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Introduction
Let A be a homotopy commutative ring spectrum. We say that A is even periodic

if the graded ring π˚pAq is isomorphic to π0pAqru
˘1s, for some element u P π2pAq.

In this case, Quillen observed that the formal spectrum pG “ SpfpA0pCP8
qq can be

regarded as a 1-dimensional formal group over the commutative ring R “ π0pAq. The
formal group pG is a very powerful invariant of the ring spectrum A. In many cases, it
is a complete invariant:

Theorem 0.0.1 (Landweber Exact Functor Theorem). Let R be a commutative ring
and let pG be a 1-dimensional commutative formal group over R, equipped with an
isomorphism of formal R-schemes pG » SpfpRrrtssq. Assume that:

p˚q For every prime number p, let rps : pG Ñ pG be the map given by multiplication
by p, so that we can write rps˚ptq as a formal power series

ř

ně0 cnt
n. Then

tcpnuně0 is a regular sequence in R: in other words, each cpn is a non-zero divisor
in the quotient ring R{pc1, cp, . . . , cpn´1q.

Then there exists an even periodic homotopy commutative ring spectrum A with
π0pAq » R and SpfpA0pCP8

q » pG. Moreover, the ring spectrum A is unique (up to
homotopy equivalence).

Remark 0.0.2. Condition p˚q of Theorem 0.0.1 is known as Landweber’s criterion;
one can show that it is independent of the choice of coordinate t.

Example 0.0.3. Let R “ Z be the ring of integers and let pGm be the formal
multiplicative group over Z, defined as the formal completion of the multiplicative
group Gm “ SpecpZru˘1sq along the identity section. Then t “ u´ 1 is a coordinate
on pGm which satisfies

rps˚ptq “ p1` tqp ´ 1 “ pt`

ˆ

p

2

˙

t2 ` ¨ ¨ ¨ ` ptp´1
` tp

for each prime number p. Since pp, 1, 0, 0, . . .q is a regular sequence in Z, the formal
group pG satisfies Landweber’s criterion. It follows from Theorem 0.0.1 that there
exists an essentially unique even periodic ring spectrum A with π0pAq » Z and
SpfpA0pCP8

qq » pGm.

Let KU denote the complex K-theory spectrum. Then KU is an even periodic
ring spectrum with π0pKUq » Z and SpfpKU0

pCP8
qq » pGm. It follows that KU is
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homotopy equivalent to the ring spectrum A of Example 0.0.3. Consequently, we can
regard Example 0.0.3 as providing a “purely algebraic” construction of KU, which
makes no reference to the theory of complex vector bundles. However, this algebraic
approach has certain limitations. In the situation of Theorem 0.0.1, the homology
theory X ÞÑ A˚pXq can be recovered functorially from the pair pR, pGq. However, one
passes from the homology theory A˚ to its representing spectrum A by means of the
Brown representability theorem, rather than an explicit procedure. Consequently, the
construction pR, pGq Ñ A is functorial only up to homotopy.

Example 0.0.4. Let pG be a formal group satisfying Landweber’s criterion and let
A be the associated even periodic ring spectrum. The two-element group x˘1y acts
on the formal group pG and this extends to an action of x˘1y on A as an object in
the homotopy category of spectra hSp. When R “ Z and pG “ pGm, we recover the
action of x˘1y » GalpC {Rq on KU by complex conjugation. In this case, one can
do better: the action of x˘1y on KU in the homotopy category hSp can be rectified
to an action of x˘1y on the spectrum KU itself. This rectification contains useful
information: for example, it allows us to recover the real K-theory spectrum KO as
the homotopy fixed point spectrum KUhx˘1y. However, it cannot be obtained formally
from Theorem 0.0.1.

Example 0.0.5. To every formal group pG satisfying Landweber’s criterion, Theorem
0.0.1 supplies a homotopy commutative ring spectrum A: that is, a commutative
algebra object in the homotopy category of spectra hSp. However, in the case R “ Z
and pG “ pGm, we can do better: KU is an E8-ring spectrum. In other words, the
multiplication on KU is commutative and associative not only up to homotopy, but up
to coherent homotopy. The E8-structure on KU is not directly visible at the level of
the homology theory X ÞÑ KU˚pXq, and therefore cannot be extracted from Theorem
0.0.1.

Examples 0.0.4 and 0.0.5 illustrate a general phenomenon: in many cases of interest,
the ring spectra associated to formal groups satisfying Landweber’s criterion possess
additional structure which is not visible at the level of the homotopy category of
spectra.

Example 0.0.6 (Lubin-Tate Spectra). Let κ be a perfect field of characteristic p ą 0
and let pG0 be a 1-dimensional formal group over κ of height n ă 8. Lubin and
Tate showed that pG0 admits a universal deformation pG defined over a regular local
ring RLT » W pkqrrv1, . . . , vn´1ss. Morava observed that the formal group pG satisfies
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Landweber’s criterion, so that Theorem 0.0.1 supplies an even periodic ring spectrum
E with RLT » π0pEq and pG » SpfpE0pCP8

qq. We will refer to E as the Lubin-Tate
spectrum of pG0 (it is also commonly known as Morava E-theory). A theorem of Goerss,
Hopkins, and Miller asserts that E admits an essentially unique E8-ring structure
and depends functorially on the pair pκ, pG0q; in particular, the Lubin-Tate spectrum
E carries an action of the automorphism group AutppG0q (which is defined at the
spectrum level, rather than the level of homotopy category hSp).

Example 0.0.7 (Elliptic Cohomology). Let R be a commutative ring and let E be
an elliptic curve over R, classified by a map ρ : SpecpRq ÑMEll where MEll denotes
the moduli stack of elliptic curves. Let pE denote the formal completion of E along
its identity section, and assume that the formal group pE admits a coordinate (this
condition is always satisfied locally on SpecpRq). If the morphism ρ is flat, then the
formal group pE satisfies Landweber’s criterion, so that Theorem 0.0.1 supplies an
even-periodic spectrum Aρ with R » π0pAρq and pE » SpfpA0

ρpCP8
qq. In the case

where ρ is étale, a theorem of Goerss, Hopkins, and Miller asserts that Aρ can be
promoted to an E8-ring which depends functorially on the pair pR,Eq. Moreover, the
construction ρ ÞÑ Aρ determines a sheaf O on the étale site of MEll, taking values in
the 8-category of E8-ring spectra. Passing to global sections, we obtain an E8-ring
TMF “ ΓpMEll; Oq, known as the spectrum of (periodic) topological modular forms.

Our goal in this paper is to prove a variant of the Landweber exact functor theorem
which explains the special features of Examples 0.0.3, 0.0.6, and 0.0.7. Our main
result can be understood as a generalization of Example 0.0.6 to the case where κ is
not a field. Suppose we are given a Noetherian Fp-algebra R0 and a p-divisible group
G0 over R0. We define a deformation of G0 to be a pullback diagram

G0 //

��

GA

��
SpecpRq // SpecpAq

where the lower horizontal map is determined by a surjection of Noetherian rings
ρ : AÑ R, GA is a p-divisible group over A, and the ring A is complete with respect
to kerpρq. In this case, we also abuse terminology and say that GA is a deformation
of G0 which is defined over A. Under some mild assumptions, one can show that G0

admits a universal deformation G, which is defined over a Noetherian ring Rcl
G0 which

we will refer to as the classical deformation ring of G0. The content of this paper is
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that Rcl
G0 arises as the underlying commutative ring of an E8-ring (for a more precise

formulation, see Theorem 6.0.3):

Theorem 0.0.8. Let R0 be a Noetherian Fp-algebra and let G0 be a 1-dimensional
p-divisible group over R0. Assume that the Frobenius map ϕR0 : R0 Ñ R0 is finite and
that G0 is nonstationary (see Definition 3.0.8). Then:

paq The p-divisible group G0 admits a universal deformation G, defined over a
Noetherian commutative ring Rcl

G0.

pbq There exists an weakly 2-periodic E8-ring spectrum E, whose homotopy groups
are concentrated in even degrees, such that π0pEq » Rcl

G0 and SpfpE0pCP8
qq is

the identity component of the p-divisible group G.

Moreover, the E8-ring E can be chosen to depend functorially on the pair pR0,G0q.

It is possible to prove a weaker version of Theorem 0.0.8 using the Landweber
exact functor theorem. Namely, one begins by constructing the universal deformation
G (and the classical deformation ring Rcl

G0); this is a purely algebraic problem. The
p-divisible group G has an identity component G˝, which is a 1-dimensional formal
group over Rcl

G0 . If the formal group G˝ admits a coordinate, then one can show that
it satisfies condition p˚q of Theorem 0.0.1, which proves the existence of a homotopy
commutative ring spectrum E satisfying requirement pbq of Theorem 0.0.8 (if G˝ does
not admit a coordinate, one instead uses a mild generalization of Theorem 0.0.1).

Our proof of Theorem 0.0.8 will proceed differently, and will not use Landweber’s
theorem. Instead, we will realize E as the solution to a moduli problem in the setting
of E8-ring spectra. Note that an essential feature of E is that its associated formal
group SpfpE0pCP8

qq is the identity component of a deformation of G0 over the
commutative ring π0pEq. We will establish a more refined statement: the formal
group SpfpE0pCP8

qq can be promoted to a formal group pGQ
E over the E8-ring E

itself, which can be realized as the identity component of a p-divisible group which is a
deformation of G0 (in a suitable sense). Moreover, we will characterize E as universal
among E8-rings for which such a realization exists.

Let us now outline the contents of this paper. Our primary objective is to turn the
idea sketched above into a precise construction of an E8-ring E, and to prove that E
satisfies the requirements of Theorem 0.0.8. We begin with the observation that the
notion of p-divisible group makes sense over an arbitrary E8-ring A (see Definition
AV.6.5.1 ). Consequently, given pR0,G0q as in the statement of Theorem 0.0.8, one
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can consider deformations of G0 which are defined over E8-rings. In §3, we will prove
that there is a universal such deformation G, which is defined over an E8-ring Run

G0

which we refer to as the spectral deformation ring of G0 (Theorem 3.0.11). This can
be regarded as a generalization of part paq of Theorem 0.0.8: the classical deformation
ring Rcl

G0 can be recovered as the ring of connected components π0pR
un
G0q, and the

classical universal deformation of G0 is obtained from G by extension of scalars along
the projection map Run

G0 Ñ π0pR
un
G0q (see Corollary 3.0.13).

The spectral deformation ring Run
G0 is not yet the E8-ring we are looking for.

Roughly speaking, it classifies arbitrary deformations of G0, while we would like to
consider only those deformations whose underlying formal group is fixed. To make
this precise, we need to extend the theory of formal groups to the setting of structured
ring spectra. We will develop this extension in §1; in particular, we will define the
notion of a formal group pG over an arbitrary E8-ring A (Definition 1.6.1). In §2,
we specialize to the case where the E8-ring A is ppq-complete, and show that the
theories of formal groups and p-divisible groups are closely related. More precisely, we
show that every p-divisible group over A admits an identity component G˝, which is a
formal group over A (Theorem 2.0.8), and that in many cases the passage from G to
G˝ does not lose very much information (Theorem 2.3.12).

If A is an even periodic homotopy commutative ring spectrum, then we can regard
SpfpA0pCP8

qq as a 1-dimensional formal group over the commutative ring π0pAq.
However, if A is an E8-ring, we can do better: in §4, we introduce a formal group pGQ

A

defined over A itself, which we will refer to as the Quillen formal group of A. Most of
§4 is devoted to the problem of recognizing the Quillen formal group pGQ

A . Our main
result is that, for any 1-dimensional formal group pG over A, choosing an equivalence
pG » pGQ

A is equivalent to choosing a map from the 2-sphere S2 to the space of A-valued
points of pG, satisfying a certain nondegeneracy condition (Proposition 4.3.23); we
will refer to such a map as an orientation of pG (Definition 4.3.9). Given an arbitrary
1-dimensional formal group pG over an E8-ring A, we show that there is a universal
E8-algebra O

pG for which pG acquires an orientation after extending scalars to O
pG;

we will refer to O
pG as the orientation classifier of pG (Definition 4.3.14).

Let us now return to the setting of Theorem 0.0.8. Let R0 be an Fp-algebra and
let G0 be a p-divisible group over R0 which satisfies the hypotheses of Theorem 0.0.8.
Then G0 admits a universal deformation G over the spectral deformation ring Run

G0 .
The identity component G˝ is then 1-dimensional formal group over Run

G0 , which has
an orientation classifier that we denote by Ror

G0 . We will complete the proof by showing
that Ror

G0 satisfies the requirements of Theorem 0.0.8. Note here the contrast with the
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approach based on Landweber’s theorem: from our construction, it is is obvious that
Ror

G0 is an E8-ring which depends functorially on the pair pR0,G0q. What is not at
all obvious that Ror

G0 has the desired homotopy groups (or even that it is nonzero).
Let us first consider the case where R0 “ κ is a perfect field of characteristic p and

the p-divisible group G0 is connected (and can therefore be identified with the formal
group pG0 “ G˝

0, having some height n). In §5, we will show that the Kpnq-localization
LKpnqR

or
G0 can be identified with the Lubin-Tate spectrum E of Example 0.0.6, and

therefore satisfies condition pbq of Theorem 0.0.8. Roughly speaking, this follows
from Yoneda’s lemma: from the construction of Ror

G0 one can immediately extract a
universal property of its Kpnq-localization (Theorem 5.1.5), which is shared by the
spectrum E. However, we give a different argument, which exploits the universal
property of LKpnqRor

G0 together with Quillen’s work on complex bordism to give a direct
calculation of the homotopy groups of LKpnqRor

G0 (Theorem 5.4.1). As a byproduct, we
give a new proof of the existence and uniqueness of the E8-structure on E (Theorem
5.0.2), by completely different methods than those of [12].

In §6, we return to the case of a general pair pR0,G0q satisfying the requirements
of Theorem 0.0.8. By combining the results of §5 with certain localization techniques,
we show that the homotopy groups of Ror

G0 are concentrated in even degrees and
that π0pR

or
G0q agrees with the classical deformation ring Rcl

G0 . This completes the
proof of Theorem 0.0.8. It also shows that the Kpnq-localization appearing in §5 is
unnecessary: in the special case where R0 “ κ and G0 is a connected p-divisible group
of height n, the spectrum Ror

G0 is already equivalent to the Lubin-Tate spectrum of
Example 0.0.6 (and is therefore Kpnq-local). As another application, we give a quick
proof of a theorem of Snaith, which asserts that the complex K-theory spectrum KU
can obtained from the suspension spectrum Σ8`pCP8

q by inverting the Bott class
β P π2pΣ8`pCP8

qq (see Theorem 6.5.1).
Ultimately, all of the theory developed in this paper was developed in order to

better understand the elliptic cohomology theories of Example 0.0.7. Recall that
in §AV.2 , we introduced the notion of a strict elliptic curve X over an E8-ring R

(Definition AV.2.0.2 ). To such an object, one can associate a formal group pX over
R, which we will refer to as the formal completion of X. We define an orientation of
a strict elliptic curve X to be an orientation of its formal completion pX: in the case
where R is even periodic, this is equivalent to giving an equivalence of formal groups
pGQ
R »

pX. In §7, we show that oriented elliptic curves are classified by a nonconnective
spectral Deligne-Mumford stack, which we will denote by Mor

Ell (Proposition 7.2.10).
Combining the results of §6 with the Serre-Tate theorem, we show that Mor

Ell behaves
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like a “2-periodic version” of the classical moduli stack of elliptic curves MEll, from
which the assertions of Example 0.0.7 follow immediately (see Theorem 7.0.1).

Remark 0.0.9. To analyze the moduli stack of oriented elliptic curves Mor
Ell, one

needs only Theorem 0.0.8 (and its proof) for p-divisible groups of height 2. However,
one can use a similar strategy to construct “2-periodic analogues” of other moduli
spaces. For example, Theorem 0.0.8 was applied by Behrens and Lawson to construct
2-periodic versions of certain (p-adically completed) Shimura stacks and thereby
introduce a theory of topological automorphic forms; we refer the reader to [3] for
more details.
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Notation and Terminology
Throughout this paper, we will assume that the reader is familiar with the language

of higher category theory developed in [23] and [24]. We will also use some notions
of spectral algebraic geometry (particularly formal spectral algebraic geometry) as
developed in [25], and will refer frequently to the first paper in this series ([26]). Since
we will need to refer to these texts frequently, we adopt the following conventions:

pHTT q We will indicate references to [23] using the letters HTT.

pHAq We will indicate references to [24] using the letters HA.

pSAGq We will indicate references to [25] using the letters SAG.

pAV q We will denote references to [26] using the letters AV.
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For example, Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [23].
For the reader’s convenience, we now review some cases in which the conventions

of this this paper differ from those of the texts listed above, or from the established
mathematical literature.

• We will generally not distinguish between a category C and its nerve NpCq. In
particular, we regard every category C as an 8-category.

• We will generally abuse terminology by not distinguishing between an abelian
group M and the associated Eilenberg-MacLane spectrum: that is, we view the
ordinary category of abelian groups as a full subcategory of the 8-category Sp
of spectra. Similarly, we regard the ordinary category of commutative rings as a
full subcategory of the 8-category CAlg of E8-rings.

• Let A be an E8-ring. We will refer to A-module spectra simply as A-modules.
The collection of A-modules can be organized into a stable 8-category which
we will denote by ModA and refer to as the 8-category of A-modules. This
convention has an unfortunate feature: when A is an ordinary commutative ring,
it does not reduce to the usual notion of A-module. In this case, ModA is not the
abelian category of A-modules but is closely related to it: the homotopy category
hModA is equivalent to the derived category DpAq. Unless otherwise specified,
the term “A-module” will be used to refer to an object of ModA, even when A

is an ordinary commutative ring. When we wish to consider an A-module M
in the usual sense, we will say that M is a discrete A-module or an ordinary
A-module.

• Unless otherwise specified, all algebraic constructions we consider in this paper
should be understood in the “derived” sense. For example, if we are given
discrete modules M and N over a commutative ring A, then the tensor product
MbAN denotes the derived tensor product MbLAN . This may not be a discrete
A-module: its homotopy groups are given by πnpMbANq » TorAn pM,Nq. When
we wish to consider the usual tensor product of M with N over A, we will denote
it by TorA0 pM,Nq or by π0pM bA Nq.

• If M and N are spectra, we will denote the smash product of M with N by
M bS N , rather than M ^ N (here S denotes the sphere spectrum). More
generally, if M and N are modules over an E8-ring A, then we will denote the
smash product of M with N over A by M bA N , rather than M ^A N . Note
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that when A is an ordinary commutative ring and the modules M and N are
discrete, this agrees with the preceding convention.

• If C is an 8-category, we let C» denote the largest Kan complex contained
in C: that is, the 8-category obtained from C by discarding all non-invertible
morphisms.

• If A is an E8-ring, we let SpecpAq denote the nonconnective spectral Deligne-
Mumford stack given by the étale spectrum of A (denoted by SpétpAq in [25]
and [26]). We will generally not distinguish between SpecpAq and the functor
that it represents (given by the formula B ÞÑ MapCAlgpA,Bq). We will engage
in other related abuses: for example, if A is connective (or discrete), we identify
SpecpAq with the functor MapCAlgpA, ‚q restricted to connective (or discrete)
E8-rings. In the discrete case, we will also use the notation SpecpAq to refer to
the usual Zariski spectrum of A, regarded as an affine scheme.

Adic E8-Rings
Let R be a commutative ring and let I Ď A be a finitely generated ideal. Then

we can regard R as equipped with the I-adic topology, having a basis of open sets of
the form x ` In where x P R and n ě 0. We say that a topology on R is adic if it
coincides with the I-adic topology, for some finitely generated ideal I Ď R. In this
case, we will say that I is an ideal of definition for R.

Remark 0.0.10. Let R be a commutative ring with an adic topology. We say that
an element t P R is topologically nilpotent if the sequence ttnuně0 converges to zero in
the topology on R. Equivalently, t is topologically nilpotent if R admits an ideal of
definition containing t.

In this paper, we will need the following variant:

Definition 0.0.11. An adic E8-ring is a pair pA, τq, where A is an E8-ring and τ

is an adic topology on the commutative ring π0pAq. If pA, τq and pA1, τ 1q are adic
E8-rings, we let Mapcont

CAlgpA,A
1q denote the summand of MapCAlgpA,A

1q consisting of
those morphisms of E8-rings f : AÑ A1 for which the underlying ring homomorphism
π0pAq Ñ π0pA

1q is continuous (with respect to the topologies τ and τ 1).
The collection of adic E8-rings forms an 8-category CAlgad, with morphisms given

by MapCAlgadpA,A1q “ Mapcont
CAlgpA,A

1q.
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Remark 0.0.12. In the situation of Definition 0.0.11, we will generally abuse notation
by identifying an adic E8-ring pA, τq with its underlying E8-ring A; in this case, we
implicitly assume that an adic topology has been specified on π0pAq.

In this paper, we will encounter adic E8-rings for two essentially different reasons:

• If pG is a formal group over an E8-ring R, then it has an “algebra of functions”
O

pG that is naturally viewed as an adic E8-algebra over R (for example, when
R “ κ is a field, then O

pG will isomorphic to a power series ring κrrx1, . . . , xnss,
which we will want to regard as a topological ring by endowing it with the I-adic
topology for I “ px1, . . . , xnq.

• Given a p-divisible group G0 defined over an Fp-algebra R0, the spectral de-
formation ring Run

G0 is naturally viewed as an adic E8-ring, by endowing the
underlying commutative ring Rcl

G0 “ π0pR
un
G0q with the kerpρq-adic topology for

ρ : Rcl
G0 Ñ R0. Moreover, we will construct the spectral deformation ring Run

G0

as the solution to a moduli problem which is naturally defined on adic E8-rings
(see Definition 3.1.4).

Suppose that R is an E8-ring and M is an R-module. If x is an element of π0pRq,
we will say that M is pxq-complete if the limit of the tower

¨ ¨ ¨
x
ÝÑM

x
ÝÑM

x
ÝÑM

x
ÝÑM

vanishes. More generally, if I Ď π0pRq is a finitely generated ideal, then we say that
M is I-complete if it is pxq-complete for each x P I (it suffices to check this condition
for a set of generators for the ideal I; see Corollary SAG.7.3.3.3 ). We say that an adic
E8-ring R is complete if it is I-complete for some finitely generated ideal of definition
I Ď π0pRq (in this case, it is I-complete for every finitely generated ideal of definition
I Ď π0pRq).

Warning 0.0.13. Let R be an ordinary commutative ring and let I Ď π0pRq be a
finitely generated ideal. We say that R is classically I-adically complete if the canonical
map ρ : RÑ lim

ÐÝ
R{In is an isomorphism. In this case, R is also I-complete in the sense

defined above. Conversely, if R is I-complete, then the map ρ is surjective (Corollary
SAG.7.3.6.2 ), but ρ need not be injective. However, the intersection

Ş

ně0 I
n is always

a nilpotent ideal in R (Corollary SAG.7.3.6.4 ).

We refer the reader to Chapter SAG.7 for an extensive discussion of I-completeness
in the setting of E8-rings and their modules.
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Nonconnective Ring Spectra
A central theme of this paper (and the prequel [26]) is that it is sensible to consider

algebro-geometric objects of various flavors (formal groups, elliptic curves, p-divisible
groups, finite flat group schemes, etcetera) which are defined over E8-rings, rather
than merely over ordinary commutative rings. For our ultimate applications, it will be
convenient to work with E8-rings which are not assumed to be connective. However,
we should emphasize that allowing nonconnective ring spectra does not represent any
actual gain in generality. Giving a formal group over an E8-ring R is equivalent to
giving a formal group over the connective cover τě0pRq (and similarly for elliptic curves,
p-divisible groups, and so forth). The distinction between working over R and working
over τě0pRq will be completely irrelevant until §4, when we introduce the notion of an
orientation of a formal group pG. This notion is fundamentally “nonconnective”: a
formal group over a connective E8-ring R can never be oriented (except in the trivial
case R » 0).

1 Formal Groups
Let κ be a field. A smooth, connected, commutative formal group over κ is an

abelian group object in the category of formal κ-schemes which is isomorphic (as a
formal scheme) to a formal affine space pAn “ Spfpκrrt1, . . . , tnssq for some n ě 0. We
will henceforth refer to such objects simply as formal groups over κ.

Our goal in this section is to introduce a more general notion of formal group,
where we replace the ground field κ by an arbitrary E8-ring R. Let us assume
for simplicity that R is connective. We will define a formal group over R to be a
functor of 8-categories pG : CAlgcn

R Ñ Modcn
Z , where CAlgcn

R denotes the 8-category
of connective E8-algebras over R and Modcn

Z denotes the 8-category of connective
Z-module spectra (or, equivalently, the 8-category of simplicial abelian groups). We
will require this functor to have a certain representability property: namely, the
underlying S-valued functor

CAlgcn
R

pG
ÝÑ Modcn

Z
Ω8
ÝÝÑ S

should be (representable by) a very particular type of formal R-scheme, which we will
refer to as a formal hyperplane.

In the special case where R “ κ is a field, we define a formal hyperplane over κ
to be a formal scheme over κ which has the form pAn “ Spfpκrrt1, . . . , tnssq, for some
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n ě 0. When extending this definition to the case of an arbitrary E8-ring R, we
encounter two (unrelated) subtleties:

p1q Even when R is an ordinary commutative ring, we do want to require every
formal hyperplane over R to be isomorphic (as a formal scheme) to a formal
affine space pAn “ SpfpRrrt1, . . . , tnssq: this requirement cannot be tested Zariski-
locally on R. Instead, we allow objects which are isomorphic to the the formal
completion of some vector bundle E Ñ SpecpRq along its zero section.

p2q In the case where R is an E8-ring, the notion of a formal power series ring over
R is potentially ambiguous. In general, there can be many R-algebras A with
homotopy given by π˚pAq » π˚pRqrrt1, . . . , tnss, and we would like to allow the
formal spectrum of any such algebra to qualify as a formal hyperplane over R.

Most of this section is devoted to developing a good theory of formal hyperplanes
over an arbitrary E8-ring R. We begin by observing that over a field κ, the datum of
a formal hyperplane X can be encoded in (at least) three closely related ways:

paq One can consider the ring of functions OX : this is an algebra over κ which is
isomorphic to a formal power series ring κrrt1, . . . , tnss. In particular, it is a
local ring which is complete with respect to its maximal ideal m “ pt1, . . . , tnq.

pbq One can consider the coalgebra of distributions CpXq: that is, the collection
of all κ-linear maps OX Ñ κ which are m-adically continuous (that is, they
annihilate some power of the maximal ideal m Ď OX).

pcq One can consider the functor of points hX : CAlg♥
κ Ñ Set, which assigns to

each commutative κ-algebra A the set hXpAq “ Homcont
κ pOX , Aq of κ-algebra

homomorphisms from OX to A which are m-adically continuous (that is, they
annihilate some power of the maximal ideal m).

Each of these perspectives comes with advantages and disadvantages. Approach
paq is perhaps the most concrete: generally speaking, algebras are easier to work with
than coalgebras (or presheaves on the category of commutative algebras). However,
algebras of the form OX come with some additional baggage: they should really be
regarded as topological algebras (with respect to the m-adic topology). Replacing
the algebra OX by its continuous dual CpXq is a convenient way of “remembering”
this topology, and the passage from algebras to coalgebras allows us to avoid various
technical complications. For example, if Y is another formal hyperplane over κ, then

14



the coalgebra of distributions on the product X ˆ Y is given by the tensor product
CpX ˆ Y q “ CpXq bκ CpY q, while the algebra OXˆY is instead computed by a
completed tensor product OX pbκ OY . Approach pcq is perhaps the most abstract, but
is extremely useful (perhaps even indispensable in the homotopy-theoretic context)
when we want to contemplate group structures on formal hyperplanes.

Our primary objective in this section is to show that each of these approaches
remains viable when we replace the field κ by an arbitrary E8-ring R. More precisely,
we will introduce an 8-category HyppRq of formal hyperplanes over R which admits
three equivalent incarnations:

pa1q The 8-category HyppRq can be identified with a full subcategory of the 8-
category pCAlgad

R q
op of adic E8-algebras over R.

pb1q The 8-category HyppRq can be identified with a full subcategory of the 8-
category cCAlgR of commutative coalgebras over R (see Definition 1.2.1).

pc1q When R is connective, the 8-category HyppRq can be identified with a full
subcategory of the 8-category FunpCAlgcn

R ,Sq of S-valued functors on the 8-
category of connective E8-algebras over R.

We will begin by studying approach pb1q. In §1.1, we review the theory of commuta-
tive coalgebras over a commutative ring R (Definition 1.1.1) and recall the construction
of the divided power coalgebra Γ˚RpMq associated to a flat R-module M (Construction
1.1.11). In §1.2, we study a generalization of this theory, where we allow R to be an
arbitrary E8-ring. We say that a commutative coalgebra C over R is smooth if it is flat
as an R-module and π0pCq is isomorphic to the divided power coalgebra of projective
π0pRq-module of finite rank (Definition 1.2.4). The collection of smooth coalgebras
over R can be organized into an 8-category, which we will denote by cCAlgsm

R ; this
8-category can be regarded as the coalgebraic incarnation of our theory of formal
hyperplanes over R.

We study the relationship between approaches pa1q and pb1q in §1.3. For any E8-ring
R, the formation of R-linear duals C ÞÑ C_ carries commutative coalgebras over R
to E8-algebras over R. When C is a smooth coalgebra over R, there is a canonical
topology on the commutative ring π0pC

_q, which endows C_ with the structure of an
adic E8-ring (see Proposition 1.3.10). Our main result asserts that the construction
C ÞÑ C_ determines a fully faithful embedding of 8-categories

θ : cCAlgsm
R ãÑ pCAlgad

R q
op
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(see Theorem 1.3.15). We will describe the essential image of this embedding in §1.4:
roughly speaking, it consists of those adic E8-algebras A over R with homotopy given
by π˚pAq » π˚pRqrrt1, . . . , tnss, at least Zariski-locally on | SpecpRq| (see Proposition
1.4.11).

Assume now that R is connective. In §1.5, we will associate to each flat coalgebra
C over R a functor cSpecpCq : CAlgcn

R Ñ S, which we will refer to as the cospectrum
of C (see Construction 1.5.4). Roughly speaking, the functor cSpecpCq carries an
object R1 P CAlgcn

R to the space GLikepC 1q of grouplike elements of the coalgebra
C 1 “ pR1 bR Cq P cCAlgcn

R1 . In the special case where C is smooth, we show that
the cospectrum cSpecpCq can also be described as the formal spectrum of the adic
E8-algebra C_, whose value on R1 P CAlgcn

R is given by the space Mapcont
CAlgRpC

_, R1q

of E8-algebra maps from C_ to R1 for which the underlying ring homomorphism
π0pC

_q Ñ π0pR
1q is continuous. (Proposition 1.5.8). We then define a formal

hyperplane over R to be a functor X : CAlgcn
R Ñ S which has the form cSpecpCq for

some C P cCAlgsm
R (or, equivalently, which has the form SpfpAq where A P CAlgad

R

belongs to the essential image of the functor θ above); see Definition 1.5.10.
In §1.6, we apply our theory of formal hyperplanes to introduce the notion of

a formal group pG over an E8-ring R (Definition 1.6.1). Much of the remainder of
this paper (particularly §2) is devoted to showing that the theory of formal groups
over E8-rings behaves as one might expect: for example, there is a close connection
between formal groups and p-divisible groups whenever R is ppq-complete. However,
there are also a few surprises: for example, we show that the formal multiplicative
group pGm can be lifted to a formal group over the sphere spectrum S (Construction
1.6.16), but the formal additive group pGa cannot (Proposition 1.6.20).

1.1 Coalgebras over Commutative Rings
In this section, we review the classical theory of (flat) commutative coalgebras

over a commutative ring R. In particular, we recall the construction of the divided
power coalgebra Γ˚RpMq associated to a flat R-module M (Construction 1.1.11) and
characterize it by a universal property (Proposition 1.1.16). We will say that a
coalgebra C over R is smooth if it has the form Γ˚RpMq, where M is a projective
R-module of finite rank (Definition 1.1.14). We show that class of smooth coalgebras
satisfies (effective) descent with respect to the étale topology (Proposition 1.1.19).
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1.1.1 Flat Coalgebras

We begin by reviewing some commutative algebra.

Definition 1.1.1. Let R be a commutative ring. A flat commutative coalgebra over R
is a triple pC,∆C , εCq, where C is a flat R-module, ∆C : C Ñ C bR C is an R-module
homomorphism (called the comultiplication on C) and εC : C Ñ R is an R-module
homomorphism (called the counit of C) for which the diagrams

C
∆C

{{

∆C

##

C
„

##

∆C // C bR C
εCbid

xx
C bR C

σ // C bR C R bR C

C
∆C //

∆C

��

C bR C

∆Cbid
��

C bR C
idb∆C// C bR C bR C

commute (here σ denotes the automorphism of C bR C given by σpxb yq “ y b x).
Let pC,∆C , εCq and pC 1,∆C1 , εC1q be flat commutative coalgebras over R. A coalge-

bra homomorphism from pC,∆C , εCq to pC 1,∆C1 , εC1q is an R-algebra homomorphism
f : C Ñ C 1 satisfying εC1 ˝ f “ εC and ∆C1 ˝ f “ pf b fq ˝ ∆C . We let cCAlg5R
denote the category whose objects are flat commutative coalgebras over R and whose
morphisms are coalgebra homomorphisms

Remark 1.1.2. In the situation of Definition 1.1.1, the counit εC : C Ñ R is uniquely
determined by the comultiplication ∆C : C Ñ C bR C.

Warning 1.1.3. Our terminology is slightly nonstandard; most authors use the term
cocommutative coalgebra for what we have opted to call a commutative coalgebra.

Remark 1.1.4. We will generally abuse terminology by identifying a flat commutative
coalgebra pC,∆C , εCq with its underlying R-module C; in this case, we implicitly
assume that a comultiplication ∆C : C Ñ C bR C and a counit map εC : C Ñ R have
also been specified.

Remark 1.1.5. Let R be a commutative ring and let Mod5R be the category of flat
R-modules. Then Mod5R is a symmetric monoidal category (with respect to the usual
tensor product of R-modules bR), and cCAlg5R can be identified with the category of
commutative coalgebra objects of Mod5R.
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Remark 1.1.6 (Grouplike Elements). Let R be a commutative ring and let C be
a flat commutative coalgebra over R. An element η P C is said to be grouplike if it
satisfies the identities ∆Cpηq “ η b η and εCpηq “ 1. Equivalently, η is grouplike if
multiplication by η induces a coalgebra homomorphism RÑ C.

Remark 1.1.7 (Primitive Elements). Let R be a commutative ring and let C be a
flat commutative coalgebra over R. Suppose we are given a grouplike element η P C.
We let PrimηpCq “ tx P C : ∆Cpxq “ ηb x` xb ηu. We refer to PrimηpCq as the set
of η-primitive elements of C. Note that PrimηpCq is an R-submodule of C.

Warning 1.1.8. Let R be a commutative ring. Then both the abelian category
Mod♥

R of discrete R-modules and the stable 8-category ModR of R-module spectra
admit symmetric monoidal structures. Consequently, we can consider commutative
coalgebra objects in both Mod♥

R (that is, coalgebras in the sense of ordinary algebra)
and in the 8-category ModR. However, the inclusion functor Mod♥

R ãÑ ModR is only
a lax symmetric monoidal functor, and generally does not carry coalgebra objects
to coalgebra objects. For our applications, we will only be interested in studying
commutative coalgebra objects of Mod♥

R which remain commutative coalgebras when
regarded as objects of the 8-category ModR. For this reason, we consider only flat
commutative coalgebras in Definition 1.1.1 (note that Mod5R can be regarded as a
symmetric monoidal subcategory of both Mod♥

R and ModR).

1.1.2 Divided Power Coalgebras

We now isolate an important class of commutative coalgebras.

Notation 1.1.9. Let R be a commutative ring and let M be a flat R-module. For
each integer n ě 0, the symmetric group Σn acts on the n-fold tensor product Mbn.
We let ΓnRpMq denote the submodule of Mbn given by the invariants for the action of
Σn, and we let Symn

RpMq denote the quotient of Mbn given by coinvariants for the
action of Σn. We let Γ˚RpMq and Sym˚

RpMq denote the graded R-modules given by
the formulae

Γ˚RpMq “
à

ně0
ΓnRpMq Sym˚

RpMq “
à

ně0
Symn

RpMq.

Warning 1.1.10. In Notation 1.1.9, the formation of invariants and coinvariants
is carried out in the abelian category Mod♥

R of discrete R-modules. If R is not a
Q-algebra, then this formation is not compatible with the inclusion Mod♥

R ãÑ ModR.
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In particular, the symmetric algebra Sym˚
RpMq is the free commutative R-algebra

generated by M in the sense of classical commutative algebra, and is generally not
the free E8-algebra over R generated by M .

The usual multiplication on the symmetric algebra Sym˚
RpMq has a dual incarna-

tion:

Construction 1.1.11. Let R be a commutative ring and let M be a flat R-module
which admits a direct sum decomposition M »M 1‘M2. For every pair of nonnegative
integers n1 and n2, the evident projection map Mbn1`n2 ÑM 1bn1bRM

2bn2 determines
maps

µn
1,n2 : Γn1`n2R pMq Ñ Γn1R pM 1

q bR Γn2R pM2
q.

Summing over n1 and n2 then yields an isomorphism of graded R-modules

µ : Γ˚RpMq » Γ˚RpM 1
‘M2

q » Γ˚RpM 1
q bR Γ˚RpM2

q.

For any flat R-module M , the diagonal map M ÑM‘M induces a map of R-modules

∆ : Γ˚RpMq Ñ Γ˚RpM ‘Mq
µ
ÝÑ Γ˚RpMq bR Γ˚RpMq.

It is not difficult to verify that ∆ exhibits Γ˚RpMq as a commutative coalgebra in the
category of (flat) R-modules. We will refer to Γ˚RpMq (with this coalgebra structure)
as the divided power coalgebra of M .

Remark 1.1.12. In the situation of Construction 1.1.11, the counit for the coalgebra
Γ˚RpMq is the map ε : Γ˚RpMq Ñ R which is the identity on Γ0

RpMq » R and vanishes
on ΓnRpMq for n ą 0.

Remark 1.1.13. In the situation of Notation 1.1.9, there are additional structures on
Sym˚

RpMq and Γ˚RpMq: both can be regarded as (commutative and cocommutative)
Hopf algebras over R. However, in the discussion which follows, these additional
structures will play no role: we will be interested only in the algebra structure on
Sym˚

RpMq and the coalgebra structure on Γ˚RpMq.

Definition 1.1.14. Let R be a commutative ring. A smooth coalgebra over R is a
flat commutative coalgebra C over R which is isomorphic to Γ˚RpMq, where M is a
projective R-module of finite rank. If M has rank r, then we will say that the smooth
coalgebra C has dimension r. We let cCAlgsm

R denote the full subcategory of cCAlg5R
spanned by the smooth coalgebras over R.
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Remark 1.1.15. Let R be a commutative ring. Then the collection of smooth
coalgebras over R is closed under tensor products (this follows immediately from the
analysis of Construction 1.1.11).

Divided power coalgebras can be characterized by the following universal property:

Proposition 1.1.16. Let R be a commutative ring, let M be a flat R-module, and
let C P cCAlg5R. Then composition with the projection map Γ˚RpMq Ñ Γ1

RpMq » M

induces a monomorphism

θ : HomcCAlg5R
pC,Γ˚RpMqq Ñ HomMod5R

pC,Mq,

whose image is the collection of R-module homomorphisms f : C ÑM which satisfy
the following condition:

p˚q For each element x P C, the composite map

R
x
ÝÑ C

∆pnqC
ÝÝÝÑ Cbn

fbn
ÝÝÑMbn

vanishes for almost every integer n ě 0; here ∆pnq
C is the map given by iterated

comultiplication on C.

Proof. We explicitly construct a (partially defined) inverse to the map θ. Let f : C Ñ
M be any R-module homomorphism. For each n ě 0, let f pnq denote the composition

C
∆pnqC
ÝÝÝÑ Cbn

fbn
ÝÝÑMbn. It follows from the cocommutativity of C that the map f pnq

factors through the submodule ΓnpMq ĎMbn. If f satisfies condition p˚q, then we can
define a single map F : C Ñ Γ˚RpMq by the formula F pxq “

ř

ně0 f
pnqpxq. We leave it

to the reader to verify that F : C Ñ Γ˚RpMq is the unique coalgebra homomorphism
satisfying θpF q “ f .

Example 1.1.17 (Grouplike Elements of Γ˚RpMq). Let R be a commutative ring and
let M be a projective module of finite rank over R. Applying Proposition 1.1.16 in
the case C “ R, we obtain a bijection

tGrouplike elements of Γ˚RpMqu » tR-linear maps f : M_
Ñ
?
Ru,

where
?
R denotes the nilradical of R.

In particular, if R is reduced, then Γ˚RpMq has a unique grouplike element.
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Warning 1.1.18. Let R be a commutative ring and let C be a smooth coalgebra over
R. Then C is isomorphic to a divided power coalgebra Γ˚RpMq, where M is a projective
R-module of finite rank. However, the module M is not functorially determined by C.
We can recover the module M by choosing a grouplike element η P R: in this case,
there is an isomorphism M » PrimηpCq. However, the element η need not be unique
if R is non-reduced.

1.1.3 Descent For Smooth Coalgebras

Let f : R Ñ R1 be a homomorphism of commutative rings. Then extension
of scalars along f determines a symmetric monoidal functor Mod5R Ñ Mod5R1 , and
therefore determines a functor f˚ : cCAlg5R Ñ cCAlg5R1 . This functor carries smooth
coalgebras over R to smooth coalgebras over R1: note that ifM is a projective R-module
of finite rank, then we have a canonical isomorphism f˚pΓ˚RpMqq » Γ˚R1pR1 bR Mq.
We can therefore regard the construction R ÞÑ cCAlgsm

R as a functor from the category
of commutative rings to the 2-category of (essentially small) categories.

Proposition 1.1.19. The construction R ÞÑ cCAlgsm
R satisfies descent for the étale

topology.

The proof of Proposition 1.1.19 will require some preliminaries.

Lemma 1.1.20. Let R be a commutative ring and let C be a flat commutative coalgebra
over R. Assume that:

paq The coalgebra C contains a grouplike element η.

pbq There exists a faithfully flat map RÑ R1 such that C 1 “ R1 bR C is a smooth
coalgebra over R1.

Then C is smooth.

Proof. Set M “ PrimηpCq. Using the flatness of R1 over R, we obtain an isomorphism
R1 bR M » Primη1pC

1q, so that M is a projective R-module of finite rank. Set
C0 “ Γ˚RpMq, so that C0 is a smooth coalgebra over R equipped with a grouplike
element η0 P C0 and a canonical isomorphism M » Primη0pC0q. For every R-algebra
A, let CA and C0A denote the flat commutative coalgebras over A given by AbRC and
AbRC0, respectively. We will abuse notation by identifying η and η0 with their images
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in CA and C0A, respectively. Let F pAq denote the set of all coalgebra isomorphisms
u : CA » C0A for which upηq “ η0 and the induced map

AbRM » PrimηpCAq
u
ÝÑ Primη0pC0Aq » AbRM

is the identity. Then the construction A ÞÑ F pAq is a sheaf for the flat topology, and
we wish to show that this sheaf admits a global section.

Note that F is a torsor for the sheaf of groups G which assigns to each R-algebra
A is the collection of coalgebra automorphisms of C0A which restrict to the identity
on ΓiRpMq for i ď 1. The sheaf G admits a filtration by normal subgroups

¨ ¨ ¨ Ñ G 3 Ñ G 2 Ñ G 1 “ G ,

where G npAq is the subgroup of G pAq consisting of those automorphisms of C0A which
are the identity on ΓiRpMq for i ď n. Moreover, the canonical map G Ñ lim

ÐÝ
G {G n is

an isomorphism. It follows that F can be identified with the inverse limit lim
ÐÝ

F {G n.
Consequently, to prove Lemma 1.1.20, it will suffice to produce a compatible family
of global sections sn P pF {G nqpRq. In fact, we claim that each of the transition
maps pF {G nqpRq Ñ pF {G n´1qpRq is surjective: this follows from the fact that the
quotient F {G n is a pG n´1 {G nq-torsor over F {G n´1, which is automatically trivial
because the sheaf G n´1 {G n is quasi-coherent (and therefore has vanishing cohomology
on the affine scheme SpecR, with respect to the flat topology).

Lemma 1.1.21. Let R be a commutative ring and let C be a flat commutative coalgebra
over R. Suppose that there exists a nilpotent ideal I Ď R such that C{IC is a smooth
coalgebra over R{I. Then C is a smooth coalgebra over R.

Proof. Without loss of generality, we may assume that I2 “ 0. Fix an isomorphism
α : C{IC » Γ˚R{IpMq, where M is a projective R{I-module of finite rank. Then α is
classified by a map of R{I-modules f0 : C{IC ÑM , where f0 satisfies condition p˚q
of Proposition 1.1.16. Write M “M{IM , where M is a projective R-module of finite
rank. We have a short exact sequence

HomRpC,Mq Ñ HomRpC,M{IMq Ñ Ext1
RpC, IMq,

and the flatness of C as an R-module supplies an isomorphism Ext1
RpC, IMq »

Ext1
R{IpC{IC, IMq. The existence of the isomorphism α shows that C{IC is a projec-

tive module over R{I, so the group Ext1
R{IpC{IC, IMq vanishes. It follows that the

composite map C Ñ C{IC
f0
ÝÑM{IM can be lifted to an R-module homomorphism
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f : C ÑM . Since f0 satisfies condition p˚q of Proposition 1.1.16 and I is nilpotent,
the map f also satisfies condition p˚q of Proposition 1.1.16. It follows that f extends
(uniquely) to a coalgebra homomorphism α : C Ñ Γ˚RpMq, whose reduction modulo I
is the isomorphism α. Because I is nilpotent (and both C and Γ˚RpMq are flat over R),
it follows that α is also an isomorphism, so that C is smooth over R as desired.

Proof of Proposition 1.1.19. It follows from the usual theory of faithfully flat descent
that the construction R ÞÑ cCAlg5R satisfies descent for the étale topology (in fact, it
even satisfies descent for the fpqc topology). It will therefore suffice to show that if R
is a commutative ring and C is a flat commutative coalgebra over R with the property
that C 1 “ R1 bR C is smooth for some faithfully flat étale R-algebra R1, then C is
itself smooth.

Assume first that R is reduced. In this case, R1 is also reduced, so that C 1 contains
a unique grouplike element η1 (Example 1.1.17). Set C2 “ R1 bR R

1 bR C. Since
R1 bR R

1 is also reduced, the commutative coalgebra C2 also has a unique grouplike
element. Using the exactness of the diagram

0 // C // C 1 //// C2,

we deduce that η1 is the image of a (unique) element η P C, which is also grouplike. It
now follows from Lemma 1.1.20 that C is smooth over R, as desired.

We now treat the general case. Let J Ď R be the nilradical of R. The preceding
argument shows that C{JC admits a grouplike element ηJ , when regarded as a
commutative coalgebra over R{J . Choose an element ηJ P C representing ηJ . For
each ideal I Ď J , let ηI denote the image of ηJ in the quotient C{IC. Since ηJ is
grouplike, we can choose some finitely generated ideal I Ď J such that ηI is grouplike.
Applying Lemma 1.1.20 again, we conclude that C{IC is a smooth coalgebra over
R{I. Since I is a nilpotent ideal, Lemma 1.1.21 guarantees that C is smooth over
R.

Warning 1.1.22. The analogue of Proposition 1.1.19 can fail if we replace the étale
topology by some finer topology, like the fppf topology. For example, suppose that
k is a field of characteristic p ą 0 containing an element x which has no pth root.
Let A be the completion of the polynomial ring krts with respect to the maximal
ideal ptp ´ xq. Then the complete local ring A can be written as the dual C_ for an
essentially unique commutative coalgebra C over k. The coalgebra C is not smooth
(since it contains no grouplike elements), but the tensor product k1 bk C is smooth
over k1, where k1 “ kp p

?
xq.
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1.2 Coalgebras over E8-Rings
In this section, we review the theory of commutative coalgebras over an arbitrary

E8-ring R. In particular, we introduce an 8-category cCAlgsm
R of smooth coalgebras

over R (Definition 1.2.4). In §1.2.2 we study the behavior of the 8-category cCAlgsm
R

as the E8-algebra R varies and summarize some basic deformation-theoretic principles
which can be used to reduce questions about (smooth) coalgebras over E8-rings to
questions about smooth coalgebras over commutative rings.

1.2.1 Commutative Coalgebras

Recall that, to any symmetric monoidal 8-category C, we can associate an
8-category cCAlgpCq of commutative coalgebra objects of C, given by the formula
cCAlgpCq “ CAlgpCop

qop (see §AV.3.1 ). We now specialize this observation to the
case where C “ ModR, for some E8-ring R.

Definition 1.2.1. Let R be an E8-ring. We will denote the 8-category cCAlgpCq by
cCAlgR and refer to its objects as commutative coalgebras over R. We will say that a
commutative coalgebra C over R is flat if it is flat when regarded as an R-module. We
let cCAlg5R denote the full subcategory of cCAlgR spanned by the flat R-coalgebras.

Remark 1.2.2. Let R be an E8-ring and let Mod5R denote the full subcategory
of ModR spanned by the flat R-algebras. Then the subcategory Mod5R Ď ModR
contains R and is closed under tensor products, and therefore inherits the structure
of a symmetric monoidal 8-category. Moreover, we can identify cCAlg5R with the
8-category of commutative coalgebra objects of Mod5R.

