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Overview
Let p be a prime number, which we regard as fixed throughout this paper. For

each n ą 0, let Xppnq denote the modular curve parametrizing elliptic curves equipped
with a full level-pn structure, which we regard as a scheme defined over the cyclotomic
field Qrζpns. Each Xppnq determines a rigid-analytic curve Xppnqan over the local field
Qprζpns. These rigid-analytic curves can be organized into an inverse system

¨ ¨ ¨ Ñ Xpp4
q
an
Ñ Xpp3

q
an
Ñ Xpp2

q
an
Ñ Xppqan.

The starting point of this paper is the following result (which is a special case of
Theorem III.1.2 of [4]):

Theorem 0.1 (Scholze). There is an essentially unique perfectoid space Xpp8qan

over the perfectoid field Qcyc
p such that Xpp8qan „ lim

ÐÝ
Xppnqan (in the sense of [5],

Definition 2.4.1).

The primary goal of this paper is to prove an integral version of Theorem 0.1.
For pn ‰ 2, we can identify Xppnq with the generic fiber of a Deligne-Mumford stack
Ellppnq over the ring of integers Zrζpns Ď Qrζpns, which parametrizes (generalized)
elliptic curves equipped with a full level-pn structure in the sense of Drinfeld (see [3]
and [1]). These stacks can be organized into an inverse system

¨ ¨ ¨ Ñ Ellpp4
q Ñ Ellpp3

q Ñ Ellpp2
q Ñ Ellppq

with affine transition maps, so that the inverse limit Ellpp8q is a Deligne-Mumford
stack defined over the ring defined over the ring Zrζp8s “ lim

ÝÑn
Zrζpns. For every

positive integer n, let Ellpp8qζpn“1 denote the closed substack of Ellpp8q given by the
vanishing locus of ζpn ´ 1, so that we have a descending sequence of closed substacks

¨ ¨ ¨ Ď Ellpp8qζp3“1 Ď Ellpp8qζp2“1 Ď Ellpp8qζp“1.

Note that Ellpp8qζp“1 is defined over the quotient ring Zrζps{pζp ´ 1q » Fp, and is
therefore equipped with an (absolute) Frobenius map ϕ : Ellpp8qζp“1 Ñ Ellpp8qζp“1.
We will prove the following:

Theorem 0.2. The absolute Frobenius map ϕ : Ellpp8qζp“1 Ñ Ellpp8qζp“1 induces an
isomorphism from Ellpp8qζp“1 to the closed substack Ellpp8qζp2“1 Ď Ellpp8qζp“1.

It follows from Theorem 0.2 that the moduli stack Ellpp8q is étale locally integrally
perfectoid (after p-adic completion). More precisely, we have the following:
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Corollary 0.3. For every étale map SpecpRq Ñ Ellpp8q, there exists a regular
element π P R such that πp divides p and the Frobenius map R{πR Ñ R{πpR is
an isomorphism.

Proof. Let us regard R as an algebra over the ring Zrζp8s. It follows from Theorem
0.2 that the Frobenius map induces an isomorphism R{pζp2 ´ 1q Ñ R{pζp ´ 1q. Since
pζp2´1qp and ζp´1 differ by a unit, it follows that π “ ζp2´1 satisfies the requirements
of Corollary 0.3.

Remark 0.4. More generally, for every integer n ą 0, the Frobenius map induces
an isomorphism of Deligne-Mumford stacks Ellpp8qζpn“1 Ñ Ellpp8qζpn`1“1. This is an
immediate consequence of Theorem 0.2.

Remark 0.5. We will deduce Theorem 0.2 from slightly stronger assertion: the
structure morphism Ellpp8q Ñ SpecpZrζp8sq becomes relatively perfect after extending
scalars to Fp (see Theorems 1.15 and 8.5).

Remark 0.6. The conclusion of Corollary 0.3 is satisfied more generally for maps
f : SpecpRq Ñ Ellpp8q which are “log étale at infinity” (in particular, our result can
be applied to the study of elliptic curves equipped with auxiliary “prime to p” level
structures). This is a consequence of stronger version of Theorem 0.2, where we replace
the moduli stack Ellpp8q by a certain enlargement Ell`pp8q; see Remark 8.8.

Remark 0.7. In [6], Weinstein supplies an explicit description of the coordinate ring
for Lubin-Tate space at infinite level (see Theorem 2.7.3 of [6]). From this description,
one can immediately deduce that Corollary 0.3 holds after formal completion along
the locus of supersingular elliptic curves.

Warning 0.8. For pn ‰ 2, the generic fiber of Ellppnq is the modular curve Xppnq,
which is a scheme. However, the stack Ellppnq itself is never a scheme: over a field
of characteristic p, any supersingular elliptic curve E admits a unique full level-pn
structure, which is preserved by any automorphism of E. Consequently, there is
a slight mismatch between the statements of Theorem 0.1 and Corollary 0.3: the
first concerns the local structure of the inverse system tXppnqanu with respect to the
analytic topology, while the second concerns the local structure of the inverse system
tEllppnqu with respect to the étale topology. Nevertheless, it is not difficult to deduce
Theorem 0.1 formally from Corollary 0.3; we leave details to the interested reader.
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Remark 0.9. Theorem 0.2 provides a moduli-theoretic interpretation of the tilt
Xpp8qan,5 of the perfectoid space of Theorem 0.1: it can be realized as the “generic
fiber” of the formal Deligne-Mumford stack given by the direct limit of the system

Ellpp8qp“0
ϕ
ÝÑ Ellpp8qp“0

ϕ
ÝÑ Ellpp8qp“0

ϕ
ÝÑ ¨ ¨ ¨ ,

where the transition maps are given by the absolute Frobenius endomorphism of the
product Ellpp8qp“0 “ Ellpp8q ˆ SpecpFpq.

Let us now outline our approach to Theorem 0.2. The map appearing in Theorem
0.2 can be realized as an inverse limit of Frobenius maps ϕ : Ellppnqζp“1 Ñ Ellppnqζp2“1

defined for n ě 2. At finite level, these maps are not isomorphisms. However,
we will show that they induce an isomorphism of pro-objects tEllppnqζp“1uně2 Ñ

tEllppnqζp2“1uně2. This is a consequence of the following more precise assertion:

Theorem 0.10. For each n ě 2, the commutative diagram of Deligne-Mumford stacks

Ellppn`1qζp“1
ϕ //

��

Ellppn`1qζp2“1

��ww
Ellppnqζp“1 // Ellppnqζp2“1

admits an extension as indicated; here the horizontal maps are given by the absolute
Frobenius, and the vertical maps by “forgetting” level structure.

Remark 0.11. To fix ideas, let us give a rough description of the diagonal map
appearing in Theorem 0.10. Working away from the cusp, we can think of points of
Ellppn`1qζp2“1 as elliptic curves E equipped with a full level-pn`1 structure px, yq for
which the Weil pairing epn`1px, yq is a pn´1st root of unity. The heuristic idea is that
the degeneracy of the Weil pairing ensures that pnx and pny “generate” a subgroup
S Ď E of order p. The diagonal map then carries the triple pE, x, yq to pE{S, x1, y1q,
where x1 and y1 denote the images of x and y in the quotient elliptic curve E{S.

Let us now outline the contents of this paper. For most of this paper, we will be
primarily concerned with the open substack Ellpp8q Ď Ellpp8q parametrizing smooth
elliptic curves with a full level-p8 structure. In §1, we recall the definition of this
stack (following [3]) and formulate a slightly stronger version of Theorem 0.2 for it
(see Theorem 1.15). In §2, we reduce to proving a statement about about elliptic
curves with a finite amount of level structure (Theorem 2.11), which asserts that a
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certain map of moduli stacks ρ : EllppnqV-Lift
p“0 Ñ Ellppn`1qdeg is an isomorphism. This

statement can be regarded as a precise articulation of the heuristic of Remark 0.11
(and implies a slightly stronger version of Theorem 0.10). In §3, we show that ρ induces
an isomorphism over the locus of ordinary elliptic curves. In this case, our proof is
conceptual: that is, it can be explained directly in terms of the functors represented
by EllppnqV-Lift

p“0 and Ellppn`1qdeg. To extend this result over the supersingular locus,
we resort to a calculation. First, we note that it suffices to prove that ρ induces
an isomorphism of the reductions of the moduli stacks EllppnqV-Lift

p“0 and Ellppn`1qdeg

(which admit moduli-theoretic descriptions which we review in §4). These are reduced
(stacky) curves over SpecpFpq, whose failure to be smooth can be quantified by their
δ-invariants (see §5). We will complete the proof by computing the δ-invariants on
both sides (at each point of the supersingular locus) and showing that they agree.
These calculations are carried out in §6 (for the moduli stack Ellppn`1qdeg) and in §7
(for the moduli stack EllppnqV-Lift

p“0 ) using the theory of Igusa curves Igppnq. In essence,
the proof reduces to comparing intersection numbers between Igusa curves in two
different settings: inside the (stacky) characteristic p surface Igppn`1q2, and inside the
(stacky) arithmetic surface Ellppn`1q.

The remainder of this paper is devoted to extending our analysis to the compactified
moduli stack Ellpp8q. We give a precise formulation in §8 and carry out the proof in
§9, using an explicit calculation with the Tate curve.

Remark 0.12. Many of the results of this paper can be extended to a more general
setting, where the (algebraic) moduli stack Ell of elliptic curves is replaced by the the
(non-algebraic) moduli stack of 1-dimensional p-divisible groups. We will discuss such
extensions in a sequel to this paper.
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1 Level Structures on Elliptic Curves
In this section, we briefly review the theory of Drinfeld level structures on elliptic

curves and formulate the first main result of this paper (Theorem 1.15). For a more
comprehensive account, we refer the reader to [3].

Notation 1.1. Let E be an elliptic curve over a commutative ring R and let x P EpRq
be an R-valued point of E. Then x determines a closed immersion of schemes
SpecpRq ãÑ E, whose image is an effective Cartier divisor in E. We will denote this
effective Cartier divisor by rxs.

Definition 1.2 (Drinfeld, Katz-Mazur). Let E be an elliptic curve over a commutative
ring R. A full level-pn structure on E is a group homomorphism γ : pZ {pn Zq2 Ñ EpRq

for which there is an equality
ÿ

vPpZ {pZq2
rγpvqs “ Erpns

of effective Cartier divisors in E. Here Erpns denotes the kernel of the map pn : E Ñ E.

Remark 1.3. Let E be an elliptic curve over a commutative ring R. We will generally
abuse notation by identifying group homomorphisms pZ {pn Zq2 Ñ EpRq with pairs
of pn-torsion points x, y P EpRq. We will say that a pair of pn-torsion points px, yq is
a full level-pn structure if, under this identification, it corresponds to a full level-pn
structure pZ {pn Zq2 Ñ EpRq in the sense of Definition 1.2.

