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Introduction

Let A be a homotopy commutative ring spectrum. We say that A is even periodic
if the graded ring m4(A) is isomorphic to m(A)[u*!], for some element u € m5(A).
In this case, Quillen observed that the formal spectrum G = Spf(A°(CP®)) can be
regarded as a 1-dimensional formal group over the commutative ring R = 7y(A). The
formal group Gisa very powerful invariant of the ring spectrum A. In many cases, it
is a complete invariant:

Theorem 0.0.1 (Landweber Exact Functor Theorem). Let R be a commutative ring
and let G be a 1-dimensional commutative formal group over R, equipped with an
isomorphism of formal R-schemes G ~ Spf(R[[t]]). Assume that:

(x) For every prime number p, let [p] : G — G be the map given by multiplication
by p, so that we can write [p]*(t) as a formal power series Y, _,cat™. Then
{cpntnz0 is a reqular sequence in R: in other words, each cyn is a non-zero divisor
in the quotient ring R/(c1,cp, ..., Cpn-1).

Then there exists an even periodic homotopy commutative ring spectrum A with
m0(A) ~ R and Spf(A°(CP®) ~ G. Moreover, the ring spectrum A is unique (up to
homotopy equivalence).

Remark 0.0.2. Condition (*) of Theorem is known as Landweber’s criterion;
one can show that it is independent of the choice of coordinate ¢.

Example 0.0.3. Let R = Z be the ring of integers and let Gm be the formal
multiplicative group over Z, defined as the formal completion of the multiplicative
group G,, = Spec(Z[u*']) along the identity section. Then ¢ = u — 1 is a coordinate
on ém which satisfies

[p]*(t) = (1 +t)P =1 =pt + (g)t2+...+ptp—1+tp

for each prime number p. Since (p, 1,0,0,...) is a regular sequence in Z, the formal
group G satisfies Landweber’s criterion. It follows from Theorem m that there
exists an essentially unique even periodic ring spectrum A with my(A) ~ Z and
Spf(A9(CP®)) ~ Gy

Let KU denote the complex K-theory spectrum. Then KU is an even periodic
ring spectrum with 7o(KU) ~ Z and Spf(KU"(CP®)) ~ G,,. It follows that KU is
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homotopy equivalent to the ring spectrum A of Example [0.0.3] Consequently, we can
regard Example |0.0.3| as providing a “purely algebraic” construction of KU, which
makes no reference to the theory of complex vector bundles. However, this algebraic
approach has certain limitations. In the situation of Theorem [0.0.1], the homology
theory X +— A,(X) can be recovered functorially from the pair (R, G). However, one
passes from the homology theory A, to its representing spectrum A by means of the
Brown representability theorem, rather than an explicit procedure. Consequently, the
construction (R, é) — A is functorial only up to homotopy.

Example 0.0.4. Let G be a formal group satisfying Landweber’s criterion and let
A be the associated even periodic ring spectrum. The two-element group (£+1) acts
on the formal group G and this extends to an action of (£1) on A as an object in
the homotopy category of spectra hSp. When R = Z and G = é‘rm, we recover the
action of (£1) ~ Gal(C/R) on KU by complex conjugation. In this case, one can
do better: the action of (+1) on KU in the homotopy category hSp can be rectified
to an action of (+1) on the spectrum KU itself. This rectification contains useful
information: for example, it allows us to recover the real K-theory spectrum KO as
the homotopy fixed point spectrum KU**Y . However, it cannot be obtained formally
from Theorem [0.0.11

Example 0.0.5. To every formal group G satisfying Landweber’s criterion, Theorem
0.0.1] supplies a homotopy commutative ring spectrum A: that is, a commutative
algebra obJect in the homotopy category of spectra hSp. However, in the case R = Z
and G = Gm, we can do better: KU is an E,-ring spectrum. In other words, the
multiplication on KU is commutative and associative not only up to homotopy, but up
to coherent homotopy. The E-structure on KU is not directly visible at the level of
the homology theory X — KU, (X), and therefore cannot be extracted from Theorem
001

Examples|0.0.4/and [0.0.5|illustrate a general phenomenon: in many cases of interest,

the ring spectra associated to formal groups satisfying Landweber’s criterion possess
additional structure which is not visible at the level of the homotopy category of
spectra.

Example 0.0.6 (Lubin-Tate Spectra). Let x be a perfect field of characteristic p > 0
and let @0 be a 1-dimensional formal group over k of height n < co. Lubin and
Tate showed that éo admits a universal deformation G defined over a regular local
ring Rir ~ W (k)[[v1, ..., vn_1]]. Morava observed that the formal group G satisfies
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Landweber’s criterion, so that Theorem supplies an even periodic ring spectrum
E with Rur ~ mo(E) and G ~ Spf(E°(CP®)). We will refer to E as the Lubin-Tate
spectrum of éo (it is also commonly known as Morava E-theory). A theorem of Goerss,
Hopkins, and Miller asserts that £ admits an essentially unique E,-ring structure
and depends functorially on the pair (&, éo); in particular, the Lubin-Tate spectrum
E carries an action of the automorphism group Aut(Gyg) (which is defined at the
spectrum level, rather than the level of homotopy category hSp).

Example 0.0.7 (Elliptic Cohomology). Let R be a commutative ring and let £ be
an elliptic curve over R, classified by a map p : Spec(R) — Mgy where Mgy denotes
the moduli stack of elliptic curves. Let E denote the formal completion of E along
its identity section, and assume that the formal group E admits a coordinate (this
condition is always satisfied locally on Spec(R)). If the morphism p is flat, then the

formal group E satisfies Landweber’s criterion, so that Theorem @ supplies an
even-periodic spectrum A, with R ~ my(4,) and E ~ Spf(AY(CP®)). In the case
where p is étale, a theorem of Goerss, Hopkins, and Miller asserts that A, can be
promoted to an E,-ring which depends functorially on the pair (R, E). Moreover, the
construction p — A, determines a sheaf & on the étale site of Mgy, taking values in
the co-category of E,-ring spectra. Passing to global sections, we obtain an E-ring
TMF = I'(Mgy; ), known as the spectrum of (periodic) topological modular forms.

Our goal in this paper is to prove a variant of the Landweber exact functor theorem
which explains the special features of Examples [0.0.3] [0.0.6] and [0.0.77 Our main
result can be understood as a generalization of Example to the case where & is
not a field. Suppose we are given a Noetherian Fp-algebra R, and a p-divisible group
Gy over Ry. We define a deformation of Gy to be a pullback diagram

Go G4
i l
Spec(R) — Spec(A)

where the lower horizontal map is determined by a surjection of Noetherian rings
p:A— R, Gy is a p-divisible group over A, and the ring A is complete with respect
to ker(p). In this case, we also abuse terminology and say that G4 is a deformation
of Gg which is defined over A. Under some mild assumptions, one can show that Gy
admits a universal deformation G, which is defined over a Noetherian ring R, which
we will refer to as the classical deformation ring of Go. The content of this paper is



that Réo arises as the underlying commutative ring of an E.-ring (for a more precise
formulation, see Theorem [6.0.3)):

Theorem 0.0.8. Let Ry be a Noetherian F,-algebra and let G be a 1-dimensional
p-divisible group over Ry. Assume that the Frobenius map pg, : Ry — Ry is finite and
that Go is nonstationary (see Definition . Then:

(a) The p-divisible group Gg admits a universal deformation G, defined over a
Noetherian commutative ring RE, .

(b) There exists an weakly 2-periodic Eq-ring spectrum E, whose homotopy groups
are concentrated in even degrees, such that mo(E) ~ R, and Spf(E°(CP®)) is
the identity component of the p-divisible group G.

Moreover, the Eo-ring E can be chosen to depend functorially on the pair (Ro, Go).

It is possible to prove a weaker version of Theorem [0.0.8| using the Landweber
exact functor theorem. Namely, one begins by constructing the universal deformation
G (and the classical deformation ring R‘éo); this is a purely algebraic problem. The
p-divisible group G has an identity component G°, which is a 1-dimensional formal
group over RS .- 1f the formal group G° admits a coordinate, then one can show that
it satisfies condition (*) of Theorem , which proves the existence of a homotopy
commutative ring spectrum F satisfying requirement (b) of Theorem m (if G° does
not admit a coordinate, one instead uses a mild generalization of Theorem .

Our proof of Theorem [0.0.8 will proceed differently, and will not use Landweber’s
theorem. Instead, we will realize E as the solution to a moduli problem in the setting
of E,-ring spectra. Note that an essential feature of E is that its associated formal
group Spf(E°(CP®)) is the identity component of a deformation of Gy over the
commutative ring mo(E). We will establish a more refined statement: the formal
group Spf(E°(CP®)) can be promoted to a formal group é% over the E,-ring F
itself, which can be realized as the identity component of a p-divisible group which is a
deformation of Gy (in a suitable sense). Moreover, we will characterize E as universal
among [E.-rings for which such a realization exists.

Let us now outline the contents of this paper. Our primary objective is to turn the
idea sketched above into a precise construction of an E.-ring F, and to prove that E
satisfies the requirements of Theorem [0.0.8. We begin with the observation that the
notion of p-divisible group makes sense over an arbitrary E,-ring A (see Definition
AV.6.5.1). Consequently, given (R, Go) as in the statement of Theorem [0.0.8] one
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can consider deformations of Gg which are defined over E.-rings. In we will prove
that there is a universal such deformation G, which is defined over an Ey,-ring R¢;
which we refer to as the spectral deformation ring of Gy (Theorem . This can
be regarded as a generalization of part (a) of Theorem the classical deformation
ring R%O can be recovered as the ring of connected components 7o (R, ), and the
classical universal deformation of Gy is obtained from G by extension of scalars along
the projection map RE, — mo(RE,) (see Corollary [3.0.13).

The spectral deformation ring R{. is not yet the Ey-ring we are looking for.
Roughly speaking, it classifies arbitrary deformations of Gg, while we would like to
consider only those deformations whose underlying formal group is fixed. To make
this precise, we need to extend the theory of formal groups to the setting of structured
ring spectra. We will develop this extension in {1} in particular, we will define the
notion of a formal group G over an arbitrary Ey-ring A (Definition . In
we specialize to the case where the E,-ring A is (p)-complete, and show that the
theories of formal groups and p-divisible groups are closely related. More precisely, we
show that every p-divisible group over A admits an identity component G°, which is a
formal group over A (Theorem , and that in many cases the passage from G to
G° does not lose very much information (Theorem [2.3.12)).

If A is an even periodic homotopy commutative ring spectrum, then we can regard
Spf(A°(CP®)) as a l-dimensional formal group over the commutative ring mo(A).
However, if A is an E-ring, we can do better: in we introduce a formal group (A}%
defined over A itself, which we will refer to as the Quillen formal group of A. Most of
is devoted to the problem of recognizing the Quillen formal group é% Our main
result is that, for any 1-dimensional formal group G over A, choosing an equivalence
G ~ (A}% is equivalent to choosing a map from the 2-sphere S? to the space of A-valued
points of CA}, satisfying a certain nondegeneracy condition (Proposition ; we
will refer to such a map as an orientation of G (Definition . Given an arbitrary
1-dimensional formal group G over an E,-ring A, we show that there is a universal
E,-algebra Og for which G acquires an orientation after extending scalars to Og;
we will refer to Og as the orientation classifier of G (Definition .

Let us now return to the setting of Theorem [0.0.8 Let Ry be an F-algebra and
let Gg be a p-divisible group over Ry which satisfies the hypotheses of Theorem [0.0.8
Then Gg admits a universal deformation G over the spectral deformation ring Rg; .
The identity component G° is then 1-dimensional formal group over R, which has
an orientation classifier that we denote by Rg, . We will complete the proof by showing
that Ry, satisfies the requirements of Theorem [0.0.8, Note here the contrast with the



approach based on Landweber’s theorem: from our construction, it is is obvious that
&, is an E,-ring which depends functorially on the pair (Ry, Go). What is not at
all obvious that Rg  has the desired homotopy groups (or even that it is nonzero).
Let us first consider the case where Ry = k is a perfect field of characteristic p and
the p-divisible group Gg is connected (and can therefore be identified with the formal
group Gg = Gy, having some height n). In g we will show that the K (n)-localization
Lic(n)RE, can be identified with the Lubin-Tate spectrum £ of Example [0.0.6} and
therefore satisfies condition (b) of Theorem m Roughly speaking, this follows
from Yoneda’s lemma: from the construction of Rg, one can immediately extract a
universal property of its K (n)-localization (Theorem [5.1.5)), which is shared by the
spectrum E. However, we give a different argument, which exploits the universal
property of Lxn)Rg, together with Quillen’s work on complex bordism to give a direct
calculation of the homotopy groups of L (n)R&, (Theorem . As a byproduct, we
give a new proof of the existence and uniqueness of the E,-structure on £ (Theorem
[(5.0.2), by completely different methods than those of [12].
In §6 we return to the case of a general pair (R, Go) satisfying the requirements
of Theorem [0.0.8] By combining the results of §5| with certain localization techniques,

&. are concentrated in even degrees and

we show that the homotopy groups of
that mo(Rg,) agrees with the classical deformation ring R, . This completes the
proof of Theorem [0.0.8 It also shows that the K (n)-localization appearing in §5| is
unnecessary: in the special case where Ry = k and Gy is a connected p-divisible group
of height n, the spectrum Ry is already equivalent to the Lubin-Tate spectrum of
Example (and is therefore K (n)-local). As another application, we give a quick
proof of a theorem of Snaith, which asserts that the complex K-theory spectrum KU
can obtained from the suspension spectrum X% (CP®) by inverting the Bott class
B € my(X7(CP¥)) (see Theorem [6.5.1)).

Ultimately, all of the theory developed in this paper was developed in order to
better understand the elliptic cohomology theories of Example Recall that
in §AV.2, we introduced the notion of a strict elliptic curve X over an E,-ring R
(Definition AV.2.0.2). To such an object, one can associate a formal group X over
R, which we will refer to as the formal completion of X. We define an orientation of
a strict elliptic curve X to be an orientation of its formal completion X: in the case
where R is even periodic, this is equivalent to giving an equivalence of formal groups
CA}% ~ X. In , we show that oriented elliptic curves are classified by a nonconnective
spectral Deligne-Mumford stack, which we will denote by Mgy, (Proposition [7.2.10)).
Combining the results of §6| with the Serre-Tate theorem, we show that Mg}, behaves



like a “2-periodic version” of the classical moduli stack of elliptic curves Mgy, from
which the assertions of Example follow immediately (see Theorem [7.0.1)).

Remark 0.0.9. To analyze the moduli stack of oriented elliptic curves Mgy, one
needs only Theorem [0.0.8] (and its proof) for p-divisible groups of height 2. However,
one can use a similar strategy to construct “2-periodic analogues” of other moduli
spaces. For example, Theorem was applied by Behrens and Lawson to construct
2-periodic versions of certain (p-adically completed) Shimura stacks and thereby
introduce a theory of topological automorphic forms; we refer the reader to [3] for
more details.
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Notation and Terminology

Throughout this paper, we will assume that the reader is familiar with the language
of higher category theory developed in [23] and [24]. We will also use some notions
of spectral algebraic geometry (particularly formal spectral algebraic geometry) as
developed in [25], and will refer frequently to the first paper in this series ([26]). Since
we will need to refer to these texts frequently, we adopt the following conventions:

HTT) We will indicate references to [23] using the letters HTT.

(

(HA) We will indicate references to [24] using the letters HA.
(SAG) We will indicate references to [25] using the letters SAG.
(

AV') We will denote references to [26] using the letters AV.
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For example, Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [23].

For the reader’s convenience, we now review some cases in which the conventions
of this this paper differ from those of the texts listed above, or from the established
mathematical literature.

e We will generally not distinguish between a category C and its nerve N(C). In
particular, we regard every category C as an oco-category.

e We will generally abuse terminology by not distinguishing between an abelian
group M and the associated Eilenberg-MacLane spectrum: that is, we view the
ordinary category of abelian groups as a full subcategory of the oco-category Sp
of spectra. Similarly, we regard the ordinary category of commutative rings as a
full subcategory of the oo-category CAlg of E.-rings.

e Let A be an E-ring. We will refer to A-module spectra simply as A-modules.
The collection of A-modules can be organized into a stable co-category which
we will denote by Mod 4 and refer to as the oo-category of A-modules. This
convention has an unfortunate feature: when A is an ordinary commutative ring,
it does not reduce to the usual notion of A-module. In this case, Mod is not the
abelian category of A-modules but is closely related to it: the homotopy category
hMod 4 is equivalent to the derived category D(A). Unless otherwise specified,
the term “A-module” will be used to refer to an object of Mod 4, even when A
is an ordinary commutative ring. When we wish to consider an A-module M
in the usual sense, we will say that M is a discrete A-module or an ordinary

A-module.

e Unless otherwise specified, all algebraic constructions we consider in this paper
should be understood in the “derived” sense. For example, if we are given
discrete modules M and N over a commutative ring A, then the tensor product
M ®4 N denotes the derived tensor product M ®% N. This may not be a discrete
A-module: its homotopy groups are given by m,(M ®4 N) ~ Tor’ (M, N). When
we wish to consider the usual tensor product of M with N over A, we will denote
it by Torg (M, N) or by mo(M ®4 N).

o If M and N are spectra, we will denote the smash product of M with N by
M ®g N, rather than M A N (here S denotes the sphere spectrum). More
generally, if M and N are modules over an E,-ring A, then we will denote the
smash product of M with N over A by M ®4 N, rather than M A4 N. Note
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that when A is an ordinary commutative ring and the modules M and N are
discrete, this agrees with the preceding convention.

e If C is an oco-category, we let C~ denote the largest Kan complex contained
in C: that is, the co-category obtained from C by discarding all non-invertible
morphisms.

e If Ais an E,-ring, we let Spec(A) denote the nonconnective spectral Deligne-
Mumford stack given by the étale spectrum of A (denoted by Spét(A) in [25]
and [26]). We will generally not distinguish between Spec(A) and the functor
that it represents (given by the formula B — Mapc (4, B)). We will engage
in other related abuses: for example, if A is connective (or discrete), we identify
Spec(A) with the functor Mapga, (A, o) restricted to connective (or discrete)
Ey-rings. In the discrete case, we will also use the notation Spec(A) to refer to
the usual Zariski spectrum of A, regarded as an affine scheme.

Adic E-Rings

Let R be a commutative ring and let I < A be a finitely generated ideal. Then
we can regard R as equipped with the I-adic topology, having a basis of open sets of
the form x + I"™ where z € R and n > 0. We say that a topology on R is adic if it
coincides with the I-adic topology, for some finitely generated ideal I < R. In this
case, we will say that I is an ideal of definition for R.

Remark 0.0.10. Let R be a commutative ring with an adic topology. We say that
an element t € R is topologically nilpotent if the sequence {t"},>¢ converges to zero in
the topology on R. Equivalently, t is topologically nilpotent if R admits an ideal of
definition containing ¢.

In this paper, we will need the following variant:

Definition 0.0.11. An adic Ey-ring is a pair (A, 1), where A is an E,-ring and 7
is an adic topology on the commutative ring mo(A). If (A,7) and (A’,7') are adic
E.-rings, we let Map@ay, (A, A’) denote the summand of Mapgy, (A4, A') consisting of
those morphisms of E,-rings f : A — A’ for which the underlying ring homomorphism
mo(A) — mo(A’) is continuous (with respect to the topologies 7 and 7').

The collection of adic Ey-rings forms an oo-category CAlg®, with morphisms given

by MapCAlgad(A, A) = Map%oﬂg(/l, A).
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Remark 0.0.12. In the situation of Definition|0.0.11], we will generally abuse notation
by identifying an adic E,-ring (A, 7) with its underlying E,-ring A; in this case, we
implicitly assume that an adic topology has been specified on my(A).

In this paper, we will encounter adic E,-rings for two essentially different reasons:

Y

e If G is a formal group over an E,-ring R, then it has an “algebra of functions’
O & that is naturally viewed as an adic E-algebra over R (for example, when
R = k is a field, then 0 will isomorphic to a power series ring s[[z1, ..., z,]],
which we will want to regard as a topological ring by endowing it with the [-adic
topology for I = (z1,...,2,).

e Given a p-divisible group G defined over an F,-algebra Ry, the spectral de-
formation ring R is naturally viewed as an adic E,-ring, by endowing the
underlying commutative ring Rg, = mo(RE,) with the ker(p)-adic topology for
p: Rccl;o — Ry. Moreover, we will construct the spectral deformation ring R¢.
as the solution to a moduli problem which is naturally defined on adic E,-rings

(see Definition [3.1.4)).

Suppose that R is an E,-ring and M is an R-module. If x is an element of my(R),
we will say that M is (z)-complete if the limit of the tower

MBS MSMS M

vanishes. More generally, if I € 7y(R) is a finitely generated ideal, then we say that
M is I-complete if it is (x)-complete for each x € I (it suffices to check this condition
for a set of generators for the ideal I; see Corollary SAG.7.3.3.3). We say that an adic
E-ring R is complete if it is I-complete for some finitely generated ideal of definition
I € m(R) (in this case, it is [-complete for every finitely generated ideal of definition

Ic ’/To(R))

Warning 0.0.13. Let R be an ordinary commutative ring and let I < m(R) be a
finitely generated ideal. We say that R is classically I-adically complete if the canonical
map p : R — lim R/I" is an isomorphism. In this case, I is also I-complete in the sense
defined above. Conversely, if R is I-complete, then the map p is surjective (Corollary
SAG.7.3.6.2), but p need not be injective. However, the intersection ()., 1" is always
a nilpotent ideal in R (Corollary SAG.7.3.6.4).

We refer the reader to Chapter SAG.7 for an extensive discussion of I-completeness
in the setting of E,-rings and their modules.
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Nonconnective Ring Spectra

A central theme of this paper (and the prequel [26]) is that it is sensible to consider
algebro-geometric objects of various flavors (formal groups, elliptic curves, p-divisible
groups, finite flat group schemes, etcetera) which are defined over E-rings, rather
than merely over ordinary commutative rings. For our ultimate applications, it will be
convenient to work with E,-rings which are not assumed to be connective. However,
we should emphasize that allowing nonconnective ring spectra does not represent any
actual gain in generality. Giving a formal group over an E.-ring R is equivalent to
giving a formal group over the connective cover 7>(R) (and similarly for elliptic curves,
p-divisible groups, and so forth). The distinction between working over R and working
over Tso(R) will be completely irrelevant until §4] when we introduce the notion of an
ortentation of a formal group G. This notion is fundamentally “nonconnective”: a
formal group over a connective E-ring R can never be oriented (except in the trivial
case R ~ 0).

1 Formal Groups

Let k be a field. A smooth, connected, commutative formal group over k is an
abelian group object in the category of formal x-schemes which is isomorphic (as a
formal scheme) to a formal affine space A" = Spf(k[[t1, . .., ta]]) for some n > 0. We
will henceforth refer to such objects simply as formal groups over k.

Our goal in this section is to introduce a more general notion of formal group,
where we replace the ground field x by an arbitrary E,-ring R. Let us assume
for simplicity that R is connective. We will define a formal group over R to be a
functor of co-categories G : CAlgy — Mody', where CAlg};' denotes the co-category
of connective Ey-algebras over R and Mody' denotes the oo-category of connective
Z-module spectra (or, equivalently, the co-category of simplicial abelian groups). We
will require this functor to have a certain representability property: namely, the
underlying S-valued functor

CAlg® & Mode 25 S

should be (representable by) a very particular type of formal R-scheme, which we will
refer to as a formal hyperplane.

In the special case where R = k is a field, we define a formal hyperplane over x
to be a formal scheme over & which has the form A" = Spf(k[[ty, ... ,t,]]), for some
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n = 0. When extending this definition to the case of an arbitrary E,-ring R, we

encounter two (unrelated) subtleties:

(1)

Even when R is an ordinary commutative ring, we do want to require every
formal hyperplane over R to be isomorphic (as a formal scheme) to a formal
affine space A" = Spf(R[[t1,.. ., t,]]): this requirement cannot be tested Zariski-
locally on R. Instead, we allow objects which are isomorphic to the the formal
completion of some vector bundle & — Spec(R) along its zero section.

In the case where R is an E.,-ring, the notion of a formal power series ring over
R is potentially ambiguous. In general, there can be many R-algebras A with
homotopy given by m.(A) ~ m.(R)[[t1,. .., t.]], and we would like to allow the
formal spectrum of any such algebra to qualify as a formal hyperplane over R.

Most of this section is devoted to developing a good theory of formal hyperplanes

over an arbitrary E,-ring R. We begin by observing that over a field x, the datum of

a formal hyperplane X can be encoded in (at least) three closely related ways:

(@)

One can consider the ring of functions O x: this is an algebra over x which is
isomorphic to a formal power series ring «[[t1,...,t,]]. In particular, it is a
local ring which is complete with respect to its maximal ideal m = (t1,...,t,).

One can consider the coalgebra of distributions C(X): that is, the collection
of all k-linear maps € x — k which are m-adically continuous (that is, they
annihilate some power of the maximal ideal m € ).

One can consider the functor of points hx : CAlgS — Set, which assigns to
each commutative k-algebra A the set hyx(A4) = Hom®(Ox, A) of k-algebra
homomorphisms from &'x to A which are m-adically continuous (that is, they
annihilate some power of the maximal ideal m).

Each of these perspectives comes with advantages and disadvantages. Approach

(a) is perhaps the most concrete: generally speaking, algebras are easier to work with

than coalgebras (or presheaves on the category of commutative algebras). However,
algebras of the form €'y come with some additional baggage: they should really be

regarded as topological algebras (with respect to the m-adic topology). Replacing

the algebra ¢'x by its continuous dual C'(X) is a convenient way of “remembering

7

this topology, and the passage from algebras to coalgebras allows us to avoid various

technical complications. For example, if Y is another formal hyperplane over s, then
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the coalgebra of distributions on the product X x Y is given by the tensor product
C(X xY) = C(X)®, C(Y), while the algebra Ox,y is instead computed by a
completed tensor product Ox ®, Oy. Approach (c) is perhaps the most abstract, but
is extremely useful (perhaps even indispensable in the homotopy-theoretic context)
when we want to contemplate group structures on formal hyperplanes.

Our primary objective in this section is to show that each of these approaches
remains viable when we replace the field x by an arbitrary E,-ring R. More precisely,
we will introduce an co-category Hyp(R) of formal hyperplanes over R which admits
three equivalent incarnations:

(a’') The oo-category Hyp(R) can be identified with a full subcategory of the oo-
category (CAlgs)P of adic E..-algebras over R.

(0') The oo-category Hyp(R) can be identified with a full subcategory of the co-
category cCAlgy of commutative coalgebras over R (see Definition [1.2.1)).

(c') When R is connective, the co-category Hyp(R) can be identified with a full
subcategory of the co-category Fun(CAlgy', S) of S-valued functors on the co-
category of connective E-algebras over R.

We will begin by studying approach (¥'). In we review the theory of commuta-
tive coalgebras over a commutative ring R (Definition and recall the construction
of the divided power coalgebra T'5(M) associated to a flat R-module M (Construction
. In we study a generalization of this theory, where we allow R to be an
arbitrary E,-ring. We say that a commutative coalgebra C' over R is smooth if it is flat
as an R-module and my(C') is isomorphic to the divided power coalgebra of projective
mo(R)-module of finite rank (Definition [1.2.4)). The collection of smooth coalgebras
over R can be organized into an co-category, which we will denote by cCAlg%"; this
oo-category can be regarded as the coalgebraic incarnation of our theory of formal
hyperplanes over R.

We study the relationship between approaches (a’) and (¥') in §1.3] For any E-ring
R, the formation of R-linear duals C'— C'V carries commutative coalgebras over R
to Ex-algebras over R. When C' is a smooth coalgebra over R, there is a canonical
topology on the commutative ring 7y(C"), which endows C¥ with the structure of an
adic E..-ring (see Proposition [1.3.10)). Our main result asserts that the construction
C +— C" determines a fully faithful embedding of co-categories

0 : cCAlgS" < (CAlgyh)°P
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(see Theorem . We will describe the essential image of this embedding in :
roughly speaking, it consists of those adic E-algebras A over R with homotopy given
by 7. (A) ~ m(R)[[t1, - - -, tn]], at least Zariski-locally on | Spec(R)| (see Proposition
i),

Assume now that R is connective. In §I.5 we will associate to each flat coalgebra
C over R a functor cSpec(C) : CAlgy — S, which we will refer to as the cospectrum
of C (see Construction [1.5.4). Roughly speaking, the functor cSpec(C) carries an
object R' € CAlgy' to the space GLike(C') of grouplike elements of the coalgebra
C" = (R ®g C) € cCAlgy. In the special case where C' is smooth, we show that
the cospectrum cSpec(C') can also be described as the formal spectrum of the adic
Ey-algebra C', whose value on R’ € CAlg}' is given by the space MapgﬂgR(C Y R
of Ey-algebra maps from C¥ to R’ for which the underlying ring homomorphism
mo(CY) — mo(R') is continuous. (Proposition [1.5.8). We then define a formal
hyperplane over R to be a functor X : CAlg® — S which has the form c¢Spec(C) for
some C' € cCAlgi® (or, equivalently, which has the form Spf(A) where A € CAlga!
belongs to the essential image of the functor 6 above); see Definition .
In §1.6, we apply our theory of formal hyperplanes to introduce the notion of
a formal group G over an Ey-ring R (Definition . Much of the remainder of
this paper (particularly is devoted to showing that the theory of formal groups
over E -rings behaves as one might expect: for example, there is a close connection
between formal groups and p-divisible groups whenever R is (p)-complete. However,
there are also a few surprises: for example, we show that the formal multiplicative
group ém can be lifted to a formal group over the sphere spectrum S (Construction

1.6.16)), but the formal additive group G, cannot (Proposition |1.6.20)).

1.1 Coalgebras over Commutative Rings

In this section, we review the classical theory of (flat) commutative coalgebras
over a commutative ring R. In particular, we recall the construction of the divided
power coalgebra I'; (M) associated to a flat R-module M (Construction and
characterize it by a universal property (Proposition . We will say that a
coalgebra C' over R is smooth if it has the form I'% (M), where M is a projective
R-module of finite rank (Definition [1.1.14). We show that class of smooth coalgebras
satisfies (effective) descent with respect to the étale topology (Proposition [1.1.19).
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1.1.1 Flat Coalgebras
We begin by reviewing some commutative algebra.

Definition 1.1.1. Let R be a commutative ring. A flat commutative coalgebra over R
is a triple (C, A¢, €c), where C'is a flat R-module, Ax : C — C ®g C' is an R-module
homomorphism (called the comultiplication on C') and e¢c : C'— R is an R-module
homomorphism (called the counit of C') for which the diagrams

C®rC
N ~ =
C@R C@R R@R
C— 29 00
Ao iAc®id
id®A¢
CRRrRC——CRrC®rC

commute (here o denotes the automorphism of C' ®p C' given by o(z ®y) = y ® x).

Let (C, Ac, ec) and (C', Acr, €cr) be flat commutative coalgebras over R. A coalge-
bra homomorphism from (C, A¢, ec) to (C', Acr, €cr) is an R-algebra homomorphism
f:C — C satistying ecv o f = €c and Agro f = (f® f) o Ac. We let CCAIg?_2
denote the category whose objects are flat commutative coalgebras over R and whose
morphisms are coalgebra homomorphisms

Remark 1.1.2. In the situation of Definition the counit € : C' — R is uniquely
determined by the comultiplication A¢ : C — C ®g C.

Warning 1.1.3. Our terminology is slightly nonstandard; most authors use the term
cocommutative coalgebra for what we have opted to call a commutative coalgebra.

Remark 1.1.4. We will generally abuse terminology by identifying a flat commutative
coalgebra (C, A¢, ec) with its underlying R-module C; in this case, we implicitly
assume that a comultiplication A¢ : C' — C' ®g C and a counit map e : C' — R have
also been specified.

Remark 1.1.5. Let R be a commutative ring and let Mod% be the category of flat
R-modules. Then Modlj.;z is a symmetric monoidal category (with respect to the usual
tensor product of R-modules ®p), and cCAlg}, can be identified with the category of
commutative coalgebra objects of Mod%.
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Remark 1.1.6 (Grouplike Elements). Let R be a commutative ring and let C' be
a flat commutative coalgebra over R. An element n € C' is said to be grouplike if it
satisfies the identities Ax(n) = n®n and ec(n) = 1. Equivalently, 7 is grouplike if
multiplication by n induces a coalgebra homomorphism R — C.

Remark 1.1.7 (Primitive Elements). Let R be a commutative ring and let C' be a
flat commutative coalgebra over R. Suppose we are given a grouplike element n e C.
We let Prim, (C) = {xr € C : Ac(z) = n®@x + 2 ®n}. We refer to Prim, (C) as the set
of n-primitive elements of C. Note that Prim, (C') is an R-submodule of C.

Warning 1.1.8. Let R be a commutative ring. Then both the abelian category
Modg of discrete R-modules and the stable co-category Modg of R-module spectra
admit symmetric monoidal structures. Consequently, we can consider commutative
coalgebra objects in both Modg (that is, coalgebras in the sense of ordinary algebra)
and in the co-category Modgr. However, the inclusion functor Modg — Modg is only
a lax symmetric monoidal functor, and generally does not carry coalgebra objects
to coalgebra objects. For our applications, we will only be interested in studying
commutative coalgebra objects of Modg which remain commutative coalgebras when
regarded as objects of the co-category Modg. For this reason, we consider only flat
commutative coalgebras in Definition m (note that Mod’, can be regarded as a
symmetric monoidal subcategory of both Modg and Modg).

1.1.2 Divided Power Coalgebras

We now isolate an important class of commutative coalgebras.

Notation 1.1.9. Let R be a commutative ring and let M be a flat R-module. For
each integer n > 0, the symmetric group X, acts on the n-fold tensor product M®",
We let "4 (M) denote the submodule of M®" given by the invariants for the action of
¥, and we let Sym (M) denote the quotient of M®" given by coinvariants for the
action of X,,. We let I'y(M) and SymJy (M) denote the graded R-modules given by
the formulae

FR(M) = PDTR(M)  Symp(M) = @ Symp(M).

Warning 1.1.10. In Notation [1.1.9] the formation of invariants and coinvariants
is carried out in the abelian category Modg of discrete R-modules. If R is not a
Q-algebra, then this formation is not compatible with the inclusion Modg — Modpg.
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In particular, the symmetric algebra Sym} (M) is the free commutative R-algebra
generated by M in the sense of classical commutative algebra, and is generally not
the free E-algebra over R generated by M.

The usual multiplication on the symmetric algebra Sym7(M) has a dual incarna-
tion:

Construction 1.1.11. Let R be a commutative ring and let M be a flat R-module
which admits a direct sum decomposition M ~ M’'@M”. For every pair of nonnegative
integers n’ and n”, the evident projection map M®"' 7" — M'®" @, M"®"" determines
maps

T (M) TR(M) @ T ("),

Summing over n’ and n” then yields an isomorphism of graded R-modules
s Th(M) = Ty(M' ® M) = Th(M') ®n Th(M").

For any flat R-module M, the diagonal map M — M @ M induces a map of R-modules
A TH(M) > Th(M ® M) > Th(M) @ Th(M).

It is not difficult to verify that A exhibits I';;(M) as a commutative coalgebra in the
category of (flat) R-modules. We will refer to I'5(M) (with this coalgebra structure)
as the divided power coalgebra of M.

Remark 1.1.12. In the situation of Construction|1.1.11] the counit for the coalgebra
% (M) is the map € : T%(M) — R which is the identity on T'%(M) ~ R and vanishes
on I'y (M) for n > 0.

Remark 1.1.13. In the situation of Notation there are additional structures on
Symp (M) and I',(M): both can be regarded as (commutative and cocommutative)
Hopf algebras over R. However, in the discussion which follows, these additional
structures will play no role: we will be interested only in the algebra structure on
Symp(M) and the coalgebra structure on I';,(M).

Definition 1.1.14. Let R be a commutative ring. A smooth coalgebra over R is a
flat commutative coalgebra C' over R which is isomorphic to I';,(M), where M is a
projective R-module of finite rank. If M has rank r, then we will say that the smooth
coalgebra C' has dimension r. We let cCAlgy" denote the full subcategory of cCAlgi3
spanned by the smooth coalgebras over R.

19



Remark 1.1.15. Let R be a commutative ring. Then the collection of smooth
coalgebras over R is closed under tensor products (this follows immediately from the

analysis of Construction [1.1.11)).

Divided power coalgebras can be characterized by the following universal property:

Proposition 1.1.16. Let R be a commutative ring, let M be a flat R-module, and
let C' € cCAlgl,. Then composition with the projection map T%(M) — ThL(M) ~ M
induces a monomorphism

0: HomcCAlg%(Cg FE(M» - HomMod% (07 M)’

whose image is the collection of R-module homomorphisms f : C' — M which satisfy
the following condition:

(x) For each element x € C, the composite map

R ¢ 2, con 17, pen
vanishes for almost every integer n = 0; here A(Cn) is the map given by iterated
comultiplication on C.

Proof. We explicitly construct a (partially defined) inverse to the map 0. Let f: C —

M be any R-module homomorphism. For each n > 0, let f denote the composition

A(") @n
C 2, c®n I pen Tt follows from the cocommutativity of C' that the map £

factors through the submodule I'"(M) < M®". If f satisfies condition (x), then we can
define a single map F : C' — I';(M) by the formula F(z) =Y _, f™(z). We leave it
to the reader to verify that F': C' — I';(M) is the unique coalgebra homomorphism
satisfying 6(F) = f. O

Example 1.1.17 (Grouplike Elements of I'5;(M)). Let R be a commutative ring and
let M be a projective module of finite rank over R. Applying Proposition [1.1.16]in
the case C' = R, we obtain a bijection

{Grouplike elements of I'%(M)} ~ {R-linear maps f : M¥ — R},

where v/R denotes the nilradical of R.
In particular, if R is reduced, then I'%, (M) has a unique grouplike element.
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Warning 1.1.18. Let R be a commutative ring and let C' be a smooth coalgebra over
R. Then C'is isomorphic to a divided power coalgebra I'f,(M), where M is a projective
R-module of finite rank. However, the module M is not functorially determined by C'.
We can recover the module M by choosing a grouplike element 1 € R: in this case,
there is an isomorphism M ~ Prim,(C). However, the element 1 need not be unique
if R is non-reduced.

1.1.3 Descent For Smooth Coalgebras

Let f : R — R’ be a homomorphism of commutative rings. Then extension
of scalars along f determines a symmetric monoidal functor Mod% — Modzg,, and
therefore determines a functor f* : cCAlg}, — cCAlg%,. This functor carries smooth
coalgebras over R to smooth coalgebras over R': note that if M is a projective R-module
of finite rank, then we have a canonical isomorphism f*(I'5(M)) ~ I'f, (R’ ®r M).
We can therefore regard the construction R — cCAlgy" as a functor from the category
of commutative rings to the 2-category of (essentially small) categories.

Proposition 1.1.19. The construction R — cCAlgy" satisfies descent for the étale
topology.

The proof of Proposition [1.1.19| will require some preliminaries.

Lemma 1.1.20. Let R be a commutative ring and let C' be a flat commutative coalgebra
over R. Assume that:

(a) The coalgebra C' contains a grouplike element 7).

(b) There exists a faithfully flat map R — R’ such that C' = R' ®g C is a smooth
coalgebra over R'.

Then C' 1s smooth.

Proof. Set M = Prim, (C'). Using the flatness of R’ over R, we obtain an isomorphism
R ®r M ~ Prim,/(C"), so that M is a projective R-module of finite rank. Set
Co = I'i,(M), so that Cj is a smooth coalgebra over R equipped with a grouplike
element 7y € Cy and a canonical isomorphism M ~ Prim,,(Cy). For every R-algebra
A, let C'y and Cy, denote the flat commutative coalgebras over A given by A®gC and
A®gr Cy, respectively. We will abuse notation by identifying n and 7y with their images
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in Cy and Cya, respectively. Let .7 (A) denote the set of all coalgebra isomorphisms
u: Cy ~ Cpy for which u(n) = no and the induced map

A®p M ~ Prim,(Cy) = Prim,,(Cos) ~ AQr M

is the identity. Then the construction A — % (A) is a sheaf for the flat topology, and
we wish to show that this sheaf admits a global section.

Note that .% is a torsor for the sheaf of groups ¢ which assigns to each R-algebra
A is the collection of coalgebra automorphisms of Cy, which restrict to the identity
on 'y (M) for i < 1. The sheaf ¢ admits a filtration by normal subgroups

GG =9,

where ¢,,(A) is the subgroup of ¢ (A) consisting of those automorphisms of C4 which
are the identity on I'z(M) for i < n. Moreover, the canonical map 4 — lim¥ /¢, is
an isomorphism. It follows that . can be identified with the inverse limit lim .7 /¥,,.
Consequently, to prove Lemma [1.1.20] it will suffice to produce a compatible family
of global sections s, € (% /¥,)(R). In fact, we claim that each of the transition
maps (F /9,)(R) — (¥ /9,_1)(R) is surjective: this follows from the fact that the
quotient . /¥, is a (4,1 /9 n)-torsor over .% /4,1, which is automatically trivial
because the sheaf 4,1 /¥, is quasi-coherent (and therefore has vanishing cohomology
on the affine scheme Spec R, with respect to the flat topology). O

Lemma 1.1.21. Let R be a commutative ring and let C' be a flat commutative coalgebra
over R. Suppose that there exists a nilpotent ideal I = R such that C'/IC is a smooth
coalgebra over R/I. Then C' is a smooth coalgebra over R.

Proof. Without loss of generality, we may assume that I? = 0. Fix an isomorphism
a:C/IC ~T¥, (M), where M is a projective R/I-module of finite rank. Then « is
classified by a map of R/I-modules fy: C/IC — M, where f, satisfies condition (*)
of Proposition . Write M = M /IM, where M is a projective R-module of finite
rank. We have a short exact sequence

Hompg(C, M) — Hompg(C, M /IM) — Exty(C, IM),

and the flatness of C' as an R-module supplies an isomorphism Ext}%(C, IM) ~
Ext}w(C /IC,IM). The existence of the isomorphism a shows that C'/IC' is a projec-
tive module over R/I, so the group Ext}%/I(C /IC, IM) vanishes. It follows that the

composite map C' — C/IC ELNS V) /IM can be lifted to an R-module homomorphism

22



f:C — M. Since fy satisfies condition (*) of Proposition and [ is nilpotent,
the map [ also satisfies condition () of Proposition [1.1.16] It follows that f extends
(uniquely) to a coalgebra homomorphism @ : C' — I'y(M), whose reduction modulo [
is the isomorphism «. Because [ is nilpotent (and both C' and I';;(M) are flat over R),
it follows that @ is also an isomorphism, so that C' is smooth over R as desired. [

Proof of Proposition[1.1.19. Tt follows from the usual theory of faithfully flat descent
that the construction R — CCAlgzL2 satisfies descent for the étale topology (in fact, it
even satisfies descent for the fpqc topology). It will therefore suffice to show that if R
is a commutative ring and C' is a flat commutative coalgebra over R with the property
that C" = R’ ®g C is smooth for some faithfully flat étale R-algebra R’, then C is
itself smooth.

Assume first that R is reduced. In this case, R’ is also reduced, so that C’ contains
a unique grouplike element 1’ (Example . Set C" = R'®r R ®g C. Since
R' ®g R’ is also reduced, the commutative coalgebra C” also has a unique grouplike
element. Using the exactness of the diagram

0—>C—>C'—=C",

we deduce that 7’ is the image of a (unique) element 7 € C', which is also grouplike. It
now follows from Lemma that C is smooth over R, as desired.

We now treat the general case. Let J & R be the nilradical of R. The preceding
argument shows that C'/JC admits a grouplike element 7;, when regarded as a
commutative coalgebra over R/J. Choose an element 77, € C' representing 7. For
each ideal I < J, let n; denote the image of 77; in the quotient C'/IC. Since 7y is
grouplike, we can choose some finitely generated ideal I < J such that n; is grouplike.
Applying Lemma again, we conclude that C'/IC' is a smooth coalgebra over
R/I. Since I is a nilpotent ideal, Lemma guarantees that C' is smooth over
R. [

Warning 1.1.22. The analogue of Proposition [1.1.19] can fail if we replace the étale
topology by some finer topology, like the fppf topology. For example, suppose that
k is a field of characteristic p > 0 containing an element x which has no pth root.
Let A be the completion of the polynomial ring k[t] with respect to the maximal
ideal (t? — x). Then the complete local ring A can be written as the dual Cv for an
essentially unique commutative coalgebra C over k. The coalgebra C' is not smooth
(since it contains no grouplike elements), but the tensor product &’ ®; C' is smooth
over k', where k' = k(¥/x).
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1.2 Coalgebras over E, -Rings

In this section, we review the theory of commutative coalgebras over an arbitrary
Ey-ring R. In particular, we introduce an oo-category cCAlgy" of smooth coalgebras
over R (Definition [L.2.4)). In we study the behavior of the co-category cCAlgy"
as the Ep-algebra R varies and summarize some basic deformation-theoretic principles
which can be used to reduce questions about (smooth) coalgebras over E,-rings to
questions about smooth coalgebras over commutative rings.

1.2.1 Commutative Coalgebras

Recall that, to any symmetric monoidal co-category C, we can associate an
aw-category cCAlg(C) of commutative coalgebra objects of C, given by the formula
cCAlg(C) = CAlg(CP)°P (see §AV.3.1). We now specialize this observation to the
case where C = Modg, for some E,-ring R.

Definition 1.2.1. Let R be an E,-ring. We will denote the co-category cCAlg(C) by
cCAlgy and refer to its objects as commutative coalgebras over R. We will say that a
commutative coalgebra C' over R is flat if it is flat when regarded as an R-module. We
let cCAlg'}% denote the full subcategory of cCAlg, spanned by the flat R-coalgebras.

Remark 1.2.2. Let R be an E,-ring and let Mod% denote the full subcategory
of Modg spanned by the flat R-algebras. Then the subcategory Mod'}2 c Modpg
contains R and is closed under tensor products, and therefore inherits the structure
of a symmetric monoidal oco-category. Moreover, we can identify cCAlgI}% with the
oo-category of commutative coalgebra objects of Mod%.

Remark 1.2.3. For any E,-ring R, the construction M +— m(M) determines sym-
metric monoidal functor from the oco-category of flat modules over R to the ordinary
category of flat modules over my(R). Passing to commutative coalgebra objects, we
obtain a functor m, : cCAlg) — cCAlgfm( r) Whose domain is the oo-category of com-
mutative coalgebras introduced in Definition [I.2.1 and wose codomain the ordinary
category of commutative coalgebras introduced in Definition [I.1.1] If the E,-ring R is
discrete, then this functor is an equivalence of co-categories: that is, the two notions
of commutative coalgebra are the same.

Definition 1.2.4. Let R be an E-ring and let C' be a commutative coalgebra over
R. We will say that C' is smooth if it is flat (when regarded as an R-module) and the
commutative coalgebra my(C) is smooth over m(R), in the sense of Definition [1.1.14
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We will say that a smooth coalgebra C' has dimension r if my(C') has dimension r over
mo(R), in the sense of Definition |1.1.14]

Warning 1.2.5. Let R be an E,-ring and let C' be a smooth coalgebra over R. If
R is discrete, then C' admits a grouplike element: that is, there exists a map of
commutative coalgebras R — (. However, such a map need not exist if R is not
discrete.

Remark 1.2.6. Let R be an E-ring. If C' and D are smooth coalgebras over R, then

the tensor product C' ®g D is also a smooth coalgebra over R (this follows immediately
from Remark [1.2.6). Note that the tensor product C'®pg D can be identified with the
Cartesian product of C' and D in the oo-category cCAlgp.

Remark 1.2.7 (Functoriality). Let f : R — R’ be a morphism of E,-rings. Then
extension of scalars along f determines a symmetric monoidal functor Modg —
Modp. We therefore obtain a functor f* : cCAlg, — cCAlgp,. This functor carries
flat commutative coalgebras over R to flat commutative coalgebras over R, and
smooth commutative coalgebras over R to smooth commutative coalgebras over
R’. Consequently, we can view the constructions R — cCAlgy,, R — cCAlg%, and
R — cCAlgy" as functors from the co-category CAlg of E,-rings to the co-category
Cato, of (not necessarily small) oo-categories.

1.2.2 Deformation Theory of Coalgebras

We now record a few simple observations about the behavior of cCAlgy as the
E,-ring R varies.

Proposition 1.2.8. Let R be an Ey-ring and let 7>oR be the connective cover of R.
Then the extension of scalars functors

cCAlg)_ p — cCAlg),  cCAlg™  — cCAlgy"
are equivalences of co-categories.

Proof. By virtue of Proposition HA.7.2.2.16, the extension of scalars functor

b b
Mod — Modjy

T}OR

is an equivalence of (symmetric monoidal) co-categories. The desired result now follows
by passing to commutative coalgebra objects. O]
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Remark 1.2.9. In the situation of Proposition [1.2.8 both of the inverse equivalences
are given by the construction C' — 75,C.

Remark 1.2.10. Let R be an E-ring and let C' be a smooth coalgebra over R. Then
C' is a projective R-module: that is, it is equivalent (as an R-module) to a direct
summand of a coproduct of copies of R. To prove this, we may assume without loss
of generality that R is connective (Proposition , in which case it follows from
Proposition HA.7.2.2.18, since C' is flat over R and m(C) is a projective module over
mo(R).

Proposition 1.2.11 (Nilcompleteness). Let R be a connective Ey-ring. Then the
canonical maps

cCAlgp — limcCAlg)_ ,  cCAlg}* — lim cCAIg}" 4
are equivalences of co-categories.

Proof. It follows from Proposition SAG.19.2.1.3 that the canonical map Mod% —
Liﬁll\/[odi@ r is an equivalence of (symmetric monoidal) co-categories; the desired
result now follows by passing to commutative coalgebra objects. O

Proposition 1.2.12 (Clutching). Suppose we are given a pullback diagram of Eq-

Tings
]
Al E— A()l.
Then:

(1) The natural map cCAlg, — cCAlg,, X cCAlgay, cCAlg,, is fully faithful.

(2) Assume that the Ey-rings Ay, A1, and Ay are connective and that the ring
homomorphisms mo(Ag) — mo(Ao1) < mo(A1) are surjective. Then the natural
map

b b b
cCAlg’y — cCAlg), XAl cCAlg),,

is an equivalence of co-categories.

(3) In the situation of (2), suppose that the map mo(A) — mo(Ag) has nilpotent
kernel. Then the canonical map

S

cCAlg}y" — cCAlgy X conlgge CCAlgYY

is an equivalence of co-categories.
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Proof. Assertion (1) follows from Theorem SAG.16.2.0.2, and assertion (2) follows
from (1) together with Proposition SAG.16.2.3.1. To deduce (3) from (2), it will suffice
to show that if C € CCAlgi‘ has the property that Ay ®4 C is a smooth coalgebra
over Ay, then C' is a smooth coalgebra over A. This follows immediately from Lemma

L1211 O

Proposition 1.2.13. The construction R — cCAlgR" satisfies descent for the étale
topology.

Proof. Since the construction R — Modpg satisfies faithfully flat descent (see Theorem
SAG.D.6.3.5), the construction R — cCAlgy also satisfies faithfully flat descent. It
will therefore suffice to show that if C' is a commutative coalgebra over R and there
exists a faithfully flat étale map R’ — R such that R’ ®g C is a smooth coalgebra
over R/, then C is a smooth coalgebra over R. This is an immediate consequence of
the corresponding assertion in the discrete case (Proposition . O

1.2.3 Compactness of Coalgebras

Let R be an E,-ring. Then the oo-category cCAlgy is presentable (Corollary
AV.3.1.4). In particular, the oo-category cCAlg, admits small colimits, which are
preserved by the forgetful functor cCAlg, — Modg (Proposition AV.3.1.2). Since
the full subcategory Mod% € Modp, is closed under small filtered colimits, it follows
that the full subcategory CCAIgE c cCAlgp, is also closed under filtered colimits. In
particular, the co-category cCAlggpL admits small filtered colimits (which are preserved
by the forgetful functor cCAlgg% — Mod%). It therefore makes sense to ask if an object
Ce cCAIgE12 is compact. We will need the following result:

Proposition 1.2.14. Let R be a connective Eo,-ring which is n-truncated for some
n » 0. Let C' be a commutative coalgebra over R which is projective of finite rank
when regarded as an R-module. Then C' is a compact object of the co-category CCAlg%.

Warning 1.2.15. In the situation of Proposition the commutative coalgebra
C need not be compact as an object of the larger co-category cCAlgy. For example,
let R = Q be the field of rational numbers and take C' = Q. For any vector
space V over Q, the direct sum Q@®X (V) can be endowed with the structure of a
commutative coalgebra over Q, depending functorially on V. One can show that the
mapping space Map.cay, (Q, Q @%(V)) is connected with fundamental group L(V) =
lim L(V')/L,(V); here L(V') denotes the free Lie algebra on V' and L,(V) < L(V)
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denotes the nth stage of its lower central series. Note that the construction V' — Z(V)
does not commute with filtered colimits.

Proposition [1.2.14] is an immediate consequence of the following variant of Lemma
SAG.5.2.2.6 , applied to the oo-category C = Modzz:

Proposition 1.2.16. Let C be a symmetric monoidal co-category which admits filtered
colimits, and suppose that the tensor product ® : C x C — C preserves filtered colimits.
Let C € cCAlg(C). Assume that C is equivalent to an n-category for some integer
n = 1 and that C' is compact object when viewed as an object of C. Then C is a
compact object of cCAlg(C).

Proof. Since C is equivalent to an n-category, the forgetful functor
cCAlg(C) = CAlg(C?)°® — Algy (C)®P

is an equivalence for m > n (Corollary HA.5.1.1.7). It will therefore suffice to show that
C' is compact when viewed as an object of Algg (C°?)°, for each m > 1. We proceed
by induction on m. If m > 1, then Theorem HA.5.1.2.2 provides an equivalence
Algg (CP)°P ~ Algp (Algg  (C°P))°P, and our inductive hypothesis allows us to
assume that C' is compact when viewed as an object of C' = Algg ~ (C°?)°P. Note
that that the forgetful functor C' — C is conservative and preserves filtered colimits
(Corollary HA.3.2.2.4 ), so that the tensor product on C’ also preserves filtered colimits
separately in each variable. We may therefore replace C by C' and thereby reduce to
the case m = 1: that is, we wish to show that C is compact when viewed as an object
of the co-category Alg(C°P)°P of associative coalgebra objects of C. It will actually be
more convenient to prove the following variant:

(x) The coalgebra C' is compact when viewed as an object of the oo-category
Alg™(C°P)°P of nonunital associative coalgebra objects of C.

Let us assume () for the moment, and show that it guarantees that C' is also compact
when viewed as an object of Alg(C°?)°P. Let {D,} be a filtered diagram in Alg(C°?)°P
having a colimit D; we wish to show that the upper horizontal map in the diagram

lim Map yjg(cor) (Da; C) —— Map jycor) (D, C)

l |

li_H)l MapAlgnu(cop) (Da, O) —— MapAlgnu (Cop) (D, C)
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is a homotopy equivalence. This follows from Theorem HA.5.4.3.5 (which guarantees
that the preceding diagram is a pullback square) together with assumption (x) (which
implies that the lower horizontal map is a homotopy equivalence).

It remains to prove (x). Since C is equivalent to an n-category, the forgetful functor
Alg™(C) — Alg}y’| (C) is an equivalence of oco-categories for k& = n + 2 (Corollary
HA.4.1.6.17). It will therefore suffice to show that C' is cocompact when viewed as
an object of Algy' (C°")° for each k& > 1. We proceed by induction on k. In the case
k =1, the forgetful functor Algy (C°?)°® — C is an equivalence (Example HA.4.1.4.6 )
and the desired result follows from our assumption that C'is compact as an object
of C. Let us therefore assume that & > 2. Choose a diagram {D,} in Alg" (C®)°P
indexed by a filtered partially ordered set A, having colimit D. We wish to show that
the upper horizontal map in the diagram

lim MapAng‘; (o) (Da, C) —— MapAng‘; (D, C)

| |

lim MapAng‘Z_l (coP) (Do, C) — MapAIgXi_l (cop) (D, C)

is a homotopy equivalence. Since the lower horizontal map is a homotopy equivalence
by our inductive hypothesis, it will suffice to show that this diagram is a homotopy
pullback square. We now show that the preceding diagram induces a homotopy
equivalence after taking vertical homotopy fibers with respect to any choice of base
point in lim Map Al (o) (D, C), which we can assume is represented by a morphism

f Do — Cin Algy) (C) for some a € A. Using Theorem HA.4.1.6.13, we are
reduced to showing that the diagram

Bz
li_r)nﬁw Map,(C, D%k)sk_s — Mape(C, D®F)*"

MapC(Ca D®k)

is a homotopy pullback square, which follows from our assumptions that C' is compact
in C and that the tensor product on C commutes with filtered colimits. n

1.3 Duality for Coalgebras

Let k be a field and let C' be a (flat) commutative coalgebra over x, with comulti-
plication A¢ : €' — C' ®, C. Then the k-linear dual C¥ = Hom,(C, ) inherits the
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structure of a commutative algebra over x, where the product of two linear functionals
A\, p: C — kK is given by the composite map

AM:C&C@)RC&FL@HRZK.

The construction C' — C determines a functor from the category of commutative
coalgebras over k to the category of commutative algebras over x. This functor is not
fully faithful: in general, passing from a commutative coalgebra C' to its dual space
C" involves a loss of information. However, we can remedy the situation by equipping
CV with a topology: namely, the topology of pointwise convergence (inherited from
the product topology on the set [ [, of all k-valued functions on C'). One can then
show that the construction C'— C'V induces an equivalence of categories

{Commutative coalgebras over x}

lw

{Linearly compact topological algebras over x};

for details, we refer the reader to [6].

We will be particularly interested in the case of smooth coalgebras: that is,
coalgebras of the form C' = I'*(V'), where V' is a finite-dimensional vector space over
k. In this case, the dual C" is isomorphic to a power series ring x[[ty,...,t,]] for
n = dim, (1), and the topology of pointwise convergence coincides with the m-adic
topology, where m = (t1,...,t,) is the maximal ideal of C'V. In particular, the dual C'"¥
is an example of an adic ring: that is, a commutative ring equipped with a topology
which admits a finitely generated ideal of definition (see Definition .

In this section, we generalize the preceding discussion can be generalized to the
setting of (smooth) coalgebras over an arbitrary E,-ring R. We begin in by
showing that for every commutative coalgebra C over R, the R-linear dual CV =
Map ,(C, R) can be endowed with the structure of an E,-algebra over R. In , we
specialize to the case where C' is smooth over R and show that the commutative ring
7o(C") inherits a canonical topology, which we will refer to as the coradical topology.
The main result of this section asserts that the construction C' — C'V determines a
fully faithful embedding

{Smooth coalgebras over R}

|

{Adic E,-algebras over R}.

30



We deduce this in §1.3.4] (see Theorem [1.3.15) from a preliminary result on the
compatibility of duality with base change (Proposition |1.3.13]), which we prove in

4L.3.3¢

1.3.1 R-Linear Duality

Let R be an E,-ring. For every pair of R-modules M and N, we let Map ,(M, N)
denote the R-module which classifies maps from M into N (characterized by the
universal mapping property Mapyoq, (K, Map (M, N)) ~ Mapyq, (K ®r M, N)).
The construction (M, N) — Map (M, N) determines a lax symmetric monoidal

functor
Map . : Mod? x Modr — Modg.

Passing to commutative algebra objects, we obtain a functor cCAlgy x CAlg, —
CAlgp which we will also denote by Map .. We can summarize the situation more
informally as follows: if C' is a commutative coalgebra over R and A is an E-algebra
over R, then Map ,(C, A) inherits the structure of an E-algebra over R.

Example 1.3.1. Let R be an E,-ring, which we regard as a commutative coalgebra
over itself. Then the construction A — MapR(R, A) is equivalent to the identity
functor from CAlgp to itself.

Example 1.3.2. Let R be an E,-ring, which we regard as an E -algebra over itself.
For any R-module C, we will denote Map .(C, R) by C' and refer to it as the R-linear
dual of C. When C' is a commutative coalgebra over R, then C'V inherits the structure
of an E-algebra over R.

Remark 1.3.3. Let R be an E,-ring which is complete with respect to a finitely
generated ideal I < my(R). Then, for any R-module M, the R-linear dual MY is
also I-complete. In particular, if C' is a coalgebra over R, then C'V is an [-complete
E-algebra over R.

Remark 1.3.4. Let R be an E,-ring, let C' be a commutative coalgebra over R, and
let A be an E-algebra over R. Then the counit map € : C' — R can be regarded as a
morphism of commutative coalgebras over R. By functoriality, we obtain a morphism
of E-algebras

A~ Map (R, A) = Map (C, A).

In other words, we can regard Map .(C, A) as an E-algebra over A.
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Remark 1.3.5 (Compatibility with Base Change). Let f : R — R’ be a morphism of
Ey-rings, let A be an E-algebra over R’ (which, by a slight abuse of notation, we
also regard as an E.-algebra over R), and let C' be a commutative coalgebra over R.
Then C" = R’ ®g C' inherits the structure of a commutative coalgebra over R, and we
have a canonical equivalence Map ,(C, A) ~ Map ,,(C’, A) in the co-category CAlgy
of Ep-algebras over R (or even in the co-category CAlg ,; see Remark .

In particular, taking R’ = A, we obtain a canonical equivalence Map ,(C, A) ~
Map ,(A®rC, A) ~ (A®rC)" (here (A®rC)" denotes the A-linear dual of A®g C,
which we regard as an E-algebra over A via Example[1.3.2

Remark 1.3.6. Let R be an E-ring, let Mod%™ denote the full subcategory of Modp
spanned by the perfect R-modules, and define full subcategories CAlgh™ < CAlgp,
and cCAlgh™ < cCAlgy, similarly. Then R-linear duality determines a symmetric
monoidal equivalence (Mod%™ )P ~ Mod®™. Passing to commutative algebra objects,
we deduce that R-linear duality defines an equivalence (cCAlgh™)o — CAlgh™.

Example 1.3.7 (The Dual of Divided Power Coalgebra). Let R be a commutative ring
and let M be a projective R-module of finite rank, with dual M. Then we can identify
M®" with the set of multilinear maps MY x --- x MV — R. Under this identification,
the submodule T4 (M) € M®" corresponds to the set of symmetric multilinear maps
MY x---xMY — R: that is, with the R-linear dual of the symmetric power Symp,(M").
Allowing n to vary, we obtain an R-algebra isomorphism I'f(M )Y ~ S/y?n;(M v), where
S/y?n;(M) denotes the product [],.,Symp(M). We will refer to S/y?n;(M) as the
completed symmetric algebra of M (note that it can be identified with the completion of
Sym’% (M) with respect to the finitely generated ideal Sym7’(M) = @D,,~0 Symp M).

Let R be an E,,-ring and let M and N be R-modules. Then we have an evaluation
map e : M Qg Map R(M ,N) — N which induces a map of graded abelian groups

ﬂ*(MR(M, N)) — Homq g (7o (M), 7 (N)).

If M is a projective R-module (that is, if M appears as a direct summand of a
coproduct of copies of R), then this map is an isomorphism. Using this observation,
we obtain the following generalization of Example [1.3.7

Example 1.3.8 (Duals of Smooth Coalgebras). Let R be an Ey-ring and let C' be
a smooth coalgebra over R. Fix an isomorphism 7o(C) ~ I ) (M), where M is a
projective module of finite rank over R. Since C is projective as an R-module (Remark
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1.2.10)), for any E-algebra A over R we have canonical isomorphisms

W*(MR(Q A)) ~ H(SymZO(R)(MV) Qro(r) T (A)).

n=0
In particular, mo(C") is isomorphic to the completed symmetric algebra S/};Hl:() (ry(MY).

Remark 1.3.9. It follows from Example that if C' is a smooth coalgebra over R,
then the the construction A — Map R(C, A) commutes with passage to the connective
cover and with truncation.

1.3.2 The Coradical Topology

Our next goal is to show that, if C' is a smooth coalgebra over an E.,-ring R, then
the dual C'V can be equipped with the structure of an adic E-algebra over R. This
is a consequence of the following:

Proposition 1.3.10. Let R be a commutative ring and let C' be a smooth coalgebra
over R. Let us regard the R-linear dual CV as a subset of the Cartesian product
[l,cc R- Then the product topology on CV endows it with the structure of an adic
commutative ring: that is, it admits a finitely generated ideal of definition I < C.

Proof. Choose an isomorphism « : C' ~ I (M), where M is a projective R-module of
finite rank. Then the R-linear dual C'" can be identified with the completed symmetric
algebra S/y?n;(M v) of Remark . Since every finite collection of elements of C' is
contained in the finitely generated submodule P, ., 'z (M) for sufficiently large n,
the topology of pointwise convergence on C'V coincides with the topology induced by
the product decomposition

Sym;(MV) ~ H Symp(MY).

m=0

— >0
This topology is I-adic, where I denotes the finitely generated ideal Sym; (MY). O

Definition 1.3.11. Let R be a commutative ring and let C' be a smooth coalgebra
over R. We will refer to the topology of Proposition [1.3.10 as the coradical topology
on C'V.

More generally, if R is an E -ring and C' is a smooth coalgebra over R, then the
isomorphism 7o (C") ~ Map ®) (m0(C), mo(R)) induces a topology on the commutative
ring 7o (C"'), which we will also refer to as the coradical topology. This topology endows
C" with the structure of an adic E-algebra over R, in the sense of Definition [0.0.11]
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Warning 1.3.12. Let C' be a smooth coalgebra over a commutative ring R. Then we
can choose a grouplike element 1 € €', which determines an R-algebra homomorphism
€ : OV — R having some kernel I, € C'V. The proof of Proposition shows that
the coradical topology on C'V coincides with the ,-adic topology (and, in particular,
that the I,-adic topology is independent of the choice of grouplike element 7). Beware
that a smooth coalgebra C over an E,-ring need not admit any grouplike elements.
However, the coradical topology on m(C") is still well-defined (note that my(C') always
admits a grouplike element, when regarded as a coalgebra over my(R)).

1.3.3 Duality and Base Change

Let R be an E,-ring, let C' be a commutative coalgebra over R, and let A be an
E-algebra over R. Then the canonical maps

A~ Map,(R,A) — Map,(C, A) < Map ,(C, R) ~ C"
determine a morphism of E,-rings
A®rC" — Map,(C,A) ~ (A®r C)",

where (A®p C')" denotes the A-linear dual of A ®g C. This morphism is an equiva-
lence if either A or C' is perfect when regarded as an R-module, but not in general.
Nevertheless, when C'is a smooth coalgebra over R, it fails to be an equivalence in a
very specific way: namely, we can identify MR(C, A) as a completion of A®g C'V
with respect to the coradical topology of Definition [I.3.11] More generally, we have
the following:

Proposition 1.3.13. Let R be an Ey-ring, let C' be a smooth coalgebra over R, and
let M be any R-module. Then the tautological map

CY ®@r M — Map . (C, M)

exhibits MapR(C’, M) as the completion of C¥ ®g M with respect to any ideal I <
mo(CY) which is a finitely generated ideal of definition for the coradical topology of

Proposition [1.5.10

The proof of Proposition [1.3.13| will require some preliminaries.
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Lemma 1.3.14. Let R be a commutative ring, let M be a projective module of finite
rank over R, and let N be any discrete R-module. Then the canonical map

u: @(Sym§(M) @ N) — | [(Sym§(M) @r N)
n=0 n=0
exhibits the product | [,-(Symz(M) ®r N) as the (derived) completion of the direct
sum @,,o(Symp(M) @r N) with respect to the ideal Symp’ (M) < Symjp(M).

Proof. Choose a finitely generated subring Ry € R and a projective Ry-module M,
of finite rank such that M is isomorphic to the tensor product R ®pg, My. Replacing
R by Ry (and M by M), we can reduce to the case where the commutative ring R
is Noetherian, so that the symmetric algebra A = Symp (M) is also Noetherian. Let
I < A denote the ideal Sym7°(M) generated by M. For every discrete A-module
K € Mod$, we let Cpl(K; 1) = lim K/I"K denote the classical I-adic completion of
K and we let K} denote the (derived) I-completion of K. It follows immediately
from the definitions that the classical I-adic completion of A ®z N is the product
[ s0(Sym%(M) ®r N). Consequently, Lemma is equivalent to the assertion
that the canonical map (A ®g N); — Cpl((A®g N);I) is an equivalence. To prove
this, choose a resolution
> P —>P —>F—> N

of N by projective R-modules, so that A ®g P, is a resolution of N by projective
A-modules. According to Corollary SAG.7.3.7.5, the functor of I-completion is the

nonabelian left derived functor of classical I-adic completion. In particular (A®g N)}

is represented (as an object of the co-category Mod,) by the chain complex
- —> Cpl((A®r P2);I) — Cpl((A®g P1); 1) — Cpl(A®g Py; I).

We now observe that this chain complex factors as a direct product of the chain
complexes

- = Symp(M) g P — Symp (M) ®r P — Symp(M) Qr F,
each of which is a projective resolution of Sym', (M) ®r N. O

Proof of Proposition[1.3.15. We first treat the case where R is a connective E-ring.
Fix a grouplike element 7 € m(C') and let I, be as in Warning [1.3.12] Let C be a
smooth coalgebra over R. For every R-module M, let F/(M) € Modev denote the
completion of CV @z M with respect to the ideal I,,. We wish to show that for every
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R-module M, the canonical map pys : F(M) — Map,(C, M) is an equivalence. Note
that we have a commutative diagram

Eg}FTTé_nﬂi)4——e-ﬁg3h4apR(C17>_nﬂl)

| |

F(M) ———— Map (C, M),

where the right vertical map is an equivalence (since C' is projective as an R-module
by Remark and the left vertical map exhibits F'(M) as an [,-completion
of lim ¥’ (T=—nM). Note that if the upper horizontal map is an equivalence, then
lim F(7>-,M) ~ Map ,(C, M) is already [-complete, so the left vertical map is also
an equivalence. It then follows that pjy; is also an equivalence. Writing the upper
horizontal map as a colimit of the maps p,._,a, we are reduced to showing that py,
is an equivalence in the special case where M is (—n)-connective for some n > 0.
Replacing M by X"M, we may reduce to the case where M is connective. We will
complete the proof by establishing the following connectivity estimate, for every integer
k:

(#r) Let M be a connective R-module. Then the fiber fib(p,s) is k-connective.

Note that if M is connective, then F'(M) and Map ,(C, M) are both connective, so
that (x_;) is automatically satisfied. We will complete the proof by showing that ()
implies (x41). For this, choose a free R-module P and a map u : P — M which
is surjective on mp, so that we have a fiber sequence of R-modules M’ — P — M
where M’ is connective. Since the functor F' is exact, we have a fiber sequence
fib(par) — fib(pp) — fib(par) whose first term is k-connective by virtue of our
inductive hypothesis. Consequently, to show that fib(pas) is (k + 1)-connective, it will
suffice to show that pp is an equivalence.

Write P as a direct sum @, ; R, indexed by some set J. To show that pp is an
equivalence, we must show that the canonical map

@MR(C7 R) — MR(C7 (‘B R)

aeJ aeJ

exhibits Map .(C, @, ) as an I,-completion of P, ; Map ,(C, R). In fact, we will
prove something stronger: for every integer n, the induced map of homotopy groups

¢ - mn @ Map (C, R) - m,Map ,(C, P R)

aeJ aeJ
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exhibits m,Map ,(C, P, ; ) as an I,-completion of m, D,.; Map,(C, R). Set N =
T, R and write mo(C) = I'% | ) (M), where MY is a projective module of finite rank
over mo(R). Unwinding the definitions, we can identify ¢ with the lower horizontal
map in the commutative diagram

Docs (—szO(Symg(M) ®r N)

— T

@aeJ HmZO(Symg(M) ®r N) Hm>0 @aeJ(Symg(M) ®r N).