Remark 1.2.3. For any E8-ring R, the construction M ÞÑ π0pMq determines sym-
metric monoidal functor from the 8-category of flat modules over R to the ordinary
category of flat modules over π0pRq. Passing to commutative coalgebra objects, we
obtain a functor π0 : cCAlg5R Ñ cCAlg5π0pRq whose domain is the 8-category of com-
mutative coalgebras introduced in Definition 1.2.1, and wose codomain the ordinary
category of commutative coalgebras introduced in Definition 1.1.1. If the E8-ring R is
discrete, then this functor is an equivalence of 8-categories: that is, the two notions
of commutative coalgebra are the same.

Definition 1.2.4. Let R be an E8-ring and let C be a commutative coalgebra over
R. We will say that C is smooth if it is flat (when regarded as an R-module) and the
commutative coalgebra π0pCq is smooth over π0pRq, in the sense of Definition 1.1.14.
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We will say that a smooth coalgebra C has dimension r if π0pCq has dimension r over
π0pRq, in the sense of Definition 1.1.14.

Warning 1.2.5. Let R be an E8-ring and let C be a smooth coalgebra over R. If
R is discrete, then C admits a grouplike element: that is, there exists a map of
commutative coalgebras R Ñ C. However, such a map need not exist if R is not
discrete.

Remark 1.2.6. Let R be an E8-ring. If C and D are smooth coalgebras over R, then
the tensor product CbRD is also a smooth coalgebra over R (this follows immediately
from Remark 1.2.6). Note that the tensor product C bR D can be identified with the
Cartesian product of C and D in the 8-category cCAlgR.

Remark 1.2.7 (Functoriality). Let f : R Ñ R1 be a morphism of E8-rings. Then
extension of scalars along f determines a symmetric monoidal functor ModR Ñ

ModR1 . We therefore obtain a functor f˚ : cCAlgR Ñ cCAlgR1 . This functor carries
flat commutative coalgebras over R to flat commutative coalgebras over R1, and
smooth commutative coalgebras over R to smooth commutative coalgebras over
R1. Consequently, we can view the constructions R ÞÑ cCAlgR, R ÞÑ cCAlg5R, and
R ÞÑ cCAlgsm

R as functors from the 8-category CAlg of E8-rings to the 8-category
yCat8 of (not necessarily small) 8-categories.

1.2.2 Deformation Theory of Coalgebras

We now record a few simple observations about the behavior of cCAlgR as the
E8-ring R varies.

Proposition 1.2.8. Let R be an E8-ring and let τě0R be the connective cover of R.
Then the extension of scalars functors

cCAlg5τě0R Ñ cCAlg5R cCAlgsm
τě0R Ñ cCAlgsm

R

are equivalences of 8-categories.

Proof. By virtue of Proposition HA.7.2.2.16 , the extension of scalars functor

Mod5τě0R Ñ Mod5R

is an equivalence of (symmetric monoidal) 8-categories. The desired result now follows
by passing to commutative coalgebra objects.
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Remark 1.2.9. In the situation of Proposition 1.2.8, both of the inverse equivalences
are given by the construction C ÞÑ τě0C.

Remark 1.2.10. Let R be an E8-ring and let C be a smooth coalgebra over R. Then
C is a projective R-module: that is, it is equivalent (as an R-module) to a direct
summand of a coproduct of copies of R. To prove this, we may assume without loss
of generality that R is connective (Proposition 1.2.8), in which case it follows from
Proposition HA.7.2.2.18 , since C is flat over R and π0pCq is a projective module over
π0pRq.

Proposition 1.2.11 (Nilcompleteness). Let R be a connective E8-ring. Then the
canonical maps

cCAlg5R Ñ lim
ÐÝ

cCAlg5τďnR cCAlgsm
R Ñ lim

ÐÝ
cCAlgsm

τďnR

are equivalences of 8-categories.

Proof. It follows from Proposition SAG.19.2.1.3 that the canonical map Mod5R Ñ
lim
ÐÝ

Mod5τďnR is an equivalence of (symmetric monoidal) 8-categories; the desired
result now follows by passing to commutative coalgebra objects.

Proposition 1.2.12 (Clutching). Suppose we are given a pullback diagram of E8-
rings

A //

��

A0

��
A1 // A01.

Then:

p1q The natural map cCAlgA Ñ cCAlgA0 ˆcCAlgA01
cCAlgA1 is fully faithful.

p2q Assume that the E8-rings A0, A1, and A01 are connective and that the ring
homomorphisms π0pA0q Ñ π0pA01q Ð π0pA1q are surjective. Then the natural
map

cCAlg5A Ñ cCAlg5A0 ˆcCAlg5A01
cCAlg5A1

is an equivalence of 8-categories.

p3q In the situation of p2q, suppose that the map π0pAq Ñ π0pA0q has nilpotent
kernel. Then the canonical map

cCAlgsm
A Ñ cCAlgsm

A0 ˆcCAlgsm
A01

cCAlgsm
A1

is an equivalence of 8-categories.
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Proof. Assertion p1q follows from Theorem SAG.16.2.0.2 , and assertion p2q follows
from p1q together with Proposition SAG.16.2.3.1 . To deduce p3q from p2q, it will suffice
to show that if C P cCAlg5A has the property that A0 bA C is a smooth coalgebra
over A0, then C is a smooth coalgebra over A. This follows immediately from Lemma
1.1.21.

Proposition 1.2.13. The construction R ÞÑ cCAlgsm
R satisfies descent for the étale

topology.

Proof. Since the construction R ÞÑ ModR satisfies faithfully flat descent (see Theorem
SAG.D.6.3.5 ), the construction R ÞÑ cCAlgR also satisfies faithfully flat descent. It
will therefore suffice to show that if C is a commutative coalgebra over R and there
exists a faithfully flat étale map R1 Ñ R such that R1 bR C is a smooth coalgebra
over R1, then C is a smooth coalgebra over R. This is an immediate consequence of
the corresponding assertion in the discrete case (Proposition 1.1.19).

1.2.3 Compactness of Coalgebras

Let R be an E8-ring. Then the 8-category cCAlgR is presentable (Corollary
AV.3.1.4 ). In particular, the 8-category cCAlgR admits small colimits, which are
preserved by the forgetful functor cCAlgR Ñ ModR (Proposition AV.3.1.2 ). Since
the full subcategory Mod5R Ď ModR is closed under small filtered colimits, it follows
that the full subcategory cCAlg5R Ď cCAlgR is also closed under filtered colimits. In
particular, the 8-category cCAlg5R admits small filtered colimits (which are preserved
by the forgetful functor cCAlg5R Ñ Mod5R). It therefore makes sense to ask if an object
C P cCAlg5R is compact. We will need the following result:

Proposition 1.2.14. Let R be a connective E8-ring which is n-truncated for some
n " 0. Let C be a commutative coalgebra over R which is projective of finite rank
when regarded as an R-module. Then C is a compact object of the 8-category cCAlg5R.

Warning 1.2.15. In the situation of Proposition 1.2.14, the commutative coalgebra
C need not be compact as an object of the larger 8-category cCAlgR. For example,
let R “ Q be the field of rational numbers and take C “ Q. For any vector
space V over Q, the direct sum Q‘ΣpV q can be endowed with the structure of a
commutative coalgebra over Q, depending functorially on V . One can show that the
mapping space MapcCAlgQ

pQ,Q‘ΣpV qq is connected with fundamental group pLpV q “

lim
ÐÝ

LpV q{LnpV q; here LpV q denotes the free Lie algebra on V and LnpV q Ď LpV q
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denotes the nth stage of its lower central series. Note that the construction V ÞÑ pLpV q

does not commute with filtered colimits.

Proposition 1.2.14 is an immediate consequence of the following variant of Lemma
SAG.5.2.2.6 , applied to the 8-category C “ Mod5R:

Proposition 1.2.16. Let C be a symmetric monoidal 8-category which admits filtered
colimits, and suppose that the tensor product b : Cˆ C Ñ C preserves filtered colimits.
Let C P cCAlgpCq. Assume that C is equivalent to an n-category for some integer
n ě 1 and that C is compact object when viewed as an object of C. Then C is a
compact object of cCAlgpCq.

Proof. Since C is equivalent to an n-category, the forgetful functor

cCAlgpCq “ CAlgpCop
q
op
Ñ AlgEmpC

op
q
op

is an equivalence for m ą n (Corollary HA.5.1.1.7 ). It will therefore suffice to show that
C is compact when viewed as an object of AlgEmpC

op
qop, for each m ě 1. We proceed

by induction on m. If m ą 1, then Theorem HA.5.1.2.2 provides an equivalence
AlgEmpC

op
qop » AlgE1pAlgEm´1pC

op
qqop, and our inductive hypothesis allows us to

assume that C is compact when viewed as an object of C 1 “ AlgEm´1pC
op
qop. Note

that that the forgetful functor C 1 Ñ C is conservative and preserves filtered colimits
(Corollary HA.3.2.2.4 ), so that the tensor product on C 1 also preserves filtered colimits
separately in each variable. We may therefore replace C by C 1 and thereby reduce to
the case m “ 1: that is, we wish to show that C is compact when viewed as an object
of the 8-category AlgpCop

qop of associative coalgebra objects of C. It will actually be
more convenient to prove the following variant:

p˚q The coalgebra C is compact when viewed as an object of the 8-category
Algnu

pCop
qop of nonunital associative coalgebra objects of C.

Let us assume p˚q for the moment, and show that it guarantees that C is also compact
when viewed as an object of AlgpCop

qop. Let tDαu be a filtered diagram in AlgpCop
qop

having a colimit D; we wish to show that the upper horizontal map in the diagram

lim
ÝÑ

MapAlgpCopqpDα, Cq //

��

MapAlgpCopqpD,Cq

��
lim
ÝÑ

MapAlgnupCopqpDα, Cq //MapAlgnupCopqpD,Cq
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is a homotopy equivalence. This follows from Theorem HA.5.4.3.5 (which guarantees
that the preceding diagram is a pullback square) together with assumption p˚q (which
implies that the lower horizontal map is a homotopy equivalence).

It remains to prove p˚q. Since C is equivalent to an n-category, the forgetful functor
Algnu

pCop
q Ñ Algnu

AkpC
op
q is an equivalence of 8-categories for k ě n ` 2 (Corollary

HA.4.1.6.17 ). It will therefore suffice to show that C is cocompact when viewed as
an object of Algnu

AkpC
op
qop for each k ě 1. We proceed by induction on k. In the case

k “ 1, the forgetful functor Algnu
AkpC

op
qop Ñ C is an equivalence (Example HA.4.1.4.6 )

and the desired result follows from our assumption that C is compact as an object
of C. Let us therefore assume that k ě 2. Choose a diagram tDαu in Algnu

AkpC
op
qop

indexed by a filtered partially ordered set A, having colimit D. We wish to show that
the upper horizontal map in the diagram

lim
ÝÑ

MapAlgnu
Ak
pCopqpDα, Cq //

��

MapAlgnu
Ak
pCopqpD,Cq

��
lim
ÝÑ

MapAlgnu
Ak´1

pCopqpDα, Cq //MapAlgnu
Ak´1

pCopqpD,Cq

is a homotopy equivalence. Since the lower horizontal map is a homotopy equivalence
by our inductive hypothesis, it will suffice to show that this diagram is a homotopy
pullback square. We now show that the preceding diagram induces a homotopy
equivalence after taking vertical homotopy fibers with respect to any choice of base
point in lim

ÝÑ
MapAlgnu

Ak´1
pCopqpDα, Cq, which we can assume is represented by a morphism

f : Dα Ñ C in Algnu
Ak´1

pCop
q for some α P A. Using Theorem HA.4.1.6.13 , we are

reduced to showing that the diagram

lim
ÝÑβěα

MapCpC,D
bk
β q

//

��

MapCpC,D
bkq

��

lim
ÝÑβěα

MapCpC,D
bk
β q

Sk´3 //MapCpC,D
bkqS

k´3

is a homotopy pullback square, which follows from our assumptions that C is compact
in C and that the tensor product on C commutes with filtered colimits.

1.3 Duality for Coalgebras
Let κ be a field and let C be a (flat) commutative coalgebra over κ, with comulti-

plication ∆C : C Ñ C bκ C. Then the κ-linear dual C_ “ HomκpC, κq inherits the
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structure of a commutative algebra over κ, where the product of two linear functionals
λ, µ : C Ñ κ is given by the composite map

λµ : C ∆C
ÝÝÑ C bκ C

λbµ
ÝÝÑ κbκ κ » κ.

The construction C ÞÑ C_ determines a functor from the category of commutative
coalgebras over κ to the category of commutative algebras over κ. This functor is not
fully faithful: in general, passing from a commutative coalgebra C to its dual space
C_ involves a loss of information. However, we can remedy the situation by equipping
C_ with a topology: namely, the topology of pointwise convergence (inherited from
the product topology on the set

ś

xPC κ of all κ-valued functions on C). One can then
show that the construction C ÞÑ C_ induces an equivalence of categories

tCommutative coalgebras over κu
„

��
tLinearly compact topological algebras over κu;

for details, we refer the reader to [6].
We will be particularly interested in the case of smooth coalgebras: that is,

coalgebras of the form C “ Γ˚κpV q, where V is a finite-dimensional vector space over
κ. In this case, the dual C_ is isomorphic to a power series ring κrrt1, . . . , tnss for
n “ dimκpV q, and the topology of pointwise convergence coincides with the m-adic
topology, where m “ pt1, . . . , tnq is the maximal ideal of C_. In particular, the dual C_
is an example of an adic ring: that is, a commutative ring equipped with a topology
which admits a finitely generated ideal of definition (see Definition 0.0.11).

In this section, we generalize the preceding discussion can be generalized to the
setting of (smooth) coalgebras over an arbitrary E8-ring R. We begin in §1.3.1 by
showing that for every commutative coalgebra C over R, the R-linear dual C_ “
Map

R
pC,Rq can be endowed with the structure of an E8-algebra over R. In §1.3.2, we

specialize to the case where C is smooth over R and show that the commutative ring
π0pC

_q inherits a canonical topology, which we will refer to as the coradical topology.
The main result of this section asserts that the construction C ÞÑ C_ determines a
fully faithful embedding

tSmooth coalgebras over Ru

��
tAdic E8-algebras over Ru.
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We deduce this in §1.3.4 (see Theorem 1.3.15) from a preliminary result on the
compatibility of duality with base change (Proposition 1.3.13), which we prove in
§1.3.3.

1.3.1 R-Linear Duality

Let R be an E8-ring. For every pair of R-modules M and N , we let Map
R
pM,Nq

denote the R-module which classifies maps from M into N (characterized by the
universal mapping property MapModRpK,Map

R
pM,Nqq » MapModRpK bR M,Nq).

The construction pM,Nq ÞÑ Map
R
pM,Nq determines a lax symmetric monoidal

functor
Map

R
: Modop

R ˆModR Ñ ModR .

Passing to commutative algebra objects, we obtain a functor cCAlgop
R ˆCAlgR Ñ

CAlgR which we will also denote by Map
R

. We can summarize the situation more
informally as follows: if C is a commutative coalgebra over R and A is an E8-algebra
over R, then Map

R
pC,Aq inherits the structure of an E8-algebra over R.

Example 1.3.1. Let R be an E8-ring, which we regard as a commutative coalgebra
over itself. Then the construction A ÞÑ Map

R
pR,Aq is equivalent to the identity

functor from CAlgR to itself.

Example 1.3.2. Let R be an E8-ring, which we regard as an E8-algebra over itself.
For any R-module C, we will denote Map

R
pC,Rq by C_ and refer to it as the R-linear

dual of C. When C is a commutative coalgebra over R, then C_ inherits the structure
of an E8-algebra over R.

Remark 1.3.3. Let R be an E8-ring which is complete with respect to a finitely
generated ideal I Ď π0pRq. Then, for any R-module M , the R-linear dual M_ is
also I-complete. In particular, if C is a coalgebra over R, then C_ is an I-complete
E8-algebra over R.

Remark 1.3.4. Let R be an E8-ring, let C be a commutative coalgebra over R, and
let A be an E8-algebra over R. Then the counit map ε : C Ñ R can be regarded as a
morphism of commutative coalgebras over R. By functoriality, we obtain a morphism
of E8-algebras

A » Map
R
pR,Aq

˝ε
ÝÑ Map

R
pC,Aq.

In other words, we can regard Map
R
pC,Aq as an E8-algebra over A.
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Remark 1.3.5 (Compatibility with Base Change). Let f : RÑ R1 be a morphism of
E8-rings, let A be an E8-algebra over R1 (which, by a slight abuse of notation, we
also regard as an E8-algebra over R), and let C be a commutative coalgebra over R.
Then C 1 “ R1bR C inherits the structure of a commutative coalgebra over R1, and we
have a canonical equivalence Map

R
pC,Aq » Map

R1
pC 1, Aq in the 8-category CAlgR

of E8-algebras over R (or even in the 8-category CAlgA; see Remark 1.3.4).
In particular, taking R1 “ A, we obtain a canonical equivalence Map

R
pC,Aq »

Map
A
pAbRC,Aq » pAbRCq

_ (here pAbRCq_ denotes the A-linear dual of AbRC,
which we regard as an E8-algebra over A via Example 1.3.2.

Remark 1.3.6. Let R be an E8-ring, let Modperf
R denote the full subcategory of ModR

spanned by the perfect R-modules, and define full subcategories CAlgperf
R Ď CAlgR

and cCAlgperf
R Ď cCAlgR similarly. Then R-linear duality determines a symmetric

monoidal equivalence pModperf
R qop » Modperf

R . Passing to commutative algebra objects,
we deduce that R-linear duality defines an equivalence pcCAlgperf

R qop Ñ CAlgperf
R .

Example 1.3.7 (The Dual of Divided Power Coalgebra). Let R be a commutative ring
and let M be a projective R-module of finite rank, with dual M_. Then we can identify
Mbn with the set of multilinear maps M_ˆ ¨ ¨ ¨ ˆM_ Ñ R. Under this identification,
the submodule ΓnRpMq ĎMbn corresponds to the set of symmetric multilinear maps
M_ˆ¨ ¨ ¨ˆM_ Ñ R: that is, with theR-linear dual of the symmetric power Symn

RpM
_q.

Allowing n to vary, we obtain an R-algebra isomorphism Γ˚RpMq_ » ySym
˚

RpM
_q, where

ySym
˚

RpMq denotes the product
ś

ně0 Symn
RpMq. We will refer to ySym

˚

RpMq as the
completed symmetric algebra of M (note that it can be identified with the completion of
Sym˚

RpMq with respect to the finitely generated ideal Symą0
R pMq “

À

ną0 Symn
RM).

Let R be an E8-ring and let M and N be R-modules. Then we have an evaluation
map e : M bR Map

R
pM,Nq Ñ N which induces a map of graded abelian groups

π˚pMap
R
pM,Nqq Ñ Homπ0pRqpπ0pMq, π˚pNqq.

If M is a projective R-module (that is, if M appears as a direct summand of a
coproduct of copies of R), then this map is an isomorphism. Using this observation,
we obtain the following generalization of Example 1.3.7:

Example 1.3.8 (Duals of Smooth Coalgebras). Let R be an E8-ring and let C be
a smooth coalgebra over R. Fix an isomorphism π0pCq » Γ˚π0pRq

pMq, where M is a
projective module of finite rank over R. Since C is projective as an R-module (Remark
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1.2.10), for any E8-algebra A over R we have canonical isomorphisms

π˚pMap
R
pC,Aqq »

ź

ně0
pSymn

π0pRqpM
_
q bπ0pRq π˚pAqq.

In particular, π0pC
_q is isomorphic to the completed symmetric algebra ySym

˚

π0pRqpM
_q.

Remark 1.3.9. It follows from Example 1.3.8 that if C is a smooth coalgebra over R,
then the the construction A ÞÑ Map

R
pC,Aq commutes with passage to the connective

cover and with truncation.

1.3.2 The Coradical Topology

Our next goal is to show that, if C is a smooth coalgebra over an E8-ring R, then
the dual C_ can be equipped with the structure of an adic E8-algebra over R. This
is a consequence of the following:

Proposition 1.3.10. Let R be a commutative ring and let C be a smooth coalgebra
over R. Let us regard the R-linear dual C_ as a subset of the Cartesian product
ś

xPC R. Then the product topology on C_ endows it with the structure of an adic
commutative ring: that is, it admits a finitely generated ideal of definition I Ď C_.

Proof. Choose an isomorphism α : C » Γ˚RpMq, where M is a projective R-module of
finite rank. Then the R-linear dual C_ can be identified with the completed symmetric
algebra ySym

˚

RpM
_q of Remark 1.3.7. Since every finite collection of elements of C is

contained in the finitely generated submodule
À

0ďmďn ΓmR pMq for sufficiently large n,
the topology of pointwise convergence on C_ coincides with the topology induced by
the product decomposition

ySym
˚

RpM
_
q »

ź

mě0
Sym˚

RpM
_
q.

This topology is I-adic, where I denotes the finitely generated ideal ySym
ą0
R pM

_q.

Definition 1.3.11. Let R be a commutative ring and let C be a smooth coalgebra
over R. We will refer to the topology of Proposition 1.3.10 as the coradical topology
on C_.

More generally, if R is an E8-ring and C is a smooth coalgebra over R, then the
isomorphism π0pC

_q » Map
π0pRq

pπ0pCq, π0pRqq induces a topology on the commutative
ring π0pC

_q, which we will also refer to as the coradical topology. This topology endows
C_ with the structure of an adic E8-algebra over R, in the sense of Definition 0.0.11.

33



Warning 1.3.12. Let C be a smooth coalgebra over a commutative ring R. Then we
can choose a grouplike element η P C, which determines an R-algebra homomorphism
ε : C_ Ñ R having some kernel Iη Ď C_. The proof of Proposition 1.3.10 shows that
the coradical topology on C_ coincides with the Iη-adic topology (and, in particular,
that the Iη-adic topology is independent of the choice of grouplike element η). Beware
that a smooth coalgebra C over an E8-ring need not admit any grouplike elements.
However, the coradical topology on π0pC

_q is still well-defined (note that π0pCq always
admits a grouplike element, when regarded as a coalgebra over π0pRq).

1.3.3 Duality and Base Change

Let R be an E8-ring, let C be a commutative coalgebra over R, and let A be an
E8-algebra over R. Then the canonical maps

A » Map
R
pR,Aq Ñ Map

R
pC,Aq Ð Map

R
pC,Rq » C_

determine a morphism of E8-rings

AbR C
_
Ñ Map

R
pC,Aq » pAbR Cq

_,

where pAbR Cq_ denotes the A-linear dual of AbR C. This morphism is an equiva-
lence if either A or C is perfect when regarded as an R-module, but not in general.
Nevertheless, when C is a smooth coalgebra over R, it fails to be an equivalence in a
very specific way: namely, we can identify Map

R
pC,Aq as a completion of AbR C_

with respect to the coradical topology of Definition 1.3.11. More generally, we have
the following:

Proposition 1.3.13. Let R be an E8-ring, let C be a smooth coalgebra over R, and
let M be any R-module. Then the tautological map

C_ bRM Ñ Map
R
pC,Mq

exhibits Map
R
pC,Mq as the completion of C_ bR M with respect to any ideal I Ď

π0pC
_q which is a finitely generated ideal of definition for the coradical topology of

Proposition 1.3.10.

The proof of Proposition 1.3.13 will require some preliminaries.
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Lemma 1.3.14. Let R be a commutative ring, let M be a projective module of finite
rank over R, and let N be any discrete R-module. Then the canonical map

u :
à

ně0
pSymn

RpMq bR Nq Ñ
ź

ně0
pSymn

RpMq bR Nq

exhibits the product
ś

ně0pSymn
RpMq bR Nq as the (derived) completion of the direct

sum
À

ně0pSymn
RpMq bR Nq with respect to the ideal Symą0

R pMq Ď Sym˚
RpMq.

Proof. Choose a finitely generated subring R0 Ď R and a projective R0-module M0

of finite rank such that M is isomorphic to the tensor product R bR0 M0. Replacing
R by R0 (and M by M0), we can reduce to the case where the commutative ring R
is Noetherian, so that the symmetric algebra A “ Sym˚

RpMq is also Noetherian. Let
I Ď A denote the ideal Symą0

R pMq generated by M . For every discrete A-module
K P Mod♥

A, we let CplpK; Iq “ lim
ÐÝ

K{InK denote the classical I-adic completion of
K and we let K^

I denote the (derived) I-completion of K. It follows immediately
from the definitions that the classical I-adic completion of A bR N is the product
ś

ně0pSymn
RpMq bR Nq. Consequently, Lemma 1.3.14 is equivalent to the assertion

that the canonical map pAbR Nq^I Ñ CplppAbR Nq; Iq is an equivalence. To prove
this, choose a resolution

¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 Ñ N

of N by projective R-modules, so that A bR P‚ is a resolution of NA by projective
A-modules. According to Corollary SAG.7.3.7.5 , the functor of I-completion is the
nonabelian left derived functor of classical I-adic completion. In particular pAbRNq^I
is represented (as an object of the 8-category ModA) by the chain complex

¨ ¨ ¨ Ñ CplppAbR P2q; Iq Ñ CplppAbR P1q; Iq Ñ CplpAbR P0; Iq.

We now observe that this chain complex factors as a direct product of the chain
complexes

¨ ¨ ¨ Ñ Symn
RpMq bR P2 Ñ Symn

RpMq bR P1 Ñ Symn
RpMq bR P0,

each of which is a projective resolution of Symn
RpMq bR N .

Proof of Proposition 1.3.13. We first treat the case where R is a connective E8-ring.
Fix a grouplike element η P π0pCq and let Iη be as in Warning 1.3.12. Let C be a
smooth coalgebra over R. For every R-module M , let F pMq P ModC_ denote the
completion of C_ bRM with respect to the ideal Iη. We wish to show that for every

35



R-module M , the canonical map ρM : F pMq Ñ Map
R
pC,Mq is an equivalence. Note

that we have a commutative diagram

lim
ÝÑ

F pτě´nMq //

��

lim
ÝÑ

Map
R
pC, τě´nMq

��
F pMq

ρM //Map
R
pC,Mq,

where the right vertical map is an equivalence (since C is projective as an R-module
by Remark 1.2.10) and the left vertical map exhibits F pMq as an Iη-completion
of lim
ÝÑ

F pτě´nMq. Note that if the upper horizontal map is an equivalence, then
lim
ÝÑ

F pτě´nMq » Map
R
pC,Mq is already I-complete, so the left vertical map is also

an equivalence. It then follows that ρM is also an equivalence. Writing the upper
horizontal map as a colimit of the maps ρτě´nM , we are reduced to showing that ρM
is an equivalence in the special case where M is p´nq-connective for some n " 0.
Replacing M by ΣnM , we may reduce to the case where M is connective. We will
complete the proof by establishing the following connectivity estimate, for every integer
k:

p˚kq Let M be a connective R-module. Then the fiber fibpρMq is k-connective.

Note that if M is connective, then F pMq and Map
R
pC,Mq are both connective, so

that p˚´1q is automatically satisfied. We will complete the proof by showing that p˚kq
implies p˚k`1q. For this, choose a free R-module P and a map u : P Ñ M which
is surjective on π0, so that we have a fiber sequence of R-modules M 1 Ñ P Ñ M

where M 1 is connective. Since the functor F is exact, we have a fiber sequence
fibpρM 1q Ñ fibpρP q Ñ fibpρMq whose first term is k-connective by virtue of our
inductive hypothesis. Consequently, to show that fibpρMq is pk ` 1q-connective, it will
suffice to show that ρP is an equivalence.

Write P as a direct sum
À

αPJ R, indexed by some set J . To show that ρP is an
equivalence, we must show that the canonical map

à

αPJ

Map
R
pC,Rq Ñ Map

R
pC,

à

αPJ

Rq

exhibits Map
R
pC,

À

αPJ Rq as an Iη-completion of
À

αPJ Map
R
pC,Rq. In fact, we will

prove something stronger: for every integer n, the induced map of homotopy groups

φ : πn
à

αPJ

Map
R
pC,Rq Ñ πnMap

R
pC,

à

αPJ

Rq

36



exhibits πnMap
R
pC,

À

αPJ Rq as an Iη-completion of πn
À

αPJ Map
R
pC,Rq. Set N “

πnR and write π0pCq “ Γ˚π0pRq
pM_q, where M_ is a projective module of finite rank

over π0pRq. Unwinding the definitions, we can identify φ with the lower horizontal
map in the commutative diagram

À

αPJ

À

mě0pSymm
R pMq bR Nq

uu ))
À

αPJ

ś

mě0pSymm
R pMq bR Nq //

ś

mě0
À

αPJpSymm
R pMq bR Nq.

Without loss of generality, we may assume that Iη is the ideal ySym
ą0
R pMq, so that

the right vertical map exhibits
ś

mě0
À

αPJpSymm
R pMq bR Nq as an Iη-completion of

À

αPJ

À

mě0pSymm
R pMqbRNq by vLemma 1.3.14 (applied to the R-module

À

αPJ N).
Consequently, to complete the proof of p˚k`1q, it will suffice to show that the left
vertical map induces an equivalence after Iη-completion. This is clear, since it is a
direct sum of maps

à

mě0
pSymm

R pMq bR Nq Ñ
ź

mě0
pSymm

R pMq bR Nq,

each of which induces an equivalence of Iη-completions by virtue of Lemma 1.3.14.
This completes the proof of Proposition 1.3.13 in the case where R is assumed to be
connective.

We now treat the case where R is not assumed to be connective. Let R0 denote
the connective cover of R. Using Lemma 1.2.8, we can write C “ R bR R0, where
C0 is a smooth coalgebra over R0. Note that we can identify C_0 with the connective
cover of C_, so that the ideal Iη of Proposition 1.3.10 can be viewed as an ideal of
π0pC

_
0 q. For any R-module M , we have a commutative diagram

C_0 bR0 M //

��

Map
R0
pC0,Mq

��
C_ bRM //Map

R0
pC,Mq,

where the right vertical map is an equivalence and the upper horizontal map exhibits
Map

R0
pC0,Mq as an Iη-completion of C_0 bR0 M (by the first part of the proof). To

complete the proof, it will suffice to show that the left vertical map

C_0 bR0 M » pC_0 bR0 Rq bRM Ñ C_ bRM
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induces an equivalence after Iη-completion. In fact, we claim that the map C_0 bR0RÑ

C_ already induces an equivalence after Iη-completion: this follows from the first part
of the proof, applied to the object R P ModR0 .

1.3.4 Recovering a Coalgebra from its Dual

We now show that, if C is a smooth coalgebra over an E8-ring R, then we can
recover C from its R-linear dual C_, regarded as an adic E8-algebra via the coradical
topology of Definition 1.3.11. More precisely, we have the following:

Theorem 1.3.15. Let R be an E8-ring and let C,D P cCAlgsm
R . Then R-linear

duality induces a homotopy equivalence

MapcCAlgRpD,Cq Ñ Mapcont
CAlgRpC

_, D_q.

Example 1.3.16. Let R be a commutative ring and let M and N be projective
R-modules of finite rank. Then we have canonical bijections

HomMod♥
R
pΓ˚RpMq, Nq » HomMod♥

R
pN_,Γ˚RpMq_q

» MapCAlg♥
R
pSym˚

RpN
_
q, ySym

˚

RpM
_
qq.

Note that a map f : Γ˚RpMq Ñ N satisfies condition p˚q of Proposition 1.1.16 if and
only if its image under this bijection is an R-algebra homomorphism λ : Sym˚

RpN
_q Ñ

ySym
˚

RpM
_q for which the composite map

Sym˚
RpN

_
q
λ
ÝÑ ySym

˚

RpM
_
q Ñ Sym0

RpM
_
q » R

carries each element of N_ to a nilpotent element of R. In this case, λ extends
uniquely to a continuous ring homomorphism

pλ : ySym
˚

RpN
_
q Ñ ySym

˚

RpM
_
q,

where we equip ySym
˚

RpM
_q and ySym

˚

RpN
_q with their coradical topologies.

Combining this observation with Proposition 1.1.16, we deduce that R-linear
duality induces a monomorphism

HomcCAlg5R
pΓ˚RpMq,Γ˚RpNqq Ñ HomCAlg♥

R
pySym

˚

RpN
_
q, ySym

˚

RpM
_
qq,

whose image is the collection of continuous R-algebra homomorphisms from ySym
˚

RpN
_q

to ySym
˚

RpM
_q.
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Proof of Theorem 1.3.15. We begin with some general remarks. Let C and D be
smooth coalgebras over some E8-ring R. Let R1 be an E8-algebra over R, and set
C 1 “ R1 bR C and D1 “ R1 bR D. Then C 1 and D1 are smooth E8-algebras over R1,
and we have a canonical map

ρR1 : MapcCAlgR1 pD
1, C 1q Ñ Mapcont

CAlgR1 pC
1_, D1_q.

Using Proposition 1.3.13, we can identify the codomain of ρR1 with

Mapcont
CAlgR1 pR

1
bR C

_, D1_q » Mapcont
CAlgRpC

_,Map
R
pD,R1qq.

Note that this map depends functorially on R1.
To prove Theorem 1.3.15, we must show that the map ρR is a homotopy equivalence.

We first reduce to the case where R is connective. Let R0 “ τě0R. Using Proposition
1.2.8, we can assume that C “ RbR0C0 and D “ RbR0D0 for some smooth coalgebras
C0 and D0 over the connective cover R0 “ τě0R. In this case, we have a commutative
diagram

MapcCAlgR0
pD0, C0q //

��

Mapcont
CAlgR0

pC_0 , D
_
0 q

��
MapcCAlgRpD,Cq

ρR //Mapcont
CAlgR0

pC_0 ,Map
R0
pD0, Rqq.

Here the left vertical map is a homotopy equivalence by virtue of Proposition 1.2.8,
and the right vertical map is a homotopy equivalence because C_0 is connective and
D_0 is the connective cover of D_ “ Map

R0
pD0, Rq (Remark 1.3.9). Consequently, to

show that ρR is an equivalence, we can replace R by R0 (and the coalgebras C and D
by C0 and D0, respectively) and thereby reduce to the case where R is connective.

Assume now that R is connective. For each n ě 0, let us identify the truncations

τďnC » pτďnRq bR C τďnD » pτďnRq bR D

with smooth coalgebra over τďnR. We then have a commutative diagram

MapcCAlgRpD,Cq
ρR //

��

Mapcont
CAlgRpC

_,Map
R
pD,Rqq

��
lim
ÐÝ

MapcCAlgτďnR
pτďnD, τďnCq // lim

ÐÝ
Mapcont

CAlgRpC
_,Map

R
pD, τďnRqq.

Here the right vertical map is clearly a homotopy equivalence, the left vertical map is
also a homotopy equivalence by virtue of Proposition 1.2.11, and the bottom vertical
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map can be identified with the limit of the tower of maps tρτďnRuně0. Consequently,
to show that ρR is a homotopy equivalence, it will suffice to show that each ρτďnR is a
homotopy equivalence. We may therefore replace R by τďnR and thereby reduce to
the case where R is n-truncated, for some n ě 0.

We now proceed by induction on n. We first explain how to carry out the inductive
step. Assume that n ą 0, and set R1 “ τďn´1R, and let M “ πnR. According to
Theorem HA.7.4.1.26 , we can identify R with a square-zero extension of R1 by the
module ΣnM : that is, there is a pullback diagram of E8-rings

R //

��

π0pRq

��
R1 // π0pRq ‘ Σn`1M.

Using Proposition 1.2.12, we obtain a pullback diagram

ρR //

��

ρπ0pRq

��
ρR1 // ρπ0pRq‘Σn`1M ,

in the 8-category Funp∆1,Sq of morphisms in S. Consequently, to show that ρR
is a homotopy equivalence, it will suffice to show that ρR1 , ρπ0pRq, and ρπ0pRq‘Σn`1M

are homotopy equivalences. The first case follows from our inductive hypothesis. To
handle the other two, it will suffice to prove the following (which also establishes the
base case for our induction):

p˚q Let R be a commutative ring, let C and D be smooth coalgebras over R, and
let A be an E8-algebra over R which is connective and truncated. Then the
map ρA is a homotopy equivalence.

To prove p˚q, we first invoke the smoothness of C and D to choose isomorphisms
C » Γ˚RpMq and D » Γ˚RpNq, where M and N are projective R-modules of finite rank.
Note that M and N are defined over some finitely generated subring of R0 Ď R; we
may therefore replace R by R0 and thereby reduce to the case where R is Noetherian.
For each m ě 0, set Cm “

À

0ďkďm ΓkRpMq and Dm “
À

0ďkďm ΓkRpNq, which we
regard as (non-smooth) coalgebras over R. Note that AbR D can be identified with
the colimit lim

ÝÑ
AbR Dm (formed in the 8-category cCAlgA), and that Map

R
pD,Aq

can be identified with the inverse limit lim
ÐÝ

Map
R
pDm, Aq (formed in the 8-category
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CAlgA). Moreover, an R-algebra map C_ Ñ Map
R
pD,Aq is continuous (with respect

to the coradical topology of Definition 1.3.11) if and only if each of the induced maps
C_ Ñ Map

R
pD,Aq is continuous (where the target is equipped with the discrete

topology). We can therefore write ρA as the inverse limit of a tower of maps

ρm : MapcCAlgApAbR Dm, AbR Cq Ñ Mapcont
CAlgRpC

_,Map
R
pDm, Aqq.

We will complete the proof by by showing that each ρm is an equivalence.
Let us identify C_ with the completed symmetric algebra ySym

˚

RpN
_q, equipped

with the topology determined by the ideal I “ ySym
ą0
R pN

_q. For each k ě 0, we can
identify the quotient C_{Ik`1 with the dual of the subcoalgebra Ck Ď C. We therefore
have a commutative diagram

lim
ÝÑk

MapcCAlgApAbR Dm, AbR Ckq
rρ //

��

lim
ÝÑ

MapCAlgRpC
_
k ,Map

R
pDm, Aqq

��
MapcCAlgApAbR Dm, AbR Cq

ρm //Mapcont
CAlgRpC

_,Map
R
pDm, Aqq,

where the right vertical map is a homotopy equivalence by Lemma SAG.17.3.5.7
(note that A is truncated). We claim that the left vertical map is also a homotopy
equivalence. Note that we can identify A bR C with the colimit of the diagram
tAbR Ckukě0 in the 8-category cCAlgpMod5Aq of commutative coalgebra objects of
Mod5A. To establish the desired result, it suffices to show that AbR Dm is a compact
object of cCAlgpMod5Aq. Since A is truncated, the 8-category Mod5A is equivalent to
a q-category for q " 0. Applying Proposition 1.2.16, we are reduced to showing that
AbR Dm is compact as an object of Mod5A, which is clear (since Dm is a projective
R-module of finite rank).

To complete the proof that ρm is a homotopy equivalence, it will suffice to show
that the map rρ is a homotopy equivalence. By construction, rρ can be written as the
colimit of maps

ρm,k : MapcCAlgApAbR Dm, AbR Ckq Ñ MapCAlgRpC
_
k ,Map

R
pDm, Aqq

» MapCAlgAppAbR Ckq
_, pAbR Dmq

_
q.

Each of these maps is a homotopy equivalence by virtue of Remark 1.3.6, since AbRCk
and AbR Dm are perfect A-modules.
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1.4 Duals of Smooth Coalgebras
Let R be an E8-ring and let CAlgad

R “ CAlgRˆCAlg CAlgad denote the 8-category
of adic E8-algebras over R. It follows from Theorem 1.3.15 that the construction
C ÞÑ C_ determines a fully faithful embedding cCAlgop

R Ñ CAlgad
R . We now ask to

describe the essential image of this embedding:

Question 1.4.1. Let A be an adic E8-algebra over R. Under what conditions does
there exist an equivalence A » C_, where C is a smooth coalgebra over R?

In the case where R is discrete, Question 1.4.1 is answered by Example 1.3.7: the
duals of smooth coalgebras are precisely those adic R-algebras of the form ySym

˚

RpMq,
where M is a projective R-module of finite rank. In particular, if R is local, then they
are precisely the power series rings Rrrt1, . . . , tnss for n ě 0.

Our goal in this section is to provide a complete an answer to Question 1.4.1
in general. Roughly speaking, we show that the duals of smooth coalgebras are
characterized by the fact that they “resemble” power series algebras over R, at the
level of homotopy groups. We make this precise in §1.4.1 by introducing an E8-algebra
Rrrt1, . . . , tnss and establishing a weak universality principle: an E8-algebra A over
R is equivalent to Rrrt1, . . . , tnss as an E1-algebra if and only if the homotopy group
π˚pAq is isomorphic to π˚pRqrrt1, . . . , tnss (Proposition 1.4.5). In §1.4.2, we show that
every such E8-algebra arises as the dual of a smooth coalgebra over R (Proposition
1.4.10). In §1.4.3, we use this result to give a complete answer to Question 1.4.1
(Proposition 1.4.11).

1.4.1 Power Series Algebras

Let R be an E8-ring. There is an essentially unique symmetric monoidal functor
S Ñ ModR which preserves small colimits, which we will denote by X ÞÑ C˚pX;Rq.
For each n ě 0, we let Rrt1, . . . , tns denote the R-module given by C˚pZn

ě0;Rq. Since
Zn
ě0 can be regarded as a commutative algebra object of the 8-category S (given by

the usual addition on Zě0), we obtain a commutative algebra structure on Rrt1, . . . , tns:
in other words, we can regard Rrt1, . . . , tns as an E8-algebra over R. Note that we
have a canonical isomorphism of graded rings π˚pRrt1, . . . , tnsq » pπ˚Rqrt1, . . . , tns. In
particular, if R is discrete, then Rrt1, . . . , tns agrees with the usual polynomial algebra
on n generators over A.

Warning 1.4.2. In the situation described above, the polynomial algebra Rrt1, . . . , tns
is generally different from the free E8-algebra over R generated by indeterminates
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t1, . . . , tn. We denote this free algebra by Rtt1, . . . , tnu. Its universal property yields
a canonical map

Rtt1, . . . , tnu Ñ Rrt1, . . . , tns,

which is an equivalence if π0pRq is a Q-algebra, but not in general.

Remark 1.4.3. Let R be a connective E8-ring. Then Rrts is the free E1-algebra
over R on one generator: this follows from Proposition HA.4.1.1.18 (or from the
observation that Zě0 is the free E1-algebra object of S on one generator).

Construction 1.4.4 (Power Series Algebras). Let R be an E8-ring. For each n ě 0,
we let Rrrt1, . . . , tnss denote the completion of Rrt1, . . . , tns with respect to the ideal
pt1, . . . , tnq Ď π0pRrt1, . . . , tnsq. It follows from Lemma 1.3.14 that the homotopy
groups of Rrrt1, . . . , tnss are given by the formula

π˚pRrrt1, . . . , tnssq “ π˚pRqrrt1, . . . , tnss.

In particular, if R is an ordinary commutative ring (regarded as a discrete E8-ring),
then Rrrt1, . . . , tnss can be identified with the usual ring of formal power series over R.

Construction 1.4.4 has a weak universal property:

Proposition 1.4.5. Let R be an E8-ring and let A be an E8-algebra over R. The
following conditions are equivalent:

p1q There exists an equivalence Rrrt1, . . . , tnss » A in the 8-category AlgR of E1-
algebras over R.

p2q There exists an isomorphism of graded π˚pRq-algebras π˚pRqrrt1, . . . , tnss »

π˚pAq.

Warning 1.4.6. In assertion p1q of Proposition 1.4.5, we cannot replace AlgR by the
8-category CAlgR of E8-algebras over R: in general, there can be many different E8-
algebras over R which become equivalent to Rrrt1, . . . , tnss when viewed as (augmented)
E1-algebras (see Warning 1.6.18).

The proof depends on the following:

Lemma 1.4.7. Let R be an E8-ring, let A be an E8-algebra over R, and let φ0 :
Rrt1, . . . , tns Ñ A be a morphism of E1-algebras over R which exhibits A as complete
with respect to the ideal pt1, . . . , tnq when regarded as a left module over Rrt1, . . . , tns.
Then φ0 admits an (essentially unique) extension to a map φ : Rrrt1, . . . , tnss Ñ A

(again of E1-algebras over R).
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Proof. To simplify notation, let us assume that n “ 1 and denote Rrt1, . . . , tns by Rrts
(the proof in the general case is the same). Let C “ RrtsBModRrtspModRq denote the 8-
category of Rrts-Rrts bimodule objects of ModR, which we will equip with the monoidal
structure given by relative tensor product over Rrts. Note that we can identify C with
the 8-category of modules over the tensor product Rrts bR Rrts. Let C 1 Ď C be the
full subcategory spanned by those objects which are ptb 1´ 1b tq-nilpotent. We first
claim that C 1 is a monoidal subcategory of C. Since it clearly contains the unit object
Rrts P C, it will suffice to show that for every pair of objects M,N P C 1, the tensor
product M bRrts N belongs to C. Note that we can view M bRrts N as a module over
the tensor product Rrts bR Rrts bR Rrts. The assumption that M P C 1 guarantees
that M bRrts N is ptb 1b 1´ 1b tb 1q-nilpotent, and the assumption that N P C 1

guarantees that M bRrts N is p1b tb 1´ 1b 1b tq-nilpotent. Applying Proposition
SAG.7.1.1.5 , we deduce that M bRrts N is also ptb 1b 1´ 1b 1b tq-nilpotent, and
therefore belongs to C 1 as desired.

Let us view C 1 as an pRrts bR Rrtsq-linear 8-category. By construction, every
ptb 1´ 1b tq-local object of C 1 is zero. It follows that each M P C 1 is ptb 1´ 1b tq-
complete when viewed as an object of C 1. Using Corollary SAG.7.3.3.3 , we deduce the
following:

p˚q An object M P C 1 is pt b 1q-complete (when viewed as an object of C 1) if and
only if it is p1b tq-complete (when viewed as an object of C 1).

Let C2 denote the full subcategory of C 1 spanned by those objects which satisfy the
condition of p˚q. The inclusion functor C2 ãÑ C 1 admits a left adjoint L : C 1 Ñ C2. We
now claim that L is compatible with the monoidal structure on C (given by tensor
product over Rrts), in the sense of Definition HA.2.2.1.6 . In other words, we claim
that if α : M ÑM 1 is an L-equivalence in C 1 and is and N is an arbitrary object of C 1,
then the induced maps βN : MbRrtsN ÑM 1bRrtsN and γN : NbRrtsM Ñ NbRrtsN

1

are also L-equivalences. We will show that βN is an L-equivalence; the proof for γN is
similar. Our assumption that N P C 1 guarantees that N can be written as a colimit of
fibers Nn “ fibpptb 1´ 1b tqn : N Ñ Nq. It will therefore suffice to show that each
βNn is an L-equivalence. Proceeding by induction on n and using the fiber sequences

Nn´1 Ñ Nn
ptb1´1btqn´1
ÝÝÝÝÝÝÝÝÑ N1,

we can reduce to the case n “ 1. We are therefore reduced to show that βN is an
L-equivalence under the assumption that N belongs to the image of the forgetful
functor ModRrts Ñ C 1 Ď RrtsBModRrtspModRq. Since ModRrts is generated under small
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colimits by desuspensions of Rrts, we may assume that N “ Rrts, in which case
βN » α is an L-equivalence by assumption.

The E1-algebra maps φ0 : Rrts Ñ A and Rrts Ñ Rrrtss exhibit A and Rrrtss as
associative algebra objects of the monoidal 8-category C. The commutativity of
the multiplications on A and Rrrtss guarantee that they belong to the subcategory
C 1 Ď C. Moreover, both A and Rrrtss are ptb 1q-complete when viewed as objects of
C, and therefore also when viewed as objects of the subcategory C 1 Ď C. Moreover,
the tautological map ρ : Rrts Ñ Rrrtss exhibits Rrrtss as an L-localization of Rrts: to
prove this, it suffices to observe that the fiber fibpρq is a pt b 1q-local object of C 1,
which is clear (since it is already a ptb 1q-local object of C). It follows that the map
ρ0 admits an essentially unique factorization Rrts Ñ Rrrtss

φ
ÝÑ A in the 8-category

AlgpC 1q Ď AlgpCq » pAlgRqRrts{.

Proof of Proposition 1.4.5. Let R be an E8-ring and let A be an E8-algebra over R.
Assume that there exists an isomorphism of graded π˚pRq-algebras

u : π˚pRqrrt1, . . . , tnss » π˚pAq;

we wish to show u can be lifted an equivalence Rrrt1, . . . , tnss » A in the 8-category
AlgR of E1-algebras over R (the converse was already noted in Construction 1.4.4). For
1 ď i ď n, set Ti “ uptiq P π0pAq. Using Remark 1.4.3, we see that each Ti classifies
a map of E1-algebras vi : Rrtis Ñ A for which the induced map π0pRrtisq Ñ π0pAq

carries ti to Ti. Taking the tensor product of these maps (and composing with the
multiplication on A), we obtain a map of E1-algebras v : Rrt1, . . . , tns Ñ A, which
carries each ti to Ti. Using Lemma 1.4.7, we can factor v as a composition

Rrt1, . . . , tns Ñ Rrrt1, . . . , tnss
v
ÝÑ A.

Assumption p2q now guarantees that v induces an isomorphism on homotopy groups
and is therefore an equivalence of E1-algebras over R.

1.4.2 Duals of Standard Smooth Coalgebras

We now address a special case of Question 1.4.1.