Example 1.4. In the situation of Definition 1.2, the datum of a group homomorphism
γ : pZ {pn Zq2 Ñ EpRq is equivalent to the datum of a map

γ1 : pZ {pn Zq2 Ñ Erpns

in the category of finite flat group schemes over R; here Z {pn Z denotes the constant
group scheme associated to the finite group Z {pn Z. If p is invertible in R, then γ is a
full level-pn structure (in the sense of Definition 1.2) if and only if γ1 is an isomorphism
of finite flat group schemes. Beware that if p is not invertible in R, then the latter
condition is never satisfied (because the group scheme Erps is not étale over SpecpRq).

Example 1.5. Let E be an elliptic curve over a separably closed field k. Then a map
γ : pZ {pn Zq2 Ñ Epkq is a full level-pn structure on E if and only if every pn-torsion
element of Epkq lies in the image of γ. It follows that the set of full level-pn structures
on E carries a transitive action of the group GL2pZ {pn Zq.
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Remark 1.6. Let E be an elliptic curve over a commutative ring R and suppose we
are given a pair of pn-torsion points x, y P EpRq. Then there exists a finitely generated
ideal I Ď R with the following property: a ring homomorphism RÑ S annihilates the
ideal I if and only if the images of x and y in EpSq determine a full level-pn structure
on the elliptic curve E ˆSpecpRq SpecpSq.

Remark 1.7. Let E be an elliptic curve over a commutative ring R and let γ :
pZ {pn Zq2 Ñ EpRq be the zero map. The following conditions are equivalent:

• The map γ is a full level-pn structure on E.

• The elliptic curve E is supersingular: that is, the prime number p vanishes in R
and the subgroup Erps Ď E coincides with the kernel of the iterated Frobenius
map F 2 : E Ñ Epp

2q.

Notation 1.8. Let R be a commutative ring. We let EllpRq denote the groupoid
whose objects are elliptic curves over R and whose morphisms are isomorphisms of
elliptic curves. If n is a positive integer, we let EllppnqpRq denote the groupoid whose
objects are pairs pE, γq, where E is an elliptic curve over R and γ : pZ {pnq2 Ñ EpRq

is a full level-pn structure on E; a morphism from pE, γq to pE 1, γ1q is an isomorphism
of elliptic curves f : E Ñ E 1 which carries γ to γ1. We regard the constructions
R ÞÑ EllpRq and R ÞÑ EllppnqpRq as functors from the category of commutative rings
to the 2-category of groupoids. We will refer to Ell as the moduli stack of elliptic
curves, to Ellppnq as the moduli stack of elliptic curves with a full level-pn structure.

The moduli stack Ell is a Deligne-Mumford stack which is smooth of dimension 1
over SpecpZq. Let E denote the universal elliptic curve over Ell and let Erpns denote
its pn-torsion subgroup, so that Erpns is finite flat of degree p2n over Ell. It follows
from Remark 1.3 that we can regard Ellppnq as a closed substack of the fiber product
ErpnsˆEll Erpns. In particular, Ellppnq is also a Deligne-Mumford stack which is locally
finite type over SpecpZq, and the projection map Ellppnq Ñ Ell is finite. One can show
that the Deligne-Mumford stack Ellppnq is regular (see Theorem 5.1.1 of [3]); we will
give a proof here as Proposition 6.7. For the moment, we note the following weaker
result:

Proposition 1.9. For each n ą 0, the Deligne-Mumford stack Ellppnq has pure Krull
dimension 2.

Proof. The moduli stack Ell is smooth of relative dimension 1 over SpecpZq, hence of
Krull dimension 2. Since the projection map Ellppnq Ñ Ell is finite, it follows that
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Ellppnq has Krull dimension ď 2 at each point. Let |Ellppnq| denote the underlying
topological space of Ellppnq and let K Ď |Ellppnq| be the union of those irreducible
components having dimension 2. Since the map Ellppnq Ñ Ell is surjective, the set
K is nonempty. It follows that the image of K is a nonempty closed subset of |Ell |.
Since the moduli stack Ell is irreducible, the map K Ñ |Ell | is surjective: that is, the
set K intersects each fiber of the map Ellppnq Ñ Ell. Combining this observation with
Remark 1.5, we deduce that K “ |Ellppnq|.

The moduli stacks Ellppnq can be organized into an inverse system

¨ ¨ ¨ Ñ Ellpp3
q Ñ Ellpp2

q Ñ Ellppq,

where the transition maps are given by the construction pE, x, yq ÞÑ pE, px, pyq. We
let Ellpp8q denote the inverse limit of this system. Since each of the transition maps
is affine (even finite), it follows that Ellpp8q is also a Deligne-Mumford stack, which
is affine over the moduli stack Ell of elliptic curves. Beware that the moduli stack
Ellpp8q is not Noetherian.

Notation 1.10 (The Weil Pairing). Let E be an elliptic curve over a commutative
ring R and let x, y P EpRq be a pair of pn-torsion points of E. We let epnpx, yq denote
the Weil pairing of x and y, which we regard as an element of the group

µpnpRq “ tu P R : upn “ 1u

of pnth roots of unity in R.

Proposition 1.11. Let E be an elliptic curve over a commutative ring R and let
x, y P EpRq be a full level-pn structure on R, Then the Weil pairing epnpx, yq is
a primitive pnth root of unity: that is, it is a root of the cyclotomic polynomial
upp´1qpn´1

` upp´2qpn´1
` ¨ ¨ ¨ ` up

n´1
` 1.

Proof. Replacing x and y by pn´1x and pn´1y, we can reduce to the case n “ 1. The
triple pE, x, yq is then classified by a map f : SpecpRq Ñ Ellppq. Working locally
on SpecpRq, we may assume that f factors through an étale map SpecpSq Ñ Ellppq.
Replacing R by S, we can reduce to the case where f is flat. Since Ellppq is flat
over SpecpZq (see Remark 6.8), it follows that the commutative ring R is torsion-free.
Consequently, to show that eppx, yq is a primitive pth root of unity in R, we can
replace R by Rr1{ps and thereby reduce to the case where p is invertible in R. Using
Example 1.4, we see that x and y determine an isomorphism pZ {pZq2 Ñ Erps. In
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this case, the assertion that eppx, yq is a primitive pth root of unity follows from the
fact that the Weil pairing e : Erps ˆSpecpRq Erps Ñ µp is nondegenerate (that is, it
exhibits Erps as a Cartier dual of itself).

Construction 1.12. For each n ą 0, let Zrζpns denote the ring of integers in the
cyclotomic field Qrζpns, which we can identify with the quotient Zrus{pupp´1qpn´1

`

upp´2qpn´1
`¨ ¨ ¨`up

n´1
`1q. It follows that the spectrum SpecpZrζpnsq can be identified

with a closed subscheme of the group scheme µpn of pnth roots of unity. By virtue
of Proposition 1.11, the construction pE, x, yq ÞÑ epnpx, yq induces a map of Deligne-
Mumford stacks θn : Ellppnq Ñ SpecpZrζpnsq, which we will refer to as the Weil pairing
map. Passing to the limit over n, we obtain a map θ8 : Ellpp8q Ñ SpecpZrζp8sq.

Remark 1.13 (Level Structures on Ordinary Elliptic Curves). Let E be an elliptic
curve over a commutative Fp-algebra R, and assume that E is ordinary (that is, the
map E Ñ SpecpRq has no supersingular fibers). Let n be a positive integer, so that
the subgroup scheme Erpns Ď E fits into an exact sequence

0 Ñ Erpnscn Ñ Erpns Ñ Erpnsét Ñ 0

where the group scheme Erpnsét is étale over SpecpRq and the group scheme Erpnscn

has connected fibers. Let x, y P EpRq be a pair of pn-torsion points, so that x and y

determine a map of finite flat group schemes γ : pZ {pn Zq2 Ñ Erpns. Then the pair
px, yq is a full level pn-structure if and only if both of the following conditions are
satisfied:

paq The composite map pZ {pn Zq2 γ
ÝÑ Erpns Ñ Erpnsét is an epimorphism of finite

flat group schemes over SpecpRq.

pbq The Weil pairing epnpx, yq is a primitive pnth root of unity in R.

Notation 1.14. For every Deligne-Mumford stack X , we let X p“0 denote the product
X ˆ SpecpFpq: that is, the closed substack of X given by the vanishing locus of p. We
also let Fprζp8s denote the quotient Zrζp8s{ppq.

We can now state the first main result of this paper:

Theorem 1.15. After extending scalars to Fp, the morphism θ8 : Ellpp8q Ñ
SpecpZrζp8sq is relatively perfect. In other words, the diagram of Deligne-Mumford
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stacks
Ellpp8qp“0

ϕ //

��

Ellpp8qp“0

��
SpecpFprζp8sq

ϕ // SpecpFprζp8sq

is a pullback square (here the horizontal maps are given by the absolute Frobenius).

2 Reduction to Finite Level
Our goal in this section is give a precise formulation of the heuristic described in

Remark 0.11 (Theorem 2.11), and to show that it implies Theorem 1.15. We begin by
introducing some terminology.

Definition 2.1. Let R be a commutative ring, let n be a positive integer, and let E
be an elliptic curve over R equipped with a full level-pn`1 structure, given by a pair
of pn`1-torsion points x, y P EpRq. We will say that the level-pn`1-structure px, yq is
degenerate if the Weil pairing epn`1px, yq is a primitive pnth root of unity in R.

We let Ellppn`1qdeg denote the substack of Ellppn`1q whose R-valued points are
elliptic curves equipped with a degenerate full level-pn`1 structure, so that we have a
pullback diagram

Ellppn`1qdeg //

��

Ellppn`1q

θn`1

��SpecpZrζpnsq // µpn`1 .

It follows that the inclusion Ellppn`1qdeg ãÑ Ellppn`1q is a closed immersion, so that
Ellppn`1qdeg is a Deligne-Mumford stack of finite type over SpecpZq.

Remark 2.2. Let R be a commutative ring, let n be a positive integer, and let u be
a primitive pn`1st root of unity in R: that is, an element of R satisfying the equation
1` upn ` u2pn ` ¨ ¨ ¨ ` upp´1qpn “ 0. If u is also a pnth root of unity, then we must have
p “ 0 in R. In particular, the existence of an elliptic curve E over R equipped with a
degenerate full level-pn`1 structure implies that p “ 0 in R. That is, we can regard
Ellppn`1qdeg as a closed substack of Ellppn`1qp“0.

