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Overview

Let p be a prime number, which we regard as fixed throughout this paper. For
each n > 0, let X (p") denote the modular curve parametrizing elliptic curves equipped
with a full level-p™ structure, which we regard as a scheme defined over the cyclotomic
field Q[(yn]. Each X (p") determines a rigid-analytic curve X (p™)*" over the local field
Q,[¢pn]. These rigid-analytic curves can be organized into an inverse system

RN X(p4)an N X(p3)an - X(pQ)an . X(p)an'

The starting point of this paper is the following result (which is a special case of
Theorem I11.1.2 of [4]):

Theorem 0.1 (Scholze). There is an essentially unique perfectoid space X (p™)*"
over the perfectoid field Q¢ such that X (p*)*" ~ lim X (p")** (in the sense of [J],
Definition 2.4.1).

The primary goal of this paper is to prove an integral version of Theorem [0.1]
For p™ # 2, we can identify X (p") with the generic fiber of a Deligne-Mumford stack
Ell(p") over the ring of integers Z[(,»] S Q[ ], which parametrizes (generalized)
elliptic curves equipped with a full level-p™ structure in the sense of Drinfeld (see [3]
and [I]). These stacks can be organized into an inverse system

- — Eli(p") — Ell(p*) — Eli(p*) — Ell(p)

with affine transition maps, so that the inverse limit Ell(p®) is a Deligne-Mumford
stack defined over the ring defined over the ring Z[(y<] = lim Z[(pn]. For every
positive integer n, let m(poo)gpnﬂ denote the closed substack of Ell(p®) given by the
vanishing locus of (,» — 1, so that we have a descending sequence of closed substacks

- S Bl(p )¢ -1 € BI(p”) o1 < B(p™)¢,-1-

Note that Ell(p™)¢,—1 is defined over the quotient ring Z[(,]/(¢, — 1) ~ F,, and is
therefore equipped with an (absolute) Frobenius map ¢ : Ell(p®),, -1 — EL(p®)¢, 1.
We will prove the following:

Theorem 0.2. The absolute Frobenius map ¢ : Ell(p*)¢,—1 — Ell(p®)¢,~1 induces an
isomorphism from Ell(p™)¢,—1 to the closed substack m(pw)%l < Ell(p™)¢,—1-

It follows from Theorem [0.2] that the moduli stack Ell(p*®) is étale locally integrally
perfectoid (after p-adic completion). More precisely, we have the following:
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Corollary 0.3. For every étale map Spec(R) — Ell(p™), there exists a regular
element m € R such that 7P divides p and the Frobenius map R/mR — R/mPR is
an isomorphism.

Proof. Let us regard R as an algebra over the ring Z[(y=]. It follows from Theorem
that the Frobenius map induces an isomorphism R/((,2 —1) — R/(¢, — 1). Since
(¢p2—1)? and ¢, —1 differ by a unit, it follows that 7 = (,2 — 1 satisfies the requirements
of Corollary [0.3] O

Remark 0.4. More generally, for every integer n > 0, the Frobenius map induces

ns1=1- This is an

an isomorphism of Deligne-Mumford stacks EIl(p®)¢ -1 — ﬁ(poo)cp
immediate consequence of Theorem [0.2]

Remark 0.5. We will deduce Theorem from slightly stronger assertion: the
structure morphism Ell(p®) — Spec(Z[(,=]) becomes relatively perfect after extending

scalars to F, (see Theorems and [8.9)).

Remark 0.6. The conclusion of Corollary is satisfied more generally for maps
f : Spec(R) — Ell(p®) which are “log étale at infinity” (in particular, our result can
be applied to the study of elliptic curves equipped with auxiliary “prime to p” level
structures). This is a consequence of stronger version of Theorem , where we replace
the moduli stack Ell(p®) by a certain enlargement ElI* (p*); see Remark

Remark 0.7. In [6], Weinstein supplies an explicit description of the coordinate ring
for Lubin-Tate space at infinite level (see Theorem 2.7.3 of [6]). From this description,
one can immediately deduce that Corollary holds after formal completion along
the locus of supersingular elliptic curves.

Warning 0.8. For p" # 2, the generic fiber of Ell(p") is the modular curve X (p"),
which is a scheme. However, the stack Ell(p") itself is never a scheme: over a field
of characteristic p, any supersingular elliptic curve E admits a unique full level-p"
structure, which is preserved by any automorphism of E. Consequently, there is
a slight mismatch between the statements of Theorem and Corollary [0.3} the
first concerns the local structure of the inverse system {X (p")*"} with respect to the
analytic topology, while the second concerns the local structure of the inverse system
{Ell(p")} with respect to the étale topology. Nevertheless, it is not difficult to deduce
Theorem formally from Corollary we leave details to the interested reader.



Remark 0.9. Theorem provides a moduli-theoretic interpretation of the tilt
X (p®)* of the perfectoid space of Theorem [0.1} it can be realized as the “generic
fiber” of the formal Deligne-Mumford stack given by the direct limit of the system

where the transition maps are given by the absolute Frobenius endomorphism of the
product Ell(p®),—o = Ell(p®) x Spec(F,).

Let us now outline our approach to Theorem The map appearing in Theorem
can be realized as an inverse limit of Frobenius maps ¢ : EI(p")¢,=1 — Ell(p")¢ ,—1
defined for n > 2. At finite level, these maps are not isomorphisms. However,
we will show that they induce an isomorphism of pro-objects {EIl(p™)¢,—1}nz2 —
{ﬁ(pn)gpzzl}m. This is a consequence of the following more precise assertion:

Theorem 0.10. For each n = 2, the commutative diagram of Deligne-Mumford stacks

El(p™+) g1 — = El(p+)¢ .1

~
-
~
-
~
L

El(p")¢,—1 EN(p")¢ , -1

admits an extension as indicated; here the horizontal maps are given by the absolute
Frobenius, and the vertical maps by “forgetting” level structure.

Remark 0.11. To fix ideas, let us give a rough description of the diagonal map
appearing in Theorem Working away from the cusp, we can think of points of
ﬁ(p"“)gpFl as elliptic curves E equipped with a full level-p"*! structure (x,y) for
which the Weil pairing e n+1(z,y) is a p"~'st root of unity. The heuristic idea is that
the degeneracy of the Weil pairing ensures that p™x and p™y “generate” a subgroup
S < E of order p. The diagonal map then carries the triple (E, z,y) to (E/S,2',v'),
where 2’ and 3’ denote the images of = and y in the quotient elliptic curve E/S.

Let us now outline the contents of this paper. For most of this paper, we will be
primarily concerned with the open substack Ell(p®) < Ell(p®) parametrizing smooth
elliptic curves with a full level-p* structure. In we recall the definition of this
stack (following [3]) and formulate a slightly stronger version of Theorem (0.2 for it
(see Theorem . In , we reduce to proving a statement about about elliptic
curves with a finite amount of level structure (Theorem [2.11]), which asserts that a
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certain map of moduli stacks p : Ell(p™) 5" — Ell(p"*!)qeq is an isomorphism. This
statement can be regarded as a precise articulation of the heuristic of Remark
(and implies a slightly stronger version of Theorem. In §3} we show that p induces
an isomorphism over the locus of ordinary elliptic curves. In this case, our proof is
conceptual: that is, it can be explained directly in terms of the functors represented
by Ell(p™)yZ4" and Ell(p"*!)aeg. To extend this result over the supersingular locus,
we resort to a calculation. First, we note that it suffices to prove that p induces
n+1

)

an isomorphism of the reductions of the moduli stacks Ell(p") ™ and Ell(p

(which admit moduli-theoretic descriptions which we review in §4)). These are reduced

deg

(stacky) curves over Spec(F,), whose failure to be smooth can be quantified by their
d-invariants (see . We will complete the proof by computing the d-invariants on
both sides (at each point of the supersingular locus) and showing that they agree.
These calculations are carried out in §6| (for the moduli stack Ell(p"!)4ey) and in
(for the moduli stack Ell(p");/;%ift) using the theory of Igusa curves Ig(p™). In essence,
the proof reduces to comparing intersection numbers between Igusa curves in two
different settings: inside the (stacky) characteristic p surface Ig(p™*')?, and inside the
(stacky) arithmetic surface Ell(p"*1).

The remainder of this paper is devoted to extending our analysis to the compactified
moduli stack Ell(p®™). We give a precise formulation in §8 and carry out the proof in

g9}, using an explicit calculation with the Tate curve.

Remark 0.12. Many of the results of this paper can be extended to a more general
setting, where the (algebraic) moduli stack Ell of elliptic curves is replaced by the the
(non-algebraic) moduli stack of 1-dimensional p-divisible groups. We will discuss such
extensions in a sequel to this paper.
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1 Level Structures on Elliptic Curves

In this section, we briefly review the theory of Drinfeld level structures on elliptic
curves and formulate the first main result of this paper (Theorem [1.15). For a more
comprehensive account, we refer the reader to [3].

Notation 1.1. Let E be an elliptic curve over a commutative ring R and let = € F(R)
be an R-valued point of E. Then z determines a closed immersion of schemes
Spec(R) < E, whose image is an effective Cartier divisor in E. We will denote this
effective Cartier divisor by [x].

Definition 1.2 (Drinfeld, Katz-Mazur). Let E be an elliptic curve over a commutative
ring R. A full level-p™ structure on E is a group homomorphism v : (Z /p" Z)? — E(R)
for which there is an equality

ve(Z [pZ)?
of effective Cartier divisors in E. Here E[p"] denotes the kernel of the map p" : E — E.