Definition 1.4.8. Let R be a commutative ring. We will say that a coalgebra C over
R is standard smooth if it is isomorphic to a divided power coalgebra Γ˚RpMq, where
M is a free R-module of finite rank.
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More generally, if R is any E8-ring, then we will say that a commutative coalgebra
C P cCAlgR is standard smooth if C is flat over R and the coalgebra π0pCq is standard
smooth over π0pRq.

Remark 1.4.9. Let R be an E8-ring and let C be a smooth coalgebra over R. Then
C is standard smooth locally with respect to the Zariski topology on SpecpRq. More
precisely, there exists a collection of elements a1, . . . , ak P π0pRq which generate the
unit ideal, for which each localization Cra´1

i s is a standard smooth coalgebra over
Rra´1

i s.

Proposition 1.4.10. Let R be an E8-ring and let A be an adic E8-ring over R. The
following conditions are equivalent:

paq There exists an isomorphism u : π˚pRqrrt1, . . . , tnss » π˚pAq, and the topology
on π0pAq has an ideal of definition pupt1q, . . . , uptnqq.

pbq There exists an equivalence Rrrt1, . . . , tnss » A of E1-algebras over R which
is a homeomorphism on π0pRq (where π0pRrrt1, . . . , tnssq is equipped with the
pt1, . . . , tnq-adic topology).

pcq There exists a standard smooth coalgebra C over R and an equivalence of adic
E8-algebras A » C_.

Proof. The equivalence of paq and pbq follows from Proposition 1.4.5, and the implica-
tion pcq ñ paq follows from Example 1.3.8. We will complete the proof by showing that
pbq ñ pcq. Replacing R by τě0R and A by τě0A, we can reduce to the case where R is
connective. Let f : Rrrt1, . . . , tnss Ñ A be as in p2q, so that f exhibits A as the com-
pletion of Rrt1, . . . , tns with respect to the ideal I “ pt1, . . . , tnq Ď π0pRrt1, . . . , tnsq).
For every R1 P CAlgcn

R , let AR1 denote the completion of R1 bR A with respect to
fpIq. Then f exhibits AR1 as a completion of R1rt1, . . . , tns with respect to pt1, . . . , tnq,
and therefore extends to an equivalence R1rrt1, . . . , tnss Ñ AR1 of E1-algebras over R1
(Lemma 1.4.7). It follows that AR1 also satisfies condition pbq (when regarded as an
adic E8-algebra over R1).

Let us say that a connective R-algebra R1 is good if AR1 satisfies condition pcq:
that is, if there exists a smooth coalgebra CR1 P cCAlgsm

R1 and an equivalence of
adic E8-algebras AR1 » C_R1 . Note that if R1 Ñ R2 is a morphism of connective
R-algebras and R1 is good, then R2 is also good and we have a canonical equivalence
CR2 » R2 bR1 CR1 .
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We now prove that, for each n ě 0, the truncation τďnR is good. The proof
proceeds by induction on n, the case n “ 0 being obvious. We now carry out the
inductive step. To simplify the notation, let us replace R by τďnR and thereby reduce
to the case where R is n-truncated. Invoking Theorem HA.7.4.1.26 , we obtain a
pullback diagram

R //

��

R0

��
R1 // R01,

with R0 “ π0pRq, R1 “ τďn´1R, and R01 “ π0pRq ‘ Σn`1pπnRq. Our inductive
hypothesis guarantees that R0, R1, and R01 are good, and Proposition 1.2.12 guarantees
that the diagram

cCAlgsm
R

//

��

cCAlgsm
R0

��
cCAlgsm

R1
// cCAlgsm

R01

is a pullback square. It follows that there exists a smooth coalgebra D over R equipped
with compatible equivalences

CR0 » R0 bR D CR01 » R01 bR D CR1 » R1 bR D.

We then compute

D_ » Map
R
pD,Rq

» Map
R
pD,R0q ˆMap

R
pD,R01q Map

R
pD,R1q

» C_R0 ˆC
_
R01

C_R1

» AR0 ˆAR01
AR1

» pAbR pR0 ˆR01 R1qq
^
I

» pAbR Rq
^
I

» A^I .

Since A is I-complete, it follows that A » A^I » D_ and therefore R is good, as
desired. This completes the induction.

We now return to the general case, where R is not assumed to be truncated. The
preceding argument shows that each truncation τďnR is good. Set Cn “ CτďnR, so
that tCnu is an object of the inverse limit lim

ÐÝ
cCAlgsm

τďnR. Applying Proposition 1.2.11,
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we deduce that there exists a smooth coalgebra C over R and a compatible family of
equivalences Cn » pτďnRq bR C. We now compute

C_ » Map
R
pC,Rq

» lim
ÐÝ

Map
R
pC, τďnRq

» lim
ÐÝ

C_n

» lim
ÐÝ

AτďnR

» lim
ÐÝ

τďnA

» A,

so that A satisfies condition pcq as desired.

1.4.3 Duals of Arbitrary Smooth Coalgebras

We now prove an analogue of Proposition 1.4.10 which applies to the class of all
smooth coalgebras over an E8-ring R.

Proposition 1.4.11. Let R be an E8-ring and let A be an adic E8-algebra over R.
The following conditions are equivalent:

p1q There exists a smooth coalgebra C over R and an equivalence of adic E8-algebras
A » C_.

p2q There exists an isomorphism of graded π˚pRq-algebras

π˚pAq »
ź

ně0
pSymn

π0pRqpMq bπ0pRq π˚pRqq,

where M is a projective module of finite rank over π0pRq which generates an
ideal of definition in π0pRq.

Proof. The implication p1q ñ p2q follows immediately from Example 1.3.8. Conversely,
suppose that there exists an isomorphism π˚pAq »

ś

ně0pSymn
π0pRqpMq bπ0pRq π˚pRqq

satisfying the requirements of p2q, and let I Ď π0pAq be the ideal generated by M (so
that I is an ideal of definition for the topology on π0pAq). Let us say that an element
x P π0pRq is good if the localization M rx´1s is free as a module over the commutative
ring π0pRqrx

´1s. We will prove the following:

p˚q Let x be a good element of π0pRq. Then there exists an equivalence

Arx´1
s
^
I » Rrx´1

srrT1, . . . , Tnss

of E1-algebras over R which carries Iπ0pArx
´1s^I q to the ideal pT1, . . . , Tnq.
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Let us assume p˚q for the moment and use it to complete the proof of Proposition 1.4.11.
Let C Ď CAlgR be the full subcategory spanned by those R-algebras of the form Rrx´1s,
where x P π0pRq is good. For each object R1 P C, assertion p˚q and Proposition 1.4.10
guarantee that pR1bRAq^I has the form C_R1 , where CR1 is a standard smooth coalgebra
over R1. Using Theorem 1.3.15 and the fact that smooth coalgebras satisfy descent
for the Zariski topology (Proposition 1.2.13), we conclude that there is a smooth
coalgebra C over R equipped with equivalences CR1 » R1bRC, depending functorially
on R1 P C. Dualizing, we obtain natural equivalences pR1 bR Aq^I » Map

R
pC,R1q.

Passing to the inverse limit over R1 P C, we obtain equivalences

A » A^I

» p lim
ÐÝ
R1PC

pR1 bR Aqq
^
I

» lim
ÐÝ
R1PC

ppR1 bR Aq
^
I q

» lim
ÐÝ
R1PC

Map
R
pC,R1q

» Map
R
pC, lim

ÐÝ
R1PC

R1q

» Map
R
pC,Rq

“ C_.

It remains to prove p˚q. Let x be a good element of π0pRq, and choose a collection
of elements t1, . . . , tn PM which form a basis for M rx´1s as a module over π0pRqrx

´1s.
We will abuse notation by identifying each ti with its image in π0pAq. Arguing as in
the proof of Proposition 1.4.5, we see that there is a map u : RrT1, . . . , Tns Ñ A of E1-
algebras over R which carries each Ti to the element ti. Let J Ď π0pRrT1, . . . , Tnsq be
the ideal generated by the elements of Ti, so that I and J generate the same ideal of the
localization Arx´1s. Then u induces a map of localizations ux : Rrx´1srT1, . . . , Tns Ñ

Arx´1s, and Lemma 1.4.7 guarantees that ux extends canonically to a map of E1-
algebras u^x : Rrx´1srrT1, . . . , Tnss Ñ Arx´1s^I . We will complete the proof by showing
that u^x is an equivalence: that is, that ux induces an equivalence after J-completion.
In fact, we claim that this happens at the level of each individual homotopy group:
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that is, for each integer k, the canonical map

πkpRqrx
´1
srT1, . . . , Tns » p

à

mě0
Symm

π0pRqpMq bπ0pRq πkpRqqrx
´1
s

v
ÝÑ p

ź

mě0
Symm

π0pRqpMq bπ0pRq πkpRqqrx
´1
s

» πkpArx
´1
sq

induces an equivalence after J-completion. Note that the domain and codomain of v are
modules over the symmetric algebra Sym˚

π0pRqpMqrx
´1s, and that J Sym˚

π0pRqpMqrx
´1s

coincides with the ideal J 1 “ Symą0
π0pRqpMqrx

´1s. It will therefore suffice to show that
v induces an equivalence after J 1-completion, which follows from Lemma 1.3.14.

1.5 Formal Hyperplanes
Let R be a connective E8-ring and let A P CAlgcn

R be a connective E8-algebra
over R. We let SpecpAq : CAlgcn

R Ñ S denote the functor corepresented by A, given
concretely by the formula

SpecpAqpBq “ MapCAlgRpA,Bq.

If A is an adic E8-algebra over R, we let SpfpAq Ď SpecpAq denote the subfunctor
whose value on an object B P CAlgcn

R is given by the summand

SpfpAqpBq “ Mapcont
CAlgRpA,Bq Ď MapCAlgRpA,Bq

spanned by those maps f : A Ñ B for which the underlying ring homomorphism
π0pAq Ñ π0pBq is continuous (where we equip π0pBq with the discrete topology). We
will refer to SpecpAq as the spectrum of A and SpfpAq as the formal spectrum of A.

Our goal in this section is to study functors X : CAlgcn
R Ñ S which have the form

SpfpC_q, where C is a smooth coalgebra over R. In this case, we will see that the
functor X can be defined directly in terms of C (without appealing to duality or to
any notion of continuity). More precisely, it can be realized as the cospectrum of C
(see Construction 1.5.4 and Proposition 1.5.8). We will show that the cospectrum
construction determines a fully faithful embedding

cSpec : cCAlgsm
R ãÑ FunpCAlgcn

R ,Sq

(Proposition 1.5.9), and we will say that a functor X : CAlgcn
R Ñ S is a formal

hyperplane if it belongs to the essential image of this embedding.
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1.5.1 The Cospectrum of a Coalgebra

We begin with some general remarks.

Definition 1.5.1. Let C be a symmetric monoidal 8-category and let C be a commu-
tative coalgebra object of C. A grouplike element of C is a morphism of commutative
coalgebras 1 Ñ C (here 1 denotes the unit object of C, which we regard as a final
object of cCAlgpCq). We let GLikepCq denote the space MapcCAlgpCqp1, Cq of grouplike
elements of C.

Example 1.5.2. Let R be a commutative ring and let C be a flat commutative
coalgebra over R, with comultiplication ∆ : C Ñ C bRC and counit ε : C Ñ R. Then
we can identify GLikepCq with the subset of C consisting of those elements x which
satisfy the identities

∆pxq “ xb x εpxq “ 1.

In other words, the general notion of grouplike element introduced in Definition 1.5.1
reduces to the notion defined in Remark 1.1.6.

Remark 1.5.3 (Functoriality). Let C and D be symmetric monoidal 8-categories and
let F be a symmetric monoidal functor. Then F determines a functor cCAlgpCq Ñ
cCAlgpDq, which carries the unit object 1C of C to the unit object 1D of D. It follows
that, for every commutative coalgebra object C P cCAlgpCq, the functor F induces a
canonical map GLikepCq Ñ GLikepF pCqq.

Construction 1.5.4 (The Cospectrum of a Coalgebra). Let R be a connective E8-
ring and let C be a flat commutative coalgebra over R. For every morphism of
connective E8-rings RÑ A, the extension of scalars functor

ModR Ñ ModA M ÞÑ AbRM

is symmetric monoidal, so we can regard A bR C as a commutative coalgebra over
R1. We let cSpecpCqpAq denote the space GLikepAbR Cq “ MapcCAlgApA,AbR Cq of
grouplike elements of AbRC. The construction A ÞÑ cSpecpCqpAq determines a functor
from the 8-category CAlgcn

R of connective E8-algebras over R to the 8-category S of
spaces (see Remark 1.5.3). We will denote this functor by cSpecpCq : CAlgcn

R Ñ S,
and refer to it as the cospectrum of C.

Variant 1.5.5 (The Nonconnective Case). Let R be any E8-ring and let C be a flat
commutative coalgebra over R. We define the cospectrum of C to be the functor
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cSpecpCq : CAlgcn
τě0R Ñ S obtained by applying Construction 1.5.4 to the connective

cover τě0C, which we regard as a flat commutative coalgebra over τě0R (see Remark
1.2.9).

Remark 1.5.6. Let R be an E8-ring. Then the cospectrum functor

cSpec : cCAlg5R Ñ FunpCAlgcn
τě0R,Sq

preserves finite products. In particular, if C and D are flat commutative coalgebras
over R, then we have a canonical equivalence cSpecpC bRDq » cSpecpCq ˆ cSpecpDq.

Remark 1.5.7. The construction C ÞÑ cSpecpCq is compatible with base change.
More precisely, suppose that we are given a morphism of E8-rings RÑ R1 and let C
be a flat commutative coalgebra over R, so that C 1 “ R1 bR C inherits the structure
of a flat commutative coalgebra over R1. Then the functor cSpecpC 1q is equivalent to
the composition of cSpecpCq with the forgetful functor CAlgcn

τě0R1 Ñ CAlgcn
τě0R.

1.5.2 Comparison with SpecpC_q

Let R be a connective E8-ring and let C be a flat commutative coalgebra over R.
For every connective E8-algebra A over R, we have a natural map

cSpecpCqpAq “ MapcCAlgApA,AbR Cq

Ñ MapCAlgAppAbR Cq
_, A_q

“ MapCAlgAppAbR Cq
_, A1q

Ñ MapCAlgApAbR C
_, Aq

» MapCAlgRpC
_, Aq

“ SpecpC_qpAq.

It is not hard to see that this map depends functorially on A, and therefore gives rise
to a natural transformation of functors cSpecpCq Ñ SpecpC_q (here SpecpC_q denotes
the functor corepresented by C_). This natural transformation is an equivalence when
C is a finitely generated projective R-module (see Remark 1.3.6), but need not be an
equivalence in general. In the case of a smooth coalgebra, we have the following:

Proposition 1.5.8. Let R be a connective E8-ring and let C be a smooth coalgebra
over R. Then the natural transformation ρ : cSpecpCq Ñ SpecpC_q induces an
equivalence cSpecpCq » SpfpC_q Ď SpecpC_q.
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Proof. Using Lemma 1.3.13, we can replace C by C bR A and thereby reduce to the
case R “ A, in which case the desired result is a special case of Theorem 1.3.15.

Proposition 1.5.9. Let R be an E8-ring. Then the construction C ÞÑ cSpecpCq
induces a fully faithful embedding of 8-categories

cCAlgsm
R Ñ FunpCAlgcn

τě0R,Sq.

Proof. Using Proposition 1.2.8, we can reduce to the case where R is connective. Let
C and D be smooth coalgebras over R; we wish to show that the canonical map

ρ : MapcCAlgRpD,Cq Ñ MapFunpCAlgcn
R ,Sq

pcSpecpDq, cSpecpCqq

is a homotopy equivalence. Using Proposition 1.5.8 and Theorem 1.3.15, we can
identify ρ with the map

Mapcont
CAlgRpC

_, D_q Ñ MapFunpCAlgcn
R ,Sq

pSpfpD_q, SpfpC_qq,

which is a homotopy equivalence by virtue of Theorem SAG.8.1.5.1 (and Corollary
SAG.8.1.5.4 ).

1.5.3 Formal Hyperplanes

We are now ready to introduce our principal objects of interest.

Definition 1.5.10. Let R be a connective E8-ring. We will say that a functor
X : CAlgcn

R Ñ S is a formal hyperplane over R if it belongs to the essential image of
the fully faithful embedding cSpec : cCAlgsm

R Ñ FunpCAlgcn
R ,Sq of Proposition 1.5.9.

We let HyppRq denote the full subcategory of FunpCAlgcn
R ,Sq spanned by the

formal hyperplanes over R, so that the cospectrum functor determines an equivalence
of 8-categories cSpec : cCAlgsm

R » HyppRq. We will refer to HyppRq as the 8-category
of formal hyperplanes over R.

Variant 1.5.11 (The Nonconnective Case). Let R be an arbitrary E8-ring. We will
say that a functor X : CAlgcn

τě0R Ñ S is a formal hyperplane over R if it is a formal
hyperplane over τě0R, in the sense of Definition 1.5.10. Equivalently, X is a formal
hyperplane over R if and only if it is equivalent to the cospectrum cSpecpCq for some
object C P cCAlgsm

R (see Proposition 1.2.8). We let HyppRq “ Hyppτě0Rq denote the
full subcategory of FunpCAlgcn

τě0R,Sq spanned by the formal hyperplanes over R.
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Notation 1.5.12 (The Ring of Functions). Let R be an E8-ring and let X :
CAlgcn

τě0R Ñ S be a formal hyperplane over R, so that we can write X “ cSpecpCq for
some smooth coalgebra C over R. We let OX denote the R-linear dual C_, which we
regard as an adic E8-algebra over R. We will refer to OX as the E8-ring of functions
of X. Note that the construction X ÞÑ OX determines a fully faithful embedding
HyppRq ãÑ CAlgad

R , whose essential image consists of those adic E8-algebras which
satisfy the conditions described in Proposition 1.4.11. Moreover, we describe X as the
formal spectrum Spfpτě0 OXq.

Remark 1.5.13. Let R be an E8-ring. Then the collection of formal hyperplanes
over R is closed under finite products (when regarded as a full subcategory of
FunpCAlgcn

τě0R,Sq). This follows immediately from Remarks 1.5.6 and 1.2.6.

Remark 1.5.14 (Functoriality). Let f : R Ñ R1 be a morphism of E8-rings. If X
is a formal hyperplane over R, then X determines a formal hyperplane XR1 over R1,
given by composing X with the forgetful functor CAlgcn

τě0R1 Ñ CAlgcn
τě0R. This follows

immediately from Remark 1.5.7.

1.5.4 Examples from Algebraic Geometry

The following result supplies a large class of examples of formal hyperplanes:

Proposition 1.5.15. Let R be a connective E8-ring, let f : X Ñ SpecpRq be a
separated fiber-smooth morphism of spectral algebraic spaces, let s : SpecpRq Ñ X be a
section of f , and let pX denote the formal completion of X along the image of s. Then
(the functor represented by) pX is a formal hyperplane over R.

We will need the following:

Lemma 1.5.16. Let R be a connective E8-ring and let X : CAlgcn
R Ñ S be a functor

which is a sheaf for the étale topology. Suppose that there exists an étale covering
tRÑ Rαu such that each restriction X|CAlgcn

Rα
is a formal hyperplane over Rα. Then

X is a formal hyperplane over R.

Proof. Let C denote the full subcategory of CAlgcn
R spanned by those connective

R-algebras A for which the structure map RÑ A factors through Rα, for some α. It
follows from Proposition 1.2.13 the construction A ÞÑ HyppAq satisfies descent for the
étale topology, so that the restriction map

ρ : HyppRq Ñ lim
ÐÝ
APC

HyppAq
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is an equivalence of 8-categories. Note that the construction A ÞÑ XA determines an
object of the codomain of ρ, which we can therefore lift to a formal hyperplane Y over
R. Then X, Y : CAlgcn

R Ñ S are functors which agree when restricted to C. Since
both are sheaves with respect to the étale topology (Proposition 1.5.17), it follows
that X » Y is a formal hyperplane over R.

Proof of Proposition 1.5.15. Choose an étale map u : SpecpAq Ñ X whose image
contains the image of s. Since the desired assertion is local with respect to the étale
topology on SpecpRq (Lemma 1.5.16), we may assume without loss of generality that
s factors as a composition

SpecpRq rs
ÝÑ SpecpAq u

ÝÑ X .

The assumption that u is étale then guarantees that the formal completion of X along
the image of s is equivalent to the formal completion of SpecpAq along the image
of rs. We may therefore replace X by SpecpAq and thereby reduce to the case where
X » SpecpAq is affine. Then A is a fiber-smooth E8-algebra over R, and s is classified
by an augmentation ε : AÑ R. Let I Ď π0pAq be the kernel of of the induced map
π0pAq Ñ π0pRq. Passing to a further localization of R, we may assume that I is
generated by a regular sequence t1, . . . , tn P π0pAq. In this case, the fiber-smoothness of
A over R supplies an equivalence π˚pA^I q » π˚pRqrrt1, . . . , tnss, so that pX » SpfpA^I q
is a formal hyperplane by virtue of Proposition 1.4.10.

1.5.5 Properties of Formal Hyperplanes

We now study the deformation-theoretic features of formal hyperplanes.

Proposition 1.5.17. Let R be a connective E8-ring and let X : CAlgcn
R Ñ S be a

formal hyperplane over R. Then:

p1q The functor X is a sheaf for the étale topology.

p2q The functor X is nilcomplete: that is, for every connective E8-algebra A over
R, the map XpAq Ñ lim

ÐÝ
XpτďnAq is an equivalence.

p3q The functor X is cohesive: that is, for every pullback diagram

A1 //

��

A

f
��

B1
g // B
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in CAlgcn
R for which the maps π0pAq Ñ π0pBq and π0pB

1q Ñ π0pBq are surjective,
the induced diagram

XpA1q //

��

XpAq

Xpfq

��
XpB1q

Xpgq // XpBq

is a pullback square in S.

Proof. All three assertions follow immediately from the description of X as a formal
spectrum SpfpC_q, for some smooth coalgebra C over R.

Remark 1.5.18. Let R be a connective E8-ring and let X be a formal hyperplane
over R. Then, for every reduced E8-algebra A over R, the space XpAq is contractible.
To prove this, we can replace R by A and thereby reduce to the case where R is a
reduced commutative ring, in which case the desired result follows from Example
1.1.17.

Proposition 1.5.19. Let R be a connective E8-ring, and suppose we are given a
natural transformation X Ñ SpecpRq in FunpCAlgcn,Sq corresponding to a formal
hyperplane CAlgcn

R Ñ S. The map X Ñ SpecpRq admits a relative cotangent complex
LX{SpecpRq P QCohpXq (see Definition SAG.17.2.4.2 ), which is connective and almost
perfect.

Proof. Since X is representable by a formal spectral Deligne-Mumford stack, the
existence and connectivity of LX{SpecpRq follow from Proposition SAG.17.2.5.1 . Fix a
connective E8-ring A and a point η P XpAq; we wish show that η˚LX{SpecpRq is almost
perfect as an A-module. Using Proposition SAG.2.7.3.2 we can reduce to the case
where A is discrete. In this case, we can replace R by π0pRq and thereby assume
that R is also discrete. Working locally on | SpecpRq|, we can further assume that
X is (representable by) the formal spectrum SpfpRrrt1, . . . , tnssq (Remark 1.4.9) and
is therefore obtained as the formal completion of the affine space SpecpRrt1, . . . , tnsq
along its zero section. We can therefore identify η˚LX{SpecpRq with the tensor product

AbRrt1,...,tns LRrt1,...,tns{R » AbZrt1,...,tns LZrt1,...,tns{Z.

It now suffices to observe that the cotangent complex LZrt1,...,tns{Z is almost perfect as
a module over Zrt1, . . . , tns, since Zrt1, . . . , tns is almost of finite presentation over Z
(Proposition HA.7.2.4.31 ).
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Corollary 1.5.20. Let R be a connective E8-ring and let X : CAlgcn
R Ñ S be a

formal hyperplane over R. Then X is locally almost of finite presentation over R:
that is, for each n ě 0, the functor X commutes with filtered colimits when restricted
to τďn CAlgcn

R .

Proof. By virtue of Proposition 1.5.17, Proposition 1.5.19, and Corollary SAG.17.4.2.2 ,
it will suffice to treat the case n “ 0. We may therefore replace R by π0pRq and
thereby reduce to the case where R is discrete. In this case, we can write X “

cSpecpΓ˚RpMqq where M is a projective module of finite rank over R. It follows from
Example 1.1.17 that the functor X is given on discrete R-algebras by the formula
XpAq “ HomRpM

_,
?
Aq, which clearly commutes with filtered colimits (here

?
A

denotes the nilradical of A).

1.6 Formal Groups
We are now ready to introduce the main objects of study in this paper.

Definition 1.6.1. Let R be a connective E8-ring. A formal group over R is a functor
pG : CAlgcn

R Ñ Modcn
Z with the following property: the composition

CAlgcn
R

pG
ÝÑ Modcn

Z
Ω8
ÝÝÑ S

is a formal hyperplane over R (in the sense of Definition 1.5.10). We let FGrouppRq
denote the full subcategory of FunpCAlgcn

R ,Modcn
Z q spanned by the formal groups over

R.

Variant 1.6.2 (The Nonconnective Case). Let R be an arbitrary E8-ring. We
define a formal group over R to be a formal group over the connective cover τě0R:
that is, a functor pG : CAlgcn

τě0R Ñ Modcn
Z for which the composition Ω8 ˝ pG is a

formal hyperplane over R, in the sense of Variant 1.5.11. We let FGrouppRq “
FGrouppτě0Rq Ď FunpCAlgcn

τě0R,Modcn
Z q denote the 8-category of formal groups over

R.

Notation 1.6.3 (The Ring of Functions). Let R be an E8-ring and let

pG : CAlgcn
τě0R Ñ Modcn

Z

be a formal group over R. We will refer to the functor X “ Ω8 ˝ pG as the underlying
formal hyperplane of pG. We let O

pG denote the adic E8-ring OX of Notation 1.5.12;
we will refer to O

pG as the E8-ring of functions on pG.
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Remark 1.6.4 (Functoriality). Let f : RÑ R1 be a morphism of E8-rings. It follows
from Remark 1.5.14 that if pG : CAlgcn

τě0R Ñ Modcn
Z is a formal group over R, then the

composite functor
CAlgcn

τě0R1 Ñ CAlgcn
τě0R

pG
ÝÑ Modcn

Z

is a formal group over R1. We will sometimes denote this formal group by pGR1 .

1.6.1 Variations

Definition 1.6.1 emphasizes the “functor of points” perspective on formal groups,
which will be most convenient to us in what follows. However, it admits various
reformulations which are sometimes useful:

Remark 1.6.5 (Formal Groups as Abelian Group Objects). For every 8-category
C which admits finite products, let AbpCq denote the 8-category of abelian group
objects of C (see Definition AV.1.2.4 ). Let R be an E8-ring. Since the collection of
formal hyperplanes is closed under finite products in FunpCAlgcn

τě0R,Sq, we have a
pullback diagram of 8-categories

AbpHyppRqq

��

// AbpFunpCAlgcn
τě0R,Sqq

��
HyppRq // FunpCAlgcn

R ,Sq.

Example AV.1.2.9 supplies an equivalence of 8-categories AbpSq » Modcn
Z , which

induces an equivalence

AbpFunpCAlgcn
τě0R,Sqq » FunpCAlgcn

τě0R,AbpSqq » FunpCAlgcn
τě0R,Modcn

Z q.

Combining these observations, we obtain an equivalence of 8-categories FGrouppRq »
AbpHyppRqq.

Remark 1.6.6 (Formal Groups as Hopf Algebras). Let R be an E8-ring and let
cCAlgsm

R be the 8-category of smooth coalgebras over R (Definition 1.1.14). Using
the equivalence of 8-categories cSpec : cCAlgsm

R » HyppRq supplied by Proposition
1.5.9, we obtain an equivalence of 8-categories AbpcCAlgsm

R q » FGrouppRq. Roughly
speaking, the domain of this equivalence can be viewed as an 8-category of Hopf
algebras over R, which are required to be commutative and cocommutative in a
strong sense (because they are abelian group objects of cCAlgsm

R , rather than merely
commutative monoid objects of cCAlgsm

R ), and smooth when viewed as coalgebras
over R.
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Remark 1.6.7 (Formal Groups as Formal Schemes). Let R be a connective E8-ring.
For every smooth coalgebra C over R, let us regard C_ as an adic E8-algebra over R,
and let SpfpC_q denote its formal spectrum in the sense of Construction SAG.8.1.1.10
(so that SpfpC_q is a spectrally ringed 8-topos). The construction C ÞÑ SpfpC_q
determines a fully faithful embedding from cCAlgsm

R to the8-category pfSpDMq{SpecpRq

of formal spectral Deligne-Mumford stacks over R. Passing to abelian group objects,
we obtain a fully faithful embedding FGrouppRq ãÑ AbppfSpDMq{SpecpRqq.

1.6.2 Properties of Formal Groups

From Proposition 1.5.17 and Corollary 1.5.20, we immediately deduce the following:

Proposition 1.6.8. Let R be a connective E8-ring and let pG : CAlgcn
R Ñ Modcn

Z be
a formal group over R. Then:

p1q The functor pG is a sheaf for the étale topology.

p2q The functor pG is nilcomplete: that is, for every connective E8-algebra A over
R, the map pGpAq Ñ lim

ÐÝ
pGpτďnAq is an equivalence in Modcn

Z .

p3q The functor pG is cohesive: that is, for every pullback diagram

A1 //

��

A

f
��

B1
g // B

in CAlgcn
R for which the maps π0pAq Ñ π0pBq and π0pB

1q Ñ π0pBq are surjective,
the induced diagram

pGpA1q //

��

pGpAq
pGpfq
��

pGpB1q
pGpgq // pGpBq

is a pullback square in Modcn
Z .

p4q The functor pG is locally almost of finite presentation over R: that is, it commutes
with filtered colimits when restricted to τďn CAlgcn

R for every nonnegative integer
n.

Warning 1.6.9. In the statement of Proposition 1.6.8, it is essential that all of the
relevant limits are formed in the 8-category Modcn

Z of connective Z-module spectra,
rather than in the larger 8-category ModZ of all Z-module spectra.
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1.6.3 Example: The Formal Multiplicative Group

To every commutative ring R, we can associate the abelian group GL1pRq “ tx P

R : x is invertible u. The construction R ÞÑ GL1pRq determines a functor from the
category of commutative rings to the category of abelian groups. This functor is
representable by a commutative group scheme over Z, which is typically denoted by
Gm; it can be described concretely as the spectrum of the Laurent polynomial ring
Zrt˘1s.

The construction R ÞÑ GL1pRq generalizes in a natural way to the setting of
E8-rings. Note that the construction X ÞÑ Σ8`X determines a symmetric monoidal
functor from the 8-category S of spaces (with symmetric monoidal structure given
by Cartesian product) to the 8-category Sp (endowed with the smash product
symmetric monoidal structure). It follows that the right adjoint functor Ω8 : Sp Ñ S
is lax symmetric monoidal, and therefore carries commutative algebra objects to
commutative algebra objects. In other words, for any E8-ring R, we can regard the
0th space Ω8R as an E8-space (with the E8-structure induced by the multiplication
on R). We let GL1pRq denote the summand of Ω8R consisting of those connected
components which are invertible when regarded as elements of the commutative ring
π0pRq. The construction R ÞÑ GL1pRq can be regarded as a sort of algebraic group in
the setting of spectral algebraic geometry. Note that, if we neglect the E8-structure
on GL1pRq, then it is a corepresentable functor of R: there is a canonical homotopy
equivalence GL1pRq » MapCAlgpStt

˘1u, Rq, where Sttu denotes the free E8-ring on a
single generator t, and Stt˘1u “ Stturt´1s denotes the E8-ring obtained by inverting
that generator.

For our purposes, the functor GL1 suffers from two closely related defects:

• Through we can think of GL1 as a sort of commutative group scheme in spectral
algebraic geometry, it is not commutative enough: in general, GL1pRq is the 0th
space of a spectrum, but not of a Z-module spectrum.

• As a spectral scheme, GL1 is not flat over the sphere spectrum S (that is, Stt˘1u

is not flat as an S-module).

However, these deficiencies have a common remedy.

Construction 1.6.10 (The Strict Multiplicative Group). Let Lat denote the category
of lattices (that is, the category of free abelian groups of finite rank). If R is an
E8-ring, then the construction pM P Latq ÞÑ MapCAlgpΣ8`M,Rq determines a functor
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FR : Latop
Ñ S which commutes with finite products. It follows from Remark

AV.1.2.10 that there is an essentially unique connective Z-module spectrum GmpRq

equipped with homotopy equivalences

MapModZ
pM,GmpRqq » MapCAlgpΣ8`M,Rq

depending functorially on M . The construction R ÞÑ GmpRq determines a functor

Gm : CAlg Ñ Modcn
Z ,

which we will refer to as the strict multiplicative group.

Remark 1.6.11. In the setting of Construction 1.6.10, we do not need to restrict our
attention to lattices. For any connective Z-module spectrum M , we have a canonical
homotopy equivalence

MapModZ
pM,GmpRqq » MapCAlgpΣ8`Ω8M,Rq.

Remark 1.6.12 (Relationship with GL1). Let R be an E8-ring. Then there is a
canonical map of E8-spaces

α : Ω8GmpRq Ñ GL1pRq.

Moreover, GmpRq is universal among connective Z-module spectra equipped with
such a map. More precisely, for any connective Z-module spectrum M , composition
with α induces a homotopy equivalence

MapModZ
pM,GmpRqq » MapCMonpSqpΩ8M,GL1pRqq

(this is an immediate consequence of Remark 1.6.11 and the definition of GL1pRq).
Put another way, the Z-module spectrum GmpRq is given by the formula

GmpRq “ τě0Map
S
pZ, gl1pRqq,

where gl1pRq denotes the connective spectrum corresponding to the grouplike E8-space
GL1pRq.

Remark 1.6.13 (Flatness). By virtue of Remark 1.6.11, the functor R ÞÑ Ω8GmpRq

is corepresented by the E8-ring Σ8`pZq. This spectrum is flat over the sphere (it can
be obtained from the E8-ring Srts of §1.4.1 by inverting t).
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Remark 1.6.14. If R is an ordinary commutative ring, then there is essentially no
difference between GmpRq and GL1pRq: they can both be identified with the abelian
group of invertible elements of R. However, they are often quite different when R is
not discrete. Note that the homotopy groups of GL1pRq are given by the formula

π˚ GL1pRq “

#

π0pRq
ˆ if ˚ “ 0

π˚pRq otherwise.

However, the homotopy groups of GmpRq are more unpredictable. For example, if
R “ KU^ppq is the ppq-completed complex K-theory spectrum, then one can show that
π0pGmpRqq is isomorphic to Fˆp (a cyclic group of order pp´ 1q). The canonical map

π0pGmpRqq Ñ π0pGL1pRqq » Zˆp

assigns to each invertible element x P Fp its Teichmüller representative rxs P Zp »

W pFpq.

Remark 1.6.15. Let R be an E8-ring. Then the canonical map τě0RÑ R induces
equivalences

GL1pτě0Rq Ñ GL1pRq Gmpτě0Rq Ñ GmpRq.

Consequently, no information is lost by restricting the functors GL1 and Gm to the
full subcategory CAlgcn

Ď CAlg spanned by the connective E8-rings.

Construction 1.6.16 (The Formal Multiplicative Group). Let R be a connective
E8-ring. We let pGmpRq denote the fiber of the canonical map GmpRq Ñ GmpR

redq

(formed in the 8-category Modcn
Z of connective Z-module spectra). The construction

R ÞÑ pGmpRq determines a functor

pGm : CAlgcn
Ñ Modcn

Z ,

which we will refer to as the formal multiplicative group.

Proposition 1.6.17. The formal multiplicative group pGm is a formal group over the
sphere spectrum S (in the sense of Definition 1.6.1).

Proof. Unwinding the definitions, we see that the functor Ω8 pGm is representable by
the formal spectrum SpfpAq, where A is the completion of the E8-ring Σ8`pZq » Srt˘1s

with respect to the ideal generated by u “ pt´1q. The homotopy groups of A are given
by pπ˚Sqrruss, so that SpfpAq is a formal hyperplane over S by virtue of Proposition
1.4.10.
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Warning 1.6.18. The E8-ring A appearing in the proof of Proposition 1.6.17 is not
equivalent to the power series algebra Srruss of Construction 1.4.4, despite the fact
that they have isomorphic homotopy rings.

Remark 1.6.19. Since the formal multiplicative group pGm is defined over the sphere
spectrum S, it determines a formal group over any E8-ring R, given by the composition

CAlgcn
τě0R Ñ CAlgcn pGm

ÝÝÑ Modcn
Z .

We will refer to this functor as the formal multiplicative group over R. We will generally
abuse notation by writing it also as pGm.

1.6.4 Non-Example: The Formal Additive Group

Let Ga denote the affine line A1 “ SpecpZrtsq over SpecpZq. We regard Ga as a
commutative group scheme over Z, with additional law classified by the comultiplica-
tion

∆ : Zrts Ñ Zrts bZ Zrts t ÞÑ tb 1` 1b t.

Then the formal completion pGa » SpfpZrrtssq is a formal group over Z, which we refer
to as the formal additive group. On ordinary commutative rings, these functors are
given by

GapAq “ A pGapAq “ tx P A : x is nilpotentu.

For any connective E8-ring R, we can contemplate analogous constructions

G : CAlgcn
R Ñ Spcn

which associates to each connective E8-algebra A its underlying spectrum, and we can
define its formal completion pX : CAlgcn

R Ñ Spcn by the formula pGpAq “ Aˆπ0pAq tx P

π0pAq : x is nilpotentu. Beware that pG is generally not a formal group in the sense of
Definition 1.6.1, for two reasons:

• The functor pG takes values in the 8-category of connective spectra, rather than
the 8-category Modcn

Z of connective Z-module spectra.

• The functor X “ Ω8 ˝ pG is not a formal hyperplane over R unless R admits
the structure of an E8-algebra over Q. Note that X can be identified with
the formal spectrum SpfpAq, where A denotes the ptq-completion of the free
E8-algebra Rttu. In general, Rttu is not flat over R.
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We now show that these difficulties are actually essential: it is not possible to lift
the formal additive group pGa to a formal group over the sphere spectrum S. In fact,
we can say more:

Proposition 1.6.20. The formal additive group pGa cannot be lifted to τď1pSq: in other
words, it does not belong to the essential image of the forgetful functor FGrouppτď1Sq Ñ

FGrouppπ0pSqq “ FGrouppZq.

Remark 1.6.21. Our proof of Proposition 1.6.20 will actually establish something
stronger: it is not possible to lift pGa to a formal hyperplane over τď1pSq which is
equipped with a unital multiplication. We do not need to assume that this multiplica-
tion is commutative or associative, even up to homotopy.

Let us begin by reviewing some elementary facts about power operations which
will be useful for proving Proposition 1.6.20.

Construction 1.6.22. Let X be an E8-space. Then every point x P X extends
(in an essentially unique way) to a map of E8-spaces u : Symp˚q Ñ X, where
Symp˚q » >ně0 BΣn denotes the free E8-space generated by a point (here Σn denotes
the symmetric group on n letters). In particular, we obtain a map u|BΣ2 : BΣ2 Ñ X.
This map carries the base point b of BΣ2 to a point of X which we will denote by x2,
and induces a map of fundamental groups Σ2 “ π1pBΣ2, bq Ñ π1pX, x

2q. We will let
µpxq P π1pX, x

2q denote the image of the nontrivial element of Σ2 under this map.

Example 1.6.23. Let E be a spectrum. Then Ω8pEq can be regarded as a grouplike
E8-space. Consequently, any point x P Ω8pEq determines an element µpxq of the
abelian group π1pΩ8pEq, x2q » π1E. Then µpxq depends only on the connected
component rxs P π0pEq of x. Moreover, the construction rxs ÞÑ µpxq coincides with
the homomorphism π0pEq Ñ π1E given by multiplication by the nontrivial element
η P π1pSq.

Example 1.6.24. Let A be an E8-ring. Since the 0th space functor Ω8 : Sp Ñ S
is lax symmetric monoidal, the E8-structure on A determines an E8-structure on
the 0th space Ω8pAq, which we will refer to as the multiplicative E8-structure. Note
that this structure is difference from the additive E8-structure of Example 1.6.23 (the
induced monoid structure on π0pAq is given by multiplication, rather than addition;
in particular, the space Ω8A is not grouplike with respect to the multiplicative E8-
structure). Applying Construction 1.6.22 to the multiplicative E8-structure, we see
that every point x P Ω8pAq determines an element µpxq P π1pΩ8A, x2q » π1A. The
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element µpxq depends only on the connected component rxs P π0pAq of x. We will
emphasize this dependence by writing µpxq as ηmprxsq, so that we obtain a function
ηm : π0pAq Ñ π1pAq.

Example 1.6.25. Let F in denote the category of finite sets and let F in» denote its
underlying groupoid. We will regard F in as equipped with the symmetric monoidal
structure given by the Cartesian product. The groupoid F in» inherits the structure of
a symmetric monoidal 8-category, so that the nerve NpF in»q can be regarded as an
E8-space. Let J be a point of NpF in»q, viewed as a finite set. Applying Construction
1.6.22, we obtain an element µpJq P π1pNpF in»q, J ˆ Jq, which corresponds to the
permutation of J ˆ J given by pi, jq ÞÑ pj, iq. A simple calculation shows that this
permutation is even when the cardinality of J is congruent to 0 or 1 modulo 4, and is
odd when the cardinality of J is congruent to 2 or 3 modulo 4.

Example 1.6.26. Let S denote the sphere spectrum. Then there is a canonical map
of E8-spaces NpF in»q Ñ Ω8S, where we regard NpF in»q as equipped with the E8-
structure of Example 1.6.25 and Ω8S as equipped with the multiplicative E8-structure
of Example 1.6.24. This map carries each finite set J into the connected component
of Ω8S classified by the cardinality |J | P Z » π0pSq, and carries each permutation σ :
J Ñ J to the element

!

0 if σ is even η if σ is odd P π1pSq. Using the functoriality

of Construction 1.6.22, we deduce that ηmp|J |q “
#

0 if |J | ” 0, 1 pmod 4q
η if |J | ” 2, 3 pmod 4q.

Lemma 1.6.27. Let A be an E8-ring. Then, for every pair of elements x, y P π0pAq,
we have an equality ηmpx` yq “ ηmpxq ` ηmpyq ` ηxy in π1pAq.

Proof. Without loss of generality, we may assume that A “ Stx, yu is the free E8-ring
generated by x and y. Then A is given as a spectrum by the

Stxu b Styu » p
à

aě0
Σ8` BΣaq b p

à

bě0
Σ8` BΣbq

»
à

a,bě0
Σ8`pBΣaˆBΣbq.

With respect to this decomposition, we can write ηmpx ` yq “
ř

a,bě0 ca,b for some
elements ca,b P π1Σ8`pBΣaˆBΣbq. It follows immediately from the construction that
ca,b vanishes for a` b ‰ 2. Moreover, by setting x or y equal to zero, we deduce that
c2,0 “ ηmpxq and c0,2 “ ηmpyq. We therefore have ηmpx`yq “ ηmpxq`ηmpyq`c1,1xy for
some element c1,1 P π1S. Since this equality holds in the free E8-ring on two generators,
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it must hold in any E8-ring A containing elements x, y P π0pAq. In particular, taking
A to be the sphere spectrum and x “ y “ 1, we obtain ηmp2q “ ηmp1q ` ηmp1q ` c1,1

in π1S. Example 1.6.26 shows that ηmp2q “ η and ηmp1q “ 0, so that c1,1 “ η as
desired.

Proof of Proposition 1.6.20. Let pG be a formal group over τď1S and let X “ Ω8 pG
be the underlying formal hyperplane of pG. Write X “ SpfpAq and X ˆX “ SpfpBq,
where A and B are adic E8-algebras over τď1S, so that the multiplication on X induces
a morphism ρ : A Ñ B. Suppose that, after extension of scalars to π0pSq » Z, the
formal group pG is equivalent to the formal additive group pGa. A choice of equivalence
then yields isomorphisms α : Zrrtss Ñ π0pAq and β : Zrrt0, t1ss Ñ π0pBq for which the
diagram

Zrrtss
tÞÑt0`t1
��

α // π0pAq

ρ

��
Zrrt0, t1ss

β // π0pBq

commutes. Note that multiplication by η P π1pSq induces isomorphisms

π0pAq{2π0pAq Ñ π1pAq π0pBq{2π0pBq » π1pBq.

In particular, there is a unique power series fptq P Zrrtss, uniquely determined modulo
2, which satisfies the equation ηαpfptqq “ ηmpαptqq. Applying the map ρ and invoking
Lemma 1.6.27, we obtain

ηβpfpt0 ` t1qq “ ηmpβpt0 ` t1qq

“ ηmpβpt0qq ` ηmpβpt1qq ` ηβpt0qβpt1q

“ ηβpfpt0qq ` ηβpfpt1qq ` ηt0t1.

The power series f must then satisfy the identity fpt0 ` t1q ” fpt0q ` fpt1q ` t0t1
pmod 2q. This is a contradiction, since the coefficient of t0t1 in the power series
fpt0 ` t1q is necessarily even.

2 Identity Components of p-Divisible Groups
For every commutative ring R, let GmpRq denote the set of invertible elements of

R, which we regard as a group under multiplication. We will view the construction
R ÞÑ GmpRq as a functor from the category of commutative rings to the category of
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abelian groups. We denote this functor by Gm and refer to it as the multiplicative
group; it is representable by the affine group scheme Spec Zrt˘1s (which we also denote
by Gm). Consider the following subfunctors of Gm:

• The formal multiplicative group pGm Ď Gm assigns to every commutative ring R
the subset

pGmpRq “ tx P R : px´ 1q is nilpotentu Ď GmpRq.

This functor is representable by the formal scheme

Spf Zrrpt´ 1qss “ lim
ÝÑ

Spec Zrts{pt´ 1qm.

• For each prime number p, the p-divisible multiplicative group µp8 Ď Gm assigns
to every commutative ring R the subset

µp8pRq “ tx P R : xpm “ 1 for m " 0u Ď GmpRq.

This functor is representable by the Ind-scheme lim
ÝÑ

Spec Zrts{ptpm ´ 1q.

The functors pGm and µp8 do not coincide (as subfunctors of Gm): in fact, neither
contains the other. However, they are closely related by the following elementary
observation:

p˚q Let R be a commutative ring in which p is nilpotent. Then pGmpRq “ µp8pRq.

Roughly speaking, p˚q asserts that the formal group pGm and the p-divisible group
µp8 become interchangeable after p-adic completion: after extending scalars to a ring
in which p is nilpotent, either can be recovered from the other.

More generally, if R is any commutative ring in which p is nilpotent, the theory of
p-divisible groups over R is closely related to the theory of formal groups over R, by
virtue of the following result of [27]:

Theorem 2.0.1 (Messing). Let R be a commutative ring in which p is nilpotent and
let G be a p-divisible group over R, and define G˝ : CAlg♥

R Ñ Mod♥
Z by the formula

G˝
pAq “ kerpGpAq Ñ GpAred

qq.

Then G˝ is (representable by) a formal group over R.
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In [26], we introduced the notion of a p-divisible group over an arbitrary E8-ring
R. Let us recall the definition in a form which will be convenient for our purposes
(see Proposition AV.6.5.8 for a slight variant):

Definition 2.0.2. Let R be a connective E8-ring. A p-divisible group over R is a
functor G : CAlgcn

R Ñ Modcn
Z with the following properties:

p1q For every object A P CAlgcn
R , the Z-module spectrum GpAq is p-nilpotent: that

is, we have GpAqr1{ps » 0.

p2q For every finite abelian p-group M , the functor

pA P CAlgcn
R q ÞÑ pMapModZ

pM,GpAqq P Sq

is corepresentable by a finite flat R-algebra.

p3q The map p : G Ñ G is locally surjective with respect to the finite flat topology.
In other words, for every object A P CAlgcn

R and every element x P π0pGpAqq,
there exists a finite flat map AÑ B for which SpecpBq Ñ SpecpAq is surjective
and the image of x in π0pGpBqq is divisible by p.

Remark 2.0.3. In the situation of Definition 2.0.2, if condition p3q is satisfied, then
it suffices to check condition p2q in the special case M “ Z {pZ.

Remark 2.0.4. In the situation of Definition 2.0.2, if M is a finite abelian p-group,
we let GrM s denote the functor given by A ÞÑ MapZpM,GpAqq, so that GrM s is a
finite flat group scheme over R. In the special case M “ Z {pk Z, we will denote GrM s
by Grpks.

Warning 2.0.5. In the situation of Definition 2.0.2, each Grpks is a sheaf for the flat
topology, and we have G » lim

ÝÑk
Grpks. However, it is not clear that G is also a sheaf

for the flat topology (or even the finite flat topology), at least when regarded as a
Modcn

Z -valued functor.

We will extend Definition 2.0.2 to the nonconnective case in a purely formal way
(see Remark AV.6.5.3 ):

Variant 2.0.6 (The Nonconnective Case). Let R be an arbitrary E8-ring. We define
a p-divisible group over R to be a p-divisible group over the connective cover τě0R:
that is, a functor G : CAlgcn

τě0R Ñ Modcn
Z satisfying conditions p1q, p2q, and p3q of

Definition 2.0.2. We let BTp
pRq denote the full subcategory of FunpCAlgcn

τě0R,Modcn
Z q

spanned by the p-divisible groups over R.
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Remark 2.0.7 (Functoriality). Let A and B be E8-rings and suppose we are given
a morphism of E8-rings f : τě0pAq Ñ τě0pBq. If G is a p-divisible group over A, we
let GB denote the p-divisible group over B given by the composite functor

CAlgcn
τě0B Ñ CAlgcn

τě0pAq
G
ÝÑ Modcn

Z .