Example 2.3. Let E be an elliptic curve over a field k of characteristic p. Then every
full level-pn`1 structure on E is degenerate (since every pn`1st root of unity in k is
equal to 1, which is also a primitive pnth root of unity). Consequently, the inclusion
map Ellppn`1qdeg ãÑ Ellppn`1qp“0 is an equivalence on field-valued points.
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Example 2.4. Let R be a commutative Fp-algebra, let E be an elliptic curve over R,
and let x, y P EpRq determine a full level-pn`1 structure on E. Let Eppq denote the
pullback of E along the Frobenius map ϕ : SpecpRq Ñ SpecpRq, and let F : E Ñ Eppq

denote the relative Frobenius map. Then the elements F pxq, F pyq P EppqpRq determine
a degenerate full level-pn`1 structure on the elliptic curve Eppq: this follows from the
calculation

epn`1pF pxq, F pyqq “ epn`1px, yqp,

since epn`1px, yq is a primitive pn`1st root of unity (Proposition 1.11). In other words,
the absolute Frobenius map Ellppn`1qp“0 Ñ Ellppn`1qp“0 factors through the closed
substack Ellppn`1qdeg Ď Ellppn`1qp“0.

For every integer n ą 0, we have a forgetful map Ellppn`1q Ñ Ellppnq, given by the
construction pE, x, yq ÞÑ pE, px, pyq. If n ą 1, then this map carries Ellppn`1qdeg into
Ellppnqdeg. We will deduce Theorem 1.15 from the following:

Theorem 2.5. Let n ą 1, and consider the commutative diagram of groupoid-valued
functors

Ellppn`1qp“0 //

��

Ellppn`1qdeg

��ww
Ellppnqp“0 // Ellppnqdeg,

where the vertical maps are given by forgetting level structure and the horizontal maps
by the absolute Frobenius. Then there exists a dotted arrow as indicated, which renders
the diagram commutative (up to canonical isomorphism).

Proof of Theorem 1.15 from Theorem 2.5. Using Theorem 2.5, we obtain a commu-
tative diagram of Deligne-Mumford stacks

¨ ¨ ¨ //

��

¨ ¨ ¨

��ww
Ellpp4qp“0 //

��

Ellpp4qdeg

��xx
Ellpp3qp“0 //

��

Ellpp3qdeg

��xx
Ellpp2qp“0 // Ellpp2qdeg.
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Passing to the inverse limit in the vertical direction, the horizontal maps determine a
morphism of algebraic stacks ρ : Ellpp8qp“0 Ñ lim

ÐÝn
Ellppnqdeg, whose codomain can

be identified with the closed substack of Ellpp8qp“0 given by the vanishing locus of
π “ ζp´1

p2 ` ζp´2
p2 ` ¨ ¨ ¨ ` ζp2 ` 1. Theorem 1.15 now follows from the observation that

the Frobenius homomorphism ϕ : Fprζp8s Ñ Fprζp8s is a surjection whose kernel is
generated by π.

To prove Theorem 2.5, we will need an auxiliary construction.

Proposition 2.6. Let R be a commutative Fp-algebra, let E be an elliptic curve over
R, and suppose we are given a pair of points x, y P EppqpRq. Assume that the pair
pV x, V yq is a full level-pn structure on E, for some n ą 0. Then the pair px, yq is a
degenerate full level-pn`1 structure on Eppq.

Proof. The assertion is local with respect to the fppf topology on SpecpRq. We may
therefore assume without loss of generality that x “ Fx1 and y “ Fy1 for some
x1, y1 P EpRq. Our assumption that pV x, V yq “ ppx1, py1q is a full level-pn structure
on E guarantees that px1, y1q is a full level-pn`1 structure on E, so that the desired
result follows from Example 2.4.

Remark 2.7. Let R be a commutative Fp-algebra, let E be an elliptic curve over R,
and suppose we are given a pair of points x, y P EppqpRq such that V x and V y are
pn-torsion elements of EpRq. Then x and y are pn`1-torsion points of EppqpRq, and
we have an equality of Weil pairings epn`1px, yq “ epnpV x, V yq. To prove this, we can
work locally with respect to the fppf topology on SpecpRq and thereby reduce to the
case where x “ Fx1 for some x1 P EpRq. In this case, we compute

epn`1px, yq “ epn`1pFx0, yq

“ epn`1px0, V yq

“ epnppx0, V yq

“ epnpV x, V yq.

Notation 2.8. Let R be a commutative Fp-algebra and let E be an elliptic curve
over R. We let V : Eppq Ñ E denote the Verschiebung map: that is, the isogeny of
elliptic curves which is dual to the relative Frobenius F : E Ñ Eppq.

Construction 2.9. Let R be a commutative Fp-algebra and let n ą 0 be an integer.
We let EllppnqV-Lift

p“0 pRq denote the groupoid whose objects are triples pE, x, yq, where
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E is an elliptic curve over R and x, y P EppqpRq have the property that the elements
V x, V y P EpRq determine a full level-pn structure on E. The construction R ÞÑ

EllppnqV-LiftpRq determines a functor from the category of commutative Fp-algebras
to the 2-category of groupoids, which we will denote by EllppnqV-Lift

p“0 . By convention,
we extend this functor to all commutative rings by setting EllppnqV-Lift

p“0 pRq “ H when
p does not vanish in R.

Remark 2.10. Let R be a commutative Fp-algebra. Then we can identify the R-
valued points of EllppnqV-Lift

p“0 with elliptic curves E over R equipped with a full level-pn
structure rx, ry P EpRq, together with specified Verschiebung lifts x, y P EppqpRq of rx

and ry, respectively. Since the Verschiebung map V : Eppq Ñ E is finite flat of degree
p, the construction pE, x, yq ÞÑ pE, V pxq, V pyqq determines a natural transformation
EllppnqV-Lift

p“0 Ñ Ellppnqp“0 which is finite flat of degree p2. In particular, EllppnqV-Lift
p“0 is

a Deligne-Mumford stack which is locally of finite type over SpecpFpq.

Using Proposition 2.6, we see that the construction pE, x, yq ÞÑ pEppq, x, yq deter-
mines a map of Deligne-Mumord stacks EllppnqV-Lift

p“0 Ñ Ellppn`1qdeg. For n ą 1, this
natural transformation fits into a diagram of Deligne-Mumford stacks

Ellppn`1qp“0
pEppq,Fx,Fyq //

pE,px,pyq

��

pE,Fx,Fyq

%%

Ellppn`1qdeg

pE,px,pyq

��

EllppnqV-Lift
p“0

pEppq,x,yq

99

pE,V x,V yq

yy

pEppq,px,pyq

%%
Ellppnqp“0

pEppq,Fx,Fyq

// Ellppnqdeg

which commutes up to canonical isomorphism, where the outer square is the diagram
of Theorem 2.5 (here each arrow has been labelled by its effect on a triple pE, x, yq).
Consequently, to produce the extension required by Theorem 2.5, it will suffice to
show that the diagonal map in the upper right is invertible. This is a consequence of
the following converse to Proposition 2.6:

Theorem 2.11. Let n be a positive integer. Then construction pE, x, yq ÞÑ pEppq, x, yq

induces an isomorphism of Deligne-Mumford stacks EllppnqV-Lift
p“0 Ñ Ellppn`1qdeg.
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Remark 2.12. For any positive integer n, we have a pullback diagram of Deligne-
Mumford stacks

EllppnqV-Lift
p“0

pEppq,x,yq //

pE,pn´1x,pn´1yq
��

Ellppn`1qdeg

pE,pn´1x,pn´1yq

��
EllppqV-Lift

p“0
pEppq,x,yq // Ellpp2qdeg,

where each arrow has been labelled by its effect on an object pE, x, yq of its domain.
Consequently, to prove Theorem 2.11 in general, it suffices to treat the case n “ 1.
We will not make use of this observation, because it does not really simplify the proof.

Remark 2.13. More concretely, Theorem 2.11 asserts that if E is an elliptic curve
over a commutative Fp-algebra R equipped with a degenerate full level-pn`1 structure
px, yq, then then there exists another elliptic curve E 1 over R and an isomorphism
β : E » E 1ppq with the property that pV βpxq, V βpyqq is a full level-pn structure on E 1;
here V : E 1ppq Ñ E 1 denotes the Verschiebung map for E 1. Moreover, the pair pE 1, βq
is well-defined up to unique isomorphism.

3 The Case of Ordinary Elliptic Curves
Let E be an elliptic curve over a commutative Fp-algebra R. We will say that

E is ordinary if each fiber of the map E Ñ SpecpRq is an ordinary elliptic curve.
Let Ellord denote the open substack of Ellp“0 whose R-valued points are given by
ordinary elliptic curves over SpecpRq. For each n ą 0, we let EllppnqV-Lift

ord denote
the fiber product EllppnqV-Lift ˆEllp“0 Ellord, and Ellppn`1qdeg,ord the fiber product
Ellppn`1qdeg ˆEll Ellord. We regard EllppnqV-Lift

ord and Ellppn`1qdeg,ord as open substacks
of EllppnqV-Lift

p“0 and Ellppn`1qdeg, respectively.
Our goal in this section is to prove the following weak version of Theorem 2.11:

Theorem 3.1. For each n ą 0, the construction pE, x, yq ÞÑ pEppq, x, yq induces an
isomorphism of Deligne-Mumford stacks EllppnqV-Lift

ord Ñ Ellppn`1qdeg,ord.

The proof is based on the following simple observation:

Lemma 3.2. Let R be a commutative Fp-algebra, let E be an ordinary elliptic
curve over SpecpRq, and suppose we are given a pair of points x, y P EpRq which
determine a full level-pn structure on E, which we identify with a map of group schemes

14



γ : pZ {pn Zq2 Ñ E. Suppose that the Weil pairing epnpx, yq is equal to 1. Then the
map γ factors (uniquely) as a composition pZ {pn Zq2 Ñ Q ãÑ E, where Q Ď E is an
étale subgroup of degree pn.

Proof. Our assumption that E is ordinary guarantees that the pn-torsion subgroup
Erpns Ď E fits into an exact sequence of finite flat group schemes

0 Ñ Erpnscn Ñ Erpns
f
ÝÑ Erpnsét Ñ 0,

where Erpnsét is étale over SpecpRq and Erpnscn has connected fibers. Our assump-
tion that x and y determine a level structure guarantees that the composite map
pZ {pn Zq2 γ

ÝÑ Erpns Ñ Erpnsét is an epimorphism of étale group schemes over R
(Remark 1.13). Let S denote its kernel and set Q “ pZ {pn Zq2{S, so that we have a
diagram of short exact sequences

0 // S //

γ0

��

pZ {pn Zq2

γ

��

f˝γ // Q //

„

��

0

0 // Erpnscn // Erpns
f // Erpnsét // 0.

