separated spectral algebraic space ResS {S1pXαq. Note that the transition maps
ResS {S1pXαq Ñ ResS {S1pXβq are quasi-compact open immersions (see the proof of Proposi-
tion 19.1.1.1), so that the filtered colimit lim

ÝÑα
ResS {S1pXαq is also a quasi-separated spectral

algebraic space which represents the functor ResS{S1plimÝÑXαq “ ResS{S1pXq. To complete
the proof, it will suffice to show that the colimit lim

ÝÑα
ResS {S1pXαq is locally almost of finite

presentation over S1. By virtue of Proposition 17.4.3.1, this is equivalent to the requirement
that the projection map ResS{S1pXq Ñ S1 is locally almost of finite presentation, which
follows from Corollary 19.1.3.2.

19.2 The Picard Functor

Let X be a projective algebraic variety over a field κ. The Picard group of X is defined
to be the group of isomorphism classes of line bundles on X. Under mild hypotheses, one
can show that the Picard group of X itself has the structure of an algebraic variety over κ.
More precisely, there exists a group scheme E over κ (usually not quasi-compact) whose
group Epκq of κ-valued points is canonically isomorphic to the Picard group of X. Our goal
in this section is to prove an analogous result in the setting of spectral algebraic geometry.

Construction 19.2.0.1 (The Picard Functor). For every spectral Deligne-Mumford stack
X, we let PicpXq denote the full subcategory of QCohpXq» spanned by those quasi-coherent
sheaves which are locally free of rank 1 (see Definition 2.9.4.1). The construction X ÞÑ PicpXq
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determines a contravariant functor from the 8-category SpDM of spectral Deligne-Mumford
stacks to the 8-category of spaces.

Let R be a connective E8-ring and let f : X Ñ SpétR be a map of spectral Deligne-
Mumford stacks. We define a functor PicX {R : CAlgcn

R Ñ S by the formula

PicX {RpR
1q “PicpSpétR1 ˆSpétR Xq.

In general, it is not reasonable to expect the functor PicX {R to be representable by a
spectral Deligne-Mumford stack over R, because it does not have unramified diagonal: line
bundles on X can admit continuous families of automorphisms. To address this issue, we
introduce a rigidification of the functor PicX {R:

Definition 19.2.0.2. Let f : X Ñ Y “ SpétR be a map of spectral Deligne-Mumford
stacks, and suppose that f admits a section x : Y Ñ X. Then pullback along x determines a
natural transformation of functors PicX {R Ñ PicY {R. We will denote the fiber of this map
by PicxX {R : CAlgcn

R Ñ S.

More informally, the functor PicxX {R assigns to every connective R-algebra R1 a classifying
space for pairs pL , αq, where L is a line bundle on SpétR1ˆSpétR X and α is an equivalence
of R1-modules R1 Ñ x1˚L , where x1 : SpétR1 Ñ SpétR1 ˆSpétR X is the map determined
by x.

Remark 19.2.0.3. In the situation of Definition 19.2.0.2, the fiber sequence

PicxX {R Ñ PicX {R Ñ PicY {R

is canonically split by the map PicY {R ÞÑ PicX {R given by pullback along the projection
f : X Ñ Y. It follows that we have an equivalence of functors PicxX {RˆPicY {R » PicX {R,
given informally the formula pL ,L 1q ÞÑ L bf˚L 1.

Remark 19.2.0.4. Using Remark 19.2.0.3, one can show that the functor PicxX {R of
Definition 19.2.0.2 is independent of the section x, up to canonical equivalence. Moreover,
the definition of PicxX {R can be generalized to the case where f does not admit a section.

We are now ready to state our main result.

Theorem 19.2.0.5. Let f : X Ñ SpétR be a map of spectral algebraic spaces which is
flat, proper, locally almost of finite presentation, geometrically reduced, and geometrically
connected. For any section x : SpétRÑ X of f , the functor PicxX {R is representable by a
spectral algebraic space which is quasi-separated and locally of finite presentation over R.

The analogue of Theorem 19.2.0.5 in classical algebraic geometry was proven by Artin
as an application of his representability criterion. It is possible to use Theorem 18.1.0.2
to deduce Theorem 19.2.0.5 from its classical analogue. We will give a slightly different
argument at the end of this section, which appeals instead to Theorem 18.3.0.1. The main
point is to show that the functor PicxX {R has a well-behaved deformation theory.
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19.2.1 Deformations of Modules

Let us regard the construction R ÞÑ ModR as a functor from the 8-category CAlgcn of
connective E8-rings to the 8-category yCat8 of (not necessarily small) 8-categories. Our
first goal is to study the deformation theoretic properties of this functor (and some of its
variants). Since the functor in question takes values in yCat8, rather than the 8-category S
of spaces, we will need a mild extension of the terminology of Chapter 17.

Definition 19.2.1.1. Let C be an 8-category and let X : CAlgcn Ñ C be a functor. We
will say that X is cohesive (infinitesimally cohesive, nilcomplete, integrable) if, for every
corepresentable functor e : C Ñ S, the composite functor e ˝X : CAlgcn Ñ pS is cohesive
(infinitesimally cohesive, nilcomplete, integrable); see Remark ??.

We will say that a natural transformation α : X Ñ Y between functorsX,Y : CAlgcn Ñ C
is cohesive ( infinitesimally cohesive, nilcomplete, integrable) if, for every corepresentable
functor e : C Ñ pS, the induced natural transformation e˝X Ñ e˝Y is cohesive (infinitesimally
cohesive, nilcomplete, integrable), in the sense of Definition 17.3.7.1.

Remark 19.2.1.2. Let α : X Ñ Y be a natural transformation between functors X,Y :
CAlgcn Ñ S. Then α is cohesive (infinitesimally cohesive, nilcomplete, integrable) in the
sense of Definition 19.2.1.1 if and only if it is cohesive (infinitesimally cohesive, nilcomplete,
integrable) in the sense of Definition 17.3.7.1.

Proposition 19.2.1.3. Let F : CAlgcn ÑyCat8 denote the functor given by R ÞÑ Modacn
R ,

where Modacn
R denotes the full subcategory of ModR spanned by those objects which are almost

connective (that is, n-connective for some integer n). Then the functor F is cohesive and
nilcomplete.

Corollary 19.2.1.4. Let F 1 : CAlgcn Ñ Cat8 denote the functor given by R ÞÑ Modperf
R .

Then the functor F 1 is cohesive, nilcomplete, and commutes with filtered colimits.

Proof. Let F : CAlgcn ÑyCat8 be as in Proposition 19.2.1.3, so there is an evident natural
transformation α : F 1 Ñ F . The natural transformation α is cohesive (Proposition 16.2.3.1)
and nilcomplete (Proposition 2.7.3.2). Since F is cohesive and nilcomplete, we conclude
that F 1 is cohesive and nilcomplete. The assertion that F 1 commutes with filtered colimits
follows from Corollary 4.5.1.3 and Lemma HA.7.3.5.11 .

We now turn to the proof of Proposition 19.2.1.3. The assertion that the functor
R ÞÑ Modacn

R is cohesive follows from Theorem 16.2.0.2. Nilcompleteness is a consequence of
the following more general assertion:

Proposition 19.2.1.5. For every connective E1-ring R, let LModacn
R denote the full sub-

category of LModR spanned by the almost connective objects. Then the canonical map

LModacn
R Ñ lim

ÐÝ
LModacn

τďnR
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is an equivalence of 8-categories.

Proof. We can identify objects of lim
ÐÝ

LModacn
τďnR with a sequences of objects tMn P LModacn

τďnRu

together with equivalences αn : Mn » pτďnRq bτďn`1R Mn`1. Using the assumption that
Mn`1 is almost connective, we deduce that Mn is nonzero if and only if Mn`1 is nonzero.
Suppose that M0 is nonzero, so that Mn is nonzero for every integer n. Then there is some
smallest integer kpnq for which πkpnqMn ‰ 0. Using the isomorphisms αn, we deduce that
all of the integers kpnq are the same; let us denote this common value by k. For each integer
n, the fiber of the canonical map Mn`1 ÑMn is given by the tensor product

fibpτďn`1RÑ τďnRq bτďn`1RMn`1,

and is therefore pk ` n` 1q-connective. It follows that each of the towers of abelian groups
tπjMnuně0 are constant for n ě j´ k. Let M “ lim

ÐÝ
Mn, so that the Milnor exact sequences

0 Ñ lim1tπj`1Mnu Ñ πjM Ñ lim0tπjMnu Ñ 0

specialize to give isomorphisms πjM Ñ πjMn for n ě j´k. In particular, we deduce that M
is k-connective. We conclude that the functor F admits a right adjoint G : lim

ÐÝ
LModacn

τďnR Ñ

LModacn
R , given by tMnuně0 ÞÑ lim

ÐÝ
Mn.

We next show that the unit map id Ñ G ˝ F is an equivalence of functors from LModacn
R

to itself. Let M be a k-connective R-module; we wish to show that the canonical map
M Ñ lim

ÐÝ
pτďnRq bRM is an equivalence. Fix an integer j, and consider the composition

πjM
φ
Ñ πj lim

ÐÝ
pτďnRq bRM

ψ
Ñ πjpτďnRq bRM.

Using the analysis above, we see that ψ is an isomorphism for n ě j ´ k. It will therefore
suffice to show that ψ ˝ φ is an isomorphism for n ě j ´ k. This follows from the existence
of an exact sequence of abelian groups

πjpτěn`1RbRMq Ñ πjM Ñ πjpτďnRbRMq Ñ πj´1pτěn`1RbRMq,

since the k-connectivity of M implies that the abelian groups πjpτěn`1R bR Mq and
πj´1pτěn`1RbRMq are trivial.

To complete the proof, it will suffice to show that the functor G is conservative Since G
is an exact functor between stable 8-categories, we are reduced to proving that if tMnuně0
is an object of lim

ÐÝ
LModacn

τďnR such that lim
ÐÝ

Mn » 0, then each Mn vanishes. Assume
otherwise, and let k be defined as above. Then πk lim

ÐÝ
Mn » πkM0 ‰ 0, and we obtain a

contradiction.
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19.2.2 The Atiyah Class

Our next goal is to compute the cotangent complex of the functor appearing in Corollary
19.2.1.4. We begin with a more general discussion.

Notation 19.2.2.1. Let X “ pX ,OXq be a spectral Deligne-Mumford stack, let E P

QCohpXqcn, and let η P DerpOX,Σ E q (see Definition 17.1.1.1). We let Oη
X denote the

square-zero extension of OX be E determined by η (Construction 17.1.3.1), so that we have
a pullback diagram

Oη
X

//

��

OX

η

��
OX // OX‘Σ E .

The pair pX ,Oη
Xq is a spectral Deligne-Mumford stack (Proposition 17.1.3.4), which we will

denote by Xη. In the special case where η “ 0, we will denote Xη by XE “ pX ,OX‘E q.

In the situation of Notation 19.2.2.1, we have a pushout diagram of spectral Deligne-
Mumford stacks

XΣ E u //

��

X

��
X // Xη

where the maps are closed immersions. Applying Theorem 16.2.0.1, we deduce that the
diagram of pullback functors

QCohpXηqacn //

��

QCohpXqacn

��
QCohpXqacn // QCohpXΣ E qcn

is a pullback square. Taking η “ 0 and passing to homotopy fibers over some fixed object
F P QCohpXqacn, we obtain equivalences

QCohpXE qacn ˆQCohpXq tF u » MapQCohpXΣ E q
pu˚F , u˚F q ˆMapQCohpXqpF ,F q tidF u

» MapQCohpXqpF , u˚u
˚F q ˆMapQCohpXqpF ,F q tidF u

» MapQCohpXqpF ,F ‘pΣ E bF qq ˆMapQCohpXqpF ,F q tidF u

» MapQCohpXqpF ,ΣpE bF qq;

here the first equivalence follows from the observation that any lifting of idF to an endomor-
phism of u˚F is automatically invertible. We can summarize the situation as follows:
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Proposition 19.2.2.2 (First-Order Deformations of Quasi-Coherent Sheaves). Let X be
a spectral Deligne-Mumford stack and suppose we are given quasi-coherent sheaves E P

QCohpXqcn, F P QCohpXqacn. Then the 8-category QCohpXE qˆQCohpXq tF u is a Kan com-
plex, which is canonically homotopy equivalent to the mapping space MapQCohpXqpF ,ΣpE bF qq.
In particular, we obtain a canonical bijection

π0 QCohpXE q ˆQCohpXq tF u » Ext1
QCohpXqpF ,E bF q.

In the situation of Proposition 19.2.2.2, suppose that F P QCohpXq is perfect. Then F

admits a dual F_ in QCohpXq, and we have a canonical homotopy equivalence

MapQCohpXqpF ,ΣpE bF qq » MapQCohpXqpΣ´1pF bF_q,E q.

We now wish to apply this observation to the classification of perfect complexes.

Corollary 19.2.2.3. Let Perf» : CAlgcn Ñ S denote the functor given by Perf»pRq “
pModperf

R q». Then Perf» admits a (perfect) cotangent complex.

Proof. We will show that conditions paq and pbq of Example 17.2.4.4 are satisfied:

paq Let R be a connective E8-ring and let η P Perf»pRq, corresponding to a perfect
R-module N . Let F : Modcn

R Ñ S be the functor defined by the formula F pMq “

Perf»pR ‘ Mq ˆPerf»pRq tηu. Applying Proposition ??, we see that F is almost
corepresented by the perfect R-module Σ´1pN bR N

_q.

pbq For every map of connective E8-rings RÑ R1 and every connective R1-module M , we
must show that the diagram of spaces

Perf»pR‘Mq θ //

��

Perf»pR1 ‘Mq

��
Perf»pRq // Perf»pR1q

is a pullback square. Choose a point η P PerfpRq corresponding to a perfect R-module
N , and let η1 P PerfpR1q be its image (corresponding to the perfect R1-module R1bRN).
We will prove that θ induces a homotopy equivalence after passing to the homotopy
fibers over the points η and η1, respectively. Using the proof of paq, we are reduced to
showing that the canonical map

MapModRpN bR N
_,ΣMq Ñ MapModR1 pN

1 bR1 N
1_,ΣMq

is a homotopy equivalence, which is clear.
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Remark 19.2.2.4. In the situation of Corollary 19.2.2.3, we can be more precise. There
is a “universal” perfect quasi-coherent sheaf F P QCohpPerf»q, and the proof of Corollary
19.2.2.3 shows that the cotangent complex LPerf» can be identified with Σ´1pF bF_q.

Construction 19.2.2.5 (The Atiyah Class). Let X be a spectral Deligne-Mumford stack,
let E P QCohpXqcn, let F P QCohpXqacn, and let η P DerpOX,E q be a derivation. Then we
can identify η with a left homotopy inverse s of the evident map X Ñ XE . The pullback
s˚F can be regarded as an object of the 8-category QCohpXE qacn ˆQCohpXq tF u, which
(by virtue of Proposition 19.2.2.2) we can identify with a map ρη : F Ñ ΣpE bF q in the
8-category QCohpXq.

Specializing to the case where E “ LX and η is the universal derivation, we obtain
a map ρuniv : F Ñ ΣpLX bF q. We will refer to ρuniv as the Atiyah class of the quasi-
coherent sheaf F . In the special case where F is perfect, we can identify ρuniv with a map
Σ´1pF bF_q Ñ LX, which can be understood as the “derivative” of the map X Ñ Perf»

which classifies F .

Remark 19.2.2.6 (Obstruction Theoretic Interpretation of the Atiyah Class). In the
situation of Construction 19.2.2.5, suppose that E P QCohpXq is 1-connective, so that the
derivation η P DerpOX,E q determines a square-zero extension Oη

X of OX by Σ´1 E . Using
Theorem 16.2.0.1, we see that the following conditions are equivalent:

paq The map ρη of Construction 19.2.2.5 is nullhomotopic.

pbq The object F P QCohpXqacn can be lifted to an object of QCohpXηq.

Conditions paq and pbq are equivalent to the vanishing of a certain obstruction class opηq P
Ext2

QCohpXqpF bF_,Σ´1 E q, which is given by the product of the Atiyah class rρunivs P

Ext1
QCohpXqpF bF_, LXqq with the homotopy class rηs P Ext1

QCohpXqpLX,Σ´1 E q of the
derivation η.

19.2.3 Diagrams of Perfect Complexes

For later applications, it will be convenient to study the deformation theory of diagrams
K Ñ PerfpRq, where K is a simplicial set.

Notation 19.2.3.1. For every simplicial set K, we let PerfK : CAlgcn Ñ S denote the
functor given by the formula PerfKpRq “ FunpK,Modperf

R q». If K “ ∆0, we will denote the
functor PerfK simply by Perf.

Example 19.2.3.2. When K “ ∆0, the functor PerfK of Notation 19.2.3.1 coincides with
the functor Perf» of Corollary 19.2.2.3.
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Proposition 19.2.3.3. Let K be a simplicial set. Then the functor PerfK : CAlgcn Ñ S is
cohesive, nilcomplete, and admits a cotangent complex. If K is finite, then PerfK commutes
with filtered colimits and the cotangent complex LPerfK is perfect.

Lemma 19.2.3.4. Let R be a connective E8-ring, let M and N be R-modules, and define
a functor F : CAlgcn

R Ñ S by the formula F pR1q “ MapModR1 pR
1 bR M,R1 bR Nq »

MapModRpM,R1 bR Nq. Let F denote the image of F under the equivalence of 8-categories
FunpCAlgcn

R ,Sq » FunpCAlgcn,Sq{SpecR. If M is almost connective and N is perfect, then
the map α : F Ñ SpecR admits a cotangent complex. Moreover, there is a canonical
equivalence

LF {SpecR » α˚pM bN_q,

where N_ denotes the R-linear dual of N .

Proof. For every connective R-algebra R1 and every connective R1-module Q, the fiber of
the canonical map F pR1‘Qq Ñ F pR1q is given by MapModRpM,QbRNq » MapModRpM b

N_, Qq.

Proof of Proposition 19.2.3.3. The assertion that PerfK is cohesive and nilcomplete follows
from Corollary 19.2.1.4. We next show that PerfK admits a cotangent complex. Writing K
as a filtered colimit of finite simplicial sets (and using Remark 17.2.4.5), we can reduce to the
case where K is finite. We proceed by induction on the dimension d of K and the number
of nondegenerate d-simplices of K. If K is empty, there is nothing to prove. Otherwise, we
can choose a pushout diagram of simplicial sets

B∆d //

��

∆d

��
K 1 // K.

Our inductive hypothesis implies that PerfK1 admits a cotangent complex. Using Proposition
17.3.9.1, we are reduced to showing that the restriction map PerfK Ñ PerfK1 admits a
relative cotangent complex. We have a pullback diagram of functors

PerfB∆d Perf∆d

βoo

PerfK1

OO

PerfK ,oo

OO

so it will suffice to show that the map β admits a relative cotangent complex. If d “ 0,
this follows from Corollary 19.2.2.3. If d “ 1, it follows from Lemma 19.2.3.4. For d ě 2,
we can choose a categorical equivalence T ãÑ ∆d, where T “ ∆t0,1u >t1u ¨ ¨ ¨ >td´1u ∆td´1,du.
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Our inductive hypothesis then implies that PerfB∆d and PerfT » Perf∆d admit cotangent
complexes, so that β admits a relative cotangent complex by virtue of Proposition 17.2.5.2.

To complete the proof, we observe that if K is finite then the functor PerfK commutes
with filtered colimits by virtue of Corollary 19.2.1.4. In this case, Proposition 17.4.2.3
implies that the cotangent complex LPerfK is perfect (this also follows from the proof given
above).

We now consider a relative version of Proposition 19.2.3.3.

Proposition 19.2.3.5. Let R be a connective E8-ring and f : X Ñ SpétR be a map of
spectral Deligne-Mumford stacks. Define a functor PerfX {R : CAlgcn

R Ñ S by the formula

PerfX {RpR
1q “ QCohpSpétR1 ˆSpétR Xqperf,».

Let F denote the image of PerfX {R under the equivalence of 8-categories FunpCAlgcn
R ,Sq »

FunpCAlgcn,Sq{SpecR. Then:

p1q The functor F is nilcomplete and cohesive.

p2q Assume that X is a quasi-compact, quasi-separated spectral algebraic space. Then the
natural transformation F Ñ SpecR is locally of finite presentation.

p3q Assume that f is proper and locally almost of finite presentation. Then the functor F
is integrable.

p4q Assume that f is proper, locally almost of finite presentation, and locally of finite
Tor-amplitude. Then the natural transformation u : F Ñ SpecR admits a perfect
cotangent complex.

Proof. Assertions p1q, p2q and p4q follow from Proposition 19.1.3.1, Proposition ??, Remark
19.1.4.2, and Proposition 19.2.3.3. To prove p3q, suppose that X is a spectral algebraic space
which is proper and locally almost of finite presentation over R; we wish to show that F
is integrable. Let A is a local Noetherian E8-ring which is complete with respect to its
maximal ideal and let Spf A denote the formal spectrum of A, which we regard as an object
of FunpCAlgcn,Sq. We wish to show that if R Ñ A is a morphism of E8-rings, then the
restriction functor

θ : QCohpSpétAˆSpétR Xqperf Ñ QCohpSpf AˆSpétR Xqperf

is an equivalence of 8-categories. Using Theorem 8.5.0.3 (together with Corollary 8.3.4.6
and Theorem 8.3.5.2), we deduce that the restriction functor

θ : QCohpSpétAˆSpétR Xqaperf Ñ QCohpSpf AˆSpétR Xqaperf ,
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is an equivalence of symmetric monoidal 8-categories. We now observe that θ is ob-
tained from θ by restricting to the dualizable objects of QCohpSpétA ˆSpétR Xqaperf and
QCohpSpf AˆSpétR Xqaperf , respectively.

Remark 19.2.3.6. In the situation of Proposition 19.2.3.5, we describe the relative cotangent
complex LF {SpecR explicitly. Suppose we are given a point η P F pAq, corresponding to
a map of connective E8-rings R Ñ A and a perfect object F P QCohpSpétA ˆSpétR Xq.
Let f 1 : SpétAˆSpétR X Ñ SpétA denote the projection onto the first factor. Combining
Remark 19.2.2.4 with Proposition 19.1.4.3, we see that η˚LF {SpecR P QCohpSpecAq » ModA
can be identified with Σ´1f 1`pF bF_q » Σ´1f 1˚pF bF_q_, where f 1` is the functor of
Construction 6.4.5.1.

19.2.4 Vector Bundles

We now show that the results of §19.2.2 remain valid if we restrict our attention to
perfect complexes which are locally free. First, we need a brief digression.

Definition 19.2.4.1. Let f : X Ñ Y be a natural transformation between functors
X,Y : CAlgcn Ñ S. We say that f is an open immersion if, for every map SpecRÑ Y , the
fiber product X ˆY SpecR is representable by a spectral Deligne-Mumford stack XR, and
the projection XR Ñ SpétR is an open immersion (see Example 6.3.3.6). We note that f is
an open immersion if and only the following conditions are satisfied:

paq For every connective E8-ring R, the map XpRq Ñ Y pRq induces a homotopy equiva-
lence from XpRq to a summand Y0pRq Ď Y pRq.

pbq For every point η P Y pRq, there exists an open subset U Ď |SpecR| with the following
property: if R Ñ R1 is a map of connective E8-rings, then the image of η in Y pR1q

belong to Y0pR
1q if and only if the map of topological spaces | SpecR1| Ñ |SpecR|

factors through U .

Remark 19.2.4.2. Let f : X Ñ Y be an open immersion of functors X,Y : CAlgcn Ñ S.
Then f is cohesive, nilcomplete, integrable, and admits a cotangent complex (Corollary
17.3.8.5). Moreover, the relative cotangent complex LX{Y is a zero object of QCohpXq.
Using Proposition 17.4.3.1, we deduce that f is locally of finite presentation.

Proposition 19.2.4.3. Suppose we are given a commutative diagram

X
f //

h   

Y

g��
Z
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in FunpCAlgcn,Sq. Assume that f is an open immersion. If g is cohesive (infinitesimally
cohesive, nilcomplete, integrable, locally of finite presentation to order n, locally almost
of finite presentation, locally of finite presentation), then h has the same property. If g
admits a cotangent complex, then so does h; moreover, we have a canonical equivalence
LX{Z » f˚LY {Z in QCohpXq.

Proof. The first assertions follow from Remark 19.2.4.2. The existence of a cotangent
complex LX{Z follows from the existence of LY {Z by virtue of the criterion supplied by
Remark 17.2.4.3.

Definition 19.2.4.4. Let Perf : CAlgcn Ñ S be the functor defined in Proposition 19.2.3.3.
For every connective E8-ring R, we let Vect»pRq denote the summand of PerfpRq spanned
by those perfect R-modules M which are locally free of finite rank over R, and VectnpRq
the summand of PerfpRq spanned by those perfect R-modules which are locally free of rank
n over R.

Using Proposition 2.9.3.2 and Lemma 2.9.3.4, we deduce the following:

Proposition 19.2.4.5. For every integer n ě 0, the inclusions Vectn ãÑ Vect» ãÑ Perf are
open immersions.

Corollary 19.2.4.6. The functor Vect» : CAlgcn Ñ S is cohesive, nilcomplete, locally of
finite presentation, and admits a perfect cotangent complex. Moreover, if η P Vect»pRq
classifies a locally free R-module M of finite rank, then η˚LVect» P ModR can be identified
with the R-module Σ´1pM bRM

_q.
For every integer n ě 0, the functor Vectn : CAlgcn Ñ S is also cohesive, nilcomplete,

locally of finite presentation and admits a perfect cotangent complex, given by the image of
LVectn in QCohpVectnq.

Proof. Combine Proposition 19.2.3.3, Remark 19.2.2.4, Proposition 19.2.4.5, and Proposition
19.2.4.3.

We now specialize to the study of locally free sheaves of rank 1.

Proposition 19.2.4.7. Let R be a connective E8-ring and f : X Ñ SpétR be a map of
spectral Deligne-Mumford stacks. Let F denote the image of the functor PicX {R under the
equivalence of 8-categories FunpCAlgcn

R ,Sq » FunpCAlgcn,Sq{SpecR. Then:

p1q The functor F is nilcomplete and cohesive.

p2q Assume that X is a quasi-compact, quasi-separated spectral algebraic space. Then the
natural transformation F Ñ SpecR is locally of finite presentation.
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p3q Assume that X is a spectral algebraic space which is proper and locally almost of finite
presentation over R. Then F is integrable.

p4q Assume that X is a spectral algebraic space which is proper, locally almost of finite pre-
sentation, and locally of finite Tor-amplitude over R. Then the natural transformation
F Ñ SpecR admits a perfect cotangent complex.

Proof. Assertions p1q, p2q, and p4q follow from Proposition 19.1.3.1, Proposition ??, Remark
19.1.4.2, and Corollary 19.2.4.6. To prove p3q, let A be a local Noetherian E8-ring which is
complete with respect to its maximal ideal and let Spf A denote the formal spectrum of A,
which we regard as an object of FunpCAlgcn,Sq. We must show that for any morphism of
E8-rings RÑ A, then the restriction map θ : PicpSpétAˆSpétRXq ÑPicpSpf AˆSpétRXq
is a homotopy equivalence. To prove this, we observe that Proposition 2.9.4.2 implies that θ
is obtained from the symmetric monoidal forgetful functor

θ : QCohpSpétAˆSpétR Xqaperf,cn Ñ QCohpSpf AˆSpétR Xqaperf,cn

by restricting to the subcategories spanned by invertible objects and equivalences between
them. It now suffices to observe that θ is an equivalence of symmetric monoidal 8-categories
(Theorems 8.5.0.3, 8.3.4.4, and 8.3.5.2).

Remark 19.2.4.8. If f : X “ pX ,OX q Ñ SpétR is proper, the inclusion PicX {R ãÑ

PerfX {R is an open immersion of functors. In this case, we can deduce Proposition 19.2.4.7
from Propositions 19.2.3.5 and 19.2.4.3. Moreover, Remark 19.2.3.6 implies that the cotangent
complex of the map q : F Ñ SpecR is given by LF {SpecR » Σ´1q˚pf˚OX q

_. In particular,
the relative cotangent complex of F over SpecR is constant along the fibers of F . This
is a reflection of the fact that the functor PicX {R admits a group structure, given by the
formation of tensor products.

19.2.5 Representability of the Picard Functor

We now turn to the proof of Theorem 19.2.0.5. In fact, we will prove the following
slightly stronger result (which implies Theorem 19.2.0.5, by virtue of Proposition 8.6.4.1:

Proposition 19.2.5.1. Let f : X Ñ SpétR be a morphism of spectral algebraic spaces which
is flat, proper, and locally almost of finite presentation. Suppose that the cofiber of the unit
map u : RÑ f˚OX has Tor-amplitude ď ´1, and let x : SpétRÑ X be a section of f . Then
the functor PicxX {R is representable by a spectral algebraic space which is quasi-separated
and locally of finite presentation over R.

Proof. Let Y : CAlgcn Ñ S denote the image of the functor PicxX {R under the equivalence
of 8-categories FunpCAlgcn

R ,Sq » FunpCAlgcn,Sq{SpecR. Let Y 1 “ Y ˆSpecR Specpπ0Rq.
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We will prove that Y 1 is representable by a quasi-separated spectral algebraic space Y1 which
is locally almost of finite presentation over π0R. Note that the functors Y and Y 1 agree on
discrete E8-rings. Since the functor Y is nilcomplete, infinitesimally cohesive, and admits
a cotangent complex (Proposition 19.2.4.7), it will then follow that Y is representable by
a spectral Deligne-Mumford stack Y (Theorem 18.1.0.2). Note that that τď0 Y » τď0 Y1.
Since Y1 is a quasi-separated spectral algebraic space, it follows immediately that Y is also a
quasi-separated spectral algebraic space. Since LY {SpecR is perfect (Proposition 19.2.4.7),
Proposition 17.4.2.3 shows that Y is locally of finite presentation over R. We may therefore
replace R by π0R and thereby reduce to the case where R is discrete.

Write R as the union of finitely generated subrings Rα. Using Theorem 4.4.2.2, we can
choose an index α, a spectral Deligne-Mumford stack Xα which is finitely 0-presented over
Rα, and an equivalence X » τď0pSpétR ˆSpétRα Xαq. Enlarging α if necessary, we may
suppose that Xα is a spectral algebraic space which is proper and flat over Rα (Propositions
5.5.4.1 and 6.1.6.1). Let fα : Xα Ñ SpétRα denote the projection map and let M denote
the cofiber of the unit map Rα Ñ fα˚OXα . Then M is a perfect Rα-module (Theorem
6.1.3.2) and R bRα M has Tor-amplitude ď ´1. Let M_ be the Rα-linear dual of M , so
that R bRα M_ is 1-connective. Enlarging α if necessary, we may suppose that M_ is
1-connective, so that M has Tor-amplitude ď 1. We may therefore replace R by Rα and X
by Xα, and thereby reduce to the case where R is finitely generated as a commutative ring.
In particular, we may assume that R is a Grothendieck ring.

We now prove that Y is representable by a spectral algebraic space which is locally
almost of finite presentation over R by verifying hypotheses p1q through p5q of Theorem
18.3.0.1. Hypothesis p2q is obvious, and hypotheses p3q and p5q follow immediately from
Proposition 19.2.4.7. Let us check the remaining conditions:

p1q For every discrete commutative ring A, the space Y pAq is discrete. Equivalently, we
must show that if A is a discrete R-algebra, then the space PicxX {RpAq is discrete. Let
A be a discrete R-algebra and let L be a line bundle on XA “ SpétAˆSpétR X. Then
the mapping space MapQCohpXAqpL ,L q is given by

MapQCohpXAqpOX,L bL _q » MapQCohpXAqpOX,OXq

» MapModApA,AbR f˚OXq

» Ω8A‘ Ω8pAbR cofibpuqq.

Our assumption on the Tor-amplitude of cofibpuq guarantees that MapQCohpXAqpL ,L q

is homotopy equivalent to the discrete commutative ring π0A » Ω8A. In particular, if
we let x1 : SpétAÑ XA denote the map induced by x, then pullback along x1 induces
a homotopy equivalence MapQCohpXAqpL ,L q Ñ MapQCohpSpecAqpx

1˚L , x1˚L q. It
follows that the space PicxX {RpAq is discrete.
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p4q The natural transformation Y Ñ SpecR admits a connective cotangent complex
LY {SpecR. Let Z : CAlgcn Ñ S be the image of the functor PicX {R under the
equivalence of 8-categories

FunpCAlgcn
R ,Sq » FunpCAlgcn,Sq{SpecR,

and let Z0 be the image of PicSpétR{R under the same equivalence, so Y can be
identified with the fiber of the map Z Ñ Z0 determined by the section x. Using
Remark 19.2.4.8, we deduce that the relative cotangent complexes LZ{SpecR and
LZ0{SpecR are given by the pullbacks of the R-modules Σ´1pf˚OXq

_ and Σ´1R,
respectively. It follows that the relative cotangent complex LY {SpecR exists, and is
given by the pullback of the R-linear dual of Σ1 fibpf˚OX

x˚
Ñ Rq » Σ1 cofibpuq. By

assumption, cofibpuq has Tor-amplitude ď ´1, so that Σ´1 cofibpuq_ is connective and
therefore LY {SpecR is connective as desired.

This completes the proof that the functor Y is representable by a spectral algebraic
space Y which is locally almost of finite presentation over R. The above calculation shows
that LY {SpétR is perfect, so that Y is locally of finite presentation over R (Proposition
17.1.5.1). It remains to verify that Y is quasi-separated. Suppose we are given a pair of
connective E8-rings A and B and maps SpétA φ

ÝÑ Y Ð φ1
ÐÝ SpétB; we wish to prove that

the fiber product SpétA ˆY SpétB is quasi-compact. Replacing R by A bR B, we may
reduce to the case where A “ B “ R. Then φ and φ1 determine line bundles L and L 1 on
X equipped with trivializations of x˚L and x˚L 1. For every object R1 P CAlgcn

R , let L R1

and L 1
R1 denote the pullbacks of L and L 1 to XR1 . Define functors F, F 1 : CAlgcn

R Ñ S by
the formulas

F pR1q “ MapQCohpXR1 qpL R1 ,L
1
R1q F 1pR1q “ MapModR1 pR

1, R1q.

Since f˚pL 1bL _q is perfect, we can identify F pR1q with MapModRppf˚L 1bL _q_, R1q.
Note that L 1bL _ is a line bundle on X. Since f is flat, the pushforward f˚pL 1bL _q has
Tor-amplitude ď 0, so that pf˚L 1bL _q_ is connective. It follows that the functor F is
representable by the affine spectral Deligne-Mumford stack Z “ Spét Sym˚

Rpf˚pL
1bL _q_q

(see Proposition 19.1.1.1). Similarly, the functor F 1 is representable by the affine spectral
Deligne-Mumford stack Spét Sym˚

RpRq.
Let g : ZˆSpétR X Ñ X be the projection onto the second factor. By construction, we

have a canonical map of line bundles α : g˚L Ñ g˚L 1. Lemma 2.9.3.3 implies that there is
a quasi-compact open immersion U ãÑ ZˆSpétR X such that a map h : SpétC Ñ ZˆSpétR X
factors through U if and only if h˚ cofibpαq is 1-connective. Then U determines a constructible
closed subset K Ď |ZˆSpétR X |. Since f is proper, the image of K is a constructible closed
subset of Z, which determines a quasi-compact open immersion Z0 ãÑ Z. Unwinding
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the definitions, we see that Z0 represents the subfunctor F0 of F which carries an object
R1 P CAlgcn

R to the summand of F pR1q “ MapQCohpXR1 qpL R1 ,L
1
R1q consisting of equivalences

of L R1 with L 1
R1 . Unwinding the definitions, we obtain a pullback diagram

SpétAˆY SpétB //

��

Z0

��
SpétR // Z1 .

It follows that SpétAˆY SpétB is quasi-affine (and in particular quasi-compact).

In the situation of Proposition 19.2.5.1, if the map f : X Ñ SpétR is fiber smooth, then
PicxX {R satisfies the valuative criterion of properness:

Proposition 19.2.5.2. Let f : X Ñ SpétR be a morphism of spectral algebraic spaces which
is proper, fiber smooth, and geometrically connected. Then, for every object V P CAlgR which
is a valuation ring with fraction field K, the map PicxX {RpV q ÑPicxX {RpKq is bijective.

Proof. Without loss of generality we may assume that V “ R and the map SpétV Ñ SpétR
is the identity. Let X be the underlying 8-topos of X. For every object U P X , let
XU “ pX {U ,OX |U q. Set Xη “ SpétK ˆSpétV X, and let X η be the underlying 8-topos of
Xη, so that we have an open immersion of 8-topoi j˚ : X 0 Ñ X . Let i˚ : Y Ñ X be the
complementary closed immersion, let t denote a uniformizer for the discrete valuation ring
V and κ “ V {ptq its residue field.

Let L be a line bundle on Xη. We define a functor FL : X op Ñ S by the formula

FL pUq “PicpXU q ˆPicpSpétKˆSpétV XU q tL u.

If U is affine, then XU » SpétA for some commutative ring A, and L determines an
invertible module M r1t s over Ar1t s. Unwinding the definitions, we can identify FL pUq with
the set of all submodules M Ď M r1t s which are invertible over A and generate M r1t s as
modules over Ar1t s. Note that the functor FL is representable by a discrete object of X ,
which we will denote by FL (by a slight abuse of notation). Note that j˚FL is a final object
of X η, so we can write FL » i˚F

1
L for some object F 1L P Y.

There is an evident action of the discrete group Z » fibpPicpSpétV q Ñ PicpSpétKqq
on F 1L . We claim that this action exhibits F 1L as a Z-torsor in the topos Y♥. To prove
this, it will suffice to show that for every affine object U P X , the set FL pUq is nonempty
and is acted on transitively by the group H0p| SpétκˆSpétV XU |; Zq. Let XU “ SpétA and
M r1t s be as above; we wish to show that FL pUq is nonempty and acted on transitively
by the group H0p| SpecA{tA|; Zq. Note that A is smooth over V (in the sense of classical
commutative algebra) and therefore regular. It follows that M r1t s can be identified with a
fractional ideal of Ar1t s, given by a product

ś

1ďiďk p
mi
i for some integers mi and some prime



1462 CHAPTER 19. APPLICATIONS OF ARTIN REPRESENTABILITY

ideals pi Ď Ar1t s of height 1. Let Let p1i be the inverse image of p in A, and let q1, . . . , ql be
the set of height one prime ideals of A which contain tA. Then FL pUq can be identified
with the set of all fractional ideals of A having the form

ś

1ďiďk p
1mi
i

ś

1ďjďl q
nj
j . Note that

since A is smooth over V , A{tA is smooth over the residue field of V , hence a finite product
of integral domains, so that the group of continuous Z-valued functions on | SpecA{tA| can
be identified with Zl. The image of t in each localization Aqj is a uniformizer, so the action
of pa1, . . . , alq P Zl on FL pUq is given by

ź

1ďiďk
p1mii

ź

1ďjďl
q
nj
j ÞÑ

ź

1ďiďk
p1mii

ź

1ďjďl
q
aj`nj
j .

It is now clear that this action is simply transitive.
To prove Proposition 19.2.5.2, we must show that the diagram

PicpXq //

e˚

��

PicpXηq

��
PicpSpétV q //PicpSpétKq

is a pullback square. For this, it will suffice to show that for every line bundle L on Xη, the
induced map

θ : FL p1q ÑPicpSpétV q ˆPicpSpétKq tL u

is a homotopy equivalence. Let q˚ : Y Ñ S be the global sections functor and q˚ its left adjoint.
The Z-torsor F 1L is classified by a point η P H1pY ; Zq » π0q˚q

˚S1. Since SpétκˆSpétV X is
smooth over κ and therefore normal, there exists a map of connected spaces γ : K Ñ S1 with
π1K finite, and such that η belongs to the image of the map π0q˚q

˚K (Proposition ??). The
map γ is classified by an element in the group H1pK; Zq » Hompπ1K,Zq » 0 and is therefore
nullhomotopic, from which it follows that η is trivial. Then FL pt1uq is nonempty and a
torsor for the group H0p| Spétκ ˆSpétV X |; Zq. Similarly, PicpSpétV q ˆPicpSpétKq tL u is
a torsor for the group H0p| Spétκ|; Zq » Z. The fiber SpétκˆSpétV X is connected, so the
restriction map

H0p| SpétκˆSpétV X |; Zq Ñ H0p| Spétκ|; Zq » Z

is an isomorphism, from which it follows that θ is a homotopy equivalence.

Corollary 19.2.5.3. Let f : X Ñ SpétR be a morphism of spectral algebraic spaces which
is proper, fiber smooth, and geometrically connected and let Y be a closed subspace of
PicxX {SpétR. Then the projection map q : Y Ñ SpétR is separated. If Y is quasi-compact,
then q is proper.

Proof. Combine Proposition 19.2.5.1, Proposition 19.2.5.2, Proposition ??, and Corollary
5.3.1.2.
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19.2.6 Smooth Projective Space

Let S denote the sphere spectrum. In §??, we introduced a spectral algebraic space Pn
S ,

which we referred to as projective space of dimension n over S (Construction 5.4.1.3). Let O

denote the structure sheaf of Pn
S . As in classical algebraic geometry, there is a tautological

line bundle Op´1q on Pn
S (Construction 5.4.2.1) and map Op´1q Ñ On`1 (Construction

5.4.2.5) which locally exhibits Op´1q as a direct summand of On`1. However, in contrast
with classical algebraic geometry, the projective space Pn

S is not universal with respect to
these properties: the universal property of Theorem 5.4.3.1 holds for ordinary commutative
rings, but not for arbitrary connective E8-rings. In this section, we will construct a different
spectral algebraic space, which we will denote by Pn

sm, which has the expected universal
property (but suffers from other defects: see Remark ??).

Construction 19.2.6.1 (Smooth Projective Space as a Functor). Fix a nonnegative integer
n ě 0. For every connective E8-ring A, let XpAq denote the subcategory of pModAq{An`1

whose morphisms are equivalences and whose objects are maps f : L Ñ An`1 with the
following property:

paq The map f admits a left homotopy inverse (that is, it exhibits L as a direct summand
of An`1).

pbq The A-module L is projective of rank 1.

Note that XpAq is an essentially small Kan complex. We will regard the construction
A ÞÑ XpAq as a functor X : CAlgcn Ñ S.

Theorem 19.2.6.2. Let n ě 0 be a nonnegative integer. Then the functor X : CAlgcn Ñ S
of Construction 19.2.6.1 is representable by a spectral algebraic space.

Proof. Let Perf∆1 : CAlgcn Ñ S be as in Notation 19.2.3.1. For every connective E8-ring
R, we will identify Perf∆1pRq with the Kan complex parametrizing maps u : M Ñ N ,
where M and N are perfect R-modules. Consider the map α : Perf∆1 Ñ Perf given on
R-valued points by pu : M Ñ Nq ÞÑ N P Modperf

R . Let S denote the sphere spectrum, and
let β : SpecS Ñ Perf be the map classifiying the perfect S-module Sn`1. By definition,
we can identify X with a subfunctor of the fiber product Perf∆1 ˆPerf SpecS, whose R-
valued points are given by maps of connective perfect R-modules pu : M Ñ Rn`1q for
which cofibpuq is locally free of rank n (which implies that M is locally free of rank 1).
Using Proposition 19.2.4.5, we see that this identification determines an open immersion
j : X ãÑ Perf∆1 ˆPerf SpecS. Applying Propositions 19.2.3.3 and 19.2.4.3, we deduce that
the functor X is cohesive, nilcomplete, and admits a perfect cotangent complex. Note that
the restriction X|CAlg♥ is representable by the spectral algebraic space Pn

S (Theorem 5.4.3.1).
Applying Theorem 18.1.0.2, we deduce that the functor X is also representable by a spectral
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Deligne-Mumford stack (which has the same 0-truncation as Pn
S , and is therefore a schematic

spectral algebraic space).

Definition 19.2.6.3 (Smooth Projective Space). Let n ě 0 be a nonnegative integer. We
let Pn

sm denote a spectral algebraic space which represents the functor X : CAlgcn Ñ S
(note that Pn

sm is well-defined up to equivalence, by virtue of Proposition 1.6.4.2). We will
refer to Pn

sm as smooth projective space of dimension n (see Remark 19.2.6.5 below).

Remark 19.2.6.4. It is possible to prove Theorem 19.2.6.2 by explicitly constructing the
smooth projective space Pn

sm, using a variant of Construction 5.4.1.3.

Remark 19.2.6.5. Let R be a connective E8-ring and let η be an R-valued point of Pn
sm,

classifying a fiber sequence of R-modules LÑ Rn`1 ÑM where L and M are locally free
of rank 1 and n, respectively. Then the pullback η˚LPnsm can be identified with the tensor
product L´1 bRM (this can be deduced from the results of §19.2.2, or directly from the
definitions). In particular, the cotangent complex LPnsm is locally free of rank n. Applying
Proposition 17.1.5.1, we deduce that Pn

sm is differentially smooth over the sphere spectrum
S.

Remark 19.2.6.6. Let Pn
S be as in Construction 5.4.1.3. The tautological map Op´1q Ñ

On`1 on Pn
S determines a morphism of spectral algebraic spaces e : Pn

S Ñ Pn
sm. For n ą 0,

this morphism is not an equivalence. However, it is not far off:

paq The morphism e induces an equivalence from the 0-truncation of Pn
S to the 0-truncation

of Pn
sm. In other words, the projective spaces Pn

S and Pn
sm represent the same functor

on the category of ordinary commutative rings (this is essentially a reformulation of
Theorem 5.4.3.1).

pbq For every connective E8-ring R, the morphism e induces a map

eR : Pn
R » SpétRˆSpétS Pn

S
e
ÝÑ SpétRˆSpétS Pn

sm.

If R is discrete, then this map exhibits Pn
R as the 0-truncation of SpétRˆSpétS Pn

sm
(this follows from paq, since Pn

R is flat over R).

pcq If R “ Q (or, more generally, if R is an E8-algebra over Q), then the map eR is
an equivalence This follows from pbq and Remark 19.2.6.5, since every differentially
smooth Q-algebra is fiber smooth (Proposition 11.2.4.4) and therefore discrete.

Remark 19.2.6.7. Let us contrast the projective space Pn
S of Construction 5.4.1.3 with

the smooth projective space Pn
sm of Definition 19.2.6.3 (for n ą 0):

piq The projective space Pn
S is fiber smooth over the sphere spectrum S. In particular, it

is flat over S. However, the smooth projective space Pn
sm is not flat over S.
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piiq The smooth projective space Pn
sm is differentially smooth over S. In particular, the

cotangent complex LPnsm P QCohpPn
smq is locally free of finite rank. However, the

cotangent complex LPnS P QCohpPn
Sq is not perfect (though it is almost perfect).

piiiq On the projective space Pn
S , the the line bundles Opdq have the “expected” cohomology

(mirroring Serre’s calculation in classical algebraic geometry): for example, if d ě 0,
then ΓpPn

S ; Opdqq is a locally free S-module of rank
`

n`d
n

˘

(Theorem 5.4.2.6). These
line bundles extend to the smooth projective space Pn

sm, but their cohomology is
substantially more complicated (even for d “ 0).

pivq The smooth projective space Pn
sm is of finite presentation over S, while the projective

space Pn
S is only almost of finite presentation over S.

pvq The projective space Pn
S is more rigid than its smooth counterpart Pn

sm. For example,
there is no automorphism of P1

S which exchanges the S-valued points corresponding
to 0 and 1, while the smooth projective space P1

sm does admit such an automorphism.

pviq The smooth projective space Pn
sm represents an easily-described functor X : CAlgcn Ñ

S (Construction 19.2.6.1). It is also possible to specify the functor represented by Pn
S ,

but the description is more complicated.

19.3 Application: Existence of Dilatations

Let X be a Noetherian algebraic space, let U Ď X be an open subspace, and let X be
the formal completion of X along the complement of U . Roughly speaking, one can think
of X as obtained by gluing together U and X along the “intersection” XU “ U X X (which
we view here as a purely heuristic object, though it can be given meaning in the setting of
rigid analytic geometry). One prediction of this philosophy is that changing the algebraic
space X while keeping U fixed should be equivalent to changing the formal algebraic space
X while keeping XU fixed. To make this idea more precise, it is convenient to introduce
some terminology:

Definition 19.3.0.1. Let f : X 1 Ñ X be a morphism of Noetherian algebraic spaces and
let K Ď |X| be a closed subset with inverse image K 1 “ f´1pKq. We will say that f is a
modification centered at pK 1,Kq if it is proper and the induced map X 1 ´K 1 Ñ X ´K is
an isomorphism. In this case, we will also say that X 1 is a dilatation of X along K or that
X is a contraction of X 1 along K 1.

In [5], Artin introduced the notion of a formal modification between formal algebraic
spaces. Under mild hypotheses, Artin showed that if X is the formal completion of a
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Noetherian algebraic space X along a closed subset K Ď |X|, one has equivalences

t Dilatations of X centered K u
„
ÝÑ t Formal modifications X1 Ñ X u (19.1)

t Contractions of X centered K u
„
ÝÑ t Formal modifications XÑ X1 u. (19.2)

Our goal in this section is to establish an analogue of (19.1) in the setting of spectral
algebraic geometry. We begin in §?? by introducing the notion of a formal modification
f : X1 Ñ X between formal spectral Deligne-Mumford stacks (Definition 19.3.1.3). Roughly
speaking, the notion of formal modification abstracts those properties one would expect to see
if f arose by formally completing a morphism of spectral Deligne-Mumford stacks F : X1 Ñ X
which is proper, locally almost of finite presentation, and an equivalence over the complement
of |X | “ K Ď |X |. In §??, we show that in this case, the spectral Deligne-Mumford stack
X1 can be recovered from X and the formal modification f : that is, the spectral analogue
of (19.1) is fully faithful (see Proposition 19.3.2.1). The hard part is to show that it is
essentially surjective: that is, that every formal modification f : X1 Ñ X “ X^K arises as the
formal completion of some map F : X1 Ñ X. To prove this, we can work locally and thereby
reduce to the case where X “ SpétR for some connective E8-ring R. In this case, one might
hope to recover X1 as the Weil restriction of X1 along the canonical map Spf RÑ SpétR. In
§19.3.3, we combine ideas of §?? with the spectral Artin representability theorem to show
that this Weil restriction is representable by a spectral algebraic space X. The remaining
difficulty is to show that X is proper over R, which we deduce from a general criterion
established in §19.3.4.

19.3.1 Dilatations and Formal Modifications

We begin by adapting Definition 19.3.0.1 to the setting of spectral algebraic geometry.

Definition 19.3.1.1. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
and let K Ď |Y | be a cocompact closed subset. We will say that X is a dilatation of Y
centered at K if f is proper, locally almost of finite presentation, and the induced map
X´f´1pKq Ñ Y´K is an equivalence. We let DilKpYq denote the full subcategory of
SpDM{Y spanned by those maps f : X Ñ Y which are dilatations centered at K. We will
refer to DilKpYq as the 8-category of dilatations of Y centered at K.

If f : X Ñ Y is any morphism of spectral Deligne-Mumford stacks and K Ď |Y | any
cocompact closed subset, we obtain an induced map of formal completions f^K : X^f´1K Ñ Y^K .
Our next goal is to describe some special features enjoyed by f^K in the special case where X
is a dilatation of Y centered at K. We take our cue from the following simple observation:

Proposition 19.3.1.2. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks.
Then f is an equivalence if and only if it satisfies the following conditions:
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p1q The map f is proper and locally almost of finite presentation.

p2q The relative cotangent complex LX {Y vanishes.

p3q The unit map OY Ñ f˚OX is an equivalence.

Proof. The necessity of conditions p1q, p2q, and p3q is obvious. For the converse, suppose that
p1q, p2q, and p3q are satisfied. Combining p1q and p2q with Proposition 17.1.5.1, we deduce
that f is étale. In particular, f is locally quasi-finite, so the properness of f guarantees
that f is affine (Proposition 17.1.5.1). It now follows from p3q that f is an equivalence, as
desired.

Now suppose that f : X Ñ Y is a formal modification of Y along K Ď |Y |. Using
Proposition 19.3.1.2, we deduce that the quasi-coherent sheaves LX {Y and cofibpOY Ñ f˚OXq

are supported on the closed subsets f´1pKq and K, respectively. This motivates the following:

Definition 19.3.1.3. Let f : XÑ Y be a morphism of formal spectral Deligne-Mumford
stacks. We will say that f is a formal modification if it satisfies the following conditions:

p1q The map f is representable, proper, and locally almost of finite presentation. In
other words, for every map SpétRÑ Y, the fiber product XˆY SpétR is a spectral
algebraic space which is proper and locally almost of finite presentation over R.

p2q The completed cotangent complex L^X {Y P QCohpXq (Definition 17.1.2.8) is nilcoherent
(Definition 8.2.1.1).

p3q The cofiber of the unit map OY Ñ f˚OX is a nilcoherent object of QCohpYq.

Warning 19.3.1.4. Definition 19.3.1.3 is somewhat different from the notion of formal
modification which appears [5]: in particular, we do not require a priori that f satisfy a
“valuative criterion” for complete discrete valuation rings.

Proposition 19.3.1.5. Let f : X Ñ Y be a morphism of spectral Deligne-Mumford stacks
which exhibits X as a dilatation of Y along a cocompact closed subset K Ď |Y |. Set X “ X^f´1K

and Y “ Y^K , so that we have a pullback diagram of formal spectral Deligne-Mumford stacks

X
g //

f^

��

X
f
��

Y
g1 // Y .

Then f^ is a formal modification.
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Proof. Note that LX {Y and cofibpOY Ñ f˚OXq are almost perfect (Proposition 17.1.5.1 and
Theorem 5.6.0.2). Applying Corollary 8.4.1.7, we obtain equivalences

L^X {Y » g‹LX {Y » g˚LX {Y

cofibpOY Ñ f^˚ OXq » g1‹ cofibpOY Ñ f˚OXq » g1˚ cofibpOY Ñ f˚OXq.

Since LX {Y and cofibpOY Ñ f˚OXq are supported on f´1pKq and K, respectively, it follows
from Proposition 8.3.2.6 that L^X {Y and cofibpOY Ñ f^˚ OXq are nilcoherent, as desired.

Remark 19.3.1.6. Suppose we are given a pullback diagram of formal spectral Deligne-
Mumford stacks

X1
g1 //

f 1

��

X

f

��
Y1

g // Y .

where g (and therefore also g1) is representable. If f is a formal modification, then so is f 1

(see Corollary 8.4.1.8).

Notation 19.3.1.7. Let Y be a formal spectral Deligne-Mumford stack. We let DilfpYq
denote the full subcategory of fSpDM{Y spanned by those maps f : X Ñ Y where f is a
formal modification. We will refer to DilfpYq as the 8-category of formal dilatations of Y.

We can now formulate the main result of this section.

Theorem 19.3.1.8. Let Y be a spectral Deligne-Mumford stack satisfying the following
condition:

p˚q For every étale map SpétRÑ Y, the E8-ring R is Noetherian and π0R is a Grothendieck
ring.

Let K be a closed subset of |Y |. Then the construction X ÞÑ XˆY Y^K induces an equivalence
of 8-categories ρ : DilKpYq Ñ DilfpY^Kq.

The proof of Theorem 19.3.1.8 will occupy our attention throughout this section. We
proceed in three steps:

• We first show that the construction X ÞÑ XˆY Y^K is fully faithful (Proposition 19.3.2.1).

• We show that if Y “ SpétR is affine and f0 : XÑ Y^K is a formal modification, then
the Weil restriction ResY^K {YpXq is representable by a spectral algebraic space X which
is locally almost of finite presentation over R (Proposition 19.3.3.2).
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• If Y “ SpétR is affine and X is a spectral algebraic space which is locally almost of
finite presentation over R, for which XˆY Y^K Ñ Y^K is a formal modification and
the projection map XˆYpY´Kq Ñ Y´K is an equivalence, then X is automatically
proper over R (Proposition 19.3.4.1).

Assuming these results, we can give the proof of Theorem 19.3.1.8:

Proof of Theorem 19.3.1.8. Set Y “ Y^K . The assertion that the construction X ÞÑ XˆY Y^K
induces an equivalence of 8-categories ρ : DilKpYq Ñ DilfpY^Kq is local on Y. We may
therefore assume without loss of generality that Y “ SpétR is affine. The functor ρ is
fully faithful by virtue of Proposition 19.3.2.1, so it will suffice to show that ρ is essentially
surjective. Let X be a formal modification of Y^K , which we will identify with an object of
the 8-category FunpCAlgcn,Sq. Applying Proposition 19.3.3.2, we deduce that the Weil
restriction ResY^K {YpXq is representable by a spectral algebraic space X which is locally
almost of finite presentation over R. Unwinding the definitions, we obtain equivalences

X » XˆY Y^K XˆYpY´Kq » Y´K.

It follows from Proposition 19.3.4.1 that X is proper over R, and is therefore a dilatation of
SpétR along K which is a preimage of X under the functor ρ.

19.3.2 Full Faithfulness

Our first step is to show that the functor ρ : DilKpYq Ñ DilfpY^Kq appearing in the
statement of Theorem 19.3.1.8 is fully faithful. This is an easy consequence of Proposition
9.2.4.4, and does not require any Noetherian hypotheses on Y:

Proposition 19.3.2.1. Let Y be a spectral Deligne-Mumford stack, let K Ď |Y | be a
cocompact closed subset, and let Y “ Y^K denote the formal completion of Y along K.
Then the construction X ÞÑ XˆY Y induces a fully faithful embedding of 8-categories
DilKpYq Ñ DilfpYq.

Note that the assertion of Proposition ?? is local on Y, so we can assume without loss of
generality that Y “ SpétR is affine. In this case, the subset K Ď |SpecR| can be written as
the vanishing locus of a finitely generated ideal I Ď π0R. If R is I-complete, then Proposition
?? is an immediate consequence of Corollary 8.5.3.4 (which guarantees that the pullback
functor X ÞÑ XˆSpétR Spf R is fully faithful on all spectral algebraic spaces which are proper
and almost of finite presentation over R, not only those which are dilatations centered at K).
To handle the general case, we observe that there is a commutative diagram of 8-categories

DilKpSpétRq //

��

DilfpSpf Rq

„

��
DilK1pSpétR^I q // DilfpSpf R^I q,
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where K 1 denotes the inverse image of K in |SpecR^I |. We are therefore reduced to proving
the following:

Lemma 19.3.2.2. Let R be a connective E8-ring, let I Ď π0R be a finitely generated ideal
defining a closed subset K Ď |SpecR|, let R^I denote the I-completion of R, and let K 1 Ď

| SpecR^I | denote the inverse image of K. Then pullback along the map SpétR^I Ñ SpétR
induces a fully faithful functor DilKpRq Ñ DilK1pR^I q.

Proof. Let X and Y be spectral Deligne-Mumford stacks over R, and set

X1 “ XˆSpétR SpétR^I Y1 “ YˆSpétR SpétR^I .

We then have a canonical map

θX,Y : MapSpDMR
pX,Yq Ñ MapSpDMR

pX1,Yq » MapSpDMR^
I

pX1,Y1q.

To prove Lemma 19.3.2.2, we must show that θX,Y is an equivalence whenever X and Y are
dilatations of SpétR along K. In fact, we will prove a more general assertion: the map θX,Y
is an equivalence whenever Y is a dilatation of SpétR along K (and X is arbitrary). To
show this, we can work locally on X, and thereby reduce to the case where X “ SpétA is
affine. Let U be the open substack of X complementary to the vanishing locus of I, and set
U1 “ X1ˆX U. Applying Proposition 9.2.4.4, we deduce that the diagram

MapSpDMR
pX,Yq

θX,Y //

��

MapSpDMR
pX1,Yq

��
MapSpDMR

pU,Yq //MapSpDMR
pU1,Yq

is a pullback square. It now suffices to observe that the bottom horizontal map is a
homotopy equivalence, because the mapping spaces MapSpDMR

pU,Yq and MapSpDMR
pU1,Yq

are contractible.

19.3.3 Weil Restriction along Spf R Ñ SpétR

To deduce Theorem 19.3.1.8 from Proposition 19.3.2.1, we need to address the following:

Question 19.3.3.1. Let f : X Ñ Y be a formal modification of formal spectral Deligne-
Mumford stacks. Suppose that Y is the formal completion of a spectral Deligne-Mumford
stack Y along a cocompact closed subset K Ď |Y |. Can f be obtained as the formal
completion of a dilatation X Ñ Y along K?
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By virtue of Proposition 19.3.2.1, we know that the spectral Deligne-Mumford stack X
is unique (up to equivalence) if it exists. Following Artin ([5]), we proceed in two steps:
first, we construct X as an object of FunpCAlgcn,Sq (that is, we guess a candidate for the
functor represented by the hypothetical dilatation X), and then argue that (under some mild
assumptions) this functor is actually representable. This functor is easy to describe: it is
given by the Weil restriction of X along the map YÑ Y. To simplify the discussion, let us
assume that Y “ SpétR is affine. In this case, the representability is a consequence of the
following assertion:

Proposition 19.3.3.2. Let R be an adic E8-ring and let f : X Ñ Spf R be a morphism
of formal spectral Deligne-Mumford stacks. Let us abuse notation by identifying X, Spf R,
and SpétR with the corresponding functors CAlgcn Ñ S, and let X “ ResSpf R{SpétRpXq

denote the Weil restriction of X along the map Spf RÑ SpétR (see Construction 19.1.2.3).
Suppose that the following conditions are satisfied:

paq The morphism f is representable by spectral algebraic spaces and locally almost of finite
presentation (that is, for every map SpétAÑ Spf R, the fiber product SpétAˆSpf R X

is a spectral algebraic space which is locally almost of finite presentation over A.

pbq The E8-ring R is Noetherian and π0R is a Grothendieck commutative ring.

pcq The completed cotangent complex L^X {Spf R P QCohpXq is nilcoherent.

Then the functor X is representable by a spectral algebraic space which is locally almost of
finite presentation over R.

The proof of Proposition 19.3.3.2 will require some preliminaries.

Lemma 19.3.3.3. Let A be a commutative ring equipped with a ring homomorphism
Zrts Ñ A. For each integer n ě 0, set Apnq “ AbZrts Zrts{ptnq. Suppose we are given an
A-module M and a morphism φ : N Ñ Apnq bAM in ModApnq. If N admits the structure
of an Apmq-module for some m ď n, then the composite map

N Ñ Apnq bAM Ñ Apn´mq bAM

is nullhomotopic (as a morphism in ModApnq).

Proof. Let us identify ApnqbAM with the mapping object Map
A
pApnq,ΣMq. Without loss

of generality, it suffices to treat the universal case

N “ Map
Apnq

pApmq, Apnq bAMq

» Map
Apnq

pApmq,Map
A
pApnq,Mqq

» Map
A
pApmq,ΣMq.
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In this case, the cofiber cofibpφq can be identified with

Map
A
pfibpApnq Ñ Apmqq,ΣMq » Apn´mq bAM.

Lemma 19.3.3.4. Let A be a Noetherian E8-ring which is complete with respect to an ideal
I Ď π0A, and regard Spf A as an object of FunpCAlgcn,Sq. Suppose we are given a faithfully
flat affine étale morphism φ : X Ñ Spf A. Then we can write X » Spf C, where C is a
Noetherian E8 which is complete with respect to the ideal J “ Ipπ0Cq Ď π0C. Moreover, C
is faithfully flat over A.

Proof. Choose a tower of A-algebras tAnuną0 satisfying the requirements of Lemma 8.1.2.2.
Then we can write X ˆSpf A SpecA1 » SpecB1, where B1 is an étale A1-algebra. Using
the structure theory of étale morphisms (Proposition B.1.1.3), we can choose an étale map
A Ñ B such that B1 » A1 bA B. For each n ě 0, set Bn “ An bA B. Since each of the
maps CAlgét

An`1 Ñ CAlgét
An is an equivalence of 8-categories, we can choose a compatible

family of equivalences X ˆSpf A SpecAn » SpecBn, so that X » lim
ÝÑn

X ˆSpf A SpecAn can
be identified with the formal spectrum of B with respect to the ideal I 1 Ď π0B generated by
the image of I. Let C be the I 1-completion of B. Since B is étale over A, it is Noetherian.
It follows that C is Noetherian and flat over B, hence flat over A. To complete the proof, it
will suffice to show that C is faithfully flat over A. For this, it will suffice to prove that the
image of the map |SpecC| Ñ | SpecA| contains every maximal ideal of π0A. This follows
from the commutativity of the diagram

| SpecB0| //

��

| SpecC|

��
| Specpπ0Aq{I| // | SpecA|,

since I is contained in every maximal ideal of π0A by virtue of Remark 7.3.4.10.

Proof of Proposition 19.3.3.2. Let R be an adic E8-ring with ideal of definition I Ď π0R,
and let XÑ Spf R be a morphism of formal spectral Deligne-Mumford stacks which satisfies
hypotheses paq through pcq of Proposition 19.3.3.2. In what follows, we will abuse terminology
by identifying formal spectral Deligne-Mumford stacks with the functors that they represent.
Let X P FunpCAlgcn,Sq denote the Weil restriction of (the functor represented by) X along
the map Spf RÑ SpétR. We wish to show that X is representable by a spectral algebraic
space which is locally almost of finite presentation over R.

Choose a tower of R-algebras tRnuną0 satisfying the requirements of Lemma 8.1.2.2, so
that Spf R » lim

ÝÑ
SpecRn (Proposition 8.1.5.2). For each integer n ě 0, set Xpnq denote
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the Weil restriction of XˆSpétR SpétRn along the closed immersion SpétRn Ñ SpétR. Let
X 1 : CAlgcn

R Ñ S denote the image of X under the equivalence FunpCAlgcn,Sq{SpecR »

FunpCAlgcn
R ,Sq, given concretely by the formula

X 1pAq “ fibpXpAq Ñ MapCAlgpR,Aqq

» MapfSpDM{ Spf R
pSpétAˆSpétR Spf R,Xq

We will show that X is representable (by a spectral algebraic space which is locally
almost of finite presentation over R) by verifying the hypotheses of Theorem 18.3.0.1.

p2q The functor X is a sheaf for the étale topology. This is an immediate consequence of
Proposition 19.1.2.2.

p3q The functor X is nilcomplete, infinitesimally cohesive, and integrable. It follows from
Corollary 19.1.3.2 that each of the functors Xpnq is nilcomplete and cohesive, so that
X » lim

ÐÝ
Xpnq is also nilcomplete and cohesive. To show that X is integrable, it

will suffice to show that each of the maps Xpnq Ñ SpecR is integrable. Let A be
an E8-algebra over R which is local, Noetherian, and complete with respect to its
maximal ideal m Ď π0A. We wish to show that the canonical map

θ : MapFunpCAlgcn,Sq{ SpecR
pSpecA,Xpnqq Ñ MapFunpCAlgcn,Sq{ SpecR

pSpf A,Xpnqq

is a homotopy equivalence. Note that An “ A bR Rn is again a complete local
Noetherian E8-ring which is complete with respect to its maximal ideal, and that
Spf An » Spf AˆSpecR SpecRn. We may therefore identify θ with the canonical map

MapFunpCAlgcn,Sq{ SpecRn
pSpecAn,XˆSpf R SpecRnq

��
MapFunpCAlgcn,Sq{ SpecRn

pSpf An,XˆSpf R SpecRnq.

This map is a homotopy equivalence, since XˆSpf R SpecRn is representable by a
spectral algebraic space (Proposition 17.3.4.2).

p4q The map X Ñ SpecR admits a connective cotangent complex LX{SpecR. We will prove
this by verifying analogues of the conditions of Example 17.2.4.4. Suppose we are given
a connective E8-ring A and a point η P XpAq. Then η determines a map of E8-rings
RÑ A. Let J Ď π0A be the ideal generated by the image of I, and let Spf A be the
formal spectrum of A with respect to the ideal J . Then η determines a representable
morphism of formal spectral Deligne-Mumford stacks η0 : Spf AÑ X. Let us identify
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the pullback η˚0L^X {Spf R P QCohpSpf Aq with an almost perfect A^J -module Mη. Let
N be an arbitrary connective A-module. For each integer n ě 0, set An “ Rn bR A

and Nn “ Rn bR N . Unwinding the definitions, we obtain a canonical homotopy
equivalence

fibpX 1pA‘Nq Ñ X 1pAqq » lim
ÐÝ
n

fibpX 1pnqpA‘Nq Ñ X 1pnqpAqq

» lim
ÐÝ
n

MapfSpDMSpétAn{ { Spf R
pSpétAn ‘Nn,Xq

» lim
ÐÝ
n

MapModAn pAn bAMη, Nnq

» lim
ÐÝ
n

MapModApMη, Nnq

» MapModApMη, N
^
J q

where the last equivalence follows from Lemma 8.1.2.3. Assumption pcq guarantees that
Mη is J-nilpotent, so that the canonical map MapModApMη, Nq Ñ MapModApMη, N

^
J q

is a homotopy equivalence for every A-module N . It follows that the Mη corepresents
the functor N ÞÑ fibpX 1pA‘Nq Ñ X 1pAqq.

To complete the proof of the existence of LX{SpecR, it will suffice to show that every
map AÑ A1 induces an equivalence α : A1 bAMη ÑMη1 , where η1 denotes the image
of η in XpA1q. Let J 1 denote the ideal in π0A

1 generated by I. Using the commutativity
of the diagram

Modaperf
A^J

„ //

��

QCohpSpf Aqaperf

��
Modaperf

A1^
J1

„ // QCohpSpf A1qaperf ,

we can identify α with the natural map

A1 bAMη » pA
1 bA A

^
J q bA^J

Mη Ñ A1^J 1 bA^J Mη.

The cofiber of this map is given by K bA^J
Mη, where K “ cofibpA1 bA A^J Ñ A1^J 1 q.

This cofiber vanishes, since K is J-local and Mη is J-nilpotent.

p5q The map f : X Ñ SpecR is locally almost of finite presentation. Choose a set of
elements x1, . . . , xd P R which generate the ideal I. We will proceed by induction on d,
the case d “ 0 being trivial. The proof of p4q shows that the relative cotangent complex
LX{SpecR is almost perfect. By virtue of Corollary 17.4.2.2, it will suffice to show that
the functor X 1|CAlg♥

R
commutes with filtered colimits. To prove this, we may replace

R by π0R and thereby reduce to the case where R is discrete. Let CAlgcR denote the
full subcategory of CAlg♥

R spanned by those discrete R-algebras which are finitely
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presented over R; we wish to prove that X 1|CAlg♥
R

is a left Kan extension of X 1|CAlgcR .
Equivalently, we must show that for every discrete R-algebra A, the canonical map

ρ : lim
ÝÑ

X 1pAαq Ñ X 1pAq

is a homotopy equivalence, where the colimit is taken over all finitely generated
R-subalgebras Aα Ď A.

We will prove that the map ρ is k-connective for each k ě 0, using induction on k. Let
us first suppose that k ą 0. To prove that ρ is k-connective, it will suffice to show that
for every pair of points η, η1 P lim

ÝÑ
X 1pAαq, the canonical map ξ : tηuˆlim

ÝÑ
X 1pAαq tη

1u Ñ

lim
ÝÑ
tηu ˆX 1pAq tη

1u is pk ´ 1q-connective. Choose a finitely generated subalgebra
A0 Ď A such that η and η1 are the images of points η0, η

1
0 P X

1pA0q. Replacing R

by A0, we may reduce to the case where A0 “ R. In this case, we can identify η0
and η10 with maps Spf R Ñ X. Let Y denote the fiber product Spf R ˆX Spf R, let
Y » SpecR ˆX SpecR be the Weil restriction of Y along the map Spf R ãÑ SpétR,
and let Y 1 : CAlgcn

R Ñ S be the image of Y under the equivalence of 8-categories
FunpCAlgcn,SqSpecR » FunpCAlgcn

R ,Sq. Then ξ can be identified with the canonical
map lim

ÝÑ
Y 1pAαq Ñ Y 1pAq. Since the map Y0 Ñ Spf R satisfies hypotheses paq through

pcq, it follows from the inductive hypothesis that ξ is pk ´ 1q-connective.

It remains to treat the case k “ 0. Consider the map of commutative rings Zrts Ñ R

which carries t to x1. For each integer m ě 0, set Rpmq “ RbZrts Zrts{ptmq. For every
connective R-algebra A, we set Apmq “ Rpmq bR A. We first prove:

p˚q For every connective R-algebra A, the canonical map µ : X 1pAq Ñ lim
ÐÝ

X 1pApmqq

is a homotopy equivalence.

To prove p˚q, we can identify µ with the map

lim
ÐÝ
n

X 1pRn bR Aq Ñ lim
ÐÝ
m

lim
ÐÝ
n

X 1pRn bR Apmqq.

It will therefore suffice to each of the maps

X 1pRn bR Aq Ñ lim
ÐÝ
m

X 1pRn bR Apmqq

is a homotopy equivalence. Replacing A by Rn bR A, we may reduce to proving p˚q in
the special case where the image of I generates a nilpotent ideal in π0A. In particular,
we may assume that the image of x is a nilpotent ideal in π0A. Since the functor X is
nilcomplete, we may also assume that A is r-truncated for some integer r, so that each
Apmq is pr` 1q-truncated. We will complete the proof by showing that A is equivalent
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to tApmqumě0 as a Pro-object of τďr`1 CAlgcn
R . To prove this, we show that for every

pr` 1q-truncated connective R-algebra B, the upper horizontal map in the diagram σ :

lim
ÝÑm

MapCAlgRpApmq, Bq
//

��

MapCAlgRpA,Bq

��
lim
ÝÑm

MapCAlgpZrts{ptmq, Bq //MapCAlgpZrts, Bq

is a homotopy equivalence. This follows from Lemma 17.3.5.7, which asserts that
the lower horizontal map is a fully faithful embedding whose essential image is the
collection of those maps Zrts Ñ B which carry t to a nilpotent element of π0B.

Our next step is to prove the following:

p˚1q There exists an integer m ě 0 such that the map π0X
1pAq Ñ π0X

1pApmqq is
bijective, for every discrete R-algebra A.

Assume p˚1q for the moment. Let Ipmq denote the ideal in π0Rpmq generated by the
image of I. Then Ipmq has the same radical as the ideal generated by the images of
the elements x2, . . . , xd P R. It follows from our inductive hypothesis that for every
integer s, the composite functor CAlgcn

Rpmq Ñ CAlgcn
R

X 1
Ñ S preserves filtered colimits

when restricted to s-truncated objects of CAlgcn
Rpmq, for every integer s. Since Rpmq

has Tor-amplitude ď 1 as an R-module, it follows that the functor A ÞÑ X 1pApmqq

commutes with filtered colimits when restricted to discrete R-algebras. Combining
this observation with p˚1q, we conclude that the functor A ÞÑ π0X

1pAq commutes with
filtered colimits when restricted to CAlg0

R. It follows that the map ρ is bijective on
connected components, and therefore 0-connective.

We now turn to the prove of p˚1q. By virtue of p˚q, it will suffice to prove the following:

p˚2q There exists an integer m ě 0 such that, for every discrete R-algebra A and
every integer n ě m, the map X 1pApn`1qq Ñ X 1pApnqq has connected homotopy
fibers.

Since X is quasi-compact, we can choose an étale surjection u : Spf B Ñ X for some
complete adic E8-ring B. Let us identify u˚L^X {Spf R with an almost perfect B-module
using the equivalence QCohpSpf Bqaperf » Modaperf

B . Choose a perfect B-module M
and a 2-connective map λ : M Ñ u˚L^X {Spf R. Since L^X {Spf R is nilcoherent, the map
λ is annihilated by xc1 for some integer c " 0.

Let n ě 0 be an integer and let η be a point of X 1pApnqq, which we can identify with
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a representable morphism Spf Apnq Ñ X. Form a pullback diagram

Y
η1 //

u1

��

Spf B

u

��
Spf Apnq η // X .

Since u is an affine étale surjection, it follows from Lemma 19.3.3.4 that we can choose
an equivalence Y » Spf C, where C is a faithfully flat Apnq-algebra which is complete
with respect to an ideal J Ď π0C. Pulling λ back along η1, we conclude that there
exists a perfect C-module N and a 2-connective map N Ñ C bApnq η

˚L^X {Spf R which
is annihilated by xc1. Since C is faithfully flat over Apnq, it follows that the homotopy
groups πiη˚L^X {Spf R are annihilated by xc1 for 0 ď i ď 2.
We now show that m “ 3c`1 satisfies the requirements of p˚2q. As a first step, we show
that for n ě m, the homotopy fiber of the map X 1pApn` 1qq Ñ X 1pApnqq is connected
over every point η P X 1pApnqq. Note that Zrts{ptn`1`3cq is a square-zero extension of
Zrts{ptnq by the module Zrts{pt1`3cq. It follows that Apn ` 3c ` 1q is a square-zero
extension of Apnq by Ap3c` 1q. In particular, the obstruction to lifting η to a point of
X 1pApn`3c`1qq is measured by an element of the group Ext1

Apnqpη
˚L^X {Spf R, Ap3c`1qq.

To prove that η can be lifted to a point of XpApn` 1qq, it will suffice to show that the
image of this obstruction in Ext1

Apnqpη
˚L^X {Spf R, Ap1qq vanishes (see Remark 17.3.9.2).

In fact, we claim that the map of abelian groups

Ext1
Apnqpη

˚L^X {Spf R, Ap3c` 1qq Ñ Ext1
Apnqpη

˚L^X {Spf R, Ap1qq

is zero.
Let v be an element of Ext1

Apnqpη
˚L^X {Spf R, Ap3c ` 1qq. Since A is discrete, the

suspension ΣAp3c ` 1q is 2-truncated. We may therefore identify v with a map of
Apnq-modules v : τď2η

˚L^X {Spf R Ñ ΣAp3c` 1q. We wish to show that the composite
map

τď2η
˚L^X {Spf R

v
Ñ ΣAp3c` 1q Ñ ΣAp1q

is nullhomotopic. Since π2η
˚L^X {Spf R is annihilated by xc1, it admits the structure of a

module over Apcq. Applying Lemma 19.3.3.3, we deduce that the composite map

Σ2pπ2η
˚L^X {Spf Rq Ñ τď2η

˚L^X {Spf R
v
Ñ ΣAp3c` 1q Ñ ΣAp2c` 1q

is nullhomotopic. Consequently, there exists a commutative diagram

τď2η
˚L^X {Spf R

��

v // ΣAp3c` 1q

��
τď1η

˚L^X {Spf R
v1 // ΣAp2c` 1q.
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Since π1η
˚L^X {Spf R is annihilated by xc1, it also admits the structure of a module over

Apcq. Applying Lemma 19.3.3.3 again, we deduce that the composite map

Σpπ1η
˚L^X {Spf Rq Ñ τď1η

˚L^X {Spf R
v1
Ñ ΣAp2c` 1q Ñ ΣApc` 1q

is nullhomotopic. Consequently, there exists a commutative diaram

τď1η
˚L^X {Spf R

��

v1 // ΣAp2c` 1q

��
τď0η

˚L^X {Spf R
v2 // ΣApc` 1q.

We are therefore reduced to proving that the composite map

τď0η
˚L^X {Spf R

v2
Ñ ΣApc` 1q Ñ ΣAp1q

is nullhomotopic. This follows from Lemma 19.3.3.3, since π0η
˚L^X {Spf R is annihilated

by xc1 and therefore admits the structure of a module over Apcq. This completes the
proof that the homotopy fiber X 1pApn` 1qq ˆX 1pApnqq tηu is nonempty.
Suppose that η and η1 are points of the fiber product X 1pApn` 1qq ˆX 1pApnqq tηu; we
will complete the proof of p˚2q by showing that η and η1 belong to the same connected
component of X 1pApn` 1qq ˆX 1pApnqq tηu. The first part of the proof shows that η and
η1 can be lifted to points of the fiber product X 1pApn` 2c` 1qq ˆX 1pApnqq tηu. Since
Apn` 2c` 1q and Apn` 1q are square-zero extensions of Apnq by Ap2c` 1q and Ap1q,
the sets

π0pX
1pApn` 2c` 1qq ˆX 1pApnqq tηuq π0pX

1pApn` 1qq ˆX 1pApnqq tηuq

are torsors for the groups Ext0
Apnqpη

˚L^X {Spf R, Ap2c`1qq and Ext0
Apnqpη

˚L^X {Spf R, Ap1qq,
respectively. We are therefore reduced to showing that the map

Ext0
Apnqpη

˚L^X {Spf R, Ap2c` 1qq Ñ Ext0
Apnqpη

˚L^X {Spf R, Ap1qq

vanishes. Let w be an element of Ext0
Apnqpη

˚L^X {Spf R, Ap2c` 1qq. Since A is discrete,
we can identify w with a map of Apnq-modules τď1η

˚L^X {Spf R Ñ Ap2c ` 1q. Since
π1L

^
X {Spf R is annihilated by xc1, Lemma 19.3.3.3 implies that the composite map

Σ1pπ1η
˚L^X {Spf Rq Ñ τď1η

˚L^X {Spf R
w
Ñ Ap2c` 1q Ñ Apc` 1q

is nullhomotopic. Consequently, there exists a commutative diagram

τď1η
˚L^X {Spf R

��

w // Ap2c` 1q

��
τď0η

˚L^X {Spf R
w1 // Apc` 1q.
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It will therefore suffice to show that the composite map

τď0η
˚L^X {Spf R

w1
Ñ Apc` 1q Ñ Ap1q

is nullhomotopic, which again follows from Lemma 19.3.3.3.

p1q We must show that for every commutative ring A, the space XpAq is discrete. Equiva-
lently, we must show that for every discrete R-algebra A, the space X 1pAq is discrete.
Step p5q shows that the functor A ÞÑ X 1pAq commutes with filtered colimits when
restricted to discrete R-algebras. We may therefore assume that A is finitely generated
as an R-algebra, and is therefore Noetherian. Set J “ IA Ď A. For each integer
n ě 1, set An “ Rn bR A. Then X 1pAq » lim

ÐÝn
MapfSpDM{ Spf R

pSpétAn,Xq. Since the
functors represented by X and Spf R are nilcomplete (Proposition 17.3.2.3), we obtain
homotopy equivalences

X 1pAq » lim
ÐÝ
n

lim
ÐÝ
m

MapfSpDM{ Spf R
pSpét τďmAn,Xq

» lim
ÐÝ
m

lim
ÐÝ
n

MapfSpDM{ Spf R
pSpét τďmAn,Xq.

It will therefore suffice to show that for each m ě 0, the inverse limit

lim
ÐÝ
n

MapfSpDM{ Spf R
pSpét τďmAn,Xq

is discrete. Lemma 17.3.5.7 implies that the towers tτďmAnuną0 and tA{Jnuną0
are equivalent as Pro-objects of CAlg, so we are reduced to showing that the limit
lim
ÐÝn

MapfSpDM{ Spf R
pSpétA{Jn,Xq is discrete. In fact, each of the individual mapping

spaces MapfSpDM{ Spf R
pSpétA{Jn,Xq is discrete, since XÑ Spf R is representable by

spectral algebraic spaces.

19.3.4 A Criterion for Properness

In order to apply Proposition 19.3.3.2 to Question 19.3.3.1, we need to verify that if
X Ñ Spf R is a formal modification, then the Weil restriction ResSpf R{SpétRpXq actually
proper over R. We will deduce this from the following result, which may be of some
independent interest:

Proposition 19.3.4.1. Let R be a Noetherian E8-ring, let I Ď π0R be an ideal, and let
f : X Ñ SpétR be a morphism in of spectral algebraic spaces which satisfies the following
conditions:

paq The morphism f is locally almost of finite presentation.
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pbq The projection map f0 : X “ XˆSpétR Spf RÑ Spf R is proper.

pcq The map XˆSpecR U Ñ U is an equivalence, where U denotes the open substack SpecR
complementary to the vanishing locus of I.

pdq Then the cofiber of the unit map u : OSpf R Ñ f0˚OX is nilcoherent (as an object of
QCohpSpf Rq ).

Then X is proper over R.

The proof will require the following purely algebraic result:

Lemma 19.3.4.2. Let R be a discrete valuation ring, let t P R be a generator of its maximal
ideal, and let B be a finitely generated R-algebra. Assume that B is flat over R and that
Brt´1s is finitely generated as an Rrt´1s-module. Then:

p1q The quotient ring B{tB is finitely generated as an R{tR-module.

p2q The set | SpecB{tB| is finite, and its topology is discrete.

p3q Let R^ denote the ptq-adic completion of R, and let B^ denote the ptq-adic completion
of B. Then B^ is finitely generated as an R^-module.

Proof. We first prove p1q. Suppose that Brt´1s has dimension n as a vector space over the
fraction field Rrt´1s. We claim that B{tB has dimension ď n as a vector space over the
residue field R{tR. Suppose otherwise: then there exists a sequence of elements b0, . . . , bn P B
whose images in B{tB are linearly independent over R{tR. Since Brt´1s has dimension n

over Rrt´1s, there exists a dependence relation
ř

λibi “ 0 where the coefficients λi belong
to Rrt´1s, and not all of the λi vanish. Multiplying by an appropriate power of t, we can
assume that each λi belongs to R. Let tm be the largest power of t which divides each bi.
Since B is flat over R, the identity tm

ř

pt´mλiqbi “ 0 implies that
ř

pt´mλiqbi “ 0 in B.
The maximality of m guarantees that some coefficient t´mλi has nonzero image in B{tB,
contradicting our assumption that the images of the elements bi are linearly independent
over R{tR.

Assertion p2q follows immediately from p1q. If p1q is satisfied, then we can choose
finitely many elements x1, . . . , xm P B^ whose images generate B^{tB^ » B{tB as an
R^-module. The cokernel of the induced map β : pR^qm Ñ B^ is ptq-complete and satisfies
cokerpβq{t cokerpβq » 0, so that cokerpβq » 0. It follows that β is a surjection, so that
condition p3q is satisfied.

Proof of Proposition 19.3.4.1. Let f : X Ñ SpétR satisfy conditions paq through pdq, set
Y “ XˆSpétR Spétpπ0Rq{I and let V denote the open substack of X complementary to Y.
Choose a collection of étale maps tSpétBs Ñ XusPS which are jointly surjective. Assumption
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pcq implies that the projection V Ñ U is an equivalence, so that V is quasi-compact.
Assumption pbq implies that Y is proper over the commutative ring pπ0Rq{I, and therefore
quasi-compact. We may therefore choose a finite subsets S0, S1 Ď S such that the collections
of maps

tSpétBs ˆX V Ñ VusPS0 tSpétBs ˆX Y Ñ YusPS1

are jointly surjective. It follows that the collection of maps tSpétBs Ñ XusPS0YS1 is jointly
surjective, so that X is quasi-compact. Applying the same argument to each fiber product
SpétBs ˆX SpétBt (which we regard as a spectral algebraic space which is locally almost of
finite presentation over Bs bR Bt), we conclude that X is quasi-separated.

Let X : CAlgcn
R Ñ S be the functor represented by X. Since X is a spectral algebraic

space, we note that XpAq is discrete whenever A P CAlgcn
R is discrete. In this case, we will

abuse notation by identifying XpAq with the set π0XpAq. By virtue of Corollary 5.3.1.2, it
will suffice to verify the following:

p˚q For every object A P CAlgcn
R which is a discrete valuation ring with residue field K,

the map XpAq Ñ XpKq is bijective.

To prove p˚q, we can replace X by SpétAˆSpétR X and thereby reduce to the case where
R is a discrete valuation ring and A “ R. If I “ 0, then Spf R » SpétR and the desired
result is an immediate consequence of pbq. If I “ R, then U » SpétA and the desired result
follows from pcq. We may therefore assume (replacing I by its radical if necessary) that I is
the maximal ideal mR Ď R. Let t P mR be a generator. Note that assumption 9cq guarantees
that XpKq is contractible; we will complete the proof by showing that XpRq is contractible.

Let O denote the image (in the abelian category QCohpXq♥) of the canonical map
π0 OX Ñ π0 OXrt

´1s. Then O is a commutative algebra object of QCohpXqcn, and therefore
determines an affine morphism X Ñ X. Let X 1 : CAlgcn

R Ñ S denote the functor represented
by X. Note that the map XpRq Ñ XpRq is a homotopy equivalence. It will therefore suffice
to show that XpRq is contractible.

Let I denote the fiber of the composite map OX Ñ π0 OX Ñ O. Since X is locally
Noetherian, each homotopy group πn I is almost perfect (when regarded as an object of
QCohpXq♥ Ď QCohpXq). It follows from pcq that OXrt

´1s is a discrete object of QCohpXq, so
that Irt´1s » 0. Using the quasi-compactness of X, we conclude that for every integer n ě 0,
there exists an integer kn such that πn I is annihilated by tkn , so that τďn I is annihilated by
tk0`k1`¨¨¨`kn . Using Proposition 2.5.4.4 and Theorem 3.4.2.1, we deduce that there exists an
integer m such that the pushforward functor f˚ : QCohpXq Ñ ModR carries QCohpXqě0 into
pModRqě´m. It follows that for each integer n, τďnpf˚ Iq » τďnf˚pτďn`m Iq is annihilated
by tk0`¨¨¨`km`n , so that the restriction of f˚ I to QCohpSpecRq is mR-nilpotent. Let OX

denote the pullback of O to QCohpXq, so that we have maps

OSpf R
u
Ñ f0˚OX

u1
Ñ f0˚OX
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in QCohpSpf Rq. Then cofibpuq is nilcoherent by assumption pdq and cofibpu1q is nilcoherent
by Proposition 8.3.2.6, so that cofibpu1 ˝ uq is also nilcoherent. We may therefore replace X
by X, and thereby reduce to the case where X is flat over R.

We now complete the proof by showing that the map X Ñ SpétR is an equivalence. For
every étale map φ : SpétB Ñ X, the E8-ring B is a flat over R. It follows from pcq that
Brt´1s is étale over K and is therefore isomorphic to a finite product of separable extensions
of K. Since B is R-flat, B » 0 if and only if Brt´1s » 0. In particular, every nonempty
open substack of X has nonempty interesection with V » SpétK. Since V has no nonempty
open substacks other than itself, every nonempty open substack of X must contain V.

Using Theorem 3.4.2.1, we can choose a scallop decomposition

H “ V0 ãÑ V1 ãÑ ¨ ¨ ¨ ãÑ Vn “ X

for the quasi-compact, quasi-separated spectral algebraic space X. Without loss of generality,
we may assume that V1 is nonempty and therefore contains V. For 2 ď i ď n, we have an
excision square

Wi
//

��

SpétBi

��
Vi´1 // Vi,

where SpétBi is étale over X and Wi is a quasi-compact open of SpétBi determined by an open
set Wi Ď | SpecBi|. By construction, Wi contains the open subset W ˝

i “ |SpecBirt´1s| Ď

| SpecBi|. Using Lemma 19.3.4.2, we see that there are only finitely many prime ideals of
B containing t, none of which is contained in another. We may therefore write Wi as the
union of W ˝

i and finitely many maximal ideals m1, . . . ,mk of Bi containing t. Using prime
avoidance, we can choose an element bi P

Ť

1ďjďk mj which is not contained in any other
prime ideal of B containing t. We then have an excision square

SpétBirt´1s //

��

SpétBirb´1
i s

��
Wi

// SpétBi.

We may therefore replace each Bi by Birb´1
i s, and thereby reduce to the case where Wi »

SpétBirt´1s. In this case, each of the maps Wi Ñ Vi´1 factors through V. We therefore
have a pushout diagram:

š

2ďiďn SpétBirt´1s //

��

š

2ďiďn SpétBi

��
V // X .
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Set B “
ś

2ďiďnBi. Let R^ and B^ denote the ptq-adic completions of R and B,
respectively. Using Lemma 19.3.4.2, we see that B^ is finitely generated as an R^-module.
Since B is flat over R, the multiplication map t : B Ñ B is injective. It follows that the
map t : B^ Ñ B^ is also injective, so that B^ is flat over R^. Since R^ is a discrete
valuation ring, B^ is a free module of finite rank over R^. Unwinding the definitions, we
note that condition pdq asserts that the unit map u : R^ Ñ B^ induces an equivalence
R^rt´1s Ñ B^rt´1s. It follows that B^ is a free module of rank 1 over R^, and that the
map u is injective. In particular, B^ is faithfully flat as an R^-module, so that cokerpuq
is flat over R^. Since cokerpuqrt´1s » 0, we conclude that u is surjective and therefore an
isomorphism.

We next claim that B is étale over R. Since B is finitely presented over R, it will suffice
to show that LB{R » 0 (Lemma B.1.3.3). Suppose otherwise: then there is some smallest
integer d such that πdLB{R ‰ 0. Note that B is almost perfect as an object of CAlgcn

R ,
so that LB{R is almost perfect and πdLB{R is finitely generated as a B-module. We have
already established that Brt´1s is étale over Rrt´1s, so that LB{Rrt´1s » LBrt´1s{Rrt´1s » 0.
It follows that πdLB{R is annihilated by tk for k " 0. Then

0 ‰ πdLB{R » πdpB{t
kB bB LB{Rq » πdpLpB{tkBq{pR{tkRqq.

This is a contradiction, since the map RÑ B induces an isomorphism after t-adic completion
(and therefore an isomorphism R{tkRÑ B{tkB).

Since the map SpétB Ñ X is an étale surjection, we conclude that X is étale over R.
Consequently, to show that X Ñ SpétR is an equivalence, it will suffice to show that the
maps

XˆSpétR SpétRrt´1s Ñ SpétRrt´1s

XˆSpétR SpétpR{tRq Ñ SpétpR{tRq

are equivalences (Lemma HA.A.5.11 and Theorem 3.1.2.1). In the first case, this follows
immediately from assumption pcq. In the second, we note that the existence of the excision
square σ supplies an identification XˆSpétR SpétpR{tRq » SpétpB{tBq, so that the desired
assertion follows from the fact that the unit map R{tRÑ B{tB is an isomorphism.

19.4 Moduli of Algebraic Varieties

Let X be a proper smooth algebraic variety over the field C of complex numbers. Recall
that a first order deformation of X is a flat Crεs{pε2q-scheme X equipped with an isomorphism
X » Spec CˆSpec Crεs{pε2qX. A classical result of deformation theory establishes a bijection
from the set of isomorphism classes of first-order deformations of X to the cohomology group
H1pX;TXq, where TX denotes the tangent bundle of X. We can describe the situation more
informally as follows:
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p˚q Let M denote the “moduli space” of proper algebraic varieties, so that X determines
a C-valued point η of M. Then the tangent space to M at η can be identified with
H1pX;TXq.

To articulate p˚q more precisely, it is convenient to introduce a formal definition of the
“moduli space” M:

Construction 19.4.0.1 (Moduli of Spectral Algebraic Spaces). Let SpDM denote the
8-category of spectral Deligne-Mumford stacks, and let C denote the full subcategory of the
fiber product

pCAlgcnqop ˆFunpt1u,SpDMq Funp∆1, SpDMq

spanned by morphisms f : X Ñ SpétR, where f is proper, flat, and locally almost of finite
presentation. We let Var` : CAlgcn Ñ yCat8 be a functor which classifies the Cartesian
fibration C Ñ pCAlgcnqop (given by projection onto the first factor).

More informally, if R is a connective E8-ring, then Var`pRq is the 8-category spectral
algebraic spaces which are proper, flat, and locally almost of finite presentation over R.

Our goal in this section is to study the functor Var` of Construction 19.4.0.1. Our main
results can be summarized as follows:

Theorem 19.4.0.2. Let Var` : CAlgcn ÑyCat8 be as in Construction 19.4.0.1. Then:

p1q The functor Var` is cohesive and nilcomplete.

p2q The functor Var` is locally almost of finite presentation: that is, Var` commutes with
filtered colimits when restricted to τďn CAlgcn, for every integer n ě 0.

p3q For every connective E8-ring R, the 8-category Var`pRq is essentially small. Conse-
quently, we can identify Var` with a functor CAlgcn Ñ Cat8.

p4q For every simplicial set K, let Var`K : CAlgcn Ñ S denote the functor given by
the formula Var`KpRq “ FunpK,Var`pRqq». Then the functor Var`K admits a p´1q-
connective cotangent complex (which can be described explicitly using Kodaira-Spencer
theory; see §19.4.3).

p5q Suppose that K is a simplicial set having only finitely many simplices of each dimension.
Then the functor Var`K is locally almost of finite presentation and the cotangent complex
to Var`K is almost perfect.

Warning 19.4.0.3. The functor Var` of Theorem 19.4.0.2 is not integrable. If A is a local
Noetherian ring which is complete with respect to its maximal ideal m, then Corollary
8.5.3.3 implies that the functor Var`pAq Ñ lim

ÐÝ
Var`pA{mnq is a fully faithful embedding.

However, it is generally not essentially surjective: that is, not every proper flat representable
morphism XÑ Spf A is algebraizable in the sense of Remark 8.5.3.6.
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Remark 19.4.0.4. Let K be a simplicial set having only finitely many simplices of each
dimension and let Var`K : CAlgcn Ñ S be defined as in Theorem 19.4.0.2. Then Var`K is
almost representable by a spectral Deligne-Mumford stack which is locally almost of finite
presentation over the sphere spectrum S: it satisfies all of the hypotheses of Theorem 18.3.0.1
except for integrability (Warning 19.4.0.3). There are several variants of Construction 19.4.0.1
which give rise to representable functors (for example, we could restrict our attention to
morphisms X Ñ SpétR of relative dimension ď 1). We will return to this point in §??.

19.4.1 Nilcompleteness and Cohesiveness

The first assertion of Theorem 19.4.0.2 hold in much greater geneality.

Notation 19.4.1.1. Let n ě 0 be a nonnegative integer. Recall that a spectral Deligne-
Mumford stack X is said to be n-truncated if the structure sheaf OX is n-truncated. We
let SpDMďn denote the full subcategory of SpDM spanned by the n-truncated spectral
Deligne-Mumford stacks. The inclusion functor SpDMďn ãÑ SpDM admits a right adjoint
τďn : SpDM Ñ SpDMďn, given on objects by the formula τďnpX ,OXq “ pX , τďn OXq.

Proposition 19.4.1.2. Let X be a spectral Deligne-Mumford stack. Then the pullback
functors

pY P SpDM{Xq ÞÑ pYˆXτďn X P SpDM{τďn Xq

induce an equivalence of 8-categories SpDM{X Ñ lim
ÐÝ

SpDM{τďn X.

Proof. For every spectral Deligne-Mumford stack X, let SpDMďn
{X denote the full subcategory

of SpDM{X spanned by those morphisms Y Ñ X where Y is n-truncated. We have a
commutative diagram

SpDM{X //

��

lim
ÐÝn

SpDM{τďn X

��
lim
ÐÝm

SpDMďm
{X

// lim
ÐÝn

lim
ÐÝm

SpDMďm
{Xn ,

where the horizontal maps are given by pullback and the vertical maps are given by
truncation. The lower horizontal map is an equivalence, since the truncated pullback functor
SpDMďm

{X Ñ SpDMďm
{τďn X is an equivalence for m ď n. It follows from Proposition 1.4.9.1

that the vertical maps are equivalences, so that the upper horizontal map is an equivalence
as well.

Corollary 19.4.1.3. The construction R ÞÑ SpDM{SpétR determines a cohesive and nil-
complete functor Var` : CAlgcn ÑyCat8.

Proof. The nilcompleteness follows from Proposition 19.4.1.2, and the cohesiveness is a
consequence of Theorem 16.3.0.1.
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19.4.2 Deformation-Invariant Properties of Morphisms X Ñ SpétR

Corollary 19.4.1.3 does not apply directly in the situation of Theorem 19.4.0.2, because
the classification of proper flat spectral algebraic spaces is different from the classification of
general spectral Deligne-Mumford stacks. Nevertheless, our next result guarantees that the
deformation theory of the former is controlled by the deformation theory of the latter:

Proposition 19.4.2.1. Let Var` : CAlgcn Ñ yCat8 be as in Corollary 19.4.1.3, and let
Var`0 : CAlgcn ÑyCat8 be the functor which assigns to each connective E8-ring R the full
subcategory of XpRq » SpDM{SpétR spanned by those maps f : X Ñ SpétR satisfying any
one of the following conditions:

p1q The map f is locally of finite generation to order n (where n ě 0 is some fixed integer).

p2q The map f is locally almost of finite presentation.

p3q The map f is locally of finite presentation.

p4q The map f is n-quasi-compact (where 0 ď n ď 8).

p5q The map f is separated.

p6q The map f is flat.

p7q The map f is proper.

Then the inclusion j : Var`0 Ñ Var` is cohesive and nilcomplete.

Remark 19.4.2.2. In the situation of Proposition 19.4.2.1, let Var`0 : CAlgcn ÑyCat8 be
the functor which assigns to a connective E8-ring R the full subcategory of Var`pRq “
SpDM{SpétR spanned by those maps of spectral Deligne-Mumford stacks f : X Ñ SpétR
which satisfy some combination of the conditions p1q through p7q appearing in Proposition
19.4.2.1. Then the inclusion j : Var`0 Ñ Var` is cohesive and nilcomplete. It then follows
from Corollary 19.4.1.3 that the functor Var`0 is cohesive and nilcomplete.

The proof of Proposition 19.4.2.1 will require some preliminaries.

Lemma 19.4.2.3. Let f : X Ñ SpétR be a map of spectral Deligne-Mumford stacks, and
let f0 : XˆSpétR Spétπ0RÑ Spétπ0R be the projection onto the second factor. Suppose that
f0 satisfies one of the following conditions:

p1q The map f0 is locally of finite generation to order n (where n ě 0 is some fixed integer).

p2q The map f0 is locally almost of finite presentation.

p3q The map f0 is locally of finite presentation.
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p4q The map f0 is n-quasi-compact (where 0 ď n ď 8).

p5q The map f0 is separated.

p6q The map f0 is flat.

p7q The map f0 is proper.

Then f has the same property.

Proof. We first treat cases p1q, p2q, and p3q. The assertions are local on X, so we may assume
that X “ SpétA is affine. Let A1 “ AbR π0R. Assertion p1q is obvious in the case n “ 0
(see Remark 4.1.1.4). In all other cases, we may assume that f0 is of finite generation to
order 1, so that π0A » π0A

1 is finitely presented as a commutative ring over π0R. It will
therefore suffice to show that if LA1{π0R is perfect to order n (almost perfect, perfect) as a
module over A1, then LA{R is perfect to order n (almost perfect, perfect) as a module over A
(see Proposition 4.1.2.1 and Theorem HA.7.4.3.18 ). This follows from Proposition 2.7.3.2.

Case p4q is easy, since the underlying 8-topoi of X and X1 “ XˆSpétR Spétπ0R are the
same. To treat case p5q, we must show that the diagonal map δ : X Ñ XˆSpétR X is a closed
immersion of spectral Deligne-Mumford stacks. Since δ admits a left homotopy inverse (given
by the projection onto either fiber), it suffices to show that δ induces a closed immersion
between the underlying 8-topoi of X and XˆSpétR X. This follows from our assumption on
f0, since the underlying 8-topos of XˆSpétR X is equivalent to the underlying 8-topos of
X1ˆSpétπ0R X1.

We now consider case p6q. The assertion is local on X, so we may assume that X “ SpétA
is affine. We wish to show that A is flat over R. Let M be a discrete R-module; we wish to
show that A bRM is discrete. This is clear, since M has the structure of a module over
π0R, and the tensor product AbR » A1bπ0RM is discrete by virtue of our assumption that
A1 is flat over π0R.

It remains to treat case p7q. Assume that f0 exhibits X1 as a proper spectral algebraic
space over π0R. It follows from p1q, p4q and p5q that X is a quasi-compact separated
spectral algebraic space which is locally of finite type over R. It will therefore suffice to
show that, for every map of connective E8-rings R Ñ R1, the map of topological spaces
φ : |XˆSpétR SpétR1| Ñ |SpecR1| is closed. This follows from our assumption on f0, since
φ can be identified with the map of topological spaces

|X1ˆSpétπ0R Spétpπ0RbR R
1q| Ñ |Specpπ0RbR R

1q|.

Proof of Proposition 19.4.2.1. The nilcompleteness of j is a consequence of Lemma 19.4.2.3.
We will prove that j is cohesive. In cases p1q through p6q, this follows from Proposition
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16.3.2.1. Let us consider p7q. Suppose we are given a pullback diagram of connective
E8-rings

R //

��

R0

��
R1 // R01

where the maps π0R0 Ñ π0R01 Ð π0R1 are surjective. Fix a map f : X Ñ SpétR, and
assume that XˆSpétR SpétR0 and XˆSpétR SpétR1 are spectral algebraic spaces which
are proper over R0 and R1, respectively. It follows from p1q, p4q, and p5q that X is a
quasi-compact separated spectral algebraic space which is locally of finite type over R. To
complete the proof, it will suffice to show that for every connective R-algebra R1, the map of
topological spaces |XˆSpétR SpétR1| Ñ | SpecR1| is closed. Replacing R by R1, it suffices to
show that the map |X | Ñ |SpecR| is closed. Fix a closed subset K Ď |X |. Then K is the
image of a closed immersion i : Y Ñ X (where we can take the spectral Deligne-Mumford
stack Y to be reduced, if so desired). Let Y0 “ YˆX X0, and define Y1 and Y01 similarly.
We have a pushout diagram of spectral Deligne-Mumford stacks and closed immersions

Y01 //

��

Y0

��
Y1 // Y,

hence a pushout diagram of topological spaces

|Y01 | //

��

|Y0 |

��
|Y1 | // |Y |.

It follows that the image of K in | SpecR| is the union of the images of the maps

|Y0 | Ñ |X0 | Ñ |SpecR0| ãÑ |SpecR|

|Y1 | Ñ |X1 | Ñ |SpecR1| ãÑ |SpecR|.

Each of these sets is closed, since X0 is proper over R0 and X1 is proper over R1.

19.4.3 Kodaira-Spencer Theory

We now consider the classification of first-order deformations of spectral Deligne-Mumford
stacks. We will parallel the discussion of §19.2.2, where we studied the analogous (but easier)
problem of classifying first-order deformations of quasi-coherent sheaves. In particular, we
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make use of Notation 19.2.2.1: if Y “ pY,OYq is a spectral Deligne-Mumford stack and
we are given a derivation η P DerpOY,Σ E q, we let Yη “ pY,Oη

Yq denote the “infinitesimal
thickening” of Y determined by η; when η “ 0, we denote this thickening simply by YE .
Note that we have a pushout diagram of spectral Deligne-Mumford stacks

YΣ E //

��

Y

��
Y // Yη

where the maps are closed immersions. Applying Theorem 16.3.0.1, we deduce that the
diagram of 8-categories

SpDM{Yη //

��

SpDM{Y

��
SpDM{Y // SpDM

{YΣ E

is a pullback square. Taking η “ 0 and passing to homotopy fibers over some fixed object
X P SpDM{Y, we obtain equivalences

SpDM
{YE ˆSpDM{ YtXu » MapSpDM

{ YΣ E
pXˆY YΣ E ,XˆY YΣ E q ˆMapSpDM{ Y

pX,Xq tidXu

» MapSpDM{ Y
pXˆY YΣ E ,Xq ˆMapSpDM{ Y

pX,Xq tidXu

» MapSpDMX { { Y
pXf˚Σ E ,Xq

» MapQCohpXqpLX {Y,Σf˚ E q;

here the first equivalence follows from the observation that any lifting of idX to an endomor-
phism of XˆY YΣ E is automatically invertible (Corollary 1.4.7.4). We can summarize the
situation as follows:

Proposition 19.4.3.1 (Classification of First-Order Deformations). Let f : X Ñ Y be a
morphism of spectral Deligne-Mumford stacks and let E P QCohpYqcn. Then the 8-category
SpDM

{YE ˆSpDM{ YtXu is a Kan complex, which is canonically homotopy equivalent to the
mapping space MapQCohpXqpLX {Y,Σf˚ E q. In particular, we obtain a canonical bijection

π0pSpDM
{YE ˆSpDM{ YtXuq » Ext1

QCohpXqpLX {Y, f
˚ E q.

In the situation of Proposition 19.4.3.1, suppose that the morphism f is proper, locally
almost of finite presentation, and locally of finite Tor-amplitude. Then we can consider the
relative dualizing sheaf ωX {Y (Definition 6.4.2.4) and the functor f` : QCohpXq Ñ QCohpYq
of Construction 6.4.5.1. Applying Proposition 6.4.5.3, we obtain a canonical homotopy
equivalence

MapQCohpXqpLX {Y,Σf˚ E q » MapQCohpYqpf`LX {Y,Σ E q » MapQCohpYqpf˚pωX {YbLX {Yq,Σ E q.
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Notation 19.4.3.2. For any simplicial set K, we let Var`K : CAlgcn Ñ pS be the functor
introduced in Theorem 19.4.0.2 (given by the formula Var`KpRq “ FunpK,Var`pRqq»q. In
the special case K “ ∆0, we will denote Var`K by Var`» (so that Var`»pRq is the underlying
Kan complex of the 8-category of spectral algebraic spaces which are proper, flat, and
locally almost of finite presentation over R).

Corollary 19.4.3.3. The functor Var`» admits a cotangent complex which is almost perfect
and p´1q-connective.

Proof. Let η be an R-valued point of Var`», classifying a morphism f : X Ñ SpétR which is
proper, flat, and locally almost of finite presentation. For every connective R-module M ,
Propositions 19.4.3.1 and 19.4.2.1 supply a canonical homotopy equivalence

Var`»pR‘MqˆVar`pRqtηu » MapQCohpXqpLX {SpétR,Σf˚Mq » MapModRpΣ
´1f`LX {SpétR,Mq.

Consequently, the functor Var`» satisfies condition paq of Example 17.2.4.4, and condition
pbq follows from the compatibility of f` with base change (see Proposition 6.4.5.4). It
follows that Var`» admits a cotangent complex LVar`» , satisfying η˚LVar`» “ Σ´1f`LX {SpétR.
Since the quasi-coherent sheaf LX {SpétR is connective and almost perfect, the R-module
Σ´1f`LX {SpétR is p´1q-connective (by virtue of our assumption that f is flat) and almost
perfect (Remark 6.4.5.2).

Remark 19.4.3.4. In the situation of Corollary 19.4.3.3, there is a representable morphism
of functors f : E Ñ Var`» which is proper, flat, and locally almost of finite presentation
(and universal with respect to those properties). In more invariant terms, the calculation of
Corollary 19.4.3.3 shows that there is a canonical equivalence

LVar`» » Σ´1f`LE {Var`» » Σ´1f˚pωE {Var`» b LE {Var`»q.

Remark 19.4.3.5. In the situation of Corollary 19.4.3.3, suppose that η P Var`»pRq classifies
a morphism f : X Ñ SpétR which is locally of finite presentation, so that the cotangent
complex LX {SpétR is perfect. Let TX denote the dual of LX {SpétR. Then we have a canonical
equivalence

η˚LVar`» » Σ´1f`LX {SpétR » Σ´1pf˚TXq
_.

In particular, extensions of X along the closed immersion SpétR ãÑ SpétpR ‘ ΣnRq are
classified by elements of

Ext1
Rppf˚TXq

_,ΣnRq » Extn`1
R ppf˚T

_
X , Rq » Extn`1

R pR, pf˚TXqq » Extn`1
QCohpXqpOX, TXq.

Construction 19.4.3.6 (The Kodaira-Spencer Map). Let f : X Ñ Y be a morphism
of spectral Deligne-Mumford stacks, let E P QCohpYqcn, and let η P DerpOY,E q. Then
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we can identify η with a left homotopy inverse of the evident closed immersion Y Ñ YE .
The pullback XˆY YE (along the morphism s) determines an object of the 8-category
SpDM

{YE ˆSpDM{ YtXu, which (by virtue of Proposition 19.4.3.1) we can identify with a
map ρη : LX {Y Ñ Σf˚ E in the 8-category QCohpXq. In the special case where f is proper,
locally almost of finite presentation, and locally of finite Tor-amplitude, we can identify ρη
with a map

ρ1η : f`LX {Y “ f˚pωX {Y b LX {Yq Ñ Σ E .

Specializing to the case where E “ LY and η is the universal derivation, we obtain maps

ρuniv : LX {Y Ñ Σf˚LY ρ1univ : f˚pωX {Y b LX {Yq Ñ ΣLY.

Unwinding the definitions, we see that ρuniv is the boundary map associated to the fiber
sequence f˚LY Ñ LX Ñ LX {Y. When f is proper, locally almost of finite presentation, and
locally of finite Tor-amplitude, then we will refer to the map ρ1univ as the Kodaira-Spencer
map. When f is flat, it can be regarded as the “derivative” of the map Y Ñ Var`» which
classifies f .

Remark 19.4.3.7 (Obstruction Theoretic Interpretation of the Kodaira-Spencer Map).
In the situation of Construction 19.4.3.6, suppose that E P QCohpYq is 1-connective, so
that the derivation η P DerpOY,E q determines a square-zero extension Oη

Y of OY by Σ´1 E .
Using Theorem 16.3.0.1, we see that the following conditions are equivalent:

paq The map ρη of Construction 19.4.3.6 is nullhomotopic.

pbq The spectral Deligne-Mumford stack X can be “extended” over the closed immersion
Y ãÑ Yη: that is, there exists a pullback diagram

X f //

��

X1

��
Y // Yη .

When f is proper, locally almost of finite presentation, and locally of finite Tor-amplitude,
then conditions paq and pbq are equivalent to the vanishing of a certain obstruction class
opηq P Ext2

QCohpYqpf˚pωX {Y b LX {Yq,Σ´1 E q, which is given by the product of the Kodaira-
Spencer class rρ1univs P Ext1

QCohpYqpf˚pωX {Y b LX {Yq, LYqq with the homotopy class rηs P
Ext1

QCohpYqpLY,Σ´1 E q of the derivation η.

19.4.4 The Proof of Theorem 19.4.0.2

Let Var` : CAlgcn ÑyCat8 be the functor which assigns to each connective E8-ring R
the full subcategory Var`pRq Ď SpDM{SpétR spanned by those maps f : X Ñ SpétR which
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are proper, flat, and locally almost of finite presentation. We verify each of the assertions of
Theorem 19.4.0.2 in turn:

p1q The functor Var` is cohesive and nilcomplete: this follows from Proposition 19.4.2.1
and Remark 19.4.2.2.

p2q The functor Var` is locally almost of finite presentation: this follows from Theorem
4.4.2.2 and Proposition 5.5.4.1.

p3q For every connective E8-ring R, the 8-category Var`pRq is essentially small. Since
Var` is nilcomplete, we may assume that R is n-truncated for some n " 0. In this
case, the desired result follows from Theorem 4.4.2.2.

p4q For every simplicial set K, the functor Var`K : CAlgcn Ñ S admits a p´1q-connective
cotangent complex, where Var`K is defined by the formula Var`KpRq “ FunpK,Var`pRqq».
In the case K “ ∆0, this follows from Corollary 19.4.3.3. We now treat the case of a
general simplicial set K. Writing K as the union of its finite simplicial subsets and
applying Remark 17.2.4.5, we may reduce to the case where K is finite. We will prove
more generally that for any inclusion K 1 Ď K of finite simplicial sets, the restriction
map FK Ñ FK1 admits a p´1q-connective relative cotangent complex. We proceed
by induction on the dimension of K. Using Proposition 17.3.9.1 repeatedly, we can
reduce to the case where K is obtained from K 1 by adjoining a single nondegenerate
simplex, so that we have a pushout diagram of simplicial sets

B∆n //

��

∆n

��
K 1 // K

and therefore a pullback diagram of functors

Var`K //

��

Var`K1

��
Var`∆n

// Var`
B∆n .

We may therefore replace K by ∆n and K 1 by B∆n. If n ě 2, we have a commutative
diagram of functors

Var`K1

##
Var`K

<<

// Var`Λn1
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where the lower horizontal map is an equivalence. Since the diagonal map on the right
admits a p´1q-connective cotangent complex by the inductive hypothesis, Proposition
17.2.5.2 implies that the restriction map Var`K Ñ Var`K1 admits a cotangent complex
which is a pullback of ΣLVar`

K1
{Var`Λn1

, and therefore connective. We may therefore

assume that n ď 1. If n “ 0, then we are in the case K “ ∆0 treated above. Let us
therefore assume that n “ 1. According to Proposition 17.2.4.7, it will suffice to show
that for every pullback diagram of functors

U //

q

��

Var`∆1

��
SpecR η // Var`

B∆0 ,

the natural transformation q admits a relative cotangent complex (which is p´1q-
connective). The map η classifies a pair of spectral Deligne-Mumford stacks X and
Y which are proper, flat, and locally almost of finite presentation over R. Unwind-
ing the definitions, we see that the functor U is given by the formula UpR1q “

MapSpDM{ SpétR1
pXˆSpétRR

1,YˆSpétRR
1q. The existence of a relative cotangent com-

plex of q now follows from Proposition ??. Moreover, if g P UpR1q, then LU{SpétRpgq can
be identified with the R1-module given by f`g˚LY {SpétR, where f : XˆSpétR SpétR1 Ñ
SpétR1 denotes the projection onto the second factor. Since f is flat, the functor f`
is right t-exact. From this we deduce that LU{SpétR is connective (and, in particular,
p´1q-connective).

p5q Let K be a simplicial set with finitely many simplices of each dimension. Fix an integer
n; we wish to show that the Var`K commutes with filtered colimits when restricted to
τďn CAlgcn. Let R be an n-truncated connective E8-ring. We may assume without
loss of generality that n ě 1, so that every object of Var`pRq is n-localic (Corollary
1.6.8.6). Note that if X is a spectral algebraic space which is flat over R, then the
structure sheaf of X is also n-truncated. It follows from Lemma 1.6.8.8 that Var`pRq
is equivalent to an pn ` 1q-category (that is, the mapping spaces in Var`pRq as n-
truncated). Consequently, the restriction map Var`K Ñ Var`skn`2 K

is an equivalence
of functors. To prove that Var`K commutes with filtered colimits when restricted to
τďn CAlgcn, we may replace K by the skeleton skn`2K and thereby reduce to the
case where the simplicial set K is finite. The desired result then follows immediately
from p2q. The assertion that the cotangent complex LVar`K

is almost perfect follows
from Corollary 17.4.2.2 (and can also be proven by direct calculation; for example, see
Remark 19.4.3.4).

Remark 19.4.4.1. Let κ be a field. For every κ-linear 8-category C and every pair of
objects C,D P C, we let MapCpC,Dq P Modκ denote a classifying object for morphisms from
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C to D (see Construction ??). Suppose that f : X “ pX ,OX q Ñ Spétκ be a proper flat
morphism of spectral algebraic spaces, so that f is classified by a point η P Var`»pκq. Let
yVar

`

» denote the restriction of Var`» to the 8-category CAlgsm
κ of small κ-algebras. Since

the functor Var`» is infinitesimally cohesive, the functor yVar
`

» is a formal moduli problem
over κ (see Proposition 12.1.2.9). Using Remark 17.3.7.4 and Corollary 19.4.3.3, we see that
the tangent complex of yVar

`

» is given by

T
yVar

`

»

» MapModκ
pη˚LVar`» , κq

» ΣMapModκ
pf`LX {Spétκ, κq

» ΣMapQCohpXqpLX {Spétκ,OX q.

If κ is a field of characteristic zero, then Theorem 13.0.0.2 implies that the shifted tangent
complex Σ´1T

yVar
`

»

» MapQCohpXqpLX {Spétκ,OX q is quasi-isomorphic to a differential graded

Lie algebra g˚, which determines the formal moduli problem yVar
`

» up to equivalence. Note
that since the cotangent complex LX {Spétκ is connective, the homologies of the Lie algebra
g˚ are concentrated in nonpositive degrees. Moreover, the zeroth homology group of g˚ can
be identified with the space of vector fields on X (that is, the set of κ-linear derivations of
the structure sheaf OX into itself). With more effort, one can show that induced Lie algebra
structure on this set is given by the classical Lie bracket of tangent fields.

19.4.5 Open Loci

If R is a connective E8-ring, then the 8-category Var`pRq introduced in Construction
19.4.0.1 is rather unwieldy: it contains all spectral algebraic spaces which are proper, flat,
and locally almost of finite presentation over R. In practice, it is often convenient to
restrict attention to some subcategory of Var`pRq spanned by algebraic spaces which satisfy
additional requirements. We consider here a few simple examples; we will meet others in
§??.

Notation 19.4.5.1. Let P be some property of morphisms f : X Ñ Y of spectral Deligne-
Mumford stacks. For every connective E8-ring R, we let Var`P pRq denote the subspace of
Var`»pRq spanned by those maps X Ñ SpétR which have the property P .

Proposition 19.4.5.2. Let P be any one of the following properties of a morphism f : X Ñ Y
of spectral Deligne-Mumford stacks:

paq The property of having relative dimension ď d (Definition 3.3.1.1.

pbq The property of being fiber smooth (Definition 11.2.5.5).

pcq The property of being geometrically reduced (Definition ??).
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pdq The property of being finite flat (Definition 5.2.3.1).

peq The property of being finite étale (Definition 3.3.2.3).

pfq The property of being geometrically reduced and geometrically connected (Proposition
8.6.4.1).

Then the inclusion Var`P ãÑ Var`» is an open immersion of functors (Definition 19.2.4.1).

Proof. Let R be a connective E8-ring and let η P Var`»pRq be a point which classifies a
morphism f : X Ñ SpétR which is proper, flat, and locally almost of finite presentation.
Set F “ Var`P ˆVar`» SpecR P FunpCAlgcn,Sq. By definition, the value of F on a connective
E8-ring A can be identified with the summand of MapCAlgpR,Aq spanned by those maps
for which the projection fA : XA “ SpétAˆSpétR X Ñ SpétA has the property P . We wish
to show that F is representable by an open subspace of SpétA.

We first treat cases paq, pbq, and pcq. Let U Ď X be the largest open substack over
which f |U has the property P . Using Propositions 4.2.2.1, 11.2.5.10, and 8.6.3.1, we see for
A P CAlgcn

R , the projection map fA : XA Ñ SpétA has the property P if and only if the
projection XA Ñ X factors through U. Let K Ď |X | be the closed subset complementary to U .
Then fA has the property P if and only if the underlying map |SpecA| Ñ |SpecR| factors
through | SpecR|´fpKq. The desired result now follows from the fact that fpKq Ď |SpecR|
is closed (by virtue of our assumption that f is proper).

Note that pdq is a special case of paq (since a morphism f : X Ñ Y which is proper,
flat, and locally almost of finite presentation is finite flat if and only if it has relative
dimension ď 0; see Proposition 5.2.3.3). Moreover, case peq follows from pcq and pdq (since a
morphism is finite étale if and only if is finite flat and geometrically reduced). To handle
the case pfq, we first use pcq to reduce to the case where the projection f : X Ñ SpétR is
geometrically reduced. Let M P ModR denote the cofiber of the unit map R Ñ ΓpX; OXq.
Since f is proper, flat, and locally almost of finite presentation, the module M is perfect
(Theorem 6.1.3.2). Using Proposition 8.6.4.1, we see that for A P CAlgcn

R , the projection map
fA : XA Ñ SpétA is geometrically connected if and only if MA “ AbRM has Tor-amplitude
ď 1, or equivalently if the dual M_

A “ A bRM
_ is 1-connective. The desired result now

follows from Lemma 2.9.3.3.

Definition 19.4.5.3. Let R be a connective E8-ring. A variety over R is a spectral
algebraic space X equipped with a map f : X Ñ SpétR which is proper, locally almost
of finite presentation, geometrically reduced, and geometrically connected. We let VarpRq
denote the full subcategory of Var`pRq spanned by those objects which are varieties over R.

For each integer d ě 0, we let Var`,ďdpRq denote the full subcategory of Var`pRq
spanned by those morphisms f : X Ñ SpétR which are proper, flat, locally almost of
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finite presentation, and of relative dimension ď d. We let VarďdpRq denote the intersection
Var`,ďdpRq XVarpRq.

Remark 19.4.5.4. Suppose we are given a pullback diagram of spectral algebraic spaces

X1 //

f 1

��

X

f

��
SpétR1 // SpétR.

If f exhibits X as a variety over R, then f 1 exhibits X1 as a variety over R1. Consequently, we
can regard the construction R ÞÑ VarpRq as a functor CAlgcn Ñ Cat8, so that the inclusion
VarpRq ãÑ Var`pRq depends functorially on R. Similarly, for each d ě 0, we can regard the
constructions R ÞÑ Var`,ďdpRq and R ÞÑ VarďdpRq as functors CAlgcn Ñ Cat8.

Variant 19.4.5.5. For every simplicial set K, we let VarK ,VarďdK ,Var`,ďdK : CAlgcn Ñ S
denote the functors given by

VarKpRq “ FunpK,VarpRqq» VarďdK pRq “ FunpK,VarďdpRqq» Var`,ďdK pRq “ FunpK,Var`,ďdpRqq».

In the special case where K “ ∆0, we will denote these functors by Var», Varďd» , and
Var`,ďd» , respectively.

Proposition 19.4.5.6. Let K be a simplicial set having finitely many vertices. Then the
inclusion maps VarK ,VarďdK ,Var`,ďdK ãÑ Var`K are open immersions.

Proof. Without loss of generality, we may assume that K “ ∆0, in which case the desired
result follows from Proposition 19.4.5.2.

Corollary 19.4.5.7. For every integer n ě 0, the functors Var,Varďd,Var`,ďd : CAlgcn Ñ

Cat8 commute with filtered colimits when restricted to τďn CAlgcn.

Proof. We must show that for each m ě 0, the functors Var∆m ,Varďd∆m ,Var`,ďd∆m : CAlgcn Ñ

S are locally almost of finite presentation. This follows from Proposition 19.4.5.6 and
Theorem 19.4.0.2.

Corollary 19.4.5.8. The functor Var»,Varďd» ,Var`,ďd» : CAlgcn Ñ S are cohesive, nilcom-
plete, locally almost of finite presentation, and admits cotangent complexes which are almost
perfect and p´1q-connective.

Proof. Combine Proposition 19.2.4.3, Proposition 19.4.5.6, and Theorem 19.4.0.2.
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Chapter 20

Fractured 8-Topoi

Let X be a scheme (which we assume for simplicity to be quasi-compact and quasi-
separated). Let SchX denote the category whose objects are X-schemes of finite presentation,
and let Schét

X denote the full subcategory of SchX spanned by those schemes which are étale
over X. Associated to these categories are two different notions of étale sheaf on X:

• One can consider sheaves which are defined only on étale X-schemes: that is, functors
F : pSchét

Xq
op Ñ Set which satisfy descent with respect to the étale topology. The cat-

egory of such functors is a Grothendieck topos, which we will denote by ShvSetpSchét
Xq

and refer to as the small étale topos of X.

• One can consider sheaves which are defined on all X-schemes of finite presentation: that
is, functors F : Schop

X Ñ Set which satisfy descent for the étale topology. The category
of such functors is also a Grothendieck topos, which we will denote by ShvSetpSchXq
and refer to as the big étale topos of X.

Both of these topoi play a useful role in organizing algebro-geometric information about
X. We can think of the small étale topos ShvSetpSchét

Xq as sort of generalized topological
space which “enhances” the Zariski topology on X (which can be recovered as the localic
reflection of ShvSetpSchét

Xq). The big étale topos ShvSetpSchXq has a somewhat different role
to play: it can be viewed as a classifying topos for strictly Henselian (sheaves of) OX -algebras
(see Proposition ??).

Warning 20.0.0.1. The terminology introduced above is not standard: most authors define
the big étale site of X to be the category of all X-schemes, rather than X-schemes of finite
presentation. However, the category SchX defined above is closer in spirit to the “big sites”
of interest to us in this book, and has the added virtue of being an essentially small category
(so that we can refer to ShvSetpSchXq as a Grothendieck topos without appealing to any
set-theoretic legerdemain).
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The category ShvSetpSchXq is a prototypical example of what is sometimes called a gros
topos: an object F P ShvSetpSchXq can be viewed not as a single sheaf, but as a family of
sheaves tF Y P ShvSetpSchét

Y quY PSchX which are compatible in the sense that every morphism
f : Y Ñ Z in SchX determines a map of sheaves f˚FZ Ñ F Y (which is an isomorphism
when f is étale). Our goal in this chapter is to introduce some language which formalizes
this idea, and to simultaneously introduce some organizational principles which will be useful
for formulating various generalizations of algebraic geometry. Since most of our intended
applications are higher-categorical in nature, we work in the context of 8-topoi rather than
ordinary Grothendieck topoi (this extra generality actually simplifies certain aspects of the
theory).

We begin in §20.1 by introducing the notion of a fractured 8-topos. Roughly speaking, this
is an8-topos X equipped with a (usually non-full) subcategory X corp Ď X of corporeal objects,
satisfying certain axioms (see Definition 20.1.2.1). A prototypical example of a fractured
8-topos is the 8-category ShvSpSchXq of S-valued sheaves on the big étale site of a scheme
X: in this case, the relevant subcategory Shvcorp

S pSchXq of corporeal objects is equivalent
to ShvSpSch˝Xq, where Sch˝X denotes the subcategory of SchX containing all objects, but
only étale morphisms between X-schemes. This is a special case of general construction
which we study in §20.6: given a Grothendieck site G equipped with a distinguished class
of “admissible” morphisms (satisfying some conditions which we will axiomatize in §20.2),
the 8-category ShvpGq of S-valued sheaves on G can be regarded as a fractured 8-topos,
where the subcategory of corporeal objects can be identified with sheaves on the subcategory
Gad Ď G spanned by the admissible morphisms.

In §20.3, we consider the following question: given a fractured 8-topos X corp Ď X , to
what extent can X corp be recovered from X ? Our main observation is that, under a mild
additional assumption, we do not need to remember the objects of the subcategory X corp, only
its morphisms. More precisely, we show that X corp determines a class of X corp-admissible
morphisms in X (Definition 20.3.1.1), satisfying the axiomatics of §20.2. Moreover, if the
collection of corporeal objects of X is closed under retracts, we show that the subcategory
X corp can be recovered from the class of X corp-admissible morphisms (Proposition 20.3.3.11).
This gives an alternate approach to the theory of fractured 8-topoi based on the notion of a
geometric admissibility structure (Definition 20.3.4.1), which is closely related to earlier work
of Joyal-Moerdijk ([109]) and Dubuc ([52]) on “classes of étale morphisms” in a Grothendieck
topos.

For our applications in this book, all of the fractured 8-topoi we will need are supplied
by the construction of §20.6: that is, they have the form ShvpGq, where G is a geometric site.
However, it seems unlikely that all fractured 8-topoi can be obtained by this construction,
because of the technical nuisance that not every left exact localization of a presheaf 8-
category arises from a Grothendieck topology. In §20.5, we remedy the situation by defining
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the notion of a presentation of a fractured 8-topos (Definition 20.5.3.1), and proving that
every fractured 8-topos admits a presentation (Theorem 20.5.3.4). The analysis of this
notion relies on some general facts about exact and dense functors to 8-topoi, which we
discuss in §20.4.

Remark 20.0.0.2. Many of the ideas described in this chapter have been developed in work
of Carchedi (see [38]). In particular, we are indebted to him for the observation that the
corporeal objects of a fractured 8-topos can again be regarded as an 8-topos (Proposition
20.1.3.3).
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20.1 Fracture Subcategories

Let X be a scheme (which we assume, for simplicity, to be quasi-compact and quasi-
separated), let SchX denote the category of finitely presented X-schemes, and let ShvSpSchXq
denote the 8-topos of S-valued sheaves on the category SchX (where we regard SchX as
equipped with the étale topology). Let us abuse notation by not distinguishing between
an object Y P SchX and the representable functor hY P ShvSpSchXq, given by the formula
hY pZq “ HomSchX pZ, Y q; that is, we identify SchX with its image under the Yoneda
embedding h : SchX ãÑ ShvSpSchXq. The 8-category ShvSpSchXq is generated by this
image under small colimits: every sheaf F P ShvSpSchXq can be recovered as the colimit
lim
ÝÑηPF pY q

Y , indexed by those pairs pY, ηq where Y P SchX and η P F pY q. We can describe
the situation more informally as follows: every sheaf F P ShvSpSchXq can be obtained by
“gluing together” schemes of finite presentation over X. To carry out this gluing, we are forced
to stray far from algebraic geometry: every diagram in the category SchX admits a colimit in
ShvSpSchXq, but such colimits are rarely representable by geometric objects such as schemes.
However, if tYαu is a diagram in SchX for which all of the the transition maps Yα Ñ Yβ
are assumed to be étale, then the situation is better: in this case, the colimit lim

ÝÑ
tYαu is

representable by a higher Deligne-Mumford stack which is locally of finite presentation over
X. Let us refer to an object F P SchSpSchXq as corporeal if it can obtained in this way. Let
Shvcorp

S pSchXq denote the subcategory of ShvSpSchXq spanned by corporeal objects and
étale morphisms between them. This subcategory has several pleasant features:

paq The 8-category Shvcorp
S pSchXq is itself an 8-topos (it is equivalent to the 8-category

ShvSpSchét
Xq: see Theorem 20.6.3.4, or Corollary 6.2.2 of ??).

pbq The inclusion functor j! : Shvcorp
S pSchXq ãÑ ShvSpSchXq commutes with fiber products,

and admits a conservative right adjoint j˚ which preserves small colimits.
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pcq For every morphism U Ñ V in the 8-category X corp, the diagram

j˚U //

��

j˚V

��
U // V

is a pullback square in X (here the vertical maps are induced by the counit transfor-
mation j!j

˚ Ñ id).

Roughly speaking, the adjunction Shvcorp
S pSchXq

j! //ShvSpSchXq
j˚
oo encodes the idea that

the 8-topos ShvSpSchXq is a “gros” 8-topos, which can be decomposed into the small étale
8-topoi ShvSpSchét

Y q, where Y ranges over the objects of SchX . Our goal in this section is
to introduce an axiomatic framework for studying variants of this example. This framework
is based on the concept of a fracture subcategory (Definition 20.1.2.1) of an 8-topos X : that
is, a subcategory X corp Ď X which satisfies analogues of conditions pbq and pcq (assertion
paq is then a formal consequence: see Proposition 20.1.3.3).

Remark 20.1.0.1. It may not be immediately obvious that assertions paq, pbq, and pcq
are true: in other words, that Shvcorp

S pSchXq is a fracture subcategory of the 8-topos
ShvSpSchXq. This is a special case of a more general result that we will prove in §20.6: see
Theorem 20.6.3.4.

20.1.1 Replete Subcategories

We begin with a brief categorical digression. Recall that if C is an 8-category, then a
simplicial subset C0 Ď C is said to be a subcategory of C if there exists a pullback square

C0 //

��

C

��
phCq0 // hC,

where phCq0 is a subcategory of the homotopy category hC (in the sense of ordinary category
theory): see §HTT.1.2.11 .

Proposition 20.1.1.1. Let C be an 8-category and let C0 Ď C be a subcategory. The
following conditions are equivalent:

paq The inclusion map C0 ãÑ C is a categorical fibration.

pbq For every morphism f : X Ñ Y in C which is an equivalence, if X belongs to C0, then
f belongs to C0.
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Proof. This is an immediate consequence of Corollary HTT.2.4.6.5 .

Definition 20.1.1.2. Let C be an 8-category. We will say that a subcategory C0 Ď C is
replete if it satisfies the equivalent conditions of Proposition 20.1.1.1.

Remark 20.1.1.3. Let C be an 8-category. Then a subcategory C0 Ď C is replete if and
only if the homotopy category hC0 is a replete subcategory of hC.

Remark 20.1.1.4. Let C be an 8-category. If C0 is a replete subcategory of C, then the
inclusion functor C0 ãÑ C is conservative.

Proposition 20.1.1.5. Let F : C Ñ D be a functor between 8-categories. The following
conditions are equivalent:

paq The functor F induces an equivalence from C to a replete subcategory D0 Ď D.

pbq For every pair of objects C,C 1 P C, the induced map MapCpC,Cq Ñ MapDpFC,FC
1q

induces a homotopy equivalence from MapCpC,Dq to a summand MapDpFC,FC
1q0 Ď

MapDpFC,FC
1q. Moreover, every equivalence α : FC Ñ FD in the 8-category D is

contained in the summand MapDpFC,FC
1q0.

Proof. The implication paq ñ pbq is immediate. Conversely, suppose that pbq is satisfied.
Let D and D1 be objects of D belonging to the essential image of F , so that we can
choose equivalences α : FC Ñ D and β : D1 Ñ FC 1 for some objects C,C 1 P C. Let
us say that a morphism γ : D Ñ D1 is good if the composition β ˝ γ ˝ α belongs to the
summand MapDpFC,FC

1q0 Ď MapDpFC,FC
1q described in pbq. The final assumption of

pbq guarantees that this condition does not depend on the choice of equivalences α and β.
The collection of good morphisms contains all equivalences and is stable under composition.
Let D0 Ď D be the subcategory spanned by those objects which belong to the essential
image of F and whose morphisms are good. Then D0 is replete and the functor F induces
an equivalence C Ñ D0.

20.1.2 Fractured 8-Topoi

We are now ready to introduce the main objects of interest in this section.

Definition 20.1.2.1. Let X be an 8-topos. We will say that a subcategory X corp Ď X is
a fracture subcategory if it satisfies the following conditions:

p0q The subcategory X corp Ď X is replete (Definition 20.1.1.2).

p1q The 8-category X corp admits fiber products, which are preserved by the inclusion
functor j! : X corp ãÑ X .
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p2q The inclusion functor j! : X corp ãÑ X admits a right adjoint j˚ : X Ñ X corp. Moreover,
the functor j˚ is conservative and preserves small colimits.

p3q For every morphism U Ñ V in X corp, the diagram

j˚U //

��

j˚V

��
U // V

(determined by the counit map j!j
˚ Ñ id) is a pullback square in X .

A fractured 8-topos is a pair X corp Ď X , where X is an 8-topos and X corp is a fracture
subcategory of X . In this case, we will say that an object X P X is corporeal if it belongs to
the subcategory X corp.

Example 20.1.2.2. Let X be an 8-topos. Then X is a fracture subcategory of itself.

Example 20.1.2.3. Let X be an 8-topos, and let F : X ˆX Ñ Funp∆1,X q be the functor
which carries a pair of objects X,Y P X to the map X ãÑ X > Y . Then F induces an
equivalence from X ˆX to a fracture subcategory Funp∆1,X qcorp Ď Funp∆1,X q.

Remark 20.1.2.4. Let X corp Ď X be a fractured 8-topos and let j˚ : X Ñ X corp be a
right adjoint to the inclusion. Then the functor j˚ preserves small limits. In particular, if 1
denotes a final object of X , then j˚1 is a final object of X corp. It follows that the 8-category
X corp admits finite limits.

Warning 20.1.2.5. In the situation of Definition 20.1.2.1, we do not assume that the
inclusion functor j! preserves final objects: in fact, this condition is never satisfied except in
the trivial case X corp “ X .

Warning 20.1.2.6. The commutative diagram appearing in requirement p3q of Definition
20.1.2.1 is not a commutative diagram in the 8-category X corp. Every object in the diagram
is corporeal, but the vertical maps generally do not belong to X corp.

Notation 20.1.2.7. Let X corp Ď X be a fractured 8-topos. We let 1corp denote the final
object of X corp (which is usually not final as an object of X ).

Remark 20.1.2.8. Let X be an 8-topos, let X corp Ď X be a subcategory, and let j˚ : X Ñ
X corp be a right adjoint to the inclusion functor. Then X corp admits a final object 1corp

(obtained by applying the functor j˚ to a final object of X ). For every morphism U Ñ V in
X corp, we obtain a commutative diagram

j˚U //

��

j˚V

��

// j˚1corp

��
U // V // 1corp
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in the 8-category X . Consequently, to prove that the square on the left is a pullback
diagram, it suffices to check that the square on the right and the outer rectangle are pullback
diagrams. We can therefore replace condition p3q of Definition 20.1.2.1 with the following a
priori weaker condition:

p31q For every object U P X corp, the induced diagram

j˚U //

��

j˚1corp

��
U // 1corp

is a pullback square in X .

Proposition 20.1.2.9. Let X corp Ď X be a fractured 8-topos and let j˚ : X Ñ X corp be a
right adjoint to the inclusion. Then, for every morphism U Ñ V in X corp, the diagram σ :

U //

��

V

��
j˚U // j˚V

(induced by the unit map idX corp Ñ j˚|X corp) is a pullback square in X corp (and therefore
also in X ).

Proof. Let j! : X corp ãÑ X denote the inclusion map. The unit and counit for the adjunction

X corp j! //X
j˚
oo determine a commutative diagram

j!U //

��

j!V

��
j!j
˚j!U //

��

j!j
˚j!V

��
j!U // j!V

in the 8-category X , where the vertical composite maps are homotopic to the identity. It
follows that the outer rectangle is a pullback square in X . Requirement p3q of Definition
20.1.2.1 guarantees that the lower square is also a pullback, so the upper square is a pullback
as well. In other words, the diagram σ is a pullback square in the 8-category X . Since the
functor j! is conservative (Remark 20.1.1.4) and preserves fiber products (requirement p1q of
Definition 20.1.2.1), it follows that σ is also a pullback square in X corp.

Example 20.1.2.10. Applying Proposition 20.1.2.9 in the special case where V “ 1corp, we
deduce that every object U P X corp fits into a canonical fiber sequence U Ñ j˚U Ñ j˚1corp

(in the 8-category X corp).
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20.1.3 Properties of Fracture Subcategories

Our next goal is to show that any fracture subcategory of an 8-topos is itself an 8-topos.

Proposition 20.1.3.1. Let X corp Ď X be a fractured 8-topos. Then for every corporeal
object X P X corp, the inclusion map F : X corp

{X ãÑ X {X is fully faithful.

Proof. Let j˚ : X Ñ X corp be a right adjoint to the inclusion. The functor F admits a right
adjoint G, given by the formula GpY q “ j˚Y ˆj˚Y Y . It follows from Proposition 20.1.2.9
that the counit map id Ñ G ˝ F is an equivalence, so that F is fully faithful.

Remark 20.1.3.2. It follows from Proposition 20.1.3.1 that a fracture subcategory X corp Ď

X can be identified with a full subcategory Y Ď X {1corp for some (uniquely determined)
object 1corp P X . Condition p1q of Definition 20.1.2.1 guarantee that Y is closed under finite
limits, and condition p2q guarantees that the inclusion Y ãÑ X {1corp admits a right adjoint.
Beware that Y is generally not a fracture subcategory of X {1corp (Warning 20.1.3.5).

Proposition 20.1.3.3. Let X corp Ď X be a fractured 8-topos. Then the 8-category X corp

is an 8-topos.

Proof. Since the forgetful functor X corp
{1corp Ñ X corp is an equivalence, it will suffice to show

that X corp
{1corp is an 8-topos. Remark ?? shows that X corp

{1corp is a full subcategory of X {1corp

which is closed under small colimits and finite limits. It will therefore suffice to show that
X corp
{1corp is presentable (as in the proof of Proposition HTT.6.3.6.2 ). Let G : X {1corp Ñ X corp

{1corp

be a right adjoint to the inclusion, given by GpXq “ j˚X ˆj˚1corp 1corp (as in the proof of
Proposition 20.1.3.1). Since the functor j˚ : X Ñ X corp preserves small colimits (which
are then preserved by the inclusion X corp ãÑ X ) and colimits in X are universal, it follows
that the functor G preserves small colimits. Consequently, if tXαu is a small collection
of objects which generates X {1corp under small colimits, then the objects GpXαq generate
X corp
{1corp under small colimits. It now suffices to observe that we can choose a regular cardinal

κ such that each GpXαq is a κ-compact object of X {1corp (and therefore also a κ-compact
object of X corp

{1corp).

Corollary 20.1.3.4. Let X corp Ď X be a fractured 8-topos. Then X is generated under
small colimits by corporeal objects.

Proof. Let C Ď X be the smallest full subcategory which contains X corp and is closed
under small colimits. Since X corp is accessible (Proposition 20.1.3.3), we can choose an
essentially small subcategory X corp

0 Ď X corp which generates X corp under small colimits.
Then C is the smallest full subcategory of X which contains X corp

0 and is closed under small
colimits. It follows that the 8-category C is presentable. Applying Corollary HTT.5.5.2.9 ,
we deduce that the inclusion C ãÑ X admits a right adjoint G : X Ñ C. Let j˚ : X Ñ X corp
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be a right adjoint to the inclusion, so that j˚ factors through G. Our assumption that
X corp is a fracture subcategory of X guarantees that j˚ is conservative, so the functor G
is also conservative. It follows that G is an equivalence of 8-categories, so that X “ C as
desired.

Warning 20.1.3.5. Let X be an 8-topos. Then a fracture subcategory X corp Ď X is
never a full subcategory of X , except in the trivial situation where X corp “ X (Example
20.1.2.2). To see this, we note that if the inclusion j! : X corp Ď X were fully faithful, then
the collection of corporeal objects of X would be closed under small colimits. We could then
apply Corollary 20.1.3.4 to deduce that every object of X is corporeal, so that X corp “ X .

Remark 20.1.3.6. Let X corp Ď X be a fractured 8-topos and let j˚ : X Ñ X corp be a
right adjoint to the inclusion. Then j˚ preserves all limits (since it is a right adjoint) and all
colimits (by assumption). It follows that j˚ admits a further right adjoint j˚ : X corp Ñ X
which is a geometric morphism of 8-topoi.

Warning 20.1.3.7. In the situation of Remark 20.1.3.6, the functor j˚ : X corp Ñ X
is generally neither faithful (that is, it need not induce an equivalence of X corp with a
subcategory of X ) nor conservative.

Remark 20.1.3.8. Let X corp Ď X be a fractured 8-topos, let j! : X corp ãÑ X denote the

inclusion and let j˚ : X Ñ X corp be right adjoint to j!. Then the adjunction X corp j! //X
j˚
oo

is monadic: that is, it induces an equivalence of 8-categories X » LModT pX corpq, where T
denotes the monad j˚ ˝ j!. This follows from the Barr-Beck theorem (Theorem HA.4.7.3.5 ),
since the functor j˚ is conservative and preserves small colimits.

20.2 Admissibility Structures

Let φ : AÑ B be a homomorphism of commutative rings. We will say that φ is local if it
carries noninvertible elements of A to noninvertible elements of B. At the other extreme, we
say that φ is localizing if it induces an isomorphism ArS´1s » B, where S is some collection
of elements of A. An arbitrary ring homomorphism φ : AÑ B admits an essentially unique
factorization A

φ1
Ñ A1

φ2
Ñ B, where φ1 is localizing and φ2 is local: namely, we can take

A1 “ ArS´1s, where S is the collection of all elements a P A for which φpaq is an invertible
element of B. We can summarize the situation by saying that the collections of local and
localizing morphisms define a factorization system on the category CAlg♥ of commutative
rings.

The category of commutative rings is compactly generated: every commutative ring
A can be realized as a filtered direct limit of subrings which are finitely generated (and
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therefore also finitely presented) over Z. Let CAlg♥
c denote the category of finitely presented

commutative rings, so that CAlg♥ » IndpCAlg♥
c q. The factorization system described above

above does not restrict to a factorization system on CAlg♥
c . For example, the reduction map

Z Ñ Z {2 Z factors as a composition Z φ1
ÝÑ Zp2q

φ2
ÝÑ Z {2 Z, where φ1 is localizing and φ2 is

local; here the commutative rings Z and Z {2 Z are finitely generated, but the localization
Zp2q is not. Nevertheless, the factorization system on CAlg♥ is visible at the level of finitely
presented commutative rings in the following sense: every localizing ring homomorphism
φ : AÑ B can be written as a filtered colimit of localizing homomorphisms between finitely
presented commutative rings (that is, homomorphisms of the form RÑ Rrt´1s, where R is
finitely presented).

In this section, we introduce the notion of an admissibility structure (Definition ??),
which axiomatizes the essential features of the class of localizing morphisms in the category
pCAlg♥

c q
op (passage to the opposite category here is a matter of convenience). Our main

results can be summarized as follows:

paq Let G be a small 8-category. Then every admissibility structure on G determines
(and is determined by) a factorization system on the 8-category PropGq (Theorem
20.2.2.5).

pbq Let G be a small 8-category. Then every admissibility structure on G determines (and
is determined by) a fracture subcategory of the presheaf 8-topos PpGq “ FunpGop,Sq
(Theorem 20.2.4.1).

Most of this chapter is devoted to expanding on pbq: we will later see that all fractured
8-topoi can be obtained as localizations of fractured 8-topoi having the form PpGq (see
Theorem 20.5.3.4). Moreover, in §20.3 we will see that every fractured8-topos X can itself be
regarded as an 8-category equipped with an admissibility structure (Proposition 20.3.1.3),
and this admissibility structure almost determines the fracture subcategory X corp Ď X
(Proposition 20.3.3.11).

Remark 20.2.0.1. The relationship between assertions paq and pbq will appear as a major
theme of Chapter 21.

20.2.1 Definitions

We begin by introducing some terminology.

Definition 20.2.1.1. Let G be an 8-category. An admissibility structure on G is a collection
of morphisms of G, which we will refer to as admissible morphisms, satisfying the following
axioms:

p1q Every equivalence in G is admissible.
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p2q Let f : U Ñ X be an admissible morphism in G, and let g : X 1 Ñ X be an arbitrary
morphism in G. Then there exists a pullback diagram

U 1 //

f 1

��

U

f

��
X 1

g // X,

and the morphism f 1 is admissible.

p3q Let

X
f //

h

  

Y
g

��
Z

be a commutative diagram in G, where g is admissible. Then f is admissible if and
only if h is admissible.

p4q The collection of admissible morphisms is closed under retracts (when viewed as a full
subcategory of the 8-category Funp∆1,Gq).

If G is an 8-category equipped with an admissibility structure, we let Gad denote the
subcategory of G containing all objects, whose morphisms are the admissible morphisms in
G. We will generally abuse terminology by identifying the admissibility structure on G with
the full subcategory Gad.

Remark 20.2.1.2. It follows from condition p4q of Definition 20.2.1.1 (or from conditions
p1q and p3q) that if f : U Ñ V is an admissible morphism in G, then any morphism homotopic
to f is also admissible.

Remark 20.2.1.3. Let G be an 8-category and let Gad Ď G be an admissibility structure
on G. Then Gad is a replete subcategory of G (Definition 20.1.1.2): this is a restatement of
condition p1q of Definition 20.2.1.1.

Notation 20.2.1.4. Let G be an 8-category equipped with an admissibility structure
Gad Ď G. For each object X P G, we let Gad

{X denote the full subcategory of G{X spanned by
the admissible morphisms U Ñ X. Note the 8-category Gad

{X can also be described as the
overcategory pGadq{X (since any morphism in Gad

{X is itself admissible, by condition p3q of
Definition 20.2.1.1).

Example 20.2.1.5. Let CAlg♥
c denote the category of finitely generated commutative rings.

Then the category pCAlg♥
c q

op admits an admissibility structure, whose admissible morphisms
are given by those ring homomorphisms φ : A Ñ B which exhibit B as isomorphic to a
localization Art´1s for some t P A.
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Example 20.2.1.6. Let T op denote the category of topological spaces. Then the collection
of all open immersions determines an admissibility structure on T op.

Example 20.2.1.7. Let X be a scheme and let SchX be the category of finitely presented
X-schemes. Then the collection of étale morphisms determines an admissibility structure on
SchX .

Example 20.2.1.8. Let G and C be 8-categories which admit finite limits, and suppose
we are given a natural transformation f Ñ g between left-exact functors f, g : G Ñ C. Then
there is an admissibility structure on G whose admissible morphisms are those maps U Ñ X

for which the diagram
fpUq //

��

gpUq

��
fpXq // gpXq

is a pullback square in C.

Remark 20.2.1.9. Let G be an 8-category with an admissibility structure. Then, for every
object X P G, the 8-category G{X inherits an admissibility structure, where we say that a
morphism in G{X is admissible if its image in G is admissible.

Warning 20.2.1.10. When used in combination with Remark 20.2.1.9, Notation 20.2.1.4
presents some opportunity for confusion. Let G be an 8-category equipped with an admissi-
bility structure Gad Ď G and let X be an object of G. Then Remark 20.2.1.9 supplies an
admissibility structure pG{Xqad Ď G{X on the 8-category G{X . Beware that the subcategory
pG{Xqad does not coincide with the subcategory Gad

{X Ď G{X appearing in Notation 20.2.1.4:
the former contains all objects of G{X , while the latter contains only those objects which are
given by admissible morphisms U Ñ X.

Remark 20.2.1.11. Let F : C Ñ D be a functor between 8-categories. Suppose that C
admits pullbacks and that f preserves pullbacks. Then every admissibility structure on
D determines an admissibility structure on C, where we say that a morphism u in C is
admissible if its image F puq is an admissible morphism of D.

Remark 20.2.1.12. Let G be an 8-category equipped with an admissibility structure.
Then, for every object X P G, the 8-category Gad

{X admits finite limits, which are preserved
by the inclusion Gad

{X ãÑ G{X . To prove this, it suffices to observe that Gad
{X contains the final

object of G{X (by virtue of condition p1q of Definition 20.2.1.1) and that it is closed under
fiber products. Suppose that we are given morphisms α : Y0 Ñ Y and β : Y1 Ñ Y in Gad

{X .
Using condition p3q of Definition 20.2.1.1, we see that α and β are admissible, so that (by
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virtue of p2q) we can choose a pullback square

Y01
β1 //

α1

��

Y0

α

��
Y1

β // Y

where α1 and β1 are also admissible. Condition p3q implies that the composition

Y01
α1
Ñ Y1

β
Ñ Y Ñ X

is admissible, so that Y01 P Gad
{X .

20.2.2 Admissibility Structures and Factorization Systems

We now study the relationship between admissibility structures (in the sense of Defi-
nition 20.2.1.1) and factorization systems (in the sense of Definition HTT.5.2.8.8 ). Our
first observation is that if G is an 8-category which admits pullback squares, then every
factorization system determines an admissibility structure:

Proposition 20.2.2.1. Let G be an 8-category which admits pullbacks, and suppose we
are given a factorization system pSL, SRq on G (see Definition HTT.5.2.8.8 ). Then the
collection of morphisms SR is an admissibility structure on G.

Proof. Applying Proposition HTT.?? , we immediately deduce that SR satisfies conditions
p1q, p3q, and p4q of Definition 20.2.1.1, together with the following weaker form of p2q;

p21q For every pullback diagram
U 1 //

f 1

��

U

f
��

X 1 // X

in G, if f belongs to SR, then f 1 also belongs to SR.

Our assumption that C admits pullbacks guarantees that p2q and p21q are equivalent.

Our next goal is to establish a weak converse to Proposition ??: we will show that
every admissibility structure on G determines a factorization system not on G, but on the
8-category PropGq of Pro-objects of G (Theorem 20.2.2.5). We begin by introducing some
terminology.
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Definition 20.2.2.2. Let G be an essentially small 8-category equipped with an admissibil-
ity structure, let PropGq denote the 8-category of Pro-objects of G (see Definition A.8.1.1)
and let j : G Ñ PropGq denote the Yoneda embedding. We will say that a morphism
f : U Ñ X in the 8-category PropGq is proadmissible if there exists a small filtered diagram
p : I Ñ Funp∆1,Gq such that each ppIq is an admissible morphism of G, and f is a limit of
the composite diagram

I p
Ñ Funp∆1,Gq j

Ñ Funp∆1,PropGqq.

For each object X P PropGq, we let PropGqpro-ad
{X denote the full subcategory of PropGq{X

spanned by the proadmissible morphisms Y Ñ X.

Remark 20.2.2.3. Let G be an essentially small 8-category equipped with an admis-
sibility structure. The composition Funp∆1,Gq ˆ ∆1 Ñ G j

Ñ PropGq classifies a map
Funp∆1,Gq Ñ Funp∆1,PropGqq. According to Proposition HTT.5.3.5.15 , this map induces
an equivalence of8-categories φ : PropFunp∆1,Gqq » Funp∆1,PropGqq. Let Funadp∆1,Gq de-
note the full subcategory of Funp∆1,Gq spanned by the admissible morphisms of G. The inclu-
sion of Funadp∆1,Gq into Funp∆1,Gq induces a fully faithful embedding PropFunadp∆1,Gqq Ñ
PropFunp∆1,Gqq. Composing with the equivalence φ, we obtain a fully faithful embedding
PropFunadp∆1,Gqq ãÑ Funp∆1,PropGqq, whose essential image is spanned by the proadmissi-
ble morphisms of PropGq.

Remark 20.2.2.4. Let G be an essentially small 8-category equipped with an admissibility
structure, let j : G Ñ PropGq denote the Yoneda embedding, and let f : U Ñ X be a
morphism in G. It follows from Remark 20.2.2.3 (and condition p4q of Definition 20.2.1.1)
that jpfq is proadmissible if and only if f is an admissible morphism in G.

We can now formulate the main result of this section:

Theorem 20.2.2.5. Let G be an essentially small 8-category which is equipped with an
admissibilty structure, let S denote the collection of all proadmissible morphisms in PropGq,
and let KS be the collection of all morphisms in PropGq which are left orthogonal to every
morphism in S (see Definition HTT.5.2.8.1 ). Then pKS, Sq determines a factorization
system on PropGq. In other words, every morphism f : X Ñ Z admits a factorization

X
f 1
Ñ Y

f2
Ñ Z,

where f 1 P KS and f2 is proadmissible.

Remark 20.2.2.6. Let G be an essentially small 8-category which admits finite limits, and
suppose we are given a factorization system pSL, SRq on PropGq. Then PropGq admits finite
limits, so that SR is an admissibility structure on PropGq (Proposition 20.2.2.1). Applying
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Remark 20.2.1.11, we obtain an admissibility structure on G, where a morphism in G is
admissible if its image under the Yoneda embedding j : G ãÑ PropGq belongs to SR. Note
that since SR is closed under limits in PropGq (see Proposition HTT.?? ), it follows that SR
contains every proadmissible morphism in PropGq. If the reverse inclusion holds (that is, if
SR is generated under filtered limits by morphisms of the form f : U Ñ X, where U and X
belong to the essential image of j), then pSL, SRq coincides with the factorization system
appearing in the statement of Theorem 20.2.2.5.

Remark 20.2.2.7. Let G be an essentially small 8-category equipped with an admissibility
structure Gad Ď G. and regard PropGq as equipped with the factorization system of Theorem
20.2.2.5. If G admits finite limits, then the construction of Remark 20.2.2.6 produces another
admissibility structure on G, determined by the collection of morphisms f in G whose image
under the Yoneda embedding j : G Ñ PropGq is proadmissible. It follows from Remark ??
that this admissibility structure coincides with Gad.

Remark 20.2.2.8. Let G be an essentially small 8-category which admits finite limits.
Combining Remarks 20.2.2.6 and 20.2.2.7, we see that the construction of Theorem 20.2.2.5
establishes a bijection between the following data:

• Admissibility structures on Gad Ď G.

• Factorization systems pSL, SRq on PropGq for which every morphism f : X Ñ Y in SR
can be written as a filtered limit of morphisms fα : Xα Ñ Yα which belong to SR, where
Xα and Yα belong to the essential image of the Yoneda embedding j : G Ñ PropGq.

Corollary 20.2.2.9. Let G be an 8-category equipped with an admissibility structure Gad Ď

G, and suppose we are given morphisms W f
ÝÑ X

g
ÝÑ Y

h
ÝÑ Z in G. If g ˝ f and h ˝ g are

admissible, then f is admissible.

Proof. Without loss of generality, we may assume that G is small. Let us abuse notation
by identifying G with a full subcategory of the 8-category PropGq. Let pKS, Sq denote the
factorization system of Theorem 20.2.2.5. By virtue of Remark 20.2.2.4, it will suffice to
show that the morphism f is right orthogonal to every morphism u : A Ñ B in KS. Fix
a map A Ñ W in the 8-category PropGq; we wish to show that f induces a homotopy
equivalence f 1 : MapPropGqA{pB,W q Ñ MapPropGqA{pB,Xq. Consider the diagram

MapPropGqA{pB,W q
f 1
ÝÑ MapPropGqA{pB,Xq

g1
ÝÑ MapPropGqA{pB, Y q

h1
ÝÑ MapPropGqA{pB,Zq.

Since g ˝ f and h ˝ g are admissible, the maps g1 ˝ f 1 and h1 ˝ g1 are homotopy equivalences.
It follows that g1 admits left and right homotopy inverses, and is therefore a homotopy
equivalence. Then g1 and g1 ˝ f 1 are both homotopy equivalences, so that f 1 is a homotopy
equivalence as desired.
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20.2.3 The Proof of Theorem 20.2.2.5

Let G be an essentially small 8-category equipped with an admissibility structure. Our
proof of Theorem 20.2.2.5 will use a variant of Quillen’s “small object” argument. We begin
with some general observations about the class of proadmissible morphisms in PropGq.

Remark 20.2.3.1. Let G be an essentially small 8-category equipped with an admissibility
structure and let X P PropGq. Then the 8-category PropGq{X admits small filtered limits,
and the full subcategory PropGqpro-ad

{X Ď PropGq{X is closed under small filtered limits.

Lemma 20.2.3.2. Let G be an essentially small 8-category equipped with an admissibility
structure and let X be an object of PropGq. A morphism f : U Ñ X is proadmissible if and
only if, as an object of PropGq{X , U can be identified with a small filtered limit of morphisms
Uα Ñ X which fit into pullback diagrams

Uα //

��

X

��
jpU 1αq

jpf 1αq // jpX 1αq,

where j : G Ñ PropGq denotes the Yoneda embedding and each f 1α is an admissible morphism
of G.

Proof. Suppose first that f is proadmissible. Then f can be written as a filtered limit of
morphisms jpf 1αq : jpU 1αq Ñ jpX 1αq, where f 1α is an admissible morphism of G. For each index
α, we can write X as the filtered limit of a diagram tjpX2βqu, where X2β P G{Xα . Since each
f 1α is admissible, we can choose pullback diagrams

U2β
//

��

X2β

��
U 1α

f 1α // X 1α

in the 8-category G. It follows that Uα » lim
ÐÝβ

jpU2βq is a fiber product jpU 1αq ˆjpX 1αqX, and
that U » lim

ÐÝα
Uα.

To prove the converse, it will suffice (by virtue of Remark 20.2.3.1) to show that for
every pullback diagram

Uα
fα //

��

X

��
jpU 1αq

jpf 1αq // jpX 1αq,

with f 1α admissible, the map fα is proadmissible. Let tX2βu be as above. Then fα is a
filtered limit of maps jpf2βq, where f2β : X2β ˆX 1α U

1
α Ñ X2β is the projection onto the first
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factor (and therefore admissible, since the collection of admissible morphisms is stable under
pullback).

Corollary 20.2.3.3. Let G be an essentially small 8-category equipped with an admissibility
structure, let f : U Ñ X be a proadmissible morphism in PropGq, and let g : X 1 Ñ X be an
arbitrary morphism in PropGq. Then there exists a pullback diagram

U 1 //

f 1

��

U

f
��

X 1
g // X

in PropGq. Moreover, the map f 1 is proadmissible.

Lemma 20.2.3.4. Let G be an essentially small 8-category equipped with an admissibil-
ity structure. Then the collection of proadmissible morphisms in PropGq is closed under
composition.

Proof. Choose proadmissible morphisms f : X Ñ Y and g : Y Ñ Z in PropGq; we wish to
show that g ˝ f is proadmissible. By virtue of Lemma 20.2.3.2, we may assume that f is a
filtered limit of morphisms tfα : Xα Ñ Y u, where each fα is the pullback jpf 1αq for some
admissible morphism f 1α in G. It suffices to show that each composition g ˝ fα is admissible.
Replacing f by fα, we may assume that there exists a pullback diagram

X
f //

��

Y

h
��

jpX 1q
jpf 1q // jpY 1q

where f 1 is an admissible morphism of G.
Applying Lemma 20.2.3.2 again, we may assume that g is the limit of a diagram of

morphisms tgβ : Yβ Ñ ZuβPB indexed by a filtered partially ordered set B, such that
each gβ is a pullback of jpg1βq for some admissible morphism g1β : Y 1β Ñ Z 1β in G. Since
jpY 1q is a cocompact object of PropGq, we may assume that h is factors as a composition
Y Ñ jpYβ0q

jph1q
Ñ jpY 1q for some β0 P B. It follows that we can identify X with the limit

of the diagram tjpYβq ˆjpY 1q jpX
1quβěβ0 . It will therefore suffice to show that each of the

composite maps
jpYβq ˆjpY 1q jpX

1q Ñ jpYβq Ñ jpZβq

is proadmissible. In fact, the map Yβ ˆY 1 X
1 Ñ Zβ is an admissible morphism in G, since

the collection of admissible morphisms is stable under pullback and composition.
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Corollary 20.2.3.5. Let G be an essentially small 8-category equipped with an admissibility
structure and let X P PropGq. Then the 8-category PropGqpro-ad

{X admits small products, and
the inclusion functor PropGqpro-ad

{X ãÑ PropGq{X preserves small products.

Proof. By virtue Remark 20.2.3.1, it will suffice to treat the case of finite products. Pro-
ceeding by induction on the number of factors (and noting that PropGqad

{X contains X as
a final object), we are reduced to proving that if U Ñ X and V Ñ X are proadmissible
morphisms, then there exists a fiber product U ˆX V in PropGq, and the map U ˆX V Ñ X

is proadmissible. This follows immediately from Lemma 20.2.3.4 and Corollary 20.2.3.3.

Proof of Theorem 20.2.2.5. Let G be an essentially small 8-category equipped with an
admissibility structure and let f : X Ñ Z be a morphism in PropGq; we wish to show that f
factors as a composition X f 1

ÝÑ Y
f2
ÝÑ Z, where f2 is proadmissible and f 1 is left orthogonal

to every proadmissible morphism. We begin by inductively constructing a sequence of
maps tgi : X Ñ Yiuiě0, using induction on i. Set g0 “ f and Y0 “ Z. To carry out the
inductive step, suppose that gn : X Ñ Yn has already been constructed. Let tσαu be a set
of representatives for all homotopy equivalence classes of diagrams

X //

gn

��

jpUαq

jphαq

����
Yn // jpVαq,

where hα is an admissible morphism in G. It follows from Corollary 20.2.3.3 that for each
index α, the fiber product Y 1n,α “ Yn ˆjpVαq jpUαq exists, and the projection map Y 1n,α Ñ Yn
is proadmissible. Let Yn`1 denote the product of the objects Y 1n,α, formed in the 8-category
PropGq{Yn , and let gn`1 : X Ñ Yn`1 be the product of the maps determined by the diagrams
σα. We have a tower of morphisms

¨ ¨ ¨ Ñ Y3 Ñ Y2 Ñ Y1 Ñ Y0 “ Z

in PropGqX{, and Corollary 20.2.3.5 implies that each of the morphisms in this diagram is

proadmissible. Set Y “ lim
ÐÝn

Yn, so that the map f factors as a composition X
f 1
Ñ Y

f2
Ñ Z.

The morphism f2 is a filtered limit of proadmissible morphisms in PropGq, and therefore
proadmissible. To complete the proof, it will suffice to show that f 1 is left orthogonal to all
proadmissible morphisms.

Let T be the collection of all morphisms in PropGq which are right orthogonal to f 1. We
wish to prove that T contains all proadmissible morphisms. Since T is closed under filtered
limits, it will suffice to show that T contains jphq for every admissible morphism h : U Ñ V

in G. Let us therefore assume that we are given a map X Ñ jpUq in PropGq; we wish to
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prove that composition with f 1 induces a homotopy equivalence

θ : MapPropGqX{pY, jpUqq Ñ MapPropGqX{pY, jpV qq.

We will prove that θ is n-connective using induction on n. Assume first that n ą 0, so that
θ has nonempty homotopy fibers. To prove that θ is n-connective, it will suffice to show
that the diagonal map

δ : MapPropGqX{pY, jpUqq Ñ MapPropGqX{pY, jpUqq ˆMapPropGqX{
pY,jpV qq MapPropGqX{pY, jpV qq.

is pn´ 1q-connective. This follows by applying the inductive hypothesis after replacing h
by the map h1 : U Ñ U ˆV U (which is an admissible morphism in G, since it fits into a
commutative diagram

U
h1 //

h

��

U ˆV U

zz
V

where the vertical maps are admissible).
It remains to treat the case n “ 0. For this, we must show that every morphism

ρ : Y Ñ jpV q in PropGqX{ factors through jpXq. Since jpV q is cocompact object of PropGq,
we can assume that the map ρ factors through Yn for some integer n. In this case, it follows
from our construction that there exists a commutative diagram

Yn`1 //

��

jpUq

��
Yn // jpV q

in PropGqX{.

20.2.4 Admissibility Structures and Fracture Subcategories

Our next goal is to establish a relationship between the notion of admissibility structure
and the theory of fractured 8-topoi introduced in §20.1.

Theorem 20.2.4.1. Let G be an essentially small 8-category equipped with an admissibility
structure Gad Ď G. Let PpGq “ FunpGop,Sq denote the 8-category of presheaves on G,
let PpGadq “ FunppGadqop,Sq be defined similarly, and let j! : PpGadq Ñ PpGq denote the
functor given by left Kan extension along the inclusion map j : Gad ãÑ G. Then the functor
j! induces an equivalence from PpGadq onto a fracture subcategory PpGqcorp Ď PpGq.
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The proof of Theorem 20.2.4.1 will be given in §20.2.5. We begin by establishing
some preliminaries. Our starting point is the following mild generalization of Proposition
HTT.6.1.5.2 :

Proposition 20.2.4.2. Let G be a small8-category which admits pullbacks, let j : G Ñ PpGq
denote the Yoneda embedding, let X be an 8-topos, and let F : PpGq Ñ X be a functor
which preserves small colimits. The following conditions are equivalent:

paq The functor F preserves pullbacks.

pbq The composite functor f “ F ˝ j preserves pullbacks.

Proof. Let α : F Ñ G be a morphism in PpGq. We will say that α is good if for every
pullback square

F //

��

F

α
��

G 1 // G

in PpGq, the induced diagram
F pF 1q //

��

F pF q

F pαq

��
F pG 1q

β // F pG q

is a pullback square in X . Note that the collection of good morphisms in PpGq is closed
under composition (see Lemma HTT.4.4.2.1 ).

Using the fact that colimits in X are universal (and the fact that the functor F preserves
small colimits), we see that a morphism α : F Ñ G is good if and only if the following a
priori weaker condition is satisfied:

p˚q For every object C P G and every morphism jpCq Ñ G , the induced diagram

F pjpCq ˆG F q //

��

F pF q

F pαq

��
F pjpCqq

β // F pG q

is a pullback square in X .

Let us say that an object G P PpGq is good if every morphism α : F Ñ G in PpGq is
good. Since colimits in X are universal and the functor F preserves small colimits, the
collection of good morphisms F Ñ G is closed under colimits in the 8-category PpGq{G .
Using the fact that the 8-category PpGq is generated under small colimits by the essential
image of the Yoneda embedding j, we deduce that G is good if and only if it satisfies the
following:
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p˚1q For every pair of objects C,D P G and every pair of maps jpCq Ñ G Ð jpDq the
diagram

F pjpCq ˆG jpDqq //

��

F pjpDqq

��
F pjpCqq // F pG q

is a pullback square in X .

Note that condition paq is equivalent to the assertion that every object of PpGq is good,
and condition pbq is equivalent to the assertion that every object in the essential image of the
Yoneda embedding j : C Ñ PpGq is good (this follows from the observation that j is fully
faithful and preserves pullbacks). To show that these conditions are equivalent, it will suffice
to show that the collection of good objects of PpGq is closed under small colimits. Using
Proposition HTT.4.4.3.3 , we are reduced to showing that the collection of good objects of
PpGq is closed under coequalizers and small coproducts.

We first consider the case of coproducts. Let tG iuiPI be a family of good objects of PpGq
indexed by a (small) set I and let tφi : G i Ñ G uiPI be a family of morphisms which exhibit
G as a coproduct of the family tG iuiPI . Suppose we are given a pullback diagram

F //

��

jpDq

α

��
jpCq

β // G

in PpGq. The map α factors as a composition jpDq α
1

Ñ G i
φi
Ñ G for some i P I. By assumption,

the morphism α1 is good; it therefore suffices to prove that φi is good. By a similar argument,
we can replace β by a map φj : G j Ñ G for some j P I. We are now required to show that if

F //

��

G i

φi
��

G j
φj // G

is a pullback diagram in PpGq, then

F pF q //

��

F pG iq

F pφiq

��
F pG jq

F pφjq // F pG q

is a pullback diagram in X . This follows from the assumption that F preserves coproducts
and the fact that coproducts in X are disjoint (see Lemma HTT.6.1.5.1 ).
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We now complete the proof by showing that the collection of good objects of PpGq is
stable under the formation of coequalizers. Let

G 2 //// G 1
s // G

be a coequalizer diagram in PpGq, and suppose that the presheaves G 1 and G 2 are good. We
must show that any pullback diagram

F //

��

jpDq

α

��
jpCq

β // G

remains a pullback diagram after applying the functor F . Note that the map α factors as a
composition jpDq

α1
ÝÑ G 1

s
ÝÑ G . Since G 1 is good, the morphism α1 is good. It will therefore

suffice to show that α2 is good: that is, we must show that every pullback diagram

F //

��

G 1

s

��
jpCq

β // G

remains a pullback diagram after applying F . Applying the same argument to β, we are
reduced to showing that the canonical map F pG 1ˆG G 1q Ñ F pG 1q ˆF pG q F pG

1q is a pullback
diagram in X . This follows from Proposition HTT.6.1.4.2 (together with our assumption
that G 1 is good).

Corollary 20.2.4.3. Let G be an essentially small 8-category equipped with an admissibility
structure Gad Ď G, and let j! : PpGadq Ñ PpGq denote the functor given by left Kan extension
along the inclusion. Then the functor j! preserves pullbacks.

Proof. Using Proposition 20.2.4.2, we are reduced to showing that the composite functor
Gad ãÑ G h

ÝÑ PpGq preserves pullback squares, where h denotes the Yoneda embedding. Since
h preserves all pullback squares which exist in G, it will suffice to show that the inclusion
Gad ãÑ G preserves pullbacks, which follows from Remark 20.2.1.12.

Proposition 20.2.4.4. Let G be an essentially small 8-category, let Gad Ď G be an
admissibility structure on G, let j˚ : PpGq Ñ PpGadq be the restriction map and let
j! : PpGadq Ñ PpGq be a left adjoint to j˚ (given by left Kan extension along the inclusion
Gad ãÑ G). Then, for every morphism α : F Ñ G in PpGq, the diagram σ:

j!j
˚j! F //

��

j!j
˚j! G

��
j! F // j! G
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is a pullback square in PpGq (where the vertical maps are induced by the counit j!j˚ Ñ id).

Proof. Let us regard the presheaf G as fixed. Since the functors j˚ and j! preserve small
colimits, the collection of those objects F P PpGadq{G for which σ is a pullback square is
closed under small colimits. We may therefore assume without loss of generality that the
presheaf F is representable. Write G as a colimit lim

ÝÑ
G α, where each of the presheaves

G α P PpGadq is representable. Without loss of generality, we may assume that F “ G α0 for
some index α0 (as an object of the 8-category PpGadq{G ). It will therefore suffice to show
that each of the diagrams

j!j
˚j! G α

//

��

j!j
˚j! G

��
j! G α

// j! G

is a pullback square. Applying Theorem HTT.6.1.3.9 , we are reduced to showing that each
of the diagrams

j!j
˚j! G α

//

��

j!j
˚j! G β

��
j! G α

// j! G β

is a pullback square. In other words, it will suffice to verify Proposition 20.2.4.4 in the special
case where F and G are representable by objects X,Y P Gad (so that the map F Ñ G is
induced by an admissible morphism u : X Ñ Y ).

Let U be an object of G; we wish to show that the diagram of spaces σpUq :

pj!j
˚j! F qpUq //

��

pj!j
˚j! G qpUq

��
pj! F qpUq // pj! G qpUq

is a pullback. Unwinding the definitions, we can identify σpUq with the diagram

lim
ÝÑX 1PpG{Xqad MapGpU,X

1q //

��

lim
ÝÑY 1PpG{Y qad MapGpU, Y

1q

��
MapGpU,Xq //MapGpU, Y q.

We are therefore reduced to showing that the canonical map

lim
ÝÑ

X 1PpG{Xqad
MapGpU,X

1q Ñ lim
ÝÑ

Y 1PpG{Y qad
MapGpU, Y

1 ˆY Xq
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is a homotopy equivalence. To verify this, it suffices to establish that construction Y 1 ÞÑ

Y 1 ˆY X determines a left cofinal functor u˚ : pG{Y qad Ñ pG{Xqad. This is clear, since the
functor u˚ admits a left adjoint (given by composition with u).

Proposition 20.2.4.5. Let G be an essentially small 8-category, let Gad Ď G be an
admissibility structure on G, let j˚ : PpGq Ñ PpGadq be the restriction map and let
j! : PpGadq Ñ PpGq be a left adjoint to j˚ (given by left Kan extension along the inclusion
Gad ãÑ G). Then:

paq For every presheaf F P PpGadq, the unit map uF : F Ñ j˚j! F is p´1q-truncated.

pbq For every morphism F Ñ G in PpGadq, the diagram

F
uF //

��

j˚j! F

��
G

uG // j˚j! G

is a pullback square.

Proof. We first prove paq. Fix an object X P G; we wish to show that the unit map
uF pXq : F pXq Ñ pj˚j! F qpXq “ pj! F qpXq is an equivalence. Set C “ GadˆG GX{; we wish
to show that the canonical map F pXq Ñ lim

ÝÑY PCop F pY q is p´1q-truncated. The objects
of C can be identified with morphisms f : X Ñ Y in the 8-category G. Let C0 be the full
subcategory of C spanned by those objects for which f is admissible, and let C1 be the full
subcategory of C spanned by those objects for which f is not admissible. Using condition p3q
of Definition 20.2.1.1, we see that MapCpY, Zq is empty if Y P C0 and Z P C1, or if Y P C1
and Z P C0. It follows that we can identify the colimit lim

ÝÑY PCop F pY q with the coproduct of
lim
ÝÑY PCop

0
F pY q and lim

ÝÑY PCop
1

F pY q. We are therefore reduced to proving that the canonical
map F pXq Ñ lim

ÝÑY PCop
0

F pY q is p´1q-truncated. In fact, this map is an equivalence, since
the identity map id : X Ñ X is an initial object of C0. This completes the proof of paq.

We now prove pbq. Fix an object X P G and define C as above; we wish to show that the
diagram of spaces

F pXq //

��

lim
ÝÑY PCop F pY q

��
G pXq // lim

ÝÑY PCop G pY q
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is a pullback square. Arguing as above, we can rewrite this diagram as

lim
ÝÑY PCop

0
F pY q //

��

plim
ÝÑY PCop

0
F pY qq > plim

ÝÑY PCop
1

F pY qq

��
lim
ÝÑY PCop

0
G pY q // plim

ÝÑY PCop
0

G pY qq > plim
ÝÑY PCop

1
G pY qq,

so that the desired result is evident.

20.2.5 The Proof of Theorem 20.2.4.1

Let G be an essentially small 8-category equipped with an admissibility structure
Gad Ď G, which we regard as fixed throughout this section. Let j˚ : PpGq Ñ PpGadq denote
the restriction map and let j! : PpGadq Ñ PpGq be a left adjoint to j˚ (given by left Kan
extension along the inclusion Gad ãÑ G). Our proof of Theorem 20.6.3.4 will require a bit of
(temporary) terminology. For any pair of objects F ,G P PpGqq, it follows from Proposition
20.2.4.5 that the canonical map

MapPpGadqpF ,G q Ñ MapPpGadqpF , j˚j! G q » MapPpGqpj! F , j! G q

has p´1q-truncated homotopy fibers. We will say that a morphism f : j! F Ñ j! G is
admissible if it belongs to the essential image of this map. Our first goal is to show that this
notion of admissible morphism satisfies analogues of the axioms of Definition 20.2.1.1.

Lemma 20.2.5.1. Let F , G , and H be objects of PpGadq, and suppose we are given
morphisms f : j! F Ñ j! G and g : j! G Ñ j! H . Then:

paq If f and g are admissible, then the composition g ˝ f is admissible.

pbq If g and g ˝ f are admissible, then f is admissible.

pcq If f and g ˝ f are admissible and f is an effective epimorphism, then g is admissible.

Proof. Assertion paq is obvious. We next prove pbq. Assume that g and g ˝ f are admissible;
we wish to show that f is admissible. Let us identify f with a map pf : F Ñ j˚j! G ; we wish
to show that pf factors through the unit map uG : G Ñ j˚j! G . Without loss of generality, we
can assume that g “ j!pg0q for some morphism g0 : G Ñ H . Proposition 20.2.4.5 guarantees
that the diagram

G
uG //

g0
��

j˚j! G

j˚pgq
��

H
uH // j˚j! H
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is a pullback square. Consequently, it will suffice to show that the composite map j˚pgq ˝ pf

factors through uH , which is equivalent to our assumption that g ˝ f is admissible.
We now prove pcq. Assume that f is admissible and an effective epimorphism, so that

we can write f “ j!pf0q for some morphism f0 : F Ñ G . Note that the morphism f0 is a
pullback of j˚pfq (Proposition 20.2.4.5), and is therefore also an effective epimorphism. Let
us identify g with a map pg : G Ñ j˚j! H . Form a commutative diagram

F 0 //

��

G 0 //

��

H

uH

��
F

f0 // G
pg // j˚j! H ,

where both squares are pullbacks. It follows from Proposition 20.2.4.5 that the vertical
maps in this diagram are p´1q-truncated. If g ˝ f is admissible, then the left vertical map
admits a section and is therefore an equivalence. Since f0 is an effective epimorphism, this
guarantees that the middle vertical map is also an equivalence, so that pg factors through
uH . We then conclude that g is admissible, as desired.

Remark 20.2.5.2. Suppose we are given a collection of morphisms tfi : j! F i Ñ j! G uiPI ,
indexed by a set I. Since the functor j! commutes with coproducts, we can amalgamate the
morphisms fi to obtain a map f : j!p

š

iPI F iq Ñ j! G . The morphism f is admissible if and
only if each fi is admissible.

Lemma 20.2.5.3. Let F , G , and G 1 be objects of PpGadq. Suppose we are given morphisms
f : j! F Ñ j! G and g : j! G 1 Ñ j! G in the 8-category PpGq, where f is admissible. Then
there exists an object F 1 P PpGadq and a pullback diagram

j! F
1

��

f 1 //

g1

��

j! G
1

g

��
j! F

f // j! G

in PpGq, where f 1 is admissible.

Remark 20.2.5.4. In the situation of Lemma 20.2.5.3, suppose that g is also admissible.
Applying Lemma 20.2.5.1 we deduce that g ˝ f 1 » f ˝ g1 is admissible, so that g1 is also
admissible.
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Proof of Lemma 20.2.5.3. Set F 1 “ G 1ˆj˚j! G j
˚j! F . We then have a commutative diagram

j! F
1 //

��

j! G
1

��
j!j
˚j! F //

��

j!j
˚j! G

��
j! F // j! G

where the upper horizontal map is admissible by construction, the upper square is a pullback
diagram because the functor j! preserves pullbacks (Corollary 20.2.4.3), and the bottom
square is a pullback diagram by virtue of Proposition 20.2.4.4. It follows that the outer
rectangle has the desired properties.

Lemma 20.2.5.5. Let F 0, F 1, F 2, and F 3 be objects of PpGadq, and suppose we are
given morphisms

j! F 0
f
ÝÑ j! F 1

g
ÝÑ j! F 2

h
ÝÑ j! F 3 .

If g ˝ f and h ˝ g are admissible, then f is admissible.

Proof. Let h : Gad Ñ PpGadq denote the Yoneda embedding. Then we can choose a collection
of object tZiuiPI in Gad and an effective epimorphism ρ : >iPIhpZiq Ñ F 3. Using Lemma
20.2.5.3 repeatedly, we can form a commutative diagram

j!p>iPI F 0,iq
φ0 //

f 1

��

j! F 0

f

��
j!p>iPI F 1,iq

φ1 //

g1

��

j! F 1

g

��
j!p>iPI F 2,iq

φ2 //

h1

��

j! F 2

h
��

j!p>iPIhpZiqq
j!pρq // j! F 3

where each square is a pullback and the horizontal maps are admissible. Applying Remark
20.2.5.4, we see that the composite maps g1 ˝ f 1 and h1 ˝ g1 are both admissible. Note that
since j! preserves small colimits, the morphism j!pρq is an effective epimorphism; it follows
that φ0 is an admissible effective epimorphism. Using Lemma 20.2.5.1, we see that f is
admissible if and only if f ˝φ0 » φ1 ˝ f

1 is admissible, if and only if f 1 is admissible. We may
therefore replace the right column in the above diagram by the left column, and thereby
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reduce to the case where F 3 is a coproduct of objects of the form hpZq for Z P Gad. Using
Remark 20.2.5.2, we can reduce further to the case where F 3 “ hpZq for some Z P Gad.

Applying similar arguments to F 2, F 1, and F 0, we can assume that F 2 “ hpY q,
F 1 “ hpXq, and F 0 “ hpW q. Then the morphisms f , g, and h are induced by maps and
that the morphisms f , g, and h are induced by maps W f0

ÝÑ X
g0
ÝÑ Y

h0
ÝÑ Z, where g0 ˝ f0

and h0 ˝ g0 are admissible. Applying Corollary 20.2.2.9, we conclude that f0 is also an
admissible morphism of G, so that f » j!hpf0q is an admissible morphism in PpGq.

Lemma 20.2.5.6. Let F and G be objects of PpGq and let f : j! F Ñ j! G be an equivalence
in the 8-category PpGq. Then f is homotopic to f!pf0q for some equivalence f0 : F Ñ G in
the 8-category PpGadq.

Proof. Let f´1 denote a homotopy inverse to f . Applying Lemma 20.2.5.5 to the diagram

j! F
f
ÝÑ j! G

f´1
ÝÝÑ j! F

f
ÝÑ j! G ,

we deduce that f is admissible: that is, we can write f “ j!pf0q for some morphism f0 in
PpGadq. It follows from Proposition 20.2.4.5 that the morphism f0 is a pullback of j˚pfq,
and is therefore an equivalence.

Proof of Theorem 20.6.3.4. It follows from Proposition 20.2.4.5 and Lemma 20.2.5.6 that
the functor j! : PpGadq Ñ PpGq induces an equivalence from PpGadq to a replete subcategory
PpGqcorp Ď PpGq. To complete the proof, it will suffice to show that PpGqcorp is a fracture
subcategory of PpGq: that is, that it satisfies conditions p1q, p2q, and p3q of Definition
20.1.2.1. Condition p1q follows from Corollary 20.2.4.3, condition p2q from Corollary ??, and
condition p3q from Proposition 20.2.4.4.

20.3 Geometric Admissibility Structures

Let X be a quasi-compact, quasi-separated scheme, let SchX denote the category of
X-schemes of finite presentation, and let Schét

X Ď SchX denote the full subcategory spanned
by the étale X-schemes. We regard both SchX and Schét

X as Grothendieck sites, and denote
the associated 8-topoi by ShvpSchXq and ShvpSchét

Xq, respectively. These 8-topoi are
closely related to one another. For each functor F : Schop

X Ñ Set and each object Y P SchX ,
let F |Y denote the composition of F with the forgetful functor pSchét

Y q
op Ñ Schop

X . Then F

is a sheaf for the étale topology on SchX if and only if each F |Y is a sheaf with respect to
the étale topology on Schét

Y . In this case, F can be functorially recovered from the sheaves
F |Y together with the natural transition maps

τf : f˚F |Y Ñ F |Z
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defined for each morphism f : Z Ñ Y in SchX . We say that a sheaf F P ShvpSchXq
is Cartesian if τf is an isomorphism for every morphism f in SchX . The construction
F ÞÑ F |X determines an equivalence of 8-categories ShvpSchXqcart Ñ ShvpSchét

Xq, where
ShvpSchXqcart denotes the full subcategory of ShvpSchXq spanned by the Cartesian sheaves
(note that if F is Cartesian, then for any f : Y Ñ X we have F pY q “ ΓpY ; f˚F |Xq).

The condition that a sheaf F P ShvpSchXq is Cartesian can be relativized. Given a
morphism α : F Ñ G in ShvpSchXq, let us say that α is Cartesian if, for every morphism
f : Z Ñ Y in SchX , the diagram

f˚F |Y //

��

F |Z

��
f˚ G |Y // G |Z

is a pullback square (in the 8-category ShvpSchét
Z q). In this section, we introduce the notion

of a geometric admissibility structure on an 8-topos X (Definition 20.3.4.1), which abstracts
the essential properties enjoyed by the class of Cartesian morphisms in ShvpSchXq. Our
main result (Theorem 20.3.4.4) asserts that the datum of a geometric admissibility structure
on an 8-topos X is essentially equivalent to the datum of a fracture subcategory of X
(more precisely, it is equivalent to the datum of a complete fracture subcategory of X : see
Definition 20.3.3.9).

Remark 20.3.0.1. The framework developed in this section is closely related to the notion
of a class of étale morphisms studied by Joyal-Moerdijk ([109]) and Dubuc ([52]). More
precisely, our notion of local admissibility structure (Definition 20.3.2.1) can be regarded as
an 8-categorical version of a class of étale morphisms; our notion of geometric admissibility
structure is then obtained by adding an additional axiom (Definition 20.3.4.1).

20.3.1 Admissible Morphisms in a Fractured 8-Topos

In §20.2, we introduced the notion of an admissibility structure on an 8-category
(Definition 20.2.1.1). So far, we have been primarily interested in admissibility structures on
small 8-categories G, and their relationships with structures on larger 8-categories built
from G (such as factorization systems on PropGq and fracture subcategories of PpGq). We
now study a class of admissibility structures which live naturally on large 8-categories (more
specifically, on fractured 8-topoi).

Definition 20.3.1.1. Let X be an 8-topos and let X corp Ď X be a fracture subcategory.
We will say that a morphism f : U Ñ X in X is X corp-admissible if, for every pullback
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diagram
U 1 //

f 1

��

U

f
��

X 1 // X

where X 1 is corporeal, the morphism f 1 also belongs to the subcategory X corp (so, in
particular, the object U 1 is also corporeal).

Example 20.3.1.2. Let X corp Ď X be a fractured 8-topos, let X P X corp be a corporeal
object of X , and let f : U Ñ X be a morphism in X . The following conditions are equivalent:

paq The morphism f is X corp-admissible.

pbq The morphism f belongs to X corp.

The implication paq ñ pbq is trivial, and the converse follows from our assumption that the
inclusion X corp ãÑ X preserves pullbacks.

Proposition 20.3.1.3. Let X corp Ď X be a fractured 8-topos. Then the collection of
X corp-admissible morphisms determines an admissibility structure on the 8-topos X .

Proof. We verify each requirement of Definition 20.2.1.1 in turn:

p1q Let f : U Ñ X be an equivalence in X ; we wish to show that f is X corp-admissible.
Consider any pullback square

U 1 //

f 1

��

U

f
��

X 1 // X

in the 8-category X . Then f 1 is an equivalence. If X 1 is corporeal, then f 1 belongs to
X corp (by virtue of the fact that X corp is a replete subcategory of X ).

p2q Let f : U Ñ X be a X corp-admissible morphism in X and let g : X 1 Ñ X be an
arbitrary morphism in X . The 8-category X admits small limits, so we can form a
pullback square

U 1 //

f 1

��

U

f
��

X 1
g // X.

We wish to show that f 1 is also X corp-admissible. To prove this, consider any pullback
diagram

U2

f2

��

// U 1

f 1

��
X2 // X 1
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where X2 is corporeal; we wish to show that f2 belongs to X corp. This follows from
our assumption that f is X corp-admissible, since the outer rectangle in the diagram

U2

f2

��

// U 1

f 1

��

// U

f
��

X2 // X 1 // X

is also a pullback square.

p3q Suppose we are given maps X f
ÝÑ Y

g
ÝÑ Z in X , where g is X corp-admissible. We wish

to show that f is X corp-admissible if and only if g ˝ f is X corp-admissible. Assume
first that f is X corp-admissible. Consider any map Z 1 Ñ Z, where Z 1 is corporeal, and
form a diagram

X 1 //

f 1

��

X

f
��

Y 1 //

g1

��

Y

g

��
Z 1 // Z

where both squares are pullbacks. Our assumption that g is X corp-admissible guarantees
that g1 belongs to X corp. In particular, Y 1 is corporeal. Applying our assumption
that f is X corp-admissible, we deduce that f 1 belongs to X corp. It follows that g1 ˝ f 1

belongs to X corp, as desired.

Now suppose that g ˝ f is X corp-admissible, and consider any map Y 1 Ñ Y , where Y 1

is corporeal. We then have a commutative diagram

X ˆY Y
1

��

// Y 1

t
��

id

��

X ˆZ Y
1 s //

u

**

Y ˆZ Y
1

v

$$
Y 1.

Our assumptions that g and pg ˝fq are X corp-admissible guarantee that the morphisms
u and v belong to X corp. Applying Proposition 20.1.3.1, we deduce that s and t also
belong to X corp. The upper left square is a pullback diagram in X and therefore also
in X corp (since the inclusion X corp ãÑ X is conservative and preserves pullbacks), so
that the projection map X ˆY Y

1 Ñ Y 1 also belongs to X corp.
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p4q Suppose that f : U Ñ X is a retract of some morphism g : V Ñ Y in the 8-
category Funp∆1,X q, where g is X corp-admissible. We wish to show that f is also
X corp-admissible. Choose any map X 1 Ñ X, where X 1 is corporeal. We then have a
commutative diagram

U ˆX X 1

f 1

��

// V ˆY X
1

g1

��

// U ˆX X 1

��
X 1

id // X 1
id // X 1,

where the horizontal composite maps are the identity. Our assumption that g is X corp-
admissible guarantees that g1 belongs to X corp; we wish to show that f 1 also belongs
to X corp. To prove this, it suffices to show that the full subcategory X corp

{X 1 Ď X {X 1 is
closed under retracts. This is clear, since the 8-category X corp

{X 1 is idempotent complete
(in fact, it is an 8-topos: see Proposition 20.1.3.3).

20.3.2 Local Admissibility Structures

We now axiomatize some of the special features enjoyed by the admissibility structures
obtained from Proposition 20.3.1.3.

Definition 20.3.2.1. Let X be an 8-topos. We will say that an admissibility structure
X ad Ď X is local if it satisfies the following conditions:

paq If f : U Ñ X is an arbitrary morphism in X and there exists an effective epimorphism
>αXα Ñ X such that each of the induced maps Xα ˆX U Ñ Xα is admissible, then f
is admissible (in other words, the collection of admissible morphisms is local in the
sense of Definition HTT.6.1.3.8 ).

pbq For each object X P X , the 8-category X ad
{X is presentable and the inclusion X ad

{X ãÑ

X {X preserves small colimits.

Example 20.3.2.2. Let X be an 8-topos. Then X has a local admissibility structure
where we declare that all morphisms in X are admissible.

Example 20.3.2.3. Let X and Y be8-topoi, and suppose we are given geometric morphisms
f˚, g˚ : X Ñ Y and a natural transformation α : f˚ Ñ g˚. Then α determines a local
admissibility structure on X , where we declare that a morphism X Ñ X 1 in X is admissible
if the diagram

f˚X
αpXq //

��

g˚X

��
f˚X 1

αpX 1q // g˚X 1
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is a pullback square in Y (see Example 20.2.1.8).

Example 20.3.2.4. Let X be an 8-topos, so that Funp∆1,X q is also an 8-topos. The 8-
topos Funp∆1,X q admits a local admissibility structure, where we declare that a morphism
f Ñ f 1 in Funp∆1,X q is admissible if it corresponds to a pullback diagram

U 1 //

f 1

��

U

f
��

X 1 // X

in the 8-topos X . This is a special case of Example 20.3.2.3; it can also be deduced by
applying Proposition 20.3.1.3 to the fracture subcategory Funp∆1,X qcorp Ď Funp∆1,X q of
Example 20.1.2.3.

Remark 20.3.2.5. Let X be an 8-topos, let I be a (small) set, and suppose that for each
α P I we are given a local admissibility structure X ad

α Ď X . Then the intersection
Ş

αPI X
ad
α

is also a local admissibility structure on X .

Remark 20.3.2.6. Let X be an 8-topos equipped with a local admissibility structure
X ad Ď X . For every object X P X , the 8-category X {X is an 8-topos. Since X ad

{X is a
presentable full subcategory of X {X which is closed under small colimits (by definition)
and finite limits (Remark 20.2.1.12), it follows that X ad

{X is also an 8-topos. Moreover, the
inclusion functor ι˚ : X ad

{X ãÑ X {X is a geometric morphism of 8-topoi (that is, it preserves
small colimits and finite limits).

We will prove in a moment that if X corp Ď X is a fractured8-topos, then the admissibility
structure of Proposition 20.3.1.3 is local (Corollary 20.3.2.8). To prove this, we need the
following reformulation of Definition 20.3.1.1:

Proposition 20.3.2.7. Let X corp Ď X be a fractured 8-topos, let j˚ : X Ñ X corp be a right
adjoint to the inclusion, and let f : U Ñ X be a morphism. The following conditions are
equivalent:

p1q The morphism f is X corp-admissible.

p2q The diagram σ :
j˚U

j˚f
��

// U

f

��
j˚X // X

is a pullback square in X .
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Proof. Suppose first that p2q is satisfied, and consider any morphism g : X 1 Ñ X. If X 1 is
corporeal, then g factors as a composition X 1 Ñ g1j˚X Ñ X, where g1 belongs to X corp.
Extend σ to a commutative diagram

U 1 //

f 1

��

j˚U //

j˚f
��

U

f

��
X 1

g1 // j˚X // X

where the left square is a pullback. If condition p2q is satisfied, then the outer rectangle is
also a pullback square. Consequently, to verify condition p1q, it will suffice to show that the
morphism f 1 belongs to X corp. This is clear, since g1 and j˚f belong to X corp (since the
inclusion X corp Ď X preserves pullback squares).

We now show that p1q implies p2q. Suppose that f is X corp-admissible. Let us say that
an object X 1 P X {X is good if the projection map U ˆX X 1 Ñ X 1 satisfies condition p2q: that
is, if the left square in the diagram

j˚pU ˆX X 1q //

��

U ˆX X 1 //

��

U

f

��
j˚X 1 // X 1 // X

is a pullback square. Since the right square is a pullback, this is equivalent to the requirement
that the outer square is a pullback. Because colimits in X are universal and the functor j˚

preserves colimits, the collection of good objects X 1 P X {X is closed under small colimits.
To complete the proof, it will suffice to show that the object X P X {X is good. In fact,

we claim that every object X 1 P X {X is good. Since X is generated under small colimits by
corporeal objects (Corollary 20.1.3.4), we may assume without loss of generality that X 1 is
corporeal (when regarded as an object of X). In this case, assumption p1q guarantees that
the projection map U ˆX X 1 Ñ X 1 belongs to X corp. The desired result then follows from
condition p3q of Definition 20.1.2.1.

Corollary 20.3.2.8. Let X corp Ď X be a fractured 8-topos, and let X ad Ď X be the subcat-
egory of X spanned by the X corp-admissible morphisms. Then X ad is a local admissibility
structure on X .

Proof. We first verify condition paq of Definition 20.3.2.1. Suppose we are given a pullback
diagram

>Uα

>fα
��

// U

f
��

>Xα
g // X
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in the 8-category X , where g is an effective epimorphism and each fα is X corp-admissible;
we wish to show that f is also X corp-admissible. Let j˚ : X Ñ X corp denote a right adjoint
to the inclusion. Consider the diagram

>j˚Uα //

��

j˚U //

��

U

��
>j˚Xα

j˚g // j˚X // X.

We wish to show that the square on the right is a pullback (Proposition 20.3.2.7). Since the
functor j˚ preserves small limits and colimits, the square on the left is a pullback diagram,
and the map j˚pgq is an effective epimorphism. It will therefore suffice to show that the
outer rectangle is a pullback diagram. To see this, consider the the diagram

>j˚Uα //

��

>Uα //

��

U

��
>j˚Xα

// >Xα
g // X.

The right square is a pullback by definition, and the left square is a pullback by virtue of
our assumption that each fα is X corp-admissible (Proposition 20.3.2.7). It follows that the
outer rectangle is also a pullback diagram, as desired.

We now prove pbq. Let yCat8 denote the8-category of (not necessarily small)8-categories
and let PrL denote the subcategory of yCat8 whose objects are presentable 8-categories and
whose morphisms are functors which preserve small colimits. The construction X ÞÑ X {X
determines a functor F : X op Ñ PrL (classifying the Cartesian fibration Funp∆1,X q Ñ
Funpt1u,X q, and the construction X ÞÑ X ad

{X determines a functor F0 : X op Ñ yCat8
equipped with a natural transformation ι : F0 Ñ F . Since X is an 8-topos, the functor F
preserves small limits. Using paq, we see that F0 also preserves small limits (see Lemma
HTT.6.1.3.7 ). Let us say that an object X P X is good if X ad

{X is presentable and the inclusion
X ad
{X ãÑ X preserves small colimits: that is, if the canonical map ιpXq : F0pXq Ñ F pXq

is a morphism in PrL. Since the inclusion functor PrL ãÑ yCat8 preserves small limits
(Proposition HTT.5.5.3.13 ), the collection of good objects of X is closed under small colimits.
To prove pbq, we must show that every object X P X is good. Using Corollary 20.1.3.4,
we can reduce to the case where X is corporeal. Using Example 20.3.1.2, we are reduced
to showing that the 8-category X corp

{X is presentable and that the inclusion X corp
{X Ñ X {X

preserves small colimits. The first assertion follows from Proposition 20.1.3.3, and the second
from the fact that the inclusion X corp ãÑ X preserves small colimits (since it admits a right
adjoint j˚).
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20.3.3 Corporeal Objects

Let X be an 8-topos. According to Corollary 20.3.2.8, every fracture subcategory
X corp Ď X determines a local admissibility structure X ad Ď X . We now consider the
problem of recovering X corp from X ad.

Definition 20.3.3.1. Let X be an 8-topos and let X ad Ď X be a local admissibility
structure on X (Definition 20.3.2.1). For each object X P X , the inclusion functor X ad

{X ãÑ

X {X is a functor between presentable 8-categories which preserves small colimits, and
therefore admits a right adjoint ρX : X {X Ñ X ad

{X . We will say that the object X is
X ad-corporeal if the functor ρX preserves small colimits.

Example 20.3.3.2. Let X be an 8-topos equipped with a fracture subcategory X corp Ď X ,
let j˚ : X Ñ X corp be a right adjoint to the inclusion functor, and let X ad Ď X be the
subcategory of X corp-admissible morphisms. If X P X corp is a corporeal object of X , then
we have X ad

{X “ X
corp
{X (Example 20.3.1.2). It follows that the functor ρX : X {X Ñ X ad

{X of
Definition 20.3.3.1 is given by the formula ρXpUq “ j˚pUq ˆj˚pXq X. Since the functor j˚

preserves small colimits, we deduce that X is X ad-corporeal.

Warning 20.3.3.3. In the situation of Example 20.3.3.2, it is generally not true that
every X ad-corporeal object of X is corporeal. However, this is not far from being true: see
Proposition 20.3.3.11 below.

Example 20.3.3.4. Let X be an 8-topos equipped with the local admissibility structure
X ad “ X of Example 20.3.2.2 (so that every morphism in X is admissible). Then every
object of X is X ad-corporeal.

Example 20.3.3.5. Let X be an 8-topos, and let us regard the 8-topos Funp∆1,X q as
equipped with the local admissibility structure of Example 20.3.2.4. For every pair of objects
X and Y , the inclusion X ãÑ X > Y is a Funp∆1,X qad-corporeal object of Funp∆1,X q.

Remark 20.3.3.6. Let X be an 8-topos equipped with a local admissibility structure
X ad Ď X , and suppose we are given a small collection of objects Xα P X having coproduct
X P X . Then the equivalence of 8-categories X {X »

ś

αX {Xα restricts to an equivalence
X ad
{X »

ś

αX
ad
{Xα

. It follows that X is X ad-corporeal if and only if each Xα is X ad-corporeal.

Remark 20.3.3.7. Let X be an 8-topos equipped with a local admissibility structure, let
X P X be an object, and let ρX : X {X Ñ X ad

{X be a right adjoint to the inclusion. For every
admissible morphism U Ñ V in X {X , the associated diagram σ :

ρXU //

��

ρXV

��
U // V
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is a pullback square in X . To prove this, let W “ ρXV ˆV U , and let D denote the
full subcategory of X {W spanned by those maps W 1 Ñ W for which the composite map
W 1 Ñ W Ñ X is admissible. Since the map U Ñ V is admissible, the projection map
W Ñ ρXV P X ad

{X is admissible, so that we can regard W as a final object of D. The diagram
σ determines a map ρXU ÑW . To show that σ is a pullback square, it will suffice to show
that this map exhibits ρXU as a final object object of D. Fix an object D P D; we wish to
show that the diagram

MapX pD, ρXUq //

��

MapX pD,Uq

��
MapX pD, ρXV q //MapX pD,V q

is a pullback square. This is clear, since the horizontal maps are homotopy equivalences.

Proposition 20.3.3.8. Let X be an 8-topos equipped with a local admissibility structure
X ad Ď X . Then:

p1q The collection of X ad-corporeal objects of X is closed under retracts.

p2q Let f : U Ñ X be an admissible morphism of X . If X is X ad-corporeal, then U is
X ad-corporeal. The converse holds if f is an effective epimorphism.

Proof. For each object X P X , let ρX : X {X Ñ X ad
{X denote a right adjoint to the inclusion

map. Let f : Y Ñ X be a morphism in X , and let f˚ : X {X Ñ X {Y be the functor given
f˚U “ U ˆX Y . For each U P X {X , we have an evident map ρXpUq Ñ U , which induces
a map u : f˚ρXpUq Ñ f˚U . Since f˚ρXpUq belongs to X ad

{Y , this map factors through
ρY f

˚U . Moreover, this factorization depends functorially on U , and determines a natural
transformation of functors f˚ ˝ ρX Ñ ρY ˝ f

˚.
We now prove p1q. Suppose that we are given a commutative diagram

Y
g

  
X

f
>>

id // X

in X , where Y is X ad-corporeal. We wish to prove that X is X ad-corporeal. Then the
identity transformation from ρX to itself factors as a composition

ρX » f˚g˚ρX Ñ f˚ρY g
˚ Ñ ρXf

˚g˚ » ρX ,

so that ρX is a retract of the composite functor f˚ρY g˚. Since Y is X ad-corporeal, the
functor ρY preserves small colimits, so that f˚ρY g˚ also preserves small colimits. It follows
that ρX preserves small colimits, so that X is also X ad-corporeal.
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We now prove p2q. Let f : U Ñ X be an admissible morphism in X . Then a map V Ñ U

is admissible if and only if the composite map V Ñ U Ñ X is admissible. In particular, for
any map V Ñ U , we have an equivalence ρU pV q » ρXpV q in the 8-category X . In other
words, we have a homotopy commutative diagram

X {U
ρU //

��

X ad
{U

��
X {X

ρX // X ad
{X ,

where the vertical maps are given by composition with f . If X is X ad-corporeal, it follows
that the composite functor X {U

ρU
Ñ X ad

{U Ñ X ad
{X commutes with small colimits. Since

composition with f determines a conservative functor X ad
{U Ñ X

ad
{X which preserves small

colimits, we conclude that U is also X ad-corporeal.
Conversely, suppose that U is X ad-corporeal. For each object V P X {X , we have an

equivalence

ρXpV q ˆX U “ ρXpV q ˆX ρXpUq » ρXpV ˆX Uq » ρU pV ˆX Uq,

so that the functor V ÞÑ ρXpV qˆXU preserves small colimits. If f is an effective epimorphism,
then the functor V ÞÑ ρXpV q also preserves small colimits, so that X is X ad-corporeal.

We now establish a weak converse to Example 20.3.3.2. First, we need a definition.

Definition 20.3.3.9. Let X be an 8-topos. We will say that a fracture subcategory X corp

is complete if, for every object X P X which belongs to X corp, any retract of X also belongs
to X corp. We will say that a fractured 8-topos X corp Ď X is complete if the fracture
subcategory X corp is complete.

Warning 20.3.3.10. Let X corp Ď X be a fractured 8-topos. Then the fracture subcategory
X corp is itself an 8-topos (Proposition 20.1.3.3), and is therefore idempotent complete.
However, this does not imply that X corp is complete in the sense of Definition 20.3.3.9. The
inclusion X corp ãÑ X is not fully faithful, so it is possible for there to exist a corporeal object
X P X equipped with a (coherently) idempotent map e : X Ñ X which is not contained in
X corp.

Proposition 20.3.3.11. Let X corp Ď X be a fractured 8-topos and let X ad Ď X be the
subcategory spanned by the X corp-admissible morphisms. The following conditions are
equivalent:

p1q The fracture subcategory X corp Ď X is complete (in the sense of Definition 20.3.3.9).
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p2q An object X P X is contained in X corp if and only if it is X ad-corporeal.

We will deduce Proposition 20.3.3.11 from the following more refined result:

Proposition 20.3.3.12. Let X be an 8-topos equipped with a local admissibility structure
X ad Ď X and let X 0 Ď X be a full subcategory with the following property:

piq Every object of X 0 is X ad-corporeal.

piiq For every object X P X , there exists an effective epimorphism >Xα Ñ X, where each
Uα belongs to X 0.

Let X be an arbitrary object of X . Then the following conditions are equivalent:

paq The object X is X ad-corporeal.

pbq There exists an admissible effective epimorphism >Uα Ñ X, where each Uα is a retract
(in the 8-category X ) of an object Vα which admits an admissible morphism Vα Ñ Xα

for some Xα P X 0.

Proof. The implication pbq ñ paq follows from Remark 20.3.3.6 and Proposition 20.3.3.8.
Conversely, suppose that paq is satisfied. Using assumption piiq, we can choose an effective
epimorphism u : >Xα Ñ X, where each Xα belongs to X 0. Let X‚ denote the Čech nerve of
u, so that X can be identified with the geometric realization |X‚|. Let ρX : X {X Ñ X ad

{X

be a right adjoint to the inclusion, and for each index α set Uα “ ρXpXαq. Since X is X ad-
corporeal, the functor ρX preserves small colimits. We therefore have an equivalence X »

ρXpXq » ρXp|X‚|q » |ρXpX‚q|. In particular, the canonical map >Uα » ρXpX0q »Ñ X is
an effective epimorphism. Moreover, each Uα is a retract of the fiber product Vα “ UαˆXXα.
We conclude by observing that each of the projection maps Vα Ñ Xα is admissible (since it
is a pullback of the map Uα Ñ X).

Proof of Proposition 20.3.3.11. The implication p2q ñ p1q follows from Proposition 20.3.3.8.
Conversely, suppose that the fracture subcategory X corp Ď X is complete. Every object
X P X corp is X ad-corporeal by virtue of Example 20.3.3.2. To prove the converse, suppose
that X P X is X ad-corporeal. Applying Proposition 20.3.3.12, we deduce that there exists
a X corp-admissible effective epimorphism f : >Uα Ñ X, where each Uα is a retract of
some object Vα which admits a X corp-admissible morphism gα : Vα Ñ Xα, where Xα is
corporeal. The X corp-admissibility of gα then guarantees that each Vα is corporeal (Example
20.3.1.2). Invoking our assumption that X corp is complete, we conclude that each Uα is
corporeal. Let X‚ denote the Čech nerve of f . Since the inclusion X corp ãÑ X preserves small
colimits, the object X0 “ >Uα is corporeal. Because f is X corp-admissible, each Xk admits
a X corp-admissible morphism Xk Ñ X0, and is therefore corporeal (Example 20.3.1.2). It
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follows that X‚ can be regarded as a simplicial object of the subcategory X corp Ď X . Since
the inclusion X corp ãÑ X preserves small colimits, we conclude that X » |X‚| also belongs
to X corp.

20.3.4 Geometric Admissibility Structures

Our next goal is to prove a converse of Corollary 20.3.2.8. For this, we need to introduce
an additional assumption.

Definition 20.3.4.1. Let X be an 8-topos. A geometric admissibility structure on X is a
local admissibility structure X ad Ď X which satisfies the following additional condition: the
8-category X is generated under small colimits by X ad-corporeal objects.

Example 20.3.4.2. Let X corp Ď X be a fractured 8-topos and let X ad Ď X be the
subcategory of X corp-admissible morphisms. Then every object X P X corp is X ad-corporeal
(Example 20.3.3.2). Since X is generated under small colimits by corporeal objects (Corollary
20.1.3.4), it follows from Corollary 20.3.2.8 that X ad is a geometric admissibility structure
on X .

Example 20.3.4.3. Let X be an 8-topos, and let us regard the 8-topos Funp∆1,X q as
equipped with the admissibility structure of Example 20.3.2.4 (so that admissible morphisms
in Funp∆1,X q are pullback diagrams in X ). According to Example 20.3.3.5, the inclusion
X ãÑ X > Y is Funp∆1,X qad-corporeal for every pair of objects X,Y P X . It is not difficult
to see that such objects generate Funp∆1,X q under small colimits (in fact, under pushouts),
so that Funp∆1,X qad is a geometric admissibility structure.

We can now formulate our main result:

Theorem 20.3.4.4. Let X be an 8-topos equipped with a geometric admissibility structure
X ad Ď X . Let X corp denote the full subcategory of X ad spanned by the X ad-corporeal objects.
Then X corp is a complete fracture subcategory of X .

Remark 20.3.4.5. Let X corp Ď X ad Ď X be as in Theorem 20.3.4.4 and let f : U Ñ X

be a morphism in X . Then f is admissible if and only if it is X corp-admissible. The “only
if” direction is obvious (since the collection of admissible morphisms in X is closed under
fiber products). Conversely, suppose that f is X corp-admissible, and choose an effective
epimorphism >Xα Ñ X, where each Xα is X ad-corporeal. Then each projection map
U ˆX Xα Ñ Xα is admissible, so that f is admissible by virtue of our assumption that the
admissibility structure X ad Ď X is local.
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Remark 20.3.4.6. Let X be an 8-topos. Combining Corollary 20.3.2.8, Theorem 20.3.4.4,
Remark 20.3.4.5, and Corollary ??, we obtain a bijective correspondence

t Geometric admissibility structures X ad Ď X u

„

��
t Complete fracture subcategories X corp Ď X . u

Remark 20.3.4.7. Let X be an 8-topos, let X corp Ď X be a fracture subcategory which
is not complete, let X ad Ď X be the subcategory of X corp-admissible morphisms, and let
X 1 corp Ď X ad be the full subcategory of X ad spanned by the X ad-corporeal objects. Then
X 1 corp is a fracture subcategory of X which contains X corp as a full subcategory (Example
20.3.3.2). By virtue of Remark 20.3.4.6, it is characterized by the following two properties:

• The fracture subcategory X 1 corp Ď X is complete.

• A morphism f : U Ñ X in X is X corp-admissible if and only if it is X 1 corp-admissible.

We will refer to X 1 corp as the completion of the fracture subcategory X corp Ď X . Note that
Proposition 20.3.3.12 supplies necessary and sufficient conditions for an object X P X to
belong to X 1 corp.

The proof of Theorem 20.3.4.4 will require some preliminaries.

Lemma 20.3.4.8. Let X be an 8-topos equipped with a geometric admissibility structure
X ad Ď X . Then:

p1q The 8-category X ad admits small colimits.

p2q The inclusion functor X ad ãÑ X preserves small colimits.

p3q Let X corp Ď X ad denote the full subcategory spanned by the X ad-corporeal objects.
Then X corp is closed under small colimits in X ad.

Proof. Let tXαu be a small diagram in the 8-category X ad, and let X denote the colimit
lim
ÝÑ

Xα, formed in the 8-category X . Our first goal is to show that each of the canonical
maps uα : Xα Ñ X is admissible. Using our assumption that the admissibility structure
X ad Ď X is geometric, we can choose an effective epimorphism X 1 Ñ X, where X 1 is
X ad-corporeal. To show that uα is admissible, it will suffice to show that the projection
map Xα ˆX X 1 Ñ X 1 is admissible. We may therefore replace X by X 1 (and tXαu by the
diagram tXα ˆX X 1u) and thereby reduce to the case where X is X ad-corporeal.

Let ρX : X {X Ñ X ad
{X be a right adjoint to the inclusion, so that we have a morphism of

diagrams tXαu Ñ tρXXαu in the 8-category X {X . Using Remark 20.3.3.7, we see that this
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morphism is Cartesian: that is, each of the transition maps Xα Ñ Xβ determines a pullback
square

ρXXα
//

��

ρXXβ

��
Xα

// Xβ

is a pullback square in X {X . It follows from Theorem HTT.6.1.3.9 that for each index α,
the diagram

ρXXα
//

��

lim
ÝÑβ

ρXXβ

φ

��
Xα

// lim
ÝÑβ

Xβ

is also a pullback square. Since X is corporeal, the functor ρX preserves small colimits, so
we can identify φ with the counit map ρXpXq Ñ X. This map is an equivalence (since the
identity map idX : X Ñ X is admissible). It follows that the map ρXXα Ñ Xα is also an
equivalence: that is, the map Xα Ñ X is admissible.

To complete the proofs of p1q and p2q, it will suffice to show that X is a colimit of
the diagram tXαu in the 8-category X ad Ď X : that is, that a morphism f : X Ñ Y is
admissible if and only if each of the composite maps Xα

uα
ÝÑ X

f
ÝÑ Y is admissible. The

“only if” direction follows from the admissibility of uα (since the collection of admissible
morphisms is closed under composition), and the converse follows from the fact that the full
subcategory X ad

{Y Ď X {Y is closed under small colimits (see Definition 20.3.2.1).
We now prove p3q. Let tXαu and X be as above, and suppose that each Xα is X ad-

corporeal. The admissibility of each uα guarantees that the induced map u : >Xα Ñ X

is admissible. Note that >Xα is X ad-corporeal (Remark 20.3.3.6). Since u is an effective
epimorphism, Proposition 20.3.3.8 implies that X is also X ad-corporeal.

Lemma 20.3.4.9. Let X be an 8-topos equipped with a geometric admissibility structure
X ad Ď X and let X corp Ď X ad be the full subcategory spanned by the X ad-corporeal objects.
Then X corp is a presentable 8-category.

Proof. It follows from Lemma 20.3.4.8 that the 8-category X corp admits small colimits.
Since the admissibility structure X ad Ď X is geometric, the 8-category X is generated under
small colimits by the essential image of the inclusion X corp ãÑ X . Using the presentability
of X , we can choose a small collection of X ad-corporeal objects tXiuiPI which generate X
under small colimits. For each i P I, let Ci denote the fiber product

X ˆFunp∆t0,2u,X q Funp∆2,X q ˆFunpt1u,X q X ad
{Xi
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whose objects are commutative diagrams

U

  
V

>>

idV // V

in the 8-category X , where U is equipped with an admissible morphism U Ñ Xi. Let
Fi : Ci Ñ X denote the projection map onto the first factor. Because the collection of
admissible morphisms in X is closed under retracts, the functor Fi factors through the
subcategory X ad Ď X . Similarly, the collection of X ad-corporeal objects of X is closed under
retracts (Proposition 20.3.3.8), so that Fi factors through the subcategory X corp Ď X ad. Since
the 8-categories Funp∆m,X q and X ad

{Xi
are presentable, the 8-category Ci is presentable

(Proposition ??). We can therefore choose a small collection of objects tCi,jujPIj which
generate Ci under small colimits. Each of the 8-categories X ad

{FipCi,jq
is presentable, and

is therefore generated by a small collection of objects tYi,j,kukPKi,j . Note that each Yi,j,k
is a X ad-corporeal object of X (Proposition 20.3.3.8). Let E Ď X corp be the smallest full
subcategory which contains each of the objects Yi,j,k and is closed under small colimits.
Choose a regular cardinal κ such that each Yi,j,k is κ-compact as an object of X . Then each
Yi,j,k is also κ-compact as an object of E , so that the 8-category E is κ-accessible. We will
complete the proof by showing that E “ X corp.

Fix an object X P X corp; we wish to show that X belongs to E . Applying Proposition
20.3.3.12, we can choose an admissible effective epimorphism u : >Uα Ñ X, where each Uα is
a retract of some object Vα which admits an admissible morphism Vα Ñ Xi for some index
i. Let X‚ be the Čech nerve of u, so that X can be identified with the geometric realization
|X‚|. Since E is closed under small colimits, it will suffice to show that each Xm belongs to
E . Writing Xm as a coproduct of objects of the form Uα0 ˆX ¨ ¨ ¨ ˆX Uαm , we are reduced to
proving the following:

p˚q If W is an object of X corp which admits an admissible morphism W Ñ Uα for some
index α, then W belongs to E .

Choose a commutative diagram σ :

Vα

!!
Uα

>>

id // Uα,

where Vα admits an admissible morphism Vα Ñ Xi for some i P I. Then σ determines an
object C P Ci satisfying FipCq “ Uα. Let us say that an object C 1 P pCiq{C is good if the fiber
product W ˆUα FipC

1q belongs to E . We wish to show that the object C P pCiq{C is good.
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Since E is closed under small colimits in X corp, the collection of good objects of pCiq{C is also
closed under small colimits. It will therefore suffice to show that any map Ci,j Ñ C in the
8-category Ci exhibits Ci,j as a good object of pCiq{C . This is clear, since W ˆUα FipCi,jq

is an object of the 8-category X ad
{FipCi,jq

, which is generated under small colimits by the
objects Yi,j,k.

Proof of Theorem 20.3.4.4. Let X be an 8-topos, let X ad Ď X be a geometric admissibility
structure, and let X corp Ď X ad be the full subcategory spanned by the X ad-corporeal objects.
We will show that X corp is a fracture subcategory of X (automatically complete, by virtue
of Proposition 20.3.3.8) by verifying each of the requirements of Definition 20.1.2.1:

p0q The subcategory X corp Ď X is replete; this follows immediately from the definitions.

p1q The 8-category X corp admits fiber products, which are preserved by the inclusion
functor j! : X corp ãÑ X . Suppose we are given morphisms f : U Ñ X and g : X 1 Ñ X

in the 8-category X corp. Form a pullback square σ :

U 1
g1 //

f 1

��

U

f
��

X 1
g // X

in the 8-category X . Since the collection of admissible morphisms of X is stable
under pullbacks, we deduce that f 1 and g1 are admissible. Using Proposition 20.3.3.8,
we see that U 1 is X ad-corporeal. Finally, we observe that a morphism h : Y Ñ U 1 is
admissible if and only if the composite maps g1 ˝ h and f 1 ˝ h are admissible, so that σ
is also a pullback square in X corp.

p2q The inclusion functor j! : X corp ãÑ X admits a right adjoint j˚ : X Ñ X corp which is
conservative and preserves small colimits. Since X and X corp are presentable (Lemma
20.3.4.9) and the functor j! preserves small colimits (Lemma 20.3.4.8), the existence
of the functor j˚ follows from the adjoint functor theorem (Corollary HTT.5.5.2.9 ).
The functor j˚ is conservative by virtue of our assumption that X is generated under
small colimits by X ad-corporeal objects. Let tXαu be a small diagram in the 8-topos
X having a colimit X; we wish to show that the canonical map φ : lim

ÝÑ
j˚Xα Ñ j˚X is

an equivalence. Let ρ : X {j˚X Ñ X ad
{j˚X be a right adjoint to the inclusion. Since j˚

is conservative, the functor ρ preserves small colimits. Note that we have canonical
equivalences j˚Xα » ρpXα ˆX j˚Xq (this follows by comparing universal properties),
so we can identify φ with the natural map lim

ÝÑ
ρpXα ˆX j˚Xq Ñ ρpj˚Xq » j˚X. This

map is an equivalence, since colimits in X are universal and the functor ρ commutes
with small colimits (by virtue of the fact that j˚X is corporeal).
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p3q For every morphism U Ñ V in X corp, the diagram

j˚U //

��

j˚V

��
U // V

(determined by the counit map j!j˚ Ñ id) is a pullback square in X . Equivalently, we
must show that the canonical map j˚U Ñ U ˆV j

˚V . This follows by comparing the
universal property of both sides as objects of the 8-category X ad

{j˚V .

20.4 Exactness and Density

Let X be a topos and let P be some property of objects of X . Then the following
conditions are equivalent:

paq For every object X P X , there exists an effective epimorphism >αUα Ñ X where each
Uα has the property P .

pbq The category X is generated under small colimits by objects having the property P .

pcq For every object X P X , the natural map lim
ÝÑUPX 0

{X

U Ñ X is an isomorphism, where

X 0
{X denotes the full subcategory of X {X spanned by those objects which have the

property P .

The implications pcq ñ pbq ñ paq are immediate, while the implication paq ñ pcq requires
more work (see Corollary 20.4.5.3 below). If P satisfies any one of these equivalent conditions,
then we say that P holds locally on X .

In the setting of 8-topoi, the analogous equivalence does not hold:

Counterexample 20.4.0.1. Let Q “
ś

nPZr0, 1s denote the Hilbert cube and let X “

ShvpQq be the 8-topos of S-valued sheaves on Q. For each open set U Ď Q, let FU P X

denote the sheaf given by FU pV q “

#

˚ if V Ď U

H otherwise.
Let U be the collection of all open

subsets of Q which are homeomorphic to a product r0, 1q ˆ Q. One can show that U
forms a basis for the topology of Q (see [40]), so that the collection of objects tFUuUPU
satisfies condition paq. However, we claim that it does not satisfy condition pbq. To see this,
note that the formation of compactly supported cochain complexes determines a functor
U ÞÑ C˚c pU ; Zq which extends to a colimit-preserving map F : X Ñ ModZ (this is essentially
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equivalent to the existence of Mayer-Vietoris sequences in compactly supported cohomology).
The Hilbert cube Q is compact and contractible, so for each U P U we have

H˚c pU ; Zq » H˚c pr0, 1q; Zq » 0.

It follows that the functor F vanishes on the full subcategory of X generated by tFUuUPU
under small colimits. However, the functor F does not vanish identically: its value on the
final object of X is given by C˚c pQ; Zq » Z.

In this section, we will show that Counterexample 20.4.0.1 is essentially an infinite-
dimensional phenomenon: conditions paq, pbq, and pcq are all equivalent if we restrict our
attention to the case where the 8-topos X is hypercomplete (Proposition 20.4.5.1).

20.4.1 Dense Functors

We begin with some general remarks.

Definition 20.4.1.1. Let F : D Ñ C be a functor between 8-categories. We will say that
F is dense if it exhibits identity functor idC is a left Kan extension of F along itself.

Remark 20.4.1.2. A functor F : C Ñ D is dense if and only if, for every object D P D,
the evident diagram pCˆD D{DqŹ Ñ DŹ{D Ñ D exhibits D as a colimit of the diagram

pCˆD D{Dq Ñ C
f
Ñ D . In particular, this implies that every object of D can be obtained as

the colimit of a diagram which factors through C. Moreover, if C is small and D is locally
small, then the diagram can be assumed small.

Remark 20.4.1.3. Let F : C Ñ D be a dense functor between 8-categories and let
q : K Ñ D be any diagram in D. Then the induced map F 1 : CˆD D{q Ñ D{q is also
dense. To prove this, it suffices to observe that for each object D P D{q, the projection map
π : D{q Ñ D induces an equivalence of 8-categories pCˆD D{qq ˆD{q pD{qq{D » CˆD D{πpCq,
and that a diagram in D{q is a colimit provided that its image in D is a colimit (Proposition
HTT.1.2.13.8 ).

Remark 20.4.1.4. Let F : C Ñ D be a functor and between 8-categories and let q :MÑ

∆1 be a correspondence associated to F (so that Mˆ∆1t0u » C, Mˆ∆1t1u » D, and q is
a coCartesian fibration which determines the map F :Mˆ∆1t0u ÑMˆ∆1t1u). Then F is
dense if and only if the identity map idM is a q-left Kan extension of idM |C .

Remark 20.4.1.5. Let f : C Ñ D be a functor between 8-categories where C is small,
D is locally small, and D admits small colimits. Using Theorem HTT.5.1.5.6 , we may
assume without loss of generality that f factors as a composition C j

Ñ PpCq F
Ñ D, where

PpCq “ FunpCop,Sq denotes the 8-category of presheaves on C, the functor j is the Yoneda
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embedding, and F preserves small colimits. Corollary HTT.5.2.6.5 implies that F admits a
right adjoint G, given by the composition

D j1
Ñ FunpDop,Sq ˝fÑ FunpCop,Sq “ PpCq,

where j1 denotes the Yoneda embedding for D; moreover, the transformation

f “ F ˝ j Ñ pF ˝ pG ˝ F qq ˝ j » pF ˝Gq ˝ f

exhibits pF ˝Gq as a left Kan extension of f along itself. It follows that f is dense if and
only if the counit map F ˝GÑ idC is an equivalence of functors. This is equivalent to the
requirement that the functor G is fully faithful.

In other words, the functor f : C Ñ D is dense if and only if the induced map F : PpCq Ñ
D exhibits D as a localization of PpCq. In particular, the Yoneda embedding C Ñ PpCq is
dense for any small 8-category C.

Remark 20.4.1.6. Let f : C Ñ D be as in Remark 20.4.1.5, and let E be an 8-category
which admits small colimits. Let LFunpD, Eq denote the full subcategory of FunpD, Eq
spanned by those functors which preserve small colimits. If f is dense, then composition
with f induces a fully faithful functor LFunpD, Eq Ñ FunpC, Eq. This follows from Theorem
HTT.5.1.5.6 , Proposition HTT.5.5.4.20 , and Remark 20.4.1.5.

We now specialize Definition 20.4.1.1 to the case of inclusion functors.

Definition 20.4.1.7. Let C be an 8-category. We will say that a full subcategory C0 Ď C
is dense in C if the inclusion functor C0 ãÑ C is dense, in the sense of Definition 20.4.1.1.

Example 20.4.1.8. The full subcategory of S spanned by its final object is dense in S
(this follows immediately from Remark 20.4.1.5).

Example 20.4.1.9. Let us identify ∆ with the full subcategory of Cat8 spanned by the
objects t∆nuně0. Then ∆ is dense in Cat8: this follows from Proposition HA.A.7.10 .

Remark 20.4.1.10. A full subcategory C0 Ď C is dense if and only if the identity functor idC
is a left Kan extension of idC |C0 . It follows from Proposition HTT.4.3.2.8 that if C0 Ď C1 Ď C
are full subcategories and C0 is dense, then C1 is also dense.

Remark 20.4.1.11. Let f : D Ñ C be a dense functor between 8-categories, and let C0 Ď C
be the essential image of f . Then C0 is dense in C. To prove this, let q : M Ñ ∆1 be a
correspondence associated to f (as in Remark 20.4.1.4), and let M0 be the full subcategory
of M spanned by the objects of D »Mˆ∆1t0u and C0 Ď C »Mˆ∆1t1u. Since f is dense,
the identity functor idM is a q-left Kan extension of its restriction to D, and therefore also
a q-left Kan extension of idM |M0 . Let C be an arbitrary object of C, so that C can be
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identified with a q-colimit of the forgetful functor M0ˆMM{C ÑM. To prove that idC is
a left Kan extension of idC |C0 at C, it will suffice to show that C is also a q-colimit of the
diagram C0ˆMM{C ÑM. For this, it suffices to show that the inclusion

ι : C0ˆMM{C ãÑM0ˆMM{C

is left cofinal. This is clear, since the functor ι admits a left adjoint.

20.4.2 Local Left Exactness

Let f : C Ñ X be a dense functor, where the 8-category C is small and the 8-category
X is presentable. Then f exhibits X as a localization of PpCq (Remark 20.4.1.5). We now
study the condition that this localization be left exact. Note that in this case, the 8-category
X is necessarily an 8-topos.

Definition 20.4.2.1. Let C be a small 8-category and let X be an 8-topos. We will say
that a functor f : C Ñ X is locally left exact if it is homotopic to a composition

C j
Ñ PpCq F

Ñ X

where j is the Yoneda embedding and F is a functor which preserves small colimits and
finite limits.

We let FunllexpC,X q denote the full subcategory of FunpC,X q spanned by those functors
which are locally left exact.

Remark 20.4.2.2. In the situation of Definition 20.4.2.1, the functor f is automatically
homotopic to a composition C j

Ñ PpCq F
Ñ X where j is the Yoneda embedding and F

preserves small colimits. Moreover, the functor F is well-defined up to a contractible space
of choices (Theorem HTT.5.1.5.6 ). The functor f is locally left exact if and only if F is left
exact.

Warning 20.4.2.3. If C does not admit finite limits, then locally left exact functors need
not be left exact; see Remark 21.2.3.11.

Remark 20.4.2.4. Let C be a small 8-category. Then the Yoneda embedding j : C Ñ PpCq
preserves all limits which exist in C (Proposition HTT.5.1.3.2 ). Consequently, if X is an
8-topos and f : C Ñ X is a locally left exact functor, then f preserves all finite limits which
exist in C.

Remark 20.4.2.5. Let X be an 8-topos, let C be a small 8-category, and let f : C Ñ X
be a functor which is dense and locally left exact. Write f as a composition C j

ÝÑ PpCq F
ÝÑ X ,

where j is the Yoneda embedding and F preserves small colimits. Then F is left exact and
admits a fully faithful right adjoint G. For each object C P C, the functor f induces a map
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fC : C{C Ñ X {fC , which extends to a left exact functor FC : PpCq{jC » PpC{Cq Ñ X {fC .
The functor FC admits a right adjoint GC : X {fC Ñ PpCq{jC , given concretely by the
formula GCpXq “ GpXq ˆGpfCq jC. Note that the counit map vC : pFC ˝GCqpXq Ñ X is
given by the left vertical composition in the diagram

F pGpXq ˆGpfCq jCq //

��

F pjCq

w

��
pF ˝GqpXq //

v

��

F pGpfCqq

X.

Since G is fully faithful, the maps v and w are equivalences. The left exactness of F
guarantees that the square is a pullback, so that vC is also an equivalence. Allowing X to
vary, we deduce that GC is fully faithful. Consequently, the functor fC : C{C Ñ X {fC is also
dense and locally left exact.

Warning 20.4.2.6. The terminology of Definition 20.4.2.1 is not standard. Many authors
use the term flat to refer to the property of being locally left exact (see §21.2.3 for an
explanation of this terminology).

Remark 20.4.2.7. If X is an 8-topos, then filtered colimits in X are left exact (Ex-
ample HTT.7.3.4.7 ). For any small 8-category C, it follows that the full subcategory
Fun˚pPpCq,X q Ď FunpPpCq,X q is closed under filtered colimits, where Fun˚pPpCq,X q is
spanned by those functors which are left exact and preserve small colimits. Composing with
the Yoneda embedding j : C Ñ PpCq, we conclude that the collection of locally left exact
functors from C to X is closed under filtered colimits.

Example 20.4.2.8. Let C be an 8-category, let C P C be an object, and let hC : C Ñ S
denote the functor corepresented by C. Then hC is homotopic to the composition C j

Ñ

PpCq e
Ñ S, where e : PpCq Ñ S denotes the functor given by evaluation at C. Since the

functor e preserves small limits and colimits, we conclude that hC is locally left exact.

In the case where X “ S is the 8-category of spaces, we can make Definition 20.4.2.1
more explicit.

Proposition 20.4.2.9. Let C be a small 8-category, and let f : C Ñ S be a functor. The
following conditions are equivalent:

p1q Let C1 Ñ C be a left fibration classified by f . Then the 8-category C1 op is filtered.

p2q The functor f belongs to PropCqop Ď FunpC,Sq.
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p3q The functor f is locally left exact.

Proof. The equivalence of p1q and p2q follows immediately from the definitions (see §HTT.5.3.5 ).
We next prove that p2q ñ p3q. Assume that f P PropCqop Ď FunpC,Sq. According to Corol-
lary HTT.5.3.5.4 , we can write f as a filtered colimit of corepresentable functors from C to
S. Using Remark 20.4.2.7 and Example 20.4.2.8, we deduce that f is locally left exact.

We complete the proof by showing that p3q ñ p1q. Let K be a finite simplicial set and
let q : K Ñ C1 be a diagram; we wish to prove that q can be extended to a map q : KŸ Ñ C1.
Let q0 : K Ñ C be the composition of q with the projection map C1 Ñ C. Then q can be
identified with a vertex of the Kan complex FunCpK, C1q, which can be viewed as a limit
of the diagram pf ˝ q0q : K Ñ S (see Corollary HTT.3.3.3.3 ). Without loss of generality,
we may assume that f is given by the composition C j

Ñ PpCq F
Ñ S, where j is the Yoneda

embedding and F preserves small colimits. Assumption p3q implies that F preserves finite
limits, so that

limpf ˝ q0q “ limpF ˝ j ˝ q0q “ F limpj ˝ q0q.

Write limpj ˝ q0q P PpCq as a colimit of representable presheaves Fα. Then we can identify
q with a point of the colimit lim

ÝÑα
F pFαq. It follows that there exists an object C P C and

a morphism u : jpCq Ñ limpj ˝ q0q such that q lifts to a point η P F pjpCqq “ fpCq. We
conclude by observing that the map u determines an extension q0 : KŸ Ñ C extending q0,
and the point η determines a lifting of q0 to a map q : KŸ Ñ C extending q.

20.4.3 A Criterion for Local Left Exactness

The following result can be regarded as a generalization of Proposition HTT.6.1.5.2 :

Proposition 20.4.3.1. Let X be an 8-topos, let C be a small 8-category, and let f : C Ñ X
be a functor. The following conditions are equivalent:

p1q The functor f is locally left exact.

p2q For every finite simplicial set K and every map q : K Ñ C, the canonical map

lim
ÝÑ

f |C{q Ñ lim
ÐÝ
pf ˝ qq

is an equivalence in the 8-topos X .

Corollary 20.4.3.2. Let C be a small 8-category which admits finite limits, and let X be
an 8-topos. Then a functor f : C Ñ X is locally left exact if and only if it is left exact.

Corollary 20.4.3.3. Let X be an 8-topos, let C be a small 8-category, and let f : C Ñ X
be a functor. If f is dense and fully faithful, then it is locally left exact.
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Proof. Let K be a finite simplicial set and let q : K Ñ C be a diagram, and let X P X be a
limit of the diagram f ˝ q : K Ñ X . We have an equivalence of 8-categories

CˆX X {X » CˆX X {fq » C{q,

so that our assumption that f is dense guarantees that X “ lim
ÐÝ

fq is a colimit of f |C{q . The
desired result now follows from Proposition 20.4.3.1.

Warning 20.4.3.4. Corollary 20.4.3.3 is not necessarily true if the functor f is not fully
faithful. For example, if C is any weakly contractible 8-category, then the constant map

C Ñ t˚u ãÑ S

is dense, but is usually not locally left exact (since colimits indexed by Cop need not commute
with finite limits).

Proof of Proposition 20.4.3.1. The implication p1q ñ p2q follows immediately from the
definitions. To prove the converse, we proceed as in the proof of Proposition HTT.6.1.5.2 .
Using Theorem HTT.5.1.5.6 , we can assume without loss of generality that f is given by
a composition C j

Ñ PpCq F
Ñ X , where j denotes the Yoneda embedding and the functor F

preserves small colimits. Assume that p2q is satisfied; we wish to prove that F is left exact.
Taking K “ H in p2q, we deduce that F preserves final objects. It will therefore suffice to
show that F preserves pullbacks. Let us say that an object Z P PpCq is good if the following
condition is satisfied:

p˚q For every pullback diagram σ :
W //

��

X

��
Y // Z

in PpCq, the image F pσq is a pullback diagram in X .

Since PpCq is generated under small colimits by the essential image of j and colimits are
universal in both X and PpCq, p˚q is equivalent to the following apparently weaker condition:

p˚1q For every pullback diagram σ :
W //

��

X

��
Y // Z

in PpCq, if both X and Y belong to the essential image of j, then F pσq is a pullback
diagram in X .
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We wish to show that every object of PpCq is good. It follows from condition p2q that for
each object C P C, the representable functor jpCq P PpCq satisfies p˚1q, and is therefore good.
We will complete the proof by showing that the collection of good objects of PpCq is closed
under small colimits. By virtue of Proposition HTT.4.4.3.3 , it will suffice to prove that the
collection of good objects of PpCq is closed under the formation of coequalizers and small
coproducts.

We first consider the case of coproducts. Let tZiuiPI be small collection of good objects
of PpCq having coproduct Z P PpCq. We claim that Z satisfies p˚1q. Suppose we are given a
pullback diagram σ :

W //

��

X

α
��

Y
β // Z

in PpCq, where X and Y belong to the essential image of j. Then α and β determine maps
α0 : X Ñ Zi and β0 : X Ñ Zj , for some uniquely determined pair of indices i, j P I. If i ‰ j,
then W » H and F pσq is a pullback square by virtue of the fact that coproducts in X are
disjoint. If i “ j, then we can identify W with the fiber product X ˆZi Y , so that F pσq is a
pullback diagram by virtue of our assumption that Zi is good.

We now complete the proof by showing that the collection of good objects of PpCq is
stable under the formation of coequalizers. Let

P //// Q
s // Z

be a coequalizer diagram in PpCq, and suppose that P and Q are good. Let σ :

W //

��

X

α
��

Y
β // Z

be a pullback diagram, where X and Y belong to the essential image of j. Then α factors
as a composition X

α
Ñ Q

s
Ñ Z. We may therefore identify σ with the outer rectangle in a

commutative diagram
W //

��

X

α
��

QˆZ Y //

��

Q

��
Y // Z.

Since Q is good, the functor F carries the upper square in this diagram to a pullback square
in X . It will therefore suffice to show that F carries the lower square to a pullback as well.
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We may therefore replace X by Q and thereby reduce to the case α “ s. Similarly, we can
assume that β “ s. In this case, the desired result follows from Proposition HTT.6.1.4.2 .

Remark 20.4.3.5. In the statement of Proposition 20.4.3.1, it suffices to assume that
condition p2q holds in the special cases K “ H and K “ Λ2

2.

20.4.4 Comparison with Left Exactness

We now investigate the relationship between left exactness and local left exactness.

Proposition 20.4.4.1. Let f : C Ñ D be a functor between small 8-categories, and let
jD : D Ñ PpDq be the Yoneda embedding. The following conditions are equivalent:

p1q The functor f is left exact.

p2q The functor jD ˝ f is locally left exact.

Corollary 20.4.4.2. Let f : C Ñ D be a left exact functor between small 8-categories, let
X be an 8-topos, and let g : D Ñ X be a locally left exact functor. Then the composition
pg ˝ fq : C Ñ X is locally left exact.

Proof. We have a commutative diagram

C f //

jC
��

D
g

""
jD
��

PpCq F // PpDq G // X

where the vertical maps denote Yoneda embeddings, and the functors F and G preserve
small colimits. Since f is left exact, Proposition 20.4.4.1 implies that F is left exact. Since
g is locally left exact, the functor G is left exact. It follows that G ˝ F is left exact, so that
g ˝ f is locally left exact.

Corollary 20.4.4.3. Let C be a small 8-category and let X be an 8-topos. If f : C Ñ X
is left exact, then f is locally left exact.

Proof. Let X 0 be a full subcategory of X which contains the essential image of f . Enlarging
X 0 if necessary, we may suppose that X 0 admits finite limits. Then f factors as a composition

C f0
Ñ X 0

g
Ñ X ,

where f0 “ f and g is the inclusion functor. The assumption that f is left exact implies that
f0 is left exact, and g is locally left exact by virtue of Corollary 20.4.3.2. It follows from
Corollary 20.4.4.2 that f is locally left exact.
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Warning 20.4.4.4. The converse of Corollary 20.4.4.3 is valid when C admits finite limits
(Remark 20.4.2.2), but not in general.

Proof of Proposition 20.4.4.1. Choose a homotopy commutative diagram

C f //

jC
��

D

jD
��

PpCq F // PpDq,

where F preserves small colimits. Then jD ˝ f is locally left exact if and only if F is left
exact. This is equivalent to the assertion that, for every object D P D, the composite functor

PpCq F
Ñ PpDq e

Ñ S

is left exact, where e : PpDq Ñ S is given by evaluation at D. Since e preserves small
colimits, this is equivalent to the requirement that the functor pe ˝ jD ˝ fq : C Ñ S be locally
left exact. Note that e ˝ jD is the functor corepresented by D, so that the composite functor
e ˝ jD ˝ f is classified by the left fibration CˆD DD{. Using Proposition 20.4.2.9, we see that
jD ˝ f is locally left exact if and only if the 8-category CˆD DD{ is filtered, for each object
D P D, which is equivalent to the assumption that f is left exact.

20.4.5 The Hypercomplete Case

We now return to the question raised at the beginning of this section.

Proposition 20.4.5.1. Let X be a hypercomplete 8-topos and let C Ď X be an essentially
small full subcategory. The following conditions are equivalent:

paq For every object X P X , there exists an effective epimorphism >αUα Ñ X where each
Uα belongs to C.

pbq The category X is generated under small colimits by C.

pcq The subcategory C is dense in X .

Remark 20.4.5.2. In the situation of Proposition 20.4.5.1, if C Ď X satisfies any of the
equivalent conditions paq through pcq, then the inclusion C ãÑ X is locally left exact (Corollary
20.4.3.3). It follows that f exhibits X as a left exact localization of the 8-category PpCq.

Corollary 20.4.5.3. Let X be an n-topos for 0 ď n ă 8 and let C Ď X be an essentially
small full subcategory. The following conditions are equivalent:

paq For every object X P X , there exists an effective epimorphism >αUα Ñ X where each
Uα belongs to C.
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pbq The category X is generated under small colimits by C.

pcq The subcategory C is dense in X .

Proof. The implications pcq ñ pbq ñ paq are immediate. Choose an 8-topos Y for which we
can identify X with the full subcategory τďn´1 Y of pn´1q-truncated objects of Y . Replacing
Y by its hypercompletion if necessary (which does not change the class of pn´ 1q-truncated
objects of Y), we may assume that Y is hypercomplete. Proposition 20.4.5.3 implies that C
is dense in Y, so that the functor

G : Y Ñ PpCq GpY qpCq “ MapYpC, Y q

is fully faithful. It follows that the restriction G|X is also fully faithful, so that C is a dense
subcategory of X .

We will deduce Proposition 20.4.5.1 from the following lemma:

Lemma 20.4.5.4. Let X be an 8-topos and let C Ď X be an essentially small full subcategory
which satisfies condition paq of Proposition 20.4.5.1. Then the colimit lim

ÝÑUPC U is an 8-
connective object of X .

Proof. We will prove that the colimit X “ lim
ÝÑUPC U is n-connective for each n ě 0.

We proceed by induction on n. We first note that X is 0-connective (since the final
object 1 P X admits an effective epimorphism >UPCU Ñ 1); this completes the proof in
the case n “ 0. To handle the inductive step, it will suffice to show that the diagonal
map δ : X Ñ X ˆ X is pn ´ 1q-connective. Since colimits in X distribute over finite
products, we can write the product X ˆX as a colimit lim

ÝÑpV,W qPCˆ C V ˆW . Rewriting
X as an iterated colimit lim

ÝÑpV,W qPCˆ C lim
ÝÑUÑVˆW

U , we can obtain δ as a colimit of maps
δV,W : lim

ÝÑUPCˆX X {VˆW
U Ñ V ˆW . It will therefore suffice to show that each δV,W is

pn ´ 1q-connective. This follows from the inductive hypothesis, applied to the 8-topos
X {VˆW .

Proof of Proposition 20.4.5.1. The implications pcq ñ pbq ñ paq are trivial; we will show
that paq ñ pcq. To establish pcq, we must show that for every object X P X , the canonical
map η : lim

ÝÑUPCˆX X {X
U Ñ X is an equivalence. Since X is hypercomplete, it will suffice

to show that η is 8-connective. This follows from Lemma 20.4.5.4, applied to the 8-topos
X {X .

20.5 Presentations of Fractured 8-Topoi

Recall that an 8-category X is an 8-topos if and only if X can obtained as an accessible
left exact localization of a presheaf8-category PpGq, where G is a small8-category (Theorem
HTT.6.1.0.6 ). It is convenient to break this assertion down into three parts:
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paq For any small 8-category G, the presheaf 8-category PpGq “ FunpGop,Sq is an
8-topos.

pbq If Y is an 8-topos and X Ď Y is an accessible left exact localization of Y, then X is
also an 8-topos.

pcq Every 8-topos X can be obtained by combining paq and pbq: more precisely, there is
an equivalence from X to an accessible left exact localization of PpGq, for some small
8-category G.

In §20.2, we established an analogue of paq in the setting of fractured 8-topoi. More precisely,
we proved that for any small 8-category G equipped with an admissibility structure, the
presheaf 8-category PpGq can be regarded as a fractured 8-topos (Theorem 20.2.4.1). Our
goal in this section is to establish “fractured” analogues of pbq and pcq. Given a fractured
8-topos Ycorp Ď Y we introduce the notion of a fractured localization X 0 Ď Ycorp (Definition
??). Our first main result is that any fractured localization X 0 Ď Ycorp determines an
accessible left exact localization X Ď Y and a fracture subcategory X corp Ď X which is
equivalent to X 0 (Theorem 20.5.1.2). We then show that every fractured 8-topos X corp Ď X
can be obtained by applying this construction to a fractured 8-topos of the form PpGq,
where G is a small 8-category equipped with an admissibility structure (Theorem ??).

20.5.1 Fractured Localizations

We begin by introducing some terminology.

Definition 20.5.1.1. Let Ycorp Ď Y be a fractured 8-topos. We say that a full subcategory
X 0 Ď Ycorp is a fractured localization of Ycorp if the following conditions are satisfied:

paq The inclusion X 0 ãÑ Ycorp admits a left exact left adjoint L0 : Ycorp Ñ X 0. Moreover,
L0 is accessible when regarded as a functor from Ycorp to itself (so that X 0 is an
8-topos: see Theorem HTT.6.1.0.6 ).

pbq Let j˚ : Y Ñ Ycorp be a right adjoint to the inclusion, and form a pullback diagram of
8-categories σ :

X //

j
˚

��

Y

j˚

��
X 0 // Ycorp .

Then the diagram σ is left adjointable. In other words, for each object Y P Y, the
canonical map L0j

˚Y Ñ j
˚
LY is an equivalence, where L : Y Ñ X denotes a left

adjoint to the inclusion (which exists by virtue of Theorem HTT.5.5.3.18 ).
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We can now formulate our main result:

Theorem 20.5.1.2. Let Ycorp Ď Y be a fractured 8-topos, let X 0 Ď Ycorp be a fractured
localization of Y, and form a pullback diagram of 8-categories

X //

j
˚

��

Y

j˚

��
X 0 // Ycorp .

Then:

p1q The inclusion functor X ãÑ Y admits an (accessible) left exact left adjoint L : Y Ñ X .
In particular, the 8-category X is an 8-topos.

p2q The functor j˚ admits a left adjoint j! : X 0 ãÑ X .

p3q The functor j! induces an equivalence from X 0 to a fracture subcategory X corp Ď X .

Warning 20.5.1.3. In the statement of Theorem 20.5.1.2, the 8-categories X 0 and X corp

do not coincide as subcategories of Y (though they are canonically equivalent to one another
via the functor j!).

The remainder of this section is devoted to the proof of Theorem 20.5.1.2. We begin
by observing that Theorem HTT.5.5.3.18 guarantees that the 8-category X is presentable,
that the inclusion X ãÑ Y admits a left adjoint L : Y Ñ X , and that the functor j˚ admits
a left adjoint j!. Our assumption that X 0 Ď Ycorp is a fractured localization guarantees that
the diagram

Y

j˚

��

L // X

j
˚

��
Ycorp L0 // X 0

commutes up to canonical homotopy, where L0 : Ycorp Ñ X 0 is left adjoint to the inclusion.
Since L0 and j˚ are left exact, the composite functor j˚ ˝ L is left exact. The functor
j
˚ preserves small limits (since it admits a left adjoint) and is conservative (since j˚ is

conservative), so the functor L is left exact. This completes the proof of assertions p1q and
p2q of Theorem 20.5.1.2.

The proof of p3q will require some preliminary observations.

Lemma 20.5.1.4. The functor j! : X 0 Ñ X preserves pullbacks.
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Proof. The commutative diagram of 8-categories

X //

j
˚

��

Y

j˚

����
X 0 // Y

yields a commutative diagram of left adjoints

X YLoo

X 0

j!

OO

Ycorp,
L0oo

j!

OO

where j! denotes the inclusion functor. In other words, we can identify j! with the restriction
pL ˝ j!q|X 0 . Since L is left exact and j! preserves pullbacks, it follows that j! preserves
pullbacks.

Lemma 20.5.1.5. For each object X P X 0, the unit map uX : X Ñ j
˚
j!X is p´1q-truncated.

Proof. Unwinding the definitions, we see that uX can be obtained by applying the functor
L0 to the morphism uX : X Ñ j˚j!X of Ycorp. Since the morphism uX is p´1q-truncated
(Proposition 20.1.3.1) and L0 is left exact, we conclude that uX is p´1q-truncated.

Notation 20.5.1.6. Let U and V be objects of X 0. It follows from Lemma 20.5.1.5 that
the canonical map

MapX 0pU, V q Ñ MapX 0pU, j
˚
j!V q » MapX pj!U, j!V q

is p´1q-truncated. We will say that a morphism f : j!U Ñ j!V is admissible if it belongs to
the essential image of θ: that is, if f is homotopic to j!pf0q, for some morphism f0 : U Ñ V .

Lemma 20.5.1.7. Suppose we are given objects X0, X1, X2, X3 P X 0 and morphisms
j!X0

f
ÝÑ j!X1

g
ÝÑ j!X2

h
ÝÑ j!X3 in the 8-category X . If g ˝ f and h ˝ g are admissible,

then f is admissible.

Proof. Since the functor L0 is essentially surjective, we can assume without loss of generality
that Xi “ L0Yi for 0 ď i ď 3, for some objects Yi P Ycorp. We now proceed in several steps:

• Regard h as a morphism from j!L0pY2q » LY2 to j!L0pY3q » LY3. Replacing Y2 by
the pullback Y2 ˆj˚LY3

j˚Y3, we can reduce to the case where h is homotopic to Lph1q,
for some map h1 : Y2 Ñ Y3 in the 8-category Y.
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• Regard g as a morphism from j!L0pY1q » LY1 to j!L0pY2q » LY2. Replacing Y1 by the
pullback Y1 ˆj˚LY2

j˚Y2, we can reduce to the case where g is homotopic to Lpg1q, for
some map g1 : Y1 Ñ Y2 in the 8-category Y.

• Replacing Y1 by the fiber product Y1 ˆj˚Y3 Y3 (which does not change the image of Y1
under the functor L0, by virtue of our assumption that h ˝ g is admissible), we can
arrange that the composition h1 ˝ g1 is a morphism of Ycorp.

• Regard f as a morphism from j!L0pY0q » LY0 to j!L0pY1q » LY1. Replacing Y0 by
the pullback Y0 ˆj˚LY1

j˚Y1, we can reduce to the case where f is homotopic to Lpf 1q,
for some map f 1 : Y0 Ñ Y1 in the 8-category Y.

• Replacing Y0 by the fiber product Y0 ˆj˚Y2 Y2 (which does not change the image of Y0
under the functor L0, by virtue of our assumption that g ˝ f is admissible), we can
arrange that the composition g1 ˝ f 1 is a morphism of Ycorp.

Let us regard the8-category Y as equipped with the admissibility structure of Proposition
20.3.1.3, so that g1 ˝ f 1 and h1 ˝ g1 are admissible morphisms in Y. Applying Corollary
20.2.2.9, we deduce that f 1 is also admissible: that is, it is contained in Ycorp (Example
20.3.1.2). It follows that f » Lpf 1q » j!pL0pf

1qq is an admissible morphism in X , in the
sense of Notation 20.5.1.6.

Lemma 20.5.1.8. Let U and V be objects of X 0. Then every equivalence f : j!U » j!V is
admissible.

Proof. Let f´1 be a homotopy inverse to f , and apply Lemma 20.5.1.7 to the diagram

j!U
f
ÝÑ j!V

f´1
ÝÝÑ j!U

f
ÝÑ j!V.

Lemma 20.5.1.9. The functor j! : X 0 Ñ X induces an equivalence from X 0 to a replete
subcategory X corp Ď X .

Proof. Combine Lemma 20.5.1.5, Lemma 20.5.1.8, and Proposition 20.1.1.5.

Proof of Theorem 20.5.1.2. Let X corp be as in Lemma 20.5.1.9; we wish to show that X corp

is a fracture subcategory of X . To prove this, it suffices to verify that the functor j! : X 0 Ñ X
satisfies analogues of conditions p1q, p2q, and p3q of Definition 20.1.2.1:

p1q The functor j! preserves pullbacks: this follows from Lemma 20.5.1.4.
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p2q The functor j! admits a right adjoint j˚, which is conservative and preserves small
limits. The existence of j˚ follows from our construction. The statement that j˚ is
conservative follows from the commutativity of the diagram

X //

j
˚

��

Y

j˚

��
X 0 // Ycorp,

since the functor j˚ is conservative. To show that j˚ preserves small colimits, we use
the commutativity of the diagram

Y L //

j˚

��

X

j
˚

��
Ycorp L0 // X 0

together with the fact that j˚ preserves small colimits.

p3q Let f : U Ñ V be a morphism in X 0; we wish to show that the induced diagram σ :

j!j
˚
j!U //

��

j!j
˚
j!V

��
j!U // j!V

is a pullback square in X . Let us identify U and V with their images in Ycorp, so that
σ is obtained by applying the functor L to the diagram σ0

j!j
˚j!U //

��

j!j
˚j!V

��
j!U // j!V.

The diagram σ0 is a pullback square in Y by virtue of our assumption that Ycorp Ď Y
is a fracture subcategory. Since the functor L : Y Ñ X is left exact, it follows that
σ » Lσ0 is a pullback square in X .

20.5.2 Recognition of Fractured Localizations

Let Ycorp Ď Y be a fractured 8-topos, let X 0 Ď Ycorp be a fractured localization, and
define X “ X 0ˆYcorp Y and X corp Ď X as in Theorem 20.5.1.2. We then have a commutative
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diagram of 8-categories σ :
Ycorp //

Lcorp

��

Y

L
��

X corp // X ,

where the horizontal maps are inclusions, the functor L is left adjoint to the inclusion
X ãÑ Y, and L0 is obtained by composing a left adjoint to the inclusion X 0 ãÑ Ycorp with
the equivalence X 0 » X corp. Moreover, the condition that X 0 Ď X is a fractured localization
guarantees that the diagram σ is right adjointable. We now establish a converse to this
assertion:

Proposition 20.5.2.1. Let X corp Ď X and Ycorp Ď Y be fractured 8-topoi. Suppose we
are given a commutative diagram of 8-categories σ :

Ycorp //

Lcorp

��

Y

L
��

X corp // X ,

where σ is right adjointable and the functor Lcorp exhibits X corp as a left exact localization
of Ycorp (that is, the functor Lcorp is left exact and has a fully faithful right adjoint). Then:

p1q The functor L exhibits X as a left exact localization of Y (that is, the functor L is left
exact and has a fully faithful right adjoint).

p2q Let U corp : X corp Ñ Ycorp be a right adjoint to Lcorp and let X 0 Ď Y be the essential
image of U corp. Then X 0 is a fractured localization of Ycorp.

p3q Taking right adjoints of the functors appearing in the diagram σ yields a pullback
diagram of 8-categories σR:

X

��

U // Y

��
X corp Ucorp

// Ycorp .

In other words, X corp Ď X is canonically equivalent to the fractured 8-topos obtained
by applying Theorem 20.5.1.2 to the fractured localization X 0 Ď Ycorp.

Remark 20.5.2.2. In the statement of Proposition 20.5.2.1, we do not assume a priori
that the functor L is left exact (the left exactness of L is part of the conclusion, not the
hypothesis).
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Proof of Proposition 20.5.2.1. Let j˚ : Y Ñ Ycorp and j1˚ : X Ñ X corp denote right adjoints
to the inclusion functors. Our assumption that σ is right adjointable supplies a commutative
diagram of 8-categories σ1:

Y j˚ //

L
��

Ycorp

Lcorp

��
X j1˚ // X corp .

The functor Lcorp admits a right adjoint, and therefore preserves small colimits. Since
j˚ preserves small colimits, we conclude that Lcorp ˝ j˚ » j1˚ ˝ L preserves small colimits.
The functor j1˚ is conservative and preserves small colimits, so L preserves small colimits.
Consequently, the diagram σR appearing in statement p3q is well-defined.

Let U : X Ñ Y denote a right adjoint to L. We next claim that U is fully faithful. To prove
this, it will suffice to show that for each object X P X , the counit map vX : pL ˝UqpXq Ñ X

is an equivalence. Since the functor j1˚ is conservative, it will suffice to show that j1˚pvXq is
an equivalence in the 8-category X corp. Using the commutativity of the diagrams σR and
σ1, we can identify j1˚pvXq with the counit map pLcorp ˝ U corpqpj1˚Xq Ñ j1˚X, which is an
equivalence by virtue of our assumption that U corp is fully faithful.

We now prove p3q. Since U and U corp are fully faithful, it will suffice to show that if
Y P Y has the property that j˚Y belongs to the essential image of U corp, then Y belongs to
the essential image of U . To show that Y belongs to the essential image of U , it will suffice
to show that the unit map uY : Y Ñ pU ˝LqpY q is an equivalence in Y . Because the functor
j˚ is conservative, we are reduced to showing that j˚puY q is an equivalence in Ycorp. Using
the commutativity of the diagrams σR and σ1, we can identify j˚puY q with the unit map
j˚Y Ñ pU corp ˝ Lcorppj˚Y q in the 8-category Ycorp. This map is an equivalence, since j˚Y
belongs to the essential image of the functor U corp by virtue of our assumption that Y P X 1.

Using p3q, we see that p2q is equivalent to the left adjointability of the diagram σR. This
follows from our assumption that σ is right adjointable. Assertion p1q now follows from
Theorem 20.5.1.2.

20.5.3 Presentations of Fractured 8-Topoi

We now show that every fractured 8-topos can be obtained by combining the construc-
tions of Theorems ?? and 20.5.1.2.

Definition 20.5.3.1. Let X corp Ď X be a fractured 8-topos. A presentation of X is a
functor h : G Ñ X , where G is an essentially small 8-category equipped with an admissibility
structure and h satisfies the following conditions:

p1q The functor h carries Gad into X corp (in particular, h carries each object of G to a
corporeal object of X .
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Let F : PpGq Ñ X be the colimit-preserving functor determined by h and let PpGqcorp Ď PpGq
be the fracture subcategory of Theorem ??. It follows from paq that the functor F carries
PpGqcorp into X corp, so we obtain a commutative diagram σ :

PpGqcorp //

F corp

��

PpGq

F
��

X corp // X .

p2q The diagram σ satisfies the hypotheses of Proposition 20.5.2.1. That is, the diagram σ

is right adjointable, and the functor F corp exhibits X corp as a left exact localization of
PpGqcorp.

Remark 20.5.3.2. Let X corp Ď X be a fractured 8-topos and let h : G Ñ X be a
presentation of X . Then the functor h is dense and locally left exact: this follows from
Proposition 20.5.2.1.