Remark 1.3. Let E be an elliptic curve over a commutative ring R. We will generally
abuse notation by identifying group homomorphisms (Z /p" Z)*> — E(R) with pairs
of p™-torsion points z,y € E(R). We will say that a pair of p"-torsion points (z,y) is
a full level-p"™ structure if, under this identification, it corresponds to a full level-p”
structure (Z /p" Z)? — E(R) in the sense of Definition 1.2}

Example 1.4. In the situation of Definition 1.2, the datum of a group homomorphism
v:(Z /p"Z)* — E(R) is equivalent to the datum of a map

v : (Z/p" Z)* — E[p"]

in the category of finite flat group schemes over R; here Z /p" Z denotes the constant

group scheme associated to the finite group Z /p™ Z. If p is invertible in R, then v is a
full level-p™ structure (in the sense of Definition if and only if 4/ is an isomorphism
of finite flat group schemes. Beware that if p is not invertible in R, then the latter
condition is never satisfied (because the group scheme E[p] is not étale over Spec(R)).

Example 1.5. Let E be an elliptic curve over a separably closed field k. Then a map
v:(Z /p"Z)? — E(k) is a full level-p™ structure on E if and only if every p"-torsion
element of E(k) lies in the image of 7. It follows that the set of full level-p™ structures
on E carries a transitive action of the group GLy(Z /p" Z).
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Remark 1.6. Let F be an elliptic curve over a commutative ring R and suppose we
are given a pair of p"-torsion points x,y € E(R). Then there exists a finitely generated
ideal I € R with the following property: a ring homomorphism R — S annihilates the
ideal I if and only if the images of x and y in F(S) determine a full level-p™ structure
on the elliptic curve E Xgpec(r) Spec(S).

Remark 1.7. Let E be an elliptic curve over a commutative ring R and let ~ :
(Z /p" Z)* — E(R) be the zero map. The following conditions are equivalent:

e The map ~ is a full level-p" structure on F.

e The elliptic curve E' is supersingular: that is, the prime number p vanishes in R
and the subgroup E[p] € E coincides with the kernel of the iterated Frobenius
map F?: E — E®),

Notation 1.8. Let R be a commutative ring. We let Ell(R) denote the groupoid
whose objects are elliptic curves over R and whose morphisms are isomorphisms of
elliptic curves. If n is a positive integer, we let Ell(p™)(R) denote the groupoid whose
objects are pairs (E,v), where F is an elliptic curve over R and ~ : (Z /p")? — E(R)
is a full level-p™ structure on F; a morphism from (E, ) to (E’,+’) is an isomorphism
of elliptic curves f : £ — E’ which carries 7 to 7'. We regard the constructions
R — Ell(R) and R — Ell(p™)(R) as functors from the category of commutative rings
to the 2-category of groupoids. We will refer to Ell as the moduli stack of elliptic
curves, to Ell(p™) as the moduli stack of elliptic curves with a full level-p™ structure.

The moduli stack Ell is a Deligne-Mumford stack which is smooth of dimension 1
over Spec(Z). Let € denote the universal elliptic curve over Ell and let E[p"] denote
its p"-torsion subgroup, so that [p"] is finite flat of degree p** over Ell. It follows
from Remark that we can regard Ell(p™) as a closed substack of the fiber product
Ep"] xen E[p"]. In particular, Ell(p™) is also a Deligne-Mumford stack which is locally
finite type over Spec(Z), and the projection map Ell(p") — Ell is finite. One can show
that the Deligne-Mumford stack Ell(p™) is regular (see Theorem 5.1.1 of [3]); we will
give a proof here as Proposition [6.7, For the moment, we note the following weaker
result:

Proposition 1.9. For each n > 0, the Deligne-Mumford stack ENl(p™) has pure Krull
dimension 2.

Proof. The moduli stack Ell is smooth of relative dimension 1 over Spec(Z), hence of
Krull dimension 2. Since the projection map Ell(p™) — Ell is finite, it follows that
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Ell(p") has Krull dimension < 2 at each point. Let | Ell(p")| denote the underlying
topological space of Ell(p™) and let K < |Ell(p™)| be the union of those irreducible
components having dimension 2. Since the map Ell(p") — Ell is surjective, the set
K is nonempty. It follows that the image of K is a nonempty closed subset of | Ell|.
Since the moduli stack Ell is irreducible, the map K — | Ell| is surjective: that is, the
set K intersects each fiber of the map Ell(p") — Ell. Combining this observation with
Remark [I.5, we deduce that K = | Ell(p")|. O

The moduli stacks Ell(p") can be organized into an inverse system
- — Ell(p°) — Ell(p*) — Ell(p),

where the transition maps are given by the construction (E,z,y) — (E, pzx, py). We
let Ell(p™) denote the inverse limit of this system. Since each of the transition maps
is affine (even finite), it follows that Ell(p™) is also a Deligne-Mumford stack, which
is affine over the moduli stack Ell of elliptic curves. Beware that the moduli stack
Ell(p™) is not Noetherian.

Notation 1.10 (The Weil Pairing). Let E be an elliptic curve over a commutative
ring R and let z,y € E(R) be a pair of p"-torsion points of £. We let eyn(z,y) denote
the Weil pairing of x and y, which we regard as an element of the group

ppn(R) = {ue R:u" =1}
of p"th roots of unity in R.

Proposition 1.11. Let E be an elliptic curve over a commutative ring R and let
xz,y € E(R) be a full level-p™ structure on R, Then the Weil pairing e (x,y) is
a primitive p"th root of unity: that is, it is a root of the cyclotomic polynomial
w@=DP" Tt =200 T

Proof. Replacing x and y by p"~ 'z and p"~ 'y, we can reduce to the case n = 1. The
triple (E,z,y) is then classified by a map f : Spec(R) — Ell(p). Working locally
on Spec(R), we may assume that f factors through an étale map Spec(S) — Ell(p).
Replacing R by S, we can reduce to the case where f is flat. Since Ell(p) is flat
over Spec(Z) (see Remark [6.8), it follows that the commutative ring R is torsion-free.
Consequently, to show that e,(z,y) is a primitive pth root of unity in R, we can
replace R by R[1/p] and thereby reduce to the case where p is invertible in R. Using
Example , we see that x and y determine an isomorphism (Z /pZ)* — E[p]. In
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this case, the assertion that e,(x,y) is a primitive pth root of unity follows from the
fact that the Weil pairing e : E[p] Xspec(r) E[p] — pp is nondegenerate (that is, it
exhibits E[p| as a Cartier dual of itself). O

Construction 1.12. For each n > 0, let Z[(,»] denote the ring of integers in the
cyclotomic field Q[¢,»], which we can identify with the quotient Z[u]/(u®DP"™" +
w27 " 1), Tt follows that the spectrum Spec(Z[(yn]) can be identified
with a closed subscheme of the group scheme p,» of p"th roots of unity. By virtue
of Proposition , the construction (E,z,y) — ey (x,y) induces a map of Deligne-
Mumford stacks 6, : Ell(p") — Spec(Z[(,»]), which we will refer to as the Weil pairing
map. Passing to the limit over n, we obtain a map 6, : Ell(p*) — Spec(Z[{y=]).

Remark 1.13 (Level Structures on Ordinary Elliptic Curves). Let E be an elliptic
curve over a commutative F,-algebra R, and assume that E is ordinary (that is, the
map E — Spec(R) has no supersingular fibers). Let n be a positive integer, so that
the subgroup scheme E[p"] € FE fits into an exact sequence

0— E[pn]cn - E[pn] - E[pn]ét — 0

where the group scheme E[p™]¢ is étale over Spec(R) and the group scheme E|[p™]c,
has connected fibers. Let x,y € F(R) be a pair of p"-torsion points, so that x and y
determine a map of finite flat group schemes v : (Z /p" Z)?> — E[p"]. Then the pair
(x,y) is a full level p™-structure if and only if both of the following conditions are
satisfied:

(a) The composite map (Z /p" Z)* 5> E[p"] — E[p"]¢ is an epimorphism of finite

flat group schemes over Spec(R).
(b) The Weil pairing ey (z,y) is a primitive p"th root of unity in R.

Notation 1.14. For every Deligne-Mumford stack X', we let X',y denote the product
X x Spec(F,,): that is, the closed substack of X given by the vanishing locus of p. We
also let F,[(y=] denote the quotient Z[(,=]/(p).

We can now state the first main result of this paper:

Theorem 1.15. After extending scalars to ¥,, the morphism 0y : Ell(p®) —
Spec(Z[(y»]) is relatively perfect. In other words, the diagram of Deligne-Mumford



stacks
Bl(p*),-0 — = Ell(p*), o

| |

Spec(Fp[Ge]) — > Spec(Fy[¢ye])

is a pullback square (here the horizontal maps are given by the absolute Frobenius).

2 Reduction to Finite Level

Our goal in this section is give a precise formulation of the heuristic described in
Remark (Theorem [2.11)), and to show that it implies Theorem We begin by

introducing some terminology.

Definition 2.1. Let R be a commutative ring, let n be a positive integer, and let F

be an elliptic curve over R equipped with a full level-p™*!

structure, given by a pair
of p"*l-torsion points x,y € E(R). We will say that the level-p"*!-structure (z,y) is
degenerate if the Weil pairing e,n+1(z,y) is a primitive p"th root of unity in R.

We let Ell(p"™)4eq denote the substack of Ell(p"*!) whose R-valued points are

"+l structure, so that we have a

elliptic curves equipped with a degenerate full level-p
pullback diagram

Eu<pn+1)deg o Eu(anrl)

| Le

Spec(Z[(pn]) —— pipn+1.

It follows that the inclusion Ell(p"*!)4eq — Ell(p™*!) is a closed immersion, so that
Ell(p" 1) geg is a Deligne-Mumford stack of finite type over Spec(Z).

Remark 2.2. Let R be a commutative ring, let n be a positive integer, and let u be

a primitive p"T!st root of unity in R: that is, an element of R satisfying the equation

L+uP" +u®" 4 4+ u®DP" =0, If u is also a p™th root of unity, then we must have
p = 0in R. In particular, the existence of an elliptic curve E over R equipped with a
degenerate full level-p"*! structure implies that p = 0 in R. That is, we can regard

Ell(p"t!)aeq as a closed substack of Ell(p™*™!),—o.