In this case, we will say that GB is obtained from G by extending scalars along f .
Note that this construction makes sense even when f does not arise from a map
AÑ B; for example, we can always extend scalars from A to π0pAq.

We can now formulate the main result of this section:

Theorem 2.0.8. Let R be a ppq-complete E8-ring and let G be a p-divisible group
over R. Then there exists an essentially unique formal group G˝ P FGrouppRq with
the following property:

p˚q Let E Ď CAlgcn
τě0pRq denote the full subcategory spanned by those connective

τě0pRq-algebras which are truncated and ppq-nilpotent. Then the functor G˝|E is
given by the construction A ÞÑ fibpGpAq Ñ GpAredqq.

Remark 2.0.9. To prove Theorem 2.0.8, we are free to replace R by its connective
cover and thereby reduce to the case where R is connective.

Definition 2.0.10. Let R be a connective E8-ring which is ppq-complete for some
prime number p, and let G be a p-divisible group over R. We will refer to the formal
group G˝ of Theorem 2.0.8 as the identity component of G.

Theorem 2.0.8 is more general than Theorem 2.0.1 in three main respects:

paq In the statement of Theorem 2.0.8, we allow R to be an E8-ring rather than an
ordinary commutative ring.

pbq Theorem 2.0.1 requires that p is nilpotent in R, while Theorem 2.0.8 requires
only that R is ppq-complete. However, the difference is slight, at least when R

is Noetherian: in this case, one can construct the identity component G˝ by
amalgamating its restrictions to the subschemes SpecpR{ppkqq Ď SpecpRq.

pcq Even when R is an ordinary commutative ring and p is nilpotent in π0pRq, the
content of Theorem 2.0.8 is stronger than that of Theorem 2.0.1. If G is a
p-divisible group over R, then Theorem 2.0.1 asserts that there is a unique formal
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group G˝ over R having the property that G˝pAq “ kerpGpAq Ñ GpAredqq when
A is a discrete R-algebra. Theorem 2.0.8 asserts that this formal group G˝

has a stronger property: there is a canonical equivalence G˝pAq » fibpGpAq Ñ
GpAredqq for every truncated object A P CAlgcn

R .

Let us now sketch the contents of this section. Our first goal will be to show that
the identity component G˝ of Theorem 2.0.8 is uniquely determined by requirement
p˚q. Roughly speaking, we can think of p˚q as prescribing the restriction of the formal
group G˝ to the formal spectrum SpfpRq Ď SpecpRq, where we endow π0pRq with the
p-adic topology. In §2.1, we prove more generally that if an E8-ring R is complete
with respect to a finitely generated ideal I Ď π0pRq, then a formal group pG over
SpecpRq is determined by its restriction to SpfpRq (see Theorem 2.1.1 for a precise
statement).

We will give the proof of Theorem 2.0.8 in §2.2. In [27], Theorem 2.0.1 is proved
by first treating the case where R is an Fp-algebra (in which case one can exploit
special features of the Frobenius and Verschiebung endomorphisms of G), and this is
extended to the general case using deformation-theoretic arguments. Our strategy will
be essentially the same: we will apply deformation-theoretic arguments (in the more
general setting of E8-rings) to reduce to the case where R is a discrete Fp-algebra.
The arguments of [27] (which we reproduce here, for the sake of completeness) then
show that there exists a formal group G˝ satisfying G˝pAq “ kerpGpAq Ñ GpAredqq

whenever A is a discrete R-algebra. We then show that G˝ represents the desired
functor on all truncated E8-algebras over R by exploiting a deformation-theoretic
property of the Frobenius map (Proposition 2.2.3).

Roughly speaking, the difference between a p-divisible group G and its identity
component G˝ is controlled by the values of G on reduced Fp-algebras. In §2.3, we
study the class of connected p-divisible groups, which are defined by the requirement
that GpAq » 0 when A is reduced (see Proposition 2.3.9). We will show that the
construction G ÞÑ G˝ is fully faithful when restricted to connected p-divisible groups
(Corollary 2.3.13), and study its essential image.

In §2.5, we study the class of étale p-divisible groups (Definition 2.5.3), which
are in some sense as far as possible from being connected (Proposition 2.5.8). The
theory of étale p-divisible groups offers no surprises: the datum of an étale p-divisible
group over an E8-ring R is equivalent to the datum of an étale p-divisible group over
the commutative ring π0pRq (Proposition 2.5.9). Such objects are well-understood:
when the topological space | SpecpRq| is connected, they can be identified with free
Zp-modules of finite rank, equipped with a continuous action of the étale fundamental
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group π1pSpecpRq, ηq (where η is any geometric point of SpecpRq). In good cases of
interest, an arbitrary p-divisible group G can be “built” from connected and étale
pieces (which can be understood in terms of formal groups and Galois representations,
respectively). To make this precise, we introduce in §2.4 the notion of a short exact
sequence of p-divisible groups

0 Ñ G1 f
ÝÑ G g

ÝÑ G2
Ñ 0

(see Definition 2.4.9). We will be particularly interested in short exact sequences where
G1 is (formally) connected and G2 is étale. We will refer to such an exact sequence
as a connected-étale sequence for G (Definition 2.5.15). In §2.5, we will show that
such sequences are automatically unique (Theorem 2.5.13), and give necessary and
sufficient conditions for their existence (Proposition 2.4.1).

2.1 Formal Groups over SpecpRq and SpfpRq
Let R be a connective E8-ring. We can think of a formal group pG over R as an

abelian group object in the 8-category formal schemes over the spectrum SpecpRq
(see Remark 1.6.7 for a precise statement). If R is an adic E8-ring, then we can also
consider the notion of a formal group over the formal spectrum SpfpRq. Such an
object can be described geometrically as a certain kind of abelian group object in
the 8-category pfSpDMq{SpfpRq, or more concretely as a compatible family of formal
groups tpGA P FGrouppAqu where A ranges over connective E8-rings equipped with
a map SpecpAq Ñ SpfpRq. We will refrain from giving a precise definition, because
this turns out to be unnecessary: if R is a complete adic E8-ring, then the notions of
formal group over SpecpRq and SpfpRq turn out to be equivalent. The equivalence is
a consequence of the following general statement:

Theorem 2.1.1. Let R be a connective E8-ring which is complete with respect to
some finitely generated ideal I Ď π0pRq and let ER denote the full subcategory of
CAlgcn

R spanned by those connective E8-algebras over R which are truncated and I-
nilpotent. Then the restriction functor pG ÞÑ pG|ER determines a fully faithful embedding
FGrouppRq Ñ FunpER,Modcn

Z q. The essential image of this embedding consists of
those functors pG0 : ER Ñ Modcn

Z which satisfy the following pair of conditions:

p1q The composite functor

E pπ0Rq{I Ñ ER
pG0
ÝÝÑ Modcn

Z

can be extended to a formal group over the commutative ring pπ0Rq{I.
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p2q The functor pG0 is cohesive: that is, for every pullback diagram

A //

��

A0

��
A1 // A01

in the 8-category ER where the ring homomorphisms π0pA0q Ñ π0pA01q Ð

π0pA1q are surjective, the induced diagram

pG0pAq //

��

pG0pA0q

��
pG1pA1q // pG0pA01q

is a pullback square in Modcn
Z .

Theorem 2.1.1 is a consequence of a more general assertion concerning formal
hyperplanes.

Notation 2.1.2. Let R be a connective E8-ring. A pointed formal hyperplane over
R is a functor X : CAlgcn

R Ñ S˚ with the property that the composite functor

CAlgcn
R

X
ÝÑ S˚ Ñ S

is a formal hyperplane over R, in the sense of Definition 1.5.10. We let Hyp˚pRq denote
the full subcategory of FunpCAlgcn

R ,Sq spanned by the pointed formal hyperplanes
over R.

Remark 2.1.3. Let R be a connective E8-ring. The equivalence of 8-categories
cSpec : cCAlgsm

R » HyppRq induces an equivalence of 8-categories pcCAlgsm
R qR{ »

Hyp˚pRq, where pcCAlgsm
R qR{ is the 8-category of augmented smooth coalgebras over

R (that is, the 8-category of smooth coalgebras C over R equipped with a point
η P GLikepCq).

Proposition 2.1.4. Let R be a connective E8-ring which is I-complete for some
finitely generated ideal I Ď π0R and let ER Ď CAlgcn

R be as in the statement of
Theorem 2.1.1. Then the restriction functor Hyp˚pRq Ñ FunpER,S˚q is fully faithful,
and its essential image consists of those functors X0 : ER Ñ S˚ which satisfy the
following pair of conditions:
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p1q The composite functor
E pπ0Rq{I Ñ ER

X0
ÝÑ S˚

can be extended to a pointed formal hyperplane over the commutative ring
pπ0Rq{I.

p2q The functor X0 is cohesive: that is, for every pullback diagram

A //

��

A0

��
A1 // A01

in the 8-category ER where the morphisms π0pA0q Ñ π0pA01q Ð π0pA1q are
surjective, the induced diagram

X0pAq //

��

X0pA0q

��
X0pA1q // X0pA01q

is a pullback square in S˚.

Proof of Theorem 2.1.1 from Proposition 2.1.4. For any 8-category C which admits
finite products, let C˚ denote the8-category of pointed objects of C. Then the forgetful
functor C˚ Ñ C induces an equivalence of8-categories ρ : AbpC˚q Ñ AbpCq: to see this,
we observe that ρ can be identified with the forgetful functor AbpCq˚ Ñ AbpCq, which
is an equivalence because the 8-category AbpCq is pointed. Applying this observation
in the case C “ S, we obtain an equivalence Modcn

Z » AbpS˚q. Consequently, the
equivalence of Theorem 2.1.1 can be obtained from the equivalence of Proposition
2.1.4 by passing to abelian group objects.

The rest of this section is devoted to the proof of Proposition 2.1.4. We will first
prove in §2.1.2 that the restriction functor X0 ÞÑ X0|ER is fully faithful (Proposition
2.1.10) using a slightly technical property of formal hyperplanes (Proposition 2.1.6).
The characterization of the essential image of the restriction functor will be established
in §2.1.3.

Warning 2.1.5. In the statement of Proposition 2.1.4, the restriction to pointed
formal hyperplanes is essential. For example, if we take R “ Zp to be the ring of
p-adic integers, I to be the principal ideal ppq, and X “ pA1 “ SpfpRrrtssq to be the
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formal affine line over R, then the element p P R determines a natural transformation
SpecpRq|E Ñ X|E which cannot be lifted to a point of XpRq (the element p is
topologically nilpotent but not nilpotent in R).

2.1.1 A Finiteness Property of Formal Hyperplanes

Our proof of Proposition 2.1.4 will make use of the following:

Proposition 2.1.6. Let R be a connective E8-ring, let C Ď CAlgcn
R be the full

subcategory spanned by those connective E8-algebras over R which are almost perfect
when regarded as R-modules, and let X : CAlgcn

R Ñ S be a formal hyperplane over R.
Then X is a left Kan extension of X|C.

The proof will require some preliminaries.

Lemma 2.1.7. Let R be a connective E8-ring and let M be an Rrrtss-module such
that M rt´1s » 0. If M is almost perfect as an Rrrtss-module, then it is almost perfect
as an R-module.

Proof. Without loss of generality, we may assume that M is connective. We will show
that, for every integer n, the module M is perfect to order n over R (in the sense of
Definition SAG.2.7.0.1 ). For n ă 0, this follows automatically from our assumption
that M is connective (Example SAG.2.7.0.3 ). The proof in general proceeds by
induction on n. Since M is connective and almost perfect as an Rrrtss-module, the
abelian group π0pMq is finitely generated as a module over π0pRqrrtss. Let x1, . . . , xk
be a set of generators for π0pMq as a module over π0pRqrrtss. Using the assumption
that M rt´1s » 0, we can choose an integer m such that tmxi “ 0 for 1 ď i ď k.
Let Rrrtss{ptmq denote the cofiber of the map tm : Rrrtss Ñ Rrrtss. Then we can
find maps fi : Rrrtss{ptmq Ñ M which carry the element 1 P π0pRqrrtss{pt

mq to xi.
Amalgamating these maps, we obtain a map u :

À

1ďiďk Rrrtss{pt
mq Ñ M which is

surjective on π0. Note that the domain of u is perfect as an Rrrtss-module, so that
fibpuq is an almost perfect Rrrtss-module. Applying our inductive hypothesis, we
conclude that fibpuq is perfect to order pn´ 1q as an R-module. Since the domain of
u is perfect as an R-module, it follows that M is perfect to order n as an R-module,
as desired.

Lemma 2.1.8. Let R be a connective E8-ring and let M be an almost perfect
Rrrt1, . . . , tnss-module such that M rt´1

i s vanishes for 1 ď i ď n. Then M is almost
perfect when regarded as an R-module.
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Proof. Apply Lemma 2.1.7 repeatedly.

Lemma 2.1.9. Let R be a connective E8-ring, let C be a smooth coalgebra over R,
and let M be an almost perfect module over C_. Assume that M is Iη-nilpotent, where
Iη Ď π0pC

_q is the ideal of Warning 1.3.12. Then M is almost perfect as an R-module.

Proof. Using Remark 1.4.9, we can choose elements txiuiPI which generate the unit
ideal of π0pRq such that each localization Crx´1

i s is a standard smooth coalgebra over
Rrx´1

i s. Since the condition of being almost perfect is local for the Zariski topology on
R (see Proposition SAG.2.8.4.2 ), it will suffice to show that each localization M rx´1

i s

is almost perfect as an Rrx´1
i s-module. Set C_i “ Map

R
pC,Rrx´1

i sq, so that C_i is
the Iη-completion of C_rx´1

i s (Proposition 1.3.13). In particular, the fiber of the map
v : C_rx´1

i s Ñ C_i is I-local, so the tensor product fibpvq bC_ M vanishes. It follows
that the natural map

M rx´1
i s » C_rx´1

i s bC_ M Ñ C_i bC_ M

is an equivalence. We are therefore reduced to proving that each C_i bC_ M is
almost perfect as an Rrx´1

i s-module. We may therefore replace R by Rrx´1
i s and

M by C_i bC_ M and thereby reduce to the case where the smooth coalgebra C is
standard. In this case, Proposition 1.4.10 supplies an equivalence Rrrt1, . . . , tnss Ñ C_

of E1-algebras over R. Then M is almost perfect when regarded as an Rrrt1, . . . , tnss-
module and our assumption that M is Iη-nilpotent guarantees the vanishing of each
localization M rt´1

j s. Applying Lemma 2.1.8, we deduce that M is almost perfect when
regarded as an R-module, as desired.

Proof of Proposition 2.1.6. Let R be a connective E8-ring and let X be a formal
hyperplane over R. Write X “ cSpecpCq for some smooth coalgebra C over R, and let
Iη Ď π0pC

_q be as in Warning 1.3.12. Applying Lemma SAG.8.1.2.2 , we can choose a
tower

¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1

of connective E8-algebras over C_ with the following properties:

paq For each n ą 0, the image of Iη in π0pAnq is nilpotent.

pbq Each An is almost perfect when regarded as a C_-module.

pcq For every connective R-algebra B, the canonical map

lim
ÝÑ

MapCAlgRpAn, Bq Ñ Mapcont
CAlgRpC

_, Bq

is a homotopy equivalence.
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It follows that X can be identified with the filtered colimit of the functors SpecAn
corepresented by the objects An P CAlgcn

R . Consequently, to show that X is a left
Kan extension of X|C, it will suffice to show that each of the corepresentable functors
SpecAn is a left Kan extension of pSpecAnq|C. This follows from the observation that
each An belongs to C, by virtue of Lemma 2.1.9.

2.1.2 Formal Hyperplanes over I-Complete E8-Rings

We now prove a weak version of Proposition 2.1.4:

Proposition 2.1.10. Let R be a connective E8-ring which is complete with respect
to some finitely generated ideal I Ď π0pRq. Let E denote the full subcategory of
CAlgcn

R spanned by those connective E8-algebras over R which are truncated and I-
nilpotent. Then the restriction functor X ÞÑ X|E determines a fully faithful embedding
Hyp˚pRq Ñ FunpE ,S˚q.

The proof of Proposition 2.1.10 requires the following simple observation:

Lemma 2.1.11. Let R be a connective E8-ring, let X be a pointed formal hyperplane
over R, and let x be a point of XpAq for some connective E8-algebra A over R. Then
there exists a morphism f : AÑ B in CAlgcn

R with the following properties:

piq The image of x in XpBq belongs to the connected component of the base point.

piiq The E8-ring B is almost of finite presentation as an A-module.

piiiq For every element a P π0pAq, if fpaq is nilpotent in π0pBq, then a is nilpotent
in π0pAq.

Proof. Note that the image of x in XpAredq belongs to the identity component (since
XpAredq is contractible by virtue of Remark 1.5.18). It follows from Proposition 2.1.6
that the canonical map AÑ Ared factors as a composition AÑ B Ñ Ared, where B
satisfies conditions piq and piiq. Note that if a P π0pAq has the property that fpaqk “ 0
in π0pBq, then the image of ak vanishes in Ared, so that ak is nilpotent in π0pAq and
therefore a is also nilpotent in π0pAq.

Proof of Proposition 2.1.10. Let R be a connective E8-ring and let X and Y be
pointed formal hyperplanes over R; we wish to show that the restriction map

ρ : MapHyp˚pRqpX, Y q Ñ MapFunpE,S˚qpX|E , Y |Eq
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is a homotopy equivalence. Let Y cont : CAlgcn
R Ñ S˚ be a right Kan extension of

Y |E . The identity map id : Y |E Ñ Y |E extends uniquely to a natural transformation
u : Y Ñ Y cont and we can identify ρ with the map

MapHyp˚pRqpX, Y q Ñ MapFunpCAlgcn
R ,S˚q

pX, Y cont
q

given by precomposition with u.
Let E` Ď Modcn

R be the full subcategory spanned by those connective E8-algebras
over R which are I-nilpotent. Note that the functor Y cont is given on objects A P E`

by the formula Y contpAq “ lim
ÐÝ

Y pτďnAq. Using Proposition 1.5.17, we see that u
induces an equivalence Y pAq Ñ Y contpAq for A P E`. In other words, we can also
identify Y cont with the right Kan extension of Y |E` .

For each object A P CAlgcn
R , let SpecpAq : CAlgcn

R Ñ S denote the functor
corepresented by A, and let SpfpAq : CAlgcn

R Ñ S denote the subfunctor of SpecpAq
given by the formula

SpfpAqpBq “
#

MapCAlgRpA,Bq if B P E`

H otherwise.

Unwinding the definitions, we can identify Y pAq Ñ Y contpAq with the map of pointed
space spaces

uA : MapFunpCAlgcn
R ,Sq

pSpecpAq, Y q Ñ MapFunpCAlgcn
R ,Sq

pSpfpAq, Y q

given by precomposition with the inclusion SpfpAq ãÑ SpecpAq. Write Y “ cSpecpCq,
where C is a smooth coalgebra over R. Using Remark SAG.8.1.2.4 and Corollary
SAG.8.1.5.4 , we can identify uA with the map

Mapcont
CAlgRpC

_, Aq Ñ Mapcont
CAlgRpC

_, A^I q;

here we regard π0pAq as equipped with the discrete topology, and π0pA
^
I q as equipped

with the I-adic topology. Note that if A is already I-complete, then this map is the
inclusion of a summand.

Let C Ď Modcn
R be as in the statement of Proposition 2.1.6, so that X is a left Kan

extension of its restriction to C. We are therefore reduced to showing that u induces a
homotopy equivalence

θ : MapFunpC,S˚qpX|C, Y |Cq Ñ MapFunpC,S˚qpX|C, Y
cont
|Cq.

77



Our assumption that R is I-complete guarantees that each object A P C is also
I-complete (Proposition SAG.7.3.5.7 ), so that the map Y |C Ñ Y cont|C is a monomor-
phism. It follows that θ is the inclusion of a summand. To complete the proof, it
will suffice to show that every natural transformation v : X Ñ Y cont carries each
point q P XpAq into the summand Y pAq Ď Y contpAq for A P C. Choose a grouplike
element η P π0pC

_q and let Jη Ď π0pC
_q be the ideal of Proposition 1.3.10. Let

us identify vpqq with a morphism h : C_ Ñ A^I » A of E8-rings over R satisfying
hpJnη q Ď Iπ0pAq. We wish to show that fpJmη q “ 0 for m " 0. Choose a map
f : AÑ B satisfying the requirements of Lemma 2.1.11, so that the image of q belongs
to the identity component of XpBq. It follows by naturality that the composite map
C_

h
ÝÑ A

f
ÝÑ B belongs to the identity component of Y contpBq; in particular, it belongs

to the summand Y pBq Ď Y contpBq, so that f ˝h annihilates some power of the ideal Jη.
Since the kernel of π0pfq consists of nilpotent elements of π0pAq, it follows that h also
annihilates some power of Jη, so that vpqq belongs to the summand Y pAq Ď Y contpAq

as desired.

2.1.3 The Proof of Proposition 2.1.4

Let R be a connective E8-ring which is complete with respect to a finitely generated
ideal I Ď π0pRq, let ER Ď CAlgcn

R denote the full subcategory spanned by those
connective E8-algebras which are truncated and I-nilpotent, and let X0 : ER Ñ S˚ be
a functor. We wish to show that X0 can be extended to a (pointed) formal hyperplane
X : CAlgcn

R Ñ S˚ if and only if it satisfies conditions p1q and p2q of Proposition
2.1.4 (in this case, the extension X is essentially unique, by virtue of Proposition
2.1.10). The necessity of conditions p1q and p2q follows from Proposition 1.5.17. Let
us therefore assume that p1q and p2q are satisfied.

Let A be a connective E8-algebra over R which is I-complete. We will say that A
is good if the composite functor EA Ñ ER X0

ÝÑ Modcn
Z can be extended to a pointed

formal hyperplane XA P Hyp˚pAq. In this case, Proposition 2.1.10 guarantees that
XA is uniquely determined and depends functorially on A. We will prove Proposition
2.1.4 by showing that every I-complete E8-algebra over R is good (in particular, R
itself is good). The proof proceeds in several steps.
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paq Suppose we are given a pullback diagram

A //

��

A0

��
A1 // A01

of connective, I-complete E8-algebras over R, where the morphisms π0pA0q Ñ

π0pA01q Ð π0pA1q are surjective with nilpotent kernel. If A0 and A1 are good,
then A is good. To prove this, let us suppose that X0|EA0

and X|EA1
can

be extended to pointed formal hyperplanes XA0 and XA1 over A0 and A1,
respectively. It follows that X0|EA01

can also be extended to a pointed formal
hyperplane XA01 over A01. Using Proposition 1.2.12, we can amalgamate XA0

and XA1 to obtain a pointed formal hyperplane XA P Hyp˚pAq. For each A1 P EA,
set

A10 “ A1 bA A0 A101 “ A1 bA A01 A11 “ A1 bA A1.

We then have homotopy equivalences equivalences

XApA
1
q » XApA

1
0 bA101

A11q

» XApA
1
0q ˆXApA101q

XApA
1
1q

» XA0pA
1
0q ˆXA01 pA

1
01q
XA1pA

1
1q

» lim
ÐÝ
n

pXA0pτďnA
1
0q ˆXA01 pτďnA

1
01q
XA1pτďnA

1
1qq

» lim
ÐÝ
n

X0pτďnA
1
0q ˆX0pτďnA101q

X0pτďnA
1
1q

» lim
ÐÝ
n

X0pτďnA
1
0 bτďnA101

τďnA
1
1q

» X0pA
1
q

depending functorially on A1 (here we invoke Proposition 1.5.17 together with
assumption p2q). It follows that the restriction X0|EA extends to the pointed
formal hyperplane XA, so that A is good.

pbq Let A P CAlgcn
R be an I-complete E8-algebra over R and let rA be a square-

zero extension of A by a connective I-complete A-module M (in the sense of
Definition HA.7.4.1.6 ). If A is good, then rA is also good. This is a special case
of assertion paq.

pcq Let A be a discrete E8-algebra over R with IkR1 “ 0 for some k " 0. Then R1

is good. This follows by induction on k: the case k “ 1 follows from assumption
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p1q, and the inductive step follows from pbq (since R1{IkR1 is a square-zeroe
extension of R1{Ik´1R1 for k ą 1 by virtue of Theorem HA.7.4.1.26 ).

pdq Let A be an E8-algebra over R which is I-nilpotent and k-truncated for some
k " 0. Then A is good. This follows by induction on k: the case k “ 0 follows
from pcq, and the inductive step follows from pbq (since each truncation τďmA is
a square-zero extension of τďm´1A by virtue of Theorem HA.7.4.1.26 ).

peq Let A be an E8-algebra over R which is I-complete. If each truncation τďnA

is good, then A is good. To prove this, extend each restriction X0|EτďnA to
a pointed formal hyperplane cSpecpCnq, where Cn is an augmented smooth
coalgebra over τďnA. Invoking Proposition 1.2.11, we deduce that there is an
augmented smooth coalgebra C over A equipped with compatible equivalences
Cn » pτďnAq bA C. It is then easy to check that cSpecpCq|EA is canonically
equivalent to X0|EA .

pfq Let A be an E8-algebra over R which is I-nilpotent. Then A is good. This
follows by combining pdq and peq.

pgq Let A be a discrete E8-algebra over R which is classically I-complete: that is,
the canonical map AÑ lim

ÐÝ
A{IkA is an isomorphism of commutative rings. We

will show that A is good. Using Lemma SAG.8.1.2.2 , we can write A as the
limit of a tower

¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1 Ñ A0

of I-nilpotent connective E8-algebras over A with the following properties: each
An is almost perfect as an A-module, each of the transition maps is surjective
on π0, and the colimit lim

ÝÑ
MapCAlgApAn, Bq is contractible for every connective

I-nilpotent E8-algebra B over A. Shifting this tower if necessary, we may
assume that the kernel of the map AÑ π0pA0q is contained in some power of I.
It follows from pfq that each restriction X0|EAn can be extended to a pointed
formal hyperplane over An, which we can write as cSpecpCnq for some smooth
coalgebra Cn over An, equipped with augmentation given by a grouplike element
ηn P GLikepCnq. Choose a coalgebra isomorphism α0 : π0pC0q » Γ˚π0pA0q

pM0q,
where M0 is a projective module of finite rank over π0pA0q. Without loss of
generality, we may assume that α0pη0q “ 1, so that α0 is classified by a map
β0 : π0pC0q ÑM0 satisfying β0pη0q “ 0 (see Proposition 1.1.16).
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Since A is complete with respect to the kernel of the map A Ñ π0pA0q, we
can lift M0 to a module M which is projective of finite rank over A. Since
A is I-complete, we can lift M0 to a module M which is projective of finite
rank over π0pRq. For n ě 0, set Mn “ π0pAnq bA M . Using the projectivity
of each π0pCnq as a module over π0pRnq, we can extend β0 to a compatible
sequence of maps βn : π0pCnq Ñ Mn. Adjusting these maps if necessary, we
can further assume that βnpηnq “ 0, so that βn classifies a map of augmented
coalgebras αn : π0pCnq Ñ Γ˚π0pAnq

pMnq. Each αn is a map of flat modules over
the commutative ring π0pAnq which is an isomorphism modulo the nilpotent
ideal Iπ0pAnq, and is therefore an isomorphism.
For every pair of integers k, n ě 0, the projectivity of ΓkApMq guarantees that
the composite map The projectivity of Npkq guarantees that the map

ΓkApMq Ñ Γkπ0pAnqpMnq
α´1
n
ÝÝÑ π0pCnq

to a morphism of A-modules γn,k : ΓkApMq Ñ Cn, which is well-defined up to
homotopy. Moreover, each of the diagrams

ΓkApMq
γn,k

{{

γn´1,k

$$
Cn // Cn´1

commutes up to homotopy. Choosing such a homotopy for each n, we obtain a
map γk : ΓkApMq Ñ lim

ÐÝ
Cn (beware that the map γk is not quite canonical, but

this will not be important in what follows).
For each n ě 0, let Bn “ C_n “ Map

An
pCn, Anq, and set B “ lim

ÐÝ
Bn; we will

regard B as an augmented E8-algebra over A. For fixed n, the morphisms
tγn,kukě0 can be amalgamated to a map An bA Γ˚ApMq Ñ Cn, which is an
equivalence (since it induces the isomorphism α´1

n on π0, and the domain and
codomain are flat over An). We therefore obtain Rn-module equivalences

Bn » Map
An
pCn, Anq » Map

A
pΓ˚ApMq, Anq »

ź

kě0
Symk

ApM
_
q bA An.

Passing to the inverse limit over n, we obtain an A-module equivalence B »
ś

kě0 Symk
ApM

_q, which is easily seen to be a homomorphism of A-algebras. It
follows that the formal spectrum X “ SpfpBq (where we regard B as equipped
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with the topology given by the ideal J “
ś

ką0 Symk
ApM

_q) can be identified
with the cospectrum of the smooth coalgebra Γ˚ApMq, and is therefore a formal
hyperplane over A. We will complete the argument by showing that the functors
X|EA and X0|EA are canonically equivalent.
By construction, we can identify EA with the colimit of the filtered diagram of
8-categories

EA0 Ñ EA1 Ñ EA2 Ñ ¨ ¨ ¨ .

It will therefore suffice to construct a compatible family of equivalences X|EAn »
X0|EAn . Note that both sides are obtained from formal hyperplanes over An,
which can be described as the formal spectra of An bA B and Bn, respectively.
We will complete the proof by showing that the canonical map ρ : AnbAB » Bn

induces an equivalence after J-completion (in fact, it is already an equivalence
before J-completion, but we will not need to know this). Unwinding the
definitions, we can write ρ as a composition

An bA B
ρ1
ÝÑ lim

ÐÝ
měn

An bA Bm
ρ2
ÝÑ lim

ÐÝ
měn

An bAm Bm
ρ3
ÝÑ Bn.

Here the map ρ1 is an equivalence because An is almost perfect as an A-module
and each Bm is connective, and the map ρ3 induces an equivalence after J-
completion because each individual map AnbAmBm Ñ Rn induces an equivalence
after J-completion (and the J-completion functor commutes with limits). We
will prove that ρ2 is an equivalence by showing that the natural map u :
tAnbABmuměn Ñ tAnbAm Bmuměn is an equivalence of Pro-objects of CAlgcn

A .
Note that u is a pushout of the natural map u0 : tAn bA Amuměn Ñ tAnuměn.
It will therefore suffice to show that u0 is an equivalence of Pro-objects: that is,
that for every object S P CAlgcn

A , the induced map

MapCAlgcn
A
pAn, Sq Ñ lim

ÝÑ
měn

MapCAlgcn
A
pAn bA Am, Sq

» MapCAlgcn
A
pAn, Sq ˆ lim

ÝÑ
měn

MapCAlgcn
A
pAm, Sq

is a homotopy equivalence. This is clear: if S is not I-nilpotent, then both sides
are empty; if S is I-nilpotent, then the direct limit lim

ÝÑměn
MapCAlgcn

A
pAm, Sq is

contractible.

phq Let A be a discrete E8-ring over R which is I-complete. Then the canonical map
AÑ lim

ÐÝ
A{IkA is surjective (Corollary SAG.7.3.6.2 ) whose kernel is a square-

zero ideal J Ď A. Note that the inverse limit lim
ÐÝ

A{IkA is classically I-complete
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(since it is I-complete and I-adically separated; see Corollary SAG.7.3.6.3 ), and
therefore good by virtue of pgq. Applying pbq, we conclude that A is good.

piq Let A be an E8-algebra over R which is I-complete and k-truncated for some
k " 0. Then A is good. This follows by induction on k: the case k “ 0 follows
from phq, and the inductive step follows from pbq (since each truncation τďmA is
a square-zero extension of τďm´1A by virtue of Theorem HA.7.4.1.26 ).

pjq Let A be any I-complete E8-algebra over R. Combining peq and piq, we conclude
that A is good.

2.2 Construction of Identity Components
Our goal in this section is to prove Theorem 2.0.8. Using the results of §2.1, we

can easily reduce to the following special case:

Theorem 2.2.1. Let R be a commutative Fp-algebra and let G be a p-divisible group
over R. Then there exists an essentially unique formal group G˝ P FGrouppRq with
the following property:

p˚q Let E Ď CAlgcn
R denote the full subcategory spanned by the truncated objects.

Then the functor G˝|E is given by A ÞÑ fibpGpAq Ñ GpAredqq.

Proof of Theorem 2.0.8 from Theorem 2.2.1. Let R be a ppq-complete E8-ring, let
G be a p-divisible group over R, and let E Ď CAlgcn

τě0pRq be the full subcategory
spanned by those objects which are truncated and I-nilpotent. Define a functor
G˝

0 : E Ñ Modcn
Z by the formula G˝

0pAq “ fibpGpAq Ñ GpAredqq. We wish to show
that G˝

0 admits an essentially unique extension G˝ : CAlgcn
τě0pRq Ñ Modcn

Z which is a
formal group over R. Replacing R by τě0pRq, we may assume that R is connective. It
will then suffice to show that G˝

0 satisfies conditions p1q and p2q of Theorem 2.1.1. To
verify p1q, we can replace R by π0pRq{ppq, in which case the desired result follows from
Theorem 2.2.1. For p2q, it suffices to observe that the functor G is cohesive (since it
is a filtered colimit of functors Grpks, each of which is representable by a finite flat
group scheme over R).

The remainder of this section is devoted to the proof of Theorem 2.2.1. We proceed
as in [27], which contains a proof of the analogous fact in the setting of classical
algebraic geometry. Roughly speaking, the idea is to realize G˝ as the union of finite
flat group schemes GrF ns, where each GrF ns denotes the kernel of the nth power
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of the Frobenius map on G (or equivalently in Grpns). Here the kernel is taken in
the ordinary category of group schemes over R. To guarantee that the direct limit
lim
ÝÑ

GrF ns defines the correct functor on all (truncated and connective) E8-algebras
A over R, we will exploit the heuristic idea that the difference between A and π0pAq

consists of “nilpotent” data, which can be annihilated by applying a sufficiently large
power of the Frobenius map (see Proposition 2.2.3 for a precise statement).

2.2.1 The Relative Frobenius Map

Let R be a commutative ring of characteristic p and let ϕR : R Ñ R denote the
Frobenius homomorphism, given by the formula ϕRpxq “ xp. For every commutative
R-algebra A and every integer n ě 0, we let A1{pn denote the R-algebra obtained
from A by restricting scalars along the map ϕnR : R Ñ R. In other words, if A is
a commutative ring equipped with an R-algebra structure f : R Ñ A, then A1{pn

denotes the same commutative ring, equipped with the R-algebra structure given by
the composition R

ϕnR
ÝÝÑ R

f
ÝÑ A.

Notation 2.2.2. Let X be a functor from the category CAlg♥
R of commutative R-

algebras to some other category C (in practice, C will be either the category of sets or
the category of abelian groups). For each n ě 0, we let Xppnq : CAlg♥

R Ñ C denote the
functor given by the formula XppnqpAq “ XpA1{pnq. Note that for every commutative
R-algebra A, the nth power of the Frobenius map ϕA can be regarded as an R-algebra
homomorphism from A to A1{pn , which induces a map XpAq Ñ XpA1{pnq “ XppnqpAq.
These maps are natural in A, and therefore define a natural transformation of functors
ϕnX{R : X Ñ Xppnq which we will refer to as the relative Frobenius map.

Proposition 2.2.3. Let R be a commutative ring of characteristic p and let X be a
flat R-scheme which is a local complete intersection (relative to R). Let us regard
each Frobenius pullback Xppnq as a spectral scheme over R, which we identify with its
functor of points Xppnq : CAlgcn

R Ñ S. Let Xpp8q denote the direct limit of the sequence

X Ñ Xppq
Ñ Xpp2q

Ñ ¨ ¨ ¨ ,

formed in the 8-category FunpCAlgcn
R ,Sq, where the transition maps are given by the

relative Frobenius of Notation 2.2.2. Then, for every truncated E8-algebra A over R,
the canonical map Xpp8qpAq Ñ Xpp8qpAredq is a homotopy equivalence.

Remark 2.2.4. In the statement of Proposition 2.2.3, the hypothesis that X is a
local complete intersection over R can be eliminated: it is only important that X is
flat and of finite presentation over R.
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Proof of Proposition 2.2.3. Let us say that a flat R-scheme X is good if the map
Xpp8qpAq Ñ Xpp8qpAredq is a homotopy equivalence for every truncated object A P
CAlgcn

R . Equivalently, X is good if, for every truncated object A P CAlgcn
R and every

point η P Xpp8qpAredq, the homotopy fiber Xpp8qpAq ˆXpp8qpAredq tηu is contractible.
This assertion is local with respect to the Zariski topology on SpecpAq. Consequently,
if we are given some open cover tUαu of X where each Uα is good, then X is also
good. We may therefore assume without loss of generality that X fits into a pullback
diagram of affine R-schemes σ :

X //

��

An
R

��
SpecpRq //Am

R .

where the vertical maps are flat. In this case, σ is also a pullback diagram of spectral
schemes over R, so that the diagram of functors

Xpp8q //

��

pAn
Rq
pp8q

��
pSpecpRqqpp8q // pAm

R q
pp8q

is also a pullback square. Consequently, to show that X is good, it will suffice to show
that every affine space Ak

R is good. Writing Ak
R as a product of affine lines, we are

reduced to showing that A1
R is good. Passing to an open cover again, we can reduce to

showing that the punctured affine line X “ SpecpRrt˘1sq is good. Note that for each
n ě 0, we can identify Xppnq with the spectrum of the subalgebra Rrt˘pns Ď Rrt˘1s.

Let A be a truncated E8-algebra over R and let I denote the fiber of the map
AÑ Ared. We wish to show that the map

ρ : lim
ÝÑ
n

MapCAlgRpRrt
˘pn
s, Aq Ñ lim

ÝÑ
n

MapCAlgRpRrt
˘pn
s, Ared

q

is a homotopy equivalence. Let gl1pAq denote the (connective) spectrum of units of A
(see §1.6.3) and let gl1pIq denote the fiber of the map gl1pAq Ñ gl1pAredq. Unwinding
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the definitions, we see that ρ fits into a fiber sequence

lim
ÝÑ

MapSppp
n Z, gl1pAqq
ρ

��
lim
ÝÑ

MapSppp
n Z, gl1pAredqq

��
lim
ÝÑ

MapSppp
n Z,Σ´1 gl1pIqq.

It will therefore suffice to show that the colimit of the diagram

MapSppZ,Σ´1 gl1pIqq
p
ÝÑ MapSppZ,Σ´1 gl1pIqq

p
ÝÑ MapSppZ,Σ´1 gl1pIqq Ñ ¨ ¨ ¨

is contractible. Since Z is almost perfect as a module over the sphere spectrum and
Σ´1 gl1pIq is truncated, we can identify this colimit with MapSppZ,Σ´1 gl1pIqrp´1sq.
To complete the proof, it will suffice to show that gl1pIqrp´1s » 0: that is, that the
action of p is locally nilpotent on each homotopy group πs gl1pIq. For s ą 0, this
is obvious: the abelian group πs gl1pIq » πsA is annihilated by p. For s “ 0, we
can identify πs gl1pAq with the group of units in the commutative ring π0pAq which
have the form 1 ` ε, where ε is nilpotent. The desired result now follows from the
observation that p1` εqpn “ 1` εpn “ 1 for n " 0.

2.2.2 p-Divisible Groups in Characteristic p

In this section, we review some basic facts concerning p-divisible groups defined
over commutative rings R of characteristic p which will be needed for the proof of
Theorem 2.0.8. We essentially follow the presentation of Messing ([27]), with some
minor deviations.

Notation 2.2.5. Let G be a p-divisible group over R, which we regard as a functor
from CAlg♥

R to the category Ab of abelian groups. For each integer n ě 0, we let
GrF ns denote the kernel of the relative Frobenius map ϕnG{R : G Ñ Gppnq. We
regard GrF ns as a functor from the category CAlg♥

R of commutative R-algebras to
the category of abelian groups.

Proposition 2.2.6. Let R be a commutative ring of characteristic p and let G be a
p-divisible group over R. Then, for each n ě 0, the functor GrF ns : CAlg♥

R Ñ Ab is
(representable by) a finite flat group scheme over R.
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Proof. Let V n : Gppnq Ñ G be the n-fold Verschiebung map and let GppnqrV ns denote
its kernel. Note that the compositions

Gppnq V n
ÝÝÑ G

ϕnG{R
ÝÝÝÑ Gppnq G

ϕnG{R
ÝÝÝÑ Gppnq V n

ÝÝÑ G

are given by multiplication by pn on G and Gppnq, respectively. It follows that we
can identify GrF ns and GppnqrV ns with the kernels of the maps ϕnGrpns{R : Grpns Ñ
Gppnqrpns and V n : Gppnqrpns Ñ Grpns, respectively. Both of these maps are homo-
morphisms of finite flat group schemes over R. It follows that GrF ns and GppnqrV ns

are (representable by) group schemes which are finite and of finite presentation over
R: that is, we have isomorphisms

GrF n
s » SpecpAq Gppnq

rV n
s » SpecpBq

where A,B P CAlg♥
R are finitely generated as R-modules.

We have an exact sequence of functors

0 Ñ GrF n
s Ñ Grpns f

ÝÑ Gppnq
rV n

s,

where f is induced by the relative Frobenius map ϕnG{R . Since Gppnq is a p-divisible
group over R, the map pn : Gppnq Ñ Gppnq is an epimorphism of sheaves for the
fppf topology, so that the relative Frobenius map ϕnG{R : G Ñ Gppnq is also an
epimorphism of fppf sheaves. It follows that f is an epimorphism of fppf sheaves.
We can therefore choose a faithfully flat map B Ñ B1 for which the induced map
SpecpB1q Ñ SpecpBq » GppnqrV ns factors through f . It follows that the fiber product
SpecpB1qˆSpecpBqGrpns splits as a product SpecpB1qˆSpecpRqGrF ns (here all products
are formed in the category of schemes). Write SpecpB1q ˆSpecpRq GrF ns “ SpecpCq,
where C “ TorR0 pA,B1q. Since B1 is flat over B and Grpns is flat over R, we conclude
that C is flat over R.

The zero section of GppnqrV ns determines an R-algebra homomorphism ε : B Ñ R.
Set R1 “ B1 bR R, so that R1 is faithfully flat over R. Note that the tautological map

AbR R
1
Ñ C bR R

1
» TorR0 pA,B1 bR R1q

admits a left inverse (given by the muliplication map B1 bR R
1 Ñ R1). It follows that

AbR R
1 is a retract of C bR R1, and is therefore flat over R1. Since R1 is faithfully flat

over R, it follows that A is flat over R: that is, GrF ns is a finite flat group scheme, as
desired.
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Variant 2.2.7. Let R be a commutative ring of characteristic p and let G be a
p-divisible group over R. Then, for each n ě 0, the group scheme GppnqrV ns appearing
in the proof of Proposition 2.2.6 is also finite flat over R. This can be seen by a slight
modification of the proof of Proposition 2.2.6, or alternatively by applying Proposition
2.2.6 to the Cartier dual of G.

Lemma 2.2.8. Let κ be a field of characteristic p, let G be a finite flat group scheme
over κ, and suppose that the relative Frobenius map ϕG{κ : GÑ Gppq vanishes. Then
we can write G “ Specpκrx1, . . . , xds{px

p
1, . . . , x

p
dqq for some n ě 0.

Proof. Write G “ SpecpAq, where A is a cocommutative Hopf algebra over κ. The zero
section of G determines an augmentation ε : AÑ κ, whose kernel is an ideal I Ď A.
Choose a collection of elements y1, . . . , yd P I whose images form a basis for I{I2 as a
vector space over κ. The vanishing of ϕG{κ guarantees that ypi “ 0 for 1 ď i ď n, so
that we obtain a κ-algebra homomorphism α : κrx1, . . . , xds{px

p
1, . . . , x

p
dq

α
ÝÑ A given

by αpxiq “ yi. It follows easily by induction that the composite map

κrx1, . . . , xds{px
p
1, . . . , x

p
dq

α
ÝÑ AÑ A{Ik

is surjective for each k ě 0. The vanishing of ϕG{κ guarantees that G is connected: that
is, the ideal I is nilpotent. It follows that α is surjective. We will complete the proof
by showing that α is injective. Suppose otherwise: then we can choose some nonzero
polynomial fpx1, . . . , xdq, having degree ă p in each xi, such that fpy1, . . . , ydq “ 0 in
A. Write f as a sum

řpp´1qd
n“0 fnpx1, . . . , xdq, where each fnpx1, . . . , xdq is homogeneous

of degree n. Then there exists some smallest integer k such that fk ‰ 0. Let us assume
that f has been chosen such that k is as small as possible. Note that the equation
fpy1, . . . , ydq “ 0 guarantees that k ą 0.

Let ∆ : AÑ Abκ A be the comultiplication on A. The relations pεb idq ˝∆ “

id “ pidbεq ˝∆ guarantee that we have ∆pyiq ” yib1`1byi pmod Ib Iq. It follows
that

fkpy1 b 1` 1b y1, . . . , yd b 1` 1b ydq ” ∆pfpy1, . . . , ykqq ” 0 pmod Jq,

where J is the ideal of Abκ A generated by Ia b Ib for a` b ą k. In particular, we
have

d
ÿ

i“1
yi b

Bfkpx1, . . . , xdq

Bxi
py1, . . . , ykq ” 0 pmod Ab Ik`1

` I b Ik ` I2
b A.q
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Since the elements 1, y1, . . . , yd form a basis for A{I2, it follows that each expression
Bfkpx1,...,xdq

Bxi
py1, . . . , ykq belongs to Ik: that is, it can be written as a sum of homogeneous

polynomials of degree ě k in the yi. Invoking the minimality of k, we conclude that the
expression Bfkpx1,...,xdq

Bxi
vanishes for each i. Writing fkpx1, . . . , xdq as a linear combination

of monomials ce1,...,edx
e1
1 ¨ ¨ ¨ x

ed
d , we conclude that each ei is divisible by p. Since f

has degree ă p in each xi, we must have e1 “ e2 “ ¨ ¨ ¨ “ ed “ 0, contradicting the
inequality e1 ` ¨ ¨ ¨ ` ed “ k ą 0.

Lemma 2.2.9. Let R be a commutative ring of characteristic p, let G be a p-divisible
group over R, and let p Ď R be a prime ideal. Then there exists an element t P R ´ p

for which the group scheme GrF s ˆSpecpRq SpecpRrt´1sq is isomorphic, as an Rrt´1s-
scheme, to the spectrum of a truncated polynomial ring Rrt´1, x1, . . . , xds{px

p
1, ¨ ¨ ¨ , x

p
dq.

Moreover, we can further assume that the zero section of GrF s ˆSpecpRq SpecpRrt´1sq

is given by the map

Rrt´1, x1, . . . , xds{px
p
1, ¨ ¨ ¨ , x

p
dq Ñ Rrt´1

s xi ÞÑ 0.

Proof. By virtue of Proposition 2.2.6, we can write GrF s “ SpecpAq, where A is a
finite flat R-algebra. The zero section of G determines an R-algebra homomorphism
ε : AÑ R with kernel I Ď A. Let κ “ κppq denote the residue field of R at the prime
ideal p, let Aκ “ κbR A denote the associated fiber of A, and let Iκ “ κbR I denote
the augmentation ideal in Aκ. Using Lemma 2.2.8, we deduce that there exist elements
x1, . . . , xd P Iκ which induce an isomorphism ρ0 : κrx1, . . . , xds{px

p
1, . . . x

p
dq Ñ Aκ.

Replacing R by a localization if necessary, we may assume that each xi can be
lifted to an element xi P I. Since the relative Frobenius map ϕG{R vanishes on
GrF s, each xi satisfies xpi “ 0, so we can lift ρ0 to an R-algebra homomorphism
ρ : Rrx1, . . . , xds{px

p
1, . . . , x

p
dq Ñ A. Then ρ is a map between projective R-modules

of finite rank which induces an isomorphism after tensoring with the field κ “

κppq. It follows that there exists an element t R p such that the induced map
Rrt´1srx1, . . . , xds{px

p
1, . . . , x

p
dq Ñ Art´1s is an isomorphism.

In the situation of Lemma 2.2.9, we have an analogous description of the group
schemes GrF ns for all n ě 0:

Lemma 2.2.10. Let R be a commutative ring of characteristic p, let G be a p-divisible
group over R, and let n ě 2 be an integer. Suppose that there exists an isomorphism
of R-schemes

α : GrF n´1
s » SpecpRrx1, . . . , xds{px

pn´1

1 , . . . , xp
n´1

d qq
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which carries the zero section of GrF n´1s to the map

SpecpRq Ñ SpecpRrx1, . . . , xds{px
pn´1

1 , . . . , xp
n´1

d qq xi ÞÑ 0.

Then α extends to an isomorphism GrF ns » SpecRrx1, . . . , xds{px
pn

1 , . . . , x
pn

d q.

Proof. Note that α restricts to an isomorphism of R-schemes

GrF s » SpecpRrx1, . . . , xds{px
p
1, . . . , x

p
dqq.