Remark 20.5.3.3. Let X corp Ď X be a fractured 8-topos and let h : G Ñ X be a
presentation of X . Applying Proposition 20.5.2.1, we conclude that the underlying map
h|Gad : Gad Ñ X corp induces a fully faithful embedding X corp ãÑ PpGadq » PpGqcorp, whose
essential image is a fractured localization in the sense of Definition 20.5.1.1. Moreover,
the fractured 8-topos X corp Ď X can then be recovered (up to canonical equivalence) by
applying the construction of Theorem 20.5.1.2 to this fractured localization.

We can now formulate our main result:

Theorem 20.5.3.4. Let X corp Ď X be a fractured 8-topos. Then X admits a presentation
h : G Ñ X , where G is an essentially small 8-category equipped with an admissibility
structure. Moreover, we can arrange that h is fully faithful, and that a morphism in G is
admissible if and only if its image in X is admissible.

Before giving the proof of Theorem 20.5.3.4, let us spell out Definition 20.5.3.1 in more
detail.

Lemma 20.5.3.5. Let X corp Ď X be a fractured 8-topos, let G be an essentially small
8-category equipped with an admissibility structure Gad Ď G, and let h : G Ñ X be a functor.
Then h is presentation of X if and only if it satisfies the following conditions:

paq The functor h carries Gad into X corp.

pbq The induced functor had : Gad Ñ X corp is locally left exact (Definition 20.4.2.1).

pcq The functor had : Gad Ñ X corp is dense (Definition 20.4.1.1).
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pdq For every object X P G, the canonical map lim
ÝÑY PpG{Xqad fpY q Ñ fpXq in the 8-topos

X induces an equivalence lim
ÝÑY PpG{Xqad fpY q Ñ j˚fpXq, where j˚ : X Ñ X corp is right

adjoint to the inclusion functor.

Proof. Condition paq is clearly necessary, so assume that it is satisfied. Let H : PpGq Ñ X
be the colimit preserving functor determined by h and define Had : PpGadq Ñ X corp similarly.
Then the functor Hcorp : PpGqcorp Ñ X corp can be identified with the composition of Had

with a homotopy inverse to the equivalence PpGadq » PpGqcorp given by left Kan extension
along the inclusion Gad. Consequently, the functor Hcorp is left exact if and only if condition
pbq is satisfied, and Hcorp has a fully faithful right adjoint if and only if condition pcq is
satisfied. To complete the proof, it will suffice to show that pdq is equivalent to the right
adjointability of the diagram σ :

PpGadq //

F ad

��

PpGq

F
��

X corp // X .

Let U : PpGq Ñ PpGadq denote the restriction functor and let j˚ : X Ñ X corp denote a
right adjoint to the inclusion, so that σ determines a natural transformation of functors
α : F ad ˝ U Ñ j˚ ˝ F . Note that the domain and codomain of α are colimit-preserving
functors, so that α is an equivalence if and only if it induces an equivalence after evaluation
on the representable functor MapGp‚, Xq for each X P G. The equivalence of this assertion
with pdq now follows by unwinding the definitions.

Proof of Theorem 20.5.3.4. Let X corp Ď X be a fractured 8-topos. Then X corp is a pre-
sentable 8-category, so we can choose an essentially small dense subcategory Gad Ď X corp.
Enlarging Gad if necessary, we may assume that it has the following closure property

p˚q For every morphism f : U Ñ X in Gad and every morphism g : X 1 Ñ X, where X 1

belongs to Gad, the fiber product X 1 ˆX U belongs to Gad.

Let G be the full subcategory of X having the same objects as Gad. Using p˚q, we deduce
that Gad is an admissibility structure on G (see Proposition 20.3.1.3). We will complete
the proof by showing that the inclusion map ι : G Ñ X is a presentation of X . To prove
this, it suffices to verify conditions paq, pbq, pcq, and pdq of Lemma 20.5.3.5. Conditions
paq and pcq are automatic, and pbq follows from Corollary 20.4.3.3. To verify pdq, choose
an object X P G. Let j˚ : X Ñ X corp be a right adjoint to the inclusion, so that we have
a canonical equivalence pG{Xqad » GadˆX corp X corp

{j˚X . We are therefore reduced to showing
that the canonical map lim

ÝÑY PGadˆXcorp X corp
{j˚X

Y Ñ j˚X is an equivalence, which follows from

our assumption that Gad is dense in X corp.
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Remark 20.5.3.6. The proof of Theorem 20.5.3.4 shows that if G is a full subcategory of
X spanned by corporeal objects such that Gad “ X corpXG is dense in X corp and satisfies
condition p˚q, then G is dense in X .

Remark 20.5.3.7. In the proof of Theorem 20.5.3.4, the subcategory Gad Ď X corp can be
chosen as large as we like: in particular, we can arrange that it contains any small collection
of corporeal objects of X .

20.5.4 Finite Limits of Corporeal Objects

In the situation of Theorem 20.5.3.4, we can arrange that the properties of the 8-category
G mirror the properties of the fractured 8-topos X . For example, we have the following:

Proposition 20.5.4.1. Let X corp Ď X be a complete fractured 8-topos (Definition 20.3.3.9).
The following conditions are equivalent:

p1q Let X corp be the full subcategory of X spanned by the corporeal objects (that is, the
essential image of the inclusion X corp ãÑ X ). Then X corp is closed under finite limits.

p2q There exists a presentation h : G Ñ X , where G is an essentially small 8-category
which admits finite limits, the functor h is fully faithful, and a morphism in G is
admissible if and only if its image belongs to X corp.

p3q There exists a presentation h : G Ñ X , where the 8-category G admits finite limits.

Proof. The implication p1q ñ p2q follows from the proof of Theorem 20.5.3.4 (where we
replace condition p˚q by the requirement that G is closed under finite limits), and the
implication p2q ñ p3q is trivial. We will show that p3q ñ p1q. Suppose that h : G Ñ X is a
presentation and that G admits finite limits. Let X 0 Ď X be the essential image of h. Then
X 0 Ď X is dense (Remark 20.4.1.11) and consists of corporeal objects of X . Note that the
functor h is left exact (Lemma 20.5.3.5 and Remark 20.4.2.2), and therefore preserves final
objects. In particular, the final object of X is corporeal. We will complete the proof by
showing that the full subcategory X corp Ď X is closed under fiber products.

Let us say that a morphism in X is admissible if it is X corp-admissible (Definition 20.3.1.1).
Our assumption that X is complete guarantees that an object X P X is corporeal if and
only if it is X ad-corporeal, where X ad Ď X is the subcategory spanned by the admissible
morphisms (Proposition 20.3.3.11). Suppose we are given a pullback diagram σ :

X01 //

��

X0

v

��
X1

w // X
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in the 8-topos X , where X0, X1, and X are corporeal; we wish to prove that X01 is corporeal.
Using Proposition 20.3.3.12, we deduce that there exists an admissible effective epimorphism
>Uα Ñ X in X , where each Uα is a retract of an object Vα which admits an admissible
morphism Vα ÑWα for some Wα in X 0. We then have an admissible effective epimorphism
>Uα ˆX X01 Ñ X01. Consequently, to prove that X01 is corporeal, it will suffice to show
that each fiber product Uα ˆX X01 is corporeal (Proposition 20.3.3.8). Replacing X by Uα
(and the objects Xi by the fiber products Xi ˆX Uαq, we may reduce to the case where X is
a retract of an object V which admits an admissible morphism V ÑW for W P X 0. Then
X01 » X0 ˆX X1 is a retract of X0 ˆV X1. Since the collection of corporeal objects of X is
closed under retracts (Proposition 20.3.3.8), we can replace X by V and thereby reduce to
the case where there exists an admissible morphism X Ñ W , where W P X 0. We have a
commutative diagram

X
δ //

  

X ˆW X

zz
W

where the vertical maps are admissible, so that δ is also an admissible morphism. It follows
that the map

X01 » X0 ˆX X ˆX X1 Ñ X0 ˆX pX ˆW Xq ˆX X1 » X0 ˆW X1

is also admissible. Using Proposition 20.3.3.8 again, we are reduced to proving that X0ˆWX1
is corporeal. We may therefore replace X by W and thereby reduce to the case where
X P X 0, so that X » hpZq for some object Z P G.

We now apply similar reasoning to the object X0. Invoking Proposition 20.3.3.12, we
can choose an admissible effective epimorphism >U 1β Ñ X0 where each U 1β is a retract of an
object V 1β which admits an admissible morphism V 1β ÑW 1

β for some W 1
β P X 0. We then have

an admissible effective epimorphism >U 1β ˆX X1 Ñ X01. Using Proposition 20.3.3.8, we are
reduced to proving that each fiber product U 1β ˆX X1 is corporeal. Since U 1β is a retract of
V 1β , the composite map U 1β Ñ X0 Ñ X factors through a map V 1β Ñ X for which U 1β ˆX X1
is a retract of V 1β ˆX X1. Write W 1

β “ hpY q for some Y P G. Since h is a presentation of X ,
the object V 1β P X can be written as a colimit of objects of the form hpY 1q for Y 1 P Gad

{Y (this
follows from the density of the functor Gad

{Y Ñ X
corp
{hpY q; see Remark 20.4.2.5). In particular,

there exists an admissible effective epimorphism >hpYγq Ñ V 1β , hence an admissible effective
epimorphism >hpYγq ˆX X1 Ñ V 1β ˆX X1. We may therefore replace X0 by hpYγq and
thereby reduce to the case where X0 has the form hpZ0q for some Z0 P G.

The morphism hpZ0q “ X0
v
Ñ X “ hpZq need not be the image under h of a morphism

Z0 Ñ Z in G. However, our assumption that h : G Ñ X is a presentation guarantees
that we can can choose a collection of admissible morphisms tZγ Ñ Z0u in G which
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determine an effective epimorphism >hpZγq Ñ hpZ0q, for which each of the composite maps
hpZγq Ñ hpZ0q “ X0 Ñ X “ hpZq is induced by a morphism Zγ Ñ Z in the 8-category G.
We then have an admissible effective epimorphism >hpZγq Ñ hpZ0q, which gives rise to an
admissible effective epimorphism

>hpZγq ˆX X1 Ñ X0 ˆX X1.

Using Proposition 20.3.3.8, are reduced to proving that each of the fiber products hpZγqˆXX1
is corporeal. We may therefore replace X0 by hpZγq and thereby reduce to the case where
v : X0 Ñ X has the form hpv0q for some morphism v0 : Z0 Ñ Z in the 8-category G.
Similarly, we can assume that w has the form hpw0q for some morphism w0 : Z1 Ñ Z in
G. Since the functor h is left exact, it follows that X01 “ hpZ0q ˆhpZq hpZ1q » hpZ0 ˆZ Z1q

belongs to the essential image of h, and is therefore corporeal.

20.6 Geometric Sites

Let X be a quasi-compact, quasi-separated scheme, and let SchX denote the category
whose objects are X-schemes of finite presentation, endowed with the étale topology. In
§20.1, we asserted without proof that the 8-category ShvpSchXq “ ShvSpSchXq can be
regarded as a fractured 8-topos (in the sense of Definition 20.1.2.1). Our goal in this section
is to prove a more general form of this assertion. We begin by introducing the notion of a
geometric site (Definition 20.6.2.1): an essentially small 8-category G which is equipped with
a Grothendieck topology τ and an admissibility structure Gad Ď G satisfying an appropriate
compatibility. Our main result asserts that for any geometric site G, the 8-category Shvτ pGq
inherits the structure of a fractured 8-topos, whose subcategory of corporeal objects can be
identified with Shvτ pGadq (Theorem 20.6.3.4). This result can be applied to the category
G “ SchX by taking τ to be the topology generated by étale coverings and Gad to be the
subcategory Schét

X Ď SchX of étale morphisms. We will consider several variants of this
example in §20.6.4 (and will meet others in Part VII).

20.6.1 Restrictions of Grothendieck Topologies

Throughout this section, we assume that the reader is familiar with the theory of
Grothendieck topologies on 8-categories (see Definition HTT.6.2.2.1 or §A.3). If G is an
8-category, we will typically use the symbol τ (or variants thereof) to denote a Grothendieck
topology on G. We will say that a collection of morphisms tfα : Uα Ñ Xu in G is a τ -covering
if it generates a covering sieve on X: that is, if the full subcategory Gp0q

{X Ď G{X spanned by
those morphisms f : U Ñ X which factor through some fα is a covering sieve with respect
to τ . We will denote the 8-category of S-valued sheaves on G by Shvτ pGq to indicate its
dependence on τ .
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Proposition 20.6.1.1. Let f : G1 Ñ G be a functor between 8-categories and let τ be a
Grothendieck topology on G. Assume that G1 admits pullbacks and that the functor f preserves
pullbacks. Then there exists a Grothendieck topology f˚τ on G1 which is characterized by
the following property: a sieve G1p0q

{X Ď G1{X is a covering sieve for f˚τ if and only if the
collection of morphisms tfpUq Ñ fpXqu

UPG1p0q
{X

is a τ -covering of X.

Remark 20.6.1.2. In the statement of Proposition 20.6.1.1, we do not require that the
8-category G admits finite limits (in fact, this condition is not satisfied in many examples
of interest).

Proof of Proposition 20.6.1.1. We show that the collection of pf˚τq-covering sieves satisfies
the conditions of Definition HTT.6.2.2.1 :

p1q For each object X P G1, the full subcategory G1{X Ď G
1
{X is a pf˚τq-covering sieve. This

is clear, since the identity morphism id : fpXq Ñ fpXq is a τ -covering.

p2q If u : X Ñ Y is a morphism in G1 and G1p0q
{Y is a pf˚τq-covering sieve on Y , then

u˚ G1p0q
{Y “ Gp0q

{Y ˆG1
{Y
G1{X is a pf˚τq covering sieve on X. To prove this, choose a

collection of objects Uα P G1p0q{Y for which the maps tfpUαq Ñ fpY qu generate a τ -
covering sieve Gp0q

{fpY q on fpY q P G1. Since τ is a Grothendieck topology, the pullback
Gp0q
{fpY qˆG{fpY q G{fpXq is also a τ -covering sieve. Our assumption that f preserves finite

limits guarantees that this sieve is generated by the maps tfpX ˆY Uαq Ñ fpXqu. It
follows that the projection maps tX ˆY Uα Ñ Xu generate a pf˚τq-covering of X, so
that u˚ G1p0q

{Y is a pf˚τq-covering sieve.

p3q Let Y be an object of G1, let G1p0q
{Y Ď G1{Y be a pf˚τq-covering sieve on Y , and let

G1p1q
{Y Ď G1{Y be another sieve with the property that for each object u : X Ñ Y

in G1p0q
{Y , the pullback u˚ G1p1q

{Y is a pf˚τq-covering sieve on X. We must show that
G1p1q
{Y is a pf˚τq-covering sieve on Y . We begin by choosing maps uα : Uα Ñ Y

which belong to G1p0q
{Y for which the induced maps fpUαq Ñ fpY q are a τ -covering of

fpY q P G. Since each u˚α G
1p1q
{Y is a pf˚τq-covering sieve, we can choose a collection

of maps Vα,β Ñ Uα for which the composite maps Vα,β Ñ Uα Ñ Y belong to G1p1q
{Y ,

and for each α the collection of maps tfpVα,βq Ñ fpUαqu is a τ -covering of fpUαq.
Since τ is a Grothendieck topology, it follows that the collection of composite maps
fpVα,βq Ñ fpUαq Ñ fpY q is a τ -covering of fpY q, so that G1p1q

{Y is a covering sieve as
desired.
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Proposition 20.6.1.3. Let f : G1 Ñ G be a functor between 8-categories and let τ be
a Grothendieck topology on G. Assume that the 8-category G1 admits pullbacks and that
the functor f preserves pullbacks, and let T : PpGq Ñ PpG1q be the functor given by
precomposition with f . Then the functor T carries Shvτ pGq into Shvf˚τ pG1q.

Proof. Let F P Shvτ pGq. We wish to show that T pF q is a sheaf with respect to the
Grothendieck topology f˚τ . Fix an object X P G1 and a sieve G1p0q

{X which is covering with
respect to pf˚τq; we wish to show that the canonical map T pF qpXq Ñ lim

ÐÝUPG1p0q
{X

T pF qpUq

is a homotopy equivalence.
Choose a collection of morphisms tUα Ñ XuαPI which belong to G1p0q

{X , such that the
maps fpUαq Ñ fpXq generate a τ -covering sieve in G{fpXq. Let G1p1q

{X Ď G{X be the sieve
generated by the morphisms Uα Ñ X. We will complete the proof by showing the following:

paq The canonical map ρ : T pF qpXq Ñ lim
ÐÝUPG1p1q

{X

T pF qpUq is a homotopy equivalence.

pbq The functor T pF q|G1p0q
{X

is a right Kan extension of its restriction to G1p1q
{X .

Note that if u : U Ñ X is a morphism belonging the sieve G1p0q
{X , then T pF q|G1p0q

{X

is a
right Kan extension of T pF q|G1p1q

{X

at U if and only if the canonical map T pF qpUq Ñ

lim
ÐÝV Pu˚ G1p1q

{X

T pF qpV q is an equivalence. The sieve u˚ G1p1q
{X is generated by the fiber products

Uα ˆX U whose images in G generate a covering sieve with respect to τ (since the functor
f preserves pullbacks). Consequently, assertion pbq can be deduced from paq (applied after
replacing X by U and G1p1q

{X by u˚ G1p1q
{X ).

It remains to prove paq. Let Gp1q
{fpXq denote the sieve in G{fpXq generated by the

maps fpUαq Ñ fpXq. Then the map ρ can identified with the composition F pfpXqq
ρ1
ÝÑ

lim
ÐÝV PGp1q

{fpXq

F pV q
ρ2
ÝÑ lim

ÐÝUPG1p1q
{X

F pfpUqq. Our assumption that F is a sheaf with respect to

the Grothendieck topology τ guarantees that ρ1 is a homotopy equivalence. We are therefore
reduced to showing that ρ2 is a homotopy equivalence. For this, it will suffice to show
that f induces a left cofinal map G1p1q

{X Ñ Gp1q
{fpXq. Using the criterion of Theorem ??, we

must show that for each morphism V Ñ fpXq belonging the sieve Gp1q
{X , the 8-category

C “ G1p1q
{X ˆGp1q

{fpXq

pGp1q
{fpXqqV { is weakly contractible. In fact, the 8-category Cop is sifted: it

is nonempty (by the definition of the sieve Gp1q
{fpXq) and admits pushouts (by virtue of our

assumption that f preserves fiber products).

20.6.2 Grothendieck Topologies and Admissibility Structures

We are now ready to introduce our main objects of interest.
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Definition 20.6.2.1. Let G be an 8-category equipped with a Grothendieck topology τ .
We will say that an admissibility structure Gad Ď G is compatible with τ if, for every object
X P G and every covering sieve Gp0q

{X Ď G{X with respect to τ , there exists a τ -covering
tfα : Uα Ñ Xu where each fα is an admissible morphism which belongs to the sieve Gp0q

{X .
In this case, we will also say that the Grothendieck topology τ is compatible with the
admissibility structure Gad Ď G, or that Gad and τ are compatible.

A geometric site is a triple pG,Gad, τq, where G is an essentially small 8-category, Gad is
an admissibility structure on G, and τ is a Grothendieck topology on G which is compatible
with Gad.

Remark 20.6.2.2. If pG,Gad, τq is a geometric site, we will often abuse terminology and
simply refer to the 8-category G as a geometric site; in this case, we implicitly assume that
the admissibility structure Gad Ď G and the Grothendieck topology τ have been specified.
Beware that there is some danger of confusion here, because we will often consider different
geometric sites which have the same underlying 8-category (see Examples 20.6.4.1 and
20.6.4.2, or Examples 20.6.4.4 and 20.6.4.5).

Remark 20.6.2.3. Let G be an 8-category equipped with a Grothendieck topology τ and
a compatible admissibility structure Gad Ď G. If G1 ad is an admissibility structure on G
which contains Gad, then G1 ad is also compatible with τ .

Example 20.6.2.4. Let G be an 8-category which admits pullbacks. Then Gad “ G is an
admissibility structure on G which is compatible with every Grothendieck topology on G.

Example 20.6.2.5. Let G be an 8-category and let τ be the trivial topology on G (so that
a sieve Gp0q

{X Ď G{X is a τ -covering if and only if Gp0q
{X “ G{X). Then τ is compatible with

every admissibility structure on G.

Example 20.6.2.6. Let T op denote the category whose objects are topological spaces X
and whose morphisms are continuous maps f : X Ñ Y . We regard T op as equipped with a
Grothendieck topology τ , where a collection of morphisms tfα : Uα Ñ Xu is a τ -covering if
and only if, for every point x P X, there exists an open set U Ď X containing x, an index
α, and a map g : U Ñ Uα such that the composite map U

g
Ñ Uα

fα
Ñ X is the identity. The

collection of open immersions between topological spaces is an admissibility structure on
T op which is compatible with the Grothendieck topology τ . We can also equip T op with the
admissibility structure consisting of all local homeomorphisms between topological spaces; it
follows from Remark 20.6.2.3 that this admissibility structure is also compatible with τ .

Remark 20.6.2.7. One can give many variants on Example 20.6.2.6 by restricting our
attention to topological spaces which have additional properties or are equipped with
additional structures. For example, we can replace T op by the category whose objects are
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topological manifolds and whose morphisms are continuous maps, or by the category whose
objects are smooth manifolds and whose morphisms are smooth maps. We will study the
latter example in detail in §??.

Construction 20.6.2.8. Let G be an 8-category equipped with an admissibility structure
Gad. Then the 8-category Gad admits fiber products and the inclusion functor j : Gad ãÑ G
preserves fiber products (see Remark 20.2.1.12). Applying Proposition 20.6.1.1, we see that
every Grothendieck topology τ induces a Grothendieck topology j˚τ on the 8-category Gad.
We will denote this Grothendieck topology by τad. Applying Proposition 20.6.1.3, we deduce
that precomposition with j determines a functor j˚ : Shvτ pGq Ñ ShvτadpGadq.

Construction 20.6.2.8 can be applied to an arbitrary Grothendieck topology τ on G.
We will generally be interested in this construction on in the case where τ is compatible
with the admissibility structure Gad. In this case, passage from τ to τad involves no loss of
information:

Proposition 20.6.2.9. Let G be an 8-category equipped with an admissibility structure
Gad Ď G. Then Construction 20.6.2.8 determines an injective map

t Grothendieck topologies on G compatible with Gad u Ñ t Grothendieck topologies on Gad u.

The image of this map consists of those Grothendieck topologies τ0 on Gad with the following
property:

p˚q Let f : X Ñ Y be a morphism in G and let Gadp0q
{Y Ď Gad

{Y be a τ0-covering sieve on Y .
Then the collection of morphisms tU ˆY X Ñ Xu

UPGadp0q
{Y

generates a τ0-covering sieve
on X.

Proof. Let τ be a Grothendieck topology on G and let Gp0q
{X Ď G{X be sieve. If Gp0q

{X XG
ad
{X Ď

Gad
{X is a τad-covering sieve, then Gp0q

{X is a τ -covering sieve. If τ is compatible with Gad, then
the converse holds. It follows immediately that a Grothendieck topology τ compatible with
Gad can be recovered from τad, so that the construction τ ÞÑ τad is injective.

Now suppose that τ is any Grothendieck topology on G; we show that τad satisfies
condition p˚q. Let f : X Ñ Y be a morphism in G and let Gadp0q

{Y Ď Gad
{Y be a τad-covering

sieve. Then the collection of maps tU Ñ Y u
UPGadp0q

{Y

generates a τ -covering of Y . Since τ
is a Grothendieck topology on G, it follows that collection of maps tU ˆY X Ñ Xu

UPGadp0q
{Y

generates a τ -covering of Y (in the 8-category G), and therefore also a τad-covering of Y
(in the 8-category Gad).

Finally, let τ0 be any Grothendieck topology on Gad which satisfies condition p˚q. We
attempt to define a Grothendieck topology τ on G as follows: a sieve Gp0q

{X Ď G{X is a
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τ -covering if and only if the intersection Gp0q
{X XG

ad
{X Ď G

ad
{X is a τ0-covering. To show that

τ is a Grothendieck topology, we verify that it satisfies the requirements of Definition
HTT.6.2.2.1 :

p1q For every object X P G, the subcategory G{X Ď G{X is a τ -covering sieve (since
Gad
{X Ď G

ad
{X is a τ0-covering sieve).

p2q Let f : Y Ñ X be a morphism in G and let Gp0q
{X Ď G{X be a τ -covering sieve on X;

we must show that the fiber product G{Y ˆG{X G
p0q
{X is a τ -covering sieve on Y . This

follows immediately from assumption p˚q.

p3q Let Gp0q
{X Ď G{X be a τ -covering sieve on an object X P G and let Gp1q

{X be another sieve
with the property that for each object Y Ñ X of Gp0q

{X , the fiber product Gp1q
{X ˆG{X G{Y

is a τ -covering sieve of Y . We must show that Gp1q
{X is a τ -covering sieve of X. The

assumption that Gp0q
{X is a τ -covering implies that it contains admissible morphisms

tUα Ñ Xu which determine a τ0-covering of X. Since each Gp1q
{X ˆG{X G{Uα is a τ -

covering of Uα, we can choose admissible morphisms Vα,β Ñ Uα which generate a
τ0-covering sieve, for which the composite maps Vα,β Ñ Uα Ñ X belong to Gp1q

{X . Then
the collection of admissible maps tVα,β Ñ Xu are contained in Gp1q

{X and generate a
τ0-covering sieve on X, so that Gp1q

{X Ď G{X is a τ -covering sieve as desired.

We now complete the proof by observing that the Grothendieck topology τ is compatible
with Gad, and that the Grothendieck topology τad (obtained by applying Construction ??
to τ) coincides with τ0.

20.6.3 From Geometric Sites to Fractured Localizations

Let pG,Gad, τq be a geometric site and let F : Gop Ñ S be a S-valued presheaf on G. If F

is a sheaf with respect to the Grothendieck topology τ , then Proposition 20.6.1.3 guarantees
that F |Gad op is a sheaf with respect to the Grothendieck topology τad of Construction
20.6.2.8. We now establish the converse:

Proposition 20.6.3.1. Let pG,Gad, τq be a geometric site and let T : PpGq Ñ PpGadq

denote the restriction functor. Then the diagram of 8-categories

Shvτ pGq //

��

PpGq

T
��

ShvτadpGadq // PpGadq
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is a pullback square. In other words, an object F P PpGq is a sheaf with respect to τ if and
only if F |Gad op is a sheaf with respect to τad.

Proof. Assume that T pF q is a sheaf with respect to τad. Let X be an object of G and
let Gp0q

{X Ď G{X be a τ -covering sieve; we wish to show that the canonical map F pXq
ρ
ÝÑ

lim
ÐÝY PGp0q

{X

F pY q is a homotopy equivalence. Set Gadp0q
{X “ Gp0q

{X ˆG{X G
ad
{X , and let Gp1q

{X Ď G{X

denote the sieve generated by Gadp0q
{X . Since τ is compatible with the admissibility structure

Gad, the sieve Gadp0q
{X is covering with respect to the topology τad. Consequently, our

assumption that T pF q is a sheaf with respect to τad guarantees that the composite map

F pXq
ρ
ÝÑ lim

ÐÝ
Y PGp0q

{X

F pY q
ρ1
ÝÑ lim

ÐÝ
Y PGp1q

{X

F pY q
ρ2
ÝÑ lim

ÐÝ
UPGadp0q

{X

F pUq

is a homotopy equivalence. Consequently, to show that ρ is a homotopy equivalence, it
will suffice to show that ρ1 and ρ2 are homotopy equivalences. The map ρ2 is a homotopy
equivalence because the inclusion Gadp0q

{X ãÑ Gp1q
{X is left cofinal (for every object Y P Gp1q

{X , the
fiber product pGp0q

{Xq ˆG{X GY { {X is nonempty and admits finite products, and is therefore
weakly contractible). To show that ρ1 is a homotopy equivalence, it will suffice to show that
F |Gp0q op

{X

is a right Kan extension of its restriction to F |Gp1q op
{X

. Fix an object Y P Gp0q
{X and

define
Gp1q
{Y “ G

p1q
{X ˆG{X G{Y Gadp0q

{Y “ Gadp0q
{X ˆGad

{X
Gad
{Y ,

so that F determines maps

F pY q
θ
ÝÑ lim

ÐÝ
ZPGp1q

{Y

F pZq
θ1
ÝÑ lim

ÐÝ
V PGadp0q

{Y

F pV q.

To prove that F |Gp0q op
{X

is a right Kan extension of its restriction to F |Gp1q op
{X

at Y , it will
suffice to show that θ is a homotopy equivalence. The argument above shows that the
inclusion Gadp0q

{Y ãÑ Gp1q
{Y is left cofinal, so that θ1 is a homotopy equivalence. We are therefore

reduced to showing that θ1 ˝ θ is a homotopy equivalence, which follows from our assumption
that T pF q is a sheaf with respect to the topology τad (since the sieve Gadp0q

{Y Ď Gad
{Y is a

τad-covering).

Proposition 20.6.3.2. Let pG,Gad, τq be a geometric site, let T : FunpGop,Sq Ñ FunppGadqop,Sq
denote the restriction functor, and let j˚ : Shvτ pGq Ñ ShvτadpGadq denote the restriction of
T (Proposition 20.6.1.3). Then the diagram of 8-categories

Shvτ pGq //

j˚

��

FunpGop,Sq

T
��

ShvτadpGadq // FunppGadqop,Sq
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is left adjointable. In other words, the restriction functor F ÞÑ F |Gad commutes with
sheafification with respect to τ .

Proof. Let L : FunpGop,Sq Ñ Shvτ pGq denote a left adjoint to the inclusion (given by
sheafification with respect to τ), and define Lad : FunppGadqop,Sq Ñ ShvτadpGadq similarly.
We wish to show that, for every object F P FunpGop,Sq, the canonical map LadpT pF qq Ñ

T pLF q is an equivalence. Proposition 20.6.1.3 shows that T pLF q is a sheaf with respect
to τad. It will therefore suffice to show that the functor T carries L-equivalences to Lad-
equivalences.

For each object X P G, let hX : Gop Ñ S denote the functor represented by X. Given
a sieve Gp0q

{X Ď G{X , we let hGp0q
{X

denote the corresponding subobject of hX (given by the
colimit lim

ÝÑUPGp0q
{X

hU ). The collection of L-equivalences in FunpGop,Sq is generated, as a
strongly saturated collection of morphisms, by monomorphisms of the form hGp0q

{X

ãÑ hX ,

where Gp0q
{X Ď G{X is a τ -covering sieve. It will therefore suffice to show that for every such

sieve, the map T phGp0q
{X

q Ñ T phXq is an Lad-equivalence.

For each object U P Gad, let had
U P FunppGadqop,Sq denote the functor represented by U .

The presheaf 8-category FunppGadqop,Sq is generated under small colimits by objects of
the form had

U . It will therefore suffice to show that, for every morphism u : had
U Ñ T phXq

(which we can identify with a map U Ñ X in the 8-category G), the projection map
π : T phGp0q

{X

q ˆT phXq h
ad
U Ñ had

U is a τad-equivalence. Unwinding the definitions, we see

that π is the monomorphism classified by the sieve Gadp0q
{U Ď Gad

{U given by those admissible
morphisms V Ñ U for which the composite map V Ñ U Ñ X belongs the sieve Gad

{X . To
complete the proof, it suffices to observe that this sieve is covering with respect to the
topology τad. Unwinding the definitions, we need to show that the sieve u˚ Gp0q

{X Ď G{U
contains a τ -covering sieve which is generated by admissible morphisms. This follows from
our assumption that the Grothendieck topology τ is compatible with the admissibility
structure Gad Ď G.

Combining Propositions 20.6.3.1 and 20.6.3.2, we obtain the following:

Proposition 20.6.3.3. Let pG,Gad, τq be a geometric site. Let us regard the presheaf 8-
category PpGq as a fractured 8-topos (see Theorem 20.2.4.1), and let us abuse notation by
identifying the fracture subcategory PpGqcorp Ď PpGq with PpGadq. Then the full subcategory
ShvτadpGadq Ď PpGadq is a fractured localization of PpGadq (in the sense of Definition
20.5.1.1).

Combining Proposition 20.6.3.3 and Theorem 20.5.1.2 (and using the identification
Shvτ pGq “ ShvτadpGadq ˆPpGadq PpGq of Proposition 20.6.3.1), we obtain the following
generalization of Theorem 20.2.4.1:



20.6. GEOMETRIC SITES 1573

Theorem 20.6.3.4. Let pG,Gad, τq be a geometric site and let j˚ : Shvτ pGq Ñ ShvτadpGadq

be the restriction functor. Then the functor j˚ admits a left adjoint j! : ShvτadpGadq Ñ

Shvτ pGq. Moreover, j! induces an equivalence from ShvτadpGadq to a fracture subcategory
Shvcorp

τ pGq Ď Shvτ pGq.

20.6.4 Examples of Geometric Sites

In this book, our primary interest is in geometric sites which are related to classical and
spectral algebraic geometry.

Example 20.6.4.1 (Classical Algebraic Geometry: Zariski Topology). Let Aff denote the
category of affine schemes of finite type over Z (so that Aff is equivalent to the opposite
of the category of finitely presented commutative rings). We regard Aff as equipped with
the admissibility structure AffZar Ď Aff of Example 20.2.1.5 (whose admissible morphisms
are open immersions of the form SpecRrt´1s Ñ SpecR, where R is a finitely presented
commutative ring and t P R is an element (see Example 20.2.1.5). Let τZar denote the Zariski
topology on Aff, so that a collection of morphisms tfα : Uα Ñ Xu is a τZar-covering if and
only if, for every point x P X, there exists a Zariski-open set U Ď X containing x, an index
α, and a map of schemes g : U Ñ Uα for which the composite map U

g
Ñ Uα

fα
ÝÑ X is the

inclusion. The admissibility structure AffZar is compatible with the Grothendieck topology
τZar. We therefore obtain a geometric site pAff,AffZar, τZarq, which we will refer to as the
classical Zariski site.

Example 20.6.4.2 (Classical Algebraic Geometry: Étale Topology). Let Aff denote (the
nerve of) the category of affine schemes of finite type over Z (so that Aff is equivalent to the
opposite of the category of finitely presented commutative rings. We regard Aff as equipped
with the admissibility structure Aff ét Ď Aff whose morphisms are étale maps between affine
schemes of finite type over Z. Let τét denote the étale topology on Aff, so that a collection
of morphisms tfα : Uα Ñ Xu is a τét-covering if and only if, for every point x P X, there
exists an étale map h : U Ñ X whose image contains x and an index α for which h factors
as a composition U Ñ Uα

fα
Ñ X. The Grothendieck topology τét is compatible with the

admissibility structure Aff ét. We therefore obtain a geometric site pAff,Aff ét, τétq, which we
will refer to as the classical étale site.

Remark 20.6.4.3. Many variations on the preceding examples are possible. For example,
we could work replace Aff by the category of affine R-schemes of finite presentation where
R is some commutative ring, or allow schemes which are not affine, or relax the assumptions
that our schemes are of finite type.

We now consider spectral variants of Examples 20.6.4.1 and 20.6.4.2.
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Example 20.6.4.4 (Spectral Algebraic Geometry: Zariski Topology). Let AffSp denote the
opposite of the 8-category CAlgc of compact E8-rings. For each object R P CAlgc, we will
denote the corresponding object in AffSp by SpétR (which we can view as a nonconnective
spectral scheme or nonconnective spectral Deligne-Mumford stack). The category AffSp
admits an admissibility structure AffZar

Sp Ď AffSp, whose morphisms are those of the form
SpétR Ñ SpétRrt´1s for t P π0R. The 8-category AffSp also admits a Grothendieck
topology τZar, where a sieve on an object SpecR is covering if it contains a family of maps
of the form tSpétRrt´1

α s Ñ SpétRu for which the elements tα P π0R generate the unit ideal.
The Grothendieck topology τZar is compatible with the admissibility structure AffZar

Sp . We
therefore obtain a geometric site pAffSp,AffZar

Sp , τZarq, which we will refer to as the spectral
Zariski site.

Example 20.6.4.5 (Spectral Algebraic Geometry: Étale Topology). The 8-category AffSp
of Example 20.6.4.4 admits another Grothendieck topology τét, where a sieve on an object
SpétR is a τét-covering if it contains a finite collection of étale morphisms SpétRα Ñ SpétR
for which the induced map RÑ

ś

Rα is faithfully flat. The Grothendieck topology τét is
compatible with the admissibility structure Aff ét

Sp Ď AffSp spanned by the étale morphisms.
We therefore obtain a geometric site pAffSp,Aff ét

Sp, τétq, which we will refer to as the spectral
étale site.

20.6.5 Modifications of Admissibility Structures

Let G be an essentially small 8-category and let τ be a Grothendieck topology on G.
According to Theorem 20.6.3.4, every admissibility structure Gad Ď G which is compatible
with τ determines a fracture subcategory Shvcorp

τ pGq Ď Shvτ pGq (which can be identified
with ShvτadpGadq). Let h : G Ñ Shvτ pGq be the composition of the Yoneda embedding
G ãÑ FunpGop,Sq with the sheafification functor FunpGop,Sq Ñ Shvτ pGq, and define had :
Gad Ñ ShvτadpGadq similarly. The diagram of 8-categories

Gad had
//

��

ShvτadpGadq

��
G h // Shvτ pGq

commutes, up to canonical equivalence. In particular:

piq For every object X P G, the sheaf hpXq belongs to Shvcorp
τ pGq.

piiq For every admissible morphism U Ñ X of G, the induced map hpUq Ñ hpXq is a
morphism of Shvcorp

τ pGq.
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The converse of piiq is false in general: if α : U Ñ X is a morphism in G for which hpαq

belongs to Shvcorp
τ pGq, then α need not be admissible. In fact, many different admissibility

structures on G can give rise to the same fracture subcategory of Shvτ pGq:

Proposition 20.6.5.1. Let G be an essentially small8-category equipped with a Grothendieck
topology τ . Suppose we are given admissibility structures Gad

0 Ď G Ě Gad
1 satisfying the fol-

lowing conditions:

p1q The admissibility structures Gad
0 and Gad

1 are both compatible with τ (in the sense of
Definition 20.6.2.1), and Gad

0 Ď Gad
1 .

p2q For every morphism U Ñ X which belongs to Gad
1 , there exists a collection of morphisms

tVα Ñ Uu which belong to Gad
0 and generate a τ -covering of U , and for which the

composite maps Vα Ñ U Ñ X also belong to Gad
0 .

Then Gad
0 and Gad

1 determine the same fracture subcategory Shvcorp
τ pGq Ď Shvτ pGq.

Example 20.6.5.2. Let pAff,AffZar, τZarq denote the classical Zariski site of Example
20.6.4.1. Then the category Aff admits another admissibility structure Aff 1Zar, where a
morphism SpecAÑ SpecB in Aff belongs to Aff 1Zar if and only if it is an open immersion
of affine schemes. Then pAff,Aff 1Zar, τZarq is also a geometric site. Moreover, Proposition
20.6.5.1 implies that the admissibility structures AffZar and Aff 1Zar determine the same
fracture subcategory of ShvτZarpAffq. A similar remark applies to the spectral Zariski site of
Example 20.6.4.4.

Proof of Proposition 20.6.5.1. Replacing G by Gad
1 , we can reduce to the case where Gad

1 “ G.
Set Gad “ Gad

0 , so that Gad determines a fracture subcategory Shvcorp
τ pGq Ď Shvτ pGq. We

wish to show that Shvcorp
τ pGq “ Shvτ pGq.

Let h : G Ñ Shvτ pGq denote the sheafified Yoneda embedding (that is, the composition of
the Yoneda embedding G Ñ PpGq with the sheafification functor PpGq Ñ Shvτ pGq). For each
object X P G, the sheaf hpXq is corporeal. Proposition 20.1.3.1 implies that the inclusion
Shvcorp

τ pGq{hpXq ãÑ Shvτ pGq{hpXq is a fully faithful embedding. Unwinding the definitions, we
see that Shvcorp

τ pGq{hpXq can be identified with the full subcategory of Shvτ pGq{hpXq generated
under small colimits by objects of the form hpUq, where U Ñ X is admissible (that is, it
belongs to Gad). Using assumption p2q, we deduce that Shvcorp

τ pGq{hpXq “ Shvτ pGq{hpXq.
Let us say that an object F P Shvτ pGq is good if it is corporeal and the inclusion

Shvcorp
τ pGq{F ãÑ Shvτ pGq{F is an equality. To show that Shvcorp

τ pGq “ Shvτ pGq, it will
suffice to show that every object of Shvτ pGq is good. The preceding argument shows that
hpXq is good for each X P G. We will complete the proof by showing that the collection of
good objects of Shvτ pGq is closed under small colimits.

Suppose we are given a small diagram tFαu in Shvτ pGq having a colimit F , where each
Fα is good; we wish to show that F is good. Choose an arbitrary morphism ρ : F 1 Ñ F
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in Shvτ pGq. Then we can write F 1 “ lim
ÝÑ
pF 1ˆF Fαq. Note that each transition map

F 1ˆF Fα Ñ F 1ˆF F β belongs to the subcategory Shvcorp
τ pGq Ď Shvτ pGq (by virtue of

our assumption that F β is good). It follows that F 1 is corporeal, and is the colimit of the
diagram tF 1ˆF Fαu in the 8-category Shvcorp

τ pGq. Specializing to the case ρ “ idF , we
deduce that F is also corporeal. To complete the proof, it will suffice to show that the
morphism ρ belongs to Shvcorp

τ pGq. Equivalently, we must show that each of the composite
maps F 1ˆF Fα Ñ F 1 ρÝÑ F belongs to Shvcorp

τ pGq. This follows from the commutativity
of the diagram

F 1ˆF Fα
//

��

F 1

ρ

��
Fα

// F ,

since the left vertical map belongs to Shvcorp
τ pGq by virtue of our assumption that Fα is

good, and the bottom horizontal map belongs to Shvcorp
τ pGq because F is a colimit of the

diagram tFαu in the 8-category Shvcorp
τ pX q.



Chapter 21

Structure Sheaves

Let X be a topological space. There are several different ways of thinking about a sheaf
OX of commutative rings on X:

pAq We can view OX as a sheaf on X taking values in the category CAlg♥ of commutative
rings. From this point of view, OX is a functor UpXqop Ñ CAlg♥, which satisfies the
usual sheaf axioms; here UpXq denotes the partially ordered set of open subsets of X.

pBq We can view OX as a commutative ring object of the topos ShvSetpXq: that is, as an
object of ShvSetpXq equipped with addition and multiplication maps

`,ˆ : OX ˆOX Ñ OX

satisfying the usual commutative ring axioms (which can be translated into the
requirement that certain diagrams commute in the category ShvSetpXq).

pCq We can identify OX with a geometric morphism of topoi π˚ : ShvSetpXq Ñ E , where
E is the classifying topos for commutative rings (given concretely by the formula
E “ FunpCAlg♥

c ,Setq, where CAlg♥
c is the category of finitely presented commutative

rings).

Our goal in this chapter is to discuss the relationship between pAq, pBq, and pCq in an
8-categorical setting, where we replace the topological space X by an 8-topos X and the
category CAlg♥ of commutative rings by some other 8-category C.

We begin by considering the relationship between pAq and pCq. Let C be an arbitrary
8-category. Recall that a C-valued sheaf on an 8-topos X is a functor F : X op Ñ C which
preserves small limits (Definition 1.3.1.4). Our goal in §21.1 is to give a criterion for the
existence of a universal C-valued sheaf: that is, a C-valued sheaf F 0 on an 8-topos E having
the property that any C-valued sheaf on any 8-topos X can be written as a pullback f˚F 0,

1577
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for any essentially unique geometric morphism f : X Ñ E . To fix ideas, let us assume that
the 8-category C is presentable (which guarantees that there is a good notion of pullback for
C-valued sheaves). The main result of §21.1 is that there exists a universal C-valued sheaf if
and only if C is compactly assembled: that is, if and only if C is a retract (in the 8-category
PrL of presentable 8-categories) of a compactly generated 8-category (Theorem ??).

We will be primarily interested in studying C-valued sheaves in the case where the
8-category C is compactly generated. Under this assumption we can write C » IndpGopq,
where G is an essentially small 8-category which admits finite limits. In this case, the
theory of C-valued sheaves can be reformulated directly in terms of the 8-category G: for
any 8-topos X , there is a fully faithful embedding ShvCpX q ãÑ FunpG,X q, whose essential
image consists of those functors from G to X which preserve finite limits. In §21.2, we will
refer to such functors as G-objects of X and regard them as objects of a full subcategory
ObjGpX q Ď FunpG,X q (moreover, we consider also the case where G does not admit finite
limits, in which case we define ObjGpX q to consist of the locally left exact functors in the sense
of Definition 20.4.2.1). We regard the equivalence ShvCpX q » ObjGpX q as an 8-categorical
analogue of the equivalence between pAq and pBq: it allows us to encode the datum of a
C-valued sheaf on X in terms of diagrams in the 8-topos X itself. For our purposes, the
main virtue of this equivalence is it provides a convenient language for discussing locality
conditions on C-valued sheaves and morphisms between C-valued sheaves. For example:

• To every Grothendieck topology τ on G, we can associate a full subcategory ObjτGpX q,
whose objects we refer to as τ -local G-objects of X (see Definition 21.2.1.1).

• To every admissibility structure Gad Ď G, we can associate a (non-full) subcategory
Objloc

G pX q containing all objects, whose morphisms are local morphisms between G-
objects (see Definition 21.2.4.1).

Specializing to the case where C is the category of commutative rings (or the 8-category
CAlg of E8-rings), this formalism recovers the usual notions of locality for sheaves of rings
(or of E8-rings) and morphisms between them, as studied in §1).

Let G be an essentially small 8-category equipped with an admissibility structure
Gad Ď G. In §21.4, we show that the collection of local morphisms determines a factorization
system on the 8-category ObjGpX q: that is, every morphism O Ñ O 1 in ObjGpX q admits
an essentially unique factorization as a composition O

α
ÝÑ O2

β
ÝÑ O 1, where β is local and α

is localizing (that is, it is left orthogonal to all local morphisms of G-objects). Moreover, if
the G-objects O and O 1 are themselves local with respect to some Grothendieck topology
τ which is compatible with Gad, then O2 is also local with respect to τ : consequently, we
also obtain a factorization system on the 8-category ObjτGpX q. This is a special case of a
more general assertion (Theorem 21.3.0.1), whose formulation uses the language of fractured
8-topoi developed in Chapter 20.
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Let G be a small 8-category equipped with a Grothendieck topology τ and a compatible
admissibility structure Gad Ď G (so that the triple pG,Gad, τq is a geometric site, in the sense
of Definition 20.6.2.1). We define a G-structured 8-topos to be a pair pX ,Oq, where X is an
8-topos and O is a G-object of X . In §21.4, we organize the collection of G-structured8-topoi
into an 8-category 8T oplocpGq, in which a morphism from pX ,Oq to pX 1,O 1q is given by a
pair pf˚, αq, where f˚ : X Ñ X 1 is a geometric morphism of 8-topoi and α : f˚O 1 Ñ O is a
local morphism of G-objects on X . The theory of G-structured 8-topoi can be regarded as a
generalization of the theory of locally spectrally ringed 8-topoi (hence also of locally ringed
spaces, modulo slight caveats), in the sense that the latter can be recovered from the former
by choosing the geometric site pG,Gad, τq appropriately (see Examples 21.4.1.13, 21.4.1.14,
21.4.1.17, 21.4.1.18, 21.4.1.19, and 21.4.1.20). We conclude this chapter by studying some
of the formal properties enjoyed by the 8-categories 8T oplocpGq (and of a slightly more
general construction, which depends on a fractured 8-topos rather than a geometric site).
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21.1 C-Valued Sheaves

Let C be an 8-category. Recall that a C-valued sheaf on an 8-topos X is a functor
F : X op Ñ C which preserves small limits (Definition 1.3.1.4). The collection of all C-valued
sheaves on X can be organized into an 8-category ShvCpX q which depends functorially

on X . More precisely, every geometric morphism of 8-topoi X
f˚ //Y
f˚
oo determines a direct

image functor fC
˚ : ShvCpYq Ñ ShvCpX q, given on objects by the formula

pfC
˚ F qpXq “ F pf˚Xq.

If the 8-category C is presentable, then one can use the adjoint functor theorem to show that
the functor fC

˚ admits a left adjoint f˚C : ShvCpX q Ñ ShvCpYq (see Proposition ??). Moreover,
the construction pf˚,F q ÞÑ f˚C F determines a functor Fun˚pX ,Yq ˆ ShvCpX q Ñ ShvCpYq.
This motivates the following:

Definition 21.1.0.1. Let C be a compactly generated 8-category, let E be an 8-topos,
and let F P ShvCpEq be a C-valued sheaf on E . We will say that F is universal if, for every
8-topos X , the construction f˚ ÞÑ f˚C F induces an equivalence of 8-categories

Fun˚pE ,X q Ñ ShvCpX q.

In this case, we will say that F exhibits E as a classifying topos for C-valued sheaves.

Our primary goal in this section is to answer the following:

Question 21.1.0.2. Let C be a presentable 8-category. Under what conditions does there
exist a classifying 8-topos E for C-valued sheaves, in the sense of Definition 21.1.0.1?

Our first objective will be to construct a suitable candidate for the classifying 8-topos E .
Let FunωpC,Sq denote the full subcategory of FunpC,Sq spanned by those functors which
preserve small filtered colimits. In §21.1.1, we show that FunωpC,Sq is an 8-topos. This is
a special case of a more general result (Proposition 21.1.1.2), which does not require the
presentability of C.
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In general, it is easy to describe geometric morphisms from the 8-topos FunωpC,Sq to
another 8-topos X (see Corollary 21.1.1.6). However, to classify geometric morphisms in
the other direction, we need an additional hypothesis on C. In §21.1.2, we introduce the
class of compactly assembled 8-categories (Definition 21.1.2.1), which is an enlargement of
the class of compactly generated 8-categories. The main result of this section, which we
prove in §21.1.3, provides a classification of colimit-preserving functors from FunωpC,Sq to
X , where X is an 8-topos (see Proposition 21.1.3.3 and Theorem 21.1.4.6). We will apply
this result in §21.1.4 to give a complete answer to Question 21.1.0.2: if C is a presentable
8-category, then there exists a classifying 8-topos for C-valued sheaves if and only if C is
compactly assembled (Corollary 21.1.4.9). Moreover, if the classifying 8-topos exists, then
it is given by FunωpC,Sq (Theorem 21.1.4.3).

In §21.1.5, we combine the analyses of §21.1.1 and §21.1.4 to show that the construction
C ÞÑ FunωpC,Sq is fully faithful when restricted to compactly assembled 8-categories
(Corollary 21.1.5.3). Moreover, the8-topoi having the form FunωpC,Sq where C is presentable
and compactly assembled (that is, those 8-topoi which classify C-valued sheaves) admit a
simple characterization (Proposition 21.1.5.4).

In this book, we will be primarily interested in studying C-valued sheaves in situations
where the 8-category C is compactly generated. Under this assumption, one can construct
a classifying topos for C-valued sheaves more directly (we will return to this point in §21.2).
However, there are interesting examples of (presentable) compactly assembled 8-categories
which are not compactly generated. In §21.1.6, we show that an 8-topos X is compactly
assembled if and only if it is exponentiable in the 8-category 8T op of 8-topoi (Theorem
21.1.6.12). Notable examples include the 8-topoi ShvpXq where X is a coherent topological
space (in which case ShvpXq is compactly generated; see the proof of Proposition 21.1.7.8) or
where X is a locally compact Hausdorff space (in which case ShvpXq is compactly assembled
but might not be compactly generated; see Proposition 21.1.7.1 and Remark 21.1.7.2).

Remark 21.1.0.3. Our notion of compactly assembled 8-category is essentially the 8-
categorical version of the notion of continuous category studied by Johnstone and Joyal in
[104] (except that our definition includes an accessibility hypothesis; see Remark 21.1.2.12).
Most of the results in this section can be regarded as 8-categorical analogues of 1-categorical
results which appear in [104].

21.1.1 The 8-Topoi FunωpC,Sq

We begin with some general remarks.

Notation 21.1.1.1. Let C and D be 8-categories which admit small filtered colimits. We
let FunωpC,Dq denote the full subcategory of FunpC,Dq spanned by those functors F : C Ñ D
which preserve small filtered colimits.
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Let C0 be an essentially small 8-category and let C “ IndpC0q be the 8-category of Ind-
objects of C0. Then C is freely generated by C0 under (small) filtered colimits. More precisely,
there is a fully faithful embedding j : C0 ãÑ C with the following universal property: for any
8-category D which admits small filtered colimits, composition with j induces an equivalence
of 8-categories FunωpC,Dq Ñ FunpC0,Dq (Proposition HTT.5.3.5.10 ). In particular, taking
D “ S, we deduce that FunωpC,Sq is equivalent to the 8-category FunpC0,Sq “ PpCop

0 q of
presheaves on Cop

0 , and is therefore an 8-topos. In fact, this is a special case of a more
general phenomenon:

Proposition 21.1.1.2. Let C be an accessible 8-category which admits small filtered colimits
and let X be an 8-topos. Then the 8-category FunωpC,X q is also an 8-topos.

Proof. For any regular cardinal κ, let FunκpC,X q denote the full subcategory of FunpC,X q
spanned by those functors which preserve small κ-filtered colimits. It follows immediately
from the definitions that the subcategory FunκpC,X q Ď FunpC,X q is closed under small
colimits. Since filtered colimits in X are left exact, it is also closed under finite limits. Taking
κ “ ω, this proves p1q.

Choose a regular cardinal κ for which C is κ-accessible and let C0 denote the full
subcategory of C spanned by the κ-compact objects, so that the inclusion C0 ãÑ C extends
to an equivalence of 8-categories IndκpC0q » C. Applying Proposition HTT.5.3.5.10 ,
we deduce that the restriction functor FunκpC,X q Ñ FunpC0,X q is an equivalence of 8-
categories. Applying Proposition ??, we deduce that the 8-category FunκpC,X q is an
8-topos.

By definition, FunωpC,X q is the full subcategory of FunκpC,X q spanned by those functors
F : C Ñ X which satisfy the following condition:

paq For every small filtered 8-category J and every functor ρ : J Ñ C, the canonical map
lim
ÝÑJPJ F pρpJqq Ñ F plim

ÝÑJPJ ρpJqq is an equivalence in X .

Using Proposition HTT.5.3.1.18 , we see that paq is equivalent to the following a priori
weaker condition:

pbq For every small filtered partially ordered set A and every functor ρ : A Ñ C, the
canonical map θFA,ρ : lim

ÝÑαPA
F pρpαqq Ñ F plim

ÝÑαPA
ρpαqq is an equivalence in X .

For a fixed partially ordered set A, let pbAq denote the assertion that θFA,ρ is an equivalence
for every functor ρ : A Ñ C. Note that we can write A as a κ-filtered union of κ-small
filtered partially ordered sets (Lemma HTT.5.4.2.8 ). If the functor F belongs to FunκpC,X q,
then each map θA,ρ can be written as a κ-filtered colimit of maps θA0,ρ|A0

, where A0 Ď A is
filtered and κ-small. Consequently, the functor F belongs to FunωpC,X q if and only if it
satisfies condition pbAq whenever A is κ-small.
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Note that if we fix a filtered partially ordered set A, then the 8-category FunpA, Cq
is accessible (Proposition ??). Consequently, there exists a small collection of functors
tρi : A Ñ CuiPIpAq which generates FunpA, Cq under τ -filtered colimits, where τ is some
regular cardinal that we can assume is ě κ. Our assumption that F P FunκpC,X q then
guarantees that the construction ρ ÞÑ θFA,ρ commutes with τ -filtered colimits. Consequently,
condition pbAq is equivalent to the following a priori weaker condition:

pcAq For each i P IpAq, the canonical map θFA,ρi : lim
ÝÑαPA

F pρipαqq Ñ F plim
ÝÑαPA

ρipαqq is an
equivalence in X .

Let I denote the set of pairs pA, ρq, where A ranges over a set of representatives for
isomorphism classes of κ-small filtered partially ordered sets and ρ : AÑ C belongs to IpAq.
For each pair pA, ρq P I, the construction F ÞÑ θFA,ρ determines a functor θA,ρ : FunκpC,X q Ñ
Funp∆1,X q which preserves small colimits and finite limits. Let Fun1p∆1,X q denote the
full subcategory of Funp∆1,X q spanned by the equivalences in X (so that the diagonal
embedding X Ñ Fun1p∆1,X q is an equivalence). The above argument shows that we have a
pullback diagram of 8-categories

FunωpC,X q //

��

FunκpC,X qθA,ρ
ś

pA,ρqPI

��
ś

pA,ρqPI Fun1p∆1,X q //
ś

pA,ρqPI Funp∆1,X q.

Applying Proposition HTT.6.3.2.2 , we deduce that FunωpC,X q is an 8-topos.

Remark 21.1.1.3. We will be primarily interested in the special case of Proposition
21.1.1.2 where X “ S is the 8-topos of spaces (which often does not lose very much
information; see Remark 21.1.2.4 below). The proof of Proposition 21.1.1.2 shows that
FunωpC,Sq can be realized as an accessible left exact localization of the presheaf 8-category
PpCop

0 q “ FunpC0,Sq for an essentially small full subcategory C0 Ď C. In general, we do
not know if this localization is determined by a Grothendieck topology on C0 (or if the
8-category FunωpC,Sq admits any presentation as an 8-topos of sheaves for a Grothendieck
topology).

Our next goal is to show that the 8-topoi appearing in Proposition 21.1.1.2 can be
characterized by a universal mapping property.

Notation 21.1.1.4. Let yCat
ω

8 denote the subcategory of yCat8 whose objects are accessible
8-categories which admit small filtered colimits and whose morphisms are functors which
preserve small filtered colimits.

Proposition 21.1.1.5. Let X be an 8-topos. Then:
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p1q The construction Y ÞÑ Fun˚pY,X q determines a functor G : 8T op ÑyCat
ω

8.

p2q The functor G admits a left adjoint, given on objects by C ÞÑ FunωpC,X q.

Proof. Note that for any 8-topos Y, the 8-category Fun˚pY,X q is closed under small
filtered colimits in FunpY,X q. In particular, Fun˚pY,X q admits small filtered colimits,
and precomposition with any geometric morphism f˚ : Y Ñ Z determines a functor
Fun˚pZ,X q Ñ Fun˚pY,X q which preserves small filtered colimits. Consequently, to prove
p1q, it suffices to show that every 8-category of the form Fun˚pY,X q is accessible, which is
the content of Proposition HTT.6.3.1.13 . Assertion p2q follows from the observation that
for Y P 8T op and C PyCat

ω

8, we have a canonical isomorphism of simplicial sets

FunωpC,Fun˚pY,X qq » Fun˚pY,FunωpC,X qq;

both sides can be identified with the full subcategory of FunpCˆY,X q spanned by those
functors F : CˆY Ñ X which preserve small filtered colimits in the first variable, small
colimits in the second variable, and finite limits in the second variable.

Corollary 21.1.1.6. For every 8-topos Y, let PtpYq “ Fun˚pY,Sq denote the 8-category
of points of Y. Then:

p1q The construction Y ÞÑ PtpYq determines a functor Pt : 8T op ÑyCat
ω

8.

p2q The functor Pt has a left adjoint, given on objets by C ÞÑ FunωpC,Sq.

21.1.2 Compactly Assembled 8-Categories

We now introduce the main objects of interest in this section.

Definition 21.1.2.1. Let C be an 8-category. We will say that C is compactly assembled
if there exists a small 8-category C0 such that C is a retract of IndpC0q in the 8-category
yCat

ω

8. In other words, there exist functors U : C Ñ IndpC0q and V : IndpC0q Ñ C which
preserve small filtered colimits such that the composition V ˝ U is equivalent to the identity
functor idC : C Ñ C.

Remark 21.1.2.2. In the statement of Definition 21.1.2.1, it is not necessary to assume a
priori that the 8-category C is accessible. Suppose that C admits small filtered colimits,
and that there exists a small 8-category C0 and a pair of functors

U : C Ñ IndpC0q V : IndpC0q Ñ C

which preserve small filtered colimits such that V ˝ U » idC. It follows that C can be
identified with a limit of the tower of 8-categories

¨ ¨ ¨ Ñ IndpC0q
V ˝U
ÝÝÝÑ IndpC0q

V ˝U
ÝÝÝÑ IndpC0q

V ˝U
ÝÝÝÑ IndpC0q,

and is therefore accessible by virtue of Proposition HTT.5.4.7.3 .
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Example 21.1.2.3. For any small 8-category C0, the 8-category IndpC0q is compactly
assembled. In particular, any compactly generated 8-category is compactly assembled.

Remark 21.1.2.4. Let C be a compactly assembled 8-category and let X be a presentable
8-category. Then X is tensored over the8-category S of spaces via a functor b : S ˆX Ñ X
which preserves small colimits separately in each variable. We define a functor

λ : FunωpC,Sq ˆ X Ñ FunωpC,X q λpF,XqpCq “ F pCq bX.

Then λ preserves small colimits separately in each variable, and therefore induces a map
of presentable 8-categories µ : FunωpC,Sq b X Ñ FunωpC,X q. We claim that µ is an
equivalence of 8-categories. To prove this, we observe that µ depends functorially on C, so
we can reduce to the case where C “ IndpC0q for some small 8-category C0. In this case,
the desired result follows from the observation that µ can be computed as the composition
of equivalences

FunωpC,Sq b X » FunpC0,Sq b X
» RFunpX op,FunpC0,Sqq
» FunpC0,RFunpX op,Sqq
» FunpC0,X q
» FunωpC,X q.

In particular, if X is an 8-topos, then the 8-topos FunωpC,X q of Proposition 21.1.1.2 can
be identified with the product of X with FunωpC,Sq in the 8-category 8T op of 8-topoi.

Our first goal is to show that, if C is a compactly assembled 8-category, then there is a
canonical way to realize C as a retract of an 8-category of the form IndpC0q. Essentially, the
idea is to take C0 to be C itself. However, we need to take some care, since the 8-category
C will usually not be small.

Definition 21.1.2.5. Let C be an 8-category (which is not assumed to be small) and
let j : C Ñ FunpCop, pSq be the Yoneda embedding (which carries an object C P C to the
representable functor MapCp‚, Cq). We let IndpCq denote the smallest full subcategory of
FunpCop, pSq which contains the essential image of j and is closed under the formation of
small filtered colimits. We will refer to IndpCq as the 8-category of Ind-objects of C.

Remark 21.1.2.6. When the 8-category C is small, the 8-category IndpCq appearing in
Definition 21.1.2.5 agrees with the 8-category IndpCq of Definition HTT.5.3.5.1 (this is the
content of Proposition HTT.5.3.5.3 and Corollary ??).

Remark 21.1.2.7. Let C be a locally small 8-category: that is, an 8-category for which
the mapping spaces MapCpX,Y q are (essentially) small for every pair of objects C,D P C.
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In this case, the essential image of the inclusion FunpCop,Sq ãÑ FunpCop, pSq contains all
representable functors and is closed under small filtered colimits. Consequently, we can (by
slight abuse of notation) regard IndpCq as a full subcategory of FunpCop,Sq.

Remark 21.1.2.8. Let C be an 8-category which is not assumed to be small. Using
Remark HTT.5.3.5.9 , we see that the 8-category IndpCq can be characterized by the
following universal property:

• The 8-category IndpCq admits small filtered colimits.

• Let D be any 8-category which admits small filtered colimits, and let FunωpIndpCq,Dq
denote the full subcategory of FunpIndpCq,Dq spanned by those functors which preserve
small filtered colimits. Then composition with the Yoneda embedding C Ñ IndpCq
induces an equivalence of 8-categories FunωpIndpCq,Dq Ñ FunpC,Dq.

We can summarize the situation more informally as follows: if D is an 8-category which
admits small filtered colimits, then any functor f : C Ñ D admits an essentially unique
extension to a functor F : IndpCq Ñ D which preserves small filtered colimits. We will refer
to the functor F as the Ind-extension of the functor f .

Example 21.1.2.9. Let f : C Ñ D be any morphism of 8-categories, and let us abuse
notation by identifying C and D with full subcategories of IndpCq and IndpDq, respectively.
Applying Remark 21.1.2.8 to the composite functor C Ñ D ãÑ IndpDq, we deduce that f
admits an essentially unique extension to a functor F : IndpCq Ñ IndpDq which preserves
small filtered colimits. Concretely, the functor F is given by left Kan extension along the
induced map fop : Cop Ñ Dop. In particular, if the functor f is fully faithful, then F is also
fully faithful.

We can now give a characterization of compactly assembled 8-categories:

Theorem 21.1.2.10. Let C be an 8-category. Then C is compactly assembled if and only
if it satisfies the following conditions:

p1q The 8-category C is accessible.

p2q The 8-category C admits small filtered colimits.

p3q Let G : IndpCq Ñ C be the Ind-extension of the identity functor idC. Then G admits a
left adjoint F : C Ñ IndpCq.

Remark 21.1.2.11. Let C be an arbitrary8-category, and let j : C Ñ IndpCq be the Yoneda
embedding. Then C admits small filtered colimits if and only if the functor j : C Ñ IndpCq
admits a left adjoint G. In this case, the functor G coincides with the Ind-extension of the
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identity map id : C Ñ C. Consequently, hypotheses p2q and p3q of Theorem 21.1.2.10 can be
summarized by saying that the functor j admits a left adjoint, which itself admits a further
left adjoint.

Remark 21.1.2.12. In [104], Johnstone and Joyal define a continuous category to be a
category C which satisfies conditions p2q and p3q of Theorem 21.1.2.10 (and then characterize
such categories as those which satisfy an analogue of Definition 21.1.2.1, without a smallness
condition on C0). Consequently, our notion of compactly assembled 8-category (Definition
21.1.2.5) is essentially an 8-categorical analogue of the notion of continuous category (except
that we also require accessibility).

Example 21.1.2.13. Let C0 be a small 8-category and let C “ IndpC0q. Then C obviously
satisfies conditions p1q and p2q of Theorem 21.1.2.10. We claim that it also satisfies condition
p3q: that is, the functor G : IndpCq Ñ C given by the Ind-extension of idC admits a left
adjoint F : C Ñ IndpCq. Concretely, the functor F can be described as the Ind-extension of
the iterated Yoneda embedding J : C0 Ñ IndpC0q Ñ IndpIndpC0qq “ IndpCq. To prove that
this functor has the desired universal property, we must show that there exists a homotopy
equivalence MapIndpCqpF pCq, Xq » MapCpC,GpXqq, depending functorially on C P C and
X P IndpCq. Note that both sides are compatible with filtered colimits in C, so it suffices to
treat construct such an equivalence when C P C is compact. In this case, the the functors
X ÞÑ MapIndpCqpF pCq, Xq and X ÞÑ MapCpC,GpXqq both commute with filtered colimits in
X, so we can also reduce to the case where X is a compact object of IndpCq: that is, it arises
from an object D P C. In this case, both mapping spaces can be identified with MapCpC,Dq.

The proof of Theorem 21.1.2.10 depends on the following:

Lemma 21.1.2.14. Let G : C Ñ D be a functor of 8-categories which is a retract, in the
8-category Funp∆1, Cat8q, of another functor G1 : C1 Ñ D1. If G1 admits a left adjoint and
C is idempotent complete, then G also admits a left adjoint.

Proof. Since G is a retract of G1, we can choose a commutative diagram of 8-categories

C U //

G
��

C1 V //

G1

��

C

G
��

D U 1 // D1 V 1 // D

where the outer rectangle is the identity transformation from G to itself in Funp∆1, Cat8q.
Let F 1 denote a left adjoint to G1, and fix an object D P D. For every object C P C, we have
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canonical maps

MapDpD,GCq Ñ MapD1pU
1DU 1GCq

» MapDpU
1D,G1UCq

» MapD1pF
1U 1D,UCq

Ñ MapCpV F
1U 1D,V UCq

» MapCpV F
1U 1D,Cq

Ñ MapDpGV F
1U 1D,GCq

» MapDpV
1G1F 1U 1D,GCq

Ñ MapDpV
1U 1D,GCq

» MapDpD,GCq.

These maps depend functorially on C, and the composition is homotopic to the identity
(functorially in C). It follows that the functor C ÞÑ MapDpD,GCq is a retract (in the
8-category FunpC,Sq) of the functor corepresented by V F 1U 1D. Our assumption that C is
idempotent complete guarantees that the collection of corepresentable functors is closed
under retracts in FunpC,Sq, and therefore contains the functor C ÞÑ MapDpD,GCq. Using
the criterion of Proposition HTT.5.2.4.2 , we deduce that G has a left adjoint.

Before moving on to the proof of Theorem 21.1.2.10, we note the following easy conse-
quence of Lemma 21.1.2.14:

Corollary 21.1.2.15. Let C be an 8-category which is a retract of another 8-category C1

(that is, there exist functors U : C Ñ C1 and V : C1 Ñ C such that V ˝ U is equivalent to the
identity functor idC). Suppose that C1 admits K-indexed colimits, for some simplicial set K.
If C is idempotent complete, then it also admits K-indexed colimits.

Remark 21.1.2.16. In the statement of Corollary 21.1.2.15, we do not require any com-
patibility of the functors U and V with K-indexed colimits.

Proof of Corollary 21.1.2.15. Note that an 8-category D admits K-indexed colimits if and
only if the diagonal map δD : D Ñ FunpK,Dq has a left adjoint. It will therefore suffice to
show that if δC1 has a left adjoint and C is idempotent complete, then the functor δC also
admits a left adjoint. This is a special case of Lemma 21.1.2.14 (since the functor δC is a
retract of δC1).

Proof of Theorem 21.1.2.10. Suppose first that C is a compactly assembled 8-category.
Then C admits small filtered colimits, and C is accessible by virtue of Remark 21.1.2.2. Let
G : IndpCq Ñ C be the Ind-extension of the identity functor; we wish to show that G admits
a left adjoint. Write C as a retract (in the 8-category yCat

ω

8) of C1 “ IndpC0q, where C0 is
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a small 8-category. Then G is a retract (in the 8-category yCat
ω

8, and therefore also in
yCat8) of the functor G1 : IndpC1q Ñ C1 given by the Ind-extension of the identity functor
idIndpC0q. By virtue of Lemma 21.1.2.14, it will suffice to show that the functor G1 admits a
left adjoint (note that the 8-category IndpCq is automatically idempotent complete, since it
admits small filtered colimits), which was established in Example 21.1.2.13.

Now suppose that C is an 8-category satisfying conditions p1q, p2q, and p3q of Theorem
21.1.2.10; we wish to show that C is compactly assembled. Let G : IndpCq Ñ C be the
Ind-extension of the identity functor idC, and let F : C Ñ IndpCq be a left adjoint to G

(whose existence is guaranteed by assumption p3q). Note that G has a fully faithful right
adjoint (given by the Yoneda embedding j : C Ñ IndpCq), so that the functor F is also fully
faithful. In particular, the composition G ˝ F is equivalent to the identity (via the counit
map idC Ñ G ˝ F ).

If C0 Ď C is an essentially small full subcategory, we will abuse notation by identifying
IndpC0q with its essential image in IndpCq. Note that the union

Ť

C0
IndpC0q contains the

essential image of the Yoneda embedding j : C Ñ IndpCq and is closed under small filtered
colimits, and therefore coincides with IndpCq. Since C is accessible, there exists a small
collection of objects tXαu which generates C under small filtered colimits. Choose an
essentially small full subcategory C0 Ď C for which each F pXαq belongs to the subcategory
IndpC0q Ď IndpCq. Since the functor F commutes with small filtered colimits, it follows
that F factors through a functor F0 : C Ñ IndpC0q. Let G0 “ G|IndpC0q. Then G0 ˝ F0 is
equivalent to the identity functor idC , so that F0 and G0 exhibit C as a retract of IndpC0q in
the 8-category yCat

ω

8.

Corollary 21.1.2.17. Let C be an idempotent complete 8-category. The following conditions
are equivalent:

paq The 8-category C is compactly assembled.

pbq There exists a pair of adjoint functors C
f //D
g
oo where D is an 8-category of the form

IndpD0q for some small 8-category D0, the functor g preserve small filtered colimits,
and the unit map idC Ñ g ˝ f is an equivalence.

Proof. Suppose that paq is satisfied and let G : IndpCq Ñ C be an Ind-extension of the
identity functor idC . Then G admits a left adjoint F : C Ñ IndpCq. The proof of Theorem
21.1.2.10 shows that F factors through IndpC0q for some essentially small subcategory C0 Ď C.

Setting G0 “ G|IndpC0q, we see that the adjunction C
F //IndpC0q
G0
oo satisfies the requirements

of pbq (note that the unit map idC Ñ G0 ˝ F is an equivalence because the functor F is fully
faithful: this is equivalent to the full-faithfulness of the Yoneda embedding j : C Ñ IndpCq,
since both functors are adjoint to G).
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Now suppose we are given an adjunction C
f //D
g
oo satisfying the requirements of pbq.

Then f and g exhibit C as a retract of D. Since C is idempotent-complete, Corollary 21.1.2.15
implies that C admits small filtered colimits. The functor f automatically preserves small
filtered colimits (since it is a left adjoint). Applying Remark 21.1.2.2, we see that C is
accessible, so that f and g exhibit C as a retract of D in the 8-category yCat

ω

8.

Corollary 21.1.2.18. Let C be an 8-category. The following conditions are equivalent:

paq The 8-category C is presentable and compactly assembled.

pbq The 8-category C is presentable. Moreover, in the 8-category PrL of presentable
8-categories, C can be written as the retract of a compactly generated 8-category C1.

pcq The 8-category C is accessible and admits small filtered colimits. Moreover, in the
8-category yCat

ω

8, C can be written as a retract of a compactly generated 8-category C1.

Proof. Assume first that paq is satisfied, and let G : IndpCq Ñ C be an Ind-extension
of the identity functor. Applying Theorem 21.1.2.10, we deduce that G admits a left
adjoint F : C Ñ IndpCq. Moreover, the proof of Theorem 21.1.2.10 shows that F factors
through F0 : C Ñ IndpC0q, for some essentially small full subcategory C0 Ď C. Enlarging
C0 if necessary, we may assume that C0 admits finite colimits. In this case, the functors
F0 : C Ñ IndpC0q and G|IndpC0q exhibit C as a retract of IndpC0q in the 8-category PrL of
presentable 8-categories, so that condition pbq is satisfied.

The implication pbq ñ pcq is obvious. We will complete the proof by showing that
pcq ñ paq. Assume that C1 is a compactly generated 8-category and that C is a retract of C1

in the 8-category yCat
ω

8. Then C is compactly assembled. In particular, it is accessible, and
therefore idempotent complete. To show that it is presentable, it suffices to show that C
admits small colimits. This follows from Corollary 21.1.2.15, since the 8-category C1 admits
small colimits.

Corollary 21.1.2.19. Let C and D be presentable 8-categories, and let CbD denote their
tensor product (in the sense of §HA.4.8.1 ). If C and D are compactly assembled, then CbD
is also compactly assembled.

Proof. By virtue of Corollary 21.1.2.18, we can write C and D as retracts (in the 8-category
PrL) of compactly generated 8-categories C1 and D1. Then CbD is a retract of C1bD1,
and is therefore compactly assembled (since C1bD1 is also compactly generated).

21.1.3 Another Universal Property of FunωpC,Sq

Let C be a compactly assembled 8-category. Our goal in this section is to characterize
FunωpC,Sq by a universal property in the 8-category PrL of presentable 8-categories:
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that is, to classify colimit-preserving functors FunωpC,Sq Ñ X , when X is a presentable
8-category. We begin by treating an easy special case:

Proposition 21.1.3.1. Let C be an 8-category which has the form IndpC0q, for some
small 8-category C. For any presentable 8-category X , there is a canonical equivalence of
8-categories

ρC : FunωpCop,X q » LFunpFunωpC,Sq,X q.

Here FunωpCop,X q denotes the full subcategory of FunpCop,X q spanned by those functors
which preserve small filtered limits.

Proof. Let Cc Ď C be the full subcategory spanned by the compact objects of C. Note that
the Yoneda embedding j : Cop Ñ FunpC,Sq carries Cop

c into FunωpC,Sq. We therefore have
restriction functors

FunωpCop,X q Ñ FunpCop
c ,X q Ð LFunpFunωpC,Sq,X q.

Using Proposition HTT.5.3.5.10 and Theorem HTT.5.1.5.6 , we see that these restriction
functors are equivalences of 8-categories.

Remark 21.1.3.2. In the statement of Proposition 21.1.3.1, we do not need the full strength
of our assumption that X is presentable: it is enough to assume that X admits small colimits
and small filtered limits. The same observation applies to the all of the other results we
prove in this section.

The main result of this section is the following generalization of Proposition 21.1.3.1:

Proposition 21.1.3.3. Let X be a presentable 8-category. For every compactly assembled
8-category C, there exists an equivalence of 8-categories ρC : LFunpFunωpC,Sq,X q »
FunωpCop,X q. Moreover, these equivalences can be chosen to have the following properties:

p1q When C “ IndpC0q for some small 8-category C, the functor ρC agrees with the
equivalence constructed in the proof of Proposition 21.1.3.1.

p2q Suppose we are given compactly assembled 8-categories C and D and a pair of adjoint

functors C
f //D
g
oo where f and g preserve small filtered colimits. Let T0 : FunωpC,Sq Ñ

FunωpD,Sq be the functor given by precomposition with g. Then the diagram of 8-
categories

FunωpCop,X q ρC //

˝fop

��

LFunpFunωpC,Sq,X q

˝T0
��

FunωpDop,X q ρD// LFunpFunωpD,Sq,X q

commutes (up to canonical homotopy).
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Remark 21.1.3.4. In the situation of Proposition 21.1.3.3, the equivalence ρC is character-

ized by properties p1q and p2q. To see this, note that we can choose an adjunction C
f //D
g
oo

where D “ IndpD0q for some small 8-category D0, and the functor f is fully faithful
(Corollary 21.1.2.17). In this case, property p2q guarantees that we have a commutative
diagram

FunωpCop,X q ρC //

˝fop

��

LFunpFunωpC,Sq,X q

˝T0
��

FunωpDop,X q ρD // LFunpFunωpD,Sq,X q

where the vertical maps are fully faithful embeddings. Consequently, the equivalence ρC is
determined by the equivalence ρD, which is determined by property p1q.

The rest of this section is devoted to the proof of Proposition 21.1.3.3. The essen-
tial difficulty that we need to overcome is that the equivalence ρC : FunωpCop,X q »
LFunpFunωpC,Sq,X q of Proposition 21.1.3.1 was constructed using the auxiliary 8-category
FunpCop

c ,X q, and is therefore not obviously functorial in C (with respect to functors that do
not preserve compact objects). Our first goal will be to rephrase the proof of Proposition
21.1.3.1 in a way that does not make explicit reference to compact objects of C (and can
therefore be generalized to situations where C is not generated by compact objects).

Notation 21.1.3.5. Let C be a compactly assembled 8-category. We let FunreppC,Sq
denote the full subcategory of FunpC,Sq spanned by the corepresentable functors (that is,
the essential image of the Yoneda embedding j : Cop Ñ FunpC,Sq). We let Fun`pC,Sq
denote the full subcategory of FunpC,Sq spanned by those functors U : C Ñ S which
belong either to FunreppC,Sq or FunωpC,Sq, and let Fun˝pC,Sq denote the intersection
FunreppC,Sq X FunωpC,Sq. Note that Fun˝pC,Sq is the full subcategory spanned by those
functors U : C Ñ S which are corepresented by compact objects of C, and is therefore
equivalent to the 8-category Cop

c . Beware that, in general, the 8-category Fun˝pC,Sq may
be empty.

Remark 21.1.3.6 (Functoriality). Suppose we are given a pair of adjoint functors C
f //D
g
oo ,

where C and D are compactly assembled and the functors f and g preserve small filtered
colimits. Then precomposition with g induces a functor FunpC,Sq Ñ FunpD,Sq, which
carries FunωpC,Sq into FunωpD,Sq (since the functor g preserves small filtered colimits)
and FunreppC,Sq into FunreppD,Sq (since the functor g admits a left adjoint). We therefore
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obtain a functor T : Fun`pC,Sq Ñ Fun`pD,Sq. Note that the diagram of 8-categories

Cop //

fop

��

Fun`pC,Sq

T
��

Dop // Fun`pD,Sq

commutes up to canonical homotopy (here the horizontal maps are given by the Yoneda
embeddings of C and D, respectively).

Lemma 21.1.3.7. Let C0 be a small 8-category, let C “ IndpC0q, and let Fun˝pC,Sq be the
full subcategory of FunpC,Sq spanned by those functors which are corepresentable by compact
objects of C. Then:

piq For every object V P FunωpC,Sq, the inclusion functor

Fun˝pC,Sq ˆFun`pC,Sq Fun`pC,Sq{V ãÑ FunreppC,Sq ˆFun`pC,Sq Fun`pC,Sq{V

is left cofinal.

piiq For every object U P FunreppC,Sq, the inclusion functor

Fun˝pC,Sq ˆFun`pC,Sq Fun`pC,SqU{ ãÑ FunωpC,Sq ˆFun`pC,Sq Fun`pC,SqU{

is right cofinal.

Proof. By virtue of Proposition HTT.4.1.3.1 , assertions piq and piiq are both equivalent to
the following:

piiiq Suppose we are given a morphism α : U Ñ V in Fun`pC,Sq, where U P FunreppC,Sq
and V P FunωpC,Sq. Let E be the full subcategory of Fun`pC,SqU{ {V spanned by
those objects whose image in Fun`pC,Sq belongs to Fun˝pC,Sq. Then E is weakly
contractible.

Choose an object C P C which corepresents the functor U , so that α is classified by a point
η P V pCq. Using Proposition HTT.?? , we see that the weak homotopy type of E can be
computed as a colimit lim

ÝÑC0ÑC
pV pC0q ˆV pCq tηuq, where the colimit is taken over the full

subcategory of C{C spanned by those maps C0 Ñ C where C0 is compact. The desired
result now follows from our assumption that the functor V commutes with small filtered
colimits.

Lemma 21.1.3.8. Let C0 be a small 8-category, let C “ IndpC0q, and define Fun˝pC,Sq
as in Lemma 21.1.3.7. Suppose we are given a functor F : Fun`pC,Sq Ñ X , where the
8-category X admits small colimits. The following conditions are equivalent:
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paq The functor F is a left Kan extension of its restriction F |FunreppC,Sq.

pbq The functor F |FunωpC,Sq is a left Kan extension of its restriction F |Fun˝pC,Sq.

pcq The functor F |FunωpC,Sq preserves small colimits.

Moreover, every functor F0 : FunreppC,Sq Ñ X admits a left Kan extension F : Fun`pC,Sq.

Proof. The equivalence of paq and pbq follows from Lemma 21.1.3.7, and the equivalence of
pbq and pcq follows from Lemma HTT.5.1.5.5 (since the inclusion Fun˝pC,Sq ãÑ FunωpC,Sq
is equivalent to the Yoneda embedding Cop

c ãÑ PpCop
c q, where Cc Ď C is the full subcategory

spanned by the compact objects). To prove the final assertion, it will suffice (by virtue of
Lemma 21.1.3.7) to show that every functor Fun˝pC,Sq Ñ X admits a left Kan extension to
FunωpC,Sq, which also follows from Lemma HTT.5.1.5.5 .

Lemma 21.1.3.9. Let C0 be a small 8-category, let C “ IndpC0q, and define Fun˝pC,Sq
as in Lemma 21.1.3.7. Suppose we are given a functor F : Fun`pC,Sq Ñ X , where the
8-category X admits small filtered limits. The following conditions are equivalent:

paq The functor F is a right Kan extension of its restriction F |FunωpC,Sq.

pbq The functor F |FunreppC,Sq is a right Kan extension of its restriction to F |Fun˝pC,Sq.

pcq The functor F |FunreppC,Sq preserves small filtered limits.

Moreover, every functor F0 : FunωpC,Sq Ñ X admits a right Kan extension F : Fun`pC,Sq Ñ
X .

Proof. The equivalence of paq and pbq follows from Lemma 21.1.3.7, and the equivalence of pbq
and pcq follows from Lemma HTT.5.3.5.8 (since the inclusion Fun˝pC,Sq ãÑ FunreppC,Sq is
equivalent to the opposite of the inclusion Cc ãÑ IndpCcq » C). To prove the final assertion, it
will suffice (by virtue of Lemma 21.1.3.7) to show that every functor Fun˝pC,Sq Ñ X admits
a right Kan extension to FunreppC,Sq, which also follows from Lemma HTT.5.3.5.8 .

Lemma 21.1.3.10. Suppose we are given an adjunction C
f //D
g
oo , where C and D are

compactly assembled 8-categories, and let T : Fun`pC,Sq Ñ Fun`pD,Sq be as in Remark
21.1.3.6. Suppose we are given a functor F : Fun`pD,Sq Ñ X , where X is a presentable
8-category. Then:

piq If F is a left Kan extension of F |FunreppD,Sq, then F ˝ T is a left Kan extension of
pF ˝ T q|FunreppC,Sq.

piiq If the functor F |FunreppD,Sq commutes with small filtered limits, then pF ˝ T q|FunreppC,Sq
commutes with small filtered limits.
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piiiq If F is a right Kan extension of F |FunωpD,Sq, then F ˝ T is a right Kan extension of
pF ˝ T q|FunωpC,Sq.

pivq If the functor F |FunωpD,Sq commutes with small colimits, then the functor pF˝T q|FunreppC,Sq
commutes with small colimits.

Proof. Assertion piiq follows from the observation that the functor fop preserves small filtered
limits. Similarly, assertion pivq follows from the observation that the functor T |FunωpC,Sq Ñ

FunωpD,Sq preserves small colimits (since colimits can be computed pointwise on both
sides). We will prove piq; the proof of piiiq is similar. Assume that F : Fun`pD,Sq Ñ X
is a left Kan extension of F |FunreppD,Sq, and fix an object V P Fun`pC,Sq. We will show
that F ˝ T is a left Kan extension of pF ˝ T q|FunreppC,Sq at V . Without loss of generality we
may assume that V P FunωpC,Sq (otherwise the result is trivial); we wish to show that the
canonical map ρ : lim

ÝÑUPFunreppC,Sq{V
pF ˝ T qpUq Ñ pF ˝ T qpV q is an equivalence. Since F is a

left Kan extension F |FunreppD,Sq at T pV q, we can identify the codomain of ρ with the colimit
lim
ÝÑV 1PFunreppD,Sq{T pV q

F pV 1q. It will therefore suffice to show that the functor T induces a left
cofinal map

FunreppC,Sq{V Ñ FunreppD,Sq{T pV q.

In fact, this functor admits a left adjoint (induced by the functor gop).

Lemma 21.1.3.11. . Let C be a compactly assembled 8-category and let X be a presentable
8-category. Then:

paq Let F0 : FunreppC,Sq Ñ X be any functor. Then F0 admits a left Kan extension
F : Fun`pC,Sq Ñ X , and the restriction F |FunωpC,Sq : FunωpC,Sq Ñ X preserves small
colimits. Moreover, if F0 preserves small filtered limits, then F is a right Kan extension
of F |FunωpC,Sq.

pbq Let F1 : FunωpC,Sq Ñ X be any functor. Then F1 admits a right Kan extension
F : Fun`pC,Sq Ñ X , and the restriction F |FunreppC,Sq : FunreppC,Sq Ñ X preserves
small filtered limits. Moreover, if F1 preserves small colimits, then F is a left Kan
extension of F |FunreppC,Sq.

Proof. We will prove paq; the proof of pbq is similar. Since C is compactly assembled, the
canonical map IndpCq Ñ C admits a left adjoint f . Applying Corollary 21.1.2.17, we can

choose an adjunction C
f //D
g
oo where D “ IndpD0q for some small 8-category D0, the

functors f and g preserve small filtered colimits, and f is fully faithful. Let F 0 denote the
composition

FunreppD,Sq » Dop gop
ÝÝÑ Cop » FunreppC,Sq
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so that F0 » F 0˝T , where T : Fun`pC,Sq Ñ Fun`pD,Sq is the functor given by composition
with g. Applying Lemma 21.1.3.8, we deduce that F 0 admits a left Kan extension F :
Fun`pD,Sq Ñ X , where F |FunωpD,Sq preserves small colimits. Set F “ F ˝T . It follows from
Lemma 21.1.3.10 that F is a left Kan extension of F |FunreppC,Sq » F0, and that F |FunωpC,Sq
preserves small colimits. If the functor F0 preserves small filtered limits, then the functor
F 0 has the same property, so that F is a right Kan extension of its restriction F |FunωpD,Sq
(Lemma 21.1.3.9). Applying Lemma 21.1.3.10, we deduce that F is a right Kan extension of
its restriction to FunωpC,Sq.

Lemma 21.1.3.12. Let C be a compactly assembled 8-category, let X be a presentable
8-category, and let F : Fun`pC,Sq Ñ X be a functor. The following conditions are
equivalent:

paq The functor F |FunreppC,Sq preserves small filtered limits, and F is a left Kan extension
of F |FunreppC,Sq.

pbq The functor F |FunωpC,Sq preserves small colimits, and F is a right Kan extension of
F |FunomegapC,Sq.

Proof. Apply Lemma ??.

Notation 21.1.3.13. Let X be a presentable8-category and let C be a compactly assembled
8-category. We let MrC,X s denote the full subcategory of FunpFun`pC,Sq,X q spanned by
those functors F : Fun`pC,Sq Ñ X which satisfy the equivalent conditions paq and pbq of
Lemma 21.1.3.12.

Remark 21.1.3.14. Let X be a presentable 8-category and let C be a compactly assembled
8-category. We have evident restriction maps

FunωpFunreppC,Sq,X q ÐMrC,X s Ñ LFunpFunωpC,Sq,X q.

It follows from Lemma 21.1.3.11 and Proposition HTT.4.3.2.15 that these maps are trivial
Kan fibrations.

Remark 21.1.3.15. Let X be a presentable 8-category and let C be an 8-category of the
form IndpC0q, where C0 is a small 8-category. Then we have a commutative diagram of
restriction functors

MrC,X s //

��

FunωpFunreppC,Sq,X q //

��

FunωpCop,X q

��
LFunpFunωpC,Sq,X q // FunpFun˝pC,Sq,X q // FunpCop

c ,X q.
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where the maps in the left square are trivial Kan fibrations and the right horizontal
maps are equivalences (given by composition with the equivalences Cop » FunreppC,Sq and
Cop
c » Fun˝pC,Sq). Unwinding the definition, we see that the equivalence ρC : FunωpCop,X q »

LFunpFunωpC,Sq,X q appearing in the proof of Proposition 21.1.3.1 can be written as a
composition of the right vertical map with a homotopy inverse of the bottom composition.
Using the commutativity of the diagram, we see that ρC can also be identified with the
composition

FunωpCop,X q „
ÐÝ FunωpFunreppC,Sq,X q „

ÐÝMrC,X s „ÝÑ LFunpFunωpC,Sq,X q.

Proof of Proposition 21.1.3.3. For any compactly assembled 8-category C and presentable
8-category X , define ρC : FunωpCop,X q Ñ LFunpFunωpC,Sq,X q to be a composition of the
restriction mapMrC,X s Ñ LFunpFunωpC,Sq,X q with a homotopy inverse to the restriction
map MrC,X s Ñ FunωpCop,X q. It follows from Proposition ?? that ρC is a well-defined
equivalence of 8-categories. By virtue of Remark 21.1.3.15, it agrees with the equivalence
constructed in the proof of Proposition 21.1.3.1 in the case where C has the form IndpC0q,
for some small 8-category C0. If D is another compactly assembled 8-category and we

are given an adjunction C
f //D
g
oo , where f and g preserve small filtered colimits, then the

compatibility of ρC and ρD follows from the commutativity of the diagram of restriction
functors

FunωpFunreppD,Sq,X q

��

MrD,X soo //

��

LFunpFunωpD,Sq,X q

��
FunωpFunreppC,Sq,X q MrC,X soo // LFunpFunωpC,Sq,X q,

where the vertical maps are given by composition with the functor T of Remark 21.1.3.6.

Remark 21.1.3.16 (Wavy Arrows). Let C be a compactly assembled 8-category, let
X “ FunωpC,Sq, and let

ρC : FunωpCop,X q Ñ LFunpFunωpC,Sq,X q

be the equivalence of Proposition 21.1.3.3. Then ρ´1
C carries the identity functor idX to

an object of FunωpCop,X q Ď FunpCop,FunpC,Sqq, which we can identify with a bifunctor
W : Copˆ C Ñ S. Unwinding the definitions, we see that W classifies the functor F :
C Ñ IndpCq Ď FunpCop,Sq which is left adjoint to the tautological map IndpCq Ñ C. More
concretely, the functor W is given by the formula W pC,Dq “ MapIndpCqpC,F pDqq (where we
abuse notation by identifying an object C P C with its image under the Yoneda embedding
C Ñ IndpCq Ď FunpCop,Sq). Following Johnstone-Joyal, we refer to W pC,Dq as the space
of wavy arrows from C to D.
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Example 21.1.3.17. Let C0 be a small 8-category and let C “ IndpC0q, and let D be an
object of C which is represented by a filtered diagram tDαu in the 8-category C0. Unwinding
the definitions, we see that for any C P C, the space of wavy arrows W pC,Dq can be
identified with the direct limit lim

ÝÑα
MapCpC,Dαq. In particular, there is a tautological map

W pC,Dq Ñ MapCpC,Dq, which is an equivalence when C is a compact object of C. More
generally, it is useful to think of W pC,Dq as a space of “compactly supported” morphisms
from C to D (beware, however, that the natural map W pC,Dq Ñ MapCpC,Dq need not be
the inclusion of a summand).

21.1.4 Existence of Classifying 8-Topoi

Let C be an accessible 8-category which admits small filtered colimits. In §21.1.1, we
prove that the 8-category FunωpC,Sq is an 8-topos (Proposition 21.1.1.2) and described
the functor corepresented by FunωpC,Sq on the 8-category 8T op. Our goal in this section
is to show that, under the assumption that C is compactly assembled, we can also describe
the functor represented by FunωpC,Sq. Note that, for any 8-topos X , we can regard the
8-category Fun˚pFunωpC,Sq,X q of geometric morphisms from X to FunωpC,Sq as a full
subcategory of the 8-category LFunpFunωpC,Sq,X q of all colimit-preserving functors from
FunωpC,Sq to X . Consequently, Proposition 21.1.3.3 supplies a fully faithful embedding

φ : Fun˚pFunωpC,Sq,X q Ñ FunωpCop,X q.

The essential image of this embedding can be described as follows:

Proposition 21.1.4.1. Let C be a compactly assembled 8-category, let X be an 8-topos,
and let U : Cop Ñ X be a functor which preserves small filtered limits. The following
conditions are equivalent:

p1q The functor U belongs to the essential image of the fully faithful embedding φ :
Fun˚pFunωpC,Sq,X q Ñ FunωpCop,X q described above.

p2q For every sufficiently large regular cardinal κ, the functor U |Cop
κ

: Cop
κ Ñ X is locally

left exact (see Definition 20.4.2.1); here Cκ denotes the full subcategory of C spanned
by the κ-compact objects.

Proof. Let G : IndpCq Ñ C be the Ind-extension of the identity functor idC : C Ñ C. Applying
Theorem 21.1.2.10, we deduce that G admits a left adjoint F : C Ñ IndpCq. Moreover,
the proof of Theorem ?? shows that F factors through a functor F0 : C Ñ IndpCκq for κ
sufficiently large. Let V : FunωpC,Sq Ñ X be the image of U under the equivalence ρC of
Proposition 21.1.3.3. We will complete the proof by showing that V is left exact if and only
if U |Cop

κ
is locally left exact.
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Let G0 “ G|IndpCκq, so that we have an adjunction C
F0 //IndpCκq
G0
oo . Set U “ U ˝G0, so

that U » U ˝ F0. Let V : FunωpIndpCκq,Sq Ñ X be the image of U under the equivalence
ρIndpCκq of Proposition 21.1.3.1. By construction, V can be identified with the (essentially
unique) colimit-preserving functor FunpCκ,Sq Ñ X whose composition with the Yoneda
embedding Cop

κ ãÑ FunpCκ,Sq coincides with the restriction U |Cop
κ

. Consequently, the functor
V is left exact if and only if U |Cop

κ
is locally left exact. Moreover, the compatibility of

Proposition 21.1.3.3 shows that V is given by the composition

FunωpIndpCκq,Sq
T0
ÝÑ FunωpC,Sq V

ÝÑ X ,

where T0 is given by precomposition with G0. Since T0 exhibits FunωpC,Sq as a left exact
localization of the 8-topos FunωpIndpCκq,Sq, we see that V is left exact if and only if V is
left exact.

Corollary 21.1.4.2. Let C be a compactly assembled presentable 8-category and let X
be an 8-topos. Then a functor F : Cop Ñ X belongs to the essential image of φ :
Fun˚pFunωpC,Sq,X q Ñ FunωpCop,X q if and only if F preserves small limits.

Proof. Suppose first that F preserves small limits. For any regular cardinal κ, the full
subcategory Cκ Ď C spanned by the κ-compact objects is closed under finite colimits.
Consequently, the functor F |Cop

κ
is left exact, and therefore locally left exact (Corollary

20.4.3.2). Applying Proposition 21.1.4.1, we deduce that F belongs to the essential image
of φ. Conversely, if F belongs to the essential image of ρ, then Proposition 21.1.4.1 and
Corollary 20.4.3.2 guarantee that F is left exact when restricted to Cκ for all sufficiently
large κ, and is therefore left exact. Since F also preserves small filtered limits, it preserves
all small limits (Proposition ??).

For every pair of presentable 8-categories C and D, let RFunpDop, Cq denote the
full subcategory of FunpDop, Cq spanned by those functors which preserve small limits.
Then RFunpDop, Cq is a model for the tensor product CbD of §HA.4.8.1 (see Proposi-
tion HA.4.8.1.17 ). In particular, the 8-categories RFunpDop, Cq and RFunpCop,Dq are
canonically equivalent to one another. More concretely, we have canonical equivalences

RFunpDop, Cq » RFunpDop,RFunpCop,Sqq » RFunpCop,RFunpDop,Sqq » RFunpCop,Dq.

Specializing to the case where D “ X is an 8-topos, we obtain an equivalence ShvCpX q “
RFunpX op, Cq » RFunpCop,X q. Consequently, Corollary 21.1.4.2 supplies an equivalence
of 8-categories Fun˚pFunωpC,Sq,X q » ShvCpX q. In fact, we have the following stronger
result:
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Theorem 21.1.4.3. Let C be a compactly assembled presentable 8-category. Then the 8-
category FunωpC,Sq is a classifying 8-topos for C-valued sheaves, in the sense of Definition
21.1.0.1.

To deduce Theorem 21.1.4.3, Proposition 21.1.3.3 alone is not sufficient: we will need to
understand the 8-category LFunpFunωpC,Sq,X q as a functor of X . Here we encounter a
subtlety: for a fixed 8-category C, the construction X ÞÑ LFunpFunωpC,Sq,X q is a priori
functorial with respect to colimit-preserving functors between presentable 8-categories,
while the construction X ÞÑ FunωpCop,X q is a priori functorial with respect to functors that
preserve (filtered) inverse limits. To address this discrepancy, we need a brief digression.

Notation 21.1.4.4. Let U : X Ñ Y be a functor of 8-categories. We say that U is a
presentable fibration if U is both a Cartesian fibration and a coCartesian fibration, and the
fiber X Y “ U´1tY u is presentable for each object Y P Y.

Let U : X Ñ Y be a presentable fibration and let C be some other 8-category. We let
FunpC,X {Yq denote the fiber product

FunpC,X q ˆFunpC,Yq Y,

so that we have a projection map FunpC,X {Yq Ñ Y whose fiber over an object Y can be
identified with the 8-category FunpC,X Y q. In particular, the objects of FunpC,X {Yq can
be identified with pairs pY, F q, where Y is an object of Y and F : C Ñ X Y is a functor.

If the 8-category C admits small colimits, we let LFunpC,X {Yq denote the full subcate-
gory of FunpC,X {Yq spanned by those objects pY, F q for which the functor F : C Ñ X Y
preserves small colimits. Similarly, if the 8-category C admits small filtered limits, we let
FunωpC,X {Yq denote the full subcategory of FunpC,X {Yq spanned by those objects pY, F q
for which the functor F : C Ñ X Y preserves small filtered limits.

Remark 21.1.4.5. Let U : X Ñ Y be a presentable fibration of 8-categories. Then:

paq Let PrL denote the 8-category whose objects are presentable 8-categories and whose
morphisms are functors which preserve small colimits. Then, as a coCartesian fibration,
U is classified by a functor χ : Y Ñ PrL, given on objects by χpY q “ X Y . If C is an
8-category which admits small colimits, then the projection map LFunpC,X {Yq Ñ
Y is also a coCartesian fibration, classified by the functor Y ÞÑ LFunpC, χpY qq “
LFunpC,X Y q.

pbq Let PrR denote the 8-category whose objects are presentable 8-categories and whose
morphisms are functors which are accessible and preserve small limits. Then, as a
Cartesian fibration, U is classified by a functor χ1 : Yop Ñ PrR, given on objects
by χ1pY q “ X Y . If C is an 8-category which admits small filtered limits, then the
projection map FunωpC,X {Yq Ñ Y is also a Cartesian fibration, classified by the
functor Y ÞÑ FunωpC, χpY qq “ LFunωpC,X Y q.
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We can now formulate a more refined version of Proposition 21.1.3.3:

Theorem 21.1.4.6. Let C be compactly assembled 8-category and let U : X Ñ Y be a
presentable fibration. Then there exists an equivalence of 8-categories

FunωpCop,X {Yq » LFunpFunωpC,Sq,X {Yq

which is compatible with the projection to Y.

Remark 21.1.4.7. Let U0 : PrL Ñ PrL be a coCartesian fibration which is classified by
the inclusion functor PrL ãÑyCat8 (so that the objects of PrL can be identified with pairs
pC, Cq, where C is a presentable 8-category and C is an object of C). Then U0 is a universal
presentable fibration: every presentable fibration U : X Ñ Y fits into an essentially unique
(homotopy) pullback diagram

X

U

��

// PrL

U0
��

Y // PrL,

where the lower vertical map classifies U as a coCartesian fibration. Consequently, to prove
Theorem 21.1.4.6 for an arbitrary presentable fibration U , it suffices to treat the case U “ U0.
Moreover, we can then arrange that the equivalence whose existence is asserted by Theorem
21.1.4.6 is compatible with base change in Y.

Remark 21.1.4.8. In the situation of Theorem 21.1.4.6, it follows that the projection map
LFunpFunωpC,Sq,X {Yq Ñ Y is a Cartesian fibration (which can also be deduced easily
from the adjoint functor theorem) and that the projection map FunωpCop,X {Yq Ñ Y is a
coCartesian fibration (which is somewhat less obvious).

Proof of Theorem 21.1.4.6. Let MrC,X {Ys denote the full subcategory of the 8-category
FunpFun`pC,Sq,X {Yq whose objects are pairs pY, F q where Y P Y and F : Fun`pC,Sq Ñ
X Y is a functor which belongs to MrC,X Y s (see the proof of Proposition 21.1.3.3). Compo-
sition with the Yoneda embedding j : Cop Ñ Fun`pC,Sq and the inclusion FunωpC,Sq ãÑ

Fun`pC,Sq determine forgetful functors

FunωpCop,X {Yq φ
ÐÝMrC,X {Ys ψ

ÝÑ LFunpFunωpC,Sq,X {Yq

which are compatible with the projection to Y . To prove Theorem 21.1.4.6, it will suffice to
show that φ and ψ are equivalences of 8-categories.

We will show that ψ is an equivalence; the proof for φ is similar. LetM denote the full sub-
category of FunpFun`pC,Sq,X {Yq spanned by those pairs pY, F q, where F : Fun`pC,Sq Ñ
X Y is a right Kan extension of its restriction to FunωpC,Sq. Let q : FunpFun`pC,Sq,X {Yq Ñ



1602 CHAPTER 21. STRUCTURE SHEAVES

Y and p : FunpFunωpC,Sq,X {Yq Ñ Y denote the the projection maps, and set q “ q|M.
Note that if α : M Ñ M 1 is a q-Cartesian morphism in FunpFun`pC,Sq,X {Yq where
M 1 PM, then M also belongs to M; it follows that α can be regarded as a q-Cartesian
morphism in the 8-category M. The map ψ fits into a pullback diagram

MrC,X {Ys

��

ψ // LFunpFunωpC,Sq,X {Yq

��
M ψ // FunpFunωpC,Sq,X {Yq,

where ψ carries q-Cartesian morphisms of the 8-category M to p-Cartesian morphisms of
the 8-category FunpFunωpC,Sq,X {Yq. Consequently, to prove that ψ is an equivalence of
8-categories, it will suffice to show that ψ is an equivalence of 8-categories. By virtue of
Corollary HTT.2.4.4.4 , it suffices to check that ψ induces an equivalence after passing to
the fiber over any object Y P Y. In this case, the desired result follows from Proposition
HTT.4.3.2.15 and Lemma ??.

Proof of Theorem 21.1.4.3. Let 8T op denote the 8-category of 8-topoi. Recall that we
have defined 8T op to be the opposite of the subcategory of yCat8 whose objects are 8-topoi
and whose morphisms are functors which preserve small colimits and finite limits. In
particular, the inclusion map 8T opop ãÑyCat8 classifies a coCartesian fibration 8T opop

Ñ

8T opop, which is a presentable fibration in the sense of Notation 21.1.4.4. Set E “ FunωpC,Sq
and let Fun˚pE , {8T op

op
{8T opopq be the full subcategory of FunpE , {8T op

op
{8T opopq

whose objects are pairs pX , f˚q where X is an 8-topos and f˚ P Fun˚pE ,X q. Similarly, let
RFunpCop, {8T op

op
{8T opopq be the full subcategory FunpCop, {8T op

op
{8T opopq spanned

by those pairs pX , F q where X is an 8-topos and F P RFunpCop,X q. Then the projection
maps Fun˚pE , {8T op

op
{8T opopq Ñ 8T opop and RFunpCop, {8T op

op
{8T opopq Ñ 8T opop

are coCartesian fibrations which are classified by the functors X ÞÑ Fun˚pE ,X q and X ÞÑ
ShvCpX q, respectively. Using Theorem 21.1.4.6 and Corollary 21.1.4.2, we deduce that the
functors X ÞÑ Fun˚pE ,X q and X ÞÑ ShvCpX q are equivalent.

We can now give a definitive answer to Question 21.1.0.2:

Corollary 21.1.4.9. Let C be a presentable 8-category. The following conditions are
equivalent:

p1q The 8-category C is compactly assembled.

p2q There exists a classifying topos for C-valued sheaves.

Proof. The implication p1q ñ p2q follows from Theorem 21.1.4.3. For the converse, suppose
that C is a presentable 8-category and that there exists a universal C-valued sheaf F P
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ShvCpEq for some 8-topos E . Without loss of generality, we may assume that E is an
accessible left exact localization of an 8-topos of presheaves PpGq, for some small 8-
category G. Let ι˚ : E ãÑ PpGq be the inclusion functor, so that ι˚ induces a fully faithful
embedding ιC˚ : ShvCpEq Ñ ShvCpPpGqq with a left adjoint ι˚C : ShvCpPpGqq Ñ ShvCpEq
Then ιC˚F is a C-valued sheaf on the presheaf 8-topos PpGq, so we can write ιC˚F » f˚C F

for some essentially unique geometric morphism f˚ : PpGq Ñ E . Since the functor ιC˚ is fully
faithful, we have equivalences F » ι˚Cι

C
˚F » ι˚Cf

˚
C F . Invoking again our assumption that

F is universal, we deduce that the composition ι˚ ˝ f˚ is equivalent to the identity functor
from E to itself. In other words, ι˚ and f˚ exhibit E as a retract (in the 8-category 8T op
of 8-topoi) of the presheaf 8-category PpGq. Applying the functor Pt of Corollary 21.1.1.6,
we conclude that C “ PtpEq is a retract of IndpGopq » PtpPpGqq in the 8-category yCat

ω

8, so
that C is compactly assembled.

21.1.5 Points of FunωpC,Sq

Let C be an accessible 8-category which admits small filtered colimits. Then the 8-topos
FunωpC,Sq is closed under small colimits and finite limits in the larger 8-category FunpC,Sq.
It follows that, for each object C P C, the evaluation functor

evC : FunωpC,Sq Ñ S evCpF q “ F pCq

preserves small colimits and finite limits: that is, it is a point of the 8-topos FunωpC,Sq.
We regard the construction C ÞÑ evC as a functor of 8-categories ev : C Ñ PtpFunωpC,Sqq.

Proposition 21.1.5.1. Let C be a compactly assembled 8-category. Then the functor
ev : C Ñ PtpFunωpC,Sqq is an equivalence of 8-categories.

Proof. Let us denote the evaluation functor ev by evC to emphasize its dependence on C.
We observe that the construction C ÞÑ evC determines a functor yCat

ω

8 Ñ Funp∆1,yCat
ω

8q. It
follows that if C is a retract of D in the 8-category yCat

ω

8 and the functor eD is an equivalence,
then eC is also an equivalence. It will therefore suffice to show that the functor eC is an
equivalence in the special case where C “ IndpC0q for some small 8-category C0. In this
case, the 8-topos FunωpC,Sq can be identified with the 8-category of presheaves PpCop

0 q,
so the desired result follows from Proposition ??.

Corollary 21.1.5.2. Let C and D be accessible 8-categories which admit small filtered
colimits. If D is compactly assembled, then the canonical map

F : FunωpC,Dq Ñ Fun˚pFunωpD,Sq,FunωpC,Sqq

is an equivalence of 8-categories.
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Proof. The functor F fits into a commutative diagram

FunωpC,Dq

))

F // Fun˚pFunωpD,Sq,FunωpC,Sqq

ss
FunωpC,PtpFunωpD,Sqqq

where the left vertical map is an equivalence by Proposition 21.1.5.1 and the right vertical
map is an isomorphism of simplicial sets (see Corollary 21.1.1.6).

Corollary 21.1.5.3. Let yCat
ca
8 denote the subcategory of yCat8 whose objects are compactly

assembled 8-categories and whose morphisms are functors which preserve small filtered
colimits. Then the construction C ÞÑ FunωpC,Sq determines a fully faithful embedding
yCat

ca
8 ãÑ8T op, whose essential image consists of those 8-topoi which can be written as a

retract of a presheaf 8-category PpGq, for some small 8-category G.

Proof. The first assertion follows from Corollary 21.1.5.2. For the second, we observe that
yCat

ca
8 is the idempotent completion of the full subcategory spanned by objects of the form

IndpC0q, and that the construction C ÞÑ FunωpC,Sq carries IndpC0q to PpCop
0 q.

If we restrict our attention to presentable compactly assembled 8-categories, we can say
more.

Proposition 21.1.5.4. Let E be an 8-topos. The following conditions are equivalent:

p1q There exists a presentable compactly assembled 8-category C and an equivalence
E » FunωpC,Sq.

p2q For every geometric morphism of8-topoi f˚ : X Ñ Y, the induced map Fun˚pE ,X q f˚˝
ÝÝÑ

Fun˚pE ,Yq admits a right adjoint G. Moreover, if the direct image functor f˚ : Y Ñ X
is fully faithful, then so is G.

p3q Let f˚ : X Ñ Y be a geometric morphism of 8-topoi for which the direct image
functor f˚ : Y Ñ X is fully faithful. Then the functor Fun˚pE ,X q f˚˝

ÝÝÑ Fun˚pE ,Yq is
essentially surjective. In other words, every lifting problem of the form

X

��
Y

f˚

??

// E

admits a solution in the 8-category 8T op.
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p4q Let f˚ : E Ñ X be a geometric morphism of 8-topoi which is fully faithful (at the
level of underlying 8-categories). Then f˚ admits a left homotopy inverse (in the
8-category 8T op).

Remark 21.1.5.5. Johnstone defines a topos E to be injective if it satisfies the 1-categorical
analogue of condition p3q; see [103] and [104].

Proof of Proposition 21.1.5.4. Suppose first that p1q is satisfied. Then E is a classifying
8-topos for C-valued sheaves (Theorem 21.1.4.3). In particular, we have equivalences
Fun˚pE ,X q » ShvCpX q, depending functorially on the 8-topos X . We now observe that
if f˚ : X Ñ Y is a geometric morphism of 8-topoi, then the associated pullback functor
f˚C : ShvCpX q Ñ ShvCpYq is defined as the left adjoint of a direct image functor fC

˚ :
ShvCpYq Ñ ShvCpX q, which is given by precomposition with f˚. If the usual direct image
functor f˚ : Y Ñ X is fully faithful, then f˚ is a localization functor, so the functor fC

˚ is also
fully faithful. That completes the proof that p1q ñ p2q. The implications p2q ñ p3q ñ p4q
are immediate. We will conclude by showing that p4q ñ p1q. Let E be an 8-topos satisfying
p4q, and write E as an accessible left exact localization of PpGq, where G is a small 8-category
which admits finite limits. Applying condition p4q, we deduce that E is a retract of PpGq in
the 8-category 8T op. Applying the criterion of Corollary 21.1.5.3, we deduce that there
is an equivalence E » FunωpC,Sq for some compactly assembled 8-category C. We will
complete the proof by showing that C is presentable. Using Proposition 21.1.5.1, we can
identify C with the 8-category PtpEq of points of E . We now observe that PtpEq is a retract
of PtpPpGqq » IndpGopq. Since G admits finite limits, the 8-category IndpGopq is compactly
generated, so that C “ PtpEq is presentable by virtue of Corollary 21.1.2.18.

21.1.6 Application: Exponentiability of 8-Topoi

Let X and Y be topological spaces, and let HomT oppX,Y q denote the set of continuous
maps from X to Y . It is often convenient to equip the set HomT oppX,Y q with the structure
of a topological space. Particularly useful is the compact-open topology, which has a subbasis
consisting of open sets having the form

tf P HomT oppX,Y q : fpKq Ď Uu

where K is a compact subset of X and U is an open subset of Y . In good cases, this is
characterized by a universal mapping property.

Proposition 21.1.6.1. Let X, Y , and Z be topological spaces, and assume that X is a
locally compact Hausdorff space. Then there is a canonical bijection

tContinuous functions F : Z Ñ HomT oppX,Y qu » tContinuous functions f : Z ˆX Ñ Y u,

which carries a function F to the function f given by the formula fpz, xq “ F pzqpxq.
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Proofs of Proposition 21.1.6.1 can be found in standard texts on point-set topology; see
for example [159] (we will sketch a very indirect proof in Remark 21.1.7.7, at least for the
special case where Y is sober). In this section, we will study an analogous construction in an
8-categorical setting, replacing the category T op of topological spaces with the 8-category
8T op of 8-topoi. Our goal is to answer the following:

Question 21.1.6.2. Let X and Y be 8-topoi. Under what circumstances can the collection
of geometric morphisms f˚ : X Ñ Y be identified with the points of another 8-topos YX ?

Let us begin by making Question 21.1.6.2 more precise.

Notation 21.1.6.3. Let 8T op denote the 8-category of 8-topoi. Then 8T op admits
finite products (Proposition HTT.6.3.4.6 ). Beware that if X and Y are 8-topoi, then the
product of X and Y in 8T op is not given by the usual Cartesian product of 8-categories
X ˆY (instead, X ˆY is the coproduct of X with Y in 8T op). To avoid confusion, we
will denote the product of X and Y in 8T op by X bY. Note that we can identify X bY
with the tensor product of X with Y in the 8-category PrL of presentable 8-categories
(with respect to the symmetric monoidal structure described in §HA.4.8.1 ; see Example
HA.4.8.1.19 ). Less symmetrically, the product X bY can be identified with the 8-category
ShvX pYq of X -valued sheaves on Y, or with the 8-category ShvYpX q of Y-valued sheaves
on X .

Definition 21.1.6.4. Let X , Y , and E be 8-topoi. We will say that a geometric morphism
e˚ : E bX Ñ Y exhibits E as an exponential of Y by X if the following universal property is
satisfied: for any 8-topos Z, composition with e˚ induces a homotopy equivalence

Map8T oppZ, Eq Ñ Map8T oppZ ˆX ,Yq.

Remark 21.1.6.5. Let X and Y be 8-topoi. It follows immediately from the definitions
that if there exists a geometric morphism e˚ : E bX Ñ Y which exhibits E as an exponential
of Y by X , then the 8-topos E and the geometric morphism e˚ are determined uniquely up
to equivalence and depend functorially on both X and Y. We will indicate this dependence
by writing E “ YX . Beware that YX is not the same as the functor 8-category FunpX ,Yq.

Remark 21.1.6.6. Let X be an 8-topos, and let C denote the full subcategory of 8T op
spanned by those 8-topoi Y for which there exists an exponential YX . Then C is closed
under small limits. Moreover, the construction Y ÞÑ YX determines a functor C Ñ8T op
which preserves small limits.

Remark 21.1.6.7. Let X , Y, and E be 8-topoi, let e˚ : E bX Ñ Y be a geometric
morphism, and let e˚ : Y Ñ E bX be left adjoint of e˚. For any 8-topos Z, composition
with e˚ induces a functor θZ : Fun˚pE ,Zq Ñ Fun˚pY,Z bX q. Unwinding the definitions,
we see that e˚ exhibits E as an exponential of X by Y if and only if the following condition
is satisfied, for any 8-topos Z:
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paZq The functor θZ induces a homotopy equivalence of Kan complexes Fun˚pE ,Zq» Ñ
Fun˚pY,Z bX q»

However, it is not difficult to see that e˚ exhibits E as an exponential of X by Y if and only
if the following a priori stronger condition is satisfied, for any 8-topos Z:

pbZq The functor θZ is an equivalence of 8-categories.

The implication pbZq ñ paZq is immediate. Conversely, pbZq can be deduced from paZq and
paFunp∆1,Zqq.

Remark 21.1.6.8. Let X and Y be 8-topoi, and suppose that there exists an exponential
YX . Then points of the 8-topos YX can be identified with geometric morphisms from X to
Y . More precisely, applying Remark 21.1.6.7 in the case Z “ S, we obtain an equivalence of
8-categories PtpYX q » Fun˚pX ,Yq.

Example 21.1.6.9. Let C be a compactly assembled presentable 8-category and let Y “
FunωpC,Sq be a classifying 8-topos for C-valued sheaves (see Theorem 21.1.4.3). For any
8-topoi X and Z, we have canonical equivalences

Fun˚pY,X bZq » ShvCpX bZq
» CbpX bZq
» pCbX q b Z
» ShvCbX pZq.

It follows that an exponential YX (if it exists) can be identified with a classifying 8-topos
for pCbX q-valued sheaves. In particular, the exponential YX exists if and only if the tensor
product CbX » ShvCpX q is compactly assembled. In this case, we can identify YX with
the 8-topos FunωpCbX ,Sq.

Example 21.1.6.10. Let X be any 8-topos, and let Y “ FunωpS,Sq be the classifying
8-topos for S-valued sheaves. Applying Example 21.1.6.9 in the special case C “ S, we
deduce that an exponential YX exists if and only if the 8-topos X is compactly assembed.
If this condition is satisfied, then the exponential YX can be identified with the 8-topos
FunωpX ,Sq which classifies X -valued sheaves.

Definition 21.1.6.11. Let X be an 8-topos. We will say that X is exponentiable if, for
any 8-topos Y , there exists an 8-topos E and a geometric morphism e˚ : E bX Ñ Y which
exhibits E as an exponential of Y by X .

In other words, an 8-topos X is exponentiable if the exponential YX exists for any
8-topos Y. We can now formulate Question 21.1.6.2 more precisely: which 8-topoi are
exponentiable?
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Theorem 21.1.6.12. Let X be an 8-topos. The following conditions are equivalent:

p1q The 8-topos X is exponentiable (Definition 21.1.6.11).

p2q There exists an exponential YX , where Y “ FunωpS,Sq is the classifying topos for
S-valued sheaves.

p3q There exists a classifying 8-topos for X -valued sheaves (Definition 21.1.0.1).

p4q The 8-category X is compactly assembled (Definition 21.1.2.1).

Example 21.1.6.13. Let X “ PpGq be the 8-topos of presheaves on a small 8-category
G. Then X is exponentiable (since it is compactly generated, and therefore compactly
assembled).

Example 21.1.6.14. Let C be a compactly assembled 8-category and let X “ FunωpC,Sq
be the 8-topos of Proposition 21.1.1.2. Then X is exponentiable (since it is a retract of a
presheaf 8-topos; see Corollary 21.1.5.3).

Example 21.1.6.15. Let C be a compactly assembled presentable 8-category and let X be
a classifying 8-topos for C-valued sheaves. Then X is exponentiable (by virtue of Theorem
21.1.4.3, this is a special case of Example 21.1.6.14).

The proof of Theorem 21.1.6.12 will make use of the following simple observation:

Lemma 21.1.6.16. Let Y be an arbitrary 8-topos. Then there exists a pullback diagram

Y //

��

Y0

��
Y1 // Y01

in the 8-category 8T op, where Y0, Y1, and Y01 are 8-topoi of presheaves on small 8-
categories which admit finite limits.

Proof. By virtue of Proposition HTT.6.1.5.3 , we can assume that Y is an accessible left
exact localization of PpCq, where C is a small 8-category which admits finite limits. Then
we can write Y “ S´1 PpCq, where S is some small collection of morphisms in PpCq
(Proposition HTT.5.5.4.2 ). Let D Ď PpCq be an essentially small full subcategory which
contains the domain and codomain of every morphism in S. Let L : PpCq Ñ PpCq be
the localization functor whose essential image is Y and let ι : D ãÑ PpCq be the inclusion
functor. Then the tautological natural transformation ι Ñ L ˝ ι determines a left exact
functor f : Dˆ∆1 Ñ PpCq. Applying Proposition HTT.6.1.5.2 , we see that f admits an
essentially unique extension to a left exact functor F ˚ : PpDˆ∆1q Ñ PpCq which preserves
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small colimits. Let F˚ be the right adjoint of F ˚, and let G˚ : PpDq Ñ PpDˆ∆1q be the
functor given by precomposition with the projection map Dˆ∆1 Ñ D. It is now easy to
verify that the inclusion Y ãÑ PpCq extends to a pullback diagram

Y //

��

PpCq

F˚
��

PpDq G˚ // PpDˆ∆1q

in the 8-category 8T op.

Proof of Theorem 21.1.6.12. The implication p1q ñ p2q is obvious, the equivalence p2q ñ p3q
follows from Example 21.1.6.10, and the equivalence p3q ñ p4q follows from Corollary
21.1.4.9. We will complete the proof by showing that p4q ñ p1q. Assume that X is compactly
assembled; we wish to show that the exponential YX exists for every 8-topos Y. Using
Remark 21.1.6.6 and Lemma 21.1.6.16, we can reduce to the case where Y has the form
PpGq, where G is a small 8-category which admits finite limits. In particular, we can assume
that Y » FunωpC,Sq is a classifying 8-topos of C-valued sheaves, where C “ IndpGopq is an
8-category which is presentable and compactly assembled. In this case, Example 21.1.6.9
shows that the 8-topos FunωpCbX ,Sq has the desired universal property.

21.1.7 Example: Locally Compact Topological Spaces

We now relate Theorem 21.1.6.12 to classical point-set topology.

Proposition 21.1.7.1. Let X be a locally compact Hausdorff space. Then the 8-topos
ShvpXq is exponentiable.

Remark 21.1.7.2. Let X be a locally compact Hausdorff space. By virtue of Theorem
21.1.6.12, Proposition 21.1.7.1 is equivalent to the assertion that the 8-category ShvpXq
is compactly assembled. Beware that ShvpXq is usually not compactly generated. For
example, if X “ R, then the 8-category ShvpXq does not contain any non-initial compact
objects (note that if F P ShvpXq is compact, then τď´1 F can be identified with a compact
object in the category of open subsets of R: that is, a compact open subset of R).

Proof of Proposition 21.1.7.1. Let G : IndpShvpXqq Ñ ShvpXq be the Ind-extension of the
identity functor idShvpXq; to show that ShvpXq is compactly assembled, it will suffice to
show that G admits admits a left adjoint (Theorem 21.1.2.10). Let us say that an object
F P ShvpXq is good if the functor MapShvpXqpF , Gp‚qq is corepresentable by an object of
IndpShvpXqq. We wish to show that every object of ShvpXq is good.

For each open set U Ď X, let hU P ShvpXq denote the sheaf represented by U (given

by the formula hU pV q “
#

˚ if V Ď U

H if V Ę U
). Note that the 8-category ShvpXq is generated
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under small colimits by objects of the form hU . Since the 8-category IndpShvpXqq admits
small colimits, the collection of good objects of ShvpXq is closed under small colimits.
Consequently, to complete the proof of Proposition 21.1.7.1, it will suffice to show that each
of the sheaves hU is good.

For open sets U, V Ď X, we write V Ť U if V is contained in a compact subset of U . For
fixed U , the collection of open sets V satisfying V Ť U is filtered by inclusion. We let hŤU
denote the Ind-object of ShvpXq given by the filtered diagram thV uVŤU . We will complete
the proof by showing that hŤU P IndpShvpXqq corepresents the functor MapShvpXqphU , Gp‚qq.
More precisely, we will show that for any filtered diagram tFαu in the 8-category ShvpXq,
the canonical map

θ : plim
ÝÑ
α

FαqpUq “ MapShvpXqphU , GptFαuqq Ñ MapIndpShvpXqqphŤU , tFαuq » lim
ÐÝ
VŤU

lim
ÝÑ
α

FαpV q

is a homotopy equivalence.
For each compact set K Ď X and each sheaf F P ShvpXq, let F pKq denote the direct

limit lim
ÝÑV

F pV q, where V ranges over all open neighborhoods of K. Using a cofinality
argument, we can rewrite the codomain of θ as a limit lim

ÐÝKĎU
lim
ÝÑα

FαpKq, so that θ factors
as a composition

plim
ÝÑ
α

FαqpUq
θ1
ÝÑ lim

ÐÝ
KĎU

plim
ÝÑ
α

FαqpKq
θ2
ÝÑ lim

ÐÝ
KĎU

lim
ÝÑ
α

pFαpKqq.

It now follows from Theorem HTT.7.3.4.9 that the map θ1 is a homotopy equivalence, and
from Corollary HTT.7.3.4.11 that the map θ2 is a homotopy equivalence.

Proposition 21.1.7.1 asserts that, if X is a locally compact Hausdorff space and Y is an
arbitrary 8-topos, then there exists an exponential YShvpXq in the 8-category of 8-topoi. In
particular, if Y is another topological space, then we can form the exponential ShvpY qShvpXq.
We now study the relationship of this exponential with the compact-open topology on the
mapping space HomT oppX,Y q.

Lemma 21.1.7.3. Let X and Y be 8-topoi for which the exponential YX exists, and let
n ě 0 be an integer. If Y is n-localic, then YX is n-localic.

Proof. Let f˚ : Z Ñ Z 1 be a geometric morphism of 8-topoi which induces an equivalence
τďn´1Z Ñ τďn´1Z 1; we wish to show that the induced map

θ : Map8T oppZ,YX q Ñ Map8T oppZ 1,YX q

is a homotopy equivalence. Invoking the definition of the exponential YX , we can identify θ
with the induced map

Map8T oppZ bX ,Yq Ñ Map8T oppZ 1bX ,Yq.
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To show that this map is a homotopy equivalence, it will suffice to show that f˚ induces an
equivalence τďn´1pZ bX q Ñ τďn´1pZ 1bX q. This is clear, since both sides can be identified
with pτďn´1 Sq b Z bX » pτďn´1 Sq b Z 1bX .

For any 8-topos X , let |Y | denote the associated topological space (Definition 1.5.4.3).
.

Proposition 21.1.7.4. Let Y be a 0-localic 8-topos, and let X be a locally compact Haus-
dorff space. Then:

p1q The exponential YShvpXq exists.

p2q The 8-topos YShvpXq is 0-localic.

p3q The underlying topological space |YShvpXq | can be identified with the mapping space
HomT oppX, |Y |q, equipped with the compact-open topology.

Proof. Assertion p1q follows from Proposition 21.1.7.1 and assertion p2q from Lemma 21.1.7.3.
To prove p3q, we observe that for any topological space Z, we have canonical maps

HomT oppZ, |YShvpXq |q
„
ÐÝ Map8T oppShvpZq,YShvpXqq

» Map8T oppShvpZq b ShvpXq,Yq
„
ÝÑ Map8T oppShvpZ ˆXq,Yq
„
ÝÑ HomT oppZ ˆX, |Y |q;

here the first map is an equivalence by p2q, the second by the universal property of the expo-
nential, the third by virtue of Proposition HTT.7.3.1.11 (which uses the local compactness
of X), and the fourth by our assumption that Y is 0-localic. Composing these maps, we
obtain bijections

HomT oppZ, |YShvpXq |q » HomT oppZ ˆX, |Y |q

depending functorially on Z. Applying Proposition 21.1.6.1, we deduce that |YShvpXq | is
homeomorphic to the mapping space HomT oppX, |Y |q (with its compact-open topology).

Corollary 21.1.7.5. Let X be a locally compact Hausdorff space and let Y be a sober topo-
logical space. Then there is a canonical homeomorphism HomT oppX,Y q » |ShvpY qShvpXq|

(where the left hand side is equipped with the compact-open topology).

Warning 21.1.7.6. In the situation of Corollary 21.1.7.5, the homeomorphism HomT oppX,Y q »

|ShvpY qShvpXq| determines a geometric morphism of 8-topoi

e˚ : ShvpHomT oppX,Y qq Ñ ShvpY qShvpXq.
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Beware that this geometric morphism is generally not an equivalence. The 8-topos
ShvpY qShvpXq is 0-localic, but the underlying locale generally does not have enough points.
For example, if X consists of two points, then e˚ can be identified with the canonical map
ShvpY ˆ Y q Ñ ShvpY q b ShvpY q, which need not be an equivalence without additional
assumptions on Y .

Remark 21.1.7.7. In the proof of Proposition 21.1.7.4, we constructed a homeomorphism
|YShvpXq | » HomT oppX, |Y |q by appealing to the universal property of the compact-open
topology (Proposition 21.1.6.1). However, this is not necessary. Specializing the bijection
HomT oppZ, |YShvpXq |q » HomT oppZ ˆX, |Y |q to the case where Z is a point, we see that
there is an isomorphism of sets

β : HomT oppX, |Y |q » |YShvpXq |,

which carries a continuous function f : X Ñ |Y | to the point of |YShvpXq | determined
by the associated geometric morphism f˚ : ShvpXq Ñ Y. There is a unique topology on
HomT oppX, |Y |q for which the map β is a homeomorphism: namely, one declares that a set
U Ď HomT oppX, |Y |q is open if and only if there exists a p´1q-truncated object V P YShvpXq

such that pf P Uq ô pf˚ factors through pYShvpXqq{V q. By unwinding the proofs of Theorem
21.1.6.12 and Proposition 21.1.7.4, one can show directly that this topology coincides with
the compact-open topology. The argument of Proposition 21.1.7.4 then provides a bijection

HomT oppZ,HomT oppX, |Y |qq » HomT oppZ ˆX, |Y |q

for every topological space Z. Specializing to the case Y “ ShvpY q for a sober topological
space Y , we obtain another proof of Proposition 21.1.6.1 (at least for the special case where
the target space Y is sober).

We close this section by mentioning a variant of Proposition 21.1.7.1:

Proposition 21.1.7.8. Let X be a coherent topological space. Then the 8-topos ShvpXq
is exponentiable.

Proof. For each open subset U Ď X, let hU P ShvpXq denote the sheaf represented by U . It
follows from Corollary HTT.7.3.5.4 that if U Ď X is quasi-compact, then the construction
F ÞÑ F pUq determines a functor ShvpXq Ñ S which commutes with filtered colimits. This
functor is corepresented by hU , so that hU is a compact object of ShvpXq. Since the sheaves
hU (where U is quasi-compact) generate the 8-category ShvpXq under colimits, we deduce
that ShvpXq is compact generated. Applying Theorem 21.1.6.12, we conclude that ShvpXq
is an exponentiable 8-topos.
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21.2 G-Objects

Let X be a topological space and suppose that we wish to study sheaves on X taking
values in some category C. Let us suppose that the objects of C can be understood as
“sets with extra structure” (such as abelian groups or commutative rings), so that C is
equipped with a forgetful functor T : C Ñ Set. If the functor T preserves inverse limits,
then every C-valued sheaf O on X determines a Set-valued sheaf OT on X, given by the
formula OT pUq “ T pOpUqq. In practice, we often abuse notation by identifying O with OT ,
implicitly remembering that the set-valued sheaf OT is equipped with “extra structure” from
its origin as a C-valued sheaf. For example, if C is the category of groups (and T : C Ñ Set
is the usual forgetful functor), then OT can be regarded as an group object of the topos
ShvSetpXq: that is, it is equipped with a multiplication map m : OT ˆOT Ñ OT , an
inversion map i : OT Ñ OT , and a unit map e : 1X Ñ OT (here 1X denotes a final object of
the topos ShvSetpXq) which satisfy the usual group axioms, which are encoded by requiring
the commutativity of the diagrams

OT ˆ1X
idˆe //

„

$$

OT ˆOT

m

zz

1X ˆ OT

„

$$

eˆid // OT ˆOT

m

zz
OT OT

OT idˆi //

��

OT ˆOT

m
��

OT iˆid //

��

OT ˆOT

m
��

1 e // OT 1 e // OT

OT ˆOT ˆOTmˆid //

idˆm
��

OT ˆOT

m
��

OT ˆOT m // OT .

In the setting of spectral algebraic geometry (and several of its variants), we need to
consider sheaves on a topological space X (or some variant thereof) which take values in
an 8-category C, rather than an ordinary category. In practice, the 8-category C can
usually be viewed as “spaces with extra structure,” meaning that it is equipped with a
well-behaved forgetful functor T : C Ñ S (for example, C might be the 8-category CAlgcn

of connective E8-rings, and T the 0th space functor Ω8 : CAlgcn Ñ S). In this case, we
can again associate to any C-valued sheaf O a S-valued sheaf OT , given by the formula
OT pUq “ T pOpUqq. However, it becomes more difficult to describe the “extra structure”
inherited by OT . In the higher categorical setting, one must stipulate the existence witness
to the commutativity of every diagram; these witnesses then satisfy higher-order coherence
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conditions which are prohibitively difficult to articulate directly. We therefore adopt an
alternate approach, where we consider a family of forgetful functors tT : C Ñ SuTPG indexed
by another 8-category G; the “extra structure” will then be encoded by the functorial
dependence of the sheaf OT on the object T P G.

Definition 21.2.0.1. Let G be an essentially small 8-category and let X be an 8-topos.
A G-object of X is a functor G Ñ X which is locally left exact (see Definition 20.4.2.1). We
let ObjGpX q denote the full subcategory of FunpG,X q spanned by the G-objects of X .

Remark 21.2.0.2. The 8-category ObjGpX q was already studied in Chapter 20, where it
was denoted by FunllexpG,X q (Definition 20.4.2.1). The shift in notation reflects a slightly
different perspective: in this chapter, we wish to emphasize the heuristic that an object of
ObjGpX q should be viewed as an “object” of X equipped with extra structure.

Notation 21.2.0.3. In the situation of Definition 21.2.0.1, we will typically use the letter
O to denote G-objects of X , and we will write OT to denote the value of O on an object
T P G.

We will be primarily interested in the special case of Definition 21.2.0.1 where the 8-
category G admits finite limits. In this case, a G-object of X is simply a functor O : G Ñ X
which preserves finite limits (see Corollary 20.4.3.2). In §21.2.2, we will show that if G
admits finite limits, then the datum of a G-object is equivalent to the datum of a C-valued
sheaf, where C “ IndpGopq (Proposition 21.2.2.1). This is a consequence of the following pair
of assertions:

paq The presheaf8-category PpGq “ FunpGop,Sq is a classifying8-topos for C “ IndpGopq-
valued sheaves (see Proposition ??).

pbq The presheaf 8-category PpGq “ FunpGop,Sq is a classifying 8-topos for G-objects.

Here assertion paq depends on the fact that the 8-category G admits finite limits, but
assertion pbq does not. Consequently, the theory of G-objects offers a bit more flexibility than
the theory of C-valued sheaves: we give a concrete illustration of this point in §21.2.3. Note
that not every 8-topos arises as a classifying topos in the sense of paq or pbq (the 8-topoi
that classify C-valued sheaves are rather special, even without the assumption that C is
compactly generated: see Proposition 21.1.5.4). A general 8-topos E need not be equivalent
to an 8-category of presheaves PpGq. However, every 8-topos E can be realized as an
(accessible) left exact localization of an 8-category of the form PpGq. In this case, for any
8-topos X , one has a fully faithful embedding Fun˚pE ,X q » Fun˚pPpGq,X q » ObjGpX q,
whose essential image can be viewed as the collection of G-objects of X which are in some
sense “local” with respect to the chosen realization of E . In §21.2.1, we make this heuristic
more precise by introducing the notion of a τ -local G-object, where τ is a Grothendieck
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topology on G, and showing that the τ -local G-object are classified by the 8-topos Shvτ pGq
(Proposition 21.2.1.13).

In §21.2.5, we specialize to the setting of algebraic geometry. When G “ Aff is the
category of affine schemes of finite type over Z, then the notion of local G-object recovers
the notion of local commutative ring object when G is equipped with the Zariski topology of
Example 20.6.4.1, and the notion of a strictly Henselian commutative ring object when G
is equipped with the étale topology of Example ?? (see Theorem 21.2.5.1). Replacing Aff
by a suitable 8-categorical analogue (see Examples 20.6.4.4 and ??), we obtain a similar
description of the theory of local and strictly Henselian CAlg-valued sheaves (Theorem
21.2.5.3). Moreover, we show that the notions of local morphism between CAlg♥-valued and
CAlg-valued sheaves can be recovered as a special case of the more general notion of local
morphism of G-object which is determined by a choice of admissibility structure Gad Ď G,
which we study in §21.2.4 (see Definition 21.2.4.1).

21.2.1 Local G-Objects and Classifying 8-Topoi

We begin by introducing a slight elaboration on Definition 21.2.0.1.

Definition 21.2.1.1. Let G be an essentially small8-category equipped with a Grothendieck
topology τ and let X be an 8-topos. We will say that a G-object O : G Ñ X is τ -local if it
satisfies the following condition:

p˚q For every collection of morphisms tTα Ñ T u in G which generate a τ -covering of the
object T , the induced map >OTα Ñ OT is an effective epimorphism in the 8-topos X .

We let ObjτGpX q denote the full subcategory of FunpG,X q spanned by the τ -local G-objects
of X .

Example 21.2.1.2. In the situation of Definition 21.2.1.1, suppose that the Grothendieck
topology τ is trivial: that is, a collection of morphisms tuα : Tα Ñ T u generates a τ -covering
if and only if some uα admits a section. Then every G-object is τ -local: that is, we have
ObjτGpX q “ ObjGpX q for any 8-topos X .

Variant 21.2.1.3. If X is a topological space, then we let ObjτGpXq denote the 8-category
ObjτGpShvpXqq of G-objects of the 8-topos ShvpXq. In the case where the topology τ is
trivial, we denote this 8-category simply by ObjGpXq.

Example 21.2.1.4. Let X be a topological space, let UpXq denote the partially ordered
set of open subsets of X, and let G be an essentially small 8-category which admits finite
limits. Then ObjGpXq can be identified with the full subcategory of FunpGˆUpXqop,Sq
spanned by those functors

O : GˆUpXqop Ñ S pT,Uq ÞÑ OT pUq
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satisfying the following pair of requirements:

paq For every fixed object T P G, the functor U ÞÑ OT pUq is a S-valued sheaf on X.

pbq For each fixed open set U Ď X, the functor T ÞÑ OT pUq preserves finite limits.

If G is equipped with a Grothendieck topology τ , then we can identify ObjτGpXq with the full
subcategory of ObjGpXq spanned by those functors which satisfy the following additional
requirement:

pcq For every τ -covering tTα Ñ T u in G and every point s P OT pUq, there exists an open
covering tUβu of U such that each s|Uβ P OT pUβq can be lifted to a point of OTαpUβq,
for some index α (which might depend on β).

Remark 21.2.1.5. Let G and X be as in Example 21.2.1.4. In practice, we will take G
to be some relatively concrete class of “test objects” (such as affine schemes of finite type
over Z). If O is an object of the 8-category ObjτGpXq, then it is useful to think of OT pUq

as a parameter space for “regular functions from U to T .” Conditions paq, pbq, and pcq of
Example 21.2.1.4 encode natural expectations for how such a theory of “regular function”
should behave.

Construction 21.2.1.6 (Pullbacks of G-Objects). Let G be an essentially small 8-category
equipped with a Grothendieck topology τ and suppose we are given a geometric morphism
of 8-topoi π˚ : X Ñ Y. It follows immediately from the definitions that composition with
π˚ determines a functor ObjτGpX q Ñ ObjτGpYq, which we will refer to as the pullback functor.
We will denote this functor either by π˚G (when we need to emphasize its dependence on G or
distinguish it from the usual pullback functor π˚) or simply by π˚ (when its meaning is clear
on context). Concretely, we have pπ˚G OqT “ π˚pOT q for each O P ObjτGpX q and each T P G.

Notation 21.2.1.7. In the situation of Construction 21.2.1.6, suppose we are given a
G-object O P ObjτGpX q and an object U P X . We let O |U denote the pullback of O along the
étale geometric morphism X {U Ñ X . More concretely, we can describe O |U as the functor
from G to X {U given by the formula pO |U qT “ OT ˆU .

Remark 21.2.1.8 (Pushforwards of G-Objects). In the situation of Construction 21.2.1.6,
suppose that G admits finite limits and that the Grothendieck topology τ is trivial. In
this case, we can identify ObjτGpX q and ObjτGpYq with the 8-categories FunlexpG,X q and
FunlexpG,Yq of left exact functors from G to the 8-topoi X and Y, respectively. It follows
that composition with the direct image functor π˚ : Y Ñ X determines functor ObjτGpYq Ñ
ObjτGpX q. We will denote this functor either by πG

˚ (when we wish to distinguish it from the
pushforward functor π˚ : Y Ñ X ) by simply by π˚ (when there is no danger of confusion).
Concretely, it is given by the formula pπG

˚ OqT “ π˚pO
T q for each O P ObjτGpX q and each

T P G. Note that the functor πG
˚ is right adjoint to the pullback functor π˚G : ObjτGpX q Ñ

ObjτGpYq of Construction 21.2.1.6.
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Warning 21.2.1.9. The hypotheses of Remark 21.2.1.8 are necessary. If we drop either the
assumption that G admits finite limits or that the Grothendieck topology τ is trivial, then
the pullback functor π˚G : ObjτGpX q Ñ ObjτGpYq need not admit a right adjoint.

We now have the following variant of Definition 21.1.0.1:

Definition 21.2.1.10. Let G be an essentially small8-category equipped with a Grothendieck
topology τ . Suppose that E is an 8-topos and that O P ObjτGpEq is a τ -local G-object of E .
We will say that O is universal if, for every 8-topos X , the construction f˚ ÞÑ f˚O induces
an equivalence of 8-categories

Fun˚pE ,X q Ñ ObjτGpX q.

In this case, we will say that O exhibits E as a classifying topos for τ -local G-objects.

It follows immediately from the definitions that, if there exists a classifying 8-topos
E for τ -local G-objects, then E is determined uniquely up to equivalence. We now prove
existence by an explicit construction.

Definition 21.2.1.11. Let G be an essentially small8-category equipped with a Grothendieck
topology τ . We define the sheafified Yoneda embedding h : G Ñ Shvτ pGq to be the composi-
tion

G j
ÝÑ FunpGop,Sq L

ÝÑ Shvτ pGq,

where j is the Yoneda embedding for G and L is a left adjoint to the inclusion Shvτ pGq ãÑ

FunpGop,Sq (that is, L is the sheafification functor associated to τ).

Warning 21.2.1.12. The terminology of Definition 21.2.1.11 is potentially misleading: the
sheafified Yoneda embedding h : G Ñ Shvτ pGq need not be fully faithful (it is fully faithful
if and only if the topology τ is subcanonical: that is, if and only if the functor j takes values
in Shvτ pGq).

Proposition 21.2.1.13. Let G be an essentially small8-category equipped with a Grothendieck
topology τ . Then the sheafified Yoneda embedding h : G Ñ Shvτ pGq is a universal τ -local
G-object of the 8-topos Shvτ pGq. In particular, Shvτ pGq is a classifying 8-topos for τ -local
G-objects.

Proof. Let X be an arbitrary 8-topos; we wish to show that composition with the composite
functor

G j
ÝÑ FunpGop,Sq L

ÝÑ Shvτ pGq

induces an equivalence of 8-categories Fun˚pShvτ pGq,X q Ñ ObjτGpX q. When τ is the trivial
topology, this follows from the universal property of the presheaf 8-category FunpGop,Sq
(see Theorem HTT.5.1.5.6 ) together with the definition of local left exactness. The general
case then follows from universal property of Shvτ pGq given in Lemma HTT.6.2.3.20 .
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21.2.2 Comparison with C-Valued Sheaves

We now show that, if C is a compactly generated 8-category, then the theory of C-valued
sheaves (in the sense of Definition 1.3.1.4) is equivalent to the theory of G-objects (in the
sense of Definition 21.2.0.1), where G “ Cop

c is the opposite of the 8-category of compact
objects of C. More generally, we have the following:

Proposition 21.2.2.1. Let X be an 8-topos and let G be an essentially small 8-category
which admits finite limits. Then there is a canonical equivalence of 8-categories ρ :
ShvIndpGopqpX q Ñ ObjGpX q.

Proof. Set C “ IndpGopq, so that composition with the Yoneda embedding Gop ãÑ C induces
an equivalence of 8-categories FunωpC,Sq » FunpGop,Sq. It follows that the 8-topos
E “ FunpGop,Sq is a classifying 8-topos for both C-valued sheaves (Theorem 21.1.4.3) and
for G-objects (Proposition 21.2.1.13). In particular, for any 8-topos X , we have equivalences
ObjGpX q » Fun˚pE ,X q » ShvCpX q.

Remark 21.2.2.2. The equivalence ρ of Proposition 21.2.2.1 is characterized informally by
the formula

MapX pX, pρF qT q “ MapIndpGopqpT,F pXqq

for X P X and T P G (here we abuse notation by identifying T with its image in IndpGopq).

Variant 21.2.2.3. Let G be an essentially small 8-category which admits finite limits and
let X be a topological space. Combining Propositions 21.2.2.1 and 1.3.1.7, we obtain an
equivalence of 8-categories ObjGpXq » ShvIndpGopqpXq.

Remark 21.2.2.4 (Functoriality). Suppose we are given a geometric morphism of 8-topoi

X
π˚ //Y .
π˚
oo

Then:

• For every 8-category C, there is a direct image functor πC
˚ : ShvCpYq Ñ ShvCpX q,

given on objects by the formula pπC
˚ F qpXq “ F pπ˚Xq. In general, the functor πC

˚

does not admit a left adjoint.

• For every essentially small 8-category G equipped with a Grothendieck topology τ ,
there is a pullback functor π˚G : ObjτGpX q Ñ ObjτGpYq, given on objects by the formula
pπ˚G OqT “ π˚pOT q (Construction 21.2.1.6). In general, the functor π˚G does not admit
a right adjoint.
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In the special case where G admits finite limits and the Grothendieck topology τ is trivial,
then the functor π˚G does admit a right adjoint πG

˚ , given by pointwise composition with π˚
(Remark 21.2.1.8). In this case, Proposition 21.2.2.1 supplies equivalences

ρX : ShvCpX q » ObjGpX q ρY : ShvCpYq » ObjGpYq,

where C denotes the compactly generated 8-category IndpGopq. In this case, the direct
image functor πC

˚ admits a left adjoint π˚C (Proposition ??). The diagram of 8-categories

ShvCpX q
ρX //

π˚C
��

ObjGpX q

π˚G
��

ShvCpYq
ρY // ObjGpYq

commutes by construction. Passing to adjoints, we deduce that the diagram of 8-categories

ShvCpYq
ρY //

πC
˚

��

ObjGpYq

πG
˚

��
ShvCpX q

ρX // ObjGpX q

also commutes (this also follows from the concrete description of ρX and ρY supplied in
Remark 21.2.2.2).

The rest of this section is devoted to giving a second proof of Proposition 21.2.2.1, which
avoids appealing to the theory of classifying 8-topoi (and yields some information even in
the case where G does not admit finite limits).

Notation 21.2.2.5. Recall that a functor f : C Ñ D between 8-categories is said to be left
exact if, for every object D P D, the 8-category pCˆD DD{qop is filtered (see Proposition
HTT.5.3.2.5 ). We let FunlexpC,Dq denote the full subcategory of FunpC,Dq spanned by the
left exact functors. According to Proposition HTT.5.3.2.9 , if C admits finite limits, then a
functor f : C Ñ D is left exact if and only if it preserves finite limits.

Proposition 21.2.2.6. Let X be an 8-topos, let G be an essentially small 8-category, and
set C “ IndpGopq. Then there is an equivalence of 8-categories ρ : ShvCpX q Ñ FunlexpG,X q,
characterized by the formula

MapX pX, ρpF qpT qq “ MapCpT,F pXqq

for X P X and T P G (here again we abuse notation by identifying T with its image in C).

Corollary 21.2.2.7. Let X be an 8-topos, let G be an essentially small 8-category, and
set C “ IndpGopq. Then the functor ρ of Proposition 21.2.2.6 determines a fully faithful
embedding ShvCpX q ãÑ ObjGpX q.
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Remark 21.2.2.8. In the situation of Corollary 21.2.2.7, if the 8-category G admits finite
limits, then fully faithful embedding ShvCpX q ãÑ ObjGpX q coincides with the equivalence of
Proposition 21.2.2.1 (this is a reformulation of Remark 21.2.2.2).

The proof of Proposition 21.2.2.6 is essentially formal. Let us begin by reviewing some
notation.

Notation 21.2.2.9. Let C and D be 8-categories. We let LFunpC,Dq denote the full
subcategory of FunpC,Dq spanned by those functors which admit right adjoints, and
RFunpC,Dq Ď FunpC,Dq the full subcategory spanned by those functors which admit left
adjoints. By virtue of Proposition HTT.5.2.6.2 , the formation of adjoint functors supplies
an equivalence of 8-categories RFunpC,Dq » LFunpD, Cqop.

Remark 21.2.2.10. Let C and D be 8-categories. Using the evident isomorphism

RFunpCop,Dq » LFunpC,Dopqop,

we can formulate the equivalence of Notation 21.2.2.9 in the following more symmetric form:

RFunpCop,Dq » RFunpDop, Cq.

Remark 21.2.2.11. Let C be a locally small 8-category, and let D be a presentable 8-
category. Using Corollary HTT.5.5.2.9 and Remark HTT.5.5.2.10 , we see that a functor
Dop Ñ C admits a left adjoint if and only if it preserves small limits. In particular, if X
is an 8-topos, we have ShvCpX q “ RFunpX op, Cq (see Definition 1.3.1.4), and therefore an
equivalence ShvCpX q » LFunpC,X opqop » RFunpCop,X q.

Proposition 21.2.2.12. Let G be an essentially small 8-category, let X be a presentable
8-category, and let j : G Ñ PropGq denote the Yoneda embedding. Let G : PropGq Ñ X be a
functor which preserves filtered limits. The following conditions are equivalent:

p1q The functor G admits a left adjoint F .

p2q The composite functor g “ G ˝ j is left exact.

Proof. Let us regard PropGq as a full subcategory of FunpG,Sqop “ PpGopqop. Using Theorem
HTT.5.1.5.6 , we can assume without loss of generality that g factors as a composition

G j
Ñ PpGopqop G

Ñ X ,

where G is a functor which preserves small limits and j is the Yoneda embedding. Using
Corollary HTT.5.5.2.9 and Remark HTT.5.5.2.10 , we deduce that G admits a left adjoint F .
Unwinding the definitions, we see that F carries an object X P X to a functor F pXq : G Ñ S
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which classifies the left fibration X {X ˆX G Ñ G. It follows that condition p1q is equivalent
to the requirement that F takes values in the full subcategory PropGq Ď PpGopqop, in which
case we can identify F with a functor F : X Ñ PropGq which is left adjoint to G. Conversely,
suppose that G admits a left adjoint F . Then the unit map u : idX Ñ G ˝ F “ G ˝ F

induces a natural transformation α : F Ñ F . To prove p1q, it will suffice to show that α is
an equivalence. Let X P X be an object; we wish to show that α induces an equivalence
αX : FX Ñ FX. Equivalently, we must show that for each object C P FunpG,Sqop, the
induced map

θ : MapGpFX,Cq Ñ MapGpFX,Cq

is a homotopy equivalence. Writing C as a limit of representable functors, we may reduce
to the case where C belongs to the essential image of j, so that (in particular) C P PropGq.
In this case, the domain and codomain of θ can both be identified with the mapping space
MapX pX,GCq.

Proof of Proposition 21.2.2.6. Let G be an essentially small 8-category, set C “ IndpGop,
and let X be an 8-topos. The functor ρ appearing in Proposition 21.2.2.6 is given by the
composition

ShvCpX q
θ
Ñ RFunpCop,X q Ď FunpCop,X q Ñ FunpG,X q,

where θ is the equivalence of Remark 21.2.2.11. We wish to show that this composi-
tion is a fully faithful embedding, whose essential image coincides with the full sub-
category FunlexpG,X q Ď FunpG,X q. The full faithfulness is a consequence of Proposi-
tion HTT.5.3.5.10 , and the description of the essential image follows from Proposition
21.2.2.12.

21.2.3 Digression: Flatness

Let G be an essentially small 8-category and set C “ IndpGopq. For any 8-topos X ,
Proposition 21.2.2.6 supplies a fully faithful functor

ShvCpX q » FunlexpG,X q Ď FunllexpG,X q “ ObjGpX q;

here FunllexpG,X q denotes the full subcategory of FunpG,X q spanned by the locally left exact
functors. This functor is an equivalence when the 8-category G admits finite limits (see
Proposition HTT.6.1.5.2 ), but not in general. In this section, we study an example which
illustrates the difference.

Notation 21.2.3.1. Let X be an 8-topos. For any spectrum M , we let M P SppX q
denote the constant sheaf (of spectra) on X with value M . Note that the functor M ÞÑM

determines a symmetric monoidal functor Sp Ñ SppX q. In particular, if R is an E1-ring,
then R is an associative algebra object of SppX q; if M is a right module over R, then M

inherits the structure of a right module over R.
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Definition 21.2.3.2. Let R be a connective E1-ring, let X be an 8-topos, and let F

be a left R-module object of SppX q. We will say that F is R-flat if the construction
M ÞÑM bR F determines a t-exact functor RModR Ñ SppX q. We let LMod5R denote the
full subcategory of LModR spanned by those left R-modules which are R-flat.

Remark 21.2.3.3. In the situation of Definition 21.2.3.2, the functor M ÞÑ M bR F is
right t-exact if and only if F is connective. In particular, every R-flat left R-module is
connective.

Example 21.2.3.4. Let R be a connective E8-ring, let X “ pX ,OXq be a spectral Deligne-
Mumford stack equipped with a morphism f : X Ñ SpétR, and let F P QCohpXq. Then we
can regard F as a sheaf of R-modules on X . Moreover, for every R-module M , the tensor
product M bR F is also a quasi-coherent sheaf on X, whose value on an affine object U P X
is given by the formula

pM bR F qpUq »M bR F pUq.

In particular, we see that the following conditions are equivalent:

piq The quasi-coherent sheaf F is R-flat (in the sense of Definition 21.2.3.2).

piiq For every affine U P X , the spectrum F pUq is flat as an R-module (in the sense of
Definition HA.7.2.2.10 ).

Example 21.2.3.5. Let R be a connective E8-ring and let f : X Ñ SpétR be a map of
spectral Deligne-Mumford stacks. Then f is flat (in the sense of Definition 2.8.2.1) if and
only it the structure sheaf OX is R-flat (in the sense of Definition 21.2.3.2).

Example 21.2.3.6. Let R be a connective E1-ring and let X “ S be the 8-topos of spaces,
so that the formation of global sections supplies an equivalence Γ : LModRpX q » LModR.
Then a left R-module F is flat (in the sense of Definition 21.2.3.2) if and only if the
associated left R-module ΓpF q is flat (in the sense of Definition HA.7.2.2.10 ).

Example 21.2.3.7. Let R be a connective E1-ring and let X be an 8-topos with enough
points (that is, the collection of geometric morphisms functors x˚ P Fun˚pX ,Sq are jointly
conservative). Then a left R-module F P LModRpSppX qq is R-flat (in the sense of Definition
21.2.3.2) if and only if, for each point x˚ P Fun˚pX ,Sq, the stalk x˚F P LModR is flat as a
left R-module (in the sense of Definition HA.7.2.2.10 ).

Variant 21.2.3.8. Let R be a connective E1-ring and let X be an 8-topos. We will say
that a left R-module F is R-flat if the functor

pG P RModRq ÞÑ G bR F

determines a t-exact functor RModR Ñ SppX q.
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Note that if F is R-flat, then it is R-flat (in the sense of Definition 21.2.3.2): this follows
from the t-exactness of the constant sheaf functor M ÞÑM . If the 8-topos X has enough
points (or, more generally, if X is hypercomplete), then the converse holds. We do not know
if the converse is true in general.

We can now formulate the main result of this section:

Proposition 21.2.3.9. Let R be a connective E1-ring, let LModproj
R denote the full sub-

category of LModR spanned by the finitely generated projective left R-modules, and set
G “ pLModproj

R qop. Then, for any 8-topos X , there is a canonical equivalence of 8-categories
ObjGpX q » LMod5R.

Example 21.2.3.10. In the situation of Proposition 21.2.3.9, suppose that X “ S is the
8-topos of spaces. Invoking Proposition 20.4.2.9, we can identify G-objects of X with
Ind-objects of the 8-category Gop “ LModproj

R . In this case, Proposition 21.2.3.9 reduces to
Lazard’s theorem (Theorem HA.7.2.2.15 ), which supplies an equivalence of 8-categories
LMod5R » IndpLModproj

R q.

Remark 21.2.3.11. In the situation of Proposition ??, Corollary 21.2.2.7 supplies a fully
faithful functor

ShvLMod5R
pX q “ ShvIndpGopqpX q ãÑ ObjGpX q » LMod5R .

This functor is usually not an equivalence. For example, if X has enough points, then we
can identify objects of the right hand side with left R-modules F having the property that
each stalk x˚F is a flat left R-module (Example 21.2.3.7), while objects of the left hand
side are left R-modules F having the property that the connective cover τě0 F pUq is flat
left R-module for each U P X . The latter condition is much more difficult to satisfy (except
in some special cases, such as where R is a Dedekind domain).

Proof of Proposition 21.2.3.9. Using R-linear duality, we can identify G “ pLModproj
R qop

with the 8-category RModproj
R of finitely generated projective right modules over R.

Since the 8-category LModcn
R is projectively generated (Corollary HA.7.1.4.15 ), we have

an equivalence of 8-categories LModcn
R » FunπpG,Sq where FunπpC,Dq denotes the full

subcategory of FunpC,Dq spanned by those functors which preserve finite products. Passing
to sheaves on X , we obtain an equivalence of 8-categories

θ : LModcn
R » ShvLModcn

R
pX q Ñ FunπpG,ShvSpX qq » FunπpG,X q.

Unwinding the definitions, we see that θ is given on objects by the formula θpF qpMq “
Ω8pM bR F q.

Fix an object F P LModcn
R and set T “ θpF q. To complete the proof, it will suffice to

show that the following conditions are equivalent:
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paq The sheaf F is R-flat, in the sense of Definition 21.2.3.2.

pbq The functor
T : RModproj

R Ñ X T pMq “ Ω8pM bR F q

is locally left exact.

Note that the 8-category RModcn
R is also projectively generated (Corollary HA.7.1.4.15 ),

we have a fully faithful embedding g : Modcn
R ãÑ PpGq. Let f denote a left adjoint to

g. The functor T admits an essentially unique extension to a functor T` : RModcn
R Ñ X

which preserves sifted colimits; concretely, this extension is given by the same formula
T`pMq “ T pMq “ Ω8pM bR F q. Note that the composite functor pT` ˝ fq : PpGq Ñ X is
a colimit-preserving extension of the functor T . Consequently, assertion pbq is equivalent to
the assertion that T` ˝ f is left exact.

Choose an essentially small full subcategory C Ď RModcn
R which is closed under finite

limits and contains RModproj
R . Then gpCq Ď PpGq contains the essential image of the Yoneda

embedding and is therefore dense in PpGq. It follows that g|C induces a localization functor
L : PpCq Ñ PpGq. Let TC denote the composite functor

PpCq L
ÝÑ PpGq f

Ñ RModcn
R

T`
Ñ X .

Since g is left exact, this localization functor is left exact (Proposition HTT.6.1.5.2 ).
Consequently, the left exactness of T` ˝ f is equivalent to the left exactness of TC. Using
Proposition HTT.6.1.5.2 again, we see that this is equivalent to the left exactness of its
composition with the Yoneda embedding C ãÑ PpCq, which is the functor T`|C. In other
words, condition pbq can be reformulated as follows:

pbCq The functor T`|C is left exact.

Note that, if condition pbq is satisfied, then condition pbCq is satisfied for every essentially
small full subcategory C Ď RModcn

R which is closed under finite limits and contains RModproj
R .

It follows that pbq is equivalent to the following a priori stronger condition:

pcq The functor
T` : RModcn

R Ñ X T`pMq “ Ω8pM bR F q

is left exact.

We now observe that pcq is equivalent to the left t-exactness of the functor M ÞÑMbRF .
Since this functor is automatically right t-exact (by virtue of our assumption that F is
connective; see Remark 21.2.3.3), we deduce that pcq ô paq as desired.
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21.2.4 Local Morphisms

Let C be a compactly generated 8-category, and let G “ Cop
c denote the opposite of

the 8-category of compact objects of C. For any topological space X, Proposition 21.2.2.1
supplies an equivalence ObjGpXq » ShvCpXq. If the 8-category G is equipped with a
Grothendieck topology τ , then the full subcategory ObjτGpXq Ď ObjGpXq corresponds to
a full subcategory of ShvCpXq, whose objects might be referred to as “τ -local” C-valued
sheaves on X. In §21.2.5, we will show that when C “ CAlg♥ is the category of commutative
rings and τ is the Zariski topology of Example 20.6.4.1, then this condition reduces to the
usual notion of a sheaf of local rings on X (see Proposition 21.2.5.1). For algebro-geometric
applications, we would like to restrict our attention further to the (non-full) subcategory
where we allow only local maps between local sheaves of commutative rings. This requires
an additional structure on G.

Definition 21.2.4.1. Let G be an essentially small 8-category equipped with an admissi-
bility structure Gad Ď G (see Definition ??). Let X be an 8-topos and suppose we are given
a morphism α : O Ñ O 1 between G-objects O,O 1 P ObjGpX q. We will say that α is local if,
for every morphism U Ñ V in Gad, the diagram

OU αpUq //

��

// O 1U

��
OV αpV q // O 1V

is a pullback square in X . We let Objloc
G pX q denote the (non-full) subcategory of FunpG,X q

whose objects are locally left exact functors and whose morphisms are local natural transfor-
mations. If τ is a Grothendieck topology on G, we let Objτ,loc

G pX q denote the intersection
ObjτGpX q XObjloc

G pX q.

Remark 21.2.4.2. In practice, we will use the notation Objτ,loc
G only in situations where the

Grothendieck topology τ is compatible with the admissibility structure Gad Ď G, in the sense
of Definition 20.6.2.1. In this case, an object O P Objloc

G pX q belongs to the full subcategory
Objτ,loc

G pX q if and only if, for every collection of admissible morphisms tUα Ñ Uu in G which
generate a τ -covering of U , the induced map >OUα Ñ OU is an effective epimorphism in X .

Variant 21.2.4.3. In the situation of Definition 21.2.4.1, suppose that X “ ShvpXq for
some topological space X. Then we will denote the 8-categories Objloc

G pX q and Objτ,loc
G pX q

by Objloc
G pXq and Objτ,loc

G pXq, respectively.

Definition 21.2.4.1 can be reformulated (and slightly generalized) using the language of
fractured 8-topoi developed in Chapter 20.
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Definition 21.2.4.4. Let Ecorp Ď E be a fractured 8-topos, let X be an arbitrary 8-topos,
and let α : f˚ Ñ g˚ be a morphism in the 8-category Fun˚pE ,X q. We will say that α is
local if the following condition is satisfied: for every morphism f : U Ñ V in the 8-topos
Ecorp, the diagram

f˚U
αpUq //

��

// g˚U

��
f˚V

αpV q // g˚V

is a pullback square in the 8-topos X . We let Fun˚locpE ,X q denote the subcategory of
Fun˚pE ,X q containing all objects, whose morphisms are given by local natural transforma-
tions.

Remark 21.2.4.5. Let Ecorp Ď E be a fractured 8-topos and let X be an arbitrary 8-
topos. Then the collection of local morphisms in Fun˚pE ,X q contains all equivalences and is
closed under composition (which we have implicitly invoked by defining the subcategory
Fun˚locpE ,X q Ď Fun˚pE ,X q).

Warning 21.2.4.6. In the situation of Definition 21.2.4.4, the 8-category Fun˚locpE ,X q
depends not only on E and X , but on the choice of a fracture subcategory Ecorp Ď E .

Example 21.2.4.7 (The Trivial Case). In the situation of Definition 21.2.4.4, suppose that
Ecorp “ E (see Example 20.1.2.2). Then a natural transformation α : f˚ Ñ g˚ is local if and
only if it is an equivalence. The “if” direction is obvious; to prove the converse, we note that
Ecorp contains the projection map U Ñ 1 for every object U P E , so that the locality of α
guarantees that the diagram

f˚U
αpUq //

��

// g˚U

��
f˚1 // g˚1

is a pullback square. Since the domain and codomain of the bottom horizontal map are final
objects of X (by virtue of the left exactness of f˚ and g˚), we conclude that the bottom
horizontal map is an equivalence and therefore αpUq : f˚U Ñ g˚U is an equivalence as well.

Proposition 21.2.4.8. Let Ecorp Ď E be a fractured 8-topos, let X be an arbitrary 8-topos,
and let α : f˚ Ñ g˚ be a morphism in the 8-category Fun˚pE ,X q. The following conditions
are equivalent:

paq The morphism α is local, in the sense of Definition 21.2.4.4.
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pbq For every Ecorp-admissible morphism f : U Ñ V in E, the diagram

f˚U
αpUq //

��

// g˚U

��
f˚V

αpV q // g˚V

is a pullback square in the 8-topos X .

Proof. The implication pbq ñ paq is obvious. Converse, suppose that paq is satisfied. Let S
be the collection of all morphisms U Ñ V in E for which the diagram

f˚U
αpUq //

��

// g˚U

��
f˚V

αpV q // g˚V

is a pullback square. Then S is a local admissibility structure on E (Example 20.3.2.3).
We wish to show that every Ecorp-admissible morphism f : U Ñ V is contained in S. This
assertion is local on V , so we may assume without loss of generality that V is corporeal. In
this case, the morphism f belongs to Ecorp (Example 20.3.1.2), so the desired result follows
from assumption paq.

Remark 21.2.4.9. Let Ecorp Ď E be a fractured 8-topos and let X be an arbitrary
8-topos. The subcategory Fun˚locpE ,X q Ď Fun˚pE ,X q depends only on the collection of
Ecorp-admissible morphisms in E . Consequently, replacing the fracture subcategory Ecorp by
its completion (Remark 20.3.4.7) does not change the class of local morphisms in Fun˚pE ,X q.

Proposition 21.2.4.10. Let Ecorp Ď E be a fractured 8-topos and let h : G Ñ E be a
presentation of E (see Definition 20.5.3.1). Then, for any 8-topos X , composition with h
induces a fully faithful embedding

θ : Fun˚pE ,X q ãÑ ObjGpX q.

Moreover, a morphism in Fun˚pE ,X q is local (in the sense of Definition 21.2.4.4) if and only
if its image under θ is local (in the sense of Definition 21.2.4.1). In particular, θ induces a
fully faithful embedding

θloc : Fun˚locpE ,X q ãÑ Objloc
G pX q.

Proof. The functor h is dense and locally left exact (Remark 20.5.3.2), and therefore exhibits
E as an accessible left exact localization of the presheaf 8-category PpGq. Consequently, to
show that θ is fully faithful, we may assume without loss of generality that E “ PpGq, in
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which case the functor θ is an equivalence of 8-categories (by virtue of Theorem HTT.5.1.5.6
and the definition of local left exactness). To complete the proof, we must show a morphism
α : f˚ Ñ g˚ in Fun˚pE ,X q is local if and only if θpαq is local in ObjGpX q. The “only if”
direction is obvious (since the functor h carries admissible morphisms in G to admissible
morphisms in E). Conversely, suppose that θpαq is local, and let u : U Ñ V be an admissible
morphism in E ; we wish to show that the diagram σ :

f˚U
αpUq //

��

// g˚U

��
f˚V

αpV q // g˚V

is a pullback square in X . Using Example 20.3.2.3, we see that this assertion can be tested
locally on V . We may therefore assume without loss of generality that V “ hpV0q for some
object V0 P G. Let us regard V and V0 as fixed. The functor h induces a left exact localization
PpGadq Ñ Ecorp, which therefore restricts to a left exact localization PpGad

{V0
q Ñ pEcorpq{V .

It follows that we can write U as a colimit (in the 8-category pX corpq{V ) of objects of the
form hpU0q, for U0 P Gad

{V0
. Using the fact that colimits are universal in the 8-topos X , we

can reduce to the case where the map U Ñ V is obtained by applying the functor h to
some admissible morphism U0 Ñ V0 in G, in which case the desired result follows from our
assumption that θpαq is local.

Example 21.2.4.11. Let pG,Gad, τq be a geometric site and let h : G Ñ Shvτ pGq be
the sheafified Yoneda embedding (Definition 21.2.1.11). Then h is a presentation of the
fractured 8-topos Shvτ pGq, in the sense of Definition 20.5.3.1: that is the essential content
of Proposition 20.6.3.2.

Corollary 21.2.4.12. Let pG,Gad, τq be a geometric site (see Definition 20.6.2.1) and let
X be an 8-topos. Then composition with the sheafified Yoneda embedding G Ñ Shvτ pGq
induces equivalences of 8-categories

θ : Fun˚pShvτ pGq,X q ãÑ ObjτGpX q θloc : Fun˚locpShvτ pGq,X q ãÑ Objτ,loc
G pX q.

Proof. Combine Proposition 21.2.1.13, Proposition 21.2.4.10, and Example 21.2.4.11.

21.2.5 Examples: Sheaves of Rings

Let Aff denote the category whose objects are affine schemes of finite type over Z (that
is, schemes of the form SpecR, where R is a finitely presented commutative ring). We can
then regard the category Aff as equipped with either the Zariski topology τZar of Example
20.6.4.1, or the étale topology τét of Example ??. For any 8-topos X , we denote the
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corresponding 8-categories of Aff-objects by ObjZar
Aff pX q and Objét

AffpX q, respectively, so that
we have inclusion functors

Objét
AffpX q Ď ObjZar

Aff pX q Ď ObjAffpX q.

These 8-categories can be described more concretely as follows:

Proposition 21.2.5.1. Let X be an 8-topos. Then:

p1q There is a canonical equivalence of 8-categories ψ : ObjAffpX q » ShvCAlg♥pX q,
characterized informally by the formula MapX pU,O

SpecRq “ HomCAlg♥pR,ψpOqpUqq.

p2q An object O P ObjAffpX q belongs to the full subcategory ObjZar
Aff pX q Ď ObjAffpX q if and

only if ψpOq is local, when regarded as a commutative ring object of the topos X♥ (see
Definition 1.2.1.4).

p3q A morphism α : O Ñ O 1 in the 8-category ObjZar
Aff pX q is local (with respect to the

admissibility structure of Example 20.6.4.1) if ψpαq : ψpOq Ñ ψpO 1q is local when
viewed as a morphism of commutative ring objects of X♥ (in the sense of Definition
1.2.1.4).

p4q An object O P ObjAffpX q belongs to the full subcategory Objét
AffpX q Ď ObjAffpX q if and

only if ψpOq is strictly Henselian, when regarded as a commutative ring object of the
topos X♥ (see Definition 1.2.2.5).

p5q A morphism α : O Ñ O 1 in the 8-category Objét
AffpX q is local (with respect to the

admissibility structure of Example ??) if ψpαq : ψpOq Ñ ψpO 1q is local when viewed as
a morphism of commutative ring objects of X♥.

Proof. Assertion p1q is a special case of Proposition 21.2.2.1 (and Remark 21.2.2.2), assertion
p4q is immediate from the definitions, and assertion p5q follows from Proposition 1.2.2.12.
We now prove p2q. Let O be an object of ObjAffpX q and set A “ ψpOq, which we regard
as a commutative ring object of the topos X♥. Unwinding the definitions, we see that O

belongs to ObjZar
Aff pX q if and only if the following condition is satisfied:

p˚q For every finitely presented commutative ring R and every collection of elements
ttiu1ďiďn which generate the unit ideal in R, the induced map

>1ďiďn OSpecRrt´1
i s Ñ OSpecR

is an effective epimorphism in X .

On the other hand, A is local (when regarded as a commutative ring object of X♥) if and
only if it satisfies the following pair of conditions:
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paq The sheaf OH is an initial object of X .

pbq The canonical map

OSpec Zrx,x´1s >OSpec Zrx,p1´xq´1s Ñ OSpec Zrxs

is an effective epimorphism in X .

We first note that conditions paq and pbq follow immediately from p˚q (condition paq
follows by applying p˚q in the case where R “ 0 and n “ 0; condition pbq follows by applying
p˚q in the case R “ Zrxs and n “ 2). Conversely, suppose that conditions paq and pbq
are satisfied. We will establish p˚q using induction on n. If n “ 0, then the unit ideal of
R coincides with the zero ideal, so that R “ 0 and p˚q follows from paq. To handle the
inductive step, suppose that n ą 0 and we are given a collection of elements tt1, . . . , tnu
which generate the unit ideal in R. We can then choose elements c1, . . . , cn P R satisfying
c1t1 ` c2t2 ` ¨ ¨ ¨ ` cntn “ 1. Set x “ c1t1 ` ¨ ¨ ¨ ` cn´1tn´1, so that 1´ x “ cntn. Since ρO

is left exact, we have a pullback diagram

OSpecRrx´1s >OSpecRrp1´xq´1s //

��

OSpecR

��
OSpec Zrx,x´1s >OSpec Zrx,p1´xq´1sq // OSpec Zrxs .

It follows from assumption pbq that the lower horizontal map is an effective epimorphism,
so that the upper horizontal map is an effective epimorphism as well. Since the map
SpecRrp1 ´ xq´1s Ñ SpecR factors through SpecRrt´1

n s, it will suffice to show that the
map

>1ďiďn´1 OSpecRrx´1sˆOSpec Zrxs OSpec Zrx,x´1s Ñ OSpecRˆOSpec Zrxs OSpec Zrx,x´1s

is an effective epimorphism. This follows from our inductive hypothesis (and the left exactness
of the functor O : Aff Ñ X ), since the images of the elements ttiu1ďiďn´1 generate the unit
ideal in the commutative ring Rrx´1s.

We now prove p3q. Let α : O Ñ O 1 be a morphism in ObjZar
Aff pX q. Unwinding the

definitions, we see that α is local (in the sense of Definition 21.2.4.1) if and only if, for every
finitely generated commutative ring R and every element x P R, the upper square in the
commutative diagram

OSpecRrx´1s //

��

OSpecR

��
O 1 SpecRrx´1s //

��

O 1SpecR

��
O 1 Spec Zrx,x´1s // O 1 Spec Zrxs
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is a pullback. Since the bottom square is a pullback (by virtue of the left exactness of O 1),
the locality of α is equivalent to the requirement that the outer rectangle of the diagram

OSpecRrx´1s //

��

OSpecR

OSpec Zrx,x´1s //

��

OSpec Zrxs

��
O 1 Spec Zrx,x´1s // O 1 Spec Zrxs

is a pullback square. Here the top square is automatically a pullback (by virtue of the left
exactness of O). Consequently, the morphism α is local if and only if the commutative
diagram

OSpec Zrx,x´1s //

��

OSpec Zrxs

��
O 1 Spec Zrx,x´1s // O 1 Spec Zrxs

is a pullback square, which is equivalent to the assertion that ψpαq is local (as a morphism
of commutative ring objects of X♥).

Warning 21.2.5.2. In part p3q of Proposition 21.2.5.1, the assumption that O and O 1

belong to ObjZar
Aff pX q is superfluous: the same assertion holds for any morphism α : O Ñ O 1

in ObjAffpX q. However, the analogous assertion for part p5q is false. For a general morphism
α : O Ñ O 1 in ObjAffpX q (or even in ObjZar

Aff pX q), the condition of being local with respect
to the admissibility structure of Example 20.6.4.1 (which has admissible morphisms of the
form SpecRrt´1s ãÑ SpecR) is weaker than the condition of being local with respect to the
admissibility structure of Example ?? (where every étale morphism in Aff is admissible).

We now formulate an analogue of Proposition 21.2.5.1, where we replace sheaves taking
values in the ordinary category CAlg♥ of commutative rings with sheaves taking values
in the 8-category CAlg of all E8-rings. Let CAlgc denote the full subcategory of CAlg
spanned by the compact object, and let AffSp denote the opposite of the 8-category CAlgc;
we denote the objects of AffSp by SpecR, where R is a compact E8-ring. We can then regard
the 8-category AffSp as equipped with either the Zariski topology τZar of Example 20.6.4.4,
or the étale topology τét of Example ??. For any 8-topos X , we denote the corresponding
8-categories of AffSp-objects by ObjZar

AffSppX q and Objét
AffSppX q, respectively, so that we have

inclusion functors
Objét

AffSppX q Ď ObjZar
AffSppX q Ď ObjAffSppX q.

We now have the following result:
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Proposition 21.2.5.3. Let X be an 8-topos. Then:

p1q There is a canonical equivalence of 8-categories ψ : ObjAffSppX q » ShvCAlgpX q,
characterized informally by the formula MapX pU,O

SpecRq “ MapCAlg♥pR,ψpOqpUqq.

p2q An object O P ObjAffSppX q belongs to the full subcategory ObjZar
AffSppX q Ď ObjAffSppX q

if and only if the sheaf of E8-rings ψpOq is local (in the sense of Definition 1.4.2.1):
that is, if and only if π0ψpOq is local when regarded as a commutative ring object of
the topos X♥.

p3q A morphism α : O Ñ O 1 in the 8-category ObjZar
AffSppX q is local (with respect to the

admissibility structure of Example 20.6.4.4) if ψpαq : ψpOq Ñ ψpO 1q is local when
viewed as a morphism of CAlg-valued sheaves on X (in the sense of Definition 1.4.2.1).

p4q An object O P ObjAffSppX q belongs to the full subcategory Objét
AffSppX q Ď ObjAffSppX q if

and only if the sheaf of E8-rings ψpOq is strictly Henselian (in the sense of Definition
1.4.2.1): that is, if and only if π0ψpOq is strictly Henselian when regarded as a
commutative ring object of the topos X♥.

p5q A morphism α : O Ñ O 1 in the 8-category Objét
AffSppX q is local (with respect to the

admissibility structure of Example ??) if ψpαq : ψpOq Ñ ψpO 1q is local when viewed as
a morphism of CAlg-valued sheaves on X (in the sense of Definition 1.4.2.1)

Proof. Assertion p1q is a special case of Proposition 21.2.2.1 (and Remark 21.2.2.2), and
assertion p4q and p5q follow from Lemma 1.4.3.9. Assertions p2q and p3q can be established
by repeating the proof of Proposition 21.2.5.1, without essential change.

Warning 21.2.5.4. Assertion p3q of Proposition 21.2.5.3 holds more generally for any
morphism α : O Ñ O 1 in ObjAffSppX q, but assertion p5q requires that O and O 1 belong to
Objét

AffSppX q (as with Warning 21.2.5.2).

21.3 Factorization Systems and Fractured 8-Topoi

As noted in the introduction to §20.2, every commutative ring homomorphism φ : AÑ B

factors canonically as a composition

A
φ1
Ñ ArS´1s

φ2
Ñ B,

where the homomorphism φ2 is local (that is, it carries noninvertible elements of ArS´1s to
noninvertible elements of B) and the map φ1 is localizing; moreover, we can take S to be
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the set of elements a P A for which φpaq P B is invertible. More generally, if φ : A Ñ B is a
map of sheaves of commutative rings on a topological space X, then f admits a factorization

A
φ1
Ñ A 1 φ

2

Ñ B,

which reduces to the previous factorization after passing to stalks at any point x P X.
Our goal in this section is to show that an analogous phenomenon occurs in the setting
of E-structured 8-topoi, for any fractured 8-topos E . More precisely, we will prove the
following:

Theorem 21.3.0.1. Let Ecorp Ď E be a fractured 8-topos. Then:

p1q For every 8-topos X , there exists a factorization system pSX
L , S

X
R q on the 8-category

Fun˚pE ,X q, where SX
R is the collection of local morphisms in Fun˚pE ,X q (Definition

21.2.4.4).

p2q The factorization system of p1q depends functorially on X . In other words, for every
geometric morphism of 8-topoi f˚ : X Ñ Y, composition with f˚ carries SX

L into SY
L

and SX
R into SY

R .

Remark 21.3.0.2. The functorial dependence of the factorization system pSX
L , S

X
R q on the

fractured 8-topos E is more subtle; we will discuss it in §??.

Combining Theorem 21.3.0.1 with Proposition ??, we obtain the following:

Corollary 21.3.0.3. Let pG,Gad, τq be a geometric site (Definition 20.6.2.1). Then:

p1q For every 8-topos X , there exists a factorization system pSX
L , S

X
R q on the 8-category

ObjτGpX q, where where SX
R is the collection of local morphisms in ObjτGpX q (Definition

21.2.4.1).

p2q The factorization system of p1q depends functorially on X . In other words, for every
geometric morphism of 8-topoi f˚ : X Ñ Y, composition with f˚ carries SX

L into SY
L

and SX
R into SY

R .

Our proof of Theorem 21.3.0.1 is quite involved, and will occupy our attention throughout
this section. We will proceed in several steps:

paq The first step was already carried out in §20.2.2: there we showed that for any
admissibility structure Gad Ď G determined a factorization system on the 8-category
of PropGq (Theorem 20.2.2.5). After passing to opposite 8-categories, this recovers the
factorization system described in Corollary 21.3.0.3 in the special case where X “ S is
the 8-topos of spaces and the topology τ on G is trivial.
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pbq In §21.3.1, we show that Corollary 21.3.0.3 holds whenever the 8-category G admits
finite limits and the Grothendieck topology τ is trivial (Propositions 21.3.1.1 and
21.3.1.5). Our proof will proceed by reducing to the case where X is an 8-topos of
presheaves, in which case the desired result can be deduced from paq.

pcq In §??, we prove that Corollary 21.3.0.3 holds whenever the Grothendieck topology τ
is trivial, without the assumption that G admits finite limits (Propositions 21.3.3.1
and 21.3.3.2). The proof proceeds by reduction to pbq using an embedding of G into
an 8-category which admits finite limits. In carrying out this reduction, we will use
some general facts about 8-topoi of paths, which we discuss in §21.3.2.

pdq In §??, we will show Theorem 21.3.0.1 (and therefore Corollary 21.3.0.3) holds in
general. Our strategy is to use the existence of a presentation h : G Ñ E (Theorem
20.5.3.4) to reduce to case where E has the form PpGq, which is covered by case pcq.

Remark 21.3.0.4. For the examples studied in this book, we do not need the full strength
of Theorem 21.3.0.1: the fractured 8-topoi of interest to us all have the form Shvτ pGq,
where pG,Gad, τq is a geometric site for which the 8-category G admits finite limits. At this
level of generality, step pcq is superfluous and step pdq is slightly easier to handle.

21.3.1 The Case G Admits Finite Limits

We begin by establishing the following special case of Corollary 21.3.0.3.

Proposition 21.3.1.1. Let G be an essentially small which admits finite limits and is
equipped with an admissibility structure. Let X be an arbitrary 8-topos. Then there
exists a factorization system pSL, SRq on the 8-category ObjGpX q “ FunlexpG,X q which is
characterized by the following requirement: a morphism α : O Ñ O 1 in ObjGpX q belongs to
SR if and only if, for every admissible morphism f : U Ñ V in G, the diagram

OU //

��

O 1U

��
OV // O 1V

is a pullback square in the 8-topos X .

Remark 21.3.1.2. In the situation of Proposition 21.3.1.1, Proposition 21.2.2.1 supplies
an equivalence of 8-categories ObjGpX q » ShvCpX q, where C “ IndpGopq. Consequently,
we can view Proposition 21.3.1.1 as supplying a factorization system on the 8-category
ShvCpX q of C-valued sheaves on X .
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The proof of Proposition 21.3.1.1 will require a few general remarks about factorization
systems.

Lemma 21.3.1.3. Let C be an 8-category, C0 Ď C a localization of C, and Y an object of
C0. Then C0

{Y is a localization of C{Y . Moreover, a morphism f : X Ñ X 1 in C{Y exhibits
X 1 as a C0

{Y -localization of X if and only if f exhibits X 1 as a C0-localization of X in the
8-category C.

Proof. We first prove the “if” direction of the last assertion. Choose a morphism Y 1 Ñ Y in
C, where Y 1 P C0. We have a map of homotopy fiber sequences

MapC{Y pX
1, Y 1q

φ //

��

MapC{Y pX,Y
1q

��
MapCpX

1, Y 1q

��

φ1 //MapCpX,Y
1q

��
MapCpX

1, Y q
φ2 //MapCpX,Y q.

Since the maps φ1 and φ2 are homotopy equivalences, we conclude that φ is a homotopy
equivalence as desired.

We now show that C0
{Y is a localization of C{Y . In view of Proposition HTT.5.2.7.8 and

the above argument, it will suffice to show that for every map h : X Ñ Y , there exists a
factorization

X 1

g

  
X

f
>>

h // Y

where f exhibits X 1 as a C0-localization of X. The existence of f follows from Proposition
HTT.5.2.7.8 (applied to the 8-category C), and the ability to complete the diagram follows
from the assumption that Y P C0.

To complete the proof, we observe that any C0
{Y -localization X Ñ X2 must be equivalent

to the morphism X Ñ X 1 constructed above, so that X Ñ X2 also exhibits X2 as a
C0-localization of X.

Recall that if f : AÑ B and g : X Ñ Y are morphisms in an 8-category C, we write
f K g if, for every commutative diagram

A

f
��

// X

g

��
B //

??

Y,
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the space MapCA{ {Y pB,Xq of dotted arrows rendering the diagram commutative is con-
tractible (Definition HTT.5.2.8.1 ).

Lemma 21.3.1.4. Let C be an 8-category equipped with a factorization system pSL, SRq,
and let L : C Ñ C be a localization functor such that LSR Ď SR. Then the full subcategory
L C Ď C admits a factorization system pS1L, S

1
Rq, where:

p1q A morphism f 1 in L C belongs to S1L if and only if f 1 is a retract of Lf , for some
f P SL.

p2q A morphism g in L C belongs to S1R if and only if g P SR.

Proof. Clearly S1L and S1R are stable under the formation of retracts. Let h : X Ñ Z be
a morphism in L C; we wish to show that h factors as a composition X

f 1
Ñ Y 1

g1
Ñ Z where

f 1 P S1L and g1 P S1R. First, choose a factorization of h as a composition X f
Ñ Y

g
Ñ Z. Then

Lf P S1L, Lg P S1R, and h » Lh » Lg ˝ Lf .
It remains to show that f 1 K g1, for f 1 P S1L and g1 P S1R. Without loss of generality, we

may suppose f 1 “ Lf for some f P SL. Choose a commutative diagram

A

f
��

// LA

Lf
��

// X

g1

��
B // LB // Y.

We wish to show that the mapping space MapCLA{ {Y pLB,Xq is weakly contractible. We
have a commutative diagram of fiber sequences

MapCLA{ {Y pLB,Xq
φ //

��

MapCA{ {Y pB,Xq

��
MapC{Y pLB,Xq

φ1 //

��

MapC{Y pB,Xq

��
MapC{Y pLA,Xq

φ2 //MapC{Y pA,Xq.

Using Lemma 21.3.1.3, we deduce that φ1 and φ2 are homotopy equivalences. It follows that
φ is also a homotopy equivalence. We are therefore reduced to proving that MapCA{ {Y pB,Xq

is contractible, which follows from the orthogonality relation f K g1.

Proof of Proposition 21.3.1.1. In the special case where X “ S, the desired result follows
immediately from Theorem 20.2.2.5. To treat the general case, we may assume without loss
of generality that the 8-topos X has the form LPpCq, where C is a small 8-category and L
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is a left exact localization functor on the presheaf 8-category PpCq “ FunpCop,Sq. Using
Corollary HTT.5.2.8.18 , we deduce that the 8-category ObjGpPpCqq » FunpCop,ObjGpSqq
admits a factorization system pSL, SRq, where a morphism α belongs to SR if and only if,
for every admissible morphism U Ñ V in G, the diagram

OU //

��

O 1U

��
OX // O 1X

is a pullback square in the 8-category PpCq.
Composition with L induces a localization functor from ObjGpPpCqq to itself; since L is

left exact, this functor carries SR to itself. It follows from Lemma 21.3.1.4 that pSL, SRq
induces a factorization system pSL, SRq on the 8-category ObjGpX q having the desired
properties.

We conclude this section with a discussion of the functorial behavior of the factorization
systems described in Proposition 21.3.1.1.

Proposition 21.3.1.5. Let G be an essentially small which admits finite limits and is
equipped with an admissibility structure, let X and Y be 8-topoi, and let pSX

L , S
Y
Rq and

pSX
L , S

Y
Rq be the factorization systems on ObjGpX q and ObjGpYq given by Proposition 21.3.1.1.

For every geometric morphism f˚ P Fun˚pY,Zq, composition with f˚ carries SX
L into SY

L

and SX
R into SY

R .

Our proof will use the following general fact, which is an immediate consequence of
Remark HTT.5.2.8.7 and Proposition HTT.5.2.8.11 .

Lemma 21.3.1.6. Suppose given a pair of adjoint functors

C
F //D .
G
oo

Let pSL, SRq be a factorization system on C, and pS1L, S1Rq a factorization system on D. The
following conditions are equivalent:

p1q The functor F carries SL to S1L.

p2q The functor G carries S1R to SR.

Proof of Proposition 21.3.1.5. Let f˚ be a right adjoint to f˚. Then composition with the
functors f˚ and f˚ determines an adjunction

ObjGpX q
f˚G //ObjGpYq;
fG
˚

oo
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see Remark 21.2.1.8. It follows immediately from the definitions that the functor f˚G carries
SX
R into SY

R , and that the functor fG
˚ carries SX

R into SY
R . Applying Lemma 21.3.1.6, we

deduce that f˚G also carries SX
L into SY

L .

21.3.2 Digression: 8-Topoi of Paths

Let 8T op denote the 8-category of 8-topoi. Then 8T op is naturally cotensored over
the 8-category Cat8 of small 8-categories. More precisely, for every 8-topos X and any
(small) simplicial set K, there exists another 8-topos XK and a map θ : K Ñ Fun˚pX ,XKq
with the following universal property: for every 8-topos Y, composition with θ induces an
equivalence of 8-categories

Fun˚pXK ,Yq Ñ FunpK,Fun˚pX ,Yqq

(see Proposition HTT.6.3.4.9 ). Note that XK is determined up to (canonical) equivalence
by X and K.

Warning 21.3.2.1. The 8-topos XK defined is not equivalent to the functor 8-category
FunpK,X q: the latter is instead characterized by the dual universal property property

Fun˚pY,FunpK,X qq » FunpK,Fun˚pY,X qq.

Remark 21.3.2.2 (Relationship with Exponentials). Let K be a small simplicial set. For
any 8-topoi X and Y, we have canonical equivalences

Fun˚pXK ,Yq » FunpK,Fun˚pX ,Yqq
» Fun˚pX ,FunpK,Yqq
» Fun˚pX ,FunpK,Sq b Yq.

It follows that XK can be identified with an exponential of Y by the presheaf 8-category
FunpK,Sq “ PpKopq, in the sense of Definition 21.1.6.4. Consequently, the existence of XK

(for an arbitrary 8-topos X ) is equivalent to the exponentiability of the 8-topos FunpK,Sq.
We may therefore regard this existence as a special case of Theorem 21.1.6.12 (note that the
8-topos FunpK,Sq is compactly generated, and therefore compact assembled).

Definition 21.3.2.3. Let X be an 8-topos. We will refer to X∆1 as the path 8-topos of X .

Our goal in this section is to describe an explicit construction of the path 8-topos X∆1

in the special case where X is an 8-topos of presheaves (Theorem 21.3.2.5).
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Construction 21.3.2.4. Let G be a small 8-category and let K be a simplicial set.
Composition with the evaluation map FunpK,Gq ˆK Ñ G induces a map

PpGq “ FunpGop,Sq
Ñ FunpFunpK,Gqop ˆKop,Sq
» FunpKop,FunpFunpK,Gqop,Sqq
“ FunpKop,PpFunpK,Gqqq.

This functor preserves all small limits and colimits and therefore determines a map

e : Kop Ñ Fun˚pPpGq,PpFunpK,Gqqq,

which we can identify with a geometric morphism of 8-topoi π˚ : PpFunpK,Gqq Ñ PpGqKop .

Our result can now be stated as follows:

Theorem 21.3.2.5. Let G be a small 8-category. Then the geometric morphism π˚ :
PpFunp∆1,Gqq Ñ PpGq∆1 is an equivalence of 8-topoi. In other words, for any 8-topos Y,
the natural map

Fun˚pPpFunp∆1,Gqq,Yq Ñ Funp∆1,Fun˚pPpGq,Yqq

is an equivalence of 8-categories.

Remark 21.3.2.6. In the special case Y “ S, Theorem 21.3.2.5 asserts that the canonical
map PropFunp∆1,Gqq Ñ Funp∆1,PropGqq is an equivalence of 8-categories, which is a
special case of Proposition HTT.5.3.5.15 .

Warning 21.3.2.7. In general, the geometric morphism π˚ : PpFunpK,Gqq Ñ PpGqKop of
Construction 21.3.2.4 is not an equivalence. For example, taking S-valued points, π˚ induces
the natural map PropFunpK,Gqq Ñ FunpK,PropGqq. This map need not be an equivalence,
even when K is finite (see Warning HTT.5.3.5.16 ). However, our proof of Theorem 21.3.2.5
can be generalized to show that π˚ is an equivalence whenever K is the nerve of a finite
partially ordered set (this is a generalization of Proposition HTT.5.3.5.15 ).

Proof of Theorem 21.3.2.5. We define functors e0, e1 : G Ñ PpFunp∆1,Gqq by the formulae

e0pXqpf : Y0 Ñ Y1q “ MapGpY0, Xq e1pXqpf : Y0 Ñ Y1q “ MapGpY1, Xq.

There is an evident natural transformation of functors e1 Ñ e0, which we can identify with
a map e : ∆1 ˆ G Ñ PpFunp∆1,Gqq. Choose a Cartesian fibration MÑ ∆1 with

M0 “ t0u ˆ∆1 M “ PpFunp∆1,Gqq
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M1 “ t1u ˆ∆1 M “ ∆1 ˆ G,

which is associated to the functor e : ∆1 ˆ G Ñ PpFunp∆1,Gqq. Let M˝ denote the full
subcategory of M spanned by the objects of M1 together with the essential image of the
Yoneda embedding Funp∆1,Gq Ñ PpFunp∆1,Gqq »M0. We will prove that, for a functor
F :MÑ Y, the following conditions are equivalent:

paq The restriction F |M0 belongs to Fun˚pPpFunp∆1,Gqq,Yq and F is a left Kan extension
of F |M0 .

pbq The functor F is a left Kan extension of F |M˝ , the functor F |M˝ is a right Kan
extension of F |M1 , and the restriction of F to tiu ˆ G ĎM1 is locally left exact for
i P t0, 1u.

Assume this for the moment. Let C denote the full subcategory of FunpM,Yq spanned
by those functors which satisfy the equivalent conditions paq and pbq. Using Proposition
HTT.4.3.2.15 and characterization paq, we see that restriction to the full subcategory
M0 ĎM determines a trivial Kan fibration φ : C Ñ Fun˚pPpFunp∆1,Gqq,Yq. Similarly,
using characterization pbq and Proposition HTT.4.3.2.15 , we see that restriction to the full
subcategory M1 ĎM determines a trivial Kan fibration ψ : C Ñ Funp∆1,FunllexpG,Yqq.

Composition with j determines an equivalence of 8-categories ρ : Fun˚pPpGq,Yq Ñ
FunllexpG,Yq. It will therefore suffice to show that the composite map

Fun˚pPpFunp∆1,Gqq,Yq α
Ñ Funp∆1,Fun˚pPpGq,Yqq ρ

Ñ Funp∆1,FunllexpG,Yqq

is an equivalence of 8-categories. We now complete the proof by observing that this
composition is given by ψ ˝ s, where s : Fun˚pPpFunp∆1,Gqq,Yq Ñ C is a section of the
trivial Kan fibration φ.

It remains to prove that paq and pbq are equivalent. Suppose first that F satisfies paq; we
will prove that F also satisfies pbq. For this, we must establish three things:

• To prove that F is a left Kan extension of F |M˝ , it will suffice to show that F0 “ F |M0

is a left Kan extension of its restriction to the essential image of the Yoneda embedding
j1 : Funp∆1,Gq Ñ PpFunp∆1,Gqq. This follows from our assumption that F0 preserves
small colimits (Lemma HTT.5.1.5.5 ).

• Fix an object of Funp∆1,Gq, which we can identify with a morphism u : C Ñ D in the
8-category G. We will prove that the functor F is a right Kan extension of F1 “ F |M1

at j1puq P M0. To prove this, let D “ M1ˆMMj1puq{; we wish to show that the
canonical map F pj1pfqq Ñ lim

ÐÝ
F |D is an equivalence in Y. Note that there is a right

cofinal map Λ2
2 Ñ D, corresponding to the diagram

p1, Cq Ñ p1, Dq Ð p0, Dq
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in the 8-category ∆1 ˆ G. It will therefore suffice to show that the diagram

F0pj
1puqq //

��

F1p1, Cq

��
F1p0, Dq // F1p1, Dq

is a pullback square in Y . Since F is a left Kan extension of F0, we can write F1 “ F0˝e.
We are therefore reduced to proving that the diagram

F0pj
1puqq //

��

F0pe0pCqq

��
F0pe1pDqq // F0pe0pDqq

is a pullback square in Y. Since the functor F0 is left exact, this follows from the
observation that the diagram

j1puq //

��

e0pCq

��
e1pDq // e0pDq

is a pullback square in PpFunp∆1,Gqq. (More concretely, this means that for every
object u1 : C 1 Ñ D1 in Funp∆1,Gq, the diagram

MapFunp∆1,Gqpu
1, uq //

��

FunGpC
1, Cq

��
FunGpD

1, Dq // FunGpC
1, Dq

is a pullback square of spaces).

• We must show that for i P t0, 1u, the restriction of F1 to tiu ˆ G is locally left exact.
This follows from the observation that this restriction factors as a composition

G j
Ñ PpGq

E˚1´i
Ñ PpFunp∆1,Gqq F

Ñ Y,

where j is locally left exact, E˚i denotes the map of presheaf 8 categories induced
by composition with the functor Funp∆1,Gq Ñ G given by evaluation on i (which
preserves small limits and colimits), and F |M0 is a left exact functor which preserves
small colimits.
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Now suppose that F satisfies pbq. Let f0 and f1 denote the restrictions of F1 to t0u ˆ G
and t1u ˆ G, respectively, so that f0, f1 : G Ñ Y are locally left exact functors. We wish to
show that F satisfies paq. Our proof breaks into three parts:

• We show that the functor F is a left Kan extension of F0 at each object of ∆1ˆG having
the form p0, Cq. Equivalently, we must show that the canonical map F0pe1pCqq Ñ f0pCq

is an equivalence. This is clear, since e1pCq » j1pidCq belongs to the essential image of
j1, and the functor F |M˝ is a right Kan extension of F |M1 .

• We show that the functor F is a left Kan extension of F0 at each object of ∆1ˆG having
the form p1, Xq. Equivalently, we must show that the canonical map β : F0pe0pCqq Ñ

f1pCq is an equivalence in Y . Since F is a left Kan extension of F |M˝ , we can identify
the domain of θ with the colimit of the composite map

θ : Funp∆1,Gq ˆFunpt0u,Gq G{C Ñ Funp∆1,Gq j1
Ñ PpFunp∆1,Gqq F0

Ñ Y .

Let us identify objects of the domain of θ with pairs pu, vq, where u : D Ñ C and
v : D Ñ E are morphisms in G. Since F |M˝ is a right Kan extension of F |M1 , we
see that the functor θ is given informally by the formula θpu, vq “ f0pEq ˆf1pEq f1pDq.
Evaluation at the final vertex of ∆1 determines a map p : Funp∆1,GqˆFunpt0u,Gq G{C Ñ
G. Note that p is a coCartesian fibration, whose fiber over an object E P G is
equivalent to the 8-category G{C ˆG G{E . Let θ1 : G Ñ Y denote the functor given by
θ1pEq “ f0pEq ˆ f1pCq, so that we have an evident natural transformation θ Ñ θ1 ˝ p.
We claim that this natural transformation exhibits θ1 as a left Kan extension of θ
along p. To prove this, it suffices (since p is a coCartesian fibration) to show that the
canonical map

lim
ÝÑ

DPG{C ˆG G{E
f0pEq ˆf1pEq fpDq Ñ f0pEq ˆ f1pCq

is an equivalence, for each E P E . Since colimits in Y are universal, it will suffice to
prove that the map

lim
ÝÑ

DPG{C ˆG G{E
f1pDq Ñ f1pEq ˆ f1pCq

is an equivalence, which follows from our assumption that f1 is locally left exact. It
follows that we can identify β with the canonical map lim

ÝÑEPG θ
1pEq Ñ f1pCq. To prove

that this map is an equivalence, it will suffice (again using the fact that colimits in Y
are universal) to show that the colimit lim

ÝÑEPG f0pEq is a final object of Y . This follows
from our assumption that f0 is locally left exact.

• We show that the functor F0 belongs to Fun˚pPpFunp∆1,Gq,Yq. First, our assumption
that F is a left Kan extension of F |M˝ implies that F0 is a left Kan extension of its
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restriction to the essential image of j1, so that F0 preserves small colimits (Lemma
HTT.5.1.5.5 ). It will therefore suffice to show that the functor g “ F0 ˝ j

1 is a locally
left exact functor from Funp∆1,Gq into Y. Note that g is given by the formula

gpu : C Ñ Dq “ f0pDq ˆf1pDq f1pCq.

We will show that the functor g satisfies the criterion of Proposition 20.4.3.1. Let K
be a finite simplicial set and suppose that q : K Ñ Funp∆1,Gq is a diagram; we wish
to prove that the canonical map

lim
ÝÑ

g|Funp∆1,Gq{q Ñ lim
ÐÝ

g ˝ q

is an equivalence in Y. For i P t0, 1u, let qi : K Ñ G be the composition of q with the
evaluation functor Funp∆1,Gq Ñ Funptiu,Gq » G. Then evaluation at t1u determines
a map ρ : Funp∆1,Gq{q Ñ G{q1 . Let h : G{q1 Ñ Y be the functor given by

hpDq “ f0pDq ˆlim
ÐÝ
pf1˝q1q lim

ÐÝ
pf1 ˝ q0q,

so that we have an evident map g Ñ h ˝ ρ. We claim that this map exhibits h as a left
Kan extension of g along ρ. Since ρ is a coCartesian fibration, this is equivalent to the
assertion that for each object D P G{q1 , the canonical map

lim
ÝÑ

g|Funp∆1,Gq{q ˆFunp∆1,Gq{q1
Funp∆1,Gq{C Ñ hpDq

is an equivalence. Since colimits are universal in Y, this follows from our assumption
that the functor f1 is locally left exact (Proposition 20.4.3.1). We are therefore reduced
to proving that the canonical map

lim
ÝÑ

hÑ lim
ÐÝ
pg ˝ qq » lim

ÐÝ
pf0 ˝ q1q ˆlim

ÐÝ
pf1˝q1q lim

ÐÝ
pf1 ˝ q0q

is an equivalence. Since colimits in Y are universal, we are reduced to proving that
the canonical map lim

ÝÑDPG{q1
f0pDq Ñ lim

ÐÝ
pf0 ˝ q1q is an equivalence in Y , which follows

from our assumption that f0 is locally left exact (Proposition 20.4.3.1).

21.3.3 The Case of a General G

Our next goal is to prove analogues of Propositions 21.3.1.1 and 21.3.1.5 in the case
where the 8-category G need not admit finite limits.

Proposition 21.3.3.1. Let G be an essentially small 8-category which is equipped with
an admissibility structure Gad Ď G and let X be an arbitrary 8-topos. Then there exists a



1644 CHAPTER 21. STRUCTURE SHEAVES

factorization system pSL, SRq on the 8-category ObjGpX q “ FunllexpG,X q which is charac-
terized by the following requirement: a morphism α : O Ñ O 1 in ObjGpX q belongs to SR if
and only if, for every admissible morphism f : U Ñ V in G, the diagram

OU //

��

O 1U

��
OV // O 1V

is a pullback square in X .

Proof. We first choose a functor θ : G Ñ G` with the following universal property:

piq The 8-category G` admits finite limits.

piiq For every pullback diagram σ :
U 1 //

��

U

��
X 1 // X

in G, where the vertical maps are admissible, the image θpσq is a pullback diagram in
G`.

piiiq For any 8-category C which admits finite limits, composition with θ induces a fully
faithful embedding FunlexpG`, Cq Ñ FunpG, Cq, whose essential image is spanned by
those ρ : G Ñ C such that ρpσq is a pullback square for every pullback square σ :

U 1 //

��

U

��
X 1 // X

in G for which the vertical maps are admissible.

It follows from Proposition HTT.5.3.6.2 that there exists a functor θ : G Ñ G` satisfying
these conditions and that θ is fully faithful. Let Q be the smallest collection of morphisms
in G` which contains θpfq for every admissible morphism f in G and satisfies the axioms of
Definition 20.2.1.1 (so that Q determines an admissibility structure on G`).

Every locally left exact functor G Ñ X preserves all pullback squares which exist in
G (Remark 20.4.2.4). Using piiq, we obtain a fully faithful embedding ρ : FunllexpG,X q Ñ
FunlexpG`,X q. Let pS`L , S

`
R q be the factorization system on FunlexpG`,X q given by Propo-

sition 21.3.1.1. Let SL and SR be the inverse images of S`L and S`R under the functor ρ. To
complete the proof, it will suffice to verify the following:
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paq The pair pSL, SRq is a factorization system on ObjGpX q “ FunllexpG,X q.

pbq A morphism O Ñ O 1 in ObjGpX q belongs to SR if and only if every admissible
morphism f : U Ñ V in G determines a pullback square

OU //

��

O 1U

��
OV // O 1V

in the 8-topos X .

We first prove pbq. The “only if” direction follows immediately from the definitions. To
prove the converse, suppose that α : O Ñ O 1 is a morphism in ObjGpX q having the property
that, for each admissible morphism f : U Ñ V in G, the diagram

OU //

��

O 1U

��
OV // O 1V

is a pullback square. Let Q1 be the collection of all morphisms U` Ñ V ` in G` for which
the diagram

OU` //

��

O 1U
`

��

OV ` // O 1V
`

is a pullback square. Our hypothesis on α guarantees that Q1 contains θpfq for every
admissible morphism f in G. Using the left exactness of the functors O and O 1, we see that
Q1 determines an admissibility structure on G` (Example 20.2.1.8). The minimality of Q
implies that Q Ď Q1, so that α P SR.

To prove paq, it will suffice to verify the following:

p˚q Let β : O 1 Ñ O2 be a morphism in FunlexpG`,X q, so that β factors as a composition

O 1
βL
Ñ O

βR
Ñ O2

where βL P S`L and βR P S`R . If O 1 and O2 belong to the essential image of ρ, then O

also belongs to the essential image of ρ.

To prove p˚q, set O 10 “ O 1 ˝θ and O20 “ O2 ˝θ, so that β determines a map β0 : O 10 Ñ O20
in ObjGpX q. Using Theorem 21.3.2.5, we see that β0 determines a geometric morphism of
8-topoi g˚ : PpFunp∆1,Gqq Ñ X , so that we can write β0 “ g˚pβ0q for some morphism β0
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in FunllexpG,PpFunp∆1,Gqqq. Using piiiq, we can assume that β0 is the restriction of a map
β : O

1
Ñ O

2 in FunlexpG`,PpFunp∆1,Gqqq. Let pSL, SRq denote the factorization system on
FunlexpG`,PpFunp∆1,Gqqq given by Proposition 21.3.1.1, so that β factors as a composition

O
1 βL
ÝÝÑ O

βR
ÝÝÑ O

2 with βL P SL and βR P SR. Using Proposition 21.3.1.5, we can assume
without loss of generality that the factorization described in p˚q is given by

O 1
g˚βL
ÝÝÝÑ g˚O

g˚βR
ÝÝÝÑ O2 .

It will therefore suffice to show that g˚O belongs to the essential image of ρ: that is, that
the composite functor g˚ ˝ O ˝ θ : G Ñ X is locally left exact. To prove this, we are free
to replace X by the 8-topos PpFunp∆1,Gqq. We may therefore assume without loss of
generality that X has the form PpCq, for some small 8-category C.

Let O be as in p˚q; we wish to show that the functor O ˝θ : G Ñ PpCq is locally left
exact. Equivalently, we wish to show that for each object C P C, the composite functor

G θ
Ñ G` O

Ñ PpCq eCÑ S

is locally left exact, where eC denotes the functor given by evaluation at C. Using Proposition
21.3.1.5 again, we are reduced to proving p˚q in the special case where Y “ S. Let pS1, S2q
be the factorization system on ObjGpSq supplied by Theorem 20.2.2.5, so that β0 factors as
a composition

O 10
β10
Ñ O0

β20
Ñ O20

where β10 P S1 and β20 P S
2. To complete the proof, it will suffice to show that ρpβ10q P S`L

and ρpβ20q P S
`
R . The second of these assertions follows from pbq (and the description of the

factorization system pS1, S2q supplied by Theorem 20.2.2.5). To prove the first, it suffices
to observe that the functor θ : G Ñ G` induces a map PropGq Ñ PropG`q which carries
proadmissible morphisms in PropGq to proadmissible morphisms in PropG`q.

We close this section by noting that the factorization system of Proposition 21.3.3.1
depends functorially on X :

Proposition 21.3.3.2. Let G be an essentially small 8-category equipped with an admissibil-
ity structure, let X and Y be 8-topoi, and let pSX

L , S
X
R q and pSY

L , S
Y
Rq denote the factorization

systems on the 8-categories ObjGpX q and ObjGpYq given by Proposition 21.3.3.1. For every
geometric morphism f˚ P Fun˚pX ,Yq, composition with f˚ carries SX

L into SY
L and SX

R into
SY
R .

Proof. Let θ : G Ñ G` be as in the proof of Proposition 21.3.3.1. Then we have a homotopy
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commutative diagram

ObjGpX q
f˚ //

ρX
��

ObjGpYq

ρY

��
ObjG`pX q

f˚ // ObjG`pYq.

We can then write
SX
L “ ρ´1

Y S`,XL SX
R “ ρ´1

X S`,XR

SY
L “ ρ´1

Y S`,YL SY
R “ ρ´1

Y S`,YR ,

where pS`,XL , S`,XR q and pS`,YL , S`,YR q are the factorization systems on ObjG`pX q and
ObjG`pYq supplied by Proposition 21.3.1.1. It will therefore suffice to show that com-
position with f˚ carries S`,XL into S`,YL and S`,XR into S`,YR , which follows from Proposition
21.3.1.5.

21.3.4 The Case of a Fractured 8-Topos

We now turn to the proof of Theorem 21.3.0.1 for a general fractured 8-topos Ecorp Ď E .
We will need the following:

Lemma 21.3.4.1. Let Ecorp Ď E be a fractured 8-topos and let h : G Ñ E be a presentation
of E (see Definition 20.5.3.1). For any 8-topos X , let LFunpE ,X q denote the full subcategory
of FunpE ,X q spanned by those functors which preserve small colimits, so that composition
with h determines a fully faithful embedding ι : LFunpE ,X q Ñ FunpG,X q. Suppose we are
given a natural transformation α : f Ñ g between functors f, g : G Ñ X satisfying the
following conditions:

p˚q For every admissible morphism U Ñ V in G, the diagram

fpUq //

��

gpUq

��
fpV q // gpV q

is a pullback square in X .

If g belongs to the essential image of ι, then so does f .

Proof. For each object V P G, let FV : PpGad
{V q Ñ X be the colimit-preserving extension

of f |Gad
{V

, and define GV : PpGad
{V q Ñ X similarly. The assumption that g belongs to the

essential image of ι guarantees that GV factors (up to homotopy) through the localization
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functor PpGad
{V q Ñ E

corp
{hV , and we wish to show that FV has the same property (for each

V P G). This is clear, since assumption p˚q guarantees that FV is given by the formula

FV pF q “ GV pF q ˆgpV q fpV q.

Proof of Theorem 21.3.0.1. Let Ecorp Ď E be a fractured 8-topos. Using Theorem 20.5.3.4,
we can choose an essentially small full subcategory G Ď E for which the inclusion G ãÑ E
is a presentation of E (where a morphism in G is admissible if it is Ecorp-admissible when
regarded as a morphism in E). The inclusion functor extends to a geometric morphism
of 8-topoi H˚ : PpGq Ñ E whose right adjoint H˚ is fully faithful. For every 8-topos X ,
composition with H˚ induces a fully faithful embedding ι : Fun˚pE ,X q ãÑ Fun˚pPpGq,X q,
whose essential image is spanned by those functors which carry H˚-equivalences in PpGq to
equivalences in X . Let pSL, SRq be the factorization system on Fun˚pPpGq,X q » ObjGpX q
given by Proposition 21.3.3.1. To prove the first assertion of Theorem 21.3.0.1, it will suffice
to verify the following:

paq A morphism α in Fun˚pE ,X q is local if and only if ιpαq belongs to SR.

pbq The factorization system pSL, SRq restricts to a factorization system on Fun˚pE ,X q.
In other words, if we are given a morphism β : O 1 Ñ O2 in Fun˚pE ,X q which factors
as a composition

ιO 1
βL
Ñ O

βR
Ñ ιO2

where βL P SL and βR P SR, then O P Fun˚pPpGq,X q belongs to the essential image
of ι.

Assertion paq follows from Corollary 21.2.4.12 and pbq follows from Lemma 21.3.4.1.
We now complete the proof of Theorem 21.3.0.1 by showing that the factorization system

constructed above depends functorially on the 8-topos X . Let f˚ : X Ñ Y be a geometric
morphism of8-topoi and let pSX

L , S
X
R q and pSY

L , S
Y
Rq be the factorization systems constructed

in the first part of the proof. We wish to show that composition with f˚ carries SX
L into SY

L

and SX
R into SY

R . This follows from Proposition 21.3.3.2 by virtue of the commutativity of
the diagram

Fun˚pE ,X q //

��

Fun˚pE ,Yq

��
ObjGpX q // ObjGpYq.
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Corollary 21.3.4.2. Let Ecorp Ď E be a fractured 8-topos and suppose that the collection
of corporeal objects of X is closed under finite limits. Let X be an arbitrary 8-topos and let
O P Fun˚pE ,X q. Then the 8-category Fun˚locpE ,X q{O is presentable.

Proof. Note that if we are given a commutative diagram

O2
α //

  

O 1

~~
O

in the8-category Fun˚locpE ,X q where the vertical maps are local, then α is automatically local
as well. We may therefore identify Fun˚locpE ,X q{O with the full subcategory of Fun˚pE ,X q{O
spanned by the local morphisms O 1 Ñ O.

Using Proposition 20.5.4.1, we can choose a presentation h : G Ñ E where the 8-
category G admits finite limits. Then composition with h induces a fully faithful embedding
Fun˚pE ,X q Ñ ObjGpX q. Set O0 “ pO ˝hq P ObjGpYq. Using Lemma 21.3.4.1, we can
identify Fun˚locpE ,X q{O with the full subcategory of ObjGpX q{O0 spanned by those maps
O 10 Ñ O0 which satisfy condition p˚q of Lemma 21.3.4.1. This 8-category is evidently
accessible and Proposition 21.3.1.1 implies that it is a localization of ObjGpX q{O0 . Since
the collection of presentable 8-categories is stable under accessible localization and passage
to overcategories (Theorem HTT.5.5.1.1 and Proposition HTT.5.5.3.11 ), we are reduced
to proving that ObjGpX q is a presentable 8-category, which follows from the identifi-
cation ObjGpX q » ShvIndpGopqpX q of Proposition 21.2.2.1 (alternatively, apply Lemmas
HTT.5.5.4.17 , HTT.5.5.4.18 , and HTT.5.5.4.19 ).

Remark 21.3.4.3. In the situation of Corollary 21.3.4.2, let U P E be an object and let
OU P X denote the value of O on U . Then evaluation at U induces a functor

eU : Fun˚locpE ,X q{O Ñ X {OU .

If U P E is corporeal, then the functor eU preserves limits. To prove this, it suffices to
observe that we can choose a presentation h : G Ñ E and an object U0 P G with U “ hpU0q;
in this case, the functor eU factors as a composition

Fun˚locpE ,X q{O
φ
Ñ ObjGpX q{O0

eU0
Ñ X

{OU

where eU0 is given by evaluation at U0 (which clearly preserves small limits) and the functor
φ exhibits Fun˚pE ,X q{O as a localization of ObjGpX q{O0 (by the proof of Corollary 21.3.4.2).

Remark 21.3.4.4 (Representability of X ÞÑ pSX
L , S

X
R q). Let Ecorp Ď E be a fractured

8-topos and let E∆1 be the path 8-topos for E (Definition 21.3.2.3). Then the 8-topos
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E∆1 represents a functor U : 8T op Ñ pS, whose value on an 8-topos X can be regarded
as a classifying space for morphisms in the 8-category Fun˚pE ,X q (more precisely, we
have a homotopy equivalence UpX q “ Funp∆1,Fun˚pE ,X qq»). For every 8-topos X , let
ULpX q Ď UpX q be the summand consisting of morphisms in Fun˚pE ,X q which belong to
SX
L , and define URpX q Ď UpX q similarly. It follows from Theorem 21.3.0.1 that we can

regard UL and UR as functors from 8T op to the 8-category pS.
Note that any morphism u : f˚ Ñ g˚ in Fun˚pE ,X q factors in an essentially unique way

as a composition
f˚

u1
Ñ h˚

u2
Ñ g˚,

where u1 P SX
L and u2 P SX

R . Moreover, Theorem 21.3.0.1 guarantees that this factorization
depends functorially on X . It follows that the constructions u ÞÑ u1 and u ÞÑ u2 determine
left homotopy inverses to the inclusions UL ãÑ U and UR ãÑ U . In particular, the functors
UL and UR are both retracts of U . Since the 8-category 8T op of 8-topoi is idempotent
complete (it admits all small limits and colimits), it follows that the functors UL and UR
are representable by 8-topoi E∆1

L and E∆1
R , respectively.

21.4 Structured Spaces

Recall that a locally ringed space is a pair pX,OXq, where X is a topological space and
OX is a local sheaf of commutative rings on X. The collection of locally ringed spaces
can be organized into a category T oploc

CAlg♥ , where a morphism from pX,OXq to pY,OY q in
T oploc

CAlg♥ is given by a pair pf, αq, where f : X Ñ Y is a continuous map of topological
spaces and α : f˚OY Ñ OX is a local map between sheaves of commutative rings on X

(Definition 1.1.5.1).
In Chapter 1, we considered several variants of the category T oploc

CAlg♥ :

paq Replacing the ordinary category of commutative rings by the 8-category CAlg of E8-
rings, we obtained the8-category of locally spectrally ringed spaces T oploc

CAlg (Definition
1.1.5.3).

pbq Replacing the ordinary category of topological spaces T op by the 8-category 8T op
of 8-topoi, we obtained the 8-category of locally spectrally ringed 8-topoi 8T oploc

CAlg
(Definition 1.4.2.1).

pcq Replacing the Zariski topology by the étale topology, we obtained a full subcategory
8T opsHen

CAlg Ď 8T oploc
CAlg of locally spectrally ringed 8-topoi with strictly Henselian

structure sheaves (Definition 1.4.2.1).

Our goal in this section is to develop a formalism which encompasses all of these examples
and several variants thereof, and thereby lay a foundation for discussing variants of the
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theory of spectral algebraic geometry. We begin in §21.4.1 by associating to every geometric
site pG,Gad, τq an 8-category 8T oplocpGq of locally G-structured 8-topoi (Construction
21.4.1.15), whose objects are pairs pX ,Oq where X is an 8-topos and O is a τ -local
G-object of X . The 8-category 8T oplocpGq specializes to the 8-category 8T oploc

CAlg of
locally spectrally ringed 8-topoi when G “ AffSp is the spectral Zariski site of Example
20.6.4.4 (Example 21.4.1.19; see also Examples 21.4.1.17, 21.4.1.18, and 21.4.1.20 for related
statements).

In general, many different geometric sites pG,Gad, τq can give rise to the same theory
of (local) G-objects: for any 8-topos X , the 8-category ObjτGpX q depends only on the
8-topos Shvτ pGq and the subcategory Objτ,loc

G pX q Ď ObjτGpX q depends only on the tracture
subcategory Shvτ pGqcorp Ď Shvτ pGq of Theorem 20.6.3.4. In §21.4.2, we adopt a more
invariant perspective and introduce an 8-category 8T oplocpEq associated to any fractured
8-topos E (Definition 21.4.2.6), which extends and (slightly) generalizes the constructions
of §21.4.1.

The remainder of this section is devoted to studying formal properties enjoyed by the
8-categories 8T oplocpGq and 8T oplocpEq of §21.4.1 and §21.4.2. In §21.4.3 we show that
these 8-categories admit small filtered limits (Theorem 21.4.3.1), and in §21.4.4 and 21.4.5
we show that they admit colimits for some restricted classes of diagrams (Propositions
21.4.4.9 and 21.4.5.1). One special case is particularly notable: in §21.4.6 we introduce
subcategories 8T opétpGq Ď 8T oplocpGq and 8T opétpEq Ď 8T oplocpEq of étale morphisms
(Variant 21.4.6.3 and Definition 21.4.6.1), which admit all small colimits (Proposition
21.4.6.4); these subcategories will play an important role in Chapter ??.

To apply the formalism of this section in practice, one typically begins by choosing a
geometric site pG,Gad, τq consisting of “simple” geometric objects of some kind (such as
affine schemes of finite type over Z), and obtains an 8-category 8T oplocpGq consisting
of more general objects of the same type (such as locally ringed spaces, or more general
8-topoi with a sheaf of local rings). In §21.4.7 we make this heuristic more precise by
constructing a functor G Ñ8T oplocpGq, which carries admissible morphisms in G to étale
morphisms in 8T oplocpGq (Remark 21.4.7.2). More generally, to any fractured 8-topos
Ecorp Ď E , we introduce a functor Re : Ecorp Ñ 8T oplocpEq which we refer to as corporeal
realization (Construction 21.4.7.1); here Ecorp denotes the full subcategory of E spanned
by the corporeal objects. We show that the corporeal realization functor Re is always
fully faithful (Proposition 21.4.7.10), and its value on a corporeal object X P E can be
characterized by a universal mapping property (Theorem 21.4.7.7).

21.4.1 The 8-Category 8T oppGq

Let C be an arbitrary 8-category. In §1.1.2, we introduced the 8-category T opC , whose
objects are pairs pX,F q where X is a topological space and F is a C-valued sheaf on X
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(Construction 1.1.2.2). We now consider some variants of this construction.

Construction 21.4.1.1 (The 8-Category 8T opC). Let C be an arbitrary 8-category. For
every geometric morphism of 8-topoi f˚ : X Ñ Y, precomposition with f˚ determines a
direct image functor fC

˚ : ShvCpYq Ñ ShvCpX q (see Remark 21.2.2.4). We can therefore view
the construction X ÞÑ ShvCpX q as a functor 8T op ÑyCat8. We let U : 8T opC Ñ 8T op
be a coCartesian fibration classified by the functor X ÞÑ ShvCpX qop. We will refer to 8T opC
as the 8-category of 8-topoi with a C-valued sheaf.

Remark 21.4.1.2. Let C be an arbitrary 8-category. We can describe the 8-category
8T opC of Construction 21.4.1.1 more informally as follows:

piq The objects of 8T opC are pairs pX ,F q, where X is an 8-topos and F is a C-valued
sheaf on X .

piiq A morphism from pX ,F q to pY,G q in the 8-category 8T opC is given by a geometric
morphism of 8-topoi f˚ : X Ñ Y together with a natural transformation β : G Ñ

fC
˚ F “ F ˝f˚.

Remark 21.4.1.3 (Comparison with T opC). Let C be an 8-category which admits small
limits. For any topological space X, Proposition 1.3.1.7 supplies an equivalence of 8-
categories ShvCpShvpXqq Ñ ShvCpXq. This equivalence depends functorially on X, and
therefore determines a pullback diagram of 8-categories

T opC //

��

8T opC

��
T op // 8T op .

Beware that this is generally false if C does not admit small limits.

Example 21.4.1.4 (Sheaves of E8-Rings). Let C “ CAlg be the 8-category of E8-rings.
Then 8T opC is the 8-category of spectrally ringed 8-topoi (Construction 1.4.1.3), and
T opC is the 8-category of spectrally ringed spaces (Definition 1.1.2.5).

We will be primarily interested in the 8-category 8T opC in the case where the 8-
category C is compactly generated. In this case, we can reformulate Construction 21.4.1.1
using the ideas of §21.2.

Construction 21.4.1.5 (The 8-Category 8T oppGq). Let G be an essentially small 8-
category. A G-structured 8-topos is a pair pX ,OX q, where X is an 8-topos and OX : G Ñ X
is a locally left exact functor (which we will denote by pT P Gq ÞÑ pOT

X P X q). In this case,
we refer to OX as the structure sheaf of X .
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Note that if f˚ : X Ñ Y is a geometric morphism of 8-topoi, then composition with f˚

determines a functor ObjGpX q Ñ ObjGpYq (see Remark 21.2.2.4). We can therefore view the
construction X ÞÑ ObjGpX q as a functor 8T opop ÑyCat8. We let U : 8T oppGq Ñ 8T op
be a Cartesian fibration classified by the functor X ÞÑ ObjGpGqop. We will refer to 8T oppGq
as the 8-category of G-structured 8-topoi.

Remark 21.4.1.6. Let G be an essentially small 8-category. We can describe the 8-
category 8T oppGq of Construction 21.4.1.5 more informally as follows:

piq The objects of 8T oppGq are G-structured 8-topoi pX ,OX q.

piiq A morphism from pX ,OX q to pY,OYq in the 8-category 8T oppGq is given by a
geometric morphism of 8-topoi f˚ : X Ñ Y together with a natural transformation
α : f˚ ˝ OY Ñ OX .

Here we can replace piiq with the following variant:

pii1q A morphism from pX ,OX q to pY,OYq in the 8-category 8T oppGq is given by a
geometric morphism of 8-topoi f˚ : X Ñ Y together with a natural transformation
β : OY Ñ f˚ ˝ OX .

Beware, however, that the functor f˚ ˝ OX appearing in pii1q might fail to be locally left
exact (unless we assume that G admits finite limits).

Variant 21.4.1.7. Let G be an essentially small 8-category. A G-structured space is
a pair pX,OXq, where X is a topological space and OX is a G-object of the 8-topos
ShvpXq. The collection of all G-structured spaces can be organized into an 8-category
T oppGq “ T opˆ8T op8T oppGq. We will refer to T oppGq as the 8-category of G-structured
spaces.

The relationship between Constructions 21.4.1.1 and 21.4.1.5 can be summarized by the
following relative version of Proposition 21.2.2.1, whose proof we leave to the reader:

Proposition 21.4.1.8. Let G be an essentially small 8-category which admits finite limits
and let C “ IndpGopq. Then there is a canonical equivalence of 8-categories ρ : 8T opC Ñ

8T oppGq given on objects by the construction pX ,F q ÞÑ pX ,OX q, where OX is characterized
by the formula MapX pX,O

T
X q » MapCpT,F pXqq for X P X and T P G.

Remark 21.4.1.9. Even without the assumption that G admits finite limits, we still have
a fully faithful embedding 8T opC ãÑ8T oppGq.

Corollary 21.4.1.10. Let G be an essentially small 8-category which admits finite limits.
Then the forgetful functor 8T oppGq Ñ 8T op is a coCartesian fibration.
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Proof. Apply Proposition 21.4.1.8 (noting that the forgetful functor 8T opIndpGopq Ñ8T op
is a coCartesian fibration by construction); alternatively, this follows directly from Remark
21.2.1.8.

Corollary 21.4.1.11. Let C be a compactly generated 8-category. Then the forgetful functor
8T opC Ñ8T op is a Cartesian fibration.

Proof. Apply Proposition 21.4.1.8 in the case where G “ Cop
c , noting that the forgetful

functor 8T oppGq Ñ 8T op is a Cartesian fibration by construction.

Corollary 21.4.1.12. Let G be an essentially small 8-category which admits finite limits and
let C “ IndpGopq. Then there is a canonical equivalence of 8-categories ρ : T opC Ñ T oppGq
given on objects by the construction pX,F q ÞÑ pX,OXq, where OX is characterized by the
formula OT

XpUq “ MapCpT,F pUqq for U Ď X and T P G.

Proof. Combine Proposition 21.4.1.8 with Remark ??.

Example 21.4.1.13 (Ringed Spaces). Let Aff denote the category of affine schemes of finite
type of over Z. Using Corollary 21.4.1.12, we obtain an equivalence T oppAffq » T opCAlg♥ ,
where T opCAlg♥ denotes the category of ringed spaces (Definition 1.1.1.1).

Example 21.4.1.14 (Spectrally Ringed Spaces). Let AffSp denote the opposite of the
8-category CAlgc of compact E8-rings. Then Proposition 21.2.2.1 supplies an equivalence
of 8T oppAffSpq with the 8-category 8T opCAlg of spectrally ringed 8-topoi (Construction
1.4.1.3). Similarly, Corollary 21.4.1.12 supplies an equivalence of T oppAffSpq with the
8-category T opCAlg of spectrally ringed spaces (Definition 1.1.2.5).

We now consider a variant of Construction 21.4.1.5.

Construction 21.4.1.15. Let pG,Gad, τq be a geometric site (Definition 20.6.2.1). We let
8T oplocpGq denote the (non-full) subcategory of 8T oppGq described as follows:

• An object pX ,OX q of 8T oppGq belongs to 8T oplocpGq if and only if OX belongs to
the full subcategory ObjτGpX q Ď ObjGpX q (see Definition 21.2.1.1).

• A morphism pf, αq : pX ,OX q Ñ pY,OYq in 8T oppGq belongs to 8T oplocpGq if and
only if OX and OY belong to ObjτGpX q and ObjτGpYq, and the morphism α : f˚OY Ñ

OX is local (in the sense of Definition 21.2.4.1).

We will refer to 8T oplocpGq as the 8-category of locally G-structured 8-topoi. We let
T oplocpGq denote the fiber product T opˆ8T op8T oplocpGq, which we refer to as the 8-
category of locally G-structured spaces.

In the case where Gad “ G» is the trivial admissibility structure on G (that is, only equiv-
alences in G are admissible), then we will denote 8T oplocpGq and T oplocpGq by 8T opτ pGq
and T opτ pGq, respectively.
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Remark 21.4.1.16. In the situation of Construction 21.4.1.15, the forgetful functor U :
8T oplocpGq Ñ 8T op is a Cartesian fibration, classified by the functor X ÞÑ Objτ,loc

G pX q.
Beware that U is usually not a coCartesian fibration, even when G admits finite limits.

Example 21.4.1.17 (Algebraic Geometry: Zariski Topology). Let pAff,AffZar, τZarq be
the geometric site of Example 20.6.4.1, and set 8T opZarpAffq “ 8T oplocpAffq. Using
Propositions 21.2.5.1 and 21.4.1.8, we can identify the objects of 8T opZarpAffq with pairs
pX ,OX q, where X is an 8-topos and OX is a local commutative ring object of the underlying
topos X♥. More precisely, we have a pullback diagram

8T opZarpAffq //

��

1T oploc
CAlg♥

��
8T op ♥ // 1T op

where 1T oploc
CAlg♥ is the 2-category of locally ringed topoi (Definition 1.2.1.4). In particular,

we can identify T opZarpAffq “ T oplocpAffq with the category T oploc
CAlg♥ of locally ringed

spaces (see Definition 1.1.5.1).

Example 21.4.1.18 (Algebraic Geometry: Étale Topology). Let pAff,Aff ét, τétq be the
geometric site of Example ?? and set 8T opétpAffq “ 8T oplocpAffq. Using Propositions
21.2.5.1 and 21.4.1.8, we can identify the objects of 8T opétpAffq with pairs pX ,OX q, where
X is an 8-topos and OX is a strictly Henselian commutative ring object of the underlying
topos X♥. More precisely, we have a pullback diagram

8T opétpAffq //

��

1T opsHen
CAlg♥

��
8T op ♥ // 1T op

where 1T opsHen
CAlg♥ is the 2-category of locally ringed topoi with strictly Henselian structure

sheaf (Definition 1.2.2.5).

Example 21.4.1.19 (Spectral Algebraic Geometry: Zariski Topology). Let pAffSp,AffZar
Sp , τZarq

be the geometric site of Example 20.6.4.4 and set 8T opZarpAffSpq “ 8T oplocpAffSpq. Using
Propositions 21.2.5.3 and 21.4.1.8, we can identify the 8-category 8T opZarpAffSpq with
the 8-category 8T oploc

CAlg of locally spectrally ringed 8-topoi (see Definition 1.4.2.1). In
particular, we can identify T opZarpAffSpq “ T oplocpAffSpq with the 8-category of locally
spectrally ringed spaces (see Definition 1.1.5.3).

Example 21.4.1.20 (Spectral Algebraic Geometry: Étale Topology). Let pAffSp,Aff ét
Sp, τétq

be the geometric site of Example ?? and set 8T opétpAffSpq “ 8T oplocpAffSpq. Using
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Propositions 21.2.5.3 and 21.4.1.8, we can identify the 8-category 8T opétpAffSpq with the
8-category 8T opsHen

CAlg of locally spectrally ringed 8-topoi with strictly Henselian structure
sheaf (see Definition 1.4.2.1).

21.4.2 The 8-Category 8T oppEq

The constructions of §21.4.1 can be reformulated (and slightly generalized) by working
directly with classifying 8-topoi, rather than (geometric) sites.

Construction 21.4.2.1 (The 8-Category 8T oppEq). Let E be an 8-topos. For every
8-topos X , we let Fun˚pE ,X q denote the full subcategory of FunpE ,X q whose objects are
functors which preserve small colimits and finite limits. Note that if f˚ : X Ñ Y belongs to
Fun˚pX ,Yq, then composition with f˚ determines a functor Fun˚pE ,X q Ñ Fun˚pE ,Yq. We
can therefore view the construction X ÞÑ Fun˚pE ,X q as a functor 8T opop ÑyCat8. We let
U : 8T oppEq Ñ 8T op be a Cartesian fibration classified by the functor X ÞÑ Fun˚pE ,X qop.

Warning 21.4.2.2. We notation 8T oppUq has now been assigned two different meanings:
that of Construction 21.4.1.5 in the case where U is an essentially small 8-category, and that
of Construction 21.4.2.1 when U is an 8-topos. There is some slight danger of confusion,
because it is possible for an 8-category U to satisfy both of these conditions. This happens
only when U is a contractible Kan complex, and in this case Constructions 21.4.1.5 and
21.4.2.1 do not agree (the 8-category 8T oppUq of Construction 21.4.1.5 is equivalent to
8T op, while the 8-category 8T oppUq is a contractible Kan complex).

Remark 21.4.2.3. Let E be an 8-topos. Then the 8-category 8T oppEq can be viewed as
a lax version of the overcategory 8T op{ E . The objects of 8T oppEq can be identified with
π˚ : X Ñ E in the 8-category 8T op, with morphisms from π˚ : X Ñ E to π1˚ : X 1 Ñ E
given by diagrams

X

π˚ ��

f˚ // X 1

π1˚~~
E

which commute up to a possibly non-invertible natural transformation α : π˚ Ñ π1˚ ˝ f˚. In
particular, the 8-category 8T oppEq contains the usual overcategory 8T op{ E as a (non-full)
subcategory; see Proposition 21.4.4.5 for more details.

Example 21.4.2.4. Let G be an essentially small 8-category equipped with a Grothendieck
topology τ , and let E “ Shvτ pGq be the associated 8-topos. Then composition with
the sheafified Yoneda embedding h : G Ñ E induces an equivalence Fun˚pShvτ pGq,X q Ñ
ObjτGpX q for every 8-topos X (Proposition 21.2.1.13), which depends functorially on X .
It follows that h induces an equivalence of 8-categories 8T oppEq Ñ 8T opτ pGq, where
8T opτ pGq is defined as in Construction 21.4.1.15.
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Example 21.4.2.5. Let C be a small 8-category which admits finite colimits, and let
E “ FunpC,Sq denote the 8-topos of presheaves on Cop. Combining Example 21.4.2.4 with
Proposition 21.4.1.8, we obtain an equivalence of 8-categories 8T oppEq » 8T opIndpCq,

Definition 21.4.2.6. Let E be an 8-topos equipped with a fracture subcategory Ecorp Ď E .
We let 8T oplocpEq denote the (non-full) subcategory of 8T oppEq whose morphisms are
given by diagrams of 8-topoi

X

π˚ ��

f˚ // X 1

π1˚~~
E

which commute up to a natural transformation π˚ Ñ π1˚ ˝ f˚ for which the induced map of
left adjoints f˚ ˝ π1˚ Ñ π˚ is local, in the sense of Definition 21.2.4.4.

Remark 21.4.2.7. Let Ecorp Ď E be a fractured 8-topos. Then the Cartesian fibration
8T oppEq Ñ 8T op restricts to a Cartesian fibration8T oplocpEq Ñ 8T op, which is classified
by the functor

8T opop ÑyCat8 X ÞÑ Fun˚locpE ,X q.

Warning 21.4.2.8. In the situation of Construction 21.4.2.1, the 8-category 8T oplocpEq
depends not only on E , but also on the choice of a fracture subcategory Ecorp (however,
it depends only on the completion of Ecorp, in the sense of Remark 20.3.4.7: see Remark
21.2.4.9.

Example 21.4.2.9. Let pG,Gad, τq be a geometric site (Definition 20.6.2.1) and regard
E “ Shvτ pGq as equipped with the fracture subcategory Ecorp “ Shvcorp

τ pGq of Theorem
20.6.3.4. Then composition with the sheafified Yoneda embedding h : G Ñ E induces an
equivalence Fun˚locpShvτ pGq,X q Ñ Objτ,loc

G pX q for every 8-topos X (Corollary 21.2.4.12),
which depends functorially on X . It follows that h induces an equivalence of 8-categories
8T oplocpEq Ñ 8T oplocpGq, where 8T oplocpGq is defined as in Construction 21.4.1.15.

21.4.3 Filtered Limits in 8T oploc
pEq

Let 8T op be the 8-category of 8-topoi. Then the 8-category 8T op admits all small
limits (Corollary ??). Moreover, filtered limits in the 8-category 8T op are particularly
easy to understand: they can be computed at the level of the underlying 8-categories (in
other words, the forgetful functor 8T op ãÑ yCat8 preserves filtered limits: see Theorem
HTT.6.3.3.1 ). In this section, we will show that an analogous statement holds for the
variants of 8T op described in §21.4.1 and §21.4.2. Our main result can be stated as follows:
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Theorem 21.4.3.1. p1q Let E be an 8-topos. Then the 8-category 8T oppEq of Con-
struction 21.4.2.1 admits small filtered limits, which are preserved by the forgetful
functor 8T oppEq Ñ 8T op.

p2q Let Ecorp Ď E be a fractured 8-topos. Then the 8-category 8T oplocpEq of Definition
21.4.2.6 admits small filtered limits, which are preserved by the inclusion functor
8T oplocpEq ãÑ 8T oppEq (and therefore also by the forgetful functor 8T oplocpEq Ñ
8T op.

p3q Let pG,Gad, τq be a geometric site. Then the 8-category 8T oplocpGq of Construction
21.4.1.15 admits small filtered limits, which are preserved by the forgetful functor
8T oplocpGq Ñ 8T op.

p4q Let C be a compactly generated 8-category. Then the 8-category 8T opC of Construc-
tion 21.4.1.1 admits small filtered limits, which are preserved by the forgetful functor
8T opC Ñ8T op.

We will deduce Theorem 21.4.3.1 from the following:

Proposition 21.4.3.2. Let E and X be 8-topoi. Then:

piq The 8-category Fun˚pE ,X q admits small filtered colimits, which are preserved by the
inclusion functor Fun˚pE ,X q ãÑ FunpE ,X q.

piiq Suppose that E is equipped with a fracture subcategory Ecorp Ď E. Then the 8-
category Fun˚locpE ,X q admits small filtered colimits, which are preserved by the inclusion
Fun˚locpE ,X q ãÑ Fun˚pE ,X q.

Let us assume Proposition 21.4.3.2 for the moment, and gather some consequences.

Corollary 21.4.3.3. Let E be an 8-topos. Then, for any geometric morphism of 8-topoi
f˚ : X Ñ Y, composition with f˚ induces a functor Fun˚pE ,X q Ñ Fun˚pE ,Yq which
preserves small filtered colimits. If E is equipped with a fracture subcategory Ecorp, then the
induced map Fun˚locpE ,X q Ñ Fun˚locpE ,Yq also preserves small filtered colimits.

Warning 21.4.3.4. If E and X are 8-topoi, then the 8-category Fun˚pE ,X q is always
accessible (Proposition HTT.6.3.1.13 ). However, if E is equipped with a fracture subcategory
Ecorp, then the subcategory of local morphisms Fun˚locpE ,X q need not be accessible. For
example, if Ecorp “ E , then Fun˚locpE ,X q » Fun˚pE ,X q» is accessible if and only if the
8-category Fun˚pE ,X q is essentially small.

Corollary 21.4.3.5. Let E be an 8-topos and let I be a small filtered 8-category. Then:
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p1q Every commutative diagram

Iop //� _

��

8T oppEq

U
��

pIopqŸ //

99

8T op

admits a completion as indicated, where the dotted arrow is a U-limit diagram in
8T oppEq (here U denotes the forgetful functor).

p2q Suppose that E is equipped with a fracture subcategory Ecorp Ď E. Then every commu-
tative diagram

Iop //� _

��

8T oplocpEq

U loc

��
pIopqŸ //

88

8T op

admits a completion as indicated, where the dotted arrow is a U loc-limit diagram in
8T oplocpEq. Moreover, this completion is also a U -limit diagram.

Proof. Combine Proposition 21.4.3.2, Corollary 21.4.3.3, and Corollary HTT.4.3.1.11 .

Proof of Theorem 21.4.3.1. Assertions p1q and p2q follow from Corollary 21.4.3.5, Theorem
HTT.6.3.3.1 , and Proposition HTT.4.3.1.5 . The implication p2q ñ p3q follows from Example
21.4.2.9, and the implication p3q ñ p4q follows from Proposition ??.

Proof of Proposition 21.4.3.2. Let A be a (small) filtered partially ordered set and let
tf˚αuαPA be a diagram in the 8-category Fun˚pE ,X q having colimit f˚ in FunpE ,X q. To
prove Proposition 21.4.3.2, we must establish the following:

paq The functor f˚ belongs to Fun˚pE ,X q.

pbq Let Ecorp Ď E be a fracture subcategory and suppose that, for each α ď β in A,
the associated natural transformation f˚α Ñ f˚β is local. Then each of the natural
transformations f˚α Ñ f˚ is local.

pcq In the situation of pbq, suppose we are given a natural transformation u : f˚ Ñ g˚,
where g˚ P Fun˚pX ,Yq. Suppose further that each of the induced transformations
uα : f˚α Ñ g˚ is local. Then u is local.

Assertion paq follows immediately from Lemma HTT.5.5.2.3 and Example HTT.7.3.4.7 .
To prove pbq, consider an arbitrary U Ñ V in Ecorp. We wish to show that the diagram σ :

f˚αpUq //

��

f˚pUq

��
f˚αpV q // f˚pV q
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is a pullback square in X . This is clear, since σ is a filtered colimit of pullback squares

f˚αpUq //

��

f˚β pUq

��
f˚αpV q // f˚β pV q

for β ě α. The proof of pcq is similar, using the fact that each diagram

f˚pUq //

��

g˚pUq

��
f˚pV q // g˚pV q

is a filtered colimit of diagrams of the form

f˚αpUq //

��

g˚pUq

��
f˚αpV q // g˚pV q

for α P A.

21.4.4 Cartesian Colimits in 8T oppEq

We now consider the problem of constructing colimits of 8-topoi equipped with structure
sheaves. We begin with an easy observation.

Proposition 21.4.4.1. Let K be a (small) simplicial set and let C be an 8-category
which admits Kop-indexed limits. Then the 8-category 8T opC admits K-indexed colimits.
Moreover, the forgetful functor U : 8T opC Ñ8T op preserves K-indexed colimits.

Proof. Note that the8-category8T op admitsK-indexed colimits (Proposition HTT.6.3.2.3 ).
By virtue of Proposition HTT.4.3.1.5 , it will suffice to show that for commutative diagram

K //

��

8T opC

U
��

KŹ //

::

8T op

admits an extension as indicated which is a U -colimit diagram. Using the criterion of
Corollary HTT.4.3.1.11 , we are reduced to proving the following:

piq For every 8-topos X , the 8-category ShvCpX q admits Kop-indexed limits.
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piiq For every geometric morphism of 8-topoi f˚ : X Ñ Y, the direct image functor
fC
˚ : ShvCpX q Ñ ShvCpYq (given by pointwise composition with f˚) preserves Kop-

indexed limits.

Both assertions follow immediately from the observation that ShvCpX q and ShvCpYq are
closed under Kop-indexed limits in the 8-categories FunpX op, Cq and FunpYop, Cq, respec-
tively.

Let us review the proof of Proposition 21.4.4.1 in more informal language. To fix ideas,
let us specialize to the case where C “ CAlg is the 8-category of E8-rings. Suppose that we
are given a diagram tpX I ,OIquIPI in the 8-category 8T opCAlg of spectrally ringed 8-topoi,
indexed by some (small) 8-category I. Then the underlying diagram tX Iu admits a colimit
X in the 8-category 8T op. In particular, for each I P I we have a tautological geometric
morphism fI˚ : X I Ñ X . Then the colimit of the diagram tpX I ,OIquIPI is then given by
the pair pX , lim

ÐÝIPIop fI˚OIq. Our analysis then depends on the following features of the
theory of CAlg-valued sheaves:

paq Every C-valued sheaf OI on X I admits a direct image fI˚OI on X .

pbq The 8-category ShvCAlgpX q of CAlg-valued sheaves on X admits small limits (which
are preserved by further direct image functors).

Beware that if we replace 8T opCAlg by the subcategory 8T oploc
CAlg of locally spectrally

ringed 8-topoi, then the analogues of both paq and pbq fail: local sheaves of E8-rings are
not stable under either direct images or inverse limits. Consequently, it is not reasonable to
expect to expect an analogue of Proposition 21.4.4.1 for the 8-categories 8T oplocpGq and
8T oplocpEq introduced in §21.4.1 and §21.4.2. We will therefore restrict our attention to the
study of a special class of diagrams, where in some sense the structure sheaf is not varying.

Definition 21.4.4.2. Let E be an 8-topos and let U : 8T oppEq Ñ 8T op be the Cartesian
fibration of Construction 21.4.2.1. We will say that a morphism in 8T oppEq is Cartesian
if it is U -Cartesian. We let 8T opCartpEq denote the (non-full) subcategory of 8T oppEq
spanned by the U -Cartesian morphisms.

Remark 21.4.4.3. Let E be an 8-topos, and regard E as a fracture subcategory of itself
(Example 20.1.2.2). Then the subcategory 8T opCartpEq Ď 8T oppEq of Definition 21.4.4.2
coincides with the subcategory 8T oplocpEq Ď 8T oppEq of Definition 21.4.2.6.

Remark 21.4.4.4. Let E be an 8-topos equipped with an arbitrary fracture subcategory
Ecorp Ď E . Then we have an inclusion 8T opCartpEq Ď 8T oplocpEq.

Proposition 21.4.4.5. Let E be an 8-topos. Then the forgetful functor 8T opCartpEq Ñ
8T op is a right fibration classified by the object E P 8T op. In other words, there is an
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equivalence of 8-categories 8T opCartpEq » 8T op{ E (compatible with the projection to
8T op).

Proof. The statement that the forgetful functor 8T opCartpEq Ñ 8T op is a right fibration
is a special case of Corollary HTT.2.4.2.5 . To show that it is classified by the 8-topos
E , it will suffices to observe that the object pE , idEq is a final object of 8T opCartpEq (see
Proposition HTT.4.4.4.5 ), which follows easily from the definitions.

Variant 21.4.4.6. Let pG,Gad, τq be a geometric site (Definition 20.6.2.1) and let8T oplocpGq
be the 8-category of Construction 21.4.1.15. We let 8T opCartpGq denote the (non-full) sub-
category of 8T oplocpGq spanned by the U -Cartesian morphisms, where U : 8T oplocpGq Ñ
8T oppGq is the forgetful functor.

Remark 21.4.4.7. Let pG,Gad, τq be a geometric site and let E “ Shvτ pGq be the associated
8-topos. Then the equivalence 8T oppEq » 8T opτ pGq of Example 21.4.2.4 restricts to an
equivalence of 8-categories 8T opCartpEq » 8T opCartpGq. In particular, the 8-category
8T opCartpGq depends only on the 8-category G and the Grothendieck topology τ , and not
on the choice of admissibility structure Gad.

Remark 21.4.4.8. In the situation of Variant 21.4.4.6, a morphism from pX ,OX q to pY,OYq

in the 8-category 8T oplocpGq can be identified with a pair pf˚, αq, where f˚ : X Ñ Y is a
geometric morphism of 8-topoi and α : f˚OY Ñ OX is a local morphism of G-objects. The
pair pf˚, αq belongs to 8T opCartpGq if and only if the morphism α is an equivalence.

We can now state the main result of this section:

Proposition 21.4.4.9. Let E be an 8-topos. Then:

p1q The 8-category 8T opCartpEq admits small colimits.

p2q The forgetful functor 8T opCartpEq Ñ 8T op preserves small colimits.

p3q The inclusion functor 8T opCartpEq ãÑ8T oppEq preserves small colimits.

p4q For each fracture subcategory Ecorp Ď E, the inclusion 8T opCartpEq ãÑ 8T oplocpEq
preserves small colimits.

Warning 21.4.4.10. In the situation of Proposition 21.4.4.9, the 8-categories 8T oppEq
and 8T oplocpEq need not admit small colimits.

Corollary 21.4.4.11. Let pG,Gad, τq be a geometric site. Then the 8-category 8T opCartpGq
admits small colimits, which are preserved by the inclusion functors8T oplocpGq Ðâ 8T opCartpGq ãÑ

8T opτ pGq and by the forgetful functor 8T opCartpGq Ñ 8T op.
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Proof. Combine Proposition 21.4.4.9 with Remark 21.4.4.7.

We will deduce Proposition 21.4.4.9 from the following general categorical principle,
whose proof we defer to the end of this section:

Lemma 21.4.4.12. Let p : X Ñ S be a coCartesian fibration of simplicial sets classified by
a diagram χ : S Ñ Cat8. Let q : KŸ Ñ X be a diagram with the following properties:

paq The composition χ ˝ p ˝ q : KŸ Ñ Cat8 is a limit diagram.

pbq The diagram q carries each edge of KŸ to a p-coCartesian morphism in X.

Then q is a p-limit diagram.

Proof of Proposition 21.4.4.9. According to Proposition HTT.6.3.2.3 , the8-category8T op
admits small colimits. It follows that, for any 8-topos E , the 8-category 8T op{ E also
admits small colimits, which are preserved by the forgetful functor 8T op{ E Ñ8T op (see
Proposition HTT.1.2.13.8 ). Assertions p1q and p2q of Proposition 21.4.4.9 now follow from
Proposition 21.4.4.5. To prove p3q and p4q, it will suffice (by virtue of Lemma 21.4.4.12) to
establish the following:

p31q For any 8-topos E , the construction X ÞÑ Fun˚pE ,X q determines a functor 8T opop Ñ
yCat8 which preserves small limits.

p41q For any fractured subcategory Ecorp Ď E , the construction X ÞÑ Fun˚locpE ,X q deter-
mines a functor 8T opop ÑyCat8 which preserves small limits.

Since the forgetful functor8T opop ÑyCat8 preserves small limits (Proposition HTT.6.3.2.1 ),
it follows immediately from the definitions that the construction X ÞÑ FunpE ,X q preserves
small limits. We may therefore deduce p31q and p41q from the following elementary observa-
tions:

p32q Let X be the colimit of a diagram tXαu in 8T op. Then a functor f˚ : E Ñ X
preserves small colimits and finite limits if and only if, for each index α, the composite
functor

E f˚
Ñ X Ñ Xα

preserves small colimits and finite limits.

p42q Let X be the colimit of a diagram tXαu in 8T op, and let u : f˚ Ñ g˚ be a morphism
in Fun˚pE ,X q. Then u is local (with respect to some fracture subcategory Ecorp Ď E)
if and only if, for each index α, the image of u in Fun˚pE ,Xαq is local.
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Proof of Lemma 21.4.4.12. Using Corollary HTT.3.3.1.2 , we may reduce to the case where
S is an 8-category (so that X is also an 8-category). Choose a categorical equivalence
K Ñ K 1 which is a monomorphism of simplicial sets, where K 1 is an 8-category. Since X
is an 8-category, the map q factors through K 1Ÿ. We may therefore replace K by K 1 and
thereby reduce to the case where K is an 8-category. In view of Corollary HTT.4.3.1.15 ,
we may replace S by KŸ (and X by the pullback X ˆS KŸ) and thereby reduce to the case
where p ˝ q is an isomorphism.

Consider the map π : KŸ Ñ p∆0qŸ » ∆1. Since K is an 8-category, the map π is
a Cartesian fibration of simplicial sets. Let p1 : C Ñ ∆1 be the “pushforward” of the
coCartesian fibration p, so that C is characterized by the universal mapping property

Hom∆1pY, Cq » HomKŸpY ˆ∆1 KŸ, Xq.

Corollary HTT.3.2.2.12 implies that p1 is a coCartesian fibration, associated to some functor
f from C0 “ Cˆ∆1t0u to C1 “ Cˆ∆1t1u. We can identify C0 with the fiber of p over the
cone point of KŸ, and C1 with the 8-category of sections of p over K. Let C11 denote the full
subcategory of C1 spanned by the coCartesian sections. Combining Corollary HTT.3.2.2.12 ,
Proposition HTT.3.3.3.1 , and assumption paq, we deduce that f determines an equivalence
C0 Ñ C11.

Let q0 “ q|K . We can identify q0 with an object C P C1, and q with a morphism
α : C 1 Ñ C in C. We then have a commutative diagram

C0ˆXX{q //

��

C0ˆXX{q0

��
C0ˆC C{α // C0ˆC C{C .

We wish to show that the upper horizontal map is a categorical equivalence. Since the
vertical maps are isomorphisms, it will suffice to show that the lower horizontal map is a
categorical equivalence. In other words, we wish to show that for every object C0 P C0,
composition with α induces a homotopy equivalence MapC0pC0, C

1q Ñ MapCpC0, Cq. We
have a commutative diagram (in the homotopy category of spaces)

MapC0pC0, C
1q //

��

MapCpC0, Cq

��
MapC1pfC0, fC

1q //MapCpfC0, Cq.

Here the right vertical map is a homotopy equivalence. Since f is fully faithful, the left
vertical map is also a homotopy equivalence. It therefore suffices to show that the bottom
horizontal map is a homotopy equivalence: in other words, that α induces an equivalence
fC 1 Ñ C. This is simply a translation of condition pbq.
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21.4.5 Clutching for Structured Spaces

Let Ecorp Ď E be a fractured 8-topos. In §21.4.4, we proved that every small diagram
in the 8-category 8T opCartpEq admits a colimit in the larger 8-category 8T oplocpEq
(Proposition 21.4.4.9). The existence of colimits for general diagrams in the 8-category
8T oplocpEq is more subtle. However, we do have the following partial result:

Proposition 21.4.5.1. Let Ecorp Ď E be a fractured 8-topos, and suppose we are given a
diagram

pX 0,O0q Ð pX 01,O01q Ñ pX 1,O1q

in the 8-category 8T oplocpEq. Assume that the underlying geometric morphisms X 0
f˚
ÐÝ

X 01
g˚
ÝÑ X 1 are closed immersions of 8-topoi. Then there exists a pushout square σ :

pX 01,O01q //

��

pX 0,O0q

��
pX 1,O1q // pX ,Oq

in the 8-category 8T oplocpEq. Moreover:

p1q The underlying diagram of 8-topoi

X 01
f˚ //

g˚
��

X 0

g1˚
��

X 1
f 1˚ // X

is a pushout square in 8T op; let us denote the diagonal composition by h˚ : X 01 Ñ X .

p2q For every corporeal object T P E, the natural map

OT Ñ g1˚OT
0 ˆh˚ OT01

f 1˚OT
1

is an equivalence in the 8-topos X .

p3q The diagram σ is also a pushout square in 8T oppEq.

Corollary 21.4.5.2. Let pG,Gad, τq be a geometric site and suppose we are given a diagram

pX 0,O0q Ð pX 01,O01q Ñ pX 1,O1q

in the 8-category 8T oplocpGq, where the underlying geometric morphisms X 0
f˚
ÐÝ X 01

g˚
ÝÑ

X 1 are closed immersions. Then there exists a pushout square σ:

pX 01,O01q //

��

pX 0,O0q

��
pX 1,O1q // pX ,Oq
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in the 8-category 8T oplocpGq. Moreover:

p1q The underlying diagram of 8-topoi

X 01
f˚ //

g˚
��

X 0

g1˚
��

X 1
f 1˚ // X

is a pushout square in 8T op; let us denote the diagonal composition by h˚ : X 01 Ñ X .

p2q For every object T P G, the natural map

OT Ñ g1˚OT
0 ˆh˚ OT01

f 1˚OT
1

is an equivalence in the 8-topos X .

p3q The diagram σ is also a pushout square in 8T oppGq.

Proof. Set E “ Shvτ pGq, and regard E as equipped with the fracture subcategory described
in Theorem 20.6.3.4. Then the sheafified Yoneda embedding h : G Ñ E is a presentation of E .
Using Proposition 20.5.4.1, we deduce that the collection of corporeal objects of E is closed
under finite limits. The desired result now follows from Proposition ?? and Example ??.

The rest of this section is devoted to the proof of Proposition 21.4.5.1. We begin by
treating the special case where X 0 “ X 01 “ X 1.

Lemma 21.4.5.3. Let Ecorp Ď E be a fractured 8-topos, let h : G Ñ E be a presentation of
E (Definition 20.5.3.1). Let X be an 8-topos, so that composition with h determines a fully
faithful embedding ι : Fun˚pE ,X q Ñ ObjGpX q. Suppose we are given a diagram

O0 Ñ O01 Ð O1

in the 8-category Objloc
G pX q, and set O “ O0ˆO01 O1 (where the fiber product is formed in

the 8-category FunpG,X q). If O0, O01, and O1 belong to the essential image of ι, then so
does ι. Moreover, the diagram

O //

��

O0

��
O1 // O01

is a pullback square in Objloc
G pX q.



21.4. STRUCTURED SPACES 1667

Proof. Since the map O1 Ñ O01 is local, the pullback map O Ñ O0 satisfies the hypothesis
of Lemma 21.3.4.1. It follows that O belongs to the essential image of ι and that the map
O Ñ O0 is local. Similarly, the projection map O Ñ O1 is local. To complete the proof,
it will suffice to show that for any other object O 1 P ObjGpX q, a natural transformation
α : O 1 Ñ O is local if and only if composite maps

α0 : O 1 Ñ O Ñ O0 α1 : O 1 Ñ O Ñ O1

are both local. The “only if” direction is trivial. For the converse, note that if α0 is local
and U Ñ T is an admissible morphism in G, then we have a commutative diagram

O 1U //

��

OU //

��

OU
0

��
O 1T // OT // OT

0

where the outer rectangle and the right square are pullbacks, so that the left square is a
pullback as well.

To reduce Proposition 21.4.5.1 to the situation of Lemma 21.4.5.3, we will need the
following:

Lemma 21.4.5.4. Let Ecorp Ď E be a fractured 8-topos, let h : G Ñ E be a presentation of
E, and let X be an 8-topos containing a p´1q-truncated object U . Let i˚ : X Ñ X zU and
j˚ : X Ñ X {U be the closed and open immersions associated to U . Then composition with h
determines fully faithful embeddings

ι : Fun˚pE ,X q Ñ ObjGpX q ι1 : Fun˚pE ,X zUq Ñ ObjGpX zUq ι2 : Fun˚pE ,X {U q Ñ ObjGpX {U q.

Then:

p1q A functor O : G Ñ X belongs to the essential image of ι if and only if i˚O and j˚O

belong to the essential images of ι1 and ι2, respectively.

p2q Let α : O Ñ O 1 be a morphism in ObjGpX q. Then α is local if and only if i˚α is a
local morphism of ObjGpX zUq and j˚α is a local morphism of ObjGpX {U q.

Proof. We will prove p1q; the proof of p2q is similar. The “only if” direction is obvious.
Conversely, assume that i˚O and j˚O belong to the essential images of ι1 and ι2, respectively.
Extend O to a colimit-preserving functor F : PpGq Ñ X , and the presentation h to a colimit-
preserving functor H : PpGq Ñ E . Our assumption guarantees that the functors i˚F and
j˚F are left exact, so that F is left exact by virtue of Lemma ??. To complete the proof, it
will suffice to show that the functor F factors (up to homotopy) through the localization
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functor H. In other words, we must show that if α is a morphism in PpGq for which Hpαq is
an equivalence, then F pαq is also an equivalence. By assumption, the functors i˚F and j˚F
factor (up to homotopy) through H, so that i˚F pαq and j˚F pαq are equivalences. Applying
Lemma ??, we deduce that F pαq is an equivalence, as desired.