Example 2.3. Let F be an elliptic curve over a field k of characteristic p. Then every

full level-p" ™! structure on E is degenerate (since every p"!st root of unity in & is
equal to 1, which is also a primitive p"th root of unity). Consequently, the inclusion

map Ell(p"™)geg — Ell(p"*1),—0 is an equivalence on field-valued points.
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Example 2.4. Let R be a commutative Fj-algebra, let I/ be an elliptic curve over R,
and let z,y € F(R) determine a full level-p"*! structure on E. Let E® denote the
pullback of E along the Frobenius map ¢ : Spec(R) — Spec(R), and let F : E — E®)
denote the relative Frobenius map. Then the elements F(z), F(y) € E® (R) determine
a degenerate full level-p™*!
calculation

structure on the elliptic curve E®: this follows from the

epnt1(F(2), F(y)) = ep+1(z,y)?,

since eyn+1(x,y) is a primitive p"*'st root of unity (Proposition [1.11]). In other words,
the absolute Frobenius map Ell(p"*1),_o — Ell(p"*1),_, factors through the closed
substack Ell(p" ™) geg € EL(p" 1) ,—0.

For every integer n > 0, we have a forgetful map Ell(p"™!) — Ell(p"), given by the
construction (E,z,y) — (E,px,py). If n > 1, then this map carries Ell(p"*!) gy into
Ell(p"™)deg- We will deduce Theorem from the following:

Theorem 2.5. Let n > 1, and consider the commutative diagram of groupoid-valued
functors
Ell(p"+1)p:0 - Ell(pn+1)deg

-
~
-
-
~
A

Ell(p™)p—0 — ELl(p") deg,

where the vertical maps are given by forgetting level structure and the horizontal maps
by the absolute Frobenius. Then there exists a dotted arrow as indicated, which renders
the diagram commutative (up to canonical isomorphism).

Proof of Theorem from Theorem [2.5. Using Theorem [2.5, we obtain a commu-
tative diagram of Deligne-Mumford stacks

Ell(p*)p—0 — Ell(p*)deg

-
-

-
L

Ell(p?*)p=0 — Ell(p?)deg

-
-
-
-
-
A

Ell(p?)p=0 — El(p?) deg-
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Passing to the inverse limit in the vertical direction, the horizontal maps determine a
morphism of algebraic stacks p : Ell(p*),—0 — lim Ell(p")4eq, Whose codomain can
be identified with the closed substack of Ell(p®),—o given by the vanishing locus of
= ng_ 'y ng_ SR G2 + 1. Theorem 1_15‘ now follows from the observation that
the Frobenius homomorphism ¢ : F,[(yx]| — F,[(y=] is a surjection whose kernel is

generated by 7. O]
To prove Theorem [2.5] we will need an auxiliary construction.

Proposition 2.6. Let R be a commutative F,-algebra, let £ be an elliptic curve over
R, and suppose we are given a pair of points x,y € EP(R). Assume that the pair
(Va,Vy) is a full level-p™ structure on E, for some n > 0. Then the pair (x,y) is a
degenerate full level-p™*' structure on E®).

Proof. The assertion is local with respect to the fppf topology on Spec(R). We may
therefore assume without loss of generality that x = Fa’ and y = Fvy' for some
2,y € E(R). Our assumption that (Vz, Vy) = (p2’, py’) is a full level-p™ structure
on E guarantees that (z’,y') is a full level-p"*! structure on E, so that the desired
result follows from Example O

Remark 2.7. Let R be a commutative F,-algebra, let E/ be an elliptic curve over R,
and suppose we are given a pair of points x,y € E®(R) such that Vz and Vy are
p"-torsion elements of E(R). Then x and y are p"*'-torsion points of E® (R), and
we have an equality of Weil pairings e n+1(x,y) = epn(Va, Vy). To prove this, we can
work locally with respect to the fppf topology on Spec(R) and thereby reduce to the
case where x = Fz/ for some 2’ € E(R). In this case, we compute

epnt1(,y) = epmr1(Fzo,y)
= epnr1(zg, Vy)
= €pn (pl'(), Vy)
= en(Vz,Vy).

Notation 2.8. Let R be a commutative Fp-algebra and let £ be an elliptic curve
over R. We let V : E® — E denote the Verschiebung map: that is, the isogeny of
elliptic curves which is dual to the relative Frobenius F : E — E®).

Construction 2.9. Let R be a commutative Fp-algebra and let n > 0 be an integer.

We let Ell(p")X;%ift(R) denote the groupoid whose objects are triples (E, x,y), where
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E is an elliptic curve over R and z,y € E®(R) have the property that the elements
Vz,Vy € E(R) determine a full level-p™ structure on E. The construction R —
Ell(p") VMt (R) determines a functor from the category of commutative F,-algebras
to the 2-category of groupoids, which we will denote by Ell(p")yZ3". By convention,
we extend this functor to all commutative rings by setting Ell(p );’:Ia‘ft( ) = & when
p does not vanish in R.

Remark 2.10. Let R be a commutative F,-algebra. Then we can identify the R-
valued points of Ell(p )V Lift with elliptic curves E over R equipped with a full level-p™

structure 7,7 € E(R), together with specified Verschiebung lifts x,yy € E®)(R) of ¥
and ¥, respectively. Since the Verschiebung map V : E® — E is finite flat of degree
p, the construction (£, z,y) — (E,V(z),V(y)) determines a natural transformation
Ell(p"))Z4" — Ell(p"),- which is finite flat of degree p®. In particular, Ell(p™)) ™ is
a Deligne-Mumford stack which is locally of finite type over Spec(F,).

Using Proposition [2.6] we see that the construction (E,z,y) — (E®, z,y) deter-
mines a map of Deligne-Mumord stacks Ell(p") 4™ — Ell(p"*!)geg. For n > 1, this

natural transformation fits into a diagram of Deligne-Mumford stacks

(®) Fy
EH( n+1 (™), Fa,Fy) EH n—i—l)deg
(E,Fz,Fy) (E® 2y
(E,pz,py) Ell V Llft (E,pz,py)
% (E®) pz,py)
EH( E(P) JFz,Fy) Eu(pn)deg

which commutes up to canonical isomorphism, where the outer square is the diagram
of Theorem (here each arrow has been labelled by its effect on a triple (E, x,y)).
Consequently, to produce the extension required by Theorem [2.5] it will suffice to
show that the diagonal map in the upper right is invertible. This is a consequence of
the following converse to Proposition 2.6}

Theorem 2.11. Let n be a positive integer. Then construction (E, x,y) — (E®), x,y)
induces an isomorphism of Deligne-Mumford stacks Ell(p");,/'%ift — EN(p"*) eg-
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Remark 2.12. For any positive integer n, we have a pullback diagram of Deligne-
Mumford stacks

(E® z,)

Ell (p”)X;Loift EH( n+1) cg

(E,p”‘lx,p”‘ly)l l(E,p”‘lx,p"‘ly)

(®) ¢
Ell(p) V4t — 2 B (52) g

where each arrow has been labelled by its effect on an object (E, z,y) of its domain.
Consequently, to prove Theorem in general, it suffices to treat the case n = 1.
We will not make use of this observation, because it does not really simplify the proof.

Remark 2.13. More concretely, Theorem [2.11] asserts that if £ is an elliptic curve
over a commutative F,-algebra R equipped with a degenerate full level-p™*! structure
(x,y), then then there exists another elliptic curve E’ over R and an isomorphism
3 : E ~ E'") with the property that (V3(z),VB(y)) is a full level-p”™ structure on E';
here V : E'®) — E’ denotes the Verschiebung map for E’. Moreover, the pair (£, 3)
is well-defined up to unique isomorphism.

3 The Case of Ordinary Elliptic Curves

Let E be an elliptic curve over a commutative F,-algebra R. We will say that
E is ordinary if each fiber of the map EF — Spec(R) is an ordinary elliptic curve.
Let Ell,q denote the open substack of Ell,_y whose R-valued points are given by
ordinary elliptic curves over Spec(R). For each n > 0, we let Ell(p")Y: i denote
the fiber product El(p")V% xpgy  Ellgq, and EN(p™*!)gegora the fiber product
ElL(p"™)deg xEn Ellora. We regard Ell(p™) Y44 and EL(p™™)geg ora s open substacks

of Ell(p™) V4™ and Ell(p"*!)aeq, respectively.
Our goal in this section is to prove the following weak version of Theorem [2.11}

Theorem 3.1. For each n > 0, the construction (E,z,y) — (E®) z,y) induces an
isomorphism of Deligne-Mumford stacks Ell(p™)Y-E — El(p™ 1) geg ord -

ord

The proof is based on the following simple observation:

Lemma 3.2. Let R be a commutative Fp-algebra, let £ be an ordinary elliptic
curve over Spec(R), and suppose we are given a pair of points x,y € E(R) which
determine a full level-p™ structure on E, which we identify with a map of group schemes
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v:(Z/p"Z)* — E. Suppose that the Weil pairing e,n(z,y) is equal to 1. Then the
map ~y factors (uniquely) as a composition (Z /p" Z)* — Q — E, where Q € E is an
étale subgroup of degree p".