It follows that GrF s is a finite flat group scheme of degree pd, and that GrF n´1s is
a finite flat group scheme of degree ppn´1qd. We have a short exact sequence of fppf
sheaves

0 Ñ GrF n´1
s Ñ GrF n

s Ñ GrF sppn´1q
Ñ 0,

which proves that GrF ns is a finite flat group scheme of degree pnd. Write GrF ns “

SpecpAq, and let I Ď A be the kernel of the augmentation AÑ R given by the zero
section of GrF ns. Note that the inclusion GrF n´1s ãÑ GrF ns is a closed immersion
of affine schemes, so that each pullback α˚pxiq can be lifted to an element yi P I.
Since GrF ns is annihilated by ϕnG{R, we have yp

n

i “ 0, so that the elements tyiu1ďiďd
determine a map of R-algebras

ρ : Rrx1, . . . , xds{px
pn

1 , . . . , x
pn

d q Ñ A xi ÞÑ yi.

Note that the spectrum SpecpA{I2q is contained in GrF n´1s Ď GrF ns, so the composite
map

Rrx1, . . . , xds{px
pn

1 , . . . , x
pn

d q
ρ
ÝÑ AÑ A{I2

is surjective. Since the ideal I is nilpotent, it follows that ρ is surjective. Because the
domain and codomain of ρ are projective modules of rank pnd over R, it follows that
ρ is an isomorphism.

2.2.3 The Proof of Theorem 2.2.1

Let R be a commutative ring of characteristic p and let G be a p-divisible group
over R. To prove Theorem 2.2.1, we must show that there exists a formal group G˝

over R having the property that for every truncated object A P CAlgcn
R , we have a

canonical equivalence G˝pAq » fibpGpAq Ñ GpAredqq.
For each n ě 0, let GrF ns be defined as in Notation 2.2.5. Then GrF ns is

a finite flat group scheme over R (Proposition 2.2.6), which (by a slight abuse of
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notation) we will identify with the corresponding functor CAlgcn
R Ñ Modcn

Z . Define
G1

0 : CAlgcn
R Ñ Modcn

Z by the formula G0pAq “ lim
ÝÑ
pGrF nsqpAq. We will complete the

proof by verifying the following pair of assertions:

paq For each A P E , we have a fiber sequence G0pAq Ñ GpAq Ñ GpAredq.

pbq The functor G0|E can be extended to a formal group over R.

We first prove pbq. By virtue of Proposition 2.1.10, pbq is equivalent to the assertion
that the functor pΩ8 ˝ G0q|E : E Ñ S˚ can be extended to a (pointed) formal
hyperplane over R. This assertion is local with respect to the Zariski topology on
SpecpRq. Using Lemma 2.2.9, we can assume that there exists an isomorphism of
R-schemes α1 : GrF s » SpecpRrx1, . . . , xds{px

p
1, . . . , x

p
dqq which carries each xi to a

regular function on GrF s which vanishes along the zero section (Lemma 2.2.9). Using
Lemma 2.2.10, we can extend α1 to a compatible sequence of isomorphisms

αn : GrF n
s » SpecpRrx1, . . . , xds{px

pn

1 , . . . , x
pn

d qq.

Let Cn denote the R-linear dual of Rrx1, . . . , xds{px
pn

1 , . . . , x
pn

d q, regarded as a commu-
tative coalgebra over R. Note that the composite functor

CAlgcn
R

GrFns
ÝÝÝÝÑ Modcn

Z
Ω8
ÝÝÑ S

can be identified with the cospectrum cSpecpCnq. Consequently, if A P CAlgcn
R is

truncated, then Proposition 1.2.14 supplies a homotopy equivalence

Ω8G0pAq » lim
ÝÑ
n

Ω8GrF n
spAq

» lim
ÝÑ
n

cSpecpCnqpAq

» lim
ÝÑ
n

MapcCAlgApA,Cn bR Aq

» MapcCAlgApA, plimÝÑCnq bR Aq

» cSpecpCqpAq,

where C denotes the colimit lim
ÝÑ

Cn (formed in the category of flat coalgebras over
R). We now observe that C is a smooth coalgebra over R (isomorphic to the divided
power coalgebra Γ˚RpRdq), so that cSpecpCq : CAlgcn

R Ñ S is a formal hyperplane
which extends the functor pΩ8 ˝G0q|E : E Ñ S.
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We now prove paq. For each n ě 0, the proof of Proposition 2.2.6 supplies a short
exact sequence of finite flat group schemes

0 Ñ GrF n
s Ñ Grpns Ñ Gppnq

rV n
s Ñ 0

(see Variant 2.2.7). These exact sequences are compatible n varies: more precisely, we
have commutative diagrams

0 //GrF ns //

��

Grpns //

��

GppnqrV ns //

fpnq
��

0

0 //GrF n`1s //Grpn`1s //Gppn`1qrV n`1s // 0,

where fpnq denotes the restriction of the relative Frobenius map Gppnq Ñ Gppn`1q. Let
H denote the direct limit of the sequence

Gppq
rV s

fp1q
ÝÝÑ Gpp2q

rV 2
s
fp2q
ÝÝÑ Gpp3q

rV 3
s Ñ ¨ ¨ ¨ ,

formed in the8-category FunpCAlgcn
R ,Modcn

Z q. Then the exact sequences above yield a
fiber sequence G0 Ñ G Ñ H in the8-category FunpCAlgcn

R ,Modcn
Z q. Note that for any

A P CAlgcn
R , the group G0pA

redq vanishes; it follows that the map GpAredq Ñ HpAredq

is a monomorphism of abelian groups. Consequently, to prove paq, it will suffice to
show the following:

pcq Let A be a truncated E8-algebra over R. Then the canonical map HpAq Ñ

HpAredq is an equivalence in Modcn
Z .

Note that each of the maps fpnq : GppnqrV ns Ñ Gppn`1qrV n`1s factors as a composition

Gppnq
rV n

s
f 1pnq
ÝÝÝÑ Gppn`1q

rV n
s ãÑ Gppn`1q

rV n`1
s,

where f 1pnq is the relative Frobenius map associated to the finite flat group scheme
GppnqrV ns. We can therefore write H as a filtered colimit lim

ÝÑ
Hn, where each Hn is

defined as the colimit of the diagram of relative Frobenius maps

GrV n
s
ppnq

Ñ GrV n
s
ppn`1q

Ñ GrV n
s
ppn`2q

Ñ ¨ ¨ ¨ .

It will therefore suffice to show that for every truncated E8-algebra A over R, the
map HnpAq Ñ HnpA

redq is an equivalence in Modcn
Z , or equivalently that the map

pΩ8 ˝HnqpAq Ñ pΩ8 ˝HnqpA
redq is a homotopy equivalence of spaces. This is a special

case of Proposition 2.2.3.
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2.2.4 Example: The Identity Component of µp8

Let R be an E8-ring and let GmpRq be the strict multiplicative group of R
(Construction 1.6.10). For every positive integer n, we let µnpRq denote the fiber
of the map n : GmpRq Ñ GmpRq, formed in the 8-category Modcn

Z of connective
Z-module spectra. The functors tµpkukě0 can be assembled into a p-divisible group:

Proposition 2.2.11. Let µp8 : CAlgcn
Ñ Modcn

Z denote the functor given by the
formula

µp8pRq “ fibpGmpRq Ñ GmpRqr1{psq.

Then µp8 is (representable by) a p-divisible group over the sphere spectrum S.

We will refer to the p-divisible group µp8 as the multiplicative p-divisible group
over S.

Proof of Proposition 2.2.11. By construction, the Z-module µp8pRq is ppq-nilpotent
for each R. For every finite abelian p-group M , the functor

R ÞÑ MapModZ
pM,µp8pRqq » MapModZ

pM,GmpRqq » MapSppM,GL1pRqq

is representable by the suspension spectrum Σ8`pMq (regarded as a connective E8-
ring). We complete the proof by observing that if u : M Ñ N is a monomorphism
of finite abelian groups, then the induced map Σ8`pMq Ñ Σ8`pNq is finite flat: in
fact, Σ8`pNq is a free module of finite rank over Σ8`pMq, with a basis given by any
collection of coset representatives for M in N .

Since the p-divisible group µp8 is defined over the sphere spectrum, it determines
a p-divisible group over every E8-ring R. We will abuse notation by denoting this
p-divisible group also by µp8 .

Proposition 2.2.12. Let R be a ppq-complete E8-ring, and let us regard the p-divisible
group µp8 of Proposition 2.2.11 and the formal group pGm of Construction 1.6.16 as
defined over R. Then there is a canonical equivalence of formal groups µ˝p8 » pGm

Proof. Without loss of generality, we can assume that R is connective (in fact, it suffices
to treat the universal case where R “ S^ppq is the ppq-completed sphere spectrum). For
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every connective R-algebra A, we have a commutative diagram

pGmrp
8spAq //

��

µp8pAq //

��

µp8pA
redq

��
pGmpAq //

��

GmpAq //

��

GmpA
redq

��
pGmpAqrp

´1s //GmpAqrp
´1s //GmpA

redqrp´1s

in which the rows and columns are fiber sequences. Let E Ď CAlgcn
R be the full

subcategory spanned by the connective R-algebras which are truncated and ppq-
nilpotent. For A P E , the Z-module spectrum pGmpAqrp

´1s vanishes (Lemma 2.3.24),
so this diagram supplies an identification

pGmpAq
„
ÐÝ pGmrp

8
spAq

» fibpµp8pAq Ñ µp8pA
red
qq

“ µ˝p8pAq

depending functorially on A. The desired result now follows from Theorem 2.1.1.

2.3 Connected p-Divisible Groups
Let R be a ppq-complete E8-ring. The construction G ÞÑ G˝ determines a functor

from the 8-category of p-divisible groups over R. In this section, we consider the
following:

Question 2.3.1. Let pG be a formal group over R. When can we find a p-divisible
group G having pG as its identity component?

In the case where R is a complete local Noetherian ring, Question 2.3.1 was studied
by Tate in [35], who proved the following:

Theorem 2.3.2 (Tate). Let R be a complete local Noetherian ring whose residue field
κ has characteristic p. Then the construction G ÞÑ G˝ determines an equivalence
between the following categories:

paq The category of p-divisible groups G over R for which the special fiber Gκ is
connected (see Definition 2.3.5).
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pbq The category of formal groups pG over R for which the map rps : pG Ñ pG
determines a finite flat map rps˚ : O

pG Ñ O
pG

Remark 2.3.3. In [35], the formulation of Theorem 2.3.2 is slightly different. In
particular, it is phrased in terms of the inverse of the identity component functor
G ÞÑ G˝ (which is defined only on those formal groups as in pbq).

Warning 2.3.4. In [35], Tate uses the term connected to refer to a p-divisible group
G satisfying the requirement described in part paq of Theorem 2.3.2. We will instead
use the term formally connected (to emphasize the role of the formal scheme SpfpRq),
and reserve the term connected for a stronger condition on p-divisible groups (see
Definition 2.3.5).

The purpose of this section is to establish a generalization of the equivalence of
Theorem 2.3.2. Let R be a complete adic E8-ring, and suppose that p is a topologically
nilpotent element of π0pRq. Our first goal will be to introduce the notion of a formally
connected p-divisible over R (Definition 2.3.10). We then show that the construction
G ÞÑ G˝ is fully faithful when restricted to formally connected p-divisible groups
(Corollary 2.3.13). We will say that a formal group pG over R is a p-divisible formal
group if it arises as the identity component of a formally connected p-divisible group
(Definition 2.3.14). We then show that the class of p-divisible formal groups admit a
characterization similar to part pbq of Theorem 2.3.2 (see Theorems 2.3.20 and 2.3.26).

2.3.1 Connectedness and Formal Connectedness

We begin by introducing some terminology.

Definition 2.3.5. Let R be a connective E8-ring and let G be a p-divisible group
over R, so that the functor pΩ8 ˝Grpsq : CAlgcn

R Ñ S is corepresentable by a finite
flat R-algebra A. We say that G is connected if the underlying map of topological
spaces | SpecpAq| Ñ | SpecpRq| bijective.

More generally, if G is a p-divisible group over an arbitrary E8-ring R, we will
say that G is connected if it is connected when viewed as a p-divisible group over the
connective cover τě0pRq.

Remark 2.3.6. Let R be a connective E8-ring and let G be a p-divisible group over
R. Then G is connected if and only if, for each residue field κ of the commutative
ring π0pRq, the fiber Gκ is a connected p-divisible group over κ.
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Remark 2.3.7. Let G be a p-divisible group of height h ą 0 over an E8-ring R. If
G is connected, then every residue field of the commutative ring π0pRq must have
characteristic p. Consequently, the prime number p must be nilpotent in π0pRq.

Remark 2.3.8. In the situation of Definition 2.3.5, the zero section of G determines
an augmentation ε : A Ñ R. Note that G is connected if and only if the closed
embedding | SpecpRq| ãÑ | SpecpAq| determined by ε is a homeomorphism: that is, if
and only if the kernel ideal I “ kerpπ0pAq Ñ π0pRqq is locally nilpotent.

Proposition 2.3.9. Let R be a connective E8-ring and let G be a p-divisible group
over R. The following conditions are equivalent:

paq The p-divisible group G is connected.

pbq Let B be a reduced commutative algebra over π0pRq. Then GpAq » 0.

Proof. Suppose first that paq is satisfied, and let B be a reduced commutative algebra
over π0pRq; we wish to show that GpBq “ 0. Replacing R by B, we can assume
that R “ B is a reduced commutative ring. Suppose that there exists a nonzero
element x P GpRq. Multiplying x by a suitable power of p, we can assume that px “ 0;
that is, x can be regarded as a nonzero R-valued point of Grps. Let A be as in
Definition 2.3.5, so that x determines an R-algebra map ρ : AÑ R. Let ε : AÑ R be
the augmentation of Remark 2.3.8. Assumption paq guarantees that kerpεq is locally
nilpotent. Since R is reduced, it follows that ρpkerpεqq “ 0 so that ρ factors through ε,
contradicting our assumption that x ‰ 0.

Now suppose that pbq is satisfied. Let A be as above, and set B “ Ared. Then the
canonical map ρ : AÑ B determines a p-torsion element x P GpBq. Assumption pbq
guarantees that x “ 0, so that ρ factors through the map ε : A Ñ R. In particular,
every element of the ideal I “ kerpπ0pAq

ρ
ÝÑ π0pRqq vanishes in B and is therefore

nilpotent. It follows from Remark 2.3.8 that G is connected.

For many applications, Definition 2.3.5 is overly restrictive: note that it essentially
requires the the E8-ring to be ppq-nilpotent (Remark 2.3.7). It will be therefore be
useful to contemplate a weaker notion of connectedness.

Definition 2.3.10. Let R be an adic E8-ring and let G be a p-divisible group over R.
We will say that G is formally connected if Gπ0pRq{I is a connected p-divisible group
over the commutative ring π0pRq{I, where I Ď π0pRq is a finitely generated ideal of
definition.
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Remark 2.3.11. Let R and G be as in Definition 2.3.10, and let K Ď | SpecpRq|
denote the vanishing locus of a finitely generated ideal of definition I Ď π0pRq. Then G
is formally connected if and only if, for every point x P K, the p-divisible group Gκpxq

is connected; here κpxq denotes the residue field of π0pRq at the point x. In particular,
this condition depends only the closed subset K Ď | SpecpRq| (or, equivalently, on the
topology of π0pRq), and not on the choice of an ideal of definition I Ď π0pRq.

2.3.2 Identity Components of Connected p-Divisible Groups

We can now state the first main result of this section.

Theorem 2.3.12. Let R be a complete adic E8-ring, and suppose that p is topologically
nilpotent in π0pRq (so that R is ppq-complete). Let G and G1 be p-divisible groups
over R, and assume that G is formally connected. Then the canonical map

MapBTppRqpG,G1
q Ñ MapFGrouppRqpG˝,G1˝

q

is a homotopy equivalence.

Corollary 2.3.13. Let R be a complete adic E8-ring and suppose that p is topologically
nilpotent in π0pRq. Let BTp

pRqfc denote the full subcategory of BTp
pRq spanned by the

formally connected p-divisible groups over R. Then the construction G ÞÑ G˝ induces
a fully faithful functor BTp

pRqfc Ñ FGrouppRq.

Proof of Theorem 2.3.12. Without loss of generality, we may assume that R is con-
nective. Let I Ď π0pRq be a finitely generated ideal of definition, and let E Ď CAlgcn

R

be the full subcategory spanned by those connective E8-algebras over R which are
truncated and I-nilpotent. Using Proposition 2.3.9, we deduce that the canonical map
G˝|E Ñ G|E is an equivalence. It follows from Theorem 2.1.1 that the restriction map

MapFGrouppRqpG˝,G1˝
q Ñ MapFunpE,Modcn

Z q
pG˝

|E ,G1˝
|Eq

is a homotopy equivalence. Consequently, the canonical map

θ : MapBTppRqpG,G1
q Ñ MapFGrouppRqpG˝,G1˝

q

can be identified with the composition

MapBTppRqpG,G1
q
θ1
ÝÑ MapFunpE,Modcn

Z
pG|E ,G1

|Eq
θ2
ÝÑ MapFunpE,Modcn

Z
pG|E ,G1˝

|Eq.

We will complete the proof by showing that θ1 and θ2 are homotopy equivalences.
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Let H : E Ñ Modcn
Z denote the functor given by the formula HpAq “ G1pAredq.

We then have a fiber sequence of functors G1˝|E Ñ G1|E Ñ H, which gives a fiber
sequence of mapping spaces

MapFunpE,Modcn
Z q
pG|E ,G1|Eq

θ2

��
MapFunpE,Modcn

Z q
pG|E ,G1˝|Eq

��
MapFunpE,Modcn

Z q
pG|E , Hq.

Let E0 Ď E be the full subcategory spanned by those objects A P E Ď CAlgcn
R which

are reduced. Then H is a right Kan extension of H|E0 . Moreover, our connectivity
assumption on G guarantees that G|E0 vanishes (Proposition 2.3.9). It follows that
the mapping space MapFunpE,Modcn

Z
pG|E , Hq is contractible, so that θ2 is a homotopy

equivalence.
Writing G as a direct limit lim

ÝÑk
Grpks, we can identify θ1 with a limit of maps

θ1k : MapFunpE,Modcn
Z q
pGrpks,G1

q Ñ MapFunpE,Modcn
Z q
pGrpks|E ,G1

|Eq.

We will complete the proof by showing that each θ1k is a homotopy equivalence.
Unwinding the definitions, we see that θ1k can be identified with the restriction map

MapFunpE,Modcn
Z {pk Z

qpGrpks,G1
rpksq Ñ MapFunpE,Modcn

Z {pk Z
qpGrpks|E ,G1

rpks|Eq.

Using Lemma SAG.8.1.2.2 , we can write R as the limit of a tower

¨ ¨ ¨ Ñ R3 Ñ R2 Ñ R1

of connective I-nilpotent E8-algebras, having the property that the direct limit
lim
ÝÑ

MapCAlgRpRn, Aq is contractible for every I-nilpotent E8-algebra over R. Let
T : CAlgcn

R Ñ Modcn
Z {pk Z denote a right Kan extension of G1rpks|E ; unwinding the

definitions, we see that T is given by the formula

T pAq “ lim
ÐÝ

G1
rpkspτďnpAbR Rnqq.

Since G1 is a p-divisible group, the functor Ω8G1rpks : CAlgcn
R Ñ S is corepre-

sentable (by a finite flat R-algebra), and therefore preserves small limits. It fol-
lows that G1rpks also preserves small limits, so that T is given by the formula
T pAq “ G1rpksplim

ÐÝ
τďnpAbR Rnqq » G1rpkspA^I q.
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Invoking the universal property of T as a right Kan extension, we can identify θ1k
with the canonical map

MapFunpE,Modcn
Z {pk Z

qpGrpks,G1
rpksq Ñ MapFunpE,Modcn

Z {pk Z
qpGrpks, T q.

Our assumption that G is a p-divisible group over R guarantees that the functor
Grpks is representable by a finite flat group scheme over R, and is therefore a left
Kan extension of its restriction to the full subcategory CAlgff

R Ď CAlgcn
R spanned by

the finite flat R-algebras. Consequently, to show that θ1k is a homotopy equivalence,
it will suffice to show that the canonical map G1rpkspAq Ñ T pAq “ G1rpkspA^I q is an
equivalence whenever A is finite flat over R. This is clear, since our assumption that
R is I-complete guarantees that A is also I-complete (Proposition SAG.7.3.5.7 ).

2.3.3 p-Divisible Formal Groups

We now study the essential image of the fully faithful embedding

BTp
pRqfc ãÑ FGrouppRq G ÞÑ G˝

described in Corollary 2.3.13.

Definition 2.3.14. Let R be a complete adic E8-ring, and suppose that p is nilpotent
in π0pRq. Let pG be a formal group over R. We will say that pG is a p-divisible formal
group if there exists a formally connected p-divisible group G and an equivalence of
formal groups pG » G˝.

Remark 2.3.15. In the situation of Definition 2.3.14, the p-divisible group G is
determined (up to equivalence) by pG, by virtue of Corollary 2.3.13.

Example 2.3.16. Let R be a commutative algebra over Fp and let pGa be the formal
additive group over R. Then pGa is not p-divisible: note that the map p : pGa Ñ pGa

vanishes, but multiplication by p can never vanish on a nonzero p-divisible group over
R.

Warning 2.3.17. In the situation of Definition 2.3.14, the condition that a formal
group pG is p-divisible depends on the choice of topology on π0pRq. However, the
associated p-divisible group G (if it exists) does not depend on the choice of topology.
Suppose that there exist finitely generated ideals I, J Ď π0pRq containing p, such
that R is both I-complete and J-complete, and pG is a formal p-divisible group with
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respect to either the I-adic and J-adic topology on π0pRq. Then we can choose
p-divisible groups GI ,GJ P BTp

pRq and equivalences G˝
I »

pG » G˝
J , where GI is

formally connected for the I-adic topology and GJ is formally connected for the J-adic
topology. It follows that GI and GJ are both formally connected for the pI ` Jq-adic
topology. Since R is pI`Jq-complete (Corollary SAG.7.3.3.3 ), Theorem 2.3.12 implies
that the equivalence of formal groups G˝

I »
pG » G˝

J can be lifted (in an essentially
unique way) to an equivalence of p-divisible groups GI » GJ .

Remark 2.3.18. Let R be a complete adic E8-ring with p topologically nilpotent in
π0pRq, and let pG be a formal group over R. Then pG is p-divisible when regarded as a
formal group over R if and only if it is p-divisible when regarded as a formal group
over the connective cover τě0pRq.

Remark 2.3.19 (Functoriality). Let f : R Ñ R1 be a morphism of complete adic
E8-rings, where p is topologically nilpotent in π0pRq (hence also in π0pR

1q). Let pG be
a p-divisible formal group over R. Then pGR1 is a p-divisible formal group over R1.

2.3.4 A Criterion for p-Divisibility

In the case where the topology on π0pRq is discrete, p-divisibility can be tested by
the following criterion:

Theorem 2.3.20. Let R be a connective E8-ring and assume that p is nilpotent
in π0pRq. Let pG be a formal group over R, and let pGrps : CAlgcn

R Ñ S denote the
fiber of the map rps : pG Ñ pG. Then pG is a p-divisible formal group (with respect
to the discrete topology on π0pRq) if and only pGrps is (representable by) a finite flat
group scheme over R. Moreover, if this condition is satisfied, then the pullback map
rps˚ : O

pG Ñ O
pG is finite flat.

Warning 2.3.21. Let R and pG be as in Theorem 2.3.20, and suppose that the pullback
map rps˚ : O

pG Ñ O
pG is finite flat. In this case, the functor pΩ8Grpsq : CAlgcn

R Ñ S
has the form SpfpAq, where A is the adic E8-ring given by a pushout diagram

O
pG

ε //

rps˚

��

R

��
O

pG
// A.

Note that A is finite flat over R. However, this is not enough to guarantee that pG is
a p-divisible formal group (with respect to the discrete topology on π0pRq). To apply

100



Theorem 2.3.20, we need to know not only that A is finite flat over R, but also that
the topology on π0pAq is discrete.

Example 2.3.22. Let R “ Zp be the ring of p-adic integers, and let pGm be the formal
multiplicative group over R (this does not quite fit the paradigm of Warning 2.3.21
since p is not nilpotent in R, but is a good concrete illustration of the phenomenon).
Then the pullback map rps˚ : O

pGm
Ñ O

pGm
can be identified with the map of power

series rings

Zprrtss Ñ Zprrtss t ÞÑ pt` 1qp ´ 1 “ pt` ¨ ¨ ¨ ` ptp´1
` tp.

This map is finite flat of degree p, and the ring A appearing in Warning 2.3.21 can be
identified with the polynomial ring Zprts{ppt` 1qp´ 1q. However, the ptq-adic topology
on this ring is not discrete (since t is not nilpotent).

In the situation of Warning 2.3.21, suppose that R is a field. In this case, any finite
flat R-algebra A is an Artinian ring. Consequently, if I Ď A is an ideal for which A is
I-complete (or even I-adically separated), then I is nilpotent. We therefore obtain
the following:

Corollary 2.3.23. Let κ be a field of characteristic p and let pG be a formal group
over κ. Then pG is a p-divisible formal group (with respect to the discrete topology on
κ) if and only the map rps˚ : O

pG Ñ O
pG is finite flat.

We now turn to the proof of Theorem 2.3.20.

Lemma 2.3.24. Let R be a connective E8-ring, let pG be a formal group over R, and
let A P CAlgcn

R be truncated and ppq-nilpotent. Then pGpAqr1{ps » 0.

Proof. Note that the functor pG is locally almost of finite presentation (Proposition
1.6.8 ), so we can identify pGpAredq » 0 with the colimit lim

ÝÑI
pGpπ0pAq{Iq, where I

ranges over the collection of all nilpotent ideals of π0pAq. It will therefore suffice to
prove the following:

p˚q Let I be a nilpotent ideal of π0pAq. Then the canonical map pGpAqr1{ps Ñ
pGpπ0pAq{Iqr1{ps is an equivalence.

To prove p˚q, choose an integers k and m such that Ik “ 0 and A is m-truncated. Then
the canonical map AÑ π0pAq{I factors as a composition of square-zero extensions

A “ τďmAÑ τďm´1AÑ ¨ ¨ ¨ Ñ τď0A “ π0pAq{I
k
Ñ π0pAq{I

k´1
Ñ ¨ ¨ ¨ Ñ π0pAq{I.

It will therefore suffice to prove:
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p˚1q Let f : A Ñ B be a morphism in CAlgcn
R which exhibits A as a square-zero

extension of B by a module M P Modcn
B which is truncated and satisfies M r1{ps »

0. Then the canonical map pGpAqr1{ps Ñ pGpBqr1{ps is an equivalence.
To prove p˚1q, we choose a pullback square

A //

��

B

��
B // B ‘ ΣpMq.

Since the functor pG is cohesive (Proposition 1.6.8), the canonical map pGpAqr1{ps Ñ
pGpBqr1{ps is a pullback of the map pGpBqr1{ps Ñ pGpB ‘ ΣpMqqr1{ps.

For the rest of the proof, we regard B P CAlgcn
R as fixed. For every connective

B-module N , the canonical maps pGpBq Ñ pGpB ‘ Nq Ñ pGpBq exhibit pGpBq as a
direct summand of pGpB ‘Nq, with complementary summand F pNq P Modcn

Z . Since
pG is cohesive, the functor F : Modcn

B Ñ Modcn
Z is additive. In particular, the canonical

map p : F pNq Ñ F pNq can be obtained by applying the functor F to the map
p : N Ñ N . Since pG is locally almost of finite presentation over R (Proposition 1.6.8),
the functor F commutes with filtered colimits when restricted to k-truncated objects
of Modcn

B , for every integer k. In particular, if N P Modcn
B is truncated, we have

F pNqr1{ps » lim
ÝÑ
pF pNq

p
ÝÑ F pNq

p
ÝÑ F pNq Ñ ¨ ¨ ¨ q

» F plim
ÝÑ
pN

p
ÝÑ N

p
ÝÑ N Ñ ¨ ¨ ¨ qq

» F pN r1{psq.

In the situation of p˚1q, it follows that F pΣpMqqr1{ps » F pΣpMqr1{psq » 0, so that the
canonical map pGpBq Ñ pGpB ‘ ΣpMqq » pGpBq ‘ pGpΣpMqq induces an equivalence
pGpBqr1{ps » pGpB ‘ ΣpMqqr1{ps, as desired.

Proof of Theorem 2.3.20. Suppose first that pG is a p-divisible formal group. Write
pG “ G˝, where G is a connected p-divisible group over R. For each object A P CAlgcn

R ,
we have canonical homotopy equivalences

pGrpspAq “ fibpp : pGpAq Ñ pGpAqq
» lim

ÐÝ
n

fibpp : pGpτďnAq Ñ pGpτďnAq

» lim
ÐÝ
n

fibpp : GpτďnAq Ñ GpτďnAqq

“ lim
ÐÝ
n

GrpspτďnAq

» GrpspAq;
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the first equivalence results from the fact that pG is nilcomplete (Proposition 1.6.8),
the second from the connectedness of G, and third from the nilcompleteness of Grps.
It follows that pGrps is equivalent to Grps and is therefore (representable by) a finite
flat group scheme over R.

We now prove the converse. Assume that pGrps is representable by a finite flat
group scheme over R. Without loss of generality, we may assume that this finite
flat group scheme has some fixed degree d. Let O “ O

pG denote the E8-algebra of
functions on G. The map p : pG Ñ pG induces a map rps˚ from O to itself. To avoid
confusion, we let O 1 denote the E8-algebra O, regarded as a O-algebra via the map
rps˚. Let I Ď π0pOq and I 1 Ď π0pO

1
q denote the kernels of the augmentation maps

π0pOq Ñ π0pRq π0pO
1
q Ñ π0pRq

determined by the zero section of pG. Unwinding the definitions, we see that Ω8 ˝ pGrps
is representable by the formal spectrum SpfpAq, where A “ R bO O 1 is endowed with
the pI 1π0pAqq-adic topology. Consequently, the assumption that pGrps is finite flat of
degree d guarantees both that A is finite flat of degree d over R, and that the ideal
I 1π0pAq is nilpotent. It follows that the I 1-adic topology on π0pO

1
q coincides with the

Iπ0pO
1
q-topology. Since O 1 is complete with respect to the ideal I 1, it is also complete

with respect to the ideal I (when regarded as a O-algebra). Invoking Proposition
SAG.8.3.5.7 , we deduce that the map rps˚ : O Ñ O 1 is finite flat of degree d.

Applying the above argument repeatedly, we deduce that for each k ě 0, the map
rpks˚ : O Ñ O is finite flat of degree dk. Moreover, the I-adic topology on π0pOq

coincides with the rpks˚pIqπ0pOq-adic topology. It follows that pGrpks “ fibppk : pG Ñ

pGq is representable by a finite flat group scheme over R. Set G “ lim
ÝÑ

pGrpks “ fibppG Ñ

pGr1{psq. Using the fact that rps˚ is finite flat of degree d, we see that each of the maps
p : Grpks Ñ Grpk´1s is locally surjective on π0 with respect to the finite flat topology,
so that G is a p-divisible group over R. Note that GpAq “ fibppGpAq Ñ pGpAqr1{psq
vanishes when A is reduced, so that G is connected. We will complete the proof by
showing that the canonical map GpAq Ñ pGpAq is an equivalence when A is truncated
(so that pG is the identity component of G). For this, it will suffice to show that
pGpAqr1{ps vanishes, which is a special case of Lemma 2.3.24.

Remark 2.3.25. In the situation of Theorem 2.3.20, suppose that pG is p-divisible,
so that we can write pG » G˝ for some formally connected p-divisible group G over R.
Then G has height h if and only if the finite flat group scheme pGrps has degree ph.
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2.3.5 The Non-Discrete Case

The general case of Definition 2.3.14 can always be reduced to the case where
π0pRq has the discrete topology, by virtue of the following:

Theorem 2.3.26. Let R be a connective complete adic E8-ring. Assume that p is
topologically nilpotent in π0pRq and let J Ď π0pRq be a finitely generated ideal of
definition. Then a formal group pG over R is p-divisible if and only if pGπ0pRq{J is a
p-divisible formal group over the commutative ring π0pRq{I, endowed with the discrete
topology. Moreover, if this condition is satisfied, then the map rps˚ : O

pG Ñ O
pG is

finite flat.

Proof. The “only if” direction follows from Remarks 2.3.18 and 2.3.19. To prove the
converse, let us assume that pGπ0pRq{J is a p-divisible formal group; we wish to show
that pG is also a p-divisible formal group. Without loss of generality we may assume
that R is connective. We first treat the case where the topology on π0pRq is discrete,
so that the ideal J is nilpotent. Let I Ď π0pOq, I 1 Ď π0pO

1
q, and A “ R bO O 1 be as

in the proof of Theorem 2.3.20. Our assumption that pGπ0pRq{J is a p-divisible formal
group guarantees that B “ pπ0pRq{Jq bR A is finite flat over the commutative ring
π0pRq{J , and that the ideal I 1B is nilpotent. Since the ideal J is nilpotent, Proposition
SAG.2.7.3.2 guarantees that A is finite flat over R. Moreover, the ideal I 1π0pAq is
becomes nilpotent modulo J , and is therefore nilpotent. It follows that pGrps » SpfpAq
is finite flat over R, so that pG is a p-divisible formal group by virtue of Theorem
2.3.20.

We now treat the general case. Using Lemma SAG.8.1.2.2 , we can write R as the
limit of a tower of E8-rings

¨ ¨ ¨ Ñ R4 Ñ R3 Ñ R2 Ñ R1,

where each Ri is connective and J-nilpotent, and the direct limit lim
ÝÑ

MapCAlgRpRn, Bq

is contractible whenever B P CAlgcn
R is J-nilpotent. If pGπ0pRq{J is a p-divisible formal

group, then the first part of the proof shows that each pGRn is a p-divisible formal
group over Rn. We can therefore write pGRn as the identity component of a connected
p-divisible group GRn . Using Proposition 3.2.2, we can arrange that the tower of
p-divisible groups tGRn P BTp

pRnqu arises from an essentially unique p-divisible
group G P BTp

pRq. Since each GRn is connected, the p-divisible group G is formally
connected. Let G˝ be the identity component of G. By construction, the formal
group G˝ is equipped with a compatible family of equivalences pG˝qRn »

pGRn . Using
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Theorem 2.1.1, we deduce that G˝ and pG are equivalent, so that pG is a p-divisible
formal group as desired.

It remains to show that if pG is a p-divisible formal group, then the map rps˚ :
O

pG Ñ O
pG is finite flat. Note that Lemma SAG.8.1.2.2 guarantees that we can take

R1 to be almost perfect as an R-module. Set pG1 “ pGR1 , so that we can identify O
pG1

with the tensor product R1 bR O
pG. It follows from Theorem 2.3.20 that the map

rps˚ : O
pG Ñ O

pG is finite flat after tensoring over R with R1. The flatness of rps˚
then follows from Proposition SAG.8.3.5.7 (note that O

pG is automatically J-complete,
since can be described as the R-linear dual of a coalgebra over R).

We can use Theorems 2.3.20 and 2.3.26 to recover Tate’s theorem:

Proof of Theorem 2.3.2. Let R be a complete local Noetherian ring whose residue
field κ has characteristic p. Let us regard R as an adic commutative ring by endowing
it with the m-adic topology, where m Ď R is the maximal ideal. Using Theorem 2.3.26
and Corollary 2.3.23, we conclude that a formal group pG over R is a p-divisible formal
group if and only if the pullback map rps˚ : O

pG Ñ O
pG is finite flat. The equivalence

of Theorem 2.3.2 now follows from Corollary 2.3.13.

2.3.6 Pointwise Characterization of p-Divisibility

Let R be a connective E8-ring and let pG be a formal group over R. If pG is a
p-divisible formal group over R, then the fiber pGκpxq is a p-divisible formal group over
the residue field κpxq of each point x P | SpecpRq|. We now prove a converse:

Theorem 2.3.27. Let R be a connective E8-ring and let pG be a formal group over
R. Then pG is p-divisible (with respect to the discrete topology on π0pRq) if and only
if it satisfies the following pair of conditions:

paq For each point x P | SpecpRq|, the formal group pGκpxq is p-divisible.

pbq The functor x ÞÑ htppGκpxqq is a locally constant function on the topological space
| SpecpRq|.

The proof of Theorem 2.3.27 will require some preliminaries.

Lemma 2.3.28. Let R be a connective E8-ring and let pG be a formal group over R.
Then pG is p-divisible (with respect to the discrete topology on π0pRq) if and only if it
satisfies the following pair of conditions:
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paq For each point x P | SpecpRq|, the formal group pGκpxq is p-divisible.

pb1q The functor pGrps : CAlgcn
R Ñ S is corepresentable by a connective E8-algebra

over R.

Proof. The necessity of condition paq is clear, and the necessity of pb1q follows from
Theorem 2.3.20. Conversely, suppose that paq and pb1q are satisfied; we wish to show
that pG is p-divisible. Without loss of generality we may assume that R is discrete
(Theorem 2.3.26) and that O

pG » Rrrx1, . . . , xnss is a power series algebra over R
(where each xi vanishes along the zero section of pG). Let A be a connective E8-algebra
over R which corepresents the functor pGrps : CAlgcn

R Ñ S. Then π0pAq is a quotient
of Rrrx1, . . . , xnss{px

k
1, . . . , x

k
nq for k " 0, and is therefore finitely generated as an

R-module. Since the functor pGrps is locally almost of finite presentation (Proposition
1.6.8), the E8-ring A is almost of finite presentation over R. Applying Corollary
SAG.5.2.2.2 , we see that A is almost perfect as an R-module. Using pb1q and the
fiberwise flatness criterion (Corollary SAG.6.1.4.9 ), we conclude that A is flat over R.
Applying Theorem 2.3.20, we conclude that the formal group pG is p-divisible.

Lemma 2.3.29. Let R be a connective E8-ring, let pG be a formal group over R,
and let I be the nilradical of π0pRq. If pGπ0pRq{I is a p-divisible formal group (over the
reduced commutative ring π0pRq{I), then pG is p-divisible.

Proof. By virtue of Theorem 2.3.26, we can replace R by π0pRq and thereby reduce
to the case where R is a commutative ring. The assertion is local with respect to the
Zariski topology on | SpecpRq|, so we may further assume that the ring of functions
O

pG is isomorphic to a power series ring Rrrx1, . . . , xnss for some n ě 0, where the
kernel of the augmentation map O

pG Ñ R is the ideal J “ px1, . . . , xnq. The map
rps˚ : O

pG Ñ O
pG carries each xi to some power series fip~xq P Rrrx1, . . . , xnss with

vanishing constant term.
Set J 1 “ pf1p~xq, . . . , fnp~xqq, and let J and J 1 denote the images of J and J 1 in the

ring pR{Iqrrx1, . . . , xnss. Our hypothesis guarantees that the map of power series rings

pR{Iqrrx1, . . . , xns
xi ÞÑf ip~xq
ÝÝÝÝÝÑ pR{Iqrrx1, . . . , xnss

is adic: that is, the ideal J 1 contains Jm for some integer m " 0. For every sequence
of nonnegative integers ~d “ pd1, . . . , dnq with d1 ` ¨ ¨ ¨ ` dn “ m, set ~x~d “ xd1

1 ¨ ¨ ¨ x
dn
n ,

so that we have an equation of the form

~x
~d
”
ÿ

i

fip~xqr
~d
i p~xq pmod Irrx1, . . . , xnssq
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for some power series r~di p~xq P Rrrx1, . . . , xnss. Let I0 Ď I be the ideal generated by all
of the coefficients of monomials of degree ď m in the expressions ~x~d ´

ř

i fip~xqr
~d
i p~xq.

Since I0 is a nilpotent ideal, we can replace R by the quotient ring R{I0 (Theorem
2.3.26) and thereby reduce to the case where I0 “ 0: that is, we have Jm Ď J 1` Jm`1.
It follows that for every element g0p~xq P J

m, we can find elements gkp~xq P Jm`k and
hkp~xq P J

kJ 1 satisfying gkp~xq “ hkp~xq ` gk`1p~xq. Then we can identify g0p~xq with the
infinite sum

ř

kě0 hkp~xq P J
1. Allowing g0p~xq to vary, we have an inclusion Jm Ď J 1, so

that the map rps˚ : O
pG Ñ O

pG is adic and therefore the functor pGrps is corepresentable.
The desired result now follows from Lemma 2.3.28.

Proof of Theorem 2.3.27. The necessity of conditions paq and pbq is clear. To prove
sufficiency, suppose that we are given a formal group pG over a connective E8-ring R
which satisfies paq and pbq; we wish to show that pG is p-divisible. By virtue of Lemma
2.3.29, we may assume without loss of generality that R is a reduced commutative
ring. Working locally on | SpecpRq|, we may further assume that O

pG is a power series
algebra Rrrt1, . . . , tnss and that the function x ÞÑ htppGκpxqq is constant with value h.
For 1 ď i ď n, let fip~tq denote the image of ti under the pullback map rps˚ : O

pG Ñ O
pG.

For each k ě 0, set Ak “ Rrrt1, . . . , tnss{pf1p~tq, . . . , fnp~tq, t
k
1, . . . , t

k
nq, so that we have

a tower of (discrete) R-algebras

¨ ¨ ¨ Ñ A4 Ñ A3 Ñ A2 Ñ A1 » R,

where the transition maps are surjective and each Ak is finitely presented as an R-
module. We will complete the proof by showing that this tower is eventually constant,
so that pG satisfies condition pb1q of Lemma 2.3.28. Note that hypothesis paq guarantees
that for every point x P | SpecpRq|, the tower of vector spaces

¨ ¨ ¨ Ñ π0pκpxq bR A3q Ñ π0pκpxq bR A2q Ñ π0pκpxq bR A1q » κpxq

is eventually constant (and of dimension ph).
We will prove the following:

p˚q For every maximal ideal m of R, the tower of Rm-algebras

¨ ¨ ¨ Ñ pA4qm Ñ pA3qm Ñ pA2qm Ñ pA1qm » Rm,

is eventually constant and equivalent to an Rm-module which is free of rank ph.

Assume p˚q for the moment. Let x be any closed point of | SpecpRq|, corresponding to
a maximal ideal m Ď R. It follows from p˚q that there exists some integer k for which
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pAkqm is a free Rm-module of rank ph, and the transition maps pAk1qm Ñ pAkqm are
isomorphisms for k1 ě k. Choose a map of R-modules ρ : Rph Ñ Ak which induces an
isomorphism after localizing at the maximal ideal m. Since Ak is finitely presented as
an R-module, the kernel kerpρq is finitely generated as an R-module. The localization
kerpρqm vanishes, so we can choose an element u P R ´ m which annihilates kerpρq.
We will complete the proof by arguing that the transition maps

¨ ¨ ¨ Ñ Ak`2r1{us Ñ Ak`1r1{us Ñ Akr1{us

are isomorphisms, so that the tower tAmumě1 is eventually constant when restricted to
a neighborhood of the point x P | SpecpRq|. To prove this, we can replace R by Rr1{us
and thereby reduce to the situation where the map ρ is injective. Fix an integer k1 ě k;
we wish to show that the map Ak1 Ñ Ak is an isomorphism. For this, it will suffice to
show that the induced map µ : pAk1qn Ñ pAkqn is an isomorphism, for every maximal
ideal n of R. Enlarging k1 if necessary, we may assume without loss of generality that
pAk1qn is a free Rn-module of rank ph. Suppose, for a contradiction, that kerpµq ‰ 0.
Then kerpµq is a nonzero submodule of a free Rn-module, and therefore admits a
nonzero map to Rn. Since R is reduced, we can choose a minimal prime ideal p Ď n

for which kerpµqp ‰ 0. Then Rp is a field, and we have an exact sequence of vector
spaces

0 Ñ kerpµqp Ñ pAk1qp Ñ pAkqp Ñ 0

which shows that pAkqp is a vector space of dimension ă ph over Rp. This is a
contradiction, since ρ induces a monomorphism of vector spaces Rph

p ãÑ pAkqp.
It remains to prove p˚q. For this, we can replace R by the localization Rm and

thereby reduce to the case where R is a (reduced) local ring with maximal ideal m. Let
κ “ R{m denote the residue field of R. Choose an integer k for which π0pκbRAkq is a
vector space of dimension ph (hence the transition maps π0pκbR Ak1q Ñ π0pκbR Akq

are bijective for k1 ě k). Since the map lim
ÐÝk1ěk

Ak1 Ñ π0pκ bR Akq is surjective, we
can lift a basis of π0pκ bR Akq to a map of R-modules ν : Rph Ñ lim

ÐÝk1ěk
Ak1 . For

each k1 ě k, let νk1 denote the composition Rph ν
ÝÑ lim
ÐÝk1ěk

Ak1 Ñ Ak1 . It follows from
Nakayama’s lemma that each νk1 is surjective. We will complete the proof of p˚q by
showing that the map νk1 is injective for k1 " k.

For 1 ď a ď ph and k1 ě k, let Ia,k1 Ď R denote the ideal given by the image of
kerpνk1q along the projection map Rph Ñ R onto the ath factor. We will complete
the proof by showing that for each fixed a, the ideal Ia,k1 is zero for k1 " k. Since
Ak1 is finitely presented as an R-module, each of the R-modules kerpνk1q is finitely

108



generated, so that the ideals Ia,k1 Ď R are finitely generated. Let Xa,k1 Ď | SpecpRq|
denote the vanishing locus of the ideal Ia,k1 . Since R is reduced, it will suffice to show
that Xa,k1 “ | SpecpRq| for k1 " k. Note that each Xa,k1 is a cocompact closed subset
of | SpecpRq|, hence open with respect to the constructible topology on | SpecpRq|.
Since | SpecpRq| is compact with respect to the constructible topology, it will suffice
to show that

Ť

k1ěkXa,k1 “ | SpecpRq|. Fix a point y P | SpecpRq|, corresponding to a
prime ideal q Ď R; we wish to show that y belongs to Xa,k1 for k1 " k. Let q1 be a
minimal prime ideal of R contained in q and let y1 denote the corresponding point of
| SpecpRq|. Since each Xa,k1 is closed, it will suffice to show that y1 is contained in Xa,k1

for k1 " k. We may therefore replace y by y1 and thereby reduce to the case where
q is a minimal prime ideal of R. Since R is reduced, the residue field κpyq coincides
with the localization Rq. We can therefore choose k1 ě k for which the localization
pAk1qq is a vector space of dimension ph over Rq. Using the exact sequence

0 Ñ kerpνk1qq Ñ Rph

q Ñ pAk1qq Ñ 0,

we deduce that kerpνk1qq “ 0, so that the ideal Ia,k1Rq vanishes. It follows that the
point y belongs to Xa,k1 , as desired.

2.4 Exact Sequences of p-Divisible Groups
Let R be an E8-ring. In §AV.6.3 , we introduced the notion of an exact sequence

of commutative finite flat group schemes over R (Definition AV.6.3.7 ). In this section,
we adapt this notion to the setting of p-divisible groups over R.

2.4.1 Monomorphisms and Strict Epimorphisms

We begin with some general remarks.

Proposition 2.4.1. Let R be an E8-ring and let f : G Ñ G1 be a morphism of
p-divisible groups over G. The following conditions are equivalent:

p1q For every finite abelian p-group M , the induced map GrM s Ñ G1rM s is an
epimorphism of finite flat group schemes over R (in the sense of Definition
AV.6.2.2 ).

p2q For each m ě 0, the induced map Grpms Ñ G1rpms is an epimorphism of finite
flat group schemes over R.
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p3q The induced map Grps Ñ G1rps is an epimorphism of finite flat group schemes
over R.

Proof. The implications p1q ô p2q ñ p3q are immediate. Assume that p3q is satisfied;
we prove p2q by induction on m. Without loss of generality, we may assume that R
is connective. Let C denote the full subcategory of FunpCAlgcn

R ,Modcn
Z q spanned by

those functors which are sheaves with respect to the fppf topology. For m ě 2, we
have a commutative diagram

Grps //

u1

��

Grpms p //

u

��

Grpm´1s

u2

��
G1rps //G1rpms

p //G1rpm´1s

where the rows are cofiber sequences in C. We therefore obtain a cofiber sequence
cofibpu1q Ñ cofibpuq Ñ cofibpu2q in C. Assumption p3q guarantees that τď0 cofibpu1q
vanishes in C, so that multiplication by p induces an equivalence τď0 cofibpuq »
τď0 cofibpu2q. Our inductive hypothesis guarantees that τď0 cofibpu2q vanishes, so that
τď0 cofibpuq vanishes: that is, u is an epimorphism of finite flat commutative group
schemes.

Corollary 2.4.2. Let R be an E8-ring and let f : G Ñ G1 be a morphism of
p-divisible groups over G. The following conditions are equivalent:

p1q For every finite abelian p-group M , the induced map GrM s Ñ G1rM s is a
monomorphism of finite flat group schemes over R (in the sense of Definition
AV.6.2.2 ).

p2q For each m ě 0, the induced map Grpms Ñ G1rpms is a monomorphism of finite
flat group schemes over R.

p3q The induced map Grps Ñ G1rps is a monomorphism of finite flat group schemes
over R.

p4q For every discrete τě0R-algebra A, the induced map GpAq Ñ G1pAq is a
monomorphism of abelian groups.

Proof. The equivalence of p1q, p2q, and p3q follows by applying Proposition 2.4.1 to
the Cartier dual map f_ : G_ Ñ G1_. Let A is a discrete τě0R-algebra. If p4q is
satisfied, then the map GpAq Ñ G1pAq is a monomorphism of abelian groups, and
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therefore induces a monomorphism un : GrpnspAq Ñ G1rpnspAq for each n ě 0, so
that condition p2q is satisfied by Remark AV.6.2.8 . Conversely, if p2q is satisfied, then
each un is a monomorphism; passing to the direct limit over n, we conclude that the
map u : GpAq Ñ G1pAq is a monomorphism of abelian groups.