Proof of Proposition 21.4.5.1. Let Ecorp Ď E be a fractured 8-topos. Using Theorem
20.5.3.4, we can choose a presentation ρ : G Ñ E . Suppose we are given a pushout
diagram of 8-topoi

pX 0,O0q Ð pX 01,O01q Ñ pX 1,O1q

in 8T oplocpEq, where the underlying geometric morphisms X 0
f˚
ÐÝ X 01

g˚
ÝÑ X 1 are closed

immersions with complementary open immersions j˚ : U0 Ñ X 0 and j1˚ : U1 Ñ X 1. Form a
pushout diagram of 8-topoi

X 01
f˚ //

g˚
��

X 0

g1˚
��

X 1
f 1˚ // X

and denote the diagonal composition by h˚ : X 01 Ñ X . Set O0 “ O0 ˝ρ P ObjGpX 0q, and
define O1 P ObjGpX 1q and O01 P ObjGpX 01q similarly. Let O : G Ñ X be the functor given
by the formula

O
T
“ g1˚O

T
0 ˆh˚O

T
01
f 1˚O

T
1 .

It follows from Lemma 21.4.5.3 that the pullback

h˚O » f˚O0 ˆO01
g˚O1

belongs to the essential image of the embedding Fun˚pE ,X 01q Ñ ObjGpX 01q. Moreover,
j˚g1˚O » j˚O0 and j1˚f 1˚O » j1˚O1 belong to the essential images of the embeddings
Fun˚pE ,Uq Ñ ObjGpUq and Fun˚pE ,U 1q Ñ ObjGpU 1q. Applying Lemma 21.4.5.4 twice, we
deduce that O » O ˝ρ for some O P Fun˚pE ,X q. By construction, we have a commutative
diagram σ :

pX 01,O01q //

��

pX 0,O0q

��
pX 1,O1q // pX ,Oq

in the 8-category 8T oppEq.
We now claim that σ is a pushout square in8T oppEq. To prove this, let Y “ pY,O 1q be an

arbitrary object of 8T oppEq. Set X “ pX ,Oq P 8T oppEq, and define X0,X1,X01 P 8T oppEq
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similarly. We then have a commutative diagram of spaces τ :

Map8T oppEqpX,Yq //

��

Map8T oppEqpX0,Yq ˆMap8T oppEqpX01,Yq Map8T oppEqpX1,Yq

��
Map8T oppX ,Yq //Map8T oppX 0,Yq ˆMap8T oppX 01,Yq Map8T oppX 1,Yq

and we wish to show that the upper horizontal map is a homotopy equivalence. The lower
horizontal map is a homotopy equivalence by construction, so it will suffice to show that τ
is a homotopy pullback square: that is, that τ induces a homotopy equivalence after passing
to the vertical homotopy fibers over any point η˚; Map8T oppX ,Yq. Equivalently, we wish to
show that the diagram of spaces τ 1:

MapFun˚pE,X qpη
˚O 1,Oq //

��

MapFun˚pE,X 0qpg
1˚η˚O 1,Oq

��
MapFun˚pE,X 1qpf

1˚η˚O 1,Oq //MapFun˚pE,X 01qph
˚η˚O 1,Oq

is a pullback square. Set O
1
“ O 1 ˝ρ P ObjGpYq. Using our assumption that ρ : G Ñ E is a

presentation, we can rewrite the diagram τ 1 as

MapFunpG,X qpη
˚O

1
,Oq //

��

MapFunpG,X qpη
˚O

1
, g1˚O0q

��

MapFunpG,X qpη
˚O

1
, f 1˚O1q //MapFunpG,X qpη

˚O
1
, h˚O01q,

which is a pullback square by assumption.
We now claim that the diagram σ is also a pullback square in the subcategory8T oplocpEq.

To prove this, it will suffice to show that a morphism pX ,Oq Ñ pY,O 1q in 8T oppEq belongs
to 8T oplocpEq if and only if the composite maps pX i,O iq Ñ pX ,Oq Ñ pY,O 1q belong to
8T oplocpEq for i “ 0 and i “ 1. This follows immediately from Lemmas 21.4.5.3 and
21.4.5.4.

We have now proven assertions p1q and p3q of Proposition ??, along with the following
weaker version of p2q:

p21q For every object T P E which belongs to the essential image of ρ : G Ñ E , the natural
map

OT Ñ g1˚OT
0 ˆh˚ OT01

f 1˚OT
1

is an equivalence in the 8-topos X .



1670 CHAPTER 21. STRUCTURE SHEAVES

To conclude that assertion p2q holds in general, it suffices to observe that every corporeal
object of E belongs to the essential image of some presentation ρ1 : G1 Ñ E (see Remark
20.5.3.7).

21.4.6 Étale Morphisms of Structured 8-Topoi

We now specialize our attention to a particularly useful class of Cartesian morphisms.

Definition 21.4.6.1. Let E be an 8-topos. We will say that a morphism f in the 8-
category 8T oppEq is étale if it is Cartesian (in the sense of Definition 21.4.4.2) and the
image of f under the forgetful functor 8T oppEq Ñ 8T op is an étale morphism of 8-topoi.
We let 8T opétpEq denote the (non-full) subcategory of 8T oppEq spanned by the étale
morphisms.

Remark 21.4.6.2. Let E be an 8-topos. Every étale morphism in 8T oppEq is Cartesian
(Remark 21.4.4.4), and therefore belongs to 8T oplocpEq for any fracture subcategory Ecorp Ď

E .

Variant 21.4.6.3. Let pG,Gad, τq be a geometric site. We will say that a morphism
f : pY,OYq Ñ pX ,OX q is étale if it is Cartesian (in the sense of Variant 21.4.4.6) and the
underlying geometric morphism Y Ñ X is étale. Equivalently, f is étale if it determines
an equivalence pY,OYq » pX {X ,OX |Xq for some object X P X (see Notation 21.2.1.7).
We let 8T opétpGq denote the (non-full) subcategory of 8T oplocpGq spanned by the étale
morphisms.

Some of basic properties of the class of étale morphisms are summarized in the following
result:

Proposition 21.4.6.4. Let E be an 8-topos. Then:

p1q Every equivalence in the 8-category 8T oppEq is étale.

p2q Suppose given a commutative diagram

pX 1,OX 1q
g

&&
pX ,OX q

f
88

h // pX 2,OX 2q

in 8T oppEq, where g is étale. Then f is étale if and only if h is étale.

p3q The 8-category 8T opétpEq admits small colimits.
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p4q Small colimits in 8T opétpEq are preserved by the forgetful functor 8T opétpEq, the
inclusion functor 8T opétpEq ãÑ 8T oppEq, and the inclusion functor 8T opétpEq ãÑ

8T oplocpEq for any choice of fracture subcategory Ecorp Ď E.

p5q Fix an object pX ,OX q P 8T oppEq. Then the 8-category p8T opétpEqq{pX ,OX q is canon-
ically equivalent to X .

Proof. Assertion p1q is obvious. Assertion p2q follows from Proposition HTT.2.4.1.7 and
Corollary HTT.6.3.5.9 . Assertions p3q and p4q follow from Proposition 21.4.4.9 and Theorem
HTT.6.3.5.13 . Assertion p5q follows from Remark HTT.6.3.5.10 .

Remark 21.4.6.5. Let pG,Gad, τq be a geometric site and let f : pY,OYq Ñ pX ,OX q be a
morphism in 8T oplocpGq. The condition that f is étale is local in the following sense: if
the 8-topos Y admits a covering by objects Uα P Y for which each of the induced maps
pY{Uα ,OY |Uαq Ñ pX ,OX q is étale, then f is étale. To prove this, we let Y0 denote the full
subcategory of X spanned by those objects U for which the map pY{U ,OY |U q Ñ pX ,OX q is
étale. Proposition 21.4.6.4 implies that Y0 is stable under the formation of small colimits.
In particular, U0 “ >Uα belongs to Y0. Let U‚ be the simplicial object of Y given by the
Čech nerve of the effective epimorphism U0 Ñ 1Y . Since Y0 is a sieve, we deduce that each
Un P Y0. Then |U‚| » 1Y P Y0, so that f is étale as desired.

Remark 21.4.6.6. Let pG,Gad, τq be a geometric site and let f : pX {X ,OX |Xq Ñ pX ,OX q

be an étale morphism in 8T oplocpGq. Suppose we are given some other morphism g :
pY,OYq Ñ pX ,OX q P 8T oplocpGq. Combining the fact that f is U -Cartesian (where
U : 8T oplocpGq Ñ 8T op is the forgetful functor) with the universal property of the 8-
topos X {X given by Remark HTT.6.3.5.7 , we deduce the existence of a canonical fiber
sequence

ΓpY; g˚Xq Ñ Map8T oplocpGqppY,OYq, pX {U ,OX |U q Ñ Map8T oplocpGqppY,OYq, pX ,OX qq,

where ΓpY; ‚q : Y Ñ S denotes the global sections functor.

Remark 21.4.6.7. Let pG,Gad, τq be a geometric site and let g : pY,OYq Ñ pX ,OX q be a
morphism in 8T oplocpGq. For any object X P X , the diagram

pY{g˚X ,OY |g˚Xq //

��

pX {X ,OX |Xq

��
pY,OYq // pX ,OX q

is a pullback square in 8T oplocpGq (whose vertical maps are étale). This follows immediately
from the universal property of Remark 21.4.6.6.
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21.4.7 Corporeal Realization

Let Aff denote the category of affine schemes of finite type over Z and let ShvZarpAffq
denote the 8-topos of S-valued sheaves with respect to the Zariski topology on Aff. Example
21.4.1.17 supplies a functor

θ : T oploc
CAlg♥ Ñ8T oppAffq,

where T oploc
CAlg♥ denotes the category of locally ringed topological spaces (Definition 1.1.5.1)

and 8T oppAffq denotes the 8-category of ShvZarpAffq-structured 8-topoi. Since every
scheme X can be regarded as a locally ringed space, we can compose θ with the inclusion
map Aff ãÑ T oploc

CAlg♥ to obtain a functor Aff ãÑ8T oppAffq. Our goal in this section is to
show that a similar phenomenon occurs if we replace ShvZarpAffq by an arbitrary fractured
8-topos.

Construction 21.4.7.1 (Corporeal Realization). Let E be a fractured 8-topos. For each
object X P E , we let OX denote a right adjoint to the forgetful functor Ead

{X Ñ E . Note that
the functor OX factors as a composition

E ˆX
ÝÑ E{X

ρ
Ñ Ead

{X ,

where ρX is a right adjoint to the inclusion X ad
{X ãÑ X {X (see Definition 20.3.3.1). Since

colimits in X are universal, the functor E ˆX
ÝÑ E{X always preserves small colimits. If X P E

is corporeal, then the functor ρX also preserves small colimits (Example 20.3.3.2), so that
OX : E Ñ Ead

{X preserves small colimits and can therefore be regarded as an object of the
8-category Fun˚pE , Ead

{Xq (note that the functor OX automatically preserves small limits,
since it is defined as a right adjoint). We may therefore regard the pair pEad

{X ,OXq as an
object of the 8-category 8T oplocpEq. We will denote this object by RepXq and refer to it
as the corporeal realization of X.

Remark 21.4.7.2. Let pG,Gad, τq be a geometric site (Definition 20.6.2.1) and let h : G Ñ
Shvτ pGq be the sheafified Yoneda embedding. Then h carries each object X P G to a
corporeal object of Shvτ pGq (where we regard Shvτ pGq as a fractured 8-topos via Theorem
20.6.3.4), and the 8-topos Shvτ pGqad

{X can be identified with ShvτadpGad
{Xq (see Proposition

20.6.3.2). According to Proposition 21.2.4.10, composition with the functor h induces an
equivalence of 8-categories

Fun˚locpShvτ pGq,ShvτadpGad
{Xqq » Objloc

G pShvτadpGad
{Xqq.

Under this equivalence, the structure sheaf OX of Construction 21.4.7.1 corresponds to the
locally left exact functor G Ñ ShvτX pGad

{Xq, which assigns to each T P G the sheafification of
the presheaf pU P Gad

{Xq ÞÑ MapGpU, T q.
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Example 21.4.7.3 (Algebraic Geometry: Étale Topology). Let pAff,Aff ét, τétq denote the
classical étale site (Example 20.6.4.2), and let X “ SpecR be an object of Aff. It follows
from Remark 21.4.7.2 that the corporeal realization RepXq can be identified with the étale
spectrum SpétR introduced in Definition 1.2.3.3.

Example 21.4.7.4 (Spectral Algebraic Geometry: Étale Topology). Let pAffSp,Aff ét
Sp, τétq

denote the spectral étale site (Example 20.6.4.5), and let X “ SpecR be an object of AffSp.
It follows from Remark 21.4.7.2 that the corporeal realization RepXq can be identified with
the étale spectrum SpétR introduced in Definition 1.4.2.5.

Our main goal in this section is to show that for any fractured 8-topos Ecorp Ď E , the
construction X ÞÑ RepXq is functorial (Remark 21.4.7.8 and Proposition 21.4.7.10), and
that a morphism f : X Ñ Y between corporeal objects of E belongs to Ecorp if and only
if the induced map RepXq Ñ RepY q is étale (Corollary 21.4.7.11). The main step will be
to show that the corporeal realization RepXq can be characterized by a universal property
(Theorem 21.4.7.7).

Notation 21.4.7.5. [The Global Sections Functor] Let χ : 8T op ÑyCat8 be the forgetful
functor and let Q : 8T opop

Ñ8T opop be a Cartesian fibration classified by χ (so that the
objects of 8T op can be identified with pairs pX , Xq, where X is an 8-topos and X P X is an
object). For each 8-topos X , we let 1X denote a final object of X . We let Γ : 8T opop

Ñ S
denote the functor represented by the object pS,1Sq P 8T op. We will denote the value of
Γ on a pair pX , Xq by ΓpX ;Xq, given informally by the formula ΓpX ;Xq “ MapX p1X , Xq.
We will refer to Γ as the global sections functor.

Notation 21.4.7.6. Let E be an 8-topos. For each X P E , evaluation at X determines a
functor

eX : 8T oppEq Ñ 8T op

eXpf
˚ : E Ñ Yq “ pY, f˚Xq.

We let ΓX : 8T oppEqop Ñ S denote the composition of eX with the global sections
functor Γ of Notation 21.4.7.5. If E is equipped with a fracture subcategory Ecorp Ď E ,
then we will abuse notation by identifying ΓX with its restriction to the subcategory
8T oplocpEqop Ď 8T oppEqop.

We can now formulate the universal property enjoyed by the corporeal realization RepXq:

Theorem 21.4.7.7. Let Ecorp Ď E be a fractured 8-topos and let X P Ecorp be a corporeal
object. Then the functor ΓX : 8T oplocpEqop Ñ S is represented by the RepXq “ pEad

{X ,OXq P

8T oplocpEq.

We postpone the proof of Theorem 21.4.7.7 for the moment; it will be deduced from a
more general result (Theorem ??) which we will prove in §??.
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Remark 21.4.7.8 (Functoriality). Let E be an 8-topos and let Ecorp Ď E be a fracture
subcategory. We let Ecorp denote the full subcategory of E spanned by the corporeal
objects (that is, the essential image of the inclusion Ecorp ãÑ E). Note that we always have
Ecorp Ĺ Ecorp Ĺ E , except in the trivial case where Ecorp “ E (see Warning 20.1.3.5).

Note that we can regard the map ΓX : 8T oplocpEqop Ñ S of Notation 21.4.7.6 as a
covariant functor of X P E . Using Theorem 21.4.7.7 (and the fact that the Yoneda embedding
8T oplocpEq Ñ Funp8T oplocpEqop, pSq is fully faithful) that we can regard the construction
X ÞÑ RepXq as a functor Re : Ecorp Ñ 8T oplocpEq. We will refer to Re as the corporeal
realization functor.

In particular, every morphism X Ñ Y in the 8-category Ecorp induces a map

pEad
{X ,OXq Ñ pEad

{Y ,OY q

in 8T oppX q, whose underlying geometric morphism is right adjoint to the functor

Ead
{Y Ñ E

ad
{X U ÞÑ U ˆY X.

Remark 21.4.7.9. Let Ecorp Ď E be a fractured 8-topos. Then the construction pX P

Eq ÞÑ ΓX of Notation 21.4.7.6 preserves finite limits. It follows that the corporeal realization
functor Re : Ecorp Ñ8T oplocpEq preserves all finite limits which exist in Ecorp.

Proposition 21.4.7.10. Let Ecorp Ď E be a fractured 8-topos. Then the corporeal realization
functor Re : Ecorp Ñ8T oplocpEq is fully faithful.

Proof. Let X and Y be corporeal objects of E , and let ρX : E{X Ñ Ead
{X be a right adjoint to

the inclusion. Using Theorem 21.4.7.7, we compute

Map8T oplocpEqpRepXq,RepY qq » ΓY pEad
{X ; OXq

“ ΓpX ad
{X ; OXpY qq

» ΓpEad
{X ; ρXpX ˆ Y qq

» MapEad
{X
pX, ρXpX ˆ Y qq

» MapE{X pX,X ˆ Y q

» MapEpX,Y q.

Corollary 21.4.7.11. Let Ecorp Ď E be a fractured 8-topos and let f : X Ñ Y be a
morphism between corporeal objects of X . The following conditions are equivalent:

p1q The morphism f belongs to Ecorp.
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p2q The induced map of corporeal realizations RepXq Ñ RepY q is an étale morphism in
8T oplocpEq.

Proof. The implication p1q ñ p2q follows from the description of the map RepXq Ñ RepY q
given in Remark 21.4.7.8. Conversely, suppose that p2q is satisfied. Then there exists an
object U P Ead

{Y such that RepXq is equivalent to ppEad
{Y q{U ,OY |U q » pEad

{U ,OU q “ RepUq as
an object of 8T oplocpEq{RepY q. Applying Proposition 21.4.7.10, we deduce that X and U

are equivalent as objects of E{Y , so that X P Ead
{Y . Using Example 20.3.1.2, we deduce that

f belongs to Ecorp.

The implication p1q ñ p2q of Corollary 21.4.7.11 can be generalized to the situation
where X and Y are not necessarily corporeal:

Proposition 21.4.7.12. Let Ecorp Ď E be a fractured 8-topos and let f : X Ñ Y be a
Ecorp-admissible morphism in X (Definition 20.3.1.1). If the functor ΓY of Notation 21.4.7.6
is representable by an object pY,OYq P 8T oplocpEq, then ΓX is representable by an object of
8T oplocpEq which is étale over pY,OYq.

Corollary 21.4.7.13. Let Ecorp Ď E be a fractured 8-topos and let f : X Ñ Y be a
morphism in E. The following conditions are equivalent:

paq The morphism f is Ecorp-admissible.

pbq For every pullback diagram
X 1 //

��

X

f
��

Y 1 // Y

in the 8-topos E, if the functor ΓY 1 : 8T oplocpEqop Ñ S is representable by an object
pY,OYq P 8T oplocpEq, then ΓX 1 is representable by an object of 8T oplocpEq which is
étale over pY,OYq.

Proof. The implication paq ñ pbq follows from Proposition 21.4.7.12. Conversely, suppose
that pbq is satisfied. Choose a corporeal object Y 1 P X equipped with an effective epimorphism
Y 1 Ñ Y . To prove that f is Ecorp-admissible, it will suffice to show that the projection map
Y 1ˆY X Ñ Y 1 is Ecorp-admissible. Using Corollary 21.4.7.11, we are reduced to showing that
the map of corporeal realizations RepY 1ˆY Xq Ñ RepY 1q is étale, which follows immediately
from assumption pbq.

Remark 21.4.7.14. Let Ecorp Ď E be a fractured 8-topos. It follows from Corollary
21.4.7.13 that the admissibility structure Ead Ď E of Proposition 20.3.1.3 can be recovered
from the subcategory 8T oplocpEq Ď 8T oppEq of Construction 21.4.2.1. Consequently,
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the subcategory 8T oplocpEq Ď 8T oppEq determines the fracture subcategory Ecorp up to
completion (see Remark 20.3.4.7).

Proof of Proposition 21.4.7.12. Suppose that f : X Ñ Y is an Ecorp-admissible morphism
in E and that the functor ΓY : 8T oplocpEq Ñ S is representable by an object pY,OYq P

8T oplocpEq. In particular, we have a canonical point η P ΓY pY ; OYq » ΓpY ; OYpY qq. Let U
denote the fiber product 1Y ˆOY pY qOYpXq, so that η lifts to an element η P ΓXpY{U ; OY |U q.
For any object pZ,OZq P 8T oplocpEq, evaluation on η determines a map θ fitting into a
commutative diagram

Map8T oplocpEqppZ,OZq, pY{U ,OY |U q, q
θ //

��

ΓXpZ; OZq

��
Map8T oplocpEqppZ,OZq, pY,OYqq

θ0 // ΓY pZ; OZq.

By assumption, the map θ0 is a homotopy equivalence. Passing to vertical homotopy fibers
over a point

pf˚, α0q P Map8T oplocpEqppZ,OZq, pY,OYqq

we obtain a map

ΓpZ; f˚Uq » ΓpZ; f˚OYpXqqˆΓpZ;f˚ OY pY qqΓpZ; f˚1Yq Ñ ΓpZ; OZpXqqˆΓpZ;OZpY qqΓpZ; 1Zq.

This map is a homotopy equivalence, since the Ecorp-admissibility of f guarantees that the
diagram

f˚OYpXq //

��

f˚OYpY q

��
OZpXq // OZpY q

is a pullback square in Z (see Proposition 21.2.4.8). It follows that θ is also a homotopy
equivalence. Allowing pZ,OZq to vary over all objects of 8T oplocpEq, we conclude that η
exhibits ΓX as the functor corepresented by the object pY{U ,OY |U q.
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Chapter 25

Derived Algebraic Geometry

Associated to every commutative ring R, there are several candidates for a “homotopy
theory” of commutative algebras over R:

paq One can consider topological spaces (or simplicial sets) equipped with the structure of
a commutative R-algebra, in which the commutative ring axioms are required to hold
“on the nose.”

pbq One can consider commutative differential graded algebras over R: that is, chain
complexes over R which are equipped with a structure of a commutative R-algebra in
which the commutative ring axioms are again required to hold “on the nose.”

pcq One can consider E8-algebras over R. These can be viewed as chain complexes (or, in
the connective case, as topological spaces) which are equipped with the structure of a
commutative R-algebra “up to coherent homotopy.”

If R contains the field Q of rational numbers, then paq, pbq, and pcq give rise to essentially
the same theory. More precisely, the category of simplicial commutative R-algebras and
the category of commutative differential graded algebras over R admit model structures
(Propositions HA.7.1.4.20 and HA.7.1.4.10 ), and the associated8-categories can be identified
with CAlgcn

R and CAlgR, respectively (Propositions 25.1.2.2 and HA.7.1.4.6 ); here CAlgR
denotes the 8-category of E8-algebras over R and CAlgcn

R Ď CAlgR the full subcategory
spanned by the connective E8-algebras over R.

If R does not contain the field Q of rational numbers, then the theory of commutative
differential graded algebras over R is poorly behaved. However, one can still consider
simplicial commutative algebra and E8-algebras over R, which give rise to different homotopy
theories. The theory of spectral algebraic geometry developed earlier in this book can be
loosely described as obtained from the theory of classical algebraic geometry by replacing

1681



1682 CHAPTER 25. DERIVED ALGEBRAIC GEOMETRY

commutative rings by E8-rings. In this section we will study a parallel (and closely related)
theory which we call derived algebraic geometry, where we instead use simplicial commutative
rings in place of ordinary commutative rings.

We begin in §25.1 with a review of the theory of simplicial commutative rings. Here
we will indulge in a slight abuse of terminology: the term “simplicial commutative ring” is
usually used in the literature to refer to a simplicial object of the ordinary category CAlg♥ of
commutative rings, or (equivalently) to a commutative ring object in the ordinary category
of simplicial sets. The collection of such objects can be organized into a simplicial model
category A. From our point of view, the real object of interest is the underlying 8-category
CAlg∆, which can be obtained as the homotopy coherent nerve of the full subcategory A˝ of
fibrant-cofibrant objects of A. This 8-category admits many different descriptions; for us,
the most relevant of these is that it can be obtained from the category of finitely generated
polynomial rings (over Z) by freely adjoining sifted colimits. We will essentially take this
universal property as our definition of CAlg∆ (see Definition 25.1.1.1 and Remark 25.1.1.2);
the relationship between this definition with the simplicial model category A can be deduced
from some general results of [138] (Remark 25.1.1.3), but will not play an essential role in
our exposition.

There is a close relationship between the theory of simplicial commutative rings and
the theory of (connective) E8-rings. More precisely, we can associate to every simplicial
commutative ring A an underlying connective E8-ring A˝, which is an E8-algebra over Z
(Construction 25.1.2.1). We therefore have forgetful functors

CAlg∆ Ñ CAlgcn
Z Ñ CAlgcn .

Heuristically, one can think of a connective E8-ring R P CAlgcn as a space which is equipped
with an addition and multiplication which satisfy the axiomatics for commutative rings
“up to coherent homotopy,” while a simplicial commutative ring R P CAlg∆ is a space
equipped with an addition and multiplication satisfying the commutative ring axioms “on
the nose.” In between these extremes lies the 8-category CAlgcn

Z , whose objects R can
be thought of as spaces equipped with an addition law which is strictly commutative and
associative, and a compatible multiplication law which is commutative and associative only
up to coherent homotopy. A precise consequence of this heuristic picture is that if for a
simplicial commutative ring R, the space of units of the underlying E8-ring can be regarded
as the 0th space of a Z-module spectrum (Proposition 25.1.5.3).

Another important difference between the theory of E8-rings and the theory of simplicial
commutative rings lies in the structure of free algebras. If A is an E8-ring and M is an
A-module, then one can consider the free E8-algebra Sym˚

ApMq over A generated by M :
as an A-module, it is given as an infinite direct sum

À

ně0 Symn
Apq, where each Symn

ApMq

denotes the homotopy coinvariants for the action of the symmetric group Σn on the n-fold
tensor power M bA ¨ ¨ ¨ bAM . In the setting of simplicial commutative rings, there is an
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analogous picture: given a simplicial commutative ring A and a connective A-module M , one
can form a free algebra LSym˚

ApMq which decomposes as a direct sum
À

ně0 LSymn
ApMq

(see Construction 25.2.2.6). However, the symmetric powers LSymn
ApMq which appear here

cannot be defined as the homotopy coinvariants of symmetric group actions: instead, they
are obtained as nonabelian left derived functors of the formation of symmetric powers in the
setting of classical commutative algebra. In §25.2, we will analyze the derived symmetric
power construction LSymn

A as well as the analogous derived functors for exterior and divided
powers (Constructions 25.2.2.1, 25.2.2.2, and 25.2.2.3) and study their behavior with respect
to connectivity and finiteness properties of modules.

The theory of simplicial commutative rings was originally introduced as a tool for
studying commutative algebra using techniques borrowed from algebraic topology. One
of the motivating applications was to extend the theory of Kähler differentials ΩB{A of
a commutative ring homomorphism A Ñ B to a homology theory (called André-Quillen
homology), allowing the short exact sequence

TorB0 pC,ΩB{Aq Ñ ΩC{A Ñ ΩC{B Ñ 0

to be extended on the left. In §25.3, we study André-Quillen in the setting of simplicial
commutative rings by assigning to each morphism φ : AÑ B in CAlg∆ a B-module spectrum
Lalg
B{A, which we will refer to as the algebraic cotangent complex of B over A (see Notation

25.3.2.1). This is generally different from the cotangent complex of the underlying morphism
of E8-rings A˝ Ñ B˝ considered elsewhere in this book, even when A and B are ordinary
commutative rings (the algebraic cotangent complex Lalg

B{A computes André-Quillen homology,
while the cotangent complex LB˝{A˝ computes topological André-Quillen homology), but
there is a close relationship between the two: there is an equivalence Lalg

B{A » B˝bB` LB˝{A˝

where B` is a certain (noncommutative) ring spectrum which acts on LB˝{A˝ (see Remark
25.3.3.7). Using this description, we show that many of the pleasant features of the cotangent
complexes of E8-ring can be extended to the algebraic setting; for example, a morphism
of simplicial commutative rings φ : A Ñ B is an equivalence if and only if induces an
isomorphism on π0 and the algebraic cotangent complex Lalg

B{A vanishes (Corollary 25.3.6.6).
In §??, we study finiteness conditions on simplicial commutative rings (and on morphisms

of simplicial commutative rings). If φ : AÑ B is a morphism of simplicial commutative rings,
we say that φ is almost of finite presentation if the functor C ÞÑ MapCAlg∆

A
pB,Cq commutes

with filtered colimits when restricted to n-truncated objects of CAlg∆
A , for every nonnegative

integer n (where CAlg∆
A “ pCAlg∆qA{ denotes the 8-category of simplicial commutative

rings equipped with a map from A). Our main result is that this condition depends only
the underlying morphism φ˝ : A˝ Ñ B˝ of E8-rings (more precisely, it is equivalent to the
requirement that φ˝ be almost of finite presentation, in the sense of Definition HA.7.2.4.26 ;
see Proposition ??), and that a similar phenomenon occurs for weaker finiteness conditions
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(Theorem ??). Note that this is not a priori obvious, because the analogous statement
is false for stronger finiteness conditions such as compactness: the polynomial ring Zrxs
is a compact object of the 8-category CAlg∆ of simplicial commutative rings, but is not
compact when viewed as an E8-ring or as an E8-algebra over Z (see Warning ??).

In §??, we study sheaves of simplicial commutative rings on a topological space X and,
more generally, on an 8-topos X (the former can be considered as a special case of the
latter, since the datum of a sheaf on a topological space X is equivalent to the datum of a
sheaf on the 8-topos ShvpXq). In §??, we will use the language of CAlg∆-valued sheaves
to introduce the notion of derived scheme (Definition ??): namely, we define a derived
scheme to be a pair pX,OXq where X is a topological space and OX is an CAlg∆-valued
sheaf on X for which the underlying pair pX,O˝Xq is a spectral scheme (in the sense of
Definition 1.1.2.8). Our main result (Corollary ??) is that this condition is equivalent to the
requirement that the pair pX,OXq is locally equivalent to the Zariski spectrum SpecpAq of
some simplicial commutative ring A (see Notation ??). In §??, we will prove an analogous
result for Deligne-Mumford stacks (Corollary ??), where the role of the Zariski spectrum
SpecA is instead played by a suitable notion of étale spectrum SpétpAq (Notation ??).

The theory of derived algebraic geometry developed in this section is closely related to the
theory of spectral algebraic geometry studied throughout this book. Every derived scheme
pX,OXq has an underlying spectral scheme pX,O˝Xq, and every derived Deligne-Mumford
stack pX ,OX q has an underlying spectral Deligne-Mumford stack pX ,O˝X q. Consequently,
many basic concepts and theorems can directly imported from spectral algebraic geometry
to derived algebraic geometry. However, there is one important respect in which the theory
of derived algebraic geometry is substantially simpler than the theory of spectral algebraic
geometry. In the setting of spectral algebraic geometry, there are (at least) two different
smoothness conditions one can consider on a morphism f : X Ñ Y: differential smoothness
and fiber-smoothness (see Definition 11.2.5.5). One of the difficulties in working with spectral
algebraic geometry is that these two notions are distinct from one another (unless we work
in characteristic zero) and neither shares all of the pleasant features of smooth morphisms
from classical algebraic geometry: differentially smooth morphisms need not be flat, and
fiber-smooth morphisms need not satisfy an infinitesimal lifting criterion. In §??, we will see
that the theory of derived algebraic geometry does not share this defect: we will introduce a
smoothness condition on a morphism f : X Ñ Y of derived Deligne-Mumford stacks (Variant
3.4.3.3) which entails both that f is flat and that it satisfies an infinitesimal lifting criterion.
The notion of smooth morphism will play an important role in the theory of derived algebraic
stacks which we will develop in Part VIII.
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25.1 Simplicial Commutative Rings

Our goal in this section is to give a short introduction to the theory of simplicial
commutative rings and its relationship to the theory of E8-rings which appears elsewhere in
this book. Fix a commutative ring R. In §25.1.1, we introduce the 8-category CAlg∆

R of
simplicial commutative R-algebras, which is obtained from the category of polynomial rings
over R by formally adjoining sifted colimits (Proposition 25.1.1.5). In §25.1.2, we study the
relationship of 8-category CAlg∆

R and the 8-category CAlgcn
R of connective E8-algebras

over R. There is a forgetful functor CAlg∆
R Ñ CAlgcn

R , which we will denote by A ÞÑ A˝; we
show that this functor admits both left and right adjoints (Proposition 25.1.2.4), and that it
is an equivalence when R contains the field Q of rational numbers (Proposition 25.1.2.2).
For many purposes, it is convenient to identify a simplicial commutative R-algebra A with
the underlying E8-algebra A˝; for example, in §25.1.3 we define the homotopy groups of A
to be the homotopy groups of A˝

In §25.1.4, we study the dependence of the 8-category CAlg∆
R on the commutative ring R.

Every morphism of commutative rings f : RÑ R1 induces a “restriction of scalars” functor
CAlg∆

R1 Ñ CAlg∆
R , and we show that this functor induces an equivalence of 8-categories
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CAlg∆
R1 » pCAlg∆

RqR1{ (Proposition 25.1.4.2). In particular, for any commutative ring R, we
can identify CAlg∆

R with the 8-category pCAlg∆qR{, where CAlg∆ “ CAlg∆
Z denotes the

8-category of simplicial commutative Z-algebras.
Roughly speaking, the difference between objects of CAlg∆

R and CAlgcn
R is that the

multiplication on a simplicial commutative algebra is required to be “strictly” commutative,
while the multiplication on an E8-algebra is only required to be commutative up to coherent
homotopy. In §25.1.5, we give a precise articulation of this heuristic (Proposition 25.1.5.3)
which will be applied in §25.3 to analyze the difference between the deformation theory of
simplicial commutative algebras and their E8 counterparts.

25.1.1 The 8-Category CAlg∆
R

We begin by introducing the principal objects of interest.

Definition 25.1.1.1. Let R be a commutative ring. We let PolyR denote the category whose
objects are polynomial rings Rrx1, . . . , xns over R, and whose morphisms are R-algebra
homomorphisms. Note that the category PolyR admits finite coproducts (given by the
formation of tensor product over R).

We let CAlg∆
R denote the full subcategory FunπpPolyop

R ,Sq Ď FunpPolyop
R ,Sq spanned by

those functors Polyop
R Ñ S which preserve finite products. We will refer to CAlg∆

R as the
8-category of simplicial commutative R-algebras. In the special case where R is the ring
Z of integers, we will denote CAlg∆

R simply by CAlg∆, and refer to it as the 8-category of
simplicial commutative rings.

Remark 25.1.1.2. Let R be a commutative ring. By virtue of Proposition HTT.5.5.8.22 ,
the 8-category CAlg∆

R can be characterized up to equivalence by the following properties:

p1q The 8-category CAlg∆
R is presentable.

p2q There exists a coproduct-preserving, fully faithful functor j : PolyR ãÑ CAlg∆
R .

p3q The essential image of j consists of compact projective objects of CAlg∆
R which generate

CAlg∆
R under sifted colimits.

Remark 25.1.1.3. The terminology of Definition 25.1.1.1 is motivated by the following
observation, which follows immediately from Corollary HTT.5.5.9.3 :

p˚q Let AR be the ordinary category of simplicial commutative R-algebras, regarded as
a simplicial model category in the usual way (see [167] or Proposition HTT.5.5.9.1 ),
and let A0 denote the full subcategory spanned by the fibrant-cofibrant objects. Then
there is a canonical equivalence of 8-categories NpA0q Ñ CAlg∆

R .
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Remark 25.1.1.4. Using p˚q, we deduce that the 8-category of discrete objects of CAlg∆
R

is canonically equivalent with (the nerve of) the category CAlg♥
R of commutative R-algebras.

We will generally abuse notation and not distinguish between commutative R-algebras and
the corresponding discrete objects of CAlg∆

R . In particular, we will view the polynomial
algebras Rrx1, . . . , xns as objects of CAlg∆

R (which we can regard as compact projective
generators for CAlg∆

R , by virtue of Remark 25.1.1.2).

The following result is an immediate consequence of Proposition HTT.5.5.8.15 and its
proof:

Proposition 25.1.1.5. Let R be a commutative ring and let j : PolyR Ñ CAlg∆
R denote

the Yoneda embedding. Let C be an 8-category which admits small sifted colimits, and
FunΣpCAlg∆

R , Cq the full subcategory of FunpCAlg∆
R , Cq spanned by those functors which

preserve sifted colimits. Then:

p1q Composition with j induces an equivalence of 8-categories

FunΣpCAlg∆
R , Cq Ñ FunpPolyR, Cq.

p2q A functor F : CAlg∆
R Ñ C belongs to FunΣpCAlg∆

R , Cq if and only if F is a left Kan
extension of F ˝ j along j.

p3q Suppose C admits finite coproducts, and let F : CAlg∆
R Ñ C preserve sifted colimits.

Then F preserves finite coproducts if and only if F ˝ j preserves finite coproducts.

25.1.2 Comparison with E8-Algebras

We now study the relationship between simplicial commutative algebras and E8-algebras.
We begin with an application of Proposition 25.1.1.5:

Construction 25.1.2.1. [The Underlying E8-Algebra] Let R be a commutative ring and
let PolyR denote the category of finitely generated polynomial rings over R, which we regard
as a full subcategory of both the 8-category CAlg∆

R of simplicial commutative R-algebras
and the 8-category CAlgcn

R of connective E8-algebras over R. By virtue of Proposition
25.1.1.5, there is an essentially unique functor

Θ : CAlg∆
R Ñ CAlgcn

R

which commutes with small sifted colimits and restricts to the identity on PolyR. If A is an
object of CAlg∆

R , we will ΘpAq by A˝ and refer to it as the underlying E8-algebra of A.

Proposition 25.1.2.2. Let R be a commutative ring, and let Θ : CAlg∆
R Ñ CAlgcn

R be the
forgetful functor of Construction 25.1.2.1. Then:



1688 CHAPTER 25. DERIVED ALGEBRAIC GEOMETRY

p1q The functor Θ preserves small limits and colimits.

p2q The functor Θ is conservative.

p3q If R contains the field Q, then Θ is an equivalence of 8-categories.

Proof. We first prove p1q. To prove that Θ preserves small colimits, it will suffice to show
that the inclusion PolyR ãÑ CAlgcn

R of Construction 25.1.2.1 preserves finite coproducts
(Proposition 25.1.1.5). Since coproducts in CAlgcn

R are computed by relative tensor products
over R, this follows from the fact that every polynomial algebra Rrx1, . . . , xns is flat as a
R-module.

Consider the functor φ : CAlgcn
R Ñ S defined by the composition

CAlgcn
R » CAlgpModcn

R q Ñ Modcn
R Ñ pSpqě0

Ω8
Ñ S .

Using Corollary HA.3.2.2.5 and Corollary HA.4.2.3.3 , we deduce that φ is conservative
and preserves small limits. Let ψ,ψ1 : CAlg∆

R Ñ S be the functors given by ψpAq “ φpA˝q

and ψ1pAq “ ApRrxsq. The functor ψ1 obviously preserves small limit, and it is conservative
since every object of Polyk can be written as a coproduct of finitely many copies of Rrxs.
To complete the proofs of p1q and p2q, it will suffice to show that the functors ψ and
ψ1 are equivalent. The functor ψ1 obviously preserves small sifted colimits. Combining
Proposition HA.1.4.3.9 , Corollary HA.4.2.3.5 , and Corollary HA.3.2.3.2 , we conclude that
ψ : CAlg∆

k Ñ S preserves small sifted colimits as well. By virtue of Proposition 25.1.1.5, it
will suffice to show that the composite functors ψ ˝ j, ψ1 ˝ j : PolyR Ñ S are equivalent. We
now simply observe that both of these compositions can be identified with the functor which
associates to each polynomial ring Rrx1, . . . , xns its underlying set of elements, regarded as
a discrete space.

Let us now prove p3q. Suppose that R is a Q-algebra. Then, for every n ě 0, every flat
R-module M , and every i ą 0, the homology group HipΣn;Mbnq vanishes, where Σn denotes
the symmetric group on n letters. It follows that the symmetric power Symn

RpMq P Modcn
R is

discrete, so that the E8-algebra Sym˚
RpR

mq can be identified with the (discrete) polynomial
ring Rrx1, . . . , xms. Using Proposition HA.7.2.4.27 , we conclude that the essential image of
θ0 consists of compact projective objects of CAlgcn

R which generate CAlgcn
R under colimits,

so that Θ is an equivalence by Proposition HTT.5.5.8.25 .

Notation 25.1.2.3. [Tensor Products] Let R be a commutative ring, and suppose we are
given a diagram

A0 Ð AÑ A1,

in the 8-category CAlg∆
R . We will denote the pushout of this diagram by A0 bA A1. This

notation is justified by the fact that the forgetful functor B ÞÑ B˝ preserves small colimits
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(Proposition 25.1.2.2), so that we have a canonical equivalence

pA0 bA A1q
˝ » A˝0 bA˝ A

˝
1

in CAlgcn
R .

Proposition 25.1.2.4. Let R be a commutative ring. Then the forgetful functor Θ :
CAlg∆

R Ñ CAlgcn
R admits left and right adjoints

ΘL : CAlgcn
R Ñ CAlg∆

R ΘR : CAlgcn
R Ñ CAlg∆

R .

Moreover, the functor Θ is both monadic and comonadic: that is, we can identify CAlg∆
R

with the 8-category of algebras for the monad Θ ˝ΘL on CAlgcn
R , or with the 8-category of

coalgebras for the comonad Θ ˝ΘR on CAlgcn
R .

Proof. Since the functor Θ preserves small limits and colimits, the existence of the functors
ΘL and ΘR follows from Corollary HTT.5.5.2.9 . Since Θ is conservative and preserves
geometric realizations of simplicial objects, the monadicity of Θ follows from the Barr-Beck
theorem (Theorem HA.4.7.0.3 ). Similarly, the comonadicity of Θ follows from the fact that
it is conservative and preserves totalizations of cosimplicial objects.

Remark 25.1.2.5. Let R be a commutative ring, and let ΘR : CAlg∆
k Ñ CAlgcn

k be as in
Proposition 25.1.2.4. Let A be a connective E8-algebra over R. The underlying space of the
simplicial commutative k-algebra ΘRpAq can be identified with

MapCAlg∆
k
pRrxs,ΘRpAqq » MapCAlgcn

R
pRrxs, Aq.

Note that this is generally different from the underlying space Ω8pAq P S, because the
discrete R-algebra Rrxs generally does not agree with the free E8-algebra Rtxu P CAlgR
(though they do coincide whenever R is a Q-algebra). We can think of MapCAlgRpRrxs, Aq as
the space of “very commutative” points A, which generally differs from the underlying space
Ω8pAq » MapCAlgRpRtxu, Aqof A. The difference between these spaces can be regarded
either as a measure of the failure of the polynomial Rrxs to be free as an E8-algebra over R,
or as a measure of the failure of free E8-algebra Rtxu to be flat over R.

We can interpret the situation as follows. The affine line SpecpRrxsq can be regarded as a
commutative R-algebra in the category of R-schemes. Since the functor θ : PolyR Ñ CAlgcn

R

preserves finite coproducts, we can also view Rrxs as a commutative k-algebra object (in an
appropriate sense) of the 8-category pCAlgcn

R q
op. In other words, the functor CAlgcn

R Ñ S
corepresented by Rrxs can naturally be lifted to a functor taking values in a suitable 8-
category of “commutative R-algebras in S”: this is the 8-category CAlg∆

R of simplicial
commutative R-algebras, and the lifting is provided by the functor ΘR.
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Proposition 25.1.2.4 allows us to identify the 8-category CAlg∆
R with the 8-category

of coalgebras for the comonad T “ Θ ˝ΘR on the 8-category CAlgcn
R . In other words, the

8-category CAlg∆
R arises naturally when we attempt to correct the difference between the

E8-algebras Rrxs and Rtxu (which measures the failure of T to agree with the identity
functor on CAlgcn

R ). In the 8-category CAlg∆
R , the polynomial ring Rrxs is both flat over R

and free (see Remark 25.1.3.6).

25.1.3 Homotopy Groups and Truncation

Let R be a commutative ring and let A be an object of CAlg∆
R . For each integer n P Z,

we let πnpAq denote the nth homotopy group of the E8-ring A˝. Then π˚pAq is a graded
R-algebra which is commutative in the graded sense (that is, for homogeneous elements
x P πmpAq and y P πnpAq, we have xy “ p´1qmnyx P πm`npAq). Since the functor A ÞÑ A˝ is
conservative, a morphism f : AÑ B of simplicial commutative R-algebras is an equivalence
if and only if each of the induced maps πnpAq Ñ πnpBq is an isomorphism.

Remark 25.1.3.1. Let R be a commutative ring, and suppose we are given a diagram

A0 Ð AÑ A1

in the 8-category CAlg∆
R , having pushout A0bAA1. Then Proposition HA.7.2.1.19 supplies

a convergent spectral sequence

Es,t2 “ Torπ˚pAqs pπ˚pA0q, π˚pA1qqt ñ πs`tpA0 bA A1q.

Example 25.1.3.2. Let φ : RÑ R1 be any homomorphism of commutative rings, and let
us identify R1 with the corresponding discrete object of CAlg∆

R . Then for each n ě 0, we
have a canonical equivalence

R1 bR Rrx1, . . . , xns » R1rx1, . . . , xns

in CAlg∆
R .

Remark 25.1.3.3. Let R be a commutative ring, let A be an object of CAlg∆
R , and let

n ě 0 be an integer. The following conditions are equivalent:

p1q The E8-ring A˝ is n-truncated.

p2q The homotopy groups πmpAq vanish for m ą n.

p3q For every object B P CAlg∆
R , the mapping space MapCAlg∆

R
pB,Aq is n-truncated.

We will say that A is n-truncated if it satisfies these equivalent conditions. We let τďn CAlg∆
R

denote the full subcategory of CAlg∆
R spanned by the n-truncated objects.
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Remark 25.1.3.4. Let k be a commutative ring and let n ě 0 be an integer. Then the
inclusion functor τďn CAlg∆

R ãÑ CAlg∆
R admits a left adjoint τďn : CAlg∆

R Ñ τďn CAlg∆
R ,

given concretely by the formula

pτďnAqpP q “ τďnpApP qq.

for P P PolyR. Note that the forgetful functor A ÞÑ A˝ commutes with the formation of
n-truncations.

Remark 25.1.3.5. For each n ě 0, the forgetful functor

Θ : CAlg∆
R Ñ CAlgcn

R A ÞÑ A˝

restricts to a functor Θďn : τďn CAlg∆
R Ñ τďn CAlgcn

R . When n “ 0, this functor is an
equivalence of categories (in this case, both sides can be identified with the ordinary category
CAlg♥

R of commutative algebras over R).

Remark 25.1.3.6. Let R be a commutative ring and let A be an object of CAlg∆
R . The

homotopy groups π˚pAq can be identified with the homotopy groups of the mapping space
MapCAlg∆

R
pRrxs, Aq. In particular, we have a canonical bijection HomhCAlg∆

R
pRrxs, Aq »

π0pAq. More generally, evaluation separately on each variable induces a homotopy equivalence

MapCAlg∆
R
pRrx1, . . . , xns, Aq » MapCAlg∆

R
pRrxs, Aqn

and a bijection HomhCAlg∆
R
pRrx1, . . . , xns, Aq » π0pAq

n.

Remark 25.1.3.7. Let f : Rrx1, . . . , xns Ñ Rry1, . . . , yms be a homomorphism of polyno-
mial rings over R, given by xi ÞÑ fipy1, . . . , ymq. For every object A P CAlg∆

k , composition
with f induces a map of spaces

MapCAlg∆
R
pRry1, . . . , yms, Aq Ñ MapCAlg∆

R
pRrx1, . . . , xns, Aq.

Passing to homotopy groups at some point η P MapCAlg∆
R
pRry1, . . . , yms, Aq, we get a map

π˚pAq
m Ñ π˚pAq

n. For ˚ “ 0, this map is given by

pa1, . . . , amq ÞÑ pf1pa1, . . . , amq, . . . , fnpa1, . . . , amqq.

For ˚ ą 0, it is given instead by the action of the Jacobian matrix r B fi
B yj
s (which we regard as

a matrix taking values in π0pAq using the morphism η).
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25.1.4 Change of Base Ring

We now study the behavior of the 8-category CAlg∆
R as we vary the commutative ring

R.

Construction 25.1.4.1 (Restriction and Extension of Scalars). Let ϕ : R Ñ R1 be a
homomorphism of commutative rings. Then extension of scalars along ϕ determines a functor
f : PolyR Ñ PolyR1 . Using Proposition 25.1.1.5, we see that there is an essentially unique
functor F : CAlg∆

k Ñ CAlg∆
k1 which preserves sifted colimits and fits into a commutative

diagram

PolyR
f //

j
��

PolyR1

j
��

CAlg∆
R

F // CAlg∆
R1 .

In this case, we will say that F : CAlg∆
R Ñ CAlg∆

R1 is the functor of extension of scalars
along ϕ.

Since the functor f preserves finite coproducts, the functor F preserves small colimits
and therefore admits a right adjoint G : CAlg∆

R1 Ñ CAlg∆
R . Concretely, if we identify CAlg∆

R1

with the full subcategory of FunpPolyop
R1 ,Sq spanned by those functors which preserve finite

products, then the functor G is given by precomposition with f . In particular, we have a
canonical isomorphism π˚pGpAqq » π˚pAq. We will refer to G as the functor of restriction
of scalars along ϕ.

In the situation of Construction 25.1.4.1, the canonical isomorphism π˚pGpR
1qq » R1

shows that GpR1q is a discrete object of CAlg∆
R which can be identified with R1 (as a

commutative algebra over R).

Proposition 25.1.4.2. Let ϕ : RÑ R1 be a homomorphism of commutative rings. Then the
restriction of scalars functor of Construction 25.1.4.1 induces an equivalence of 8-categories

G : CAlg∆
R1 » pCAlg∆

R1qR1{ Ñ pCAlg∆
RqGpR1q{q » pCAlg∆

RqR1{.

Proof. Note that the equivalence R1 » GpR1q in CAlg∆
R induces a map F pR1q Ñ R1 in the

8-category CAlg∆
R1 . Unwinding the definitions, we see that the functor G admits a left

adjoint F , given on objects by the formula F pAq “ F pAq bF pR1q R
1. We will show that

the unit map u : idCAlg∆
R
Ñ G ˝ F is an equivalence, so that the functor F is fully faithful.

To complete the proof, it will then suffice to show that G is conservative, which follows
immediately from the observation that the homotopy groups of GpBq can be identified with
the homotopy groups of B.

Fix an object A P CAlg∆
R ; we wish to show that the unit map uA : AÑ pG ˝F qpAq is an

equivalence in CAlg∆
R . Since the functor F preserves compact projective objects, the functor
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G commutes with sifted colimits. It follows that the functor A ÞÑ uA preserves sifted colimits.
Since the 8-category CAlg∆

R has compact projective generators given by the polynomial
rings Rrx1, . . . , xns, the 8-category pCAlg∆

RqR1{ has compact projective generators of the
form Rrx1, . . . , xns bR R

1. It will therefore suffice to show that uA is an equivalence when
A has the form A0 bR R

1 for some A0 » Rrx1, . . . , xns P CAlg∆
R . In this case, a simple

calculation shows that the map

π˚pAq Ñ π˚pG ˝ F qpAq

» π˚pF pAqq

» π˚pF pAq bF pR1q R
1q

» π˚pF pA0q bF pRq F pR
1q bF pR1q R

1q

» π˚pF pA0q bF pRq R
1q

» π˚pF pA0qq

» R1rx1, . . . , xns

is the identity.

Corollary 25.1.4.3. Let R be a commutative ring. Then the Construction 25.1.4.1 induces
an equivalence of 8-categories CAlg∆

R » pCAlg∆qR{.

Notation 25.1.4.4. For the remainder of this book, we will abuse notation by not distin-
guishing between the 8-categories CAlg∆

R and pCAlg∆qR{: that is, we will think of objects
of CAlg∆

R as simplicial commutative rings A equipped with a map RÑ A.
More generally, if R is a simplicial commutative ring, we let CAlg∆

R denote the 8-
category pCAlg∆qR{. By virtue of Corollary 25.1.4.3, this agrees with Definition 25.1.1.1 (up
to canonical equivalence) in the case where R is an ordinary commutative ring.

Note that every morphism ϕ : RÑ R1 of simplicial commutative rings induces a pair of
adjoint functors CAlg∆

R
//CAlg∆

R1oo , given by

pA P CAlg∆
Rq ÞÑ pAbR R

1 P CAlg∆
R1q pB P CAlg∆

R1q ÞÑ pB P CAlg∆
Rq.

When R and R1 are ordinary commutative rings, these constructions recover (up to canonical
equivalence) the functors described in Construction 25.1.4.1.

25.1.5 Strictness of Multiplication

Let A be a connective E8-ring. Then we can think of A as consisting of an “underlying
space” Ω8A which is equipped with an addition and multiplication which satisfy the axioms
of commutative algebra “up to coherent homotopy.” Under this heuristic, the difference
between objects of CAlgcn and objects of CAlgcn

Z is that in the latter case, we require addition
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to be commutative “on the nose” rather than up to coherent homotopy. Remark 25.1.2.5
expresses a similar heuristic: the difference between objects of CAlgcn

Z and objects of CAlg∆

is that for the latter, we also require multiplication to be commutative “on the nose” rather
than up to coherent homotopy. Our final goal in this section is to make this idea more
precise.

Notation 25.1.5.1. The functor Σ8` : S Ñ Spcn is symmetric monoidal, where we regard
S as equipped with the Cartesian symmetric monoidal structure and Spcn as equipped with
the symmetric monoidal structure given by the smash product. In particular, composition
with Σ8` induces a functor

CAlggppSq Ď CAlgpSq Ñ CAlgpSpcnq “ CAlgcn;

here CAlggppSq denotes the full subcategory of CAlgpSq spanned by the grouplike E8-
spaces. For any connective E8-ring R, we can compose with the base change functor
CAlgcn Ñ CAlgcn

R to obtain a functor

Ψ : CAlggppSq Ñ CAlgcn
k

X ÞÑ RrXs,

where RrXs denotes the spectrum Rb Σ8` pXq whose homotopy groups are the R-homology
groups of X.

Proposition 25.1.5.2. Let R be a commutative ring. Then the composite functor

Modcn
Z

Ω8
Ñ CAlggppSq Ψ

Ñ CAlgcn
R

admits an essentially unique factorization as a composition

Modcn
Z

Ψalg
Ñ CAlg∆

R
Θ
Ñ CAlgcn

R ,

where Ψalg commutes with sifted colimits. Here Θ denotes the forgetful functor of Proposition
25.1.2.4 and Ψ is the group algebra functor of Notation 25.1.5.1. Moreover, the functor Ψalg

commutes with all small colimits.

Proof. Let C denote the full subcategory of Modcn
Z spanned by those modules of the form

Zk. Then Modcn
Z is freely generated by C under sifted colimits (Corollary HA.7.1.4.15 ).

Consequently, it will suffice to show that the composite functor

C Ď Modcn
Z

Ω8
Ñ CAlggppSq Ψ

Ñ CAlgcn
k

Zk ÞÑ RrZks



25.1. SIMPLICIAL COMMUTATIVE RINGS 1695

admits an essentially unique factorization through the forgetful functor Θ : CAlg∆
k Ñ CAlgcn

k .
This follows from the observation that Θ is an equivalence when restricted to discrete objects.
To prove that Ψalg commutes with all small colimits, it suffices to observe that the functor

C Ñ CAlg∆
R Zk ÞÑ RrZks

preserves finite coproducts; see Proposition HTT.5.5.8.15 .

Proposition 25.1.5.3. Let R be a commutative ring, and let σ :

Modcn
Z

Ω8
��

Ψalg
// CAlg∆

R

Θ
��

CAlggppSq Ψ // CAlgcn
R

be the commutative diagram of 8-categories supplied by Proposition 25.1.5.2. Then σ is left
adjointable (Definition ??).

Lemma 25.1.5.4. Let R be a commutative ring. For every object A P CAlg∆
k , the canonical

map
MapCAlg∆

R
pRrx˘1s, Aq Ñ MapCAlg∆

R
pRrxs, Aq » Ω8A˝

induces a homotopy equivalence from MapCAlg∆
R
pRrx˘1s, Aq to the union of those connected

components of Ω8A˝ which correspond to invertible elements of the commutative ring π0pAq.

Proof. It follows from Notation 25.1.2.3 that the diagram

Rrxs //

��

Rrx˘1s

��
Rrx˘1s // Rrx˘1s

is a pushout square in CAlg∆
R , which implies that the map ρ : MapCAlg∆

R
pRrx˘1s, Aq Ñ

MapCAlg∆
R
pRrxs, Aq has p´1q-truncated homotopy fibers: that is, it induces a homotopy equiv-

alence from MapCAlg∆
R
pRrx˘1s, Aq to some union of connected components of MapCAlg∆

R
pRrxs, Aq »

Ω8A˝. Notation 25.1.2.3 also shows that the diagram

Rrts
tÞÑ1 //

tÞÑxy

��

R

��
Rrx, ys

y ÞÑx´1
// Rrx˘1s

is a pushout square in CAlg∆
R , so that a point of Ω8A˝ belongs to the essential image of ρ if

and only if its homotopy class is an invertible element in π0pAq.
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Proof of Proposition 25.1.5.3. The functor Ψ preserves small colimits by construction and
the functor Ψalg preserves small colimits by virtue of Proposition 25.1.5.2. It follows from
Corollary HTT.5.5.2.9 that the functors Ψ and Ψalg admit right adjoints

GL1 : CAlgcn
R Ñ CAlggppSq Gm : CAlg∆

R Ñ Modcn
Z .

To complete the proof, it will suffice to show that for each object A P CAlg∆
R , the canonical

map
ρ : Ω8pGmpAqq Ñ GL1pA

˝q

is a homotopy equivalence of grouplike E8-spaces. Unwinding the definitions, we can identify
the domain of ρ with the mapping space MapCAlg∆

R
pRrx˘1s, Aq and the codomain of ρ with

the union of those connected components of Ω8A˝ » MapCAlg∆
R
pRrxs, Aq which correspond

to invertible elements of π0pAq. The desired result now follows from Lemma 25.1.5.4.

Remark 25.1.5.5. It follows from Proposition 25.1.5.3 that we have a commutative diagram
of 8-categories

CAlg∆
R

Gm //

Θ
��

Modcn
Z

Ω8
��

CAlgcn
R

GL1// CAlggppSq.

In other words, any realization of an object A P CAlgcn
R as the underlying E8-algebra of a

simplicial commutative ring determines a realization of the space of units GL1pAq as the
0th space of a Z-module spectrum. This can be regarded as an expression of the heuristic
idea that the multiplication on a simplicial commutative ring is “strictly” commutative.

25.2 Symmetric Powers of Modules

To every E1-ring A, one can associate the 8-category LModA of (left) A-module spectra.
Conversely, from the 8-category LModA together with the distinguished object 1 “ A P

LModA, one can recover A: it can be identified with the endomorphism algebra of 1 (see
Theorem HA.7.1.2.1 ).

One can think of an E8-ring A as consisting of an underlying E1-ring (which we will
also denote by A) together with some additional structure (encoding the commutativity
of A). By virtue of Theorem HA.7.1.2.1 , the underlying E1-ring is determined by the the
8-category ModA » LModA (together with its unit object). We can therefore view the
commutativity of A as an additional structure on the 8-category ModA. In fact, we can be
much more precise: according to Proposition HA.7.1.2.6 , we can recover the E8-structure
on A from the symmetric monoidal structure on the 8-category ModA (and vice versa).
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Now suppose that A is a simplicial commutative ring. Then A has an underlying E8-ring
(and therefore also an underlying E1-ring) which we will denote by A˝ (Construction 25.1.2.1).
As an E1-ring, the ring spectrum A˝ is determined by the 8-category ModA˝ (together with
its unit object). By analogy with the preceding discussion, it is natural to expect the fact
that A˝ arises from a simplicial commutative ring to be reflected in some additional structure
on the 8-category ModA˝ . For example, the E8-structure on A˝ determines a symmetric
monoidal structure on ModA˝ . If we are working over the field Q, then we can recover the
simplicial commutative ring A from its underlying E8-ring A˝ (Proposition 25.1.2.2), so
there is nothing more to say. However, if we are working in positive or mixed characteristics,
then the 8-category of modules over a simplicial commutative ring has additional features
that are not determined by its symmetric monoidal structure. Our goal in this section is to
describe some of these features more explicitly.

We begin in §25.2.1 by describing a general paradigm. Suppose that, for every polynomial
ring A “ Zrx1, . . . , xns and every free A-module M of finite rank, we have a procedure
for producing another A-module F pMq. In this case, the construction pA,Mq ÞÑ F pMq

admits a canonical extension to a functor defined on pairs pA,Mq, where R is any simplicial
commutative ring and M is any connective A-module structure; this extension is characterized
up to equivalence by the requirement that it commutes with sifted colimits (Corollary
25.2.1.3). We will be particularly interested in the case where F pMq “ CSymn

ApMq is the
classical nth symmetric power of the module M ; in this case, we will denote the extended
construction by M ÞÑ LSymn

ApMq and refer to LSymn
ApMq as the nth derived symmetric

power of M (Construction ??). Most of this section is devoted to the study of these derived
symmetric power functors (and several variant constructions which we introduce in §25.2.2).
We begin in §25.2.3 by establishing some elementary properties of derived symmetric powers:
for example, they are compatible with base change in A (Proposition ??) and carry flat
modules to flat modules (Corollary 25.2.3.3).

In §25.2.4 and §25.2.5, we study the connectivity and finiteness properties of the derived
symmetric power LSymn

ApMq. We prove an essentially connectivity estimate which asserts
that if M is m-connective for m ě 2, then LSymn

ApMq is pm`2n´2q-connective (Proposition
25.2.4.1). The proof is based on a result of Illusie, which allows us to relate the derived
symmetric powers of M to derived divided powers of the shift Σ´2pMq (Proposition 25.2.4.2).
We also show that if M is perfect or almost perfect as an A-module, then LSymn

ApMq has
the same property (Proposition 25.2.5.3 and Corollary 25.2.5.2).

We refer to LSymn
ApMq as the nth derived symmetric power of M to distinguish it from

R-module given by the homotopy coinvariants for the symmetric group Σn on the nth tensor
power M bA ¨ ¨ ¨ bAM . We will denote the latter by Symn

ApMq and refer to it simply as the
nth symmetric power of M . In §25.2.6, we study the relationship between these constructions.
In particular, we show that there is a canonical map ρ : Symn

ApMq Ñ LSymn
ApMq which is
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an equivalence if A is an algebra over the field Q of rational numbers (Proposition 25.2.6.1).
Beware that it is not an equivalence in general: roughly speaking, the failure of ρ to be an
equivalence can be regarded as a measure of the information that is lost in passing from
the simplicial commutative ring A to its underlying E8-ring A˝ (note that the definition of
LSymn

ApMq depends on A, while Symn
ApMq depends only on A˝).

25.2.1 Modules over Simplicial Commutative Rings

We begin by introducing some definitions.

Notation 25.2.1.1. Let A be a simplicial commutative ring and let A˝ denote its underlying
E8-ring (see Construction 25.1.2.1). We let ModA denote the 8-category ModA˝ . We will
refer to objects of ModA as A-modules and to ModA as the 8-category of A-modules. We
will say that an A-module M is connective if πnM » 0 for n ă 0 and discrete if πnM » 0
for n ‰ 0; we let Modcn

A and Mod♥
A denote the full subcategories of ModA spanned by those

A-modules which are connective and discrete, respectively.
Let ModpSpq denote the 8-category whose objects are pairs pA,Mq where A is an E8-

ring and M is an A-module spectrum (Notation 2.2.1.1). We let SCRMod denote the fiber
product CAlg∆ˆCAlgpSpqModpSpq whose objects are pairs pA,Mq, where A is a simplicial
commutative ring and M is an A-module. We let SCRModcn denote the full subcategory of
SCRMod spanned by those pairs pA,Mq where M is a connective A-module.

Proposition 25.2.1.2. Let C Ď SCRModcn denote the full subcategory spanned by those
pairs pA,Mq where A is equivalent to a polynomial ring Zrx1, . . . , xms for some m ě 0
and M is equivalent to An for some n ě 0. Then the objects of C form compact projective
generators for SCRModcn: that is, the inclusion C ãÑ SCRModcn extends to an equivalence
of 8-categories PΣpCq “ FunπpCop,Sq Ñ SCRModcn.

Proof. Note that C consists of those objects of SCRModcn which can be obtained as coproduct
of finitely many copies of the objects C “ pZrxs, 0q and D “ pZ,Zq. Unwinding the
definitions, we see that C and D corepresent functors SCRModcn Ñ S given by

pA,Mq ÞÑ Ω8A˝ pA,Mq ÞÑ Ω8M.

Since both of these functors preserve sifted colimits, the objects C and D are compact
and projective, so that C consists of compact projective objects of SCRModcn. It follows
from Proposition HTT.?? that the inclusion f : C ãÑ SCRModcn extends to a fully faithful
embedding F : PΣpCq Ñ SCRModcn which commutes with sifted colimits. Since f preserves
finite coproducts, the functor F preserves small colimits (Proposition ??) and therefore
admits a right adjoint G (Corollary HTT.5.5.2.9 ). To prove that F is an equivalence of
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8-categories, it will suffice to show that the functor G is conservative. This is clear, since
the conservative functor

ppA,Mq P SCRModcnq ÞÑ ppΩ8A˝,Ω8Mq P S ˆSq

factors through G.

Corollary 25.2.1.3. Let C Ď SCRModcn be as in Proposition 25.2.1.2, let E be an arbitrary
8-category which admits small sifted colimits, and let FunΣpSCRModcn

k , Eq denote the full
subcategory of FunpSCRModcn, Eq spanned by those functors which preserve sifted colimits.
Then the restriction functor

FunΣpSCRModcn, Eq Ñ FunpC, Eq

is an equivalence of 8-categories.

Proof. Compare Proposition HTT.5.5.8.15 with Proposition 25.2.1.2.

25.2.2 Derived Symmetric Powers

We can state Corollary 25.2.1.3 more informally as follows: to construct a functor
F : SCRModcn Ñ E which commutes with sifted colimits, it suffices to specify the values of
F on pairs pA,Mq where A is a polynomial ring and M is a finitely generated free module
over A. This is very convenient, since the collection of such pairs pA,Mq forms an ordinary
category rather than an 8-category (by virtue of the fact that the higher homotopy groups
of A and M vanish). We can use this to construct many examples of such functors “by
hand”:

Construction 25.2.2.1 (Derived Symmetric Powers). Let A be a commutative ring, let
n ě 0 be an integer, and let M be a discrete A-module. We let CSymn

AM denote the
discrete A-module given by the nth symmetric power of A of M : that is, the quotient of the
n-fold tensor product π0pM bA ¨ ¨ ¨ bAMq by the action of the symmetric group Σn given
by permuting the factors

σpx1 b ¨ ¨ ¨ b xnq “ xσp1q b ¨ ¨ ¨ b xσpnq.

Note that if M is a free A-module of rank m with basis tx1, . . . , xmu, then CSymn
AM is

also a free A-module of rank
`

n`m´1
n

˘

, with basis given by the set of monomials xd1
1 ¨ ¨ ¨x

dm
m

satisfying d1 ` ¨ ¨ ¨ ` dm “ n. In particular, the construction pA,Mq ÞÑ pA,CSymn
AMq

determines a functor f : C Ñ C, where C Ď SCRModcn is defined as in Proposition
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25.2.1.2. It follows from Corollary 25.2.1.3 that f admits an essentially unique extension
F : SCRModcn Ñ SCRModcn which commutes with sifted colimits and that the diagram

SCRModcn

��

F // SCRModcn

��
CAlg∆ id // CAlg∆

commutes up to canonical equivalence. We can therefore write F pA,Mq “ pA,LSymn
AMq for

some object LSymn
ApMq P Modcn

A . We will refer to LSymn
ApMq as the derived nth symmetric

power of M over A.

Construction 25.2.2.2 (Derived Exterior Powers). Let A be a polynomial ring, let n ě 0
be an integer, and let M be a free A-module of finite rank. We let

Źn
ApMq denote the nth

exterior power of A of M : that is, the quotient of the n-fold tensor product Mbn by the
action of the symmetric group Σn by signed permutations

σpx1 b ¨ ¨ ¨ b xnq “ sgnpσqxσp1q b ¨ ¨ ¨ b xσpnq;

here sgnpσq P t˘1u denotes the sign of the permutation σ. Note that if M is a free A-module
of rank m with basis tx1, . . . , xmu, then

Źn
ApMq is also a free A-module of rank

`

m
n

˘

, with
basis given the images of xi1 b ¨ ¨ ¨bxin where 1 ď i1 ă i2 ă ¨ ¨ ¨ ă in ď m. In particular, the
construction pA,Mq ÞÑ pA,

Źn
ApMqq determines a functor f : C Ñ C, where C Ď SCRModcn

is defined as in Proposition 25.2.1.2. It follows from Corollary 25.2.1.3 that f admits an
essentially unique extension F : SCRModcn Ñ SCRModcn which commutes with sifted
colimits and that the diagram

SCRModcn

��

F // SCRModcn

��
CAlg∆ id // CAlg∆

commutes up to canonical equivalence. We can therefore write F pA,Mq “ pA,
Źn
ApMqq for

some object
Źn
ApMq P Modcn

A . We will refer to
Źn
ApMq as the derived nth exterior power of

M over A.

Construction 25.2.2.3 (Derived Divided Powers). Let A be a polynomial ring, let n ě 0
be an integer, and let M be a free A-module. We let ΓnApMq denote the nth divided power
of A of M : that is, the submodule of π0pM bA ¨ ¨ ¨ bA Mq given by taking invariants for
the action of the symmetric group Σn given by permuting the factors. Note that if M
is a free A-module of rank m, then ΓnApMq is also a free A-module of rank

`

n`m´1
n

˘

. In
particular, the construction pA,Mq ÞÑ pA,ΓnAMq determines a functor f : C Ñ C, where
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C Ď SCRModcn is defined as in Proposition 25.2.1.2. It follows from Corollary 25.2.1.3 that
f admits an essentially unique extension F : SCRModcn Ñ SCRModcn which commutes
with sifted colimits and that the diagram

SCRModcn

��

F // SCRModcn

��
CAlg∆ id // CAlg∆

commutes up to canonical equivalence. We can therefore write F pA,Mq “ pA,ΓnApMqq for
some object ΓnApMq P Modcn

A . We will refer to ΓnApMq as the derived nth divided power of
M over A.

Remark 25.2.2.4. Construction 25.2.2.3 can be regarded as dual to Construction 25.2.2.1
in the sense that if M is a free module of finite rank over a commutative ring A, then there
is a canonical isomorphism

ΓnApM_q » pCSymn
ApMqq

_.

Similarly, one can contemplate a “dual” version of Construction 25.2.2.2, but this does not
lead to anything new: the formation of exterior powers M ÞÑ

Źn
ApMq is already self-dual in

the sense that there is a canonical isomorphism
Źn
ApM

_q » p
Źn
ApMqq

_ when M is a free
A-module of finite rank.

Example 25.2.2.5. Let A be a simplicial commutative ring and let M be an A-module.
When n “ 0, we have LSymn

ApMq »
Źn
ApMq » ΓnApMq » A. When n “ 1, we have

LSymn
ApMq »

Źn
ApMq » ΓnApMq »M .

Construction 25.2.2.6. [Derived Symmetric Algebras] For every morphism of simplicial
commutative rings φ : AÑ B, the underlying map of E8-rings A˝ Ñ B˝ allows us to regard
B˝ as a connective A-module. This observation determines a forgetful functor

G : Funp∆1,CAlg∆q Ñ SCRModcn

pφ : AÑ Bq ÞÑ pA,B˝q.

The functor G preserves small limits and filtered colimits and therefore admits a left
adjoint F : SCRModcn Ñ Funp∆1,CAlg∆q. Unwinding the definitions, we see that the
functor F carries a pair pA,Mq P SCRMod to a morphism of simplicial commutative
rings whose domain can be identified with A, and whose codomain we will denote by
LSym˚

ApMq and refer to as the derived symmetric algebra on M . The composite functor
G˝F : SCRModcn Ñ SCRModcn preserves sifted colimits and is therefore determined (up to
equivalence) by its restriction to the full subcategory C Ď SCRModcn of Proposition 25.2.1.2.
Note that if A “ Zrx1, . . . , xms is a polynomial ring over Z and if M is a free A-module
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on generators y1, . . . , yn, then F pA,Mq can be identified with the map of polynomial rings
Zrx1, . . . , xms Ñ Zrx1, . . . , xm, y1, . . . , yns, so that pG ˝ F qpA,Mq can be identified with the
pair pA,

À

kě0 CSymk
ApMqq. Applying Corollary 25.2.1.3, we see that for any connective

module M over any simplicial commutative ring A, we have a canonical equivalence of
A-modules

LSym˚
ApMq »

à

ně0
LSymn

ApMq,

where the right hand side is defined as in Construction 25.2.2.1.

25.2.3 Properties of Derived Functors

Let φ : A Ñ B be any morphism of simplicial commutative rings. Then the forgetful
functor ModB Ñ ModA admits a left adjoint, which we will denote by M ÞÑ B bAM .

Proposition 25.2.3.1. Let q : SCRModcn Ñ CAlg∆ denote the forgetful functor, let n ě 0
be an integer, and let F : SCRModcn Ñ SCRModcn be as in Construction 25.2.2.1, 25.2.2.2,
or 25.2.2.3. Then F carries q-coCartesian morphisms to q-coCartesian morphisms. In other
words, for every morphism φ : AÑ B of simplicial commutative rings and every connective
A-module M , the canonical maps

B bA LSymn
ApMq Ñ LSymn

BpB bAMq

B bA
ľn

A
pMq Ñ

ľn

B
pB bAMq

B bA ΓnApMq Ñ ΓnBpB bAMq

are equivalences.

Proof. We will prove that the map αM : B bA LSymn
AM Ñ LSymn

BpB bAMq; the proof
in the remaining cases differs only by a change of notation. Note that the construction
M ÞÑ αM commutes with sifted colimits. Consequently, it will suffice to prove that αM is
an equivalence in the special case where M is a free A-module of finite rank. In particular,
we may assume that M “ AbZ M0 where M0 » Zm is a free Z-module of finite rank. We
then have a commutative diagram

B bA AbZ LSymn
ZM0

tt **
B bA LSymn

ApAbZ M0q
αM // LSymn

BpB bA AbZ M0q.

Consequently, it will suffice to prove that αM is an equivalence in the special case where
A “ Z is the ring of integers. Let us therefore regard A and M as fixed, and regard the
morphism αM as a functor of B P CAlg∆. Since this functor commutes with sifted colimits,
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it will suffice to prove that αM is an equivalence in the special case where B » Zrx1, . . . , xks

is a polynomial ring on finitely many generators. Unwinding the definitions, we are reduced
to proving that the map

B bZ CSymn
ZpZmq Ñ CSymn

BpB
mq

is an equivalence. This follows immediately from the explicit description of CSymn
B on free

B-modules given in Construction 25.2.2.1.

Corollary 25.2.3.2. Let A be a simplicial commutative ring, let n ě 0, and let M be an
A-module which is (locally) free of some finite rank r. Then the A-modules LSymn

ApMq,
Źn
ApMq, and ΓnApMq are (locally) free of ranks

`

n`r´1
n

˘

,
`

r
n

˘

, and
`

n`r´1
n

˘

, respectively.

Proof. Using Proposition 25.2.3.1, we can reduce to the case where M is a free A-module of
rank r. In this case, we can write M “ AbZ Zr. Using Proposition 25.2.3.1 again, we can
reduce to the case where A “ Z and M “ Zr, in which case the desired results follow from
explicit calculation.

Corollary 25.2.3.3. Let A be a simplicial commutative ring, let n ě 0 be an integer, and
let M be a flat A-module. Then the A-modules LSymn

ApMq,
Źn
ApMq, and ΓnApMq are also

flat.

Proof. Combine Corollary 25.2.3.2 with Theorem HA.7.2.2.15 .

It follows from Corollary 25.2.3.3 that if A is a commutative ring and M is a flat A-
module, then the modules LSymn

ApMq,
Źn
ApMq, and ΓnApMq are discrete. In fact, we can

be more precise:

Proposition 25.2.3.4. Let A be a commutative ring (regarded as a discrete object of CAlg∆)
and let M be a flat A-module. Then:

p1q There is a canonical isomorphism α : LSymn
ApMq » CSymn

ApMq.

p2q There is a canonical isomorphism β :
Źn
ApMq »

Ź1n
A pMq, where

Ź1n
A pMq denotes the

quotient of the nth tensor power Mbn by the action of the symmetric group Σn by
signed permutations

σpx1 b ¨ ¨ ¨ b xnq “ sgnpσqxσp1q b ¨ ¨ ¨ b xσpnq.

p3q There is a canonical isomorphism γ : ΓnApMq » Γ1nA pMq, where Γ1nA pMq denotes the
submodule of Mbn spanned by the elements which invariant under the action of Σn.
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Proof. We will prove p1q; the proofs of p2q and p3q are similar. Let E Ď SCRModcn denote
the full subcategory of SCRModcn spanned by those objects of the form pA,Mq, where A is
an ordinary commutative ring and M is a discrete A-module. Define functors

F, F 1 : E Ñ SCRModcn

by setting F pA,Mq “ pA,LSymn
ApMqq and F 1pA,Mq “ pA,CSymn

ApMqq. By definition, the
functors F and F 1 agree on the subcategory C Ď E defined in Proposition 25.2.1.2, and F is a
left Kan extension of its restriction F |C . It follows that there is an essentially unique natural
transformation α : F Ñ F 1 which is the identity on objects of C. For every object pA,Mq P E ,
this natural transformation determines a map αA,M : LSymn

ApMq Ñ CSymn
ApMq. We claim

that αA,M is an equivalence when M is a flat A-module. To prove this, we first note that
for fixed A, both sides commute with filtered colimits in M . Using Theorem HA.7.2.2.15 ,
we can reduce to the case where M is a free A-module of finite rank. In this case, M is
obtained from a free Z-module by extension of scalars, so the desired result follows from
Proposition 25.2.3.1.

Warning 25.2.3.5. Let A be a commutative ring and let M be a discrete A-module. If
M is not flat, then the A-modules LSymn

ApMq,
Źn
ApMq, and ΓnApMq are not necessarily

discrete. In particular,
Źn
ApMq and ΓnApMq need not coincide with the usual nth exterior

power and nth divided power module of M , in the sense of commutative algebra (however,
the usual algebraic constructions can be recovered from

Źn
ApMq and ΓnApMq by passing to

connected components).

25.2.4 Connectivity of Derived Symmetric Powers

Our next goal is to prove the following:

Proposition 25.2.4.1. Let A be a simplicial commutative ring, let M be a connective
A-module, and let n ą 0. If M is 1-connective, then LSymn

ApMq is n-connective. If M is
m-connective for m ě 2, then LSymn

ApMq is pm` 2n´ 2q-connective.

Our proof is based on the following result, which relates the functors defined in Con-
structions 25.2.2.1, 25.2.2.2, and 25.2.2.3:

Proposition 25.2.4.2 (Illusie). For every simplicial commutative ring A, every connective
A-module M , and every nonnegative integer n, there are canonical equivalences

LSymn
ApΣMq » Σn

ľn

A
pMq

ľn

A
pΣMq » Σn ΓnApMq

in the 8-category ModA.
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Before giving the proof of Proposition 25.2.4.2, let us show that it implies Proposition
25.2.4.1.

Lemma 25.2.4.3. Let A be a simplicial commutative ring and let M be an A-module which
is m-connective for some m ě 0. Then, for each n ą 0, the derived divided power ΓnApMq is
also m-connective.

Proof. We proceed by induction on m, the case m “ 0 being trivial. To carry out the
inductive step, suppose that M is m-connective for m ą 0, and let N‚ denote the simplicial
object of ModA given by the Čech nerve of the map 0 Ñ M . Then each Nk is equivalent
to pΣ´1Mqk and is therefore pm ´ 1q-connective. It that pΓnAMq » |ΓnApN‚q| is pm ´ 1q-
connective and that πm´1 ΓnApMq is a quotient of πm´1pΓnApN0qq » 0, so that ΓnApMq is
m-connective as desired.

Proof of Proposition 25.2.4.1. If M is 1-connective, then Σ´1pMq is connective, so that
Źn
ApΣ´1pMqq is a well-defined connective A-module. The first assertion now follows from

the equivalence
LSymn

ApMq » Σn
ľn

A
pΣ´1pMqq

provided by Proposition 25.2.4.2.
If M is m-connective for m ě 2, then Σ´2pMq is connective. Proposition 25.2.4.2

then supplies an equivalence LSymn
ApMq » Σ2n ΓnApΣ´2pMqq. We are therefore reduced

to proving that A-module ΓnApΣ´2pMqq is pm´ 2q-connective, which follows from Lemma
25.2.4.3.

Proof of Proposition 25.2.4.1. Let us first suppose that R is a discrete commutative ring
and that we are given a short exact sequence

0 ÑM 1 ρ
ÑM ÑM2 Ñ 0

between free R-modules of finite rank. Let CSym˚
RpMq denote the (discrete) symmetric

algebra over R generated by M , and let CSym˚
RpM

2q be defined similarly. Then We can
regard CSym˚

RpM
2q as the quotient of CSym˚

RpMq by a regular sequence given by a set of
generators for M 1. We therefore have a Koszul complex which resolves CSym˚

RpM
2q by free

CSym˚
RpMq-modules of finite rank, given by

¨ ¨ ¨ Ñ p
ľ1

R
M 1q bR pCSym˚

RMq Ñ p
ľ0

R
M 1q bR pCSym˚

RMq Ñ pLSym˚
RM

1q Ñ 0.

Restricting to our attention to terms which are homogeneous of degree n, we obtain an exact
sequence

0 Ñ p
ľn

R
M 1q bR pCSym0

RMq
dn
Ñ ¨ ¨ ¨ Ñ p

ľ0
R
M 1q bR pCSymn

RMq
d0
Ñ CSymn

RM
2 Ñ 0.



1706 CHAPTER 25. DERIVED ALGEBRAIC GEOMETRY

Applying the same construction to the dual exact sequence

0 ÑM2_ ÑM_ ÑM 1_ Ñ 0

and dualizing (using Remark 25.2.2.4), we obtain another exact sequence

0 Ñ ΓnRpM 1q
d10
Ñ p

ľ0
R
M2q bR pΓnRMq Ñ ¨ ¨ ¨

d1n
Ñ p

ľn

R
M2q bR pΓ0

RMq Ñ 0.

Let fipR, ρq denote the image of the differential di and let gipR, ρq denote the image of the
differential d1i, so that we have equivalences

f0pR, ρq » CSymn
RpM

2q g0pR, ρq » ΓnRpM 1q

fnpR, ρq »
ľn

R
pM 1q gnpR, ρq »

ľn

R
pM2q

and short exact sequence

0 Ñ fi`1pR, ρq Ñ p
ľi

R
pM 1qq bR pCSymn´i

R pMqq Ñ fipR, ρq Ñ 0

0 Ñ gipR, ρq Ñ p
ľi

R
pM2qq bR pΓn´iR pMqq Ñ gi`1pR, ρq » 0.

Let E denote the 8-category Funp∆1,SCRModcnq ˆFunp∆1,CAlg∆q CAlg∆ whose objects
are pairs pA, ρ : M 1 ÑMq, where A is a simplicial commutative ring and ρ is a morphism
of connective A-modules. Let E0 Ď E be the full subcategory spanned by those pairs
pA, ρ : M 1 Ñ Mq where A is a polynomial ring Zrx1, . . . , xks and ρ fits into a short exact
sequence

0 ÑM 1 ρ
ÑM ÑM2 Ñ 0

of finitely generated free modules over A. Equivalently, we can describe E0 as the full
subcategory of E generated under coproducts by the objects

C “ pZrxs, id : 0 Ñ 0q D “ pZ, id : Z Ñ Zq E “ pZ, ρ0 : 0 Ñ Zq.

Note that the objects C, D, and E corepresent functors E Ñ S given by

pA, ρq ÞÑ Ω8A˝ pA, ρq ÞÑ Ω8M 1 pA, ρq ÞÑ Ω8M,

which preserve sifted colimits and are jointly conservative. It follows that the inclusion
E0 ãÑ E extends to an equivalence of 8-categories PΣpE0q » E , so that any functor
u : E Ñ SCRModcn admits an essentially unique extension to a functor U : E Ñ SCRModcn

which commutes with sifted colimits. Applying this observation to the functors

pR, ρ : M 1 ÑMq ÞÑ pR, fipR, ρqq pR, ρ : M 1 ÑMq ÞÑ pR, gipR, ρqq,
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we obtain functors E Ñ SCRModcn which we will denote by

pA, ρq ÞÑ pA,FipA, ρqq pA, ρq ÞÑ pA,GipA, ρqq.

We have canonical equivalences

F0pA, ρ : M 1 ÑMq » LSymn
A cofibpρq fnpA, ρ : M 1 ÑMq »

ľn

A
M 1

G0pA, ρ : M 1 ÑMq » ΓnAM 1 GnpA, ρ : M 1 ÑMq »
ľn

A
cofibpρq

and fiber sequences

Fi`1pA, ρ : M 1 ÑMq Ñ p
ľi

A
M 1q bA pCSymn´i

A Mq Ñ FipA, ρ : M 1 ÑMq

GipA, ρ : M 1 ÑMq Ñ p
ľi

A
cofibpρqq bA pΓn´iA Mq Ñ Gi`1pA, ρ : M 1 ÑMq.

In the special case where M “ 0, the middle terms of these fiber sequences vanish, so we
obtain the desired equivalences

LSymn
ApΣM 1q » F0pA, ρ : M 1 Ñ 0q » ¨ ¨ ¨ » ΣnFnpA, ρ : M 1 Ñ 0q » Σn

ľn

A
pM 1q

ľn

A
pΣM 1q » GnpA, ρ : M 1 Ñ 0q » ¨ ¨ ¨ » ΣnG0pA, ρ : M 1 Ñ 0q » Σn ΓnApM 1q.

By virtue of Proposition 25.2.4.2, the derived exterior power functor and derived divided
power functor of Constructions 25.2.2.2 and 25.2.2.3 are completely determined by the
derived symmetric power functor of Construction 25.2.2.1. Consequently, we will mainly
confine our discussion to derived symmetric powers in what follows.

25.2.5 Finiteness of Derived Symmetric Powers

We now study finiteness properties of the derived symmetric powers LSymn
ApMq (note

that, by virtue of Proposition 25.2.4.1, this subsumes also the study of finiteness properties
of the constructions

Źn
ApMq and ΓnApMq).

Proposition 25.2.5.1. Let A be a simplicial commutative ring and let M be a connective
A-module which is perfect to order m for some m ě 0. Then, for every n ě 0, the A-modules
LSymn

ApMq is perfect to order n.

Proof. Since M is perfect to order n, Corollary 2.7.2.4 implies that we can write M as the
geometric realization of a simplicial object M‚ of Modcn

A where Mk is a free A-module of
finite rank for 0 ď k ď m. Since the functor LSymn

A commutes with sifted colimits, we
can write LSymn

ApMq as the geometric realization of the simplicial object LSymn
ApM‚q. It

follows from Corollary 25.2.3.2 that LSymn
ApMkq is free of finite rank for 0 ď k ď m, so that

LSymn
ApMq » |LSymn

ApM‚q| is perfect to order m by virtue of Corollary 2.7.2.4.
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Corollary 25.2.5.2. Let A be a simplicial commutative ring, let n ě 0, and let M be an
A-module which is connective and almost perfect. Then the A-module LSymn

ApMq is almost
perfect.

We now prove the analogous statement for perfect modules.

Proposition 25.2.5.3. Let A be a simplicial commutative ring, let M be a connective perfect
A-module, and let n ě 0 be an integer. Then the derived symmetric power is LSymn

ApMq is
a perfect A-module.

The proof of Proposition 25.2.5.3 will require an auxiliary construction.

Construction 25.2.5.4. Let R be a discrete commutative ring and suppose we are given a
short exact sequence of finitely generated free R-modules

0 ÑM 1 ρ
ÑM ÑM2 Ñ 0.

For each d ě 0, let F dpρq denote the CSym˚
RpM

1q-submodule of CSym˚
RpMq generated by

the symmetric powers CSymd1
RpMq for 0 ď d1 ď d. Passing to homogeneous elements of some

degree n ě 0, we obtain a finite filtration

0 “ F
´1,n

pρq Ď F
0,n
pρq Ď F

1,n
pρq Ď ¨ ¨ ¨ Ď F

n,n
pρq “ CSymn

RpMq

whose successive quotients F d,npρq{F d´1,n
pρq are canonically isomorphic to CSymd

RpM
2qbR

CSymn´d
R pM 1q. Let E0 Ď E be as in the proof of Proposition 25.2.4.2, so that the construction

pR, ρq ÞÑ pR,F
0,n
pρq Ñ ¨ ¨ ¨ Ñ F

n,n
pρqq

determines a functor from E0 to the 8-category

Funp∆n, SCRModcnq ˆFunp∆n,CAlg∆q CAlg∆ .

Arguing as in the proof of Proposition 25.2.4.2, we see that this functor admits an essentially
unique extension to a functor

E Ñ Funp∆n,SCRModcnq ˆFunp∆n,CAlg∆q CAlg∆ .

pR, ρ : M 1 ÑMq ÞÑ pR,F 0,npρq Ñ ¨ ¨ ¨ Ñ Fn,npρqq,

where we have
F 0,npρq » LSymn

RpM
1q Fn,npρq “ LSymn

RpMq

cofibpF d´1,npρq Ñ F d,npρqq » LSymd
RpM

2q bR LSymn´d
R pM 1q.
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Proof of Proposition 25.2.5.3. Let A be a simplicial commutative ring and let M be a
connective perfect A-module; we wish to show that LSymn

ApMq is also perfect. Choose an
integer m ě 0 such that M has Tor-amplitude ď m. We proceed by induction on m. If
m “ 0, then M is a projective A-module of finite rank and the desired result follows from
Corollary 25.2.3.2 (and Proposition 25.2.3.1). Let us therefore assume that m ą 0. Our
proof now proceeds also by induction on n. Since M is perfect and connective, the group
π0M is finitely generated as a module over π0A; we can therefore choose a fiber sequence
M 1 ρ

Ñ Ak Ñ M where M 1 is a connective perfect A-module having Tor-amplitude ă m.
Applying Construction 25.2.5.4, we deduce the existence of a finite sequence of maps

LSymn
ApM

1q » F 0,npρq Ñ F 1,npρq Ñ ¨ ¨ ¨ Ñ Fn,npρq » LSymn
ApA

kq,

where each of the successive quotients is given by

cofibpF d´1,npρq Ñ F d,npρqq » LSymdpMq bA LSymn´dpM 1q.

Using our inductive hypotheses, we see that these cofibers are perfect for d ă n, so that
Fn´1,npρq is perfect. The fiber sequence

Fn´1,npρq Ñ LSymn
ApA

kq Ñ LSymn
ApMq

now proves that LSymn
ApMq is perfect, as desired.

25.2.6 Comparison with Sym˚
A

Let A be an E8-ring. For any A-module M , let Symn
ApMq denote the nth symmetric

power of M in the sense of Construction HA.3.1.3.9 : that is, the A-module obtained by
taking the (homotopy) coinvariants for the action of the symmetric group Σn on the n-fold
tensor power MbA ¨ ¨ ¨bAM . Note that if A and M are connective, then we have a canonical
isomorphism

π0pSymn
ApMqq » CSymn

π0pAq
pπ0pMqq.

In particular, if A is a polynomial ring over Z and M is a finitely generated free module over
A, then there is a canonical map ρ : Symn

ApMq Ñ CSymn
ApMq which exhibits CSymn

ApMq

as the 0-truncation of Symn
ApMq. Since the functor pA,Mq ÞÑ Symn

ApMq commutes with
sifted colimits, we can use Corollary 25.2.1.3 to extend ρ to a map Symn

ApMq Ñ LSymn
ApMq

defined for all simplicial commutative rings A and all connective A-modules M . This map
is generally not an equivalence. For example, when A “ M “ Z, the symmetric power
LSymn

ApMq is discrete, but the homotopy groups of Symn
ApMq are the integral homology

groups of Σn.

Proposition 25.2.6.1. Let A be a simplicial commutative ring and suppose that there exists
a morphism Q Ñ A. Then, for every connective A-module M and every integer n ě 0, the
map ρM : Symn

ApMq Ñ LSymn
ApMq described above is an equivalence.
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Proof. The construction M ÞÑ ρM commutes with sifted colimits. Consequently, to prove
that ρM is an equivalence for all connective A-modules M , it will suffice to prove that it
is an equivalence in the special case where M is a free A-module of finite rank. In this
case, we can write M “ AbQ V where V is a finite-dimensional vector space over Q. Using
Proposition 25.2.3.1 (and the observation that the symmetric monoidal, colimit-preserving
functor ModQ Ñ ModA commutes with the formation of symmetric powers), we can reduce
to the case A “ Q. In this case, Proposition 25.2.3.4 allows us to identify LSymn

Q V with the
classical symmetric power CSymn

QpV q » π0 Symn
QpV q. We are therefore reduced to proving

that the homotopy groups πi Symn
QpV q vanish for i ą 0. In other words, we wish to prove

that the homology groups HipΣn;V bnq vanish for i ą 0, which follows from the fact that Σn

is a finite group and V bn is a vector space over the rational numbers.

Remark 25.2.6.2. Proposition 25.2.6.1 shows that if we are working rationally, the derived
symmetric powers LSymn

A of Construction 25.2.2.1 can be recovered from the symmetric
monoidal structure on the 8-category ModA, and therefore depend only on the underlying
E8-ring A˝. Of course this is to be expected, since the forgetful functor CAlg∆

Q Ñ CAlgcn
Q

is an equivalence of 8-categories (Proposition 25.1.2.2).

25.3 The Algebraic Cotangent Complex

Let A be an E8-ring. For any A-module M , the direct sum A ‘M can be regarded
as an E8-algebra over A. One can then define a derivation of A into M to be a section of
the projection map e : A ‘M Ñ A. Recall that sections of e are classified by A-module
morphisms LA ÑM , where LA is a certain A module which we refer to as the cotangent
complex of A (see §HA.7.3.5 ).

In §25.3.1, we will show that if A is the underlying E8-ring of a simplicial commutative
ring and the module M is connective, the direct sum A‘M is also the underlying E8-algebra
of a simplicial commutative ring (Construction 25.3.1.1). We can then consider a different
notion of derivation from A into M : namely, a section of the projection map e : A‘M Ñ A

in the 8-category of simplicial commutative rings. Such sections can also be classified by
A-module morphisms Lalg

A ÑM , where is an A-module that we will refer to as the algebraic
cotangent complex of A (Definition 25.3.1.6).

Our main objective in this section is to understand the relationship between the A-
modules LA and Lalg

A . We begin in §25.3.3 by observing that when A admits the structure
of a simplicial commutative ring, the relative cotangent complex LA{Z can be endowed with
additional structure: namely, can be regarded as a left module over a certain E1-ring A`

(Remark 25.3.3.5). The ring spectrum A` is equipped with a canonical map γ : A` Ñ A, and
the algebraic cotangent complex Lalg

A can be obtained from LA{Z by extending scalars along
γ (Remark 25.3.3.7). Consequently, to analyze the difference between LA{Z and Lalg

A , we
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would like understand how far γ is from being an equivalence of ring spectra. We address this
question in §25.3.4 by showing that there are canonical maps of E1-rings AÑ A` Ð Z which
induce, via the multiplication on A`, an equivalence of spectra AbS Z Ñ A` (Proposition
25.3.4.2). Beware that this is not an equivalence of ring spectra; the actions of A and Z on
A` generally do not commute with one another (Warning ??). Nevertheless, the equivalence
AbS Z » A` gives us good control the difference between A and A`. In 25.3.5, we translate
this into information about the relationship between the cotangent complexes LA{Z and
Lalg
A .

For many applications, it is useful to consider not only the absolute algebraic cotangent
complex Lalg

A , but also the relative algebraic cotangent complex Lalg
B{A associated to a

morphism of simplicial commutative rings ϕ : AÑ B. In §25.3.6, we introduce a canonical
map of A-modules cofibpϕq Ñ Lalg

B{A and study its connectivity properties, which will play a
key role in understanding finiteness properties of simplicial commutative rings in §??.

Remark 25.3.0.1. The E1-ring A` was introduced by Schwede in [185], where it is denoted
by DA.

25.3.1 Derivations

Let A be a commutative ring and let M be a (discrete) A-module. Then the direct sum
A‘M admits the structure of a commutative ring, with multiplication given by

pa,mqpa1,m1q “ paa1, am1 ` a1mq.

We will refer to A‘M as the trivial square-zero extension of A by M . Using the paradigm
described in §25.2.1, we can extend this construction to the setting of simplicial commutative
rings:

Construction 25.3.1.1 (Trivial Square-Zero Extensions). Let C Ď SCRModcn be the
category appearing in Proposition 25.2.1.2, whose objects are pairs pA,Mq where A is a
polynomial ring and M is a free A-module of finite rank. The construction pA,Mq ÞÑ A‘M

determines a functor from C to the category of commutative rings, which we regard as a full
subcategory of the 8-category CAlg∆ of simplicial commutative rings. Applying Corollary
25.2.1.3, we deduce that there is an essentially unique functor F : SCRModcn Ñ CAlg∆

which commutes with sifted colimits and is given by pA,Mq ÞÑ A‘M on the subcategory
C. We will denote the value of the functor F on a pair pA,Mq by A‘M , and refer to it as
the trivial square zero extension of A by M .

Remark 25.3.1.2. The constructions

pA,Mq ÞÑ pA‘Mq˝ pA,Mq ÞÑ A˝ ‘M
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determine functors from the 8-category SCRModcn to the 8-category CAlgcn
Z of connective

E8-algebras over Z. These functors are canonically equivalent when restricted to the full
subcategory C Ď SCRModcn and both commute with small sifted colimits. It follows from
Corollary 25.2.1.3 that they are equivalent: that is, the underlying E8-algebra of a trivial
square-zero extension A‘M in the sense of Construction 25.3.1.1 is a trivial square-zero
extension of E8-algebras in the sense of Remark ??. In particular, when A and M are
discrete, then the simplicial commutative ring A ‘ M of Construction 25.3.1.1 can be
identified with the usual trivial square-zero extension of A by M .

Remark 25.3.1.3. In the situation of Construction 25.3.1.1, we can restrict the construction
pA,Mq ÞÑ A ‘M to the full subcategory E Ď SCRModcn spanned by those pairs pA,Mq
where M » 0. This restricted functor commutes with sifted colimits and agrees with the
forgetful functor pA,Mq ÞÑ A when A is a polynomial ring over Z, and therefore agree with
the forgetful functor in general: that is, whenever M » 0, we have a canonical equivalence
A‘M » A.

If M is an arbitrary connective A-module, we have essentially unique maps 0 ÑM Ñ 0
in ModA, which determine maps of simplicial commutative rings AÑ A‘M Ñ A. In other
words, we can regard the trivial square-zero extension A‘M as an object of the pointed
8-category pCAlg∆

Aq{A.

Definition 25.3.1.4. Let A be a simplicial commutative ring and let M be a connective
A-module. We let DerpA,Mq denote the mapping space MapCAlg∆

{A
pA,A ‘Mq. We will

refer to DerpA,Mq as the space of derivations of A into M .
Note that the construction M ÞÑ DerpA,Mq is functorial. In particular, given a point

η P DerpA,M0q, evaluation on η determines a map

MapModApM0,Mq Ñ DerpA,Mq

for every connective A-module M . If this map is a homotopy equivalence for each M P Modcn
A ,

then we will say that η is a universal derivation.

Proposition 25.3.1.5. Let A be a simplicial commutative ring. Then there exists a con-
nective A-module M0 and a universal derivation η P DerpA,M0q.

Proof. The construction M ÞÑ DerpA,Mq determines an accessible functor

Modcn
A Ñ S

which preserves small limits. We wish to show that this functor is corepresentable, which
follows from Proposition HTT.5.5.2.7 .
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Construction 25.3.1.6 (The Algebraic Cotangent Complex). Let A be a simplicial com-
mutative ring. Proposition 25.3.1.5 implies that there exists a connective A-module Lalg

A

and a universal derivation η P DerpA,Lalg
A q. It follows from general nonsense that the pair

pLalg
A , ηq is uniquely determined up to equivalence. We will refer to Lalg

A as the algebraic
cotangent complex of A.

Example 25.3.1.7. Let A be a polynomial ring Zrxss generated by a possibly infinite set
of variables txsusPS . Let ΩA{Z denote the module of Kähler differentials of A (regarded as
a module over Z, so that ΩA{Z is the A-module freely generated by the symbols tdxsusPS .
The construction

pf P Aq ÞÑ pf,
ÿ B f

B xs
dxsq

determines a derivation η of A into ΩA{Z. Moreover, for every connective A-module M ,
evaluation on η determines a homotopy equivalence

MapModApΩA{Z,Mq Ñ DerpA,Mq » MapCAlg∆
{A
pA,A‘Mq,

since both sides can be identified with the space
ś

sPS Ω8M . It follows that η is a universal
derivation, and therefore determines an identification Lalg

A » ΩA{Z; in particular, Lalg
A is a

discrete A-module.

Example 25.3.1.8. Let A be a commutative ring. When regarded as an object of the
8-category CAlg∆, the commutative ring A can be written as the geometric realization of a
simplicial object P‚ where each Pn is a polynomial ring over Z (possibly with an infinite
set of generators). It follows from Remark ?? that we can identify the algebraic cotangent
complex Lalg

A with the geometric realization of the simplicial A-module AbP‚ L
alg
P‚

. It follows
from Example 25.3.1.7 that this simplicial A-module is levelwise free, given by AbP‚ ΩP‚{Z.
We can therefore identify Lalg

A with the B-module represented by the normalized chain
complex

¨ ¨ ¨ Ñ AbP2 ΩP2{Z Ñ AbP1 ΩP1{Z Ñ AbP0 ΩP0{Z.

This chain complex is often referred to as the cotangent complex of A; its homology is called
the André-Quillen homology of A and has been studied by many authors (see for example
[1], [132], and [167]). We refer to it instead as the algebraic cotangent complex to distinguish
it from the complex LA which computes the topological André-Quillen homology of A (which
plays a larger role throughout most of this book).

25.3.2 The Relative Algebraic Cotangent Complex

The construction A ÞÑ pA,Lalg
A q determines a functor from the 8-category of simplicial

commutative rings to the 8-category SCRModcn. In particular, every map of simplicial
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commutative rings φ : AÑ B induces a morphism of B-modules

B bA L
alg
A Ñ Lalg

B .

Notation 25.3.2.1. Let f : AÑ B be a morphism of simplicial commutative rings. We let
Lalg
B{A denote the cofiber of the induced map B bA Lalg

A Ñ Lalg
B . We will refer to Lalg

B{A as the
relative algebraic cotangent complex of B over A.

Example 25.3.2.2. Let A be a simplicial commutative ring, let M be a connective A-
module, and let B “ LSym˚

ApMq be the derived symmetric algebra on M (see Construction
25.2.2.6). The universal property of B then supplies a canonical equivalence

Lalg
B{A » B bAM.

In the special case where A “ Z and M is a free A-module, this recovers the description of
the absolute algebraic cotangent complex Lalg

B given in Example 25.3.1.7.

Remark 25.3.2.3. Fix a simplicial commutative ring B. Then the construction

A ÞÑ B bA L
alg
A

determines a functor F : CAlg∆
{B Ñ Modcn

B . Unwinding the definitions, we see that this
functor is left adjoint to the square-zero extension functor

G : Modcn
B Ñ CAlg∆

B M ÞÑ B ‘M.

In particular, the functor F preserves small colimits.

Remark 25.3.2.4. Let φ : A Ñ B be a morphism of simplicial commutative rings. For
every connective B-module M , we have a canonical homotopy equivalence

MapModB pL
alg
B{A,Mq » Map

pCAlg∆
Aq{B

pB,B ‘Mq.

It follows that for every pushout diagram of simplicial commutative rings

A1 //

��

B1

��
A // B,

there is a canonical equivalence of B-modules Lalg
B{A » B bB1 L

alg
B1{A1 .

Remark 25.3.2.5. For every composable pair of morphisms between simplicial commutative
rings AÑ B Ñ C, there is a canonical cofiber sequence

C bB L
alg
B{A Ñ Lalg

C{A Ñ Lalg
C{B

in the stable 8-category ModC .
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25.3.3 Spectrum Objects of CAlg∆
{A

Let A be an E8-ring and let M be an A-module spectrum. In §HA.7.3.4 , we equipped
the direct sum A‘M with the structure of an E8-algebra (see Remark ??). Let CAlgaug

A

denote the 8-category of augmented E8-algebras over A, whose objects are pairs pB, εq
where B P CAlgA and ε : B Ñ A is an augmentation. The construction pB, εq ÞÑ fibpεq
determines a functor ρ : CAlgaug

A Ñ ModA. This functor commutes with finite limits, and
therefore induces a functor on spectrum objects

ρ : SppCAlgaug
A q Ñ SppModAq » ModA .

According to Corollary HA.7.3.4.14 , the functor ρ is an equivalence of 8-categories; the
direct sum A‘M is then defined as the image of M under the composition

ModA
ρ´1
ÝÝÑ SppCAlgaug

A q
Ω8
ÝÝÑ CAlgaug

A .

Phrased differently, the functor M ÞÑ A‘M can be characterized (up to contractible choice)
by the requirement that there is a canonical equivalence M » ρpA‘Mq.

In §25.3.1, we gave an analogous definition in the situation where A is a simplicial
commutative ring and M is a connective A-module. However, our approach was somewhat
different: in essence, we gave a direct construction of the functor pA,Mq ÞÑ A‘M , rather
than characterizing it by a universal property. It is also possible to apply the abstract
formalism of §HA.7.3.4 in the setting of simplicial commutative rings. However, this yields
a slightly different notion of square-zero extension.

Notation 25.3.3.1. Let A be a simplicial commutative ring and let CAlg∆
{A denote the

8-category whose objects are pairs pB, εq, where B is a simplicial commutative ring equipped
with a map ε : B Ñ A (here we do not require that B is equipped with the structure of a
simplicial commutative algebra over A). The construction

pε : B Ñ Aq ÞÑ fibpε˝ : B˝ Ñ A˝q

determines a functor of 8-categories ψ0 : CAlg∆
{A Ñ Sp. This functor preserves small limits,

and therefore induces a functor between spectrum objects

ψ : SppCAlg∆
{Aq Ñ SppSpq » Sp .

Proposition 25.3.3.2. Let A be a simplicial commutative ring. Then:

p1q The functor ψ : SppCAlg∆
{Aq Ñ Sp admits a left adjoint ϕ.

p2q The adjunction Sp
ϕ //SppCAlg∆

{Aq
ψ
oo is monadic.
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p3q The underlying monad pψ ˝ ϕq : Sp Ñ Sp is a functor which preserves small colimits.

Proof. The functor ψ0 : CAlg∆
{A Ñ Sp preserves small limits and filtered colimits, so the

functor ψ : SppCAlg∆
{Aq Ñ Sp has the same properties. Assertion p1q now follows from

the adjoint functor theorem (Corollary HTT.5.5.2.9 ). Note that ψ is a left exact functor
between stable 8-categories and therefore right exact. It follows that ψ preserves all small
colimits, which proves p3q. In particular, ψ preserves geometric realizations. Since it is also
conservative, assertion p2q follows from the Barr-Beck theorem (Theorem HA.4.7.0.3 ).

Corollary 25.3.3.3. Let A be a simplicial commutative ring. Then the functor

ψ : SppCAlg∆
{Aq Ñ Sp

factors canonically as a composition

SppCAlg∆
{Aq » LModA`

u
ÝÑ Sp

for some E1-algebra A`; here u : LModA` Ñ Sp denotes the forgetful functor.

Proof. Let ψ ˝ϕ be the monad of Proposition 25.3.3.2, and take A` to be the image of ψ ˝ϕ
under the equivalence of monoidal 8-categories LFunpSp, Spq » Sp.

Remark 25.3.3.4. Let A be a simplicial commutative ring and let A˝ denote its un-
derlying E8-ring. Note that the construction B ÞÑ B˝ determines a forgetful functor
CAlg∆

{A Ñ pCAlgcn
Z q{A˝ . Passing to spectrum objects, we obtain a functor u : SppCAlg∆

{Aq Ñ

SpppCAlgcn
Z q{A˝q. Note that the map ψ of Notation 25.3.3.1 factors as a composition

SppCAlg∆
{Aq

u
ÝÑ SpppCAlgcn

Z q{A˝q » ModA˝ v
ÝÑ Sp,

where v is the forgetful functor. It follows that there is an essentially unique map of E1-rings
α : A˝ Ñ A` for which the diagram

SppCAlg∆
{Aq

„

��

u // SpppCAlgcn
Z q{A˝q

„

��
LModA` //ModA˝

commutes up to homotopy, where the bottom horizontal map is given by restriction of
scalars along α.

Remark 25.3.3.5. Let A be a simplicial commutative ring and let A˝ be the underlying
E8-algebra over Z. Then the cotangent complex LA˝{Z can be described as the image of A
under the composite functor

CAlg∆
{A

Σ8
`

ÝÝÑ SppCAlg∆
{Aq Ñ SpppCAlgcn

Z q{A˝q » ModA˝ .
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In particular, we see that LA˝ has a canonical preimage under the functor LModA` Ñ ModA˝
given by restriction of scalars along the map α : A˝ Ñ A` of Remark 25.3.3.4.

We can summarize the situation more informally as follows: if A˝ is the underlying
E8-ring of a simplicial commutative ring A, then the relative cotangent complex LA˝{Z is
endowed with additional structure: it carries a left action of the E1-ring A` of Corollary
25.3.3.3 (which restricts to the tautological action of A˝ on LA˝{Z along α : A˝ Ñ A`).

Let us now return to the construction of square-zero extensions given in §??.

Construction 25.3.3.6. Fix a simplicial commutative ring A. The construction M ÞÑ

A‘M then determines a functor θ0 : Modcn
A˝ Ñ CAlg∆

{A which commutes with small limits.
Passing to spectrum objects, we obtain a functor

θ : ModA˝ » SppModA˝q Ñ SppCAlg∆
{Aq.

By virtue of Remark 25.3.1.2, the composition of this functor with the forgetful map

SppCAlg∆
{Aq Ñ SpppCAlgcn

Z q{A˝q » ModA˝

is naturally equivalent to the identity functor ModA˝ . It follows that there is an essentially
unique map of E1-rings γ : A` Ñ A˝ for which the composition

ModA˝ θ
ÝÑ SppCAlg∆

{Aq » LModA`

is given by restriction of scalars along γ. Moreover, the composition A˝
α
ÝÑ A`

γ
ÝÑ A˝ is

homotopic to the identity.

Remark 25.3.3.7. Let A be a simplicial commutative ring. The algebraic cotangent
complex Lalg

A is characterized by the requirement that, for any connective A-module M , we
have canonical homotopy equivalences

MapModA˝ pL
alg
A ,Mq » MapCAlg∆

{A
pA,A‘Mq

» MapSppCAlg∆
{A
q
pΣ8` pAq, θpMqq

» MapLModA` pLA˝{Z,Mq

where we regard LA˝{Z as a left A`-module as in Remark 25.3.3.4, and we regard M as a
left A`-module by restricting scalars along the map γ : A` Ñ A˝ of Construction 25.3.3.6.
It follows that we have a canonical equivalence of A-modules Lalg

A » A˝ bA` LA˝{Z.
More generally, if we are given a morphism B Ñ A of simplicial commutative rings, then

we can identify the relative algebraic cotangent complex Lalg
A{B with A˝ bA` LA˝{B˝ .
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25.3.4 Calculation of the Ring Spectrum A`

Let A be a simplicial commutative ring. Our goal in this section is to describe the E1-ring
A` appearing in the statement of Corollary 25.3.3.3. This ring spectrum is essentially
characterized by the requirement that the 8-category LModA` is equivalent to the 8-
category of spectrum objects CAlg∆

{A. Suppose we are given an object X P SppCAlg∆
{Aq.

Then the image rA of X under the forgetful functor Ω8 : SppCAlg∆
{Aq Ñ CAlg∆

{A as a kind
of “generalized trivial square-zero extension of A.” Any such extension determines a trivial
square-zero extension of the underlying E8-ring A˝, which is automatically of the form
A˝ ‘M for some connective A˝-module M . However, to promote the E8-ring A˝ ‘M

to a simplicial commutative ring A˝, we also need to make the multiplication of A˝ ‘M

strictly commutative. We now show that this can be used to endow M with the structure of
a Z-module spectrum, which is a priori unrelated to its A˝-module structure.

Construction 25.3.4.1. Let A be a simplicial commutative ring and let A˝ denote its
underlying E8-ring. Then Remark 25.1.5.5 supplies a commutative diagram of 8-categories

CAlg∆
{A

Θ
��

Gm // pModcn
Z q{GmpAq

��
pCAlgcn

Z q{A˝
GL1 // CAlggppSq{GL1pA˝q

Passing to spectrum objects and using the equivalences

CAlg∆
{A » LModA` SpppModcn

Z q{GmpAqq » ModZ

SpppCAlgcn
Z q{A˝q » ModA˝ SpppCAlggppSqq{GL1pA˝qq » Sp,

we obtain a commutative diagram of 8-categories

LModA` //

��

ModZ

��
ModA˝ // Sp

where the bottom horizontal map and right vertical maps are the forgetful functors, and the
left vertical map is given by restriction of scalars along the map α : A˝ Ñ A` of Remark
25.3.3.4. It follows that the upper horizontal map is given by restriction of scalars along an
essentially unique morphism of E1-rings β : Z Ñ A`.

We now use Construction 25.3.4.1 to describe the structure of the ring spectrum A` (see
[185] for another proof):
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Proposition 25.3.4.2 (Schwede). Let A be a simplicial commutative ring and let α : A˝ Ñ
A` and β : Z Ñ A` be the morphisms of E1-rings given in Remark 25.3.3.4 and Construction
25.3.4.1, respectively. Then the multiplication on A` induces a homotopy equivalence of
spectra

A˝ bS Z αbβ
ÝÝÝÑ A` bS A

` Ñ A`.

Warning 25.3.4.3. Let A be a simplicial commutative ring. In general, the E1-ring A`

is not commutative (in fact, the graded ring π˚A` need not even be graded-commutative).
Consequently, the homotopy equivalence A˝ bS Z » A` is generally not compatible with
ring structures. More informally, the issue is that the E1-ring morphisms f : Z Ñ A` and
f 1 : A˝ Ñ A` do not “commute” with one another. Beware also that the order of the
multiplication is important: we can also consider the multiplication map

ZbSA`
βbα
ÝÝÝÑ A` bS A

` Ñ A`,

but this map is generally not a homotopy equivalence of spectra.

Proof of Proposition 25.3.4.2. We have a commutative diagram of E1-rings

A` Zβoo

A˝

α

OO

Soo

OO

which induces a commutative diagram of module 8-categories σ :

LModA` //

��

ModZ

��
ModA˝ //ModSp

Unwinding the definitions, we see that the multiplication map A˝bSZ Ñ A` is an equivalence
if and only if the diagram σ is left adjointable. By construction, the diagram σ arises by
applying the stabilization construction to a diagram of 8-categories σ0:

CAlg∆
{A

Θ
��

Gm // pModcn
Z q{GmpAq

��
pCAlgcn

Z q{A˝
GL1 // CAlggppSq{GL1pA˝q

We are therefore reduced to showing that the diagram σ0 is left adjointable, which follows
from Proposition 25.1.5.3.
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25.3.5 Comparison with the Topological Cotangent Complex

Let φ : A Ñ B be a morphism of simplicial commutative rings. Then there exists a
“universal A-linear derivation” B Ñ B ‘Lalg

B{A in the 8-category pCAlg∆
Aq{B. Passing to the

underlying E8-rings, we obtain a morphism B˝ Ñ B˝‘Lalg
B{A in the 8-category CAlgA˝{ {B˝ ,

which is classified by a morphism of B-modules

ρB{A : LB˝{A˝ Ñ Lalg
B{A.

Proposition 25.3.5.1. Let φ : A Ñ B be a morphism of simplicial commutative rings.
Suppose that fibpφq is m-connective for some m ě ´1: that is, the underlying map πnAÑ
πnB is surjective when n “ m and an isomorphism for n ă m. Then the comparison map
ρB{A : LB˝{A˝ Ñ Lalg

B{A has pm` 3q-connective fiber. In other words, the map πnLB˝{A˝ Ñ
πnL

alg
B{A is surjective when n “ m` 3 and an isomorphism for n ă m` 3.

Proof. Under the identification Lalg
B{A » B˝ bB` LB˝{A˝ supplied by Remark 25.3.3.7, the

comparison map ρB{A is given by

LB˝{A˝ Ñ B˝ bB` LB˝{A˝ .

Since fibpφq is m-connective, the relative cotangent complex LB˝{A˝ is pm` 1q-connective
(this is trivial when m “ ´1 and follows from Corollary HA.7.4.3.2 if m ě 0). It will
therefore suffice to show that the map of E1-rings γ : B` Ñ B˝ appearing in Remark 25.3.3.5
has 2-connective fiber. Since γ is a left homotopy inverse to the map α : B˝ Ñ B` of
Remark 25.3.3.4, we have fib γq » Σ fibpαq. We are therefore reduced to proving that fibpαq
is 1-connective. We conclude by observing that the identification B` » B˝ bS Z induces an
equivalence fibpαq » B˝ bS pτě1Sq, where S is the sphere spectrum.

Variant 25.3.5.2. Let A be a simplicial commutative ring. Then the universal derivation
AÑ A‘ Lalg

A in CAlg∆
A determines a map of E8-rings which is classified by a comparison

map ρ : LA˝ Ñ Lalg
A . The map ρ also has 2-connective fiber: this follows from the observation

that ρ factors as a composition

LA˝
ρ1
ÝÑ LA˝{Z

ρ2
ÝÑ Lalg

A{Z,

where γ2 has 2-connective fiber by Proposition 25.3.5.1 and fibpγ1q » AbZLZ is 2-connective
by virtue of the fact that the cofiber of the unit map S Ñ Z is 2-connective (here S denotes
the sphere spectrum).

The connectivity estimate given in Proposition 25.3.5.1 is in some sense optimal: in
general, the map π2LB˝{A˝ Ñ π2L

alg
B{A need not be injective (for example, it is not injective

if A “ Z and B “ Zrxs. However, we do have the following:
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Proposition 25.3.5.3. Let φ : A Ñ B be a morphism of simplicial commutative rings.
Then the comparison map ρB{A : LB˝{A˝ Ñ Lalg

B{A is a rational equivalence. In other words,
for every integer n, the map of abelian groups πnLB˝{A˝ Ñ πnL

alg
B{A becomes an isomorphism

after tensoring with the rational numbers.

Corollary 25.3.5.4. Let φ : A Ñ B be a morphism of simplicial commutative rings,
and suppose that the commutative ring π0B is a Q-algebra. Then the comparison map
ρB{A : LB˝{A˝ Ñ Lalg

B{A is an equivalence of B-modules.

Proof of Proposition 25.3.5.3. By virtue of Remark 25.3.3.7, it will suffice to show that the
morphism of E1-rings γ : B` Ñ B˝ appearing in Remark 25.3.3.5 is a rational equivalence.
Note that γ is left inverse to the map α : B˝ Ñ B` of Remark 25.3.3.4, so we are reduced
to showing that α is a rational equivalence. It follows from Proposition 25.3.4.2 that as
a map of spectra, α can be obtained by smashing the identity on B˝ with the unit map
S Ñ Z, where S is the sphere spectrum. We are therefore reduced to proving that the unit
map S Ñ Z is a rational equivalence, which follows from the fact that the stable homotopy
groups of spheres are torsion in nonzero degrees.

25.3.6 The Hurewicz Map

Let φ : AÑ B be a morphism of simplicial commutative rings. Recall that the underlying
morphism of E8-rings A˝ Ñ B˝ determines a map

ε˝φ : B bA cofibpφq Ñ LB˝{A˝

(see Theorem HA.7.4.3.1 ). Composing with the comparison map γB{A, we obtain a map

εφ : B bA cofibpφq Ñ Lalg
B{A.

We will refer to εφ as the Hurewicz map associated to φ.

Proposition 25.3.6.1. Let φ : AÑ B be a morphism of simplicial commutative rings and
suppose that the fiber of φ. Then the map

εφ : B bA cofibpφq Ñ Lalg
B{A

is surjective on π0. If the fiber of φ is connective, then the fiber of εφ is 2-connective. If the
fiber of φ is m-connective for m ą 0, then the fiber of εφ is pm` 3q-connective.

Warning 25.3.6.2. The analogue of Proposition 25.3.6.1 in the setting of E8-rings is
somewhat stronger: it asserts that if the fiber of φ is m-connective, then the fiber of ε˝φ
is p2m ` 2q-connective. In the setting of simplicial commutative rings, we have a weaker
statement because the derived symmetric powers LSymn

ApMq are only slightly more connected
than M (see Proposition 25.2.4.1).
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Proof of Proposition 25.3.6.1. By construction, the map εφ is given by a composition

B bA cofibpφq
ε˝φ
Ñ LB˝{A˝

γB{A
Ñ Lalg

B{A.

If the fiber fibpφq is m-connective for m ě ´1, then the fiber of ε˝φ is p2m` 2q-connective
(Theorem HA.7.4.3.1 ) and the fiber of γB{A is pm` 3q-connective (Proposition 25.3.5.1).

Corollary 25.3.6.3. Let φ : AÑ B be a morphism of simplicial commutative rings, so that
the universal derivation B Ñ B ‘ Lalg

B{A induces a morphism of A-modules β : cofibpφq Ñ
Lalg
B{A.

paq If the fiber fibpφq is connective, then the fiber fibpβq is 1-connective.

pbq If the fiber fibpφq is 1-connective, then the fiber fibpβq is 3-connective.

pcq If the fiber fibpφq is m-connective for m ě 2, then the fiber fibpβq is pm`3q-connective.

Proof. The map β factors as a composition

cofibpφq β0
Ñ B bA cofibpφq εφÑ Lalg

B{A.

If fibpφq is m-connective, then fibpβq » fibpφq bA cofibpφq is p2m` 1q-connective. It follows
from Proposition 25.3.6.1 that the map εφ is 2-connective when m “ 0 and pm`3q-connective
when m ą 0. It follows that fibpβq is 1-connective when m “ 0, 3-connective when m “ 1,
and pm` 3q-connective for m ą 1.

Corollary 25.3.6.4. Let φ : A Ñ B be a morphism of simplicial commutative rings. If
the fiber fibpφq is m-connective for m ě 0, then the algebraic cotangent complex Lalg

B{A is
pm` 1q-connective.

Remark 25.3.6.5. Let φ : A Ñ B be a morphism of simplicial commutative rings, and
suppose that fibpφq is m-connective for m ě 0: that is, the map πnAÑ πnB is surjective
when n “ m and an isomorphism for n ă m. It follows from Corollary 25.3.6.4 that the
homotopy groups πnLalg

B{A vanish for n ď m. We can restate Corollary 25.3.6.3 as follows:

pa1q If m “ 0, then the universal derivation induces a surjection π1 cofibpφq Ñ π1L
alg
B{A.

pb1q If m “ 1, then the universal derivation induces an isomorphism π2 cofibpφq Ñ π2L
alg
B{A

and a surjection π3 cofibpφq Ñ π3L
alg
B{A.

pc1q If m ě 2, then the universal derivation induces isomorphisms

πm`1 cofibpφq Ñ πm`1L
alg
B{A πm`2 cofibpφq Ñ πm`2L

alg
B{A

and a surjection πm`3 cofibpφq Ñ πm`3L
alg
B{A.
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Corollary 25.3.6.6. Let φ : AÑ B be a morphism of simplicial commutative rings. Then φ
is an equivalence if and only if it induces an isomorphism of commutative rings π0AÑ π0B

and the algebraic cotangent complex Lalg
B{A vanishes.

Proof. The “only if” direction is clear. Suppose, conversely, that φ induces an isomorphism
of π0A with π0B. If φ is not an equivalence, then cofibpφq is a nonzero connective A-
module, so there exists some smallest integer n ě 0 such that πn cofibpφq ‰ 0. Then
πnpB bA cofibpφqq ‰ 0. It follows from Proposition 25.3.6.1 that the fiber of the map

εφ : B bA cofibpφq Ñ Lalg
B{A

is pn ` 1q-connective (and even pn ` 2q-connective if n ě 2). In particular, it induces an
isomorphism πnpBbAcofibpφqq Ñ πnL

alg
B{A, contradicting our assumption that Lalg

B{A » 0.
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Appendix A

Coherent 8-Topoi

Recall that a scheme pX,OXq is said to be quasi-compact if the topological space X is
quasi-compact: that is, every open covering of X admits a finite subcovering. We say that
pX,OXq is quasi-separated if the collection of quasi-compact open subsets of X is closed
under pairwise intersections. Throughout this book, we study algebro-geometric objects
which behave like schemes, but whose “underlying topology” is encoded by an 8-topos
rather than a topological space. Our primary goal in this appendix is to describe finiteness
hypotheses on 8-topoi which are analogous the the hypotheses of quasi-compactness and
quasi-separatedness on ordinary topological spaces.

We begin in §A.1 with a discussion of the theory of coherent topological spaces: that
is, sober topological spaces X for which the quasi-compact open subsets form a basis for
the topology of X and are stable under finite intersections. If X is a coherent topological
space, then the collection of quasi-compact open subsets of X forms a distributive lattice
Λ. A version of the classical Stone duality theorem asserts that the lattice Λ determines X
up to homeomorphism (Proposition A.1.5.10). This result provides an appealing algebraic
approach to the theory of coherent topological spaces: we can describe such a space X by
specifying a collection of well-behaved open subsets, rather than by specifying its points.

In §A.2, we introduce an 8-categorical counterpart of the notion of coherent topological
space: the notion of coherent 8-topos. We say that an 8-topos X is locally coherent if
there exists a full subcategory X 0 Ď X of quasi-compact objects which is stable under fiber
products, such that every object X P X admits a covering tUα Ñ Xu by objects of X 0.
If this condition is satisfied, then there exists a largest subcategory with these properties,
which we denote by X coh and refer to as the 8-category of coherent objects of X . We will
say that a locally coherent 8-topos X is coherent if X coh contains the final object of X .
Coherent 8-topoi exist in great abundance: in §A.3, we show that if C is an 8-category
which admits finite limits and is equipped with a finitary Grothendieck topology (that is, a
Grothendieck topology which is generated by finite coverings), then the 8-topos ShvpCq is

1734



1735

both coherent and locally coherent (Proposition A.3.1.3). In particular, most of the 8-topoi
that we will encounter in this book are coherent.

Most of this appendix is devoted to answering the following:

Question A.0.6.7. Let X be an 8-topos which is coherent and locally coherent. To what
extent can X be recovered from its full subcategory X coh Ď X of coherent objects?

Before we can properly discuss Question A.0.6.7, we first need to ask something more
basic:

Question A.0.6.8. Let X be an 8-topos which is coherent and locally coherent. What
sort of mathematical object is X coh?

In §A.6, we address Question A.0.6.8 by introducing the notion of an 8-pretopos (Defi-
nition A.6.1.1). Roughly speaking, an 8-pretopos is an 8-category having the exactness
properties of an 8-topos, but which is not required to admit “infinitary” categorical con-
structions (such as infinite products and coproducts). If X is a coherent 8-topos, then its
full subcategory X coh of coherent objects is an 8-pretopos. Conversely, if C is an essentially
small 8-pretopos, then C can be equipped with a finitary Grothendieck topology (Definition
A.6.2.4) from which we can construct a coherent 8-topos ShvpCq. Unfortunately, these
constructions are not quite inverse to one another (in contrast with the analogous situation
in classical topos theory), due to technicalities related to failure of Whitehead’s theorem
in a general 8-topos. However, we can obtain a good dictionary by imposing additional
restrictions on both sides. This can be accomplished in (at least) two different ways:

paq An 8-topos X is said to be hypercomplete if every 8-connective morphism f : X Ñ Y

in X is an equivalence (in other words, if Whitehead’s theorem is valid for X ). In §A.6,
we will introduce the more general notion of a hypercomplete 8-pretopos (Definition
A.6.5.3) and establish an equivalence

t Small hypercomplete 8-pretopoi u
õ

t Hypercomplete, coherent, locally coherent 8-topoi u

(see Theorem A.6.6.5).

pbq We will say that an 8-topos X is bounded if it can be written as a limit of n-localic
8-topoi (Definition A.7.1.2) and that an 8-pretopos C is bounded if it is essentially
small and each object C P C is truncated (Definition A.7.4.1). In §A.7, we establish an
equivalence

t Bounded 8-pretopoi u
õ

t Bounded coherent 8-topoi u
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(see Theorem A.7.5.3).

Both paq and pbq provide useful contexts in which to work. In §A.4, we will show that
an 8-topos X which is hypercomplete and locally coherent has enough points (Theorem
A.4.0.5): this can be regarded as an 8-categorical generalization of a classical result of
Deligne on coherent Grothendieck topoi (Corollary A.4.0.6). This result is useful because
it provides a general mechanism for reducing certain types of questions about arbitrary
8-topoi to more concrete questions about the homotopy theory of spaces. We will apply this
mechanism in §A.5 to show that in any 8-topos X , the homotopy theory of simplicial objects
of X behaves to a large extent like the classical homotopy theory of simplicial sets (see
Theorems ??, A.5.4.1, and A.5.6.1). On the other hand, the theory of bounded 8-pretopoi
has the virtue that it admits a completely finitary description (in other words, it can be
axiomatized without referring to infinite limits and colimits), and seems to provide a good
language for extending concepts of first-order logic to the 8-categorical setting. We offer
some evidence for this last assertion in §A.9 by proving an 8-categorical generalization
of the “conceptual completeness” theorem of Makkai-Reyes (see [143]), asserting that a
morphism of bounded 8-pretopoi f˚ : C Ñ D is an equivalence if and only if C and D have
the same “models” (see Theorem A.9.3.1 for a precise statement). The proof relies on a
study of Pro-objects of bounded 8-pretopoi which we carry out in §A.8 which may be of
some independent interest (and will be useful for our study of profinite homotopy theory in
Appendix E).
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A.1 Stone Duality

Let X be a topological space. We will say that X is coherent if it satisfies the following
conditions:

paq The space X is sober: that is, every irreducible closed subset of X has a unique generic
point (see Definition 1.5.3.1).

pbq The collection of quasi-compact open subsets of X forms a basis for the topology of X.

pcq The space X is quasi-compact and quasi-separated. In other words, the collection of
quasi-compact open subsets of X is closed under finite intersections.

Warning A.1.0.9. Some authors do not include condition paq in the definition of a coherent
topological space. This does not matter very much: for every topological space X, one can
construct a sober topological space X 1 having the same lattice of open sets (concretely, X 1

can be described as the set of irreducible closed subsets of X). Then X 1 is coherent if and
only if X satisfies conditions pbq and pcq.

Our goal in this section is to review the theory of Stone duality, which establishes an
equivalence of the theory of coherent topological spaces and the theory of distributive lattices
(Proposition A.1.5.10). We will also record a few facts about the relationship between
Boolean algebras and distributive lattices, which are useful for working with constructible
sets in algebraic geometry (see §4.3). For a much more extensive discussion of Stone duality,
we refer the reader to [105].

A.1.1 Upper Semilattices

We begin by reviewing some definitions.

Definition A.1.1.1. An upper semilattice is a partially ordered set Λ such that every finite
subset S Ď Λ has a supremum

Ž

S.

For partially ordered set Λ to be an upper semilattice, it is necessary and sufficient that
Λ has least element K and every pair of elements x, y P Λ has a least upper bound. We
denote this least upper bound by x_ y, and refer to it as the join of x and y.
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Remark A.1.1.2. Let Λ be an upper semilattice. Then the join operation _ : Λˆ Λ Ñ Λ
endows Λ with the structure of a commutative monoid (with identity element given by K).
Moreover, every element x P Λ is idempotent: that is, we have x “ x_ x. Conversely, if M
is a commutative monoid in which every element is idempotent, then we can introduce a
partial ordering of M by writing x ď y if and only if xy “ y. This partial ordering exhibits
M as an upper semilattice.

Definition A.1.1.3. Let Λ and Λ1 be upper semilattices. A distributor from Λ to Λ1 is a
subset D Ď Λˆ Λ1 satisfying the following conditions:

piq If px, x1q P D, y ď x, and x1 ď y1, then py, y1q P D.

piiq Let S “ tyiu be a finite subset of Λ1, let y “
Ž

S, and let x P Λ. Then px, yq P D if
and only if we can write x “

Ž

txiu for some finite collection of elements txiu Ď Λ
such that pxi, yiq P D for every index i.

piiiq Let S “ tyiu be a finite subset of Λ1 and let x P Λ be such that px, yiq P D for every
index i. Then there exists an element y P Λ1 such that px, yq P D, and y ď yi for every
index i.

We say that an upper semilattice Λ is distributive if the set tpx, yq P Λˆ Λ : x ď yu is a
distributor from Λ to itself.

Remark A.1.1.4. Let Λ be an upper semilattice. The set tpx, yq P Λ ˆ Λ : x ď yu

automatically satisfies conditions piq and piiiq of Definition A.1.1.3. Consequently, Λ is
distributive if and only if for every inequality x ď

Ž

tyiu, we can write x “
Ž

txiu for some
collection of elements xi satisfying xi ď yi. This is obvious if the set tyiu is empty. Using
induction on the size of the set tyiu, we see that Λ is distributive if and only if the following
condition is satisfied:

p˚q For every inequality x ď y_ z in Λ, we can write x “ y0_ z0, where y0 ď y and z0 ď z.

Construction A.1.1.5. Let Λ, Λ1, and Λ2 be upper semilattices, and suppose we are given
distributors D Ď Λˆ Λ1 and D1 Ď Λ1 ˆ Λ2. We define the composition D1 with D to be the
relation

D1D “ tpx, zq P Λˆ Λ2 : pDy P Λ1qrpx, yq P D and py, zq P D1su.

Then D1D is a distributor from Λ to Λ2. The composition of distributors is associative.
Moreover, if Λ is a distributive upper semilattice and we let idΛ denote the distributor
tpx, yq P ΛˆΛ : x ď yu, then idP D “ D for any distributor R from Λ1 to Λ, and D1 idP “ D1

for any distributor D1 from Λ to Λ1. We therefore obtain a category SLat whose objects are
distributive upper semilattices, where the morphisms from Λ to Λ1 are given by distributors
from Λ to Λ1.



1740 APPENDIX A. COHERENT 8-TOPOI

Example A.1.1.6. Let X be a topological space, and let ΛpXq denote the collection of all
quasi-compact open subsets of X. Then ΛpXq is an upper semilattice (when regarded as a
partially ordered set with respect to inclusion). The empty set H Ď X is a least element of
ΛpXq, and the join operation _ : ΛpXq ˆ ΛpXq Ñ ΛpXq is given by pU, V q ÞÑ U Y V .

A.1.2 The Spectrum of an Upper Semilattice

Example A.1.1.6 has a converse: every upper semilattice Λ is isomorphic to the partially
ordered set of quasi-compact open subsets of some topological space X. In fact, there is a
canonical choice for the topological space X, which we will refer to as the spectrum of Λ and
denote by SpecpΛq.

Definition A.1.2.1. Let Λ be an upper semilattice. We say that a subset I Ď Λ is an ideal
if it is closed downwards and closed under finite joins. We say that a subset F Ď Λ is a filter
if it is closed upwards and every finite subset S Ď F has a lower bound in F . We say that
an ideal I is prime if Λ´ I is a filter.

Remark A.1.2.2. Any ideal I Ď Λ contains the least element KP Λ. Note that I is prime
if and only if the following pair of conditions holds:

piq The empty set H Ď Λ´ I has a lower bound in Λ´ I: that is, I ‰ Λ.

piiq For every pair of elements x, y P Λ such that x, y R I, there exists z ď x, y such that
z R I.

Construction A.1.2.3. Let Λ be a distributive upper semilattice. We let SpecpΛq denote
the collection of all prime ideals of Λ. We will refer to SpecpΛq as the spectrum of Λ.

Notation A.1.2.4. Let Λ be a distributive upper semilattice. If I Ď Λ is an ideal, we let
SpecpΛqI denote the collection of those prime ideals p Ď Λ such that I Ę p. If x P Λ, we let
SpecpΛqx “ tp P SpecpΛq : x R pu.

Proposition A.1.2.5. Let Λ be a distributive upper semilattice and let SpecpΛq be the
spectrum of Λ. Then:

p1q There exists a topology on the set SpecpΛq, for which the open sets are those of the
form SpecpΛqI , where I ranges over the ideals of Λ.

p2q The construction I ÞÑ SpecpΛqI determines an isomorphism from the partially ordered
set of ideals of Λ and the partially ordered set of open subsets of SpecpΛq.

p3q For each x P Λ, the subset SpecpΛqx Ď SpecpΛq is open. Moreover, the collection of
sets of the form SpecpΛqx form a basis for the topology of SpecpΛq.
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p4q For every finite subset S Ď Λ having join
Ž

S “ x, the open set SpecpΛqx is given by
the union

Ť

yPS SpecpΛqy.

p5q Each of the open sets SpecpΛqx is quasi-compact. Conversely, every quasi-compact
open subset of SpecpΛq has the form SpecpΛqx for some uniquely determined x P Λ.

p6q The topological space SpecpΛq is sober: that is, every irreducible closed subset of
SpecpΛq has a unique generic point.

The proof of Proposition A.1.2.5 depends on the following basic observation:

Lemma A.1.2.6. Let Λ be a distributive upper semilattice containing an element x. For
every ideal I Ď Λ which does not contain x, there exists a prime ideal p Ď Λ which contains
I but does not contain x.

Proof. Using Zorn’s lemma, we can choose an ideal p Ď Λ which is maximal among those
ideals which contain I and do not contain x. We will complete the proof by showing that p

is prime. Since x R p, it is clear that Λ´ p is nonempty. It will therefore suffice to show that
every pair of elements y, z P Λ´ p have a lower bound in Λ´ p. The maximality of p implies
that x belongs to the ideal generated by p and y. It follows that x ď y _ y1 for some y1 P p.
Since Λ is distributive, we can write x “ y0_ y

1
0 for some y0 ď y and some y10 P p. The same

argument shows that x ď z _ z1 for some z1 P p. Then y0 ď z _ z1, so that y0 “ z0 _ z
1
0 for

some z0 ď z and some z10 P p. Then z0 is a lower bound for y and z. We claim that z0 R p:
otherwise, we deduce that y0 “ z0 _ z

1
0 P p, so that x “ y0 _ y

1
0 P p, a contradiction.

Proof of Proposition A.1.2.5. We first prove p1q. Suppose first that we are given a finite col-
lection of open subsets SpecpΛqIα of SpecpΛq, and let I “

Ş

α Iα. To prove that
Ş

α SpecpΛqIα
is open, it will suffice to show that

Ş

α SpecpΛqIα “ SpecpΛqI . That is, we must show that a
prime ideal p Ď Λ contains I if and only if it contains some Iα. The “if” direction is obvious.
For the converse, suppose that each Iα contains an element xα P Λ´ p. Since p is a prime
ideal, the finite collection of elements txαu have a lower bound x P Λ´ p. Since each Iα is
closed downwards, we deduce that x P I “

Ş

α Iα.
Now suppose we are given an arbitrary collection of open subsets SpecpΛqIβ of SpecpΛq;

we wish to show that
Ť

β SpecpΛqIβ is open. Let I smallest ideal containing each Iβ . Then a
prime ideal p contains I if and only if it contains each Iβ ; so that

Ť

β SpecpΛqIβ “ SpecpΛqI .
This completes the proof of p1q.

We now prove p2q. Consider two ideals I, J Ď Λ; we wish to show that I Ď J if and
only if SpecpΛqI Ď SpecpΛqJ . Let K “ I X J , so that SpecpΛqK “ SpecpΛqI X SpecpΛqJ
(by the argument given above). Then K Ď I. We wish to show that K “ I if and only if
SpecpΛqK “ SpecpΛqI . The “only if” direction is obvious. For the converse, we must show
that if I ‰ K, then there is a prime ideal p such that K Ď p but I Ę p.
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To prove p3q, we note that SpecpΛqx “ SpecpΛqI where I is the ideal ty P Λ : y ď xu; this
proves that SpecpΛqx is open. For any ideal J Ď Λ, we have SpecpΛqJ “

Ť

xPJ SpecpΛqx, so
that the open sets of the form SpecpΛqx form a basis for the topology of SpecpΛq. Assertion
p4q follows immediately from the definition of a prime ideal.

We now prove p5q. Let x P Λ, and suppose that SpecpΛqx admits a covering by open
sets of the form SpecpΛqIα Ď SpecpΛqx. Let J be the smallest ideal containing each Iα. It
follows from the proof of p1q that SpecpΛqJ “

Ť

α SpecpΛqIα “ SpecpΛqx. Invoking p2q, we
deduce that J “ ty P Λ : y ď xu. In particular, x P J . It follows that x ď x1 _ . . . _ xn
for some elements xi P Iαpiq, from which we deduce that SpecpΛqx “

Ť

1ďiďn SpecpΛqIαpiq .
This proves that SpecpΛqx is quasi-compact. Conversely, suppose that U Ď SpecpΛq is
any quasi-compact open set. Then U has a finite covering by basic open sets of the form
SpecpΛqy1 , . . . ,SpecpΛqyn . It follows from p4q that U “ SpecpΛqy, where y “ y1 _ . . ._ yn.

We now prove p6q. Suppose that K Ď SpecpΛq is an irreducible closed subset. Then
K “ SpecpΛq ´ SpecpΛqI for some ideal I Ď Λ, which is uniquely determined by condition
p2q. By definition, a prime ideal p P SpecpΛq is a generic point for K if K is the smallest
closed subset containing p. According to condition p2q, this is equivalent to the requirement
that I be the largest ideal such that I Ď p. That is, p is a generic point for K if and only
if p “ I. This proves the uniqueness of p. For existence, it suffices to show that I is a
prime ideal. Since K is nonempty, I ‰ Λ. It will therefore suffice to show that every pair of
elements x, y P Λ´ I have a lower bound in Λ´ I. Since x, y R I, the open sets SpecpΛqx
and SpecpΛqy have nonempty intersection with K. Because K is irreducible, we conclude
that SpecpΛqx X SpecpΛqy XK ‰ H. That is, there exists a prime ideal q such that x, y R q
while I Ď q. Since q is prime, x and y have a lower bound z P Λ ´ q. Then z is a lower
bound for x and y in Λ´ I.

A.1.3 Stone Duality for Upper Semilattices

It follows from Proposition A.1.2.5 that every distributive upper semilattice Λ can be
recovered as the partially ordered set of quasi-compact open subsets of SpecpΛq. Our next goal
is to prove a refinement of this observation: the construction Λ ÞÑ SpecpΛq determines a fully
faithful embedding from the category SLat of distributive upper semilattices (Construction
A.1.1.5) to the category of topological spaces (Proposition A.1.3.3).

Construction A.1.3.1. Let Λ and Λ1 be distributive upper semilattices, and let D Ď ΛˆΛ1

be a distributor from Λ to Λ1. We define a map SpecpDq : SpecpΛq Ñ SpecpΛ1q by the
formula

SpecpDqppq “ ty P Λ1 : p@x P Λqrpx, yq P D ñ x P psu.

We claim that, for every prime ideal p Ď Λ, the subset SpecpDqppq is a prime ideal in Λ1. It
is clear that SpecpDqppq is closed downwards. If ty1, . . . , ynu Ď P 1 ´ SpecpDqppq is a finite
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subset, then we can choose a finite subset tx1, . . . , xnu Ď P ´ p such that pxi, yiq P D for
1 ď i ď n. Since p is prime, the elements xi have a lower bound x P Λ´ p. Then px, yiq P D
for 1 ď i ď n. Since D is a distributor, we deduce that px, yq P D for some lower bound
y for ty1, . . . , ynu. Noting that y R SpecpDqppq, we see that Λ1 ´ SpecpDqppq is a filter.
To show that SpecpDqppq is an ideal, suppose we are given a finite collection of elements
ty11, . . . , y

1
mu Ď SpecpDqppq. If the join y11 _ ¨ ¨ ¨ _ y1m does not belong to SpecpDqppq, then

px1, y11 _ ¨ ¨ ¨ _ y1mq P D for some x P p. We can therefore write x1 “ x11 _ ¨ ¨ ¨ _ x1m where
px1i, y

1
iq P D for every index i. Since each y1i P SpecpDqppq, we conclude that x1i P p, so that

x1 “ x11 _ ¨ ¨ ¨x
1
n P p, a contradiction.

Remark A.1.3.2. In the situation of Construction A.1.3.1, the map SpecpDq : SpecpΛq Ñ
SpecpΛ1q is continuous. To prove this, we note that if I Ď P 1 is an ideal, then SpecpDq´1 SpecpΛ1qI “
SpecpΛqJ , where J is the ideal tx P Λ : pDy P Iqrpx, yq P Dsu.

It follows from Remark A.1.3.2 that we can view Spec as a functor from the category SLat
of distributive upper semilattices (with morphisms given by distributors) to the category
T op of topological spaces.

We can now formulate the first main result of this section.

Proposition A.1.3.3 (Duality for Distributive Upper Semilattices). The functor Spec :
SLat Ñ T op is fully faithful. Moreover, a topological space X belongs to the essential image
of Spec if and only if it is sober and has a basis consisting of quasi-compact open sets.

Proof. Let Λ and Λ1 be distributive upper semilattices, let f : SpecpΛq Ñ SpecpΛ1q be a
continuous map, and let D Ď Λˆ Λ1 be a distributor. We first prove the following:

p˚q We have f “ SpecpDq if and only if D “ tpx, yq P ΛˆΛ1 : SpecpΛqx Ď f´1 SpecpΛ1qyu.

This shows in particular that D is uniquely determined by f , so that the functor Spec is
faithful. We begin by proving the “only if” direction of p˚q. Suppose that f “ SpecpDq. If
px, yq P D, then for every prime ideal p Ď Λ not containing x, we have y P SpecpDqppq “ fppq,
so that SpecpΛqx Ď f´1 SpecpΛ1qy. Conversely, suppose px, yq R D. Then I “ tx1 P Λ :
px1, yq P Du is an ideal of Λ which does not contain the element x. Using Lemma A.1.2.6,
we can choose a prime ideal p containing I and not containing x. Then p P SpecpΛqx but
fpF q “ SpecpDqppq R SpecpΛ1qy, so that SpecpΛqx Ę f´1 SpecpΛ1qy.

We next prove the “if” direction of p˚q. Assume that D “ tpx, yq P Λˆ Λ1 : SpecpΛqx Ď
f´1 SpecpΛ1qyu, and let p Ď Λ be a prime ideal. We wish to show that fpF q “ SpecpDqppq.
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We have

y R fppq ô fpF q P SpecpΛ1qy
ô F P f´1 SpecpΛ1qy
ô pDx P ΛqrF P SpecpΛqx Ď f´1 SpecpΛ1qys
ô pDx P Λqrpx P F q ^ px, yq P Ds
ô y R SpecpDqppq.

We now prove that the functor Spec is full. Let f : SpecpΛq Ñ SpecpΛ1q be a continuous
map, and set D “ tpx, yq P Λˆ Λ1 : SpecpΛqx Ď f´1 SpecpΛ1qyu. We will show that D is a
distributor, so that assertion p˚q immediately implies that f “ SpecpDq. Let us verify the
conditions of Definition A.1.1.3:

piq It is clear that if px, yq P D, x1 ď x, and y ď y1, then px1, y1q P D.

piiq Let S “ tyiu be a finite subset of Λ1, let y “
Ž

S, and let x P Λ. Then px, yq P D if
and only if SpecpΛqx Ď

Ť

i f
´1 SpecpΛ1qyi . In this case, SpecpΛqx admits a covering

by quasi-compact open sets Ui,j such that Ui,j Ď f´1 SpecpΛ1qyi . Since SpecpΛqx is
quasi-compact, we can assume that this covering is finite. Let Ui “

Ť

j Ui,j . Then each
Ui is a quasi-compact open subset of SpecpΛq, and is therefore of the form SpecpΛqxi
for some xi P Λ. Since SpecpΛqx “

Ť

Ui, we have x “ x1 _ ¨ ¨ ¨ _ xn. Moreover, the
containment Ui Ď f´1 SpecpΛ1qyi implies that pxi, yiq P D for 1 ď i ď n.

piiiq Let S “ tyiu be a finite subset of Λ1 and let x P Λ be such that px, yiq P D for every
index i. Then U “

Ş

SpecpΛ1qyi is an open subset of SpecpΛ1q containing fpSpecpΛqxq.
Since f is continuous, SpecpΛqx is quasi-compact. We may therefore choose a finite
covering of fpSpecpΛqxq by quasi-compact open subsets of SpecpΛ1q which are contained
in U . Let V be the union of these quasi-compact open sets, so that V “ SpecpΛqy for
some y P Y . Then SpecpΛqx Ď f´1V , so that px, yq P D and y ď yi for each i.

We now describe the essential image of the functor Spec. Proposition A.1.2.5 implies
that for every distributive upper semilattice Λ, the spectrum SpecpΛq is a sober topological
space having a basis of quasi-compact open sets. Conversely, suppose that X is any sober
topological space having a basis of quasi-compact open sets. Let Λ be the collection of all
quasi-compact open subsets of X, partially ordered by inclusion. Since the collection of
quasi-compact open subsets of X is closed under finite unions, we see that Λ is an upper
semilattice. We next claim that Λ is distributive. Let U , V , and W be quasi-compact open
subsets of X such that U Ď V YW . Then U XV and U XW is an open covering of U . Since
X has a basis of quasi-compact open sets, this covering admits a refinement tUαu where
each Uα is quasi-compact. Since U is quasi-compact, we may assume that the set of indices
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α is finite. Then U “ V1 Y ¨ ¨ ¨ Y Vm YW1 Y ¨ ¨ ¨ YWm1 , where Vi Ď V , Wi ĎW , and each of
the open sets Vi and Wi is quasi-compact. Let V 1 “

Ť

i Vi and W 1 “
Ť

iWi. Then V 1 and
W 1 are quasi-compact open subsets of X satisfying U “ V 1 YW 1, V 1 Ď V , and W 1 ĎW .

We now define a map Φ : X Ñ SpecpΛq by the formula Φpxq “ tU P Λ : x R Uu. To
prove that φ is well-defined, we must show that for every point x P X, the subset Φpxq Ď Λ
is a prime ideal. It is easy to see that Φpxq is an ideal. If we are given a finite collection
of elements U1, . . . , Un P Λ ´ Φpxq, then x P

Ş

i Ui. Since X has a basis of quasi-compact
open sets, we can choose a quasi-compact open set V Ď

Ş

i Ui containing x, so that V is a
lower bound for the subset tUiu Ď Φpxq. This proves that Λ´ Φpxq is a filter, so that Φpxq
is prime.

For each U P Λ, we have

Φ´1 SpecpΛqU “ tx P X : Φpxq P SpecpΛqUu “ tx P X : x P Uu “ U.

Since the open sets of the form SpecpΛqU form a basis for the topology of SpecpΛq (Proposition
A.1.2.5), we deduce that Φ is continuous. We next show that Φ is bijective. Let p Ď Λ be
a prime ideal; we wish to show that there is a unique point x P X such that F “ Φpxq.
Let V “

Ť

UPp U . Note that if p “ Φpxq, then V is the union of all those quasi-compact
open subsets of X which do not contain the point x. It follows that x is a generic point
of X ´ V . Since X is sober, we conclude that the point x is unique if it exists. To prove
the existence, we will show that the closed set K “ X ´ V is irreducible. Since p is prime,
there exists a quasi-compact open set W Ď X which is not contained in p. We claim that
W XK ‰ H. Assume otherwise; then W Ď V “

Ť

URF U . Since W is quasi-compact, it is
contained in a finite union U1 Y ¨ ¨ ¨ Y Un where each Ui belongs to p. Since p is an ideal,
we conclude that U1 Y ¨ ¨ ¨ Y Un P p, contradicting our assumption that U R p. To complete
the proof that K is irreducible, it will suffice to show that if W and W 1 are open subsets of
X such that W XK ‰ H and W 1 XK ‰ H, then W XW 1 XK ‰ H. Since X has a basis
of quasi-compact open sets, we may assume without loss of generality that W and W 1 are
quasi-compact. The definition of V then guarantees that W and W 1 belong to the filter
Λ´ p. It follows that W and W 1 have a lower bound W 2 P Λ´ p. Since p is an ideal, W 2 is
not contained in any finite union of open sets belonging to p. The quasi-compactness of W 2

then implies that W 2 is not contained in
Ť

UPp U “ V , so that H ‰W 2XK ĎW XW 1XK.
To complete the proof, it will suffice to show that the continuous bijection Φ : X Ñ

SpecpΛq is an open map. Since X has a basis consisting of quasi-compact open sets, it will
suffice to show that for every quasi-compact open set U Ď X, the set ΦpUq Ď SpecpΛq is
open. In fact, we claim that ΦpUq “ SpecpΛqU . The containment ΦpUq Ď SpecpΛqU was
established above. To verify the reverse inclusion, let p Ď Λ be a prime ideal not containing
U . The bijectivity of Φ implies that p “ Φpxq for some point x P X. It now suffices to
observe that x P U (since this is equivalent to the condition that U R p “ Φpxq).
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A.1.4 Distributive Lattices

We now give a brief review of the theory of distributive lattices.

Definition A.1.4.1. Let Λ be a partially ordered set. We say that Λ is a lattice if both
Λ and Λop are upper semilattices: that is, if every finite subset S Ď Λ has both a greatest
lower bound and a least upper bound.

Notation A.1.4.2. If Λ is a lattice and we are given a finite subset S Ď Λ, we will denote
its greatest lower bound by

Ź

S. We will refer to
Ź

S as the meet of S. We denote the
greatest element of S by J, and the join of set S “ tx, yu by x^ y.

Remark A.1.4.3. Let Λ be a lattice. Then the opposite partially ordered set Λop is also a
lattice. Moreover, a subset I Ď Λ is an ideal if and only if it is a filter when regarded as a
subset of Λop. In particular, I is a prime ideal of Λ if and only if Λ´ I is a prime ideal of
Λop.

Proposition A.1.4.4. Let Λ be a lattice. The following conditions are equivalent:

p1q The lattice Λ is distributive when regarded as an upper semilattice (see Definition
A.1.1.3).

p2q For every triple of elements x, y, z P Λ, we have x^ py _ zq “ px^ yq _ px^ zq.

p3q The lattice Λop is distributive when regarded as an upper semilattice.

p4q For every triple of elements x, y, z P Λ, we have x_ py ^ zq “ px_ yq ^ px_ zq.

Definition A.1.4.5. We say that a lattice Λ is distributive if it satisfies the equivalent
conditions of Proposition A.1.4.4.

Proof of Proposition A.1.4.4. We first prove that p1q ñ p2q. Let x, y, and z be elements of
a lattice Λ. Since x^ y ď x^ py _ zq ě x^ z, we automatically have

x^ py _ zq ě px^ yq _ px^ zq.

Suppose that Λ is distributive as an upper semilattice. Then the inequality x^py_zq ď y_z

implies that we can write x^ py _ zq “ y1 _ z1, where y1 ď y and z1 ď z. Then y1, z1 ď x, so
that y1 ď x^ y and z1 ď x^ z. It follows that

x^ py _ zq “ y1 _ z1 ď px^ yq _ px^ zq.

Conversely, suppose that p2q holds. We will prove that Λ is distributive as an upper
semilattice. Suppose we have an inequality x ď y _ z in Λ. Then

x “ x^ py _ zq “ px^ yq _ px^ zq,
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where x^y ď y and x^z ď z. This completes the proof that p1q ô p2q, and the equivalence
p3q ô p4q follows by the same argument.

We now prove that p2q ô p4q. By symmetry, it will suffice to show that p2q ñ p4q. Let
x, y, z P Λ. If assumption p2q is satisfied, we have

px_ yq ^ px_ zq “ px^ px_ zqq _ py ^ px_ zqq

“ x_ ppy ^ xq _ py ^ zqq

“ px_ py ^ xqq _ py ^ zq

“ x_ py ^ zq.

Combining Remark A.1.4.3 with Lemma A.1.2.6, we obtain the following:

Proposition A.1.4.6. Let Λ be a distributive lattice containing an element x and let F Ď Λ
be a filter which does not contain x. Then there exists a prime ideal p Ď Λ which contains x
such that pX F “ H.

A.1.5 Stone Duality for Distributive Lattices

We now study the restriction of the fully faithful embedding Spec : SLat ãÑ T op to
distributive lattices.

Definition A.1.5.1. Let X be a topological space having a basis of quasi-compact open
sets. We say that X is quasi-separated if, for every pair of quasi-compact open sets U, V Ď X,
the intersection U X V is quasi-compact.

Proposition A.1.5.2. Let Λ be a distributive upper semilattice. The following conditions
are equivalent:

p1q The partially ordered set Λ is a distributive lattice.

p2q The topological space SpecpΛq is quasi-compact and quasi-separated.

Proof. Suppose first that condition p2q is satisfied. Let us identify Λ with the collection
of quasi-compact open subsets of SpecpΛq. For any finite collection tUiu of such subsets,
condition p2q guarantees that U “

Ť

Ui is quasi-compact, so that U is a greatest lower
bound for tUiu in Λ. Conversely, suppose that p1q is satisfied. Let tUiu1ďiďn be a finite
collection of quasi-compact open subsets of SpecpΛq, and let U be their greatest lower bound
in Λ. Then U is the largest quasi-compact open subset contained in

Ş

Ui. Since SpecpΛq has
a basis of quasi-compact open sets, we must have U “

Ş

Ui, so that
Ş

Ui is quasi-compact.
Taking n “ 0, we learn that SpecpΛq is quasi-compact; taking n “ 2, we learn that SpecpΛq
is quasi-separated.
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Definition A.1.5.3. Let Λ and Λ1 be lattices. A lattice homomorphism from Λ to Λ1 is a
map λ : Λ Ñ Λ1 such that, for every finite subset S Ď Λ, we have

λp
ł

Sq “
ł

λpSq λp
ľ

Sq “
ľ

λpSq.

We let Lat denote the category whose objects are distributive lattices and whose morphisms
are lattice homomorphisms.

Remark A.1.5.4. A map of lattices λ : Λ Ñ Λ1 is a lattice homomorphism if and only if λ
satisfies

λpKq “K λpx_ yq “ λpxq _ λpyq

λpJq “ J λpx^ yq “ λpxq ^ λpyq.

Here K and J denote the least and greatest elements of Λ and Λ1.

Construction A.1.5.5. Let Λ and Λ1 be distributive lattices, and let λ : Λ1 Ñ Λ be a
lattice homomorphism. We let Dλ Ď Λˆ Λ1 denote the subset tpx, yq P Λˆ Λ1 : x ď λpyqu.
Then Dλ is a distributor from Λ to Λ1. The construction λ ÞÑ Dλ determines a functor
Latop Ñ SLat.

Remark A.1.5.6. The functor Latop Ñ SLat of Construction A.1.5.5 is faithful. That is,
we can recover a lattice homomorphism λ : Λ1 Ñ Λ from the underlying distributor Dλ. For
each y P Λ1, λpyq can be characterized as the largest element of x such that px, yq P Dλ.

Notation A.1.5.7. Let Λ be a distributive lattice. We let SpecpΛq denote the spectrum
of Λ, regarded as an upper semilattice (Construction A.1.2.3). If λ : Λ Ñ Λ1 is a lattice
homomorphism, we let Specpλq : SpecpΛ1q Ñ SpecpΛq denote the map associated to the
distributor Dλ of Construction A.1.5.5. The construction Λ ÞÑ SpecpΛq determines a functor
Latop Ñ T op. We will abuse notation by denoting this functor by Spec.

Remark A.1.5.8. The definition of the spectrum SpecpΛq can be simplified a bit if we
work in the setting of distributive lattices. Note than an ideal p Ď Λ is prime if and only if
it satisfies the following pair of conditions:

piq The greatest element J P Λ is not contained in p.

piiq If x^ y P p, then either x or y belongs to p.

Definition A.1.5.9. Let X and Y be coherent topological spaces. We will say that a
morphism f : X Ñ Y is quasi-compact if, for every quasi-compact open subset U Ď Y , the
inverse image f´1pUq is a quasi-compact open subset of X. We let T opcoh denote the category
whose objects are coherent topological spaces and whose morphisms are quasi-compact,
continuous maps.
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Proposition A.1.5.10. The functor Spec : Latop Ñ T op induces an equivalence of cat-
egories Latop Ñ T opcoh. In other words, Spec is a faithful functor with the following
properties:

p1q A topological space X lies in the essential image of Spec if and only if it is coherent.

p2q Let Λ and Λ1 be distributive lattices. Then a continuous map f : SpecpΛq Ñ SpecpΛ1q
arises from a lattice homomorphism λ : Λ1 Ñ Λ (necessarily unique) if and only if f is
quasi-compact.

Proof. The faithfulness follows from Proposition A.1.3.3 and Remark A.1.5.6. Assertion
p1q follows from Propositions A.1.3.3 and A.1.5.2. We now prove p2q. Suppose first that
λ : Λ1 Ñ Λ is a lattice homomorphism, let Dλ be the corresponding distributor, and
f : SpecpΛq Ñ SpecpΛ1q the induced map. For each y P Λ1, we have

f´1 SpecpΛ1qy “
ď

SpecpΛqxĎf´1 SpecpΛ1qy

SpecpΛqx “
ď

px,yqPDλ

SpecpΛqx “
ď

xďλpyq

SpecpΛqx “ SpecpΛqλpyq,

so that f´1 carries quasi-compact open subsets of SpecpΛ1q to quasi-compact open subsets
of SpecpΛq. Conversely, suppose that f : SpecpΛq Ñ SpecpΛ1q is a continuous map such
that f´1U is quasi-compact whenever U Ď SpecpΛ1q is quasi-compact. We then have
f´1 SpecpΛ1qy “ SpecpΛqλpyq for some map λ : Λ1 Ñ Λ. Since the formation of inverse images
commutes with unions and intersections, we conclude that λ is a lattice homomorphism. Note
that SpecpΛqx Ď f´1 SpecpΛ1qy if and only if x ď λpyq, so that the underlying distributor of
the continuous map f is given by Dλ.

Remark A.1.5.11. Let X be a coherent topological space and let tUαu be a collection
of nonempty quasi-compact open subsets of X which are closed under finite intersections.
Then

Ş

Uα ‰ H. This follows from Proposition A.1.4.6.

Remark A.1.5.12. Let Λ be a distributive lattice which is given as a filtered colimit of
distributive lattices Λα. Then the canonical map SpecpΛq » lim

ÐÝ
SpecpPαq is a homeomor-

phism.

A.1.6 Boolean Algebras

Let Λ be a distributive lattice containing a least element K and a greatest element J.
Let x P Λ be an element. A complement of x is an element xc P Λ such that

x^ xc “K x_ xc “ J.

We will say that x is complemented if there exists a complement for x.
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Remark A.1.6.1. Let Λ be a distributive lattice containing an element x. If x1 and x2 are
complements of x, then x1 “ x2. To see this, we note that

x1 “ x1 ^J “ x1 ^ px_ x2q “ px1 ^ xq _ px1 ^ x2q “K _px1 ^ x2q “ x1 ^ x2

so that x1 ď x2. The same argument shows that x2 ď x1.

Remark A.1.6.2. Let Λ be a distributive lattice containing elements x, xc. Then xc is a
complement of x if and only if x is a complement of xc. In this case, we will simply say that
x and xc are complementary.

Remark A.1.6.3. Let λ : Λ1 Ñ Λ be a homomorphism of distributive lattices. Suppose
that y, yc P Λ1 are complementary. Then λpyq, λpycq P Λ are complementary.

Definition A.1.6.4. A Boolean algebra is a distributive lattice Λ for which every element
x P Λ has a complement. We let BAlg denote the full subcategory of Lat spanned by the
Boolean algebras.

Proposition A.1.6.5. Let Λ be a distributive upper semilattice. The following conditions
are equivalent:

p1q The partially ordered set Λ is a Boolean algebra.

p2q The spectrum SpecpΛq is compact and Hausdorff.

Proof. Suppose first that p1q is satisfied. Let p and q be distinct prime ideals of Λ. We may
assume without loss of generality that there exists an element x P p which does not belong
to q. Let xc be a complement of x. Since x_ xc “ J R p, we conclude that xc R p. Since
x^ xc P q, we conclude that xc P q. Then SpecpΛqxc and SpecpΛqx are disjoint open subsets
of SpecpΛq containing p and q, respectively.

We now show that p2q ñ p1q. Let x P Λ, so that SpecpΛqx is a quasi-compact open
subset of SpecpΛq. Since SpecpΛq is Hausdorff, the subset SpecpΛqx is also closed. Let U be
the complement of SpecpΛqx. Then U is a closed subset of SpecpΛq and therefore compact.
Since it is also an open subset of SpecpΛq, it has the form SpecpΛqy for some y P Λ. We now
observe that y is a complement to x.

Corollary A.1.6.6. Let Λ be a distributive lattice, let Λ1 be a Boolean algebra, and let
D Ď Λ ˆ Λ1 be a distributor. Then D “ Dλ for some lattice homomorphism λ : Λ1 Ñ Λ
(necessarily unique, by Remark A.1.5.6).

Remark A.1.6.7. Corollary A.1.6.6 implies that we can regard the category BAlg of
Boolean algebras as a full subcategory of both the category of Lat of distributive lattices
(where the morphisms are lattice homomorphisms) and the category SLatop of distributive
upper semilattices (where the morphisms are distributors). Beware that the embedding
Lat ãÑ SLatop is not full.
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Proof of Corollary A.1.6.6. Using Propositions A.1.3.3 and A.1.5.10, we are reduced to
proving that if f : SpecpΛq Ñ SpecpΛ1q is a continuous map and U Ď SpecpΛ1q is a quasi-
compact open subset, then f´1U is a quasi-compact open subset of SpecpΛq. Since SpecpΛ1q
is Hausdorff (Proposition A.1.6.5), the subset U Ď SpecpΛ1q is closed. The continuity of f
guarantees that f´1U is a closed subset of SpecpΛq, hence quasi-compact (since SpecpΛq is
quasi-compact).

Definition A.1.6.8. Let X be a topological space. We say that X is a Stone space if it
is compact, Hausdorff, and has a basis of closed and open sets. We let T opSt denote the
category whose objects are Stone spaces and whose morphisms are continuous maps.

Remark A.1.6.9. The category of Stone spaces admits several other descriptions, which
we will discuss in §E.1 (see Proposition E.1.3.1).

Remark A.1.6.10. Let X be a Hausdorff space. Then X is automatically sober (every
irreducible closed subset of X is a singleton). Moreover, an open set U Ď X is quasi-compact
if and only if it is also closed. It follows that the collection of quasi-compact open subsets of
X is closed under finite intersections. It follows that a topological space X is a Stone space
if and only if X is both Hausdorff and coherent.

Theorem A.1.6.11 (Stone Duality). The construction Λ ÞÑ SpecpΛq induces a fully faithful
embedding Spec : BAlgop Ñ T op, whose essential image is the full subcategory T opSt spanned
by the Stone spaces.

Proof. Combine Proposition A.1.6.5, Proposition A.1.5.10, Corollary A.1.6.6, and Remark
A.1.6.10.

A.2 Coherent 8-Topoi

Let X be a Grothendieck topos. We say that X is coherent if it is equivalent to a category
of the form ShvSetpCq, where C is a small category which admits finite limits, and is equipped
with a finitary Grothendieck topology (see Definition A.3.1.1). The theory of coherent topoi
can be regarded as a generalization of the theory of coherent topological spaces described in
§A.1. In this section, we will study a further generalization: the theory of coherent 8-topoi.

Definition A.2.0.12. Let X be an 8-topos. We will say that X is quasi-compact if every
covering of X has a finite subcovering: that is, for every effective epimorphism >iPIUi Ñ 1
in X (where 1 is the final object of X ), there exists a finite subset I0 Ď I such that the map
>iPIUi Ñ 1 is also an effective epimorphism. We say that an object X P X is quasi-compact
if the 8-topos X {X is quasi-compact.

Let n ě 0 be an integer. We will define the notion of an n-coherent 8-topos using
induction on n. We say that an 8-topos X is 0-coherent if it is quasi-compact. Assume
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that we have defined the notion of an n-coherent 8-topos for some n ě 0. We will say that
an object U P X of an 8-topos X is n-coherent if the 8-topos X {U is n-coherent. We say
that X is locally n-coherent if, for every object X P X , there exists an effective epimorphism
>iUi Ñ X, where each Ui is n-coherent. We say that X is pn ` 1q-coherent if it is locally
n-coherent and the collection of n-coherent objects of X is closed under finite products.

Remark A.2.0.13. Let X be an 8-topos. Then X is quasi-compact if and only if, for every
collection of p´1q-truncated objects tUi P X uiPI such that τď´1p>iPIUiq is a final object
of X , there exists a finite subset I0 Ď I such that τď´1p>iPI0Uiq is a final object of X . In
particular, the condition that X is quasi-compact depends only on the underlying locale of
p´1q-truncated objects of X .

Remark A.2.0.14. Let X be an n-coherent 8-topos for n ą 0. The collection of pn´ 1q-
coherent objects of X is stable under finite products. In particular, the final object of X is
pn ´ 1q-coherent, so that X is pn ´ 1q-coherent. It follows that an n-coherent 8-topos is
also m-coherent for each m ď n.

Remark A.2.0.15. Let X be a locally n-coherent 8-topos. Then X {U is locally n-coherent
for any object U P X . In this case, an object X P X is pn` 1q-coherent if and only if it is
n-coherent and, for every pullback diagram

U ˆX V //

��

U

��
V // X

in X , if U and V are n-coherent, then U ˆX V is also n-coherent.

Remark A.2.0.16. Suppose that X “
ś

1ďiďk X i is a product of finitely many 8-topoi
(corresponding to a coproduct in the 8-category 8T op). Then X is n-coherent if and
only if each X i is n-coherent. It follows that if Y is any 8-topos, then a finite coproduct
U “ >1ďiďkUi in Y is n-coherent if and only if each Ui is n-coherent.

Remark A.2.0.17. Let X be a locally n-coherent 8-topos and let X P X be a quasi-
compact object. The assumption that X is locally n-coherent guarantees the existence of an
effective epimorphism >iPIUi Ñ X, where each Ui is n-coherent. Since X is quasi-compact,
we may assume that the index set I is finite. Then U “ >iPIUi is n-coherent by Remark
A.2.0.16. It follows that there exists an effective epimorphism U Ñ X, where U is n-coherent.

A.2.1 Coherence of Morphisms

We now introduce a relative version of Definition A.2.0.12.
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Definition A.2.1.1. Let X be an 8-topos which is locally n-coherent. We will say that a
morphism f : X 1 Ñ X in X is relatively n-coherent if, for every n-coherent object U P X
and every morphism U Ñ X, the fiber product U ˆX X 1 is also n-coherent.

Example A.2.1.2. Let X be a locally n-coherent 8-topos. If f : X 1 Ñ X is a morphism
such that X 1 is n-coherent and X is pn` 1q-coherent, then f is relatively n-coherent.

Proposition A.2.1.3. Let n ě 0 be an integer and X an 8-topos, and let f : X0 Ñ X be
a morphism in X . Assume that if n ą 0, then X is locally pn´ 1q-coherent and that f is
relatively pn´ 1q-coherent. Then:

p1q The map f is relatively m-coherent for each m ă n.

p2q Assume that f is an effective epimorphism and that X0 is n-coherent. Then X is
n-coherent.

Proof. The proof proceeds by induction on n. Suppose first that n “ 0; we must show
that if f is an effective epimorphism and X0 is quasi-compact, then X is quasi-compact.
Choose an effective epimorphism >iPIXi Ñ X. Then the induced map >iPIpXiˆXX0q Ñ X0
is also an effective epimorphism. Since X0 is quasi-compact, there exists a finite subset
I0 Ď I such that the map >iPI0pXi ˆX X0q Ñ X0 is an effective epimorphism. Since f is an
effective epimorphism, we conclude that the composite map >iPI0pXi ˆX X0q Ñ X0 Ñ X

is an effective epimorphism. This map factors through φ : >iPI0Xi Ñ X, so that φ is an
effective epimorphism as desired.

Now suppose that n ą 0. We begin by proving p1q. Choose a morphism U Ñ X,
where U is m-coherent; we must show that U0 “ U ˆX X0 is m-coherent. Remark A.2.0.17
guarantees the existence of an effective epimorphism g : V Ñ U , where V is pn´ 1q-coherent.
It follows from Example A.2.1.2 that g is relatively pm´ 1q-coherent. Let V0 “ V ˆX X0
and g0 : V0 Ñ U0 the induced map, so that g0 is also relatively pm ´ 1q-coherent. Our
assumption that f is relatively pn´ 1q-coherent guarantees that V0 is pn´ 1q-coherent, and
therefore m-coherent (Remark A.2.0.14). Since g0 is an effective epimorphism, the inductive
hypothesis guarantees that U0 is m-coherent, as desired.

We now prove p2q. We will show that X satisfies the criterion for n-coherence described
in Remark A.2.0.15. The inductive hypothesis guarantees that X is pn´1q-coherent. Choose
maps U Ñ X and V Ñ X, where U and V are pn ´ 1q-coherent; we wish to show that
U ˆX V is pn´ 1q-coherent. Let U0 “ U ˆX X0 and V0 “ V ˆX X0. Since f is relatively
pn´ 1q-coherent, U0 and V0 are pn´ 1q-coherent. Since X0 is n-coherent, we deduce that
U0 ˆX0 V0 is pn ´ 1q-coherent. The map f 1 : U0 ˆX0 V0 Ñ U ˆX V is a pullback of f
and therefore relatively pn´ 2q-coherent by p1q. Since f 1 is an effective epimorphism, the
inductive hypothesis guarantees that U ˆX V is pn´ 1q-coherent, as desired.
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Corollary A.2.1.4. Let X be an 8-topos and suppose we are given a full subcategory
X 0 Ď X with the following properties:

paq Every object U P X 0 is an n-coherent object of X

pbq For every object X P X , there exists an effective epimorphism >Ui Ñ X, where each
Ui belongs to X 0.

Then:

p1q A morphism f : X 1 Ñ X in X is relatively n-coherent if and only if, for every
morphism U Ñ X where U P X 0, the fiber product U 1 “ U ˆX X 1 is n-coherent.

p2q An object X P X is pn` 1q-coherent if and only if it is quasi-compact and, for every
pair of maps U Ñ X, V Ñ X where U, V P X 0, the fiber product UˆX V is n-coherent.

Proof. We first prove p1q. The “only if” direction is obvious. For the converse, choose a
map V Ñ X where V is n-coherent; we wish to show that V 1 “ V ˆX X 1 is n-coherent.
Condition pbq and the quasi-compactness of V guarantee the existence of an effective
epimorphism g : >iPIUi Ñ V , where each Ui belongs to X 0 and the index set I is finite. Let
g1 : >iPIpUi ˆX X 1q Ñ V 1 be the induced map. Using our hypothesis together with Remark
A.2.0.16, we see that >iPIpUi ˆX X 1q is n-coherent. The map g is relatively pn´ 1q-coherent
by Example A.2.1.2, so that g1 is relatively pn´ 1q-coherent. Applying Proposition A.2.1.3,
we deduce that V 1 is n-coherent as desired.

We now prove p2q using induction on n. The “only if” direction is again obvious. Assume
therefore that X is quasi-compact and that U ˆX V is n-coherent whenever U, V P X 0.
We note that X is n-coherent: this follows from the inductive hypothesis if n ą 0, or by
assumption if n “ 0. Using p1q, we see that the map U Ñ X is relatively n-coherent
whenever U P X 0. Consequently, if V is an arbitrary n-coherent object of X and we are
given a map g : V Ñ X, then U ˆX V is n-coherent for each U P X 0. Applying p1q again, we
deduce that g is relatively n-coherent. It follows that the fiber product U ˆX V is n-coherent
whenever U and V are n-coherent, so that X is pn` 1q-coherent by Remark A.2.0.15.

Corollary A.2.1.5. Let X be a locally n-coherent 8-topos, and let f : X 1 Ñ X be a
morphism in X . Suppose that there exists an effective epimorphism U Ñ X such that the
induced map f 1 : U 1 Ñ U is relatively n-coherent, where U 1 “ X 1 ˆX U . Then f is relatively
n-coherent.

Proof. Suppose we are given a map Y Ñ X, where Y is n-coherent. We wish to prove that
Y 1 “ X 1 ˆX Y is n-coherent. Replacing X by Y and U by Y ˆX U , we are reduced to
proving that if X is n-coherent, then X 1 is also n-coherent.

Since X is locally n-coherent, there exists an effective epimorphism >iPIUi Ñ U , where
each Ui is n-coherent. The composite map >iPIUi Ñ U Ñ X is also an effective epimorphism.
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Since X is quasi-compact, there exists a finite subset I0 Ď I such that the map >iPI0Ui Ñ X is
an effective epimorphism. The coproduct >iPI0Ui is n-coherent (Remark A.2.0.16). Replacing
U by >iUi, we can reduce to the case where U is n-coherent. Since f 1 is relatively n-coherent,
we deduce that U 1 is n-coherent. Since X is n-coherent and U is pn´ 1q-coherent, the map
U Ñ X is relatively pn´ 1q-coherent (if n ą 0), so the induced map U 1 Ñ X 1 is an effective
epimorphism which is pn´ 1q-coherent (if n ą 0). Proposition A.2.1.3 now implies that X 1

is n-coherent as desired.

Definition A.2.1.6. Let X be an 8-topos. We will say that X is coherent if it is n-coherent
for every integer n. We will say that an object U P X is coherent if the 8-topos X {U is
coherent. We will say that X is locally coherent if, for every object X P X , there exists an
effective epimorphism >iUi Ñ X where each Ui is coherent.

Example A.2.1.7. Let X “ S be the 8-category of spaces. Then X is coherent and locally
coherent. An object X P X is n-coherent if and only if the homotopy sets πipX,xq are finite
for every point x P X and all i ď n.

Remark A.2.1.8. Let X be an 8-topos. The collection of coherent objects of X is closed
under finite coproducts (Remark A.2.0.16) and under fiber products. In particular, if X is
coherent, then the collection of coherent objects of X is closed under finite limits.

A.2.2 Coherence and Hypercompletion

We now show that, to some extent, the coherence of an 8-topos X depends only on the
hypercompletion X hyp.

Lemma A.2.2.1. Let X be an 8-topos and f˚ : X Ñ Y a geometric morphism, which
exhibits Y as a cotopological localization of X (see Definition HTT.6.5.2.17 ). Let n ě 0 be
an integer, and assume either that n “ 0 or that X is locally pn´ 1q-coherent.

p1q An object X P X is n-coherent if and only if f˚X P Y is n-coherent.

p2q An object Y P Y is n-coherent if and only if f˚Y P X is n-coherent.

p3q If n ą 0, the 8-topos Y is locally pn´ 1q-coherent.

Proof. Since f˚ is a localization functor, the counit map f˚f˚Y Ñ Y is an equivalence for
each Y P Y. Consequently, assertion p2q follows from p1q, applied to X “ f˚Y . We prove
p1q by induction on n. We first note that the inductive hypothesis implies p3q. To see
this, assume that n ą 0 and let Y P Y, so that Y » f˚X for X “ f˚Y P X . Since X is
locally pn ´ 1q-coherent, there exists an effective epimorphism >Vi Ñ X where each Vi is
pn´ 1q-coherent. This induces an effective epimorphism >f˚Vi Ñ Y in Y, and each f˚Vi is
pn´ 1q-coherent by the inductive hypothesis.
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We now prove p1q in the case n “ 0. Suppose that X P X is quasi-compact; we wish to
show that f˚X P Y is quasi-compact. Choose an effective epimorphism u : >iPIUi Ñ f˚X

in Y. For i P I, let Vi “ f˚Ui ˆf˚f˚X X, so that u » f˚v for some map v : >iPIVi Ñ X.
Since f˚ is a cotopological localization, the map v is an effective epimorphism. Since X is
quasi-compact, there exists a finite subset I0 Ď I such that the induced map v1 : >iPI0Vi Ñ X

is an effective epimorphism. It follows that f˚pv1q “ u1 : >iPI0Ui Ñ f˚X is an effective
epimorphism as well.

Now suppose that f˚X is quasi-compact. We wish to prove that X is quasi-compact.
Choose an effective epimorphism v : >iPIVi Ñ X, so that u “ f˚v is an effective epimorphism
Y. Since f˚X is quasi-compact, there exists a finite subset I0 Ď I such that the induced
map >iPI0f˚Vi Ñ f˚X is an effective epimorphism. Since f˚ is a cotopological localization,
we conclude that the map >iPI0Vi Ñ X is an effective epimorphism.

It remains to prove p1q in the case n ą 0. Suppose first that X is n-coherent. Using the
inductive hypothesis, we deduce that f˚X is pn´ 1q-coherent; moreover, we have already
seen that Y is locally pn´ 1q-coherent. To show that f˚X is n-coherent, it suffices to show
that for every pair of maps U Ñ f˚X and U 1 Ñ f˚X where U,U 1 P Y are pn´ 1q-coherent,
the fiber product U ˆf˚X U 1 is pn´ 1q-coherent (Remark A.2.0.15). Let V “ f˚U ˆf˚f˚X X

and V 1 “ f˚U
1 ˆf˚f˚X X. It follows from the inductive hypothesis that V and V 1 are

pn´ 1q-coherent objects of X , so that V ˆX V 1 is pn´ 1q-coherent. Applying the inductive
hypothesis again, we conclude that U ˆf˚X U 1 » f˚pV ˆX V 1q is pn´ 1q-coherent.

For the converse, suppose that f˚X is n-coherent. Using the inductive hypothesis, we
conclude that X is pn ´ 1q-coherent. To show that X is n-coherent, it suffices to show
that if we are given morphisms V Ñ X, V 1 Ñ X where V, V 1 P X are pn ´ 1q-coherent,
then V ˆX V 1 is pn ´ 1q-coherent. By the inductive hypothesis, it suffices to show that
f˚pV ˆX V 1q » f˚ ˆf˚X f˚V 1 is pn´ 1q-coherent, which follows from our assumption that
f˚X is n-coherent.

Taking Y be the hypercompletion of X and allowing n to vary, we immediately obtain
the following conssequence:

Proposition A.2.2.2. Let X be an 8-topos which is locally n-coherent for all n ě 0, let
X hyp be the full subcategory of X spanned by the hypercomplete objects, and let L : X Ñ X hyp

be a left adjoint to the inclusion. Then:

p1q The 8-topos X hyp is locally n-coherent for all n ě 0.

p2q An object of X hyp is coherent if and only if it is coherent when viewed as an object of
X .

p3q An object X P X is coherent if and only if LX is coherent.

In particular, if X is locally coherent, then X hyp is also locally coherent.
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A.2.3 Coherence and Compactness

Let X be an 8-topos. The hypothesis that an object X P X be n-coherent can be
regarded as a finiteness condition on X. Our next result relates this finiteness condition to
the compactness properties of X.

Proposition A.2.3.1. Let X be an n-coherent 8-topos for some n ě 0, and let Γ : X Ñ S
be the global sections functor (that is, Γ is the functor corepresented by the final object 1 P X ).
Then the restriction of Γ to τďn´1X commutes with filtered colimits.

Corollary A.2.3.2. Let X be a locally n-coherent 8-topos. Then:

p1q If U P X is an n-coherent object, then τďn´1U is a compact object of τďn´1X .

p2q The 8-category τďn´1X is generated, under small colimits, by objects of the form
τďn´1U , where U P X is n-coherent.

p3q The 8-category τďn´1X is compactly generated.

Proof. Assertion p1q follows immediately from Proposition A.2.3.1. Consider an arbitrary
object X P X . Since X is locally coherent, we can choose a hypercovering X‚ of X such that
each Xm is a coproduct of n-coherent objects of X . If we assume that X P τďn´1X , then
the map τďn´1|X‚| Ñ τďn´1X » X is an equivalence. Consequently, X is the geometric
realization of a simplicial object of τďn´1X , each term of which is a coproduct of objects
having the form τďn´1U , where U is n-coherent. This proves p2q. Assertion p3q follows
immediately from p1q and p2q.

Remark A.2.3.3. Let X be a locally pn ` 1q-coherent 8-topos. Let C be the smallest
full subcategory of τďnX which is closed under finite colimits and contains τďnU for every
pn ` 1q-coherent object U P X . Then C is the full subcategory of τďnX spanned by the
compact objects. To see this, we first note that every object of C is compact in τďnX . It
follows from Proposition HTT.5.3.5.11 that the inclusion C ãÑ τďnX extends to a fully
faithful embedding φ : IndpCq Ñ τďnX . Proposition HTT.5.5.1.9 implies that φ preserves
small colimits, so that φ is an equivalence of 8-categories by Corollary A.2.3.2. It follows
that the 8-category of compact objects of τďnX can be identified with an idempotent
completion of C. Since C is an pn` 1q-category which admits finite colimits, it is already
idempotent complete (Proposition HTT.?? ), so that every compact object of τďnX belongs
to C.

The proof of Proposition A.2.3.1 depends on the following:

Lemma A.2.3.4. Let n ě 0 be an integer, and let X be an 8-topos which we assume
to be locally pn ´ 1q-coherent if n ą 0. Let f : U Ñ X be a morphism in X . If f is
pn´ 2q-truncated, X is n-coherent, and U is pn´ 1q-coherent, then U is n-coherent.
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Proof. We proceed by induction on n. In the case n “ 0, the map f is an equivalence and the
n-coherence of U follows from the n-coherence of X. Assume therefore that n ą 0, so that U
is quasi-compact. We wish to show that if we are given maps V1 Ñ U , V2 Ñ U , where V1 and
V2 are pn´ 1q-coherent objects of X , then the fiber product V1ˆU V2 is also pn´ 1q-coherent.
Since U is pn´ 1q-coherent, the fiber product V1 ˆU V2 is automatically pn´ 2q-coherent.
The map V1ˆU V2 Ñ V1ˆX V2 is a pullback of the diagonal map U Ñ U ˆX U and therefore
pn´ 3q-truncated. Since X is n-coherent, the fiber product V1 ˆX V2 is pn´ 1q-coherent,
and the desired result follows from the inductive hypothesis.

Remark A.2.3.5. Let X be a coherent 8-topos and let U P X be an n-truncated object.
Then U is coherent if and only if it is pn` 1q-coherent. This follows by applying Lemma
A.2.3.4 in the case where X is a final object of X .

Proof of Proposition A.2.3.1. We proceed by induction on n. In the case n “ 0, our
assumption guarantees that X is quasi-compact and the desired result follows immediately
from the definition. Let us therefore assume that n ą 0. Let J be a small filtered 8-category,
let U,U 1 : FunpJ , τďn´1X q Ñ S be given by

UpF q “ lim
ÝÑ
JPJ

ΓpF pJqq U 1pF q “ Γp lim
ÝÑ
JPJ

F pJqq.

There is an evident natural transformation βF : UpF q Ñ U 1pF q; we wish to show that βF
is a homotopy equivalence. Assume for the moment that βF is surjective on connected
components. It then suffices to show that for every pair of points η, η1 P UpF q, the map βF
induces a homotopy equivalence of path spaces φ : tηuˆUpF q tη1u Ñ tηuˆU 1pF q tη

1u. Since J
is filtered, we may assume without loss of generality that η and η1 are the images of points
η0, η

1
0 P ΓpF pJqq. Since J is filtered, the map J J{ Ñ J is left cofinal; we may therefore

replace J by J J{ and thereby assume that J is a final object of J . In this case, η0 and η10
determine natural transformations ˚ Ñ F , where ˚ denotes the constant functor J Ñ X
taking the value 1. Let F 1 “ ˚ ˆF ˚. Unwinding the definitions, we see that φ can be
identified with the map βF 1 . The desired result then follows from the inductive hypothesis,
since X is pn´ 1q-truncated and F 1 takes values in τďn´2X .

It remains to prove that βF is surjective on connected components. Choose a point
η P U 1pF q, corresponding to a map α : 1 Ñ lim

ÝÑJPJ F pJq. We wish to show that α factors (up
to homotopy) through F pJq for some J P J . Note that the map >JPJF pJq Ñ lim

ÝÑJPJ F pJq

is an effective epimorphism. Since X is locally pn ´ 1q-coherent, there exists a collection
of pn ´ 1q-coherent objects tUi P X uiPI such that >iPIUi Ñ 1 is an effective epimorphism
and each of the composite maps Ui Ñ 1 Ñ lim

ÝÑJPJ F pJq factors through F pJiq, for some
Ji P J . Since X is quasi-compact, we can assume that the set I is finite. Let U “ >iPIUi.
Since J is filtered, there exists an object J0 P J and maps Ji Ñ J0 for i P I, so that the
composite map U Ñ 1 α

Ñ lim
ÝÑJPJ F pJq factors through F pJ0q. Since J is filtered, the map
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J J0{ Ñ J is left cofinal; we may therefore replace J by J J0{ and thereby reduce to the
case where J0 is an initial object of J . Let F0 : J Ñ X be the constant functor taking the
value F pJ 0q, and let F‚ be the simplicial object of FunpJ ,X q given by the Čech nerve of
the map F0 Ñ F . Let U‚ be the Čech nerve of the map U Ñ 1, so that we obtain a map
of simplicial objects of X γ : U‚ Ñ lim

ÝÑJPJ F‚pJq. We will prove the following assertion by
induction on m ě 0:

p˚q Let ∆s,ďm denote the subcategory of ∆ whose objects are linearly ordered sets rjs for
j ď m, and whose morphisms are given by injective maps rjs Ñ rj1s. Let Uďm‚ be the
restriction of U‚ to ∆op

s,ďm, define Fďm‚ similarly, and let γďm : Uďm‚ Ñ lim
ÝÑJPJ Fďm‚ pJq

be the map induced by γ. Then there exists an object Jm P J such that γďm factors
through Fďm‚ pJmq.

Assertion p˚q is obvious when m “ 0, since the functor F0 is constant. Assume that γďm´1

factors through Fďm´1
‚ pJm´1q for some Jm´1 P J . Replacing J by J Jm´1{, we may assume

that Jm´1 is an initial object of J , so that we have a canonical map δJ : Uďm´1
‚ Ñ Fďm´1

‚ pJq

for all J P J . Let MpJq P X denote the mth matching object of F‚pJq, for each j P J , so
that δJ determines a map θ : Um ÑMpJq. Using Proposition HTT.A.2.9.14 , we see that
promoting δJ to a natural transformation Uďm‚ Ñ Fďm‚ pJq is equivalent to choosing a point
of the mapping space

MapX {MpJqpUm, FmpJqq » MapX {Um pUm, FmpJq ˆMpJq Umq.

Consequently, to prove p˚q, it suffices to show that the map

lim
ÝÑ

MapX {Um pUm, FmpJq ˆMpJq Umq Ñ MapX {Um pUm, limÝÑFmpJq ˆMpJq Umq

is a homotopy equivalence. Since X is n-coherent and U P X is pn´1q-coherent, the 8-topos
X {Um is pn ´ 1q-coherent. By the inductive hypothesis, it suffices to show that the the
objects FmpJq ˆMpJq Um are pn ´ 2q-truncated objects of X {Um . For this, it suffices to
show that the map FmpJq Ñ MpJq is pn ´ 2q-truncated. This map is a pullback of the
diagonal F pJq Ñ F pJqB∆m , and therefore pn´m´ 1q-truncated (since F pJq is assumed to
be pn´ 1q-truncated). This completes the proof of p˚q.

Applying p˚q in the case m “ n and composing with the natural map lim
ÝÑ

Fďn‚ Ñ F , we
deduce the existence of an object Jn P J and a commutative diagram σ :

lim
ÝÑ

Uďn‚ //

��

F pJnq

��
1 η // lim

ÝÑJPJ F pJq.
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Since the map U Ñ 1 is an effective epimorphism, we deduce that τďn´1 lim
ÝÑ

Uďn‚ » |U‚| » 1.
Applying the truncation functor τďn´1 to the diagram σ, we conclude that η factors through
F pJnq.

A.2.4 Coherence and Truncations

We now study the behavior of coherent objects under truncation.

Proposition A.2.4.1. Let X be an 8-topos and let f : X Ñ Y be a morphism of X , and
let n ě 0. Then:

panq If X is n-coherent and f is n-connective, then Y is n-coherent.

pbnq If Y is n-coherent and f is pn` 1q-connective, then X is n-coherent.

Proof. We proceed by induction on n. We begin by treating the case n “ 0. To prove pa0q,
assume that X is quasi-compact and that f is an effective epimorphism; we wish to show
that Y is also quasi-compact. Fix an effective epimorphism >iPIYi Ñ Y and for each i P I set
Xi “ Yi ˆY X. Then the induced map >iPIXi Ñ X is also an effective epimorphism. Since
X is quasi-compact, we can choose a finite subset I0 Ď I for which the upper horizontal
map in the diagram

>iPI0Xi
//

��

X

f

��
>iPI0Yi

// Y

is an effective epimorphism. Since f is an effective epimorphism by assumption, it follows
from the commutativity of the diagram that the lower horizontal map is also an effective
epimorphism.

We now prove pb0q. Assume that f is 1-connective and that Y is quasi-compact.
Suppose we are given an effective epimorphism ρ : >iPIXi Ñ X. Then the composite
map >iPIXi Ñ X

f
ÝÑ Y is also an effective epimorphism. Using the quasi-compactness

of Y , we deduce that there exists a finite subset I0 Ď I for which the composite map
φ : >iPI0Xi Ñ X

f
ÝÑ Y is also an effective epimorphism. We claim that ρ0 “ ρ|>iPI0Xi is also

an effective epimorphism. To prove this, we note that ρ0 factors as a composition

>iPI0Xi
g
ÝÑ >iPI0Xi ˆY X

h
ÝÑ X

where g is the coproduct of maps gi : Xi Ñ Xi ˆY X and h is the amalgam of maps
hi : Xi ˆY X Ñ X given by projection onto the second factor. Each gi is a pullback of
the diagonal map X Ñ X ˆY X, and is therefore an effective epimorphism by virtue of
our assumption that f is 1-connective. The map h is a pullback of φ, and is therefore an
effective epimorphism. It follows that ρ0 is also an effective epimorphism, as desired.
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We now carry out the inductive step. Assume that n ą 0 and that assertions pamq and
pbmq are valid for m ă n. We begin by establishing panq. Suppose that X is n-coherent and
that f is n-connective; we wish to show that Y is n-coherent. For each object Y 1 P X {Y ,
we can regard the fiber product X 1 “ X ˆY Y

1 as an object of X {X . Since X is n-coherent,
the 8-topos X {X is locally pn ´ 1q-coherent: in particular, we can choose an effective
epimorphism >Xi Ñ X 1, where each Xi is an pn´ 1q-coherent object of X . Since f is an
effective epimorphism, the composite map >Xi Ñ X 1 Ñ Y 1 is also an effective epimorphism.
Allowing Y 1 to vary, we deduce that the 8-topos X {Y is locally pn ´ 1q-coherent. To
complete the proof of panq, we must show that for every pair of pn ´ 1q-coherent objects
Y0, Y1 P X {Y , the fiber product Y01 “ Y0 ˆY Y1 is also pn´ 1q-coherent. Set X0 “ X ˆY Y0
and X1 “ X ˆY Y1. Then f induces n-connective maps X0 Ñ Y0 and X1 Ñ Y1, it follows
from our inductive hypothesis pbn´1q that X0 and X1 are pn ´ 1q-coherent. Using the
n-coherence of X, we deduce that X01 “ X0 ˆX X1 is pn´ 1q-coherent. The natural map
X01 Ñ Y01 is a pullback of f , and therefore n-connective. Applying pan´1q, we deduce that
Y01 is pn´ 1q-coherent, as desired.

We now prove pbnq. Assume that Y is n-coherent and that f is pn ` 1q-connective;
we wish to show that X is n-coherent. Since X {Y is locally pn ´ 1q-coherent, it follows
immediately from the definitions that X {X is locally pn´1q-coherent. It will therefore suffice
to show that if X0, X1 P X {X are pn ´ 1q-coherent, then the fiber product X0 ˆX X1 are
pn´ 1q-coherent. Unwinding the definitions, we have a pullback diagram

X0 ˆX X1
δ1 //

��

X0 ˆY X1

��
X

δ // X ˆY X.

Our assumption that f is pn` 1q-connective guarantees that δ is n-connective, so that δ1

is also n-connective. The n-coherence of Y guarantees that X0 ˆY X1 is pn´ 1q-coherent.
Applying pbn´1q, we deduce that X0 ˆX X1 is also pn´ 1q-coherent, as desired.

Corollary A.2.4.2. Let X be an 8-topos containing a morphism f : X Ñ Z. Let n ě 0
be an integer, so that f factors as a composition X

f 1
ÝÑ Y

f2
ÝÑ Z where f 1 is n-connective

and f2 is pn´ 1q-truncated. If X is n-coherent and Z is m-coherent for m ě n, then Y is
m-coherent.

Proof. We proceed by induction on m. If m “ n, the desired result follows from Proposition
A.2.4.1 (together with the n-coherence of X and the n-connectivity of f 1). The inductive step
follows from Lemma A.2.3.4 (since f2 is pn´1q-truncated and therefore also pm´2q-truncated
for m ą n).



1762 APPENDIX A. COHERENT 8-TOPOI

Corollary A.2.4.3. Let X be an 8-topos containing an n-coherent object X. For each
m ě n, if the 8-topos X is m-coherent, then the object τďn´1X is m-coherent.

Proof. Apply Corollary A.2.4.2 in the case where Z is a final object of X .

Corollary A.2.4.4. Let X be a coherent 8-topos. If X P X is an n-coherent object for
n ě 0, then the truncation τďn´1X is a coherent object of X .

A.3 8-Topoi of Sheaves

In §A.2, we introduced the notion of a coherent 8-topos (Definition A.2.1.6). In this
section, we will describe a large class of coherent 8-topoi. More precisely, we will show
that if C is a small 8-category which admits finite limits and its equipped with a finitary
Grothendieck topology (Definition A.3.1.1), then the8-topos ShvpCq is coherent (Proposition
A.3.1.3). It would be too optimistic to expect the converse to hold in the 8-categorical
setting: just as not every 8-topos X can be obtained as an 8-category of sheaves on a
Grothendieck site, not every coherent 8-topos X can be obtained as an 8-category of
sheaves on a finitary Grothendieck site. However, we will show that something slightly
weaker is true: every 8-topos X which is coherent, locally coherent, and hypercomplete
can be realized as the 8-category of hypercomplete sheaves on a finitary Grothendieck site
(Theorem A.3.4.1). In fact, there is even a canonical choice for the site C (which we will
study in §A.6).

A.3.1 Finitary Grothendieck Topologies

Let C be an 8-category. Recall that a sieve on an object C P C is a full subcategory
Cp0q
{C Ď C{C with the following property: for any commutative diagram

C0
φ0

  

// C1

φ1~~
C

in C, if φ1 belongs to Cp0q
{C , then φ0 also belongs to Cp0q

{C . A Grothendieck topology on C consists
of the specification, for each object C P C, of a special class of sieves on C, called covering
sieves, which satisfy the following axioms:

paq For every object C P C, the category C{C is a covering sieve on C.

pbq Let φ : C Ñ D be a morphism in C, Cp0q
{D a sieve on D, and φ˚ Cp0q

{D the full subcategory
of Cp0q

{C spanned by those maps ψ : C0 Ñ C for which the composite map φ ˝ ψ belongs
to Cp0q

{D . If Cp0q
{D is a covering sieve on D, then Cp0q

{C is a covering sieve on C.
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pcq Let D P C be an object, and suppose we are given sieves Cp0q
{D , C

p1q
{D Ď C{D. Suppose

that Cp0q
{D is a covering sieve, and that for each morphism φ : C Ñ D belonging to Cp0q

{D ,
the sieve φ˚ Cp1q

{D is a covering sieve on C. Then Cp1q
{D is a covering sieve on D.

Definition A.3.1.1. Let C be an 8-category which admits pullbacks. We will say that a
Grothendieck topology on C is finitary if it satisfies the following condition:

p˚q For every object C P C and every covering sieve Cp0q
{C Ď C{C , there exists a finite

collection of morphisms tCi Ñ Cu1ďiďn in Cp0q
{C which generate a covering of C (in

other words, the smallest sieve Cp1q
{C containing each Ci is also a covering sieve on C).

Remark A.3.1.2. Let C be an 8-category which admits pullbacks, and suppose that C
is equipped with an arbitrary Grothendieck topology. Let D denote the same 8-category
C, and let us say that a sieve Dp0q

{D Ď D{D is covering if it contains a finite collection of
morphisms tDi Ñ Du which generate a covering sieve in C. This collection of covering sieves
determines a Grothendieck topology on D. This Grothendieck topology is the finest finitary
topology on D which is coarser than the original topology on C.

Proposition A.3.1.3. Let C be a small 8-category which admits pullbacks which is equipped
with a finitary Grothendieck topology. Then:

p1q If j : C Ñ ShvpCq denotes the composition of the Yoneda embedding C Ñ PpCq with
the sheafification function PpCq Ñ ShvpCq, the functor j carries each object C P C to
a coherent object of ShvpCq.

p2q The 8-topos ShvpCq is locally coherent.

p3q If C has a final object, then ShvpCq is coherent.

Proof. Since ShvpCq is generated by jpCq under small colimits, assertion p2q follows im-
medaitely from p1q. Since j preserves finite limits, it carries final objects of C to final objects
of ShvpCq, so assertion p3q also follows from p1q. We will prove the following assertions by
induction on n:

p11q The functor j carries each object C P C to an n-coherent object of ShvpCq.

p21q The 8-topos ShvpCq is locally n-coherent.

It is clear that p11q implies p21q. To prove p11q, let us first assume that n “ 0. We must show
that for C P C, the object jpCq P ShvpCq is quasi-compact. Choose an effective epimorphism
>iPIUi Ñ jpCq in ShvpCq. It follows that there exists a covering tCα Ñ Cu in C such that
each of the induced maps jpCαq Ñ jpCq factors through Ui for some i. Since the topology
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on C is finitary, we may assume that this covering is finite; then we may assume that all of
this indices i P I which are used belong to some finite subset I0 Ď I, so that >iPI0Ui Ñ jpCq

is an effective epimorphism, as desired.
Now suppose that n ą 0. Using the inductive hypothesis, we may assume that ShvpCq

is locally pn ´ 1q-coherent and that jpCq is pn ´ 1q-coherent for C P C. We wish to show
that jpCq is n-coherent. Without loss of generality, we may replace C by C{C and ShvpCq by
ShvpCq{jpCq » ShvpC{Cq. We wish to show that the collection of pn´ 1q-coherent objects of
ShvpCq is closed under finite products. Using Corollary A.2.1.4, we are reduced to showing
that jpC 1q ˆ jpC2q is pn ´ 1q-coherent, for every pair of objects C 1, C2 P C. This is clear,
since jpC 1q ˆ jpC2q “ jpC 1 ˆ C2q.

A.3.2 Examples of Grothendieck Topologies

The theory of Grothendieck topologies is quite flexible and can be applied in a great deal
of generality. However, for many applications, it is convenient to work not with covering
sieves, but instead with covering morphisms: that is, morphisms φ : C Ñ D which generate
a covering sieve on D. We now describe a general procedure for constructing Grothendieck
topologies which are “generated” by their covering morphisms. Most of the Grothendieck
topologies of interest to us in this book can be constructed using this procedure.

Proposition A.3.2.1. Let C be an 8-category and let S be a collection of morphisms in C.
Assume that:

paq The collection of morphisms S is contains all equivalences and is stable under compo-
sition (in particular, if f, g : C Ñ D are homotopic morphisms in C, then f P S if and
only if g P S).

pbq The 8-category C admits pullbacks. Moreover, the class of morphisms S is stable
under pullback: for every pullback diagram

C 1

f 1

��

// C

f
��

D1 // D

such that f P S, the morphism f 1 also belongs to S.

pcq The 8-category C admits finite coproducts. Moreover, the collection of morphisms S
is stable under finite coproducts: if fi : Ci Ñ Di is a finite collection of morphisms in
C which belong to S, then the induced map

š

iCi Ñ
š

iDi also belongs to S.

pdq Finite coproducts in C are universal. That is, given a diagram
š

1ďiďnCi Ñ D Ð D1,
the canonical map

š

1ďiďnpCi ˆD D
1q Ñ p

š

1ďiďnCiq ˆD D
1 is an equivalence in C.
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Then there exists a Grothendieck topology on C which can be described as follows: a sieve
Cp0q
{C Ď C{C on an object C P C is covering if and only if it contains a finite collection of

morphisms tCi Ñ Cu1ďiďn such that the induced map
š

Ci Ñ C belongs to S.

Remark A.3.2.2. The Grothendieck topologies described in Proposition A.3.2.1 are finitary.

Proof of Proposition A.3.2.1. We show that the collection of covering sieves satisfies the
conditions of Definition HTT.6.2.2.1 :

p1q For every object C P C, the sieve C{C covers C. This is clear, since C{C contains the
identity map idC : C Ñ C, which belongs to S by paq.

p2q If Cp0q
{C is a covering sieve on an object C P C and f : C 1 Ñ C is a morphism in C,

then the pullback sieve f˚ Cp0q
{C covers C 1. To prove this, we observe that there exists

a finite collection of morphisms Ci Ñ C belonging to Cp0q
{C such that the induced

map
š

iCi Ñ C belongs to S. Assumption pbq guarantees that the induced map
p
š

iCiq ˆC C
1 Ñ C 1 also belongs to S, and assumption pdq gives an identification

p
š

iCiq ˆC C
1 »

š

ipCi ˆC C
1q. It now suffices to observe that each of the morphisms

Ci ˆC C
1 Ñ C 1 belongs to the sieve f˚ Cp0q

{C .

p3q Let Cp0q
{C be a covering sieve on an object C P C, and let Cp1q

{C be an arbitrary sieve on
C. Suppose that, for each morphism f : C 1 Ñ C belonging to Cp0q

{C , the pullback sieve
f˚ Cp1q

{C covers C 1. We must show that Cp1q
{C covers C. Since Cp0q

{C is a covering sieve,
there exists a finite collection of morphisms fi : Ci Ñ C belonging to Cp0q

{C such that the
induced map

š

iCi Ñ C belongs to S. Each f˚i C
p1q
{C is a covering sieve on Ci, so there

exists a finite collection of morphisms Ci,j Ñ Ci belonging to f˚ Cp1q
{C such that the

induced map
š

j Ci,j Ñ Ci belongs to S. It follows that each of the composite maps
Ci,j Ñ Ci Ñ C belongs to the sieve Cp1q

{C . To prove that Cp1q
{C is covering, it suffices to

show that the map g :
š

i,j Ci,j Ñ C belongs to S. To prove this, we factor g as a
composition

ž

i,j

Ci,j
g1
Ñ

ž

i

Ci
g2
Ñ C.

The map g2 belongs to S by assumption, and the map g1 is a finite coproduct of maps
belonging to S and therefore belongs to S by virtue of pcq. It follows from paq that
g » g2 ˝ g1 belongs to S, as required.
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A.3.3 Čech Descent

Recall that if C is an8-category equipped with a Grothendieck topology and F : Cop Ñ D
is a functor, we say that F is a sheaf if, for every covering sieve Cp0q

{C Ď C{C on an object
C P C, the functor F exhibits F pCq as a limit of the diagram F |

pCp0q
{C
qop . For Grothendieck

topologies which arise from the construction of Proposition A.3.2.1, we can formulate this
condition in a more concrete way:

Proposition A.3.3.1. Let C be an 8-category and S a collection of morphisms in C.
Assume that C and S satisfy the hypotheses of Proposition A.3.2.1, together with the following
additional hypothesis:

peq Coproducts in the 8-category C are disjoint. That is, if C and C 1 are objects of C,
then the fiber product C ˆC>C1 C 1 is an initial object of C (see §HTT.6.1.1 ).

Let D be an arbitrary 8-category and let F : Cop Ñ D be a functor. Then F is a D-valued
sheaf on C if and only if the following conditions are satisfied:

p1q The functor F preserves finite products.

p2q Let f : U0 Ñ X be a morphism in C which belongs to S and let U‚ be a Čech nerve
of f (see §HTT.6.1.2 ), regarded as an augmented simplicial object of C. Then the
composite map ∆`

U‚
Ñ Cop F

Ñ D is a limit diagram. In other words, F exhibits F pXq

as a totalization of the cosimplicial object rns ÞÑ F pUnq.

Proof. For every object D P D, let hD : D Ñ S be the functor corepresented by D. Using
Proposition HTT.5.1.3.2 , we deduce that F is a sheaf D-valued sheaf on C if and only if
each composite map hD ˝F is a S-valued sheaf on C, and that F satisfies conditions p1q
and p2q if and only if each hD ˝F satisfies the same condition. We may therefore replace F

by hD ˝F and thereby reduce to the case where D “ S.
Suppose first that F is a sheaf; we will prove that F satisfies conditions p1q and p2q.

We begin with p1q. Let tCiu1ďiďn be a finite collection of objects in C and let C “
š

iCi
be their coproduct. We wish to prove that the canonical map F pCq Ñ

ś

i F pCiq is an
equivalence. The proof proceeds by induction on n. If n “ 0, then C is an initial object
of C so that the empty sieve is a covering of C. Since F is a sheaf, we deduce that F pCq

is a final object of S, as required. If n “ 1, there is nothing to prove. If n ą 2, we let
D “

š

1ďiănCi, so that C “ D > Cn. The natural map F pCq Ñ
ś

i F pCiq then factors as
a composition of maps

F pCq Ñ F pDq ˆF pCnq Ñ p
ź

1ďiăn
F pCiqq ˆF pCnq »

ź

1ďiďn
F pCnq,
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each of which is an equivalence by the inductive hypothesis. It remains to treat the case
n “ 2. Let Cp0q

{C Ď C{C be the sieve generated by C1 and C2. This sieve is evidently a covering
of C, so that F pCq » lim

ÐÝ
F |

pCp0q
{C
qop . To complete the proof, it suffices to show that the

canonical map lim
ÐÝ

F |
pCp0q
{C
qop Ñ F pC1q ˆF pC2q is an equivalence. Let p : Λ2

0 Ñ C
p0q
{C be the

map corresponding to the pullback diagram

C1 ˆC C2 //

��

C1

��
C2 // C

in C. Since C1 ˆC C2 is initial in C, the above argument shows that F pC1 ˆC C2q is
final in D: that is, F |pΛ2

0q
op is a right Kan extension of F |t1,2uop , so that lim

ÐÝ
F |pΛ2

0q
op »

F pC1q ˆF pC2q by Lemma HTT.4.3.2.7 . To complete the proof of p1q, we will show that
p is left cofinal. According to Theorem HTT.4.1.3.1 , it will suffice to show that for every
object pf : D Ñ Cq P Cp0q

{C , the 8-category S “ Λ2
0 ˆCp0q

{C

pCp0q
{C qf{ is weakly contractible. If

D P C is initial, then the projection map S Ñ Λ2
0 is a trivial Kan fibration and the result

is obvious. If D is not initial, then condition pdq guarantees that there do not exist any
maps from D to an initial object of C. Using peq, we deduce that there do not exist any
maps from D into C1 ˆC C2. It follows that f factors through either the map C1 Ñ C or
C2 Ñ C, but not both. Without loss of generality, we may assume that f factors through
C1 Ñ C. In this case, we can identify S with the simplicial set tC1u ˆC{C CD{ {C , which is
the homotopy fiber of the composition map q : MapCpD,C1q Ñ MapCpD,Cq over f . We
wish to show that this homotopy fiber is contractible. By assumption, it is nonempty; it will
therefore suffice to show that the morphism q is p´1q-truncated. To prove this, we need only
verify that C1 Ñ C is a monomorphism; that is, that the diagonal map C1 Ñ C1 ˆC C1 is
an equivalence. Using pdq, we obtain equivalences

C1 » C1 ˆC C » C1 ˆC pC1 > C2q » pC1 ˆC C1q > pC1 ˆC C2q,

and the first summand maps by an equivalence to C1ˆC C1. The second summand is trivial,
by virtue of peq.

We now prove p2q. Let f : U0 Ñ X be a morphism of S and let f be its Čech nerve, so that
f generates a covering sieve Cp0q

{X Ď C{X . We can regard U‚ as determining a simplicial object
V : ∆op Ñ Cp0q

{X . Our assumption that F is a sheaf guarantees that F pXq » lim
ÐÝ

F |
pCp0q
{X
qop .

To prove p2q, it suffices to prove that the map V is left cofinal. According to Theorem
HTT.4.1.3.1 , it suffices to show that for every map f : X 1 Ñ X belonging to Cp0q

{X , the
8-category X “ ∆opˆCp0q

{X

pCp0q
{Xqf{ is weakly contractible. The projection map X Ñ ∆op is

a left fibration, classified by a functor χ : ∆op Ñ S. According to Proposition HTT.3.3.4.5 ,
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it will suffice to show that lim
ÝÑ
pχq is contractible. Note that χ can be identified with the

underlying simplicial object of the Čech nerve of the map of spaces q : MapC{X pX
1, U0q Ñ ∆0.

Since f belongs to the sieve Cp0q
{X , the space MapC{X pX

1, U0q is nonempty so that q is an
effective epimorphism. Since S is an 8-topos, we conclude that lim

ÝÑ
pχq » ∆0 as required.

Now suppose that F satisfies p1q and p2q; we will show that F is a sheaf on C. Choose
an object X P C and a covering sieve Cp0q

{X ; we wish to prove that F pXq » lim
ÐÝ

F |
pCp0q
{X
qop . We

first treat the case where Cp0q
{X is generated by a single morphism f : U0 Ñ X which belongs

to S. Let U‚ be a Čech nerve of f , so that F pXq can be identified with the totalization of
the cosimplicial space rns ÞÑ F pUnq by virtue of p2q. To complete the proof, we invoke the
fact (established above) that U‚ determines a left cofinal map ∆op Ñ Cp0q

{X .

Now suppose that Cp0q
{X is generated by a finite collection of morphisms tCi Ñ Xu1ďiďn

such that the induced map
š

Ci Ñ X belongs to S. Let C “
š

iCi and let Cp1q
{X denote

the sieve generated by the induced map C Ñ X. Then Cp1q
{X contains Cp0q

{X and is therefore
a covering sieve; the above argument shows that F pXq » lim

ÐÝ
F |

pCp1q
{X
qop . To complete the

proof in this case, it will suffice to show that F |
pCp1q
{X
qop is a right Kan extension of F |

pCp0q
{X
qop .

Fix an object f : U Ñ X of the sieve Cp1q
{X , and let E denote the full subcategory of

pCp1q
{Xq{U » C{U spanned by those objects whose image in C{X belongs to Cp0q

{X . We wish to
prove that the canonical map F pUq Ñ lim

ÐÝ
F |Eop is an equivalence. By construction, the map

f factors through some map f0 : U Ñ C. Invoking pbq, we have U » U ˆC C »
š

i U ˆC Ci,
so that U can be obtained as a coproduct of objects Ui belonging to Cp0q

{X . Let T Ď t1, . . . , nu
denote the collection of indices for which Ui is not initial. We let E 1 Ď E denote the full
subcategory spanned by morphisms U 1 Ñ U which factor through some Ui and such that
U 1 P C is not initial. For i ‰ j, the fiber product Ui ˆU Uj is initial (by peq) and therefore
receives no morphisms from non-initial objects of C (by pdq); it follows that E 1 can be
decomposed as a disjoint union

š

iPT E
1
i where each E 1i denotes the full subcategory of E 1

spanned by those morphisms U 1 Ñ U which factor through Ui. Since the map Ui Ñ U is a
monomorphism, each E 1i contains the map Ui Ñ U as a final object, so that the inclusion
tUiuiPT Ñ E 1 is left cofinal. Condition p1q implies that F pUq »

ś

iPT F pUiq, so that F pUq

is a limit of the diagram F |pE 1qop . We will prove that F |Eop is a right Kan extension of
F |E 1 op , so that lim

ÐÝ
F |Eop » lim

ÐÝ
F |E 1 op » F pUq by Lemma HTT.4.3.2.7 . To see this,

choose an object U 1 Ñ U in E ; we wish to show that F pU 1q is a limit of the diagram
F |pE 1

{U 1
qop . Let U 1i “ U 1 ˆU Ui, and let T 1 be the collection of indices i for which U 1i is

not initial. Then E 1{U 1 decomposes as a disjoint union
š

iPT 1pE
1
{U 1qi, each of which has a

final object (given by the map U 1i Ñ U 1). It follows that lim
ÐÝ

F |pE 1
{U 1
qop is equivalent to

ś

iPT 1 F pU
1
iq, which is equivalent to F pU 1q by virtue of p1q.
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We now treat the case of a general covering sieve Cp0q
{X Ď C{X . By definition, there exists

a finite collection of morphisms fi : Ci Ñ X belonging to Cp0q
{X such that the induced map

š

iCi Ñ X belongs to S. Let Cp1q
{X Ď C

p0q
{X be the sieve generated by the maps fi. The above

argument shows that F pXq » lim
ÐÝ

F |
pCp1q
{X
qop . To prove that F pXq » lim

ÐÝ
pCp0qq{Xqop, it will

suffice to show that F |
pCp0q
{X
qop is a right Kan extension of F |

pCp1q
{X
qop (Lemma HTT.4.3.2.7 ).

Unwinding the definitions, we must show that for every f : U Ñ X belonging to the sieve
Cp0q
{X , we have F pUq » lim

ÐÝ
F |

f˚ Cp1q
{X

. This is clear, since f˚ Cp1q
{X is generated by the pullback

maps Ci ˆX U Ñ U , and the induced map
š

ipCi ˆX Uq Ñ U factors as a composition

ž

i

pCi ˆX Uq
α
Ñ p

ž

i

Ciq ˆX U
β
Ñ U,

where α is an equivalence by assumption pdq and the map β belongs to S by assumption
pbq.

Corollary A.3.3.2. Let C be an 8-category and let S be a collection of morphisms of
C satisfying the hypotheses of Proposition A.3.3.1. Suppose that we are given functors
χ, χ1 : Cop Ñ yCat8 and a natural transformation ρ : χ Ñ χ1 satisfying the following
conditions:

p1q For each object C P C, the 8-category χpCq admits finite products and totalizations of
cosimplicial objects.

p2q For each object C P C, the functor ρpCq : χpCq Ñ χ1pCq is conservative and preserves
finite products and totalizations of cosimplicial objects.

p3q For every morphism C Ñ D in C, the diagram

χpCq //

��

χpDq

��
χ1pCq // χ1pDq

is right adjointable.

If χ1 is a Cat8-valued sheaf on C, then χ is also a Cat8-valued sheaf on C.

Proof. Combine Proposition A.3.3.1 with Corollary HA.5.2.2.37 .
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A.3.4 Classification of Hypercomplete Locally Coherent 8-Topoi

We now apply the preceding results to give an “extrinsic” characterization of the class of
hypercomplete locally coherent 8-topoi.

Theorem A.3.4.1. Let X be an 8-topos. The following conditions are equivalent:

p1q The 8-topos X is locally coherent and hypercomplete.

p2q There exists a small 8-category C which admits fiber products, a finitary Grothendieck
topology on C, and an equivalence X » ShvpCqhyp.

Moreover, if these conditions are satisfied, then we may assume that C admits finite coproducts
and that the topology on C is subcanonical. If X is coherent, we may assume that C admits
finite limits.

We will deduce Theorem A.3.4.1 from the following more precise result:

Proposition A.3.4.2. Let X be an 8-topos which is hypercomplete, and let C Ď X be a
full subcategory which satisfies the following conditions:

paq The 8-category C is essentially small.

pbq Each object of C is a coherent object of X .

pcq The 8-category C is closed under finite coproducts and fiber products.

pdq For every object X P X , there exists an effective epimorphism >Uα Ñ X where each
Uα belongs to C.

Then the 8-category C admits a finitary Grothendieck topology which can be characterized
as follows: a collection of morphisms tfα : Uα Ñ Xu generates a covering sieve on X P C if
and only if the induced map >Uα Ñ X is an effective epimorphism in X . For each X P X ,
let hX : Cop Ñ S denote the functor given by hXpY q “ MapX pY,Xq. Then the construction
X ÞÑ hX induces an equivalence of 8-categories X Ñ ShvpCqhyp.

Proof of Theorem A.3.4.1. The implication p2q ñ p1q of Theorem A.3.4.1 follows imme-
diately from Propositions A.3.1.3 and A.2.2.2. To prove the converse, suppose that X
is locally coherent. Choose a small collection of objects tXαu which generates X under
small colimits. Since X is locally coherent, for each index α we can choose an effective
epimorphism >βUα,β Ñ Xα where Uα,β is coherent. Let C denote an essentially small full
subcategory of X such that each object of C is coherent in X , and each Uα,β belongs to C.
Enlarging this collection if necessary, we may assume that it is closed under pullbacks, finite
coproducts, and that it contains the a final object of X if X is coherent (see Remark ??)
Then Proposition A.3.4.2 supplies a finitary Grothendieck topology on C and an equivalence
X » ShvpCqhyp.
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Remark A.3.4.3. In the situation of Theorem A.3.4.1, we can take C to be the full
subcategory of X spanned by the coherent object of X : see Remark A.6.6.3.

The proof of Proposition A.3.4.2 depends on the following:

Lemma A.3.4.4. Let X be an 8-topos containing a collection of objects tXiuiPI . For every
subset J Ď I, let XJ » >iPJXi. If C P X is quasi-compact, then the canonical map

lim
ÝÑ
JĎI

MapX pC,XJq Ñ MapX pC,XIq

is a homotopy equivalence, where the colimit is taken over all finite subsets J Ď I.

Proof. Let J be any subset of I and let φ : C Ñ XJ be a morphism in X . Since colimits in X
are universal, this morphism determines a decomposition C » >iPJCi, where Ci “ C ˆXJ Xi.
We define the support of φ to be the subset of J consisting of those indices i P J such that
Ci is not an initial object of X .

Let φ : C Ñ XJ be any morphism. Since C is quasi-compact, there is a finite subset
J0 Ď J such that the map >iPJ0Ci Ñ C is an effective epimorphism. For i1 P J , we have an
effective epimorphism >iPJ0Ci ˆC Ci1 Ñ Ci1 . If i1 R J0, then the left hand side is an initial
object of X (since coproducts in X are disjoint), so that Ci1 is likewise initial object of X . It
follows that the support of φ is contained in J0, and is therefore finite.

For each J Ď I, we can decompose the mapping space MapX pC,XJq as a coproduct
>S MapSX pC,XJq, where S ranges over finite subsets of I and MapSX pC,XJq is the summand
of MapSX pC,XJq given by maps φ : C Ñ XJ with support S (by convention, this summand
is empty unless S Ď J). It will therefore suffice to prove that for every finite set S, the map

lim
ÝÑ
JĎI

MapSX pC,XJq Ñ MapSX pC,XIq

is a homotopy equivalence. To prove this, we observe that MapSX pC,XJq » MapSX pC,XIq

whenever S Ď J .

Proof of Proposition A.3.4.2. The existence of desired the Grothendieck topology on C
follows by applying Proposition A.3.2.1 to the class of effective epimorphisms between
morphisms in C. It follows from Proposition 20.4.5.1 that the functor h : X Ñ FunpCop,Sq
is fully faithful and from Remark 20.4.5.2 that h admits a left exact left adjoint F :
FunpCop,Sq Ñ X . Using Proposition A.3.3.1, we see that h factors through the full
subcategory ShvpCq Ď FunpCop,Sq, and therefore through the full subcategory ShvpCqhyp

(since X is assumed to be hypercomplete). It follows that the functor F factors as a
composition

FunpCop,Sq L
ÝÑ ShvpCqhyp f˚

ÝÑ X
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where L is a left adjoint to the inclusion and f˚ is a geometric morphism of 8-topoi. Let
f˚ : X Ñ ShvpCqhyp denote the right adjoint to f˚ (which coincides with the functor h). We
wish to show that f˚ and f˚ are mutually inverse equivalence of 8-categories.

We first show that the functor f˚ is conservative: that is, if u : X Ñ Y is a morphism in
X such that f˚puq is an equivalence, then u is an equivalence. Since X is hypercomplete,
it will suffice to show that u is n-connective for every integer n. We proceed by induction
on n. When n “ 0, we must show that u is an effective epimorphism. Choose an object
Z P ShvpCqhyp and an effective epimorphism v : f˚Z Ñ Y . Then v is adjoint to a map
v1 P MapShvpCqhyppZ, f˚Y q. Since f˚puq is an equivalence, the map v1 factors through f˚X;
it follows that v factors as a composition f˚Z Ñ X

u
Ñ Y so that u is also an effective

epimorphism as desired If n ą 0, then (since u is an effective epimorphism) we are reduced
to proving that the induced map δ : X Ñ X ˆY X is pn´ 1q-connective. This follows from
our inductive hypothesis, since f˚pδq is also an equivalence. This completes the proof that
the functor f˚ is conservative.

We next prove:

p˚q For each n ě 0, the functor f˚ carries n-connective morphisms in X to n-connective
morphisms in ShvpCqhyp.

The proof proceeds by induction on n. We begin by treating the case n “ 0. Fix an effective
epimorphism u : X Ñ Y in X ; we wish to show that f˚puq is an effective epimorphism
in ShvpCqhyp. Unwinding the definitions, we must show that for every object C P C and
every morphism η : C Ñ Y , there exists a covering sieve on tCi Ñ Cu such that each of
the composite maps Ci Ñ C Ñ Y factors through g. To prove this, it suffices to choose
an effective epimorphism >Ci Ñ C ˆY X, where each Ci P C; our assumption that u is an
effective epimorphism guarantees that the composite map >Ci Ñ C ˆY X Ñ C is also an
effective epimorphism, so that the maps tCi Ñ Cu generate a covering sieve in C.

Now suppose n ą 0 and that u : X Ñ Y is an n-connective morphism in X ; we wish
to show that f˚puq is an n-connective morphism in ShvpCq. The above argument shows
that f˚puq is an effective epimorphism; it will therefore suffice to show that the diagonal
map f˚X Ñ f˚X ˆf˚Y f˚X “ f˚pX ˆY Xq is a pn´ 1q-connective. This follows from our
inductive hypothesis.

To complete the proof that f˚ is an equivalence, it will suffice to show that the unit
map uF : F Ñ f˚f

˚F is an equivalence for each F P ShvpCqhyp. We first prove that uF

is an equivalence in the special case where F can be written as a coproduct >iPIhCi for
some objects Ci P C Ď X . For every subset J Ď I, let F J P ShvpCqhyp denote the coproduct
>iPJhCi and let uJ denote the unit map F J Ñ f˚f

˚F J . We wish to show that uI is an
equivalence. We first show that uJ is an equivalence when J Ď I is finite. Write C “ >iPJCi,
so we have equivalences

f˚f
˚F J » f˚pf

˚ >iPJ hCiq » f˚p>iPJf
˚hCiq » f˚p>iPJCiq » hC
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(where the last equivalence is a consequence of the subcanonicality of the topology on C).
Consequently, we can identify uJ with the canonical map >iPJhCi Ñ hC . Note that the fiber
product

>iPJhCi ˆhC >iPJhCi

is given by >i,jPJhCiˆCCj . For i ‰ j, the fiber product Ci ˆC Cj is an initial object H P C.
The empty sieve is a covering of Ci ˆC Cj , so we have an effective epimorphism from
the initial object to hCiˆCCj in the 8-topos ShvpCqhyp, so that hCiˆCCj is also initial in
ShvpCqhyp. It follows that >iPJhCi ˆhC >iPJhCi is equivalent to >iPJhCiˆCCi » >iPJhCi : that
is, the map uJ becomes an equivalence after pullback along uJ . To complete the proof that
uJ is an equivalence, it suffices to show that uJ is an effective epimorphism. This follows
from the observation that the collection of maps tCi Ñ CuiPJ generates a covering sieve.

To complete the proof that uI is an equivalence, it will suffice to show that the canonical
map lim

ÝÑJĎI
uJ Ñ uI is an equivalence in Funp∆1,ShvpCqhypq; here the colimit is taken over

all finite subsets J Ď I. It is easy to see that F I » lim
ÝÑJĎI

F J in ShvpCqhyp. We will
complete the proof by showing that f˚f˚F I is a colimit of the diagram tf˚f

˚F JuJĎI in
the 8-category PpCq (and therefore also in the full subcategory ShvpCqhyp Ď PpCq). In other
words, we claim that for each object C P C, the canonical map lim

ÝÑJĎI
MapX pC, >iPJCiq Ñ

MapX pC, >iPICiq is a homotopy equivalence. This is a special case of Lemma A.3.4.4.
We now prove that the unit map uF : F Ñ f˚f

˚F is an equivalence for an arbitrary
hypercomplete sheaf F P ShvpCqhyp. Since ShvpCqhyp is hypercomplete, it will suffice to
verify the following:

p˚1q For every object F P ShvpCqhyp and every n ě 0, the unit map uX : F Ñ f˚f
˚F is

n-connective.

The proof of p˚1q proceeds by induction on n. We begin with the casen n “ 0. Fix
F P ShvpCqhyp; we wish to show that the unit map uF : F Ñ f˚f

˚F is an effective
epimorphism. Since ShvpCqhyp is generated under colimits by the essential image of the
Yoneda embedding j : C Ñ ShvpCqhyp, we can choose an effective epimorphism v : F 1 Ñ F

in ShvpCqhyp, where F 1 is a coproduct of objects belonging to the essential image of j. We
have a commutative diagram

F 1 //

��

f˚f
˚F 1

��
F // f˚f

˚F .

It will therefore suffice to show that the composite map F 1 Ñ f˚f
˚F 1 Ñ f˚f

˚F is an
effective epimorphism. We established above that the first map is an equivalence, and are
therefore reduced to showing that the map f˚f˚pvq is an effective epimorphism. This follows
from p˚q (since the pullback functor f˚ preserves effective epimorphisms).
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We now prove p˚1q in the case n ą 0. Fix an object F P ShvpCqhyp; we wish to prove that
uF is n-connective. The argument above shows that uF is an effective epimorphism; it will
therefore suffice to show that the diagonal map β : F Ñ F ˆf˚f˚F F is pn´ 1q-connective.
Let F 1 be as above so that we have a pullback diagram

F 1ˆF F 1 β1 //

��

F 1ˆf˚f˚F F 1

��
F

β // F ˆf˚f˚F F .

Since the vertical maps are effective epimorphisms, it will suffice to show that β1 is pn´ 1q-
connective. To prove this, it suffices to observe that the composition of β1 with the
equivalence F 1ˆf˚f˚F F 1 Ñ pf˚f

˚F 1q ˆf˚f˚F pf˚f
˚F 1q can be identified with the unit

map uF 1ˆF F 1 , which is pn´ 1q-connective by virtue of our inductive hypothesis.

A.4 Deligne’s Completeness Theorem

Let X be a Grothendieck topos. We say that X has enough points if the following
condition holds:

p˚q Let α : X Ñ Y be a morphism in X which is not an isomorphism. Then there exists a
geometric morphism f˚ : X Ñ Set such that f˚pαq is not bijective.

A useful theorem of Deligne asserts that every coherent topos has enough points. Our
goal in this section is to prove an 8-categorical version of this result. We will follow the
proof of Deligne’s theorem given in [142], with minor modifications.

Theorem A.4.0.5 (8-Categorical Deligne Completeness Theorem). Let X be an 8-topos
which is locally coherent and hypercomplete. Then X has enough points. In other words,
given a morphism α : X Ñ Y in X which is not an equivalence, there exists a geometric
morphism f˚ : X Ñ S such that f˚pαq is not an equivalence.

Note that Theorem A.4.0.5 recovers the classical version of Deligne’s completeness
theorem:

Corollary A.4.0.6 (Deligne). Let X be a coherent topos. Then X has enough points.

Proof. Since X is a coherent topos, it can be realized as the category ShvSetpCq of Set-valued
sheaves on a small category C which admits finite limits which is equipped with a finitary
Grothendieck topology. Let X be the 8-topos ShvpCq, so that X can be identified with the
full subcategory of X spanned by the discrete objects. Let α : X Ñ Y be a morphism in
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X which is not an isomorphism. Then α can be regarded as a morphism in X hyp which
is not an equivalence. According to Theorem A.4.0.5, there exists a geometric morphism
f
˚ : X hyp

Ñ S such that f˚pαq is not an equivalence in S. Restricting to discrete objects,
we get a geometric morphism f˚ : X Ñ Set such that f˚pαq is not an equivalence.

A.4.1 Digression: Sheaves on Complete Boolean Algebras

Let Λ be a Boolean algebra (see Definition A.1.6.4). We say that Λ is complete if every
subset S Ď Λ has a least upper bound

Ž

S in Λ.

Remark A.4.1.1. If Λ is a Boolean algebra, then the formation of complements x ÞÑ xc

determines an isomorphism of Λ with the opposite partially ordered set Λop. It follows that
Λ is complete if and only if every subset S Ď Λ has a greatest lower bound

Ź

S in Λ.

Remark A.4.1.2. Let Loc denote the category of locales (Definition 1.5.1.5). The construc-
tion X ÞÑ SubpX q of Definition 1.5.4.1 admits a fully faithful right adjoint Loc Ñ 8T op
(see §HTT.6.4.2 ) and §HTT.6.4.5 ). This equivalence is given concretely by assigning to each
locale Λ the full subcategory ShvpΛq Ď FunpΛop,Sq spanned by those functors F which
satisfy the following condition: for every subset S Ď Λ which is closed downwards, the
canonical map F p

Ž

Sq Ñ lim
ÐÝUPS

F pUq is a homotopy equivalence.
Every complete Boolean algebra Λ is a locale. The completeness of Λ immediately implies

that that Λ satisfies condition p1q, and the inequality p
Ž

Uαq ^ V ě
Ž

pUα ^ V q follows
immediately from the definitions. To verify the reverse inequality p

Ž

Uαq^V ď
Ž

pUα^V q,
choose a complement V c of V , so that we can write each Uα as a join pUα ^ V q _ pUα ^ V cq.
We therefore have

p
ł

Uαq ^ V “ p
ł

ppUα ^ V q _ pUα ^ V
cqq ^ V

“ p
ł

pUα ^ V q _
ł

Upα^V
cqq ^ V

ď p
ł

pUα ^ V q _ V
cq ^ V

“ pp
ł

pUα ^ V qq ^ V q _ pV
c ^ V q

“ p
ł

pUα ^ V qq ^ V

ď
ł

pUα ^ V q.

It follows that every complete Boolean algebra Λ determines a 0-localic 8-topos ShvpΛq Ď
FunpΛop,Sq.

The 8-topos of sheaves on a complete Boolean algebra Λ has many pleasant features.

Proposition A.4.1.3. Let Λ be a complete Boolean algebra. Then the 8-topos ShvpΛq has
homotopy dimension ď 0: that is, every 0-connective object X P ShvpΛq admits a global
section.



1776 APPENDIX A. COHERENT 8-TOPOI

Proof. Let X P ShvpΛq be a 0-connective object which does not admit a global section. For
every ordinal α, we let pαq denote the well-ordered set of ordinals tβ : β ă αu. We will
construct a compatible sequence of functors φα : Npαq Ñ X {X with the following property:

p˚q The composite functor Npαq φα
Ñ X {X Ñ X takes values in the full subcategory of

X spanned by the p´1q-truncated objects, and determines a strictly increasing map
rαs Ñ Λ.

This leads to a contradiction for α sufficiently large (namely, for any ordinal α such that rαs
has cardinality greater than that of Λ).

The construction of the maps φα proceeds by induction on α. If α is a limit ordinal, we
let φα be the amalgamation of the functors tφβuβăα. To complete the construction, it suffices
to show that every map φα : Npαq Ñ X {X can be extended to a map φα`1 : Npα`1q Ñ X {X
satisfying p˚q. The colimit of φα can be identified with a map ψ : U Ñ X in X , where U is
p´1q-truncated. Let us identify U with an element of the Boolean algebra Λ, and ψ with
a point of the space XpUq. Since X does not admit a global section, U is not a maximal
element of Λ. Because Λ is a Boolean algebra, the object U has a complement U 1 P Λ,
which is not a minimal element of Λ. Since X P ShvpΛq is 0-connective, the object U 1 can
be written as a join

Ž

U 1i where each XpU 1iq is nonempty. For some index i, the element
U 1i P Λ is nontrivial. Since U 1i ^ U “ H, the canonical map XpU 1i _ Uq Ñ XpU 1iq Ñ XpUq

is a homotopy equivalence; it follows that ψ can be lifted (up to homotopy) to a point of
XpU 1i _Uq. This point gives an extension φα`1 of φα, with φα`1pαq given by a map V Ñ X

where V is a p´1q-truncated object corresponding to the element U 1i _ U . of Λ.

Corollary A.4.1.4. Let Λ be a complete Boolean algebra. Then the 8-topos ShvpΛq is
locally of homotopy dimension ď 0.

Proof. For each U P Λ, let χU P ShvpΛq be the sheaf given by the formula

χU pV q “

#

∆0 if V ď U

H otherwise.

The objects χU generate ShvpΛq under colimits. Consequently, it suffices to show that each
of the 8-topoi ShvpΛq{χU has homotopy dimension ď 0. We complete the proof by observing
that ShvpΛq{χU is equivalent to ShvpΛU q, where ΛU denotes the complete Boolean algebra
tV P Λ : V ď Uu, and therefore has homotopy dimension ď 0 by Proposition A.4.1.3.

Corollary A.4.1.5. Let Λ be a complete Boolean algebra. Then the 8-topos ShvpΛq is
hypercomplete.

Proof. Combine Corollary A.4.1.4 with Corollary HTT.7.2.1.12 .
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The next result shows that complete Boolean algebras are in abundant supply.

Proposition A.4.1.6. Let X be a 0-localic 8-topos. Assume that X is not a contractible
Kan complex. Then there exists a nontrivial complete Boolean algebra Λ and a geometric
morphism f˚ : X Ñ ShvpΛq.

Proof. Let U be the underlying locale of X : that is, the partially ordered set of subobjects
of the unit object 1X . Then U is a complete lattice: in particular, every set of elements
tUα P Uu has a greatest lower bound ^αUα and a least upper bound _αUα. In particular,
U has a least element (which we will denote by H) and a greatest element (which we will
denote by 1). For each element U P U , we let U 1 denote the least upper bound of the set
tV P U : U ^ V “ Hu. Let Λ “ tU P U : U “ U2u. We will prove:

paq The map U ÞÑ U2 determines a retraction from U onto Λ, which commutes with finite
meets and infinite joins.

pbq As a partially ordered set, Λ is a complete Boolean algebra.

Assertion paq implies that Λ is a left exact localization of U , and is therefore itself a locale;
moreover, the proof of Proposition HTT.6.4.5.7 gives a geometric morphism f˚ : X Ñ

ShvpΛq. We begin by proving paq. Note that the construction U ÞÑ U 1 is order-reversing. It
follows that U ď V implies that U2 ď V 2. Moreover, we have an evident inequality U ď U2

which guarantees that U3 “ U 1. In particular, U 1 P Λ for each U P U . We next claim that
the construction U ÞÑ U2 is a left adjoint to the inclusion Λ Ď U . In other words, we claim
that for V P U , we have U ď V if and only if U2 ď V . The “if” direction is clear (since
U ď U2), and the “only if” direction follows from the implications

pU ď V q ñ pV 1 ď U 1q ñ pU2 ď V 2q ñ pU2 ď V q,

since V “ V 2. It follows immediately that U ÞÑ U2 is a retraction onto Λ which preserves
infinite joins.

We now show that the construction U ÞÑ U2 preserves finite meets (note that, since the
inclusion Λ ãÑ U admits a left adjoint, Λ is closed under meets in U). The inequality U ď U2

shows that 1 “ 12. It therefore suffices to show that U ÞÑ U2 preserves pairwise meets.
The construction U ÞÑ U 1 is an order-reversing bijection from Λ to itself, and therefore
carries finite joins in Λ to finite meets in Λ. It will therefore suffice to show that the
construction U ÞÑ U 1 carries pairwise meets in U to pairwise joins in Λ. In other words, we
must show that for U, V P U , the element pU ^V q1 is a join of U 1 and V 1 in Λ. It is clear that
U 1, V 1 ď pU^V q1; it therefore suffices to show that if W “W 2 is any upper bound for U 1 and
V 1 in Λ, then pU ^ V q1 ďW “W 2. In other words, we must show that pU ^ V q1^W 1 “ H:
that is, if X P U is any object such that X ^W “ H and X ^ pU ^ V q “ H, then X “ H.
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We have X ^ U ď V 1 ď W 2 “ W , so that pX ^ Uq ď X ^W “ H. This shows that
X ď U 1 ďW , so that X “ X ^W “ H as desired. This completes the proof of paq.

The proof of paq shows that Λ is a locale; in particular, it is a distributive lattice. To
prove pbq, it suffices to show that Λ is complemented: that is, for every U P Λ there exists
V P Λ such that U ^ V “ H and U _ V “ 1. For this, we take V “ U 1, so that the equation
U ^V “ H is obvious. To prove U _V “ 1, it suffices to show that if U and U 1 are bounded
by an element W P B, then W “ 1. In fact, the inequalities U ďW and U 1 ďW guarantee
that W 1 ď U 1 ^ U2 “ H, so that W “W 2 “ H1 “ 1.

A.4.2 Surjective Geometric Morphisms

As a first step towards the proof of Theorem A.4.0.5, we discuss various formulations of
the hypothesis that the hypercompletion of an 8-topos X has enough points.

Proposition A.4.2.1. Let X be an 8-topos, and suppose we are given a collection of
geometric morphisms tf˚α : X Ñ Xαu. The following conditions are equivalent:

p1q A monomorphism u : X Ñ Y in X is an equivalence if and only if each f˚αpuq is an
equivalence in Xα.

p2q A morphism u : X Ñ Y in X is an effective epimorphism if and only if each f˚αpuq is
an effective epimorphism in Xα.

p3q For each n ě 0, a morphism u : X Ñ Y in X is n-connective if and only if each f˚αpuq
is n-connective.

p4q A morphism u : X Ñ Y in X is 8-connective if and only if each f˚αpuq is 8-connective.

Proof. We will prove that p1q ñ p2q ñ p3q ñ p4q ñ p1q. Suppose first that p1q is satisfied,
and let u : X Ñ Y be a morphism in X . Then u factors as a composition X

u1
Ñ X 1

u2
Ñ Y ,

where u1 is an effective epimorphism and u2 is a monomorphism. If each f˚αpuq is an effective
epimorphism, then each f˚αpu2q is an equivalence, so that p1q implies that u2 is an equivalence.
It follows that u » u1 is an effective epimorphism as desired.

Now suppose that p2q is satisfied; we prove p3q using induction on n, the case n “ ´1 being
vacuous. Suppose that u : X Ñ Y is a morphism in X such that each f˚αpuq is n-connective.
Let v : X Ñ X ˆY X be the diagonal map; then each f˚αpvq is pn ´ 1q-connective. The
inductive hypothesis guarantees that v is pn´ 1q-connective, and assumption p2q guarantees
that u is an effective epimorphism. It follows that u is n-connective as desired.

The implication p3q ñ p4q is obvious, and the implication p4q ñ p1q follows from
the observation that a monomorphism u : X Ñ Y is an equivalence if and only if it is
8-connective.
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Definition A.4.2.2. We will say that a collection of geometric morphisms of 8-topoi
tf˚α : X Ñ Xαu is jointly surjective if it satisfies the equivalent conditions of Proposition
A.4.2.1. We will say that a geometric morphism f˚ : X Ñ Y is surjective if the one-element
collection tf˚ : X Ñ Yu is jointly surjective.

Warning A.4.2.3. Let f : X Ñ Y be a continuous map of topological spaces, so that
f determines a geometric morphism f˚ : ShvpY q Ñ ShvpXq. If f is surjective, then the
geometric morphism f˚ is surjective. However, the converse fails in general.

Example A.4.2.4. Let X be an 8-topos, and let f˚ : X Ñ X hyp be a left adjoint to the
inclusion. Then f˚ is surjective.

Example A.4.2.5. Let X be an 8-topos containing an object U . Then the étale geometric
morphism f˚ : X Ñ X {U is surjective if and only if the object U is 0-connective: that is, if
and only if the map U Ñ 1 is an effective epimorphism, where 1 denotes a final object of X .
If this condition is satisfied, then we will say that f˚ : X Ñ X {U is an étale surjection.

Remark A.4.2.6. Let X be an arbitrary 8-topos. Since the 8-topos S is hypercomplete,
composition with the localization functor X Ñ X hyp induces an equivalence between the
8-category of points of X hyp and the 8-category of points of X . Note if X is locally foherent,
then X hyp is also locally coherent (Proposition A.2.2.2). Consequently, Theorem A.4.0.5 can
be reformulated as follows: if X is a coherent 8-topos, then there exists a jointly surjective
collection of points tf˚α : X Ñ Su.

Proposition A.4.2.7. Let X be a 0-localic 8-topos. Then there exists a surjective geometric
morphism f˚ : X Ñ ShvpΛq, where Λ is a complete Boolean algebra.

Proof. Let U be the locale of equivalence classes of p´1q-truncated objects of X . For every
proper inclusion U Ă V in U , Proposition A.4.1.6 supplies a nontrivial complete Boolean
algebra ΛU,V and a left exact, join-preserving map fU,V : U Ñ ΛU,V . Let Λ be the product
of the Boolean algebras ΛU,V , and let f : U Ñ Λ be the product functor; then f induces a
geometric morphism f˚ : X Ñ ShvpΛq. We claim that this geometric morphism is surjective.

Let u : X Ñ Y be a monomorphism in X such that f˚puq is an equivalence; we wish to
prove that u is an equivalence. For each V P U , let χV P ShvpUq be the sheaf given by the
formula

χV pW q “

#

∆0 if W Ď V

H otherwise.

The 8-category ShvpUq is generated under colimits by the objects χV . In particular, there
exists an effective epimorphism >αχVα Ñ Y . It therefore suffices to show that the induced
map

p>αχVαq ˆY X Ñ >αχVα
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is an equivalence. This map is a coproduct of morphisms

uα : χVα ˆY X Ñ χVα .

To complete the proof, it suffices to show that each uα is an equivalence. We may therefore
replace u by uα, and thereby reduce to the case where Y has the form χV for some object
V P U .

Since u is a monomorphism, we can identify X with χU for some U Ď V . We wish
to show that U “ V . Suppose otherwise, so that the geometric morphism f˚U,V : X Ñ

ShvpΛq Ñ ShvpΛU,V q is well-defined. We note that the image of χU in ShvpΛU,V q is the
initial object, while the image of χV in ShvpΛU,V q is the final object. Consequently, f˚U,V puq
is an equivalence in ShvpΛU,V q between the initial and final objects, contradicting the
nontriviality of ΛU,V .

A.4.3 The Diaconescu Cover

Our proof of Theorem A.4.0.5 will proceed by reducing to a more concrete statement
about locales. The mechanism for this reduction is the following result:

Proposition A.4.3.1. Let C be an 8-category equipped with a Grothendieck topology. Then
there exists a surjective geometric morphism f˚ : ShvpCq Ñ X , where X is a 0-localic
8-topos.

Proof. Let D be an 8-category equipped with a functor g : D Ñ C. We will say that a sieve
Dp0q
{D Ď D{D on an object D P D is covering if the following condition is satisfied:

p˚q For every morphism α : D1 Ñ D in D, the collection of morphisms gpβq : gpD2q Ñ
gpD1q such that the composition pα ˝βq : D2 Ñ D belongs to Dp0q

{D generates a covering
sieve on gpD1q P C.

It is not difficult to see that this defines a Grothendieck topology on D. Let LC : PpCq Ñ
ShvpCq and LD : PpDq Ñ ShvpDq be left adjoints to the inclusions, and consider the
composite functor f˚ : PpCq ˝g

Ñ PpDq LD
Ñ ShvpDq. It is clear that f˚ is a geometric

morphism.
We now suppose that the functor g has the following property:

paq For every object D P D and every morphism β : C Ñ gpDq in D, there exists a
morphism β : C Ñ D in D such that β “ gpβq.

We claim that f˚ carries LC-equivalences to equivalences in ShvpDq. To prove this, it suffices
to show that if we are given a collection of morphisms αi : Ci Ñ C which generate a covering
sieve on C P C, then the induced map φ : >f˚jpCiq Ñ f

˚
jpCq is an effective epimorphism in

ShvpDq; here j : C Ñ PpCq denotes the Yoneda embedding (see Proposition HTT.6.2.3.20 ).
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Let e : D Ñ ShvpDq be the composition of the Yoneda embedding D Ñ PpDq with the
sheafification functor LD. Then ShvpDq is generated under colimits by the essential image
of e. Consequently, to prove that φ is an effective epimorphism, it suffices to show that for
every morphism u : epDq Ñ f

˚
jpCq, the induced map

φu : >pf˚jpCiq ˆf˚jpCq epDqq Ñ epDq

is an effective epimorphism in ShvpDq. Passing to a covering of D, we may reduce to the
case where u is induced by a morphism in PpDq, corresponding to a map u : gpDq Ñ C in
C. Let Dp0q

{D denote the full subcategory of D{D spanned by those morphisms D0 Ñ D such

that the induced map gpD0q Ñ gpDq
u
Ñ C belongs to the sieve generated by the collection

of morphisms tαiu. It is clear that Dp0q
{D is a sieve on D. For every morphism D0 Ñ D in

Dp0q
{D, the induced map epD0q Ñ epDq factors through φu. Consequently, to show that φu

is an effective epimorphism, it will suffice to show that Dp0q
{D is a covering sieve on D: that

is, that it satisfies condition p˚q. Choose a morphism D1 Ñ D in D. Since the collection of
covering sieves in C forms a Grothendieck topology, there exists a collection of morphisms
βj : C 1j Ñ gpD1q which generate a covering sieve, each of which fits into a commutative
diagram

C 1j
βj //

��

gpD1q

��
Ci

αi // C.

Condition paq guarantees that each βj can be lifted to a morphism βj : C 1j Ñ D1 in D, which
belongs to the pullback of the sieve Dp0q

{D . It follows that Dp0q
{D satisfies condition p˚q and is

therefore a covering sieve on D, as required.
Since f˚ carries LC-equivalences to equivalences in ShvpDq, it factors up to homotopy as

a composition PpCq LC
Ñ ShvpCq f

˚

Ñ ShvpDq where f˚ is a colimit-preserving functor which
(since it is equivalent to f

˚
|ShvpCq) preserves finite limits. We now make the following

additional assumption:

pbq The functor g is surjective on objects.

We claim that condition pbq implies that f˚ is surjective in the sense of Definition A.4.2.2.
We will show that if u : X Ñ Y is a morphism ShvpXq such that f˚puq is an effective
epimorphism in ShvpDq, then u is an effective epimorphism in ShvpXq. Choose an object
C P C and a point η P Y pCq, and let Cp0q

{C be the full subcategory of C{C spanned by those
morphisms C 1 Ñ C such that the image of η in π0Y pC

1q can be lifted to π0XpC
1q; we wish to

prove that Cp0q
{C is covering. Assumption pbq implies we can write C “ gpDq for some object
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D P D. Then η determines a point η P pf˚Y qpDq. Let Dp0q
{D Ď D{D be the sieve consisting

of morphisms D1 Ñ D such that the image of η in π0pf
˚Y qpD1q lifts to π0pf

˚XqpDq, and
let Dp1q

{D Ď D{D be the sieve consisting of morphisms β : D1 Ñ D such that the image of
η in π0Y pgpD

1qq lifts to π0XpgpD
1qq. The functor g carries Dp1q

{D into Cp0q
{C . Consequently,

to prove that Cp0q
{C is a covering sieve on C P C, it suffices to show that Dp1q

{D is a covering
sieve on D P D. Since f˚puq is an effective epimorphism, the sieve Dp0q

{D is covering. It
therefore suffices to show that for each β : D1 Ñ D in Dp0q

{D , the pullback β˚Dp1q
{D Ď D{D1 is a

covering sieve on D1. Replacing D by D1 (and C by gpD1q), we may assume that η lifts to
a point η1 P pf˚XqpDq. Note that f˚X is the sheafification of the functor D g

Ñ C X
Ñ S. It

follows that there exists a covering sieve Dp2q
{D on D such that for each morphism D1 Ñ D

in Dp2q
{D , the image of η1 in pf˚XqpD1q belongs to the image of XpgpD1qq. We clearly have a

containment Dp2q
{D Ď D

p1q
{D , so that Dp1q

{D is also a covering sieve.
We now add the following further assumption:

pcq The 8-category D is (the nerve of) a partially ordered set.

In this case, the 8-topos ShvpDq is 0-localic, so that the geometric morphism f˚ : ShvpCq Ñ
ShvpDq satisfies the requirements of Proposition A.4.3.1.

It remains to prove that there exists a functor g : D Ñ C satisfying conditions paq, pbq,
and pcq. For this, we let A denote the partially ordered set of pairs pn, σq, where n ě 0 and
σ : ∆n Ñ Cop is an n-simplex of Cop. We write pn, σq ď pn1, σ1q if n ď n1 and σ “ σ1|∆t0,...,nu .
A k-simplex of the nerve NpAq consists of a sequence τ :

pn0, σ0q ď ¨ ¨ ¨ ď pnk, σkq.

Let gpτq denote the k-simplex of Cop given by the composition

∆k γ
Ñ ∆nk σk

Ñ Cop,

where γ is given on vertices by the formula γpiq “ ni. Then the construction τ ÞÑ gpτq

determines a map of simplicial sets g : NpAqop Ñ C. It is easy to see that this map satisfies
conditions paq, pbq, and pcq.

Corollary A.4.3.2. Let X be an 8-topos. Then there exists a complete Boolean algebra Λ
and a surjective geometric morphism f˚ : X Ñ ShvpΛq

Proof. Using Proposition HTT.6.5.2.19 , we deduce that there exists a small 8-category C
equipped with a Grothendieck topology such that X is a cotopological localization of ShvpCq.
Proposition A.4.3.1 gives a surjective geometric morphism g˚ : ShvpCq Ñ Y, where Y is
0-localic. Proposition A.4.2.7 guarantees a surjective geometric morphism h˚ : Y Ñ ShvpΛq,
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where ShvpΛq is a complete Boolean algebra. Since ShvpΛq is hypercomplete (Corollary
A.4.1.5), the functor h˚ ˝ g˚ carries 8-connective morphisms in ShvpCq to equivalences in
ShvpΛq, and therefore factors as a composition

ShvpCq Ñ X f˚
Ñ ShvpΛq

for some surjective geometric morphism f˚.

A.4.4 The Proof of Deligne’s Theorem

If Λ is an arbitrary Boolean algebra, we let SpecpΛq denote the spectrum of Λ (Construc-
tion A.1.2.3), so that SpecpΛq is a compact Hausdorff space with a basis of closed and open
sets (Theorem A.1.6.11). Let UpSpecpΛqq denote the collection of all open subsets SpecpΛq.
For each λ P Λ, let Uλ “ tp P SpecpΛq : λ R pu, so that the construction λ ÞÑ Uλ determines
an injective map of partially ordered sets ι : Λ ãÑ UpSpecpΛqq, whose image is the collection
of closed and open subsets of SpecpΛq. If Λ is complete, then the inclusion map ι admits
a left adjoint φ : UpSpecpΛqq Ñ Λ, given by the formula φpUq “

Ž

tλ P Λ : Uλ Ď Uu. It
is easy to see that the map φ preserves finite meets and arbitrary joins, and can therefore
be regarded as a morphism of locales. In particular, it induces a geometric morphism of
8-topoi f˚ : ShvpSpecpΛqq Ñ ShvpΛq.

Lemma A.4.4.1. Let Λ be a complete Boolean algebra, and let f˚ : ShvpSpecpΛqq Ñ ShvpΛq
be the geometric morphism constructed above. Then:

p1q The right adjoint f˚ to f˚ is fully faithful. In other words, the composition f˚f˚ is
equivalent to the identity on ShvpΛq.

p2q For every finite collection of objects tXiu1ďiďn and effective epimorphism >Xi Ñ Y in
ShvpΛq, the induced map >f˚Xi Ñ f˚Y is an effective epimorphism in ShvpSpecpΛqq.

Proof. Let ι : Λ ãÑ UpSpecpΛqq be the inclusion described above. The functor f˚ : ShvpΛq Ñ
ShvpSpecpΛqq is given by right Kan extension along the inclusion ι, and is fully faithful by
Proposition HTT.4.3.2.15 . This proves p1q. To prove p2q, we note that ShvpSpecpΛqq is
generated under colimits by objects of the form f˚χU for U P Λ (see the proof of Corollary
A.4.1.4; consequently, we may assume without loss of generality that Y has the form χU .
Each of the maps Xi Ñ Y factors as a composition

Xi
ui
Ñ χUi Ñ χU ,

where ui is an effective epimorphism. Applying Proposition A.4.1.3 (to the complete Boolean
algebra tV P Λ : V ď Uiu), we deduce that ui admits a section si. We have a commutative



1784 APPENDIX A. COHERENT 8-TOPOI

diagram
>f˚Xi

$$
>f˚χUi

>si
::

ψ // f˚χU .

Consequently, to prove p2q, it suffices to show that ψ is an effective epimorphism. For this,
it suffices to observe that for each V P Λ, the functor f˚ carries χV to the sheaf represented
by the open set ipV q Ď SpecpΛq, and the map V ÞÑ ipV q preserves finite joins.

Lemma A.4.4.2. Let C be a small 8-category which admits finite limits and which is
equipped with a finitary Grothendieck topology. Let Λ be a complete Boolean algebra, and let
g˚ : ShvpCq Ñ ShvpΛq be a geometric morphism. Then g˚ is homotopic to a composition

ShvpCq h
˚

Ñ ShvpSpecpΛqq f
˚

Ñ ShvpΛq,

where f˚ is the geometric morphism of Lemma A.4.4.1.

Proof. For every 8-topos Y , the 8-category of geometric morphisms from ShvpCq to Y can
be identified with the8-category of left-exact functors u : C Ñ Y with the following property:
for every every collection of morphisms tCi Ñ Cu which generate a covering sieve on an
object C P C, the induced map >upCiq Ñ upCq is an effective epimorphism in Y (Proposition
HTT.6.2.3.20 ). In particular, g˚ is classified by a functor u : C Ñ ShvpΛq. Let f˚ denote
a right adjoint to f˚, and let u1 : C Ñ ShvpSpecpΛqq be the composition f˚ ˝ u. It follows
from Lemma A.4.4.1 that u1 determines a geometric morphism h˚ : ShvpCq Ñ ShvpSpecpΛqq
such that f˚ ˝ h˚ » g˚.

Lemma A.4.4.3. Let C be a small 8-category which admits finite limits and which is
equipped with a finitary Grothendieck topology. Then there exists a surjective geometric
morphism h˚ : ShvpCq Ñ ShvpXq, where X is a Stone space.

Proof. Corollary A.4.3.2 guarantees the existence of a surjective geometric morphism g˚ :
ShvpCq Ñ ShvpΛq, where Λ is a complete Boolean algebra. Let X be the spectrum of Λ.
Lemma A.4.4.2 guarantees that g˚ factors through a geometric morphism h˚ : X Ñ ShvpXq,
which is clearly surjective.

Proof of Theorem A.4.0.5. Let X be an 8-topos which is locally coherent; we wish to show
that the 8-topos X hyp has enough points. Without loss of generality, we may assume that
X is coherent and hypercomplete (see Remark A.4.2.6). Using Theorem A.3.4.1, we can
assume that X “ ShvpCqhyp for some small 8-category C which admits finite limits and is
equipped with a finitary Grothendieck topology. Choose a surjective geometric morphism
h˚ : ShvpCq Ñ ShvpXq as in Lemma A.4.4.3. For each point x P X, let f˚x denote the
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composite map ShvpCq h
˚

Ñ ShvpXq Ñ Shvptxuq » S. It is easy to see that the collection
of geometric morphisms tf˚x uxPX is jointly surjective, so that X » ShvpCqhyp has enough
points as desired (see Remark A.4.2.6).

A.5 Application: Homotopy Theory of Simplicial Objects

Theorem A.4.0.5 is very useful: it can be used to reduce many questions about a general
8-topos X to questions about the 8-topos S of spaces, which can then be attacked using
methods of classical homotopy theory. In this section, we will illustrate this principle by
using Theorem A.4.0.5 to study extension conditions on simplicial (and semisimplicial)
objects of an arbitrary 8-topos X .

A.5.1 Semisimplicial Objects

We begin by reviewing some terminology.

Notation A.5.1.1. We let ∆ denote the category of simplices: the objects of ∆ are the
finite linearly ordered sets rns “ t0 ă 1 ă ¨ ¨ ¨ ă nu for n ą 0, and the morphisms in ∆ are
nondecreasing functions. We let ∆s denote the subcategory of ∆ containing all objects,
where a morphism from rms to rns in ∆s is a strictly increasing function α : rms Ñ rns.

A simplicial object of an 8-category C is a functor ∆op Ñ S, and a semisimplicial object
of C is a a functor ∆op

s Ñ S. We will typically denote either a simplicial or semisimplicial
object of C by X‚, and indicate its value on an object rns P ∆ by Xn.

Remark A.5.1.2. Let X‚ : ∆op Ñ C be a simplicial object of an 8-category C. Then the
composition

∆op
s ãÑ ∆op X‚

ÝÝÑ C

is a semisimplicial object of C, which we will refer to as the underlying semisimpicial object
of X‚. We will typically abuse notation by not distinguishing between X‚ and its underlying
semisimplicial object.

Notation A.5.1.3. Let X‚ be a semisimplicial object of an 8-category C. We let |X‚|
denote a colimit of the diagram X‚, provided that such a colimit exists. In this case, we will
refer to |X‚| as the geometric realization of X‚.

Remark A.5.1.4. The inclusion ∆s ãÑ ∆ is right cofinal (Lemma HTT.6.5.3.7 ). Con-
sequently, if X‚ is a simplicial object of an 8-category C, then a geometric realization of
(the underlying semsimplicial object of) X‚ can be identified with a colimit of the diagram
X‚ : ∆op Ñ C.
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Notation A.5.1.5. Let K be a simplicial set. We say that K is nonsingular if every
nondegenerate simplex σ : ∆n Ñ K is a monomorphism of simplicial sets. For any simplicial
set K, we let ∆K denote the category of simplices of K: that is, the category whose objects
are simplices σ : ∆m Ñ K, where a morphism from σ : ∆m Ñ K to τ : ∆n Ñ K is given by
a commutative diagram of simplicial sets

∆m //

σ

""

∆n

τ

}}
K.

For any simplicial set K, we let ∆nd
K denote the full subcategory of ∆K spanned by the

nondegenerate simplices σ : ∆m Ñ K. In this case where K is nonsingular, this construction
has several pleasant features:

• The category ∆nd
K is (equivalent to) a partially ordered set.

• The inclusion ∆nd
K ãÑ ∆K is left cofinal.

• The nerve of the category ∆nd
K can be identified with the subdivision of the simplicial

set K.

Construction A.5.1.6. Let X‚ be a semisimplicial object of an 8-category C and let K
be a nonsingular simplicial set. We let X‚rKs denote the limit of the diagram

p∆nd
K q

op Ñ ∆op
s

X‚
ÝÝÑ C,

provided that such a limit exists (otherwise, we will say that X‚rKs does not exist).