Proof. Our assumption that E is ordinary guarantees that the p"-torsion subgroup
E[p"] < FE fits into an exact sequence of finite flat group schemes

0 — E[p"]en — E[p"] L E[p"]ee — 0,

where E|[p™]¢ is étale over Spec(R) and E[p"]., has connected fibers. Our assump-
tion that x and y determine a level structure guarantees that the composite map
(Z /p"Z)* 5 E[p"] — E[p"]e is an epimorphism of étale group schemes over R
(Remark [1.13). Let S denote its kernel and set Q = (Z /p" Z)*/S, so that we have a

diagram of short exact sequences

0 S (2 /" 2? —Q 0
-
0——E[p"]en Elp"] E[p™]ss — 0.

Note that the Weil pairing on E[p"] induces a perfect pairing of E[p"]c, with E[p"]s.
Our assumption that e, (x,y) = 1 guarantees that the Weil pairing vanishes when
restricted to (Z /p®Z)?, so that the map 7, vanishes. It follows that ~ factors

through a closed immersion @) — E[p"] — E, whose image maps isomorphically onto
E[p" et O

Proof of Theorem|[3.1. Let E be an ordinary elliptic curve over a commutative F,-
algebra R and let z,y € E(R) be a degenerate full level-p"*! structure on E. Then
eyn+1(x,y) is a p"th root of unity. Applying Lemma to the pair (p"x,p"y), we
deduce that there is a unique étale subgroup ) < E of degree p which contains p"x
and p"y. Let E’ denote the quotient E/Q, and let f : E' — E denote the dual of the
quotient map E — FE/Q. Then f is an isogeny whose kernel can be identified with
the Cartier dual of S. It follows that the Frobenius endomorphism of ker(f) vanishes:
that is, ker(f) is contained in the kernel of the Frobenius isogeny F : E' — E'®). We
can therefore factor F' as a composition E’ L E L B®. Since f and F' have the
same degree p, the map 3 is an isomorphism. Passing to duals, we conclude that

/

the quotient map E — E/S factors as a composition £ S pw Y p , where V' is

the Verschiebung map of E’. By construction, the map V o 8 annihilates p"x and
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p™y, so that ¥ = V3(z) and § = V3(y) are p™-torsion points of E’. We will complete
the proof by showing that the pair (Z,9) is a full level-p™ structure on E’ (note that

the uniqueness of E’ is clear from the construction, since any isogeny F — E” which

annihilates p"x and p"y necessarily factors through V o ). Since E’ is ordinary, it
will suffice to show that the pair (Z,7) satisfies the criteria of Remark |1.13;

(a)

Let ¥ : (Z /p" Z)* — E'[p"] be the map of finite flat group schemes determined by
the pair (7,7); we wish to show that the composite map (Z /p" Z)? 3, E'[p"] —
E'[p"]et is an epimorphism. Let Q@ < F denote the inverse image of () under

the map F LNy , so that QT is a finite flat subgroup of E of degree p*"*1. We
then have a commutative diagram of finite flat group schemes

(2 /p Z)? s Bl e .

o]

(Z/p" 2 ——>E'[p"] — E'[p"]

Since the right vertical map is an epimorphsim of finite flat group schemes
over R, we are reduced to showing that the upper horizontal composition is an

epimorphism. This follows from our assumption that the pair (x,y) determines
a full level-p"*! structure on E (Remark [1.13)).

The degeneracy of the level structure (z,y) implies that the Weil pairing
eyn+1(x,y) is a primitive p"th root of unity in R. Applying Remark , we
deduce that e, (Z,7) = eyn+1(x,y) is also a primitive p”th root of unity in R.

]

We conclude this section by sketching some of the obstacles encountered when
attempting to extend the proof of Theorem to the case of supersingular elliptic
curve. Note that proceeding proof can be broken into two steps:

(4)

(i)

Using the assumption that the Weil pairing e,n+1(z,y) was a p"th root of unity,
we constructed another elliptic curve E’ and an isomorphism 3 : E ~ E'®) with
the property that V3(z) and V3(y) are p™-torsion points of E’.

Using the stronger assumption that e,n+1(z,y) is a primitive p"th root of unity,
we showed that the pair (V5(z), VB(y)) determines a full level-p™ structure on
E'.
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It follows from (i) that there is a commutative diagram of moduli stacks

EL(p™ ™) deg,ord — ELl(p™) g™

L,

Eﬂ(p)Cp:I,ord Euorda

where the upper horizontal map is inverse to the isomorphism of Theorem [3.1], and
the vertical maps are given by “forgetting” level structure; here the map v carries a
triple (F, z,y) to the quotient of F/Q, where () € E is the étale subgroup generated
by x and y (Lemma . This construction does not extend to supersingular elliptic
curves:

Counterexample 3.3. The map ¢ : Ell(p)¢,~1,0ra — Elloya cannot be extended to a
map ¢ : Ell(p)¢c,—1 — Ell,—¢.

Proof. We sketch a proof under the assumption that p = 2. We assume that the
reader is familiar with the theory of Igusa curves, which we we review in §6 The
moduli stack Ell(p)¢,—1 can be written as a union of (p + 1) irreducible components
Co, C4,...,C,, each of which is isomorphic to the Igusa curve Ig(p) (Corollary [6.9).
When restricted to each Cj, the map ¢ admits a (unique) extension 1, : C; — Ell,_o,
which can be identified with the tautological map Ig(p) — Ell,—_¢ and is therefore finite
flat of degree p—1 (hence an isomorphism in the case p = 2). Let E be a supersingular
elliptic curve over the finite field F,. Then E admits a unique full level-p structure
(given by the pair (0,0)), which determines an F,-valued point 7 of the moduli stack
Ell(p) belonging to each of the curves C; (and therefore also to Ell(p)¢,—1). Let V/
denote the Zariski tangent space to Ell(p) at the point 7. Since Ell(p) is regular of
dimension 2 (Proposition , V' is a vector space of dimension 2 over F,. Each C; is
smooth over F),, so the Zariski tangent space to C; at the point 7 is a 1-dimensional
subspace V; € V. Since the curves C; meet transversely at the point n (Lemma ,
we have V; # V; for ¢ # j. It follows that every Vj, Vi,...,V, is the collection of all
1-dimensional subspaces of V.

Now suppose that there exists a map v : Ell(p)¢,—1 — Ell,—o which extends 1.
Let W denote the Zariski tangent space to Ell,_q at the point ¢(n), so that W is a
1-dimensional vector space over F,. It follows that the differential of ¥ induces an
F,-linear map V' — W whose kernel is nonzero and therefore contains the subspace
V; for some i. We conclude that the map v, : C; — Ell,—o must be ramified at the
point 7, contradicting our observation that i, has degree p — 1 = 1. O
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It follows from Counterexample|3.3|that our proof of Theorem [3.1| cannot be naively
extended to the supersingular case: given an R-valued point (E,x,y) of Ell(p"™!)geg,
the construction of the elliptic curve £ of Remark must somehow use the fact
the assumption that e,n+1(z,y) is a primitive p"th root of unity.

4 Passage to Reduced Fibers

Let n be a positive integer. Then the comparison map of Theorem fits into a
commutative diagram

(Bz,y)—(E® z,y)

Ell (p”);/;%i& El (anrl )deg
(E»mvy)'_’ep" (m m'_’(ipn-kl(lﬂy)
SpeC<Fp [Cp"])y

where F,[(,»] denotes the quotient Z[(,n]/(p) (see Remark [2.7). To prove Theorem
m, it will be convenient to pass to the fiber of this map over the (unique) residue

field of F,[(yn]. This is harmless, by virtue of the following:
Proposition 4.1. Let n be a nonnegative integer. Then:

(a) The map 6, : Ell(p™) — Spec(Z[(yn]) of Construction|[1.19 is a local complete
intersection morphism.

(b) The map EN(p™ ™) aeg — Spec(F,[(n]) is a local complete intersection morphism.

(¢) The map Ell(p")) " Ezpdmep VaVy) Spec(Fp[(pn]) is a local complete inter-

section morphism.

Proof. Note that Z[(,»] is a Dedekind ring. Consequently, to show that 6, is a
local complete intersection morphism, it suffices to observe that Ell(p") is regular
(Proposition[6.7)) and that EIl(p™) is torsion-free as a module over Z[(,], or equivalently
as a module over Z (Remark [6.8). This proves (a). To deduce (b) from (a), it will
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suffice to show that the upper square in the diagram

Ell(pn+1)deg Eu<pn+1)

| |

Spec(Fy[Cpn]) — Spec(Z[(yn+1])

| |

Spec(Z[¢pn]) Hipr+t

is a pullback diagram. This is clear, since the outer rectangle is a pullback by definition
and the lower square is a pullback by virtue of Remark [2.2] To prove (c), we note
that the relevant map admits a factorization

El(p") Y5 L B (p™),—o 2 Spec(F,[¢pn])

where g is a pullback of 6,, (and therefore a local complete intersection morphism by
virtue of (a)). We are therefore reduced to proving that f is a local complete intersection
morphism. Fix a commutative ring R equipped with a map Spec(R) — Ell(p™),-0,
classifying an elliptic curve E over R equipped with a full level-p™ structure z,7 € E(R),
and form a pullback diagram

X L Spec(R)

|

n\V-Li f n
Ell(p )X:%ftHEll(p )p=0;

we wish to show that fr is a local complete intersection morphism. Note that the
map fg fits into a pullback square

X L Spec(R)

|

VxV
E® X Spec(R) E® S E X Spec(R) E.
We conclude by observing that the map V x V : E® X Spec(R) E®) . F X Spec(R) F

is a local complete intersection morphism, because it is a flat map between smooth
R-schemes. n
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Notation 4.2. For every positive integer n, we let Ell(p”)¢,.—1 denote the closed
substack of Ell(p") given by the vanishing locus of (,» — 1: that is, the closed substack
which parametrizes elliptic curves E equipped with a full level-p™ structure (x,y) for
which the Weil pairing e, (z,y) is equal to 1. Note that Ell(p™)¢,,. = 1 is defined over
the quotient ring Z[(yn]/(Cpn — 1) =~ F,. In particular, Ell(p")¢,.—1 is contained in the
closed substack Ell(p"),—¢ < Ell(p") given by the vanishing locus of p. If n > 1, we
also have Ell(p")¢ =1 S EIl(p")deg-

We let Ell(p )VnL‘ftl denote the fiber product El(p™) 5™ xgupny, o BIL(P™) -1,

)V Llft

which we regard a closed substack of Ell(p™) =4

Remark 4.3. Note that the closed substacks

Ell(p )V Lift < Bl (pn)Y-Life EL(p")¢,n-1 = EL(P"™)p0

p=0

can be described as the vanishing locus of the element (,» — 1, which is a nilpotent
element of the local Artinian ring F,[(,»]. We will later see that the stacks Ell(p”)z;fj‘:ftl
and Ell(p”)¢,.=1 are reduced (Theorems |5.4) and (5.5 . It follows that they can be iden-
tified with the reductions of the Deligne-Mumford stacks Ell(p") 5™ and Ell(p™),—o,
respectively.