Note that the Weil pairing on Erpns induces a perfect pairing of Erpnscn with Erpnsét.
Our assumption that epnpx, yq “ 1 guarantees that the Weil pairing vanishes when
restricted to pZ {pn Zq2, so that the map γ0 vanishes. It follows that γ factors
through a closed immersion Q ãÑ Erpns ãÑ E, whose image maps isomorphically onto
Erpnsét.

Proof of Theorem 3.1. Let E be an ordinary elliptic curve over a commutative Fp-
algebra R and let x, y P EpRq be a degenerate full level-pn`1 structure on E. Then
epn`1px, yq is a pnth root of unity. Applying Lemma 3.2 to the pair ppnx, pnyq, we
deduce that there is a unique étale subgroup Q Ď E of degree p which contains pnx
and pny. Let E 1 denote the quotient E{Q, and let f : E 1 Ñ E denote the dual of the
quotient map E Ñ E{Q. Then f is an isogeny whose kernel can be identified with
the Cartier dual of S. It follows that the Frobenius endomorphism of kerpfq vanishes:
that is, kerpfq is contained in the kernel of the Frobenius isogeny F : E 1 Ñ E 1ppq. We
can therefore factor F as a composition E 1

f
ÝÑ E

β
ÝÑ E 1ppq. Since f and F have the

same degree p, the map β is an isomorphism. Passing to duals, we conclude that
the quotient map E Ñ E{S factors as a composition E

β
ÝÑ E 1ppq

V
ÝÑ E 1, where V is

the Verschiebung map of E 1. By construction, the map V ˝ β annihilates pnx and

15



pny, so that rx “ V βpxq and ry “ V βpyq are pn-torsion points of E 1. We will complete
the proof by showing that the pair prx, ryq is a full level-pn structure on E 1 (note that
the uniqueness of E 1 is clear from the construction, since any isogeny E Ñ E2 which
annihilates pnx and pny necessarily factors through V ˝ β). Since E 1 is ordinary, it
will suffice to show that the pair prx, ryq satisfies the criteria of Remark 1.13:

paq Let rγ : pZ {pn Zq2 Ñ E 1rpns be the map of finite flat group schemes determined by
the pair prx, ryq; we wish to show that the composite map pZ {pn Zq2 rγ

ÝÑ E 1rpns Ñ

E 1rpnsét is an epimorphism. Let Q` Ď E denote the inverse image of Q under
the map E

pn
ÝÑ E, so that Q` is a finite flat subgroup of E of degree p2n`1. We

then have a commutative diagram of finite flat group schemes

pZ {pn`1 Zq2 px,yq //

��

Q` //

��

Erpn`1sét

��
pZ {pn Zq2 rγ // E 1rpns // E 1rpnsét

.

Since the right vertical map is an epimorphsim of finite flat group schemes
over R, we are reduced to showing that the upper horizontal composition is an
epimorphism. This follows from our assumption that the pair px, yq determines
a full level-pn`1 structure on E (Remark 1.13).

pbq The degeneracy of the level structure px, yq implies that the Weil pairing
epn`1px, yq is a primitive pnth root of unity in R. Applying Remark 2.7, we
deduce that epnprx, ryq “ epn`1px, yq is also a primitive pnth root of unity in R.

We conclude this section by sketching some of the obstacles encountered when
attempting to extend the proof of Theorem 3.1 to the case of supersingular elliptic
curve. Note that proceeding proof can be broken into two steps:

piq Using the assumption that the Weil pairing epn`1px, yq was a pnth root of unity,
we constructed another elliptic curve E 1 and an isomorphism β : E » E 1ppq with
the property that V βpxq and V βpyq are pn-torsion points of E 1.

piiq Using the stronger assumption that epn`1px, yq is a primitive pnth root of unity,
we showed that the pair pV βpxq, V βpyqq determines a full level-pn structure on
E 1.

16



It follows from piq that there is a commutative diagram of moduli stacks

Ellppn`1qdeg,ord //

��

// EllppnqV-Lift
ord

��
Ellppqζp“1,ord

ψ // Ellord,

where the upper horizontal map is inverse to the isomorphism of Theorem 3.1, and
the vertical maps are given by “forgetting” level structure; here the map ψ carries a
triple pE, x, yq to the quotient of E{Q, where Q Ď E is the étale subgroup generated
by x and y (Lemma 3.2). This construction does not extend to supersingular elliptic
curves:

Counterexample 3.3. The map ψ : Ellppqζp“1,ord Ñ Ellord cannot be extended to a
map ψ : Ellppqζp“1 Ñ Ellp“0.

Proof. We sketch a proof under the assumption that p “ 2. We assume that the
reader is familiar with the theory of Igusa curves, which we we review in §6. The
moduli stack Ellppqζp“1 can be written as a union of pp` 1q irreducible components
C0, C1, . . . , Cp, each of which is isomorphic to the Igusa curve Igppq (Corollary 6.9).
When restricted to each Ci, the map ψ admits a (unique) extension ψi : Ci Ñ Ellp“0,
which can be identified with the tautological map Igppq Ñ Ellp“0 and is therefore finite
flat of degree p´1 (hence an isomorphism in the case p “ 2). Let E be a supersingular
elliptic curve over the finite field Fp. Then E admits a unique full level-p structure
(given by the pair p0, 0q), which determines an Fp-valued point η of the moduli stack
Ellppq belonging to each of the curves Ci (and therefore also to Ellppqζp“1). Let V
denote the Zariski tangent space to Ellppq at the point η. Since Ellppq is regular of
dimension 2 (Proposition 6.7), V is a vector space of dimension 2 over Fp. Each Ci is
smooth over Fp, so the Zariski tangent space to Ci at the point η is a 1-dimensional
subspace Vi Ď V . Since the curves Ci meet transversely at the point η (Lemma 6.11),
we have Vi ‰ Vj for i ‰ j. It follows that every V0, V1, . . . , Vp is the collection of all
1-dimensional subspaces of V .

Now suppose that there exists a map ψ : Ellppqζp“1 Ñ Ellp“0 which extends ψ.
Let W denote the Zariski tangent space to Ellp“0 at the point ψpηq, so that W is a
1-dimensional vector space over Fp. It follows that the differential of ψ induces an
Fp-linear map V Ñ W whose kernel is nonzero and therefore contains the subspace
Vi for some i. We conclude that the map ψi : Ci Ñ Ellp“0 must be ramified at the
point η, contradicting our observation that ψi has degree p´ 1 “ 1.
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It follows from Counterexample 3.3 that our proof of Theorem 3.1 cannot be naively
extended to the supersingular case: given an R-valued point pE, x, yq of Ellppn`1qdeg,
the construction of the elliptic curve E 1 of Remark 2.13 must somehow use the fact
the assumption that epn`1px, yq is a primitive pnth root of unity.

4 Passage to Reduced Fibers
Let n be a positive integer. Then the comparison map of Theorem 2.11 fits into a

commutative diagram

EllppnqV-Lift
p“0

pE,x,yqÞÑpEppq,x,yq //

pE,x,yqÞÑepn pV x,V yq ((

Ellppn`1qdeg

pE1,x,yqÞÑepn`1 px,yqvv
SpecpFprζpnsq,

where Fprζpns denotes the quotient Zrζpns{ppq (see Remark 2.7). To prove Theorem
2.11, it will be convenient to pass to the fiber of this map over the (unique) residue
field of Fprζpns. This is harmless, by virtue of the following:

Proposition 4.1. Let n be a nonnegative integer. Then:

paq The map θn : Ellppnq Ñ SpecpZrζpnsq of Construction 1.12 is a local complete
intersection morphism.

pbq The map Ellppn`1qdeg Ñ SpecpFprζpnsq is a local complete intersection morphism.

pcq The map EllppnqV-Lift
p“0

pE,x,yqÞÑepn pV x,V yq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ SpecpFprζpnsq is a local complete inter-

section morphism.

Proof. Note that Zrζpns is a Dedekind ring. Consequently, to show that θn is a
local complete intersection morphism, it suffices to observe that Ellppnq is regular
(Proposition 6.7) and that Ellppnq is torsion-free as a module over Zrζpns, or equivalently
as a module over Z (Remark 6.8). This proves paq. To deduce pbq from paq, it will
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suffice to show that the upper square in the diagram

Ellppn`1qdeg //

��

Ellppn`1q

��
SpecpFprζpnsq //

��

SpecpZrζpn`1sq

��SpecpZrζpnsq // µpn`1

is a pullback diagram. This is clear, since the outer rectangle is a pullback by definition
and the lower square is a pullback by virtue of Remark 2.2. To prove pcq, we note
that the relevant map admits a factorization

EllppnqV-Lift
p“0

f
ÝÑ Ellppnqp“0

g
ÝÑ SpecpFprζpnsq

where g is a pullback of θn (and therefore a local complete intersection morphism by
virtue of paq). We are therefore reduced to proving that f is a local complete intersection
morphism. Fix a commutative ring R equipped with a map SpecpRq Ñ Ellppnqp“0,
classifying an elliptic curve E over R equipped with a full level-pn structure x, y P EpRq,
and form a pullback diagram

X
fR //

��

SpecpRq

��
EllppnqV-Lift

p“0
f // Ellppnqp“0;

we wish to show that fR is a local complete intersection morphism. Note that the
map fR fits into a pullback square

X
fR //

��

SpecpRq
px,yq

��
Eppq ˆSpecpRq E

ppq VˆV // E ˆSpecpRq E.

We conclude by observing that the map V ˆ V : Eppq ˆSpecpRq E
ppq Ñ E ˆSpecpRq E

is a local complete intersection morphism, because it is a flat map between smooth
R-schemes.
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Notation 4.2. For every positive integer n, we let Ellppnqζpn“1 denote the closed
substack of Ellppnq given by the vanishing locus of ζpn ´ 1: that is, the closed substack
which parametrizes elliptic curves E equipped with a full level-pn structure px, yq for
which the Weil pairing epnpx, yq is equal to 1. Note that Ellppnqζpn “ 1 is defined over
the quotient ring Zrζpns{pζpn ´ 1q » Fp. In particular, Ellppnqζpn“1 is contained in the
closed substack Ellppnqp“0 Ď Ellppnq given by the vanishing locus of p. If n ą 1, we
also have Ellppnqζpn“1 Ď Ellppnqdeg.

We let EllppnqV-Lift
ζpn“1 denote the fiber product EllppnqV-Lift

p“0 ˆEllppnqp“0 Ellppnqζpn“1,
which we regard a closed substack of EllppnqV-Lift

p“0 .