Example A.5.1.7. Let K “ ∆n. For any semisimplicial object X‚ of an 8-category C, the
object X‚rKs can be identified with Xn P C.

Example A.5.1.8. Let C be an 8-category which admits finite limits and let X‚ be a
semisimplicial object of C. Then for any finite nonsingular simplicial set K, the object
X‚rKs P C is well-defined.

Proposition A.5.1.9. Let C be an 8-category which admits fiber products and let X‚ be a
semisimplicial object of C. Then, for any n ą 0 and any 0 ď i ď n, the object X‚rΛni s P C is
well-defined.

Proof. Let J Ď ∆nd
Λni

be the full subcategory spanned by those simplices which contain the
ith vertex. Then the inclusion J ãÑ ∆nd

Λni
is left cofinal. Then we can identify J with J Ÿ0 ,
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where J 0 is the full subcategory spanned by those of positive dimension which contain the
ith vertex. We are therefore reduced to showing that the diagram

pJ op
0 q

Ÿ » J op Ñ ∆op
s

X‚
ÝÝÑ C

admits a limit, which is equivalent to the existence of a limit of a diagram J op
0 Ñ C{X0 . It

now suffices to observe that because C admits fiber products, the 8-category C{X0 admits
all finite limits.

Variant A.5.1.10. Let X‚ be a simplicial object of an8-category C. Then for any simplicial
set K, we can contemplate the existence of a limit for the diagram

∆op
K Ñ ∆op X‚

ÝÝÑ C;

if such a limit exists, we will denote it by X‚rKs. In the special case where K is a nonsingular
simplicial set, the left cofinality of the inclusion ∆nd

K ãÑ ∆K implies that this definition
agrees with that of Construction A.5.1.6 (and therefore depends only on the underlying
semisimplicial object of X‚).

Remark A.5.1.11. Let L be a nonsingular simplicial set and let K Ď L be a simplicial
subset. Then K is also nonsingular. Moreover, the inclusion K ãÑ L induces a functor
ι : ∆nd

K Ñ ∆nd
L . If X‚ is a semisimplicial object of an 8-category C for which both X‚rKs

and X‚rLs exist, then ι induces a restriction map X‚rLs Ñ X‚rKs.

Variant A.5.1.12. If X‚ is a simplicial object of an 8-category C, then one can define a
X‚rLs Ñ X‚rKs for any map of simplicial sets K Ñ L (provided that X‚rKs and X‚rLs are
defined). However, this generality will not be very important for what follows (in practice,
we will generally be interested in the case where K and L are simplicial subsets of a standard
simplex).

Remark A.5.1.13. Let X‚ be a semisimplicial object of an 8-category C, let K be a
nonsingular simplicial set, and suppose that K is a union of simplicial subsets K0,K1 Ď K

having intersection K01 “ K0 XK1. Then we have a pushout diagram of simplicial sets

Np∆nd
K01q

//

��

Np∆nd
K0q

��
Np∆nd

K1q
// Np∆nd

K q.

Assume that the objects X‚rK0s, X‚rK1s, X‚rK01s P C are well-defined. Using the results
of §HTT.4.2.3 , we deduce that the object X‚rKs can be identified with the fiber product
X‚rK0s ˆX‚rK01s X‚rK1s (in particular, this fiber product exists in C if and only if X‚rKs is
well-defined).
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Remark A.5.1.14. Let C be an 8-category which admits finite limits, let X be an object of
C, and let ρ : C{X Ñ C denote the forgetful functor. Let U‚ be a semisimplicial object of C{X
(so that we can identify U‚ with an augmented semisimplicial object of the 8-category C) and
let ρU‚ denote the underlying semisimplicial object of C. For any nonsingular simplicial set
K, we have a canonical map u : ρpU‚rKsq Ñ pρU‚qrKs in the 8-category C. If K is weakly
contractible, then the subdivision Np∆Kq is also weakly contractible, so the comparison
map u is an equivalence (Proposition HTT.4.4.2.9 ).

A.5.2 Kan Fibrations

We now study semisimplicial objects of an 8-topos X .

Definition A.5.2.1. Let X be an 8-topos and let f : X‚ Ñ Y‚ be a morphism of semisim-
plicial objects of X . We will say that f is a Kan fibration if, for each n ą 0 and each
0 ď i ď n, the induced map

X‚r∆ns Ñ Y‚r∆ns ˆY‚rΛni s X‚rΛ
n
i s

is an effective epimorphism in X . We will say that f is a trivial Kan fibration if, for each
n ě 0, the natural map

X‚r∆ns Ñ Y‚r∆ns ˆY‚rB∆ns X‚rB∆ns

is an effective epimorphism.
If f : X‚ Ñ Y‚ is a morphism between simplicial objects of X , we will say that f is a

Kan fibration (trivial Kan fibration) if the underlying morphism of semisimplicial objects is
a Kan fibration (trivial Kan fibration).

Example A.5.2.2. Let f : X‚ Ñ Y‚ be a morphism of simplicial sets. Then f can be
regarded as a morphism between simplicial objects of the 8-topos S (which are levelwise
discrete). The morphism f is a Kan fibration (trivial Kan fibration) in the sense of Definition
A.5.2.1 if and only if it is a Kan fibration (trivial Kan fibration) in the usual sense.

Definition A.5.2.3. Let X be an 8-topos and let X‚ be a semisimplicial object of X . We
will say that X‚ satisfies the Kan condition if, for each n ě 1 and each 0 ď i ď n, the
map Xn “ X‚r∆ns Ñ X‚rΛn

i s is an effective epimorphism in X . We will say that X‚ is a
hypercovering of X if, for each n ě 0, the canonical map Xn “ X‚r∆ns Ñ X‚rB∆ns is an
effective epimorphism. More generally, if X‚ is a semisimplicial object of the 8-topos X {X
which is a hypercovering of X {X , then we will say that X‚ is a hypercovering of X.

Remark A.5.2.4. Let X‚ be a semisimplicial object of an 8-topos X . Then there is
an essentially unique map f : X‚ Ñ 1‚, where 1‚ denotes the constant semisimplicial
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object whose value is a final object of X . The morphism f is a Kan fibration if and only
if X‚ satisfies the Kan condition, and f is a trivial Kan fibration if and only if X‚ is a
hypercovering.

Example A.5.2.5. Let X be an 8-topos and let X‚ be a simplicial object of X . Then X‚
is a groupoid object of X (in the sense of Definition HTT.6.1.2.7 ) if and only if, for each
0 ď i ď n, the natural map Xn “ X‚r∆ns Ñ X‚rΛni s is an equivalence in X . In particular,
every groupoid object of X satisfies the Kan condition.

Remark A.5.2.6. Let X be an 8-topos, let X P X be an object, and let ρ : X {X Ñ X
denote the forgetful functor. Let U‚ be a semisimplicial object of X {X . Then U‚ satisfies
the Kan condition if and only if ρpU‚q satisfies the Kan condition. This follows immediately
from Remark A.5.1.14.

We now summarize some of the elementary properties of Definition A.5.2.1:

Proposition A.5.2.7. Let X be an 8-topos and suppose we are given a pullback diagram

X 1‚ //

f 1

��

X

f

��
Y 1‚ // Y‚

of semisimplicial objects of X . If f is a Kan fibration, then f 1 is a Kan fibration. If f is a
trivial Kan fibration, then f 1 is a trivial Kan fibration.

Proof. The desired result follows immediately from the fact that the class of effective
epimorphisms in X is stable under the formation of pullback.

Proposition A.5.2.8. Let X be an 8-topos and let f : X‚ Ñ Y‚ be a trivial Kan fibration
between semisimplicial objects of X . For every finite nonsingular simplicial set L and every
simplicial subset K Ď L, the natural map the induced map θL,K : X‚rLs Ñ Y‚rLs ˆY‚rKs
X‚rKs is an effective epimorphism in X .

Proof. Working by induction on the number of simplices of L which do not belong to K,
we can reduce to the case where L is obtained from K by adding a single nondegenerate
n-simplex whose boundary is contained in K. In this case, the map θL,K is a pullback of
the map θ∆n,B∆n , which is an effective epimorphism by virtue of our assumption that f is a
trivial Kan fibration.

Corollary A.5.2.9. Let f : X‚ Ñ Y‚ be a morphism between semisimplicial objects of an
8-topos X . If f is a Kan fibration, then it is a trivial Kan fibration.
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Corollary A.5.2.10. Let X‚ be a semisimplicial object of an 8-topos X . If X‚ is a
hypercovering, then X‚ satisfies the Kan condition.

Proposition A.5.2.11. Let f : X‚ Ñ Y‚ and g : Y‚ Ñ Z‚ be morphisms between semisim-
plicial objects of an 8-topos X . Then:

p1q If f and g are Kan fibrations, then g ˝ f is a Kan fibration.

p11q If f is a trivial Kan fibration and g ˝ f is a Kan fibration, then g is a Kan fibration.

p2q If f and g are trivial Kan fibrations, then g ˝ f is a trivial Kan fibration.

p21q If f and g ˝ f are trivial Kan fibrations, then g is a trivial Kan fibration.

Proof. We will prove p2q and p21q; the proofs of p1q and p11q are similar. Assume that f is a
trivial Kan fibration; we wish to show that g is a trivial Kan fibration if and only if g ˝ f is
a trivial Kan fibration. Let n ě 0 be an integer.

Since f is a trivial Kan fibration, the natural map X‚rB∆ns Ñ Y‚rB∆ns is an effective
epimorphism in X . Consequently, the map Y‚r∆ns Ñ Z‚r∆nsˆZ‚rB∆nsY‚rB∆ns is an effective
epimorphism if and only if the projection map Y‚r∆nsˆY‚rB∆nsX‚rB∆ns Ñ Z‚r∆nsˆZ‚rB∆ns

X‚rB∆ns is an effective epimorphism. Inspecting the diagram

X‚r∆ns

))

// Y‚r∆ns ˆY‚rB∆ns X‚rB∆ns

ss
Z‚r∆ns ˆZ‚rB∆ns X‚rB∆ns

(in which the upper horizontal map is an effective epimorphism by virtue of our assumption
on f), we deduce that the left vertical map is an effective epimorphism if and only if the
right vertical map is an effective epimorphism. Allowing n to vary, we deduce that g is a
trivial Kan fibration if and only if g ˝ f is a trivial Kan fibration.

Corollary A.5.2.12. Let X be an 8-topos and let f : X‚ Ñ Y‚ be a trivial Kan fibration
between semisimplicial objects of X . Then:

p1q The semisimplicial object X‚ satisfies the Kan condition if and only if Y‚ satisfies the
Kan condition.

p2q The semisimplicial object X‚ is a hypercovering of X if and only if Y‚ is a hypercovering
of X .
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A.5.3 Connectivity of Trivial Kan Fibrations

We are now ready to state our first main result of this section:

Theorem A.5.3.1. Let f : X‚ Ñ X 1‚ be a trivial Kan fibration between semisimplicial
objects of an 8-topos X . Assume that one of the following conditions holds:

piq The morphism f can be promoted to a morphism between simplicial objects of X .

piiq The semisimplicial object X 1‚ satisfies the Kan condition.

Then f induces an 8-connective map |X‚| Ñ |X 1‚|.

Warning A.5.3.2. If f : X‚ Ñ X 1‚ does not satisfy either of the conditions piq or piiq, then
the conclusion of Theorem A.5.3.1 need not be valid. For example, suppose that X 1‚ is
the semisimplicial set represented by the object r1s P ∆s (so the simplices of X 1‚ are the
nondegenerate simplices of ∆1). Then the data of a map of semisimplicial sets f : X‚ Ñ X 1‚
is equivalent to the data of a bipartite graph: that is, a pair of sets V0, V1 (which can be
defined as the inverse images of the two vertices of X 1‚) and another set E equipped with
maps V0

d0
ÐÝ E

d1
ÝÑ V1. The hypothesis that f is a trivial Kan fibration is equivalent to the

requirement that the map pd0, d1q : E Ñ V0 ˆ V1 is surjective. If both V0 and V1 have more
than one element, then the geometric realization |X‚| is never contractible.

Specializing Theorem A.5.3.1 to the case where Y‚ is final we obtain the following:

Corollary A.5.3.3. Let X‚ be a semisimplicial object of an 8-topos X which is a hyper-
covering. Then |X‚| is an 8-connective object of X .

Let us now outline our strategy for proving Theorem A.5.3.1, which we will use to prove
many other results in this section. The first observation is that we can reduce to proving
Theorem A.5.3.1 in a single example: namely, we can assume that the 8-topos X is freely
generated by a Kan fibration (satisfying condition piq or condition piiq). We then observe
that in this universal example, the 8-topos X is locally coherent. It then follows from
Deligne’s theorem (Theorem A.4.0.5) that the hypercompletion X hyp has enough points,
which allows us to reduce to the case X “ S. In this case, we will “resolve” X‚ and X 1‚ by
semisimplicial sets, for which the desired result can be proven by combinatorial methods.

To handle case piiq of Theorem A.5.3.1, we need the following result:

Proposition A.5.3.4. Let f : X‚ Ñ Y‚ be a Kan fibration between semisimplicial sets.
Suppose that Y‚ is the underlying semisimplicial set of a simplicial set Y ‚. Then f can be
lifted to a Kan fibration of simplicial sets f : X‚ Ñ Y ‚.

Taking Y ‚ “ ∆0 in Proposition A.5.3.4, we obtain the following result of Rourke-
Sanderson (see [176]):
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Corollary A.5.3.5. Let X‚ be a semisimplicial set. If X‚ satisfies the Kan condition, then
X‚ can be promoted to a simplicial set.

We will prove Proposition A.5.3.4 using a slight variant of the proof of Corollary A.5.3.5
given in [113]. The key point is the following:

Lemma A.5.3.6. Let K‚ denote the semisimplicial subset of ∆n given by the union of
B∆n with the unique nondegenerate n-simplex of ∆n (so that a k-simplex σ : ∆k Ñ ∆n

belongs to X‚ if and only if σ is either an isomorphism or is not surjective). Then the
inclusion K‚ ãÑ ∆n has the left lifting property with respect to all Kan fibrations between
semisimplicial sets.

Proof. For every nonsingular simplicial set L‚, let Lnd
‚ denote the semisimplicial subset of

L‚ spanned by the nondegenerate simplices. Let us say that a map of semisimplicial sets
A‚ ãÑ B‚ is anodyne if it has the left lifting property with respect to all Kan fibrations.
Using the small object argument (see Proposition HTT.A.1.2.5 ), we see that the collection
of anodyne morphisms of semisimplicial sets is the smallest collection of morphisms which is
closed under pushouts, retracts, transfinite composition, and contains all horn inclusions
pΛmi qnd ãÑ p∆mqãÑ. We wish to prove that the inclusion

p∆nqnd >pB∆nqnd B∆n ãÑ ∆n

is anodyne. Our proof will proceed by induction on n.
For every semisimplicial set A‚, let A`‚ denote the cone on A‚: that is, the semisimplicial

set given by

Am “

#

tσ P Amu > tvu if m “ 0
tσ P Amu > tσ

`|σ P Am´1u if m ą 0,

whose face maps determined by the fact that they extend the face maps on A‚ and are
otherwise given by the formula

diσ
` “

$

’

’

&

’

’

%

pdiσq
` if σ P Am and 0 ď i ď m,m ą 0

σ if σ P Am and i “ m` 1
v if σ P Am and 0 “ i “ m.

Let us say that a semisimplicial set A‚ is good if the inclusion A‚ ãÑ A`‚ is anodyne.
Our proof proceeds in several steps:

paq For any monomorphism of semisimplicial sets ι : A‚ ãÑ B‚, the induced map ι` :
A`‚ Ñ B`‚ is anodyne. Writing ι as a transfinite composition of simplex attachments,
we can reduce to checking this in the case B “ p∆mqnd and A “ pB∆mqnd, in which
case a simple calculation shows that ι` can be identified with the horn inclusion
pΛm`1

m`1q
nd ãÑ p∆m`1qnd.
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pbq Suppose we are given a monomorphism of semisimplicial sets ι : A‚ ãÑ B‚, where A‚ is
good and there exists a retraction r : B`‚ Ñ B‚ (this condition is satisfied, for example,
when B‚ “ ∆n). Then ι is a retract of the composite map A‚ Ñ A`‚

ι`
ÝÑ B`‚ , and is

therefore anodyne (by virtue of paq and our assumption that A‚ is good).

pcq Suppose that ι : A‚ ãÑ B‚ is a monomorphism of semisimplicial sets. If ι is anodyne,
then the induced map ι1 : A`‚ >A‚ B‚ Ñ B`‚ is also anodyne. To prove this, we can use
Proposition HTT.A.1.2.5 to reduce to the case where ι is a horn inclusion pΛmi qnd ãÑ

p∆mqnd, in which case ι1 can be identified with the horn inclusion pΛm`1
i qnd ãÑ

p∆m`1qnd.

pdq Let ι : A‚ ãÑ B‚ be an anodyne morphism of simplicial sets. It follows from pcq that if
A‚ is good, then B‚ is also good.

peq For each m ě 0, the simplex B‚ “ p∆mqndq is good. To prove this, we use induction on
m. When m “ 0, the natural map B‚ ãÑ B`‚ can be identified with the horn inclusion
pΛ1

0q
nd ãÑ p∆1qnd, and is therefore anodyne. For m ą 0, we can write B‚ “ A`‚ where

A‚ “ p∆m´1qnd. It follows from our inductive hypothesis that A‚ is good, so that the
inclusion A‚ ãÑ B‚ is anodyne and therefore B‚ is good by virtue of pcq.

pfq Let L‚ be a simplicial subset of pB∆nq. We claim that the semisimplicial set L‚ >Lnd
‚

p∆nqnd is good. The proof proceeds by induction on the number of nondegenerate
simplices of L. If L “ H, the desired result follows from peq. Otherwise, we can write
L‚ as the union of a simplicial subset L1‚ with a nondegenerate m-simplex of B∆n

whose boundary belongs to L1‚. We then have an inclusion

ι : L1‚ >L1 nd
‚
p∆nqnd ãÑ L‚ >Lnd

‚
p∆nqnd.

The domain of ι is good by our inductive hypothesis. Consequently, to show that the
codomain of ι is good, it will suffice to show that ι is anodyne (by virtue of pdq). For
this, we observe that ι is a pushout of the inclusion

B∆m >pB∆mqnd p∆mqnd ãÑ ∆m.

Since m ă n, this map is anodyne by virtue of our (other) inductive hypothesis.

Applying pfq in the case L‚ “ B∆n, we deduce that the semisimplicial set p∆nqnd>pB∆nqnd

B∆n is good. Combining this observation with pbq, we conclude that the inclusion p∆nqnd>pB∆nqnd

B∆n ãÑ ∆n is anodyne, as desired.

Proof of Proposition A.5.3.4. Let C denote the category whose objects are triples pS‚, α, βq
where S‚ is a simplicial set whose underlying semisimplicial set we will denote by S‚,
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α : S‚ Ñ Y ‚ is a map of simplicial sets whose underlying map of semisimplicial sets we
denote by α, and β : S‚ Ñ X‚ is a monomorphism of semisimplicial sets for which the
diagram

S‚
β //

α

  

X‚
f

~~
Y‚

commutes. A morphism from pS‚, α, βq to pS1‚, α1, β
1
q in the category C is a map g : S‚ Ñ S

1

‚

satisfying α “ α1˝g and β “ β1˝g (where g denotes the map of semisimplicial sets underlying
g). Since a map of simplicial sets is determined by the underlying map of semisimplicial
sets, the morphism g is unique if it exists; it follows that the category C is equivalent to a
partially ordered set P (which we can identify with the set of isomorphism classes of objects
of C). Note that P is nonempty (since C contains an object pS‚, α, βq where S‚ is empty)
and that every directed subset of P has a least upper bound (since the category C admits
filtered colimits). It follows from Zorn’s lemma that P has a maximal element, which is
represented by an object pS‚, α, βq P C. To complete the proof, it will suffice to show that
β : S‚ ãÑ X‚ is an isomorphism of simplicial sets. Suppose otherwise: then there exists an
n-simplex σ P Xn which does not belong to the image of β. Let us assume that n is chosen
as small as possible, so that each face of σ belongs to the image of β.

Let A‚ Ď B∆n denote the semisimplicial subset consisting of the nondegenerate simplices
of B∆n, so that σ determines a map of semisimplicial sets A‚ Ñ X‚ which factors uniquely
as a composition A‚

ρ
ÝÑ S‚

β
ÝÑ X‚. The map ρ extends uniquely to a map of simplicial

sets ρ` : B∆n Ñ S‚. Let S1‚ denote the pushout S‚ >B∆n ∆n. The map α and the n-
simplex fpσq P Yn determine a map of simplicial sets α` : S1‚ Ñ Y ‚. Let S1‚ denote the
underlying semisimplicial subset of S1‚, which can be described as a pushout S‚ >B∆n ∆n

in the category of semisimplicial sets. We claim that β can be extended to a map of
semisimplicial sets β1 : S1‚ Ñ X‚ which carries the nondegenerate n-simplex of ∆n to σ and
fits into a commutative diagram

S1‚
β1 //

α1

  

X‚
f

~~
Y‚.

To prove this, it suffices to solve a lifting problem of the form

K‚ //

��

X‚

f

��
∆n //

==

Y‚,
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where K‚ is as in Lemma A.5.3.6; this is possibly by virtue of our assumption that f is a
Kan fibration.

It follows from the maximality of pS‚, α, βq P C that the triple pS1‚, α1, β1q cannot be an
object of C: in other words, the map β1 cannot be a monomorphism of semisimplicial sets.
We can therefore choose a pair of k-simplices τ, τ 1 P S1k such that τ ‰ τ 1 but β1pτq “ β1pτ 1q.
Let us assume that k is chosen as small as possible, so that the 0th faces of τ and τ 1 are
the same. Since β is injective, the simplices τ and τ 1 cannot both belong to Sk. We may
therefore assume without loss of generality that τ is the image of a k-simplex ∆n which does
not belong to B∆n. In this case, the nondegenerate n-simplex of ∆n appears as a facet of τ ,
so that σ P Xn appears as a facet of β1pτq “ β1pτ 1q. It follows that τ 1 also cannot belong to
Sk, so that we can identify τ 1 also with a k-simplex of ∆n which does not belong to B∆n.
Then we can identify β and β1 with surjective nondecreasing functions

β, β1 : t0 ă 1 ă ¨ ¨ ¨ ă k ´ 1 ă ku Ñ t0 ă 1 ă ¨ ¨ ¨ ă n´ 1 ă nu.

Since the 0th faces of β and β1 agree, we have βpiq “ β1piq for i ą 0. However, the
surjectivity of β and β1 guarantees that βp0q “ 0 “ β1p0q. It follows that β “ β1, contrary
to our assumption.

We now use Proposition A.5.3.4 to prove Theorem A.5.3.1 in the special case X “ S:

Lemma A.5.3.7. Let f : X‚ Ñ X 1‚ be a trivial Kan fibration between semisimplicial objects
of S which satisfies one of the following conditions:

piq The morphism f can be promoted to a morphism between simplicial objects of S.

piiq The semisimplicial object X 1‚ satisfies the Kan condition.

Then the induced map θ : |X‚| Ñ |X 1‚| is a homotopy equivalence.

Proof. Using Proposition HTT.4.2.4.4 , we may assume without loss of generality that f
is obtained from a morphism f : X‚ Ñ X

1

‚ between semisimplicial objects of the ordinary
category Set∆ of simplicial sets. Moreover, in case piq, we may even assume that this is a
morphism between simplicial objects of Set∆. Without loss of generality, we may assume
that X 1‚ is Reedy fibrant and that f is a Reedy fibration: that is, for each n ě 0, the natural
maps

X‚r∆ns Ñ X‚rB∆ns ˆ
X
1

‚rB∆ns
X
1

‚r∆ns X
1

‚r∆ns Ñ X
1

‚rB∆ns

are Kan fibrations of simplicial sets. It follows that for every nonsingular simplicial set
K, the simplicial sets X‚rKs and X

1

‚rKs are Kan complexes that represent the objects
X‚rKs, X

1
‚rKs P S. It follows that for n ě 0, the map of simplicial sets

X‚r∆ns Ñ X‚rB∆ns ˆ
X
1

‚rB∆ns
X
1

‚r∆ns
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is a Kan fibration which is surjective on connective components, and therefore surjective
on m-simplices for all m ě 0. In case piiq, the same argument shows that the maps
X
1

‚r∆ns Ñ X
1

‚rΛni s are surjective on m-simplices for all n ą 0 and 0 ď i ď n.
Let X‚m and X

1

‚m denote the semisimplicial sets obtained by evaluating X‚ and X
1

‚

on the object rms P ∆op. Then we can identify θ with a homotopy colimit of the maps
θm : |X‚m| Ñ |X

1

‚m|; it will therefore suffice to show that each θm is a homotopy equivalence.
The above argument shows that the map of semisimplicial sets fm : X‚m Ñ X

1

‚m is a trivial
Kan fibration. To show that fm induces a homotopy equivalence of geometric realizations,
it will suffice to show that fm can be promoted to a map of simplicial sets. In case piq, this
follows from our construction; in case piiq, it follows by from Corollary A.5.3.5 (applied to
the semisimplicial set X 1‚m) and Proposition A.5.3.4.

Lemma A.5.3.8. Let f : X‚ Ñ X 1‚ be a trivial Kan fibration between semisimplicial objects
of an 8-topos X . Then there exists a 8-topos Y which is coherent and locally coherent,
a trivial Kan fibration g : Y‚ Ñ Y 1‚ between semisimplicial objects of Y, and a geometric
morphism φ˚ : Y Ñ X such that f is equivalent to φ˚pgq. Moreover, if f satisfies condition
piq or piiq of Theorem A.5.3.1, then we can arrange that g has the same property.

Proof. Let C be an 8-category freely generated by ∆op
s ˆ∆1 under finite limits. More

precisely, we choose a functor u : ∆op
s ˆ∆1 Ñ C, where C admits finite limits, which has the

following universal property: for any 8-category D which admits finite limits, composition
with u induces an equivalence of 8-categories FunlexpC,Dq Ñ Funp∆op

s ˆ∆1,Dq, where
FunlexpC,Dq denotes the full subcategory of FunpC,Dq spanned by those functors which
preserve finite limits. The existence of u follows from Remark HTT.5.3.5.9 . Let us
identify u with a morphism Z‚ Ñ Z 1‚ of the 8-category C. We will regard C as equipped
with the coarsest Grothendieck topology τ for which each of the natural maps Z‚r∆ns Ñ

Z 1‚r∆nsˆZ1‚rB∆nsZ‚rB∆ns generates a covering sieve. It follows from Remark A.3.1.2 that the
Grothendieck topology τ is finitary, so that Y “ ShvpCq is a coherent and locally coherent
8-topos (Proposition A.3.1.3). Let g : Y‚ Ñ Y 1‚ be the morphism of semisimplicial objects
of Y which is obtained from u by applying the sheafified Yoneda embedding C Ñ ShvpCq.
We can regard f as a functor ∆op

s ˆ∆1 Ñ X . Invoking the universal property of u, we
can assume that f is given by the composition ∆op

s ˆ∆1 u
ÝÑ C f 1

ÝÑ X where the functor f 1

preserves finite limits. Using Proposition HTT.6.2.3.20 , we see that f 1 induces a geometric
morphism φ˚ : Y Ñ X satisfying φ˚pgq » f . This proves the first assertion.

If f satisfies condition piq of Theorem ??, then we can arrange that g has the same
property using a variant of the above construction where we replace ∆op

s ˆ∆1 by ∆opˆ∆1.
If f satisfies condition piiq of Theorem ??, then we can arrange that g has the same
property by replacing τ by a slightly finer (but still finitary) topology, where the morphisms
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Z 1‚r∆ns Ñ Z 1‚rΛni s are also coverings.

Proof of Theorem A.5.3.1. Let f : X‚ Ñ X 1‚ be a trivial Kan fibration between semisim-
plicial objects of 8-topos X which satisfies condition piq or piiq of Theorem A.5.3.1; we
wish to prove that the induced map |f | : |X‚| Ñ |X 1‚| is 8-connective. Using Lemma
A.5.3.8, we can reduce to the case where the 8-topos X is locally coherent. In this case,
it follows from Theorem A.4.0.5 that the map |f | is 8-connective if and only if φ˚|f | is a
homotopy equivalence for every geometric morphism φ˚ : X Ñ S. We may therefore assume
without loss of generality that X “ S, in which case the desired result follows from Lemma
A.5.3.7.

A.5.4 Pullbacks and Geometric Realizations

We now state our next main result:

Theorem A.5.4.1. Let X be a hypercomplete 8-topos. Suppose we are given a pullback
square of semisimplicial objects σ :

X 1‚
g1 //

f 1

��

X‚

f

��
Y 1‚

g // Y‚

satisfying one of the following conditions:

piq The morphism f is a Kan fibration and σ can be promoted to a pullback square of
simplicial objects of X .

piiq The morphisms f and g are Kan fibrations and Y‚ satisfies the Kan condition.

Then the diagram of geometric realizations

|X 1‚| //

��

|X‚|

��
|Y 1‚ | // |Y‚|

is a pullback square in X .

Warning A.5.4.2. In the statement of Theorem A.5.4.1, it is not enough to assume merely
that f is a Kan fibration: for example, the geometric realization of the fiber of a Kan
fibration f between semisimplicial sets need not be equivalent to the homotopy fiber of
geometric realization of f (see Warning A.5.3.2).
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Our proof of Theorem A.5.4.1 will follow the same basic outline as our proof of Theorem
A.5.3.1: we will use Theorem A.4.0.5 to reduce to a statement about the homotopy theory
of semisimplicial spaces, and then reduce further to a statement about the homotopy theory
of semisimplicial sets. To carry out the second step, our basic mechanism is the following:

Lemma A.5.4.3. Let Y‚ be a simplicial (semisimplicial) object of S. Then there exists a
trivial Kan fibration f : X‚ Ñ Y‚ of simplicial (semisimplicial) objects of S, where X‚ is
levelwise discrete: that is, X‚ is a simplicial (semisimplicial) set.

Proof. We will prove Theorem A.5.4.3 for simplicial objects of S; the proof in the semisimpli-
cial case is analogous (and slightly easier). We will produce X‚ as the union of a compatible
sequence of functors Fďn : ∆op

ďn Ñ Set Ď S and f as the limit of a compatible sequence
of natural transformations αn : Fďn Ñ Y‚|∆op

ďn
. Let us assume that n ě 0 and that we

have constructed the a functor Fďn´1 : ∆op
ďn Ñ Set Ď S satisfying the following additional

condition:

p˚n´1q For each m ď n, let Lm denote the mth latching object of Fďn´1: that is, the colimit
lim
ÝÑrksãÑrms,kăm

Fďn´1prksq. For m ă n, the natural map Lm Ñ Fďn´1prmsq is injective,
so we can write Fďn´1prmsq as a disjoint union of Lm with an auxiliary set Am.

It follows from p˚n´1q that the nth latching object of Fďn´1 can be identified with the
disjoint union >rmsãÑrns,mănAm, and is therefore discrete. Let Mn denote the nth matching
object of Fďn´1. According to Corollary HTT.A.2.9.15 , to produce a functor Fďn extending
Fďn´1 and a natural transformation αn extending αn´1, it suffices to supply a commutative
diagram

Xn

φ

&&
Ln

>>

// Yn ˆY‚rB∆nsMn

where the bottom vertical maps is determined by Fďn´1 and αn´1. This can be achieved by
taking Xn to be the disjoint union of Ln with an auxiliary set An, and choosing the map
φ so that φ|An is surjective on connected components. By construction, we see that Fďn
satisfies p˚nq and that the maps tαnuně0 induce a trivial Kan fibration f : X‚ Ñ Y‚.

Lemma A.5.4.4. Let X be a hypercomplete 8-topos and suppose we are given a pullback
diagram σ :

X 1‚
g1 //

f 1

��

X‚

f

��
Y 1‚

g // Y‚
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of semisimplicial objects of X . Then there exists an equivalence σ “ φ˚rσ, where φ˚ : Y Ñ X
is a geometric morphism of 8-topoi, rσ is a pullback diagram of semisimplicial objects of Y,
and the 8-topos Y is locally coherent and hypercomplete. Moreover, if σ satisfies condition
piq or piiq of Theorem A.5.4.1, then we can arrange that rσ has the same property.

Proof. To fix ideas, let us assume that σ satisfies condition piiq of Theorem A.5.4.1; we
will show that we can choose an equivalence σ » φ˚rσ where rσ also satisfies piiq (the proof
for the case where σ satisfies piq is similar). We proceed as in the proof of Lemma A.5.3.8.
Let C be an 8-category which is freely generated by ∆op

s ˆΛ2
2 under finite limits, so that

there is a functor u : ∆op
s ˆΛ2

2 Ñ C having the following universal property: for any
8-category D which admits finite limits, composition with u induces an equivalence of 8-
categories FunlexpC,Dq Ñ Funp∆op

s ˆΛ2
2,Dq, where FunlexpC,Dq denotes the full subcategory

of FunpC,Dq spanned by those functors which preserve finite limits. The existence of u follows
from Remark HTT.5.3.5.9 . The map u can be identified with a diagram Y

1

‚

g
ÝÑ Y ‚

f
ÐÝ X‚ of

semisimplicial objects of C which we can complete to a pullback diagram σ:

X
1

‚

g1 //

f 1

��

X‚

f
��

Y
1

‚

g // Y ‚.

Let us regard C as equipped with the coarsest Grothendieck topology for which the natural
maps

X‚r∆ns Ñ X‚rΛni sˆY ‚rΛni sY ‚r∆
ns Y ‚r∆ns Ñ Y ‚rΛni s Y

1

‚r∆ns Ñ Y
1

‚rΛni sˆY ‚rΛni sY ‚r∆
ns

are coverings. It follows from Remark A.3.1.2 that this Grothendieck topology is finitary, so
Propositions A.3.1.3 and A.2.2.2 guarantee that the 8-topos ShvpCqhyp is coherent.

Let j : C Ñ ShvpCqhyp denote the composition of the Yoneda embedding C ãÑ PpCq with
a left adjoint to the inclusion ShvpCqhyp Ď PpCq. It follows from the universal property
of u that there is an essentially unique left exact functor ρ : C Ñ X satisfying ρpσq » σ.
Since X is hypercomplete and σ satisfies condition piiq of Theorem A.5.4.1, Proposition
HTT.6.2.3.20 shows that ρ admits an essentially unique factorization as a composition
C j
ÝÑ ShvpCqhyp φ˚

ÝÑ X where φ˚ is a geometric morphism. We now complete the proof by
taking rσ “ jpσq.

Proof of Theorem A.5.4.1. Let X be a hypercomplete 8-topos and suppose we are given a
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commutative diagram of semisimplicial objects

X 1‚
g1 //

f 1

��

X‚

f

��
Y 1‚

g // Y‚

which satisfies either piq or piiq; we wish to show that the diagram of geometric realizations

|X 1‚| //

��

|X‚|

��
|Y 1‚ | // |Y‚|

is a pullback square in X . Using Lemma A.5.4.4, we can reduce to the case where X is
locally coherent. Using Theorem A.4.0.5, we can reduce further to the case where X “ S.

Applying Lemma A.5.4.3, we can choose a semisimplicial set Y ‚ and a trivial Kan
fibration Y ‚ Ñ Y‚. Applying Lemma A.5.4.3 two more times, we can choose semisimplicial
sets X‚ and Y

1

‚ equipped with trivial Kan fibrations

X‚ Ñ Y ‚ ˆY‚ X‚ Y
1

‚ Ñ Y ‚ ˆY‚ Y
1
‚ .

Set X 1‚ “ X‚ ˆY ‚ Y
1

‚, so that we have a pullback square σ :

X
1

‚

g1 //

f
1

��

X‚

f
��

Y
1

‚

g // Y ‚

of semisimplicial sets. Note that if σ satisfies piq, then we can arrange that σ is a diagram
of simplicial sets.

Applying Propositions A.5.2.11 and A.5.2.7, we see that the natural map σ Ñ σ induces
trivial Kan fibrations

X
1

‚ Ñ X 1‚ X‚ Ñ X‚

Y
1

‚ Ñ Y 1‚ Y ‚ Ñ Y‚

and therefore induces an equivalence on geometric realizations (Lemma A.5.3.7). We are
therefore reduced to showing that the diagram of spaces

|X
1

‚|
//

��

|X‚|

��
|Y
1

‚|
// |Y ‚|
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is a pullback square in S. To prove this, it will suffice to show that σ can be promoted
to a diagram of simplicial sets :such a promotion is automatically a homotopy pullback
square of simplicial sets, since the model structure on Set∆ is right proper (the map f is a
Kan fibration, since it is the composition of a trivial Kan fibration with a pullback of f).
In case piq, this promotion is automatic; in case piiq, it can be obtained by first applying
Corollary A.5.3.5 to the semisimplicial set Y ‚, and then applying Proposition A.5.3.4 to the
morphisms f and g.

A.5.5 Coherence and the Kan Condition

Let X‚ be a simplicial set. If X‚ satisfies the Kan condition and each of the sets Xn

is finite, then the homotopy groups πkpX‚, xq are finite for all k ě 0 and all x P X0. In
other words, the geometric realization |X‚| is a coherent object of the 8-topos S. We now
generalize this observation to semisimplicial objects of an arbitrary 8-topos:

Theorem A.5.5.1. Let X‚ be a semisimplicial object of an 8-topos X . Assume that X is
locally n-coherent for all n ě 0, that X‚ satisfies the Kan condition, and that each Xk is a
coherent object of X . Then the geometric realization |X‚| is also a coherent object of X .

The proof of Theorem A.5.5.1 will require some preliminaries.

Notation A.5.5.2. Let X‚ be a semisimplicial object of an 8-category C. We let X`‚
denote the semisimplicial object of C obtained by composing X‚ with the translation functor

s` : ∆s Ñ ∆s rns ÞÑ rns ‹ r0s » rn` 1s.

Similarly, we let X´‚ denote the semisimplicial object of C given by composing X‚ with the
functor

s´ : ∆s Ñ ∆s rns ÞÑ r0s ‹ rns » rn` 1s.

Note that the inclusion maps r0s ‹ rns Ðâ rns ãÑ rns ‹ r0s determine maps of semisimplicial
objects X´‚ Ñ X‚ Ð X`‚ . Similarly, the inclusions r0s ‹ rns Ðâ r0s ãÑ rns ‹ r0s induce maps
|X´‚ | Ñ X0 Ð |X`‚ | in the 8-category C (provided that the geometric realizations |X´‚ | and
|X`‚ | are well-defined).

Lemma A.5.5.3. Let X be an 8-topos and let X‚ be a semisimplicial object of X . If X‚
satisfies the Kan condition, then the natural maps X´‚ Ñ X‚ Ð X`‚ are Kan fibrations.

Proof. Let n ą 0 and 0 ď i ď n. Using Remark A.5.1.13, we can identify the canonical map

X´‚ r∆ns Ñ X´‚ rΛni s ˆX‚rΛni s X‚r∆
ns

with the restriction map X‚r∆n`1s Ñ X‚rΛn`1
i`1 s, which is an effective epimorphism by virtue

of our assumption that X‚ satisfies the Kan condition. The proof for X`‚ is similar.
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Lemma A.5.5.4. Let X be an 8-topos and let X‚ be a semisimplicial object of X which
satisfies the Kan condition. Then the natural maps |X´‚ | Ñ X0 Ð |X`‚ | are 8-connective.

Proof. We will show that the natural map θ : |X´‚ | Ñ X0 is 8-connective; the proof for X`‚
is similar. Applying Lemma A.5.3.8 to the identity map id : X‚ Ñ X‚, we can reduce to the
case where the 8-topos X is coherent. Using Theorem A.4.0.5, we can further reduce to the
case X “ S. In this case, Proposition HTT.4.2.4.4 implies that we can obtain X‚ from a
semisimplicial object X‚ in the ordinary category Set∆ of simplicial sets. Without loss of
generality, we may assume that X‚ is Reedy fibrant. It follows that for every nonsingular
simplicial set K, the simplicial set X‚rKs is a Kan complex which represents the object
X‚rKs P S. Since X‚ satisfies the Kan condition, we conclude that each of the maps
X‚r∆ns Ñ X‚rΛn

i s is a Kan fibration of simplicial sets which is surjective on connective
components, and is therefore surjective on m-simplices for each m ě 0.

For m ě 0, let X‚m denote the semisimplicial set obtained by evaluating X‚ on the object
rms P ∆op. The preceding argument shows that each X‚m satisfies the Kan condition. The
map θ can be written as a homotopy colimit of maps θm : |X´‚m| Ñ X0m. It will therefore
suffice to show that each θm is a homotopy equivalence. In other words, we may replace X‚
with X‚m and thereby reduce to the case where X‚ is a semisimplicial set. Using Corollary
A.5.3.5, we can promote X‚ to a simplicial set, in which case the desired result follows from
the fact that the augmented simplicial set ∆`

rnsÞÑr0s‹rns
ÝÝÝÝÝÝÝÑ ∆ X‚

ÝÝÑ Set is split.

Proof of Theorem A.5.5.1. Let X be an 8-topos which is locally n-coherent for all n ě 0, let
X‚ be a semisimplicial object of X which satisfies the Kan condition, and assume that each
Xk is a coherent object of X . We wish to prove that the geometric realization |X‚| is also a
coherent object of X . Using Proposition A.2.2.2, we can replace X by its hypercompletion
and thereby reduce to the case where X is hypercomplete.

We will show that |X‚| is n-coherent for each n ě 0. The proof proceeds by induction on
n. In the case n “ 0, we must show that |X‚| is quasi-compact. This follows from the fact
that there exists an effective epimorphism X0 Ñ |X‚|, where X0 is quasi-compact. We now
carry out the inductive step. Let X`‚ and X´‚ be defined as in Notation A.5.5.2. Combining
Lemma A.5.5.3 with Theorem A.5.4.1, we deduce that the diagram σ :

|X´‚ ˆX‚ X
`
‚ |

f //

��

|X´‚ |

g

��
|X`‚ |

f 1 // |X‚|

is a pullback diagram in X . It follows from Lemma A.5.5.3 that X´‚ ˆX‚ X`‚ satisfies the
Kan condition. Applying our inductive hypothesis, we deduce that upper left corner of
the diagram σ is an pn´ 1q-coherent object of X . The upper right corner is equivalent to
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X0 (Lemma A.5.5.4) and is therefore n-coherent. Applying Example A.2.1.2, we deduce
that the morphism f is relatively pn´ 1q-coherent. Since g is an effective epimorphism, it
follows that f 1 is also relatively pn´ 1q-coherent (Corollary A.2.1.5). Applying Proposition
A.2.1.3 to the morphism f 1 (and using the n-coherence of |X`‚ | » X0), we deduce that |X‚|
is n-coherent, as desired.

A.5.6 Triviality of Kan Fibrations

We now formulate a refinement of Theorem A.5.3.1:

Theorem A.5.6.1. Let f : X‚ Ñ Y‚ be a morphism of semisimplicial objects of an 8-topos
X , where Y‚ satisfies the Kan condition. The following conditions are equivalent:

p1q The morphism f is a trivial Kan fibration.

p2q The morphism f is a Kan fibration and the induced map |X‚| Ñ |Y‚| is 8-connective.

Remark A.5.6.2. One can show that the conclusion of Theorem A.5.6.1 remains valid if
we replace the assumption that Y‚ satisfies the Kan condition by the assumption that f can
be promoted to a morphism of simplicial objects. However, this variant of Theorem A.5.6.1
requires a proof which is somewhat different from the one we give below.

Applying Theorem A.5.6.1 in the case where Y‚ is a final object of Funp∆op
s ,Sq, we

obtain the following:

Corollary A.5.6.3. Let X‚ be a semisimplicial object of an 8-topos X . The following
conditions are equivalent:

p1q The semisimplicial object X‚ is a hypercovering of X .

p2q The semisimplicial object X‚ satisfies the Kan condition and the geometric realization
|X‚| is 8-connective.

Combining Corollary A.5.6.3 with Remark A.5.2.6, we obtain the following:

Corollary A.5.6.4. Let X‚ be a semisimplicial object of an 8-topos X . Then X‚ satisfies
the Kan condition if and only if it is a hypercovering of its geometric realization |X‚|.

The proof of Theorem A.5.6.1 will again proceed by reduction to the case X “ S by
means of Deligne’s theorem.

Lemma A.5.6.5. Let f : X‚ Ñ X 1‚ be a morphism of semisimplicial objects of a hypercom-
plete 8-topos X . Assume that X 1‚ satisfies the Kan condition, f is a Kan fibration, and
the geometric realization |f | : |X‚| Ñ |X 1‚| is an equivalence. Then we can write f “ φ˚pgq,
where φ˚ : Y Ñ X is a geometric morphism of 8-topoi, g : Y‚ Ñ Y 1‚ is a Kan fibration
between semisimplicial objects of Y, where Y 1‚ satisfies the Kan condition and |g| is an
equivalence.
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Proof. We begin as in Lemma A.5.3.8. Choose a functor u : ∆op
s ˆ∆1 Ñ C which freely

generates C under finite limits, and regard u as a morphism Z‚ Ñ Z 1‚ between semisimplicial
objects of C. Let us regard C as equipped with the coarsest Grothendieck topology for which
each of the natural maps

Z‚r∆ns Ñ Z 1‚r∆ns ˆZ1‚rΛni s Z‚rΛ
n
i s Z 1‚r∆ns Ñ Z 1‚rΛni s

is a covering. Let j : C Ñ ShvpCqhyp denote the composition of the Yoneda embedding
with a left adjoint to the inclusion ShvpCqhyp ãÑ PpCq. The universal property of u implies
that we can write f as a composition ∆op

s ˆ∆1 u
ÝÑ C f 1

ÝÑ X where the functor f 1 preserves
finite limits. Since f is a Kan fibration and X 1‚ satisfies the Kan condition, it follows from
Proposition HTT.6.2.3.20 (together with the hypercompleteness of X ) that f 1 induces a
geometric morphism ψ˚ : ShvpCqhyp Ñ X satisfying f » ψ˚pjpuqq.

Since the Grothendieck topology on C is finitary (Remark A.3.1.2), it follows from
Propositions A.3.1.3 and A.2.2.2 that the 8-topos ShvpCqhyp is locally coherent and that
the essential image of j consists of coherent objects of ShvpCqhyp. Using Theorem A.5.5.1,
we deduce that the geometric realizations D “ |jZ‚| and D1 “ |jZ 1‚| are coherent objects of
ShvpCqhyp. Choose a full subcategory D Ď ShvpCqhyp containing D and D1 which satisfies
hypotheses paq through pdq of Proposition A.3.4.2. Let τ denote the (finitary) Grothendieck
topology described in Proposition A.3.4.2, so that the inclusion ι : D ãÑ ShvpCqhyp extends
to an equivalence ShvpCqhyp » Shvτ pDqhyp. For each n ě ´1, we let δn : D Ñ D1ˆD1Sn D

Sn

denote the pn ` 1qst iterated diagonal of the canonical map D Ñ D1. Let τ 1 denote the
coarsest Grothendieck topology on D which refines τ and has the property that each of the
morphisms δn generates a covering sieve. Then τ 1 is also a finitary Grothendieck topology
(Remark A.3.1.2) so the full subcategory Shvτ 1pDqhyp Ď Shvτ pDqhyp is again a locally
coherent 8-topos (Propositions A.3.1.3 and A.2.2.2). Since f induces an equivalence of
geometric realizations, it follows that the functor ψ˚ carries each δn to an equivalence in
X and therefore factors through the localization functor L : Shvτ pDqhyp Ñ Shvτ 1pDqhyp.
By construction, L carries each δn to an effective epimorphism in Shvτ 1pDqhyp. It follows
that the induced map LD Ñ LD1 is 8-connective and therefore an equivalence (since
Shvτ 1pDqhyp is hypercomplete). We now complete the proof by setting Y “ Shvτ 1pDqhyp

and g “ Lpjpuqq.

Proof of Theorem A.5.6.1. The implication p1q ñ p2q follows from Theorem A.5.3.1 and
Corollary A.5.2.9. We will prove the converse. Suppose that f : X‚ Ñ Y‚ is a Kan fibration
between semisimplicial objects of X , that Y‚ satisfies the Kan condition, and that the induced
map |f | : |X‚| Ñ |Y‚| is 8-connective; we wish to show that f is a trivial Kan fibration.
Replacing X by its hypercompletion, we can assume that X is hypercomplete and that |f |
is an equivalence. By virtue of Lemma A.5.3.8, we may assume without loss of generality
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that X is a coherent 8-topos. By virtue of Theorem A.4.0.5, we may further reduce to the
case where X “ S.

Using Lemma A.5.4.3, we can choose a trivial Kan fibration u : Y 1‚ Ñ Y‚ where Y 1‚ is a
semisimplicial set. Applying Lemma A.5.4.3 again, we can choose a trivial Kan fibration
X 1‚ Ñ X‚ ˆY‚ Y

1
‚ where X 1‚ is a semisimplicial set. We then have a commutative diagram

X 1‚

v

��

f 1 // Y 1‚

u

��
X‚

f // Y‚.

Each term in this diagram satisfies the Kan condition and the vertical maps are trivial
Kan fibrations. It follows from Theorem A.5.3.1 that the induced maps |v| : |X 1‚| Ñ |X‚|

and |u| : |Y 1‚ | Ñ |Y‚| are homotopy equivalences. Since the geometric realization of f
is a homotopy equivalence, it follows that the geometric realization of f 1 is a homotopy
equivalence. Using Corollary A.5.3.5, we can promote Y 1‚ to a simplicial set. The map f 1

is the composition of a trivial Kan fibration with a pullback of f , and is therefore a Kan
fibration of semisimplicial sets. Applying Proposition A.5.3.4, we can promote f 1 to a map
of simplicial sets X 1‚ Ñ Y 1‚ . Since this map induces a homotopy equivalence of geometric
realizations, it is a trivial Kan fibration. It follows that the the composition u ˝ f 1 » f ˝ v is
also a trivial Kan fibration. Since v is a trivial Kan fibration, Proposition A.5.2.11 implies
that f is also a trivial Kan fibration.

A.5.7 Hypercompleteness

We now describe an application of Theorem ?? to the problem of recognizing hypercom-
plete sheaves in the setting of §A.3. First, we need a bit more terminology.

Definition A.5.7.1. Let ∆s,` denote the category whose objects are linearly ordered sets
of the form rns “ t0 ă 1 ă . . . ă nu for n ě ´1, and whose morphisms are strictly increasing
functions. If C is an 8-category, we will refer to a functor X‚ : ∆op

s,` Ñ C as an augmented
semisimplicial object of C. If C admits finite limits, then for each n ě 0 we can associate to
X‚ an nth matching object

MnpXq “ lim
ÐÝ

rmsãÑrns

Xm,

where the limit is taken over all injective maps rms Ñ rns such that m ă n.
Let S be a collection of morphisms in C. We will say that an augmented semisimplicial

object X‚ : ∆op
s,` Ñ C is an S-hypercovering if, for each n ě 0, the canonical map Xn Ñ

MnpXq belongs to S.
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Proposition A.5.7.2. Let C be an 8-category and S a collection of morphisms in C.
Assume that C and S satisfy the conditions of Proposition A.3.2.1 and condition peq of
Proposition A.3.3.1. Let D be an arbitrary 8-category and F : Cop Ñ D a functor. Then F

is a hypercomplete D-valued sheaf on C if and only if the following conditions are satisfied:

p1q The functor F preserves finite products.

p2q Let X‚ : ∆op
s,` Ñ C be an S-hypercovering. Then the composite map

∆s,`
X‚
ÝÑ Cop F

ÝÑ D

is a limit diagram.

Proof of Proposition A.5.7.2. As in the proof of Proposition A.3.3.1, we may assume without
loss of generality that D “ S. We first prove the “only if” direction. Assume that F is
a hypercomplete sheaf. Condition p1q follows from Proposition A.3.3.1. To prove p2q, let
F : C Ñ ShvpCq denote the composition of the Yoneda embedding C Ñ PpCq with the
sheafification functor PpCq Ñ ShvpCq, and let L : ShvpCq Ñ ShvpCqhyp be a left adjoint
to the inclusion. It will suffice to show that L ˝ F ˝X‚ is a colimit diagram in ShvpCqhyp:
in other words, that X‚ exhibits LF pX´1q as a colimit of the diagram tLFXnuně0. This
follows immediately from Theorem A.5.3.1, applied in the 8-topos ShvpCq{FX´1 .

Now suppose that p1q and p2q are satisfied. Proposition A.3.3.1 guarantees that F is a
sheaf on C; we wish to prove that C is hypercomplete. Choose an 8-connective morphism
α : F Ñ G in ShvpCq, where G is hypercomplete (and therefore satisfies conditions p1q and
p2q). We wish to show that α is an equivalence. To prove this, it will suffice to verify the
following:

p˚q Let α : F Ñ G be an 8-connective morphism in ShvpCq, where F and G both satisfy
p2q. Then α is an equivalence.

To prove p˚q, we will show that for every object C P C and each n ě 0, the map of spaces
αC : F pCq Ñ G pCq is n-connective. The proof proceeds by induction on n. If n ą 0, then
the inductive hypothesis guarantees that αC is 0-connective; it therefore suffices to show
that the diagonal map F pCq Ñ F pCq ˆG pCq F pCq is pn´ 1q-connective, which also follows
from the inductive hypothesis. It therefore suffices to treat the case n “ 0: that is, we must
show that the map F pCq Ñ G pCq is surjective on connected components. Replacing C by
C{C , we may assume that C is a final object of C, so that a point η P G pCq determines a
map 1 Ñ G , where 1 denotes the final object of ShvpCq. Replacing F by F ˆG 1, we are
reduced to proving the following:

p˚1q Let F be an 8-connective object of ShvpCq satisfying condition p2q, and let C P C be
a final object. Then F pCq is nonempty.
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To prove p˚1q, let rC Ñ C be the right fibration classified by the functor F : Cop Ñ S.
We wish to show that rC ˆC tCu is nonempty. We will construct an S-hypercovering
X‚ : ∆op

s,` Ñ C with X´1 “ C together with a lifting Y‚ : ∆op
s Ñ rC of X‚|∆op

s
. Condition

p2q and Corollary HTT.3.3.3.3 guarantee that Y‚ extends (in an essentially unique fashion)
to a map Y ‚ : ∆op

s,` Ñ
rC lifting X‚, so that Y ´1 is the required point of rC ˆC tCu.

The construction of X‚ and Y‚ proceeds in stages. Let ∆s,ďm denote the full subcategory
of ∆s spanned by the objects rks for k ď m, and define ∆s,`,ďm Ď ∆s,` similarly. We
define Xďm‚ : ∆op

s,`,ďm Ñ C and Y ďm‚ : ∆op
s,ďm Ñ

rC by induction on m, the case m “ ´1
being trivial. Assuming that Xďm´1

‚ has been defined, we can define the matching object
MmpXq P C. The lifting Y ďm´1

‚ determines a map B∆m Ñ F pMmpXqq. Since F is 8-
connective, there exists a collection of morphisms tDi ÑMmpXqu which generate a covering
sieve, such that each composite map B∆m Ñ F pMmpXqq Ñ F pDiq is nullhomotopic.
Without loss of generality, we may assume that the set of indices Di is finite, and that the
map >Di Ñ MmpXq belongs to S. Let D “ >Di. Using condition p1q, we see that the
composite map γ : B∆m Ñ F pMmpXqq Ñ F pDq is nullhomotopic. We can now define the
extension Xďm‚ by setting Xm “ D, and the extension Y ďm‚ using the nullhomotopy γ.

A.6 Pretopoi in Higher Category Theory

Let X be a locally coherent 8-topos (see Definition A.2.1.6). Then the structure of X is
largely determined by the full subcategory X 0 Ď X spanned by the coherent objects of X .
The full subcategory X 0 is not an 8-topos (for example, it does not admit small colimits
unless X is trivial), but nevertheless shares many of the defining categorical features of
8-topoi (for example, the effectivity of groupoid objects). In this section, we will axiomatize
these features by introducing the notion of a 8-pretopos (Definition A.6.1.1). The class of 8-
pretopoi includes all8-topoi X and is closed under passage to well-behaved full subcategories,
like the full subcategory of coherent objects of a coherent 8-topos X (Corollary A.6.1.7).
Conversely, every 8-pretopos X 0 can be equipped with a finitary Grothendieck topology
from which one can extract a coherent topos ShvpX 0q. These processes are approximately
inverse to one another: for a more precise statement, see Theorems ?? or ??.

A.6.1 8-Pretopoi

We begin by introducing some terminology.

Definition A.6.1.1. Let C be an 8-category. We will say that C is a local 8-pretopos if it
satisfies the following axioms:

paq The 8-category C admits fiber products. That is, for every pair of morphisms
f : X Ñ Y and f 1 : X 1 Ñ Y with common codomain, there exists a fiber product
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X ˆY X
1.

pbq The 8-category C admits finite coproducts. In particular, C has an initial object.

pb1q The formation of finite coproducts in C is universal. That is, for every collection finite
collection of morphisms tXα Ñ Xu and every map Y Ñ X, the induced map

>αpXα ˆX Y q Ñ p>αXαq ˆX Y

is an equivalence in C.

pcq Coproducts in C are disjoint: that is, for every pair of objects X,Y P C, the fiber
product X ˆX>Y Y is an initial object of C.

pdq Every groupoid object of C is effective. That is, if X‚ : ∆op Ñ C is a groupoid object
of C (see Definition HTT.6.1.2.7 ), then there exists a geometric realization |X‚| P C,
and the canonical diagram

X1
d0 //

d1
��

X0

��
X0 // |X‚|

is a pullback square in C (here d0, d1 : X1 Ñ X0 denote the face maps).

pd1q The formation of geometric realizations of groupoids in C is universal. In other words,
given a morphism f : X Ñ Y in C and a groupoid object Y‚ of C{Y , the induced map
|X ˆY Y‚| Ñ X ˆY |Y‚| is an equivalence in C.

We will say that C is an 8-pretopos if it is a local 8-pretopos which admits a final object.

Remark A.6.1.2. In the situation of Definition A.6.1.1, it suffices to check condition pb1q
in the case X “ >Xα and it suffices to check condition pd1q in the special case X “ |X‚|.

Remark A.6.1.3. Let C be a local 8-pretopos. Then for every object X P C, the 8-
category C{X is a local 8-pretopos which admits a final object, and therefore an 8-pretopos.
Conversely, if C is an 8-category which admits finite coproducts and C{X is an 8-pretopos
for each X P C, then C is a local 8-pretopos.

Remark A.6.1.4. Let C be a local 8-pretopos and let C0 Ď C be a full subcategory of
C. If C0 is closed under fiber products, finite coproducts, and the formation of geometric
realizations of groupoid objects, then C0 is also a local 8-pretopos. If, in addition, C is an
8-pretopos and C0 contains the final object of C, then C0 is also an 8-pretopos.

Example A.6.1.5. Every 8-topos is an 8-pretopos (Theorem HTT.6.1.0.6 ).
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Proposition A.6.1.6. Let X be an 8-topos and let X coh Ď X be the full subcategory
spanned by the coherent objects of X . Then X coh is a local 8-pretopos.

Corollary A.6.1.7. Let X be a coherent 8-topos and let X coh Ď X be the full subcategory
spanned by the coherent objects of X . Then X coh is an 8-pretopos.

Proof of Proposition A.6.1.6. The 8-topos X itself is a local 8-pretopos (Example A.6.1.5).
Consequently, to show that the full subcategory X coh Ď X is a local 8-pretopos, it will
suffice to show that X coh is closed under finite coproducts, fiber products, and the geometric
realization of groupoid objects (Remark A.6.1.4). The first two assertions follow from
Remark A.2.1.8. To prove the third, suppose that X‚ is a groupoid object of X coh, and set
X “ |X‚| (where the geometric realization is formed in X ). Since groupoid objects of X are
effective, we have a pullback square

X1 //

��

X0

��
X0 // X

in the8-topos X . Since X0 and X1 are coherent objects of X , the upper horizontal morphism
in this diagram is n-coherent for each integer n (Example A.2.1.2). Since the vertical maps
in this diagram are effective epimorphisms, it follows that the lower horizontal map is also
n-coherent for every integer n (Corollary A.2.1.5). Applying Proposition A.2.1.3 (and the
coherence of X0), we deduce that X is pn` 1q-coherent. Allowing n to vary, we deduce that
X is coherent, as desired.

A.6.2 The Effective Epimorphism Topology

Let C be an 8-category which admits fiber products. For each morphism f : U Ñ X in
C, the Čech nerve of f is the simplicial object U‚ of C{X depicted in the diagram

¨ ¨ ¨
////// U ˆX U // // U,

so that Un is the pn` 1q-fold fiber product of U with itself over X. We will say that f is an
effective epimorphism if the above diagram exhibits X as a geometric realization of U‚ in
the 8-category C. When C is a local 8-pretopos, the class of effective epimorphisms has
many good properties.

Proposition A.6.2.1. Let C be a local 8-pretopos. Then C admits a factorization system
(see Definition HTT.5.2.8.8 ) pSL, SRq, where SL is the collection of effective epimorphisms
in C and SR is the collection of p´1q-truncated morphisms of C.
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Proof. It is easy to see that SL and SR are closed under retracts. We next claim that every
morphism f : U Ñ X belonging to SL is left orthogonal to every morphism g : V Ñ Y

belonging to SR. To prove this, we can replace C by C{Y and thereby reduce to the case
where Y is a final object of C. We wish to show that the canonical map θ : MapCpX,V q Ñ

MapCpU, V q is a homotopy equivalence. Let U‚ be the Čech nerve of f ; our assumption that f
is an effective epimorphism guarantees that we can identify X with the geometric realization
|U‚|, so that the domain of θ can be identified with the totalization of the cosimplicial space
MapCpU‚, V q. Note that our assumption that g is p´1q-truncated guarantees that each
of the spaces MapCpUn, V q is either empty or contractible. Since there exist morphisms
rms Ñ rns in ∆ for every pair of integers m,n ě 0, either MapCpUn, V q is empty for all
n ě 0 (in which case θ is a map between empty spaces) or MapCpUn, V q is contractible for
all n ě 0 (in which case θ is a morphism between contractible spaces). In either case, the
map θ is automatically a homotopy equivalence.

To complete the proof that pSL, SRq is a factorization system on C, it will suffice to show
that every morphism f : U Ñ X in C admits a factorization U

fL
ÝÑ V

fR
ÝÑ X where fL is

an effective epimorphism and fR is p´1q-truncated. To prove this, we let U‚ denote the
Čech nerve of f and V “ |U‚|. Since C is a local 8-pretopos, the groupoid U‚ is effective
and therefore fL is an effective epimorphism. It remains to show that fR is p´1q-truncated:
that is, that the diagonal map V » V ˆV V

δ
ÝÑ V ˆX V is an equivalence. Because C is a

local 8-pretopos, the formation of geometric realizations of groupoid objects of C commutes
with pullbacks, so we can identify δ with the geometric realization of a map of bisimplicial
objects δ‚‚ : U‚ ˆV U‚ Ñ U‚ ˆX U‚. We now observe that each δmn is the pullback of the
map δ00 : U ˆV U Ñ U ˆX U » U1, which is an equivalence by virtue of the fact that U‚ is
an effective groupoid object of C.

Corollary A.6.2.2. Let C be a local 8-pretopos.

paq Suppose we are given a commutative diagram

Y
g

��
X

f
>>

h // Z

in C where f is an effective epimorphism. Then g is an effective epimorphism if
and only if h is an effective epimorphism. In particular, the collection of effective
epimorphisms is closed under composition.
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pbq Suppose we are given a pullback square

U 1

f 1

��

g1 // U

f
��

X 1
g // X

in the 8-category C. If f is an effective epimorphism, then so is f 1. The converse
holds if g is an effective epimorphism.

pcq Let tfα : Uα Ñ Xαu be a finite collection of effective epimorphisms in C. Then the
induced map >fα : >Uα Ñ >Xα is an effective epimorphism.

Proof. Assertions paq and pcq follow from Propositions A.6.2.1 and HTT.5.2.8.6 . Let us
prove pbq. Suppose we are given a pullback square

U 1

f 1

��

g1 // U

f
��

X 1
g // X.

in the 8-category C. Let U‚ be the Čech nerve of f , so that X 1ˆX U‚ can be identified with
the Čech nerve of f 1. Since the formation of geometric realizations of groupoid objects in C
commutes with pullback, we have a pullback square

|X 1 ˆX U‚| //

��

|U‚|

��
X 1

g1 // X.

Consequently, if f is an effective epimorphism, then so is f 1. Conversely, suppose that g and
f 1 are effective epimorphisms. Then the preceding argument shows that g1 is an effective
epimorphism. It follows from paq that g ˝ f 1 “ f ˝ g1 is an effective epimorphism, so that f
is an effective epimorphism by a second application of paq.

Corollary A.6.2.3. Let C be a local 8-pretopos. Then C admits a Grothendieck topology
which can be described as follows: a collection of morphisms tfα : Uα Ñ XuαPA in C generate
a covering sieve if and only if there exists a finite subset A0 Ď A such that the induced map
>αPA0Uα Ñ X is an effective epimorphism.

Proof. It suffices to show that the collection of effective epimorphisms satisfies conditions
paq through pdq of Proposition A.3.2.1. Conditions paq through pcq follow from Corollary
A.6.2.2, while condition pdq follows from our assumption that C is a local 8-pretopos.
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Definition A.6.2.4. Let C be a local 8-pretopos. We will refer to the Grothendieck
topology of Corollary A.6.2.3 as the effective epimorphism topology. We let ShvpCq denote
the full subcategory of FunpCop,Sq spanned by those functors which are sheaves with respect
to the effective epimorphism topology.

Applying Proposition A.3.3.1, we immediately obtain the following:

Proposition A.6.2.5. Let C be a local 8-pretopos and let F : Cop Ñ S be a functor. Then
F is a sheaf (with respect to the effective epimorphism topology) if and only if it satisfies
the following conditions:

p1q For every finite collection of objects tXαuαPA in C, the canonical map F p>Xαq Ñ
ś

F pXαq is a homotopy equivalence.

p2q For every effective epimorphism f : U Ñ X in C having Čech nerve U‚, the induced
map F pXq Ñ Tot F pU‚q is a homotopy equivalence.

Corollary A.6.2.6. Let C be a local 8-pretopos. Then the effective epimorphism topology
on C is subcanonical: that is, the Yoneda embedding j : C ãÑ FunpCop,Sq factors through
ShvpCq.

A.6.3 Subobjects

We now describe explicate one relationship between our theory of 8-pretopoi (Definition
A.6.1.1) and the classical theory of distributive lattices (Definition A.1.4.5).

Notation A.6.3.1. Let X be an object of an 8-category C. Recall that a subobject of
X is a p´1q-truncated morphism ι : U Ñ X in C. We will often abuse terminology by
referring to the object U P C as a subobject of X (in which case we implicitly assume that a
p´1q-truncated morphism U Ñ X has been specified). If U and V are subobjects of X, we
write U Ď V if there exists a commutative diagram

U
f //

  

V

~~
X.

Note that since the map V Ñ X is p´1q-truncated, the morphism f is unique up to a
contractible space of choices (provided that f exists).

If U and V are subobjects of an object X P C, we say that U and V are equivalent if they
are equivalent when viewed as objects of C{X (in other words, if U Ď V and V Ď U). We let
SubpXq denote the collection of equivalence classes of subobjects of X. We will generally
abuse notation by identifying a subobject U of X with the corresponding element of SubpXq.



A.6. PRETOPOI IN HIGHER CATEGORY THEORY 1813

We regard SubpXq as a partially ordered set with respect to the inclusion relation Ď defined
above.

Remark A.6.3.2. Let X be an object of an 8-category C. Then the partially ordered set
SubpXq can be regarded as an 8-category, which is equivalent to the full subcategory of
C{X spanned by the p´1q-truncated objects. This equivalence determines a fully faithful
embedding SubpXq ãÑ C{X . If C is a local 8-pretopos, then Proposition A.6.2.1 implies
that this fully faithful embedding admits a left adjoint L : C{X Ñ SubpXq. For each object

U P C{X , the underlying map f : U Ñ X admits an essentially unique factorization U
f 1
ÝÑ

LU
f2
ÝÑ X, where f 1 is an effective epimorphism and f2 is p´1q-truncated. Consequently,

the object LU can be described explicitly as the geometric realization |U‚|, where U‚ is the
groupoid object of C given by the Čech nerve of f (which is the same as the Čech nerve of
f 1, by virtue of the fact that f2 is p´1q-truncated).

Proposition A.6.3.3. Let C be a local 8-pretopos. Then, for each X P C, the partially
ordered set SubpXq is a distributive lattice.

Proof. Let us abuse notation by identifying SubpXq with the full subcategory of C{X spanned
by the p´1q-truncated objects. Let L : C{X Ñ SubpXq be a left adjoint to the inclusion
(see Remark A.6.3.2). Note that SubpXq is closed under all limits which exist in C{X .
Since C admits pullbacks, the 8-category C{X admits finite products so that SubpXq is
a lower semilattice. Since C admits finite coproducts, the partially ordered set SubpXq
admits finite joins which are given by the formula

Ž

iPI Ui “ Lp
Ź

iPI Uiq. This proves that
the partially ordered set SubpXq is a lattice. To show that this lattice is distributive, it
will suffice to show that for every triple of subobjects U, V,W P SubpXq, the inclusion
pU ^ V q _ pU ^W q Ď U ^ pV _W q is an equality. Unwinding the definitions, we see that
this is equivalent to the requirement that the composite map

pU ˆX V q > pU ˆX W q
f
ÝÑ U ˆX pV >W q

g
ÝÑ U ˆX LpV >W q

is an effective epimorphism. Our assumption that C is a local 8-pretopos guarantees that f
is an equivalence, and the morphism g is a pullback of the natural map V >W Ñ LpV >W q

and is therefore an effective epimorphism by virtue of Corollary A.6.2.2.

Remark A.6.3.4 (Functoriality). Let C be a local 8-pretopos and let f : X Ñ Y be a
morphism in C. Then the construction U ÞÑ U ˆY X determines a functor f˚ : C{Y Ñ C{X .
This functor is left exact (since it is right adjoint to the functor f! : C{X Ñ C{Y given by
composition with f) and therefore carries p´1q-truncated objects to p´1q-truncated objects.
It therefore induces a map of partially ordered sets f˚ : SubpY q Ñ SubpXq. We claim that
f˚ : SubpY q Ñ SubpXq is a homomorphism of distributive lattices (Definition A.1.5.3): that
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is, it preserves finite joins and finite meets. The preservation of finite meets follows from
left exactness. For the case of joins, we must show that for every finite collection of objects
tUiuiPI of SubpY q, the inclusion

Ž

iPI f
˚Ui Ď f˚p

Ž

iPI Uiq is an equality. Unwinding the
definitions, this is equivalent to the requirement that the composite map

>iPIf
˚Ui

ρ
ÝÑ f˚p>iPIUiq

ρ1
ÝÑ f˚p

ł

iPI

Uiq

is an effective epimorphism in C. The map ρ is an equivalence (since finite coproducts in C
are universal) and the map ρ1 is a pullback of the effective epimorphism >iPIUi Ñ

Ž

iPI Ui,
hence an effective epimorphism by virtue of Corollary A.6.2.2.

Proposition A.6.3.5. Let C be a local 8-pretopos and let f : X Ñ Y be an effective
epimorphism in C. The following conditions are equivalent:

paq The morphism f is an effective epimorphism.

pbq The induced map of distributive lattices f˚ : SubpY q Ñ SubpXq is injective.

Proof. We first show that paq implies pbq. Suppose that f is an effective epimorphism and
that we are given subobjects U, V P SubpY q satisfying f˚U “ f˚V in SubpXq; we wish
to show that U “ V . We will show that the projection maps U Ð U ˆX V Ñ V are
equivalences in C. Since both projections are p´1q-truncated morphisms, it will suffice to
show that they are effective epimorphisms. By virtue of Corollary A.6.2.2, we are reduced
to proving that the induced maps

U ˆX Y Ð U ˆX V ˆX Y Ñ V ˆX Y

are effective epimorphisms. However, both of these maps are equivalences, since assumption
paq gives

f˚U “ pf˚Uq ^ pf˚V q “ f˚pU ^ V q “ pf˚Uq ^ pf˚V q “ f˚V

in the partially ordered set SubpXq.
Now suppose that pbq is satisfied. It follows from Proposition A.6.2.1 that the morphism

f factors as a composition X
f 1
ÝÑ U

f2
ÝÑ Y where f 1 is an effective epimorphism and f2

is p´1q-truncated. Then f˚U “ f˚Y in SubpXq, so condition pbq implies that U “ Y

in SubpY q: that is, the morphism f2 is an equivalence. It follows that f » f2 ˝ f 1 is a
composition of effective epimorphisms, and therefore an effective epimorphism as desired.

Remark A.6.3.6. Let C be an 8-pretopos containing an object X, and suppose we are
given a pair of p´1q-truncated morphisms U Ñ X Ð V . The following conditions are
equivalent:
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piq The induced map U > V Ñ X is p´1q-truncated.

piiq The fiber product U ˆX V is an initial object of C.

To prove this, we note that since coproducts in C are universal, assertion piq is equivalent to
statement that the composite map

U > V » pU ˆX Uq > pV ˆX V q

Ñ pU ˆX Uq > pV ˆX Uq > pU ˆX V q > pV ˆX V q

» pU > V q ˆX pU ˆX V q

is an equivalence. The equivalence of this statement with piiq follows from the disjointness
of coproducts in C.

Remark A.6.3.7. Let f : U Ñ X be a morphism in a local 8-pretopos C. Using Remark
A.6.3.6, we deduce that the following conditions are equivalent:

piq The morphism f is p´1q-truncated and exhibits U as a complemented element of the
distributive lattice SubpXq (in other words, there exists an subobject V P SubpXq
satisfying U ^ V “ H and U _ V “ X).

piiq There exists a morphism g : V Ñ X such that f and g induce an equivalence
U > V

pf,gq
ÝÝÝÑ X (note that since coproducts in C are disjoint, this automatically

guarantees that f and g are p´1q-truncated).

If these conditions are satisfied, then the morphism g : V Ñ X appearing in piiq is essentially
unique (see Remark A.1.6.1).

Definition A.6.3.8. Let C be a local 8-pretopos. We will say that C is Boolean if, for
every object X P C, the distributive lattice SubpXq is a Boolean algebra.

Remark A.6.3.9. Let C be a local 8-pretopos. If C is Boolean, then every p´1q-truncated
morphism f : U Ñ X in C determines an essentially unique decomposition of X » U > V in
C (Remark A.6.3.7).

A.6.4 The Universal Property of ShvpCq

The collection of all 8-pretopoi can be organized into an 8-category.

Definition A.6.4.1. Let C and C1 be 8-pretopoi. We let FunprepC, C1q denote the full
subcategory of FunpC, C1q spanned by those functors f : C Ñ C1 which preserve finite limits,
finite coproducts, and carry effective epimorphisms in C to effective epimorphisms in C1. We
will refer to FunprepC, C1q as the 8-category of 8-pretopos morphisms from C to C1.
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We let 8 pT oppre denote the subcategory of yCat8 whose objects are (not necessarily small)
8-pretopoi and whose morphisms are functors which preserve finite limits, finite coproducts,
and effective epimorphisms, and we let 8T oppre denote the full subcategory of 8 pT oppre

spanned by those 8-pretopoi which are essentially small.

Example A.6.4.2. Let f˚ : X Ñ Y be a geometric morphism of 8-topoi. Then f˚ is a
morphism of 8-pretopoi: it preserves finite limits and small colimits by definition, and
preserves effective epimorphisms by virtue of Remark HTT.6.2.3.6 . Consequently, we can
regard the 8-category 8T opop as a (non-full) subcategory of 8 pT oppre.

Example A.6.4.3. Let C be a local 8-pretopos and let f : C Ñ D be a morphism in C.
Then the construction pD1 P C{Dq ÞÑ pC ˆD D

1 P C{Cq determines an 8-pretopos morphism
from C{D to C{C .

Proposition A.6.4.4. Let C be an essentially small 8-pretopos and let X be an 8-topos.
Then composition with the Yoneda embedding j : C Ñ ShvpCq induces an equivalence
of 8-categories Fun˚pShvpCq,X q Ñ FunprepC,X q; here Fun˚pShvpCq,X q denotes the full
subcategory of FunpShvpCq,X q spanned by those functors which preserve small colimits and
finite limits.

Remark A.6.4.5. Proposition A.6.4.4 implies that we can regard the construction C ÞÑ
ShvpCq as a partially defined left adjoint to the inclusion functor 8T opop ãÑ8

pT oppre. It
is not quite a left adjoint because Proposition A.6.4.4 requires the 8-pretopos C to be
essentially small, but the 8-topos X will almost never be essentially small.

Proof of Proposition A.6.4.4. By virtue of Proposition HTT.6.2.3.20 , composition with j

induces a fully faithful embedding Fun˚pShvpCq,X q Ñ FunpC,X q whose essential image
is spanned by those left exact functors f : C Ñ X which satisfy the following additional
condition:

p˚q For every collection of morphisms tuα : Uα Ñ V uαPA in C which generate a covering
sieve with respect to the effective epimorphism topology, the induced map ρ : >fpUαq Ñ
fpV q is an effective epimorphism in the 8-topos X .

Note that in verifying p˚q, we may assume without loss of generality that the set A is finite,
so that the maps uα determine an effective epimorphism u : >Uα Ñ V in the 8-pretopos C.
If f commutes with finite coproducts, then we can identify ρ with fpuq. Consequently, if f
is a morphism of 8-pretopoi, then f satisfies p˚q. We now prove the converse. Suppose that
f is a left exact functor which satisfies p˚q. Applying p˚q in the case where A is a singleton,
we deduce that f preserves effective epimorphisms. Applying p˚q in the case where A is
empty, we deduce that f preserves initial objects. To complete the proof, it will suffice to
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show that f preserves pairwise coproducts. Let U and U 1 be objects of C. Since coproducts
in C are disjoint, we have a pullback square

H //

��

U

��
U 1 // U > U 1

in the 8-category C, where H is an initial object of C. Note that each of the morphisms
in this diagram is p´1q-truncated. Applying the left exact functor f , we obtain a pullback
square

fpHq //

��

fpUq

��
fpU 1q // fpU > U 1q

in the 8-topos X , where each morphism is p´1q-truncated. Since fpHq is an initial object
of X , the induced map fpUq > fpU 1q Ñ fpU >U 1q is p´1q-truncated. To show that this map
is an equivalence, it suffices to show that it is an effective epimorphism, which follows by
applying p˚q to the pair of maps tU Ñ U > U 1, U 1 Ñ U > U 1u.

A.6.5 Hypercomplete 8-Pretopoi

Let C be a small local 8-pretopos. Then the Yoneda embedding j : C Ñ ShvpCq is fully
faithful. We now describe some additional conditions on C which guarantee that the essential
image of j admits a simple description.

Definition A.6.5.1. Let C be a local 8-pretopos. We will say that a semisimplicial
object X‚ of C satisfies the Kan condition if, for n ą 0 and 0 ď i ď n, the natural map
Xn “ X‚r∆ns Ñ X‚rΛn

i s is an effective epimorphism (note that X‚rΛn
i s is well-defined by

virtue of the assumption that C admits fiber products: see Proposition A.5.1.9).
If C is an 8-pretopos, we will say that a semisimplicial object X‚ of C is a hypercovering

if the natural map Xn “ X‚r∆ns Ñ X‚rB∆ns is an effective epimorphism for n ě 0.
More generally, if C is a local 8-pretopos containing an object X, then we will say that
a semisimplicial object X‚ of C{X is a hypercovering of X if it is a hypercovering of the
8-pretopos C{X .

Remark A.6.5.2. In the special case where C is an 8-topos, Definition A.6.5.1 recovers
the notions of Kan condition and hypercover given in Definition A.5.2.3.

Definition A.6.5.3. Let C be a local 8-pretopos. We will say that C is hypercomplete if it
satisfies the following conditions:
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paq Every simplicial object X‚ of C which satisfies the Kan condition, there exists an object
X P C such that X‚ can be lifted to a simplicial object of C{X which is a hypercovering
of X.

pbq If X P C and X‚ is a simplicial object of C{X which is a hypercovering of X, then X is
a colimit of the diagram ∆op X‚

ÝÝÑ C{X Ñ C.

Remark A.6.5.4. In the situation of Definition A.6.5.3, the converse of assertion paq is
always true: if X‚ is a hypercovering of an object X P C, then the image of X‚ under the
forgetful functor C{X Ñ C satisfies the Kan condition (see Remark A.5.2.6).

Remark A.6.5.5. Let C be a local 8-pretopos. If C satisfies condition pbq of Definition
A.6.5.3 and X‚ is a simplicial object of C which satisfies the Kan condition, then the object X
appearing in condition paq is determined uniquely up to equivalence: condition pbq supplies
an equivalence X » |X‚|.

Proposition A.6.5.6. Let X be an 8-topos. Then X is hypercomplete as an 8-topos (in
the sense of Definition HTT.6.5.2 ) if and only if it is hypercomplete as an 8-pretopos (in
the sense of Definition A.6.5.3).

Proof. If X satisfies condition pbq of Definition A.6.5.3, then it is hypercomplete as an
8-topos by virtue of Theorem HTT.6.5.3.12 . Conversely, suppose that X is hypercomplete
as an 8-topos. If X‚ is a semisimplicial object of X which is a hypercovering of an object
X P X , then the canonical map |X‚| Ñ X is 8-connective (Theorem A.5.3.1) and therefore
an equivalence (since X is hypercomplete). This verifies condition pbq of Definition A.6.5.3.
If X‚ is a semisimplicial object of X which satisfies the Kan condition, then Corollary
A.5.6.4 shows that X‚ is a hypercovering of its geometric realization, which verifies condition
paq.

Proposition A.6.5.7. Let X be an 8-topos and let X 0 Ď X be a full subcategory which
satisfies the following conditions:

paq The full subcategory X 0 Ď X is closed under finite coproducts.

pbq The full subcategory X 0 Ď X is closed under fiber products.

pcq Every object X P X 0 is quasi-compact.

pdq For every object X P X , there exists an effective epimorphism >Uα Ñ X, where each
Uα belongs to X.

peq For every object X P X and every simplicial object U‚ of X {X which is a hypercovering
of X, if each Un belongs to X 0, then X belongs to X 0.
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Then X 0 is the full subcategory of X spanned by the coherent objects.

Proof. We first prove by induction on k that each each X P X 0 is a k-coherent object of
X . In the case k “ 0, this follows from pcq. Suppose that k ą 0. It follows from pdq

and our inductive hypothesis that the 8-topos X {X is locally k-coherent. Let U and V

be pk ´ 1q-coherent objects of X {X ; we wish to show that U ˆX V is pk ´ 1q-coherent.
Since k ą 0, the objects U and V are quasi-compact. Using paq and pdq, we can choose
effective epimorphisms u : U 1 Ñ U and v : V 1 Ñ V where U 1, V 1 P X 0. Then U 1 and V 1

are pk ´ 1q-coherent by our inductive hypothesis, so the morphisms u and v are relatively
pk ´ 1q-coherent (Example A.2.1.2). It follows that the induced map U 1 ˆX V 1 Ñ U ˆX V

is an effective epimorphism which is relatively pk ´ 1q-coherent. It follows from pbq that the
fiber product U 1 ˆX V 1 belongs to X 0 and is therefore pk ´ 1q-coherent by our inductive
hypothesis, so that U ˆX V is pk ´ 1q-coherent by virtue of Proposition A.2.1.3. Allowing k
to vary, we deduce that each object of X 0 is coherent.

We now prove the converse. Let X P X be a coherent object; we wish to prove that
X P X 0. By virtue of peq, it will suffice to show that there exists simplicial object U‚ of X {X
which is a hypercovering of X, such that Un P X 0 for all n ě 0. We will construct U‚ as
the union of a compatible sequence of functors Fďn : ∆op

ďn Ñ X 0ˆX X {X which have the
following additional property:

p˚nq For m ď n ` 1, let Lm denote the mth latching object of Fďn: that is, the colimit
lim
ÝÑrksãÑrms,kăm

Fďnprksq. Then the natural map Lm Ñ Fďnprmsq exhiibits Lm as a
summand of Fďnprmsq: that is, we have an equivalence Fďnprmsq » Lm >Am for some
auxiliary object Am P X 0.

Let us assume that we have already constructed the diagram Fďn´1 satisfying p˚n´1q. It
follows that the latching object Ln can be identified with the finite coproduct >rmsãÑrns,mănAm
and therefore belongs to X 0. Let Mn denote the matching object lim

ÐÝrmsãÑrns,măn
Fďn´1prmsq

(where the limit is formed in the 8-category X {X). Each Fďn´1prmsq belongs to X 0 and is
therefore coherent, so that Mn is a coherent object of X . In particular, Mn is quasi-compact,
so assumptions paq and pdq guarantee the existence of an effective epimorphism v : Y ÑMn

where Y P X 0. Using Corollary HTT.A.2.9.15 , we see that the data of a functor Fďn
extending Fďn´1 is equivalent to the data of a commutative diagram

Xn

φ

!!
Ln

==

φ0 //Mn

where the map φ0 prescribed by Fďn´1. We complete the construction by taking Xn to be
the coproduct Ln > Y and φ to be the amalgam of φ0 with v. It is easy to see that resulting
functor X‚ : ∆op Ñ X {X has the desired properties.
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Our next result points to the relevance of Definition A.6.5.3:

Proposition A.6.5.8. Let C be an essentially small local 8-pretopos. If C is hypercomplete,
then the Yoneda embedding j : C ãÑ ShvpCq factors through the full subcategory ShvpCqhyp

spanned by the hypercomplete objects of ShvpCq. Moreover, an object of ShvpCqhyp belongs
to the essential image of j if and only if it is coherent.

Proof. Let X P C be an object; we wish to show that jpXq P ShvpCq is hypercomplete. Using
Proposition A.5.7.2, we are reduced to proving that if Y‚ is a hypercovering of an object
Y P C, then the canonical map MapCpY,Xq Ñ lim

ÐÝ
MapCpY‚, Xq is a homotopy equivalence.

This follows from the second assumption of Definition A.6.5.3. This proves that j factors
through ShvpCqhyp. To complete the proof, it will suffice to show that the essential image
of j satisfies conditions paq through peq of Proposition A.6.5.7. Conditions pbq and pdq are
obvious, condition paq follows from the proof of Proposition A.6.4.4, condition pcq from
Proposition A.3.1.3. To prove peq, suppose that F ‚ is a simplicial hypercovering of an object
F P ShvpX qhyp where each F k belongs to the essential image of j. Since j is fully faithful,
the image of F ‚ in ShvpX qhyp can be identified with jpU‚q for some simplicial object U‚
of C. Since F ‚ is a hypercovering of F , it satisfies the Kan condition (Remark A.6.5.4),
so that the simplicial object U‚ also satisfies the Kan condition. Our assumption that C is
hypercomplete guarantees the existence of an object X P C such that U‚ can be lifted to a
hypercovering of X. It follows that jpU‚q is a hypercovering of jpXq in ShvpCqhyp. Since
ShvpCqhyp is hypercomplete, we conclude that that both F and jpXq can be identified with
the geometric realization |jpU‚q, so that F » jpXq belongs to the essential image of j as
desired.

Corollary A.6.5.9. Let C be a local 8-pretopos. If C is hypercomplete, then C is idempotent-
complete.

Proof. Enlarging the universe if necessary, we may assume that C is small. In this case,
Proposition A.6.5.8 shows that the essential image of the Yoneda embedding j : C ãÑ ShvpCq
is closed under retracts. Since the 8-topos ShvpCq is idempotent-complete, it follows that C
is idempotent-complete.

A.6.6 The 8-Category of Hypercomplete 8-Pretopoi

We now show that the datum of a hypercomplete 8-pretopos is essentially the same as
the datum of a hypercomplete 8-topos which is coherent and locally coherent (Theorem
??).

Proposition A.6.6.1. Let X be an 8-topos which is locally coherent and hypercomplete,
and let X coh denote the full subcategory of X spanned by the coherent objects. Then:



A.6. PRETOPOI IN HIGHER CATEGORY THEORY 1821

p1q The 8-category X coh is a local 8-pretopos.

p2q The 8-category X coh is essentially small.

p3q If X‚ is a semisimplicial object of X coh which satisfies the Kan condition, then the
geometric realization |X‚| belongs to X coh and X‚ is a hypercovering of |X‚|.

p4q If X P X coh is an object and X‚ : ∆op
s Ñ X {X is a hypercovering of X, then the

induced map |X‚| Ñ X is an equivalence.

In particular, X coh is a hypercomplete local 8-pretopos.

Proof. Assertion paq follows from Proposition A.6.1.6, assertion pcq from Theorem A.5.5.1,
and assertion pdq from Theorem A.5.3.1 (and the hypercompleteness of X ). We now prove
pbq. Since X is a presentable 8-category, there exists an essentially small full subcategory
X 0 Ď X such that every object X P X admits an effective epimorphism >Uα Ñ X, where
each Uα belongs to X 0. Because X is locally coherent, we may assume without loss of
generality that each object of X 0 is coherent. Enlarging X 0 if necessary, we may assume that
X 0 is closed under fiber products, finite coproducts (Remark A.2.1.8), and that for every
simplicial object U‚ of X 0 which satisfies the Kan condition, the geometric realization |U‚|
belongs to X (Theorem A.5.5.1). Then X 0 satisfies the hypotheses of Proposition A.6.5.7,
so that X coh “ X 0 is essentially small.

Warning A.6.6.2. Using a more refined argument, one can show that the 8-category
X coh is essentially small for any hypercomplete 8-topos X : the local coherence of X is not
necessary. However, the hypothesis that X is hypercomplete cannot be eliminated.

Remark A.6.6.3. Let X be an 8-topos which is hypercomplete and locally coherent.
Combining Propositions A.6.6.1 and A.3.4.2, we see that the Yoneda embedding of X
induces an equivalence of 8-categories X Ñ ShvpX cohqhyp.

Corollary A.6.6.4. Let C be a local 8-pretopos which is essentially small. The following
conditions are equivalent:

p1q The 8-pretopos C is hypercomplete (in the sense of Definition A.6.5.3).

p2q There exists an 8-topos X which is hypercomplete and locally coherent and an equiva-
lence of 8-categories C » X coh.

p3q The 8-pretopos C satisfies the following stronger version of the requirements of Defi-
nition A.6.5.3:

pa1q Every semisimplicial object X‚ of C which satisfies the Kan condition, there exists
an object X P C such that X‚ can be lifted to a semisimplicial object of C{X which
is a hypercovering of X.
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pb1q If X P C and X‚ is a semisimplicial object of C{X which is a hypercovering of X,
then X is a colimit of the diagram ∆op

s
X‚
ÝÝÑ C{X Ñ C.

Proof. The implication p1q ñ p2q follows from Proposition A.6.5.8, the implication p2q ñ p3q
from Proposition A.6.6.1, and the implication p3q ñ p1q is trivial.

Theorem A.6.6.5. Let E denote the subcategory of 8T op whose objects are 8-topoi X
which are hypercomplete, coherent, and locally coherent and whose morphisms are functors
f˚ : X Ñ Y which preserve small colimits, finite limits, and carry coherent objects of
X to coherent objects of Y. Then the construction X ÞÑ X coh induces a fully faithful
functor ρ : Eop Ñ8T oppre, whose essential image is spanned by the 8-pretopoi which are
hypercomplete and essentially small.

Proof. It follows from Proposition A.6.6.1 that if X is an 8-topos which is hypercomplete,
coherent, and locally coherent, then the full subcategory X coh Ď X of coherent objects is
a hypercomplete 8-pretopos which is essentially small. This proves that the functor ρ is
well-defined. We next claim that ρ is fully faithful. Let X and Y be 8-topoi which are
hypercomplete, coherent, and locally coherent; we wish to show that the canonical map

θ : MapEpX ,Yq Ñ Map8T opprepYcoh,X cohq » FunprepYcoh,X cohq»

is a homotopy equivalence. Using Remark A.6.6.3, we can identify Y with the hypercomplete
8-topos ShvpYcohqhyp. Since the 8-pretopos Ycoh is hypercomplete (Proposition A.6.6.1),
an object of ShvpYcohqhyp is coherent if and only if it belongs to the essential image of
the Yoneda embedding j : Ycoh Ñ ShvpYcohqhyp (Proposition A.6.5.8). Unwinding the
definitions, we see the map θ fits into a pullback diagram of spaces

MapEpX ,Yq
θ //

��

FunprepYcoh,X cohq»

��
Map8T oppX ,Yq

θ1 // FunprepYcoh,X q».

It will therefore suffice to show that the map θ1 is a homotopy equivalence. This follows
from the observation that we can write θ1 as a composition

Map8T oppX ,Yq
φ
ÝÑ Map8T oppShvpX cohq,Yq ψ

ÝÑ FunprepYcoh,X q»,

where φ is a homotopy equivalence by virtue of our assumption that X is hypercomplete
and ψ is a homotopy equivalence by virtue of Proposition A.6.4.4. This shows that ρ is fully
faithful. The description of the essential image of ρ follows from Corollary A.6.6.4.
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A.6.7 Truncations in 8-Pretopoi

Let C be an arbitrary 8-category. Recall that an object C P C is said to be n-truncated
if the mapping space MapCpC

1, Cq is n-truncated for each C 1 P C. We say that a morphism
u : C Ñ D exhibits D as an n-truncation of C if the object D is n-truncated and, for
every n-truncated object E P C, composition with u induces a homotopy equivalence
MapCpD,Eq Ñ MapCpC,Eq. In this case, the morphism u (and the object D P C) are
uniquely determined by C (up to canonical equivalence). Our next goal is to show that
truncations exist in any 8-pretopos:

Proposition A.6.7.1. Let C be an 8-pretopos and let n ě ´2 be an integer. Then:

paq For every object C P C, there exists a morphism u : C Ñ D which exhibits D as an
n-truncation of C.

pbq Let C1 be another 8-pretopos and let f P FunprepC, C1q be a morphism of 8-pretopoi
(see Definition A.6.4.1). If u : C Ñ D is a morphism in C which exhibits D as an
n-truncation of C, then fpuq : fpCq Ñ fpDq is a morphism in C1 which exhibits fpDq
as an n-truncation of fpCq.

Corollary A.6.7.2. Let C be an 8-pretopos, let n ě ´2 be an integer, and let Cďn be the
full subcategory of C spanned by the n-truncated objects. Then the inclusion functor Cďn ãÑ C
admits a left adjoint τďn : C Ñ Cďn.

Corollary A.6.7.3. Let C and C1 be 8-pretopoi and let f P FunprepC, C1q be an 8-pretopos
morphism from C to C1. Then the diagram of 8-categories

Cďn //

f |Cďn
��

C

f
��

C1ďn // C1

is left adjointable. In particular, the diagram of 8-categories

Cďn
f |Cďn
��

Cτďnoo

f
��

C1ďn C1τďnoo

commutes up to (canonical) homotopy.

We will deduce Proposition A.6.7.1 from the following:
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Proposition A.6.7.4. Let C be a small local 8-pretopos, which we regard as equipped with
the effective epimorphism topology of Corollary A.6.2.3. Let n ě ´2 be an integer and
suppose we are given a pair of morphisms F

f
ÝÑ G

g
ÝÑ H in ShvpCq, where f is pn ` 1q-

connective and g is n-truncated. If F and H belong to the essential image of the Yoneda
embedding j : C Ñ ShvpCq, then so does G .

Proof. We proceed by induction on n. If n “ ´2, the g is an equivalence and there is nothing
to prove. Let us therefore assume that n ą ´2. Let F ‚, G ‚, and H ‚ denote the simplicial
objects of C given by the Čech nerves of the morphisms idF , f , and g ˝ f , respectively. We
then have a diagram of simplicial objects

F ‚
f‚
ÝÑ G ‚

g‚
ÝÑ H ‚ .

For each k ě 0, the map fk fits into a commutative diagram

G k

h

  
F k

fk
==

id // F

where h is a composition of pullbacks of f , and is therefore an pn` 1q-connective morphism
in ShvpGq. It follows that fk is n-connective. Note that gk is a pullback of the diagonal
map G Ñ H ˆH k`1 G k`1; since g is n-truncated, we conclude that gk is pn´ 1q-truncated.
Since the functor j is fully faithful and left exact, the essential image of j is closed under
finite limits; it follows that F k and H k belong to the image of j. Applying our inductive
hypothesis, we deduce that G k also belongs to the image of j. Using the fact that j is fully
faithful, we can identify G‚ with the image under j of a groupoid object X‚ of C. Since C is a
local 8-pretopos, we can identify X‚ with the Čech nerve of the induced map u : X0 Ñ |X‚|

in C. Because the functor j is left exact, it follows that G‚ » jpX‚q is the Čech nerve of
the induced map jpuq : jpX0q Ñ j|X‚|. The map u is an effective epimorphism in C and
therefore generates a covering with respect to the effective epimorphism topology, so that
jpuq is an effective epimorphism in the 8-topos ShvpCq. It follows that we can identify j|X‚|
with the geometric realization |G‚ |. Our assumption that n ą ´2 guarantees that f is an
effective epimorphism so that the natural map |G‚ | Ñ G is an equivalence, and therefore
G » j|X‚| belongs to the essential image of j as desired.

Proof of Proposition A.6.7.1. We first prove paq. Let C be an 8-pretopos, let n ě ´2 be
an integer, and let C be an object of C. We wish to show that there exists a morphism
u : C Ñ D in C which exhibits D as an n-truncation of C. Passing to a larger universe if
necessary, we may assume that C is small. Let j : C Ñ ShvpCq be the Yoneda embedding.
Since C has a final object, the final object 1 P ShvpCq belongs to the essential image of
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j. Applying Proposition A.6.7.4 to the diagram jpCq
u1
ÝÑ τďnjpCq Ñ 1 in ShvpCq, we can

assume that τďnjpCq can be written as jpDq for some object D P C. Since j is fully faithful,
we can further assume that u1 “ jpuq for some morphism u : C Ñ D in C. We claim that
u has the desired property. Since jpDq “ τďnjpCq is n-truncated, we immediately deduce
that the object D P C is n-truncated. To complete the proof of paq, it suffices to observe
that for any n-truncated object E P C, the object jpEq P ShvpCq is n-truncated so that the
canonical map

MapCpD,Eq » MapShvpCqpτďnjpCq, jpEqq Ñ MapShvpCqpjpCq, jpEqq » MapCpC,Eq

is a homotopy equivalence.
We now prove pbq. Let u : C Ñ D be as above and let f : C Ñ C1 be a morphism of

8-pretopoi. We then have a commutative diagram of 8-pretopoi

C f //

j
��

C1

j1

��
ShvpCq f˚ // ShvpC1q,

where f˚ is a geometric moprhism of 8-topoi. Since jpuq exhibits jpDq as an n-truncation
of jpCq, it follows that pf˚ ˝ jqpuq “ pj1 ˝ fqpuq exhibits pj1 ˝ fqpDq as an n-truncation of
pj1 ˝ fqpCq. Since j1 is left exact and fully faithful, it follows that fpuq exhibits fpDq as an
n-truncation of fpCq, as desired.

Corollary A.6.7.5. Let X be a coherent 8-topos. If X is a coherent object of X , then
every truncation τďnX is also a coherent object of X .

A.7 Bounded 8-Topoi

For each 0 ď n ď 8, let T opn denote the pn ` 1q-category of n-topoi (see Definition
HTT.6.4.5.1 ). For m ď n, the construction X ÞÑ τďm´1X determines a forgetful functor
T opn Ñ T opm; these forgetful functors determine a tower of 8-categories

¨ ¨ ¨ Ñ T op3 Ñ T op2 Ñ T op1 Ñ T op0 .

The canonical map 8T op Ñ lim
ÐÝ
tT opnuně0 is not an equivalence: for example, if X is any

8-topos and X hyp Ď X is the full subcategory spanned by the hypercomplete objects, then
the inclusion map ι˚ : X hyp ãÑ X is a morphism in 8T op whose image in each T opn is an
equivalence (since truncated objects of X are automatically hypercomplete). Our goal in
this section is to describe the relationship between 8T op and lim

ÐÝ
tT opnuně0 in more detail:

in particular, we will show that it has both a right adjoint (Theorem ??) and a left adjoint
(Theorem ??), both of which are fully faithful.
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A.7.1 Boundedness

Fix an integer n ě 0. Recall that an 8-topos X is said to be n-localic if it has the
form ShvpCq, where C is a small pn´ 1q-category which admits finite limits and is equipped
with a Grothendieck topology (see the proof of Proposition HTT.6.4.5.9 ). We let 8T opďn

denote the full subcategory of 8T op spanned by the n-localic 8-topoi. It follows from
Proposition HTT.6.4.5.7 that the forgetful functor 8T op Ñ T opn admits a fully faithful
right adjoint whose essential image is the full subcategory 8T opďn Ď 8T op. In particular,
the 8-category 8T opďn is a localization of 8T op; we let Ln : 8T op Ñ8T opďn denote a
right adjoint to the inclusion.

Proposition A.7.1.1. Let X be an 8-topos. The following conditions are equivalent:

paq The 8-topos X can be obtained as written as a limit of a small filtered diagram tXαu
in the 8-category 8T op, where each of the 8-topoi Xα is n-localic for some integer n
(which might depend on α).

pbq The canonical map θ˚ : X Ñ lim
ÐÝ

LnX is an equivalence in 8T op.

Definition A.7.1.2. Let X be an 8-topos. We will say that X is bounded if it satisfies the
equivalent conditions of Proposition A.7.1.1. We let 8T opb denote the full subcategory of
8T op spanned by the bounded 8-topoi.

Example A.7.1.3. Let X be an 8-topos which is n-localic for some integer n. Then X is
bounded.

The essential content of Proposition A.7.1.1 is contained in the following observation:

Lemma A.7.1.4. For each n ě 0, the functor Ln : 8T op Ñ8T op preserves small filtered
limits.

Proof. Suppose we are given a diagram of 8-topoi

J op Ñ8T op pα P J q ÞÑ Xα,

indexed by a small filtered 8-category J . We wish to show that the canonical map
ρ˚ : LnplimÐÝαPJ op Xαq Ñ lim

ÐÝαPJ op LnXα is an equivalence of 8-topoi. Since the domain
and codomain of ρ˚ are n-localic, it will suffice to show that ρ˚ induces an equivalence
when restricted to pn ´ 1q-truncated objects. In other words, we are reduced to showing
that the map ρ1˚ : lim

ÐÝαPJ op Xα Ñ lim
ÐÝαPJ op LnXα is an equivalence when restricted to

pn ´ 1q-truncated objects. Because J is filtered, the domain and codomain of ρ1˚ can be
identified with the corresponding limits in the 8-category yCat8 (Theorem HTT.6.3.3.1 ). In
particular, we see that an object of lim

ÐÝαPJ op Xα (or of lim
ÐÝαPJ op LnXα) is pn´ 1q-truncated
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if and only if its image in each Xα (or LnXα) is pn´ 1q-truncated. We are therefore reduced
to showing that the natural map

lim
ÐÝ
αPJ op

τďn´1Xα Ñ lim
ÐÝ
αPJ op

τďn´1LnXα

is an equivalence of 8-categories. This is clear, since it is given as a limit of equivalences
τďn´1Xα Ñ τďn´1LnXα.

Proof of Proposition A.7.1.1. The implication pbq ñ paq is trivial. We will prove the con-
verse. Suppose that J is a small filtered 8-category and that X is given as the limit of a
diagram

J op Ñ8T op pα P J q ÞÑ Xα,

where each of the 8-topoi Xα is nα-localic for some integer nα ě 0. We have a commutative
diagram

X „ //

θ˚

��

lim
ÐÝαPJ op Xα

lim
ÐÝ

θα˚

��
lim
ÐÝn

LnX // lim
ÐÝαPJ op lim

ÐÝn
LnXα .

For each α P J op, the tower tLnXαuně0 is essentially constant (with value Xα) for n ě nα,
so the canonical map θα˚ : Xα Ñ lim

ÐÝn
LnXα is an equivalence. Consequently, to show that

θ˚ is an equivalence, it will suffice to show that the lower horizontal map in the preceding
diagram is an equivalence. For this, it will suffice to show that for each n ě 0, the natural
map ρ˚ : LnX Ñ lim

ÐÝαPJ op LnXα is an equivalence, which follows from Lemma A.7.1.4.

Proposition A.7.1.5. The canonical map 8T op Ñ lim
ÐÝn

T opn admit a fully faithful right
adjoint, whose essential image is the full subcategory 8T opb Ď 8T op spanned by the
bounded 8-topoi.

Proof. Using Proposition HTT.6.4.5.7 , we can identify lim
ÐÝn

T opn with the limit of the tower
of 8-categories

¨ ¨ ¨ Ñ 8T opď3 L2
ÝÑ 8T opď2 L1

ÝÑ 8T opď1 L0
ÝÑ 8T opď0.

We can therefore identify the objects of lim
ÐÝn

T opn with towers of 8-topoi

¨ ¨ ¨ Ñ X 3
φp2q˚
ÝÝÝÑ X 2

φp1q˚
ÝÝÝÑ X 1

φp0q˚
ÝÝÝÑ X 0

where each φpnq˚ is a geometric morphism which exhibits X n as an n-localic reflection of
X n`1 (so that each X n is n-localic). The natural map F : 8T op Ñ lim

ÐÝn
T opn admits

a right adjoint G : lim
ÐÝn

T opn Ñ 8T op, which carries a tower tX nuně0 as above to the



1828 APPENDIX A. COHERENT 8-TOPOI

limit lim
ÐÝ
X n (formed in the 8-category 8T op of 8-topoi). Note that for any such tower

tX nuně0, Lemma A.7.1.4 implies that the canonical map Lm lim
ÐÝn

X n Ñ lim
ÐÝn

LmX n » Xm
is an equivalence. In other words, the counit v : F ˝ G Ñ id is an equivalence, so that
the functor G is fully faithful. To complete the proof, it suffices to observe that the full
subcategory 8T opb Ď 8T op is the essential image of G: in other words, that an 8-topos X
is bounded if and only if the unit map X Ñ pG ˝ F qpX q “ lim

ÐÝn
LnX is an equivalence.

Example A.7.1.6. Let C be a small 8-category which admits finite limits and let S be
a collection of morphisms in C which satisfies conditions paq through pdq of Proposition
A.3.2.1 and therefore determines a Grothendieck topology on C. Suppose further that
coproducts in C are disjoint and that every object C P C is n-truncated for some integer
n ě 0 (which might depend on C). For each n ě 0, let Cďn denote the full subcategory of
C spanned by the n-truncated objects, and let Sďn denote the collection of morphisms in
Cďn which belong to S. Since coproducts in C are disjoint, the collection of n-truncated
objects of C is closed under coproducts for n ě 0, so that the collection of morphisms Sďn
also satisfies the hypotheses of Proposition A.3.2.1 and therefore determines a Grothendieck
topology on Cďn. The equality C “

Ť

ně0 Cďn induces an equivalence of 8-categories
FunpCop,Sq » lim

ÐÝn
FunpCop

ďn,Sq. Using the criterion of Proposition A.3.3.1, we see that this
equivalence restricts to an equivalence ShvpCq » lim

ÐÝně0 ShvpCďnq in the 8-category 8T op.
By construction, each of the 8-topoi ShvpCďnq is n-localic. It follows that the 8-topos
ShvpCq is bounded.

A.7.2 Postnikov Completeness

Let C be a presentable 8-category. For each n ě 0, we let τďn C denote the full
subcategory of C spanned by the n-truncated objects. The inclusion functor τďn C ãÑ C has
a left adjoint, which we will denote by τďn. We have a tower of 8-categories

¨ ¨ ¨ Ñ τď3 C
τď2
ÝÝÑ τď2 C

τď1
ÝÝÑ τď1 C τď0

ÝÝÑ τď0 C .

Definition A.7.2.1. Let C be a presentable 8-category. We will say that C is Postnikov
complete if the canonical map

C Ñ lim
ÐÝ
n

τďn C C ÞÑ tτďnCuně0

is an equivalence of 8-categories. We let 8T opc denote the full subcategory of 8T op
spanned by those 8-topoi which are Postnikov complete.

Warning A.7.2.2. The terminology of Definition A.7.2.1 is slightly different from that of
[138], where we said that Postnikov towers in C are convergent if C satisfies the requirement
of Definition A.7.2.1.
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Remark A.7.2.3. Let X be an 8-topos. If X is Postnikov complete, then every object
X P X can be recovered as the limit of its Postnikov tower tτďnXuně0. It follows that every
Postnikov complete 8-topos is hypercomplete. However, the converse is false.

The failure of an 8-topos X to be Postnikov complete can always be corrected by passing
to a suitable modification of X :

Theorem A.7.2.4. Let X be an 8-topos, and let pX denote the limit of the tower of
8-categories

¨ ¨ ¨ Ñ τď3X
τď2
ÝÝÑ τď2X

τď1
ÝÝÑ τď1X τď0

ÝÝÑ τď0X “ X♥ .

Then:

paq The 8-category pX is an 8-topos.

pbq The canonical map e˚ : X Ñ pX is a geometric morphism (that is, it preserves small
colimits and finite limits).

pcq For each n ě 0, the map e˚ : X Ñ pX induces an equivalence when restricted to
n-truncated objects.

pdq The 8-topos pX is Postnikov complete.

peq If Y is a Postnikov complete 8-topos, then composition with e˚ induces an equivalence
of 8-categories Fun˚ppX ,Yq Ñ Fun˚pX ,Yq.

Definition A.7.2.5. Let X be an8-topos. We will refer to the8-topos pX “ lim
ÐÝ
tτďnX uně0

of Theorem A.7.2.4 as the Postnikov completion of X .

Before giving the proof of Theorem A.7.2.4, let us describe some of its consequences.

Corollary A.7.2.6. The inclusion functor 8T opc ãÑ8T op admits a right adjoint, which
carries each 8-topos X to its Postnikov completion pX .

Corollary A.7.2.7. The natural map ρ : 8T op Ñ lim
ÐÝn

T opn admits a fully faithful left
adjoint, whose essential image is the full subcategory of 8T opc Ď 8T op.

Proof. Let 8T opb denote the full subcategory of 8T op spanned by the bounded 8-pretopoi
(Definition A.7.1.2). Using Proposition A.7.1.5, we deduce that there is an equivalence of
8-categories lim

ÐÝn
T opn » 8T opb whose composition with ρ yields a functor L : 8T op Ñ

8T opb which is left adjoint to the inclusion 8T opb ãÑ8T op. Using Corollary A.7.2.6, we
can regard the formation of Postnikov completions X ÞÑ pX as a functor from the 8-category
8T op to itself. To complete the proof of Corollary A.7.2.7, it will suffice to verify the
following:
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piq The construction X ÞÑ pX determines a functor 8T opb Ñ8T op which is left adjoint
to L.

piiq An 8-topos Y is Postnikov complete if and only if it has the form pX for some
X P 8T opb.

To prove piq, we must establish the existence of a homotopy equivalence Map8T opppX ,Yq »
Map8T oppX , LYq depending functorially on X P 8T opb and Y P 8T op. We obtain this
homotopy equivalence by inspecting the commutative diagram

Map8T opppX ,Yq

��

Map8T opppX , pYqoo

α
��

Map8T oppX , LYq //Map8T opppX , LYq Map8T opppX ,yLYqoo

Map8T oppLX , LYq
β //

OO

Map8T oppLpX , LYq.

OO

We claim that each of the maps in this diagram is a homotopy equivalence. Here the lower
vertical maps are homotopy equivalences because LY is bounded, and the right horizontal
maps are homotopy equivalences by virtue of Corollary A.7.2.6 (since pX is Postnikov
complete). We are therefore reduced to proving that α and β are homotopy equivalences.
This follows from the observations that the geometric morphisms Y Ñ LY and pX Ñ X
are equivalences on n-truncated objects for each n ě 0 (and therefore induce equivalences
pY Ñ yLY and LpX Ñ LX , respectively). This completes the proof of piq. The “if” direction
of piiq follows from assertion pdq of Theorem A.7.2.4, and the “only if” direction follows
from the observation that for any Postnikov complete 8-topos X , we have equivalences
X Ð pX Ñ yLX in the 8-category 8T op.

Corollary A.7.2.8. The formation of Postnikov completions induces an equivalence of
8-categories 8T opb Ñ8T opc (with homotopy inverse given by the functor L : 8T opc Ñ

8T opb appearing in the proof of Corollary A.7.2.7).

Warning A.7.2.9. Corollary A.7.2.8 asserts that the datum of a bounded 8-topos X is
equivalent to the datum of a Postnikov complete 8-topos Y. Beware that the X and Y
are usually not equivalent as 8-topoi (though they are related by a geometric morphism
Y Ñ X which induces an equivalence on n-truncated objects for each n ě 0). In other
words, the condition that an 8-topos Z is bounded is not equivalent to the condition that
Z is Postnikov complete. Both of these conditions assert that Z can be recovered from its
truncated objects, but not in the same way:
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• The 8-topos Z is Postnikov complete if and only if it can be recovered as the limit of
the tower of 8-categories

¨ ¨ ¨ Ñ τď3Z
τď2
ÝÝÑ τď2Z

τď1
ÝÝÑ τď1Z τď0

ÝÝÑ τď0Z

• The 8-topos Z is bounded if and only if it can be recovered as the limit of its tower
of geometric morphisms

¨ ¨ ¨ Ñ Z3
φp2q˚
ÝÝÝÑ Z2

φp1q˚
ÝÝÝÑ Z1

φp0q˚
ÝÝÝÑ Z0;

here Zn denotes the n-localic 8-topos corresponding to the n-topos τďn´1Z.

To put the difference in another way: the hypothesis that Z is Postnikov complete guarantees
that every object Z P Z can be recovered as the limit of its Postnikov tower tτďnZu in the
8-category Z (and that conversely, every Postnikov tower arises in this way), while the
hypothesis of boundedness asserts that the 8-topos Z can itself be recovered as the limit of
its “localic Postnikov tower” tZnuně0 in the 8-category 8T op.

A.7.3 The Proof of Theorem A.7.2.4

The proof of Theorem A.7.2.4 will require some auxiliary constructions.

Notation A.7.3.1. Let f : X Ñ Y be a morphism in an 8-topos X and let n ě ´1
be an integer. We let τďnpfq denote an n-truncation of X regarded as an object of X {Y ,

so that the map f factors canonically as a composition X
f 1
ÝÑ τďnpfq

f2
ÝÑ Y where f 1 is

pn` 1q-connective and f2 is n-truncated.

Fix an 8-topos X . For each n ě 0, we let En denote the full subcategory of Funp∆1,X q
spanned by those morphisms f : X Ñ Y where the object Y is n-truncated and the morphism
f is pn´ 1q-truncated. We have inclusions of 8-categories

E0 ãÑ Funp∆1, τď0X q ãÑ E1 ãÑ Funp∆1, τď1X q ãÑ E2 ãÑ Funp∆1, τď2X q ãÑ ¨ ¨ ¨ .

Note that each of these inclusion functors admits a left adjoint:

• For n ě 0, the inclusion En ãÑ Funp∆1, τď0X q admits a left adjoint which carries a
morphism f : X Ñ Y to the induced map τďn´1pfq Ñ Y .

• For n ě 0, the inclusion Funp∆1, τďnX q ãÑ En`1 admits a left adjoint which carries a
morphism f : X Ñ Y to the induced map τďnX Ñ τďnY .
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In particular, each of the inclusion functors En ãÑ En`1 admits a left adjoint ρn : En`1 Ñ

En. Let pX “ lim
ÐÝ
tτďnX u be the Postnikov completion of X . The towers of 8-categories

tFunp∆1, τďnX quně0 and tEnuně0 are both right cofinal in the tower

E0 Ð Funp∆1, τď0X q Ð E1 Ð Funp∆1, τď1X q Ð E2 Ð Funp∆1, τď2X q Ð ¨ ¨ ¨ ,

and therefore have the same limit. This proves the following:

Lemma A.7.3.2. Let X be an 8-topos and let pX be its Postnikov completion. Then the
8-category Funp∆1, pX q can be identified with a limit of the tower of 8-categories

E0
ρ0
ÐÝ E1

ρ1
ÐÝ E2

ρ2
ÐÝ E3 Ð ¨ ¨ ¨

constructed above.

Remark A.7.3.3. Let X be an 8-topos and let X “ tXnuně0 be an object of the Postnikov
completion pX . Then the identification Funp∆1, pX q » lim

ÐÝ
tEnu of Lemma A.7.3.2 induces an

identification of the 8-category pX {X with the limit of a tower of 8-categories

τď´1X {X0 Ð τď0X {X1 Ð τď1X {X2 Ð τď2X {X3 Ð ¨ ¨ ¨ .

Unwinding the definitions, we see that each of the transition maps in this diagram can be
identified with the composition

τďnX {Xn`1
τďn´1
ÝÝÝÝÑ τďn´1X {Xn`1 » τďn´1X {Xn ,

where the equivalence is supplied by the fact that the map Xn`1 Ñ Xn is pn` 1q-connective
(see Lemma HTT.7.2.1.13 ). It follows that each of these transition maps preserves finite
products (Lemma HTT.6.5.1.2 ), so that each of the induced maps pX {X Ñ τďn´1X {Xn also
preserves finite products.

Proposition A.7.3.4. Let X be an 8-topos. Then the Postnikov completion pX is also an
8-topos.

Proof. We first prove that colimits in pX are universal. Fix a morphism f : X Ñ Y in pX ,
which we can identify with a compatible family of maps fn : Xn Ñ Yn in τďnX . We wish
to show that the associated pullback functor pX {Y Ñ pX {X preserves small colimits. Using
Lemma A.7.3.2, we can identify this pullback functor with an inverse limit of pullback
functors τďn´1X {Yn Ñ τďn´1X {Xn , which preserve small colimits by virtue of the fact that
colimits are universal in X .

The evaluation functor Funp∆1, pX q Ñ Funpt1u, pX q » pX is Cartesian fibration which is
classified by a functor χ : pX

op
Ñ yCat8. To complete the proof that X is an 8-topos, it

will suffice to show that the functor χ commutes with small limits (Theorem HTT.6.1.3.9 ).
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Using Lemma A.7.3.2, we can identify χ with a limit of functors pX
op
Ñ pτďnX qop χn

ÝÑyCat8,
where each χn classifies the Cartesian fibration En Ñ τďnX . It will therefore suffice to show
that each of the functors χn preserves small limits, which follows from Theorem HTT.6.4.4.5
(applied to the pn` 1q-topos τďn`1X ).

Proposition A.7.3.5. Let X be an 8-topos. Then the canonical map e˚ : X Ñ pX (given
on objects by the construction X ÞÑ tτďnXuně0) preserves small colimits and finite limits.

Proof. Each of the truncation functors τďn : X Ñ τďnX preserves small colimits and final
objects, so that the functor e˚ preserves small colimits and final objects. To complete the
proof that e˚ is a geometric morphism, it will suffice to show that it preserves pullbacks.
In other words, it will suffice to show that for each object X P X , the induced map
X {X Ñ pX {e˚X preserves finite products. By virtue of Remark A.7.3.3, this is equivalent
to the requirement that each of the composite functors X {X Ñ pX {e˚X Ñ τďn´1X {τďnX
preserves finite products. Unwinding the definitions, we see that each of these functors can
be rewritten as a composition X {X

τďn´1
ÝÝÝÝÑ τďn´1X {X » τďn´1X {τďnX , where the truncation

functor τďn´1 preserves finite products by virtue of Lemma HTT.6.5.1.2 and the equivalence
is provided by Lemma HTT.7.2.1.13 .

Remark A.7.3.6. The functor e˚ : X Ñ pX of Proposition A.7.3.5 admits a right adjoint e˚,
which carries an object tXnuně0 of pX to the limit lim

ÐÝ
Xn in the 8-category X . In particular,

the composite functor e˚e˚ : X Ñ X associates to each object X P X the limit lim
ÐÝ

τďnX

of its Postnikov tower. Beware that that the natural map X Ñ e˚e
˚X need not be an

equivalence. However, it is always an equivalence when the object X P X is m-truncated for
some integer m.

Proposition A.7.3.7. Let X be an 8-topos, let pX be its Postnikov completion, and let
n ě 0 be an integer. Then the canonical map e˚ : X Ñ pX is an equivalence when restricted
to n-truncated objects.

Proof. The functor e˚ and its right adjoint e˚ are both left exact, and therefore restrict to
adjoint functors

τďnX
e˚n //τďn pXen˚
oo .

It follows from Remark A.7.3.6 that the functor e˚n is fully faithful. It will therefore suffice
to show that the functor e˚n is essentially surjective. Let X be an n-truncated object of
pX , given by a compatible sequence of objects Xm P τďmX . We will show that if X is
n-truncated, then the canonical map X Ñ e˚Xn is an equivalence in pX . This is equivalent
to the following:

p˚q For each m ě n, the canonical map Xm Ñ Xn is an equivalence in X .



1834 APPENDIX A. COHERENT 8-TOPOI

We prove p˚q by induction on m, the case m “ n being trivial. To carry out the inductive
step, it will suffice to show that for m ą n, the map ρ : Xm Ñ Xm´1 is an equivalence. Since
ρ exhibits Xm´1 as an pm´ 1q-truncation of Xm, this is equivalent to the statement that
Xm is pm´ 1q-truncated: that is, that the diagonal map δ : Xm Ñ XSm

m is an equivalence.
Note that δ is automatically p´1q-truncated (since Xm is m-truncated); consequently, it
will suffice to show that δ is an effective epimorphism. Observe that the map δ factors as a
composition

Xm » τďmX2m
δ1
ÝÑ τďmpX

Sm

2m q
δ2
ÝÑ pτďmX2mq

Sm » XSm

m .

Because Sm has dimension ď m, the natural map XSm
2m Ñ pτďmX2mq

Sm is an effective
epimorphism. This map factors through δ2, so that δ2 is an effective epimorphism. Conse-
quently, to complete the proof, it will suffice to show that δ1 is an effective epimorphism. In
fact, the map δ1 is an equivalence: it is the image under the tautological map pX Ñ τďmX
of the diagonal X Ñ XSm , which is an equivalence by virtue of our assumptions that X is
n-truncated and m ą n.

Corollary A.7.3.8. Let X be an 8-topos and let pX “ lim
ÐÝ
tτďnX u be its Postnikov com-

pletion. Then, for each integer n ě 0, the tautological map Fn : pX Ñ τďnX admits a fully
faithful right adjoint Gn : τďnX Ñ pX , whose essential image is the full subcategory of pX
spanned by the n-truncated objects.

Proof. The existence of the right adjoint Gn follows from Corollary HTT.5.5.2.9 . Since Gn
preserves finite limits, it carries n-truncated objects to n-truncated objects and therefore takes
values in the full subcategory τďn pX . Let e˚ : X Ñ pX denote the canonical map, so that the
composition Fn˝e˚ can be identified with the n-truncation functor τďn : X Ñ τďnX . Passing
to right adjoints, we deduce that the composite functor τďnX

Gn
ÝÝÑ pX e˚

ÝÑ X is homotopic
to the inclusion map. Since the functor e˚ restricts to an equivalence τďn pX Ñ τďnX
(Proposition A.7.3.7), it follows that Gn induces an equivalence τďnX » τďn pX .

Proposition A.7.3.9. Let X be an 8-topos and let pX denote its Postnikov completion.
Then pX is Postnikov complete.

Proof. By construction, the Postnikov completion pX can be identified with the limit of the
tower of 8-categories

¨ ¨ ¨ Ñ τď3X Ñ τď2X Ñ τď1X Ñ τď0X .

Using Corollary A.7.3.8, we can identify this tower with

¨ ¨ ¨ Ñ τď3 pX Ñ τď2 pX Ñ τď1 pX Ñ τď0 pX

(as a diagram in pPrLq
pX {), so that pX is Postnikov complete as desired.
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Proposition A.7.3.10. Let X and Y be 8-topoi. If Y is Postnikov complete, then
composition with the natural map e˚ : X Ñ pX induces an equivalence of 8-categories
Fun˚ppX ,Yq Ñ Fun˚pX ,Yq.

Proof. For every pair of presentable 8-categories Z and Z 1, let LFunpZ,Z 1q denote the full
subcategory of FunpZ,Z 1q spanned by those functors which preserve small colimits. We first
show that composition with e˚ induces an equivalence of 8-categories θ : LFunppX ,Yq Ñ
LFunpX ,Yq. Using our assumption that Y is Postnikov complete, we can identify θ with
the limit of a tower of functors θn : LFunppX , τďn Yq Ñ LFunpX , τďn Yq, each of which is an
equivalence by virtue of Proposition A.7.3.7.

To complete the proof, it will suffice to show that a colimit-preserving functor f˚ : pX Ñ Y
is left exact if and only if the composite functor f˚ ˝ e˚ : X Ñ Y is left exact. The “only if”
direction follows from Proposition A.7.3.5. To prove the converse, suppose that f 1˚ “ f˚ ˝ e˚

preserves finite limits. It is then clear that the functor f˚ preserves final objects. To show that
f˚ is left exact, it will suffice to show that for each object X “ tXnuně0 in pX , the induced
map pX {X Ñ Y{f˚X preserves finite products. Using Remark A.7.3.3 (and the Postnikov
completeness of Y), we can write the8-category Y{f˚X as the limit of a tower of8-categories
tτďn´1 Y{f 1˚Xnu where the transition maps preserve finite products. We are therefore reduced
to showing that each of the composite maps pX {X Ñ Y{f˚X Ñ τďn´1 Y{f 1˚Xn preserves finite
products. Unwinding the definitions, we see that each of these maps can be described as
a composition pX {X

u
ÝÑ τďn´1X {Xn

v
ÝÑ τďn´1 Y{f 1˚Xn , where the functor v preserves finite

products because f 1˚ is left exact, and the functor u preserves finite products by virtue of
Remark A.7.3.3.

Proof of Theorem A.7.2.4. Combine Propositions A.7.3.4, A.7.3.5, A.7.3.7, A.7.3.9, and
A.7.3.10.

A.7.4 Bounded 8-Pretopoi

We now discuss an analogue of Definition A.7.1.2 in the setting of 8-pretopoi.

Definition A.7.4.1. Let C be an8-pretopos. We will say that C is bounded if it is essentially
small and every object X P C is n-truncated for n " 0. We let 8T oppre

ă8 denote the full
subcategory of 8T oppre spanned by the bounded 8-pretopoi.

Warning A.7.4.2. The terminology of Definition A.7.4.1 is slightly abusive. Any 8-topos
X can be regarded as an 8-pretopos (Example A.6.1.5), but the condition that X is bounded
as an 8-topos (in the sense of Definition A.7.1.2) is not equivalent to the condition that
X is bounded as an 8-pretopos (in the sense of Definition A.7.4.1). In practice, there is
unlikely to be any confusion: an 8-topos X will never be bounded as an 8-pretopos except
in the trivial case where X » ShvpHq is an initial object of 8T op.
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The next result implies that that bounded 8-pretopoi exist in great abundance:

Proposition A.7.4.3. Let C be an 8-pretopos and let Că8 denote the full subcategory of
C spanned by those objects which are n-truncated for some n " 0. Then:

paq The full subcategory Că8 Ď C is closed under finite limits, finite coproducts, and
geometric realizations of groupoid objects.

pbq The 8-category Că8 is an 8-pretopos.

pcq If Că8 is essentially small, then it is a bounded 8-pretopos.

Proof. We will prove paq; assertion pbq then follows from Remark A.6.1.4 and pcq is an
immediate consequence of pbq. Enlarging the universe if necessary, we may assume that
C is small. Let j : C Ñ ShvpCq denote the Yoneda embedding, so that an object of C is
n-truncated if and only if its image in ShvpCq is n-truncated. We may therefore replace C by
ShvpCq and thereby reduce to the case where C is an 8-topos (at the cost of dropping our
assumption that C is small). In this case, the result is clear: the collection of n-truncated
objects of C is closed under all limits, closed under coproducts if n ě 0, and if X‚ is a
groupoid object of C for which X0 and X1 are n-truncated, then the geometric realization
|X‚| is pn` 1q-truncated.

Example A.7.4.4. Let X be a coherent 8-topos. We let X coh
ă8 denote the full subcategeory

of X spanned by the bounded coherent objects. Note that every n-truncated object coherent
object of X is a compact object of τďnX (Corollary A.2.3.2). It follows that the 8-category
X coh
ă8 is essentially small. Combining this observation with Propositions A.7.4.3 and A.6.1.6,

we deduce that X coh
ă8 is a bounded 8-pretopos.

A.7.5 Boundedness and Coherence

Let X be a hypercomplete 8-topos which is coherent and locally coherent. According
to Theorem A.6.6.5, we can recover X from its full subcategory X coh of coherent objects,
which is a hypercomplete 8-pretopos. Our goal in this section is to prove an analogous
result, where the hypercompleteness hypothesis on X is replaced by boundedness. We begin
with a simple observation:

Proposition A.7.5.1. Let X be an 8-topos which is bounded and coherent. Then X is
locally coherent.

Proof. Fix an object X P X . We wish to show that there exists an effective epimorphism
>Xi Ñ X, where each Xi P X is coherent. Write X as the limit of a filtered diagram
tXαu in 8T op, where each Xα is nα-localic for some integer nα ě 0. For each index α, let
f˚α : Xα Ñ X be the corresponding geometric morphism. Then X is generated under small
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colimits by objects which lie in the essential image of some Xα. In particular, there exists
an effective epimorphism >f˚αYα Ñ X for some objects Yα in Xα. Since Xα is nα-localic,
we can choose effective epimorphisms Zα Ñ Yα in Xα, where each Zα is pnα ´ 1q-truncated.
Replacing X by f˚αZα, we can reduce to the case where X is n-truncated for some integer
n " 0.

Since the 8-topos X is coherent, it is pn ` 2q-coherent and therefore locally pn ` 1q-
coherent. We may therefore choose an effective epimorphism ρ1 : >X 1i Ñ X, where each X 1i
is pn` 1q-coherent. Using our assumption that X is n-truncated, we deduce that ρ factors
as a composition >X 1i Ñ >pτďnX

1
iq

ρ
ÝÑ X. We conclude by observing that ρ is an effective

epimorphism and that each of the objects τďnX 1i is a coherent object of X by virtue of
Corollary A.2.4.4.

Construction A.7.5.2. Let 8T opcoh denote the subcategory of 8T op whose objects are
coherent 8-topoi and whose morphisms are functors f˚ : X Ñ Y which preserve small
colimits, finite limits, and carry coherent objects of X to coherent objects of Y. Then the
construction X ÞÑ X coh

ă8 induces a functor 8T opop
coh Ñ8T oppre

ă8.

Theorem A.7.5.3. The forgetful functor

8T opop
coh Ñ8T oppre

ă8 X ÞÑ X coh
ă8

of Construction A.7.5.2 admits a fully faithful left adjoint, given at the level of objects by the
construction C ÞÑ ShvpCq. The essential image of this right adjoint is the full subcategory of
8T opop

coh spanned by the bounded coherent 8-topoi.

Proof. Let C be a bounded 8-pretopos and let X be a coherent 8-topos. For any geometric
morphism f˚ : ShvpCq Ñ X , let Epf˚q denote the full subcategory of ShvpCq spanned by
those coherent objects F P ShvpCq for which f˚F is a coherent object of X . Using Theorem
A.5.5.1 and Remark A.2.1.8, we see that Epf˚q satisfies conditions paq, pbq, pcq, and peq
of Proposition A.6.5.7. If Epf˚q contains the essential image of the Yoneda embedding
j : C Ñ ShvpCq, then it also satisfies condition pdq and therefore contains all coherent objects
of ShvpCq. This proves the following:

p˚q A geometric morphism f˚ : ShvpCq Ñ X belongs to Map8T opcohpX ,ShvpCqq if and
only if f˚ ˝ j factors through the full subcategory X coh Ď X .

It follows from p˚q that we have a homotopy pullback square

Map8T opcohpX ,ShvpCqq //

��

Map8T oppre
ă8
pC,X coh

ă8q

��
Map8T oppX ,ShvpCqq //Map8 pT opprepC,X q,
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where the horizontal maps are given by composition with j. Proposition A.6.4.4 implies
that the bottom horizontal map is a homotopy equivalence, so the upper horizontal map is
a homotopy equivalence as well. It follows that the construction C ÞÑ ShvpCq induces a left
adjoint to the forgetful functor X ÞÑ X coh

ă8 of Construction A.7.5.2.
We wish to show that this left adjoint is fully faithful. Equivalently, we wish to show

that for each bounded 8-pretopos C, the unit map C Ñ ShvpCqcoh
ă8 is an equivalence of

8-categories. For this, we must show that that a sheaf F P ShvpCq is representable by an
object of C if and only if it is truncated and coherent. This is a special case of the following
assertion:

p˚1q Let X be an object of ShvpCq and let F be a coherent object of ShvpCq equipped with
an n-truncated morphism f : F Ñ jpXq. Then F belongs to the essential image of j.

We will prove p˚1q using induction on n. In the special case n “ ´2, the morphism f is
an equivalence and there is nothing to prove. Let us therefore assume that n ą ´2. Since
F is coherent, it is quasi-compact. We can therefore choose an effective epimorphism
g : >iPIjpYiq Ñ F where the index set I is finite. Set Y “ >iPIYi P C, so that we can
identify g with a map jpY q Ñ F . Let G ‚ denote the Čech nerve of g and let H ‚ denote
the Čech nerve of the composite map pf ˝ gq, so that we can write H ‚ “ jpU‚q where U‚ is
the Čech nerve of the associated map Y Ñ X in the 8-category C. Our assumption that
f is n-truncated guarantees that each of the induced maps Gk Ñ Hk is pn´ 1q-truncated.
Applying our inductive hypothesis, we deduce that each Gk belongs to the essential image
of j. Since j is fully faithful, we can write G‚ “ jpV‚q for some groupoid object V‚ of C.
Because j preserves effective epimorphisms, we conclude that F » |G‚ | » jp|V‚|q belongs
to the essential image of j, as desired.

To complete the proof, we must show that a coherent 8-topos X P 8T opcoh belongs
to the essential image of the construction C ÞÑ ShvpCq if and only if X is bounded. The
“only if” direction follows immediately from Example A.7.1.6. To prove the converse, we
must show that if X is bounded and coherent then the inclusion X coh

ă8 ãÑ X extends to a
geometric morphism f˚ : ShvpX coh

ă8q Ñ X which is an equivalence of 8-topoi. The domain
and codomain of f˚ are both bounded 8-topoi (for the domain, this follows from Example
A.7.1.6). It will therefore suffice to show that the functor f˚ restricts to an equivalence on
truncated objects. Applying Proposition A.9.2.1 (after passing to a larger universe), we are
reduced to proving the following:

paq For every truncated object F P ShvpX coh
ă8q and every morphism u : X Ñ f˚F between

truncated objects of X , there exists a morphism v : G Ñ F between truncated objects
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of ShvpX coh
ă8q and a commutative diagram

f˚ G
f˚v

##

w // X

u

||
f˚F

in X , where w is an effective epimorphism.

pbq For every p´1q-truncated morphism u : F Ñ F 1 between truncated object of
ShvpX coh

ă8q, if f˚puq is an equivalence, then u is an equivalence.

We begin with the proof of paq. Choose an effective epimorphism >F i Ñ F , where each
F i is representable by an object of X coh

ă8. Replacing X by X ˆf˚F f˚F i, we can reduce
to the case where F is representable by an object Y P X coh

ă8. Then we can regard X is an
object of the bounded coherent 8-topos X {Y . Using the proof of Proposition A.7.5.1, we
can find an effective epimorphism >Yj Ñ X where each Yj is a truncated coherent object of
X {Y , and therefore also a truncated coherent object of X . Assertion paq now follows from
the observation that >Yj belongs to the essential image of the functor f˚.

We now prove pbq. Let u : F Ñ F 1 be a p´1q-truncated morphism in ShvpX coh
ă8q such

that f˚u is an equivalence in X ; we wish to show that u is an equivalence. Writing F 1

as a colimit of representable sheaves, we can assume without loss of generality that F 1

is representable by a truncated coherent object X P X . Choose an effective epimorphism
>iPI F i Ñ F , where each F i is representable by an object Xi P pX coh

ă8q{X . Since f˚u is an
equivalence, the induced map

>iPIXi » f˚p>iPI F iq Ñ f˚F Ñ f˚F 1 » X

is an effective epimorphism in X . Because X is quasi-compact, we can choose a finite subset
I0 Ď I for which the induced map >iPI0Xi Ñ X is also an effective epimorphism. Note that
>iPI0Xi is a truncated coherent object of X which represents the sheaf >iPI0 F i P ShvpX coh

ă8q.
It follows that the composite map

>iPI0 F i Ñ >iPI F i Ñ F
u
ÝÑ F 1

is an effective epimorphism, so that u is also an effective epimorphism. Since u is also
p´1q-truncated, it follows that u is an equivalence.

Corollary A.7.5.4. Let C be a bounded 8-pretopos. Then C is idempotent-complete.

Proof. Using Theorem A.7.5.3, one can identify C with the full subcategory of ShvpCq
spanned by the truncated coherent objects. In particular, there is a fully faithful embedding
j : C Ñ ShvpCq whose essential image is closed under retracts. Since the 8-topos ShvpCq is
idempotent-complete, it follows that C is idempotent-complete.
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A.8 Pro-Objects of 8-Pretopoi

Let C be a bounded 8-pretopos (Definition A.7.4.1). Let us regard C as equipped
with the effective epimorphism topology (Definition A.6.2.4) and let j : C Ñ ShvpCq be
the Yoneda embedding. The construction pC P Cq ÞÑ ShvpCq{C determines a functor ρ0
from C to the 8-category 8T op{ShvpCq of 8-topoi equipped with a geometric morphism to
ShvpCq. Let PropCq denote the 8-category of Pro-objects of C (see Definition A.8.1.1). Since
the 8-category 8T op admits filtered limits, the functor ρ0 admits an essentially unique
extension ρ : PropCq Ñ 8T op{ShvpCq which commutes with filtered limits. The main result
of this section can be formulated as follows:

Theorem A.8.0.5. Let C be a bounded 8-pretopos. Then the functor ρ : PropCq Ñ
8T op{ShvpCq is fully faithful.

The proof of Theorem A.8.0.5 will occupy our attention throughout this section. Roughly
speaking, our strategy is to give a more direct construction of the functor ρ (realizing the
value of ρ on each Pro-object of C with the 8-category of sheaves on a suitable bounded
8-pretopos) which will allow us compute the relevant mapping spaces in the 8-category
8T op{ShvpCq.

A.8.1 8-Categories of Pro-Objects

We begin by reviewing the theory of Pro-objects in the setting of 8-categories. Let C
be an essentially small 8-category. In §HTT.5.3.5 , we introduced an 8-category IndpCq of
Ind-objects of C, which is obtained from C by formally adjoining filtered direct limits. In
this section, we will need the categorical dual of this construction, which associates to C an
8-category PropCq “ IndpCopqop of Pro-objects of C. For the discussion of shape theory in
§??, it will be convenient work in a slightly different context.

Definition A.8.1.1. Let C be an accessible 8-category which admits finite limits. A
Pro-object of C is a functor U : C Ñ S which is accessible and preserves finite limits. We let
PropCq denote the full subcategory of FunpC,Sqop spanned by the Pro-objects of C. We will
refer to PropCq as the 8-category of Pro-objects of C.

Remark A.8.1.2. Let C be an essentially small idempotent complete 8-category which
admits finite limits (so that C is accessible: see Corollary HTT.5.4.3.6 ). Then Cop admits
finite colimits, so that IndpCopq is the full subcategory of FunpC,Sq spanned by those functors
which preserve finite limits. It follows that we have a canonical isomorphism PropCq »
IndpCopqop (note that since C is essentially small, every functor C Ñ S is automatically
accessible).
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Remark A.8.1.3. Let C be an accessible 8-category which admits finite limits. Then the
Yoneda embedding determines a fully faithful functor j : C Ñ PropCq. We will often abuse
notation by not distinguishing between an object C P C and the Pro-object jpCq P PropCq
corepresented by C.

Remark A.8.1.4. Let C be an accessible 8-category which admits finite limits. The
collection of left-exact, accessible functors from C to S is closed under small filtered colimits.
It follows that the 8-category PropCq admits filtered limits. Moreover, these limits are
computed pointwise, so the essential image of the Yoneda embedding C Ñ PropCq consists
of compact objects of PropCqop.

Remark A.8.1.5. Let C be an accessible 8-category which admits finite limits. For every
regular cardinal κ, let Cκ denote the full subcategory of C spanned by the κ-compact objects.
If U : C Ñ S is an accessible functor, then there exists a regular cardinal κ such that Cκ is
closed under finite limits in C and U is a left Kan extension of its restriction to Cκ. Then the
restriction U0 “ U |Cκ can be regarded as a Pro-object of Cκ, and can therefore be written as
a filtered colimit of functors represented by objects of Cκ. It follows that U can be written
as a filtered colimit of functors represented by objects of C. Consequently, every object U of
PropCq can be written as the limit of a filtered diagram tUαu, where each Uα belongs to the
essential image of the Yoneda embedding C Ñ PropCq. We will generally abuse notation by
identifying the diagram tUαu with its limit in PropCq. Using Remarks A.8.1.3 and A.8.1.4,
we see that mapping spaces in PropCq can be described by the usual formula

MapPropCqptCαu, tDβuq » lim
ÐÝ
β

MapPropCqptCαu, jpDβqq

» lim
ÐÝ
β

lim
ÝÑ
α

MapPropCqpjpCαq, jpDβqq

» lim
ÐÝ
β

lim
ÝÑ
α

MapCpCα, Dβq.

Our interest in Definition A.8.1.1 is justified by the following universal property:

Proposition A.8.1.6. Let C be an accessible 8-category which admits finite limits, let D
be an 8-category which admits small filtered limits, and let Fun1pPropCq,Dq denote the full
subcategory of FunpPropCq,Dq spanned by those functors which preserve small filtered limits.
Then composition with the Yoneda embedding restricts to an equivalence of 8-categories

Fun1pPropCq,Dq Ñ FunpC,Dq.

We can state Proposition A.8.1.6 more informally as follows: the 8-category PropCq is
obtained from C by freely adjoining small filtered limits.
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Proof of Proposition A.8.1.6. Let pS denote the 8-category of spaces which are not neces-
sarily small, let E denote the smallest full subcategory of FunpC, pSq which contains the
essential image of the Yoneda embedding and is closed under small filtered colimits, and let
Fun1pEop,Dq denote the full subcategory of FunpEop,Dq spanned by those functors which
preserve small filtered limits. Using Remark HTT.5.3.5.9 , we see that composition with
the Yoneda embedding induces an equivalence of 8-categories Fun1pEop,Dq Ñ FunpC,Dq. It
will therefore suffice to show that E is equivalent to PropCqop (as subcategories of FunpC, pSq.
Using Remark A.8.1.4, we see that E is contained in the essential image of PropCqop. We
will complete the proof by verifying the following:

p˚q Let F : C Ñ S be an accessible functor which preserves finite limits. Then F can be
written as a small filtered colimit lim

ÝÑ
Fα, where each of the functors Fα : C Ñ S is

corepresentable by an object of C.

To prove p˚q, choose a regular cardinal κ such that C is κ-accessible and the functor F : C Ñ S
preserves κ-filtered colimits. Let Cκ denote the full subcategory of C spanned by the κ-
compact objects. Enlarging κ if necessary, we may assume Cκ is closed under finite limits.
Let F κ denote the restriction of F to Cκ. Since Cκ is essentially small and F κ is left-exact,
we can write F κ as a filtered colimit of functors F κα , where each F κα is corepresentable by an
object of Cκ (Corollary HTT.5.3.5.4 ). Since the Yoneda embedding hκ : pCκqop Ñ FunpCκ,Sq
is fully faithful, we can write F κα “ hκpCαq for some filtered diagram tCαu in pCκqop. Let
h : Cop Ñ FunpC,Sq denote the Yoneda embedding for C, and let F 1 “ lim

ÝÑα
hpCαq. We will

complete the proof of p˚q by showing that F 1 » F . By construction, F and F 1 have the
same restriction to Cκ. Since C is κ-accessible, it will suffice to show that the functors F and
F 1 preserve small κ-filtered colimits (Proposition HTT.5.3.5.10 ). For the functor F , this
follows by assumption. To show that F 1 commutes with κ-filtered colimits, it will suffice
to show that each hpCαq commutes with κ-filtered colimits; this follows because each Cα is
κ-compact.

Example A.8.1.7. Let C be a presentable 8-category, and let F : C Ñ PropCq be the
Yoneda embedding. It follows from Proposition HTT.5.1.3.2 that the functor j preserves
small colimits. Applying Corollary HTT.5.5.2.9 , we deduce that F admits a right adjoint
G : PropCq Ñ C. Since G is a right adjoint, it preserves small filtered limits. Because F
is fully faithful, the unit map idC Ñ G ˝ F is an equivalence. It follows from Proposition
A.8.1.6 that the functor G is uniquely determined (up to a contractible space of choices)
by these conditions: that is, G : PropCq Ñ C is the unique extension of the identity functor
on C which preserves small filtered limits. If X is an object of PropCq given by an inverse
system tXαu of objects of C, then GpXq is given by the limit lim

ÐÝ
Xα.

Example A.8.1.8. Let f : C Ñ D be a functor between accessible 8-categories which
admit small limits. Then the composite functor C f

Ñ D Ñ PropDq induces a map Propfq :
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PropCq Ñ PropDq, which commutes with small filtered limits. If f is accessible and preserves
finite limits, then composition with f induces a functor F : PropDq Ñ PropCq. It is not
difficult to see that the functor F (when defined) is a left adjoint to Propfq.

Proposition A.8.1.9. Let C be an accessible 8-category which admits finite limits, let C0 Ď

C be an accessible full subcategory which is closed under finite limits, and let f : C0 Ñ C denote
the inclusion map (so that f is accessible). Then the induced map Propfq : PropC0q Ñ PropCq
is fully faithful. Moreover, the essential image of Propfq is spanned by those Pro-objects
X P PropCq Ď FunpC,Sqop for which X is a left Kan extension of X|C0.

Proof. Let D denote the full subcategory of FunpC,Sqop spanned by those functors which
are left Kan extensions of their restrictions to C0. Then Dop Ď FunpC,Sq is closed under
small colimits, so that D is closed under small limits in FunpC,Sq. Using Remark A.8.1.4,
we see that the intersection DXPropCq is closed under small filtered limits in PropCq. Note
that the Yoneda embedding j : C Ñ FunpC,Sqop carries C0 into D. It follows that Propfq
carries PropC0q into PropCq X D. Let U : PropCq X D Ñ PropC0q denote the functor given
by composition with the inclusion C0 Ď C. Then U preserves small filtered limits (Remark
A.8.1.4), and the diagram

C0
id //

��

C0

��
PropC0q

U˝Propfq // PropC0q

commutes up to homotopy. It follows that that U ˝ Propfq is homotopic to the identity.
Since U is fully faithful (Proposition HTT.4.3.2.15 ), we deduce that Propfq is an equivalence
of 8-categories.

A.8.2 Digression: Truncated Category Objects

Let C be an 8-category which admits finite limits. Recall that a category object of C is
a simplicial object C‚ of C satisfying the following “Segal condition”: for each n ě 0, the
diagram of linearly ordered sets

t0, 1u ¨ ¨ ¨ tn´ 1, nu

t0u

<<

t1u

bb >>

¨ ¨ ¨ tn´ 1u

cc 88

tnu

dd

induces an equivalence
Cn Ñ C1 ˆC0 ¨ ¨ ¨ ˆC0 C1.
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Example A.8.2.1. Let C‚ be a simplicial set. Then C‚ is a category object of the category
Set of sets if and only if C‚ is isomorphic to the nerve of a small category E . Moreover, the
category E is determined up to canonical isomorphism: the objects of E are the elements
of the set C0, the morphisms of E are the elements of the set C1, and the composition of
morphisms is determined by the map

C1 ˆC0 C1 » C2
ρ
Ñ C1,

where ρ is induced by the inclusion of linearly ordered sets r1s » t0, 2u ãÑ r2s.

We now call attention to two phenomena visible in Example A.8.2.1:

• Let C‚ be a category object in sets, so that C‚ » NpEq for some small category E . To
recover the category E (and therefore the entire simplicial set C‚q, we only need to
know the sets C0, C1, C2, and the maps between them.

• When reconstructing the category E from the simplicial set C‚, the main step is to
prove that composition of morphisms is associative. The proof of this involves studying
the set C3 and the bijection C3 Ñ C1 ˆC0 C1 ˆC0 C1. In particular, it does not make
any reference to the sets Cn for n ě 4.

Our goal in this section is to generalize these observations. We begin by introducing
some terminology.

Definition A.8.2.2. Let C be an 8-category which admits finite limits, and let m ě 1 be an
integer. We let ∆ďm denote the category whose objects are the sets rns “ t0 ă 1 ă . . . ă nu

for 0 ď n ď m, and whose morphisms are nondecreasing maps of linearly ordered sets. An
m-skeletal simplicial object of C is a functor ∆op

ďm Ñ C. If C is an m-skeletal simplicial
object and n ď m, we let Cn denote the image in C of the object rns P ∆ďm.

An m-skeletal category object is a functor ∆op
ďm Ñ C with the following property: for

each n ď m, the diagram of linearly ordered sets

t0, 1u ¨ ¨ ¨ tn´ 1, nu

t0u

<<

t1u

bb >>

¨ ¨ ¨ tn´ 1u

cc 88

tnu

dd

induces an equivalence Cn Ñ C1 ˆC0 ¨ ¨ ¨ ˆC0 C1.

We let CObjpCq denote the full subcategory of Funp∆op, Cq spanned by the category
objects, and CObjďmpCq the full subcategory of Funp∆op

ďm, Cq spanned by the m-skeletal
category objects.

We can now state our main result.
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Theorem A.8.2.3. Let C be an 8-category which is equivalent to an n-category for some
n ě ´1 (see Definition HTT.2.3.4.1 ) and admits finite limits. Then the restriction functor
CObjpCq Ñ CObjďmpCq is fully faithful when m “ n` 1 and an equivalence of 8-categories
when m ě n` 2.

Corollary A.8.2.4. Let C be an 8-category which is given as a filtered colimit lim
ÝÑ
Cα, where

each Cα admits finite limits and each of the transition maps Cα Ñ Cβ preserves finite limits.
Suppose further that there exists an integer n such that each Cα is equivalent to an n-category.
Then the canonical map lim

ÝÑ
CObjpCαq Ñ CObjpCq is an equivalence of 8-categories.

Proof. Note that C is also equivalent to an n-category. Let K denote the pn` 1q-skeleton of
the simpicial set Np∆op

ďn`2q. We have a commutative diagram

lim
ÝÑα

CObjpCαq //

��

CObjpCq

��
lim
ÝÑα

CObjďn`2pCαq //

��

CObjďn`2pCq

��
lim
ÝÑα

Funp∆op
ďn`2, Cαq //

��

Funp∆op
ďn`2, Cq

��
lim
ÝÑα

FunpK, Cαq // FunpK, Cq.

The upper vertical maps are equivalences by virtue of Theorem A.8.2.3, the lower vertical
maps are equivalences by virtue of our assumption that the 8-categories C and Cα are
equivalent to n-categories, and the middle square is a (homotopy) pullback. We are therefore
reduced to showing that the canonical map lim

ÝÑα
FunpK, Cαq Ñ FunpK, Cq is an equivalence,

which follows from the observation that K is a finite simplicial set.

Corollary A.8.2.5. Let C be an 8-category which is given as a filtered colimit lim
ÝÑ
Cα,

where each Cα admits finite limits and each of the transition maps Cα Ñ Cβ preserves finite
limits. Then the induced map lim

ÝÑα
GpdpCαq Ñ GpdpCq is an equivalence of 8-categories.

Here GpdpEq denotes the 8-category of groupoid objects of E (see Definition HTT.6.1.2.7 ).

Theorem A.8.2.3 is an immediate consequence of the following more precise assertions
(and Proposition HTT.4.3.2.15 ).

Proposition A.8.2.6. Let C be an 8-category which admits finite limits, and let C‚ be a
category object of C. Assume that the map C1 Ñ C0 ˆ C0 is pn ´ 2q-truncated for some
integer n ě 0. Then C‚ is a right Kan extension of its restriction to ∆op

ďn.
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Proposition A.8.2.7. Let C be an 8-category which admits finite limits, let n ě 1, and
let C‚ be an n-skeletal category object of C. Assume that the map C1 Ñ C0 ˆ C0 is pn´ 3q-
truncated. Then C‚ can be extended to a category object C‚ of C (this extension is necessarily
a right Kan extension, by virtue of Proposition A.8.2.6).

The proofs of Propositions A.8.2.6 and A.8.2.7 will require some preliminaries. First, we
need a slight modification of Construction A.5.1.6:

Notation A.8.2.8. Let C be an 8-category which admits finite limits and let C‚ be an
m-skeletal simplicial object of C. Let K be a finite nonsingular simplicial set of dimension
ď m (meaning that every nondegenerate simplex of K has dimension ď m), and let ∆nd

K

denote the category of nondegenerate simplices of K (see Notation A.5.1.5). We let C‚rKs
denote a limit of the induced diagram p∆nd

K q
op Ñ ∆op

ďm
C‚
Ñ C.

Lemma A.8.2.9. Let C be an 8-category which admits finite limits, let C‚ be an m-skeletal
category object of C for some m ě 1. Then:

p1q Let n ď m` 1, let 0 ă j ă n, and let A Ď ∆n be the simplicial subset spanned by the
edges t∆ti´1,iuu1ďiďn. Then the restriction map C‚rΛnj s Ñ C‚rAs is an equivalence.

p2q For 0 ă j ă n ď m, the map C‚r∆ns Ñ C‚rΛnj s is an equivalence.

Proof. We prove p1q and p2q by a simultaneous induction on n. Note that if n ď m and K is
defined as in p1q, then the composite map C‚r∆ns Ñ C‚rΛnj s Ñ C‚rAs is an equivalence by
virtue of our assumption that C‚ is an n-skeletal category object. Consequently, assertion
p2q follows from p1q and the two-out-of-three property.

We now prove p1q. Let S be the collection of all nondegenerate simplices σ of ∆n which
contain the vertex j together with additional vertices i and k such that i ă j ă k. Write
S “ tσ1, σ2, . . . , σbu, where a ă a1 whenever σa has dimension larger than σa1 ; in particular,
we have σ1 “ ∆n. For 1 ď a ď b, let τa be the face of σa obtained by the removing the vertex
j, and let Ka denote the simplicial subset obtained from ∆n by removing the simplices
tσa1 , τa1ua1ďa. We have a chain of simplicial subsets

∆t0,...,ju
ž

tju

∆tj,j`1,...,nu “ Kb Ď Kb´1 Ď ¨ ¨ ¨ Ď K1 “ Λnj .

For 1 ď a ă b, the inclusion Ka`1 Ď Ka is a pushout of an inner horn inclusion Λn1j1 Ď ∆n1

for some 0 ă j1 ă n1 ă n, so we have a pullback diagram

C‚rKas //

��

C‚rKa`1s

��
C‚r∆n1s // C‚rΛn

1

j1 s
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The inductive hypothesis implies that the bottom horizontal map is an equivalence, so that
C‚rKas » C‚rKa`1s for 1 ď a ă b. It follows that the restriction map

C‚rΛnj s Ñ C‚rKbs » C‚r∆t0,...,jus ˆC‚rtjus C‚r∆
tj,...,nus

is an equivalence. Let A´ be the simplicial subset of ∆n spanned by the edges ∆ti´1,iu

for 1 ď i ď j, and let A` be the simplicial subset of ∆n spanned by the edges ∆ti´1,iu for
j ă i ď n. Since C‚ is an m-coskeletal category object, the restriction maps

C‚r∆t0,...,jus Ñ C‚rA´s C‚r∆tj,j`1,...,nus Ñ C‚rA`s

are equivalences. It follows that the map

C‚rΛnj s Ñ C‚rAs » C‚rA´s ˆC‚rtjus C‚rA`s

is an equivalence.

Proof of Proposition A.8.2.6. Let C‚ be a category object of C such that the map C1 Ñ

C0 ˆ C0 is pn ´ 2q-truncated. We wish to show that C‚ is a right Kan extension of its
restriction to ∆op

ďn. It will suffice to show that for each m ě n, the restriction C‚|∆op
ďm

is a
right Kan extension of C‚|∆op

ďn
. Using Proposition HTT.4.3.2.8 repeatedly, we are reduced

to showing that C‚|∆op
ďm

is a right Kan extension of C‚|∆op
ďm´1

for m ą n. In other words,
we must show that if m ą n, then the map Cm ÑMmpCq is an equivalence, where MmpCq

denotes the mth matching object of C‚ (see Notation HTT.A.2.9.7 ). We will show more
generally that the map βm : Cm Ñ MmpCq is pn ´m ´ 1q-truncated for each m ě 1. If
m ą n, this implies that βm is an equivalence. We proceed by induction on m: the case
m “ 1 follows from our hypothesis that C1 Ñ C0ˆC0 is pn´2q-truncated. Assume therefore
that m ě 2, and choose 0 ă j ă m. Lemma A.8.2.9 implies that the composite map

C‚r∆ms » Cm ÑMmpCq » C‚rB∆ms Ñ C‚rΛmj s

is an equivalence. It will therefore suffice to show that the map γ : C‚rB∆ms Ñ C‚rΛmj s is
pn´mq-truncated. This follows from the inductive hypothesis, since γ is a pullback of the
map Cm´1 ÑMm´1pCq.

Proof of Proposition A.8.2.7. Let C‚ be an n-skeletal category object of C and assume that
the map C1 Ñ C0 ˆ C0 is pn ´ 3q-truncated. Since C admits finite limits, there exists a
simplicial object C‚ which is a right Kan extension of C‚. We wish to show that C‚ is a
category object of C. It will suffice to show that the restriction C‚|∆op

ďm
is an m-skeletal

category object for each m ě n. We proceed by induction on m, the case m “ n being
trivial. Let A Ď ∆m be the simplicial subset given by the union of the edges t∆ti´1,iuu1ďiďm;
we wish to show that the map C‚r∆ms Ñ C‚rAs is an equivalence. Since m ą n ě 1, we
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can choose 0 ă j ă m. Using the inductive hypothesis and Lemma A.8.2.9, we deduce that
C‚rΛm

j s Ñ C‚rAs is an equivalence. It will therefore suffice to show that the restriction
map β : C‚r∆ms Ñ C‚rΛm

j s is an equivalence. Note that β is a pullback of the map
β1 : C‚r∆m´1s Ñ C‚rB∆m´1s. We will show that β1 is an equivalence. For this, it suffices
to prove the more general claim that for 1 ď k ă m, the map β1k : C‚r∆ks Ñ C‚rB∆ks is
pn´ k ´ 2q-truncated.

As in the proof of Proposition A.8.2.6, we proceed by induction on k, the case k “ 1
being true by virtue of our hypothesis. Assume therefore that k ě 2, and choose 0 ă i ă k.
Since k ă m, the restriction C‚|∆ďk

is a k-skeletal category object so that Lemma A.8.2.9

implies that the composite map C‚r∆ks
β1k
ÝÑ C‚rB∆ks

γ
ÝÑ C‚rΛk

i s is an equivalence. It is
therefore sufficient to show that γ is pn´ k ´ 1q-truncated. This follows from the inductive
hypothesis, since γ is a pullback of β1k´1.

A.8.3 Filtered Colimits of 8-Pretopoi

In §A.7, we introduced the 8-category 8T oppre
ă8 whose objects are bounded 8-pretopoi

and whose morphisms are functors which preserve finite limits, finite coproducts, and effective
epimorphisms (Definition A.7.4.1). We now make the following observation:

Proposition A.8.3.1. The 8-category 8T oppre
ă8 admits small filtered colimits. Moreover,

the inclusion 8T oppre
ă8 ãÑyCat8 preserves small filtered colimits.

Proof. Let tCαuαPA be a diagram in the 8-category 8T oppre
ă8 indexed by a filtered partially

ordered set A, and set C “ lim
ÝÑαPA

Cα. For each index α P A, let f˚α : Cα Ñ C be the canonical
map. Unwinding the definitions, we must prove the following:

piq The 8-category C is a bounded 8-pretopos.

piiq For every bounded 8-pretopos E , a functor g˚ : C Ñ E is a morphism in 8T oppre
ă8 if

and only if the composition pg˚ ˝ f˚αq : Cα Ñ E is a morphism in 8T oppre
ă8 for each

α P A.

We first prove piq. By assumption, each of the 8-categories Cα admits finite limits and
finite coproducts and each of the transition maps Cα Ñ Cβ preserves finite limits and finite
colimits. It follows that the 8-category C admits finite limits and finite coproducts and that
each of the functors f˚α preserves finite limits and finite coproducts. In particular, each of
the functors f˚α carries n-truncated objects of Cα to n-truncated objects of C. Since every
object C P C lies in the essential image of one of the functors f˚α , it follows immediately
that C is n-truncated for some integer n. Conversely, suppose that C P C is n-truncated,
and write C “ f˚αC0 for some index α and some object C0 P Cα. Since the diagonal map
δ : C Ñ CS

n`1 is an equivalence, it follows that the map δ0 : C0 Ñ CS
n`1

0 is a morphism
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in Cα whose image under f˚α is an equivalence. We may therefore arrange (after enlarging
α) that the map δ0 is an equivalence, so that the object C0 P Cα is n-truncated. It follows
that we have Cďn » lim

ÝÑ
Cďnα , where Cďn denotes the full subcategory of C spanned by the

n-truncated objects and Cďnα Ď Cα is defined similarly.
To complete the proof of piq, it will suffice to show that C is an 8-pretopos. We first show

that coproducts in C are universal. Suppose we are given a finite collection of morphisms
φi : Xi Ñ X in C and a morphism ψ : Y Ñ X in C; we wish to prove that the induced
map θ : >pXi ˆX Y q Ñ p>Xiq ˆX Y is an equivalence. Without loss of generality, we may
assume that ψ “ f˚αψ0 for some morphism ψ0 : Y0 Ñ X0 in Cα. Enlarging α if necessary, we
may further assume that each φi is given by f˚αpφi0q for some morphism φi0Xi0 Ñ X0 in
Cα. Then θ “ f˚αθ0, where θ0 denotes the canonical map >pXi0 ˆX0 Y0q Ñ p>Xi0q ˆX0 Y0 in
the 8-category Cα. Since Cα is an 8-pretopos, the morphism θ0 is an equivalence, so that
θ » f˚αpθ0q is an equivalence in C.

We now claim that coproducts in C are disjoint. Fix objects X,Y P C; we wish to show
that the fiber product Z “ X ˆX>Y Y is an initial object of C. Without loss of generality,
we may assume that there exists an index α such that X “ f˚αX0 and Y “ f˚αY0 for some
objects X0, Y0 P Cα. In this case, we have Z “ f˚αpZ0q, where Z0 “ X0 ˆX0>Y0 Y0. Since Cα
is an 8-pretopos, the object Z0 P Cα is initial, so that Z “ f˚αZ0 is an initial object of C.

We next show that for each index α P A, the functor f˚α : Cα Ñ C preserves effective
epimorphisms. Fix an effective epimorphism u : C0 Ñ C in Cα and let C‚ denote the Čech
nerve of u. Since f˚α is left exact, the simplicial object f˚αC‚ is the Čechnerve of f˚αpuq.
To show that f˚αpuq is an effective epimorphism, we must show that f˚αC is a geometric
realization of f˚αC‚. In other words, we must show that for each object D P C, the canonical
map ρ : MapCpf

˚
αC,Dq Ñ Tot MapCpf

˚
αC‚, Dq is a homotopy equivalence. Enlarging α

if necessary, we may assume that D “ f˚αD0 for some object D0 P Cα. For β ě α, let
f˚αβ : Cα Ñ Cβ denote the transition map. Unwinding the definitions, we see that the map ρ
factors as a composition

lim
ÝÑ
βěα

MapCβ pf
˚
αβC, f

˚
αβD0q

ρ1
ÝÑ lim

ÝÑ
βěα

Tot MapCβ pf
˚
αβC‚, f

˚
αβD0q

ρ2
ÝÑ Tot lim

ÝÑ
βěα

MapCβ pf
˚
αβC‚, f

˚
αβD0q.

The map ρ1 is a filtered colimit of homotopy equivalences ρ1β : MapCβ pf
˚
αβC, f

˚
αβD0q Ñ

Tot MapCβ pf
˚
αβC‚, f

˚
αβD0q, each of which is a homotopy equivalence because the functor f˚αβ

is left exact and preserves effective epimorphisms. Since the 8-pretopos Cα is bounded,
there exists an integer m such that D0 P Cα is m-truncated. It follows that each of the
mapping spaces MapCβ pf

˚
αβC‚, f

˚
αβD0q is also m-truncated, so that the map ρ2 is also a

homotopy equivalence. This completes the proof that ρ is a homotopy equivalence, so that
f˚α preserves effective epimorphisms.

We now claim that every groupoid object of C is effective. Let C‚ be a groupoid object
of C. Choose n " 0 for which the objects C0, C1 P C are n-truncated. Since the collection of
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n-truncated objects of C is closed under finite limits, it follows that each Ck is n-truncated:
that is, we can regard C‚ as a groupoid object of the subcategory Cďn Ď C. Corollary A.8.2.5
implies that the canonical map lim

ÝÑα
GpdpCďnα q Ñ Cďn is an equivalence of 8-categories,

so we can assume without loss of generality that C‚ “ f˚αC
1
‚ for some index α and some

groupoid object C 1‚ in Cďnα . Since Cα is an 8-pretopos, we can assume that C 1‚ is the Čech
nerve of an effective epimorphism u : C 10 Ñ C 1 in Cα. It follows that C‚ can be identified with
the Čech nerve of the induced map f˚αpuq : C0 Ñ f˚αC

1. Because the functor f˚α preserves
effective epimorphisms, the morphism f˚αpuq is an effective epimorphism, so that f˚αC 1 is a
geometric realization of the groupoid C‚ in the 8-category C.

To complete the proof of piq, it will suffice to show that the formation of geometric
realizations in C is universal. In other words, let C‚ be a groupoid object of C having
geometric realization C “ |C‚|, and suppose we are given a map g : D Ñ C; we wish to
show that the induced map |D ˆC C‚| Ñ D is an equivalence. Since the groupoid object
C‚ is effective, it can be identified with the Čech nerve of the map v : C0 Ñ C. It follows
that D ˆC C‚ can be identified with the Čechnerve of the induced map vD : D ˆC C0 Ñ D.
We are therefore reduced to proving that v is an effective epimorphism. The argument of
the preceding paragraph shows that we can can assume that v “ f˚αpuq for some α P A and
some effective epimorphism u : C 10 Ñ C 1 in Cα. Enlarging α if necessary, we can assume that
g “ f˚αpg0q for some map g0 : D1 Ñ C 1 in Cα. Then vD “ f˚αuD, where uD : D1ˆC1 C 10 Ñ D1

is the projection onto the first factor. Since Cα is an 8-pretopos, the morphism uD is an
effective epimorphism in Cα (Corollary A.6.2.2) and therefore vD “ f˚αuD is an effective
epimorphism in C. This completes the proof of piq.

We now prove piiq. The arguments above show that each of the functors f˚α : Cα Ñ C
preserves finite limits, finite coproducts, and effective epimorphisms. This proves the “only if”
direction of piiq. To prove the converse, suppose we are given an 8-pretopos E and a functor
g˚ : C Ñ E such that each composition g˚ ˝ f˚α is a morphism of 8-pretopoi. We claim that
g˚ is a morphism of 8-pretopoi. Note that if K is a finite simplicial set and p : K Ñ C is
any diagram, then we can assume that p “ f˚α ˝ p0 for some diagram p0 : K Ñ Cα. Since
the functors f˚α and g˚ ˝ f˚α preserve K-indexed limits, it follows that the canonical map
g˚ lim
ÝÑ
ppq Ñ lim

ÝÑ
g˚ppq is an equivalence in E . Allowing p and K to vary, we deduce that

the functor g˚ preserves finite limits. A similar argument shows that g˚ preserves finite
coproducts. To show that g˚ preserves effective epimorphisms, it suffices to note that our
preceding arguments every effective epimorphism in C is equivalent to the image under f˚α
of some effective epimorphism in Cα, for some α P A.

We now describe the significance of Proposition A.8.3.1 at the level of bounded coherent
8-topoi.

Proposition A.8.3.2. Let tCαu be a small filtered diagram of bounded 8-pretopoi having
colimit C P 8T oppre

ă8. Then the induced map ShvpCq Ñ lim
ÐÝα

ShvpCαq is an equivalence in
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8T op.

Corollary A.8.3.3. Let 8T opcoh denote the 8-category of bounded coherent 8-topoi (see
Construction A.7.5.2). Then the 8-category 8T opcoh admits small filtered limits, and the
inclusion functor 8T opcoh ãÑ8T op preserves small filtered limits.

Proof. Combine Proposition A.8.3.2 with Theorem A.7.5.3.

Proof of Proposition A.8.3.2. Since the inclusion functor 8T op ãÑ yCat8 preserves small
filtered limits (Theorem HTT.6.3.3.1 ), it will suffice to show that ShvpCq is a limit of the
diagram tShvpCαqu in the 8-category yCat8. We have a commutative diagram

ShvpCq //

��

lim
ÐÝ
ShvpCαq

��
FunpCop,Sq // lim

ÐÝ
FunpCop

α ,Sq,

where the vertical maps are fully faithful embeddings and the bottom horizontal map is an
equivalence by virtue of our assumption that C is a colimit of the diagram tCαu in Cat8
(Proposition A.8.3.1). This immediately implies that the upper horizontal map is fully
faithful. To verify essential surjectivity, we must show that if F : Cop Ñ S is a functor
having the property that F |Cop

α
belongs to ShvpCαq for each index α, then F is a sheaf on

C. This follows immediately from the criterion of Proposition A.6.2.5 (note that the proof of
Proposition A.8.3.1 shows that every effective epimorphism in C is equivalent to the image
of an effective epimorphism in Cα for some index α).

A.8.4 The Proof of Theorem A.8.0.5

We now have most of the ingredients needed to assemble a proof of Theorem A.8.0.5.

Definition A.8.4.1. Let E be an 8-category which admits small limits. We will say that
an object X P E is cocompact if it is compact when viewed as an object of Eop: that is, if
the functor MapEp‚, Xq carries filtered limits in E to filtered colimits in S. More generally,
we will say that a morphism X Ñ Y in E is cocompact if it exhibits X as a cocompact
object of the 8-category E{Y . We let Ecc

{Y denote the full subcategory of E{Y spanned by
the cocompact objects.

Suppose that C is an essentially small 8-category which admits finite limits. Then
the 8-category IndpCopq » PropCqop is compactly generated. Moreover, if C is idempotent-
complete, then an object of PropCqop is compact if and only if it belongs to the essential
image of the Yoneda embedding j : Cop Ñ PropCqop. Applying Proposition 4.4.1.2, we obtain
the following:
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Proposition A.8.4.2. Let C be an essentially small idempotent-complete 8-category which
admits finite limits, and let j : C Ñ PropCq be the Yoneda embedding. Then:

p1q A morphism f : X Ñ Y in PropCq is cocompact if and only if there exists a pullback
square

X
f //

��

Y

��
jpX0q

f0 // jpY0q

for some objects X0, Y0 P C.

p2q For each object Y P PropCq, the inclusion PropCqcc
{Y ãÑ PropCq{Y extends to an equiva-

lence of 8-categories PropPropCqcc
{Y q » PropCq{Y .

p3q The construction Y ÞÑ PropCqcc
{Y determines a functor PropCqop ÑyCat8 which com-

mutes with filtered colimits.

Lemma A.8.4.3. Let C be a bounded 8-pretopos. Then:

paq For each object X P PropCq, the 8-category PropCqcc
{X is a bounded 8-pretopos.

pbq For each morphism f : X Ñ Y in PropCq, the pullback functor Y 1 ÞÑ X ˆY Y
1 induces

a morphism of 8-pretopoi PropCqcc
{Y Ñ PropCqcc

{X .

pcq The construction Y ÞÑ PropCqcc
{Y determines a functor PropCqop Ñ 8T oppre

ă8 which
commutes with filtered colimits.

Proof. Let χ : PropCqop ÑyCat8 be the functor given by χpXq “ PropCqcc
{X (see Proposition

A.8.4.2) and let j : C Ñ PropCq denote the Yoneda embedding. It follows from assertion p1q
of Proposition A.8.4.2 that for each object C P C, the functor j induces an equivalence of
8-categories C{C Ñ PropCqcc

{jpCq. The 8-category C{C is an 8-pretopos (Remark A.6.1.3)
which is evidently bounded, so that PropCqcc

{jpCq is also a bounded 8-pretopos. Moreover,
if f : C Ñ D is a morphism in C, then the associated pullback functor PropCqcc

{jpDq Ñ

PropCqcc
{jpCq can be identified with the pullback map C{D Ñ C{C , and is therefore a morphism

of 8-pretopoi (Example A.6.4.3). It follows that the composite functor

Cop j
ÝÑ PropCqop χ

ÝÑyCat8

factors through the subcategory 8T oppre
ă8 Ď

yCat8. Proposition A.8.4.2 implies that the
functor χ commutes with filtered limits. Using Proposition A.8.3.1, we deduce that χ also
factors through 8T oppre

ă8, which proves paq and pbq. Assertion pcq follows from the fact
that χ preserves filtered colimits, since the inclusion 8T oppre

ă8 ãÑyCat8 is conservative and
preserves filtered colimits.
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Lemma A.8.4.4. Let C be a bounded 8-pretopos. For each object X P PropCq, let us regard
the 8-pretopos PropCqcc

{X as equipped with the effective epimorphism topology (Definition
A.6.2.4). Then:

paq For each X P PropCq, the 8-topos ShvpPropCqcc
{Xq is bounded and coherent.

pbq The construction X ÞÑ ShvpPropCqcc
{Xq determines a functor PropCq Ñ 8T op which

preserves filtered limits.

Proof. Combine Lemma A.8.4.3 with Proposition A.8.3.2.

Proof of Theorem A.8.0.5. Let C be a bounded 8-pretopos and let ρ : PropCq Ñ 8T op
be the functor given on objects by X ÞÑ ShvpPropCqcc

{Xq. Note that ρ carries the initial
object 1 P PropCq to the 8-topos ShvpCq, and therefore induces a functor ρ : PropCq »
PropCq{1 Ñ8T op{ShvpCq. By construction, the composition of ρ with the Yoneda embedding
C ãÑ PropCq can be identified with the composition

C ãÑ ShvpCq » 8T opét
{ShvpCq Ď 8T op{ShvpCq,

and the functor ρ commutes with filtered limits by virtue of Lemma A.8.4.4. Consequently,
the content of Theorem A.8.0.5 is that the functor ρ is fully faithful: that is, that it induces
a homotopy equivalence θX,Y : MapPropCqpX,Y q Ñ Map8T op{ShvpCq

pρpXq, ρpY qq for every
pair of objects X,Y P PropCq.

Let us abuse notation by identifying C with its essential image under the fully faithful
embedding C ãÑ PropCq. Regard the object X P PropCq as fixed. Since the functor ρ
commutes with small filtered limits, the construction Y ÞÑ θX,Y commutes with small filtered
limits. Consequently, the collection of those objects Y P PropCq for which θX,Y is a homotopy
equivalence is closed under small filtered limits. We may therefore assume without loss of
generality that Y is an object of C. Let F P ShvpCq denote the image of Y under the Yoneda
embedding C ãÑ ShvpCq, so that we can identify ρpY q with the overcategory ShvpCq{F . Set
X “ ρpXq, which we regard as an object of 8T op{ShvpCq via a geometric morphism e˚ : X Ñ
ShvpCq with left adjoint e˚ : ShvpCq Ñ X . Invoking the universal property of ShvpCq{F (see
Proposition HTT.6.3.5.5 ), we can identify the mapping space Map8T op{ShvpCq

pρpXq, ρpY qq

with the mapping space MapX p1X , e
˚F q, where 1X denotes a final object of X . By

construction, we can identify X with the 8-category ShvpPropCqcc
{Xq, and the objects 1X

and e˚F are the images under the Yoneda embedding PropCqcc
{X ãÑ ShvpPropCqcc

{Xq “ X of
the objects X and X ˆ Y , respectively. Under this identification, the map θX,Y corresponds
to the evident homotopy equivalence MapPropCqpX,Y q » MapPropCq{X pX,X ˆ Y q.
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A.9 Conceptual Completeness

Let X be an 8-topos. Recall that a point of X is a geometric morphism η˚ : X Ñ S.
We let Fun˚pX ,Sq denote the full subcategory of FunpX ,Sq spanned by the points of X . It
is natural to ask the following:

Question A.9.0.5. To what extent can an 8-topos X be recovered from its 8-category of
points Fun˚pX ,Sq?

In §A.4, we took a first step toward answering Question A.9.0.5: according to Theorem
A.4.0.5, if X is hypercomplete and locally coherent, then X has enough points (that is, the
points η˚ : X Ñ S are mutually conservative). Our goal in this section is to prove the
following closely related result:

Theorem A.9.0.6. Let X and Y be bounded coherent 8-topoi and let f˚ : X Ñ Y be a
geometric morphism. Then f˚ is an equivalence if and only if the following conditions are
satisfied:

paq The functor f˚ carries coherent objects of X to coherent objects of Y.

pbq Composition with f˚ induces an equivalence of 8-categories Fun˚pY,Sq Ñ Fun˚pX ,Sq.

Remark A.9.0.7. Theorem A.9.0.6 can be regarded as an 8-categorical generalization of
the conceptual completeness theorem of Makkai-Reyes; see [143].

Warning A.9.0.8. In the statement of Theorem A.9.0.6, one cannot replace pbq by the
weaker statement that f˚ induces a homotopy equivalence Map8T oppS,Yq Ñ Map8T oppS,X q.
For example, let X be a coherent topological space and let Y be the Stone space obtained by
equipping X with the constructible topology (see Notation 4.3.1.3). Then the canonical map
f : Y Ñ X induces a geometric morphism f˚ : ShvpXq Ñ ShvpY q satisfying condition paq of
Theorem A.9.0.6. The 8-categories Fun˚pS,ShvpXqq and Fun˚pS,ShvpY qq can be identified
with X and Y respectively, where we regard X and Y as partially ordered sets with respect to
the specialization ordering. The underlying map ρ : Fun˚pShvpY q,Sq Ñ Fun˚pShvpXq,Sq
induces a homotopy equivalence of the underlying Kan complexes (since f is bijective), but
is generally not an equivalence of 8-categories (since the specialization ordering on Y is
trivial but the specialization ordering on X need not be).

A.9.1 Points and Pro-Objects

Let C be an bounded 8-pretopos. In §A.8, we saw that the 8-category PropCq of Pro-
objects of C admits a “topological” incarnation: it can be identified with a full subcategory of
the 8-category 8T op{ShvpCq of 8-topoi with a geometric morphism to ShvpCq (see Theorem
A.8.0.5). We now describe a slightly different relationship between Pro-objects of C and the
geometry of ShvpCq.
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Proposition A.9.1.1. Let C be an 8-pretopos and let X : C Ñ S be a left exact functor.
The following conditions are equivalent:

p1q The functor X is an 8-pretopos morphism (Definition A.6.4.1).

p2q For every finite collection of objects tUiuPI of C and every effective epimorphism
>iPIUi Ñ V , the induced map >iPIXpUiq Ñ XpV q is surjective on connected compo-
nents.

Proof. If p1q is satisfied, then the functor X preserves coproducts and effective epimorphisms,
so condition p2q follows. Conversely, suppose that p2q is satisfied. Applying p2q in the case
where I is a singleton, we deduce that X preserves effective epimorphisms. Taking I “ H,
we deduce that X preserves initial objects. Since X is left exact by assumption, it will suffice
to prove X preserves pairwise coproducts. Let U and V be objects of C and let i : U Ñ U >V

and j : V Ñ U >V denote the canonical maps. We wish to show that Xpiq and Xpjq exhibit
XpU > V q as a coproduct of XpUq with XpV q. Because C is an 8-pretopos, coproducts in C
are disjoint. It follows that the maps i and j are p´1q-truncated and that the fiber product
U ˆU>V V is initial in C. Using the left exactness of X, we deduce that Xpiq and Xpjq are
p´1q-truncated and that the fiber product XpUq ˆXpU>V q XpV q is empty. It follows that
the natural map ρ : XpUq >XpV q Ñ XpU > V q is p´1q-truncated. To complete the proof, it
suffices to show that ρ is surjective on connected components, which follows from p2q.

Corollary A.9.1.2. Let C be an essentially small 8-pretopos. Then composition with the
Yoneda embedding j : C Ñ ShvpCq induces an equivalence of 8-categories Fun˚pShvpCq,Sq Ñ
FunprepC,Sq.

Proof. Combine Propositions A.9.1.1 and HTT.6.2.3.20 .

Definition A.9.1.3. Let C be an essentially small 8-pretopos, and let us abuse notation
by identifying C with its essential image in the 8-category PropCq. We will say that an
object X P PropCq is prime if it satisfies the following condition:

p˚q For every finite collection of objects tUiuiPI of C and every effective epimorphism
>iPIUi Ñ V , the induced map >iPI MapPropCqpX,Uiq Ñ MapPropCqpX,V q is surjective
on connected components.

Let PropCq˝ denote the full subcategory of PropCq spanned by those objects which satisfy
condition p˚q.

Remark A.9.1.4. Let C be an essentially small 8-pretopos. It follows from Proposi-
tion A.9.1.1 that the equality PropCq “ FunlexpC,Sqop restricts to an equality PropCq˝ “
FunprepC,Sqop. Using Corollary A.9.1.2, we can identify PropCq˝ with the opposite of the
8-category Fun˚pShvpCq,Sq of points of ShvpCq.
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Remark A.9.1.5. Let Λ be a distributive lattice (Definition A.1.4.5), which we regard
as a category (where there is a unique morphism from λ to µ if λ ď µ). There is a
bijective correspondence between isomorphism classes of Pro-objects of Λ and filters F Ď Λ
(see Definition A.1.2.1), which carries an object X P PropΛq to the filter FX “ tλ P Λ :
HomPropΛqpX,λq ‰ Hu. Let us say that the Pro-object X is prime if it satisfies the following
analogue of condition p˚q of Definition A.9.1.3:

p‹q For every finite subset tλiuiPI of Λ, the map >iPIXpλiq Ñ Xp
Ž

iPI λiq is surjective.

Unwinding the definitions, we see that a Pro-object X satisfies p‹q if and only if the
complement of FX Ď Λ is an ideal. Consequently, the construction X ÞÑ pX “ Λ ´ FX
determines a bijection from the set of isomorphism classes of prime objects of PropΛq to
the set SpecpΛq of prime ideals in Λ (in fact, we can be more precise: the construction
X ÞÑ pX determines an equivalence from the full subcategory of PropΛq spanned by the
prime Pro-objects to the partially ordered set of prime ideals in Λ).

Warning A.9.1.6. Let C be a bounded 8-pretopos and let X P PropCq be a Pro-object.
Then X potentially has two different incarnations in the 8-category 8T op{ShvpCq:

paq We can consider the image of X under the fully faithful embedding ρ : PropCq ãÑ

8T op{ShvpCq of Theorem A.8.0.5: by virtue of Lemma A.8.4.4, this image can be
identified with the 8-topos ShvpPropCqcc

{Xq.

pbq If X is prime, then the image of X under the equivalence of 8-categories PropCq˝ »
Fun˚pShvpCq,Sqop of Remark A.9.1.4 is a geometric morphism ηX˚ : S Ñ ShvpCq,
which exhibits the 8-topos S as an object of 8T op{ShvpCq.

These objects are usually not the same. However, they are closely related: if X is prime, then
the geometric morphism ηX˚ : S Ñ ShvpCq admits a factorization S

η1X˚
ÝÝÑ ShvpPropCqcc

{Xq Ñ

ShvpCq. Beware that if u : X Ñ Y is a morphism in PropCq˝, then the diagram of 8-topoi

S
η1X˚ //

id
��

ShvpPropCqcc
{Xq

ρpuq

��
S

η1Y ˚ // ShvpPropCqcc
{Y q

commutes only up to a natural transformation ρpuq ˝ η1X˚ Ñ η1Y ˚, which is an equivalence if
and only if u is an equivalence.

A.9.2 Detecting Equivalences of 8-Pretopoi

Our proof Theorem A.9.0.6 rests on the following recognition criterion for equivalences
of (bounded) 8-pretopoi (which we used already in our proof of Theorem A.7.5.3):
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Proposition A.9.2.1. Let C and D be bounded 8-pretopoi and let f˚ : C Ñ D be a
functor which preserves coproducts, finite limits, and effective epimorphisms. Then f˚ is an
equivalence if and only if the following conditions are satisfied:

paq For every object C P C and every morphism u : D Ñ f˚C in D, there exists a morphism
v : C 1 Ñ C in C and a commutative diagram

f˚C 1

f˚v

##

w // D

u

}}
f˚C

in D, where w is an effective epimorphism.

pbq For every p´1q-truncated morphism u : C 1 Ñ C in C, if f˚puq is an equivalence in D,
then u is an equivalence.

Proof. The necessity of conditions paq and pbq is obvious. For the converse, assume that paq
and pbq are satisfied; we wish to prove that the functor f˚ is an equivalence of 8-categories.
We begin by showing that f˚ is conservative. Let u : C 1 Ñ C be a morphism in C such that
f˚puq is an equivalence; we wish to show that u is an equivalence. Because C is bounded,
we may assume that the morphism u is n-truncated for some integer n; we proceed by
induction on n. If n “ ´2, there is nothing to prove. If n ą ´2, then the diagonal map
δ : C 1 Ñ C 1 ˆC C

1 is pn´ 1q-truncated and the left exactness of f˚ guarantees that f˚pδq
is an equivalence. Applying our inductive hypothesis, we deduce that δ is an equivalence:
that is, the morphism u is p´1q-truncated. In this case, the desired result follows from
assumption pbq.

We will prove that the functor f˚ is an equivalence of 8-categories by establishing the
following assertions for n ě ´2:

p1nq For every pair of objects C,C 1 P C where C 1 is n-truncated, the functor f˚ induces a
homotopy equivalence MapCpC,C

1q Ñ MapDpf
˚C, f˚C 1q.

p2nq Every n-truncated object of D belongs to the essential image of f˚.

Since C is bounded, it follows from p1nq (for all n ě ´2) that the functor f˚ is fully faithful;
since D is bounded, it follows from p2nq (for all n ě ´2) that the functor f˚ is essentially
surjective.

We will prove p1nq and p2nq by a simultaneous induction on n. Let us begin with the
case n “ ´2. If C 1 P C is p´2q-truncated, then it is a final object of C, so (since the functor
f˚ preserves finite limits) we conclude that f˚C 1 is a final object of D. This proves p2nq.
Assertion p1nq follows from the observation that for any object C P C, the natural map
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MapCpC,C
1q Ñ MapDpf

˚C, f˚C 1q has contractible domain and codomain and is therefore
automatically a homotopy equivalence.

We now prove p1nq for n ą ´2. Fix objects C,C 1 P C where C 1 is n-truncated; we wish to
prove that the natural map ρ : MapCpC,C

1q Ñ MapDpf
˚C, f˚C 1q is a homotopy equivalence.

Fix k ě ´1 and suppose we are given a map Sk Ñ MapCpC,C
1q; we wish to show that the

induced map

fibpMapCpC,C
1q Ñ MapCpC,C

1Skqq Ñ fibpMapDpf
˚C, f˚C 1q Ñ MapDpf

˚C, f˚C 1S
k
qq

is surjective on connected components. Replacing C by C
{C1Sk

and D by D
{f˚C1Sk

, we are
reduced to proving that the map ρ is surjective on connected components. Let us therefore
fix a map α : f˚C Ñ f˚C 1 in the 8-category D; we wish to show that α belongs to the
essential image of ρ. Note that the pair

pid, αq : f˚C Ñ f˚C ˆ f˚C 1 » f˚pC ˆ C 1q

is a pullback of the diagonal map f˚C 1 Ñ f˚pC 1 ˆ C 1q. Since C 1 is n-truncated, the
map pid, αq exhibits f˚C as an pn ´ 1q-truncated object of the 8-pretopos D{f˚pCˆC1q.
Applying our inductive hypothesis p2n´1q to the map C{CˆC1 Ñ D{f˚pCˆC1q, we deduce
that there exists an object E P C{CˆC1 and an equivalence f˚E » f˚C in the 8-category
D{f˚pCˆC1q. Let us regard E as an object of C equipped with a pair of maps β : E Ñ C and
β1 : E Ñ C 1. Then f˚pβq is an equivalence and therefore β is an equivalence (by virtue of
the fact that f˚ is conservative). We now observe that α is homotopic to the composition
f˚pβ1q ˝ f˚pβq´1 » f˚pβ1 ˝ β´1q and therefore belongs to the essential image of ρ as desired.
This completes the proof of p1nq.

We now verify p2nq. Let D P D be an n-truncated object. Using paq, we can choose an
effective epimorphism u : D0 Ñ D, where D0 belongs to the essential image of f˚. Since the
essential image of f˚ is stable under n-truncation, we may assume without loss of generality
that D0 is n-truncated. Let D‚ denote the Čech nerve of u. Note that for k ą 0, we have
an equivalence

Dk » Dk´1 ˆD D0 » pDk´1 ˆD0q ˆDˆD D.

Since D is n-truncated, it follows that the projection map Dk Ñ Dk´1 ˆ D0 is pn ´ 1q-
truncated. It follows from inductive hypothesis p2n´1q and induction on k that each Dk

belongs to the essential image of f˚. Since each Dk is n-truncated and the functor f˚ is fully
faithful when restricted to n-truncated objects (by virtue of p1nq), we can write D‚ “ f˚C‚
for some groupoid object C‚ in C. Set C “ |C‚|, and let v : C0 Ñ C be the canonical map.
Then f˚v factors as a composition

f˚C0 » D0
u
ÝÑ D “ |f˚C‚|

w
ÝÑ f˚|C‚| “ f˚C.
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where w is p´1q-truncated. Since the functor f˚ preserves effective epimorphisms, the map
f˚v is an effective epimorphism. It follows that w : D Ñ f˚C is an equivalence, so that D
belongs to the essential image of f˚ as desired.

A.9.3 The Proof of Theorem A.9.0.6

We now turn to the proof of Theorem A.9.0.6. It is clear that if f˚ : X Ñ Y is an
equivalence of bounded coherent 8-topoi, then f˚ carries coherent objects of X to coherent
objects of Y and that composition with f˚ induces an equivalence Fun˚pY,Sq Ñ Fun˚pX ,Sq.
By virtue of Theorem A.7.5.3 and Corollary A.9.1.2, the converse can be reformulated as
follows:

Theorem A.9.3.1. Let f˚ : C Ñ D be a morphism between bounded 8-pretopoi, and
suppose that composition with f˚ induces an equivalence FunprepD,Sq Ñ FunprepC,Sq. Then
f˚ is an equivalence of 8-categories.

Proof. We will show that the functor f˚ satisfies conditions paq and pbq of Proposition
A.9.2.1. We begin with condition pbq. Let i : U Ñ X be a p´1q-truncated morphism
in C such that f˚piq is an equivalence in D; we wish to show that i is an equivalence.
To prove this, it will suffice to show that the image of i under the Yoneda embedding
jC : C ãÑ ShvpCq is an equivalence. Since C is bounded, the functor j takes values in the full
subcategory ShvpCqhyp Ď ShvpCq, which has enough points by virtue of Theorem A.4.0.5.
It will therefore suffice to show that for every geometric morphism η˚ : ShvpCq Ñ S, the
image η˚pjCpiqq is a homotopy equivalence. Equivalently, we wish to show that the functor
pη˚ ˝ jCq P FunprepC,Sq carries i to an equivalence. The essential surjectivity of the functor
FunprepD,Sq Ñ FunprepC,Sq guarantees that η˚ ˝ j factors through f˚, so the desired result
follows from our assumption that f˚piq is an equivalence.

We can break condition paq of Proposition A.9.2.1 into the following family of assertions:

panq For every object E P C and every n-truncated morphism u : D Ñ f˚E in D, there
exists a morphism v : C Ñ E in C and a commutative diagram

f˚C
f˚v

""

w // D

u

}}
f˚E

in D, where w is an effective epimorphism.

Our proof of panq will proceed by induction on n. If n “ ´2, then u is an equivalence and
there is nothing to prove. Let us therefore assume that n ą ´2. Replacing C by C{E and
D by D{f˚E , we may reduce to the case where E is a final object of C, so that D P D is
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n-truncated. Let us say that an object D1 P D{D is good if there exists an pn´ 1q-truncated
map D1 Ñ f˚C for some object C P C. Suppose that the collection of good objects D1 P D{D
generate a covering sieve with respect to the effective epimorphism topology: that is, there
exists a finite collection of good objects tD1iuiPI for which the induced map >iPID1i Ñ D is
an effective epimorphism. By definition, each of the objects D1i admits an pn´ 1q-truncated
morphism D1i Ñ f˚Ci for some object Ci P C{C . Applying the inductive hypothesis pan´1q,
we deduce the existence of effective epimorphisms f˚C 1i Ñ D1i for some objects C 1i P C{Ci .
We can then complete the verification of panq by observing that the composite map

f˚p>iPIC
1
iq » >iPIf

˚C 1i Ñ >iPID
1
i Ñ D

is an effective epimorphism.
Let us now treat the case where the good objects of D{D do not generate a covering

sieve with respect to the effective epimorphism topology. Applying Theorem A.4.0.5 to the
8-topos ShvpDqhyp and using the identifications Fun˚pShvpDqhyp,Sq » Fun˚pShvpDq,Sq »
FunprepD,Sq, we deduce that there exists an object M P FunprepD,Sq together with a point
x PMpDq which cannot be lifted to a point of MpD1q for any good object D1 P D{D.

In what follows, let us abuse notation by identifying C and D with their essential images
in the 8-categories PropCq and PropDq. Note that precomposition with the functor f˚

determines a functor F : PropDq Ñ PropCq, and the functor F admits a right adjoint
G : PropCq Ñ PropDq (which can be described as the essentially unique extension of f˚

which commutes with filtered limits). Let us view M as an object of the 8-category PropDq
and x as a morphism from M to D in PropDq. Set X “ MSn ˆpF˝GqpMqSn pF ˝ GqpMq,
where the fiber product is computed in the 8-category PropDq, and consider the composite
map X ÑMSn x

ÝÑ DSn . Since the object D is n-truncated, the diagonal map δ : D Ñ DSn

is p´1q-truncated. Set X0 “ D ˆDSn X, so that projection onto the second factor gives a
p´1q-truncated, cocompact morphism ι : X0 Ñ X in PropDq. We consider two cases:

piq Suppose that the morphism ι is an equivalence. Let us write the object M P PropDq{D
as the limit of a filtered diagram tMαuαPA in D{D. For each index α P A, set
Xα “MSn

α ˆpF˝GqpMαqS
n pF ˝GqpMαq and Xα0 “ DˆDSn Xα. Since PropDqcc

{X is the
filtered colimit of the 8-categories PropDqcc

{Xα
(Proposition A.8.4.2), there exists an

index α P A for which the projection map Xα0 Ñ Xα is an equivalence. Let us write
GpMαq as the limit of a filtered diagram tCβuβPB in C, and for each index β P B set

Yβ “MSn

α ˆf˚CSn
β
f˚Cβ Yβ0 “ D ˆDSn Yβ.

Using Proposition A.8.4.2 again, we deduce that PropDqcc
{Xα

can be identified with the
filtered colimit of the diagram of 8-categories tPropDqcc

{Yβ
uβPB, so that there exists

an index β P B such that the projection ιβ : Yβ0 Ñ Yβ is an equivalence. The map
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Mα Ñ D ˆ f˚Cβ factors as a composition Mα
e
ÝÑ D1

pg,hq
ÝÝÝÑ D ˆ f˚Cβ, where the

morphism e is n-connective and the morphism pg, hq is pn´ 1q-truncated. Unwinding
the definitions, we have a pullback diagram

MSn
α ˆpDˆf˚CβqS

n pX ˆ f˚Cβq
ιβ //

��

MSn
α ˆf˚CSn

β
f˚Cβ

��
D1S

n
ˆpDˆf˚CβqS

n pX ˆ f˚Cβq
ι1 // D1S

n
ˆf˚CSn

β
f˚Cβ

in the 8-pretopos D. Since e is n-connective, the vertical maps are effective epi-
morphisms. Since the map ιβ is an equivalence, we deduce that ι1 is an equiva-
lence. Because the morphism pg, hq is pn ´ 1q-truncated, the diagonal map D1 Ñ

D1S
n
ˆpDˆf˚CβqS

n pX ˆ f˚Cβq is an equivalence, so the composite map

D1 Ñ D1S
n
ˆpDˆf˚CβqS

n pX ˆ f˚Cβq
ι1
ÝÑ D1S

n
ˆf˚CSn

β
f˚Cβ

is also an equivalence. In other words, the map h : D1 Ñ f˚Cβ is pn´ 1q-truncated. It
follows that g exhibits D1 as a good object of D{D. This is a contradiction, since the
morphism x : M Ñ D factors through D1.

piiq Suppose that the morphism ι is not an equivalence. Applying Theorem A.4.0.5 to
the hypercompletion of the 8-topos ShvpPropDqcc

{Xq, we deduce that there exists a
geometric morphism ν˚ : ShvpPropDqcc

{Xq Ñ S such that the image of X0 under the
composite map

PropDqcc
{X ãÑ ShvpPropDqcc

{Xq
ν˚
ÝÑ S

is empty. Using Corollary A.9.1.2, we can identify η˚ with a prime Pro-object
N P PropPropDqcc

{Xq » PropDq{X . By construction, the Pro-object N fits into a
commutative diagram

N //

φ
��

pG ˝ F qpMq

��
MSn // pG ˝ F qpMqS

n

in the 8-category PropDq, and the composite map N φ
ÝÑMSn x

ÝÑ DSn does not factor
through the diagonal map D Ñ DSn . Unwinding the definitions, we see that φ classifies
a map of spaces Sn Ñ MapFunprepD,SqpM,Nq, and the commutativity of the diagram
σ shows that the composite map

Sn Ñ MapFunprepD,SqpM,Nq Ñ MapFunprepC,SqpFM,FNq
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is nullhomotopic. By assumption, precomposition with f˚ induces an equivalence of
8-categories FunprepD,Sq Ñ FunprepC,Sq, so the map Sn Ñ MapFunprepD,SqpM,Nq

must already be nullhomotopic: that is, the map φ factors through the diagonal
M ÑMSn . It follows that the composite map N φ

ÝÑMSn x
ÝÑ DSn factors through the

diagonal D Ñ DSn : that is, the projection map N Ñ X factors through X0. This is a
contradiction, since the mapping space MapPropDq{X pN,X0q “ H by construction.



Appendix B

Grothendieck Topologies in
Commutative Algebra

Let Aff denote the category of affine schemes. We will say that a collection of morphisms
tfα : Uα Ñ Xu in Aff is jointly surjective if the map

š

Uα Ñ X is surjective as a map of
topological spaces. There are several Grothendieck topologies on the category Aff which are
useful in the study of classical algebraic geometry. For example:

• The Zariski topology, whose coverings are generated by collections of maps tSpecRα Ñ
SpecRu which are jointly surjective and have the property that each Rα is isomorphic
to Rrx´1

α s for some element xα P R (in this case, the condition of joint surjectivity is
equivalent to the condition that the elements xα generate the unit ideal in R).

• The étale topology, whose coverings generated by collections of maps tSpecRα Ñ
SpecRu which are jointly surjective and have the property that each Rα is an étale
R-algebra.

• The fpqc topology, whose coverings are generated by finite collections of maps tSpecRα Ñ
SpecRu which are jointly surjective and have the property that each Rα is flat over R.

In this appendix, we will study some Grothendieck topologies which play an analogous
role in the theory of spectral algebraic geometry. For our purposes, the most important of
the topologies listed above is the étale topology. We therefore begin in §B.1 by reviewing
the theory of étale morphisms between E8-rings (relying heavily on the more extensive
discussion given in §HA.7.5 ). Our main result is a structure theorem for étale morphisms
(Proposition B.1.1.3), which parallels (and generalizes) the classification of étale morphisms
of ordinary commutative rings (Proposition B.1.1.1).

If R is an E8-ring, we let CAlgR denote the 8-category of E8-algebras over R and
CAlgét

R Ď CAlgR the full subcategory of étale R-algebras. This 8-category can be equipped

1863
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with a Grothendieck topology which we refer to as the étale topology (see Definition B.6.2.2).
Most of this appendix is devoted to developing some tools for answering the following:

Question B.0.3.1. Let R be an E8-ring and let F : CAlgét
R Ñ C be a functor with values

in an 8-category C. How can one tell if F is a sheaf for the étale topology?

Remark B.0.3.2. For any E8-ring R, the 8-category CAlgét
R is actually (equivalent to) an

ordinary category: more precisely, it is equivalent to the ordinary category CAlgét
π0R of étale

algebras over the ordinary commutative ring π0R (Theorem HA.7.5.0.6 ). Consequently,
to understand general features of the theory of étale sheaves over R, there is no loss of
generality in assuming that R is discrete. However, the sheaves which arise in practice often
depend on the E8-ring R itself, and not only on the commutative ring π0R. For example,
the forgetful functor O : CAlgét

R Ñ CAlg plays the role of the structure sheaf of the étale
spectrum SpétR (see Proposition 1.4.2.4), and we can recover R as the value of O on the
initial object of CAlgét

R .

To address Question B.0.3.1, it will be convenient to introduce some auxiliary Grothendieck
topologies: the Nisnevich topology (which we study in §B.4) and the finite étale topology
(see Proposition ??). In §B.6, we will show that a functor F : CAlgét

R Ñ S is a sheaf for the
étale topology if and only if it is a sheaf for both the Nisnevich topology and the finite étale
topology (Theorem B.6.4.1). This result is useful because the class of sheaves with respect to
the Nisnevich and finite étale topologies admit more concrete characterizations. In §B.5, we
will prove a result a Morel and Voevodsky (Theorem B.5.0.3) which characterizes Nisnevich
sheaves as those functors F : CAlgét

R Ñ S which satisfy a certain excision property (see
Theorem B.5.0.3). In §B.7, we will show that a functor F : CAlgét

R Ñ S is a sheaf for the
finite étale topology if and only if it satisfies a version of Galois descent (Theorem B.7.6.1).

Our discussion of the Nisnevich topology (and of its relationship with the étale topology)
will require some familiarity with the theory of commutative rings. Some of the early sections
of this appendix are devoted to giving brief expository accounts of some of the requisite
commutative algebra: in §B.2 we discuss the dimension theory of Noetherian rings, and in
§B.3 we review the theory of Henselian rings (and the construction of the Henselization of a
commutative ring R with respect to an ideal I Ď R).

Remark B.0.3.3. Another important Grothendieck topology on the category of (affine)
schemes is the fppf topology, whose coverings are generated by finite collections of maps
tSpecRα Ñ SpecRu which are jointly surjective and have the property that each Rα is flat
and of finite presentation over R. We will discuss analogues of the fppf topology in §??.
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B.1 Étale Morphisms of Ring Spectra

Let φ : AÑ B be a homomorphism of commutative rings. The morphism φ is said to be
étale if the following conditions are satisfied:

piq The morphism φ is flat: that is, it exhibits B as a flat A-module.

piiq The multiplication map B bA B Ñ B exhibits B as a localization pB bA Bqre´1s for
some idempotent element e P B bA B.

piiiq The commutative ring B is finitely presented as an A-algebra.

In §HA.7.5 , we studied a generalization of the theory of étale ring homomorphisms to
the setting of E8-rings. Recall that if φ : AÑ B is a morphism of E8-rings, then we say
that φ is étale if the underlying ring homomorphism π0A Ñ π0B is étale and φ induces
an isomorphism of graded rings π0B bπ0A π˚A Ñ π˚B. Note that if A is discrete, then
φ is étale if and only if B is also discrete and φ is étale when regarded as a morphism of
commutative rings (that is, it satisfies conditions piq, piiq and piiiq above).

B.1.1 Structure Theory of Étale Morphisms

In the setting of classical commutative algebra, the collection of étale ring homomorphisms
admits the following “extrinsic” characterization:

Proposition B.1.1.1. Let A be a commutative ring. Then a ring homomorphism φ : AÑ B

is étale if and only if it exhibits B as isomorphic to an A-algebra of the form

pAry1, . . . , yns{pf1, . . . , fnqqr∆´1s,

where ∆ denotes the determinant of the Jacobian matrix r B fi
B yj
s1ďi,jďn.

We would like to generalize Proposition B.1.1.1 to the setting of E8-rings. First, we
need to introduce some terminology.

Notation B.1.1.2. Let A be an E8-ring, and let x be an arbitrary symbol. We let
Atxu denote the free E8-algebra over A on one generator. More precisely, we let Atxu
denote an object CAlgA equipped with a point η P Ω8Atxu have the following universal
property: for every object B P CAlgA, evaluation on η induces a homotopy equivalence
MapCAlgApAtxu, Bq Ñ Ω8B. We can describe Atxu more explicitly as the symmetric
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algebra Sym˚
ApAq on A (regarded as a module over itself), so that Atxu is equivalent to the

infinite direct sum
À

ně0AΣn , where AΣn denotes the spectrum of coinvariants with respect
to the trivial action of the symmetric group Σn on A (see §HA.3.1.3 ).

More generally, given a finite collection of symbols x1, . . . , xm, we let Atx1, . . . , xmu

denote the free E8-algebra over A on m generators, which can either be described induc-
tively by the formula Atx1, . . . , xmu » pAtx1, . . . , xm´1uqtxmu, or as the symmetric algebra
Sym˚

ApA
mq. We note that if A is connective, then the commutative ring π0Atx1, . . . , xmu

can be identified with the polynomial algebra pπ0Aqrx1, . . . , xms.

We can now formulate the main result of this section.

Proposition B.1.1.3. Let R be a connective E8-ring, and let φ : AÑ B be a morphism
between R-algebras. The following conditions are equivalent:

p1q The map φ is étale.

p2q There exists a pushout diagram of R-algebras

Rtx1, . . . , xnu //

φ0
��

A

φ

��
Rty1, . . . , ynur∆´1s // B,

where φ0pxiq “ fipy1, . . . , ynq P pπ0Rqry1, . . . , yns and ∆ P pπ0Rqry1, . . . , yns denotes
the determinant of the Jacobian matrix r B fi

B yj
s1ďi,jďn.

B.1.2 The Proof of Proposition B.1.1.1

Proposition B.1.1.3 can be regarded as a generalization of Proposition B.1.1.1, since
every étale ring homomorphism is also étale when regarded as a morphism of E8-rings.
Nevertheless, we give a proof of Proposition B.1.1.1 first, since it will be needed in the proof
of Proposition B.1.1.3.

Lemma B.1.2.1. Let f : AÑ B be a map of connective E8-rings. Assume that:

p1q The map f induces a surjection f0 : π0AÑ π0B.

p2q The commutative ring π0B is finitely presented over π0A (that is, the kernel of f0 is a
finitely generated ideal in π0A).

p3q The abelian group π1LB{A vanishes.

Then there exists an element a P π0A such that π0B » pπ0Aqra
´1s.
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Proof. Let I denote the kernel of f0, and let R “ pπ0Aq{I
2. It follows from Corollary

HA.7.4.1.27 that, in the 8-category CAlgA, we have a commutative diagram

R //

��

π0B

��
π0B // pπ0Bq ‘ ΣpI{I2q.

Since πiLB{A » 0 for i ď 1, the canonical map

MapCAlgApB, π0Bq Ñ MapCAlgApB, π0B ‘ ΣpI{I2qq

is a homotopy equivalence, so that MapCAlgRpB,Rq Ñ MapCAlgRpB, π0Bq is also a homotopy
equivalence. In particular, the truncation map B Ñ π0B lifts (in an essentially unique
fashion) to a map B Ñ R. Passing to connected components, we deduce that the quotient
map of commutative algebras φ : pπ0Aq{I

2 Ñ pπ0Aq{I admits a section (in the category of
π0A-algebras). This implies that φ is an isomorphism: that is, that I “ I2.

Because π0B is finitely presented over π0A, the ideal I is generated by finitely elements
y1, . . . , ym. Since I “ I2, we can write yi “

ř

j zi,jyj for some elements zi,j P I. Let Z denote
the matrix tzi,ju1ďi,jďm. Then id´Z annihilates the vector py1, . . . , ymq P pπ0Aq

m. Let
a P π0A denote the determinant of id´Z. Since the entries of Z belong to I, D is congruent
to 1 modulo I and is therefore invertible in π0B. It follows that we have a canonical map
g : Ara´1s Ñ B. We claim that g induces an isomorphism g0 : π0Ara

´1s Ñ π0B. The
surjectivity of g is clear, and the injectivity follows from the observation that multiplication
by a annihilates every element of I.

Lemma B.1.2.2. Let κ be a field and suppose we are given a homomorphism of poly-
nomial rings ψ : κrx1, . . . , xns Ñ κry1, . . . , yns, given by ψpxiq “ fipy1, . . . , ynq. Let
∆ P κry1, . . . , yns denote the determinant of the Jacobian matrix r B fi

B yj
s1ďi,jďn. Then

κry1, . . . , ynsr∆´1s is flat over κrx1, . . . , xns.

Proof. Without loss of generality, we may suppose that κ is algebraically closed. It will
suffice to show that for each maximal ideal m Ď κry1, . . . , yns not containing ∆, the induced
map of localizations κrx1, . . . , xnsn Ñ κry1, . . . , ynsm is flat, where n “ ψ´1m. Using Hilbert’s
Nullstellensatz, we conclude that m is generated by yj ´ λj for some scalars λj P κ. Making
a change of coordinates if necessary, we may assume that m “ py1, . . . , ynq. Similarly, we
may assume that the polynomials fi satisfy fip0, . . . , 0q “ 0, so that n “ px1, . . . , xnq. In
this case, we have a commutative diagram

κrx1, . . . , xnsn //

��

κry1, . . . , ynsm

��
κrrx1, . . . , xnss

ψ^ // κrry1, . . . , ynss,



B.1. ÉTALE MORPHISMS OF RING SPECTRA 1869

where the vertical maps are faithfully flat (Corollary 7.3.6.9). It will therefore suffice to
show that ψ^ is flat. In fact, we claim that ψ^ is an isomorphism. To prove this, we note
that ψ^ is an inverse limit of maps of the form

ψd : κrx1, . . . , xns{n
d Ñ κry1, . . . , yns{m

d.

Since ψd is a map between vector spaces of the same dimension over κ, we are reduced to
proving that ψd is surjective. Using induction on d, we can reduce to the case d “ 2, in
which case the desired result follows from our assumption that ∆ R m.

Proof of Proposition B.1.1.1. Suppose first that B “ pAry1, . . . , yns{pf1, . . . , fnqqr∆´1s; we
will prove that B is étale over A. It is clear that B is finitely presented as an A-algebra.
We next prove that B is flat over A. For this, let us abuse notation by identifying ∆ with
the determinant of the Jacobian matrix r B fi

B yj
s1ďi,jďn in the polynomial ring Ary1, . . . , yns, so

that we have a pushout diagram of commutative rings

Arx1, . . . , xns //

ψ
��

A

��
Ary1, . . . , ynsr∆´1s // B

where ψpxiq “ fi. It will therefore suffice to show that the map ψ is flat. Writing A as a
direct limit of finitely generated subrings, we may reduce to the case A is Noetherian, so that
Ary1, . . . , ynsr∆´1s is locally almost of finite presentation as an E8-algebra over Arx1, . . . , xns.
Using the fiberwise flatness criterion (see Corollary 11.3.10 of [90] or Proposition ??), we can
reduce to the case where A is a field, in which case the desired result follows from Lemma
B.1.2.2.

Let B1 “ BbAB. To complete the proof that B is étale over A, it will suffice to show that
the multiplication map m : B1 Ñ B exhibits B as a localization B1re´1s for some element
e P B (since m is surjective, this will prove that the map of affine schemes SpecB Ñ SpecB1

is both a closed and open immersion, so that we can choose e to be idempotent if desired).
By virtue of Lemma B.1.2.1, it will suffice to show that the abelian group π1LB{B1 vanishes.
Using the exactness of the sequence π1LB{B Ñ π1LB{B1 Ñ π0pB bB1 LB1{B, we are reduced
to proving that the group

π0pB bB1 LB1{Bq » π0pB bB1 B
1 bB LB{Aq » π0LB{A » ΩB{A

vanishes. This is clear, since ΩB{A can be computed as the cokernel of the map Bn Ñ Bn

given by the Jacobian matrix r B fi
B yj
s1ďi,jďn, which is invertible in B by assumption.

We now prove the converse. Suppose that φ : A Ñ B is an étale homomorphism of
commutative rings. Since B is finitely generated as an A-algebra, we can choose a surjective
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ring homomorphism φ1 : A1 Ñ B, where A1 “ Ary1, . . . , yns is a polynomial algebra over
A. Let I Ď A1 denote the kernel of φ1. We have a fiber sequence of cotangent complexes
BbA1 LA1{A Ñ LB{A Ñ LB{A1 . Since B is étale over A, the relative cotangent complex LB{A
vanishes. It follows that the boundary map δ : π1LB{A1 Ñ π0pBbA1LA1{Aq is an isomorphism.
Using Theorem HA.7.4.3.1 and Proposition HA.7.4.3.9 , we obtain isomorphisms

π1LB{A1 » I{I2 π0pB bA1 LA1{Aq » B bA1 ΩA{A » Bn.

Under these isomorphisms, δ carries an element f P I{I2 to the image in Bn of the vector
of partial derivatives r B f

B yj
s1ďjďn, where f P I is any representative of f . It follows that

we can choose a sequence of functionrs f1, f2, . . . , fn P I such that the Jacobian matrix
r
B fi
B yj
s1ďi,jďn has invertible image in B. Set A2 “ pAry1, . . . , yns{pf1, . . . , fnqqr∆´1s, where

∆ denotes the determinant of r B fi
B yj
s1ďi,jďn. Then φ1 factors through a ring homomorphism

φ2 : A2 Ñ B. The first part of the proof shows that A2 is étale over A, and the map φ2

induces a surjection π0A
2 Ñ π0B by construction. We have a fiber sequence of B-modules

B bA2 LA2{A Ñ LB{A Ñ LB{A2 . Since B and A2 are both étale over A, the first two terms
of this fiber sequence vanish. It follows in particular that π1LB{A2 » 0. Applying Lemma
B.1.2.1, we deduce that B » A2ra´1s for some element a P A2. Multiplying a by a power of
∆ if necessary, we may assume that a is the image of some polynomial g P A1. In this case,
we have an isomorphism

B » Ary1, . . . , yn, yn`1s{pf1, . . . , fn, fn`1qr∆1´1s,

where fn`1 “ 1´gyn`1 and ∆1 denotes the determinant of the Jacobian matrix r B fi
B yj
s1ďi,jďn`1.

B.1.3 The Proof of Proposition B.1.1.3

We now study the structure of étale morphisms between E8-rings.

Lemma B.1.3.1. Let f : A Ñ B be a morphism of connective E8-rings. The following
conditions are equivalent:

p1q The abelian group π0LB{A vanishes, and π0B is finitely generated as an algebra over
π0A.

p2q There exist finitely many elements x1, . . . , xn P π0B which generate the unit ideal,
such that each of the induced maps AÑ Brx´1

i s factors as a composition A
f 1
ÝÑ Ai

f2
ÝÑ

Brx´1
i s where f 1 is étale and f2 induces a surjection π0Ai Ñ π0Brx

´1
i s.

Proof. Suppose first that p2q is satisfied. Each of the commutative rings π0Brx
´1
i s is a

quotient of an étale π0A-algebra, and therefore finitely generated over π0A. Let B0 Ď π0B
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be a finitely generated π0A-subalgebra containing each xi, such that B0rx
´1
i s Ñ π0Brx

´1
i s

is surjective for each i. Since the xi generate the unit ideal in B, we deduce that π0B “ B0
is finitely generated over π0A.

It remains to prove that π0LB{A » 0. Since the elements xi generate the unit ideal, it
will suffice to show that pπ0LB{Aqrx

´1
i s » π0pLB{A bB Brx

´1
i sq » π0LBrx´1

i s{A vanishes for

each index i. Choose a factorization A
f 1
ÝÑ Ai

f2
ÝÑ Brx´1

i s as in p2q. We have a short exact
sequence of abelian groups

π0pBrx
´1
i s bA1 LAi{Aq Ñ π0LBrx´1

i s{A Ñ π0LBrx´1
i s{Ai

.

Here LAi{A vanishes since f 1 is étale (Corollary HA.7.5.4.5 ) and π0LBrx´1
i s{Ai

can be identified
with the relative Kähler differentials Ωπ0Brx

´1
i s{π0Ai

(Proposition HA.7.4.3.9 ), which vanishes
because f2 is surjective on connected components. It follows that π0LBrx´1

i s{A » 0 as desired.
Now suppose that p1q is satisfied. Let R “ π0B. Since R is finitely generated over π0A,

we can choose a presentation R » pπ0Aqrx1, . . . , xns{I for some ideal I Ď pπ0Aqrx1, . . . , xns.
Then π0LB{A is the module of Kähler differentials of R over π0A (Proposition HA.7.4.3.9 ).
That is, π0LB{A is the quotient of the free R-module generated by elements tdxiu1ďiďn by
the submodule generated by elements tdfufPI . Since π0LB{A » 0, we can choose a finite
collection of elements tfj P Iu1ďjďm such that the Jacobian matrix M “ t

B fj
B xi
u has rank

n. Let taku be the collection of determinants of n-by-n submatrices of the matrix M , so
that the elements ak generate the unit ideal in R. We will prove that each of the composite
maps AÑ Bra´1

k s factors as a composition A f 1
ÝÑ Ak

f2
ÝÑ Bra´1

k s, where f 1 is étale and f2 is
surjective on connected components. Reordering the fj if necessary, we may suppose that
m ě n and that ak is the determinant of the matrix tB fj

B xi
u1ďi,jďn. Set

R1 “ pπ0Rqrx1, . . . , xn, a
´1
k s{pf1, . . . , fmq,

so that R is an étale algebra over π0A (Proposition B.1.1.1). It follows from Theorem
HA.7.5.0.6 that R1 can be lifted (in an essentially unique fashion) to an étale A-algebra Ak.
Moreover, Corollary HA.7.5.4.6 implies that the surjective map R1 Ñ Rra´1

k s “ π0Bra
´1
k s

lifts to a map Ak Ñ Bra´1
k s, thereby supplying the desired factorization.

Recall that if φ : AÑ B is an étale morphism of E8-rings, then the relative cotangent
complex LB{A vanishes (Corollary HA.7.5.4.5 ). We will need the following partial converse:

Lemma B.1.3.2. Let f : AÑ B be a morphism of connective E8-rings and let 1 ď n ď 8

be an integer. The following conditions are equivalent:

p1q The commutative ring π0B is finitely presented over π0A, and πiLB{A » 0 for i ď n.

p2q The map f factors as a composition A
f 1
ÝÑ Ai

f2
ÝÑ B where f 1 is étale, f2 induces an

isomorphism πiA
1 Ñ πiB for i ă n, and f2 induces a surjection πnA

1 Ñ πnB.
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Proof. Suppose first that p2q is satisfied. Then π0B » π0A
1 is étale over π0A, and therefore

finitely presented as a π0A-algebra. We have a fiber sequence of B-modules B bA1 LA1{A Ñ
LB{A Ñ LB{A1 . Since A1 is étale over A, we deduce that LA1{A » 0. Since f2 is n-connective,
Corollary HA.7.4.3.2 implies that LB{A » LB{A1 is pn` 1q-connective, thereby completing
the proof of p1q.

Now assume that condition p1q holds. We first prove that π0B is étale over π0A.
Using Lemma B.1.3.1, we can choose a finite collection of elements xi P π0B generating
the unit ideal such that each of the induced maps A Ñ Brx´1

i s factors as a composition
A

g1
ÝÑ Ai

g2
ÝÑ Brx´1

i s where g1 is étale and g2 is surjective on connected components. Note
that π1LBrx´1

i s{Ai
» pπ1LB{Aqrx

´1
i s » 0. Using Lemma B.1.2.1, we deduce that π0Brx

´1
i s is

étale over π0Ai and therefore over π0A, from which it follows that π0B is étale over π0A.
Using Theorem HA.7.5.0.6 , we can choose an étale A-algebra A1 and an isomorphism of

π0A-algebras α : π0A
1 » π0B. Theorem HA.7.5.4.2 implies that we can lift α to a map of

A-algebras f2 : A1 Ñ B. To complete the proof, it will suffice to show that f2 is n-connective;
this follows from Corollary HA.7.4.3.2 .

Lemma B.1.3.3. Let AÑ B be a morphism of connective E8-rings, and assume that the
relative cotangent complex LB{A vanishes. The following conditions are equivalent:

p1q The commutative ring π0B is finitely presented over π0A.

p2q The algebra B is of finite presentation over A.

p3q The algebra B is almost of finite presentation over A.

p4q The map AÑ B is étale.

Proof. The implication p4q ñ p1q is obvious, the equivalences p1q ô p2q ô p3q follow from
Theorem HA.7.4.3.18 , and the implication p1q ñ p4q is a special case of Lemma B.1.3.2.

Proof of Proposition B.1.1.3. To prove that p2q implies p1q, it suffices to show that the map
φ0 appearing in the diagram is étale. Note that the relative cotangent complex of φ0 can
be identified with the cofiber of the map LAtx1,...,xnu{A bAtx1,...,xnu Aty1, . . . , ynur∆´1s Ñ

LAty1,...,ynur∆´1s{A. This is a map of free modules of rank n, which is given on π0 by the
Jacobian matrix r B fi

B yj
s1ďi,jďn. Since this matrix is invertible in π0Aty1, . . . , ynur∆´1s, we

deduce that the relative cotangent complex of φ0 vanishes, so that φ0 is étale by Lemma
B.1.3.3.

We now prove that p1q ñ p2q. Suppose that φ is étale. Then B is flat over A, so we have
a pushout diagram of E8-rings

τě0A //

��

A

��
τě0B // B.
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We may therefore replace A and B by their connective covers, and thereby reduce to the case
where A and B are connective. Proposition B.1.1.1 implies that there exists an isomorphism
of commutative rings π0B » pπ0Aqry1, . . . , yms{pf1, . . . , fmqr∆

´1
s, where ∆ denotes the

determinant of the Jacobian matrix r B fi
B yj
s1ďi,jďm is invertible in π0B. Let tai P π0Au1ďiďk

be the nonzero coefficients appearing in the polynomials fi. Choose a commutative diagram

Atx1, . . . , xku
g0 //

��

A

φ

��
Atx1, . . . , xk, y1, . . . , ymu

g1 // B

where g0 carries each xi to ai P π0A. For each 1 ď i ď m, choose a polynomial f i P
pπ0Aqry1, . . . , ym, x1, . . . , xks lying over fi, so that we have g1pf iq “ 0 P π0B. Let ∆ P

pπ0Aqry1, . . . , ym, x1, . . . , xks denote the determinant of the Jacobian matrix rB f i
B yj
s1ďi,jďm.

Using Corollary HA.7.5.4.6 , we deduce the existence of a commutative diagram

Atx1, . . . , xk, z1, . . . , zmu

h
��

ε // Atx1, . . . , xku // A

φ

��
Atx1, . . . , xk, y1, . . . , ymur∆´1s

g1 // B

where hpziq “ f i and εpziq “ 0 for 1 ď i ď m. We claim that the outer square appearing in
this diagram is a pushout. To see this, form a pushout diagram

Atx1, . . . , xk, z1, . . . , zmu //

φ0
��

A

��
Atx1, . . . , xk, y1, . . . , ymur∆´1s // B1

so that we have a canonical map ψ : B1 Ñ B; we wish to show that ψ is an equivalence. By
construction, ψ : B1 Ñ B induces an isomorphism on connected components. The first part
of the proof shows that B1 is étale over A, so that LB1{A » 0. Since LB{A » 0, we conclude
that LB{B1 » 0, so that B » B1 by Corollary HA.7.4.3.2 .

B.1.4 Descent for the Flat Topology

We close this section with a simple observation concerning the relationship between flat
and étale morphisms of E8-rings. We will assume that the reader is familiar with the notion
of a faithfully flat morphism of E8-rings (see Definition B.6.1.1).

Proposition B.1.4.1. Suppose we are given morphisms of E8-rings A f
Ñ B

g
Ñ C, where g

is étale and faithfully flat. Then f is étale if and only if g ˝ f is étale.
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The proof of Proposition ?? requires the following:

Lemma B.1.4.2. Let f : AÑ B and g : B Ñ C be morphisms of E8-rings. Then:

p1q If f and g are flat, then g ˝ f is flat.

p2q If g ˝ f is flat and g is faithfully flat, then f is flat.

Proof. We first prove p1q. The map π0AÑ π0C is a composition of two flat maps between
commutative rings, and therefore a flat map. It therefore suffices to show that for each
integer n, the map of abelian groups Torπ0A

0 pπnA, π0Cq Ñ πnC is an isomorphism. We can
factor this map as a composition

Torπ0A
0 pπnA, π0Cq » Torπ0B

0 pTorπ0A
0 pπnA, π0Bq, π0Cq

φ
Ñ Torπ0B

0 pπnB, π0Cq
ψ
Ñ πnC.

We conclude by observing that φ is an isomorphism because f is assumed to be flat, and
the map ψ is an isomorphism because g is assumed to be flat.

We now prove p2q. We first claim that f induces a flat map of commutative rings
π0A Ñ π0B. To prove this, choose a monomorphism M Ñ N of (discrete) π0A-modules,
and let K be the kernel of the induced map Torπ0A

0 pM,π0Bq Ñ Torπ0A
0 pN, π0Bq; we wish to

prove that K “ 0. Since π0B Ñ π0C is faithfully flat, it suffices to show that Torπ0C
0 pK,π0Bq

is zero. Using the flatness of π0B Ñ π0C, we can identify Torπ0C
0 pK,π0Bq with the kernel

of the map

Torπ0B
0 pTorπ0A

0 pM,π0Bq, π0Cq » Torπ0A
0 pM,π0Cq

Ñ Torπ0A
0 pN, π0Cq

» Torπ0B
0 pTorπ0A

0 pN, π0Bq, π0Cq.

This map is a monomorhism, since g ˝ f is assumed to be flat.
To complete the proof that f is flat, we must show that for each integer n, the map

Torπ0A
0 pπnA, π0Bq Ñ πnB is an isomorphism. Since g is faithfully flat, we reduce to proving

that the map φ above is an isomorphism. By a two-out-of-three argument, we are reduced
to proving that the maps ψ ˝ φ and ψ are isomorphisms. This follows from our assumption
that g and g ˝ f are flat.

Corollary B.1.4.3. Suppose we are given a pushout diagram of E8-rings

A
ψ //

φ

��

A1

φ1

��
B

ψ1 // B1,
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where ψ is faithfully flat. If B1 is flat over A1, then B is flat over A.

Proof. Since ψ is faithfully flat flat, the morphism ψ1 is also faithfully flat. By virtue of
Lemma B.1.4.2, it will suffice to show that the composition ψ1 ˝ φ » φ1 ˝ ψ is flat. This
follows from Lemma B.1.4.2, since ψ and φ1 are both flat.

Proof of Proposition B.1.4.1. The “only if” direction is obvious. For the converse, assume
that g ˝ f is étale. Lemma B.1.4.2 implies that f is flat. It will therefore suffice to show that
the commutative ring π0B is étale over π0A. Replacing A, B, and C by their connective
covers, we can reduce to the case where A, B, and C are connective. We have a fiber sequence
CbBLB{A Ñ LC{A Ñ LC{B. Since C is étale over both A and B, we have LC{A » LC{B » 0.
It follows that C bB LB{A » 0. Since C is faithfully flat over B, this implies that LB{A » 0
(Remark B.6.1.2). To complete the proof that B is étale over A, it will suffice to show that
π0B is finitely presented as a commutative algebra over π0A (Lemma B.1.3.3). We first
prove that π0B is finitely generated over π0A. Since g is étale, the commutative algebra π0C

is finitely presented over π0B. We may therefore choose a finitely generated π0A-subalgebra
R Ď π0B and an étale morphism RÑ R1 such that π0C » pπ0BqbRR

1. Since π0C is finitely
generated over π0A, we may assume (after enlarging R if necessary) that the map R1 Ñ π0C

is surjective. Since π0C is faithfully flat over π0B, we conclude that the inclusion R ãÑ π0B

is surjective, so that π0B “ R is finitely generated over π0A. Choose a surjection S Ñ π0B,
where S is finitely presented over π0A. Let I denote the kernel of φ; we wish to show that I
is a finitely generated ideal. Using Proposition B.1.1.3, we can choose an étale morphism
S Ñ S1 and an isomorphism π0C » π0B bS S

1. Replacing S by the quotient S{J for some
finitely generated ideal J Ď I, we can assume that S1 is faithfully flat over S. It follows
that the canonical map S2 Ñ π0C is surjection with kernel S1 bS I. Since π0C is finitely
presented over π0A, the ideal S1 bS I is finitely generated as a module over S1. Because S1

is faithfully flat over S, the ideal I is finitely generated as an S-module, as desired.

B.2 Dimension Theory of Commutative Rings

In this section, we will review the dimension theory of Noetherian commutative rings
(more complete accounts can be found in many standard texts on commutative algebra, such
as [8] or [59]).

B.2.1 Dimension of a Local Noetherian Ring

Let A be a local Noetherian ring. Then the maximal ideal m Ď A is finitely generated:
that is, we can choose finitely many elements a1, . . . , ad P A such that m “ pa1, . . . , adq.
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Definition B.2.1.1. Let A be a local Noetherian ring with maximal ideal m. The dimension
of A is the smallest integer d ě 0 for which there exists elements a1, . . . , ad P m for which
the ideal pa1, . . . , adq contains some power of m.

The dimension of a local Noetherian ring admits several other characterizations:

Theorem B.2.1.2. Let A be a local Noetherian ring with maximal ideal m and let d ě 0 be
an integer. The following conditions are equivalent:

paq Every chain of prime ideals p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pk in A has length k ď d.

pbq The local ring A has Krull dimension ď d (in the sense of Definition B.2.1.1): that is,
there exist elements a1, . . . , ad P m such that pa1, . . . , adq contains mn for n " 0.

pcq There exists a constant c such that for each n ě 0, the quotient A{mn has length ď cnd

as an A-module.

Remark B.2.1.3. In the situation of Theorem B.2.1.2, there exists a polynomial P ptq P Qrts
such the quotient A{mn has length P pnq for all sufficiently large integers n. The polynomial
P ptq is called the Hilbert-Samuel polynomial of A, and its degree is the dimension of A.

Proof of Theorem B.2.1.2. We first show that paq implies pbq using induction on d. If d “ 0,
then condition paq guarantees that m is the unique prime ideal of A, and therefore coincides
with the nilradical of A. Since A is Noetherian, the maximal ideal m is finitely generated, so
we have mn » 0 for n " 0, which proves pbq. Suppose that d ą 0. The ring A is Noetherian
and therefore contains finitely many minimal prime ideals. The assumption d ą 0 implies
that each of these minimal prime ideals is properly contained in m. We can therefore choose
an element x P m which is not contained in any minimal prime ideal of A. For any sequence
of prime ideals q0 Ĺ q1 Ĺ ¨ ¨ ¨ Ĺ qk in the quotient ring A{pxq, their inverse images in A form
a sequence of prime ideals which does not contain any minimal prime ideal of A, and can
therefore be extended to a chain of prime ideals in A having length k ` 1. It follows from
assumption paq that k ă d, so our inductive hypothesis implies that A{pxq has dimension
ă d. That is, we can choose elements y1, . . . , yd1 P m such that py1, . . . , yd´1q contains mn

for n " 0, where m denotes the image of m in A{pxq. Writing each yi as the image of an
element yi P m, we obtain mn Ď px, y1, . . . , yd´1q so that A has dimension ď d.

We next prove that pbq implies pcq. Choose elements x1, . . . , xd P m for which the ideal
px1, . . . , xdq contains some power of m. It follows that that A{px1, . . . , xdq appears as a
quotient of A{mk for k " 0 and is therefore an A-module of finite length. Let c be the length
of A{px1, . . . , xdq. An easy induction shows that for every sequence of integers n1, . . . , nd ě 0,
the quotient A{pxn1

1 , . . . , xndd q has length ď c
ś

1ďiďd ni. For n ě 0, the ideal mn contains
each xni , so that A{mn is a quotient of A{pxn1 , . . . , xnd q and therefore has length ď cdn.
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We now show that pcq implies paq. For each A-module M of finite length, let `pMq
denote the length of M as an A-module. Suppose that there exists a chain of prime ideals
p0 Ĺ ¨ ¨ ¨ Ĺ pk in A having length k. We will prove that there exists a positive real number e
such that `pA{mnq ě enk for n " 0. If pcq is satisfied, then this claim guarantees that k ď d,
so that paq is also satisfied. Our proof proceeds by induction on k, the case k “ 0 being
trivial. Let us therefore assume that k ą 0. Replacing A by A{p0, we may assume that
p0 “ p0q so that A is an integral domain. Choose a nonzero element x P p1. Applying the
Artin-Rees lemma to the ideal pxq Ď A, we deduce that there exists an integer r such that
mn X pxq Ď mn´rpxq for n ě r. Set A “ A{pxq and let m be the image of m in A. Applying
our inductive hypothesis to A, we deduce that there exists constant e ą 0 and a0 ě r such
that `pA{maq ě eak´1 for a ě a0. For n ě a0, there is a unique integer n1 ą 0 such that
a0 ´ r ď n´ rn1 ă a0. We then have

`pA{mnq ě
ÿ

0ďiăn1
`ppxiq `mn{pxi`1q `mnq

“
ÿ

0ďiăn1
`pA{pxq ` ty P A : xiy P mnuq

ě
ÿ

0ďiăn1
`pA{mn´irq

ě
ÿ

0ďiăn1
epn´ irqk´1

ě

ż n1

0
epn´ trqk´1dt

“
e

rk
pnk ´ pn´ rn1qkq

ą
e

rk
pnk ´ ak0q.

It follows that for any constant e ă e
rk , we have `pA{mnq ě enk for n " 0.

Remark B.2.1.4. Let A be a local Noetherian ring. It follows from characterization pcq of
Theorem B.2.1.2 that the dimension of A is the same as the dimension of the completion pA

of A at its maximal ideal m.

Definition B.2.1.5. Let A be a Noetherian ring and let p be a prime ideal of A. The height
of p is the dimension of the local ring Ap. We say that A has Krull dimension ď d if each
prime ideal p in A has height ď d.

Remark B.2.1.6. Let p be a prime ideal in a Noetherian ring A. It follows from criterion
paq of Theorem B.2.1.2 that the height of p is the largest integer h for which there exists a
chain of prime ideals q0 Ĺ q1 Ĺ ¨ ¨ ¨ Ĺ qh “ p ending in p.
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Remark B.2.1.7. If A is a local Noetherian ring of dimension d and I Ĺ A is an ideal,
then the quotient A{I is a local Noetherian ring of dimension ď d. More generally, if A is a
Noetherian ring of Krull dimension ď d, then any quotient ring of A has Krull dimension
ď d.

B.2.2 Flat Morphisms

We now discuss the relationship between the Krull dimensions of commutative rings A
and B which are related by a ring homomorphism φ : AÑ B. In the case where φ is flat,
we have the following:

Theorem B.2.2.1. Let φ : AÑ B be a flat homomorphism of commutative rings. Let p be
a prime ideal of B, and let q be a prime ideal of A which is contained in φ´1p. Then we can
write q “ φ´1p0 for some prime ideal p0 Ď p Ď B.

Proof. Replacing A by A{q and B by B{qB, we may assume that A is an integral domain
and that q is the zero ideal. Replacing B by Bp, we may reduce to the case where B is a
local ring with maximal ideal p. In this case, it will suffice to show that there exists any
prime ideal p0 Ď B such that φ´1p0 “ p0q. Let K denote the fraction field of A, so that we
have an injective map A ãÑ K. Since B is flat over A, the induced map B Ñ K bA B is
also injective. It follows that K bA B is nonzero, so that there there exists a maximal ideal
m in the ring K bA B. We let p0 denote the inverse image of m in B; it follows from the
commutativity of the diagram

| SpecpK bA Bq| //

��

| SpecB|

��
|SpecK| // | SpecA|

that φ´1p0 “ p0q, as desired.

Corollary B.2.2.2. Let φ : AÑ B be a flat morphism of Noetherian rings, let p be a prime
ideal of B, and let q “ φ´1p. If p has height ď d, then q has height ď d.

Proof. If q does not have height ď d, then there exists a chain of prime ideals q0 Ĺ q1 Ĺ

¨ ¨ ¨ Ĺ qd`1 “ q in A having length d ` 1. Applying Theorem B.2.2.1 repeatedly, we see
that this chain can be lifted to a chain of prime ideals p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pd`1 “ p in B,
contradicing our asusumption that p has height ď d.

Corollary B.2.2.3. Let φ : AÑ B be a faithfully flat morphism of commutative rings. If
B has Krull dimension ď d, then A has Krull dimension ď d.
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Variant B.2.2.4. Let φ : AÑ B be an étale homomorphism between Noetherian rings, let
p be a prime ideal in B, and let q “ φ´1p. Then p and q have the same height.

Proof. The map φ induces an isomorphism between the completions of the local rings Aq

and Bp, so the desired result follows from Remark B.2.1.4.

For later use, we record another consequence of Theorem B.2.2.1:

Corollary B.2.2.5. Let φ : AÑ B be homomorphism of commutative rings which is flat
and of finite presentation (for example, an étale morphism). Then the induced map of
topological spaces f : |SpecB| Ñ | SpecA| is open.

Proof. Let U be an open subset of |SpecB|; we wish to prove that fpUq is an open subset
of | SpecA|. Without loss of generality, we may assume that U is a basic open set of the
form | SpecBrb´1s|. Replacing B by Brb´1s, we are reduced to proving that the image of
f is open. Since φ is of finite presentation, Chevalley’s constructibility theorem (Theorem
4.3.3.1) implies that the image of f is a constructible subset of | SpecB|. To show that
this image is open, it will suffice to show that it is stable under generalization (Proposition
4.3.2.1), which follows immediately from Theorem B.2.2.1.

B.2.3 Relative Dimension

We will need the following relative version of Definition B.2.1.1:

Definition B.2.3.1. Let φ : A Ñ B be a homomorphism of commutative rings and let
d ě 0 be an integer. We will say that φ is of relative dimension ď d if it exhibits B as a
finitely generated A-algebra and, for every ring homomorphism AÑ κ where κ is a field,
the tensor product TorA0 pκ,Bq has Krull dimension ď d (in the sense of Definition B.2.1.1).

Remark B.2.3.2. In the situation of Definition B.2.4.1, the assumption that B is finitely
generated as an A-algebra guarantees that any tensor product TorA0 pκ,Bq is a finitely
generated algebra over the field κ, and is therefore automatically Noetherian.

Remark B.2.3.3. In the situation of Definition B.2.3.1, it suffices to consider the case
where κ is a residue field of A: see Corollary B.2.3.10 below.

Remark B.2.3.4. Let φ : A Ñ B and ψ : B Ñ C be homomorphisms of commutative
rings. If ψ ˝ φ : AÑ C has relative dimension ď d, then ψ has relative dimension ď d. It
is clear that if C is finitely generated over A, then it is also finitely generated over B. We
complete the proof by observing that for any ring homomorphism from B to a field κ, the
tensor product TorB0 pκ,Cq is a quotient of TorA0 pκ,Cq and therefore has Krull dimension
ď d (Remark B.2.1.7).
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We now summarize some of the formal properties of Definition B.2.3.1.

Proposition B.2.3.5. Suppose we are given a pushout diagram of commutative rings

A
φ //

ψ
��

B

��
A1

φ1 // B1.

If φ is of relative dimension ď d, then so is φ1. The converse holds if ψ is faithfully flat.

Proof. The first assertion follows immediately from the definitions. To prove the second,
suppose that φ1 is of relative dimension d and that ψ is faithfully flat. Then B1 is finitely
generated over A1, so we can choose finitely many elements b1, . . . , bn P B whose images
generate B1 as an A1-algebra. Let B0 Ď B be the A-subalgebra generated by b1, . . . , bn.
Then the inclusion ι : B0 ãÑ B induces a surjection

A1 bA B0 Ñ A1 bA B » B1.

Since A1 is faithfully flat over A, it follows that ι is surjective so that B “ B0 is finitely
generated as an A-algebra. To complete the proof, choose a ring homomorphism A Ñ κ

where κ is a field and set Bκ “ TorA0 pκ,Bq. We wish to show that Bκ has Krull dimension
ď d. Since φ1 is faithfully flat, there exists an extension field κ1 of κ for which the composite
map AÑ κ ãÑ κ1 factors through A1. Our assumption that φ1 has relative dimension ď d

then implies that Bκ1 » κ1 bκ Bκ has Krull dimension ď d. Since Bκ1 is faithfully flat over
Bκ, it follows that Bκ also has Krull dimension ď d (Corollary B.2.2.3).

Proposition B.2.3.6. Let φ : AÑ B be a homomorphism of commutative rings which has
relative dimension ď d. Suppose that A is a Noetherian ring of Krull dimension ď n. Then
B is a Noetherian ring of Krull dimension ď n` d.

Proof. Since B is finitely generated as an A-algebra, it is Noetherian by virtue of the Hilbert
basis theorem. Fix a prime ideal p Ď B; we will show that the local ring Bp has dimension
ď n`d. Set q “ φ´1p Ď A. Replacing A by the localization Aq and B by the tensor product
Aq bA B, we may assume that A is a local ring with maximal ideal q. Since A has Krull
dimension ď n, we can choose elements a1, . . . , an for which the ideal pa1, . . . , anq contains
qk for some integer k. Similarly, the condition that φ has relative dimension ď d guarantees
that we can choose elements b1, . . . , bd in Bp{qBp such that the ideal pb1, . . . , bdq contains
the image of pk1 for some k1 ą 0. For each 1 ď i ď d, choose an element bi P Bp representing
bi, and let I Ď Bp denote the ideal pφpa1q, . . . , φpanq, b1, . . . , bdq. By construction, we have

pkk
1

Ď pqBp ` Iq
k Ď qkBp ` I Ď I

so that Bp has dimension ď n` d, as desired.
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Proposition B.2.3.7. Let φ : A Ñ B an ψ : B Ñ C be homomorphisms of commutative
rings. If φ has relative dimension ď d and ψ has relative dimension ď d1, then ψ ˝ φ has
relative dimension ď d` d1.

Proof. Since B is finitely generated as an A-algebra and C is finitely generated as a B-
algebra, we immediately see that C is finitely generated as an A-algebra. Choose a field κ

and a ring homomorphism AÑ κ and set

Bκ “ TorA0 pκ,Bq Cκ “ TorA0 pκ,Cq.

Since φ has relative dimension ď d, the ring Bκ has Krull dimension ď d. Since ψ has
relative dimension ď d1, the map Bκ Ñ Cκ has relative dimension ď d1 (Proposition B.2.3.5).
Applying Proposition B.2.3.6, we deduce that Cκ has Krull dimension ď d` d1.

Example B.2.3.8. Let A be a commutative ring. Then the polynomial ring Arx1, . . . , xds

has relative dimension ď d over A. To prove this, we may use Proposition B.2.3.7 to reduce
to the case where d “ 1. Since Arxs is finitely generated as an A-algebra, it will suffice to
show that for every field κ, the polynomial ring κrxs has Krull dimension ď 1. This is clear,
since every ideal in κrxs (or any localization of κrxs) is principal.

Proposition B.2.3.9. Let A be a finitely generated algebra over a field κ, let κ1 be an
extension field of κ, and set A1 “ κ1 bκ A. Then A and A1 have the same Krull dimension.

Proof. Let d be the Krull dimension of A (which is finite by virtue of Example B.2.3.8 and
Remark B.2.1.7). Since A1 is faithfully flat over A, it follows from Corollary B.2.2.3 that the
Krull dimension of A1 is ě d. We wish to prove the reverse inequality. We first treat the
case where κ1 is a finitely generated field extension of κ. Proceeding by induction on the
number of generators, we may assume that κ1 is generated (as an extension field of κ) by a
single element x. There are two cases to consider:

• Suppose that x is algebraic over κ. Then κ1 is a finite algebraic extension of κ. From
this, it follows immediately that the inclusion κ ãÑ κ1 has relative dimension 0, so that
the inclusion A ãÑ A1 also has relative dimension 0 (Proposition B.2.3.5) and therefore
A1 has Krull dimension ď d by virtue of Proposition B.2.3.6.

• Suppose that x is transcendental over κ, so that κ1 is the fraction field of the polynomial
ring κrxs. It follows that A1 is obtained from Arxs by inverting all nonzero polynomials
fpxq whose coefficients lie in the field κ. Suppose we are given a chain of prime ideals
p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pk in A1; we wish to show that k ď d. Set qi “ pi X Arxs. Note
that the residue field of Arxs at qk is not algebraic over κ, so (by virtue of Hilbert’s
Nullstellensatz) the prime ideal qk Ď Arxs is not maximal. Choose a maximal ideal
m Ď Arxs containing qk, so that m has height ě k ` 1. Since A has Krull dimension
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ď d, it follows from Example B.2.3.8 and Proposition B.2.3.6 that Arxs has Krull
dimension ď d` 1, so that k ` 1 ď d` 1 and therefore k ď d as desired.

We now treat the general case, where κ1 is not assumed to be a finitely generated field
extension of κ. Fix a prime ideal m Ď A1; we wish to show that p has height ď d. Without
loss of generality, we may assume that the prime ideal m is maximal. Since A1 is a finitely
generated algebra over κ1, it is a Noetherian ring; in particular, the ideal m is generated by
finitely many elements x1, . . . , xn P m. We can therefore choose a subfield κ2 Ď κ1 which is a
finitely generated extension field of κ such that each xi is defined over κ2: that is, it belongs
to the image of the natural map Abκ κ

2 ãÑ A1. It follows from the first part of the proof
that Abκ κ2 has Krull dimension d. We may therefore replace κ by κ2 (and A by Abκ κ2)
and thereby reduce to the case where each xi belongs to the image of the inclusion A ãÑ A1.
Let n be the ideal in A generated by the elements xi, so that A1{m “ pA{nq bκ κ1. Hilbert’s
Nullstellensatz implies that A1{m is finite-dimensional as a vector space over κ1, so that A{n
is finitely generated as a vector space over κ. Since A{n can be identified with a subring of
A1{m, it is an integral domain and therefore a finite extension field of κ. It follows that n is
a maximal ideal of A.

Our assumption that A has Krull dimension ď d implies that the local ring An has
dimension ď d. We can therefore choose elements y1, . . . , yd P n such that nkAn is contained
in y1An ` y2An ` ¨ ¨ ¨ ` ydAn for some integer k " 0. Replacing A by a localization Ara´1s

for a R n, we may assume that nk Ď y1A ` y2A ` ¨ ¨ ¨ ` ydA Extending scalars to A1, we
deduce that mk is contained in the ideal py1, . . . , ydq “ y1A

1 ` ¨ ¨ ¨ ` ydA
1, so that the local

ring A1m has dimension ď d as desired.

Corollary B.2.3.10. Let φ : A Ñ B be a homomorphism of commutative rings which
exhibits B as a finitely generated algebra over A. The following conditions are equivalent:

paq The map φ has relative dimension ď d: that is, for every ring homomorphism AÑ κ

where κ is a field, the tensor product TorA0 pκ,Bq has Krull dimension ď d.

pbq For every residue field κ of A, the tensor product TorA0 pκ,Bq has Krull dimension ď d.

Corollary B.2.3.11. Let κ be a field, let A be a finitely generated κ-algebra, and let d ě 0
be an integer. The following conditions are equivalent:

paq The commutative ring A has Krull dimension ď d (in the sense of Definition B.2.1.1).

pbq The unit map κÑ A has relative dimension ď d (in the sense of Definition B.2.3.1).

Proof. The implication pbq ñ paq is trivial, and the converse follows from Proposition
B.2.3.9.
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B.2.4 Quasi-Finite Morphisms

We now specialize to the study of ring homomorphism shaving relative dimension ď 0.

Definition B.2.4.1. Let φ : A Ñ B be a homomorphism of commutative rings. We will
say that φ is quasi-finite if it has relative dimension ď 0: that is, if it exhibits B as a finitely
generated A-algebra and, for each residue field κ of A, the tensor product Bκ “ TorA0 pκ,Bq
has Krull dimension ď 0.

Remark B.2.4.2. Let κ be a field and let R be a finitely generated algebra over κ. Then
the following conditions are equivalent:

paq The ring R has Krull dimension zero.

pbq The ring R has finite dimension as a vector space over κ.

pcq The Zariski spectrum |SpecR| is finite.

It follows that if φ : AÑ B is a homomorphism of commutative rings that exhibits B as
a finitely generated A-algebra, then φ is quasi-finite if and only if the map of Zariski spectra
| SpecB| Ñ |SpecA| has finite fibers (in this case, the fibers of the map | SpecB| Ñ |SpecA|
automatically inherit the discrete topology). Alternatively, φ is quasi-finite if and only if for
every residue field κ of A, the tensor product TorA0 pκ,Bq is a finite-dimensional vector space
over κ.

Example B.2.4.3. Every étale homomorphism of commutative rings φ : AÑ B is quasi-
finite. In particular, every localization AÑ Art´1s is quasi-finite.

Example B.2.4.4. Let φ : AÑ B be a homomorphism of commutative rings which exhibits
B as a finitely generated A-module. Then φ is quasi-finite.

All quasi-finite ring homomorphisms can be obtained through some combination of
Examples B.2.4.3 and B.2.4.4:

Theorem B.2.4.5. [Zariski’s Main Theorem, Affine Version] Let φ : A Ñ B be a quasi-
finite map of commutative rings. Then there exists an A-subalgebra B0 Ď B which is
finitely generated as an A-module for which the induced map SpecB Ñ SpecB0 is an open
immersion of schemes.

We will deduce Theorem B.2.4.5 from the following local variant:

Theorem B.2.4.6. Let φ : AÑ B be a commutative ring homomorphism which exhibits B
as a finitely generated A-algebra and let q be a prime ideal of B which is an isolated point
of the fiber | SpecB| ˆ|SpecA| tφ

´1pqqu. Then there exists an A-subalgebra B0 Ď B with the
following properties:
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piq The algebra B0 is finitely generated as an A-module.

piiq There exists an element b P B0 such that b R q and the induced map B0rb
´1s Ñ Brb´1s

is an isomorphism.

Proof. We use an argument of Grothendieck, borrowing some ideas from algebraic geom-
etry. We first treat the case where A is Noetherian. Choose a surjection of A-algebras
Arx1, . . . , xns Ñ B, which we can identify with a closed immersion of affine schemes
i : SpecB ãÑ An

A. Let X Ď Pn
A denote the scheme-theoretic image of i in the projective

space Pn
A, and let f : X Ñ SpecA denote the projection map. Then f admits a Stein

factorization X
g
ÝÑ SpecB h

ÝÑ SpecA, where B is finitely generated as an A-module. Let
U Ď SpecB be the largest open subscheme for which the projection map X ˆSpecB U Ñ U

is an isomorphism, and set V “ SpecB ˆSpecA U . Our assumption that q is an isolated
point of | SpecB|ˆ|SpecA| tφ

´1pqqu guarantees that ipqq is an isolated point of f´1tφ´1qu, so
that q is contained in V (see Theorem 8.7.2.3). Consequently, there exists an element b P B
whose image in B does not belong to q such that SpecBrb´1

s is contained in the image of
the open immersion V Ñ U . This guarantees that the natural map Brb

´1
s Ñ Brb´1s is an

isomorphism, where b P B denotes the image of b. We now complete the proof by taking B0
to be the image of the map B Ñ B.

If we drop the assumption that A is Noetherian but still assume that B is finitely
presented over A, then we can choose a finitely generated subalgebra A1 Ď A, a finitely
presented A1-algebra B1, and an isomorphism of A-algebras TorA10 pA,B

1q » B. Let q1 be the
inverse image of q in B1. Then q1 is an isolated point of the fiber |SpecB1|ˆ|SpecA1| tφ

´1pq1qu.
Applying the preceding argument, we deduce the existence of a subalgebra B10 Ď B1 which is
finitely generated an A1-module and an element b P B10 which is not contained in q1 such that
B10rb

´1s » B1rb´1s. We now conclude by defining B0 to be the A-subalgebra of B generated
by the image of B10.

We now treat the general case. Let κ be the residue field of A at the point φ´1pqq. Write B
as a quotient Arx1, . . . , xns{I for some ideal I, so that the tensor product TorA0 pκ,Bq can be
written as a quotient κrx1, . . . , xns{Iκ where Iκ is the ideal generated by the image of I. Since
κrx1, . . . , xns is a Noetherian ring, the ideal Iκ is finitely generated. It follows that we can
choose a finitely generated ideal I 1 Ď I such that the quotient B1 “ Arx1, . . . , xns{I

1 has the
property that the natural map TorA0 pκ,B1q Ñ TorA0 pκ,Bq is an isomorphism. Let q1 denote
the inverse image of q in B1, so that q1 is an isolated point of the fiber | SpecB1| ˆ|SpecA|
tφ´1pq1qu. Applying the preceding argument to q1, we deduce the existence of an A-algebra
B10 Ñ B1 and an element b1 P B10 such that B10 is finitely generated as an A-module and
B10rb

1´1s » B1rb1´1s. We conclude by defining B0 to be the image of B10 in B, and b to be
the image of b1 in B.

Warning B.2.4.7. The proof of Theorem B.2.4.6 given above depends on basic facts about
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Stein factorizations (such as Zariski’s connectedness theorem), which we will discuss in
§8.7. On the other hand, much of the foundational material developed in Parts I and II
depends on facts that are derived from Theorem B.2.4.6. A reader who is troubled by this
circular reasoning can consult the literature for other approaches to either Theorem B.2.4.6
(for example, [172] contains a more elementary argument which avoids the use of algebraic
geometry) or to developing the algebro-geometric tools needed for the proof given above
(note that the proof above requires the theory of Stein factorizations only for projective
morphisms).

Proof of Theorem B.2.4.5. Let φ : AÑ B be a quasi-finite morphism of commutative rings.
For each prime ideal q Ď B, we can use Theorem B.2.4.6 to choose an A-subalgebra Bpqq Ď B

and an element bq P Bpqq for which the induced map Bpqqrb´1
q s Ñ Brb´1

q s is an isomorphism.
The elements bq generate the unit ideal in B: we may therefore choose finitely many prime
ideals q1, . . . , qn for which the elements bqi generate the unit ideal. Let B0 Ď B be the
A-subalgebra generated by tBpqiqu1ďiďn. Then B0 is finitely generated as an A-algebra and
integral over A, hence finitely generated as an A-module. By construction, each of the maps
B0rb

´1
qi s Ñ Brb´1

qi s is surjective (and is automatically injective, since localization is exact).
It follows that the induced map SpecB Ñ SpecB0 is an open immersion, complementary to
the vanishing locus of the ideal pbq1 , . . . , bqnq Ď B0.

For later reference, we record another consequence of Theorem B.2.4.6:

Corollary B.2.4.8. Let φ : AÑ B be a commutative ring homomorphism which exhibits
B as a finitely generated A-algebra, let q be a prime ideal of A, and let p be a prime ideal
of B which is maximal among those prime ideals lying over q. Suppose that the local ring
Bp{qBp has dimension ď d. Then there exists an element b P B which does not belong to p

such that Brb´1s is of relative dimension d over A.

Proof. Set R “ Bp{qBp. Since R has dimension ď d, we can choose elements r1, . . . , rd
which belong to the maximal ideal of R such that R{pr1, . . . , rdq has a unique maximal
ideal. Multiplying each ri by a unit if necessary, we may assume that each ri is the image of
an element bi P B. Let φ1 : Arx1, . . . , xds Ñ B be the extension of φ given by φ1pxiq “ bi.
Then p is an isolated point of its fiber under the map | SpecB| Ñ |SpecArx1, . . . , xds|.
Theorem B.2.4.6 implies that we can choose a map ρ : B Ñ B of Arx1, . . . , xds-algebras
where B is finitely generated as an Arx1, . . . , xds-module and ρ induces an isomorphism
Brb´1s » Brb´1s for some b P B ´ ρ´1p. We now conclude by observing that the canonical
map AÑ Brb´1s factors as a composition

AÑ Arx1, . . . , xds Ñ B Ñ Brb´1s » Brb´1s

where the first map has relative dimension ď d (Example B.2.3.8) the second map is finite
(hence of relative dimension ď 0 by Example B.2.4.4), and the third map is étale (hence of
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relative dimension ď 0 by Example B.2.4.3), so the composite map is of relative dimension
ď d by Proposition B.2.3.7.

B.3 Henselian Rings

In this section, we will review some basic facts about Henselian rings which will be
needed in this book. For a more detailed exposition, we refer the reader to [172].

B.3.1 Henselian Pairs

Let R be a commutative ring. Suppose that we wish to find an element t P R which
is a solution to a polynomial equation fptq “ 0, where where fpxq P Rrxs is a polynomial.
One approach to this problem is to begin with an approximate solution (an element t0 P R
such that fpt0q ” 0 mod I for some ideal I Ď R) and to then find better approximations
ttnuně0 using Newton’s method: tn`1 “ tn ´

fptnq
f 1ptnq

. Provided that these expressions are well-
defined (that is, that each f 1ptnq “

B fpxq
B x |x“tn is an invertible element of R), an elementary

calculation gives
fptnq ” 0 mod In`1 tn`1 ” tn mod In`1.

If the ring R is complete with respect to I (that is, if it is equivalent to the inverse limit
of the tower ¨ ¨ ¨ Ñ R{I4 Ñ R{I3 Ñ R{I2 Ñ R{I), then the sequence ttnuně0 converges
I-adically to an element t P R satisfying fptq “ 0. The following definition is intended to
capture the essence of this situation:

Definition B.3.1.1. Let R be a commutative ring and let I Ď R be an ideal. We will
say that pR, Iq is a Henselian pair if it satisfies the following condition: for every étale
ring homomorphism RÑ R1 which induces an isomorphism R{I Ñ R1{IR1, there exists an
R-algebra homomorphism R1 Ñ R.

We say that a commutative ring R is Henselian it it is a local ring and the pair pR,mq is
Henselian, where m is the maximal ideal of R.

Warning B.3.1.2. Our terminology is not completely standard; many authors do not
require a Henselian ring to be local.

Remark B.3.1.3. Let R be a commutative ring and let I Ď J Ď R be ideals. If the pair
pR, Jq is Henselian, then the pair pR, Iq is also Henselian. In particular, if R is a Henselian
ring, then the pair pR, Iq is Henselian for any ideal I Ĺ R.

Definition B.3.1.1 is motivated by the following:

Proposition B.3.1.4 (Hensel’s Lemma). Let R be a commutative ring which is I-adically
complete for some ideal I. Then pR, Iq is a Henselian pair.
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Proof. We apply Newton’s method. Let R1 be an étale R-algebra. Proposition B.1.1.1
implies the existence of an isomorphism R1 » Rrx1, . . . , xns{pf1, . . . , fnqr∆´1s, where ∆
denotes the determinant of the Jacobian matrix r B fi

B xj
s1ďi,jďn (see Proposition B.1.1.3). We

wish to show that every R-algebra homomorphism φ0 : R1 Ñ R{I can be lifted to a ring
homomorphism φ : R1 Ñ R. Since R is complete with respect to I, it will suffice to construct
a compatible sequence of R-algebra homomorphisms φa : R1 Ñ R{Ia`1. Assume that φa
has already been constructed, and choose elements tyj P Ru1ďjďn such that φapxjq – yj
modulo Ia`1. Since φa is a ring homomorphism, we have fip~yq P Ia`1 for 1 ď i ď n. Let
∆r~xs denote the determinant of the Jacobian matrix Mp~xq “ r B fi

B xj
s1ďi,jďn. Then ∆r~ys is

invertible modulo Ia`1 and therefore invertible (since I is contained in every maximal ideal
of R, by Proposition B.3.2.2). It follows that Mp~yq is an invertible matrix over R, so we can
define ~y1 “ ~y ´Mp~yq´1 ~fp~yq. A simple calculation gives shows that fip~y1q P I2pa`1q, so that
the assignment xi ÞÑ y1i determines a ring homomorphism φa`1 : R1 Ñ R{Ia`2 compatible
with φa.

Corollary B.3.1.5. Let R be a commutative ring and let I Ď R be a nilpotent ideal. Then
the pair pR, Iq is Henselian.

B.3.2 Lifting Idempotents

Let R be a commutative ring containing an ideal I Ď R. There are many equivalent
ways to formulate the condition that pR, Iq is a Henselian pair.

Notation B.3.2.1. If R is a commutative ring, we let IdempRq denote the set of idempotent
elements of R. Given a pair of commutative R-algebras A and B, we let HomRpA,Bq denote
the set of R-algebra homomorphisms from A to B.