We will deduce Theorem from the following more basic assertion:

Theorem 4.4. For each n > 0, the construction (E,x,y) — (E® x,vy) induces an
isomorphism of Deligne-Mumford stacks

BI(p") S — Bl

ni1=1-

Proof of Theorem from Theorem [4.4]. We wish to show that the horizontal map
in the diagram

. z.)—(E® 2
Ell(pn)\/-hft (Byzy)—(EP) z.y) En(pn+1)deg

(va7y)'_>€pn (Va:,Vy) %Hepnﬁ—l(xvy)

Spec (Fp [gp"] )

is an isomorphism. Theorem [£.4asserts that the horizontal map becomes an equivalence
after pulling back along the closed immersion i : Spec(F,) < Spec(F,[(]). The
desired result now follows from the flatness of the vertical maps (Proposition ,
since the ideal sheaf associated to the closed immersion ¢ is nilpotent. O
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5 Digression: The /-Invariant of a Curve

Let X be a Noetherian Deligne-Mumford stack, let | X| denote its underlying
topological space, and let .# be a coherent sheaf on X which is supported at the set
of closed points of |X|. For each closed point z € X, we can choose an étale map
f : Spec(R) — X and a maximal ideal m € R lying over the point z. In this case,
the stalk of the sheaf f*.# at the point m is an R,-module of finite length. We will
denote this length by len,(.%) and refer to it as the length of % at the point x. Note
that the quantity len, (%) is independent of the choice of the map f : Spec(R) — X
and the maximal ideal m < R.

Definition 5.1. Let X be reduced Deligne-Mumford stack which is Noetherian of
dimension 1, let 7 : X — X denote its normalization, and assume that the map
is finite (this condition is satisfied, for example, if X is of finite type over a field).
Then the cokernel of the unit map Ox — m, Oy is a coherent sheaf supported at the
set of closed points of | X|. For each closed point x € | X|, we let §,(X) denote the
length len, (coker(Ox — m, O%)). We will refer to 6,(X) as the d-invariant of X at
the point x.

Example 5.2. Let Z be a Deligne-Mumford stack which is regular of Krull dimension
2 and let D, D" < Z be reduced effective divisors having normalizations 7 : D—D
and 7' : D' — D’. Assume that the maps 7 and 7’ are finite and that the intersection
D x 7 D' has Krull dimension 0. Then the sum D + D’ is a reduced effective divisor
in Z having normalization Dub' Moreover, for every closed point x € |Z| belonging
to both D and D’, we have an equality

0:(D + D) = 0,(D) + 6,.(D") +i.(D,D"),

where i, (D, D’) denotes the intersection number of D and D" at the point x (that is,
the length len, (%), where .% denotes the structure sheaf of the intersection D; x ; D;).

We can use Definition [5.1] to give a numerical criterion for showing that a map
between curves is an isomorphism:

Proposition 5.3. Let f : X — Y be a finite morphism between reduced Deligne-
Mumford stacks which are of finite type and relative dimension 1 over a field k. Suppose
that:

(a) There exists a dense open substack U €'Y for which the projection X xy U — U
is an isomorphism.
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(b) For each point y € |Y| which does not belong to U, we can choose some point
x € |X| lying over Y which satisfies 6,(X) = §,(Y).

Then f is an isomorphism.

Proof. The assertion is local with respect to the étale topology on Y. We may therefore
assume without loss of generality that Y = Spec(R), where R is a reduced k-algebra of
Krull dimension 1, and that U € Y is the complement of a single point corresponding
to some maximal ideal m € R. Since [ is finite, we can write X = Spec(S), where S
is a finite R-algebra. Let R denote the normalization of R. It follows from (a) that
we can also identify R with the normalization of S , so that we can regard S as an
R-subalgebra of R. We have an exact sequence of finite length R-modules

0— S/R— R/R— R/S — 0.

The length of E/S as an R-module is at least as large as the length of é/S as an
S-module, which (by virtue of (b)) is the same as the length of R/R as an R-module.
It follows that the quotient S/R is trivial, so that f is an isomorphism as desired. [

We will deduce Theorem from the following pair of results, which we prove in

g6 and §7]
Theorem 5.4. Let n be a positive integer. Then:
(1) The moduli stack ENL(p")¢,..-1 is reduced.

(2) For each supersingular point z € |ELl(p")¢ .1, we have

0=(BI(p")gn 1) = (1/2)(p™" " +p™7%)

Theorem 5.5. Let n be a positive integer. Then:
(1) The moduli stack Ell(p”)z;nL‘:ftl is reduced.

2) For each supersingular point z € | EL(p™)Y | we have
( persingular p P") ¢

52(Ell(p”)2;‘31:ft1) — (1/2)(p3n+2 +p3n+1)

22



Proof of Theorem[{.4) Tt follows from Theorem [3.1] that the map

w: Ell(p) M — Bl (p" ),

Cp pn+1 =1

(E7 w? y) — (E(p)7 x7 y)
is an isomorphism over the ordinary locus

EI(p™ )¢ i —tora = EN(P™ )¢ 41 —1g XEn Ellora

It follows from Theorems |5.4| and ﬁ that each supersingular point of Ell(p"“)gpn =1
can be lifted uniquely to a supersingular point of Ell(p")¢ 1 having the same -

invariant, so that u is an isomorphism by the criterion of Proposition [5.3] O]

6 Igusa Curves

For each n > 0, the moduli stack Ell(p")¢,.—1 is an effective Cartier divisor in the
moduli stack Ell(p™) (given as the vanishing locus of the regular function (,» —1). In
this section, we review the description of Ell(p”)gpnzl as a sum of regular divisors,
meeting nontransversely at the supersingular points of Ell(p") (Corollary [6.9 below),
and use this description to compute the d-invariants of Ell(p")¢,.—1. For a more
detailed discussion, we refer the reader to [3].

Notation 6.1. Let n be a positive integer and let S = (Z /p™ Z)? be a subgroup. We
let Ell(p™)s denote the closed substack of Ell(p™) whose R-valued points are given by
pairs (E,~), where F is an elliptic curve over Spec(R) and ~ : (Z /p" Z)* — E(R) is
a full level-p" structure on E satisfying v|s = 0.

In the case where the subgroup S is cyclic of order p” (which is the only case we
will consider), the substack Ell(p")s is contained in Ell(p")¢,,—1. In particular, it is
contained in the vanishing locus of p.

It will be useful to have an alternate description of the closed substacks Ell(p")g <
Ell(p™).

Notation 6.2. Let R be a commutative Fp-algebra and let £’ be an elliptic curve
over R. For each integer n > 0, let V" : E®") — E denote the iterated Verschiebung
map, and regard the kernel ker(V™) as a relative effective divisor of degree p" in the
elliptic curve E®"). If n > 0, then the map V" factors as a composition

g V'L ) VY, E,
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where V"1 denotes the (n—1)st iterate of the Verschiebung map of E®. It follows that
ker(V"™1) < ker(V"), so we can write ker(V"™) = ker(V" 1) + D for some uniquely
determined relative effective divisor D < E®") of degree p™ — p"~!. We say that

a point x € E®)(R) is a cyclic generator of ker(V™) if it belongs to the subset
D(R) < EP)(R).

Remark 6.3. In the situation of Notation [6.2] let = be an R-valued point of ker(V™),
which we can identify with a map of finite flat group schemes Z /p" Z = ker(V") <

E®") . If E is ordinary, then z is a cyclic generator of ker(V™") if and only if a
is an isomorphism. Beware that if £ has supersingular fibers, then « is never an
isomorphism (since ker(V") is not an étale group scheme over R).

Definition 6.4. Let n be a positive integer. If R is a commutative F-algebra, we let
Ig(p")(R) denote the category whose objects are pairs (E,z), where E is an elliptic
curve over R and z is a cyclic generator of ker(V") € E®"); a morphism from (E, z)
to (E',2') is an isomorphism of elliptic curve £ ~ E’ for which the induced map
E®") ~ F'®") carries x to 2’. The construction R — Ig(p™)(R) determines a groupoid-
valued functor on category of commutative F,-algebras, which we extend formally to
all commutative rings by setting Ig(p")(R) = & if p # 0 in R. We will refer to Ig(p™)
as the nth Iqusa curve.

Remark 6.5. In the situation of Definition the construction (E,z) — E de-
termines a map Ig(p") — Ell x Spec(F,) which is finite flat of degree p™ — p"~!. In
particular, the Igusa curve Ig(p™) is a Deligne-Mumford stack which is of finite type
over Spec(F,).

Remark 6.6. Let Ig(p™)qq denote the open substack of Ig(p™) given by the inverse
image of Ell,,q. Then the projection map Ig(p™)ora — Ellorq is finite étale of degree

p" — p"~ L. Tt follows that the Igusa curve Ig(p")orq is smooth of dimension 1 over

Spec(F,).

Proposition 6.7 (Katz-Mazur, Theorems 5.1.1 and 13.7.6). Let n be a positive integer.
Then:

(1) The moduli stack EN(p™) is reqular of dimension 2.