Without loss of generality, we may assume that I, is the ideal S/y?n;O(M ), so that
the right vertical map exhibits [ [, ..o @ .c;(Symk (M) ®r N) as an I,-completion of
Pacs Dinso(Symy (M) ®r N) by vLemma (applied to the R-module @, ; N).
Consequently, to complete the proof of (#411), it will suffice to show that the left
vertical map induces an equivalence after I,-completion. This is clear, since it is a
direct sum of maps

D (Symp(M) @ N) — [ ] (Symi(M) @3 V),

m=0 mz=0
each of which induces an equivalence of I,-completions by virtue of Lemma [1.3.14]
This completes the proof of Proposition [1.3.13]in the case where R is assumed to be
connective.

We now treat the case where R is not assumed to be connective. Let Ry denote
the connective cover of R. Using Lemma [1.2.8] we can write C' = R ®r Ry, where
Cp is a smooth coalgebra over Ry. Note that we can identify Cjj’ with the connective
cover of C'V, so that the ideal I, of Proposition can be viewed as an ideal of
mo(Cy). For any R-module M, we have a commutative diagram

OOV ®RO M @R()(OO; M)

CY ®r M—>MapRO(C, M),

where the right vertical map is an equivalence and the upper horizontal map exhibits
MapRO(CO, M) as an I,-completion of Cy ®g, M (by the first part of the proof). To
complete the proof, it will suffice to show that the left vertical map

CJ®ROM2(CJ®ROR)®RM—>CV®RM
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induces an equivalence after I,-completion. In fact, we claim that the map Cy @, R —
C" already induces an equivalence after I,-completion: this follows from the first part
of the proof, applied to the object R € Modg,. [

1.3.4 Recovering a Coalgebra from its Dual

We now show that, if C' is a smooth coalgebra over an E,-ring R, then we can
recover C' from its R-linear dual C', regarded as an adic E-algebra via the coradical
topology of Definition [1.3.11} More precisely, we have the following:

Theorem 1.3.15. Let R be an Eq,-ring and let C,D € cCAlgy'. Then R-linear
duality induces a homotopy equivalence

MachAlgR(D> C) - Mapéolgng (OV ) DV)

Example 1.3.16. Let R be a commutative ring and let M and N be projective
R-modules of finite rank. Then we have canonical bijections

Homy 40 (FR(M), N) -~ Homy g0 (N7, IR(M)")
= MapCAlgg(Sym}“%(NV), Symp(MY)).

Note that a map f: I';(M) — N satisfies condition (*) of Proposition |1.1.16if and
only if its image under this bijection is an R-algebra homomorphism A : Sym7p(NY) —
Symp(MVY) for which the composite map

Symp(NY) 2 Symp(M") — Symp(M) ~ R

carries each element of NV to a nilpotent element of R. In this case, A extends
uniquely to a continuous ring homomorphism

X : SYmR<NV) - SymR(Mv)a

where we equip S/y?n;(M V) and S/y?n;(]\f v) with their coradical topologies.
Combining this observation with Proposition [1.1.16] we deduce that R-linear
duality induces a monomorphism

—— % —— %
Hom ), (FR(M), TR(N)) = Homg,, o (Symp(NY), Symg(M™)),

whose image is the collection of continuous R-algebra homomorphisms from ng?n;(]\f v)
%
to Sympg(MY).
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Proof of Theorem [1.5.15. We begin with some general remarks. Let C' and D be
smooth coalgebras over some E,-ring R. Let R’ be an E-algebra over R, and set
C'"=R ®rCand D' = R ®r D. Then C' and D’ are smooth E.-algebras over R/,

and we have a canonical map
pr : Map.cayg,, (D', C") — Mapgpy,  (C™, D).
Using Proposition [1.3.13] we can identify the codomain of pgr with
Mapal,, (R ®r CV, D") ~ Mapay,  (CY, Map (D, R')).

Note that this map depends functorially on R’.

To prove Theorem |1.3.15, we must show that the map pg is a homotopy equivalence.
We first reduce to the case where R is connective. Let Ry = 7>¢R. Using Proposition
, we can assume that C' = R®p,Cy and D = R®p, Dy for some smooth coalgebras
Cy and Dg over the connective cover Ry = 7>9R. In this case, we have a commutative
diagram

MapCCAlgRO (DO’ CO) Map((:;’gngO ( (;/7 DOV>

| |

MachAlgR(D7 C) s Map(éjngglgo (C'(]v ) MapRO(D(), R))

Here the left vertical map is a homotopy equivalence by virtue of Proposition [1.2.8
and the right vertical map is a homotopy equivalence because C is connective and
Dy is the connective cover of DY = Map (Do, R) (Remark . Consequently, to
show that pg is an equivalence, we can replace R by Ry (and the coalgebras C' and D
by Cy and Dy, respectively) and thereby reduce to the case where R is connective.
Assume now that R is connective. For each n = 0, let us identify the truncations

Tgno ~ (TgnR) ®R C TgnD ~ (TgnR) ®R D

with smooth coalgebra over 7, R. We then have a commutative diagram

MachAlgR(D7 C) 2 MapCCO/gng (Cv’ MapR(D7 R))

| |

liﬁl MachAlgT< R (TSnDa TSnO) - lln MapCCOKiﬁgR(CV ) MapR(D7 TSNR)>'

Here the right vertical map is clearly a homotopy equivalence, the left vertical map is
also a homotopy equivalence by virtue of Proposition |1.2.11} and the bottom vertical
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map can be identified with the limit of the tower of maps {p,_, r}n>0. Consequently,
to show that pg is a homotopy equivalence, it will suffice to show that each p,_ g is a
homotopy equivalence. We may therefore replace R by 7<, R and thereby reduce to
the case where R is n-truncated, for some n > 0.

We now proceed by induction on n. We first explain how to carry out the inductive
step. Assume that n > 0, and set R’ = 7<,,_1 R, and let M = m,R. According to
Theorem HA.7.4.1.26, we can identify R with a square-zero extension of R’ by the
module X" M: that is, there is a pullback diagram of E -rings

R WQ(R)

| |

R —— 7T0(R) &) ETH_IM.
Using Proposition [1.2.12] we obtain a pullback diagram

PR~ Pro(R)

| |

PR — Pro(R)PT+1M s

in the oo-category Fun(A!,S) of morphisms in S. Consequently, to show that pg
is a homotopy equivalence, it will suffice to show that pr/, pry(r), and pryr)@sn+1ar
are homotopy equivalences. The first case follows from our inductive hypothesis. To
handle the other two, it will suffice to prove the following (which also establishes the
base case for our induction):

() Let R be a commutative ring, let C'and D be smooth coalgebras over R, and
let A be an E-algebra over R which is connective and truncated. Then the
map p4 is a homotopy equivalence.

To prove (x), we first invoke the smoothness of C' and D to choose isomorphisms
C ~T5H(M)and D ~ I'(N), where M and N are projective R-modules of finite rank.
Note that M and N are defined over some finitely generated subring of Ry € R; we
may therefore replace R by Ry and thereby reduce to the case where R is Noetherian.
For each m = 0, set Cp, = Ppcpem ['e(M) and Dy, = Bpcpern [R(N), which we
regard as (non-smooth) coalgebras over R. Note that A ®g D can be identified with
the colimit lim A ®g D,y (formed in the co-category cCAlgy), and that Map (D, A)
can be identified with the inverse limit lim Map .(D;,, A) (formed in the co-category
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CAlgy). Moreover, an R-algebra map C¥ — Map (D, A) is continuous (with respect
to the coradical topology of Definition if and only if each of the induced maps
CcY — MR(D,A) is continuous (where the target is equipped with the discrete
topology). We can therefore write p4 as the inverse limit of a tower of maps

Pm - MachAlgA (A ®r Dm7A®R C) - Map%OKTgR(vaMapR(Dm7A))'

We will complete the proof by by showing that each p,, is an equivalence.
P 3
Let us identify C'v with the completed symmetric algebra Symz(NY), equipped

— >0
with the topology determined by the ideal I = Sym; (NV). For each k = 0, we can
identify the quotient C' /I**! with the dual of the subcoalgebra Cj, = C. We therefore
have a commutative diagram

li_H)lk MachAlgA (A ®pr D, A ®r Ck) - h_I,n MapCAlgR(OI;/? MapR(Dma A))

| |

MachAlgA (A Qr Dma A Or O) e MapgolﬂgR (C’v’ MapR(Dm7 A))>

where the right vertical map is a homotopy equivalence by Lemma SAG.17.3.5.7
(note that A is truncated). We claim that the left vertical map is also a homotopy
equivalence. Note that we can identify A ® g C' with the colimit of the diagram
{A®p Cilr=o in the co-category cCAlg(Mod’,) of commutative coalgebra objects of
Modlf4. To establish the desired result, it suffices to show that A ®g D,, is a compact
object of cCAlg(Mod’,). Since A is truncated, the oo-category Mod’, is equivalent to
a g-category for ¢ » 0. Applying Proposition |[1.2.16 we are reduced to showing that
A®pgr D,, is compact as an object of ModbA, which is clear (since D,, is a projective
R-module of finite rank).

To complete the proof that p,, is a homotopy equivalence, it will suffice to show
that the map p is a homotopy equivalence. By construction, p can be written as the
colimit of maps

Pmk - MachAlgA (A ®r Dm7 A ®r Ck) - MapCAlgR (Cl;/7 MapR(DWU A))
= MapCAlgA((A ®r Cr)", (A®r Di)Y).

Each of these maps is a homotopy equivalence by virtue of Remark[1.3.6, since AQr C},
and A®gr D,, are perfect A-modules. n
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1.4 Duals of Smooth Coalgebras

Let R be an E-ring and let CAlg%d = CAlgi Xcalg CAlg™ denote the co-category
of adic Ey-algebras over R. It follows from Theorem that the construction
C +— CV determines a fully faithful embedding cCAlg?? — CAlg%'. We now ask to
describe the essential image of this embedding:

Question 1.4.1. Let A be an adic Ey-algebra over R. Under what conditions does
there exist an equivalence A ~ C'V, where C' is a smooth coalgebra over R?

In the case where R is discrete, Question [1.4.1]is answered by Example : the
duals of smooth coalgebras are precisely those adic R-algebras of the form Sym (M),
where M is a projective R-module of finite rank. In particular, if R is local, then they
are precisely the power series rings R|[ty,. .., t,]] for n = 0.

Our goal in this section is to provide a complete an answer to Question [1.4.1
in general. Roughly speaking, we show that the duals of smooth coalgebras are
characterized by the fact that they “resemble” power series algebras over R, at the
level of homotopy groups. We make this precise in by introducing an E-algebra
R[[t1,...,t,]] and establishing a weak universality principle: an E-algebra A over
R is equivalent to R[[t1,...,t,]] as an Ei-algebra if and only if the homotopy group
7« (A) is isomorphic to m.(R)|[[t1, ..., t,]] (Proposition |1.4.5). In §1.4.2) we show that
every such Ey-algebra arises as the dual of a smooth coalgebra over R (Proposition
1.4.10). In , we use this result to give a complete answer to Question m

(Proposition |1.4.11]).

1.4.1 Power Series Algebras

Let R be an E,-ring. There is an essentially unique symmetric monoidal functor
S — Modg which preserves small colimits, which we will denote by X +— C.(X; R).
For each n > 0, we let R[ty,...,t,] denote the R-module given by C\(ZZ; R). Since
72 can be regarded as a commutative algebra object of the co-category S (given by
the usual addition on Z~), we obtain a commutative algebra structure on R|t, ..., t,]:
in other words, we can regard R|[tq,...,t,] as an Ey -algebra over R. Note that we
have a canonical isomorphism of graded rings 7. (R[t1, ..., t,]) ~ (meR)[t1, ..., t,]. In
particular, if R is discrete, then R[tq,...,t,]| agrees with the usual polynomial algebra
on n generators over A.

Warning 1.4.2. In the situation described above, the polynomial algebra R[t1, ..., t,]
is generally different from the free E,-algebra over R generated by indeterminates
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t1,...,t,. We denote this free algebra by R{ti,...,t,}. Its universal property yields
a canonical map

R{tl, cee ;tn} g R[tl, e ,tn]7
which is an equivalence if 7my(R) is a Q-algebra, but not in general.

Remark 1.4.3. Let R be a connective E,-ring. Then R[t] is the free E;-algebra
over R on one generator: this follows from Proposition HA.4.1.1.18 (or from the
observation that Z- is the free E;-algebra object of S on one generator).

Construction 1.4.4 (Power Series Algebras). Let R be an E.-ring. For each n > 0,
we let R[[t1,...,t,]] denote the completion of R[ti,...,t,] with respect to the ideal

(t1,. .. tn) < mo(R[t1,...,ts]). It follows from Lemma [1.3.14] that the homotopy
groups of R[[t1,...,t,]] are given by the formula

Te(R[[t1, - ta]]) = 7 (B[, - - - t]]-

In particular, if R is an ordinary commutative ring (regarded as a discrete E.,-ring),
then R[[ti,...,t,]] can be identified with the usual ring of formal power series over R.

Construction has a weak universal property:

Proposition 1.4.5. Let R be an Ey-ring and let A be an E-algebra over R. The
following conditions are equivalent:

(1) There exists an equivalence R|[[t1,...,t,]] ~ A in the co-category Algy of E,-
algebras over R.

(2) There exists an isomorphism of graded m.(R)-algebras mi(R)[[t1,. .., tn]] ~
Ty (A).

Warning 1.4.6. In assertion (1) of Proposition |1.4.5 we cannot replace Algy by the
oo-category CAlgp of E-algebras over R: in general, there can be many different E,,-
algebras over R which become equivalent to R[[t1, ..., t,]] when viewed as (augmented)

E;-algebras (see Warning [1.6.18]).

The proof depends on the following:

Lemma 1.4.7. Let R be an Ey-ring, let A be an Ey-algebra over R, and let ¢ :
R[t1,...,t,] = A be a morphism of E;-algebras over R which exhibits A as complete
with respect to the ideal (ty,...,t,) when regarded as a left module over R[ty, ..., t,].
Then ¢o admits an (essentially unique) extension to a map ¢ : R[[t1,...,t,]] = A
(again of Ei-algebras over R).
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Proof. To simplify notation, let us assume that n = 1 and denote R[t,...,t,]| by R|t]
(the proof in the general case is the same). Let C = gBModgp(Modg) denote the oo-
category of R[t]-R[t] bimodule objects of Modg, which we will equip with the monoidal
structure given by relative tensor product over R[t]. Note that we can identify C with
the oo-category of modules over the tensor product R[t] ®g R[t]. Let C' < C be the
full subcategory spanned by those objects which are (t® 1 — 1 ® t)-nilpotent. We first
claim that C’ is a monoidal subcategory of C. Since it clearly contains the unit object
R[t] € C, it will suffice to show that for every pair of objects M, N € C’, the tensor
product M ®gp N belongs to C. Note that we can view M ®gp; N as a module over
the tensor product R[t] ®r R[t] ®r R[t]. The assumption that M € C’' guarantees
that M Qg N is (t®1®1 —1®1t® 1)-nilpotent, and the assumption that N € C’
guarantees that M ®@g N is (1®t® 1 —1®1®t)-nilpotent. Applying Proposition
SAG.7.1.1.5, we deduce that M Qg N is also (t®1® 1 —1® 1 ®¢t)-nilpotent, and
therefore belongs to C’ as desired.

Let us view C" as an (R[t] ®g R[t])-linear co-category. By construction, every
(t®1—1®t)-local object of C' is zero. It follows that each M € C'is (t® 1 — 1 ®t)-
complete when viewed as an object of C'. Using Corollary SAG.7.3.3.3, we deduce the
following;:

(x) An object M € C' is (t ® 1)-complete (when viewed as an object of C’) if and
only if it is (1 ® t)-complete (when viewed as an object of C').

Let C” denote the full subcategory of C' spanned by those objects which satisfy the
condition of (#). The inclusion functor " < C’ admits a left adjoint L : C" — C". We
now claim that L is compatible with the monoidal structure on C (given by tensor
product over R[t]), in the sense of Definition HA.2.2.1.6. In other words, we claim
that if o : M — M’ is an L-equivalence in C" and is and N is an arbitrary object of C’,
then the induced maps Sy : M Q@py N — M' Qg N and vn : NQgy M — N Qg N’
are also L-equivalences. We will show that Sy is an L-equivalence; the proof for vy is
similar. Our assumption that N € C’ guarantees that N can be written as a colimit of
fibers N, =fib((t®1—-1®1t)" : N — N). It will therefore suffice to show that each
BN, is an L-equivalence. Proceeding by induction on n and using the fiber sequences

(t@1-1@t)" !
—_—

Nn—l _)Nn Nla

we can reduce to the case n = 1. We are therefore reduced to show that Gy is an
L-equivalence under the assumption that N belongs to the image of the forgetful
functor Modgp) — €' < ggBModgpy(Modg). Since Modgyp is generated under small
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colimits by desuspensions of R[t], we may assume that N = R[t], in which case
BN ~ « is an L-equivalence by assumption.

The E;-algebra maps ¢q : R[t] — A and R[t] — R|[[t]] exhibit A and R[[¢]] as
associative algebra objects of the monoidal co-category C. The commutativity of
the multiplications on A and R[[t]] guarantee that they belong to the subcategory
C' = C. Moreover, both A and R[[t]] are (t ® 1)-complete when viewed as objects of
C, and therefore also when viewed as objects of the subcategory C' < C. Moreover,
the tautological map p : R[t] — R[[t]] exhibits R[[¢]] as an L-localization of R[t]: to
prove this, it suffices to observe that the fiber fib(p) is a (¢t ® 1)-local object of C’,
which is clear (since it is already a (f ® 1)-local object of C). It follows that the map
po admits an essentially unique factorization R[t] — R[[¢]] %, A in the co-category
Alg(C') = Alg(C) ~ (Algg) . 0

Proof of Proposition[1.4.5. Let R be an E,-ring and let A be an E-algebra over R.
Assume that there exists an isomorphism of graded m,(R)-algebras

W (R)[[t, - ta]] > me(A);

we wish to show u can be lifted an equivalence R|[[t1,...,t,]] ~ A in the co-category
Algj, of E;j-algebras over R (the converse was already noted in Construction . For
1 <i<n,set T; = u(t;) € mo(A). Using Remark [1.4.3] we see that each T} classifies
a map of E;-algebras v; : R[t;] — A for which the induced map mo(R[t;]) — mo(A)
carries t; to T;. Taking the tensor product of these maps (and composing with the
multiplication on A), we obtain a map of E;-algebras v : R[ty,...,t,] — A, which
carries each t; to T;. Using Lemma [1.4.7, we can factor v as a composition

R[ty,... . ta] = R[[t1,...,ta]] > A.

Assumption (2) now guarantees that T induces an isomorphism on homotopy groups
and is therefore an equivalence of [E;-algebras over R. O]

1.4.2 Duals of Standard Smooth Coalgebras

We now address a special case of Question [1.4.1]

Definition 1.4.8. Let R be a commutative ring. We will say that a coalgebra C' over
R is standard smooth if it is isomorphic to a divided power coalgebra I'f;(M), where
M is a free R-module of finite rank.
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More generally, if R is any E,-ring, then we will say that a commutative coalgebra
C € cCAlgy, is standard smooth if C'is flat over R and the coalgebra 7y (C') is standard
smooth over my(R).

Remark 1.4.9. Let R be an E,-ring and let C' be a smooth coalgebra over R. Then
C' is standard smooth locally with respect to the Zariski topology on Spec(R). More
precisely, there exists a collection of elements ay, ..., a; € mp(R) which generate the
unit ideal, for which each localization C[a; '] is a standard smooth coalgebra over
R[a;'].

1

Proposition 1.4.10. Let R be an Ey-ring and let A be an adic Ey-ring over R. The
following conditions are equivalent:

(a) There exists an isomorphism u : ma(R)[[t1, ..., ta]] = m«(A), and the topology
on mo(A) has an ideal of definition (u(ty),...,u(t,)).

(b) There exists an equivalence R|[[ti,...,t,]] ~ A of Ei-algebras over R which
is a homeomorphism on mo(R) (where mo(R|[t1,...,tn]]) is equipped with the
(t1,...,t,)-adic topology).

(c¢) There exists a standard smooth coalgebra C' over R and an equivalence of adic
Ey-algebras A ~ CV.

Proof. The equivalence of (a) and (b) follows from Proposition [I.4.5 and the implica-
tion (¢) = (a) follows from Example We will complete the proof by showing that
(b) = (c¢). Replacing R by 7>oR and A by 7-0A, we can reduce to the case where R is
connective. Let f: R[[t1,...,t,]] = A be as in (2), so that f exhibits A as the com-
pletion of R|[ty,...,t,] with respect to the ideal I = (t1,...,t,) S mo(R[t1,...,tn]))-
For every R’ € CAlg}, let Ap denote the completion of R’ @z A with respect to
f(I). Then f exhibits Ag as a completion of R'[tq,...,t,] with respect to (t1,...,t,),
and therefore extends to an equivalence R'[[t1,...,t,]] = Agr of E;-algebras over R’
(Lemma [1.4.7). It follows that Ag also satisfies condition (b) (when regarded as an
adic Eq-algebra over R).

Let us say that a connective R-algebra R’ is good if A satisfies condition (c):
that is, if there exists a smooth coalgebra Cr € cCAlgy' and an equivalence of
adic E,-algebras Ap ~ Cp,. Note that if ¥ — R” is a morphism of connective
R-algebras and R’ is good, then R” is also good and we have a canonical equivalence

CR” ~ R” ®R/ OR/.
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We now prove that, for each n > 0, the truncation 7¢,R is good. The proof
proceeds by induction on n, the case n = 0 being obvious. We now carry out the
inductive step. To simplify the notation, let us replace R by 7<, R and thereby reduce
to the case where R is n-truncated. Invoking Theorem HA.7.4.1.26, we obtain a
pullback diagram

R I Ro

L

Ry —— Ry,

with Ry = mo(R), Ry = T<n 1R, and Ry = mo(R) ® X" (7, R). Our inductive
hypothesis guarantees that Ry, Ry, and Ry are good, and Proposition [1.2.12 guarantees
that the diagram

cCAlgy" — cCAlgh

| |

cCAlgy! —— cCAlgy

is a pullback square. It follows that there exists a smooth coalgebra D over R equipped
with compatible equivalences

Cro~Ro®rD Cgry ~Ryn®rD Cgr, ~Ri®rD.
We then compute

DV

0

Map (D, R)
Map (D, Ro) Xnap, (0, 01) Map (D, Ri)

!
ES
®
=y
=
o
X
&
=
=

Since A is I-complete, it follows that A ~ A} ~ DV and therefore R is good, as
desired. This completes the induction.

We now return to the general case, where R is not assumed to be truncated. The
preceding argument shows that each truncation 7<,R is good. Set C,, = C,_ g, so
that {C,} is an object of the inverse limit lim cCAlg?” . Applying Proposition [1.2.11]

T
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we deduce that there exists a smooth coalgebra C' over R and a compatible family of
equivalences C), ~ (1<, R) ®z C. We now compute
C¥ = Map,(C,R)
LH_HMR(Q T<nl?)
i €
lim A, r
lim 7, A

~ A,

so that A satisfies condition (c¢) as desired. O

1.4.3 Duals of Arbitrary Smooth Coalgebras

We now prove an analogue of Proposition [1.4.10| which applies to the class of all
smooth coalgebras over an E.-ring R.

Proposition 1.4.11. Let R be an Ey-ring and let A be an adic E-algebra over R.
The following conditions are equivalent:

(1) There ezists a smooth coalgebra C over R and an equivalence of adic E-algebras
A~CV.
(2) There exists an isomorphism of graded 7,(R)-algebras
Ta(A) ~ H(SymZO(R)(M) ®ro(r) T (1)),
n=0
where M s a projective module of finite rank over mo(R) which generates an
ideal of definition in m(R).

Proof. The implication (1) = (2) follows immediately from Example[1.3.8] Conversely,
suppose that there exists an isomorphism 7. (A) =~ [ [,-o(Sym}, z) (M) @xy(r) T+(RR))
satisfying the requirements of (2), and let I < my(A) be the ideal generated by M (so
that I is an ideal of definition for the topology on my(A)). Let us say that an element
x € mo(R) is good if the localization M[z~!] is free as a module over the commutative
ring mo(R)[x~!]. We will prove the following:

(x) Let 2 be a good element of mo(R). Then there exists an equivalence
Ale™'p =~ Rz [[Th, - .., T
of Ej-algebras over R which carries Imo(A[z71]}) to the ideal (T1,...,T),).
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Let us assume (x) for the moment and use it to complete the proof of Proposition
Let C = CAlgp, be the full subcategory spanned by those R-algebras of the form R[z7!],
where x € my(R) is good. For each object R’ € C, assertion (*) and Proposition
guarantee that (R'®g A)7 has the form Cp,, where Cg is a standard smooth coalgebra
over R'. Using Theorem and the fact that smooth coalgebras satisfy descent
for the Zariski topology (Proposition , we conclude that there is a smooth
coalgebra C' over R equipped with equivalences Cr ~ R'®p C', depending functorially
on R’ € C. Dualizing, we obtain natural equivalences (R’ ®r A); ~ Map,(C, R').
Passing to the inverse limit over R’ € C, we obtain equivalences

A ~ A7
~ (Lm(R' ®r A))7
R’eC
~ lim((R' ®r A)7)
R'eC
~ lim Map .(C, R')
R’eC
~ Map,(C, lim R)
R’eC
~ Map,(C, R)
= (CV.

It remains to prove (*). Let x be a good element of my(R), and choose a collection
of elements ¢y, . ..,t, € M which form a basis for M[z7!] as a module over mo(R)[x~].
We will abuse notation by identifying each ¢; with its image in my(A). Arguing as in
the proof of Proposition , we see that there is a map u : R[T},...,T,] — A of E;-
algebras over R which carries each T; to the element ¢;. Let J < mo(R|[T7,...,T,]) be
the ideal generated by the elements of T}, so that I and J generate the same ideal of the
localization A[z~!']. Then u induces a map of localizations w, : R[z']|[T,...,T,] —
A[z7'], and Lemma m guarantees that u, extends canonically to a map of E;-
algebras u? : Rz~ |[[T},...,T,]] — A[x~!];. We will complete the proof by showing
that v is an equivalence: that is, that u, induces an equivalence after J-completion.
In fact, we claim that this happens at the level of each individual homotopy group:
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that is, for each integer k, the canonical map

m(R) [z [Ty, T] >~ (@D Symyg ) (M) @y m(R)) 2]

m=0

S (] ] Symp (M) @y mi(R))[27]

m=0

~ mp(Alz71])

induces an equivalence after J-completion. Note that the domain and codomain of v are
modules over the symmetric algebra Symy g (M)[2~"], and that J Sym} gz (M)[z']
coincides with the ideal J' = Sym;)o( g (M)[z71]. Tt will therefore suffice to show that
v induces an equivalence after J’-completion, which follows from Lemma [1.3.14] [

1.5 Formal Hyperplanes

Let R be a connective E,-ring and let A € CAlgy' be a connective E,-algebra
over R. We let Spec(A) : CAlgy' — S denote the functor corepresented by A, given
concretely by the formula

Spec(A)(B) = Mapg g, (4, B).

If A is an adic Ep-algebra over R, we let Spf(A) < Spec(A) denote the subfunctor
whose value on an object B € CAlg}' is given by the summand

Spf(A)(B) = Ma’p%O:ng(A’ B) < MapCAlgR (Au B)

spanned by those maps f : A — B for which the underlying ring homomorphism
mo(A) — mo(B) is continuous (where we equip mo(B) with the discrete topology). We
will refer to Spec(A) as the spectrum of A and Spf(A) as the formal spectrum of A.

Our goal in this section is to study functors X : CAlg®' — S which have the form
Spf(C"), where C is a smooth coalgebra over R. In this case, we will see that the
functor X can be defined directly in terms of C' (without appealing to duality or to
any notion of continuity). More precisely, it can be realized as the cospectrum of C
(see Construction and Proposition . We will show that the cospectrum
construction determines a fully faithful embedding

cSpec : cCAlgR" — Fun(CAlg®, S)

(Proposition [1.5.9), and we will say that a functor X : CAlgy — S is a formal
hyperplane if it belongs to the essential image of this embedding.
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1.5.1 The Cospectrum of a Coalgebra

We begin with some general remarks.

Definition 1.5.1. Let C be a symmetric monoidal co-category and let C' be a commu-
tative coalgebra object of C. A grouplike element of C'is a morphism of commutative
coalgebras 1 — C' (here 1 denotes the unit object of C, which we regard as a final
object of cCAlg(C)). We let GLike(C') denote the space Map, cay(c) (1, C') of grouplike
elements of C.

Example 1.5.2. Let R be a commutative ring and let C' be a flat commutative
coalgebra over R, with comultiplication A : C' — C'®g C and counit € : C'— R. Then
we can identify GLike(C') with the subset of C' consisting of those elements x which
satisfy the identities

Alz)=z®ux e(x) = 1.

In other words, the general notion of grouplike element introduced in Definition [1.5.1]
reduces to the notion defined in Remark [L1.6

Remark 1.5.3 (Functoriality). Let C and D be symmetric monoidal co-categories and
let ' be a symmetric monoidal functor. Then F' determines a functor cCAlg(C) —
cCAlg(D), which carries the unit object 1¢ of C to the unit object 1p of D. It follows
that, for every commutative coalgebra object C' € cCAlg(C), the functor F' induces a
canonical map GLike(C') — GLike(F(C)).

Construction 1.5.4 (The Cospectrum of a Coalgebra). Let R be a connective E.-
ring and let C' be a flat commutative coalgebra over R. For every morphism of
connective E,-rings R — A, the extension of scalars functor

Mody — Mod 4 M—A®Qr M

is symmetric monoidal, so we can regard A ® C as a commutative coalgebra over
R'. We let cSpec(C')(A) denote the space GLike(A®g C) = Map.cay,, (A, A®r C) of
grouplike elements of AQrC. The construction A — cSpec(C')(A) determines a functor
from the co-category CAlgy' of connective Eq,-algebras over R to the co-category S of

spaces (see Remark [1.5.3]). We will denote this functor by cSpec(C) : CAlgy — S,
and refer to it as the cospectrum of C.

Variant 1.5.5 (The Nonconnective Case). Let R be any E,-ring and let C' be a flat
commutative coalgebra over R. We define the cospectrum of C' to be the functor
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cSpec(C) : CAlg? r — S obtained by applying Construction m to the connective
cover T5oC', which we regard as a flat commutative coalgebra over 75¢R (see Remark
1.2.9)).

Remark 1.5.6. Let R be an E,-ring. Then the cospectrum functor
cSpec : cCAlg), — Fun(CAlg:? g, S)

preserves finite products. In particular, if C' and D are flat commutative coalgebras
over R, then we have a canonical equivalence cSpec(C ®g D) ~ cSpec(C') x cSpec(D).

Remark 1.5.7. The construction C' — cSpec(C) is compatible with base change.
More precisely, suppose that we are given a morphism of E,-rings R — R’ and let C
be a flat commutative coalgebra over R, so that C! = R’ ®g C inherits the structure
of a flat commutative coalgebra over R’. Then the functor cSpec(C") is equivalent to
the composition of cSpec(C) with the forgetful functor CAlg:? » — CAlg? 5.

1.5.2 Comparison with Spec(C")

Let R be a connective Ey -ring and let C' be a flat commutative coalgebra over R.
For every connective E-algebra A over R, we have a natural map

cSpec(C)(A) = Map.y,, (4, AQR C)
- MapCAlgA((A®R )Y, AY)
= MapCAlgA((A®R )", A
— Mapgy,, (A®r CY, A)
=~ MapCAlg (CY, A)
= Spec(CY)(A).

It is not hard to see that this map depends functorially on A, and therefore gives rise
to a natural transformation of functors cSpec(C') — Spec(C") (here Spec(C"') denotes
the functor corepresented by C"). This natural transformation is an equivalence when
C'is a finitely generated projective R-module (see Remark , but need not be an
equivalence in general. In the case of a smooth coalgebra, we have the following:

Proposition 1.5.8. Let R be a connective By -ring and let C' be a smooth coalgebra
over R. Then the natural transformation p : cSpec(C) — Spec(CV) induces an
equivalence cSpec(C) ~ Spf(C") < Spec(C"V).
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Proof. Using Lemma [1.3.13] we can replace C' by C ®g A and thereby reduce to the
case R = A, in which case the desired result is a special case of Theorem [1.3.15] [

Proposition 1.5.9. Let R be an Ey-ring. Then the construction C' — cSpec(C)
induces a fully faithful embedding of co-categories
cCAlgy" — Fun(CAlg? ., S).

T>0R7

Proof. Using Proposition [1.2.8], we can reduce to the case where R is connective. Let
C and D be smooth coalgebras over R; we wish to show that the canonical map

p: MachAlgR(D7 C) — MapFun(CAlg‘j{‘,S) (cSpec(D), cSpec(C))

is a homotopy equivalence. Using Proposition [1.5.8] and Theorem [1.3.15, we can
identify p with the map

Mapéojgng(Cv ) Dv) - MapF\Jn(CAlg‘ﬁl,S) (Spf(Dv )7 Spf(cv ))7

which is a homotopy equivalence by virtue of Theorem SAG.8.1.5.1 (and Corollary
SAG.8.1.5.4). 0

1.5.3 Formal Hyperplanes

We are now ready to introduce our principal objects of interest.

Definition 1.5.10. Let R be a connective E,-ring. We will say that a functor
X : CAlgy' — S is a formal hyperplane over R if it belongs to the essential image of
the fully faithful embedding cSpec : cCAlgy* — Fun(CAlg%', S) of Proposition [L.5.9]

We let Hyp(R) denote the full subcategory of Fun(CAlg%', S) spanned by the
formal hyperplanes over R, so that the cospectrum functor determines an equivalence
of ao-categories cSpec : cCAlgi" ~ Hyp(R). We will refer to Hyp(R) as the co-category
of formal hyperplanes over R.

Variant 1.5.11 (The Nonconnective Case). Let R be an arbitrary E.-ring. We will
say that a functor X : CAlg?? » — S is a formal hyperplane over R if it is a formal
hyperplane over 7-¢R, in the sense of Definition Equivalently, X is a formal
hyperplane over R if and only if it is equivalent to the cospectrum cSpec(C') for some
object C' € cCAlgR" (see Proposition . We let Hyp(R) = Hyp(7=0R) denote the
o -, S) spanned by the formal hyperplanes over R.

T=0l)

full subcategory of Fun(CAlg
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Notation 1.5.12 (The Ring of Functions). Let R be an E.,-ring and let X :
CAlg? r — S be a formal hyperplane over R, so that we can write X = cSpec(C) for
some smooth coalgebra C' over R. We let &'y denote the R-linear dual C'V, which we
regard as an adic E-algebra over R. We will refer to &'y as the E-ring of functions
of X. Note that the construction X — Oy determines a fully faithful embedding
Hyp(R) < CAlg%, whose essential image consists of those adic E,-algebras which
satisfy the conditions described in Proposition [1.4.11} Moreover, we describe X as the

formal spectrum Spf(7>¢ Ox).

Remark 1.5.13. Let R be an E,-ring. Then the collection of formal hyperplanes
over R is closed under finite products (when regarded as a full subcategory of
Fun(CAlg?? z,S)). This follows immediately from Remarks 1.5.6/and |1.2.6|

Remark 1.5.14 (Functoriality). Let f : R — R’ be a morphism of E,-rings. If X
is a formal hyperplane over R, then X determines a formal hyperplane Xr over R’
given by composing X with the forgetful functor CAlg?? » — CAlg?? . This follows
immediately from Remark [1.5.7]

1.5.4 Examples from Algebraic Geometry
The following result supplies a large class of examples of formal hyperplanes:

Proposition 1.5.15. Let R be a connective Eo-ring, let f : X — Spec(R) be a
separated fiber-smooth morphism of spectral algebraic spaces, let s : Spec(R) — X be a
section of f, and let X denote the formal completion of X along the image of s. Then
(the functor represented by) X is a formal hyperplane over R.

We will need the following:

Lemma 1.5.16. Let R be a connective E,-ring and let X : CAlgy' — S be a functor
which is a sheaf for the étale topology. Suppose that there exists an étale covering
{R — R.} such that each restriction X|CAlg‘g*a is a formal hyperplane over R,. Then
X is a formal hyperplane over R.

Proof. Let C denote the full subcategory of CAlg%' spanned by those connective
R-algebras A for which the structure map R — A factors through R,,, for some «. It
follows from Proposition the construction A — Hyp(A) satisfies descent for the
étale topology, so that the restriction map

p: Hyp(R) — lim Hyp(A)
AeC
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is an equivalence of co-categories. Note that the construction A — X 4 determines an
object of the codomain of p, which we can therefore lift to a formal hyperplane Y over
R. Then X,Y : CAlgy' — S are functors which agree when restricted to C. Since
both are sheaves with respect to the étale topology (Proposition , it follows
that X ~ Y is a formal hyperplane over R. O]

Proof of Proposition|[1.5.15 Choose an étale map u : Spec(4) — X whose image
contains the image of s. Since the desired assertion is local with respect to the étale
topology on Spec(R) (Lemma , we may assume without loss of generality that
s factors as a composition

Spec(R) <> Spec(A) % X

The assumption that u is étale then guarantees that the formal completion of X along
the image of s is equivalent to the formal completion of Spec(A) along the image
of 5. We may therefore replace X by Spec(A) and thereby reduce to the case where
X ~ Spec(A) is affine. Then A is a fiber-smooth E-algebra over R, and s is classified
by an augmentation € : A — R. Let I < my(A) be the kernel of of the induced map
mo(A) — mo(R). Passing to a further localization of R, we may assume that [ is

generated by a regular sequence t1, ..., t, € mo(A). In this case, the fiber-smoothness of
A over R supplies an equivalence m,(A}) >~ mi(R)[[t1,- .., tn]], so that X ~ Spf(A7})
is a formal hyperplane by virtue of Proposition [1.4.10 [

1.5.5 Properties of Formal Hyperplanes
We now study the deformation-theoretic features of formal hyperplanes.

Proposition 1.5.17. Let R be a connective Ey-ring and let X : CAlgy' — S be a
formal hyperplane over R. Then:

(1) The functor X is a sheaf for the étale topology.

(2) The functor X is nilcomplete: that is, for every connective By, -algebra A over
R, the map X(A) — lim X (1<, A) is an equivalence.

(3) The functor X is cohesive: that is, for every pullback diagram

A——s A

L, b

B -2.B
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in CAlgy' for which the maps mo(A) — mo(B) and mo(B') — mo(B) are surjective,
the induced diagram

X(A) —X(4)

|
x(B) XYL x(B)

is a pullback square in S.

Proof. All three assertions follow immediately from the description of X as a formal
spectrum Spf(C'"), for some smooth coalgebra C' over R. O

Remark 1.5.18. Let R be a connective E-ring and let X be a formal hyperplane
over R. Then, for every reduced Ey-algebra A over R, the space X (A) is contractible.
To prove this, we can replace R by A and thereby reduce to the case where R is a
reduced commutative ring, in which case the desired result follows from Example

LII7

Proposition 1.5.19. Let R be a connective E-ring, and suppose we are given a
natural transformation X — Spec(R) in Fun(CAlg™,S) corresponding to a formal
hyperplane CAlgy — S. The map X — Spec(R) admits a relative cotangent complex
Lx/spec(r) € QCoh(X) (see Definition SAG.17.2.4.2 ), which is connective and almost
perfect.

Proof. Since X is representable by a formal spectral Deligne-Mumford stack, the
existence and connectivity of Lx/gpec(r) follow from Proposition SAG.17.2.5.1. Fix a
connective Eq-ring A and a point n € X (A); we wish show that n* L x/spec(r) is almost
perfect as an A-module. Using Proposition SAG.2.7.3.2 we can reduce to the case
where A is discrete. In this case, we can replace R by m(R) and thereby assume
that R is also discrete. Working locally on | Spec(R)|, we can further assume that
X is (representable by) the formal spectrum Spf(R[[t1,...,t,]]) (Remark and
is therefore obtained as the formal completion of the affine space Spec(R[t1,. .., t,])
along its zero section. We can therefore identify 7* L x/spec(r) With the tensor product

It now suffices to observe that the cotangent complex Lz, . +,]/z is almost perfect as

-----

a module over Z[ty,...,t,], since Z[tq,...,t,] is almost of finite presentation over Z
(Proposition HA.7.2.4.31). O
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Corollary 1.5.20. Let R be a connective Eq-ring and let X : CAlgy' — S be a
formal hyperplane over R. Then X 1is locally almost of finite presentation over R:
that is, for each n = 0, the functor X commutes with filtered colimits when restricted
to 7<, CAlg}y'.

Proof. By virtue of Proposition|1.5.17], Proposition[1.5.19, and Corollary SAG.17.4.2.2,
it will suffice to treat the case n = 0. We may therefore replace R by my(R) and
thereby reduce to the case where R is discrete. In this case, we can write X =
cSpec(I'%(M)) where M is a projective module of finite rank over R. It follows from
Example that the functor X is given on discrete R-algebras by the formula
X(A) = Homp(MY,+/A), which clearly commutes with filtered colimits (here v/A
denotes the nilradical of A). O

1.6 Formal Groups
We are now ready to introduce the main objects of study in this paper.

Definition 1.6.1. Let R be a connective E,-ring. A formal group over R is a functor
G : CAlg® — Mody' with the following property: the composition

CAlg? & Modg 225 8

is a formal hyperplane over R (in the sense of Definition [1.5.10). We let FGroup(R)
denote the full subcategory of Fun(CAlg}y', Mody') spanned by the formal groups over
R.

Variant 1.6.2 (The Nonconnective Case). Let R be an arbitrary E,-ring. We
define a formal group over R to be a formal group over the connective cover 7>(R:
that is, a functor G : CAlg?? rp — Modyz' for which the composition 2 o G is a
formal hyperplane over R, in the sense of Variant . We let FGroup(R) =
FGroup(7soR) < Fun(CAlg?? z,Modz') denote the oo-category of formal groups over
R.

Notation 1.6.3 (The Ring of Functions). Let R be an E,-ring and let
G : CAlg® ; — Mody'

be a formal group over R. We will refer to the functor X = Q% o G as the underlying
formal hyperplane of G. We let &g denote the adic E,-ring &'x of Notation |1.5.12
we will refer to g as the Ey-ring of functions on G.
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Remark 1.6.4 (Functoriality). Let f : R — R’ be a morphism of E,-rings. It follows
from Remark |1.5.14f that if G : CAlg?? p — Mody' is a formal group over R, then the
composite functor

CAlg™ o — CAIg® S Modgy

T>0R

is a formal group over R’. We will sometimes denote this formal group by G R

1.6.1 Variations

Definition [1.6.1| emphasizes the “functor of points” perspective on formal groups,
which will be most convenient to us in what follows. However, it admits various
reformulations which are sometimes useful:

Remark 1.6.5 (Formal Groups as Abelian Group Objects). For every co-category
C which admits finite products, let Ab(C) denote the co-category of abelian group
objects of C (see Definition AV.1.2.4). Let R be an E,-ring. Since the collection of
formal hyperplanes is closed under finite products in Fun(CAlg? z,S), we have a
pullback diagram of co-categories

Ab(Hyp(R)) — Ab(Fun(CAlg? .. S))

T=0R>

| |

Hyp(R) Fun(CAlgg', S).

Example AV.1.2.9 supplies an equivalence of oo-categories Ab(S) ~ Mody', which

induces an equivalence
Ab(Fun(CAlg? 7, S)) =~ Fun(CAlg? z, Ab(S)) =~ Fun(CAlg z, Modz').

Combining these observations, we obtain an equivalence of co-categories FGroup(R) ~
Ab(Hyp(R)).

Remark 1.6.6 (Formal Groups as Hopf Algebras). Let R be an E,-ring and let
cCAlg%" be the oo-category of smooth coalgebras over R (Definition . Using
the equivalence of co-categories cSpec : cCAlgy" ~ Hyp(R) supplied by Proposition
[1.5.9] we obtain an equivalence of co-categories Ab(cCAlgy") ~ FGroup(R). Roughly
speaking, the domain of this equivalence can be viewed as an co-category of Hopf
algebras over R, which are required to be commutative and cocommutative in a
strong sense (because they are abelian group objects of cCAlg%", rather than merely
commutative monoid objects of cCAlgy"), and smooth when viewed as coalgebras
over R.
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Remark 1.6.7 (Formal Groups as Formal Schemes). Let R be a connective Eq-ring.
For every smooth coalgebra C' over R, let us regard C'V as an adic E-algebra over R,
and let Spf(C') denote its formal spectrum in the sense of Construction SAG.8.1.1.10
(so that Spf(C") is a spectrally ringed oo-topos). The construction C' — Spf(C")
determines a fully faithful embedding from cCAlg%" to the oo-category (fSpDM),spec(r)
of formal spectral Deligne-Mumford stacks over R. Passing to abelian group objects,
we obtain a fully faithful embedding FGroup(R) < Ab((fSpDM)/spec(r))-

1.6.2 Properties of Formal Groups

From Proposition |1.5.17/and Corollary [1.5.20] we immediately deduce the following;:

Proposition 1.6.8. Let R be a connective Eo-ring and let G : CAlg® — Mody' be
a formal group over R. Then:

(1) The functor G is a sheaf for the étale topology.

(2) The functor G is nilcomplete: that is, for every connective E-algebra A over
R, the map G(A) — lim G(7<,A) is an equivalence in Mody'.

(3) The functor G is cohesive: that is, for every pullback diagram
A——=A

L, b

p'—*-B
in CAlgy' for which the maps mo(A) — mo(B) and mo(B') — mo(B) are surjective,
the induced diagram

A~

G(4) —G(4)

| e

~ G(g)

G(B) =" G(

=

is a pullback square in Mody'.

(4) The functor G is locally almost of finite presentation over R: that is, it commutes
with filtered colimits when restricted to T<, CAIgR for every nonnegative integer
n.

Warning 1.6.9. In the statement of Proposition [1.6.8], it is essential that all of the
relevant limits are formed in the co-category Mody' of connective Z-module spectra,
rather than in the larger co-category Modg of all Z-module spectra.
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1.6.3 Example: The Formal Multiplicative Group

To every commutative ring R, we can associate the abelian group GL;(R) = {z €
R : x is invertible }. The construction R — GL;(R) determines a functor from the
category of commutative rings to the category of abelian groups. This functor is
representable by a commutative group scheme over Z, which is typically denoted by
G,,; it can be described concretely as the spectrum of the Laurent polynomial ring
Z[t*1].

The construction R — GL;(R) generalizes in a natural way to the setting of
Es-rings. Note that the construction X +— XX determines a symmetric monoidal
functor from the co-category S of spaces (with symmetric monoidal structure given
by Cartesian product) to the oo-category Sp (endowed with the smash product
symmetric monoidal structure). It follows that the right adjoint functor Q* : Sp — S
is lax symmetric monoidal, and therefore carries commutative algebra objects to
commutative algebra objects. In other words, for any E,-ring R, we can regard the
Oth space Q*R as an E-space (with the Ey-structure induced by the multiplication
on R). We let GL;(R) denote the summand of Q®R consisting of those connected
components which are invertible when regarded as elements of the commutative ring
mo(R). The construction R — GL;i(R) can be regarded as a sort of algebraic group in
the setting of spectral algebraic geometry. Note that, if we neglect the E.-structure
on GL;(R), then it is a corepresentable functor of R: there is a canonical homotopy
equivalence GL1(R) ~ Mapgay, (S{t*'}, R), where S{t} denotes the free E,-ring on a
single generator ¢, and S{t*'} = S{t}[t~!] denotes the E.-ring obtained by inverting
that generator.

For our purposes, the functor GL; suffers from two closely related defects:

e Through we can think of GL; as a sort of commutative group scheme in spectral
algebraic geometry, it is not commutative enough: in general, GL;(R) is the Oth
space of a spectrum, but not of a Z-module spectrum.

e As a spectral scheme, GL; is not flat over the sphere spectrum S (that is, S{t*!}
is not flat as an S-module).

However, these deficiencies have a common remedy.

Construction 1.6.10 (The Strict Multiplicative Group). Let Lat denote the category
of lattices (that is, the category of free abelian groups of finite rank). If R is an
Ey-ring, then the construction (M € Lat) — Mapga (X7 M, R) determines a functor
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Fr : Lat®® — S which commutes with finite products. It follows from Remark
AV.1.2.10 that there is an essentially unique connective Z-module spectrum G,,(R)
equipped with homotopy equivalences

MapModz (M> Gm(R)) = MapCAlg(EfM7 R)
depending functorially on M. The construction R — G,,(R) determines a functor
G,, : CAlg — Mod7',
which we will refer to as the strict multiplicative group.

Remark 1.6.11. In the setting of Construction [1.6.10} we do not need to restrict our
attention to lattices. For any connective Z-module spectrum M, we have a canonical
homotopy equivalence

MapModz (M7 Gm(R)) = MapCAlg(EfQOOMa R)

Remark 1.6.12 (Relationship with GL;). Let R be an E,-ring. Then there is a
canonical map of E-spaces

a1 Q®G(R) — GLi(R).

Moreover, G,,(R) is universal among connective Z-module spectra equipped with
such a map. More precisely, for any connective Z-module spectrum M, composition
with o induces a homotopy equivalence

MapModz (Ma Gm(R)) = MapCMon(S) (QOOM7 GLl(R))

(this is an immediate consequence of Remark [1.6.11] and the definition of GL;(R)).
Put another way, the Z-module spectrum G,,(R) is given by the formula

Gm(R) = TZOMapS(Z7 gll (R))7

where gl, (R) denotes the connective spectrum corresponding to the grouplike E-space
GL1(R).

Remark 1.6.13 (Flatness). By virtue of Remark |1.6.11] the functor R — Q*G,,(R)
is corepresented by the E-ring X% (Z). This spectrum is flat over the sphere (it can
be obtained from the E,-ring S[t] of §1.4.1| by inverting ¢).
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Remark 1.6.14. If R is an ordinary commutative ring, then there is essentially no
difference between G, (R) and GL;1(R): they can both be identified with the abelian
group of invertible elements of R. However, they are often quite different when R is
not discrete. Note that the homotopy groups of GL;(R) are given by the formula

mo(R)* if x =0

m«(R)  otherwise.

7« GL1(R) = {

However, the homotopy groups of G,,,(R) are more unpredictable. For example, if
R = KU, is the (p)-completed complex K-theory spectrum, then one can show that

To(Gm(R)) is isomorphic to F (a cyclic group of order (p —1)). The canonical map

7T0(Gm<R)) — Wo(GLl(R)) ~ Z><

p

assigns to each invertible element = € F,, its Teichmiiller representative [z] € Z, ~
W(F,).

Remark 1.6.15. Let R be an E,-ring. Then the canonical map 7>¢R — R induces
equivalences

GLl (T;QR) - GLl(R) Gm(TZQR) - Gm(R)

Consequently, no information is lost by restricting the functors GL; and G,, to the
full subcategory CAlg™ < CAlg spanned by the connective E-rings.

Construction 1.6.16 (The Formal Multiplicative Group). Let R be a connective
E..-ring. We let G,,(R) denote the fiber of the canonical map Gy, (R) — Gy, (R™9)
(formed in the oo-category Mody' of connective Z-module spectra). The construction
R+ G,(R) determines a functor

G, : CAlg®™ — Mod$,
which we will refer to as the formal multiplicative group.

Proposition 1.6.17. The formal multiplicative group ém is a formal group over the
sphere spectrum S (in the sense of Definition[1.6.1]).

Proof. Unwinding the definitions, we see that the functor Qmém is representable by
the formal spectrum Spf(A), where A is the completion of the Eq-ring ¥%2(Z) ~ S[t*!]
with respect to the ideal generated by u = (¢ —1). The homotopy groups of A are given
by (m5)[[u]], so that Spf(A) is a formal hyperplane over S by virtue of Proposition
410 O
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Warning 1.6.18. The E,-ring A appearing in the proof of Proposition [1.6.17|is not
equivalent to the power series algebra S|[[u]] of Construction [1.4.4] despite the fact
that they have isomorphic homotopy rings.

Remark 1.6.19. Since the formal multiplicative group (A}m is defined over the sphere
spectrum S, it determines a formal group over any E..-ring R, given by the composition

CAlg® p — CAlg™ <2 Mody'.

We will refer to this functor as the formal multiplicative group over R. We will generally
abuse notation by writing it also as G,,.

1.6.4 Non-Example: The Formal Additive Group

Let G, denote the affine line A' = Spec(Z[t]) over Spec(Z). We regard G, as a
commutative group scheme over Z, with additional law classified by the comultiplica-
tion

A:Z[t] - Z[t] @z Z[t] t—t®1+1Qt.

Then the formal completion G, ~ Spf(Z[[t]]) is a formal group over Z, which we refer
to as the formal additive group. On ordinary commutative rings, these functors are
given by

G.,(A)=A Ga(A) = {x € A: z is nilpotent}.

For any connective E-ring R, we can contemplate analogous constructions
G : CAlgy — Sp™

which associates to each connective E -algebra A its underlying spectrum, and we can
define its formal completion X : CAlgy — Sp™ by the formula G(4)=A Xmo(a) {2 €
mo(A) : z is nilpotent}. Beware that G is generally not a formal group in the sense of
Definition [1.6.1} for two reasons:

e The functor G takes values in the oo-category of connective spectra, rather than
the oo-category Mody' of connective Z-module spectra.

e The functor X = Q% o G is not a formal hyperplane over R unless R admits
the structure of an E -algebra over Q. Note that X can be identified with
the formal spectrum Spf(A), where A denotes the (t)-completion of the free
Ey-algebra R{t}. In general, R{t} is not flat over R.
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We now show that these difficulties are actually essential: it is not possible to lift
the formal additive group G, to a formal group over the sphere spectrum S. In fact,
we can say more:

Proposition 1.6.20. The formal additive group CA}(Z cannot be lifted to T<1(S): in other

words, it does not belong to the essential image of the forgetful functor FGroup(r<1.S) —
FGroup(m(S)) = FGroup(Z).

Remark 1.6.21. Our proof of Proposition will actually establish something
stronger: it is not possible to lift G, to a formal hyperplane over 7<;(S) which is
equipped with a unital multiplication. We do not need to assume that this multiplica-
tion is commutative or associative, even up to homotopy.

Let us begin by reviewing some elementary facts about power operations which
will be useful for proving Proposition [1.6.20}

Construction 1.6.22. Let X be an E,-space. Then every point x € X extends
(in an essentially unique way) to a map of E,-spaces u : Sym(x) — X, where
Sym(*) ~ 1,50 BY,, denotes the free E.,-space generated by a point (here ¥,, denotes
the symmetric group on n letters). In particular, we obtain a map ulgy, : BXs — X.
This map carries the base point b of BX; to a point of X which we will denote by 22,
and induces a map of fundamental groups Xy = 7 (B, b) — m1(X, 2%). We will let
w(z) € m (X, x?) denote the image of the nontrivial element of ¥, under this map.

Example 1.6.23. Let E be a spectrum. Then Q*(FE) can be regarded as a grouplike
Ey-space. Consequently, any point z € Q%(F) determines an element pu(z) of the
abelian group m(Q®(F),z?) ~ mF. Then u(r) depends only on the connected
component [x] € mo(E) of x. Moreover, the construction [z] — pu(x) coincides with
the homomorphism 7y(FE) — 7 E given by multiplication by the nontrivial element

n € m(S).

Example 1.6.24. Let A be an E,-ring. Since the Oth space functor Q* : Sp — S
is lax symmetric monoidal, the E -structure on A determines an E.-structure on
the Oth space Q*(A), which we will refer to as the multiplicative E-structure. Note
that this structure is difference from the additive Ey-structure of Example (the
induced monoid structure on m(A) is given by multiplication, rather than addition;
in particular, the space 2% A is not grouplike with respect to the multiplicative E-
structure). Applying Construction to the multiplicative E-structure, we see
that every point z € Q%(A) determines an element p(x) € m (Q©A, 2?) ~ 7 A. The
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element p(z) depends only on the connected component [z] € mo(A) of z. We will

emphasize this dependence by writing u(x) as n,,([x]), so that we obtain a function
N = To(A) — m(A).

Example 1.6.25. Let Fin denote the category of finite sets and let Fin™ denote its
underlying groupoid. We will regard Fin as equipped with the symmetric monoidal
structure given by the Cartesian product. The groupoid Fin™ inherits the structure of
a symmetric monoidal co-category, so that the nerve N(Fin™) can be regarded as an
Ey-space. Let J be a point of N(Fin™), viewed as a finite set. Applying Construction
[1.6.22] we obtain an element u(J) € 71(N(Fin™), J x J), which corresponds to the
permutation of J x J given by (i,5) — (j,7). A simple calculation shows that this
permutation is even when the cardinality of J is congruent to 0 or 1 modulo 4, and is
odd when the cardinality of J is congruent to 2 or 3 modulo 4.

Example 1.6.26. Let S denote the sphere spectrum. Then there is a canonical map
of Ex-spaces N(Fin™) — Q*S, where we regard N(Fin™) as equipped with the E-
structure of Example and Q%95 as equipped with the multiplicative E.-structure
of Example [1.6.24] This map carries each finite set J into the connected component
of Q*S classified by the cardinality |J| € Z ~ m(S), and carries each permutation o :

J — J to the element «{O if o is even 7 if o is odd € 7;(S).  Using the functoriality
0 if|J]=0,1 (mod 4)
n if |J] =2,3 (mod 4).

of Construction [1.6.22) we deduce that n,,(|J]) = {

Lemma 1.6.27. Let A be an Eo,-ring. Then, for every pair of elements z,y € mo(A),
we have an equality Nm(x + y) = Nm(x) + 0 (y) + nzy in w1 (A).

Proof. Without loss of generality, we may assume that A = S{x,y} is the free Ey-ring
generated by x and y. Then A is given as a spectrum by the

S{zt@ S{y} ~ (DI BE.) @ (D ET BD)

a=0 b=0
~ @ =7(BS, x BY,).
a,b=0

With respect to this decomposition, we can write 1, (v +y) = X3, j= Cap for some
elements ¢, € m 2T (B, x BY,). It follows immediately from the construction that
Cqp vanishes for a + b # 2. Moreover, by setting x or y equal to zero, we deduce that
20 = Nm(x) and co o = Ny (y). We therefore have n,,,(z+y) = 0 (x) + 1 (y) +c1 12y for
some element ¢y ; € mS. Since this equality holds in the free E,,-ring on two generators,
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it must hold in any E-ring A containing elements z,y € mo(A). In particular, taking
A to be the sphere spectrum and x = y = 1, we obtain 7,,(2) = 9 (1) + 7 (1) + 11
in mS. Example [1.6.26| shows that 7,,(2) = n and 7,,(1) = 0, so that ¢;; = 7 as
desired. ]

Proof of Proposition[1.6.20. Let G be a formal group over 7<1S and let X = Q°G
be the underlying formal hyperplane of G. Write X = Spf(A) and X x X = Spf(B),
where A and B are adic E,-algebras over 7«15, so that the multiplication on X induces
a morphism p: A — B. Suppose that, after extension of scalars to my(S) ~ Z, the
formal group G is equivalent to the formal additive group G.,. A choice of equivalence
then yields isomorphisms « : Z[[t]] — mo(A) and S : Z[[to, t1]] — mo(B) for which the
diagram

Z[[t]] ——=mo(A)

itho +t ip

Z[[to, t:]] —= mo(B)

commutes. Note that multiplication by 1 € m;(5) induces isomorphisms

7T0(A)/27T0(A) - 7T1(A) 7T0(B>/27T0(B) ~ 7T1<B).

In particular, there is a unique power series f(t) € Z[[t]], uniquely determined modulo
2, which satisfies the equation na(f(t)) = nm,(a(t)). Applying the map p and invoking
Lemma [1.6.27] we obtain

nB(f(to+t1)) = nm(Bto +1t1))
= Nm(B(t0)) + nm(B(t1)) +nB(to)B(t1)
= nB(f(to)) +nB(f(t1)) + ntot:.

The power series f must then satisfy the identity f(to + t1) = f(to) + f(t1) + tots
(mod 2). This is a contradiction, since the coefficient of tyt; in the power series
f(to + t1) is necessarily even. O

2 Identity Components of p-Divisible Groups

For every commutative ring R, let G,,(R) denote the set of invertible elements of
R, which we regard as a group under multiplication. We will view the construction
R — G,,(R) as a functor from the category of commutative rings to the category of
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abelian groups. We denote this functor by G,, and refer to it as the multiplicative
group; it is representable by the affine group scheme Spec Z[t*!] (which we also denote
by G,,). Consider the following subfunctors of G,,:

e The formal multiplicative group ém c G,, assigns to every commutative ring R
the subset

Gm(R) = {z € R: (z — 1) is nilpotent} = G,,(R).
This functor is representable by the formal scheme

Spf Z[[( — 1)]] = lim SpecZ[¢]/(t — 1)™.

e For each prime number p, the p-divisible multiplicative group p,» < Gy, assigns
to every commutative ring R the subset

ppo(R) ={xe R:a"" =1for m>» 0} € G,,(R).
This functor is representable by the Ind-scheme lim Spec Z[t]/(t*" — 1).

The functors G,, and iy do not coincide (as subfunctors of Gy,): in fact, neither
contains the other. However, they are closely related by the following elementary
observation:

(x) Let R be a commutative ring in which p is nilpotent. Then (A}m(R) = = (R).

Roughly speaking, (=) asserts that the formal group G, and the p-divisible group
iy become interchangeable after p-adic completion: after extending scalars to a ring
in which p is nilpotent, either can be recovered from the other.

More generally, if R is any commutative ring in which p is nilpotent, the theory of
p-divisible groups over R is closely related to the theory of formal groups over R, by
virtue of the following result of [27]:

Theorem 2.0.1 (Messing). Let R be a commutative ring in which p is nilpotent and
let G be a p-divisible group over R, and define G° : CAIgf2 — Modg by the formula

G°(A) = ker(G(A) — G(A™)).

Then G° is (representable by) a formal group over R.
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In [26], we introduced the notion of a p-divisible group over an arbitrary E,-ring
R. Let us recall the definition in a form which will be convenient for our purposes
(see Proposition AV.6.5.8 for a slight variant):

Definition 2.0.2. Let R be a connective E,-ring. A p-divisible group over R is a
functor G : CAlgy' — Mody' with the following properties:

(1) For every object A € CAlg}', the Z-module spectrum G(A) is p-nilpotent: that
is, we have G(A)[1/p] ~ 0.

(2) For every finite abelian p-group M, the functor
(A e CAlgR) — (Mapyq, (M, G(A)) € S)
is corepresentable by a finite flat R-algebra.

(3) The map p : G — G is locally surjective with respect to the finite flat topology.
In other words, for every object A € CAlg}y; and every element x € my(G(A)),
there exists a finite flat map A — B for which Spec(B) — Spec(A) is surjective
and the image of = in my(G(B)) is divisible by p.

Remark 2.0.3. In the situation of Definition [2.0.2] if condition (3) is satisfied, then
it suffices to check condition (2) in the special case M = Z /pZ.

Remark 2.0.4. In the situation of Definition [2.0.2] if M is a finite abelian p-group,
we let G[M] denote the functor given by A — Map, (M, G(A)), so that G[M] is a
finite flat group scheme over R. In the special case M = Z /p* Z, we will denote G[M]

by G[p*].

Warning 2.0.5. In the situation of Definition 2.0.2] each G[p*] is a sheaf for the flat
topology, and we have G ~ lim G[p*]. However, it is not clear that G is also a sheaf
for the flat topology (or even the finite flat topology), at least when regarded as a
Mody'-valued functor.

We will extend Definition to the nonconnective case in a purely formal way
(see Remark AV.6.5.3):

Variant 2.0.6 (The Nonconnective Case). Let R be an arbitrary E,-ring. We define
a p-divisible group over R to be a p-divisible group over the connective cover 7> R:
that is, a functor G : CAlg?" . — Mody' satisfying conditions (1), (2), and (3) of

T;()R

Definition [2.0.2 We let BT”(R) denote the full subcategory of Fun(CAlg?” z, Modz')
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spanned by the p-divisible groups over R.
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Remark 2.0.7 (Functoriality). Let A and B be Ey-rings and suppose we are given
a morphism of E,-rings f : 750(A) — 7=0(B). If G is a p-divisible group over A, we
let Gp denote the p-divisible group over B given by the composite functor

n n G n
CAIgS’;oB — CAIgS}Q(A) —> MOdCZ .

In this case, we will say that Gp is obtained from G by extending scalars along f.
Note that this construction makes sense even when f does not arise from a map
A — B; for example, we can always extend scalars from A to m(A).

We can now formulate the main result of this section:

Theorem 2.0.8. Let R be a (p)-complete Ey-ring and let G be a p-divisible group
over R. Then there exists an essentially unique formal group G° € FGroup(R) with
the following property:

(#) Let & = CAlgll ) denote the full subcategory spanned by those connective
T>0(R)-algebras which are truncated and (p)-nilpotent. Then the functor G°|¢ is
given by the construction A — fib(G(A) — G(A™)).

Remark 2.0.9. To prove Theorem we are free to replace R by its connective
cover and thereby reduce to the case where R is connective.

Definition 2.0.10. Let R be a connective Ey-ring which is (p)-complete for some
prime number p, and let G be a p-divisible group over R. We will refer to the formal
group G° of Theorem [2.0.8| as the identity component of G.

Theorem [2.0.8|is more general than Theorem [2.0.1] in three main respects:

(a) In the statement of Theorem [2.0.8] we allow R to be an E,-ring rather than an
ordinary commutative ring.

(b) Theorem requires that p is nilpotent in R, while Theorem requires
only that R is (p)-complete. However, the difference is slight, at least when R
is Noetherian: in this case, one can construct the identity component G° by
amalgamating its restrictions to the subschemes Spec(R/(p*)) < Spec(R).

(c) Even when R is an ordinary commutative ring and p is nilpotent in m(R), the
content of Theorem [2.0.8] is stronger than that of Theorem 2.0.1] If G is a
p-divisible group over R, then Theorem [2.0.1|asserts that there is a unique formal
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group G° over R having the property that G°(A) = ker(G(A) — G(A™%)) when
A is a discrete R-algebra. Theorem [2.0.8] asserts that this formal group G°
has a stronger property: there is a canonical equivalence G°(A) ~ fib(G(A) —
G(Ad)) for every truncated object A € CAlg}.

Let us now sketch the contents of this section. Our first goal will be to show that
the identity component G° of Theorem [2.0.8|is uniquely determined by requirement
(#). Roughly speaking, we can think of () as prescribing the restriction of the formal
group G° to the formal spectrum Spf(R) < Spec(R), where we endow my(R) with the
p-adic topology. In §2.1], we prove more generally that if an E,-ring R is complete
with respect to a finitely generated ideal I < my(R), then a formal group G over
Spec(R) is determined by its restriction to Spf(R) (see Theorem for a precise
statement).

We will give the proof of Theorem in §2.2] In [27], Theorem is proved
by first treating the case where R is an Fj-algebra (in which case one can exploit
special features of the Frobenius and Verschiebung endomorphisms of G), and this is
extended to the general case using deformation-theoretic arguments. Our strategy will
be essentially the same: we will apply deformation-theoretic arguments (in the more
general setting of E,-rings) to reduce to the case where R is a discrete F-algebra.
The arguments of [27] (which we reproduce here, for the sake of completeness) then
show that there exists a formal group G° satisfying G°(A) = ker(G(A) — G(A™Y))
whenever A is a discrete R-algebra. We then show that G° represents the desired
functor on all truncated E-algebras over R by exploiting a deformation-theoretic
property of the Frobenius map (Proposition .

Roughly speaking, the difference between a p-divisible group G and its identity
component G° is controlled by the values of G on reduced F-algebras. In §2.3] we
study the class of connected p-divisible groups, which are defined by the requirement
that G(A) ~ 0 when A is reduced (see Proposition [2.3.9). We will show that the
construction G — G° is fully faithful when restricted to connected p-divisible groups
(Corollary , and study its essential image.

In §2.5 we study the class of étale p-divisible groups (Definition [2.5.3)), which
are in some sense as far as possible from being connected (Proposition . The
theory of étale p-divisible groups offers no surprises: the datum of an étale p-divisible
group over an E,-ring R is equivalent to the datum of an étale p-divisible group over
the commutative ring mo(R) (Proposition [2.5.9). Such objects are well-understood:
when the topological space | Spec(R)| is connected, they can be identified with free
Z,-modules of finite rank, equipped with a continuous action of the étale fundamental
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group 71 (Spec(R),n) (where n is any geometric point of Spec(R)). In good cases of
interest, an arbitrary p-divisible group G can be “built” from connected and étale
pieces (which can be understood in terms of formal groups and Galois representations,
respectively). To make this precise, we introduce in the notion of a short exact
sequence of p-divisible groups

0-G6¢LaLa >0

(see Definition . We will be particularly interested in short exact sequences where
G’ is (formally) connected and G” is étale. We will refer to such an exact sequence
as a connected-étale sequence for G (Definition [2.5.15). In §2.5 we will show that
such sequences are automatically unique (Theorem , and give necessary and
sufficient conditions for their existence (Proposition [2.4.1)).

2.1 Formal Groups over Spec(R) and Spf(R)

Let R be a connective E,-ring. We can think of a formal group G over R as an
abelian group object in the oo-category formal schemes over the spectrum Spec(R)
(see Remark for a precise statement). If R is an adic E,-ring, then we can also
consider the notion of a formal group over the formal spectrum Spf(R). Such an
object can be described geometrically as a certain kind of abelian group object in
the oo-category (fSpDM)/spe(r), or more concretely as a compatible family of formal
groups {é 4 € FGroup(A)} where A ranges over connective E-rings equipped with
a map Spec(A) — Spf(R). We will refrain from giving a precise definition, because
this turns out to be unnecessary: if R is a complete adic E,-ring, then the notions of
formal group over Spec(R) and Spf(R) turn out to be equivalent. The equivalence is
a consequence of the following general statement:

Theorem 2.1.1. Let R be a connective Eo,-ring which is complete with respect to
some finitely generated ideal I < my(R) and let Er denote the full subcategory of
CAlgy' spanned by those connective Eq-algebras over R which are truncated and I-
nilpotent. Then the restriction functor G — (A}|5R determines a fully faithful embedding
FGroup(R) — Fun(Eg,Modyz'). The essential image of this embedding consists of
those functors éo : Eg — Mody' which satisfy the following pair of conditions:

(1) The composite functor
6\;0 cn
S(WOR)/I - SR — MOdZ

can be extended to a formal group over the commutative ring (moR)/I.
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(2) The functor éo is cohesive: that is, for every pullback diagram

A4>A0

|

Al - AOI

in the co-category Er where the ring homomorphisms my(Ag) — mo(Ap1) «—
mo(A1) are surjective, the induced diagram

Go(A) —— Go(Ay)

l i

Gi (A1) — Go(An)
is a pullback square in Mody'.

Theorem [2.1.1] is a consequence of a more general assertion concerning formal
hyperplanes.

Notation 2.1.2. Let R be a connective E-ring. A pointed formal hyperplane over
R is a functor X : CAlgy' — S, with the property that the composite functor

CAlge 5.8, -8

is a formal hyperplane over R, in the sense of Definition|1.5.10, We let Hyp, (R) denote
the full subcategory of Fun(CAlg%', S) spanned by the pointed formal hyperplanes
over R.

Remark 2.1.3. Let R be a connective E,-ring. The equivalence of oco-categories
cSpec : cCAlgR" ~ Hyp(R) induces an equivalence of co-categories (cCAlgR")p/ =~
Hyp,(R), where (cCAlgy")r/ is the oo-category of augmented smooth coalgebras over
R (that is, the oo-category of smooth coalgebras C' over R equipped with a point
n € GLike(()).

Proposition 2.1.4. Let R be a connective By -ring which is I-complete for some
finitely generated ideal I < myR and let Eg < CAlgR be as in the statement of
Theorem [2.1.1. Then the restriction functor Hyp,(R) — Fun(Eg, S.) is fully faithful,
and its essential image consists of those functors Xy : Eg — Sy which satisfy the
following pair of conditions:
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(1) The composite functor
Emoryt — Er 2% S,

can be extended to a pointed formal hyperplane over the commutative ring
(7TOR)/I

(2) The functor Xq is cohesive: that is, for every pullback diagram

AHAO

L

Al - A01

in the cw-category Er where the morphisms mo(Ag) — mo(Ap1) «— mo(A1) are
surjective, the induced diagram

X()(A) e Xo(A())

| |

Xo(A1) — Xo(Aor)
is a pullback square in S,.