Proposition B.3.2.2. Let R be a commutative ring and let I Ď R be an ideal. The following
conditions are equivalent:

p1q The pair pR, Iq is Henselian.

p2q For every étale R-algebra R1, the reduction map θR1 : HomRpR
1, Rq Ñ HomRpR

1, R{Iq »

HomR{IpR
1{IR1, R{Iq is bijective.

p3q The ideal I is contained in every maximal ideal m Ď R and, for every R-algebra A

which is a free R-module of finite rank, the reduction map IdempAq Ñ IdempA{IAq is
bijective.

p4q For every R-algebra A which is finitely generated as an R-module, the reduction map
IdempAq Ñ IdempA{IAq is bijective.
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Proof. We first show that p1q ñ p2q. Assume that pR, Iq is a Henselian pair. We first
show that for every étale R-algebra R1, the map θR1 is surjective. Suppose we are given an
R-algebra map φ0 : R1 Ñ R{I. Then φ0 extends to an R{I-algebra map φ0 : R1{IR1 Ñ R{I.
Since R1{IR1 is étale over R{I, the map φ0 exhibits R{I as a direct factor of R”{IR1: that
is, it induces an isomorphism pR1{IR1qre´1s » R{I for some idempotent element e P R1{IR1.
Let e P R1 be any element lying over e. Then R1re´1s is an étale R-algebra for which the
unit map R{I Ñ R1re´1s{IR1re´1s is an isomorphism. Applying our hypothesis that pR, Iq
is a Henselian pair, we deduce the existence of an R-algebra homomorphism R1re´1s Ñ R.
Composing this with the evident map R1 Ñ R1re´1s, we obtain an R-algebra map φ : R1 Ñ R

which is a preimage of φ0 under the map θR1 .
To prove the injectivity of θR1 , suppose that we are given given two R-algebra maps

f, g : R1 Ñ R with θR1pfq “ θR1pgq. Since R1 is étale over R, the multiplication map
m : R1bRR1 Ñ R1 induces an isomorphism pR1bRR

1qre´1s » R1 for some idempotent element
e P R1 bR R

1. The maps f and g determine an R-algebra homomorphism u : R1 bR R1 Ñ R.
Since θpfq “ θpgq, the composite map u1 : R1 bR R1 Ñ RÑ R{I factors through m, so that
the image of a “ upeq P R under the quotient map R Ñ R{I is an invertible element of
R{I. Using the surjectivity of the map θRra´1s : HomRpRra

´1s, Rq Ñ HomRpRra
´1s, R{Iq,

we deduce that a is an invertible element of R. Then u factors through m, so that f “ g.
We next show that p2q implies p3q. Assume that the pair pR, Iq satisfies p2q. We first

claim that I is contained in every maximal ideal m Ď R. Suppose otherwise: then the
maximality of m implies that I ` m “ R, so we can write 1 “ a ` b where a P I and
b P m. Then the image of b in R{I is invertible, so the mapping space HomRpRrb

´1s, R{Iq

is nonempty. It follows from p2q that the mapping space HomRpRrb
´1s, Rq is nonempty, so

that b is invertible in R. This is a contradiction, since b belongs to the maximal ideal m.
Now suppose that A is an R-algebra which is freely generated as an R-module by elements

a1, . . . an P A. The multiplication on A is then given by aiaj “
ř

1ďkďn r
k
i,jak for some

structure constants rki,j P R. Set B “ Rrx1, . . . , xns{pf1, . . . , fnq where fkpx1, . . . , xnq “

xk ´
ř

i,j r
k
i,jxixj . Unwinding the definitions, we see that for any R-algebra R1, we have a

canonical bijection HomRpB,R
1q » IdempAbR R1q. From this description it follows that B

is an étale R-algebra. Applying hypothesis p2q, we deduce that the canonical map

IdempAq » HomRpB,Rq Ñ HomRpB,R{Iq » IdempA{IAq

is bijective, so that condition p3q is satisfied.
We now show that p3q implies p4q. Assume p3q is satisfied and let A be an R-algebra

which is generated as an R-module (not necessarily freely) by elements a1, . . . , an P R. We
wish to prove that the reduction map IdempAq Ñ IdempA{IAq is bijective. We first show
that it is injective. Let e and e1 be idempotent elements of A with the same image in
A{IA; we wish to prove that e “ e1. Set A1 “ A{pe´ ee1q. Then A1 is a finitely generated
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R-module and the quotient A1{IA1 vanishes (since the image of e´ ee1 vanishes in A{IA).
For every maximal ideal m of R, assumption p3q guarantees that I Ď m, so that A1{mA1 » 0.
Applying Nakayama’s lemma, we deduce that the localization A1m vanishes. Since the
maximal ideal m Ď R was chosen arbitrarily, it follows that A1 » 0. Consequently, the
idempotent e´ ee1 P A vanishes, so e “ ee1. The same argument shows that e1 “ ee1, so that
e “ e1 by transitivity.

We now prove that the reduction map IdempAq Ñ IdempA{IAq is surjective. Fix an
idempotent element e P A{IA, and lift e to an element e P A. The element e is not necessarily
idempotent, but the difference e´ e2 belongs to the ideal I. Consequently, we can write

pe´ e2qai “
ÿ

1ďjďn
ci,jaj

for some coefficients ci,j P I Ď R. Let fpxq P Rrxs be the characteristic polynomial of
the matrix

´

ci,j

¯

and set gpxq “ fpx ´ x2q, so that gpeq “ fpe ´ e2q vanishes in A. Set
A1 “ Rrxs{pgpxqq, so that the construction x ÞÑ e determines an R-algebra homomorphism
A1 Ñ A. We have a commutative diagram

IdempA1q //

��

IdempAq

��
IdempA1{IA1q ρ // IdempA{IAq

where the left horizontal map is a bijection by virtue of assumption p2q. Consequently, to
prove that e lies in the image of the right vertical map, it will suffice to show that it lies in
the image of the map ρ : IdempA1{IA1q Ñ IdempA{IAq. Because the coefficients ci,j lies in
the ideal I, we can identify A1{IA1 with the quotient pR{Iqrxs{pxnp1´ xqnq. This is clear,
since ρ factors as a composition

IdempA1{IAq ρ1
Ñ IdemppR{Iqrxs{px´ x2qq

ρ2
Ñ IdempA{IAq,

where ρ1 is bijective (since the ring homomorphism pA1{IA1 Ñ pR{Iqrxs{px´x2q has nilpotent
kernel) and the map ρ2 carries x to e.

We now complete the proof by showing that p4q implies p1q. Assume that condition
p4q is satisfied, let R1 be an étale R-algebra for which the unit map R{I Ñ R1{IR1 is an
isomorphism. We wish to show that there exists an R-algebra homomorphism φ : R1 Ñ R.
Since R1 is étale over R, it is also quasi-finite over R. Applying Theorem B.2.4.5, we
can choose an R-algebra homomorphism ρ : A Ñ R1, where A is finitely generated as
an R-module and the induced map j : SpecR1 Ñ SpecA is an open immersion of affine
schemes. Then the map ρ : A{IA Ñ R1{IR1 also induces an open immersion of affine
schemes f : SpecR1{IR1 Ñ A{IA. However, ρ is surjective (up to isomorphism, it is left
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inverse to the unit map R{I Ñ A{IA), so the map f is also a closed immersion. It follows
that we can choose an idempotent element e P A{IA for which ρ induces an isomorphism
pA{IAqre´1s Ñ R1{IR1. Using hypothesis p4q, we can lift e to an idempotent element e P A.
Replacing A by Are´1s and R1 by R1rρe´1s, we can reduce to the situation where e “ 1:
that is, the map ρ is an isomorphism.

We claim that ρ is an isomorphism. Suppose otherwise: then there exists some closed
point of x P SpecA which does not belong to the image of the open immersion j. Since
A is finitely generated as an R-module, it follows that the image of x is a closed point of
SpecR, corresponding to a maximal ideal m Ď R. Hypothesis p4q implies that the map
IdempR{mq Ñ IdempR{pI `mqq is bijective, so that I Ď m. It follows that x belongs to the
closed subscheme SpecA{I Ď SpecA, contradicting the fact that ρ is an isomorphism.

For every maximal ideal m Ď R, the preceding argument shows that I Ď m and therefore
the natural map R{m Ñ R1{mR1 is an isomorphism. Since ρ is an isomorphism, the ring
R1 is finitely generated as an R-module. Applying Nakayama’s lemma, we deduce that the
map R Ñ R1 is surjective. Since R1 is étale over R, we can write R1 “ R{pe1q for some
idempotent element e1 P R. Then e1 must belong the ideal I, and therefore to every maximal
ideal m Ď R. It follows from the idempotence of e1 that e1 “ 0. We conclude that the unit
map RÑ R1 is an isomorphism, so that there exists an R-algebra homomorphism R1 Ñ R

as desired.

B.3.3 Properties of Henselian Pairs

We now summarize some features of Henselian pairs which can be easily deduced from
Proposition B.3.2.2.

Corollary B.3.3.1. Let φ : R Ñ R1 be a homomorphism of commutative rings which
exhibits R1 as a finitely generated R-module, and let I Ď R be an ideal. If the pair pR, Iq is
Henselian, then the pair pR1, IR1q is Henselian.

Proof. Use criterion p4q of Proposition B.3.2.2.

Corollary B.3.3.2. Let R be a Henselian commutative ring and let I Ĺ R be a proper ideal.
Then the quotient R{I is also a Henselian ring.

Corollary B.3.3.3. Let R be a commutative ring containing ideals I Ď J Ď R. Suppose
that the pairs pR, Iq and pR{I, J{Iq are Henselian. Then the pair pR, Jq is Henselian.

Proof. Use criterion p2q of Proposition B.3.2.2.

Corollary B.3.3.4. Let φ : RÑ R1 be a homomorphism between local commutative rings.
Suppose that R is Henselian and that φ exhibits R1 as a finitely generated R-module. Then
R1 is Henselian.
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Proof. Let m denote the maximal ideal of R and let m1 denote the maximal ideal of R1.
Since R1 is local, we have R1 ‰ 0. Invoking Nakayama’s lemma, we deduce that mR1 Ď m1.
It follows from Corollary B.3.3.1 that the pair pR1,mR1q is Henselian. By virtue of Corollary
B.3.3.3, to prove that the pair pR1,m1q is Henselian, it will suffice to show that the pair
pR1{mR1,m1{mR1q is Henselian. Note that the quotient R1{mR1 is a local ring which is
finite-dimensional as a vector space over the field R{m, so that the maximal ideal of R1{mR1

is nilpotent. In particular, the ring R1{mR1 is complete with respect to its maximal ideal, so
that the desired result follows from Proposition B.3.1.4.

Corollary B.3.3.5. Let φ : RÑ R1 be a homomorphism between commutative rings which
exhibits R1 as a finitely generated R-module. If R is isomorphic to a finite product of
Henselian local rings, then R1 is isomorphic to a finite product of Henselian local rings.

Proof. Without loss of generality we may assume that R is a local ring with maximal ideal
m. Then A “ R1{mR1 is finite-dimensional algebra over the residue field κ “ R{m, and
therefore factors as a finite product

ś

Ai of local Artinian rings. Since R is Henselian, we
can lift the factorization A »

ś

iAi to a factorization R1 »
ś

R1i (Proposition B.3.2.2).
We now observe that each R1i is a local commutative ring which is finitely generated as an
R-module, and is therefore Henselian (Corollary B.3.3.4).

Corollary B.3.3.6. Let pR, Iq be a Henselian pair and let A be a quasi-finite R-algebra
with the property that A{IA is finite over R{I. Then A factors as a product A1 ˆA2, where
A1 is finite over R and A2{IA2 » 0.

Proof. Using Theorem B.2.4.5, we can factor φ as a composition R
φ1
Ñ B

φ2
Ñ A where B is

finite over R and φ2 induces an open immersion j : SpecpAq Ñ SpecpBq. Let U Ď |SpecpBq|
denote the image of j and let U0 Ď |SpecpB{IBq| denote its inverse image in |SpecpB{IBq|.
Since A{IA is finite over R{I, it is also finite over B{IB; it follows that U0 is a closed
and open subset of | SpecpB{IBq|, and is therefore given as the vanishing locus of some
idempotent element e P B{IB. Our assumption that pR, Iq is a Henselian pair guarantees
that we can lift e to an idempotent element e P B. Let V Ď |SpecpBq| be the vanishing locus
of e, so that V is a closed and open subset of SpecB whose intersection with | SpecpB{IBq|
is equal to U0. Then V ´ U is a closed subset of | SpecpBq| whose image under the finite
map SpecpBq Ñ SpecpRq is also closed. By construction, this image does not intersect the
vanishing locus of I, and is therefore empty (since pR, Iq is a Henselian pair). It follows that
V is contained in U , so that φ2 induces an isomorphism B{peq » A{pφ2peqq. In particular,
In particular, A{pφ2peqq is finitely generated as an R-module. We now complete the proof
by taking A1 “ A{pφ2peqq and A2 “ A{p1´ φ2peqq.
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Corollary B.3.3.7. Let pR, Iq be a Henselian pair. Then the construction A ÞÑ A{IA

induces an equivalence from the category of finite étale R-algebras to the category of finite
étale R{I-modules.

Proof. We first show that extension of scalars is fully faithful. Let A and B be finite étale
R-algebras; we wish to show that the natural map

HomCAlg♥
R
pA,Bq Ñ HomCAlg♥

R
pA,B{IBq » HomCAlg♥

R{I
pA{IA,B{IBq

is bijective. This follows immediately from the fact that the pair pA, IAq is Henselian
(Corollary B.3.3.1).

We now prove essential surjectivity. Let A0 be a finite flat pR{Iq-algebra. Using the
structure theory of étale morphisms (see Proposition B.1.1.3), we can assume that A0 “ A{IA,
where A is an étale R-algebra. Then A is quasi-finite over R, so we can use Corollary B.3.3.6
to split A as a product A1 ˆ A2, where A1 is finite (and therefore finite étale) over R and
A1{IA1 » A{IA » A0.

Corollary B.3.3.8. Let R be a Henselian local ring with maximal ideal m and let φ : RÑ A

be a quasi-finite ring homomorphism. Then we can write A “ A1 ˆ A2, where A1 is finite
over R and A2{mA2 » 0.

Proof. This is a special case of Corollary B.3.3.6, since the quasi-finite map R{mÑ A{mA

is automatically finite.

Corollary B.3.3.9. Let R be a Henselian ring. Suppose we are given a faithfully flat étale
map R Ñ R1. Then there exists an idempotent element e P R1 such that R1re´1s is local,
faithfully flat over R, and finitely generated as an R-module.

Proof. Since R1 is étale over R, it is quasi-finite over R. Using Corollary B.3.3.8, we can
reduce to the case where R1 is finite over R. Let m denote the maximal ideal of R, so that
R1{mR1 is a nonzero étale algebra over the field κ “ R{m. We can therefore choose an
idempotent element e in R1{mR1 such that pR1{mR1qre´1s is a finite separable extension of κ.
Using Proposition B.3.2.2, we can lift e to an idempotent element e P R1 having the desired
properties.

B.3.4 Henselization

Let R be a commutative ring and let I Ď R be an ideal. If R is Noetherian, then the
I-adic completion pR “ lim

ÐÝ
tR{Inu is complete with respect to the ideal pI “ I pR, so that

p pR, pIq is a Henselian pair by virtue of Hensel’s Lemma (Proposition B.3.1.4). However, the
passage from R to its completion pR is a fairly transcendental construction; in practice, it is
often more convenient to work with a much more conservative enlargement of R having the
same essential feature.
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Proposition B.3.4.1. Let R be a commutative ring and let I Ď R be an ideal. Then there
exists ring homomorphism φ : RÑ A satisfying the following conditions:

paq The pair pA, IAq is Henselian.

pbq For every R-algebra B, if the pair pB, IBq is Henselian, then there exists a unique
R-algebra homomorphism AÑ B.

Moreover, the R-algebra A has the following additional property:

pcq As an R-algebra, A can be written as a filtered colimit lim
ÝÑ

Rα, where each Rα is an
étale R-algebra for which the unit map R{I Ñ Rα{IRα is an isomorphism.

In particular, the canonical map R{I Ñ A{IA is an isomorphism.

Remark B.3.4.2. In the situation of Proposition B.3.4.1, the R-algebra A is uniquely
determined (up to unique isomorphism) by the commutative ring R and the ideal I Ď R.
We will refer to A as the Henselization of R with respect to the ideal I.

Proof of Proposition B.3.4.1. We define a category C as follows:

• The objects of C are étale R-algebras R1 for which the natural map R{I Ñ R1{IR1 is
an isomorphism.

• The morphisms of C are R-algebra homomorphisms.

The category C admits finite colimits and is therefore filtered. We let A denote the direct
limit lim

ÝÑR1PC R
1. Then A satisfies condition pcq by construction. We will show that it also

satisfies paq and pbq.
To prove paq, let B be an étale A-algebra for which the unit map A{IAÑ B{IB is an

isomorphism. We wish to prove that there exists an A-algebra homomorphism B Ñ A. Since
B is étale over A, it is finitely presented as an A-algebra. Using a direct limit argument, we
can write B “ AbR1R

2, where R1 is an object of C and R2 is an étale R1-algebra. Unwinding
the definitions, we are reduced to proving that there exists an R1-algebra homomorphism
from R2 to A. This is clear: the unit map R1{IR1 Ñ R2{IR2 is an isomorphism, so we can
regard R1 Ñ R2 as a morphism in the category C.

We now prove pbq. Let B be an arbitrary R-algebra for which pB, IBq is a Henselian
pair: we wish to prove that the map HomRpA,Bq contains a single element. Using the
definition of A as a direct limit, we are reduced to proving that the set HomRpR

1, Bq has
a single element for each R1 P C. Since B bR R1 is étale over B and the pair pB, IBq is
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Henselian, we have canonical bijections

HomRpR
1, Bq » HomBpB bR R

1, Bq

» HomBpB bR R
1, B{IBq

» HomRpR
1, B{Iq

» HomR{IpR
1{IR1, B{IBq.

These sets are singletons by virtue of our assumption that the unit map R{I Ñ R1{IR1 is
an isomorphism.

Remark B.3.4.3. The proof of Proposition B.3.4.1 shows that condition pbq follows from
paq and pcq. Consequently, to prove that a ring homomorphism φ : R Ñ A exhibits A as
the Henselization of R with respect to some ideal I Ď R, it suffices to show that φ satisfies
conditions paq and pcq.

Remark B.3.4.4. Let φ : A Ñ B be a map which exhibits B as the Henselization of A
with respect to an ideal I, and suppose we are given a pushout square

A
φ //

ψ
��

B

��
A1

φ1 // B1

where ψ exhibits A1 as a finitely generated A-module. Then φ1 exhibits B1 as the Henselization
of A1 with respect to the ideal IA1. This follows immediately from Remark B.3.4.3 and
Corollary B.3.3.1.

Corollary B.3.4.5. Let φ : R Ñ A be a quasi-finite map of commutative rings and let κ
denote a residue field of R at some prime ideal p Ď R. Then there exists a factorization of
the canonical map RÑ κ as a composition RÑ R1 Ñ κ, where R1 is étale over R, and a
decomposition of R1 bR A as a product A1 ˆA2, where A1 is a finitely generated module over
R1 and κbR1 A2 » 0.

Proof. Suppose we are given an R-algebra R1 equipped with a map ρ : R1 Ñ κ. Let us say
that R1 is good if the tensor product R1bRA (formed in the ordinary category of R-modules)
decomposes as a Cartesian product A1 ˆ A2, where A1 is a finitely generated R1-module
and κ bR1 A

2 » 0. Note that ρ is good if and only if there exists an idempotent element
e P R1bRA such that pR1bRAqre´1s is finitely generated as an R1-module and the image of
e vanishes in κbR A. From this description, it is easy to see that if R1 is given as a filtered
colimit of R-algebra homomorphisms R1α and R1 is good, then some R1α is also good.

Let S denote the Henselization of the local ring Rp with respect to its maximal ideal.
It follows from Corollary B.3.3.8 that S is good. Using Proposition B.3.4.1, we can write
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S as a filtered colimit lim
ÝÑ

Sα, where each Sα is an étale Rp-algebra. It follows that some
Sα is good. Note that we can write Sα as a tensor product Rp bR R

1 where R1 is an étale
R-algebra. Then Sα can be written as a filtered colimit of localizations R1ra´1s where a R p.
It follows that some localization R1ra´1s is good and étale over R, as desired.

Proposition B.3.4.6 (Transitivity of Henselizations). Suppose we are given homomorphisms
of commutative rings φ : AÑ B and ψ : B Ñ C and ideals I, J Ď A satisfying the following
conditions:

paq The map φ exhibits B as the Henselization of A with respect to the ideal I.

pbq The map ψ exhibits C as the Henselization of B with respect to the ideal JB.

Then the composite map pψ ˝ φq : AÑ C exhibits C as the Henselization of A with respect
to the ideal I ` J .

Proof. Let D be an A-algebra for which the pair pD, pI ` JqDq is Henselian. Then the
pairs pD, IDq and pD,JDq are also Henselian (Remark B.3.1.3). It follows from pbq that
composition with ψ induces a bijection HomApC,Dq Ñ HomApB,Dq, and it follows from
paq that the set HomApB,Dq is a singleton. Consequently, there is a unique A-algebra
homomorphism from C to D. To complete the proof, it will suffice to show that the pair
pC, pI`JqCq is Henselian. Using Corollary B.3.3.3, we are reduced to proving that the pairs
pC, JCq and pC{JC, pI ` JqC{JCq are Henselian. The first follows from pbq. To prove the
second, we note that pbq implies that the canonical map B{JB Ñ C{JC is an isomorphism.
We are therefore reduced to proving that the pair pB{JB, pI ` JqB{JBq is Henselian. This
follows from Corollary B.3.3.1, since the pair pB, IBq is Henselian by virtue of assumption
paq.

B.3.5 Strictly Henselian Rings

We now restrict our attention to a special class of Henselian rings.

Definition B.3.5.1. Let R be a commutative ring. We say that R is strictly Henselian if
R is Henselian (Definition B.3.1.1) and the residue field R{m is separably closed (where m

denotes the maximal ideal of R).

Example B.3.5.2. Let R be a strictly Henselian ring and let I Ĺ R be an ideal. Then
the quotient R{I is Henselian (Corollary B.3.3.2) with the same residue field as R, and is
therefore strictly Henselian.

Proposition B.3.5.3. Let R be a commutative ring. The following conditions are equivalent:

p1q The ring R is strictly Henselian.



1896APPENDIX B. GROTHENDIECK TOPOLOGIES IN COMMUTATIVE ALGEBRA

p2q For every finite collection of étale maps tφα : R Ñ Rαu for which the induced map
RÑ

ś

αRα is faithfully flat, one of the maps φα admits a left inverse.

Proof. Suppose first that condition p1q is satisfied, and let m denote the maximal ideal of R.
Let tφα : RÑ Rαu be as in p2q. Since the map RÑ

ś

αRα is faithfully flat, there exists
an index α such that Rα{mRα is nonzero. Since Rα is étale over R, Rα{mRα is a product
of separable field extensions of κ “ R{m. Since κ is separably closed, we can choose a map
of R-algebras θ : Rα{mÑ R{m. The assumption that R is Henselian implies that θ lifts to
a map of R-algebras Rα Ñ R, which is left inverse to φα.

Now suppose that p2q is satisfied; we wish to prove that R is strictly Henselian. We
first observe that R is nonzero (otherwise the map from R to an empty product is faithfully
flat, contradicting p2q). For every element x P R, the map R Ñ Rrx´1s ˆ Rrp1 ´ xq´1s is
faithfully flat, so condition p2q implies that either x or 1´ x is invertible in R: that is, R is
a local ring.

We now claim that R is Henselian. Let R1 be an étale R-algebra and choose a map
of R-algebras θ : R1 Ñ R{m. We wish to prove that θ can be lifted to an R-algebra map
R1 Ñ R. Let κ “ R{m, so that R1{mR1 is a product of finite separable extensions of k.
We proceed by induction on the dimension n of R1{mR1 as a κ-vector space. Note that
n ą 0, since θ induces a surjection R1{mR1 Ñ κ. It follows that R1 is faithfully flat over
R, so condition p2q implies that there is a map of R-algebras φ : R1 Ñ R. Since R1 is
étale over R, the kernel of the map φ is generated by an idempotent element e P R1. If
θpeq “ 0, then θ factors as a composition R1 φ

Ñ RÑ R{m so that φ is the desired lifting of θ.
Assume otherwise. Then θpeq “ 1 (since e is idempotent and κ is a field), so that θ factors
through the quotient R2 “ R1{p1´ eq of R1. The inductive hypothesis then implies that the
induced map R2 Ñ R{m lifts to a map of R-algebras R2 Ñ R, so that the composite map
R1 Ñ R2 Ñ R is the desired lifting of θ.

To complete the proof, we must show that the field κ “ R{m is separably closed. Assume
otherwise. Then we can choose a nontrivial finite separable extension field κ1 of κ. Without
loss of generality, κ1 is generated by a single element; we may therefore write κ1 “ κrxs{pfpxqq

for some monic polynomial f with coefficients in κ. Let fpxq be a monic polynomial with
coefficients in R which lifts f (and has the same degree as f), and let R1 “ Rrxs{pfpxqq.
Then R1 is finite as an R-module. The derivative of fpxq is invertible in R1{mR1, and
therefore (by Nakayama’s lemma) invertible in R1. It follows that R1 is faithfully flat and
étale over R. Using condition p2q, we deduce that there is a map of R-algebras R1 Ñ R.
Reducing modulo m, we obtain a map of κ-algebras κ1 Ñ κ, contradicting our assumption
that κ1 is a proper extension of κ.

It will be convenient to have the following relative formulation of Proposition B.3.5.3.
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Corollary B.3.5.4. Let φ : RÑ A be a map of commutative rings. The following conditions
are equivalent:

p1q The commutative ring A is strictly Henselian.

p2q For every finitely presented R-algebra R1 and every finite collection of étale maps
tR1 Ñ R1αu which induce a faithfully flat map R1 Ñ

ś

αR
1
α, every R-algebra map

R1 Ñ A factors through some R1α.

Proof. Assume that p1q is satisfied, and let tR1 Ñ R1αu be as in p2q. For any map R1 Ñ A,
we obtain a finite collection of étale maps tφα : A Ñ R1α bR Au which induce a faithfully
flat map AÑ

ś

αpR
1
α bR Aq. Proposition B.3.5.3 implies that one of the maps φα admits a

left inverse, which determines a map of R1-algebras from R1α into A.
Now suppose that p2q is satisfied. We will show that A satisfies the criterion of Proposition

B.3.5.3. Choose a finite collection of étale maps tA Ñ Aαu which induce a faithfully flat
map AÑ

ś

αAα. Using the structure theory for étale morphisms (Proposition B.1.1.3), we
may assume that there exists a finitely presented R-algebra R1 and étale maps R1 Ñ R1α such
that Aα » R1αbRA. Replacing R1 by a product of localizations if necessary, we may suppose
that the map R1 Ñ

ś

αR
1
α is faithfully flat. Condition p2q then guarantees the existence of

a map of R1-algebras R1α Ñ A for some α, which we can identify with an A-algebra map
from Aα into A.

B.4 The Nisnevich Topology

In [162], Nisnevich introduced the completely decomposed topology (now called the
Nisnevich topology) associated to a Noetherian scheme X of finite Krull dimension. The
Nisnevich topology on X is intermediate between the Zariski and étale topologies, sharing
some of the pleasant features of each. In this section, we will describe an analogue of the
Nisnevich topology in the non-Noetherian setting. We will restrict our attention to the case
of affine schemes; for a generalization to (spectral) algebraic spaces, see §3.7.

B.4.1 Nisnevich Coverings

In the setting of Noetherian schemes, one can define a Nisnevich covering to be a collection
of étale maps tpα : Uα Ñ Xu having the property that, for every point x P X, there exists an
index α and a point x P Uα such that pαpxq “ x and pα induces an isomorphism of residue
fields κx Ñ κx. To handle non-Noetherian situations, we need to adopt a more complicated
definition.

Definition B.4.1.1. Let R be a commutative ring. We will say that a collection of étale
ring homomorphisms tφα : RÑ RαuαPI is a Nisnevich covering of R if there exists a finite
sequence of elements a1, . . . , an P R with the following properties:
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p1q The elements a1, . . . , an generate the unit ideal in R.

p2q For 1 ď i ď n, there exists an index α and a ring homomorphism ψ which fits into a
commutative diagram

Rα
ψ

((
R

φα
??

// Rra´1
i s{pa1, . . . , ai´1q.

Remark B.4.1.2. If the commutative ring R is Noetherian, then Definition B.4.1.1 recovers
the standard definition of Nisnevich covering (see Proposition B.4.3.1).

Example B.4.1.3. For any commutative ring R, the one-element family of maps tidR :
RÑ Ru is a Nisnevich covering of R.

Example B.4.1.4. Let R be the zero ring. Then the empty collection H is a Nisnevich
covering of R (take n “ 0 in Definition B.4.1.1).

Example B.4.1.5. Let R be a commutative ring and let a1, . . . , an P R be elements which
generate the unit ideal. Then the collection of maps tR Ñ Rra´1

i su1ďiďn is a Nisnevich
covering of R. In other words, every Zariski covering of R is also a Nisnevich covering.

Remark B.4.1.6. Let R be a commutative ring. Then any Nisnevich covering tRÑ RαuαPA
of R also an étale covering: that is, there exists a finite subset A0 Ď A for which the induced
map RÑ

ś

αPA0
Rα is (étale and) faithfully flat.

Remark B.4.1.7. Let tφα : RÑ RαuαPA be a Nisnevich covering of a commutative ring R.
Suppose we are given a family of étale maps tψβ : RÑ RβuβPB with the following property:
for each α P A, there exists β P B and a commutative diagram

Rβ

!!
R

ψβ
??

φα // Rα.

Then tψβ : RÑ RβuβPB is also a Nisnevich covering of R.

Remark B.4.1.8. Let tR Ñ RαuαPA be a Nisnevich covering of a commutative ring R.
Then there exists a finite subset A0 Ď A such that tR Ñ RαuαPA0 is also a Nisnevich
covering of R.

Remark B.4.1.9. Let tRÑ RαuαPA be a Nisnevich covering of a commutative ring R, and
suppose we are given a ring homomorphism RÑ R1. Then the collection of induced maps
tR1 Ñ R1 bR RαuαPA is a Nisnevich covering of R1.
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B.4.2 The Nisnevich Site

Let R be a commutative ring. We let CAlgét
R denote the category whose objects are

étale R-algebras and whose morphisms are R-algebra homomorphisms. The collection of
Nisnevich coverings determines a Grothendieck topology on CAlgét

R :

Theorem B.4.2.1. Let R be a commutative ring. Then there exists a Grothendieck topology
on the category pCAlgét

Rq
op which can be described as follows: if A is an étale R-algebra,

then a sieve C Ď pCAlgét
Rq

op
{A » CAlgét

A is covering if and only if it contains a collection of
morphisms tAÑ Aαu which comprise a Nisnevich covering of A, in the sense of Definition
B.4.1.1.

Definition B.4.2.2. Let R be a commutative ring. We will refer to the Grothendieck
topology of Theorem B.4.2.1 as the Nisnevich topology on the category pCAlgét

Rq
op. We let

ShvNis
R denote the full subcategory of FunpCAlgét

R ,Sq spanned by those functors which are
sheaves with respect to the Nisnevich topology.

Unwinding the definitions, we see that Theorem B.4.2.1 follows from Example B.4.1.3,
Remark B.4.1.9, and the following transitivity result:

Proposition B.4.2.3. Let R be a commutative ring, and suppose we are given a Nisnevich
covering tR Ñ RαuαPA of R. Assume furthermore that for each α P A, we are given a
Nisnevich covering tRα Ñ Rα,βu. Then the family of composite maps tR Ñ Rα,βu is a
Nisnevich covering of R.

The proof of Proposition B.4.2.3 will require some preliminaries.

Lemma B.4.2.4. Let R be a commutative ring and let tRÑ RαuαPA be a collection of étale
maps. Suppose that there exists a nilpotent ideal I Ď R such that the family of induced maps
tR{I Ñ Rα{IRαuαPA is a Nisnevich covering of R{I. Then tR Ñ RαuαPA is a Nisnevich
covering of R.

Proof. Choose a sequence of elements a1, . . . , an P R which generate the unit ideal in R{I

and a collection of commutative diagrams

Rαi
φi

((
R

??

// pR{Iqra´1
i s{pa1, . . . , ai´1q.

Since each Rαi is étale over R and I is a nilpotent ideal, we can lift φi to an R-algebra map
ψi : Rαi Ñ Rra´1

i s{pa1, . . . , ai´1q. Let J denote the ideal pa1, . . . , anq; since the ai generate
the unit ideal in R{I, we have I ` J “ R. It follows that R Ď pI ` Jqm Ď Im ` J for every
integer n. Choosing n sufficiently large, we have Im “ 0 so that R “ J ; this proves that
tRÑ RαuαPA is a Nisnevich covering of R.
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Lemma B.4.2.5. Let R be a commutative ring containing an element x. A collection of
étale maps tRÑ RαuαPA is a Nisnevich cover of R if and only if the following conditions
are satisfied:

p1q The maps tR{xRÑ Rα{xRαuαPA are a Nisnevich cover of the quotient ring R{xR.

p2q The maps tRrx´1s Ñ Rαrx
´1suαPA are a Nisnevich cover of the commutative ring

Rrx´1s.

Proof. The necessity of conditions p1q and p2q follows from Remark B.4.1.9. For the converse,
suppose that conditions p1q and p2q are satisfied. Using p2q, we deduce that there exists a
sequence of elements a1, a2, . . . , an P Rrx

´1s which generates the unit ideal, a sequence of
indices α1, . . . , αn P A, and a sequence of commutative diagrams

Rαirx
´1s

φi

))
Rrx´1s

99

// Rrpxaiq
´1s{pa1, . . . , ai´1q.

Multiplying each ai by a sufficiently large power of x, we may assume that ai is the image of
an element ai P R. Let J denote the ideal pxa1, . . . , xanq Ď R. Since the ai generate the unit
ideal in Rrx´1s, the ideal J contains xk for k " 0. It follows that x generates a nilpotent
ideal in R{J . Using p1q and Lemma B.4.2.4, we deduce that the maps tR{J Ñ Rα{JRαuαPA
determine a Nisnevich covering of R{J . We may therefore choose elements b1, . . . , bm P R
which generate the unit ideal in R{J together with commutative diagrams

Rβj{JRβj
ψj

))
R{J

::

// Rr´1
j s{pJ ` pb1, . . . , bj´1qq.

Then the sequence xa1, xa2, . . . , xan, b1, . . . , bm generates the unit ideal in R; using the maps
tφiu1ďiďn and tψju1ďjďm, we see that the family of maps tRÑ Rαu determines a Nisnevich
covering of R.

Proof of Proposition B.4.2.3. Let tRÑ RαuαPA be a Nisnevich covering of a commutative
ring R, and suppose that for each α P A we are given a Nisnevich covering tRα Ñ Rα,βu.
Choose a sequence a1, . . . , an P R which generate the unit ideal and commutative diagrams

Rαi

((
R

??

// Rra´1
i s{pa1, . . . , ai´1q.



B.4. THE NISNEVICH TOPOLOGY 1901

We prove by induction on n that the maps tR Ñ Rα,βu form a Nisnevich covering of
R. If n “ 0, then the unit ideal and zero ideal of R coincide, so that R » 0 and the
result is obvious (Example B.4.1.4 and Remark B.4.1.7). Otherwise, we may assume by
the inductive hypothesis that the family of maps tR{a1R Ñ Rα,β{a1Rα,βu is a Nisnevich
covering of R{a1R. According to Lemma B.4.2.5, it will suffice to show that the maps
tRra´1

1 s Ñ Rα,βra
´1
1 su are a Nisnevich covering of Rra´1

1 s. Using Remark B.4.1.9, we see
that tRra´1

1 s Ñ Rra´1
1 s bRα1

Rα1,βu is a Nisnevich covering; the desired result now follows
from Remark B.4.1.7.

B.4.3 The Noetherian Case

For every commutative ring R, we let | SpecR| denote the Zariski spectrum of R: this is
a topological space whose points are prime ideals p Ă R (Example 1.1.1.2). For each point
p P |SpecR|, we let κppq denote the fraction field of the quotient R{p.

Proposition B.4.3.1. Let R be a Noetherian ring, and suppose we are given a collection
of étale maps tφα : RÑ RαuαPA. The following conditions are equivalent:

p1q The maps tRÑ RαuαPA determine a Nisnevich covering of R.

p2q For every p P |SpecR|, there exists an index α P A and a prime ideal q P |SpecRα|
such that p “ φ´1

α q and the induced map κppq Ñ κpqq is an isomorphism.

Proof. We first show that p1q ñ p2q (which does not require our assumption that R is
Noetherian). Choose a sequence of elements a1, . . . , an P R which generate the unit ideal
and a collection of commutative diagrams

Rαi

((
R

??

// Rra´1
i s{pa1, . . . , ai´1q.

Let p be a prime ideal of R. Since p ‰ R, there exists an integer i ď n such that a1, . . . , ai´1 P

p but ai R p. Then p is the inverse image of a prime ideal p1 P Rra´1
i s{pa1, . . . , ai´1q, which

also has an inverse image q P |SpecRαi |. We have a commutative diagram of fields

κpqq

##
κppq

<<

// κpp1q.

Since the lower horizontal map is an isomorphism, we conclude that κppq » κpqq.
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Now suppose that p2q is satisfied; we will prove p1q. Let X be the collection of all ideals
I Ď R for which the maps tR{I Ñ Rα{IRαuαPA do not form a Nisnevich covering of R{I;
we will prove that X is empty. Otherwise, X contains a maximal element I (since R is
Noetherian). Replacing R by R{I, we may assume that X does not contain any nonzero
ideal of R. Let J be the nilradical of R. Since R is Noetherian, J is nilpotent. If J ‰ 0,
then J R X and assertion p1q follows from Lemma B.4.2.4. We may therefore assume that
J “ 0; that is, the ring R is reduced.

If R “ 0 there is nothing to prove. Otherwise, since R is Noetherian, it contains finitely
many associated primes η0, η1, . . . , ηk. Reordering if necessary, we may assume that η0 is not
contained in ηi for i ą 0. Choose an element x P R which belongs to η1 X ¨ ¨ ¨ X ηk but not
to η0. Then x ‰ 0, so the principal ideal pxq does not belong to X. Using Lemma B.4.2.5,
we can replace R by Rrx´1s and thereby reduce to the case where R is a reduced ring with
a unique associated prime, and therefore an integral domain.

Let κ denote the fraction field of R. Using assumption p2q, we conclude that there exists
an index α P A and a prime ideal q Ď Rα such that φ´1

α q “ p0q Ď R and κpqq » κ. In
particular, we have an R-algebra map Rα Ñ κpqq Ñ κ. Since Rα is finitely presented as
an R-algebra, this map factors through Rry´1s Ď κ for some nonzero element y P R. It
follows that the single map tRry´1s Ñ Rαry

´1su is a Nisnevich covering of Rry´1s. Since the
principal ideal pyq does not belong to X, Lemma B.4.2.5 implies that the maps tRÑ RαuαPA
is a Nisnevich covering of R, as desired.

Remark B.4.3.2. Let R “ lim
ÝÑγ

Rpγq be a filtered colimit of commutative rings Rpγq, and
suppose we are given a Nisnevich covering tR Ñ RαuαPA where the set A is finite (by
virtue of Remark B.4.1.8, this assumption is harmless). Then there exists an index γ and a
Nisnevich covering tRpγq Ñ RpγqαuαPA such that Rα » RbRpγq Rpγqα for each α P A.

Remark B.4.3.3. The theory of Nisnevich coverings (as set forth in Definition B.4.1.1) is
uniquely determined by Remark B.4.3.2, Remark B.4.1.8, and Proposition B.4.3.1. That is,
suppose we are given a commutative ring R and a collection of étale maps tRÑ RαuαPA.
We can realize R as a filtered colimit of subrings which are finitely generated over Z, and
therefore Noetherian. It follows that tRÑ RαuαPA is a Nisnevich covering of R if and only
if there exists a finite subset A0 Ď A, a subring R1 Ď R which is finitely generated over Z,
and a collection of étale maps tR1 Ñ R1αuαPA0 satisfying condition p2q of Proposition B.4.3.1,
such that Rα » RbR1 R

1
α for α P A0.

B.4.4 Points of the Nisnevich Topology

Let R be a commutative ring and let ShvNis
R denote the associated8-category of Nisnevich

sheaves (see Definition B.4.2.2). Our next goal is to describe the 8-category Fun˚pShvNis
R ,Sq

of points of the 8-topos ShvNis
R . First, we need to introduce some definitions.
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Definition B.4.4.1. Let R be a commutative ring and let A be a commutative R-algebra.
We will say that A is Ind-étale if it can be written as a filtered colimit lim

ÝÑ
Rα, where each

Rα is an étale R-algebra. We will say that A is a Henselization of R if it is Ind-étale over R
and is a Henselian local ring. We let CAlgHens

R denote the full subcategory of CAlg♥
R spanned

by the Henselizations of R.

Warning B.4.4.2. The terminologies of Definition B.4.4.1 and Remark ?? are not quite
compatible. If R is a commutative ring and I Ď R is an ideal, then the Henselization of
R with respect to I (in the sense of Remark ??) is an Ind-étale R-algebra, but usually
not a Henselian ring unless the ideal I Ď R is maximal. On the other hand, not every
Henselization A of R (in the sense of Definition B.4.4.1) arises from the construction of
Proposition B.3.4.1.

Remark B.4.4.3. Let R be a commutative ring. Every étale R-algebra A is finitely
presented, and is therefore compact when viewed as an object of the category CAlg♥

R of
commutative R-algebras (or even the 8-category CAlgR of E8-algebras over R). It follows
that the inclusion CAlgét

R ãÑ CAlgR extends to a fully faithful embedding IndpCAlgét
Rq ãÑ

CAlgR, whose essential image is spanned by those R-algebras which are Ind-étale in the
sense of Definition B.4.4.1.

Theorem B.4.4.4. Let R be a commutative ring, and let O denote the commutative ring
object of ShvNis

R given by OpAq “ A. Then evaluation on O induces an equivalence of
8-categories Fun˚pShvNis

R ,Sq Ñ CAlgHens
R .

The content of Theorem B.4.4.4 lies in the following analogue of Corollary B.3.5.4 for
the Nisnevich topology:

Proposition B.4.4.5. Let R be a commutative ring. The following conditions are equivalent:

p1q The ring R is Henselian.

p2q For every Nisnevich covering tφα : RÑ Rαu of R, one of the morphisms φα admits a
left inverse.

Proof. We first show that p1q ñ p2q. Assume that R is a local Henselian ring with maximal
ideal m, and let κ “ R{m denote the residue field of R. Suppose we are given a Nisnevich
covering tR Ñ Rαu. We wish to prove that one of the spaces HomRpRα, Rq is nonempty.
Since R is Henselian, this is equivalent to showing that one of the mapping spaces

HomRpRα, κq » HomκpRα bR κ, κq

is nonempty. This follows immediately from Proposition B.4.3.1, since the collection of maps
tκÑ Rα bR κu form a Nisnevich covering of the field κ.
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Now suppose that p2q is satisfied; we will prove p1q. If R “ 0, then the empty set is
a Nisnevich covering of R, contradicting assumption p2q. If x P R, then the pair of maps
tRÑ Arx´1s, AÑ Arp1´xq´1su determines a Nisnevich covering of R. It then follows from
p2q that either x or 1´ x is invertible in R. This proves that R is a local ring; let m denote
its maximal ideal. Let A be an étale R-algebra and suppose we are given a R-algebra map
φ0 : AÑ R{m; we wish to show that φ0 can be lifted to a R-algebra map AÑ R. Replacing
A by a localization if necessary, we may assume that φ0 is the only R-algebra map from A

to R{m. In this case, it suffices to show that the map RÑ A admits a left inverse. Since
A is finitely presented as an R-algebra, we can lift φ0 to a map φ1 : AÑ R{I, where I is
a proper ideal generated by finitely many elements x1, . . . , xn P R. By construction, the
collection of maps tR Ñ Rrx´1

i s, R Ñ Au is a Nisnevich covering of R. Note that since
xi P I Ď m, there cannot exist an R-algebra map Rrx´1

i s Ñ A. Using p2q, we deduce the
existence of an R-algebra map AÑ R, as desired.

Proof of Theorem B.4.4.4. Theorem HTT.5.1.5.6 and Proposition HTT.6.1.5.2 supply an
equivalence of Fun˚pFunpCAlgét

R ,Sq,Sq with the 8-category IndpCAlgét
Rq, which we can

identify with the full subcategory of CAlgR spanned by those R-algebras which are Ind-étale
over R (Remark B.4.4.3). Combining this observation with Proposition HTT.6.2.3.20 , we
can identify Fun˚pShvNis

R ,Sq with the full subcategory of CAlgR spanned by those Ind-étale
R-algebras which satisfy condition p2q of Proposition B.4.4.5. By virtue of Proposition
B.4.4.5, this full subcategory coincides with CAlgHens

R .

B.4.5 Classification of Henselizations

Let R be a commutative ring. Using Theorem B.4.4.4, we can obtain a very explicit
description of the Kan complex Fun˚pShvNis

R ,Sq» of points of the 8-topos ShvNis
R .

Notation B.4.5.1. LetR be a commutative ring. We define a subcategory Fieldsep
R Ď CAlg♥

R

as follows:

• The objects of Fieldsep
R are ring homomorphisms φ : R Ñ κ which exhibit κ as a

separable algebraic extension of some residue field of R.

• The morphisms in Fieldsep
R are given by isomorphisms of R-algebras.

Let R be commutative ring and let A be a Henselization of R (in the sense of Definition
B.4.4.1). Then A is a local ring with maximal ideal m. Since A is Ind-etale over R, the
residue field A{m is a separable algebraic extension of the residue field κppq at some prime
ideal p Ď R. The construction A ÞÑ A{m determines a functor Φ : pCAlgHens

R q» Ñ Fieldsep
R .

Proposition B.4.5.2. Let R be a commutative ring. Then the functor Φ : pCAlgHens
R q» Ñ

Fieldsep
R is an equivalence of categories.
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Remark B.4.5.3. Let R be an E8-ring. Proposition B.4.5.2 asserts that every separable
extension κ of every residue field of R has the form A{m, for some Henselian ring A which
is Ind-étale over R. We will refer to A as the Henselization of R at κ.

Proof of Proposition B.4.5.2. We first prove that Φ is fully faithful. Let A and A1 be
Henselizations of R, let m Ď A and m1 Ď A1 denote maximal ideals, and set κ “ A{m and
κ1 “ A1{m1. Unwinding the definitions, we must show that every R-algebra isomorphism
of κ with κ1 can be lifted uniquely to an R-algebra isomorphism of A with A1. Since A is
Henselian, we have

HomRpR
1, Aq » HomApR

1bRA,Aq » HomApR
1bRA, κq » HomκpR

1bRκ, κq » HomRpR
1, κq

for every étale R-algebra R1. Passing to filtered colimits, we deduce that the restriction map
HomRpR

1, Aq Ñ HomRpR
1, κq is bijective whenever R1 is Ind-etale over R. In particular,

every R-algebra homomorphism φ0 : κ1 Ñ κ induces a map A1 Ñ κ1
φ0
Ñ κ, which lifts uniquely

to an R-algebra homomorphism φ : A1 Ñ A. If φ0 is invertible, the same argument shows
that φ´1

0 lifts to an R-algebra map ψ : AÑ A1. The compositions φ ˝ ψ and ψ ˝ φ lift the
identity maps from κ and κ1 to themselves; by uniqueness we deduce that φ ˝ ψ “ idA and
ψ ˝ φ “ idA1 . It follows that φ is an isomorphism of R-algebras.

We now prove that Φ is essentially surjective. Let κ P Fieldsep
R , and let C denote the

category whose objects are étale R-algebras R1 equipped with an R-algebra homomorphism
εR1 : R1 Ñ κ. The category C admits finite colimits, and is therefore filtered. We let
A “ lim

ÝÑpR1,εR1 qPC R
1, so that A is an Ind-étale R-algebra. By construction, we have a

canonical map ε : A Ñ κ. This implies in particular that A ‰ 0. We next claim that A
is a local ring with maximal ideal m “ kerpεq. To prove this, choose an arbitrary element
x R m; we will show that x is invertible in A. To prove this, choose a representation of
x as the image of an element x0 P R

1, for some étale R-algebra R1 equipped with a map
εR1 : R1 Ñ κ. Then εR1px0q “ εpxq ‰ 0, so that εR1 factors through R1rx´1

0 s. It follows that
the map R1 Ñ A also factors through R1rx´1

0 s, so that the image of x0 in A is invertible.
We now claim that ε induces an isomorphism A{m Ñ κ. This map is injective by

construction. To prove the surjectivity, choose an arbitrary element y P κ; we will prove
that y belongs to the image of ε. Since κ is a separable algebraic extension of some residue
field of R, the element y satisfies a polynomial equation fpyq “ 0 where the coefficients of f
lie in R, and the discriminant ∆ of f invertible in κ. Then R1 “ RrY,∆´1s{pfq is an étale
R-algebra equipped with a map R1 Ñ κ given by Y ÞÑ y. It follows that y belongs to the
image of ε as desired.

To complete the proof, it will suffice to show that the local ring A is Henselian. Let
B be an étale A-algebra equipped with an A-algebra homomorphism f0 : B Ñ κ; we wish
to prove that f0 can be lifted to a map f : B Ñ A. Using the structure theory of étale
morphisms (Proposition B.1.1.1), we can write B “ AbR1 B0, where R1 is an étale R-algebra
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equipped with a map εR1 : R1 Ñ κ, and B0 is étale over R1. Then f0 determines a map
B0 Ñ κ extending εR1 . It follows that the canonical map R1 Ñ A factors through B0; this
factorization determines a map B Ñ A having the desired properties.

B.5 Nisnevich Excision

Let R be a commutative ring and let ShvNis
R denote associated 8-category of Nisnevich

sheaves (see Definition B.4.2.2). In this section, we will prove a version of a result of
Morel and Voevodsky (see [157]) which characterizes ShvNis

R as the full subcategory of
FunpCAlgét

R ,Sq spanned by those functors F which possess a certain excision property
(Theorem B.5.0.3). We will follow a particularly convenient formulation given by Asok,
Hoyois, and Wendt ([7]), which allows us to stay entirely within the world of affine schemes.

Definition B.5.0.1. Let R be a commutative ring and let F : CAlgét
R Ñ S be a functor.

We will say that F satisfies Nisnevich excision if the following conditions are satisfied:

p1q The space F p0q is contractible.

p2q Let φ : A Ñ A1 be a morphism of étale R-algebras which induces an isomorphism
A{paq Ñ A1{paq for some element a P A (which, by abuse of notation, we will identify
with its image in A1). Then the diagram of spaces

F pAq //

��

F pA1q

��
F pAra´1sq // F pA1ra´1sq

is a pullback square in S.

Remark B.5.0.2. Let R be a commutative ring. The collection of all functors F : CAlgS
R Ñ

S satisfying Nisnevich excision is closed under small limits and filtered colimits.

We can now state the main result of this section:

Theorem B.5.0.3 (Morel-Voevodsky, Asok-Hoyois-Wendt). Let R be a commutative ring
and let F : CAlgét

R Ñ S be a functor. Then F is a sheaf with respect to the Nisnevich
topology (Definition B.4.2.2) if and only if it satisfies Nisnevich excision.

Corollary B.5.0.4. Let R be a commutative ring. Then the full subcategory ShvNis
R Ď

FunpCAlgét
R,Sq is closed under filtered colimits.

Proof. Combine Theorem B.5.0.3 with Remark B.5.0.2.
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B.5.1 Non-Affine Excision

Let R be a commutative ring. We let Schét
R denote the category of R-schemes which

are quasi-compact, separated, and étale over R. For every object X P Schét
R , we let

hX : CAlgét
R Ñ S denote the functor given by hXpAq “ HomSchét

R
pSpecA,Xq. Note that

hX is a sheaf (of sets) with respect to the Nisnevich topology, and that hX satisfies affine
Nisnevich excision (Definition B.5.0.1). For any functor F : CAlgét

R Ñ S, we will abuse
notation by writing F pXq for the mapping space MapFunpCAlgét

R ,Sq
phX ,F q. Note that F pXq

can be regarded as a contravariant functor of X, and that F pSpecAq » F pAq when A is
an étale R-algebra (the value of F on more general R-schemes is obtained from the original
functor F : CAlgét

R Ñ S by means of right Kan extension along the fully faithful embedding
Spec : CAlgét

R Ñ pSchét
Rq

op). The first step in the proof of Theorem B.5.0.3 is to show that
this extension process behaves nicely with respect to excision:

Proposition B.5.1.1. Let R be a commutative ring and let F : CAlgét
R Ñ S be a functor.

The following conditions are equivalent:

p1q The functor F satisfies Nisnevich excision (Definition B.5.0.1).

p2q Suppose we are given a pullback diagram

U 1 //

��

X 1

p

��
U

j // X

in Schét
R, where p is affine, j is an open immersion, and p induces an isomorphism

pX ´ Uq ˆX X 1 Ñ pX ´ Uq, where pX ´ Uq denotes the complement of U (endowed
with the reduced scheme structure). Then the diagram of spaces

F pU 1q F pX 1qoo

F pUq

OO

F pXq

OO

oo

is a pullback square.

Remark B.5.1.2. In the statement of condition p2q of Proposition B.5.1.1, the hypothesis
that p is affine is not important.

The proof of Proposition B.5.1.1 will require some preliminaries.

Lemma B.5.1.3. [7] Let A be a commutative ring containing a pair of ideals I and J ,
and suppose we are given an étale ring homomorphism φ : A Ñ A1 which induces an
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isomorphism A{pI ` Jq Ñ A1{pI ` JqA1. Then there exists a commutative diagram of étale
ring homomorphisms

A
ψ //

φ
��

B

φ1

��
A1

φ1 // B1

where ψ induces an isomorphism A{I Ñ B{IB and φ1 induces an isomorphism B{JB Ñ

B1{JB1.

Proof. Let B denote the Henselization of A with respect to the ideal I (see Proposition B.3.4.1
and Remark B.3.4.2) and let B1 denote the Henselization of B with respect to the ideal JB.
Applying Proposition B.3.4.6, we can identify B with the Henselization of A with respect to
the ideal I ` J . Consequently, the assumption that the map A{pI ` Jq Ñ A1{pI ` JqA1 is
an isomorphism guarantees that there exists an A-algebra homomorphism ρ : A1 Ñ B

1 (this
follows from the construction of the Henselization given in the proof of Proposition B.3.4.1).

SinceB1 is the Henselization ofB with respect to the ideal JB, we can writeB1 as a filtered
colimit lim

ÝÑ
B
1

α, where each B1α is an étale B-algebra for which the map B{JB Ñ B
1

α{JB
1

α is
an isomorphism. Because A1 is finitely presented as an A-algebra, the map ρ factors through
some map ρα : A1 Ñ B

1

α.
Write B as the colimit of a diagram tBβuβPP indexed by a direct partially ordered

set P , where each Bβ is an étale A-algebra for which the map A{I Ñ Bβ{IBβ is an
isomorphism. Using the structure theory of étale morphisms (see Proposition B.1.1.3),
we can write B1α “ B bBβ B

1

α,β for some β P P , where B1α,β is étale over Bβ. Then we
can write B1α as a filtered colimit lim

ÝÑβ1ěβ
Bβ1 bBβ

B
1

α,β. Enlarging β if necessary, we may
assume that ρα factors through an A-algebra map φ1 : A1 Ñ B1α,β and that the natural map
Bβ{JBβ Ñ B

1

α,β{JB
1

α,β is an isomorphism. It follows that the commutative diagram

A
φ //

��

Bβ

��

A1
φ1 // B

1

α,β

has the desired properties.

Proof of Proposition B.5.1.1. Note that condition p1q of Proposition B.5.1.1 can be identified
with the special case of p2q where X “ SpecA and U “ SpecAra´1s for some element a P A.
Consequently, the implication p2q ñ p1q is immediate from the definitions. To prove the
converse, let us assume that F satisfies Nisnevich excision. Let p : X 1 Ñ X be an affine
morphism in Schét

R , and let U be a quasi-compact open subscheme of X. We will say that p
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is U -good if the diagram of spaces

F pXq //

��

F pX 1q

��
F pUq // F pU ˆX X 1q

is a pullback square. To establish p2q, we must show that p : X 1 Ñ X is U -good whenever
the induced map X 1ˆX pX ´Uq Ñ X ´U is an isomorphism. The proof proceeds in several
steps.

paq Let p : X 1 Ñ X be an affine morphism in Schét
R and let U Ď X be a quasi-compact

open subscheme. Suppose that, for every map SpecAÑ X in Schét
R , the induced map

pA : X 1ˆX SpecAÑ SpecA is pU ˆX SpecAq-good. Then p is U -good. To prove this,
write the functor hX : CAlgét

R Ñ S as a colimit lim
ÝÑ

G α, where each G α : CAlgét
R Ñ S

is corepresented by an object of CAlgét
R . Set X “ FunpCAlgét

R ,Sq. Unwinding the
definitions, we see that p is U -good if and only if the diagram of spaces τ :

MapX plimÝÑG α,F q //

��

MapX pplimÝÑG αq ˆhX hU ,F q

��
MapX pplimÝÑG αq ˆhX hX 1 ,F q

//MapX pplimÝÑG αq ˆhX hU 1 ,F q

is a pullback square, where U 1 “ U ˆX X 1. Because colimits in X are universal, we
can write the preceding diagram as a limit of diagrams τα:

MapX pG α,F q //

��

MapX pG αˆhXhU ,F q

��
MapX pG αˆhXhX 1 ,F q

//MapX pG αˆhXhU 1 ,F q.

Choosing an object A P CAlgét
R which corepresents the functor G α, the desired result

follows from our assumption that the map pA : X 1 ˆX SpecA Ñ SpecA is pU ˆX
SpecAq-good.

pbq Let p : X 1 Ñ X be an affine morphism in Schét
R , let a P ΓpX;OXq be a global function

on X, and let U Ď X be the open subscheme on which the function a does not vanish.
Suppose that p induces an isomorphism X 1 ˆX pX ´ Uq Ñ X ´ U . Then p is U -good.
To prove this, we can use paq to reduce to the case where X “ SpecA is affine, so
that a can be regarded as an element of the ring A. Since p is affine, we can write
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X 1 “ SpecA1. Unwinding the definitions, we wish to show that the diagram

F pAq //

��

F pA1q

��
F pAra´1sq // F pA1ra´1sq

is a pullback square, which follows from our assumption that F satisfies Nisnevich
excision.

pcq Let p : X 1 Ñ X be an affine morphism in Schét
R , let U Ď V Ď X be quasi-compact

open subschemes, set U 1 “ U ˆX X 1 and V 1 “ V ˆX X 1, and let pV : V 1 Ñ V be the
projection map. Suppose that pV is U -good. Then p is U -good if and only if p is
V -good. To prove this, we note that there is a commutative diagram

F pXq //

��

F pV q //

��

F pUq

��
F pX 1q // F pV 1q // F pU 1q.

Our assumption that pV is U -good guarantees that the right square is a pullback, so
that the left square is a pullback if and only if the outer square is a pullback.

pdq Let φ : A Ñ A1 be a morphism of étale R-algebras. Let U Ď SpecA be the open
subscheme complementary to the vanishing locus of a finitely generated ideal I Ď A.
Suppose that there exists an element a P I for which φ induces an isomorphism
A{paq Ñ A1{paq. It follows from pbq that the maps

Specpφq : SpecA1 Ñ SpecA SpecpφqU : U ˆSpecA SpecA1 Ñ U

are V -good, where V “ SpecAra´1s. Applying pcq, we deduce that the map Specpφq :
SpecA1 Ñ SpecA is U -good.

peq Let p : X2 Ñ X 1 and q : X 1 Ñ X be affine morphisms in Schét
R and let U Ď X be a

quasi-compact open subscheme. Suppose that p is pU ˆX X 1q-good. Then q is U -good
if and only if pq ˝ pq : X2 Ñ X is U -good. To prove this, we observe that there is a
commutative diagram

F pXq //

��

F pUq

��
F pX 1q //

��

F pU ˆX X 1q

��
F pX2q // F pU ˆX X2q,
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where the bottom square is a pullback by virtue of our assumption that p is pU ˆXX 1q-
good. It follows that the upper square is a pullback if and only if the outer rectangle
is a pullback.

pfq We now treat the general case. Let p : X 1 Ñ X be an affine morphism in Schét
R and

let U Ď X be a quasi-compact open subscheme for which p induces an isomorphism
X 1ˆX pX´Uq Ñ X´U . We wish to prove that p is U -good. Using paq, we can reduce
to the case where X “ SpecA is affine, so that we can identify X 1 with SpecA1 for
some étale A-algebra A1. Since U Ď SpecA is quasi-compact, we can choose a finitely
generated ideal I Ď A such that U is the complement of the vanishing locus of I.
Choose a set of generators a1, . . . , an for the ideal I. Our assumption on p guarantees
that the map A{I Ñ A1{IA1 is an isomorphism. Applying Lemma B.5.1.3 repeatedly,
we deduce that there is a sequence of étale morphisms

A “ A0 Ñ A1 Ñ ¨ ¨ ¨ Ñ An,

which induce isomorphisms Ai´1{paiq Ñ Ai{paiq for i ď n and an A-algebra homomor-
phism ρ : A1 Ñ An. It follows from pdq that each of the morphisms SpecAi`1 Ñ SpecAi
is pU ˆX SpecAiq-good. Applying peq repeatedly, we deduce that the composite map
q : SpecAn Ñ X is U -good. Set A1i “ A1 bA Ai. Repeating the preceding argument,
we deduce that the map q1 : SpecA1n Ñ X 1 is pUˆXX 1q-good. We have a commutative
diagram

SpecA1n
q1 //

p1

��

X 1

p

��
SpecAn

q // X

is a pullback. The ring homomorphism ρ determines a map s : SpecAn Ñ SpecA1n
which is a section of p1 Since p1 is étale, the map s is the inclusion of a direct
summand: in particular, it induces an isomorphism from SpecAn to the open subscheme
V Ď SpecA1n complementary to the vanishing locus of an idempotent element e P A1n.
Since p1 and s are isomorphisms away from the inverse image of U , we have e Ď IA1n.
Applying pdq, we deduce that the map s is pU ˆX A1nq-good. Since the identity map
id : SpecAn Ñ SpecAn is pU ˆX SpecAnq-good, it follows from peq that the map
p1 is pU ˆX SpecAnq-good. Applying peq again, we deduce that the composition
pq ˝p1q : SpecA1n Ñ X is U -good. Using the equality q ˝p1 “ p ˝ q1, another application
of peq shows that p is U -good, as desired.
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B.5.2 Weak Connectivity

Our strategy for proving Theorem B.5.0.3 is to use formal arguments to reduce to the
following special case:

Proposition B.5.2.1. Let R be a Noetherian ring of finite Krull dimension, let X P Schét
R,

and let θ : F Ñ hX be a natural transformation of functors F , hX : CAlgét
R Ñ S. Assume

that F satisfies Nisnevich excision and that θ exhibits hX as the sheafification of F with
respect to the Nisnevich topology. Then θ admits a section.

Our proof of Proposition B.5.2.1 involves some auxiliary considerations. We begin by
introducing a “perverse” connectivity condition on S-valued sheaves.

Notation B.5.2.2. Let X be a Noetherian scheme. For every point x P X, we let htpxq
denote the dimension of the local ring OX,x. Note that if X “ SpecR is the spectrum of a
commutative ring R, then htpxq is the height of the prime ideal p Ď R corresponding to x.

Definition B.5.2.3. Let R be a Noetherian ring, let X P Schét
R , and suppose are given a

map θ : F Ñ hX in FunpCAlgét
R ,Sq. For every morphism f : U Ñ X in Schét

R , let F f pUq

denote the fiber product F pUq ˆhXpUq tfu. Let n ě ´1 be an integer. We will say that θ is
weakly n-connective if if the following condition is satisfied:

p˚q Let f : U Ñ X be a morphism in Schét
R , let x P U be a point, and suppose we

are given a map of spaces Sk Ñ F f pUq, where ´1 ď k ă n ´ htpxq. Then there
exists a map g : U 1 Ñ U in Schét

R and a point x1 P U with gpx1q “ x such that
g induces an isomorphism of residue fields κpxq Ñ κpx1q and the composite map
Sk Ñ F f pUq Ñ F f˝gpU

1q is nullhomotopic (when k “ ´1, this means that F f˝gpU
1q

is nonempty).

Remark B.5.2.4. In the situation of Definition B.5.2.3, suppose that θ : F Ñ hX is weakly
n-connective. For every morphism U Ñ X in Schét

R , the pullback map F ˆhXhU Ñ hU is
also weakly n-connective.

We now summarize some of the features of Definition B.5.2.3 that will be used in the
proof of Theorem B.5.0.3.

Lemma B.5.2.5. Let R be a Noetherian ring, let X P Schét
R, let θ : F Ñ hX be a morphism

in FunpCAlgét
R,Sq, and let n ě 0 be a nonnegative integer. Then θ is weakly n-connective if

and only if the following conditions are satisfied:

p1q For every map f : U Ñ X in Schét
R and every point x P U of height ď n, there exists a

map g : U 1 Ñ U in Schét
R and a point x1 P U 1 such that x “ gpx1q, the map of residue

fields κpxq Ñ κpx1q is an isomorphism, and F f˝gpU
1q is nonempty.
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p2q If n ą 0, then for every pair of maps hU Ñ F , hV Ñ F in FunpCAlgét
R,Sq, the

induced map
hU ˆF hV Ñ hU ˆhX hV » hUˆXV

is pn´ 1q-connective.

Proof. Suppose first that θ is weakly n-connective. Condition p1q is obvious (take k “ ´1 in
Definition B.5.2.3). To prove p2q, assume that n ą 0 and that we are given maps α : hU Ñ F ,
β : hV Ñ F . We wish to show that the map θ1 : hU ˆF hV Ñ hUˆXV satisfies condition p˚q
of Definition B.5.2.3. To this end, suppose we are given a map f : W Ñ U ˆX V in Schét

R ,
a point x P W , and a map of spaces η : Sk Ñ F 1

f pW q, where F 1 “ hU ˆF hV such that
´1 ď k ă n ´ 1 ´ htpxq. Let f 1 be the induced map W Ñ X. Note that F 1

f pW q can be
identified with the space of paths joining the two points of F f 1pW q determined by α and
β. Consequently, η determines a map η0 : Sk`1 Ñ F f 1pW q. Using our assumption that θ
is weakly n-connective, we can choose a map g : W 1 Ñ W and a point x1 P W 1 such that
gpx1q “ x, κpxq » κpx1q, and the composite map

Sk`1 η0
Ñ F f 1pW q Ñ F f 1˝gpW

1q

is nullhomotopic. Since F 1
f˝gpW

1q is homotopy equivalent to the space of paths in F f 1˝gpW
1q

joining the points determined by α and β, we deduce that the composite map Sk
η
Ñ

F 1
f pW q Ñ F 1

f˝gpW
1q is also nullhomotopic, as desired.

Now suppose that conditions p1q and p2q are satisfied. We must show that θ satisfies
condition p˚q of Definition B.5.2.3. Choose a map f : U Ñ X in Schét

R , a point x P U ,
and a map of spaces η : Sk Ñ F f pUq, where ´1 ď k ă n´ htpxq. We wish to prove that
there exists a map g : U 1 Ñ U and a point x1 P U 1 such that gpx1q “ x, κpxq » κpx1q, and
the composite map Sk Ñ F f pUq Ñ F f˝gpU

1q is nullhomotopic. If k “ ´1, this follows
from condition p1q. Otherwise, we can write Sk as a homotopy pushout ˚

š

Sk´1 ˚. Then η

determines a pair of maps α, β : hU Ñ F such that θ ˝ α and θ ˝ β are induced by f . Let
F 1 “ hU ˆF hU . The restriction of η to the equator of Sk gives a map Sk´1 Ñ F 1

δpUq,
where δ : U Ñ U ˆX U is the diagonal map. Using condition p2q, we deduce the existence of
a map g : U 1 Ñ U and a point x1 P U 1 such that gpx1q “ x, κpxq » κpx1q, and the induced
map Sk´1 Ñ F 1

δpUq Ñ F 1
δgpU

1q is nullhomotopic. Unwinding the definitions, we deduce
that Sk Ñ F f pUq Ñ F f˝gpU

1q is nullhomotopic, as desired.

Lemma B.5.2.6. Let R be a Noetherian ring, let X P Schét
R, and let θ : F Ñ hX be a

morphism in FunpCAlgét
R,Sq. Suppose that θ exhibits hX as the sheafification of F with

respect to the Nisnevich topology. Then θ is weakly n-connective for each n ě 0.

Proof. The proof proceeds by induction on n. We will show that θ satisfies the criteria
of Lemma B.5.2.5. Condition p1q follows immediately from our assumption that θ is an
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effective epimorphism after Nisnevich sheafificiation. To verify p2q, we may assume that
n ą 0. Choose maps hU Ñ F and hV Ñ F . Since sheafification is left exact, the induced
map θ1 : hU ˆF hV Ñ hUˆXV exhibits hUˆXV as the sheafification of hU ˆF hV with
respect to the Nisnevich topology. It follows from the inductive hypothesis that θ1 is weakly
pn´ 1q-connective, as desired.

Lemma B.5.2.7. Let R be a Noetherian ring, let X P Schét
R, and let θ : F Ñ hX be a weakly

n-connective morphism in C “ FunpCAlgcn
R ,Sq. Assume that F satisfies Nisnevich excision.

Then there exists a finite set of points x1, . . . , xm P X of height ą n and a commutative
diagram

F
θ

!!
hU

>>

// hX

where U “ X ´
Ť

1ďiďm txiu.

Proof. The proof proceeds by induction on n. When n “ ´1, we take x1, . . . , xm to be the
set of generic points of X, so that U “ H and the existence of the desired map hU Ñ F

follows from our assumption that F p0q is contractible. Assume now that n ě 0 and that
the result is known for the integer n´ 1, so that we can choose a commutative diagram

F
θ

!!
hU

φ
>>

// hX

where U “ X ´
Ť

1ďiďm txiu where the points xi have height ě n. Reordering the points
xi if necessary, we may assume that x1, x2, . . . , xk have height n while xk`1, . . . , xm have
height ą n. We assume that this data has been chosen so that k is as small as possible.
We will complete the induction by showing that k “ 0. Otherwise, the point x1 has height
n. Since θ is weakly n-connective, there exists a map f : X 1 Ñ X and a point x1 P X 1

such that fpx1q “ x1, κpxq » κpx1q, and F f pX
1q is nonempty. We may therefore choose a

commutative diagram
F

θ

!!
hX 1

ψ
==

f // hX

Replacing X 1 by an open subset if necessary, we may suppose that f induces an isomorphism
from f´1tx1u to an open subset V Ď tx1u (here we endow these closed subsets with the
reduced scheme structure). Set U 1 “ U ˆX X 1. Our maps φ : hU Ñ F and ψ : hX 1 Ñ F

determine a map θ1 : hU ˆF hX 1 Ñ hU 1 . Using Lemma B.5.2.5, we see that θ1 is weakly



B.5. NISNEVICH EXCISION 1915

pn´ 1q-connective. Applying the inductive hypothesis, we deduce that there exists a finite
collection of points y1, . . . , ym1 P U

1 of height ě n and a commutative diagram

hU ˆF hX 1

%%
hW //

99

hU 1 ,

where W is the open subscheme U 1 ´
Ť

tyju of U 1. Replacing X 1 by the open subscheme
X 1 ´

Ť

tyju (which contains x1, since x1 is a point of height n and therefore cannot lie in
the closure of any other point of height n), we may assume that W “ U 1, so that the maps
hU

φ
Ñ F

ψ
Ð hX 1 induce homotopic maps from hU 1 into F . Shrinking X 1 further if necessary,

we may assume that X 1 is affine (so that the map X 1 Ñ X is affine). Regard U Y V as an
open subscheme of X; since F satisfies Nisnevich excision, the diagram

F pU Y V q //

��

F pX 1q

��
F pUq // F pU 1q

is a pullback square in S (Proposition B.5.1.1). It follows that φ extends to a map φ1 fitting
into a commutative diagram

F
θ

!!
hUYV

φ1
<<

// hX ,

contradicting the minimality of k.

Proof of Proposition B.5.2.1. Combine Lemmas B.5.2.6 and B.5.2.7.

Remark B.5.2.8. Using Lemma B.5.2.7, one can show that if R is a Noetherian ring of
Krull dimension ď n, then the 8-topos ShvNis

R has homotopy dimension ď n. We will prove
a more general version of this assertion in §3.7 (see Theorem 3.7.7.1).

B.5.3 The Proof of Theorem B.5.0.3

We now explain how to deduce Theorem B.5.0.3 from Proposition B.5.2.1. Our first
step is to show that it suffices to treat the case where the commutative ring R is finitely
generated over Z (and therefore a Noetherian ring of finite Krull dimension). This requires
a brief digression about functoriality.
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Notation B.5.3.1. Let f : R1 Ñ R be a homomorphism of commutative rings. Then f

induces determines a pushforward functor f˚ : FunpCAlgét
R ,Sq Ñ FunpCAlgét

R1 ,Sq, given by
the formula pf˚F qpAq “ F pR1 bR Aq.

Lemma B.5.3.2. Let R be a commutative ring and let F : CAlgét
R Ñ S be a functor. The

following conditions are equivalent:

p1q The functor F is a sheaf with respect to the Nisnevich topology.

p2q For every homomorphism of commutative rings f : R1 Ñ R, the direct image f˚F P

FunpCAlgét
R1 ,Sq is a sheaf for the Nisnevich topology.

p3q For every homomorphism of commutative rings f : R1 Ñ R where R1 is finitely
generated the direct image f˚F P FunpCAlgét

R1 ,Sq is a sheaf for the Nisnevich topology.

Proof. The implications p1q ñ p2q ñ p3q are obvious. The implication p3q ñ p1q follows
from the criterion of Proposition A.3.3.1, since for every étale ring homomorphism RÑ A

which exhibits A as a Nisnevich covering of R, we can write A “ RbR0 A0 for some finitely
generated subring R0 Ď R, where A0 is an étale R0-algebra which is a Nisnevich covering of
R0.

Lemma B.5.3.3. Let R be a Noetherian ring of finite Krull dimension, let X P Schét
R, and

let θ : F Ñ hX be a morphism in C “ FunpCAlgét
Rq,Sq. Assume that F satisfies Nisnevich

excision and that θ exhibits hX as the Nisnevich sheafification of F . Then the mapping
space MapC{hX

phX ,F q is contractible.

Proof. We will prove by induction on k that the mapping space MapC{hX
phX ,F q is k-

connective. If k ą 0, then it suffices to show that for every pair of maps f, g : hX Ñ F in
C{hX , the mapping space MapC{hX

phX , hX ˆF hXq is pk´ 1q-connective, which follows from
our inductive hypothesis (and the left exactness of sheafification). It will therefore suffice to
treat the case k “ 0, which follows from Proposition B.5.2.1.

Proof of Theorem B.5.0.3. Suppose first that F : CAlgét
R is a sheaf with respect to the

Nisnevich topology: we claim that F satisfies Nisnevich excision. Using Example B.4.1.4,
we see that the empty sieve is a covering of the zero ring 0 P CAlgét

R , so that the space F p0q
is contractible. To verify the second condition of Definition B.5.0.1, let us suppose we are
given a morphism φ : AÑ A1 of étale R-algebras and an element a P A for which φ induces
an isomorphism A{paq Ñ A1{paq. We wish to show that the diagram

F pAq //

��

F pA1q

��
F pAra´1sq // F pA1ra´1sq
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is a pullback square.
Let C Ď CAlgét

A be the sieve generated by the morphisms AÑ A1 and AÑ Ara´1s. By
assumption, this sieve is covering for the Nisnevich topology, so the assumption that F is
a sheaf for the Nisnevich topology guarantees that the natural map F pAq Ñ lim

ÐÝ
F |C is a

homotopy equivalence.
Let A‚ denote the augmented cosimplicial object of CAlgét

R given by the Čech nerve of
φ, so that A´1 » A and A0 » A1. Localizing with respect to the element a P A “ A´1

gives a map of augmented cosimplicial R-algebras A‚ Ñ A‚ra´1s, which we identify with a
functor ρ : ∆`ˆ∆1 Ñ CAlgét

R . Let J Ď ∆`ˆ∆1 be the subcategory obtained by omitting
the initial object, so that we can identify ρ with a functor ρ1 : J Ñ CAlgét

A . Note that
ρ1 factors through C. We claim that the map φ1 : J Ñ C is right cofinal. We will prove
this using the criterion of Theorem HTT.4.1.3.1 : it suffices to show that if B is an étale
A-algebra which belongs to the sieve C, then the 8-category J ˆC C{B is weakly contractible.
Note that the projection map J ˆC C{B Ñ J is a right fibration which is classified by the
functor ψ : J op Ñ S given by the formula ψprns, iq “ MapCAlgét

A
pψprns, iq, Bq. By virtue of

Proposition HTT.3.3.4.5 , the statement that J ˆC C{B is weakly contractible is equivalent
to the statement that the colimit lim

ÝÑ
ψ P S is contractible. There are two cases to consider:

piq Suppose that the image of a P A is an invertible element of B. Then the canonical map
MapCAlgét

A
pAnra´1s, Bq Ñ MapCAlgét

A
pAn, Bq is invertible for n ě 0, so the functor ψ

is a left Kan extension of its restriction to p∆`ˆt1uqop Ď J op. This subcategory
has a final object pr´1s, 1q, so we can identify lim

ÝÑ
ψ with the space ψpr´1s, 1q “

MapCAlgét
A
pAra´1s, Bq, which is contractible.

piiq Suppose that the image of p˚q in pbq is not invertible. Then the mapping space
MapCAlgét

A
pAnra´1s, Bq is empty for each n ě 0, so the functor ψ is a left Kan exten-

sion of its restriction to the subcategory p∆ˆt0uqop Ď J op. We can therefore identify
lim
ÝÑ
pψq with the geometric realization of the simplicial space X‚ “ MapCAlgét

A
pA‚, Bq

Note that X‚ is the Čech nerve of the map MapCAlgét
A
pA1, Bq Ñ ˚, and is therefore con-

tractible (since the assumptions that B P C and MapCAlgét
A
pAra´1s, Bq “ H guarantee

that MapCAlgét
A
pA1, Bq is nonempty).

Consider the maps F pAq Ñ lim
ÐÝJPJ F pρpJqq Ñ lim

ÐÝBPC F pBq. Since ρ is right cofinal,
the second map is a homotopy equivalence. Since F is a Nisnevich sheaf, the composite map
is a homotopy equivalence. It follows that F ˝ρ is a limit diagram in S. We have a canonical
isomorphism J » p∆opˆ∆1q

š

∆opˆt0up∆
op
` ˆt0uq. Applying the results of §HTT.4.2.3 to

this decomposition, we obtain an equivalence

lim
ÐÝ
JPJ

F pρpJqq » F pAra´1sq ˆlim
ÐÝ

F pA‚ra´1sq lim
ÐÝ

F pA‚q.
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Consider the diagram

F pAq //

��

lim
ÐÝ

F pA‚q //

��

F pA1q

��
F pAra´1sq // lim

ÐÝ
F pA‚ra´1sq // F pA1ra´1sq.

The above argument shows that the square on the left is a pullback. We wish to show that
the outer square is a pullback. It will therefore suffice to show that the square on the right
is a pullback. We can identify this square with a limit of diagrams σn :

F pAnq //

��

F pA1q

��
F pAnra´1sq // F pA1ra´1sq

induced by the multiplication m : An » A1 bA ¨ ¨ ¨ bA A
1 Ñ A. Since A1 is étale over A,

the map m exhibits A1 as a direct factor of An: that is, we have a product decomposition
An » A1 ˆB for some auxiliary factor B. Because F commutes with finite products (since
it is Nisnevich sheaf; see Proposition A.3.3.1), we can identify σn with the diagram

F pA1q ˆF pBq //

��

F pA1q

��
F pA1ra´1sq ˆF pBra´1sq // F pA1ra´1sq

To show that this diagram is a pullback square, it will suffice to show that the localization
map B Ñ Bra´1s is an isomorphism. This follows from our assumption that φ induces
an isomorphism A{paq Ñ A1{paq (which guarantees that m has the same property, so that
B{paq » 0). This completes the proof that every Nisnevich sheaf satisfies Nisnevich excision.

We now prove the converse. Suppose that F : CAlgét
R satisfies Nisnevich excision. We

will prove that F is a sheaf for the Nisneivch topology. Using Lemma B.5.3.2, we can reduce
to the case where the commutative ring R is finitely generated; in particular, we may assume
that R is a Noetherian ring of finite Krull dimension. Let F 1 be the sheafification of F

with respect to the Nisnevich topology. The first part of the proof shows that F 1 satisfies
Nisnevich excision. We will show that for each X P Schét

R , the map F pXq Ñ F 1pXq is a
homotopy equivalence. Fix a point η P F 1pXq, corresponding to a map hX Ñ F 1. Then
the homotopy fiber of F pXq Ñ F 1pXq over the point η can be identified with the space of
sections of the induced map θ : F ˆF 1hX Ñ hX . Note that F ˆF 1hX satisfies Nisnevich
excision (Remark B.5.0.2) and that θ exhibits hX as the Nisnevich sheafification of F ˆF 1hX
(since sheafification is left exact). The desired result now follows from Lemma B.5.3.3.
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B.6 Topologies on Ring Spectra

In §A.3, we described a general paradigm for producing examples of Grothendieck
topologies on 8-categories. In this section, we will apply this paradigm to describe several
different topologies on (the opposite of) the 8-category CAlg of E8-rings.

B.6.1 The Flat Topology

Let φ : AÑ B be a morphism of E8-rings. Recall that φ is said to be flat if the following
conditions are satisfied:

piq The underlying ring homomorphism π0AÑ π0B exhibits π0B as a flat A-module.

piiq The morphism φ induces an isomorphism of graded rings

pπ0Bq bπ0A pπ˚Aq Ñ π˚B.

We refer the reader to §HA.7.2.2 for a more extensive discussion of flat morphisms of
E8-rings (as well as several reformulations of the preceding definition).

Definition B.6.1.1. Let φ : A Ñ B be a morphism of E8-rings. We will say that f is
faithfully flat if it satisfies the following conditions:

pi1q The underlying map of commutative rings π0AÑ π0B is faithfully flat, in the sense of
classical commutative algebra.

piiq The morphism φ induces an isomorphism of graded rings

pπ0Bq bπ0A pπ˚Aq Ñ π˚B.

Remark B.6.1.2. Let f : AÑ B be a faithfully flat morphism of E8-rings. A morphism
M Ñ N of A-modules is an equivalence if and only if the induced map M bA B Ñ N bA B

is an equivalence. This follows immediately from Corollary HA.7.2.1.22 .

Proposition B.6.1.3. Let R be an E8-ring. Then there exists a Grothendieck topology
on the 8-category CAlgop

R which can be characterized as follows: if A is an E8-algebra
over R, then a sieve C Ď pCAlgop

R q{A » CAlgop
A is a covering if and only if it contains a

finite collection of morphisms tAÑ Aiu1ďiďn for which the induced map AÑ
ś

1ďiďnAi is
faithfully flat.

Remark B.6.1.4. We will refer to the Grothendieck topology of Proposition B.6.1.3 as the
fpqc topology on CAlgop

R . We will often abuse terminology by referring to the fpqc topology
on the 8-category CAlgR, rather than its opposite category.
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Warning B.6.1.5. Let R be an E8-ring. Then the 8-category CAlgop
R is not small. Conse-

quently, though it makes sense to consider the8-category ShvfpqcpCAlgop
R q Ď FunpCAlgR,Sq

of S-valued sheaves on CAlgop
R , it is not clear that ShvfpqcpCAlgop

R q is a localization of
FunpCAlgR,Sq. In concrete terms, the danger is that the process of sheafification with
respect to the fpqc topology might produce spaces which are not essentially small.

Proof of Proposition B.6.1.3. Let S be the collection of faithfully flat morphisms in CAlgop
R .

We will show that S satisfies each of the hypotheses of Proposition A.3.2.1:

paq The collection of faithfully flat morphisms in CAlgR contains all equivalences and is
stable under composition. The first assertion is obvious. To prove the second, consider
a pair of faithfully flat morphisms A f

Ñ B
g
Ñ C; we wish to prove that g ˝f is faithfully

flat. The underlying map π0AÑ π0C is a composition of faithfully flat morphisms of
commutative rings, and therefore faithfully flat. The map Torπ0A

0 pπ0C, πiAq Ñ πiC

factors as a composition

Torπ0A
0 pπ0C, πiAq » Torπ0B

0 pπ0C,Torπ0A
0 pπ0B, πiAqq

α
Ñ Torπ0B

0 pπ0C, πiBq
β
Ñ πiC.

The map α is an isomorphism because f is faithfully flat, and the map β is an
isomorphism because g is faithfully flat.

pbq It is clear that the 8-category CAlgop
R admits pullbacks (the 8-category CAlgR of

E8-rings is presentable and therefore admits all small limits and colimits). It therefore
suffices to show that if we are given a diagram A1

g
Ð A

f
Ñ B, where f is faithfully flat,

then the induced map A1 Ñ BbAA
1 is faithfully flat. Since B is flat over A, Proposition

HA.7.2.2.13 guarantees that the canonical maps γi : Torπ0A
0 pπ0B, πiA

1q Ñ πipBbAA
1q

is an isomorphism. Taking i “ 0, we deduce that π0pBbAA
1q is a pushout of π0B and

π0A
1 over π0A, and therefore faithfully flat over π0A

1. Moreover, the canonical map

Torπ0A1

0 pπ0pB bA A
1q, πiA

1q Ñ πipB bA A
1q

factors as a composition

Torπ0A1

0 pπ0pB bA A
1q, πiA

1q
γ´1

0
» Torπ0A1

0 pTorπ0A
0 pπ0A

1, π0Bq, πiA
1q

» Torπ0A
0 pπ0B, πiA

1q

γi
Ñ πipB bA A

1q.

and is therefore an isomorphism.
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pcq It is clear that the category CAlgop
R admits finite coproducts, which are given by

products of the corresponding E8-algebras over R. We must show that if we are
given a finite collection of faithfully flat morphisms Ai Ñ Bi and we define A “

ś

iAi
and B “

ś

iBi, then the induced map A Ñ B is also faithfully flat. We have
π0A “

ś

i π0Ai and π0B »
ś

i π0Bi. Since a product of faithfully flat morphisms of
commutative rings is faithfully flat, we deduce that the map π0AÑ π0B is faithfully
flat. For the other homotopy groups, we have

πnB »
ź

i

pπnBiq

»
ź

i

Torπ0Ai
0 pπ0Bi, πnAiq

» Tor
ś

i π0Ai
0 p

ź

i

π0Bi,
ź

i

πnAiq

» Torπ0A
0 pπ0B, πnAq

as required.

pdq Given a finite collection of morphisms AÑ Ai and a morphism AÑ B in CAlgR, we
must show that the canonical map

p
ź

i

Aiq bA B Ñ
ź

i

pAi bA Bq

is an equivalence of E8-rings. We will show that this map is an equivalence in the
8-category of B-modules. For this, it suffices to observe that the functor F : ModA Ñ
ModB given by M ÞÑMbAB preserves finite limits. The functor F evidently preserves
small colimits, and therefore also finite limits because the 8-categories ModA and
ModB are stable (Proposition HA.1.1.4.1 ).

Remark B.6.1.6. Let R be an E8-ring. The 8-category CAlgop
R satisfies the additional

hypothesis peq (disjointness of coproducts) appearing in Proposition A.3.3.1. In other words,
for any pair of E8-rings A and B, the relative tensor product A bAˆB B is vanishes. To
prove this, we observe that the identity element of π0pAˆBq » π0Aˆπ0B can be written as
a sum e` e1, where e “ p1, 0q and e1 “ p0, 1q. The image of e is trivial in π0B, and the image
of e1 is trivial in π0A. It follows that e and e1 both have trivial image in the commutative
ring R “ π0pAbAˆB Bq, so that 1 “ 0 in R. Since every homotopy group of AbAˆB B is a
module over R, each of these groups is trivial.

Variant B.6.1.7. Let R be a connective E8-ring. Then Proposition B.6.1.3 has an obvious
analogue for the 8-category CAlgcn

R of connective E8-algebras over R, which can be proven
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in exactly the same way. We will refer to the resulting Grothendieck topology on pCAlgcn
R q

op

also as the fpqc topology.

B.6.2 The (Small) Étale and Nisnevich Sites

Let R be an E8-ring. We let CAlgét
R denote the full subcategory of CAlgR spanned by

the étale R-algebras. We have the following analogue of Proposition B.6.1.3:

Proposition B.6.2.1. Let R be an E8-ring. Then there exists a Grothendieck topology
on the 8-category pCAlgét

Rq
op which can be characterized as follows: if A is an E8-algebra

over R, then a sieve C Ď pCAlgét
Rq

op
{A » pCAlgét

Aq
op is a covering if and only if it contains a

finite collection of morphisms tAÑ Aiu1ďiďn for which the induced map AÑ
ś

1ďiďnAi is
faithfully flat.

Proof. It will suffice to show that the collection of faithfully flat étale morphisms in pCAlgét
Rq

op

satisfies hypotheses paq through pdq of Proposition A.3.2.1, which follows immediately from
the proof of Proposition B.6.1.3 (together with the observation that the forgetful functor
CAlgét

R Ñ CAlg preserves pushouts and finite products).

Definition B.6.2.2. Let R be an E8-ring. We will refer to the Grothendieck topology
described in Proposition B.6.2.1 as the étale topology on pCAlgét

Rq
op. We let Shvét

R denote
the full subcategory of FunpCAlgét

R ,Sq spanned by those functors which are sheaves for the
étale topology. We will refer to Shvét

R as the 8-topos of étale sheaves over R.

Remark B.6.2.3. Let R be an E8-ring, let C be an 8-category, and let F : CAlgop
R Ñ C

be a functor. Suppose that F is a C-valued sheaf for the fpqc topology of Proposition
B.6.1.3. Then, for every E8-algebra A over R, the composite map

FA : CAlgét
A Ñ CAlgR

F
Ñ C

is a C-valued sheaf for the étale topology of Proposition B.6.2.1. Moreover, if F is hyper-
complete, then each FR is hypercomplete. This follows immediately from the criteria given
in Propositions A.3.3.1 and A.5.7.2.

Variant B.6.2.4. Let R be an E8-ring. Then there exists a Grothendieck topology on the
8-category pCAlgét

Rq
op which can be characterized as follows: if A is an E8-algebra over

R, then a sieve C Ď pCAlgét
Rq

op
{A » pCAlgét

Aq
op is a covering if and only if it contains a finite

collection of morphisms tAÑ Aiu1ďiďn for which the the underlying ring homomorphisms
tπ0AÑ π0Aiu form a Nisnevich covering (Definition B.4.1.1).

Proof. By virtue of Theorem HA.7.5.0.6 we can assume without loss of generality that R is
discrete, in which case the desired result was established as Theorem ??.
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Definition B.6.2.5. Let R be an E8-ring. We will refer to the Grothendieck topology
described in Variant B.6.2.4 as the Nisnevich topology on pCAlgét

Rq
op. We let ShvNis

R denote
the full subcategory of FunpCAlgét

R ,Sq spanned by those functors which are sheaves for the
Nisnevich topology. We will refer to ShvNis

R as the 8-topos of Nisnevich sheaves over R.

Remark B.6.2.6. For any E8-ring R, the étale topology on pCAlgét
Rq

op is a refinement
of the Nisnevich topology on pCAlgét

Rq
op (see Remark B.4.1.6). In particular, we have

Shvét
R Ď ShvNis

R .

Remark B.6.2.7. Let R be an E8-ring. According to Theorem HA.7.5.0.6 , the functor
A ÞÑ π0A determines an equivalence from the 8-category CAlgét

R to the ordinary category
CAlgét

π0R of étale algebras over the commutative ring π0R. Under this equivalence, the étale
and Nisnevich topologies on CAlgét

R correspond to the étale and Nisnevich topologies on
CAlgét

π0R. We therefore have equivalences of 8-categories Shvét
R » Shvét

π0R and ShvNis
R »

ShvNis
π0R. In particular, the 8-topoi Shvét

R and ShvNis
R are both 1-localic.

B.6.3 The Finite Flat Topology

We now study a variant of Definition B.6.2.2, where we impose descent only for morphisms
which are finite flat.

Proposition B.6.3.1. Let f : AÑ A1 be a map of E1-rings which exhibits A1 as a flat left
A-module. The following conditions are equivalent:

p1q The map f exhibits π0A
1 as a finitely presented left module over π0A.

p2q The map f exhibits π0A
1 as a finitely generated projective left module over π0A.

p3q The map f exhibits τě0A
1 as a finitely generated projective left module over τě0A.

Proof. The equivalence p2q ô p3q follows from Proposition HA.7.2.2.18 . The implication
p2q ñ p1q is obvious. Conversely, suppose that π0A

1 is finitely presented as a left π0A-module.
Since π0A

1 is flat over π0A, Lazard’s theorem (Theorem HA.7.2.2.15 ) guarantees that π0A
1

can be realized as a filtered colimit lim
ÝÑ

Mα of finitely generated free left modules over π0A.
It follows that the isomorphism π0A

1 » lim
ÝÑ

Mα factors through some Mα, so that π0A
1

is a retract of Mα (as a left π0A
1-module) and is therefore a finitely generated projective

module.

Definition B.6.3.2. We say that a morphism f : A Ñ A1 of E8-rings is finite flat if it
satisfies the equivalent conditions of Proposition B.6.3.1. We say that f is finite étale if it is
both finite flat and étale.
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Warning B.6.3.3. The terminology of Definition B.6.3.2 is potentially misleading: in
classical commutative algebra, a flat morphism f : AÑ A1 which exhibits A1 as a finitely
generated A-module need not be finite flat. For example, suppose that X is a Stone space
(Definition A.1.6.8) containing a point x, let A be the ring of locally constant C-valued
functions on X, and let e : AÑ C be the map given by evaluation at x. Then e is surjective
and flat, but is finite flat only if x is an isolated point of X.

Remark B.6.3.4. Let f : A Ñ A1 be an étale map of E8-rings. If f exhibits π0A
1 as a

finitely generated module over π0A, then it is finite étale. To prove this, it suffices to show
that π0A

1 is finitely presented as a module over π0A (Proposition B.6.3.1). It follows from
the structure of étale algebras (Proposition B.1.1.3) that there exists a finitely generated
subring R Ď π0A and an étale R-algebra R1 such that π0A

1 » π0A bR R
1. Enlarging R if

necessary, we can ensure that R1 is a finitely generated R-module. Since R is Noetherian,
the algebra R1 is finitely presented as an R-module. It follows that π0A

1 is finitely presented
as a π0A-module.

We now summarize some of the permanence properties enjoyed by the class of finite flat
morphisms:

Lemma B.6.3.5. p1q Every equivalence f : AÑ A1 of E8-rings is finite flat.

p2q The collection of finite flat morphisms in CAlg is closed under composition.

p3q Suppose we are given a pushout diagram of E8-rings

A
f //

��

A1

��
B

g // B1.

If f is finite flat, then g is finite flat.

p4q Given a finite collection fi : Ai Ñ A1i of finite flat morphisms, the induced map
ś

iAi Ñ
ś

iA
1
i is finite flat.

Proposition B.6.3.6. Let R be an E8-ring. Then there exists a Grothendieck topology on
the 8-category pCAlgét

Rq
op which can be characterized as follows: if A is an E8-algebra over

R, then a sieve C Ď pCAlgét
Rq

op
{A » pCAlgét

Aq
op is a covering if and only if it contains a finite

collection of morphisms tAÑ Aiu1ďiďn for which the induced map AÑ
ś

1ďiďnAi is finite
flat and faithfully flat.

Proof. Let S be the collection of all morphisms in CAlgét
R which are finite flat and faithfully

flat. To prove Proposition B.6.3.6, it will suffice to show that S satisfies conditions paq
through pdq of Proposition A.3.2.1. This follows immediately from Lemma B.6.3.5 and the
proof of Proposition B.6.1.3.
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We will refer to the Grothendieck topology of Proposition B.6.3.6 as the finite étale
topology on pCAlgét

Rq
op.

B.6.4 A Criterion for Étale Descent

We can now state the main result of this section:

Theorem B.6.4.1. Let R be an E8-ring and let F : CAlgét
R Ñ S be a functor. Then F is

a sheaf with respect to the étale topology if and only if the following conditions are satisfied:

p1q The functor F is a sheaf with respect to the Nisnevich topology.

p2q The functor F is a sheaf with respect to the finite étale topology.

Remark B.6.4.2. Let R be an E8-ring, let C “ pCAlgét
Rq

op, and let X denote the full
subcategory of PpCq “ FunpCop,Sq spanned by those functors F : CAlgét

R Ñ S which are
sheaves with respect to the Nisnevich and finite étale topologies. It follows from Lemma
HTT.6.3.3.4 that X is an accessible left exact localization of PpCq. Since X can be obtained
as S´1 PpCq where S consists of monomorphisms, we deduce from Proposition HTT.6.2.2.17
that X “ ShvpCq, where we regard C as endowed with the coarsest Grothendieck topology
which is finer than both the Nisnevich and finite étale topologies.

Proof of Theorem B.6.4.1. The “only if” direction is obvious. To prove the converse, set
C “ pCAlgét

Rq
op, and regard C as endowed with the coarsest Grothendieck topology which is

finer than both the Nisnevich and finite étale topologies. We wish to show that X “ ShvpCq
is contained in the 8-category of étale sheaves on C. Let L : FunpCAlgét

R ,Sq Ñ X be a left
adjoint to the inclusion, and let j : pCAlgét

Rq
op Ñ FunpCAlgét

R ,Sq be the Yoneda embedding.
Since the fpqc topology on CAlg is subcanonical (Theorem D.6.3.5), the functor j takes
values in X . Using Proposition HTT.6.2.3.20 , we are reduced to proving the following: for
every collection of morphisms tR1 Ñ Rαu which generate a covering sieve with respect to
the étale topology, the induced map θ :

š

α jpRαq Ñ jpR1q is an effective epimorphism in X .
Without loss of generality we may replace R by R1, and thereby reduce to the case where
jpR1q is a final object of X .

Note that the Grothendieck topology on C is finitary (see Definition A.3.1.1); consequently,
to prove that θ is an effective epimorphism in X , it will suffice to prove that η˚pθq is an
effective epimorphism in S, for every geometric morphism η˚ : X Ñ S (Theorem A.4.0.5).
The map η˚ determines a geometric morphism η1˚ : ShvppCAlgét

Rq
opq Ñ S. According to

Corollary ??, the point η1˚ is determined by a Henselian R-algebra A which is a filtered
colimit lim

ÝÑ
Aβ of étale R-algebras Aβ. In particular, A is local. It follows that there exists

an index α such that the induced map AÑ AbR Rα is faithfully flat. We will complete the
proof by showing that η˚jpRαq is nonempty.
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According to Corollary B.3.3.9, there exists an idempotent element e P π0pA bR Rαq

such that A1 “ pAbR Rαqre´1s is a faithfully flat finite étale A-algebra. Consequently, there
exists an index β and an idempotent eβ P π0pAβ bRRαq such that A1β “ pAβ bRRαqre

´1
β s is

a faithfully flat finite étale Aβ-algebra. It follows that the map jpA1βq Ñ jpAβq is an effective
epimorphism in X . Since η˚jpAβq can be identified with MapCAlgRpAβ, Aq ‰ H, we conclude
that η˚jpA1βq is nonempty. The map Rα Ñ A1β induces a map of spaces η˚jpA1βq Ñ η˚jpRαq,
so that η˚jpRαq is nonempty as desired.

We also have the following companion to Theorem B.6.4.1:

Theorem B.6.4.3. Let R be an E8-ring, let LNis : FunpCAlgét
R,Sq Ñ ShvNis

R be a left adjoint
to the inclusion functor (given by sheafification with respect to the Nisnevich topology), and
let F : CAlgét

R Ñ S be a sheaf with respect to the finite étale topology. Assume that F is
n-truncated for some n ě 0. Then LNis F is a sheaf with respect to the étale topology.

Remark B.6.4.4. Let R be an E8-ring and let

LNis, Lfét, Lét : FunpCAlgét
R ,Sq Ñ FunpCAlgét

R ,Sq

denote the functors given by sheafification with respect to the Nisnevich, finite étale, and
étale topologies, respectively. For any functor F : CAlgét

R Ñ S, we have a canonical map
ρ : LNispLfét F q Ñ Lét F (since the étale topology refines both the Nisnevich and finite
étale topologies), which is an Lét-equivalence. If F is truncated, then Theorem B.6.4.3
implies that the domain of ρ is an étale sheaf, so that ρ is an equivalence. In other words,
to sheafify a (truncated) presheaf F with respect to the étale topology, we can first sheafify
with respect to the finite étale topology and then with respect to the Nisnevich topology.

Warning B.6.4.5. In the situation of Remark B.6.4.4, we also have a natural map ρ1 :
LfétpLNis F q Ñ Lét F , but the map ρ1 is generally not an equivalence (the functor Lfét
usually does not preserve the class of Nisnevich sheaves).

We will deduce Theorem B.6.4.3 from the following general observation:

Lemma B.6.4.6. Let f : AÑ B be a finite morphism of commutative rings, and let

LA : FunpCAlgét
A ,Sq Ñ ShvNis

A LB : FunpCAlgét
B,Sq Ñ ShvNis

B

be left adjoint to the inclusion functors. Suppose that F : CAlgét
B Ñ S is a functor which

commutes with finite products and that F is n-truncated for some n " 0. Then the Beck-
Chevalley morphism ρ : LApf˚F q Ñ f˚pLB F q is an equivalence in the 8-category ShvNis

A .

Proof of Lemma B.6.4.6. We will show that if F : CAlgét
B Ñ S is any functor which com-

mutes with finite products, then the Beck-Chevalley morphism θ : LApf˚F q Ñ f˚pLB F q
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is 8-connective. In the case where F is n-truncated, the domain and codomain of θ will
also be n-truncated, so that θ will be an equivalence as desired.

Since the Nisnevich topology is finitary, the hypercompletion of the 8-topos ShvNis
A

has enough points (Theorem A.4.0.5). It will therefore suffice to show that η˚pθq is a
homotopy equivalence for every geometric morphism η˚ : ShvNis

A Ñ S. Using Theorem
B.4.4.4, we can identify the point η˚ P Fun˚pShvNis

A ,Sq with a Henselization A of A: that is,
a local Henselian ring A which can be written as the colimit of a filtered diagram tAαu in
CAlgét

A . Using Corollary B.3.3.5, we see that B “ AbA B factors as a finite product
ś

iBi,
where each Bi is a local Henselian ring. Replacing A by an étale A-algebra if necessary,
we may assume that this product decomposition exists already over A: that is, we have a
factorization B »

ś

Bi with Bi » AbA Bi. Unwinding the definitions, we see that η˚pθq
can be identified with the natural map lim

ÝÑ
F pB bA Aαq Ñ

ś

i lim
ÝÑ

F pBi bA Aαq, which is
an equivalence by virtue of our assumption that F commutes with finite products.

Remark B.6.4.7. In the statement of Lemma B.6.4.6, the hypothesis that F is n-truncated
is not essential. For example, if A is a Noetherian ring of finite Krull dimension, then the 8-
topos ShvNis

A is hypercomplete (Corollary 3.7.7.3), so our proof of Lemma B.6.4.6 immediately
shows that the map θ is an equivalence. One can treat the general case using a Noetherian
approximation argument. We omit the details, since the truncated version of Lemma B.6.4.6
will be sufficient for our application.

Proof of Theorem B.6.4.3. Let R be an E8-ring and let F : CAlgét
R Ñ S be an n-truncated

sheaf for the finite étale topology; we wish to show that LNis F is a sheaf for the étale
topology. By virtue of Theorem B.6.4.1, it will suffice to show that LNis F is a sheaf with
respect to the finite étale topology. Since LNis F is a Nisnevich sheaf, it commutes with
finite products. Using Proposition A.3.3.1, we are reduced to proving the following:

p˚q Let A P CAlgét
R , let u0 : A Ñ A0 be a morphism which is finite étale and faithfully

flat, and let A‚ be the Čech nerve of u (formed in the opposite of the 8-category
CAlgét

R). Then the canonical map ρ : pLNis F qpAq Ñ TotpLNis F qpA‚q is a homotopy
equivalence.

Without loss of generality, we may assume that A “ R. For each n ě 0, let un : AÑ An be
the canonical map, so that we have a pair of adjoint functors

FunpCAlgét
A ,Sq

u˚n //FunpCAlgét
An ,Sq.un˚

oo

Unwinding the definitions, we see that ρ is obtained from the composite map

LNis F
ρ1
ÝÑ LNispTotpu‚˚u‚˚F qq
ρ2
ÝÑ TotpLNispu

‚
˚u
‚˚F qq

ρ3
ÝÑ Totpu‚˚u‚˚pLNis F qq.
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by evaluating at the object A P CAlgét
A . The morphism ρ1 is an equivalence by virtue of our

assumption that F is a sheaf for the finite étale topology, and the map ρ3 is an equivalence
by virtue of Lemma B.6.4.6. The map ρ2 fits into a commutative diagram

LNisplimÐÝrmsP∆ um˚ u
m˚F q

ρ2 //

��

lim
ÐÝrmsP∆pLNisu

m
˚ u

m˚F q

��
LNisplimÐÝrmsP∆s,ďn`1

um˚ u
m˚F q // lim

ÐÝrmsP∆s,ďn`1
pLNisu

m
˚ u

m˚F q.

We conclude by observing that the vertical maps are equivalences when F is n-truncated,
and the lower horizontal map is an equivalence because the sheafification functor LNis is left
exact.

B.6.5 The Henselian Case

We close this section with a few observations concerning finite étale morphisms in the
Henselian setting.

Notation B.6.5.1. Let R be an E8-ring. We let CAlgfét
R denote the full subcategory of

CAlgR spanned by the finite étale R-algebras.

Proposition B.6.5.2. Let R be a Henselian E8-ring, let m Ď π0R be the maximal ideal,
and let κ denote the residue field π0R{m. Then the inclusion functor CAlgfét

R ãÑ CAlgét
R

admits a left adjoint. Moreover, the construction A ÞÑ pπ0Aq{m determines an equivalence
of 8-categories from CAlgfét

R to CAlgét
κ .

Proof. We may assume without loss of generality that R is discrete. Let A be an étale
R-algebra, and choose a factorization A » A1 ˆA2 as in Corollary B.3.4.5. We claim that
the projection map AÑ A1 exhibits A1 as a CAlgfét

R -localization of A. In other words, we
claim that for every finite étale A-algebra B, every R-algebra homomorphism φ : AÑ B

factors (necessarily uniquely) through A1. Note that φ induces a decomposition B » B1ˆB2

and maps φ1 : A1 Ñ B1, φ2 : A2 Ñ B2. We wish to prove that B2 » 0. Note that B2{mB2

is an algebra over A2{mA2 » 0, so that mB2 “ B2. Since B2 is a direct factor of B, it is
a finite étale R-algebra. Using Nakayama’s lemma, we conclude that B2 » 0. The final
assertion is a special case of Corollary B.3.3.7.

Proposition B.6.5.3. Let R be a Henselian E8-ring, let m Ď π0R be the maximal ideal, and
let κ “ π0R{m denote the residue field. Let X “ Shvét

R and let X 0 denote the full subcategory
of X spanned by those sheaves X : CAlgét

R Ñ S which are right Kan extensions of their
restriction to CAlgfét

R . Then X 0 is an accessible left exact localization of X . Moreover, the
pullback functor X » Shvét

τě0R Ñ Shvét
κ induces an equivalence of 8-categories X 0 Ñ Shvét

κ .
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Proof. We may assume without loss of generality that R is discrete. Let T : CAlgét
R Ñ CAlgfét

R

be a left adjoint to the inclusion (see Proposition B.6.5.2). Then composition with T induces
a left exact localization functor L : FunpCAlgét

R ,Sq Ñ FunpCAlgét
R ,Sq, whose essential

image is the collection of those functors X : CAlgét
R Ñ S which are right Kan extensions

of X|CAlgfét
R

. We will prove that LX Ď X , so that L induces a left exact localization
on X whose essential image is X XLFunpCAlgét

R ,Sq “ X 0. To prove this, suppose that
X P Shvét

R ; we wish to show that LX is a sheaf with respect to the étale topology. Choose
an étale R-algebra A and a covering sieve C Ď CAlgét

A ; we wish to show that the canonical
map LXpAq Ñ lim

ÐÝBPC LXpBq is an equivalence. Let C0 Ď C be the full subcategory
spanned by those étale A-algebras which are finite étale over R. Then LX|C is a right Kan
extension of LX|C1 . Using Lemma HTT.4.3.2.7 , we are reduced to proving that the map
θ : LXpAq Ñ lim

ÐÝBPC0
LXpBq » lim

ÐÝBPC0
XpBq is an equivalence.

Write A “ A1 ˆ A2 where A1 is a finite étale R-algebra and A2{mA2 » 0 (Corollary
B.3.4.5). Let C1 Ď CAlgét

A1 be the full subcategory spanned by those étale maps A1 Ñ B

which factor as a composition A1 Ñ B Ñ B, where the composition AÑ A1 Ñ B belongs
to C and B is finite étale over R. Since C is a covering sieve, it induces a covering sieve
on A1. It follows that there exists a finite collection of étale maps A1 Ñ Bα such that the
induced map A1 Ñ

ś

αBα is faithfully flat, and each of the composite maps AÑ A1 Ñ Bα
belongs to C. Using Corollary B.3.4.5, we can assume that each Bα is finite étale over R, so
that A1 Ñ Bα belongs to C1. It follows that C1 is a covering sieve on A1, so that the map
XpA1q Ñ lim

ÐÝBPC1 XpBq is a homotopy equivalence.
Note that we can identify C0 with a full subcategory of C1, so that θ factors as a

composition
LXpAq » XpA1q Ñ lim

ÐÝ
BPC1

XpBq Ñ lim
ÐÝ
BPC0

XpBq.

To prove that this map is a homotopy equivalence, it suffices to prove that the inclusion
C0 Ñ C1 is right cofinal. Using Corollary HTT.4.1.3.1 , we are reduced to proving the
following: for every object B P C1, the 8-category C1{B ˆC1 C0 is weakly contractible. In fact,
the 8-category C1{B ˆC1 C0 is filtered: it is nonempty by construction and admits pushouts.

We now show that the pullback map i˚ : X 0 Ñ Shvét
k is an equivalence of 8-categories.

Proposition B.6.5.2 supplies an equivalence of 8-categories CAlgét
κ » CAlgfét

R . This equiv-
alence determines a Grothendieck topology on CAlgfét

R , which agrees with the finite étale
topology introduced in Proposition B.6.3.6. It follows immediately from Proposition
HTT.4.3.2.15 that i˚ is fully faithful. To prove the essential surjectivity, we must show that
if Y0 : CAlgfét

R Ñ S is a sheaf with respect to the finite étale topology, then Y “ Y0 ˝ T is
a sheaf with respect to the étale topology on CAlgét

R . Let A be an étale R-algebra and let
C Ď CAlgét

A be a covering sieve on A. As above, we wish to show that the canonical map
Y pAq Ñ lim

ÐÝBPC Y pBq is a homotopy equivalence. Write A “ A1ˆA2 as in Corollary B.3.4.5
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and let C0 and C1 be defined as. Once again, we see that Y |C is a right Kan extension of
Y |C0 , and are therefore reduced to showing that

Y pAq » Y0pA
1q Ñ lim

ÐÝ
BPC0

Y0pBq » lim
ÐÝ
BPC0

Y pBq

is a homotopy equivalence, which follows from the observation that C0 is a covering sieve on
A1 with respect to the finite étale topology.

Let R be a connective Henselian E8-ring. Let m Ď π0R be the maximal ideal, κ “
pπ0Rq{m the residue field, and let φ : RÑ κ denote the evident map, so that φ induces a
pair of adjoint functors

Shvét
R

φ˚ //Shvét
κ .

φ˚
oo

Unwinding the definitions, we see that φ˚ induces the equivalence of8-categories Shvét
κ Ñ X 0

appearing in the statement of Proposition B.6.5.3. It follows that the localization functor
L : Shvét

R Ñ X 0 is given by the composition φ˚φ
˚. For every sheaf X P Shvét

R and every
finite étale R-algebra A, the unit map

XpAq Ñ pLXqpAq » pφ˚φ
˚XqpAq “ pφ˚Xqpπ0A{mπ0Aq

is a homotopy equivalence. Taking A “ R, we obtain the following result:

Proposition B.6.5.4. Let R be a connective Henselian E8-ring, m Ď π0R the maximal ideal,
and κ “ pπ0Rq{m the residue field. Let φ : RÑ κ be the quotient map and φ˚ : Shvét

R Ñ Shvét
κ

the associated pullback functor. Let 1 denote the final object of Shvét
R. Then the canonical

map MapShvét
R
p1,F q Ñ MapShvét

κ
pφ˚1, φ˚F q is a homotopy equivalence for every object

F P Shvét
R.

B.7 Galois Descent

Let R be an E8-ring. In §B.6, we proved that a presheaf F : CAlgét
R Ñ S satisfies

descent for étale coverings if and only if it satisfies descent for both Nisnevich and finite
étale coverings. The former condition is very concrete: it is equivalent to Nisnevich excision,
by virtue of Theorem B.5.0.3. Our goal in this section is to obtain a concrete interpretation
of the second condition as well (Theorem B.7.6.1). The main observation is that every finite
étale covering can be refined to a Galois covering (Lemma B.7.6.4).
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B.7.1 Free Actions of Finite Groups

We begin by reviewing the Galois theory of commutative rings. For a much more general
discussion, we refer the reader to [50] (see in particular Expose 5, Theorem 4.1).

Proposition B.7.1.1. Let G be a finite group acting on a commutative ring R. The
following conditions are equivalent:

p1q For every nonzero commutative ring A, the group G acts freely on the set HompR,Aq
of ring homomorphisms from R to A.

p2q Let p be a prime ideal of R and Gp Ď G the stabilizer group of p. Then Gp acts
faithfully on the residue field κppq.

Proof. Assume first that p1q is satisfied. Choose a point p P |SpecR| and let φ : RÑ κppq be
the canonical map. For any g P Gp, the action of g on HompR, κppqq is given by the inverse
of the action of g on κppq. Since the action of G is free, we conclude that any nontrivial
element g P Gp must act nontrivially on κppq.

Conversely, suppose that condition p2q is satisfied, and let A be a nonzero commutative
ring. We wish to prove that G acts freely on HompR,Aq. Choose a homomorphism ψ : AÑ κ

where κ is a field; composition with ψ induces a G-equivariant map HompR,Aq Ñ HompR, kq.
It will therefore suffice to show that G acts freely on HompR, kq. Let θ : RÑ κ be a ring
homomorphism which is invariant under an element g P G. Then g P Gp for p “ kerpθq, and
the map θ factors as a composition

R
θ1
Ñ κppq

θ2
Ñ k.

Since θ2 injective and θ is g-invariant, we conclude that g acts trivially on the field κppq;
condition p2q then guarantees that g is the identity element of G.

Definition B.7.1.2. We will say that an action of a finite group G on a commutative ring
R is free if it satisfies the equivalent conditions of Proposition B.7.1.1.

B.7.2 The Invariant Subring

Let R be a commutative ring equipped with an action of a finite group G. We let RG

denote the subring of R consisting of G-invariant elements. Our first goal is to show that if
the action of G is free, then RG ãÑ R is finite étale. In fact, we can make a more precise
statement, for which we require a bit of notation.

Notation B.7.2.1. Let R be a commutative ring acted on by a finite group G and set
R1 “

ś

gPGR. We define ring homomorphisms φ0, φ1 : RÑ R1 by the formulae

φ0prqg “ r φ1prqg “ gprq.
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Together these maps determine a ring homomorphism φ : TorRG0 pR,Rq Ñ R1, where RG Ď R

denotes the ring of G-invariant elements of R.

Proposition B.7.2.2. Let G be a finite group acting on freely on a commutative ring R,
and let RG Ď R denote the subring consisting of G-invariant elements. Then:

p1q The inclusion RG ãÑ R is finite étale.

p2q Let R1 “
ś

gPGR be as in Notation B.7.2.1. Then the map φ : TorRG0 pR,Rq Ñ R1 is
an isomorphism.

The proof of Proposition B.7.2.2 depends on the following observation from the classical
Galois theory of fields:

Lemma B.7.2.3. Let G be a group of order n which acts faithfully on a field κ, and let
φ0, φ1 : κÑ κ1 be as in Notation B.7.2.1. Then there exists a finite sequence x1, . . . , xn P κ

such that the images φ1pxiq form a basis for κ1, regarded as a κ-vector space via the
homomorphism φ0.

Proof. It is clear that κ1 has dimension n over κ. Consequently, it will suffice to show that
κ1 is generated as a κ-vector space by elements of the form φ1pxq. In other words, we must
show that the map φ : TorκG0 pκ, κq Ñ κ1 is surjective. In the ring κ1, we have a unique
decomposition 1 “

ř

gPG eg, where each eg is a nonzero idempotent element corresponding
to projection of κ1 “

ś

gPG κ onto the gth factor. The elements eg form a basis for κ1 as
a κ-vector space; it will therefore suffice to show that each eg belongs to the image of φ.
If h ‰ g, then since h´1g acts nontrivially on κ we can choose an element x P κ such that
hpxq ‰ gpxq. Then

yh “ pφ0phpxqq ´ φ1pxqqφ0p
1

hpxq ´ gpxq
q

belongs to the image of φ; note that the gth coordinate of yh is equal to 1, and the hth
coordinate vanishes. It follows that eg “

ś

h‰g yh also belongs to the image of φ, as
desired.

Proof of Proposition B.7.2.2. Consider the following weaker version of assertion p1q:

p11q The inclusion RG ãÑ R is faithfully flat.

Since the diagonal inclusion φ0 : R Ñ R1 is finite étale, assertions p11q and p2q imply p1q
by faithfully flat descent. Assertions p11q and p2q are local on |SpecRG|; we may therefore
replace RG by its localization at some prime and thereby reduce to the case where RG is a
local ring with a unique maximal ideal m.

Note that R integral over RG: every element x P R is a solution to the polynomial
equation

ś

gPGpX ´ gpxqq “ 0, whose coefficients are G-invariant. We may therefore write
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R as a union of subalgebras Rα which are finitely generated as RG-modules. It follows
from Nakayama’s lemma that each quotient Rα{mRα is nonzero, so that the direct limit
R{mR » lim

ÝÑ
Rα{mRα is nonzero. We conclude that m is contained in a maximal ideal of R.

Choose a maximal ideal n Ă R containing m. For each g P G, let ng denote the inverse
image of n under the action of g on R. We next claim that R is a semi-local ring, whose
maximal ideals are precisely those of the form ng for g P G. To see this, it suffices to show
that if x P R is an element which does not belong to any of the ideals ng, then x is invertible
in R. Note that for each g P G, our assumption x R ng is equivalent to gpxq R n. Since n is
a prime ideal, we conclude that y “

ś

gPG gpxq R n. Then y is a G-invariant element of R
which does not belong to m, so that y is invertible in RG and therefore x is invertible in R.

Let H Ď G be the stabilizer of the ideal n Ă R and let n be the order of H. Our
assumption that G acts freely on R guarantees that H acts freely on the residue field R{n.
Using Lemma B.7.2.3, we deduce the existence of elements x1, . . . , xn P R{n whose images
under the map φ1 of Notation B.7.2.1 form a basis for

ś

hPHpR{nq as a vector space over R{n.
Choose elements xi P

Ş

gPG´H ng Ď R which reduce to the elements xi modulo n, and let
g1, . . . , gm P G be a set of representatives for the set of right cosets G{H. For each maximal
ideal n1 of R, the images φ1pgipxjqq form a basis for the vector space

ś

gPGR{n
1. Using

Nakayama’s lemma, we conclude that the elements φ1pgipxjqq form a basis of R1 (viewed as
an R-module via φ0).

Let G act on R1 via the formula gptrg1ug1PGq “ tgprg1g´1qug1PG. The map tri,ju ÞÑ
ř

i,j φ0pri,jqφ1pgipxjqq determines a G-equivariant isomorphism
À

1ďiďm,1ďjďnR » R1. Pass-
ing to fixed points, we see that R is freely generated by the elements gipxjq as an RG-module,
which immediately implies both p11q and p2q.

B.7.3 Descent

Let R be a commutative ring equipped with a free action of a finite group G. Propo-
sition B.7.2.2 guarantees that R is faithfully flat over RG. If R‚ denotes the cosimplicial
commutative ring obtained as the Čech nerve of the inclusion RG ãÑ R, then we have a
canonical isomorphism Rk »

ś

g1,...,gkPG
R. Using faithfully flat descent, we obtain the

following result:

Proposition B.7.3.1. Let R be a commutative ring equipped with a free action of a finite
group G. Then the construction M ÞÑ M bRG R determines an equivalence of categories
from the category of (discrete) RG-modules to the category of (discrete) R-modules equipped
with a compatible action of G. Moreover, if M is any RG-module, the augmented cochain
complex

M Ñ R0 bRG M Ñ R1 bRG M Ñ ¨ ¨ ¨

associated to the cosimplicial abelian group R‚ bRG M is acyclic.
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Remark B.7.3.2. Let R be a commutative ring equipped with a free action of a finite
group G, and let N be an R-module equipped with a compatible action of the group G.
Unwinding the definitions, we see that the cochain complex appearing in Proposition B.7.3.1
is the standard complex for computing the group cohomology H˚pG;Nq. Proposition B.7.3.1
gives

HnpG;Nq »
#

0 if n ą 0
M if n “ 0.

where M » NG is an RG-module (unique up to canonical isomorphism) such that MbRGR »
N .

B.7.4 Digression: Group Actions on Spectra

Let G be a discrete group. Then G is a monoid object in the category of sets, and
therefore determines a simplicial set BG (see §HA.4.1.2 ). The simplicial set BG is a Kan
complex with a unique vertex, and can therefore be viewed as an object of the 8-category
of pointed spaces S˚. We refer to BG as the classifying space of G.

Remark B.7.4.1. The classifying space BG is determined up to equivalence by the require-
ments that BG is 1-connective, 1-truncated, and the fundamental group of BG (taken with
respect to its base point) is isomorphic to G (see, for example, Proposition HTT.7.2.2.12 ).

Definition B.7.4.2. Let C be an 8-category. A G-equivariant object of C is a map of
simplicial sets BGÑ C.

Remark B.7.4.3. Evaluation at the base point of BG determines a forgetful functor
θ : FunpBG, Cq Ñ C. We will generally abuse notation by identifying a G-equivariant object
C of C with its image θpCq P C. In this situation, we will also say that the group G acts on
the object θpCq P C (the action itself is given by the object C P FunpBG, Cq).

Definition B.7.4.4. Let C be an 8-category and let F : BG Ñ C be a functor which
determines an action of G on the object F p˚q “ X P C. We let XG denote a limit of the
diagram F (if such a limit exists).

Remark B.7.4.5. The notation of Definition B.7.4.4 is abusive: the object XG depends
on the G-equivariant object F : BGÑ C, and not only on the underlying object X P C.

Let C be an 8-category which admits small limits, let G be a discrete group, and suppose
we are given a G-equivariant object BGÑ C, corresponding to an action of G on an object
X P C. We can regard BG as a simplicial object in the category of sets: in particular, BG
determines a simplicial space S‚ with Sn » Gn. According to Example HTT.A.2.9.31 , we
can identify BG with the colimit of the diagram S‚ : ∆op Ñ S. It follows that XG can be
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identified with the limit of a cosimplicial object of X‚ P C, where each Xn is a limit of the
induced diagram Sn Ñ BGÑ C. Since Sn is discrete, we obtain Xn “

ś

g1,...,gnPG
X.

Now suppose that C is the 8-category of spectra. Applying Variant HA.1.2.4.9 , we
deduce the existence of a spectral sequence of abelian groups tEp,qr , drurě1 with

Ep,q1 »
ź

g1,...,gpPG

π´qX.

Note that each π´qX is an abelian group acted on by G; unwinding the definitions, we see
that the differential d1 is the standard differential in the cochain complex

π´qX Ñ
ź

gPG

π´qX Ñ
ź

g,g1PG

π´qX Ñ ¨ ¨ ¨

which computes the cohomology of the group G with coefficients in π´qX. We therefore
obtain a canonical isomorphism Ep,q2 » HppG;π´qXq.

In good cases, the spectral sequence described above will converge to the homotopy
groups π´p´qXG. For example, Corollary HA.1.2.4.12 yields the following result:

Proposition B.7.4.6. Let G be a discrete group, and let BG Ñ Sp be a G-equivariant
object of the 8-category of spectra whose underlying spectrum is X. Assume that for every
integer n and for each k ą 0, the cohomology group HkpG;πnXq vanishes. Then for every
integer n, the map πnpX

Gq Ñ πnX is injective and its image is the group of G-invariant
elements of πnX.

B.7.5 Galois Extensions of E8-Rings

We now study actions of finite groups on E8-rings.

Definition B.7.5.1. Let G be a finite group acting on an E8-ring R. We will say that the
action is free if the induced action of G on the commutative ring π0R is free, in the sense of
Definition B.7.1.2.

Let f : R Ñ R1 be a map of E8-rings and G a finite group. We will say that f is a
Galois extension (with Galois group G) if there exists a free action of G on R1 such that f
factors as a composition R » R1G Ñ R1.

Warning B.7.5.2. Let f : RÑ R1 be a Galois extension E8-rings. The Galois group G is
not uniquely determined by f . For example, if R1 » Rn, then any group G of order n can
appear as a Galois group for f .

Warning B.7.5.3. The notion of Galois extension introduced in Definition B.7.5.1 is very
restrictive. For a much more general analogue of Galois theory in this context, we refer the
reader to [175].
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Remark B.7.5.4. Using Theorem HA.7.5.0.6 , we see that a map f : RÑ R1 of E8-rings
is a Galois extension if and only if the induced map of commutative rings π0RÑ π0R

1 is a
Galois extension.

Proposition B.7.5.5. Let R be an E8-ring equipped with a free action of a finite group G.
Then:

p1q For every integer n, the map πnRG Ñ πnR is injective, and its image is the subgroup
of G-invariant elements of πnR.

p2q The map RG Ñ R is finite étale.

p3q The canonical map RbRG RÑ
ś

gPGR is an equivalence.

Proof. Combine Propositions B.7.2.2, B.7.3.1, and B.7.4.6.

B.7.6 Étale Descent and Galois Descent

Let R be an E8-ring and let F : CAlgét
R Ñ S be a functor. We will say that F satisfies

Galois descent if, for every object A P CAlgét
R equipped with a free action of a finite group

G, the canonical map F pAGq Ñ F pAqG is a homotopy equivalence.
We can now state the main result of this section.

Theorem B.7.6.1. Let R be an E8-ring and let F : CAlgét
R Ñ S be a functor. Then F

is a sheaf with respect to the finite étale topology if and only if the following conditions are
satisfied:

p1q The functor F satisfies Galois descent.

p2q The functor F commutes with finite products.

Corollary B.7.6.2. Let R be an E8-ring and let F : CAlgét
R Ñ S be a functor. Then F is

a sheaf with respect to the étale topology if and only if the following conditions are satisfied:

p1q The functor F satisfies Galois descent.

p2q The functor F is a sheaf with respect to the Nisnevich topology.

Proof. Combine Theorem B.7.6.1 and Theorem B.6.4.1 (note that if F : CAlgét
R Ñ S is a

sheaf for the Nisnevich topology, then F commutes with finite products).

In order to prove Theorem B.7.6.1, we need to show that there is a sufficiently large
supply of Galois extensions in the setting of E8-rings.
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Lemma B.7.6.3. Let f : RÑ R1 be a finite étale map of E8-rings, and suppose that π0R
1

is a projective π0R-module of rank n. Then there exists a map RÑ A which is finite étale
and faithfully flat such that R1 bR A » An.

Proof. We proceed by induction on n. If n “ 0, we can take A “ R. Assume n ą 0.
Then f is faithfully flat. Replacing R by R1 and R1 by R1 bR R

1, we can assume that f
admits a left inverse g : R1 Ñ R. Since f is étale, the map g determines a decomposition
R1 » RˆR2. Then R2 is finite étale of rank pn´ 1q over R. By the inductive hypothesis,
we can choose a faithfully flat finite étale map RÑ A such that R2bR A » An´1. It follows
that R1 bR A » An as desired.

Lemma B.7.6.4. Let R be an E8-ring and let f : R Ñ R1 be a faithfully flat finite étale
morphism. Then there exists a map g : R1 Ñ R2 such that the composite map RÑ R2 is a
Galois extension.

Proof. For each i ě 0, there exists a largest open subset Ui of | Specπ0R| over which the
localization of the module π0R

1 has rank i. Then | Specπ0R| is the disjoint union of the
open sets Ui, so each Ui is also closed and therefore has the form |Specpπ0Rqre

´1
n s| where ei

is some idempotent element of π0R. Since R1 is faithfully flat over R, we have e0 “ 0. Let n
be the least common multiple of the set ti : ei ‰ 0u. Replacing R1 by

ś

iR
1re´1

i s
n
i , we can

assume that π0R
1 has constant rank n over π0R.

Let R1bn be the n-fold tensor power of R1 over R. For every pair of integers 1 ď i ă j ď n,
the multiplication on the ith and jth tensor factors induces a map of étale R-algebras fi,j :
R1bn Ñ R1bpn´1q. Since fi,j admits a section, it induces an equivalence R1bpn´1q » R1bnrε´1

i,j s

for some idempotent elements εi,j P π0R
1bn. Let R2 “ R1bnr

ś

i,j ε
´1
i,j s. Then R2 carries an

action of the symmetric group Σn (as one can see, for example, by reducing to the discrete
case using Theorem HA.7.5.0.6 ) in the 8-category CAlgR. To complete the proof, it suffices
to show that Σn acts freely on π0R

2 and that the induced map RÑ R2Σn is an equivalence.
This assertion is local on R; we may therefore invoke Lemma B.7.6.3 to reduce to the case
where R1 “ Rn. In this case, R2 »

ś

σPΣn R and the desired result is obvious.

Proof of Theorem B.7.6.1. Let G be a finite group acting on an object A P CAlgét
R . Write

BG as the colimit of simplicial space S‚ (with Sn » Gn) and let A‚ be the cosimplicial E8-
ring given by An » lim

ÝÑSn
A »

ś

g1,...,gnPG
A, so that AG » lim

ÐÝ
A‚. Using Proposition B.7.5.5,

we see that A‚ can be identified with the Čech nerve of the map AG Ñ A. Similarly, we see
that F pAqG can be identified with the limit of the cosimplicial space rns ÞÑ

ś

g1,...,gnPG
F pAq.

If F commutes with finite products, then this cosimplicial object is given by rns ÞÑ F pAnq.
We have proven:

p˚q If F commutes with finite products, then F satisfies Galois descent if and only if,
for every Galois extension AG Ñ A with Čech nerve A‚ in CAlgét

R , the induced map
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F pAGq Ñ lim
ÐÝ

F pA‚q is a homotopy equivalence.

If F is a sheaf with respect to the finite étale topology, then Proposition A.3.3.1 implies that
F commutes with finite products and satisfies the criterion of p˚q, and therefore satisfies
Galois descent.

Conversely, suppose that F commutes with finite products and satisfies Galois descent.
We wish to prove that F is a sheaf with respect to the finite étale topology. We proceed as
in the proof of Proposition A.3.3.1. Let A P CAlgét

R and let Cp0q Ď CAlgét
A be a sieve on A;

we wish to prove that the map F pAq Ñ lim
ÐÝ

F |Cp0q is an equivalence. Suppose first that Cp0q

is generated by a Galois extension f : AÑ A0. Let A‚ be the Čech nerve of f . It follows
from p˚q that the canonical map F pAq Ñ lim

ÐÝ
F pA‚q. The desired result now follows follows

from the observation that A‚ is given by a right cofinal map ∆ Ñ Cp0q.
Suppose now that Cp0q is generated by a single map f : A Ñ A1 which is finite étale

and faithfully flat. Using Lemma B.7.6.4, we see that there exists a map A1 Ñ A2 such
that A2 is a Galois extension of A. Let Cp1q Ď Cp0q be the sieve generated by A2, so that
F pAq » lim

ÐÝ
F |Cp1q by the above argument. By virtue of Lemma HTT.4.3.2.7 , it will suffice

to show that F |Cp0q is a right Kan extension of F |Cp1q . Choose a map A1 Ñ B and let
Cp2q be the pullback of the sieve Cp1q to CAlgét

B ; we wish to prove that F pBq » lim
ÐÝ

F |Cp2q .
This follows from the above argument, since Cp2q is generated by the Galois extension
B Ñ B bA A

2.
Now suppose that Cp0q is generated by a finite collection of finite étale morphisms

tAÑ Aiu1ďiďn such that the induced map AÑ
ś

iAi is faithfully flat. Let A1 “
ś

iAi and
let Cp1q denote the sieve generated by the the map AÑ A1. The above argument shows that
F pAq » lim

ÐÝ
F |Cp1q . To prove that F pAq » lim

ÐÝ
F |Cp0q , it will suffice to show that F |Cp1q is

a right Kan extension of F |Cp0q . Fix an object g : AÑ B in Cp1q, and let Cp2q be the pullback
of Cp0q to CAlgét

B ; we wish to prove that F pBq » lim
ÐÝ

F |Cp2q . By construction, g factors
through some map g0 :

ś

iAi Ñ B, so that g0 determines a decomposition B »
ś

iBi.
Let T Ď t1, . . . , nu denote the collection of indices i such that Bi ‰ 0. Let C1 Ď Cp2q be
the full subcategory spanned by those morphisms B Ñ B1 which factor through some Bi,
where B1 ‰ 0. Note that in this case Bi is uniquely determined and the index i belongs
to T ; it follows that C1 decomposes as a disjoint union of full subcategories

š

iPT C
1
i. Each

of the categories C1i contains the projection B Ñ Bi as an initial object, so the inclusion
tBiuiPT ãÑ C1 is right cofinal. We therefore obtain homotopy equivalences

F pBq » F p
ź

iPT

Biq »
ź

iPT

F pBiq » lim
ÐÝ

F |C1 .

By virtue of Lemma HTT.4.3.2.7 , we are reduced to proving that F |Cp2q is a right Kan
extension of F |C1 . To see this, choose an object B Ñ B1 in Cp2q; we wish to show that
F pB1q » lim

ÐÝ
F |C1

B1{
. Let B1i “ BibBB

1 for 1 ď i ď n, and let T 1 be the collection of indices
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i for which B1i ‰ 0. Then C1B1{ decomposes as a disjoint union
š

iPT 1pC
1
B1{qi, each of which

has a final object (given by the map B1 Ñ B1i). We therefore have homotopy equivalences

lim
ÐÝ

F |C1
{B1
»

ź

iPT 1

F pB1iq » F p
ź

iPT 1

B1iq » F pB1q,

as desired.
We now treat the case of a general covering sieve Cp0q Ď CAlgét

A . By definition, there
exists a finite collection of finite étale maps maps fi : A Ñ Ai which generate a covering
sieve Cp1q Ď Cp0q. The above argument shows that F pAq » lim

ÐÝ
F |Cp1q . To complete the

proof, it will suffice (by Lemma HTT.4.3.2.7 ) to show that F |Cp0q is a right Kan extension
of F |Cp1q . Unwinding the definitions, we must show that for every map g : AÑ B in Cp0q,
we have F pAq » lim

ÐÝ
F |g˚ Cp1q . This is clear, since g˚ Cp1q is a covering sieve on B generated

by finitely many morphisms B Ñ Ai bA B.



Appendix C

Prestable 8-Categories

In §HA.1.1.1 , we introduced the notion of a stable 8-category (Definition HA.1.1.1.9 ).
The theory of stable 8-categories can be regarded as an 8-categorical analogue of the
classical theory of abelian categories. To explicitly connect these theories, one can consider
the data of a stable 8-category C equipped with a t-structure pCě0, Cď0q: from this data,
one can extract an abelian category C♥ “ Cě0X Cď0 which appears as a full subcategory of
C. In good cases, one can reconstruct the entire 8-category C (together with its t-structure)
from the subcategory Cě0 Ď C: for example, if the t-structure on C is right complete, then
we can identify C with the 8-category SppCě0q of spectrum objects of Cě0. Our goal in
this appendix is to develop a theory of prestable 8-categories: that is, 8-categories which
behave like the “connective parts” of t-structures on stable 8-categories.

We begin in §C.1 with an axiomatic approach: we define a prestable 8-category C to be
an 8-category which satisfies a short list of conditions, analogous to (but slightly weaker
than) the conditions defining a stable 8-category (Definition C.1.2.1). Our first main result
asserts the equivalence of this “intrinsic” definition with an “extrinsic” one: an 8-category
C is prestable if and only if it appears as a full subcategory of a stable 8-category D which
is closed under finite colimits and extensions (Corollary C.1.2.3). Under mild additional
assumptions, one can arrange that C is the connective part of a (uniquely determined)
t-structure on D (Proposition C.1.2.9). We will be primarily interested in the case where the
stable 8-category D is presentable and its t-structure is compatible with filtered colimits: in
this case, we will say that C is a Grothendieck prestable 8-category (Definition C.1.4.2). The
collection of Grothendieck prestable 8-categories can itself be organized into an 8-category
Groth8, which we will study in §C.3.

For any connective E1-ring A, the stable 8-category RModA of right A-modules admits
a t-structure which is compatible with filtered colimits, and the full subcategory RModcn

A Ď

RModA of connective right A-modules is an example of a Grothendieck prestable 8-category.
The central result of this appendix is the following converse: every Grothendieck prestable
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8-category C can be obtained as a left exact localization of RModcn
A , for some connective

E1-ring A (Theorem C.2.4.1). This can be regarded as a generalization of the classical
Gabriel-Popescu theorem, which asserts that every Grothendieck abelian category arises as
an exact localization of the abelian category RMod♥

A for some associative ring A (see [75]).
Like the classical Gabriel-Popescu theorem, Theorem C.2.4.1 is very useful: it supplies a
mechanism for reducing questions about arbitrary Grothendieck prestable 8-categories to
questions about structured ring spectra. In §C.4, we will use this mechanism to construct a
well-behaved tensor product on the 8-category Groth8, which refines (and generalizes) the
tensor product on presentable stable 8-categories studied in §??.

Recall that an abelian category A is said to be Grothendieck if it admits exact filtered
colimits and a small generator. The theory of Grothendieck prestable 8-categories is closely
related to the theory of Grothendieck abelian categories: every Grothendieck prestable
8-category C determines a Grothendieck abelian category C♥ (which can be defined as the
full subcategory of C spanned by the discrete objects), and every Grothendieck abelian
category A arises in this way (though not uniquely). In §??, we will carry out a detailed
study of this relationship and introduce a family of intermediate objects (which we refer
to as Grothendieck abelian n-categories for 1 ď n ă 8) which interpolate between classical
homological algebra and our theory of Grothendieck prestable 8-categories.

Except in trivial cases, a Grothendieck prestable 8-category C is never small: the
definition requires that C admits arbitrary colimits (such as infinite direct sums). However,
we can often select out an essentially small full subcategory C0 Ď C by imposing some
additional finiteness conditions on the objects of C. In good cases, one might hope to recover
the 8-category C (up to equivalence) from the full subcategory C0. In §C.6, we will consider
several variations on this theme, and give a detailed description of the mechanism relating C
with C0.
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C.1 Prestability

Recall that an 8-category C is stable if it is pointed, admits finite colimits, and the
suspension functor Σ : C Ñ C is an equivalence of 8-categories (Corollary HA.1.4.2.27 ). The
collection of stable 8-categories includes many, but not all, of the 8-categories which are
relevant to the study of homological algebra. For example, if R is a commutative ring, then
the collection of chain complexes of R-modules can be organized into a stable 8-category
ModR whose homotopy category is the classical derived category of R (see §HA.1.3.2 ). The
property of stability is not inherited by subcategories: for example, the full subcategory
Modcn

R Ď ModR of connective R-modules (that is, chain complexes whose homology vanishes
in negative degrees) is not stable. In this section, we will study a larger class of 8-categories
which we call prestable 8-categories, which includes Modcn

R and variants thereof.

C.1.1 The Spanier-Whitehead Construction

Recall that the Spanier-Whitehead category SW can be defined as follows (see Definition
0.2.3.1):

• The objects of SW are pairs pX,mq, where X is a pointed finite space and m is an
integer.

• Given a pair of objects pX,mq, pY, nq P SW, the set of morphisms from pX,mq to
pY, nq is given by the direct limit lim

ÝÑk
rΣm`kX,Σn`kY s, where rU, V s denotes the set

of homotopy classes of pointed maps from U to V .

The Spanier-Whitehead category SW arises naturally as the homotopy category of the
stable 8-category Spfin of finite spectra, which is obtained from the 8-category Sfin

˚ of
pointed finite spaces by “inverting” the suspension functor. This is a special case of a more
general construction.

Construction C.1.1.1 (Spanier-Whitehead). Let C be a pointed 8-category which admits
finite colimits and let Σ : C Ñ C denote the suspension functor (given by ΣX “ 0 >X 0 “
cofibpX Ñ 0qq. We let SWpCq denote the 8-category given by the colimit of the sequence

C Σ
ÝÑ C Σ

ÝÑ C Σ
ÝÑ ¨ ¨ ¨

We will refer to SWpCq as the Spanier-Whitehead 8-category of C.

Remark C.1.1.2. In more concrete terms, we can identify the objects of SWpCq with pairs
pC,mq, where C is an object of the 8-category C and m is an integer; morphism spaces in
SWpCq are computed by the formula

MapSWpCqppC,mq, pD,nqq » lim
ÝÑ
k

MapCpΣm`kC,Σn`kDq
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where the colimit is taken over k ě maxt´m,´nu. Roughly speaking, we can think of
pC,mq as an m-fold suspension of the object C P C (which exists in the original 8-category
C for m ě 0, but has otherwise been formally adjoined by passing from C to SWpCq).

Remark C.1.1.3. The passage from an8-category C to its homotopy category hC commutes
with filtered colimits. Consequently, if C is a pointed 8-category which admits finite colimits,
then the homotopy category of SWpCq can be identified with the colimit of the diagram

hC Σ
ÝÑ hC Σ

ÝÑ hC Σ
ÝÑ ¨ ¨ ¨ .

In particular, it depends only on the homotopy category hC and the suspension functor
Σ : hC Ñ hC.

Example C.1.1.4. Let C be the 8-category of pointed finite spaces. Then the homotopy
category hSWpCq is the Spanier-Whitehead category SW of Definition 0.2.3.1.

Remark C.1.1.5. Let C be a pointed 8-category which admits finite colimits. Then the
suspension functor Σ : C Ñ C preserves finite colimits. Consequently, we can regard SWpCq
as the direct limit of the diagram

C Σ
ÝÑ C Σ

ÝÑ C Σ
ÝÑ ¨ ¨ ¨

both in the 8-category Cat8 of 8-categories, and in the subcategory Catrex
8 whose objects

are 8-categories which admits finite colimits and whose morphisms are functors which
preserve finite colimits. In particular, each of the natural maps C Ñ SWpCq preserves finite
colimits.

Remark C.1.1.6. The construction C ÞÑ IndpCq determines a functor Ind : Catrex
8 Ñ PrL,

where PrL is the 8-category of presentable stable 8-categories (where the morphisms are
given by functors which preserve small colimits). Moreover, the functor Ind commutes with
colimits. Consequently, if C is a (small) 8-category which admits finite colimits, then we
can identify IndpSWpCqq with the direct limit of the sequence

IndpCq Σ
ÝÑ IndpCq Σ

ÝÑ IndpCq Σ
ÝÑ ¨ ¨ ¨

in the 8-category PrL. Using Corollary HTT.5.5.3.4 and Theorem HTT.5.5.3.18 , we can
identify this colimit with the limit of the tower of right adjoint functors

IndpCq Ω
ÐÝ IndpCq Ω

ÐÝ IndpCq Ω
ÐÝ ¨ ¨ ¨ ;

that is, with the 8-category SppIndpCqq of spectrum objects of IndpCq. Using an elaboration
of this observation, we obtain a commutative diagram of 8-categories

Catrex
8

SW //

Ind
��

Catrex
8

Ind
��

PrL Sp // PrL .
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The construction C ÞÑ SWpCq can be characterized by a universal property:

Proposition C.1.1.7. Let C be a pointed 8-category which admits finite colimits. Then:

paq The 8-category SWpCq is stable.

pbq For any stable 8-category D, composition with the canonical map C Ñ SWpCq in-
duces an equivalence FunrexpSWpCq,Dq Ñ FunrexpC,Dq; here FunrexpC,Dq is the full
subcategory of FunpC,Dq spanned by those functors which preserve finite colimits, and
FunrexpSWpCq,Dq is defined similarly.

Proof. It follows immediately from Remark C.1.1.2 that the Spanier-Whitehead 8-category
SWpCq is also pointed (in fact, each of the natural maps C Ñ SWpCq carries zero objects of
C to zero objects of SWpCq). Unwinding the definitions, we see that the suspension functor
on SWpCq is induced by the solid arrows in the diagram

C Σ //

Σ
��

C Σ //

Σ
��

C Σ //

Σ
��

¨ ¨ ¨

��
C Σ //

id
@@

C Σ //

@@

C //

==

¨ ¨ ¨ ;

it follows by inspection that the dotted arrows provide a homotopy inverse to the suspension
functor. Assertion paq now follows from Proposition HA.1.4.2.11 .

We now prove pbq. By virtue of Remark C.1.1.5, it will suffice to show that precomposition
with the suspension functor on C induces an equivalence θ from FunrexpC,Dq to itself. Since
right exact functors commute with suspension, the functor θ is also given by postcomposition
with the suspension functor on D, and is therefore an equivalence (since D is assumed to be
stable).

C.1.2 Prestability

We now introduce our main objects of study in this section.

Definition C.1.2.1. Let C be an 8-category. We will say that C is prestable if the following
conditions are satisfied:

paq The 8-category C is pointed and admits finite colimits.

pbq The suspension functor Σ : C Ñ C is fully faithful.

pcq For every morphism f : Y Ñ ΣZ in C, there exists a pullback square σ :

X
f 1 //

��

Y

f
��

0 // ΣZ
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in C. Moreover, σ is also a pushout square.

If C is an 8-category which satisfies conditions paq of Definition C.1.2.1, then conditions
pbq and pcq can be reformulated in terms of the Spanier-Whitehead 8-category:

Proposition C.1.2.2. Let C be a pointed 8-category which admits finite colimits. Then
the following conditions are equivalent:

pbq The suspension functor Σ : C Ñ C is fully faithful.

pb1q The canonical map C Ñ SWpCq is fully faithful.

pb2q There exists a fully faithful embedding ρ : C Ñ D, where D is a stable 8-category and
ρ preserves finite colimits.

If these conditions are satisfied, then the following further conditions are equivalent:

pcq For every morphism f : Y Ñ ΣZ in C, there exists a pullback square σ :

X
f 1 //

��

Y

f
��

0 // ΣZ

in C. Moreover, σ is also a pushout square.

pc1q For every fully faithful embedding ρ : C Ñ D which preserves finite colimits, if D is
stable, then the essential image of ρ is closed under extensions in D.

pc2q The essential image of the canonical map C Ñ SWpCq is closed under extensions.

pc3q There exists a fully faithful embedding ρ : C Ñ D which preserves finite colimits, the
8-category D is stable, and the essential image of ρ is closed under extensions in D.

Proof. The implication pbq ñ pb1q follows immediately from the definition of SWpCq and the
implication pb1q ñ pb2q is a tautology. To show that pb2q ñ pbq, suppose that ρ : C Ñ D is a
fully faithful embedding which commutes with finite colimits and that D is stable. We then
have a commutative diagram of 8-categories

C ρ //

Σ
��

D

Σ
��

C ρ // D

where the horizontal maps and the right vertical map are fully faithful; it follows that the
left vertical map is also fully faithful.
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Assume now that pbq, pb1q, and pb2q are satisfied. We first show that pcq implies pc1q. Let
ρ : C Ñ D be as above, and suppose we are given a fiber sequence

ρpC 1q Ñ D Ñ ρpC2q

in the stable 8-category D; we wish to show that D belongs to the essential image of
ρ. Note that we can identify D with the fiber of a map f : ρpC2q Ñ ΣρpC 1q » ρpΣC 1q.
Using our assumption that ρ is fully faithful, we can assume that f “ ρpf0q for some map
f0 : C2 Ñ ΣC 1 in the 8-category C. It follows from assumption pcq that we can complete
f0 to a fiber sequence C Ñ C2

f0
ÝÑ ΣC 1 which is also a cofiber sequence. Since the functor

ρ preserves finite colimits, we obtain a cofiber sequence ρpCq Ñ ρpC2q
f
ÝÑ ρpΣCq in the

8-category D. Because D is stable, we obtain D » fibpfq » ρpCq so that D belongs to the
essential image of ρ, as desired.

The implications pc1q ñ pc2q ñ pc3q are immediate. We will complete the proof by
showing that pc3q ñ pcq. Assume that we have a functor ρ : C Ñ D as above, and let
f : Y Ñ ΣZ be a morphism in C. Set D “ fibpρpfqq, so that we have a fiber sequence
ρpZq Ñ D

g
ÝÑ ρpY q in the 8-category D. Since the essential image of ρ is closed under

extensions, we can write D “ ρpXq for some X P C. Because ρ is fully faithful and preserves
finite colimits, the cofiber sequence D g

ÝÑ ρpY q
ρpfq
ÝÝÑ ρpΣZq can be lifted to a cofiber sequence

X
g0
ÝÑ Y

f
ÝÑ ΣZ in the 8-category C. Note that this cofiber sequence is also a fiber sequence,

since its essential image under the fully faithful embedding ρ is a fiber sequence.

Corollary C.1.2.3. Let C be an 8-category. The following conditions are equivalent:

piq The 8-category C is prestable.

piiq There exists a fully faithful embedding ρ : C ãÑ D, where D is a stable 8-category and
the essential image of ρ is closed under finite colimits and extensions.

Corollary C.1.2.4. Let C be a prestable 8-category and suppose we are given a cofiber
sequence C 1 Ñ C Ñ C2 in C. If any two of the objects C,C 1, C2 P C vanishes, then so does
the third.

Corollary C.1.2.5. Let C be a prestable 8-category. If u : C Ñ C 1 is a morphism in C
satisfying cofibpuq » 0, then u is an equivalence.

Corollary C.1.2.6. Let C be a prestable 8-category. Then every pushout square in C is
also a pullback square.

Proof. Choose a fully faithful embedding ρ : C ãÑ D which preserves finite colimits, where
D is stable. If σ P Funp∆1 ˆ∆1, Cq is a pushout square in C, then ρpσq is a pushout square
in D. Since D is stable, it follows that ρpσq is also a pullback square in D (Proposition
HA.1.1.3.4 ). Because ρ is fully faithful, we conclude that σ is a pullback square in C.
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Example C.1.2.7. Any stable 8-category is prestable.

Example C.1.2.8. Let C be a stable 8-category equipped with a t-structure pCě0, Cď0q.
Then the full subcategory Cě0 Ď C is prestable.

The prestable 8-categories which arise from Example C.1.2.8 can be characterized as
follows:

Proposition C.1.2.9. Let C be an 8-category. The following conditions are equivalent:

paq The 8-category C is prestable and admits finite limits.

pbq The 8-category C is pointed and admits finite colimits, the canonical map ρ : C Ñ
SWpCq is fully faithful. Moreover, the stable 8-category SWpCq admits a t-structure
pSWpCqě0, SWpCqď0q where SWpCqě0 is the essential image of ρ.

pcq There exists a stable 8-category D equipped with a t-structure pDě0,Dď0q and an
equivalence of 8-categories C » Dě0q.

Proof. We first show that paq ñ pbq. Assume that C is prestable and admits finite limits,
and let SWpCqě0 denote the full subcategory of SWpCq spanned by the essential image of
the canonical map ρ : C ãÑ SWpCq (which is fully faithful by virtue of Proposition C.1.2.2).
Let SWpCqď0 denote the full subcategory of SWpCq spanned by those objects of the form
ΩnρpCq, where C is an n-truncated object of C. We will prove pbq by showing that the
pair pSWpCqě0, SWpCqď0q is a t-structure on the stable 8-category SWpCq: that is, that it
satisfies the conditions of Definition HA.1.2.1.1 :

p1q For each object X P SWpCqě0 and Y P SWpCqď0, every map u : X Ñ ΩY is
nullhomotopic. Write X “ ρpCq and Y “ ΩnρpDq for some objects C,D P C where D
is n-truncated. Since ρ is fully faithful, the mapping space

MapSWpCqpX,ΩY q » MapSWpCqpρpCq,Ωn`1ρpDqq » Ωn`1 MapCpX,Y q

is contractible.

p2q We have Σ SWpCqě0 Ď SWpCqě0 and Ω SWpCqď0 Ď SWpCqď0. The first inclusion
follows from the observation that ΣρpCq “ ρpΣ Cq Ď ρpCq, and the second follows from
the observation that every n-truncated object of C is also pn` 1q-truncated.

p3q For every object X P SWpCq, there exists a fiber sequence X 1 Ñ X Ñ X2 where
X 1 P SWpCqě0 and X2 P SWpCqď´1. Write X “ ΩnρpCq for some object C P C, set
C 1 “ ΣnΩnC, and let C2 denote the cofiber of the canonical map C 1 Ñ C. Since the
functor ρ preserves cofiber sequences, we obtain a cofiber sequence

ΩnρpC 1q Ñ ΩnρpCq Ñ ΩnρpC2q.
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The first term in this sequence can be rewritten as

ΩnρpΣnΩnCq » ΩnΣnρpΩnCq » ρpΩnCq

and therefore belongs to SWpCqě0. It will therefore suffice to show that ΩnρpC2q

belongs to SWpCqď0. We will prove this by verifying that the object C2 P C is
pn ´ 1q-truncated. Fix an object D P C; we wish to show that the mapping space
MapCpD,C

2q is pn´ 1q-truncated. In other words, we wish to show that the homotopy
groups of MapCpD,C

2q vanish in degrees ě n, for any choice of base point. Note that
MapCpD,C

2q » MapSWpCqpρpDq, ρpC
2qq is an infinite loop space; we may therefore

assume without loss of generality that our base point is chosen to be the zero map
D Ñ C2. In other words, it will suffice to show that for m ě n, any map u : ΣmD Ñ C2

is nullhomotopic. To prove this, set Y “ ΩnpρpΣmDq ˆρpC2q ρpCqq P SWpDq, so that
we have a fiber sequence ρpΩnCq Ñ Y Ñ ρpΣm´nDq. Because the essential image of ρ
is closed under extensions, we can write Y “ ρpEq for some object E P C. We then
have a commutative diagram of cofiber sequences

ΣnΩnC //

��

ΣnE //

v
��

ΣmD

u
��

ΣnΩnC // C // C2.

It follows from the adjointness of Σn and Ωn that the map v factors through ΣnΩnC.
It follows that u factors through C, and therefore (since ΣmD is an n-fold suspension)
through the composite map ΣnΩnC Ñ C Ñ C2 which is nullhomotopic.

The implication pbq ñ pcq is trivial. We complete the proof by showing that pcq ñ paq.
Let D be a stable 8-category equipped with a t-structure pDě0,Dď0q; we wish to show that
Dě0 is a prestable 8-category which admits finite limits. The prestability of Dě0 follows
from Example C.1.2.8, and the existence of finite limits follows from the fact that Dě0 is a
colocalization of the stable 8-category D.

Remark C.1.2.10. Let C be a prestable 8-category which admits finite limits. It fol-
lows from Proposition C.1.2.9 that there exists a stable 8-category D with a t-structure
pDě0,Dď0q and an equivalence C » Dě0. The stable 8-category D is not uniquely deter-
mined. However, there are two canonical choices for D:

paq One can take D to be the Spanier-Whitehead 8-category SWpCq, as in the proof of
Proposition C.1.2.9: that is, we can take D to be the colimit of the sequence

C Σ
Ñ C Σ

Ñ C Ñ ¨ ¨ ¨ .

In this case, the t-structure on D is right bounded: that is, we have D “
Ť

Dě´n.
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pbq One can take D to be the 8-category SppCq of spectrum objects of C, defined as the
homotopy limit of the tower of 8-categories

¨ ¨ ¨ Ñ C Ω
Ñ C Ω

Ñ C

which we can identify with

¨ ¨ ¨ Ñ SWpCqě´2
τě´1
Ñ SWpCqě´1

τě0
Ñ SWpCqě0.

In other words, we can identify D with the right completion of the 8-category SWpCq
with respect to its t-structure; in particular, the t-structure on the 8-category D is
right complete.

An arbitrary stable 8-category D with a t-structure pDě0,Dď0q and an equivalence C » Dě0
lies somewhere between these two extremes: more precisely, one has functors

lim
ÝÑ
pC Σ
Ñ C Ñ ¨ ¨ ¨ q »

ď

ně0
Dě´n Ď D Ñ lim

ÐÝ
ně0
Dě´n » SppCq.

Notation C.1.2.11. Let C be a prestable8-category. We let C♥ denote the full subcategory
of C spanned by the discrete objects. We will refer to C♥ as the heart of C. Note that if C
admits finite limits, then Proposition C.1.2.9 implies that we can identify C♥ with the heart
of a t-structure on the stable 8-category SWpCq. In particular, C♥ is an abelian category.

Definition C.1.2.12. Let C be a prestable 8-category which admits finite limits. We will
say that that an object X P C is 8-connective if τďnX » 0 for every integer n. We will
say that C is separated if every 8-connective object of C is a zero object. We say that C is
complete it is a homotopy limit of the tower of 8-categories

¨ ¨ ¨ Ñ τď2 C
τď1
ÝÑ τď1 C

τď0
Ñ τď0 C “ C♥ .

In other words, C is complete if it is Postnikov complete (in the sense of Definition A.7.2.1).

Remark C.1.2.13. If a prestable 8-category C is complete, then it is separated.

Remark C.1.2.14. Let C be a stable 8-category. Then C is separated in the sense of
Definition C.1.2.12 (when regarded as a prestable 8-category) if and only if C » ˚.

C.1.3 The Prestable Dold-Kan Correspondence

Let C be an 8-category which admits finite colimits and let X‚ P Funp∆op, Cq be a
simplicial object of C. For each n ě 0, we define the n-skeleton sknpX‚q to be the colimit
lim
ÝÑrmsP∆op

ďn
Xm (note that this colimit exists in C, since it can be rewritten as a colimit over
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the subcategory ∆op
s,ďn Ď ∆op

ďn having finite nerve; see Lemma HA.1.2.4.17 ). Note that∆ďn

is contained in ∆ďn1 for n ď n1, so that the skeleta of X‚ can be arranged in a diagram

sk0pX‚q Ñ sk1pX‚q Ñ sk2pX‚q Ñ ¨ ¨ ¨ .

The construction X‚ ÞÑ tsknpX‚quně0 determines a functor

sk˚ : Funp∆op, Cq Ñ FunpNpZě0q, Cq

from simplicial objects of C to filtered objects of C (here Zě0 denotes the set of nonnegative
integers, endowed with its usual ordering). In §HA.1.2.4 , we proved that this functor is an
equivalence when C is a stable 8-category (see Theorem HA.1.2.4.1 and its proof). We now
establish the following refinement:

Theorem C.1.3.1 (The Prestable Dold-Kan Correspondence). Let C be a prestable 8-
category. Then the functor

sk˚ : Funp∆op, Cq Ñ FunpNpZě0q, Cq

is fully faithful. Moreover, the essential image of sk˚ is spanned by those diagrams

Xp0q fp1q
ÝÝÑ Xp1q fp2q

ÝÝÑ Xp2q Ñ ¨ ¨ ¨

which possess the following property:

p˚q For each n ą 0, the cofiber cofibpfpnqq belongs to the essential image of the iterated
suspension functor Σn : C Ñ C.

Proof. Let SWpCq denote the Spanier-Whitehead category of C and let ρ : C Ñ SWpCq be
the canonical map. Since ρ commutes with finite colimits, we have a commutative diagram

Funp∆op, Cq sk˚ //

��

FunpNpZě0q, Cq

��
Funp∆op, SWpCqq sk˚ // FunpNpZě0q, SWpCqq,

where the vertical maps are given by composition with ρ (and are therefore fully faithful).
Since the bottom horizontal map is an equivalence of 8-categories (Theorem HA.1.2.4.1 ), it
follows immediately that the functor sk˚ : Funp∆op, Cq Ñ FunpNpZě0q, Cq is fully faithful.

For each n ě 0, consider the following hypotheses on a simplicial object X‚ of SWpCq:

panq The object Xn belongs to the essential image of the functor ρ : C Ñ SWpCq.

pbnq The cofiber of the map skn´1pX‚q Ñ sknpX‚q belongs to the essential image of the
functor pρ ˝ Σnq : C Ñ SWpCq (here we adopt the convention that sk´1pX‚q » 0).
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To complete the proof, it will suffice to show that a simplicial object X‚ of SWpCq satisfies
condition panq for all n ě 0 if and only if it satisfies condition pbnq for all n ě 0. We will
prove this by showing that if X‚ satisfies condition pamq for 0 ď m ă n, then conditions
panq and pbnq are equivalent.

Let us henceforth regard n ě 0 as fixed. Let Xďn denote the restriction of X to the
full subcategory ∆op

ďn Ď ∆op and define Xďn´1 similarly. Let X 1, X : ∆op
`,ďn Ñ SWpCq

be left Kan extensions of Xďn´1 and Xďn, respectively, so that X 1pr´1sq » skn´1X,
Xpr´1sq » sknpXq, and X

1
prnsq can be identified with the nth latching object of X. The

canonical identification Xďn´1 » Xďn|∆op
ďn´1

induces a natural transformation of functors
X
1
Ñ X. Let us denote the cofiber of this natural transformation by X2, so that we have

a cofiber sequence X 1 Ñ X Ñ X
2 in the 8-category Funp∆op

`,ďn, SWpCqq. Note that both
X
1 and X are left Kan extensions of their restrictions to ∆op

ďn, so that X2 has the same
property. Set Z “ cofibpskn´1pX‚q sknpX‚qq » X

2
pr´1sq. Since the objects X2prmsq vanish

for 0 ď m ă n, Corollary HA.1.2.4.18 supplies an equivalence Z » ΣnX
2
prnsq. In other

words, we have a cofiber sequence

X
1
prnsq Ñ Xn Ñ Σ´nZ.

Our hypothesis that X‚ satisfies pamq for m ă n guarantees that X 1prnsq belongs to the
essential image of ρ. Since the essential image of ρ is closed under cofibers and extensions,
it follows that Xn belongs to the essential image of ρ if and only if Σ´nZ belongs to the
essential image of ρ. We conclude that panq ô pbnq, as desired.

C.1.4 Grothendieck Prestable 8-Categories

Let A be an abelian category. Recall that A is said to be Grothendieck if it is presentable
and filtered colimits in A are exact. We now discuss an analogous condition in the setting
of prestable 8-categories.

Proposition C.1.4.1. Let C be a presentable 8-category. The following conditions are
equivalent:

paq The 8-category C is prestable and filtered colimits in C are left exact (see Definition
HTT.7.3.4.2 ).

pbq The 8-category C is prestable and the functor Ω : C Ñ C commutes with filtered
colimits.

pcq The 8-category C is prestable and the functor Ω8 : SppCq Ñ C commutes with filtered
colimits.
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pdq There exists a presentable stable 8-category D, a t-structure pDě0,Dď0q on D which
is compatible with filtered colimits, and an equivalence C » Dě0.

Definition C.1.4.2. Let C be a prestable 8-category. We will say that C is Grothendieck
if it presentable and satisfies the equivalent conditions of Proposition C.1.4.1.

Example C.1.4.3. Let C be a stable 8-category. Then C is automatically a prestable
8-category. It is a Grothendieck prestable 8-category if and only if it is presentable (in
this case, the functor Ω : C Ñ C automatically commutes with filtered colimits since it is an
equivalence of 8-categories).

Example C.1.4.4. Let C be a prestable 8-category. If C is compactly generated (Definition
HTT.5.5.7.1 ), then C is a Grothendieck prestable 8-category (note that filtered colimits are
left exact in any compactly generated 8-category).

Example C.1.4.5. Let A be a Grothendieck abelian category and let DpAq be the derived
8-category of A (see §HA.1.3.5 ). Then DpAq admits a t-structure pDpAqě0,DpAqď0q which
is right complete and compatible with filtered colimits (Proposition HA.1.3.5.21 ). It follows
that DpAqě0 is a Grothendieck prestable 8-category.

Remark C.1.4.6. Let C be a Grothendieck prestable 8-category. Then the heart C♥ (see
Notation C.1.2.11) is a Grothendieck abelian category (Remark HA.1.3.5.23 ). It follows
from Example C.1.4.5 that every Grothendieck abelian category arises in this way. However,
the correspondence is many-to-one. For example, if R is a commutative ring, then the
Grothendieck abelian category Mod♥

R can be identified with the heart of Modcn
R

for any
connective E8-ring R satisfying π0R » R. For a more detailed discussion about the
relationship between a Grothendieck prestable 8-category and its heart C♥, we refer the
reader to §C.5.

Proof of Proposition C.1.4.1. The implication paq ñ pbq is trivial, the implication pbq Ñ pcq

follows from the observation that SppCq can be realized as the homotopy limit of the tower

¨ ¨ ¨
Ω
ÝÑÑ C Ω

ÝÑ C Ω
ÝÑÑ C Ω

ÝÑ C,

and the implication pcq ñ pdq follows by taking D “ SppCq (see Remark C.1.2.10). We
will complete the proof by showing that pdq implies paq. Suppose that E is a presentable
stable 8-category equipped with a t-structure pDě0,Dď0q which is compatible with filtered
colimits. Then Dě0 is prestable (Proposition C.1.2.9); we wish to show that filtered colimits
in Dě0 are left exact. Let K be a finite simplicial set and let Fě0 : FunpK,Dě0q Ñ Dě0 be
a right adjoint to the diagonal map; we wish to show that the functor Fě0 commutes with
filtered colimits. Unwinding the definitions, we can write Fě0 as a composition

FunpK,Dě0q ãÑ FunpK,Dq F
Ñ D τě0

ÝÑ Dě0,
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where F : FunpK,Dq Ñ D is a right adjoint to the diagonal map. Since D is stable, the
functor F preserves filtered colimits (in fact, it preserves all small colimits). It therefore
suffices to observe that the truncation functor τě0 preserves filtered colimits, by virtue of
our assumption that the t-structure pDě0,Dď0q is compatible with filtered colimits.

C.1.5 Additive 8-Categories

Let A be a category. Recall that A is said to be additive if it satisfies the following three
conditions:

piq The category A is pointed: that is, there is an object 0 P A which is both initial and
final.

Using piq, we can associate to every pair of objects X,Y P A a zero morphism 0 P

HomApX,Y q, given by the composition X Ñ 0 Ñ Y .

piiq The category A admits finite products and finite coproducts. Moreover, for every pair
of objects X,Y P A, the canonical map

«

idX 0
0 idY

ff

: X > Y Ñ X ˆ Y

is an isomorphism.

Using piiq, we can endow each HomApX,Y q with the structure of a commutative monoid,
where the sum of morphisms f, g : X Ñ Y is given by the composition

pf ` gq : X Ñ X ˆX
pf,gq
ÝÝÝÑ Y ˆ Y » Y > Y Ñ Y.

piiiq For every pair of objects X,Y P A, the addition law defined above endows the set
HomApX,Y q with the structure of an abelian group.

In this section, we will study the following 8-categorical generalization of the notion of
additive category:

Definition C.1.5.1. Let C be an 8-category. We will say that C is additive if it satisfies
the following conditions:

paq The 8-category C admits finite products.

pbq The 8-category C admits finite coproducts.

pcq The homotopy category hC is an additive category.
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Remark C.1.5.2. Let C be an additive 8-category. Then C is pointed. Moreover, for every
pair of objects X,Y P C, the additivity of hC implies that the canonical map

«

idX 0
0 idY

ff

: X > Y Ñ X ˆ Y

is an equivalence. We will henceforth denote both the coproduct X > Y and the product
X ˆ Y by X ‘ Y , which we refer to as the direct sum of X and Y .

Remark C.1.5.3. Let C be an 8-category. If C satisfies condition paq of Definition
C.1.5.1, then we can regard C as equipped with the Cartesian symmetric monoidal structure
introduced in §HA.2.4.1 . Let MonCommpCq denote the 8-category of commutative monoid
objects of C (see §HA.2.4.2 ). If C satisfies also condition pbq of Definition C.1.5.1, then it
can also be equipped with the coCartesian symmetric monoidal structure introduced in
§??. If C satisfies condition pcq of Definition C.1.5.1, then the Cartesian and coCartesian
symmetric monoidal structures on C are equivalent. In this case, Propositions HA.2.4.2.5
and HA.2.4.3.8 imply that the vertical maps in the diagram

CAlgpCq

ww ##MonCommpCq // C

are equivalences of 8-categories, so that the forgetful functor MonCommpCq Ñ C is also an
equivalence of 8-categories. In other words, every object of C admits the structure of a
commutative monoid (with respect to the direct sum ‘) in an essentially unique way.

Example C.1.5.4. Let C be an additive 8-category, and let C0 Ď C be a full subcategory
which is closed under finite coproducts. Then C0 is also an additive 8-category.

Example C.1.5.5. Any stable 8-category is additive (see Lemma HA.1.1.2.9 ).

Example C.1.5.6. Any prestable8-category is additive (this follows from Examples C.1.5.4
and C.1.5.5, together with Corollary C.1.2.3).

We now establish a converse to Example C.1.5.6: every (small) additive 8-category C
admits a canonical embedding into a (Grothendieck) prestable 8-category, whose essential
image is closed under finite coproducts.

Proposition C.1.5.7. Let C be a small 8-category which admits finite coproducts, let
PΣpCq Ď FunpCop,Sq be the full subcategory spanned by those functors which preserve finite
products, and let j : C Ñ PΣpCq be the Yoneda embedding. The following conditions are
equivalent:
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p1q The 8-category C is additive.

p2q The 8-category PΣpCq is prestable.

Lemma C.1.5.8. Let C be a small additive 8-category. Then the 8-category PΣpCq is also
additive.

Proof. Since PΣpCq is presentable, it admits finite limits and colimits. Let j : C Ñ PΣpCq
be the Yoneda embedding, so that j preserves finite products (Proposition HTT.5.1.3.2 )
and finite coproducts (Proposition HTT.5.5.8.10 ). In particular, if 0 is a zero object of C,
then jp0q is a zero object of PΣpCq. Consequently, for every pair of objects X,Y P PΣpCq,
we obtain a canonical map θX,Y : X > Y Ñ X ˆ Y . We wish to prove that θX,Y is an
equivalence for all X,Y P PΣpCq. Since PΣpCq is closed under sifted colimits in FunpCop,Sq
and the formation of products in S commutes with small colimits in each variable, it follows
that the construction pX,Y q ÞÑ X ˆ Y preserves sifted colimits separately in each variable.
Consequently, the collection of those pairs pX,Y q for which θX,Y is an equivalence is closed
under sifted colimits. We may therefore assume without loss of generality that X and Y

belong to the essential image of j, in which case the desired result follows from the additivity
of C.

Arguing as in Remark C.1.5.3, we see that the forgetful functor MonCommpPΣpCqq Ñ
PΣpCq is an equivalence of 8-categories, so that we can regard each object Y P PΣpCq
as a commutative monoid object of PΣpCq. In particular, if X P PΣpCq is another object,
then the mapping space MapPΣpX,Y q can be regarded as a commutative monoid object
of the 8-category S, so that π0 MapPΣpX,Y q inherits the structure of a commutative
monoid. To complete the proof, it will suffice to show that each of the commutative
monoids π0 MapPΣpX,Y q is an abelian group: in other words, each of the mapping spaces
MapPΣpX,Y q is grouplike commutative monoid object of S, (see Definition ??). Since the
full subcategory of MonCommpSq spanned by the grouplike commutative monoids is closed
under limits, the collection of those objects X P PΣpCq for which π0 MapPΣpX,Y q is an
abelian group is closed under small colimits. We may therefore assume without loss of
generality that X belongs to the essential image of j, so that X is a compact projective
object of PΣ. Write Y as the geometric realization of a simplicial object Y‚, where Y0 is a
coproduct of objects belonging to the essential image of j. Since X is projective, the map

π0 MapPΣpX,Y0q Ñ π0 MapPΣpX,Y q

is surjective. We may therefore replace Y by Y0 and thereby reduce to the case where Y
has the form

š

αPA jpYαq for some objects Yα P C. Since X is compact, the commutative
monoid π0 MapPΣpX,Y q can be written as a filtered colimit of commutative monoids of
the form π0 MapPΣpX,

š

αPA0
jpYαqq, where A0 ranges over all finite subsets of A. We may

therefore replace Y by jp
š

αPA0
Yαq and thereby reduce to the case where Y also belongs to
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the essential image of j. In this case, the existence of inverses in the commutative monoid
MapPΣpX,Y q follows from our assumption that C is additive.

Proof of Proposition C.1.5.7. Let C be a small 8-category which admits finite coproducts.
Then the Yoneda embedding j : C Ñ PΣpCq is fully faithful and preserves finite coproducts
(Proposition HTT.5.5.8.10 ). Using Examples C.1.5.4 and C.1.5.6, we deduce that if PΣpCq
is prestable, then C is additive. For the converse, assume that C is additive. Using Remark
HA.5.2.6.26 , we can identify the 8-category Spcn of connective spectra with the full subcat-
egory Mongp

CommpSq Ď MonCommpSq spanned by the grouplike commutative monoid objects
of S. This identification furnishes an equivalence FunπpCop,Spcnq » Mongp

CommpPΣpCqq,
where Mongp

CommpPΣpCqq denotes the full subcategory of MonCommpPΣpCqq spanned by those
commutative monoid objects X having the property that for each object C P C, the object
XpCq » MapPΣpCqpjpCq, Xq P MonCommpSq is grouplike. It follows from Lemma C.1.5.8
that PΣpCq is additive, so that the forgetful functor

Mongp
CommpPΣpCqq “ MonCommpPΣpCqq Ñ PΣpCq

is an equivalence of8-categories. We therefore obtain an equivalence PΣpCq » FunπpCop, Spcnq.
In particular, there is a fully faithful embedding PΣpCq ãÑ FunpCop,Spq whose essential
image is closed under finite colimits and extensions, so that PΣpCq is prestable by virtue of
Corollary C.1.2.3.

Remark C.1.5.9. Let C be a small additive 8-category and let E “ PΣpCq. It follows from
Proposition C.1.5.7 that the 8-category E is prestable. The proof of Proposition C.1.5.7
yields an equivalence E » FunπpCop, Spcnq, which yields equivalences

SppEq » FunπpCop,Spq E♥ » FunπpCop, Sp♥q.

In particular, E is a Grothendieck prestable 8-category and the canonical map E Ñ lim
ÐÝ

τďn E
is an equivalence (that is, E is complete in the sense of Definition C.1.2.12).

Remark C.1.5.10. Let E be an 8-category which is projectively generated (see Definition
HTT.5.5.8.23 ). Then the following conditions are equivalent:

paq The 8-category E is additive.

pbq The 8-category E is Grothendieck prestable.

pcq There exist a small additive 8-category C and an equivalence PΣpCq » E .

The implication pcq ñ pbq follows from Remark C.1.5.9, the implication pbq ñ paq follows
from Example ??. To show that paq ñ pcq, take C Ď E to be the full subcategory spanned by
the compact projective objects. The assumption that E is projective generated guarantees
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the existence of an equivalence PΣpCq » E (Proposition HTT.5.5.8.25 ). Since C is a full
subcategory of E which is closed under finite coproducts, the additivity of E guarantees the
additivity of C (Example ??).

Example C.1.5.11. Let C be an additive 8-category which is generated under finite
coproducts by a single object C P C. Let j : C Ñ PΣpCq be the Yoneda embedding, and let
us abuse notation by identifying PΣpCq with a full subcategory of its stabilization SppPΣpCqq.
Then jpCq is a compact object of the stable SppPΣpCqq whose desuspensions generate
SppPΣpCqq under small colimits. Applying Theorem ?? (and its proof), we deduce that there
exists an E1-ring A and an equivalence of stable 8-categories ρ : RModA Ñ SppPΣpCqq
carrying A to jpCq. For each n ě 0, we have a canonical homotopy equivalence

Ω8´nA » MapPΣpCqpjpCq,Σ
njpCqq.

Since jpCq is a projective object of PΣpCq, it follows that Ω8´nA is n-connective for each
n: that is, the spectrum A is connective. Taking n “ 0 and using the fact that j is fully
faithful, we obtain a homotopy equivalence Ω8A » MapCpC,Cq: more informally, we can
regard A as the “endomorphism ring” of the object C P C. Since RModcn

A is the smallest full
subcategory of RModA which contains A and is closed under small colimits, the functor ρ
restricts to an equivalence of Grothendieck prestable 8-categories RModcn

A » PΣpCq.

C.2 The Gabriel-Popescu Theorem

Let A be a Grothendieck abelian category. Recall that an object C P A is a generator of
A if every object of A can be written as a quotient of a direct sum

À

C of copies of C.

Theorem C.2.0.12 (Gabriel-Popescu). Let A be a Grothendieck abelian category, let C P A
be a generator, let A “ HomApC,Cq be its endomorphism ring, and let RMod♥

A denote the
abelian category of right A-modules. Then the construction D ÞÑ HomApC,Dq determines
a fully faithful embedding G : AÑ RMod♥

A. Moreover, the left adjoint of G (given by the
construction M ÞÑM bA C) is an exact functor from RMod♥

A to A.

Since every Grothendieck abelian category has a generator, Theorem C.2.0.12 implies
that every Grothendieck abelian category can be realized as a left exact localization of
the category of modules over a (possibly noncommutative) ring. This has many pleasant
consequences: for example, it can be used to show that there is a well-behaved tensor product
on Grothendieck abelian categories (see Theorem C.5.4.16).

Our goal in this section is to establish an analogue of Theorem C.2.0.12 for Grothendieck
prestable 8-categories (Theorem ??), and to study some of its applications. For example, we
will see that Theorem C.2.0.12 can be recovered from our result as a special case (Theorem
C.2.2.1), and that every Grothendieck prestable 8-category C can be obtained as a left
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exact localization of the 8-category of RModcn
A , where A is a connective E1-ring (Theorem

C.2.4.1).

C.2.1 The Gabriel-Popescu Theorem for Prestable 8-Categories

We begin by introducing some terminology.

Definition C.2.1.1. Let C be a Grothendieck prestable 8-category. A generating subcate-
gory for C is a full subcategory C0 Ď C with the following property: for every object X P C,
there exists a collection of maps ρα : Cα Ñ X, where each Cα belongs to C0 and the induced
map

À

α π0Cα Ñ π0X is an epimorphism in the abelian category C♥.
When C0 is the full subcategory of C spanned by a single object C, then we say that C

is a generator of C if C0 is a generating subcategory of C.

Warning C.2.1.2. Let C be a Grothendieck prestable 8-category. If C0 Ď C is a full
subcategory which generates C under small colimits, then C0 is a generating subcategory of C
in the sense of Definition C.2.1.1. However, the converse is not true in general. For example,
if C is stable, then any full subcategory C0 Ď C is a generating subcategory. However, we
will show below that the converse does hold when C is separated (in the sense of Definition
C.1.2.12); see Corollary C.2.1.7.

Remark C.2.1.3. Let C be a Grothendieck prestable 8-category. Then C is presentable,
so there exists an essentially full subcategory C0 Ď C which generates C under small colimits.
In particular, there exists an essentially small generating subcategory C0 Ď C.

Remark C.2.1.4. Let C be a Grothendieck prestable 8-category. If C0 Ď C is a generating
subcategory of C spanned by a small collection of objects tCαu, then the single object
C “

À

αCα is a generator of C. Combining this observation with Remark C.2.1.3, we see
that every Grothendieck prestable 8-category C admits a generator C P C.

Warning C.2.1.5. Let C be a Grothendieck prestable 8-category and let C P C be a
generator. Then the truncation π0C is a generator of the Grothendieck abelian category C♥.
However, the converse is false in general. For example, Z is a generator for the Grothendieck
abelian category Sp♥ of abelian groups, but is not a generator for the Grothendieck prestable
8-category Spcn (any map from Z to the sphere spectrum is nullhomotopic).

We can now formulate our main result:

Theorem C.2.1.6 (8-Categorical Gabriel-Popescu Theorem). Let C be a Grothendieck
prestable 8-category and let C0 Ď C be an essentially small generating subcategory. Assume
that C is separated and that C0 is closed under finite coproducts in C. Then:
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p1q The inclusion functor C0 Ñ C extends to a left exact functor F : PΣpC0q Ñ C which
commutes with small colimits.

p2q The functor F admits a fully faithful right adjoint G : C Ñ PΣpC0q.

We will give the proof of Theorem C.2.1.6 in §??. For the moment, let us enumerate
some of its consequences.

Corollary C.2.1.7. Let C be a Grothendieck prestable 8-category and let C0 Ď C be an
essentially small generating subcategory. If C is separated, then it is generated under small
colimits by C0.

Corollary C.2.1.8. Let C be a separated Grothendieck prestable 8-category and let C P C
be a generator. Then there exists a connective E1-ring A and a pair of adjoint functors

RModcn
A

F //C
G
oo , where GpCq » A, the functor F is left exact, and the functor G is fully

faithful.

Proof. Let C0 Ď C denote the full subcategory spanned by the finite direct sums C ‘
C ‘ ¨ ¨ ¨ ‘ C. Example C.1.5.11 supplies a connective E1-ring A and an equivalence of 8-
categories PΣpC0q » RModcn

A . Applying Theorem C.2.1.6, we obtain the desired adjunction

RModcn
A

F //C
G
oo .

Remark C.2.1.9. Let C be a Grothendieck prestable 8-category. Then we can regard C as
tensored over the 8-category Spcn of connective spectra (see Corollary C.4.1.2). It follows
that for every object C P C, we can associate a connective spectrum EndCpCq which is
universal among connective spectra E equipped with a map EbC Ñ C. In this case, we can
regard EndCpCq as a connective E1-ring and C as an EndCpCq-module object of C. Suppose

that C is separated and C is a generator of C, and consider an adjunction RModcn
A

F //C
G
oo as

in the statement of Corollary C.2.1.8. Then G is fully faithful and GpCq » A, so we obtain
a canonical equivalence

EndCpCq » EndRModcn
A
pAq » A.

In other words, we can identify A with the (connective) endomorphism ring EndCpCq. Under
this identification, the functor F is given by pM P RModcn

A q ÞÑ pM bA C P Cq.

Corollary C.2.1.10. Let C be presentable stable 8-category equipped with a t-structure
pCě0, Cď0q which is left separated, right complete, and compatible with filtered colimits. Let
C0 Ď Cě0 be a generating subcategory which is closed under finite direct sums. Then the
functor G : C Ñ FunπpCop

0 ,Spq given by GpCqpC0q “ MapCpC0, Cq is fully faithful. Moreover,
G admits a t-exact left adjoint F : FunπpCop

0 ,Spq Ñ C.
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Proof. Applying Theorem C.2.1.6 to the inclusion C0 Ď Cě0 and identifying PΣpC0q with
the 8-category FunpCop

0 , Spcnq as in the proof of Proposition C.1.5.7, we obtain adjoint

functors FunπpCop
0 ,Spcnq

f //Cě0g
oo where f is left exact and g is fully faithful. Passing to

stabilizations, we obtain the desired adjunction FunπpCop
0 ,Spq

F //C
G
oo .

Corollary C.2.1.11. Let C be presentable stable 8-category equipped with a t-structure
pCě0, Cď0q which is left separated, right complete, and compatible with filtered colimits.
Let C be a generator for the Grothendieck prestable 8-category Cě0, and let A P Algcn

denote the connective cover of the endomorphism ring MapCpC,Cq. Then the construction
pD P Cq ÞÑ MapCpC,Dq induces a fully faithful embedding G : C Ñ RModA. Moreover, G
admits a t-exact left adjoint F , given by F pMq “M bA C.

C.2.2 The Gabriel-Popescu Theorem for Abelian Categories

We now show that the 8-categorical Gabriel-Popescu theorem (Theorem C.2.1.6) implies
the classical Gabriel-Popescu theorem (Theorem C.2.0.12). In fact, we can deduce a slightly
stronger “many-object” version, due to Kuhn (see [126]).

Theorem C.2.2.1 (Kuhn). Let A be a Grothendieck abelian category, let A0 Ď A be an es-
sentially small full subcategory which is closed under finite direct sums, and let FunπpAop

0 ,Setq
denote the full subcategory of FunpAop

0 ,Setq spanned by those functors which preserve finite
products. Suppose that, for every object X P A, there exists an epimorphism

À

Cα Ñ X,
where each Cα belongs to A0. Then:

paq The construction X ÞÑ HomAp‚, Xq determines a fully faithful embedding g : A Ñ
FunπpAop

0 ,Setq.

pbq The functor g admits an exact left adjoint f : FunπpAop
0 ,Setq Ñ A.

Example C.2.2.2 (The Case of a Single Generator). Let A be a Grothendieck abelian
category and let C P A be a generator. Then the full subcategory A0 Ď A spanned
by the objects tCnuně0 satisfies the hypotheses of Theorem C.2.2.1, and we can identify
FunπpAop

0 ,Setq with the abelian category of (discrete) right modules over the endomorphism

ring A “ HomApC,Cq. Applying Theorem C.2.2.1, we obtain an adjunction RMod♥
A

f //A
g
oo ,

where the functor f is exact and the functor g “ HomApC, ‚q is fully faithful: this proves
Theorem C.2.0.12.

Proof of Theorem C.2.2.1. Let DpAq denote the derived 8-category of A (see §HA.1.3.5 ).
We regardDpAq as endowed with the t-structure pDpAqě0,DpAqď0q of Proposition HA.1.3.5.21 ,
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so that DpAqě0 is a separated Grothendieck prestable 8-category (Example C.1.4.5). Let
us abuse notation by identifying A with the heart of DpAq.

Let X be an arbitrary object of DpAq, which we can represent by a chain complex

¨ ¨ ¨ Ñ I2
d2
Ñ I1

d1
Ñ I0

d0
Ñ I´1

d´1
Ñ I´2 Ñ ¨ ¨ ¨ .

Our assumption on A0 guarantees that we can choose an epimorphism ρ :
À

Cα Ñ kerpd0q

in A, where each Cα belongs to A0. Then we can regard ρ as a morphism from
À

Cα
to X in the 8-category DpAq which induces an epimorphism on π0. Allowing X to vary
over all objects of DpAqě0, we conclude that A0 Ď A » DpAq♥ Ď DpAqě0 is a generating
subcategory of DpAqě0. Applying the 8-categorical Gabriel-Popescu theorem (Theorem

C.2.1.6), we obtain an adjunction PΣpA0q
F //DpAqě0
G
oo where F is left exact and G is fully

faithful. Restricting to discrete objects, we obtain an adjunction τď0 PΣpA0q
f //A
g
oo , where f

is exact and g is fully faithful. It now suffices to observe that we have a canonical equivalence
τď0 PΣpA0q “ FunπpAop

0 ,Setq, which carries g to the functor X ÞÑ HomAp‚, Xq.

Corollary C.2.2.3. Let A be a category. The following conditions are equivalent:

paq The category A is a Grothendieck abelian category.

pbq There exists a Grothendieck abelian category B such that A is an accessible left exact
localization of B (that is, there exists an accessible left exact functor L : B Ñ A with a
fully faithful right adjoint).

pcq There exists a (possibly noncommutative) ring A such that A is an accessible left exact
localization of the abelian category M of right A-modules.

Proof. The implication pcq ñ pbq is obvious, and the implication paq Ñ pcq follows from
Theorem C.2.0.12 (since every Grothendieck abelian category admits a generator). We
complete the proof by showing that pbq ñ paq. Let us identify A with a full subcategory of
B via the left adjoint of the localization functor L : B Ñ A. Note that A is closed under
small limits in B, and in particular it is closed under finite products. Since B is an additive
category, it follows that A is an additive category. Because B is a presentable category and
the localization functor L is accessible, it follows that A is presentable: in particular, it
admits kernels and cokernels. To complete the proof that A is abelian, it will suffice to show
that for every morphism f : C Ñ D in A, the canonical map

θ : cokerApkerApfq Ñ Cq Ñ kerApD Ñ cokerApfqq

is an isomorphism; here the subscript indicates that the relevant kernels and cokernels are
computed in the category A. Note that limits in the category A can be computed in B (that
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is, the inclusion A ãÑ B preserves limits) and that colimits in A are computed by forming
colimits in B and then applying the localization functor L. We may therefore identify θ with
the canonical map

L cokerBpkerBpfq Ñ Cq Ñ kerBpD Ñ L cokerBpfqq.

Since the functor L is left exact, the morphism θ is equivalent to the image under the functor
L of the map

cokerBpkerBpfq Ñ Cq Ñ kerBpD Ñ cokerBpfqq,

which is an isomorphism since B is an abelian category.
We now complete the proof that pbq ñ paq by showing that the abelian category A is

Grothendieck. Let tfα : Cα Ñ Dαu be a filtered diagram of monomorphisms in A having
colimit f : C Ñ D in the category B. Since filtered colimits in B are left exact, f is a
monomorphism. Because the functor L is left exact, the induced map Lf : LC Ñ LD (which
we can identify with the colimit of tfαu in the category A) is also a monomorphism. This
proves that filtered colimits in A are left exact.

C.2.3 Localizations of Prestable 8-Categories

Let A be a category. Then A is a Grothendieck abelian category if and only if it is
equivalent to a left-exact localization of the abelian category of (right) modules over some
associative ring A (Corollary C.2.2.3). In §C.2.4, we will prove an analogous result in the
setting of Grothendieck prestable 8-categories (Theorem C.2.4.1). The proof will require
some general facts about localizations of prestable 8-categories, which we review in this
section.

Proposition C.2.3.1. Let C be a prestable 8-category which admits finite limits and let
D Ď C be a full subcategory. Suppose that the inclusion D ãÑ C admits a left adjoint
L : C Ñ D which is left exact. Then D is also a prestable 8-category which admits finite
limits. If C is a Grothendieck prestable 8-category and L is accessible, then D is also a
Grothendieck prestable 8-category.

Remark C.2.3.2. Let L : C Ñ D be as in Proposition C.2.3.1. We will say that an object
C P C is L-acyclic if LC is a zero object of D. For any morphism α : C 1 Ñ C in C, the
following conditions are equivalent:

piq The morphism Lα is an equivalence in D.

piiq The object cofibpαq P C is L-acyclic.

The implication piq ñ piiq follows from the observation Lpcofibpαqq “ cofibpLαq. To prove
the converse, note that we have a cofiber sequence LC 1 LαÝÝÑ LC Ñ L cofibpαq which is also
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a fiber sequence by virtue of Corollary C.1.2.6, so the vanishing of L cofibpαq guarantees
that Lα is an equivalence.

Proof of Proposition C.2.3.1. Since D is a localization of C, it is closed under all limits which
exist in C; in particular, D admits finite limits. Moreover, since C admits finite colimits, the
8-category D also admits finite colimits (which are given by forming the relevant colimits
in C and then applying the functor L). Any final object of D is also final in C and therefore
a zero object, so that D is pointed. Consider the adjunctions

C
ΣC //C
ΩC
oo D

ΣD //D .
ΩD
oo

For any object D P D, the unit map u : D Ñ ΩDΣDD is given by the composition

D
u1
Ñ ΩCΣCD

u2
Ñ ΩCLΣCD » ΩDΣDD.

The assumption that C is prestable guarantees that u1 is an equivalence and the left exactness
of L implies that u2 is an equivalence. It follows that u is an equivalence for every object
D P D: that is, the suspension functor ΣD is fully faithful.

To complete the proof that D is prestable, suppose that we are given a pullback diagram
σ :

X //

��

X2

��
0 // ΣDX

1

in the 8-category D; we wish to show that σ is also a pushout square in D. To prove this,
we note that (by virtue of the left exactness of L) the diagram σ can be obtained by applying
L to the pullback square

X //

��

ΣCX
1 ˆΣDX 1 X

2

��
0 // ΣCX

1,

which is also a pushout square in C by virtue of our assumption that C is prestable. Since
the functor L preserves finite colimits, it follows that σ is a pushout square in D.

Now suppose that C is a Grothendieck prestable 8-category and that the localization
functor L is accessible. Then the 8-category D is also presentable (Theorem HTT.5.5.1.1 ).
To show that D is a Grothendieck prestable 8-category, it will suffice to show that filtered
colimits in D are left exact. Let J be a small filtered 8-category and let

FC : FunpJ , Cq Ñ C FD : FunpJ ,Dq Ñ D
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be left adjoint to the diagonal maps. Then the functor FC is left exact, and we wish to show
that FD is also left exact. This follows from the observation that FD can be written as a
composition FunpJ ,Dq ãÑ FunpJ , Cq FC

ÝÑ C L
Ñ D, since the functor L is left exact.

We now classify the left exact localizations appearing in Proposition C.2.3.1.

Definition C.2.3.3. Let C be a Grothendieck prestable 8-category. We will say that a full
subcategory C0 Ď C is localizing if it satisfies the following conditions:

piq The 8-category C0 is accessible and closed under small coproducts in C.

piiq Given a cofiber sequence C 1 Ñ C Ñ C2 in C, if any two of the objects C,C 1, C2 belong
to C0, then so does the third.

piiiq Given a cofiber sequence C 1 Ñ C Ñ C2 in C where C P C0 and C2 P C♥, we have
C 1 P C0.

Remark C.2.3.4. Let α : C 1 Ñ C be a morphism in a Grothendieck prestable 8-category
C. Then the assertion cofibpαq P C♥ is equivalent to the requirement that α exhibit C 1 as a
p´1q-truncated object of C{C : that is, that it exhibits C 1 as a subobject of C. Consequently,
assertion piiiq of Definition C.2.3.3 asserts that the full subcategory C0 is closed under the
formation of subobjects.

Remark C.2.3.5. Condition piiq of Definition C.2.3.3 guarantees that C0 is closed under
the formation of cofibers in C. Combined with condition piq, this implies that C0 is closed
under all small colimits.

Example C.2.3.6. Let C be a presentable stable 8-category. Then a full subcategory
C0 Ď C is localizing if and only if it is accessible and closed under small colimits and
desuspensions.

Example C.2.3.7. Let C and D be Grothendieck prestable 8-categories and let F : C Ñ D
be a functor which preserves small colimits and finite limits. If D0 Ď D is a localizing
subcateegory, then the inverse image F´1pD0q Ď C is also a localizing subcategory.

In particular, if we let C0 Ď C denote the full subcategory spanned by those objects C
for which FC » 0, then C0 is a localizing subcategory of C.

Proposition C.2.3.8. Let C be a Grothendieck prestable 8-category and let C0 Ď C be a
full subcategory. The following conditions are equivalent:

paq The full subcategory C0 Ď C is localizing (see Definition C.2.3.3).

pbq There exists an accessible left exact localization L : C Ñ D such that C0 is the full
subcategory of C spanned by the L-acyclic objects.
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Proof of Proposition C.2.3.8. The implication pbq ñ paq is a special case of Example C.2.3.7.
For the converse, suppose that paq is satisfied. Let S be the collection of all morphisms
u : C Ñ D in C such that cofibpuq P C0. We first claim that S is strongly saturated (in the
sense of Definition HTT.5.5.4.5 ). That is, it satisfies the following conditions:

p1q Given a pushout square
C

u //

��

D

��
C 1

u1 // // D1

in C, if u belongs to S then u1 also belongs to S. This is clear, since cofibpuq » cofibpu1q.

p2q The full subcategory of Funp∆1, Cq spanned by S is closed under small colimits. This
follows from Remark C.2.3.5, since the construction u ÞÑ cofibpuq preserves small
colimits.

p3q Given a pair of composable morphisms C f
ÝÑ D

g
ÝÑ E, if any two of the morphisms f ,

g, and g ˝ f belong to S, then so does the third. This follows by applying assumption
piiq of Definition C.2.3.3 to the cofiber sequence cofibpfq Ñ cofibpg ˝ fq Ñ cofibpgq.

Since C0 is an accessible category, it follows from Proposition HTT.5.4.6.6 that the full
subcategory of Funp∆1, Cq spanned by S is accessible. It follows that S is of small generation
(Lemma HTT.5.5.4.14 ). Let D “ S´1 C be the full subcategory of C spanned by the S-local
objects; applying Proposition HTT.5.5.4.15 we deduce that the inclusion D ãÑ C admits an
accessible left adjoint L : C Ñ D. Note that an object C P C satisfies LC » 0 if and only
if the canonical map v : 0 Ñ C belongs to S: that is, if and only if cofibpvq » C belongs
to C0. To complete the proof of paq, it will suffice to show that the functor L is left exact.
According to Proposition HTT.6.2.1.1 , it will suffice to show that for every pullback square
σ :

C
u //

f
��

D

g
��

C 1
u1 //// D1

in C, if u1 P S, then u P S. The condition that σ is a pullback square in C guarantees that it
exhibits Σ8C as the connective cover of the fiber product Σ8D ˆΣ8D1 Σ8C 1 in the stable
8-category SppCq. In particular, the total fiber of the diagram Σ8pσq belongs to SppCqď´2,
so the total cofiber of Σ8pσq belongs to SppCqď0. In other words, the cofiber of the map
cofibpuq Ñ cofibpu1q is a discrete object of C, so that cofibpu1q P C0 implies cofibpuq P C0 by
virtue of assumption piiiq of Definition C.2.3.3.
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Notation C.2.3.9. Let C be a Grothendieck prestable 8-category and let C0 Ď C be a
localizing subcategory. We let C { C0 denote the full subcategory of C spanned by the S-local
objects, where S is the collection of those morphisms in C whose cofiber belongs to C0. It
follows from Remark C.2.3.2 that any functor L : C Ñ D as in part pbq of Proposition C.2.3.8
is left adjoint to an equivalence of 8-categories D » C { C0 Ď C.

The quotient category C { C0 is characterized by the following universal property:

Proposition C.2.3.10. Let C be a Grothendieck prestable 8-category, let C0 Ď C be a
localizing subcategory, let L : C Ñ C { C0 be a left adjoint to the inclusion functor, and
let D be any Grothendieck prestable 8-category. Then composition with L induces a fully
faithful embedding of 8-categories F : LFunpC { C0,Dq Ñ LFunpC,Dq, where LFunpC,Dq
denotes the full subcategory of FunpC,Dq spanned by those functors which preserve small
colimits, and LFunpC { C0,Dq is defined similarly; the essential image of F is spanned by
those colimit-preserving functors C Ñ D which annihilate each object of C0.

Proof. Let S be the collection of morphisms u in C for which cofibpuq P C0. By virtue of
Proposition HTT.?? , it will suffice to show that a colimit-preserving functor F : C Ñ D
carries each morphism of S to an equivalence in D if and only if F annihilates each object
of C0. The “only if” direction is obvious, and the “if” direction follows from Corollary
C.1.2.5.

Remark C.2.3.11. In the situation of Proposition C.2.3.10, a colimit-preserving functor
F : C { C0 Ñ D is left exact if and only if the composite functor C L

ÝÑ C { C0
F
ÝÑ D is left exact.

The “if” direction is obvious (since we can identify F with the restriction of F ˝ L to the
quotient C { C0), and the converse follows from the left exactness of L (Proposition C.2.3.8).

C.2.4 Classification of Grothendieck Prestable 8-Categories

We now extend the results of §C.2.3 to establish the following characterization for the
class of Grothendieck prestable 8-categories:

Theorem C.2.4.1. Let C be an 8-category. The following conditions are equivalent:

p1q The 8-category C is prestable and Grothendieck.

p2q There exists a connective E1-ring A for which the 8-category C is an accessible left
exact localization of RModcn

A .

The implication p2q ñ p1q of Theorem C.2.4.1 is an immediate consequence of Proposition
C.2.3.1. If C is a separated Grothendieck prestable 8-category, then assertion p2q follows
from Corollary C.2.1.8: in this case, we can take A to be the (connective) endomorphism
ring of any generator C P C. However, this strategy will not work in general: for example, if
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C is stable, then the zero object 0 P C is a generator (see Warning C.2.1.2). Our proof will
instead proceed in two steps: first, we write C as an (accessible) left-exact localization of a
separated Grothendieck prestable 8-category C1. We will then deduce Theorem C.2.4.1 by
applying Corollary C.2.1.8 to the 8-category C1.

We begin with some general remarks about t-structures and Ind-completions.

Proposition C.2.4.2. Let C be a small stable 8-category equipped with a t-structure
pCě0, Cď0q. Then the inclusion functor IndpCě0q ãÑ FunπpCop

ě0,Sq admits an exact left
adjoint L : FunπpCop

ě0,Sq Ñ IndpCě0q.

Lemma C.2.4.3. Let C be a small stable 8-category equipped with a t-structure pCě0, Cď0q.
Then IndpCq inherits a t-structure pIndpCqě0, IndpCqď0q, where IndpCqě0 is the essential
image of the fully faithful functor IndpCě0q Ñ IndpCq, and IndpCqď0 is defined similarly. If
the t-structure on C is right bounded, then the t-structure on IndpCq is right complete.

Proof. The first assertion is straightforward. To prove the second, let us assume that the
t-structure on C is right bounded. It is clear from the construction that IndpCqď0 is closed
under filtered colimits in IndpCq. To prove that IndpCq is right complete, it will suffice to
show that the intersection

Ş

n IndpCqď´n consists only of zero objects of IndpCq (Proposition
HA.1.2.1.19 ). To this end, let us suppose that X P

Ş

n IndpCqď´n. Then MapIndpCqpY,Xq is
contractible for any Y P

Ť

n IndpCqě´n, and therefore for any Y belonging to the essential
image of the Yoneda embedding j : C Ñ IndpCq. Since IndpCq is generated under filtered
colimits by the essential image of j, we conclude that MapIndpCqpY,Xq is contractible for all
Y and therefore X is a final object of IndpCq.

Lemma C.2.4.4. Let C and D be stable 8-categories equipped with t-structures pCě0, Cď0q

and pDě0,Dď0q. Let F : C Ñ D be a functor which is exact and t-exact. Then the induced
map F |Cě0 : Cě0 Ñ Dě0 is left exact.

Proof. Suppose we are given maps X0 Ñ X Ð X1 in the 8-category Cě0. Let X01 “

X0 ˆX X1 denote the fiber product of X0 with X1 over X in the 8-category C, so that the
truncation τě0X01 is the fiber product of X0 with X1 over X in the smaller 8-category Cě0.
To show that F |Cě0 is left exact, we wish to show that the diagram

F pτě0X01q //

��

F pX0q

��
F pX1q // F pXq

is a pullback diagram in Dě0: in other words, that it induces an equivalence

ρ : F pτě0X01q Ñ τě0pF pX0q ˆF pXq F pX1qq
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in the 8-category D. Using the exactness of F , we can rewrite the codomain of ρ as
τě0F pX01q, so that the assertion that ρ is an equivalence follows because F is t-exact.

Proof of Proposition C.2.4.2. Without loss of generality, we can replace C by the union
Ť

n Cě´n and thereby reduce to the case where the t-structure on C is right bounded, so that
the pair of 8-categories pIndpCě0q, IndpCď0qq determines a right complete t-structure on
IndpCq (Lemma C.2.4.3). In this case, we can identify IndpCq with the8-category of spectrum
objects SppIndpCě0qq, so that the inclusion IndpCě0q “ FunlexpCop

ě0,Sq ãÑ FunπpCop
ě0,Sq

induces a functor

G : IndpCq Ñ SppFunπpCop
ě0,Sqq » FunπpCop

ě0,Spq.

Set E “ FunπpCop
ě0, Spq, and regard E as a stable 8-category equipped with a t-structure

(setting Eě0 “ FunπpCop
ě0,Spě0q and Eď0 “ FunπpCop

ě0, Spď0q). The functor G preserves
small limits and filtered colimits and therefore admits a left adjoint F : E Ñ IndpCq; since
G is left t-exact, the functor F is right t-exact. Note that the 8-category Cop

ě0 is additive
(since it is closed under finite products in the stable 8-category Cop), so that we can identify
FunπpCop

ě0,Sq with the full subcategory

Eě0 “ FunπpCop
ě0,Spě0q Ď E

spanned by the connective objects. Under this identification, we see that L is given by the
restriction of the functor F : E Ñ IndpCq to the full subcategory Eě0 Ď E . It will therefore
suffice to show that F is left t-exact.

Let E be an object of Eď0; we wish to show that F pEq P IndpCqď0. Writing E as the
colimit of its truncations τě´nE, we can reduce to the case where E belongs to Eě´n for
some integer n. In this case, E can be written as as successive extension of shifts of objects
belonging to the heart E♥. We may therefore assume without loss of generality that E
belongs to the heart E♥: that is, that it is a discrete object of the 8-category

Eě0 » FunπpCop
ě0,Sq “ PΣpCě0q.

Let j : Cě0 Ñ PΣpCě0q » Eě0 be the Yoneda embedding and let J : Cě0 Ñ E♥ be the
functor given by JpCq “ π0jpCq. More concretely, we can identify E♥ with the abelian
category of additive functors from the homotopy category hCop

ě0 to the category of abelian
groups; for each object C P Cě0, we can identify JpCq with the functor

pC 1 P Cop
ě0q ÞÑ Ext0

CpC
1, Cq

represented by C.
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Since Eě0 is generated (freely) under sifted colimits by the essential image of j, the
abelian category E♥ is generated under colimits by the essential image of J . In particular,
every object E of the abelian category E♥ can be written as the cokernel of a map

u :
à

JpCiq Ñ
à

JpDjq

whose domain and codomain are (possibly infinite) direct sums of objects belonging to the
essential image of the functor J . We can therefore write E as a filtered colimit of objects tEαu,
where each Eα is the cokernel (in the abelian category E♥) of a map uα :

À

JpCiq Ñ
À

JpDjq

whose domain and codomain are finite direct sums of objects belonging to the essential
image of J . Since J commutes with finite direct sums, and the functor F : E Ñ IndpCq
commutes with filtered colimits, it will suffice to show that F pEq P IndpCqď0 in the special
case where E P E♥ is given as the cokernel of a single map u : JpCq Ñ JpDq in E♥; here C
and D are objects of Cě0. By virtue of Yoneda’s lemma, we can identify u with a map from
C to D in the 8-category Cě0 (which is well-defined up to homotopy).

Let impuq denote the image of the map u (formed in the abelian category E♥), so that
we have an exact sequence 0 Ñ impuq Ñ JpDq Ñ E Ñ 0 in the abelian category E♥ and
therefore a fiber sequence

F pimpuqq Ñ F pJpDqq Ñ F pEq

in the stable 8-category IndpCq. Let X denote the fiber product impuq ˆJpDq jpDq, formed
in the 8-category Eě0. Since the functor F is exact, we have a pushout square

F pXq //

��

F pjpDqq

��
F pimpuqq // F pJpDqq

in the stable 8-category IndpCq; we may therefore identify F pEq with the cofiber of the map
F pXq Ñ F pjpDqq. Let us identify objects of Eě0 with product-preserving functors Cop

ě0 Ñ S,
so that jpDq is identified with the functor represented by D. Unwinding the definitions,
we see that X can be identified with the subfunctor of jpDq which assigns to each object
C 1 P Cě0 the subspace XpC 1q Ď jpDqpC 1q “ MapCpC

1, Dq spanned by those maps C 1 Ñ D

which factor through C (the factorization itself is not specified). In other words, X is the
image of the canonical map v : jpCq Ñ jpDq, formed in the 8-topos FunpCop

ě0,Sq. It follows
that X can be computed as the geometric realization of the simplicial object X‚ of Eě0
given by the Čech nerve of v. Let C‚ be the simplicial object of C given by the Čech nerve
of the map u : C Ñ D. Since the functor j : Cě0 Ñ Eě0 preserves finite limits, we can write
X‚ “ jpτě0C‚q.

Let K be the cokernel of the map π0C Ñ π0D determined by u (formed in the abelian
category C♥ and let D1 denote the fiber of the natural map D Ñ K. Unwinding the
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definitions, we see that τě0C‚ can be identified with the Čech nerve of the natural map
C Ñ D1. Let us abuse notation by identifying C with its essential image in IndpCq, so that
the composite functor F ˝ j : Cě0 Ñ IndpCq is simply the identity. Then FX‚ “ Fjpτě0C‚q

is the Čech nerve of the map C Ñ D1 in IndpCq. We therefore have FX » |FX‚| » FD1,
so that the cofiber of the map FX Ñ D can be identified with K and therefore belongs to
C♥ Ď Cď0, as desired.

Proof of Theorem C.2.4.1. It follows immediately from Proposition C.2.3.1 that if A is a
connective E1-ring, then every accessible left exact localization of RModcn

A is a Grothendieck
prestable 8-category. We wish to prove that every Grothendieck prestable 8-category C
arises in this way. Without loss of generality, we may assume that there exists a presentable
stable 8-category E equipped with a t-structure pEě0, Eď0q which is compatible with filtered
colimits such that C “ Eě0. Since E is presentable, there exists a regular cardinal κ for
which the inclusion Eκ ãÑ E extends to an equivalence of 8-categories IndκpEκq » E ; here
Eκ denotes the full subcategory of E spanned by the κ-compact objects and IndκpEκq is the
full subcategory of FunppEκqop,Sq spanned by those functors which preserve κ-small colimits
(see §HTT.5.3.5 ). Enlarging κ if necessary, we may assume that the truncation functors τě0
and τď0 on E carry κ-compact objects to κ-compact objects. Then the t-structure pEě0, Eď0q

on E induces a t-structure pEκě0, Eκď0q on the stable 8-category Eκ, where Eκě0 “ EκX Eě0
and Eκď0 “ EκX Eď0. The inclusion Eκ ãÑ E admits an essentially unique extension to a
functor F : IndpEκq Ñ E . Since the t-structure on E is compatible with filtered colimits, the
functor F is t-exact. Moreover, the restriction F |IndpEκě0q

admits a right adjoint which we
can identify with the inclusion Eě0 » IndκpEκě0q Ď IndpEě0q, and is therefore fully faithful.
Consequently, C “ Eě0 is an accessible left exact localization of the Grothendieck prestable
8-category IndpEκě0q. It follows from Proposition C.2.4.2 that IndpEκě0q is an accessible left
exact localization of the 8-category C1 “ FunπppEκě0q

opq,Sq. We may therefore replace C
by C1 and thereby reduce to the case where the Grothendieck prestable 8-category C is
complete. Replacing E by SppCq, we may assume that the t-structure pEě0, Eď0q is both left
and right complete. It follows from Remark C.2.1.4 that there exists an object C P Eě0
which is a generator for E . Let A be the connective cover of the endomorphism ring EndEpCq.
Applying Theorem ??, we deduce that C » Eě0 is an accessible left exact localization of the
8-category RModcn

A of connective right A-module spectra.

C.2.5 Proof of the Gabriel-Popescu Theorem

Let C be a separated Grothendieck prestable 8-category and let C0 Ď C be a generating
subcategory. Theorem C.2.1.6 has two parts:

p1q The inclusion C0 ãÑ C extends to a functor F : PΣpC0q Ñ C which preserves small
colimits and finite limits.
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p2q The functor F admits a fully faithful right adjoint G : C Ñ PΣpC0q.

For later applications, it will be convenient to have slightly stronger versions of both p1q
and p2q, where we loosen the requirement that C0 Ď C is a generating subcategory.

Notation C.2.5.1. Let C be an 8-category and let k ě 0 be an integer. Recall that we say
an object X P C is k-truncated if, for every object Y P C and every point η P MapCpY,Xq,
the homotopy groups πipMapCpY,Xq, ηq vanish for i ą k. We let τďk C denote the full
subcategory of C spanned by the k-truncated objects.

In what follows, it will be convenient to extend the preceding definition to the case
k “ 8. We therefore adopt the following convention: when k “ 8, every object of C is
k-truncated, and τďk C “ C.

Proposition C.2.5.2. Let C be a separated Grothendieck prestable 8-category, let C0 Ď C
be an essentially small full subcategory which is closed under finite coproducts, and let
0 ď k ď 8. Assume that the following condition is satisfied:

p˚kq Every object C P C0 is k-truncated. Moreover, for every k-truncated object X P C,
there exists a collection of objects tCiuiPI in C0 and a map >iPICi Ñ X which induces
an epimorphism π0p>iPICiq Ñ π0X in the abelian category C♥.

Then the inclusion map C0 ãÑ C extends to a left exact functor F : PΣpC0q Ñ C which
preserves small colimits.

Proposition C.2.5.3. Let C be a separated Grothendieck prestable 8-category, let C0 Ď C
be an essentially small full subcategory which is closed under finite coproducts and satisfies
condition p˚kq of Proposition C.2.5.2, for some 0 ď k ď 8. Then the functor F : PΣpC0q Ñ

C admits a right adjoint G : C Ñ PΣpC0q which restricts to a fully faithful embedding
τďk C Ñ τďk PΣpC0q.

Remark C.2.5.4. When k “ 8, condition p˚kq of Proposition C.2.5.2 asserts that C0 Ď C
is generating subcategory, in the sense of Definition C.2.1.1. Consequently, Theorem C.2.1.6
can be regarded as the special case of Propositions C.2.5.2 and C.2.5.3 where we take k “ 8.
When k “ 0, Propositions C.2.5.2 and C.2.5.3 are essentially equivalent to Theorem C.2.2.1.
In general, we can regard Propositions C.2.5.2 and C.2.5.3 as “interpolating” between the
classical and 8-categorical versions of the Gabriel-Popescu theorem.

Proof of Proposition C.2.5.2. Let C be a separated Grothendieck prestable 8-category and
let C0 Ď C be an essentially small generating subcategory which is closed under finite direct
sums and satisfies condition p˚kq for 0 ď k ď 8. The inclusion ι : C0 ãÑ C preserves finite
coproducts, so ι admits an essentially unique extension to a functor F : PΣpC0q Ñ C which
commutes with small colimits (Proposition HTT.5.5.8.15 ). We wish to show that F is left
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exact. By virtue of Proposition C.3.2.1, it will suffice to show that for every discrete object
M P PΣpC0q, the image F pMq P C is discrete. Since C is separated, it will suffice to prove
the following assertion for each n ą 0:

panq If M is a discrete object of PΣpCq, then πnFM » 0.

Our proof of panq will proceed by induction on n. Let us therefore assume that n ą 0,
and that pamq is satisfied for all m ă n. Note that if M is an pn´ 2q-truncated object of
C, then M can be written as a successive extension of objects ΣipπiMq for k ď n´ 2. The
functor F preserves suspensions and cofiber sequences, so that FM can be written as a
successive extension of objects of the form ΣiF pπiMq for 0 ď i ď n´ 2. Using assertions
pamq for m ă n, we obtain the following:

pa1q Let M be an pn´ 2q-truncated object of C. Then πn´1pFMq » 0.

We now turn to the proof of panq. Let h : C0 Ñ PΣpC0q be the Yoneda embedding.
Then PΣpC0q is generated under small colimits by the essential image of h. Let M be
a discrete object of PΣpC0q, and choose a collection of objects tCiuiPI of C0 and a map
ρ : >iPIhpCiq ÑM which induces an epimorphism on π0. For every finite subset I0 Ď I, let
MI0 ĎM denote the image of >iPI0π0phpCiqq in M . Then we can write M as a filtered colimit
lim
ÝÑ

MI0 . The functor F commutes with filtered colimits, so we have πnFM » lim
ÝÑ

πnFMI0 .
It will therefore suffice to show that πnFMI0 » 0 for each finite subset I0 Ď I. Replacing
M by MI0 and setting C “ >iPI0Ci, we can reduce to the case where there exists an object
C P C0 and a map ρ : hpCq ÑM which induces an epimorphism on π0. Set Q “ fibpρq, so
that we have a cofiber sequence QÑ hpCq ÑM in the 8-category PΣpC0q. Applying the
functor F , we obtain a cofiber sequence F pQq Ñ C Ñ F pMq in the 8-category C, giving
rise to a long exact sequence

πnFQ
α
Ñ πnC Ñ πnFM Ñ πn´1FQ

β
Ñ πn´1C

in the abelian category C♥. Assertion panq is now reduced to the following pair of assertions:

pbq The map α : πnFQÑ πnC is an epimorphism in the abelian category C♥.

pcq The map β : πn´1FQÑ πn´1C is a monomorphism in the abelian category C♥.

We first prove pbq. Note that α is obtained by applying π0 to a morphism u : ΩnpFQq Ñ

ΩnpCq in C. Using p˚kq, we deduce that ΩnpCq is k-truncated, so that π0ΩnpCq is generated
by the images of maps π0pfq, where f : D Ñ ΩnC is a morphism in C whose domain D

is contained in C0. It will therefore suffice to show that any such f factors through u.
Note that f determines a map hpfq : hpDq Ñ ΩnhpCq in PΣpC0q. Since M is discrete,
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the map ΩnQ Ñ ΩnhpCq is an equivalence; it follows that hpfq factors as a composition
hpDq Ñ ΩnQÑ ΩnhpCq. Applying the functor F , we obtain a map

D » F phpDqq Ñ F pΩnQq Ñ ΩnFQ

whose composition with u is homotopic to f .
The proof of pcq is a bit more involved. Set Q1 “ Ωn´1Q, so that we have a cofiber

sequence Σn´1Q1 Ñ QÑ τďn´2Q in the 8-category C. Applying the functor F and passing
to homotopy, we obtain an exact sequence

π0FQ
1 γÝÑ πn´1FQÑ πn´1F pτďn´2Qq

in the abelian category C♥, where the third term vanishes by virtue of pa1q. It follows that γ is
an epimorphism in C♥. Choose a collection of objects tDjujPJ and a map g : >jPJhpDjq Ñ Q1

in PΣpC0q which is an epimorphism in π0. Let γJ denote the epimorphism given by the
composition

π0 >jPJ Dj Ñ π0FQ
1 γÝÑ πn´1FQ.

To show that β is a monomorphism, it will suffice to show that kerpβ ˝ γJq and kerpγJq
coincide (as subobjects of π0 >jPJ Dj). For every finite subset J0 Ď J , let γJ0 denote the
restriction of γJ to the finite coproduct π0p>jPJ0F pDjq. Since filtered colimits in C are left
exact, we can identify kerpβ ˝ γJq and kerpγJq with the filtered colimits lim

ÝÑ
kerpβ ˝ γJ0q and

lim
ÝÑ

kerpγJ0q. It will therefore suffice to show that for each finite subset J0 Ď J , the kernels
kerpβ ˝ γJ0q and kerpγJ0q coincide as subobjects of π0D, where D “ >jPJ0Dj . The restriction
of g to >jPJ0hpDjq is classified by an element ξ P π0Q

1pDq “ πn´1QpDq. Let ξ1 denote the
image of ξ in πn´1hpCqpDq, so that ξ1 classifies a map g : D Ñ Ωn´1C in C. The exactness
of the sequence

π0 fibpgq δ
ÝÑ π0D

β˝γJ0
ÝÝÝÑ πn´1C

shows that kerpβ ˝ γJ0q “ impδq. It will therefore suffice to show that impδq Ď kerpγJq.
Assumption p˚kq ensures that C and D are k-truncated, so that fibpgq is k-truncated. Using
p˚kq again, we deduce that impδq can be written as the union of the images of maps π0pfq :
π0E Ñ π0D, where f : E Ñ D is a morphism in C0 which factors through fibpgq. For any
such map f , the composition g ˝ f is nullhomotopic: that is, the image of ξ1 in πn´1hpCqpEq

vanishes. Using the exactness of the sequence πnMpEq Ñ πn´1QpEq Ñ πn´1hpCqpEq (and
the vanishing of πnMpEq), we conclude that the image of ξ in πn´1QpEq » π0Q

1pEq vanishes:
that is, the composition hpEq

hpfq
ÝÝÑ hpDq Ñ >jPJhpDjq

g
ÝÑ Q1 is nullhomotopic. Applying F

and passing to homotopy, we conclude that impπ0pfqq Ď kerpγJ0q, as desired.

Proof of Proposition C.2.5.3. Let F : PΣpC0q Ñ C be as in Proposition C.2.5.2. The functor
F admits a right adjoint G : C Ñ PΣpC0q Ď FunpCop

0 ,Sq, given by the restricted Yoneda



C.2. THE GABRIEL-POPESCU THEOREM 1975

embedding GpXqpCq “ MapCpC,Xq. Proposition C.2.5.2 implies that F is left exact, so
it carries k-truncated objects to k-truncated objects. It follows that F and G restrict to
adjoint functors

τďk PΣpC0q
Fk //τďk C .
Gk
oo

We wish to show that Gk is fully faithful. Equivalently, we wish to show that for each
k-truncated object X P C, the counit map v : pF ˝GqpXq Ñ X is an equivalence in C. Since
C is separated, it will suffice to show that the map πnpvq : πnpF ˝ GqpXq Ñ πnX is an
isomorphism in C♥ for each n ě 0. Replacing X by ΩnX (and using the left exactness of the
functor F ), we can assume without loss of generality that n “ 0. Note that if C P C0, then
any morphism C Ñ X factors through v. Since X is assumed to be k-truncated, assertion
p˚kq immediately implies that π0pvq is an epimorphism in C♥.

We now show that π0pvq is a monomorphism. Let h : C0 Ñ PΣpC0q denote the Yoneda em-
bedding. Choose a collection of objects tCiuiPI of C0 and a morphism fI : >iPIhpCiq Ñ GpXq

in PΣpC0q which induces an epimorphism on π0. Then the induced map >iPIπ0Ci
π0F pfIq
ÝÝÝÝÝÑ

π0pF ˝GqpXq is also an epimorphism. It will therefore suffice to show that kerpπ0pF pfIqqq

and kerpπ0pv ˝ F pfIqqq coincide (as subobjects of >iPIπ0Ci). For each finite subset I0 Ď I,
let fI0 denote the restriction of fI to >iPI0hpCiq. Since filtered colimits in C are exact, we
obtain isomorphisms

kerpπ0pF pfIqqq » lim
ÝÑ
I0

kerpπ0pF pfI0qqq kerpπ0pF pv ˝ fIqqq » lim
ÝÑ
I0

kerpπ0pF pv ˝ fI0qqq.

It will therefore suffice to show that for each finite subset I0 Ď I, the kernels kerpπ0pF pfI0qqq

and kerpπ0pv ˝ F pfI0qqq coincide (as subobjects of >iPI0π0Ci). Set C “ >iPI0Ci and f0 “ fI0 ,
so that f0 can be identified with Gpρq, where ρ : C Ñ X is the morphism in C given by the
composition v ˝ F pf0q. We have a fiber sequence fibpρq Ñ C

ρ
ÝÑ X in C, hence a short exact

sequence π0 fibpF pf0qq
α
ÝÑ π0C

π0ρ
ÝÝÑ π0X in the abelian category C♥. It will therefore suffice

to show that impαq Ď kerpF pf0qq (as subobjects of π0C). Assumption p˚kq guarantees that
C is k-truncated, and X is k-truncated by assumption. It follows that fibpρq is k-truncated.
Applying p˚kq, we are reduced to proving that for every object D P C0 and every morphism
φ : D Ñ C which factors through fibpρq, we have impπ0φq Ď kerpF pf0qq. This is clear: if
ρ ˝ φ is nullhomotopic, then the induced map

D » pF ˝GqpDq
pF˝Gqpφq
ÝÝÝÝÝÝÑ pF ˝GqpCq

pF˝Gqpρq
ÝÝÝÝÝÝÑ pF ˝GqpXq

is also nullhomotopic, and therefore vanishes after applying π0.
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C.3 The 8-Category of Grothendieck Prestable
8-Categories

In §C.1, we introduced the notion of a Grothendieck prestable 8-category (Definition
C.1.4.2). The collection of Grothendieck prestable 8-categories can itself be organized into
a (very large) 8-category Groth8:

Definition C.3.0.5. Let yCat8 denote the8-category of (not necessarily small)8-categories,
and let PrL ĎyCat8 denote the subcategory whose objects are presentable 8-categories and
whose morphisms are functors which preserve small colimits (see Definition HTT.5.5.3.1 ).
We let Groth8 denote the full subcategory of PrL whose objects are Grothendieck prestable
8-categories (see Definition C.1.4.2).

C.3.1 Comparison with Stable 8-Categories

The 8-category Groth8 contains the 8-category PrSt of presentable stable 8-categories
as a full subcategory. Note that the inclusion functor PrSt Ď PrL admits a left adjoint,
given by the construction C ÞÑ SppCq (see Proposition HA.4.8.2.18 ). When restricted to
Groth8, this left adjoint is not far from being an equivalence of 8-categories.

Proposition C.3.1.1. Let C and D be Grothendieck prestable 8-categories. Then the
canonical map

θ : LFunpC,Dq Ñ LFunpSppCq,SppDqq

is a fully faithful embedding, whose essential image consists of those functors SppCq Ñ SppDq
which preserve small colimits and are right t-exact (with respect to the t-structure of Remark
C.1.2.10).

Proof. Writing SppCq as the colimit of the diagram

C Σ
Ñ C Σ

Ñ C Ñ ¨ ¨ ¨

in the 8-category PrL, we can identify LFunpSppCq,SppDq with the homotopy limit of the
tower

¨ ¨ ¨ Ñ LFunpC, SppDqq Ñ LFunpC, SppDqq.

where the transition maps are given by precomposition with the suspension functor Σ : C Ñ C.
Since colimit-preserving functors commute with suspension, these transition maps can also
be described as the functors given by postcomposition with the suspension functor on SppDq,
and are therefore equivalences. We can therefore identify θ with the map

θ1 : LFunpC,Dq Ñ LFunpC, SppDqq
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obtained by composing with the functor Σ8D : D Ñ SppDq. It follows that θ is fully faithful,
and that its essential image consists of those colimit-preserving functors f : SppCq Ñ SppDq
such that f ˝ Σ8C factors through the full subcategory SppDqě0 Ď SppDq: that is, those
functors which are right t-exact.

Example C.3.1.2. Let C be a Grothendieck prestable 8-category. It follows from Propo-
sition C.3.1.1 that evaluation on the sphere spectrum S P Spcn induces an equivalence of
8-categories LFunpSpcn, Cq Ñ C.

Remark C.3.1.3. Let C be a presentable stable 8-category. Let us say that a full subcate-
gory Cě0 Ď C is a core if it is closed under small colimits and extensions. We let CorepCq
denote the collection of all cores of C, which we regard as a partially ordered set with respect
to inclusions.

If f : C Ñ D is a functor between presentable stable 8-categories which preserves small
colimits, then the construction

pDě0 Ď Dq ÞÑ pf´1Dě0 Ď Cq

carries cores of D to cores of C. We can therefore view the construction C ÞÑ CorepCq as a
contravariant functor from the homotopy category hPrSt of presentable stable 8-categories
to the ordinary category of (large) partially ordered sets. Consequently, the construction
C ÞÑ CorepCq can be regarded as a functor from the 8-category PrSt to the 8-category
yCat8. This functor classifies a Cartesian fibration q : Groth`8 Ñ PrSt.

We will refer to Groth`8 as the 8-category of cored stable 8-categories. Unwinding the
definitions, we see that the objects of Groth`8 are pairs pC, Cě0q, where C is a presentable
stable 8-category and Cě0 Ď C is a core; a morphism from pC, Cě0q to pD,Dě0q is given by
a colimit preserving functor f : C Ñ D satisfying fpCě0q Ď Dě0.

If C is a Grothendieck prestable 8-category, then the essential image of the functor
Σ8 : C Ñ SppCq determines a core SppCqě0 Ď SppCq. Using Proposition C.3.1.1, we obtain
the following:

Corollary C.3.1.4. The construction C ÞÑ pSppCq,SppCqě0q determines a fully faithful
embedding from the 8-category Groth8 of Grothendieck prestable 8-categories to the 8-
category Groth`8 of cored stable 8-categories.

Remark C.3.1.5. Let C be a presentable stable 8-category and let Cě0 P CorepCq be a
core. According to Proposition HA.1.4.4.11 , the subcategory Cě0 can be extended to an
accessible t-structure pCě0, Cď0q on C if and only if Cě0 is generated (as a full subcategory
of C closed under colimits and extensions) by a small collection of objects of C. In this case,
pC, Cě0q belongs to the essential image of the fully faithful embedding of Corollary C.3.1.4 if
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and only if the t-structure pCě0, Cď0q is compatible with filtered colimits and right complete.
Assuming that pCě0, Cď0q is compatible with filtered colimits, the right completeness is
equivalent to the statement that the intersection

Ş

ně0 Cď´n contains only zero objects of
C (Proposition HA.?? ): in other words, that the objects tΣ´nC : C P Cě0u generate the
8-category C under small colimits. However, the hypothesis that the t-structure pCě0, Cď0q

be compatible with filtered colimits is difficult to formulate directly in terms of Cě0, unless
Cě0 is generated by compact objects (a situation we will study in §C.6; see Proposition
C.6.3.1).

Remark C.3.1.6. Let f : C Ñ D be a colimit-preserving functor between Grothendieck
prestable 8-categories. Then the inverse image construction

f´1 : CorepDq Ñ CorepCq

of Remark C.3.1.3 admits a left adjoint f` : CorepCq Ñ CorepDq: for every core Cě0 Ď C,
we can take f`pCě0q to be the smallest full subcategory of D which is closed under colimits
and extensions and contains fpCq for each object C P Cě0. It follows that the Cartesian
fibration q : Groth`8 Ñ PrSt of Corollary C.3.1.4 is also a coCartesian fibration.

Remark C.3.1.7. Let C be a presentable stable 8-category. Then the collection of cores
of C is closed under intersections. It follows that CorepCq is a complete lattice: when viewed
as a category, it admits all limits and colimits. Combining this observation with Proposition
HTT.4.3.1.5 and Corollary HTT.?? , we deduce that the 8-category Groth`8 admits small
limits and colimits, which are preserved by the forgetful functor q : Groth`8 Ñ PrSt.

We regard the introduction of the 8-category Groth`8 as a technical device: we are
not really interested in objects of Groth`8 unless they arise from Grothendieck prestable
8-categories by means of Corollary C.3.1.4. However, for certain constructions it is more
convenient to work in the 8-category Groth`8 than in Groth8 because the former admits
arbitrary small limits and colimits (Remark C.3.1.7) but the latter does not.

Remark C.3.1.8. Let C and D be Grothendieck prestable 8-categories and let f : C Ñ D
be a functor which preserves small colimits, so that f admits a right adjoint g (Corollary
HTT.5.5.2.9 ). Then f is an equivalence if and only if the following conditions are satisfied:

paq The induced map F : SppCq Ñ SppDq is an equivalence.

pbq The functor g does not annihilate any nonzero objects of D.

The necessity of conditions paq and pbq is obvious. Conversely, if condition paq is satisfied,
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then we have a commutative diagram

C
Σ8C
��

f // D
Σ8D
��

SppCq F // SppDq,

where the bottom horizontal map is an equivalence and the vertical maps are fully faithful. It
follows immediately that f is fully faithful. Let G denote a homotopy inverse to F . In order
to show that f is an equivalence, it will suffice to show that for each object D P SppDqě0, we
have GD P SppCqě0. Since the functor G is an equivalence, we can choose a fiber sequence
D1 Ñ D Ñ D2 in the stable 8-category SppDq where GD1 P SppCqě0 and GD2 P SppCqď´1.
Then D1 » pF ˝GqpD1q belongs to SppDqě0, so that D2 » cofibpD1 Ñ Dq also belongs to
SppDqě0. The condition GD2 P SppCqď´1 guarantees that the mapping space

MapCpC, gpΩ8DD2qq » MapCpC,Ω8C GD2q » MapSppCqpΣ8C C,GD2q

vanishes for every object C P C. Applying assumption pbq, we deduce that Ω8DD2 vanishes,
so that D2 » Σ8D Ω8DD2 » 0. Thus GD » GD1 P SppCqě0 as desired.

C.3.2 Left Exact Functors

We now restrict our attention to functors between Grothendieck prestable 8-categories
which preserve finite limits.

Proposition C.3.2.1. Let C and D be Grothendieck prestable 8-categories and let f : C Ñ D
be a colimit-preserving functor. Then the following conditions are equivalent:

p1q The functor f is left exact.

p2q The functor f carries discrete objects of C to discrete objects of D.

p3q The induced map F : SppCq Ñ SppDq is left t-exact.

Lemma C.3.2.2. Let C and D be prestable 8-categories which admit finite limits and let
f : C Ñ D be a right exact functor. The following conditions are equivalent:

p1q The functor f is left exact.

p2q The induced functor SWpfq : SWpCq Ñ SWpDq is t-exact.

Proof. Suppose first that p1q is satisfied. Let X P SWpCqďn; we wish to show that SWpfqpXq
belongs to SWpDqďn. Replacing X by a suspension if necessary, we may assume that X
is the image of an object X0 P C under the identification C » SWpCqě0. In this case, the
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object X0 is n-truncated. Since f is left exact, the object fpX0q P D is n-truncated, so that
SWpfqpXq belongs to SWpDqďn.

Now suppose that p2q is satisfied; we wish to show that the functor f preserves limits
indexed by an arbitrary finite simplicial set K. Let q0 : K Ñ C be an arbitrary diagram,
so that q0 can be identified with a diagram q : K Ñ SWpCqě0. Extend q to a limit
diagram q : KŸ Ñ SWpCq in the 8-category SWpCq. Then τě0q is a limit diagram in the
8-category SWpCqě0 » C. We wish to show that the image of τě0q under the functor
SWpfq : SWpCq Ñ SWpDq is a limit diagram in SWpDqě0 » D. Since SWpfq is t-exact, we
can identify this image with τě0 SWpfqpqq. This is a limit diagram because the functors

SWpfq : SWpCq Ñ SWpDq τě0 : SWpDq Ñ SWpDqě0

both preserve finite limits.

Proof of Proposition C.3.2.1. The implication p1q ñ p2q is immediate. We next prove that
p2q implies p3q. Suppose that p2q is satisfied, and let C P SppCqď0; we wish to prove that
F pCq P SppDqď0. Since SppCq is right complete, we can write C “ lim

ÝÑ
τě´nC. Because F

commutes with filtered colimits, we have F pCq “ lim
ÝÑ

F pτě´nCq. Since SppDqď0 is closed
under filtered colimits, we are reduced to proving that each F pτě´nCq belongs to SppDqď0.
The proof proceeds by induction on n, the case n ă 0 being trivial. To carry out the
inductive step, we note that the exactness of F supplies a fiber sequence

F pτě1´nCq Ñ F pτě´nCq Ñ F pΣ´nπnCq.

The inductive hypothesis implies that F pτě1´nCq belongs to SppDqď0. Since SppDqď0
is closed under extensions, we are reduced to proving that the object F pΣ´nπnCq »
Σ´nF pπnCq belongs to SppDqď0. In fact, it belongs to SppDqď´n: since πnC belongs to
the heart SppCq♥, we can write πnC » Σ8C X for some discrete object X P C, so that
F pπnCq » Σ8DF pXq P SppDq♥ by virtue of assumption p2q.

We now complete the proof by showing that p3q implies p1q. Let us identify SWpCq and
SWpDq with the full subcategories

ď

ně0
SppCqě´n Ď SppCq SWpDq Ď

ď

ně0
SppDqě´n Ď SppDq.

It follows from p3q that the functor F0 is t-exact, so that f is left exact by virtue of Lemma
C.3.2.2.

Notation C.3.2.3. Let Grothlex
8 denote the subcategory of yCat8 whose objects are Grothendieck

prestable 8-categories and whose morphisms are functors F : C Ñ D which preserve small
colimits and finite limits.
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Proposition C.3.2.4. The 8-category Grothlex
8 admits small limits. Moreover, the forgetful

functors
Grothlex

8 Ñ PrL Grothlex
8 Ñ Groth`8

preserve small limits.

Proof. Let tCαu be a small diagram of Grothendieck prestable 8-categories where the
transition maps preserve small colimits and finite limits, and let C denote a limit of tCαu in
the 8-category yCat8. It follows from Proposition ?? that the 8-category C is presentable
and that for any presentable 8-category D, a functor f : D Ñ C preserves small colimits if
and only if each of the maps D Ñ C Ñ Cα preserves small colimits. Applying Proposition
C.3.2.4, we see that C is a prestable 8-category and that a functor f : D Ñ C preserves finite
limits if and only if each of the functors D Ñ C Ñ Cα preserve small limits. To show that C is
a limit of the diagram tCαu in Groth8, it will suffice to show that C is Grothendieck: that is,
that the functor ΩC : C Ñ C commutes with filtered colimits (see Proposition C.1.4.1). This
is equivalent to the statement that each of the composite maps C ΩC

Ñ C Ñ Cα commutes with
filtered colimits. This is clear, since we can rewrite this composition as C Ñ Cα

ΩCα
Ñ Cα, where

ΩCα commutes with filtered colimits by virtue of our assumption that Cα is a Grothendieck
prestable 8-category. This completes the proof that the 8-category Grothlex

8 admits small
colimits which are preserved by the inclusion Grothlex

8 ãÑ PrL.
We now complete the proof by showing that the functor Grothlex

8 Ñ Groth`8 of Corollary
C.3.1.4 preserves small limits. For any pointed presentable 8-category E , we can identify
the 8-category SppEq of spectrum objects of E with the homotopy limit of the diagram

Ñ E Ω
Ñ E Ω

Ñ E

in the 8-category yCat8. Moreover, this identification is functor with respect to left exact
colimit-preserving functors. Consequently, if C » lim

ÐÝ
Cα is as above, then we can identify

SppCq with the limit of the diagram tSppCαqu in the 8-category of presentable stable 8-
categories. Each of the functors SppCq Ñ SppCαq is t-exact, so that an object of SppCq
belongs to SppCqě0 if and only if its image in each SppCαq belongs to SppCαqě0; this proves
that the object pSppCq, SppCqě0q is a limit of the diagram tpSppCαq, SppCαqě0q in Groth`8.

Corollary C.3.2.5. The construction C ÞÑ SppCq determines a functor Grothlex
8 Ñ PrSt

which preserves small limits.

C.3.3 Filtered Colimits of Grothendieck Prestable 8-Categories

Recall that the 8-category PrL of presentable stable 8-categories admits small limits
(Proposition HTT.5.5.3.13 ) and small colimits (Theorem HTT.5.5.3.18 ). Our first goal is
to show that the full subcategory Groth8 Ď PrL of Definition C.3.0.5 enjoys the following
closure property:
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Theorem C.3.3.1. The full subcategory Groth8 Ď PrL is closed under small filtered colimits.
Consequently, the 8-category Groth8 admits filtered colimits, which are preserved by the
inclusion Groth8 ãÑ PrL.

To prove Theorem C.3.3.1, it will be convenient to first study lax (co)limits of Grothendieck
prestable 8-categories. Here, we do not need any requirements on the indexing 8-category:

Proposition C.3.3.2. Let S be a small simplicial set and let p : C Ñ S be a map of
simplicial sets having the following properties:

piq The map p is both a Cartesian fibration and a coCartesian fibration.

piiq For each s P S, the fiber Cs “ CˆStsu is a Grothendieck prestable 8-category.

Let E “ FunSpS, Cq “ FunpS, CqˆFunpS,Sq tidSu denote the 8-category of sections of p. Then
E is a Grothendieck prestable 8-category.

Proof. Proposition HTT.5.5.3.17 implies that E is presentable. For each s P S, let es : E Ñ Cs
denote the functor given by evaluation at s. Using Proposition HTT.5.1.2.2 , we see that
the functors es preserve small limits and colimits. We next show that E is prestable: that is,
it satisfies conditions paq through pcq of Definition C.1.2.1:

paq We have already seen that E admits small colimits (and therefore finite colimits).
Choose a morphism g : H Ñ 1 in E , where H P E is an initial object and 1 P E is
a final object. For each vertex s P S, the functor es carries g to a morphism from
an initial object to a final object in the pointed 8-category Cs, so that espgq is an
equivalence. It follows that g is an equivalence, so that E is pointed.

pbq Fix an object E P E , and let u : E Ñ ΩEΣEE be the unit map. For each s P S, the
evaluation functor es : E Ñ Cs preserves finite limits and colimits and therefore carries
u to the unit map espEq Ñ ΩCsΣCsespEq, which is an equivalence since Cs is prestable.
It follows that u is an equivalence for each E P E , so that the suspension functor
ΣE : E Ñ E is fully faithful.

pcq Suppose we are given a pullback square σ :

X
f 1 //

��

Y

f
��

0 // ΣEZ

in E ; we wish to show that σ is also a pushout square. Since the functors tesusPS
preserve finite limits and commute with suspension each espσq is a pullback square in
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Cs whose lower right-hand corner is a suspension (and whose lower left-hand corner is
a zero object). The prestability of Cs guarantees that each espσq is a pushout square in
Cs. Since the functors tesusPS preserve pushout squares and are mutually conservative,
it follows that σ is a pushout square in E .

To complete the proof, it will suffice to show that E is a Grothendieck prestable8-category:
that is, that the functor ΩE : E Ñ E commutes with filtered colimits (see Proposition C.1.4.1).
Since the evaluation functors tesusPS are mutually conservative and commute with filtered
colimits, this is equivalent to the requirement that each composition es ˝ ΩE commutes with
filtered colimits. Because es is left exact, we have an equivalence es ˝ ΩE » ΩCs ˝ es; we are
therefore reduced to showing that ΩCs commutes with filtered colimits, which follows from
our assumption that Cs is a Grothendieck prestable 8-category.

We will deduce Theorem C.3.3.1 from Proposition C.3.3.2, together with the following:

Proposition C.3.3.3. Let A be a small filtered partially ordered set, let p : C Ñ NpAq
be a map of simplicial sets satisfying conditions piq and piiq of Proposition C.3.3.2. Let
E “ FunNpAqpNpAq, Cq be the 8-category of sections of C, and let Ecart Ď E denote the full
subcategory spanned by those sections s : NpAq Ñ C which carry each edge of NpAq to a
p-Cartesian morphism in C. Then the inclusion Ecart ãÑ E admits a left exact left adjoint
L : E Ñ Ecart.

Proof of Theorem C.3.3.1 from Proposition C.3.3.3. Let J be a small filtered 8-category
and suppose we are given a diagram f : J Ñ Groth8 Ď PrL. We wish to show that the
colimit of f (formed in the 8-category PrL) is a Grothendieck prestable 8-category. Using
Proposition HTT.5.3.1.18 , we can choose a small filtered partially ordered set A and a left
cofinal map g : NpAq Ñ J . Replacing f by f ˝g, we can reduce to the case where J “ NpAq.
Let p : C Ñ NpAq be a presentable fibration classified by f (see Proposition HTT.5.5.3.3 ).
Then p satisfies conditions piq and piiq of Proposition C.3.3.2, so that E “ FunNpAqpNpAq, Cq
is a Grothendieck prestable 8-category. Using Theorem HTT.5.5.3.18 and Proposition
HTT.?? , we can identify the colimit of f (formed in the 8-category PrL) with the full
subcategory Ecart Ď E spanned by the Cartesian sections of p. It follows from Proposition
C.3.3.3 that the inclusion Ecart Ď E admits a left exact left adjoint L : E Ñ Ecart (which is
automatically accessible: see Proposition HTT.5.4.7.7 ). Applying Proposition C.2.3.1, we
deduce that Ecart is a Grothendieck prestable 8-category.

Proof of Proposition C.3.3.3. We proceed as in the proof of Proposition HTT.6.3.3.3 . For
every cofinal subset B Ď A, let EB denote the full subcategory of E “ FunNpAqpNpAq, Cq
spanned by those sections s such that s is a p-right Kan extension of s|NpBq. By virtue of
Lemma C.4.3.1, it will suffice to prove the following:
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paq For every cofinal subset B Ď A, the full subcategory EB is an accessible left exact
localization of E .

pbq Let P be the set of all cofinal subsets of A. Then Ecart “
Ş

BPP EB.

To prove paq, consider the restriction functor φ : E Ñ FunNpAqpNpBq, Cq. Using Propo-
sition HTT.4.3.2.15 , we deduce that φ restricts to a trivial Kan fibration φ0 : EB Ñ

FunNpAqpNpBq, Cq. Any choice of section of φ0 determines a fully faithful embedding
FunNpAqpNpBq, Cq Ñ E which is right adjoint to φ, having essential image EB. This proves
that EB is a localization of E . Since FunNpAqpNpBq, Cq » FunNpBqpNpBq, CˆNpAqNpBqq is
a Grothendieck prestable 8-category (Proposition C.3.3.2), it follows that EB is also a
Grothendieck prestable 8-category (and, in particular, accessible). The left exactness of the
localization E Ñ EB follows from the left exactness of φ (which is immediate from the fact
that limits are computed levelwise; see Proposition HTT.5.1.2.2 ).

We now prove pbq. Suppose first that s : NpAq Ñ C is a section of p which carries each
edge of NpAq to a p-Cartesian edge of C. We claim that s belongs to EB for every cofinal
subset B Ď A. To prove this, it suffices to show that for each element α P A, the section
s exhibits spαq as a p-limit of the diagram s|NpBαq, where Bα “ tβ P B : β ě αu. By
assumption, s carries each edge of NpAq to a p-Cartesian morphism in C. Using Propositions
HTT.4.3.1.9 , HTT.4.3.1.10 , and Corollary HTT.4.4.4.10 , we are reduced to proving that
the simplicial set NpBαq is weakly contractible. This is clear, since the cofinality of B in A

guarantees that NpBαq is filtered.
To complete the proof, it will suffice to show that every object s P

Ş

BPP CB belongs
to Ecart. Fix a pair of elements α ď β in A; we wish to show that the map spαq Ñ spβq is
p-Cartesian. To prove this, set B “ tγ P A : γ ě βu. Since A is filtered, B is cofinal in A.
Our assumption on s guarantees that s is a p-right Kan extension of s|NpBq, so that spαq is
a p-limit of the diagram s|NpBq. Since β is an initial object of NpBq, we conclude that the
map spαq Ñ spβq is p-Cartesian, as desired.

We now restrict our attention to the colimits of filtered diagrams in the subcategory
Grothlex

8 Ď Groth8 of Notation C.3.2.3.

Lemma C.3.3.4. Let J be a small filtered 8-category and suppose we are given a diagram
f : J Ñ Grothlex

8 , which we will denote by tCαuαPJ . Let C denote the colimit lim
ÝÑαPJ Cα

(formed in the 8-category Groth8). For each α P J , the tautological map ρα : Cα Ñ C is
left exact.

Proof. Arguing as in the proof of Theorem C.3.3.1, we can use Proposition HTT.5.3.1.18 to
reduce to the case where J “ NpAq for some filtered partially ordered set A. Replacing A
by the cofinal subset tβ P A : β ě αu, we can assume that α is a least element of A. Let
p : C Ñ NpAq be a presentable fibration classified by f , let E “ FunNpAqpNpAq, Cq be the
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8-category of sections of p, and let Ecart Ď E be as in Proposition C.3.3.3. Then we can
identify the right adjoint to ρα with the functor eα : Ecart Ñ Cα given by evaluation at α. It
follows that ρα can be computed as the composition

Cα
ρα
ÝÑ E L

ÝÑ Ecart,

where ρα is given by p-left Kan extension along the inclusion tαu ãÑ A and L is a left adjoint
to the inclusion Ecart Ñ E . Since the functor L is left exact (Proposition C.3.3.3), it will
suffice to show that ρα is left exact. Because the evaluation functors teβ : E Ñ CβuβPA
preserve small limits and are mutually conservative, this is equivalent to the assertion that
each composition eβ ˝ ρα is left exact. Using the fact that α is a least element of A, we
see that eβ ˝ ρα can be identified with the transition functor Cα Ñ Cβ determined by the
diagram f : NpAq Ñ Grothlex

8 , and is therefore left exact by assumption.

Proposition C.3.3.5. The 8-category Grothlex
8 admits small filtered colimits, which are

preserved by the inclusion functors Grothlex
8 ãÑ Groth8 ãÑ PrL.

Proof. By virtue of Theorem C.3.3.1, it will suffice to prove the following:

p˚q Let J be an essentially small filtered 8-category, let tCαuαPJ be a diagram in the
8-category Grothlex

8 indexed by J , let C » lim
ÝÑα

Cα be its colimit in the 8-category
Groth8, and for each α P J let fα : Cα Ñ C be the tautological map. Then a morphism
h : C Ñ D in Groth8 is left exact if and only if, for each α P J , the composition
ph ˝ fαq : Cα Ñ D is left exact.

The “only if” direction of p˚q follows immediately from Lemma C.3.3.4. For each α P J ,
let gα : C Ñ Cα denote a right adjoint to fα. Using Lemma HTT.6.3.3.7 , we see that
the identity functor idC can be written as a filtered colimit lim

ÝÑαPJ fα ˝ gα. It follows that
any functor h : C Ñ D which preserves small colimits can be written as a filtered colimit
lim
ÝÑαPJ ph˝fα˝gαq. The functors gα are automatically left exact (since they are right adjoints).
Consequently, if each h ˝ fα : Cα Ñ D is left exact, then the composition h ˝ fα ˝ gα is left
exact. If D is a Grothendieck prestable 8-category, then the formation of filtered colimits
in D commutes with finite limits, so that h » lim

ÝÑαPJ ph ˝ fα ˝ gαq is also left exact.

C.3.4 Compact Functors

We now study a different class of functors between Grothendieck prestable 8-categories,
which we will refer to as compact functors.

Proposition C.3.4.1. Let C and D be Grothendieck prestable 8-categories, let f : C Ñ D
be a functor which preserves small colimits, and let F : SppCq Ñ SppDq be the right t-exact
functor determined by f (see Proposition C.3.1.1). Then the functors f and F admit right
adjoints g : D Ñ C and G : SppDq Ñ SppCq, and the following conditions are equivalent:
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paq The functor g commutes with small filtered colimits.

pbq The functor G commutes with small colimits.

Definition C.3.4.2. Let C and D be a Grothendieck prestable 8-categories. We will say
that a colimit-preserving functor f : C Ñ D is compact if it satisfies the equivalent conditions
of Proposition C.3.4.1. We let Grothc

8 denote the subcategory of Groth8 whose objects are
Grothendieck prestable 8-categories and whose morphisms are compact functors.

Remark C.3.4.3. Let f : C Ñ D be a morphism between Grothendieck prestable 8-
categories which preserves small colimits. If f is compact, then it carries compact objects
of C to compact objects of D. The converse holds if C is compactly generated (Proposition
HTT.5.5.7.2 ).

Example C.3.4.4. Let C be a Grothendieck prestable 8-category. According to Example
C.3.1.2, evaluation on the sphere spectrum S P Spcn induces an equivalence of 8-categories
LFunpSpcn, Cq Ñ C. If f : Spcn Ñ C is a colimit-preserving functor, then the following
conditions are equivalent:

paq The functor f is compact (in the sense of Definition C.3.4.2).

pbq For every connective finite spectrum X, the object fpXq P C is compact.

pcq The object fpSq P C is compact.

The equivalence of paq and pbq follows from Remark C.3.4.3, and the equivalence of pbq
and pcq follows because every connective finite spectrum X can be build from the sphere
spectrum S using finite colimits.

Proof of Proposition C.3.4.1. The existence of the functors g and G follows from the adjoint
functor theorem. Unwinding the definitions, we see that the functor g can be identified with
the composition

D
Σ8D
Ñ SppDq G

Ñ SppCq
Ω8C
Ñ C .

Here the functor Σ8D commutes with small colimits (since it is a left adjoint) and the functor
Ω8C commutes with small filtered colimits (by virtue of our assumption that C is Grothendieck;
see Proposition C.1.4.1). It follows immediately that pbq implies paq. Conversely, suppose
that paq is satisfied. The functor G is a right adjoint and is therefore left exact. Since
the domain and codomain of G are stable 8-categories, the functor G is also right exact.
Consequently, to show that G preserves all small colimits, it will suffice to show that it
preserves small filtered colimits.

For each integer n, let Gn : SppDq Ñ SppCq denote the functor given on objects by the
formula GnpXq “ Gpτě´nXq. Since G is exact, for each X P SppDq we have a canonical
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fiber sequence GnpXq Ñ GpXq Ñ Gpτď´n´1Xq. Since F is right t-exact, the functor G
is left t-exact, so Gpτď´n´1Xq belongs to SppCqď´n´1. Using the right completeness of
the t-structure on SppCq, we deduce that the canonical map lim

ÝÑně0GnpXq Ñ GpXq is an
equivalence.

For each integerm, letGn,m : SppDq Ñ SppCq denote the functor given by τě´mGpτě´nXq.
Using the right completeness of SppCq, we see that Gn can be written as a colimit of the
diagram lim

ÝÑmě0Gn,m. We can therefore write the functor G as a direct limit

lim
ÝÑ
ně0

lim
ÝÑ
mě0

Gn,m » lim
ÝÑ
ně0

Gn,n.

It will therefore suffice to show that each of the functors Gn,n commutes with filtered colimits.
Unwinding the definitions, we have

Gn,n » Σ´nSppCq ˝G0,0 ˝ Σn
SppDq.

It will therefore suffice to show that the functor

G0,0 “ τě0 ˝G ˝ τě0

» Σ8C ˝ Ω8C ˝G ˝ Σ8D ˝ Ω8D
» Σ8C ˝ g ˝ Ω8D

commutes with small filtered colimits. This follows from assumption paq, since the functor
Σ8C preserves all small colimits and the functor Ω8D preserves small filtered colimits (by
virtue of our assumption that D is Grothendieck; see Proposition C.1.4.1).

C.3.5 Colimits in Grothc
8

In §C.3.3, we proved that the 8-category Groth8 of Grothendieck prestable 8-categories
admits filtered colimits (Theorem C.3.3.1). If we restrict our attention to diagrams where
the transition maps are given by compact functors, then the analogous assertion holds even
for non-filtered diagrams:

Proposition C.3.5.1. The 8-category Grothc
8 admits small colimits.

Proof. Let PrR denote the 8-category whose objects are presentable 8-categories and whose
morphisms are accessible functors which preserve small limits (see Definition HTT.5.5.3.1 ).
According to Corollary HTT.5.5.3.4 , there is a canonical equivalence of 8-categories PrR »

pPrLqop which is the identity on objects and replaces each morphism in PrR with its left
adjoint. Let M Ď PrR denote the subcategory given by the inverse image of Grothc

8

under this equivalence. More concretely, E is the subcategory of yCat8 whose objects are
Grothendieck prestable 8-categories and whose morphisms are functors which preserve
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small limits and small filtered colimits. We will complete the proof by showing that the
8-category E admits small limits.

Suppose we are given a diagram of Grothendieck prestable 8-categories tCαu, where
each of the transition maps gα,β : Cα Ñ Cβ preserves small limits and small filtered colimits.
Let C denote the limit of the diagram tCαu in the 8-category yCat8. It follows from Theorem
HTT.5.5.3.18 that C is also the limit of the diagram tCαu in the8-category PrR; in particular,
C is presentable. Note that the 8-category of spectrum objects SppCq can be identified with
the limit lim

ÐÝ
SppCαq. Let SppCqď0 denote the full subcategory of SppCq given by the limit

of the diagram of 8-categories tSppCαqď0u. It follows from Theorem HTT.5.5.3.18 that
SppCqď0 is a presentable 8-category. Since the inclusion SppCqď0 ãÑ SppCq preserves small
limits and small filtered colimits, it admits a left adjoint L : SppCq Ñ SppCqď0 (Corollary
HTT.5.5.2.9 ). Since SppCqď0 is closed under extensions in SppCq, Proposition HA.1.2.1.16
implies that it extends to a t-structure pSppCqě0, SppCqď0q on SppCq.

Since each Cα is a Grothendieck prestable 8-category, each of the loop functors ΩCα :
Cα Ñ Cα preserves small filtered colimits. It follows that the loop functor ΩC : C Ñ C
preserves small filtered colimits, so that the functor Ω8C : SppCq Ñ C preserves small filtered
colimits and therefore restricts to a functor U : SppCqě0 Ñ C which preserves small filtered
colimits. We claim that U preserves all small limits. To prove this, let K be a small simplicial
set and let q : K Ñ SppCqě0 be a diagram having a limit q : KŸ Ñ SppCq in SppCqě0, so that
τě0q is a limit of the diagram τě0q » q in the 8-category SppCqě0. We wish to show that
Upτě0qq is a limit diagram in C. Note that we have an evident fiber sequence of diagrams

Upτě0qq Ñ Ω8C pqq Ñ Ω8C pτď´1qq.

It will therefore suffice to show that Ω8C pqq and Ω8C pτď´1qq are limit diagrams in C. The first
assertion is clear (since the functor Ω8C preserves limits) and the second follows from the
observation that Ω8C pτď´1qq is equivalent to the constant diagram taking the value 0 P C.

Since the t-structure pSppCqě0, SppCqď0q is compatible with filtered colimits, the 8-
category SppCqě0 is prestable and Grothendieck. We claim that the map U : SppCqě0 Ñ C
exhibits SppCqě0 as a limit of the diagram tCαu in E . For any presentable 8-categories D
and D1, let Fun1pD,D1q denote the full subcategory of FunpD,D1q spanned by those functors
which preserve small limits and small filtered colimits. We wish to show that if D is a
Grothendieck prestable 8-category, then the composite map

θ : Fun1pD, SppCqě0q
U˝
Ñ Fun1pD, Cq Ñ lim

ÐÝ
α

Fun1pD, Cαq

is an equivalence of 8-categories. Let Fun2pSppDq, SppCqq denote the full subcategory of
FunpSppDq,SppCqq spanned by those functors which preserve small limits, small filtered
colimits, and are left t-exact, and define Fun2pSppDq,SppCαqq similarly. Using Propo-
sitions ?? and C.3.4.1, we can identify θ with the natural map Fun2pSppDq, SppCqq Ñ
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lim
ÐÝ

Fun2pSppDq,SppCαqq, which is an equivalence by virtue of our construction of C and the
t-structure on SppCq.

Remark C.3.5.2. Let tCαu and C be as in the proof of Proposition C.3.5.1 and let X be
an object of SppCq. Then the following conditions are equivalent:

• The object X belongs to SppCqď´1.

• For every index α, the image of X under the forgetful functor Gα : SppCq Ñ SppCαq
belongs to SppCαqď´1.

• For each index α and each object C P Cα, the mapping space MapSppCαqpΣ
8
CαC,GαpXqq

is contractible.

• For each index α and each object C P Cα, the mapping space MapSppCqpΣ8C fαpCq, Xq
is contractible, where fα denotes the tautological map from Cα into the direct limit
C » lim

ÝÑ
Cα.

• For each object C P C, the mapping space MapSppCqpΣ8C C,Xq is contractible (note
that any object C P C can be obtained as a colimit of objects belonging to the essential
images of the functors fα).

It follows that SppCqě0 can be identified with the smallest full subcategory of SppCq
which contains the essential image of the functor Σ8C : C Ñ SppCq and is closed under small
colimits and extensions (see Proposition HA.1.4.4.11 ). In other words, the composite functor

Grothc
8 ãÑ Groth8 ãÑ Groth`8

C ÞÑ pSppCq,SppCqě0q

preserves small colimits.

The inclusion functor Grothc
8 ãÑ PrL does not preserve small colimits in general. In

other words, the functor U : SppCqě0 Ñ C appearing in the proof of Proposition C.3.5.1 is
generally not an equivalence of 8-categories (because C is generally not a Grothendieck
prestable 8-category). However, Remark C.3.5.2 and Corollary C.3.1.4 immediately imply
the following:

Proposition C.3.5.3. The inclusion functor Grothc
8 ãÑ Groth8 preserves small colimits.

Remark C.3.5.4. Let tCαu be a small diagram in the 8-category Grothc
8, and suppose that

the transition functors fα,β : Cα Ñ Cβ admit right adjoints gα,β : Cβ Ñ Cα which preserve
all small colimits (in other words, the associated exact functors Gα,β : SppCβq Ñ SppCαq are
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t-exact). In this case, the map U : SppCqě0 Ñ C can be identified with an inverse limit of
equivalences

SppCαqě0 ãÑ SppCαq
Ω8Cα
ÝÑ Cα

and is therefore itself an equivalence. The proof of Proposition C.3.5.1 then shows that
the colimit of the diagram tCαu in the 8-category Grothc

8 is also a colimit in the larger
8-category PrL of all presentable 8-categories. In this case, we can also describe C as the
limit of the diagram in the 8-category Grothlex

8 determined by functors gα,β.

C.3.6 Separated and Complete Grothendieck Prestable 8-Categories

We close this section with a few remarks about separated and complete Grothendieck
prestable 8-categories (see Definition C.1.2.12).

Proposition C.3.6.1. Let C be a Grothendieck prestable 8-category, and let Csep Ď C
be the full subcategory spanned by those objects C with the following property: for every
8-connective object D P C, the mapping space MapCpD,Cq is contractible. Then:

paq The inclusion functor Csep ãÑ C admits a left adjoint L : C Ñ Csep which is left exact.

pbq The 8-category Csep is a separated Grothendieck prestable 8-category.

pcq For any separated Grothendieck prestable 8-category D, composition with L induces
an equivalence of 8-categories LFunpCsep,Dq Ñ LFunpC,Dq.

Proof. We first prove pbq. Without loss of generality, we may assume that C “ Eě0 for some
presentable stable 8-category E equipped with a t-structure pEě0, Eď0q which is compatible
with filtered colimits. Then the 8-category of 8-connective objects of C can be identified
with the intersection Eě8 “

Ş

ně0 Eěn. The subcategory Eě8 is presentable and closed
under colimits and extensions in E . It follows from Proposition HA.1.4.4.11 that E admits an
accessible t-structure pEě8, E 1q. Since Eě8 is closed under desuspensions, the subcategory
E 1 Ď E is closed under suspensions and is therefore a stable subcategory of E . Unwinding the
definitions, we see that E 1 can be identified with the full subcategory of E spanned by those
objects C for which the mapping space MapEpD,Cq is contractible for every 8-connective
object D P C. In particular we have

Eď0 Ď E 1 Csep “ Eě0X E 1 .

It follows that the pair of subategories pCsep, Eď0q determines a t-structure on E 1. Since Eď0
is closed under the formation of filtered colimits in E , it is also closed under the formation
of filtered colimits in E 1 Ď E : that is, the t-structure pCsep, Eď0q is compatible with filtered
colimits. It follows that Csep is a Grothendieck prestable 8-category. Moreover, if C P Csep
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is 8-connective as an object of Csep, then it is 8-connective as an object of C. It then follows
from the definition of Csep that the identity map id : C Ñ C is nullhomotopic so that C » 0.
This proves that Csep is separated.

By construction, the inclusion E 1 ãÑ E admits a left adjoint L : E Ñ E 1. Since Eď0
is contained in E 1, the functor L is equivalent to the identity on Eď0 and is therefore left
t-exact. If E P Eě0, then LE is an extension of an object of Eě8 by E, and therefore also
belong to Eě0: this proves that L is also left t-exact. It follows that L restricts to a left
exact localization functor L : C Ñ C0, which proves paq.

We now prove pcq. Let D be a Grothendieck prestable 8-category. It follows from paq

that the canonical map LFunpCsep,Dq Ñ LFunpC,Dq is a fully faithful embedding whose
essential image consists of those colimit-preserving functors F : C Ñ D for which the right
adjoint G : D Ñ C factors through Csep. This is equivalent to the condition that the mapping
space MapCpC,GDq » MapDpFC,Dq is contractible whenever C P C is 8-connective and
D P D is arbitrary. The assumption that C is 8-connective guarantees that it belongs to the
essential image of the iterated suspension functor Σn

C for every n ě 0, so that FC belongs to
the essential image of the iterated suspension functor Σn

D for each n ě 0. If D is separated,
then FC » 0 and the contractibility of MapDpFC,Dq is automatic.

In the situation of Proposition C.3.6.1, we will refer to Csep as the separated quotient of
C.

Corollary C.3.6.2. Let Grothsep
8 denote the full subcategory of Groth8 spanned by the

separated Grothendieck prestable 8-categories. Then the inclusion functor Grothsep
8 ãÑ

Groth8 admits a left adjoint, given on objects by the construction C ÞÑ Csep.

Proposition C.3.6.3. Let C be a Grothendieck prestable 8-category and let pC denote the
homotopy limit of the tower of 8-categories

¨ ¨ ¨ Ñ τď2 C Ñ τď1 C Ñ τď0 C .

Then:

paq The natural map f : C Ñ pC preserves small colimits and finite limits.

pbq The 8-category pC is a complete Grothendieck prestable 8-category.

pcq For every complete Grothendieck prestable 8-category D, composition with f induces
an equivalence of 8-categories LFunppC,Dq Ñ LFunpC,Dq.

In the situation of Proposition C.3.6.3, we will refer to pC as the completion of the prestable
8-category C.
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Proof of Proposition ??. Without loss of generality, we may assume that C “ Eě0 for some
presentable stable 8-category E equipped with a t-structure pEě0, Eď0q which is compatible
with filtered colimits. Let pE denote the left completion of E with respect to the t-structure
pEě0, Eď0q: that is, the homotopy inverse limit of the tower

¨ ¨ ¨ Ñ Eď2
τď1
Ñ Eď1

τď0
Ñ Eď0 .