Definition 2.4.3. Let R be an E8-ring and let f : G Ñ G1 be a morphism of
p-divisible groups over R. We will say that f is an strict epimorphism if it satisfies the
equivalent conditions of Proposition 2.4.1, and we will say that f is a monomorphism
if it satisfies the equivalent conditions of Corollary 2.4.2.

Warning 2.4.4. The terminology of Definition 2.4.3 is potentially misleading: beware
that a monomorphism (respectively strict epimorphism) need not be a categorical
monomorphism (respectively epimorphism) in the 8-category BTp

pRq, unless R is
discrete.

Warning 2.4.5. Let R be an E8-ring and let f : G Ñ G1 be a morphism of p-
divisible groups over R, which we view as functors from CAlgcn

τě0R to Modcn
Z . If f

is a strict epimorphism, then the induced map π0pGq Ñ π0pG1q is surjective locally
for the finite flat topology (since this holds for the induced natural transformation
π0pGrpnsq Ñ π0pG1rpnsq, for each n ě 0). However, the converse fails: for example,
multiplication by p induces a finite flat surjection π0pGq Ñ π0pGq, but the map
p : G Ñ G is never a strict epimorphism (unless G “ 0).

Remark 2.4.6. Let R be an E8-ring, let f : G Ñ G1 be a morphism of p-divisible
groups over R, and let f_ : G1_ Ñ G_ be its Cartier dual (Construction AV.6.6.2 ).
Then f is a monomorphism if and only if f_ is a strict epimorphism (this follows
immediately from the corresponding assertion for commutative finite flat group schemes:
see Proposition AV.6.3.4 ).

Remark 2.4.7. Let R be an E8-ring and let f : G Ñ G1 be a morphism of p-divisible
groups over R. Then f is a monomorphism (strict epimorphism) if and only if, for every
closed point x P | SpecpRq|, the induced map Gκpxq Ñ G1

κpxq is a monomorphism (strict
epimorphism) of p-divisible groups over the residue field κpxq. For monomorphisms,
this follows immediately from Nakayama’s lemma; the analogous statement for strict
epimorphisms follows by duality from Remark 2.4.6.

2.4.2 Exact Sequences

We can now state the main result of this section:
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Proposition 2.4.8. Let R be an E8-ring, let Modcn,Nilppq
Z denote the 8-category of

connective ppq-torsion Z-module spectra, and let C Ď FunpCAlgcn
τě0 ,Modcn,Nilppq

Z q denote
the full subcategory spanned by those functors X : CAlgcn

τě0R Ñ Modcn,Nilppq
Z which are

sheaves with respect to the finite flat topology. Suppose we are given a commutative
diagram σ :

G1 f //

��

G
g
��

0 //G2

in the 8-category C. The following conditions are equivalent:

p1q The functors G and G2 are p-divisible groups, the map g is a strict epimorphism
of p-divisible groups, and the diagram σ is a pullback square in C.

p2q The functors G1 and G are p-divisible groups, the map f is a monomorphism
of p-divisible groups, and σ is a pushout square in C.

p3q The functors G1 and G2 are p-divisible groups and σ is a pushout square in C.

Definition 2.4.9. Let R be an E8-ring. A short exact sequence of p-divisible groups
over R is a commutative diagram

G1 f //

��

G
g
��

0 //G2

in BTp
pRq which satisfies the equivalent conditions of Proposition 2.4.8. We will

generally abuse notation by identifying a short exact sequence with the diagram

0 Ñ G1 f
ÝÑ G g

ÝÑ G2
Ñ 0;

in this case, we implicitly assume that a nullhomotopy of g ˝ f has also been specified.

Remark 2.4.10. Let R be an E8-ring. Using Proposition 2.4.8, we see that the
following data are equivalent:

• The datum of a monomorphism f : G1 Ñ G of p-divisible groups over R.

• The datum of a strict epimorphism g : G Ñ G2 of p-divisible groups over R.
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• The datum of a short exact sequence 0 Ñ G1 f
ÝÑ G g

ÝÑ G2 Ñ 0 of p-divisible
groups over R.

Proof of Proposition 2.4.8. Without loss of generality, we may assume that R is
connective. We first show that p1q ñ p2q. Let g : G Ñ G2 be a strict epimorphism
of p-divisible groups over R, and set G1 “ fibpgq (formed in the 8-category C
of Modcn,Nilppq

Z -valued sheaves on CAlgcn
R , or equivalently in the larger 8-category

FunpCAlgcn
R ,Modcn

Z q). We wish to show that:

paq The functor G1 is a p-divisible group over R.

pbq The natural map f : G1 Ñ G is a monomorphism of p-divisible groups.

pcq The canonical map cofibpfq Ñ G2 is an equivalence (where the cofiber is formed
in the 8-category C).

Since the 8-category C is prestable, assertion pcq is equivalent to the requirement
that the induced map π0pGq Ñ π0pG2q is surjective locally with respect to the flat
topology, which follows from (but is weaker than) our assumption that g is a strict
epimorphism (Warning 2.4.5). Since G and G2 are p-divisible, we can identify the
cofibers of p : G Ñ G and p : G2 Ñ G2 with the suspensions of Grps and G2rps,
respectively. Using pcq, we obtain a cofiber sequence

cofibpp : G1
Ñ G1

q Ñ ΣpGrpsq Ñ ΣpG2
rpsq.

Consequently, the local surjectivity of the map p : π0pG1q Ñ π0pG1q is equivalent to
the local surjectivity of the map π0pGrpsq Ñ π0pG2rpsq, and therefore follows from
our assumption that g is a strict epimorphism. To complete the proofs of paq and pbq,
it will suffice to show that G1rps is (representable by) a commutative finite flat group
scheme over R and that f induces a monomorphism G1rps Ñ Grps. This follows by
applying Proposition AV.6.2.9 to the evident fiber sequence G1rps Ñ Grps Ñ G2rps.

We next show that p2q ñ p3q and p3q ñ p1q. Let us henceforth assume that we
are given a cofiber sequence

G1 f
ÝÑ G g

ÝÑ G2

in the 8-category C. Assume first that p2q is satisfied: that is, f is a monomorphism
of p-divisible groups over R. We wish to show that G2 is also a p-divisible group. We
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have a commutative diagram

π0pGq
g //

p

��

π0pG2q

p

��
π0pGq

g // π0pG2q

where the horizontal maps and the left vertical map are locally surjective with respect
to the flat topology, so that the right vertical map is also locally surjective with respect
to the flat topology. It follows that the diagram

G1
rps Ñ Grps Ñ G2

rps

is also a cofiber sequence in C. Applying Corollary AV.6.3.5 , we deduce that G2rps

is (representable by) a commutative finite flat group scheme over R, so that G2 is a
p-divisible group as desired.

We now complete the proof by showing that p3q implies p1q. Assume that G1 and
G2 is a p-divisible group over R; we wish to show that G is also a p-divisible group and
that g is a strict epimorphism. From the assumption that the maps π0pG1q

p
ÝÑ π0pG1q

and π0pG2q
p
ÝÑ π0pG2q are locally surjective for the finite flat topology, we deduce

that the map π0pGq
p
ÝÑ π0pGq is also locally surjective for the finite flat topology. As

above, we conclude that the diagram

G1
rps

u
ÝÑ Grps v

ÝÑ G2
rps

is a cofiber sequence in C. We first claim that Grps is a commutative finite flat group
scheme over R: that is, the functor Ω8Grps : CAlgcn

R Ñ S is corepresentable by a finite
flat R-algebra. Since we have assumed that Ω8G2rps is corepresentable by a finite flat
R-algebra, it will suffice to show that the natural transformation Ω8Grps Ñ Ω8G2rps

is finite flat. Because the functors Ω8Grps and Ω8G2rps are sheaves for the finite flat
topology, this assertion can be tested locally for the finite flat topology: in particular,
it suffices to show that the projection map

π : Ω8Grps ˆΩ8G2rps Ω8Grps Ñ Ω8Grps

is finite flat. This is clear, since π is a pullback of the projection Ω8G1rps Ñ SpecpRq
(which is finite flat by virtue of our assumption that G1 is a p-divisible group). This
completes the proof that G is p-divisible; the assertion that f is a monomorphism of
p-divisible groups is equivalent to the assertion that u is a monomorphism of finite

114



flat commutative group schemes, which follows by applying Proposition AV.6.2.9 to
the cofiber sequence G1rps

u
ÝÑ Grps v

ÝÑ G2rps (which is also a fiber sequence since C is
prestable).

Remark 2.4.11. Let R be an E8-ring and suppose we are given a diagram σ :

G1 f //

��

G
g
��

0 //G2

in the 8-category BTp
pRq. Then σ is a short exact sequence of p-divisible groups if

and only if it satisfies either of the following conditions (which are a priori weaker
than the corresponding conditions in Proposition 2.4.8, but equivalent by virtue of
Remark 2.4.10):

p11q The map g is a strict epirmorphism and σ is a pullback square in the 8-category
BTp

pRq.

p21q The map f is a monomorphism and σ is a pushout square in the 8-category
BTp

pRq.

Remark 2.4.12. Let R be an E8-ring and suppose we are given a diagram σ :

G1 f //

��

G
g
��

0 //G2.

in the 8-category BTp
pRq. Then σ is a short exact sequence of p-divisible groups if

and only if the induced diagram

G1rps //

��

Grps

��
0 //G2rps

is an exact sequence of commutative finite flat group schemes, in the sense of Definition
AV.6.3.7 .
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Remark 2.4.13. Let R be an E8-ring and suppose we are given an exact sequence

0 Ñ G1
Ñ G Ñ G2

Ñ 0

of p-divisible groups over R. Then the Cartier dual sequence

0 Ñ G2_
Ñ G_

Ñ G1_
Ñ 0

is also short exact (this follows from Remark 2.4.12 and Proposition AV.6.3.4 ).

Remark 2.4.14. Let R be an E8-ring and suppose we are given a diagram σ :

G1 f //

��

G
g
��

0 //G2.

in the 8-category BTp
pRq. Then σ is a short exact sequence if and only if, for every

maximal ideal m Ď π0pRq with residue field κ “ π0pRq{m, the image of σ in BTp
pκq

is an exact sequence of p-divisible groups over κ.

2.5 The Connected-Étale Sequence
In good cases, an arbitrary p-divisible group G can be “built from” connected and

étale pieces in an essentially unique way.

Definition 2.5.1. Let R be a complete adic E8-ring and assume that p P π0pRq is
topologically nilpotent. We will say that a short exact sequence of p-divisible groups

0 Ñ G1
Ñ G Ñ G2

Ñ 0

is a connected-étale sequence if G1 is formally connected (Definition 2.3.10) and G2 is
étale (Definition 2.5.3).

In this section, we will show that connected-étale sequences are essentially unique
when they exist (Theorem 2.5.13), and that existence is equivalent to the assumption
that the identity component G˝ is a p-divisible formal group (Proposition 2.5.17).
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2.5.1 Étale p-Divisible Groups

Let R be an E8-ring. Every p-divisible group G over R determines a p-divisible
group Gπ0pRq over the commutative ring π0pRq, in the sense of classical algebraic
geometry. In general, passage from G to Gπ0pRq involves a loss of information. Our
goal in this section is to show that no information is lost when we restrict our attention
to the class of étale p-divisible groups (Proposition 2.5.9).

Proposition 2.5.2. Let R be an E8-ring and let G be a p-divisible group over R.
The following conditions are equivalent:

p1q For every finite abelian p-group M , the functor

Ω8GrM s : CAlgcn
τě0R Ñ S A ÞÑ MapModZ

pM,GpAqq

is corepresentable by an étale pτě0Rq-algebra.

p2q For each n ě 0, the functor

Ω8Grpns : CAlgcn
τě0R Ñ S A ÞÑ MapModZ

pZ {pn Z,GpAqq

is corepresentable by an étale pτě0Rq-algebra.

p3q The functor

Ω8Grps : CAlgcn
τě0R Ñ S A ÞÑ MapModZ

pZ {pZ,GpAqq

is corepresentable by an étale pτě0Rq-algebra.

Proof. The implications p1q ô p2q ñ p3q are immediate. Assume that p3q is satisfied;
we will prove that p2q is satisfied by induction on n. For n ą 0, multiplication
by p induces a natural transformation u : Ω8Grpns Ñ Ω8Grpn´1s. Our inductive
hypothesis guarantees that the functor Ω8Grpn´1s is corepresentable by an étale
pτě0Rq-algebra. Consequently, to show that Ω8Grpns is representable by an étale
pτě0Rq-algebra, it will suffice to show that the natural transformation u is étale.
This can be tested locally with respect to the flat topology. Since u is an effective
epimorphism for the flat topology, we are reduced to showing that the projection map

π : Ω8Grpns ˆΩ8Grpn´1s Ω8Grpns Ñ Ω8Grpns

is étale. This follows from p3q, since π is a pullback of the projection map Ω8Grps Ñ
Specpτě0Rq.
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Definition 2.5.3. Let R be an E8-ring and let G be a p-divisible group over R. We
will say that G is étale if it satisfies the equivalent conditions of Proposition 2.5.2. We
let BTp

étpRq denote the full subcategory of BTp
pRq spanned by the étale p-divisible

groups over R.

Remark 2.5.4. Let R be an E8-ring and let G be a p-divisible group over R. Then
G is étale if and only if, for each maximal ideal m Ď π0pRq, the induced p-divisible
group Gπ0pRq{m is étale over the residue field π0pRq{m.

In particular, if R is complete with respect to a finitely generated ideal I Ď π0pRq,
then G is étale if and only pGπ0pRq{I is an étale p-divisible group over the commutative
ring π0pRq.

Remark 2.5.5. Let R be an E8-ring, let G be a p-divisible group over R, and let
R^ppq denote the ppq-completion of R. Then G is étale if and only if GR^

ppq
is an étale

p-divisible group over R^ppq. The “only if” direction is immediate. Conversely, suppose
that GR^

ppq
is étale; we wish to show that G is étale. Without loss of generality, we

may assume that R is connective. By virtue of Remark 2.5.4, it will suffice to show
that for every field κ and every map f : RÑ κ, the p-divisible group Gκ is étale. This
is automatic if κ has characteristic different from p, and follows from our hypothesis in
the case where κ has characteristic p because f factors through the completion R^ppq.

Remark 2.5.6. Let R be an E8-ring, let CAlgfét
R denote the 8-category of finite

étale R-algebras, and let Abpfin denote the category of finite abelian p-groups. Us-
ing Proposition AV.6.5.5 , we can identify BTp

étpRq with the full subcategory of
FunpAbpfin,CAlgfét

R q
op spanned by those functors F : Abpfin Ñ CAlgfét

R satisfying the
following conditions:

piq The functor F preserves finite coproducts: that is, it carries direct sums to
tensor products of R-algebras (in particular, the unit map R Ñ F p0q is an
equivalence).

piiq For every monomorphism M 1 ÑM of finite abelian p-groups, the induced map
F pM 1q Ñ F pMq is faithfully flat.

piiiq For every short exact sequence 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 of finite abelian
p-groups, the diagram

F pM 1q //

��

F pMq

��
F p0q // F pM2q
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is a pushout square in CAlgfét
R .

Example 2.5.7 (Constant Groups). Let R be an E8-ring and let M be an abelian
group. We let M : CAlgcn

τě0R Ñ Modcn
Z denote the constant sheaf with the value M

(taken with respect to the flat, étale, or Zariski topology on the 8-category CAlgcn
τě0R;

the result is the same). More concretely, the functor M is given by the formula

MpAq “ tLocally constant functions | SpecpAq| ÑMu.

If M is a direct sum of finitely many copies of Qp {Zp, then M is an étale p-divisible
group over R (conversely, every étale p-divisible group of height h over R can be made
equivalent to Qp {Zp

h after extending scalars to a faithfully flat R-algebra).

Proposition 2.5.8. Let R be a ppq-complete E8-ring and let G be a p-divisible group
over R. Then G is étale if and only if the formal group G˝ is trivial.

Proof. The “only if” direction is immediate from the definitions. For the converse, we
can use Remark 2.5.4 to reduce to the case where R “ κ is a field of characteristic p.
Without loss of generality, we may assume that κ is algebraically closed. Then the
functor Ω8Grps : CAlgcn

κ Ñ S is corepresentable by a finite flat κ-algebra A, which
factors as a product of local Artinian rings A »

ś

iPI Ai. The identity section of G
determines a map of κ-algebras A Ñ κ, which factors through Ai0 for some i0 P I.
Then the identity map id : Ai0 Ñ Ai0 determines a p-torsion element of the abelian
group GpAi0q, whose image vanishes in Ared

i0 » κ. If G˝ is trivial, it follows that the
identity map id : Ai0 Ñ Ai0 factors through κ, so that Ai0 » κ. Using the group
structure of Grps, we conclude that each Ai is isomorphic to κ, so that A »

ś

iPI Ai0
is étale over κ.

Proposition 2.5.9. Let R be an E8-ring. Then the forgetful functor BTp
étpRq Ñ

BTp
étpπ0pRqq is an equivalence of 8-categories.

Proof. Proposition HA.7.5.0.6 supplies an equivalence of 8-categories CAlgét
R »

CAlgét
π0pRq, which restricts to an equivalence CAlgfét

R » CAlgfét
π0pRq. The desired result

now follows from the description of the 8-category BTp
étpRq given in Remark 2.5.6.

We will need the following extension of Proposition 2.5.9:

Corollary 2.5.10. Let R be an E8-ring which is complete with respect to a finitely
generated ideal I Ď π0pRq. Then the functor BTp

pRq Ñ BTp
pπ0pRq{Iq restricts to an

equivalence of 8-categories BTp
étpRq Ñ BTp

étpπ0pRq{Iq.
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Proof. By virtue of Proposition 2.5.9, we may assume without loss of generality that
R is discrete. The assumption that R is I-complete guarantees that the pair pR, Iq is
Henselian (Corollary SAG.7.3.6.5 ), so that extension of scalars induces an equivalence
of categories CAlgfét

R Ñ CAlgfét
R{I (Corollary SAG.B.3.3.7 ). Using the descriptions of

BTp
étpRq and BTp

étpR{Iq supplied by Remark 2.5.6, we are reduced to proving the
following:

p˚q Let F : Abpfin Ñ CAlgfét
R be a functor having the property that the composite

map Abpfin
F
ÝÑ CAlgfét

R » CAlgfét
R{I satisfies conditions piq, piiq and piiiq of Remark

2.5.6. Then F also satisfies conditions piq, piiq, and piiiq of Remark 2.5.6.

For conditions piq and piiiq, this is immediate. For condition piiq, it will suffice to
prove:

p˚1q Let f : A Ñ B be a morphism of finite étale R-algebras. If the induced map
A{IAÑ B{IB is faithfully flat, then f is faithfully flat.

To prove p˚1q, we note that f is an étale morphism, and is therefore faithfully flat
if the quotient B{mB is nonzero for each maximal ideal m Ď A. This is clear,
since m automatically contains IA (the pair pA{IAq is also Henselian by Corollary
SAG.B.3.3.1 ).

Remark 2.5.11. In the situation of Corollary 2.5.10, a p-divisible group G over R is
étale if and only if its image in BTp

pπ0pRq{Iq is étale (Remark 2.5.4). Consequently,
Corollary 2.5.10 is equivalent to the statement that the projection map

BTp
étpπ0pRq{Iq ˆBTppπ0pRq{Iq BTp

pRq Ñ BTp
étpπ0pRq{Iq

is an equivalence of 8-categories.

We will also need the following variant of Corollary 2.5.10:

Proposition 2.5.12. Let R be an E8-ring which is complete with respect to a finitely
generated ideal I Ď π0pRq, and let G and G1 be p-divisible groups over R. If G1 is étale,
then the canonical map MapBTppRqpG,G1q Ñ MapBTppπ0pRq{IqpG,G1q is a homotopy
equivalence.

Proof. Without loss of generality, we may assume that R is connective. Set R1 “
π0pRq{I. Using the description of the 8-categories BTp

pRq and BTp
pR1q supplied by

Proposition AV.6.5.5 , we are reduced to proving the following more concrete algebraic
assertion:

120



p˚q .Let A and B be finite flat R-algebras, and assume that A is étale over R. Then
the canonical map

MapCAlgRpA,Bq Ñ MapCAlgRpA,R
1
bR Bq » MapCAlgR1 pR

1
bR A,R

1
bR Bq

is a homotopy equivalence.

Since A is étale over R, we can use Corollary HA.7.5.4.6 to replace R by π0pRq and
thereby reduce to the case where R is discrete. In this case, our assumption that R is
I-complete guarantees that pR, Iq is a Henselian pair (Corollary SAG.7.3.6.5 ), which
immediately implies p˚q (see Proposition SAG.B.3.2.2 ).

2.5.2 Uniqueness of the Connected-Étale Sequence

We now show that if a p-divisible group G admits a connected-étale sequence,
then that sequence is essentially unique:

Theorem 2.5.13. Let R be a complete adic E8-ring with p topologically nilpotent in
π0pRq. Let C Ď Funp∆1 ˆ∆1,BTp

pRqq denote the full subcategory spanned by those
diagrams of p-divisible groups σ :

G1 //

��

G

��
0 //G2

which are connected-étale sequences, in the sense of Definition 2.5.1. Then the
construction σ ÞÑ G induces a fully faithful functor C Ñ BTp

pRq.

Proof. Let σ0 and σ1 be objects of C, which we identify with connected-étale sequences

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0

0 Ñ G1
1 Ñ G1 Ñ G2

1 Ñ 0.
We wish to show that the canonical map

ρ : MapCpσ0, σ1q Ñ MapBTppRqpG0,G1q

is a homotopy equivalence. Using Remark 2.4.10, we see that ρ fits into a homotopy
pullback square

MapCpσ0, σ1q
ρ //

��

MapBTppRqpG0,G1q

��
MapBTppRqpG1

0,G1
1q

ρ1 //MapBTppRqpG1
0,G1q.
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It will therefore suffice to show that ρ1 is a homotopy equivalence. Using the fiber
sequence

MapBTppRqpG1
0,G1

1q Ñ MapBTppRqpG1
0,G1q Ñ MapBTppRqpG1

0,G2
1q,

we are reduced to proving that the mapping space MapBTppRqpG1
0,G2

1q is contractible.
Since G1

0 is formally connected, Theorem 2.3.12 supplies a homotopy equivalence

MapBTppRqpG1
0,G2

1q » MapFGrouppRqpG1˝
0 ,G2˝

1 q.

The desired contractibility now follows from the observation that G2˝
1 vanishes (Propo-

sition 2.5.8).

Remark 2.5.14. In the proof of Theorem 2.5.13, we did not use the full strength of
our assumption that σ and σ1 are connected-étale sequences. It suffices to assume
that σ and σ1 are short exact sequences with G1

0 formally connected and G2
1 étale; we

do not need to know that G1
1 is formally connected or that G2

0 is étale.

Definition 2.5.15. Let R be a complete adic E8-ring. Assume that p P π0pRq is
topologically nilpotent and let G be a p-divisible group over R. We will say that
G admits a connected-étale sequence if there is a short exact sequence of p-divisible
groups

0 Ñ G1
Ñ G Ñ G2

Ñ 0,

where G1 is formally connected and G2 is étale. In this case, the short exact sequence
is determined up to equivalence (and depends functorially on G) by virtue of Theorem
2.5.13. We will refer to it as the connected-étale sequence of G.

Warning 2.5.16. In the situation of Definition 2.5.15, the condition that G admits
a connected-étale sequence depends on the topology on the commutative ring π0pRq.
However, the connected-étale sequence itself is independent of that choice (provided
that it exists). To see this, let us suppose that R is complete with respect to finitely
generated ideals I, J Ď π0pRq, and that we are connected-étale sequences

0 Ñ G1
I Ñ G Ñ G2

I Ñ 0

0 Ñ G1
J Ñ G Ñ G2

J Ñ 0

with respect to the I-adic and J-adic topologies, respectively. Then both short exact
sequences are connected-étale sequences with respect to the pI ` Jq-adic topology on
R. Since R is pI ` Jq-complete (Corollary SAG.7.3.3.3 ), Theorem 2.5.13 implies that
the exact sequences are equivalent.
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2.5.3 Existence of Connected-Étale Sequences

We now give a criterion for the existence of a connected-étale sequence:

Proposition 2.5.17. Let R be a complete adic E8-ring. Assume that p P π0pRq is
topologically nilpotent and let G be a p-divisible group over R. Then G admits a
connected-étale sequence (in the sense of Definition 2.5.15) if and only if the identity
component G˝ is a p-divisible formal group (in the sense of Definition 2.3.14).

The proof of Proposition 2.5.17 will make use of the following simple observation:

Lemma 2.5.18. Let R be an E8-ring and let pG : CAlgcn
τě0R Ñ Modcn

Z be a formal
group over R. If ΩpG vanishes, then pG vanishes.

Proof. Without loss of generality we may assume that R “ κ is a field, so that
O

pG is isomorphic to κrrt1, . . . , tdss for some integer d ě 0. Note that the functor
Ω8`1

pG : CAlgcn
κ Ñ S is corepresentable by the tensor product A “ κ bO

xG
κ. A

standard calculation shows that π1pAq is a vector space of dimension d over κ. If ΩpG
vanishes, then we must have A » κ. This implies that d “ 0, so that pG vanishes as
well.

Proof of Proposition 2.5.17. Suppose first that G admits a connected-étale sequence

0 Ñ G1
Ñ G Ñ G2

Ñ 0.

Since G2 is étale, its identity component vanishes (Proposition 2.5.8). It follows that
the identity component G˝ is equivalent to G1˝. Since G1 is formally connected, we
conclude that G˝ is a p-divisible formal group.

We now prove the converse. Assume that G˝ is a p-divisible formal group. Then
we can choose a formally connected p-divisible group G1 over R and an equivalence
f ˝ : G1˝ » G˝. Using Theorem 2.3.12, we can lift f ˝ to a morphism of p-divisible
groups f : G1 Ñ G. We first claim that f is a monomorphism of p-divisible groups. To
prove this, we can replace R by its residue field at any closed point of | SpecpRq|, and
thereby reduce to the case where R is a field of characteristic p and G1 is connected
(see Remark 2.4.7). We wish to show that for each object A P CAlg♥

R, the induced
map of abelian groups G1pAq Ñ GpAq is injective (see Corollary 2.4.2). This follows
by inspecting the commutative diagram of short exact sequences

0 //

��

G1˝pAq //

��

G1pAq //

��

G1pAredq

��

// 0

0 //G˝pAq //GpAq //GpAredq // 0,
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since the left vertical map is an isomorphism of abelian groups and G1pAredq vanishes
(Definition 2.3.5).

Since f is a monomorphism, we can apply Proposition 2.4.8 to construct a short
exact sequence of p-divisible groups

0 Ñ G1 f
ÝÑ G Ñ G2

Ñ 0.

To complete the proof, it will suffice to show that this is a connected-étale sequence:
that is, that the p-divisible group G2 is étale. Passing to identity components, we
obtain a fiber sequence

G1˝ f˝
ÝÑ G˝

Ñ G2˝,

so that ΩG2 can be identified with the fiber of the map f ˝ : G1˝ Ñ G˝. Since f ˝ is an
equivalence, it follows that the functor ΩG2˝ : CAlgcn

τě0R Ñ Modcn
Z vanishes, so that

G2˝ itself vanishes (Lemma 2.5.18). Invoking Proposition 2.5.8, we conclude that G2

is étale, as desired.

Corollary 2.5.19. Let R be a complete adic E8-ring. Assume that p is topologically
nilpotent in π0pRq and let I Ď π0pRq be a finitely generated ideal of definition. Then a
p-divisible group G over R admits a connected-étale sequence if and only if Gπ0pRq{I

admit a connected-étale sequence in the category of p-divisible groups over the ordinary
commutative ring π0pRq{I (endowed with the discrete topology).

Proof. Combine Proposition 2.5.17 with Theorem 2.3.26.

In some cases, the existence of a connected-étale sequence is automatic:

Proposition 2.5.20. Let R be an E8-ring for which the spectrum | SpecpRq| contains
a single point. Assume that p is nilpotent in π0pRq. Then every p-divisible group over
R admits a connected-étale sequence (with respect to the discrete topology on π0pRq).

Remark 2.5.21. In the situation of Proposition 2.5.20, the requirement that is p
nilpotent in π0pRq is a matter of convention: note that we have only defined the
notion of connected-étale sequence in the case where R is ppq-complete. If p were
not nilpotent in π0pRq, then the hypothesis that | SpecpRq| contains a single point
guarantees that p is invertible in π0pRq, so that every p-divisible group over R is étale.

Proof of Proposition 2.5.20. By virtue of Corollary 2.5.19, we can replace R by π0pRq

and thereby reduce to the case where R is discrete (though this reduction is not actually
needed in the argument). Let Abpfin denote the category of finite abelian p-groups
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and let CAlgff
R denote the category of finite flat R-algebras. By virtue of Proposition

AV.6.5.5 , we can identify p-divisible groups over R with functors F : Abpfin Ñ CAlgff
R

satisfying the following conditions:

piq The functor F preserves finite coproducts.

piiq For every monomorphism M 1 ÑM of finite abelian p-groups, the induced map
F pM 1q Ñ F pMq is faithfully flat.

piiiq For every short exact sequence 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 of finite abelian
p-groups, the induced map F pMq bF pM 1q RÑ F pM2q is an isomorphism.

Our assumption that | SpecpRq| has a single point guarantees that each of the topo-
logical spaces | SpecpF pMqq| is a finite set with the discrete topology. Moreover, each
| SpecpF pMqq| contains a distinguished point pM , given by the image of the map
| SpecpRq| “ | SpecpF p0qq| Ñ | SpecpF pMqq|. Let F 1pMq denote the localization of
F pMq at the prime ideal pM (which is a direct factor of F pMq, hence finite flat over
R). It is then easy to check that the construction M ÞÑ F 1pMq satisfies conditions piq,
piiq, and piiiq, and therefore determines a p-divisible group G1 over R. It follows from
the construction that G1 is connected and that the canonical map G1 ãÑ G induces
an isomorphism on identity components, so that G˝ is a p-divisible formal group; the
desired result now follows from Proposition 2.5.17.

Corollary 2.5.22. Let R be a complete local Noetherian E8-ring whose residue field
has characteristic p. Then every p-divisible group G over R admits a connected-
étale sequence (where we endow π0pRq with the m-adic topology, with m Ď π0pRq the
maximal ideal).

Proof. Combine Proposition 2.5.20 with Corollary 2.5.19.

Remark 2.5.23. In the situation of Corollary 2.5.22, we can weaken the assumption
that R is Noetherian: it suffices to assume that R is complete with respect to a finitely
generated ideal I Ď π0pRq for which the spectrum | Specpπ0pRq{Iq| consists of a single
point. This condition is satisfied in other cases of interest: for example, if R is a
complete valuation ring of rank 1.

Remark 2.5.24. Let G be a p-divisible group over a field κ of characteristic p. It
follows from Proposition 2.5.20 that G admits a connected-étale sequence

0 Ñ G1
Ñ G Ñ G2

Ñ 0.
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If the field κ is perfect, then this exact sequence admits a (unique) splitting. Identifying
G with a functor F : Abpfin Ñ CAlgff

R as in the proof of Proposition 2.5.20, one can
argue that the functor M ÞÑ F pMqred defines a p-divisible subgroup Gred Ď G which
maps isomorphically to G2.

3 Deformations of p-Divisible Groups
Let pG0 be a formal group defined over a field κ. Suppose we are given a complete

local Noetherian ring A and a ring homomorphism ρA : A Ñ κ which induces an
isomorphism A{mA » κ ( where mA denotes the maximal ideal of A). A deformation
of pG0 along ρA is a pair ppG, αq, where pG is a formal group over A and α is an
isomorphism of formal groups pG0 » pGκ (here pGκ denotes the formal group obtained
from pG by extension of scalars along ρA). The collection of such deformations can be
organized into a category Def

pG0
pA, ρAq, which depends functorially on A. Under some

mild assumptions, Lubin and Tate showed that there exists a universal deformation of
pG0 in the following sense:

Theorem 3.0.1 (Lubin-Tate). Let κ be a perfect field of characteristic p ą 0 and let
pG0 be a 1-dimensional formal group of height n ă 8. Then there exists a complete
local Noetherian ring RLT, a ring homomorphism ρLT : RLT Ñ κ which induces an
isomorphism RLT{mRLT » κ, and a deformation ppG, αq of pG0 along ρLT with the
following universal property: if A is any complete local ring equipped with a map
ρA : A Ñ κ inducing an isomorphism A{mA » κ, extension of scalars induces an
equivalence

Hom{κpRLT, Aq » Def
pG0
pA, ρAq;

here Hom{κpRLT, Aq denotes the set of ring homomorphisms f : RLT Ñ A satisfying
ρLT “ ρA ˝ f (which we regard as a category with only identity morphisms).

Remark 3.0.2. In the situation of Theorem 3.0.1, the category Def
pG0
pA, ρAq is always

discrete: that is, given two deformations of pG0 over A, there is at most one morphism
between them (which is then automatically an isomorphism). This is not obvious
from the definitions (and need not be true if pG0 has infinite height); instead, it can
be regarded as part of the content of Theorem 3.0.1.

Our goal in this section is to prove a version of Theorem 3.0.1 which is more
general in three respects:
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paq We replace the formal group pG0 by an arbitrary p-divisible group G0, which is not
required to be either connected or 1-dimensional (though only the 1-dimensional
case is relevant to our applications).

pbq We relax the assumption that κ is a (perfect) field: instead, we begin with an
arbitrary Noetherian Fp-algebra R0 for which the Frobenius morphism ϕR0 :
R0 Ñ R0 is finite, and an arbitrary p-divisible group G0 over R0 which is
nonstationary (see Definition 3.0.8; this condition is automatic in the case where
R0 is a perfect field, and is satisfied in many other cases as well).

pcq We consider a more general class of deformations of G0, which are defined over
(connective) E8-rings rather than over ordinary commutative rings.

Before stating our main result, we need to introduce some notation.

Definition 3.0.3. Let G0 be a p-divisible group over a commutative ring R0. Let A
be a connective E8-ring equipped with a map ρA : A Ñ R0. A deformation of G0

along ρA is a pair pG, αq, where G is a p-divisible group over A and α : G0 » GR0 is an
equivalence of p-divisible groups over R0. The collection of all such deformations can
be organized into an 8-category DefG0pA, ρAq, given by the homotopy fiber product
BTp

pAq ˆBTppR0q tG0u.

Warning 3.0.4. Through Definition 3.0.3 makes sense for an arbitrary morphism
ρA : A Ñ R0, we will only be interested in the case where ρA induces a surjection
εA : π0pAq Ñ R0, the kernel kerpεAq is finitely generated, and A is complete with
respect to kerpεAq.

Example 3.0.5. Let G0 be connected p-divisible group defined over a field κ of
characteristic p and let pG0 “ G˝

0 denote the identity component of G0. Suppose that
A is a complete local Noetherian ring equipped with a map ρA : AÑ κ inducing an
isomorphism A{mA » κ. Then the 8-category DefG0pA, ρAq of Definition 3.0.3 can
be identified with the groupoid Def

pG0
pA, ρAq appearing in the statement of Theorem

3.0.1. To prove this, it will suffice (by virtue of Theorem 2.3.12) to show that every
deformation of pG0 over A arises as the identity component of a deformation of G0,
which is a special case of Theorem 2.3.26.

Example 3.0.6 (First Order Deformation). Let G0 be a p-divisible group defined
over a field κ. A first order deformation of G0 is a deformation of G0 along the
projection map κrεs{pε2q Ñ κ: that is, a p-divisible group G over κrεs{pε2q equipped
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with an isomorphism α : G0 » Gκ. We will say that the first-order deformation pG, αq

is trivial if α can be lifted to an isomorphism of p-divisible groups pG0qκrεs{pε2q » G;
otherwise, we say that pG, αq is nontrivial.

Construction 3.0.7. Let G be a p-divisible group defined over a commutative ring R.
Suppose that we are given a point x P | SpecpRq| and a derivation d : RÑ κpxq, where
κpxq denotes the residue field of R at x. Then the canonical map β0 : RÑ κpxq lifts
to a ring homomorphism β : RÑ κpxqrεs{pε2q, given by the formula βptq “ β0ptq` εdt.
Let Gd denote the p-divisible group over κpxqrεs{pε2q obtained from G by extending
scalars along β. Then Gd is a first-order deformation of the p-divisible group Gκpxq.
If d “ 0, then Gd is a trivial first order deformation of Gκpxq.

Definition 3.0.8. Let R be a commutative ring and let G be a p-divisible group over
R. We will say that G is nonstationary if it satisfies the following condition:

p˚q For every point x P | SpecpRq| and every nonzero derivation d : RÑ κpxq, the
p-divisible group Gd of Construction 3.0.7 is a nontrivial first order deformation
of Gκpxq.

Remark 3.0.9. Let R be a commutative ring and let G be a p-divisible group over
R. Then we can think of G as encoding a family of p-divisible groups parametrized by
the affine scheme SpecpRq. The condition that G is nonstationary can be understood
heuristically as the requirement that this family is nonconstant along every tangent
vector in SpecpRq. Put another way, it can be understood as the requirement that G is
classified by an unramified morphism from SpecpRq to the moduli stack of p-divisible
groups (see Remark 3.4.4 for a more precise formulation of this heuristic).

Example 3.0.10. Let R be a commutative Fp-algebra. Suppose that R is semiperfect:
that is, the Frobenius map ϕR : RÑ R is surjective. Then, for every R-module M ,
every derivation d : RÑM is zero (since d satisfies dpxpq “ pxp´1dx “ 0). It follows
that condition p˚q of Definition 3.0.8 is vacuous: that is, every p-divisible group G
over R is nonstationary.

We can now state our main result:

Theorem 3.0.11. Let R0 be a Noetherian Fp-algebra which is F -finite (that is, the
Frobenius morphism ϕ : R0 Ñ R0 is finite) and let G0 be a nonstationary p-divisible
group over R0. Then there exists a morphism of connective E8-rings ρ : Run

G0 Ñ R0

and a deformation G of G0 along ρ with the following properties:
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paq The E8-ring Run
G0 is Noetherian, the morphism ρ induces a surjection of com-

mutative rings ε : π0pR
un
G0q Ñ R0, and Run

G0 is complete with respect to the ideal
kerpεq.

pbq Let A be any Noetherian E8-ring equipped with a map ρA : AÑ R0 for which the
underlying ring homomorphism εA : π0pAq Ñ R0 is surjective and A is complete
with respect to kerpεAq. Then extension of scalars induces an equivalence of
8-categories MapCAlg{R0

pRun
G0 , Aq Ñ DefG0pA, ρAq.

In the situation of Theorem 3.0.11, we will refer to Run
G0 as the spectral deformation

ring of the p-divisible group G0, and to the p-divisible group G P BTp
pRun

G0q as the
universal deformation of G0. It is clear that the pair pRun

G0 ,Gq is uniquely determined
(up to equivalence) by the pair pR0,G0q, provided that it exists: the content of
Theorem 3.0.11 is that a universal deformation always exists when R0 is F -finite
and G0 is nonstationary (these assumptions are more or less necessary, at least for a
slightly stronger version of Theorem 3.0.11: see Remarks 3.1.16 and 3.4.5).

Remark 3.0.12. The notation of Theorem 3.0.11 is intended to emphasize that
the spectral deformation ring Run

G0 classifies unoriented deformations of G0 (that is,
deformations as a p-divisible group, without any additional structure). In §6 we will
introduce a variant Ror

G0 which classifies oriented deformations of G0.

Note that Theorem 3.0.11 has the following concrete consequence:

Corollary 3.0.13. Let R0 be an F -finite Noetherian Fp-algebra and let G0 be a
nonstationary p-divisible group over R0. Then there exists a map of commutative rings
ρ : Rcl

G0 Ñ R0 and a deformation G of G0 along ρ with the following properties:

paq The E8-ring Rcl
G0 is Noetherian, the morphism ρ is surjective, and Rcl

G0 is
complete with respect to the kernel ideal kerpρq.

pbq Let A be any Noetherian ring equipped with a surjective ring homomorphism
ρA : AÑ R0 such that A is complete with respect to kerpρAq. Then extension of
scalars induces an equivalence of categories MapCAlg{R0

pRcl
G0 , Aq Ñ DefG0pA, ρAq.

Proof. Let Run
G0 be as in Theorem 3.0.11, and set Rcl

G0 “ π0pR
un
G0q.

In the situation of Corollary 3.0.13, we will refer to Rcl
G0 as the classical deformation

ring of the p-divisible group G0.
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Remark 3.0.14. In the special case where R0 is a perfect field and the p-divisible
group G0 is 1-dimensional, Corollary 3.0.13 reduces to Theorem 3.0.1 (see Example
3.0.5). In particular, the classical deformation ring Rcl

G0 for the p-divisible group G0

can be identified with the Lubin-Tate ring RLT for the identity component G˝
0.

Warning 3.0.15. Corollary 3.0.13 is an immediate consequence of Theorem 3.0.11,
but the reverse implication is not a priori obvious. The spectral deformation ring Run

G0

generally contains more information than the classical deformation ring Rcl
G0 , because

the higher homotopy groups of Run
G0 do not vanish. For example, in the case where

R0 “ Fp and G0 “ µp8 , the spectral deformation ring Run
G0 can be identified with the

ppq-completed sphere spectrum (Corollary 3.1.19).

Most of this section is devoted to the proof of Theorem 3.0.11. Let us begin with an
outline of our strategy. We first note that the spectral deformation ring is an example
of a complete adic E8-ring: that is, the underlying commutative ring Rcl

G0 “ π0pR
un
G0q

is equipped with a topology having a finitely generated ideal of definition I (given
by the kernel of the map Rcl

G0 Ñ R0), and the E8-ring Run
G0 is I-complete. In §3.1 we

will formulate a stronger version of Theorem 3.0.11, which characterizes Run
G0 among

all complete adic E8-rings A (which we do not require to be Noetherian or equipped
with a reference map ρA : A Ñ R0): see Theorem 3.1.15. Roughly speaking, this
characterization asserts that the formal spectrum SpfpRun

G0q can be realized as the
formal completion of the moduli stack of p-divisible groups MBT along the map
f : SpecpR0q Ñ MBT classifying the p-divisible group G0 (though this heuristic
should be handled with care; see Warning 3.1.9). Using a general representability
theorem, we reduce the question of existence for of the spectral deformation ring Run

G0

to a statement about the relative cotangent complex LSpecpR0q{MBT : namely, that it is
1-connective and almost perfect. The first condition is equivalent to our assumption
that G0 is nonstationary (Remark 3.4.4). We verify the second by studying the cofiber
sequence of R-modules

LMBT |SpecpR0q Ñ LSpecpR0q Ñ LSpecpR0q{MBT .

We prove in §3.2 that the restriction LMBT |SpecpR0q is automatically almost perfect
when R0 is an Fp-algebra (see Proposition 3.2.5). In §3.3, we show that LSpecpR0q “ LR0

is almost perfect under the assumption that R0 is F -finite (Proposition 3.3.1). In §3.4,
we combine these ingredients to prove Theorem 3.1.15 (and therefore also Theorem
3.0.11).
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3.1 Spectral Deformation Rings
Let R0 be a commutative ring and let G0 be a p-divisible group over R0. In

Definition 3.0.3, we introduced the 8-category DefG0pA, ρAq of deformations of G0

along a morphism of E8-rings ρA : AÑ R0. The 8-category DefG0pA, ρAq depends
functorially on the pair pA, ρAq as an object of the overcategory CAlgcn

{R0 . Our goal in
this section is to introduce a variant of this construction, which does not require us to
fix the map ρA in advance.

Definition 3.1.1. Let R0 be a commutative ring and let A be an adic E8-ring.
Let G0 be a p-divisible group over R0 and let G be a p-divisible group over A. A
G0-tagging of G is a triple pI, µ, αq, where I Ď π0pAq is a finitely generated ideal of
definition, µ : R0 Ñ π0pAq{I is a ring homomorphism, and α : pG0qπ0pAq{I » Gπ0pAq{I

is an isomorphism of p-divisible groups over the commutative ring π0pAq{I.
We will say that a pair of G0-taggings pI, µ, αq and pI 1, µ1, α1q are equivalent if

there exists a finitely generated ideal of definition J Ď π0pAq containing both I and I 1
for which the diagram of ring homomorphisms

R0
µ //

µ1

��

π0pAq{I

��
π0pAq{I

1 // π0pAq{J

commutes, and the isomorphisms α and α1 agree when restricted to pG0qπ0pAq{J .

Example 3.1.2. Let R0 be a commutative ring and let G0 be a p-divisible group
over R0. Then G0 is equipped with a tautological G0-tagging, given by the triple
pp0q, idR0 , idG0q. Here we regard R0 as an adic commutative ring by endowing it with
the discrete topology.

Remark 3.1.3. In the situation of Definition 3.1.1, let I Ď π0pAq be a finitely
generated ideal of definition. Then giving a G0-tagging of G is equivalent to giving
a G0-tagging of the p-divisible group Gπ0pAq{I . Here we regard π0pAq{I as an adic
commutative ring by equipping it with the discrete topology.

Definition 3.1.4. Let G0 be a p-divisible group defined over a commutative ring R0

and let A be an adic E8-ring. A deformation of G0 over A consists of a p-divisible
group G over A together with an equivalence class of G0-taggings of G. The collection
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of deformations of G0 over A can be organized into an 8-category DefG0pAq. More
precisely, we let DefG0pAq denote the filtered colimit

lim
ÝÑ
I

BTp
pAq ˆBTppπ0pAq{Iq HompR0, π0pAq{Iq,

where I ranges over all finitely generated ideals of definition I Ď π0pAq. Here
HompR0, π0pAq{Iq denotes the set of ring homomorphisms from R0 to π0pAq{I.

Remark 3.1.5 (Functoriality). Let G0 be a p-divisible group defined over a commu-
tative ring R0 and let f : AÑ A1 be a morphism of adic E8-rings. Then extension of
scalars along f determines a functor DefG0pAq Ñ DefG0pA

1q.

Remark 3.1.6 (Relationship with DefG0pA, ρq). Let G0 be a p-divisible group defined
over a commutative ring R0 and let ρ : AÑ R0 be a morphism of connective E8-rings.
Assume that ρ induces a surjection of commutative rings ε : π0pAq Ñ R0 and that
the kernel ideal kerpεq is finitely generated. Let us regard A as an adic E8-ring by
endowing π0pAq with the kerpεq-adic topology. For any p-divisible group G over A,
the datum of a G0-tagging of G is equivalent to the datum of a G0-tagging of the
p-divisible group GR0 obtained by extending scalars along ρ (see Remark 3.1.3). It
follows that we have a homotopy fiber sequence

DefG0pA, ρq Ñ DefG0pAq
ρ
ÝÑ DefG0pR0q,

where the fiber is taken over the p-divisible group G0 P DefG0pR0q (equipped with the
G0-tagging of Example 3.1.2).

Remark 3.1.7. In the situation of Definition 3.1.4, suppose that A is an adic E8-ring
which admits a largest finitely generated ideal of definition I Ď π0pAq (this condition
is automatically satisfied if the commutative ring π0pAq is Noetherian). Then we can
identify DefG0pAq with the fiber product

BTp
pAq ˆBTppπ0pAq{Iq HompR, π0pAq{Iq.

More informally, a deformation of G0 over A consists of a p-divisible group G over
A, a ring homomorphism µ : RÑ π0pAq{I, and an isomorphism of p-divisible groups
pG0qπ0pAq{I » Gπ0pAq{I .

Remark 3.1.8. In the situation of Definition 3.1.4, let J Ď R0 be a finitely generated
nilpotent ideal, and let G1 “ pG0qR0{J be the p-divisible group over R0{J obtained
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from G0 by extension of scalars. Then, for any adic E8-ring A and any p-divisible
group G P BTp

pAq, the set of equivalence classes of G0-taggings of G can be identified
with the set of equivalence classes of G1-taggings of G. It follows that we have
canonical equivalences DefG0pAq » DefG1pAq, depending functorially on A.

It follows that, if the ring R0 is Noetherian, then there is no harm in replacing R0

by its reduction Rred
0 : this does not change the deformation functor A ÞÑ DefG0pAq.

Warning 3.1.9. In the situation of Definition 3.1.4, let A be a commutative ring
endowed with the discrete topology. Then the space DefG0pAq is given by the direct
limit

lim
ÝÑ
I

BTp
pAq ˆBTppA{Iq HompR0, A{Iq,

where I ranges over all finitely generated nilpotent ideals of A. In particular, we have
a canonical map

DefG0pAq Ñ BTp
pAq ˆBTppAredq HompR0, A

red
q,

which is an equivalence if the nilradical of A is finitely generated (for example, if
A is Noetherian). However, it is not an equivalence in general. For example, let
R0 “ κ be a perfect field of characteristic p and set A “ κrx1{p8s{px ´ 1q. Then
px1{p, x1{p2

, . . .q is a compatible system of ppnqth roots of unity in A, which we can
regard as a morphism of p-divisible groups γ : Qp {Zp Ñ µp8 . Set G “ Qp {Zp‘ µp8 ,

regarded as a p-divisible group over A. Then the matrix
ˆ

id γ

0 id

˙

determines an

automorphism of G which reduces to the identity after extending scalars to Ared » κ,
but not after extending scalars to A{I for any finitely generated nilpotent ideal I Ď A.

Recall that an adic E8-ring A is complete if it is I-complete, where I Ď π0pAq is
any finitely generated ideal of definition for the topology on π0pAq (this condition
does not depend on the choice of I). We let CAlgad

cpl denote the full subcategory of
CAlgad spanned by the complete adic E8-rings.