Remark 4.3. Note that the closed substacks

EllppnqV-Lift
ζpn“1 Ď EllppnqV-Lift

p“0 Ellppnqζpn“1 Ď Ellppnqp“0

can be described as the vanishing locus of the element ζpn ´ 1, which is a nilpotent
element of the local Artinian ring Fprζpns. We will later see that the stacks EllppnqV-Lift

ζpn“1
and Ellppnqζpn“1 are reduced (Theorems 5.4 and 5.5). It follows that they can be iden-
tified with the reductions of the Deligne-Mumford stacks EllppnqV-Lift

p“0 and Ellppnqp“0,
respectively.

We will deduce Theorem 2.11 from the following more basic assertion:

Theorem 4.4. For each n ą 0, the construction pE, x, yq ÞÑ pEppq, x, yq induces an
isomorphism of Deligne-Mumford stacks

EllppnqV-Lift
ζpn“1 Ñ Ellppn`1

qζpn`1“1.

Proof of Theorem 2.11 from Theorem 4.4. We wish to show that the horizontal map
in the diagram

EllppnqV-Lift pE,x,yqÞÑpEppq,x,yq //

pE,x,yqÞÑepn pV x,V yq ((

Ellppn`1qdeg

pE1,x,yqÞÑepn`1 px,yqvv
SpecpFprζpnsq

is an isomorphism. Theorem 4.4 asserts that the horizontal map becomes an equivalence
after pulling back along the closed immersion i : SpecpFpq ãÑ SpecpFprζpnsq. The
desired result now follows from the flatness of the vertical maps (Proposition 4.1),
since the ideal sheaf associated to the closed immersion i is nilpotent.
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5 Digression: The δ-Invariant of a Curve
Let X be a Noetherian Deligne-Mumford stack, let |X| denote its underlying

topological space, and let F be a coherent sheaf on X which is supported at the set
of closed points of |X|. For each closed point x P X, we can choose an étale map
f : SpecpRq Ñ X and a maximal ideal m Ď R lying over the point x. In this case,
the stalk of the sheaf f˚F at the point m is an Rm-module of finite length. We will
denote this length by lenxpF q and refer to it as the length of F at the point x. Note
that the quantity lenxpF q is independent of the choice of the map f : SpecpRq Ñ X

and the maximal ideal m Ď R.

Definition 5.1. Let X be reduced Deligne-Mumford stack which is Noetherian of
dimension 1, let π : rX Ñ X denote its normalization, and assume that the map π

is finite (this condition is satisfied, for example, if X is of finite type over a field).
Then the cokernel of the unit map OX Ñ π˚O rX is a coherent sheaf supported at the
set of closed points of |X|. For each closed point x P |X|, we let δxpXq denote the
length lenxpcokerpOX Ñ π˚O rXqq. We will refer to δxpXq as the δ-invariant of X at
the point x.

Example 5.2. Let Z be a Deligne-Mumford stack which is regular of Krull dimension
2 and let D,D1 Ď Z be reduced effective divisors having normalizations π : rD Ñ D

and π1 : rD1 Ñ D1. Assume that the maps π and π1 are finite and that the intersection
D ˆZ D

1 has Krull dimension 0. Then the sum D `D1 is a reduced effective divisor
in Z having normalization rD > rD1. Moreover, for every closed point x P |Z| belonging
to both D and D1, we have an equality

δxpD `D
1
q “ δxpDq ` δxpD

1
q ` ixpD,D

1
q,

where ixpD,D1q denotes the intersection number of D and D1 at the point x (that is,
the length lenxpF q, where F denotes the structure sheaf of the intersection DiˆZDj).

We can use Definition 5.1 to give a numerical criterion for showing that a map
between curves is an isomorphism:

Proposition 5.3. Let f : X Ñ Y be a finite morphism between reduced Deligne-
Mumford stacks which are of finite type and relative dimension 1 over a field k. Suppose
that:

paq There exists a dense open substack U Ď Y for which the projection XˆY U Ñ U

is an isomorphism.
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pbq For each point y P |Y | which does not belong to U , we can choose some point
x P |X| lying over Y which satisfies δxpXq “ δypY q.

Then f is an isomorphism.

Proof. The assertion is local with respect to the étale topology on Y . We may therefore
assume without loss of generality that Y “ SpecpRq, where R is a reduced k-algebra of
Krull dimension 1, and that U Ď Y is the complement of a single point corresponding
to some maximal ideal m Ď R. Since f is finite, we can write X “ SpecpSq, where S
is a finite R-algebra. Let rR denote the normalization of R. It follows from paq that
we can also identify rR with the normalization of S, so that we can regard S as an
R-subalgebra of rR. We have an exact sequence of finite length R-modules

0 Ñ S{RÑ rR{RÑ rR{S Ñ 0.

The length of rR{S as an R-module is at least as large as the length of rR{S as an
S-module, which (by virtue of pbq) is the same as the length of rR{R as an R-module.
It follows that the quotient S{R is trivial, so that f is an isomorphism as desired.

We will deduce Theorem 4.4 from the following pair of results, which we prove in
§6 and §7.

Theorem 5.4. Let n be a positive integer. Then:

p1q The moduli stack Ellppnqζpn“1 is reduced.

p2q For each supersingular point z P |Ellppnqζpn“1|, we have

δzpEllppnqζpn“1q “ p1{2qpp3n´1
` p3n´2

q

.

Theorem 5.5. Let n be a positive integer. Then:

p1q The moduli stack EllppnqV-Lift
ζpn“1 is reduced.

p2q For each supersingular point z P |EllppnqV-Lift
ζpn“1|, we have

δzpEllppnqV-Lift
ζpn“1q “ p1{2qpp3n`2

` p3n`1
q

.
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Proof of Theorem 4.4. It follows from Theorem 3.1 that the map

u : EllppnqV-Lift
ζpn“1 Ñ Ellppn`1

qζpn`1“1 pE, x, yq ÞÑ pEppq, x, yq

is an isomorphism over the ordinary locus

Ellppn`1
qζpn`1“1,ord “ Ellppn`1

qζpn`1“1g ˆEll Ellord .

It follows from Theorems 5.4 and 5.5 that each supersingular point of Ellppn`1qζpn`1“1

can be lifted uniquely to a supersingular point of EllppnqV-Lift
ζpn“1 having the same δ-

invariant, so that u is an isomorphism by the criterion of Proposition 5.3.

6 Igusa Curves
For each n ą 0, the moduli stack Ellppnqζpn“1 is an effective Cartier divisor in the

moduli stack Ellppnq (given as the vanishing locus of the regular function ζpn ´ 1). In
this section, we review the description of Ellppnqζpn“1 as a sum of regular divisors,
meeting nontransversely at the supersingular points of Ellppnq (Corollary 6.9 below),
and use this description to compute the δ-invariants of Ellppnqζpn“1. For a more
detailed discussion, we refer the reader to [3].

Notation 6.1. Let n be a positive integer and let S Ď pZ {pn Zq2 be a subgroup. We
let EllppnqS denote the closed substack of Ellppnq whose R-valued points are given by
pairs pE, γq, where E is an elliptic curve over SpecpRq and γ : pZ {pn Zq2 Ñ EpRq is
a full level-pn structure on E satisfying γ|S “ 0.

In the case where the subgroup S is cyclic of order pn (which is the only case we
will consider), the substack EllppnqS is contained in Ellppnqζpn“1. In particular, it is
contained in the vanishing locus of p.

It will be useful to have an alternate description of the closed substacks EllppnqS Ď
Ellppnq.

Notation 6.2. Let R be a commutative Fp-algebra and let E be an elliptic curve
over R. For each integer n ě 0, let V n : Eppnq Ñ E denote the iterated Verschiebung
map, and regard the kernel kerpV nq as a relative effective divisor of degree pn in the
elliptic curve Eppnq. If n ą 0, then the map V n factors as a composition

Epp
nq V n´1
ÝÝÝÑ Eppq

V
ÝÑ E,
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where V n´1 denotes the pn´1qst iterate of the Verschiebung map of Eppq. It follows that
kerpV n´1q Ď kerpV nq, so we can write kerpV nq “ kerpV n´1q ` D for some uniquely
determined relative effective divisor D Ď Epp

nq of degree pn ´ pn´1. We say that
a point x P Epp

nqpRq is a cyclic generator of kerpV nq if it belongs to the subset
DpRq Ď Epp

nqpRq.

Remark 6.3. In the situation of Notation 6.2, let x be an R-valued point of kerpV nq,
which we can identify with a map of finite flat group schemes Z {pn Z α

ÝÑ kerpV nq Ď

Epp
nq. If E is ordinary, then x is a cyclic generator of kerpV nq if and only if α

is an isomorphism. Beware that if E has supersingular fibers, then α is never an
isomorphism (since kerpV nq is not an étale group scheme over R).

Definition 6.4. Let n be a positive integer. If R is a commutative Fp-algebra, we let
IgppnqpRq denote the category whose objects are pairs pE, xq, where E is an elliptic
curve over R and x is a cyclic generator of kerpV nq Ď Epp

nq; a morphism from pE, xq

to pE 1, x1q is an isomorphism of elliptic curve E » E 1 for which the induced map
Epp

nq » E 1pp
nq carries x to x1. The construction R ÞÑ IgppnqpRq determines a groupoid-

valued functor on category of commutative Fp-algebras, which we extend formally to
all commutative rings by setting IgppnqpRq “ H if p ‰ 0 in R. We will refer to Igppnq
as the nth Igusa curve.

Remark 6.5. In the situation of Definition 6.4, the construction pE, xq ÞÑ E de-
termines a map Igppnq Ñ Ellˆ SpecpFpq which is finite flat of degree pn ´ pn´1. In
particular, the Igusa curve Igppnq is a Deligne-Mumford stack which is of finite type
over SpecpFpq.

Remark 6.6. Let Igppnqord denote the open substack of Igppnq given by the inverse
image of Ellord. Then the projection map Igppnqord Ñ Ellord is finite étale of degree
pn ´ pn´1. It follows that the Igusa curve Igppnqord is smooth of dimension 1 over
SpecpFpq.

Proposition 6.7 (Katz-Mazur, Theorems 5.1.1 and 13.7.6). Let n be a positive integer.
Then:

p1q The moduli stack Ellppnq is regular of dimension 2.

p2q Let S Ď pZ {pn Zq2 be a subgroup which is isomorphic to Z {pn Z. Then the
closed substack EllppnqS Ď Ellppnq is smooth of dimension 1 over SpecpFpq.
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p3q Let α : pZ {pn Zq2 Ñ Z {pn Z be a surjection of abelian groups with kernel
S Ď pZ {pn Zq2. Then there is canonical isomorphism of Deligne-Mumford
stacks θ : Igppnq Ñ EllppnqS, given on R-valued points by the construction
pE, xq ÞÑ pEpp

nq, γq, where γ : pZ {pn Zq2 Ñ Epp
nqpRq is given by the formula

γpvq “ αpvqx.

p4q The Igusa curve Igppnq is smooth of dimension 1 over SpecpFpq.