It follows from Proposition HA.1.2.1.17 that pE is a stable 8-category which inherits a t-
structure ppEě0, pEď0q and a t-exact functor F : E Ñ pE which induces equivalences Eďn » pEďn
for every integer n. Note that the 8-category E is presentable (Proposition ??). Since the
t-structure on E is compatible with filtered colimits, each of the functors in the diagram

¨ ¨ ¨ Ñ Eď2
τď1
Ñ Eď1

τď0
Ñ Eď0 .

commutes with filtered colimits. It follows that the projection map pE Ñ Eď0 commutes with
filtered colimits, so that the t-structure on pE is also compatible with filtered colimits.

Unwinding the definitions, we can identify pC with pEě0 so that pC is a Grothendieck
prestable 8-category. Since the t-structure on pE is left complete, the prestable 8-category
pC is complete; this proves pbq, and assertion paq follows from the t-exactness of F . We
will complete the proof by establishing pcq. Let D be a complete Grothendieck prestable
8-category, so that D can be identified with the homotopy limit of the tower

¨ ¨ ¨ Ñ τď2D
τď1
Ñ τď1D

τď0
Ñ τď0D » D♥ .

in the 8-category PrL. It follows that the canonical map θ : LFunppC,Dq Ñ LFunpC,Dq can
be identified with the homotopy limit of a tower of maps

θn : LFunppC, τďnDq Ñ LFunpC, τďnDq.

Let g : pC Ñ C be a right adjoint to f . Passing to right adjoints we can identify θn
with the functor RFunpτďnD, pCqop Ñ RFunpτďnD, Cqop given by composition with g; here
RFunpτďnD, pCq denotes the full subcategory of FunpτďnD, pCq spanned by those accessible
functors which preserve small limits and RFunpτďnD, Cq is defined similarly. Since any
left exact functor carries n-truncated objects to n-truncated objects, it will suffice to
show that the functor g restricts to an equivalence of 8-categories gďn : τďnpC Ñ τďn C.
This is clear: the left exactness of f guarantees that gďn is right adjoint to the functor
f |τďn C : τďn C Ñ τď npC, which is an equivalence by virtue of Proposition HA.1.2.1.17 .

Corollary C.3.6.4. Let Grothcomp
8 denote the full subcategory of Groth8 spanned by the

separated Grothendieck prestable 8-categories. Then the inclusion functor Grothcomp
8 ãÑ

Groth8 admits a left adjoint, given at the level of objects by the construction C ÞÑ pC.
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C.4 Tensor Products of Prestable 8-Categories

Let PrL denote the 8-category whose objects are presentable 8-categories and whose
morphisms are functors which preserve small colimits (see Definition HTT.5.5.3.1 ). In
§HA.4.8.1 , we constructed a symmetric monoidal structure on the 8-category PrL: given a
pair of presentable 8-categories C and D, the tensor product CbD P PrL is universal among
8-categories E which admit small colimits and are equipped with a functor CˆD Ñ E
which preserve small colimits separately in each variable. Our goal in this section is to show
that the symmetric monoidal structure on PrL induces a symmetric monoidal structure on
the full subcategory Groth8 Ď PrL spanned by the Grothendieck prestable 8-categories
(Theorem ??).

C.4.1 Additive 8-Categories

Recall that an 8-category C is additive if C admits finite products and coproducts and
the homotopy category hC is additive (see Definition C.1.5.1). Our starting point is the
following characterization of presentable additive 8-categories:

Theorem C.4.1.1. Let C be a presentable 8-category. The following conditions are equiva-
lent:

paq The 8-category C is additive.

pbq The functor Σ8` : S Ñ Spcn induces an equivalence of 8-categories C » S b C Ñ
Spcnb C. Here the tensor products are formed in the 8-category PrL of presentable
8-categories.

Corollary C.4.1.2. The functor Σ8` : S Ñ Spcn exhibits Spcn as an idempotent object of
the symmetric monoidal 8-category PrL (see Definition HA.4.8.2.1 ). In other words, the
functor Σ8` induces equivalences

Spcn » SpcnbS Ñ Spcnb Spcn Ð S b Spcn » Spcn .

Proof. This is an immediate consequence of Theorem C.4.1.1, since the 8-category Spcn is
additive.

Corollary C.4.1.3. The 8-category Spcn of connective spectra admits an essentially unique
symmetric monoidal structure for which the unit object is the sphere spectrum S P Spcn.
Moreover, the forgetful functor

G : ModSpcnpPrLq Ñ PrL

is fully faithful, and its essential image consists of the additive presentable 8-categories.



1994 APPENDIX C. PRESTABLE 8-CATEGORIES

Proof. The first two assertions follow from Corollary C.4.1.2, Proposition HA.4.8.2.9 , and
Proposition HA.4.8.2.10 . Let F : PrL Ñ ModSpcnpPrLq be right adjoint to G; then a
presentable 8-category C belongs to the essential image of G if and only if the unit map

C Ñ pG ˝ F qpCq » Spcnb C

is an equivalence. By virtue of Theorem C.4.1.1, this is equivalent to the requirement that C
is additive.

Corollary C.4.1.4. Let PrAdd denote the full subcategory of PrL whose objects are additive
presentable 8-categories. Then:

paq The inclusion functor PrAdd ãÑ PrL admits a left adjoint L : PrL Ñ PrAdd, given on
the level of objects by C ÞÑ Spcnb C.

pbq The localization functor L is compatible with the symmetric monoidal structure on PrL

(in the sense of Definition HA.2.2.1.6 ). Consequently, there is an essentially unique
symmetric monoidal structure on PrAdd for which the functor L : PrL Ñ PrAdd is
symmetric monoidal.

pcq The inclusion functor PrAdd ãÑ PrL preserves tensor products.

Remark C.4.1.5. The inclusion functor PrAdd ãÑ PrL is lax symmetric monoidal (since
it is right adjoint to the symmetric monoidal functor L) and preserves tensor products,
but it is not a symmetric monoidal functor because it fails to preserve unit objects. The
unit object of the 8-category PrL is the 8-category S of spaces, while the unit object of
PrAdd » ModSpcnpPrLq is the 8-category Spcn of connective spectra.

Proof of Corollary C.4.1.4. Assertions paq and pbq follow from Corollary C.4.1.3 and Propo-
sition HA.4.8.2.7 . To prove pcq, it suffices to observe that if C and D are additive presentable
8-categories, then the tensor product CbD (formed in the8-category PrL) is again additive
(since it admits the structure of a Spcn-module).

The proof of Theorem C.4.1.1 will require some preliminaries. First, we prove an analogue
of Theorem C.4.1.1 for E8-spaces which need not be grouplike.

Definition C.4.1.6. Let C be an 8-category. We will say that C is semiadditive if it satisfies
the following conditions:

paq The 8-category C admits finite products and finite coproducts.

pbq The 8-category C admits a zero object 0. In particular, to every pair of objects X
and Y we can associate a zero morphism (well-defined up to homotopy) given by the
composition X Ñ 0 Ñ Y.
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pcq For every pair of objects X and Y , the canonical map X > Y Ñ X ˆ Y represented by

the matrix
«

idX 0
0 idY

ff

is an equivalence in C.

Remark C.4.1.7. Let C be an 8-category which admits finite sums and finite products.
Then C is semiadditive if and only if the homotopy category of C is semiadditive.

Remark C.4.1.8. Let C be an 8-category which admits finite sums and finite products.
Then we can regard C as endowed with the Cartesian symmetric monoidal structure (given
by the formation of products) or with the coCartesian symmetric monoidal structure (given
by the formation of coproducts). The 8-category C is semiadditive if and only if these two
symmetric monoidal structures on C are the same.

Let us regard the 8-category S as endowed with the symmetric monoidal structure given
by the Cartesian product and let CAlgpSq denote the 8-category of commutative algebra
objects of S: that is, the 8-category of E8-spaces. We then have the following analogue of
Theorem C.4.1.1:

Proposition C.4.1.9. Let C be a presentable 8-category. The following conditions are
equivalent:

paq The 8-category C is semiadditive (Definition C.4.1.6).

pbq The free functor Sym˚
S : S Ñ CAlgpSq induces an equivalence of 8-categories

θ : C » S b C Ñ CAlgpSq b C .

Here the tensor products are formed in the 8-category PrL of presentable 8-categories.

Proof. Let us regard C as endowed with the Cartesian symmetric monoidal structure. We
then have

CAlgpSq b C » Fun1pCop,CAlgpSqq
» CAlgpFun1pCop,Sqq
» CAlgpCq,

where Fun1pCop,CAlgpSqq denotes the full subcategory of FunpCop,Sq spanned by those
functors which preserve small limits and Fun1pCop,Sq is defined similarly. Unwinding the
definitions, we see that θ can be identified with the forgetful functor CAlgpCq Ñ C. Note
that the symmetric monoidal structure on CAlgpCq (given by the formation of Cartesian
products) is always coCartesian (Proposition HA.3.2.4.7 ). If the functor θ is an equivalence
of 8-categories, then the Cartesian symmetric monoidal structure on C is also coCartesian so
that C is semiadditive by virtue of Remark C.4.1.8. Conversely, if the Cartesian symmetric
monoidal structure on C is coCartesian, then the forgetful functor CAlgpCq Ñ C is an
equivalence of 8-categories by virtue of Proposition HA.2.4.3.9 .
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Construction C.4.1.10. Let I “ tx, yu be a set with two elements and let M be the free
E8-space generated by I (concretely, M can be identified with a product of two copies
of the nerve of the groupoid F in» of finite sets). Then π0M can be identified with the
commutative monoid freely generated by x and y. The construction

x ÞÑ x y ÞÑ x` y

determines a map of sets I Ñ π0M which we can lift to a morphism of E8-spaces σ : M ÑM ,
which we will refer to as the shearing map.

For any E8-space Z, composition with σ induces a map of spaces

Z2 » MapCAlgpSqpM,Zq
˝σ
Ñ MapCAlgpSqpM,Zq » Z2

which induces the homomorphism of commutative monoids

π0Z
2 Ñ π0Z

2 pa, bq ÞÑ pa, a` bq.

It follows that the commutative monoid π0Z is a group if and only if Z is local with respect
to the single map tσu.

According to Remark HA.5.2.6.26 , we can identify the 8-category Spcn of connective
spectra with the full subcategory of CAlgpSq spanned by those E8-spaces Z for which
π0Z is a group. In other words, the 8-category of connective spectra can be obtained
as the localization of CAlgpSq with respect to the single morphism σ. In particular,
there exists a functor L : CAlgpSq Ñ Spcn with the following universal property: for any
8-category C which admits small colimits, composition with L induces an equivalence
LFunpSpcn, Cq Ñ LFunpCAlgpSq, Cq whose essential image is spanned by those functors
F P LFunpCAlgpSq, Cq for which F pσq is an equivalence in C.

Proof of Theorem C.4.1.1. Let C be a presentable8-category. Using Proposition HA.4.8.1.17 ,
we can identify the tensor product Spcnb C with the full subcategory of FunpCop, Spcnq

spanned by those functors which are accessible and preserve small limits. In particular, the
8-category Spcnb C admits a fully faithful embedding into the 8-category FunpCop, Spq
whose essential image is closed under finite products. Since FunpCop,Spq is a stable 8-
category, it is additive. It follows that Spcnb C is additive. If condition pbq is satisfied, then
C is equivalent to Spcnb C and is therefore also additive.

We now prove the converse. Suppose that C is additive; we wish to show that the canonical
map F : C Ñ Spcnb C is an equivalence of 8-categories. Unwinding the definitions, we
see that F is left adjoint to the functor G : LFunpSpcn, Copqop Ñ C given by evaluation at
the sphere spectrum S. Let L : CAlgpSq Ñ Spcn be the localization functor appearing in
Construction C.4.1.10. Then the functor G factors as a composition

LFunpSpcn, Copqop G1
Ñ LFunpCAlgpSq, Copqop G2

Ñ C,
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where the functor G2 is given by evaluation on the free E8-space on a single generator
and is therefore an equivalence of 8-categories by virtue of Proposition C.4.1.9 (since
any additive 8-category is also semiadditive). It will therefore suffice to show that the
functor G1 is an equivalence of 8-categories. For this, it will suffice to show that for every
colimit-preserving functor H : CAlgpSq Ñ Cop, the map Hpσq is an equivalence in C, where
σ : Sym˚

SpIq Ñ Sym˚
SpIq is the shearing map appearing in Construction C.4.1.10. Note that

if G2pHq is an object C P C, then Hpσq can be identified with the map from C ‘ C to itself

represented by the matrix
«

idC 0
idC idC

ff

, which is an equivalence by virtue of our assumption

that the homotopy category hC is an additive category.

C.4.2 Tensor Products

Every prestable 8-category is additive, so we can regard the 8-category Groth8 of
Grothendieck prestable 8-categories as a full subcategory of the 8-category PrAdd of
presentable additive 8-categories. The main result of this section can be formulated as
follows:

Theorem C.4.2.1. Let Groth8 Ď PrAdd denote the 8-category of Grothendieck prestable
8-categories (see Definition C.3.0.5). Then Groth8 contains the unit object of PrAdd and is
closed under tensor products. Consequently, Groth8 inherits the structure of a symmetric
monoidal 8-category for which the inclusion Groth8 ãÑ PrAdd is symmetric monoidal.

Remark C.4.2.2. Let C andD be presentable stable8-categories equipped with t-structures
pCě0, Cď0q and pDě0,Dď0q which are compatible with filtered colimits. Then Cě0 and Dě0
are Grothendieck prestable 8-categories. Choose a functor H : CˆD Ñ E which exhibits
E as a tensor product of C with D in the 8-category PrL. Let Eě0 be the smallest full
subcategory of E which is closed under small colimits and contains the essential image of
the restriction h “ H|Cě0ˆDě0 . Since the formation of stabilizations commutes with tensor
products, we can identify Eě0 with the smallest full subcategory of

E » SppCě0q b SppDě0q » SppCě0bDě0q

which contains the essential image of the functor

Σ8 : Cě0bDě0 Ñ SppCě0bDě0q.

The content of Theorem C.4.2.1 is that the tensor product Cě0bDě0 is also a Grothendieck
prestable 8-category. Unwinding the definitions, this translates into the following assertions:

paq The functor Σ8 : Cě0bDě0 Ñ SppCě0bDě0q is fully faithful. In other words, the
functor h : Cě0ˆDě0 Ñ Eě0 exhibits Eě0 as a tensor product of Cě0 with Dě0 in the
8-category PrL.
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pbq The full subcategory Eě0 is closed under extensions in E , and therefore determines a
t-structure pEě0, Eď0q on E .

pcq The full subcategory Eď0 Ď E is closed under filtered colimits.

Remark C.4.2.3. Let C and D be presentable stable 8-categories, and let

m : CˆD Ñ CbD

be a functor which exhibits CbD as a tensor product of C with D in the 8-category PrL.
Let CorepCq, CorepDq, and CorepCbDq be the partially ordered sets described in Remark
C.3.1.3. Then m induces a map of partially ordered sets

m! : CorepCq ˆ CorepDq Ñ CorepCbDq,

which we can describe explicitly as follows: given cores Cě0 Ď C and Dě0 Ď D, we define
m!pCě0,Dě0q to be the smallest full subcategory of CbD which is closed under colimits and
extensions and contains the objects mpC,Dq for each C P Cě0, D P Dě0. It is not difficult
to see that this construction exhibits the construction C ÞÑ CorepCq as a (covariant) lax
symmetric monoidal functor from the homotopy category hPrSt to the category of partially
ordered sets. Equivalently, the construction C ÞÑ CorepCq can be regarded as a lax symmetric
monoidal functor from the 8-category PrSt to the 8-category yCat8. It follows that the
coCartesian fibration q : Groth`8 Ñ PrSt of Remark C.3.1.6 can be regarded as a symmetric
monoidal functor. In more concrete terms, the symmetric monoidal structure on Groth`8 is
given by the construction

pC, Cě0q b pD,Dě0q “ pCbD,m!pCě0,Dě0qq

described above.
Now suppose that C and D are Grothendieck prestable 8-categories. Theorem C.4.2.1

asserts that the tensor product CbD (formed in the8-category PrL) is again a Grothendieck
prestable 8-category. Since the stabilization functor Spp‚q : PrL Ñ PrSt is symmetric
monoidal, we can identify the 8-category SppCbDq with the tensor product SppCqb SppDq.
Moreover, we have a commutative diagram

CˆD
Σ8C ˆΣ8D
��

m // CbD
Σ8CbD
��

SppCq ˆ SppDq m1 // SppCq b SppDq

where the vertical maps are fully faithful embeddings. Since CbD is generated under small
colimits by the essential image of m, the functor Σ8CbD identifies CbD with the smallest
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full subcategory of SppCq b SppDq which contains the image of functor m1|SppCqě0ˆSppDqě0

and is closed under small colimits. One consequence of Theorem C.4.2.1 is that this
full subcategory is also closed under extensions: that is, it can be identified with the
core m1!pSppCqě0, SppDqě0q defined above. It follows that we can regard the construction
C ÞÑ pSppCq, SppCqě0q of Corollary C.3.1.4 as a symmetric monoidal functor from the
8-category Groth8 to the 8-category Groth`8.

C.4.3 The Proof of Theorem C.4.2.1

The proof of Theorem C.4.2.1 will require the following generalization of Lemma
HTT.6.3.3.4 :

Lemma C.4.3.1. Let X be a presentable 8-category equipped with a small collection of full
subcategories tXα Ď X uαPA. Assume the following:

p1q Each of the 8-categories Xα is presentable.

p2q Each of the inclusion functors Xα ãÑ X admits a left exact left adjoint Lα : X Ñ Xα.

p3q Filtered colimits in the 8-category X are left exact.

Then the intersection
Ş

Xα is presentable, and the inclusion functor
Ş

Xα ãÑ X admits a
left exact left adjoint L.

Proof. Without loss of generality, we may assume that A is an initial segment of the ordinals:
that is, A “ tα : α ă βu, for some ordinal β. Choose a regular cardinal κ such that each
of the functors Lα commutes with κ-filtered colimits (when regarded as a functor from the
8-category X to itself). Let βκ denote the ordinal product of α with κ, and let rβκs denote
the linearly ordered set of ordinals ď βκ. We will construct a map Nrβκs Ñ FunpX ,X q,
which we view as a transfinite sequence of functors tFγ : X Ñ X uγďβκ. Let F0 “ idX and
Fγ “ lim

ÝÑδăγ
Fδ when γ is a nonzero limit ordinal. To complete the construction, it will

suffice to define Fγ`1 assuming that Fγ has already been defined. Writing γ “ βδ ` α for
α ă β, we set Fγ`1 “ Lα ˝ Fγ .

Since each Lα is an accessible left exact functor and filtered colimits in X are left exact
(see Example ??), it follows by induction on γ that each of the functors Fγ is left exact
and accessible. Set L “ Fβκ. We claim that L is a localization functor with essential image
Ş

αPAXα. To prove this, it suffices to verify the following:

paq For each X P X and each Y P
Ş

αPAXα, the canonical map X Ñ LpXq induces a
homotopy equivalence MapX pLpXq, Y q Ñ MapX pX,Y q. More generally, we claim that
each of the maps

MapX pFγpXq, Y q Ñ MapX pF0pXq, Y q “ MapX pX,Y q
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is a homotopy equivalence. The proof proceeds by induction on γ, the case γ “ 0
being trivial. If γ is a nonzero limit ordinal, we invoke the fact that Fγ » lim

ÝÑδăγ
Fδ.

To handle the case of successor ordinals, it suffices to show that MapX pFγ`1pXq, Y q Ñ

MapX pFγpXq, Y q is a homotopy equivalence for each ordinal γ. Writing γ “ βδ ` α,
we have Fγ`1pXq “ LαFγpXq. The desired result now follows from our assumption
that Y belongs to the subcategory Xα Ď X .

pbq For each X P X , we must show that the object LpXq belongs to
Ş

Xα. Fix α P A;
we wish to show that LpXq P Xα. Note that the collection of ordinals of the form
βδ ` α` 1, where δ ă κ is cofinal in the set tγ : γ ă βκu. It follows that

LpXq » lim
ÝÑ
δăκ

Fβδ`α`1pXq “ lim
ÝÑ
δăκ

LαFβδ`αpXq

is a κ-filtered colimit of objects belonging to Xα. Since the functor Lα commutes with
κ-filtered colimits, we conclude that LpXq P Xα as desired.

Proof of Theorem C.4.2.1. It is clear that the unit object Spcn P PrAdd is a Grothendieck
prestable 8-category. It will therefore suffice to show that if C and C1 are Grothendieck
prestable 8-categories, then the tensor product Cb C1 is also a Grothendieck prestable
8-category. Using Theorem C.2.4.1, we may assume without loss of generality that there
exist inclusions

C Ď D C1 Ď D1

which admit left exact left adjoints

L : D Ñ C L1 : D1 Ñ C1,

where D “ RModcn
A and D1 “ RModcn

A1 for some connective E1-rings A and A1.
We first note that L induces a functor F : DbD1 Ñ CbD1. Using Corollary C.4.1.3, we

can view C, D, and D1 as 8-categories tensored over Spcn, the functor L with a Spcn-linear
functor, and F with the induced map

DbSpcn D1 Ñ CbSpcn D1 .

Applying Theorem HA.4.8.4.6 , we can identify F with the map RModApDq Ñ RModApCq
determined by L, which is left adjoint to the inclusion RModApCq ãÑ RModApDq. It follows
that the functor F admits a fully faithful right adjoint G : CbD1 Ñ DbD1. Let E Ď DbD1

denote the essential image of G and let L “ pG ˝ F q : DbD1 Ñ E be a left adjoint to the
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inclusion of E into DbD1. Note that we can identify L with the upper horizontal map in
the commutative diagram of 8-categories

RModApDq //

��

RModApCq

��
D L // C .

Since the vertical maps are conservative and preserve finite limits (Corollary HA.4.2.3.3 )
and the functor L is left exact, the functor L is also left exact.

Let F 1 : DbD1 Ñ Db C1 be the functor determined by L1. Repeating the above
reasoning, we deduce that F 1 admits a fully faithful right adjoint G1 : Db C1 Ñ DbD1

whose essential image is a full subcategory E 1 of DbD1, and that the inclusion E 1 ãÑ DbD1

admits a left exact left adjoint L1 : DbD1 Ñ E 1.
For every pair of presentable 8-categories X and Y, let Fun1pX opˆYop,Sq denote the

full subcategory of FunpX opˆYop,Sq spanned by those functors which preserve small limits
separately in each variable; it then follows from Proposition HTT.5.5.2.2 that we can identify
Fun1pX opˆYop,Sq with the tensor product X bY in PrL. Since L and L1 are localization
functors, composition with the functor Lˆ L1 induces a fully faithful embedding

Fun1pCopˆ C1 op,Sq Ñ Fun1pDopˆD1 op,Sq

whose essential image consists of those functorsH : DopˆD1 op Ñ S which carry each pLˆL1q-
equivalence in DˆD1 to a homotopy equivalence in S. Since every pL ˆ L1q-equivalence
can be written as a composition of an pLˆ idq-equivalence with an pidˆL1q-equivalence, it
follows that Fun1pCopˆ C1 op,Sq can be identified with the fiber product

Fun1pCopˆD1 op,Sq ˆFun1pDopˆD1 op,Sq Fun1pDopˆ C1 op,Sq.

In other words, the tensor product Cb C1 is equivalent to the intersection of the full subcate-
gories E , E 1 Ď DbD1. It follows from Theorem HA.4.8.5.16 that we can identify DbD1 with
the 8-category RModcn

AbA1 , and it follows from Lemma C.4.3.1 that the intersection E X E 1

is an accessible left exact localization of DbD1. Applying Theorem C.2.4.1, we conclude
that Cb C1 » E X E 1 is a Grothendieck prestable 8-category, as desired.

Remark C.4.3.2. Let F : C Ñ D be a functor between presentable 8-categories. Suppose
that F admits a fully faithful right adjoint G. Then, for any presentable 8-category E , the
induced map pF b idEq : Cb E Ñ Db E admits a fully faithful right adjoint. This is clear,
since a right adjoint to pF b idEq is given by the composition

Db E » Fun1pEop,Dq G˝Ñ Fun1pEop, Cq » Cb E ;

here Fun1pEop,Dq denotes the full subcategory of FunpEop,Dq spanned by those functors
which preserve small limits and Fun1pEop, Cq is defined similarly.
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C.4.4 Left Exact and Compact Functors

We now study properties of functors between prestable 8-categories which are preserved
by the tensor product of Theorem C.4.2.1.

Proposition C.4.4.1. Let f : C Ñ D be a functor between Grothendieck prestable 8-
categories which preserves small colimits. If f is left exact, then for any Grothendieck
prestable 8-category E the induced map pf b idEq : Cb E Ñ Db E is also left exact.

Proof. Using Theorem C.2.4.1, we can assume that there is a connective E1-ring A and an
inclusion E ãÑ RModcn

A which admits a left exact left adjoint L : RModcn
A Ñ E . The proof

of Theorem C.4.2.1 shows that L induces left exact functors

LC : RModApCq » CbRModcn
A Ñ Cb E

LD : RModApDq » DbRModcn
A Ñ Db E

which admit fully faithful right adjoints GC and GD. We then have

f b idE » pf b idEq ˝ LC ˝GE

» LD ˝ pf b idRModcn
A
q

» GE .

The functor LD is left exact, the functor GE preserves all small colimits, and f b idRModcn
A

can be identified with the functor RModApCq Ñ RModApDq induced by f (by virtue of
Theorem HA.4.8.4.6 ). This functor is left exact by virtue of our assumption that f is left
exact.

Corollary C.4.4.2. The symmetric monoidal structure on the 8-category Groth8 restricts
to a symmetric monoidal structure on the subcategory Grothlex

8 of Notation C.3.2.3.

Proposition C.4.4.3. Let f : C Ñ D be a compact functor between Grothendieck presentable
8-categories. Then, for any Grothendieck prestable 8-category E, the induced map pfb idEq :
Cb E Ñ Db E is compact.

Proof. Let F : SppCq Ñ SppDq be the functor obtained from f by applying the stabilization
construction PrL Ñ PrSt. Using Proposition C.3.4.1, we see that F admits a right adjoint
G : SppDq Ñ SppCq which commutes with small colimits. Then F and G induce adjoint
functors

SppCq b SppEq
pFbidq//SppDq b SppEq
pGbidq
oo

which commute with small colimits. We now observe that the functor F b id can be
identified with the image of the map f b idE : Cb E Ñ Db E under the stabilization functor
PrL Ñ PrSt, so that f b idE is compact (see Proposition C.3.4.1).
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Corollary C.4.4.4. The symmetric monoidal structure on the 8-category Groth8 restricts
to a symmetric monoidal structure on the subcategory Grothc

8 Ď Groth8 of Definition C.3.4.2.

Remark C.4.4.5. In the situation of Proposition C.4.4.3, suppose that the functor f admits
a right adjoint g which preserves all small colimits. Then the adjunction between f and g

determines a pair of adjoint functors

Cb E
pfbidEq//Db E
pgbidEq,
oo

so that the functor f b idE also admits a right adjoint which preserves small colimits.

C.4.5 Tensor Products and Colimits

The symmetric monoidal structure on the 8-category PrL is closed: that is, for every
presentable 8-category C, the tensor product functor D ÞÑ CbD admits a right adjoint,
given by the construction E ÞÑ LFunpC, Eq. It follows that the tensor product on PrL

preserves small colimits separately in each variable. Our next goal is to prove an analogous
assertion for the 8-category Grothc

8:

Proposition C.4.5.1. The tensor product

b : Grothc
8ˆGrothc

8 Ñ Grothc
8

of Corollary C.4.4.4 preserves small colimits separately in each variable.

Warning C.4.5.2. Proposition C.4.5.1 does not follow from the corresponding assertion
concerning the tensor product on PrL, since the inclusion functor Grothc

8 ãÑ PrL does not
preserve small colimits.

Proposition C.4.5.1 is an immediate consequence of Remarks C.3.5.2, C.4.2.3, and the
following stronger result:

Proposition C.4.5.3. The tensor product

b : Groth`8ˆGroth`8 Ñ Groth`8
of Remark C.4.2.3 preserves small colimits separately in each variable.

Proof. Let q : Groth`8 Ñ PrSt be the forgetful functor given by pC, Cě0q ÞÑ C. Note that a
small diagram p : KŹ Ñ Groth`8 is a colimit diagram if and only q ˝ p is a colimit diagram
in the 8-category PrSt and p is a q-colimit diagram (Proposition HTT.4.3.1.5 ). Since the
tensor product on the 8-category PrSt preserves small colimits separately in each variable,
it will suffice to show that for each object pC, Cě0q, the formation of tensor product with
pC, Cě0q determines a functor T : Groth`8 Ñ Groth`8 which preserves q-colimit diagrams.
Using Propositions HTT.4.3.1.9 and HTT.4.3.1.10 , we are reduced to proving the following
more concrete assertions:
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paq For every presentable stable 8-category D, the functor T induces a map of partially
ordered sets CorepDq Ñ CorepCbDq which preserves colimits (in other words, the
formation of suprema).

pbq The functor T carries q-coCartesian morphisms in Groth`8 to q-coCartesian morphisms
in Groth`8.

We first prove paq. Let m : CˆD Ñ E be a functor which exhibits E as a tensor product
of C with D, and let m! : CorepCq ˆ CorepDq Ñ CorepEq be as in Remark C.4.2.3. Let
tDαě0u be a collection of cores of D having supremum Dě0 P CorepDq. We wish to show that
m!pCě0,Dě0q is a supremum of the set tm!pCě0,Dαě0qu in the partially ordered set CorepEq.
To prove this, suppose that Eě0 Ď E is any core which contains each m!pCě0,Dαě0q. Let
D1 Ď D be the full subcategory spanned by those objects D P D which satisfy mpC,Dq P Eě0
for each C P Cě0. Since the functor m preserves small colimits separately in each variable, it
follows that D1 Ď D is a core. By construction, it contains each Dαě0 and therefore contains
the supremum Dě0, which proves that m!pCě0,Dě0q Ď Eě0 as desired.

Let us now prove pbq. Suppose we are given a colimit preserving functor between
presentable stable 8-categories f : D Ñ D1, and form a commutative diagram

CˆD

idˆf
��

m // E
g
��

CˆD1 m
1
// E 1

where the horizontal maps exhibit E and E 1 as tensor products of D and D1 with C, respectively.
Define

m! : CorepCq ˆ CorepDq Ñ CorepEq m1! : CorepCq ˆ CorepD1q Ñ CorepE 1q

as in Remark C.4.2.3. Unwinding the definitions, we wish to show for every core Dě0 Ď D,
if D1ě0 Ď D1 is the smallest core containing fpDě0q, then m1!pCě0,D1ě0q is the smallest core
containing gpm!pCě0,Dě0qq. Let E 1ě0 P CorepE 1q be any core satisfying mpCě0,Dě0q Ď

g´1 E 1ě0, and let D2 be the full subcategory of D1 spanned by those objects D1 which satisfy
m1pCě0ˆtD

1uq Ď E 1ě0. Then D2 is a core containing fpDě0q, so we have D1ě0 Ď D2 and
therefore m1!pCě0,D1ě0q Ď E 1ě0 as desired.

C.4.6 Completed Tensor Products

We now consider the interaction between the tensor product on Grothendieck prestable
8-categories and the separatedness and completeness conditions introduced in Definition
C.1.2.12.
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Proposition C.4.6.1. Let Grothcomp
8 Ď Grothsep

8 Ď Groth8 denote the full subcategories of
Groth8 spanned by the complete and separated Grothendieck prestable 8-categories, and let

L : Groth8 Ñ Grothsep
8 L1 : Groth8 Ñ Grothcomp

8

denote left adjoints to the inclusion maps. Suppose that F : C Ñ D is a functor between
Grothendieck prestable 8-categories which preserves small colimits, and let E be an arbitrary
Grothendieck prestable 8-categories. Then:

• If LF is an equivalence in the 8-category Grothsep
8 , then LpF b idEq is also an equiva-

lence in the 8-category Grothsep
8 .

• If L1F is an equivalence in the 8-category Grothcomp
8 , then L1pF b idEq is also an

equivalence in the 8-category Grothcomp
8 .

In other words, the localization functors L and L1 are compatible with the symmetric monoidal
structure on Groth8, in the sense of Definition HA.2.2.1.6 .

Proof. We will prove the assertion for the localization functor L; the proof for L1 is similar.
Assume that LF is an equivalence. We wish to prove that LpFbidEq is also an equivalence. In
other words, we wish to prove that for every separated Grothendieck presentable 8-category
X , composition with the functor F b idE induces an equivalence of 8-categories

θ : LFunpDb E ,X q Ñ LFunpCb E ,X q.

This is clear, because θ can be identified with the natural map

LFunpE ,LFunpD,X qq Ñ LFunpE ,LFunpC,X qq

obtained by composition with the equivalence LFunpD,X q ˝FÑ LFunpC,X q.

Corollary C.4.6.2. The 8-categories Grothsep
8 and Grothcomp

8 admit essentially unique
symmetric monoidal structures for which the localization functors

L : Groth8 Ñ Grothsep
8 L1 : Groth8 Ñ Grothcomp

8

are symmetric monoidal.

Warning C.4.6.3. If we equip the 8-categories Grothsep
8 and Grothcomp

8 with the symmetric
monoidal structures described in Corollary C.4.6.2, then the inclusion functors

Grothcomp
8 ãÑ Grothsep

8 ãÑ Groth8

are lax symmetric monoidal, but not symmetric monoidal. We will denote the tensor product
on Grothcomp

8 by
pb : Grothcomp

8 ˆGrothcomp
8 Ñ Grothcomp

8
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and refer to it as the completed tensor product on Grothcomp
8 . Unwinding the definitions, we

see that the completed tensor product is given on objects by the formula C pbD “ {CbD,
where C ÞÑ pC denotes the completion functor of Proposition C.3.6.3 (that is, the localization
functor L1 of Corollary C.4.6.2).

C.5 Grothendieck Abelian Categories

In §C.1, we introduced the notion of a Grothendieck prestable 8-category (Defini-
tion C.1.4.2). In this section, we will investigate the relationship between the theory
of Grothendieck prestable 8-categories and the more classical theory of Grothendieck
abelian categories. Recall that if C is a Grothendieck prestable 8-category, then the full
subcategory C♥ Ď C spanned by the discrete objects is a Grothendieck abelian category
(Remark C.1.4.6). We now consider the converse:

Question C.5.0.4. Given a Grothendieck abelian category A, is there a canonical way to
construct a Grothendieck prestable 8-category C and an equivalence A » C♥?

We have already given an affirmative answer to Question C.5.0.4: if A is a Grothendieck
prestable8-category, then the derived 8-category DpAq can be endowed with the t-structure
pDpAqě0,DpAqď0q of Proposition HA.1.3.5.21 , and the8-category DpAqě0 is a Grothendieck
prestable 8-category whose heart is equivalent to A (Example C.1.4.5). However, there are
(at least) two other ways to answer Question C.5.0.4:

• If A is a Grothendieck abelian category, then t-structure on DpAq need not be left
complete. Consequently, we can consider the left completion of DpAq, which we will
denote by pDpAq and refer to as the completed derived 8-category of A. This comple-
tion inherits a t-structure ppDpAqě0, pDpAqď0q, and pDpAqě0 is another Grothendieck
prestable 8-category whose heart can be identified with A.

• Let A be a Grothendieck abelian category and let ChpAq be the (differential graded)
category of chain complexes with values in A. Then ChpAq admits a model structure,
where the cofibrations are monomorphisms of chain complexes and the weak equiv-
alences are quasi-isomorphisms of chain complexes (Proposition HA.1.3.5.3 ). The
8-category DpAq is defined as the differential graded nerve of the full subcategory
ChpAq0 Ď ChpAq spanned by the fibrant objects (Definition HA.1.3.5.8 ). If A‚ is a
fibrant object of ChpAq, then each An is an injective object of A: that is, we have
ChpAq0q Ď ChpAinjq, where Ainj Ď A denotes the full subcategory spanned by the
injective objects of A. In general, this inclusion is strict: an unbounded chain complex
of injective objects of A need not be a fibrant object of ChpAq. We let qDpAq denote the
differential graded nerve of the category ChpAinjq of all chain complexes of injective
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objects of A. Then qDpAq admits a t-structure pqDpAqě0, qDpAqď0q, where qDpAqě0 is a
Grothendieck prestable 8-category whose heart is A. We will refer to qDpAq as the
unseparated derived 8-category of A.

If A is a Grothendieck abelian, then the 8-categories described above are related by
functors

qDpAqě0 Ñ DpAqě0 Ñ pDpAqě0

which preserve small colimits and finite limits. Each can be characterized by a universal
property:

• The unseparated derived8-category qDpAqě0 is universal among Grothendieck prestable
8-categories E equipped with a functor AÑ E♥ which preserves small colimits and
finite limits (Corollary C.5.8.9).

• The derived 8-category DpAqě0 is universal among separated Grothendieck prestable
8-categories E equipped with a functor AÑ E♥ which preserves small colimits and
finite limits (Theorem C.5.4.9).

• The completed derived 8-category pDpAqě0 is universal among complete Grothendieck
prestable 8-categories E equipped with a functor A Ñ E♥ which preserves small
colimits and finite limits (Corollary C.5.9.5).

The relationship between Grothendieck prestable 8-categories and Grothendieck abelian
categories is analogous to the relationship between 8-topoi and ordinary (Grothendieck)
topoi. Another of our goals in this section is to pursue this analogy by introducing “linear”
versions of some useful concepts from the study of higher topoi, as summarized in the
following table:

Nonlinear Concept Linear Concept

8-topos Grothendieck prestable 8-category

Hypercomplete 8-topos Separated Grothendieck prestable 8-category

Postnikov-complete 8-topos Complete Grothendieck prestable 8-category

Bounded 8-topos Anticomplete Grothendieck prestable 8-category

pn` 1q-localic 8-topos Anticomplete, n-complicial Grothendieck prestable 8-category

pn` 1q-topos Grothendieck abelian n-category

cc
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C.5.1 Localizing Subcategories of Abelian Categories

In §C.2, we introduced the notion of a localizing subcategory of a Grothendieck prestable
8-category C (Definition C.2.3.3). We now review the analogous localization theory of
Grothendieck abelian categories. We begin by establishing a 1-categorical analogue of
Proposition C.2.3.1.

Proposition C.5.1.1. Let A be an abelian category and let B Ď A be a full subcategory.
Suppose that the inclusion B ãÑ A admits a left adjoint L : AÑ B which is left exact. Then
B is an abelian category and L is exact (when viewed as a functor from A to B).

Proof. Since B is a localization of A, it is closed under all limits which exist in A. In
particular, it contains the zero object of A and is closed under finite direct sums, and is
therefore an additive category. Moreover, every morphism f : X Ñ Y in B has a kernel
(which can be computed in the abelian category A) and a cokernel (which can be computed
by first taking the cokernel in the abelian category A and then applying the localization
functor L). To complete the proof that B is abelian, it will suffice to show that for every
f as above, the canonical map α : L cokerpkerpfq Ñ Xq Ñ kerpY Ñ L cokerpfqq is an
isomorphism (where the kernels and cokernals are formed in the abelian category A). Using
the left exactness of L, we see that α is obtained by applying the functor L to the natural
map α0 : cokerpkerpfq Ñ Xq Ñ kerpY Ñ cokerpfqq, which is an isomorphism by virtue of
our assumption that A is an abelian category. The functor L : A Ñ B is left exact by
assumption and right exact by virtue of the fact that it is left adjoint to the inclusion, and
is therefore exact.

In the situation of Proposition C.5.1.1, the category B can be obtained (up to equivalence)
from A by formally inverting the L-equivalences: that is, the morphisms f : X Ñ Y in
the category A such that Lf is an isomorphism. Since L : A Ñ B is an exact functor,
the morphism Lf is an isomorphism if and only if cokerpLfq “ L cokerpfq and kerpLfq “
L kerpfq both vanish: that is, if and only if the functor L annihilates kerpfq and cokerpfq.
Consequently, the category B can be recovered from A together with the full subcategory
A0 “ tX P A : LX » 0u. One can then ask: which full subcategories A0 Ď A can arise in
this way? When A is a Grothendieck abelian category, this is answered by the following:

Definition C.5.1.2. Let A be a Grothendieck abelian category. We will say that a full
subcategory A0 Ď A is localizing if it satisfies the following conditions:

paq For every exact sequence 0 Ñ X 1 Ñ X Ñ X2 Ñ 0 in A, the object X belongs to A0 if
and only if both X 1 and X2 belong to A0. In other words, the full subcategory A0 is
closed under the formation of subobjects, quotient objects, and extensions.

pbq The full subcategory A0 Ď A is closed under the formation of (small) coproducts.
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Remark C.5.1.3. If A is an arbitrary abelian category, then a full subcategory A0 Ď A
satisfying condition paq of Definition C.5.1.2 is often called a Serre subcategory of A.

Definition C.5.1.4. Let A be a Grothendieck abelian category and let A0 Ď A be a
localizing subcategory. We will say that a morphism f : X Ñ Y in A is a A0-equivalence
if the kernel and cokernel of f belong to A0. We will say that an object Z P A is A0-local
if, for every A0-equivalence f : X Ñ Y , the induced map HomApY, Zq Ñ HomApX,Zq is
bijective. We let A {A0 denote the full subcategory of A spanned by the A0-local objects.

Remark C.5.1.5. Let A be a Grothendieck abelian category and let A0 Ď A be a localizing
subcategory. Every morphism f : X Ñ Y in A admits an essentially unique factorization
X

f 1
ÝÑ W

f2
ÝÑ Y , where f 1 is an epimorphism and f2 is a monomorphism. Note that f is

a A0-equivalence if and only if f 1 and f2 are A0-equivalences. Consequently, an object
Z P A is A0-local if only if the induced map HomApY,Zq Ñ HomApX,Zq is bijective for
any A0-equivalence X Ñ Y which is either an epimorphism or a monomorphism. This is
equivalent to the following pair of conditions:

paq For every exact sequence 0 Ñ AÑ X
f
ÝÑ Y Ñ 0 in A where A P A0, the induced map

HomApY, Zq Ñ HomApX,Zq is surjective (note that it is automatically injective, since
f is an epimorphism).

pbq For every exact sequence 0 Ñ X
f
ÝÑ Y Ñ AÑ 0 in A where A P A0, the induced map

HomApY, Zq Ñ HomApX,Zq is bijective.

Note that condition paq is equivalent to the requirement that HomApA,Zq » 0 for each
A P A0. Moreover, if this condition is satisfied, then the map appearing in pbq is automatically
injective. Unwinding the definitions, we see that the surjectivity is equivalent to the
requirement that every exact sequence 0 Ñ Z Ñ rZ Ñ A Ñ 0 in A splits provided that
A P A0: that is, to the condition that Ext1

ApA,Zq » 0 for A P A0. Consequently, an object
Z P A is A0-local if and only if we have HomApA,Zq » Ext1

ApA,Zq » 0 for all A P A0: that
is, if and only if every extension of A by Z admits a unique splitting.

The relevance of Definition C.5.1.2 is explained by the next result:

Proposition C.5.1.6. Let A be a Grothendieck abelian category and let A0 Ď A be a full
subcategory. The following conditions are equivalent:

p1q The full subcategory A0 Ď A is localizing.

p2q There exists a full subcategory B Ď A for which the inclusion functor admits a left
exact left adjoint L : AÑ B, where A0 “ tA P A : LA » 0u.

Moreover, if these conditions are satisfied, then B is a Grothendieck abelian category.
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Remark C.5.1.7. In the situation of Proposition C.5.1.6, let f : AÑ A1 be a morphism
in A. Then Lf is an isomorphism in B if and only if the objects kerpLfq » L kerpfq and
cokerpLfq » L cokerpfq vanish: that is, if and only if f is a A0-equivalence, in the sense of
Definition ??. It follows that the essential image of the inclusion B ãÑ A can be identified
with the full subcategory A {A0 Ď A spanned by the A0-local objects.

Proof of Proposition C.5.1.6. Suppose first that p2q is satisfied. Then L : A Ñ B is an
exact functor between abelian categories (Proposition C.5.1.1), so the full subcategory
A0 “ tA P A : LA » 0u is closed under the formation of subobjects, quotient objects, and
extensions. Since L preserves small colimits, the full subcategory A0 Ď A is closed under
small colimits and therefore under small coproducts. This proves that p2q ñ p1q.

Now suppose that p1q is satisfied. Then the full subcategory A0 Ď A is closed under
quotients and direct sums, and is therefore closed under all small colimits. Let E P A be
a generator for the Grothendieck abelian category A, so that every object X P A can be
written as a filtered colimit of subobjects Xα, each of which can be described as a quotient
of En for n ě 0. Note that if X P A0, then each Xα belongs to A0. It follows that A0 is
generated under filtered colimits by the (essentially small) subcategory of A0 spanned by
objects which appear as quotients of some En. Every such quotient is small as an object of
A and therefore also as an object of A0, so that the category A0 is accessible. Let S denote
the collection of all A0-equivalences in A; it follows from Proposition HTT.5.4.6.6 that S
spans an accessible subcategory of Funp∆1,Aq.

Let DpAq denote the derived 8-category of A (see §??), let DA0pAq denote the full
subcategory of DpAq spanned by those chain complexes in A whose homologies lie in the
subcategory A0 Ď A. Using the assumption that A0 is a Serre subcategory of A, we
immediately deduce that DA0pAq is a stable subcategory of DpAq. Since A0 is closed under
direct sums, the full subcategory DA0pAq Ď DpAq is closed under coproducts and therefore
under all small colimits. Set DA0pAqě0 “ DpAqě0 XDA0pAq. We claim that DA0pAqě0 is a
localizing subcategory of the Grothendieck prestable 8-category DpAqě0: that is, that it
satisfies conditions piq, piiq, and piiiq of Definition C.2.3.3. Since DA0pAq and DpAqě0 are
both closed under small colimits in DpAq, it is clear that DA0pAqě0 is closed under colimits
in DpAq. Using Proposition HTT.5.4.6.6 , we see that the accessibility of the subcategory
A0 Ď A implies the accessibility of the subcategory DA0pAqě0 Ď DpAq.

Let C denote the quotient DpAqě0{DA0pAqě0 (see Notation C.2.3.9). Then C is a
Grothendieck prestable 8-category, so the full subcategory C♥ Ď C of discrete objects is a
Grothendieck abelian category (Remark C.1.4.6). Since the localization functor DpAqě0 Ñ

DpAqě0{DA0pAqě0 and its right adjoint are left exact, they determine adjoint functors

DpAq♥
F //C♥
G
oo which exhibit C♥ as an exact localization of the Grothendieck abelian

category DpAq♥ » A. By construction, an object A P A is annihilated by F if and only if it
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belongs to the full subcategory A0 Ď A. We conclude by taking B Ď A to be the essential
image of the functor G.

Remark C.5.1.8. Let A be a Grothendieck abelian category, let A0 Ď A be a localizing
subcategory, and let B be an arbitrary category which admits small colimits. Let LFunpA,Bq
denote the full subcategory of FunpA,Bq spanned by those functors which preserve small
colimits and define LFunpA {A0,Bq similarly. It follows from Proposition HTT.5.5.4.20
that composition with the localization functor L : A Ñ A {A0 induces a fully faithful
embedding LFunpA {A0,Bq ãÑ LFunpA,Bq, whose essential image is spanned by those
functors which carry A0-equivalences in A to isomorphisms in B. In particular, if F : AÑ B
is a colimit-preserving functor which carries A0-equivalences to isomorphisms, then F admits
an essentially unique factorization through the quotient A {A0. Note that if B is an abelian
category and F is exact, then the condition that F preserves A0-equivalences is equivalent
to the requirement that F annihilates the objects of A0. In this case, the induced map
A {A0 Ñ B is also an exact functor.

C.5.2 Comparison of Localizing Subcategories

Let C be a Grothendieck prestable 8-category and let C♥ denote the full subcategory of
C spanned by the discrete objects. Then C♥ is a Grothendieck abelian category. We study
the relationship between localizing subcategories of C (in the sense of Definition C.2.3.3)
and localizing subcategories of C♥ (in the sense of Definition C.5.1.2).

Proposition C.5.2.1. Let C be a Grothendieck prestable 8-category and let C0 Ď C be a
localizing subcategory (in the sense of Definition C.2.3.3). Then:

paq The 8-category C0 is Grothendieck prestable.

pbq An object of C0 is discrete if and only if it is discrete when viewed as an object of C:
that is, we have C♥

0 “ C0X C♥.

pcq The full subcategory C♥
0 Ď C♥ is a localizing subcategory of the Grothendieck abelian

category C♥ (in the sense of Definition C.5.1.2).

pdq There is a canonical equivelence of Grothendieck abelian categories pC { C0q
♥ » C♥ { C♥

0 .

Proof. Assertion paq follows immediately from the definitions. To prove pbq, suppose that
X is a discrete object of C0. Let π0X denote the 0-truncation of X in the Grothendieck
prestable 8-category C, so that we have a fiber sequence X 1 Ñ X Ñ π0X. Using condition
piiiq of Proposition C.2.3.3, we deduce that X 1 P C0. Since π0X

1 » 0, we can write
X 1 “ ΣY for some object Y P C. We then have a fiber sequence Y Ñ 0 Ñ X 1 in C, so
that condition piiq of Definition C.2.3.3 gives Y P C0. Since X is discrete, we deduce that
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π1 MapCpY,Xq » π0 MapCpX
1, Xq » π0 MapCpX

1, X 1q » 0. In particular, the identity map
id : X 1 Ñ X 1 is nullhomotopic, so that X 1 » 0 and therefore X » π0X is a discrete object
of C.

To prove pcq and pdq, we note that the functors appearing in the adjunction C
F //C { C0
G
oo

are left exact, and therefore induce an adjunction between Grothendieck abelian categories

C♥ F♥
//
pC { C0q

♥
G♥
oo . Unwinding the definitions, we see that an object C P C♥ is annihilated

by F♥ if and only if it belongs to C0X C♥ “ C♥
0 . It follows from Proposition C.5.1.6 that

C♥
0 is a localizing subcategory of C♥, and that the quotient C♥ { C♥

0 can be identified with
the essential image of the fully faithful embedding G♥.

Let C be a Grothendieck prestable 8-category. It follows from Proposition C.5.2.1 that
the construction C0 ÞÑ C♥

0 determines a map

tLocalizing subcategories of Cu Ñ tLocalizing subcategories of C♥u.

We will see in a moment that this map is surjective: that is, given a localizing subcategory
A0 Ď C♥, we can always find a localizing subcategory C0 Ď C satisfying C♥

0 “ A0. The
localizing subcategory C0 is generally not unique. However, there are (at least) two natural
choices for the subcategory C0: one which is as large as possible (Proposition C.5.2.7), and
one which is as small as possible (Proposition C.5.2.8).

Proposition C.5.2.2. Let C be a Grothendieck prestable 8-category and let C0 Ď C be a
localizing subcategory. For each object C P C0, we have πnC P C♥

0 for n ě 0.

Proof. Since the localization functor L : C Ñ C { C0 is left exact, we have LpπnCq »

πnpLCq » 0 for n ě 0.

The converse of Proposition C.5.2.2 is not necessary true: in general, we cannot test
whether or not an object C P C belongs to C0 by studying the homotopy groups πnC P C♥.

Definition C.5.2.3. Let C be a Grothendieck prestable 8-category and let C0 Ď C be a
localizing subcategory. We will say that C0 is separating if, for every object C P C which
satisfies πnC P C♥

0 for n ě 0, we have C P C0.

Remark C.5.2.4. Unwinding the definitions, we see that a localizing subcategory C0 Ď C
is separating (in the sense of Definition C.5.2.3) if and only if the Grothendieck prestable
8-category C { C0 is separated (in the sense of Definition C.1.2.12).

Remark C.5.2.5. Let C be a Grothendieck prestable 8-category. Suppose we are given
localizing subcategories C0, C1 Ď C, where C1 is separating. Then C0 Ď C1 if and only if
C♥

0 Ď C
♥
1 . The “only if” direction is obvious, and the “if” direction follows from Proposition

C.5.2.2.
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Remark C.5.2.6. Let C be a Grothendieck prestable 8-category, let C0 Ď C be a separated
localizing subcategory, and let A0 “ C♥

0 . It follows from Remark C.5.2.5 that C0 is the
largest localizing subcategory of C whose heart is A0.

Proposition C.5.2.7. Let C be a Grothendieck prestable 8-category. Then the construction
C0 ÞÑ C♥

0 induces a bijection

θ : tSeparating localizing subcategories of Cu Ñ tLocalizing subcategories of C♥u.

Proof. The injectivity of θ follows from Remark C.5.2.6. To prove surjectivity, let A0 Ď C♥

be a localizing subcategory of C♥ and define C0 Ď C be the full subcategory of C spanned
by those objects C satisfying πnC P A0 for n ě 0. We must show that C0 is a localizing
subcategory of C: that is, that it satisfies the requirements of Definition C.2.3.3:

piq The full subcategory C0 Ď C is accessible and closed under small coproducts. The
accessibility of C0 follows from the accessibility of A0 (established in the proof of
Proposition C.5.1.6) using Proposition HTT.5.4.6.6 . Since A0 Ď C♥ is closed under
the formation of coproducts and each of the functors πn : C Ñ C♥ commutes with
coproducts, we conclude that C0 Ď C is closed under coproducts.

piiq Suppose we are given a cofiber sequence X 1 Ñ X Ñ X2 in C. We must show that
if any two of the objects X, X 1, and X2 belongs to C0, then so does the third. For
simplicity, let us assume that X 1 and X2 belong to C0; the proofs in the other two
cases differ only by minor changes in notation. For each n ě 0, we have an exact
sequence πnX 1 Ñ πnX Ñ πnX

2 in the abelian category C♥. It follows that we can
write πnX as an extension of a subobject of πnX2 by a quotient object of πnX 1. Since
X 1 and X2 belong to C0, the objects πnX 1 and πnX

2 belong to A0. Since A0 is a
localizing subcategory of C♥, it follows that any subobject of πnX2 and any quotient
object of πnX 1 belong to A0, so that πnX P A0 by virtue of the fact that A0 is closed
under extensions. Allowing n to vary, we deduce that X P C0.

piiiq Suppose we are given a cofiber sequence X 1 Ñ X Ñ X2 in C where X P C0 and
X2 P C♥; we wish to show that X 1 P C0. The canonical map πnX

1 Ñ πnX is a
monomorphism for n ě 0 (and an isomorphism for n ą 0). Our assumption that
X P C0 guarantees that each πnX belongs to A0, so that πnX 1 P A0 by virtue of the
fact that A0 is closed under the formation of subobjects. Allowing n to vary, we deduce
that X 1 P C0 as desired.

We now consider localizing subcategories which are, in some sense, as far as possible
from being separating.
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Proposition C.5.2.8. Let C be a Grothendieck prestable 8-category, let SppCq denote the
8-category of spectrum objects of C, and regard SppCq as equipped with the t-structure of
Remark C.1.2.10. Let A0 be a localizing subcategory of the Grothendieck abelian category
SppCq♥ » C♥, and let E Ď SppCq denote the full subcategory spanned by those objects X with
the property that ExtnSppCqpA,Xq vanishes for each object A P A0 and every integer n. Then:

paq The 8-category E is presentable, and the inclusion functor E ãÑ SppCq admits a left
adjoint L : SppCq Ñ E.

pbq There is a unique t-structure pEě0, Eď0q on E for which Eď0 “ SppCqď0 X E.

pcq The functor L is t-exact.

pdq The t-structure pEě0, Eď0q is right complete and compatible with filtered colimits.

peq The full subcategory Eě0 Ď E is a Grothendieck prestable 8-category.

pfq Let C0 denote the full subcategory of C spanned by those objects which are annihilated
by the functor C » SppCqě0

L
ÝÑ Eě0. Then C0 is a localizing subcategory of C satisfying

C♥
0 “ A0.

pgq The full subcategory C0 Ď C is the smallest localizing subcategory of C which contains
A0.

Proof. Choose a small collection of objects tAαu of A0 which generate A0 under filtered
colimits. Unwinding the definitions, we see that an object X P SppCq belongs to E if and
only if it is S-local, where S denotes the collection of all morphisms of the form 0 Ñ ΣnAα.
Assertion paq now follows from Proposition HTT.5.5.4.15 .

Choose a small collection of objects tCβu of C which generate C under small colimits.
Let Eě0 denote the smallest full subcategory of E which is closed under small colimits
and extensions and contains every object of the form LpΣ8Cβq. Applying Proposition
HA.1.4.4.11 , we see that Eě0 can be extended to an accessible t-structure pEě0, Eď0q on E .
Unwinding the definitions, we see that an object X P E belongs to Eď0 if and only if each of
the mapping spaces

MapEpLΣ8Cβ,ΩXq » MapSppCqpΣ8Cβ,ΩXq

is discrete. It follows that Eď0 “ E X SppCqď0, which proves pbq.
Let D denote the full subcategory of SppCq spanned by those objects X such that LX » 0,

and let D be the full subcategory of SppCq spanned by those objects X such that πnX P A0
for every integer n. We next prove:

p˚q There are inclusions D X SppCqď0 Ď D Ď D.
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Note that D is generated under small colimits by the collection of objects tΣnAαu. Since
each of these objects belongs to D and D is closed under small colimits, it follows that D Ď D.
To prove the other inclusion, we note that the t-structure on SppCq is right complete, so that
every object X P SppCq can be obtained as a colimit lim

ÝÑ
τě´nX. If X belongs to DXSppCqď0,

then each truncation τě´nX can be written as a finite extension of desuspensions of objects
of A0, and is therefore annihilated by L. Since L preserves small colimits, it follows that
LX » 0.

Let X be any object of SppCqď0 and form a fiber sequence X 1 uÝÑ X Ñ LX. Then X 1 is
annihilated by the functor L, so that p˚q implies that the homotopy groups πnX 1 belong
to A0 for every integer n. Our assumption that X belong to SppCqď0 guarantees that we
can factor the map u as a composition X 1

u1
ÝÑ X2

u2
ÝÑ X, where X2 P SppCqď0, the maps

πnX
1 Ñ πnX

2 are isomorphisms for n ă 0, the map π0X
1 Ñ π0X

2 is an epimorphism, and
the map π0X

2 Ñ π0X is a monomorphism. It follows that the objects πnX2 belong to A0
for all n P Z. Applying p˚q again, we see that X2 P D. By construction, X 1 is a final object
of DˆSppCq SppCq{X , so that X 1 is a retract of X2 in the 8-category SppCq{X . It follows
X 1 P SppCqď0 and that the map π0puq : π0X

1 Ñ π0X is a monomorphism in SppCq♥, from
which we conclude that LX » cofibpuq also belongs to SppCqď0. This proves that the functor
L : SppCq Ñ E is left t-exact. The right t-exactness of L follows immediately from the fact
that L is left adjoint to the left t-exact inclusion functor E ãÑ SppCq. This completes the
proof of pcq.

We now prove pdq. Let tXαu be a small filtered diagram in the 8-category Eď0, and
let X “ lim

ÝÑ
Xα be its colimit in the 8-category SppCq. Then X belongs to SppCqď0 (since

the t-structure on SppCq is compatible with filtered colimits). It follows from pcq that
LX P Eď0. Note that LX can be identified with the colimit of the diagram tXαu in
the 8-category E , so that the t-structure on E is compatible with filtered colimits. The
right completeness of pEě0, Eď0q now follows from Proposition ??, since the intersection
Ş

ně0 Eď´n Ď
Ş

ně0 SppCqď´n contains only zero objects of SppCq.
Assertion peq follows from paq, pbq, and pdq (see Proposition C.1.4.1). We now prove

pfq. It follows from pcq that L restricts to a functor Lě0 : SppCqě0 Ñ Eě0. Unwinding the
definitions, we see that Lě0 is left adjoint to the composite functor

Eě0 ãÑ E ãÑ SppCq τě0
ÝÝÑ SppCqě0.

We claim that this composite functor is fully faithful. To prove this, choose an arbitrary
object X P E , and consider the fiber sequence

τě0X Ñ X Ñ τď´1X

where the truncations are formed with respect to the t-structure on SppCq. Applying the
functor L (and invoking our assumption that X P E), we obtain a fiber sequence

Lpτě0Xq
uX
ÝÝÑ X Ñ Lpτď´1Xq



2016 APPENDIX C. PRESTABLE 8-CATEGORIES

in the 8-category E . It follows from pcq that the map uX exhibits Lpτě0Xq as the connective
cover of X with respect to the t-structure pEě0, Eď0q. In particular, if X belongs to Eě0,
then the map u is an equivalence. Allowing X to vary, we conclude that the functor
τě0 : Eě0 Ñ SppCqě0 is fully faithful. That is, Lě0 : SppCqě0 Ñ Eě0 exhibits Eě0 as an
accessible left exact localization of C » SppCqě0, so that C0 is a localizing subcategory of C
(Proposition C.2.3.8). By construction, an object C P C belongs to C0 if and only if Σ8C
belongs to D Ď SppCq, so the equality C♥

0 “ A0 is a special case of p˚q.
We now prove pgq. Let C1 be any localizing subcategory of C which contains A0. The

inclusion C { C1 ãÑ C extends to a fully faithful embedding g : SppC { C1q ãÑ SppCq. To
show that C0 Ď C1, it will suffice to show that the essential image of g is contained in
SppC { C0q » E Ď SppCq. This is equivalent to the requirement that the left adjoint of
g annihilates the subcategory A0 Ď SppCq♥, which follows from our assumption that C1
contains A0.

C.5.3 Complicial Prestable 8-Categories

We now study a class of Grothendieck prestable 8-categories C which are “controlled”
by their n-truncated objects, for some n ě 0.

Definition C.5.3.1. Let C be a Grothendieck prestable 8-category and let n ě 0 be an
integer. We will say that C is n-complicial if, for every object X P C, there exists a morphism
f : X Ñ X where X is n-truncated and the induced map π0X Ñ π0X is an epimorphism in
the abelian category C♥.

The terminology of Definition C.5.3.1 is motivated by the following observation:

Proposition C.5.3.2. Let A be a Grothendieck abelian category, let DpAq denote the
(unbounded) derived 8-category of A (see §HA.?? ), and regard DpAq as equipped with the
t-structure pDpAqě0,DpAqď0q of Proposition HA.1.3.5.21 . Then DpAqě0 is a 0-complicial
Grothendieck prestable 8-category.

Proof. We have already seen that DpAqě0 is a Grothendieck prestable 8-category (Example
C.1.4.5). We claim that it is 0-complicial. To prove this, choose an object X‚ P DpAqě0,
which we can identify with a chain complex

¨ ¨ ¨X2
d2
ÝÑ X1

d1
ÝÑ X0

d0
ÝÑ X´1

d´1
ÝÝÑ X´2 Ñ ¨ ¨ ¨

in the abelian category A. Let X “ kerpd0q P A. Then there is an evident map X Ñ X in
DpAqě0 (where we abuse notation by identifying X with its image under the equivalence
A » DpAq♥) which induces an epimorphism on homology in degree zero.

Our first goal is to show that n-complicial Grothendieck prestable 8-categories exist in
abundance.
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Proposition C.5.3.3. Let C be a Grothendieck prestable 8-category and let C0 Ď C be a
localizing subcategory. If C is n-complicial, then C { C0 is n-complicial.

Proof. Let us regard C { C0 as a full subcategory of C, and let L : C Ñ C { C0 be a left adjoint
to the inclusion. For any object X P C { C0, we can choose a morphism α : X Ñ X, where
X is an n-truncated object of C and the induced map π0X Ñ π0X is an epimorphism
in the abelian category C♥. Since X belongs to C { C0, the morphism α factors as a
composition X Ñ LX

α1
ÝÑ X. Because L is left exact, the object LX P C { C0 is also

n-truncated. The induced map π0LX Ñ π0X is the image of π0pαq under the exact functor
L♥ : C♥ Ñ pC { C0q

♥, and is therefore an epimorphism the abelian category pC { C0q
♥.

Proposition C.5.3.4. Let A be an essentially small additive 8-category. Suppose that,
for every pair of objects X,Y P A, the mapping space MapApX,Y q is n-truncated. Then
PΣpAq “ FunπpAop,Sq is an n-complicial Grothendieck prestable 8-category.

Proof. It follows from Remark C.1.5.10 that FunπpAop,Sq is Grothendieck prestable 8-
category. Let j : A Ñ FunπpAop,Sq be the Yoneda embedding. Since FunπpAop,Sq is
generated under small colimits by the essential image of j, for every object X P FunπpAop,Sq
we can choose a map X Ñ X which is an epimorphism on π0, where X is a small coproduct
of objects belonging to the essential image of j. Our assumption that the mapping spaces
in A are n-truncated guarantees that j takes values in τďn FunπpAop,Sq, so that X is
n-truncated.

Example C.5.3.5. Let A be an E1-ring which is connective and n-truncated. Then the
Grothendieck prestable 8-category LModcn

A is n-complicial.

Any Grothendieck prestable 8-category C which both separated and n-complicial can
be obtained by combining Propositions C.5.3.4 and C.5.3.3:

Proposition C.5.3.6. Let C be a Grothendieck prestable 8-category and let n ě 0. The
following conditions are equivalent:

paq The Grothendieck prestable 8-category C is separated and n-complicial.

pbq There exists an essentially small additive pn` 1q-category A, a separating localizing
subcategory E Ď PΣpAq, and an equivalence C » PΣpAq{ E.

Proof. The implication pbq ñ paq follows immediately from Propositions C.5.3.3 and C.5.3.4.
For the converse, we note that if C is n-complicial then we can choose an an essentially
small generating subcategory A Ď C (in the sense of Definition C.2.1.1) which consists of
n-truncated objects. Enlarging A if necessary, we may assume that A is closed under finite
direct sums. If C is separated, then Theorem C.2.1.6 implies that the inclusion A ãÑ C
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extends to a left exact localization functor PΣpAq Ñ C, so that C can be identified with
PΣpAq{ E for some localizing subcategory E Ď PΣpAq (Proposition C.2.3.8); since C is
separated, the localizing subcategory E is separating.

Notation C.5.3.7. For Grothendieck prestable 8-categories C and D, we let LFunlexpC,Dq
denote the full subcategory of FunpC,Dq spanned by those functors which are left exact
and preserve small colimits. Note that if F P LFunlexpC,Dq, then F induces a functor
Fďn : τďn C Ñ τďnD, for each n ě 0. We will say that F is an n-equivalence if the functor
Fďn is an equivalence of 8-categories.

Proposition C.5.3.8. Let C be a separated Grothendieck prestable 8-category and let n ě 0.
Then there exists a separated, n-complicial Grothendieck prestable 8-category C1 and an
n-equivalence λ P LFunlexpC1, Cq.

Proof. Choose an essentially small full subcategory A Ď τďn C with the property that, for
every object C P τďn C, there exists a map

À

iPI Ai Ñ C which induces an epimorphism
À

iPI π0Ai Ñ π0C in C♥, where each Ai belongs to A (for example, we choose a regular
cardinal κ such that τďn C is κ-accessible, and take A to be the full subcategory of τďn C
spanned by the κ-compact objects). Enlarging A if necessary, we may assume that A is
closed under finite direct sums. Set C “ PΣpAq “ FunπpAop,Sq. Using Proposition C.2.5.2,
we see that the inclusion functor A ãÑ τďn C ãÑ C extends to a left exact functor F : C Ñ C
(Proposition C.2.5.2). Let C0 be the full subcategory of C spanned by those objects which
are annihilated by F . Then C0 is a localizing subcategory of C (see Example C.2.3.7). Set
C1 “ C{C0, so that the functor F factors (up to homotopy) as a composition

C Ñ C{C0 “ C1 λÝÑ C,

where λ is a functor preserving small colimits and finite limits (Remark C.2.3.11). We
claim that λ has the desired properties. To see this, we first note that C is n-complicial
(Proposition C.5.3.4), so the quotient C1 » C{C0 is also n-complicial (Proposition C.5.3.3).
The functor λ is conservative by construction. Since λ is left exact, the separatedness of C
implies the separatedness of C1.

We now complete the proof by showing that λ restricts to an equivalence of 8-categories
λn : τďn C1 Ñ τďn C. Let G : C Ñ C be a right adjoint to F . By construction, the functor
G factors through the full subcategory C{C0; moreover, when regarded as a functor from
C to C{C0 “ C1, the functor G is right adjoint to λ. It follows that λ and G determine

adjoint functors τďn C1
λn //τďn C
Gn
oo . Proposition C.2.5.3 implies that the functor Gn is fully

faithful. Since the functor λ is conservative, it follows that λn and Gn are mutually inverse
equivalences of 8-categories.
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Our next goal is to show that for any separated Grothendieck prestable 8-category C,
the functor λ : C1 Ñ C of Proposition C.5.3.8 is unique (up to canonical equivalence). We
will deduce this from the following universal property of n-complicial Grothendieck prestable
8-categories:

Proposition C.5.3.9. Let C and D be Grothendieck prestable 8-categories and let n ě 0
be an integer. Suppose that C is n-complicial and that D is separated. Then the restriction
functor φ : LFunlexpC,Dq Ñ Funpτďn C, τďnDq is a fully faithful embedding, whose essential
image is spanned by those functors f : τďn C Ñ τďnD which are left exact and commute with
small colimits.

Proof. Consider first the special case where C “ PΣpAq, where A is an essentially small
additive pn` 1q-category. Using Proposition HTT.5.5.8.15 , we see that composition with
the Yoneda embedding j : AÑ C induces equivalences of 8-categories

LFunpC,Dq µ
ÝÑ FunπpA,Dq LFunpτďn C, τďnDq » LFunpC, τďnDq Ñ FunπpA, τďnDq.

Note that the functor j takes values in the full subcategory τďn C. Consequently, the
functor µ carries LFunlexpC,Dq Ď LFunpC,Dq to the full subcategory FunπpA, τďnDq. These
identifications fit into a commutative diagram

LFunlexpC,Dq φ //

µ

��

LFunpτďn C, τďnDq

„

��
FunπpA, τďnDq id // FunπpA, τďnDq

To complete the proof, it will suffice to show that if F : C Ñ D is a colimit-preserving functor
such that F pAq Ď τďnD and the composite functor

τďn C ãÑ C F
ÝÑ D τďn

ÝÝÑ τďnD

is left exact, then F is left exact. For this, it will suffice to show that for each discrete object
C P C♥, the image F pCq P D is also discrete (Proposition C.3.2.1). Since pτďnF q : τďn C Ñ
τďnD is left exact, it is automatic that τďnF pCq is a discrete object of D. We will complete
the proof by showing that F pCq is n-truncated. This is a special case of the following more
general assertion:

p˚q For each n-truncated object Z P C, the object F pZq P D is also n-truncated.

Since D is separated, p˚q is equivalent to the assertion that for each n-truncated object
C P C, the homotopy groups πmF pZq P D♥ vanish for m ą n. We prove this by induction on
m. Let Z be an n-truncated object of C, and choose a map Y Ñ Z, where Y is a coproduct
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of objects belonging to A and the induced map π0Y ÑÑ π0Z is an epimorphism in the
abelian category C♥. We then have a cofiber sequence X Ñ Y Ñ Z, where X and Y are
also n-truncated. The cofiber sequence FX Ñ FY Ñ FZ yields a long exact sequence of
homotopy groups

πmFY Ñ πmFZ Ñ πm´1FX
β
ÝÑ πm´1FY.

The functor F commutes with coproducts and carries A into τďnD, so that FY is n-
truncated. It follows that πmFY vanishes for m ą n. Consequently, to show that πmFZ
vanishes, it will suffice to show that the map β is a monomorphism in the abelian category
D♥. For m ą n` 1, our inductive hypothesis implies that πm´1FX vanishes, and there is
nothing to prove. When m “ n ` 1, we note that the n-truncatedness of Z implies that
the morphism X Ñ Y is pn´ 1q-truncated. Since the functor τďnF is left exact, the map
τďnFX Ñ τďnFY is also pn´ 1q-truncated, which guarantees that β is injective as desired.
This completes the proof of Proposition C.5.3.9 in the special case C “ PΣpCq.

We now treat the general case. Let C be any n-complicial Grothendieck prestable 8-
category, and let C0 Ď C be the full subcategory consisting of objects which are n-connective
for all n. Since D is separated, any colimit-preserving functor C Ñ D must annihilate C0. We
may therefore replace C by C { C0 and thereby reduce to the case where C is also separated.
Applying Proposition C.5.3.6, we obtain an equivalence C » PΣpAq{ E for some essentially
small additive pn` 1q-category A and some separating localizing subcategory E Ď PΣpAq.
This equivalence determines a commutative diagram

LFunlexpC,Dq φ //

��

LFunpτďn C, τďnDq

��
LFunlexpPΣpAq,Dq // LFunpτďn PΣpAq, τďnDq

where the vertical maps are fully faithful. It follows from the first part of the proof that
the functor φ must also be fully faithful. To complete the proof, it will suffice (by virtue of
Proposition C.2.3.10 and Remark C.2.3.11) to show that if F : PΣpAq Ñ D is functor which is
left exact and preserves small colimits for which the composite functor PΣpAq

F
ÝÑ D τďm

ÝÝÑ D
factors through C, then the functor F annihilates E . This is clear: since D is separated and
F is left exact, the functor F annihilates E if and only if it annihilates the abelian category
E♥.

C.5.4 Grothendieck Abelian n-Categories

Let A be a category. According to Remark C.1.4.6, A is a Grothendieck abelian category
if and only if there exists a Grothendieck prestable 8-category C and an equivalence A » C♥.
We now consider a mild generalization:
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Definition C.5.4.1. Let A be an 8-category and let n ě 0. We will say that A is a
Grothendieck abelian pn` 1q-category if there exists an equivalence A » τďn C, where C is a
Grothendieck prestable 8-category. We let Grothn denote the subcategory of yCat8 whose
objects are Grothendieck abelian pn` 1q-categories and whose morphisms are functors which
preserve small colimits. We let Grothlex

n denote the subcategory of yCat8 whose objects are
Grothendieck abelian pn` 1q-categories and whose morphisms are functors which preserve
small colimits and finite limits. In the special case n “ 0, we will denote Grothn and Grothlex

n

by Grothab and Grothlex
ab , respectively.

Remark C.5.4.2. Every Grothendieck abelian n-category is a presentable 8-category.
Consequently, for each n ě 0, we can regard Grothn as a full subcategory of the 8-category
PrL of presentable 8-categories.

Remark C.5.4.3. For each n ě 0, the 8-category Grothn is actually an pn` 2q-category:
that is, for every pair of objects A,B P Grothn, the mapping space MapGrothnpA,Bq is
pn ` 1q-truncated. (it is the underlying Kan complex of the 8-category LFunpA,Bq of
colimit-preserving functors from A to B).

Example C.5.4.4. Let F : C Ñ D be a colimit-preserving functor between Grothendieck
prestable 8-categories. Tensoring with τďn S, we obtain a colimit-preserving functor

Fďn : τďn C » Cbτďn S Fbid
ÝÝÝÑ Dbτďn S » τďnD,

given concretely by the formula FďnpCq “ τďnF pCq. This construction determines a functor
Groth8 Ñ Grothn, given on objects by C ÞÑ τďn C.

Note that if F is left exact, then we can identify the functor Fďn : τďn C Ñ τďnD
with the restriction F |τďn C . It follows that Fďn is also left exact, so that the construction
C ÞÑ τďn C determines a functor Grothlex

8 Ñ Grothlex
n .

Every Grothendieck abelian category A admits a canonical realization as the heart of
a Grothendieck prestable 8-category C: we can take C to be the 8-category DpAqě0 of
connective objects of the derived 8-category DpAq. Using the results of §C.5.3, we can
provide an analogous realization for Grothendieck abelian n-categories:

Proposition C.5.4.5. Let Grothlex,sep
8 denote the subcategory of Groth8 whose objects are

separated Grothendieck prestable 8-categories and whose morphisms are left exact functors
which preserve small colimits. Let n ě 0, and let L : Grothlex,sep

8 Ñ Grothlex
n be the functor

C ÞÑ τďn C of Example C.5.4.4 (restricted to separated prestable 8-categories). Then L

admits a fully faithful left adjoint Grothlex
n ãÑ Grothlex,sep

8 , whose essential image is spanned
by those Grothendieck prestable 8-categories C which are separated and n-complicial.
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Proof. Let E Ď Grothlex,sep
8 denote the full subcategory spanned by those separated Grothendieck

prestable 8-categories which are n-complicial. We first claim that E is a colocalization of
Grothlex,sep

8 . In other words, for every object C P Grothlex,sep
8 , we claim that there exists a

morphism λ : C1 Ñ C in Grothlex,sep
8 where C1 is n-complicial and, for every n-complicial

separated Grothendieck prestable 8-category C2, composition with λ induces a homotopy
equivalence

MapGrothlex,sep
8

pC2, C1q Ñ MapGrothlex,sep
8

pC2, Cq.

By virtue of Proposition C.5.3.9, to guarantee the latter property it suffices to arrange that
λ is an n-equivalence, which is always possible by virtue of Proposition C.5.3.8.

Note that the functor L carries n-equivalences in Grothlex,sep
8 to equivalences in Grothlex

n ,
and therefore factors as a composition

Grothlex,sep
8

L1
ÝÑ E L2

ÝÑ Grothlex
n

where L1 is right adjoint to the inclusion E ãÑ Grothlex,sep
8 , and L2 is the restriction L|E .

To complete the proof, it will suffice to show that the functor L2 is an equivalence of
8-categories. The assertion that L2 is fully faithful follows immediately from Proposition
C.5.3.9. We will complete the proof by showing that L2 is essentially surjective. Let A be a
Grothendieck abelian pn` 1q-category, so that A » τďn C for some Grothendieck prestable
8-category C. We wish to show that we can arrange that C is separated and n-complicial. To
prove this, we first replace C by its separated quotient (see Proposition C.3.6.1) to arrange
that C is separated, and then apply Proposition C.5.3.8.

Remark C.5.4.6. Let C be a separated Grothendieck prestable 8-category. The proof of
Proposition C.5.4.5 shows that the functor λ : C1 Ñ C appearing in Proposition C.5.3.8 is
determined uniquely (up to equivalence) by C.

Warning C.5.4.7. In the statement of Proposition C.5.4.5, the left exactness assumption is
essential. The construction C ÞÑ τďn C determines a functor Grothsep

8 Ñ Grothn (see Example
C.5.4.4) which does not have a fully faithful right adjoint: for example, if C is any separated
Grothendieck prestable 8-category, then the suspension functor Σn : C Ñ C is a morphism
in Grothsep

8 whose image in Grothn is nullhomotopic.

Arguing as in Example C.5.4.4, we see that the construction C ÞÑ τďm C determines a
forgetful functor Grothn Ñ Grothm for all m ď n. We therefore obtain a tower of8-categories

Groth8 Ñ ¨ ¨ ¨ Ñ Groth2 Ñ Groth1 Ñ Groth0 “ Grothab,

which determines a functor Groth8 Ñ lim
ÐÝ

Grothn.

Theorem C.5.4.8. The functor θ : Groth8 Ñ lim
ÐÝ

Grothn described above restricts to an
equivalence of 8-categories θcomp : Grothcomp

8 Ñ lim
ÐÝ

Grothn.
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Proof. We first show that θcomp is fully faithful. Let C and D be Grothendieck prestable
8-categories. Unwinding the definitions, we have canonical homotopy equivalences

Maplim
ÐÝ

GrothnpθpCq, θpDqq » lim
ÐÝ

MapGrothnpτďn C, τďnDq

» lim
ÐÝ

LFunpτďn C, τďnDq»

» lim
ÐÝ

LFunpC, τďnDq»

» LFunpC, pDq»

Using these equivalences, we can identify the natural map MapGroth8pC,Dq Ñ Maplim
ÐÝ

GrothnpθpCq, θpDqq
with the map LFunpC,Dq» Ñ LFunpD, pDq» given by composition with the functor D Ñ pD.
In particular, this map is an equivalence whenever D is complete.

We now prove essential surjectivity. Suppose we are given an object of the inverse
limit lim

ÐÝ
Grothn, which we will identify with a sequence of objects Cn P Grothn together

with equivalences αn : Cn » τďn Cn`1. For each n ě 0, Proposition C.5.4.5 guarantees
the existence of a separated n-complicial Grothendieck prestable 8-category Dn and an
equivalence Cn » τďnDn. Applying Proposition C.5.4.5, we see that each of the functors
αn admits an essentially unique extension to a functor βn : Dn Ñ Dn`1 which preserves
small colimits and finite limits. Let D denote the colimit lim

ÝÑ
Dn, formed in the 8-category

Groth8 (see Theorem C.3.3.1). The underlying 8-category of D can be described as the
inverse limit of the tower

¨ ¨ ¨ Ñ D3
γ2
ÝÑ D2

γ1
ÝÑ D1

γ0
ÝÑ D0,

where γn denotes a right adjoint to βn. In particular, for each m ě 0, we can identify τďmD
with the limit of the tower

¨ ¨ ¨ Ñ τďmD3
γ2
ÝÑ τďmD2

γ1
ÝÑ τďmD1

γ0
ÝÑ τďmD0 .

By construction, this tower is eventually equivalent to the constant tower with value Cn. We
therefore have canonical equivalences τďmD » Cm which are easily seen to be compatible
with the maps αn, so that D is a preimage of the object tCnu P lim

ÐÝ
Grothn under the functor

θ. It follows that the completion pD is a preimage of the object tCnu under the functor
θcomp.

It follows from Proposition C.5.3.2 that in the special case n “ 0, the fully faithful
embedding Grothlex

ab “ Grothlex
0 ãÑ Grothlex,sep

8 of Proposition C.5.4.5 carries a Grothendieck
abelian category A to the Grothendieck prestable 8-category DpAqě0. We therefore have
the following:
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Theorem C.5.4.9. Let A be a Grothendieck abelian category and let C be a separated
Grothendieck prestable 8-category. Then restriction to the heart induces a fully faithful
embedding

LFunlexpDpAqě0, Cq Ñ FunpA, C♥q,

whose essential image is spanned by those exact functors A Ñ C♥ which preserve small
colimits.

Remark C.5.4.10. It follows from Proposition C.5.4.5 that we can regard the construction
A ÞÑ DpAqě0 as a fully faithful embedding from the 8-category Grothlex

ab to the 8-category
Grothlex,sep

8 Ď Groth8: that is, the formation of derived 8-categories is functorial (at least
with respect to exact functors which preserve small colimits).

Remark C.5.4.11. Let A be a Grothendieck abelian category. Using Propositions C.5.3.2
and C.5.4.5, we see that the derived 8-category DpAq (together with its t-structure) is
determined uniquely up to equivalence by the following properties:

paq The 8-category DpAq is presentable and stable.

pbq The t-structure pDpAqě0,DpAqď0q is right complete, left separated, and compatible
with filtered colimits.

pcq The Grothendieck prestable 8-category DpAqě0 is 0-complicial.

pdq The heart DpAq♥ is equivalent to A.

In order to study Grothendieck abelian pn` 1q-categories, it will be convenient to work
with a larger class of objects (in which colimit and tensor product constructions will be a
priori well-defined).

Notation C.5.4.12. For each n ě 0, let PrAddn denote the full subcategory of PrL spanned
by those presentable 8-categories A which satisfy satisfy the following conditions:

paq The 8-category A is additive.

pbq The 8-category A is (equivalent to) an pn` 1q-category: that is, the mapping spaces
MapApX,Y q are n-truncated, for every pair of objects X,Y P A.

Note that we can regard Grothn as a full subcategory of PrAddn .

Proposition C.5.4.13. Let n ě 0 be an integer. Then:

paq The functor
S Ñ τďn Spcn X ÞÑ τďnΣ8`X

exhibits τďn Spcn as an idempotent object of the 8-category PrL of presentable 8-
categories (see Definition ??).
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pbq The forgetful functor π : Modτďn SppPrLq Ñ PrL is a fully faithful embedding, whose
essential image is the full subcategory PrAddn Ď PrL.

In particular, any Grothendieck abelian pn ` 1q-category A admits an essentially unique
action of the 8-category τďn Spcn.

Proof. It follows from Proposition HA.4.8.2.15 that the functor τďn : S Ñ τďn S exhibits
τďn S as an idempotent object of the symmetric monoidal 8-category PrL. In particular,
the forgetful functor Modτďn SpPrLq Ñ PrL is fully faithful, and Proposition HA.4.8.2.15
also implies that its essential image consists of those presentable 8-categories which are
equivalent to pn` 1q-categories. Consequently, for any presentable 8-category C, the tensor
product pτďn Sq b C is universal among presentable 8-categories E which are equivalent to
pn` 1q-categories and receive a functor C Ñ E . We can therefore identify pτďn Sq b C with
the 8-category τďn C of n-truncated objects of C. In particular, we can identify the tensor
product pτďn Sq b Spcn with the 8-category τďn Spcn of n-truncated connective spectra.
Since the suspension functor Σ8` : S Ñ Spcn and the truncation functor τďn : S Ñ τďn S Spcn

and τďn S as idempotent objects of PrL (Proposition HA.4.8.2.15 and Corollary C.4.1.2),
their tensor product

S » S bS
τďnbΣ8

`
ÝÝÝÝÝÑ pτďn Sq b Spcn » τďn Spcn

X ÞÑ τďnpΣ8`Xq

exhibits τďn Spcn as an idempotent object of PrL. This proves paq.
It follows from paq that there exists an essentially unique commutative algebra structure

on the object τďn Spcn P PrL for which the functor τďnΣ8` : S Ñ τďn Spcn is the unit map
(see Proposition HA.4.8.2.9 ). It follows from the uniqueness that the multiplication on
τďn Spcn corresponds to the symmetric monoidal structure given by pX,Y q ÞÑ τďnpX b Y q;
in particular, when n “ 0, it is given by the classical tensor product of abelian groups. Using
Proposition HA.4.8.2.10 , we see that the forgetful functor Modτďn SpcnpPrLq Ñ PrL is a
fully faithful embedding, whose essential image consists of those presentable 8-categories A
for which the canonical map

e : AÑ pτďn Spcnq bA » pτďn Sq b SpcnbA

is an equivalence. If A satisfies this condition, then it can be regarded as a module over
both Spcn and τďn S, and is therefore both additive and equivalent to an pn` 1q-category
(Corollary C.4.1.3 and Proposition HA.4.8.2.15 ). Conversely, if A is additive and equivalent
to an pn` 1q-category, then e factors as a composition of equivalences

A „
ÝÑ pτďn Sq bA „

ÝÑ pτďn Sq b pSpcnbAq

and is therefore an equivalence, which proves pbq.
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Remark C.5.4.14. It follows from Proposition C.5.4.13 that the PrAddn ãÑ PrL admits a
left adjoint L, given by the construction C ÞÑ pτďn Spcnq b C. Moreover, the localization
functor L is compatible with the symmetric monoidal structure on PrL (see Definition
HA.2.2.1.6 ). Consequently, there is an essentially unique symmetric monoidal structure
on the 8-category PrAddn with respect to which the localization functor L is symmetric
monoidal. The tensor product on PrAddn agrees with the tensor product on PrL, but the unit
object is different (the unit object of PrAdd0 is given τďn Spcn), rather than the 8-category
S of spaces).

Corollary C.5.4.15. Let n ě 0 be an integer. Then the inclusion functor ι : PrAddn Ď PrAdd

admits a left adjoint, which assigns to each presentable additive 8-category C the full
subcategory τďn C Ď C spanned by the n-truncated objects.

Proof. Using Proposition C.5.4.13 and Corollary C.4.1.3, we can identify ι with the forgetful
functor Modτďn SpcnpPrLq Ñ ModSpcnpPrLq. This functor has a left adjoint given by the
construction

C ÞÑ pτďn Spcnq bSpcn C » pτďn Sq b C » τďn C .

In §C.4, we showed that the collection of Grothendieck prestable 8-categories is closed
under tensor products (Theorem C.4.2.1). We now prove an analogue for Grothendieck
abelian categories:

Theorem C.5.4.16. Let A and B be Grothendieck abelian pn`1q-categories for some n ě 0.
Then the tensor product AbB (formed in the 8-category PrL) is also a Grothendieck abelian
pn` 1q-category.

Remark C.5.4.17. In the case where n “ 0 and the abelian categories A and B are
compactly generated, Theorem C.5.4.16 was proven by Schäppi in [179]; in this case, the
tensor product AbB is again compactly generated.

Proof of Theorem C.5.4.16. Let A and B be Grothendieck abelian pn ` 1q-categories; we
wish to show that the tensor product AbB is also a Grothendieck abelian pn` 1q-category.
Choose Grothendieck prestable 8-categories C and D satisfying A » τďn C and B » τďnD.
It follows from Theorem C.4.2.1 that the tensor product CbD is again a Grothendieck
prestable 8-category. In the 8-category PrL, we have equivalences

AbB » pτďn S b Cq b pτďn S bDq
» pτďn S bτďn Sq b pCbDq
» τďn S bpCbDq
» τďnpCbDq,

so that AbB is also a Grothendieck abelian pn` 1q-category.
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Remark C.5.4.18. Theorem C.4.2.1 can be regarded as an 8-categorical analogue of
Theorem C.5.4.16, and the preceding argument shows that it immediately implies Theorem
C.5.4.16. When n “ 0, one can also prove Theorem C.5.4.16 directly (without appeal to
higher category theory) by mimicking our earlier proof of Theorem C.4.2.1, using the classical
Gabriel-Popescu theorem in place of its 8-categorical analogue.

Since the8-category Grothn contains the unit object τďn Spcn of PrAddn , Theorem C.5.4.16
implies the following:

Corollary C.5.4.19. For each n ě 0, the symmetric monoidal structure on the 8-category
PrAddn » Modτďn SpcnpPrLq restricts to a symmetric monoidal structure on the full subcategory
Grothn Ď PrAddn . In other words, there is an essentially unique symmetric monoidal structure
on the 8-category Grothn for which the inclusion functor Grothn ãÑ PrAddn is symmetric
monoidal.

Remark C.5.4.20. Since the localization functor

PrAdd » ModSpcnpPrLq
τď SpcnbSpcn
ÝÝÝÝÝÝÝÝÝÑ Modτďn SpcnpPrLq » PrAddn

of Remark C.5.4.14 is symmetric monoidal, it follows that the functor

Groth8 Ñ Grothn C ÞÑ τďn C

of Warning C.5.4.7 is also symmetric monoidal.

We next prove an analogue of Proposition C.3.2.4:

Proposition C.5.4.21. Let n ě 0 be an integer. Then the 8-category Grothlex
n admits

small limits, which are preserved by the inclusion functors

Grothlex
n ãÑ Grothn ãÑ PrL ãÑyCat8.

Proof. Let tCαu be a small diagram in Grothlex
n . Using Proposition C.5.4.5, we can lift tCαu

to a diagram tCαu in Grothlex
8 , where each Cα is separated and n-complicial. Set C “ lim

ÐÝ
tCαu

(formed in the8-category yCat8). It follows from Proposition C.3.2.4 that C is a Grothendieck
prestable 8-category, which is also a limit for the diagram tCuα in the 8-categories Groth8
and Grothlex

8 . It follows that C “ τďnC is a Grothendieck abelian pn` 1q-category. Moreover,
since the transition functors Cα Ñ Cβ are left exact, an object of C is n-truncated if and
only if its image in each Cα is n-truncated. We can therefore identify C with a limit of the
diagram tCαu in yCat8. For any presentable 8-category D, a functor D Ñ C preserves small
colimits and finite limits if and only if each of the composite maps D Ñ C Ñ Cα preserves
small colimits and finite limits (this is a formal consequence of our assumption that the
transition maps Cα Ñ Cβ preserve small colimits and finite limits). It follows that C is also
a limit of the diagram tCαu in the 8-categories Grothlex

n and PrL (hence also in the full
subcategory Grothn Ď PrL).
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C.5.5 Anticomplete Prestable 8-Categories

Recall that a Grothendieck prestable 8-category C is said to be complete if it is Postnikov-
complete: that is, if it is equivalent to the limit of the tower of 8-categories

¨ ¨ ¨ Ñ τď3 C
τď2
ÝÝÑ τď2 C

τď1
ÝÝÑ τď1 C

τď0
ÝÝÑ τď0 C “ C♥ .

We now study Grothendieck prestable 8-categories C which are, in some sense, as far as
possible from being complete. First, we need to introduce some terminology.

Proposition C.5.5.1. Let C and D be Grothendieck prestable 8-categories, let f : C Ñ D
be a colimit-preserving functor, and let n ě 0 be an integer. The following conditions are
equivalent:

paq For every discrete object C P C, the object fpCq P D is n-truncated.

pbq For every k-truncated object C P C, the object fpCq P D is pn` kq-truncated.

Proof. The implication pbq ñ paq is obvious. To prove the converse, we note that a k-
truncated object C P C can be written as a successive extension of the objects ΣipπiCq for
0 ď i ď k. If paq is satisfied, then fpCq can be written as a successive extension of the
objects ΣifpπiCq P τďn`iD Ď τďn`k D, so that fpCq belongs to τďn`k D.

Definition C.5.5.2. Let C and D be Grothendieck prestable 8-categories and let f : C Ñ D
be a colimit-preserving functor. We will say that f has amplitude ď n if the equivalent
conditions of Proposition C.5.5.1 are satisfied. We will say that f has bounded amplitude
if f has amplitude ď n for some n ě 0. We let LFunbpC,Dq denote the full subcategory of
LFunpC,Dq spanned by those functors which are of bounded amplitude.

Example C.5.5.3. Let f : C Ñ D be a colimit-preserving functor between Grothendieck
prestable 8-categories. Then f has amplitude ď 0 if and only if f is left exact (Proposition
C.3.2.1).

Definition C.5.5.4. Let C be a Grothendieck prestable 8-category. We will say that C is
anticomplete if it satisfies the following condition:

p˚q Let D be a Grothendieck prestable 8-category and let pD be its completion. Then the
canonical map

LFunbpC,Dq Ñ LFunbpC, pDq

is an equivalence of 8-categories.

We now consider some examples of anticomplete Grothendieck prestable 8-categories.

Proposition C.5.5.5. Let C be an 8-category. The following conditions are equivalent:
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paq The 8-category C is a compactly generated prestable 8-category, the functor Ω : C Ñ C
preserves compact objects, and every compact object of C is n-truncated for n " 0.

pbq There exist an essentially small stable 8-category E equipped with a bounded t-structure
pEě0, Eď0q and an equivalence C » IndpEě0q.

Moreover, if C satisfies these conditions, then C is anticomplete.

Remark C.5.5.6. For a refinement of Proposition C.5.5.5, we refer the reader to Theorem
C.6.7.1.

Proof of Proposition C.5.5.5. We first show that pbq implies paq. Let E be an essentially small
stable 8-category equipped with a bounded t-structure pEě0, Eď0q. Then C “ IndpEě0q is a
prestable8-category (see the proof of Proposition C.2.4.2) which is compactly generated, and
therefore a Grothendieck prestable 8-category. Let j : Eě0 Ñ C be the Yoneda embedding,
so that an object C P C is compact if and only if C is a direct summand of jpEq for some
E P Eě0. Since the t-structure on E is bounded, the object E P Eě0 is n-truncated for n " 0,
so that jpEq P C is also n-truncated and therefore C is n-truncated. Finally, we note that
ΩC is a direct summand of jpτě0ΩEq and is therefore also a compact object of C.

We now prove the converse. Suppose that C is a compactly generated prestable 8-
category and let C0 Ď C be the full subcategory spanned by the compact objects. Then C0
is an essentially small prestable 8-category (Proposition C.6.1.1). Let E “ SWpC0q denote
the Spanier-Whitehead 8-category of C0 (Construction C.1.1.1). If Ω : C Ñ C preserves
compact objects, then C0 is closed under finite limits in C. Applying Proposition C.1.2.9, we
deduce that E admits a t-structure pEě0, Eď0q, where Eě0 » C0. This t-structure is always
right-bounded, and is left-bounded if and only if every compact object C P C is n-truncated
for some n " 0. In this case, we have C » IndpC0q » IndpEě0q, so that C satisfies condition
pbq.

We now complete the proof by showing that if C “ IndpEě0q as above, then C is
anticomplete. Let D be a Grothendieck prestable8-category and let pD denote its completion;
we wish to show that the canonical map

ρ : LFunbpIndpEě0q,Dq Ñ LFunbpIndpEě0q, pDq

is an equivalence of 8-categories. The proof of Proposition C.2.4.2 supplies a t-exact
equivalence SppIndpEě0qq » IndpEq. Using Proposition C.3.1.1, we can identify ρ with the
canonical map

ρ1 : Fun1pIndpEq, SppDqq Ñ Fun1pIndpEq, SpppDqq.

Here Fun1pIndpEq,SppDqq denotes the full subcategory of FunpIndpEq,SppDqq spanned by
those functors which preserve small colimits, are right t-exact, and carry IndpEqď0 into
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SppDqďn for some n " 0, and the 8-category Fun1pIndpEq,SpppDqq is defined similarly. The
map ρ1 fits into a commutative diagram

Fun1pIndpEq,SppDqq ρ1 //

��

Fun1pIndpCq,SpppDqq

��

Fun2pE ,SppDqq ρ2 // Fun2pE , SpppDqq

where Fun2pE ,SppDqq denote the full subcategory of FunpE , SppDqq spanned by those functors
which are exact, right t-exact, and carries Eď0 into SppDqďn for some n " 0, the 8-category
Fun2pE ,SpppDqq is defined similarly, and the vertical maps are equivalences of 8-categories.
We now observe that ρ2 is an equivalence of 8-categories, since the t-structure on E is left
bounded and the map SppDq Ñ SpppDq induces an equivalence SppDqďn Ñ SpppDqďn for
every integer n.

Proposition C.5.5.7. Let C be a Grothendieck prestable 8-category with heart A “ C♥, let
A0 Ď A be a localizing subcategory of A, and let C0 Ď C be the smallest localizing subcategory
of C which contains A0 (see Proposition C.5.2.8). If C is anticomplete, then C { C0 is also
anticomplete.

Proof. Let D be a Grothendieck prestable 8-category with completion pD. We wish to
show that the canonical map ρ : LFunbpC { C0,Dq Ñ LFunbpC { C0, pDq is an equivalence of
8-categories. Note that the functor ρ fits into a commutative diagram of 8-categories σ :

LFunbpC { C0,Dq
ρ //

��

LFunbpC { C0, pDq

��

LFunbpC,Dq ρ // LFunbpC, pDq,

where the map ρ is an equivalence of 8-categories (by virtue of our assumption that C is
anticomplete) and the vertical maps are fully faithful embeddings. It will therefore suffice
to show that the diagram σ is a pullback square. Using Proposition C.2.3.10 and Remark
C.2.3.11, we are reduced to proving the following:

p˚q Let F : C Ñ D be a functor which preserves small colimits and has bounded amplitude.
If the composite functor C F

ÝÑ D Ñ pD annihilates C0, then F annihilates C0.

To prove this, let C1 denote the full subcategory of C spanned by those objects C P C
satisfying F pCq » 0. Note that if X P A0 and F has amplitude ď n, then F pXq P τďnD
is annihilated by the completion functor D Ñ pD, so that F pXq » 0 (since the completion
functor D Ñ pD is an equivalence on discrete objects). It follows that A0 Ď C1. Since C1 is a
localizing subcategory of C (Example C.2.3.7), we have C0 Ď C1, so that F annihilates C0 as
desired.
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Lemma C.5.5.8. Let C, D, and E be Grothendieck prestable 8-categories, and suppose
we are given functors f P LFunbpC,Dq and g P LFunlexpD, Eq. If g induces a conservative
functor D♥ Ñ E♥ and pg ˝ fq has amplitude ď n, then f has amplitude ď n.

Proof. Note that our assumption that f has bounded amplitude guarantees that the con-
clusion of Lemma C.5.5.8 is satisfied for n " 0. We now proceed by descending induction
on n. To carry out the inductive step, let us suppose that f has amplitude ď n ` 1 and
that g ˝ f has amplitude ď n; we wish to show that f has amplitude ď n. Let C P C
be a discrete object; then fpCq P D is pn ` 1q-truncated and we wish to show that it is
n-truncated. Because g is left exact, we have gpπn`1fpCqq » πn`1pg ˝fqpCq » 0. Since g|D♥

is conservative, it follows that πn`1fpCq » 0, so that fpCq is n-truncated as desired.

Proposition C.5.5.9. Let C be a Grothendieck prestable 8-category. Then there exists an
anticomplete Grothendieck prestable 8-category qC and a functor λ P LFunlexpqC, Cq which
induces an equivalence of completions.

Proof. Let pC be the completion of C. For each n ě 0, the 8-category τďnpC is presentable.
We can therefore choose an essentially small dense subcategory Kn Ď τďnpC (see Definition
20.4.1.1). Let us abuse notation by identifying pC with its essential image in SpppCq. Let E
be the smallest stable subcategory of SpppCq which contains each Kn and is closed under
truncation (so that the t-structure on SpppCq induces a t-structure pEě0, Eď0q on E). Note
that the t-structure on E is bounded. The inclusion E ãÑ SpppCq extends to a t-exact
functor IndpEq Ñ SpppCq which preserves small colimits, and therefore determines a functor
of Grothendieck prestable 8-categories F : IndpEě0q Ñ pC which preserves small colimits and
finite limits. Note that the heart of IndpEě0q can be identified with IndpE♥q, so that F induces
an exact functor of abelian categories F♥ : IndpE♥q Ñ pC

♥. Let A0 Ď IndpE♥q be the full
subcategory spanned by those objects which are annihilated by F♥, and let A`0 Ď IndpEě0q

be the smallest localizing subcategory of IndpEě0q which contains A0 (Proposition C.5.2.8).
We define qC to be the quotient IndpEě0q{A`0 . It follows from Propositions C.5.5.5 and
C.5.5.7 that the qC is an anticomplete Grothendieck prestable 8-category. The functor
F annihilates A0 and therefore also annihilates A`0 (Example C.2.3.7). It follows from
Proposition C.2.3.10 and Remark C.2.3.11 that F factors as a composition

IndpEě0q Ñ qC F
ÝÑ pC,

where F preserves small colimits and finite limits. Since qC is anticomplete, the functor F
factors as a composition C1 λ

ÝÑ C Ñ pC where λ preserves small colimits and has bounded
amplitude. Applying Lemma C.5.5.8, we see that λ is left exact.. We will complete the
proof by showing that λ induces an equivalence of completions. To prove this, it will suffice
to show that the functor F induces an equivalence τďnqC Ñ τďnpC, for each n ě 0.
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Let G : pC Ñ IndpEě0q be a right adjoint to F . By construction, G factors through
C1 “ IndpEě0q{A`0 (which we regard as a full subcategory of IndpEě0q. Moreover, when
regarded as a functor from pC to qC, the functor G is right adjoint to F . By construction,
the intersection Eě0XτďnpC contains Kn, and is therefore dense in τďnpC (Remark 20.4.1.10).
It follows that the functor G is fully faithful when restricted to τďnpC. To complete the
proof, it will suffice to show that F |

τďnqC is conservative. Let α : X Ñ Y be a morphism
of n-truncated objects of qC such that F pαq is an equivalence. Let Z denote the cofiber of
α, formed in the 8-category IndpEě0q. Since F pαq is an equivalence, we have F pZq » 0.
The functor F is left exact, so we have F pπiZq » πiF pZq » 0 for all i ě 0. In other words,
the homotopy groups πiZ belong to A0. Since X and Y are n-truncated, the object Z is
pn` 1q-truncated, and can therefore be written as a finite extension of objects of the form
ΣipπiZq. It follows that Z P A`0 , so that α is an equivalence as desired.

Corollary C.5.5.10. Let C be a Grothendieck prestable 8-category. The following conditions
are equivalent:

paq The Grothendieck prestable 8-category C is anticomplete.

pbq For every Grothendieck prestable 8-category D, the canonical map LFunlexpC,Dq Ñ
LFunlexpC, pDq is an equivalence of 8-categories.

Proof. The implication paq ñ pbq follows from Lemma C.5.5.8. Conversely, suppose that pbq
is satisfied. Choose a map λ : qC Ñ C satisfying the hypotheses of Proposition C.5.5.9. We
then have a commutative diagram of 8-categories

LFunlexpC, qCq //

��

LFunlexpC, Cq

��

LFunlexpqC, qCq // LFunlexpqC, Cq,

where the horizontal maps are given by postcomposition with λ and the vertical maps
are given by precomposition with λ. Since C satisfies pbq, the upper horizontal map is an
equivalence of 8-categories. We can therefore choose a functor µ P LFunlexpC, qCq for which
λ ˝ µ is homotopic to the identity idC . It follows that λ ˝ µ ˝ λ is homotopic to λ. Since qC
is anticomplete, the implication paq ñ pbq shows that the lower horizontal map is also an
equivalence of 8-categories, so that µ ˝ λ is also homotopic to the identity idC. It follows
that λ is an equivalence of 8-categories, so that C » qC is anticomplete.

In the situation of Proposition C.5.5.9, the map λ : qC Ñ C depends functorially on C.
More precisely, we have the following:
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Corollary C.5.5.11. Let Grothch,lex
8 denote the full subcategory of Grothlex

8 spanned by the
anticomplete Grothendieck prestable 8-categories. Then Grothch,lex

8 is a colocalization of
Grothlex

8 : that is, the inclusion functor Grothch,lex
8 ãÑ Grothlex

8 admits a right adjoint.

Proof. Let C be a Grothendieck prestable 8-category and let λ : qC Ñ C be as in the
statement of Proposition C.5.5.9. We claim that λ exhibits qC as a Grothch,lex

8 -colocalization
of C. To prove this, it will suffice to show that for any anticomplete Grothendieck prestable
8-category D, the upper horizontal map in the diagram

LFunlexpD, qCq //

��

LFunlexpD, Cq

��

LFunlexpD, pCq // LFunlexpD, pCq

is an equivalence of 8-categories. This is clear: the vertical maps are equivalences because
D is anticomplete, and the lower horizontal map is an equivalence because the functor
pλ : pC1 Ñ pC is an equivalence.

We close by noting the following consequence of the proof of Proposition C.5.5.9:

Proposition C.5.5.12. Let C be an anticomplete Grothendieck prestable 8-category. Then:

paq There is an equivalence C » D {D0, where D is an anticomplete Grothendieck prestable
8-category satisfying the hypotheses of Proposition C.5.5.5 and D0 is the smallest
localizing subcategory of D which contains some localizing subcategory of D♥.

pbq There exists an essentially small generating subcategory C0 Ď C having that every
object C P C0 is n-truncated for some n " 0 (where n might depend on C).

Proof. The proof of Proposition C.5.5.9 shows that there exists a left exact, colimit-preserving
functor λ : C1 Ñ C, where C1 has the form described in paq and λ induces an equivalence
after passing to completions. Since C and C1 are both anticomplete, it follows that λ is
an equivalence (see Proposition C.5.9.2), which proves paq. To prove pbq, we note that the
essential image of the composite functor

Dc ãÑ D Ñ D {D0 » C

is a generating subcategory of C, where Dc denotes the full subcategory of D spanned by
the compact objects.

Using the theory of anticomplete Grothendieck prestable 8-categories, we can eliminate
the separatedness restrictions from several of the results of §C.5.3.
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Definition C.5.5.13. Let C be a Grothendieck prestable 8-category and let n ě 0 be an
integer. We will say that C is weakly n-complicial if, for every truncated object X P C, there
exists a morphism f : X Ñ X where X is n-truncated and the induced map π0X Ñ π0X is
an epimorphism in the abelian category C♥.

Remark C.5.5.14. Let C be a Grothendieck prestable 8-category. The hypothesis that C is
weakly n-complicial depends only the full subcategory

Ť

ně0 τďn C of truncated objects of C.
Consequently, C is weakly n-complicial if and only if the completion pC is weakly n-complicial.
Note that if we were to replace “weakly n-complicial” by “n-complicial”, then the analogous
statement would be false: if C is a Grothendieck prestable 8-category which is n-complicial
and separated but not complete, then pC cannot be n-complicial (see Proposition C.5.4.5).

Proposition C.5.5.15. Let R be a connective E1-ring. The following conditions are
equivalent:

p1q The E1-ring R is n-truncated.

p2q The Grothendieck prestable 8-category LModcn
R is n-complicial.

p3q The Grothendieck prestable 8-category LModcn
R is weakly n-complicial.

Proof. For any R-module M , we can choose a free R-module P and a morphism f : P ÑM

which induces a surjection π0P Ñ π0M . If R is n-truncated, then P is also n-truncated.
This proves that p1q ñ p2q. The implication p2q ñ p3q is obvious. We will complete the
proof by showing that p3q ñ p1q. Assume that LModcn

R is weakly n-complicial. Then, for
every integer m ě 0, we can choose a map of connective R-modules f : N Ñ τďmR which is
surjective on π0, where N is n-truncated. Then the tautological map R Ñ τďmR factors
through f , and therefore factors as a composition RÑ τďnRÑ τďmR. It follows that the
homotopy groups πiR must vanish for n ă i ď m. Since m is arbitrary, we conclude that R
is n-truncated.

Proposition C.5.5.16. Let C be a Grothendieck prestable 8-category. Then:

piq If C is n-complicial, then it is weakly n-complicial.

piiq If C is anticomplete and weakly n-complicial, then C is n-complicial.

Proof. Assertion piq follows immediately from the definitions. Let us prove piiq. Assume
that C is anticomplete and weakly n-complicial, and let X be an object of C. Since C is
anticomplete, Proposition C.5.5.12 implies that there exists a map

À

iPI Xi Ñ X which
induces an epimorphism

À

iPI π0Xi Ñ π0X in the abelian category C♥, where each Xi is a
truncated object of C. Since C is weakly n-complicial, we can choose maps Xi Ñ Xi which
induce epimorphisms π0Xi Ñ π0Xi, where each Xi is n-truncated. Then X “

À

iPI Xi is an
n-truncated object of C equipped with a map X Ñ X which is an epimorphism on π0.



C.5. GROTHENDIECK ABELIAN CATEGORIES 2035

Corollary C.5.5.17. Let C be a Grothendieck prestable 8-category and let n ě 0. The
following conditions are equivalent:

piq The Grothendieck prestable 8-category C is weakly n-complicial.

piiq There exists an n-complicial Grothendieck prestable 8-category C1 and a functor
λ P LFunlexpC1, Cq which induces an equivalence of completions pλ : pC1 „ÝÑ pC.

Proof. Let λ : C1 Ñ C be as in piiq. If C1 is n-complicial, then it is weakly n-complicial, so
that C is also weakly n-complicial (Remark C.5.5.14). Conversely, assume that C is weakly
n-complicial and let λ : C1 Ñ C be as in Proposition C.5.5.9. Then C1 is weakly n-complicial
(Remark C.5.5.14) and anticomplete, hence n-complicial (Proposition C.5.5.16).

Proposition C.5.5.18. Let C be a Grothendieck prestable 8-category and let n ě 0. Then
there exists an anticomplete, n-complicial Grothendieck prestable 8-category C1 and an
n-equivalence λ P LFunlexpC1, Cq.

Proof. Let pC be the completion of C. Then pC is separated. Applying Proposition C.5.3.8,
we can choose an n-complicial Grothendieck prestable 8-category C1 and an n-equivalence
µ P LFunlexpC1, Cq. Using Proposition C.5.5.9, we can choose an anticomplete Grothendieck
prestable 8-category C2 and a functor ν P LFunlexpC2, C1q which induces an equivalence
pC
2
Ñ pC

1. Since C1 is n-complicial, it is weakly n-complicial. Applying Remark C.5.5.14,
we see that C2 is also weakly n-complicial. Since C2 is anticomplete, it is n-complicial
(Proposition C.5.5.16). Replacing C1 by C2 (and µ by the composite functor µ ˝ ν), we may
reduce to the case where C1 is anticomplete. It follows that µ factors as a composition
C1 λÝÑ C Ñ pC. Since µ is an n-equivalence, the map λ is also an n-equivalence.

Proposition C.5.5.19. Let C and D be Grothendieck prestable 8-categories and let n ě 0
be an integer. Suppose that C is anticomplete and n-complicial. Then the restriction functor
φ : LFunlexpC,Dq Ñ Funpτďn C, τďnDq is a fully faithful embedding, whose essential image
is spanned by those functors f : τďn C Ñ τďnD which are left exact and commute with small
colimits.

Proof. Since C is anticomplete, we can replace D by its completion pD and thereby reduce
where D is complete. In particular, D is separated, so the desired result follows from
Proposition C.5.3.9.

Proposition C.5.5.20. Let n ě 0, let Grothlex
n be as in Definition C.5.4.1, and let L :

Grothlex
8 Ñ Grothlex

n be the functor given by LpCq “ τďn C. Then L admits a fully faithful
left adjoint Grothlex

n ãÑ Grothlex
8 , whose essential image is spanned by those Grothendieck

prestable 8-categories C which are anticomplete and n-complicial.



2036 APPENDIX C. PRESTABLE 8-CATEGORIES

Proof. Let E Ď Grothlex
8 denote the full subcategory spanned by those Grothendieck prestable

8-categories which are anticomplete and n-complicial. We first claim that E is a colocalization
of Grothlex

8 . In other words, for every object C P Grothlex
8 , we claim that there exists a

morphism λ : C1 Ñ C in Grothlex
8 where C1 is anticomplete and n-complicial and, for every

anticomplete n-complicial Grothendieck prestable 8-category D, composition with λ induces
a homotopy equivalence

MapGrothlex
8
pD, C1q Ñ MapGrothlex

8
pD, Cq.

By virtue of Proposition C.5.5.19, to guarantee the latter property it suffices to arrange that
λ is an n-equivalence, which is always possible by virtue of Proposition C.5.5.18.

Note that the functor L carries n-equivalences in Grothlex
8 to equivalences in Grothlex

n ,
and therefore factors as a composition

Grothlex
8

L1
ÝÑ E L2

ÝÑ Grothlex
n

where L1 is right adjoint to the inclusion E ãÑ Grothlex
8 , and L2 is the restriction L|E . To

complete the proof, it will suffice to show that the functor L2 is an equivalence of8-categories.
The assertion that L2 is fully faithful follows immediately from Proposition C.5.5.19, and
essential surjectivity follows from Proposition C.5.5.18.

Remark C.5.5.21. Let C be a Grothendieck prestable 8-category and let n ě 0. The
proof of Proposition C.5.5.20 shows that the functor λ : C1 Ñ C appearing in Proposition
C.5.5.18 is determined uniquely (up to equivalence) by C.

C.5.6 Digression: Injective Objects of Grothendieck Abelian Categories

Let A be an abelian category. Recall that an object Q P A is said to be injective if the
functor X ÞÑ HomApX,Qq is exact. In this section, we review some standard facts about
injective objects in Grothendieck abelian categories which will be needed elsewhere in this
book. For a more detailed exposition, we refer the reader to [74]. We begin by recalling a
theorem of Grothendieck (for a proof, see [87] or Corollary HA.1.3.5.7 ):

Proposition C.5.6.1 (Grothendieck). Let A be a Grothendieck abelian category. Then A
has enough injectives. In other words, for every object X P A, there exists a monomorphism
X ãÑ Q, where Q is injective.

In the situation of Proposition C.5.6.1, the injective object Q is not uniquely determined.
However, there is a choice of Q which is, in some sense, as small as possible: the injective
hull of M .
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Notation C.5.6.2. Let A be a Grothendieck abelian category containing an object X. We
let SubpXq denote the partially ordered set of isomorphism classes of subobjects of X. In
what follows, we will abuse notation by identifying elements of SubpXq with monomorphisms
i : Y ãÑ X in the category A (or simply with the domains of those elements). We will also
write Y Ď X to indicate that Y is an element of SubpXq (or that Y is the domain of a
monomorphism Y ãÑ X, which we will often not specify explicitly).

Definition C.5.6.3. Let A be a Grothendieck abelian category, let X be an object of A,
and let X0 Ď X be a subobject of X. We say that X is an essential extension of X0 if, for
every nonzero subobject X 1 Ď X, the intersection X 1 ˆX X0 P SubpX 1q is nonzero.

Lemma C.5.6.4. Let A be a Grothendieck abelian category, let Q be an object of A, and
let X Ď Q be a subobject of Q. Then:

paq Let S Ď SubpQq be the collection of subobjects of Q which contain X and are essential
extensions of X. Then there exists a maximal element E P S.

pbq If Q is injective, then E is also injective.

Proof. To prove paq, it will suffice to show that S satisfies the hypotheses of Zorn’s lemma. It
is clear that S is nonempty (since X P S). If tYαu is a filtered subset of S, then Y “ lim

ÝÑα
Yα

can be identified with a subobject of Q containing X. Any subobject Y 1 Ď Y can be identified
with the colimit lim

ÝÑα
pY 1 ˆY Yαq. If Y 1 is nonzero, then some intersection Y 1 ˆY Yα must

also be nonzero. The assumption Yα P S then implies that Y 1 ˆY X » pY 1 ˆY Yαq ˆYα X is
nonzero. It follows that Y is an essential extension of X and is therefore an upper bound
for tYαu in the partially ordered set S.

We now prove pbq. Assume that Q is injective; we wish to show that E is injective. Let
M be an object of A, let M0 be a subobject of M , and let f0 : M0 Ñ E be a morphism; we
wish to show that f0 can be extended to a morphism f : M Ñ E. To prove this, we let T
be the collection of all pairs pM1, f1q, where M1 is a subobject of M containing M0 and
f1 : M1 Ñ E is an extension of f0. The set T satisfies the hypotheses of Zorn’s Lemma, and
therefore contains a maximal element pM1, f1q. Using our assumption that Q is injective,
we can extend f1 to a map g : M Ñ Q. If g factors through E, then we can complete the
proof by setting f “ g. Otherwise, g induces a map g : E >M1 M Ñ Q whose image is
strictly larger than E. The maximality of E then implies that impgq cannot be an essential
extension of X: that is, there exists a subobject K Ď impgq such that K ˆQ X » 0. We
then must also have K ˆQ E » 0 (since E is an essential extension of X), so that we can
identify K ‘E with a subobject of impgq. It follows that M2 “M ˆimpgq pK ‘Eq is strictly
larger that M1. Let f2 : M2 Ñ E be the map given by composing the projections

M2 “M ˆimpgq pK ‘ Eq Ñ K ‘ E K ‘ E Ñ E.
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Then pM2, f2q P T is a proper extension of pM1, f1q, contrary to our maximality assumption.

Definition C.5.6.5. Let A be a Grothendieck abelian category and let f : X Ñ Q be a
morphism in A. We will say that f exhibits Q as an injective hull of X if Q is injective, f is
a monomorphism, and f exhibits Q as an essential extension of X.

In any Grothendieck abelian category, injective hulls exist and are well-defined up to
isomorphism:

Proposition C.5.6.6. Let A be a Grothendieck abelian category and let X be an object of
A. Then:

p1q There exists a morphism f : X ãÑ Q which exhibits Q as an injective hull of X.

p2q Let f : X ãÑ Q be a monomorphism, where Q is injective. Then, for every essential
extension g : X ãÑ Y , there exists a monomorphism h : Y ãÑ Q extending f . In other
words, Q contains every essential extension of X.

p3q Let f : X ãÑ Q be a monomorphism, where Q is injective. If g : X ãÑ Q1 exhibits Q1

as an injective hull of X, then f factors as a composition X
g
ÝÑ Q1 ãÑ Q1‘Q2 » Q for

some injective object Q2 P A. In other words, Q is isomorphic (in the category AX{)
to the direct sum of Q1 with an auxiliary (injective) object.

p4q Let f : X ãÑ Q and g : X ãÑ Q1 be morphisms which exhibit Q and Q1 as injective
hulls of X. Then there exists an isomorphism h : Q1 Ñ Q such that f “ h ˝ g.

Warning C.5.6.7. In part p4q of Proposition C.5.6.6, the isomorphism h : Q1 Ñ Q need
not be unique. In other words, injective hulls are unique up to isomorphism but not up to
unique (or canonical) isomorphism.

Proof of Proposition C.5.6.6. Assertion p1q follows from Lemma C.5.6.4. To prove p2q,
suppose we are given morphisms f : X Ñ Q and g : X Ñ Y . If Q is injective and g is
a monomorphism, then we can write f “ h ˝ g for some morphism h : Y Ñ Q. Then
X ˆY kerphq » kerpfq » 0. If Y is an essential extension of X, then it follows that h is a
monomorphism.

We now prove p3q. Suppose we are given a monomorphism f : X ãÑ Q and a morphism
g : X ãÑ Q1, where Q is injective and g exhibits Q1 as an injective hull of X. It follows from
p2q that there exists a monomorphism h : Q1 ãÑ Q such that f “ h ˝ g. Using the injectivity
of Q1, we see that the monomorphism h splits: that is, we can write Q as a direct sum
Q1 ‘Q2. Since Q2 is a retract of Q, it is also an injective object of C.

Assertion p4q is an immediate consequence of p3q.
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Proposition C.5.6.8 (Krause [124]). Let A be a Grothendieck abelian category and let Q˚
be a chain complex of injective objects of A. Then Q˚ splits as a direct sum Q1˚‘Q

2
˚, where:

paq The complex Q1˚ is homotopically minimal: that is, for every integer n, the object Q1n
is an injective hull of kerpd1n : Q1n Ñ Q1n´1q; here d1˚ denote the differential on the
chain complex Q1˚.

pbq The chain complex Q2˚ is contractible: that is, there is a chain homotopy h : Q2˚ Ñ Q2˚`1
from 0 to idQ2˚.

Proof. For each integer n, let dn : Qn Ñ Qn´1 denote the differential on Q˚. Choose a
subobject En Ď Qn which is maximal among essential extensions of kerpdnq. Since Qn
is injective, Lemma C.5.6.4 implies that En is also injective. Consequently, the inclusion
En ãÑ Qn is a split monomorphism; we can therefore choose another subobject An Ď Qn
such that Qn » An ‘ En.

The differential
dn`1 : Qn`1 Ñ kerpdnq Ď En Ď Qn

is injective when restricted to An`1, and therefore induces an isomorphism φn`1 : An`1 Ñ Bn
for some subobject Bn Ď En. Since An`1 is a direct summand of Qn`1, it is an injective
object of A. It follows that Bn is also injective, so the inclusion Bn ãÑ En splits. We can
therefore choose another subobject Q1n Ď En such that En » Q1n ‘ En.

Let us write the composition

Q1n ãÑ Qn
dn
ÝÑ kerpdn´1q Ď En´1 » Q1n´1 ‘Bn´1

as pd1n, ψnq for some pair of maps

d1n : Q1n Ñ Q1n´1 ψn : Q1n Ñ Bn´1.

Set Q2n “ An ‘Bn, and let d2n : Q2n Ñ Q2n´1 denote the map given by the composition

Q2n “ An ‘Bn Ñ An
φn
ÝÑ Bn´1 Ñ An´1 ‘Bn´1 “ Q2n´1.

Then pQ1˚, d1˚q and pQ2˚, d2˚q are chain complexes satisfying conditions paq and pbq, and the
maps

Q1n ‘Q
2
n » Q1n ‘An ‘Bn

id´ρn
ÝÝÝÝÑ Q1n ‘An ‘Bn » Qn

determine an isomorphism of chain complexes pQ˚, d˚q » pQ1˚, d1˚q ‘ pQ2˚, d2˚q, where ρn is
given by the composition

Q1n ‘An ‘Bn Ñ Q1n
ψn
ÝÝÑ Bn´1

φ´1
n
ÝÝÑ An Ñ Q1n ‘An ‘Bn.
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Definition C.5.6.9. Let A be a Grothendieck abelian category and let X be an object of
A.

paq We say that X is indecomposable if it is nonzero and cannot be written as a direct
sum X0 ‘X1, where X0 and X1 are nonzero subobjects of X.

pbq We say that X is coirreducible if it is nonzero and, for every pair of nonzero subobjects
X0, X1 Ď X, the intersection X0 ˆX X1 is also nonzero.

Proposition C.5.6.10. Let A be a Grothendieck abelian category. Then:

paq Every coirreducible object X P A is indecomposable.

pbq Let Q be an injective object of A. If Q is indecomposable, then Q is an injective hull
of each nonzero subobject X Ď Q.

pcq Every indecomposable injective object Q P A is coirreducible.

pdq Let f : X ãÑ Y be a monomorphism in A. If Y is coirreducible and X is nonzero,
then X is coirreducible.

peq Let f : X ãÑ Y be a monomorphism in A which exhibits Y as an essential extension
of X. If X is coirreducible, then Y is coirreducible.

pfq Let f : X ãÑ Q be a morphism in C which exhibits Q as an injective hull of X. Then
X is coirreducible if and only if Q is indecomposable.

Proof. Assertion paq follows immediately from the definitions. To prove pbq, suppose that Q
is an indecomposable injective object of A and let X Ď Q be a nonzero subobject. It follows
from Proposition C.5.6.6 that Q splits as a direct sum Q1 ‘Q2, where Q1 is an injective hull
of X. The indecomposability of Q implies that Q2 » 0, so that Q is an injective hull of X.

Assertion pcq is a reformulation of pbq. Assertion pdq follows immediately from the
definitions. To prove peq, suppose that Y is an essential extension of X and that we are given
nonzero subobjects Y0, Y1 Ď Y . Then the intersections X0 “ Y0 ˆY X and X1 “ Y1 ˆY X

are also nonzero. If X is coirreducible, then X0 ˆX X1 is nonzero, so that Y0 ˆY Y1 is also
nonzero.

We now prove pfq. Let f : X ãÑ Q exhibit Q as an injective hull of X. It follows from
pdq and peq that X is coirreducible if and only if Q is coirreducible. Since Q is injective, it
follows from paq and pcq that Q is coirreducible if and only if it is indecomposable.

Corollary C.5.6.11. Let R be a Noetherian commutative ring and let Q P Mod♥
R. The

following conditions are equivalent:

p1q The R-module Q is indecomposable and injective.
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p2q The R-module Q is an injective hull some residue field κ of R.

Proof. The implication p2q ñ p1q follows immediately from Proposition C.5.6.10, since every
residue field κ of R is coirreducible as an R-module. For the converse, suppose that p1q is
satisfied. Since Q is a nonzero module over a Noetherian ring R, it has an associated prime:
that is, there exists a monomorphism ι : R{p ãÑ Q for some prime ideal p of R. Let κ be
the fraction field of R{p. The injectivity of Q guarantees that ι extends to a map ι : κÑ Q.
Since kerpιq X pR{pq » 0, we have kerpιq » 0: that is, the map ι is injective. Assertion pbq of
Proposition C.5.6.10 guarantees that ι exhibits Q as an injective hull of κ.

Recall that an abelian category A is said to be locally Noetherian if it is a Grothendieck
abelian category and every object X P A can be written as a union of its Noetherian
subobjects (see Definition C.6.8.5).

Proposition C.5.6.12. Let A be a locally Noetherian abelian category and let Q be an
object of A. The following conditions are equivalent:

paq The object Q P A is injective.

pbq For every Noetherian object X P A and every subobject X 1 Ď X, the restriction map
HomApX,Qq Ñ HomApX

1, Qq is surjective.

Proof. The implication paq ñ pbq is immediate. Conversely, suppose that pbq is satisfied.
To show that Q is injective, it will suffice to show that for every object X P A and every
subobject X 1 Ď X, the restriction map HomApX,Qq Ñ HomApX

1, Qq is surjective. To prove
this, fix a map f 1 : X 1 Ñ Q, and let P be the partially ordered set of equivalence classes of
pairs pX0, f0q, where X0 is a subobject of X containing X 1 and f0 : X0 Ñ Q is a morphism
satisfying f0|X 1 “ f 1. It is easy to see that P satisfies the hypotheses of Zorn’s Lemma
and therefore admits a maximal element pX0, f0q. Replacing X 1 by X0 and f 1 by f0, we
may reduce to the case where the morphism f 1 cannot be extended to any subobject of X
properly containing X 1. If Y is a Noetherian subobject of X and we set Y 1 “ X 1 ˆX Y ,
then assumption pbq implies that f 1|Y 1 can be extended to a map Y Ñ Q, so that f 1 can
be extended to a map Y >Y 1 X

1 Ñ Q. The maximality of f 1 guarantees that Y 1 » Y : that
is, the Noetherian subobject Y is contained in X 1. Allowing Y to vary, we deduce that X 1

contains every Noetherian subobject Y Ď X, and therefore coincides with X by virtue of
our assumption that A is locally Noetherian.

Corollary C.5.6.13. Let A be a locally Noetherian abelian category. Then the collection
of injective objects of A is closed under filtered colimits.

Proof. Let tQαu be a filtered diagram of injective objects of A having colimit Q; we wish to
show that Q is injective. By virtue of Proposition C.5.6.12, it will suffice to show that for every
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monomorphism f : X 1 ãÑ X where X is Noetherian, the induced map ρ : HomApX,Qq Ñ

HomApX
1, Qq is surjective. Since X and X 1 are compact objects of A (see Proposition

C.6.8.7), we can write ρ as a filtered colimit of maps ρα : HomApX,Qαq Ñ HomApX
1, Qαq,

each of which is surjective by virtue of our assumption that Qα is injective.

Lemma C.5.6.14. Let A be a locally Noetherian abelian category and let Q be a nonzero
injective object of A. Then there exists subobject X Ď Q which is Noetherian and coirre-
ducible.

Proof. Since Q is nonzero and A is locally Noetherian, there exists a Noetherian object
Y P A and a nonzero map f : Y Ñ Q. Let S Ď SubpY q be the collection of all subobjects
Y 1 Ď Y for which there exists a nonzero map g : Y Ñ Q which annihilates Y 1. The existence
of f shows that S is nonempty. Since Y is Noetherian, we can choose a maximal element
Y 1 P S. Let g : Y Ñ Q be a nonzero map which annihilates Y 1, and set X “ impgq. Then
X is nonzero and Noetherian (Proposition C.6.8.2). We will complete the proof by showing
that X is coirreducible. Suppose otherwise: then there exist nonzero subobjects X0, X1 Ď X

such that X0 ˆX X1 is nonzero. It follows that we can identify X0 ‘X1 with a subobject
of Q. Let q : X0 ‘X1 Ñ X0 be the projection map onto the first factor. It follows from
the injectivity of Q that we can extend q to a map q : QÑ Q. The map pq ˝ gq : Y Ñ Q is
nonzero (since its image contains X0), and the kernel kerpq ˝ gq is strictly larger than Y 1

(since it contains the fiber product Y ˆX X1). This contradicts the maximality of Y 1.

Lemma C.5.6.15. Let A be a locally Noetherian abelian category and let Q be a nonzero
injective object of A. Then Q splits as a direct sum Q1 ‘Q2, where Q1 is indecomposable.

Proof. Applying Lemma C.5.6.14, we can choose a subobject X Ď Q which is coirreducible.
Using Proposition C.5.6.6, we can decompose Q as a direct sum Q1 ‘Q2, where Q1 is an
injective hull of X. It follows from Proposition C.5.6.10 that Q1 is indecomposable.

Proposition C.5.6.16. Let A be a locally Noetherian abelian category and let Q be an
object of A. The following conditions are equivalent:

p1q The object Q is injective.

p2q There exists an isomorphism Q »
À

αQα, where each Qα is an injective object of A.

p3q There exists an isomorphism Q »
À

αQα, where each Qα is an indecomposable
injective object of A.

Proof. The implication p3q ñ p2q is obvious and the implication p2q ñ p1q follows from
Corollary C.5.6.13. We will complete the proof by showing that p1q implies p3q. Suppose
that Q is injective. Let S denote the collection of all subsets J Ď SubpQq with the following
properties:
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piq Each element of J is an indecomposable injective object of A.

piiq The canonical map
À

Q0PJ Q0 Ñ Q is a monomorphism.

Note that S is nonempty (since it contains the empty set). Moreover, since the collection
of monomorphisms in A is closed under filtered colimits, the set S is closed under directed
unions. Applying Zorn’s Lemma, we deduce that S contains a maximal element J . Set
Q1 “

À

Q0PJ Q0, so that the canonical map Q1 Ñ Q is a monomorphism. Since Q is injective,
it follows that Q splits as a direct sum Q1 ‘ Q2 for some auxiliary subobject Q2 Ď Q. If
Q2 is nonzero, then Lemma C.5.6.15 implies that there exists an indecomposable direct
summand Q20 Ď Q2. In this case, we would have J YtQ20u P S, contradicting the maximality
of J . It follows that Q2 » 0, so that Q »

À

Q0PJ Q0 satisfies condition p3q.

C.5.7 Injective Objects of Stable 8-Categories

Let C be a Grothendieck prestable8-category and let SppCq denote the8-category of spec-
trum objects of C. We will regard SppCq as equipped with the t-structure pSppCqě0,SppCqď0q

of Remark C.1.2.10. In this section, we will introduce the notion of injective object of
the 8-category SppCq (Definition C.5.7.2) and describe its relationship with the theory of
injective objects of the abelian category C♥.

Proposition C.5.7.1. Let C be a Grothendieck prestable 8-category and let Q be an object
of SppCqď0. The following conditions are equivalent:

p1q The object Q is projective when viewed as an object of SppCqop
ď0: in other words, for

every cosimplicial object X‚ of SppCqď0, the map

|MapSppCqpX
‚, Qq| Ñ MapSppCqpTotX‚, Qq

is a homotopy equivalence.

p2q For every X P SppCqď0, the abelian group Ext1
CpX,Qq vanishes.

p3q For every object X P SppCqď0 and every integer n ą 0, the abelian group ExtnSppCqpX,Qq

vanishes.

p4q For every object X P C♥ and every integer i ą 0, the abelian group ExtiSppCqpX,Qq

vanishes.

p5q Given a fiber sequence
X 1 Ñ X Ñ X2,

where X 1, X,X2 P SppCqď0, the induced map Ext0
SppCqpX

1, Qq Ñ Ext0
SppCqpX,Qq is

surjective.
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Proof. Apply Proposition HA.?? to the 8-category SppCqop.

Definition C.5.7.2. Let C be a Grothendieck prestable 8-category and let Q P SppCq. We
will say that Q is injective if it belongs to SppCqď0 and satisfies the equivalent conditions of
Proposition C.5.7.1.

Proposition C.5.7.3. Let C be a Grothendieck prestable 8-category and let Q be an object
of SppCq. The following conditions are equivalent:

paq The object Q is injective.

pbq For every object X P SppCq, the canonical map Ext0
SppCqpX,Qq Ñ HomC♥pπ0X,π0Qq

is an isomorphism.

Moreover, if these conditions are satisfied, then π0Q is an injective object of the abelian
category C♥.

Proof. Suppose first that paq is satisfied, and let X be an object of SppCq; we wish to show that
the canonical map ρ : Ext0

SppCqpX,Qq Ñ HomC♥pπ0X,π0Qq is an isomorphism. Using the
fact that Q belongs to SppCqď0, we can identify HomC♥pπ0X,π0Qq with Ext0

SppCqpτě0X,Qq.
Using this identification, we can fit ρ into a short exact sequence of abelian groups

Ext0
SppCqpτď´1X,Qq Ñ Ext0

SppCqpX,Qq
ρ
ÝÑ Ext0

SppCqpτě0X,Qq Ñ Ext1
SppCqpτď´1X,Qq.

If Q is injective, then the first and last terms of this short exact sequence vanish (Proposition
C.5.7.1), so that ρ is an isomorphism.

Now suppose that pbq is satisfied. Applying pbq in the case X “ τě1Q, we deduce
that the group Ext0

SppCqpτě1Q,Qq vanishes. In particular, the canonical map τě1Q Ñ Q

is nullhomotopic, so that Q belongs to SppCqď0. Applying pbq in the case X “ Σ´nC for
C P C♥, we deduce that ExtnSppCqpC,Qq vanishes for n ‰ 0. Using criterion p3q of Proposition
C.5.7.1, we deduce that Q is injective.

Now suppose that Q satisfies paq and pbq. For any short exact sequence 0 Ñ X 1 Ñ X Ñ

X2 Ñ 0 in the abelian category C♥, we have a short exact sequence of abelian groups

Ext0
SppCqpX,Qq

θ
ÝÑ Ext0

SppCqpX
1, π0Qq Ñ Ext1

SppCqpX
2, Qq

where the third term vanishes by virtue of the injectivity of Q. It follows that the map
θ is surjective, so that condition pbq shows that HomC♥pX,π0Qq Ñ HomC♥pX 1, π0Qq is
surjective. It follows that π0Q is an injective object of the abelian category C♥.

If R is a connective E1-ring, then Corollary HA.7.2.2.19 asserts that the homotopy
category of the 8-category of projective left R-modules is equivalent to the ordinary
category of projective modules over π0R. Our next goal is to prove an analogous result for
injective modules:



C.5. GROTHENDIECK ABELIAN CATEGORIES 2045

Theorem C.5.7.4. Let C be a Grothendieck prestable 8-category and let SppCqinj denote
the full subcategory of SppCq spanned by the injective objects. Let A “ C♥ and let Ainj denote
the full subcategory of A spanned by the injective objects. Then the construction Then the
construction Q ÞÑ π0Q determines an equivalence of categories θ : hSppCqinj Ñ Ainj.

Warning C.5.7.5. In the situation of Theorem C.5.7.4, the domain of the equivalence
θ : hSppCqinj » Ainj is the homotopy category of SppCqinj. In general, the mapping spaces in
SppCqinj are not discrete (and contain information which is not seen by the abelian category
A “ C♥).

The proof of Theorem C.5.7.4 will require some preliminaries.

Lemma C.5.7.6. Let α be an ordinal and let pαq “ tβ : β ă αu be the collection of ordinals
smaller than α. Let F : Npαq Ñ S be a functor with the following property: for every ordinal
β ă α, the map F pβq Ñ lim

ÐÝγăβ
F pγq has connected homotopy fibers. Then lim

ÐÝβăα
F pβq is

connected.

Proof. Using Proposition HTT.4.2.4.4 , we may assume without loss of generality that F
arises from a diagram X : pαq Ñ Set∆ which is fibrant with respect to the injective model
structure. Then lim

ÐÝβăα
F pβq is represented by the Kan complex lim

ÐÝβăα
Xpβq (Theorem

HTT.4.2.4.1 ). The assumption that X is fibrant is equivalent to the requirement that each
of the maps θβ : Xpβq Ñ lim

ÐÝγăβ
Xpγq is a Kan fibration, and we are given that each of

the maps θβ has connected homotopy fibers. Let x and y be vertices of lim
ÐÝβăα

Xpβq, and
let xβ and yβ denote the images of x and y in Xpβq for β ă α. To show that x and y

belong to the same path component of lim
ÐÝβăα

Xpβq, we must construct a compatible system
of edges teβ : xα Ñ yβu in Xpβq. The construction proceeds by induction on β. Assume
that the edges teγuγăβ have been constructed, thereby determining an edge e1 : x1 Ñ y1

in lim
ÐÝγăβ

Xpγq. Since θβ is a Kan fibration, we can choose an edge e1 : xβ Ñ y1 in Xpβq

lying over e1. Since the fiber Xpβqy1 is path connected, we can choose a path e2 : y1 Ñ yβ
in Xpβqy1 . Using the fact that θβ is a Kan fibration again, we conclude that there exists a
2-simplex σ:

y1

e2

��
xβ

e1
??

eβ // yβ

lying over the degenerate 2-simplex associated to e1, which produces the desired edge eβ
lying over e1.

Lemma C.5.7.7. Let C be a Grothendieck prestable 8-category. Then there exists a small
collection of objects tXi P C♥uiPI such that an object Q P SppCqď0 is injective if and only if
the abelian groups ExtnSppCqpXi, Qq vanish for all i P I and n ą 0.
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Proof. Choose a set of objects tYjujPJ which generates the abelian category hC♥ under small
colimits, and let tXiuiPI be a collection of representatives for all isomorphism classes of
quotients of the objects tYjujPJ . Since C♥ is a Grothendieck abelian category, the collection
I is small (see the proof of Proposition HA.1.3.5.3 ). We claim that this collection of objects
has the desired property.

Let Q be an object of Cď0 such that ExtnSppCqpXi, Qq » 0 for i P I and n ą 0; we
wish to prove that Q is injective. To prove this, consider an arbitrary object Z P C♥ and
integer n ą 0; we will show that ExtnSppCqpZ,Qq » 0. To this end, we first construct a
transfinite sequence of subobjects Zα Ď Z as follows. Assume that α is an ordinal that the
subobjects tZβ Ď Zuβăα have been constructed. If the induced map φ : lim

ÝÑ
Zβ Ñ Z is not

an isomorphism, then there exists an index j P J and a map Yj Ñ Z which does not factor
through φ. We define Zα to be the image of the map Yj ‘ plimÝÑβăα

Zβq Ñ Z.
The proof of Proposition HA.1.3.5.3 shows that the collection of isomorphism classes of

subobjects of Z is small, so this process must eventually stop: that is, we have lim
ÝÑβăα

Zβ » Z

for some ordinal α. Then ExtnSppCqpZ,Qq » π0 lim
ÐÝβăα

MapCpΣ´nZβ, Qq. To prove that this
group vanishes, it suffices (by Lemma C.5.7.6) to show that for each β ă α, the map

θ : MapSppCqpΣ´nZβ, Qq Ñ MapSppCqplimÝÑ
γăβ

Σ´nZγ , Qq

has connected homotopy fibers. By construction, the map lim
ÝÑγăβ

Zγ Ñ Zβ is a monomor-
phism in C♥ whose cokernel is given by Xi for some i P I. We then have a fiber sequence

Σn´1Xi Ñ lim
ÝÑ
γăβ

Σ´nZγ Ñ Σ´nZβ

so that θ is a pullback of the map θ1 : ˚ Ñ MapCpΣ´n´1Xi, Qq. It therefore suffices to show
that θ1 has connected homotopy fibers: that is, that the homotopy group π1 MapSppCqpΣ´n´1Xi, Qq »

ExtnSppCqpXi, Qq vanishes, which follows from our assumption on I.

Proposition C.5.7.8. Let C be a Grothendieck prestable 8-category and let Q0 be an
injective object of the abelian category C♥. Then there exists a map φ : Q0 Ñ Q in Cď0,
where Q is an injective object of C and φ induces an equivalence Q0 » π0Q.

Proof. Let tXiuiPI be as in Lemma C.5.7.7. Since the 8-category SppCq is presentable, we
can choose a regular cardinal κ such that each of the objects Xi is κ-compact. We will extend
the object Q0 to a transfinite sequence of objects tQα P SppCqď0uαăκ with the following
properties:

paq If λ ă κ is a nonzero limit ordinal, then Qλ » lim
ÝÑαăλ

Qλ.

pbq The map Q0 Ñ Qα induces an equivalence Q0 Ñ π0Qα for each α ă κ.
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pcq Let α ă κ and let η P ExtnSppCqpXi, Qαq for some i P I and some n ą 0. Then the
image of η vanishes in ExtnSppCqpXi, Qα`1q.

Assuming that such a construction is possible, let Q “ lim
ÝÑαăκ

Qα. Then the natural map
Q0 Ñ Q induces an equivalence Q0 » π0Q by virtue of pbq. We claim that Q is injective.
To prove this, consider an arbitrary class η P ExtnSppCqpXi, Qq for i P I and n ą 0. Since Xi

is κ-compact, η is the image of a class η0 P ExtnSppCqpXi, Qαq for some α ă κ. The image of
η0 in ExtnSppCqpXi, Qα`1q vanishes by pcq, so that η “ 0 as desired.

It remains to construct the sequence Qα. We proceed by induction on α, the case where
α is a limit ordinal being prescribed by condition paq. Let us therefore suppose that Qα has
been defined. Let S be the set of all triples pn, i, ηq, where η P ExtnSppCqpXi, Qαq. Choose
a well-ordering of the set S having order type β. For each γ ă β, let ηγ P ExtnγC pXiγ , Qαq

denote the corresponding class. We will construct a transfinite sequence of objects tPγuγďβ`1
of SppCqď0 with the following properties:

pa1q We have P0 “ Qα. If λ ď β ` 1 is a limit ordinal, then Pλ » lim
ÝÑγăλ

Pγ .

pb1q For each γ ď β ` 1, the map Q0 Ñ Pγ induces an equivalence Q0 » π0Pγ .

pc1q For each γ ď β, the image of ηγ in Extnγ pXiγ , Pγ`1q vanishes.

Assuming that this construction is possible, we can complete the proof by setting Qα`1 “

Pβ`1.
The construction of the objects Pγ proceeds by induction on γ. When γ is a limit

ordinal, the definition of Pγ is determined by pa1q. Let us therefore assume that Pγ has been
constructed. Let n “ nγ and i “ iγ , and let η denote the image of ηγ in ExtnSppCqpXi, Pγq.
Then η determines a map φ : Σ´nXi Ñ Pγ . If n ą 1, we define Qγ`1 to be the cofiber of φ;
it is then clear that Pγ`1 has the desired properties. Let us therefore assume that n “ 1, so
that φ induces a map ψ : Xi Ñ π´1Pγ in the abelian category C♥. Let K denote the fiber
of ψ, so that the composite map

Σ´1K Ñ Σ´1Xi Ñ π´1Pγ Ñ τď´1Pγ

is nullhomotopic. It follows that the map Σ´1K Ñ Σ´1Xi
φ
Ñ Pγ factors through some map

ξ : Σ´1K Ñ π0Pγ » Q0. The map ξ determines an extension

0 Ñ Q0 Ñ E Ñ K Ñ 0

in the abelian category C♥. Since Q0 is an injective object of C♥, this extension splits so that
ξ “ 0. Let Xi{K denote the cofiber of the map K Ñ Xi, so that φ factors as a composition

Σ´1Xi Ñ Σ´1pXi{Kq
φ1
Ñ Pγ .
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We now define Pγ`1 to be the cofiber of φ1. Then Pγ`1 satisfies condition pc1q by construction.
To verify pb1q, we observe that there is an exact sequence

0 Ñ π0Qγ Ñ π0Qγ`1 Ñ Xi{K
ψ1
Ñ π´1Qγ ,

where ψ1 is the map induced by ψ. Since K is the fiber of ψ, the map ψ1 is injective so that
π0Qγ`1 » π0Qγ » Q0 as desired.

Proof of Theorem C.5.7.4. Let C be a Grothendieck prestable 8-category and set A “ C♥.
It follows from Proposition C.5.7.3 that the functor π0 : SppCqinj Ñ Ainj is fully faithful, and
from Proposition C.5.7.8 that it is essentially surjective.

Example C.5.7.9 (Injective Hulls). Let C be a Grothendieck prestable 8-category. We
will say that a morphism f : X Ñ Q in SppCq exhibits Q as an injective hull of X if it
satisfies the following conditions:

piq The object Q P SppCq is injective.

piiq The induced map π0pfq : π0X Ñ π0Q is a monomorphism in the abelian category C♥.

piiiq The map π0pfq exhibits π0Q as an essential extension of π0X (see Definition C.5.6.3).

Note that for any object X P SppCq, we can choose a morphism f : X Ñ Q which exhibits
Q as an injective hull of X. To prove this, we first observe that there exists a morphism
f0 : π0X Ñ Q0 in the abelian category C♥ which exhibits Q0 as an injective hull of π0X

(Proposition C.5.6.6). Using Proposition C.5.7.8, we can assume that Q0 “ π0Q for some
injective object Q P SppCq, and Proposition C.5.7.3 implies that we can lift f0 to a morphism
f : X Ñ Q satisfying conditions piq, piiq, and piiiq.

Note that if f : X Ñ Q and g : X Ñ Q1 are morphisms in SppCq which exhibit Q and Q1

are injective hulls of X, then Theorem C.5.6.6 guarantees that there exists an isomorphism
h0 : π0Q

1 » π0Q such that pπ0fq “ h0 ˝ pπ0gq in the abelian category C♥. Using Proposition
C.5.7.3, we see that h0 can be lifted to an equivalence h : Q1 Ñ Q such that f » h ˝ g.
In other words, any two injective hulls of X are equivalent (though the equivalence is not
uniquely determined).

Example C.5.7.10. [Brown-Comenetz Duality] Let Sp denote the 8-category of spectra,
endowed with the t-structure described in Proposition ??. Then the heart Sp♥ is equivalent
to the category of abelian groups. An abelian group A is injective if and only if it divisible:
that is, if and only if the multiplication map A n

Ñ A is surjective for every integer n. Theorem
C.5.7.4 implies that for every injective abelian group A, there is an injective spectrum IA
with π0IA » A. Moreover, the spectrum IA is determined uniquely (up to a connected space
of choices). In particular, there exists an injective spectrum I with π0I » Q {Z, which
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is unique up to equivalence. The spectrum I is called the Brown-Comenetz dual of the
sphere spectrum. It is characterized up to homotopy equivalence by the following universal
property in the stable homotopy category hSp: for every spectrum X, there is a canonical
isomorphism ExtnSppX, Iq » HompπnX,Q {Zq, where the latter Hom is computed in the
category of abelian groups. In particular, the homotopy groups of I are dual to the stable
homotopy groups of spheres.

Proposition C.5.7.11. Let C be a Grothendieck prestable 8-category and let n ě 0 be an
integer. The following conditions are equivalent:

paq The 8-category C is weakly n-complicial.

pbq Every injective object of SppCq belongs to SppCqě´n.

Proof. Suppose first that paq is satisfied, and let Q P SppCq be an injective object. Then
Q P SppCqď0. It follows that for each m ě 0, the object Ω8´mQ is an m-truncated object of
C. Assumption paq then implies that there exists a map ρ : X Ñ Ω8´mQ which induces an
epimorphism

π0X Ñ π0pΩ8´mQq » π´mQ

in the abelian category C♥, where X is n-truncated. If m ą n, then the injectivity of Q
implies that ExtmSppCqpΣ8X,Qq » 0, so that ρ is nullhomotopic and therefore π´mQ » 0.
Since the t-structure on SppCq is right separated, we conclude that Q P SppCqě´n.

We now prove the converse. Suppose that pbq is satisfied, and let X be an m-truncated
object of C. We wish to show that there exists an n-truncated object X P C and a morphism
X Ñ X which induces an epimorphism on π0. The proof proceeds by induction on m. If
m ď n, we can take X “ X. We will therefore assume that m ą n. Choose a morphism
f : Σ8´mX Ñ Q in SppCq which exhibits Q as an injective hull of Σ8´mX (see Example
C.5.7.9). Then f induces a map g : X Ñ Ω8´mQ in the 8-category C. Note that g
is a morphism between m-truncated objects of C and induces a monomophism on πm,
so the fiber fibpgq is pm ´ 1q-truncated. Applying our inductive hypothesis, we deduce
that there exists an n-truncated object X P C and a morphism h : X Ñ fibpgq which is
an epimorphism on π0. We will complete the proof by showing that the composite map
X

h
ÝÑ fibpgq Ñ X is also an epimorphism on π0. This follows from the exactness of the

sequence π0 fibpgq Ñ π0X Ñ π´mQ, since the third term vanishes by virtue of assumption
pbq.

C.5.8 Chain Complexes of Injectives

Let A be a Grothendieck abelian category. It follows from Proposition C.5.5.20 that
there exists an essentially unique Grothendieck prestable 8-category C which is 0-complicial,
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anticomplete, and satisfies C♥ “ A. In this section, we will describe an explicit construction
of C: its stabilization SppCq can be obtained as the differential graded nerve of the category
of chain complexes of injective objects of A.

Remark C.5.8.1. For further discussion of chain complexes of injective objects of Grothendieck
abelian categories, we refer the reader to the work of Krause (see [124] and [125]) and Neeman
([161]); the results of this section are essentially a translation of [125]).

Definition C.5.8.2. Let A be a Grothendieck abelian category and let Ainj denote the full
subcategory of A spanned by the injective objects. We let ChpAinjq denote the category of
chain complexes with values in Ainj, which we regard as a differential graded category. We
let qDpAq denote the differential graded nerve NdgpChpAinjqq (see Construction HA.1.3.1.6 ).
We will refer to qDpAq as the unseparated derived 8-category of A.

Remark C.5.8.3. In the situation of Definition C.5.8.2, the derived 8-category DpAq is
defined as the differential graded nerve of the full subcategory ChpAq0 Ď ChpAinjq spanned
by those chain complexes which are fibrant with respect to the model structure of Proposition
HA.1.3.5.3 . Consequently, we can regard DpAq as a full subcategory of qDpAq.

Notation C.5.8.4. Let A is a Grothendieck abelian category. We let qDpAqě0 denote the full
subcategory of qDpAq spanned by those chain complexes Q‚ satisfying HnpQ‚q » 0 for n ă 0.
We set qDpAqď0 “ DpAqď0 be the subcategory of qDpAq spanned by those chain complexes
Q‚ which are fibrant (with respect to the model structure of Proposition HA.1.3.5.3 ) and
satisfy HnpQ‚q » 0 for n ą 0.

Proposition C.5.8.5. Let A be a Grothendieck abelian category. Then qDpAq is a stable
8-category. Moreover, the pair of full subcategories pqDpAqě0, qDpAqď0q is a t-structure on
qDpAq.

Proof. The first assertion follows from Proposition HA.1.3.2.10 , and the second from
Proposition HA.1.3.5.18 .

To compute morphisms in the 8-category qDpAq, the following observation is useful.

Lemma C.5.8.6. Let A be a Grothendieck abelian category, let i : M 1
˚ Ñ M˚ be a quasi-

isomorphism in Chď0pAq, and let Q˚ be a complex of injective objects of A. Then composition
with i induces a quasi-isomorphism of chain complexes of abelian groups

MapChpAqpM˚, Q˚q Ñ MapChpAqpM
1
˚, Q˚q.

Proof. Since Q˚ is levelwise injective, we have a short exact sequence of chain complexes

0 Ñ MapChpAqpM˚{M
1
˚, Q˚q Ñ MapChpAqpM˚, Q˚q Ñ MapChpAqpM

1
˚, Q˚q Ñ 0.
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It will therefore suffice to show that the chain complex of abelian groups MapChpAqpM˚{M
1
˚, Q˚q

is acyclic. In other words, we must show that for every integer n, every chain map
M˚{M

1
˚ Ñ Q˚rns is nullhomotopic. To prove this, we are free to replace Q˚ by the chain

complex
¨ ¨ ¨ Ñ 0 Ñ Q1´n Ñ Q´n Ñ ¨ ¨ ¨

In this case, Q˚ is fibrant with respect to the model structure of Proposition HA.1.3.5.3 (see
Proposition HA.1.3.5.6 ), so the desired result follows from Proposition HA.1.3.5.11 (since
the quotient M˚{M

1
˚ is acyclic).

Example C.5.8.7. Let A be a Grothendieck abelian category and let X be an object of A,
and let X♥ denote the image of X under the equivalence A » DpAq♥ » qDpAq♥. As a chain
complex, we can identify X♥ with any choice of injective resolution of X. Applying Lemma
C.5.8.6, we see that for any object Q‚ P qDpAq, we can identify the groups Ext˚

qDpAqpY
♥, Q‚q

with the cohomology groups of the chain complex

¨ ¨ ¨ Ñ HomApX,Q2q Ñ HomApX,Q1q Ñ HomApX,Q0q Ñ HomApX,Q´1q Ñ HomApX,Q´2q Ñ ¨ ¨ ¨ .

The main result of this section can be stated as follows:

Theorem C.5.8.8. Let A be a Grothendieck abelian category. Then:

paq The unseparated derived 8-category qDpAq is presentable and stable.

pbq The t-structure pqDpAqě0, qDpAqď0q is right complete and compatible with filtered col-
imits. Equivalently, qDpAqě0 is a Grothendieck prestable 8-category and qDpAq is
equivalent to the stabilization SppqDpAqě0q.

pcq The Grothendieck prestable 8-category qDpAqě0 is anticomplete and 0-complicial.

pdq The construction Q‚ Ñ H0pQ‚q induces an equivalence of categories qDpAq♥ Ñ A.

It follows from Proposition C.5.5.20 that the 8-category qDpAq and its t-structure are
characterized uniquely (up to canonical equivalence) by the assertions of Theorem C.5.8.8.
Moreover, Proposition C.5.5.20 supplies the following analogue of Theorem C.5.4.9:

Corollary C.5.8.9. Let A be a Grothendieck abelian category and let C be any Grothendieck
prestable 8-category. Then restriction to the heart induces a fully faithful embedding

LFunlexpqDpAqě0, Cq Ñ FunpA, C♥q,

whose essential image is spanned by those exact functors A Ñ C♥ which preserve small
colimits.
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Remark C.5.8.10. It follows from Proposition C.5.5.20 (or from the universal property
of Corollary C.5.8.9) that the construction A ÞÑ qDpAq is functorial: if f : A Ñ A1 is an
exact functor between Grothendieck abelian categories which preserves small colimits, then
f induces a functor F : qDpAq Ñ qDpA1q. The functor F is determined (up to equivalence) by
the requirements that it is t-exact, preserves small colimits, and that the composite functor

A » qDpAq♥ F
ÝÑ qDpA1q♥ » A1

is equivalent to the original functor f .

Corollary C.5.8.11. Let C be a Grothendieck prestable 8-category and let A “ C♥. Then
the inclusion functor A ãÑ C admits an essentially unique extension to a functor λ :
qDpAqě0 Ñ C which preserves small colimits and finite limits. The following conditions are
equivalent:

paq The functor λ is an equivalence of 8-categories.

pbq The Grothendieck prestable 8-category C is anticomplete and 0-complicial.

pcq The Grothendieck prestable 8-category C is anticomplete and weakly 0-complicial.

pdq The Grothendieck prestable 8-category C is anticomplete and every injective object of
SppCq belongs to the heart of SppCq.

Proof. The existence (and essential uniqueness) of λ follows from Corollary ??. The impli-
cation paq ñ pbq follows from Theorem C.5.8.8, and the converse follows from Proposition
C.5.5.20. The equivalence pbq ô pcq follows from Proposition C.5.5.16, and the equivalence
pcq ô pdq from Proposition C.5.7.11.

We now turn to the proof of Theorem C.5.8.8, following [125]. We first consider the
following special case:

Proposition C.5.8.12. Let A0 be a small abelian category. Assume that every object
X P A0 admits a finite resolution

0 Ñ Pn Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P0 Ñ X Ñ 0,

where each Pi is a projective object of A0. Set A “ IndpA0q. Then:

piq An object X P DpAq is compact if and only if the homotopy groups πnX are compact
objects of DpAq for every n P Z, and vanish for all but finitely many n.

piiq The derived 8-category DpAq is compactly generated.

piiiq The Grothendieck prestable 8-category DpAqě0 is anticomplete.
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pivq The 8-categories qDpAq and DpAq are the same. That is, every chain complex Q˚ of
injective objects of A is a fibrant object of ChpAq (with respect to the model structure
of Proposition HA.1.3.5.3 ).

Proof. Let us abuse notation by identifying A with the full subcategory DpAq♥ Ď DpAq
and A0 with its essential image in A “ IndpA0q. Let P be a projective object of A0 and
let Ab denote the category of abelian groups, so that the construction Y ÞÑ HomApP, Y q

determines an exact functor e : A Ñ Ab. The induced map Chpeq : ChpAq Ñ ChpAbq
carries quasi-isomorphisms to quasi-isomorphisms. Let tQj˚ujPJ be any collection of objects
of DpAq, which we will identify with fibrant objects of the category ChpAq. Choose a trivial
cofibration u :

À

jPJ Q
j
˚ Ñ Q˚, where Q˚ is another fibrant object of ChpAq. Then u is a

quasi-isomorphism of chain complexes and the chain complex Q˚ represents the coproduct
of the objects Qj˚ in the 8-category DpAq. Using Example C.5.8.7, we see that composition
with u induces isomorphisms of abelian groups

à

jPJ

π0 MapDpAqpP,Q
j
˚q »

à

jPJ

H0pChpeqpQj˚qq

» H0p
à

jPJ

ChpeqpQj˚q

» H0pChpeqp
à

jPJ

Qj˚q

u
ÝÑ H0pChpeqpQ˚qq
» π0 MapDpAqpP,Q˚q.

Applying Proposition ??, we deduce that P is a compact object of DpAq.
By assumption, every object X P A0 admits a finite resolution

0 Ñ Pn Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P0 Ñ X Ñ 0,

where each Pi P A0 is projective and therefore compact as an object of DpAq. It follows that
X is also compact when viewed as an object of DpAq. Every compact object of A “ IndpA0q

is a retract of an object belonging to A0, and is therefore also a compact object of DpAq.
Let C Ď DpAq denote the full subcategory spanned by those objects X such that πnX

is a compact object of DpAq for every integer n which vanishes for all but finitely many
n. Note that C is a stable subcategory of DpAq. Each X P C can be written as a finite
extension of the objects ΣnpπnXq, and is therefore also compact when viewed as an object
of DpAq. It follows that the inclusion C ãÑ DpAq extends to a fully faithful embedding
f : IndpCq ãÑ DpAq. Applying Corollary HTT.5.5.2.9 , we see that f admits a right adjoint
g : DpAq Ñ IndpCq. Note that if Q˚ is fibrant object of ChpAq such that gpQ˚q vanishes as
an object of C, then for every projective object P P A0 we have

HnpChpeqpQ˚qq » MapDpAqpΣnP,Q˚q » 0
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where e is defined as above. It follows that the chain complex Q˚ is acyclic, and therefore
vanishes when viewed as an object of DpAq. Applying this argument to Q˚ “ fibpvq for some
morphism v in DpAq, we deduce that v is an equivalence if and only if gpvq is an equivalence:
that is, the functor g is conservative, so that f and g are mutually inverse equivalence of
8-categories. This proves piiq, and shows that an object of DpAq is compact if and only
if it is a retract of an object of C. Assertion piq now follows from the observation that C
is closed under the formation of retracts. Assertion piiiq follows from piq and piiq together
with Proposition C.5.5.5.

We will deduce pivq from the following assertion:

p˚q Let Q˚ be an acyclic chain complex of injective objects of A and let X be any object
of A. Then the chain complex of abelian groups

¨ ¨ ¨ Ñ HomApX,Q2q Ñ HomApX,Q1q Ñ HomApX,Q0q Ñ HomApX,Q´1q Ñ HomApX,Q´2q Ñ ¨ ¨ ¨

is also acyclic.

Let us assume p˚q for the moment, and see how it leads to a proof of p˚q. Suppose that Q1˚
is any chain complex of injective objects of A. Choose a trivial cofibration f˚ : Q1˚ Ñ Q˚ in
ChpAq, where Q˚ is fibrant. Then each of the maps fk : Q1k Ñ Qk is a monomorphism whose
domain Q1k is injective. It follows that each fk is a split monomorphism. Set Q2˚ “ Q˚{Q

1
˚.

Each of the projection maps Qk Ñ Q2k admits a section sk which exhibits Q2k as a direct
summand of Qk, so that Q2k is an injective object of A (Proposition HA.1.3.5.6 ). Since f˚ is
a quasi-isomorphism, the chain complex Q2˚ is acyclic. For each integer k, let Zk denote the
kernel of the differential Q2k Ñ Q2k´1. Applying p˚q in the case X “ Zk, we deduce that the
sequence

HomApZk, Q
2
k`1q Ñ HomApZk, Q

2
kq Ñ HomApZk, Q

2
k´1q

is exact. Consequently, the inclusion Zk ãÑ Q2k lifts to a map Q2k`1: in other words, the chain
complex Q2˚ is split exact. It follows that there exists a contracting homotopy h : Q2˚ Ñ Q2˚`1.
Let h denote the composite map Q˚ Ñ Q2˚

h
ÝÑ Q2˚`1

s
ÝÑ Q˚. Then h determines a chain

homotopy from the identity idQ˚ to a retraction r : Q˚ Ñ Q1˚. In particular, we see that Q1˚
is a retract of Q˚, and is therefore a fibrant object of ChpAq.

It remains to prove p˚q. Fix an acyclic chain complex Q˚ consisting of injective objects
of A. For each object X P A, let T˚pXq denote the chain complex of abelian groups given
by TkpXq “ HomApX,Qkq. Let us say an object X P A is good if the chain complex T˚pXq
is acyclic. We now proceed in several steps.

paq Every projective object P P A is good (since the acyclicity of Q˚ immediately implies
the acyclicity of the chain complex T˚pP q “ HomApP,Q˚q when P is projective).
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pbq Suppose we are given a short exact sequence 0 Ñ X 1 Ñ X Ñ X2 Ñ 0. Then the
diagram of chain complexes

0 Ñ T˚pX
2q Ñ T˚pXq

ρ
ÝÑ T˚pX

1q Ñ 0

is also exact (this follows from the injectivity of the objects Qk). In particular, we see
that if any two of the objects X, X 1, and X2 is good, then so is the third. Moreover,
the map ρ is surjective: that is, it is a fibration with respect to the projective model
structure on the category ChpAbq of chain complexes of abelian groups.

pcq Let X be an object of A which admits a finite projective resolution

0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P0 Ñ X Ñ 0.

Then X is good. This follows from paq and pbq, using induction on n.

pdq Every object of A0 is good. This follows from pcq together with our assumption that
every object of A0 admits a finite projective resolution (note that any projective object
of A0 is also injective as an object of A “ IndpA0q).

peq Let I be a well-ordered set and let tXiuiPI be a diagram in A with the property
that, for each i P I, the map lim

ÝÑjăi
Xj Ñ Xi is a monomorphism in A. If each Xi is

good, then the colimit lim
ÝÑ

Xi is good (this follows from paq together with Corollary
HTT.A.2.9.25 ).

pfq Let X be an object of A0 and let X 1 be a subobject of X (in the abelian category
A). We claim that X 1 is good. To prove this, choose an epimorphism

À

iPI Yi Ñ X 1,
where each Yi belongs to A0. We proceed by (transfinite) induction on the cardinality
of the set I. If I is finite, then X 1 P A0 and the desired result follows from pdq.
Otherwise, we can choose a well-ordering of the set I for which each initial segment
Iďj “ ti P I : i ď ju has cardinality smaller than I. For each j P I, let X 1j be the
subobject of X 1 given by the image of the composite map

À

iPIj
Yi Ñ

À

iPI Yi Ñ X 1.
It follows from our inductive hypothesis that each X 1j is good, so that peq guarantees
that X 1 » lim

ÝÑjPI
X 1j is also good.

pgq Let X2 be an object of A and suppose there exists an epimorphism u : X Ñ X2, where
X P A0. Then X2 is good. This follows by applying pbq to the short exact sequence
0 Ñ X 1 Ñ X

u
ÝÑ X2 Ñ 0, since X is good by virtue of pdq and X 1 » kerpuq is good by

virtue of pfq.

Now suppose that X is an arbitrary object of A; we will show that X is good. Choose
an epimorphism

À

iPI Yi Ñ X where each Yi belongs to A0. We proceed by induction on
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the cardinality of I. If I is finite, then the desired result follows from pgq. Otherwise, we
can choose a well-ordering of the set I for which each initial segment Iďj “ ti P I : i ď ju

has cardinality smaller than I. For each j P J , let Xj denote the image of the composite
map

À

iPIj
Yi Ñ

À

iPI Yi Ñ X. Our inductive hypothesis guarantees that each Xj is good,
so that X » lim

ÝÑjPI
Xj is also good (by virtue of peq).

We will prove the general case Theorem C.5.8.8 by reducing to the situation of Proposition
C.5.8.12, using the following observation:

Proposition C.5.8.13. Let A be a Grothendieck abelian category. Then there exists an
essentially small abelian category Bc in which every object admits a projective resolution of
length 2, such that A is a left exact localization of the Grothendieck abelian category IndpBcq.

Proof. Choose an essentially small subcategory A0 Ď A which contains a set of generators
for A and is closed under finite limits. Let B “ FunπpAop

0 ,Setq be the full subcategory
of FunpAop

0 ,Setq spanned by the product-preserving functors. It follows from the Gabriel-
Popescu theorem (Theorem C.2.2.1) that the construction X ÞÑ HomAp˚, Xq induces a fully
faithful embedding G : AÑ B and that the left adjoint to G is left exact (in other words, G
exhibits A as a left-exact localization of B). The objects tGpAquAPA0 form compact projective
generators for the abelian category B. In particular, the category B is compactly generated:
that is, we have an equivalence B » IndpBcq, where Bc denotes the full subcategory of B
spanned by the compact objects. To complete the proof, it will suffice to establish the
following:

paq The full subcategory Bc Ď B is abelian.

pbq Every object of Bc admits a projective resolution of length 2.

Unwinding the definitions, we see that an object X P B is compact if and only if it admits a
resolution

GpA1q
e
ÝÑ GpAq Ñ X Ñ 0

for some objects A1, A P A0. In this case, the fact that G is fully faithful guarantees that
we can write e “ Gpe0q for some map e0 : A1 Ñ A in the category A0. In this case, the left
exactness of G supplies an isomorphism kerpeq » Gpkerpe0qq; the resulting exact sequence

0 Ñ Gpkerpe0qq Ñ GpA1q Ñ GpAq Ñ X Ñ 0

is a projective resolution of X having length 2, which proves pbq.
Note that the full subcategory Bc Ď B of compact objects is closed under finite colimits;

in particular, it is closed under finite direct sums and the formation of cokernels. To prove
paq, it will suffice to show that Bc is closed under kernels. Suppose that we are given a
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morphism f : X Ñ Y in Bc; we wish to show that the kernel kerpfq also belongs to Bc.
Choosing projective resolutions as above, we can arrange that f fits into a commutative
diagram

GpA1q //

��

GpAq

��

// X

f

��

// 0

GpA1q // GpAq // Y. // 0.
A simple diagram chase then yields an exact sequence

GpA1q ˆGpBq GpB
1q Ñ GpAq ˆGpBq GpB

1q Ñ kerpfq Ñ 0.

Using the fact that G is fully faithful and left exact, we can rewrite this sequence as
GpA1 ˆB B

1q Ñ GpA ˆB B
1q Ñ kerpfq Ñ 0, so that kerpfq is a compact object of B as

desired.

Remark C.5.8.14. Let A be a Grothendieck abelian category and let Q˚ be chain complex
of injective objects of A. Assume that Q˚ is homotopically minimal (in the sense of
Proposition C.5.6.8). Then the following conditions are equivalent:

p1q The objects Qn vanish for n ą 0.

p2q The object Q˚ belongs to qDpAqď0.

p3q For every object X P A » qDpAq♥, the groups Extn
qDpAqpX,Q˚q vanish for n ă 0.

The implications p1q ñ p2q ñ p3q are evident (and do not require the assumption that Q˚
is homotopically minimal). Assume that p3q is satisfied and let n ą 0; we wish to show
that Qn » 0. Suppose otherwise. Then the homotopical minimality of Q˚ guarantees that
Z “ kerpdn : Qn Ñ Qn´1q is nonzero. Using Example C.5.8.7, we see that the inclusion
ι : Z ãÑ Qn represents a class η P Ext´n

qDpAq
pZ,Q˚q. Assumption p3q guarantees that η “ 0, so

that ι factors as a composition Z ι
ÝÑ Qn`1

dn`1
ÝÝÝÑ Qn. Then dn`1 is injective when restricted

to impιq, contradicting the homotopical minimality of Q˚.

Proposition C.5.8.15. Let A be a Grothendieck abelian category, let A0 Ď A be a localizing
subcategory, and let A {A0 be the full subcategory of A spanned by the A0-local objects (see
Definition ??). Then:

paq Every injective object of A {A0 is also injective when regarded as an object of A.
Consequently, we can regard qDpA {A0q as a full subcategory of qDpAq.

pbq Let Q˚ be an object of qDpAq. Then Q˚ belongs to the essential image of the inclusion
qDpA {A0q ãÑ qDpAq if and only if, for every object Y P A0, the groups Extn

qDpAqpX,Q˚q

vanish for every integer n (here we abuse notation by identifying X with its image
under the equivalence A » qDpAq♥).
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pcq We have qDpA {A0qď0 “ qDpA {A0q X qDpAqď0.

Proof. Assertion paq follows from the fact that the inclusion A {A0 ãÑ A admits an exact
left adjoint (Proposition C.5.1.6). The inclusion

qDpA {A0qď0 Ď qDpA {A0q X qDpAqď0

follows immediately from the definitions, and the reverse inclusion follows from Proposition
C.5.6.8 and Remark C.5.8.14.

The “only if” direction of pbq follows immediately from Example C.5.8.7. To prove the
converse, suppose that Q˚ is a chain complex of injective objects of A and that the groups
Extn

qDpAqpX,Q˚q vanish for all n and all X P A0. We wish to prove that Q˚ belongs to the
essential image of the inclusion qDpA {A0q ãÑ qDpAq. Using Proposition C.5.6.8, we can
reduce to the case where Q˚ is homotopically minimal. We will prove in this case that
Q˚ P qDpA {A0q: that is, each of the objects Qn is A0-local. By virtue of Remark C.5.1.5,
this is equivalent to the requirement that the groups ExtiApX,Qnq vanish for all X P A0
and i “ 0, 1. For i “ 1, the vanishing is automatic (since Qn is an injective object of A).
To handle the case i “ 0, suppose (for a contradiction) that there exists some nonzero map
f : X Ñ Qn in the abelian category A. Replacing X by impfq, we may suppose that f
is a monomorphism. Since Q˚ is homotopically minimal, there exists a nonzero subobject
X 1 Ď X for which the composite map

X 1 ãÑ X
f
ÝÑ Qn

dn
ÝÑ Qn´1

vanishes. Using Example C.5.8.7, we see that this composite map represents an element
η P Ext´n

qDpAq
pX 1, Q˚q. By assumption, η must vanish, so that f |X 1 factors as a composition

X 1
g
ÝÑ Qn`1

dn`1
ÝÝÝÑ Qn. Invoking our assumption that Q˚ is homotopically minimal, we

deduce that the fiber product X 1 ˆQn`1 kerpdn`1q is nonzero, contradicting our assumption
that f is a monomorphism.

Proof of Theorem C.5.8.8. Let A be a Grothendieck abelian category. Applying Proposition
C.5.8.13, we can write A as a quotient B {B0 where B » IndpBcq is a compactly generated
Grothendieck abelian category, the full subcategory Bc Ď B of compact objects is abelian,
every object of Bc admits a projective resolution of length 2, and B0 Ď B is a localizing
subcategory. Applying Propositions C.5.8.12 and C.5.3.2, we see that qDpBq is a presentable
stable 8-category, the t-structure pqDpBqě0, qDpBqď0q is right complete and compatible with
filtered colimits, and the Grothendieck prestable 8-category qDpBqě0 is anticomplete and
0-complicial. Combining Propositions C.5.8.15 and C.5.2.8, we deduce that qDpAq is a
presentable stable 8-category, that the t-structure pqDpAqě0, qDpAqď0q is right complete and
compatible with filtered colimits, and that the Grothendieck prestable 8-category qDpAqě0
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can be identified with the quotient qDpBqě0{ C0, where C0 Ď qDpBqě0 is the smallest localizing
subcategory which contains A0. Applying Proposition C.5.5.7, we deduce that qDpAqě0 is
also anticomplete. Proposition C.5.3.3 guarantees that qDpAqě0 is 0-complicial.

C.5.9 Completed Derived 8-Categories

We now observe that the theory of anticomplete Grothendieck prestable 8-categories is
closely related to the theory of complete Grothendieck prestable 8-categories.

Notation C.5.9.1. Let Grothlex,comp
8 denote the subcategory of Groth8 whose objects are

complete Grothendieck prestable 8-categories and whose morphisms are left exact functors
which preserve small colimits.

Proposition C.5.9.2. Let Grothlex,comp
8 denote the full subcategory of Grothlex

8 spanned by
the complete Grothendieck prestable 8-categories. Then the construction C ÞÑ pC determines
an equivalence of 8-categories Grothch,lex

8 Ñ Grothlex,comp
8 .

Proof. Let C and D be Grothendieck prestable 8-categories. It follows immediately from
the definitions that if C is anticomplete, then the canonical map

MapGrothlex
8
pC,Dq Ñ MapGrothlex

8
ppC, pDq

is a homotopy equivalence. This proves that the completion functor Grothch,lex
8 Ñ Grothlex,comp

8

is fully faithful. Essential surjectivity follows from Proposition C.5.5.9.

Let C be an anticomplete Grothendieck prestable 8-category and let pC be its completion.
Using Remark C.5.5.14 and Proposition C.5.5.16, we deduce that C is n-complicial if and
only if pC is weakly n-complicial. Combining this observation with Propositions C.5.9.2 and
C.5.5.20, we obtain the following variant of Proposition C.5.4.5:

Proposition C.5.9.3. Let n be a nonnegative integer and let L : Grothlex,comp
8 Ñ Grothlex

n

be the functor given by LpCq “ τďn C (see Example C.5.4.4). Then L admits a fully faithful
left adjoint, whose essential image is spanned by those Grothendieck prestable 8-categories
C which are complete and weakly n-complicial.

We now specialize Proposition C.5.9.3 to the case n “ 0.

Definition C.5.9.4. Let A be a Grothendieck abelian category and let DpAq be the derived
8-category of A. We let pDpAq denote the left completion of DpAq with respect to its
t-structure (see §HA.1.2.1 ): that is, the limit of the tower

¨ ¨ ¨DpAqď3
τď2
ÝÝÑ DpAqď2

τď1
ÝÝÑ DpAqď1

τď0
ÝÝÑ DpAqď0.
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We will refer to pDpAq as the completed derived 8-category of A. It is equipped with a t-
structure ppDpAqě0, pDpAqď0q, where pDpAqě0 is the completion of the Grothendieck prestable
8-category DpAqě0 (in the sense of Proposition C.3.6.3) and pDpAqď0 is equivalent to
DpAqď0.

If A is a Grothendieck abelian category, then we can identify pDpAqě0 with the image of
A under the functor Grothlex

ab “ Grothlex
0 Ñ Grothlex,comp

8 of Proposition C.5.9.3. We therefore
obtain the following analogue of Theorem C.5.4.9:

Corollary C.5.9.5. Let A be a Grothendieck abelian category and let C be a Grothendieck
prestable 8-category. If C is complete, then the restriction functor LFunlexppDpAqě0, Cq Ñ
FunpA, C♥q is a fully faithful embedding, whose essential image consists of those functors
F : A Ñ C♥ which are left exact and preserve small colimits (here we abuse notation by
identifying A with the heart pDpAq♥ě0).

Corollary C.5.9.6. The construction A ÞÑ pDpAqě0 determines a fully faithful embedding
Grothlex

ab ãÑ Grothlex,comp
8 , which is left adjoint to the heart functor

Grothlex,comp
8 Ñ Grothlex

ab C ÞÑ C♥ .

We also have the following variant of Corollary C.5.8.11:

Corollary C.5.9.7. Let C be a complete Grothendieck prestable 8-category and let A “ C♥.
Then the inclusion functor A ãÑ C admits an essentially unique extension to a functor
λ : pDpAqě0 Ñ C which preserves small colimits and finite limits. The following conditions
are equivalent:

paq The functor λ is an equivalence of 8-categories.

pbq The Grothendieck prestable 8-category C is weakly 0-complicial.

pcq Every injective object of SppCq belongs to the heart of SppCq.

Proof. The existence (and essential uniqueness) of λ follows from Corollary C.5.9.5. The
equivalence paq ô pbq follows from Proposition C.5.9.3 and the equivalence pbq ô pcq follows
from Proposition C.5.7.11.

C.6 Finiteness Conditions on Prestable 8-Categories

Let C be a presentable 8-category. Recall that C is said to be compactly generated if
every object C P C can be written as the colimit of a filtered diagram lim

ÝÑ
tCαu, where each

Cα is a compact object of C. In this case, the 8-category C is equivalent to IndpC0q, where
C0 Ď C is the full subcategory spanned by the compact objects. Moreover, the construction
C0 ÞÑ IndpC0q establishes an equivalence between the following data:
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paq Essentially small 8-categories C0 which are idempotent complete and admit finite
colimits.

pbq Compactly generated 8-categories C.

In this section, we will consider several variants of the equivalence between paq and pbq
which arise in the study of prestable 8-categories. We begin in §C.6.1 by showing that in
the situation above, the 8-category C “ IndpC0q is prestable if and only if C0 is prestable
(Proposition C.6.1.1). Consequently, the equivalence between paq and pbq persists when
we restrict our attention to prestable 8-categories (Corollary C.6.1.5). Moreover, the
theory of compactly generated 8-categories simplifies (to some extent) when we work in the
prestable setting: in §C.6.3, we supply a simple criterion which can be used to verify that a
Grothendieck prestable 8-category C is compactly generated (Corollary C.6.3.3).

Let C be a Grothendieck prestable 8-category. If C P C is a compact object, then π0C

is a compact object of the Grothendieck abelian category C♥. However, the converse is false:
for example, a compact object of the abelian category C♥ need not be compact when viewed
as an object of C. For a prototypical example, we can take C “ Modcn

R to be the 8-category
of connective modules over a commutative ring R. If M P Mod♥

R is a discrete R-module,
then M is compact as an object of Mod♥

R if and only if it is finitely presented, but is compact
as an object of Modcn

R if and only if it is perfect (that is, if and only if it admits a finite
resolution by finitely generated projective R-modules). In general, the second condition
is much stronger than the first. However, if R is a Noetherian ring (or, more generally, a
coherent ring), then the difference is smaller: in this case, every finitely presented R-module
M admits a resolution

¨ ¨ ¨ Ñ P3 Ñ P2 Ñ P1 Ñ P0 ÑM

where each Pn is a projective R-module of finite rank, but we might not be able to arrange
that Pn » 0 for n " 0. In this case, we cannot conclude that M is perfect, but we can
conclude that it is almost compact: that is, that it is compact when viewed as an object
of τďn Modcn

R , for each n ě 0. In §C.6.5, we generalize this observation by introducing the
notion of a coherent Grothendieck prestable 8-category: that is, a Grothendieck prestable
8-category C which has “enough” almost compact objects (Definition C.6.5.1). We then
study two situations in which a coherent Grothendieck stable 8-category C can be recovered
from its almost compact objects:

• In §C.6.6, we show that a Grothendieck prestable 8-category C which is separated
and coherent can be functorially recovered from the full subcategory C0 Ď C spanned
by its almost compact objects (Theorem C.6.6.14).

• In §C.6.7, we show that Grothendieck prestable 8-category C which is anticomplete
and coherent is also compactly generated, so that C can be recovered from the full
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subcategory C0 Ď C of compact objects (Corollary C.6.7.3); moreover, an object C P C
is compact if and only if it is truncated and almost compact.

In many cases of interest, one has even stronger finiteness conditions. Recall that a
Grothendieck abelian category A is said to be locally Noetherian if every object X P A
can be written as a (filtered) colimit of its Noetherian subobjects (Definition C.6.8.5). In
§C.6.9, we will consider an analogous condition in the setting of Grothendieck prestable
8-categories (Definition C.6.9.1) and study some of its consequences.

Remark C.6.0.8. The theory of coherent Grothendieck prestable 8-categories presented
here can be regarded as a “linear” version of the theory of coherent 8-topoi presented in
Appendix A. In particular, Theorem C.6.6.14 and Corollary C.6.7.3 are directly analogous
to Theorems A.6.6.5 and A.7.5.3, respectively.

C.6.1 Prestability and Ind-Completion

Our starting point is the following result:

Proposition C.6.1.1. Let C be a small idempotent-complete 8-category which admits finite
colimits. Then C is prestable if and only if IndpCq is prestable.

Remark C.6.1.2. Every compactly generated prestable 8-category C is a Grothendieck
prestable 8-category: filtered colimits in C are left exact by virtue of Remark HA.?? .

Lemma C.6.1.3. Let C be a compact generated prestable 8-category. Then an object C P C
is compact if and only if Σ8C is a compact object of SppCq.

Proof. The “only if” direction follows from the fact that the functor Σ8 : C Ñ SppCq
is fully faithful and preserves filtered colimits. The converse follows from the fact that
Ω8 : SppCq Ñ C preserves filtered colimits (Remark C.6.1.2 and Proposition C.1.4.1).

Proof of Proposition C.6.1.1. Assume first that IndpCq is prestable. Let j : C Ñ IndpCq be
the Yoneda embedding. Since C is idempotent-complete, the functor j induces an equivalence
from C to the full subcategory of IndpCq spanned by the compact objects. Since j preserves
finite colimits, the diagram of 8-categories

C j //

ΣC
��

IndpCq

ΣIndpCq
��

C j // IndpCq

commutes up to homotopy. Since ΣIndpCq and j are fully faithful, it follows that ΣC is also
fully faithful. To complete the proof that C is prestable, it will suffice to show that for every
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cofiber sequence X Ñ X2 Ñ ΣX 1 in IndpCq, if both X2 and X 1 are compact, then X is
compact. This follows immediately from Lemma C.6.1.3.

Now suppose that C is prestable. Then there exists a fully faithful embedding f : C ãÑ D,
where D is stable and the essential image of f is closed under colimits and extensions
(Corollary C.1.2.3). Without loss of generality, we may assume that D is idempotent
complete. The functor f induces a fully faithful embedding Indpfq : IndpCq ãÑ IndpDq which
preserves small colimits, and the functor IndpDq is stable by virtue of Proposition HA.1.1.3.6 .
To show that IndpCq is prestable, it will suffice to show that the essential image of Indpfq is
closed under extensions (Corollary C.1.2.3). Let us abuse notation by identifying D with the
full subcategory of IndpDq spanned by the compact objects. Suppose we are given a fiber
sequence X 1 Ñ X Ñ X2 in IndpDq, where the objects X 1 and X2 are the images of diagrams
tC 1αuαPA and tC2βuβPB in the 8-category C indexed by filtered partially ordered sets A and
B. We wish to show that X has the same property. Writing X as a filtered colimit of the
fiber products X ˆX2 fpC2βq, we can assume that X” belongs to the essential image of C. In
particular, X2 is a compact object of IndpDq, so that the natural map X2 Ñ ΣX 1 factors
through some C 1α. In this case, we can write X as a filtered colimit lim

ÝÑγěα
Xγ , where Xγ

denotes the fiber of the induced map X2 Ñ ΣX 1γ . We are therefore reduced to showing that
each Xγ belongs to the essential image of C. Note Xγ is a compact object of IndpDq (since
it is an extension of compact objects), and can therefore be identified with an object of D.
Since the essential image of f is closed under extensions, it follows that Xγ belongs to the
essential image of C as desired.

Notation C.6.1.4. We let CatPSt
8 denote the subcategory of Cat8 whose objects are small

prestable 8-categories and whose morphisms are right exact functors. We will refer to
CatPSt

8 as the 8-category of prestable 8-categories.

Let Cat‹8 denote the subcategory of Cat8 whose objects are small idempotent-complete
8-categories which admit finite colimits and whose morphisms are functors which preserve
finite colimits. According to Lemma HA.5.3.2.9 , the construction C ÞÑ IndpCq induces an
equivalence from Cat‹8 to the subcategory of PrL whose objects are compactly generated
8-categories and whose morphisms are functors which preserve small colimits and compact
objects. Combining that observation with Proposition C.6.1.1 and Remark C.3.4.3, we
obtain the following:

Corollary C.6.1.5. Let CatPSt,‹
8 denote the full subcategory of CatPSt

8 whose objects are small
idempotent-complete prestable 8-categories. Then the construction C ÞÑ IndpCq determines
a fully faithful embedding Ind : CatPSt,‹

8 ãÑ Grothc
8, whose essential image is spanned by the

compactly generated prestable 8-categories.

Warning C.6.1.6. To obtain the equivalence of Corollary C.6.1.5, it is essential that our
definition of a prestable8-category C does not require that C admits finite limits. For example,
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if R is an arbitrary connective E8-ring, then the 8-category Modcn
R of connective R-modules

is a compactly generated prestable 8-category, whose full subcategory of compact objects is
given by the intersection Modperf,cn

R “ Modcn
R XModperf

R spanned by the connective perfect
R-modules. This 8-category almost never admits finite limits (according to Proposition
C.1.2.9, it admits finite limits if and only if the stable 8-category Modperf

R » SWpModperf,cn
R q

admits a t-structure pModperf,cn
R , pModperf

R qď0q: in other words, if and only if the collection
of perfect R-modules is stable under the formation of truncations).

C.6.2 Tensor Products of Compactly Generated Prestable 8-Categories

We let Grothcg
8 denote the subcategory of yCat8 whose objects are compactly generated

prestable 8-categories and whose morphisms are compact functors f : C Ñ D. We regard
Grothcg

8 as a full subcategory of the 8-category Grothc
8 introduced in Definition C.3.4.2

(namely, the essential image of the functor Ind of Corollary C.6.1.5).

Proposition C.6.2.1. The 8-category Grothcg
8 admits small colimits and the inclusion

functors
Grothcg

8 ãÑ Grothc
8 Grothcg

8 ãÑ Groth8

preserve small colimits.

Proof. By virtue of Proposition C.3.5.1, it will suffice to show that if tCαu is a diagram in
Grothc

8 having colimit C and each Cα is compactly generated, then C is compactly generated.
For each index α, let fα : Cα Ñ C be the tautological map and Gα : SppCq Ñ SppCαq the
stabilization of the right adjoint to fα. Each of the functors fα is a morphism in Grothc

8

and therefore carries compact objects of Cα to compact objects of C. Moreover, an object
X P SppCq belongs to SppCqď0 if and only if the groups

Ext˚SppCαqpΣ
8
CαC,GαXq » Ext˚SppCqpΣ

8
C fαpCq, Xq

vanish for each ˚ ă 0 and every compact object C P Cα. It follows that the collection of
objects tΣ8C fαCu where C P Cα is compact satisfy the hypotheses of Proposition C.6.3.1, so
that C » SppCqě0 is a compactly generated prestable 8-category.

Proposition C.6.2.2. Let C and D be compactly generated prestable 8-categories. Then
the tensor product CbD (formed in the 8-category PrL) is a compactly generated prestable
8-category.

Proof. The prestability of CbD follows from Theorem C.4.2.1 and the existence of compact
generators follows because the functor Ind : Catrex

8 Ñ PrL is symmetric monoidal, where
Catrex

8 denotes the 8-category whose objects are small 8-categories which admit finite
colimits and whose morphisms are functors which preserve finite colimits.
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Since the unit object Spcn P Grothc
8 is compactly generated, Propositions C.6.2.2, ??,

and C.6.2.1 yield the following:

Corollary C.6.2.3. The symmetric monoidal structure on PrL induces a symmetric
monoidal structure on the 8-category Grothcg

8 for which the inclusion Grothcg
8 ãÑ Grothc

8 is
symmetric monoidal functor. Moreover, the tensor product b : Grothcg

8 ˆGrothcg
8 Ñ Grothcg

8

preserves small colimits separately in each variable.

C.6.3 Digression: A Criterion for Compact Generation

We close this section by establishing a result which is useful for constructing examples of
compactly generated prestable 8-categories.

Proposition C.6.3.1. Let C be a presentable stable 8-category, and let tCαuαPA be a
collection of compact objects of C. Suppose that for every nonzero object D P C, there exists
α P A for which the graded abelian group Ext˚CpCα, Dq is nonzero. Then:

paq Let Cď0 be the full subcategory of C spanned by those objects D for which the groups
Ext˚CpCα, Dq vanish for all α P A and ˚ ă 0. Then Cď0 can be extended to a t-structure
pCě0, Cď0q on C.

pbq The t-structure pCě0, Cď0q is right complete and compatible with filtered colimits.

pcq Let E Ď C be the smallest full subcategory which contains the objects Cα and is
closed under finite colimits and extensions. Then the inclusion E ãÑ C extends to an
equivalence of 8-categories IndpEq » Cě0.

pdq The 8-category Cě0 is compactly generated and prestable.

peq Let D be an object of Cě0. Then D is compact as an object of Cě0 if and only if it is
compact as an object of C.

Proof. The existence of the t-structure pCě0, Cď0q follows immediately from Proposition
HA.1.4.4.11 . Since each Cα is a compact object of C, it follows immediately that the full
subcategory Cď0 Ď C is closed under filtered colimits. In particular, it is closed under
arbitrary coproducts. Any object D P

Ş

ně0 Cď´n satisfies Ext˚CpCα, Dq » 0 for all α P A
and is therefore a zero object of C. The right completeness of pCě0, Cď0q is therefore a
consequence of Proposition HA.1.2.1.19 . This proves paq and pbq.

Since the collection of compact objects of C is closed under finite colimits and extensions,
every object of E is compact when viewed as an object of C. Note that the full subcategory
Cě0 Ď C is also closed under finite colimits and extensions and therefore contains E . In
particular, every object of E is compact when viewed as an object of Cě0, so the inclusion
E ãÑ Cě0 extends to a fully faithful embedding θ : IndpEq Ñ Cě0 which commutes with
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small colimits. Let C1 Ď Cě0 be the essential image of θ. To prove pcq, we must show
that C1 “ Cě0. The proof of Proposition HA.1.4.4.11 shows that Cě0 is the smallest full
subcategory of C which contains the objects Cα and is closed under small colimits and
extensions. Consequently, to establish the inclusion Cě0 Ď C1, it will suffice to show that the
8-category C1 is closed under extensions in C. Suppose we are given a fiber sequence

C 1 Ñ C Ñ C2

where C 1, C2 P C1; we wish to prove that C P C1. Write C2 as a filtered colimit lim
ÝÑ

C2β , where
each C2β belongs to E . It follows that C can be written as a filtered colimit of objects of
the form C ˆC2 C

2
β. Since C1 is closed under filtered colimits in C, it will suffice to show

that each C ˆC2 C
2
β belongs to C1. Replacing C2 by C2β, we may reduce to the case where

C2β P E . In this case, we can realize C as the fiber of a map η : C2 Ñ ΣC 1. Write C 1 as
a filtered colimit lim

ÝÑ
C 1γ , where each C 1γ belongs to E . Since C2 is a compact object of C,

it follows that η factors through ΣC 1γ0 for some index γ0. We may therefore write C as a
filtered colimit of objects of the form fibpC2 Ñ ΣC 1γq, which are extensions of objects of E
and therefore belong to E . This proves pcq.

Assertion pdq is an immediate consequence of pbq and pcq. To prove peq, it suffices to
observe that any compact object of Cě0 » IndpEq is a retract of an object of E , and is
therefore compact when viewed as an object of C.

Remark C.6.3.2. Let D be a compactly generated prestable 8-category, and choose
a collection of compact objects tDαuαPA which generate D under small colimits. Set
C “ SppDq. Then the objects tΣ8Dα P Cu satisfy the hypotheses of Proposition C.6.3.1,
and the t-structure pCě0, Cď0q of Proposition C.6.3.1 agrees with the one determined by
the prestability of D (that is, Cě0 can be identified with the essential image of the functor
Σ8 : C Ñ SppCq “ D). Consequently, every compactly generated prestable 8-category D
can be obtained from the construction of Proposition C.6.3.1.

Corollary C.6.3.3. Let C be a Grothendieck prestable 8-category. The following conditions
are equivalent:

paq The 8-category C is compactly generated.

pbq For every nonzero object C P C, there exists a morphism α : C0 Ñ C, where C0 is
compact and α is not nullhomotopic.

Proof. Suppose first that paq is satisfied, and let C0 Ď C be the full subcategory spanned by
the compact objects. Then the composition of the Yoneda embedding j : C Ñ FunpCop,Sq
with the restriction functor FunpCop,Sq Ñ FunpCop

0 ,Sq is fully faithful. Consequently, if
C P C is nonzero, then jpCq|Cop

0
cannot be a final object of FunpCop

0 ,Sq: that is, there exists
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a compact object C0 P C0 such that the mapping space MapCpC0, Cq is not contractible. It
follows that for some integer n, the homotopy group πn MapCpC0, Cq is nontrivial. Replacing
C0 by the suspension ΣnC0, it follows that there exists a map C0 Ñ C which is not
nullhomotopic.

Now suppose that pbq is satisfied. If X is a nonzero object of SppCq, then Ω8´nX is
a nonzero object of C for some n " 0, so condition pbq guarantees that there is compact
object C0 P C such that π0 MapCpC0,Ω8´nXq » ExtnCpΣ8C0, Xq ‰ 0. Consequently, the
collection of objects tΣ8C0uC0PC0 satisfies the hypotheses of Proposition C.6.3.1. We
conclude that there exists a t-structure pSppCqě0, SppCqď0q on SppCq, where SppCqě0 is a
compactly generated prestable 8-category and SppCqď0 is the full subcategory spanned by
those objects X for which the groups

Ext´nSppCqpΣ
8C0, Xq » π0 MapCpΣnC,Ω8Xq

vanish for C0 P C0 and n ą 0. Applying pbq again, we deduce that SppCqď0 is spanned by
those objects X P SppCq satisfying Ω8`1X » 0, so that SppCqě0 is the essential image of
the fully faithful embedding Σ8 : C Ñ SppCq.

C.6.4 Almost Compact Objects

Let C be an 8-category which admits filtered colimits. Recall that an object C P C is
said to be compact if the functor D ÞÑ MapCpC,Dq commutes with filtered colimits. In
practice, it is often useful to consider a slightly weaker condition (see Definition HA.7.2.4.8 ):

Definition C.6.4.1. Let C be a presentable 8-category. We say that an object C P C is
almost compact if, for every integer n ě 0, the construction D ÞÑ MapCpC,Dq determines a
functor τďn C Ñ S which commutes with filtered colimits.

Remark C.6.4.2. Let C be a presentable 8-category. An object C P C is almost compact
if and only if, for every n ě 0, the truncation τďnC is compact when viewed as an object of
τďn C.

Example C.6.4.3. Let C be a presentable 8-category. Every compact object of C is almost
compact.

Proposition C.6.4.4. Let C be a presentable 8-category and let C0 Ď C be the full subcat-
egory spanned by those objects which are almost compact. Then C0 is closed under finite
colimits and under geometric realizations of simplicial objects.

Proof. Closure under finite colimits follows immediately from Remark C.6.4.2 and the closure
of compact objects of τďn C under finite colimits (Corollary HTT.5.3.4.15 ). Similarly, to
show that C0 is closed under geometric realizations of simplicial objects, it will suffice to
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show that for every simplicial object X‚ of τďn C, if each Xk is a compact object of τďn C,
then the geometric realization |X‚| (formed in the 8-category τďn C) is also compact. This
follows from the fact that τďn C is equivalent to an pn` 1q-category, so that the geometric
realization |X‚| can be identified with the finite colimit lim

ÝÑrksP∆op
s,ďn`1

Xk.

Proposition C.6.4.5. Let C be a Grothendieck prestable 8-category and let Cac Ď C be
the full subcategory spanned by the almost compact objects. The following conditions are
equivalent:

paq The loop functor Ω : C Ñ C carries Cac to itself.

pbq For every morphism f : X Ñ Y in Cac, the fiber fibpfq belongs to Cac.

pcq The full subcategory Cac Ď C is closed under finite limits.

pdq For every object X P Cac, the object π0X also belongs to Cac.

Proof. We first prove that paq implies pbq. Let f : X Ñ Y be a morphism in C, where
X and Y are almost compact. Applying Proposition C.6.4.4, we deduce that the cofiber
cofibpfq is almost compact. From assumption paq (and the prestability of C) we deduce that
fibpfq » Ω cofibpfq is almost compact.

We next show that pbq implies pcq. By virtue of Corollary HTT.4.4.2.4 , it will suffice to
show that Cac contains the final object of C (which is clear) and is closed under fiber products.
This follows from pbq: if f0 : X0 Ñ X and f1 : X1 Ñ X are morphisms in Cac, then we can
identify the fiber product X0 ˆX X1 with the fiber of the induced map X0 ‘X1

f0´f1
ÝÝÝÝÑ X.

The implication pcq ñ paq is obvious. We complete the proof by showing that paq and
pdq are equivalent. Suppose that paq is satisfied and that X P Cac. Then ΩX P Cac. Since
the collection of almost compact objects of C is closed under finite colimits, it follows that
π0X » cofibpΣΩX Ñ Xq also belongs to Cac.

Conversely, suppose that pdq is satisfied. For every object X P Cac, the cofiber sequence
X Ñ π0X Ñ Σ2ΩX shows that Σ2ΩX is almost compact. Since the double suspension
functor Σ2 induces a fully faithful embedding τďn C Ñ τďn`2 C which commutes with filtered
colimits for each n ě 0, it follows that ΩX P C is also almost compact.

Corollary C.6.4.6. Let C be a Grothendieck prestable 8-category which satisfies the equiv-
alent conditions of Proposition C.6.4.5, and let C P C be an object. The following conditions
are equivalent:

piq The object C is almost compact.

piiq For each n ě 0, the truncation τďnC is almost compact.
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piiiq For each n ě 0, the object πnC P C♥ is almost compact (when viewed as an object of
C).

Proof. The implication piq ñ piiq follows from the existence of a cofiber sequence Σn`1Ωn`1C Ñ

C Ñ τďnC, and the implication piiq ñ piiiq from the existence of an equivalence πnC »
ΩnpτďnCq. We will complete the proof by showing that piiiq ñ piq. Assume that piiiq is
satisfied; we wish to show that C is almost compact. Equivalently, we wish to show that
τďmC is compact when viewed as an object of τďm C, for each m ě 0. In fact, we will a
stronger assertion: for each m ě 0, the truncation τďmC is almost compact (when viewed
as an object of C). The proof proceeds by induction on m, the case m “ ´1 being trivial.
To carry out the inductive step, we observe that there exists a fiber sequence

τďmC Ñ τďm´1C Ñ Σm`1pπmCq.

The object τďm´1C is almost compact by our inductive hypothesis, and Σm`1pπmCq is
almost compact by virtue of assumption piiiq. Invoking assumption pbq of Proposition
C.6.4.5, we conclude that τďmC is almost compact.

C.6.5 Coherent Grothendieck Prestable 8-Categories

We now turn our attention to Grothendieck prestable 8-categories which have “enough”
almost compact objects.

Definition C.6.5.1. Let C be a Grothendieck prestable 8-category and let C0 Ď C be the
full subcategory spanned by the almost compact objects. We will say that C is coherent if it
satisfies the following conditions:

paq The full subcategory C0 Ď C is closed under finite limits.

pbq The full subcategory C0 is a generating subcategory of C, in the sense of Definition
C.2.1.1. That is, for every object X P C, there exists a morphism

À

Cα Ñ X which
induces an epimorphism on π0, where each Cα is almost compact.

We will say that C is weakly coherent if it satisfies condition paq and the following weaker
version of pbq:

pb1q For every truncated object X P C, there exists a morphism
À

Cα Ñ X which induces
an epimorphism on π0, where each Cα is almost compact.

Warning C.6.5.2. Let C be a compactly generated prestable 8-category. Then C au-
tomatically satisfies condition pbq of Definition C.6.5.1, but need not satisfy condition
paq.
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Example C.6.5.3. Let R be a connective E1-ring and let C “ LModcn
R denote the 8-

category of connective left R-modules. Using Proposition HA.7.2.4.18 , we see that the
following assertions are equivalent:

piq The E1-ring R is left coherent.

piiq The Grothendieck prestable 8-category C is coherent.

piiiq The Grothendieck prestable 8-category C is weakly coherent.

We now discuss some criteria which can be used to recognize weakly coherent Grothendieck
prestable 8-categories.

Proposition C.6.5.4. Let C be a Grothendieck prestable 8-category. The following condi-
tions are equivalent:

p1q The 8-category C is weakly coherent.

p2q For each n ě 0, the 8-category τďn C is compactly generated and the collection of
compact objects of τďn C is closed under finite limits.

Proof. Suppose first that p1q is satisfied. Chose n ě 0, and let E Ď τďn C be the full
subcategory spanned by those objects which are almost compact (when viewed as objects
of C). Since the collection of almost compact objects of C is closed under finite colimits
(Proposition C.6.4.4) and under the truncation functor τďn (Corollary C.6.4.6), it follows
that E is closed under finite colimits in τďn C. Applying Propositions HTT.5.3.5.11 and
HTT.5.5.1.9 , we see that the inclusion E ãÑ τďn C extends to a fully faithful embedding
F : IndpEq Ñ τďn C which commutes with small colimits.

Let G : τďn C Ñ IndpEq be a right adjoint to F . Note that if X P τďn C satisfies
GX » 0, then the mapping space MapCpC,Xq » MapCpτďnC,Xq is contractible for all
almost compact objects C P C (Corollary C.6.4.6). If C is weakly coherent, this implies that
π0X » 0. Applying the same argument to ΩiX, we deduce that πiX » 0 for 0 ď i ď n and
therefore X » 0.

Now let X be any object of τďn C and let v : pF ˝GqpXq Ñ X be the counit map. Since
F is fully faithful, the map Gpvq is an equivalence in IndpEq. The functor G is left exact
(since it is a right adjoint), so we have Gpfibpvqq “ fibGpvq » 0. It follows from the preceding
argument that fibpvq “ 0. For every almost compact object C P C, every map C Ñ X factors
through v. Our assumption that C is weakly coherent ensures that v induces an epimorphism
on π0, so that the fiber sequence fibpvq Ñ pF ˝GqpXq Ñ X is also a cofiber sequence. The
vanishing of fibpvq now shows that v is an equivalence. Allowing X to vary, we conclude that
F is an equivalence of 8-categories so that the 8-category τďn C is compactly generated.

It follows immediately from the definitions that each object of E is compact when viewed
as an object of τďn C. Conversely, since F is an equivalence, every compact object of τďn C
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is a retract of an object of E . Since E is evidently closed under retracts, it follows that an
object of τďn C is compact if and only if it belongs to E . Since the collections of n-truncated
objects and almost compact objects of C are both closed under finite limits, it follows that
the collection of compact objects of τďn C is closed under finite limits. Allowing n to vary,
we deduce that p2q is satisfied.

We now prove the converse. Assume that C satisfies p2q; we will prove that C is weakly
coherent. We first show that the collection of almost compact objects of C is closed under
finite limits. By virtue of Proposition C.6.4.5, it will suffice to show that if X P C is almost
compact, then ΩX P C is also almost compact. For this, we must prove that for each n ě 0,
the object τďnpΩXq » Ωpτďn`1Xq is a compact object of τďn C. This is clear: our hypothesis
that X is almost compact guarantees that τďn`1X is a compact object of τďn`1 C, so that
assumption p2q shows that Ωpτďn`1Xq is compact when viewed as an object of τďn`1 C (and
therefore also when viewed as an object of the smaller 8-category τďn C).

We now claim that if n ě 0 and C is a compact object of τďn C, then C is almost compact
when viewed as an object of C. In other words, the object C is compact when viewed as
an object of τďm C for any m ě n. To prove this, we invoke assumption p2q to write C
as the colimit of a filtered diagram tCαu, where each Cα is a compact object of τďm C.
Since truncation in C commutes with filtered colimits, we have C » lim

ÝÑα
τďnCα. Using

the compactness of C in τďn C, we deduce that C is a retract of τďnCα. We are therefore
reduced to proving that τďnCα is a compact object of τďm C, which follows by inspecting
the cofiber sequence

Σn`1Ωn`1Cα Ñ Cα Ñ τďnCα.

If X is any n-truncated object of C, then assumption p2q guarantees that we can write X
as the colimit of a filtered diagram tCαu, where each Cα is a compact object of τďn C (and
therefore an almost compact object of C). Since the map

À

Cα Ñ X is an epimorphism
on π0, we see that C satisfies condition pb1q of Definition C.6.5.1 and is therefore weakly
coherent, as desired.

Corollary C.6.5.5. Let F : C Ñ D be a functor between Grothendieck prestable 8-categories
which induces an equivalence τďn C Ñ τďnD for all n ě 0. Then C is weakly coherent if and
only if D is weakly coherent.

Proposition C.6.5.6. Let C be a Grothendieck prestable 8-category. Then C is weakly
coherent if and only if the following conditions are satisfied:

piq The collection of almost compact objects of C is closed under finite limits.

piiq Every object D P C♥ can be written as a filtered colimit lim
ÝÑ

Dα, where each Dα is an
almost compact object of C which belongs to C♥.
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Proof. The necessity of piq is obvious, and the necessity of piiq follows from the proof of
Proposition C.6.5.4. Conversely, suppose that piq and piiq are satisfied. To prove that C is
weakly coherent, we must show that for every n-truncated object X P C, there exists a map
u :

Ř

Ci Ñ X which is an epimorphism on π0, where each Ci is an almost compact object of
C. We proceed by induction on n. In the case n “ 0, the desired result follows immediately
from piiq. Let us therefore assume that n ą 0. Set X “ τďn´1X, so that our inductive
hypothesis guarantees the existence of a map u :

À

Ci Ñ X which is an epimorphism on π0,
where each Ci is an almost compact object of C. Using piiq, we can write πnX as a filtered
colimit lim

ÝÑ
Dα, where each Dα is an almost compact object of C which belongs to C♥. We

then have a fiber sequence X Ñ X
v
ÝÑ lim
ÝÑ

Σn`1Dα in the 8-category C. For each index i,
the assumption that Ci is almost compact guarantees that the composite map

Ci Ñ
à

Ci
u
ÝÑ X

v
ÝÑ lim
ÝÑ

Σn`1Dα

factors through some Σn`1Dαpiq for some index αpiq. Choose such a factorization and set
Ci “ fibpCiq Ñ Σn`1Dαpiq. It follows from piq that Ci is an almost compact object of C. We
now complete the proof by observing that u fits into a commutative diagram

À

Ci
u //

��

X

��
À

Ci
u // X,

where u is also an epimorphism on π0 (since the vertical maps induce isomorphisms on
π0).

In the setting of weakly n-complicial Grothendieck prestable 8-categories, the criterion
of Proposition C.6.5.4 can be sharpened.

Proposition C.6.5.7. Let C be a Grothendieck prestable 8-category which is weakly n-
complicial for some n ě 0. The following conditions are equivalent:

p1q The Grothendieck prestable 8-category C is weakly coherent.

p2q The 8-category τďn C is compactly generated and the collection of compact objects of
τďn C is closed under finite limits.

Proof. The implication p1q ñ p2q follows from Proposition C.6.5.4 (and does not require
our assumption that C is weakly n-complicial). Assume that p2q is satisfied, and let A be
the full subcategory of C♥ spanned by those objects which are compact when viewed as
objects of τďn C. Assumption p2q implies that A is closed under the formation of kernels and
cokernels in C♥ and is therefore an abelian category. Let E Ď SppCq be the full subcategory
spanned by those objects X having the following properties:
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• The object X is truncated: that is, X P SppCqďm for m " 0.

• For every integer m, the object πmX P SppCq♥ » C♥ belongs to A.

• The object X belongs to SppCqě´k for k " 0 (since the t-structure on SppCq is right
complete, this is equivalent to the requirement that π´kX vanishes for k " 0).

Then E is an essentially small stable subcategory of SppCq which is closed under truncations,
so that the t-structure on SppCq induces a bounded t-structure pEě0, Eď0q on E . Set
C1 “ IndpEě0q. Then the inclusion functor ι : Eě0 ãÑ SppCqě0 » C extends to a functor
λ P LFunlexpC1, Cq. We next prove:

piq For every cofiber sequence C 1 Ñ C Ñ C2 in C, if C 1 and C2 are compact objects of
τďn C, then C is also a compact object of τďn C.

To prove piq, we invoke assumption p2q to write C as the colimit of a filtered diagram tCαu,
where each Cα is a compact object of τďn C. Using the compactness of C2, we deduce that
there exists an index α for which the composite map Cα Ñ C Ñ C2 induces an epimorphism
on π0. Set C 1α “ C 1ˆC Cα » fibpCα Ñ C2q. Since the collection of compact objects of τďn C
is closed under finite limits, C 1α is compact in τďn C. We now observe that the pullback
diagram

C 1α //

��

Cα

��
C 1 // C

is also a pushout square (in both C and τďn C), so that C is also a compact object of τďn C.
We now show:

piiq An object C P τďn C is compact (when viewed as an object of τďnC) if and only if πiC
in A for 0 ď i ď n.

The “if” direction follows immediately from piq (since C can be written as a successive
extension of objects of the form ΣipπiCq) To prove the converse, we observe that πiC fits
into a cofiber sequence

ΣpΩi`1Cq Ñ ΩiC Ñ πiC

in the 8-category τďn C.
Combining piiq with our assumption that τďn C is compactly generated, we deduce:

piiiq The functor λ induces an equivalence τďn C1 Ñ τďn C.

We now prove:

pivq The 8-category C1 is n-complicial.
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Fix an object X P C1; we wish to prove that there exists a map X Ñ X in C1 which is an
epimorphism on π0, where X is n-truncated. Write X as a filtered colimit lim

ÝÑ
tXαu, where

each Xα is an object of Eě0. We can then view each Xα as a truncated object of 8-category
C. Since C is weakly n-complicial, we can choose morphisms Xα Ñ Xα in C which induce
epimorphisms on π0, where each Xα is an n-truncated object of C. Using our assumption
that τďn C is compactly generated, we can write each Xα as the colimit of a filtered diagram
tXα,βu where each Xα,β is a compact object of τďn C. Then we can view each Xα,β as an
n-truncated object of Eě0. Taking X “

À

α,β Xα,β, we obtain a proof of pivq.
Combining piiiq, pivq, and Proposition C.5.9.3, we deduce that the functor λ : C1 Ñ C

induces an equivalence on completions: that is, it restricts to an equivalence τďm C1 Ñ τďm C
for all m ď 0. Identifying τďm C1 with IndpEě0X Eďmq, we see that an object X P τďm C is
compact if and only if πiX P A for 0 ď i ď m. Allowing m to vary, we conclude that an
object X P C is almost compact if and only if πiX P A for all i ě 0. From this description,
we immediately deduce that C satisfies the equivalent conditions of Proposition C.6.4.5. To
complete the proof that C is weakly coherent, it will suffice to show that for each truncated
object X P C, there exists a map

À

αCα Ñ X which is an epimorphism on π0, where each
Cα is almost compact. Using our assumption that C is weakly n-complicial, we can reduce
to the case where X belongs to τďn C, in which case the desired result follows immediately
from piiiq.

Corollary C.6.5.8. Let C be a Grothendieck prestable 8-category which is n-complicial for
some n ě 0. The following conditions are equivalent:

p1q The Grothendieck prestable 8-category C is coherent.

p2q The 8-category τďn C is compactly generated and the collection of compact objects of
τďn C is closed under finite limits.

Proof. The implication p1q ñ p2q follows immediately from Proposition C.6.5.7. Conversely,
suppose that condition p2q is satisfied and let X be an object of C; we wish to show that
there exists a map

À

Cα Ñ X which is an epimorphism on π0, where each Cα is almost
compact. Using our assumption that C is n-complicial, we can reduce to the case where X
is n-truncated, in which case the desired result follows from Proposition C.6.5.7.

Let A be a Grothendieck abelian category. Then the following conditions are equivalent:

• The category A is compactly generated and the collection of compact objects of A is
closed under finite limits.

• There is an equivalence A » IndpA0q for some essentially small abelian category A0.

Specializing Proposition ?? to the case n “ 0, we obtain the following:
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Corollary C.6.5.9. Let A0 be an essentially small abelian category and set A “ IndpA0q.
Then the Grothendieck prestable 8-categories qDpAqě0 and DpAqě0 are coherent, and the
Grothendieck prestable 8-category pDpAqě0 is weakly coherent.

C.6.6 Separated Coherent Grothendieck Prestable 8-Categories

Let C be a coherent Grothendieck prestable 8-category. Our next goal is to articulate a
precise sense in which C is “controlled” by its almost compact objects. We begin with an
elementary observation.

Proposition C.6.6.1. Let C be a Grothendieck prestable 8-category which is separated and
coherent and let Cac Ď C be the full subcategory spanned by the almost compact objects. Then
Cac is essentially small.

Warning C.6.6.2. The conclusion of Proposition C.6.6.1 is false if C is not separated: if X
is a nonzero object of C whose truncations τďnX vanish for all n, then taking a coproduct
of any number of copies of X yields an almost compact object of C.

We will deduce Proposition C.6.6.1 from the following more precise assertion:

Lemma C.6.6.3. Let C be a coherent separated Grothendieck prestable 8-category and let
C0 Ď C be a generating subcategory which is closed under finite colimits and extensions and
consists of almost compact objects of C. Then every almost compact object X P C can be
obtained as the geometric realization of a simplicial object X‚, where each Xn belongs to C0.

Proof. Let X be an object of C which is almost compact. We will construct a sequence of
cofiber sequences

Xpnq Ñ X Ñ ΣnY pnq,

where each Xpnq belongs to C0. The construction proceeds by induction. In the case n “ 0,
we take Xpnq “ 0 and Y pnq “ X. To carry out the inductive step, let us assume that we have
constructed a cofiber sequence Xpnq u

ÝÑ X Ñ ΣnY pnq with Xpnq P C0. Then X and Xpnq

are both almost compact, so that Y pnq » Ωn cofibpuq is also almost compact. Using our
assumption that C0 is a generating subcategory of C, we can choose a map

À

iPI Ci Ñ Y pnq

which induces an epimorphism
À

π0Ci Ñ π0Y pnq, where each Ci belongs to C0. Since Y pnq
is almost compact, the truncation π0Y pnq is a compact object of the abelian category C♥,
so we can choose a finite subset I0 Ď I for which the induced map v :

À

iPI0
Ci Ñ Y pnq also

induces an epimorphism on π0. Set C “
À

iPI0
Ci, so that C is an object of C0. We now

define Xpn` 1q “ X ˆΣnY pnq ΣnC, so that we have cofibpXpn` 1q Ñ Xq » Σn`1pfibpvqq.
By construction, we have a cofiber sequence

Xpnq Ñ Xpn` 1q Ñ ΣnC
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so that Xpn ` 1q also belongs to C0. Note that each of the maps Xpnq Ñ X induces an
isomorphism πiXpnq Ñ πiX for i ď n´ 2. Invoking our assumption that C is separated, we
see that X can be identified with the direct limit lim

ÝÑ
Xpnq.

By construction, the cofiber of each map Xpnq Ñ Xpn` 1q is an n-fold suspension of
an object of C0. Applying Theorem C.1.3.1, we deduce the existence of an equivalence
tXpn` 1quně0 » tsknpE‚quně0 for some simplicial object X‚ of C0, so that X » |X‚|.

Remark C.6.6.4. In the situation of Lemma C.6.6.3, the closure properties of C0 can be
weakened: all we really need is that C0 is closed under finite direct sums.

Proof of Proposition C.6.6.1. Since C is presentable, there exists a small collection of objects
tCαu which span a generating subcategory of C (in the sense of Definition C.2.1.1). Using
our assumption that C is coherent, we can arrange that each Cα is almost compact. Let C0
denote the smallest full subcategory of C which contains each Cα and is closed under finite
colimits, geometric realizations, and extensions. Then C0 is essentially small, and Lemma
C.6.6.3 shows that every almost compact object of C belongs to C0.

Theorem C.6.6.5. Let C and D be separated Grothendieck prestable 8-categories and let
Cac Ď C denote the full subcategory spanned by the almost compact objects. If C is coherent,
then the restriction functor LFunpC,Dq Ñ FunpCac,Dq is fully faithful, and its essential
image is spanned by those functors Cac Ñ D which preserve finite colimits.

Proof. Since Cac is closed under finite limits and colimits in C, the inclusion functor Cac ãÑ C
extends to a functor F : IndpCacq Ñ C which preserves small colimits and finite limits. Let
G : C Ñ IndpCacq be a right adjoint to F . Let us identify IndpCacq with the full subcategory
of FunppCacqop,Sq spanned by the left exact functors, so that G is given by the formula
GpCqpDq “ MapCpD,Cq. If C is coherent, then Cac Ď C is a generating subcategory of C, so
that Theorem C.2.1.6 implies that G is fully faithful.

It follows from Proposition C.6.6.1 that Cac is an essentially small prestable 8-category
so that IndpCacq is a Grothendieck prestable 8-category (Proposition C.6.1.1). Applying
Proposition C.2.3.8, we see that G restricts to an equivalence C Ñ IndpCacq{ E , where
E Ď IndpCacq is the localizing subcategory spanned by those objects of IndpCacq which are
annihilated by F .

It follows from Proposition C.6.5.7 that the functor F induces an equivalence τďn IndpCacq Ñ

τďn C for each n ě 0. Consequently, if X P IndpCacq is annihilated by F , then we must have
τďnX » 0 for all n ě 0: that is, X belongs to the essential image of the suspension functor
Σm : IndpCacq Ñ IndpCacq for each m ě 0. It follows that any colimit-preserving functor
H : IndpCacq Ñ D must carry X into the essential image of the functor Σm : D Ñ D for
each m ě 0. Since D is separated, we must have HX » 0. That is, any colimit-preserving
functor IndpCacq Ñ D automatically annihilates the localizing subcategory E Ď IndpCacq.
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Applying Proposition C.2.3.10, we deduce that composition with F induces an equivalence
of 8-categories LFunpC,Dq Ñ LFunpIndpCacq,Dq. It now suffices to observe that compo-
sition with the Yoneda embedding Cac ãÑ IndpCacq determines a fully faithful embedding
LFunpIndpCacq,Dq ãÑ FunpCac,Dq, whose essential image is spanned by those functors which
preserve finite colimits (Propositions HTT.5.3.5.11 and HTT.5.5.1.9 ).

Remark C.6.6.6. In the situation of Theorem C.6.6.5, let f : C Ñ D be a functor which
preserves small colimits. Then the following conditions are equivalent:

piq The functor f is left exact.

piiq The composite functor IndpCacq Ñ C f
ÝÑ D is left exact.

piiiq The restriction f |Cac is left exact.

The equivalence of piq and piiq follows from Remark C.2.3.11, and the equivalence of piiq
and piiiq from the fact that filtered colimits in D are left exact.

Remark C.6.6.7. Let C be a Grothendieck prestable 8-category which is coherent and
separated, and let Cac Ď C denote the full subcategory spanned by the almost compact
objects. Then Cac has the following properties:

paq The 8-category Cac is prestable (since it is a full subcategory of the prestable 8-
category C which is closed under finite colimits and extensions).

pbq The 8-category Cac admits finite limits (since C is assumed to be coherent).

pcq The 8-category Cac admits geometric realizations of simplicial objects (since the
collection of almost compact objects of C is closed under geometric realizations, by
virtue of Proposition C.6.4.4).

pdq The 8-category Cac is essentially small (Proposition C.6.6.1).

peq The 8-category Cac is separated (since C is separated).

Our next goal is to show that every 8-category E satisfying conditions paq through peq
of Remark C.6.6.7 has the form Cac, where C is a Grothendieck prestable 8-category which
is separated and coherent (Theorem C.6.6.14). The main ingredient we will need is the
following:

Proposition C.6.6.8. Let E be an essentially small separated prestable 8-category which
admits finite limits and geometric realizations. Let X be an object of IndpEq, and let us view
X as a left exact functor Eop Ñ S. The following conditions are equivalent:
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paq For every simplicial object E‚ of E, the canonical map Xp|E‚|q Ñ TotXpE‚q is a
homotopy equivalence.

pbq For every simplicial object E‚ of E which satisfies |E‚| » 0, the totalization TotXpE‚q
is contractible.

pcq For every diagram Ep0q Ñ Ep1q Ñ Ep2q Ñ ¨ ¨ ¨ in E, where each Epnq belongs to the
essential image of Σn : E Ñ E, the limit lim

ÐÝ
XpEpnqq is contractible.

pdq The object X belongs to the separated quotient IndpEq{ IndpEqě8; here IndpEqě8
denotes the localizing subcategory of IndpEq spanned by those objects Y for which
τďnY » 0 for all n ě 0.

Proof. The implication paq ñ pbq is obvious. Conversely, suppose that E‚ is an arbitrary
simplicial object of E . Let E2‚ denote the constant simplicial object of E with the value
|E‚|, and form a fiber sequence E1‚ Ñ E‚ Ñ E2‚ . It is easy to see that each of the maps
En Ñ E2n “ |E‚| induces an epimorphism on π0, so that the fiber sequence E1‚ Ñ E‚ Ñ E2‚
is also a cofiber sequence. Passing to geometric realizations, we obtain a cofiber sequence
|E1‚| Ñ |E‚|

u
ÝÑ |E2‚ | where u is an equivalence, so that |E1‚| » 0. Since the functor X is left

exact, applying the functor X yields a fiber sequence of cosimplicial (pointed) spaces

XpE2‚q Ñ XpE‚q Ñ XpE1‚q

and therefore a fiber sequence of totalizations

TotXpE2‚q
v
ÝÑ TotXpE‚q Ñ TotXpE1‚q.

Note that the cosimplicial space XpE2‚q is constant with value Xp|E‚|q and that v can be
dentified with the tautological map Xp|E‚|q Ñ TotXpE‚q. If assumption pbq is satisfied, then
TotXpE1‚q is contractible and the map v is a homotopy equivalence; this proves pbq ñ paq.

Now let E‚ be a simplicial object of E , and consider its diagram of partial skeleta

sk0pE‚q Ñ sk1pE‚q Ñ sk2pE‚q Ñ ¨ ¨ ¨

Since τďn E is equivalent to an pn`1q-category, the canonical map τďn skn`1pE‚q Ñ τďn|E‚|

is an equivalence for every n. Using the separatedness of E , we see that |E‚| » 0 if and
only if sknpE‚q belongs to the essential image of the functor Σn : E Ñ E for every n ě 0.
Conversely, given any diagram

Ep0q Ñ Ep1q Ñ Ep2q Ñ ¨ ¨ ¨

in E where each Epnq belongs to the essential image of Σn : E Ñ E , each cofiber cofibpEpn´
1q Ñ Epnqq is an extension of ΣEpn´ 1q by Epnq, and therefore also belongs to the essential
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image of Σn : E Ñ E . It then follows from Theorem C.1.3.1 that we have an equivalence
tEpnquně0 » tsknpE‚quně0 for an essentially unique simplicial object E‚ of E . The left
exactness of X then gives equivalences XpEpnqq “ XpsknpE‚qq » TotnXpE‚q, so that
lim
ÐÝ
tXpEpnqquně0 » lim

ÐÝ
tTotnXpE‚quně0 » TotXpE‚q. This shows that conditions pbq and

pcq are equivalent.
We now show that pdq implies pcq. Let j : E Ñ IndpEq denote the Yoneda embedding. If

tEpnquně0 is a diagram in E which each Epnq is an n-fold suspension, then tjpEpnqquně0 is
a diagram in IndpEq where each jpEpnqq is also an n-fold suspension. It follows that the
direct limit lim

ÝÑ
jpEpnqq belongs to the full subcategory IndpEqě8. Assumption pdq then

implies that the space

lim
ÐÝ

XpEpnqq » lim
ÐÝ

MapIndpEqpjpEpnqq, Xq » MapIndpEqplimÝÑ jpEpnqq, Xq

is contractible.
We now complete the proof by showing that pcq implies pdq. Suppose that X satisfies

pcq; we wish to show that X belongs to the quotient IndpEq{ IndpEqě8. In other words, we
wish to show that if we are given any cofiber sequence Y 1 Ñ Y Ñ Y 2 with Y 2 P IndpEqě8,
then the induced map θ : MapIndpEqpY,Xq Ñ MapIndpEqpY

1, Xq is a homotopy equivalence.
Since π0Y

2 » 0, we also have a cofiber sequence ΩY 2 Ñ Y 1 Ñ Y , so that θ fits into a fiber
sequence

MapIndpEqpY,Xq
θ
ÝÑ MapIndpEqpY

1, Xq Ñ MapIndpEqpΩY 2, Xq.

It will therefore suffice to prove the contractibility of the space MapIndpEqpΩY 2, Xq.
Let C0 denote the full subcategory of IndpEq spanned by those objects of the form

lim
ÝÑ

jpEpnqq, where tEpnquně0 is a diagram in E for which each Epnq is an n-fold suspension.
Let C denote the smallest full subcategory of IndpEq which contains C0 and is closed under
small colimits and extensions. Note that the collection of those objects Z P IndpEq for which
MapIndpEqpZ,Xq is contractible is closed under small colimits and extensions. Consequently,
if pcq is satisfied, then MapIndpEqpZ,Xq is contractible for each Z P C. Similarly, IndpEqě8
contains C0 and is closed under small colimits and extensions, so we have C Ď IndpEqě8.
We will complete the proof by showing that C “ IndpEqě8. To this end, we first prove the
following:

p˚q Let Z be a nonzero object of IndpEqě8. Then there exists a morphism e : C Ñ Z

which is not nullhomotopic, where C P C0.

To prove p˚q, we first note that our assumption that Z is nonzero guarantees that there
exists an object Ep0q P E and a morphism e0 : jpEp0qq Ñ Z which is not nullhomotopic. To
prove p˚q, it will suffice to show that we can extend e0 to a compatible sequence of maps
ten : jpEpnqq Ñ Zuně0, where each Epnq P E is an n-fold suspension. The construction
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proceeds by induction. Let us therefore suppose that n ą 0 and that en : jpEpnqq Ñ Z has
been constructed. Let us represent Z by a diagram tZαuαPA in E , indexed by a filtered
partially ordered set A. It follows that there exists some index α such that en is represented
by a map en : Epn´ 1q Ñ Zα in the 8-category E . Since τďnZ vanishes, there exists β ě α

for which the map τďnZα Ñ τďnZβ is nullhomotopic. It follows that the composite map

Epnq
en
ÝÑ Zα Ñ Zβ

factors through Epn` 1q “ τěn`1Zβ, which provides the desired extension of en.
We now use p˚q to show that C “ IndpEqě8. It follows from Proposition HA.1.4.4.11

that C is a presentable 8-category. Applying Corollary HTT.5.5.2.9 , we deduce that the
inclusion C ãÑ IndpEq admits a right adjoint G. Let Z be an object of IndpEqě8 and let
v : GpZq Ñ Z be the counit map; we wish to show that v is an equivalence. Suppose
otherwise: then cofibpvq is a nonzero object of IndpEqě8, so assertion p˚q implies that there
exists an object C P C0 and a morphism e : C Ñ cofibpvq which is not nullhomotopic. Let
ZC denote the fiber product Z ˆcofibpvq C, so that we have a diagram of cofiber sequences

GpZq //

��

ZC //

��||

C

e

��
GpZq

v // Z // cofibpvq.

Since C is closed under extensions, the object ZC belongs to C. The universal property of
GpZq then guarantees the existence of a dotted arrow as indicated in the diagram. This
shows that e is nullhomotopic, contrary to our assumption.

Proposition C.6.6.9. Let E be an essentially small separated prestable 8-category which
admits finite limits and geometric realizations. Let C be the full subcategory of FunpEop,Sq
spanned by those functors which preserve finite limits and totalizations of cosimplicial objects.
Then C is a separated coherent Grothendieck prestable 8-category, and the Yoneda embedding
j : E ãÑ C induces an equivalence from E to the full subcategory Cac Ď C spanned by the
almost compact objects.

Proof. The 8-category IndpEq is Grothendieck prestable by virtue of Proposition C.6.1.1.
Using Proposition C.6.6.8, we see that C can be identified with the separated quotient
IndpEq{ IndpEqě8 of IndpEq, so that C is a separated Grothendieck prestable 8-category.
For each n ě 0, we have an equivalence

τďn C » τďnpIndpEq{ IndpEqě8q “ τďn IndpEq » Indpτďn Eq.

It follows immediately that the Yoneda embedding j : E Ñ C carries each object of E to
an almost compact object of C. Using the criterion of Proposition C.6.5.4, we see that C
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is weakly coherent. Since C is a localization of IndpEq, the essential image of j : E Ñ C is
a generating subcategory of C (in the sense of Definition C.2.1.1) which consists of almost
compact objects, so that C is coherent. To complete the proof, it will suffice to show that
every almost compact object of C belongs to the essential image of j. To see this, we first
observe that the essential image of j is closed under finite limits and colimits, and is therefore
also closed under extensions. Applying Lemma C.6.6.3, we see that every almost compact
object C P C can be written as a geometric realization |C‚|, where each Ck belongs to the
essential image of j. By construction, the functor j preserves geometric realizations, so that
every almost compact object of C belongs to the essential image of j.

Proposition C.6.6.9 shows that every 8-category E which satisfies the conditions of
Remark C.6.6.7 has the form Cac, for some separated coherent Grothendieck prestable
8-category C. It follows from Theorem C.6.6.5 that the 8-category C is uniquely determined
up to equivalence. In fact, the 8-category C depends functorially on E . To articulate this
more precisely, it will be convenient to introduce a variant of Definition C.3.4.2.

Definition C.6.6.10. Let C and D be Grothendieck prestable 8-categories and let F :
C Ñ D be a functor which preserves small colimits. Let G : D Ñ C be a right adjoint to F
(which exists by virtue of Corollary HTT.5.5.2.9 ). We will say that F is almost compact if,
for each n ě 0, the functor

G|τďn D : τďnD Ñ τďn C

commutes with filtered colimits.

Example C.6.6.11. Let C and D be Grothendieck prestable 8-categories. Then every
functor F : C Ñ D which is compact (in the sense of Definition C.3.4.2) is almost compact
(in the sense of Definition C.6.6.10).

Example C.6.6.12. Let C be a Grothendieck prestable 8-category and let f : Spcn Ñ C be
a colimit-preserving functor. Then f is almost compact (in the sense of Definition C.6.6.10)
if and only if the object fpSq P C is almost compact (in the sense of Definition C.6.4.1).

Proposition C.6.6.13. Let C and D be Grothendieck prestable 8-categories and let F :
C Ñ D be a functor which preserves small colimits. Then:

p1q If F is almost compact, then F carries almost compact objects of C to almost compact
objects of D.

p2q If C is weakly coherent and F carries almost compact objects of C to almost compact
objects of D, then F is almost compact.



2082 APPENDIX C. PRESTABLE 8-CATEGORIES

Proof. Assume that F is almost compact and that C P C is almost compact. For each n ě 0,
the functor τďnD Ñ S given by D ÞÑ MapDpFC,Dq can be expressed as a composition of
functors

τďnD G
ÝÑ τďn C

MapCpC,‚q
ÝÝÝÝÝÝÝÑ S

which commute with filtered colimits. Allowing n to vary, we deduce that FC is a compact
object of D, which proves p1q.

Now suppose that C is weakly coherent. Then for each n ě 0, the 8-category τďn C is
compactly generated (Proposition C.6.5.7). It follows that the functor G|τďn D commutes
with filtered colimits if and only if, for each compact object C of τďn C, the composite functor

τďnD G
ÝÑ τďn C

MapCpC,‚q
ÝÝÝÝÝÝÝÑ S

commutes with filtered colimits. Note that in this case, C is almost compact when viewed as
an object of C. Consequently, if the functor F preserves almost compact objects, then FC is
an almost compact object ofD, so that the constructionD ÞÑ MapCpC,GDq » MapDpFC,Dq

commutes with filtered colimits when restricted to τďnD, as desired.

We can now formulate our main result.

Theorem C.6.6.14. Let Grothcoh
8 denote the subcategory of yCat8 whose objects are coherent

separated Grothendieck prestable 8-categories and whose morphisms are almost compact
functors. For each object C P Grothcoh

8 , let Cac denote the full subcategory of C spanned by the
almost compact objects. Then the construction C ÞÑ Cac determines a fully faithful embedding
ρ : Grothcoh

8 Ñ CatPSt
8 , whose essential image is spanned by those prestable 8-categories

which are separated and admit finite limits and geometric realizations.

Proof. It follows from Proposition C.6.6.13 that the functor ρ is well-defined and from
Theorem C.6.6.5 (together with Proposition C.6.6.13) that ρ is fully faithful. Essential
surjectivity follows from Proposition C.6.6.9.

We conclude this section with another observation about the relationship between
separatedness and coherence.

Proposition C.6.6.15. Let C be a Grothendieck prestable 8-category and let Cě8 Ď C be
the localizing subcategory spanned by those objects X P C satisfying πnX » 0 for n ě 0.
Then C is coherent if and only if the quotient C { Cě8 is coherent.

Proof. Let us regard C { Cě8 as a full subcategory of C, and let L : C Ñ C { Cě8 denote a
left adjoint to the inclusion. Note that C { Cě8 contains every truncated object of C (so
that L is equivalent to the identity when restricted to τďn C, for any n ě 0). From this, we
deduce:
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piq An object of C { Cě8 is almost compact if and only if it is almost compact when
regarded as an object of C.

piiq An object X P C is almost compact if and only if LX P C { Cě8 is almost compact.

Suppose first that C is coherent. Then the collection of almost compact objects of C is
closed under finite limits. Applying piq, we deduce that the collection of almost compact
objects of C { Cě8 is closed under finite limits. For every object X P C { Cě8, our assumption
that C is coherent guarantees that we can find a morphism u :

À

Cα Ñ X in C, where each
Cα is an almost compact object of C and u induces an epimorphism on π0. Then Lpuq is
a morphism in C { Cě8 which is also an epimorphism on π0, whose domain Lp

À

Cαq can
be identified with a coproduct in the 8-category C { Cě8 of objects LCα, which are almost
compact by virtue of piiq. Allowing X to vary, we conclude that C { Cě8 is coherent.

We now prove the converse. Suppose that C { Cě8 is coherent. Then the collection
of almost compact objects of C { Cě8 is closed under finite limits. Using piiq and the left
exactness of L, we deduce that the collection of almost compact objects of C is closed under
finite limits. For every object X P C, our assumption that C { Cě8 is coherent guarantees
that we can find a map u :

À

Cα Ñ LX which is surjective on π0, where each Cα is an
almost compact object of C { Cě8. For each index α, set Cα “ Cα ˆLX X. Since L is left
exact, each of the projection maps Cα Ñ Cα induces an equivalence LCα » Cα. Using piiq,
we see that each Cα is an almost compact object of C. Amalgamating the projection maps
Cα Ñ X, we obtain a morphism u :

À

Cα Ñ X. Since u and u are equivalent after applying
the functor L, our assumption that u induces an epimorphism on π0 guarantees that u also
induces an epimorphism on π0. Allowing X to vary, we conclude that C is coherent, as
desired.

C.6.7 Anticomplete Coherent Grothendieck Prestable 8-Categories

In the setting of anticomplete Grothendieck prestable 8-categories, coherence takes a
particularly simple form.

Theorem C.6.7.1. Let C be a Grothendieck prestable 8-category. The following conditions
are equivalent:

paq The 8-category C is a compactly generated, the functor Ω : C Ñ C preserves compact
objects, and every compact object of C is truncated.

pbq There exist an essentially small stable 8-category E equipped with a bounded t-structure
pEě0, Eď0q and an equivalence C » IndpEě0q.

pcq The Grothendieck prestable 8-category C is anticomplete and coherent.
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pdq The Grothendieck prestable 8-category C is anticomplete and weakly coherent.

Proof. The equivalence paq ô pbq follows from Proposition C.5.5.5. We next show that
pbq ñ pcq. Assume that there is an equivalence f : IndpEě0q » C for some essentially small
stable 8-category E equipped with a bounded t-structure pEě0, Eď0q. Proposition C.5.5.5
implies that C is anticomplete. Let us abuse notation by identifying Eě0 with its essential
image under the fully faithful embedding

Eě0 ãÑ IndpEě0q
f
ÝÑ C .

For each n ě 0, the functor f induces an equivalence IndpEě0X Eďnq » τďn C. It follows
that an object X P C is almost compact if and only if each truncation τďnX belongs to
Eě0. From this description, it follows immediately that the functor Ω : C Ñ C carries almost
compact objects to almost compact objects. Moreover, the collection of almost compact
objects of C contains Eě0 and is therefore a generating subcategory of C » IndpEě0q. This
proves that C is coherent, and Proposition C.5.5.5 implies that C is anticomplete.

The implication pcq ñ pdq is obvious. We will complete the proof by showing that
pdq implies pbq. Assume that C is anticomplete and weakly coherent. Let Eě0 be the full
subcategory of C spanned by those objects which are truncated and almost compact. Then
Eě0 is closed under finite colimits in C and is therefore a prestable 8-category. Since C is
weakly coherent, the 8-category Eě0 is also closed under finite limits in C. Let E “ SWpEě0q

be the Spanier-Whitehead 8-category of Eě0 and let us abuse notation by identifying Eě0
with its image in E , so that E admits a right-bounded t-structure pEě0, Eď0q (see Proposition
C.1.2.9). By construction, every object of Eě0 is truncated, so this t-structure is also left-
bounded. Set C1 “ IndpEě0q, so that the inclusion Eě0 ãÑ C extends to functor λ : C1 Ñ C
which preserves small colimits and finite limits. Using Proposition C.6.5.4, we see that λ
induces an equivalence

τďn C1 » IndpEě0X Eďnq Ñ τďn C

for each n ě 0. The 8-category C1 is anticomplete (by virtue of the implication pbq ñ pcq)
and the 8-category C is anticomplete by assumption. Applying Proposition C.5.9.2, we
deduce that λ is an equivalence of 8-categories.

Corollary C.6.7.2. Let C be a Grothendieck prestable 8-category. The following conditions
are equivalent:

piq The Grothendieck prestable 8-category C is weakly coherent.

piiq There exists a coherent Grothendieck prestable 8-category C1 and a functor λ P

LFunlexpC1, Cq which induces an equivalence of completions pC
1
» pC.
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Proof. The implication piiq ñ piq follows immediately from Corollary C.6.5.5. Con-
versely, suppose that piq is satisfied. Using Proposition C.5.5.9, we can choose a map
λ P LFunlexpC1, Cq which induces an equivalence of completions pC

1
Ñ pC, where C1 is anticom-

plete. Since C is weakly coherent, the Grothendieck prestable 8-category C1 is also weakly
coherent (Corollary C.6.5.5) and therefore coherent (Theorem C.6.7.1).

Combining Theorem C.6.7.1 with Corollary C.6.1.5, we obtain the following:

Corollary C.6.7.3. Let CatPSt,b
8 denote the full subcategory of CatPSt

8 spanned by those
small prestable 8-categories C satisfying the following conditions:

piq The 8-category C admits finite limits.

piiq Every object of C is truncated.

Then the construction C ÞÑ IndpCq determines a fully faithful embedding Ind : CatPSt,b
8 ãÑ

Grothc
8, whose essential image is spanned by those Grothendieck prestable 8-categories which

are coherent and anticomplete.

Remark C.6.7.4. An 8-category C which satisfies conditions piq and piiq of Corollary
C.6.7.3 is automatically idempotent complete (since C “

Ť

ně0 τďn C, and each τďn C is an
pn` 1q-category which admits finite limits).

Remark C.6.7.5. Let C and D be prestable 8-categories satisfying conditions piq and piiq
of Corollary C.6.7.3. Then a functor f : C Ñ D is left exact if and only if the induced map
Indpfq : IndpCq Ñ IndpDq is left exact (this follows from the left exactness of filtered colimits
in D). Restricting to left exact functors on both sides, the equivalence of Corollary C.6.7.3
can be regarded a “linear analogue” of Theorem A.7.5.3.

C.6.8 Locally Noetherian Abelian Categories

We now give a brief review of the classical theory of locally Noetherian abelian categories.
For a more complete exposition, we refer the reader to [74].

Definition C.6.8.1. Let A be an abelian category. For every object X P A, we let SubpXq
denote the partially ordered set of (isomorphism classes of) subobjects of X. We say that
an object X P A is Noetherian if the partially ordered set SubpXq satisfies the ascending
chain condition: that is, if every increasing sequence

X0 Ď X1 Ď X2 Ď X3 Ď ¨ ¨ ¨

in SubpXq eventually stabilizes.



2086 APPENDIX C. PRESTABLE 8-CATEGORIES

Proposition C.6.8.2. Let A be an abelian category containing an exact sequence 0 Ñ
X 1 Ñ X Ñ X2 Ñ 0. Then X is Noetherian if and only if X 1 and X2 are Noetherian.
In other words, the collection of Noetherian objects of A is closed under the formation of
subobjects, quotient objects, and extensions.

Proof. It is easy to see that if X is Noetherian, then X 1 and X2 must be Noetherian (note
that we can identify SubpX 1q and SubpX2q with partially ordered subsets of SubpXq). To
prove the converse, assume that X 1 and X2 are Noetherian, and suppose we are given an
ascending sequence X0 Ď X1 Ď X2 Ď ¨ ¨ ¨ of subobjects of X. For each n ě 0, let X 1n and
X2n denote the kernel and image of the composite map Xn ãÑ X Ñ X2, respectively. Then
we can identify tX 1nuně0 as an ascending chain of subobjects of X 1, and tX2nuně0 as an
ascending chain of subobjects of X2. Using our assumption that X 1 and X2 are Noetherian,
we deduce that there is an integer n0 for which the inclusions X 1n0 ãÑ X 1n and X2n0 ãÑ X2n
are isomorphisms for n ě n0. Applying the Snake Lemma to the commutative diagram

0 // X 1n0

��

// Xn0
//

��

X2n0

��

// 0

0 // X 1n // Xn
// X2n // 0,

we deduce that the chain tXnuně0 is constant for n ě n0.

Corollary C.6.8.3. Let A be an abelian category containing an exact sequence X 1 Ñ X Ñ

X2. If X 1 and X2 are Noetherian, then X is Noetherian.

Proposition C.6.8.4. Let A be a Grothendieck abelian category containing an object X.
The following conditions are equivalent:

p1q The object X is the colimit of its Noetherian subobjects.

p2q The object X can be written as the colimit of a small filtered diagram tXαu, where
each Xα is a Noetherian object of A.

p3q There exists an epimorphism
À

αXα Ñ X, where each Xα is a Noetherian object of
A.

Proof. It follows from Proposition C.6.8.2 that the Noetherian subobjects of X form a
filtered partially ordered set, which shows that p1q ñ p2q. The implication p2q ñ p3q is
immediate. To show that p3q implies p1q, we note that the existence of an epimorphism
À

αPAXα Ñ X implies that X can be identified with the colimit of the subobjects given by
the images of the maps

À

αPA0
Xα Ñ X, where A0 ranges over the finite subsets of A; each

of these images is a Noetherian subobject of X by virtue of Proposition C.6.8.2.
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Definition C.6.8.5. Let A be an abelian category. We will say that A is locally Noetherian
if it is a Grothendieck abelian category and every object X P A satisfies the equivalent
conditions of Proposition C.6.8.4.

Example C.6.8.6. Let R be an associative ring. Then the abelian category LMod♥
R of

(discrete) left R-modules is locally Noetherian if and only if the ring R is left Noetherian
(that is, if and only if every left ideal I Ď R is finitely generated).

Proposition C.6.8.7. Let A be a locally Noetherian abelian category and let X P A be a
Noetherian object. Then X is compact: that is, the functor Y ÞÑ HomApX,Y q commutes
with filtered colimits.

Proof. Suppose we are given a diagram tYαuαPA in the category A which is indexed
by a filtered partially ordered set A. We wish to show that the canonical map θ :
lim
ÝÑαPA

HomApX,Yαq Ñ HomApX,Y q is an isomorphism. We first show that θ is injec-
tive. Suppose that we are given an element f P kerpθq, which we can represent by a
morphism fα : X Ñ Yα for some α P A. For each β ě α, let Kβ Ď X denote the kernel
of the composite map X

fα
ÝÑ Yα Ñ Yβ. Since A is a Grothendieck abelian category, the

vanishing of the map θpfq : X Ñ Y guarantees that X is the direct limit of the subobjects
tKβuβěα. Our assumption that X is Noetherian guarantees that X “ Kβ for some β ě α,
so that the composite map X

fα
ÝÑ Yα Ñ Yβ vanishes and therefore f “ 0, as desired.

We now verify the surjectivity of the map θ. Fix a map g : X Ñ Y . For each α P A, let
Xα denote the fiber product X ˆY Yα. Let qα : Xα Ñ X denote the projection onto the
first factor. To prove that g belongs to the image of θ, it will suffice to show that qα admits
a section for some α P A. Since A is a Grothendieck abelian category, the canonical map
lim
ÝÑ

Xα Ñ X is an isomorphism. In particular, X is the direct limit of the the diagram of
subobjects tim qαuαPA. Since X is Noetherian, it follows that there exists an index α P A
such that qα is an epimorphism. Write Xα as a filtered colimit of Noetherian subobjects
tXα,iuiPI . Then X is the colimit of the diagram of subobjects tim qα|Xα,iuiPI , so there
exists an index i P I such that qα|Xα,i is an epimorphism. Let K “ kerpqα|Xα,i . Then K

is Noetherian (Proposition C.6.8.2), and the composite map K ãÑ Xα Ñ lim
ÐÝβěα

Xβ » X

vanishes. It follows from the first part of the proof that there exists β ě α for which the
composite map K ãÑ Xα Ñ Xβ vanishes. It follows that the map qβ admits a section (given
by composing the induced map Xα,i{K Ñ Xβ with the inverse of the canonical isomorphism
Xα,i{K

„
ÝÑ X).

Corollary C.6.8.8. Let A be a locally Noetherian abelian category, and let A0 Ď A be the
full subcategory spanned by the Noetherian objects. Then the inclusion A0 ãÑ A extends to
an equivalence of 8-categories F : IndpA0q Ñ A.
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Proof. There exists an essentially unique functor F : IndpA0q Ñ A which extends the
inclusion map and commutes with filtered colimits. It follows from Proposition C.6.8.7 that
F is fully faithful and from Definition C.6.8.5 that F is essentially surjective.

Corollary C.6.8.9. Let A be a locally Noetherian abelian category. Then A is compactly
generated, and an object X P A is compact if and only if it is Noetherian.

Remark C.6.8.10. Suppose that A0 is a small abelian category in which every object is
Noetherian. Then IndpA0q is a locally Noetherian abelian category, and an object of IndpA0q

is Noetherian if and only if it belongs to the essential image of the fully faithful embedding
j : A0 ãÑ IndpA0q. To prove this, we first note that IndpA0q compactly generated. It follows
that filtered colimits in IndpA0q are left exact and therefore IndpA0q is a Grothendieck abelian
category. We next claim that if M P IndpA0q belongs to the essential image of j, then every
subobject of M belongs to the essential image of j. To prove this, write M “ jpNq for some
N P A0. Let M 1 be a subobject of M , and write M 1 » lim

ÝÑαPA
jpNαq where the colimit is

taken over some filtered partially ordered set A. Then M 1 » lim
ÝÑαPA

jpimpNα Ñ Nqq. Since
N is Noetherian, we deduce that there exists α P A such that M 1 » impNα Ñ Nq, so that
M 1 belongs to the image of j.

The above argument shows that for each object N P A0, the partially ordered set
of isomorphism classes of subobjects of N is isomorphic to the partially ordered set of
isomorphism classes of subobjects of jpNq. Since N P A0 is Noetherian, we conclude that
jpNq P IndpA0q is Noetherian. Now suppose that M » lim

ÝÑαPA
jpNαq is an arbitrary object of

IndpA0q. Then M is equivalent to the filtered colimit of subobjects lim
ÝÑαPA

impjpNαq ÑMq.
Each of these subobjects is a quotient of jpNαq, and therefore Noetherian. This proves that
the abelian category IndpA0q is locally Noetherian. If the object M above is Noetherian,
then there exists an index α P A such that M » impjpNαq ÑMq. Then M is a quotient of
jpNαq. Since kerpjpNαq ÑMq is a subobject of jpNαq, it belongs to the essential image of
j. It follows that every Noetherian object M P IndpA0q belongs to the essential image of j.

The collection of locally Noetherian abelian categories is closed under passage to left
exact localization:

Proposition C.6.8.11. Let A be a locally Noetherian abelian category and let A0 Ď A be
a localizing subcategory. Then A0 and A {A0 are locally Noetherian.

Proof. It follows immediately from the definitions that A0 is locally Noetherian. Let L : AÑ
A {A0 be a left adjoint to the inclusion. For each object X P A, let SubApXq denote the set
of isomorphism classes of subobjects of X, and for Y P A {A0 define SubA {A0pY q similarly.
For each object X P A, the construction pY0 P SubA {A0pLXqq ÞÑ pY0 ˆLX X P SubApXqq

determines an order-preserving map ρ : SubA {A0pLXq Ñ SubApXq. It follows from the left
exactness of L that this map is injective (it has a left inverse, given by the construction
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pX0 P SubApXqq ÞÑ pLX0 P SubA {A0pLXqq). Consequently, if X is a Noetherian object of
A, then LX is a Noetherian object of A {A0. Every object X P A can be written as a union
of its Noetherian subobjects, so that LX P A {A0 can be written as a filtered colimit of
subobjects which are Noetherian in A {A0. Since the functor L is essentially surjective, it
follows that A {A0 is locally Noetherian as desired.

C.6.9 Locally Noetherian Prestable 8-Categories

We now introduce an 8-categorical analogue of Definition C.6.8.5.

Definition C.6.9.1. Let C be prestable 8-category. We will say that C is locally Noetherian
if it is a weakly coherent Grothendieck prestable 8-category (Definition C.6.5.1) and the
abelian category C♥ is locally Noetherian.

Remark C.6.9.2. Let C be a Grothendieck prestable 8-category. The condition that C is
locally Noetherian depends only on the completion of C. In particular, if F : C Ñ D is a
functor of Grothendieck prestable 8-categories which induces an equivalence τďn C » τďnD
for n ě 0, then C is locally Noetherian if and only if D is locally Noetherian (see Corollary
C.6.5.5).

Proposition C.6.9.3. Let C be a locally Noetherian prestable 8-category and let X be an
object of C. Then X is almost compact if and only if πnX is a Noetherian object of C♥ for
each n ě 0.

Proof. Combine Corollaries C.6.4.6 and C.6.8.9.

Example C.6.9.4. Let R be a connective E1-ring. Then R is left Noetherian if and only
if the Grothendieck prestable 8-category LModcn

R is locally Noetherian (this follows from
Examples C.6.5.3 and C.6.8.6.

Example C.6.9.5. Let A be a locally Noetherian abelian category. Then the Grothendieck
prestable 8-categories qDpAqě0, DpAqě0, and pDpAqě0 are locally Noetherian (this follows
immediately from Corollary C.6.5.9).

Warning C.6.9.6. It follows immediately from the definition that if C is a locally Noetherian
prestable 8-category, then the heart C♥ is a locally Noetherian abelian category. However,
the converse is not true in general. For a counterexample, take C “ Mod♥

R, where R is
a connective E8-ring for which π0R is Noetherian but some homotopy group πnR is not
finitely generated as a module over π0R).

Proposition C.6.9.7. Let C be a Grothendieck prestable 8-category. The following condi-
tions are equivalent:
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paq The prestable 8-category C is locally Noetherian.

pbq For every integer n ě 0, the 8-category τďn C is compactly generated. Moreover, if
C P τďn C is a compact object, then πnC is a Noetherian object of C♥.

Proof. The implication paq ñ pbq follows from Proposition C.6.9.3. Conversely, suppose that
pbq is satisfied. We will prove the following:

p˚q For n ě 0, an object C P τďn C is compact if and only if πmC is a Noetherian object
of C♥ for 0 ď m ď n.

Assume p˚q for the moment. Since the collection of Noetherian objects of C♥ is closed
under finite direct sums (Proposition C.6.8.2), it follows that the collection of compact
objects of τďn C is also closed under finite direct sums, for each n ě 0. Moreover, if
f : C Ñ D is a morphism between compact objects of τďn C, then we have exact sequences
πm`1D Ñ πm fibpfq Ñ πmC in the abelian category C♥ where the outer terms are Noetherian
(by virtue of p˚q). It follows from Corollary C.6.8.3 that πm fibpfq is Noetherian for 0 ď m ď n,
so that fibpfq is also a compact object of τďn C (by virtue of p˚q). It follows that the
collection of compact objects of τďn C is closed under finite limits, so that C is weakly
coherent (Proposition C.6.5.4). Applying pbq in the case n “ 0, we see that C♥ is a compactly
generated abelian category in which every compact object is Noetherian, so that C♥ is locally
Noetherian and therefore C is locally Noetherian.

It remains to prove p˚q. The “only if” direction follows immediately from pbq (note that
if C is a compact object of τďn C, then τďmC is a compact object of τďm C for 0 ď m ď n).
To prove the converse, let us consider the following more refined statement:

p˚kq Let 0 ď k ď n and let C be an object of τďn C such that πmC is Noetherian for
0 ď m ď k. Then there exists a compact object D P τďn C and a map f : D Ñ C such
that the cofiber cofibpfq (formed in the 8-category C) satisfies πm cofibpfq » 0 unless
k ă m ď n.

Note that the “if” direction of pbq is an immediate consequence of p˚nq. Let us regard n as
fixed; we will prove assertion p˚kq using induction on k. The case k “ ´1 is trivial (in this
case, we can take C 1 “ 0). Let us therefore assume that k ě 0 and that C is an n-truncated
object of C such that πmC is Noetherian for 0 ď m ď k. Applying assumption pbq, we can
write C as the colimit of a filtered diagram tCαu, where each Cα is a compact object of
τďn C. It follows from our assumption that π0C is Noetherian that we can choose some
index α for which the map u : Cα Ñ C induces an epimorphism on π0. For every integer
m, we have a short exact sequence πm`1C Ñ πm fibpuq Ñ πmCα. Using assumption pbq and
Proposition C.6.8.2, we see that πm fibpuq is a Noetherian object of C♥ for m ă k. Applying
our inductive hypothesis, we deduce that there exists a compact object E P τďn C and a
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morphism g : E Ñ fibpuq such that πm cofibpgq vanishes unless k ď m ď n. Let D1 denote
the cofiber of the composite map E

g
ÝÑ fibpuq Ñ Cα, so that we have a cofiber sequence

cofibpgq Ñ D1
f 1
ÝÑ C. It follows that D1 is an n-truncated object of C. Moreover, it is a

compact object of τďn C (since both E and Cα are compact objects of τďn C).
Let K denote the kernel of the map pπnf 1q : πnD1 Ñ πnC, and let D be the cofiber of

the canonical map
ΣnK “ ΣnΩn fibpf 1q Ñ fibpf 1q Ñ D1.

Since D1 is a compact object of τďn C, assumption pbq implies that πnD1 is a Noetherian
object of C♥, so the subobject K Ď πnD

1 is also Noetherian. In particular, K is a compact
object of C♥ (Proposition C.6.8.7), so that ΣnK is a compact object of τďn C. It follows that
D “ cofibpK Ñ D1q is also a compact object of τďn C. The map f 1 admits an essentially
unique factorization D1 Ñ D

f
ÝÑ C. Unwinding the definitions, we have isomorphisms

πm cofibpfq „
ÐÝ πm cofibpf 1q » πm´1 cofibpgq for m ‰ n` 1 and πn`1 cofibpfq » 0. It follows

that πm cofibpfq vanishes unless k ă m ď n, so that f satisfies the requirements of p˚kq.

Proposition C.6.9.8. Let C be a Grothendieck prestable 8-category. Then C is locally
Noetherian if and only if it satisfies the following conditions:

piq The abelian category C♥ is locally Noetherian.

piiq Each Noetherian object C P C♥ is almost compact when viewed as an object of C.

Proof. The necessity of condition piq is immediate, and the necessity of piiq follows from
Proposition C.6.9.3. Conversely, suppose that conditions piq and piiq are satisfied; we wish to
show that C is locally Noetherian. We will show that C satisfies condition pbq of Proposition
C.6.9.7. Fix an integer n ě 0, and let E Ď τďn C be the full subcategory spanned by those
objects C P τďn C for which the objects πmC P C♥ are Noetherian for 0 ď m ď n. It follows
from piiq that each object of E is an almost compact object of C, and in particular a compact
object of τďn C. It follows that the inclusion E ãÑ τďn C extends to a fully faithful embedding
f : IndpEq Ñ τďn C which commutes with filtered colimits. To complete the proof, it will
suffice to show that f is essentially surjective. When n “ 0, this follows from Corollary
C.6.8.8. We now proceed by induction on n. Assume therefore that n ą 0 and that we are
given an object C P τďn C; we wish to show that C belongs to the essential image of f . Note
that we have a fiber sequence

C Ñ τďn´1C
η
ÝÑ Σn`1pπnCq

in the prestable 8-category C. Using our inductive hypothesis, we see that τďn´1C can be
written as the colimit of a filtered diagram tDαu, where each Dα is an pn ´ 1q-truncated
object of E . For each index α, let ηα denote the composite map Dα Ñ τďn´1 Ñ Σn`1pπnCq,
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so that C » lim
ÝÑ

fibpηαq. Since the essential image of f is closed under filtered colimits, it will
suffice to show that each fiber fibpηαq belongs to the essential image of f . Using assumption
piq (and Corollary C.6.8.8), we can write πnC as a union of Noetherian subobjects. Since Dα

is an almost compact object of C, the map ηα : Dα Ñ Σn`1pπnCq factors through Σn`1E for
some Noetherian subobject E Ď πnC. For every Noetherian subobject E1 Ď πnC containing
E, let ηE1 denote the composite map Dα Ñ Σn`1pEq Ñ Σn`1pE1q, so that we can identify
fibpηαq with the colimit lim

ÝÑEĎE1ĎπnC
fibpηE1q. We now complete the proof by observing that

each fibpηE1q belongs to E .

Proposition C.6.9.9. Let C be a locally Noetherian prestable 8-category, let C0 Ď C be a
localizing subcategory, and let L : C Ñ C { C0 be a left adjoint to the inclusion. Then:

p1q The functor L is almost compact (Definition C.6.6.10).

p2q The quotient C { C0 is locally Noetherian.

Proof. Let A0 “ C0X C♥, and let C1 be the smallest localizing subcategory of C which
contains A0. Then L factors as a composition C L1

ÝÑ C { C1
L2
ÝÑ C { C0, where L1 is a left

adjoint to the inclusion ι : C { C1 ãÑ C and the functor L2 induces an equivalence on
completions. By virtue of Proposition C.5.2.8, an object X P C is C1-local if and only if
Ext˚SppCqpA,Xq vanishes for each object A P A0. Since C is locally Noetherian, every object
A P A0 can be written as a union of Noetherian subobjects. Consequently, an object X P C
is C1-local if and only if Ext˚SppCqpA,Xq vanishes for every Noetherian object A P A0. Fix
an integer n ě 0. Since every Noetherian object of C♥ is compact when viewed as an object
of τďn C (Proposition C.6.9.8), it follows that the collection of n-truncated C1-local objects
of C is closed under filtered colimits. Allowing n to vary, we deduce that the functor L1 is
almost compact. Since L2 induces an equivalence on completions, it follows that the functor
L » L2 ˝ L1 is also almost compact.

We now claim that C { C0 is locally Noetherian. It follows from Proposition C.6.8.11 that
the abelian category pC { C0q

♥ » C♥ {A0 is locally Noetherian. Moreover, using p1q (or the
proof of Proposition C.6.8.11), we see that the functor L carries Noetherian objects of C♥

to Noetherian objects of pC { C0q
♥. Every object X P C♥ can be written as a filtered union

of its Noetherian subobjects tXαu, so that LX P pC { C0q
♥ is a filtered union of Noetherian

subobjects tLXαu. If LX is a Noetherian object of pC { C0q
♥, we must have LX » LXα

for some α. In this case, Xα is an almost compact object of C (Proposition C.6.9.8), so
that p1q implies that LX » LXα is an almost compact object of C { C0. In particular, every
Noetherian object of pC { C0q

♥ is an almost compact object of C { C0, so that C { C0 is locally
Noetherian by virtue of Proposition C.6.9.8.
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C.6.10 Injective Objects in the Locally Noetherian Setting

Let A be a locally Noetherian abelian category. It follows from Proposition C.5.6.12
that an object Q P A is injective if and only if the group Ext1

ApX,Qq vanishes for every
Noetherian object X P A. We now establish an 8-categorical analogue:

Proposition C.6.10.1. Let C be a locally Noetherian prestable 8-category and let Q P

SppCqď0. The following conditions are equivalent:

paq The object Q is injective: that is, for each object X P C♥, the groups ExtnSppCqpX,Qq

vanish for n ą 0 (see Definition HA.?? ).

pbq For each Noetherian object X P C♥, the groups ExtnSppCqpX,Qq vanish for n ą 0.