(2) Let S < (Z/p"Z)* be a subgroup which is isomorphic to Z /p"Z. Then the
closed substack Ell(p™)s < Ell(p™) is smooth of dimension 1 over Spec(F,).
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(3) Let o : (Z/p"Z)* — Z /p"Z be a surjection of abelian groups with kernel
S < (Z/p"Z)>. Then there is canonical isomorphism of Deligne-Mumford
stacks 0 : Ig(p™) — El(p™)s, given on R-valued points by the construction
(E,2) — (E®") %), where v : (Z /p" Z)*> — EW")(R) is given by the formula
v(v) = a(v).

(4) The Igusa curve 1g(p™) is smooth of dimension 1 over Spec(F,).
Remark 6.8. It follows from Proposition [6.7| that the map Ell(p") — Spec(Z) is flat.

Proof of Proposition[6.7]. We first show that the map 6 of (3) is an isomorphism
over the ordinary locus Ell(p")gora = Ell(p")s xgn Ellya. Let R be a commutative
F,-algebra and let E’ be an ordinary elliptic curve over R equipped with a full
level-p" structure v : (Z /p" Z)*> — E'(R) which annihilates S. Then ~ factors as
a composition (Z /p"Z)* > Z /p"Z 2, FE'(R). Applying Lemma , we see that

v induces an isomorphism from Z /p™ Z onto an étale subgroup S’ < E’. Setting

E = E'/S’, we obtain an isomorphism £’ ~ E®") carrying 7/(1) to a cyclic generator
of ker(V™). It is easy to see that the construction (E’,v) — (E,+/(1)) is an inverse of
6 over the ordinary locus Ell(p")s ord-

We now prove (2). We first note that the closed substack Ell(p™)s < Ell(p") is
given locally as the vanishing locus of a single regular function. Since Ell(p™) is of
pure dimension 2 (Proposition , each irreducible component of Ell(p™)s has Krull
dimension > 1. Let X < Ell(p")s be the closed substack whose R-valued points
are pairs (FE,v), where F is an elliptic curve over R and v : (Z /p"Z)* — E(R)
is a full level-p™ structure which is identicially zero. It follows from Remark
that the projection map Ell(p™) — Ell induces an isomorphism of Deligne-Mumford
stacks X — EII*, where ElI*® < Ell is the reduced closed substack parametrizing
supersingular elliptic curves in characteristic p (which is étale over Spec(F,)). Since
X can be described locally as the vanishing locus of a regular function on Ell(p")g, it
follows that Ell(p™)g is smooth of dimension 1 over Spec(F,) at the points of X. It
will therefore suffice to show that Ell(p™)s is smooth of dimension 1 over Spec(F,) at
every closed point which does not belong to X. Since every such point belongs to the
open substack Ell(p")soa € Ell(p")s, we are reduced (by the first part of the proof)
to showing that the stack Ig(p™)ora is smooth of dimension 1 over Spec(F,), which
follows from Remark [6.6l

We now prove (1). Suppose we are given a geometric point 7 : Spec(k) — Ell(p"),
corresponding to an elliptic curve E over k equipped with a full level-p” structure
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v:(Z/p"Z)* — E(k); we wish to show that Ell(p") is regular at the image of . If
the field & has characteristic different from p, then the map Ell(p") — Ell is étale in
a neighborhood of 7, so the desired result follows from the regularity of the moduli
stack Ell. We may therefore assume that k£ has characteristic p. In this case, the map
v must annihilate a subgroup S < (Z /p" Z)? which is isomorphic to Z /p" Z, so that
we can regard (E,~) as a k-valued point of the closed substack Ell(p")s < Ell(p").
Since Ell(p™)g is regular of dimension 1 and is given locally as the vanishing locus of
a single function on Ell(p"), it follows that Ell(p™) is regular of dimension 2 near the
point 7 (recall that Ell(p™) is of pure Krull dimension 2 by virtue of Proposition [L.9).

We now prove (3). Note first that the map 0 : Ig(p") — Ell(p")s is relatively
representable (since every nontrivial automorphism of an elliptic curve E over an
F,-algebra R is also nontrivial on the iterated Frobenius pullback E®")). Since
Ell(p")s is smooth of dimension 1 over Spec(F,) and 6 is an isomorphism over a dense
open set, it will suffice to show that the stack Ig(p") is reduced. Note that Ig(p™)
can be realized as an effective Cartier divisor in a Deligne-Mumford stack which is
smooth of dimension 2 over Spec(F,), and is therefore a local complete intersection.
Consequently, to show that Ig(p™) is reduced, it will suffice to show that Ig(p™) is
reduced at each generic point, which follows from Remark [6.6]

Assertion (4) follows immediately from (2) and (3). O

Corollary 6.9 (Katz-Mazur, Theorem 13.7.6). For each n > 0, the moduli stack
Ell(p™)¢,n=1 can be identified with the sum Y,¢ Ell(p")s as an effective Cartier divisor in

Ell(p"); here the sum is taken over all subgroups S < (Z /p™ Z)?* which are isomorphic
toZ /p"Z.

Proof. 1t follows from Proposition that each Ell(p™)s is an effective Cartier divisor
in Ell(p"), so that D = Y ¢ Ell(p")g is well-defined as an effective Cartier divisor in
Ell(p™). Moreover, the substack Ell(p")¢ -1 € Ell(p") is an effective Cartier divisor
by construction. By virtue of Lemma [3.2] these Cartier divisors agree outside of the
supersingular locus of Ell(p™), and therefore coincide (since the supersingular locus
has codimension 2). O

Lemma 6.10. Let 0 < m < n, and let D denote the closed substack of Ig(p™)
parametrizing those pairs (E,x) where x is a cyclic generator of ker(V") < E®")
satisfying p™x = 0. Then D has multiplicity p*™ at each supersingular point of Ig(p").

Proof. The Igusa curve Ig(p"~™) parametrizes pairs (F, y), where y is a cyclic generator
of ker(V"™™) < EP"™™). Let Dy < Ig(p™™™) be the closed substack parametrizing
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such pairs where y = 0. The proof of Proposition 6.7 shows that Dy has multiplicity
1 at each supersingular point of Ig(p"~™). Unwinding the definitions, we see that D
can be identified with the inverse image of Dy under the composition

Ex)—(E,V™Tx n—m m n—m
ED2EVD, 1g(pm—m) 255 Tg(pn ™)

Ig(p™)

where ¢ denotes the absolute Frobenius map of Ig(p"~™). Since Ig(p™~™) is smooth
of dimension 1 over Spec(F,), the pullback ¢™* D, has multiplicity p™ at each su-
persingular point of Ig(p™ ™). We complete the proof by observing that the map

Ig(p™) (Ba)>E V) Ig(p™~™) has degree p™ and is totally ramified over each super-
singular point of Ig(p™~™). O

Lemma 6.11. [Katz-Mazur, Corollary 13.8.5] Let S and T be distinct subgroups of
(Z /p"Z)?*, each isomorphic to Z /p" Z, and regard Ell(p"™)s and ENl(p")r as effective
divisors in Ell(p"™). Then, at each supersingular point of Ell(p™), the intersection
multiplicity of Ell(p")s and Ell(p™)r is equal to |(Z /p" Z)*/(S + T)|?.

Proof. Without loss of generality, we may assume that S and T are the cyclic subgroups
of (Z /p™ Z)? generated by (1,0) and (1,p™), for some m < n. Under the isomorphism
Ig(p™) ~ Ell(p")s of Proposition [6.7] the intersection Ell(p™)s xgueny ELl(p™)r corre-
sponds to the divisor D < Ig(p") described in Lemma , which has multiplicity
p?™ at each supersingular point. O

Proof of Theorem[5.4 Corollary [6.9 supplies an identification

El(p")e,n1 = > EL(P")s
S

of effective Cartier divisors in Ell(p"). In particular, Ell(p™)¢,. -1 is smooth away from
the locus of supersingular elliptic curves, and therefore generically reduced. Since it is
an effective Cartier divisor in the regular Deligne-Mumford stack Ell(p™), it is a local
complete intersection, and is therefore everywhere reduced. At each supersingular
point z of | Ell(p™),.-1], repeated application of Example gives the identity

(BN o) = 5 3 i (BN )s, EG)),
S#T

where i, (Ell(p™)s, Ell(p™)r) denotes the intersection multiplicity of Ell(p™)s and
Ell(p")r at the point z and is therefore given by |(Z /p"Z)?/(S + T)|* (Lemma
6.11). Here there are p™ + p™~! choices for the cyclic subgroup S < (Z /p" Z)?. For
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every such subgroup S, there are exactly p" subgroups 7" for which S+ T = (Z /p" Z)?,
and for each 0 < m < n there are exactly p»™ — p" ™! subgroups T satisfying

(Z /p"Z)?/(S +T)| = p™. We therefore have

(B ) = 5 3 i-(EUG)s, EGH))r

S#T
prptt o nem _  n-m—1y, 2m
e AR W A e )
0<m<n
Pt nim e
Sl o W AR )
O<m<n
_ pn +pn—1p2n_1
2
B p3n—1 +p3n—2
= —2 .

7 Ramification of Igusa Curves

For each n > 0, the construction (E,z) — (E,Vz) determines a map of Igusa
curves Ig(p"™!) — Ig(p"). It follows from Remark [6.6| that this map is étale over the
ordinary locus Ig(p™)ora € Ig(p™). However, it is totally ramified at each supersingular
point. We will need the following more quantitative assertion:

n+1)

Proposition 7.1. Let n > 0 and let y € |Ig(p™*) xigm) Ig(p | be a point lying

over the supersingular locus | EII*® | € |Ell|. Then we have an equality

0, (Ig(p" ) X1gm) Te(p™ 1)) = (1/2) (P2 = p**1).