Remark 6.8. It follows from Proposition 6.7 that the map Ellppnq Ñ SpecpZq is flat.

Proof of Proposition 6.7. We first show that the map θ of p3q is an isomorphism
over the ordinary locus EllppnqS,ord “ EllppnqS ˆEll Ellord. Let R be a commutative
Fp-algebra and let E 1 be an ordinary elliptic curve over R equipped with a full
level-pn structure γ : pZ {pn Zq2 Ñ E 1pRq which annihilates S. Then γ factors as
a composition pZ {pn Zq2 α

ÝÑ Z {pn Z γ1
ÝÑ E 1pRq. Applying Lemma 3.2, we see that

γ1 induces an isomorphism from Z {pn Z onto an étale subgroup S 1 Ď E 1. Setting
E “ E 1{S 1, we obtain an isomorphism E 1 » Epp

nq carrying γ1p1q to a cyclic generator
of kerpV nq. It is easy to see that the construction pE 1, γq ÞÑ pE, γ1p1qq is an inverse of
θ over the ordinary locus EllppnqS,ord.

We now prove p2q. We first note that the closed substack EllppnqS Ď Ellppnq is
given locally as the vanishing locus of a single regular function. Since Ellppnq is of
pure dimension 2 (Proposition 1.9), each irreducible component of EllppnqS has Krull
dimension ě 1. Let X Ď EllppnqS be the closed substack whose R-valued points
are pairs pE, γq, where E is an elliptic curve over R and γ : pZ {pn Zq2 Ñ EpRq

is a full level-pn structure which is identicially zero. It follows from Remark 1.7
that the projection map Ellppnq Ñ Ell induces an isomorphism of Deligne-Mumford
stacks X Ñ Ellss, where Ellss Ď Ell is the reduced closed substack parametrizing
supersingular elliptic curves in characteristic p (which is étale over SpecpFpq). Since
X can be described locally as the vanishing locus of a regular function on EllppnqS, it
follows that EllppnqS is smooth of dimension 1 over SpecpFpq at the points of X. It
will therefore suffice to show that EllppnqS is smooth of dimension 1 over SpecpFpq at
every closed point which does not belong to X. Since every such point belongs to the
open substack EllppnqS,ord Ď EllppnqS, we are reduced (by the first part of the proof)
to showing that the stack Igppnqord is smooth of dimension 1 over SpecpFpq, which
follows from Remark 6.6.

We now prove p1q. Suppose we are given a geometric point η : Specpkq Ñ Ellppnq,
corresponding to an elliptic curve E over k equipped with a full level-pn structure
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γ : pZ {pn Zq2 Ñ Epkq; we wish to show that Ellppnq is regular at the image of η. If
the field k has characteristic different from p, then the map Ellppnq Ñ Ell is étale in
a neighborhood of η, so the desired result follows from the regularity of the moduli
stack Ell. We may therefore assume that k has characteristic p. In this case, the map
γ must annihilate a subgroup S Ď pZ {pn Zq2 which is isomorphic to Z {pn Z, so that
we can regard pE, γq as a k-valued point of the closed substack EllppnqS Ď Ellppnq.
Since EllppnqS is regular of dimension 1 and is given locally as the vanishing locus of
a single function on Ellppnq, it follows that Ellppnq is regular of dimension 2 near the
point η (recall that Ellppnq is of pure Krull dimension 2 by virtue of Proposition 1.9).

We now prove p3q. Note first that the map θ : Igppnq Ñ EllppnqS is relatively
representable (since every nontrivial automorphism of an elliptic curve E over an
Fp-algebra R is also nontrivial on the iterated Frobenius pullback Epp

nq). Since
EllppnqS is smooth of dimension 1 over SpecpFpq and θ is an isomorphism over a dense
open set, it will suffice to show that the stack Igppnq is reduced. Note that Igppnq
can be realized as an effective Cartier divisor in a Deligne-Mumford stack which is
smooth of dimension 2 over SpecpFpq, and is therefore a local complete intersection.
Consequently, to show that Igppnq is reduced, it will suffice to show that Igppnq is
reduced at each generic point, which follows from Remark 6.6.

Assertion p4q follows immediately from p2q and p3q.

Corollary 6.9 (Katz-Mazur, Theorem 13.7.6). For each n ą 0, the moduli stack
Ellppnqζpn“1 can be identified with the sum

ř

S EllppnqS as an effective Cartier divisor in
Ellppnq; here the sum is taken over all subgroups S Ď pZ {pn Zq2 which are isomorphic
to Z {pn Z.

Proof. It follows from Proposition 6.7 that each EllppnqS is an effective Cartier divisor
in Ellppnq, so that D “

ř

S EllppnqS is well-defined as an effective Cartier divisor in
Ellppnq. Moreover, the substack Ellppnqζpn“1 Ď Ellppnq is an effective Cartier divisor
by construction. By virtue of Lemma 3.2, these Cartier divisors agree outside of the
supersingular locus of Ellppnq, and therefore coincide (since the supersingular locus
has codimension 2).

Lemma 6.10. Let 0 ď m ă n, and let D denote the closed substack of Igppnq
parametrizing those pairs pE, xq where x is a cyclic generator of kerpV nq Ď Epp

nq

satisfying pmx “ 0. Then D has multiplicity p2m at each supersingular point of Igppnq.

Proof. The Igusa curve Igppn´mq parametrizes pairs pE, yq, where y is a cyclic generator
of kerpV n´mq Ď Epp

n´mq. Let D0 Ď Igppn´mq be the closed substack parametrizing

26



such pairs where y “ 0. The proof of Proposition 6.7 shows that D0 has multiplicity
1 at each supersingular point of Igppn´mq. Unwinding the definitions, we see that D
can be identified with the inverse image of D0 under the composition

Igppnq pE,xqÞÑpE,V
mxq

ÝÝÝÝÝÝÝÝÝÝÑ Igppn´mq ϕm
ÝÝÑ Igppn´mq

where ϕ denotes the absolute Frobenius map of Igppn´mq. Since Igppn´mq is smooth
of dimension 1 over SpecpFpq, the pullback ϕm˚D0 has multiplicity pm at each su-
persingular point of Igppn´mq. We complete the proof by observing that the map
Igppnq pE,xqÞÑpE,V

mxq
ÝÝÝÝÝÝÝÝÝÝÑ Igppn´mq has degree pm and is totally ramified over each super-

singular point of Igppn´mq.

Lemma 6.11. [Katz-Mazur, Corollary 13.8.5] Let S and T be distinct subgroups of
pZ {pn Zq2, each isomorphic to Z {pn Z, and regard EllppnqS and EllppnqT as effective
divisors in Ellppnq. Then, at each supersingular point of Ellppnq, the intersection
multiplicity of EllppnqS and EllppnqT is equal to |pZ {pn Zq2{pS ` T q|2.

Proof. Without loss of generality, we may assume that S and T are the cyclic subgroups
of pZ {pn Zq2 generated by p1, 0q and p1, pmq, for some m ă n. Under the isomorphism
Igppnq » EllppnqS of Proposition 6.7, the intersection EllppnqS ˆEllppnq EllppnqT corre-
sponds to the divisor D Ď Igppnq described in Lemma 6.10, which has multiplicity
p2m at each supersingular point.

Proof of Theorem 5.4. Corollary 6.9 supplies an identification

Ellppnqζpn“1 “
ÿ

S

EllppnqS

of effective Cartier divisors in Ellppnq. In particular, Ellppnqζpn“1 is smooth away from
the locus of supersingular elliptic curves, and therefore generically reduced. Since it is
an effective Cartier divisor in the regular Deligne-Mumford stack Ellppnq, it is a local
complete intersection, and is therefore everywhere reduced. At each supersingular
point z of |Ellppnqζpn“1|, repeated application of Example 5.2 gives the identity

δzpEllppnqζpn“1q “
1
2

ÿ

S‰T

izpEllppnqS,EllppnqT q,

where izpEllppnqS,EllppnqT q denotes the intersection multiplicity of EllppnqS and
EllppnqT at the point x and is therefore given by |pZ {pn Zq2{pS ` T q|2 (Lemma
6.11). Here there are pn ` pn´1 choices for the cyclic subgroup S Ď pZ {pn Zq2. For
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every such subgroup S, there are exactly pn subgroups T for which S`T “ pZ {pn Zq2,
and for each 0 ă m ă n there are exactly pn´m ´ pn´m´1 subgroups T satisfying
|pZ {pn Zq2{pS ` T q| “ pm. We therefore have

δzpEllppnqζpn“1q “
1
2

ÿ

S‰T

izpEllppnqS,EllppnqqT

“
pn ` pn´1

2 ppn `
ÿ

0ămăn
ppn´m ´ pn´m´1

qp2m
q

“
pn ` pn´1

2 ppn `
ÿ

0ămăn
ppn`m ´ pn`m´1

qq

“
pn ` pn´1

2 p2n´1

“
p3n´1 ` p3n´2

2 .

7 Ramification of Igusa Curves
For each n ą 0, the construction pE, xq ÞÑ pE, V xq determines a map of Igusa

curves Igppn`1q Ñ Igppnq. It follows from Remark 6.6 that this map is étale over the
ordinary locus Igppnqord Ď Igppnq. However, it is totally ramified at each supersingular
point. We will need the following more quantitative assertion:

Proposition 7.1. Let n ą 0 and let y P | Igppn`1q ˆIgppnq Igppn`1q| be a point lying
over the supersingular locus |Ellss | Ď |Ell |. Then we have an equality

δypIgppn`1
q ˆIgppnq Igppn`1

qq “ p1{2qpp2n`2
´ p2n`1

q.

Remark 7.2. The map Igppn`1q Ñ Igppnq is a finite and generically étale map between
Deligne-Mumford stacks which are smooth of dimension 1 over SpecpFpq. To any such
map, we can associate a different ideal sheaf DIgppn`1q{ Igppnq Ď OIgppn`1q, defined as the
annihilator ideal of the sheaf of relative Kähler differentials ΩIgppn`1q{ Igppnq. Proposition
7.1 is equivalent to the statement that the different DIgppn`1q{ Igppnq has multiplicity
p2n`2 ´ p2n`1 at each supersingular point of Igppn`1q.