Proof. The implication paq ñ pbq is immediate. Conversely, suppose that pbq is satisfied.
Choose an object X P C♥ and an element η P ExtnSppCqpX,Qq for n ą 0, which we can
identify with a morphism f : X Ñ ΣnQ. We wish to show that f is nullhomotopic. Define a
transfinite sequence of subobjects tXα Ď Xu as follows:

• If α “ 0, we set Xα “ 0.

• If α is a nonzero limit ordinal, we set Xα “ lim
ÝÑβăα

Xβ.

• If α “ β ` 1 is a successor ordinal, we take Xα to be the preimage in X of a nonzero
Noetherian subobject Yα Ď X{Xβ , provided that such an object exists: otherwise, we
take Yα “ 0 and set Xα “ Xβ.

For each ordinal α, let Kα denote the homotopy fiber product tfu ˆMapSppCqpXα,ΣnQq t0u (in
other words, the classifying space for nullhomotopies of f |Xα). Note that K0 is contractible,
that Kα » lim

ÐÝβăα
Kβ when α is a nonzero limit ordinal, and that we have canonical fiber

sequences Kα
ρβ
ÝÑ Kβ Ñ MapSppCqpYα,ΣnQq when α “ β`1 is a successor ordinal. Since each

Yα is Noetherian, assumption pbq guarantees that the mapping spaces MapSppCqpYα,ΣnQq

are connected. It follows that each of the maps ρβ is surjective on connected components, so
that each of the spaces Kα is nonempty. Because X has a bounded number of isomorphism
classes of subobjects, we must have Xα » X for α " 0, so the fact that Kα is nonempty
guarantees that the map f : X Ñ ΣnQ is nullhomotopic as desired.

Proposition C.6.10.2. Let C be a Grothendieck prestable 8-category. Then C is locally
Noetherian if and only if it satisfied the following conditions:

piq The abelian category C♥ is locally Noetherian.

piiq The collection of injective objects of SppCq is closed under small filtered colimits.
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Proof. The necessity of condition piq is obvious, and the necessity of piiq follows from
Proposition C.6.10.1. Conversely, suppose that C satisfies conditions piq and piiq; we wish
to show that C is locally Noetherian. By virtue of Proposition C.6.9.8, it will suffice to
show that every Noetherian object X P C♥ is compact when viewed as an object of SppCqďn,
for every integer n ě 0. Our proof proceeds by induction on n; when n “ 0, the desired
result follows from Proposition C.6.8.7. To carry out the inductive step, it will suffice to
show that the construction pY P SppCqďnq ÞÑ pMapSppCqpX,Y q P Sq commutes with colimits
indexed by NpAq for every filtered partially ordered set A. Set C1 “ FunpNpAq, Cq and let
~Y be an object of SppC1qďn » FunpNpAq,SppCqďnq. Choose a morphism f : ~Y Ñ Σn ~Q in
SppC1q which exhibits ~Q as an injective hull of ~Y (Example C.5.7.9), so that ~Y 1 “ fibpfq
belongs to SppC1qďn´1. We then have a commutative diagram of fiber sequences

lim
ÝÑ

MapSppCqpX, ~Y
1pαqq //

ρ1

��

lim
ÝÑ

MapSppCqpX, ~Y pαqq //

ρ

��

lim
ÝÑ

MapSppCqpX,Σn ~Qpαqq

ρ2

��

MapSppCqpX, limÝÑ
~Y 1pαqq //MapSppCqpX, limÝÑ

~Y pαqq //MapSppCqpX,Σn lim
ÝÑ

~Qpαqq.

Note that for each α P A, evaluation at α determines a functor eα : SppC1q Ñ SppCq with a
t-exact left adjoint (given by left Kan extension along the inclusion tαu ãÑ A). It follows
that eα carries injective objects of SppC1q to injective objects of SppCq. In particular, the
objects ~Qpαq are injective for each α P A, so the mapping spaces MapSppCqpX,Σn ~Qpαqq are
n-connective Assumption piiq guarantees that lim

ÝÑ
~Qpαq is also an injective object of SppCq,

so that the codomain of ρ2 is also n-connective. It follows that the map

πmpρ
2q : πm lim

ÝÑ
MapSppCqpX,Σn ~Qpαqq Ñ πm MapSppCqpX,Σn lim

ÝÑ
~Qpαqq

is an isomorphism for every integer m: if m ‰ n, then both sides vanish; if m “ n, then
we invoke the fact that X is compact as an object of the abelian category C♥, by virtue of
Proposition C.6.8.7. It follows that ρ2 is a homotopy equivalence between connected spaces.
Consequently, to show that ρ is a homotopy equivalence, it will suffice to show that ρ1 is a
homotopy equivalence, which follows from our inductive hypothesis.

Corollary C.6.10.3. Let C be a locally Noetherian prestable 8-category. Then the collection
of injective objects of SppCq is closed under (possibly infinite) coproducts.

Definition C.6.10.4. Let C be a Grothendieck prestable 8-category and let Q be a nonzero
object of SppCq. We will say that Q is indecomposable if it cannot be written as a direct
sum Q1 ‘Q2, where Q1 and Q2 are nonzero objects of SppCq.

Remark C.6.10.5. Let C be a Grothendieck prestable 8-category and let Q be an injective
object of SppCq. Then Q is indecomposable if and only if π0Q is an indecomposable injective
object of the abelian category C♥ :this is an immediate consequence of Theorem C.5.7.4.
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We have the following analogue of Proposition C.5.6.16:

Proposition C.6.10.6. Let C be a locally Noetherian prestable 8-category and let Q be an
object of SppCq. The following conditions are equivalent:

p1q The object Q is injective.

p2q There exists an equivalence Q »
À

αQα, where each Qα is an injective object of SppCq.

p3q There exists an equivalence Q »
À

αQα, where each Qα is an indecomposable injective
object of SppCq.

Proof. The implication p3q ñ p2q is obvious and the implication p2q ñ p1q follows from
Corollary C.6.10.3. We will show that p1q ñ p3q. Let Q be an injective object of SppCq.
Then π0Q is an injective object of the abelian category C♥. Using Proposition C.5.6.16,
we can choose an equivalence u0 :

Ř

αQ0α » π0Q, where each Q0α is an indecomposable
injective object of C♥. Using Proposition C.5.7.8, we can lift each Q0α to an injective object
Qα P SppCq (which is indecomposable by virtue of Remark C.6.10.5). Applying Proposition
C.5.7.3 (and the injectivity of Q), we can lift u0 to a morphism u :

À

Qα Ñ Q in SppCq. It
follows from Corollary C.6.10.3 that the domain of u is injective. Since u0 is an isomorphism,
Theorem C.5.7.4 guarantees that u is an equivalence.

Example C.6.10.7. Let R be a Noetherian E8-ring. Using Corollary C.5.6.11 and Theorem
C.5.7.4, we see that the following conditions on an R-module Q are equivalent:

p1q The R-module Q is indecomposable and injective.

p2q The R-module Q is an injective hull (in the sense of Example C.5.7.9) of some residue
field κ of R.



Appendix D

Descent for Modules and Linear
8-Categories

Let f : U Ñ X be a map of schemes, and let p, q : U ˆX U Ñ U denote the two
projection maps. A descent datum is a pair pF , αq, where F is a quasi-coherent sheaf on
U and α : p˚F Ñ q˚F is an isomorphism of quasi-coherent sheaves on U ˆX U which
satisfies a suitable cocycle condition. There is a functor from the category of quasi-coherent
sheaves on X to the category of descent data, given by F 0 ÞÑ pf˚F 0, αq, where α denotes
the evident isomorphism

p˚pf˚F 0q » pf ˝ pq
˚F 0 “ pf ˝ qq

˚F 0 » q˚pf˚F 0q.

The classical theory of faithfully flat descent guarantees that this functor is an equivalence
of categories whenever the map f is faithfully flat and quasi-compact. This is the basis for
an important technique in algebraic geometry: one can often reduce questions about X (or
about quasi-coherent sheaves on X) to questions about U , which may be easier to answer.

In the special case where the schemes X “ SpecA and U “ SpecB are affine, the theory
of faithfully flat descent can be phrased entirely in the language of commutative algebra:
it asserts that if B is faithfully flat over A, then the category of (discrete) A-modules can
be identified with the category whose objects are pairs pMB, αq, where MB is a (discrete)
B-module and α : BbAMB ÑMB bAB is an isomorphism of pBbABq-modules satisfying
a cocycle condition. Our goal in this appendix is to discuss some analogous statements in a
higher-categorical setting, which differs in three important respects:

paq In place of the ordinary category Mod♥
A of discrete A-modules, we study the8-category

ModA of A-module spectra. This necessitates working with a more elaborate notion of
descent datum: to recover an A-module M from the tensor product MB “ B bAM ,
one needs more than just the equivalence α : B bA MB » MB bA B. Instead, we
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should ask that MB be promoted to an object of the totalization of the cosimplicial
8-category

ModB ////ModBbAB
//////ModBbABbAB

// ////// ¨ ¨ ¨ .

More informally, this amounts to the requirement that MB is equipped with an
equivalence α : B bAMB » MB bA B satisfying a cocycle condition up to coherent
homotopy.

pbq In order for the theory developed in this appendix to be useful for the study of spectral
algebraic geometry, it is important that we do not require that A and B are ordinary
commutative rings: the theory of faithfully flat descent makes sense more generally for
modules over E8-rings (in fact, many of the results of this appendix make sense more
generally for E2-rings).

pcq If A is an ordinary commutative ring, then one can study A-modules in any additive
category A (the usual theory of discrete A-modules is obtained by taking A to be
the category of abelian groups). More generally, if A is a (connective) E8-ring, one
can study A-modules in any additive 8-category C. Much of the basic apparatus of
descent theory makes sense in this more general setting (under some mild assumptions
on C).

We begin our study of descent in §D.1 by introducing the notion of an additive A-linear
8-category, where A is a connective E8-ring (Definition D.1.2.1). Roughly speaking, an
additive A-linear 8-category is a presentable 8-category C in which each mapping space
MapCpC,Dq can be regarded as (the 0th space of) a connective A-module spectrum. We
will be primarily interested in the situations where C is a stable 8-category (in which case
we can drop the connectivity assumption on A; see Variant D.1.5.1), but the cases where C
is a prestable 8-category or an ordinary abelian category are also of considerable interest.

Let A be a connective E8-ring and let C be an additive A-linear 8-category. Then
every object X P C can be regarded as an A-module in a canonical way. If φ : AÑ B is a
morphism of connective E8-rings, then one can consider B-modules in C: that is, objects
X P C which are equipped with an action of B which is compatible with the tautological
action of A. The collection of such B-modules forms an 8-category that we will denote
LModBpCq. In §D.2, we will see that the 8-category LModBpCq is naturally an additive
B-linear 8-category, which we can think of as obtained from C by extension of scalars along
the morphism φ (to emphasize this perspective, we will often denote LModBpCq by B bA C).

To every additive A-linear 8-category C and every morphism φ : AÑ B as above, one
can form a cosimplicial 8-category

LModBpCq //// LModBbABpCq
////// LModBbABbABpCq

// ////// ¨ ¨ ¨
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whose inverse limit can be thought of as B-modules in C equipped with descent data. The
fundamental question of this appendix can be formulated as follows: under what conditions
is this 8-category equivalent to C? In §D.3, we supply a partial answer to this question by
introducing the notion of a universal descent morphism of E8-rings. Roughly speaking, a
morphism φ : AÑ B is a universal descent morphism if every stable A-linear 8-category C
is equivalent to the totalization of the cosimplicial 8-category above. This condition can be
reformulated in more concrete terms and verified for a large class of morphisms of E8-rings
(including, for example, all morphisms which are faithfully flat and étale).

In §D.4, we study the problem of descent in the setting of a prestable A-linear 8-category
C which is not necessarily stable. In this case, one still has a descent theorem under a the
slightly more restrictive hypothesis that φ : A Ñ B is a faithfully flat universal descent
morphism (see Theorem D.4.1.6); this result applies in particular if φ is faithfully flat and
étale. In this case, there is a close relationship between properties of the 8-category C and
properties of the 8-category LModBpCq, which we will explore in detail in §D.5.

Unfortunately, we do not know if an arbitrary faithfully flat morphism of E8-rings
φ : A Ñ B is an universal descent morphism (this is true under some mild assumptions
regarding the cardinality of A and B, however: see Proposition D.3.3.1). Nevertheless, we
will show in §D.6 that many of the descent theorems established in §D.3 for universal descent
morphisms are valid for arbitrary faithfully flat morphisms under some mild additional
restrictions (see Theorem D.6.3.1).
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D.1 Ring Actions on 8-Categories

Let A be an additive category. Then A is enriched over the category of abelian groups:
for every pair of objects X,Y P A, the set HomApX,Y q of morphisms from X to Y admits
the structure of an abelian group, and for every triple of objects X,Y, Z P A the composition
map HomApY,Zq ˆHomApX,Y q Ñ HomApX,Zq is bilinear and is therefore classified by a
group homomorphism

HomApY, Zq bHomApX,Y q Ñ HomApX,Y q

(here the tensor product is formed in the category of abelian groups).
Many additive categories A which arise in practice come equipped with additional

structure. If R is a commutative ring, then the following data are equivalent:

paq An enrichment of A over the category of R-modules: that is, an R-module struc-
ture on each of sets HomApX,Y q for which the composition maps HomApY,Zq ˆ

HomApX,Y q Ñ HomApX,Zq are R-bilinear (and therefore classifies by R-module
homomorphisms HomApY,Zq bR HomApX,Y q Ñ HomApX,Y q).

pbq An action of R on each object X P A via a ring homomorphism φX : RÑ HomApX,Xq,
which depends functorially on X in the following sense: for every morphism f : X Ñ Y

in A and every element a P R, the diagram

X
f //

φXpaq
��

Y

φY paq
��

X
f // Y

commutes.

pcq An action of R on the identity functor idA: that is, a ring homomorphism φ : R Ñ
HomFunpA,AqpidA, idAq.

pdq A monoidal functor Φ : Modff
R Ñ FunpA,Aq which commutes with finite direct sums;

here Modff
R denotes the category of free R-modules of finite rank and we regard

FunpA,Aq as a monoidal category with respect to composition.

We will refer to any of these equivalent data as an action of R on the additive category
A.

In this section, we will introduce an 8-categorical generalization of the preceding
definition, where we allow A to be an additive 8-category and R to be a (connective) ring
spectrum. In this book, we will be primarily interested in the case where R is an E8-ring.
However, the definition below makes sense whenever R is an E2-ring, and working in this
greater generality has some advantages.
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D.1.1 Ring Actions on Additive 8-Categories

Let R be a connective E2-ring. We let LModff
R denote the full subcategory of LModR

spanned by those left R-modules which are free of finite rank over R. The full subcategory
LModff

R contains the unit object R P LModR and is closed under the tensor product bR,
and therefore inherits the structure of a monoidal 8-category.

Definition D.1.1.1. Let A be an additive 8-category and let R be a connective E2-ring.
An action of R on A is a monoidal functor LModff

R Ñ FunpA,Aq which commutes with
finite direct sums.

Remark D.1.1.2. Let A be an additive 8-category, let R be a connective E2-ring, and
let φ : LModff

R Ñ FunpA,Aq. be an action of R on A. Then φ carries each object of
LModff

R to a direct sum of finitely many copies of the identity functor idA. Consequently,
if Fun1pA,Aq is any full subcategory of FunpA,Aq which is closed under finite direct sums,
then φ automatically factors through Fun1pA,Aq. For example, we can take Fun1pA,Aq to
be the full subcategory FunπpA,Aq Ď FunpA,Aq spanned by those functors which preserve
finite products.

Remark D.1.1.3. Let A be an additive 8-category. Giving an action of a connective
E2-ring on A is equivalent to exhibiting A as an 8-category which is left-tensored over
the monoidal 8-category LModff

R via an action a : LModff
RˆAÑ A which preserves finite

direct sums in the first variable. By virtue of Remark ??, it follows automatically that a
preserves finite direct sums in the second variable as well.

Remark D.1.1.4. Let A be a small additive 8-category. Then the 8-category IndpAq is
also additive. Let us abuse notation by identifying A with its essential image under the
Yoneda embedding j : AÑ IndpAq, and let Fun1pIndpAq, IndpAqq denote the full subcategory
of FunpIndpAq, IndpAqq spanned by those functors which preserve small filtered colimits and
carry A into itself. Then the restriction functor Fun1pIndpAq, IndpAqq Ñ FunpA,Aq is an
equivalence of 8-categories.

Let R be a connective E2-ring. Invoking Remark D.1.1.2, we see that giving an action of R
on IndpAq is equivalent to giving an action of R on A itself. Using a similar argument (using
sifted colimits in place of filtered colimits), we see that giving an action of R on A is equivalent
to giving an action of R on the presentable additive 8-category PΣpAq “ FunπpAop,Sq.

In what follows, we will generally restrict our attention to the study of actions on
presentable additive 8-categories A (by virtue of Remark D.1.1.4, this does not really involve
any loss of generality).

Remark D.1.1.5. Let R be a connective E2-ring. Then the objects tRn P LModcn
R uně0

form a set of compact projective generators for LModcn
R which is closed under the formation
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fo finite coproducts (Corollary HA.7.1.4.15 ). It follows that we can identify LModcn
R with

the 8-category PΣpLModff
Rq obtained by freely adjoining sifted colimits to LModff

R.
Suppose that C is a presentable 8-category equipped with a monoidal structure for

which the tensor product b : Cˆ C Ñ C preserves small colimits separately in each variable,
let FunbpLModcn

R , Cq denote the 8-category of monoidal functors from LModcn
R to C, and

define FunbpLModff
R, Cq similarly. It follows from the formalism of §HA.4.8.1 that the

restriction functor FunbpLModcn
R , Cq Ñ FunbpLModff

R, Cq induces an equivalence from the
full subcategory of FunbpLModcn

R , Cq spanned by those monoidal functors which preserve
small colimits to the full subategory of FunbpLModff

R, Cq spanned by those functors which
preserve finite coproducts.

D.1.2 R-Linear 8-Categories

Let R be a connective E2-ring. Applying Remark D.1.1.5 in the special case where
C “ LFunpA,Aq for some presentable additive 8-category A, we see that the following data
are equivalent:

piq Actions of R on A: that is, monoidal functors LModff
R Ñ FunpA,Aq which preserve

finite coproducts.

piiq Monoidal functors LModff
R Ñ LFunpA,Aq which preserve finite coproducts (see Remark

D.1.1.2).

piiiq Monoidal functors LModcn
R Ñ LFunpA,Aq which preserve small colimits.

pivq Left actions of LModcn
R (regarded as an algebra object of the 8-category PrL) on A

(regarded as an object of PrL).

This motivates the following definition:

Definition D.1.2.1. Let R be a connective E2-ring, and regard the monoidal 8-category
LModcn

R as an algebra object of the 8-category PrL of presentable 8-categories. We
let LinCatAdd

R denote the 8-category LModLModcn
R
pPrLq. We will refer to the objects of

LinCatAdd
R as additive R-linear 8-categories, and to LinCatAdd

R itself as the 8-category of
R-linear 8-categories.

Remark D.1.2.2. Let R be a connective E2-ring and let A P LinCatAdd
R be a presentable

8-category equipped with an action of LModcn
R . Then A can also be regarded as a module

over the 8-category LModcn
S “ Spcn, and is therefore automatically additive (Corollary

C.4.1.3). Conversely, if A is a presentable additive 8-category, then the preceding discussion
shows that promoting A to an object of LinCatAdd

R is equivalent to giving an action of R on
A (in the sense of Definition D.1.1.1).
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Remark D.1.2.3. If R is a discrete commutative ring, then the theory of additive R-linear
8-categories is closely related to the theory of differential graded categories over R (see
§HA.1.3.1 ).

Notation D.1.2.4. Let R be an E2-ring and let A be an additive R-linear 8-category.
The action of R on A determines a functor a : LModcn

R ˆAÑ A. Given a connective left
R-module M and an object X P A, we will denote the image of pM,Xq under this functor
by M bR X.

Warning D.1.2.5. Let R be a connective E2-ring. We have defined an additive R-linear
8-category to be a presentable 8-category A equipped with a left action of the presentable
monoidal 8-category LModcn

R . There are several obvious variants:

paq We can consider right actions of LModcn
R on A.

pbq We can consider left actions of RModcn
R on A.

pcq We can consider right actions of RModcn
R on A.

Using the fact that the matrix
˜

´1 0
0 ´1

¸

belongs to the identity component of the orthog-

onal group Op2q (which acts on the E2-operad), we see that datum pcq is (noncanonically)
equivalent to the datum of an action of R on A, and the data paq and pbq are (noncanonically)
equivalent to one another (both are equivalent to giving an action of the E2-ring Rrev on
A, where Rrev denotes the reverse of R in the sense of Construction HA.5.2.5.18 ). Note
that this somewhat technical point is relevant only when R is not fully commutative: if
R is a connective E8-ring, then the data paq, pbq, and pcq are all canonically equivalent to
supplying an action of R on A, and we can identify the LinCatAdd

R with the (symmetrically
defined) 8-category ModModcn

R
pPrLq.

Warning D.1.2.6. The definition of additive R-linear 8-category A supplied by Definition
D.1.2.1 is perhaps unnecessarily restrictive, because we require A to be a presentable 8-
category. A more liberal definition might encompass any additive 8-category A which
equipped with an action of R, in the sense of Definition D.1.1.1. Our choice of terminology
is motivated by the desire to avoid awkward language, since most of the actions we wish to
study in this book are on presentable 8-categories.

D.1.3 The Center of an Additive 8-Category

Let A be an additive category. Then the endomorphism ring E “ HomFunpA,AqpidA, idAq

is a commutative ring. For any commutative ring R, equipping A with the structure
of an R-linear category is equivalent to choosing a ring homomorphism φ : R Ñ E. In
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the 8-categorical setting, there is a similar picture with one important difference: the
endomorphism ring E is an E2-ring, rather than an E8-ring.

Notation D.1.3.1. For every connective E1-ring R, we can regard LModcn
R as a presentable

additive 8-category with a distinguished object (given by R, regarded as a left module over
itself). The construction R ÞÑ pLModcn

R , Rq determines a functor

Θ˚ : AlgpSpcnq Ñ AlgE0pPrAddq » AlgE0pModSpcnpPrLqq.

According to Theorem HA.4.8.5.11 , the functor Θ˚ admits a right adjoint G which carries a
presentable 8-category C with a distinguished object X P C to its endomorphism algebra
EndpXq P AlgpSpcnq, a connective E1-ring satisfying Ω8 EndpXq » MapCpX,Xq.

According to Theorem HA.4.8.5.16 , the functor Θ˚ is symmetric monoidal. It follows
that the functor G is lax symmetric monoidal. Suppose that C is an associative algebra
object of PrAdd: that is, a monoidal presentable 8-category for which tensor product functor
b : Cˆ C Ñ C preserves small colimits separately in each variable. Then we can regard
pC,1q as an algebra object of AlgE0pPrAddq, where 1 denotes the unit object of C. It follows
that Endp1q “ GpC,1q can be regarded as an object of AlgpAlgpSpcnqq » AlgE2pSpcnq. In
other words, we can regard Endp1q as an E2-ring.

Remark D.1.3.2. Let C be a monoidal 8-category with unit object 1. Assume that C
is additive and presentable and that the tensor product b : Cˆ C preserves small colimits
separately in each variable. For any connective E2-ring R, we have a canonical homotopy
equivalence MapAlgE2

pR,Endp1qq » MapAlgpPrLqpLModcn
R , Cq.

Construction D.1.3.3 (The Connective Center). Let A be a presentable additive 8-
category. Then the 8-category LFunpA,Aq of colimit-preserving functors from A to itself is
also an additive presentable 8-category, and the composition map

˝ : LFunpA,Aq ˆ LFunpA,Aq Ñ LFunpA,Aq

preserves small colimits separately in each variable and determines a monoidal structure on
LFunpA,Aq (in fact, it is strictly associative: it exhibits LFunpA,Aq as a simplicial monoid).
We let ZcnpAq denote the connective E2-ring given by EndpidAq (see Notation D.1.3.1). Then
ZcnpAq is a connective E2-ring which we will refer to as the connective center of A.

Remark D.1.3.4. Let A be a presentable additive8-category. For every connective E2-ring
R, Remark D.1.3.2 supplies a homotopy equivalence

MapAlgE2 pSpcnqpR,Z
cnpAqq » MapAlgpPrLqpLModcn

R ,LFunpA,Aqq.

In other words, giving an action of R on A is equivalent to giving a morphism of E2-rings
RÑ ZcnpAq.
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Remark D.1.3.5. Let A be a presentable additive 8-category. Then we have a canon-
ical homotopy equivalence Ω8 ZcnpAq » MapFunpA,AqpidA, idAq. In particular, for every
nonnegative integer n, we have a canonical isomorphism πn Z

cnpAq » MapFunpA,AqpidA,Ωn
Aq.

Example D.1.3.6. Let A be a presentable additive 8-category, and suppose that A is
equivalent to an m-category for some m ě 1. Then the functor Ωn

A : A Ñ A vanishes for
n ě m. It follows that the homotopy groups πn ZcnpAq vanish for n ě m.

In particular, if A is (equivalent to) an ordinary category, then the connective center
ZcnpAq is discrete. It follows that for every connective E2-ring R, giving an action of R on
A is equivalent to giving an action of the commutative ring π0R on A.

Example D.1.3.7 (Linearity over Fp). Let p be a prime number and let Fp denote the
finite field Z {pZ with p elements. A theorem of Hopkins and Mahowald asserts that, when
regarded as an E2-ring, the field Fp is obtained from the sphere spectrum by attaching a
single 1-cell to “kill p”: more precisely, if A “ Sym˚

E2pSq denotes the free E2-ring on a single
generator x of degree zero, then there is a pushout diagram of E2-rings

A
xÞÑ0 //

x ÞÑp

��

S

��
S // Fp.

It follows that if A is any presentable additive 8-category, then the mapping space
MapAlgE2 pSpcnpFp,Z

cnpAqq can be identified with the homotopy fiber product

t0u ˆMapFunpA,AqpidA,idAq tpu.

In particular, a presentable additive 8-category A admits an action of Fp if and only if the
map p : idA Ñ idA is nullhomotopic.

Example D.1.3.8 (Linearity over Q). Let A be a presentable additive 8-category. Suppose
that n ą 0 and that every object X P A, the map n idX : X Ñ X is an equivalence. It
follows that multiplication by n induces an equivalence from the identity functor idA to
itself, so that n is invertible in the commutative ring π0 Z

cnpAq. If this condition is satisfied
for every positive integer n, then π0 Z

cnpAq is an algebra over the field Q of rational numbers
and therefore the mapping space MapAlgE2 pSpcnqpQ,ZcnpAqq is contractible. It follows that
A admits an essentially unique action of the field Q of rational numbers. Conversely, if
A is an additive Q-linear 8-category, then the multiplication map n idX : X Ñ X is an
equivalence for each X P A and every positive integer n.

Example D.1.3.9. Let A be a Grothendieck abelian category, let DpAq denote the derived
8-category of A, and let C “ DpAqě0 be the associated Grothendieck prestable 8-category.
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It follows from Theorem C.5.4.9 that restriction to the heart induces a homotopy equivalence

MapFunpC,CqpidC , idCq » MapFunpA,AqpidA, idAq,

hence an equivalence of connective E2-rings ZcnpCq Ñ ZcnpAq (Remark D.1.3.5). In particular,
we deduce the following:

• The connective center ZcnpCq is discrete (see Example D.1.3.6).

• For every connective E2-ring R, giving an action of R on C is equivalent to giving
an action of R on the abelian category A (and any such action factors through the
discrete commutative ring π0R).

The same reasoning applies if we take C to be the complete Grothendieck prestable 8-
category pDpAqě0 (see Corollary C.5.9.5), or either of the stable 8-categories DpAq and
pDpAq.

D.1.4 Special Classes of R-Linear 8-Categories

In this book, we will generally be interested in studying an additive R-linear 8-categories
which satisfy some additional conditions.

Definition D.1.4.1. Let R be a connective E2-ring and let C P LinCatAdd
R be an additive

R-linear 8-category.

paq We say that C is a stable R-linear 8-category if the underlying 8-category of C is
stable.

pbq We say that C is a prestable R-linear 8-category if the underlying 8-category of C is a
Grothendieck prestable 8-category.

pcq We say that C is an abelian R-linear 8-category if the underlying 8-category of C is
(equivalent to) a Grothendieck abelian category.

We let LinCatSt
R denote the full subcategory of LinCatAdd

R spanned by the stable R-linear
8-categories, LinCatPSt

R Ď LinCatAdd
R the full subcategory spanned by the prestable R-linear

8-categories, and LinCatAb
R Ď LinCatAdd

R the full subcategory spanned by the abelian
R-linear 8-categories.

Warning D.1.4.2. As with Definition D.1.2.1, the terminology of Definition D.1.4.1 is
potentially misleading. Throughout this book, if we say that a stable 8-category C is
R-linear, we are implicitly asserting that C is a presentable stable 8-category. Likewise, if
we say that a prestable 8-category (or abelian category) C is R-linear, we are implicitly
asserting that C is a Grothendieck prestable 8-category (or Grothendieck abelian category).
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Of course, it is possible to adopt more liberal definitions which could be applied to more
general stable 8-categories, prestable 8-categories, or abelian categories. However, the
conventions of Definition D.1.4.1 are better suited to our undertakings in this book.

Remark D.1.4.3. Every presentable stable 8-category C is a Grothendieck prestable 8-
category. Consequently, for any connective E2-ring R, we can regard LinCatSt

R as a full
subcategory of LinCatPSt

R .

Example D.1.4.4. Let S denote the sphere spectrum, which we regard as a connective E2-
ring. Then the forgetful functor LinCatAdd

S Ñ PrL determines an equivalence of 8-categories
LinCatAdd

S » PrAdd, which restricts to give equivalences

LinCatSt
S » PrSt LinCatPSt

S » Groth8 LinCatAb
S » Grothab .

Remark D.1.4.5. Let C be a Grothendieck prestable 8-category. Then SppCq » Spb C is
a presentable stable 8-category and C♥ » Abb C is a Grothendieck abelian category. If C
is equipped with a left action of LModcn

R for some connective E2-ring R, then Spb C and
Abb C inherit left actions of LModcn

R . We therefore obtain forgetful functors

LinCatSt
R Ð LinCatPSt

R Ñ LinCatAb
R

SppCq Ð[ C ÞÑ C♥ .

In other words, if C is a prestable R-linear 8-category, then SppCq is a stable R-linear
8-category and C♥ is an abelian R-linear 8-category.

Remark D.1.4.6. Let A be a Grothendieck abelian category and let R be a connective
E2-ring. Then any colimit-preserving (monoidal) functor from the 8-category LModcn

R to the
category LFunpA,Aq automatically factors through the 8-category τď0 LModcn

R » LMod♥
R

of discrete left R-modules, which depends only on the underlying commutative ring π0R. It
follows that the natural map RÑ π0R induces an equivalence of 8-categories LinCatAb

π0R Ñ

LinCatAb
R .

D.1.5 The Stable Case

Let R be a connective E2-ring. The inclusion functor LModcn
R ãÑ LModR can be regarded

as a morphism between algebra objects of PrL, and therefore induces a forgetful functor

θ : LModLModRpPrLq Ñ LModLModcn
R
pPrLq » LinCatAdd

R .

This functor admits a left adjoint, given by the construction

A ÞÑ LModRbLModcn
R
A

» SppLModcn
R q bLModcn

R
A

» pSpbLModcn
R q bLModcn

R
A

» SpbA;
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here the unit for the adjunction is provided by the canonical map

A » S bA
Σ8
`

ÝÝÑ SpbA .

Since the functor Σ8` : S Ñ Sp exhibits the 8-category of spectra as an idempotent object
of PrL (see Proposition HA.4.8.2.18 ), it follows that the functor θ is fully faithful. Moreover,
the essential image of θ is spanned by those additive R-linear 8-categories A for which the
unit map AÑ SpbA is an equivalence of 8-categories: by virtue of Proposition ??, this is
the full subcategory LinCatSt

R Ď LinCatAdd
R of stable R-linear 8-categories. This motivates

the following variant of Definition D.1.4.1:

Variant D.1.5.1. Let R be an E2-ring (not necessarily connective). We let LinCatSt
R denote

the 8-category LModLModRpPrLq. We will refer to the objects of LinCatSt
R as stable R-linear

8-categories, and to LinCatSt
R as the 8-category of stable R-linear 8-categories.

Warning D.1.5.2. If R is a connective E2-ring, then the definition of a stable R-linear
8-category C given in Definition D.1.4.1 is equivalent (but not identical) to the definition
given in Variant D.1.5.1: in the first case, we require that C is equipped with a left action of
the monoidal 8-category LModcn

R of connective R-modules, and in the second we require
that it is equipped with a left action of the monoidal 8-category LModR of all R-modules.
It follows from the argument supplied above that if C is stable, then any action of LModcn

R

on C admits an essentially unique extension to an action of the larger 8-category LModR.
In what follows, we will abuse terminology by not distinguishing between the notions of

stable R-linear 8-category given in Definition D.1.4.1 and Variant D.1.5.1. The advantage of
the former is that it makes sense without the assumption that C is stable, and the advantage
of the latter is that it makes sense without the assumption that R is connective.

Remark D.1.5.3. Let R be an E2-ring and let C and C1 be stable R-linear 8-categories.
We will refer to the morphisms from C to C1 in LinCatSt

R as R-linear functors from C to
C1. Every R-linear functor F : C Ñ C1 determines a colimit-preserving functor between the
underlying (presentable) 8-categories of C and C1, which therefore admits a right adjoint G
(Corollary HTT.5.5.2.9 ). If the functor G commutes with small colimits, then it inherits the
structure of an R-linear functor: this is a special case of Remark D.7.4.4.

In the stable setting, we have the following variant of Construction D.1.3.3:

Construction D.1.5.4 (The Center). For every E1-ring R, we can regard LModR as a
presentable stable 8-category with a distinguished object (given by R, regarded as a left
module over itself). The construction R ÞÑ pLModR, Rq determines a functor Θ˚ : AlgpSpq Ñ
AlgE0pModSppPrLqq. According to Theorem HA.4.8.5.11 , the functor Θ˚ admits a right
adjoint G which carries a presentable stable 8-category C with a distinguished object X P C
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to its endomorphism algebra EndpXq P AlgpSpq, an E1-ring satisfying Ω8´n EndpXq »
MapCpX,ΣnXq for each n P Z.

According to Theorem HA.4.8.5.16 , the functor Θ˚ is symmetric monoidal. It follows
that the functor G is lax symmetric monoidal. Suppose that C is an associative algebra object
of ModSppPrLq: that is, a monoidal presentable stable 8-category for which tensor product
functor b : Cˆ C Ñ C preserves small colimits separately in each variable. Then we can
regard pC,1q as an algebra object of AlgE0pModSppPrLqq, where 1 denotes the unit object of C.
It follows that Endp1q “ GpC,1q can be regarded as an object of AlgpAlgpSpqq » AlgE2pSpq.
In other words, we can regard Endp1q as an E2-ring.

Suppose that C is an arbitrary presentable stable 8-category. Then the 8-category
LFunpC, Cq of colimit-preserving functors from A to itself is also a presentable stable 8-
category 8-category, and the composition map

˝ : LFunpC, Cq ˆ LFunpC, Cq Ñ LFunpC, Cq

preserves small colimits separately in each variable and determines a monoidal structure on
LFunpC, Cq. We let ZpCq denote the E2-ring given by EndpidCq “ GpLFunpC, Cq, idCq. Then
ZpCq is an E2-ring which we will refer to as the center of C.

Remark D.1.5.5. Let C be a presentable stable 8-category. For every E2-ring R, there is
a canonical homotopy equivalence

MapAlgE2 pSpqpR,ZpCqq » MapAlgpPrLqpLModR,LFunpC, Cqq.

In other words, promoting C to a stable R-linear 8-category (in the sense of Variant D.1.5.1)
is equivalent to providing a morphism of E2-rings R Ñ ZpCq. Using Remark D.1.3.4 and
Warning D.1.5.2, we deduce that the connective center ZcnpCq of Construction D.1.3.3 can
be identified with the connective cover of the center ZpCq.

Remark D.1.5.6. Let C be a presentable stable 8-category. For every integer n, we
have a canonical homotopy equivalence Ω8´n ZpCq » MapFunpC,CqpidC , idCq, and therefore a
canonical isomorphism of abelian groups πn ZpCq » Ext´nFunpC,CqpidC , idCq.

Remark D.1.5.7. If C is a presentable stable 8-category, then the E2-ring ZpCq can be
regarded as an incarnation of the topological Hochschild cohomology of the 8-category C.

D.1.6 Limits and Colimits

We close this section with a few remarks about limits and colimits of R-linear 8-
categories. Note that the 8-category PrL admits small limits and colimits (see §HTT.5.5.3 ).
Consequently, for any connective E2-ring R, the 8-category LinCatAdd

R “ LModLModcn
R
pPrLq

of additive R-linear 8-categories admits small limits and colimits. However, when we restrict
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our attention to additive R-linear 8-categories which satisfy additional requirements, then
the matter becomes more delicate.

Remark D.1.6.1 (Limits of Prestable R-Linear 8-Categories). Let R be a connective E2-
ring, and let LinCatPSt,lex

R denote the subcategory of LinCatPSt
R whose objects are prestable

R-linear 8-categories and whose morphisms are R-linear functors which preserve small
colimits and finite limits. We have an evident forgetful functor

q : LinCatPSt,lex
R Ñ LinCatPSt,lex

S » Grothlex
8 .

It follows from Proposition C.3.2.4 that for every small diagram p : K Ñ LinCatPSt,lex
R , the

composite map pq ˝ pq : K Ñ Grothlex
8 can be extended to a limit diagram which is preserved

by the inclusions Grothlex
8 ãÑ Groth8 ãÑ PrL. Combining this observation with Corollary

HA.4.2.3.3 , we deduce that the diagram p admits a limit in LinCatPSt,lex
R which is preserved

by the inclusion functors LinCatPSt,lex
R ãÑ LinCatPSt

R ãÑ LinCatAdd
R .

Remark D.1.6.2 (Filtered Colimits of Prestable R-Linear 8-Categories). Let R be a
connective E2-ring. It follows from Theorem C.3.3.1 that the full subcategory LinCatPSt

R Ď

LinCatAdd
R is closed under small filtered colimits. In particular, LinCatPSt

R admits small
filtered colimits, which are preserved by the forgetful functors

LinCatPSt
R ãÑ LinCatAdd

R Ñ PrAdd Ñ PrL .

Moreover, the subcategory LinCatPSt,lex
R Ď LinCatPSt

R also admits small filtered colimits,
which are preserved by the inclusion LinCatPSt,lex

R ãÑ LinCatPSt
R (Proposition C.3.3.5).

Remark D.1.6.3 (Colimits of Prestable R-Linear 8-Categories along Compact Functors).
Let R be a connective E2-ring and let LinCatPSt,c

R denote the subcategory of LinCatPSt
R whose

objects are prestable R-linear 8-categories and whose morphisms are compact R-linear
functors (see Definition C.3.4.2). We have an evident forgetful functor

q : LinCatPSt,c
R Ñ LinCatPSt,c

S » Grothc
8 .

It follows from Proposition C.3.5.1 that for every small diagram p : K Ñ LinCatPSt,c
R , the

composite map pq˝pq : K Ñ Grothc
8 can be extended to a colimit diagram which is preserved

by the inclusion Grothc
8 ãÑ Groth8. Moreover, this colimit is also preserved by the formation

of tensor product with any Grothendieck prestable 8-category C (Proposition C.4.5.1).
Combining this observation with Corollary HA.4.2.3.5 , we deduce that the diagram p admits
a colimit in LinCatPSt,c

R which is preserved by the inclusion LinCatPSt,c
R ãÑ LinCatPSt

R .

Remark D.1.6.4 (Limits and Colimits of Stable R-Linear 8-Categories). Let R be an
arbitrary E2-ring. Then the 8-category LinCatSt

R “ LModLModRpPrLq of stable R-linear
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8-categories admits small limits and colimits. In the special case where R is connective, we
can identify LinCatSt

R with a full subcategory of LinCatPSt,lex
R (since every right exact functor

between stable 8-categories is also left exact) and the inclusion LinCatSt
R ãÑ LinCatPSt,lex

R

preserves small limits.

Remark D.1.6.5 (Limits of Abelian R-Linear 8-Categories). Let R be a connective E2-
ring, and let LinCatAb,lex

R denote the subcategory of LinCatAb
R whose objects are abelian

R-linear 8-categories and whose morphisms are R-linear functors which preserve small
colimits and finite limits. We have an evident forgetful functor q : LinCatAb,lex

R Ñ Grothlex
ab .

It follows from Proposition C.5.4.21 that for p : K Ñ LinCatAb,lex
R , the composite map

pq˝pq : K Ñ Grothlex
ab can be extended to a limit diagram which is preserved by the inclusions

Grothlex
ab ãÑ Grothab ãÑ PrL. Combining this observation with Corollary HA.4.2.3.3 , we

deduce that the diagram p admits a limit in LinCatAb,lex
R which is preserved by the inclusion

functors LinCatAb,lex
R ãÑ LinCatAb

R ãÑ LinCatAdd
R .

Remark D.1.6.6 (Filtered Colimits of Abelian R-Linear 8-Categories). Let R be a connec-
tive E2-ring. Then the 8-category LinCatAb

R is closed under filtered colimits in LinCatAdd
R :

this can be deduced from a suitable 1-categorical analogue of Theorem C.3.3.1. In particular,
LinCatAb

R admits small filtered colimits, which are preserved by the forgetful functors

LinCatAb
R ãÑ LinCatAdd

R Ñ PrAdd Ñ PrL .

Moreover, the subcategory LinCatAb,lex
R Ď LinCatAb

R also admits small filtered colimits,
which are preserved by the inclusion LinCatAb,lex

R ãÑ LinCatAb
R .

Remark D.1.6.7. Let R be a connective E2-ring. Then the functors

LinCatSt
R Ð LinCatPSt

R Ñ LinCatAb
R

SppCq Ð[ C ÞÑ C♥

preserve small filtered colimits (since they are given by tensoring with the objects Sp, τď0 Spcn

in the 8-category PrAdd).

Remark D.1.6.8. Let R be a connective E2-ring. Then the functors

LinCatSt
R Ð LinCatPSt,lex

R Ñ LinCatAb,lex
R

SppCq Ð[ C ÞÑ C♥

preserve small limits: this follows from Proposition C.5.5.20 and Corollary C.3.2.5.

Warning D.1.6.9. Let R be a connective E2-ring. The stabilization construction C ÞÑ SppCq
determines a functor LinCatPSt,c

R Ñ LinCatSt
R which preserves small colimits. However, the

construction
LinCatPSt,c

R Ñ LinCatAb
R C ÞÑ C♥
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does not preserve small colimits in general. However, it does preserve all colimits in
LinCatPSt,c

R which remain colimits in the larger 8-category LinCatAdd
R : for example, colimits

of diagrams which satisfy the hypothesis described in Remark C.3.5.4.

D.2 Tensor Products and Extension of Scalars

Let R be a connective E2-ring. In §D.1, we introduced the the 8-category LinCatAdd
R of

additive R-linear 8-categories (Definition D.1.2.1), as well as the full subcategories

LinCatSt
R ,LinCatPSt

R ,LinCatAb
R Ď LinCatAdd

R

of stable, prestable, and abelian R-linear 8-categories. Note that these 8-categories can be
regarded as contravariant functors of R: if φ : RÑ R1 is a morphism of connective E2-rings,
then extension of scalars along φ determines a monoidal functor LModcn

R Ñ LModcn
R1 and

therefore a forgetful functor

LinCatAdd
R1 “ LModLModcn

R1
pPrLq Ñ LModLModcn

R
pPrLq “ LinCatAdd

R ,

which we will refer to as restriction of scalars along φ. In other words, every additive
R1-linear 8-category A can be regarded as an additive R-linear 8-category. Note that the
underlying 8-category A does not change, so if A is stable, prestable, or abelian as an
R1-linear 8-category, then it is also stable, prestable or abelian as an R-linear 8-category.
In other words, restriction of scalars induces forgetful functors

LinCatSt
R1 Ñ LinCatSt

R LinCatPSt
R1 Ñ LinCatPSt

R LinCatAb
R1 Ñ LinCatAb

R .

In this section, we will study left adjoints to these forgetful functors, given by extension of
scalars along the morphism φ : RÑ R1.

D.2.1 The Bar Construction

We begin with a general discussion of relative tensor products in the setting of presentable
8-categories.

Construction D.2.1.1. Let C be a monoidal 8-category, let M be an 8-category which
is right-tensored over C, and let N be an 8-category which is left-tensored over C. Assume
that C, M, and N are presentable, and that the tensor product functors

Mˆ C ÑM Cˆ C Ñ C CˆN Ñ N

preserve small colimits separately in each variable. Then we can regard C as an algebra
object in the 8-category PrL of presentable 8-categories, and we can regard M and N
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as right and left modules over C, respectively. We let MbC N denote the relative tensor
product of M with N over C in the 8-category PrL: that is, the geometric realization of
the two-sided bar construction BarCpM,N q‚ of Construction HA.4.4.2.7 .

Let us now specialize to the case where C “ LModcn
R for some connective E2-ring R. In

this case, the left action of C on N exhibits N as an additive R-linear 8-category, and
the right action of C on M exhibits M as an additive Rrev-linear 8-category, where Rrev

denotes the reverse of R (see Warning D.1.2.5). In this case, we will denote the tensor
product MbC N by MbRN , and refer to it as the tensor product of M with N over R.

Remark D.2.1.2 (Tensor Products of Ordinary Categories). Let R be an E2-ring and let
M P RModLModcn

R
pPrLq and N P LModLModcn

R
pPrLq be as Construction D.2.1.1. Suppose

that M and N are (equivalent to the nerves of) ordinary categories. Then the right and
left actions of LModcn

R on M and N factor through the monoidal functor π0 : LModcn
R Ñ

LMod♥
R. Moreover, the induced map of two-sided bar constructions BarLModcn

R
pM,N q‚ Ñ

BarLMod♥
R
pM,N q‚ induces an equivalence in each degree, and therefore an equivalence

MbRN “ |BarLModcn
R
pM,N q‚| » |BarLMod♥

R
pM,N q| “MbLMod♥

R
N .

Remark D.2.1.3. For every presentable 8-category C, let C♥ denote the full subcategory of
C spanned by the discrete objects. The construction C ÞÑ C♥ determines a functor from the
8-category PrL of presentable 8-categories to the 8-category ModSetpPrLq of presentable
1-categories. This functor is symmetric monoidal and commutes with small colimits, and
therefore commutes with the formation of tensor products. Consequently, if R is a connective
E2-ring and we are given objects M P RModLModcn

R
pPrLq and N P LModLModcn

R
pPrLq as in

Construction D.2.1.1, then we have canonical equivalences

pMbRN q♥ “ pMbModcn
R
N q♥

» M♥bMod♥
R
N♥

» M♥bRN♥

where the final equivalence is provided by Remark D.2.1.2.

Remark D.2.1.4 (Tensor Products of Stable Categories). Let R be a connective E2-ring
and let M P RModLModcn

R
pPrLq and N P LModLModcn

R
pPrLq be as Construction D.2.1.1.

Suppose thatM and N are stable. Then the right and left actions of LModcn
R onM and N

factor through the monoidal inclusion functor LModcn
R ãÑ LModR. As in Remark D.2.1.2,

the induced map of two-sided bar constructions BarLModcn
R
pM,N q‚ Ñ BarLModRpM,N q‚

induces an equivalence in each degree, and therefore an equivalence

MbRN “ |BarLModcn
R
pM,N q‚| » |BarLModRpM,N q| “MbLModR N .
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Variant D.2.1.5. Let R be an arbitrary E2-ring, and let N be a stable R-linear 8-category
in the sense of Variant D.1.5.1: that is, a presentable stable 8-category equipped with a
left action of the monoidal 8-category LModR. Similarly, let M be a presentable stable 8-
category equipped with a right action of the monoidal 8-category LModR. We let MbRN
denote the relative tensor product MbLModR N “ |BarLModRpM,N q‚| in the 8-category
PrL (or, equivalently, in the 8-category PrSt of presentable stable 8-categories). It follows
from Remark D.2.1.4 that when R is connective, this construction is canonically equivalent
to the relative tensor product given in Construction D.2.1.1.

Remark D.2.1.6. The construction C ÞÑ SppCq determines a symmetric monoidal functor
from the 8-category PrL of presentable 8-categories to the 8-category PrSt » ModSppPrLq

of presentable stable 8-categories. Consequently, if R is a connective E2-ring and we are
given objectsM P RModLModcn

R
pPrLq and N P LModLModcn

R
pPrLq as in Construction D.2.1.1,

then we have canonical equivalences

SppMbRN q “ SppMbModcn
R
N q

» SppMq bModR SppN q
» SppMq bR SppN q

where the final equivalence is provided by Remark D.2.1.4.

D.2.2 Closure Properties of bR

We now study the closure properties under tensor product of the special classes of
R-linear 8-categories introduced in Definition D.1.4.1.

Proposition D.2.2.1. Let R be a connective E2-ring, and suppose we are given 8-categories

M P RModLModcn
R
pPrLq N P LModLModcn

R
pPrLq.

Then:

paq The relative tensor product MbRN is an additive presentable 8-category.

pbq If either M or N is stable, then the relative tensor product MbRN is stable.

pcq IfM and N are Grothendieck prestable 8-categories, then the tensor productMbRN
is also a Grothendieck prestable 8-category.

pdq If M and N are (equivalent to) Grothendieck abelian categories, then the relative
tensor product MbRN is (equivalent to) a Grothendieck abelian category.
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Remark D.2.2.2. In the special case where R is the sphere spectrum, assertion pcq fo
Proposition D.2.2.1 reduces to Theorem C.4.2.1, and assertion pdq reduces to Theorem
C.5.4.16.

Proof of Proposition D.2.2.1. Since M is additive, it can be regarded as a module over the
commutative algebra object Spcn P CAlgpPrLq (Corollary C.4.1.3), so that MbRN is also
a module over Spcn and therefore additive (Corollary C.4.1.3). This proves paq. Similarly, if
M or N is stable, then it can be regarded as a module over Sp P CAlgpPrLq by virtue of
Proposition HA.4.8.2.18 , so that MbRN is also a module over Sp and therefore a stable
8-category. This proves pbq.

We now prove pcq. Let us identifyMbRN with the geometric realization of a simplicial
object E‚ of PrL given by the two-sided bar construction BarLModcn

R
pM,N q‚ of Construction

??. By virtue of Lemma HTT.6.5.3.7 , this is equivalent to the colimit of the underlying
semisimplicial object

prns P ∆op
s q ÞÑ En “MbpLModcn

R q
bn bN .

Note that each En is a Grothendieck prestable 8-category by virtue of Theorem C.4.2.1. To
show that the colimit (formed in the 8-category PrL) is again a Grothendieck prestable
8-category, it will suffice to show that the semisimplicial object E‚ satisfies the hypotheses
of Remark C.3.5.4: that is, for every injective map α : rms ãÑ rns, the associated functor
fα : En Ñ Em admits a right adjoint which preserves small colimits. Factoring α as a
composition, we may reduce to the case m “ n´ 1, so that fα is one of the face maps of the
simplicial object E‚. Unwinding the definitions, we see that fα is obtained from one of the
maps

a :MbLModcn
R ÑM m : LModcn

R bLModcn
R Ñ LModcn

R a1 : LModcn
R bN Ñ N

by tensoring with some auxiliary object of Groth8; here the functor a is given by the right
action of LModcn

R on M, the functor m is given by the monoidal structure on LModcn
R , and

the functor a1 is given by the left action of LModcn
R on N . By virtue of Remark C.4.4.5,

it will suffice to show that the functors a, m, and a1 admit right adjoints which preserve
small colimits. We will prove this for the functor a; the proof in the other cases differs by a
slight change in notation. We first note that a admits a right homotopy inverse f , given
by the natural map M »Mb Spcn ÑMbLModcn

R . Let g :MbLModR ÑM be a right
adjoint to f , so that g is a left homotopy inverse to the right adjoint of a. Consequently,
to show that the right adjoint of a preserves small colimits, it will suffice to show that g
is conservative and preserves small colimits. Using Theorem HA.4.8.4.6 , we can identify g
with the forgetful functor RModRpMq ÑM, so that the desired result is a special case of
Corollary HA.4.2.3.5 .
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We now prove pdq. Let us abuse notation by identifying M and N with their homotopy
categories (which are Grothendieck abelian categories). Define

M` “ DpMqě0 N` “ DpN qě0,

so thatM` and N` are Grothendieck prestable 8-categories whose hearts can be identified
with M and N , respectively. It follows from Example D.1.3.9 that the action of R on N
admits an essentially unique lift to an action of determines an action of R on N`; similarly,
the action of Rrev on M admits an essentially unique lift to an action of Rrev on M`.
Applying Remark D.2.1.3, we compute

MbRN » M♥
`bRN♥

`

» pM`bRN`q♥.

It follows from part pcq that the tensor product M`bRN` is a Grothendieck prestable
8-category, so that its heart pM`bRN`q♥ is a Grothendieck abelian category.

D.2.3 The Commutative Case

Let us now specialize to the study of additive 8-categories equipped with actions of
E8-rings.

Remark D.2.3.1. Let R be a connective E8-ring. Then Modcn
R is a symmetric monoidal

8-category which we can regard as a commutative algebra object of the 8-category PrL. In
this case, the 8-category

LinCatAdd
R “ LModLModcn

R
pPrLq » ModModcn

R
pPrLq

of additive R-linear 8-categories inherits the structure of a symmetric monoidal 8-category,
and the symmetric monoidal structure on LinCatAdd

R is given (at the level of the underlying
8-categories) by the relative tensor product bR of Construction D.2.1.1 (see Theorem
HA.4.5.2.1 ).

Note that the full subcategory LinCatPSt
R Ď LinCatAdd

R of prestable R-linear 8-categories
contains the unit object Modcn

R P LinCatAdd
R and is closed under tensor products (by virtue

of Proposition D.2.2.1). It follows that LinCatPSt
R inherits the structure of a symmetric

monoidal 8-category.

Variant D.2.3.2. Let R be a connective E8-ring. Then the abelian category Mod♥
R of dis-

crete R-modules can be regarded as a commutative algebra object of PrL. Consequently, the
8-category ModMod♥

R
pPrLq inherits the structure of a symmetric monoidal 8-category. Note

that we can identify ModMod♥
R
pPrLq with the full subcategory of LinCatAdd

R spanned by the
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additive R-linear 8-categories which are equivalent to their homotopy categories. It follows
from Remark D.2.1.2 that under this identification, the tensor product on ModMod♥

R
pPrLq

corresponds to the relative tensor product pM,N q ÞÑ MbRN of Construction D.2.1.1.
Let us identify 8-category ModAb

R of abelian R-linear 8-categories with a full subcategory
of ModMod♥

R
pPrLq. This subcategory contains the unit object Mod♥

R and is closed under
tensor products (by virtue of Proposition D.2.2.1), and therefore inherits the structure of a
symmetric monoidal 8-category.

Variant D.2.3.3. Let R be an arbitrary E8-ring. Then ModR is a symmetric monoidal
8-category which we can regard as commutative algebra object of the 8-category PrL. In
this case, the 8-category

LinCatSt
R “ LModLModRpPrLq » ModModRpPrLq

of stable R-linear 8-categories (as defined in Variant D.1.5.1) inherits a symmetric monoidal
structure whose tensor product is given (at the level of the underlying stable 8-categories) by
the the construction pM,N q ÞÑMbRN of Variant D.2.1.5 (which agrees with Construction
D.2.1.1 whenever R is connective).

Remark D.2.3.4. Let R be a connective E8-ring. Then the constructions

LinCatSt
R Ð LinCatPSt

R Ñ LinCatAb
R

SppCq Ð[ C ÞÑ C♥

are symmetric monoidal (with respect to the symmetric monoidal structures described in
Remark D.2.3.1, Variant D.2.3.2, and Variant D.2.3.3). Note that on all three 8-categories,
the tensor product functor bR is given by Construction D.2.1.1. However, the unit objects
are different: the unit object of LinCatSt

R is the stable 8-category ModR, the unit object of
LinCatPSt

R is the prestable 8-category Modcn
R , and the unit object of LinCatAb

R is the abelian
category Mod♥

R.

Remark D.2.3.5. If κ is a field, the tensor product

bκ : LinCatAb
κ ˆLinCatAb

κ Ñ LinCatAb
κ

is closely related to Deligne’s tensor product for (small) κ-linear abelian categories (see
[48]). The restriction to the setting of small abelian categories is technically inconvenient,
since Deligne’s tensor product is only well-defined (at least as an abelian category) under
somewhat restrictive assumptions. We refer the reader to [65] for further discussion.
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D.2.4 Extension of Scalars

We now return to the setting of E2-rings.

Construction D.2.4.1 (Extension of Scalars). Let φ : RÑ R1 be a morphism of connective
E2-rings. For every additive R-linear 8-category C, we let R1 bR C denote the additive
R1-linear 8-category given by the relative tensor product

Modcn
R1 bR C “ Modcn

R1 bModcn
R
C “ |BarModcn

R
pModcn

R1 , Cq‚|.

We will say that R1 bR C is obtained from C by extension of scalars along the morphism φ.

Remark D.2.4.2. If φ : RÑ R1 is a morphism of connective E2-rings, then extension of
scalars along φ determines a functor LinCatAdd

R Ñ LinCatAdd
R1 which is left adjoint to the

forgetful functor LinCatAdd
R1 Ñ LinCatAdd

R given by restriction of scalars along φ.

Variant D.2.4.3. Let φ : R Ñ R1 be an arbitrary morphism of E2-rings. If C is a stable
R-linear 8-category, we let R1 bR C denote the relative tensor product

LModR1 bR C “ LModR1 bLModR C “ |BarLModRpLModR1 , Cq‚|.

Then R1 bR C is a stable R1-linear 8-category which we will say is obtained from C by
extension of scalars along φ.

If R and R1 are connective, then the assumption that C is stable guarantees that the
inclusion maps

LModcn
R ãÑ LModR LModcn

R1 ãÑ LModR1

induce a levelwise equivalence of two-sided bar constructions BarLModcn
R
pLModcn

R1 , Cq‚ Ñ
BarLModRpLModR1 , Cq‚. Consequently, as an additive R1-linear 8-category, the extension of
scalars R1 bR C agrees with the one given by Construction D.2.4.1.

Remark D.2.4.4. Let R be a connective E2-ring and let C be an additive R-linear 8-
category. Let A be a connective E1-algebra over R (that is, an algebra object of the
monoidal 8-category LModcn

R ) and let LModApCq denote the 8-category of A-module
objects of C. Then Theorem HA.4.8.4.6 supplies an equivalence of 8-categories LModApCq »
LModcn

A bLModcn
R
C. In particular, if φ : RÑ R1 is a morphism of connective E2-rings, then

the extension of scalars R1 bR C can be identified with the 8-category LModR1pCq.
If the 8-category C is stable, then the same reasoning applies without any connectivity

assumptions on R and R1.

Proposition D.2.4.5. Let φ : RÑ R1 be a morphism of connective E2-rings. Then:

paq If C is a stable R-linear 8-category, then the extension of scalars R1 bR C is a stable
R-linear 8-category.
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pbq If C is a prestable R-linear 8-category, then the extension of scalars R1 bR C is a
prestable R1-linear 8-category.

pcq If C is an abelian R-linear 8-category, then the extension of scalars R1 bR C is an
abelian R1-linear 8-category.

Proof. Assertions paq and pbq follow immediately from Proposition D.2.2.1. To prove pcq,
we observe that C can be regarded as an Ab-module object of PrL (Proposition C.5.4.13),
so that R1 bR C inherits the structure of an Ab-module and is therefore equivalent to its
homotopy category. We therefore have equivalences

R1 bR C » pR1 bR Cq♥

» pModcn
R1 bModcn

R
Cq♥

» Mod♥
R1 bMod♥

R
C♥

» Mod♥
R1 bR C

so that the desired result again follows from Proposition D.2.2.1.

Remark D.2.4.6. One can deduce Proposition D.2.4.5 directly (without use of Proposition
D.2.2.1) from the description of the extension of scalars functor supplied by Remark D.2.4.4.

Remark D.2.4.7. Let φ : R Ñ R1 be a morphism of connective E2-rings and let C
be a prestable R-linear 8-category. Then the stabilization SppCq inherits a t-structure
pSppCqě0,SppCqď0q, where SppCqě0 is the essential image of the functor Σ8 : C Ñ SppCq.
Similarly, the 8-category

LModR1pSppCqq “ R1 bR SppCq » SppR1 bR Cq

inherits a t-structure, where LModR1pSppCqqě0 is the essential image of the functor

Σ8 : pR1 bR Cq Ñ SppR1 bR Cq.

We claim that this t-structure can be described explicitly as follows:

paq An object X P LModR1pSppCqq belongs to LModR1pSppCqqě0 if and only if its image
in SppCq belongs to SppCqě0.

pbq An object X P LModR1pSppCqq belongs to LModR1pSppCqqď0 if and only if its image
in SppCq belongs to SppCqď0.

To prove the “only if” directions of paq and pbq, we observe that the forgetful functor
G : LModR1pSppCqq Ñ SppCq is right adjoint to the stabilization of the natural map
C » RbR C Ñ R1 bR C, and therefore t-exact by the proof of Proposition D.2.2.1. The “if”
directions of paq and pbq then follow from the additional observation that the functor G is
conservative.
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D.3 Universal Descent Morphisms

Let f : A Ñ B be a faithfully flat map of commutative rings. A classical theorem of
Grothendieck asserts that the category of A-modules is equivalent to the category C whose
objects are pairs pM,ηq, where M is a B-module and η is a “descent datum” for M : that is,
an automorphism of B bAM which is compatible with the evident involution of B bA B
and satisfies a suitable cocycle condition. Our goal in this section is to prove an analogue
of Grothendieck’s result in the 8-categorical setting. More precisely, we will introduce
the notion of a universal descent morphism of ring spectra (Definition D.3.1.1) and show
that, if f : A Ñ B is a universal descent morphism, then the 8-category ModA can be
identified with a suitably defined 8-category of “B-modules equipped with descent data”
(Corollary D.3.4.2). Moreover, an analogous statement holds for any arbitrary stable A-linear
8-category (Theorem D.3.4.1).

The collection of universal descent morphisms is fairly robust: for example, it includes
all faithfully flat morphisms f : AÑ B for which π0B admits a countable (or even mildly
uncountable) presentation as a π0A-module (Proposition D.3.3.1).

Remark D.3.0.8. Most of the results of this section (including the definition of universal
descent morphism) were explained to us by Akhil Mathew. We refer the reader to [?] for
further discussion.

D.3.1 Propagating Modules

Definition D.3.1.1. Let A be an E2-ring, let M be a left A-module spectrum, and let C
denote the smallest stable subcategory of LModA which contains all A-modules of the form
N bAM and is closed under retracts. We will say that M is a propagating module for A
if C “ LModA. We will say that a morphism f : AÑ B of E2-rings is a universal descent
morphism if it exhibits B as a propagating module for A.

Warning D.3.1.2. In the situation of Definition D.3.1.1, the monoidal structure on LModA
is generally not symmetric. Consequently, the notion of propagating module is a priori
asymmetric as well: it might be more appropriate to refer to an object M P LModA as a
left propagating module if it satisfies the requirements of Definition D.3.1.1, and a right
propagating module if the 8-category LModA is generated (under finite colimits and retracts)
by objects of the form M bA N . However, we will see in a moment that an E1-algebra
B P AlgA is left propagating as an A-module if and only if it is right propagating (Remark
D.3.2.2). In practice, we will primarily be interested in universal descent morphisms between
E8-rings, in which case the potential asymmetry disappears.

Remark D.3.1.3. Let A be an E2-ring and let M P LModA. Then the full subcategory
C Ď LModA appearing in Definition D.3.1.1 is closed under the operation ‚ ÞÑ N bA ‚, for
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each object N P LModA. It follows that M is a propagating module for A if and only if
A P C.

Remark D.3.1.4. Let tAiu1ďiďn be a finite collection of E2-rings with product A, and let
M be a left A-module which we can write as a product

ś

1ďiďnMi, where each Mi is a left
Ai-module (see Lemma D.3.5.5). Then M is a propagating A-module if and only if each Mi

is a propagating Ai-module.

Remark D.3.1.5. Let φ : A Ñ A1 be a morphism of E2-rings, let M P LModA, and set
M 1 “ A1 bA M P LModA1 . Let C Ď LModA be the subcategory appearing in Definition
D.3.1.1, and let C1 Ď LModA1 be defined in an analogous way. Then the extension of scalars
functor

LModA Ñ LModA1 N ÞÑ A1 bA N

carries C into C1. In particular, if M is a propagating module for A, then A1 “ A1 bA A P C1,
so that M 1 is a propagating module for A1 (Remark D.3.1.3).

Proposition D.3.1.6. p1q Every equivalence of E2-rings is a universal descent morphism.

p2q Let f : A Ñ B and g : B Ñ C be universal descent morphisms in Algp2q. Then
g ˝ f : AÑ C is a universal descent morphism.

p3q Let

A
f //

��

B

��
A1

f 1 // B1

be a pushout diagram of E8-rings. If f is a universal descent morphism, then so is f 1.

p4q The collection of universal descent morphisms is closed under finite products.

Proof. Assertion p1q is obvious, assertion p3q follows immediately from Remark D.3.1.3, and
assertion p4q follows immediately from Remark D.3.1.4. To prove p2q, let C Ď LModA denote
the smallest stable subcategory of LModA which contains the essential image of the forgetful
functor LModC Ñ LModA and is closed under retracts. By virtue of Variant D.3.2.3, it will
suffice to show that C “ LModA. Since f is a universal descent morphism, we are reduced
to proving that C contains the essential image of the forgetful functor LModB Ñ LModA.
Let D Ď LModB be the inverse image of C; we wish to show that D “ LModB. Using
our assumption that g is a universal descent morphism, we are reduced to showing that
D contains the essential image of the forgetful functor LModC Ñ LModB, which follows
immediately from our construction.
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Remark D.3.1.7. Let A be an E8-ring, and let S be the collection of all universal descent
morphisms in the 8-category CAlgop

A . Then Proposition D.3.1.6 implies that S satisfies the
hypotheses of Proposition A.3.2.1, and therefore determines a Grothendieck topology on
the (large) 8-category CAlgop

A . We will refer to this Grothendieck topology as the universal
descent topology.

D.3.2 The Adams Tower

Let A be an E2-ring and let B P AlgA be an E1-algebra over A. Then we can associate
to B a cosimplicial object B‚ of LModA, given levelwise by the formula

rns ÞÑ Bn “ B bA ¨ ¨ ¨ bA B.

We let Tot‚pB{Aq denote the Tot-tower of this cosimplicial object: that is, the sequence of
morphisms

¨ ¨ ¨ Ñ Tot2pB{Aq Ñ Tot1pB{Aq Ñ Tot0pB{Aq » B

where TotnpB{Aq » lim
ÐÝrmsP∆ďn

Bm. We will abuse notation by identifying Tot‚pB{Aq with
the corresponding Pro-object of LModA.

Proposition D.3.2.1. Let A be an E2-ring and let B P AlgA be an E1-algebra over A. The
following conditions are equivalent:

p1q The image of B in LModA is a propagating module for A.

p2q The unit map f : AÑ B induces an equivalence

A » tTot‚pA{Aqu Ñ tTot‚pB{Aqu

in the 8-category PropLModAq.

Proof. We first prove that p1q ñ p2q. Let C denote the full subcategory of LModA spanned by
those objects M for which the canonical map θM : tMbATot‚pA{Aqu Ñ tMbATot‚pB{Aqu
is an equivalence in PropLModAq. Since the construction M ÞÑ θM is an exact functor, the
8-category C is a stable subcategory of LModA which is closed under retracts. It follows
immediately from the definitions that if M P C, then N bAM P C. Consequently, to prove
p2q, it will suffice to show C contains a propagating module for A. By virtue of p1q, it will
suffice to show that B P C. This is clear, since tB b Tot‚pB{Aqu can be identified with the
Tot-tower associated to the split cosimplicial object B‚`1.

Now suppose that p2q is satisfied. Let D denote the smallest stable subcategory of
LModA which contains all objects of the form N bA B and is closed under retracts. Then
B‚ is a cosimplicial object of D. Since each term in the tower Tot‚pB{Aq can be written as
a finite limit of objects of the form Bn, it follows that tTot‚pB{Aqu can be identified with a
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Pro-object of D. Assumption p2q implies that A is equivalent to a retract of TotnpB{Aq for
some integer n, so that A P D. Invoking Remark D.3.1.3, we see that D “ LModA, so that
condition p1q is satisfied.

Remark D.3.2.2. It follows from Proposition D.3.2.1 that if B P AlgA is an E1-algebra
over A, then B is left propagating if and only if it is right propagating, in the sense of
Warning D.3.1.2.

Variant D.3.2.3. Let f : AÑ B be a morphism of E2-rings. The following conditions are
equivalent:

p1q The map f is a universal descent morphism.

p2q Let C Ď LModA be the smallest stable subcategory which contains the essential
image of the forgetful functor LModB Ñ LModA and is closed under retracts. Then
C “ LModA.

Proof. Let C be as in p2q. Then C contains all objects of the form M bA B, so that the
implication p1q ñ p2q follows immediately from the definitions. Conversely, suppose that p2q
is satisfied. Let D Ď LModA be the full subcategory spanned by those objects M for which
the canonical map

θM : tM bA Tot‚pA{Aqu Ñ tM bA Tot‚pB{Aqu

is an equivalence in PropLModAq. Then D is a stable subcategory of LModA which is closed
under retracts, and we wish to show that A P D. By virtue of p2q, it will suffice to show
that D contains the essential image of the forgetful functor LModB Ñ LModA. This follows
from the observation that for M P LModB , the simplicial object M bA B

‚ »M bB B
‚`1 is

a split cosimplicial object with limit M .

D.3.3 Faithfully Flat Morphisms

Our next result supplies a large class of universal descent morphisms.

Proposition D.3.3.1. Let φ : AÑ B be a faithfully flat morphism of E2-rings. Suppose
that, as a left module over π0A, the commutative ring π0B admits a presentation using fewer
than ℵω generators and relations (here ℵω denotes the first infinite singular cardinal). Then
φ is a universal descent morphism.

Remark D.3.3.2. The technical cardinality assumption appearing in Proposition D.3.3.1
is automatically satisfied if the commutative rings π0A and π0B have cardinality ă ℵω.
Assuming the generalized continuum hypothesis, this condition is satisfied for all commutative
rings which arise in ordinary mathematical practice.
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Remark D.3.3.3. There exist many examples of universal descent morphisms which are
not faithfully flat. For example, the canonical map from the real K-theory spectrum KO to
the complex K-theory spectrum KU is a universal descent morphism.

Remark D.3.3.4. We do not know if every faithfully flat morphism of ring spectra is a
universal descent morphism. However, many of the descent theorems in this section can be
proven for arbitrary faithfully flat morphisms as well; see §D.6 for more details.

Corollary D.3.3.5. Every faithfully flat étale morphism of E2-rings is a universal descent
morphism.

The proof of Proposition D.3.3.1 is based on a theorem of Mitchell on vanishing of
derived functors of the inverse limit for filtered diagrams of small cofinality. We formulate a
version of this result as follows:

Lemma D.3.3.6. Let n be a nonnegative integer, let J be a filtered partially ordered set of
cardinality ď ℵn, and let tXjujPJ be a diagram of spaces indexed by Jop. If each of the spaces
Xj is m-connective for some integer m, then the inverse limit lim

ÐÝjPJ
Xj is pm´nq-connective.

Proof. We proceed by induction on n. Note that if J has cardinality ă ℵn, the desired result
follows from the inductive hypothesis (note that if J is finite, there is nothing to prove). We
may therefore assume that the cardinality of J is exactly ℵn.

We now proceed by induction on m. If m ă n then there is nothing to prove. If m ą n,
then to show that X “ lim

ÐÝjPJ
Xj is pm ´ nq-connective, it will suffice to show that it is

nonempty and that the fiber product txu ˆX tyu is pm´ n´ 1q-connective for every pair
of points x, y P X. This follows from the inductive hypothesis, applied to the diagram
ttxu ˆXj tyuujPJ . It will therefore suffice to treat the case m “ n: that is, we must show
that if each Xj is n-connective, then the limit X is nonempty.

Since the cardinality of J is ℵn, we can choose a bijection µ : ℵn Ñ J . We define a
sequence of subsets Jα Ď J for α ă ℵn, each having cardinality ă ℵn, using transfinite
induction on α. Assuming that Jβ has been constructed for β ă α, we take Jα to be any
filtered subset of J having cardinality ă ℵn which contains µpαq and the union

Ť

βăα Jβ.
Then we can write NpJq as a filtered colimit of simplicial sets lim

ÝÑαăℵn
NpJαq. It follows that

we can write X as the limit of a diagram tYαuαăℵn , where Yα “ lim
ÐÝjPJα

Xj (see §HTT.4.2.3 ).
Without loss of generality, we can assume that the diagram tYαuαăℵn is given by a

map Npℵnqop Ñ S which is obtained as the nerve of a functor of ordinary categories
ρ : ℵop

n Ñ Set∆ (Proposition HTT.4.2.4.4 ). Moreover, we may assume that ρ is fibrant with
respect to the injective model structure on Funpℵop

n ,Set∆q. In this case, the limit Y of the
diagram tYαuαăℵn in the 8-category S coincides with its limit in the ordinary category of
simplicial sets (Theorem HTT.4.2.4.1 ). We wish to prove that Y is nonempty. Since the
diagram tYαu is indexed by a well-ordered set, it will suffice to show that for each α ă ℵn,



D.3. UNIVERSAL DESCENT MORPHISMS 2125

the canonical map θ : Yα Ñ lim
ÐÝβăα

Yβ is surjective on vertices. Because ρ is a fibrant
diagram, the map θ is a Kan fibration. It will therefore suffice to show that the spaces

Yα “ lim
ÐÝ
jPJα

Xj and lim
ÐÝ
βăα

Yβ » lim
ÐÝ

jP
Ť

βăα Jβ

Xj

are connected. This follows from our inductive hypothesis, since the filtered partially ordered
sets Jα and

Ť

βăα Jβ have cardinality ă ℵn.

Lemma D.3.3.7. Let A be a connective E1-ring, let M be a flat left A-module, and let N
be a connective left A-module. Assume that π0M is an ℵn-compact object of the category of
discrete π0A-modules. Then ExtmA pM,Nq » 0 for m ą n.

Proof. Let us identify N with the limit of its Postnikov tower

¨ ¨ ¨ Ñ τď2N Ñ τď1N Ñ τď0N,

so that we have a Milnor exact sequence

lim1tExtm´1
A pM, τďkNqu Ñ ExtmA pM,Nq Ñ lim0tExtmA pM, τďkNqu.

It will therefore suffice to show that the abelian groups lim1tExtm´1
A pM, τďkNqu and

lim0tExtmA pM, τďkNqu are trivial for m ą n. To prove this, we will show that the maps
Extm´1

A pM, τďkNq Ñ Extm´1
A pM, τďk´1Nq are surjective for k ě 1, and that the groups

ExtmpM, τďkNq vanish for all k. Using the exact sequences

Extm´1
A pM, τďkNq Ñ Extm´1

A pM, τďk´1Nq Ñ Extm`kA pM,πkNq

Extm`kA pM,πkNq Ñ ExtmA pM, τďkNq Ñ ExtmA pM, τďk´1Nq,

we are reduced to proving that the groups Extm`kA pM,πkNq vanish. Replacing m by m` k
and N by πkN , we can further reduce to the case where N is discrete. In this case, we have
a canonical isomorphism ExtmA pM,Nq » Extmπ0Apπ0AbAM,Nq. We may therefore replace
A by π0A (and M by π0AbAM) and thereby reduce to the case where A is discrete. Since
M is flat over A, it follows that M is also discrete.

Since M is flat over A, it can be written as the colimit of a diagram tMαuαPP indexed
by a filtered partially ordered set P , where each Mα is a free left A-module of finite rank
(Theorem HA.7.2.2.15 ). For each ℵn-small filtered subset P 1 Ď P , let MP 1 denote the
colimit lim

ÝÑαPP 1
Mα. Then M can be written as a filtered colimit of the diagram tMP 1u,

where P 1 ranges over all ℵn-small filtered subsets of P . Since M is ℵn-compact, the identity
map idM : lim

ÝÑP 1
MP 1 ÑM factors through some MP 1 , so that M is a retract of MP 1 . We
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may therefore replace M by MP 1 and P by P 1, and thereby reduce to the case where P is
ℵn-small. We have a canonical isomorphism

ExtmA pM,Nq » π0 MapModApM,ΣmNq » π0 lim
ÐÝ
αPP

MapModApMα,ΣmNq

To show that this group vanishes, it will suffice (by virtue of Lemma D.3.3.6) to show that
the mapping spaces MapModApMα,ΣmNq are n-connective for each α P P . This is clear,
since Mα is a free left A-module of finite rank and ΣmN is n-connective.

Proof of Proposition D.3.3.1. Since B is flat over A, we can identify B with the image of
its connective cover τě0B under the base change functor LModτě0A Ñ LModA. By virtue
of Remark D.3.1.3, to prove that B is propagating as a left A-module, it will suffice to show
that τě0B is propagating as a left τě0A-module. We may therefore replace φ by the induced
map τě0AÑ τě0B and thereby reduce to the case where A is connective.

Let C denote the smallest stable subcategory of LModA which contains all objects of the
form M bA B and is closed under retracts. By virtue of Remark D.3.1.3, it will suffice to
show that A belongs to C. Let K be the fiber of the map φ : AÑ B, and let ρ : K Ñ A be
the canonical map. For each integer m ě 0, let ρpmq : Kbm Ñ Abm » A be the the mth
tensor power of ρ, formed in the monoidal 8-category LModA. Then ρpm` 1q is given by
the composition Kbm`1 idKbm

ÝÝÝÝÑ Kbm ρpmq
ÝÝÝÑ A, so we have a fiber sequence

Kbm bA B Ñ cofibpρpm` 1qq Ñ cofibpρpmqq.

It follows by induction on m that each cofibpρpmqq belongs to C. Consequently, to prove
that A P C, it will suffice to show that A is a retract of cofibpρpmqq for some m ě 0. This
condition holds whenever the homotopy class of ρpmq vanishes (when regarded as an element
of Ext0

ApK
bm, Aq » ExtmA ppΣKqbm, Aq. Our assumptions imply that ΣK » cofibpφq is a

flat A-module, and that π0 cofibpKq admits a presentation using fewer than ℵn generators
and relations for some integer n ě 0. It follows that pΣKqbm has the same properties for
each m ą 0, so that ExtmA ppΣKqbm, Aq vanishes for m ą n by virtue of Lemma D.3.3.7.

D.3.4 Comonadicity

Suppose that we are given a pair of adjoint functors C
F //D
G
oo between 8-categories.

Let U “ F ˝ G : D Ñ D. Then the functor U admits the structure of a comonad:
that is, it is an associative coalgebra object of the monoidal 8-category FunpD,Dq (see
§HA.4.7 ). Equivalently, we can regard U as an associative algebra in the monoidal 8-
category FunpDop,Dopq, which has a left action on the 8-category Dop. We can regard
LModU pDopq as (the opposite of) the 8-category of U -comodule objects of D: that is, objects
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D P D equipped with a map α : D Ñ UpDq together with additional coherence data. The
functor F factors canonically as a composition C F 1

ÝÑ LModU pDopqop F 2
ÝÝÑ D. More informally:

for every object C P C, the image F pCq P D is naturally equipped with the structure of a
U -comodule (given by the unit map F pCq Ñ F pGF pCqq » pF ˝GqpF pCqq “ UpF pCqq). We
may therefore think of a U -comodule structure on an object D P D as a kind of descent data
for D: it is a structure whose presence indicates that the object D might lift to an object of
C.

We say that a functor F : C Ñ D is comonadic if F admits a right adjoint G : D Ñ C,
and the functor F 1 : C Ñ LModU pDopqop described above is an equivalence of 8-categories.
In other words, F is comonadic if C can be identified with the 8-category of objects of D
equipped with descent data.

Theorem D.3.4.1. Let f : AÑ B be a universal descent morphism of E2-rings, and let C
be a stable A-linear 8-category. Then the extension-of-scalars functor F : C Ñ LModBpCq
(given by tensoring with B) is comonadic.

Corollary D.3.4.2. Let f : AÑ B be a universal descent morphism of E2-rings. Then the
base-change functor LModA Ñ LModB is comonadic.

Proof. Apply Theorem ?? in the case C “ LModA.

Proof of Theorem D.3.4.1. According to Theorem HA.4.7.3.5 , it will suffice to verify that
F satisfies the following conditions:

p1q The functor F is conservative.

p2q For every F -split cosimplicial object C‚ of C, the canonical map F plim
ÐÝ

C‚q Ñ lim
ÐÝ

F pC‚q

is an equivalence in LModBpCq.

We first prove p1q. Since F is an exact functor between stable 8-categories, it will suffice to
show that if C P C is an object for which F pCq » 0, then C » 0. To prove this, let E denote
the full subcategory of LModA spanned by those A-modules M for which the tensor product
M bA C vanishes. Then E is a stable subcategory of LModA which is closed under retracts.
We wish to prove that A P E . Since f is a universal descent morphism, it will suffice to show
that E contains the essential image of the forgetful functor LModB Ñ LModA (see Variant
D.3.2.3). This is clear: if M P LModBpCq, then our assumption that F pCq » 0 implies that

M bA C »M bB F pCq » 0.

We now prove p2q. Let C‚ be an F -split cosimplicial object of C. For each object
M P LModA, let us regard M bA C

‚ as another cosimplicial object of C, so that we have a
canonical map θM : F plim

ÐÝ
pM bA C

‚qq Ñ lim
ÐÝ
pM bA C

‚q in LModBpCq. Let E 1 denote the
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full subcategory of LModA spanned by those objects M for which θM is an equivalence.
Then E 1 is a stable subcategory of LModA which is closed under retracts. We wish to prove
that A P E 1. Since f is a universal descent morphism, it will suffice to show that E contains
the essential image of the forgetful functor LModB Ñ LModA (see Variant D.3.2.3). To
prove this, we observe that for M P LModB, we can identify M bA C

‚ with M bB F pC
‚q.

Since F pC‚q is a split cosimplicial object of LModBpCq, it follows that M bA C
‚ is a split

cosimplicial object of C, and therefore θM is an equivalence as desired.

Theorem D.3.4.1 admits a converse:

Proposition D.3.4.3. Let f : AÑ B be a morphism of E2-rings. Suppose that for every
A-linear 8-category C, the base change functor FC : C Ñ LModBpCq is comonadic. Then f

is a universal descent morphism.

Proof. Let B‚ be the cosimplicial object of AlgA appearing in the discussion preceeding
Proposition D.3.2.1. We first prove the following:

p˚q Let C be a locally small stable 8-category which is left-tensored over LModA. Suppose
that C admits small colimits and that the action bA : LModAˆ C Ñ C preserves small
colimits separately in each variable. Then, for each object C P C, the canonical map
AÑ TotpB‚q exhibits C as a totalization of the cosimplicial object B‚ bA C in C.

Note that if C presentable (and therefore an A-linear 8-category), then assertion p˚q follows
immediately from the comonadicity of the base change functor C Ñ LModBpCq. To treat the
general case, fix a regular cardinal κ and let LModκA denote the full subcategory of LModA
spanned by the κ-compact objects. Note that LModκA contains the unit object of LModA
and is closed under tensor products, and therefore inherits the structure of a monoidal
8-category. Fix objects C,C 1 P C; we wish to show that the canonical map

MapCpC
1, Cq Ñ lim

ÐÝ
MapCpC

1, B‚ bA Cq

is a homotopy equivalence. Choose an essentially small stable subcategory C0 Ď C containing
C and C 1 which is closed under κ-small colimits. Then we can regard C0 as an 8-category
tensored over LModκA, and the tensor product functor bA : LModκAˆ C0 Ñ C0 preserves
κ-small colimits separately in each variable. Using Lemma HA.5.3.2.11 , we see that IndκpC0q

inherits the structure of an 8-category left-tensored over IndκpLModκAq » LModA. Let
j : C0 Ñ IndκpC0q denote the Yoneda embedding. Since IndκpC0q is presentable, the base
change functor IndκpC0q Ñ LModBpIndκpC0qq is comonadic, so that jpCq » lim

ÐÝ
B‚ bA jpCq

and therefore the canonical map

MapIndκpC0qpjpC
1q, jpCqq Ñ lim

ÐÝ
MapIndκpCqpjpC

1q, B‚ bA jpCqq

» lim
ÐÝ

MapIndκpCqpjpC
1q, jpB‚ bA Cqq.
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is a homotopy equivalence. Assertion p˚q now follows because the Yoneda embedding j is
fully faithful.

For each object M P LModA, the construction N ÞÑ N bA M determines a functor
rM : LModA Ñ LModA which preserves small colimits and therefore admits a right adjoint.
Let us indicate this right adjoint by the notation K ÞÑ MK, which we regard as a functor from
LModop

A to itself (so that MapLModApN bAM,Kq » MapLModApN,
MKq). This construction

exhibits LModop
A as an 8-category which is left-tensored over LModA. Moreover, the action

map
LModAˆLModop

A Ñ LModop
A pM,Kq ÞÑ MK

preserves small colimits separately in each variable. Applying p˚q, we deduce that for each
object N P LModA, the canonical map |B‚N | Ñ N is an equivalence in LModA. Applying
Ω8, we obtain a homotopy equivalence

lim
ÝÑ
ně0

MapLModApTotnpB{Aq, Nq » lim
ÝÑ
ně0

Ω8pTotnpB{AqNq

» Ω8 lim
ÝÑ
ně0
pTotnpB{AqNq

» Ω8|B‚N |
Ñ Ω8N
» MapLModApA,Nq,

where tTotnpB{Aquně0 is the Tot-tower defined in the discussion preceding Proposition
D.3.2.1. It follows that the Tot-tower is equivalent to A as an object of PropLModAq, so
that Proposition D.3.2.1 implies that B is a propagating object of LModA and therefore
f : AÑ B is a universal descent morphism.

D.3.5 Effective Descent for Objects

If we restrict our attention to E8-rings, then we can reformulate Theorem D.3.4.1 using
the language of sheaves. For this, we need to introduce a bit of notation.

Notation D.3.5.1. Fix a E8-ring A and a stable A-linear 8-category C. We let ModpCq
denote the fiber product CAlgpModAq ˆAlgpModAq LModpCq whose objects are pairs pB,Mq,
where B P CAlgpModAq » CAlgA is an E8-algebra over A and M is a left B-module object
of C. We will denote the fiber of ModpCq over an object B P CAlgA by ModBpCq.

In the situation of Notation D.3.5.1, the coCartesian fibration q : ModpCq Ñ CAlgpModAq
is classified by a functor CAlgA ÑyCat8: in other words, the construction B ÞÑ ModBpCq
can be regarded as a functor of B.
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Theorem D.3.5.2. Let A be an E8-ring and let C be a stable A-linear 8-category. Then
the construction B ÞÑ ModBpCq determines a PrL-valued sheaf with respect to the universal
descent topology on the 8-category CAlgop

A (see Remark D.3.1.7).

Remark D.3.5.3. Let A be an E8-ring and let C be a stable A-linear 8-category. It follows
from Theorem D.3.5.2 and Corollary D.3.3.5 that the construction B ÞÑ LModBpCq is a
sheaf with respect to the étale topology on the 8-category CAlgét

A . In fact, this is true more
generally when A is an E2-ring (the proof in this case requires only slight modification).

Remark D.3.5.4. It follows from Proposition D.3.4.3 that the universal descent topology
is the finest Grothendieck topology for which Theorem D.3.5.2 holds.

Lemma D.3.5.5. Let R be an E2-ring and let C be a stable R-linear 8-category. Then the
construction A ÞÑ LModApCq commutes with finite products (when regarded as a functor
AlgR Ñ PrL).

Proof. Let tAiu1ďiďn be a finite collection of E1-algebras over R and let A “
ś

1ďiďnAi.
We wish to show that the canonical functor

θ : LModApCq Ñ
ź

1ďiďn
LModAipCq

is an equivalence of 8-categories. By virtue of Proposition HA.5.2.2.36 , it will suffice to
verify the following assertions:

paq The functor θ is conservative. That is, if α : M Ñ N is a morphism in LModApCq is
such that each of the induced maps αi : Ai bAM Ñ Ai bAM is an equivalence, then
α is an equivalence. It suffices to show that the image of α is an equivalence in the
8-category C. This is clear, since α is equivalent to the product of the morphisms αi
in the 8-category C.

pbq Suppose we are given objects Mi P LModAipCq, and let M »
ś

1ďiďnMi (regarded
as an A-module). Then the canonical map φ : Ai bA M Ñ Mi is an equivalence
for 1 ď i ď n. To prove this, we see that the domain of φ is given by the product
ś

1ďjďnpAi bA Ajq bAj Mj . To prove that φ is an equivalence, it suffices to show that
Ai bA Aj » 0 for i ‰ j, and that the canonical map Ai Ñ Ai bA Ai is an equivalence.
Since each Aj is flat as a left A-module, we have π˚pAi bA Ajq » pπ˚Aiq bπ˚A pπ˚Ajq,
so the desired result follows from a simple algebraic calculation.



D.3. UNIVERSAL DESCENT MORPHISMS 2131

Lemma D.3.5.6. Let C be a symmetric monoidal 8-category, let M be an 8-category
left-tensored over C, and suppose we are given a pushout diagram of commutative algebra
objects of C :

A Boo

A1

OO

B1

OO

oo

Then the diagram of 8-categories

LModApMq //

��

LModBpMq

��
LModA1pMq // LModB1pMq

is right adjointable.

Proof. This follows immediately from Proposition HA.4.6.2.17 .

Lemma D.3.5.7. Let f : AÑ B be a morphism of E8-rings, let B‚ be the Čech nerve of f
(formed in the 8-category CAlgop), and let C be a stable A-linear 8-category. The following
conditions are equivalent:

p1q The base change functor C Ñ ModBpCq is comonadic.

p2q The canonical map C Ñ lim
ÐÝ

ModB‚pCq is an equivalence of 8-categories.

Proof. It follows from Lemma D.3.5.6 that the augmented cosimplicial8-category C‚ satisfies
the (dual) Beck-Chevalley condition: that is, for every morphism α : rms Ñ rns in ∆, the
diagram

Cm d0
//

��

Cm`1

��
Cn d0

// Cn`1

is right adjointable. The desired result now follows from Corollary HA.4.7.5.3 .

Lemma D.3.5.8. Let f : AÑ B be a universal descent morphism of E8-rings and let B‚

be the Čech nerve of f (formed in the 8-category CAlgop). For any A-linear 8-category C,
the canonical map C Ñ lim

ÐÝ
ModB‚pCq is an equivalence of 8-categories.

Proof. Combine Lemma D.3.5.7 with Theorem D.3.4.1.

Proof of Theorem D.3.5.2. Combine Proposition A.3.3.1, Lemma D.3.5.5, and Lemma
D.3.5.8.
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D.3.6 Effective Descent for 8-Categories

Our next goal is to formulate and prove a categorification of Theorem D.3.5.2.

Remark D.3.6.1. Let PrL denote the 8-category whose objects are presentable 8-
categories and whose morphisms are colimit preserving functors. We let PrSt denote the full
subcategory of PrL spanned by the stable 8-categories. We can identify the 8-category
Sp of spectra with a commutative algebra object of PrL and PrSt with the 8-category
ModSppPrLq (see Proposition HA.4.8.2.18 ). According to Theorem HA.4.8.5.16 , the con-
struction A ÞÑ LModApSpq determines a symmetric monoidal functor AlgpSpq Ñ PrSt.
Passing to algebra objects (and using Theorem HA.5.1.2.2 ), we obtain a functor

AlgE2pSpq » AlgpAlgpSpqq Ñ AlgpPrStq Ñ AlgpPrLq.

We let LinCatSt denote the fiber product AlgE2pSpq ˆAlgpPrLq LModpPrLq. We will refer to
LinCatSt as the 8-category of stable linear 8-categories.

There is an evident categorical fibration θ : LinCatSt Ñ AlgE2pSpq. By construction,
the fiber of θ over an E2-ring A can be identified with the 8-category LinCatSt

A of stable
A-linear 8-categories introduced in Variant D.1.5.1. We may therefore think of LinCatSt

as an 8-category whose objects are pairs pA, Cq, where A is an E2-ring and C is a stable
A-linear 8-category.

The forgetful functor θ : LinCatSt Ñ AlgE2pSpq is both a Cartesian fibration and a
coCartesian fibration. In particular, as a coCartesian fibration, θ is classified by a functor
AlgE2pSpq Ñ yCat8. This functor assigns to each E2-ring A the 8-category LinCatSt

A of
stable A-linear 8-categories, and to each morphism φ : AÑ B of E2-rings the extension of
scalars functor

LinCatSt
A Ñ LinCatSt

B C ÞÑ B bA C » LModBpCq

described in Variant D.2.4.3.

Theorem D.3.6.2. The construction A ÞÑ LinCatSt
A of Remark D.3.6.1 determines a

functor CAlg Ñ yCat8 which is a sheaf with respect to the universal descent topology of
Remark D.3.1.7.

The proof of Theorem D.3.6.2 will require some preliminaries.

Lemma D.3.6.3. Let tAiu1ďiďn be a finite collection of E2-rings having product A. Then
the canonical map φ : LinCatSt

A Ñ
ś

1ďiďn LinCatSt
Ai is an equivalence of 8-categories.

Proof. We will prove that φ satisfies the hypotheses of Proposition HA.5.2.2.36 :

paq Let F : C Ñ D be a morphism in LinCatSt
A whose image in each LinCatSt

Ai is an
equivalence. We wish to show that F is an equivalence. Using Lemma D.3.5.5,
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we deduce that C and D can be identified with the products
ś

i LModAipCq and
ś

i LModAipDq, respectively. Since the induced map LModAipCq Ñ LModAipDq is an
equivalence for each index i, we conclude that F induces an equivalence of 8-categories
f : C Ñ D.

pbq Suppose we are given a finite collection of objects pAi, Ciq in LinCatSt. For each index
i, let Di denote the A-linear 8-category obtained from Ci by restriction of scalars
and set D “

ś

iDi. We wish to prove that for each index i, the canonical map
LModAi bLModA D Ñ Ci is an equivalence. We have

LModAipDq » LModAip
ź

j

Djq »
ź

j

LModAipDjq »
ź

j

LModAibAAj pCjq.

For i ‰ j, the tensor product Ai bA Aj is trivial, so that LModAibAAj pCjq is a
contractible Kan complex. For i “ j, the tensor product Ai bA Aj is equivalent to Ai,
so that the forgetful functor LModAibAAj pCjq Ñ Cj is an equivalence. Passing to the
product over i, we obtain the desired result.

Proof of Theorem D.3.6.2. It follows from Lemma D.3.6.3 that the construction A ÞÑ

LinCatSt
A preserves finite products. By virtue of Proposition A.3.3.1, it will suffice to

show that if f : AÑ A0 is a universal descent morphism in CAlg with Čech nerve A‚, then
the canonical map LinCatSt

A Ñ lim
ÐÝ

LinCatSt
A‚ is an equivalence of 8-categories. We proceed

by showing that this functor satisfies the conditions of Proposition HA.5.2.2.36 :

paq Fix an morphism F : C Ñ D in LinCatSt
A whose image in LinCatSt

A0 is an equivalence.
It follows that F induces an equivalence of cosimplicial 8-categories LModA‚pCq Ñ
LModA‚pDq. We have a commutative diagram

C F //

��

D

��
lim
ÐÝ

LModA‚pCq // lim
ÐÝ

LModA‚pDq,

where the vertical maps are equivalences of 8-categories by Theorem D.3.5.2. It
follows that F is an equivalence of 8-categories.

pbq Let θ : LinCatSt Ñ AlgE2pSpq be the forgetful functor. Suppose we are given a diagram
X‚ : ∆ Ñ LinCatSt lying over the cosimplicial E8-ring A‚, and write X‚ “ pA‚, C‚q.
Then X‚ can be extended to a θ-limit diagram X

‚ with X´1
“ pA, Cq. We must show
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that if X‚ carries every morphism in ∆ to a θ-coCartesian morphism in LinCatSt,
then X has the same property. This follows from the calculation

LModA0pCq » LModA0plim
ÐÝ
C‚q

» lim
ÐÝ

LModA0pC‚q
» lim

ÐÝ
C‚`1

» C0 .

D.4 Étale Descent for Prestable 8-Categories

In §D.3, we showed that the construction A ÞÑ LinCatSt
A determines a functor CAlg Ñ

yCat8 which is a sheaf with respect to the universal descent topology of Remark D.3.1.7
(Theorem D.3.6.2). In particular, it is a sheaf with respect to the étale topology (since every
faithfully flat étale map of E8-rings is a universal descent morphism; see Corollary D.3.3.5).
Our goal in this section is to prove an analogous result for prestable A-linear 8-categories
(Theorem D.4.1.2).

D.4.1 Formulation of the Theorem

It follows from Theorem HA.4.8.5.16 that the construction A ÞÑ LModApSpcnq determines
a symmetric monoidal functor from the 8-category Algcn “ AlgpSpcnq of connective E1-rings
to the 8-category PrAdd » ModSpcnpPrLq of presentable additive 8-categories. Passing
to algebra objects (and using Theorem HA.5.1.2.2 ), we obtain a functor AlgE2pSpcnq »

AlgpAlgcnq Ñ AlgpPrAddq Ñ AlgpPrLq.

Construction D.4.1.1. We let LinCatPSt denote the 8-category

AlgE2pSpcnq ˆAlgpPrLq LModpPrLq ˆPrL Groth8

whose objects are pairs pA, Cq, where A is a connective E2-ring and C is a prestable A-linear
8-category. There is an evident Cartesian fibration θ : LinCatPSt Ñ AlgE2pSpcnq whose fiber
over a connective E2-ring A can be identified with the 8-category LinCatPSt

A of prestable
A-linear 8-categories introduced in Definition D.1.4.1. It follows from Proposition D.2.4.5
(and Corollary HTT.5.2.2.5 ) that θ is also a coCartesian fibration: it associates to every
morphism φ : AÑ B of connective E2-rings the functor

LinCatPSt
A Ñ LinCatPSt

B C ÞÑ B bA C » LModBpCq
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given by extension of scalars along φ (see Construction D.2.4.1). As a coCartesian fibration,
the map θ is classified by a functor AlgE2pSpcnq Ñ yCat8, given at the level of objects by
A ÞÑ LinCatPSt

A .

We can now state our main result of this section:

Theorem D.4.1.2 (Étale Descent for Prestable 8-categories). The construction R ÞÑ

LinCatPSt
R determines a functor CAlgcn ÑyCat8 which is a sheaf with respect to the étale

topology.

Remark D.4.1.3. In the statement of Theorem D.4.1.2, the restriction to to E8-rings is
not essential: for any connective E2-ring A, the construction R ÞÑ LinCatPSt

R determines
a yCat8-valued sheaf on the 8-category Algét

R of étale R-algebras. This can be established
using minor modifications of the proof of Theorem D.4.1.2 we present below.

We will deduce Theorem D.4.1.2 from a somewhat stronger statement (Theorem D.4.1.6).
To formulate it, we need a variant of Remark D.3.1.7.

Construction D.4.1.4 (Flat Universal Descent Topology). Let S be the collection of
morphisms f : A Ñ B between connective E8-rings which are flat universal descent
morphisms (see Definition D.3.1.1). It follows from Propositions D.3.1.6 and B.6.1.3 that
S satisfies the hypotheses of Proposition A.3.2.1, and therefore determines a Grothendieck
topology on the (large) 8-category pCAlgcnqop. We will refer to this Grothendieck topology
as the flat universal descent topology.

Remark D.4.1.5. Let f : A Ñ B be a flat universal descent morphism of connective
E8-rings. Then f is faithfully flat: the assumption that f is a universal descent morphism
guarantees that the extension of scalars functor M ÞÑ BbAM cannot annihilate any nonzero
A-modules. It follows that the fpqc topology is a refinement of the flat universal descent
topology. We do not know if these topologies are the same.

Every faithfully flat étale morphism of E8-rings f : A Ñ B is also universal descent
morphism (Corollary D.3.3.5). Consequently, the flat universal descent topology is a
refinement of the étale topology. Theorem D.4.1.2 is therefore a consequence of the following:

Theorem D.4.1.6. The construction R ÞÑ LinCatPSt
R determines a functor CAlgcn ÑyCat8

which is a sheaf with respect to the flat universal descent topology of Construction D.4.1.4.

D.4.2 Comparison of Stable and Prestable 8-Categories

We would like to deduce Theorem D.4.1.6 from the analogous result for the construction
R ÞÑ LinCatSt

R (which satisfies descent for the universal descent topology, by virtue of
Theorem D.3.6.2). For this, we need to compare a prestable8-category C with its stabilization
SppCq.
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Lemma D.4.2.1. Let R be a connective E2-ring. Then the diagram of 8-categories

LinCatPSt
R

Spp‚q //

��

LinCatSt
R

��
Groth8

Spp‚q // PrSt

is a pullback square.

Remark D.4.2.2. More informally, Lemma ?? asserts that the data of a prestable R-linear
8-category C is equivalent to the data of a stable R-linear 8-category D (given by the
stabilization SppCq) together with a t-structure pDě0,Dď0q which is right complete and
compatible with filtered colimits. In particular, if C is a Grothendieck prestable 8-categories,
then giving an action of R on C is equivalent to giving an action of R on the associated
stable 8-category SppCq.

Proof of Lemma D.4.2.1. We first show that natural map

θ : LinCatPSt
R Ñ LinCatSt

R ˆPrSt Groth8

is fully faithful. Let C and D be prestable R-linear 8-categories. We wish to show that the
diagram σC,D :

MapLinCatPSt
R
pC,Dq //

��

MapLinCatSt
R
pSppCq, SppDqq

��
MapPrStpSppCq,SppDqq //MapGroth8pC,Dq

is a pullback square in S. Let us regard the prestable R-linear 8-category D as fixed, and
write

C » LModcn
R bLModcn

R
C » | C‚ |

where C‚ is the simplicial prestable R-linear 8-category given by the two-sided bar construc-
tion rns ÞÑ pLModcn

R q
bn`1 b C. Then σC,D is the totalization of the cosimplicial diagram

σC‚,D. It will therefore suffice to show that σC,D is a homotopy equivalence in the special
case where C » LModcn

R b C1 is freely generated by a Grothendieck prestable 8-category C1.
Unwinding the definitions, we wish to show that the diagram

MapGroth8pC
1,Dq //

��

MapPrStpSppC1q,SppDqq

��
MapGroth8pC,Dq //MapPrStpSppCq, SppDqq

is a homotopy pullback square. By virtue of Proposition C.3.1.1, this is equivalent to the
following:
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p˚q Let F : SppCq Ñ SppDq be a functor which preserves small colimits. Then F is right
t-exact if and only if the composite map SppC1q Ñ SppCq F

Ñ SppDq is right t-exact.

Since LModcn
R is generated under small colimits by its unit object, the 8-category C »

LModcn
R b C1 is generated under small colimits by the essential image of the natural map

C1 Ñ C, from which assertion p˚q follows immediately. This completes the proof that θ is
fully faithful.

We now prove that θ is essentially surjective. Let C be a Grothendieck prestable 8-
category, and suppose that SppCq has the structure of a stable R-linear 8-category, encoded
by a colimit-preserving monoidal functor

φ : LModR Ñ LFunpSppCq,SppCqq.

Using Proposition C.3.1.1, we can identify LFunpC,Dq with the full subcategory of LFunpSppCq,SppDqq
spanned by the right t-exact functors. Let E be denote the fiber product

LModRˆLFunpSppCq,SppCqq LFunpC, Cq,

which we can identify with a monoidal full subcategory of LModR. Then E contains
the unit object of LModR and is closed under small colimits, and therefore contains all
connective R-modules. It follows that φ restricts to a colimit-preserving monoidal functor
LModcn

R ãÑ E Ñ LFunpC, Cq, so we can regard C as a prestable R-linear 8-category.

D.4.3 Sheaves of 8-Categories

We now collection some formal categorical observations which are relevant to the proof
of Theorem D.4.1.6.

Lemma D.4.3.1. The 8-category Cat8 is generated (under small colimits) by the objects
∆0,∆1 P Cat8.

Proof. Let C be the smallest full subcategory of Cat8 which contains ∆0 and ∆1 and is closed
under small colimits. Let C Ď Set∆ be the full subcategory spanned by those simplicial sets
K which are categorically equivalent to 8-categories belonging to C. We wish to prove that
C “ Cat8, or equivalently that C “ Set∆. Since C is stable under filtered colimits in Set∆,
it will suffice to show that C contains every finite simplicial set K. We proceed by induction
on dimension n of K and the number of nondegenerate n-simplices of K. If K “ H, then
there is nothing to prove. Otherwise, we have a homotopy pushout diagram

B∆n //

��

∆n

��
K0 // K
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where B∆n and K0 belong to C by the inductive hypothesis. Since C is stable under pushouts,
C is stable under homotopy pushouts; consequently, to show that K P C, it will suffice to
show that ∆n P C. If n ą 2, then the inclusion Λn

1 Ď ∆n is a categorical equivalence. It
therefore suffices to show that Λn

1 P C, which follows from the inductive hypothesis. We
are therefore reduced to the case n ď 1: that is, we must show that ∆0,∆1 P C, which is
clear.

Lemma D.4.3.2. Let C be a small 8-category equipped with a Grothendieck topology, and
let α : F Ñ F 1 be a natural transformation of functors F ,F 1 : Cop Ñ S. For every object
C P C and every point η P F 1pCq, we define a functor F η : C{C Ñ S by taking the fiber of
the induced transformation F |C{C Ñ F 1 |C{C (over the point determined by η).

Assume that F 1 is a sheaf on C. Then the following conditions are equivalent:

p1q The functor F is a sheaf on C.

p2q For every object C P C and every point η P F 1pCq, the functor F η is a sheaf on C{C
(with respect to the induced Grothendieck topology).

Moreover, if F 1 is hypercomplete, then F is hypercomplete if and only if each F η is
hypercomplete.

Proof. The implication p1q ñ p2q is obvious, since the full subcategory ShvpC{Cq Ď
FunpCop

{C ,Sq is closed under small limits. Suppose that p2q is satisfied. Fix an object C P C and
a covering sieve Cp0q

{C Ď C{C ; we wish to prove that the canonical map θ : F pCq Ñ lim
ÐÝ

F |Cp0q
{C

is a homotopy equivalence. We have a commutative diagram

F pCq
θ //

��

lim
ÐÝ

F |Cp0q
{C

��
F 1pCq

θ1 // lim
ÐÝ

F 1 |Cp0q
{C

,

where the map θ1 is a homotopy equivalence. Consequently, to show that θ is a homotopy
equivalence, it will suffice to show that θ induces a homotopy equivalence after passing to
the homotopy fiber over any point η P F 1pCq; this is precisely the content of assumption p2q.

Now suppose that F 1 is hypercomplete. Since the collection of hypercomplete sheaves
on C{C is closed under limits, it is easy to see that F is hypercomplete only if each F η

is hypercomplete. Conversely, suppose that each F η is hypercomplete; we wish to prove
that F is hypercomplete. Choose an 8-connective morphism β : F Ñ G , where G is
hypercomplete; we wish to prove that β induces an equivalence βC : F pCq Ñ G pCq for each
C P C. Since F 1 is hypercomplete, the map α factors through β; it will therefore suffice to
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show that βC induces a homotopy equivalence after passing to the homotopy fiber over every
point η P F 1pCq. For this, it suffices to show that the induced map βη : F η Ñ G η is an
equivalence. This is clear, since βη is 8-connective and both F η and G η are hypercomplete
objects of ShvpC{Cq.

Corollary D.4.3.3. Let C be a small 8-category equipped with a Grothendieck topology
and let X : Cop Ñ Cat8 be a Cat8-valued presheaf on C. Then X is a sheaf if and only if it
satisfies the following conditions:

paq The S-valued functor C ÞÑ XpCq» is a S-valued sheaf on C.

pbq For every object C P C and every pair of objects x, y P XpCq, the construction

pD P C{Cq ÞÑ MapXpDqpxD, yDq

determines a S-valued sheaf on C{C (with respect to the induced Grothendieck topology);
here xD and yD denote the images of x and y under the functor XpCq Ñ XpDq.

Proof. For every 8-category J , let XJ : Cop Ñ S be the functor given by

C ÞÑ MapCat8pJ , XpCqq » FunpJ , XpCqq».

Then X is a Cat8-valued sheaf on C if and only if each XJ is a S-valued sheaf on C. If this
condition is satisfied, then condition paq follows by taking J “ ∆0 and condition pbq follows
by applying Lemma D.4.3.2 to the map X∆1

Ñ XB∆1 . Conversely, suppose that paq and pbq
are satisfied, and let E Ď Cat8 be the full subcategory spanned by those 8-categories J for
which XJ is a sheaf. Since the construction J ÞÑ XJ carries colimits in Cat8 to limits in
FunpCop,Sq, we deduce that E is closed under small colimits in Cat8. Condition paq implies
that E contains ∆0, and therefore also contains the coproduct ∆0 >∆0 » B∆1. Applying
Lemma D.4.3.2 to the map X∆1

Ñ XB∆1 , we see that condition pbq implies that ∆1 P J .
It follows from Lemma D.4.3.1 that E “ Cat8, so that X is a Cat8-valued sheaf on C as
desired.

D.4.4 Faithful Flatness

We now collect some facts about faithfully flat morphisms between E1-ring spectra. Here,
we must be careful to distinguish between left and right flatness.

Definition D.4.4.1. Let φ : A Ñ B be a morphism of connective E1-rings. We will say
that B is left faithfully flat over A if the following conditions are satisfied:

paq The morphism φ exhibits B as a flat left A-module, in the sense of Definition
HA.7.2.2.10 .
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pbq For every nonzero right A-module M , the tensor product M bA B is also nonzero.

We say that B is right faithfully flat if the following dual conditions are satisfied:

pa1q The morphism φ exhibits B as a flat right A-module, in the sense of Definition
HA.7.2.2.10 .

pb1q For every nonzero left A-module M , the tensor product B bAM is also nonzero.

Remark D.4.4.2. Let φ : A Ñ B be a morphism of connective Ek-rings for 2 ď k ď 8.
Then φ is right faithfully flat if and only if it is left faithfully flat. In this case, we will
simply say that φ is faithfully flat.

Lemma D.4.4.3. Let f : A Ñ B be a morphism of connective E1-rings. The following
conditions are equivalent:

p1q The map f is left faithfully flat.

p2q The cofiber cofibpfq is flat when regarded as a left A-module.

Proof. Suppose first that p2q is satisfied. We have a fiber sequence of left A-modules
A Ñ B Ñ cofibpfq. Since A and cofibpfq are flat as left modules over A, B is also flat
as a left A-module. Applying Theorem HA.7.2.2.15 , we can write cofibpfq as a filtered
colimit lim

ÝÑ
Nα, where each Nα is free of finite rank as a left A-module. Then, as a left

A-module, B can be realized as a filtered colimit of left modules Bα “ B ˆcofibpfq Nα,
each of which fits into a fiber sequence A Ñ Bα Ñ Nα. Since A is connective and Nα is
free, this fiber sequence splits. Consequently, for any right A-module M , the canonical
map M »M bA AÑM bA Nα admits a left homotopy inverse and therefore induces an
injective map π˚M Ñ π˚pM bA Nαq. Passing to the colimit over α, we deduce that the
map π˚M Ñ π˚pM bA Bq is injective. Consequently, if M bA B vanishes, then so does M .

Now suppose that p1q is satisfied. Since A and B are connective, cofibpfq is connective.
We wish to show that cofibpfq is flat (as a left A-module). By virtue of Theorem HA.7.2.2.15 ,
it will suffice to show that for every discrete right A-module M , the relative tensor product
MbAcofibpfq is discrete. We have a fiber sequence of spectra M ÑMbAB ÑMbAcofibpfq.
Since B is flat as a left A-module, the spectrum M bA B is discrete. Consequently, to prove
that M bA cofibpfq is discrete, it suffices to show that the map θ : π0M Ñ π0pM bA Bq »

Torπ0A
0 pπ0M,π0Bq is a monomorphism. Let K Ď π0M denote the kernel of θ. Since π0B

is flat over π0A, we can identify Torπ0A
0 pK,π0Bq with a submodule of Torπ0A

0 pπ0M,π0Bq.
This submodule is generated by θpKq “ 0 as a module over π0B, and therefore vanishes. It
follows that K bA B » 0, contradicting our assumption that φ is left faithfully flat.

Proposition D.4.4.4. Let φ : R Ñ R1 be a morphism of connective E2-rings, let C be a
prestable R-linear 8-category, and let X be an object of SppCq.
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paq If φ is faithfully flat, then X belongs to SppCqě0 if and only if R1bRX P LModR1pSppCqq
belongs to LModR1pSppCqqě0 Ď LModR1pSppCqq.

pbq If φ is a flat universal descent morphism, then X belongs to SppCqď0 if and only if
R1 bR X P LModR1pSppCqq belongs to LModR1pSppCqqď0 Ď LModR1pSppCqq.

Proof. We first prove paq. It follows immediately from the definitions (making no assumptions
on φ) that if X belongs to SppCqě0, then R1bRX belongs to LModR1pSppCqqě0. Conversely,
suppose that R1bRX belongs to LModR1pSppCqqě0 and that φ is faithfully flat. We wish to
prove that X belongs to SppCqě0. Since the t-structure on SppCq is right complete, this is
equivalent to the assertion that πnX » 0 for n ă 0. To prove this, it will suffice to show
that the canonical map ρ : πnX Ñ πnpR

1 bRXq is a monomorphism in the abelian category
C♥. By virtue of Lemma D.4.4.3, the cofiber cofibpφq is flat as a right R-module and can
therefore (by Proposition HA.7.2.2.15 ) be realized as the colimit of a filtered diagram tMαu

of free right R-modules. For each index α, set R1α “ R1 ˆcofibpφqMα. Since the t-structure
on SppCq is compatible with filtered colimits, the map ρ is a filtered colimit of morphisms

ρα : πnX Ñ πnpR
1
α bR Xq.

The abelian category C♥ is Grothendieck, so it will suffice to show that each ρα is a
monomorphism in C♥. In fact, ρα is a split monomorphism, since the fiber sequence of right
R-modules RÑ R1α ÑMα splits (because Mα is free and R is connective).

We now prove pbq. If R1 is flat over R, then (using Proposition HA.7.2.2.15 ) we can write
R1 as the colimit of a filtered diagram tNβu of finitely generated free right R-modules. If
X P SppCqď0, then R1 bR X » lim

ÝÑβ
Nβ bR X also belongs to SppCqď0, since the t-structure

on SppCq is compatible with filtered colimits and each Nβ bR X is a direct sum of finitely
many copies of X.

Conversely, suppose that R1 bR X P LModR1pSppCqqď0. Choose a fiber sequence X 1 Ñ
X Ñ X2 in the 8-category SppCq, where X 1 P SppCqě1 and X2 P SppCqď0. If R1 is flat over
R, then the preceding arguments show that

R1 bR X
1 P LModR1pSppCqqě1 R1 bR X

2 P LModR1pSppCqqď0.

Consequently, the assumption that R1 bR X belongs to LModR1pSppCqqď0 guarantees that
R1 bR X

1 » 0. If φ is a universal descent morphism, it follows from Theorem D.3.4.1 that
X 1 » 0, so that X » X2 P SppCqď0 as desired.

Corollary D.4.4.5. Let R be a connective E2-ring, let C and D be prestable R-linear
8-categories and let F : SppCq Ñ SppDq be an R-linear functor. Suppose that there
exists a faithfully flat map R Ñ R1 of connective E2-rings for which the induced functor
R1 bR SppCq Ñ R1 bR SppDq is right t-exact. Then F is right t-exact.
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D.4.5 The Proof of Theorem D.4.1.6

We wish to show that the construction R ÞÑ LinCatPSt
R determines a yCat8-valued sheaf

with respect to the flat universal descent topology on pCAlgcnqop. We will prove this by
verifying conditions paq and pbq of Corollary D.4.3.3. We begin by verifying condition pbq.
Let A be a connective E8-ring and suppose that we are given prestable A-linear 8-categories
C and D. We wish to show that the functor F : CAlgcn

A Ñ pS, given by the formula
F pBq “ MapLinCatPSt

B
pB bA C, B bA Dq, is a sheaf with respect to the flat universal descent

topology. Define F 1 : CAlgcn
A Ñ pS by the formula

F 1pBq “ MapLinCatB pB bA SppCq, B bA SppDqq.

We have an evident natural transformation α : F Ñ F 1. Using Lemma D.4.2.1, we see that
α identifies each F pBq with the summand of F 1pBq consisting of those B-linear functors
B bA SppCq Ñ B bA SppDq which are right t-exact. Since F 1 is a sheaf for the universal
descent topology (Theorem D.3.5.2) and the condition of right t-exactness is local with
respect to the fpqc topology (Corollary D.4.4.5), it follows that F is a sheaf with respect to
the flat universal descent topology.

We now prove paq. Define pS-valued functors G ,G 1 : G cn
R Ñ pS by the formulae

G pAq “ pLinCatPSt
A q» G 1pAq “ pLinCatSt

A q
».

The construction C ÞÑ SppCq determines a map β : G Ñ G 1 and the functor G 1 is a sheaf with
respect to the universal descent topology (Theorem D.3.5.2). To conclude that G is a sheaf
with respect to the flat universal descent topology, it will suffice to show that the morphism β

satisfies the hypotheses of Lemma D.4.3.2. Fix a connective E8-ring A and a stable A-linear
8-category C, and let H : G cn

A Ñ pS be the functor given by H pBq “ G pBq ˆG 1pBq tCu.
Using Lemma D.4.2.1, we see that H pBq can be identified with the discrete (but large)
collection of t-structures on the stable 8-category B bA C which are right complete and
compatible with filtered colimits. It follows from pbq that this H is a separated set-valued
presheaf on G cn

A and we wish to prove that it is actually a sheaf. Let us therefore fix a
connective A-algebra B and a finite collection of morphisms tB Ñ BiuiPI for which the
map B Ñ

ś

Bi is a flat universal descent morphism, and suppose we are given a collection
of elements ηi P H pBiq which are compatible (in the sense that ηi and ηj have the same
image in H pBi >B Bjq for every pair of elements i, j P I); we wish to show that the element
tηiuiPI P

ś

H pBiq can be lifted to an element η P H pBq.
Set B0 “

ś

iPI Bi and let B‚ denote the cosimplicial object of CAlgcn
B given by the Čech

nerve of the map B Ñ B0. Then we can regard LModB‚pCq as a cosimplicial object of the
8-category PrSt, and the elements of ηi determine a lifting of LModB‚pCq to the 8-category
Groth8, which we will denote by LModB‚pCqě0. Note that for every injective map rms ãÑ rns
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the transition maps Bm Ñ Bn is flat, so the associated functor LModBmpCq Ñ LModBnpCq is
left t-exact. It follows that the totalization E “ TotpLModB‚pCqě0q is again a Grothendieck
prestable 8-category (see Proposition C.3.2.4). Moreover, we have a canonical equivalence

SppEq » Tot SppLModB‚pCqqě0q

» Tot LModB‚pCq
» LModBpCq,

where the last equivalence is a consequence of Theorem ??. In other words, the 8-category
LModBpCq admits a t-structure pLModBpCqě0,LModBpCqď0q which is right t-exact and
compatible with filtered colimits which is characterized by the following property:

p˚q An object X P LModBpCq belongs to LModBpCqě0 if and only if each of the tensor
products Bn bB X belongs to LModBnpCqě0 (moreover, it suffices to check this
condition in the special case n “ 0).

This t-structure determines an element η P H pBq. To complete the proof, we wish to show
that η is a preimage of the collection tηiu P

ś

iPI H pBiq. By virtue of Remark D.2.4.7, this
can be restated as follows:

p˚1q An object Y P LModB0pCq belongs to LModB0pCqě0 if and only if its image under the
forgetful functor LModB0pCq Ñ LModBpCq belongs to LModBpCqě0.

By virtue of p˚q together with the left adjointability of the diagram of forgetful functors

LModB1pCq //

��

LModB0pCq

��
LModB0pCq // LModBpCq,

we can restate p˚1q as follows:

p˚2q An object Y P LModB0pCq belongs to LModB0pCqě0 if and only if its image under the
composite functor LModB0pCq φ

Ñ LModB1pCq ψ
Ñ LModB0pCq belongs to LModB0pCqě0.

(Here φ and ψ are induced by the two B0-algebra structures on B1.)

Assertion p˚2q now follows from Proposition D.4.4.4 and Remark D.2.4.7. This completes
the proof of Theorem D.4.1.6.

D.5 Local Properties of R-Linear 8-Categories

Let P be some property of Grothendieck prestable 8-categories. In this section, we will
study the following closely related questions:
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Question D.5.0.1. Under what conditions is the property P stable under base change?
That is, if we are given a morphism φ : R Ñ R1 of connective E8-rings and a prestable
R-linear 8-category C which has the property P , then when can we conclude that the
prestable R1-linear 8-category R1 bR C also has the property P?

Question D.5.0.2. Under what conditions can the property P be tested locally? That is,
if we are given a morphism φ : RÑ R1 of connective E8-rings which is a “covering” in some
sense (for example, a faithfully flat morphism) and a prestable R-linear 8-category C for
which R1 bR C has the property P , then when can we conclude that C also has the property
P?

Our goal in this section is to provide partial answers to Questions D.5.0.1 and D.5.0.2 in
a variety of circumstances. Our main results can be summarized as follows:

• The properties of being stable, separated, and complete are compatible with arbitrary
base change and can be tested locally with respect to the flat universal descent topology
(Propositions D.5.1.1, D.5.1.2, and D.5.1.3).

• The property that an R-linear functor F : C Ñ D is compact (left exact) is stable under
arbitrary base change and can be tested locally with respect to the (flat) universal
descent topology (Propositions D.5.2.1 and D.5.2.2).

• The property of being compactly generated is stable under arbitrary base change and
can be tested locally with respect to the étale topology (Theorem D.5.3.1).

• The property of being anticomplete is stable under fiber-smooth base change (Theorem
D.5.4.1) and can be tested locally with respect to the étale topology (Theorem D.5.4.9).

• The property of being weakly coherent is stable under base base change along quasi-
finite morphisms which are almost of finite presentation (Theorem D.5.5.1) and can
be tested locally with respect to the étale topology (Corollary D.5.5.11).

• The property of being locally Noetherian is stable under base change along morphisms
which are almost of finite presentation and can be tested locally with respect to the
flat topology (Propositions D.5.6.1 and D.5.6.4).

• For each n ě 0, the properties of being n-complicial and weakly n-complicial are stable
under flat base change. Moreover, the property of being weakly n-complicial can be
tested locally with respect to the flat universal descent topology (Proposition D.5.7.1).
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D.5.1 Stable, Separated, and Complete Prestable 8-Categories

We with some easy cases of Questions D.5.0.1 and D.5.0.2.

Proposition D.5.1.1. Let R be a connective E2-ring and let C be a prestable R-linear
8-category. Then:

paq Assume that C is stable (see Definition C.1.2.12). Then for any connective E1-algebra
R1 over R, the Grothendieck prestable 8-category LModR1pCq is also stable.

pbq If there exists a flat universal descent morphism RÑ R1 of connective E2-rings (for
example, a morphism which is étale and faithfully flat) such that R1 bR C is stable,
then C is stable.

Proof. Assertion paq is trivial. To prove pbq, suppose that R1bRC is stable. We wish to prove
that the functor Σ8 : C » SppCqě0 Ď SppCq is an equivalence of 8-categories. Equivalently,
we wish to show that every object C P SppCqď0 is zero. Since R1 is flat over R, the tensor
product R1 bR C P LModR1pCq belongs to LModR1pSppCqqď0, and therefore vanishes (by
virtue of the stability of R1 bR C). Since RÑ R1 is a universal descent morphism, it follows
that C » 0 as desired.

Proposition D.5.1.2. Let R be a connective E2-ring and let C be a prestable R-linear
8-category. Then:

paq Assume that C is separated (see Definition C.1.2.12). Then for any connective E1-
algebra R1 over R, the Grothendieck prestable 8-category LModR1pCq is also separated.

pbq If there exists a universal descent morphism R Ñ R1 of connective E2-rings (for
example, a morphism which is étale and faithfully flat) such that R1 bR C is separated,
then C is separated.

Proof. We first prove paq. Assume that C is separated and let X be an object of the
8-category

Ş

ně0 LModR1pSppCqqěn. Then the image of X under the forgetful functor
θ : LModR1pSppCqq Ñ SppCq belongs to

Ş

SppCqěn (see Remark D.2.4.7). The assumption
that C is separated then gives θpXq » 0. Since the functor θ is conservative, we conclude
that X » 0. Allowing X to vary, we deduce that LModR1pCq is separated.

We now prove pbq. Assume that R1 bR C is separated and let X P
Ş

ně0 SppCqěn. Then
the tensor product R1bRX belongs to

Ş

ně0 LModR1pSppCqqěn. It follows that R1bRX » 0.
If RÑ R1 is a universal descent morphism, this implies that X » 0.

Proposition D.5.1.3. Let R be a connective E2-ring and let C be a prestable R-linear
8-category. Then:
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paq Assume that C is complete (see Definition C.1.2.12). Then for any connective E1-
algebra R1 over R, the Grothendieck prestable 8-category LModR1pCq is also complete.

pbq If there exists a flat universal descent morphism RÑ R1 of connective E2-rings (for
example, a morphism which is étale and faithfully flat) such that R1 bR C is complete,
then C is complete.

Proof. If C is complete, then the canonical map SppCq Ñ lim
ÐÝně0 SppCqďn is an equivalence of

8-categories left-tensored over LModcn
R . It follows that, for every algebra object R1 P LModcn

R ,
the induced functor

LModR1pSppCqq Ñ lim
ÐÝ

LModR1pSppCqďnq » lim
ÐÝ

LModR1pSppCqqďn

is also an equivalence, so that R1 bR C is also complete. This proves paq.
We now prove pbq. Assume that φ : RÑ R1 is a universal descent morphism of connective

E2-rings and that R1 bR C is complete. We then have a pair of adjoint functors

SppCq
F //LModR1pSppCqq.
G
oo

Since φ is a universal descent morphism, this adjunction is comonadic: that is, it exhibits
SppCq as the 8-category of coalgebras over the comonad

U “ F ˝G : LModR1pSppCqq Ñ LModR1pSppCqq,

given at the level of objects by X ÞÑ R1bRX. If the map φ is flat, then an object X P SppCq
belongs to SppCqďn if and only if R1 bR X belongs to LModR1pSppCqqďn (Proposition
D.4.4.4). Note that the comonad U commutes with truncations. It follows that the canonical
map SppCq Ñ lim

ÐÝně0 SppCqďn can be identified with the opposite of the composition of
equivalences

SppCqop » RModU pLModR1pSppCqqopq

» RModU plimÐÝLModR1pSppCqqop
ďnq

» lim
ÐÝ

RModU pLModR1pSppCqqop
ďnq

» lim
ÐÝ

SppCqop
ďn,

and is therefore an equivalence of 8-categories.

D.5.2 Left Exact and Compact Functors

We now consider a slight variant of Questions D.5.0.1 and D.5.0.2. Suppose we are given
a connective E2-ring R and an R-linear functor f : C Ñ D, where C and D are prestable
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R-linear 8-categories. What is the relationship between properties of the functor f and
properties of the induced map LModR1pCq Ñ LModR1pDq, where R1 is an E1-algebra over
R?

Proposition D.5.2.1. Let R be a connective E2-ring, let C and D be prestable R-linear
8-categories, and let f : C Ñ D be an R-linear functor. Then:

paq If the functor f is left exact, then for any connective E1-algebra R1 over R, the induced
functor fR1 : LModR1pCq Ñ LModR1pCq is also left exact.

pbq If there exists a flat universal descent morphism RÑ R1 of connective E2-rings (for
example, a morphism which is étale and faithfully flat) for which the map fR1 is left
exact, then f is left exact.

Proof. Assertion paq follows from the commutativity of the diagram

LModR1pCq
fR1 //

��

LModR1pDq

��
C f // D,

since the vertical maps (given by the forgetful functors) are conservative and preserve finite
limits (Corollary HA.4.2.3.3 ). To prove pbq, we note that there is also a commutative
diagram

C f //

R1bR
��

D

R1bR
��

LModR1pCq
fR1 // LModR1pDq.

If R Ñ R1 is a flat universal descent morphism, then Proposition D.4.4.4 (together with
Proposition C.3.2.1) guarantee that the vertical maps in this diagram are conservative and
left exact. Consequently, the left exactness of f follows from the left exactness of fR1 .

Proposition D.5.2.2. Let R be a connective E2-ring, let C and D be prestable R-linear
8-categories, and let f : C Ñ D be an R-linear functor. Then:

paq Suppose that f is compact. Then, for any connective E1-algebra R1 over R, the induced
functor fR1 : LModR1pCq Ñ LModR1pDq is compact.

pbq If there exists a universal descent morphism R Ñ R1 of connective E2-rings (for
example, a morphism which is étale and faithfully flat) for which the induced map
fR1 : R1 bR C Ñ R1 bR D is compact, then f is compact.
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Proof. To prove paq, let g and gR1 denote right adjoints to f and fR1 , so that we have a
commutative diagram σ :

LModR1pDq
gR1 //

��

LModR1pDq

��
D g // C .

where the vertical maps are conservative and preserve small colimits (Corollary HA.4.2.3.5 ).
It follows immediately that if g commutes with filtered colimits, then so does gR1 .

We now prove pbq. Passing to stabilizations in the diagram σ, we obtain a commutative
diagram of stable 8-categories τ :

LModR1pSppDqq
GR1 //

��

LModR1pSppDqq

��
SppDq G // SppCq.

For every left R-module M , let GM : SppDq Ñ SppCq denote the functor given on objects
by GM pXq “ GpM bR Xq. By virtue of Proposition C.3.2.4, to show that the functor g
commutes with filtered colimits it will suffice to show that GR commutes with all colimits.
In fact, we will prove that the functor GM commutes with colimits for all left R-modules M .

Let E Ď LModR denote the full subcategory spanned by those left R-modules M for
which the functor GM commutes with small colimits. We wish to show that E “ LModR.
Since the construction M ÞÑ GM commutes with finite limits, the 8-category E is a stable
subcategory of LModR which is closed under retracts. Since RÑ R1 is a universal descent
morphism, it will suffice to show that E contains the essential image of the forgetful functor
LModR1 Ñ LModR (see Variant D.3.2.3). In other words, we are reduced to proving that the
functor GM commutes with small colimits in the special case where M admits the structure
of a left R1-module. In this case, the commutativity of the diagram τ allows us to identify
GM with the composition of colimit-preserving functors

D R1bR
ÝÑ LModR1pDq

MbR1
Ñ LModR1pDq

GR1
Ñ LModR1pCq Ñ C .

Remark D.5.2.3. Let R be a connective E2-ring, let C be a prestable R-linear 8-category,
and let C P C be an object. Then C determines an R-linear functor λ : LModcn

R Ñ C, given
by λpMq “M bRC, and the object C P C is compact if and only if the functor λ is compact
(in the sense of Definition C.3.5.1). Applying Proposition D.5.2.2, we deduce:

paq If C is compact, then for any E1-algebra A over R, the tensor product AbR C is a
compact object of LModApCq.
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pbq If there exists a universal descent morphism of E2-rings R Ñ R1 (for example, a
morphism that is étale and faithfully flat) and R1 bR C is a compact object of
LModR1pCq, then C is compact.

D.5.3 Compactly Generated Prestable 8-Categories

Recall that a stable 8-category C is said to be compactly generated if is equivalent to an
8-category of the form IndpC0q, where C0 is an essentially small stable 8-category. In the
case where C is equipped with an action of a commutative ring R, a theorem of Toën asserts
that the hypothesis that C is compactly generated can be tested locally with respect to the
étale topology on R ([211]). This was generalized to the setting of E8-rings by Antieau
and Gepner ([2]). Our goal in this section is to prove the following analogous result in the
setting of prestable 8-categories:

Theorem D.5.3.1. Let R be a connective E8-ring and let C be a prestable R-linear 8-
category. Then:

paq If C is compactly generated, then LModR1pCq is compactly generated for any connective
E1-algebra R1 over R.

pbq If there exists a faithfully flat étale morphism RÑ R1 such that R1 bR C is compactly
generated, then C is compactly generated.

Remark D.5.3.2. Theorem D.5.3.1 is valid also when R is a connective E2-ring; the proof
we give in this section requires only minor modifications.

Part paq of Theorem D.5.3.1 is a special case of the following:

Lemma D.5.3.3. Let R be a connective E2-ring, let C be a Grothendieck prestable 8-
category equipped with a right action of LModcn

R , and let D be a Grothendieck prestable
8-category equipped with a left action of LModcn

R . Assume that C and D are compactly
generated. Then:

paq The tensor product CbRD “ CbLModcn
R
D is compactly generated.

pbq Let E Ď CbRD be the smallest full subcategory which is closed under cofibers and
contains every object of the form C bR D, where C is a compact object of C and D is
a compact object of D. Then every compact object of CbRD is a retract of an object
of E.

Proof. Let E be as in pbq. It is easy to see that E is closed under finite coproducts and
is therefore closed under finite colimits in CbRD. As in the proof of Proposition D.2.2.1,
we can identify CbRD with the geometric realization of a semisimplicial object prns P
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∆op
s q ÞÑ Bar LModcn

R pC,Dqn of the 8-category Grothc
8 of Definition C.3.4.2. It follows

that the natural map CbD Ñ CbRD preserves compact objects. Since the collection of
compact objects of CbRD is closed under finite colimits, each object of E is compact in
CbRD. It follows that the inclusion E ãÑ CbRD extends to a fully faithful embedding
f : IndpEq Ñ CbRD which commutes with small colimits. Let g be a right adjoint to f .
Since we can identify CbRD with the totalization of BarLModcn

R
pC,Dq‚ in the 8-category

yCat8, the functor g is conservative. It follows that f is an equivalence of 8-categories, which
proves paq and pbq.

Let C be an R-linear prestable 8-category, for some connective E2-ring R. If C is
compactly generated, then there is a close relationship between compact objects of C and
compact objects of the localization Cra´1s “ Rra´1s bR C (where a is an element of π0R):

Proposition D.5.3.4 (Thomason’s Trick). Let R be a connective E2-ring and let C be a
compactly generated prestable R-linear 8-category. Let a be an element of π0R and let D be
a compact object of Cra´1s. Then there exists a compact object C P C and an equivalence
Rra´1s bR C » D ‘ ΣD in the 8-category Cra´1s.

Proof. For each object C P C, let Cra´1s denote the tensor product Rra´1s bR C P Cra´1s.
Note that, as an object of C, we can identify Cra´1s with the colimit of the filtered diagram

C
a
ÝÑ C

a
ÝÑ C

a
ÝÑ C

a
ÝÑ ¨ ¨ ¨ .

Consequently, for objects C,C 1 P C, if C is compact then we have a canonical isomorphism
of abelian groups

π0 MapCra´1spCra
´1s, C 1ra´1sq » π0 MapCpC,C

1ra´1sq » pπ0 MapCpC,C
1qqra´1s.

Let E denote the full subcategory Rra´1s bR C spanned by those objects of the form
Rra´1s bR C, where C P C is compact. The above argument shows that for any morphism
f : Cra´1s Ñ C 1ra´1s between objects of E , there exists an integer n " 0 such that anf is
induced by a map f0 : C Ñ C 1 in C. We then have cofibpfq » cofibpanfq » cofibpf0qra

´1s.
In particular, the 8-category E is closed under the formation of cofibers. A similar argument
(replacing C 1 by ΣC 1 and fibers in place of cofibers) shows that E is closed under extensions.

Let X be any nonzero object of Cra´1s. Then the image of X in C is nonzero, so our
assumption that C is compactly generated guarantees that there is a nonzero morphism
f0 : C Ñ X in C, where C P C is compact (Corollary C.6.3.3). The map f0 induces a nonzero
map f : Cra´1s Ñ X in Cra´1s, whose domain lies in the full subcategory E . Arguing as in
Proposition C.6.3.1, we see that E is a set of compact generators for Cra´1s. In particular,
every compact object D P Cra´1s can be obtained as a direct summand of an object E P E .
Write E » D ‘D1, and let q : E Ñ E be the direct sum of the zero map 0 : D Ñ D with
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the identity map idD1 : D1 Ñ D. Then D ‘ ΣD » cofibpqq belongs to E , and can therefore
be written as Cra´1s for some compact object C P C.

Proof of Part pbq of Theorem D.5.3.1. Let R be a connective E8-ring, let C be a prestable
R-linear 8-category, and let CAlgét

R denote the 8-category of étale R-algebras. We define a
functor χ : CAlgét

R Ñ S by the formula

χpR1q “

#

∆0 if R1 bR C is compactly generated
H otherwise.

To prove Theorem ??, it will suffice to show that the functor χ is a sheaf with respect to
the étale topology. By virtue of Theorem B.6.4.1, it will suffice to show that χ is a sheaf
with respect to both the finite étale topology and the Nisnevich topology.

We begin by showing that χ is a sheaf with respect to the Nisnevich topology. By
virtue of Theorem B.5.0.3, it will suffice to show that χ satisfies affine Nisnevich excision.
Note that if R1 » 0, then the 8-category R1 bR C is a contractible Kan complex and
therefore compactly generated, so that χpR1q » ∆0. To complete the proof, it will suffice to
show that if φ : AÑ A1 is a morphism of étale R-algebras which induces an isomorphism
pπ0Aq{paq Ñ pπ0A

1q{paq for some element a P π0A, then the diagram

χpAq //

��

χpA1q

��
χpAra´1sq // χpA1ra´1sq

is a pullback square. In other words, we must show that if A1 bR C and Ara´1s bR C are
compactly generated, then AbR C is compactly generated. To prove this, we can assume
without loss of generality that R “ A. We will show that C is compactly generated by
verifying that it satisfies the requirements of Corollary C.6.3.3. Let C P C be a nonzero
object; we wish to show that there is a compact object C0 P C and a nonzero map f : C0 Ñ C.
There are two cases to consider:

piq Suppose that the object Cra´1s “ Ara´1s bA C vanishes. Let D Ď C be the full
subcategory spanned by those objects D P C satisfying Dra´1s » 0, and define
D1 Ď pA1 bA Cq similarly. Using Theorem D.3.5.2 and Proposition D.4.4.4, we see
that the construction B ÞÑ pB bA Cq is a yCat8-valued sheaf with respect to the
étale topology. In particular, it satisfies Nisnevich excision (Theorem B.5.0.3), so the
diagram of 8-categories

C
Ara´1sbA //

A1bA
��

Ara´1s bA C

A1ra´1sbAra´1s
��

A1 bA C
A1ra´1sbA1 // A1ra´1s bA C
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is a pullback square. Passing to homotopy fibers in the horizontal direction, we
conclude that the functor D ÞÑ A1 bA D induces an equivalence of 8-categories
D Ñ D1. By assumption, the 8-category A1 bA C is compactly generated. It follows
from Proposition 7.1.1.12 that D1 is compactly generated, so that D is also compactly
generated. Our assumption that Cra´1s vanishes guarantees that C belongs to the full
subcategory D Ď C. Since D is compactly generated, Corollary C.6.3.3 guarantees that
there exists a nonzero map C0 Ñ C, where C0 is a compact object of D. Note that the
tensor product A1 bA C0 P D1 is a compact object of A1 bA C (by virtue of Proposition
7.1.1.12) and the tensor product Ara´1s bA C0 is a compact object of Ara´1s bA C
(since it vanishes). Applying Remark D.5.2.3, we deduce that C0 is a compact object
of C, as desired.

piiq Suppose that the object Cra´1s “ Ara´1s bA C does not vanish. Since Ara´1s bA C is
a compactly generated prestable 8-category, Corollary C.6.3.3 guarantees that there
exists a compact object D0 P Ara

´1s bA C and a nonzero map f : D0 Ñ Cra´1s.
Let D10 denote the tensor product A1ra´1s bAra´1s D0, which we regard as a compact
object of the 8-category A1ra´1s bA C. Replacing D0 by D0 ‘ ΣD0 if necessary, we
can assume that D10 has the form D1ra´1s for some compact object D1 P pA1 bA Cq
(Proposition D.5.3.4). Since the diagram of 8-categories

C
Ara´1sbA //

A1bA
��

Ara´1s bA C

A1ra´1sbAra´1s
��

A1 bA C
A1ra´1sbA1 // A1ra´1s bA C

is a pullback square, we can choose an object D P C satisfying D0 » Dra´1s and
D1 » A1 bA D. It follows from Remark D.5.2.3 that the object D is compact. As in
the proof of Proposition 7.1.1.12, we have a canonical isomorphism

pπ0 MapCpD,Cqqra
´1s » π0 MapCra´1spD0, Cra

´1sq ‰ 0.

In particular, the group π0 MapCpD,Cq must be nonzero, so there exists a nonzero
map f : D Ñ C.

We now argue that χ is a sheaf with respect to the finite étale topology. Since χ is a
sheaf for the Nisnevich topology, it commutes with finite products. It will therefore suffice to
show that if φ : AÑ B is a finite étale faithfully flat morphism in CAlgét

R for which B bR C
is compactly generated, then AbR C is also compactly generated. As before, we may assume
without loss of generality that R “ A.

Let F : C Ñ LModBpCq denote the functor given by F pCq “ BbAC. Note that since B is
finitely generated and projective as an A-module, the composite functor C F

Ñ LModBpCq Ñ C
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is a retract of a product of finitely many copies of the identity functor, and therefore preserves
small limits. It follows that the functor f also preserves small limits. Applying Corollary
HTT.5.5.2.9 , we deduce that F admits a left adjoint FL : LModBpCq Ñ C.

If C is any nonzero object of C, then fpCq is a nonzero object of LModBpCq. Since
LModBpCq is compactly generated, Corollary C.6.3.3 implies that there exists a compact
object D P LModBpCq and a nonzero map α : D Ñ F pCq. Then α determines a nonzero map
FLpDq Ñ C, and the object FLpDq P C is compact by virtue of Proposition HTT.5.5.7.2
(since the functor F commutes with filtered colimits). Applying Corollary C.6.3.3, we deduce
that C is compactly generated.

D.5.4 Anticomplete Prestable 8-Categories

We now study descent questions for the class of anticomplete prestable R-linear 8-
categories. Our starting point is the following result:

Theorem D.5.4.1. Let φ : RÑ R1 be a morphism of connective E8-rings which satisfies
the following conditions:

piq The morphism φ is flat.

piiq The E8-ring R1 has finite Tor-amplitude when regarded as a module over R1 bR R1.

Let C be a prestable R-linear 8-category. If C is anticomplete, then R1 bR C is anticomplete.

Remark D.5.4.2. Hypotheses piq and piiq of Theorem D.5.4.1 are satisfied when the
morphism φ : RÑ R1 is étale. More generally, they are satisfies if φ is fiber-smooth, in the
sense of Definition 11.2.3.1 (see Proposition 11.3.3.1).

Remark D.5.4.3. Theorem D.5.4.1 is valid more generally in the setting of E2-rings; we
leave the requisite modifications to the reader.

Warning D.5.4.4. In the setting of Theorem D.5.4.1, hypothesis piiq is essential. For
example, suppose that φ : R Ñ R1 is a morphism of Noetherian rings of finite Krull
dimension. If R is regular, then the prestable 8-category Modcn

R is anticomplete. However,
the tensor product R1 bR Modcn

R » Modcn
R1 is anticomplete only if R1 is also regular.

Before giving the proof of Theorem D.5.4.1, we need a few observations about the class
of anticomplete prestable R-linear 8-categories.

Lemma D.5.4.5. Let C be a compactly generated monoidal prestable 8-category (where the
tensor product b : Cˆ C Ñ C preserves small colimits separately in each variable), and sup-
pose that the 8-category SppCq is locally rigid (see Definition D.7.4.1). Let LModlex

C pGroth8q
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be the subcategory of LModCpGroth8q whose objects are C-linear Grothendieck prestable 8-
categories M and whose morphisms are C-linear functors which preserve small colimits
and finite limits, and let LModch

C pGroth8q denote the full subcategory of LModlex
C pGroth8q

spanned by the anticomplete prestable C-linear 8-categories. Then:

p1q The 8-category LModch
C pGroth8q is a colocalization of LModlex

C pGroth8q: that is,
the inclusion functor LModch

C pGroth8q ãÑ LModlex
C pGroth8q admits a right adjoint

M ÞÑ |M.

p2q For every C-linear Grothendieck prestable 8-category M, the canonical map |MÑM
induces an equivalence of completions.

Remark D.5.4.6. Let C be as in Lemma D.5.4.5 and let M be a C-linear Grothendieck
prestable 8-category. Then Lemma D.5.4.5 implies that there exists a C-linear functor
λ : |MÑM which exhibits |M as a LModch

C pGroth8q-colocalization ofM. In particular, the
Grothendieck prestable 8-category |M is anticomplete. Moreover, part p2q of Lemma D.5.4.5
guarantees that λ induces an equivalence on completions, so that the image of λ under the
forgetful functor LModCpGroth8q Ñ Groth8 can be identified with the functor appearing in
Proposition C.5.5.9. We can summarize the situation more informally as follows:

piq If M is a Grothendieck prestable 8-category equipped which is equipped with a left
action of C and λ : |M Ñ M is as in Proposition C.5.5.9, then the 8-category |M
inherits a left action of C.

piiq The 8-category |M of piq is universal among anticomplete prestable C-linear 8-
categories equipped with a left exact C-linear functor to M.

Applying Lemma D.5.4.5 in the case C “ LModcn
R , where R is a connective E2-ring, we

obtain the following:

Corollary D.5.4.7. Let R be a connective E2-ring and let M be a prestable R-linear
8-category. The following conditions are equivalent:

paq The prestable 8-category M is anticomplete.

pbq For every prestable R-linear 8-category N with completion pN , the canonical map
θ : MapLinCatPSt,lex

R
pM,N q Ñ MapLinCatPSt,lex

R
pM, pN q is a homotopy equivalence.

Proof of Lemma D.5.4.5. In what follows, we will assume that the reader is familiar with
the formalism of 8-operads. Let us regard the 8-category Groth8 of Grothendieck prestable
8-categories as equipped with symmetric monoidal structure described in §C.4. This
symmetric monoidal structure is encoded by a coCartesian fibration q : Grothb8 Ñ F in˚.
Let LMb denote the 8-operad of Definition HA.4.2.1.7 (so that LMb-algebras are given
by pairs pA,Mq, where A is an associative algebra and M is a left A-module) and set
Ob “ Grothb8ˆF in˚ LMb. The 8-operad Ob can be described more concretely as follows:
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• Objects of O are given by pairs pE , σq, where E is a Grothendieck prestable 8-category
and σ P ta,mu is a formal symbol.

• Given a finite collection of objects tpσi, E iquiPI pσ, Eq ofO, a morphism φ P MulOptpσi, E iquiPI , pσ, Eqq
consists of the following data:

– A functor
ś

iPI E i Ñ E which preserves small colimits separately in each variable.

– A linear ordering ď on the set I.

This data is required to satisfy the following condition:

– If σ “ a, then σi “ a for all i P I. If σ “ m, then there is a unique element i P I
such that σi “ m, and i is a maximal element of pI,ďq.

Consider the subcategory Ob1 Ď Ob which defines an 8-operad admitting the following
description:

• An object pσ, Eq of O belongs to O1 if either σ “ m or σ “ a and E is compactly
generated.

• Let φ P MulOptpσi, E iquiPI , pσ, Eqq classify a functor f :
ś

iPI E i Ñ E which preserves
small colimits separately in each variables. Then φ belongs to MulO1ptpσi, E iquiPI , pσ, Eqq
if one of the following conditions is satisfied:

– We have σ “ a and fptEiuq is a compact object of E whenever each Ei is a
compact object of E i.

– We have σ “ m, so that there is a unique element i P I such that σi “ m.
Moreover, for every collection of compact objects tEj P EjujPI´tiu, the functor

E i » E iˆ
ź

j‰i

tEju ãÑ
ź

jPI

Ej
f
ÝÑ E

has bounded amplitude, in the sense of Definition C.5.5.2.

Unwinding the definitions, we can identify objects of Alg{LMpOq with pairs pC,Mq,
where C is a monoidal Grothendieck prestable 8-category, M is a Grothendieck prestable
8-category which is left-tensored over C, and the action maps

Cˆ C Ñ C CˆMÑM

preserve small colimits separately in each variable. Under this identification, Alg{LMpO1q

corresponds to the subcategory of Alg{LMpOq which can be described as follows:
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• An object pC,Mq P Alg{LMpOq belongs to Alg{LMpO1q if and only if C is compactly
generated, the collection of compact objects of C contains the unit object and is stable
under tensor products, and for each compact object C P C the functor M ÞÑ C bM

has bounded amplitude.

• A morphism from pC,Mq to pC1,M1q in Alg{LMpOq is a morphism of Alg{LMpO1q if
and only if its domain and codomain belong to Alg{LMpO1q, the underlying monoidal
functor C Ñ C1 preserves compact objects, and the underlying functor MÑM1 has
bounded amplitude.

Now suppose that we are given an object pC,Mq P Alg{LMpOq having the property that
C is compactly generated and SppCq is locally rigid. If C is a compact object of C, then Σ8C
is a compact object of SppCq. It follows that Σ8C is a dualizable object of SppCq, whose dual
D “ pΣ8Cq_ is also compact. We therefore have D P SppCqě´n for some n " 0. Let M be
any left C-module in the 8-category Groth8. For M P SppMqďk and N P SppMqěn`k`1,
the mapping space

MapSppMqpN, pΣ8Cq bMq » MapSppMqpD bN,Mq

is contractible. Allowing N to vary, we deduce that tensor product with Σ8C carries
SppMqďk into SppMqďn`k. It follows that tensor product with C induces a functorMÑM
of bounded amplitude. Allowing C to vary, we conclude that pC,Mq belongs to the
subcategory Alg{LMpO1q Ď Alg{LMpO0q. This proves the following:

p˚q Suppose we are given a monoidal Grothendieck prestable 8-category C (where the
tensor product b : Cˆ C Ñ C preserves small colimits separately in each variable),
which we regard as an associative algebra object of the 8-category Groth8. If C is
compactly generated and SppCq is locally rigid, then the inclusion

tCu ˆAlgpGroth8q Alg{LMpO1q ãÑ tCu ˆAlgpGroth8q Alg{LMpOq » LModCpGroth8q

is an equivalence onto the subcategory of LModCpGroth8q whose morphisms are C-linear
functors of bounded amplitude.

Consider the full subcategory Ob0 Ď Ob1 which defines an 8-operad admitting the
following description:

• An object pσ, Eq of O1 belongs to O0 if either σ “ a or σ “ m and E is anticomplete.

Then we can identify Alg{LMpO0q with the full subcategory of Alg{LMpO1q spanned by
those pairs pC,Mq where M is anticomplete.

Fix an object X P Ob1 , given by a sequence tpσi, E iqu1ďiďn. For each 1 ď i ď n satisfying
σi “ m, choose a functor λi : E 1i Ñ E i satisfying the requirements of Proposition C.5.5.9. For
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1 ď i ď n satisfying σi “ a, set E 1i “ E i and let λi : E 1i Ñ E i be the identity map. Define
X 1 “ tpσi, E 1iqu1ďiďn P Ob0 , so that tλiu1ďiďn determines a map λ : X 1 Ñ X in Ob1 . We will
prove the following:

p˚1q For each X P Ob1 as above, the map λ : X 1 Ñ X exhibits X 1 as a Ob0 -colocalization of
X.

Assume p˚1q for the moment. Allowing X to vary over all objects of Ob1 , we deduce that
the inclusion functor Ob0 ãÑ Ob1 admits a right adjoint G, given by X ÞÑ X 1. Then G is a
functor of 8-operads, which induces a functor Alg{LMpO1q Ñ Alg{LMpO0q which is right
adjoint to the inclusion, given on objects by the construction pC,Mq ÞÑ pC,|Mq, where the
counit map determines a C-linear functor |MÑM which is an equivalence on completions.
Combining this observation with p˚q, we obtain the following:

p˚2q Let C P AlgpGroth8q be as in p˚q, let LMod1CpGroth8q be the subcategory of LModCpGroth8q
whose morphisms are C-linear functors of bounded amplitude, and let LMod2CpGroth8q Ď
LMod1CpGroth8q be the full subcategory spanned by those C-modules which are anticom-
plete. Then the inclusion LMod2CpGroth8q ãÑ LMod1CpGroth8q admits a right adjoint
LMod1CpGroth8q Ñ LMod2CpGroth8q, which we will denote by M Ñ |M. Moreover,
the counit map |MÑM induces an equivalence of completions.

Note that in the situation of p˚2q, a C-linear functor f :MÑ N is left exact if and only if
the composite map |MÑM f

ÝÑ N is left exact (Proposition C.3.2.1). It follows that the
construction MÑ |M restricts to a functor LModlex

C pGroth8q Ñ LModch
C pGroth8q which is

right adjoint to the inclusion, which completes the proof of Lemma D.5.4.5.
It remains to prove p˚1q. Let λ : X 1 Ñ X be as in p˚1q, and let Y be any object of Ob0 ;

we wish to show that composition with λ induces a homotopy equivalence MapOb1
pY,Xq Ñ

MapOb1
pY,Xq. Using the fact that Ob1 is an 8-operad, we can reduce to the case where

X “ pσ, Eq P O1. If σ “ a, then λ is an equivalence and there is nothing to prove. Let us
therefore assume that σ “ m, and let λ : qE Ñ E be as in Proposition C.5.5.9. Unwinding
the definitions, we wish to prove the following:

p˚3q Suppose we are given Grothendieck prestable 8-categories D1, . . . ,Dk and D, where
Di is compactly generated for 1 ď i ď k and D is anticomplete. Let FunρpD1ˆ ¨ ¨ ¨ ˆ

DkˆD, Eq be the full subcategory of FunpD1ˆ ¨ ¨ ¨ ˆ DkˆD, Eq spanned by those
functors f which preserve small colimits separately in each variable and have the
property that, for every sequence of compact objects tDi P Diu1ďiďk, the induced map
fpD1, . . . , Dk, ‚q : D Ñ E has bounded amplitude. Define FunρpD1ˆ ¨ ¨ ¨ ˆDkˆD, qEq
similarly. Then composition with λ induces a homotopy equivalence

FunρpD1ˆ ¨ ¨ ¨ ˆDkˆD, qEq» Ñ FunρpD1ˆ ¨ ¨ ¨ ˆDkˆD, Eq».
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In fact, in the situation of p˚3q, we will show that λ induces an equivalence of 8-categories

FunρpD1ˆ ¨ ¨ ¨ ˆDkˆD, qEq Ñ FunρpD1ˆ ¨ ¨ ¨ ˆDkˆD, Eq.

To prove this, we let Dci denote the full subcategory of Di spanned by the compact objects
for 1 ď i ď k, let LFunbpD, Eq be the full subcategory of LFunpD, Eq spanned by the functors
of bounded amplitude, and define LFunbpD, qEq similarly. Restriction to compact objects
then yields a commutative diagram

FunρpD1ˆ ¨ ¨ ¨ ˆDkˆD, qEq

��

// FunρpD1ˆ ¨ ¨ ¨ ˆDkˆD, Eq

��
FunrexpDc1ˆ ¨ ¨ ¨ ˆDck,LFunbpD, qEqq // FunrexpDc1ˆ ¨ ¨ ¨ ˆDck,LFunbpD, Eqq

where FunrexpDc1ˆ ¨ ¨ ¨ ˆ Dck,LFunbpD, Eqq denotes the full subcategory of FunpDc1ˆ ¨ ¨ ¨ ˆ
Dck,LFunbpD, Eqq spanned by those functors which preserve finite colimits separately in
each variable, and FunrexpDc1ˆ ¨ ¨ ¨ ˆDck,LFunbpD, qEqq is defined similarly. Since each Di is
compactly generated, the vertical maps are equivalences of 8-categories. We now complete
the proof of p˚3q by observing that the bottom horizontal map is also an equivalence, since
composition with λ induces an equivalence LFunpD, qEq Ñ LFunpD, Eq by virtue of our
assumption that D is anticomplete.

Lemma D.5.4.8. Let R be a connective E8-ring and let C be a prestable R-linear 8-
category. Suppose that M P Modcn

R has Tor-amplitude ď m and that C P C is n-truncated.
Then the tensor product M bR C is pm` nq-truncated.

Proof. We proceed by induction on m. If m “ 0, then M is a flat R-module. Applying
Theorem HA.7.2.2.15 , we can write M as a filtered colimit lim

ÝÑα
Mα, where each Mα is

a free R-module of finite rank. Each of the tensor products Mα bR C is a direct sum of
finitely many copies of C, and is therefore n-truncated. Since C is a Grothendieck prestable
8-category, it follows that the M bR C » lim

ÝÑ
pMα bR Cq is also n-truncated.

We now carry out the inductive step. Assume that m ą 0, and choose a free R-module
F and a map α : F Ñ M which is surjective on π0. Then we have a cofiber sequence
fibpαq Ñ F Ñ M in the 8-category Modcn

R , where fibpαq and F have Tor-amplitude
ď m´ 1. Tensoring with the object C, we obtain a cofiber sequence

fibpαq bR C Ñ F bR C ÑM bR C

in the 8-category C. Our inductive hypothesis implies that the first two terms of this
sequence are pm` n´ 1q-truncated, so the third term must be pm` nq-truncated.
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Proof of Theorem D.5.4.1. Let φ : RÑ R1 be a morphism of connective E8-rings for which
R1 is flat over R and of finite Tor-amplitude over R1 bR R1, and let C be a anticomplete
prestable R-linear 8-category. We wish to show that C1 “ R1 bR C is also anticomplete. We
will prove this by verifying that R1 bR C satisfies condition pbq of Corollary D.5.4.7. Let D
be a prestable R1-linear 8-category and let pD be its completion; we wish to show that the
canonical map

θ : MapLinCatPSt,lex
R1

pC1,Dq Ñ MapLinCatPSt,lex
R1

pC1, pDq

is a homotopy equivalence.
Let λ : C Ñ C1 denote the R-linear functor given by λpCq “ R1 bR C, so that precompo-

sition with λ induces a homotopy equivalence ρ : MapLinCatPSt
R1
pC1,Dq » MapLinCatPSt

R
pC,Dq.

Since R1 is flat over R, the functor λ is left exact, so that ρ restricts to a fully faithful
embedding ρlex : MapLinCatPSt,lex

R1
pC1,Dq » MapLinCatPSt,lex

R
pC,Dq. Similarly, we have a fully

faithful embedding pρlex : MapLinCatPSt,lex
R1

pC1, pDq » MapLinCatPSt,lex
R

pC, pDq. These maps fit into
a commutative diagram σ :

MapLinCatPSt,lex
R1

pC1,Dq θ //

ρlex

��

MapLinCatPSt,lex
R1

pC1, pDq

pρlex

��

MapLinCatPSt,lex
R

pC,Dq //MapLinCatPSt,lex
R

pC, pDq,

where the bottom horizontal map is a homotopy equivalence by virtue of our assumption
that C is anticomplete (Corollary D.5.4.7). To complete the proof, it will suffice to show
that σ is a pullback square. Unwinding the definitions, this is equivalent to the following
assertion:

p˚q Let F : C1 Ñ D be an R1-linear functor. If both of the composite functors

C λ
ÝÑ C1 FÝÑ D C1 FÝÑ D Ñ pD

are left exact, then F is left exact.

To show that the functor F : C1 Ñ D appearing in p˚q is left exact, it is enough to show that
for each discrete object C P C1, the image F pCq P D is also discrete (Proposition C.3.2.1).
Set A “ R1 bR R

1 so that we have two natural maps ι0, ι1 : R1 Ñ A. Extension of scalars
along ι0 determines an exact functor µ : LModR1pCq Ñ LModApCq and restriction of scalars
along ι1 determines an exact functor ν : LModApCq Ñ LModR1pCq, and the composition
ν ˝ µ is homotopic to the composition LModR1pCq Ñ C

λ
ÝÑ LModR1pCq. Consequently, if

F ˝ λ is left exact, then F ˝ ν ˝ µ is left exact. It follows that pF ˝ ν ˝ µqpCq “ F pAbR Cq

is a discrete A-module object of D. Applying Lemma D.5.4.8 (and our assumption that R
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has finite Tor-amplitude as an A-module), we conclude that F pCq » RbA F pAbR Cq is a
truncated object of D. Since the completion map D Ñ pD is an equivalence when restricted
to truncated objects and the image of F pCq in pD belongs to the heart of pD, it follows that
F pCq P D♥, as desired.

We now prove a converse to Theorem D.5.4.1:

Theorem D.5.4.9. Let φ : RÑ R1 be a morphism of connective E8-rings which satisfies
the following conditions:

piq The morphism φ is flat.

piiq The E8-ring R1 has finite Tor-amplitude when regarded as a module over R1 bR R1.

piiiq The map φ is a universal descent morphism.

Let C be a prestable R-linear 8-category. If R1 bR C is anticomplete, then C is anticomplete.

Remark D.5.4.10. Hypotheses piq, piiq and piiiq of Theorem D.5.4.9 are satisfied if φ is
étale and faithfully flat, or more generally if φ is fiber-smooth and faithfully flat (Proposition
11.3.3.1 and Remark 11.2.3.3).

Proof of Theorem D.5.4.9. We will prove that C is anticomplete by showing that it satisfies
criterion pbq of Corollary D.5.4.7. Let D be a prestable R-linear 8-category and let pD denote
its completion; we wish to show that the canonical map

θ : MapLinCatPSt,lex
R

pC,Dq Ñ MapLinCatPSt,lex
R

pC, pDq

is a homotopy equivalence. Let R‚ denote the Čech nerve of the morphism φ (formed in
the 8-category CAlgop). Using hypotheses piq and piiiq, Theorem D.4.1.6, and Proposition
D.5.2.1, we conclude that θ can be obtained as the totalization of a map of cosimplicial
spaces

θ‚ : MapLinCatPSt,lex
R‚

pLModR‚pCq,LModR‚pDqq Ñ MapLinCatPSt,lex
R

pLModR‚pCq,LModR‚ppDqq

We will complete the proof by showing that each θk is a homotopy equivalence. By virtue
of Corollary D.5.4.7, it will suffice to show that the Grothendieck prestable 8-category
LModRkpCq is anticomplete. This follows from Theorem D.5.4.1, since Rk is flat over R and
of finite Tor-amplitude over Rk bR Rk.
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D.5.5 Weakly Coherent Prestable 8-Categories

We now consider descent for the property of weak coherence (see Definition C.6.5.1).

Theorem D.5.5.1. Let φ : RÑ R1 be a morphism of connective E8-rings which is almost
of finite presentation, and suppose that the underlying ring homomorphism π0RÑ π0R

1 is
quasi-finite (Definition B.2.4.1). Let C be an R-linear prestable 8-category. If C is weakly
coherent, then R1 bR C is weakly coherent.

The proof of Theorem D.5.5.1 will require a number of preliminaries. We begin by
studying the special case where R1 » Rrt´1s is a localization of R.

Lemma D.5.5.2. Let R be a connective E8-ring and let t be an element of π0R. Let C
be an additive R-linear 8-category which is compactly generated and let Crt´1s denote the
8-category Rrt´1s bR C » LModRrt´1spCq. Then:

paq The 8-category Crt´1s is compactly generated.

pbq An object C P Crt´1s is compact if and only if it is a direct summand of an object of
the form C0rt

´1s, for some compact object C0 P τďn C.

Proof. Let E Ď Crt´1s be the full subcategory spanned by objects of the form C0rt
´1s, where

C0 is a compact object of C. By virtue of Lemma D.5.3.3, it will suffice to show that E is closed
under the formation of cofibers. To prove this, let f : C0rt

´1s Ñ D0rt
´1s be a morphism

in E . The compactness of C0 guarantees that, for k " 0, the map tkf : C0rt
´1s Ñ D0rt

´1s

is obtained by localizing a map f0 : C0 Ñ D0 in C, so that cofibpfq » cofibptkfq »
cofibpf0qrt

´1s.

Remark D.5.5.3. In the situation of Lemma D.5.5.2, suppose that C is an n-category for
some n ă 8. Then every compact object of Crt´1s has the form C0rt

´1s, where C0 is a
compact object of C; see Proposition HTT.?? .

Lemma D.5.5.4. Let R be a connective E8-ring and let t be an element of π0R. Let C be
a weakly coherent prestable R-linear 8-category. Then Crt´1s is also weakly coherent.

Proof. For each integer n, the 8-category τďn C is compactly generated. It follows from
Lemma D.5.5.2 that the 8-category τďn Crt´1s is also compactly generated. Moreover,
Remark D.5.5.3 shows that an object of τďn Crt´1s is compact if and only if it has the
form C0rt

´1s, where C0 is a compact object of τďn C. Arguing as in the proof of Lemma
D.5.5.2, we see that every morphism f : C Ñ D between compact objects of τďn Crt´1s is
obtained from a morphism f0 : C0 Ñ D0 between compact objects of τďn C by applying the
localization functor M ÞÑ M rt´1s. Our assumption that C is weakly coherent guarantees
that fibpf0q is a compact object of τďn C, so that fibpfq » fibpf0qrt

´1s is a compact object
of τďn Crt´1s. It follows that the collection of compact objects of τďn Crt´1s is closed under
finite limits. Applying Proposition C.6.5.4, we deduce that Crt´1s is weakly coherent.
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Lemma D.5.5.5. Let R be a connective E8-ring and let C be a prestable R-linear 8-category
which satisfies the following conditions:

paq For every integer n, the 8-category τďn C is compactly generated.

pbq There exists a collection of elements t1, t2, . . . , tk P π0R which generate the unit ideal
such that each Crt´1

i s is weakly coherent.

Then C is weakly coherent.

Proof. By virtue of Proposition C.6.5.4, it will suffice to show that for each n ě 0, the
collection of compact objects of τďn C is closed under finite limits. Fix a morphism f : C Ñ D

between compact objects of τďn C; we wish to show that fibpfq is compact. By virtue of
Remark D.5.2.3, it will suffice to show that the localization fibpfqrt´1

i s is a compact object
of τďn Crt´1

i s for 1 ď i ď k, which follows from the weak coherence of Crt´1
i s.

We now consider a special case of Theorem D.5.5.1 which lies at the opposite extreme.

Lemma D.5.5.6. Let R be a connective E8-ring and let C be a prestable R-linear 8-
category. Let M be a connective R-module and let C P C. If M is almost perfect and C is
almost compact, then the object M bR C is almost compact.

Proof. Using Proposition HA.?? , we can write M as the geometric realization of a simplicial
object P‚ of ModR where each Pm is a free R-module of finite rank. Then M bR C can be
identified with the geometric realization |P‚ bR C|, which is almost compact by virtue of
Proposition C.6.4.4.

Lemma D.5.5.7. Let φ : RÑ R1 be a morphism of connective E8-rings which exhibits R1

as an almost perfect module over R. Then:

paq If C P LModR1pCq is an object whose image under the forgetful functor LModR1pCq Ñ C
is an almost compact object of C, then C is an almost compact as an object of
LModR1pCq.

pbq Suppose that τďn C is compactly generated 8-category for each n ě 0. If C P LModR1pCq
is almost compact, then the image of C under the forgetful functor LModR1pCq Ñ C is
almost compact.

Proof. To prove paq, we note that C » R1 bR1 C can be written as the geometric realization
of two-sided bar construction BarR1pR1, Cq‚. By virtue of Proposition C.6.4.4, it will suffice
to show that each BarR1pR1, Cqk is an almost compact object of LModR1pCq. The extension
of scalars functor C Ñ LModR1pCq is compact, and therefore sends almost compact objects
to almost compact objects. It will therefore suffice to show that each iterated tensor product
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R1 bR R
1 bR ¨ ¨ ¨ bR C is an almost compact object of C, which follows from Lemma D.5.5.6

provided that C is almost compact when viewed as an object of C.
We will deduce pbq from the following more precise assertions:

pbnq Suppose that τďn C is compactly generated 8-category for some n ě 0. If C is a
compact object of τďn LModR1pCq, then the image of C in τďn C is compact.

To prove pbnq, let E be the full subcategory of τďn LModR1pCq spanned by those objects
C whose image in τďn C is compact; we wish to show that E contains all compact objects
of τďn LModR1pCq. Since E is evidently closed under retracts and cofibers (formed in the
8-category τďn LModR1pCq), it will suffice to show that E contains every object of the form
τďnpR

1 bR C0q, where C0 is a compact object of τďn C (see Lemma D.5.3.3). This is clear,
since τďnpR1 bR C0q can be built from C0 using finite colimits.

Lemma D.5.5.8. Let φ : RÑ R1 be a morphism of connective E8-rings which exhibits R1

as an almost perfect module over R, and let C be a prestable R-linear 8-category. If C is
weakly coherent, then LModR1pCq is weakly coherent.

Proof. We show that LModR1pCq satisfies the requirements of Definition C.6.5.1. It follows
from Lemma D.5.5.7 that an object C P LModR1pCq is almost compact if and only if its
image in C is almost compact. Using the weak coherence of C, we see that the collection
of almost compact objects of LModR1pCq is closed under finite limits. If X is a truncated
object of LModR1pCq, then the weak coherence of C implies that there exists a morphism
À

Cα Ñ X in the 8-category C which is an epimorphism on π0, where each Cα is an almost
compact object of C. Then the induced map

À

pR1 bR Cαq Ñ X is a morphism in the
8-category LModR1pCq which induces an epimorphism on π0, where each R1 bR Cα is an
almost compact object of LModR1pCq.

We will need the following weak converse:

Lemma D.5.5.9. Let φ : R Ñ R1 be a morphism of connective E8-rings and let C be a
prestable R-linear 8-category. Assume that:

piq For each n ě 0, the 8-category τďn C is compactly generated.

piiq The morphism φ exhibits R1 as an almost perfect R-module.

piiiq The morphism φ induces an isomorphism of commutative rings π0RÑ π0R
1.

pivq The Grothendieck prestable 8-category LModR1pCq is weakly coherent.

Then C is weakly coherent.
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Proof. Let X be an almost compact object of C. Then R1 bR X is an almost compact
object of LModR1pCq. Using assumption pivq, we deduce that π0pR

1 bR Xq is an almost
compact object of LModR1pCq. Using piq, piiq, and Lemma D.5.5.7, we see that π0pR

1bRXq

is almost compact when viewed as an object of C. Using piiiq, we see that the canonical
map π0pR

1 bR Xq Ñ π0X is an isomorphism in C♥, so that π0X is an almost compact
object of C. Invoking Proposition C.6.4.5, we deduce that the collection of almost compact
objects of C is closed under finite limits. To complete the proof, it will suffice (by virtue of
Proposition C.6.5.6) to show that every object C P C♥ can be written as a filtered colimit
lim
ÝÑ

Cα, where each Cα P C♥ is almost compact when viewed as an object of C. Assumption
piiiq implies that C admits an essentially unique R1-module structure, so that the weak
coherence of LModR1pCq implies that we can choose such an equivalence C » lim

ÝÑ
Cα where

each Cα is almost compact when viewed as an object of LModR1pCq. It follows from piq, piiq,
and Lemma D.5.5.7 that each Cα is also almost compact when viewed as an object of C.

Proof of Theorem D.5.5.1. Let φ : R Ñ R1 be a morphism of connective E8-rings and let
C be a weakly coherent prestable R-linear 8-category. Assume that φ is almost of finite
presentation and that the underlying homomorphism of commutative rings R Ñ R1 is
quasi-finite. We wish to show that LModR1pCq is also weakly coherent.

Since π0R
1 is finitely generated as an algebra over π0R, we can extend φ to a map

Rtx1, . . . , xnu Ñ R1 which induces a surjection

π0pRtx1, . . . , xnuq » pπ0Rqrx1, . . . , xns
ρ
ÝÑ π0R

1;

here Rtx1, . . . , xnu denotes the free E8-algebra over R on n generators. Since π0R
1 is

finitely presented over π0R, the kernel of ρ is generated by finitely many polynomi-
als tgipx1, . . . , xnqu1ďiďm. These polynomials classify a morphism ~g : Rty1, . . . , ymu Ñ

Rtx1, . . . , xnu of E8-algebras over R. Let R “ Rtx1, . . . , xnu bRty1,...,ymu R denote the
E8-algebra over R obtained from Rtx1, . . . , xnu by “killing” the polynomials gipx1, . . . , xmq,
so that φ factors as a composition

R
φ1
ÝÑ R

φ2
ÝÑ R1.

By construction, φ1 is almost of finite presentation and φ2 induces an isomorphism on π0.
Since φ is almost of finite presentation, it follows that φ2 is also locally almost of finite
presentation. Using Corollary 5.2.2.2, we see that φ2 exhibits R1 as an almost perfect
R-module. Consequently, in order to show that R1 bR C is weakly coherent, it will suffice to
show that RbR C is weakly coherent (Lemma D.5.5.8). We may therefore replace R1 by R
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and thereby reduce to the case where the morphism φ fits into a pushout diagram σ :

Rty1, . . . , ymu

~g
��

// R

φ
��

Rtx1, . . . , xnu // R1;

here the upper horizontal map is given by yi Ñ 0.
Write R as the colimit of a diagram tRαuαPA indexed by a filtered partially ordered set

A, where each Rα is a compact object of CAlgcn. For α sufficiently large, we can arrange
that all of the coefficients of the polynomials gipx1, . . . , xnq can be lifted to elements of π0Rα,
so that σ can be lifted to a pushout square σα :

Rαty1, . . . , ymu

��

// Rα

φα
��

Rαtx1, . . . , xnu // R1α.

Enlarging α further, we can assume that the ring homomorphism π0Rα Ñ π0R
1
α is quasi-

finite. In this case, we have a canonical equivalence R1 bR C » R1α bRα C. We may therefore
replace φ by φα and thereby reduce to the case where R is Noetherian (so that R1 is also
Noetherian).

The assumption that R1 is Noetherian guarantees that the commutative ring π0R
1 is

almost perfect when viewed as an R1-module (Proposition HA.7.2.4.17 ). By virtue of Lemma
D.5.5.9, to show that R1 bR C is weakly coherent, it will suffice to show that pπ0R

1q bR C
is weakly coherent. We may therefore replace R1 by π0R

1 and thereby reduce to the case
where R1 is discrete.

Applying the affine version of Zariski’s main theorem (in the form of Theorem B.2.4.5),
we see that the map π0R Ñ R1 factors as a composition π0R Ñ B

ψ
ÝÑ R1 where B is a

commutative ring which is finitely generated as a module over π0R and the map ψ induces
an open immersion of affine schemes j : SpecR1 Ñ SpecB. Because R is Noetherian,
Proposition HA.7.2.4.17 implies that B is almost perfect when viewed as an R-module, so
that Lemma D.5.5.8 guarantees that B bR C is weakly coherent. The complement of the
image of j is a closed subset of SpecB, which we can identify with the vanishing locus of a
finitely generated ideal pb1, . . . , bkq. Applying Lemma D.5.5.4, we deduce that each of the
8-categories Brb´1

i s bR C » R1rb´1
i s bR C is weakly coherent. Since the elements bi generate

the unit ideal in R1, Lemma D.5.5.5 guarantees that R1 bR C is also weakly coherent, as
desired.

Let us now list some consequences of Theorem D.5.5.1.



2166 APPENDIX D. DESCENT FOR MODULES AND LINEAR 8-CATEGORIES

Corollary D.5.5.10. Let φ : RÑ R1 be a morphism of connective E8-rings which is almost
of finite presentation, and suppose that the underlying ring homomorphism π0RÑ π0R

1 is
quasi-finite (Definition B.2.4.1). Let C be an R-linear prestable 8-category. If C is coherent,
then R1 bR C is coherent.

Proof. It follows from Theorem D.5.5.1 that R1bR C is weakly coherent. Let X be an object
of R1bRC » LModR1pCq. Since C is coherent, we can choose a morphism u :

À

Cα Ñ X in C,
where each Cα is an almost compact object of C and π0puq is an epimorphism in the abelian
category C♥. Extending scalars, we see that u classifies a morphism uR1 :

À

pR1bRCαq Ñ X

in LModR1pCq The map uR1 is also an epimorphism on π0 (since this can be checked after
applying the forgetful functor LModR1pCq Ñ Cq, and each R1 bR Cα is an almost compact
object LModR1pCq (since the restriction-of-scalars functor LModR1pCq Ñ C commutes with
filtered colimits). Allowing X to vary, we deduce that R1 bR C is coherent.

We also have the following stronger version of Lemma D.5.5.5:

Corollary D.5.5.11. Let φ : RÑ R1 be a morphism of connective E8-rings which is étale
and faithfully flat, and let C be a prestable R-linear 8-category. If R1bR C is weakly coherent,
then C is weakly coherent.

Proof. Applying Lemma D.5.4.5, we can choose a anticomplete prestable R-linear8-category
qC and a left exact R-linear functor λ : qC Ñ C which induces an equivalence of completions.
Then λ induces an R1-linear functor λR1 : R1 bR qC Ñ R1 bR C. Note that the functor λR1 is
also left exact and induces an equivalence of completions. Applying Corollary C.6.5.5, we see
that R1bR qC is weakly coherent. Using Theorem D.5.4.1, we see that R1bR qC is anticomplete.
Applying Theorem C.6.7.1, we see that R1 bR qC is compactly generated, that every compact
object of R1 bR qC is truncated, and that the collection of compact objects of R1 bR qC is
closed under finite limits. Theorem D.5.3.1 then guarantees that qC is compactly generated,
and Remark D.5.2.3 implies that an object C P qC is compact if and only if the object
R1 bR C P LModR1pqCq is compact. Since the extension-of-scalars functor qC Ñ LModR1pqCq
is left exact and conservative, it follows the collection of compact objects of qC is closed
under finite limits and that every compact object of qC is truncated. Using Theorem C.6.7.1
again, we conclude that qC is weakly coherent, so that C is also weakly coherent (Corollary
C.6.5.5).

Remark D.5.5.12. We do not know if the analogue of Corollary D.5.5.11 holds for coherent
prestable 8-categories.

Corollary D.5.5.13. Let φ : RÑ R1 be a morphism of connective E8-rings which is étale
and faithfully flat. If R1 is coherent, then R is coherent.

Proof. Combine Corollary D.5.5.11 with Example C.6.5.3.
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D.5.6 Locally Noetherian Prestable 8-Categories

Let φ : RÑ R1 be a morphism of connective E8-rings which is almost of finite presenta-
tion. It follows from Proposition HA.7.2.4.31 that if R is Noetherian, then R1 is Noetherian.
We establish a relative version of this assertion:

Proposition D.5.6.1. Let φ : R Ñ R1 be a morphism of connective E8-rings and let C
be a prestable R-linear 8-category. If C is locally Noetherian and φ is almost of finite
presentation, then R1 bR C is also locally Noetherian.

Our starting point is the following variant of the Hilbert basis theorem.

Lemma D.5.6.2. Let A be a Grothendieck abelian category containing an object X, let
B “ LModZrtspAq denote the category of Zrts-modules in A, and set Xrts “ Zrts bZ X P B.
If X is a Noetherian object of A, then Xrts is a Noetherian object of B.

Proof. For each n ě 0, let Zrtsďn denote the subset of the polynomial ring Zrts consisting
of polynomials having degree ď n, and let en : Zrtsďn Ñ Z be the map given by enpc0 `

c1t` ¨ ¨ ¨ ` cnt
nq “ an. We let Xrtsďn denote the tensor product ZrtsďnbZX, which we will

identify with a subobject of Xrts (in the abelian category A).
Let Y be a subobject of Xrts in the abelian category B. For each n ě 0, let Yďn denote

the fiber product Y ˆXrts Xrtsďn (formed in the abelian category A). Then en induces a
map eYn : Yďn Ñ X whose kernel can be identified with Yďn´1. Let SnpY q denote the image
of eYn , which we regard as a subobject of X.

Now suppose we are given an nondecreasing sequence

Y p0q Ď Y p1q Ď Y p2q Ď Y p3q Ď ¨ ¨ ¨

of subobjects of Xrts in the abelian category B. Then tSnpY pnqquně0 is a nondecreasing
sequence of subobject of X in the abelian category A. Since X is Noetherian, this sequence
must eventually stabilize: that is, we can choose an integer n0 " 0 such that SnpY pnqq “
Sn0pY pn0qq for n ě n0. For each k ă n0, the sequence of subobjects tSkpY pnqquně0 must
also stabilize. We can therefore choose n1 " n0 such that SkpY pnqq “ SkpY pn1qq for n ě n1
and k ă n0. We will complete the proof by showing that Y pnq “ Y pn1q for n ě n1. To
prove this, it will suffice to show that we have Y pnqďk “ Y pn1qďk for every integer k. This
follows by induction on k, by inspecting the diagram of short exact sequences

0 // Y pn1qďk´1 //

��

Y pn1qďk //

��

SkpY pn1qq

��

// 0

0 // Y pnqďk´1 // Y pnqďk // SkpY pnqq // 0.
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Lemma D.5.6.3. Let R be a commutative ring and let C be a prestable R-linear 8-category.
If C is locally Noetherian, then Rrt1, . . . , tms bR C is also locally Noetherian for each m ě 0.

Proof. Working by induction on m, we can reduce to the case where m “ 0. We first note
that if C is locally Noetherian, then τďn C is compactly generated for each n ě 0, so that
τďnpRrts bR Cq is also compactly generated (Lemma D.5.3.3). Let E Ď τďnpRrts bR Cq be
the full subcategory spanned by those objects X for which the homotopy groups πkX are
Noetherian objects of the abelian category LModRrtspC♥q for 0 ď k ď m. For each compact
object C P τďn C, the objects πkC P C♥ are Noetherian for 0 ď k ď n, so that Lemma D.5.6.2
guarantees that Rrts bR C belongs to E . The 8-category E is clearly closed under retracts,
and Corollary C.6.8.3 shows that E is closed under the formation of cofibers. Applying
Lemma D.5.3.3, we see that every compact object of τďnpRrts bR Cq belongs to E . Applying
Proposition C.6.9.7, we deduce that Rrts bR C is locally Noetherian.

Proof of Proposition D.5.6.1. Let φ : RÑ R1 be a morphism of connective E8-rings which
is almost of finite presentation and let C be locally Noetherian R-linear prestable 8-category;
we wish to show that R1 bR C is also locally Noetherian. Since π0R

1 is finitely generated
as an algebra over π0R, we can factor φ as a composition R

φ1
ÝÑ Rtt1, . . . , tnu

φ2
ÝÑ R1, where

Rtt1, . . . , tnu denotes the free E8-algebra over R on generators t1, . . . , tn and the morphism
φ2 is surjective on π0.

Let S denote the sphere spectrum. The canonical map S Ñ π0S » Z exhibits Z
as an almost perfect S-module (Proposition HA.7.2.4.17 ). Applying Lemma D.5.5.8, we
deduce that ZbS C is weakly coherent. Since pZbS Cq♥ » C♥ is a locally Noetherian
abelian category, it follows that ZbS C is a locally Noetherian Grothendieck prestable
8-category. Applying Lemma D.5.6.3, we deduce that Zrt1, . . . , tns bS C is also locally
Noetherian. Note that Stt1, . . . , tnu is a Noetherian E8-ring (Proposition HA.7.2.4.31 ) so
that the canonical map Stt1, . . . , tnu Ñ π0Stt1, . . . , tnu » Zrt1, . . . , tns exbibits Zrt1, . . . , tns
as an almost perfect module over Stt1, . . . , tnu. Applying Lemma D.5.5.9, we conclude that
Stt1, . . . , tnubS C is weakly coherent. Using the equivalence of hearts pStt1, . . . , tnubS Cq♥ »
pZrt1, . . . , tns bS Cq♥, we conclude that Stt1, . . . , tnu bS C » Rtt1, . . . , tnu bR C is locally
Noetherian. We may therefore replace φ by φ2 and thereby reduce to the case where the
map φ : RÑ R1 is surjective on π0. In this case, the weak coherence of R1bR C follows from
Theorem D.5.5.1.

To complete the proof, it will suffice to show that every compact object X of pR1bR Cq♥

is also Noetherian. Note that since R1 bR C is weakly coherent, the object X is almost
compact as an object of R1 bR C, and therefore also as an object of C (Lemma D.5.5.7).
Our assumption that C is locally Noetherian then guarantees that X is Noetherian when
viewed as an object of the abelian category C♥, and therefore also as an object of the abelian
category pR1 bR Cq♥.
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We now consider the problem of descent.

Proposition D.5.6.4. Let φ : RÑ R1 be morphism of connective E8-rings and let C be a
prestable R-linear 8-category. If φ is faithfully flat and R1 bR C is locally Noetherian, then
C is locally Noetherian.

We first establish the analogue of Proposition D.5.6.4 for abelian categories.

Lemma D.5.6.5. Let φ : RÑ R1 be a homomorphism of commutative rings and let A be
an R-linear abelian category. If φ is faithfully flat and R1 bR A is locally Noetherian, then
A is locally Noetherian.

Proof. Let X be an object of A and set X 1 “ R1 bR X. Since R1 bR A » LModR1pAq is
locally Noetherian, we can write X 1 as a union of subobjects tX 1αu which are Noetherian
when regarded as objects of LModR1pAq. For each index α, set Xα “ X ˆX 1 X

1
α. Since

filtered colimits in A are left exact, we have X » lim
ÝÑ

Xα. We will show that each Xα is
a Noetherian object of A, so that X can be written as a union of Noetherian subobjects.
To prove this, we first observe that each tensor product R1 ˆR Xα can be identified with a
subobject of X 1 “ R1 bR X (since R1 is flat over R) which is contained in X 1α. The faithful
flatness of R1 over R implies that the construction

pY ãÑ Xαq ÞÑ pR1 bR Y ãÑ X 1αq

induces an injection from the set of isomorphism classes of subobjects of Xα in the abelian
category A to the set of isomorphism classes of subobjects of X 1α in the abelian category
LModR1pAq. Since the latter set satisfies the ascending chain condition (by virtue of our
assumption that X 1α is a Noetherian object of LModR1pAq), the former set must also satisfy
the ascending chain condition.

Proof of Proposition D.5.6.4. Let φ : R Ñ R1 be a faithfully flat morphism of connective
E8-rings, let C be a prestable R-linear 8-category, and assume that C1 “ R1 bR C is locally
Noetherian. We wish to show that C is locally Noetherian. It follows from Lemma D.5.6.5
that the abelian category C♥ is locally Noetherian. It will therefore suffice to show that
for every Noetherian object C P C♥ is compact when viewed as an object of τďn C for each
n ě 0 (Proposition C.6.9.8).

Fix a filtered diagram tDαu of n-truncated objects of C having colimit D; we wish to
show that the canonical map ρ : lim

ÝÑ
MapCpC,Dαq Ñ MapCpC,Dq is a homotopy equivalence.

We will prove that the homotopy fibers of ρ are m-truncated for every integer m ě ´2. Note
that this is trivial when m “ n (since the domain and codomain of ρ are both n-truncated).
We will handle the general case using descending induction on m. For each index α, set
D1α “ R1 bR Dα, and set D1 “ lim

ÝÑ
D1α » R1 bR D. Let D1α{Dα denote the cofiber of
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the canonical map Dα Ñ D1α, and define D1{D similarly. Note that our hypothesis that
R1 is faithfully flat over R guarantees that each D1α{Dα is also n-truncated. We have a
commutative diagram of fiber sequences

lim
ÝÑ

MapCpC,Dαq //

ρ

��

lim
ÝÑ

MapCpC,D
1
αq

//

ρ1

��

lim
ÝÑ

MapCpC,D
1
α{Dαq

ρ2

��
MapCpC,Dq //MapCpC,D

1q //MapCpC,D
1{Dq.

It follows from our inductive hypothesis that the map ρ2 has pm` 1q-truncated homotopy
fibers. Consequently, to show that the homotopy fibers of ρ are m-truncated, it will suffice
to show that ρ1 is a homotopy equivalence. Set C 1 “ R1 bR C, so that ρ1 can be identified
with the canonical map lim

ÝÑ
MapC1pC

1, D1αq Ñ MapC1pC
1, D1q. To show that this map is a

homotopy equivalence, it will suffice to show that C 1 is compact when viewed as an object
of τďn C1. Using our assumption that C1 is locally Noetherian (together with Proposition
C.6.9.3), we are reduced to showing that C 1 is a Noetherian object of the abelian category
C1♥. By virtue of Corollary C.6.8.9, this is equivalent to the assertion that C 1 is a compact
object of C1♥. Since the forgetful functor C1♥ Ñ C♥ commutes with filtered colimits, this
follows from the fact that C is a compact object of C♥ (Proposition C.6.8.7).

D.5.7 Complicial Prestable 8-Categories

We now consider descent properties for the class of n-complicial Grothendieck prestable
8-categories.

Proposition D.5.7.1. Let R be a connective E2-ring, let R1 be an E1-algebra over R which
is flat when regarded as a right R-module, and let C be a prestable R-linear 8-category.
Then:

paq If C is n-complicial for some n ě 0, then LModR1pCq is also n-complicial.

pbq If C is weakly n-complicial for some n ě 0, then LModR1pCq is also weakly n-complicial.

pcq If R1 is faithfully flat as a right R-module and LModR1pCq is weakly n-complicial for
some n ě 0, then C is also weakly n-complicial.

Warning D.5.7.2. Proposition ?? is not true if we drop the flatness hypothesis on φ.

Proof of Proposition D.5.7.1. We first prove pbq. Suppose that C is weakly n-complicial;
we wish to show that LModR1pCq is also weakly n-complicial. Fix a truncated object
X P LModR1pCq. Let us abuse notation by identifying X with its image under the forgetful
functor LModR1pCq Ñ C. Since C is weakly n-complicial, we can choose a morphism
α : X Ñ X in C, where X is n-truncated and the induced map π0X Ñ π0X is an
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epimorphism in C♥. Extending scalars, we obtain a morphism α1 : R1 bR X Ñ X in
LModR1pCq. Note that if we regard α1 as a morphism of C, then α factors through α1. It
follows that α1 induces an epimorphism π0pR

1 bR Xq Ñ π0X in the abelian category C♥,
hence also in the abelian category LModR1pCq♥. We conclude by observing that our flatness
assumption on R1 guarantees that as a right R-module, R1 can be written as a filtered
colimit of free R-modules of finite rank. Since the collection of n-truncated objects of C is
closed under filtered colimits, it follows that R1 bR X is n-truncated. Allowing X to vary,
we conclude that LModR1pCq is weakly n-complicial, as desired.

Assertion paq follows from exactly the same argument, where we now drop the assumption
that X is truncated. We will complete the proof by establishing pcq. Assume that R1 is
faithfully flat over R and that LModR1pCq is weakly n-complicial; we will show that C is
weakly n-complicial. By virtue of Proposition C.5.7.11, it will suffice to show that every
injective object Q P SppCq belongs to SppCqě´n. The injectivity of Q guarantees that Q
belongs to SppCqď0. Using the flatness of R1 as a right R-module, we deduce that R1 bR Q
belongs to SppLModR1pCqqď0. Since LModR1pCq♥ is a Grothendieck abelian category, we can
choose a monomorphism φ : π0pR

1bRQq ãÑ Q10 in LModR1pCq♥, where Q10 P LModR1pCq♥ is
injective. Using Propositon HA.?? , we can lift Q10 to an injective object Q1 P SppLModR1pCqq.
The injectivity of Q1 then guarantees that we can lift φ to a map φ : R1 bR QÑ Q1. Let ψ
denote the composite map

QÑ R1 bR Q
φ
ÝÑ Q1.

Since φ is a monomorphism by construction and R1 is faithfully flat over R, the morphism
ψ induces a monomorphism π0QÑ π0Q

1 in the abelian category C♥. In other words, the
cofiber cofibpψq belongs to SppCqď0. Using the exactness of the sequence

Ext0
SppCqpQ

1, Qq Ñ Ext0
SppCqpQ,Qq Ñ Ext1

SppCqpcofibpψq, Qq,

and the injectivity of Q, we deduce that ψ admits a left homotopy inverse: that is, Q is a
direct summand of Q1 (when we regard Q1 as an object of C). Since LModR1pCq is weakly
n-complicial, Q1 belongs to SppLModR1pCqqě´n (Proposition C.5.7.11), so that Q belongs to
SppCqě´n as desired.

We do not know if it is possible to replace “weakly n-complicial” by “n-complicial” in
part pcq of Proposition D.5.7.1. However, we do have the following weaker result:

Corollary D.5.7.3. Let φ : R Ñ R1 be a flat universal descent morphism of connective
E8-rings which exhibits R1 as a module of finite Tor-amplitude over R1 bR R1. Let C be a
prestable R-linear 8-category, and let n ě 0. Then:

p1q If R1 bR C is anticomplete and n-complicial, then C is anticomplete and n-complicial.

p2q If R1 bR C is separated and n-complicial, then C is separated and n-complicial.
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Proof. Assume first that R1 bR C is anticomplete and n-complicial. It follows from Theorem
D.5.4.9 that C is anticomplete and from Proposition D.5.7.1 that C is weakly n-complicial.
Applying Proposition C.5.5.16, we deduce that C is n-complicial.

Now suppose that R1 bR C is separated and n-complicial. Using Propositions D.5.7.1
and D.5.1.2, we deduce that C is separated and weakly n-complicial. Using Lemma D.5.4.5,
we can choose a left exact R-linear functor λ : qC Ñ C where qC is anticomplete and λ induces
an equivalence of completions. Applying Remark C.5.5.14, we deduce that qC is also weakly
n-complicial. Proposition C.5.5.16 then implies that qC is n-complicial. Let qC

sep denote the
separated quotient of qC (see Proposition C.3.6.1. Then qC

sep inherits the structure of an
R-linear prestable 8-category, and Proposition C.5.3.3 implies that qC

sep is n-complicial.
The functor λ factors as a composition qC Ñ qC

sep µ
ÝÑ C, where µ is left exact and induces an

equivalence of completions. It follows that the induced map µR1 : R1 bR qC
sep
Ñ R1 bR C is

also left exact and induces an equivalence on completions. It follows from Proposition D.5.1.2
that R1 bR qC

sep is separated and from Proposition D.5.7.1 that it is n-complicial. Applying
Proposition C.5.3.9, we deduce that µR1 is an equivalence. Applying Theorem D.4.1.6, we
conclude that µ is also an equivalence, so that C » qC

sep is n-complicial as desired.

We now specialize to the case n “ 0.

Corollary D.5.7.4. Let φ : R Ñ R1 be a morphism of connective E8-rings, let C be a
prestable R-linear 8-category, and let A “ C♥ be its heart. Then:

paq Assume that the inclusion A ãÑ C extends to an equivalence qDpAqě0 » C and
the morphism φ is flat and exhibits R1 as a module of finite Tor-amplitude over
R1 bR R

1. Then the inclusion LModR1pAq ãÑ LModR1pCq extends to an equivalence
qDpLModR1pAqq Ñ LModR1pCq.

pa1q If the inclusion A ãÑ C extends to an equivalence DpAqě0 » C and the morphism
φ is flat, then the inclusion LModR1pAq ãÑ LModR1pCq extends to an equivalence
DpLModR1pAqq Ñ LModR1pCq.

pa2q If the inclusion A ãÑ C extends to an equivalence pDpAqě0 » C and the morphism
φ is flat, then the inclusion LModR1pAq ãÑ LModR1pCq extends to an equivalence
pDpLModR1pAqq Ñ LModR1pCq.

pbq If the inclusion LModR1pAq ãÑ LModR1pCq extends to an equivalence qDpLModR1pAqq Ñ
LModR1pCq and φ is flat universal descent morphism which exhibits R1 as a module of
finite Tor-amplitude over R1bRR1, then the inclusion A ãÑ C extends to an equivalence
qDpAqě0 » C.

pb1q If the inclusion LModR1pAq ãÑ LModR1pCq extends to an equivalence DpLModR1pAqq Ñ
LModR1pCq and φ is flat universal descent morphism which exhibits R1 as a module of
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finite Tor-amplitude over R1bRR1, then the inclusion A ãÑ C extends to an equivalence
DpAqě0 » C.

pb2q If the inclusion LModR1pAq ãÑ LModR1pCq extends to an equivalence pDpLModR1pAqq Ñ
LModR1pCq and φ is flat universal descent morphism, then the inclusion A ãÑ C extends
to an equivalence pDpAqě0 » C.

Proof. Assertion paq follows from Corollary C.5.8.11, Proposition D.5.7.1, and Theorem
D.5.4.1. Assertion pa1q follows from Remark C.5.4.11, Proposition D.5.7.1, and Proposition
D.5.1.2. Assertion pa2q follows from Corollary C.5.9.7, Proposition D.5.7.1, and Proposition
D.5.1.3. Assertion pbq follows from Corollaries C.5.8.11 and D.5.7.3. Assertion pb1q follows
from Corollary D.5.7.3 and Remark C.5.4.11. Assertion pb2q follows from Corollary C.5.9.7,
Proposition D.5.7.1, and Proposition D.5.1.3.

D.6 Descent for the Flat Topology

Let A be a Noetherian local ring with maximal ideal m, and let pA “ lim
ÐÝ

A{mn denote its
completion. Then the natural map AÑ pA is a faithfully flat map of commutative rings. It
follows from the theory of faithfully flat descent that the category of A-modules is equivalent
to the category of pA-modules equipped with descent data. Using this fact, one can reduce
many questions about A (and the category of A-modules) to questions about pA (and the
category of pA-modules).

In §D.3, we introduced the notion of an universal descent morphism of E8-rings (Definition
D.3.1.1) and proved that if f : A Ñ B is a universal descent morphism, then the base
change functor ModA Ñ ModB is comonadic (that is, we can identify A-module spectra
with objects of ModB equipped with suitable descent data). This result applies in particular
when f : A Ñ B is faithfully flat and π0B is countably presented over π0A (Proposition
D.3.3.1). However, this countable presentation assumption is typically not satisfied for
B “ pA (if A is a local Noetherian ring as above), and we do not know if it is true that all
faithfully flat morphisms are universal descent morphisms. Consequently, the results of §D.3
are inadequate for many of the applications of the theory of descent. Our goal in this section
is to remedy the situation by proving an analogue of Theorem D.3.5.2 for the fpqc topology.

D.6.1 Flat Descent for Stable 8-Categories

We begin with a few general remarks.

Remark D.6.1.1. Let CAlg denote the 8-category of E8-rings. In §A.3, we introduced
the fpqc topology on the 8-category CAlgop. If A is an E8-ring, then a sieve on A is
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covering with respect to the fpqc topology if and only if it contains a finite collection of
maps tφα : AÑ Aαu which induces a faithfully flat morphism AÑ

ś

αAα.
For every E8-ring A, the fpqc topology on CAlgop determines a Grothendieck topology

on the 8-category CAlgop
A of E8-algebras over A. If A is connective, we also obtain a

Grothendieck topology on the 8-category pCAlgcn
A q

op of connective E8-algebras over A. We
will refer to both of these topologies as the fpqc topology.

Definition D.6.1.2. Let A be an E8-ring and let C be a stable A-linear 8-category. We
will say that C satisfies flat descent if the functor

χ : CAlgA ÑyCat8 B ÞÑ B bA C

is a yCat8-valued sheaf with respect to the fpqc topology on CAlgop
A . We will say that C

satisfies flat hyperdescent if the functor χ is a hypercomplete sheaf with respect to the fpqc
topology.

In the situation of Definition D.6.1.2, if the E8-ring A is connective, then it suffices to
restrict our attention to E8-algebras over A which are also connective:

Proposition D.6.1.3. Let A be a connective E8-ring, let C be a stable A-linear 8-category,
and let χ : CAlgA ÑyCat8 be the functor given by χpBq “ B bA C. Then:

p1q The functor χ is a sheaf for the fpqc topology on the 8-category CAlgop
A if the restriction

χ|CAlgcn
A

is a sheaf with respect to the fpqc topology on pCAlgcn
A q

op.

p2q The functor χ is a hypercomplete sheaf for the fpqc topology on the 8-category CAlgop
A

if the restriction χ|CAlgcn
A

is a hypercomplete sheaf with respect to the fpqc topology on
pCAlgcn

A q
op.

Before giving the proof of Proposition D.6.1.3, let us introduce a bit of useful terminology:

Definition D.6.1.4. Let R‚ be an augmented cosemisimplicial object of CAlg. We will say
that R‚ is a flat hypercovering if it determines an S-hypercovering in the 8-category CAlgop

in the sense of Definition A.5.7.1, where S is the collection of faithfully flat morphisms
in CAlg. In other words, R‚ is a flat hypercovering if each of the maps LnpR‚q Ñ Rn is
faithfully flat, where LnpR‚q denotes the nth latching object of the cosemisimplicial E8-ring
R‚. In this case, we will also say that the underlying semisimplicial E8-ring of R‚ is a flat
hypercovering of R´1.

Proof of Proposition D.6.1.3. We will prove p1q; the proof of p2q is similar. The “only if”
direction is obvious. Conversely, suppose that χ|CAlgcn

A
is a sheaf with respect to the flat

topology on CAlgcn
A . We wish to show that χ is a sheaf with respect to the fpqc topology.

Using Proposition A.3.3.1 and Lemma D.3.5.5, we are reduced to proving the following:
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p˚q Let f : B Ñ B0 be a faithfully flat morphism of A-algebras, and let B‚ : ∆` Ñ CAlgA
be the Čech nerve of f (regarded as a morphism in the 8-category CAlgop

A ). Then
χpB‚q is a limit diagram in yCat8.

According to Proposition HA.5.2.2.36 , it will suffice to verify the following:

paq The extension of scalars functor φ : LModBpCq Ñ LModB0pCq is conservative. To
prove this, we let τě0B and τě0B

0 be the connective covers of B and B0, respectively.
Since f is flat, the canonical map B bτě0B τě0B

0 Ñ B0 is an equivalence. It follows
from Lemma D.3.5.6 that φ fits into a homotopy commutative diagram of 8-categories

LModBpCq
φ //

��

LModBpCq

��
LModτě0BpCq

φ0 // LModτě0B0pCq.

Here the vertical maps are the evident forgetful functors (and therefore conservative).
Consequently, to show that φ is conservative, it suffices to show that φ0 is conservative,
which follows from our assumption that χ|CAlgcn

A
is a sheaf with respect to the fpqc

topology.

pbq Let M‚ be a cosimplicial object of C which is a module over the underlying cosimplicial
algebra of B‚ such that each of the maps Bp bBq M

q Ñ Mp is an equivalence. Let
M “ lim

ÐÝ
M‚, regarded as a B-module object of C. Then we must show that the

canonical map Bp bB M Ñ Mp is an equivalence for each p ě 0. To prove this, we
note that since f is flat, the map τě0B

p bτě0Bq B
q Ñ Bp is an equivalence for every

morphism rps Ñ rqs in ∆`. Let us regard M‚ as a cosimplicial module over the
underlying cosimplicial algebra of τě0B

‚. Using Lemma D.3.5.6, we conclude that each
of the maps τě0B

p bτě0Bq M
q Ñ Mp is an equivalence. Combining our assumption

that χ|CAlgcn
A

is a sheaf with respect to the fpqc topology and Proposition HA.5.2.2.36 ,
we conclude that each of the maps τě0B

p bτě0B M ÑMp is an equivalence for p ě 0.
The desired result now follows from Lemma D.3.5.6.

D.6.2 Flat Descent for Prestable 8-Categories

The criterion of Proposition D.6.1.3 has the virtue of making sense at the level of prestable
8-categories:

Definition D.6.2.1. Let A be a connective E8-ring and let C be a prestable A-linear
8-category. We will say that C satisfies flat descent if the functor

χ : CAlgcn
A ÑyCat8 B ÞÑ B bA C
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is a yCat8-valued sheaf with respect to the fpqc topology on pCAlgcn
A q

op. We will say that C
satisfies flat hyperdescent if the functor χ is a hypercomplete sheaf with respect to the fpqc
topology.

Remark D.6.2.2. Let A be a connective E8-ring and let C be an stable A-linear8-category.
It follows from Proposition D.6.1.3 that C satisfies flat (hyper)descent when regarded as a
stable A-linear 8-category (in the sense of Definition D.6.1.2) if and only if it satisfies flat
(hyper)descent when regarded as an additive A-linear 8-category (in the sense of Definition
D.6.2.1).

Proposition D.6.2.3. Let A be connective E8-ring and let C be a prestable A-linear
8-category. Then:

p1q If C satisfies flat descent, then the stable A-linear 8-category SppCq satisfies flat
descent.

p2q If C satisfies flat hyperdescent, then the stable A-linear 8-category SppCq satisfies flat
hyperdescent.

Proof. We will prove p2q; the proof of p1q is similar. Assume that C satisfies flat hyperdescent;
we wish to show that SppCq has the same property. By virtue of Proposition D.6.1.3, it will
suffice to show that the construction

CAlgcn
A ÑyCat8 B ÞÑ B bA SppCq » SppLModBpCqq

is a hypercomplete sheaf with respect to the fpqc topology. We will show that this functor
satisfies the hypotheses of Proposition A.5.7.2. It is easy to see that the construction
B ÞÑ SppLModBpCqq commutes with finite products. Let B be a connective A-algebra and
let B‚ be a semicosimplicial object of CAlgcn

B which is a flat hypercovering of B; we wish to
show that the canonical map θ : SppLModBpCqq Ñ lim

ÐÝ
SppLModB‚pCqq is an equivalence of

8-categories. The functor θ factors as a composition

SppLModBpCqq θ1
Ñ Spplim

ÐÝ
LModB‚pCqq θ

2

Ñ lim
ÐÝ

SppLModB‚pCqq,

where θ1 is an equivalence of 8-categories by virtue of our assumption that the prestable
B-linear 8-category C satisfies flat hyperdescent. It will therefore suffice to show that
the functor θ2 is also an equivalence of 8-categories. By virtue of Remark C.3.2.5, it
will suffice to show that the cosimplicial 8-category LModB‚pCq is given by a diagram
in Grothlex

8 : that is, that for each morphism rms Ñ rns in ∆`, the associated functor
LModBmpCq Ñ LModBnpCq (given by extension of scalars) is left exact. Since the forgetful
functor LModBnpCq Ñ C is both conservative and left exact, we are reduced to proving the
left exactness of the composite functor

LModBmpCq Ñ LModBnpCq Ñ C C ÞÑ Bn bBm C.
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To prove this, let E Ď RModcn
Bm be the full subcategory spanned by those connective right

Bm-modules M for which the functor

LModBmpCq Ñ C C ÞÑM bBm C

is left exact. Since filtered colimits in C are left exact, the8-category E is closed under filtered
colimits. We wish to show that Bn P E . Our assumption that B‚ is a flat hypercovering
of B guarantees that Bn is flat as a module over Bm and can therefore be obtained as a
filtered colimit of free Bm-modules of finite rank (Theorem HA.7.2.2.15 ). It will therefore
suffice to show that E contains all free Bm-modules of finite rank. Since E is closed under
the formation of direct sums, we are reduced to proving that E contains the module Bm

itself, which is equivalent to the left exactness of the forgetful functor LModBmpCq Ñ C.

D.6.3 The Descent Theorem

We can now state the main result of this section:

Theorem D.6.3.1. Let A be a connective E8-ring and let C be a prestable A-linear 8-
category. If C is complete (see Definition C.1.2.12), then C satisfies flat hyperdescent.

We will give the proof Theorem D.6.3.1 later in this section. For the moment, let us
describe some of its consequences.

Corollary D.6.3.2. Let A be a connective E8-ring and let A be an abelian A-linear 8-
category. Then A satisfies flat hyperdescent.

Proof. We will show that C satisfies the hypotheses of Proposition A.5.7.2. Since the
functor B ÞÑ LModBpAq commutes with finite products, it will suffice to show that for
every flat hypercovering B‚ of an object B P CAlgcn

A , the canonical map θ : LModBpAq Ñ
lim
ÐÝ

LModB‚pAq is an equivalence of 8-categories.
Let C be a complete prestable A-linear 8-category satisfying C♥ » A (the existence

of C follows from Example D.1.3.9). It follows from Theorem D.6.3.1 that C satisfies flat
hyperdescent, so that the canonical map LModBpCq Ñ lim

ÐÝ
LModB‚pCq is an equivalence.

Here it suffices to take the limit of the underlying cosemisimplicial 8-category of LModB‚pCq,
in which the transition functors are left exact. Passing to hearts, we deduce that the map θ
is an equivalence, as desired.

Corollary D.6.3.3. Let A be an E8-ring. Then the stable A-linear 8-category ModA
satisfies flat hyperdescent.

Proof. Without loss of generality, we may assume that A is the sphere spectrum. Then A

is connective. By virtue of Proposition D.6.2.3, it will suffice to show that the prestable
8-category Modcn

A satisfies flat hyperdescent, which follows immediately from Theorem
D.6.3.1.
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Corollary D.6.3.4. Let R‚ : ∆s,` Ñ CAlg be a flat hypercovering of an E8-ring R “ R´1,
let M be an R-module spectrum, and let M‚ be the cosemisimplicial R‚|∆s-module spectrum
given levelwise by the formula Mn “M bR R

n. Then the canonical map M Ñ lim
ÐÝ

M‚ is an
equivalence.

Proof. Combine Proposition A.5.7.2, Proposition HA.5.2.2.36 , and Corollary D.6.3.3.

Theorem D.6.3.5. The identity functor CAlg Ñ CAlg is a hypercomplete CAlg-valued
sheaf on CAlgop (with respect to the fpqc topology).

Remark D.6.3.6. Theorem D.6.3.5 implies that the fpqc topology on the 8-category
CAlgop is subcanonical.

Proof of Theorem D.6.3.5. We will show that the identity functor id : CAlg Ñ CAlg satisfies
the hypotheses of Proposition A.5.7.2. Since the functor id clearly preserves finite products,
it will suffice to show that every hypercovering R‚ : ∆s,` Ñ CAlg is a limit diagram in
CAlg. This is an immediate consequence of Corollary D.6.3.4.

D.6.4 Digression: Faithfully Flat Monads

We now introduce an auxiliary notion which will be useful in the proof of Theorem
D.6.3.1.

Definition D.6.4.1. Let C be a prestable 8-category which admits finite limits, let T :
C Ñ C be a monad, and let Tred : C Ñ C be the cofiber of the unit map id Ñ T (formed in
the 8-category FunpC, Cq). We will say that T is faithfully flat if the functor T is right exact
and the functor Tred is left exact.

Remark D.6.4.2. In the situation of Definition D.6.4.1, the right exactness of T guarantees
the right exactness of Tred, and the left exactness of Tred guarantees the left exactness of T .

Remark D.6.4.3. Let C be a prestable 8-category which admits finite limits and let
T : C Ñ C be a faithfully flat monad. For each object C P C and each integer n ě 0, let
πnC P C♥ denote the nth homotopy object of Σ8pCq taken with respect to the natural
t-structure on the Spanier-Whitehead 8-category SWpCq of Construction C.1.1.1. The
cofiber sequence C Ñ TC Ñ TredC determines a long exact sequence

¨ ¨ ¨ Ñ πn`1TredC
δn
Ñ πnC Ñ πnTC Ñ πnTredC

δn´1
Ñ πn´1C,

depending functorially on the object C. We therefore have a commutative diagram

πn`1TredC
δn //

��

πnC

��
πn`1TredpτďnCq // πnpτďnCq,
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where the lower right corner vanishes (by virtue of our assumption that the functor Tred is
left exact) and the right horizontal map is an isomorphism. It follows that each boundary
map δn vanishes: that is, we have short exact sequences 0 Ñ πnC Ñ πnTC Ñ πnTredC Ñ 0
for each n ě 0.

Remark D.6.4.4. Let A be a connective E2-ring and let C be a prestable A-linear 8-
category. For every connective E1-algebra B over A, we have a pair of adjoint functors

C
F //LModBpCq
G
oo

which determines a monad T » G ˝ F on C, given on objects by the formula M ÞÑ B bAM .
Since the functor G is conservative and preserves small colimits, Theorem HA.4.7.3.5 implies
that LModBpCq can be identified with the 8-category LModT pCq of T -modules in C.

Lemma D.6.4.5. Let A be a connective E2-ring, let C prestable A-linear 8-category, and let
B P AlgA be an E1-algebra over A which is right faithfully flat over A (Definition D.4.4.1).
Then the monad T of Remark D.6.4.4 is faithfully flat.

Proof. It is clear that the monad T is right t-exact. Let B{A denote the cofiber of the map
of A-modules AÑ B. For each object C P C, the cofiber of the unit map C Ñ TC can be
identified with pB{Aq bA C. We wish to prove that the functor C ÞÑ pB{Aq bA C is left
exact. We now argue as in the proof of Proposition D.6.2.3. Let E Ď RModcn

A be the full
subcategory spanned by those connective right A-modules M for which the construction
C ÞÑM bA C is left exact. It is easy to see that E contains all free A-modules of finite rank.
Since filtered colimits in C are left exact, the 8-category E is closed under filtered colimits
in RModcn

A , and therefore contains all flat right A-modules (Theorem HA.7.2.2.15 ). It now
suffices to observe that the right faithful flatness of B over A guarantees that B{A is flat as
a right A-module (Lemma D.4.4.3).

Proposition D.6.4.6. Let C be a prestable 8-category, let T be a faithfully flat monad on
C, and let F : C Ñ LModT pCq be a left adjoint to the forgetful functor G : LModT pCq Ñ C.
If C is complete (in the sense of Definition C.1.2.12), then the functor F is comonadic.

Proof. According to Theorem HA.4.7.3.5 , it will suffice to show that the functor F is
conservative and preserves totalizations of F -split cosimplicial objects of C. For each n ě 0,
define πn : C Ñ C♥ as in Remark D.6.4.3. We first show that F is conservative. Let
α : X Ñ Y be a morphism in C such that F pαq is an equivalence. Then T cofibpαq »
GF pcofibpαqq » G cofibpF pαqq » 0. Applying Remark D.6.4.3, we see that the natural map
πn cofibpαq Ñ πnT cofibpαq is a monomorphism (in the abelian category C♥) for each n ě 0,
so that each πn cofibpαq vanishes. Since C is left complete, we conclude that cofibpαq » 0
and therefore α is an equivalence.
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Let X‚ be an F -split cosimplicial object of C; we wish to show that X‚ admits a
totalization in C which is preserved by the functor T . Since the monad T is faithfully flat,
it induces an exact functor T♥ from the abelian category C♥ to itself. Note that for every
object C P C♥, there exists a monomorphism C ãÑ T♥C; in particular, the functor T♥

does not annihilate any nonzero objects of C♥. For every object Y P C, we have canonical
isomorphisms πnTY » T♥πnY . Since X‚ is F -split, it follows that T♥πnX

‚ is a split
cosimplicial object of C♥ for each n ě 0. Let

Apnq0
dpnq
ÝÑ Apnq1 ÝÑ Apnq2 ÝÑ ¨ ¨ ¨

be the unnormalized chain complex (in C♥) associated to the cosimplicial object πnX‚. It
follows that T♥pApnq˚q is split exact: in particular, we have an exact sequence

0 Ñ K Ñ T♥Apnq0 Ñ T♥Apnq1 Ñ ¨ ¨ ¨ .

Since the functor T♥ is exact, we can write K “ kerpT♥dpnqq » T♥ ker dpnq. Since T♥ is
exact and does not annihilate any nonzero objects of C♥, we deduce the exactness of the
sequence

0 Ñ ker dpnq Ñ Apnq0 Ñ Apnq1 Ñ ¨ ¨ ¨ .

Applying Corollary ?? (in the stable 8-category SppCq), we deduce that X‚ admits a
totalization X P C and that the natural map X Ñ X0 induces isomorphisms πnX »

ker dpnq Ď πnX
0 for every integer n ě 0. Using the exactness of T♥ and the identification

T♥πnX » πnTX, we see that the natural map α : TX Ñ lim
ÐÝ

TX‚ determines an exact
sequence

0 Ñ πnTX Ñ T♥Apnq0 Ñ T♥Apnq1 Ñ ¨ ¨ ¨

so that α is an equivalence (again by virtue of Corollary HA.1.2.4.12 ).

D.6.5 The Proof of Theorem D.6.3.1

We now turn to the proof of Theorem D.6.3.1. We begin by giving a concrete criterion
for flat descent, which follows easily from the Barr-Beck theorem:

Proposition D.6.5.1. Let A be a connective E8-ring and let C be a prestable A-linear 8-
category. Then C satisfies flat descent if and only if, for every faithfully flat map of connective
A-algebras B Ñ B0, the base-change functor LModBpCq Ñ LModB0pCq is comonadic.

Proof. Using Proposition A.3.3.1 and Lemma D.3.5.5, we see that C satisfies flat descent
if and only if, for every faithfully flat morphism of connective A-algebras f : B Ñ B0, the
following condition is satisfied:
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p˚1q Let B‚ : ∆` Ñ CAlgA be the Čech nerve of f (regarded as a morphism in CAlgop
A , and

let C‚ be the augmented cosimplicial8-category given by the formula C‚ “ LModB‚pCq.
Then C‚ is a limit diagram in yCat8.

The desired result now follows from Lemma D.3.5.8.

Proof of Theorem D.6.3.1. Let A be a connective E8-ring and let C be a prestable A-linear
8-category; we wish to show that C satisfies flat hyperdescent. We first prove that C
satisfies flat descent. By virtue of Proposition D.6.5.1, it will suffice to show that for every
faithfully flat morphism between connective A-algebras B Ñ B0, the base-change functor
F : LModBpCq Ñ LModB0pCq is comonadic. It follows from Remark D.6.4.4 that we can
identify LModB0pCq with the 8-category LModT pLModBpCqq, where T denotes the monad
given by C ÞÑ B0 bB C. The faithful flatness of B0 over B guarantees that the monad
T is faithfully flat (Lemma D.6.4.5), so that the comonadicity of F is a consequence of
Proposition D.6.4.6.

For each integer n ě 0, let χn : CAlgcn
A Ñ PrL denote the functor given by

χnpBq “ pτďn Sq bModcn
B bModcn

A
C » τďn LModBpCq,

which assigns to each connective A-algebra B the 8-category of n-truncated B-module
objects of C. We claim that χn is an PrL-valued sheaf with respect to the fpqc topology.
To prove this, it will suffice to show that for every faithfully flat map between connective
A-algebras B Ñ B0 as above having Čech nerve B‚, the upper horizontal map in the
commutative diagram of 8-categories

τďn LModBpCq //

��

lim
ÐÝ

τďn LModB‚pCq

��
LModBpCq // lim

ÐÝ
LModB‚pCq

is an equivalence of 8-categories (beware that the vertical maps do not preserve small
colimits). It follows from the first part of the proof that the lower horizontal map preserves
small colimits, and the vertical maps are fully faithful embeddings. Unwinding the definitions,
we are reduced to proving that an object C P LModBpCq is n-truncated whenever B0 bB C

is n-truncated. This is clear: the prestable 8-category C is complete and therefore also
separated, so that an object C P LModBpCq is n-truncated if and only if the homotopy
objects πmC vanish for m ą n, and we have monomorphisms πmC Ñ πmpB

0 bB Cq in the
abelian category C♥ by virtue of Remark D.6.4.3.

Note that for each n ě 0, the functor χn takes values in the full subcategory of PrL

spanned by the presentable pn` 1q-categories. Since this subcategory is itself an pn` 2q-
category, the functor χn is automatically pn` 1q-truncated and in particular hypercomplete.
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The completeness of C implies that each of the prestable 8-categories LModBpCq is also
complete (Proposition D.5.1.3), so that the functor B ÞÑ LModBpCq is given by the inverse
limit lim

ÐÝně0 χnpBq in the 8-category PrL and is therefore also hypercomplete.

D.6.6 Effective Descent for Complete Prestable 8-Categories

We now discuss a categorification of Theorem D.6.3.1, where our attention is focused
not on objects of A-linear 8-categories, but on the A-linear 8-categories themselves.

Notation D.6.6.1. For every connective E2-ring A, let LinCatcomp
A denote the full subcate-

gory of LinCatPSt
A spanned by those prestable A-linear 8-categories which are complete (in

the sense of Definition C.1.2.12). It follows from Proposition D.5.1.3 that for any morphism
φ : A Ñ B of connective E2-rings, the extension of scalars functor C ÞÑ B bA C carries
LinCatcomp

A into LinCatcomp
B . Consequently, we can regard the construction A ÞÑ LinCatcomp

A

as a functor from the 8-category Algcn
E2 of connective E2-rings to the 8-category yCat8.

Proposition D.6.6.2. The functor

CAlgcn ÑyCat8 A ÞÑ LinCatcomp
A

is a yCat8-valued sheaf with respect to the fpqc topology on pCAlgcnqop.

Remark D.6.6.3. We will see in a moment that the sheaf A ÞÑ LinCatcomp
A is hypercomplete

(Theorem D.6.8.1).

Proof of Proposition D.6.6.2. We will show that the construction A ÞÑ LinCatcomp
A satisfies

the hypotheses of Proposition A.3.3.1. Note that since the construction A ÞÑ LinCatcomp
A

satisfies descent for the étale topology (Remark D.6.8.2), it commutes with finite products.
It will therefore suffice to verify condition p2q of Proposition A.3.3.1. Suppose we are given a
faithfully flat map of E8-rings f : AÑ A0 having Čech nerve A‚. We wish to show that the
induced map LinCatcomp

A Ñ lim
ÐÝ

LinCatcomp
A‚ is an equivalence of 8-categories. We proceed

by showing that this functor satisfies the conditions of Proposition HA.5.2.2.36 :

paq Fix an morphism F : C Ñ D in the 8-category LinCatcomp
A whose image in LinCatcomp

A0

is an equivalence. It follows that F induces an equivalence of cosimplicial 8-categories
LModA‚pCq Ñ LModA‚pDq. We have a commutative diagram

C F //

��

D

��
lim
ÐÝ

LModA‚pCq // lim
ÐÝ

LModA‚pDq

where the vertical maps are equivalences of 8-categories (since C and D satisfy flat
descent by virtue of Theorem D.6.3.1). It follows that F is an equivalence of 8-
categories.
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pbq Let q : E Ñ CAlgcn be a coCartesian fibration classified by the functor A ÞÑ LinCatcomp
A :

more informally, E is the 8-category whose objects are pairs pA, Cq where A is a
connective E8-ring and C is a complete prestable A-linear 8-category. Suppose we are
given a diagram X‚ : ∆ Ñ E which carries each morphism in ∆ to a q-coCartesian
morphism of E and satisfies qpX‚q “ A‚. We must show that X‚ can be extended
to a q-limit diagram X

‚ : ∆` Ñ E which also carries each morphism of ∆` to a q-
coCartesian morphism in E . Write X‚ “ pA‚, C‚q. To prove the existence of the q-limit
diagram X

‚, we must show that the cosimplicial object C‚ admits a totalization C in the
8-category LinCatPSt

A of prestable A-linear 8-categories, and that C is complete. Note
that the completeness of C is automatic, since the 8-category of complete prestable
8-categories is a localization of Groth8 and is therefore closed under small limits
(Proposition C.3.6.3). To prove that C‚ admits a totalization, it will suffice to show
that the underlying cosemisimplicial object prns P ∆sq ÞÑ Cn admits a totalization in
the 8-category Groth8. This is a special case of Proposition ??, since the flatness of
A0 over A guarantees that the transition functors Cm Ñ Cn » LModAnpCmq associated
to injective maps rms ãÑ rns are left exact.

To complete the proof, we must show that the diagram X
‚ carries each morphism

α : rms Ñ rns in ∆` to a q-coCartesian morphism in E . If m ‰ ´1, then this
follows from the analogous assumption on X‚. If m “ ´1, then we can factor α as a
composition r´1s Ñ r0s Ñ rns and thereby reduce to the case n “ 0. In this case, the
desired result follows from the calculation

LModA0pCq » LModA0plim
ÐÝ
C‚q » lim

ÐÝ
LModA0pC‚q » lim

ÐÝ
C‚`1 » C0 .

D.6.7 Digression on Hypercompleteness

Our next goal is to show that the sheaf A ÞÑ LinCatcomp
A of Proposition D.6.6.2 is

hypercomplete. We begin with some general remarks about hypercomplete objects of
8-topoi.

Lemma D.6.7.1. Let X be an 8-topos containing an object X. The following conditions
are equivalent:

p1q The object X P X is hypercomplete.

p2q For every8-connective morphism E Ñ E1 in X , the map MapX pE
1, Xq Ñ MapX pE,Xq

is surjective on connected components.
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Proof. The implication p1q ñ p2q is obvious. Suppose that p2q is satisfied. We wish to
prove that for every 8-connective morphism α : E Ñ E1, the map θα : MapX pE

1, Xq Ñ

MapX pE,Xq is a homotopy equivalence. We will prove that θα is n-connective using induction
on n, the case n “ ´1 being vacuous. Since θα is surjective on connected components (by
p2q), it will suffice to show that the diagonal map

MapX pE
1, Xq Ñ MapX pE

1, Xq ˆMapX pE,Xq
MapX pE

1, Xq » MapX pE
1 >E E

1, Xq

is pn ´ 1q-connected. This follows from the inductive hypothesis, since the codiagonal
E1 >E E

1 Ñ E1 is also 8-connective.

Lemma D.6.7.2. Let X be an 8-topos. Then the collection of hypercomplete objects of X
is closed under small coproducts.

Proof. Suppose we are given a collection of hypercomplete objects tXαuαPA having coproduct
X P X . We wish to prove that X is hypercomplete. According to Lemma D.6.7.1, it will
suffice to show that if φ : E Ñ E1 is an 8-connective morphism in X , then the induced
map MapX pE

1, Xq Ñ MapX pE,Xq is surjective on connected components. Fix a morphism
f : E Ñ X. For each index α, let Eα denote the fiber product XαˆX E, so that the induced
map Eα Ñ E1 admits a factorization

Eα
gα
Ñ E1α

hα
Ñ E1

where gα is an effective epimorphism and hα is a monomorphism. Let E2 “ >αE1α, so that
the maps hα induce a map ψ : E2 Ñ E1. We claim that ψ is an equivalence. Since φ factors
through ψ, we deduce that ψ is an effective epimorphism. It will therefore suffice to show
that the diagonal map

>αE
1
αE

2 Ñ E2 ˆE1 E
2 » >α,βE

1
α ˆE1 E

1
β

is an equivalence. Because each hα is a monomorphism, each of the diagonal maps E1α Ñ
E1α ˆE1 E

1
α is an equivalence; we are therefore reduced to proving that E1α ˆE1 E1β » H for

α ‰ β. This follows from the existence of an effective epimorphism

H » Eα ˆE Eβ Ñ Eα ˆE1 Eβ Ñ E1α ˆE1 E
1
β.

This completes the proof that ψ is an equivalence, so that we can identify φ with the
coproduct of morphisms φα : Eα Ñ E1α. To prove that f factors through φ, it suffices to
show that each restriction f |Eα factors through φα. This follows from our assumption that
Xα is hypercomplete, since φα is a pullback of φ and therefore 8-connective.

Lemma D.6.7.3. Let X be an 8-topos, and let f : U Ñ X be an effective epimorphism in
X . Assume that U is hypercomplete. Then the following conditions are equivalent:
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p1q The object X is hypercomplete.

p2q The fiber product U ˆX U is hypercomplete.

Proof. The implication p1q ñ p2q is obvious, since the full subcategory X hyp Ď X spanned
by the hypercomplete objects is closed under small limits. We will prove that p2q ñ p1q. Let
L : X Ñ X hyp be a left adjoint to the inclusion, so that L is left exact (see §HTT.6.5.2 ).
Let U‚ be a Čech nerve of the map U Ñ X, so that LU‚ is a Čech nerve of the induced map
LU Ñ LX. Using assumption p2q and our assumption that U is hypercomplete, we deduce
that U0 and U1 are both hypercomplete, so that Un » U1ˆU0 ¨ ¨ ¨ˆU0 U1 is hypercomplete for
all n ě 0. It follows that the canonical map U‚ Ñ LU‚ is an equivalence. We therefore obtain
equivalences X » |U‚| » |LU‚| » LX, so that X is also hypercomplete (the last equivalence
here results from the observation that LU Ñ LX is an effective epimorphism, since it can
be identified with the composition of f with the 8-connective map X Ñ LX).

Proposition D.6.7.4. Let C be an 8-category which admits finite limits and is equipped with
a Grothendieck topology. Assume that every object C P C represents a functor eC : Cop Ñ S
which is a hypercomplete sheaf on C. Let F : Cop Ñ S be a sheaf on C. The following
conditions are equivalent:

p1q The sheaf F is hypercomplete.

p2q For every pair of objects C,C 1 P C and maps η : eC Ñ F , η1 : eC1 Ñ F , the fiber
product eC ˆF eC1 is hypercomplete.

p3q For every object C P C and every pair of maps η, η1 : eC Ñ F , the equalizer of the
diagram

eC
η //
η1
// F

is hypercomplete.

Proof. The implication p1q ñ p3q is clear, since the collection of hypercomplete objects of
ShvpCq is stable under small limits. The implication p3q ñ p2q follows from the observation
that eC ˆF eC1 can be identified with the equalizer of the pair of maps

F Ð eC Ð eCˆC1 Ñ eC1 Ñ F .

We will prove that p2q ñ p1q. Let F 1 “ >ηPF pCqeC , so we have an effective epimorphism
F 1 Ñ F . Lemma D.6.7.2 implies that F 1 is hypercomplete. By virtue of Lemma D.6.7.3, it
will suffice to prove that the fiber product F 1ˆF F 1 is hypercomplete. This fiber product
can be identified with the coproduct

>ηPF pCq,η1PF pC1qeC ˆF eC1

which is hypercomplete by virtue of assumption p2q and Lemma D.6.7.2.
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D.6.8 Effective Hyperdescent for Complete Prestable 8-Categories

Our final goal in this section is to establish a slightly stronger form of Proposition D.6.6.2:

Theorem D.6.8.1. The functor

CAlgcn ÑyCat8 A ÞÑ LinCatcomp
A

is a hypercomplete yCat8-valued sheaf with respect to the fpqc topology on pCAlgcnqop.

Remark D.6.8.2. Theorem D.6.8.1 can be regarded as an analogue for the fpqc topology
of some of the results of §D.4: it follows from Theorem D.4.1.2 and Proposition D.5.1.3 that
the construction A ÞÑ LinCatcomp

A satisfies descent for the étale topology.

Remark D.6.8.3. In the statement of Theorem D.6.8.1, the restriction to the setting of
complete prestable 8-categories is needed only to guarantee that the prestable 8-categories
C in question satisfy flat hyperdescent. Several variants are possible: for example, if we let
LinCat5A denote the full subcategory of LinCatPSt

A spanned by those prestable 8-categories
which satisfy flat (hyper)descent, then the same argument shows that the construction
A ÞÑ LinCat5A is a (hypercomplete) sheaf with respect to the fpqc topology.

Corollary D.6.8.4. The functor

CAlgcn ÑyCat8 A ÞÑ LinCatAb
A

is a hypercomplete yCat8-valued sheaf with respect to the fpqc topology on pCAlgcnqop.

Remark D.6.8.5. The sheaf A ÞÑ LinCatAb
A is automatically hypercomplete, since it is

2-truncated.

Proof of Corollary D.6.8.4. We will show that the construction A ÞÑ LinCatAb
A satisfies

hypothesis p2q of Proposition A.3.3.1 (hypothesis p1q is easy and left to the reader). Suppose
we are given a faithfully flat map of E8-rings f : A Ñ A0 having Čech nerve A‚. We
wish to show that the induced map θ : LinCatAb

A Ñ lim
ÐÝ

LinCatAb
A‚ is an equivalence of

8-categories. We first claim that θ is fully faithful. Let C and D be abelian A-linear
8-categories. Unwinding the definitions, we wish to prove that the canonical map

MapLinCatAb
A
pC,Dq Ñ lim

ÐÝ
MapLinCatAb

A‚
pA‚ bA C, A‚ bA Dq

» lim
ÐÝ

MapLinCatAb
A
pC, A‚ bA Dq

is a homotopy equivalence. To prove this, it suffice to show that the canonical map
D Ñ lim

ÐÝ
A‚ bA D is an equivalence, which follows from Corollary D.6.3.2 and Proposition

C.5.4.21.
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To show that θ is essentially surjective, it will suffice to show that θ induces a homotopy
equivalence θ» : pLinCatAb

A q
» Ñ lim

ÐÝ
pLinCatAb

A‚ q
». Let X‚ denote the augmented cosimplicial

space given by Xn “ pLinCatAb
Anq

» (where, by convention, we set A´1 “ A). For each n ě ´1,
let Y n denote the full subcategory of pLinCatcomp

An q» spanned by the complicial prestable
An-linear 8-categories. According to Proposition D.5.7.1, the condition that a complete
prestable 8-category be complicial is stable under base change along flat morphisms and
can be tested locally for the fpqc topology. Consequently, we can regard the construction
rns ÞÑ Y n as a functor ∆s,` Ñ pS. For each n ě ´1, the construction

pC P LinCatcomp
An q ÞÑ pC♥ P LinCatAb

Anq

determines a map of spaces Y n Ñ Xn, which is a homotopy equivalence by virtue of Example
D.1.3.9 and Corollary C.5.9.5. This map depends functorially on n, and therefore exhibits
Y ‚ as the underlying augmented cosemisimplicial space of the augmented cosimplicial space
X‚. By virtue of Lemma ??, to show that X‚ is a limit diagram in pS, it will suffice to
show that Y ‚ is a limit diagram in pS. This follows immediately from Theorem D.6.8.1 and
Proposition D.5.7.1.

The proof of Theorem D.6.8.1 will require a brief digression. Suppose that C is a small 8-
category, and let F : Cop Ñ Cat8 be a presheaf of8-categories on C, classified by a Cartesian
fibration p : rC Ñ C. According to Proposition HTT.3.3.3.1 , we can identify lim

ÐÝ
F with the

full subcategory of FunCpC, rCq spanned by the Cartesian sections of p. Let X,Y P lim
ÐÝ

F Ď

FunCpC, rCq so that the pair pX,Y q determines a functor C Ñ C1 “ FunpB∆1, rCqˆFunpB∆1,Cq C.
We let D denote the fiber product Funp∆1, rCqˆC1 C. The projection D Ñ C is a right fibration,
whose fiber over an object C P C can be identified with the Kan complex Hom

rCC pXpCq, Y pCqq

(see §HTT.1.2.2 ). This right fibration is classified by a functor HomF pX,Y q : Cop Ñ S,
given informally by the formula HomF pX,Y qpCq “ MapF pCqpXpCq, Y pCqq. Let D0 be the
full subcategory of D whose fiber over an object C P C is given by the full subcategory of
Hom

rCC pXpCq, Y pCqq spanned by the equivalences in rCC . The projection D0 Ñ C is also a
right fibration, classified by a functor Hom»

F pX,Y q : Cop Ñ S.

Proposition D.6.8.6. Let C be an 8-category which admits finite limits and is equipped
with a Grothendieck topology. Assume that for every object C P C, the functor eC : Cop Ñ S
represented by C is a hypercomplete sheaf on C. Let F : Cop Ñ Cat8 be a Cat8-valued sheaf
on C. The following conditions are equivalent:

p1q The sheaf F is hypercomplete.

p2q For every object C P C and every pair of objects X,Y P F pCq » lim
ÐÝ

F |Cop
{C

, the functor
HomF pX,Y q : pC{Cqop Ñ S is a hypercomplete sheaf on C{C .
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Proof. Suppose first that p1q is satisfied; we will prove p2q. Replacing C by C{C , we may
suppose that X,Y P lim

ÐÝ
F . For every simplicial set K, let FK denote the composition

Cop F
Ñ Cat8

FunpK,‚q
ÝÑ Cat8 .

and let ˚ denote the constant functor FH : Cop Ñ Cat8 taking the value ∆0. Then the pair
pX,Y q determines a natural transformation ˚ Ñ F B∆0 , and HomF pX,Y q can be identified
with the fiber product ˚ ˆ

F B∆1 F∆1 . Since F is hypercomplete, we deduce that F∆1 ,
F B∆1 , and ˚ » FH are hypercomplete. It follows that HomF pX,Y q is a hypercomplete
Cat8-valued sheaf on C, and therefore a hypercomplete S-valued sheaf on C (since the
inclusion S Ď Cat8 preserves small limits).

Now assume p2q. Fix an object C P C, and let f : xÑ y be a morphism in F pCq. Since
F is a sheaf, we deduce that f is an equivalence if and only if there exists a covering sieve
tCα Ñ Cu on C such that the image of f under each of the induced functors F pCq Ñ F pCαq

is an equivalence. Combining this observation with p2q and Lemma D.4.3.2, we deduce:

p˚q For every object C P C and every pair of objects X,Y P F pCq » lim
ÐÝ

F |Cop
{C

, the
functor Hom»

F pX,Y q : pC{Cqop Ñ S is a hypercomplete sheaf on C{C .

For every 8-category D, let χD : Cat8 Ñ S be the functor corepresented by D. Let
Cat18 denote the full subcategory of Cat8 spanned by those 8-categories D for which the
composite functor

F D : Cop F
Ñ Cat8

χD
Ñ S

is a hypercomplete sheaf on C. We wish to prove that Cat18 “ Cat8. Since the collection
of hypercomplete sheaves is stable under small limits in FunpCop,Sq and the construction
D ÞÑ F D carries colimits to limits, we conclude that Cat18 Ď Cat8 is stable under small
colimits. By virtue of Lemma D.4.3.1, it will suffice to show that ∆0,∆1 P Cat18. The
inclusion ∆0 P Cat18 follows from p˚q together with Proposition D.6.7.4. It follows that
B∆1 P Cat18, so that F B∆1 is a hypercomplete sheaf on C. Applying Lemma D.4.3.2 to the
restriction map F∆1 Ñ F B∆1 , we deduce that F∆1 is hypercomplete so that ∆1 P Cat18 as
desired (the hypotheses of Lemma D.4.3.2 are satisfied by virtue of assumption p2q).

Proof of Theorem D.6.8.1. Proposition D.6.6.2 shows that the functor A ÞÑ LinCatcomp
A

is a sheaf with respect to the fpqc topology. We wish to show show that this sheaf is
hypercomplete. Note that every object of CAlgcn corepresents a hypercomplete sheaf on
pCAlgcnqop (this follows from Theorem D.6.3.5). We will complete the proof by showing that
the construction A ÞÑ LinCatcomp

A satisfies the criterion of Proposition D.6.8.6. For this, we
must show that for every connective E8-ring A and every pair of objects C,D P LinCatcomp

A ,
the functor

CAlgcn
A Ñ pS B ÞÑ MapLinCatcomp

B
pB bA C, B bA Dq
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is a hypercomplete sheaf with respect to the fpqc topology on pCAlgcn
A q

op. This is clear,
since the prestable A-linear 8-category D satisfies flat hyperdescent (Theorem D.6.3.1).

D.7 Duality for Stable 8-Categories

Let R be an E8-ring and let LinCatSt
R denote the 8-category of stable R-linear 8-

categories (see Variant D.1.5.1). Then LinCatSt
R is a symmetric monoidal 8-category with

respect to the R-linear tensor product bR (see Variant D.2.3.3). In particular, one can
consider dualizable objects of LinCatSt

R , in the sense of §HA.4.6.1 . Our goal in this section
is to prove the following result:

Theorem D.7.0.7. Let R be an E8-ring and let C be a stable R-linear 8-category. Then C
is dualizable (as an object of the symmetric monoidal 8-category LinCatSt

R ) if and only if it
is compactly assembled (see Definition 21.1.2.1). In particular, if C is compactly generated,
then it is dualizable.

Our proof of Theorem D.7.0.7 has three essentially disjoint steps. We begin by showing
that a compactly generated stable8-category C is always dualizable when viewed as an object
of PrSt (Proposition D.7.2.3). We then apply this result to give a precise characterization of
the dualizable objects of PrSt (Proposition D.7.3.1). We then complete the proof by showing
that an object of LinCatSt

R is dualizable if and only if its image under the forgetful functor
LinCatSt

R Ñ PrSt is dualizable (Corollary D.7.7.6).

D.7.1 Digression: Mapping Spectra

We begin by introducing some terminology which is useful for studying R-linear 8-
categories in general.

Notation D.7.1.1. Let C be an 8-category which is left tensored over a monoidal 8-
category E . Given a pair of objects C,D P C, we let MapCpC,Dq denote an object of E
which classifies morphisms from C to D (if such an object exists). That is, MapCpC,Dq is
an object of E equipped with a map α : MapCpC,Dq b C Ñ D with the following universal
property: for every object E P E , composition with α induces a homotopy equivalence
MapEpE,MapCpC,Dqq Ñ MapCpE bC,Dq. Note that if such a pair pMapCpC,Dq, αq exists,
then it is well-defined up to a contractible space of choices. Moreover MapCpC,Dq is
contravariantly functorial in C, and covariantly functorial in D.

Example D.7.1.2. Let R be an E2-ring and let C be a stable R-linear 8-category. For every
pair of objects C,D P C, the construction pM P LModRq ÞÑ MapCpM bR C,Dq determines
a functor LModop

R Ñ S which preserves small limits, and is therefore representable by an
object of LModR which we will denote by MapCpC,Dq.
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Example D.7.1.3. Let C be a presentable stable 8-category. Then there is an (essentially
unique) action of the8-category Sp of spectra on C for which the underlying map Spˆ C Ñ C
preserves small colimits separately in each variable. It follows from Example D.7.1.2 (in
the special case R “ S) that for every pair of objects C,D P C, the mapping object
MapCpC,Dq P Sp is well-defined.

Warning D.7.1.4. Notation D.7.1.1 is somewhat abusive, because the object MapCpC,Dq

depends not only on the pair C,D P C but also on the left action of an auxiliary 8-category
E on C. This poses some danger of confusion. For example, let R be a connective E2-
ring and let C be a stable R-linear 8-category. Then C is left tensored over both the
monoidal 8-category LModR of left R-modules and the full subcategory LModcn

R Ď LModR
of connective left R-modules. Notation D.7.1.1 then assigns two different meanings to the
expression MapCpC,Dq: we can consider a classifying object for morphisms from C to D
in either LModR or LModcn

R . We will follow the convention of Example D.7.1.2: unless
otherwise specified, the expression MapCpC,Dq indicates an object of LModR which classifies
morphisms from C to D. The analogous classifying object in LModcn

R can be identified with
the connective cover τě0MapCpC,Dq.

Remark D.7.1.5. Let φ : R1 Ñ R be a morphism of E2-rings and let C be an R-linear
stable 8-category. Then we can also regard C as an R1-linear stable 8-category (by neglect
of structure). For every pair of objects C,D P C, the classifying object MapCpC,Dq does
not depend on whether we view C as an R-linear stable 8-category or an R1-linear stable
8-category. More precisely, if we let MapRC pC,Dq P LModR and MapR1C pC,Dq P LModR1
denote the relevant classifying objects, then MapR1C pC,Dq can be identified with the image
of MapRC pC,Dq under the restriction-of-scalars functor LModR Ñ LModR1 .

D.7.2 Duality for Compactly Generated 8-Categories

Let C be a compactly generated stable 8-category, so that there exists an equivalence
C » IndpCcq where Cc denotes the full subcategory of C spanned by the compact objects.
Our goal in this section is to show that C is a dualizable object of PrSt, whose dual can be
identified with the compactly generated 8-category IndpCop

c q. This is a consequence of a
more precise statement (Proposition D.7.2.3) which we prove below.

Construction D.7.2.1. Let C be a compactly generated stable 8-category and let Cc
denote the full subcategory of C spanned by the compact objects. Then the construction
pC,Dq ÞÑ MapCpC,Dq of Example D.7.1.3 determines a functor MapC : Copˆ C Ñ Sp, which
we can identify with a map ρ : Cop Ñ FunpC, Spq. Let ρc denote the restriction of ρ to the
full subcategory Cop

c Ď Cop. Note that the functor ρ preserves small limits, so that ρc is left
exact and therefore (by virtue of the fact that the domain and codomain of ρc are stable)
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also right exact. Using Propositions HTT.5.3.5.10 and HTT.5.5.1.9 , we deduce that this
functor admits an essentially unique extension pρc : IndpCop

c q Ñ FunpC,Spq which preserves
small colimits. We will identify this extension with a bifunctor

ΦC : IndpCop
c q ˆ C Ñ Sp .

Lemma D.7.2.2. Let C be a compactly generated stable 8-category and let ΦC : IndpCop
c q ˆ

C Ñ Sp be defined as in Construction D.7.2.1. Then the functor ΦC preserves small colimits
separately in each variable.

Proof. By construction, the functor ΦC preserves small colimits in the first variable. It will
therefore suffice to show that for each object X P IndpCop

c q, the functor C ÞÑ ΦCpX,Cq P

Sp preserves small colimits. The collection of those objects X P IndpCop
c q which satisfy

this condition is evidently closed under small colimits; we may therefore assume that X
is the image of some object D P Cop

c . We are therefore reduced to showing that the
functor C ÞÑ MapCpD,Cq preserves small colimits. This functor evidently preserves small
limits, and is therefore exact. We are therefore reduced to showing that the functor
C ÞÑ MapCpD,Cq preserves filtered colimits: that is, that for every integer n, the construction
C ÞÑ Ω8`nMapCpD,Cq determines a functor C Ñ S which preserves filtered colimits. This
is clear, since this functor is corepresentable by the compact object ΣnD P C.

Let C be a compactly generated stable 8-category and let Cc denote the full subcategory
of C spanned by the compact objects. Using Lemma D.7.2.2, we see that the functor ΦC of
Construction D.7.2.1 induces a colimit-preserving functor eC : IndpCop

c q b C Ñ Sp, where the
tensor product is taken in the 8-category PrSt of presentable stable 8-categories.

Proposition D.7.2.3. Let C be a compactly generated stable 8-category. Then the functor
eC : IndpCop

c q b C Ñ Sp constructed above is a duality datum in the symmetric monoidal
8-category PrSt (see Definition HA.4.6.1.1 ). In particular, C is a dualizable object of PrSt,
and its dual can be identified with IndpCop

c q.

Proof. According to Lemma HA.4.6.1.6 , it will suffice to show that for every pair of
presentable stable 8-categories D and E , the composite map

θ : MapPrLpD, Cb Eq Ñ MapPrLpIndpCop
c qbD, IndpCop

c qbCb Eq Ñ MapPrLpIndpCop
c qbD, Eq

is a homotopy equivalence. Proposition HTT.5.5.1.9 and the definition of the tensor product
on PrSt, we can identify MapPrLpIndpCop

c q bD, Eq with the subcategory of FunpCop
c ˆD, Eq

whose objects are functors which are exact in the first argument and colimit-preserving in
the second, and whose morphisms are equivalences. Under this identification, θ corresponds
to the map

MapPrLpD, Cb Eq Ñ MapPrLpD,FunlexpCop
c , Eqq
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given by composition with the equivalence

Cb E » RFunpCop, Eq » FunlexpCop
c , Eq

of Proposition HA.4.8.1.17 .

D.7.3 Duality for Compactly Assembled 8-Categories

We now extend Proposition D.7.2.3 to the setting of compactly assembled stable 8-
categories.

Proposition D.7.3.1. Let C be a presentable stable 8-category. The following conditions
are equivalent:

p1q The 8-category C is dualizable as an object of PrSt.

p2q Let F : D Ñ D be a functor between presentable stable 8-categories which admits a
fully faithful right adjoint G. Then every colimit-preserving functor U : C Ñ D is
equivalent to F ˝ U for some colimit-preserving functor U : C Ñ D.

p3q Let F : C Ñ C be a functor between presentable stable 8-categories which admits a
fully faithful right adjoint G. Then F admits a colimit-preserving section G1 : C Ñ C.

p4q The 8-category C is a retract (in the 8-category PrSt of presentable stable 8-categories)
of a compactly generated stable 8-category.

p5q The 8-category C is compactly assembled (in the sense of Definition 21.1.2.1).

Proof. We first show that p1q ñ p2q. Let F : D Ñ D be as in p2q. Then F exhibits D as a
quotient D{D0, where D0 is the localizing subcategory of D spanned by objects which are
annihilated by F . In particular, for any presentable stable 8-category E , composition with
F induces a fully faithful embedding

LFunpD, Cb Eq Ñ LFunpD, Cb Eq

whose essential image is spanned by those functors which annihilate D0. Let C_ denote a
dual of C, and let A denote the smallest localizing subcategory of C_bD which contains the
essential image of C_bD0. Then, for any presentable stable 8-category E , the natural map
LFunpC_bD, Eq Ñ LFunpC_bD, Eq is a fully faithful embedding, whose essential image
consists of those colimit-preserving functors C_bD Ñ E which annihilate A. It follows that
the functor F exhibits C_bD as the quotient of C_bD by the localizing subcategory A. In
particular, the functor C_bD Ñ C_bD is essentially surjective, which proves p2q.

The implication p2q ñ p3q is trivial. We now prove p3q ñ p4q. Let C0 Ď C be an
essentially small dense full subcategory. Enlarging C0 if necessary, we may assume that C0 is
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a stable subcategory of C. Then the inclusion C0 ãÑ C extends to a colimit-preserving functor
F : IndpC0q Ñ C, and the density of C0 in C guarantees that F has a fully faithful right
adjoint G. Invoking assumption p3q, we deduce that F admits a section G1 : C Ñ IndpC0q

which preserves small colimits. Then F and G1 exhibit C as a retract of IndpC0q.
Note that since the 8-category PrSt is idempotent complete, the collection of dualizable

objects of PrSt is closed under retracts. Consequently, the implication p4q ñ p1q follows
from Proposition D.7.2.3. The implication p4q ñ p5q is trivial. We now complete the
proof by showing that p5q ñ p1q. We proceed as in the proof of Theorem 21.1.2.10. Let
G : IndpCq Ñ C be the Ind-extension of the identity functor idC , and let F : C Ñ IndpCq be
a left adjoint to G (whose existence is guaranteed by our assumption that C is compactly
assembled; see Theorem 21.1.2.10). If C0 Ď C is an essentially small full subcategory, we
will abuse notation by identifying IndpC0q with its essential image in IndpCq. Since C is
accessible, there exists a small collection of objects tXαu which generates C under small
filtered colimits. Choose an essentially small stable subcategory C0 Ď C for which each
F pXαq belongs to the subcategory IndpC0q Ď IndpCq. Since the functor F commutes with
small filtered colimits, it follows that F factors through a functor F0 : C Ñ IndpC0q. Let
G0 “ G|IndpC0q. Then G0 ˝ F0 is equivalent to the identity functor idC, so that F0 and G0
exhibit C as a retract of IndpC0q in the 8-category PrSt.

D.7.4 Locally Rigid Monoidal 8-Categories

In order to deduce Theorem D.7.0.7 from Proposition D.7.2.3, we will need to compare
the condition of dualizability in the 8-category PrSt with the a priori unrelated condition
of dualizability in the 8-category LinCatSt

R “ ModModRpPrStq, where R is an E8-ring.
The comparison rests on some features of the monoidal 8-category ModR which we now
axiomatize.

Definition D.7.4.1. Let C be a monoidal stable 8-category. We will say that C is locally
rigid if it satisfies the following conditions:

p1q The 8-category C is compactly generated.

p2q The tensor product functor b : Cˆ C Ñ C preserves small colimits separately in each
variable.

p3q The unit object 1 P C is compact.

p4q Every compact object of C admits a left dual and a right dual.

Example D.7.4.2. Let R be an E2-ring. Then LModR is a locally rigid stable monoidal
8-category. That is, every perfect R-module is both left and right dualizable as an object
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of LModR. This is clear, since the collection of left and right dualizable objects of LModR
is a stable subcategory which contains the unit object R P LModR.

Remark D.7.4.3. Let C be a locally rigid stable monoidal 8-category and suppose that
X P C is an object which admits a right dual X_. Then for any object Y P C, we have
a canonical homotopy equivalence MapCpX,Y q » MapCp1, Y bX_q. Since the operation
Y ÞÑ Y bX_ commutes with filtered colimits and the unit object 1 is compact, we deduce
that the functor Y ÞÑ MapCpX,Y q commutes with filtered colimits: that is, X Is a compact
object of C. The same argument shows that every left dualizable object of C is compact.
Consequently, the following conditions on an object X P C are equivalent:

paq The object X P C is compact.

pbq The object X admits a left dual.

pcq The object X admits a right dual.

Remark D.7.4.4. Let C be a locally rigid monoidal8-category, letM andN be presentable
8-categories which are left-tensored over C, and suppose that the action maps

b : CˆMÑM CˆN Ñ N

preserves small colimits separately in each variable. Let F :MÑ N be a C-linear functor
which commutes with small colimits and let G : N ÑM be a right adjoint to F . For every
pair of objects C P C and N P N , the counit map pF ˝GqpNq Ñ N induces a map

F pC bGpNqq Ñ C b pF ˝GqpNq Ñ C bN,

which is adjoint to a morphism θC,N : C bGpNq Ñ GpC bNq in C.
Suppose that the functor G preserves small colimits. We claim that each of the maps

θC,N is an equivalence. Note that the construction C ÞÑ θC,N commutes with filtered colimits.
We can therefore reduce to the case where C is compact, and therefore right dualizable. We
claim that for each object M PM, composition with θC,N induces a homotopy equivalence
MapMpM,CbGpNqq Ñ MapMpM,GpCbNqq. Unwinding the definitions, we see that this
map is given by a composition of homotopy equivalences

MapMpM,C bGpNqq » MapMpC
_ bM,GpNqq

» MapN pF pC
_ bMq, Nq

» MapN pC
_ b F pMq, Nq

» MapN pF pMq, C bNq

» MapMpM,GpC bNqq.

Applying Remark ??, we see that G can be regarded as a C-linear functor from N toM.
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Example D.7.4.5. Let C and D be locally rigid stable monoidal 8-categories, and let
F : C Ñ D be a monoidal functor which preserves small colimits. Then F carries (left or
right) dualizable objects of C to (left or right) dualizable objects of D, and therefore carries
compact objects of C to compact objects of D (Remark D.7.4.3). Applying Proposition
HTT.5.5.7.2 , we deduce that the functor F admits a right adjoint G which commutes with
filtered colimits. Using Remark D.1.5.3, we conclude that G has the structure of a C-linear
functor.

D.7.5 Frobenius Algebras in PrSt

Let C be a stable monoidal 8-category. If C is presentable and the tensor product
b : Cˆ C Ñ C preserves small colimits separately in each variable, then we can identify C
with an associative algebra object of the 8-category PrSt of presentable stable 8-categories.
When C is locally rigid (Definition D.7.4.1), we can say more:

Proposition D.7.5.1. Let C be a locally rigid monoidal stable8-category, and let λ : C Ñ Sp
denote the functor given by λpCq “ MapCp1, Cq. Then pC, λq is a Frobenius algebra object
of PrSt. In other words, the composite map u : Cb C Ñ C λ

Ñ Sp is a duality datum in the
symmetric monoidal 8-category PrSt.

Proof. The map u classifies a bifunctor β : Cˆ C Ñ Sp, given by the formula βpC,Dq “

MapCp1, C b Dq. Let ΦC be as in Construction D.7.2.1. Using Proposition D.7.2.3, we
deduce that there exists an essentially unique functor F : C Ñ IndpCop

c q which is equipped
with an equivalence β » ΦC ˝ pF ˆ idCq. We wish to show that F is an equivalence of
8-categories. Note that for every compact object C P C, the functor βpC, ‚q carries D P C
to the spectrum

βpC,Dq “ MapCp1, C bDq » MapCpC
_, Dq,

so that βpC, ‚q is representable by the object C_ P Cc. Let us abuse notation by identifying
Cop
c with its essential image in IndpCop

c q. Unwinding the definitions, we see that F carries Cc
into Cop

c , and is given on Cc by the formula C ÞÑ C_. If C,C 1 P C are compact, then the
canonical map

MapCpC,C
1q Ñ MapIndpCop

c q
pF pCq, F pC 1qq » MapCcpC

1_, C_q

is a homotopy equivalence. It follows that F |Cc is fully faithful. Since F commutes with
filtered colimits and carries compact objects of C to compact objects of IndpCop

c q, we conclude
that F is fully faithful. Since every object of Cc admits a left dual, the essential image of F
contains Cop

c and is closed under filtered colimits. It follows that F is essentially surjective
and is therefore an equivalence of 8-categories.
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Remark D.7.5.2. [Serre Automorphism] Let C be a locally rigid stable monoidal8-category,
let λ : C Ñ Sp be defined as in Proposition D.7.5.1, and regard pC, λq as a Frobenius algebra
object of the symmetric monoidal 8-category PrSt. Let σ : C Ñ C denote the Serre
automorphism of the Frobenius algebra object pC, λq (see Remark HA.4.6.5.4 ). Then σ is
a monoidal equivalence from C to itself. Moreover, if m,m1 : Cb C Ñ C classify the tensor
product on C and its opposite, then we have a commutative diagram of 8-categories

Cb C idbσ //

m
��

Cb C

m1

��
C

λ

##

C
λ

{{
Sp .

In other words, for every pair of objects C,D P C, we have a canonical equivalence of spectra

MapCp1, C bDq » MapCp1, D b σpCqq.

If C is a compact object of C, we can rewrite the left hand side of this equivalence as

MapCp1, C bDq » MapCpC
_, Dq » MapCp1, D b pC

_q_q.

We can informally summarize the situation as follows: if C is a locally rigid stable monoidal
8-category, then the double duality functor C ÞÑ pC_q_ extends to a monoidal equivalence
of C with itself.

Example D.7.5.3. Let R be an E2-ring. Then the 8-category LModR is locally rigid
(Example D.7.4.2). According to Remark D.7.5.2, double duality determines a monoidal
equivalence σ : LModR Ñ LModR. Using Propositon HA.7.1.2.6 , we see that σ arises from
an equivalence from R to itself in the 8-category AlgE2pSpq of E2-rings. One can show that
this equivalence is induced by the homotopy from the identity map from the 8-operad Eb2
to itself which is determined by the action of the circle group SOp2q on the Eb2 (see Example
HA.5.4.2.18 ).

D.7.6 A Recognition Criterion

Let M be a presentable stable 8-category. If there exists a compact generator M P

M, then we can identify M as the 8-category RModA of right A-modules, where A “

EndMpMq “ MapMpM,Mq is the E1-ring of endomorphisms of M (see Theorem HA.7.1.2.1 ).
We now establish a mild generalization of this statement:
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Proposition D.7.6.1. Let C be a locally rigid stable monoidal 8-category and let M be
an 8-category which is left-tensored over C. Assume that M is presentable and that the
tensor product b : CˆM ÑM preserves small colimits separately in each variable. Let
A P AlgpCq be an algebra object of C, and let M P LModApMq, so that tensor product with
M determines a C-linear functor λ : RModApCq ÑM (see Theorem HA.4.8.4.1 ). Then λ

is an equivalence if and only if the following conditions are satisfied:

p1q The object M PM is compact.

p2q The object A P C classifies endomorphisms of M in C. That is, for every object C P C,
the action of A on M induces a homotopy equivalence

MapCpC,Aq Ñ MapMpC bM,Mq.

p3q The 8-category M is generated under small colimits by objects of the form C bM ,
where C P C.

Proof. To prove that conditions p1q, p2q, and p3q are necessary, it suffices to show that they
are satisfied when M “ RModApCq and M “ A (regarded as a right module over itself).
In this case, M corepresents the composite functor RModApCq Ñ C

φ
ÝÑ S, where φ : C Ñ S

is the functor corepresented by the unit object 1. Since C is locally rigid, 1 is a compact
object of C, and condition p1q follows. Condition p2q follows from Proposition HA.4.2.4.2 ,
and condition p3q follows because every right A-module N can be written as N bA A, which
is computed as the geometric realization of the simplicial object with entries of the form
N bAbk for k ą 0.

Conversely, suppose that conditions p1q, p2q, and p3q are satisfied. We first claim that
the functor λ is fully faithful. To prove this, it will suffice to show that for every pair of
objects N,N 1 P RModApCq, the functor λ induces a homotopy equivalence

θN,N 1 : MapRModApCqpN,N
1q Ñ MapMpN bAM,N 1 bAMq.

Let us first regard N 1 as fixed. The collection of those N P RModApCq for which θN,N 1 is
an equivalence is closed under small colimits in RModApCq. Since RModApCq is generated
under small colimits by objects of the form C b A, we may assume that N “ C b A for
some C P C. Since C is compactly generated, we may further reduce to the case where C is
a compact object of C. Then C admits a left dual _C. Replacing N 1 by _C bN 1, we may
reduce to the case where C “ 1, so that N “ A. In this case, we can identify θ with the
canonical map φN 1 : MapCp1, N 1q Ñ MapMpM,N 1 bAMq.

Let E Ď RModApCq denote the full subcategory spanned by those objects N 1 satisfying
the following condition: for every integer d, the map φΣdN 1 is a homotopy equivalence.
Since the construction N 1 ÞÑ φN 1 preserves finite limits, E is a stable subcategory of
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RModApCq, and therefore closed under finite colimits in RModApCq. Using condition p1q,
we deduce that E is closed under filtered colimits, and therefore closed under small colimits
in RModApCq. Consequently, to show that E “ RModApCq, it will suffice to show that
E contains every right A-module of the form C 1 b A, where C 1 is a compact object of
C. In this case, C 1 is right dualizable, so we can identify φN 1 with the canonical map
MapCpC

1_, Aq Ñ MapMpC
1_ bM,Mq. This map is a homotopy equivalence by virtue of

assumption p2q. This completes the proof that λ is fully faithful.
Since λ is a fully faithful functor which preserves small colimits, the essential image of λ

is closed under small colimits in M. Since this essential image contains every object of the
form C bM , where C P C, assumption p3q guarantees that λ is essentially surjective.

Combining Proposition D.7.6.1 with the results of §HA.4.7.1 , we obtain the following:

Corollary D.7.6.2. Let C be a locally rigid stable monoidal 8-category and let M be an
8-category which is left-tensored over C. Let M P M be an object. Then the following
conditions are equivalent:

p1q There exists an algebra object A P AlgpCq and a C-linear equivalence of 8-categories
λ : RModApCq ÑM with λpAq »M .

p2q The 8-category M is presentable, the tensor product b : CˆMÑM preserves small
colimits separately in each variable, M is a compact object of M, and M is generated
under small colimits by objects of the form C bM , where C P C.

Corollary D.7.6.3. Let R be an E2-ring, let M be an R-linear 8-category, and let M PM
be an object. The following conditions are equivalent:

p1q There exists an R-algebra A P AlgR and an R-linear equivalence of 8-categories
λ : RModA »M with λpAq »M .

p2q The object M P M is compact, and the suspensions tΣkMukPZ generate M under
small colimits.

Corollary D.7.6.4. Let C be a locally rigid stable monoidal 8-category, and let M P

LModCpPrStq. Suppose that there exists a compact object M PM such that M is generated
under small colimits by objects of the form C bM , where C P C. Then:

p1q There exists an algebra object A P AlgpCq and a C-linear equivalence M » RModApCq.

p2q As a left C-module object of PrSt, M admits a left dual _M P RModCpPrStq.