Proof of Theorem from Proposition|2.1.4. For any co-category C which admits
finite products, let C, denote the co-category of pointed objects of C. Then the forgetful
functor C,, — C induces an equivalence of co-categories p : Ab(C,) — Ab(C): to see this,
we observe that p can be identified with the forgetful functor Ab(C). — Ab(C), which
is an equivalence because the oo-category Ab(C) is pointed. Applying this observation
in the case C = S, we obtain an equivalence Mody' ~ Ab(S,). Consequently, the
equivalence of Theorem [2.1.1| can be obtained from the equivalence of Proposition
by passing to abelian group objects. O

The rest of this section is devoted to the proof of Proposition We will first
prove in §2.1.2 that the restriction functor X, — Xo|g,, is fully faithful (Proposition

2.1.10)) using a slightly technical property of formal hyperplanes (Proposition [2.1.6)).
The characterization of the essential image of the restriction functor will be established

in §2.1.3]

Warning 2.1.5. In the statement of Proposition [2.1.4, the restriction to pointed
formal hyperplanes is essential. For example, if we take R = Z, to be the ring of
p-adic integers, I to be the principal ideal (p), and X = A' = Spf(R[[¢]]) to be the
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formal affine line over R, then the element p € R determines a natural transformation
Spec(R)|le — Xle which cannot be lifted to a point of X(R) (the element p is
topologically nilpotent but not nilpotent in R).

2.1.1 A Finiteness Property of Formal Hyperplanes
Our proof of Proposition will make use of the following:

Proposition 2.1.6. Let R be a connective Ep-ring, let C < CAlgy' be the full
subcategory spanned by those connective Eo,-algebras over R which are almost perfect
when regarded as R-modules, and let X : CAlgy — S be a formal hyperplane over R.
Then X is a left Kan extension of X|c.

The proof will require some preliminaries.

Lemma 2.1.7. Let R be a connective Eq-ring and let M be an R[[t]]-module such
that M[t~] ~ 0. If M is almost perfect as an R[[t]]-module, then it is almost perfect
as an R-module.

Proof. Without loss of generality, we may assume that M is connective. We will show
that, for every integer n, the module M is perfect to order n over R (in the sense of
Definition SAG.2.7.0.1). For n < 0, this follows automatically from our assumption
that M is connective (Example SAG.2.7.0.3). The proof in general proceeds by
induction on n. Since M is connective and almost perfect as an R[[t]]-module, the
abelian group my(M) is finitely generated as a module over my(R)[[t]]. Let xy,..., xy
be a set of generators for mo(M) as a module over mo(R)[[t]]. Using the assumption
that M[t™'] ~ 0, we can choose an integer m such that t™z; = 0 for 1 < i < k.
Let R[[t]]/(t™) denote the cofiber of the map t™ : R[[t]] — R|[[t]]. Then we can
find maps f; : R[[t]]/(t"™) — M which carry the element 1 € mo(R)[[t]]/(t™) to x;.
Amalgamating these maps, we obtain a map u : @, ,,, R[[t]]/(t™) — M which is
surjective on my. Note that the domain of u is perfect as an R[[t]]-module, so that
fib(u) is an almost perfect R[[t]]-module. Applying our inductive hypothesis, we
conclude that fib(u) is perfect to order (n — 1) as an R-module. Since the domain of
u is perfect as an R-module, it follows that M is perfect to order n as an R-module,
as desired. ]

Lemma 2.1.8. Let R be a connective Ey-ring and let M be an almost perfect
R[[t1, ... tn]]-module such that M[t;'] vanishes for 1 <i < n. Then M is almost
perfect when regarded as an R-module.
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Proof. Apply Lemma [2.1.7] repeatedly. O

Lemma 2.1.9. Let R be a connective Eo-ring, let C' be a smooth coalgebra over R,
and let M be an almost perfect module over C'. Assume that M is I,,-nilpotent, where
I, <€ mo(CY) is the ideal of Warning|1.5.14. Then M is almost perfect as an R-module.

Proof. Using Remark we can choose elements {x;},c; which generate the unit
ideal of my(R) such that each localization C[z; '] is a standard smooth coalgebra over
R[x;!]. Since the condition of being almost perfect is local for the Zariski topology on
R (see Proposition SAG.2.8.4.2), it will suffice to show that each localization M[x;']
is almost perfect as an R[z;']-module. Set C) = MR(C,R[xi’l]), so that C} is
the I,-completion of C[z;'] (Proposition . In particular, the fiber of the map
v:CV[z;'] — CY is I-local, so the tensor product fib(v) ®cv M vanishes. It follows

that the natural map
Mz;' =~ CY[r; ] ®@cv M — CY @cv M

is an equivalence. We are therefore reduced to proving that each C) ®cv M is
almost perfect as an R[z;']-module. We may therefore replace R by R[z;'] and
M by C ®cv M and thereby reduce to the case where the smooth coalgebra C' is
standard. In this case, Proposition supplies an equivalence R|[t1,...,t,]] —» CV
of E;-algebras over R. Then M is almost perfect when regarded as an R[[t1,...,t,]]-
module and our assumption that M is I,-nilpotent guarantees the vanishing of each
localization M [tj_l]. Applying Lemma we deduce that M is almost perfect when
regarded as an R-module, as desired. O]

Proof of Proposition[2.1.6. Let R be a connective E,-ring and let X be a formal
hyperplane over R. Write X = ¢Spec(C') for some smooth coalgebra C over R, and let
I,, < my(C") be as in Warning |1.3.12| Applying Lemma SAG.8.1.2.2, we can choose a

tower

o> Az > Ay — Ay
of connective Ey-algebras over C'V with the following properties:

(a) For each n > 0, the image of I, in my(A,,) is nilpotent.
(b) Each A, is almost perfect when regarded as a C'V-module.

(¢) For every connective R-algebra B, the canonical map
li_H)l MapCAlgR (An7 B) - Map%OXTgR(OV ) B)

is a homotopy equivalence.
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It follows that X can be identified with the filtered colimit of the functors Spec A,
corepresented by the objects A,, € CAlgy'. Consequently, to show that X is a left
Kan extension of X|c, it will suffice to show that each of the corepresentable functors
Spec A,, is a left Kan extension of (Spec A,)|c. This follows from the observation that
each A, belongs to C, by virtue of Lemma [2.1.9| n

2.1.2 Formal Hyperplanes over /-Complete E-Rings

We now prove a weak version of Proposition [2.1.4}

Proposition 2.1.10. Let R be a connective E-ring which is complete with respect
to some finitely generated ideal I < my(R). Let € denote the full subcategory of
CAlgy' spanned by those connective Eq-algebras over R which are truncated and I-
nilpotent. Then the restriction functor X — X|¢ determines a fully faithful embedding
Hyp,(R) — Fun(&,S,).

The proof of Proposition [2.1.10| requires the following simple observation:

Lemma 2.1.11. Let R be a connective Ey-ring, let X be a pointed formal hyperplane
over R, and let x be a point of X(A) for some connective E-algebra A over R. Then
there exists a morphism f : A — B in CAlgy' with the following properties:

(1) The image of x in X(B) belongs to the connected component of the base point.
(1) The Ex-ring B is almost of finite presentation as an A-module.

(1ii) For every element a € mo(A), if f(a) is nilpotent in wo(B), then a is nilpotent
m 7T0(A).

Proof. Note that the image of x in X (A™?) belongs to the identity component (since
X (Ard) is contractible by virtue of Remark [1.5.18). It follows from Proposition [2.1.6]
that the canonical map A — A™d factors as a composition A — B — A™! where B
satisfies conditions (7) and (ii). Note that if a € mo(A) has the property that f(a)® =0
in 7y(B), then the image of a* vanishes in A™4, so that a* is nilpotent in my(A) and
therefore a is also nilpotent in mo(A). O

Proof of Proposition|2.1.10} Let R be a connective Ey -ring and let X and Y be

pointed formal hyperplanes over R; we wish to show that the restriction map
p: Mapyy, 7 (X,Y) = Mappy,e.s,)(Xle, Yle)
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is a homotopy equivalence. Let Y : CAlg: — S, be a right Kan extension of
Y|e. The identity map id : Y|e — Y|¢ extends uniquely to a natural transformation
u:Y — Y and we can identify p with the map

MapHyp*(R) (X7 Y) — MapF\ln(CAlg%’7S*)(X7 Ycont>

given by precomposition with wu.

Let £Y < Mod$' be the full subcategory spanned by those connective E.-algebras
over R which are I-nilpotent. Note that the functor Y™ is given on objects A € £F
by the formula Y*™(A) = limY(7<,A). Using Proposition , we see that u
induces an equivalence Y (A) — Y (A) for A € £*. In other words, we can also
identify Y™ with the right Kan extension of Y|¢+.

For each object A € CAlg®, let Spec(A) : CAlgy — S denote the functor
corepresented by A, and let Spf(A) : CAlgy' — S denote the subfunctor of Spec(A)
given by the formula

Mapgay,, (A, B)  if Be T

(] otherwise.

Spf(A)(B) = {

Unwinding the definitions, we can identify Y (A) — Y™ (A) with the map of pointed
space spaces

ua : Mappyycalgen,s) (Spec(A), YY) = Mappyycalgen s) (SPE(A), Y)

given by precomposition with the inclusion Spf(A) < Spec(A). Write Y = cSpec(C),
where C' is a smooth coalgebra over R. Using Remark SAG.8.1.2.4 and Corollary
SAG.8.1.5.4, we can identify u4 with the map

Map¢al,,, (C, A) = Mapgyy, , (CV, A7);

here we regard my(A) as equipped with the discrete topology, and my(A7) as equipped
with the I-adic topology. Note that if A is already I-complete, then this map is the
inclusion of a summand.

Let C = Mod§' be as in the statement of Proposition 2.1.6] so that X is a left Kan
extension of its restriction to C. We are therefore reduced to showing that u induces a
homotopy equivalence

0 : MapFun(C,S*)(X‘C7 Y‘C) - MapFun(C,S*)(X‘C7 Ycont‘c)'

7



Our assumption that R is I-complete guarantees that each object A € C is also
I-complete (Proposition SAG.7.3.5.7), so that the map Y|¢c — Y| is a monomor-
phism. It follows that 6 is the inclusion of a summand. To complete the proof, it
will suffice to show that every natural transformation v : X — Y carries each
point ¢ € X(A) into the summand Y (A) € Y (A) for A € C. Choose a grouplike
element 1 € m(C"Y) and let J, < my(C") be the ideal of Proposition Let
us identify v(q) with a morphism h : CV — A} ~ A of Ey-rings over R satisfying
h(Jy) < Imo(A). We wish to show that f(Ji") = 0 for m » 0. Choose a map
f: A — B satisfying the requirements of Lemma [2.1.11] so that the image of ¢ belongs
to the identity component of X (B). It follows by naturality that the composite map
cvhihalp belongs to the identity component of Y™ (B); in particular, it belongs
to the summand Y (B) < Y°"(B), so that foh annihilates some power of the ideal J,.
Since the kernel of mo(f) consists of nilpotent elements of my(A), it follows that h also
annihilates some power of .J,, so that v(g) belongs to the summand Y (A4) < Y*(A)
as desired. O

2.1.3 The Proof of Proposition 2.1.4

Let R be a connective E-ring which is complete with respect to a finitely generated
ideal I < my(R), let Eg < CAlg® denote the full subcategory spanned by those
connective E,-algebras which are truncated and I-nilpotent, and let X, : £ — Sy be
a functor. We wish to show that X, can be extended to a (pointed) formal hyperplane
X : CAlgy — 8. if and only if it satisfies conditions (1) and (2) of Proposition
2.1.4] (in this case, the extension X is essentially unique, by virtue of Proposition
2.1.10)). The necessity of conditions (1) and (2) follows from Proposition [1.5.17 Let
us therefore assume that (1) and (2) are satisfied.

Let A be a connective E-algebra over R which is I-complete. We will say that A
is good if the composite functor €4 — Ex <% Mody' can be extended to a pointed
formal hyperplane X4 € Hyp,(A). In this case, Proposition guarantees that
X 4 is uniquely determined and depends functorially on A. We will prove Proposition
by showing that every I-complete E-algebra over R is good (in particular, R
itself is good). The proof proceeds in several steps.
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(@)

Suppose we are given a pullback diagram

AHAO

L

Al - AOI

of connective, I-complete E-algebras over R, where the morphisms m(Ay) —
mo(Ap1) <« mo(A1) are surjective with nilpotent kernel. If Ay and A; are good,
then A is good. To prove this, let us suppose that Xolg, and Xlg, can
be extended to pointed formal hyperplanes X4, and X4, over Ay and Ay,
respectively. It follows that Xo|e 4y, CAL also be extended to a pointed formal
hyperplane X 4., over Ay. Using Proposition [1.2.12] we can amalgamate X,
and X4, to obtain a pointed formal hyperplane X4 € Hyp, (A). For each A" € £ 4,
set
Ay = A ®a Ao Ay = A" ®4 An Al = A" ®4 A1

We then have homotopy equivalences equivalences

Xa(A) =~ Xa(A;®a, A))
Xa(Ap) % x4(ap,) Xa(A})
Xao(A5) X x4y, (47,) Xa, (A7)

~  Hm(Xa,(T<ndy) X xay, (renay) Xai (T<nAY))

10

LiLn XO(TSnAé)) X Xo(r<nAp;) Xo(T<nA})

. / /
im Xo(7<n Ay @re,ay, T<n A7)

=~ X()(A,)

12

depending functorially on A’ (here we invoke Proposition [1.5.17| together with
assumption (2)). It follows that the restriction Xo|g, extends to the pointed
formal hyperplane X4, so that A is good.

Let A € CAlgy' be an I-complete Ey-algebra over R and let A be a square-
zero extension of A by a connective [-complete A-module M (in the sense of
Definition HA.7.4.1.6 ). If A is good, then A is also good. This is a special case
of assertion (a).

Let A be a discrete E-algebra over R with I*R’' = 0 for some &k » 0. Then R’
is good. This follows by induction on k: the case k = 1 follows from assumption
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(1), and the inductive step follows from (b) (since R'/I*R’ is a square-zeroe
extension of R'/I*"'R' for k > 1 by virtue of Theorem HA.7.4.1.26).

Let A be an E-algebra over R which is I-nilpotent and k-truncated for some
k> 0. Then A is good. This follows by induction on k: the case k = 0 follows
from (c), and the inductive step follows from (b) (since each truncation 7., A is
a square-zero extension of 7¢,, 1A by virtue of Theorem HA.7.4.1.26 ).

Let A be an E-algebra over R which is I-complete. If each truncation 7<, A
is good, then A is good. To prove this, extend each restriction X0|57—<nA to
a pointed formal hyperplane cSpec(C,,), where C, is an augmented smooth
coalgebra over 7<,A. Invoking Proposition [I.2.11] we deduce that there is an
augmented smooth coalgebra C' over A equipped with compatible equivalences
Cn ~ (T<nA) ®4 C. 1t is then easy to check that cSpec(C)|e, is canonically

equivalent to Xole,.

Let A be an Ep-algebra over R which is I-nilpotent. Then A is good. This
follows by combining (d) and (e).

Let A be a discrete Ey-algebra over R which is classically I-complete: that is,
the canonical map A — lim A/I * A is an isomorphism of commutative rings. We
will show that A is good. Using Lemma SAG.8.1.2.2 , we can write A as the
limit of a tower

co> Ay o Ay - Ay — Ay

of I-nilpotent connective E-algebras over A with the following properties: each
A, is almost perfect as an A-module, each of the transition maps is surjective
on mo, and the colimit lim Mapgyy, , (A,, B) is contractible for every connective
I-nilpotent E,-algebra B over A. Shifting this tower if necessary, we may
assume that the kernel of the map A — my(Ap) is contained in some power of I.
It follows from (f) that each restriction Xyl¢, can be extended to a pointed
formal hyperplane over A,,, which we can write as cSpec(C),) for some smooth
coalgebra C,, over A,,, equipped with augmentation given by a grouplike element
. € GLike(C,). Choose a coalgebra isomorphism aqg : mo(Co) ~ I's 4y (Mo),
where M is a projective module of finite rank over my(Ag). Without loss of
generality, we may assume that ag(n) = 1, so that aq is classified by a map

Bo : mo(Co) — My satisfying [y(n0) = 0 (see Proposition [1.1.16)).
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Since A is complete with respect to the kernel of the map A — m(Ap), we
can lift My to a module M which is projective of finite rank over A. Since
A is I-complete, we can lift M, to a module M which is projective of finite
rank over mo(R). For n > 0, set M,, = my(A,,) ®4 M. Using the projectivity
of each m(C),) as a module over m(R,), we can extend [, to a compatible
sequence of maps f3,, : mo(C,) — M,. Adjusting these maps if necessary, we
can further assume that 3,(n,) = 0, so that (3, classifies a map of augmented
coalgebras «,, : mo(C),) — F;kro(An)(M”)' Each «,, is a map of flat modules over
the commutative ring mo(A,) which is an isomorphism modulo the nilpotent
ideal Imy(A,,), and is therefore an isomorphism.

For every pair of integers k,n > 0, the projectivity of I'¥ (M) guarantees that
the composite map The projectivity of N (k) guarantees that the map
-1

D(M) = T3 (4, (M) = m0(Cn)

to a morphism of A-modules 7, : ['% (M) — C,,, which is well-defined up to
homotopy. Moreover, each of the diagrams

T4 (M)
>
Cn Cn—l

commutes up to homotopy. Choosing such a homotopy for each n, we obtain a

map v : I5 (M) — lim C;, (beware that the map - is not quite canonical, but
this will not be important in what follows).

For each n > 0, let B, = C)Y = MAH,(C’”,A”), and set B = lim B,;; we will
regard B as an augmented E-algebra over A. For fixed n, the morphisms
{Ynk}k=0 can be amalgamated to a map A, ®4 I'(M) — C,, which is an
equivalence (since it induces the isomorphism a; ! on 7y, and the domain and
codomain are flat over A,,). We therefore obtain R,-module equivalences

B, ~Map, (Cy, A;) ~ Map , (I'y (M nSymA V) ®a Ay

k=0

Passing to the inverse limit over n, we obtain an A-module equivalence B ~
[ Tiso Sym" (M), which is easily seen to be a homomorphism of A-algebras. It
follows that the formal spectrum X = Spf(B) (where we regard B as equipped
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with the topology given by the ideal J = [],.,Sym’ (M ")) can be identified
with the cospectrum of the smooth coalgebra I'* (M), and is therefore a formal
hyperplane over A. We will complete the argument by showing that the functors
X|e, and Xyl|g, are canonically equivalent.

By construction, we can identify £ 4 with the colimit of the filtered diagram of
oo-categories
Eag = Ea —Eay— .

It will therefore suffice to construct a compatible family of equivalences X|¢, =~
Xole,, - Note that both sides are obtained from formal hyperplanes over A,
which can be described as the formal spectra of A, ®4 B and B,,, respectively.
We will complete the proof by showing that the canonical map p: A, ®a B ~ B,
induces an equivalence after J-completion (in fact, it is already an equivalence
before J-completion, but we will not need to know this). Unwinding the
definitions, we can write p as a composition

Ay ®4 B lim A, ©4 By 2> lim A, ®a,, B 2> B,.
mzn mz=n
Here the map p’ is an equivalence because A, is almost perfect as an A-module
and each B, is connective, and the map p” induces an equivalence after .J-
completion because each individual map A,®4,, B,, — R, induces an equivalence
after J-completion (and the J-completion functor commutes with limits). We
will prove that p” is an equivalence by showing that the natural map wu :
{A, ®4 Bpn}msn — {An®a,, Bm}msn is an equivalence of Pro-objects of CAlg§}'.
Note that u is a pushout of the natural map wug : {A, ®4 Amtmsn — {An}msn-
It will therefore suffice to show that wug is an equivalence of Pro-objects: that is,
that for every object S € CAlg}’', the induced map
Mapcaygy (An, ) = lim Mapgpjgen (An @4 A, S)

mz=n
~ Mapcpjger (Ap, S) x lim MaPCAlg;n(AmS)
m=n
is a homotopy equivalence. This is clear: if S is not [-nilpotent, then both sides
are empty; if S is I-nilpotent, then the direct limit li_r)nm% Mapcagen (A, S) is
contractible.

Let A be a discrete E-ring over R which is /-complete. Then the canonical map
A — lim A/T"A is surjective (Corollary SAG.7.3.6.2) whose kernel is a square-
zero ideal J < A. Note that the inverse limit lim A/1 kA is classically I-complete
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(since it is [-complete and I-adically separated; see Corollary SAG.7.3.6.3 ), and
therefore good by virtue of (¢). Applying (b), we conclude that A is good.

(1) Let A be an Ey-algebra over R which is I-complete and k-truncated for some
k> 0. Then A is good. This follows by induction on k: the case k = 0 follows
from (h), and the inductive step follows from (b) (since each truncation 7<,, A is
a square-zero extension of 7<,, 1A by virtue of Theorem HA.7.4.1.26 ).

(7) Let A be any I-complete E-algebra over R. Combining (e) and (i), we conclude
that A is good.

2.2 Construction of Identity Components

Our goal in this section is to prove Theorem [2.0.8] Using the results of §2.1] we
can easily reduce to the following special case:

Theorem 2.2.1. Let R be a commutative F,-algebra and let G be a p-divisible group
over R. Then there exists an essentially unique formal group G° € FGroup(R) with
the following property:

(x) Let £ < CAlgy denote the full subcategory spanned by the truncated objects.
Then the functor G°|¢ is given by A — fib(G(A4) — G(A™?)).

Proof of Theorem [2.0.8 from Theorem[2.2.1. Let R be a (p)-complete Ey-ring, let
G be a p-divisible group over R, and let & < CAlg?’ ) be the full subcategory
spanned by those objects which are truncated and [-nilpotent. Define a functor
G{ : £ - Modg' by the formula G§(A) = fib(G(A4) — G(A™)). We wish to show
that Gg admits an essentially unique extension G° : CAlg?? 5 — Modz' which is a
formal group over R. Replacing R by 7¢(R), we may assume that R is connective. It
will then suffice to show that G satisfies conditions (1) and (2) of Theorem [2.1.1} To
verify (1), we can replace R by mo(R)/(p), in which case the desired result follows from
Theorem [2.2.1] For (2), it suffices to observe that the functor G is cohesive (since it
is a filtered colimit of functors G[p*], each of which is representable by a finite flat
group scheme over R). ]

The remainder of this section is devoted to the proof of Theorem We proceed
as in [27], which contains a proof of the analogous fact in the setting of classical
algebraic geometry. Roughly speaking, the idea is to realize G° as the union of finite
flat group schemes G[F™], where each G[F™] denotes the kernel of the nth power
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of the Frobenius map on G (or equivalently in G[p"]). Here the kernel is taken in
the ordinary category of group schemes over R. To guarantee that the direct limit
lim G[F"] defines the correct functor on all (truncated and connective) E.-algebras
A over R, we will exploit the heuristic idea that the difference between A and my(A)
consists of “nilpotent” data, which can be annihilated by applying a sufficiently large
power of the Frobenius map (see Proposition for a precise statement).

2.2.1 The Relative Frobenius Map

Let R be a commutative ring of characteristic p and let ¢pr : R — R denote the
Frobenius homomorphism, given by the formula pg(z) = 2?. For every commutative
R-algebra A and every integer n > 0, we let AY/P" denote the R-algebra obtained
from A by restricting scalars along the map ¢% : R — R. In other words, if A is
a commutative ring equipped with an R-algebra structure f : R — A, then A"
denotes the same commutative ring, equipped with the R-algebra structure given by

the composition R -2 R ENYy'Y

Notation 2.2.2. Let X be a functor from the category CAIgg of commutative R-
algebras to some other category C (in practice, C will be either the category of sets or
the category of abelian groups). For each n > 0, we let X ") . CAlgg — C denote the
functor given by the formula X ®")(A) = X (AYP"). Note that for every commutative
R-algebra A, the nth power of the Frobenius map ¢4 can be regarded as an R-algebra
homomorphism from A to AYP", which induces a map X (A) — X (AY?") = X#")(A).
These maps are natural in A, and therefore define a natural transformation of functors
@ s X — X" which we will refer to as the relative Frobenius map.

Proposition 2.2.3. Let R be a commutative ring of characteristic p and let X be a
flat R-scheme which is a local complete intersection (relative to R). Let us regard
each Frobenius pullback X ") as a spectral scheme over R, which we identify with its
functor of points X®") : CAlgyt — S. Let XP”) denote the direct limit of the sequence

X o x® , x@) _, ...

Y

formed in the co-category Fun(CAlgR', S), where the transition maps are given by the
relative Frobenius of Notation[2.2.3. Then, for every truncated Eo-algebra A over R,
the canonical map XP7)(A) — XP*)(Ard) is a homotopy equivalence.

Remark 2.2.4. In the statement of Proposition [2.2.3 the hypothesis that X is a
local complete intersection over R can be eliminated: it is only important that X is
flat and of finite presentation over R.
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Proof of Proposition[2.2.3. Let us say that a flat R-scheme X is good if the map
X@)(A) — XP)(Ad) is a homotopy equivalence for every truncated object A e
CAlgh'. Equivalently, X is good if, for every truncated object A € CAlg}' and every
point n € X®*)(Ad) the homotopy fiber X ®*)(A) X x ™) (aredy {N} 18 contractible.
This assertion is local with respect to the Zariski topology on Spec(A). Consequently,
if we are given some open cover {U,} of X where each U, is good, then X is also
good. We may therefore assume without loss of generality that X fits into a pullback
diagram of affine R-schemes o :

X A
Spec(R) — A},

where the vertical maps are flat. In this case, o is also a pullback diagram of spectral
schemes over R, so that the diagram of functors

X ®*) (A%)(p"o)

(Spec(R))*") — (Af)®")

is also a pullback square. Consequently, to show that X is good, it will suffice to show
that every affine space A% is good. Writing A% as a product of affine lines, we are
reduced to showing that A} is good. Passing to an open cover again, we can reduce to
showing that the punctured affine line X = Spec(R[t*']) is good. Note that for each
n = 0, we can identify X®") with the spectrum of the subalgebra R[t*P"] < R[t*'].

Let A be a truncated E-algebra over R and let I denote the fiber of the map
A — A4 We wish to show that the map

p - lim MapCAlgR(R[tian A) — h_H}MaPCAlgR(R[tipn]a Ared)

n

is a homotopy equivalence. Let gl,(A) denote the (connective) spectrum of units of A
(see §1.6.3)) and let gl, (1) denote the fiber of the map gl;(A4) — gl,(A™?). Unwinding
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the definitions, we see that p fits into a fiber sequence

h_H)l MapSp (pn Z7 gll (A))

g

lim Mapg, (p" Z, gl, (A™?))

|

lim Mapg, (p" Z, 27" gl,(1)).
It will therefore suffice to show that the colimit of the diagram
MapSp(Z7 271 g11<1)) ﬂ) MapSp(Z7 Zil g11<[)) ﬂ) MapSp(Z7 Zil gll([)) —

is contractible. Since Z is almost perfect as a module over the sphere spectrum and
>~ 1gl) (1) is truncated, we can identify this colimit with Mapg,(Z, %" gl, (Z)[p"]).
To complete the proof, it will suffice to show that gl, (I)[p~'] ~ 0: that is, that the
action of p is locally nilpotent on each homotopy group 7, gl, (/). For s > 0, this
is obvious: the abelian group m,gl (/) ~ msA is annihilated by p. For s = 0, we
can identify 7, gl (A) with the group of units in the commutative ring m(A) which
have the form 1 + ¢, where ¢ is nilpotent. The desired result now follows from the
observation that (1 +¢)?" =1+ " =1 for n » 0. O]

2.2.2 p-Divisible Groups in Characteristic p

In this section, we review some basic facts concerning p-divisible groups defined
over commutative rings R of characteristic p which will be needed for the proof of
Theorem [2.0.8f We essentially follow the presentation of Messing ([27]), with some
minor deviations.

Notation 2.2.5. Let G be a p-divisible group over R, which we regard as a functor
from CAlgg to the category Ab of abelian groups. For each integer n > 0, we let
G[F"] denote the kernel of the relative Frobenius map ¢g m: G- G, We
regard G[F™] as a functor from the category CAIg}?2 of commutative R-algebras to
the category of abelian groups.

Proposition 2.2.6. Let R be a commutative ring of characteristic p and let G be a
p-divisible group over R. Then, for each n >0, the functor G[F"] : CAlgf2 — Ab is
(representable by) a finite flat group scheme over R.
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Proof. Let V™ : G?®") — G be the n-fold Verschiebung map and let G®")[V"] denote
its kernel. Note that the compositions

cv) V' g fem g g e g Y @

are given by multiplication by p" on G and G®"), respectively. It follows that we
can identify G[F"] and G®")[V"] with the kernels of the maps eapyr : Gl —
G®)[p"] and V" : GP")[p"] — G[p"], respectively. Both of these maps are homo-
morphisms of finite flat group schemes over R. It follows that G[F"] and G®")[V"]
are (representable by) group schemes which are finite and of finite presentation over
R: that is, we have isomorphisms

G[F"] ~ Spec(A) G [V"] ~ Spec(B)

where A, B € CAIgg are finitely generated as R-modules.
We have an exact sequence of functors

0— G[F"] - G[p"] L G¥" [V,

where f is induced by the relative Frobenius map ¢¢ /R - Since G*") is a p-divisible
group over R, the map p" : G®") — G®") is an epimorphism of sheaves for the
fppt topology, so that the relative Frobenius map ¢¢ IR G — G is also an
epimorphism of fppf sheaves. It follows that f is an epimorphism of fppf sheaves.
We can therefore choose a faithfully flat map B — B’ for which the induced map
Spec(B’) — Spec(B) ~ GP")[V"] factors through f. It follows that the fiber product
Spec(B’) xspec(p) G[p"] splits as a product Spec(B’) xgpec(r) G[F"] (here all products
are formed in the category of schemes). Write Spec(B’) Xgspec(r)y G[F"] = Spec(C),
where C' = Tor (A, B). Since B’ is flat over B and G[p"] is flat over R, we conclude
that C' is flat over R.

The zero section of G®")[V"] determines an R-algebra homomorphism € : B — R.
Set R' = B’ ®g R, so that R’ is faithfully flat over R. Note that the tautological map

A®r R — C®gR ~ Torf(A, B ®r R

admits a left inverse (given by the muliplication map B’ ®z R’ — R'). It follows that
A®pr R is a retract of C ®p R/, and is therefore flat over R'. Since R’ is faithfully flat
over R, it follows that A is flat over R: that is, G[F™"] is a finite flat group scheme, as
desired. O]
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Variant 2.2.7. Let R be a commutative ring of characteristic p and let G be a
p-divisible group over R. Then, for each n > 0, the group scheme G®")[V"] appearing
in the proof of Proposition [2.2.6|is also finite flat over R. This can be seen by a slight
modification of the proof of Proposition [2.2.6] or alternatively by applying Proposition
2.2.6 to the Cartier dual of G.

Lemma 2.2.8. Let k be a field of characteristic p, let G be a finite flat group scheme
over k, and suppose that the relative Frobenius map ¢ : G — G®) vanishes. Then
we can write G = Spec(k[x1, ..., zq]/(2}, ..., 2h)) for some n = 0.

Proof. Write G = Spec(A), where A is a cocommutative Hopf algebra over k. The zero
section of G' determines an augmentation € : A — x, whose kernel is an ideal I < A.
Choose a collection of elements vy, . ..,y4 € I whose images form a basis for I/1? as a
vector space over k. The vanishing of ¢¢/. guarantees that y7 = 0 for 1 <i < n, so
that we obtain a r-algebra homomorphism « : k[xy, ..., z4]/(2], ..., 24) = A given
by a(x;) = y;. It follows easily by induction that the composite map

Blon, o ad (@8, ah) S A AJTE

is surjective for each k& > 0. The vanishing of ¢/, guarantees that G is connected: that
is, the ideal [ is nilpotent. It follows that « is surjective. We will complete the proof
by showing that « is injective. Suppose otherwise: then we can choose some nonzero
polynomial f(xy,...,z4), having degree < p in each x;, such that f(y1,...,y4) = 0 in
A. Write [ as a sum Zg’;ol)d falz1, ..., x4), where each f,(x1,...,x4) is homogeneous
of degree n. Then there exists some smallest integer k such that fx # 0. Let us assume
that f has been chosen such that k is as small as possible. Note that the equation
f(y1,--.,ya) = 0 guarantees that k& > 0.

Let A: A — A®, A be the comultiplication on A. The relations (e ® id) o A =
id = (id ®e) o A guarantee that we have A(y;) = 1;® 14+ 1®y; (mod I®I). It follows
that

fk(y1®1+1®y177yd®1+1®yd> EA(f(y177yk>) =0 (mod J),

where J is the ideal of A ®, A generated by I ® I° for a + b > k. In particular, we
have

d
Zw@af’“(xla’g;”’xd)(yl,...,yk) —0 (mod AQI™ + I®I" + IP® A.)
i=1 i
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Since the elements 1,7, .. .,ys form a basis for A/I?, it follows that each expression

Ofi(x1,--5q)
ox;

polynomials of degree > k in the y;. Invoking the minimality of k, we conclude that the

(Y1, ..., yk) belongs to I*: that is, it can be written as a sum of homogeneous

expression w vanishes for each i. Writing fx(z1,...,z4) as a linear combination
of monomials ¢, .,z - -z, we conclude that each e; is divisible by p. Since f
has degree < p in each z;, we must have e; = e = --- = ¢4 = 0, contradicting the
inequality ey + - +e4 =k > 0. [

Lemma 2.2.9. Let R be a commutative ring of characteristic p, let G be a p-divisible
group over R, and let p € R be a prime ideal. Then there exists an elementte R —p
for which the group scheme G|F] Xgpec(r) Spec(R[t1]) is isomorphic, as an R[t™!]-
scheme, to the spectrum of a truncated polynomial ring R[t™', xy, ... xq]/(2}, -+, 2h).
Moreover, we can further assume that the zero section of G[F| Xspec(r) Spec(R[t™1])
is given by the map

R[t™ Yz, .. xg)/(2h, - 2h) — Rt x; — 0.

Proof. By virtue of Proposition 2.2.6, we can write G[F| = Spec(4), where A is a
finite flat R-algebra. The zero section of G determines an R-algebra homomorphism
€: A — R with kernel I € A. Let k = k(p) denote the residue field of R at the prime
ideal p, let A, = k ®g A denote the associated fiber of A, and let I, = k ®g I denote
the augmentation ideal in A,. Using Lemma we deduce that there exist elements
Ti,...,Tq € I, which induce an isomorphism pg : K[T1,...,%T4]/(T},... 7)) — A..
Replacing R by a localization if necessary, we may assume that each T; can be
lifted to an element x; € I. Since the relative Frobenius map ¢g/gr vanishes on
G[F], each x; satisfies 2¥ = 0, so we can lift py to an R-algebra homomorphism
p: R[xy,...,xq]/(2f, ..., 25) — A. Then p is a map between projective R-modules
of finite rank which induces an isomorphism after tensoring with the field x =
k(p). It follows that there exists an element ¢ ¢ p such that the induced map
R[t™Y[x1, ..., za]/(2, ..., 2h) — A[t™!] is an isomorphism. O

In the situation of Lemma [2.2.9] we have an analogous description of the group
schemes G[F™] for all n > 0:

Lemma 2.2.10. Let R be a commutative ring of characteristic p, let G be a p-divisible
group over R, and let n = 2 be an integer. Suppose that there exists an isomorphism
of R-schemes

n—1 n—1

a: G[F" 1 ~ Spec(R[z1, ..., z4]/(x} ..., 25 )
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which carries the zero section of G[F™ ] to the map
Spec(R) — Spec(R[z1,...,zq]/(2} ...,z ) x; — 0.
Then « extends to an isomorphism G[F"] ~ Spec R[x1, ..., xzq]/(2} ... 25 ").

Proof. Note that « restricts to an isomorphism of R-schemes
G[F] ~ Spec(R[z1,...,za)/(, ..., 2h)).

It follows that G[F] is a finite flat group scheme of degree p?, and that G[F"~1] is
a finite flat group scheme of degree p"~D?¢ We have a short exact sequence of fppf

sheaves
0~ G[F™] — G[F"] - G[F]"" ) — 0.

which proves that G[F"] is a finite flat group scheme of degree p™¢. Write G[F"] =
Spec(A), and let I < A be the kernel of the augmentation A — R given by the zero
section of G[F™]. Note that the inclusion G[F"'] — G[F"] is a closed immersion
of affine schemes, so that each pullback a*(x;) can be lifted to an element y; € I.
Since G[F"] is annihilated by ¢g p, we have y”" =0, so that the elements {y;}1<i<a
determine a map of R-algebras

p:R[xy, ..., xq]/(2} ... 2 ) > A T — ;.

Note that the spectrum Spec(A/I?) is contained in G[F"~'] € G[F"], so the composite
map

R[xy, ... 4]/, .. 2l ) B A — A/I?
is surjective. Since the ideal I is nilpotent, it follows that p is surjective. Because the
domain and codomain of p are projective modules of rank p™? over R, it follows that

p is an isomorphism. [

2.2.3 The Proof of Theorem [2.2.1]

Let R be a commutative ring of characteristic p and let G be a p-divisible group
over R. To prove Theorem [2.2.1], we must show that there exists a formal group G°
over R having the property that for every truncated object A € CAlg}y', we have a
canonical equivalence G°(A) ~ fib(G(A) — G(A™d)).

For each n > 0, let G[F"] be defined as in Notation 2.2.5] Then G[F"] is

a finite flat group scheme over R (Proposition [2.2.6]), which (by a slight abuse of
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notation) we will identify with the corresponding functor CAlgf — Mody'. Define
Gy : CAlgy — Modgz' by the formula Go(A) = lim(G[F™])(A). We will complete the

proof by verifying the following pair of assertions:
(a) For each A € &€, we have a fiber sequence Go(A4) — G(A4) — G(A™9).
(b) The functor Gglg can be extended to a formal group over R.

We first prove (b). By virtue of Proposition , (b) is equivalent to the assertion
that the functor (Q2* o Go)le : € — Si can be extended to a (pointed) formal
hyperplane over R. This assertion is local with respect to the Zariski topology on
Spec(R). Using Lemma [2.2.9] we can assume that there exists an isomorphism of
R-schemes «ay : G[F| ~ Spec(R[x1,...,zq4]/(x},...,ah)) which carries each z; to a
regular function on G[F] which vanishes along the zero section (Lemma [2.2.9). Using
Lemma [2.2.10 we can extend a; to a compatible sequence of isomorphisms

(e pn

a, : G[F"] ~ Spec(R[x1, ..., zq]/(a} ..., 25)).

Let C,, denote the R-linear dual of R[z1, ..., xz4]/(z%" ..., 25" ), regarded as a commu-
tative coalgebra over R. Note that the composite functor

CAlg S Noagr 25 s

can be identified with the cospectrum cSpec(C,,). Consequently, if A € CAlg}y' is
truncated, then Proposition [1.2.14] supplies a homotopy equivalence

Q*Go(A) =~ lim Q°G[F"](A)

0

liny cSpec(C,,) ()

n

lim Map,cajg , (A,C,®r A)
Map cag, (4, (lim C,) ®r A)

=

cSpec(C)(A),

12

0

12

where C' denotes the colimit lim C,, (formed in the category of flat coalgebras over
R). We now observe that C' is a smooth coalgebra over R (isomorphic to the divided
power coalgebra I'%(R?)), so that cSpec(C) : CAlgh — S is a formal hyperplane
which extends the functor (2% o Gy)lg : € — S.
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We now prove (a). For each n = 0, the proof of Proposition supplies a short
exact sequence of finite flat group schemes

0— G[F"] - G[p"] - G [V"] -0

(see Variant [2.2.7)). These exact sequences are compatible n varies: more precisely, we
have commutative diagrams

0 ——G[F"] G[p"] GUI[vr]

T e

00— G[Fn+1] . G[pn+1] - G(pn+1)[vn+1] - O,

0

where f(n) denotes the restriction of the relative Frobenius map G®") — G®"™)_ Let
H denote the direct limit of the sequence

GP[V] S, G(:DZ)[VQ] EICIN G(p3)[v3] e

formed in the oo-category Fun(CAlgy', Mod7'). Then the exact sequences above yield a
fiber sequence Gg — G — H in the co-category Fun(CAlgy', Mod7'). Note that for any
A e CAlg%, the group Go(A™?) vanishes; it follows that the map G(A™4) — H(Ard)
is a monomorphism of abelian groups. Consequently, to prove (a), it will suffice to
show the following:

(¢) Let A be a truncated E,-algebra over R. Then the canonical map H(A) —
H(A™) is an equivalence in Mody.

Note that each of the maps f(n) : GF[V"] — GE")[V"*H1] factors as a composition
G#IV '), G(p”“)[vn] s G(p"“)[vnﬂ]’

where f'(n) is the relative Frobenius map associated to the finite flat group scheme
GP[V"]. We can therefore write H as a filtered colimit lim H,,, where each H, is

defined as the colimit of the diagram of relative Frobenius maps

n+1

G[V"®) - G[V"]P") - G[Vn](p"”) —

It will therefore suffice to show that for every truncated Ep-algebra A over R, the
map H,(A) — H,(A™) is an equivalence in Mody', or equivalently that the map
Q%0 H,)(A) — (2% 0 H,)(A™?) is a homotopy equivalence of spaces. This is a special
case of Proposition [2.2.3]
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2.2.4 Example: The Identity Component of /)=

Let R be an Ey-ring and let G,,(R) be the strict multiplicative group of R
(Construction [I.6.10). For every positive integer n, we let p,(R) denote the fiber
of the map n : G,,(R) — G,,(R), formed in the oo-category Mody' of connective
Z-module spectra. The functors {1, }r=0 can be assembled into a p-divisible group:

Proposition 2.2.11. Let p,» : CAlg™ — Mody' denote the functor given by the

formula
ppe (R) = fib(G(R) — G (R)[1/p])-

Then py» is (representable by) a p-divisible group over the sphere spectrum S.

We will refer to the p-divisible group p,= as the multiplicative p-divisible group
over S.

Proof of Proposition[2.2.11. By construction, the Z-module p,»(R) is (p)-nilpotent
for each R. For every finite abelian p-group M, the functor

R = Mapyoa, (M, pip= (R)) =~ Mapygoq, (M, G (R)) ~ Maps, (M, GL (1))

is representable by the suspension spectrum X% (M) (regarded as a connective E-
ring). We complete the proof by observing that if u : M — N is a monomorphism
of finite abelian groups, then the induced map X7 (M) — XT(N) is finite flat: in
fact, X7(N) is a free module of finite rank over X7 (M), with a basis given by any
collection of coset representatives for M in N. n

Since the p-divisible group p,» is defined over the sphere spectrum, it determines
a p-divisible group over every E,-ring R. We will abuse notation by denoting this
p-divisible group also by f,x.

Proposition 2.2.12. Let R be a (p)-complete Eq,-ring, and let us regard the p-divisible

group jiyo of Proposition |2.2.11 and the formal group ém of Construction as
defined over R. Then there is a canonical equivalence of formal groups pe ~ Gy,

Proof. Without loss of generality, we can assume that R is connective (in fact, it suffices
to treat the universal case where R = S is the (p)-completed sphere spectrum). For
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every connective R-algebra A, we have a commutative diagram

G [pj"] (4) MPTA) Hpe (fred)
Gun(A) G (4) G (A1)

. | |

Gu(A)[p ] —= Gu(A)[p ] —= G (A [p~!]

in which the rows and columns are fiber sequences. Let & < CAlg%' be the full
subcategory spanned by the connective R-algebras which are truncated and (p)-
nilpotent. For A € £, the Z-module spectrum G,,(A)[p~!] vanishes (Lemma [2.3.24)),

so this diagram supplies an identification
Gn(4) < Gulp”](4)
S 6Dy (A) = e (A7)
fpe (A)

depending functorially on A. The desired result now follows from Theorem 2.1.1} [

2.3 Connected p-Divisible Groups

Let R be a (p)-complete Eq-ring. The construction G — G° determines a functor
from the co-category of p-divisible groups over R. In this section, we consider the
following;:

Question 2.3.1. Let G be a formal group over R. When can we find a p-divisible
group G having G as its identity component?

In the case where R is a complete local Noetherian ring, Question was studied
by Tate in [35], who proved the following;:

Theorem 2.3.2 (Tate). Let R be a complete local Noetherian ring whose residue field
k has characteristic p. Then the construction G — G° determines an equivalence
between the following categories:

(a) The category of p-divisible groups G over R for which the special fiber G, is

connected (see Definition[2.5.5).
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(b) The category of formal groups G over R for which the map [p] : G - G
determines a finite flat map [p]*: Og — Og

Remark 2.3.3. In [35], the formulation of Theorem is slightly different. In
particular, it is phrased in terms of the inverse of the identity component functor
G — G° (which is defined only on those formal groups as in (b)).

Warning 2.3.4. In [35], Tate uses the term connected to refer to a p-divisible group
G satisfying the requirement described in part (a) of Theorem [2.3.2] We will instead
use the term formally connected (to emphasize the role of the formal scheme Spf(R)),
and reserve the term connected for a stronger condition on p-divisible groups (see

Definition [2.3.5)).

The purpose of this section is to establish a generalization of the equivalence of
Theorem 2.3.2] Let R be a complete adic E-ring, and suppose that p is a topologically
nilpotent element of m(R). Our first goal will be to introduce the notion of a formally
connected p-divisible over R (Definition [2.3.10). We then show that the construction
G — G° is fully faithful when restricted to formally connected p-divisible groups
(Corollary . We will say that a formal group G over R is a p-divisible formal
group if it arises as the identity component of a formally connected p-divisible group
(Definition . We then show that the class of p-divisible formal groups admit a
characterization similar to part (b) of Theorem (see Theorems [2.3.20| and [2.3.26]).

2.3.1 Connectedness and Formal Connectedness

We begin by introducing some terminology.

Definition 2.3.5. Let R be a connective E,-ring and let G be a p-divisible group
over R, so that the functor (Q2* o G[p]) : CAlgy — S is corepresentable by a finite
flat R-algebra A. We say that G is connected if the underlying map of topological
spaces | Spec(A)| — | Spec(R)| bijective.

More generally, if G is a p-divisible group over an arbitrary E,-ring R, we will
say that G is connected if it is connected when viewed as a p-divisible group over the
connective cover 7sq(R).

Remark 2.3.6. Let R be a connective E,-ring and let G be a p-divisible group over
R. Then G is connected if and only if, for each residue field s of the commutative
ring mo(R), the fiber G, is a connected p-divisible group over k.
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Remark 2.3.7. Let G be a p-divisible group of height h > 0 over an E,-ring R. If
G is connected, then every residue field of the commutative ring mo(R) must have
characteristic p. Consequently, the prime number p must be nilpotent in mo(R).

Remark 2.3.8. In the situation of Definition the zero section of G determines
an augmentation € : A — R. Note that G is connected if and only if the closed
embedding | Spec(R)| < | Spec(A)| determined by € is a homeomorphism: that is, if
and only if the kernel ideal I = ker(my(A) — m(R)) is locally nilpotent.

Proposition 2.3.9. Let R be a connective E,-ring and let G be a p-divisible group
over R. The following conditions are equivalent:

(a) The p-divisible group G is connected.
(b) Let B be a reduced commutative algebra over mo(R). Then G(A) ~ 0.

Proof. Suppose first that (a) is satisfied, and let B be a reduced commutative algebra
over mo(R); we wish to show that G(B) = 0. Replacing R by B, we can assume
that R = B is a reduced commutative ring. Suppose that there exists a nonzero
element x € G(R). Multiplying = by a suitable power of p, we can assume that px = 0;
that is, « can be regarded as a nonzero R-valued point of G[p]. Let A be as in
Definition [2.3.5, so that x determines an R-algebra map p: A — R. Let ¢ : A — R be
the augmentation of Remark [2.3.8, Assumption (a) guarantees that ker(e) is locally
nilpotent. Since R is reduced, it follows that p(ker(e)) = 0 so that p factors through e,
contradicting our assumption that x # 0.

Now suppose that (b) is satisfied. Let A be as above, and set B = A™. Then the
canonical map p : A — B determines a p-torsion element x € G(B). Assumption (b)
guarantees that x = 0, so that p factors through the map ¢ : A — R. In particular,

every element of the ideal I = ker(m(A) 2 mo(R)) vanishes in B and is therefore

nilpotent. It follows from Remark that G is connected. O

For many applications, Definition [2.3.5]is overly restrictive: note that it essentially
requires the the E,-ring to be (p)-nilpotent (Remark [2.3.7)). It will be therefore be
useful to contemplate a weaker notion of connectedness.

Definition 2.3.10. Let R be an adic E,-ring and let G be a p-divisible group over R.
We will say that G is formally connected it G, (ry/r is a connected p-divisible group
over the commutative ring 7y(R)/I, where I < my(R) is a finitely generated ideal of
definition.
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Remark 2.3.11. Let R and G be as in Definition 2.3.10} and let K < |Spec(R)|
denote the vanishing locus of a finitely generated ideal of definition I < mo(R). Then G
is formally connected if and only if, for every point z € K, the p-divisible group G ()
is connected; here x(x) denotes the residue field of mo(R) at the point x. In particular,
this condition depends only the closed subset K < | Spec(R)| (or, equivalently, on the
topology of my(R)), and not on the choice of an ideal of definition I < mo(R).

2.3.2 Identity Components of Connected p-Divisible Groups

We can now state the first main result of this section.

Theorem 2.3.12. Let R be a complete adic Eo,-ring, and suppose that p is topologically
nilpotent in mo(R) (so that R is (p)-complete). Let G and G’ be p-divisible groups
over R, and assume that G is formally connected. Then the canonical map

MapBTT’(R)(Ga G/) - MapFGroup(R)(Goa G/O)
is a homotopy equivalence.

Corollary 2.3.13. Let R be a complete adic E-ring and suppose that p is topologically
nilpotent in mo(R). Let BTP(R)™ denote the full subcategory of BT?(R) spanned by the
formally connected p-divisible groups over R. Then the construction G — G° induces

a fully faithful functor BT?(R)* — FGroup(R).

Proof of Theorem[2.3.14, Without loss of generality, we may assume that R is con-
nective. Let I < my(R) be a finitely generated ideal of definition, and let £ < CAlg'
be the full subcategory spanned by those connective E -algebras over R which are
truncated and I-nilpotent. Using Proposition [2.3.9] we deduce that the canonical map
G°|¢ — GJ¢ is an equivalence. It follows from Theorem that the restriction map

MapFGroup(R)(Go7 G”) — MapFun(S,Mod%“)<Go|5> G”¢)
is a homotopy equivalence. Consequently, the canonical map
0 : MapBTp(R)(Gv G') — MapFGroup(R)(Go7 G")
can be identified with the composition
Mapgpaa(G. G) > Mappy e noap (Gle. Gle) > Mappyy e roag (Gle, G°e).

We will complete the proof by showing that 8 and #” are homotopy equivalences.
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Let H : £ — Mody' denote the functor given by the formula H(A) = G/(A™Y).
We then have a fiber sequence of functors G°|¢ — G'|¢ — H, which gives a fiber
sequence of mapping spaces

Mappy (e moaz) (Gle: Gle)

\Le”

MapFun(S,ModCZn) (G |57 G” |5)

|

MapFun(&,Mod%“) (G|S= H)-

Let £y < £ be the full subcategory spanned by those objects A € £ < CAlg%' which
are reduced. Then H is a right Kan extension of H|g,. Moreover, our connectivity
assumption on G guarantees that Glg, vanishes (Proposition [2.3.9)). It follows that
the mapping space Mappyn(e poag (Gle, H) is contractible, so that 6” is a homotopy
equivalence.

Writing G as a direct limit lim G[p*], we can identify ¢’ with a limit of maps

9;43 : Map}?‘un(é',Modczn)(G[pk]v G/) - MapFun(5,Modczn)(G[pk] |57 G/|5)'
We will complete the proof by showing that each 6, is a homotopy equivalence.
Unwinding the definitions, we see that 6} can be identified with the restriction map

(G[pk]7 G/[pk]) - MapFun(&Modcz“ ok Z)(G[pk]’fh G/[pk“g)

Ma n
pFun(E,ModCZ o )

z)

Using Lemma SAG.8.1.2.2, we can write R as the limit of a tower
. >Ry > Ry —» R,

of connective [-nilpotent E,-algebras, having the property that the direct limit
lim Mapgayg, (Fn, A) is contractible for every I-nilpotent Eq-algebra over R. Let
T : CAlgyy — Modgz', 5 denote a right Kan extension of G'[p"]|¢; unwinding the
definitions, we see that T" is given by the formula

T(A) = lim G'[p"](7<n(A ®r Rn))-

Since G’ is a p-divisible group, the functor Q*G'[p*] : CAlg% — S is corepre-
sentable (by a finite flat R-algebra), and therefore preserves small limits. It fol-
lows that G/[p*] also preserves small limits, so that T is given by the formula
T(A) = G'[P(lim 7<,(A®r R.)) ~ G'[p*](A7).
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Invoking the universal property of T" as a right Kan extension, we can identify 6,
with the canonical map

)(G[pk]7 G’ [pk]) - Ma’pFun(S,ModCZ"/ )(G[pk]7 T)

MapFun(E,ModCZ"/

pk z pk zZ

Our assumption that G is a p-divisible group over R guarantees that the functor
G[p"] is representable by a finite flat group scheme over R, and is therefore a left
Kan extension of its restriction to the full subcategory CAIgg c CAlg}y' spanned by
the finite flat R-algebras. Consequently, to show that 6} is a homotopy equivalence,
it will suffice to show that the canonical map G'[p¥](A) — T(A) = G'[p*](A}) is an
equivalence whenever A is finite flat over R. This is clear, since our assumption that
R is I-complete guarantees that A is also I-complete (Proposition SAG.7.3.5.7). [

2.3.3 p-Divisible Formal Groups

We now study the essential image of the fully faithful embedding
BT?(R)" < FGroup(R) G—G°
described in Corollary [2.3.13]

Definition 2.3.14. Let R be a complete adic E,-ring, and suppose that p is nilpotent
in mo(R). Let G be a formal group over R. We will say that Gisa p-divisible formal
group if there exists a formally connected p-divisible group G and an equivalence of
formal groups G~ G°.

Remark 2.3.15. In the situation of Definition [2.3.14], the p-divisible group G is
determined (up to equivalence) by G, by virtue of Corollary [2.3.13]

Example 2.3.16. Let IR be a commutative algebra over F,, and let G be the formal
additive group over R. Then Ga is not p-divisible: note that the map p : G — G
vanishes, but multiplication by p can never vanish on a nonzero p-divisible group over

R.

Warning 2.3.17. In the situation of Definition [2.3.14], the condition that a formal
group G is p-divisible depends on the choice of topology on my(R). However, the
associated p-divisible group G (if it exists) does not depend on the choice of topology.
Suppose that there exist finitely generated ideals I,J < m(R) containing p, such
that R is both I-complete and J-complete, and G is a formal p-divisible group with
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respect to either the I-adic and J-adic topology on my(R). Then we can choose
p-divisible groups G, G; € BT?(R) and equivalences G} ~ G ~ G5, where Gy is
formally connected for the I-adic topology and G ; is formally connected for the J-adic
topology. It follows that G; and G are both formally connected for the (I + J)-adic
topology. Since R is (I + J)-complete (Corollary SAG.7.3.3.3 ), Theorem [2.3.12] implies
that the equivalence of formal groups G§ ~ G ~ G can be lifted (in an essentially
unique way) to an equivalence of p-divisible groups G; ~ G .

Remark 2.3.18. Let R be a complete adic E,-ring with p topologically nilpotent in
mo(R), and let G be a formal group over R. Then G is p-divisible when regarded as a
formal group over R if and only if it is p-divisible when regarded as a formal group
over the connective cover 75 (R).

Remark 2.3.19 (Functoriality). Let f : R — R’ be a morphism of complete adic
E-rings, where p is topologically nilpotent in 7y(R) (hence also in mo(R')). Let G be
a p-divisible formal group over R. Then Gp is a p-divisible formal group over R'.

2.3.4 A Criterion for p-Divisibility

In the case where the topology on my(R) is discrete, p-divisibility can be tested by
the following criterion:

Theorem 2.3.20. Let R be a connective E-ring and assume that p is nilpotent
in mo(R). Let G be a formal group over R, and let @[p] : CAlgy — S denote the
fiber of the map [p] : G > G. Then G is a p-divisible formal group (with respect
to the discrete topology on mo(R)) if and only é[p] is (representable by) a finite flat
group scheme over R. Moreover, if this condition is satisfied, then the pullback map
[p]*: Oa — Og is finite flat.

Warning 2.3.21. Let R and G be as in Theorem 2.3.20, and suppose that the pullback
map [p|* : Og — Og is finite flat. In this case, the functor (Q*Glp]) : CAlgy — S
has the form Spf(A), where A is the adic E,-ring given by a pushout diagram

O —~R

l[p]* l

Og— A

Note that A is finite flat over R. However, this is not enough to guarantee that G is
a p-divisible formal group (with respect to the discrete topology on mo(R)). To apply
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Theorem [2.3.20, we need to know not only that A is finite flat over R, but also that
the topology on my(A) is discrete.

Example 2.3.22. Let R = Z,, be the ring of p-adic integers, and let érm be the formal
multiplicative group over R (this does not quite fit the paradigm of Warning [2.3.21
since p is not nilpotent in R, but is a good concrete illustration of the phenomenon).
Then the pullback map [p]* : g — Og can be identified with the map of power
series rings

Z([t]] = Z,[[t]] t— (t+1) —1=pt+- - +ptP "+

This map is finite flat of degree p, and the ring A appearing in Warning [2.3.21] can be
identified with the polynomial ring Z,[¢]/((t + 1)? —1). However, the (¢)-adic topology
on this ring is not discrete (since ¢ is not nilpotent).

In the situation of Warning [2.3.21], suppose that R is a field. In this case, any finite
flat R-algebra A is an Artinian ring. Consequently, if I € A is an ideal for which A is
I-complete (or even I-adically separated), then I is nilpotent. We therefore obtain
the following:

Corollary 2.3.23. Let k be a field of characteristic p and let G bea formal group
over k. Then G is a p-divisible formal group (with respect to the discrete topology on
k) if and only the map [p]* : Og — Og is finite flat.

We now turn to the proof of Theorem [2.3.20]

Lemma 2.3.24. Let R be a connective B, -ring, let G bea formal group over R, and
let A e CAlgy' be truncated and (p)-nilpotent. Then G(A)[1/p] ~ 0.

Proof. Note that the functor G is locally almost of finite presentation (Proposition
1.6.8), so we can identify G(A™!) ~ 0 with the colimit lim G(mo(A)/I), where I

ranges over the collection of all nilpotent ideals of mo(A). It will therefore suffice to
prove the following:

(+) Let I be a nilpotent ideal of mo(A). Then the canonical map G(A)[1/p] —
G(mo(A)/I)[1/p] is an equivalence.

To prove (x), choose an integers k and m such that I¥ = 0 and A is m-truncated. Then
the canonical map A — m(A)/I factors as a composition of square-zero extensions

A=TenA = Tam1A — - = 7oA = 7TO(A)/I]C - 7TO(A)/[k_l — - > mo(A)/1.

It will therefore suffice to prove:

101



() Let f : A — B be a morphism in CAlg®' which exhibits A as a square-zero
extension of B by a module M € Mody' which is truncated and satisfies M [1/p] ~
0. Then the canonical map G(A)[1/p] — G(B)[1/p] is an equivalence.

To prove (+'), we choose a pullback square

A B
.
B——= B®%(M).

Since the functor G is cohesive (Proposition [1. , the canonical map G(A)[1/p] —

G(B)[1/p] is a pullback of the map G(B )[1/p] G(B@®X(M))[1/p].

For the rest of the proof, we regard B € CAlgy' as fixed. For every connective
B-module N, the canonical maps G(B) — G(B@® N) — G(B) exhibit G(B) as a
direct summand of G(B ® N), with complementary summand F(N) € Mod$'. Since
G is cohesive, the functor F : Mod% — Mody' is additive. In particular, the canonical
map p : F(N) — F(N) can be obtained by applying the functor F' to the map
p: N — N. Since G is locally almost of finite presentation over R (Proposition ,
the functor F' commutes with filtered colimits when restricted to k-truncated objects
of Mod%, for every integer k. In particular, if N € Mod}' is truncated, we have

F(N)[1/p] =~ lim(F(N) 5 F(N) & F(N) =)
~ F(li_r)n(N&N&NH...»
~ F(N[1/p]).
In the situation of ('), it follows that F/(X(M))[1/p] ~ F(3X(M)[1/p]) ~ 0, so that the
canonical map. G(B) > G(B®X(M)) ~ G(B) ® G(X(M)) induces an equivalence
G(B )[1/p] ~ G(B @ X(M))[1/p], as desired. O
Proof of Theorem |2.53.20). Suppose first that Gisa p-divisible formal group. Write

G = G°, where G is a connected p-divisible group over R. For each object A € CAlg§',
we have canonical homotopy equivalences

Glpl(A) = fib(p: G(A) — G(A))

~ limfib(p : G(r<,A) — G(7<,A)
~ li7ILnﬁb(p G(T<nA) = G(1<,A))
— I Glpl(rend)

~ G[p](4);



the first equivalence results from the fact that G is nilcomplete (Proposition ,
the second from the connectedness of G, and third from the nilcompleteness of G[p].
It follows that G[p] is equivalent to G[p] and is therefore (representable by) a finite
flat group scheme over R.

We now prove the converse. Assume that é[p] is representable by a finite flat
group scheme over R. Without loss of generality, we may assume that this finite
flat group scheme has some fixed degree d. Let & = Og denote the E-algebra of
functions on G. The map p : G — G induces a map [p]* from & to itself. To avoid
confusion, we let &’ denote the Ey-algebra @, regarded as a @-algebra via the map
[p]*. Let I < mo(0) and I' < m(0") denote the kernels of the augmentation maps

Wo(ﬁ) —> WU(R) Wo(ﬁ/) —> 7T0(R)

determined by the zero section of G. Unwinding the definitions, we see that Q2% o é[p]
is representable by the formal spectrum Spf(A), where A = R®g4 0" is endowed with
the (I'mo(A))-adic topology. Consequently, the assumption that G[p] is finite flat of
degree d guarantees both that A is finite flat of degree d over R, and that the ideal
I'mo(A) is nilpotent. It follows that the I'-adic topology on m(&") coincides with the
Imy(0")-topology. Since ¢ is complete with respect to the ideal I’, it is also complete
with respect to the ideal I (when regarded as a @-algebra). Invoking Proposition
SAG.8.3.5.7, we deduce that the map [p]* : @ — &' is finite flat of degree d.
Applying the above argument repeatedly, we deduce that for each £ > 0, the map
[pF]* : € — O is finite flat of degree d*. Moreover, the I-adic topology on (&)
coincides with the [p¥]*(I)mo(&)-adic topology. It follows that G[p*] = fib(p* : G —
G) is representable by a finite flat group scheme over R. Set G = lim G[p"] = fib(G —
G[1/p]). Using the fact that [p]* is finite flat of degree d, we see that each of the maps
p: G[p*] — G[p*!] is locally surjective on 7 with respect to the finite flat topology,
so that G is a p-divisible group over R. Note that G(A) = fib(G(A) — G(A)[1/p])
vanishes when A is reduced, so that G is connected. We will complete the proof by
showing that the canonical map G(A) — G(A) is an equivalence when A is truncated
(so that G is the identity component of G). For this, it will suffice to show that

A~

G(A)[1/p] vanishes, which is a special case of Lemma [2.3.24 O

Remark 2.3.25. In the situation of Theorem [2.3.20], suppose that G is p-divisible,
so that we can write G ~ G° for some formally connected p-divisible group G over R.
Then G has height h if and only if the finite flat group scheme G[p| has degree p".
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2.3.5 The Non-Discrete Case

The general case of Definition [2.3.14] can always be reduced to the case where
mo(R) has the discrete topology, by virtue of the following:

Theorem 2.3.26. Let R be a connective complete adic E,-ring. Assume that p is
topologically nilpotent in my(R) and let J < mo(R) be a finitely generated ideal of
definition. Then a formal group G over R is p-divisible if and only if GWO(R)/J s a
p-divisible formal group over the commutative ring wo(R)/I, endowed with the discrete
topology. Moreover, if this condition is satisfied, then the map [p]* : O — Og is

finite flat.

Proof. The “only if” direction follows from Remarks [2.3.18 and [2.3.19] To prove the
converse, let us assume that Gy (g)/s is a p-divisible formal group; we wish to show

that G is also a p-divisible formal group. Without loss of generality we may assume
that R is connective. We first treat the case where the topology on m(R) is discrete,
so that the ideal J is nilpotent. Let I < mo(&0), I' < mo(0"), and A = R®4 0" be as
in the proof of Theorem @ Our assumption that (A}m( r)/s is a p-divisible formal
group guarantees that B = (mo(R)/J) ®g A is finite flat over the commutative ring
mo(R)/J, and that the ideal I’ B is nilpotent. Since the ideal .J is nilpotent, Proposition
SAG.2.7.3.2 guarantees that A is finite flat over R. Moreover, the ideal I'm(A) is

becomes nilpotent modulo J, and is therefore nilpotent. It follows that G[p] ~ Spf(A)

is finite flat over R, so that Gisa p-divisible formal group by virtue of Theorem
2320

We now treat the general case. Using Lemma SAG.8.1.2.2, we can write R as the
limit of a tower of E.-rings

'—>R4—>Rs—>R2—’R1,

where each R; is connective and J-nilpotent, and the direct limit lim Mapy,,, (R, B)
is contractible whenever B € CAlg}' is J-nilpotent. If éﬂo( R/ is a p-divisible formal
group, then the first part of the proof shows that each G R, is a p-divisible formal
group over R,,. We can therefore write G R, as the identity component of a connected
p-divisible group Gg,. Using Proposition [3.2.2 we can arrange that the tower of
p-divisible groups {Gpg, € BT?(R,)} arises from an essentially unique p-divisible
group G € BT?(R). Since each Gg, is connected, the p-divisible group G is formally
connected. Let G° be the identity component of G. By construction, the formal
group G° is equipped with a compatible family of equivalences (G°)g, ~ G R, Using
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Theorem , we deduce that G° and G are equivalent, so that Gisa p-divisible
formal group as desired.

It remains to show that if G is a p-divisible formal group, then the map [p]* :
Og — Og is finite flat. Note that Lemma SAG.8.1.2.2 guarantees that we can take
Ry to be almost perfect as an R-module. Set G =G Ry, S0 that we can identify 04,
with the tensor product Ry ®g Og. It follows from Theorem that the map
[p]* : O — Og is finite flat after tensoring over R with R;. The flatness of [p|*
then follows from Proposition SAG.8.3.5.7 (note that &g is automatically J-complete,
since can be described as the R-linear dual of a coalgebra over R). ]

We can use Theorems [2.3.20] and [2.3.26] to recover Tate’s theorem:

Proof of Theorem[2.3.9. Let R be a complete local Noetherian ring whose residue
field k has characteristic p. Let us regard R as an adic commutative ring by endowing
it with the m-adic topology, where m < R is the maximal ideal. Using Theorem [2.3.26
and Corollary we conclude that a formal group G over Ris a p-divisible formal
group if and only if the pullback map [p|* : O — O is finite flat. The equivalence

of Theorem now follows from Corollary [2.3.13 O]

2.3.6 Pointwise Characterization of p-Divisibility

Let R be a connective E -ring and let G be a formal group over R. If Gis a
p-divisible formal group over R, then the fiber G, is a p-divisible formal group over
the residue field k(z) of each point = € | Spec(R)|. We now prove a converse:

Theorem 2.3.27. Let R be a connective E,-ring and let G be a formal group over
R. Then G is p-divisible (with respect to the discrete topology on mo(R)) if and only
if it satisfies the following pair of conditions:

(a) For each point x € | Spec(R)|, the formal group éﬁ(x) is p-divisible.

(b) The functor x — ht((A},.i(x)) is a locally constant function on the topological space
| Spec(R)].

The proof of Theorem will require some preliminaries.

Lemma 2.3.28. Let R be a connective E-ring and let G bea formal group over R.
Then G is p-divisible (with respect to the discrete topology on mo(R)) if and only if it
satisfies the following pair of conditions:
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(a) For each point x € |Spec(R)|, the formal group CA}R(CE) is p-divisible.

(t') The functor é[p] : CAlgR — S is corepresentable by a connective Ey-algebra
over R.

Proof. The necessity of condition (a) is clear, and the necessity of (V') follows from
Theorem Conversely, suppose that (a) and (V') are satisfied; we wish to show
that G is p-divisible. Without loss of generality we may assume that R is discrete
(Theorem and that Og ~ R[[z1,...,2,]] is a power series algebra over R
(where each x; vanishes along the zero section of G). Let A be a connective E.,-algebra
over R which corepresents the functor G[p] : CAlgy — S. Then my(A) is a quotient
of R[[z1,...,x,]]/(2%, ..., 2F) for k » 0, and is therefore finitely generated as an

rrn

~

R-module. Since the functor G[p] is locally almost of finite presentation (Proposition
, the E,-ring A is almost of finite presentation over R. Applying Corollary
SAG.5.2.2.2, we see that A is almost perfect as an R-module. Using (V') and the
fiberwise flatness criterion (Corollary SAG.6.1.4.9 ), we conclude that A is flat over R.
Applying Theorem we conclude that the formal group G is p-divisible. O]

Lemma 2.3.29. Let R be a connective Ey-ring, let G be a formal group over R,
and let I be the nilradical of mo(R). If Gry(ry1 is a p-divisible formal group (over the
reduced commutative ring mo(R)/1), then G is p-divisible.

Proof. By virtue of Theorem [2.3.26, we can replace R by mo(R) and thereby reduce
to the case where R is a commutative ring. The assertion is local with respect to the
Zariski topology on | Spec(R)|, so we may further assume that the ring of functions

O¢g is isomorphic to a power series ring R[[x1,...,x,]] for some n > 0, where the
kernel of the augmentation map g — R is the ideal J = (z1,...,2,). The map
[p]* : O — Og carries each z; to some power series f;(Z) € R[[z1,...,z,]|] with

vanishing constant term.
Set J' = (f1(Z), ..., fo(Z)), and let J and J denote the images of J and J' in the
ring (R/I)[[x1,-..,x,]]. Our hypothesis guarantees that the map of power series rings

(R/D[[21,. .. 2] 2220 (R[4, 2]

is adic: that is, the ideal J' contains J™ for some integer m » 0. For every sequence
dn

n

of nonnegative integers d = (dy,...,d,) with dy + -+ d,, = m, set 7l = Pz
so that we have an equation of the form

-

7= Z fi@)ri (@) (mod [z, ..., za]])
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for some power series 7§ ( ¥) € R[[x1,...,2,]]. Let Iy © I be the ideal generated by all
of the coefficients of monomials of degree < m in the expressions 7 — Y fi(Z)rs d(z).
Since Iy is a nilpotent ideal, we can replace R by the quotient ring R/Iy (Theorem
2.3.26) and thereby reduce to the case where Iy = 0: that is, we have J™ < J' + J™*1,
It follows that for every element go(Z) € J™, we can find elements g, (Z) € J™** and
hi (%) € JEJ satistying gi (%) = hp(Z) + ng( 7). Then we can identify go(Z) with the
infinite sum ), hi (%) € J'. Allowing go(%) to vary, we have an inclusion J™ < J’, so
that the map [p]* : O — O¢g is adic and therefore the functor G/[p] is corepresentable.
The desired result now follows from Lemma 2.3.28 O

Proof of Theorem [2.3.27. The necessity of conditions (a) and (b) is clear. To prove
sufficiency, suppose that we are given a formal group G over a connective Ey-ring R
which satisfies (a) and (b): we wish to show that G is p-divisible. By virtue of Lemma
2.3.29, we may assume without loss of generality that R is a reduced commutative
ring. Working locally on | Spec(R)|, we may further assume that Og is a power series
algebra R|[[ti,...,t,]] and that the function z — ht(éﬁ(x)) is constant with value h.
For 1 <i < n, let f;(f) denote the image of ¢; under the pullback map [p]* : Og — Og.
For each k = 0, set Ay = R[[t1, ..., t]]/(L(D), ..., fulf),t5, ... t5), so that we have
a tower of (discrete) R-algebras

"—>A4—>A3—>A2—>A12R,

where the transition maps are surjective and each Ay is finitely presented as an R-
module. We will complete the proof by showing that this tower is eventually constant,
so that G satisfies condition (¥') of Lemma . Note that hypothesis (a) guarantees
that for every point = € | Spec(R)|, the tower of vector spaces

- > m(k(x) ®g As) — mo(k(z) ®r As) — mo(k(z) ®r A1) ~ K(T)

is eventually constant (and of dimension p").
We will prove the following:

(x) For every maximal ideal m of R, the tower of Ry-algebras
- (A4)m - (A3)m - (A2)m - (Al)m ~ Rpy,
is eventually constant and equivalent to an Ry-module which is free of rank p”.