Proof of Proposition 7.1. Choose a scheme C and an étale map f : C Ñ Igppnq,
classifying an elliptic curve E over C together with a cyclic generator kerpV nq Ď Epp

nq.
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Then C is smooth of dimension 1 over SpecpFpq (Proposition 6.7). Set rC “ C ˆIgppnq

Igppn`1q and D “ rCˆC rC. Then f induces an étale map D Ñ Igppn`1qˆIgppnq Igppn`1q.
Note that, if c is a closed point of |C| for which the fiber Ec is supersingular, then the
map rC Ñ C is totally ramified at the point c. Consequently, we can lift c uniquely
to closed points rc P | rC| and y P |D|. We will prove Proposition 7.1 by verifying the
equality δypDq “ p1{2qpp2n`2 ´ p2n`1q. To prove this, we are free to replace C by an
open neighborhood of c and may therefore assume that c is the only point of C for
which the elliptic curve Ec is supersingular.

Let us regard D as an effective Cartier divisor in the algebraic surface rCˆSpecpFpq
rC.

Let G denote the collection of all elements λ P Z {pn`1 Z satisfying λ ” 1 pmod pnq.
We regard G as a group under multiplication (so that G is isomorphic to the cyclic
group Z {pZ). The construction pE, xq ÞÑ pE, λxq determines an action of G on
Igppn`1q which fixes the projection map Igppn`1q Ñ Igppnq. We therefore also obtain
an action of G on the curve rC, which we will denote by pλ P Gq ÞÑ puλ : rC Ñ rCq.
Since the elliptic curve E is ordinary away from the point c, this action exhibits
rC ´ trcu as a G-torsor over the curve C ´ tcu. For each λ P G, the pair pid

rC , uλq

determines a closed immersion rC Ñ rC ˆSpecpFpq
rC, whose image is a (smooth) divisor

Dλ which is contained in D. Moreover, in the punctured surface p rC ˆSpecpFpq
rCq ´ tyu,

the divisor D ´ tyu is given by the disjoint union of the divisors Dλ ´ tyu. It follows
that we have an equality of effective Cartier divisors D “

ř

λDλ. Since each Dλ is
smooth over SpecpFpq, iterated application of Example 5.2 gives the equality

δypDq “
1
2

ÿ

λ‰λ1

iypDλ, Dλ1q.

Here the sum is taken over all ordered pairs of distinct elements of the group G, so
there are p2´p summands. We will complete the proof by showing that each summand
iypDλ, Dλ1q is equal to p2n. By symmetry, we may assume that λ1 “ 1. In this case,
the scheme-theoretic Dλ XDλ1 can be identified with the closed subscheme of rC given
by the fixed points of uλ. Consequently, the projection map rC Ñ Igppn`1q induces an
étale map Dλ XDλ1 Ñ Y , where Y denotes the closed substack of Igppn`1q given by
pairs pE, xq satisfying the condition λx “ x, or equivalently the condition pnx “ 0. It
follows from Lemma 6.10 that Y is an effective Cartier divisor having degree p2n at
each supersingular point of Igppn`1q.

Proof of Theorem 5.5. By virtue of Proposition 4.1, the algebraic stack EllppnqV-Lift
ζpn“1

is a local complete intersection of dimension 1. Moreover, it has a dense open substack
(given by the inverse image of Ellord) which is isomorphic to an open substack of
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Ellppn`1qζpn`1“1 (Theorem 3.1), and is therefore reduced (Theorem 5.4). It follows
that EllppnqV-Lift

ζpn“1 is everywhere reduced. The construction pE, x, yq ÞÑ pE, V x, V yq

determines a morphism of stacks ρ : EllppnqV-Lift
ζpn“1 Ñ Ellppnqζpn“1 which is finite flat of

degree p2 (and totally ramified over the supersingular points of Ellppnqζpn“1).
For every subgroup S Ď pZ {pn Zq2 which is isomorphic to Z {pn Z, let EllppnqS Ď

Ellppnqζpn“1 be the closed substack introduced in Notation 6.1, and set

EllppnqV-Lift
S “ EllppnqV-Lift

ζpn“1 ˆEllppnqζpn“1 EllppnqS.

Note that if z is a closed point of |EllppnqV-Lift
ζpn“1| lying over the supersingular locus

of Ell, then z belongs to each of the closed substacks EllppnqV-Lift
S . Moreover, the

canonical map
š

S EllppnqV-Lift
S Ñ EllppnqV-Lift

ζpn“1 is an isomorphism over the ordinary
locus, so the normalization of EllppnqV-Lift

ζpn“1 can be identified with the disjoint union of
the normalizations of the closed substacks EllppnqV-Lift

S . Letting z denote the image of
z in |Ellppnqζpn“1|, we compute

δzpEllppnqV-Lift
ζpn“1q “ lenzp

à

S

OEllppnqV-Lift
S

{OEllppnqV-Lift
ζpn“1

q `
ÿ

S

δzpEllppnqV-Lift
S q

“ lenzpρ˚p
à

S

OEllppnqS {OEllppnqζpn“1q `
ÿ

S

δzpEllppnqV-Lift
S q

“ p2 lenzp
à

S

OEllppnqS {OEllppnqζpn“1q `
ÿ

S

δzpEllppnqV-Lift
S q

“ p2δzpEllppnqζpn“1q `
ÿ

S

δzpEllppnqV-Lift
S q

“
p3n`1 ` p3n

2 `
ÿ

S

δzpEllppnqV-Lift
S q,

where the last equality follows from Theorem 5.4. Note that there are pn ` pn´1

summands appearing in the sum
ř

S δzpEllppnqV-Lift
S q. Consequently, to establish the

identity δzpEllppnqV-Lift
ζpn“1q “ p1{2qpp3n`2 ` p3n`1q, it will suffice to establish the identity

δzpEllppnqV-Lift
S q “ p1{2qpp2n`2 ´ p2n`1q for each S. Without loss of generality, we may

assume that S is the antidiagonal subgroup, given by the kernel of the map

α : pZ {pn Zq2 Ñ Z {pn Z αpi, jq “ i` j.

According to Proposition 6.7, the construction pE, xq ÞÑ pEpp
nq, x, xq induces an

isomorphism of stacks Igppnq Ñ EllppnqS. Under this isomorphism, we can identify
EllppnqV-Lift

S with the fiber product Igppn`1qˆIgppnq Igppn`1q, so that the desired identity
follows from Proposition 7.1.
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8 Extension to the Cusps
In this section, we formulate a generalization of Theorem 1.15 which incorporates

information about modular curves at the cusps. We begin by reviewing some definitions.
Let Ell denote the Deligne-Mumford compactification of the moduli stack Ell of elliptic
curves (so that the R-valued points of Ell are given by stable curves of genus 1 over
SpecpRq, equipped with a section).

Construction 8.1. Let n be a positive integer, let π : Ellppnq Ñ Ell denote the
projection map, and let j : Ell ãÑ Ell be the inclusion. The map π is finite, and the
map j is an affine open immersion (it is the inclusion of the complement of an effective
Cartier divisor). Consequently, the composite map

pj ˝ πq : Ellppnq Ñ Ell

is affine, determined by a quasi-coherent sheaf of algebras pj ˝ πq˚OEllppnq on the
moduli stack Ell. Let A denote the integral closure of OEll in pj ˝ πq˚OEllppnq, and
let Ellppnq denote the relative spectrum of A . By construction, we have a pullback
diagram of Deligne-Mumford stacks

Ellppnq //

π

��

// Ellppnq

π
��

Ell j // Ell,

where the vertical maps are finite and the horizontal maps are open immersions.

Remark 8.2. Construction 8.1 is somewhat unsatisfying; the definition of Ellppnq as
a normalization does not a priori give a concrete description of its functor of points.
For a moduli-theoretic perspective, we refer the reader to [1].

The map π : Ellppnq Ñ Ell of Construction 8.1 is characterized, up to isomorphism,
by the following universal property:

p˚q For every commutative diagram of Deligne-Mumford stacks

Ellppnq

��

// X
ψ
��

Ellppnq π
`
// Ell
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where the map ψ is finite, there exists an essentially unique extension to a
commutative diagram

Ellppnq

��

// X
ψ
��

Ellppnq π //

;;

Ell.

Example 8.3. Let n be a positive integer. Applying p˚q to the outer rectangle of the
diagram

Ellppn`1q //

��

Ellppnq // Ellppnq

��
Ellppn`1q // Ell,

we obtain a map of Deligne-Mumford stacks Ellppn`1q Ñ Ellppnq which extends the
forgetful map

Ellppn`1
q Ñ Ellppnq pE, x, yq ÞÑ pE, px, pyq.

These maps can be arranged into a tower

¨ ¨ ¨ Ñ Ellpp3
q Ñ Ellpp2

q Ñ Ellppq

We will denote the inverse limit of this tower by Ellpp8q. Since the transition maps
Ellppn`1q Ñ Ellppnq are affine (in fact, they are finite), it follows that Ellpp8q is a
(non-Noetherian) Deligne-Mumford stack, which contains Ellpp8q as an open substack.

Example 8.4. For every positive integer n, we can apply p˚q to the diagram

Ellppnq //

��

Ellˆ SpecpZrζpnsq

��
Ellppnq // Ell,

where the upper horizontal map is given by the construction pE, x, yq ÞÑ pE, epnpx, yqq.
It follows that the Weil pairing map

Ellppnq Ñ SpecpZrζpnsq pE, x, yq ÞÑ epnpx, yq

admits an essentially unique extension to a map θn : Ellppnq Ñ SpecpZrζpnsq. Passing
to the inverse limit over n, we obtain a map θ8 : Ellpp8q Ñ SpecpZrζp8sq, whose
restriction to the open substack Ellpp8q agrees with the map θ8 of Construction 1.12.
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Theorem 1.15 admits the following refinement:

Theorem 8.5. After extending scalars to Fp, the morphism

θ8 : Ellpp8q Ñ SpecpZrζp8sq

is relatively perfect. In other words, the diagram of Deligne-Mumford stacks

Ellpp8qp“0
ϕ //

θ8
��

Ellpp8qp“0

θ8
��

SpecpFprζp8sq
ϕ // SpecpFprζp8sq

is a pullback square (where the horizontal maps are given by the absolute Frobenius).

Proof of Theorem 0.2. We have a commutative diagram

Ellpp8qζp“1 //

��

Ellpp8qp“0
ϕ //

��

Ellpp8qp“0

��
SpecpZprζp8s{pζp ´ 1qq // SpecpFprζp8sq

ϕ // SpecpFprζp8sq

where the left square is a pullback by definition and the right square is a pullback by
Theorem 8.5. It follows that the outer rectangle in the diagram

Ellpp8qζp“1
ϕ //

��

Ellpp8qζp2“1 //

��

Ellpp8qp“0

��
SpecpZprζp8s{pζp ´ 1qq ϕ // SpecpZprζp8s{pζp2 ´ 1qq // SpecpFprζp8sq

is also a pullback square. Since the right square in this second diagram is also a
pullback, and the lower left horizontal map is an isomorphism, we conclude that the
Frobenius map ϕ : Ellpp8qζp“1 Ñ Ellpp8qζp2“1 is also an isomorphism.