Lemma 3.1.10. Let R0 be a commutative ring and let G0 be a p-divisible group over
R0. For every complete adic E8-ring A, the 8-category DefG0pAq is a Kan complex.

Proof. Without loss of generality we may assume that A is connective. Let f : G Ñ G1

be a morphism of G0-tagged p-divisible groups over A; we wish to show that f is an
equivalence. For this, it will suffice to show that the induced map f rps : Grps Ñ G1rps

is an equivalence of finite flat group schemes over A. Note that f rps is an equivalence
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over some open subset U Ď | SpecpAq| which includes the vanishing locus of an ideal
of definition I Ď π0pAq. Since A is I-complete, it follows that U “ | SpecpAq|, so that
f is an equivalence as desired.

Definition 3.1.11 (Universal Deformations). Let R0 be a commutative ring and let
G0 be a p-divisible group over R0. Let G be a deformation of R0 over a complete
adic E8-ring R, in the sense of Definition 3.1.4. We will say that G is a universal
deformation if, for every complete adic E8-ring A, extension of scalars induces a
homotopy equivalence

MapCAlgad
cpl
pR,Aq Ñ DefG0pAq.

Note that, if G0 admits a universal deformation, then the pair pR,Gq is uniquely
determined up to equivalence. In this case, we will denote R by Run

G0 and refer to it as
the spectral deformation ring of G.

Remark 3.1.12. Let R0 be a commutative ring and let G0 be a p-divisible group
over R0. Assume that G0 admits a universal deformation G (in the sense of Definition
3.1.11). Note that we can regard G0 as a deformation of itself over R0 (where we
endow R0 with the discrete topology); see Example 3.1.2. This deformation is then
classified by a map ρ : Run

G0 Ñ R0. We can then regard G as a deformation of G0

along ρ, in the sense of Definition 3.0.3.

Remark 3.1.13. Let R0 be a commutative ring, let G0 be a p-divisible group over
R0, and let G_

0 denote its Cartier dual. Then Cartier duality induce an equivalence
of deformation functors DefG0 » DefG_

0
. It follows that G0 admits a universal

deformation if and only if G_
0 admits a universal deformation; if either exists, then the

spectral deformation rings Run
G0 and Run

G_
0

are canonically equivalent to one another.

Beware that we have now introduced two a priori different notions of universal
deformation: one via the universal property of Theorem 3.0.11, and one via the
universal property of Definition 3.1.11. However, we will see in a moment that they
agree (provided that the hypotheses of Theorem 3.0.11 are satisfied).

Remark 3.1.14. Let R0 be a Noetherian ring, let G0 be a p-divisible group over
R0, and suppose that G0 admits a universal deformation pRun

G0 ,Gq in the sense of
Definition 3.1.11. Suppose further that we are given a map of Noetherian E8-rings
ρA : AÑ R0 which induces a surjection of commutative rings ε : π0pAq Ñ R0. Let us
regard A as an adic E8-ring by endowing π0pAq with the kerpεq-adic topology. We
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then have a commutative diagram σ :

MapCAlgadpRun
G0 , Aq

ρA˝ //

��

MapCAlgadpRun
G0 , R0q

��
DefG0pAq // DefG0pR0q.

Let ρ : Run
G0 Ñ R0 be the map of Remark 3.1.12. Note that any morphism of E8-rings

u : Run
G0 Ñ A which fits into a commutative diagram

Run
G0

ρ

!!

u // A
ρA

��
R0

is automatically a morphism of adic E8-rings (since ρ annihilates an ideal of definition
for π0pR

un
G0q). Passing to homotopy fibers in the horizontal direction (and using

Remark 3.1.6), we see that σ determines a comparison

θ : MapCAlgad
{R0
pRun

G0 , Aq Ñ DefG0pA, ρq.

If A is complete with respect to the ideal kerpεq, then the vertical maps in the diagram
σ are homotopy equivalences, so that θ is also a homotopy equivalence. It follows that
G automatically satisfies condition pbq of Theorem 3.0.11.

We are now ready to formulate a refinement of Theorem 3.0.11:

Theorem 3.1.15. Let R0 be an F -finite Noetherian Fp-algebra and let G0 be a
nonstationary p-divisible group over R0. Then:

p1q The p-divisible group G0 admits a universal deformation (in the sense of Defini-
tion 3.1.11): that is, the functor DefG0 : CAlgad

cpl Ñ S is corepresentable by a
complete adic E8-ring Run

G0.

p2q The spectral deformation ring Run
G0 is connective and Noetherian.

p3q The canonical map ρ : Run
G0 Ñ R0 (see Remark 3.1.12) induces a surjective ring

homomorphism ε : π0pR
un
G0q Ñ R0.

p4q The kernel kerpεq is an ideal of definition for π0pR
un
G0q. In particular, the E8-ring

Run
G0 is complete with respect to kerpεq.
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We will prove Theorem 3.1.15 in §3.4.

Proof of Theorem 3.0.11 from Theorem 3.1.15. Let R0 be an F -finite Noetherian Fp-
algebra and let G0 be a nonstationary p-divisible group over R0. Applying Theorem
3.1.15, we deduce that G0 admits a universal deformation G P BTp

pRun
G q in the sense

of Definition 3.1.11. Applying Remark 3.1.12, we can regard G as a deformation of G0

along a map ρ : Run
G0 Ñ R0. We claim that this deformation satisfies the requirements

of Theorem 3.0.11: requirement paq follows from the statement of Theorem 3.1.15,
and requirement pbq from Remark 3.1.14.

Remark 3.1.16. Let R0 be a Noetherian Fp-algebra and let G0 be a p-divisible group
over R0. If conditions p1q through p4q of Theorem 3.1.15 are satisfied, then R0 must
be F -finite and G0 must be nonstationary; see Remark 3.4.5.

Warning 3.1.17. Let R0 be an F -finite Noetherian Fp-algebra and let G0 be a
p-divisible group over R0. If we do not assume that G0 is nonstationary, then it is
possible for G0 to admit a universal deformation (in the sense of Definition 3.1.11)
for which the map ρ : Run

G0 Ñ R0 is not surjective on π0 (in which case Run
G0 does not

satisfy the conclusions of Theorem 3.0.11). For example, suppose that R0 “ R1rεs{pε
2q

and that G0 is obtained by extension of scalars from a nonstationary p-divisible group
G1 over R1. In this case, the deformation functors DefG0 and DefG1 coincide (Remark
3.1.8). Applying Theorem 3.1.15 to the p-divisible group G1, we conclude that G0

admits a universal deformation G, classified by a map ρ : Run
G0 Ñ R0. However, the

map ρ factors through the subring R1 Ď R1rεs{pε
2q, and therefore fails to be surjective.

The deformation theory of étale p-divisible groups is essentially trivial:

Proposition 3.1.18. Let G0 be an étale p-divisible group over the finite field Fp.
Then:

paq The deformation functor DefG0 : CAlgad
cpl Ñ S is given by

DefG0pAq “

#

˚ if p is topologically nilpotent in π0pAq

H otherwise.

pbq The spectral deformation ring Run
G0 is equivalent to the ppq-completed sphere

spectrum S^ppq, regarded as an adic E8-ring with ideal of definition ppq Ď Zp »

π0pS
^
ppqq.

136



Proof. Let A be an adic E8-ring. By definition, the space DefG0pAq is given by the
fiber product

plim
ÝÑ
I

HompFp, π0pAq{Iqq ˆlim
ÝÑI

BTppπ0pAq{Iq BTp
pAq,

where I ranges over the collection of all finitely generated ideals of definition for
π0pAq. Note that the set HompFp, π0pAq{Iq has a unique element when I contains p
and is empty otherwise. It follows that the direct limit plim

ÝÑI
HompFp, π0pAq{Iqq is

contractible when there exists an ideal of definition containing p (that is, when p is
topologically nilpotent in π0pAq), and otherwise empty. In the former case, we can
rewrite DefG0pAq as the direct limit

lim
ÝÑ
I

BTp
pAq ˆBTppπ0pA{Iq tG0u,

where I ranges over the collection of finitely generated ideals of definition containing
p. Corollary 2.5.10 implies that each of the fiber products BTp

pAq ˆBTppπ0pA{Iq tG0u

is contractible, so that DefG0pAq is contractible. This proves paq; assertion pbq is an
immediate consequence.

Corollary 3.1.19. Let G0 denote µp8, regarded as a p-divisible group over Fp. Then
the spectral deformation ring Run

G0 is equivalent to the p-completed sphere spectrum
S^ppq.

Proof. Combine Remark 3.1.13 with Proposition 3.1.18.

3.2 The Moduli Stack of p-Divisible Groups
Let p be a prime number, which we regard as fixed throughout this section.

Definition 3.2.1. Let R be a connective E8-ring and let BTp
pRq denote the 8-

category of p-divisible groups over R. We let MBTpRq denote the underlying Kan
complex BTp

pRq» (that is, the subcategory of BTp
pRq whose morphisms are equiva-

lences of p-divisible groups). The construction R ÞÑMBTpRq determines a functor
MBT : CAlgcn

Ñ S. We will refer to MBT as the moduli stack of p-divisible groups.

The following result summarizes some of the formal properties of the moduli stack
MBT:
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Proposition 3.2.2. p1q The functor MBT is cohesive. That is, for every pullback
diagram of connective E8-rings

A //

��

A0

��
A1 // A01

for which the underlying ring homomorphisms π0pA0q Ñ π0pA01q Ð π0pA1q are
surjective, the diagram of spaces

MBTpAq //

��

MBTpA0q

��
MBTpA1q //MBTpA01q

is a pullback square.

p2q The functor MBT is nilcomplete. That is, for every connective E8-ring A, the
canonical map MBTpAq Ñ lim

ÐÝ
MBTpτďnAq is a homotopy equivalence.

p3q The functor MBT admits a p´1q-connective cotangent complex LMBT (see Defi-
nition SAG.17.2.4.2 ).

p4q Let A be a connective E8-ring, let I Ď π0pAq be a finitely generated ideal, and
write the formal spectrum SpfpAq as a filtered colimit lim

ÝÑ
SpecpAnq (see Lemma

SAG.8.1.2.2 ) for some tower of A-algebras tAnuně1. If A is I-complete, then
the canonical map MBTpAq Ñ lim

ÐÝ
MBTpAnq is a homotopy equivalence.

p5q The functorMBT satisfies descent for the fpqc topology (in particular, it satisfies
descent for the étale topology).

Remark 3.2.3. We can state assertion p4q of Proposition 3.2.2 more informally as
follows: if A is a connective E8-ring which is complete with respect to an ideal I,
then the datum of a p-divisible group over the spectrum SpecpAq is equivalent to the
datum of a p-divisible group over the formal spectrum SpfpAq.

Remark 3.2.4. It follows from assertion p4q of Proposition 3.2.2 that the functor
MBT is integrable, in the sense of Definition SAG.17.3.4.1 .
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Proof of Proposition 3.2.2. Assertions p1q and p2q follow from Proposition AV.7.1.4
and assertion p3q from Proposition AV.7.1.5 . We will prove p4q; the proof of p5q is
similar. For every E8-ring R, let Modff

R denote the full subcategory of ModR spanned
by the finite flat R-algebras and define CAlgff

R Ď CAlgR similarly. Let Abpfin denote the
category of finite abelian p-groups. By virtue of Proposition AV.6.5.5 , we can identify
MBTpRq with the full category of FunpAbpfin,CAlgff

Rq
» spanned by those functors F

satisfying the following conditions:

piq The functor F preserves finite coproducts.

piiq For every monomorphism M 1 ÑM of finite abelian p-groups, the induced map
F pM 1q Ñ F pMq is faithfully flat.

piiiq For every short exact sequence 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 of finite abelian
p-groups, the diagram

F pM 1q //

��

F pMq

��
F p0q // F pM2q

is a pushout square in CAlgff
R.

Let A be a connective E8-ring which is complete with respect to a finitely generated
ideal I Ď π0pAq, and let tAnu be as in assertion p4q. Using Theorem SAG.8.3.4.4 and
Proposition SAG.8.3.5.7 , we see that Modff

A can be identified with the limit lim
ÐÝ

Modff
An .

Passing to commutative algebra objects, we obtain an equivalence u : CAlgff
A »

lim
ÐÝ

CAlgff
An , hence also an equivalence FunpAbpfin,CAlgff

Aq » lim
ÐÝ

FunpAbpfin,CAlgff
An .

To complete the proof, it will suffice to show that a functor F : Abpfin Ñ CAlgff
A

satisfies conditions piq, piiq, and piiiq if and only if each of the composite maps
Abpfin

F
ÝÑ CAlgff

A Ñ CAlgff
An satisfies conditions piq, piiq, and piiiq. The “only if”

direction is clear. The converse is immediate for conditions piq and piiiq (since u
is an equivalence of 8-categories); for condition piiq, it follows from Proposition
SAG.8.3.5.7 .

Assertion p3q of Proposition 3.2.2 admits the following refinement:

Proposition 3.2.5. Let R be a connective E8-ring and let G be a p-divisible group
over R, corresponding to a point η PMBTpRq. If p is nilpotent in the commutative
ring π0pRq, then the R-module η˚LMBT is connective and almost perfect.
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Warning 3.2.6. If we do not assume that p is nilpotent in π0pRq, then the R-module
η˚LMBT is generally neither connective nor almost perfect.

Remark 3.2.7. Let R be a connective E8-ring. Assume that p is nilpotent in π0pRq

and that π0pRq is a Grothendieck ring. The product SpecpRq ˆMBT represents a
functor CAlgcn

R Ñ S, given by composing MBT with the forgetful functor CAlgcn
R Ñ

CAlgcn. It follows from Propositions 3.2.2 and 3.2.5 that this functor satisfies all
but one of the hypotheses of Artin’s representability theorem (in the form given
by Theorem SAG.18.3.0.1 ), which provide necessary and sufficient conditions for
SpecpRq ˆMBT to be representable by a spectral Deligne-Mumford stack which is
locally almost of finite presentation over R. However, Artin’s theorem does not apply
because SpecpRqˆMBT is not locally almost of finite presentation over R: the functor
MBT does not preserve filtered colimits when restricted to discrete R-algebras (see
Warning 3.1.9). Nevertheless, Proposition 3.2.5 guarantees that the relative cotangent
complex of the morphism SpecpRq ˆMBT

π
ÝÑ SpecpRq is almost perfect, so that π

behaves “infinitesimally” as if it were locally almost of finite presentation. The central
idea in the proof of Theorem 3.1.15 is that this infinitesimal finiteness property is
good enough to guarantee the representability of MBT in a formal neighborhood of
any sufficiently nice R-valued point.

The proof of Proposition 3.2.5 will require some auxiliary results.

Notation 3.2.8. Let R and Λ be connective E8-rings, and suppose we are given
functors X, Y : CAlgcn

R Ñ Modcn
Λ . For every object A P CAlgcn

R , we let XA and YA
denote the compositions of X and Y with the forgetful functor CAlgcn

A Ñ CAlgcn
R .

The construction A ÞÑ MapFunpCAlgcn
A ,Modcn

Λ q
pXA, YAq determines a functor CAlgcn

R Ñ
pS,

which is classified by a natural transformation MapΛpX, Y q Ñ SpecpRq of functors
from CAlgcn to pS. Here pS denotes the 8-category of spaces which are not necessarily
small.

Lemma 3.2.9. Let R be a connective E8-ring and let X, Y : CAlgcn
R Ñ Spcn be

functors which are (representable by) finite flat group schemes over R. Then the
projection map u : Map

S
pX, Y q Ñ SpecpRq admits a cotangent complex which is

connective and almost perfect.

Proof. The existence of LMap
S
pX,Y q{SpecpRq follows from Proposition AV.6.1.12 , and the

assertion that it is almost perfect follows from Remark AV.6.1.13 . We will complete
the proof by showing that LMap

S
pX,Y q{ SpecpRq is connective. Fix a connective E8-ring
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A and a point η P Map
S
pX, Y qpAq; we wish to show that M “ η˚LMap

S
pX,Y q{SpecpRq

is connective. Note that M is automatically almost connective (this is part of the
definition of a cotangent complex). We may therefore replace A by π0pAq and thereby
reduce to the case where A is discrete (Proposition SAG.2.7.3.2 ).

If M is not connective, then there exists some largest integer k such that π´kM ‰ 0.
Set N “ π´kM . Then the identity map from N to itself supplies a nonzero element of

πkpMapModRpM,Nqq » πkpfibpMap
S
pX, Y qpA‘Nqq Ñ Map

S
pX, Y qpAqq.

This is impossible, since the spaces Map
S
pX, Y qpAq and Map

S
pX, Y qpA‘Nq are both

discrete.

Lemma 3.2.10. Let Λ denote the commutative ring Z {N Z for some integer N ą 0,
and let S be the sphere spectrum. Then Λ is almost perfect when viewed as a module
over ΛbS Λ.

Proof. It follows from Proposition HA.7.2.4.31 that Λ is almost of finite presentation
when viewed as an E8-algebra over S. Consequently, the tensor product Λ bS Λ
is almost of finite presentation when viewed as an E8-algebra over Λ. Applying
Proposition HA.7.2.4.31 again, we deduce that ΛbS Λ is Noetherian. It follows that
a connective module M over ΛbS Λ is almost perfect if and only if each homotopy
group of M is finitely generated as a module over Λ (Proposition HA.7.2.4.17 ). In
particular, Λ is almost perfect as a module over ΛbS Λ.

Lemma 3.2.11. Let R be a connective E8-ring, let Λ “ Z {N Z for some N ą 0,
and let X, Y : CAlgcn

R Ñ Modcn
Λ be functors which are representable by finite flat group

schemes over R (that is, the functors Ω8X,Ω8Y : CAlgcn
R Ñ S are corepresentable

by finite flat R-algebras). Then the projection map MapΛpX, Y q Ñ SpecpRq admits a
cotangent complex LMapΛpX,Y q{SpecpRq which is connective and almost perfect.

Proof. For every connective bimodule M P ΛBModΛpSpcn
q, let ZM denote the func-

tor MapΛpM bΛ X, Y q. Let us say that a bimodule M is weakly good if the pro-
jection map ZM Ñ SpecpRq admits a connective cotangent complex LZM {SpecpRq,
and good if LZM {SpecpRq is almost perfect. It follows immediately from the defini-
tions that the construction M ÞÑ ZM carries colimits in ΛBModΛpSpcn

q to limits
in FunpCAlgcn,Sq{SpecpRq. Consequently, the collection of weakly good objects of
ΛBModΛpSpcn

q is closed under small colimits (Remark SAG.17.2.4.5 ). Note that the
functor ZΛbSΛ can be identified with Map

S
pX, Y q, so that Λ bS Λ is good (Lemma

3.2.9). Since ΛBModΛpSpcn
q is generated under small colimits by the object ΛbS Λ,
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we deduce that every bimodule M P ΛBModΛpSpcn
q is weakly good. We wish to show

that Λ is good. By virtue of Lemma 3.2.10 and Corollary SAG.17.4.2.2 , it will suffice
to prove the following:

p˚q If M P ΛBModΛpSpcn
q is almost perfect when viewed as a module over ΛbS Λ,

then the map ZM Ñ SpecpRq is locally almost of finite presentation.

To prove p˚q, let M be a connective almost perfect module over Λ bS Λ, and let
n ě 0. We wish to show that the functor A ÞÑ MapFunpCAlgcn

A ,Modcn
Λ q
pM bΛ XA, YAq

commutes with filtered colimits when restricted to τďn CAlgcn
R . Applying Corollary

SAG.2.7.2.2 , we can choose a cofiber sequence M 1 ÑM ÑM2 in ΛBModΛpSpq where
M 1 is pn ` 1q-connective and M2 is perfect. Let A P CAlgcn

R be n-truncated. Since
X is representable by a finite flat group scheme over R, the functor XA is a left Kan
extension of its restriction to the full subcategory E Ď CAlgcn

A spanned by the finite
flat A-algebras. Since Y is a finite flat group scheme over R, the functor YA takes
n-truncated values on E . It follows that the space

MapFunpCAlgcn
A ,Modcn

Λ q
pM 1

bΛ XA, YAq » MapFunpE,Modcn
Λ q
pM 1

bΛ XA|E , YA|Eq

is contractible. Using the evident pullback diagram

MapΛpM
2 bR X, Y q //

��

MapΛpM bR X, Y q

��
SpecpRq //MapΛpM

1 bR X, Y q,

we see that the projection map MapΛpM bR X, Y q Ñ MapΛpM
2 bR X, Y q is an

equivalence when restricted to τďn CAlgcn
R . We may therefore replace M by M2 and

thereby reduce to the case where M is perfect.
The assumption that M is perfect guarantees that there exists some integer k such

that M has Tor-amplitude ď k (when viewed as a module over ΛbS Λ). We proceed
by induction on k. Since M is connective and perfect, the homotopy group π0pMq is
finitely generated as a module over Λ. We can therefore choose free pΛbS Λq-module
P of finite rank and a morphism α : P ÑM which is surjective on π0. Set Q “ fibpαq,
so that we have a pullback diagram

ZM //

��

ZP

��
SpecpRq // ZQ.
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If k ą 0, then Q has Tor-amplitude ă k, and our inductive hypothesis guarantees that
the map ZQ Ñ SpecpRq is locally almost of finite presentation. If k “ 0, then M is a
projective Λ-module, so that α admits a right homotopy inverse which exhibits ZM as
a retract of ZP . In either case, we are reduced to showing that the map ZP Ñ SpecpRq
is locally almost of finite presentation. We may therefore replace M by P and thereby
reduce to the case where M is a free module of finite rank r over ΛbS Λ. Proceeding
by induction on r, we can further reduce to the case r “ 1: that is, to the case
M “ ΛbS Λ. In this case, we have ZM “ Map

S
pX, Y q and the desired result follows

from Remark AV.6.1.11 .

Lemma 3.2.12. Let R be a connective E8-ring which is ppq-nilpotent, and let G and
G1 be p-divisible groups over R. Then the projection map MapZpG,G1q Ñ SpecpRq
admits a cotangent complex which is 1-connective and almost perfect.

Proof. The existence of the cotangent complex LMapZpG,G1q{SpecpRq follows from Propo-
sition AV.7.1.5 . Fix a connective E8-ring A and a point η P MapZpG,G1qpAq,
corresponding to a map of E8-rings R Ñ A and a morphism of p-divisible groups
f : GA Ñ G1

A. We wish to show that the pullback M “ η˚LMapZpG,G1q{SpecpRq is
1-connective and almost perfect. By homogeneity, we may assume without loss of
generality that f “ 0.

Choose an integer k such that pk “ 0 in π0pRq, and form a fiber sequence

Grpks Ñ G pk
ÝÑ G.

Since G is a p-divisible group, this fiber is also a cofiber sequence of Modcn
Z -valued

sheaves with respect to the fppf topology. We therefore obtain a pullback diagram

MapZpG,G1q //

��

MapZpG,G1q

u

��
SpecpRq //MapZpGrp

ks,G1q,

whose bottom right corner can be identified with the functor

Z “ MapZ {pk ZpGrp
k
s,G1

rpksq.

It follows from Lemma 3.2.11 that the projection map Z Ñ SpecpRq admits a cotangent
complex which is connective and almost perfect. We therefore obtain a fiber sequence
of A-modules upηq˚LZ{SpecpRq ÑM

q
ÝÑM , where q is induced by the endomorphism
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of MapZpG,G1q given by multiplication by pk. It follows easily that q coincides with
the map given by multiplication pk on M , and is therefore nullhomotopic (since
pk vanishes in π0pAq). The preceding fiber sequence therefore supplies a splitting
upηq˚LZ{SpecpRq » M ‘ Σ´1M . In particular, we see that M appears as a direct
summand of upηq˚Σ1LZ{SpecpRq, and is therefore 1-connective and almost perfect.

Notation 3.2.13. Let R be a connective E8-ring and let G be a p-divisible group over
R. For any connective E8-ring R, we can identify A-valued points of MapZpG,Gq with
pairs pu, fq, where u : RÑ A is a map of E8-rings and f : XA Ñ XA is a morphism of
p-divisible groups over A. We let AutpGqpAq denote the summand of MapZpG,GqpAq
corresponding to those pairs pu, fq where f is an equivalence of p-divisible groups. We
regard the construction A ÞÑ AutpGqpAq as a functor AutpGq : CAlgcn

Ñ S.

Lemma 3.2.14. Let R be a connective E8-ring and let G be a p-divisible group over
R. Then the inclusion AutpGq ãÑ MapZpG,Gq is an open immersion of functors (see
Definition SAG.19.2.4.1 ).

Proof. Suppose we are given an R1-valued point of MapZpG,Gq, given by a morphism
of connective E8-rings RÑ R1 and a morphism of p-divisible groups f : GR1 Ñ GR1 .
We wish to show that U “ SpecpR1q ˆMapZpG,Gq AutpGq is an open subfunctor of
SpecpR1q. Without loss of generality, we may assume that R “ R1, so that f determines
a map from G to itself, which induces a map f0 : Grps Ñ Grps. The functor Ω8Grps is
representable by an E8-algebra H P CAlgcn

R which is finite flat over R, so f0 determines
an R-module map u : H Ñ H. We claim that U is the open subfunctor of SpecpRq
complementary to the support of the perfect R-module cofibpuq. To prove this, it
will suffice (by virtue of the compatibility of support with base change) to show that
f is an equivalence if and only if cofibpuq vanishes: that is, if and only if f0 is an
equivalence. The “only if” direction is obvious. For the converse, we observe that
if f0 is an equivalence, then it follows by induction that f induces an equivalence
Grpks Ñ Grpks for each k ě 0; passing to the direct limit over k, we conclude that f
is an equivalence.

Lemma 3.2.15. Let R be a connective E8-ring and let G be a p-divisible group
over R. If R is ppq-nilpotent, then the projection map AutpGq Ñ SpecpRq admits a
cotangent complex which is 1-connective and almost perfect.

Proof. Combine Lemmas 3.2.12 and 3.2.14.
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Proof of Proposition 3.2.5. Let R be a connective E8-ring which is ppq-nilpotent and
let η PMBTpRq, corresponding to a p-divisible group G over R. We wish to show
that the R-module η˚LMBT ; connective and almost perfect. Unwinding the definitions,
we have a pullback diagram of functors

AutpGq //

��

SpecpRq

��
SpecpRq pη,idq //MBTˆ SpecpRq.

Setting Z “MBTˆ SpecpRq and let δ : SpecpRq Ñ AutpGq denote the diagonal map
(classifying the identity automorphism of G). We then have natural equivalences

η˚LMBT » pη, idq˚LZ{SpecpRq

» Σ´1LSpecpRq{Z

» Σ´1δ˚LAutpGq{SpecpRq.

The desired result now follows from the observation that LAutpGq{SpecpRq is 1-connective
and almost perfect (Lemma 3.2.15).

3.3 The Cotangent Complex of an F -Finite Ring
Our primary goal in this section is to prove the following purely algebraic fact,

which will be needed in our proof of Theorem 3.1.15:

Proposition 3.3.1. Let R be an F -finite Noetherian Fp-algebra. Then the absolute
cotangent complex LR is almost perfect as an R-module.

Remark 3.3.2. We will prove a converse to Proposition 3.3.1 in §2.3.18 (see Theorem
3.5.1).

In the statement of Proposition 3.3.1, we use LR to denote the cotangent complex
of R in the setting of E8-rings (that is, the R-module spectrum whose homotopy
groups are the topological André-Quillen homology groups of R). Since R is an ordinary
commutative ring, we can also consider the algebraic cotangent complex of R: that
is, the R-module spectrum whose homotopy groups are the classical André-Quillen
homology groups of R. We will denote the latter by Lalg

R . The analogue of Proposition
3.3.1 for the algebraic cotangent complex is somewhat easier to prove. However, it
formally implies Proposition 3.3.1, by virtue of the following:
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Lemma 3.3.3. Let f : A Ñ B be a homomorphism of commutative rings. The
following conditions are equivalent:

paq The relative algebraic cotangent complex Lalg
B{A is almost perfect as a B-module.

pbq The relative topological cotangent complex LB{A is almost perfect as a B-module.

Proof. Let B` be the E1-ring of Remark SAG.25.3.3.4 , so that LB{A has the structure
of a left B`-module and we have an equivalence Lalg

B{A » B bB` LB{A (Remark
SAG.25.3.3.7 ). It follows from Proposition SAG.2.7.3.1 that paq is equivalent to the
following:

pa1q The relative topological cotangent complex LB{A is almost perfect as a left
B`-module.

To show that pa1q and pbq are equivalent, it will suffice to show that B` is almost perfect
when viewed as a left B-module. This follows from the equivalence B` » B bS Z of
Proposition SAG.25.3.4.2 , since Z is almost perfect when viewed as an S-module.

Proposition 3.3.4. Let R be a commutative ring. The following conditions are
equivalent:

p1q The algebraic cotangent complex Lalg
R » Lalg

R{Z is almost perfect as an R-module.

p2q The topological cotangent complex LR is almost perfect as an R-module.

p3q The relative topological cotangent complex LR{Z is almost perfect as an R-module.

Proof. The equivalence of p1q and p3q is a special case of Lemma 3.3.3. We will show
that p2q and p3q are equivalent. Using the fiber sequence R bZ LZ Ñ LR Ñ LR{Z,
we are reduced to showing that LZ “ LZ {S is almost perfect as a module over Z.
This is clear, since Z is almost of finite presentation as an E8-algebra over the sphere
spectrum (Proposition HA.7.2.4.31 ).

We now specialize to the study of Fp-algebras.

Notation 3.3.5. Let R be a commutative algebra over Fp. We let R1{p denote the
same commutative ring, regarded as an R-algebra via the Frobenius morphism

ϕR : RÑ R ϕRpxq “ xp.
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Lemma 3.3.6. Let f : AÑ B be a morphism of commutative Fp-algebras. Then the
canonical map ρ : B1{p bB L

alg
B{A Ñ Lalg

B1{p{A1{p is nullhomotopic.

Proof. Choose a simplicial A-algebra P‚, where each Pk is a polynomial algebra over
A (possibly on infinitely many generators) and B » |P‚|. Then ρ can be identified
with the geometric realization of a map of simplicial B1{p-modules

ρ‚ : B1{p
bP‚ L

alg
P‚{A

Ñ B1{p
b
P

1{p
‚
Lalg
P

1{p
‚ {A1{p .

Note that each ρn is a map of free B1{p-modules. It will therefore suffice to show that
each ρn is nullhomotopic. Observe that ρn is obtained by extension of scalars from the
map of Pn-modules ΩPn{A Ñ Ω

P
1{p
n {A1{p induced by the Frobenius map on Pn. This

map vanishes by virtue of the calculation dpxpq “ pxp´1dx “ 0 for x P Pn.

Proposition 3.3.7. Let R be a commutative Fp-algebra. The following conditions
are equivalent:

p1q The commutative ring R satisfies the equivalent conditions of Proposition 3.3.4.

p2q The relative algebraic cotangent complex Lalg
R{Fp is almost perfect as an R-module.

p3q The relative topological cotangent complex LR{Fp is almost perfect as an R-
module.

p4q The relative algebraic cotangent complex Lalg
R1{p{R

is almost perfect as an R1{p-
module.

p5q The relative topological cotangent complex LR1{p{R is almost perfect as an R1{p-
module.

Proof. Note that Lalg
Fp » ΣpFpq is a perfect Fp-module. so that R bFp L

alg
Fp » ΣpRq

is perfect as an R-module. Using the fiber sequence R bFp L
alg
Fp Ñ Lalg

R Ñ Lalg
R{Fp , we

deduce that p1q ô p2q. The equivalences p2q ô p3q and p4q ô p5q follow from Lemma
3.3.3. We have a fiber sequence

R1{p
bR L

alg
R{Fp

α
ÝÑ Lalg

R1{p{Fp Ñ Lalg
R1{p{R

where α is nullhomotopic (Lemma 3.3.6), and therefore a splitting of R1{p-modules

Lalg
R1{p{R

» Lalg
R1{p{Fp ‘ ΣpR1{p

bR L
alg
R{Fpq

which shows that p2q and p4q are equivalent (note that Lalg
R{Fp is almost perfect as an

R-module if and only if Lalg
R1{p{Fp is almost perfect as an R1{p-module).
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Corollary 3.3.8. Let R be a commutative Fp-algebra. Suppose that the Frobenius
map ϕR exhibits R1{p as an almost perfect R-module. Then LR and Lalg

R are almost
perfect as R-modules.

Proof. If R1{p is almost perfect as an R-module, then it is almost of finite presentation
as an E8-algebra over R (Corollary SAG.5.2.2.2 ). It follows that LR1{p{R is almost
perfect as an R1{p-module, so that the desired result follows from Proposition 3.3.7.

Proof of Proposition 3.3.1. Since R is Noetherian, the assumption that R is F -finite
guarantees that R1{p is almost perfect as an R-module (Proposition HA.7.2.4.17 ).
Invoking Corollary 3.3.8, we conclude that LR and Lalg

R are almost perfect.

We close this section by establishing a useful closure property for F -finite rings:

Proposition 3.3.9. Let R be a Noetherian Fp-algebra which is complete with respect
to an ideal I Ď R. If R{I is F -finite, then R is F -finite.

Proof. Since R is Noetherian, we can choose a finite collection of elements x1, . . . , xn
which generate the ideal I. Let J denote the ideal pxp1, . . . , xpnq, so that we have
Ip

n
Ď J Ď I. It follows that R{J admits a finite filtration whose successive quotients

pIa ` Jq{pIa`1 ` Jq are finitely generated as modules over R{I. Our assumption that
R{I is F -finite guarantees that pR{Iq1{p is finitely generated as an R-module, so that
pR{Jq1{p is also finitely generated as an R-module. We can therefore choose elements
y1, . . . , ym P R with the following property:

p˚q For every element t P R, there exists coefficients c1,1, . . . , c1,m P R such that

t ” cp1,1y1 ` ¨ ¨ ¨ ` c
p
1,mym pmod Jq.

Applying p˚q repeatedly, we can choose elements ci,1, . . . , ci,m P R for each i ą 1
satisfying

t ” cpi,1y1 ` ¨ ¨ ¨ ` c
p
i,mym pmod J iq ci`1,j ” ci,j pmod I iq

Since R is I-complete, the sequences tci,juiě1 converge for each 1 ď j ď m to an
element ci P R, and these elements satisfy t “ cp1y1 ` ¨ ¨ ¨ ` c

p
mym. It follows that the

elements y1, . . . , ym generate R1{p as an R-module, so that R is F -finite.
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3.4 The Proof of Theorem 3.1.15
We will deduce Theorem 3.1.15 from the following more general statement:

Theorem 3.4.1. Let R0 be a commutative ring and let G0 be a p-divisible group over
R0. Assume that p is nilpotent in R0, that G0 is nonstationary, and that the absolute
cotangent complex LR0 is almost perfect as a module over R0. Then:

p1q The p-divisible group G0 admits a universal deformation (in the sense of Defini-
tion 3.1.11): that is, the functor DefG0 : CAlgad

cpl Ñ S is corepresentable by a
complete adic E8-ring Run

G0.

p2q The spectral deformation ring Run
G0 is connective.

p3q The canonical map ρ : Run
G0 Ñ R0 (see Remark 3.1.12) induces a surjective ring

homomorphism ε : π0pR
un
G0q Ñ R0.

p4q The map ρ exhibits R0 as an almost perfect module over Run
G0. In particular, the

kernel ideal kerpεq is finitely generated.

p5q The kernel kerpεq is an ideal of definition for π0pR
un
G0q. In particular, the E8-ring

Run
G0 is complete with respect to kerpεq.

p6q If R0 is Noetherian, then Run
G0 is also Noetherian.

Proof of Theorem 3.1.15. Combine Theorems 3.4.1 and 3.3.1.

Remark 3.4.2. In the case where R0 is Noetherian, Theorem 3.4.1 is not really any
more general than Theorem 3.1.15. Since p is nilpotent in R0, there is no harm in
replacing R0 by the quotient R0{pR0 (see Remark 3.1.8), in which case the assumption
that LR0 is almost perfect is equivalent to the requirement that R0 is F -finite (Theorem
3.5.1). Nevertheless, Theorem 3.4.1 can be regarded as an improvement of Theorem
3.1.15 because it can also be applied to non-Noetherian rings. For example, if G0 is
any p-divisible group defined over a perfect Fp-algebra R0, then G0 is automatically
nonstationary (Example 3.0.10) and the cotangent complex LR0 is almost perfect
(Corollary 3.3.8), so Theorem 3.4.1 guarantees the existence of a universal deformation
of G0.

We now turn to the proof of Theorem 3.4.1. In what follows, we will assume
that the reader is familiar with the notion of the relative de Rham space pX{Y qdR

associated to a natural transformation between functors X, Y : CAlgcn
Ñ S (see
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Definition SAG.18.2.1.1 ). We will also abuse notation by identifying the 8-category
CAlg of E8-rings with a full subcategory of the 8-category CAlgad

cpl of complete adic
E8-rings, via the construction which associates to each E8-ring A the discrete topology
on the underlying commutative ring π0pAq.

The following statement is almost an immediate consequence of the definitions:
Proposition 3.4.3. Let R0 be a commutative ring and let G0 be a p-divisible group
over R0, classified by a natural transformation of functors f : SpecpR0q Ñ MBT.
Assume that p is nilpotent in R0 and that the cotangent complex LR0 is almost perfect
as an R0-module. Then the functor DefG0 |CAlgcn can be identified with the relative de
Rham space pSpecpR0q{MBTqdR.
Proof. Set X “ pSpecpR0q{MBTqdR. By definition, X is a functor from the 8-
category CAlgcn of connective E8-rings to the 8-category S of spaces, given by the
formula

XpAq “ lim
ÝÑ

IPNilpAq
MBTpAq ˆMBTpπ0pAq{Iq HompR0, π0pAq{Iq,

where the colimit is taken over the collection NilpAq of all nilpotent ideals in the
commutative ring π0pAq. On the other hand, the space DefG0pAq is defined as the
colimit lim

ÝÑIPNil0pAq
MBTpAq ˆMBTpπ0pAq{Iq HompR0, π0pAq{Iq, where Nil0pAq Ď NilpAq

is the collection of all finitely generated nilpotent ideals of π0pAq (these are precisely
the finitely generated ideals of definition for the trivial topology on π0pAq). We
therefore have a canonical map θA : DefG0pAq Ñ XpAq, depending functorially on A.
We will complete the proof by showing that each θA is a homotopy equivalence.

Note that θA is a pullback of θπ0pAq; we may therefore replaceA by π0pAq and thereby
reduce to the case where A is discrete (which permits us to simplify our notation).
Define F : NilpAq Ñ S by the formula F pIq “ MBTpAq ˆMBTpA{Iq HompR0, A{Iq.
We will show that F is a left Kan extension of its restriction F |Nil0pAq. To prove
this, fix a nilpotent ideal I Ď A; we wish to show that the canonical map ρ :
lim
ÝÑJĎI,JPNil0pAq

F pJq Ñ F pIq is a homotopy equivalence. Unwinding the definitions,
we see that ρ fits into a pullback diagram

lim
ÝÑJĎI,JPNil0pAq

F pJq
ρ //

��

F pIq

��
lim
ÝÑJĎI,JPNil0pAq

HompR0, A{Jq
ρ1 // HompR0, A{Iq ˆXpA{Iq lim

ÝÑJĎI,JPNil0pAq
XpA{Jq.

It will therefore suffice to show that ρ1 is an equivalence. In fact, we claim that
the natural transformation SpecpR0q Ñ X is locally almost of finite presentation.
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By virtue of Proposition SAG.18.2.1.13 , it will suffice to show that f is nilcomplete,
infinitesimally cohesive, and admits an almost perfect cotangent complex. The first two
assertions follow from Proposition AV.7.1.4 , and the third follows from the existence
of a fiber sequence

LMBT |SpecpR0q Ñ LSpecpR0q Ñ LSpecpR0q{MBT ;

note that the first term is almost perfect by virtue of Proposition 3.2.5 and the middle
term is almost perfect by assumption.

Remark 3.4.4. Let R0 and G0 be as in the statement of Proposition 3.4.3. Using
the fiber sequence

LMBT |SpecpR0q Ñ LSpecpR0q Ñ LSpecpR0q{MBT

together with Proposition 3.2.5, we see that LSpecpR0q{MBT is connective and almost
perfect. Moreover, the following conditions are equivalent:

paq The relative cotangent complex LSpecpR0q{MBT is 1-connective.

pbq The canonical map β : LMBT |SpecpR0q Ñ LSpecpR0q is surjective on π0.

pcq For each residue field κ of R0, the induced map βκ : LMBT |Specpκq Ñ κbR0 LR0

is surjective on π0.

pdq For every residue field κ of R0 and every nonzero map γ : LR0 Ñ κ, the composite
map γ ˝ β is also nonzero.

peq For every residue field κ of R0 and every derivation d : R0 Ñ κ, classifying a
ring homomorphism R0 Ñ κrεs{pε2q, the p-divisible group pG0qd of Construction
3.0.7 is nontrivial as a first order deformation of pG0qκ.

pfq The p-divisible group G0 is nonstationary, in the sense of Definition 3.0.8.

The implications paq ô pbq ñ pcq ô pdq ô peq ô pfq are immediate, while the
implication pcq ñ pbq follows from Nakayama’s lemma (since π0LR0 is finitely generated
as a module over R0).

Proof of Theorem 3.4.1. Let R0 be a commutative ring in which p is nilpotent and let
G0 be p-divisible group over R0, classified by a natural transformation f : SpecpR0q Ñ
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MBT. Using Proposition 3.2.2, we see that the functor MBT is nilcomplete, infinites-
imally cohesive, and admits a cotangent complex. If the cotangent complex LR0 is
almost perfect and that G0 is nonstationary, then the relative cotangent complex
LSpecpR0q{MBT is 1-connective and almost perfect (Remark 3.4.4). By virtue of Proposi-
tion 3.4.3, we can identify the restriction DefG0 |CAlgcn : CAlgcn

Ñ S with the relative
de Rham space pSpecpR0q{MBTqdR. Applying Theorem SAG.18.2.3.1 , we deduce
that DefG0 |CAlgcn is (representable by) formal thickening of SpecpR0q. It follows
from Using Corollary SAG.18.2.3.3 and Proposition SAG.18.2.2.8 , we see that the
functor DefG0 |CAlgcn is corepresentable by an object R P CAlgad

cpl satisfying conditions
p2q through p5q (which is Noetherian if R0 is Noetherian, by virtue of Corollary
SAG.18.2.4.4 ). Let hR : CAlgad

cpl Ñ S denote the functor corepresented by R; we will
complete the proof by showing that the equivalence hR|CAlgcn » DefG0 |CAlgcn can be
lifted (in an essentially unique way) to an equivalence hR » DefG0 .

Let C Ď CAlgad
cpl denote the full subcategory spanned by those complete adic

E8-rings which are connective. To complete the proof, it will suffice to prove the
following:

piq The functors hR and DefG0 are left Kan extensions of the restrictions hR|C and
DefG0 |C, respectively.

piiq The functors hR|C and DefG0 |C are right Kan extensions of the restrictions
hR|CAlgcn and DefG0 |CAlgcn , respectively.

Claim piq is essentially tautological: it asserts that for any complete adic E8-ring A,
the canonical maps

Mapcont
CAlgpR, τě0Aq Ñ Mapcont

CAlgpR,Aq DefG0pτě0Aq Ñ DefG0pAq

are homotopy equivalences. The map on the left is a homotopy equivalence since R is
connective, and the map on the right is a homotopy equivalence because the extension
of scalars functor BTp

pτě0Aq Ñ BTp
pAq is an equivalence of 8-categories (Remark

AV.6.5.3 ). We now prove piiq. Fix a connective complete adic E8-ring A; we wish to
show that hR|C and DefG0 |C are right Kan extensions of hR|CAlgcn and DefG0 |CAlgcn

at A, respectively. Let I Ď π0pAq be a finitely generated ideal of definition. Invoking
Lemma SAG.8.1.2.2 , we can write A as the limit of a tower of square-zero extensions

¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1

with the following property: for each B P CAlgcn, the canonical map

lim
ÝÑ

MapCAlgpAn, Bq Ñ MapCAlgpA,Bq
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is a homotopy equivalence onto the summand of MapCAlgpA,Bq consisting of those
maps AÑ B which annihilate some power of I. Unwinding the definitions, we wish
to show that the canonical map

φ : Mapcont
CAlgpR,Aq Ñ lim

ÐÝ
Mapcont

CAlgpR,Anq ψ : DefG0pAq Ñ lim
ÐÝ

DefG0pAnq.

Note that a morphism of E8-algebras R Ñ A is continuous (with respect to the
topologies on π0pRq and π0pAq) if and only if the composite map R Ñ A Ñ A1 is
continuous (where we endow π0pA1q with the discrete topology), so that φ fits into a
pullback diagram

Mapcont
CAlgpR,Aq

φ //

��

lim
ÐÝ

Mapcont
CAlgpR,Anq

��
MapCAlgpR,Aq

φ1 // lim
ÐÝ

MapCAlgpR,Anq.

Our assumption that A is complete guarantees that φ1 is a homotopy equivalence, so
that φ is also a homotopy equivalence. Unwinding the definitions, we see that ψ fits
into a pullback diagram of 8-categories

DefG0pAq
ψ //

��

lim
ÐÝ

DefG0pAnq

��
MBTpAq

ψ1 // lim
ÐÝ
MBTpAnq.

Since ψ1 is a homotopy equivalence (Proposition 3.2.2), it follows that ψ is a homotopy
equivalence as desired.

Remark 3.4.5. Let R0 be a commutative ring in which p is nilpotent and let G0

be a p-divisible group over R0. Suppose that G0 admits a spectral deformation ring
R “ Run

G0 satisfying conditions p3q and p4q of Theorem 3.4.1 (note that condition p2q is
automatically satisfied as well). Then the relative de Rham space pSpecpR0q{MBTqdR

can be identified with the formal spectrum SpfpRq. Using Corollary SAG.18.2.1.11 ,
we deduce that the relative cotangent complex LSpecpR0q{MBT can be identified with
LR0{R, and is therefore 1-connective and almost perfect. Combining this observation
with Proposition 3.2.5 and Remark 3.4.4, we conclude that G0 must be nonstationary
and the absolute cotangent complex LR0 must be almost perfect. In particular, if R0

is a Noetherian Fp-algebra, then it must be F -finite (Theorem 3.5.1).
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3.5 A Differential Characterization of F -Finiteness
Our goal in this section is to prove the following stronger version of Proposition

3.3.1:

Theorem 3.5.1. Let R be a Noetherian Fp-algebra. The following conditions are
equivalent:

p1q There exists a regular Noetherian Fp-algebra A which is F -finite and a surjection
AÑ R.

p2q The Fp-algebra R is F -finite.

p3q The absolute cotangent complex LR is almost perfect as an R-module (see Propo-
sition 3.3.7 for various equivalents of this condition).

Remark 3.5.2. The implication p2q ñ p1q of Theorem 3.5.1 is due to Gabber; see
Remark 13.6 of [10].

Theorem 3.5.1 will not be needed later in this paper. However, some of the
ingredients in the proof (specifically, Proposition 3.5.5 below) will be useful in §6.1.

Lemma 3.5.3. Let f : κÑ κ1 be an extension of fields. Then the algebraic cotangent
complex Lalg

κ1{κ is 1-truncated.

Proof. Writing κ1 as a filtered colimit of finitely generated subfields, we may assume
that there are finitely many elements x1, . . . , xn P κ

1 which generate κ1 as a field
extension of κ. Proceeding by induction on n, we can reduce to the case where κ1 is
generated by a single element x. There are two possibilities:

• The element x is transcendental over κ: that is, κ1 is isomorphic to the fraction
field of the polynomial ring κrxs. In this case, Lalg

κ1{κ is a free κ1-module of rank 1.

• The element x is algebraic over κ, so that we can write κ1 “ κrxs{pfpxqq for
some polynomial fpxq. In this case, we can identify Lalg

κ1{κ with the cofiber of the
map κ1 Ñ κ1 given by multiplication by dfptq

dt
|t“x

Lemma 3.5.4. Let κ be a field and let R be a Noetherian E8-algebra over κ. Assume
that the relative cotangent complex LR{κ vanishes. Then R is discrete and regular.
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Proof. Without loss of generality, we may assume that R is local. Let κ1 denote the
residue field of R. Using the fiber sequence

κ1 bR LR{κ Ñ Lκ1{κ
θ
ÝÑ Lκ1{R,

we deduce that θ is an equivalence. It follows that π0pLκ1{κq vanishes, so that the
comparison map Lκ1{κ Ñ Lalg

κ1{κ induces an isomorphism π2pLκ1{κq Ñ π2pL
alg
κ1{κq. It

follows from Lemma 3.5.3 that the homotopy group π2pL
alg
κ1{κq vanishes, so that π2pLκ1{κq

also vanishes. Invoking the fact that θ is an equivalence again, we obtain π2pLκ1{Rq » 0.
Using the fiber sequence

κ1 bπ0pRq Lπ0pRq{R Ñ Lκ1{R Ñ Lκ1{π0pRq,

we obtain a short exact sequence of vector spaces

π2pLκ1{Rq Ñ π2pLκ1{π0pRqq Ñ π1pκ
1
bπ0pRq Lπ0pRq{Rq.

Here the first term vanishes by the preceding argument, and the third term van-
ishes because the projection map R Ñ π0pRq has connected fibers. It follows that
π2pLκ1{π0pRqq also vanishes. Applying Lemma SAG.11.2.3.9 , we conclude that π0pRq is
regular.