Assume (x) for the moment. Let x be any closed point of | Spec(R)|, corresponding to
a maximal ideal m < R. It follows from () that there exists some integer k for which
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(Ap)m is a free Ry-module of rank p", and the transition maps (Ap)m — (Ag)m are
isomorphisms for k£’ > k. Choose a map of R-modules p : RP" — A, which induces an
isomorphism after localizing at the maximal ideal m. Since Ay is finitely presented as
an R-module, the kernel ker(p) is finitely generated as an R-module. The localization
ker(p)m vanishes, so we can choose an element v € R — m which annihilates ker(p).
We will complete the proof by arguing that the transition maps

o Apro[1/u] — Apa[1/u] — Ap[L/u]

are isomorphisms, so that the tower {A,,},,>1 is eventually constant when restricted to
a neighborhood of the point = € | Spec(R)|. To prove this, we can replace R by R[1/u]
and thereby reduce to the situation where the map p is injective. Fix an integer k' > k;
we wish to show that the map Ay — A is an isomorphism. For this, it will suffice to
show that the induced map g : (Ag )y — (Ag)n is an isomorphism, for every maximal
ideal n of R. Enlarging &’ if necessary, we may assume without loss of generality that
(Ap)n is a free Ry-module of rank p”. Suppose, for a contradiction, that ker(u) # 0.
Then ker(u) is a nonzero submodule of a free R,-module, and therefore admits a
nonzero map to R,. Since R is reduced, we can choose a minimal prime ideal p € n
for which ker(u), # 0. Then R, is a field, and we have an exact sequence of vector

spaces
0 — ker(p)y = (Aw)p = (Ak)p — 0

which shows that (Ay), is a vector space of dimension < p" over R,. This is a
contradiction, since p induces a monomorphism of vector spaces R,ﬁ’h — (Ap)p-

It remains to prove (*). For this, we can replace R by the localization R, and
thereby reduce to the case where R is a (reduced) local ring with maximal ideal m. Let
k = R/m denote the residue field of R. Choose an integer k for which my(k ®g Ag) is a
vector space of dimension p” (hence the transition maps 7o(k @ Ap) — mo(k Qg Ax)

are bijective for &' > k). Since the map lim ,_ Ay — mo(k ®r Ag) is surjective, we

K=k
can lift a basis of my(k ®g Az) to a map of R-modules v : RP" — lim ,_, Ap. For
each k' > k, let v denote the composition RP" % lim Ay — Ay, It follows from

<«—k'>k
Nakayama’s lemma that each vy is surjective. We will complete the proof of (x) by

showing that the map vy is injective for k' » k.

For 1 <a <p"and ¥ >k, let I,;» R denote the ideal given by the image of
ker(vy) along the projection map R’ = R onto the ath factor. We will complete
the proof by showing that for each fixed a, the ideal I, is zero for &' » k. Since
Ay is finitely presented as an R-module, each of the R-modules ker(vy) is finitely
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generated, so that the ideals I, € R are finitely generated. Let X, < | Spec(R)|
denote the vanishing locus of the ideal 1, . Since R is reduced, it will suffice to show
that X, = | Spec(R)| for K’ » k. Note that each X, is a cocompact closed subset
of | Spec(R)|, hence open with respect to the constructible topology on | Spec(R)|.
Since | Spec(R)| is compact with respect to the constructible topology, it will suffice
to show that (-, Xaw = |Spec(R)|. Fix a point y € | Spec(R)|, corresponding to a
prime ideal q € R; we wish to show that y belongs to X, for &’ » k. Let ¢’ be a
minimal prime ideal of R contained in q and let 3’ denote the corresponding point of
| Spec(R)|. Since each X, is closed, it will suffice to show that ' is contained in X, 4
for k' » k. We may therefore replace y by ¥’ and thereby reduce to the case where
q is a minimal prime ideal of R. Since R is reduced, the residue field x(y) coincides
with the localization R,. We can therefore choose k' > k for which the localization
(Ag)q is a vector space of dimension pl* over R,. Using the exact sequence

0 — ker(vp)q — R’q?h — (Ap)q — 0,

we deduce that ker(vy), = 0, so that the ideal I, s Ry vanishes. It follows that the
point y belongs to X, ;/, as desired. O

2.4 Exact Sequences of p-Divisible Groups

Let R be an E-ring. In §AV.6.3, we introduced the notion of an ezact sequence
of commutative finite flat group schemes over R (Definition AV.6.3.7). In this section,
we adapt this notion to the setting of p-divisible groups over R.

2.4.1 Monomorphisms and Strict Epimorphisms

We begin with some general remarks.

Proposition 2.4.1. Let R be an Ey-ring and let f : G — G’ be a morphism of
p-divisible groups over G. The following conditions are equivalent:

(1) For every finite abelian p-group M, the induced map G[M] — G'[M] is an
epimorphism of finite flat group schemes over R (in the sense of Definition
AV.6.2.2).

(2) For each m =0, the induced map G[p™| — G'[p™] is an epimorphism of finite
flat group schemes over R.
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(3) The induced map G[p] — G'[p] is an epimorphism of finite flat group schemes
over R.

Proof. The implications (1) < (2) = (3) are immediate. Assume that (3) is satisfied;
we prove (2) by induction on m. Without loss of generality, we may assume that R
is connective. Let C denote the full subcategory of Fun(CAlg}', Mody') spanned by
those functors which are sheaves with respect to the fppf topology. For m > 2, we
have a commutative diagram

G[p] —=G[p"] —= G[p"']

R

G/[p] —= G/[p"] —= G/[p™ Y]

where the rows are cofiber sequences in C. We therefore obtain a cofiber sequence
cofib(u’) — cofib(u) — cofib(u”) in C. Assumption (3) guarantees that 7<o cofib(u’)
vanishes in C, so that multiplication by p induces an equivalence 7 cofib(u) ~
T<o cofib(u”). Our inductive hypothesis guarantees that 7« cofib(u”) vanishes, so that
T<o cofib(u) vanishes: that is, u is an epimorphism of finite flat commutative group
schemes. O]

Corollary 2.4.2. Let R be an Ey-ring and let f : G — G’ be a morphism of
p-divisible groups over G. The following conditions are equivalent:

(1) For every finite abelian p-group M, the induced map G[M] — G'[M] is a
monomorphism of finite flat group schemes over R (in the sense of Definition
AV.6.2.2).

(2) For each m = 0, the induced map G[p™] — G'[p™] is a monomorphism of finite
flat group schemes over R.

(3) The induced map G[p] — G'[p] is a monomorphism of finite flat group schemes
over R.

(4) For every discrete tsoR-algebra A, the induced map G(A) — G'(A) is a
monomorphism of abelian groups.

Proof. The equivalence of (1), (2), and (3) follows by applying Proposition to
the Cartier dual map f¥ : G¥Y — G’Y. Let A is a discrete 7> R-algebra. If (4) is
satisfied, then the map G(A) — G’(A) is a monomorphism of abelian groups, and
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therefore induces a monomorphism u,, : G[p"](4) — G'[p"](A) for each n = 0, so
that condition (2) is satisfied by Remark AV.6.2.8. Conversely, if (2) is satisfied, then
each u, is a monomorphism; passing to the direct limit over n, we conclude that the
map u : G(A) — G'(A) is a monomorphism of abelian groups. O

Definition 2.4.3. Let R be an E,-ring and let f : G — G’ be a morphism of
p-divisible groups over R. We will say that f is an strict epimorphism if it satisfies the
equivalent conditions of Proposition 2.4.1 and we will say that f is a monomorphism
if it satisfies the equivalent conditions of Corollary [2.4.2]

Warning 2.4.4. The terminology of Definition is potentially misleading: beware
that a monomorphism (respectively strict epimorphism) need not be a categorical
monomorphism (respectively epimorphism) in the oo-category BT?(R), unless R is
discrete.

Warning 2.4.5. Let R be an E,-ring and let f : G — G’ be a morphism of p-
divisible groups over R, which we view as functors from CAlg?? . to Modyz'. If f
is a strict epimorphism, then the induced map 7y(G) — m(G’) is surjective locally
for the finite flat topology (since this holds for the induced natural transformation
mo(G[p"]) — m(G'[p"]), for each n = 0). However, the converse fails: for example,
multiplication by p induces a finite flat surjection mo(G) — m(G), but the map

p: G — G is never a strict epimorphism (unless G = 0).

Remark 2.4.6. Let R be an E -ring, let f : G — G’ be a morphism of p-divisible
groups over R, and let f¥ : G’Y — G be its Cartier dual (Construction AV.6.6.2).
Then f is a monomorphism if and only if fV is a strict epimorphism (this follows
immediately from the corresponding assertion for commutative finite flat group schemes:
see Proposition AV.6.3.4).

Remark 2.4.7. Let R be an E-ring and let f : G — G’ be a morphism of p-divisible
groups over R. Then f is a monomorphism (strict epimorphism) if and only if, for every
closed point x € | Spec(R)|, the induced map Gy — G, is a monomorphism (strict
epimorphism) of p-divisible groups over the residue field x(x). For monomorphisms,
this follows immediately from Nakayama’s lemma; the analogous statement for strict
epimorphisms follows by duality from Remark [2.4.6]

2.4.2 Exact Sequences

We can now state the main result of this section:
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Proposition 2.4.8. Let R be an Eo.-ring, let Modg™"®) denote the co-category of

connective (p)-torsion Z-module spectra, and let C < Fun(CAlg® , Modg™~"®)) denote

720’
the full subcategory spanned by those functors X : CAlg?} p — Mod%n’Nﬂ(p) which are
sheaves with respect to the finite flat topology. Suppose we are given a commutative
diagram o :

¢ -L.a

|

O*>Gll

in the owo-category C. The following conditions are equivalent:

(1) The functors G and G” are p-divisible groups, the map g is a strict epimorphism
of p-divisible groups, and the diagram o is a pullback square in C.

(2) The functors G' and G are p-divisible groups, the map f is a monomorphism
of p-divisible groups, and o is a pushout square in C.

(3) The functors G’ and G" are p-divisible groups and o is a pushout square in C.

Definition 2.4.9. Let R be an E-ring. A short exact sequence of p-divisible groups
over R is a commutative diagram

(e uEANye]

|

0——G"

in BT?(R) which satisfies the equivalent conditions of Proposition [2.4.8, We will
generally abuse notation by identifying a short exact sequence with the diagram

0-GLG%a" o
in this case, we implicitly assume that a nullhomotopy of g o f has also been specified.

Remark 2.4.10. Let R be an E,-ring. Using Proposition [2.4.8 we see that the
following data are equivalent:

e The datum of a monomorphism f : G’ — G of p-divisible groups over R.

e The datum of a strict epimorphism g : G — G” of p-divisible groups over R.
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e The datum of a short exact sequence 0 — G’ 5G5S G 0of p-divisible
groups over R.

Proof of Proposition [2.4.8. Without loss of generality, we may assume that R is
connective. We first show that (1) = (2). Let g : G — G” be a strict epimorphism
of p-divisible groups over R, and set G’ = fib(g) (formed in the co-category C
of Modg"™®)_valued sheaves on CAlg}, or equivalently in the larger oo-category
Fun(CAlgy', Mody')). We wish to show that:

(a) The functor G’ is a p-divisible group over R.
(b) The natural map f: G’ — G is a monomorphism of p-divisible groups.

(¢) The canonical map cofib(f) — G” is an equivalence (where the cofiber is formed
in the oo-category C).

Since the co-category C is prestable, assertion (c) is equivalent to the requirement
that the induced map mo(G) — m(G”) is surjective locally with respect to the flat
topology, which follows from (but is weaker than) our assumption that g is a strict
epimorphism (Warning . Since G and G” are p-divisible, we can identify the
cofibers of p : G — G and p : G” — G” with the suspensions of G[p] and G”[p],
respectively. Using (¢), we obtain a cofiber sequence

cofib(p : G' — G) — X(G[p]) — E(G"[p]).

Consequently, the local surjectivity of the map p: mo(G’) — m(G’) is equivalent to
the local surjectivity of the map mo(G[p]) — m(G"[p]), and therefore follows from
our assumption that g is a strict epimorphism. To complete the proofs of (a) and (b),
it will suffice to show that G'[p] is (representable by) a commutative finite flat group
scheme over R and that f induces a monomorphism G’[p] — G|[p]. This follows by
applying Proposition AV.6.2.9 to the evident fiber sequence G'[p] — G[p] — G"[p].

We next show that (2) = (3) and (3) = (1). Let us henceforth assume that we
are given a cofiber sequence

G’ ER (eI e

in the co-category C. Assume first that (2) is satisfied: that is, f is a monomorphism
of p-divisible groups over R. We wish to show that G” is also a p-divisible group. We
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have a commutative diagram

7T0(G> i> 7T0(G”>

Pk

m0(G) —= 70 (G”)

where the horizontal maps and the left vertical map are locally surjective with respect
to the flat topology, so that the right vertical map is also locally surjective with respect
to the flat topology. It follows that the diagram

G'[p] — G[p] — G"[p]

is also a cofiber sequence in C. Applying Corollary AV.6.3.5, we deduce that G”|p]
is (representable by) a commutative finite flat group scheme over R, so that G” is a
p-divisible group as desired.

We now complete the proof by showing that (3) implies (1). Assume that G’ and
G” is a p-divisible group over R; we wish to show that G is also a p-divisible group and
that g is a strict epimorphism. From the assumption that the maps m(G’) % 7(G’)
and 7(G") & 7,(G”) are locally surjective for the finite flat topology, we deduce
that the map mo(G) 2> mo(G) is also locally surjective for the finite flat topology. As
above, we conclude that the diagram

G'[p] = G[p] = G"[p]

is a cofiber sequence in C. We first claim that G[p] is a commutative finite flat group
scheme over R: that is, the functor Q*G|p] : CAlgy — S is corepresentable by a finite
flat R-algebra. Since we have assumed that Q*G”[p] is corepresentable by a finite flat
R-algebra, it will suffice to show that the natural transformation Q*G[p] — Q*G"[p]
is finite flat. Because the functors Q*G[p] and Q*G”[p] are sheaves for the finite flat
topology, this assertion can be tested locally for the finite flat topology: in particular,
it suffices to show that the projection map

is finite flat. This is clear, since 7 is a pullback of the projection Q*G’[p] — Spec(R)
(which is finite flat by virtue of our assumption that G’ is a p-divisible group). This
completes the proof that G is p-divisible; the assertion that f is a monomorphism of
p-divisible groups is equivalent to the assertion that u is a monomorphism of finite
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flat commutative group schemes, which follows by applying Proposition AV.6.2.9 to
the cofiber sequence G'[p] = G[p] = G”[p] (which is also a fiber sequence since C is
prestable). O

Remark 2.4.11. Let R be an E,-ring and suppose we are given a diagram o :

¢ -t.a

|

OHG”

in the oo-category BT?(R). Then o is a short exact sequence of p-divisible groups if
and only if it satisfies either of the following conditions (which are a priori weaker
than the corresponding conditions in Proposition [2.4.8, but equivalent by virtue of

Remark [2.4.10)):

(1) The map g is a strict epirmorphism and o is a pullback square in the co-category
BT?(R).

(2') The map f is a monomorphism and o is a pushout square in the co-category
BT?(R).

Remark 2.4.12. Let R be an E,-ring and suppose we are given a diagram o :

¢—.a

|k

0——G".

in the co-category BT?(R). Then o is a short exact sequence of p-divisible groups if
and only if the induced diagram

G'[p] — GIp]

L

0—— G’[p]

is an exact sequence of commutative finite flat group schemes, in the sense of Definition

AV.6.3.7.
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Remark 2.4.13. Let R be an E-ring and suppose we are given an exact sequence
0-G -G—->G"—>0
of p-divisible groups over R. Then the Cartier dual sequence
0-G"Y -G —>G"Y -0
is also short exact (this follows from Remark and Proposition AV.6.3.4).

Remark 2.4.14. Let R be an E,-ring and suppose we are given a diagram o :

¢—.a

|k

0——G".

in the oo-category BT?(R). Then o is a short exact sequence if and only if, for every
maximal ideal m < 7m(R) with residue field k = my(R)/m, the image of ¢ in BT? (k)
is an exact sequence of p-divisible groups over k.

2.5 The Connected-Etale Sequence

In good cases, an arbitrary p-divisible group G can be “built from” connected and
étale pieces in an essentially unique way.

Definition 2.5.1. Let R be a complete adic E,-ring and assume that p € m(R) is
topologically nilpotent. We will say that a short exact sequence of p-divisible groups

0-G->G->G"—>0

is a connected-étale sequence if G’ is formally connected (Definition [2.3.10)) and G” is
étale (Definition [2.5.3)).

In this section, we will show that connected-étale sequences are essentially unique
when they exist (Theorem [2.5.13)), and that existence is equivalent to the assumption
that the identity component G° is a p-divisible formal group (Proposition [2.5.17)).
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2.5.1 Etale p-Divisible Groups

Let R be an E-ring. Every p-divisible group G over R determines a p-divisible
group G () over the commutative ring m,(R), in the sense of classical algebraic
geometry. In general, passage from G to G (r) involves a loss of information. Our
goal in this section is to show that no information is lost when we restrict our attention
to the class of étale p-divisible groups (Proposition [2.5.9).

Proposition 2.5.2. Let R be an Ey,-ring and let G be a p-divisible group over R.
The following conditions are equivalent:

(1) For every finite abelian p-group M, the functor
Q*G[M] : CAlgZl r — S A = Mapyoa, (M, G(A))
is corepresentable by an étale (T=oR)-algebra.
(2) For eachn =0, the functor
Q*G[p"] CAlg p — S A Mapyaq, (Z /p" 2, G(A))
is corepresentable by an étale (T=oR)-algebra.
(3) The functor
Q*G[p]: CAlg?] p — S A = Mapyoq, (Z /pZ, G(A))
is corepresentable by an étale (1= R)-algebra.

Proof. The implications (1) < (2) = (3) are immediate. Assume that (3) is satisfied;
we will prove that (2) is satisfied by induction on n. For n > 0, multiplication
by p induces a natural transformation u : Q*G[p"] — Q*G[p""!]. Our inductive
hypothesis guarantees that the functor Q®G[p"~!] is corepresentable by an étale
(T=0R)-algebra. Consequently, to show that Q*G[p"] is representable by an étale
(T=0R)-algebra, it will suffice to show that the natural transformation wu is étale.
This can be tested locally with respect to the flat topology. Since u is an effective
epimorphism for the flat topology, we are reduced to showing that the projection map

VL QOOG[pn] X Qe Gpr—1] QOOG[pn] - QwG[pn]

is étale. This follows from (3), since 7 is a pullback of the projection map Q*G|p] —
Spec(TsoR). O

117



Definition 2.5.3. Let R be an E-ring and let G be a p-divisible group over k. We
will say that G is étale if it satisfies the equivalent conditions of Proposition We
let BT% (R) denote the full subcategory of BT?(R) spanned by the étale p-divisible
groups over R.

Remark 2.5.4. Let R be an E-ring and let G be a p-divisible group over R. Then
G is étale if and only if, for each maximal ideal m < 7y(R), the induced p-divisible
group G (ry/m is étale over the residue field mo(R)/m.

In particular, if R is complete with respect to a finitely generated ideal I < mo(R),
then G is étale if and only G,TO( ry/1 1s an étale p-divisible group over the commutative
ring mo(R).

Remark 2.5.5. Let R be an E-ring, let G be a p-divisible group over R, and let
R, denote the (p)-completion of R. Then G is étale if and only if G R, is an étale
p-divisible group over R(,. The “only if” direction is immediate. Conversely, suppose
that G Ry is étale; we wish to show that G is étale. Without loss of generality, we
may assume that R is connective. By virtue of Remark [2.5.4] it will suffice to show
that for every field x and every map f : R — k, the p-divisible group G, is étale. This
is automatic if k has characteristic different from p, and follows from our hypothesis in
the case where £ has characteristic p because f factors through the completion R{,.

Remark 2.5.6. Let R be an E,-ring, let CAlgﬁgt denote the co-category of finite
étale R-algebras, and let Abf  denote the category of finite abelian p-groups. Us-
ing Proposition AV.6.5.5, we can identify BT% (R) with the full subcategory of
Fun(Ab%,, CAlg's")°P spanned by those functors F : Ab? — CAlgl! satisfying the
following conditions:

(7) The functor F' preserves finite coproducts: that is, it carries direct sums to
tensor products of R-algebras (in particular, the unit map R — F(0) is an
equivalence).

(77) For every monomorphism M’ — M of finite abelian p-groups, the induced map
F(M') — F(M) is faithfully flat.

(4i7) For every short exact sequence 0 — M’ — M — M" — 0 of finite abelian
p-groups, the diagram
F(M')——= F(M)

L

F(0) — F(M")
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is a pushout square in CAlgfét.
Example 2.5.7 (Constant Groups). Let R be an Ey-ring and let M be an abelian
group. We let M : CAlg?” r — Modgz' denote the constant sheaf with the value M
(taken with respect to the flat, étale, or Zariski topology on the co-category CAlg
the result is the same). More concretely, the functor M is given by the formula

cn
T;()R’

M(A) = {Locally constant functions | Spec(A)| — M}.

If M is a direct sum of finitely many copies of Q,, /Z,, then M is an étale p-divisible
group over R (conversely, every étale p-divisible group of height h over R can be made
equivalent to Q,,/ th after extending scalars to a faithfully flat R-algebra).

Proposition 2.5.8. Let R be a (p)-complete B, -ring and let G be a p-divisible group
over R. Then G is étale if and only if the formal group G° is trivial.

Proof. The “only if” direction is immediate from the definitions. For the converse, we
can use Remark to reduce to the case where R = & is a field of characteristic p.
Without loss of generality, we may assume that « is algebraically closed. Then the
functor Q*G|[p] : CAlg!" — S is corepresentable by a finite flat r-algebra A, which
factors as a product of local Artinian rings A ~ [[..; 4;. The identity section of G
determines a map of k-algebras A — &, which factors through A;, for some iy € 1.
Then the identity map id : A;, — A;, determines a p-torsion element of the abelian

el

group G(A;,), whose image vanishes in A}*! ~ x. If G° is trivial, it follows that the
identity map id : A;, — A;, factors through x, so that A;, ~ k. Using the group
structure of G[p], we conclude that each A; is isomorphic to &, so that A ~ [[..; 4;,
is étale over k. O

Proposition 2.5.9. Let R be an Ey-ring. Then the forgetful functor BTY(R) —
BT%,(m0(R)) is an equivalence of oo-categories.

Proof. Proposition HA.7.5.0.6 supplies an equivalence of co-categories CAIgfﬂt@t =S
CAlgfrtO( r)» Which restricts to an equivalence CAlgRt ~ CAlgfréOt( r)- The desired result
now follows from the description of the co-category BT%, (R) given in Remark O

We will need the following extension of Proposition [2.5.9

Corollary 2.5.10. Let R be an Ey-ring which is complete with respect to a finitely
generated ideal I < mo(R). Then the functor BTP(R) — BT (mo(R)/I) restricts to an
equivalence of oo-categories BTL,(R) — BT, (mo(R)/1).
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Proof. By virtue of Proposition [2.5.9] we may assume without loss of generality that
R is discrete. The assumption that R is I-complete guarantees that the pair (R, I) is
Henselian (Corollary SAG.7.3.6.5), so that extension of scalars induces an equivalence
of categories CAlgﬁst — CAIg%}I (Corollary SAG.B.3.3.7). Using the descriptions of
BT% (R) and BT% (R/I) supplied by Remark [2.5.6, we are reduced to proving the
following:

(¥) Let F : AbY — CAlgl® be a functor having the property that the composite
map Ab? 5 CAlgit ~ CAlgg?/;I satisfies conditions (7), (#4) and (i) of Remark
Then F' also satisfies conditions (i), (i7), and (ii7) of Remark [2.5.6]

For conditions (i) and (#i7), this is immediate. For condition (ii), it will suffice to
prove:

() Let f: A — B be a morphism of finite étale R-algebras. If the induced map
A/IA — B/IB is faithfully flat, then f is faithfully flat.

To prove (+'), we note that f is an étale morphism, and is therefore faithfully flat
if the quotient B/mB is nonzero for each maximal ideal m < A. This is clear,
since m automatically contains I A (the pair (A/IA) is also Henselian by Corollary
SAG.B.3.3.1). 0

Remark 2.5.11. In the situation of Corollary [2.5.10} a p-divisible group G over R is
étale if and only if its image in BT?(my(R)/I) is étale (Remark [2.5.4). Consequently,
Corollary [2.5.10] is equivalent to the statement that the projection map

BT (mo(R)/1) Xre(mo(ry/r) BTP(R) — BTE (mo(R)/1)
is an equivalence of co-categories.

We will also need the following variant of Corollary [2.5.10f

Proposition 2.5.12. Let R be an E.,-ring which is complete with respect to a finitely
generated ideal I < mo(R), and let G and G’ be p-divisible groups over R. If G’ is étale,
then the canonical map Mapgrr ) (G, G') — Mapgrr(ry gy (G, G') is a homotopy
equivalence.

Proof. Without loss of generality, we may assume that R is connective. Set R’ =
mo(R)/I. Using the description of the co-categories BT?(R) and BT?(R’) supplied by
Proposition AV.6.5.5, we are reduced to proving the following more concrete algebraic
assertion:
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(x) .Let A and B be finite flat R-algebras, and assume that A is étale over R. Then
the canonical map

Mapg g, (A, B) = Mapoyyg, (A, R ®r B) =~ Mapcyy,,, (R ®r A, R ®r B)
is a homotopy equivalence.

Since A is étale over R, we can use Corollary HA.7.5.4.6 to replace R by mo(R) and
thereby reduce to the case where R is discrete. In this case, our assumption that R is
I-complete guarantees that (R, I) is a Henselian pair (Corollary SAG.7.3.6.5 ), which
immediately implies (*) (see Proposition SAG.B.3.2.2). O

2.5.2 Uniqueness of the Connected-Etale Sequence

We now show that if a p-divisible group G admits a connected-étale sequence,
then that sequence is essentially unique:

Theorem 2.5.13. Let R be a complete adic E-ring with p topologically nilpotent in
mo(R). Let C < Fun(A! x A BT?(R)) denote the full subcategory spanned by those
diagrams of p-divisible groups o :

G ——G
OHG//

which are connected-étale sequences, in the sense of Definition |2.5.1. Then the
construction o — G induces a fully faithful functor C — BT?(R).

Proof. Let o¢ and o7 be objects of C, which we identify with connected-étale sequences
0—>Gy—Gyg—Gy—0
0—-G, -G, —G]—0.
We wish to show that the canonical map
p : Mape (09, 01) — Mapgre gy (Go, G1)

is a homotopy equivalence. Using Remark [2.4.10, we see that p fits into a homotopy
pullback square

Mape (09, 01) > Mapgrr () (Go, G1)

| |

MaPBTP(R) (Go, GY) U MapBTP(R)(GBa G1).
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It will therefore suffice to show that p’ is a homotopy equivalence. Using the fiber
sequence

MapBTP(R)(G67 G) — MapBTP(R)<G67 Gy) — MapBTP(R)(G67 GY),

we are reduced to proving that the mapping space Mapgrs () (Gg, G7) is contractible.
Since Gj, is formally connected, Theorem [2.3.12| supplies a homotopy equivalence

MapBT”(R) (G67 G/1/> = MapFGroup(R) (Gé)oa Glllo)‘

The desired contractibility now follows from the observation that G7° vanishes (Propo-
sition [2.5.8]). O

Remark 2.5.14. In the proof of Theorem [2.5.13] we did not use the full strength of
our assumption that o and ¢’ are connected-étale sequences. It suffices to assume
that o and ¢’ are short exact sequences with G{, formally connected and G/ étale; we
do not need to know that G/ is formally connected or that G is étale.

Definition 2.5.15. Let R be a complete adic E,-ring. Assume that p € my(R) is
topologically nilpotent and let G be a p-divisible group over R. We will say that
G admits a connected-étale sequence if there is a short exact sequence of p-divisible
groups

0-G -G —->G"—0,

where G’ is formally connected and G” is étale. In this case, the short exact sequence
is determined up to equivalence (and depends functorially on G) by virtue of Theorem
2.5.13] We will refer to it as the connected-étale sequence of G.

Warning 2.5.16. In the situation of Definition [2.5.15] the condition that G admits
a connected-étale sequence depends on the topology on the commutative ring my(R).
However, the connected-étale sequence itself is independent of that choice (provided
that it exists). To see this, let us suppose that R is complete with respect to finitely
generated ideals I, J < my(R), and that we are connected-étale sequences

0-G,—>G—->G] -0

0-G,-G—->G, -0
with respect to the [-adic and J-adic topologies, respectively. Then both short exact
sequences are connected-étale sequences with respect to the (I + J)-adic topology on

R. Since R is (I + J)-complete (Corollary SAG.7.3.3.3 ), Theorem [2.5.13| implies that
the exact sequences are equivalent.
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2.5.3 Existence of Connected-Etale Sequences

We now give a criterion for the existence of a connected-étale sequence:

Proposition 2.5.17. Let R be a complete adic Ey-ring. Assume that p € mo(R) is
topologically nilpotent and let G be a p-divisible group over R. Then G admits a
connected-étale sequence (in the sense of Definition if and only if the identity
component G° is a p-divisible formal group (in the sense of Definition .

The proof of Proposition [2.5.17] will make use of the following simple observation:

Lemma 2.5.18. Let R be an Ey-ring and let G : CAlg?? r — Modz' be a formal
group over R. If 0G vanishes, then G vanishes.

Proof. Without loss of generality we may assume that R = x is a field, so that
O¢g is isomorphic to s[[ty,...,t4]] for some integer d > 0. Note that the functor
Q0> G - CAlg" — S is corepresentable by the tensor product A = & Qog K- A
standard calculation shows that m1(A) is a vector space of dimension d over k. If 0G

vanishes, then we must have A ~ x. This implies that d = 0, so that G vanishes as
well. O

Proof of Proposition|2.5.17. Suppose first that G admits a connected-étale sequence
0-G -G—->G"—0.

Since G” is étale, its identity component vanishes (Proposition . It follows that
the identity component G° is equivalent to G. Since G’ is formally connected, we
conclude that G° is a p-divisible formal group.

We now prove the converse. Assume that G° is a p-divisible formal group. Then
we can choose a formally connected p-divisible group G’ over R and an equivalence
f°: G” ~ G°. Using Theorem [2.3.12, we can lift f° to a morphism of p-divisible
groups f : G’ — G. We first claim that f is a monomorphism of p-divisible groups. To
prove this, we can replace R by its residue field at any closed point of | Spec(R)|, and
thereby reduce to the case where R is a field of characteristic p and G’ is connected
(see Remark . We wish to show that for each object A € CAIgg, the induced
map of abelian groups G'(A) — G(A) is injective (see Corollary [2.4.2)). This follows
by inspecting the commutative diagram of short exact sequences

0— > G"(A) —= G'(A) —= G/(A*) — 0

.

0— = G°(A) — = G(A) — = G(Ard) — 0,
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since the left vertical map is an isomorphism of abelian groups and G’(A™¢) vanishes
(Definition [2.3.5)).

Since f is a monomorphism, we can apply Proposition to construct a short
exact sequence of p-divisible groups

-G 4HLaoa —o.

To complete the proof, it will suffice to show that this is a connected-étale sequence:
that is, that the p-divisible group G” is étale. Passing to identity components, we
obtain a fiber sequence

G/o ﬁ) Go N Gl/o

so that QG” can be identified with the fiber of the map f°: G — G°. Since f° is an
equivalence, it follows that the functor QG" : CAlg?? » — Modyz' vanishes, so that
G”° itself vanishes (Lemma [2.5.18)). Invoking Proposition [2.5.8] we conclude that G”

is étale, as desired. O

Corollary 2.5.19. Let R be a complete adic By -ring. Assume that p is topologically
nilpotent in mo(R) and let I < 7o(R) be a finitely generated ideal of definition. Then a
p-divisible group G over R admits a connected-étale sequence if and only if Gy ry/1
admit a connected-étale sequence in the category of p-divisible groups over the ordinary
commutative ring mo(R)/I (endowed with the discrete topology).

Proof. Combine Proposition [2.5.17 with Theorem [2.3.26] m
In some cases, the existence of a connected-étale sequence is automatic:

Proposition 2.5.20. Let R be an Ey-ring for which the spectrum | Spec(R)| contains
a single point. Assume that p is nilpotent in mo(R). Then every p-divisible group over
R admits a connected-étale sequence (with respect to the discrete topology on my(R)).

Remark 2.5.21. In the situation of Proposition the requirement that is p
nilpotent in mo(R) is a matter of convention: note that we have only defined the
notion of connected-étale sequence in the case where R is (p)-complete. If p were
not nilpotent in m(R), then the hypothesis that |Spec(R)| contains a single point
guarantees that p is invertible in mo(R), so that every p-divisible group over R is étale.

Proof of Proposition [2.5.20. By virtue of Corollary [2.5.19, we can replace R by m(R)
and thereby reduce to the case where R is discrete (though this reduction is not actually

needed in the argument). Let AbE denote the category of finite abelian p-groups
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and let CAlgg denote the category of finite flat R-algebras. By virtue of Proposition
AV.6.5.5, we can identify p-divisible groups over R with functors F' : AbE — CAlgf}fz
satisfying the following conditions:

(1) The functor F' preserves finite coproducts.

(73) For every monomorphism M’ — M of finite abelian p-groups, the induced map
F(M') — F(M) is faithfully flat.

(14i) For every short exact sequence 0 — M’ — M — M”" — 0 of finite abelian
p-groups, the induced map F(M) ®py R — F(M") is an isomorphism.

Our assumption that | Spec(R)| has a single point guarantees that each of the topo-
logical spaces | Spec(F(M))| is a finite set with the discrete topology. Moreover, each
| Spec(F'(M))| contains a distinguished point p,s, given by the image of the map
| Spec(R)| = | Spec(F(0))] — |Spec(F(M))|. Let F'(M) denote the localization of
F(M) at the prime ideal py; (which is a direct factor of F'(M), hence finite flat over
R). It is then easy to check that the construction M — F'(M) satisfies conditions (i),
(), and (i7i), and therefore determines a p-divisible group G’ over R. It follows from
the construction that G’ is connected and that the canonical map G’ — G induces
an isomorphism on identity components, so that G° is a p-divisible formal group; the
desired result now follows from Proposition [2.5.17] O

Corollary 2.5.22. Let R be a complete local Noetherian K -ring whose residue field
has characteristic p. Then every p-divisible group G over R admits a connected-
étale sequence (where we endow mo(R) with the m-adic topology, with m < mo(R) the
maximal ideal).

Proof. Combine Proposition [2.5.20 with Corollary [2.5.19] m

Remark 2.5.23. In the situation of Corollary [2.5.22] we can weaken the assumption
that R is Noetherian: it suffices to assume that R is complete with respect to a finitely
generated ideal I < mo(R) for which the spectrum | Spec(m(R)/I)| consists of a single
point. This condition is satisfied in other cases of interest: for example, if R is a
complete valuation ring of rank 1.

Remark 2.5.24. Let G be a p-divisible group over a field s of characteristic p. It
follows from Proposition [2.5.20| that G admits a connected-étale sequence

0->G —>G—G"—0.
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If the field & is perfect, then this exact sequence admits a (unique) splitting. Identifying
G with a functor F : Abf — CAIgf}f2 as in the proof of Proposition [2.5.20, one can
argue that the functor M — F(M)™? defines a p-divisible subgroup G*¢ < G which
maps isomorphically to G”.

3 Deformations of p-Divisible Groups

Let C‘wo be a formal group defined over a field k. Suppose we are given a complete
local Noetherian ring A and a ring homomorphism p4 : A — s which induces an
isomorphism A/my ~ k ( where m4 denotes the maximal ideal of A). A deformation
of Go along pa is a pair (G,Oé), where G is a formal group over A and « is an
isomorphism of formal groups éo = é,.i (here @H denotes the formal group obtained
from G by extension of scalars along p4). The collection of such deformations can be
organized into a category Defg (A, pa), which depends functorially on A. Under some
mild assumptions, Lubin and Tate showed that there exists a universal deformation of
éo in the following sense:

Theorem 3.0.1 (Lubin-Tate). Let k be a perfect field of characteristic p > 0 and let
CA}() be a 1-dimensional formal group of height n < co. Then there exists a complete
local Noetherian ring Ryr, a ring homomorphism pyr @ Ryr — k which induces an
isomorphism Ryr/mpg . ~ k, and a deformation (é‘r,a) of éo along prr with the
following universal property: if A is any complete local ring equipped with a map
pa : A — Kk inducing an isomorphism A/my ~ k, extension of scalars induces an
equivalence

Hom,,(Rir, A) ~ Defg (4, pa);

here Hom (R, A) denotes the set of ring homomorphisms f : Rip — A satisfying
pur = pao f (which we regard as a category with only identity morphisms).

Remark 3.0.2. In the situation of T heorem the category Defg (A, pa) is always
discrete: that is, given two deformations of Gy over A, there is at most one morphism
between them (which is then automatically an isomorphism). This is not obvious
from the definitions (and need not be true if éo has infinite height); instead, it can
be regarded as part of the content of Theorem [3.0.1]

Our goal in this section is to prove a version of Theorem which is more
general in three respects:
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(a) We replace the formal group G‘O by an arbitrary p-divisible group Gy, which is not
required to be either connected or 1-dimensional (though only the 1-dimensional
case is relevant to our applications).

(b) We relax the assumption that x is a (perfect) field: instead, we begin with an
arbitrary Noetherian F,-algebra R, for which the Frobenius morphism ¢pg, :
Ry — Ry is finite, and an arbitrary p-divisible group Gy over Ry which is
nonstationary (see Definition [3.0.8} this condition is automatic in the case where
Ry is a perfect field, and is satisfied in many other cases as well).

(¢) We consider a more general class of deformations of Gy, which are defined over
(connective) E-rings rather than over ordinary commutative rings.

Before stating our main result, we need to introduce some notation.

Definition 3.0.3. Let G be a p-divisible group over a commutative ring Ry. Let A
be a connective E-ring equipped with a map ps : A — Ry. A deformation of Gy
along pa is a pair (G, ), where G is a p-divisible group over A and a : Gy ~ Gg, is an
equivalence of p-divisible groups over Ry. The collection of all such deformations can
be organized into an oo-category Defg, (A, pa), given by the homotopy fiber product
BTp(A) XBTP(RO) {GO}

Warning 3.0.4. Through Definition makes sense for an arbitrary morphism
pa A — Ry, we will only be interested in the case where p, induces a surjection
€a : mo(A) — Ry, the kernel ker(e,) is finitely generated, and A is complete with
respect to ker(en).

Example 3.0.5. Let Gy be connected p-divisible group defined over a field s of
characteristic p and let é‘ro = G denote the identity component of Gy. Suppose that
A is a complete local Noetherian ring equipped with a map p4 : A — k inducing an
isomorphism A/my4 ~ k. Then the oo-category Defg,(A, pa) of Definition can
be identified with the groupoid Defg (A, p4) appearing in the statement of Theorem
. To prove this, it will suffice (by virtue of Theorem to show that every
deformation of @0 over A arises as the identity component of a deformation of Gy,
which is a special case of Theorem [2.3.26]

Example 3.0.6 (First Order Deformation). Let Gg be a p-divisible group defined
over a field k. A first order deformation of Gq is a deformation of Gy along the
projection map k[e]/(€?) — k: that is, a p-divisible group G over r[e]/(e?) equipped
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with an isomorphism « : Gy ~ G,. We will say that the first-order deformation (G, «)
is trivial if o can be lifted to an isomorphism of p-divisible groups (Go)ue/(2) =~ G;
otherwise, we say that (G, «) is nontrivial.

Construction 3.0.7. Let G be a p-divisible group defined over a commutative ring R.
Suppose that we are given a point = € | Spec(R)| and a derivation d : R — k(z), where
k(x) denotes the residue field of R at x. Then the canonical map Sy : R — () lifts
to a ring homomorphism 3 : R — r(x)[e]/(€*), given by the formula 3(t) = By(t) + edt.
Let G4 denote the p-divisible group over k(x)[e]/(¢*) obtained from G by extending
scalars along 3. Then Gy is a first-order deformation of the p-divisible group G y).
If d =0, then Gy is a trivial first order deformation of G,).

Definition 3.0.8. Let R be a commutative ring and let G be a p-divisible group over
R. We will say that G is nonstationary if it satisfies the following condition:

(x) For every point x € | Spec(R)| and every nonzero derivation d : R — k(z), the
p-divisible group Gy of Construction is a nontrivial first order deformation
of G,{(x).

Remark 3.0.9. Let R be a commutative ring and let G be a p-divisible group over
R. Then we can think of G as encoding a family of p-divisible groups parametrized by
the affine scheme Spec(R). The condition that G is nonstationary can be understood
heuristically as the requirement that this family is nonconstant along every tangent
vector in Spec(R). Put another way, it can be understood as the requirement that G is
classified by an unramified morphism from Spec(R) to the moduli stack of p-divisible
groups (see Remark for a more precise formulation of this heuristic).

Example 3.0.10. Let R be a commutative F-algebra. Suppose that I is semiperfect:
that is, the Frobenius map ¢r : R — R is surjective. Then, for every R-module M,
every derivation d : R — M is zero (since d satisfies d(z?) = prP~'dx = 0). It follows
that condition (*) of Definition is vacuous: that is, every p-divisible group G
over R is nonstationary.

We can now state our main result:

Theorem 3.0.11. Let Ry be a Noetherian F,-algebra which is F-finite (that is, the
Frobenius morphism ¢ : Ry — Ry is finite) and let G be a nonstationary p-divisible
group over Ry. Then there exists a morphism of connective By -rings p : Rg, — Ry
and a deformation G of Gg along p with the following properties:
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(a) The Ey-ring RE, is Noetherian, the morphism p induces a surjection of com-
mutative rings € : To(RE,) — Ry, and RE, is complete with respect to the ideal

ker(e).

(b) Let A be any Noetherian Ey-ring equipped with a map pa : A — Rq for which the
underlying ring homomorphism €4 : mo(A) — Rq is surjective and A is complete
with respect to ker(ea). Then extension of scalars induces an equivalence of
o0-categories MapCAlg/Ro (R&,, A) — Defg, (A, pa).

In the situation of Theorem , we will refer to R§. as the spectral deformation
ring of the p-divisible group G, and to the p-divisible group G € BT?(R{,) as the
universal deformation of Gy. It is clear that the pair (RE,, G) is uniquely determined
(up to equivalence) by the pair (R, Gg), provided that it exists: the content of
Theorem [3.0.11] is that a universal deformation always exists when Ry is F-finite
and Gy is nonstationary (these assumptions are more or less necessary, at least for a

slightly stronger version of Theorem [3.0.11f see Remarks [3.1.16| and [3.4.5]).

Remark 3.0.12. The notation of Theorem [3.0.11] is intended to emphasize that
the spectral deformation ring R¢, classifies unoriented deformations of Gg (that is,
deformations as a p-divisible group, without any additional structure). In §6 we will
introduce a variant R, which classifies oriented deformations of Gy.

Note that Theorem [3.0.11| has the following concrete consequence:

Corollary 3.0.13. Let Ry be an F-finite Noetherian Fy-algebra and let Gy be a
nonstationary p-divisible group over Ry. Then there exists a map of commutative rings
P R‘éo — Ry and a deformation G of Gg along p with the following properties:

(a) The Eq-ring R%O is Noetherian, the morphism p is surjective, and R‘éo 18
complete with respect to the kernel ideal ker(p).

(b) Let A be any Noetherian ring equipped with a surjective ring homomorphism
pa: A — Ry such that A is complete with respect to ker(pa). Then extension of
scalars induces an equivalence of categories MapCAlg/Ro (R&,, A) = Defg, (A, pa).

Proof. Let RE be as in Theorem [3.0.11} and set RE, = mo(RE:). O

In the situation of Corollary [3.0.13] we will refer to RCCI;O as the classical deformation
ring of the p-divisible group Gy.
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Remark 3.0.14. In the special case where Ry is a perfect field and the p-divisible
group Gy is 1-dimensional, Corollary reduces to Theorem (see Example
. In particular, the classical deformation ring R‘éo for the p-divisible group Gy
can be identified with the Lubin-Tate ring Ryp for the identity component Gg.

Warning 3.0.15. Corollary is an immediate consequence of Theorem [3.0.11
but the reverse implication is not a priori obvious. The spectral deformation ring R¢;
generally contains more information than the classical deformation ring R%O, because
the higher homotopy groups of Rg, do not vanish. For example, in the case where
Ry = F, and Gg = i, the spectral deformation ring R¢, can be identified with the

(p)-completed sphere spectrum (Corollary [3.1.19)).

Most of this section is devoted to the proof of Theorem [3.0.11} Let us begin with an
outline of our strategy. We first note that the spectral deformation ring is an example
of a complete adic E,-ring: that is, the underlying commutative ring R%O = mo(RE,)
is equipped with a topology having a finitely generated ideal of definition I (given
by the kernel of the map RE, — Ry), and the Eg-ring RE! is I-complete. In we
will formulate a stronger version of Theorem 7 which characterizes Rg, among
all complete adic E,-rings A (which we do not require to be Noetherian or equipped
with a reference map ps : A — Ry): see Theorem . Roughly speaking, this
characterization asserts that the formal spectrum Spf(R{,) can be realized as the
formal completion of the moduli stack of p-divisible groups Mgt along the map
f : Spec(Ryg) — Mpr classifying the p-divisible group Gg (though this heuristic
should be handled with care; see Warning [3.1.9)). Using a general representability
theorem, we reduce the question of existence for of the spectral deformation ring R¢,
to a statement about the relative cotangent complex Lgpec(ry)/ Mpp: Damely, that it is
1-connective and almost perfect. The first condition is equivalent to our assumption
that Gy is nonstationary (Remark . We verify the second by studying the cofiber

sequence of R-modules

LMBT|Spec(R0) - LSpec(Ro) - LSpec(Ro)/MBT-

We prove in that the restriction L MBT|Spec(Ro) is automatically almost perfect
when Ry is an Fp-algebra (see Proposition (3.2.5)). In , we show that Lgpec(ry) = Lr,
is almost perfect under the assumption that Ry is F-finite (Proposition [3.3.1)). In §3.4]
we combine these ingredients to prove Theorem (and therefore also Theorem

EO).
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3.1 Spectral Deformation Rings

Let Ry be a commutative ring and let Gg be a p-divisible group over Ry. In
Definition [3.0.3 we introduced the oo-category Defg, (A4, pa) of deformations of Gy
along a morphism of E-rings p4 : A — Ry. The co-category Defg, (A, pa) depends
functorially on the pair (A, pa) as an object of the overcategory CAlgjy . Our goal in
this section is to introduce a variant of this construction, which does not require us to
fix the map p,4 in advance.

Definition 3.1.1. Let Ry be a commutative ring and let A be an adic E-ring.
Let Gg be a p-divisible group over Ry and let G be a p-divisible group over A. A
Go-tagging of G is a triple (I, u, ), where I < my(A) is a finitely generated ideal of
definition, p : Ry — mo(A)/[ is a ring homomorphism, and o : (Go)xya)/1 = Gro(ay/r
is an isomorphism of p-divisible groups over the commutative ring my(A)/I.

We will say that a pair of Gg-taggings (I, u,«) and (I', i/, o/) are equivalent if
there exists a finitely generated ideal of definition J < m(A) containing both I and I’
for which the diagram of ring homomorphisms

RO 7T0(A)/]

bl

mo(A)/I' —=mo(A)/J
commutes, and the isomorphisms « and o agree when restricted to (Go)nx,(a)/.-

Example 3.1.2. Let Ry be a commutative ring and let Gg be a p-divisible group
over Ry. Then Gy is equipped with a tautological Gy-tagging, given by the triple
((0),idg,,idg,). Here we regard R as an adic commutative ring by endowing it with
the discrete topology.

Remark 3.1.3. In the situation of Definition 3.1.1] let I < m(A) be a finitely
generated ideal of definition. Then giving a Gg-tagging of G is equivalent to giving
a Go-tagging of the p-divisible group G (a)/;. Here we regard m(A)/I as an adic
commutative ring by equipping it with the discrete topology.

Definition 3.1.4. Let Gq be a p-divisible group defined over a commutative ring R,
and let A be an adic E,-ring. A deformation of Gy over A consists of a p-divisible
group G over A together with an equivalence class of Gy-taggings of G. The collection
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of deformations of G¢ over A can be organized into an o-category Defg,(A). More
precisely, we let Defg,(A) denote the filtered colimit

h_I)l’l BTp(A) XBTP(WO(A)/I) HOII’I(R(), 7T0(A)/]>,
I

where I ranges over all finitely generated ideals of definition I < my(A). Here
Hom(Ry, mo(A)/I) denotes the set of ring homomorphisms from Ry to mo(A)/1.

Remark 3.1.5 (Functoriality). Let Gg be a p-divisible group defined over a commu-
tative ring Ry and let f : A — A’ be a morphism of adic E-rings. Then extension of
scalars along f determines a functor Defg,(A) — Defg,(A").

Remark 3.1.6 (Relationship with Defg, (A4, p)). Let Gg be a p-divisible group defined
over a commutative ring Ry and let p : A — Ry be a morphism of connective E-rings.
Assume that p induces a surjection of commutative rings € : m9(A) — Ry and that
the kernel ideal ker(e) is finitely generated. Let us regard A as an adic E,-ring by
endowing m(A) with the ker(e)-adic topology. For any p-divisible group G over A,
the datum of a Go-tagging of G is equivalent to the datum of a Gy-tagging of the
p-divisible group Gg, obtained by extending scalars along p (see Remark . It
follows that we have a homotopy fiber sequence

Defg, (A, p) — Defg,(A) & Defg,(Ro),
where the fiber is taken over the p-divisible group Gg € Defg,(Ry) (equipped with the
Go-tagging of Example (3.1.2)).

Remark 3.1.7. In the situation of Definition [3.1.4] suppose that A is an adic Ey-ring
which admits a largest finitely generated ideal of definition I < m(A) (this condition
is automatically satisfied if the commutative ring my(A) is Noetherian). Then we can
identify Defg,(A) with the fiber product

BT?(A) X1 (m(a)/1) Hom(R, m0(A)/1).

More informally, a deformation of G over A consists of a p-divisible group G over
A, a ring homomorphism p : R — m(A)/I, and an isomorphism of p-divisible groups
(Go)mo(ayr = Gro(ayr-

Remark 3.1.8. In the situation of Definition [3.1.4] let J < Ry be a finitely generated
nilpotent ideal, and let G; = (Go)r,/s be the p-divisible group over R,/J obtained
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from Gg by extension of scalars. Then, for any adic E,-ring A and any p-divisible
group G € BT?(A), the set of equivalence classes of Go-taggings of G can be identified
with the set of equivalence classes of Gi-taggings of G. It follows that we have
canonical equivalences Defg,(A) ~ Defg, (A), depending functorially on A.

It follows that, if the ring Ry is Noetherian, then there is no harm in replacing R,
by its reduction RE4: this does not change the deformation functor A — Defg,(A).

Warning 3.1.9. In the situation of Definition [3.1.4] let A be a commutative ring
endowed with the discrete topology. Then the space Defg,(A) is given by the direct
limit
li_r)n BTP(A) XBTP(A/I) HOHI(RO, A/I),
I
where I ranges over all finitely generated nilpotent ideals of A. In particular, we have
a canonical map

DefGO (A) - BTP<A) X BT;D(Ared) HOHI(RO, Ared),

which is an equivalence if the nilradical of A is finitely generated (for example, if
A is Noetherian). However, it is not an equivalence in general. For example, let
Ry = k be a perfect field of characteristic p and set A = k[z'/7"]/(x — 1). Then
(zV?, 27" ) is a compatible system of (p")th roots of unity in A, which we can
regard as a morphism of p-divisible groups v : Q, / Z, — pp=. Set G = Q,, / Z, ® pip,
id
regarded as a p-divisible group over A. Then the matrix (10 ?1
i
automorphism of G which reduces to the identity after extending scalars to A™d ~ &,

) determines an

but not after extending scalars to A/I for any finitely generated nilpotent ideal < A.

Recall that an adic E,-ring A is complete if it is I-complete, where I < m(A) is
any finitely generated ideal of definition for the topology on my(A) (this condition
does not depend on the choice of I). We let CAlgigl denote the full subcategory of

CAlg®® spanned by the complete adic Ey-rings.

Lemma 3.1.10. Let Ry be a commutative ring and let Gg be a p-divisible group over
Ry. For every complete adic Ey-ring A, the co-category Defg,(A) is a Kan complex.

Proof. Without loss of generality we may assume that A is connective. Let f : G — G’
be a morphism of Gy-tagged p-divisible groups over A; we wish to show that f is an
equivalence. For this, it will suffice to show that the induced map f[p] : G[p] — G’|p]
is an equivalence of finite flat group schemes over A. Note that f[p] is an equivalence
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over some open subset U < | Spec(A)| which includes the vanishing locus of an ideal
of definition I < my(A). Since A is I-complete, it follows that U = | Spec(A)|, so that
f is an equivalence as desired. O]

Definition 3.1.11 (Universal Deformations). Let Ry be a commutative ring and let
Gy be a p-divisible group over Ry. Let G be a deformation of Ry over a complete
adic E,-ring R, in the sense of Definition [3.1.40 We will say that G is a universal
deformation if, for every complete adic E,-ring A, extension of scalars induces a
homotopy equivalence

Mapcmgggl(Ra A) — Defg,(A).

Note that, if G admits a universal deformation, then the pair (R, G) is uniquely
determined up to equivalence. In this case, we will denote R by R, and refer to it as
the spectral deformation ring of G.

Remark 3.1.12. Let Ry be a commutative ring and let Gy be a p-divisible group
over Ry. Assume that Gg admits a universal deformation G (in the sense of Definition
. Note that we can regard Gg as a deformation of itself over R, (where we
endow Ry with the discrete topology); see Example m This deformation is then

classified by a map p : Rg, — Ro. We can then regard G as a deformation of Gg
along p, in the sense of Definition |3.0.3]

Remark 3.1.13. Let Ry be a commutative ring, let Gy be a p-divisible group over
Ry, and let G{ denote its Cartier dual. Then Cartier duality induce an equivalence
of deformation functors Defg, ~ Defgg. It follows that Gy admits a universal
deformation if and only if G admits a universal deformation; if either exists, then the
spectral deformation rings R¢, and Gy are canonically equivalent to one another.

Beware that we have now introduced two a priori different notions of universal
deformation: one via the universal property of Theorem [3.0.11] and one via the
universal property of Definition |3.1.11] However, we will see in a moment that they

agree (provided that the hypotheses of Theorem [3.0.11] are satisfied).

Remark 3.1.14. Let Ry be a Noetherian ring, let Gy be a p-divisible group over
Ry, and suppose that G, admits a universal deformation (R¢,G) in the sense of
Definition [3.1.11} Suppose further that we are given a map of Noetherian E.,-rings
pa: A — Ry which induces a surjection of commutative rings € : mo(A) — Ry. Let us
regard A as an adic Ep-ring by endowing my(A) with the ker(¢)-adic topology. We
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then have a commutative diagram o :

un PA© un
MapCAlgad (RGO y A) $ MapcAlgad (RGO 5 RO)

l l

DefGO (A) DefGO (Ro)

Let p: Rg, — Ro be the map of Remark [3.1.12, Note that any morphism of E-rings

u: Rg, — A which fits into a commutative diagram

Go - A
N
Ry

is automatically a morphism of adic E,-rings (since p annihilates an ideal of definition
for mo(R¢,)). Passing to homotopy fibers in the horizontal direction (and using
Remark [3.1.6]), we see that ¢ determines a comparison

0 MaPCAlg;lgO (Rg,, A) = Defg, (4, p).

If A is complete with respect to the ideal ker(e), then the vertical maps in the diagram
o are homotopy equivalences, so that 6 is also a homotopy equivalence. It follows that
G automatically satisfies condition (b) of Theorem [3.0.11}

We are now ready to formulate a refinement of Theorem [3.0.11}

Theorem 3.1.15. Let Ry be an F-finite Noetherian F,-algebra and let Go be a
nonstationary p-divisible group over Ry. Then:

(1) The p-divisible group Go admits a universal deformation (in the sense of Defini-
tion|3.1.11): that is, the functor Defg, : CAlgi’f,1 — S is corepresentable by a

complete adic Ep-ring RE, .
(2) The spectral deformation ring R§, is connective and Noetherian.

(3) The canonical map p : RE, — Ry (see Remark induces a surjective ring
homomorphism € : mo(R&,) — Ro.

(4) The kernel ker(e) is an ideal of definition for mo(RE,). In particular, the E,-ring
R@, is complete with respect to ker(e).
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We will prove Theorem [3.1.15] in §3.4]

Proof of Theorem from Theorem[3.1.15 Let Ry be an F-finite Noetherian F,-
algebra and let Gy be a nonstationary p-divisible group over Ry. Applying Theorem
we deduce that Gy admits a universal deformation G € BT?(R{&') in the sense
of Definition 3.1.11} Applying Remark [3.1.12 we can regard G as a deformation of G
along a map p: Rg, — Ry. We claim that this deformation satisfies the requirements
of Theorem [3.0.11} requirement (a) follows from the statement of Theorem
and requirement (b) from Remark O

Remark 3.1.16. Let Ry be a Noetherian Fp-algebra and let Gg be a p-divisible group
over Ry. If conditions (1) through (4) of Theorem [3.1.15| are satisfied, then Ry must
be F-finite and Gy must be nonstationary; see Remark [3.4.5|

Warning 3.1.17. Let Ry be an F-finite Noetherian Fj-algebra and let Gy be a
p-divisible group over Ry. If we do not assume that Gy is nonstationary, then it is
possible for Gy to admit a universal deformation (in the sense of Definition
for which the map p : R — Ry is not surjective on 7 (in which case Rg., does not
satisfy the conclusions of Theorem . For example, suppose that Ry = Ri[e]/(€?)
and that G is obtained by extension of scalars from a nonstationary p-divisible group
G over Ry. In this case, the deformation functors Defg, and Defg, coincide (Remark

3.1.8). Applying Theorem |3.1.15( to the p-divisible group Gi, we conclude that Gy

admits a universal deformation G, classified by a map p: Rg§, — Ro. However, the

map p factors through the subring R;  R;[e]/(€?), and therefore fails to be surjective.
The deformation theory of étale p-divisible groups is essentially trivial:

Proposition 3.1.18. Let G( be an étale p-divisible group over the finite field F,.
Then:

(a) The deformation functor Defg, : CAlg’d, — S is given by

cpl

* if p is topologically nilpotent in mo(A)

& otherwise.

DefGO (A) = {

un

(b) The spectral deformation ring R, is equivalent to the (p)-completed sphere
spectrum S@)), regarded as an adic Ey-ring with ideal of definition (p) < Z, ~

Wo(SG))>
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Proof. Let A be an adic Ey-ring. By definition, the space Defg,(A) is given by the
fiber product

(lim Hom(F, o (A) /1)) Xty 517 (o)1) BT (A),
1

where I ranges over the collection of all finitely generated ideals of definition for
mo(A). Note that the set Hom(F,, mo(A)/I) has a unique element when I contains p
and is empty otherwise. It follows that the direct limit (limy Hom(F,, mo(A)/1)) is
contractible when there exists an ideal of definition containing p (that is, when p is
topologically nilpotent in my(A)), and otherwise empty. In the former case, we can
rewrite Defg,(A) as the direct limit

lim BT”(A) xpro (o (a/1) {Go},
1

where I ranges over the collection of finitely generated ideals of definition containing
p. Corollary implies that each of the fiber products BT?(A) xgre(ay(a/n {Go}
is contractible, so that Defg,(A) is contractible. This proves (a); assertion (b) is an
immediate consequence. O

Corollary 3.1.19. Let Gy denote o, regarded as a p-divisible group over F,. Then
the spectral deformation ring Rg, is equivalent to the p-completed sphere spectrum
SP.

(p)

Proof. Combine Remark |3.1.13| with Proposition [3.1.18 O

3.2 The Moduli Stack of p-Divisible Groups

Let p be a prime number, which we regard as fixed throughout this section.

Definition 3.2.1. Let R be a connective E,-ring and let BT?(R) denote the oo-
category of p-divisible groups over R. We let Mpr(R) denote the underlying Kan
complex BT?(R)™ (that is, the subcategory of BT?(R) whose morphisms are equiva-
lences of p-divisible groups). The construction R — Mpr(R) determines a functor
Mgy : CAlg™ — S. We will refer to Mgy as the moduli stack of p-divisible groups.

The following result summarizes some of the formal properties of the moduli stack

MBTi
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Proposition 3.2.2. (1) The functor Mgt is cohesive. That is, for every pullback
diagram of connective E,-rings

AHAO

L

Al - AOI

for which the underlying ring homomorphisms my(Ap) — mo(Ao1) < mo(A1) are
surjective, the diagram of spaces

Mpr(A) —— Mpr(4o)

l l

Mgr(Ay) —— Mzr(Ao)
is a pullback square.

(2) The functor Mgt is nilcomplete. That is, for every connective Ey-ring A, the
canonical map Mpr(A) — lim Mpr(7<,A) is a homotopy equivalence.

(3) The functor Mgy admits a (—1)-connective cotangent complexr Ly (see Defi-
nition SAG.17.2.4.2 ).

(4) Let A be a connective Eq,-ring, let I < mo(A) be a finitely generated ideal, and
write the formal spectrum Spf(A) as a filtered colimit lim Spec(A,) (see Lemma
SAG.8.1.2.2) for some tower of A-algebras {An}n=1. If A is I[-complete, then
the canonical map Mgr(A) — lim Mpr(A,) is a homotopy equivalence.

(5) The functor Mgt satisfies descent for the fpqc topology (in particular, it satisfies
descent for the étale topology).

Remark 3.2.3. We can state assertion (4) of Proposition more informally as
follows: if A is a connective E,-ring which is complete with respect to an ideal I,
then the datum of a p-divisible group over the spectrum Spec(A) is equivalent to the
datum of a p-divisible group over the formal spectrum Spf(A).

Remark 3.2.4. It follows from assertion (4) of Proposition that the functor
Mg is integrable, in the sense of Definition SAG.17.3.4.1.
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Proof of Proposition [3.2.3. Assertions (1) and (2) follow from Proposition AV.7.1.4
and assertion (3) from Proposition AV.7.1.5. We will prove (4); the proof of (5) is
similar. For every E,-ring R, let Modf}f2 denote the full subcategory of Modg spanned
by the finite flat R-algebras and define CAlgh < CAlgp, similarly. Let Ab%  denote the
category of finite abelian p-groups. By virtue of Proposition AV.6.5.5, we can identify
Megr(R) with the full category of Fun(Ab%  CAlg™)> spanned by those functors F
satisfying the following conditions:

(1) The functor F' preserves finite coproducts.

(73) For every monomorphism M’ — M of finite abelian p-groups, the induced map
F(M') — F(M) is faithfully flat.

(i17) For every short exact sequence 0 — M’ — M — M” — 0 of finite abelian
p-groups, the diagram
F(M') ——= F(M)

L

F(0) —— F(M")
is a pushout square in CAlgg.

Let A be a connective E -ring which is complete with respect to a finitely generated
ideal I < mo(A), and let {A,} be as in assertion (4). Using Theorem SAG.8.3.4.4 and
Proposition SAG.8.3.5.7, we see that Mod®} can be identified with the limit lim Modin.
Passing to commutative algebra objects, we obtain an equivalence u : CAIgfj ~
liLnCAlgin, hence also an equivalence Fun(Ab% , CAlgh) ~ lim Fun(Abg,, CAlg .
To complete the proof, it will suffice to show that a functor F : Abf — CAlgh
satisfies conditions (i), (iz), and (izi) if and only if each of the composite maps
Abe 5 cAlgt - CAlg’, = satisfies conditions (i), (ii), and (i4i). The “only if”
direction is clear. The converse is immediate for conditions (i) and (i) (since u
is an equivalence of oo-categories); for condition (7i), it follows from Proposition
SAG.8.3.5.7. O

Assertion (3) of Proposition admits the following refinement:

Proposition 3.2.5. Let R be a connective Eo-ring and let G be a p-divisible group
over R, corresponding to a point n € Mpr(R). If p is nilpotent in the commutative
ring mo(R), then the R-module n* L,y is connective and almost perfect.
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Warning 3.2.6. If we do not assume that p is nilpotent in 7y(R), then the R-module
0¥ L a1 generally neither connective nor almost perfect.

Remark 3.2.7. Let R be a connective E,-ring. Assume that p is nilpotent in 7y (R)
and that my(R) is a Grothendieck ring. The product Spec(R) x Mpr represents a
functor CAlg® — S, given by composing Mpr with the forgetful functor CAlgy' —
CAlg™. Tt follows from Propositions and that this functor satisfies all
but one of the hypotheses of Artin’s representability theorem (in the form given
by Theorem SAG.18.3.0.1), which provide necessary and sufficient conditions for
Spec(R) x Mgt to be representable by a spectral Deligne-Mumford stack which is
locally almost of finite presentation over R. However, Artin’s theorem does not apply
because Spec(R) x Mgt is not locally almost of finite presentation over R: the functor
Mgt does not preserve filtered colimits when restricted to discrete R-algebras (see
Warning . Nevertheless, Proposition m guarantees that the relative cotangent
complex of the morphism Spec(R) x Mgt > Spec(R) is almost perfect, so that 7
behaves “infinitesimally” as if it were locally almost of finite presentation. The central
idea in the proof of Theorem [3.1.15|is that this infinitesimal finiteness property is
good enough to guarantee the representability of Mgt in a formal neighborhood of
any sufficiently nice R-valued point.

The proof of Proposition will require some auxiliary results.

Notation 3.2.8. Let R and A be connective E-rings, and suppose we are given
functors X,Y : CAlg® — Mody'. For every object A € CAlgy', we let X4 and Yy
denote the compositions of X and Y with the forgetful functor CAlg%y' — CAlg%'.
The construction A — Mapp,calgen Modst) (X4, Ya) determines a functor CAlgf' — S,
which is classified by a natural transformation Map, (X,Y’) — Spec(R) of functors
from CAlg™ to S. Here S denotes the oo-category of spaces which are not necessarily
small.

Lemma 3.2.9. Let R be a connective Ey-ring and let X, Y : CAlgy — Sp™ be
functors which are (representable by) finite flat group schemes over R. Then the
projection map u : Map (X,Y) — Spec(R) admils a cotangent complex which is
connective and almost perfect.

Proof. The existence of LMS( X,v)/Spec(r) follows from Proposition AV.6.1.12, and the
assertion that it is almost perfect follows from Remark AV.6.1.13. We will complete
the proof by showing that LMS( X,Y)/Spec(R) 18 connective. Fix a connective E-ring
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A and a point 7 € Map (X, Y)(A); we wish to show that M = 1" Ltap ,(X.Y)/ Spec(R)
is connective. Note that M is automatically almost connective (this is part of the
definition of a cotangent complex). We may therefore replace A by my(A) and thereby
reduce to the case where A is discrete (Proposition SAG.2.7.3.2).

If M is not connective, then there exists some largest integer k such that m_, M # 0.
Set N = m_; M. Then the identity map from N to itself supplies a nonzero element of

T (Mapygoq,, (M, N)) = m(fib(Map (X, Y)(A® N)) — Mapy (X, Y)(4)).

This is impossible, since the spaces Map (X, Y")(A) and Map (X, Y)(A@ N) are both
discrete. O

Lemma 3.2.10. Let A denote the commutative ring Z /N Z for some integer N > 0,
and let S be the sphere spectrum. Then A is almost perfect when viewed as a module

over A ®g A.

Proof. 1t follows from Proposition HA.7.2.4.31 that A is almost of finite presentation
when viewed as an Ej-algebra over S. Consequently, the tensor product A ®g A
is almost of finite presentation when viewed as an [E,-algebra over A. Applying
Proposition HA.7.2.4.31 again, we deduce that A ®g A is Noetherian. It follows that
a connective module M over A ®g A is almost perfect if and only if each homotopy
group of M is finitely generated as a module over A (Proposition HA.7.2.4.17). In
particular, A is almost perfect as a module over A ®g A. n

Lemma 3.2.11. Let R be a connective Ep-ring, let A = Z /N Z for some N > 0,
and let X,Y : CAlgy — Mod}" be functors which are representable by finite flat group
schemes over R (that is, the functors Q*X,Q*Y : CAlgy — S are corepresentable
by finite flat R-algebras). Then the projection map Map, (X,Y’) — Spec(R) admits a
cotangent complex LMA(Xy)/SpeC(R) which is connective and almost perfect.

Proof. For every connective bimodule M € yBMod (Sp™), let Z; denote the func-
tor Map (M ®j X,Y). Let us say that a bimodule M is weakly good if the pro-
jection map Zpr — Spec(R) admits a connective cotangent complex Lz, /spec(R);
and good if Ly, /spec(r) is almost perfect. It follows immediately from the defini-
tions that the construction M +— Zj; carries colimits in yBMod, (Sp™) to limits
in Fun(CAlg™,S)/spec(r)- Consequently, the collection of weakly good objects of
ABMod, (Sp™) is closed under small colimits (Remark SAG.17.2.4.5). Note that the
functor Zygga can be identified with Map (X,Y’), so that A ®s A is good (Lemma
3.2.9). Since \BMod,(Sp®™) is generated under small colimits by the object A ®g A,

141



we deduce that every bimodule M € \BMod, (Sp™) is weakly good. We wish to show
that A is good. By virtue of Lemma [3.2.10] and Corollary SAG.17.4.2.2, it will suffice
to prove the following:

(x) If M € \BMod,(Sp™) is almost perfect when viewed as a module over A ®g A,
then the map Z); — Spec(R) is locally almost of finite presentation.

To prove (), let M be a connective almost perfect module over A ®g A, and let
n = 0. We wish to show that the functor A — Mapgy,caigsr Modsn) (M ®a Xa, Ya)
commutes with filtered colimits when restricted to 7<,, CAlg%:'. Applying Corollary
SAG.2.7.2.2, we can choose a cofiber sequence M’ — M — M" in \BMod, (Sp) where
M' is (n + 1)-connective and M"” is perfect. Let A € CAlg}y; be n-truncated. Since
X is representable by a finite flat group scheme over R, the functor X, is a left Kan
extension of its restriction to the full subcategory £ < CAlgf' spanned by the finite
flat A-algebras. Since Y is a finite flat group scheme over R, the functor Y, takes
n-truncated values on £. It follows that the space

MapFun(CAlgf;,Modgn)(M, ®p Xa,Yy) ~ MapFun(E,Modf\“)(M, ®n Xale, Yale)
is contractible. Using the evident pullback diagram

Map , (M" ®g X,Y) —— Map, (M ®g X,Y)

| |

Spec(R) Map (M’ ®r X,Y),

we see that the projection map Map, (M ®g X,Y) — Map, (M" ®g X,Y) is an
equivalence when restricted to 1<, CAlgy'. We may therefore replace M by M” and
thereby reduce to the case where M is perfect.