Remark 7.2. The map Ig(p"*!) — Ig(p") is a finite and generically étale map between
Deligne-Mumford stacks which are smooth of dimension 1 over Spec(F,). To any such
map, we can associate a different ideal sheaf Digpnt1y/19(pn) S Org(pr+1), defined as the
annihilator ideal of the sheaf of relative Kahler differentials Qyg(n+1)/15(pn). Proposition
is equivalent to the statement that the different ®yyn+1)/14(m) has multiplicity

p?n 2 — p?*+1 at each supersingular point of Ig(p™*).

Proof of Proposition|[7.1. Choose a scheme C and an étale map f : C' — Ig(p"),
classifying an elliptic curve E over C together with a cyclic generator ker(V™) < E®"),
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Then C is smooth of dimension 1 over Spec(F,) (Proposition . Set C' = C X 1g(pn)
Tg(p™*!) and D = C'xC. Then f induces an étale map D — Tg(p™*) x 1g(pm) Ig(p" ).
Note that, if ¢ is a closed point of |C| for which the fiber E. is supersingular, then the
map C —Cis totally ramified at the point ¢. Consequently, we can lift ¢ uniquely
to closed points ¢ € |é | and y € |D|. We will prove Proposition by verifying the
equality 6,(D) = (1/2)(p***? — p?"*1). To prove this, we are free to replace C' by an
open neighborhood of ¢ and may therefore assume that c is the only point of C for
which the elliptic curve E, is supersingular.

Let us regard D as an effective Cartier divisor in the algebraic surface C X Spec(Fy) C.
Let G denote the collection of all elements \ € Z /p" ™! Z satisfying A = 1 (mod p").
We regard G as a group under multiplication (so that G is isomorphic to the cyclic
group Z /pZ). The construction (E,z) — (E,\x) determines an action of G on
Ig(p™™!) which fixes the projection map Ig(p"*') — Ig(p™). We therefore also obtain
an action of G on the curve C', which we will denote by (A € G) — (uy : C' — C).
Since the elliptic curve E is ordinary away from the point ¢, this action exhibits
C' — {2} as a G-torsor over the curve C' — {¢}. For each A € @, the pair (idg, ur)
determines a closed immersion C' — (' X Spec(F,) C , whose image is a (smooth) divisor
D,, which is contained in D. Moreover, in the punctured surface (C X Spec(F,) ) —{y},
the divisor D — {y} is given by the disjoint union of the divisors D) — {y}. It follows
that we have an equality of effective Cartier divisors D = 7, D,. Since each D, is
smooth over Spec(F,), iterated application of Example gives the equality

5,D) = 5 3" i(Dy. D).
A£N
Here the sum is taken over all ordered pairs of distinct elements of the group G, so
there are p? —p summands. We will complete the proof by showing that each summand
iy(Dy, Dy) is equal to p**. By symmetry, we may assume that A = 1. In this case,
the scheme-theoretic Dy n Dy can be identified with the closed subscheme of C given

1) induces an

n+1)

by the fixed points of u,. Consequently, the projection map C — Ig(p
étale map Dy n Dy — Y, where Y denotes the closed substack of Ig(p given by
pairs (E, x) satisfying the condition Az = x, or equivalently the condition p"z = 0. It
follows from Lemma that Y is an effective Cartier divisor having degree p** at

each supersingular point of Ig(p™*!). O

Proof of Theorem[5.5 By virtue of Proposition , the algebraic stack Ell(p”)z;flzfﬁ
is a local complete intersection of dimension 1. Moreover, it has a dense open substack
(given by the inverse image of Ell,q) which is isomorphic to an open substack of
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Ell(p ”*1)4 wi1=1 (Theorem , and is therefore reduced (Theorem . It follows
that Ell(p") 1 is everywhere reduced. The construction (E,z,y) — (E,V,Vy)
determines a morphlsm of stacks p : Ell(p )2/,?‘& — Ell(p")¢,.=1 which is finite flat of
degree p* (and totally ramified over the supersingular points of Ell(p")¢,n=1)-

For every subgroup S < (Z /p" Z)* which is isomorphic to Z /p" Z, let Ell(p")s =
Ell(p")¢,.=1 be the closed substack introduced in Notation , and set

Ell(p") ™" = EL(p") S5 *pngm, ., EI(")s.

Note that if z is a closed point of | Ell(p )V Lt Jying over the supersingular locus
of Ell, then z belongs to each of the closed substacks Ell(p")¥t. Moreover, the
canonical map | [¢Ell(p™)¢ ™ — Ell(p )2;}1:&1 is an isomorphism over the ordinary
locus, so the normalization of Ell(p )\;31&1 can be identified with the disjoint union of
the normalizations of the closed substacks Ell(p")¥™ . Letting Z denote the image of

z in |El(p")¢ n=1], we compute
5. (El(p") ) = leny( @ Opngmyysie / Oy, ) + Z 5, (ElL(p™) YLty
= len.(p @ Oknpm)s /OEll(p Yognot) T 25 (Ell(p™) &)
= p’lenz 659 Opnpr)s / Ongr)e 1) + 25 (Ell(p™) &1t

= P?(EU(p") ¢ +Z(5 (Ell(p )VLlft)

3n+1 3n
- L +Z§ (Bl (pm) ¥ ),

where the last equality follows from Theorem [5.4 - Note that there are p® + p"~!
summands appearing in the sum Y ¢ 4, (Ell(p™) ™). Consequently, to establish the
identity 0, (Ell(p™) 1) = (1/2)(p*** + p*+'), it will suffice to establish the identity
5. (EN(pm)¥Hit) = (1/2)(p?+2 — p?*1) for each S. Without loss of generality, we may

assume that S is the antidiagonal subgroup, given by the kernel of the map
a:(Z/p"Z)?* -~ Z/p"Z alt,j) =1+ 7.

According to Proposition , the construction (E,z) — (E®") 2, z) induces an
isomorphism of stacks Ig(p™) — Ell(p")s. Under this isomorphism, we can identify
Ell(p™) ¢ with the fiber product Ig(p™™) x14,m) Ig(p™ ™), so that the desired identity
follows from Proposition n
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8 Extension to the Cusps

In this section, we formulate a generalization of Theorem which incorporates
information about modular curves at the cusps. We begin by reviewing some definitions.
Let Ell denote the Deligne-Mumford compactification of the moduli stack Ell of elliptic
curves (so that the R-valued points of Ell are given by stable curves of genus 1 over
Spec(R), equipped with a section).

Construction 8.1. Let n be a positive integer, let = : Ell(p") — Ell denote the
projection map, and let j : Ell < EIl be the inclusion. The map 7 is finite, and the
map j is an affine open immersion (it is the inclusion of the complement of an effective
Cartier divisor). Consequently, the composite map

(jom): Ell(p") — Ell

is affine, determined by a quasi-coherent sheaf of algebras (j o 7). Ogy(pny on the
moduli stack Ell. Let & denote the integral closure of Ogg in (j o 7)s Opnny, and
let Ell(p") denote the relative spectrum of 7. By construction, we have a pullback
diagram of Deligne-Mumford stacks

Ell(p") — Ell(p")

where the vertical maps are finite and the horizontal maps are open immersions.

Remark 8.2. Construction is somewhat unsatisfying; the definition of Ell(p") as
a normalization does not a priori give a concrete description of its functor of points.
For a moduli-theoretic perspective, we refer the reader to [I].

The map 7 : Ell(p™) — Ell of Construction [8.1|is characterized, up to isomorphism,
by the following universal property:

(x) For every commutative diagram of Deligne-Mumford stacks

Ell(p") — X
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where the map v is finite, there exists an essentially unique extension to a
commutative diagram
Ell(p") ——

!

Ell(p") - ElL

Example 8.3. Let n be a positive integer. Applying () to the outer rectangle of the
diagram

|

m(pn+1>

Ell(p"*') — Ell(p") — Ell(p")
Ell,

we obtain a map of Deligne-Mumford stacks Ell(p"*!) — Ell(p") which extends the
forgetful map

El(p") — EN(p")  (E,z,y) — (E,pz,py).
These maps can be arranged into a tower

.. — Ell(p®) — Ell(p*) — Eli(p)

We will denote the inverse limit of this tower by Ell(p*). Since the transition maps
Ell(p"™) — El(p") are affine (in fact, they are finite), it follows that Ell(p®) is a
(non-Noetherian) Deligne-Mumford stack, which contains Ell(p®) as an open substack.

Example 8.4. For every positive integer n, we can apply (*) to the diagram

Ell(p") —= EIl x Spec(Z[(yn])

| l

Ell(p") ——EI,

where the upper horizontal map is given by the construction (E,x,y) — (E, e (z,7)).
It follows that the Weil pairing map

Ell(pn) - Spec(Z[Cpn]) (Ev Z, y) = Epn (Ia y)

admits an essentially unique extension to a map 6, : Ell(p") — Spec(Z[(,]). Passing
to the inverse limit over n, we obtain a map 0., : Ell(p™) — Spec(Z[(,=]), whose
restriction to the open substack Ell(p®) agrees with the map 6., of Construction [1.12]
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Theorem admits the following refinement:
Theorem 8.5. After extending scalars to ¥, the morphism
0 : EL(p™) — Spec(Z[Gy=])
is relatively perfect. In other words, the diagram of Deligne-Mumford stacks
Ell(p*)p=0 —— EI(p™)p=0
iem lem
Spec(Fp[Gpe]) —— Spec(Fy[¢ye])
is a pullback square (where the horizontal maps are given by the absolute Frobenius).