Our proof of Theorem 8.5 is a mild embellishment of our proof of Theorem 1.15.

Notation 8.6. For every positive integer n, we let Ellppn`1qdeg denote the closed
substack of Ellppn`1q given by the fiber product

Ellppn`1
q ˆµpn`1 SpecpZrζpnsq.

Note that Ellppn`1qdeg contains the moduli stack Ellppn`1qdeg of Definition 2.1 as an
open substack.
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By virtue of Remark 2.2, we can regard Ellppn`1qdeg as a closed substack of the
special fiber Ellppn`1qp“0. Moreover, the absolute Frobenius map on Ellppn`1qp“0

factors through Ellppn`1qdeg. We will deduce Theorem 8.5 from the following stronger
version of Theorem 2.5:

Theorem 8.7. Let n ą 1 be an integer, and consider the commutative diagram of
Deligne-Mumford stacks

Ellppn`1qp“0 //

��

Ellppn`1qdeg

��ww
Ellppnqp“0 // Ellppnqdeg,

where the vertical maps are as in Example 8.3 and the horizontal maps are given by
the absolute Frobenius. Then there exists a dotted arrow as indicated, which renders
the diagram commutative (up to canonical isomorphism).

Proof of Theorem 8.5 from Theorem 8.7. Using Theorem 8.7, we obtain a commuta-
tive diagram of Deligne-Mumford stacks

¨ ¨ ¨ //

��

¨ ¨ ¨

��ww
Ellpp4qp“0 //

��

Ellpp4qdeg

��xx
Ellpp3qp“0 //

��

Ellpp3qdeg

��xx
Ellpp2qp“0 // Ellpp2qdeg.

Passing to the inverse limit in the vertical direction, we obtain a map of algebraic
stacks

ρ : Ellpp8qp“0 Ñ lim
ÐÝ
n

Ellppnqdeg,

which we can identify with the relative Frobenius for the map θ8 : Ellpp8qp“0 Ñ

SpecpFprζp8sq. Consequently, Theorem 8.5 is equivalent to the assertion that ρ is
an isomorphism. An explicit homotopy inverse is given by the dotted arrows in the
preceding diagram.
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Remark 8.8. For every commutative ring R, let Ell`pRq denote the groupoid whose
objects are generalized elliptic curves E Ñ SpecpRq (in the sense of [2]) which satisfy
the following additional condition:

p˚q For every point x P SpecpRq, the characteristic of the residue field κpxq does
not divide the number of irreducible components of the fiber Ex “ E ˆSpecpRq

Specpκpxqq.

The construction R ÞÑ Ell`pRq determines a Deligne-Mumford stack Ell`, which
contains the Deligne-Mumford compactification Ell as an open substack (namely, the
open substack whose R-valued points are generalized elliptic curves E Ñ SpecpRq
with irreducible fibers); in fact, Ell` is precisely the “Deligne-Mumford locus” of the
algebraic stack parametrizing all generalized elliptic curves. All of the statements
formulated in this section remain valid if we replace Ell by the larger moduli stack
Ell`. We leave the details to the reader.

9 Analysis of the Tate Curve
We will prove Theorem 8.7 by combining Theorem 2.5 with a local analysis around

the cusp of the moduli stack Ell. We begin by introducing some notation. For
every Deligne-Mumford stack X equipped with a map equipped with affine map
π : X Ñ Ellp“0, let ApX q denote the direct image π˚OX , regarded as a quasi-coherent
sheaf of algebras on the stack Ellp“0. The diagram

Ellppn`1qp“0 //

��

Ellppn`1qdeg

��
Ellppnqp“0 // Ellppnqdeg

appearing in the statement of Theorem 8.7 then determines a commutative square of
OEllp“0

-algebras, indicated by the solid arrows in the diagram

ϕ˚ApEllppn`1qp“0q ApEllppn`1qdegqoo

ϕ˚ApEllppnqp“0q

OO
ψ

55

ApEllppnqdegq,oo

OO

where ϕ denotes the (absolute) Frobenius endomorphism of Ellp“0. We wish to show
that there exists a map ψ which renders the diagram commutative. Theorem 2.5
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guarantees that such an arrow exists after restricting to the open substack Ell Ď Ell.
In other words, we can choose a map ψ0 : ϕ˚ApEllppnqp“0q Ñ ApEllppn`1qdegq for
which the diagram

ApEllppn`1qp“0q ApEllppn`1qdegqoo

ϕ˚ApEllppnqp“0q

OO
ψ0

55

ApEllppnqdegq,oo

OO

commutes. To complete the proof, it will suffice to verify the following:

paq The canonical maps

ApEllppn`1
qp“0q Ñ ApEllppn`1

qp“0q ApEllppn`1
qdegq Ñ ApEllppn`1

qdegq

are monomorphisms.

pbq The composite map

ϕ˚ApEllppnqp“0q Ñ ϕ˚ApEllppnqp“0q
ψ0
ÝÑ ApEllppn`1

qdegq

factors through the monomorphism ApEllppn`1qdegq Ñ ApEllppn`1qdegq.

Let ETate denote the Tate curve, which we regard as an elliptic curve over the
commutative ring Zppqqq, classified by a map ρ : SpecpZppqqqq Ñ Ell which admits a
canonical extension ρ : SpecpZrrqssq Ñ Ell. The maps

SpecpZrrqssq ρ
ÝÑ Ell Ðâ Ell

determine a covering with respect to the fpqc topology. Since assertions paq and pbq
can be tested locally with respect to the fpqc topology and are tautologically satisfied
over the open substack Ell Ď Ell, it will suffice to show that they hold after restriction
to SpecpZrrqssq. We are therefore reduced to proving the following more concrete
statements:

pa1q The open immersions

j : Ellppn`1
qp“0 ˆEll SpecpZppqqqq ãÑ Ellppn`1

qp“0 ˆEll SpecpZrrqssq

j1 : Ellppn`1
qdeg ˆEll SpecpZppqqqq ãÑ Ellppn`1

qdeg ˆEll SpecpZrrqssq

are schematically dense.
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pb1q The composite map

Ellppn`1
qdeg ˆEll SpecpZppqqqq ψ0

ÝÑ Ellppnqp“0 ˆEll SpecpZppqqqq
ãÑ Ellppn`1

qp“0 ˆEll SpecpZrrqssq

factors (uniquely) over the open immersion j1.

To prove pa1q and pb1q, we need an explicit analysis of the schemes Ellppnq ˆEll
SpecpZrrqssq. Recall that the pn-torsion subscheme of the Tate curve ETate fits into a
short exact sequence of finite flat group schemes

0 Ñ µpn Ñ ETaterp
n
s
v
ÝÑ Z {pn Z Ñ 0.

over the commutative ring Zppqqq. Moreover, the fiber of the map v over the element 1 P
Z {pn Z can be identified with SpecpZppq1{pnqqq as a µpn-torsor over SpecpZppqqqq. For
every surjective map α : pZ {pn Zq2 Ñ pZ {pn Zq, let Ellppn, αq denote the closed and
open subscheme of EllppnqˆEllSpecpZppqqqq classifying level structures γ : pZ {pn Zq2 Ñ
ETaterp

ns for which the composition pv ˝ γq : pZ {pn Zq2 Ñ Z {pn Z is given by α. We
then have decompositions

Ellppnq ˆEll SpecpZppqqqq »
ž

α

Ellppn, αq

Ellppn`1
q ˆEll SpecpZppqqqq »

ž

rα

Ellppn`1, rαq,

where the decomposition on the left is indexed by the collection of all surjections
α : pZ {pn Zq2 Ñ Z {pn Z, and the decomposition the right is indexed by the collection
of all surjections rα : pZ {pn`1 Zq2 Ñ Z {pn`1 Z. This induces decompositions

Ellppnq ˆEll SpecpZrrqssq »
ž

α

Ellppn, αq

Ellppn`1
q ˆEll SpecpZrrqssq »

ž

rα

Ellppn`1, rαq.

Fix a surjection rα : pZ {pn`1 Zq2 Ñ Z {pn`1 Z, let Ellppn`1, rαq denote the fiber product
Ellppn`1, rαq ˆµpn`1 SpecpZrζpnsq, and define Ellppn`1, rαqdeg similarly. To deduce pa1q
and pb1q, it will suffice to prove the following:

pa2q The open immersions

j
rα : Ellppn`1, rαqp“0 ãÑ Ellppn`1, rαqp“0 j1

rα : Ellppn`1, rαqdeg ãÑ Ellppn`1, rαqdeg

are schematically dense.
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pb2q The composite map

Ellppn`1, rαqdeg
ψ0
ÝÑ Ellppn, αqp“0 ãÑ Ellppn, αq

factors (uniquely) over the open immersion j1
rα; here α : pZ {pn Zq2 Ñ Z {pn Z

denotes the surjection obtained from rα by reduction modulo pn.

To prove pa2q and pb2q, we may assume without loss of generality that the map
rα is given by projection onto the second factor. In this case, R-valued points of the
Zppqqq-scheme Ellppn, αq are given by pairs of pn-torsion points x, y P ETatepRq for
which x is the image of a primitive pnth root of unity under the closed immersion

SpecpZrζpnsq ˆ SpecpZppqqqq ãÑ µpn ˆ SpecpZppqqqq ãÑ ETaterp
n
s,

and y is an arbitrary R-valued point of the µpn-torsor SpecpZppq1{pnqqq. This analysis
supplies an isomorphism of Zppqqq-schemes

Ellppn, αq » SpecpZrζpnsq ˆ SpecpZppq1{pn
qqq » SpecpZrζpnsppq1{pn

qqq.

Passing to the integral closure of Zrrqss in the ring of functions on Ellppn, αq, this
extends to an isomorphism Ellppn, αq » SpecpZrζpnsrrq1{pnssq. Similarly, we have
isomorphisms

Ellppn`1, rαq » SpecpZrζpn`1sppq1{pn`1
qqq

Ellppn`1, rαq » SpecpZrζpn`1srrq1{pn`1
ssq.

Assertion pa2q now follows from the observation that the canonical map Srrq1{pn`1
ss Ñ

Sppq1{pn`1
qq is a monomorphism for the commutative rings S “ Fprζpns and S “

Fprζpn`1s. To prove pb2q, it suffices to observe that the commutative square of rings

Fprζpn`1srrq1{pn`1
ss Fprζpnsrrq

1{pn`1
ssoo

Fprζpnsrrq
1{pnss

OO 55

Fprζpn´1srrq1{pnss

OO

oo

admits an extension as indicated, where the vertical maps are the evident inclusions
and the horizontal maps are given by q ÞÑ qp. The desired extension is given by the
construction q1{pn ÞÑ q1{pn`1 .
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