Proof. Assertion p1q follows immediately from Corollary D.7.6.2, and p2q follows from p1q
and Remark HA.4.8.4.8 .
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D.7.7 Smoothness of Locally Rigid Stable 8-Categories

We now turn to the proof of Theorem D.7.0.7. The main point is to establish the
following:

Proposition D.7.7.1. Let C be a locally rigid stable monoidal 8-category. Then C is
smooth when viewed as an algebra object of PrSt: that is, it is dualizable as module over
Copb C (see Definition HA.4.6.4.13 ).

Lemma D.7.7.2. Let C and C1 be locally rigid stable monoidal 8-categories, which we
regard as algebra objects of PrSt. Then the tensor product Cb C1 P AlgpPrStq is also locally
rigid.

Proof. For every pair of objects C P C, C 1 P C1, we let C b C 1 denote the image of pC,C 1q
under the tautological map Cˆ C1 Ñ Cb C1. If C and C 1 are compact, then C b C 1 is a
compact object of Cb C1. Note that the unit object of Cb C1 can be written as 1C b 1C1 ,
where 1C and 1C1 denote the unit objects of C and C1, respectively. It follows that the
unit object of Cb C1 is compact. We also note that if C P C and C 1 P C1 are both left
dualizable (right dualizable), then C b C 1 is left dualizable (right dualizable). Consequently,
the collection of left (right) dualizable objects of Cb C1 forms a stable subcategory which
contains all objects of the form C b C 1, where C and C 1 are compact. It follows that every
compact object of Cb C1 is (left and right) dualizable.

Proof of Proposition D.7.7.1. Let C be a locally rigid stable monoidal8-category, and regard
C as an associative algebra object of PrSt. Let Crev denote the opposite algebra (so that Crev

agrees with C as an 8-category, but is equipped with the opposite tensor product), and let
Ce P LModCb CrevpPrStq denote the evaluation module of C (see Construction HA.4.6.3.7 ).
We wish to show that Ce is left dualizable. Note that Cb Crev is locally rigid (Lemma
D.7.7.2). The desired result now follows immediately from Corollary D.7.6.4, since the unit
object 1 P C is compact, and C is generated under small colimits by objects of the form
C b 1bD where C,D P C.

Corollary D.7.7.3. Let C be a locally rigid stable monoidal 8-category, and let M P

LModCpPrStq. The following conditions are equivalent:

p1q The 8-category M admits a right dual M_ (that is, M is dualizable as an object of
PrSt).

p2q The 8-category M admits a left dual _M (that is, M is dualizable as a C-module).

Proof. It follows from Propositions D.7.5.1 and D.7.7.1 that C is smooth and proper when
regarded as an algebra object of PrSt. The equivalence of p1q and p2q now follows from
Propositions HA.4.6.4.4 and HA.4.6.4.12 .
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Theorem D.7.0.7 is a special case of the following more general result:

Corollary D.7.7.4. Let C be a locally rigid stable monoidal 8-category, and let M P

LModCpPrStq. IfM is compactly assembled, thenM admits a left dual _M P RModCpPrStq.

Proof. Combine Corollary D.7.7.3 with Proposition D.7.3.1.

Warning D.7.7.5. Let C be a locally rigid stable monoidal 8-category, and let M P

LModCpPrStq be an 8-category left-tensored over C which satisfies the equivalent conditions
of Corollary D.7.7.3. Then M admits left and right duals _M,M_ P RModCpPrStq. These
duals are canonically equivalent to one another as 8-categories, but are generally not
equivalent as 8-categories right-tensored over C. Instead, the actions of C on _M and
M_ differ by composition with the Serre automorphism of C described in Remark D.7.5.2
(see Remark HA.4.6.5.13 ). However, this automorphism is trivial whenever the monoidal
structure on C is symmetric (Remark HA.4.6.5.15 ): for example, if C “ ModR where R is
an E8-ring.

Remark D.7.7.6. Let R be an E8-ring and let C be a compactly generated stable R-linear
8-category. Then:

p1q The 8-category C is dualizable as an object of LinCatSt
R (this follows from Corollary

D.7.7.4).

p2q Let e : C_bR C Ñ ModR be a duality datum in LinCatR, and let λ : ModR Ñ Sp
denote the forgetful functor. Then the composite map

C_b C Ñ C_bR C
e
Ñ ModR λ

Ñ Sp

is a duality datum in PrSt (combine p1q with Proposition D.7.5.1, Proposition D.7.6.1,
and Corollary HA.4.6.5.14 ).

p3q Let Cc denote the full subcategory of C spanned by the compact objects. Then
IndpCop

c q admits the structure of a stable R-linear 8-category. Moreover, the functor
eC : IndpCop

c q b C Ñ Sp is homotopic to a composition

IndpCop
c q b C Ñ IndpCop

c q bR C
eC
Ñ ModR λ

Ñ Sp,

where eC exhibits IndpCop
c q as the dual of C in the 8-category LinCatSt

R (combine p2q
with Proposition D.7.2.3).

Corollary D.7.7.7. Let R be an E8-ring and let C be a compactly assembled stable R-linear
8-category. Then C satisfies flat hyperdescent (see Definition D.6.1.2).

Proof. Using Lemma D.3.5.5 and Proposition A.5.7.2, we are reduced to proving the following:
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p˚q Let A‚ : ∆s Ñ CAlgR{ be a flat hypercovering of an R-algebra A. Then the canonical
map θ : ModAbModR C Ñ lim

ÐÝ
pModA‚ bModR Cq is an equivalence of R-linear 8-

categories.

LetD be another R-linear8-category; we wish to show that θ induces a homotopy equivalence

φ : MapLinCatRpD,ModAbModR Cq Ñ lim
ÐÝ

MapLinCatRpD,ModA‚ bModR Cq.

Corollary D.7.7.4 implies that C is a dualizable object of LinCatR. Let us denote its dual by
C_. Then φ can be identified with the canonical map

MapLinCatRpDbModR C
_,ModAq Ñ lim

ÐÝ
MapLinCatRpDbModR C

_,ModA‚q.

We are therefore reduced to proving that ModA » lim
ÐÝ

ModA‚ , which follows from Corollary
D.6.3.3.



Appendix E

Profinite Homotopy Theory

Let X be a simply connected space. Using rational homotopy theory (see §??), one can
associate to X another simply connected space XQ called the rationalization of X, whose
homotopy πnXQ » QbZpπnXq. The space XQ captures all “rational information” about
the homotopy type of the space X, while completely ignoring torsion. In this appendix,
we give an overview of the subject of profinite homotopy theory which takes the opposite
approach: emphasizing the role of “torsion information” (while completely neglecting rational
information).

Definition E.0.7.8. Let X be a space. We will say that X is π-finite if it satisfies the
following conditions:

p1q The space X is n-truncated for some integer n.

p2q The set π0X is finite.

p3q For each vertex x P X and each integer m ě 1, the group πmpX,xq is finite.

Let Sπ denote the full subcategory of S spanned by the π-finite spaces.

Remark E.0.7.9. A space X is π-finite if and only if it is a truncated coherent object
of the 8-topos S (see Example A.2.1.7). In particular, the 8-category Sπ is a bounded
8-pretopos (Example A.7.4.4).

Remark E.0.7.10. The full subcategory Sπ Ď S is closed under finite coproducts, finite
limits, and retracts. In particular, Sπ is an idempotent-complete 8-category which admits
finite limits. Note also that Sπ is essentially small (and therefore accessible).

Definition E.0.7.11. A profinite space is a Pro-object of the 8-category Sπ (see Definition
A.8.1.1): that is, a functor U : Sπ Ñ S which preserves finite limits. We let S^π “ PropSπq
denote the full subcategory of FunpSπ,Sqop spanned by the profinite spaces. We will refer
to S^π as the 8-category of profinite spaces.
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Example E.0.7.12. Let X be a space. We let X^π : Sπ Ñ S denote the functor given by
T ÞÑ MapSpX,T q. Then X^π is a profinite space, which we will refer to as the profinite
completion of X.

Under the dictionary of Remark ??, the profinite completion X^π can be identified with
the diagram pS{X ˆS Sπq Ñ Sπ: that is, the filtered system tTαu indexed by all maps
X Ñ Tα, where Tα is π-finite.

Our main goal in this section is to address the following (closely related) questions:

paq To what extent does the homotopy theory of profinite spaces approximate the classical
homotopy theory of spaces?

pbq To what extent does the profinite completion of a space X approximate the space X
itself?

Let us now outline the contents of this section. We begin in §E.1 by considering a
simplified variant of the 8-category S^π , where we consider Pro-objects not of the 8-
category Sπ of π-finite spaces, but instead of the ordinary category Setfin of finite sets. The
category PropSetfinq is well-understood: it is equivalent to the category of Stone spaces: that
is, topological spaces which are compact, Hausdorff, and totally disconnected (Theorem
E.1.4.1). In §E.2, we study an analogous fully faithful embedding from the 8-category S^π
of profinite spaces to the 8-category 8T op of 8-topoi (Theorem E.2.4.1). We say that an
8-topos X is profinite if it belongs to the essential image of the embedding S^π ãÑ8T op.
The class of profinite 8-topoi admits several different descriptions, whose equivalence will
be established in §E.3 (see in particular Proposition E.3.1.1, Theorem E.3.2.8, and Theorem
E.3.4.1).

The category PropSetfinq of profinite sets can be regarded as a full subcategory of the
8-category S^π of profinite spaces: namely, the full subcategory spanned by those profinite
spaces which are 0-truncated. In §E.4, we study the general notion of an n-truncated map
of profinite spaces for n ě 0, together with the dual notion of an n-connective map. Our
main result (Theorem E.4.1.2) asserts that just as in classical homotopy theory, any map of
profinite spaces f : X Ñ Z admits an essentially unique factorization X f 1

Ñ Y
f2
Ñ Z where f 1

is pn` 1q-connective f2 is n-truncated.
Let X be a profinite space, represented by a filtered diagram tXαu of π-finite spaces.

Then we can form the inverse limit lim
ÐÝα

Xα in the 8-category of spaces. This inverse limit
depends functorially on X: we will denote it by MatpXq, and refer to it as the materialization
of X. If we choose a base point x P MatpXq, then the fiber product ΩX “ txu ˆX txu is a
group object in the 8-category of profinite spaces. In §E.5, we will prove a converse to this
assertion: every group object G in the 8-category of profinite spaces arises as the loop space
of a (connected) profinite space, which we will denote by BG and refer to as the classifying
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space of G (Theorem E.5.0.4). This can be regarded as homotopy-theoretic analogue of the
classical fact that every group object in the category of profinite sets can be written as a
filtered inverse limit of finite groups (Proposition E.5.1.3).

One of the most important structural features of the classical homotopy theory of spaces
is that colimits are universal in the 8-category of spaces: that is, the formation of colimits
in S commutes with pullback (Lemma HTT.6.1.3.14 ). The analogous statement for profinite
spaces is not true in complete generality (Warning E.6.0.9). Nevertheless, in §E.6, we will
see that it is approximately true: arbitrary colimits are preserved by pullback along maps
of π-finite spaces (Corollary E.6.0.8), and many colimits (such as pushouts and geometric
realizations) are preserved by pullback along arbitrary maps of profinite spaces (Theorem
E.6.3.1).

In §E.7, we will study finiteness conditions on profinite spaces. For a simply connected
profinite space X, we show that the following conditions are equivalent (see Theorem E.7.0.5):

paq For every prime number p and every integer n ě 2, the map πnX
p
Ñ πnX has finite

cokernel.

pbq For every prime number p and every integer n ě 2, the cohomology group HnpX; Fpq

is finite.

If these conditions are satisfied, we say that the profinite space X has finite type. In §E.8,
we show that the materialization functor X ÞÑ MatpXq is fully faithful when restricted to
profinite spaces of finite type (Theorem E.8.2.1). An important special case occurs when
X is the profinite completion Y ^π of a simply connected space Y with finitely generated
homotopy groups. In this case, X is of finite type (so that passage from X to MatpXq
involves no loss of information), and the canonical map Y Ñ MatpXq exhibits the homotopy
groups of X as the profinite completion of the homotopy groups of Y (Proposition E.8.2.4).

If X is a simply connected space, then we can think of its rationalization XQ as an
invariant which records rational data about X (for example, its homology and cohomology
with rational coefficients) while discarding integral and torsion information, while its profinite
completion X^π records “p-adic” data for each prime number p, but discards all information
about how these data are related for different values of p. In good cases, one can recover X
by “attaching” its rationalization XQ to its profinite completion X^π by means of a map of
rational spaces XQ Ñ MatpX^π qQ. In §E.9 we will describe this reconstruction procedure in
detail, following the work of Sullivan in [196].

Remark E.0.7.13. In [219], Quick develops another approach to the homotopy theory of
profinite spaces, using the formalism of simplicial profinite sets. For a discussion of the
relationship of Definition E.0.7.11 with Quick’s theory, we refer the reader to the work of
Barnea-Harpaz-Horel ([13]); see also Theorem E.1.5.3.
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E.1 Profinite Sets and Stone Spaces

Recall that a topological space X is a Stone space if it is compact, Hausdorff, and has a
basis consisting of closed and open sets (Definition A.1.6.8). The category T opSt of Stone
spaces admits many different descriptions:

paq According to the Stone duality theorem (Theorem A.1.6.11), a topological space X is
a Stone space if and only if it is homeomorphic to the spectrum SpecpΛq of a Boolean
algebra Λ. Moreover, the construction Λ ÞÑ SpecpΛq determines a (contravariant)
equivalence from the category of Boolean algebras to the category T opSt of Stone
spaces.
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pbq For any filtered inverse system of finite sets tSαu, the inverse limit lim
ÐÝ

Sα is a Stone
space (when endowed with the inverse limit topology). This construction determines
an equivalence from the category of profinite sets to the category of Stone spaces
(Theorem E.1.4.1).

pcq Let p be a prime number. We say that a commutative ring B is an Fp-Boolean
algebra if p “ 0 in B and every element x P B satisfies the equation xp “ x. For any
Fp-Boolean algebra B, the Zariski spectrum | SpecB| is a Stone space. Moreover, the
construction B ÞÑ | SpecB| induces a (contravariant) equivalence from the category of
Fp-Boolean algebras to the category of Stone spaces (Theorem ??). When p “ 2, this
reduces to the equivalence described in paq (see Proposition ??).

Our goal in this section is to give a detailed explanation of pbq (we discuss paq in §A.1 and
pcq in §??). Let Setfin denote the category of finite sets. We will refer to Pro-objects of Setfin

as profinite sets. In this section, we will review some of the basic facts about the category
PropSetfinq of profinite sets and construct the equivalence of categories PropSetfinq » T opSt.
We will then discuss the relationship between the ordinary category PropSetfinq of profinite
sets and the 8-category S^π “ PropSπq of profinite spaces.

E.1.1 Finite Sets and Inverse Limits

Our starting point is the following fundamental fact about profinite sets:

Proposition E.1.1.1. Let A be a filtered partially ordered set, and suppose we are given
a functor X : Aop Ñ Set. If the set Xpαq is finite for each α P A, then the inverse limit
lim
ÐÝαPA

Xpαq is nonempty.

Proof. Let S denote the collection of all subfunctors X0 Ď X such that the set X0pαq is
nonempty for each α P A. We regard S as a linearly ordered set with respect to inclusions.
Note that any linearly ordered subset of S has an infimum in S, since the intersection of
any chain of nonempty finite subsets of a finite set is again nonempty. It follows from Zorn’s
lemma that S has a minimal element X0 Ď X. We will show that for each α P A, the set
X0pαq has a single element, so that lim

ÐÝαPA
X0pαq consists of a single element. The desired

result will then follow from the existence of a map lim
ÐÝαPA

X0pαq Ñ lim
ÐÝαPA

Xpαq.
Let α P A and choose elements x, y P X0pαq; we will prove that x “ y. For β ě α,

let φβ : X0pβq Ñ X0pαq be the corresponding map of finite sets, and define subfunctors
Xx, Xy Ď X0 by the formulae

Xxpβq “

#

φ´1
β pX0pαq ´ txuq if β ě α

X0pβq otherwise.
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Xypβq “

#

φ´1
β pX0pαq ´ tyuq if β ě α

X0pβq otherwise.

Since X0 was chosen to be a minimal element of S, we must have Xx, Xy R S. It follows
that there exist elements β, γ P A such that the sets Xxpβq and Xypγq are empty. Since A
is filtered, we may assume without loss of generality that β “ γ. Note also that we must
have β ě α, since otherwise Xxpβq “ X0pβq ‰ H. Since Xxpβq “ H, the map φβ must be
the constant map taking the value x P X0pαq. The same argument shows that φβ takes the
constant value y. Since X0pβq ‰ H, this proves that x “ y as desired.

E.1.2 The Topology of a Profinite Set

Let Set denote the category of sets. We will abuse notation by identifying Set with
the full subcategory of T op spanned by those topological spaces which are endowed with
the discrete topology. Since the category T op admits filtered inverse limits, the inclusion
Set Ď T op extends to a functor ψ : PropSetfinq Ñ T op which preserves filtered inverse limits
(moreover, this extension is unique up to unique isomorphism).

Proposition E.1.2.1. The functor ψ : PropSetfinq Ñ T op described above is fully faithful.

Proof. Let us identify PropSetfinq with the category of left exact functors F : Setfin Ñ Set.
The functor ψ admits a left adjoint φ, which carries a topological space X to the left exact
functor φpXq given by the formula

φpXqpJq “ HomT oppX,Jq.

To prove that ψ is fully faithful, it will suffice to show that if S is a profinite set and
X “ ψpSq, then the adjoint map φpXq Ñ S is an isomorphism of profinite sets.

Choose a filtered partially ordered set A and an isomorphism of profinite sets S »
lim
ÐÝαPA

Sα in PropSetfinq, where each Sα is a finite set. Then X “ ψpSq can be identified
with the inverse limit of the diagram tSαu in the category T op of topological spaces.
Unwinding the definitions, we must show that for every finite set T , the natural map

θ : lim
ÝÑ

HomSetpSα, T q Ñ HomT oppX,T q

is a bijection. We first show that θ is injective. Suppose we are given a pair of maps
f0, f1 : Sα Ñ T such that the composite maps X φα

Ñ Sα Ñ T coincide. We wish to show
that there exists β ě α such that the composite maps Sβ Ñ Sα Ñ T coincide. Let
S1 “ ts P Sα : f0psq ‰ f1psqu. For each s P S1, the inverse image φ´1

α tsu Ď X is empty.
Using Proposition E.1.1.1, we deduce that the inverse image of tsu in Sβs is empty for some
βs ě α. Since S1 is finite, we may choose β P A such that β ě βs for all s P S1. Then the
inverse image of S1 in Sβ is empty, so that β has the desired property.



E.1. PROFINITE SETS AND STONE SPACES 2209

We now show that θ is surjective. Suppose we are given a continuous map f : X Ñ T .
We wish to show that f factors through φα : X Ñ Sα for some index α P A. If T is empty,
then X is empty and so (by Proposition E.1.1.1) the set Sα is empty for some α P A, and
therefore f factors through Sα. Let us therefore assume that T is nonempty. Fix t P T and
let Xt “ f´1ttu. Note that Xt is both open and closed in X. Since X is compact, Xt is
also compact. By construction, the topological space X has a basis consisting of sets of the
form φ´1

α tsu, where s P Sα. In particular, for every point x P Xt, we can choose a αx P A
and a point sx P Sαx such that x P φ´1

αx tsxu Ď Xt. The sets Ux “ φ´1
αx tsxu form an open

covering of Xt. Since Xt is compact, there exist finitely many points x1, . . . , xn P Xt such
that Xt “

Ť

1ďiďn Uxi . Since A is filtered, we can choose an index αt P A such that αt ě αxi
for 1 ď i ď n. Because T is finite, we may further choose α such that α ě αt for all t P T .
Let St “ ts P Sα : H ‰ φ´1

α tsu Ď Xtu. Then

Xt Ď
ď

1ďiďn
Uxi Ď φ´1

α St Ď Xt.

Note that the subsets St Ď Sα are disjoint. Since T is nonempty, there exists a map of finite
sets f 1 : Sα Ñ T such that St Ď f 1´1

ttu for each t P T . Then f “ f 1 ˝ φα as desired.

E.1.3 Stone Spaces

Our next goal is to describe the essential image of the fully faithful embedding ψ :
PropSetfinq Ñ T op appearing in Proposition E.1.2.1. First, let us review a bit of classical
point-set topology.

Proposition E.1.3.1. Let X be a compact Hausdorff space. The following conditions are
equivalent:

paq There exists a basis for the topology of X consisting of sets which are both closed and
open.

pbq Every connected subset of X is a singleton.

Proof. Suppose first that paq is satisfied, and let S Ď X be connected. Then S is nonempty;
we wish to show that it contains only a single element. Suppose otherwise, and choose
distinct points x, y P S. Since X is Hausdorff, there exists an open set U Ď X containing x
but not y. Using condition paq, we can assume that the set U is also closed. Then U XS and
pX ´ Uq X S is a decomposition of S into nonempty closed and open subsets, contradicting
the connectedness of S.

To prove the converse, we need the following fact:

p˚q Let x, y P X. Assume that, for every closed and open subset U Ď X, if x belongs to U
then y also belongs to U . Then there is a connected subset of X containing both x

and y.
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To prove p˚q, consider the collection S of all closed subsets Y Ď X which contain both x and
y, having the property that any closed and open subset U Ď Y containing x also contains y.
Then S is nonempty (since X P S). We claim that every linearly ordered subset of S has a
lower bound in S. Suppose we are given such a linearly ordered set tYαu, and let Y “

Ş

Yα.
Then Y contains the points x and y. If Y R S, then we can decompose Y as the disjoint
union of (closed and open) subsets Y´, Y` Ď Y , with x P Y´ and y P Y`. Let us regard Y´
and Y` as compact subsets of X. Since X is Hausdorff, we can choose disjoint open sets
U´, U` Ď X with Y´ Ď U´ and Y` Ď U`. The intersection

pX ´ U´q X pX ´ U`q X
č

α

Yα

is empty. Since X is compact, we conclude that there exists an index α such that pX´U´qX
pX ´U`q X Yα “ H. Then Yα XU´ and Yα XU` are disjoint closed and open subsets of Yα
containing x and y respectively, contradicting our assumption that Yα P S. This completes
the proof that Y P S, so that S satisfies the hypotheses of Zorn’s lemma. We may therefore
choose a minimal element Z P S.

To complete the proof of p˚q, it will suffice to show that Z is connected. Assume
otherwise: then there exists a decomposition of Z into closed and open nonempty subsets
Z 1, Z2 Ď Z. Since Z P S, we have either x, y P Z 1 or x, y P Z2; let us suppose that x, y P Z 1.
The minimality of Z implies that Z 1 R S, so that Z 1 can be further decomposed into closed
and open subsets Z 1´, Z 1` Ď Z 1 containing x and y, respectively. Then Z 1´ and Z 1` Y Z

2 are
closed and open subsets of Z containing x and y, respectively, contradicting our assumption
that Z P S. This completes the proof of p˚q.

Now suppose that pbq is satisfied; we wish to prove paq. It follows from condition p˚q
that for every pair of distinct points x, y P X, there exists a closed and open subset Vx,y
which contains y but does not contain x. Let U Ď X be an open set; we wish to show
that U contains a closed and open neighborhood of each point x P U . Then X ´ U is
covered by the open sets tVx,yuyPX´U . Since X´U is compact, we can choose a finite subset
ty1, . . . , ynu Ď X ´ U such that X ´ U Ď

Ť

1ďiďn Vx,yi . It follows that X ´
Ť

1ďiďn Vx,yi is
a closed and open subset of X which contains x and is contained in U .

Definition E.1.3.2. Let X be a topological space. We say that X is a Stone space if it
is compact, Hausdorff, and satisfies the equivalent conditions of Proposition E.1.3.1. We
let T op denote the category of topological spaces, and T opSt the full subcategory of T op
spanned by the Stone spaces.

Remark E.1.3.3. Let X be a compact Hausdorff space. The collection of closed and open
subsets of X is closed under finite intersections. Consequently, to show that the X is a
Stone space, it suffices to verify that the collection of closed and open sets forms a subbasis
for the topology of X.
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Remark E.1.3.4. Let X be a Stone space. Then every closed subset Y Ď X is also a Stone
space (with the induced topology).

E.1.4 The Stone Duality Theorem

We now establish a refinement of Proposition E.1.2.1:

Theorem E.1.4.1 (Stone Duality). The functor ψ : PropSetfinq Ñ T op of Proposition
E.1.2.1 induces an equivalence of categories PropSetfinq » T opSt.

Lemma E.1.4.2. The category T opSt of Stone spaces is closed under the formation of
projective limits (in the larger category T op of topological spaces).

Proof. Suppose we are given an arbitrary diagram tXαu of Stone spaces; we wish to show
that lim

ÐÝ
Xα is also a Stone space. Note that lim

ÐÝα
Xα can be identified with a closed subspace

of the product
ś

αXα. It will therefore suffice to show that
ś

αXα is a Stone space (Remark
E.1.3.4). This product is obviously Hausdorff, compact by virtue of Tychanoff’s theorem,
and has a subbasis consisting of inverse images of open subsets of the spaces Xα. Since each
Xα has a basis of closed and open sets, we conclude that

ś

αXα has a subbasis consisting
of closed and open sets, and is therefore a Stone space by Remark E.1.3.3.

Proof of Theorem E.1.4.1. Using Proposition E.1.2.1 and Lemma E.1.4.2, we see that the
functor ψ is a fully faithful embedding PropSetfinq Ñ T opSt. To complete the proof, it will
suffice to show that this map is essentially surjective.

Fix a Stone space X, and let C be the category whose objects are pairs pT, fq, where T is
a finite set (which we regard as a discrete topological space) and f : X Ñ T is a surjection.
Let Y “ lim

ÐÝpT,fqPC T , so that Y is a Stone space belonging to the essential image of ψ. To
show that X belongs to the essential image of ψ, it will suffice to show that the canonical
map f : X Ñ Y is a homeomorphism.

Note that Y has a basis of open sets consisting of inverse images of points under the
maps Y Ñ T , where pT, fq P C. It follows that the image of f is dense in Y . Since X is
compact and Y is Hausdorff, the map f is closed and therefore surjective. To complete the
proof that f is a homeomorphism, it will suffice to show that f is injective. To this end,
suppose we are given two distinct points x, y P X. Since X is a Stone space, we can choose
a continuous map u : X Ñ t0, 1u such that upxq “ 0 and upyq “ 1. By construction, this
map factors through Y , so that upxq ‰ upyq.

Corollary E.1.4.3. Let f : tXαu Ñ tYβu be a map in the category PropSetfinq. If f induces
a bijection of sets lim

ÐÝ
Xα Ñ lim

ÐÝ
Yβ, then f is an isomorphism in PropSetfinq.

Proof. According to Theorem E.1.4.1, it will suffice to show that F is a homeomorphism
of Stone spaces. This is clear, since it is continuous bijection between compact Hausdorff
spaces.
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Remark E.1.4.4. Since the functor ψ : PropSetfinq Ñ T op admits a left adjoint (see the
proof of Proposition E.1.2.1), it follows from Theorem E.1.4.1 that the inclusion functor
T opSt ãÑ T op also admits a left adjoint. Unwinding the definitions, we see that this left
adjoint carries a topological space X to lim

ÐÝE
X{E, where the inverse limit is taken over all

equivalence relations E on X for which X{E is finite and the map X Ñ X{E is continuous.
In the special case where X has the discrete topology, we will denote this inverse limit by
βX, and refer to it as the Stone-Čech compactification of X.

Warning E.1.4.5. The Stone-Čech compactification of an arbitrary topological space X
can be defined as an initial object in the category of compact Hausdorff spaces Y equipped
with a map X Ñ Y . If the topology on X is discrete, then the Stone-Čech compactification
of X is a Stone space, and is therefore homeomorphic to the space βX of Remark E.1.4.4.
However, this need not be true if X is not discrete.

E.1.5 Profinite Kan Complexes

Our goal for the remainder of this section is to describe a concrete model for the
8-category S^π of profinite spaces. First, we need to introduce a bit of notation.

Definition E.1.5.1. Let PropSetfinq∆ denote the category Funp∆op,PropSetfinqq of simpli-
cial objects of PropSetfinq. We will refer to the objects of PropSetfinq∆ as simplicial profinite
sets.

If X is a simplicial set with only finitely many vertices in each degree, then we can regard
X as simplicial profinite set (by means of the full faithful embedding Setfin ãÑ PropSetfinq).
We will regard PropSetfinq∆ as a simplicial category, with mapping spaces given by

Homp∆n,MapPropSetfinq∆
pX,Y qq » HomPropSetfinq∆

p∆n ˆX,Y q.

Definition E.1.5.2. Let X be a simplicial profinite set. We will say that X is well-presented
if it can be written as the inverse limit of a diagram tXαuαPA indexed by a partially ordered
set A satisfying the following conditions:

p1q The partially ordered set A is filtered. Moreover, for every element α P A, the set
tβ P A : β ď αu is finite.

p2q Each Xα is a simplicial set with only finitely many simplices of each dimension, regarded
as a simplicial profinite set as in Definition E.1.5.1.

p3q The diagram tXαuαPA is fibrant with respect to the injective model structure on
FunpAop,Set∆q. In particular, each Xα is a Kan complex.

p4q For each index α P A, there exists an integer n ě 0 such that the Kan complex Xα is
n-coskeletal.
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In this case, we will also say that tXαuαPA is a good presentation of X. We let PropSetfinqwp
∆

denote the full subcategory of PropSetfinq∆ spanned by the well-presented simplicial profinite
sets.

Theorem E.1.5.3. The simplicial category PropSetfinqwp
∆ is fibrant. That is, for every pair

of well-presented simplicial profinite sets X and Y , the mapping space MapPropSetfinq∆
pX,Y q

is a Kan complex. Moreover, there is a canonical equivalence of 8-categories

NpPropSetfinqwp
∆ q » S^π .

Remark E.1.5.4. For a refinement of Theorem E.1.5.3, we refer the reader to [13].

E.1.6 Preliminaries

We now collect some auxiliary results which will be needed in our proof of Theorem
E.1.5.3.

Lemma E.1.6.1. Let S be a well-founded partially ordered set, and let u : X Ñ Y be a
morphism in the category FunpSop,Set∆q. Then u is a fibration with respect to the injective
model structure on FunpSop,Set∆q if and only if, for every index s P S, the induced map

θs : Xpsq Ñ Y psq ˆlim
ÐÝtăs

Y ptq lim
ÐÝ
tăs

Xptq

is a Kan fibration.

Proof. We first prove the “only if” direction. For every simplicial set K and each s P S,
define functors Kďs and Kăs by the formulae

Kďsptq “

#

K if t ď s

H otherwise
Kăsptq “

#

K if t ă s

H otherwise.

Note that the map θs is a Kan fibration if and only if, for every trivial cofibration of simplicial
sets K Ñ L, the induced map vsK,L : Kďs >Kăs Lăs Ñ Lďs has the left lifting property
with respect to u. Since each of these maps is a trivial cofibration with respect to the
injective model structure on FunpAop,Set∆q, the “only if” direction of the assertion follows
immediately.

Conversely, suppose that each of the maps θs is a Kan fibration. Using our assumption
that S is well-founded, we can choose an ordinal α and an enumeration S “ tsβuβăα such
that sβ ď sγ implies β ď γ. Let i : U Ñ V be a trivial cofibration in FunpSop,Set∆q. For
each β ď α, define Uβ P FunpSop,Set∆q by the formula

Uβpsγq “

#

V psγq if γ ă β

Upsγq if γ ě β.
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Then i is a transfinite composition of the morphisms Uβ Ñ Uβ`1, each of which is a pushout
of the morphism vsUpsq,V psq where s “ sβ . If each θs is a Kan fibration, then u has the right
lifting property with respect to each of the maps vsUpsq,V psq, and therefore also with respect
to the morphism i.

Lemma E.1.6.2. Let S be a partially ordered set. Suppose that for each s P S, the set
tt P S : t ď su is finite. Then the collection of fibrations in FunpSop,Set∆q (which we regard
as endowed with the injective model structure) is closed under filtered colimits.

Proof. This follows immediately from the description of the fibrations in FunpSop,Set∆q

supplied by Lemma E.1.6.1.

Lemma E.1.6.3. Let Y be a simplicial set which has only finitely many simplices of each
dimension and which is n-coskeletal for some integer n. Then Y is compact when viewed as
an object of the category PropSetfinqop

∆ .

Proof. For every simplicial profinite set X, we can write HomPropSetfinq∆
pX,Y q as an inverse

limit
lim
ÐÝ
rasÑrbs

HomPropSetfinqpXb, Yaq,

where the limit is taken over all morphisms rbs Ñ ras in ∆. Since Y is n-coskeletal, we can
replace this limit by the limit over the category of all maps rbs Ñ ras where a, b ď n. Since
each Ya is finite, the construction X ÞÑ HomPropSetfinqpXb, Yaq carries filtered inverse limits
in PropSetfinq∆ to filtered colimits of sets. It follows that the construction

X ÞÑ HomPropSetfinq∆
pX,Y q

also carries filtered limits in PropSetfinq∆ to filtered colimits of sets.

Lemma E.1.6.4. Let A be a filtered partially ordered set. Then there exists a cofinal map
of partially ordered sets f : A1 Ñ A, where A1 is a filtered partially ordered set having the
property that for every element α P A1, the set tβ P A1 : β ď αu is finite.

Proof. Take A1 to be the collection of all finite subsets of A which contain a largest element,
and f : A1 Ñ A to be the function which assigns to every such subset its largest element.

Lemma E.1.6.5. Let X be a Kan complex. The following conditions are equivalent:

paq There exists a homotopy equivalence of Kan complexes X » X 1, where X 1 has finitely
many simplices of each dimension.

pbq The set π0X is finite, and the group πnpX,xq is finite for each integer n ě 1 and each
vertex x P X.
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Proof. Suppose first that paq is satisfied. Replacing X by X 1, we may suppose that X has
finitely many simplices of each dimension. It follows immediately that π0X is finite (since it
is a quotient of the set of 0-simplices of X) and that each homotopy group πnpX,xq is finite
(since it can be realized as a quotient of a subset of the set of n-simplices of X).

Now suppose that pbq is satisfied. We wish to show that there exists a homotopy
equivalence X Ñ X 1, where X 1 has finitely many simplices of each dimension. Writing
X as a disjoint union of its connected components, we can reduce to the case where X is
connected. We will construct X 1 as the inverse limit of a tower of Kan complexes

¨ ¨ ¨ Ñ X 1p3q Ñ X 1p2q Ñ X 1p1q

with the following properties:

piq For every integer n ě 1, the map X Ñ X 1pnq exhibits X 1pnq as an n-truncation of X.

piiq For each integer n ě 1, the Kan complex X 1pnq has only finitely many simplices of
each dimension.

piiiq The maps X 1pnq Ñ X 1pn´ 1q are bijective on simplices of dimension ă n.

The construction proceeds by induction on n. To begin, choose a base point x P X, and let
G “ π1pX,xq. Let EG denote the simplicial set whose n-simplices are maps from t0, . . . , nu
into G. Then we can take X 1p1q to be the quotient BG “ EG{G.

To carry out the inductive step, suppose that X 1pn ´ 1q has been constructed, and
set A “ πnpX,xq. Let Arn ` 1s denote the chain complex of abelian groups given by A

concentrated in degree n` 1, and let C˚ denote the chain complex of abelian groups

¨ ¨ ¨ Ñ 0 Ñ A
id
Ñ AÑ 0 Ñ ¨ ¨ ¨

which is concentrated in degrees n and n`1, so that we have a surjection of chain complexes
u : C˚ Ñ Arn ` 1s. Let v : Y Ñ Z be the map of simplicial abelian groups associated to
u by the Dold-Kan correspondence. Note that the map τďnX Ñ X 1pn´ 1q is an n-gerbe
banded by A (regarded as a local system of abelian groups on X 1pn´ 1q, so that there exists
a pullback diagram

τďnX //

��

pY ˆ EGq{G

��
X 1pn´ 1q // pZ ˆ EGq{G

in the 8-category S. Since the right vertical map in this diagram is a Kan fibration, the
fiber product

X 1pnq “ X 1pn´ 1q ˆpZˆEGq{G pY ˆ EGq{G

satisfies all of our requirements.
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Lemma E.1.6.6. Let S be a partially ordered set with the property that for each s P S, the
set tt P S : t ă su is finite, and suppose that we are given a diagram X : NpSqop Ñ Sπ.
Then X is equivalent to the map induced by a functor of ordinary categories Y : Sop Ñ Set∆
satisfying the following conditions:

paq The diagram Y is fibrant with respect to the injective model structure on the category
FunpSop,Set∆q.

pbq For each s P S, the simplicial set Y psq is a Kan complex with finitely many simplices
in each dimension.

pcq For each s P S, there exists an integer n such that the simplicial set Y psq is n-coskeletal.

Proof. Since S is well-founded, we can choose an ordinal α and a transfinite enumeration
S “ tsβuβăα such that sβ ď sγ implies β ď γ. For each β ď α, let Sβ “ tsγuγăβ Ď S.
We will construct Y as the amalgam of a compatible family of diagrams Yβ : Sop

β Ñ Set∆,
satisfying the analogues of conditions paq, pbq, and pcq. The construction proceeds by
induction. Assume that β ă α and that Yβ has been constructed as a fibrant diagram
Sop
β Ñ Set∆. Using Lemma E.1.6.1, we deduce that the restriction of Yβ to tt P S : t ă sβu

is a fibrant diagram. Let K denote the inverse limit lim
ÐÝtăsβ

Yβptq, calculated in the ordinary
category of simplicial sets. Then K is also the homotopy limit of the diagram tYβptqutăsβ .
It follows that K is a Kan complex which is equivalent to lim

ÐÝtăsβ
Xptq. Consequently, the

natural map Xpsβq Ñ lim
ÐÝtăsβ

determines a map of Kan complexes Xpsβq Ñ K. Since
Xpsβq is π-finite, Lemma E.1.6.5 implies that there exists a homotopy equivalence of Kan
complexes K 1 Ñ Xpsβq, where Y has finitely many simplices of each dimension. Replacing
K 1 by a suitably truncation, we may suppose that K 1 is n-coskeletal for n ě 0. Let f denote
the composite map K 1 Ñ Xpsβq Ñ K. Set K2 “ Funpt0u,K 1qˆFunpt0u,KqFunp∆1,Kq. Then
evaluation at t1u Ď ∆1 determines a Kan fibration K2 Ñ K, which is equivalent to the
projection map Xpsβq Ñ lim

ÐÝtăsβ
Xptq. We complete the proof by taking Yβ`1 to be the

functor given on objects by the formula

Yβ`1ptq “

#

K2 if t “ sβ

Yβptq otherwise.

E.1.7 The Proof of Theorem E.1.5.3

We now turn to the proof of Theorem E.1.5.3. Our first goal is to show that the simplicial
category PropSetfinqwp

∆ is fibrant. Let X and Y be well-presented simplicial profinite spaces;
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we wish to show that the simplicial set MapPropSetfinq∆
pX,Y q is a Kan complex. Choose

good presentations
X » lim

ÐÝ
αPA

Xα Y » lim
ÐÝ
βPB

Yβ.

Since the diagram tYβuβPB is fibrant (with respect to the injective model structure on
FunpBop,Set∆q), it follows that the diagram of simplicial sets tFunpXα, YβquβPB is fibrant for
each α P A. Applying Lemma E.1.6.2, we deduce that the diagram tlim

ÝÑαPA
FunpXα, YβqβPB

is fibrant. Using Lemma E.1.6.3, we can identify this with the diagram of simplicial sets

tMapPropSetfinq∆
pX,YβquβPB.

It follows that
MapPropSetfinq∆

pX,Y q » lim
ÐÝ
βPB

MapPropSetfinq∆
pX,Yβq

is a Kan complex, as desired. Moreover, the above argument also proves the following:

p˚q If tYβuβPB is a good presentation of Y , then Y is a homotopy limit of the diagram
tYβuβPB in the simplicial category PropSetfinqwp

∆ .

Let C denote the simplicial nerve of PropSetfinqwp
∆ . Using p˚q and Theorem HTT.4.2.4.1 ,

we deduce:

p˚1q If tYβuβPB is a good presentation of Y P PropSetfinq∆, then Y is a limit of the diagram
tYβu in the 8-category C.

Choose a fully faithful embedding f : C Ñ C, where C admits small limits, and the
functor f preserves all small limits which exist in C (for example, we can take f to be the
Yoneda embedding C Ñ FunpCop,Sq).

Let PropSetfinq0∆ Ď PropSetfinq∆ denote the full subcategory spanned by those Kan
complexes which have only finitely many simplices in each degree, which are n-truncated for
some integer n (regarded as simplicial profinite sets as in Definition E.1.5.1). Let C0 denote
the simplicial nerve of PropSetfinq0∆. Since C admits small filtered limits, the composite
functor C0 ãÑ C f

Ñ C admits an essentially unique extension to a functor F : PropC0q Ñ C.
We will prove the following:

p‹q The functor F is fully faithful, and its essential image coincides with the essential
image of f .

It follows from Lemma E.1.6.5 that a Kan complex X is homotopy equivalent to an object
of PropSetfinq0∆ if and only if X is π-finite, so that the inclusion C0 ãÑ Sπ is an equivalence
of 8-categories. Assuming p‹q, we obtain equivalences

S^π “ PropSπq Ð PropC0q » C,
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thereby completing the proof.
It remains to prove p‹q. We first show that the essential image of F is contained in the

essential image of f . Let X be a profinite space. Then we can write X as the limit of a
diagram tXαuαPA indexed by a filtered partially ordered set A, where each Xα is π-finite.
Using Lemma E.1.6.4, we can assume that for each α P A, the set tβ P A : β ď αu is
finite. Using Lemma E.1.6.6, we can assume that tXαuαPA is a diagram in the ordinary
category of simplicial sets, which is a good presentation for some simplicial profinite set
X P PropSetfinq∆. Using p˚1q, we deduce that X is a limit of the diagram tXαuαPA in the
8-category C. Since f preserves small limits, it follows that fpXq is a limit of the diagram
tfpXαquαPA. Since the functor F preserves small filtered limits, we have

F pXq » lim
ÐÝ

F pXαq “ lim
ÐÝ

fpXαq » fpXq,

so that F pXq belongs to the essential image of f .
We next prove that F is fully faithful. Fix objects X,Y P S^π ; we wish to show that the

canonical map
θX,Y : MapS^π pX,Y q Ñ MapCpF pXq, F pY qq

is a homotopy equivalence. Since F preserves small filtered limits, the construction Y ÞÑ θX,Y
is compatible with filtered limits. It will therefore suffice to show that θX,Y is an equivalence
in the special case where Y is π-finite. Using Lemma E.1.6.5, we may assume without loss
of generality that Y is n-truncated and has finitely many simplices in each dimension. Write
X “ lim

ÐÝαPA
Xα as above. We then have a commutative diagram

lim
ÝÑα

MapS^π pXα, Y q //

��

lim
ÝÑα

MapCpF pXαq, Y q

��
MapS^π pX,Y q

//MapCpF pXq, F pY qq.

The upper horizontal map is a homotopy equivalence because the functor F is fully faithful
when restricted to C0 (where it agrees with f). The left vertical map is a homotopy
equivalence because Y is π-finite, and the right vertical map can be identified with the map

lim
ÝÑ
α

MapPropSetfinq∆
pXα, Y q Ñ MapPropSetfinq∆

pX,Y q,

which is an isomorphism by Lemma E.1.6.3.
To complete the proof of Theorem E.1.5.3, it will suffice to show that for every object

X P C, the object fpXq P C belongs to the essential image of F . To prove this, choose a good
presentation tXαuαPA for X. It follows from p˚1q that X is a limit of the diagram tXαuαPA

in C, so that fpXq » lim
ÐÝα

fpXαq. Since F is a fully faithful embedding which preserves
small filtered limits, the essential image of F is closed under small filtered limits. It will
therefore suffice to show that fpXαq belongs to the essential image of F for each α P A. This
is clear, since fpXαq » F pXαq.
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E.2 Shape Theory

The 8-category Sπ of π-finite spaces is a bounded 8-pretopos, whose associated 8-topos
ShvpSπq can be identified with the 8-category S. Using Theorem A.7.5.3 (and the fact
that the 8-topos S is a final object of 8T op, we deduce the existence of a fully faithful
embedding

Ψπ : S^π “ PropSπq ãÑ8T op{S » 8T op .

In this section, we will see that the functor Ψπ embedding has a very natural interpretation
in the language of shape theory: it appears as the right adjoint to the profinite shape functor
Shπ : 8T op Ñ S^π (Variant E.2.2.2). It follows that the essential image of Ψπ 8-topoi can
be regarded as a localization of the 8-category 8T op of all 8-topoi. Our main goal is to
obtain an explicit description of the associated localization functor Ψπ ˝ Shπ, which we will
denote by X ÞÑ X pf and refer to as profinite reflection. As we will see, the 8-topos X pf can
be regarded as a “best approximation” to X that can be recovered from the locally constant
constructible objects of X (for a precise statement, see Theorem E.2.3.2).

E.2.1 Pro-Spaces

We begin with some general remarks about Pro-objects of the 8-category of spaces.

Definition E.2.1.1. A Pro-space is a Pro-object of the 8-category of spaces: that is, an
accessible left-exact functor from the 8-category S to itself. We will refer to PropSq Ď
FunpS,Sqop as the 8-category of Pro-spaces..

Remark E.2.1.2. The collection of accessible left-exact functors from S to itself is closed
under composition. Consequently, we can regard the full subcategory PropSq Ď FunpS,Sqop

as a simplicial monoid (and, in particular, a monoidal 8-category). We will denote the
resulting product on PropSq by

˝ : PropSq ˆ PropSq Ñ PropSq.

Note that the unit object id P PropSq is also a final object. In particular, for every pair
of objects U, V P PropSq, we have a canonical map U ˝ V Ñ pU ˝ idq ˆ pid ˝V q » U ˆ V .
Beware that this map is generally not an equivalence.

Remark E.2.1.3. Composition with the inclusion functor i : Sπ ãÑ S induces a forgetful
functor PropSq Ñ S^π . According to Example A.8.1.8, this forgetful functor is left adjoint to
the map Propiq : S^π “ PropSπq Ñ PropSq, which is a fully faithful embedding (Proposition
A.8.1.9). We can summarize the situation by saying that the forgetful functor PropSq Ñ S^π
exhibits the 8-category of profinite spaces as a localization of the 8-category of Pro-spaces.
We will sometimes abuse terminology by identifying S^π with its essential image in PropSq.
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Remark E.2.1.4. Since the 8-category S of spaces is presentable, Example A.8.1.7 implies
that the Yoneda embedding S Ñ PropSq admits a right adjoint, given on objects by
tXαu ÞÑ lim

ÐÝ
Xα. We will denote this right adjoint by Mat : PropSq Ñ S, and refer to it as

the materialization functor.

Remark E.2.1.5. The profinite completion functor X ÞÑ X^π factors as a composition

S j
Ñ PropSq r

Ñ PropSπq “ S^π ,

where j denotes the Yoneda embedding and r denotes the restriction functor. Note that j
admits a right adjoint (given by the materialization functor Mat : PropSq Ñ S) and that
r admits a right adjoint (given by the fully faithful embedding S^π ãÑ PropSq of Remark
E.2.1.3). It follows that the right adjoint to profinite completion is given by the composition
S^π ãÑ PropSq Mat

ÝÝÑ S, which we will denote also by Mat.

E.2.2 Shape and Profinite Shape

Let X be an 8-topos. Then X admits an essentially unique geometric morphism
q˚ : X Ñ S, which has a left adjoint q˚ : S Ñ X . The composition q˚q

˚ : S Ñ S is an
accessible left exact functor from the 8-category S to itself, which we can identify with a
Pro-space ShpX q P PropSq which we refer to as the shape of X (see §HTT.7.1.6 .

Proposition E.2.2.1. Let Ψ : PropSq Ñ 8T op be the (essentially unique) functor which
preserves small filtered limits whose composition with the Yoneda embedding S ãÑ PropSq
is given by X ÞÑ S{X (see Proposition A.8.1.6). Then the functor Ψ admits a left adjoint,
given on objects by X ÞÑ ShpX q.

Proof. Let X be an 8-topos and let Y be a Pro-space; we wish to show that there is a ho-
motopy equivalence MapPropSqpShpX q, Y q » Map8T oppX ,ΨpY qq which depends functorially
on Y . Since both sides commute with filtered limits in Y , we may assume without loss of
generality that Y belongs to S (which, by abuse of notation, we identify with its essential
image in PropSq). Let q˚ : X Ñ S be a geometric morphism of 8-topoi and let q˚ : S Ñ X
be its left adjoint. Invoking the universal property of ΨpY q “ S{Y given by Proposition ??,
we obtain canonical homotopy equivalences

Map8T oppX ,ΨpY qq “ Map8T oppX ,S{Y q » ΓpX ; q˚Y q “ ShpX qpY q » MapPropSqpShpX q, Y q.

It follows from Proposition E.2.2.1 that we can regard the construction X ÞÑ ShpX q as
a functor from the 8-category 8T op of 8-topoi to the 8-category PropSq of Pro-spaces.
Moreover, this functor preserves small colimits.
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Variant E.2.2.2. Composing the shape functor Sh : 8T op Ñ PropSq with the forgetful
functor PropSq Ñ PropSπq “ S^π , we obtain a functor Shπ : 8T op Ñ S^π . If X is an
8-topos, we will refer to the profinite space ShπpX q as the profinite shape of X .

Example E.2.2.3. The construction X ÞÑ S{X determines a fully faithful embedding from
the 8-category of spaces to the 8-category T op8 of 8-topoi (Remark HTT.6.3.5.10 ).
Consequently, for any space X, the profinite shape ShπpS{Xq of the 8-topos S{X can be
identified with the profinite completion X^π of X. In other words, the notion of profinite
completion (introduced in Example E.0.7.12) can be regarded as a special case of the notion
of profinite shape (introduced in Variant E.2.2.2).

E.2.3 Profinite Reflection

Let 8T op denote the 8-category of 8-topoi, and let 8T oppf denote the full subcategory
of 8T op spanned by the profinite 8-topoi (Definition E.2.4.3). It follows from Theorem
E.2.4.1 that 8T oppf is a localization of 8T op: that is, the inclusion functor 8T oppf ãÑ

8T op admits a left adjoint. We will denote this left adjoint by X ÞÑ X pf , and we will refer
to the profinite 8-topos X pf as the profinite reflection of an 8-topos X .

Example E.2.3.1. Let X P S be a space. Then the profinite reflection of the 8-topos
X {X can be identified with the profinite 8-topos ΨπpX

^
π q (see Example E.2.2.3), where X^π

denotes the profinite completion of X. In other words, we can regard profinite reflections of
8-topoi as a generalization of profinite completions of spaces.

We can now state the main result of this section:

Theorem E.2.3.2. Let X be an 8-topos and let X lcc denote the full subcategory of X
spanned by the locally constant constructible objects. Then:

p1q The 8-category X lcc is a bounded 8-pretopos (see Definition A.7.4.1).

p2q The inclusion functor ι : X lcc Ñ X is an 8-pretopos morphism (Definition A.6.4.1) .

p3q The functor ι induces a geometric morphism of 8-topoi ι˚ : X Ñ ShvpX lccq.

p4q The geometric morphism ι˚ exhibits ShvpX lccq as a profinite reflection of X .

Theorem E.2.3.2 immediately implies the following stronger form of Proposition E.2.7.1:

Corollary E.2.3.3. Let f˚ : X Ñ Y be a geometric morphism of 8-topoi. Then f˚ induces
an equivalence of profinite spaces ShπpX q Ñ ShπpYq if and only if the pullback functor f˚

restricts to an equivalence of 8-categories Y lcc Ñ X lcc.
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Proof of Theorem E.2.3.2. Let X pf be the profinite reflection of X . There is an evident
geometric morphism u˚ : X Ñ X pf which induces an equivalence of profinite shapes.
Applying Proposition E.2.7.1, we deduce that the associated pullback functor u˚ induces
an equivalence of 8-categories pX pfqlcc Ñ X lcc. Since X pf is profinite, Proposition ??
implies that we can identify pX pfqlcc with the full subcategory of X pf spanned by the
truncated coherent objects, which is a bounded 8-pretopos (Example A.7.4.4). This proves
p1q. Assertion p2q follows from from Proposition E.2.6.1 and assertion p3q from p2q and
Proposition A.6.4.4. To prove p4q, we observe that there is a commutative diagram of
8-topoi and geometric morphisms

X

ι˚
��

u˚ // X pf

ιpf
˚
��

ShvpX lccq // ShvppX pfqlccq.

The lower horizontal map is an equivalence by virtue of Proposition E.2.7.1 and the right
vertical map is an equivalence by virtue of Corollary E.2.5.7 (since the 8-topos X pf is
profinite). Since u˚ exhibits X pf as a profinite reflection of X by construction, it follows
that the functor ι˚ also exhibits ShvpX lccq as a profinite reflection of X .

E.2.4 Profinite 8-Topoi

We now introduce a higher-categorical generalization of the theory of Stone spaces.

Theorem E.2.4.1. The profinite shape functor Shπ : 8T op Ñ S^π admits a fully faithful
right adjoint Ψπ : S^π Ñ8T op.

Proof. The functor Ψπ can be obtained by composing the fully faithful embedding S^π “
PropSπq ãÑ PropSq with the functor Ψ : PropSq Ñ 8T op. More concretely, if X is a
profinite space given as the limit of a filtered diagram of π-finite spaces tXαu, then ΨπpXq is
the limit of the diagram of 8-topoi tS{Xαu. It follows from Theorem ?? (and the observation
that Ψπp˚q » S is a final object of 8T op) that the functor Ψπ is fully faithful.

Warning E.2.4.2. In the statement of Theorem ??, the restriction to profinite spaces is
essential: the functor Ψ : PropSq Ñ 8T op is not fully faithful.

Definition E.2.4.3. We will say that an 8-topos X is profinite if it belongs to the essential
image of the functor Ψπ : S^π Ñ 8T op of Theorem ??. We let 8T oppf denote the full
subcategory of 8T op spanned by the profinite 8-topoi.

Remark E.2.4.4. An 8-topos X is profinite if and only if it can be obtained as a limit of
a filtered diagram tXαu in 8T op, where each Xα is equivalent to S{Xα for some π-finite
space Xα.
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Remark E.2.4.5. Every profinite 8-topos X is bounded and coherent (see Corollary
A.8.3.3).

Example E.2.4.6. Let X be a Stone space (Definition A.1.6.8). Then the 8-topos ShvpXq
is profinite. To prove this, we first use Theorem E.1.4.1 to write X as the inverse limit of a
filtered diagram of finite sets tXαu. Let X denote the profinite 8-topos lim

ÐÝ
S{Xα . Since the

collection of 0-localic 8-topoi is closed under small limits, we see that X is 0-localic. We
may therefore write X “ ShvpUq, where U is a locale (Corollary HTT.6.4.2.6 ). Unwinding
the definitions, we can identify X with the topological space of points of U . Since X is a
profinite 8-topos, it is locally coherent (Remark E.2.4.5), so that the hypercompletion X hyp

has enough points (Theorem A.4.0.5). It follows that U is a spatial locale, hence isomorphic
to the collection of open subsets of X. We therefore have an equivalence X » ShvpXq, so
that ShvpXq is profinite as desired.

Example E.2.4.7. Let G be a profinite group, and let BG P S^π be its (profinite) classifying
space (see §E.5). Arguing as in Example E.2.4.6, we see that the associated profinite 8-topos
ρpBGq is 1-localic, and that its topos of discrete objects can be identified with the category
of sets equipped with a continuous action of G. It is therefore natural to think of ρpBGq
as the 8-category of spaces equipped with a continuous action of G. Beware that this
is potentially misleading: the 8-topos ρpBGq need not be hypercomplete (see Warning
HTT.7.2.2.31 ), so that the fiber functor η˚ : ρpBGq Ñ S associated to a base point η P BG
(which “forgets the action of G”) need not be conservative.

Example E.2.4.8. Let κ be a field, and let κ denote a separable closure of κ. Then the
8-category Shvét

κ is 1-localic, and its underlying topos of discrete objects can be identified
with the category of sets equipped with a continuous action of the Galois group G “ Galpκ{κq.
It follows that Shvét

κ is a profinite 8-topos, associated the profinite space BG.

E.2.5 Locally Constant Constructible Sheaves

Every profinite 8-topos X is bounded and coherent (Remark E.2.4.5). However, the
converse is generally false. For example, if X is a coherent topological space, then ShvpXq is
a coherent 8-topos, but ShvpXq is profinite if and only if X is a Stone space. To guarantee
that an 8-topos X is profinite, it is not enough to assume the existence of a large class of
coherent objects of X : one needs to assume in addition that such objects are locally constant
in the following sense:

Definition E.2.5.1. Let X be an 8-topos, so that there is an essentially unique geometric
morphism q˚ : S Ñ X . We will say that an object X P X is locally constant constructible
if there exists a finite collection of objects tUi P X u1ďiďn which cover X , a collection of
π-finite spaces tYiu1ďiďn, and equivalences equivalences X ˆ Ui » q˚Yi ˆ Ui in the 8-topos
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X {Ui for 1 ď i ď n. We let X lcc denote the full subcategory of X spanned by the locally
constant constructible objects.

Remark E.2.5.2. Let X be an8-topos. Then the collection of locally constant constructible
objects of X is closed under finite coproducts.

Remark E.2.5.3. Let X and Y be 8-topoi, and let f˚ : X Ñ Y be a geometric morphism.
Then the pullback functor f˚ : Y Ñ X carries locally constant constructible objects of Y to
locally constant constructible objects of X .

Warning E.2.5.4. Let X be an 8-topos. Then the condition that an object X P X be
locally constant constructible is not local on X . For example, suppose that X “ S{Y , for
some Kan complex Y . Then we can identify objects X P X with functors χ : Y Ñ S. If χ
takes values in the full subcategory Sπ Ď S spanned by the π-finite spaces, then there exists
a covering of X by objects Uα such that each X ˆ Uα is a locally constant constructible
object of X {Uα (take the Uα to be the connected components of Y ). However, X is not
locally constant constructible unless the essential image of χ has only finitely many homotopy
equivalence classes of objects.

Proposition E.2.5.5. Let X be a coherent 8-topos and let X be an object of X . If X is
locally constant constructible, then X is coherent.

Proof. Fix an integer n ě 0; we will show that X is n-coherent. Let q˚ : S Ñ X be a
geometric morphism of 8-topoi. Choose a finite covering tUiu1ďiďm of X and equivalences
X ˆ Ui » f˚Yi ˆ Ui in X {Ui , where each Yi is a π-finite space. Choose an integer k such
that each Yi is k-truncated. Using Corollary A.2.1.5, can reduce to the problem of showing
that each of the maps X ˆ Ui » q˚Yi ˆ Ui Ñ Ui is relatively n-coherent. For this, it will
suffice to show that q˚Y P X is coherent for each Y P Sπ.

Choose an integer k such that Y is k-truncated; we proceed by induction on k. Since
the collection of coherent objects of X is closed under finite coproducts, we may assume
that Y is connected. Choose a base point y P Y , so that y induces an effective epimorphism
f : Ui Ñ f˚Y ˆ Ui in the 8-topos X {Ui . Note that the fiber product Ui ˆf˚YˆUi Ui can be
identified with q˚ptyuˆY tyuqˆUi, and is therefore an coherent object of X by our inductive
hypothesis. Using Corollary A.2.1.5, we deduce that the map f : 1 Ñ X is relatively
coherent, so that X is coherent by virtue of Proposition A.2.1.3.

For profinite 8-topoi, Proposition E.2.5.5 admits a converse:

Proposition E.2.5.6. Let X be a profinite 8-topos. Then an object X P X is locally
constant constructible if and only if it is coherent and n-truncated for some n " 0.
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Proof. The “only if” direction follows from Proposition E.2.5.5. To prove the converse, write
X as the limit of a filtered diagram of 8-topoi tXαu, where each Xα has the form S{Y
for some π-finite space Y . It follows from Proposition A.8.3.2 that the full subcategory
X coh
ă8 Ď X spanned by the truncated coherent objects can be written as a filtered colimit

of the subcategories X coh
αă8 Ď Xα. In particular, every truncated coherent object of X can

obtained as the pullback of a bounded coherent object of some Xα. Using Remark E.2.5.3,
we can replace X by Xα and thereby reduce to the case where X “ S{Y for some π-finite
space Y .

Unwinding the definitions, we see that a truncated coherent object X P X can be
identified with a π-finite space X equipped with a map f : X Ñ Y . Since Y is π-finite,
the set π0Y is finite. We can therefore choose a finite collection of points y1, . . . , yk P Y

which represent every connected component of Y , so that objects ty1u, . . . , tyku P S{Y form
a covering of the 8-topos S{Y . It now suffices to observe that each of the homotopy fibers
X ˆY tyiu P S{tyiu » S is π-finite.

Corollary E.2.5.7. Let X be a profinite 8-topos. Then:

p1q The 8-category X lcc is a bounded 8-pretopos (see Definition A.7.4.1).

p2q The inclusion functor ι : X lcc Ñ X is an 8-pretopos morphism (Definition A.6.4.1) .

p3q The functor ι induces an equivalence of 8-topoi ι˚ : X Ñ ShvpX lccq (where we regard
X lcc as equipped with the effective epimorphism topology of Definition A.6.2.4).

Proof. Since every profinite 8-topos X is bounded and coherent (Remark E.2.4.5), Theorem
A.7.5.3 supplies an equivalence of 8-categories X » ShvpX coh

ă8q. The desired result now
follows from Proposition E.2.5.6.

E.2.6 Closure Properties of X lcc

Our next goal is to show that the 8-category X lcc of locally constant constructible
sheaves on an 8-topos X behaves well even when X is not coherent.

Proposition E.2.6.1. Let X be an 8-topos. Then the full subcategory X lcc Ď X is an
8-pretopos. Moreover, the inclusion X lcc ãÑ X is a morphism of 8-pretopoi.

The proof will require some preliminaries.

Notation E.2.6.2. Let X be an 8-topos. For every pair of objects X,Y P X , the functor
Z ÞÑ MapX pZ ˆX,Y q carries small colimits in X to limits in the 8-category of spaces, and
is therefore representable by an object of X . We will denote this object by MapX pX,Y q.

Let q˚ : X Ñ S be the global sections functor (corepresented by a final object of
X ) and let q˚ : S Ñ X be a left adjoint to q˚. Then the functor q˚ preserves finite
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products. Consequently, for every pair of Kan complexes K and L, the canonical map
FunpK,Lq ˆK Ñ L determines a morphism q˚ FunpK,Lq ˆ q˚K Ñ q˚L, which is adjoint
to a map φK,L : q˚ FunpK,Lq Ñ MapX pq

˚K, q˚Lq.

Lemma E.2.6.3. Let X be an 8-topos, and let q˚ : S Ñ X and φK,L : q˚ FunpK,Lq Ñ
MapX pq

˚K, q˚Lq be defined as above. If K is π-finite and L is truncated, then φK,L is an
equivalence in X .

Proof. Since K is π-finite, there exists an integer n such that K is n-truncated. We proceed
by induction on n. If n “ 0, then K is a finite discrete set and both sides can be identified
with a product of finitely many copies of q˚L. To carry out the inductive step, assume that
n ą 0. Let U0 be a finite set consisting of one vertex from each connected component of
K, and let U‚ denote the Čech nerve of the map U0 Ñ K, so that we have a homotopy
equivalence |U‚| » K. Then we can identify φK,L with the composite map

q˚ lim
ÐÝ
rdsP∆

FunpUd, Lq
φ1
Ñ lim

ÐÝ
rdsP∆

q˚ FunpUd, Lq
φ2
Ñ lim

ÐÝ
rdsP∆

MapX pq
˚Ud, q

˚Lq.

The map φ2 is an equivalence by virtue of the inductive hypothesis. For each integer m, the
map φ1 fits into a commutative diagram

q˚ lim
ÐÝrdsP∆ FunpUd, Lq

φ1 //

��

lim
ÐÝrdsP∆ q˚ FunpUd, Lq

��
q˚ lim
ÐÝrdsP∆s,ďm

FunpUd, Lq // lim
ÐÝrdsP∆s,ďm

q˚ FunpUd, Lq.

Since L is truncated, the vertical maps are equivalences for m " 0, and the lower horizontal
map is an equivalence because q˚ is left-exact. It follows that φ1 is an equivalence, as
desired.

Remark E.2.6.4. The hypotheses of Lemma E.2.6.3 are satisfied whenever the Kan com-
plexes K and L are both π-finite. Note that in this case, the Kan complex FunpK,Lq is also
π-finite.

Remark E.2.6.5. Passing to global sections, we see that if K and L are π-finite Kan
complexes, then the canonical map β : MapX p1, q˚MapSpK,Lqq Ñ MapX pq

˚K, q˚Lq is
a homotopy equivalence. Note that the map β restricts to a homotopy equivalence β0 :
MapX p1, q˚MapS»pK,Lqq Ñ MapX»pq

˚K, q˚Lq.

It follows from Lemma E.2.6.3 that any finite diagram of locally constant constructible
objects of X can be “made constant” after passing to a finite covering of X :
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Proposition E.2.6.6. Let X be an 8-topos, let q˚ : S Ñ X be a geometric morphism,
let K be a finite simplicial set, and let ρ : K Ñ X lcc be a diagram. Then there exists
a finite collection of objects tUiu1ďiďn which cover X and a finite collection of diagrams
tρi : K Ñ Sπu1ďiďn such that, for 1 ď i ď n, there is an equivalence Uiˆ ρ » Uiˆ q

˚pρiq in
the 8-category FunpK,X {Uiq.

Proof. We proceed by induction on the number of nondegenerate simplices of K. If K “ H

there is nothing to prove. Otherwise, we can write K as a coproduct K0 >B∆n ∆n for some
simplicial subset K0 Ď K and some n ě 0. Using our inductive hypothesis, we may assume
(after passing to a finite covering of X if necessary) that ρ|K0 is homotopic to a composition
K0

ρ10
ÝÑ Sπ

q˚
ÝÑ X for some functor ρ10 : K0 Ñ Sπ; we wish to show that (after passing to

a further covering of X if necessary) that the functor ρ admits a similar factorization. If
n “ 0, this follows immediately from the definition of X lcc. Let us therefore assume that
n ą 0. Let L,L1 P Sπ denote the images under ρ10 of the initial and final vertices of B∆n, so
that ρ10 and ρ determine a commutative diagram of spaces

Sn´2 u0 //

��

MapSpL,L
1q

��
˚ //MapX pq

˚L, q˚L1q.

Using Lemma E.2.6.3, we can identify this diagram with a global section of the object

fibpq˚MapSpL,L
1q

δ
ÝÑ q˚MapSpL,L

1qS
n´2
q » q˚T,

where T » MapSpL,L
1qˆMapSpL,L

1qS
n´2 tu0u is the space of nullhomotopies of u0. To compete

the proof, it suffices to observe that, after passing to a finite covering of X , we can assume
that this global section is constant: that is, it is homotopic to the global section determined
by some point t P T . This follows from the observation that π0T is finite.

Corollary E.2.6.7. Let X be an 8-topos. Then the 8-pretopos X lcc is Boolean (Definition
A.6.3.8): that is, for every object X P X lcc, the distributive lattice SubpXq of subobjects of
X (in the 8-category X lcc) is a Boolean algebra.

Proof. Let i : U ãÑ X be a p´1q-truncated morphism in X lcc; we wish to show that U
admits a complement in the distributive lattice SubpXq. Choose a geometric morphism
q˚ : S Ñ X . Using Proposition E.2.6.6, we can assume (after passing to a finite covering
of X if necessary) that i “ q˚pi0q for some map of π-finite spaces i0 : U0 Ñ X0. Replacing
U0 by its essential image in X0, we may assume that X0 decomposes as a disjoint union
U0 > V0 for some π-finite space V0. We now observe that V “ q˚V0 is a complement of U in
SubpXq.
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Corollary E.2.6.8. Let X be an 8-topos. Then the full subcategory X lcc Ď X is closed
under finite limits.

Proof. Let K be a finite simplicial set and let p : K Ñ X lcc be a diagram; we wish to show
that lim

ÐÝ
ppq is locally constant constructible. Using Proposition E.2.6.6, we may assume

(after passing to a finite cover of X ) that the diagram p factors as a composition

K
p0
ÝÑ Sπ ãÑ S q˚

ÝÑ X ,

where q˚ is a geometric morphism. In this case, the left exactness of q˚ implies that
lim
ÐÝ
ppq » q˚plim

ÐÝ
pp0qq is the image under q˚ of a π-finite space.

Corollary E.2.6.9. Let X be an 8-topos and let X‚ be a groupoid object of X . If each
Xk P X is locally constant constructible, then then the geometric realization |X‚| P X is
locally constant constructible.

Proof. Choose an integer n " 0 so that X0 and X1 are n-truncated. It follows that each Xk

is n-truncated: that is, we can identify X‚ with a groupoid object of τďnX . Let K denote
the pn` 2q-skeleton of Np∆op

ďn`3q, so that the simplicial object X‚ restricts to a diagram
p : K Ñ X lcc. Since the simplicial set K is finite, we may assume (after passing to a finite
covering of X if necessary) that p factors as a composition

K
p0
ÝÑ Sπ ãÑ S q˚

ÝÑ X

where q˚ is a geometric morphism. Replacing p0 by its composition with the truncation
functor τďn : Sπ Ñ Sπ if necessary, we may assume that p0 takes values in the full subcategory
of Sπ spanned by the n-truncated objects. Since this full subcategory is equivalent to an
n-category, the map p0 extends to a functor p0 : ∆op

ďn`3 Ñ Sπ. Since X‚ is a groupoid
object, it follows that either the 8-topos X is a contractible Kan complex (in which case
there is nothing to prove) or the diagram p0 is an pn ` 3q-skeletal category object of Sπ.
In the latter case, Theorem A.8.2.3 allows us to extend p0 to a category object X 1‚ of Sπ,
which is easily seen to be a groupoid object. Since Sπ is an 8-pretopos (Remark E.0.7.9),
the geometric realization |X 1‚| is also π-finite. Note that the simplicial objects q˚X 1‚ and X‚
have equivalent pn` 3q-skeleta and are therefore equivalent (since they are category objects
of τďnX ; see Theorem A.8.2.3), so that |X‚| » |q˚X 1‚| » q˚|X 1‚| lies in the essential image
of q˚|Sπ .

Proof of Proposition E.2.6.1. Let X be an 8-topos. Then the full subcategory X lcc Ď X is
closed under the formation of finite coproducts (Remark E.2.5.2), finite limits (Corollary
E.2.6.8), and geometric realizations of groupoid objects (Corollary E.2.6.9). It follows that
X lcc is an 8-pretopos and that the inclusion X lcc ãÑ X is a morphism of 8-pretopoi (see
Remark A.6.1.4).
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E.2.7 Profinite Shape and Locally Constant Sheaves

Our next goal is to show that the process of profinite completion does not lose any
information about locally constant constructible sheaves.

Proposition E.2.7.1. Let f˚ : X Ñ Y be a geometric morphism of 8-topoi. If f˚ induces
an equivalence of profinite shapes ShπpX q Ñ ShπpYq, then the pullback functor f˚ induces
an equivalence Y lcc Ñ X lcc.

In order to prove Proposition E.2.7.1, it will be convenient to introduce a variant of
Definition E.2.5.1.

Definition E.2.7.2. Let X be an 8-topos, let q˚ : S Ñ X be a geometric morphism, let K
be a full subcategory of S, and let X P X be an object. We will say that X is K-constructible
if there exists a finite collection of objects tUi P X u1ďiďn which cover X , a finite collection
of objects Yi P K, and equivalences X ˆ Ui » pq˚Yiq ˆ Ui in X {Ui for 1 ď i ď n.

Remark E.2.7.3. In the situation of Definition E.2.7.2, suppose that K is spanned by
finitely many Kan complexes tY1, . . . , Ymu. In this case, an object X P X is K-constructible if
and only if there exists a collection of objects tUα P X uαPA such that >Uα Ñ 1 is an effective
epimorphism, and equivalences X ˆUα » q˚Yipαq ˆUα for some function i : AÑ t1, . . . ,mu
(if this condition is satisfied, we can always arrange that A “ t1, . . . ,mu by replacing the
objects tYαu by the finite collection t>ipαq“jYαu1ďjďm). Consequently, the condition that an
object X P X be K-constructible can be tested locally on X (in contrast with Warning ??).

Remark E.2.7.4. Let X be an 8-topos. Then an object X P X is locally constant
constructible (in the sense of Definition E.2.5.1) if and only if it is Sπ-constructible (in the
sense of Definition E.2.7.2)

Remark E.2.7.5. Let f˚ : X Ñ Y be a geometric morphism of 8-topoi and let K Ď S be a
full subcategory. Then the functor f˚ carries K-constructible objects of X to K-constructible
objects of Y.

Example E.2.7.6. Let K be a full subcategory of S which is spanned by finitely many Kan
complexes tY1, . . . , Ymu. Let ιK : K» ãÑ S denote the inclusion map, which we regard as
an object of the 8-topos FunpK»,Sq. Then ιK is K-constructible: for 1 ď i ď m, we have
ιKˆUi » pq

˚YiqˆUi, where q˚ : S Ñ FunpK»,Sq is the diagonal inclusion and Ui : K» Ñ S
denotes the functor represented by Yi P K».

We will need the following result:

Proposition E.2.7.7. Let K be a full subcategory of S which is spanned by finitely many
π-finite spaces and let let ι : K» ãÑ S be the inclusion map. For any 8-topos X , evaluation
on ι induces a fully faithful embedding e : Fun˚pFunpK»,Sq,X q Ñ X» whose essential image
is the full subcategory of X spanned by the K-constructible objects.
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Proof. We first show that e is fully faithful. Suppose we are given geometric morphisms
f˚, g˚ : FunpK»,Sq Ñ X ; we wish to show that the functor e induces a homotopy equivalence

θ : MapFun˚pFunpK»,Sq,X qpf
˚, g˚q Ñ MapX»pf

˚pιq, g˚pιqq.

Let us identify the 8-topos FunpK»,Sq with S{K» , so that Corollary HTT.6.3.5.6 supplies
an equivalence of 8-categories Fun˚pFunpK»,Sq,X q » MapX p1, q˚K»q, where q˚ : S Ñ X
is a geometric morphism and 1 denotes a final object of X . Under this identification, the
geometric morphisms f˚ and g˚ correspond to maps f, g : 1X Ñ q˚K». Since the assertion
that θ is a homotopy equivalence can be tested locally on X , we may assume (after passing
to a covering of X if necessary) that the maps f and g are constant: that is, that they
are obtained by applying the functor q˚ to inclusions tKu ãÑ K» and tLu ãÑ K» for some
π-finite Kan complexes K and L. In this case, the map θ can be identified with the homotopy
equivalence MapX p1,MapS»pK,Lqq Ñ MapX»pq

˚L, q˚Kq of Remark E.2.6.5.
It remains to prove that the functor e is essentially surjective. Let X be a K-constructible

object of X ; we wish to show that X belongs to the essential image of e. The first part of
the proof shows that this assertion is local on X (see Remark E.2.7.3). We may therefore
assume without loss of generality that X “ q˚K for some Kan complex K P K, in which
case the result is obvious.

Proof of Proposition E.2.7.1. Let f˚ : X Ñ Y be a geometric morphism of8-topoi. Suppose
that f˚ induces an equivalence of profinite spaces ShπpX q Ñ ShπpYq. We wish to prove
that the pullback functor f˚ : Y lcc Ñ X lcc is an equivalence of 8-categories. Note that we
can regard f˚ : Y lcc Ñ X lcc can be regarded as a morphism of 8-pretopoi (see Proposition
E.2.6.1) in which every object is truncated. To show that f˚ is an equivalence, it will suffice
to show that it satisfies conditions paq and pbq of Proposition A.9.2.1:

paq We will show that the functor f˚ : Y lcc Ñ X lcc is essentially surjective. Fix an object
X P X lcc. Then we can choose a full subcategory K Ď S spanned by finitely many
π-finite Kan complexes such that X is K-constructible. Let ι P FunpK»,Sq denote the
inclusion functor. It follows from Proposition E.2.7.7 that there exists an (essentially
unique) geometric morphism g˚ : X Ñ FunpK»,Sq such that X » g˚pιq. Since K» is a
π-finite Kan complex, our assumption that Shπpf˚q is an equivalence guarantees that
the geometric morphism g˚ is equivalent to a composition X f˚

ÝÑ Y
g1˚
ÝÑ FunpK»,Sq.

It follows that X » g˚pιq » f˚pg1˚ιq P f˚ Y lcc.

pbq Let φ : U Ñ Y be a morphsim in Y lcc such that f˚pφq is an equivalence; we wish to
show that φ is an equivalence. Using Corollary E.2.6.7, we see that Y decomposes as
a coproduct U > V for some auxiliary object V P Y lcc. Since f˚pφq is an equivalence,
the object f˚pV q is initial in X . Set V 1 “ τď´1V . Then V 1 is a p´1q-truncated object
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of Y lcc. Applying Corollary E.2.6.7 again, we deduce that V 1 is complemented: that is,
the final object 1 of Y decomposes as a coproduct V 1>W . Let T denote the topological
space tv, wu with the discrete topology, so that the decomposition 1 » V 1 >W is
classified by a geometric morphism g˚ : Y Ñ ShvpT q. Our assumption f˚V 1 » H

guarantees that the composite map X f˚
ÝÑ Y g˚

ÝÑ ShvpT q factors through the inclusion
i˚ : Shvptwuq ãÑ ShvpT q. Since the 8-topoi ShvpT q and Shvptwuq » S are profinite,
it follows from our assumption that Shπpf˚q is an equivalence that the geometric
morphism g˚ also factors through i˚. In other words, the object V 1 P Y is initial, so
that V P Y is also initial and the morphism φ : U Ñ U > V » Y is an equivalence, as
desired.

E.3 8-Categorical Stone Duality

The theory of Stone duality (Theorems A.1.6.11 and E.1.4.1) supplies equivalences
between the following categories:

paq The category PropSetfinq of profinite sets.

pbq The category T opSt of Stone spaces (a full subcategory of the category T op of
topological spaces).

pcq The opposite of the category BAlg of Boolean algebras (a full subcategory of the
category Lat of distributive lattices).

Theorem E.2.4.1 supplies an equivalence between the 8-category S^π of profinite spaces
and the 8-category 8T oppf of profinite 8-topoi, which we can regard as an 8-categorical
generalization of the equivalence paq ô pbq. Our goal in this section is to establish an 8-
categorical version of the equivalence pbq ô pcq. The relevant analogies can be summarized
as follows:
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Classical Stone Duality 8-Categorical Stone Duality

Finite Set π-Finite Space

Profinite Set Profinite Space

Topological Space 8-Topos

Coherent Topological Space Bounded Coherent 8-Topos

Stone Space Profinite 8-Topos

Distributive Lattice Bounded 8-Pretopos

Remark E.3.0.8. In the preceding table of analogies, each of the mathematical concepts
appearing on the right can be regarded as a generalization of the classical concept which
appears on the left. In particular:

• Every finite set S can be regarded as a π-finite space, by equipping S with the discrete
topology.

• Every profinite set can be regarded as a profinite space (Remark E.4.1.4).

• Every topological space X determines an8-topos ShvpXq. Moreover, this construction
does not lose any information if X is sober (Proposition 1.5.3.5). If X is a Stone space,
then ShvpXq is a profinite 8-topos; moreover, the diagram of 8-categories

PropSetfinq //

��

T op

Shv
��

S^π // 8T op

commutes up to equivalence, where the upper horizontal map is given by classical
Stone duality and the lower horizontal map is the fully faithful embedding of Theorem
E.2.4.1 (see Example E.2.4.6).

To complete the picture, we need to determine the 8-categorical analogue of a Boolean
algebra. More precisely, we need to answer the following:

Question E.3.0.9. Let C be a bounded8-pretopos. Under what conditions is the associated
8-topos ShvpCq profinite?
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We will supply three answers to Question E.3.0.9:

piq The 8-topos ShvpCq is profinite if and only if every truncated coherent object of
ShvpCq is locally constant constructible (Proposition E.3.1.1).

piiq The 8-topos ShvpCq is profinite if and only if C is Boolean and of finite breadth
(Theorem E.3.2.8).

piiiq The8-topos ShvpCq is profinite if and only if the8-category of points Fun˚pShvpCq,Sq »
FunprepC,Sq is a Kan complex (Theorem E.3.4.1).

E.3.1 Profinite 8-Topoi

Our first characterization of the class of profinite 8-topoi is an easy consequence of
Theorem E.2.3.2:

Proposition E.3.1.1. Let X be an 8-topos. Then X is profinite if and only if it satisfies
the following conditions:

paq The 8-topos X is coherent.

pbq The 8-topos X is bounded.

pcq Every truncated coherent object of X is locally constant constructible.

Proof. The necessity was established by Proposition ??. For sufficiency, we note that
conditions paq and pbq imply that the canonical map u˚ : X Ñ ShvpX coh

ă8q is an equivalence
(Theorem A.7.5.3). If condition pcq is satisfied, then Theorem E.2.3.2 implies that the
geometric morphism u˚ also exhibits ShvpX coh

ă8q as a profinite reflection of X , so that
X » ShvpX coh

ă8q is profinite.

Corollary E.3.1.2. Let X and Y be coherent 8-topoi, and let f˚ : Y Ñ X be a geometric
morphism. If the 8-topos Y is profinite, then the functor f˚ carries coherent objects of Y to
coherent objects of X .

Proof. Let Y P Y be a coherent object; we wish to show that f˚Y P X is coherent. In
other words, we wish to show that f˚Y is n-coherent for each integer n ě 0. By virtue
of Proposition A.2.4.1, it will suffice to show that τďn`1f

˚Y » f˚pτďn`1Y q is n-coherent.
Using Corollary A.2.4.4, we can replace Y by τďn`1Y and thereby reduce to the case where
Y is truncated. In this case, our assumption that Y is profinite guarantees that Y is locally
constant constructible (Proposition ??), so that f˚Y P X is locally constant constructible
(Remark E.2.5.3) and therefore a coherent object of X by virtue of Proposition E.2.5.5.
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Remark E.3.1.3. It follows from Corollary E.3.1.2 that the 8-category 8T oppf of profinite
8-topoi can be regarded as a full subcategory of both the 8-category 8T op (whose
morphisms are all geometric morphisms) and the 8-category 8T opcoh of Construction
A.7.5.2 (where we require pullback functors to preserve coherent objects). This can be
regarded as an 8-categorical analogue of Remark A.1.6.7.

Proposition E.3.1.4. Let X and Y be 8-topoi. If X is profinite, then the 8-category
Fun˚pX ,Yq of geometric morphisms from X to Y is an (essentially small) Kan complex.

Proof. Let us regard Y as fixed. The collection of those 8-topoi X for which Fun˚pX ,Yq is
an essentially small Kan complex is closed under small limits in 8T op. We may therefore
assume without loss of generality that X “ S{X for some π-finite space X (Remark E.2.4.4),
in which case the desired result follows from Corollary HTT.6.3.5.6 .

Example E.3.1.5. Taking Y “ S in the statement of Proposition E.3.1.4, we deduce that
for any profinite 8-topos X , the 8-category Fun˚pX ,Sq is a Kan complex. If X “ ΨπpXq

is the profinite 8-topos associated to a profinite space X, then this Kan complex can be
identified with

Fun˚pX ,Sq » Map8T oppS,ΨπpXqq » MapS^π p˚, Xq » MatpXq.

Theorem E.3.1.6 (Whitehead’s Theorem for Profinite Spaces). The materialization functor
Mat : S^π Ñ S is conservative. That is, if f : X Ñ Y is a map of profinite spaces, then the
following conditions are equivalent:

p1q The map f is an equivalence of profinite spaces.

p2q The map f induces a homotopy equivalence of spaces MatpXq Ñ MatpY q.

Proof. The implication p1q ñ p2q is obvious. Conversely, suppose that Matpfq : MatpXq Ñ
MatpY q is a homotopy equivalence. Let X and Y denote the profinite8-topoi associated to X
and Y , respectively, so that f induces a geometric morphism f˚ : Y Ñ X . Combining p2q with
Example E.3.1.5, we deduce that f˚ induces an equivalence of 8-categories Fun˚pX ,Sq Ñ
Fun˚pY,Sq. Because X and Y are bounded coherent 8-topoi (Remark ??) and the functor
f˚ preserves coherent objects (Corollary E.3.1.2), it follows from conceptual completeness
(Theorem A.9.0.6) that f˚ is an equivalence of 8-topoi. Since from a profinite space to
the associated profinite 8-topos is fully faithful (Theorem E.2.4.1), it follows that f is an
equivalence of profinite spaces.

E.3.2 8-Pretopoi of Finite Breadth

Our next goal is to give a more intrinsic formulation of the criterion of Proposition
E.3.1.1. First, we need to introduce some terminology.
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Definition E.3.2.1. Let C be an 8-pretopos containing an object X and suppose we are
given integers 0 ď i ă j ď n. We let δi,j : Xn Ñ Xn`1 denote the morphism in C induced
by the map of finite sets

t0 ă 1 ă ¨ ¨ ¨ ă nu Ñ t1 ă ¨ ¨ ¨ ă nu m ÞÑ

$

’

’

&

’

’

%

m` 1 if m ă i

j if m “ i

m if m ą i.

For fixed n ě 0, we will say that X has breadth ď n if the maps tδi,j : Xn Ñ

Xn`1u0ďiăjďn determine a covering for the effective epimorphism topology (Definition
A.6.2.4). More generally, we will say that a morphism u : X Ñ Y in C has breadth ď n if it
exhibits X as an object of breadth ď n in the 8-pretopos C{Y . We will say that C has finite
breadth if every morphism in C has breadth ď n for some integer n.

Example E.3.2.2. Let C be an 8-pretopos. A morphism u : X Ñ Y has breadth ď 0 if
and only if X is an initial object of C.

Example E.3.2.3. Let C be an 8-pretopos. A morphism u : X Ñ Y has breadth ď 1 if
and only if the diagonal map δ : X Ñ X ˆY X is an effective epimorphism.

Example E.3.2.4. A morphism u : X Ñ Y in S has breadth ď n if and only if, for every
point y P Y , the homotopy fiber X ˆY tyu has at most n path components.

Remark E.3.2.5. Let C be an 8-pretopos and let n ě 0 be an integer. Then an object
C P C has breadth ď n if and only if the 0-truncation τď0C has breadth ď n.

Remark E.3.2.6. Let C be an 8-topos and let m ě 0 be an integer. If u : X Ñ Y is a
morphism in C If an object C P C has breadth ď m, then it also has breadth ď n whenever
n ą m.

Remark E.3.2.7. Let f˚ : C Ñ D be a morphism of 8-pretopoi. If u : X Ñ Y is a
morphism in C having breadth ď n, then f˚puq : f˚X Ñ f˚Y is a morphism in D having
breadth ď n.

Definition E.3.2.1 was motivated by the following:

Theorem E.3.2.8. Let C be a bounded 8-pretopos and let X “ ShvpCq be the corresponding
8-topos. The following conditions are equivalent:

p1q Every truncated coherent object of X is locally constant constructible.

p2q The 8-topos X is profinite.

p3q The 8-pretopos C is Boolean (Definition A.6.3.8) and of finite breadth.
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Corollary E.3.2.9. Let X be an 8-topos. Then X is profinite if and only if has the form
ShvpCq, where C is an 8-pretopos which is bounded, Boolean, and of finite breadth.

Proof. Combine Proposition E.3.1.1 with Theorem E.3.2.8.

Proof of Theorem E.3.2.8. The equivalence of p1q ô p2q follows from Proposition E.3.1.1.
We next show that p1q implies p3q. Note that if p1q is satisfied, then the Yoneda embedding
C ãÑ ShvpCq » X induces an equivalence from C to the full subcategory X lcc Ď X , so that C
is Boolean by virtue of Corollary E.2.6.7. To complete the proof of p3q, it will suffice to show
that every morphism u : X Ñ Y in X lcc has finite breadth. Let q˚ : S Ñ X be a geometric
morphism. Using Proposition E.2.6.6, we can assume (after passing to a finite covering of
X if necessary) that u “ q˚pu0q for some morphism u0 : X0 Ñ Y0 in Sπ. It will therefore
suffice to show that u0 has finite breadth (Remark E.3.2.7), which follows immediately from
Example E.3.2.4.

We now complete the proof by showing that p3q ñ p1q. Assume that p3q is satisfied,
let j : C Ñ ShvpCq “ X be the Yoneda embedding, and let C0 “ j´1pX lccq Ď C be the full
subcategory of C spanned by those object X P C for which jpXq P X is locally constant
constructible. We wish to prove that C0 “ C. Since C0 every object of C is truncated, this is
an immediate consequence of the following:

p˚mq Let u : X Ñ Y be an m-truncated morphism in C. Then jpXq P ShvpCq{jpY q is locally
constant constructible.

The proof of p˚mq proceeds by induction on m. If m “ ´2, then u : X Ñ Y is an
equivalence and there is nothing to prove. Let us therefore assume that m ą ´2. It follows
from assumption p3q that the morphism u has breadth ď k for some integer k " 0; we
proceed by induction on k. We first apply Proposition A.6.2.1 to factor u as a composition
X

u1
ÝÑ Y0

u2
ÝÑ Y where u1 is an effective epimorphism and u2 is p´1q-truncated. Since C is

Boolean, the morphism u2 determines a splitting Y » Y0 > Y1. It follows that jpY0q is a
summand of jpY q, so that jpXq is locally constant constructible as an object of ShvpCq{jpY q if
and only if it is locally constant constructible as an object of ShvpCq{jpY0q. We may therefore
replace Y by Y0 and thereby reduce to the case where u is an effective epimorphism in C.
In this case, jpuq is an effective epimorphism in ShvpCq{jpY q, so that jpXq P ShvpCq{jpY q is
locally constant constructible if and only if jpX ˆY Xq P ShvpCq{jpXq is locally constant
constructible. We may therefore replace u by the projection map uX : X ˆY X Ñ X and
thereby reduce to the case where u admits a section s : Y Ñ X.

Applying Proposition A.6.2.1, we see that the map s factors as a composition Y s1
ÝÑ U

s2
ÝÑ

X, where s1 is an effective epimorphism and s2 is p´1q-truncated. Since C is Boolean, the map
s2 determines a decomposition X » U > V . Because u has breadth ď k and the restriction
u|U : U Ñ Y admits a section s1, the map u|V : V Ñ Y has breadth ă k. It follows from our
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inductive hypothesis that jpV q P ShvpCq{jpY q is locally constant constructible. Consequently,
to show that jpXq » jpUq > jpV q P ShvpCq{jpY q is locally constant constructible, it will
suffice to show that jpUq is locally constant constructible.

Let Z‚ denote the groupoid object of C{Y given by the Čech nerve of the morphism
s1 : Y Ñ U . Since U is a subobject of X, it is m-truncated as an object of C{Y . It follows
that Za P C{Y is pm´1q-truncated for each a ě 0. Applying our inductive hypothesis p˚m´1q,
we deduce that jpZaq is a locally constant constructible object of ShvpCq{jpY q. Applying
Corollary E.2.6.9, we conclude that jpUq » jp|Z‚|q “ |jpZ‚q| P ShvpCq{jpY q is also locally
constant constructible.

E.3.3 Digression: Ultraproducts

Before giving our final characterization of the class of profinite 8-topoi, we need a few
facts about ultraproducts and ultrapowers in the 8-categorical setting.

Definition E.3.3.1. Let S be a set. We let P pSq denote the power set of S: that is, the
collection of all subsets of S. An ultrafilter on S is a subset U Ď P pSq with the following
properties:

paq The subset U Ď P pSq is a filter: that is, it is closed upward and stable under finite
intersections.

pbq For every subset I Ď S, exactly one of the sets I and S ´ I belongs to U .

Example E.3.3.2. Let S be a set containing an element s. Then the set Us “ tI P P pSq :
s P Iu Ď P pSq is an ultrafilter on S. We say that an ultrafilter U Ď P pSq is principal if it
has the form Us for some element s P S.

Remark E.3.3.3. Let S be a set. A subset U Ď P pSq is an ultrafilter if and only if its
complement P pSq ´ U is a prime ideal, in the sense of Definition A.1.2.1. Consequently, we
can identify the set of ultrafilters on S with the spectrum X “ SpecP pSq of the Boolean
algebra P pSq. For each s P S, the principal ultrafilter Us is an isolated point of X, and the
construction s ÞÑ Us determines a homeomorphism from S to a subspace of X. For this
reason, X is often referred to as the Stone-Čech compactification of X. Note that if S is
infinite, then it is not compact when endowed with the discrete topology, so there must exist
a nonprincipal ultrafilter on S.

Construction E.3.3.4 (Ultraproducts). Let E be an 8-category which admits products
and filtered colimits. Suppose we are given a collection of objects tEsusPS of E which is
indexed by a set S. This collection of objects determines a functor F : P pSqop Ñ E , given
on objects by the formula F pIq “

ś

sPI Es (more precisely, we can regard the collection
of objects tEsusPS as F0 : S Ñ E , where we regard S as a category having only identity
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morphisms, and we define F : P pSqop Ñ E to be a right Kan extension of F0). If U Ď P pSq

is an ultrafilter, then we can regard Uop as a direct subset of the partially ordered set P pSqop.
We let

ś

U Es denote the colimit lim
ÝÑIPUop F pIq. We will refer to

ś

U Es as the ultraproduct
of tEsusPS with respect to U .

Example E.3.3.5. Let tEsusPS be a collection of sets indexed by a set S, and suppose that
each Es is nonempty. For every ultrafilter U Ď P pSq, the ultraproduct

ś

U Es (formed in
the category Set of sets) can be identified with the quotient of the product

ś

sPS Es by the
equivalence relation ” defined as follows:

txsusPS ” tysusPS if ts P S : xs “ ysu P U .

Example E.3.3.6. Let E be an 8-category which admits products and filtered colimits,
let tEsusPS be a collection of objects of E indexed by a set S, and let U t be the principal
ultrafilter determined by an element t P S. Then the inclusion tttuu ãÑ U is right cofinal, so
the ultraproduct

ś

Ut Es can be identified with Et.

Remark E.3.3.7. Let E and E 1 be 8-categories which admit products and filtered colimits.
If F : E Ñ E 1 is any functor which preserves products and filtered colimits, then F commutes
with ultraproducts: in other words, for every collection of objects tEsusPS of E and every
ultrafilter U on S, we have a canonical equivalence F p

ś

U Esq »
ś

U F pEsq in the 8-category
E 1.

Note that Construction E.3.3.4 is functorial: if we fix the 8-category E , the set S, and
the ultrafilter U Ď P pSq, then the construction tEsusPS ÞÑ

ś

U Es determines a functor
ś

U : ES Ñ E . We will need the following elementary properties of this functor:

Proposition E.3.3.8. Let S be a set and let U Ď P pSq be an ultrafilter. Then the ultra-
product functor

ś

U : SS Ñ S is a morphism of 8-pretopoi. In other words, the functor
ś

U
preserves finite limits, finite coproducts, and effective epimorphisms.

Proof. For each I Ď S, let FI : SS Ñ S denote the functor given by FIptXsusPSq “
ś

sPI Xs.
Each of the functors FI is left exact, and

ś

U can be obtained as a filtered colimit lim
ÝÑIPUop FI .

Since filtered colimits in S are left exact, it follows that the functor
ś

U is left exact. Each of
the functors FI preserves effective epimorphisms (since the collection of effective epimorphisms
in S is closed under small products), so the functor

ś

U also preserves effective epimorphisms
(since the collection of effective epimorphisms in S is closed under filtered colimits). We will
complete the proof by showing that the functor

ś

U preserves finite coproducts. We first
observe that

ś

U preserves initial objects: in fact, the functor FI : SS Ñ S preserves initial
objects for all nonempty subsets I Ď P pSq, and therefore for all subsets I which belong to
the ultrafilter U (note that the empty set H P P pSq is not contained in U).
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To complete the proof, it will suffice to show that the functor
ś

U preserves pairwise
coproducts. Let tXsusPS and tYsusPS be objects of SS . Since the functor

ś

U is left exact,
the natural maps

ź

U
Xs

i
ÝÑ

ź

U
pXs > Ysq

j
ÐÝ

ź

U
Ys

are p´1q-truncated, and we have
ź

U
Xs ˆ

ś

U pXs>Ysq

ź

U
Ys »

ź

U
pXs ˆXs>Ys Ysq »

ź

U
H » H.

It follows that the natural map ρ : p
ś

U Xsq > p
ś

U Ysq Ñ
ś

U pXs > Ysq is p´1q-truncated.
To complete the proof, it will suffice to show that ρ is surjective on connected components.
Note that every path component of

ś

U pXs > Ysq belongs to the image of the natural map
φI :

ś

sPIpXs > Ysq Ñ
ś

U pXs > Ysq for some I P U . Decomposing the domain of φI as a
coproduct >I“I0>I1p

ś

sPI0
Xsqˆp

ś

sPI1
Ysq, we see that every path component of

ś

U pXs>Ysq

belongs to the essential image of the natural map

φI0,I1 : p
ź

sPI0

Xsq ˆ p
ź

sPI1

Ysq Ñ
ź

U
pXs > Ysq

for some pair of disjoint subsets I0, I1 P P pSq satisfying I0 > I1 P U . Since U is an ultrafilter,
either I0 or I1 belongs to U . We conclude by observing that if I0 P U , then φI0,I1 factors
through the map i; if I1 belongs to U , then the map φI0,I1 factors through j.

Corollary E.3.3.9 ( Los’s Theorem). Let C be an 8-pretopos and let FunprepC,Sq be the
full subcategory of FunpC,Sq spanned by those functors which preserve finite limits, finite
coproducts, and effective epimorphisms (Definition A.6.4.1). Then the FunprepC,Sq is
closed under the formation of ultraproducts. That is, for every set S and every ultrafilter
U Ď P pSq, the ultraproduct functor

ś

U : FunpC,SqS Ñ FunpC,Sq carries FunprepC,SqS into
FunprepC,Sq.

Let E be an 8-category which admits products and filtered colimits, and let S be a set
equipped with an ultrafilter U Ď P pSq. Composing the ultraproduct functor

ś

U : ES Ñ E
of Construction E.3.3.4 with the diagonal map δ : E Ñ ES , we obtain a functor E Ñ E ,
which we will denote by E ÞÑ ES{U . For each object E P E , we will refer to ES{U as the
ultrapower of E by U .

Remark E.3.3.10. Let E and U Ď P pSq be as above. Unwinding the definitions, we see
that the ultrapower ES{U can be described as the filtered colimit lim

ÝÑIPUop F pIq, where
F : P pSqop Ñ E is the right Kan extension of the constant functor F0 : S Ñ E taking the
value E. Let F 1 : P pSqop Ñ E denote the constant functor with the value E. Since F is a right
Kan extension of F |S , the equality F 1|S “ F |S extends uniquely to a natural transformation
F 1 Ñ F , which induces a map γ : E » lim

ÝÑIPUop F
1pIq Ñ lim

ÝÑIPUop F pIq “ ES{U .
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E.3.4 Profiniteness and Points

We now combine the theory of ultraproducts with the criterion of Theorem E.3.2.8 to
establish the following profiniteness criterion:

Theorem E.3.4.1. Let X be an 8-topos. Then X is profinite if and only if it satisfies the
following conditions:

paq The 8-topos X is coherent.

pbq The 8-topos X is bounded.

pcq The 8-category Fun˚pX ,Sq of points of X is a Kan complex.

Note that the necessity of conditions paq, pbq, and pcq follows from Remark E.2.4.5 and
Proposition E.3.1.4. By virtue of Theorem A.7.5.3 and Remark A.9.1.4, the converse is
equivalent to the following:

Proposition E.3.4.2. Let C be a bounded 8-pretopos. If the 8-category Fun˚pC,Sq is a
Kan complex, then the 8-topos ShvpCq is profinite.

Proof. Let C be a bounded8-pretopos having the property that Fun˚pC,Sq is a Kan complex.
We wish to show that the 8-topos ShvpCq is profinite. By virtue of Theorem E.3.2.8, it
will suffice to show that C is Boolean and of finite breadth. We begin by showing that
C is Boolean. Fix an object X P C and a subobject U P SubpXq; we wish to show that
U is complemented. Let j : C Ñ ShvpCq denote the Yoneda embedding and let V be the
largest subobject of jpXq which is disjoint from jpUq. Note that if the canonical map
jpUq > V Ñ jpXq is an equivalence, then V is a truncated coherent object of ShvpCq and is
therefore of the form jpV0q for some V0 P SubpXq complementary to U . Assume otherwise.
Applying Theorem A.4.0.5 to the hypercompletion ShvpCqhyp, we deduce that there exists a
point η˚ : ShvpCqhyp Ñ S and a point x P η˚jpXq which cannot be lifted to either η˚jpUq or
η˚V . Set M “ η˚ ˝ j, and view M as an object of FunprepC,Sq Ď PropCqop, so that we can
view x as a morphism M Ñ X in PropCq. Write M as the limit of a filtered diagram tMαu in
C{X . Note that if U ˆXMα were initial in C for any index α P A, then the map x : Mα Ñ X

would factor through some subobject V0 P SubpXq disjoint from U , contradicting our
assumption that x cannot be lifted to V . It follows that U ˆX M is not initial in PropCqcc

{M .
Applying Theorem A.4.0.5 again, we deduce that the 8-topos ShvpPropCqcc

{M q
hyp has a point

µ˚ for which the composite map PropCqcc
{M ãÑ ShvpPropCqcc

{M q
hyp µ˚

ÝÝÑ S carries U ˆX M to
a nonempty space. Unwinding the definitions, we can identify this composite map with
an object N P PropPropCqcc

{M q » PropCq{M for which the composite map N
π
ÝÑ M

x
ÝÑ X

factor through U . Since the map x itself does not factor through U , the map π cannot
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be an equivalence, which contradicts our assumption that Fun˚pC,Sq » PropCqop
˝ is a Kan

complex.
We now show that the 8-pretopos C of finite breadth. Fix a morphism f : X Ñ Y in

C; we wish to show that f has breadth ď n for some integer n. Replacing C by C{Y , we
can assume that Y is a final object of C. Note that if the object X does not have breadth
ď n, then we can use Theorem A.4.0.5 to produce an object Mn P FunprepC,Sq such that
π0MnpXq has cardinality ą n. Assume (for a contradiction) that such an object exists
for all n ě 0. Let U be a nonprincipal ultrafilter on the set Zě0, and set M “

ś

U Mn.
Then M is an object of FunprepC,Sq, and we can identify π0MpXq with the ultraproduct
ś

U π0MnpXq (Remark E.3.3.7). It follows that the set S “ π0MpXq is infinite. Let V be a
nonprincipal ultrafilter on S and let N “MS{V be the corresponding ultrapower of M , so
that the natural map γ : M Ñ N of Remark E.3.3.10 can be regarded as a morphism in the
8-category FunprepC,Sq. Our assumption that FunprepC,Sq is a Kan complex guarantees
that γ is an equivalence, and therefore induces a bijection of sets γ0 : π0MpXq Ñ π0NpXq.
Using Remark E.3.3.7, we can identify γ0 with the diagonal map S Ñ SS{V. This is a
contradiction: the equivalence class of the identity map idS : S Ñ S does not belong to the
image of the map γ0 (otherwise, the ultrafilter V would be principal).

E.4 Truncations of Profinite Spaces

Let f : X Ñ Y be a map of spaces, and let n ě ´2 be an integer. Recall that f is said
to be n-truncated if, for each y P Y , the homotopy fiber Xy “ X ˆY tyu is an n-truncated
space: that is, if the truncation map Xy Ñ τďnXy is an equivalence. We say that f is
pn ` 1q-connective if each homotopy fiber Xy of f is pn ` 1q-connective: that is, if the
truncation τďnXy is contractible. According to Example HTT.5.2.8.16 , every map of spaces
f : X Ñ Y admits an essentially unique factorization X

f 1
Ñ Z

f2
Ñ Y , where the map f 1

is pn ` 1q-connective and f2 is n-truncated. Our goal in this section is to construct an
analogous factorization in the case where f is a map of profinite spaces.

E.4.1 Connective and Truncated Morphisms

Throughout this section, we will abuse notation by identifying the 8-category Sπ of
π-finite spaces with its essential image in the 8-category S^π of profinite spaces.

Definition E.4.1.1. Let n ě ´2 be an integer. We will say that a map f : X Ñ Y of
profinite spaces is n-truncated if it is given as a filtered limit of morphisms fα : Xα Ñ Yα,
where each fα is an n-truncated map of π-finite spaces. If n ě ´1, we say that f is
n-connective if it is given as a filtered limit of morphisms fβ : Xβ Ñ Yβ , where each fβ is an
n-connective map of π-finite spaces.
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Let ˚ denote a final object of S^π . We say that a π-profinite space X is n-connective if
the constant map X Ñ ˚ is n-connective, and n-truncated if the constant map X Ñ ˚ is
n-truncated. We say that X is connected if it is 1-connective, and simply connected if it is
2-connective.

Recall that a factorization system on an8-category C is a pair pSL, SRq with the following
properties (Definition HTT.5.2.8.8 ):

p1q Both SL and SR are collections of morphisms of C which are closed under the formation
of retracts.

p2q Every morphism in SL is left orthogonal to every morphism in SR (see Definition
HTT.5.2.8.1 ).

p3q Every morphism f : X Ñ Y in C can be obtained as a composition X
f 1
Ñ Z

f2
Ñ Y ,

where f 1 P SL and f2 P SR.

We refer the reader to §HTT.5.2.8 for a general discussion of factorization systems in
8-categories. We can now state the first main result of this section:

Theorem E.4.1.2. Let n ě ´2 be an integer. Let ŜL denote the collection of pn ` 1q-
connective morphisms in S^π , and let ŜR denote the collection of n-truncated morphisms in
S^π . Then the pair pŜL, ŜRq is a factorization system on the 8-category S^π .

Example E.4.1.3. Let X be a profinite space and let n ě ´2 be an integer. Theorem
E.4.1.2 implies that there is an essentially unique map f : X Ñ τďnX, where f is pn` 1q-
connective and τďnX is n-truncated. The construction X ÞÑ τďnX determines a functor
from the8-category S^π to itself, which is left adjoint to the inclusion of n-truncated profinite
spaces into S^π . Alternatively, we can describe τďn as the essentially unique extension of the
usual truncation functor on π-finite spaces which commutes with filtered limits.

Remark E.4.1.4. Every finite set can be regarded as a π-finite space. We therefore obtain
an inclusion of 8-categories Setfin ãÑ Sπ, which induces a fully faithful embedding

PropSfinq Ñ PropSπq “ S^π

whose essential image is the full subcategory of PropS^π q spanned by the 0-truncated profinite
spaces.

E.4.2 Construction of the Factorization System

Theorem E.4.1.2 is an immediate consequence of the following pair of results:
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Proposition E.4.2.1. Let n ě ´2 be an integer. Let SL be the collection of pn ` 1q-
connective morphisms between π-finite spaces and let SR be the collection of n-truncated
morphisms between π-finite spaces. Then the pair pSL, SRq is a factorization system on the
8-category Sπ of π-finite spaces.

Proposition E.4.2.2. Let C be an essentially small 8-category which is equipped with a
factorization system pSL, SRq. Let CL denote the full subcategory of Funp∆1, Cq spanned
by those morphisms belonging to SL, and CR the full subcategory of Funp∆1, Cq spanned by
those morphisms belonging to SR. Then the inclusions CL ãÑ Funp∆1, Cq Ðâ CR determine
fully faithful embeddings

IndpCLq ãÑ IndpFunp∆1, Cqq » Funp∆1,PropCqq Ðâ pCRq

(see Proposition HTT.5.3.5.15 ). Let ŜL and ŜR denote the collections of morphisms in IndpCq
which belong to the essential images of these embeddings. Then pŜL, ŜRq is a factorization
system on IndpCq.

Proof of Proposition E.4.2.1. According to Example HTT.5.2.8.16 , the collections of pn`1q-
connective and n-truncated morphisms in S determine a factorization system on S. The
only nontrivial point is to show that if f : X Ñ Y is a map of π-finite spaces and we factor
f as a composition X f 1

Ñ Z
f2
Ñ Y where f 1 is pn` 1q-connective and f2 is n-truncated, then

the space Z is also π-finite. Since Y is π-finite, it will suffice to show that for each y P Y ,
the homotopy fiber Zy “ Z ˆY tyu is π-finite. For this, we observe that Zy is given by the
truncation τďnXy, where Xy denotes the homotopy fiber X ˆY tyu.

Proof of Proposition E.4.2.2. Since 8-categories IndpCLq and IndpCRq are idempotent com-
plete, the sets ŜL and ŜR are clearly stable under retracts. Let D denote the full subcategory
of Funp∆2, Cq spanned by those diagrams

Z
f2

��
X

f 1
>>

f // Y

where f 1 P SL and f2 P SR. According to Proposition HTT.5.2.8.17 , the inclusion ∆1 »

∆t0,2u ãÑ ∆2 induces an equivalence of 8-categories D Ñ Funp∆1, Cq. It follows that the
induced map IndpDq Ñ IndpFunp∆1, Cqq » Funp∆1, IndpCqq is an equivalence. From this, we
conclude that every morphism f : X Ñ Y in IndpCq factors as a composition X

f 1
Ñ Z

f2
Ñ Y ,

where f 1 P ŜL and f2 P ŜR.
It remains to prove that every morphism in ŜL is left orthogonal to every morphism in

ŜR. To prove this, suppose we are given a filtered diagram tfα : Aα Ñ Bαu in CL and a
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filtered diagram tgβ : Xβ Ñ Yβu in CR, having limits given by morphisms f : AÑ B and
g : X Ñ Y in IndpCq. We wish to show that the diagram

MapIndpCqpB,Xq //

��

MapIndpCqpA,Xq

��
MapIndpCqpB, Y q //MapIndpCqpB,Xq

is a pullback square of spaces. Since the collection of pullback diagrams in S is closed under
filtered colimits and small limits, it suffices to prove that for every pair of indices α and β,
the diagram of spaces

MapIndpCqpBα, Xβq //

��

MapIndpCqpAα, Xβq

��
MapIndpCqpBα, Yβq //MapIndpCqpBα, Xβq

is a pullback square. This follows because fα is left orthogonal to gβ in the 8-category
C.

E.4.3 Connectivity of Profinite Completions

We now study the relationship between the connectivity properties of a morphism
f : X Ñ Y of spaces and the induced map of profinite completions X^π Ñ Y ^π .

Proposition E.4.3.1. Let f : X Ñ Y be a map of spaces. If f is n-connective, then the
induced map X^π Ñ Y ^π is an n-connective map of profinite spaces.

Proof. By virtue of Theorem E.4.1.2, it will suffice to show that the map X^π Ñ Y ^π has the
left lifting property with respect to every pn´1q-truncated map of profinite space g : U Ñ V .
Then g can be written as a filtered limit of pn´ 1q-truncated maps gα : Uα Ñ Vα. Replacing
g by gα, we can reduce to the case where U and V are π-finite. In this case, the desired
property follows immediately from our assumption that f has the left lifting property with
respect to g (in the 8-category of spaces).

Corollary E.4.3.2. Let X be an n-connective space. Then the profinite completion X^π is
an n-connective profinite space.

Corollary E.4.3.2 has a counterpart for truncatedness:

Proposition E.4.3.3. Let X be a discrete space. Then the profinite completion X^π is
0-truncated.
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Proof. Set S “ π0X. Let E denote the set of all equivalence relations E on S such that
S{E is finite. Then tS{EuEPE represents a Pro-object in the category of finite sets, and
therefore determines a 0-truncated profinite space. We will show that tS{EuEPE is a profinite
completion of X. In other words, we show that for every π-finite space T , the composite
map

lim
ÝÑ
EPE

FunpS{E, T q φ
Ñ FunpS, T q ψ

Ñ FunpX,T q

is a homotopy equivalence. By virtue of Lemma E.1.6.5, we may assume without loss of
generality that T has finitely many simplices of each dimension, from which it follows that
φ is an isomorphism of simplicial sets. The map ψ is a homotopy equivalence by virtue of
our assumption that X is discrete.

Warning E.4.3.4. It is not true in general that if X is an n-truncated space, then the
profinite completion X^π is n-truncated. For example, suppose that X “ BG is the classifying
space of a discrete group G (so that X is 1-truncated). Then τď1X

^
π can be identified with

the classifying space for the profinite completion G^ of G. The profinite completion X^π is
1-truncated if and only if, for every finite abelian group A with an action of G and every
integer m ě 0, the map of cohomology groups Hm

c pG
^;Mq Ñ HmpG;Mq is an isomorphism,

where the left hand side indicates the profinite group cohomology of G^.

E.4.4 Materialization

For applications of Theorem E.4.1.2, it is useful to have some alternate descriptions of
the classes of n-connective and n-truncated morphisms in S^π . For this, we need a slight
digression.

Proposition E.4.4.1. Let F : S Ñ S^π denote the profinite completion functor F pXq “ X^π .
Then F admits a right adjoint.

Proof. Proposition HTT.5.1.3.2 implies that F preserves small colimits. Since the 8-
category S is presentable, it follows that F admits a right adjoint (Corollary HTT.5.5.2.9
and Remark HTT.5.5.2.10 ).

Notation E.4.4.2. The profinite completion functor X ÞÑ X^π is fully faithful when
restricted to the 8-category Sπ of π-finite spaces. If X is π-finite, we will generally abuse
notation by not distinguishing between X and its profinite completion. In particular, we let
˚ denote the profinite space given by the profinite completion of a one-point space (as an
object of S^π Ď FunpSπ,Sqop, we can identify ˚ with the inclusion functor Sπ ãÑ S).

Remark E.4.4.3. For every profinite space X, we have a canonical homotopy equivalence

MatpXq » MapSp˚,MatpXqq » MapS^π p˚, Xq.
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Remark E.4.4.4. Let X and Y be profinite spaces, represented by filtered diagrams of
π-finite spaces tXαuαPA, tYβuβPB. Then the coproduct X > Y is represented by the filtered
diagram tXα > Yβupα,βqPAˆB. It follows that the materialization MatpX > Y q is given by

MatpX > Y q » lim
ÐÝ
α,β

pXα > Yβq

» plim
ÐÝ
α

Xαq > plimÐÝ
β

Yβq

» MatpXq >MatpY q.

In other words, the materialization functor commutes with finite coproducts.

E.4.5 Connectivity of Materializations

We will see later that a map of profinite spaces f : X Ñ Y is n-truncated if and only
if Matpfq is n-truncated (Proposition E.4.6.1), and n-connective if and only if Matpfq is
n-connective (Corollary E.4.6.3). As a first step, we prove the following:

Proposition E.4.5.1. Let f : X Ñ Y be an n-connective map of profinite spaces. Then
the induced map MatpXq Ñ MatpY q is also n-connective.

Remark E.4.5.2. In the special case where Y “ ˚, X is discrete, and n “ 0, we can
Proposition E.4.5.1 reduces to Proposition E.1.1.1.

Lemma E.4.5.3. Let J be a filtered 8-category and let X : J op Ñ S be a diagram of
spaces indexed by J op. Assume that:

paq For every object J P J , the set π0XpJq is nonempty and finite.

pbq For every object J P J , every point η P XpJq, and every integer n ě 1, the group
πnpXpJq, ηq is finite.

Then the limit lim
ÐÝJPJ op XpJq is nonempty.

Proof. According to Proposition HTT.5.3.1.18 , there exists a filtered partially ordered set
A and a left cofinal map NpAq Ñ J . We may therefore replace J by NpAq and thereby
assume that J is the nerve of a filtered partially ordered set.

If n ě 0, we will say that X is n-truncated if the space Xpαq is n-truncated for each
α P A. We first prove that lim

ÐÝαPAop Xpαq is nonempty under the additional assumption
that X is n-truncated. Our proof proceeds by induction on n; the case n “ 0 follows from
Proposition E.1.1.1.

Suppose that X is n-truncated for n ą 0. Let X 1 : NpAqop Ñ S denote the composition
of X with the truncation functor τďn´1 : S Ñ S. Our inductive hypothesis implies that
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the limit lim
ÐÝαPAop X

1pαq is nonempty. We will prove that X is nonempty by showing that
the map θ : lim

ÐÝαPAop Xpαq Ñ lim
ÐÝαPAop X

1pαq is surjective on connected components. To
this end, suppose we are given a point η P lim

ÐÝαPAop X
1pαq, so that η determines a natural

transformation X 10 Ñ X 1, where X 10 denotes the constant functor NpAqop Ñ S taking the
value ∆0. Let X0 “ X ˆX 1 X

1
0. To prove that the homotopy fiber of θ over η is nonempty,

we must show that lim
ÐÝαPAop X0pαq is nonempty. Note that for each α P A, the space X0pαq

is an n-gerbe: that is, it is both n-truncated and n-connective. In particular, since n ą 0,
each of the spaces X0pαq is connected.

Let B denote the collection of all finite subsets B Ď A which contain a largest element.
Let K denote the simplicial subset of NpAq given by the union of all the vertices. For
each B P B, let KB Ď NpAq denote the union K YNpBq. Regard B as a partially ordered
set with respect to inclusions, and define a functor Y : NpBqop Ñ S by the formula
Y pBq “ lim

ÐÝ
pX0|Kop

B
q (see §HTT.4.2.3 ). Using Proposition HTT.4.2.3.8 , we obtain a

homotopy equivalence lim
ÐÝBPBop Y pBq » lim

ÐÝαPA
X0pαq. It will therefore suffice to show that

lim
ÐÝBPBop Y pBq is nonempty. Let M “ lim

ÐÝ
pX0|Kq “

ś

αPAX0pαq and let Z : NpBopq Ñ S be
the constant functor taking the value M . Note that B is filtered, so that lim

ÐÝBPBop ZpBq »M .
We have an evident natural transformation of functors Y Ñ Z which induces a map
θ1 : lim

ÐÝBPBop Y pBq Ñ lim
ÐÝBPBop ZpBq »M . Since M is nonempty, it will suffice to show that

the homotopy fibers of θ1 are nonempty.
Choose a point ζ P M , corresponding to a collection of points tζα P X0pαquαPA. The

point ζ determines a natural transformation of functors Z0 Ñ Z, where Z0 : NpBqop Ñ S
is the constant functor taking the value ∆0. Let Y0 “ Y ˆZ Z0, so that the homotopy
fiber of θ1 over the point ζ is given by lim

ÐÝBPBop Y0pBq. Fix an element B P B, so that
B is a subset of A which contains a largest element β. We have homotopy equivalences
Y pBq » X0pβq ˆ

ś

αRBX0pαq and ZpBq »
ś

αPAX0pαq. For each α P B, let ζ 1α denote the
image of ζβ under the map X0pβq Ñ X0pαq. Unwinding the definitions, we see that Y0pBq

can be identified with the product over all α P B ´ tαu of the space of paths joining ζα
with ζ 1α in X0pαq. Since each X0pαq is a connected n-truncated space with finite homotopy
groups, we conclude that Y0pBq is a nonempty pn´ 1q-truncated space with finite homotopy
groups. Since B is filtered, it follows from the inductive hypothesis that lim

ÐÝBPBop Y0pBq is
nonempty.

We now treat the case of a general functor X : NpAqop Ñ S. For each integer n, let
τďnX denote the composition of X with the truncation functor τďn : S Ñ S. Then X is the
limit of the tower

¨ ¨ ¨ Ñ τď2X Ñ τď1X Ñ τď0X,

so that lim
ÐÝαPAop Xpαq is given by the limit of the tower of spaces tlim

ÐÝαPAop τďnXpαquně0.
The above arguments show that lim

ÐÝαPAop τď0Xpαq is nonempty and that each of the transition
maps lim

ÐÝαPAop τďnXpαq Ñ lim
ÐÝαPAop τďn´1Xpαq has nonempty homotopy fibers, from which
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it immediately follows that the tower tlim
ÐÝαPAop τďnXpαquně0 has nonempty limit.

Corollary E.4.5.4. Let J and X be as in Lemma E.4.5.3, and let n ě 0 be an integer
such that each XpJq is n-connective. Then X “ lim

ÐÝJPJ XpJq is n-connective.

Proof. We proceed by induction on n. If n “ 0, the desired result follows from Lemma E.4.5.3.
Assume therefore that n ą 0. The inductive hypothesis implies that X is nonempty. It will
therefore suffice to show that, for every pair of points η, η1 P X, the path space tηuˆX tη1u is
pn´ 1q-connective. Let X0, X1 : J op Ñ S denote the constant functor taking the value ∆0,
so that η and η1 determine natural transformations X0 Ñ X Ð X1 and we have a homotopy
equivalence tηuˆX tη1u » lim

ÐÝJPJ oppX0ˆXX1qpJq. Since X0ˆXX1 takes pn´1q-connective
values, the inductive hypothesis implies that tηu ˆX tη1u is pn´ 1q-connective.

Remark E.4.5.5. Let X be a profinite space, let n ě 0 be an integer, and let f : X Ñ τďnX

be an n-truncation of X. Then Matpfq : MatpXq Ñ MatpτďnXq is a map from MatpXq to
an n-truncated space. Since f is pn` 1q-connective, Corollary E.4.5.4 implies that Matpfq
is pn` 1q-connective: that is, Matpfq induces an equivalence τďn MatpXq » MatpτďnXq.

Proof of Proposition E.4.5.1. Write f as a filtered limit of n-connective maps fα : Xα Ñ Yα
between p-finite spaces. Let η P MatpY q, so that η determines a compatible family of points
ηα P Yα. We wish to prove that the homotopy fiber MatpXqη “ MatpXq ˆMatpY q tηu is
n-connective. This homotopy fiber is given as the limit of a filtered system n-connective,
p-finite spaces Xα ˆYα tηαu, and is therefore n-connective by Corollary E.4.5.4.

E.4.6 Truncatedness of Materializations

We now prove an analogue of Proposition E.4.5.1 for truncated morphisms of profinite
spaces.

Proposition E.4.6.1. Let f : X Ñ Y be a morphism of profinite spaces and let n ě ´2 be
an integer. The following conditions are equivalent:

p1q The morphism f is n-truncated, in the sense of Definition E.4.1.1.

p2q The morphism f exhibits X as an n-truncated object of the 8-category pS^π q{Y : that
is, for every profinite space Z, the map of spaces MapS^π pZ,Xq Ñ MapS^π pZ, Y q is
n-truncated.

p3q The induced map of materializations MatpXq Ñ MatpY q is n-truncated.

Proof. Suppose first that condition p1q is satisfied: that is, f is given as the limit of a
filtered diagram of n-truncated morphisms fα : Xα Ñ Yα between π-finite spaces. We
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will prove that p2q is satisfied. Let Z be an arbitrary π-profinite space. Then the map
θ : MapS^π pZ,Xq Ñ MapS^π pZ, Y q is a filtered limit of maps

θα : MapS^π pZ,Xαq Ñ MapS^π pZ, Yαq.

Consequently, to prove that θ is n-truncated, it will suffice to show that each θα is n-
truncated. Write Z as a filtered limit of π-finite spaces Zβ , so that θα is a filtered colimit of
maps

θα,β : MapSpZβ, Xαq Ñ MapSpZβ, Yαq.

It will therefore suffice to show that each θα,β is n-truncated, which follows immediately
from our assumption that fα is n-truncated.

The implication p2q ñ p3q is obvious. We will complete the proof by showing that
p3q ñ p1q. Using Theorem E.4.1.2, we can factor f as a composition X f 1

Ñ Z
f2
Ñ Y where f 1

is pn` 1q-connective and f2 is n-truncated. The first part of the proof shows that the map
of materializations MatpZq Ñ MatpY q is n-truncated, so that f 1 induces an n-truncated
map MatpXq Ñ MatpZq. Proposition E.4.5.1 implies that MatpXq Ñ MatpZq is pn ` 1q-
connective. It follows that the map from MatpXq to MatpZq is a homotopy equivalence.
Using Theorem E.3.1.6, we deduce that f 1 is an equivalence of profinite spaces, so that f is
n-truncated as desired.

Corollary E.4.6.2. Let n ě ´2 be an integer, and let X P S^π be a profinite space. The
following conditions are equivalent:

p1q The profinite space X belongs to the essential image of the localization functor τďn :
S^π Ñ S^π of Example E.4.1.3.

p2q The profinite space X is n-truncated, in the sense of Definition E.4.1.1.

p3q For every profinite space Y , the mapping space MapS^π pY,Xq is n-truncated.

p4q The space MatpXq is n-truncated.

Corollary E.4.6.3. Let f : X Ñ Y be a morphism of profinite spaces, and let n ě ´1 be
an integer. The following conditions are equivalent:

p1q The morphism f is n-connective, in the sense of Definition E.4.1.1.

p2q The induced map of materializations MatpXq Ñ MatpY q is n-connective.

Proof. The implication p1q ñ p2q follows from Proposition E.4.5.1. Assume that p2q is
satisfied; we will prove p1q. Using Theorem E.4.1.2, we can factor f as a composition

X
f 1
Ñ Z

f2
Ñ Y
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where f 1 is n-connective and f2 is pn´ 1q-truncated. Using Propositions E.4.6.1 and E.4.5.1,
we conclude that Matpf 1q is n-connective and Matpf2q is pn´ 1q-truncated. Since Matpfq
is n-connective, we conclude that Matpf2q is an equivalence. Applying Theorem E.3.1.6, we
deduce that f2 is an equivalence, so that f » f2 ˝ f 1 is n-connective.

E.5 Profinite Classifying Spaces

Let X be a space equipped with a base point x P X, and let ΩX denote the loop
space of X (based at the point x). Then composition of loops determines a multiplication
map ΩX ˆ ΩX Ñ ΩX, which is unital and associative up to coherent homotopy. We can
summarize the situation by saying that the construction X ÞÑ ΩX determines a functor from
the 8-category S˚ of pointed spaces to the 8-category GrppSq of group objects in the 8-
category S of spaces. This functor restricts to an equivalence of 8-categories Sě1

˚ » GrppSq,
where Sě1

˚ denotes the full subcategory of S˚ spanned by the connected pointed spaces
(Lemma HTT.7.2.2.10 ). Our goal in this section is to prove the following:

Theorem E.5.0.4. The functor Ω : pS^π q˚ Ñ GrppS^π q induces an equivalence of 8-
categories pS^π qě1

˚ » GrppS^π q.

E.5.1 Profinite Groups

It is not difficult to show that pS^π q˚ can be identified with the 8-category of Pro-objects
of pSπqě1

˚ , which (by Lemma HTT.7.2.2.10 ) can be identified with the 8-category of group
objects of Sπ. Consequently, Theorem E.5.0.4 is equivalent to the assertion that the canonical
map PropGrppSπqq Ñ GrppPropSπqq is an equivalence of 8-categories. This can be regarded
as a generalization of a classical fact about profinite groups, which we now review.

Definition E.5.1.1. A profinite group is a topological group G whose underlying topological
space is a Stone space (see Definition E.1.3.2). We let GrpSt denote the category whose
objects are profinite groups and whose morphisms are continuous group homomorphisms.

Example E.5.1.2. Every finite group G can be regarded as a profinite group (when endowed
with the discrete topology). That is, we can regard the category Grpfin of finite groups as a
full subcategory of GrpSt.

Proposition E.5.1.3. The inclusion Grpfin ãÑ GrpSt extends to an equivalence of categories

PropGrpfinq » GrpSt .

Proof. Since the category of Stone spaces is closed under limits (in the larger category of
all topological spaces; see Lemma E.1.4.2), the category GrpSt is closed under limits in the
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category of all topological groups. It follows that GrpSt admits small limits, so that the
inclusion Grpfin ãÑ GrpSt extends to a functor F : PropGrpfinq Ñ GrpSt which commutes
with filtered limits (Proposition HTT.5.3.5.10 ). We first claim that F is fully faithful.
According to Proposition HTT.5.3.5.11 , it will suffice to show that every finite group G is
compact when viewed as an object of GrpSt

op. In other words, we claim that if we are given
a filtered system of profinite groups Hα having limit H, then the canonical map

lim
ÝÑ

HomGrpStpHα, Gq Ñ HomGrpStpH,Gq

is bijective. Theorem E.1.4.1 implies that G is compact when viewed as an object of the
category T opop

St . Consequently, every continuous group homomorphism f : H Ñ G factors
as a composition H Ñ Hα

f 1
Ñ G, for some index α. We must show that it is possible to

choose α so that f 1 is a group homomorphism. To prove this, we consider the pair of maps

u, v : Hα ˆHα Ñ G

given by upx, yq “ f 1pxyq, vpx, yq “ f 1pxqf 1pyq. Then u and v induce the same map from
H ˆH into G. Using Theorem E.1.4.1 we conclude that there exists a map of indices β Ñ α

such that u and v agree on Hβ ˆHβ . Replacing α by β, we may assume that u “ v so that
f 1 is a group homomorphism, as desired.

It remains to prove that the functor F is essentially surjective. Fix a profinite group
G, and let S be the partially ordered set of open normal subgroups G0 Ď G. Then Sop is
filtered (since the collection of open normal subgroups is closed under finite intersections).
We may therefore view the inverse system tG{G0uG0PA as an object G P PropGrpfinq. We
will complete the proof by showing that the natural map φ : GÑ F pGq is an isomorphism
of profinite groups.

Note that every nonempty open subset of F pGq contains the inverse image of some
element of G{G0, where G0 is an open normal subgroup of G. From this we immediately
deduce that φ has dense image. Since G is compact and F pGq is Hausdorff, it follows that φ
is a quotient map: that is, φ induces an isomorphism of profinite groups G{ kerpφq Ñ F pGq.
We will complete the proof by showing that kerpφq is trivial.

Choose a non-identity element x P G; we wish to show that there exists an open normal
subgroup of G which does not contain x. Since G is a Stone space, there exists a closed
and open subset Y Ď G which contains the identity element but does not contain x. Let
Y ` “ tgyg´1 : g P G, y P Y u. Then Y ` image of a continuous map Gˆ Y Ñ G. Since G is
compact, we conclude that Y ` is compact and therefore a closed subset of G. As a union of
conjugates of Y , Y ` is also an open subset of G. Let G0 “ tg P G : gY ` “ Y `u. Then G0 is
a subgroup of G which does not contain x. Since Y ` is conjugation-invariant, the subgroup
G0 is normal. Moreover, the complement of G0 is given by the image of pG ´ Y `q ˆ Y `

under the continuous map pg, hq ÞÑ pgh´1q. Since the product is a compact set, we conclude
that G´G0 is compact, so that G0 is an open subgroup of G.
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E.5.2 Homotopy Groups of Profinite Spaces

Profinite groups arise naturally when studying algebraic invariants of profinite spaces.

Definition E.5.2.1. Let X be a profinite space. We let π0X denote the set π0 MatpXq of
path components of the materialization MatpXq. For each integer n ě 1 and each point
x P MatpXq, we let πnpX,xq denote the homotopy group πnpMatpXq, xq. We will refer to
the groups πnpX,xq as the homotopy groups of X (with base point x).

The next result enables us to compute the homotopy groups of a profinite space:

Proposition E.5.2.2. The construction X ÞÑ π0X determines a functor S^π Ñ Set which
preserves filtered limits.

Proof. Let F : S^π Ñ Set be the functor given by F pXq “ π0X. Let us abuse notation by
identifying the 8-category Sπ of π-finite spaces with a full subcategory of the 8-category
S^π of profinite spaces, so that F0 “ F |Sπ is the functor given by F0pT q “ π0T . Let
F 1 : S^π Ñ Set be a right Kan extension of F0, so that the identification F 1|Sπ “ F |Sπ
extends to a natural transformation u : F Ñ F 1. Since F 1 commutes with filtered limits,
it will suffice to show that u is an equivalence. To this end, consider a profinite space K,
which we can assume is given by the limit of a diagram X : J op Ñ Sπ for some filtered
8-category J . We wish to show that the canonical map

θ : π0p lim
ÐÝ
JPJ op

XpJqq Ñ lim
ÐÝ
JPJ op

π0XpJq

is a bijection. Choose a point η P lim
ÐÝJPJ op π0XpJq. Then η determines, for each J P J ,

a connected component XηpJq of XpJq. We can regard Xη itself as a functor J op Ñ Sπ.
Note that θ´1tηu can be identified with the set of path components of the limit Vη “
lim
ÐÝJPJ op XηpJq. To prove that θ is a bijection, it will suffice to show that each of the spaces
Vη is connected. This follows from Corollary E.4.5.4, since each XηpJq is connected by
construction.

We now use Proposition E.5.2.2 to deduce an analogous statement for homotopy groups
πn for n ą 0.

Definition E.5.2.3. Let X be a profinite space. A point of X is a point of the materialization
MatpXq. By virtue of Remark E.4.4.3, we can identify points of X with maps ˚ Ñ X in the
8-category S^π of profinite spaces. We let pS^π q˚ denote the 8-category of pointed objects
of S^π : that is, the 8-category of profinite spaces X equipped with a point ˚ Ñ X.

Corollary E.5.2.4. For each integer n ě 1, let πn : pS^π q˚ denote the functor which carries
a pointed profinite space pX,xq to the homotopy group πnpX,xq. Then the functor πn
commutes with filtered limits.
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Proof. This follows from Proposition E.5.2.2, since the functor X ÞÑ ΩpXq preserves limits.

Remark E.5.2.5. Let X be a profinite space. Then we can write X as the limit of a
diagram tXαu, where each Xα is π-finite. Using Proposition E.5.2.2, we deduce that π0X

can be identified with the Stone space associated to the profinite set given by the diagram
tπ0Xαu. In particular, the inverse limit topology endows π0X with the structure of a Stone
space.

Let x be a point of X, which we can identify with a compatible family of points
xα P Xα. For each integer n ě 1, Corollary E.5.2.4 supplies an isomorphism πnpX,xq »

lim
ÐÝα

πnpXα, xαq, so that we can view πnpX,xq as a profinite group.

Remark E.5.2.6. Let X be a space, and let X^π be its profinite completion (Example
E.0.7.12). Then π0X

^
π can be identified with the Stone-Čech compactification of the set π0X

(Remark E.1.4.4). In particular, for every space X, we have a canonical map of profinite
spaces

X^π Ñ βpπ0Xq

(where we identify the Stone-Čech compactification of π0X with the corresponding profinite
space, under the fully faithful embedding of Remark E.4.1.4). If X is discrete, then this
map is an equivalence (Proposition E.4.3.3).

E.5.3 Digression: Strong n-Truncations

We now introduce a technical notion which will play an important role in our proof of
Theorem E.5.0.4.

Definition E.5.3.1. Let X be a space and let n ě 1 be an integer. We will say that X is
strongly n-truncated if it satisfies the following conditions:

paq The space X is n-truncated. That is, the groups πmpX,xq are trivial for every base
point x P X and every integer m ą n.

pbq For every choice of base point x P X, the group π1pX,xq acts trivially on πnpX,xq.

Remark E.5.3.2. For every integer n ě 1, the inclusion from the 8-category of strongly
n-truncated spaces to the 8-category of spaces admits a left adjoint τ sďn. To every space
X, this left adjoint assigns another space τ sďnX, which we will refer to as the strong n-
truncation of X. It is characterized up to equivalence by the requirement that there is a
map f : X Ñ τ sďnX which is bijective on connected components, and the homotopy groups
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of τ sďnX are given by

πmpτ
s
ďnX, fpxqq »

$

’

’

&

’

’

%

πmpX,xq if m ă n

πnpX,xqπ1pX,xq if m “ n

0 if m ą n.

Here πnpX,xqπ1pX,xq denotes the group of coinvariants for the action of π1pX,xq on πnpX,xq
(if n “ 1, this is the abelianization of π1pX,xq).

Remark E.5.3.3. Let n ě 1 be an integer. The strong truncation functor τ sďn of Remark
E.5.3.2 carries π-finite spaces to π-finite spaces. It therefore admits an essentially unique
extension to a functor S^π Ñ S^π which commutes with filtered limits. We will abuse notation
by denoting this functor also by τ sďn.

Let X be a profinite space, and write X as the limit of a filtered diagram of π-finite spaces
Xα. By definition, τ sďnX is given by the limit of the diagram tτ sďnXαu (in the 8-category
S^π of profinite spaces).

Proposition E.5.3.4. Let X be a profinite space, let n ě 1 be an integer, and let θ : X Ñ

τ sďnX be the canonical map. Then:

paq The map θ induces a bijection π0X Ñ π0τ
s
ďnX.

pbq For each point x P X, the map πmpX,xq Ñ πmpτ
s
ďnX, θpxqq is an isomorphism for

m ă n.

pcq For each point x P X, let K denote the kernel of the canonical map πnpX,xq Ñ

πnpX,xqπ1pX,xq, and let K denote the closure of K in πnpX,xq (with respect to
the profinite topology described in Remark E.5.2.5). Then θ induces a surjection
πnpX,xq Ñ πnpτ

s
ďnX, θpxqq with kernel K.

pdq For each point x P X and each m ą n, the group πmpτ sďnX, θpxqq vanishes.

Proof. Write X as the limit of a diagram of π-finite spaces tXαuαPA indexed by a filtered
partially ordered set A. Since each of the maps Xα Ñ τ sďnXα is bijective on connected
components, assertion paq follows from Proposition E.5.2.2. Similarly, pbq and pdq follow
from Corollary E.5.2.4. It remains to prove pcq. Let x be a point of X, given by a compatible
family of points xα P Xα. For each α P A, let Mα denote the coinvariants for the action
of π1pXα, xαq on πnpXα, xαq, and set M “ lim

ÐÝα
Mα. Then Corollary E.5.2.4 supplies an

isomorphism πnpτ
s
ďnX, θpxqq »M . The natural map ν : πnpX,xq ÑM is an inverse limit of

surjective homomorphisms of finite groups να : πnpXα, xαq ÑMα, and therefore a surjection
(Proposition E.1.1.1). It remains to prove that kerpνq “ K. It is clear that kerpνq is a closed
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subgroup of πnpX,xq which contains K. To complete the proof, it will suffice to show that
K is dense in kerpνq. To this end, choose an element u P kerpνq Ď πnpX,xq, given by a
compatible family of elements uα P πnpXα, xαq. We wish to show that for each α P A, uα
belongs to the image of the map K Ñ πnpXα, xαq.

For each index β P A, the action of π1pXβ, xβq on πnpXβ, xβq is given by a map

aβ : π1pXβ, xβq ˆ πnpXβ, xβq Ñ πnpXβ, xβq.

The inverse limit of these maps determines an action map

a : π1pX,xq ˆ πnpX,xq Ñ πnpX,xq.

Let Kβ denote the kernel of the map πnpXβ, xβq Ñ Mβ. Let Kp1q
β Ď Kβ denote the

subset of πnpXβ, xβq consisting of elements of the form aβpg, hqh
´1. Then K

p1q
β generates

the group Kβ . For each integer m ě 1, let Kpmq
β denote the subset of πnpXβ, xβq consisting

of m-fold products of elements of Kp1q
β . Since πnpXβ, xβq is finite, we have Kβ “ K

pmq
β for

m sufficiently large (depending on β).
For each β ě α and each integer m ą 0, let Lpmqβ denote the image of Kpmq

β in πnpXα, xαq.
Then L

pmq
β is the subset of πnpXα, xαq generated by all m-fold products of elements of Lp1qβ .

Let m0 denote the order of the finite group πnpXα, xαq, so that Lpmqβ “ L
pm0q
β for m ě N .

Since uβ P Kβ “
Ť

mK
pmq
β , we have uα P

Ť

m L
pmq
β “ L

pm0q
β .

For each β ě α, let Sβ Ď π1pXβ, xβq
m0 ˆ πnpXβ, xβq

m0 denote the subset consisting of
those tuples pg1, . . . , gm0 , h1, . . . , hm0q such that

aβpg1, h1qh
´1
1 aβpg2, h2qh

´1
2 ¨ ¨ ¨ aβpgm0 , hm0qh

´1
m0

is a preimage of uα under the map πnpXβ, xβq Ñ πnpXα, xαq. It follows from the above
reasoning that each of the sets Sβ is nonempty. Applying Proposition E.1.1.1, we deduce
that lim

ÐÝβěα
Sβ is nonempty. Using Corollary E.5.2.4, we can identify an element of the

inverse limit with a tuple pg1, . . . , gm0 , h1, . . . , hm0q P π1pX,xq
m0 ˆ πnpX,xq

m0 . Set

v “ apg1, h1qh
´1
1 ¨ ¨ ¨ apgm0 , hm0qh

´1
m0 .

By construction, v is an element of K whose image in πnpXα, xαq coincides with uα.

Corollary E.5.3.5. Let X be a profinite space and let n ě 1 be an integer such that MatpXq
is strongly n-truncated. Then the canonical map θ : X Ñ τ sďnX is an equivalence in S^π .

Proof. It follows from Proposition E.5.3.4 that Matpθq is a homotopy equivalence. Applying
Theorem E.3.1.6, we deduce that θ is an equivalence of profinite spaces.
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E.5.4 Families of Abelian Groups

Let X be a space which is strongly n-truncated (Definition E.5.3.1). Then, for any base
point x P X, the fundamental group π1pX,xq acts trivially on the homotopy group πnpX,xq.
It follows that πnpX,xq is an abelian group which depends only on the image of x in π0X.
We now axiomatize this structure.

Definition E.5.4.1. A family of abelian groups consists of the following data:

paq A map of sets φ : AÑ S.

pbq An abelian group structure on each fiber As “ φ´1tsu.

We will generally abuse notation and indicate a family of abelian groups simply as a map
φ : AÑ S. We will say that a family of abelian groups φ : AÑ S is finite if A and S are
finite.

If φ : AÑ S and φ1 : A1 Ñ S1 are families of abelian groups, then a morphism of families
of abelian groups from φ to φ1 is a commutative diagram of sets

A
φ //

F
��

S

f
��

A1
φ1 // S1

such that, for every element s P S, the induced map Fs : As Ñ A1fpsq is a group homomor-
phism.

We let Fam denote the category whose objects are families of abelian groups, and Famfin
the full subcategory of Fam spanned the finite families of abelian groups.

Remark E.5.4.2. Let φ : AÑ S be a family of abelian groups. For every element s P S,
let epsq denote the identity element of the abelian group As. Then the construction s ÞÑ epsq

determines a map from S to A, which we will refer to as the zero section of φ.

Notation E.5.4.3. If φ : A Ñ S is a family of abelian groups, then we can identify A

with an abelian group object of the topos Set{S . For each n ě 0, we let Kpφ, nq denote
the associated Eilenberg-MacLane object of the 8-topos S{S . More concretely, we have
Kpφ, nq “ >sPSKpAs, nq, where As denotes the abelian group φ´1tsu. Note that if φ : AÑ S

is a finite family of abelian groups, then the space Kpφ, nq is π-finite.

Example E.5.4.4. Let X be a strongly n-truncated space. For each path component
η P π0X, let πnpX, ηq denote the homotopy group πnpX,xq, where x P X is a representative
of η. Our assumption that π1pX,xq acts trivially on πnpX,xq guarantees that the abelian
group πnpX, ηq is independent of the choice of x, up to canonical isomorphism. Then the
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map >ηPπ0XπnpX, ηq Ñ π0X is a family of abelian groups, in the sense of Definition E.5.4.1.
Let us denote this family by πnX.

The map X Ñ τďn´1X is n-connective and n-truncated. In the terminology of
§HTT.7.2.2 , we can regard X as an n-gerbe over τďn´1X, banded by a local system
of abelian groups on τďn´1X. By assumption, this local system is trivial: that is, it can be
written (canonically) as the pullback of πnpXq, which we regard as a local system of abelian
groups on π0pXq. We therefore have a pullback diagram of spaces σX :

X //

��

π0X

��
τďn´1X // KpπnpXq, n` 1q.

Note that σX depends functorially on X, and that the construction X ÞÑ σX commutes
with products.

The category Famfin admits finite products, so it makes sense to consider group objects
in Famfin. The collection of group objects in Famfin forms a category, which we will denote
by GrppFamfinq. We will need the following fact, whose proof we defer until the end of this
section:

Proposition E.5.4.5. Every group object of PropFamfinq can be written as a filtered inverse
limit of group objects of Famfin.

E.5.5 Digression: Effective Epimorphisms of Profinite Spaces

Recall that if f : U Ñ X is a map of spaces which is surjective on connected components,
then f is an effective epimorphism: that is, we can recover X as the geometric realization
of the simplicial space U‚ given as the Čech nerve of f . We now establish an analogous
statement in the setting of profinite homotopy theory.

Notation E.5.5.1. Let ∆` denote the augmented simplex category. We have fully faithful
embeddings ∆op j

ãÑ ∆op
`

i
Ðâ ∆1 where i carries ∆1 to the morphism r0s Ñ r´1s in ∆op

` .
For any 8-category C, the embeddings i and j determine restriction functors

Funp∆op, Cq j
˚

Ð Funp∆op
` , Cq

i˚
Ñ Funp∆1, Cq.

If C admits fiber products, then the functor i˚ admits a right adjoint i˚, which carries a
morphism f : U Ñ X in C to the augmented simplicial object of C given by the Čech nerve
of f . If the 8-category C admits a geometric realizations of simplicial objects, then the
functor j˚ admits a left adjoint j!, given by pj!X‚q´1 “ |X‚|. Note that if C admits finite
limits, then the functor i˚ takes values in the 8-category GpdpCq of groupoid objects of



2258 APPENDIX E. PROFINITE HOMOTOPY THEORY

C (see Proposition HTT.6.1.2.11 ). If C admits finite limits and geometric realizations, we
obtain a pair of adjoint functors

GpdpCq
i˚j! //Funp∆1, Cq
j˚i˚

oo .

Remark E.5.5.2. Let C be an 8-category which admits finite limits and geometric real-
izations of simplicial objects. Recall that a group object of C is a groupoid object U‚ of C
such that U0 is a final object of C. We let GrppCq Ď Funp∆op, Cq denote the full subcategory
spanned by the group objects of C, and C˚ Ď Funp∆1, Cq the 8-category of pointed objects
of C (that is, the full subcategory Funp∆1, Cq spanned by those morphisms U Ñ X where U
is a final object of C). Then the adjunction of Notation E.5.5.1 restricts to a pair of adjoint
functors

GrppCq
B //C˚
Ω
oo .

Proposition E.5.5.3. Let E denote the full subcategory of Funp∆1,S^π q spanned by those
morphisms f : U Ñ X of profinite spaces which induce a surjection π0U Ñ π0X. Then the
functor j˚i˚ : Funp∆1,S^π q Ñ GpdpS^π q of Notation E.5.5.1 is fully faithful when restricted
to C.

Corollary E.5.5.4. Let pS^π q˚ denote the 8-category of pointed objects of S^π , and let
pS^π qě1

˚ denote the full subcategory of pS^π q˚ spanned by the pointed connected profinite
spaces. Then the functor Ω of Remark E.5.5.2 restricts to a fully faithful embedding
pS^π qě1

˚ ãÑ GrppS^π q.

Warning E.5.5.5. In §E.5, we will show that the functor Ω : pS^π qě1
˚ Ñ GrppS^π q is an

equivalence of 8-categories: that is, every group object in the 8-category of profinite spaces
can be identified with the loop space of a profinite space (Theorem E.5.0.4). However, the
fully faithful embedding E ãÑ GpdpS^π q of Proposition E.5.5.3 is not essentially surjective.
To see this, let X be an arbitrary compact Hausdorff space, and let U be a Stone space
equipped with a surjective map f : U Ñ X. Then the Čech nerve U‚ of f is a groupoid
object in the category of Stone spaces, which we can view as a groupoid object in the
8-category of discrete objects of S^π . However, this groupoid is not effective unless X is
also a Stone space.

Proof of Proposition E.5.5.3. In what follows, we will abuse notation by identifying Sπ with
its essential image in S^π . Let f : U Ñ X be a map of profinite spaces which induces a
surjection π0U Ñ π0X, and let U‚ denote the Čech nerve of U . We wish to prove that the
canonical map |U‚| Ñ X is an equivalence in the 8-category of profinite spaces. Equivalently,
we wish to show that the canonical map

φ : MapS^π pX,T q Ñ MapS^π p|U‚|, T q » lim
ÐÝ

MapS^π pU‚, T q
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is a homotopy equivalence.
Using Proposition HTT.5.3.5.15 , we can write f as a limit of maps tfα : Uα Ñ XαuαPA

indexed by a filtered partially ordered set A, where each Uα and Xα is π-finite. For each
index α, let X0

α Ď Xα denote the union of those connected components of Xα which contain
vertices in the image of fα. We first claim that the canonical map lim

ÐÝ
X0
α Ñ lim

ÐÝ
Xα is an

equivalence in S^π . Note that we have a pullback diagram

lim
ÐÝ

X0
α

//

��

lim
ÐÝ

Xα

��
lim
ÐÝ

π0X
0
α

θ // lim
ÐÝ

π0Xα.

It will therefore suffice to show that θ is an equivalence in S^π . According to Corollary
E.1.4.3, it will suffice to show that θ induces a bijection on the underlying sets. It is clear
that θ is injective (since it is an inverse limit of injections). The surjectivity follows from
our assumption that the composite map

π0U » lim
ÐÝ

π0Uα Ñ lim
ÐÝ

π0X
0
α Ñ lim

ÐÝ
π0Xα » π0X

is surjective. We may therefore replace each Xα with X0
α, and thereby reduce to the case

where each of the maps fα is surjective on connected components.
For each index α P A, let Uα‚ denote the Čech nerve of fα, so that U‚ » lim

ÐÝα
Uα‚. It

follows that we can identify φ with the composition

lim
ÝÑ
αPA

MapSπpXα, T q
φ1
Ñ lim
ÝÑ
αPA

lim
ÐÝ
rnsP∆

MapSπpUαn, T q
φ2
Ñ lim

ÐÝ
rnsP∆

lim
ÝÑ
αPA

MapSπpUαn, T q.

Since each fα is an effective epimorphism, the canonical maps |Uα‚| Ñ Xα are homotopy
equivalences, so that φ1 is a homotopy equivalence. We will complete the proof by showing
that φ2 is a homotopy equivalence. To this end, we note that for every integer m ě 0, the
map φ2 fits into a commutative diagram

lim
ÝÑαPA

lim
ÐÝrnsP∆ MapSπpUαn, T q

//

��

lim
ÐÝrnsP∆ lim

ÝÑαPA
MapSπpUαn, T q

��
lim
ÝÑαPA

lim
ÐÝrnsP∆s,ďm

MapSπpUαn, T q
ψm // lim

ÐÝrnsP∆s,ďm
lim
ÝÑαPA

MapSπpUαn, T q;

here ∆s,ďm denotes the subcategory of ∆ whose objects have the form rns for n ď m and
whose morphisms are required to be injective. Since the simplicial sets Np∆ďmq are finite
and A is filtered, the maps ψm are homotopy equivalences. The space T is π-finite and
therefore truncated. It follows that the vertical maps are homotopy equivalences for m " 0
(see the proof of Lemma HA.1.3.3.10 ), so that φ2 is a homotopy equivalence as desired.
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E.5.6 The Proof of Theorem E.5.0.4

We now explain how to deduce Theorem E.5.0.4 from Proposition E.5.4.5. Let G
be a group object of S^π ; we wish to show that G belongs to the essential image of the
functor Ω : pS^π qě1

˚ Ñ GrppS^π q. Note that pS^π qě1
˚ is closed under filtered limits in pS^π q˚

(Proposition E.5.2.2). Since the functor Ω is fully faithful (Corollary E.5.5.4) and commutes
with filtered limits, it follows that the essential image of Ω is closed under filtered limits in
GrppS^π q. Writing G as the inverse limit of its Postnikov towe

¨ ¨ ¨ Ñ τď2GÑ τď1GÑ τď0G,

we can reduce to the case where G is n-truncated for some integer n.
We now proceed by induction on n. In the case where n “ 0, we can identify G with a

group object in the ordinary category of profinite sets. Using Proposition E.5.1.3, we deduce
that G can be written as a filtered limit of group objects in the category of finite sets. Since
the essential image of Ω is closed under filtered limits, we can assume that G is a finite
group. Then the classifying space BG is π-finite, and we have G » ΩpBGq.

Suppose now that n ě 1, and assume that τďn´1G belongs to the essential image of Ω.
Note that MatpGq can be regarded as a group object of the 8-category of spaces. It follows
that for each point x P G, the fundamental group π1pG, xq acts trivially on the homotopy
groups πmpG, xq. In particular, MatpGq is strongly n-truncated. Applying Corollary E.5.3.5,
we deduce that the canonical map GÑ τ sďnG is an equivalence.

Let U : Famfin Ñ Sπ be the functor given by Upφ : AÑ Sq “ Kpφ, n` 1q (see Notation
E.5.4.3). Then U admits an essentially unique extension to a functor pU : PropFamfinq Ñ S^π
which commutes with filtered limits.

Let C denote the full subcategory of S spanned by those π-finite spaces which are
strongly n-truncated. For each object X P C, define πnX P Famfin as in Example E.5.4.4.
The construction X ÞÑ πnX admits an essentially unique extension to a functor PropCq Ñ
PropFamfinq which commutes with filtered limits. We will denote this functor also by
X ÞÑ πnX.

For each X P C, let σX denote the pullback diagram

X //

��

π0X

��
τďn´1X // KpπnX,n` 1q

appearing in Example E.5.4.4. Then the construction X ÞÑ σX admits an essentially unique
extension to a functor pσ : PropCq Ñ Funp∆1 ˆ∆1,S^π q which commutes with filtered limits.
In particular, it carries group objects of PropCq to pullback diagrams GrppS^π q. Applying
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this functor to G, we obtain a pullback square

G //

��

τď0G

f
��

τďn´1G
f 1 // pUpπnGq.

Since the functor πn : PropCq Ñ PropFamfinq commutes with finite products, we can
regard πnG as a group object of PropFamfinq. Applying Proposition E.5.4.5, we can write
πnG as a filtered limit of objects φα P GrppFamfinq. Then each pUpφαq “ Kpφα, n ` 1q is
a group object of Sπ, and therefore belongs to the essential image of Ω. It follows that
pUpπnGq belongs to the essential image of Ω. Write pUpπnGq » ΩpXq, where X is a pointed
connected profinite space. By the inductive hypothesis, we can also write

τď0G » ΩpY q τďn´1G » ΩpZq

for some pointed profinite spaces Y and Z. Using Proposition E.5.5.3, we see that f and
f 1 are induced by pointed maps f : Y Ñ X and f

1 : Z Ñ X. It follows from Proposition
E.5.2.2 that the map f induces an isomorphism on connected components, so that f is
an isomorphism on fundamental groups. Consequently, the fiber product Y ˆX Z is also
connected. It follows that G » ΩpY ˆX Zq belongs to the essential image of Ω, as desired.

E.5.7 The Proof of Proposition E.5.4.5

The proof of Proposition E.5.4.5 will require some preliminaries.

Definition E.5.7.1. A topological family of abelian groups is a family of abelian groups
φ : AÑ S, together with topologies on the sets A and S, for which the map φ is continuous,
the zero section S Ñ A is continuous, and the addition on each As is given by a continuous
map a : A ˆS A Ñ A. We let FamT op denote the category whose objects are topological
families of abelian groups, and whose morphisms are maps of families of abelian groups

A
φ //

��

S

��
A1

φ1 // S1

where the vertical maps are continuous.

Remark E.5.7.2. We can obtain a variant of Definition E.5.7.1 by requiring also that the
inverse maps on the groups As be given by a continuous map A Ñ A (so that each As
has the structure of a topological group). This additional condition will automatically be
satisfied in cases of interest to us here (for example, if A and S are Stone spaces, or if φ is a
group object of FamT op).
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If φ : AÑ S is a finite family of abelian groups, we will view φ as a topological family of
abelian groups where A and S are equipped with the discrete topology. This construction
determines a fully faithful embedding ι : Famfin ãÑ FamT op. Since the category FamT op
admits filtered limits, ι admits an essentially unique extension to a functor pι : PropFamfinq Ñ

FamT op which commutes with filtered limits.

Lemma E.5.7.3. The functor pι : PropFamfinq Ñ FamT op is fully faithful.

Proof. Suppose we are given a pair of objects φ, ψ P PropFamfinq, which are given as limits
of finite families of abelian groups

tφα : Aα Ñ Sαu tψβ : Bβ Ñ Tβu

indexed by filtered partially ordered sets. We wish to prove that the canonical map θ :
HomPropFamfinqpφ, ψq Ñ HomFamT opppιpφq,pιpψqq is a bijection. Unwinding the definitions, we
can write θ as an inverse limit of maps θβ : HomPropFamfinqpφ, ψβq Ñ HomFamT opppιpφq, ιpψβqq.
Replacing ψ by ψβ, we may reduce to the case where ψ P Famfin. In this case, θ can be
identified with the canonical map lim

ÝÑα
HomFampφα, ψq Ñ HomFamT opplimÐÝφα, ψq. We first

show that θ is injective. Suppose we are given an index α and a pair of maps u, v : φα Ñ ψ

which induce the same map from lim
ÐÝ

φα to ψ. Let E Ď Aα be the subset consisting of
elements on which u and v do not agree. Then E is a finite set which is disjoint from the
image of the map lim

ÐÝα1ěα
Aα1 Ñ Aα. Using Proposition E.1.1.1, we see that E is disjoint

from the image of the map Aα1 Ñ Aα for some α1 ě α. Then u and v have the same image
in HomFampφα1 , ψq, hence the same image in HomPropFamqpφ, ψq.

Set A “ lim
ÐÝ

Aα and S “ lim
ÐÝ

Sα, so that pιpφq is a topological family of abelian groups
AÑ S. Let ψ : B Ñ T be a finite family of abelian groups, and let u P HomFamT opppιpφq, ιpψqq,
given by a diagram of continuous maps

A

u1

��

// S

u2

��
B // T.

Applying Theorem E.1.4.1, we deduce that there exists an index α such that u1 and u2 factor
through maps u1α : Aα Ñ B and u2α : Sα Ñ T . For each α1 ě α, let u1α1 : Aα1 Ñ B and
u2α1 : Sα1 Ñ T denote the compositions of u1α and u2α with the projection maps Aα1 Ñ Aα
and Sα1 Ñ Sα.

Enlarging α if necessary, we may suppose that the diagram

Aα

u1α
��

// S

u2α
��

B // T.
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commutes. Let E Ď Aα ˆSα Aα be the set consisting of those pairs pa, bq such that
u1αpa ` bq ‰ u1αpaq ` u1αpbq. Since u is a map of families of abelian groups, E does not
intersect the image of the projection map AˆS AÑ Aα ˆSα Aα. Using Proposition E.1.1.1,
we conclude that there exists α1 ě α such that E does not intersect the image of the
projection map Aα1ˆSα1 Aα1 Ñ AαˆSα Aα. Replacing α by α1, we may suppose that E “ H.
In this case, each of the maps Aα ˆSα tsu Ñ B ˆT tu

1
αpsqu is a function between finite

abelian groups which preserves addition, and therefore a group homomorphism. It follows
that pu1α, u2αq is a morphism from φα to ψ in the category Fam, so that u belongs to the
image of θ.

Example E.5.7.4. Let G be a group, and let M be an abelian group equipped with a
(right) action of G, given by px P M, g P Gq ÞÑ xg. Let G ˙M denote the semidirect
product of G and A: that is, the product GˆM , equipped with the group structure given
by pg, xqpg1, x1q “ pgg1, xg

1

` x1q. Each fiber of the projection map φ : G ˙M Ñ G can
be identified with the abelian group M , so we can view φ as a family of abelian groups.
Moreover, the multiplication on the groups G˙M and G exhibit φ as a group object in the
category Fam.

Remark E.5.7.5. Suppose that φ : A Ñ S is a group object in the category Fam. In
particular, we can regard A and S as groups, so that the map φ and the zero section
e : S Ñ A are group homomorphisms. For each s P S, let As denote the abelian group
φ´1tsu. Then the multiplication on φ determines group homomorphisms As ˆAs1 Ñ Ass1 .
Let 1 denote the identity element of S. Then ep1q is the identity element of A, and also
the unit element of A1. Since the multiplication on A induces a group homomorphism
A1 ˆA1 Ñ A1, it follows that the inclusion A1 ãÑ A is a group homomorphism: that is, we
can identify A1 with the kernel kerpφq not only as a set, but as a group. We have an exact
sequence

0 Ñ A1 Ñ A
φ
Ñ S Ñ 0.

Since A1 is abelian, the group S acts on A1 by conjugation. Moreover, this sequence is
split by the map e : S Ñ A, so we obtain an isomorphism of groups S ˙A1 » A, given by
ps, xq ÞÑ epsqx. We can summarize the situation as follows: every group object of Fam has
the form G˙M Ñ G, where G is a group and M is an abelian group with an action of G,
as in Example E.5.7.4.

If φ is a group object in the category FamT op of topological families of abelian groups,
the same argument shows that we can write φ as the projection map φ : G˙M Ñ G, where
G is a topological group and M is a topological abelian group equipped with a continuous
action of G.
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Lemma E.5.7.6. Let M be a profinite group equipped with a continuous action of a
profinite group G. Then the collection of open G-invariant normal subgroups of M forms a
neighborhood basis for the identity element of M .

Proof. Let U be an open subset of M containing the identity element. We wish to show
that U contains an open G-invariant normal subgroup of M . It follows from Proposition
E.5.1.3 that U contains an open normal subgroup of M . Shrinking U if necessary, we may
suppose that U is an open normal subgroup.

For each g P G, let Ug denote the image of U under the group homomorphism from M

to itself determined by g, and set V “
Ş

gPG U
g. Then V is a G-invariant normal subgroup

of M which is contained in U . We will complete the proof by showing that V is open. This
is clear, since the complement of V is the image of a continuous map Gˆ pM ´ Uq ÑM

whose domain is compact.

Proof of Proposition E.5.4.5. Suppose that φ is a group object of PropFamfinq. Let pι :
PropFamfinq Ñ FamT op be the fully faithful embedding of Lemma E.5.7.3. Then pιpφq is a
group object of FamT op. According to Remark E.5.7.5, pιpφq has the form G ˙M Ñ M ,
where G is a topological group and M is a topological abelian group equipped with an action
of G. Note that each of these groups is profinite.

Let A denote the set of all pairs pG0,M0q, where M0 is an open G-invariant subgroup
of M and G0 is an open normal subgroup of G which acts trivially on the quotient M{M0.
We regard A as a partially ordered set by reverse inclusion. Since the set of such pairs
pG0,M0q is closed under finite intersections, A is a filtered partially ordered set. For each
pair pG0,M0q P A, let φG0,M0 denote the projection map

G{G0 ˙M{M0 ÑM{M0,

regarded as a group object of Famfin (see Example E.5.7.4). We claim that φ is represented
by the inverse limit of the system tφpG0,M0qupG0,M0qPA. To prove this, it will suffice (by virtue
of Lemma E.5.7.3) to show that the map

pιpφq Ñ lim
ÐÝ

pG0,M0qPA

φpG0,M0q

is an isomorphism of topological families of abelian groups. Equivalently, we must show that
the maps

α : GÑ lim
ÐÝ

pG0,M0qPA

G{G0 β : M Ñ lim
ÐÝ

pG0,M0qPA

M{M0

are isomorphisms of profinite groups. By construction, these maps have dense image and
are therefore surjective. We will complete the proof by showing that α and β are injective.

We first show that α is injective. Let g be a nontrivial element of G. It follows from
Proposition E.5.1.3 that there exists an open normal subgroup G0 Ď G which does not



E.6. UNIVERSALITY OF COLIMITS 2265

contain g. Then pG0,Mq is an element of A, and the image of g in G{G0 is nontrivial. It
follows that αpgq is nontrivial.

We now show that β is injective. Let x be a nonzero element of M . It follows from
Lemma E.5.7.6 that there exists a G-invariant open subgroup M0 Ď M which does not
contain x. Then G acts continuously on the finite set M{M0. Let G0 Ď G be the kernel
of this action. Then pG0,M0q is an element of A, and x has nonzero image in M{M0. It
follows that βpxq is nonzero.

E.6 Universality of Colimits

Recall that an 8-category X is an 8-topos if it satisfies the 8-categorical version of
Giraud’s axioms (see Theorem HTT.6.1.0.6 ):

piq The 8-category X is presentable.

piiq Coproducts in X are disjoint.

piiiq Every groupoid object of X is effective.

pivq Colimits in X are universal.

Roughly speaking, these axioms assert that the homotopy theory of X behaves much like
the classical homotopy theory of spaces. In this section, we will investigate the extent to
which these axioms are satisfied by the 8-category S^π of profinite spaces. We can summarize
the situation as follows:

pi1q The 8-category S^π of profinite spaces is not presentable (in fact, it has no small
objects other than the initial object). However, the opposite 8-category pS^π qop is
presentable. In particular, the 8-category S^π admits all small limits and colimits.

pii1q Coproducts are disjoint in the 8-category S^π of profinite spaces. To see this, suppose
we are given a pair of profinite spaces X and Y , represented by filtered diagrams of
π-finite spaces tXαuαPA, tYβuβPB. Then the diagram of profinite spaces σ :

H //

��

X

��
Y // X > Y

can be written as a filtered limit of diagrams σα,β :

H //

��

Xα

��
Yβ // Xα > Yβ.
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Since coproducts are disjoint in the 8-category S of spaces, each of the diagrams σα,β
is a pullback square. It follows immediately that σ is also a pullback square.

piii1q Not every groupoid object of S^π is effective (see Warning E.5.5.5). Nevertheless, in
§E.5, we proved that every group object of S^π can be recovered as the loop space of
its classifying space (Theorem E.5.0.4). In other words, every group object G of S^π is
effective when viewed as a groupoid object of S^π .

piv1q Colimits are generally not universal in the 8-category S^π of profinite spaces (see
Warning E.6.0.9). Nevertheless, we will prove in this section that colimits indexed by
finite diagrams are universal, and that geometric realizations are universal (Theorem
E.6.3.1).

Before discussing piv1q in more detail, let us consider another fundamental feature of
classical homotopy theory. If X is an 8-category satisfying axioms piq and pivq, then
conditions piiq and piiiq are equivalent to the following:

pvq The construction pX P X q ÞÑ X {X determines a functor X op ÑyCat8 which commutes
with small limits.

In the particular case where X “ S is the 8-category of spaces, axiom pvq supplies an
equivalence of 8-categories FunpX,Sq » S{X for any space X. We can describe the inverse
equivalence informally as follows: it assigns to a map of spaces Y Ñ X the functor X Ñ S
which carries a point x P X to the homotopy fiber Yx “ Y ˆX txu. Our first goal will be to
show that an analogous statement holds in the profinite setting, provided that the space X
is π-finite:

Theorem E.6.0.7. Let X be a π-finite space, and let lim
ÝÑ

: FunpX,S^π q Ñ S^π be the colimit
functor (a left adjoint to the diagonal embedding S^π Ñ FunpX,S^π q). Then:

p1q Let e0 denote a final object of FunpX,S^π q (that is, the constant functor from X to S^π
taking the value ˚ P S^π ). Then there is a canonical equivalence lim

ÝÑ
pe0q » X in S^π .

p2q The functor lim
ÝÑ

induces an equivalence of 8-categories

F : FunpX,S^π q » FunpX,S^π q{e0 Ñ pS^π q{X .

Corollary E.6.0.8. Let f : X Ñ Y be a map of π-finite spaces, and let f˚ : pS^π q{Y Ñ
pS^π q{X be the functor given by f˚Z “ X ˆY Z. Then f˚ preserves small colimits.

Proof. Using Theorem E.6.0.7, we can identify f˚ with the functor FunpY,S^π q Ñ FunpX,S^π q
given by composition with f .
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Warning E.6.0.9. The conclusion of Corollary E.6.0.8 generally fails if we allow f to be a
map of profinite spaces, rather than a map of π-finite spaces. For example, suppose we are
given a pair of set A and B, which we regard as discrete spaces. Let X “ A^π be the profinite
completion of A: then X is a 0-truncated profinite space, and set Y “ ˚. Then the canonical
map >bPBpX ˆtbuq Ñ X ˆ>bPBtbu is generally not an equivalence of profinite spaces. Using
Remark E.5.2.6, we can identify the left hand side with the Stone-Čech compactification of
AˆB and the right hand side with product of the Stone-Čech compactifications of A and
B. These are not isomorphic unless either A or B is finite.

E.6.1 Diagrams Indexed by π-Finite Spaces

Let X be a Kan complex. We will say that X is almost π-finite if, for each vertex x P X
and each n ě 0, the set πnpX,xq is finite (by virtue of Lemma E.1.6.5, this is equivalent to
the requirement that there exists a homotopy equivalence of Kan complexes X » X 1, where
X 1 has finitely many simplices of each dimension). We now summarize some elementary
facts about diagrams indexed by almost π-finite Kan complexes which will be needed in the
proof of Theorem E.6.0.7.

Lemma E.6.1.1. Let X be a Kan complex which is almost π-finite, let C be an essentially
small 8-category which admits finite limits, and suppose that every object of C is truncated.
Then:

p1q Every functor X Ñ C admits a limit in C.

p2q The Yoneda embedding j : C ãÑ PropCq preserves X-indexed limits.

Proof. Fix a diagram q : X Ñ C. Since X has only finitely many connected components, it
follows that there exists an integer n such that qpxq is n-truncated, for each point x P X.
Let C0 Ď C denote the full subcategory spanned by the n-truncated objects, so that q factors
through C0. Replacing C by C0, we may reduce to the case where C is equivalent to an
pn` 1q-category.

Since C admits finite limits, PropCq admits all small limits. Consequently, the diagram
j ˝ q admits a limit C P PropCq. To complete the proof, it will suffice to show that C
belongs to the essential image of j. Without loss of generality we can assume that X has
only finitely many simplices of each dimension. Let K be the pn` 1q-skeleton of X. Since
PropCq is equivalent to an pn ` 1q-category, the restriction map lim

ÐÝ
pj ˝ qq Ñ lim

ÐÝ
pj ˝ q|Kq

is an equivalence in PropCq. It will therefore suffice to show that lim
ÐÝ
pj ˝ q|Kq belongs

to the essential image of j, which follows because j preserves finite limits (Proposition
HTT.5.3.5.14 ).
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Lemma E.6.1.2. Let C be an essentially small 8-category which admits finite limits and
let X be a Kan complex which is almost π-finite. If every object of C is truncated, then the
canonical map θ : PropFunpX, Cqq Ñ FunpX,PropCqq is fully faithful.

Proof. Suppose we are given objects µ, ν P PropFunpX, Cqq, represented by filtered diagrams

tµα P FunpX, CquαPA tνβ P FunpX, CquβPB.

We wish to show that the canonical map

θµ,ν : MapPropFunpX,Cqqpµ, νq Ñ MapFunpX,PropCqqpθpµq, θpνqq

is a homotopy equivalence. Unwinding the definitions, we can identify θµ,ν with the map

lim
ÐÝ
βPB

lim
ÝÑ
αPA

lim
ÐÝ
xPX

MapCpµαpxq, µβpxqq Ñ lim
ÐÝ
xPX

lim
ÐÝ
βPB

lim
ÝÑ
αPA

MapCpµαpxq, µβpxqq.

Without loss of generality, we may suppose that X has only finitely many simplices of
each dimension. For each pair of indices α P A, β P B, let uα,β : X Ñ S denote the diagram
given by v ÞÑ MapCpµαpxq, µβpxqq. We are then reduced to proving that for each index
β P B, the canonical map

lim
ÝÑ
αPA

lim
ÐÝ
xPX

puα,βpxqq Ñ lim
ÐÝ
xPX

plim
ÝÑ
αPA

uα,βpxqq

is a homotopy equivalence. Since every object of C is truncated, we can choose an integer n
such that µβpxq is n-truncated for every vertex x P X. In this case, each of the diagrams
uα,β takes values in the full subcategory τďn S. Let K be the pn` 1q-skeleton of X, so that
we have a commutative diagram

lim
ÝÑαPA

lim
ÐÝ
puα,βq //

��

lim
ÐÝ
plim
ÝÑαPA

uα,βq

��
lim
ÝÑαPA

lim
ÐÝ
puα,β|Kq // lim

ÐÝ
plim
ÝÑαPA

uα,β|Kq

where the vertical maps are homotopy equivalences. It will therefore suffice to show that the
bottom horizontal map is a homotopy equivalence, which follows because filtered colimits in
the 8-category S are left exact.

Lemma E.6.1.3. Let X be a Kan complex which is almost π-finite. Then the canonical
map θ : PropFunpX,Sπqq Ñ FunpX,S^π q is an equivalence of 8-categories.

Proof. It follows from Lemma E.6.1.2 that θ is fully faithful. Let E Ď FunpX,S^π q denote
the essential image of θ. Since θ preserves small limits, the full subcategory E is closed
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under small limits in FunpX,S^π q. Fix a functor λ : X Ñ S^π ; we wish to prove that λ P E .
For each integer n, let λn : X Ñ S^π be the functor given by λnpxq “ τďnλpxq. Then λ is a
limit of the diagram tλnuně0. It will therefore suffice to show that each λn belongs to E .
Replacing λ by λn, we may suppose that λ takes values in the full subcategory τďn S^π .

Without loss of generality, we can assume that X has only finitely many simplices of
each dimension. Let K be the pn` 1q-skeleton of X. Using Variant HTT.4.2.3.16 , we can
choose a right cofinal map NpAq Ñ K, where A is a finite partially ordered set. Let f denote
the composite map NpAq Ñ K Ď X. Let f˚ : FunpX,S^π q Ñ FunpNpAq,S^π q denote the
functor given by composition with f , and let f˚ : FunpNpAq,S^π q Ñ FunpX,S^π q denote a
right adjoint to f˚, given by right Kan extension along f . For each point x P X, let NpAqx{
denote the fiber product NpAq ˆX Xx{, so that we have

pf˚f
˚λqpxq “ lim

ÐÝ
aPNpAqx{

λpfpaqq.

Since X is a Kan complex, the diagram

NpAqx{ //

��

Xx{

��
NpAq // X

is a homotopy pullback square with respect to the usual model structure on the category of
simplicial sets. Since NpAq is weakly homotopy equivalent to the pn` 1q-skeleton of X, it
follows that (a fibrant replacement for) NpAqx{ is pn` 1q-connective. Because λ takes values
in n-truncated objects of S^π , we deduce that the unit map λÑ pf˚f

˚λq is an equivalence.
We may therefore identify λ with f˚µ, where µ : NpAq Ñ S^π is a functor taking n-truncated
values.

Using Proposition HTT.5.3.5.15 , we can write µ as a filtered limit of functors tµβ :
NpAq Ñ Sπu. It follows that λ » lim

ÐÝβ
f˚µβ. Since E is closed under small limits, it will

suffice to prove that each of the functors f˚µβ belongs to E . In fact, we claim that each
of the functors f˚µβ belongs to FunpX,Sπq. To prove this, it will suffice to show that for
each point x P X, the limit lim

ÐÝaPNpAqx{
µβpaq belongs to the full subcategory Sπ Ď S^π . Let

µβ denote the restriction of µβ to NpAqx{, and let ν be a right Kan extension of µβ along
the projection NpAqx{ Ñ NpAq. Since Sπ is closed under finite limits in S^π , it will suffice
to show that ν takes values in Sπ. Unwinding the definitions, we see that for each a P A,
νpaq is given by the limit of the constant diagram txu ˆX tfpaqu Ñ S^π taking the value
µβpaq. This follows from Lemma E.6.1.1, since the path space txu ˆX tfpaqu satisfies the
requirement of Lemma E.6.1.1.
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E.6.2 The Proof of Theorem E.6.0.7

Let X be a π-finite space and let e0 P FunpX,S^π q be the constant functor taking the
value ˚. Since the Yoneda embedding j : Sπ ãÑ S^π preserves all colimits which exist in Sπ
(Proposition HTT.5.1.3.2 ), we have a canonical identification X » lim

ÝÑ
e0, which induces a

functor
F : FunpX,S^π q » FunpX,S^π q{e0

lim
ÝÑÝÝÑ pS^π q{X .

We wish to show that F is an equivalence of 8-categories. We begin by showing that the
functor F preserves filtered limits. Let tµαuαPA be a filtered diagram in FunpX,S^π q; we
wish to show that the canonical map F plim

ÐÝαPA
µαq Ñ lim

ÐÝαPA
F pµαq is an equivalence of

profinite spaces. Equivalently, we wish to show that for every π-finite space T , the canonical
map

θ : lim
ÝÑ
α

lim
ÐÝ
xPX

MapS^π pµαpxq, T q Ñ lim
ÐÝ
xPX

lim
ÝÑ
α

MapS^π pµαpxq, T q

is a homotopy equivalence. Using Lemma E.1.6.5, we may assume without loss of generality
that X has finitely many simplices of each dimension. Choose an integer n such that T is
n-truncated, and let K denote the pn` 1q-skeleton of X. Then θ can be identified with the
upper horizontal map in the diagram

lim
ÐÝxPX

MapS^π pµαpxq, T q
//

��

lim
ÐÝxPX

lim
ÝÑα

MapS^π pµαpxq, T q

��
lim
ÐÝxPK

MapS^π pµαpxq, T q
// lim
ÐÝxPK

lim
ÝÑα

MapS^π pµαpxq, T q

where the vertical maps are homotopy equivalences. It therefore suffices to show that the
bottom horizontal map is a homotopy equivalence, which follows because filtered colimits in
S are left exact.

We next prove that F is fully faithful. Using Lemma E.6.1.3 and Proposition HTT.5.3.5.11 ,
we are reduced to proving that the restriction F0 “ F |FunpX,Sπq is fully faithful, and that F0
takes values in the full subcategory of pS^π q{X spanned by the cocompact objects (that is,
the full subcategory spanned by those objects which are compact in the opposite 8-category
pS^π q

op
{X). Let µ, ν : X Ñ Sπ Ď S be functors, classifying Kan fibrations Yµ Ñ X Ð Yν

with essentially small fibers. Then F pµq and F pνq can be identified with the objects of
pSπq{X Ď pS^π q{X given by Yµ and Yν (see Proposition HTT.3.3.4.5 ). From this description
it is easy to see that the canonical map

MapFunpX,S^π qpµ, νq Ñ MappS^π q{X pF pµq, F pνqq

is a homotopy equivalence (both sides can be identified with the mapping space FunXpYµ, Yνq,
and that F pµq and F pνq are cocompact.
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Note that the functor F admits a right adjoint G, which carries a map of profinite spaces
Y Ñ X to the functor GpY q P FunpX,S^π q given on objects by the formula GpY qpxq “

txu ˆX Y . To complete the proof that F is an equivalence of 8-categories, it will suffice
to show that G is conservative. That is, we must show that if we are given a diagram of
profinite spaces

Y
g //

  

Y 1

~~
X

which induces an equivalence txu ˆX Y Ñ txu ˆX Y 1 for every point x P X, then g is
an equivalence. This follows immediately from the characterization of equivalences in S^π
supplied by Theorem E.3.1.6.

E.6.3 Universality of Colimits

Using Theorem ??, we can establish the universality of a large class of colimits in the
8-category S^π of profinite spaces.

Theorem E.6.3.1. Let f : X Ñ Y be a map of profinite spaces, and let f˚ : pS^π q{Y Ñ
pS^π q{X be the functor given by f˚pY 1q “ X ˆY Y

1. Let K be a simplicial set having only
finitely many simplices of each dimension. Then the functor f˚ preserves K-indexed colimits.

Corollary E.6.3.2. Let f : X Ñ Y be a map of profinite spaces, and let f˚ : pS^π q{Y Ñ
pS^π q{X be the functor given by f˚pY 1q “ X ˆY Y

1. Then f preserves geometric realizations
of simplicial objects.

Corollary E.6.3.3. Let K be a simplicial set with only finitely many simplices in each
degree. Then the Cartesian product functor S^π ˆS^π Ñ S^π preserves K-indexed colimits
separately in each variable. In particular, it preserves geometric realizations of simplicial
objects.

The proof of Theorem E.6.3.1 will require some preliminaries.

Lemma E.6.3.4. Let K be a simplicial set with only finitely many simplices of each
dimension, and let lim

ÝÑ
: FunpK,S^π q Ñ S^π denote the colimit functor. Then lim

ÝÑ
commutes

with filtered limits.

Proof. Let tµα : K Ñ S^π uαPA be a filtered diagram in FunpK,S^π q. We wish to show that
the canonical map lim

ÝÑ
plim
ÐÝαPA

µαq Ñ lim
ÐÝαPA

plim
ÝÑ

µαq is an equivalence of profinite spaces.
Equivalently, we wish to show that for every π-finite space T , the canonical map

θ : lim
ÝÑ
αPA

lim
ÐÝ
vPK

MapS^π pµαpvq, T q Ñ lim
ÐÝ
vPK

lim
ÝÑ
αPA

MapS^π pµαpvq, T q
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is a homotopy equivalence. Choose an integer n such that T is n-truncated, and let K0
denote the pn` 1q-skeleton of K. Then the vertical maps in the diagram

lim
ÝÑαPA

lim
ÐÝvPK

MapS^π pµαpvq, T q
θ //

��

lim
ÐÝvPK

lim
ÝÑαPA

MapS^π pµαpvq, T q

��
lim
ÝÑαPA

lim
ÐÝvPK0

MapS^π pµαpvq, T q
θ1 // lim

ÐÝvPK0
lim
ÝÑαPA

MapS^π pµαpvq, T q

are homotopy equivalences. We are therefore reduced to proving that θ1 is a homotopy
equivalence, which follows because filtered colimits are left exact in the 8-category S.

We are now in a position to prove a weak form of Theorem E.6.3.1:

Lemma E.6.3.5. Let f : X Ñ Y be a map of profinite spaces, and let f˚ : pS^π q{Y Ñ pS^π q{X
be the functor given by f˚pY 1q “ X ˆY Y

1. Then the functor f˚ preserves finite colimits.

Proof. Since the functor f˚ preserves initial objects, it will suffice to show that f˚ preserves
pushout squares (Corollary HTT.4.4.2.5 ). To prove this, suppose we are given a diagram σ :

W

~~   
X

  

Y

~~
Z 1 // Z

in the 8-category S^π . We wish to prove that the canonical map

θ : pZ 1 ˆZ Xq >Z1ˆZW pZ 1 ˆZ Y q Ñ Z 1 ˆZ pX >W Y q

is an equivalence of profinite spaces. Using Proposition HTT.5.3.5.15 , we can write σ as a
filtered limit of diagrams σα:

Wα

}} !!
Xα

!!

Yα

~~
Z 1α // Zα

of π-finite spaces. Using Lemma E.6.3.4, we see that θ can be written as a filtered limit of
maps

θα : pZ 1α ˆZα Xαq >pZ1αˆZαWαq pZ
1
α ˆZα Yαq Ñ Z 1α ˆZα pXα >Wα Yαq.

Each of these maps is an equivalence by virtue of Corollary E.6.0.8.
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Proof of Theorem E.6.3.1. Let K be a simplicial set with only finitely many vertices of each
dimension, and suppose we are given a diagram q : K Ñ pS^π q{X . We wish to show that
the canonical map lim

ÝÑvPK
Y ˆX qpvq Ñ Y ˆX lim

ÝÑvPK
qpvq is an equivalence of profinite

spaces. For this, it will suffice to show that for each integer n ě 0, the induced map
τďnplimÝÑvPK

Y ˆX qpvqq Ñ τďnpY ˆX lim
ÝÑvPK

qpvqq is an equivalence. Let K0 denote the
pn` 2q-skeleton of K, so that we have a commutative diagram

τďnplimÝÑvPK0
Y ˆX qpvqq //

φ

��

τďnpY ˆX lim
ÝÑvPK0

qpvqq

ψ

��
τďnplimÝÑvPK

Y ˆX qpvqq // τďnpY ˆX lim
ÝÑvPK

qpvqq.

It follows from Lemma E.6.3.5 that the lower horizontal map in this diagram is an equivalence.
It will therefore suffice to show that the the maps φ and ψ are equivalences. For φ, this is
clear: the 8-category of n-truncated objects of S^π is equivalent to an pn` 1q-category, so
the colimit of a K-indexed diagram in τďn S^π is equivalent to the colimit of its restriction
to K0. The same argument shows that the map τďn`1 lim

ÝÑvPK0
qpvq Ñ τďn`1 lim

ÝÑvPK
qpvq is

an equivalence, so the the map lim
ÝÑvPK0

qpvq Ñ lim
ÝÑvPK

qpvq is pn` 1q-connective. It follows
that the map Y ˆX lim

ÝÑvPK0
qpvq Ñ Y ˆX lim

ÝÑvPK
qpvq is also pn` 1q-connective, so that ψ

is an equivalence as desired.

E.6.4 Digression: Bar Constructions

Let Y be a connected profinite space with a base point y P Y . According to Theorem
E.5.0.4, Y can be functorially recovered from its loop space G “ ΩY , regarded as a group
object of S^π . We will prove below that the 8-category pS^π q{Y of profinite spaces over Y can
be identified with the 8-category of profinite spaces equipped with an action of G (Theorem
E.6.5.1). First, we need some general remarks about group actions in the 8-categorical
setting.

Notation E.6.4.1. Let C be an 8-category which admits finite limits and geometric
realizations of simplicial objects, and suppose that Cartesian product functor Cˆ C Ñ C
preserves geometric realizations separately in each variable. We will regard C as endowed
with the Cartesian symmetric monoidal structure, so that every group object G of C can be
identified with an associative algebra object of C. In this case, we can think of LModGpCq as
the 8-category of objects of C equipped with a left action of G, RModGpCq as the 8-category
of spaces equipped with a right action of G. It follows from Theorem HA.4.4.2.8 the relative
tensor product functor bG : RModGpCq ˆ LModGpCq Ñ C is well-defined, and is computed
by the two-sided bar construction

X bG Y “ |BarGpX,Y q‚| BarGpX,Y qn “ X ˆGn ˆ Y.
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Example E.6.4.2. Let C be an 8-category satisfying the hypotheses of Notation E.6.4.1,
and let G be a group object of C. Using Corollary HA.4.2.3.3 , we see that the final object
˚ P C can be regarded as a (left or right) G-module in an essentially unique way. We let
BG denote the relative tensor product ˚ bG ˚. Unwinding the definitions, we see that the
two-sided bar construction BarGp˚, ˚q‚ agrees with G (as a simplicial object of C), so that
the construction G ÞÑ BG is left adjoint to the functor Ω : C˚ Ñ GrppCq of Remark E.5.5.2.
We will refer to BG as the classifying space of G.

Construction E.6.4.3. Let C be an 8-category satisfying the hypotheses of Notation
E.6.4.1, and let G be a group object of C. The construction X ÞÑ X bG ˚ determines a
functor RModGpCq Ñ C, which carries the final object of RModGpCq to the classifying space
BG. It therefore induces a functor RModGpCq » RModGpCq{˚ Ñ C{BG, which we will denote
by X ÞÑ X{G. We will refer to X{G as the quotient of X by G.

Proposition E.6.4.4. Let C be an 8-category which admits finite limits and geometric
realizations of simplicial objects, and assume that the Cartesian product functor Cˆ C Ñ C
preserves geometric realizations of simplicial objects. Let G be a group object of C, and
let U : RModGpCq Ñ C{BG be the functor given by X ÞÑ X{G. Then U admits a right
adjoint V . Moreover, the composite functor C{BG

V
Ñ RModGpCq Ñ C is given on objects by

V pf : Y Ñ BGq “ fibpfq.

Proof. Let E0 denote the full subcategory of Funp∆opˆ∆1, Cq ˆFunp∆opˆt1u,Cq tGu spanned
by those morphisms Z Ñ G between simplicial objects of C which satisfy the following
condition:

p˚q For each n ě 0, the inclusion t0u ãÑ rns induces a map Zn Ñ Z0 which exhibits Zn as
a product of Z0 with Gn.

Proposition HA.4.2.2.9 supplies an equivalence of 8-categories RModGpCq Ñ E0 which
carries a right G-module X to the map C given by the two-sided bar construction BarGpX, ˚q‚,
where ˚ denotes the final object of C, which we regard as a left G-module (together with the
evident map of simplicial objects BarGpX, ˚q‚ Ñ BarGp˚, ˚q‚ » G).

Let G : ∆op
` Ñ C be a colimit of the simplicial object G of C (so that G is an augmented

simplicial object of C with G´1 “ BG). Let K` Ď ∆op
` ˆ∆1 denote the full subcategory

obtained by removing the objects prns, 0q for n ě 0. Let E´ denote the full subcategory
of FunpK´, Cq ˆFunp∆op

`
ˆt1u,Cq tGu spanned by those functors which satisfy p˚q, let E de-

note the inverse image of E´ in Funp∆op
` ˆ∆1, Cq, and let E` denote the fiber product

FunpK`, Cq ˆFunp∆op
`
ˆt1u,Cq tGu.
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We have evident restriction maps E´ u˚
Ð E v˚

Ñ E`. Note that the diagram of 8-categories

∆opˆt1u //

��

∆op
` ˆt1u

��
∆opˆ∆1 // E´

is a homotopy pushout square. The restriction map E´ Ñ E0 is trivial Kan fibration, so that
we have an equivalence of 8-categories E´ » RModGpCq. The 8-category E` is isomorphic
as a simplicial set to C{BG, hence equivalent to C{BG.

Since C admits geometric realizations of simplicial objects, the functor u˚ admits a
left adjoint u!, given by left Kan extension along the inclusion E´ ãÑ E . Unwinding the
definitions, we see that the composite functor see that the composite functor

RModGpCq » E´
u!
Ñ E v˚

Ñ E` » C{BG

pX P RModGpCqq ÞÑ |BarGpX, ˚q‚| “ X{G.

Since C admits finite limits, the functor v˚ admits a right adjoint v˚ given by right Kan
extension along the inclusion E` ãÑ E . It follows that U admits a right adjoint V , given by
the composition

C{BG » E`
v˚
Ñ E u˚

Ñ E´ » RModGpCq.

More concretely, this functor is given by

pf : Y Ñ G´1q ÞÑ G0 ˆG´1
Y “ fibpfq

(endowed with appropriate action of G).

E.6.5 Bar Construction

According to Corollary E.6.3.3, the formation of Cartesian products of profinite spaces
determines a functor

S^π ˆS^π Ñ S^π pX,Y q ÞÑ X ˆ Y

which preserves preserves geometric realizations of simplicial object. It follows that the
8-category S^π of profinite spaces satisfies the hypotheses of Notation E.6.4.1. In particular,
if G is a group object of the 8-category S^π and X is a profinite space equipped with a right
action of G, then we can define the quotient X{G as in Construction E.6.4.3. We can now
formulate our main result:

Theorem E.6.5.1. Let G be a group object of the 8-category S^π . Then the construction
X ÞÑ X{G determines an equivalence of 8-categories U : RModGpS^π q Ñ pS^π q{BG.
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Proof. According to Proposition E.6.4.4, the functor U admits a right adjoint V . We
first claim that V is fully faithful: that is, for every object Y P pS^π q{BG, the counit map
v : pU ˝ V qpY q Ñ Y is an equivalence of profinite spaces. Let us identify G with a simplicial
object K‚ of C. The proof of Proposition E.6.4.4 shows that v can be identified with the
composite map |K‚ ˆBG Y | v

1

Ñ |K‚| ˆBG Y
v2
Ñ Y . The map v2 is evidently an equivalence,

and v1 is an equivalence by virtue of Corollary E.6.3.2 (the statement that v is an equivalence
can also be deduced directly from Proposition E.5.5.3).

We now complete the proof by showing that the functor V is essentially surjective. Using
Corollaries E.6.3.3 and HA.4.2.3.5 , we see that the forgetful functor f : RModGpS^π q Ñ S^π
preserves geometric realizations of simplicial objects. Corollary E.6.3.2 and Proposition
E.6.4.4 imply that the composite functor fV : pS^π q{BG Ñ S^π also preserves geometric
realizations of simplicial objects. Because f is conservative, this implies that V preserves
geometric realizations of simplicial objects. Since V is fully faithful, the essential image of V
is closed under geometric realizations in RModGpS^π q. By virtue of Proposition HA.4.7.3.14 ,
we are reduced to proving that the essential image of V contains all free right G-modules:
that is, right G-modules of the form Y ˆG, where Y is a profinite space. This is clear, since
Y ˆG can be identified with V pY q, where Y Ñ BG is nullhomotopic.

Remark E.6.5.2. Let X and Y be connected pointed profinite spaces, with loop spaces
G “ ΩX and H “ ΩY . Then we can regard the 8-categories

pS^π q{X » RModGpS^π q pS^π q{Y » RModHpS^π q

as tensored over S^π (which we regard as a symmetric monoidal 8-category via the Cartesian
product). Let LinFunS^π pS

^
π , pS^π q{XqpS^π q{Y denote the 8-category of S^π -linear functors

from pS^π q{X to pS^π q{Y which commute with geometric realizations of simplicial objects.
Then Theorem HA.4.8.4.1 supplies an equivalence of 8-categories

LinFunS^π
S^π ppS

^
π q{X , pS^π q{Y q » GBModHpS^π q.

Using Theorem E.6.5.1, we can identify the left hand side with the8-category pS^π q{XˆY . We
can describe this equivalence more concretely as follows: it associates to each correspondence
M Ñ X ˆ Y the functor pS^π q{X Ñ pS^π q{Y given by X 1 ÞÑM ˆX X 1.

E.7 Profinite Spaces of Finite Type

In this section, we will study the following finiteness condition in profinite homotopy
theory:

Definition E.7.0.3. Let X be a profinite space. We will say that X is of finite type if, for
every π-finite space Y , the mapping space MapS^π pX,Y q is π-finite.
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Remark E.7.0.4. Let X be a profinite space. If X is of finite type, then π0X is finite. It
follows that a profinite space is of finite type if and only if it can be written as a disjoint
union of finitely many connected profinite spaces of finite type.

Our main result asserts that for simply connected profinite spaces, Definition E.7.0.3
admits a number of reformulations:

Theorem E.7.0.5. Let X be a simply connected profinite space. The following conditions
are equivalent:

p1q The profinite space X is of finite type.

p2q For every prime number p and every integer n ě 0, the cohomology group HnpX; Fpq

is finite (see Definition E.7.1.1).

p3q For every prime number p and every integer n ě 2, the cokernel of the map πnX
p
Ñ πnX

is finite.

E.7.1 Cohomology of Profinite Spaces

Our first step is to introduce the definitions of the cohomology groups HnpX; Fpq which
appear in the statement of Theorem E.7.0.5. We begin by reviewing the definition of
cohomology groups in classical homotopy theory.

Definition E.7.1.1. If X is a Kan complex and M is an abelian group, we let C˚pX;Mq
denote the chain complex of M -valued cochains on X. The construction X ÞÑ C˚pX;Mq
carries homotopy equivalences of Kan complexes to quasi-isomorphisms of chain complexes,
and therefore induces a functor of 8-categories Sop Ñ ModZ which we will denote by
C˚p‚,Mq.

Applying Proposition HTT.5.3.5.10 , we deduce that there is an essentially unique functor
pS^π qop Ñ ModZ which commutes with filtered colimits and coincides with C˚p‚;Mq on the
full subcategory Sπ Ď S^π of π-finite spaces. We will abuse notation by denoting this functor
also by X ÞÑ C˚pX;Mq.

If X is a profinite space and n ě 0 is an integer, we let HnpX;Mq denote the homotopy
group π´nC

˚pX;Mq. We will refer to HnpX;Mq as the nth cohomology group of X with
coefficients in M .

Remark E.7.1.2. Let M be an abelian group, and let X be a profinite space represented
by a filtered diagram of π-finite spaces tXαu. By definition, C˚pX;Mq is given by the
filtered colimit lim

ÝÑ
C˚pXα;Mq. In particular, we have canonical isomorphisms HnpX;Mq “

lim
ÝÑ

HnpXα;Mq.
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Example E.7.1.3. Let X be a profinite space and let M be an abelian group. Using
Remark E.7.1.2 and Proposition E.5.2.2, we see that H0pX;Mq can be identified with the
set of locally constant M -valued functions on π0X.

Example E.7.1.4. Let G be a profinite group, and let BG P S^π be the classifying space
of G (Example E.6.4.2). For each integer n, we can identify HnpBG;Mq with the profinite
group cohomology of G with coefficients in M (see, for example, [189]).

Remark E.7.1.5. Let M be an abelian group. Then the functor pS^π qop Ñ ModZ X ÞÑ

C˚pX;Mq is a left Kan extension of its restriction to the full subcategory Sop
π Ď pS^π qop.

Because the functor X ÞÑ C˚pMatpXq;Mq agrees with X ÞÑ C˚pX;Mq when X is π-finite,
we obtain a comparison map C˚pX;Mq Ñ C˚pMatpXq;Mq, depending functorially on X

and M . In particular, we obtain natural maps HnpX;Mq Ñ HnpMatpXq;Mq. If X is a
profinite space, we can think of HnpX;Mq as a continuous version of the usual cohomology
of the materialization MatpXq. For example, H0pMatpXq;Mq can be identified with the set
of all M -valued functions on the set π0X, while H0pX;Mq can be identified with the set of
M -valued functions on π0X which are continuous with respect to the Stone space topology
on π0X (Example E.7.1.3).

Remark E.7.1.6. Let M be a finite abelian group and let n ě 0 be an integer, so that the
Eilenberg-MacLane spaceKpM,nq is π-finite. Then the functorX ÞÑ π0 MapS^π pX,KpM,nqq

agrees with with the functor X ÞÑ HnpX;Mq on π-finite spaces and commutes with filtered
colimits, and therefore agrees with the functor X ÞÑ HnpX;Mq on all profinite spaces. In
other words, the functor X ÞÑ HnpX;Mq is representable (in the homotopy category of
profinite spaces) by the Eilenberg-MacLane space KpM,nq.

Remark E.7.1.7. Let M be an abelian group, let X be a space, and let X^π be the profinite
completion of X. Composing the map C˚pX^π ;Mq Ñ C˚pMatpX^π q;Mq of Remark E.7.1.5
with pullback along the unit map X Ñ MatpX^π q, we obtain a canonical map C˚pX^π ;Mq Ñ
C˚pX;Mq. If the abelian group M is finite, then this map is an equivalence. To prove this,
it suffices to show that for each n ě 0, the induced map HnpX^π ;Mq Ñ HnpX;Mq is an
isomorphism. This is clear: both sides can be identified with the set of homotopy classes of
maps from X into the Eilenberg-MacLane space KpM,nq (see Remark E.7.1.6).

E.7.2 The Künneth Formula

Let κ be a commutative ring. Then we can regard the construction X ÞÑ C˚pX;κq as a
functor from Sop to the 8-category of E8-algebras over κ. Consequently, the construction
Definition E.7.1.1 can be refined to obtain a functor C˚p‚;κq : pS^π qop Ñ CAlgκ.
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Proposition E.7.2.1. Let κ be a field, and suppose we are given a pullback diagram

X 1 //

��

X

φ
��

Y 1 // Y

of profinite spaces. If Y is simply connected, then the diagram σ :

C˚pX 1;κq C˚pX;κqoo

C˚pY 1;κq

OO

C˚pY ;κq

OO

oo

is a pushout square in CAlgκ.

Proof. Using Proposition HTT.5.3.5.15 , we can write the diagram X
φ
Ñ Y

ψ
Ð Y 1 as a filtered

limit of diagrams Xα
φα
Ñ Yα

ψα
Ð Y 1α of π-finite spaces. Since Y is simply connected, we may

assume without loss of generality that each Yα is simply connected. It follows that σ is a
filtered colimit of diagrams σα :

C˚pXα ˆYα Y
1
α;κq C˚pXα;κqoo

C˚pY 1α;κq

OO

C˚pYα;κq.

OO

oo

We may therefore reduce to the case where X, Y , and Y 1 (and therefore also X 1) are π-finite.
For each y P Y , let Xy denote the homotopy fiber of φ over the point y. Using Corollary ??
(and the simple-connectivity of Y ), we are reduced to proving that the cohomology groups
HnpXy;κq are finite-dimensional as vector spaces over κ, for each n ě 0. Using Lemma
E.1.6.5, we may assume that Xy has only finitely many simplices of each dimension, in which
case the result is obvious.

Corollary E.7.2.2. Let X and Y be simply connected profinite spaces. For every field κ,
the canonical map

C˚pX;κq bκ C˚pY ;κq Ñ C˚pX ˆ Y ;κq

is an equivalence. In particular, we have a canonical isomorphism

H˚pX;κq bκ H˚pY ;κq Ñ H˚pX ˆ Y ;κq.

Remark E.7.2.3. Let κ be a field, and suppose we are given a pullback diagram of profinite
spaces

X 1 //

��

X

φ
��

Y 1 // Y



2280 APPENDIX E. PROFINITE HOMOTOPY THEORY

where Y is simply connected. Combining Propositions E.7.2.1 and HA.7.2.1.19 , we obtain
a spectral sequence tEp,qr , drurě2 converging to H˚pX 1;κq, whose second page is given by
TorH˚pY ;κq

˚ pH˚pY 1;κq,H˚pX;κqq; when Y is a point, this spectral sequence degenerates and
yields the isomorphism of Corollary E.7.2.2.

E.7.3 Singular Elements of Profinite Abelian Groups

We now discuss the finiteness condition that appears in condition p3q of Theorem E.7.0.5.

Definition E.7.3.1. Let M be a finite abelian group, and let p be a prime number. We
will say that an element x P M is p-singular if pdx “ 0 for d " 0. If M is a profinite
abelian group, we will say that an element x PM is topologically p-singular if the sequence
x, px, p2x, . . . converges to the identity element of M .

Remark E.7.3.2. Let M be a profinite abelian group. An element x PM is topologically
p-singular if and only if, for every open subgroup N Ď M , the image of x is a p-singular
element of the finite abelian group M{N . In particular, the collection of topologically
p-singular elements of M forms a closed subgroup Mp ĎM .

Remark E.7.3.3. Let M be a finite abelian group. Then M is isomorphic to the product
ś

pMp, where p ranges over all prime numbers and Mp denotes the subgroup of M consisting
of p-singular elements.

Remark E.7.3.4. Let M be a profinite abelian group. Combining Remarks E.7.3.2 and
E.7.3.3, we deduce that M factors canonically as a product

ś

pMp, where p ranges over
all prime numbers and Mp denotes the subgroup of p consisting of topologically p-singular
elements. Note that each factor Mp can be regarded as a module over the ring Zp “
lim
ÐÝdě0 Z {pd Z of p-adic integers.

Proposition E.7.3.5. Let M be a profinite abelian group. The following conditions are
equivalent:

p1q For every prime number p, the subgroup Mp ĎM of topologically p-singular elements
is finitely generated as a module over the ring Zp of p-adic integers.

p2q For every prime number p, the subgroup Mp ĎM of topologically p-singular elements
is isomorphic (as an abstract group) to a finite product of groups of the form Zp and
Zp {pd Zp.

p3q For every prime number p, there are only finitely many group homomorphisms from
M to Fp.

p4q For each prime number p, there are only finitely many continuous group homomor-
phisms from M to Fp.
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p5q For every prime number p, the quotient M{pM is finite.

p6q For every prime number p, the multiplication map p : M ÑM has open image.

Definition E.7.3.6. Let M be a profinite abelian group. We will say that M is of finite
type if it satisfies the equivalent conditions of Proposition E.7.3.5. If X is a simply connected
profinite space, then we will say that X is of finite type if the homotopy groups tπmXumě2
are of finite type (when regarded as profinite abelian groups).

Remark E.7.3.7. Let M be a profinite abelian group. We will say that M is topologically
finitely generated if there exists a finitely generated subgroup of M which is dense in M .
In this case, M can be written as a quotient of pZd for some d ě 0, where pZ » lim

ÐÝ
Z {nZ

denotes the profinite completion of Z. It follows that if M is topologically finitely generated,
then M is of finite type. However, the converse fails. For example, the profinite group
ś

ppZ {pZqp is of finite type, but is not topologically finitely generated.

Proof of Proposition E.7.3.5. The implication p1q ñ p2q follows from the structure theory of
finitely generated modules over the discrete valuation ring Zp. Since the inclusion Mp ãÑM

induces an isomorphism Mp{pMp »M{pM , the implications p2q ñ p3q ñ p4q are obvious.
Note that the maps p : M ÑM are closed, so that each the quotient M{pM inherits the
structure of a compact Hausdorff topological group. In particular, M{pM is finite if and
only if the identity element comprises an open subset of M{pM , which is equivalent to the
requirement that pM is open in M . This proves p5q ô p6q.

We next prove that p4q ñ p5q. Write M as an inverse limit lim
ÐÝ

Mα, where each Mα

is a finite abelian group. Let Vectfin
Fp denote the category of finite-dimensional vector

spaces over the finite field Fp. Then we can identify M{pM with the inverse limit of the
diagram tMα{pMαu in Vectfin

Fp , representing a pro-object of Vectfin
Fp . Vector space duality

determines an equivalence of categories pVectfin
Fpq

op » Vectfin
Fp , which extends to an equivalence

PropVectfin
Fpq

op » IndpVectfin
Fpq » VectFp . The image of the diagram tMα{pMαu under this

equivalence can be identified with the set HomcpM,Fpq of continuous group homomorphisms
from M to Fp. Condition p4q implies that HomcpM,Fpq P Vectfin

Fp Ď VectFp : that is, the
Ind-object obtained by applying vector space duality to tMα{pMαu is constant. It follows
that the Pro-system tMα{pMαu is also constant, so that M{pM is a retract of some Mα{pMα,
and is in particular finite.

We now complete the proof by showing that p5q ñ p1q. Replacing M by Mp, we may
suppose that M is a p-profinite abelian group (see Definition ??). Choose a basis txiu1ďiďn
for the Fp-vector space M{pM . Each xi can be lifted to an element xi PM , which determines
a group homomorphism φi : Z Ñ M . Since M is a profinite p-group, the map φi factors
through the p-profinite completion Zp of Z. We therefore obtain a sequence of continuous
maps φi : Zp Ñ M . Since M is abelian, we can add these homomorphisms to obtain a
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continuous group homomorphism φ : Znp ÑM . We claim that φ is surjective. Since Znp is
compact, it will suffice to show that the image of φ is dense. In other words, we must show
that if ψ : M Ñ N is a continuous surjection for some finite group N , then the composite
map ψ ˝ φ : Znp Ñ N is surjective. Since the action of p is nilpotent on N , it suffices to show
that the composite map θ : Znp Ñ N{pN is surjective (by Nakayama’s lemma). This is clear,
since θ is a composition of surjections Znp Ñ Fn

p »M{pM Ñ N{pN .

E.7.4 The Hurewicz Theorem

We now begin to connect Definition E.7.3.6 with finiteness hypotheses on profinite spaces.

Proposition E.7.4.1. Let X be a profinite space which is n-connective for some n ě 1,
and let M be an abelian group. There are canonical isomorphisms

HmpX;Mq »

$

’

’

&

’

’

%

M if m “ 0
0 if 0 ă m ă n

HomcpπnX,Mq if m “ n.

Here HomcpπnX,Mq denotes the collection of continuous group homomorphisms from
πnpX,xq to M (where we regard M as endowed with the discrete topology), where x is
an arbitrarily chosen base point of X.

Corollary E.7.4.2. Let X be a profinite space which is n-connective for some n ě 2. The
following conditions are equivalent:

p1q The profinite abelian group πnX is of finite type.

p2q The cohomology group HnpX; Fpq is finite, for every prime number p.

Proof of Proposition E.7.4.1. Choose a point x P X. Since X is n-connective, we can write
X as the limit of a filtered diagram tXαu of n-connective π-finite spaces. Let xα denote
the image of x in Xα, and let πnXα denote the finite group πnpXα, xαq. Since each Xα is
n-connective, the Hurewicz and universal coefficient theorems of classical homotopy theory
supply isomorphisms

HmpXα;Mq »

$

’

’

&

’

’

%

M if m “ 0
0 if 0 ă m ă n

HompπnXα,Mq if m “ n.

Since H˚pX;Mq » lim
ÝÑ

H˚pXα;Mq, we obtain canonical isomorphisms

HmpX;Mq »

$

’

’

&

’

’

%

M if m “ 0
0 if 0 ă m ă n

lim
ÝÑ

HompπnXα,Fpq if m “ n.
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It now suffices to observe that the profinite group πnX is given as the limit of the filtered
system of finite groups πnX, so that HomcpπnX,Mq » lim

ÝÑ
HompπnXα,Mq.

E.7.5 A Convergence Theorem

The main ingredient in our proof of Theorem E.7.0.5 is the following technical result,
which will also play an important role in §E.8:

Proposition E.7.5.1. Let n ě 1, let p be a prime number, and consider the tower of spaces
tKpZ {pa Z, nquaě0 having limit KpZp, nq P S. For every integer m ě 0, the pro-system of
abelian groups HmpKpZ {pa Z, nq; Fpq is equivalent to the constant pro-system with value
HmpKpZp, nq; Fpq.

Remark E.7.5.2. If M is a finite abelian group, then the Eilenberg-MacLane spaces
KpM,nq can be represented by Kan complexes having only finitely many simplices of each
dimension. It follows immediately that the groups HmpKpM,nq; Fpq are finite for every
prime number p and every integer m ě 0. Proposition E.7.5.1 implies that the tower of
abelian groups tHmpKpZ {pd Z, nq; Fpqudě0 is equivalent (as a Pro-abelian group) to the
abelian group HmpKpZp, nq; Fpq. It follows that the group HmpKpZp, nq; Fpq is isomorphic
to a retract of KpZ {pd Z, nq; Fpq for d " 0. In particular, HmpKpZp, nq; Fpq is a finite group.

For the proof of Proposition E.7.5.1, we will need the following standard fact:

Lemma E.7.5.3. Let M be an abelian group, and let p be a prime number for which the
map p : M ÑM is an isomorphism. Then, for every integer n ě 1, the augmentation map
C˚pKpM,nq; Fpq Ñ Fp is an equivalence.

Proof. For every abelian group N , the classifying space BN can be constructed as a
simplicial abelian group, so that the homology H˚pBN ; Fpq inherits the structure of a
graded commutative ring. Note that we have canonical isomorphisms H1pBN ; Fpq »

pπ1BNq{ppπ1BNq » N{pN . If N is a free abelian group of finite rank, an elementary
calculation shows that this extends to an isomorphism of H˚pBN ; Fpq with an exterior
algebra (over Fp) on the vector space N{pN . More generally, if N is a torsion-free abelian
group, then writing N as a union of its finitely generated submodules, we obtain an
isomorphism H˚pBN ; Fpq »

Ź˚
pN{pNq.

Choose an exact sequence of Zrp´1s-modules 0 Ñ QÑ P ÑM Ñ 0, where P is a free
Zrp´1s-module. Then P and Q are torsion-free, and the quotients P {pP and Q{pQ are
trivial. It follows from the above arguments that C˚pBP ; Fpq » C˚pBQ; Fpq » κ. Note that
we can identify BM with the quotient of BP by the action of BQ, so that

C˚pBM ; Fpq » C˚pBP ; Fpq bC˚pBQ;Fpq Fp » Fp bFp Fp » Fp.



2284 APPENDIX E. PROFINITE HOMOTOPY THEORY

This completes the proof in the special case n “ 1.
We handle the general case using induction on n. Assume that the counit map

C˚pKpM,nq; Fpq Ñ Fp is an equivalence. We can regard KpM,nq as a simplicial abelian
group, whose classifying space can be identified with KpM,n ` 1q. We therefore have a
canonical equivalence

C˚pKpM,n` 1q; Fpq » Fp bC˚pKpM,nq;Fpq Fp » Fp bFp Fp » Fp,

as desired.

Proof of Proposition E.7.5.1. We first treat the case n “ 1. We have a fiber sequence of
simply connected spaces KpZ, 1q Ñ KpZp, 1q Ñ KpZp {Z, 1q. Since multiplication by p is
invertible on Zp {Z, we have HmpKpZp {Z, 1q; Fpq » 0 for m ą 0. Using the Serre spectral
sequence, we deduce that the map KpZ, 1q Ñ KpZp, 1q induces an isomorphism on homology
groups with coefficients in Fp. It will therefore suffice to show that, for each m ě 0, the
pro-system tHmpKpZ {pa Z, 1q; Fpquaě0 is equivalent to the constant pro-system taking the
value

HmpKpZ, 1q; Fpq »

#

Fp if m P t0, 1u
0 otherwise.

For each a ě 1, let εa P H1pKpZ {pa Z, 1q; Fpq classify the unit map Z {pa Z Ñ Z {pZ » Fp,
and let ηa P H2pKpZ {pa Z, 1q; Fpq classify the central extension 0 Ñ Fp Ñ Z {pa`1 Z Ñ

Z {pa Z Ñ 0. Then H˚pKpZ {pa Z, 1q; Fpq has a basis given by the products ηi and εaη
i
a

for i ě 0. Note that the image of ηa in H2pKpZ {pa`1 Z, 1q; Fpq is zero (since the central
extension classified by ηa splits over Z {pa`1 Z), and the image of εa in H1pKpZ {pa`1 Z, 1qq
is εa`1. It follows that the maps

HmpKpZ {pZ, 1q; Fpq Ñ HmpKpZ {p2 Z, 1q; Fpq Ñ HmpKpZ {p3 Z, 1q; Fpq Ñ ¨ ¨ ¨

are isomorphisms for m ď 1 and zero for m ą 1. Passing to dual spaces, we conclude that
the tower

¨ ¨ ¨ Ñ HmpKpZ {p3 Z, 1q; Fpq Ñ HmpKpZ {p2 Z, 1q; Fpq Ñ HmpKpZ {pZ, 1q; Fpq

consists of isomorphisms for m ď 1 and zero maps for m ą 1. We now complete the proof
(in the case n “ 1) by observing that the maps HmpKpZ, 1q; Fpq Ñ HmpKpZ {pZ, 1q; Fpq

are isomorphisms for m ď 1.
We now treat the general case. Since ModFp is a presentable symmetric monoidal

8-category, there is a unique colimit-preserving symmetric monoidal functor S Ñ ModFp .
Let us denote this functor by X ÞÑ C˚pXq. Note that the homology groups of a space X are
given by the formula HmpX; Fpq “ πmC˚pXq. It will therefore suffice to prove the following:
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p˚q For every integer m, the Pro-object tτďmC˚pKpZ {pa Z, nqquaě0 of ModFp is equivalent
to the constant Fp-module spectrum τďmC˚pKpZp, nqq.

Since the functor X ÞÑ τďmC˚pXq is a successive extension of the functors X ÞÑ HapX; Fpq

for 0 ď a ď m, the proof given above shows that p˚q holds when n “ 1. To prove p˚q
in general, we proceed by induction on n. Suppose that n ą 1. Let X‚ be a Čech nerve
of the map ˚ Ñ KpZp, nq, so that X‚ is a group object of S. Since C˚ is a symmetric
monoidal functor, we deduce that C˚pX1q is an associative algebra object of ModFp ; here
X1 “ ˚ ˆKpZp,nq ˚ » KpZp, n´ 1q. Since KpZp, nq is connected, the canonical map |X‚| Ñ
KpZp, nq is an equivalence. Because C˚ preserves colimits, we deduce that C˚pKpZp, nqq
is given by |C˚pX‚q|. Unwinding the definitions, we see that this geometric realization
corresponds to the bar construction Fp bC˚pKpZp,n´1qq Fp. Similar reasoning yields an
equivalence C˚pKpZ {pa Z, nqq » Fp bC˚pKpZ {pa Z,n´1qq Fp for each a ě 0. We have a
commutative diagram of Pro-objects

Fp bC˚pKpZp,n´1qq Fp
//

��

tFp bC˚pKpZ {pa Z,n´1qq Fpu

��
C˚pKpZp, nqq // tC˚pKpZ {pa Z, nqqu

where the vertical maps are equivalences. Using the inductive hypothesis, we deduce that
upper horizontal map becomes an equivalence after applying the truncation functor τďm. It
follows that the lower horizontal map becomes an equivalence after applying the truncation
functor τďm as well, which proves p˚q.

E.7.6 Profinite Eilenberg-MacLane Spaces

We now discuss Eilenberg-MacLane spaces in the setting of profinite homotopy theory.

Notation E.7.6.1. Let n ě 1 be an integer, and let G be a profinite group (which we
assume to be abelian if n ě 2). We let pKpG,nq denote the profinite space represented by
the filtered diagram tKpG{U, nqu, where U ranges over all open normal subgroups of G.

Suppose that X is a simply connected profinite space, so that X can be represented
by a filtered diagram tXαu of simply connected π-finite spaces Xα. Choosing a base point
x P X, we obtain a collection of fiber sequences τďnXα Ñ τďn´1Xα Ñ KpπnXα, n ` 1q,
depending functorially on α. Using Remark E.5.2.5, we see that the filtered diagram tπnXαu

is isomorphic (as a Pro-object) to the diagram tπnX{Uu, where U ranges over all open
subgroups of πnX. Passing to the inverse limit over α, we obtain a fiber sequence of profinite
spaces τďnX Ñ τďn´1X Ñ pKpπnX,n` 1q.
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Proposition E.7.6.2. Let M be a profinite abelian group, let p be a prime number, and
let Mp ĎM be the subgroup consisting of topologically p-singular elements (see Definition
E.7.3.1). For every integer n ě 1, the canonical map

C˚p pKpM,nq; Fpq Ñ C˚p pKpMp, nq; Fpq

is an equivalence.

Proof. Writing M as an inverse limit of finite abelian groups, we can reduce to the case
where M is finite. In this case, we can write M “Mp ˆM

1, where M 1 is a subgroup of M
on which p acts invertibly. We then have an equivalence

C˚pKpM,nq; Fpq » C˚pKpMp, nq; Fpq bFp C˚pKpM
1, nq; Fpq,

so that the desired result follows from Lemma E.7.5.3.

Proposition E.7.6.3. Let X be a simply connected profinite space, and suppose that the
profinite groups πmX are of finite type for m ě 2. Then the cohomology groups HnpX;Mq
are finite for every integer n ě 0 and every finite abelian group M .

Proof. Every exact sequence of abelian groups 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 determines a
fiber sequence C˚pX;M 1q Ñ C˚pX;Mq Ñ C˚pX;M2q, hence a long exact sequence of
cohomology groups

¨ ¨ ¨ Ñ Hn´1pX;M2q Ñ HnpX;M 1q Ñ HnpX;Mq Ñ HnpX;M2q Ñ Hn`1pX;M 1q Ñ ¨ ¨ ¨

It will therefore suffice to prove finiteness after replacing M by M 1 and M2. Choosing an
appropriate filtration of M , we can reduce to the case where M “ Fp for some prime number
p.

Note that the canonical map HnpτďnX; Fpq Ñ HnpX; Fpq is an isomorphism for every
integer n. Consequently, to prove the finiteness of HnpX; Fpq, we may replace X by τďnX,
and thereby reduce to the case where X is n-truncated. We proceed by induction on n, the
case n ď 1 being trivial (since X is assumed to be simply connected). To carry out the
inductive step, set M “ πnX, so that Notation E.7.6.1 supplies a fiber sequence

X Ñ τďn´1X Ñ pKpM,n` 1q.

Applying Proposition E.7.2.1, we obtain a pushout diagram

C˚p pKpM,n` 1q; Fpq //

��

Fp

��
C˚pτďn´1X; Fpq // C˚pX; Fpq
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of E8-algebras over Fp. Using the inductive hypothesis and Lemma ??, we are reduced to
proving that C˚p pKpM,n`1q; Fpq is locally finite. Using Proposition E.7.6.2, we see that this
is equivalent to the local finiteness of C˚p pKpMp, n`1q; Fpq. Since X is of finite type, we can
write Mp as product of finitely many factors isomorphic to Zp or Z {pd Z. Using Proposition
E.7.2.1 again, we are reduced to proving that the E8-algebras C˚p pKpZp, n ` 1q; Fpq and
C˚pKpZ {pd Z, n` 1q; Fpq are locally finite, which follows from Remark E.7.5.2.

E.7.7 The Proof of Theorem E.7.0.5

Let X be a simply connected profinite space. We wish to prove that the following
conditions are equivalent:

p1q The profinite space X is of finite type.

p2q For every prime number p and every integer n ě 0, the cohomology group HnpX; Fpq

is finite.

p3q For every prime number p and every integer n ě 2, the cokernel of the map πnX
p
Ñ πnX

is finite.

The implicatoin p1q ñ p2q follows from Remark E.7.1.6. We next show that p2q implies p1q.
Assume that X satisfies p2q and let Y be a π-finite space; We wish to show that the mapping
space MapS^π pX,Y q is π-finite. Since X is simply connected, the diagonal embedding
τď1Y Ñ MapS^π pX, τď1Y q is a homotopy equivalence. It follows that MapS^π pX, τď1Y q is
π-finite. Consequently, we are reduced to proving that the homotopy fibers of the map
MapS^π pX,Y q Ñ MapS^π pX, τď1Y q are π-finite. Since X is simply-connected, every map
X Ñ τď1Y is homotopic to a constant map. We may therefore replace Y by one of the
homotopy fibers of the map Y Ñ τď1Y , and thereby reduce to the case where Y is simply
connected.

Since Y is π-finite, it is n-truncated for some integer n. We proceed by induction on
n, the case n ď 1 being trivial. Since Y is simply connected, there exists a fiber sequence
Y Ñ τďn´1Y Ñ KpM,n ` 1q, where M “ πnY . The inductive hypothesis implies that
the mapping space MapS^π pX, τďn´1Y q is π-finite. It will therefore suffice to show that the
mapping space MapS^π pX,KpM,n` 1qq is π-finite. Using Remark E.7.1.6, we are reduced to
proving that the cohomology groups HdpX;Mq are finite for every integer d. The collection
of finite abelian groups M which satisfy this condition are closed under extension. We may
therefore reduce to the case where M is a cyclic group of prime order, in which case the
desired result follows from p2q. This completes the proof that p2q ñ p1q.

The implication p3q ñ p2q follows from Proposition E.7.6.3. We will complete the proof
of Theorem E.7.0.5 by showing that p2q ñ p3q. Let X be a simply connected profinite space,
and suppose that the cohomology group HnpX; Fpq is finite for every integer n and every
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prime number p. We wish to prove that each homotopy group πmX is of finite type as a
profinite abelian group. We proceed by induction on m, the case m ď 1 being trivial. To
carry out the inductive step, assume that πdX is of finite type for d ă m. Choose a base
point x P X, and form a fiber sequence of profinite spaces

Y Ñ X Ñ τďm´1X.

For every prime number p, Proposition E.7.2.1 supplies a pushout diagram of E8-algebras

C˚pτďm´1X; Fpq //

��

Fp

��
C˚pX; Fpq // C˚pY ; Fpq.

Since the homotopy groups of τďm´1X are of finite type, Proposition E.7.6.3 guarantees that
the E8-algebra C˚pτďm´1X; Fpq is locally finite. Because C˚pX; Fpq is also locally finite,
Lemma ?? implies that C˚pY ; Fpq is locally finite. In particular, the group HmpY ; Fpq is
finite. Proposition E.7.4.1 supplies an isomorphism

HmpY ; Fpq » HomcpπmY ; Fpq » HomcpπmX; Fpq.

It follows that HomcpπmX; Fpq is finite for every prime number p, so that the profinite
abelian group πmX is of finite type as desired(Proposition E.7.3.5).

We close this section by mentioning a simple consequence of Theorem E.7.0.5:

Corollary E.7.7.1. Let X be a simply connected space, and suppose that the cohomology
groups HnpX; Fpq are finite for every integer n ě 2 and every prime number p. Then the
profinite completion X^π is a simply connected profinite space of finite type.

Proof. Combine Theorem E.7.0.5 with Remark E.7.1.7 and Corollary E.4.3.2.

E.8 Materialization

In §E.3, we proved that the materialization functor Mat : S^π Ñ S is conservative
(Theorem E.3.1.6). In this section, we will show that the materialization functor is fully
faithful when restricted to profinite spaces which are simply connected and of finite type.
Moreover, we show that the essential image of this restriction admits a simple algebraic
description (Theorem E.8.2.1). Moreover, a space Y belongs to the essential image of this
restriction if and only if the homotopy groups of Y satisfy a purely algebraic condition
(Theorem E.8.2.1).
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E.8.1 Congruence Completion of Abelian Groups

We begin by reviewing some elementary algebra.

Definition E.8.1.1. Let M be an abelian group. We will say that M is congruence-finite
if, for every positive integer d, the kernel and cokernel of the map M

d
Ñ M are finite

abelian groups. If M is a congruence-finite abelian group, we let xM denote the inverse limit
lim
ÐÝd

M{dM , where d ranges over all positive integers. We will refer to xM as the congruence
completion of M . We will say that M is congruence-separated if it is congruence-finite, and
the canonical map θ : M Ñ xM is injective. We will say that M is congruence-complete if M
is congruence-finite and θ is an isomorphism.

Remark E.8.1.2. For every congruence-finite abelian groupM , we will regard the congruence-
completion xM “ lim

ÐÝ
M{dM as a profinite abelian group, equipped with the inverse limit

topology.

Remark E.8.1.3. Let M be an abelian group. Then M is congruence-finite if and only if,
for every prime number p, the kernel and cokernel of the map M

p
Ñ M are finite abelian

groups.

Remark E.8.1.4. The group Z is congruence-separated. Its congruence completion pZ “
lim
ÐÝ

Z {N Z is a commutative ring, which is isomorphic to the product
ś

p Zp.

Example E.8.1.5. Let M be a finitely generated abelian group. Then M is congruence-
separated. Moreover, the congruence-completion of M is isomorphic to the tensor product
pZbZM .

The relevance of Definition E.8.1.1 to our investigation stems from the following charac-
terization of the class of congruence-complete abelian groups:

Proposition E.8.1.6. Let Ab denote the category of abelian groups, and let C denote the
category of profinite abelian groups of finite type. Then the forgetful functor θ : C Ñ Ab is
fully faithful, and its essential image consists of those abelian groups which are congruence-
complete.

Proof. Let M and N be profinite abelian groups. To prove that θ is fully faithful, it will
suffice to show that if M is of finite type, then every group homomorphism f : M Ñ N is
continuous. Let N 1 Ď N be an open subgroup, so that N{N 1 is finite. Choose an integer
d ą 0 which annihilates N{N 1. Then f´1pN 1q contains the subgroup dM Ď M . Since M
has finite type, Proposition E.7.3.5 implies that dM is a closed subgroup of finite index in
M , hence open. It follows that f´1pN 1q is also an open subgroup of M . Allowing N 1 to vary
over all open subgroups of N , we deduce that f is continuous. This completes the proof
that θ is fully faithful.
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We next prove that if M is a profinite abelian group of finite type, then M is congruence-
complete (when regarded as an abstract abelian group). We first claim that M is congruence-
finite. For this, it will suffice to show that for every prime number p, the map M p

ÑM has
finite kernel and cokernel (Remark E.8.1.3). Without loss of generality, we may replace M
by the subgroup Mp ĎM of topologically p-singular elements. In this case, M is a finitely
generated module over Zp (Proposition E.7.3.5) and the result is obvious.

Arguing as above, we see that the subgroup dM ĎM is open for each d ą 0, so that the
projection maps M ÑM{dM are continuous. It follows that the natural map f : M Ñ xM

is continuous. The image of f is evidently dense in xM . Since M is compact, we conclude
that f is surjective. To prove the injectivity of M , it will suffice to show that every element
x P

Ş

d dM is zero. Since M is a profinite abelian group, it will suffice to show that the
image of x vanishes in each quotient M{M 1, where M 1 is an open subgroup of M . The
group M{M 1 is finite, hence annihilated by some integer d ą 0. Then dM Ď M 1, so that
x ÞÑ 0 PM{M 1 as desired.

Conversely, suppose we are given a congruence-complete abelian group N ; we wish to
show that N belongs to the essential image of θ. Since N is congruence-complete, we have
an isomorphism of abstract groups u : N » pN . It will therefore suffice to show that the
profinite abelian group pN has finite type. Using Proposition E.7.3.5, we are reduced to
proving that pN{p pN is finite for every prime number p. This is clear, since u induces an
isomorphism pN{p pN » N{pN .

E.8.2 Materialization for Profinite Spaces of Finite Type

We can now formulate the main result of this section:

Theorem E.8.2.1. Let pS^π qft denote the full subcategory of S^π spanned by those profinite
spaces which are simply connected and of finite type. Then the materialization functor
Mat : S^π Ñ S restricts to a fully faithful embedding Matft : S^π qft Ñ S. Moreover, a space
X belongs to the essential image of Matft if and only if it is simply connected and each
homotopy group πnX is congruence-complete.

Remark E.8.2.2. Theorem E.8.2.1 can be regarded as a homotopy-theoretic analogue of
Proposition E.8.1.6.

We will deduce Theorem E.8.2.1 from the following pair of assertions, which we prove
later in this section:

Proposition E.8.2.3. Let X be a profinite space. If X is simply connected and of finite
type, then the counit map v : MatpXq^π Ñ X is an equivalence of profinite spaces (that is, X
can be recovered as the profinite completion of its materialization).
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Proposition E.8.2.4. Let X be a simply connected space, and suppose that each homotopy
group πnX is congruence-separated. Then:

paq For every prime number p and every integer n ě 0, the cohomology group HnpX; Fpq

is finite.

pbq The unit map X Ñ MatpX^π q induces maps πnX Ñ πnX
^
π which exhibit each πnX^π

as a congruence-completion of πnX.

Proof of Theorem E.8.2.1. Let X and Y be profinite spaces. Then the canonical map

MapS^π pX,Y q Ñ MapSpMatpXq,MatpY qq » MapS^π pMatpXq^π , Y q

is given by composition with the counit map v : MatpXq^π Ñ X. If X is simply connected
and of finite type, then v is an equivalence (Proposition E.8.2.3). It follows that Mat is fully
faithful when restricted to pS^π qft.

It remains to describe the essential image of the functor Mat |pS^π qft . Note that if X is a
simply connected profinite space of finite type, then each homotopy group πnX is a profinite
abelian group of finite type (Theorem E.7.0.5), so that πn MatpXq is congruence-complete
when viewed as an abstract abelian group (Proposition E.8.1.6). Conversely, suppose that Z
is a simply connected space whose homotopy groups are congruence-complete; we wish to
show that there exists a simply connected profinite space X of finite type and an equivalence
Z » MatpXq. Let X “ Z^π be the profinite completion of Z. Then X is simply connected
(Corollary E.4.3.2). Using Proposition E.8.2.4 and Remark E.7.1.7, we deduce that the
cohomology groups HnpX; Fpq are finite, so that X is of finite type (Theorem E.7.0.5).
To complete the proof, it will suffice to show that the unit map u : Z Ñ MatpXq is a
homotopy equivalence. Since the domain and codomain of u are simply connected, this
is equivalent to the assertion that u induces isomorphisms πnZ Ñ πn MatpXq for n ě 2.
This follows from Proposition E.8.2.4, since the homotopy groups of Z are assumed to be
congruence-complete.

E.8.3 The Proof of Proposition E.8.2.3

We will deduce Proposition E.8.2.3 from the following:

Lemma E.8.3.1. Let X be a simply connected profinite space of finite type. Then, for
every prime number p, the map of cohomology rings θ : H˚pX; Fpq Ñ H˚pMatpXq; Fpq is an
isomorphism.

Proof. We will say that a profinite space X is p-good if the map θ : H˚pX; Fpq Ñ

H˚pMatpXq; Fpq of Remark E.7.1.5 is an isomorphism. Suppose we are given a pullback
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diagram of profinite spaces σ :
X 1 //

��

X

��
Y 1 // Y.

Choose a base point y P Y , and let Xy denote the fiber product X ˆY tyu. If Y is simply
connected and C˚pMatpXyq; Fpq is locally finite, then Corollary ?? implies that the induced
diagram

C˚pMatpX 1q; Fpq C˚pMatpXq; Fpqoo

C˚pMatpY 1q; Fpq

OO

C˚pMatpY q; Fpqoo

OO

is a pushout square of E8-algebras over Fp. Similarly, Proposition E.7.2.1 implies that the
diagram

C˚pX 1; Fpq C˚pX; Fpqoo

C˚pY 1; Fpq

OO

C˚pY ; Fpqoo

OO

is a pushout square of E8-algebras over Fp. This proves the following:

p˚q If the profinite spaces X, Y , and Y 1 are p-good, the cochain complex C˚pMatpXyq; Fpq

is locally finite, and the profinite space Y is simply connected, then X 1 is also p-good.

Note that for n ě 1, the profinite space pKpZp, nq is p-good (Proposition E.7.5.1) and that
the E8-algebra C˚p pKpZp, nq; Fpq is locally finite (Remark E.7.5.2). Taking X “ pKpZp, nq
for n ě 1 and Y “ ˚, we conclude that if a simply connected profinite space Z is p-good,
then the product Z ˆ pKpZp, nq is also p-good for n ě 2. Similarly, if Z is simply connected
and p-good, then the product Z ˆKpZ {pd Z, nq is p-good for any n ě 2 and any d ě 0.
Combining these observations with Proposition E.7.3.5, we deduce that pKpM,nq is p-good
for n ě 2 and any finitely generated Zp-module M . More generally, if M is any profinite
abelian group, then Lemma E.7.5.3 and Proposition E.7.6.3 supply isomorphisms

H˚pKpM,nq; Fpq » H˚pKpMp, nq; Fpq H˚p pKpM,nq; Fpq » H˚p pKpMp, nq; Fpq,

where Mp denotes the closed subgroup of topologically p-singular elements of M . It follows
that pKpM,nq is p-good if and only if pKpMp, nq is p-good. In particular, if M is a profinite
abelian group of finite type, then pKpM,nq is p-good for all n ě 2.

Let X be a simply connected profinite space, and write X “ lim
ÐÝ
tτďnXu. The canonical

map MatpXq Ñ MatpτďnXq has pn` 1q-connective homotopy fibers, and therefore induces
isomorphisms

HmpMatpτďnXq; Fpq » HmpMatpXq; Fpq
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for m ď n. We therefore have a commutative diagram

lim
ÝÑ

H˚pτďnX; Fpq //

��

lim
ÝÑ

H˚pMatpτďnXq; Fpq

��
H˚pX; Fpq // H˚pMatpXq; Fpq.

where the vertical maps are isomorphisms. Consequently, to prove that X is p-good, it
suffices to show that each truncation τďnX is p-good.

Assume now that X has finite type. We prove by induction on n that the truncation
τďnX is good, the case n “ 1 being trivial. If n ą 1, then Notation E.7.6.1 supplies a
pullback diagram of profinite spaces

τďnX //

��

˚

φ
��

τďn´1X // pKpM,n` 1q

where M “ πnX is a profinite abelian group of finite type. Since τďn´1X and pKpM,n` 1q
are p-good, we are reduced to proving that the fiber F “ fibpφq » pKpM,nq has the property
that C˚pMatpF q; Fpq is of finite type. Equivalently, we must show that the homology groups
H˚pKpM,nq; Fpq are finite in each degree. Since M is of finite type, it can be written as a
finite product of factors which are isomorphic to Zp, Z {pd Z, and abelian groups on which p
acts by an isomorphism. Using the Künneth formula and Lemma E.7.5.3, we are reduced to
proving that the homology groups

H˚pKpZp, nq; Fpq H˚pKpZ {pd Z, nq; Fpq

are finite in each degree, which follows from Remark E.7.5.2.

Proof of Proposition E.8.2.3. Since X and MatpXq^π are simply connected, it will suffice to
show that composition with v induces a homotopy equivalence

θY : MapS^π pX,Y q Ñ MapS^π pMatpXq^π , Y q

for every simply connected profinite space Y . Writing Y as the limit of a filtered diagram
of simply connected π-finite spaces, we can reduce to the case where Y is π-finite. Then
Y is n-truncated for some integer n. We proceed by induction on n, the case n ď 1 being
trivial. In general, we have a fiber sequence Y Ñ τďn´1Y Ñ KpM,n` 1q where M “ πnY .
Since θτďn´1Y is a homotopy equivalence by the inductive hypothesis, we are reduced to
proving that θKpM,n`1q is an homotopy equivalence. For this, it suffices to show that v
induces an isomorphism H˚pX;Mq Ñ H˚pMatpXq^π ;Mq (see Remark E.7.1.6). Since M
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is finite, Remark E.7.1.7 allows us to identify this with the canonical map H˚pX;Mq Ñ
H˚pMatpXq;Mq. The collection of those finite abelian groups M for which this map is an
isomorphism is closed under extension (as in the proof of Proposition E.7.6.3). We may
therefore reduce to the case where M “ Fp for some prime number p, in which case the
desired result follows from Lemma E.8.3.1.

Remark E.8.3.2. Let X be a simply connected space, and suppose that the cohomology
group HnpX; Fpq is finite for every prime number p and every integer n ě 0. Then the
canonical map θ : X Ñ MatpX^π q exhibits MatpX^π q as a localization of X with respect to
the family of homology theories tH˚p‚; Fpqu, in the 8-category Sě2 of simply connected
spaces. More precisely, we have the following:

paq The map θ induces an isomorphism on homology groups H˚pX; Fpq Ñ H˚pMatpX^π q; Fpq

for every prime number p.

pbq Let f : Y Ñ Z be a map of simply connected spaces which induces an isomorphism
H˚pY ; Fpq Ñ H˚pZ; Fpq for every prime number p. Then composition with f induces
a homotopy equivalence MapSpZ,MatpX^π qq Ñ MapSpY,MatpX^π qq.

Assertion paq is an immediate consequence of Lemma E.8.3.1 and Remark E.7.1.7. To prove
pbq, it suffices to show that f induces an equivalence of simply connected profinite spaces
Y ^π Ñ Z^π . Equivalently, we must show that for every simply connected π-finite space
T , composition with f induces a homotopy equivalence µT : MapSpZ, T q Ñ MapSpY, T q.
Choose an integer n such that T is n-truncated. We proceed by induction on n, the case
n ě 1 being trivial. To handle the inductive step, we note that there is a fiber sequence
T Ñ τďn´1T Ñ KpM,n` 1q where M “ πnT . Since the inductive hypothesis guarantees
that µτďn´1T is a homotopy equivalence, we are reduced to proving that µKpM,n`1q is
a homotopy equivalence. For this, it suffices to show that f induces an isomorphism
H˚pZ;Mq Ñ H˚pY ;Mq. The collection of those finite abelian groups M which satisfy this
condition is closed under extension; we may therefore reduce to the case where M “ Fp

for some prime number p, in which case the desired result follows immediately from our
hypothesis that f induces an isomorphism on Fp-homology.

E.8.4 The Proof of Proposition E.8.2.4

We begin with some auxiliary algebraic results.

Lemma E.8.4.1. Let M be a congruence-finite abelian group, let d be a positive integer,
and let x be an element of the kernel of the projection map xM Ñ M{dM . Then we can
write x “ dy for some y P xM .
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Proof. For every positive integer d1, let xd denote the image of x in kerpM{dd1M ÑM{dMq,
and let Sd1 denote the preimage of x under the surjection M{d1M d

Ñ kerpM{dd1M ÑM{dMq.
Then tSd1ud1ą0 is a filtered diagram of nonempty finite sets. Applying Proposition E.1.1.1,
we deduce that lim

ÐÝ
Sd1 is nonempty.

Lemma E.8.4.2. Let M be a congruence-finite abelian group, let d be a positive integer,
and let x P xM be an element satisfying dx “ 0. Then x is the image of an element y PM
satisfying dy “ 0.

Proof. For every positive integer d1, let Sd1 denote the collection of those elements y PM
such that dy “ 0 and y represents the image of x in M{dd1M . We wish to show that the
inverse limit lim

ÐÝ
Sd1 is nonempty. Since the map M

d
Ñ M has finite kernel, each Sd1 is a

finite set. By virtue of Proposition E.1.1.1, it will suffice to show that each Sd1 is nonempty.
To prove this, choose an arbitrary element y P M representing the image of x in Mdd1M .
Since dx “ 0, we can write dy “ dd1z for some z PM . Then y ´ d1z belongs to Sd1 .

Lemma E.8.4.3. Let M be an abelian group. The following conditions are equivalent:

p1q The group M is congruence-separated.

p2q The group M is congruence-finite, and the canonical map u : M Ñ xM is an injection
whose cokernel is a rational vector space.

p3q There exists an exact sequence of abelian groups 0 ÑM Ñ N Ñ V Ñ 0 where N is
congruence-complete and V is a rational vector space.

Proof. Suppose first that p1q is satisfied. Then M is congruence-finite and the map u : M Ñ

xM is injective. Let V “ cokerpuq. We claim that V is a rational vector space. To prove this,
it will suffice to show that for every positive integer d, the map d : V Ñ V is bijective. To
prove surjectivity, fix an element x P V , represented by an element x P xM . Let xd denote
the image of x in M{dM , and let x1 PM be a representative of xd. Replacing x by x´upx1q,
we may assume that xd “ 0. Applying Lemma E.8.4.1, we can write x “ dy for some y P xM ,
so that x belongs to the image of the map d : V Ñ V .

To prove injectivity, suppose that x P V satisfies dx “ 0. Let x P xM be a representative
of x, so that dx “ upyq for some y P M . Note that dx belongs to the kernel of the map
xM ÑM{dM , so that y P dM . Write y “ dx1 for some x1 PM . Replacing x by x´upx1q, we
can reduce to the case where dx “ 0. Applying Lemma E.8.4.2, we deduce that x belongs to
the image of u, so that x “ 0. This completes the proof that p1q ñ p2q.

To prove that p2q ñ p3q, we will show the congruence completion xM is congruence-
complete. For this, it suffices to show that xM is a profinite abelian group of finite type
(Proposition E.8.1.6). Let p be a prime number; we wish to show that xM{pxM is finite (see
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Proposition E.7.3.5). This is clear, since there exists an exact sequence of abelian groups
M{pM Ñ xM{pxM Ñ V {pV where M{pM is finite and V {pV » 0.

We now show that p3q ñ p1q. Choose an exact sequence 0 ÑM
φ
Ñ N Ñ V Ñ 0 where N

is congruence-complete and V is a rational vector space. For every positive integer d, we have
Tor0pV,Z {dZq » Tor1pV,Z {dZq » 0, so that φ induces an isomorphism M{dM Ñ N{dN .
It follows that the lower horizontal map in the diagram

M
φ //

ψ
��

N

��
xM // pN

is an isomorphism. Since N is congruence-complete, the right vertical map is also an
isomorphism. Since φ is injective, we conclude that ψ is also injective: that is, M is
congruence-separated.

Remark E.8.4.4. The proof of the implication p3q ñ p1q in Lemma E.8.4.3 shows that if
M is a congruence-finite abelian group and we are given any injection u : M ãÑ N , where N
is congruence-complete and N{M is a rational vector space, then u induces an isomorphism
of N with the congruence-completion of M .

Lemma E.8.4.5. Let M be a congruence-separated abelian group, and let p be a prime
number. Then the cohomology groups HmpKpM,nq; Fpq are finite for n ě 2.

Proof. Lemma E.8.4.3 supplies an exact sequence 0 Ñ M Ñ xM Ñ V Ñ 0, where V

is a rational vector space. We therefore have a fiber sequence of Eilenberg-MacLane
spaces KpV, n ´ 1q Ñ KpM,nq Ñ KpxM,nq. Since HdpKpV, n ´ 1q; Fpq » 0 for d ą 0
(Lemma E.7.5.3), the map H˚pKpxM,nq; Fpq Ñ H˚pKpM,nq; Fpq is an isomorphism. It
will therefore suffice to show that H˚pKpxM,nq; Fpq is finite dimensional in each degree.
Let us regard xM as a profinite abelian group, and let pKpxM,nq be the profinite space
introduced in Notation E.7.6.1. Since xM has finite type, Lemma E.8.3.1 supplies an
isomorphism H˚p pKpxM,nq; Fpq » H˚pKpxM,nq; Fpq. We are therefore reduced to proving that
H˚pKpxM,nq; Fpq is finite-dimensional in each degree, which is a special case of Proposition
E.7.6.3.

Lemma E.8.4.6. Let X be a simply connected space, and suppose that each homotopy
group πmX is congruence-separated. Then for every prime number p and every n ě 0, the
cohomology group HnpX; Fpq is finite.

Proof. Replacing X by τďnX, we may assume that X is m-truncated for some integer m.
We proceed by induction on m, the case m ď 1 being trivial. To carry out the inductive



E.8. MATERIALIZATION 2297

step, we note that there is a pullback diagram

X //

��

˚

u
��

τďm´1X // KpπmX,m` 1q.

The homotopy fibers of u can be identified with KpπmX,mq, so that C˚pfibpuq; Fpq is locally
finite by virtue of Lemma E.8.4.5. Applying Corollary ??, we obtain an equivalence

C˚pX; Fpq » C˚pτďm´1X; Fpq bC˚pKpπmX,m`1q;Fpq Fp.

Using the inductive hypothesis and Lemma ??, we are reduced to proving that C˚pKpπmX,m`
1q; Fpq is locally finite, which follows from Lemma E.8.4.5.

Lemma E.8.4.7. Let M be a congruence-separated abelian group, and let V be a rational
vector space. Then every group homomorphism V ÑM is trivial.

Proof. Since M is congruence-separated, the natural map from M to its congruence-
completion xM is injective. It will therefore suffice to show that every map f : V Ñ xM is
trivial. Writing xM as the inverse limit lim

ÐÝ
M{dM , we are reduced to proving that every

map V ÑM{dM is trivial. This is clear (since d acts invertibly on V ).

Lemma E.8.4.8. Let X be a connected space with base point x P X. Assume that π1pX,xq

is abelian, and that for each n ě 2 the action of π1pX,xq on πnpX,xq is nilpotent (that
is, πnpX,xq admits a finite filtration by π1pX,xq-invariant submodules whose successive
quotients are acted on trivially by π1pX,xq). Let p be a prime number. Then the following
conditions are equivalent:

paq Each homotopy group πnpX,xq is a module over Zrp´1s.

pbq The cohomology groups HnpX; Fpq vanish for n ą 0.

Proof. Suppose first that paq is satisfied. We wish to prove that HnpX; Fpq » 0 for n ą 0.
Replacing X by τďnX, we can reduce to the case where X is m-truncated for some integer
m. We proceed by induction on m, the case m “ 0 being trivial. To carry out the inductive
step, we observe that there is a fiber sequence KpπmpX,xq,mq Ñ X Ñ τďm´1X. Using
assumption paq and Lemma E.7.5.3, we deduce that HdpKpπmpX,xq,mq; Fpq » 0 for d ą 0,
so that the restriction map H˚pτďm´1X; Fpq Ñ H˚pX; Fpq is an isomorphism. The desired
vanishing now follows from the inductive hypothesis.

We now prove that pbq ñ paq. Suppose, for a contradiction, that paq is not satisfied.
Then there exists some smallest integer n such that the action of p on πnpX,xq is not
invertible. Let Y “ τďn´1X, let y P Y denote the image of the point x, and let F denote
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the homotopy fiber of the map X Ñ Y over the point y. Then Y satisfies condition paq.
The first part of the proof shows that HmpY ; Fpq » 0 for m ą 0. Using the Serre spectral
sequence, we deduce the following:

paq The cohomology group HnpX; Fpq can be identified with the group of invariants for
the action of π1pY, yq on HnpF ; Fpq.

pbq There is a surjection from Hn`1pX; Fpq to the group of invariants for the action of
π1pY, yq on Hn`1pF ; Fpq.

Since F is n-connective, we have HnpF ; Fpq » HompπnF ; Fpq » HompπnpX,xq; Fpq. It
follows that the action of π1pY, yq on HnpF ; Fpq is nilpotent. Since HnpX; Fpq » 0, assertion
paq implies that HnpF ; Fpq » 0. It follows that the map πnpX,xq

p
Ñ πnpX,xq is surjective.

We have a fiber sequence F 1 Ñ F Ñ KpπnpX,xq, nq. Since F 1 is pn` 1q-connective, the
induced map

Ext1
ZpπnpX,xq; Fpq » Hn`1pKpπnpX,xq, nq; Fpq Ñ Hn`1pF ; Fpq

is injective. Using pbq and our assumption that Hn`1pX; Fpq » 0, we conclude that
Ext1

ZpπnpX,xq; Fpq does not contain any nonzero elements which are invariant under
the action of π1pY, yq » π1pX,xq. Since the action of π1pX,xq on Ext1

ZpπnpX,xq; Fpq

is nilpotent, we conclude that Ext1
ZpπnpX,xq; Fpq » 0: that is, the multiplication map

πnpX,xq
p
Ñ πnpX,xq is injective.

Proof of Proposition E.8.2.4. Let X be a simply connected space, and suppose that each
homotopy group of X is congruence-separated. Choose a base point x P X. Let X^π be the
profinite completion of X. Using Lemma E.8.4.6 and Remark E.7.1.7, we deduce that each
cohomology group HnpX^π ; Fpq is finite, so that X^π is of finite type (Theorem E.7.0.5). Let
u denote the unit map X Ñ MatpX^π q, and let F denote the homotopy fiber of u (taken over
the image of x), and let x denote the base point of F determined by x. Since the domain and
codomain of u are simply-connected, F is a connected space with abelian fundamental group
π1pF, xq, and the action of π1pF, xq on the higher homotopy groups πnpF, xq is nilpotent.

Let p be a prime number, and let κ denote the finite field Fp. Using Remark E.7.1.7 and
Lemma E.8.3.1, we conclude that u induces an isomorphism H˚pMatpX^π ;κq Ñ H˚pX;κq.
Let F P FunpMatpX^π q; Modκq denote the direct image of the constant local system κX ,
and let θ : κMatpX^π q Ñ F be the unit map. Then θ induces an equivalence

C˚pMatpX^π q;κq Ñ C˚pMatpX^π q; F q » C˚pX;κq.

It follows that C˚pMatpX^π q; cofibpθqq » 0. Since MatpX^π q is simply connected, we conclude
that cofibpθq is an equivalence. It follows that HmpF ;κq » 0 for m ą 0. Applying Lemma
E.8.4.8, we conclude that each homotopy group of F is a module over Zrp´1s. Since this
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holds for every prime number p, we conclude that the homotopy groups of F are rational
vector spaces.

We have a long exact sequence of homotopy groups

¨ ¨ ¨ Ñ πnpF, xq
φ
Ñ πnpX,xq Ñ πnpMatpX^π q, upxqq Ñ πn´1pF, xq

ψ
Ñ πn´1pX,xq Ñ ¨ ¨ ¨

Using Lemma E.8.4.7, we see that the maps φ and ψ are trivial, so that we have a short
exact sequence

0 Ñ πnpX,xq Ñ πnpMatpX^π q, upxqq Ñ πn´1pF, xq Ñ 0.

Applying Remark E.8.4.4, we deduce that u exhibits πnpMatpX^π q, upxqq as the congruence-
completion of πnpX,xq.

E.9 The Arithmetic Square

Let M be a finitely generated abelian group, let xM » pZbZ M denote the congruence
completion of M (Definition E.8.1.1), and let MQ » QbZM denote the rational vector
space obtained by tensoring M with the field of rational numbers. Then there is a pullback
diagram of abelian groups

M //

��

xM

��

MQ
φ // xMQ.

Consequently, we can recover M (up to canonical isomorphism) from its congruence com-
pletion xM , the rational vector space MQ, and the map φ. Our goal in this section is to
establish the following homotopy-theoretic analogue:

Theorem E.9.0.9 (Sullivan’s Arithmetic Square). Let X be a simply connected space, and
assume that the cohomology group HnpX; Fpq is finite for each prime number p and each
n ě 0. Then the diagram of spaces

X //

��

MatpX^π q

��
XQ //MatpX^π qQ

is a pullback square in the 8-category S.

Remark E.9.0.10. In the statement of Theorem E.9.0.9, the symbols XQ and MatpX^π qQ
denote rationalizations of the space X and MatpX^π q, respectively. We refer the reader to
§?? for a review of rational homotopy theory.
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E.9.1 Example: Spaces with Finitely Generated Homotopy Groups

Let us first consider the special case of Theorem E.9.0.9 in which X is a simply connected
space whose homotopy groups are finitely generated (note that any such space satisfies the
hypotheses of Theorem E.9.0.9: see Example E.8.1.5 and Proposition E.8.2.4). Form a
pullback diagram

Y //

��

MatpX^π q

��
XQ //MatpX^π qQ.

To prove Theorem E.9.0.9, we must show that the canonical map ρ : X Ñ Y is a homotopy
equivalence. This can be established by direct calculation. Fix an integer n ě 1, a base
point x P X, and let y “ ρpxq be the image of x in Y . Set M “ πnX and N “ πn`1X, and
let xM and pN denote the congruence-completions of M and N . We then have canonical
isomorphisms

πn MatpX^π q » xM πn MatpX^π qQ » xMQ πnXQ »MQ

πn`1 MatpX^π q » pN πn`1 MatpX^π qQ » pNQ πn`1XQ » NQ.

It follows that the homotopy group πnpY, yq fits into a long exact sequence

pN ‘NQ
φ
ÝÑ pNQ Ñ πnpY, yq Ñ xM ‘MQ

ψ
ÝÑ xMQ.

Since M and N are finitely generated abelian groups, an elementary calculation shows that
φ is surjective, so that the diagram

πnpY, yq //

��

πn MatpX^π q

��
πnXQ // πn MatpX^π qQ.

is a pullback square. Consequently, to show that the map ρ induces an isomorphism
πnpX,xq Ñ πnpY, yq, it will suffice to show that the diagram

πnpX,xq //

��

πn MatpX^π q

��
πnXQ // πn MatpX^π qQ

is also a pullback square. In other words, we are reduced to showing that the diagram

M //

��

xM

��

MQ // xMQ
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is a pullback, which is a purely algebraic consequence of our assumption that M is a finitely
generated abelian group.

E.9.2 The Main Lemma

There are many examples of spaces X which satisfy the hypotheses of Theorem E.9.0.9
but whose homotopy groups are not finitely generated: for example, we can take X “ MatpY q
for any simply connected profinite space Y of finite type (Proposition E.8.2.3). To establish
Theorem E.9.0.9 in general, we will need a slightly more sophisticated argument. First, let
us introduce a bit of terminology.

Definition E.9.2.1. Let M be an abelian group, and let MQ “ QbZM denote its ratio-
nalization. We will say that a subset U ĎMQ is congruence-open if, for every element x P U ,
there exists an integer n ą 0 such that x` nM Ď U . The collection of congruence-open sets
determines a topology on MQ, which we will refer to as the congruence topology.

The main ingredient in our proof of Theorem E.9.0.9 is the following:

Lemma E.9.2.2. Let Y be a simply connected profinite space of finite type, let Z be a
simply connected rational space, and let φ : Z Ñ MatpY qQ be a map satisfying the following
technical condition:

p˚q The image of the map π2Z Ñ π2 MatpY qQ » pπ2Y qQ is dense with respect to the
congruence topology of Definition E.9.2.1.

Form a pullback diagram σ :

Z
ψ //

ψ1

��

MatpY q

��
Z

φ //MatpY qQ.

Then:

paq The space Z is simply connected.

pbq The map ψ induces isomorphisms H˚pMatpY q; Fpq Ñ H˚pZ; Fpq for every prime
number p.

pcq The cohomology group HnpZ; Fpq is finite for every integer n ě 0 and every prime
number p.

pdq The map ψ1 induces an isomorphism H˚pZ; Qq Ñ H˚pZ; Qq.
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Proof. Since MatpY q and Z are connected and MatpY qQ is simply connected, we immediately
see that Z is connected. Choose a base point z P Z, so that we have an exact sequence

π2pZ,ψ
1pzqq ‘ π2pY, ψpzqq

µ
Ñ π2pMatpY qQ, pφψ1qpzqq Ñ π1pZ, zq Ñ 0.

To prove paq, it suffices to show that the map µ is surjective. This is equivalent to the
surjectivity of the map π2Z Ñ cokerpπ2Y Ñ pπ2Y qQq, which is a reformulation of assumption
p˚q.

Let κ denote the finite field Fp for some prime number p, let κZ denote the constant
local system on Z with value κ, and let F P FunpMatpY qQ; Modκq denote the direct image
of κZ under the map φ. We have a fiber sequence of local systems κMatpY qQ

u
Ñ F Ñ F 1.

Since Z and MatpY qQ are simply connected rational spaces, Lemma E.8.4.8 implies that
the map φ induces an equivalence

C˚pMatpY qQ;κq Ñ C˚pZ;κq » C˚pMatpY qQ; F q,

so that C˚pMatpY qQ; F 1q » 0. Note that πn F 1 » 0 for n ą 0. Consequently, if F 1 ‰ 0,
there is a largest integer m such that πm F 1 ‰ 0. Since MatpY qQ is simply connected, it
would then follow that πmC˚pMatpY qQ; F 1q ‰ 0, and we would obtain a contradiction. It
follows that F 1 » 0: that is, the unit map u is an equivalence of local systems on MatpY qQ.
Since the diagram σ is a pullback square, it follows that κMatpY q is the direct image of the
constant local system κZ , so that ψ1 induces an isomorphism H˚pMatpY q;κq Ñ H˚pZ;κq
as desired. This proves pbq. Assertion pcq follows from pbq, Lemma E.8.3.1, and Theorem
E.7.0.5.

We now prove pdq. Let G P FunpMatpY qQ; ModQq denote the direct image of the constant
local system QMatpY q along the map ν : MatpY q Ñ MatpY qQ, and let u1 : QMatpY qQ

Ñ G

denote the unit map. Since ν is a rational homotopy equivalence, the map u1 induces an
equivalence

C˚pMatpY qQ; Qq Ñ C˚pMatpY q; Qq » C˚pMatpY qQ; G q.

It follows that C˚pMatpY qQ; cofibpu1qq » 0. Arguing as above, we conclude that cofibpu1q » 0
so that u1 is an equivalence. Since σ is a pullback square, we conclude that Q

Z
is the

direct image of the constant local system Q
Z

along ψ1, so that ψ1 induces an isomorphism
H˚pZ; Qq Ñ H˚pZ; Qq.

E.9.3 The Proof of Theorem E.9.0.9

In the proof of Theorem E.9.0.9, we will need the following standard homotopy-theoretic
fact:

Lemma E.9.3.1. Let f : X Ñ Y be a map of simply connected spaces, and suppose that f
satisfies the following conditions:
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p1q For every prime number p, the map f induces an isomorphism H˚pY ; Fpq Ñ H˚pX; Fpq.

p2q The map f induces an isomorphism H˚pY ; Qq Ñ H˚pX; Qq.

Then f is a homotopy equivalence.

Proof. Since X and Y are simply connected, it will suffice to show that the natural map
φZ : H˚pX; Zq Ñ H˚pY ; Zq is an isomorphism. Using the exact sequence of abelian groups
0 Ñ Z Ñ Q Ñ Q {Z Ñ 0, we are reduced to showing that the maps

φQ : H˚pX; Qq Ñ H˚pY ; Qq φQ {Z : H˚pX; Q {Zq Ñ H˚pY ; Q {Zq

are isomorphisms. For the map φQ, this follows immediately from assumption p2q. For the
map φQ {Z, we can write Q {Z as a direct limit of finite abelian groups and thereby reduce
to the problem of showing that the map φM : H˚pX;Mq Ñ H˚pY ;Mq is an equivalence
when M is finite. Writing M as a successive extension of cyclic groups of prime order, we
can reduce to the case M “ Fp, in which case the desired result follows from assumption
p1q.

Proof of Theorem E.9.0.9. Let X be a simply connected space such that each cohomology
group HnpX; Fpq is finite. Using Remark E.7.1.7 and Proposition E.7.3.5, we deduce that
the profinite completion X^π has finite type. Note that for every finite abelian group M , we
have

Homcpπ2X
^
π ;Mq » H2pX^π ;Mq » H2pX;Mq » Hompπ2X;Mq,

so that the map π2X Ñ π2X
^
π has dense image. It follows that the map π2XQ Ñ

π2 MatpX^π qQ also has dense image (where we endow π2 MatpX^π qQ with the congruence
topology): that is, the map φ : XQ Ñ MatpX^π qQ satisfies hypothesis p˚q of Lemma E.9.2.2.
Set Y “ XQ ˆMatpX^π qQ MatpX^π q. Applying Lemma E.9.2.2, we deduce the following:

paq The space Y is simply connected.

pbq For every prime number p, the canonical map H˚pMatpX^π q; Fpq Ñ H˚pY ; Fpq is an
isomorphism.

pdq The map H˚pXQ; Qq Ñ H˚pY ; Qq is an isomorphism.

The commutative diagram
X //

��

MatpX^π q

��
XQ //MatpX^π qQ
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determines a map of spaces f : X Ñ Y . The composite map

H˚pXQ; Qq Ñ H˚pY ; Qq Ñ H˚pX; Qq

is an isomorphism by construction, and the composite map

H˚pMatpX^π q; Fpq Ñ H˚pY ; Fpq Ñ H˚pX; Fpq

is an isomorphism for every prime number p by virtue of Lemma E.8.3.1 and Remark E.7.1.7.
Combining these observations with pbq and pdq, we conclude that f induces isomorphisms

H˚pY ; Qq Ñ H˚pX; Qq H˚pY ; Fpq Ñ H˚pX; Fpq,

so that Lemma E.9.3.1 guarantees that f is a homotopy equivalence.

Remark E.9.3.2. The construction Y ÞÑ MatpY qQ determines a functor S^π Ñ S. Let
C denote the full subcategory of the fiber product Funp∆1,Sq ˆFunpt1u,Sq S^π spanned by
those triples pY,Z, φ : Z Ñ MatpY qQq where Y is a simply connected profinite space of
finite type, Z is a simply connected rational space, and φ is a map satisfying hypothesis
p˚q of Lemma E.9.2.2. Let C1 denote the full subcategory of S spanned by the simply
connected spaces X for which the cohomology groups HnpX; Fpq are finite dimensional for
all prime numbers p and all n ě 0. It follows from Lemma E.9.2.2 that the construction
pY,Z, φq ÞÑ Z ˆMatpY qQ MatpY q determines a functor G : C Ñ C1. The proof of Theorem
E.9.0.9 shows that the construction X ÞÑ pX^π , XQ, φ : XQ Ñ MatpX^π qQq determines a
functor F : C1 Ñ C, which is easily seen to be left adjoint to G. Theorem E.9.0.9 shows that
the unit map u : idC1 Ñ G ˝ F is an equivalence of functors from C1 to itself. We claim that
the counit map v : F ˝G Ñ idC is also an equivalence. In other words, we claim that for
every object pY,Z, φq P C, the canonical maps

f : pZ ˆMatpY qQ MatpY qq^π Ñ Y g : pZ ˆMatpY qQ MatpY qqQ Ñ Z

are equivalences. This follows from assertions pbq and pdq of Lemma E.9.2.2, respectively. It
follows that F and G are mutually inverse equivalences of 8-categories.
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[214] Toën, B. and G. Vezzosi. Homotopical algebraic geometry. II. Geometric stacks and
applications. Mem. Amer. Math. Soc. 193 (2008), no. 902, x+224 pp.
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[216] Toën, B. and G. Vezzosi. Algebraic geometry over model categories. Available for
download: math.AG/0110109.

[217] Totaro, B. The resolution property for schemes and stacks. J. Reine Angew. Math. 577
(2004), 1Ð22.

[218] Turner, J. M. On simplicial commutative algebras with vanishing André-Quillen Ho-
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