Proof of Theorem[0.3. We have a commutative diagram

Ell(p*)¢,1 = Bl(p*),-0 — = Ell(p*),

| 1 |

Spedzp[pr]/(Cp —1))— Spec( Cp ), S SpeC(Fp[gp"o])

where the left square is a pullback by definition and the right square is a pullback by
Theorem 8.5 It follows that the outer rectangle in the diagram

El(p*)¢,=1 . El(p* )¢ ,=1 Ell(p®)p—o
Spec(Zp[Gre]/ (G = 1)) — > Spec(Zy[Ge] /(G — 1)) — Spec(Fy[¢ye])

is also a pullback square. Since the right square in this second diagram is also a
pullback, and the lower left horizontal map is an isomorphism, we conclude that the
Frobenius map ¢ : Ell(p®)¢, -1 — ﬁ(poo)chl is also an isomorphism. O

Our proof of Theorem [8.5]is a mild embellishment of our proof of Theorem [1.15

Notation 8.6. For every positive integer n, we let Ell(p"™!)4e denote the closed
substack of Ell(p"*!) given by the fiber product

El(p"™) <, .., Spec(Z[Gyn]).

Note that Ell(p"™!) 4, contains the moduli stack Ell(p"*!)gee of Definition [2.1) as an
open substack.
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By virtue of Remark , we can regard Ell(p"™!) 4, as a closed substack of the
special fiber Ell(p"*!),—o. Moreover, the absolute Frobenius map on Ell(p"*!),_g
factors through Ell(p"*!)4ee. We will deduce Theorem from the following stronger
version of Theorem 2.5t

Theorem 8.7. Let n > 1 be an integer, and consider the commutative diagram of
Deligne-Mumford stacks

m(anrl)p:O . m(anrl)deg

~
—
~
-
-
£

El(p™)p—o — EL(p") deg,

where the vertical maps are as in Example and the horizontal maps are given by
the absolute Frobenius. Then there exists a dotted arrow as indicated, which renders
the diagram commutative (up to canonical isomorphism).

Proof of Theorem [8.5 from Theorem [8.7. Using Theorem 8.7, we obtain a commuta-
tive diagram of Deligne-Mumford stacks

m(1’4)10=0 - m(]94)deg;

-
-

A

Ell(p?)p—0 — EI(p*) deg

-
-
-
-
-

A

m(172>p:0 - m(p?>deg-

Passing to the inverse limit in the vertical direction, we obtain a map of algebraic
stacks

p: El(p™)p=0 — lim EII(p")qeq,

n

which we can identify with the relative Frobenius for the map 6., : Ell(p™),—o —
Spec(F,[(,»]). Consequently, Theorem is equivalent to the assertion that p is
an isomorphism. An explicit homotopy inverse is given by the dotted arrows in the
preceding diagram. O]
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Remark 8.8. For every commutative ring R, let EII"(R) denote the groupoid whose
objects are generalized elliptic curves E — Spec(R) (in the sense of [2]) which satisfy
the following additional condition:

(x) For every point = € Spec(R), the characteristic of the residue field x(x) does
not divide the number of irreducible components of the fiber E, = E Xgpec(r)

Spec(k(z)).

The construction R + Ell"(R) determines a Deligne-Mumford stack ENII*, which
contains the Deligne-Mumford compactification Ell as an open substack (namely, the
open substack whose R-valued points are generalized elliptic curves E — Spec(R)
with irreducible fibers); in fact, EIl" is precisely the “Deligne-Mumford locus” of the
algebraic stack parametrizing all generalized elliptic curves. All of the statements
formulated in this section remain valid if we replace Ell by the larger moduli stack
Ell". We leave the details to the reader.

9 Analysis of the Tate Curve

We will prove Theorem [8.7 by combining Theorem 2.5 with a local analysis around
the cusp of the moduli stack EIl. We begin by introducing some notation. For
every Deligne-Mumford stack X equipped with a map equipped with affine map
7: X — Ell,_g, let A(X) denote the direct image 7, Oy, regarded as a quasi-coherent
sheaf of algebras on the stack Ell,—y. The diagram

m(pn+1)p:0 . m(pn+1)deg

l l

El(p")p=o — BlI(p") deg

appearing in the statement of Theorem then determines a commutative square of
Oﬁpzo—algebras, indicated by the solid arrows in the diagram

pu AEL(p"™1)pm0) =<— A(EL(P" ) des)

R

P A(m(p”)pzo) ~ A(ﬁ(pn)dcg)a

where ¢ denotes the (absolute) Frobenius endomorphism of EllL,_y. We wish to show
that there exists a map ¥ which renders the diagram commutative. Theorem [2.5
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guarantees that such an arrow exists after restricting to the open substack Ell < EIL
In other words, we can choose a map vy : ©x A(EWL(p")y=0) — A(EL(p"t1)geq) for
which the diagram

AEL(p" 1) p—0) <—— A(EL(P" ™) aeg)
=i
px AEN(P")p=0) <—— A(EL(p") acg),
commutes. To complete the proof, it will suffice to verify the following:
(a) The canonical maps
AEN(P™)pm0) = AELP" " )p0)  AELP" acg) = AELP" ) ee)
are monomorphisms.

(b) The composite map

pu AEI(")p-0) = 92 AENP")p-0) > AEIE")acs)
factors through the monomorphism A(EL(p")geq) — A(EL(P™ ™) deg)-

Let Erae denote the Tate curve, which we regard as an elliptic curve over the
commutative ring Z((q)), classified by a map p : Spec(Z((q))) — Ell which admits a
canonical extension p : Spec(Z[[¢]]) — EIl. The maps

Spec(Z[[q]]) > Ell « Ell

determine a covering with respect to the fpqc topology. Since assertions (a) and (b)
can be tested locally with respect to the fpqc topology and are tautologically satisfied
over the open substack Ell < Ell, it will suffice to show that they hold after restriction
to Spec(Z[[q]]). We are therefore reduced to proving the following more concrete
statements:

(a’) The open immersions
J - EI(p")pm0 xen Spec(Z((q))) = EN(p™*"),—0 x g7 Spec(Z[q]])

j/ : Ell(p”“)deg XEll Spec(Z((q))) — m(anrl)deg xﬁSpec(Z[[q]])

are schematically dense.
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(') The composite map

EI(p™ ) aeg xmm Spec(Z((9))) 2% EN(p™)pmo xmn Spec(Z((q)))
—  EI(p"")p—0 xgr Spec(Z[[q]])

factors (uniquely) over the open immersion j'.

To prove (a’) and (V), we need an explicit analysis of the schemes Ell(p") x&5
Spec(Z[[g]]). Recall that the p"-torsion subscheme of the Tate curve Emyg, fits into a
short exact sequence of finite flat group schemes

0 — ppn — Erate[p"] = Z /p" Z — 0.

over the commutative ring Z((¢)). Moreover, the fiber of the map v over the element 1 €
Z /p" Z can be identified with Spec(Z((¢*/?"))) as a ym-torsor over Spec(Z((q))). For
every surjective map « : (Z /p" Z)* — (Z /p" Z), let Ell(p", ) denote the closed and
open subscheme of Ell(p™) xgySpec(Z((q))) classifying level structures v : (Z /p" Z)* —
Erate[p™] for which the composition (v o) : (Z /p* Z)? — Z /p™ Z is given by a. We
then have decompositions

Ell(p") e Spec(Z((q))) =~ [ [ EN(p", a)

Ell(p"*") xgn Spec(Z((q))) ~ UEII(Z’”H; a),

where the decomposition on the left is indexed by the collection of all surjections
a:(Z/p"Z)* — Z /p"Z, and the decomposition the right is indexed by the collection
of all surjections & : (Z /p"*t Z)* — Z /p"™' Z. This induces decompositions

Ell(p") gy Spec(Z[[q]]) ~ | [ EL(p", o)
El(p" ") xgy Spec(Z[[q]]) ~ L[W(p”“ﬁ)-

Fix a surjection & : (Z /p" ' Z)? — Z /p"*1 Z, let Ell(p"*1, &) denote the fiber product
Ell(pnt!, &) x tynss SPEC(Z[Gyr]), and define Ell(p " &) geg similarly. To deduce (a’)
and (b'), it will suffice to prove the following:

a e open immersions
" Th : :
ja : Ell(p™*t! ,&)p=o — Ell(p ntl , &) p=o j&  Ell(p™t! , ) deg — Ell(p ntl , ) deg

are schematically dense.
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(b") The composite map
EI(p", &) geg ~2 ElI(p", ),—o < ElI(p", )

factors (uniquely) over the open immersion j; here o : (Z /p"Z)*> — Z /p" Z
denotes the surjection obtained from & by reduction modulo p™.

To prove (a”) and (b”), we may assume without loss of generality that the map
& is given by projection onto the second factor. In this case, R-valued points of the
Z((q))-scheme Ell(p", o) are given by pairs of p™-torsion points x,y € Erae(R) for
which x is the image of a primitive p"th root of unity under the closed immersion

Spec(Z[Gpn]) x Spec(Z((q))) = ppn x Spec(Z((q))) = Erae[p"];

and y is an arbitrary R-valued point of the p,-torsor Spec(Z((¢*/?"))). This analysis
supplies an isomorphism of Z((g))-schemes

Ell(p", o) ~ Spec(Z[(yn]) x Spec(Z((¢"7"))) ~ Spec(Z[Gn]((¢"7"))).

Passing to the integral closure of Z[[¢]] in the ring of functions on Ell(p", ), this
extends to an isomorphism Ell(p", a) ~ Spec(Z[¢m][[¢*?"]]). Similarly, we have
isomorphisms

Ell(p"*!, &) ~ Spec(Z[Gn+1] (¢ )))
Ell(p™*', &) ~ Spec(Z[Gnn][[¢"7" 1))

Assertion (a”) now follows from the observation that the canonical map S [[ql/l’"“]] —
S((ql/P"“)) is a monomorphism for the commutative rings S = F,[(,»] and S =
F,[(m+1]. To prove (b”), it suffices to observe that the commutative square of rings

L (e A | B M (| |

/7
_
~
_
—
_
~

Fy[ G Ila7"]] F, Gl ]]

admits an extension as indicated, where the vertical maps are the evident inclusions

and the horizontal maps are given by ¢ — ¢P. The desired extension is given by the

. n n+1
construction ¢/?" — ¢/P"".
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