The assumption that M is perfect guarantees that there exists some integer k£ such
that M has Tor-amplitude < k (when viewed as a module over A ®g A). We proceed
by induction on k. Since M is connective and perfect, the homotopy group mo(M) is
finitely generated as a module over A. We can therefore choose free (A ®g A)-module
P of finite rank and a morphism « : P — M which is surjective on my. Set () = fib(«),
so that we have a pullback diagram

Zy Zp
Spec(R) — Zg.
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If £ > 0, then @ has Tor-amplitude < k, and our inductive hypothesis guarantees that
the map Zg — Spec(R) is locally almost of finite presentation. If £ = 0, then M is a
projective A-module, so that o admits a right homotopy inverse which exhibits Z,; as
a retract of Zp. In either case, we are reduced to showing that the map Zp — Spec(R)
is locally almost of finite presentation. We may therefore replace M by P and thereby
reduce to the case where M is a free module of finite rank r over A ®g A. Proceeding
by induction on r, we can further reduce to the case » = 1: that is, to the case
M = A®s A. In this case, we have Zy = Map (X,Y’) and the desired result follows
from Remark AV.6.1.11. O

Lemma 3.2.12. Let R be a connective By, -ring which is (p)-nilpotent, and let G and
G’ be p-divisible groups over R. Then the projection map Map, (G, G') — Spec(R)
admits a cotangent complex which is 1-connective and almost perfect.

Proof. The existence of the cotangent complex LMZ(GvG’) /Spec(r) follows from Propo-
sition AV.7.1.5. Fix a connective Eq-ring A and a point n € Map, (G, G")(A),
corresponding to a map of E,-rings R — A and a morphism of p-divisible groups
f: Gy — G. We wish to show that the pullback M = n*LMZ(G,G/)/SpeC(R) is
1-connective and almost perfect. By homogeneity, we may assume without loss of
generality that f = 0.

Choose an integer k such that p* = 0 in mo(R), and form a fiber sequence

Gl - G 4 G.

Since G is a p-divisible group, this fiber is also a cofiber sequence of Mody'-valued
sheaves with respect to the fppf topology. We therefore obtain a pullback diagram

Ma‘pz(Ga G/) - Mapz(Gv G/)

| |

Spec(R) Map, (G[p"], G),

whose bottom right corner can be identified with the functor

Z =Map, . ,(G[P"], G'[p*]).

It follows from Lemma [3.2.11|that the projection map Z — Spec(R) admits a cotangent
complex which is connective and almost perfect. We therefore obtain a fiber sequence
of A-modules u(1)*Lz/spec(r) — M L M, where ¢ is induced by the endomorphism
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of MZ(G, G’) given by multiplication by p*. It follows easily that ¢ coincides with
the map given by multiplication p* on M, and is therefore nullhomotopic (since
p¥ vanishes in my(A)). The preceding fiber sequence therefore supplies a splitting
w(n)*Lz/specry ~ M @ X7'M. In particular, we see that M appears as a direct
summand of u(n)*E' Lz spec(r), and is therefore 1-connective and almost perfect. [

Notation 3.2.13. Let R be a connective E,-ring and let G be a p-divisible group over
R. For any connective E,-ring R, we can identify A-valued points of Map, (G, G) with
pairs (u, f), where u : R — A is a map of E,-rings and f : X4 — X4 is a morphism of
p-divisible groups over A. We let Aut(G)(A) denote the summand of Map, (G, G)(A)
corresponding to those pairs (u, f) where f is an equivalence of p-divisible groups. We
regard the construction A — Aut(G)(A) as a functor Aut(G) : CAlg™ — S.

Lemma 3.2.14. Let R be a connective Ey-ring and let G be a p-divisible group over
R. Then the inclusion Aut(G) — Map, (G, G) is an open immersion of functors (see
Definition SAG.19.2.4.1 ).

Proof. Suppose we are given an R’-valued point of MZ(G, G), given by a morphism
of connective E,-rings R — R’ and a morphism of p-divisible groups f : Gp — Gpg.
We wish to show that U = Spec(R') Xwmap,_(c,6) Aut(G) is an open subfunctor of
Spec(R’). Without loss of generality, we may assume that R = R, so that f determines
a map from G to itself, which induces a map fy : G[p] — G[p]. The functor Q*G|[p] is
representable by an E-algebra H € CAlg}' which is finite flat over R, so f determines
an R-module map v : H — H. We claim that U is the open subfunctor of Spec(R)
complementary to the support of the perfect R-module cofib(u). To prove this, it
will suffice (by virtue of the compatibility of support with base change) to show that
f is an equivalence if and only if cofib(u) vanishes: that is, if and only if fy is an
equivalence. The “only if” direction is obvious. For the converse, we observe that
if fy is an equivalence, then it follows by induction that f induces an equivalence
G[p*] — G[p"] for each k > 0; passing to the direct limit over k, we conclude that f
is an equivalence. O

Lemma 3.2.15. Let R be a connective E-ring and let G be a p-divisible group
over R. If R is (p)-nilpotent, then the projection map Aut(G) — Spec(R) admits a
cotangent complex which is 1-connective and almost perfect.

Proof. Combine Lemmas [3.2.12] and [3.2.14] O
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Proof of Proposition[3.2.5. Let R be a connective Ey-ring which is (p)-nilpotent and
let n € Mgpr(R), corresponding to a p-divisible group G over R. We wish to show
that the R-module n* L yq,,..; connective and almost perfect. Unwinding the definitions,
we have a pullback diagram of functors

Aut(G) Spec(R)

i (m,id) l

Spec(R) —— Mgt X Spec(R).

Setting Z = Mpt x Spec(R) and let § : Spec(R) — Aut(G) denote the diagonal map
(classifying the identity automorphism of G). We then have natural equivalences

n*LMBT = (n?id)*LZ/Spec(R)
~ Y7 Lgpec(r)/z
~ Y716 Lauy(a)/ Spee(R)-

The desired result now follows from the observation that Lauy(q)/spec(r) is 1-connective

and almost perfect (Lemma [3.2.15)). ]

3.3 The Cotangent Complex of an F-Finite Ring

Our primary goal in this section is to prove the following purely algebraic fact,
which will be needed in our proof of Theorem [3.1.15

Proposition 3.3.1. Let R be an F-finite Noetherian F,-algebra. Then the absolute
cotangent complex Lp is almost perfect as an R-module.

Remark 3.3.2. We will prove a converse to Proposition |3.3.1|in §2.3.18 (see Theorem
3.5.1).

In the statement of Proposition [3.3.1] we use Lg to denote the cotangent complex
of R in the setting of E,-rings (that is, the R-module spectrum whose homotopy
groups are the topological André-Quillen homology groups of R). Since R is an ordinary
commutative ring, we can also consider the algebraic cotangent complex of R: that
is, the R-module spectrum whose homotopy groups are the classical André-Quillen
homology groups of R. We will denote the latter by L?%g. The analogue of Proposition
for the algebraic cotangent complex is somewhat easier to prove. However, it
formally implies Proposition [3.3.1] by virtue of the following:
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Lemma 3.3.3. Let f : A — B be a homomorphism of commutative rings. The
following conditions are equivalent:

(a) The relative algebraic cotangent complex L;}%A is almost perfect as a B-module.
(b) The relative topological cotangent complex L) is almost perfect as a B-module.

Proof. Let B be the E;-ring of Remark SAG.25.3.3.4, so that Lp 4 has the structure
of a left Bt-module and we have an equivalence Lgf 1~ B ®p+ Lgja (Remark
SAG.25.3.3.7). It follows from Proposition SAG.2.7.3.1 that (a) is equivalent to the
following:

(a') The relative topological cotangent complex Lp/4 is almost perfect as a left
Bt-module.

To show that (a') and (b) are equivalent, it will suffice to show that B is almost perfect
when viewed as a left B-module. This follows from the equivalence Bt ~ B ®g Z of
Proposition SAG.25.3.4.2, since Z is almost perfect when viewed as an S-module. [

Proposition 3.3.4. Let R be a commutative ring. The following conditions are
equivalent:

1) The algebraic cotangent complex LY ~ [ s almost perfect as an R-module.
R/Z
(2) The topological cotangent complex Lg is almost perfect as an R-module.

(3) The relative topological cotangent complex Lz is almost perfect as an R-module.

Proof. The equivalence of (1) and (3) is a special case of Lemma [3.3.3] We will show
that (2) and (3) are equivalent. Using the fiber sequence R ®z Lz — Lr — Lp/z,
we are reduced to showing that Lz = Lz /s is almost perfect as a module over Z.
This is clear, since Z is almost of finite presentation as an E-algebra over the sphere
spectrum (Proposition HA.7.2.4.31). O

We now specialize to the study of F,-algebras.

Notation 3.3.5. Let R be a commutative algebra over F,. We let RY? denote the
same commutative ring, regarded as an R-algebra via the Frobenius morphism

pr:R—> R  opz) =2
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Lemma 3.3.6. Let f : A — B be a morphism of commutative F,-algebras. Then the
canonical map p : BY? ®p Lg%A — Lg%p/m/p is nullhomotopic.

Proof. Choose a simplicial A-algebra P,, where each P is a polynomial algebra over
A (possibly on infinitely many generators) and B ~ |P,|. Then p can be identified
with the geometric realization of a map of simplicial B/P-modules

. Rl ! 1 1
pe: B ®p, Lpja— B 4 ®puir L;:%/P/Al/p'

Note that each p, is a map of free B/P-modules. It will therefore suffice to show that
each p,, is nullhomotopic. Observe that p,, is obtained by extension of scalars from the
map of P,-modules (2p, /4 — Q PP AL/ induced by the Frobenius map on P,. This

map vanishes by virtue of the calculation d(z?) = px?~'dx = 0 for z € P,. O]

Proposition 3.3.7. Let R be a commutative Fy-algebra. The following conditions

are equivalent:

(1) The commutative ring R satisfies the equivalent conditions of Proposition m

(2) The relative algebraic cotangent complex L?%lpr is almost perfect as an R-module.

(3) The relative topological cotangent complexr Ly, is almost perfect as an R-
module.

(4) The relative algebraic cotangent complex L%ip/R is almost perfect as an RYP-

module.

(5) The relative topological cotangent complex Ly is almost perfect as an RYP.
module.
Proof. Note that Li,ilf ~ %(F,) is a perfect Fj-module. so that R ®g, L%lf ~ 3(R)
is perfect as an R-module. Using the fiber sequence R ®p, L%lf — L38 L%%Fp, we
deduce that (1) < (2). The equivalences (2) < (3) and (4) < (5) follow from Lemma

We have a fiber sequence

1/p alg e alg alg
R7" ®r LR/Fp - LRl/p/Fp - LRl/P/R

where « is nullhomotopic (Lemma [3.3.6]), and therefore a splitting of RYP-modules

al, al al
LR%/p/R = R%/p/Fp ® Z(Rl/p ®r LRin)

which shows that (2) and (4) are equivalent (note that L‘}’%%Fp is almost perfect as an

R-module if and only if L?%f/p /¥, is almost perfect as an R'/P-module). O
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Corollary 3.3.8. Let R be a commutative Fy,-algebra. Suppose that the Frobenius
map @r exhibits RVP as an almost perfect R-module. Then Lp and L%g are almost
perfect as R-modules.

Proof. If RY? is almost perfect as an R-module, then it is almost of finite presentation
as an Ep-algebra over R (Corollary SAG.5.2.2.2). Tt follows that Lpgi g is almost
perfect as an R'/P-module, so that the desired result follows from Proposition O

Proof of Proposition |3.3.1. Since R is Noetherian, the assumption that R is F-finite
guarantees that R'? is almost perfect as an R-module (Proposition HA.7.2.4.17).
Invoking Corollary [3.3.8, we conclude that Lz and L‘}ig are almost perfect. O]

We close this section by establishing a useful closure property for F-finite rings:

Proposition 3.3.9. Let R be a Noetherian Fy-algebra which is complete with respect
to an ideal I < R. If R/I is F-finite, then R is F-finite.

Proof. Since R is Noetherian, we can choose a finite collection of elements x4, ..., z,
which generate the ideal I. Let J denote the ideal (zf,...,2zP), so that we have
I’ < J < I. Tt follows that R/J admits a finite filtration whose successive quotients
(I* + J)/(I*"! + J) are finitely generated as modules over R/I. Our assumption that
R/I is F-finite guarantees that (R/I)"? is finitely generated as an R-module, so that
(R/J)'? is also finitely generated as an R-module. We can therefore choose elements
Y1, - - Ym € R with the following property:

(#) For every element ¢ € R, there exists coefficients ¢y 1, ..., 1, € R such that

t=d i+ -+ ym  (mod J).

Applying (*) repeatedly, we can choose elements ¢;1,...,¢;,, € R for each i > 1
satisfying

t=cy+ -+ ¢ pYm  (mod J%) Ciy1;=¢; (mod I")

1y

Since R is I-complete, the sequences {c; ;};>1 converge for each 1 < j < m to an
element ¢; € R, and these elements satisfy t = ¢y, + -+ + &, y,,. It follows that the
elements 1, ..., ym generate R/? as an R-module, so that R is F-finite. [
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3.4 The Proof of Theorem [3.1.15]
We will deduce Theorem [3.1.15| from the following more general statement:

Theorem 3.4.1. Let Ry be a commutative ring and let Gg be a p-divisible group over
Ry. Assume that p is nilpotent in Ry, that Gg is nonstationary, and that the absolute
cotangent complex Ly, is almost perfect as a module over Ry. Then:

(1) The p-divisible group Go admits a universal deformation (in the sense of Defini-
tion|3.1.11)): that is, the functor Defg, : (]Algis1 — § is corepresentable by a
complete adic By -ring RE, .

(2) The spectral deformation ring R§, is connective.

(3) The canonical map p : RE — Ry (see Remark induces a surjective ring

homomorphism € : mo(RE,) — Ro.

4) The map p exhibits Ry as an almost perfect module over RE. . In particular, the
Go
kernel ideal ker(¢€) is finitely generated.

(5) The kernel ker(e) is an ideal of definition for mo(RE,). In particular, the Ey-ring

G is complete with respect to ker(e).

(6) If Ry is Noetherian, then R, is also Noetherian.

Proof of Theorem |5.1.15. Combine Theorems (3.4.1| and [3.3.1] O

Remark 3.4.2. In the case where Ry is Noetherian, Theorem [3.4.1] is not really any
more general than Theorem [3.1.15] Since p is nilpotent in Ry, there is no harm in
replacing Ry by the quotient Ry /pRy (see Remark [3.1.8)), in which case the assumption
that Lg, is almost perfect is equivalent to the requirement that Ry is F-finite (Theorem
. Nevertheless, Theorem can be regarded as an improvement of Theorem
because it can also be applied to non-Noetherian rings. For example, if Gy is
any p-divisible group defined over a perfect F,-algebra R, then Gy is automatically
nonstationary (Example and the cotangent complex Lp, is almost perfect
(Corollary , so Theorem m guarantees the existence of a universal deformation
of Gy.

We now turn to the proof of Theorem [3.4.1 In what follows, we will assume
that the reader is familiar with the notion of the relative de Rham space (X/Y )ar
associated to a natural transformation between functors X,Y : CAlg™ — S (see
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Definition SAG.18.2.1.1). We will also abuse notation by identifying the co-category
CAlg of E,-rings with a full subcategory of the co-category (]Alg"c"lf,ll of complete adic
E-rings, via the construction which associates to each E,-ring A the discrete topology
on the underlying commutative ring mo(A).

The following statement is almost an immediate consequence of the definitions:

Proposition 3.4.3. Let Ry be a commutative ring and let Go be a p-divisible group
over Ry, classified by a natural transformation of functors f : Spec(Ry) — Mgpr.
Assume that p is nilpotent in Ry and that the cotangent complex Ly, is almost perfect
as an Ry-module. Then the functor Defg, |cagen can be identified with the relative de
Rham space (Spec(Ry)/ MpT)dR -

Proof. Set X = (Spec(Ry)/ Mpr)ar. By definition, X is a functor from the co-
category CAlg™ of connective E, -rings to the oo-category S of spaces, given by the
formula

X(A) = h_I,n MBT(A) X Mg (mo(A)/T) HOII](RO, 71-0("4)/1)7
IeNil(A)

where the colimit is taken over the collection Nil(A) of all nilpotent ideals in the
commutative ring mo(A). On the other hand, the space Defg,(A) is defined as the
colimit li_n)lleNﬂo(A) M1 (A) X My (mo(ay,r) Hom(Ro, mo(A)/T), where Nily(A) < Nil(A)
is the collection of all finitely generated nilpotent ideals of my(A) (these are precisely
the finitely generated ideals of definition for the trivial topology on my(A)). We
therefore have a canonical map 6,4 : Defg,(A) — X (A), depending functorially on A.
We will complete the proof by showing that each 64 is a homotopy equivalence.

Note that 4 is a pullback of 6 (4); we may therefore replace A by my(A) and thereby
reduce to the case where A is discrete (which permits us to simplify our notation).
Define F' : Nil(A) — S by the formula F(I) = Mgr(A) X mppary Hom(Ro, A/T).
We will show that F' is a left Kan extension of its restriction F|Ni]0( 4)- To prove
this, fix a nilpotent ideal I < A; we wish to show that the canonical map p :
lim F(J) — F(I) is a homotopy equivalence. Unwinding the definitions,

= J<I,JeNily(A)
we see that p fits into a pullback diagram

lim F(J) ? F(I)

== JCcI,JeNily(A)

|

lim 1y Hom(Ro, A/J) —"~ Hom(Ry, A/T) x x(a/r lim X (ALT).

—>J<1,JeNilg( ——JcI,JeNily(

It will therefore suffice to show that p’ is an equivalence. In fact, we claim that
the natural transformation Spec(Ry) — X is locally almost of finite presentation.
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By virtue of Proposition SAG.18.2.1.13, it will suffice to show that f is nilcomplete,
infinitesimally cohesive, and admits an almost perfect cotangent complex. The first two
assertions follow from Proposition AV.7.1.4, and the third follows from the existence
of a fiber sequence

LMBT’SpeC(Ro) - LSpec(Ro) - LSpec(Ro)/MBT;

note that the first term is almost perfect by virtue of Proposition and the middle
term is almost perfect by assumption. O

Remark 3.4.4. Let Ry and Gy be as in the statement of Proposition [3.4.3, Using
the fiber sequence

LMBT‘SpeC(Ro) - LSpec(Ro) - LSpec(Ro)/MBT

together with Proposition [3.2.5, we see that Lgpec(ry)/ My 1S connective and almost
perfect. Moreover, the following conditions are equivalent:

(a) The relative cotangent complex Lgpec(ry)/ myr 18 1-connective.
(b) The canonical map £ : Ly |spec(ro) = Lspec(ro) 1S surjective on mp.

(c) For each residue field s of Ry, the induced map Sy : Layr|spec(x) = & @ro Lr,
is surjective on .

(d) For every residue field s of Ry and every nonzero map 7y : Lg, — k, the composite
map o 3 is also nonzero.

(e) For every residue field k of Ry and every derivation d : Ry — &, classifying a
ring homomorphism Ry — [e]/(€?), the p-divisible group (Gg)y of Construction
3.0.7|is nontrivial as a first order deformation of (Gg).

(f) The p-divisible group Gy is nonstationary, in the sense of Definition m

The implications (a) < (b) = (¢) < (d) < (e) < (f) are immediate, while the
implication (¢) = (b) follows from Nakayama’s lemma (since 7y Lg, is finitely generated
as a module over Ry).

Proof of Theorem[3.4.1 Let Ry be a commutative ring in which p is nilpotent and let
Gy be p-divisible group over Ry, classified by a natural transformation f : Spec(Ry) —
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Mgr. Using Proposition [3.2.2] we see that the functor Myt is nilcomplete, infinites-
imally cohesive, and admits a cotangent complex. If the cotangent complex Lp, is
almost perfect and that Gy is nonstationary, then the relative cotangent complex
Lspec(Ro)/ Myr 18 1-connective and almost perfect (Remark . By virtue of Proposi-
tion , we can identify the restriction Defg, |calger : CAlg™ — S with the relative
de Rham space (Spec(Ro)/ Mpr)ar- Applying Theorem SAG.18.2.3.1, we deduce
that Defg, |calgen is (representable by) formal thickening of Spec(Rp). It follows
from Using Corollary SAG.18.2.3.3 and Proposition SAG.18.2.2.8 , we see that the
functor Defg, |calgen is corepresentable by an object R € CAIgiS1 satisfying conditions
(2) through (5) (which is Noetherian if Ry is Noetherian, by virtue of Corollary
SAG.18.2.4.4). Let h't : (]Algig1 — & denote the functor corepresented by R; we will
complete the proof by showing that the equivalence hf|gager ~ Defg, |calger can be
lifted (in an essentially unique way) to an equivalence hf* ~ Defg,.

Let C < CAlgigl denote the full subcategory spanned by those complete adic
E,-rings which are connective. To complete the proof, it will suffice to prove the
following:

(i) The functors hf* and Defg, are left Kan extensions of the restrictions hff|c and
Defg, |c, respectively.
(ii) The functors h¥|¢ and Defg, |¢ are right Kan extensions of the restrictions

h%|calgen and Defg, |calgen, respectively.

Claim (7) is essentially tautological: it asserts that for any complete adic Ey-ring A,
the canonical maps

Mapgal (R, 7204) — Mapgay, (R, A)  Defg,(204) — Defe,(4)

are homotopy equivalences. The map on the left is a homotopy equivalence since R is
connective, and the map on the right is a homotopy equivalence because the extension
of scalars functor BT?(759A) — BT?(A) is an equivalence of oo-categories (Remark
AV.6.5.3). We now prove (ii). Fix a connective complete adic Ey-ring A; we wish to
show that h'|¢ and Defg, |¢ are right Kan extensions of hf{|caigen and Defg, |calgen
at A, respectively. Let I < mo(A) be a finitely generated ideal of definition. Invoking
Lemma SAG.8.1.2.2, we can write A as the limit of a tower of square-zero extensions

e AS - Az - Al
with the following property: for each B € CAlg®™, the canonical map
h_I,nMaPCAlg(Am B) — MapCAlg<A7 B)
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is a homotopy equivalence onto the summand of Mapgay, (A, B) consisting of those
maps A — B which annihilate some power of I. Unwinding the definitions, we wish
to show that the canonical map

6 Mapit (R, A) — lim Map&it (R, A,) : Defgy(A) — lim Defg, (A,.).

Note that a morphism of E, -algebras R — A is continuous (with respect to the
topologies on m(R) and m(A)) if and only if the composite map R — A — A, is
continuous (where we endow 7my(A;) with the discrete topology), so that ¢ fits into a
pullback diagram

con ¢ : con
MapCAfg(Ra A)— lin MapCAltg(Ra An)

| |

¢ .
Ma’pCAlg(Ru A) — Liﬂ MapCAlg(Ra Ap).

Our assumption that A is complete guarantees that ¢’ is a homotopy equivalence, so
that ¢ is also a homotopy equivalence. Unwinding the definitions, we see that 1 fits
into a pullback diagram of co-categories

Defg,(A) — lim Def, (A,)

Lo

Mir(A) =2 lim Myr(A,).

Since 1’ is a homotopy equivalence (Proposition [3.2.2)), it follows that 1 is a homotopy
equivalence as desired. O

Remark 3.4.5. Let Ry be a commutative ring in which p is nilpotent and let Gy
be a p-divisible group over Ry. Suppose that Gg admits a spectral deformation ring
R = R§, satisfying conditions (3) and (4) of Theoremm (note that condition (2) is
automatically satisfied as well). Then the relative de Rham space (Spec(Ry)/ MpT)dr
can be identified with the formal spectrum Spf(R). Using Corollary SAG.18.2.1.11,
we deduce that the relative cotangent complex Lgpec(r,)/ mpr can be identified with
Lgy/r, and is therefore 1-connective and almost perfect. Combining this observation
with Proposition and Remark we conclude that Gy must be nonstationary
and the absolute cotangent complex Lp, must be almost perfect. In particular, if R,
is a Noetherian F,-algebra, then it must be F-finite (Theorem [3.5.1]).

153



3.5 A Differential Characterization of F-Finiteness

Our goal in this section is to prove the following stronger version of Proposition

B.3.1¢

Theorem 3.5.1. Let R be a Noetherian F,-algebra. The following conditions are
equivalent:

(1) There exists a regular Noetherian F,-algebra A which is F'-finite and a surjection

A — R.
(2) The Fy-algebra R is F-finite.

(3) The absolute cotangent complex Lg is almost perfect as an R-module (see Propo-
sition for various equivalents of this condition).

Remark 3.5.2. The implication (2) = (1) of Theorem is due to Gabber; see
Remark 13.6 of [10].

Theorem will not be needed later in this paper. However, some of the
ingredients in the proof (specifically, Proposition below) will be useful in §6.1]

Lemma 3.5.3. Let f : k — k' be an extension of fields. Then the algebraic cotangent
complex Lzl,g/,{ is 1-truncated.

Proof. Writing «’ as a filtered colimit of finitely generated subfields, we may assume
that there are finitely many elements z1,...,z, € k' which generate ' as a field
extension of k. Proceeding by induction on n, we can reduce to the case where «’ is
generated by a single element 2. There are two possibilities:

e The element x is transcendental over x: that is, x’ is isomorphic to the fraction
field of the polynomial ring x[x]. In this case, Lfll,g/fi is a free x’-module of rank 1.

e The element x is algebraic over k, so that we can write ' = s[x]/(f(z)) for
some polynomial f(z). In this case, we can identify Lil,g/,{ with the cofiber of the

map k' — £’ given by multiplication by %(tt)h:m
O

Lemma 3.5.4. Let k be a field and let R be a Noetherian E-algebra over k. Assume
that the relative cotangent complex Ly, vanishes. Then R is discrete and reqular.
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Proof. Without loss of generality, we may assume that R is local. Let s’ denote the
residue field of R. Using the fiber sequence

K ®r LR/R - Ln’//{ i LH’/Ra

we deduce that ¢ is an equivalence. It follows that my(L./.) vanishes, so that the
). It

) vanishes, so that (L)

) le . . . 1
comparison map L,/ — LZ,%H induces an isomorphism (L)) — WQ(Li,%H

alg
K'/K

follows from Lemma[3.5.3[that the homotopy group (L

also vanishes. Invoking the fact that 6 is an equivalence again, we obtain my(L,./gr) >~ 0.
Using the fiber sequence

K ®ro(r) Lro(r)/R = Liv/k = L mo(R)»

we obtain a short exact sequence of vector spaces

o (Liw/r) = Ta(Li fmo(r)) = T1(K ®ro(R) Limo(r)/R)-

Here the first term vanishes by the preceding argument, and the third term van-
ishes because the projection map R — my(R) has connected fibers. It follows that
To( Ly /xo(r)) also vanishes. Applying Lemma SAG.11.2.3.9, we conclude that my(R) is
regular.

Since R is Noetherian, the projection map R — my(R) is almost of finite presenta-
tion, so the relative cotangent complex L (g)/r is almost perfect as a mo(R)-module.
It is also 2-connective (Corollary HA.7.4.3.2). Using the fiber sequence

70(R) ®r Lrjw = Lro(R)/x = Lny(r)/R>

we conclude that L, g/ is also 2-connective and almost perfect as a my(R)-module.

Applying Lemma [3.3.3, we deduce that the algebraic cotangent complex Lilog( Ry 18

also 2-connective and almost perfect. We have a fiber sequence
1 1 1
K' ®ro(R) L?rog(R)/n - LZ/%WO(R) - LZ%

where Lzl,g/ﬂo(R) and Liliﬁ are 1-truncated (the first because ' is the quotient of
mo(R) by a regular sequence, and the second by virtue of Lemma [3.5.3). It follows
that the tensor product &' ®x,(r) Ljrlog( R)/x 15 both 2-connective and 1-truncated, and
therefore vanishes. Since Lfrlog( ) 18 almost perfect, it follows that Lfrlog(R) /. itself
vanishes, so that the topological cotangent complex L, (r)/. vanishes as well (Remark

SAG.25.3.3.7). the canonical map 7o L(z)/mo(r) — WQLil(i) Jmo(R) 18 an isomorphism, so
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that moLy(2)/ro(r) =~ 0. Applying Lemma SAG.11.2.3.9, we deduce that the local ring
mo(R)y is regular. Returning to the fiber sequence

7o(R) ®r Lrjw = Lag(r)w — Lno(r)/R>

we conclude that L gy/r also vanishes. It follows that the projection map R — mo(R)
is an equivalence (Corollary HA.7.4.3.4), so that R ~ m(R) is discrete and regular as
desired. O

Proposition 3.5.5. Let f : A — B be a morphism of Noetherian Ey-rings, and
suppose that the relative cotangent complex L a vanishes. Then f is flat.

Proof. By virtue of Lemma SAG.6.1.2.4 , it will suffice to show that the tensor product
Kk ®4 B is discrete for every residue field k of A. We may therefore replace A by k, in
which case the desired result follows from Lemma [3.5.4] O

Proposition 3.5.6. Let f : A — B be a morphism of Noetherian F,-algebras. The
following conditions are equivalent:

(1) The relative cotangent complex Lp/a vanishes.

(2) The morphism f is flat and the diagram

A-1.B
PA ¥B
A—-1-pB
is a pushout square in the category of commutative rings.

(3) The diagram

A-1t.p
o e
AL B

is a pushout square in the co-cateqory of Ky -rings.
Proof. The implication (2) = (3) is obvious. If condition (3) is satisfied, then the

canonical map

. Bl alg alg
u: B ®p LB/A - LBl/p/Al/p
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is an equivalence. Since u is nullhomotopic (Lemma , it follows that the algebraic
cotangent complex L?Blf ', vanishes. Applying Proposition SAG.25.3.5.1, we conclude
that Lp/4 also vanishes; this shows that (3) implies (1).

We complete the proof by showing that (1) implies (2). Assume that Lp/4 vanishes,
so that f is flat by virtue of Proposition [3.5.5] We wish to show that the relative
Frobenius map ¢; : AYP®4B — BYP is an isomorphism. Since A ~ AP is Noetherian,
it will suffice to show that ¢; induces an isomorphism

kP @4 B — kYP @ 410 BYP

for each residue field x of A (Lemma SAG.2.6.1.3). We may therefore replace A by &
and B by kK ®4 B, and thereby reduce to the case where A = k is a field (note that
this replacement does not injure our hypothesis that B is Noetherian).

Applying Lemma [3.5.4] we deduce that B is a regular Noetherian ring. Factoring
B as a product, we can assume without loss of generality that B is an integral
domain. Let K denote the fraction field of B. For every subfield x' < x!/P which is
a finite extension of k, the tensor product B, = k' ®, B is also Noetherian (since
it is finite over B) and the relative cotangent complex Lp /. vanishes, so Lemma
guarantees that B,/ is also a regular Noetherian ring. Note that B, is also
an integral domain (since the map |Spec(By)| — | Spec(B)| is a homeomorphism),
whose fraction field can be identified with &’ ®, K. The regularity of B,, guarantees
that it is integrally closed in its fraction field, and can therefore be identified with
the integral closure of B in k' ®, K. Passing to the direct limit over x’, we conclude
that k' ®,. B can be identified with the integral closure of B in ' ®, K. Similarly,
the regularity of B guarantees that B'/P is integrally closed in its fraction field K/7,
and can therefore be identified with the integral closure of B in K7, Consequently,
to show that the map ¢ is an isomorphism, it will suffice to show that the natural
map k7 ®, K — K'P is an isomorphism. In other words, we can replace B by its
fraction field K, and thereby reduce to the case where B is also a field.

Let €2, denote the module of Kéahler differentials of x. Choose a collection of
elements {z; € k};c; with the property that {dz;};c; is a basis for €, as a vector space
over k. Then the elements {x;};c; form a p-basis for the field x: that is, there is an
isomorphism of k-algebras

Kl{tibier) /(8 — 2i) = K7,

carrying each t; to :1:'11 /? Tt follows that we can identify the relative Frobenius ¢, with
the map K[{t;}ier]/(t! — f(2:)) — K'P given by t; — f(x;)"/?. To show that this map
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is an isomorphism, it suffices to show that the elements {f(z;)}ic; form a p-basis for
the field K, or equivalently that the elements {df (z;)} form a basis for Qf as a vector
space over K. This is clear: our hypothesis that the relative cotangent complex L.
vanishes guarantees that the natural map K ®, €2, — Qf is an isomorphism. O

Corollary 3.5.7. Let f : A — B be a morphism of Noetherian F,-algebras. Suppose
that the relative cotangent complex Lp s vanishes and that f induces an isomorphism
of perfections AP — BYP* Then f is an isomorphism.

Proof. We have a commutative diagram

A— s AV o AV ...

Lo

B— B/ ___ _BP»___ ...

Our assumption that Lp 4 vanishes guarantees that each square in this diagram is
a pushout (Proposition [3.5.6)). Passing to the colimit in the horizontal direction, we

deduce that the diagram
A—— AP

.

B ——= BY/P”

is a pushout square. Our second assumption guarantees that the right vertical map in
this diagram is an isomorphism: that is, f becomes an isomorphism after extending
scalars to AY?”. It follows that, for every residue field x of A, the induced map
kYP* — k7 @4 B is an isomorphism. Since xP” is faithfully flat over x, we
conclude that the map kK — kK ®4 B is an isomorphism. Because A is Noetherian, this
guarantees that f is an isomorphism (Lemma SAG.2.6.1.3). H

Corollary 3.5.8. Let f : A — B be a morphism of Noetherian E.,-rings. Assume
that p is nilpotent in the commutative ring mo(A). Then f is an equivalence if and
only if it satisfies the following pair of conditions:

(a) The relative cotangent complex Lp/a vanishes.

(b) For every perfect Fp,-algebra R, composition with f induces a homotopy equiva-
lence MapCAlg(Ba R) - MapCAlg(A7 R) :
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Proof. The “only if” direction is obvious. For the converse, suppose that (a) and (b)
are satisfied; we wish to show that f is an equivalence of E,-rings. Since p is nilpotent
in m(A), it will suffice to show that the induced map mo(A)/(p) — (m0(A)/(p)) ®4 B
is an equivalence of E -rings. We may therefore replace A by my(A)/(p) and thereby
reduce to the case where A is a commutative F,-algebra (note that this does not injure
our hypothesis that B is Noetherian, because my(A)/(p) is almost of finite presentation
over A). In this case, hypothesis (a) guarantees that f is flat (Proposition [3.5.5)),
so that B is also a commutative F,-algebra. Condition (b) is now equivalent to the
requirement that f induces an isomorphism of perfections AYP” ~ BYP* so that f is
an equivalence by virtue of Corollary O

Proof of Theorem|[3.5.1. The implication (1) = (2) is obvious, and the implication
(2) = (3) follows from Proposition We will complete the proof by showing
that (3) = (1). Let R be a Noetherian F,-algebra, and suppose that the absolute
cotangent complex Lp is almost perfect. We wish to show that R can be written
as the quotient of an F,-algebra which is regular, Noetherian, and F-finite. Our
assumption that Ly is almost perfect guarantees that the module of Kahler differentials
Qrp, ~ mo(Lg) is finitely generated as an R-module. Choose elements z,...,z, € R
with the property that their images dx1,...,dx, generate Qr/p, as an R-module.
Set P = F,[Xy,...,X,], so that the elements {z;}1<i<, determine an F,-algebra
homomorphism p : P — R. Then Lp is almost perfect as a P-module (this follows
from Proposition [3.3.1] since P is F-finite, or more directly from the observation that
P is almost of finite presentation over the sphere spectrum). Using the fiber sequence
R®p Lp — Lr — Lg/p, we conclude that Lg/p is almost perfect as an R-module.
It is also 1-connective (by virtue of our assumption that Qg/, is generated by the
elements dz;).

The ring homomorphism p determines a map of schemes wu : Spec(R) — Spec(P).
Let us regard u as a natural transformation between functors

Spec(R), Spec(P) : CAlg™ — S,

and let X denote the relative de Rham space (Spec(R)/Spec(P))ar of Definition
SAG.18.2.1.1. Applying Theorem SAG.18.2.3.1 (together with Corollary SAG.18.2.3.3
and Corollary SAG.18.2.4.4), we conclude that the functor X has the form Spf(A),
where A is a Noetherian E-ring which is complete with respect to an ideal I < my(A)
satisfying R ~ mo(A)/I. We will complete the proof by showing that A is discrete,
regular, and F-finite.
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Let us write the relative de Rham space (Spec(R'YP)/Spec(P'?))4r as a formal
spectrum Spf(AYP) (so that A7 is abstractly equivalent to A, but it will be convenient
to avoid identifying them in what follows). The Frobenius morphisms on R and P
induce a map ¢4 : A — AYP. Beware that we do not yet know that A is discrete,
so we cannot a priori g by declaring that it is the Frobenius map from A to itself.
However, it is not difficult to see that the induced map m(A) — m(AYP) ~ mo(A)Y/P
is the usual Frobenius map on the commutative F-algebra m(A). Note that we have
a commutative diagram o :

P A
l‘PP lSOA
Plr — AP,

where the left vertical map is finite flat.

We first claim that o is a pushout square of E,-rings. Let 6 : P/? @p A — AP
be the morphism of E-rings determined by the diagram o; we wish to show that 6 is
an equivalence. Let us regard # as a morphism of A-algebras. Note that P'/? ®@p A is
a finite flat A-module, and therefore I-complete (since A is I-complete). Similarly,
the Ey-ring AYP is I'/P-complete, and is therefore also I-complete when regarded as
an A-module via @, (since the ideals I'/? and I7(A)Y? generate the same topology
on 7y(A)Y?). Consequently, to prove that @ is an equivalence, it will suffice to show
that the induced map

Or: P"@p R — A" @4 R

is an equivalence. We now argue that 0 satisfies criteria (a) and (b) of Corollary

3.5.8

(a) From the description of X as a relative de Rham space, we see that the relative
cotangent complex Lx/spec(p) Vanishes. It follows that the relative cotangent
complex L4, p is [-rational: that is, it vanishes after I-completion. Similarly, the
relative cotangent complex L yi/p/pyp is 1 1/P_rational, and therefore also I-rational
(since I'/P and Imy(A)"/P generate the same topology on the commutative ring
mo(A)YP). Let L = Ly /Pirgpa denote the relative cotangent complex of the
morphism #. Using the cofiber sequence

AP @4 Lajp — Lavwipiw — L,

we deduce that L is [-rational when regarded as an A-module. The relative
cotangent complex L 41/»g , r/p1/rg,r can be identified with the tensor product

(Al/p ®a R) ®A1/p L ~ R@A L7
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and therefore vanishes (since it is simultaneously I-nilpotent and [-local as an
A-module).

(b) Let B be a perfect F,-algebra; we wish to show that the the upper horizontal
map in the diagram

of
MapCAlg(Al/p ®A R, B) *R> MapCAIg(Pl/P ®P R)

i i

MapCAlg<Al/p7 B) % MapCAlg(Pl/p ®p A, B)

is a homotopy equivalence (of discrete spaces). Since the diagram is a pull-
back square, it suffices to show that the lower horizontal map is a homotopy
equivalence: that is, that the diagram

MapCAlg<Al/p7 B) — MapCAlg(Pl/pa B)

loéﬂA iCMPP

MapCAlg<Aa B) MapCAlg<P , B)

is a pullback square. This is clear: the vertical maps are both homotopy
equivalences (of discrete spaces), by virtue of our assumption that B is perfect.

Since o is a pushout square and the Frobenius map ¢p : P — PP is finite flat,
it follows that the map ¢4 : A — AP is finite flat. In particular, mo(A) is F-finite.
Proposition now guarantees that the absolute cotangent complex L(4) is almost
perfect as a module over my(A). Using the fiber sequence

To(A) ®a La = Lay(a) = Lary(a)/a

and the observation that my(A) is almost of finite presentation over A, we conclude
that mo(A) ®4 L4 is almost perfect as a mo(A)-module, so that L, is almost perfect
as an A-module (Proposition SAG.2.7.3.2). It follows that the relative cotangent
complex L 4/p is almost perfect as an A-module, and therefore I-complete (since A is
I-complete). Since it is also /-local, we conclude that L,/p ~ 0. Applying Proposition
SAG.2.7.3.2, we see that A is flat over P, and therefore discrete. Moreover, it follows
from Lemma shows that the morphism P — A is geometrically regular. Since P
is regular, A is also regular (alternatively, we can deduce the regularity of A from the
fact that the Frobenius map ¢4 : A — A is finite flat). O
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4 Orientations and Quillen’s Construction

In [29], Quillen discovered a remarkable relationship between cohomology theories
and formal groups. Let A be a homotopy commutative ring spectrum (that is, a
commutative algebra object in the homotopy category of spectra hSp), and let 7., (A)
denote the commutative ring @, ., m2,(A). If A is complex orientable, then the inverse
limit B =lim @@, A*"(CP™) is isomorphic to a power series ring me, (A)[[¢]], where
t is any choice of complex orientation for A. The formal spectrum G = Spf (B) can
then be regarded as a 1-dimensional formal group over the commutative ring me,(A).
This formal group is an extremely useful invariant, which determines the underlying
cohomology theory A in many cases of interest (Theorem .

In this paper, we consider Quillen’s construction only under the additional assump-
tion that the ring spectrum A is complex periodic (Definition . In this case, the
formal group é%“ above is naturally defined over the subring 7y(A) € ey (A). More
precisely, it can be obtained from a formal group CA}%) over 7y(A) by extending scalars
along the inclusion map mo(A) < 7ey(A). The formal group G° can be described
as the formal spectrum Spf(A°(CP®)). We will refer to it as the classical Quillen
formal group of A.

Our goal in this section is to study a refinement of the classical Quillen formal
group (A}%O, which is defined over the ring spectrum A itself rather than over the
commutative ring my(A). Assume now that A is an E,-ring (which is also complex
periodic). In , we introduce a formal group CA}% which we refer to as the Quillen
formal group of A (Construction . Roughly speaking, @% can be described as
the formal spectrum of the function spectrum & = C*(CP®; A) of maps from CP*
into A (while G is the formal spectrum of the ordinary commutative ring mo(&)).

Most of this section is devoted to answering the following:

Question 4.0.1. Let A be a complex periodic E,-ring. How can we characterize CA}%
among the collection of all formal groups over A?

To address Question [4.0.1], we need to say a bit more about how the formal group
G9 is defined. The formal spectrum Spf(C*(CP®; A)) is only the underlying formal
hyperplane of é%; to see the group structure, we will need exploit the fact that
the space CP® is an abelian group object of the co-category of spaces S. More
precisely, we can realize CP®* ~ K(Z,2) as the Oth space of the Z-module spectrum
¥:2(Z). This realization supplies a universal property of CP*: as an abelian group
object of S, it is freely generated by the 2-sphere S? (as a pointed space). For

162



any abelian group object M € Ab(S), we have a canonical homotopy equivalence
Map s,y (CP%, M) ~ Mapg, (5%, M). This translates to a heuristic description of
é%: roughly speaking, it should be “freely generated by S?” as an object of the oo-
category FGroup(A) of formal groups over A. In , we make this heuristic precise
by showing that for any formal group G over A, the datum of a morphism of formal
groups G§ — G is equivalent to the datum of a (pointed) map e : S2 — Q®G(7=9(A))
(Proposition . We will refer to such a map as a preorientation of the formal
group G (Definition .

To give a more complete answer to Question [4.0.1] we would like to address the
following:

Question 4.0.2. Let G be a l-dimensional formal group over A, and let e be a
preorientation of G. When is the induced map f : G$ — G an equivalence of formal
groups?

The classical theory of formal groups suggests a heuristic approach to answering
Question : a map of 1-dimensional formal groups f : G’ — G should be an
equivalence if its derivative at the origin is invertible. In [4.2] we make this heuristic
precise by introducing the dualizing line wg of a 1-dimensional formal group over A
(or, more generally, a 1-dimensional formal hyperplane over A), and showing that f
is an equivalence if and only if the pullback map f* : wg — wg, is an equivalence
(Remark . In the special case where G = é% is the Quillen formal group of
A, there is a canonical equivalence wg, ~ ¥72(A), so that a preorientation e of G
induces a map

Be:wg — X72(A).

We will refer to 3. as the Bott map of the preorientation e. In the case where A
is complex periodic, we can identify 5. with the “derivative” of the map (A}% - G
corresponding to the preorientation e. However, the map . can be defined without
assuming that A is complex periodic (and without reference to the group structure on
é‘r); see Construction . Using this observation, we show that for any 1-dimensional
formal group G over any E,-ring A, there is a universal example of a map of E-rings
A — A’ for which A’ is complex periodic and Gy is equivalent to the Quillen formal
group (A;%/ (see Propositions [4.3.13) and [4.3.23). We will refer to A’ as the orientation
classifier of G and denote it by Og. The construction G — Og will play an important

role in the later sections of this paper.
Quillen’s construction A — G$ provides an important supply of examples of
formal groups over E-ring spectra. We studied another class of examples in if A
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is (p)-complete, then we can to every p-divisible group G over A a formal group G°
(Definition [2.0.10)). The second half of this section is devoted to the following:

Question 4.0.3. Let A be an E,-ring which is complex periodic and (p)-complete.
When can we find a p-divisible group G over A and an equivalence of formal groups
G~ G*?

The theory developed in §2| provides a partial answer to Question [£.0.3} it is
sufficient to assume that G % is a p-divisible formal group over A, in the sense of
Definition [2.3.14] By virtue of Theorem [2.3.26] this is equivalent to the requirement
that the classical Quillen formal group (A}%O is p-divisible. We therefore ask the
following more general question:

Question 4.0.4. Let G be a 1-dimensional formal group over a commutative ring R.
When is G a p-divisible formal group?

Question is addressed by the classical theory of heights of 1-dimensional
formal groups, which we review in . Recall that if G is a formal group over a field
k of characteristic p, then G is p-divisible if and only if the map [p|* : Og — Og is
finite flat. In this case, the degree of the map [p]* is an integer of the form p"; we
refer to n as the height of the formal group G and write n = ht(G) More generally,
if R is a complete adic E,-ring, then a formal group G over R is p-divisible if and
only if function x — ht(@n(x)) is finite and locally constant on the topological space
| Spf(R)| (Theorem [4.4.14)).

We will be particularly interested in the case where this function takes some constant
value n. Note that the function z — ht(én(x)) is always upper-semicontinuous on
| Spec(R)|. More precisely, the each of the sets {x € | Spec(R)]| : ht(éﬁ(m)) > m} can be
realized as the vanishing locus of a certain ideal JTén, which we will refer to as the mth
Landweber ideal (Definition [4.4.11)). Theorem can then be restated as follows:
the formal group G can be realized as the identity component of a formally connected
p-divisible group G of height n if and only if the commutative ring R is complete
with respect to the nth Landweber ideal Jé and the (n + 1)st Landweber ideal I,
is equal to R. In , we specialize to the case where G = GQO is the classical
Quillen formal group of a complex periodic E,-ring A and show that these conditions
have a homotopy-theoretic interpretation: they are equivalent to the requirement
that the spectrum A is K (n)-local, where K(n) denotes the nth Morava K-theory
spectrum (Theorem “ In this case, the general machinery of §24 ’ guarantees that
the Quillen formal group G can be realized (in an essentially unique way) as the
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identity component of a p-divisible group G$ of height n, which we will refer to as
the Quillen p-divisible group of A. We give an explicit description of the p-divisible
group G¢ in (Construction , which is mostly independent of the formalism
developed in §2]

4.1 The Quillen Formal Group

In this section, we review the notions of complex periodic ring spectrum (Definition
and weakly 2-periodic ring spectrum (Definition [£.1.5). We will say that an
E-ring A is complex periodic if it is both complex orientable and weakly 2-periodic
(Definition . In this case, we construct a formal group é%, which we will refer
to as the Quillen formal group of A (Construction .

4.1.1 Complex Orientations of Ring Spectra

In this section, we briefly review the theory of complex orientations. Our presenta-
tion is terse; for a more detailed discussion, we refer the reader to [I].

Definition 4.1.1. Let CP™ denote the infinite dimensional projective space lim CP",
which we can also regard as the classifying space BU(1) for the unitary group U(1),
or an Eilenberg-MacLane space K(Z,2). Let A be an Ey-ring: that is, a spectrum
equipped with a unit map e: S — A. We say that A is complex orientable if the map
e factors as a composition

S~ ¥ 2CP! - ¥*2CP* 5 A
In this case, we will say that € is a complex orientation of A.

Example 4.1.2. Let R be an Eg-ring, and suppose that the homotopy groups m, R
vanish when n is odd. Then R is complex orientable. To prove this, we note that the
space CP* admits a filtration

CP' -S> CP’>CP?— ...

To construct a complex orientation of R, it suffices to construct a compatible family
of maps e, : Y°"2CP" — R where e, is the unit map of R. Assume that n > 1 and
that e,_; has been constructed. Then the obstruction to finding the map e, lies in

EXtép(COﬁb(Zw_z Cpr ! - yo-2 CP"), R) ~ my,_3R ~ 0.
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Remark 4.1.3. Let ¢ : A — B be a map of Ey-rings. Then the induced map
Mapg, (3*72 CP%, A) — Mapg,(X*~* CP*, B) carries complex orientations of A to
complex orientations of B. In particular, if A is complex-orientable, then B is also
complex-orientable.

Remark 4.1.4. The spectrum Y*~2 CP® is connective. Consequently, if A is any
spectrum, the vertical maps in the diagram

Mapg, (X972 CP¥, 759A) — Mapg, (S, 70 A4)

| |

Mapg, (5*72 CP”, A) Mapg, (S, 4)

are homotopy equivalences. In particular, if A is an Ey-ring, then giving a complex
orientation of A is equivalent to giving a complex orientation of its connective cover
’7'2014.

4.1.2 Periodic Ring Spectra

We now restrict our attention to ring spectra A having periodic homotopy groups.

Definition 4.1.5. Let A be an E,-ring. We will say that A is weakly 2-periodic if the
suspension Y¥?(A) is locally free of rank 1 as an A-module. Equivalently, A is weakly
2-periodic if it satisfies the following conditions:

(a) The homotopy group L = my(A) is a projective module of rank 1 over the
commutative ring mo(A).

(b) For every integer n, the canonical map L ®pya) Tn(A) — Tn42(A) is an isomor-
phism.

Remark 4.1.6. In the situation of Definition [£.1.5] it suffices to verify condition (b)
in the case n = —2. Moreover, condition (b) implies (a).

Remark 4.1.7. Let A be a weakly 2-periodic E,-ring. Then, for every A-module M,
the canonical map my(A) ®x,(a) Tx(M) — Tyio(M) is an isomorphism. In particular,
if  : A — B is a morphism of E,-rings, then my(B) =~ m2(A) Qxrya) mo(B) is an
invertible module over my(B), and we have isomorphisms

M2(B) ®ro(n) Tx(B) = m2(A) Qry(a) Tx(B) = yi2(B).

It follows that B is also weakly 2-periodic.
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Definition 4.1.8. Let A be an E,-ring. We will say that A is complex periodic if it
is weakly 2-periodic and complex orientable.

Example 4.1.9 (Even Periodic Ring Spectra). Let A be an E,-ring. We say that
A is even periodic if the graded ring m,(A) is isomorphic to mo(A)[t*!], where ¢ is an
element of degree (—2). Every even periodic E-ring is complex periodic: the weak
2-periodicity of A is obvious, and the complex orientability follows from Example

4. 1.2,

Remark 4.1.10. Let ¢ : A — B be a morphism of E-rings. If A is complex periodic,

then B is also complex periodic (this follows from Remarks [4.1.3[ and |4.1.7] This

observation makes the class of complex periodic E,-rings more convenient to work
with than the class of even periodic E,-rings.

4.1.3 The Quillen Formal Group

Let A be an E,-ring, and regard the oo-category Mod, as equipped with the
symmetric monoidal structure given by smash product relative to A. Then there is
an essentially unique symmetric monoidal functor S — Mod4 which preserves small
colimits (where we regard the co-category S of spaces as equipped with the Cartesian
symmetric monoidal structure). We will denote this functor by X +— C,(X; A); here
C(X; A) is a spectrum whose homotopy groups are the A-homology groups of the
space X. Note that every object X € § can be regarded as a commutative coalgebra
with respect to the Cartesian symmetric monoidal structure on § in an essentially
unique way (see Corollary HA.2.4.3.10 ), so that C\(X; A) inherits the structure of a
commutative coalgebra over A. In §4.1.4] we will prove the following:

Theorem 4.1.11. Let A be a complex periodic Ep-ring. Then C,(CP*;A) is a
smooth coalgebra of dimension 1 over A, in the sense of Definition|1.1.1/].

Remark 4.1.12. Let A be a complex periodic E,-ring. Then, for every free abelian
group M of rank r < oo, the coalgebra C,(K(M,2); A) is smooth of dimension 7.
To prove this, we can use the fact that the functor X — C,(X;A) is symmetric
monoidal (and the fact that the class of smooth coalgebras over A is closed under
tensor products; see Remark to reduce to the case r = 1, in which case the
desired result follows from Theorem [A.1.11]

Construction 4.1.13 (The Quillen Formal Group). Let A be a complex periodic
E,-ring and let Lat denote the category of free abelian groups of finite rank. It follows
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from Remark [4.1.12] that the construction
M — C (K(MY,2); A)

determines a functor Lat® — c¢CAlg’%". This functor commutes with finite products,
and can therefore be regarded as an abelian group object of the co-category cCAlg’".
We may therefore regard the construction

M — cSpec(Cy(K(MY,2); A))

as an abelian group object of the co-category Hyp(A) of formal hyperplanes over A:
that is, as a formal group over A. We will denote this formal group by G and refer
to it as the Quillen formal group of A.

Notation 4.1.14. Let A be a complex periodic E,-ring. We let é%o denote the
image of G under the forgetful functor FGroup(A) — FGroup(mo(A)). We will refer
to é%o as the classical Quillen formal group of A. Concretely, the classical Quillen
formal group of A is given by the formula

GS° = Spf(A°(CP®)) ~ cSpec(Ay(CP®)).

Note that this definition makes sense in somewhat greater generality: we do not need
to assume that the multiplicative structure on A is E, (it is sometimes useful to
consider the formal group @%0 even in cases where the multiplication on A is not
homotopy commutative; for example, when A is a Morava K-theory spectrum at the
prime 2).

Warning 4.1.15. In the situation of Construction , we can identify é% with a
formal group over the connective cover 759A (see Variant . Beware that (A}% is
not the Quillen formal group associated to 7>9A: the E,-ring 7>¢A is never complex
periodic (except in the trivial case A ~ 0), and the coalgebra Cy(CP®; 159A) is not
smooth over 7oA.

Example 4.1.16 (The Case of a Z-Algebra). The cohomology ring H*(CP*;Z) can
be identified with the polynomial ring Z[t] on a generator ¢ of degree 2. Moreover,
the multiplication map m : CP® x CP* — CP® induces a pullback map

Z[t] ~ H*(CP®; Z) 5 H*(CP” x CP%; Z) ~ Z[t] ®7 Z[t]

168



given by t - t®1+1®¢t. If Ais any Ep-algebra over Z containing an invertible
element u € my(A), then A is complex periodic and the classical Quillen formal group
can be described by the formula

O 0 = AY(CP®) ~ m(A)[[¥]]

~ Q0
GA

where t' = tu; the comultiplication on & then carries ' to ' ® 1 + 1®t'. It follows

GSo
that G%O is isomorphic to the formal additive group G, over the commutative ring
mo(A). This isomorphism is not quite canonical: it depends on a chosen invertible

element u € my(A).

4.1.4 The Proof of Theorem 4.1.11

The proof of Theorem will require a few simple calculations. Choose a
generator ¢ of the cohomology group H?(CP®; Z), so that H*(CP*; Z) is isomorphic to
the polynomial ring Z[t] and H*(CP"; Z) is isomorphic to the truncated polynomial
ring Z[t]/(¢t"™!) for each n > 0. Note that for each n > 0, there exists a cofiber
sequence of pointed spaces

CP""! — CP" 2 g,

we will assume that e,, has been normalized so that the induced map e : H*"(S*"; Z) —
H?"(CP"; Z) carries the generator of H*"(S?";Z) to t".

Lemma 4.1.17. Let n be a nonnegative integer, let 6 : CP* — (CP*)"" denote the
composition of the diagonal map CP* — (CP®)"™ with the collapse map (CP*)" —
(CP*)"™ ) let 1, : CP™ — CP% be the inclusion map. Then the diagram

CP” en S2n

an lLlAn

CP* —> (CP*)""

commutes up to homotopy.

Proof. Note that the composite map

CP"! — CP" ‘% CP* % (CP*)""

169



is nullhomotopic, since the domain has dimension (2n — 2) and the codomain is (2n)-
connective. It follows that there exists a map of pointed spaces u : S** — (CP%®)""
for which the diagram

CP” en S2n

CP* — (CP*)""
commutes up to homotopy. To complete the proof, it will suffice to show that u is
homotopic to the nth smash power of 1 : S? ~ CP! — CP®. We assume n > 0

(otherwise, there is nothing to prove). In this case, we can identify the homotopy
classes of ¢7™ and u with elements of 7y, (CP*)"". Since (CP*)"" is (2n)-connective,
the Hurewicz map 7o, (CP*)"" — Ha,((CP*)"" is an isomorphism. It will therefore
suffice to show that ¢/'" and v induce the same map on the homology group Hy, or
equivalently (since all homology groups are free abelian) that the maps

(Lfn)*v u® Hzn((CPOO)/\TL; Z) N H2n(82n; Z)
coincide. It now suffices to observe that, after composition with the isomorphism

ek H?"(S%" Z) — H*"(CP"™; Z), both of these maps carry the generator tQt®- - -®t €
H**((CP*)""™; Z) to the element t" € H**(CP"™; Z). O

Proof of Theorem[4.1.11] Let A be a complex periodic Eo-ring set C' = C,(CP*; A);
we wish to show that C is a smooth coalgebra over A. Then the inclusion CP° < CP*
determines a coalgebra map p: A — C. Let Cy denote the cofiber of p, which we can
identify with the tensor product A ® X*(CP*). Then a choice of complex orientation
of A determines an A-module map u : Cy — X?(A) having the property that the
composition

o : S2(A) ~ A® X (CP') - A® 5% (CP®) ~ () % ¥2(A)

is homotopic to the identity. For each n = 0, let A(n) : C — C®" be the n-ary
comultiplication on C, and let (3, denote the composition

O AW, gon _, o 2, sy,
We will prove the following:
(x) For each n > 0, the composite map
C,(CP™; A) — ¢ Lol f g 52(4) @ - - @ B2 (A)

is an equivalence of A-modules.
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The proof proceeds by induction on n, the case n = 0 being trivial. To carry out the
inductive step, it will suffice to verify that the diagram

C(CP™: A) —> cofib(C,(CP™ ' A) — C,(CP"; A))

| -

C o 220 (A)

commutes up to homotopy, which follows immediately from Lemma and our
assumption that ug is the identity.

Since A is weakly 2-periodic, assertion (x) guarantees that each C,(CP"; A) is
locally free of rank (n + 1) as an A-module. In particular, each C,(CP"; A) is a flat
A-module, so that C' = lim C(CP™; A) is likewise flat over A. We complete the proof
by showing that mC is a smooth coalgebra of dimension 1 over the commutative
ring moA. Setting L = m_5A, we observe that () supplies coalgebra isomorphisms
ToCs(CP"; A) ~ Bycpmen I'no(a) (L) which induce, after passing to the limit over n, a
coalgebra isomorphism m(C) ~ Iy 4 (L). O

4.2 Dualizing Lines

Let R be a commutative ring and let X be a formal hyperplane over R, equipped
with a base point n € X (R). To the pair (X, 7), we can associate a projective R-module
of finite rank, which we will denote by T, and refer to as the cotangent space of X
at the point . It admits several equivalent descriptions:

(a) For any (discrete) R-module M, giving an R-module homomorphism 7%, — M
is equivalent to giving a point 7€ X(R @ M) lying over the chosen base point
ne X(R).

(b) Writing X as the formal spectrum Spf(&x), we can consider the module of
continuous Kéhler differentials Qﬁx /r- This is a projective & x-module of finite
rank (playing the role of the cotangent bundle of X), and T%, = R®g @ﬁx /R
is obtained by extending scalars along the augmentaiton 'y — R determined
by the point 7.

(¢) Writing X = Spf(€x) as in (b), we can identify T%, with the quotient I/I?,
where I € Ox denotes the kernel of the augmentation &' x — R determined by
7.
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(d) Writing X = cSpec(C'), where C' is a smooth coalgebra over R, we can identify
n with a grouplike element of C'. Then the set of primitive elements Prim, (C) =
{reC:Ac(r) =n®z+ x®n} of Remark is a projective R-module of
finite rank, and T% , can be identified with the R-linear dual of Prim, (C).

More generally, suppose that X is a formal hyperplane over a connective E -ring
R, equipped with a base point 7 € X (R). Proposition implies that the functor
X admits a cotangent complex (relative to R). In particular, we obtain an R-module
spectrum 7n* Lx /spec(r), Which we will refer to as the cotangent fiber of X at n. The
cotangent fiber n* Lx/spec(r) can be regarded as an analogue of the classical cotangent
space T%, defined above. It is characterized by the following analogue of (a): for
every connective R-module spectrum M, we have a canonical homotopy equivalence

MapModR (n*LX/SpeC(R)a M) = ﬁb(X(R @® M) - X(R))

Moreover, it can be computed by an analogue of (b): writing X = Spf(&'x ), Proposition
SAG.17.2.5.1 supplies an equivalence

N Lx/spec(r) ~ R®oy L jp ~ R®a Loy g,

where Ly, /r denotes the relative cotangent complex of &'x over R and L /R its
completion with respect to the kernel ideal ker(my(&'x) — mo(R)). However, there are
some respects in which the cotangent fiber n*Lx/spec(r) is a poor replacement for the
classical cotangent space T%

e If R is an ordinary commutative ring, then there is a canonical R-module
isomorphism 7o (n*Lx/spec(r)) = T’ X, However, unless R is a Q-algebra, the
cotangent fiber n*Lx/spec(r) is usually not equivalent to T)"}m, because it has
nonvanishing homotopy groups in positive degrees.

e Unless R is a Q-algebra, the cotangent fiber 7% L x /spec(r) is usually not projective
as an R-module (though it is almost perfect over R, by virtue of Proposition

T5.10).

In the case where X is 1-dimensional, there is a different analogue of the cotangent
space T’ , which does not share these defects, defined instead by a homotopy-theoretic
analogue of (c) (Definition 4.2.1)). We will denote the resulting object by wy,, and
refer to it as the dualizing line of X.
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4.2.1 Construction of the Dualizing Line

Definition 4.2.1. Let R be an E,-ring and let X be a 1-dimensional formal hyper-
plane over R equipped with a base point 7 € X (7=0R), classified by an augmentation
€:0x — R. We let 0x(—n) denote the fiber of ¢, which we regard as a module over
Ox. We let wx, denote the tensor product R ®¢, Ox(—n). We will refer to wy,, as
the dualizing line of X at the point n.

We first show that, as the terminology suggests, the dualizing line wx ,, of Definition
[4.2.1]is an invertible R-module:

Proposition 4.2.2. Let R be an Ey-ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point n € X (1soR). Then:

(a) The fiber O x(—n) is locally free of rank 1 as a € x-module.

(b) The dualizing line wx, is locally free of rank 1 as an R-module.
Proof. Assertion (a) follows from Proposition [1.4.11} and (b) follows from (a). O

Example 4.2.3. Let R be a commutative ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point n € X(R). Then wy, can be identified
with I/I% where I = Ox(—n) S Ox is the kernel ideal of the augmentation 0x — R
determined by e. In particular, we have a canonical R-module isomorphism wx , ~
1%,

Remark 4.2.4 (Functoriality in R). Let f : R — R’ be a morphism of Ey-rings,
let X be a 1-dimensional formal hyperplane over R with a base point n € X(R), let
X' = X|¢ Al be the induced formal hyperplane over R', and let ' € X'(75¢R’) ~
X(7msoR') be the image of 7. Then we have a canonical equivalence wx,» ~ R'@rwx .

Applying this observation to the maps R « 70R — m(R), we obtain a canonical
isomorphism mowx , =~ T%, ., where X, denotes the formal hyperplane over m(R)
determined by X, and 7y € Xo(mo(R)) the image of 1. In particular, we see that as
an object of the homotopy category hModg, the dualizing line wy , is canonically
determined by the pair (Xo,19) (see Corollary HA.7.2.2.19).

Remark 4.2.5 (Functoriality in X). Let R be an Ey-ring, let f : X — X’ be a
morphism of 1-dimensional formal hyperplanes over R, and let € X (750 R) be a point
having image 1 € X'(7>oR). Then pullback along f determines a map of augmented
R-algebras 0'x+ — O'x, which in turn induces a map f* : wxs,» — wx,. Note that f
is an equivalence if and only if the pullback map f* is an equivalence.
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4.2.2 Comparison with and the Cotangent Fiber

Let X, R, and 7 be as in Definition 4.2.1] and let m : Ox ®r O x — O'x denote
the multiplication map, so that we have a fiber sequence

ﬁb(m)ﬁﬁx®Rﬁx—>ﬁX

in the oo-category of (0 x ®g O x)-modules. Note that, after extending scalars along
the map
(E@ld) . ﬁX@RﬁX —>R®Rﬁx X~ ﬁX,

this fiber sequence reduces to Ox(—n) — Ox = R. It follows that the dualizing
line wy, is can be obtained from fib(m) by extending scalars along the map (e ®e€) :
Ox ®r Ox — R. Combining this observation with Theorem HA.7.3.5.1, we obtain
the following characterization of the dualizing line wx ,:

Proposition 4.2.6. Let R be an E-ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point n € X (1=oR). Then, for any R-module
M, we have a canonical homotopy equivalence

Mapyoq,, (Wx n, M) ~ ﬁb(MapAlgR(ﬁ)ﬁ RO M) — MapAlgR(ﬁXv R));
here the fiber is taken over the point of Mapy,, . (Ox, R) determined by 7.

Remark 4.2.7 (Comparing the Dualizing Line to the Cotangent Fiber). Let R, X,
and 1 be as in Proposition For every R-module M, we have a commutative
diagram of mapping spaces o :

Mapgalg, (Ox;, R® M) —=Mapgay,, (Ox, R)

i |

MapAlgR(ﬁXv R® M) - MapAlgR(ﬁXa R)
Passing to homotopy fibers in the horizontal direction, we obtain a comparison map

MapModR (77*LX/ Spec(R)» M) — MapModR (WX,n» M).

This map depends functorially on M, and is therefore given by precomposition with
an R-module morphism p : wx, — N*Lx/spec(r)- This map has the following features:
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(¢) If R is connective, then p induces an isomorphism mo(wx ;) =~ 7o(N* Lx/Spec(r))-
To prove this, we can reduce to the case where R is discrete, in which case
it follows from the observation that the vertical maps in the diagram o are
homotopy equivalences when M is also discrete. More concretely, this amounts
to the observation that mo(wx ;) and mo(n* Lx/spec(r)) can be identified with the
cotangent space T, , , where X; denotes the underlying formal hyperplane over
the commutative ring mo(R) (and 7o the image of n in Xo(m(R))).

(17) If R is an Ey-algebra over Q, then p is an equivalence. To prove this, we can
reduce to the case where R is connective, in which case it follows from (i) (since
both wx , and nzx/spcc(m are locally free of rank 1 over R).

Beware that if R is a connective E-ring which is not a Q-algebra, then the
comparison map p is never an equivalence.

4.2.3 The Linearization Map

We now give a different description of the dualizing line wx ,, which will be more
useful for our purposes.

Proposition 4.2.8. Let R be an Ey-ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point n € X (1soR). Then we have a canonical
fiber sequence of R-modules

Y(wx,) = R®oy R R,
where m denotes the multiplication on R (regarded an algebra over Ox wvia the aug-
mentation determined by n).

Proof. Let © : R - R®g, R denote the inclusion of the first tensor factor. Then
the composition m o ¢ is the identity on R: in other words, m and ¢ exhibit R as
a direct summand of R ®», R, whose complementary summand can be described
either as the fiber of m or the cofiber of «. We now observe that ¢ is obtained from
the augmentation map € : &x — R by extending scalars along ¢; we therefore have
equivalences

fib(m) =~ cofib(¢)
R ®g,, cofib(e)
~ Y(R®g, fib(e))
= S(R®oy Ox(-—n))
= Y(wxy)-

175



]

The importance of the dualizing line in this paper arises from the following
construction, which will play an important role in §4.3}

Construction 4.2.9 (The Linearization Map). Let R be an E,-ring and let X be a
1-dimensional formal hyperplane over R equipped with a base point n € X (75oR). If
R is connective and A is a connective E-algebra over R, we obtain a canonical map

0

QX(A) Ma‘pCAlgR (R ®ﬁx R7 A)
- MapModR(R ®ﬁx R? A)
- MapModR(E(wX,n)v A)

Q0 Mapy o, (©x.7: A):

0

where u is the map induced by the identification of Proposition We will denote
the composite map by

£:QX(A) — QMapyjoq, (Wxy, A)

and refer to it as the linearization map associated to the pair (X, n).
More generally, if R and A are not assumed to be connective, then we can apply
the preceding construction to their connective covers to obtain a map

R

£:QX(1504) — Ql\/[aplvlodT20 (Tsowx n, T>0A4) ~ Q Mapyoq,, (wx ., A),
which we will also refer to as the linearization map associated to (X,n).

We now make Construction a bit more concrete by describing its effects on
homotopy groups.

Remark 4.2.10. In the situation of Construction [4.2.9, suppose we are given a
map of pointed spaces u : T — QX(A), which we can identify with a pointed
map X7 — X(A) € Mapcyy,,(Ox, A). This determines a commutative diagram of
E-algebras

Ox —C*(XT; A)

L

R A

Y

where the left vertical map is given by the base point of X and the right vertical map
is evaluation at the base point of T'. Passing to vertical homotopy fibers, we obtain
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a map of 0x-modules v’ : Ox(—n) — C,(3T; A). Using the pullback diagram of
E-algebras

C*(XT; A) A
| |
A C*(T; A),

we see that the action of C*(XT; A) on C*4(XT; A) ~ L71C* ((T; A) factors through
A (in two a priori different ways), so the action of &'y on C* ,(XT; A) factors through
R. This determines a factorization of u’ as a composition

Ox(—1) = wxy 5 CEy(ST; A),

and we can identify v with a pointed map v : T' — Q Mapyy,q,.(wxy, A). Unwinding
the definitions, we see that v is given by the composition

T % QX (A) 5 QMapyoq, (Wx.p A),
where £ is the linearization map of Construction [4.2.9,

Example 4.2.11. In the situation of Construction [4.2.9 suppose that we are given
an element of 7, X (R) for n > 0, which we can identify with the homotopy class of
a pointed map u : S" ! — QX(R). Then u determines a map of augmented E-
algebras 0x — C*(S™; R), hence a map of augmented 7y(R)-algebras p: mo(Ox)) —
mo(R) ® m,(R). If we let € : my(Ox) — mo(R) denote the augmentation map and
I = ker(e) the augmentation ideal, then p is given by the formula p(z) = (e(x), dz)
for some mo(R)-linear derivation d : mo(R) — m,(R), which we can identify with a
7o( R)-linear map I/I? — 7,(R). Using Remark we see that the linearization
map £ of Construction carries [u] € m, X (R) to d, regarded as an element of

Homﬂo(R) (]/127 Tr’ﬂ(R)) = Tn Ma‘pMOdR (wX7777 R)

4.2.4 Relationship with Grothendieck Duality

We now describe another interpretation of the dualizing line wx ,: up to a shift,
it can be realized as the pullback along n of the relative dualizing complex of the
projection map ¢ : X — Spec(R). We will regard this as a heuristic, since a general
discussion of Grothendieck duality in formal spectral algebraic geometry would take
us too far afield. However, we can use this heuristic to motivative a precise definition:
given a reasonable notion of the relative dualizing complex of ¢, we should expect
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that its pullback along n is inverse to the relative dualizing complex of the morphism
n : Spec(R) — X. Since 7 is a closed immersion, the latter dualizing complex should
be realized concretely as the & x-linear dual of R (where we regard R as a € x-module
via the augmentation & x — R determined by ). In the case where X is 1-dimensional,
this agrees with Definition [4.2.1}

Proposition 4.2.12. Let R be an E-ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point n € X (tsoR). Then there is a canonical

equivalence of R-modules Mapﬁx (R,Ox) ~ Eilw)_(’ln.

Proof. Let e : R — Mﬁx(}%’ R) be the unit map and let f : M@,X(R, Ox) —
Map Ox (R, R) be the map given by postcomposition with with augmentation € : 0 x —
R. A simple calculation (using our assumption that X is 1-dimensional) shows that
the map
(c®f): R&Map, (R,6x) —Map, (R.R)

is an equivalence. We can therefore identify Map O (R, Ox) with the cofiber of e.
Unwinding the definitions, we can describe e as the R-linear dual of the multiplication
map m : R®g, R — R, so that the cofiber cofib(e) is the R-linear dual of the fiber
fib(m). The desired result now follows from Proposition [4.2.8] ]

Remark 4.2.13 (Dualizing Lines in Higher Dimensions). Let R be an E,-ring and
let X be a formal hyperplane of dimension n over R, equipped with a base point
1 € X(7=oR). It is not difficult to show that Map, (R, €'x) is an invertible R-module.
We can then define an R-module wx,, by the formula wy, = S™"Map, (R, Ox)"". It
follows from Proposition that, in the case n = 1, this agrees with the dualizing
line of Definition 4.2.1] Heuristically, one can think of the R-module ¥"wx , as the
pullback along 7 of the relative dualizing complex of the projection map X — Spec(R).
One can show that wx, is always locally free of rank 1 as an R-module, and is equipped
with a canonical isomorphism

mo(wx,n) = det(T, ) = /\ﬂ'()(R) (Txg,m0):

where 7%, denotes the cotangent space to the underlying formal hyperplane X, over
the commutative ring my(R), equipped with the base point 7y € Xo(mo(R)) determined

by 7.

4.2.5 The Dualizing Line of a Formal Group

Let R be an Ey-ring and let G be a formal group over . We will say that G has
dimension n if the underlying formal hyperplane 2*G has dimension n.
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Definition 4.2.14. Let G be a formal group of dimension 1 over an E,-ring R. If G
has dimension 1, we let wg € Modg denote the dualizing line wx , of Definition |4.2.1],
where X = Q% o G is the underlying formal hyperplane of G and 1 € X (75¢R) is the

A~

base point (that is, the identity with respect to the group structure on G). Then wg
is a locally free R-module of rank 1, which we will refer to as the dualizing line of G.

Example 4.2.15. If G is a l1-dimensional formal group over a commutative ring R,
then the dualizing line wg is the R-linear dual of the Lie algebra Lie(G).

Example 4.2.16 (The Dualizing Line of ém) By construction, the E, -ring of
functions Og can be identified with the completion of S[t*'] ~ X%(Z) with respect
to the augmentation ideal (¢t — 1). It follows that we have a canonical equivalence

S®@>am S =~ SQgpzn S
~ S7(+) @xr(m) ST ()
~ YY(BZ)
= X7
which restricts to an equivalence wg >~ S, where wg is the dualizing line of Definition
. (Of course, the existence of such an equivalence is automatic, since every locally

free S-module of rank 1 is equivalent to S; however, it would a priori be ambiguous
up to a sign.)

Remark 4.2.17 (Linearization). For every connective Ey,-ring R, Construction [4.2.9]
determines a map of spaces

£: Q%G (R) — Q' Mapg, (wg, , R) ~ Q71(R).
Unwinding the definitions, we see that £ is given by the composition

QO GL(R) ~ Q°M'G(R)
22, QGL(R)
l) QooJrlR

where a : Q°G,,,(R) — GL;(R) is the map of Remark [1.6.12 and -y is the homotopy
equivalence induced by translation by (—1).

Remark 4.2.18 (Functoriality). The dualizing line wg of Definition [4.2.14] depends
functorially on R and G. More precisely:
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e For any morphism of E,-rings R — R/, we have a canonical equivalence of
/ ~ / ~
R'-modules wa,, = R ®r wg.

e Every morphism f : G — G’ of 1-dimensional formal groups over R induces
a pullback map f*: wg, — wg, which is an equivalence if and only if f is an
equivalence.

See Remarks 4.2.4] and 4.2.5]

Example 4.2.19. [The Quillen Formal Group] Let A be a complex periodic E.-ring.

Then the Quillen formal group é% admits a dualizing line wge (Definition [4.2.14)).
By virtue of Proposition m the dualizing line wge is characterized by the existence

of a fiber sequence
E(Wé%) — A Qe (CP;A) AL A,

where m denotes the multiplication on A (regarded as a C*(CP®; A)-algebra by
means of evaluation at the base point of CP®). Here the middle term can be
identified with C*(S'; A), and this identification carries m to the map given by
evaluation at the base point of S'. We therefore obtain an A-module equivalence
Z(wé%) ~ C*,(S'; A) ~ 371 A. Desuspending both sides, we obtain an A-module
equivalence wgo =~ ¥72(A) (note that the right hand side is locally free of rank 1 as
an A-module, by virtue of our assumption that A is weakly 2-periodic).

4.3 Orientations

Let A be a complex periodic E-ring and let @Q be the Quillen formal group of
A (Construction m Our goal in this section is to articulate a universal property
that characterizes G as an obJect of the oo-category FGroup(A) of formal groups
over A: for any formal group G giving a morphlsm of formal groups f : G¢ 3 G
is equivalent to giving a preorientation of G (see Definition and Proposition
. Moreover, to any preorientation e we associate a Bott map 3. : wg — Y2(A),
which is invertible if and only if A is complex periodic and the associated map of

formal groups f : (A}% — Gisan equivalence (Proposition |4.3.23)).

4.3.1 Preorientations of Formal Hyperplanes

We begin with some general remarks.
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Definition 4.3.1. Let R be an Eq-ring and let X : CAlg?? | ) — S. be a pointed
formal hyperplane over R. A preorientation of X is a map of pointed spaces

e: 8% - X(m=0(R)).

We let Pre(X) = Q2X (759R) denote the space of preorientations of X. A preoriented
formal hyperplane is a pair (X, e), where X is a pointed formal hyperplane over R
and e € Pre(X) is a preorientation of X.

Remark 4.3.2. To define the notion of a preoriented formal hyperplane, it is not
necessary to mention base points: the data of a preoriented formal hyperplane (X, e)
over R is equivalent to the data of a formal hyperplane X and a map of spaces
e: 8% - X(159R); we can then regard e as a pointed map by equipping X with the
base point given by applying e to the base point of S2. However, the slightly baroque
phrasing of Definition is better suited to our applications: we will be interested
in studying the totality of preorientations which are compatible with a fixed base
point of X (in practice, we will take X to be the underlying formal hyperplane of a
formal group, with base point given by the zero section).

Remark 4.3.3. Let R be an E-ring, and let X be a pointed formal hyperplane R,
which we can also view as a pointed formal hyperplane over the connective cover 7>¢R
(Variant [1.5.11]). The space of preorientations Pre(X) does not depend on whether we
view G as a formal group over R or over 75¢(R). Consequently, for the purpose of
studying preorientations, it is harmless to replace R by its connective cover.

Remark 4.3.4. Let X be a pointed formal hyperplane over an E,-ring R. Then the
set of homotopy classes of preorientations of X can be identified with mo X (75oR).

Example 4.3.5. Let R be a connective E.,-ring which is 1-truncated: that is, the
homotopy groups 7. R vanish for = ¢ {0,1}. Then, for any pointed formal hyper-
plane X over R, the space X (R) is always 1-truncated. It follows that the space of
preorientations Pre(X) = Q>X(R) is contractible. In particular, if R is an ordinary
commutative ring, then every pointed formal hyperplane X admits an essentially
unique preorientation.

Remark 4.3.6 (Functoriality). Let R be an E,-ring and let X be a pointed formal hy-
perplane over R. Then, for any E.-algebra R’ € CAlgp, we can identify Q?X (7=o(R'))
with the space Pre(Xpg:), where X g is the pointed formal hyperplane over R’ obtained
from X by extending scalars. In particular, the construction R’ — Pre(Xg/) depends
functorially on R'.
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4.3.2 Orientations of Formal Hyperplanes

Note that a pointed formal hyperplane X over an E,,-ring R can be always equipped
with a preorientation, by taking e : S? — X (7=9(R)) to be a constant map. We now
study a special class of preorientations which are, in some sense, very far from being
constant.

Construction 4.3.7 (The Bott Map). Let R be an E.,-ring, let X be a 1-dimensional
formal hyperplane over R, equipped with a base point n € X(7>oR) and associated
dualizing line wy, (Definition 4.2.1)). Applying Construction |4.2.9, we obtain a

linearization map

£:0X(150(R) — O Mapyioay, (Wx,y, 1)

Passing to loop spaces, we obtain a map
Pre(X) — Mapyoq, (Wx Y %(R)).

For each preorientation e € Pre(X), we denote its image under this map by f. : wx, —
Y72(R). We will refer to (3, as the Bott map of e.

Remark 4.3.8. The terminology of Construction 4.3.7is motivated by the considera-
tion of a particular case, where R = KU is the complex K-theory spectrum, X is the
underlying formal hyperplane of the formal multiplicative group G (see Construction
1.6.16)), and

e: 5% = CP! - Q°G,,(KU)

is the preorientation corresponding to the complex line bundle ¢'(1) on CP'; in
this case, (. can be identified with the classical Bott periodicity equivalence KU —
Y 72(KU). We will return to this example in (see also §4.3.6)).

Definition 4.3.9. Let R be an E,-ring and let X be a 1-dimensional formal hyper-
plane over R with a base point 7. An orientation of X is a preorientation e € Pre(X)
for which the Bott map 8, : wx, — X (R) is an equivalence. We let OrDat(X)
denote the summand of Pre(X') spanned by the orientations of X.

Remark 4.3.10 (Functoriality). Let f : R — R’ be a morphism of E -rings, X be a
1-dimensional formal hyperplane over R, and let X’ = Xp be the formal hyperplane
over R’ obtained by extending scalars along f. Suppose we are given a base point
n € X (7=0(R)) having image 7' € X'(7>¢(R’)), and a preorientation e € Pre(X) having
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image ¢’ € Pre(X’). Then the Bott map S : wyr,y — X7%(R’) can be identified with
the composition

Wy ~ R ®pwxy 2> R ®p S2(R) ~ S2(R)).

In particular, if 5, is an equivalence, then so is (.. It follows that the natural map
Pre(X) — Pre(X’) carries the summand OrDat(X) < Pre(X) into the summand
OrDat(X’) < Pre(X’).

Remark 4.3.11. Let R be an E-ring and let X be a 1-dimensionalformal hyperplane
over R with a base point 1. Then the dualizing line wx ,, is locally free of rank 1 as an
R-module. Consequently, the existence of an orientation of X implies that R is weakly
2-periodic. In particular, if R is nonzero and connective, then the space OrDat(X) is
empty.

Warning 4.3.12. Let R be an E,-ring and let X be a 1-dimensional pointed formal
hyperplane over R. Then X can be identified with a pointed formal hyperplane X
over the connective cover 75¢(R), and giving a preorientation of X is the same as
giving a preorientation of X,. Beware, however, that giving an orientation of X is
not the same as giving an orientation of Xy. In fact, the formal hyperplane Xy never
admits an orientation, except in the trivial case R ~ 0 (Remark [4.3.11)).

4.3.3 Orientation Classifiers

Let R be an E-ring and let X be a 1-dimensional pointed formal hyperplane over
R. By virtue of Remark we can regard the construction R’ — OrDat(Xg/) as a
functor from the co-category CAlgy to the co-category S of spaces (it is a subfunctor
of R' — Pre(R') = Q*X (1=0R’)). Better yet, it is a corepresentable functor:

Proposition 4.3.13. Let R be an Ey-ring and let X be a 1-dimensional pointed
formal hyperplane over R. Then there exists an Ey-algebra Ox and an orientation
e € OrDat(Xg, ) which is universal in the following sense: for every object R’ € CAlgp,
evaluation on e induces a homotopy equivalence

Mapcayg, (Ox, R) — OrDat(Xpg).

Definition 4.3.14. In the situation of Proposition [4.3.13] we will refer to Ox as the
orientation classifier of X.

If G is a 1-dimensional formal group over R, we let O denote the orientation
classifier Oy, where X denotes the underlying formal hyperplane 0*°G (with base
point given by the identity section of @)
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We first prove a version of Proposition [4.3.13| for preorientations.

Lemma 4.3.15. Let R be a connective Ey-ring and let X be a formal hyperplane
over R, equipped with a base point n € X(R). Then:

(a) The base point n is classified by a map Ox — R which exhibits R as a perfect
O x -module.

(b) The tensor product R ®g, R is perfect as an R-module.

(¢) the functor QX : CAlgy — S is corepresentable by an object B € CAlgy' which
is perfect as an R-module.

Proof. The implications (a) = (b) = (c¢) are clear. We will prove (a). By virtue of
Corollary SAG.8.3.5.9, it will suffice to show that the tensor product R®¢, R is perfect
as an R-module. To prove this, we can work locally on |Spec(R)| and thereby reduce
to the case where there is an isomorphism 7, (0 x) ~ m(R)[[t1, .- ., t,]]. Without loss
of generality, we may assume that this isomorphism is chosen so that ¢; belongs to the
kernel of the augmentation € : mo(€x) — mo(R) determined by 7. Then € extends to
a map of A-modules p; : cofib(t; : Ox — Ox) — R. Tensoring these maps together,
we obtain a single map p : &), ;_, cofib(t; : Ox — Ox) — R, which is easily checked
to be an equivalence. O

Lemma 4.3.16. Let R be an E,-ring and let X be a pointed formal hyperplane over
R. Then the functor

(R € CAlgy) — (Pre(Xgp) € S)
is corepresentable by an E-algebra A over R. Moreover, if R is connective, then A is
almost of finite presentation over R.

Proof. Tt follows from Lemma that the functor QX : CAlgy — S is corepre-
sentable by an E-algebra B which is perfect as an R-module, and therefore almost
of finite presentation if R is connective (Corollary SAG.5.2.2.2). It follows that that
the functor 92X is corepresentable by A = R ®p R, which is also almost of finite
presentation if R is connective. O

To deduce Proposition 4.3.13| from Lemma [4.3.16, we will need to study the
procedure of “inverting” the Bott map.

Proposition 4.3.17. Let R be an E,-ring and suppose we are given a pair of invertible
objects L, L' € Modg, together with a map v : L' — L.
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(a) There exists an object R[u™'] € CAlg, with the following universal property: for
every object A € CAlgy, the mapping space Mapc,, (R[u™"], A) is contractible
if u induces an equivalence uy : AQr L' — A®pg L, and is otherwise empty.

(b) As an R-module, R[u™'] can be identified with the direct limit of the sequence

R%S L@ L% (L) @p LB 5 (L) @R L& — -

Remark 4.3.18. Proposition is most familiar in the case L = L' = R; in this
case, we can identify u with an element of my(R) and R[u~!] with the associated
Zariski localization of R. However, we can also apply Proposition to invertible
R-modules which are not locally free, like the suspension ¥"(R).

Proof of Proposition[[.3.17. Replacing L by the tensor product L'~* ®g L, we can
reduce to the case where L' = R. For every R-module M, let uy, : M — M ®p L
denote the tensor product of idy; with u, and let M[u~'] denote the colimit of the
diagram

MM M @p L 228 M @p L@ L — -

Let us say that M is u-local if the map uy, is an equivalence. Let C € Modg denote
the full subcategory spanned by the u-local objects. We will deduce Proposition 4.3.17
from the following assertion:

(x) For every R-module M, the canonical map M — M[u~!] exhibits M[u'] as a
C-localization of M. In particular, the inclusion functor C < Modg admits a
left adjoint, given by M — M[u™'].

Let us assume (x) for the moment. The explicit description of the localization
Mu~!] shows that for any R-module N, we have a canonical equivalence (N ®g
M)[u™'] ~ N ®g M[u']. Tt follows that if f : M — M’ is a morphism of R-
modules which induces an equivalence M[u™'] ~ M’'[u~!], then the induced map
(idy®f) : NQr M — N®gr M’ has the same property. In other words, the localization
functor M — M [u~'] is compatible with the symmetric monoidal structure on Modg,
in the sense of Definition HA.2.2.1.6. It follows that the co-category C inherits a
symmetric monoidal structure, which is characterized by the requirement that the
construction M — M[u~'] determines a symmetric monoidal functor from Modg to
C (see Proposition HA.2.2.1.9). Note that the inclusion functor C < Modg induces
a fully faithful embedding CAlg(C) — CAlg(Modg) ~ CAlgy, whose essential image
is spanned by the u-local E-algebras over R. The construction A — A[u™!] is left
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adjoint to this inclusion, and therefore carries R to an initial object R[u~'] € CAlg(C).
It follows immediately that R[u~'] has the desired universal property required by (a),
and assertion (*) guarantees that it has the explicit description required by (b).

It remains to prove (). We first show that, for every R-module M, the canon-
ical map M — M[u~"] induces a homotopy equivalence Mapyoq, (M[u™'], N) —
Mapyoq,, (M, N) whenever N is u-local. To prove this, it will suffice to show that each
of the transition maps

Mapyoq, (M ®p LE, N) = Mapygoq, (M ®r LE", N)

is a homotopy equivalence. Replacing M by M ®p L®", we can reduce to the case
n = 0. We wish to show that composition with u induces an equivalence of R-modules

oy : Map (L, N) — Map (R, N) ~ N.

Since L is invertible, we can identify vy ®id;, with an R-module map vy : N - N®gL.
Let s : L&Qr L — L®pg L be the map given by exchanging the tensor factors. Then s is
an equivalence from L®pg L to itself, and is therefore (by virtue of our assumption that
L is invertible) given by multiplication by an invertible element € € my(R). Unwinding
the definitions, we see that the diagram

N < N
w uy
N®gL

commutes. Consequently, our assumption that N is u-local guarantees that u/y is an
equivalence, as desired.

To complete the proof, it will suffice to show that for every R-module M, the
R-module M[u™'] is u-local. For each k > 0, let T*(M) denote the tensor product
M ®r L% and define v : T*(M) — T**1(M) to be the composition

TH(M) 00, TR @p L —202RE, phe1 (),
Then M[u™'] can be identified with the colimit of the sequence
M =T°M) 5 THM) L T*(M) — - .

We will show that this colimit is u-local by verifying that the commutative diagram

(M) —— T (M) —— T2(M)
luTO(]M) iuTl(]M) i“TQ(M)

TOM)®r L Z2S TV (M) ®@p L 22X T2 (M) @ L —— - -
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becomes an equivalence after passing to the colimit in the horizontal direction. For
this, it will suffice to show that for every square in this diagram, we can produce a
map p: TH(M) ®p L — TF*1(M) which makes the diagram

Tk(M) v TkH(M)
i“Tk(M iuTkJrl(IM)

THM) @ L 22S TH1 (M) @5 L

commute up to homotopy. We accomplish this by taking p to be the tensor product of
idpw(pry with the map L ~ LQp R Mz Qu, L®grL. A simple calculation then shows that
the upper triangle commutes, and the lower triangle commutes up to multiplication
by €% € mo(R). To complete the proof, it will suffice to show that ¢> = 1, which is clear

(since s? is homotopic to the identity). O

Proof of Proposition[{.3.15. Let R be an Ey,-ring and let X be a pointed formal
hyperplane of dimension 1 over R. By virtue of Lemma [4.3.16] the functor R’ —
Pre(Xg) is corepresented by an E.-algebra A over R. In particular, the formal group
X4 is equipped a tautological preorientation e. Let 1 denote the base point of X4
and let . : wx,, — X 2(A) be the Bott map of Construction We can then
take Ox to be the localization A[3;!] of Proposition O

4.3.4 Preorientations of Formal Groups

We now specialize to the case of interest.

Definition 4.3.19. Let R be an E,-ring and let G be a formal group over R. A
preorientation of G is a preorientation of the underlying pointed formal hyperplane
X = Q*G. We let Pre(G) = Pre(X) denote the space of preorientations of G.

Remark 4.3.20. Let G be a formal group over an E,-ring R. Then we have a
canonical homotopy equivalence

Pre(G) = Mapg, (5%, @ G(720R)) = Mapy,q, (5*(Z), G(m0R)).
We now establish the promised universal property of the Quillen formal group:

Proposition 4.3.21. Let R be a complex periodic Ey-ring, let é}% € FGroup(R)
denote the Quillen formal group of C’onstructz’on and let G be any formal group
over R. Then we have a canonical homotopy equivalence

Pre(G) = MapFGroup(R)(GI%7 G)
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Proof. Let C denote the image of G under the equivalence
FGroup(R) ~ Ab(Hyp(R)) <22 Ab(cCAlg™),
We then have canonical homotopy equivalences

Pre(G) = Mapg, (5%, Q*G(m=R))

MapAb (CPOO MachAlg (R,C))

Map,, cCAlgR( (CPOO )C)

~  Mapapmyp(r)) (cSpec( «(CP*; R)),cSpec(C))

MapFGroup(R) (GR ) G) :

0

0

4.3.5 Orientations of Formal Groups

Let R be an E-ring and let G be a I-dimensional formal group over R, equipped
with a preorientation e € Pre(@). We will say that is an orientation if it is an
orientation of the underlying formal hyperplane of @, in the sense of Definition m
that is, if the Bott map

e :wg — X(R)

is an equivalence.

Example 4.3.22. Let R be a complex periodic E-ring and let G‘% be the Quillen
formal group over R (Construction . Then the identity map id : G ~ (A}]%
corresponds, under the homotopy equivalence of Proposition [4.3.21] to a preorientation
e € Pre(é%). Unwinding the definitions, we see that the associated Bott map
Be : wae = ¥7%(R) agrees with the equivalence described in Example [4.2.19] In

particular, e is an orientation.

In fact, all orientations of formal groups are of the form described in Example
4.5.22)

Proposition 4.3.23. Let R be an E-ring, let G be a 1-dimensional formal group
over R, and let e € Pre(G) be a preorientation of G. Then e is an orientation if and
only if the following condition are satisfied:

(1) The Ey-ring R is complex periodic.
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(2) Let f: GE — G denote the image of e under the homotopy equivalence Pre(G) ~
MapFGroup(R)(G%, G) of Proposition|4.3.21. Then f is an equivalence of formal

groups over R.

Proof. We first show that if e is an orientation of (A}, then R is complex periodic. We
have already seen that R is weakly 2-periodic (Remark . We will show that R
is complex orientable. Let €g(—1) denote the fiber of the augmentation 05 — R.
Pullback along f determines a map of E.-algebras f* : 04 — C*(CP®; R) which
fits into a commutative diagram

Oe(=1) Og

| |-

R
R
7ed(CP? R) —C*(CP*; R) —= R
i
R.

| !

*1(CPY; R) —— C*(CPY; R) ——

Using Remark [4.2.10, we see that the left vertical composition can be identified with
the map

Oa(-1) % R®s, 0s(-1)
= wé
& $7(R)
= :ed(CPI;R)'

The assumption that e is an orientation guarantees that the Bott map . is an
equivalence. Since u is surjective on homotopy groups, it follows that the composite
map

T2 Og(—1) = 12Cla(CP”; R) 55 Cy(CPY R)

is surjective. In particular, the canonical generator of m_oC%,(CP'; R) can be lifted
to an element of m_5C% (CP™; R), so that R is complex orientable as desired.

Let us now assume that (1) is satisfied, so that the Quillen formal group (A}I% is
well-defined and e can be identified with a map of formal groups f : (A}I% — é, which
carries the tautological preorientation e € Pre(é%) to e. It follows that the map (.

factors as a composition
f* Beg -2
wg > wee — Y4(R),
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where the map f, is an equivalence (Example |4.3.22). Consequently, the map
Be 1 wg — L2(R) is an equivalence if and only if f induces an equivalence of dualizing
lines, which is equivalent to condition (2) (see Remark [4.2.18)). [

4.3.6 Example: Orientations of ém

Let G, be the formal multiplicative group of Construction [1.6.16/ In this section,
we study the classification of (pre)orientations of G,,.

Remark 4.3.24. Let R be an E,-ring. By definition, a preorientation of ém (regarded
as a formal group over R) is a map of pointed spaces e : S — Q®G,,(7=0R). Note
that we have a fiber sequence

Gn(T20R) > G (R) — Gon(mo(R)™),
where the third term is discrete. It follows that that u induces a homotopy equivalence
Pre(Gp) = Q772G (20R) — Q7 2G(R).

Put more informally, giving a preorientation of the formal multiplicative group ém is
equivalent to giving a preorientation of the strict multiplicative group G,,.

In the situation of Remark [4.3.24] we can identify Q*™?G,,(R) with the mapping
space Mapyy,q, (2*(Z), G (R)). Combining this observation with Remark |1.6.11} we
obtain the following:

Proposition 4.3.25. Let R be an E,-ring and regard ém as a formal group over R.
Then we have a canonical homotopy equivalence
Pre(G,,) ~ Mapga, (5% CP”, R).
In we associated to each preorientation e of a 1-dimensional formal group
G a Bott map B, : wg — X7%(R). In the special case where G = G, is the formal
multiplicative group, the dualizing line wg can be canonically identified with R
(Example [4.2.16]), so that 3. is classified by an element of my(R).

Proposition 4.3.26. Let R be an E-ring and let e be a preorientation of the formal
multiplicative group ém (regarded as a formal group over R), classified by a morphism
of Ew-rings f : ¥2(CP¥) — R. Then the Bott map B, of C’onstruction is given
by multiplication by the element B € ma(R) represented by the composition

$% = CP' - CP” - Q*%*(CP*) 5 R.
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Proof. Apply Remark 4.2.17] O

Corollary 4.3.27. The localization X2 (CP®)[57!] is an orientation classifier for
the formal multiplication group G, € FGroup(S), in the sense of Definition |4.5.1/}

4.4 Formal Groups of Dimension 1

In this section, we review some standard facts about 1-dimensional formal groups
over ordinary commutative rings.

4.4.1 The Height of a Formal Group
Let p be a prime number, which we regard as fixed throughout this section.

Definition 4.4.1. Let R be a commutative ring, let G be a 1-dimensional formal
group over R, and let [p] : G — G be the map given by multiplication by p. For
n = 1, we will say that G has height = n if p = 0 in R and the ma) factors through
the iterated relative Frobenius map G &% G®") (see Notation ;di%‘}

We extend this terminology to the case n = 0 by declaring that all formal groups
over R have height > 0 (in this case, we do not require that p = 0 in R).

Warning 4.4.2. The terminology of Definition is potentially confusing, because
the condition that a 1-dimensional formal group G has height > n depends on the
choice of prime number p. However, the danger of confusion is slight, since a formal
group which has height > 1 at a prime p cannot have positive height at any other
prime (except in the trivial case R ~ 0).

Remark 4.4.3. Let R be a commutative ring and let G be a 1-dimensional formal
group over R. Suppose that there exists a prime number p for which R is (p)-local and
G has height > n, for some positive integer n. Then the prime number p is uniquely
determined, except in the trivial case R = {0}: it is the unique prime number which
vanishes in R.

Example 4.4.4. Let R be a commutative ring and let ém be the formal multiplicative
group over R (see Construction [1.6.16). Then the ring of functions Og is the
completion of the Laurent polynomial ring R[q*!] with respect to the ideal (¢ — 1),
which we will write as a power series ring R[[¢]] for e = ¢ —1. Under this identification,
the map p : ém — ém is classified by the map of power series rings

pl*: Og, — Og, e»—>(e—|—1)p—1=pe+(g>62+---+ep.
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If R is an F)-algebra, then this map is given more simply by € — €. It follows that
G, has height > 1, but does not have height > 2 (except in the trivial case R ~ 0).

4.4.2 Differentials and Frobenius Maps

To make use of Definition [£.4.1] it is useful to have a criterion for detecting when
a map of formal groups factors through the Frobenius.

Proposition 4.4.5. Let R be a commutative F,-algebra and let f : G — G be
a morphism of 1-dimensional formal groups over R. The following conditions are
equivalent:

(1) The pullback map f* :wg — wg vanishes (see Remark .

(2) The morphism f factors as a composition

e elIEN ¢

Moreover, if these conditions are satisfied, then the map g is uniquely determined.

Remark 4.4.6. In the statement of Proposition [4.4.5] we do not need to assume that
G and G’ are 1-dimensional. However, in the general case, we should replace the
dualizing lines of G and G/ by their cotangent spaces at the identity (see ‘}

Proof of Proposition[{.4.5 Working locally on Spec(R), we can reduce to the case
where O is isomorphic to a power series ring R[[T']]. Then the Frobenius pullback
G® can be identified with the formal spectrum of the subalgebra R[[T?]] = R[[T]].
It follows that the factorization described in (2) exists if and only if the pullback map
[*:0a — Og ~ RI[[T]] factors through the subalgebra R[[T"]] < R[[T]], and is
automatically unique if it exists.

Let 2 = Qg_ /r denote the module of Kahler differentials of 0g ~ R[[T]] over R,
so that Q is a free R[[T]]-module on a single generator dT". We observe that a power
series u € R[[T]] belongs to the subalgebra R[[17]] if and only if du vanishes in 2.
Set V' = Qﬁa/ /R, 50 that f* induces a map of &'g-modules f*: Q" — () characterized
by the equation df*(u) = f*(du). Consequently, assertion (2) is equivalent to the
vanishing of the pullback map f* : € — Q. Using the group structure on G and
é’, we can write Q ~ Og ®rwg and ' = O g, @prwea,, where we identify wg and weg,
with the R-submodules of Q and €' consisting of translation-invariant differentials
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on G and G/, respectively. The equivalence of (1) and (2) now follows from the

commutativity of the diagram
*
We T Wa

Vo

QO ——Q.
O

Example 4.4.7. Let R be a commutative F,-algebra and let G be a 1-dimensional
formal group over R. Then the map [p] : G -G automatically satisfies condition 1)
of Proposition [£.4.5] (since wg is an R-module), and therefore factors uniquely as a
composition

& %5 G0 V. &
Corollary 4.4.8. Let R be a commutative ring and let G be a 1-dimensional formal
group over R. Then G has height = 1 if and only if p = 0 in R.

4.4.3 Hasse Invariants and Landweber Ideals

Construction 4.4.9 (The Hasse Invariant). Let R be a commutative ring and let G
be a 1-dimensional formal group over R which has height > n, for some nonnegative
integer n. If n > 0, then the prime number p vanishes in R and the map [p] : G -G
factors as a composition

G e, a1 G,
Moreover, it follows from Proposition [4.4.5|that T is uniquely determined, and therefore
induces a pullback map

® . - ~ P
T 'WG—)WG(P”>)—°J€; y

which we can identify with an element v,, € wg(p "D We will refer to v, as the nth

Hasse invariant. By virtue of Proposition M, it vanishes if and only if G has height
=>n+ 1
®("-1)

This construction extends to the case n = 0 by setting vp = pe R ~ We

which can be identified with the endomorphism of wg induced by the map [p] : G — é;
note that p vanishes in R if and only if G has height > 1 (Corollary .

Proposition 4.4.10. Let R be a commutative ring and let G bea formal group of
dimension 1 over R. Then, for each integer n = 0, there exists a finitely generated
ideal JS < R with the following property: a ring homomorphism R — R’ annihilates
35} if and only if the formal group @R/ has height = n.
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Proof. Let m be the largest element of {0,...,n} for which G has height > m. We
proceed by descending induction on m. If m = n, then the formal group G itself has

height > n and we can take TJS; ( ). Otherwise, let v, € w C‘;( Y be the mth Hasse

invariant of G (Construction , and view v, as an R-module homomorphism

wg(l_p ") R. The image of this map is a finitely generated ideal J < R, and the

formal group G r/J has vanishing mth Hasse invariant and therefore has height > m+1.
Invoking our inductive hypothesis, we deduce that there exists a finitely generated
ideal I < R/J with the property that a ring homomorphism R/J — R’ annihilates
the ideal I if and only if the formal group Gp has height > n. Let JG denote the
inverse image of I under the reduction map R — R/J. This ideal has the desired
universal property by construction, and is finitely generated because both I and J are
finitely generated. O

Definition 4.4.11. Let R be a commutative ring and let G be a formal group of
dimension 1 over R. We will refer to the ideal 3¢ = R as the nth Landweber ideal of

A~

G.

Remark 4.4.12. Let R be a commutative ring and let G be a formal group of
dimension 1 over I, and suppose that the dualizing line wg is trivial: that is, it is
isomorphic to R as an R-module. Then, for every n > 0, the nth Landweber ideal 3S
is generated by n elements. Roughly speaking, it is generated by the Hasse invariants

Vg = P, V1, Vs, ...,0,_1 of Construction [4.4.9] modulo the caveat that each v, is only
well-defined modulo the ideal (vy,...,v,_1) (because the construction of v,, requires

that the formal group G has height > m).

Variant 4.4.13 (Formal Groups over E,-Rings). Let G be a 1-dimensional formal
group over an E,-ring R. Then G determines a 1-dimensional formal group Go over
the ordinary commutative ring m(R). For each n = 0, we set JG = JGO < mo(R). We
will refer to jG as the nth Landweber ideal of the formal group G.

4.4.4 p-Divisibility of 1-Dimensional Formal Groups

We now use the theory of heights to formulate a criterion for p-divisibility of
1-dimensional formal groups.

Theorem 4.4.14. Let R be a complete adic Eo-ring. Assume that p is topologically
nilpotent in mo(R) and let G be a 1-dimensional formal group over R. Fix an integer
n = 1. The following conditions are equivalent:
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(1) There exists a formally connected p-divisible group G of height n and an equiva-
lence G ~ G°.

(2) For every point x € |Spf(R)| < | Spec(R)|, the formal group éﬁ(z) has height n
(see Definition below).

Example 4.4.15. Let R be an E-ring and let G be a 1-dimensional formal group
over R. Suppose that R is complete with respect to the nth Landweber ideal 35‘ for
some n > 1 (in particular, R is (p)- Complete) and that jn "1 = mo(R). Then the pair
(R, G) satisfies the requirements of Theorem , where we endow my(R) with the
JG adic topology. Consequently, the formal group G can be realized as the identity
component of an (essentially unique) p-divisible group G of height n.

Before giving the proof of Theorem [.4.14] let us introduce some useful terminology.

Definition 4.4.16. Let R be an E-ring and let G be a 1-dimensional formal group
over R. We will say that G has height < n if the nth Landweber ideal JS is equal to
mo(R) (see Variant [4.4.13). Equivalently, we say that G has height < n if there does
not exist a point = € | Spec(R)| for which the fiber Gﬁ(x) has height > n, as a formal
group over the residue field k().

Definition 4.4.17. Let R be a commutative ring and let G be a 1-dimensional formal
group over R. We will say that G has ezact height n if it has height > n (Definition

4.4.1)) and height < n + 1 (Definition [4.4.16)).

Remark 4.4.18. Let R be a commutative ring and let G be a 1-dimensional formal
group over R. Then G has exact height n if and only if ’Jé’ = (0) and ’Jn = R
The first condition guarantees that the Hasse invariant v,, € wA( Y is well- defined,
anf(i the) second condition is equivalent to the requirement that v, is a generator of
(-1

Y&

Remark 4.4.19. Let R be a commutative ring and let G be a 1-dimensional formal
group over R. If n > 0, then G has exact height n if and only if p = 0 in R and the
map p : G — G factors as a composition

G ﬁ, Qo) 2, @7

where ¢ denotes the nth iterate of the relative Frobenius map and c is an isomorphism
of formal groups.
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Remark 4.4.20. Let R be a commutative ring and let G be a 1-dimensional formal
group over R. The following conditions are equivalent:

(1) The formal group G has exact height 0.
(2) The prime number p is invertible in R.
(3) The map p: G — G is an isomorphism.

Remark 4.4.21. Let k be a field of characteristic p and let G be a 1-dimensional
formal group over k. Then one of the following possibilities occurs:

(a) There exists a unique integer n > 1 such that G has exact height n.
(b) The map p: G — G vanishes.

In case (b), G is not a p-divisible formal group (in fact, one can show that G is
isomorphic to the formal additive group G,).

4.4.5 The Proof of Theorem [4.4.14
We will deduce Theorem from the following standard algebraic assertion:

Proposition 4.4.22. Let R be a commutative F,-algebra and let G be a 1-dimensional
formal group over R having exact height n. Then there exists a connected p-divisible
group G over R of height n and an isomorphism G ~ G°.

Proof. Let G[p] denote the fiber of the map p : G — G. By virtue of Theorem
(and Remark [2.3.25), it will suffice to show that Q°G[p] is (representable by) a finite
flat R-algebra of degree p". Using Remark we deduce that é[p] can also be
identified with the fiber of the iterated relative Frobenius map ¢g : G — G, from
which the desired result follows immediately (note that Zariski locally on | Spec(R)|,
this can be identified with the map of formal schemes Spf(R[[t]]) — Spf(R[[t*"]])). O

Proof of Theorem[{.4.14 Let R be a complete adic E,-ring with p topologically
nilpotent in 7y(R), and let G be a formal group over R. Suppose first that condition (2)
is satisfied. The condition that @,i(x) has height > n for each x € | Spf(R)| < | Spec(R)|
guarantees that we can choose a finitely generated ideal of definition I < mo(R) which
contains the nth Landweber ideal ’JS’. Then éwo( r)/1 is a formal group of height > n
over the commutative ring mo(R)/I. Using the assumption that én(x) has height < n
at each point = € | Spf(R)|, we deduce that GWO( r)/1 has exact height n. Applying
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Proposition 4.4.22, we see that (A}m( r)/1 can be realized as the identity component of
a connected p-divisible group G’ of height n over mo(R)/I. In particular, G (g is a

p-divisible formal group over mo(R)/I, so Theorem @ implies that G is a p-divisible
formal group over R. We can therefore identify G with the identity component G°,
where G is a formally connected p-divisible group over R. Corollary then
supplies an equivalence G’ ~ G (r)/1, so that G must have height n at every point
x € |Spf(R)| < |Spec(R)|. Since every closed subset of | Spec(R)| has nonempty
intersection with | Spf(R)|, it follows that G is a p-divisible group of height n, which
completes the proof of (1).

We now show that (1) = (2). Assume that G ~ G°, where G is a formally
connected p-divisible group of height n over R. We wish to show that, for each point
x € |Spf(R)| < |Spec(R)|, the formal group (AS‘rH(x) has height n. Note that since
multiplication by p is nonzero on the connected p-divisible group Gy, it is also

nonzero on the formal group én(:p) ~ GZ(w) (Corollary [2.3.13). Consequently, there

exists some positive integer m such that éﬁ(z) has exact height m (Remark [4.4.21)).
Applying Proposition [4.4.22, we deduce that G,,) is the identity component of a
connected p-divisible group G’ of height m over x(x). It follows from Corollary [2.3.13

that the p-divisible groups G, ;) and G’ are isomorphic, so we must have m =n. 0O

4.4.6 Descending Formal Groups Along the Frobenius

The following fact about formal groups of exact height n will be useful in §5}

Proposition 4.4.23. Let R be commutative F,-algebra and let FGroup™"(R) denote
the full subcategory of FGroup(R) spanned by those formal groups over R which are 1-
dimensional of exact height n. Then the extension of scalars functor FGroup™"(R) —
FGroup™"(RYP™) is an equivalence of categories.

Remark 4.4.24. In fact, one can prove a stronger assertion: for each n > 0, the
moduli stack of formal groups of exact height n can be realized as a gerbe for a
profinite group (so that FGroup™"(R) depends only on the category of finite étale
R-algebras). However, we will not need this stronger assertion.

Proof of Proposition[{.4.23. For every F,-algebra R, let FGroup? (R) denote the
category whose objects are pairs (é, p), where G is a formal group over R and p :
G®) ~ G is an isomorphism of formal groups; here G®") denotes the n-fold Frobenius
pullback of G; a morphism from (é‘r, p) to (CA}’ ,p') in the category FGroup? (R) is
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given by a map of formal groups f : G — G for which the diagram
Qe P .G

if@m lf
Gy 2 G

commutes. Note that, for each object (é p) e FGroup?" (R), the Frobenius pullback
(GP™ pe™) s also an obJect of FGroup "(R). Moreover, the relative Frobenius ‘map
" G G®") and P G#") - G can be regarded as morphisms in FGroup?" (R).
Unwmdmg the definitions, we can 1dent1fy FGroup™(R) with the full subcategory of
FGroup?" (R) spanned by those objects (G, p) for which G is 1-dimensional and the
composite map
G 2L agem LG

coincides with multiplication by p. Consequently, to show that extension of scalars
determines an equivalence of categories FGroup="(R) — FGroup~"(RY?"), it will
suffice to show that it determines an equivalence of categories FGroup? (R) —
FGroup?" (RV/?").

For every commutative F,-algebra R, let Hyp, (R) denote the category of pointed
formal hyperplanes over R. We let Hypfﬂ (R) denote the category whose objects
are pairs (X, p), where X is a pointed formal hyperplane over R and p : X®") ~ X
is an isomorphism of pointed formal hyperplanes. Note that FGroup?" (R) can be
identified with the category of abelian group objects of Hypfn (R). Consequently, to
prove Proposition [4.4.23] it will suffice to show that the extension of scalars functor
Hyp?" (R) — Hyp?" (RY?") is an equivalence of categories.

For every F-algebra R and every integer m > 0, let C,,(R) denote the category
of augmented R-algebras which have the form @,_,_,, Symy(M), where M is a
projective R-module of finite rank, and let C¥, (R) denote the category of pairs (A, p)
where A € C,, and p : A ~ A®") is an isomorphism in C,,(R). The category of pointed
formal hyperplanes Hyp, (R) can be identified with the inverse limit of the tower

B CWL(R) - Cmfl(R) - Cm72<R) — CO(R) =k

and this induces an identification of Hyp?" (R) with the limit of the tower {C¥ (R)}.
We are therefore reduced to showing that, for each m > 0, the extension of scalars
functor C¥ (R) — C% (RYP") is an equivalence of categories. However, it is easy to
see that the construction R +— C? (R) commutes with filtered colimits (since algebras
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of the form @),_,,, Symy(M) are finitely presented over R). Writing the perfection

RIrmlol==/P* a5 the direct limit of the sequence R 2% R % R 2% R — ... we are
reduced to proving that the Frobenius map ¢r : R — R induces an equivalence of
categories C¥, (R) — C? (R), which follows immediately from the definition. O

Corollary 4.4.25. Let Ry be a perfect Fy-algebra, let Gg be a connected 1-dimensional
p-divisible group of exact height n over Ry, and let G € BT"(Rg.) be its universal de-
formation. Then the kernel of the augmentation map € : mo(RE,) is the nth Landweber
ideal 3G < mo(RE.).

Proof. Since the formal group G7 ) ker(e) = Gg has height > n, it is clear that the
nth Landweber ideal J&° is contained in the kernel ker(e¢). We wish to prove the
reverse inclusion. Set R = mo(RE,)/IS" and let I = R be the image of ker(e) (that is,
the kernel ideal of the natural map R — Ry). Then the ideal I is finitely generated
and the commutative ring R is I-complete (since Rg, is complete with respect to
ker(€)). We can regard the F,-algebra R/I? as a square-zero extension of Ry by I/I?.
Since Ry is perfect, this square-zero extension admits a unique splitting s : Ry — R/I>.
Let G’ denote the p-divisible group over R/I? obtained from Gy by extending scalars
along s. We then have a pair of p-divisible groups G" and G2 over the commutative
ring R/I% and a canonical isomorphism ag between their restrictions to Spec(Ry).
Since the identity components G and G, /12 have exact height n and the projection
map R/I? — Ry induces an equivalence of perfections, Proposition guarantees
that we can lift o uniquely to an isomorphism of formal groups G ~ G‘]’%/p, or
equivalently to an isomorphism of p-divisible groups o : G’ ~ G2 (since both G’
and Gp/2 are connected). Invoking the universal property of the spectral deformation
ring R, we conclude that the canonical map RE — R/I? factors through s. In
particular, s is surjective, so that the quotient I/I? vanishes. Since R is I-complete,
the ideal I is contained in every maximal ideal m of R. It follows that the quotient
I/mI also vanishes, so that (by Nakayama’s lemma) the localization I, vanishes.
Allowing m to vary, we conclude that I ~ ker(¢)/JS” vanishes, so that ker(e) = J&"
as desired. O

4.5 The K(n)-Local Case

Throughout this section, we fix a prime number p. Let K (n) denote the nth Morava
K-theory (at the prime p). Our goal is to supply a purely algebraic criterion which
can be used to determine when a complex periodic ring spectrum A is K(n)-local.
First, let us introduce some terminology.
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Definition 4.5.1. Let A be a (p)-local Ep-ring and let G be a formal group of
dimension 1 over A. Then G determines a 1-dimensional formal group over the
commutative ring mgA, which we will denote by G, 4. For each n > 0, we set

35; — 357" We will refer to JS as the nth Landweber ideal of G.

In the special case where A is complex periodic and G = CA}% is the Quillen formal
group, we will denote the Landweber ideal ’JS simply by J4, and refer to it as the
nth Landweber ideal of A. Let é%n denote the formal group obtained from @%O
by extending scalars along the quotient map mo(A) — mo(A)/I2. Then G has
height > n, and its dualizing line is given by m(A)/Jm5(A) (see Example [4.2.19).
We let v, denote the nth Hasse invariant of (E%L, which we regard as an element
of mopn_o(A)/Tidmopn_2(A). Then the ideal I, is generated by J7 together with
UpTo_gpn (A), where T, € Tom_o(A) is any lift of v,.

We can now state our main result:

Theorem 4.5.2. Let A be a (p)-local complex periodic E-ring and let n be a positive
integer. Then A is K(n)-local if and only if the following conditions are satisfied:

(a) The Eq-ring A is complete with respect to the nth Landweber ideal 37 < m(A).

(b) The (n+1)st Landweber ideal 37, is equal to mo(A). In other words, the formal
group G%O has height < n, in the sense of Definition .

Let A be a (p)-local complex periodic E-ring. Hypothesis (a) of Theorem is
equivalent to the requirement that each homotopy group m,,(A) is J4-complete, when
regarded as a discrete module over 7y(A) (Theorem SAG.7.3.4.1). Since A is weakly
2-periodic, it suffices to verify this condition for m € {0, 1}. In particular, we obtain
the following:

Corollary 4.5.3. Let A be an even periodic (p)-local By -ring and let n be a positive
integer. Then A is K (n)-local if and only if the commutative ring mo(A) is I2-complete
and the formal group G%G has height < n.
4.5.1 K(n)-Locality of Modules

We will deduce Theorem from the following more general assertion:

Proposition 4.5.4. Let A be a (p)-local complex periodic By -ring, let M be an A-
module, and let n be a positive integer. Then M is K(n)-local if and only if the
following conditions are satisfied:
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(a) The module M is complete with respect to the nth Landweber ideal J2 < mo(A).

(b) Let v, € Topn_2(A)/TaTopn_2(A) be as in Deﬁnition and let v, € mopn_o(A)
be any lift of v,,. Then multiplication by T, induces an equivalence from X" ~2M
to M (note that if condition (a) is satisfied, then this condition is independent
of the choice of Ty,).

Proof of Theorem[{.5.3 from Proposition[4.5.4. Suppose first that A is K(n)-local,
and let U, € mopm_o(A) be a lift of v, € mopn_o(A)/Tmopn_2(A). Tt follows from
Proposition that A is complete with respect to 3% and that v, is invertible in
m+(A). Since 34, contains the image of the map my_gmA 2 mA, it follows that
Jn1 = mo(A).

Now suppose that conditions (a) and (b) of Theorem are satisfied. Then
34, = m(A), so that my(A) is generated by J2 together with the image of the map
Up, @ Ta—gpn(A) — mo(A). It follows that there exists an element x € my_g,m(A) such
that 7,2 = 1 mod J2. Condition (a) implies that mo(A) is J/-complete, so that
Upx is invertible in my(A) (Corollary SAG.7.3.4.9). Consequently, 7, is an invertible
element of the graded ring m,(A), so that A is K(n)-local by virtue of Proposition

454 O

4.5.2 The Proof of Proposition [4.5.4

We need the following simple observation:

Lemma 4.5.5. Let A be a weakly 2-periodic B, -ring, let x € mo,(A), and let I <
mo(A) be an ideal which contains the image of the map m_9,(A) — m(A) given by
multiplication by x. Let M be an A-module. If x induces an equivalence X*™M — M,
then M is I-local.

Proof. The assertion is local with respect to the Zariski topology on A. We may
therefore assume that m_o(A) contains an element ¢ which is invertible in m,(A). In
this case, multiplication by the element t™x € I < myA induces an equivalence from
M to itself, so that M is (t™z)-local and therefore I-local. O

Proof of Proposition[4.5.4. Let A be a (p)-local complex periodic E-ring and let M
be an A-module. Suppose first that M is K(n)-local; we will show that conditions
(a) and (b) of Proposition are satisfied. We begin by proving (a). By virtue
of Corollary SAG.7.3.3.3, it will suffice to show that M is (¢)-complete, for each
element ¢t € J4. Let N be an A[1/t]-module; we will show that the mapping space
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Mapyoq, (N, M) vanishes. Since M is K (n)-local, it will suffice to show that K (n)®gN
vanishes. Note that K(n) ®s N can be viewed as a module over the ring spectrum
K(n) ®s A[1/t]. We are therefore reduced to showing that B = K(n) ®s A[1/t]
vanishes. This is clear, since the classical Quillen formal group é%o has height n
(since it is obtained by extension of scalars from é%ﬁn)) and also height < n (since it

is obtained by extension of scalars from é%ﬁ J- (Beware that K'(n) is not an Eo-ring,
or even homotopy commutative at the prime p = 2; however, the classical Quillen
formal group of K (n) is still well-defined.)

We now prove (b). Let f : X%"~2M — M be the map induced by v,,; we wish
to prove that f is an equivalence. Since f is a map between K (n)-local spectra, it
will suffice to show that the induced map X%*"2M ®5 K(n) - M ®g K(n) is an
equivalence. This is clear, since the image of 7, is invertible in 7,(A ®g K(n)) (by
virtue of the fact that the classical Quillen formal group of A ®g K(n) has height
exactly n).

Now suppose that conditions (a) and (b) of Proposition are satisfied; we wish
to show that the module M is K(n)-local. For 0 < m < n, let T, € mypm_1)(A) be
a lift of the mth Hasse invariant v, € ma@m_1)(A4)/I/ma@pm_1)(A). Using condition
(b), we see that M can be regarded as a module over the localization A[v,']; we may
therefore replace A by A[v, '] and thereby reduce to the case where v, is invertible in
7« (A). We will prove the following more general result for 0 < m < n:

(*m) Let N be a perfect A-module which is J4-nilpotent. Then the tensor product
M ®4 N is K(n)-local.

Note that assertion (xg) implies that M ~ M ®4 A is K(n)-local. We will prove (#,,)
by descending induction on m. Let us first carry out the inductive step. Assume that
m < n and that (x,,,1) is satisfied; we will prove that (x,,) is also satisfied. Let N be a
perfect A-module which is J4-nilpotent. Since M is J%-complete and N is perfect, the
tensor product M ®4 N is also J4-complete. It follows that we can identify M ®4 N
with the homotopy limit of the tower

{M ®4 cofib(vF - pIRICAEDLY VAN N) o

Since each cofiber cofib(vf, @ X2P"-VEN — N) is 32 -nilpotent, our inductive
hypothesis guarantees that the tensor product M ®, cofib(vk, : L2P"~VEN — N) is
K (n)-local. Passing to the limit, we deduce that M ®4 N is K(n)-local.

To complete the proof, it will suffice to show that assertion (x,) holds. Let N be
a perfect A-module which is J4 nilpotent and let X be a K (n)-local spectrum; we
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wish to show that the mapping space Mapsp(X , M ®,4 N) is contractible. For this,
it will suffice to show that the smash product X ®g NV vanishes, where N denotes
the A-linear dual of N. Let MP denote the periodic complex bordism spectrum
(see Construction [5.3.9). Then the smash product A ®g MP is faithfully flat over A
(Theorem and Proposition [5.3.12). It will therefore suffice to show that the
smash product

X®sN"®4(A®s MP) ~ X ®5 N¥ ®s MP

vanishes.

Let u be an invertible element in mo(MP). For 0 < m < n, choose w,, € mo(MP) so
that u?” ~tw,, represents the mth Hasse invariant in maqm_1)(MP)/IMP ma,m 1) (MP).
Then the elements (wg,ws, .. .,w, 1) generate the nth Landweber ideal JMF. Note
that J4 and JMP generate the same ideal mo(A ®5 MP). Since N is perfect and
Jé—nﬂpotent, it follows that NY ®g MP is a perfect module over A ®s MP which
is IMP_nilpotent. Since v, is invertible in m,(A), the image w, in 7o(A ®s MP) is
invertible modulo the ideal JMF and therefore acts invertibly on NV ®s MP. We can
therefore identify Nv ®g MP with the localization NV ®g MP[w, !].

By construction, the (A ®s MP)-module NY ®g MP is a retract of the smash
product

NY ®g cofib(wf : MP — MP) ®up - - - ®up cofib(w” | : MP — MP).
for k » 0. It will therefore suffice to show that each of the smash products
X ®s NV ®g cofib(wf : MP — MP) ®up - - - @up cofib(w? | : MP — MP)

vanishes. Note that such a smash product admits a filtration by k™ copies of the
smash product

X ®s NY ®g (cofib(wg : MP — MP) ®@up - - - ®up cofib(w® | : MP — MP))[w;'].
We complete the proof by observing that the spectrum
X ®g (cofib(wy : MP — MP) ®up - - - Quip cofib(w®_, : MP — MP))[w;, ]

vanishes, since X is K (n)-acyclic and the smash product MP[w, '] ®up cofib(wy :
MP — MP) ®up - - - @up cofib(wk_; : MP — MP) can be written as a sum of copies
of K(n). O
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4.6 The Quillen p-Divisible Group

Let A be a complex periodic Ey-ring, and suppose that A is K (n)-local for some
n > 0. Then A is complete with respect to the nth Landweber ideal J4, and the
(n + 1)st Landweber ideal 32, is equal to A (Theorem . Let us regard A as
a complete adic E,-ring by endowing mo(A) with the J4-adic topology. Applying
Theorems |4.4.14| and |2.3.26|, we deduce that é% is a p-divisible formal group: that

is, it can be realized as the identity component of an (essentially unique) formally

connected p-divisible group over A. Our goal in this section is to give an explicit
construction of this p-divisible group, which we will denote by G and refer to as
the Quillen p-divisible group of A. The details of this construction will not be needed
elsewhere in this paper (but will be used in a sequel, where we discuss applications of
these ideas to transchromatic character theory).

4.6.1 The Construction of G$

For the purposes of constructing G%, it will be useful to temporarily abandon the
conventions of Definition and return to the definition of p-divisible groups given in
[26]: namely, as certain p-torsion objects of the co-category SpDM'Y* of nonconnective
spectral Deligne-Mumford stacks over A.

Notation 4.6.1. Let Abf denote the category of finite abelian p-groups. For each
M € AbE | we let M* denote the Pontryagin dual of M, given by

M* = Homgz(M,Q/Z).

Let A be an E-ring. For every space X, we let C*(X; A) denote the function
spectrum of (unpointed) maps from X into A. Then C*(X; A) is an E,-algebra over
A, so we can regard the spectrum Spec(C*(X; A)) as an object of SpDM".

Construction 4.6.2 (The Quillen p-Divisible Group). Let A be an E-ring. For every
finite abelian p-group M, we let GS[M] denote the spectrum Spec(C*(BM*; A)). We
regard the construction M — G$[M] as a functor

G : (AbE,)°P — SpDM'Y.

Theorem 4.6.3. Let A be a complex periodic Eo,-ring which is K(n)-local for some
n > 0. Then the functor M — GS[M] of Construction s a p-divisible group of
height n over A, in the sense of Proposition AV.6.5.5. In other words:
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(1) For every pair of finite abelian p-groups M and M’, the canonical map
C*(BM;A)®4 C*(BM'; A) - C*(B(M x M"); A)
is an equivalence of Ey-algebras over A.

(2) For every short exact sequence 0 — M' — M — M" — 0 of finite abelian
p-groups, the diagram of E.-algebras

C*(BM"; A) —= C*(BM; A)

| l

A C*(BM'; A)

is a pushout square in CAlg,.

(3) For each m > 0, the map C*(BZ /p™ ' Z; A) — C*(BZ /p"Z; A) is finite flat
of degree p™.

In particular, each C*(BM; A) is finite flat of degree |M|" as an A-module.

Definition 4.6.4. Let A be a complex periodic E,-ring which is K (n)-local for some
n > 0. We will refer to the p-divisible group G§ of Theorem as the Quillen
p-divisible group over A.

4.6.2 Universal Flatness

We will need some preliminaries.

Definition 4.6.5. Let A be an E,-ring and let f : X — Y be a map of spaces. We
will say that f is universally A-flat if the following conditions are satisfied:

(a) The pullback map C*(Y; A) — C*(X; A) is finite flat.

(b) For every point y € Y with homotopy fiber X,, = X Xy {y}, the diagram of
Ky -rings

C*(Y; A) —=C*({y}; A)

| |

C* (X5 A) —=C*(X; 4)

is a pushout square; in particular, C*(X,; A) is finite flat over A.
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If, in addition, the map C*(Y; A) — C*(X; A) has degree d, then we will say that f
is universally A-flat of degree d.

Proposition 4.6.6. Let A be an E.,-ring and suppose we are given a pullback diagram
of spaces

x Ly

x—toy
If f is universally A-flat (of degree d), then f' is universally A-flat (of degree d) and

the diagram of E-rings o :

C*(Y;A) —=C*(Y'; A)

i l

C*(X;A) —=C*(X'; A)
is a pushout square.

Proof. We first show that ¢ is a pushout square: that is, it induces an equivalence of
Ky -rings

ey/ : C*(X7A) ®C*(Y;A) C*(Y/,A) - C*(X/7A)

Observe that since C*(X; A) is finite flat over C*(Y; A), the construction Y’ — 0y~
carries colimits in Sy to limits in the co-category Fun(A', CAlg). Since the co-category
Sy is generated under small colimits by maps {y} < Y for y € Y, we can reduce to
the case where Y’ is a point, in which case the desired result follows from condition
(b) of Definition [4.6.5]

Since o is a pushout square, the map C*(Y’; A) — C*(X’; A) is finite flat (and
has degree d if C*(Y; A) — C*(X; A) has degree d). To complete the proof, it will
suffice to show that f also satisfies condition (b) of Definition [4.6.5} that is, for every
point 3’ € Y, the right square in the diagram

C*(Y; A) —=C* (Y, A) —=C*({y'}; A)

| | |

C*(X;A) —=C*(X; A) —= C*(X,; A)

is a pushout diagram of E-rings. This is clear, since the left square and the outer
rectangle are pushout diagrams. O]
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The main ingredient in the proof of Theorem {4.6.3|is the following:

Proposition 4.6.7. Let A be a complex periodic Eo-ring which is K(n)-local for
some integer n > 0. Then the pth power map p : CP* — CP® is universally A-flat
of degree p™.

We will give the proof of Proposition [4.6.7] in §4.6.3]

Corollary 4.6.8. Let A be a complex periodic By, -ring which is K (n)-local for some
integer n > 0 and let f: M — N be a surjection of finite abelian p-groups. Then the

| n

induced map of classifying spaces BM — BN is universally A-flat of degree |ker(f)

Proof. Proceeding by induction on the order of ker(f), we can reduce to the case
where ker(f) has order p. Let U(1) denote the circle group, so that there exists an
embedding « : ker(f) — U(1). Since U(1) is injective as an abelian group, we can
extend ag to a group homomorphism « : M — U(1). The map « fits into a pullback
diagram of abelian groups

M—L N
U(1) == U(1).
Passing to classifying spaces, we obtain a homotopy pullback square

BM —— BN

L,

CP* > CP”.
By virtue of Proposition 4.6.6, we are reduced to showing that the map p : CP* —
CP” is universally A-flat of degree p", which follows from Proposition [£.6.7] O

Corollary 4.6.9. Let A be a complex periodic By, -ring which is K (n)-local for some
n > 0, and suppose we are given a pullback diagram of finite abelian p-groups

M —M

L

N ——=N
where the vertical maps are surjective. Then the diagram o :

C*(BM'; A) < C*(BM; A)

! |

C*(BN'; A)<—— C*(BN; A)
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s a pushout square in CAlg,.

Proof. Combine Corollary with Proposition O

Proof of Theorem[{.0.3. Let A be a complex periodic E-ring which is K (n)-local for
some n > 0. We wish to show that the construction

M +— G§[M] = Spec(C*(BM*; A))
satisfies conditions (1), (2), and (3) of Theorem [4.6.3] Conditions (1) and (2) are
special cases of Corollary 4.6.9, and condition (3) follows from Corollary 4.6.8 [
4.6.3 The Proof of Proposition [4.6.7

Let A be a complex periodic E,-ring; we wish to show that the map p : CP* —
CP™ is universally A-flat of degree p". Conditions (a) and (b) of Definition [4.6.5]
follow immediately from the following results:

Proposition 4.6.10. Let A be an Eo,-ring which is complex periodic and K (n)-local
for some integer n = 1. Then the map p : CP® — CP¥ induces map of E-rings
¢ C*(CP”; A) - C*(CP*®; A) which is finite flat of rank p™.

Proposition 4.6.11. Let A be a complex orientable E-ring. For every fiber sequence
of spaces X — X 2, CP®, the canonical map

C*<X, A) ®C*(CP°°;A) A - C*()N(, A)
is an equivalence.

Let us begin with the proof of Proposition 4.6.11], which is slightly easier (note
that it does not require the hypothesis that A is K (n)-local).

Remark 4.6.12. Let A be an E-ring, and let € be a complex orientation of A. We
can regard € as an element of

7_o fib(C*(CP%; A) — C*(x; A)).
Given any commutative diagram of spaces o :

~
X —— =«

|

X —= CP®,
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the pullback of e determines an element &, € m_y fib(C*(X; A) — C*(X; A)). For
every space Y, let Ay € Fun(Y; Mod ) denote the constant local system (of A-module
spectra) on Y with value A. Multiplication by £, then determines a map

YTPAx — fib(Ax — TeAg)

We claim that if ¢ is a pullback diagram, then this map is an equivalence: in other
words, we obtain a fiber sequence

E_QAX - AX - W*A)}

of local systems on X. It suffices to verify this stalkwise: that is, we can assume
that X is a point. In this case, we wish to show that &, determines an equivalence of
spectra

S72A > fib(C*(x; A) — C*(U(1); A)).

Let o’ denote the rightmost square in the diagram of spaces

U(1) . \
o]
* S? CP~.

Here the left square is a pushout, and therefire induces an equivalence
fib(C*(S?; A) — C*(x; A)) — fib(C*(x; A) — C*(U(1); A)).
We are therefore reduced to proving that &,, induces an equivalence
Y 2A — fib(C*(S? A) — C*(x; A)).
This follows immediately from our assumption that € is a complex orientation.

Remark 4.6.13. Let A be an E-ring equipped with a complex orientation €, and
suppose we are given a fiber sequence of spaces X — X — CP%. Then e determines
an element ¢ € A?(X). Using Remark [4.6.12] we deduce the existence of a fiber

sequence of A-module spectra

SU2CH(XA) S CHX A) — C*(X; A).
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Proof of Proposition |/.6.11. For every space Y, let Ay, denote the constant local
system (of A-module spectra) on Y taking the value A. For every local system of
A-module spectra . on CP®, we have a canonical map

€z . O*(X,/U ®C*(CP°°;A) C*(Cpoo,ﬁ) — C*(X,d)* ﬁ)

Let v : * — CP® be the inclusion of the base point. Unwinding the definitions, we
wish to prove that ez is an equivalence when .% = 1, A,. According to Remark [4.6.13],
a choice of complex orientation of A gives a fiber sequence of local systems

Y2 Agpr — Acpr — VYud,.

We are therefore reduced to proving that ez is an equivalence when .# = Acpe,
which follows immediately from the definitions. O

We now turn to the proof of Proposition We will need a few algebraic

preliminaries.

Notation 4.6.14. Let R be a commutative ring and let w be an invertible R-module.
For every R-module spectrum M, we let M[[w]] denote the product [],.,w®" @z M.
In the special case where w is the free R-module on a generator x and M is discrete,
the R-module M|[[w]] is also discrete; we identify elements of M|[[w]] with formal

sums Y, _, c,z", where ¢, € M.

n=0

Let «’ be another invertible R-module, and suppose we are given a map f : w' —
R[[w]], given by a family of R-module homomorphisms f, : & — w®". If fj = 0,
then f induces a “composition map” Ay : M[[w']] = M[[w]], given informally by the

formula Ay (g(z")) = (g o f)(z). More formally, Ay is given by the collection of maps
M s M[[w']] = " ®r M,

map

Fr1 ®®fny,
_—

M[[w]] - " @r M W @p M.

Lemma 4.6.15. Let R be a commutative ring, I = R a finitely generated ideal, n > 0
a positive integer Let w and W' be invertible R-modules, and let f = {fm}m=o0 be a
map from w' to R[[w]]. Suppose that f, : W' — w®" is an isomorphism, fo =0, and
fm(W) € Tw®™ for 0 < m < n. If M is an I-complete R-module, then the map
A 2 M[[w']] = M[[w]] of Notation [4.6.14] induces an isomorphism

O (D W) @r M[[w]] — M[[w]].

o<m<n
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Proof. Note that the maps Ay, and 6, are well-defined for any R-module spectrum M;
however, the construction is compatible with passage to homotopy groups, so we may
assume without loss of generality that M is discrete. Choose a finite set x4, ..., x, of
generators for the ideal I. We proceed by induction on a. Suppose a > 0. For each
b= 0, let M, denote the cofiber of the map 2% : M — M. Since M is I-complete, it
can be identified with the limit of the tower of R-module spectra

'—>M2—>M1—>M020.

It follows that 6 is a limit of the tower of morphisms {0y, }s=0. To prove that 6,
is an equivalence, it suffices to show that each 60, is an equivalence. Since M, can
be written as a successive extension of b copies of M;, we are reduced to proving
that 0, is an equivalence. Equivalently, we must show that fy is an equivalence for
N = mgM; = coker(zy : M — M) and N = mM; ~ ker(z; : M — M). Replacing
M by N, we are reduced to the case where M is annihilated by x;. We may then
replace R by R/(x;) and I by its image in R/(z1), which is generated by the images
of the elements 9, x3,...,x, € R. The desired result then follows from the inductive
hypothesis.

It remains to handle the case a = 0: that is, where I is the zero ideal in R. Consider
the filtration

Ml[w]] = F*M[[w]] 2 F'M[[w]] = -

where FIM[[w]] = [ [;54(w® @r M). Let X = (Boeypen w®™) @r M[[w']], and define
a filtration X = FOX 2 F'X 2 ... so that

FIX= @ ®r |] W erM)).

0sm<n m+in>d

Then 0, is an inverse limit of maps
04: X/F*X — M[[w]]/F*M[[w]].

It will therefore suffice to show that each of these maps is an isomorphism. Proceeding
by induction on d, we are reduced to showing that each of the maps of successive
quotients

FUX/FX — FIM[[w]]/F M[[w]]

is an isomorphism. This follows immediately from our assumption that f, : w' — w®"
is an isomorphism. O
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Proof of Proposition[{.6.10. Let A be a complex periodic E-ring which is K (n)-local
for some n > 0. Let R = my(A) and set w = ma(A). A choice of complex orientation of
A gives an equivalence C*(CP™; A) ~ [[,.., X ~>™A, hence isomorphisms of homotopy
groups 7, C*(CP*; A) ~ (m,,A)[[w]]. In particular, we can identify moC*(CP%; A)
with R[[w]]. The map p : CP* — CP® induces a ring homomorphism from R|[w]]
to itself, which is determined by f : w — R[[w]] given by a family of maps {f,, :
w — w®m}. Let 34 < R be the nth Landweber ideal of A (Definition |4.5.1)). Since
the image of G in FGroup(mo(A)/J4) has height > n, the composite map w =R
R[[w]] — (R/3)[[w]] factors through the subalgebra (R/J4)[[wP"]]. It follows that
fm(w) € JAw®™ for m < p". Moreover, the element fyn € W®P" ™D ~ 7150 5(A) is a
lift of the Hasse invariant v, € mopn_o(A)/IFAmopn_o(A).

Let B = B’ = C*(CP™; A), and regard ¢ as a map from B to B’. The product
decomposition B’ ~ [] _,X7*™A gives a collection of A-module maps X*"A — B’,
and therefore a collection of B-module maps ¥"?"B — B’. Since A is K(n)-local,
Theorem implies that the homotopy groups of A are J-complete and that fpr
is an isomorphism. Lemma m guarantees that the map @, n Y?"B — B'is
an equivalence of B-modules, so that ¢ is finite flat of rank p™. n

4.6.4 The Identity Component of G%

We now show that the Quillen p-divisible group G bears the promised relationship
to the Quillen formal group G$:

Theorem 4.6.16. Let A be a complex periodic Bo,-ring which is K(n)-local for some
n >0, let é% denote the Quillen formal group of A (Construction , and let GS
denote the Quillen p-divisible group of A (Definition . Then there is a canonical
equivalence « : G ~ G%O of formal groups over A: that is, @% can be realized as the
identity component of GS.

The proof of Theorem [4.6.16| will require an auxiliary construction.

Notation 4.6.17. Let Lat(p) denote the category of abelian groups which are either
free Z-modules of finite rank or finite abelian p-groups (see Notation AV.6.4.5). Note
that each object M € Lat(p) can be regarded as a perfect Z-module spectrum, and
therefore admits a dual M"Y in the co-category Modz. The construction

M — QP2 MY
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determines a functor of oo-categories (Lat(p))°® — S. This functor carries an ob-
ject M € Lat(p) to the classifying space BM*, where M* = Hom(M, U(1)) is the
Pontryagin dual of M in the category of locally compact abelian groups. More
concretely:

e If M is a finite abelian p-group, then Q®~2M " is the classifying space BM* of
the finite abelian p-group M* = Hom(M, Q /Z).

o If M is a free abelian group of rank r, then Q*2MY ~ K(MV,2) is the
Eilenberg-MacLane space associated to free abelian group MY ; noncanonically,
it is homotopy equivalent to a product of r copies of CP*.

Construction 4.6.18. Let A be a K(n)-local complex periodic E,-ring. For each
object M € Lat(p), we let &y denote the Ey-algebra over A given by C*(Q*°2MV; A).
Then:

e If M is a finite abelian p-group, then &y, = C*(BM*; A) is a finite flat A-algebra
of degree |M|™ (Corollary [4.6.8]).

o If M is a free abelian group, then &'y is the dual of C(K(MY,2); A), which is
a smooth coalgebra over A by virtue of Remark [4.1.12]

We let €05 denote the connective cover of &y, which we regard as an E.-algebra
over 7oA. Note that the base point of Q*~2M determines a ring homomorphism
en - o Oy — moA; we will denote the kernel of this homomorphism by Jy, S mg Oy ~
7o 077 Note that the ideal Jy; is always finitely generated. We will regard €37 as an
adic E,-ring by equipping my & ]%/[o with the Jys-adic topology. Then the construction
M + Spf(€3)) determines a functor

X : (Lat(p))? — Fun(CAlg? ,,S).

T>0A?

Remark 4.6.19. Let Lat < Lat(p) be the full subcategory spanned by the free abelian
groups, and let X be as in Construction . By construction, the restriction X |pagor
agrees with the Quillen formal group é%, regarded as an abelian group object of the
owo-category Fun(CAlg™ | S).

T;oA’

Remark 4.6.20. Let X be as in Construction 4.6.18 For every finite abelian p-
group M, we can identify X (M) = Spf(r=oC*(BM*; A)) with the subfunctor of
Spec(soC*(BM*; A)) ~ G[M], whose value on an B € CAlg?? 4 is the summand
of Mapyoq, (M, G(B)) consisting of those maps Spec(B) — G$[M] which factor
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through the zero section at the level of topological spaces: in other words, the
summand given by the fiber of the map GS[M](B) — GS[M](B™). It follows
that the restriction of X to the subcategory (Abf,)°? < (Lat(p))°? is a p-torsion
object of the co-category Fun(CAlg™ ,,S) in the sense of Proposition AV.6.5.5. In

T;()A?
cn
T}()A

particular, we can identify X| Ab? yor With the functor CAlg
B — fib(GZ(B) — GR(B™).

— Mody'" given by

We will deduce Theorem [4.6.16| from the following:

Proposition 4.6.21. Let A be a K(n)-local complex periodic Ey-ring and let X :
(Lat(p))°* — Fun(CAlg?? 4, S) be the functor of Construction|{.6.18. Then X is a

T=0A?
right Kan extension of X|pager.

We defer the proof of Proposition until the end of this section.

Corollary 4.6.22. Let A be a K(n)-local complex periodic Ey-ring. Then, for every

object B € CAlg?” ,, we have a canonical equivalence

fib(GS(B) — G(B)[1/p]) ~ fib(G(B) — G(B™Y)).

Proof. Combining Remarks [4.6.19| and [4.6.20| with Proposition [4.6.21}, we deduce that
the functor B — fib(G$(B) — G$(B™%)) can be identified with the functor G$[p*]
of Construction AV.6.4.7. m

Proof of Theorem[[.6.16. Let A be a K(n)-local complex periodic Ey-ring and let
Ec CAlgi;1 ,4 be the full subcategory spanned by those connective E-algebras over
T>0A which are truncated and (p)-nilpotent. It follows from Lemma [2.3.24] that for
B € &, the localization G(B)[1/p] vanishes. Consequently, Corollary@ supplies

an equivalence
G$(B) ~ fib(GF(B) —» G$(B™")) = (G)°(B),

depending functorially on B € £. Applying Proposition [2.1.1] we obtain an equivalence
of formal groups G ~ (G$)°. O

We now turn to the proof of Proposition [4.6.21] By virtue of Remark AV.6.4.8, it
will suffice to establish the following:
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Proposition 4.6.23. Let A be a K(n)-local complez periodic Eq-ring and let M be a
finite abelian p-group. Then there exists a short exact sequence 0 — A" - A — M — 0,
where A is a free abelian group of finite rank, for which the diagram

X (M) —— X(A)

L

X(0) — X(A)

is a pullback square in the co-category Fun(CAlg? ,.S).

’T;()A?

Proof. Choose a direct sum decomposition M ~ Z /p* Z&--- @ Z /p* Z. We can
then take A = Z" and A’ = p* Z®--- @ p* Z. It follows from Remark that
the functor X|paer commutes with finite products, and from Remark that the
functor X| AP yop COMIMuUtES with finite products. We may therefore reduce to the
case r = 1. In this case, we wish to show that the pullback diagram of spaces o :

BZ /p*Z—— CP®
I
* CP*

induces a pullback diagram of functors 7 :

Spf(7=0C*(BZ /p® Z; A)) —— Spf(1=0C*(CP™; A))

i |

Spf(7=04) Spf(720C*(CP*; A)).

It follows from iterated application of Proposition that the diagram o deter-
mines a pushout square of E,-rings o’ :

C*(BZ /p*Z; A) <— C*(CP™; A)

| |

A C*(CP*; A)

in which the vertical maps are finite flat of degree p™. It follows that ¢’ induces a
pushout square of connective covers o”:

T>0C*(BZ /p° Z; A) <—— 15,C*(CP*; A)

T T

T=0A T50C* (CP*; A).
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Since the lower horizontal map is surjective on 7, it follows that the upper horizontal
map is also surjective on m; consequently, the ideal Jz ez S mC*(BZ /p° Z; A)
appearing in Construction is generated by the image of Jz < moC*(CP™; A).
It follows that ¢” is also a pushout diagram in the oco-category of adic E-rings, so
that 7 ~ Spf(c”) is a pullback diagram of (functors represented by) formal spectral
Deligne-Mumford stacks. O

5 Lubin-Tate Spectra

Let k be a perfect field of characteristic and let (A}o be a 1-dimensional formal
group of height n < o over k. Then 6}0 admits a universal deformation G defined
over a complete local Noetherian ring Ry (see Theorem . Morava observed
that G can be realized as the classical Quillen formal group of an even periodic ring
spectrum FE, and Goerss-Hopkins-Miller proved that E admits an essentially unique
E-ring structure. We begin with a brief review of their work, which will require a bit
of terminology.

Notation 5.0.1. We define a category FG as follows:

e The objects of FG are pairs (R, é), where R is a commutative ring and G isa
1-dimensional formal group over R.

e A morphism from (R, G) to (R, G’) in the category }"Q is a pair (f, a), where
f: R— R'is a ring homomorphism and « : G~ G g 18 an isomorphism of
formal groups over R'.

If A is a complex periodic E,-ring and J7 denotes the nth Landweber ideal of
the classical Quillen formal group (A}%O, we let (A}%" denote the formal group obtained
from G by extension of scalars along the surjection m(A) — m(A)/F4 (so that
G9 has height > n).

Theorem 5.0.2 (Goerss-Hopkins-Miller). Let k be a perfect field of characteristic
p > 0 and let Gg be a 1-dimensional formal group of height n < oo over k. Then there
exists a complex periodic E-ring E and an isomorphism

a: (k,Go) ~ (mo(E)/3E, G2

in the category FG with the following features:
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(1) The Ey-ring E is even periodic and the composite map
A~ ~ 0671 A~
(m0(E), GE°) — (m0(E)/3;;, GF") “— (, Gy)

exhibits the classical Quillen formal group (A}%O as a universal deformation of
Gy (in the sense of Theorem . In particular, 7o(E) can be identified with
the Lubin-Tate ring Ryt of Go.

(1) The Ex-ring E is K(n)-local. Moreover, for every complex periodic K(n)-local
Ey-ring A, composition with o induces a homotopy equivalence

MapCAlg(E7 A) = HOHI]:g((K,, éo), (WU(A)/jﬁa é%n))
In particular, the mapping space Mapga(E, A) is discrete.

Note that properties (i) and (ii) of Theorem have a different character. We
can regard (i) as a description of the homotopy groups of the spectrum E: they are
given by the formula

w®F

mm(E) ~4§ ¢
0 if m is odd,

if m = 2k is even

where G is the universal deformation of (A}o. Roughly speaking, this gives information
about the structure of maps to the spectrum E. By contrast, property (ii) gives
information about maps from E to other K (n)-local E,-rings A: they are given by
the formula

A~

Hom g ((r, Go), (mo(A) /T4, GS"))  for A complex periodic

Map E A) ~
CAlg( ) { %) otherwise.

Once we know that there exists an E-ring £ (and an isomorphism «) having both of
these properties, either one can be taken as a characterization of E:

Proposition 5.0.3. Let k be a perfect field of characteristic p > 0 and let éo be a
1-dimensional formal group of height n < o0 over k. Suppose that E is a K(n)-local
complex periodic E-ring and that we are given a map

a: (k,Go) — (mo(E)/IE,GE")

which satisfies condition (it) of Theorem[5.0.4 Then o is an isomorphism which also
satisfies condition (1).
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Proof. By virtue of Theorem [5.0.2] we can choose a complex periodic E,-ring E’ and
an isomorphism of formal groups

o = (K, Go) ~ (mo(E') /3%, GEr)

which satisfies conditions (i) and (i) of Theorem [5.0.2] Since the map « satisfies
condition (i7) of Theorem [5.0.2] there is an essentially unique morphism of E-rings
f: E— FE' for which o/ factors as a composition

(r, Go) = (mo(B)/37, GE") &> (mo(E")/3), GF).
For any complex periodic K (n)-local E,-ring A, we have a commutative diagram

of

MapCAlg(E/7 A) MapCAlg(Ev A)

\ /

Hom rg((k, Go), (mo(A)/T4, GF))

where the vertical maps are homotopy equivalences. It follows that the upper horizontal
map is also a homotopy equivalence. Applying Yoneda’s lemma, we deduce that f is
a homotopy equivalence. It follows that « is an isomorphism which exhibits F as a
Lubin-Tate spectrum of @0. n

Proposition 5.0.4. Let k be a perfect field of characteristic p > 0 and let éo be
a 1-dimensional formal group of height n < oo over k. Suppose that E is an even
periodic Eqo-ring and that we are given a map K (n)-local complex periodic Ey-ring
and that we are given a map of formal groups

B (m(E)/3), GE") — (x, Gy)
for which the composite map
(mo(E), GE) — (mo(E)/32,GE") D (1, Goy)

exhibits the classical Quillen formal group (A}%O as a universal deformation of éo.
Then B is an isomorphism, and the inverse map o = B~ satisfies condition (i) of

Theorem [5.0.2.

Proof. 1f 5 exhibits @%0 is a universal deformation of éo, then we can identify my(F)
with the Lubin-Tate ring Ryr of Gy. Using Corollary [4.4.25, we see that the nth
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Landweber ideal J% is the maximal ideal of 7y(E), so that 3 is an isomorphism. Note
also that E is complete with respect to J¥ and JZ | vanishes, so that the E-ring F
is K (n)-local (Theorem [4.5.2).

By virtue of Theorem [5.0.2 we can choose a complex periodic Ey-ring £’ and an
isomorphism of formal groups

o’ : (k,Go) ~ (mo(E')/3) . GF)

which satisfies conditions (¢) and (éi) of Theorem [5.0.2, Using (ii), we see that there is
an essentially unique morphism of E.-rings g : £ — E for which the composite map

(18, Go) > (mo(E)/3E . GEr) 2 (mo(E)/IE, GE)

is equal to a = 1. We then have a commutative diagram of formal groups

(mo(E"), GE) d (mo(E), GE")

~

(F':v G0)7

where the vertical maps both exhibit their domains as universal deformations of ér().
It follows that ¢ induces an isomorphism of commutative rings mo(E’) — mo(E). Since
the E,-rings £ and E’ are both even periodic, we conclude that ¢ is an equivalence.
It follows that « also satisfies condition (ii) of Theorem O

Remark 5.0.5 (Uniqueness). Let x be a perfect field of characteristic p > 0 and let (A?-O
be a 1-dimensional formal group of height n < oo over k. It follows immediately from
the definition that if there exists a complex periodic Ey-ring E satisfying conclusion
(77) of Theorem then F is unique up to equivalence (as an object of the oo-
category CAlg of E-rings). We will emphasize this uniqueness by referring to E as
the Lubin-Tate spectrum of Go. It follows from Proposition [5.0.4] - 4] that the Lubin-Tate
spectrum E is also characterized up to equivalence by conclusion (i) of Theorem m
In particular, if £’ is any other E-ring and there exists an isomorphism ~ : £ ~ E’
in the ordinary category CAlg(hSp) of homotopy commutative ring spectra, then =
can be promoted (in an essentially unique way) to an equivalence £ ~ E’ in the
aw-category CAlg = CAlg(Sp) of E,-rings. We can informally summarize the situation
by saying that the E.-structure on the ring spectrum E' is unique (more precisely, it is
uniquely determined by the underlying homotopy commutative multiplication on FE).
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Remark 5.0.6 (Maps Between Lubin-Tate Spectra). Let x and k' be perfect fields
of characteristic p, and let 6}0 and ég be 1-dimensional formal groups of the same
height n over x and &', respectively. Let F and E’ denote Lubin-Tate spectra for éo
and é{), respectively. Then we have a canonical homotopy equivalences

!

Mapey(E, E') = Homyg((k, Go), (ro(E")/31, GZ))

~ Homzg((k, é0)7 (’ila GE)))

The first homotopy equivalence arises by invoking part (i7) of Theorem for the
Lubin-Tate spectrum E, and the second arises from invoking part (i) of Theorem [5.0.2]
for the Lubin-Tate spectrum E’.

Remark 5.0.7 (Functoriality). Let n be a positive integer, and let C < FG be the
full subcategory spanned by those pairs (&, GO) where  is a perfect field and Gy is
a 1-dimensional formal group of height n over . It follows from Remark [5.0.6] that
there is a fully faithful functor C — CAlg, which carries a formal group (k, éo) to the
associated Lubin-Tate spectrum E. We will say that an E.-ring F is a Lubin-Tate
spectrum of height n if it belongs to the essential image of this embedding. Note C
is an ordinary category: it follows that the full subcategory of CAlg spanned by the
Lubin-Tate spectra of height n is also (equivalent to) an ordinary category.

Remark 5.0.8 (The Morava Stabilizer Group). Let x be a perfect field of characteristic
p, let Go be a 1-dimensional formal group over s of height n < oo, and let I' =
Aut(k, Go) be the automorphism group of (k, G) in the category FG: the obJectS of I
are given by pairs (o, @), where ¢ is an automorphism of the field x and « : Go — %Gy
is an isomorphism of formal groups over . It follows from Remark [5.0.7) that the
action of ' on (k, (A}O) can be lifted, in an essentially unique way, to an action of I" on
the associated Lubin-Tate spectrum FE, as an object of the co-category CAlg. More
precisely, there is a functor of co-categories BI' — CAlg which carries the base point
of BI' to the Lubin-Tate spectrum E; here BI' denotes the classifying space of the
group I'.

Remark 5.0.9. Let k be a perfect field of characteristic p, let ég be a 1-dimensional
formal group over « of height n < oo, and let E be the associated Lubin-Tate spectrum.
It follows from Theorem that for any K (n)-local E-ring A, the mapping space
Mapc (£, A) is discrete.

A proof of Theorem was given by Goerss and Hopkins in [12] (modulo the
slight caveat that condition (i7) is stated only in the case where A is also a Lubin-Tate
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spectrum). Let us give a brief summary of their approach. Fix a perfect field x of
characteristic p and a 1-dimensional formal group (A}O of height n over k. Let Ry be
the Lubin-Tate ring of Go and let G € FGroup(Ryr) be the universal deformation (in
the sense of Theorem . Then the formal group G satisfies Landweber’s criterion,
so we can apply the Landweber exact functor theorem (Theorem [0.0.1]) to construct
an even periodic ring spectrum E equipped with isomorphisms

mo(E) ~ Rrr G2 ~G.

By construction, the ring spectrum F satisfies requirement (i) of Theorem , with
the caveat that the ring structure on E is a priori only commutative up to homotopy,
rather than E,, as required by Theorem [5.0.2] To remedy this, Goerss and Hopkins
study the fiber product

M(E) = CAlg(Sp) X CAlg(hSp) (£},

which can be viewed as a “moduli space” of E-structures on F which are compatible
with the homotopy commutative multiplication supplied by Landweber’s theorem.
Using techniques of obstruction theory, they introduce a spectral sequence converging
to the homotopy groups of the moduli space M. By studying the geometry of the
formal group @0, they show that this spectral sequence vanishes identically at the
second page, so that the moduli space M is contractible. This provides an essentially
unique E-structure on the spectrum E (as in Remark [5.0.5)). Moreover, if A is
any K (n)-local E,-ring equipped with a map of homotopy commutative ring spectra
f: E — A, then the same methods can be applied to prove the contractibility of the
moduli space

M(f) = MapCAlg(Sp)(E7 A) X Homc a1g(nsp) (E,A) {f}

of Eq-structures on f. This reduces the proof of assertion (i) of Theorem to the
calculation of the set Homcaigmsp) (£, A), which can be computed using Landweber’s
methods.

Our goal in this section is to present a new proof of Theorem Our strategy
can be summarized as follows. Writing éo as the identity component of a connected
p-divisible group Gg over r, we let R, denote the spectral deformation ring of Gy
and G € BT?(R@,) its universal deformation. Let R, = Og- be an orientation
classifier for the identity component G° (Definition . In , we prove directly
that the K(n)-localization £ = L) Rg, satisfies condition (ii) of Theorem m
this follows more or less formally from the relevant universal properties. We will
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prove (i) by computing the homotopy groups of £ (Theorem . Our calculation
appeals directly to Quillen’s work on the homotopy of the complex bordism spectrum
and its relationship with formal group laws, which we review in §5.3] We will also
need a general algebraic result about the deformation theory of relatively perfect ring
extensions, which we explain in §5.2

The present approach to Theorem differs from that of [12] in several ways:

e In the approach of [12], one begins with a homotopy commutative ring spectrum
E satisfying property (i) of Theorem [5.0.2 and must work hard to show that E
has an E,-ring structure satisfying property (i7). In our approach, the spectrum
Lgwm)Rg, already has an E..-structure, and property (i7) follows easily from the
definitions. We will instead need to do some work to verify condition (i): it
is not obvious from the definitions that L) Rg, has the expected homotopy
groups, or even that it is nonzero.

e Theorem [5.0.2]is a variant of an older result of Hopkins and Miller, which asserts
that the Lubin-Tate spectrum F can be characterized by analogues of properties
(i) and (i7) in the co-category Alg(Sp) of associative ring spectra. From the
obstruction-theoretic perspective, this requires less elaborate machinery and is
considerably easier to prove (see [31] for a nice account). By contrast, the proof
of Theorem [5.0.2] given in this section is specific to the commutative case: it
requires us to contemplate p-divisible and formal groups defined over a ring
spectrum R; this is sensible only when R is commutative.

e In the approach of [I2], the underlying spectrum F is constructed using the
Landweber exact functor theorem (Theorem [0.0.1). To ensure that the formal
group G satisfies Landweber’s criterion, one needs to know something about
the Lubin-Tate ring Ryr: namely, that it is isomorphic to a power series ring
W (k)[[u1, ..., un—1]] whose generators u; can be chosen to represent the Hasse
invariants of the formal group G. Our approach does not appeal to Landweber’s
theorem, and the structure of the Lubin-Tate ring emerges as a consequence of
our method (see Corollary note however that our proof uses Lazard’s work
on the classification of formal group laws, which can also be used to describe
Ryr directly).

e In some sense, both proofs of Theorem [5.0.2| involve a kind of deformation theory,
in the sense that they produce an E -ring as a “limit” of partial approximations.
However, these approximations have very different flavors. Roughly speaking,
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the strategy of [12] is to produce the Lubin-Tate spectrum E by starting with the
graded ring B, E = 7, (E®gE), viewed as a comodule over itself, and successively
adding information about homology cooperations and Massey products of higher
and higher orders. In our approach, the Lubin-Tate spectrum E =~ Ly, Rg, is
built from the the spectral deformation ring Rg, , which is ultimately constructed
(in the proof of Theorem SAG.18.2.3.1) as the limit of a sequence of square-zero
extensions

'—>A3—>A2—>A1—>AOZI{

which parametrize successively “larger” families of deformations of Gy.

5.1 Construction of Lubin-Tate Spectra

For later applications, it will be convenient to consider a slightly more general
version of Theorem [5.0.2] where we begin with a perfect ring in place of a perfect field

(see Remark below).

Construction 5.1.1. Let R, be a perfect F,-algebra and let (A}o be a 1-dimensional
formal group of exact height n over Ry (Definition . Write (A}O as the identity
component of a connected p-divisible group G over Ry (Proposition |4.4.22). Let R§,
denote the spectral deformation ring of Gy and let G € BT?(R{,) be its universal
deformation (Theorem and Remark [3.4.2)). Let Rg  denote the orientation
classifier for the formal group G° (Definition {4.3.14). We let E(Gg) denote the
K (n)-localization Ly @) Rg,. We will refer to E(Gy) as the Lubin-Tate spectrum of
éo.

Remark 5.1.2. We will later show that when Ry is a perfect field, the final step in
Construction is unnecessary: the orientation classifier R, is already K (n)-local.
See Corollary [6.0.6]

Remark 5.1.3. In the situation of Construction the Lubin-Tate spectrum
E(Gy) is K(n)-local (by construction) and complex periodic (by Proposition 4.3.23
since there exists an oriented formal group over E(Gy)).

We now justify the terminology of Construction by showing that the Lubin-
Tate spectrum E(G,) satisfies property (ii) of Theorem [5.0.2]

Construction 5.1.4. In the situation of Construction [5.1.1] we have a canonical
surjective map mo(R&, ) — Ro, whose kernel is the nth Landweber ideal 3§ (Corollary
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. By construction, the formal group G° acquires an orientation after extending
scalars to Rg, , and therefore also after extending scalars to the Lubin-Tate spectrum
E=F (éo). This orientation determines an equivalence of formal groups G§ ~ é%
over E, hence an isomorphism of formal groups G (BB = é%n which we can identify
with a morphism

ot (Ro, Go) = (mo(E)/37, GF")
in the category FG of Notation [5.0.1}

Theorem 5.1.5. Let Ry be a perfect Fp-algebra, let é‘ro be a formal group of exact
height n over Ry, and let £/ = E(éo) be the Lubin-Tate spectrum of Construction
5.1.1. Then, for every complex periodic K(n)-local Ey-ring A, composition with the
map « of Construction |5.1.4) induces a homotopy equivalence

Mapca (B, A) — Homeg((Ro, Go), (mo(A)/T2, GS).

Proof. Let us regard A as an adic E,-ring by endowing mo(A) with the J4-adic
topology. Let G be the Quillen p-divisible group of A (Definition , so that
G9 is a formally connected p-divisible group over A whose identity component is the
Quillen formal group é% (note that the existence of such a p-divisible group follows
formally from Theorem for the present purposes, it is not necessary to know
that G has the explicit description of Construction . If G’ is any other formally
connected p-divisible group over A, then the space OrDat(G’®) of orientations of the
identity component G’ can be identified with the space of equivalences of G’® with
CA}% (Proposition @ , or equivalently with the space of equivalences between G’

and G§ (Corollary [2.3.13)).

Note that any morphism of Ey-rings £ — A automatically carries 32 = 3¢ 74(E)

into J4, so that the composite map RE — E — A is a morphism of adic E.-rings.
Invoking the definition of the spectral deformation ring R¢, we can identify the

mapping space Mapg ea (R, A) with the classifying space

Defg,(A) = lim BT?(A) Xgrr(x,(ay/r) Hom(Ro, I)
T

of Go-tagged p-divisible groups over A (here the direct limit is taken over all finitely
generated ideals of definition in my(A). Under this identification, the mapping space
Mapc e (E, A) =~ Mapga, (Rg,, A) corresponds to the classifying space

lim BT, (A) X v (o)1) Hom(Ro, 70(A) /1)
I
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of oriented p-divisible groups over A equipped with a Gy-tagging. Since Gy is
connected, any Go-tagged p-divisible group G’ over A is formally connected. We may
therefore replace BT? (A) with the full subcategory spanned by the formally connected
oriented p-divisible groups over A, which is equivalent to the singleton {G$}. Using
Corollary again, we can identify Mapga, (£, A) with the direct limit

lim{GS} Xpcroup(ro(ayn) Hom(Ro, mo(A)/1),
I
again taken over all finitely generated ideals of definition I < my(A).

Note that if we are given finitely generated ideals of definition I < J < m(A),
then the quotient J/I is a nilpotent ideal of my(A)/I; our assumption that Ry is
perfect guarantees that the reduction map Hom(Rg, mo(A)/I) — Hom(Ry, mo(A)/J) is
bijective. Moreover, if we are given a rmg homomorphlsm Ry — m(A)/I and I contains
the nth Landweber ideal 34, then (G o)1 and <G0>7r0 )1 are 1-dimensional formal
groups of exact height n over the commutative F —algebra mo(A)/I. Consequently,
the set of isomorphisms between (GA),TO A1 and (Go)wo Ay1 is in bijection with the
set of isomorphisms between (GA)ﬂ-O 4y, and (G‘rg)7r0 4y (since mo(A)/I and m(A)/J
have the same perfection; see Proposition m It follows that the diagram of
spaces {{G3} X FGroup(ro(A),1) Hom(Ro, mo(A)/I)} is constant when restricted to finitely
generated ideals of definition which contain the nth Landweber ideal, so that we can
identify Mapgay, (E, A) with the single space

{GRA)} X paroup(mo(ay/34) Hom(Ry, mo(A)/32}) =~ Homzg((Ro, Go), (mo(A)/32, GF)).

By construction, this identification is given by composition with the map a of Con-
struction 5.1.4] O

Remark 5.1.6 (Smash Products of Lubin-Tate Spectra). Let Ry and R; be commu-
tative rings, and let éo and (A}l be formal groups over Ry and Ry, respectively. Then
the objects (Rg, Go) and (Ry, G1) have a coproduct (Roi, Goy) in the category FG.
Moreover, if Ry and R, are perfect F,-algebras and éo and G are of exact height n,
then Ry, is also a perfect F-algebra (this follows immediately from Proposition 4.4.23)),
and ém also has exact height n. By construction, there are maps of Lubin-Tate

spectra
E(Go) - E(G()l) <« E(Gl)

It follows from the universal property of Theorem m that these maps exhibit £ (é01)
as a coproduct of E(Go) and E(G1) in the co-category CAlg(Spg(n)) of K(n)-local
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E..-rings. In other words, we can identify E(Gp;) with the K (n)-local smash product
L) (E(Go) ®s E(Gy)). Beware that if Ry and R; are perfect fields, then Ry, will
never be a field; this is one motivation for not restrict our attention to fields in the

setting of Construction [5.1.1]

5.2 Thickenings of Relatively Perfect Morphisms

Let x be a perfect field of characteristic p > 0. The theory of Witt vectors
provides a “lift” of k to characteristic zero. More precisely, it allows us to write x as a
quotient W (k)/pW (k), where W (k) is a (p)-complete commutative ring in which p
is not a zero-divisor. The ring W (k) is uniquely determined by  (up to canonical
isomorphism); we refer to it as the ring of Witt vectors of k. There are many concrete
constructions of the ring W (k): for example, we can identify the elements of W (k)
with formal expressions

[ao] + [a1]p + [az]p? + [as]p® + - -

where the coefficients a; are elements of k; the addition and multiplication on W (k)
can then be given explicitly by certain expressions called Witt polynomials (see [33]
for a nice exposition). However, one can also prove the existence of W (k) by abstract
arguments. The assumption that x is perfect guarantees that the relative cotangent
complex L, g, vanishes (Proposition . It follows from deformation theory that s
can be lifted uniquely to a flat (Z /p" Z)-algebra for each n = 0, and we can recover
the ring of Witt vectors W (k) by taking the inverse limit over n. One advantage of
the abstract approach is that it remains sensible in the setting of ring spectra, where it
is no longer feasible to carry out constructions by writing formulas. For example, one
can show that every perfect field x can be lifted to an Ey-ring W (k) which is flat
over the sphere spectrum, from which the usual ring of Witt vectors can be recovered
by the formula W (k) ~ (W™ (k)) (see Example below). Our goal in this case
is to describe a generalization of this construction which will be useful in our analysis

of Construction B.1.1I

Definition 5.2.1. Let A be an connective E.,-ring, let I < my(A) be finitely generated
ideal, and set Ay = m(A)/I. Suppose we are given a commutative diagram of
connective E-rings

A*f>B

L

AO - BO7
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where B is an ordinary commutative ring. We will say that o exhibits f as an
A-thickening of fy if the following conditions are satisfied:

(a) The Ey-ring B is I-complete.

(b) The diagram o induces an isomorphism of commutative rings mo(B)/Imo(B) —
By.

(c¢) Let R be any connective E-algebra over A which is I-complete. Then canonical
map
MapCAlgA (B> R) = HomCAngO (B()? 7.‘-O(R)/[W(](Fz))

is a homotopy equivalence. In particular, the mapping space Mapg AlgA(B , R) is
discrete.

Remark 5.2.2 (Uniqueness). Let A be an connective Ey-ring, let I < m(A) be
finitely generated ideal, and set Ay = mo(A)/I. Suppose we are given a homomorphism
of commutative rings fo : Ag — By. It follows immediately from the definitions that,
if there exists a diagram o :

A—L . B

oy

AO i>1307

which exhibits f as an A-thickening of fy, then the morphism f (and the diagram o)
is uniquely determined up to equivalence.

Remark 5.2.3. In Definition [5.2.1] it is not necessary to assume that A is I-complete.
However, it is harmless to add this assumption; the notion of A-thickening does not
change if we replace A by its I-completion A7.

Remark 5.2.4 (Functorality). Suppose we are given a commutative diagram of
connective E-rings

A*f>B

L,

rLop

oy

AO HBQ.
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Assume that Ay and By are ordinary commutative rings and that the left vertical
maps induce surjective ring homomorphism m(A) — mo(A’) — Ay whose composition
has kernel I < mo(A). Suppose that the outer rectangle exhibits f as an A-thickening
of fy, and that the upper square exhibits B’ as an I-completion of B®4 A’. Then the
lower square exhibits f’ as an A’-thickening of fj.

Our goal is to prove the following existence result for thickenings:

Theorem 5.2.5. Let A be a connective Eq,-ring, let I < mo(A) be a finitely generated
ideal, and set Ay = mo(A)/I. Suppose that Ay is an F,-algebra which is almost perfect
as an A-module and that the Frobenius map w4, : Ag — Ao is flat. Let f: Ay — By
be a morphism of commutative Fp-algebras which is relatively perfect: that is, the
diagram of commutative rings

Ay —L= B,

\LWAQ \L@BO

Ay - B,

is a pushout square (so that pp, is also flat). Then there exists a diagram

A*f>B

L

AO - B07
which exhibits f as an A-thickening of fo. Moreover, o is a pushout square.

Example 5.2.6 (Classical Witt Vectors). In the statement of Theorem [5.2.5] take
A to be the ring Z of integers (or the ring Z, of p-adic integers), and I to be the
ideal (p). Then Ay = A/I is the finite field F,, and a morphism fy : Ay — By is
relatively perfect if and only if By is a perfect Fp-algebra. If this condition is satisfied,
then Theorem allows us to lift By to a flat Z-algebra B, which is complete with
respect to the ideal (p) and for which the quotient B/pB is isomorphic to By. This
Z-algebra is the ring of Witt vectors W (By).

Example 5.2.7 (Spherical Witt Vectors). In the statement of Theorem take
A to be the sphere spectrum S of integers (or its (p)-completion SG})), and I to be
the ideal (p). Then Ay = A/I is the finite field F,,, and a morphism f, : Ay — By is
relatively perfect if and only if By is a perfect Fj-algebra. If this condition is satisfied,
then Theorem [5.2.5| allows us to lift By to a flat S-algebra B, which is complete with
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respect to the ideal (p) and for which the tensor product F, ®¢ B ~ my(B)/pmo(B) is
isomorphic to By. This is the E,-ring W (By) of “spherical” Witt vectors alluded to
in the discussion preceding Definition [5.2.1

5.2.1 Existence of Thickenings

The proof of Theorem [5.2.5| will require the following variant of Proposition [3.5.6}

Lemma 5.2.8. Let fy: Ay — By be a morphism of commutative F,-algebras. Assume
that the Frobenius map pa, : Ao — Ao is flat and that fy is relatively perfect. Then
the relative cotangent complex Lp, 4, vanishes.

Proof. The assumption that ¢4, is flat guarantees that the pushout diagram

Ay —L"- B,

o o

Aé/ p Bé/ p

is also a pushout diagram of E.-rings, and therefore induces an equivalence of algebraic
cotangent complexes

1/p alg alg
By" ®py Lipyia, = L BYP AL/

Since this map is nullhomotopic (Lemma [3.3.6), we conclude that the algebraic
cotangent complex L?;Og/ 4, Vanishes. Applying Proposition SAG.25.3.5.1, we deduce

that Lp, 4, also vanishes. O

Proof of Theorem[5.2.5 Let A be an E-ring and let I < m(A) be a finitely generated
ideal for which Ay = mo(A)/I is almost perfect as an A-module. Then Ay is almost of
finite presentation as an Ey-algebra over A (Corollary SAG.5.2.2.2), so the relative
cotangent complex L4, 4 is almost perfect. It is also 1-connective (since Ay is a
quotient of mo(A)). Suppose further that Ay is an F,-algebra for which the Frobenius
map @4, is flat, and let fy : Ag — By be a morphism of F-algebras which is relatively
perfect. Then the relative cotangent complex Lp, 4, vanishes (Lemma . Using
the fiber sequence

BO ®A0 LAO/A - LBO/A - LB()/AQ)

we deduce that Lpg, 4 is 1-connective and almost perfect.
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Let X : CAlg™ — S denote the relative de Rham space of the map Spec(By) —
Spec(A), in the sense of Definition SAG.18.2.1.1. Concretely, the functor X is given
by the formula

X(R) = h_H}MaPCAlg(Aa R) X Mapgag(A,mo(R)/J) MaPCAlg(BOa mo(R)/J),
J

where the direct limit is taken over all nilpotent ideals J < my(R). By construction,
we have a commutative diagram of functors 7 :

Spec(A) X
| |
Spec(Ag) <— Spec(By)

We claim that 7 is a pullback square. To prove this, we must show that for every
connective E,-ring R, the canonical map

MapCAlg(BU7 R) — h_r,nMapCAlg(A()? R) X Mapg g (Ao,mo(R)/J) MaPCAlg(BOa mo(R)/J)
J
is a homotopy equivalence. In fact, we prove a stronger assertion: for every nilpotent
ideal J < my(R), the individual map

MapCAlg(BU7 R) - MapCAlg (AU? R) X Mapcaig (Ao,mo(R)/J) MapCAlg(807 7TO(R)/J)

is a homotopy equivalence. Writing R as an inverse limit of its truncations, we may
assume that R is m-truncated. In this case, the projection map R — mo(R)/J can be
written as a composition of finitely many square-zero extensions. We are therefore
reduced to showing that if R is a square-zero extension of a connective E-ring R’
(by a connective R’-module), then the canonical map

MapCAlg<Bov R) — MapCAlg(A(]? R) X Mapcag (Ao, R) MapCAlg(BU7 R/)

is a homotopy equivalence, which follows immediately from the vanishing of Lg,/4,.
Note that X is nilcomplete, infinitesimally cohesive, and admits a cotangent
complex given by Lgpec(a)|x (see Corollary SAG.18.2.1.11). In particular, we see
that that Lgspec(y)/x =~ Lp,/a is 1-connective and almost perfect. Applying Theorem
SAG.18.2.3.2 (together with Proposition SAG.18.2.2.8 ), we conclude that X is (repre-
sentable by) the formal spectrum Spf(B), where B is a connective E,-ring equipped
with a surjective map € : mo(B) — By, which is complete with respect to the (finitely
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generated) ideal I” = ker(e), and that By is almost perfect as a B-module. Note that
the pullback diagram 7 determines a pushout diagram o :

A1 .p

L

AOHBO

of adic E-rings, where we endow 7y(B) with the I’-adic topology and the other rings
with the discrete topology. In other words, we can identify By with the I’-completion
of the tensor product B ®4 Ay. However, since Ag is almost perfect as an A-module,
the tensor product B ®4 Ag is almost perfect as a B-module and is therefore already
I’-complete (Proposition SAG.7.3.5.7). It follows that o is also a pushout diagram
of Ex-rings. In particular, it exhibits By as the quotient 7o(B)/Im(B), so that the
ideal I’ coincides with Imy(B).

We now complete the proof by showing that o exhibits f as an A-thickening of fj.
Conditions (a) and (b) of Definition have already been verified. To prove (c),
suppose that we are given a connective E-algebra R over A which is I-complete. We
wish to show that the canonical map

Or : Mapgay,, (B, R) ~ HornCAng0 (Bo, m0(R)/Im(R))

is a homotopy equivalence. Applying Lemma SAG.8.1.2.2, we can write R as the
limit of a tower

= Ry — Ry — Ry

for which each quotient mo(R,,)/Imo(R,) is isomorphic to my(R)/Im(R), and each R,,
is I-nilpotent. It follows that #g can be identified with the limit of maps {0g, }m>1. It
will therefore suffice to show that 6z is a homotopy equivalence under the additional
assumption that R is I-nilpotent. In this case, any morphism of A-algebras B — R
automatically annihilates some power of I’, so we can identify Mapgy, , (B, R) with
the fiber

fib(X(R) — Mapcye(A, R)) = lig Mapgy, , (Bo, mo(R)/J)
J

where the colimit is taken over all nilpotent ideals J < my(R). Restrict our attention
to the cofinal subset of ideals which contain I7y(A), we can rewrite this fiber as the
colimit of the diagram of sets {Hom, Al (Bo, m0(R)/J)}. We complete the proof by
observing that our hypothesis that fj is relatively perfect guarantees that this diagram
constant with value HomCAngO (Bo, m0(R)/Im(R)). O
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5.2.2 Recognition of Thickenings
In the situation of Theorem [5.2.5 we have a detection principle for A-thickenings:

Proposition 5.2.9. Let A be a connective Ey-ring, let I < mo(A) be a finitely
generated ideal, and set Ay = mo(A)/I. Suppose that Ay is an F,-algebra which is
almost perfect as an A-module and that the Frobenius map ¢a, : Ao — Ao is flat.
Suppose we are given a commutative diagram of connective E,-rings o :

AL .p
A0i>B()7

where fy is a relatively perfect morphism of commutative F,-algebras. Then o exhibits
f as an A-thickening of fo if and only if the following conditions are satisfied:

(1) The Ey-ring B is I-complete (as an A-module).
(13) The diagram o is a pushout square.

Proof. The necessity of condition (i) is part of the definition of an A-thickening, and
the necessity of condition (i7) follows from Theorem [5.2.5] We will show that they are
also sufficient. Assume that o satisfies conditions () and (¢7). It follows from condition
(1) that o induces an isomorphism of commutative rings v : mo(B)/Imo(B) — Bo.
Using Theorem [5.2.5 we can choose a diagram o’ :

ATl p
Ay~ B,

which exhibits f’ as an A-thickening of fy. Applying condition (i), we deduce that
the canonical map

MapCAlgA (B/7 B) - HochngO (807 7TO(B)/I’]TO(B))

is a homotopy equivalence. In particular, we can lift v~! to a morphism of g : B’ — B,
which fits into a commutative diagram

Al p_ 9. p



The left square in this diagram is a pushout (by Theorem and the outer rectangle
is a pushout (by hypothesis (i7)), so the right square is also a pushout: that is, the
morphism g becomes an equivalence after tensoring over B” with By = mo(B’)/Imo(B’).
Since B and B’ are both connective and I-complete, it follows that ¢ is an equivalence,
so that o also exhibits f as an A-thickening of fj. O

Remark 5.2.10. In the situation of Theorem [5.2.5 suppose that By is Noetherian.
Then B is also Noetherian. This follows from Corollary SAG.18.2.4.4 .

Remark 5.2.11. In the situation of Theorem [5.2.5, suppose that A is I-complete,
that Ag and By are Noetherian, and that fy : Ag — By is flat. Then A and B are
Noetherian (Corollary SAG.18.2.4.4), so the map f : A — B is also flat (Lemma
. In particular, if A is discrete, then B is also discrete.

5.2.3 Regular Sequences

The following observation will be useful for helping to compute with A-thickenings:

Proposition 5.2.12. Let A be a commutative ring and let I < A be an ideal which
is generated by a reqular sequence xq,xs, ..., T, € A. Suppose that Ag = A/I is an
F,-algebra for which the Frobenius map pa, : Ay — Ao is flat. Let fo: Ay — By be a
relatively perfect morphism of commutative F,-algebras, and let o :

A*f>B

L

AOHBO

be a diagram which exhibits f as an A-thickening of fo. Then B is an ordinary
commutative ring and the sequence f(x1), f(xa), ..., f(x,) is reqular in B.

Warning 5.2.13. In the statement of Proposition (and in the situation we will
apply it), we do not assume that A is Noetherian. Consequently, notion of regular
sequence must be handled with some care (in general, it can depend on the order of
the sequence). We interpret regularity as the statement that, for each 1 < i < n, the
element x; is not a zero divisor in the quotient ring A/(z1,...,x; 1).

Proof of Proposition[5.2.13. We proceed by induction on n. Set A’ = A/(x;), and
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extend o to a commutative diagram of E,-rings

AL .B

|,

A——B

L

Ay —== By

where the upper square is a pushout. Since B is I-complete, the E,,-ring B’ ~ cofib(z; :
B — B) is also I-complete. Applying Remark , we deduce that the bottom
square exhibits f’ as an A’-thickening of fy. Applying our inductive hypothesis to the
regular sequence o, ..., x, € A, we deduce that B’ is discrete and that o, z3,...,z,
is a regular sequence in B’. For every integer k, the cofiber cofib(z} : B — B)
can be written as an extension of finitely many copies of B’ (in the co-category of
B-modules), and is therefore also discrete. Since B is I-complete, it is (x1)-complete,
and can therefore be identified with the limit of the tower {cofib(z} : B — B)}i=0
of discrete B-modules with surjective transition maps. It follows that B is discrete.
Since B’ = cofib(z; : B — B) is discrete, we conclude that z; is not a zero-divisor
in B, so that the regularity of the sequence o, ..., , in B’ implies the regularity of
T1,...,T, in B. O

5.3 Review: Complex Bordism and the Lazard Ring

In this section, we recall (without proofs) some foundational results about the
Lazard ring and its relationship with complex bordism.

5.3.1 Formal Group Laws

Definition 5.3.1. Let R be a commutative ring and let AL = Spf(R[[t]]) be the
formal affine line over R, which we regard as a pointed formal hyperplane (with base
point given by the vanishing locus of t). A formal group law over R is an abelian
group structure on A}z which is compatible with this choice of base point: that is, a
map of pointed formal hyperplanes

LAl Al Al

which endows A}{ with the structure of an abelian group object of Hyp, (R). We let
FGL(R) denote the set of all formal group laws over R.

234



Remark 5.3.2. Concretely, the datum of a formal group law over R can be described
as a formal power series f(u,v) € R[[u,v]] satisfying the identities

f(u’o):u f(u7v):f(vvu) f(u’f<vvw)):f(f(uvv)vw)'

The construction R — FGL(R) determines a functor from the category of commu-
tative rings to the category of sets. This functor was studied by Lazard in [22].

Theorem 5.3.3 (Lazard). There exists a commutative ring L and a formal group law
funi(u,v) € FGL(L) with the following universal property: for every commutative ring
R, evaluation on funi(u,v) induces a bijection Hom(L, R) — FGL(R). Moreover:

(a) There is an isomorphism of commutative rings L ~ Z[cy,ca, ... ].

(b) Let éuni denote the formal group over L determined by the formal group law
funi- Then the generators {c;} of part (a) can be chosen so that, for every
prime number p and every integer n = 0, the sequence p,c,—1,Cp2_1,...Cpn-1_1
generates the nth Landweber ideal 3,?““‘ (Definition .

We will refer to the commutative ring L of Theorem |5.3.3|as the Lazard ring, to the
formal group law funi(u,v) as the universal formal group law, and to the underlying
formal group éuni as the universal coordinatized formal group. For our applications, we
will not need the full strength of Theorem [5.3.3] However, we will need the following
weaker statement:

Corollary 5.3.4. Let L be the Lazard ring. Fiz a prime number p. Then there exists
a reqular sequence p = wg, w1, Ws, ... in the ring L with the following property: for
every n = 0, the nth Landweber ideal of the universal coordinatized formal group
éuni is given by (wo,wq,...,w,_1). Moreover, for n > 0, the Frobenius morphism

o L/(wg,...,wy_1)— L/(wy,...,w,_1) is flat.

5.3.2 Coordinates on Formal Groups

Let R be a commutative ring and let G be a 1-dimensional formal group over R.
A coordinate on G is an element of the augmentation ideal ¢ € & & (—e) whose image is
a generator for the dualizing line wg = Og(—e€)/ Og(—e)?. Equivalently, a coordinate
on G is an isomorphism of formal R-schemes G ~ Spf(R[[¢]]) which is compatible
with base points (that is, it carries the zero section of G to the vanishing locus of ¢).
Definition 5.3.5. A coordinatized formal group over R is a pair (é, t), where Gisa
1-dimensional formal group over R and t is a coordinate on G.
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Remark 5.3.6. Let R be a commutative ring. For any formal group law f(u,v) over
R, the corresponding formal group (with underlying formal scheme Spf(R[[¢]])) comes
with a canonical coordinate t. This construction determines a bijection

FGL(R) ~ {Coordinatized formal groups over R}/isomorphism.

In particular, every coordinatized formal group (é,t) over R determines a formal
group law over R, classified by a homomorphism from the Lazard ring L into R.

Example 5.3.7 (Formal Group Laws from Topology). Let A be a complex periodic
E,-ring and let G = G%O be the classical Quillen formal group of A. Suppose we are
given an element t € Og(—e) ~ AY, (CP*). Then:

e The element ¢ is a coordinate on G if and only if its image u € A% (CPY) ~ my(A)
is an invertible element of m,(A).

e If w is invertible, then u~'t € A% ;(CP®) is a complex orientation of A.

Conversely, if u is an element of mo(A) which is invertible in 7,(A) and e € A% ;(CP®)

is a complex orientation of A, then the product ue € A° ;(CP%) is a coordinate on G.
We therefore obtain a canonical bijection

{Coordinates on G} ~ {Complex Orientations of A} x {Units in 72 (A)}.

Example 5.3.8. Let A be an E,-ring and suppose we are given a map of spectra
[ X%(CP”*) — A. The homotopy class of the restriction f[sx(cp1) determines an
element u € mo(A). If u is invertible, then the composite map

we-2(cpr 22U w2y v 4
is a complex orientation of A. It follows that A is complex periodic and that the
homotopy class [f] € A% ,(CP®) is a coordinate on the classical Quillen formal group
G$.
If w is not invertible in my(A), then we can remedy the situation by replacing A
by the localization A[u~'] (see Proposition 4.3.17); it follows that A[u~'] is complex
periodic and that f determines a coordinate on the Quillen formal group G%fu,l].
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5.3.3 Periodic Complex Bordism
We now consider an important special case of Example [5.3.8

Construction 5.3.9 (Periodic Complex Bordism). Let Vectg denote the topologically
enriched category whose objects are finite-dimensional complex vector spaces and
whose morphisms are isomorphisms. Let N(Vectg) denote the nerve of Vecte (in
the topologically enriched sense; see Definition HTT.1.1.5.5). We regard Vectg as
a symmetric monoidal category with respect to the operation of direct sum, so that
N(Vectg) inherits the structure of an E.,-space.

For every finite-dimensional complex vector space V', we let V¢ denote the one-
point compactification of V. The construction V — V¢ determines a symmetric
monoidal functor N(Vectg) — Sy, where we endow S, with the symmetric monoidal
structure given by the smash product of pointed spaces. It follows that the colimit
Y = li—I>nVeN (Vect) V¢ can be regarded as a commutative algebra object of S (with
respect to the smash product). Note that, as a pointed space, Y can be described as
an infinite wedge

\/ BU(n)/BU(n — 1),

n=0
where BU(n) denotes the classifying space of the unitary group U(n) (and we agree
to the convention that BU(—1) is empty, so that the quotient BU(0)/ BU(—1) is the
pointed space S°). Tt follows that we can regard the suspension spectrum *(Y') as
a connective Ey-ring. By construction, the inclusion CP* ~ BU(1)/BU(0) — Y
induces a map of spectra f : X?(CP*) — X®(Y). Let u € m(X*(Y)) be the
homotopy class of f|sx(cpt). We let MP denote the localization (Y )[u™"] (see
Proposition . We will refer to MP as the periodic complex bordism spectrum.
By construction, the spectrum MP is complex periodic and the homotopy class of the
composite map

2*(CP*) L £*(Y) —» MP

is classified by an element ¢t € MP? ,(CP®) which determines a coordinate on the

classical Quillen formal group GI\Q,[% (see Example [5.3.8)).

The following result is essentially proven in [29] (though it is stated there for a
non-periodic version of complex bordism):

Theorem 5.3.10 (Quillen). Let L be the Lazard ring, let MP be the periodic complex
bordism spectrum, let t € MPY ,(CP®) be as in C’onstmction and let p: L —
To(MP) be the map which classifying the coordinatized formal group (GS%,t) (in the
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sense of Remark . Then p is an isomorphism. Moreover, the homotopy groups
of MP are concentrated in even degrees.

5.3.4 Homology of the Complex Bordism Spectrum

We will need a second universal property of the periodic complex bordism spectrum.
To state it, we first need a bit of terminology.

Notation 5.3.11. Let R be a commutative ring and let G be a 1-dimensional formal
group over R. We let Coord(G) : CAlgy, — Set denote the functor given by

Coord(G)(A) = {Coordinates on G 4}

Proposition 5.3.12. Let R be a commutative ring and let G be a 1-dimensional

formal group over R. Then the functor Coord(G) is (representable by) an affine
R-scheme which is faithfully flat over R.

Proof. Since every 1-dimensional formal group admits a coordinate Zariski-locally, we

~

can identify Coord(G) with a torsor (in the Zariski topology) for the group-valued

~

functor G = Autg(A'), given by

G(A) = {f(t) e A[[t]]: £(0) =0 and f is invertible }
= {a1t+a2t2+"'ZaleRX,ag,CLg,...ER}

It now suffices to observe that G’ ~ Spec(R[ai’,as,as,...]) is a flat affine group
scheme over R. O

Let A be any complex periodic E,-ring and let B denote the smash product
A ®g MP. Over the commutative ring my(B), we have canonical isomorphisms of
formal groups
(G )mo(m) = GF* = (GZ)ry(s)-
This isomorphism carries the canonical coordinate on éﬁ% ~ éuni to a coordi-

nate on the formal group (CA}%))WO( B), and therefore induces a morphism of schemes.
Spec(mo(B)) — Coord(GS?).

Theorem 5.3.13. Let A be a complex periodic E-ring. Then A ®s MP is flat over
A, and the preceding construction induces an isomorphism Spec(mo(A ®s MP)) —
Coord(GS°).

Remark 5.3.14. We can paraphrase Theorems [5.3.10| and [5.3.13| as follows:
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e The classical Quillen formal group @ﬁop is universal among coordinatized formal
groups.

e For any complex periodic E,,-ring A, the classical Quillen formal group G A®MP
is universal among coordinatized formal groups which can be obtained from GQ0
by extending scalars.

For a proof of Theorem [5.3.13} we refer the reader to [I] (though it is stated there
in a slightly different form, for the non-periodic version of complex bordism).

5.4 Homotopy Groups of Lubin-Tate Spectra

Our goal in this section is compute the homotopy groups of the Lubin-Tate spectra
introduced in Construction [5.1.1l Our main result can be stated as follows:

Theorem 5.4.1. Let Ry be a perfect F,-algebra, let éo be a 1-dimensional formal
group of exact height n over Ry, and let E = E(Gy) be the Lubin-Tate spectrum of
Construction [ 1.1 Then:

(a) The map « of Construction induces an isomorphism of commutative rings
RO - Wo(E)/jg

(b) The homotopy groups of E are concentrated in even degrees.

(c) Choose any sequence of elements {Ty, € Topm_1)(E)}o<m<n such that the image
of each v, in 7 (E)/IEm.(E) is the mth Hasse invariant v,, (Construction
. Then p =0y, 01, ...,U,-1 is a reqular sequence in m.(E).

Theorem [5.4.1] can be stated a bit more simply in the case where the dualizing
line wg, is trivial. In this case, we can lift any trivialization of wg  to an element of
e € mo(FE) which is invertible in 7, (F).

Corollary 5.4.2. Let Ry, éo, and E be as in Theorem and suppose that
there exists an element e € mo(FE) which is invertible in m.(E). Choose elements
U € Topm_1)(R) representing the Hasse invariants vy, € magm_1)(R)/IEmoqm_1)(R),
and set U, = U, /e?" "1 € mo(R). Then we have a canonical isomorphisms

1o(R) ~ W(R)[ur,- - um]]  7e(R) ~ W(Ro)[[un,- -, um_i]][e].

From Corollary [5.4.2] we can recover the structure theory of classical Lubin-Tate
rings:
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Corollary 5.4.3 (Lubin-Tate). Let k be a perfect field of characteristic p > 0, let
éo be a 1-dimensional formal group of height n < o0 over k, and let Ryr denote the
associated Lubin-Tate ring. Then Ryr is (noncanonically) isomorphic to a power series
ring W(k)[[u1, ..., un_1]]. In particular, it is a reqular local ring of Krull dimension
n.

Proof. Let Ge FGroup(Ryr) be the universal deformation of Gy in the classical sense
of Theorem . Let wg be the dualizing line of the formal group G (Definition
. Since Ry is a local ring, we can choose an Ryp-module generator e € wg.
For each m > 0, let JS denote the mth Landweber ideal (Definition 4.4.11)) and let

U € w%(pm_l)/JSw%(pm_l) be the mth Hasse invariant (Construction [4.4.9)). Then

. m_1 . . m__
each v, can be lifted to an element of wg(p ), which we can write as u,,e?” ! for

some element w,, € Rypr. Note that the elements p = ug, uq, ..., u,_1 generate the nth
Landweber ideal jg;, which is also the maximal ideal of Ryr by virtue of Corollary
It follows that the sequence uq, ..., u,_; determines a surjection of complete
local Noetherian rings p : W(&)[[u1, ..., un—1]] = Rrr. To prove Corollary we
must show that p is also injective. Write é‘ro as the identity component of a connected
p-divisible group Gy, and let £ = F (@0) be its Lubin-Tate spectrum. Using Corollary
[b.4.2] we see that the composite map

W(E)[w, ... un—1]] & Rur ~ mo(RE) — mo(E)

is an isomorphism. It follows that p is injective, as desired. O]

Proof of Theorem[5.0.2. Let k be a perfect field of characteristic p > 0, let Gy be a
1-dimensional formal group of height n < oo over &, let E = E(Gq) be the Lubin-Tate
spectrum of Construction [5.1.1, and let

a: (v, Go) — (mo(E)/IE,GE")

be the morphism in FG described in Construction [5.1.4] It follows from Theorem
that « is an isomorphism. We claim that « has properties (i) and (ii) of
Theorem Property (i) was established in Theorem [5.1.5 To prove (i), we first
observe that my(F) is a complete local Noetherian ring with residue field x (Corollary
, so that « is classified by a map of commutative rings pu : Ryr — mo(E).
Let p : W(k)[[u1,-..,un-1]] — Rrr be the isomorphism appearing in the proof of
Corollary [5.4.3] Corollary implies that the composition o p is an isomorphism,
so that p is also an isomorphism. It follows that o exhibits the classical Quillen formal
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group G‘%ﬂ as a universal deformation of Gg in the sense of Theorem 3.0.1] Tt will
therefore suffice to show that the homotopy groups of £ are concentrated in even
degrees, which follows from Theorem [5.4.1] [

5.4.1 The Proof of Theorem [5.4.1]

For the remainder of this section, we fix a perfect Fj-algebra Ry and a formal
group Gy of exact height n over Ry. Let L denote the Lazard ring, and let [, = JGuni
denote the nth Landweber ideal of the universal coordinatized formal group. By virtue

of Proposition [5.3.12] the functor
Coord(Go) : CAlg}, — Set

is representable by a faithfully flat Ry-algebra, which we will denote by éo. Let t denote
the tautological coordinate on the formal group (@0) 7,0 SO that the coordinatized
formal group ((Go)p,,t) is classified by a ring homomorphism L — Ry. Since Gy has
exact height n, the formal group (Gy) 7z, also has exact height n. It follows that the
map L — Ry annihilates the ideal Landweber I, < L, and therefore induces a ring
homomorphism pg : L/I,, — }NEO.

Lemma 5.4.4. The homomorphism po : L/, — éo is a relatively perfect morphism
of Fy-algebras.

Proof. For every commutative ring A, let FGL>"(A) denote the subset of FGL(A)
consisting of those formal group laws over A for which the associated formal group has
height > n, and let FGL™"(A) denote the subset consisting of those formal groups
which have exact height n. By construction, the commutative ring L/I,, corepresents
the functor FGL>". Suppose that A is Rg-algebra, and let A®) denote the Ry-algebra
obtained from A by extending scalars along the Frobenius isomorphism ¢g, : Ry — Ro.
The statement of Lemma [5.4.4] is equivalent to the assertion that the outer rectangle
in the diagram

Coord(ég) (AP)) —~ FGL™(AP)) — FGLZ"(AP))

| |

Coord(Gyo)(A) FGL(A) FGLZ™(A)

is a pullback square of sets, where the vertical maps are induced by the relative
Frobenius map A® — A. Note that the right square is automatically a pullback (since
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FGL™ is an open subfunctor of FGL>"). It will therefore suffice to show that the
square on the left is a pullback. Unwinding the definitions, we must show that if (é’ 1)
is a coordinatized formal group of exact height n over A®, then any isomorphism
A’A ~ (@0) 4 of formal groups over A can be lifted uniquely to an isomorphism
G ~ (éo) A of formal groups over A®). This follows from Proposition , since
the relative Frobenius map A® — A induces an isomorphism of perfections. n

Lemma 5.4.5. Let MP denote the periodic complex bordism spectrum. Then the
canonical map
Tso(MP) - mo(MP) ~ L — L/I,

exhibits L/I,, as a perfect module over 7=o(MP).
Proof. Let u € my(MP) be as in Construction 5.3.9 so that u is invertible in 7, (MP).

Theorem [5.3.10] implies that the homotopy groups of MP are concentrated in even
degrees, so that multiplication by u determines a cofiber sequence

¥2(750(MP)) — 750(MP) — L.

It follows that L is perfect as a module over 75¢(MP). Since I,, is generated by a
regular sequence in L (Corollary |5.3.4)), the quotient L/I,, is perfect as a module over
L and therefore also as a module over 7-(MP). O

Construction 5.4.6. Recall that the quotient ring L/I, is an F-algebra for which
the Frobenius map ¢y, : L/I, — L/I, is flat. Applying Theorem to the map
T>0(MP) — L/I,, and the relatively perfect morphism p : L/I,, — Ry, we obtain a
pushout diagram of E.-rings o :

7o(MP) 2 4
|

L/I, 2R,

which exhibits p as a 7>9(MP)-thickening of pg, in the sense of Definition |5.2.1}
Lemma 5.4.7. Let A be as in Construction . Then:
(1) The element u € m5(MP) induces an isomorphism of rings ms(R) ~ mo(A)[u].

(2) Any regular sequence wg, wy, ..., w,_1 generating the ideal I < L remains reqular
in mo(A).
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Proof. Expand the commutative square ¢ of Construction to a diagram of
connective E-rings

70(MP) £—= A
|,
L Ao
.
LI, 2R,

where the upper square is a pushout. Applying Remark we deduce that the
lower square exhibit p’ as an L-thickening of py. It follows from Proposition
that ﬁg is discrete and that wy, ..., w,_1 is a regular sequence in JZ(). By construction,
we have a cofiber sequence

S2A 5 A - A,
The associated long exact sequence of homotopy groups shows that the map mo( A
Ay is an isomorphism and that multiplication by u induces isomorphisms 7j_ g(g)
me(A) for k > 0. It follows that 7, (A) can be identified with the polynomial rin
Ao[u], which immediately implies (1) and (2). D

Notation 5.4.8. Let A denote the localization /T[uil] (where we abuse notation by
identifying the element u € m(MP) with its image in m5(A)). Note that the map
p: 7s0(MP) — A extends to a map of localizations

7:MP =~ (159(MP))[u™'] — A[u"'] = A.

Lemma 5.4.9. The Ey,-ring A is even periodic and K(n)-local. Moreover, the
canonical map A — A exhibits A as a connective cover of A.

Proof. 1t follows from Lemma that the homotopy ring m,(A) can be identified
with the Laurent polynomial ring mo(A)[u*?]. This proves that A is even periodic,
and that A is a connective cover of A. We will prove that A is K (n)-local by applying
the criterion of Theorem [4.5.2 “ Note that the nth Landweber ideal J4 is given by
I,m(A). By construction, Ais I, -complete and therefore the commutative ring g (A
is I,,-complete (Theorem SAG.7.3.4.1). Since each homotopy group of A is isomorphic
to mo(A), it follows that A is also I,-complete (Theorem SAG.7.3.4.1). Choose an
element w € L such that I,,.; = (w) + I,,. To complete the proof that A is K (n)-local,
it will suffice to show that the image of w is invertible in 7o(A). Because mo(A) is
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I-complete, it will suffice to show that w has invertible image in mo(A)/I,m(A) ~ Ry.
This follows from our assumption that the the formal group Gg has exact height n. [

Using the commutativity of the diagram

L——my(A)

.

L/I, 2~ Ry,
and the definition of py, we obtain a canonical map
Yo - (R07 GO) - (E()? é%n)

in the category FG. Since A is K(n)-local, Theorem ensures that v, admits an
essentially unique lift to a morphism of E,-rings v : F — A. We will deduce Theorem

from the following;:
Proposition 5.4.10. The maps p : MP — A and v : E — A exhibit A as the
I,,-completion of the smash product MP ®g¢FE.

Proof. Since the Quillen formal group (A}%O has height < n + 1, we can identify the
I,,-completion of MP ®g E with its K (n)-localization (Theorem [4.5.2)). It will therefore
suffice to show that, for every K(n)-local E,-ring B, the canonical map

MapCAlg(A7 B) — MapCAlg(MP ®sk,B) ~ MapCAlg<MP7 B) x MapCAlg<E7 B)

is a homotopy equivalence. Equivalently, we must show that if B is a K (n)-local
E-algebra over MP, then composition with v induces a homotopy equivalence 6 :
Mapgayg, (4, B) — Mapey(E, B). Set By = mo(B)/I,mo(B), so that the map
MP — B determines a coordinate ¢ on ég”. Using Theorem , we can identify
Mapc (£, B) with the set Homzg((Ro, Go), (By, GE)). Since the restriction map
Mapcaig, (A, B) — Mapg Alg,_ wip (;1, T>0B) is a homotopy equivalence, we can invoke
the definition p as a 75¢(MP) lift of py to obtain a homotopy equivalence

Mapcayg,,, (A, B) =~ HomCAlqupﬂn (Ro, Bo).

Under these identifications, 6 corresponds to a map ¢ which fits into a commutative
diagram of sets

Homgy,,o (R, Bo) a Hom g ((Ro, Go), (Bo, GE"))
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To show that @ is bijective, it will suffice to prove bijectivity after restricting to the
fiber over any ring homomorphism ¢ : Ry — By. This follows from an examination of
the pullback square

Coord(Gy)(By) {Go}
FGL(By) FGroup(By)
by taking fibers over (the isomorphism class of) the coordinatized formal group
(GZ,t) e FGL(By). O

Proof of Theorem [5.4.1. Let {Ty, € ma@m_1)(E)}o<m<n be as in the statement of The-
orem [5.4.1] For each 0 < m < n, let cofib(v,,) denote the cofiber of the map
Ty D2P""VE — E. For 0 < m < n, we let E(m) denote the “Koszul complex” given
by the tensor product X),_,, cofib(7,,) (where the tensor product is formed in the
aw-category Modg), and set A(m) = E(m) ®g A. We first prove the following:

(i) The canonical map A — A(m) induces an isomorphism 7, (A)/I,m.(A) ~

T« (A(m)).

We prove (i,,) by induction on m, the case m = 0 being trivial. Let us therefore suppose
that (#,,) is known for some m < n; we will prove (x,,11). Using Corollary we
see that the ideal I,,,1 € L is generated by a regular sequence wq, wy, ..., w,, € L
for which the subsequence wq, wy, ..., w,,_1 generates I,,. Let us abuse notation by
identifying each w; with its image in 7y(A) under the map p, and each v; with its
image in 7y(,i_1)(A) under the map 7. Note that u'~P"7,, and w,, are both non-
zero divisors of mo(A)/I,mo(A) which generate the ideal I,,179(A)/L,mo(A), so their
images differ by a unit in 7o(A)/I,,,m(A). Lemma implies that multiplication by
Wy, 18 injective on 7, (A) /I, 7. (A), so multiplication by 7,, must also be injective. We
therefore have a short exact sequence

0 — Tu—apm—_1)(A(m)) s e (A(m)) — T (A(m 4+ 1)) — 0,

from which assertion (i,,,1) follows.
By virtue of Lemmal5.4.9, we can identify the quotient m, (A) /I, (A) with Ro[u®].
We can therefore reformulate (#,,) as follows:

(#7) There is a canonical isomorphism of m,(A)-modules
Ro[u*'] ~ mo(A(n))

which carries 1 € Ry to the homotopy class of the natural map A — A(n).
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It follows from Proposition that each A(m) can be identified with the com-
pletion of the smash product MP ®gFE(m) with respect to the ideal I,, < mo(MP), or
equivalently with respect to the ideal 3% < 7y(E) (since both generate the Landweber
ideal 34 < m(A)). Note that the smash product MP ®gE(n) is already JE-complete
(since it is annihilated by a power of each 7;). Combining this observation with (i),
we obtain the following:

(#4i) There is a canonical isomorphism of 7,(MP ®gE)-modules
Ro[u*'] ~ 7, (MP Qg E(n))

which carries 1 € }N%o to the homotopy class of the natural map MP ®¢FE —
MP ®sE(n).

By virtue of Theorem [5.3.13], the smash product MP ®¢F is flat over E. Since
(") implies that the homotopy groups of

MP®sE(n) ~ (MP®sE) ®g E(n)

are concentrated in even degrees, it follows that the homotopy groups of FE(n) are
concentrated in even degrees. We now prove the following more general assertion for
0<m<n

(1v,) The homotopy groups of E(m) are concentrated in even degrees.

We proceed by descending induction on m; the case m = n has already been treated
above. Let us therefore assume that m < n and that the homotopy groups of E(m+1)
are concentrated in even degrees. Using the cofiber sequence

$2" D E(m) 2% E(m) — E(m + 1),

we conclude that the map 7, : m(F(m)) — m.(E(m)) is surjective on homotopy
groups in odd degrees. Consequently, if 7,(£(m)) were nonzero some odd degree,
then the inverse limit of the tower

RN 24(pm—1)E(m) Om, 22(pm—1)E(m) Um, E(m)

would have nonzero homotopy. This is impossible, since F(m) is complete with respect
to the ideal JE (because it is a perfect E-module and F is J”-complete).
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Applying (iv,,) in the case m = 0, we deduce that the homotopy groups of
E ~ E(0) are concentrated in even degrees, which proves assertion (b) of Theorem
5.4.1} Moreover, it follows from (iv,,) that each of the cofiber sequences

$2" D E(m) 2 E(m) — E(m + 1)
induces a short exact sequence of graded abelian groups
0 — Tuam_1)(E(m)) 22 1 (E(m)) — me(E(m + 1)) — 0.

It follows that the sequence Ty, Ty, . .., U, is regular in m,(E) (which proves (c¢)) and
that the canonical map £ — E(n) induces an isomorphism

T (E)) (o, ..., Tn-1) = m(E) /I, (E) — 7. (E(n)).

To complete the proof of Theorem [5.4.1] we must show that the canonical map
Y : Ry — mo(E)/JE is an isomorphism. Since Ry is faithfully flat over Ry (Proposition
5.3.12), it will suffice to show that v induces an isomorphism

U Ry — By ®r, (mo(E)/IE) ~ Ry @, mo(E(n)).

Using Theorem [5.3.13] we can identify Ry ®g, mo(E(n)) with mo(MP ®gE(n)), so that

the desired result follows from (ii). O

6 Oriented Deformation Rings

Let Ry be a commutative F,-algebra and let G be a p-divisible group over Ry. In
we studied conditions which guarantee that Gy admits a universal deformation,
defined over an Eq-ring Rg, which we refer to as the spectral deformation ring of Go.
In this section, we study a variant of R¢;, which classifies oriented deformations of
Go.

Construction 6.0.1. Let Ry be a Noetherian F,-algebra which is F-finite, let Gy
be a nonstationary p-divisible group over Ry, and let G € BT”(Rg,) be a universal
deformation of Gy (see Theorem . We let Ry, denote an orientation classifier
for the underlying formal group G° (Definition . We will refer to Rg, as the
oriented deformation ring of Gy.
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Remark 6.0.2. In the situation of Theorem [6.0.3} let G € BT?(Rg,) denote the
universal deformation of Gy. Then the formal group G° acquires an orientation
after extending scalars to Rg . It follows from Proposition that the oriented
deformation ring Ry  is complex periodic.

In the situation of Construction [6.0.1), we have a canonical map of E,-rings
RE — R, , which induces a ring homomorphism RE, — mo(RE,).

Theorem 6.0.3. Let Ry be a commutative Fp,-algebra which is Noetherian and F'-finite
and let Gg be a 1-dimensional nonstationary p-divisible group over Ry, with classical
deformation ring R%O and oriented deformation ring Rg . Then:

(a) The canonical map u : RE, — mo(RE,) is an isomorphism of commutative rings.
(b) The homotopy groups of RE, are concentraled in even degrees.

Note that Theorem [6.0.3| can be regarded as a more precise version of the main
result claimed in the introduction to this paper:

Proof of Theorem [0.0.8 from Theorem[6.0.3 Let (Ry, Go) be as in the statement of
Theorem [6.0.3] let G € BT?(RE') denote the universal deformation of Gy, and
set £ = Rg . By construction, the formal group G° acquires an orientation after
extending scalars from Rg, to E. It follows that £ is complex periodic and that the

% can be identified with the Quillen formal group é% It follows from Theorem
6.0.3| that the classical Quillen formal group é%’ agrees with the identity component
of the formal group G, obtained from G by extending scalars along the projection
map RE — mo(RE, ), which is the classical universal deformation of Gg (see Corollary

3.0.13]). [
Remark 6.0.4. In the situation above, the homotopy groups of Ry  are given by

ﬂ-*( céo) =

W& if « = 2k is even
0 otherwise.

where w denotes the dualizing line of the formal group Gg,.

Let us describe some other consequences of Theorem [6.0.3, Recall first that the
spectral deformation ring Rg, is equipped with the structure of an adic Ec-ring.
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Corollary 6.0.5. Let Ry be a commutative F,-algebra which is Noetherian and F'-
finite, let Gy be a 1-dimensional nonstationary p-divisible group over Ry, and let
I < m(RE,) be a finitely generated ideal of definition. Then the oriented deformation
ring Rg, is I-complete.

Proof. By virtue of Theorem SAG.7.3.4.1, it will suffice to show that each homotopy
group 7;(RE,) is I-complete. If k is odd, then 7;(Rg,) vanishes (Theorem
and there is nothing to prove. If k is even, then 7 (Rg,) is an invertible module
over mo(Rg,). It will therefore suffice to show that mo(Rg,) is I-complete. Invoking
Theorem [6.4.6 we see that the unit map mo(R&,) — mo(Rg,) is an isomorphism. We
are therefore reduced to showing that my(R¢, ) is I-complete, which follows from the
I-completeness of R, (Theorem SAG.7.3.4.1). O

Corollary 6.0.6. Let k be a perfect field of characteristic p, let Gy be a connected
1-dimensional p-divisible group over rk, and let E = E(G{) denote the associated
Lubin-Tate spectrum. Then the oriented deformation ring Ry, is equivalent to E.

Proof. Recall that E was defined as the K(n)-localization of the oriented deformation
ring A = Rg, (Construction . It will therefore suffice to show that A is already
K (n)-local. By virtue of Theorem it will suffice to show that A is complete with
respect to the nth Landweber ideal 37, and that J2, ; = m(A). The second assertion
is obvious, and the first follows from from Theorem [6.0.3], since the nth Landweber

ideal defines the topology on my(Rg,) (Corollary 4.4.25)). O

Remark 6.0.7 (The Universal Property of R ). In the situation of Theorem let
us regard the oriented deformation ring Rg  as a complete adic Ex-ring by endowing
mo(Rg,) with the topology determined by the isomorphism 7o(Rg, ) ~ mo(Rg,). Let A
be an arbitrary adic E,-ring. Unwinding the definitions, we can identify the mapping
space Map Alg?gl(R‘go, A) with a space Defg (A) classifying triples (G, a, e) where G
is a p-divisible group, « is an equivalence class of Gy-taggings of A (see Definition
3.1.1)), and e is an orientation of the identity component G°. Note that the existence
of o guarantees that p is topologically nilpotent in A and that the p-divisible group
G is 1-dimensional.

Let us now briefly outline our strategy for proving Theorem [6.0.3] Note that the
statement of Theorem [6.0.3| refers to a p-divisible group Gy over a commutative ring
Ry, which we can think of as a family of p-divisible groups parametrized by the affine

scheme Spec(Ry). For every point = € | Spec(R)|, let k(z) denote an algebraic closure
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of the residue field x(x), so that Gy determines a p-divisible group G{, over the field
k() by extension of scalars. In , we will show that the spectral deformation ring
Rang) is flat as a E..-algebra over the spectral deformation ring R, (Theorem .
Using this observation, we will reduce the proof of Theorem to the case where
Ry is an algebraically closed field. In this case, the p-divisible group Gy admits a
connected-étale sequence

0— Gj > Gy — Gl — 0.

In , we will show that the spectral deformation ring Rg; can be regarded as a flat
E-algebra over Rang)' This will allow us to replace Go by G, and thereby further
reduce to the situation where Gy is a connected p-divisible group of some height
n > 0. In this case, we can identify mo(R¢,) with the Lubin-Tate ring Ryr of the
formal group Gg. Roughly speaking, the idea is then to argue that the description
of Theorem [6.0.3] must be correct because it becomes correct after completing at the
closed point of | Spec(Ryr)| (by virtue of Theorem and also after deleting the
closed point of | Spec(Ryrr)| (by repeating the above analysis to reduce to a statement
about p-divisible groups of smaller height). To carry out the details of this argument,
we will need to show that the higher homotopy groups of the spectral deformation
ring R¢, are rationally trivial, which we prove in using a similar strategy (see

Theorem 6.3.1).

6.1 Flatness of Comparison Maps

In we defined the spectral deformation ring Rg) of a nonstationary p-divisible
group Gy over an F-finite F,-algebra R, (Definition . Our goal in this section
is to study the behavior of spectral deformation ring Rg, as we vary the commutative
ring Ry. We begin with a simple observation:

Lemma 6.1.1. Let f : Ry — R{, be a morphism of commutative rings in which p is
nilpotent, and assume that the absolute cotangent complexes Lg, and Ly, are almost
perfect. Let Go be a nonstationary p-divisible group over Ry, and let Gy = (Go)r,
denote the p-divisible group obtained from Gg by extending scalars along f. Then Gy
is nonstationary if and only if the module of Kdhler differentials )g, /g, vanishes.

Proof. Since Lgpec(ry)/ myr 15 1-connective (Remark |3.4.4), the fiber sequence
R Qg Lspec(Rro)/ Mpr = LSpeC(Ré)/MBT - LRB/RO
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induces an isomorphism mLspec(ry)/ Mpr =~ ToLryr, = ry/r,- It follows that
Lspec(ry)/ mpy 18 1-connective if and only if Qg r, vanishes, so the desired result
follows from Remark [3.4.4] ]

In the situation of Lemma [6.1.1], composition with f induces a natural transforma-
tion of deformation functors u : Detg, — Defg,. If Qg /g, vanishes, then Theorem
and Lemma imply that the functors Defg, and Defg, are corepresented by
spectral deformation rings R¢, and ‘(‘;‘6, respectively. The natural transformation
u is then classified by a map Rg, — RE‘;‘B. Our goal in this section is to prove the

following:

Theorem 6.1.2. Let f: Ry — R{ be a morphism of F-finite Noetherian F,-algebras.
Let Gy be a nonstationary p-divisible group over Ry, let G{, denote its extension of
scalars to Ry, and assume that Qg /g, vanishes (so that Gy is also nonstationary).
Then the induced map of spectral deformation rings RE, — R“GI% is flat.

6.1.1 The Case of a Closed Immersion

Let us first describe an important special case of Theorem [6.1.2, in which the
conclusion follows immediately from the definitions:

Example 6.1.3. Let Ry be a commutative ring and let Gg be a p-divisible group
over Ry. Suppose we are given an ideal I = Ry, and let G{ = (Gg) g,/ be the induced
p-divisible group over Ry/I. For any complete adic E,-ring A, the we have a pullback
diagram of spaces

Defg (A) Defg,(A)

| |

lim  Hom(Ro/1, mo(A)/J) —lim  Hom(Ry, mo(A)/J).

Let us now suppose that the hypotheses of Theorem |3.4.1| are satisfied, so that
Gy admits a spectral deformation ring R = Rg,. Assume further that the ideal I is
finitely generated, so that the inverse image of [ is a finitely generated ideal I < mo(R).
The above description shows that, for every complete adic E,-ring A, we can identify
Defg; (A) with the summand of Mapg Algigl(R A) ~ Defg,(A) spanned by those maps
R — A for which the underlying ring homomorphism u : 7y(R) — my(A) is continuous
when we equip mo(R) with the I-adic topology. It follows that the functor Defq, is
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corepresented by the I-completion R2 (regarded as an adic Ey-ring with the I-adic

topology).
In the special case where Ry is an F-finite Noetherian F,-algebra, the spectral

deformation ring R is Noetherian (Theorem [3.4.1)), so that R} is flat over R by virtue
of Corollary SAG.7.3.6.9.

Example 6.1.4. Let Ry be an F-finite Noetherian F,-algebra and let Gy be a
nonstationary p-divisible group over Ry. Let I < R, be an ideal, and set Gf, = (Go) g,/1-
If Ry is I-complete, then the induced map of spectral deformation rings Rg, — 816
is an equivalence at the level of E-rings (this follows from Example and Remark
SAG.7.3.6.8). Beware that it usually not not an equivalence of adic E,-rings (this
happens if and only if the ideal I is nilpotent): that is, the commutative rings mo(Rg,)

and o ‘(1;“6) are equipped with different topologies.

The following result supplies some examples of situations in which Example
can be applied:

Proposition 6.1.5. Let Ry be an F'-finite Noetherian F,-algebra and let Gy be a
nonstationary p-divisible group over Ry. Set R = RE. and let G € BT?(R) be the
universal deformation of Go. Then:

(a) The commutative ring Ry = mo(R)/(p) is Noetherian and F-finite.
(b) The p-divisible group Gg, € BTP(R;) is nonstationary.

(c) The natural map of spectral deformation rings RE — RE, = R is an equivalence
in the oo-category of Ey-rings (though generally not as a morphism of adic E-
rings).

Proof. The natural map R — Ry extends to a surjective ring homomorphism p :
Ry — Ry, and Theorem |3.4.1| guarantees that Ry is complete with respect to the ideal
I = ker(p). Assertion (a) follows from Proposition[3.3.9] To prove (b), we note that the
relative cotangent complex Lgpec(r,)/ Mpr 18 almost perfect as an Ri-module; we wish
to show that Lgpec(r,)/ myr 15 1-connective (Remark . By Nakayama’s lemma,
it will suffice to show that the tensor product K ®g, Lspec(r,)/ Mpr 1S 1-connective,
whenever k is the residue field of R; at a maximal ideal m < R;. Equivalently, we
wish to show that every map of Ri;-modules u : Lspec(r,)/ mpr — + is nullhomotopic.

Let p : Ry — K be the canonical quotient map. Then u determines a ring
homomorphism

p: R —kle]/(¢?)  p(r) = p(x) + edx
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having the property that the p-divisible group (Gy)y is trivial as a first-order defor-
mation of (Gp),. Since R; is I-complete, the maximal ideal m contains I. It follows
that the p-divisible group (G1)4 admits a Go-tagging, in the sense of Definition m,
it is therefore classified by a map of adic Ex-rings p' : R — r[e]/(e?). Tt follows
immediately that p’ is obtained by composing p with the canonical map ¢ : R — Rj.
On the other hand, the fact that (G1)4 is a trivial first order deformation of (Gy),
guarantees that p’ factors through the subalgebra x < x[€]/(€?). Since the map g is
surjective on 7y, we conclude that p also factors through x: that is, the derivation
d : Ry — k vanishes. This proves that u is nullhomotopic, as desired. O

6.1.2 The General Case

We now turn to the proof of Theorem Our strategy is to reduce to a general
statement about E-rings (Proposition 6.1.8]).

Lemma 6.1.6. Let f: R — R’ be a morphism of (p)-complete Noetherian Eo,-rings,
and assume that the commutative rings mo(R)/(p) and mo(R')/(p) are F-finite. Then
the (p)-completion of the relative cotangent complex Lg g is almost perfect as an

R’ -module.

Proof. By virtue of Lemma SAG.8.1.2.3, it will suffice to show that for every morphism
of connective Ey-rings u : R — A, where A is (p)-nilpotent, the tensor product
A®p L/ is almost perfect. By virtue of Proposition SAG.2.7.3.2, we can assume
that A is a commutative F,-algebra. Without loss of generality, we can assume that
A =m(R')/(p). In this case, the map u factors through the relative tensor product
(mo(R)/(p)) ®r R'. We may therefore replace R by my(R)/(p) and thereby reduce
to the case where R is a commutative F-algebra and A = mo(R’). Using the fiber
sequence
A®r Lryr — Lar — Lajr,

we are reduced to showing that the relative cotangent complexes L4 r and L g are
almost perfect as modules over A. For the relative cotangent complex L,/p, this
follows from Theorem [3.3.1] (since R and A are Noetherian and F-finite). For the
relative cotangent complex L4/, we observe that A ~ my(R’) is almost of finite
presentation over R', since R’ is Noetherian (Proposition HA.7.2.4.31). O

Lemma 6.1.7. In the situation of Theorem the relative cotangent complex
LRE“/ /R is (p)-rational: that is, it vanishes after completion at (p).
0
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Proof. To simplify notation, set R = R, and R’ = 1516' Then R’ is an adic Ey-ring;
let I < my(R') be a finitely generated ideal of definition. Then I contains a power of p.
Consequently, for any R’-module M, the canonical map from M to its (p)-completion
M, induces an equivalence of I-completions M, — (M(;)) 7. In the special case
M = Lg/g, the (p)-completion Mg, is almost perfect over R’ (Proposition m
and Lemma , and therefore already I-complete (since R’ is [-complete; see
Proposition SAG.7.3.5.7). It follows that the (p)-completion of Lg//z can be identified
with the I-completion of Lr/ g, which can be identified with the relative cotangent
complex of the map of formal spectra Spf(R') — Spf(R) (see Example SAG.17.1.2.9).

It will therefore suffice to show that Lgpe(rr)/spr(r) vanishes. Using the fiber sequence

Lspi(r)/ My |spt(rr) = Lspt(rr)) mur = Lspt(rr)/spt(R)»

we are reduced to proving that the relative cotangent complexes Lgps(r)/ mpr and
Lspt(ry) My vanish. This follows the description of Spf(R) ~ Defg, and Spf(R’) ~
Defg; as relative de Rham spaces (Proposition and Corollary SAG.18.2.1.11). O

By virtue of Proposition [6.1.5] and Lemma [6.1.7], Theorem [6.1.2]is a consequence
of the following algebraic assertion:

Proposition 6.1.8. Let u : R — R’ be a morphism of (p)-complete Noetherian
Eo-rings. If the relative cotangent complex Ly g is (p)-rational, then u is flat.

We will need the following general fact:

Lemma 6.1.9. Let f: R — R’ be a morphism of Noetherian Ey-rings. Assume that
R is complete with respect to an ideal I < mo(R) and that R' is complete with respect
to Imo(R'). The following conditions are equivalent:

(a) The morphism f is flat.
(b) The induced map mo(R)/I — (mo(R)/I) ®r R’ is flat.

Proof. The implication (a) = (b) is clear. Assume that (b) is satisfied; we wish to
prove that f is flat. Proceeding by induction on the number of generators of I, we can
reduce to the case where I = () is a principal ideal. Let M be a discrete R-module;
we wish to show that M ®r R’ is also discrete. Writing M as a filtered colimit of
finitely generated R-modules, we can assume that M is finitely generated as a module
over mo(R). We then have an exact sequence 0 - M' — M — M”" — 0, where the
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action of x on M’ is locally nilpotent and M” has no x-torsion. We will complete the
proof by showing that M’ ®r R and M" ®g R’ are discrete.

We first show that M’ ®p R’ is discrete. Since R is Noetherian, M’ is finitely
generated as a module over my(R), and therefore annihilated by 2* for & » 0. We
can therefore write M’ as a successive extension of finitely many discrete R-modules,
each of which is annihilated by x. Consequently, it will suffice to show that the tensor
product N ®g R’ is discrete when N is a discrete R-module annihilated by z. In this
case, N admits the structure of a module over my(R)/I, and the desired result follows
from assumption (b).

We now show that M” ®p R’ is discrete. Note that M” is almost perfect as an
R-module (Proposition HA.7.2.4.17), so that M"” ®p R’ is also finitely generated as an
R', and therefore (z)-complete (Proposition SAG.7.3.5.7). It follows that M” ®p R’
can be written as the limit of the tower {(M"/2? M")®r R'};>o. Consequently, to show
that M”®gr R’ is discrete, it will suffice to show that each (M” /27 M")®g R’ is discrete,
and that each of the transition maps (M"/x'™'M") @r R' — (M" /' M") @ R’ is
surjective. Using the fiber sequence

(M///:EM//) ®R R/ Z'_]) (M,//:L'j+1M//> ®R R/ _ (M”/.:CjM”) ®R R,,
we are reduced to showing that the tensor product (M”/zM")®pr R’ is discrete, which
follows immediately from (b). O

Proof of Proposition|[6.1.8. Let u : R — R’ be as in the statement of Proposition
[6.1.8 we wish to show that u is flat. By virtue of Lemma [6.1.9} we can replace R by
mo(R)/(p) and R’ by the tensor product (mo(R)/(p)) ®r R’ and thereby reduce to the
case where R is a commutative F,-algebra. In this case, our assumption guarantees
that the relative cotangent complex Lg//p vanishes, and the desired result follows from
Proposition [3.5.5] O]

6.2 Serre-Tate Parameters

Let Ry be a commutative ring and suppose we are given a short exact sequence
0->Gy—>Gyg— Gy —0

of p-divisible groups over Ry. In this section, we will study the relationship between
the deformation theories of G{j and Gy, under the assumption that G is étale.
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6.2.1 Deformations of Short Exact Sequences

We begin by introducing some terminology.

Notation 6.2.1. Let R be an E,-ring. We let M§1(R) denote the subcategory of
Fun(A! x A', BT?(R)) whose objects are short exact sequences of p-divisible groups

G —G

-

OHG’”

in the sense of Definition [2.4.9, and whose morphisms are equivalences.
Suppose we are given a commutative ring Ry and a short exact sequence oy :

GGHGO

|

0— =Gl

of p-divisible groups over Ry. For every complete adic E,-ring A, we let B,,(A)
denote the direct limit

lim (M (A) X g, (mo(a)/1) Hom(R, m0(A) /1)),
1

where I ranges over all finitely generated ideals of definition for 7y(A).

Proposition 6.2.2. Let Ry be a commutative ring and let o :

GGHGO

|

0— =Gl

be a short exact sequence of p-divisible groups over Ry. Assume that G{ is étale. Then
the construction

0->G >G—>G >0)—G

induces an equivalence of deformation functors Det,, — Defg,

Proof. Combine Proposition [2.4.8] Remark [2.5.11, and Proposition |3.1.18]|. O
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Remark 6.2.3. Proposition [6.2.2] can be stated more informally as follows: if a
p-divisible group Gy fits into an exact sequence

05 Gl > Gy— Gl >0

where G is étale, then giving a deformation of Gy is equivalent to giving a deformation
of the entire short exact sequence.
Note that the construction

0->G >G—>G" —0)—G

determines another natural transformation of deformation functors Def,, — Defg; .
Composing this natural transformation with the inverse of the equivalence Def,, —
Defg,, we obtain a forgetful functor Defg, — Defq, (under the assumption that Gg
is étale).

6.2.2 The Main Theorem

The main result of this section can be stated as follows:

Theorem 6.2.4. Let Ry be a Noetherian Fy-algebra which is F-finite, and suppose
we are given a short exact sequence of p-divisible groups

0->G,—>Gy—>Gy—0
where G{, is nonstationary and G is étale. Then:
(a) The p-divisible group Gq is also nonstationary.

(b) The natural transformation of deformation functors Defg, — Defq; induces a
flat morphism of spectral deformation rings RE“E) — Rg. -

Corollary 6.2.5. Let Ry be a Noetherian F,-algebra which is F-finite and let G be
a nonstationary p-divisible group over Ry. Assume that Gy is ordinary: that is, for
every residue field k of Ry, the p-divisible group (Go), fits into a short exact sequence

0— G — (Gg)y — G" — 0,

where G” is étale and the Cartier dual of G’ is étale. Then the spectral deformation

ring R&, s flat over the sphere spectrum S.
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Proof. It will suffice to show that, for each maximal ideal m < mo(Rg) ), the localization
(RE, )m is flat over S. Note that m is the inverse image of a maximal ideal my S Ry.
Let s denote the residue field Ry/my ~ mo(R¢&,)/m, and let R’ denote the spectral
deformation ring of (Gy),. It follows from Theorem [6.1.2] that the natural map
RE — R'is flat, and the quotient mo(R')/mmo(R') is nonzero. It will therefore suffice
to show that R’ is flat over S. We may therefore replace Rg by k, and thereby reduce
to the case where there exists a short exact sequence

0> G — Go— G! >0,

where G{j and the Cartier dual of G, are étale. By virtue of Theorem [6.2.4] we can
replace Go by G{ and thereby reduce to the case where Gy is Cartier dual to an étale
p-divisible group. Using Remark we can replace Gg by its Cartier dual, and
thereby reduce to the case where Gy is étale. Applying Theorem again, we can
reduce to the case where Gy = 0. In this case, the p-divisible group Gy is defined over
F,, so we can use Theorem to reduce to the case Ry = F,,. The desired result
now follows from Proposition O

6.2.3 Extensions of p-Divisible Groups

We begin by introducing some terminology which will be useful in the proof of
Theorem [6.2.4

Notation 6.2.6. Let R be an Ey-ring. We note that the construction (G’ - G —
G") — (G’, G") determines a map of spaces Mg (R) — BTP(R)™ x BT?(R)™. Given
a pair of p-divisible groups G', G” € BT?(R), we let Ext(G”, G’) denote the fiber
product

Br(R) xpre(rysxprer> {(G', G")}-

We will refer to Ext(G”, G’) as the space of extensions of G” by G'.

Notation 6.2.7. Let R be an E -ring and let G be a p-divisible group over R. For
each integer k = 0, we let BG[p*] : CAlg® — Mody' denote the sheafification of the
functor A — YG[p*] with respect to the finite flat topology on CAlg$'. Note that the
Oth space Q*BG[p*](A) can be identified with the classifying space for G[p*]-torsors
on Spec(A) (with respect to the finite flat topology). Note that since G[p¥] is finite
flat commutative group scheme over R, every G[p¥]-torsor in the fpqc topology is also
a G[p*]-torsor in the finite flat topology (since it is split by itself); consequently, each
of the functors BG[p"] satisfies descent for the fpqc topology.
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We define BG : CAlg' — Modg' by the formula BG(A) = lim BG[p*](A).
Alternatively, we can describe BG as the suspension of G in the prestable co-category
C = ShVM0 agrNAP) (CAlgR') of Mod%n’Nﬂ(p )_valued sheaves with respect to the finite flat
topology on CAlg%'

Lemma 6.2.8. Let R be an E,-ring and let G be a p-divisible group over R. Then
the functor BG : CAlgy — Mody' is cohesive.

Proof. Writing BG as a filtered colimit of the functors BG[p*], we are reduced
to proving that each BG[p*] is cohesive. Since the functor Q® : Mody — S is
conservative and preserves limits, it will suffice to show that the composite functor
(Q° o BG[p*]) : CAlghy — S is cohesive. We now observe that this functor is an
example of a geometric stack in the sense of Definition SAG.9.3.0.1, and therefore
cohesive by virtue of Example SAG.17.3.1.3. O

Construction 6.2.9. Let R be a connective E,-ring and let G be a p-divisible group
over R, which we regard as an object of the co-category & = Fun(CAlg}', ModZ').

Note that the formula G(A) ~ lim, G[p*](A) shows that G is Modg-valued sheaf
with respect to the Zariski topology on CAlg}', so we have an equivalence

Mapé‘(za G) = QOOG(R>7

where Z denotes the constant sheaf introduced in Example [2.5.7, We let pg denote
the composite map

0°G(R) — Mapg(Z,G)
= Map:(Z,2BG)
~ Maps(SZ, BG)
3 Mape(Q, /%y, BG)

0

Ext(Q,/Z,, G),

where 0 is given by composition with the boundary map Q, /Z, — YZ associated to
the short exact sequence of abelian groups

02— 2[1/p] > Q,/Z 0.

This map carries each point ¢ € Q°G(R) to an extension of Q, /Z, by G, which we
will write as a short exact sequence of p-divisible groups

0->G—G,—Q,/Z, 0.
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Remark 6.2.10. In the situation of Construction [6.2.9, we have a commutative
diagram of fiber sequences

Z—17[1/p] —Q,/Z,
ok
G G, Q,/Z,.

Beware that the square on the left of this diagram is not quite a pushout square. How-
ever, it exhibits G, as the Mod3"M®) _valued sheaf on CAlg} obtained by sheafifying
the pushout

Z[1/p]11iz G

with respect to the finite flat topology (beware that sheafification is necessary, unless
the image of ¢ in moG(R) is divisible by arbitrarily high powers of p).

Remark 6.2.11. In the situation of Construction [6.2.9, pg/ is described as a compo-
sition of maps, all but one of which is a homotopy equivalence. It follows that pg can
be identified with map d in the fiber sequence

MapS(ZZ7 BG)
lé
MapE(Qp/ZP7 BG)

|

Mapg (Z[1/p], BG).

Using the observation that BG is a sheaf for the Zariski topology (since it is a filtered
direct limit of functors BG[p"], each of which is a sheaf for the fpqc topology), we
can identify the third term in this fiber sequence with Mapy.q, (Z[1/p], BG(R)). It
follows that It follows that pg fits into a canonical fiber sequence

Q" G(R) 2% Ext(Q, / Z,, G) — Mapyy,a, (Z[1/p], BG(R)).

6.2.4 Classification of Extensions

Our next goal is to show that, under some mild assumptions, all extensions of the
constant p-divisible group Q, / Z, can be obtained from Construction m
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Proposition 6.2.12. Let R be a connective E-ring, and let G be a p-divisible group
over R. Assume that R is truncated and that p is nilpotent in mo(R). Then, for every
nilpotent ideal I < my(R), the canonical map

Mapyoq, (Z[1/p], BG(R)) — Mapyea, (Z[1/p], BG(mo(R)/1))
is a homotopy equivalence.

Proof. We proceed as in the proof of Lemma [2.3.24] Choose an integers k£ and m such
that I* = 0 and R is m-truncated. Then the canonical map R — mo(R)/I factors as a
composition of square-zero extensions

R=7cuR — T<m 1R — = 7R = mo(R)/I* — m(R)/I" " — - — m(R)/I.
It will therefore suffice to prove:

() Let f: A — B be a morphism in CAlg® which exhibits A as a square-zero
extension of B by ¥*(M), where M is a discrete B-module. Then the canonical
map p : Mapyq, (Z[1/p], BG(A)) = Mapyaq, (Z[1/p], BG(B)) is a homotopy
equivalence.

To prove (*), we choose a pullback square

A B
| |
B——= B@® XH1(M).

Since the functor BG is cohesive (Lemma [6.2.8)), the map p is a pullback the map
P+ Mapyeq, (Z[1/p], BG(B)) — Mapyq, (Z[1/p], BG(B @ SFH(M))). We show
that p’ is a homotopy equivalence.

For the rest of the proof, we regard B € CAlg}' as fixed. For every connective
B-module N, the canonical maps BG(B) - BG(B® N) — BG(B) exhibit BG(B)
as a direct summand of BG(B @ N). We will denote the auxiliary summand by
F(N) € Mody'. To show that p’ is a homotopy equivalence, it will suffice to show
that the mapping space Mapy,q, (Z[1/p], F(X*+1M)) is contractible. Note that this
mapping space can be realized as the Oth space of the Z-module spectrum given by
the limit of the tower

AF(EIC—FI(M))LF(Z’C—FIM)AF(EI%FIM)
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where the transition maps are given by multiplication by p. Lemma guarantees
that the functor BG is cohesive (Lemma [6.2.8)), so that the functor F is additive. In
particular, multiplication by p on F(X**1M) can be obtained by applying the functor
F to the map p : X¥HLM — SFHLAM . Our assumption that p is nilpotent in mo(R)
guarantees that M is annihilated by p’ for i » 0. It follows that the preceding tower
vanishes as a Pro-object of Mody', so that its inverse limit vanishes. ]

Corollary 6.2.13. Let R be a connective Ey-ring, and let G be a p-divisible group
over R. Assume that R is truncated and that p is nilpotent in mo(R). Then, for every
nilpotent ideal I < mo(R), the diagram

0*G(R) —°—Ext(Q, / Zy, G)

|

O G(mo(R)/I) — Ext(Q, / Zp, Gry(ry1)

is a pullback square.

In the situation of Corollary [6.2.13 we can identify G°(R) with the fiber product
G(R) Xa(mo(r)/1) G°(mo(R)/I). We therefore obtain:

Corollary 6.2.14. Let R be a connective Ey-ring, and let G be a p-divisible group
over R. Assume that R is truncated and that p is nilpotent in mo(R). Then, for every
nilpotent ideal I < mo(R), we have a canonical pullback square

O*G°(R) Ext(Q,/Z,, G)

| |

Q*G°(mo(R)/I) — Ext(Q, / Zp, Gro(r)1)

is a pullback square.

In the situation of Corollary [6.2.14] the functor Q*G?® is locally almost of finite
presentation (Corollary, so the direct limit lim Q*G®(mo(R)/1) ~ Q°Ge(Rd)
is contractible (here we take I to range over the the collection of all nilpotent ideals
in mo(R)). We therefore obtain:

Corollary 6.2.15. Let R be a connective Ey-ring, and let G be a p-divisible group
over R. Assume that R is truncated and that p is nilpotent in mo(R). Then we have a
canonical fiber sequence

O7G(R) — Ext(Q, / Zp, G) — lim Ext(Q,, / Zy, Gro(my/1);

I

262



where the colimit is taken over all nilpotent ideals I < my(R).

6.2.5 The Proof of Theorem [6.2.4]

We will deduce Theorem from a more precise statement in the special case
where Gy splits as a direct sum Gy ® Q, / Z,.

Theorem 6.2.16. Let Ry be a commutative ring for which p is nilpotent and absolute
cotangent complex Lp, is almost perfect, and let G{, be a nonstationary p-divisible
group over Ry and set Go = G ® Q,/Z,. Let G° denote the identity component
of G and let X = Q®G° be its underlying formal hyperplane, which we view as an
(affine) formal spectral Deligne-Mumford stack over RE,. Then there is a canonical
pullback diagram of (affine) formal spectral Deligne-Mumford stacks

Spf (RE{‘O) X

| |

Spf( Lé“g) — Spec( ar)-

In particular, RE, is equivalent to I'(X; Ox) as an Ey-ring (though not as an adic
Ey-ring).

Proof. To simplify notation, set R = an(] Let A be a connective E -ring and suppose
we are given a point n € Spf(R)(A) =~ Defg(A), corresponding to a p-divisible
group G’ over A equipped with a G{-tagging (here we regard A as an adic E,-ring
by endowing my(A) with the discrete topology). We wish to construct a homotopy
equivalence X (A) ~ Defg,(A) XDefg (4) {n}, depending functorially on the pair (A, n).
Without loss of generality, we may assume that A is truncated (since both sides are
nilcomplete when regarded as functors of A). In this case, the desired homotopy

equivalence is supplied by Corollary [6.2.15 O

Proof of Theorem[6.2.4, Let Ry be a Noetherian F,-algebra which is F-finite, and
suppose we are given a short exact sequence of p-divisible groups

0> G —Gy— Gl —0

where G, is nonstationary and G is étale. We first claim that Gy is also nonstationary.
Let o be a point of | Spec(Rp)| and let d : Ry — x(x) be a nonzero derivation. Then
d determines first-order deformations G4 and G{; of Gy, and GE)R(I), respectively.
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Suppose, for a contradiction, that Gy is a trivial first order deformation. Since G/
is obtained from G, by applying the construction of Remark [6.2.3] it follows that

! is also a trivial first-order deformation, contradicting our assumption that Gj is
nonstationary.

We wish to show that the map of spectral deformation rings R“G“{) — Rg, is flat.
Fix a maximal ideal m < 7mo(R, ); we will show that the induced map &~ (RE )m
is flat. The maximality of m guarantees that it the inverse image of a maximal ideal
my S Ry. Let k be an algebraic closure of the residue field Ry/my. Extending scalars
to K, we obtain a short exact sequence 0 — G{,, — Go, — G{, — 0 in BT?(k).
Applying the constructions of §6.1, we obtain a commutative diagram of spectral

deformation rings:

llIl/ llIl/
e, gy,

Rlcl;no Rlcl;nOm
where the horizontal maps are flat (Theorem [6.1.2]) and m is the inverse image of the
maximal ideal of B¢, . It will therefore suffice to show that right vertical map is flat:
that is, we can replace Ry by s and thereby reduce to the case where Ry = « is an

algebraically closed field. In this case, the étale p-divisible group G§ is isomorphic to
Q,/ Z," for some r > 0, and the short exact sequence

0> G)—Gy— Gl —0

splits (Remark . Proceeding by induction on r, we can reduce to the case r = 1,
so that we have a direct sum decomposition Go ~ G; @ Q,,/Z,. Set R = R‘élé and
let G’ € BT?(R) be the universal deformation of Gf,. Then R is a local Noetherian
E-ring with residue field &, so the formal hyperplane X = Q®*G'® can be written as
cSpec(C'), where C is a standard smooth coalgebra over R. It follows from Theorem
that the spectral deformation ring Rg), can be identified with the R-linear dual
CV. It follows from Proposition that the homotopy ring 7, (R, ) is isomorphic
to me(R)[[t1, - - ., tn]], where n is the dimension of G{. Since R is Noetherian, it follows
immediately that Rg. is flat over R. []

6.3 Rational Homotopy Groups of R¢,

Our goal in this section is to prove the following:
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Theorem 6.3.1. Let Ry be a F'-finite Noetherian F,-algebra and let Gy be a nonsta-
tionary p-divisible group over Ry with spectral deformation ring Rg, . If the identity
component Gg is 1-dimensional, then RE, [p~Y] is a discrete By -ring.

Our proof of Theorem [6.3.1] will proceed by induction on the height n of the
p-divisible group Gg. When n = 1, the desired result follows from Corollary To
handle the general case, we will use Theorem to reduce the proof of Theorem
to the case where Ry = k is an algebraically closed field, and Theorem [6.2.4
to reduce to the case where the p-divisible group Gy is connected. Our inductive
hypothesis then guarantees that any nonzero higher homotopy groups of RE [p~]
must be concentrated “near” the closed point of | Spec(Rg,)| (in a suitable sense).
For n > 2, we use a symmetry argument to show that this is impossible.

Remark 6.3.2. It seems likely that Theorem [6.3.1]is true even without the assumption
that Gg is 1-dimensional. However, this would require a different proof.

We now carry out the details. We will prove the following special case of Theorem
6.3.1} using induction on n:

(#,) Let Ry be a F-finite Noetherian F,-algebra and let G be a nonstationary
p-divisible group of height n over Ry, with spectral deformation ring Rg,. If the
identity component G§ is 1-dimensional, then RE [p~'] is a discrete Eq,-ring.

Note that assertion (x,) is vacuous in the case n = 0, and the case n = 1 follows
immediately from Corollary (since the higher homotopy groups of the sphere
spectrum S are torsion). Throughout this section, we will fix an integer n > 2, and
assume that assertion (#,,) holds for m < n; our goal is to prove (,). The main step
is to prove the following:

Lemma 6.3.3. Let k be an algebraically closed field of characteristic p, let Gy be a
connected p-divisible group of height n over k, let Ry be the (classical) Lubin-Tate
ring of Gg. Let éo € BT?(Ryr) be the universal deformation of G in the sense of
ordinary commutative algebra, and let Gy € BTP(Ryr/(p)) be the p-divisible group
obtained from Go by reduction modulo p. Then:

(a) The Fy-algebra Ryr/(p) is Noetherian and F-finite.

(b) The p-divisible group Gy is nonstationary, and therefore admits a spectral
deformation ring R = RE. and a universal deformation G € BT"(R).
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(¢) The canonical map R — RE. is an equivalence of Ey-rings (so that G can also
be identified with the universal deformation of G ).

(d) The localization R[p~!| is discrete.

Proof. Assertions (a), (b), and (c) follow from Proposition [6.1.5] We will prove (d).
Fix an integer k > 0; we wish to show that the abelian group m(R)[p~!] vanishes.
Since R is Noetherian, we can regard M = 7,(R) as a finitely generated module over
the commutative ring m(R) (which is isomorphic to the Lubin-Tate ring Ryr, by
virtue of (3)). The support of M is a Zariski-closed subset K < |Spec(Ryr)|. Let
V ~ | Spec(Ryr/(p))| € | Spec(Ryr)| be the vanishing locus of p; we wish to show that
K < V. Suppose otherwise. Then there exists some irreducible component K’ € K
which is not contained in V. Note that the Krull dimension of K’ must be positive
(since V' contains the closed point of |Spec(Ryr)|. Let p € Rpr be the prime ideal
corresponding to the generic point of K’, and set A = Ryp/p. Then A can be regarded
as an algebra over the Witt vectors W (k), so that A/pA has the structure of a vector
space over k. We distinguish two cases:

(a) The dimension dim,(A/pA) is finite. Since A is (p)-complete, it follows that A
is finitely generated as a W (k)-module, so that A[p~'] is a finite extension field
of W(k)[p~!]. Let T' = Aut(Gy) be the group of automorphisms of Gy in the
category of p-divisible groups over k. Then I' acts on the spectral deformation
ring R. This determines an action of I' on the affine scheme | Spec(Ryr)| which
preserves the closed subset K < | Spec(Ryrr)|. In particular, I' acts on the set
of irreducible components of K; let I'y < I" be the subgroup which fixes the
irreducible component K’ € K. Then the action of I'y on the Lubin-Tate ring
Ry fixes the prime ideal p, and therefore induces an action of I'y on A = Rpr.
This action is trivial on the residue field x, and therefore also on the subring
W(x) < A. Since the Galois group Gal(A[p~']/W (k)[p~']) is finite, there exists
a finite-index subgroup I'y € 'y which acts trivially on A. We then obtain
an action of 'y on the p-divisible group (Gg)a in the category BT?(A). This
action is automatically faithful (since it is already faithful on the p-divisible
group Gy), and therefore restricts to a faithful action of I'; on the identity
component (G)4. Since A is an integral domain, this induces a faithful action
of T'; on G) A[p-1], which is a 1-dimensional formal group over a field A[p~]
of characteristic zero. It follows that I'; acts faithfully on the Lie algebra of

p—ye]

Gy)ap-1]: that is, we have a monomorphism of groups I'y — A[p~!]*. Since
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X

the group A[p™]
the group I' = Aut(Gy) contains an abelian subgroup of finite index. However,

is abelian, the group I'y must also be abelian. In particular,

the structure of I' is well-understood: it is isomorphic to the group of units

»» Where D is a central division algebra over Q, of Hasse invariant 1/n, and
Op < D is its ring of integers. For n > 2, this is a contradiction: O}, does not
contain abelian subgroups of finite index.

The dimension dim,(A/pA) is infinite. In this case, the ring A/pA is not
Artinian. It follows that the intersection V n K’ contains a non-closed point
x € | Spec(Ryr)|. Let k(z) denote the residue field of Ryr at the point x and let
R(z) denote the spectral deformation ring of (G1),(). According to Corollary
[4.4.25 the maximal ideal of the Lubin-Tate ring Rpr coincides with the nth
Landweber ideal of the formal group ég. Since x is not the closed point of
| Spec(Ryr)|, we conclude that the formal group (éO)Z(x) ~ (G1); () has height
< n. We can therefore choose an exact sequence of p-divisible groups

0— G} — (Gl)sw) = Gz =0

over k(z), where G is étale and G/ has height < n. Our inductive hypothesis
then guarantees that the E,-ring RuGI}l [p~!] is discrete, and Theorem
supplies a flat map of spectral deformation rings Rlclf/l — R(z). It follows that
R.[p~'] is also discrete. Since R, is Noetherian, it follows that the homotopy
group 7 (R, ) is annihilated by p® for some @ » 0. On the other hand, Proposition
supplies a flat map of spectral deformation rings v : R — R(z). Let q be
the prime ideal of Ry corresponding to the point x, so that u induces a faithfully
flat map of local E,-rings R; — R(x). Then we can identify m(R,) with the
(non-derived) tensor product 7y, (Rq) ®ro(r,, To(£(z)). Using the faithful flatness
of my(R(z)) over my(Ry), we deduce that m(R,) ~ M, is annihilated by p®. It
follows that the localization of M at the generic point of K’ is also annihilated
by p® and therefore vanishes (since K’ & V'), contradicting the definition of K.

]

Proof of Assertion (+,). Let Ry be a F-finite Noetherian F,-algebra and let G be
a 1-dimensional nonstationary p-divisible group over Ry, with spectral deformation
ring R = RgE,. Let & > 0 and set M = m;(R). Since R is Noetherian, the module
M is finitely generated over mo(R); we wish to show that M is annihilated by some

power of p. Equivalently, we wish to show that the localization M, vanishes, for any
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prime ideal q € m(R) which does not contain p. Let m € my(R) be a maximal ideal
containing ¢. Then m can be written as the inverse image of a maximal ideal my S R,.
Let x denote the residue field Ry/my ~ my(R)/m and let % be an algebraic closure of
k. Let R’ denote the spectral deformation ring of the p-divisible group (Gg)z. Then
R’ is flat over R (Proposition , and therefore faithfully flat over the localization
Ry,. Consequently, to show that M, vanishes, it will suffice to show that the tensor
product
Mgy @y (R) To(R) = m(1)g.

Since m,(R')4 is a localization of 7y (R')[p~'], we are reduced to showing that that the
localization 7 (R')[p~!] vanishes. We may therefore replace (Ry, Go) by (&, (Go)z),
and thereby reduce to the case where Ry = & is an algebraically closed field. In this
case, the p-divisible group Gy admits a connected-étale sequence

0 Gl — Gy — G! >0,

(Proposition . If Gf = 0, then Gy is connected and the desired result follows
from Lemma [6.3.3] We may therefore assume that G{j is nonzero, so that G{, has height
h < n. In this case, our inductive hypothesis (x,) guarantees that the localization

& [p™'] is discrete. Since R is flat over g} (Theorem , it follows that R[p~]
is also discrete. ]

6.4 Proof of the Main Theorem

Let Ry be a Noetherian F-algebra which is F-finite, and let G be a nonstationary
p-divisible group over R. Our goal in this section is to prove Theorem |6.0.3], which
describes the homotopy groups of the oriented deformation ring Rg . By definition,

&, is the orientation classifier of the formal group G°, where G denotes the universal
deformation of Gg. We begin by introducing the notion of a balanced formal group
(Definition , and framing Theorem as the statement that the formal group
G° is balanced. The class of balanced formal groups has good closure properties,
which will allow us to use the results of and to reduce to the case where R,
is a perfect field and the p-divisible group Gg is connected. In this case, we prove
the desired result by combining Theorem with an induction on the height of Gg
(much like in the proof of Theorem [6.3.1)).
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6.4.1 Balanced Formal Hyperplanes

We begin by introducing some notations and auxiliary notions which will be useful

in the proof of Theorem [6.0.3]

Definition 6.4.1. Let R be an connective E,-ring, let X be a 1-dimensional pointed
formal hyperplane over R, and let O x denote the orientation classifier of X (Definition
4.3.14). We will say that X is balanced if the following conditions are satisfied:

(a) The unit map R — Oy induces an isomorphism of commutative rings mo(R) —

0 (D X) .
(b) The homotopy groups of Oy are concentrated in even degrees.

We will say that a 1-dimensional formal group G is balanced if the underlying pointed
formal hyperplane X = Q®G is balanced.

Remark 6.4.2. Let f: R — R’ be a morphism of connective E,-rings, let X be a
1-dimensional pointed formal hyperplane over R, and let X’ be the pointed formal
hyperplane over R’ obtained by extending scalars along f. Let Oy and Oy denote
the orientation classifiers of X and X', respectively. It follows immediately from the
definitions that we have a pushout diagram of E-rings

R_f>R/

L

Ox —=Oxr.
If f is flat, then the homotopy groups of Oy are given by
Te(Oxr) > T (Ox) Oro(r) To(R').
In particular:
(¢) If f is flat and X is balanced, then X’ is balanced.
(13) If f is faithfully flat and X’ is balanced, then X is balanced.

Remark 6.4.3. Let R be a connective E,,-ring and let X be a 1-dimensional pointed
formal hyperplane over R. For each prime ideal p < mo(R), let X, denote the
associated pointed formal hyperplane over the localization R,. If X is balanced, then
each localization X, is balanced (this is a special case of Remark . Conversely, if
X is balanced for each maximal ideal m < my(R), then X is balanced.
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6.4.2 Balanced Formal Hyperplanes over Q

When working over the rational numbers, it is easy to find balanced formal
hyperplanes:

Proposition 6.4.4. Let R be an ordinary commutative algebra over Q and let X be
a 1-dimensional pointed formal hyperplane over R. Then X is balanced.

Remark 6.4.5. Theorem has a converse: if R is an Ej-algebra over Q and
there exists a pointed formal hyperplane over R which is balanced, then R must be
discrete.

Proof of Proposition[6.4.4. The assertion can be tested Zariski-locally on | Spec(R)],
so we may assume without loss of generality that X = Spf(R[[t]]) is the underlying
formal hyperplane of the formal multiplicative group ém In this case, the E,-ring
C+(CP¥; R)[B7!] is an orientation classifier for G, where 3 denotes the canonical
generator of the second homology group Hy(CP*; R) (in fact, an analogous statement
is true over the sphere; see Corollary . We now conclude by observing that
the homology ring H,(CP*; R) is isomorphic to a divided power algebra on (3, and
therefore also to a polynomial algebra on § (since we have assumed that R is a
Q-algebra). O

The proof of Proposition [6.4.4] suggests that it is unreasonable to hope for a formal
group over an ordinary commutative ring R to be balanced, except in the case where
R is a Q-algebra.

6.4.3 The Proof of Theorem [6.0.3]

We first note that Theorem [6.0.3] can be restated as follows:

Theorem 6.4.6. Let Ry be an F'-finite Noetherian F,-algebra, let Gg be a nonstation-
ary p-divisible group of dimension 1 over Ry, and let G € BT"(RE.) be its universal
deformation. Then the identity component G° is a balanced formal group over R, .

We begin by proving Theorem in the Lubin-Tate case:

Theorem 6.4.7. Let k be a perfect field of characteristic p, let Gy be a connected
p-divisible group of height n over k, and let G € BTP(R@E,) be its universal preoriented
deformation. Then the identity component G° is a balanced formal group over R, .
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Remark 6.4.8. In the situation of Theorem [6.4.7] let Ry denote the Lubin-Tate
ring of the formal group G§. Theorem [6.4.7] asserts that the canonical map

Rir ~ mo(Rg,) — mo(Rg,)

is an isomorphism of commutative rings, and that the homotopy groups of ROr are
concentrated in even degrees. Note that Theorem [5.4.1] (and Corollary [5.4.3 1mply
that the analogous statements holds if we replace Roro by the Lubln—Tate spectrum
E = Lgn)RE,. Consequently, we can restate Theorem as follows:

(*) The canonical map Rg — Lk RE, is an equivalence: that is, the oriented
deformation ring Rg  is K (n)-local.

This is a special case of Corollary [6.0.6] but of course it would be circular to invoke
Corollary here (since it depends on Theorem [6.0.3] which has not yet been
proved).

Proof of Theorem[6.4.7. We proceed by induction on the height n of Go. Let Ryr ~
mo(R¢,) denote the Lubin-Tate ring of the formal group G§. For each prime ideal
p S Rur, let G, denote the formal group over (R@) ), obtained from G° by extending
scalars. We first prove the following:

(a) If p is a non-maximal prime ideal of Rpr, then the formal group G, is balanced.

To prove (a), let ' denote the fraction field of Ryr/p. If £’ has characteristic zero,
then the E.-ring (R§, ), is a discrete Q-algebra (Theorem , so the desired result
is a special case of Theorem [6.4.4] Let us therefore assume that »’ has characteristic
p. Let Gy denote the p-divisible group G, (). Using Proposition [6.1.5, we see that
Ryr/(p) is an F-finite Noetherian F,-algebra, that G; is nonstationary, and that the
canonical map Ry, — R§, is an equivalence of E,-rings (though not of adic E,-rings;
the topology on my(Rg;) is defined by the ideal (p)). It will therefore suffice to show
that G, is balanced when viewed as a formal group over Rg,. Let & be an algebraic
closure of " and set Go = Gy € BTP(®’). Then the map Ry — «/ lifts to a flat map
of spectral deformation rings p : RE — R{, (Theorem . Note that the preimage
of the maximal ideal of my(R¢,) is the prime ideal p = m(Rg, ), so that p induce a
faithfully flat map (R& ), — RE,. Using Remark we are reduced to showing
that GY R is a balanced formal group over Rg,. Note that the p-divisible group G,
admit a connected—etale sequence

0— G, Gy — Gl —0.
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Let R& be the spectral deformation ring of G/, and let G’ € BT?(Rg ) be its universal
deformatlon. Then we have a comparison map w : RG,2 — R, Wthh is essentially
characterized by the requirement that iy can be lifted to a monomorphism

Run —> GRun

of p-divisible groups over Rg,. In particular, the formal group Gj}glz can be obtained
from the formal group G’° by extension of scalars along w. Since u is flat (Theorem
, it will suffice to show that the formal group G’ is balanced (Remark .
This follows from our inductive hypothesis, since we have assumed that p is not the
maximal ideal of Ry and therefore the formal group G$ has height < n (Corollary
4.4.25)).

Let F' = Lgn)Rg, be the Lubin-Tate spectrum associated to the formal group Gg.
Combining (a) with Remark [6.4.8] we obtain the following:

(b) If p is a non-maximal prime ideal of Ryr, then the canonical map (Rg, ), — E)
is an equivalence of E -rings.

Let m € Ry be the maximal ideal. Let K denote the fiber of the natural map
[ Rg, — E, which we view as a module over the spectral deformation ring Rg}
It follows from (b) that the localization K, vanishes for every non-maximal prime
ideal p € Ryr. Consequently, the module K is m-nilpotent: that is, every element
of m,(K) is annihilated by some power of m. By construction, the map f exhibits
E as the m-completion of A. In particular, the morphism f becomes an equivalence
after m-completion, so that K vanishes after m-completion. On the other hand, m-
completion induces an equivalence from the oo-category of m-nilpotent R{. -modules
to the co-category of m-complete R -modules (Proposition SAG.7.3.1.7). It follows
that K itself must vanish, so that f is an equivalence. Invoking Remark we
deduce that G° is balanced. ]

Proof of Theorem[6.4.6. Let Ry be an F-finite Noetherian F,-algebra, let Go be a
nonstationary p-divisible group of dimension 1 over Ry, and let G € BT?(R@}) be its
universal deformation. We wish to show that the identity component G° is a balanced
formal group over RE.. By virtue of Remark [6.4.3} it will suffice to show that Gy, is a
balanced formal group over (R§ )m, for every maximal ideal m < my(R¢, ). Note that
since R, is complete with respect to the kernel of the map mo(R§,) — Ry, we can
write m as the inverse image of a maximal ideal my < R,.

Let k be any perfect extension field of Ry/mg, and let G; = (Gyg), be the p-divisible
group obtained from Gq by extending scalars to x. Using Theorem [6.1.2, we obtain a

272



flat map of spectral deformation rings p : Rg, — Rg,. Moreover, the inverse image
under p of the maximal ideal of R is m, so that p induces a faithfully flat map
(R&)m — RE.. By virtue of Remark , it will suffice to show that the formal
group G‘j%g.l is balanced. We may therefore replace (Ry, Go) by (k, G1) and thereby
reduce to proving Theorem in the special case where Ry, = k is a perfect field
of characteristic p. In this case, the p-divisible group G¢ admits a connected-étale
sequence
0> Gy — Gy— Gj— 0.

Let R be the spectral deformation ring of G and let G’ € BT?( anG) be its universal
deformation. As in the proof of Theorem [6.4.7, we observe that the formal group G°
can be obtained from G’° by extending scalars along a comparison map u : R‘éna — Rg,-
Since u is flat (Theorem , we are reduced to proving that the formal group G’
is balanced (Remark [6.4.2)), which follows from Theorem [6.4.7] O

6.5 Application: Snaith’s Theorem

Let Vectg denote the category whose objects are finite-dimensional complex vector
spaces and whose morphisms are isomorphisms, and let N(Vecta) denote its nerve as
a topologically enriched category (as in Construction . Then N(Vectg) is a Kan
complex, which can be identified with the disjoint union of classifying spaces BU(n)
as n ranges over all nonnegative integers.

The formation of direct sums of complex vector spaces determines an E-structure
on the space N(Vectg), which we will refer to as the additive Eq-structure. The group
completion of N(Vectg) (with respect to the additive Eq-structure) is the Oth space of
a connective spectrum, which we denote by ku and refer to as the connective complex
K -theory spectrum.

There is a second symmetric monoidal structure on the category Vectg, given by
tensor products of complex vector spaces. This symmetric monoidal structure induces
a different E-structure on the space N(Vectg), which we refer to as the multiplicative
E-structure. Because the tensor product of complex vector spaces distributes over
direct sums, the multiplicative E.-structure distributes over the additive E-structure.
More precisely, it endows N(Vectg) with the structure of a commutative algebra object
of the co-category CMon(S) of E-spaces, where we regard CMon(S) as equipped
with the symmetric monoidal structure given by the smash product of E-spaces (see
Proposition AV.3.6.1). Put more informally, N(Vectg) is an E,-semiring space, with
addition given by direct sum of complex vector spaces and multiplication given by the
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tensor product. It follows that the connective complex K-theory spectrum ku inherits
the structure of an E.,-ring. Moreover, the tautological map & : N(Vectg) — Q2% ku can
be regarded as a map of E-spaces, where we endow both sides with the multiplicative
E-structure.

Let us identify CP® ~ BU(1) with the summand of N(Vectg) spanned by the
complex vector spaces of dimension 1. Then the multiplicative E,-structure on
N(Vectg) restricts to an Ey-structure on CP®, which is essentially unique (since
CP* ~ K(Z,?2) is an Eilenberg-MacLane space). Note that the map £ carries CP®
into the identity component of 2* ku, and therefore induces a map of E, -spaces
CP” — GL; (ku) which classifies a morphism of E,-rings p : ¥7(CP*) — ku.

The composite map

5% ~ CP! — CP” = Q¥Y7(CP”)

determines an element 3 € my(X7 CP™), which we will refer to as the Bott element.
We will generally abuse notation by identifying § with its image under the map
(8% (CP®) & my(ku). Inverting 8 on both sides (see Proposition 4.3.17)), we obtain
a morphism of E,-rings ¥?(CP*)[37!] — ku[8~!]. We denote the localization
ku[57!] by KU and refer to it as the periodic complex K-theory spectrum. The
following result was proved in [34]:

Theorem 6.5.1 (Snaith). The map L (CP¥)[37'] — KU is an equivalence of
Ey-rings.

Our goal in this section is to show that Theorem [6.5.1] is a formal consequence
of Theorem together with the classical Bott periodicity theorem. Our starting
point is the following observation:

Proposition 6.5.2. The formal multiplicative group @m is a balanced formal group
over the sphere spectrum S.

Proof. By virtue of Remark , it will suffice to show that G,, is balanced when
viewed as a formal group over the p-local sphere S, for every prime number p. Let
SGJ) denote the (p)-completed sphere spectrum. Then the natural map S,y — SG)) is
faithfully flat. By virtue of Remark , it will suffice to show that G,, is balanced
when viewed as a formal group over S@)). This is a special case of Theorem W
since we can identify S¢, with the spectral deformation ring of the p-divisible group
Gy = pp» over F, (Corollary , and G,, with the identity component of its
universal deformation (Proposition [2.2.12). O
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Corollary 6.5.3. The Bott element § € (X7 (CP*)) induces an isomorphism of
graded rings

Z[pH'] — m(SZ(CPP)[B71)).
Proof. Combine Proposition with Corollary [4.3.27] O

Proof of Theorem[6.5.1 Let us abuse notation by not distinguishing between the
Bott element 8 € my(XF(CP*)[S7!]) and its image in ma(ku). It follows from Bott
periodicity that the element (5 induces an isomorphism of graded rings Z[5] — 7. (ku),
hence an isomorphism of localizations Z[8*!] — m.(ku[87!]) = 7.(KU). We have a

commutative diagram

N

T (BT (CPT)[5 KU)

where the vertical maps are isomorphisms (Theorem[6.5.3)), so that the lower horizontal
map is an isomorphism as well. O

7 Elliptic Cohomology

For every commutative ring R, let Ell(R) denote the category of elliptic curves over
R and let Ell(R)™ denote its underlying groupoid. The construction R — Ell(R)™
(representable by) a Deligne-Mumford stack My, which we will refer to as the moduli
stack of elliptic curves. The étale topos of Mgy can be identified with the category of
Set-valued sheaves Shvset(U), where the category U is defined as follows:

e The objects of U are pairs (R, E), where R is a commutative ring and F is an
elliptic curve over R which is classified by an étale map Spec(R) — Mgy.

e A morphism from (R, F) to (R, E’') in the category U is given by a pullback
diagram of schemes o :

E—7' - F
Spec(R) fo, Spec(R'),
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having the property that f carries the zero section of E into the zero section of
E' (in other words, f induces an isomorphism E — Spec(R) Xgpec(ry £ in the
category Ell(R)).

We regard the category U as equipped with the Grothendieck topology given by
étale coverings: a collection of morphisms {(R,, E,) — (R, E)} in £ is a covering if
the underlying map of schemes 11Spec(R,,) — Spec(R) is surjective (note that it is
automatically étale, by virtue of (a)). Note that the structure sheaf &4, of the
moduli stack of elliptic curves Mgy can be viewed as a sheaf of commutative rings on
the category U, given concretely by the formula &, (R, E) = R.

For any commutative ring R and any elliptic curve E € Ell(R), we can construct
a 1-dimensional formal group E by formally completing E along its identity section.
If the classifying map f : Spec(R) — Mgy is flat, one can show that the formal
group E is Landweber-exact: that is, it satisfies the hypothesis of Theorem if
the formal group E admits a coordinate, and a suitable generalization otherwise. It
follows that there is an essential unique even periodic ring spectrum Ag equipped
with isomorphisms R ~ 7o(Ag) and E ~ Spf(A%(CP®)). The flatness hypothesis is
automatically satisfied when f is étale: that is, when the pair (R, F) is an object of
the category U. The construction (R, F) — Ag determines a functor

Oy, - UP — CAlg(hSp),

which we can view as a presheaf on U taking values in the homotopy category
CAlg(hSp) of homotopy commutative ring spectra. This presheaf can be regarded
as refinement of the structure sheaf & 4,,: they are related by the formula &'\, =
Wo(ﬁifl\/fml)'

The category CAlg(hSp) is not well-behaved from a categorical point of view: for
example, it has very few limits and colimits. Consequently, there is no good theory of
CAlg(hSp)-valued sheaves, so it is not really sensible to ask if the presheaf & 7\/11311 is
a sheaf. However, one can remedy the situation by replacing the ordinary category
CAlg(hSp) of homotopy commutative ring spectra by the co-category CAlg(Sp) of
E,-rings. Our goal in this section is to prove the following:

Theorem 7.0.1 (Goerss-Hopkins-Miller). The functor ﬁ’%m :UP — CAlg(hSp) can
be promoted to a functor ﬁi&pm : U? — CAlg(Sp) = CAlg. Moreover, ﬁﬁ&pm s a
CAlg-valued sheaf (with respect to the étale topology on the category U ).

Remark 7.0.2. The work of Goerss-Hopkins-Miller actually proves something slightly
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stronger. Let Z denote the fiber product

Fun(U°?, CAlg(Sp)) X run(uer,calghsp)) {C -};AEII }s

which we can think of as a classifying space for all lifts of & }-/ZVIEH to a sheaf of E -rings.
One can show that the space Z is connected, so that the functor ﬁf&pm of Theorem
7.0.1|exists and is unique up to homotopy (beware, however, that Z is not contractible).
The connectedness of Z does not follow from our methods. Instead, our arguments
will produce a contractible space Z’ with a map Z’ — Z. In other words, we will
construct a sheaf ﬁﬁ&pm which is canonical (up to contractible ambiguity, not just up

to homotopy), but not obviously unique.

Definition 7.0.3 (Topological Modular Forms). We let TMF denote the E.-ring of

global sections of the sheaf ﬁf&pm, given concretely by the formula

TMF = lim 0% (R,E).
(R,E)eU

We will refer to TMF as the periodic spectrum of topological modular forms.

We now sketch our approach to Theorem Let & = Shvg(U) denote the
oo-topos of S-valued sheaves on U. Given a sheaf ﬁt\glpm as in Theorem , we
can view the pair Mg, = (X, ﬁﬁpm) as a nonconnective spectral Deligne-Mumford
stack in the sense of Definition SAG.1.4.4.2. Our strategy is to show that M$;, arises
naturally as the solution to a moduli problem in spectral algebraic geometry, just as
Mgy arises naturally in classical algebraic geometry as a classifying object for elliptic
curves.

In §AV.2, we introduced the notion of a strict elliptic curve over an arbitrary
Ey-ring R (Definition AV.2.0.2). The strict elliptic curves over R form an co-category
Ell*(R), which agrees with Ell(R) when R is an ordinary commutative ring. Moreover,
we proved that the construction R — ElI*(R)™ is (representable by) a spectral Deligne-
Mumford stack M3, which we will refer to as the moduli stack of strict elliptic curves.
In we show that every strict elliptic curve X of an E -ring R admits a formal
completion )2, which is a (1-dimensional) formal group over R. We use this observation
in to construct a variant My, of My, which classifies oriented elliptic curves:
that is, strict elliptic curves X together with an orientation of the formal group X (in
the sense of Definition . The structure sheaf of Mg determines a sheaf ﬁj&pm
on U with values in the oo-category CAlg = CAlg(Sp) of Ey-rings. To prove Theorem
7.0.1], it will suffice to show that the underlying presheaf of homotopy commutative
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ring spectra agrees with ﬁi’wm. In , we reduce this to the problem of showing that
the formal group of the universal elliptic curve on My, is balanced, in the sense of
Definition [6.4.1] We prove this in by applying a version of the Serre-Tate theorem
(Theorem AV.7.0.1) to reduce to an analogous statement for p-divisible groups, which
follows from Theorem [6.4.6]

7.1 The Formal Group of a Strict Abelian Variety

We begin with some general remarks.

Construction 7.1.1 (Formal Completion). Let R be an Ey-ring and let X be a strict
abelian variety over R (see Definition AV.1.5.1), which we identify with its functor
of points X : CAlg?? p — Modz'. We define a new functor X : CAlg? r — Modyz' by
the formula )A((A) = fib(X(A) — X(A™4)), where the fiber is formed in the co-category

A~

Mod7'. We will refer to X as the formal completion of X.

Proposition 7.1.2. Let R be an Eq,-ring and let X be a strict abelian variety over R.
Then the formal completion X of Construction is a formal group over R (in the

sense of Definition and Variant[1.6.9).

The proof of Proposition [7.1.2]is based on the following completely elementary
observation:

Lemma 7.1.3. Let X be a strict abelian variety over a connective E-ring R, and
suppose we are given an A-valued point 1 : Spec(A) — X for some A € CAlgy'. The
following conditions are equivalent:

(i) The homotopy class of n belongs to the kernel of the map moX (A) — meX (A™9),
where X : CAlgy' — S denotes the functor represented by X.

(i7) The underlying map of topological spaces | Spec(A)| — | X| factors through the
closed subset K < | X| given by the image of the zero section s : Spec(R) — X.

Proof. Form a pullback diagram

Y Spec(A)
-
Spec(R) X.
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Since X is separated, s is a closed immersion, so the upper horizontal map is also a
closed immersion. We can therefore write Y = Spec(B), where B is some E-algebra
over A for which the map ¢ : myA — moB is surjective. Condition (i7) is satisfied if
and only if the map of topological spaces | Spec(B)| — | Spec(A)]| is surjective: that is,
if and only if the kernel ker(¢) is contained in the nilradical of myA. This is equivalent
to the requirement that the tautological map A — A factors through ¢, which is a
reformulation of condition (7). O

Proof of Proposition[7.1.3. Without loss of generality we can assume that R is con-
nective. For each A € CAlg%', we can identify QOO)A((A) with the summand of Q% X(A)
spanned by those maps 7 : Spec(A) — X whose restriction to Spec(A™?) is nullho-
motopic. Using Lemma [7.1.3] we see that this is equivalent to the condition that
the underlying map of topological spaces | Spec(A)| — | X| factors through the zero
section. We can therefore identify Q*X with the (functor represented by) the formal
completion of X along its zero section, which is a formal hyperplane by Proposition
515 [
Remark 7.1.4. If X is a strict abelian variety of dimension d over an E,-ring R,
then the formal completion X is a formal group of dimension d over R. In particular,
if X is a strict elliptic curve over R, then the formal group X has dimension 1.

7.2 Oriented Elliptic Curves
We now adapt our theory of (pre)orientations to the setting of elliptic curves.

Definition 7.2.1. Let R be an E,-ring and let X be a strict elliptic curve over R. A
preorientation of X is a pointed map e : S? — Q® X(7=oR), or equivalently a point of
the space Q*2 X(75oR). We will denote the space Q*? X(7oR) by Pre(X) and refer
to it as the space of preorientations of X.

Remark 7.2.2. Let X be a strict elliptic curve over an E-ring R and let X denote
its formal completion (Construction [7.1.1)). Then the canonical map

X(r=0R) — X(720R)
induces an equivalence QSZ(T;OR) — QO X(7=0R), and therefore a homotopy equivalence

Pre()z) = QOO+2)/Z(T>0R> — QP2 X(150R) = Pre(X).

In other words, giving a preorientation of X is equivalent to giving a preorientation of
the formal group X, in the sense of Definition [4.3.19]
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Remark 7.2.3. Let R be a complex periodic E,-ring and let X be a strict elliptic
curve over R. Combining Remark [7.2.2) with Proposition [£.3.21] we see that the space
Pre(X) of preorientations of X can be identified with the space MapFGroup (é 5 )A()
of maps from the Quillen formal group GQ to the formal completion X. Equivalently,
we can identify Pre(X) with the space

MapFun(CAlg_r OR,ModCZ")(Glgv X)7
where we identify X with its functor of points CAlg?}  — Mody'.

Notation 7.2.4. Let R be an E,-ring. The construction X — Pre(X) determines
a functor Ell*(R) — S, which classifies a left fibration of co-categories EII"**(R) —
Ell*(R). The objects of EII""*(R) can be identified with pairs (X, e), where X is a strict
elliptic curve over R and e is a preorientation of X. We will refer to such pairs as
preoriented elliptic curves over R, and to ElI’"(R) as the co-category of preoriented
elliptic curves over R.

In what follows, we let MF,; denote the moduli stack of strict elliptic curves (see
Theorem AV.2.0.3).

Proposition 7.2.5. The functor R — EIP(R)™ is (representable by) a spectral
Deligne-Mumford stack MY . Moreover, the canonical map My — My is affine,
locally almost of finite presentation, and induces an equivalence of the underlying
classical Deligne-Mumford stacks (in particular, it is a closed immersion).

Remark 7.2.6. We will refer to the spectral Deligne-Mumford stack MYy as the
moduli stack of preoriented elliptic curves.

Proof of Proposition|[7.2.5. Fix a connective E,-ring R and a map Spec(R) — My,
classifying strict elliptic curve X over R. We wish to show that the construction
(A € CAlgy) — Pre(X,) is corepresentable by an Ey-algebra R’ € CAlg, which
is locally almost of finite presentation over R and for which the underlying map
mo(R) — mo(R’) is an isomorphism of commutative rings. This follows immediately

from Remarks [7.2.2] and Lemma [4.3.16] O

Definition 7.2.7. Let R be an E-ring and let X be a strict elliptic curve over R.
We will say that a preorientation e € Q"2 X(75oR) is an orientation of X if its image
under the homotopy equivalence Pre(X) ~ Pre()A() Remark is an orientation
of the formal group X, in the sense of Definition 4.3.9, We let OrDat(X) denote the
summand of Pre(X) spanned by the orientations of X.
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Remark 7.2.8. Let R be an E,-ring and let X be a strict elliptic curve over R. If
R is complex periodic, then giving an orientation of X is equivalent to giving an
equivalence of formal groups é}% ~ X. If R is not complex periodic, then the space
of orientations OrDat(X) is empty. This follows immediately from Remark and
Proposition [4.3.23

Definition 7.2.9. Let R be an E,-ring and let EII"*(R) denote the oo-category of
preoriented elliptic curves over R (Notation [7.2.4). We let EII*'(R) denote the full
subcategory of EII’"®(R) spanned by those pairs (X, e) where e is an orientation of X.
We will refer to such pairs as oriented elliptic curves over R, and to EII”(R) as the
co-category of oriented elliptic curves over R.

Proposition 7.2.10. The functor R — EN*(R)™ is (representable by) a nonconnec-
tive spectral Deligne-Mumford stack Myy,. Moreover, the canonical map Mgy — MEy

is affine.

Proof. Let R be any E-ring and let f : Spec(R) — MYy be a map, classifying a
preoriented elliptic curve (X,e) over R. Then e determines a Bott map 3. : wg —
Y 72(R) (see Construction , which we can identify with a map R — X7%(wg).
We now observe that the fiber product Mgy x yer Spec(R) can be identified with
Spec(R[3;']), where R[3; '] denotes the localization of Proposition [4.3.17] O

We wil refer to the nonconnective spectral Deligne-Mumford stack My, as the
moduli stack of oriented elliptic curves.

7.3 The Structure of My

Our next goal is to analyze the structure of the moduli stack My, and show that it
satisfies the demands of Theorem [7.0.1] This is essentially an immediate consequence
of the following statement which we will prove in §7.4

Theorem 7.3.1. Let R be a connective B, -ring and let X be a strict elliptic curve over
R which s classified by an étale map Spec(R) — M3y,. Then the formal completion
X is a balanced formal group over R (in the sense of Definition m

Proof of Theorem [7.0.1] from Theorem[7.3.1 Let My, denote the moduli stack of
strict elliptic curves. We view M, as a spectral Deligne-Mumford stack, with
underlying oo-topos & and structure sheaf & . Note that underlying O-truncated
spectral Deligne-Mumford stack (X, m(&0 s, )) can be identified with the classical
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moduli stack of elliptic curves Mgy. In particular, the category U appearing in the
statement of Theorem can be identified with the full subcategory of X spanned
by the affine objects (see Corollary SAG.1.4.7.3).

Let Mg, denote the moduli stack of oriented elliptic curves, so that we have
a map of nonconnective spectral Deligne-Mumford stacks ¢ : Mg, — My, Then
the direct image ¢, O g is a sheaf of Ep-rings on X, which determines a functor
ﬁﬂpm : U°? — CAlg which is a sheaf for the étale topology on U. We will complete the
proof by showing the underlying presheaf of commutative ring spectra coincides with
the one that can be extracted from Landweber’s theorem. Fix an object U € U, given
by a commutative ring R = 0 ,(U) together with an étale map f : Spec(R) — Mgy
classifying an elliptic curve X over R. Set R’ = 0",(U), so that R’ is a connective E-
ring with R ~ m(R'), equipped with an étale map f”: Spec(R’) — My, classifying a
lift of X to a strict elliptic curve X' € EII*(R’). Set A = ﬁ’g&pm(U ). By construction,
A is an E-algebra over R’ which classifies orientations of the strict elliptic curve X/,
or equivalently of its formal completion X' In particular, A is complex periodic and
its Quillen formal group (A}% can be identified with )A(/A In particular, the classical
Quillen formal group (A}%O is obtained from X by extending scalars along the unit
map R ~ mo(R') = m(A). To complete the proof, it will suffice to show that u
is an isomorphism of commutative rings and that the homotopy groups of A are
concentrated in even degrees, which is exactly the content of Theorem [7.3.1] O]

Remark 7.3.2. The proof of Theorem [7.0.1 shows that the affine morphism ¢ :
o1 — My has the property that the unit map

ﬁMlszn - (b* ﬁMOErn

induces an isomorphism mo(Oaez, ) =~ mo(O amqg ). It follows that ¢ induces an equiva-
lence of the underlying co-topoi. In other words, the moduli stack My, of oriented
elliptic curves has the same underlying étale topos (or co-topos) as the classical moduli
stack of elliptic curves. Moreover, their structure sheaves are related by the formula

Wk if « = 2k is even
W*(ﬁMor ) ~ {

0 otherwise,

where w denotes the line bundle on Mgy which associates to each elliptic curve X
over a commutative ring R its dualizing line wg (or, equivalently, the R-module of
invariant differentials on X).
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7.4 The Proof of Theorem [7.3.1]

Let R be an E,-ring and let X be a strict abelian variety over R (Definition
AV.1.5.1). From X, we can extract a formal group X over R by the process of formal
completion along the identity section (see Proposition and Remark SAG.1.2.5.3).
On the other hand, for every prime number p, we can extract a p-divisible group
X[p™] (Proposition AV.6.7.1). These are related as follows:

Proposition 7.4.1. Let R be a (p)-complete Ey-ring and let X be a strict abelian
variety over R. Then the formal completion X is canonically equivalent to the identity
component of X [p™*].

Proof. We proceed as in the proof of Proposition [2.2.12] Without loss of generality, we
may assume that R is connective. For each object A € CAlg}', we have a commutative

i
x(4)

diagram

—= X[p™](4) —— X[p*](A™)

|

o
|

A) X (Ared)
(A —=XA)[p ] —= X (A~ [p7"].

in which the rows and columns are fiber sequences. Let & < CAlgy' be the full
subcategory spanned by the connective R-algebras which are truncated and (p)-
nilpotent. For A € £, the Z-module spectrum X (A)[p~'] vanishes (Lemma, , SO
this diagram supplies an identification

X(A) = X))
~  fib(X[p*](4) — X[p*](A™))
= X[p"°(4)
depending functorially on A. The desired result now follows from Theorem 2.1.1] [

Proposition 7.4.2. Let R be a connective Ey,-ring and let X be a strict elliptic curve
over R which is classified by an étale morphism f : Spec(R) — M3y. Let m be any
mazimal ideal of R. Then:

(a) The residue field k = mo(A)/m is finite.
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(b) Let R = R/, denote the completion of R with respect to m and let p be the
characteristic of the field k. Then the p-divisible group X[p™|z is a universal
deformation of Go = X[p™],, in the sense of Theorem .' in other words,
we can identify R with the spectral deformation ring Rg, .

Proof. Since My, is locally almost of finite presentation over the sphere spectrum
(Theorem AV.2.4.1), the commutative ring m(R) is finitely generated over Z (in fact,
it is even a smooth Z-algebra of relative dimension 1). In particular, the quotient
mo(R)/m is a field which is finitely generated as a Z-algebra, and is therefore finite.
This proves (a). We now prove (b). Note that R is a complete local Noetherian
E.-ring with residue field x, so that the deformation X[p*]z of Gy is classified by a
map [ : Rg, — R which is the identity on residue fields. We will show that it is an
equivalence by arguing that, for every complete local Noetherian E.-ring A equipped
with a map p : A — k which exhibits s as the residue field of A, composition with f
induces a homotopy equivalence

MapCAlg/N (R, A) — MapCAlg/n (RanO? A).

Writing A as an inverse limit, we can reduce to the case where A is truncated and
mo(A) is Artinian. In this case, there exists a finite sequence of maps

A:Am_’Am—l_’"'_’AOZ’%v

each of which exhibits A;,; as a square-zero extension of A; by an almost perfect
A;-module. It will therefore suffice to prove the following:

(x) Let p: A — Kk be as above and let A be a square-zero extension of A by a
connective A-module M which is almost perfect over A. Then the diagram o :

~

MapCAlg/K (R, A) — MapCAlg/K (R&,, A)

|

MapCAlg/K (R,A) — MapCAlg/ﬁ (Rlcl;nw A)

is a pullback square.

Invoking the universal property of R (in the form articulated in Theorem [3.0.11)
and the description of R as a completion of R, we can identify ¢ with the outer
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rectangle in the diagram

MapCAlg/m(R7 ;1) 4>E118(A) XEne () { X }*)DefGo(A p)

|

Mapgag,, (R, A) —= EI*(A) Xgus(e) {Xe} —Defa, (4; p).

Our assumption that f is étale guarantees that the left square in this diagram is a
pullback, while the Serre-Tate theorem (Theorem AV.7.0.1) guarantees that the right
square is a pullback. O

Proof of Theorem[7.3.1. Let f : Spec(R) — Mjy,; be an étale morphism classifying
a strict elliptic curve X over R. We wish to show that the formal completion X is
balanced. By virtue of Remark it will suffice to show that for every maximal ideal
m € 7y(R), the formal group )A(m is balanced as a formal group over the localization
Ry,. Let p be the characteristic of the residue field k = mo(R)/m and let R denote the
m-completion of R. Then Ris faithfully flat over R,,. By virtue of Remark [6 n it
will suffice to show that X # 18 a balanced formal group over R. Since R is p-complete,
we can identify X with the identity component of the p-divisible group X[p*]5. The
desired result now follows from Theorem [6.4.6 m, since the p-divisible group X[p®]z is a
universal deformation of X[p™], (Proposition [7.4.2)). O
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