Since R is Noetherian, the projection map RÑ π0pRq is almost of finite presenta-
tion, so the relative cotangent complex Lπ0pRq{R is almost perfect as a π0pRq-module.
It is also 2-connective (Corollary HA.7.4.3.2 ). Using the fiber sequence

π0pRq bR LR{κ Ñ Lπ0pRq{κ Ñ Lπ0pRq{R,

we conclude that Lπ0pRq{κ is also 2-connective and almost perfect as a π0pRq-module.
Applying Lemma 3.3.3, we deduce that the algebraic cotangent complex Lalg

π0pRq{κ
is

also 2-connective and almost perfect. We have a fiber sequence

κ1 bπ0pRq L
alg
π0pRq{κ

Ñ Lalg
κ1{π0pRq

Ñ Lalg
κ1{κ,

where Lalg
κ1{π0pRq

and Lalg
κ1{κ are 1-truncated (the first because κ1 is the quotient of

π0pRq by a regular sequence, and the second by virtue of Lemma 3.5.3). It follows
that the tensor product κ1 bπ0pRq L

alg
π0pRq{κ

is both 2-connective and 1-truncated, and
therefore vanishes. Since Lalg

π0pRq{κ
is almost perfect, it follows that Lalg

π0pRq{κ
itself

vanishes, so that the topological cotangent complex Lπ0pRq{κ vanishes as well (Remark
SAG.25.3.3.7 ). the canonical map π2Lκpxq{π0pRq Ñ π2L

alg
κpxq{π0pRq

is an isomorphism, so
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that π2Lκpxq{π0pRq » 0. Applying Lemma SAG.11.2.3.9 , we deduce that the local ring
π0pRqp is regular. Returning to the fiber sequence

π0pRq bR LR{κ Ñ Lπ0pRq{κ Ñ Lπ0pRq{R,

we conclude that Lπ0pRq{R also vanishes. It follows that the projection map RÑ π0pRq

is an equivalence (Corollary HA.7.4.3.4 ), so that R » π0pRq is discrete and regular as
desired.

Proposition 3.5.5. Let f : A Ñ B be a morphism of Noetherian E8-rings, and
suppose that the relative cotangent complex LB{A vanishes. Then f is flat.

Proof. By virtue of Lemma SAG.6.1.2.4 , it will suffice to show that the tensor product
κbA B is discrete for every residue field κ of A. We may therefore replace A by κ, in
which case the desired result follows from Lemma 3.5.4.

Proposition 3.5.6. Let f : AÑ B be a morphism of Noetherian Fp-algebras. The
following conditions are equivalent:

p1q The relative cotangent complex LB{A vanishes.

p2q The morphism f is flat and the diagram

A
f //

ϕA
��

B

ϕB
��

A
f // B

is a pushout square in the category of commutative rings.

p3q The diagram
A

f //

ϕA
��

B

ϕB
��

A
f // B

is a pushout square in the 8-category of E8-rings.

Proof. The implication p2q ñ p3q is obvious. If condition p3q is satisfied, then the
canonical map

u : B1{p
bB L

alg
B{A Ñ Lalg

B1{p{A1{p
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is an equivalence. Since u is nullhomotopic (Lemma 3.3.6), it follows that the algebraic
cotangent complex Lalg

B{A vanishes. Applying Proposition SAG.25.3.5.1 , we conclude
that LB{A also vanishes; this shows that p3q implies p1q.

We complete the proof by showing that p1q implies p2q. Assume that LB{A vanishes,
so that f is flat by virtue of Proposition 3.5.5. We wish to show that the relative
Frobenius map ϕf : A1{pbAB Ñ B1{p is an isomorphism. Since A » A1{p is Noetherian,
it will suffice to show that ϕf induces an isomorphism

κ1{p
bA B Ñ κ1{p

bA1{p B1{p

for each residue field κ of A (Lemma SAG.2.6.1.3 ). We may therefore replace A by κ
and B by κbA B, and thereby reduce to the case where A “ κ is a field (note that
this replacement does not injure our hypothesis that B is Noetherian).

Applying Lemma 3.5.4, we deduce that B is a regular Noetherian ring. Factoring
B as a product, we can assume without loss of generality that B is an integral
domain. Let K denote the fraction field of B. For every subfield κ1 Ď κ1{p which is
a finite extension of κ, the tensor product Bκ1 “ κ1 bκ B is also Noetherian (since
it is finite over B) and the relative cotangent complex LBκ1{κ1 vanishes, so Lemma
3.5.4 guarantees that Bκ1 is also a regular Noetherian ring. Note that Bκ1 is also
an integral domain (since the map | SpecpBκ1q| Ñ | SpecpBq| is a homeomorphism),
whose fraction field can be identified with κ1 bκ K. The regularity of Bκ1 guarantees
that it is integrally closed in its fraction field, and can therefore be identified with
the integral closure of B in κ1 bκ K. Passing to the direct limit over κ1, we conclude
that κ1{p bκ B can be identified with the integral closure of B in κ1 bκ K. Similarly,
the regularity of B guarantees that B1{p is integrally closed in its fraction field K1{p,
and can therefore be identified with the integral closure of B in K1{p. Consequently,
to show that the map ϕf is an isomorphism, it will suffice to show that the natural
map κ1{p bκ K Ñ K1{p is an isomorphism. In other words, we can replace B by its
fraction field K, and thereby reduce to the case where B is also a field.

Let Ωκ denote the module of Kähler differentials of κ. Choose a collection of
elements txi P κuiPI with the property that tdxiuiPI is a basis for Ωκ as a vector space
over κ. Then the elements txiuiPI form a p-basis for the field κ: that is, there is an
isomorphism of κ-algebras

κrttiuiPIs{pt
p
i ´ xiq

„
ÝÑ κ1{p,

carrying each ti to x1{p
i . It follows that we can identify the relative Frobenius ϕf with

the map KrttiuiPIs{ptpi ´ fpxiqq Ñ K1{p given by ti ÞÑ fpxiq
1{p. To show that this map
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is an isomorphism, it suffices to show that the elements tfpxiquiPI form a p-basis for
the field K, or equivalently that the elements tdfpxiqu form a basis for ΩK as a vector
space over K. This is clear: our hypothesis that the relative cotangent complex LK{κ
vanishes guarantees that the natural map K bκ Ωκ Ñ ΩK is an isomorphism.

Corollary 3.5.7. Let f : AÑ B be a morphism of Noetherian Fp-algebras. Suppose
that the relative cotangent complex LB{A vanishes and that f induces an isomorphism
of perfections A1{p8 Ñ B1{p8. Then f is an isomorphism.

Proof. We have a commutative diagram

A //

��

A1{p

��

// A1{p2 //

��

¨ ¨ ¨

B // B1{p // B1{p2 // ¨ ¨ ¨

Our assumption that LB{A vanishes guarantees that each square in this diagram is
a pushout (Proposition 3.5.6). Passing to the colimit in the horizontal direction, we
deduce that the diagram

A //

��

A1{p8

��
B // B1{p8

is a pushout square. Our second assumption guarantees that the right vertical map in
this diagram is an isomorphism: that is, f becomes an isomorphism after extending
scalars to A1{p8 . It follows that, for every residue field κ of A, the induced map
κ1{p8 Ñ κ1{p8 bA B is an isomorphism. Since κ1{p8 is faithfully flat over κ, we
conclude that the map κÑ κbA B is an isomorphism. Because A is Noetherian, this
guarantees that f is an isomorphism (Lemma SAG.2.6.1.3 ).

Corollary 3.5.8. Let f : A Ñ B be a morphism of Noetherian E8-rings. Assume
that p is nilpotent in the commutative ring π0pAq. Then f is an equivalence if and
only if it satisfies the following pair of conditions:

paq The relative cotangent complex LB{A vanishes.

pbq For every perfect Fp-algebra R, composition with f induces a homotopy equiva-
lence MapCAlgpB,Rq Ñ MapCAlgpA,Rq.
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Proof. The “only if” direction is obvious. For the converse, suppose that paq and pbq
are satisfied; we wish to show that f is an equivalence of E8-rings. Since p is nilpotent
in π0pAq, it will suffice to show that the induced map π0pAq{ppq Ñ pπ0pAq{ppqq bA B

is an equivalence of E8-rings. We may therefore replace A by π0pAq{ppq and thereby
reduce to the case where A is a commutative Fp-algebra (note that this does not injure
our hypothesis that B is Noetherian, because π0pAq{ppq is almost of finite presentation
over A). In this case, hypothesis paq guarantees that f is flat (Proposition 3.5.5),
so that B is also a commutative Fp-algebra. Condition pbq is now equivalent to the
requirement that f induces an isomorphism of perfections A1{p8 » B1{p8 , so that f is
an equivalence by virtue of Corollary 3.5.7

Proof of Theorem 3.5.1. The implication p1q ñ p2q is obvious, and the implication
p2q ñ p3q follows from Proposition 3.3.1. We will complete the proof by showing
that p3q ñ p1q. Let R be a Noetherian Fp-algebra, and suppose that the absolute
cotangent complex LR is almost perfect. We wish to show that R can be written
as the quotient of an Fp-algebra which is regular, Noetherian, and F -finite. Our
assumption that LR is almost perfect guarantees that the module of Kähler differentials
ΩR{Fp » π0pLRq is finitely generated as an R-module. Choose elements x1, . . . , xn P R

with the property that their images dx1, . . . , dxn generate ΩR{Fp as an R-module.
Set P “ FprX1, . . . , Xns, so that the elements txiu1ďiďn determine an Fp-algebra
homomorphism ρ : P Ñ R. Then LP is almost perfect as a P -module (this follows
from Proposition 3.3.1 since P is F -finite, or more directly from the observation that
P is almost of finite presentation over the sphere spectrum). Using the fiber sequence
R bP LP Ñ LR Ñ LR{P , we conclude that LR{P is almost perfect as an R-module.
It is also 1-connective (by virtue of our assumption that ΩR{Fp is generated by the
elements dxi).

The ring homomorphism ρ determines a map of schemes u : SpecpRq Ñ SpecpP q.
Let us regard u as a natural transformation between functors

SpecpRq, SpecpP q : CAlgcn
Ñ S,

and let X denote the relative de Rham space pSpecpRq{ SpecpP qqdR of Definition
SAG.18.2.1.1 . Applying Theorem SAG.18.2.3.1 (together with Corollary SAG.18.2.3.3
and Corollary SAG.18.2.4.4 ), we conclude that the functor X has the form SpfpAq,
where A is a Noetherian E8-ring which is complete with respect to an ideal I Ď π0pAq

satisfying R » π0pAq{I. We will complete the proof by showing that A is discrete,
regular, and F -finite.
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Let us write the relative de Rham space pSpecpR1{pq{ SpecpP 1{pqqdR as a formal
spectrum SpfpA1{pq (so that A1{p is abstractly equivalent to A, but it will be convenient
to avoid identifying them in what follows). The Frobenius morphisms on R and P

induce a map ϕA : A Ñ A1{p. Beware that we do not yet know that A is discrete,
so we cannot a priori ϕA by declaring that it is the Frobenius map from A to itself.
However, it is not difficult to see that the induced map π0pAq Ñ π0pA

1{pq » π0pAq
1{p

is the usual Frobenius map on the commutative Fp-algebra π0pAq. Note that we have
a commutative diagram σ :

P

ϕP
��

// A

ϕA
��

P 1{p // A1{p,

where the left vertical map is finite flat.
We first claim that σ is a pushout square of E8-rings. Let θ : P 1{p bP AÑ A1{p

be the morphism of E8-rings determined by the diagram σ; we wish to show that θ is
an equivalence. Let us regard θ as a morphism of A-algebras. Note that P 1{p bP A is
a finite flat A-module, and therefore I-complete (since A is I-complete). Similarly,
the E8-ring A1{p is I1{p-complete, and is therefore also I-complete when regarded as
an A-module via ϕA (since the ideals I1{p and Iπ0pAq

1{p generate the same topology
on π0pAq

1{p). Consequently, to prove that θ is an equivalence, it will suffice to show
that the induced map

θR : P 1{p
bP RÑ A1{p

bA R

is an equivalence. We now argue that θR satisfies criteria paq and pbq of Corollary
3.5.8:

paq From the description of X as a relative de Rham space, we see that the relative
cotangent complex LX{SpecpP q vanishes. It follows that the relative cotangent
complex LA{P is I-rational: that is, it vanishes after I-completion. Similarly, the
relative cotangent complex LA1{p{P 1{p is I1{p-rational, and therefore also I-rational
(since I1{p and Iπ0pAq

1{p generate the same topology on the commutative ring
π0pAq

1{p). Let L “ LA1{p{P 1{pbPA denote the relative cotangent complex of the
morphism θ. Using the cofiber sequence

A1{p
bA LA{P Ñ LA1{p{P 1{p Ñ L,

we deduce that L is I-rational when regarded as an A-module. The relative
cotangent complex LA1{pbAR{P 1{pbPR can be identified with the tensor product

pA1{p
bA Rq bA1{p L » R bA L,
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and therefore vanishes (since it is simultaneously I-nilpotent and I-local as an
A-module).

pbq Let B be a perfect Fp-algebra; we wish to show that the the upper horizontal
map in the diagram

MapCAlgpA
1{p bA R,Bq

˝θR //

��

MapCAlgpP
1{p bP Rq

��
MapCAlgpA

1{p, Bq
˝θ //MapCAlgpP

1{p bP A,Bq

is a homotopy equivalence (of discrete spaces). Since the diagram is a pull-
back square, it suffices to show that the lower horizontal map is a homotopy
equivalence: that is, that the diagram

MapCAlgpA
1{p, Bq //

˝ϕA

��

MapCAlgpP
1{p, Bq

˝ϕP

��
MapCAlgpA,Bq //MapCAlgpP,Bq

is a pullback square. This is clear: the vertical maps are both homotopy
equivalences (of discrete spaces), by virtue of our assumption that B is perfect.

Since σ is a pushout square and the Frobenius map ϕP : P Ñ P 1{p is finite flat,
it follows that the map ϕA : A Ñ A1{p is finite flat. In particular, π0pAq is F -finite.
Proposition 3.3.1 now guarantees that the absolute cotangent complex Lπ0pAq is almost
perfect as a module over π0pAq. Using the fiber sequence

π0pAq bA LA Ñ Lπ0pAq Ñ Lπ0pAq{A

and the observation that π0pAq is almost of finite presentation over A, we conclude
that π0pAq bA LA is almost perfect as a π0pAq-module, so that LA is almost perfect
as an A-module (Proposition SAG.2.7.3.2 ). It follows that the relative cotangent
complex LA{P is almost perfect as an A-module, and therefore I-complete (since A is
I-complete). Since it is also I-local, we conclude that LA{P » 0. Applying Proposition
SAG.2.7.3.2 , we see that A is flat over P , and therefore discrete. Moreover, it follows
from Lemma 3.5.4 shows that the morphism P Ñ A is geometrically regular. Since P
is regular, A is also regular (alternatively, we can deduce the regularity of A from the
fact that the Frobenius map ϕA : AÑ A is finite flat).
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4 Orientations and Quillen’s Construction
In [29], Quillen discovered a remarkable relationship between cohomology theories

and formal groups. Let A be a homotopy commutative ring spectrum (that is, a
commutative algebra object in the homotopy category of spectra hSp), and let πevpAq

denote the commutative ring
À

nPZ π2npAq. If A is complex orientable, then the inverse
limit B “ lim

ÐÝm

À

nPZ A
2npCPm

q is isomorphic to a power series ring πevpAqrrtss, where
t is any choice of complex orientation for A. The formal spectrum pGQev

A “ SpfpBq can
then be regarded as a 1-dimensional formal group over the commutative ring πevpAq.
This formal group is an extremely useful invariant, which determines the underlying
cohomology theory A in many cases of interest (Theorem 0.0.1).

In this paper, we consider Quillen’s construction only under the additional assump-
tion that the ring spectrum A is complex periodic (Definition 4.1.8). In this case, the
formal group pGQev

A above is naturally defined over the subring π0pAq Ď πevpAq. More
precisely, it can be obtained from a formal group pGQ0

A over π0pAq by extending scalars
along the inclusion map π0pAq ãÑ πevpAq. The formal group pGQ0

A can be described
as the formal spectrum SpfpA0pCP8

qq. We will refer to it as the classical Quillen
formal group of A.

Our goal in this section is to study a refinement of the classical Quillen formal
group pGQ0

A , which is defined over the ring spectrum A itself rather than over the
commutative ring π0pAq. Assume now that A is an E8-ring (which is also complex
periodic). In §4.1, we introduce a formal group pGQ

A which we refer to as the Quillen
formal group of A (Construction 4.1.13). Roughly speaking, pGQ

A can be described as
the formal spectrum of the function spectrum O “ C˚pCP8;Aq of maps from CP8

into A (while pGQ0
A is the formal spectrum of the ordinary commutative ring π0pOq).

Most of this section is devoted to answering the following:

Question 4.0.1. Let A be a complex periodic E8-ring. How can we characterize pGQ
A

among the collection of all formal groups over A?

To address Question 4.0.1, we need to say a bit more about how the formal group
pGQ
A is defined. The formal spectrum SpfpC˚pCP8;Aqq is only the underlying formal

hyperplane of pGQ
A ; to see the group structure, we will need exploit the fact that

the space CP8 is an abelian group object of the 8-category of spaces S. More
precisely, we can realize CP8

» KpZ, 2q as the 0th space of the Z-module spectrum
Σ2pZq. This realization supplies a universal property of CP8: as an abelian group
object of S, it is freely generated by the 2-sphere S2 (as a pointed space). For
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any abelian group object M P AbpSq, we have a canonical homotopy equivalence
MapAbpSqpCP8,Mq » MapS˚pS

2,Mq. This translates to a heuristic description of
pGQ
A : roughly speaking, it should be “freely generated by S2” as an object of the 8-

category FGrouppAq of formal groups over A. In §4.3, we make this heuristic precise
by showing that for any formal group pG over A, the datum of a morphism of formal
groups pGQ

A Ñ
pG is equivalent to the datum of a (pointed) map e : S2 Ñ Ω8Gpτě0pAqq

(Proposition 4.3.21). We will refer to such a map as a preorientation of the formal
group pG (Definition 4.3.19).

To give a more complete answer to Question 4.0.1, we would like to address the
following:

Question 4.0.2. Let pG be a 1-dimensional formal group over A, and let e be a
preorientation of pG. When is the induced map f : pGQ

A Ñ
pG an equivalence of formal

groups?

The classical theory of formal groups suggests a heuristic approach to answering
Question 4.0.2: a map of 1-dimensional formal groups f : pG1 Ñ pG should be an
equivalence if its derivative at the origin is invertible. In 4.2, we make this heuristic
precise by introducing the dualizing line ω

pG of a 1-dimensional formal group over A
(or, more generally, a 1-dimensional formal hyperplane over A), and showing that f
is an equivalence if and only if the pullback map f˚ : ω

pG Ñ ω
pG1 is an equivalence

(Remark 4.2.5). In the special case where pG1 “ pGQ
A is the Quillen formal group of

A, there is a canonical equivalence ω
pG1 » Σ´2pAq, so that a preorientation e of pG

induces a map
βe : ω

pG Ñ Σ´2
pAq.

We will refer to βe as the Bott map of the preorientation e. In the case where A
is complex periodic, we can identify βe with the “derivative” of the map pGQ

A Ñ
pG

corresponding to the preorientation e. However, the map βe can be defined without
assuming that A is complex periodic (and without reference to the group structure on
pG); see Construction 4.3.7. Using this observation, we show that for any 1-dimensional
formal group pG over any E8-ring A, there is a universal example of a map of E8-rings
AÑ A1 for which A1 is complex periodic and pGA1 is equivalent to the Quillen formal
group pGQ

A1 (see Propositions 4.3.13 and 4.3.23). We will refer to A1 as the orientation
classifier of pG and denote it by O

pG. The construction pG ÞÑ O
pG will play an important

role in the later sections of this paper.
Quillen’s construction A ÞÑ pGQ

A provides an important supply of examples of
formal groups over E8-ring spectra. We studied another class of examples in §2: if A
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is ppq-complete, then we can to every p-divisible group G over A a formal group G˝

(Definition 2.0.10). The second half of this section is devoted to the following:

Question 4.0.3. Let A be an E8-ring which is complex periodic and ppq-complete.
When can we find a p-divisible group G over A and an equivalence of formal groups
pGQ
A »

pG˝?

The theory developed in §2 provides a partial answer to Question 4.0.3: it is
sufficient to assume that pGQ

A is a p-divisible formal group over A, in the sense of
Definition 2.3.14. By virtue of Theorem 2.3.26, this is equivalent to the requirement
that the classical Quillen formal group pGQ0

A is p-divisible. We therefore ask the
following more general question:

Question 4.0.4. Let pG be a 1-dimensional formal group over a commutative ring R.
When is pG a p-divisible formal group?

Question 4.0.4 is addressed by the classical theory of heights of 1-dimensional
formal groups, which we review in §4.4. Recall that if pG is a formal group over a field
κ of characteristic p, then pG is p-divisible if and only if the map rps˚ : O

pG Ñ O
pG is

finite flat. In this case, the degree of the map rps˚ is an integer of the form pn; we
refer to n as the height of the formal group pG and write n “ htppGq. More generally,
if R is a complete adic E8-ring, then a formal group pG over R is p-divisible if and
only if function x ÞÑ htppGκpxqq is finite and locally constant on the topological space
| SpfpRq| (Theorem 4.4.14).

We will be particularly interested in the case where this function takes some constant
value n. Note that the function x ÞÑ htppGκpxqq is always upper-semicontinuous on
| SpecpRq|. More precisely, the each of the sets tx P | SpecpRq| : htppGκpxqq ě mu can be
realized as the vanishing locus of a certain ideal I pG

m, which we will refer to as the mth
Landweber ideal (Definition 4.4.11). Theorem 4.4.14 can then be restated as follows:
the formal group pG can be realized as the identity component of a formally connected
p-divisible group G of height n if and only if the commutative ring R is complete
with respect to the nth Landweber ideal I pG

n , and the pn` 1qst Landweber ideal I pG
n`1

is equal to R. In §4.5, we specialize to the case where pG “ pGQ0
A is the classical

Quillen formal group of a complex periodic E8-ring A and show that these conditions
have a homotopy-theoretic interpretation: they are equivalent to the requirement
that the spectrum A is Kpnq-local, where Kpnq denotes the nth Morava K-theory
spectrum (Theorem 4.5.2). In this case, the general machinery of §2 guarantees that
the Quillen formal group pGQ

A can be realized (in an essentially unique way) as the
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identity component of a p-divisible group GQ
A of height n, which we will refer to as

the Quillen p-divisible group of A. We give an explicit description of the p-divisible
group GQ

A in §4.6 (Construction 4.6.2), which is mostly independent of the formalism
developed in §2.

4.1 The Quillen Formal Group
In this section, we review the notions of complex periodic ring spectrum (Definition

4.1.1) and weakly 2-periodic ring spectrum (Definition 4.1.5). We will say that an
E8-ring A is complex periodic if it is both complex orientable and weakly 2-periodic
(Definition 4.1.8). In this case, we construct a formal group pGQ

A , which we will refer
to as the Quillen formal group of A (Construction 4.1.13).

4.1.1 Complex Orientations of Ring Spectra

In this section, we briefly review the theory of complex orientations. Our presenta-
tion is terse; for a more detailed discussion, we refer the reader to [1].

Definition 4.1.1. Let CP8 denote the infinite dimensional projective space lim
ÐÝ

CPn,
which we can also regard as the classifying space BUp1q for the unitary group Up1q,
or an Eilenberg-MacLane space KpZ, 2q. Let A be an E0-ring: that is, a spectrum
equipped with a unit map e : S Ñ A. We say that A is complex orientable if the map
e factors as a composition

S » Σ8´2 CP1
Ñ Σ8´2 CP8 e

Ñ A.

In this case, we will say that e is a complex orientation of A.

Example 4.1.2. Let R be an E0-ring, and suppose that the homotopy groups πnR
vanish when n is odd. Then R is complex orientable. To prove this, we note that the
space CP8 admits a filtration

CP1 ãÑ CP2 ãÑ CP3 ãÑ ¨ ¨ ¨ .

To construct a complex orientation of R, it suffices to construct a compatible family
of maps en : Σ8´2 CPn

Ñ R where e1 is the unit map of R. Assume that n ą 1 and
that en´1 has been constructed. Then the obstruction to finding the map en lies in
Ext1

SppcofibpΣ8´2 CPn´1
Ñ Σ8´2 CPn

q, Rq » π2n´3R » 0.
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Remark 4.1.3. Let φ : A Ñ B be a map of E0-rings. Then the induced map
MapSppΣ8´2 CP8, Aq Ñ MapSppΣ8´2 CP8, Bq carries complex orientations of A to
complex orientations of B. In particular, if A is complex-orientable, then B is also
complex-orientable.

Remark 4.1.4. The spectrum Σ8´2 CP8 is connective. Consequently, if A is any
spectrum, the vertical maps in the diagram

MapSppΣ8´2 CP8, τě0Aq //

��

MapSppS, τě0Aq

��
MapSppΣ8´2 CP8, Aq //MapSppS,Aq

are homotopy equivalences. In particular, if A is an E0-ring, then giving a complex
orientation of A is equivalent to giving a complex orientation of its connective cover
τě0A.

4.1.2 Periodic Ring Spectra

We now restrict our attention to ring spectra A having periodic homotopy groups.

Definition 4.1.5. Let A be an E8-ring. We will say that A is weakly 2-periodic if the
suspension Σ2pAq is locally free of rank 1 as an A-module. Equivalently, A is weakly
2-periodic if it satisfies the following conditions:

paq The homotopy group L “ π2pAq is a projective module of rank 1 over the
commutative ring π0pAq.

pbq For every integer n, the canonical map Lbπ0pAq πnpAq Ñ πn`2pAq is an isomor-
phism.

Remark 4.1.6. In the situation of Definition 4.1.5, it suffices to verify condition pbq
in the case n “ ´2. Moreover, condition pbq implies paq.

Remark 4.1.7. Let A be a weakly 2-periodic E8-ring. Then, for every A-module M ,
the canonical map π2pAq bπ0pAq π˚pMq Ñ π˚`2pMq is an isomorphism. In particular,
if φ : A Ñ B is a morphism of E8-rings, then π2pBq » π2pAq bπ0pAq π0pBq is an
invertible module over π0pBq, and we have isomorphisms

π2pBq bπ0pBq π˚pBq » π2pAq bπ0pAq π˚pBq » π˚`2pBq.

It follows that B is also weakly 2-periodic.
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Definition 4.1.8. Let A be an E8-ring. We will say that A is complex periodic if it
is weakly 2-periodic and complex orientable.

Example 4.1.9 (Even Periodic Ring Spectra). Let A be an E8-ring. We say that
A is even periodic if the graded ring π˚pAq is isomorphic to π0pAqrt

˘1s, where t is an
element of degree p´2q. Every even periodic E8-ring is complex periodic: the weak
2-periodicity of A is obvious, and the complex orientability follows from Example
4.1.2.

Remark 4.1.10. Let φ : AÑ B be a morphism of E8-rings. If A is complex periodic,
then B is also complex periodic (this follows from Remarks 4.1.3 and 4.1.7. This
observation makes the class of complex periodic E8-rings more convenient to work
with than the class of even periodic E8-rings.

4.1.3 The Quillen Formal Group

Let A be an E8-ring, and regard the 8-category ModA as equipped with the
symmetric monoidal structure given by smash product relative to A. Then there is
an essentially unique symmetric monoidal functor S Ñ ModA which preserves small
colimits (where we regard the 8-category S of spaces as equipped with the Cartesian
symmetric monoidal structure). We will denote this functor by X ÞÑ C˚pX;Aq; here
C˚pX;Aq is a spectrum whose homotopy groups are the A-homology groups of the
space X. Note that every object X P S can be regarded as a commutative coalgebra
with respect to the Cartesian symmetric monoidal structure on S in an essentially
unique way (see Corollary HA.2.4.3.10 ), so that C˚pX;Aq inherits the structure of a
commutative coalgebra over A. In §4.1.4, we will prove the following:

Theorem 4.1.11. Let A be a complex periodic E8-ring. Then C˚pCP8;Aq is a
smooth coalgebra of dimension 1 over A, in the sense of Definition 1.1.14.

Remark 4.1.12. Let A be a complex periodic E8-ring. Then, for every free abelian
group M of rank r ă 8, the coalgebra C˚pKpM, 2q;Aq is smooth of dimension r.
To prove this, we can use the fact that the functor X ÞÑ C˚pX;Aq is symmetric
monoidal (and the fact that the class of smooth coalgebras over A is closed under
tensor products; see Remark 1.2.6) to reduce to the case r “ 1, in which case the
desired result follows from Theorem 4.1.11.

Construction 4.1.13 (The Quillen Formal Group). Let A be a complex periodic
E8-ring and let Lat denote the category of free abelian groups of finite rank. It follows
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from Remark 4.1.12 that the construction

M ÞÑ C˚pKpM
_, 2q;Aq

determines a functor Latop
Ñ cCAlgsm

A . This functor commutes with finite products,
and can therefore be regarded as an abelian group object of the 8-category cCAlgsm

A .
We may therefore regard the construction

M ÞÑ cSpecpC˚pKpM_, 2q;Aqq

as an abelian group object of the 8-category HyppAq of formal hyperplanes over A:
that is, as a formal group over A. We will denote this formal group by pGQ

A and refer
to it as the Quillen formal group of A.

Notation 4.1.14. Let A be a complex periodic E8-ring. We let pGQ0
A denote the

image of pGQ
A under the forgetful functor FGrouppAq Ñ FGrouppπ0pAqq. We will refer

to pGQ0
A as the classical Quillen formal group of A. Concretely, the classical Quillen

formal group of A is given by the formula

pGQ0
A “ SpfpA0

pCP8
qq » cSpecpA0pCP8

qq.

Note that this definition makes sense in somewhat greater generality: we do not need
to assume that the multiplicative structure on A is E8 (it is sometimes useful to
consider the formal group pGQ0

A even in cases where the multiplication on A is not
homotopy commutative; for example, when A is a Morava K-theory spectrum at the
prime 2).

Warning 4.1.15. In the situation of Construction 4.1.13, we can identify pGQ
A with a

formal group over the connective cover τě0A (see Variant 1.6.2). Beware that pGQ
A is

not the Quillen formal group associated to τě0A: the E8-ring τě0A is never complex
periodic (except in the trivial case A » 0), and the coalgebra C˚pCP8; τě0Aq is not
smooth over τě0A.

Example 4.1.16 (The Case of a Z-Algebra). The cohomology ring H˚pCP8; Zq can
be identified with the polynomial ring Zrts on a generator t of degree 2. Moreover,
the multiplication map m : CP8

ˆCP8
Ñ CP8 induces a pullback map

Zrts » H˚pCP8; Zq m˚
ÝÝÑ H˚pCP8

ˆCP8; Zq » Zrts bZ Zrts
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given by t ÞÑ t b 1 ` 1 b t. If A is any E8-algebra over Z containing an invertible
element u P π2pAq, then A is complex periodic and the classical Quillen formal group
can be described by the formula

O
pGQ0
A
“ A0

pCP8
q » π0pAqrrt

1
ss

where t1 “ tu; the comultiplication on O
pGQ0
A

then carries t1 to t1b 1` 1b t1. It follows
that pGQ0

A is isomorphic to the formal additive group pGa over the commutative ring
π0pAq. This isomorphism is not quite canonical: it depends on a chosen invertible
element u P π2pAq.

4.1.4 The Proof of Theorem 4.1.11

The proof of Theorem 4.1.11 will require a few simple calculations. Choose a
generator t of the cohomology group H2

pCP8; Zq, so that H˚pCP8; Zq is isomorphic to
the polynomial ring Zrts and H˚pCPn; Zq is isomorphic to the truncated polynomial
ring Zrts{ptn`1q for each n ě 0. Note that for each n ě 0, there exists a cofiber
sequence of pointed spaces

CPn´1
Ñ CPn en

ÝÑ S2n;

we will assume that en has been normalized so that the induced map e˚n : H2n
pS2n; Zq Ñ

H2n
pCPn; Zq carries the generator of H2n

pS2n; Zq to tn.

Lemma 4.1.17. Let n be a nonnegative integer, let δ : CP8
Ñ pCP8

q^n denote the
composition of the diagonal map CP8

Ñ pCP8
qn with the collapse map pCP8

qn Ñ

pCP8
q^n, let ιn : CPn

Ñ CP8 be the inclusion map. Then the diagram

CPn

ιn
��

en // S2n

ι^n1
��

CP8 δ // pCP8
q^n

commutes up to homotopy.

Proof. Note that the composite map

CPn´1 ãÑ CPn ιn
ÝÑ CP8 δ

ÝÑ pCP8
q
^n
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is nullhomotopic, since the domain has dimension p2n´ 2q and the codomain is p2nq-
connective. It follows that there exists a map of pointed spaces u : S2n Ñ pCP8

q^n

for which the diagram
CPn

ιn
��

en // S2n

u
��

CP8 δ // pCP8
q^n

commutes up to homotopy. To complete the proof, it will suffice to show that u is
homotopic to the nth smash power of ι1 : S2 » CP1 ãÑ CP8. We assume n ą 0
(otherwise, there is nothing to prove). In this case, we can identify the homotopy
classes of ι^n1 and u with elements of π2npCP8

q^n. Since pCP8
q^n is p2nq-connective,

the Hurewicz map π2npCP8
q^n Ñ H2nppCP8

q^n is an isomorphism. It will therefore
suffice to show that ι^n1 and u induce the same map on the homology group H2n or
equivalently (since all homology groups are free abelian) that the maps

pι^n1 q
˚, u˚ : H2n

ppCP8
q
^n; Zq Ñ H2n

pS2n; Zq

coincide. It now suffices to observe that, after composition with the isomorphism
e˚n : H2n

pS2n; Zq Ñ H2n
pCPn; Zq, both of these maps carry the generator tbtb¨ ¨ ¨bt P

H2n
ppCP8

q^n; Zq to the element tn P H2n
pCPn; Zq.

Proof of Theorem 4.1.11. Let A be a complex periodic E8-ring set C “ C˚pCP8;Aq;
we wish to show that C is a smooth coalgebra over A. Then the inclusion CP0 ãÑ CP8

determines a coalgebra map ρ : AÑ C. Let C0 denote the cofiber of ρ, which we can
identify with the tensor product AbΣ8pCP8

q. Then a choice of complex orientation
of A determines an A-module map u : C0 Ñ Σ2pAq having the property that the
composition

u0 : Σ2
pAq » Ab Σ8pCP1

q Ñ Ab Σ8pCP8
q » C0

u
ÝÑ Σ2

pAq

is homotopic to the identity. For each n ě 0, let ∆pnq : C Ñ Cbn be the n-ary
comultiplication on C, and let βn denote the composition

C
∆pnq
ÝÝÝÑ Cbn Ñ Cbn0

ubn
ÝÝÑ Σ2n

pAq.

We will prove the following:

p˚q For each n ě 0, the composite map

C˚pCPn;Aq Ñ C
pβ0,β1,...,βnq
ÝÝÝÝÝÝÝÑ A‘ Σ2

pAq ‘ ¨ ¨ ¨ ‘ Σ2n
pAq

is an equivalence of A-modules.
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The proof proceeds by induction on n, the case n “ 0 being trivial. To carry out the
inductive step, it will suffice to verify that the diagram

C˚pCPn;Aq

��

// cofibpC˚pCPn´1;Aq Ñ C˚pCPn;Aqq
„

��
C

βn // Σ2npAq

commutes up to homotopy, which follows immediately from Lemma 4.1.17 and our
assumption that u0 is the identity.

Since A is weakly 2-periodic, assertion p˚q guarantees that each C˚pCPn;Aq is
locally free of rank pn` 1q as an A-module. In particular, each C˚pCPn;Aq is a flat
A-module, so that C “ lim

ÝÑ
C˚pCPn;Aq is likewise flat over A. We complete the proof

by showing that π0C is a smooth coalgebra of dimension 1 over the commutative
ring π0A. Setting L “ π´2A, we observe that p˚q supplies coalgebra isomorphisms
π0C˚pCPn;Aq »

À

0ďmďn Γmπ0pAq
pLq which induce, after passing to the limit over n, a

coalgebra isomorphism π0pCq » Γ˚π0pAq
pLq.

4.2 Dualizing Lines
Let R be a commutative ring and let X be a formal hyperplane over R, equipped

with a base point η P XpRq. To the pair pX, ηq, we can associate a projective R-module
of finite rank, which we will denote by T ˚X,η and refer to as the cotangent space of X
at the point η. It admits several equivalent descriptions:

paq For any (discrete) R-module M , giving an R-module homomorphism T ˚X,η ÑM

is equivalent to giving a point η P XpR ‘Mq lying over the chosen base point
η P XpRq.

pbq Writing X as the formal spectrum SpfpOXq, we can consider the module of
continuous Kähler differentials pΩOX {R. This is a projective OX-module of finite
rank (playing the role of the cotangent bundle of X), and T ˚X,η “ R bOX

pΩOX {R

is obtained by extending scalars along the augmentaiton OX Ñ R determined
by the point η.

pcq Writing X “ SpfpOXq as in pbq, we can identify T ˚X,η with the quotient I{I2,
where I Ď OX denotes the kernel of the augmentation OX Ñ R determined by
η.
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pdq Writing X “ cSpecpCq, where C is a smooth coalgebra over R, we can identify
η with a grouplike element of C. Then the set of primitive elements PrimηpCq “

tx P C : ∆Cpxq “ η b x ` x b ηu of Remark 1.1.7 is a projective R-module of
finite rank, and T ˚X,η can be identified with the R-linear dual of PrimηpCq.

More generally, suppose that X is a formal hyperplane over a connective E8-ring
R, equipped with a base point η P XpRq. Proposition 1.5.19 implies that the functor
X admits a cotangent complex (relative to R). In particular, we obtain an R-module
spectrum η˚LX{SpecpRq, which we will refer to as the cotangent fiber of X at η. The
cotangent fiber η˚LX{SpecpRq can be regarded as an analogue of the classical cotangent
space T ˚X,η defined above. It is characterized by the following analogue of paq: for
every connective R-module spectrum M , we have a canonical homotopy equivalence

MapModRpη
˚LX{SpecpRq,Mq » fibpXpR ‘Mq Ñ XpRqq.

Moreover, it can be computed by an analogue of pbq: writingX “ SpfpOXq, Proposition
SAG.17.2.5.1 supplies an equivalence

η˚LX{SpecpRq » R bOX L
^
OX {R

» R bA LOX {R,

where LOX {R denotes the relative cotangent complex of OX over R and L^OX {R its
completion with respect to the kernel ideal kerpπ0pOXq Ñ π0pRqq. However, there are
some respects in which the cotangent fiber η˚LX{SpecpRq is a poor replacement for the
classical cotangent space T ˚X,η:

• If R is an ordinary commutative ring, then there is a canonical R-module
isomorphism π0pη

˚LX{SpecpRqq » T ˚X,η. However, unless R is a Q-algebra, the
cotangent fiber η˚LX{SpecpRq is usually not equivalent to T ˚X,η, because it has
nonvanishing homotopy groups in positive degrees.

• Unless R is a Q-algebra, the cotangent fiber η˚LX{SpecpRq is usually not projective
as an R-module (though it is almost perfect over R, by virtue of Proposition
1.5.19).

In the case where X is 1-dimensional, there is a different analogue of the cotangent
space T ˚X,η which does not share these defects, defined instead by a homotopy-theoretic
analogue of pcq (Definition 4.2.1). We will denote the resulting object by ωX,η and
refer to it as the dualizing line of X.
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4.2.1 Construction of the Dualizing Line

Definition 4.2.1. Let R be an E8-ring and let X be a 1-dimensional formal hyper-
plane over R equipped with a base point η P Xpτě0Rq, classified by an augmentation
ε : OX Ñ R. We let OXp´ηq denote the fiber of ε, which we regard as a module over
OX . We let ωX,η denote the tensor product R bOX OXp´ηq. We will refer to ωX,η as
the dualizing line of X at the point η.

We first show that, as the terminology suggests, the dualizing line ωX,η of Definition
4.2.1 is an invertible R-module:

Proposition 4.2.2. Let R be an E8-ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point η P Xpτě0Rq. Then:

paq The fiber OXp´ηq is locally free of rank 1 as a OX-module.

pbq The dualizing line ωX,η is locally free of rank 1 as an R-module.

Proof. Assertion paq follows from Proposition 1.4.11, and pbq follows from paq.

Example 4.2.3. Let R be a commutative ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point η P XpRq. Then ωX,η can be identified
with I{I2, where I “ OXp´ηq Ď OX is the kernel ideal of the augmentation OX Ñ R

determined by ε. In particular, we have a canonical R-module isomorphism ωX,η »

T ˚X,η.

Remark 4.2.4 (Functoriality in R). Let f : R Ñ R1 be a morphism of E8-rings,
let X be a 1-dimensional formal hyperplane over R with a base point η P XpRq, let
X 1 “ X|CAlgcn

τě0R1
be the induced formal hyperplane over R1, and let η1 P X 1pτě0R

1q »

Xpτě0R
1q be the image of η. Then we have a canonical equivalence ωX 1,η1 » R1bRωX,η.

Applying this observation to the maps RÐ τě0RÑ π0pRq, we obtain a canonical
isomorphism π0ωX,η » T ˚X0,η0 , where X0 denotes the formal hyperplane over π0pRq

determined by X, and η0 P X0pπ0pRqq the image of η. In particular, we see that as
an object of the homotopy category hModR, the dualizing line ωX,η is canonically
determined by the pair pX0, η0q (see Corollary HA.7.2.2.19 ).

Remark 4.2.5 (Functoriality in X). Let R be an E8-ring, let f : X Ñ X 1 be a
morphism of 1-dimensional formal hyperplanes over R, and let η P Xpτě0Rq be a point
having image η1 P X 1pτě0Rq. Then pullback along f determines a map of augmented
R-algebras OX 1 Ñ OX , which in turn induces a map f˚ : ωX 1,η1 Ñ ωX,η. Note that f
is an equivalence if and only if the pullback map f˚ is an equivalence.
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4.2.2 Comparison with and the Cotangent Fiber

Let X, R, and η be as in Definition 4.2.1, and let m : OX bR OX Ñ OX denote
the multiplication map, so that we have a fiber sequence

fibpmq Ñ OX bR OX Ñ OX

in the 8-category of pOX bR OXq-modules. Note that, after extending scalars along
the map

pεb idq : OX bR OX Ñ R bR OX » OX ,

this fiber sequence reduces to OXp´ηq Ñ OX
ε
ÝÑ R. It follows that the dualizing

line ωX,η is can be obtained from fibpmq by extending scalars along the map pεb εq :
OX bR OX Ñ R. Combining this observation with Theorem HA.7.3.5.1 , we obtain
the following characterization of the dualizing line ωX,η:

Proposition 4.2.6. Let R be an E8-ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point η P Xpτě0Rq. Then, for any R-module
M , we have a canonical homotopy equivalence

MapModRpωX,η,Mq » fibpMapAlgRpOX , R ‘Mq Ñ MapAlgRpOX , Rqq;

here the fiber is taken over the point of MapAlgRpOX , Rq determined by η.

Remark 4.2.7 (Comparing the Dualizing Line to the Cotangent Fiber). Let R, X,
and η be as in Proposition 4.2.6. For every R-module M , we have a commutative
diagram of mapping spaces σ :

MapCAlgRpOX , R ‘Mq //

��

MapCAlgRpOX , Rq

��
MapAlgRpOX , R ‘Mq //MapAlgRpOX , Rq.

Passing to homotopy fibers in the horizontal direction, we obtain a comparison map

MapModRpη
˚LX{SpecpRq,Mq Ñ MapModRpωX,η,Mq.

This map depends functorially on M , and is therefore given by precomposition with
an R-module morphism ρ : ωX,η Ñ η˚LX{SpecpRq. This map has the following features:
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piq If R is connective, then ρ induces an isomorphism π0pωX,ηq » π0pη
˚LX{SpecpRqq.

To prove this, we can reduce to the case where R is discrete, in which case
it follows from the observation that the vertical maps in the diagram σ are
homotopy equivalences when M is also discrete. More concretely, this amounts
to the observation that π0pωX,ηq and π0pη

˚LX{SpecpRqq can be identified with the
cotangent space T ˚X0,η0 , where X0 denotes the underlying formal hyperplane over
the commutative ring π0pRq (and η0 the image of η in X0pπ0pRqq).

piiq If R is an E8-algebra over Q, then ρ is an equivalence. To prove this, we can
reduce to the case where R is connective, in which case it follows from piq (since
both ωX,η and η˚LX{ SpecpRq

are locally free of rank 1 over R).
Beware that if R is a connective E8-ring which is not a Q-algebra, then the

comparison map ρ is never an equivalence.

4.2.3 The Linearization Map

We now give a different description of the dualizing line ωX,η, which will be more
useful for our purposes.
Proposition 4.2.8. Let R be an E8-ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point η P Xpτě0Rq. Then we have a canonical
fiber sequence of R-modules

ΣpωX,ηq Ñ R bOX R
m
ÝÑ R,

where m denotes the multiplication on R (regarded an algebra over OX via the aug-
mentation determined by η).
Proof. Let ι : R Ñ R bOX R denote the inclusion of the first tensor factor. Then
the composition m ˝ ι is the identity on R: in other words, m and ι exhibit R as
a direct summand of R bOX R, whose complementary summand can be described
either as the fiber of m or the cofiber of ι. We now observe that ι is obtained from
the augmentation map ε : OX Ñ R by extending scalars along ε; we therefore have
equivalences

fibpmq » cofibpιq
» R bOX cofibpεq
» ΣpR bOX fibpεqq
“ ΣpR bOX OXp´ηqq

“ ΣpωX,ηq.
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The importance of the dualizing line in this paper arises from the following
construction, which will play an important role in §4.3:

Construction 4.2.9 (The Linearization Map). Let R be an E8-ring and let X be a
1-dimensional formal hyperplane over R equipped with a base point η P Xpτě0Rq. If
R is connective and A is a connective E8-algebra over R, we obtain a canonical map

ΩXpAq » MapCAlgRpR bOX R,Aq

Ñ MapModRpR bOX R,Aq
u
ÝÑ MapModRpΣpωX,ηq, Aq
» Ω MapModRpωX,η, Aq.

where u is the map induced by the identification of Proposition 4.2.8. We will denote
the composite map by

L : ΩXpAq Ñ Ω MapModRpωX,η, Aq

and refer to it as the linearization map associated to the pair pX, ηq.
More generally, if R and A are not assumed to be connective, then we can apply

the preceding construction to their connective covers to obtain a map

L : ΩXpτě0Aq Ñ Ω MapModτě0R
pτě0ωX,η, τě0Aq » Ω MapModRpωX,η, Aq,

which we will also refer to as the linearization map associated to pX, ηq.

We now make Construction 4.2.9 a bit more concrete by describing its effects on
homotopy groups.

Remark 4.2.10. In the situation of Construction 4.2.9, suppose we are given a
map of pointed spaces u : T Ñ ΩXpAq, which we can identify with a pointed
map ΣT Ñ XpAq Ď MapCAlgRpOX , Aq. This determines a commutative diagram of
E8-algebras

OX
//

��

C˚pΣT ;Aq

��
R // A,

where the left vertical map is given by the base point of X and the right vertical map
is evaluation at the base point of T . Passing to vertical homotopy fibers, we obtain
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a map of OX-modules u1 : OXp´ηq Ñ C˚redpΣT ;Aq. Using the pullback diagram of
E8-algebras

C˚pΣT ;Aq //

��

A

��
A // C˚pT ;Aq,

we see that the action of C˚pΣT ;Aq on C˚redpΣT ;Aq » Σ´1C˚redpT ;Aq factors through
A (in two a priori different ways), so the action of OX on C˚redpΣT ;Aq factors through
R. This determines a factorization of u1 as a composition

OXp´ηq Ñ ωX,η
v1
ÝÑ C˚redpΣT ;Aq,

and we can identify v1 with a pointed map v : T Ñ Ω MapModRpωX,η, Aq. Unwinding
the definitions, we see that v is given by the composition

T
u
ÝÑ ΩXpAq L

ÝÑ Ω MapModRpωX,η, Aq,

where L is the linearization map of Construction 4.2.9.

Example 4.2.11. In the situation of Construction 4.2.9, suppose that we are given
an element of πnXpRq for n ą 0, which we can identify with the homotopy class of
a pointed map u : Sn´1 Ñ ΩXpRq. Then u determines a map of augmented E8-
algebras OX Ñ C˚pSn;Rq, hence a map of augmented π0pRq-algebras ρ : π0pOXqq Ñ

π0pRq ‘ πnpRq. If we let ε : π0pOXq Ñ π0pRq denote the augmentation map and
I “ kerpεq the augmentation ideal, then ρ is given by the formula ρpxq “ pεpxq, dxq
for some π0pRq-linear derivation d : π0pRq Ñ πnpRq, which we can identify with a
π0pRq-linear map I{I2 Ñ πnpRq. Using Remark 4.2.10, we see that the linearization
map L of Construction 4.2.9 carries rus P πnXpRq to d, regarded as an element of

Homπ0pRqpI{I
2, πnpRqq » πn MapModRpωX,η, Rq.

4.2.4 Relationship with Grothendieck Duality

We now describe another interpretation of the dualizing line ωX,η: up to a shift,
it can be realized as the pullback along η of the relative dualizing complex of the
projection map q : X Ñ SpecpRq. We will regard this as a heuristic, since a general
discussion of Grothendieck duality in formal spectral algebraic geometry would take
us too far afield. However, we can use this heuristic to motivative a precise definition:
given a reasonable notion of the relative dualizing complex of q, we should expect
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that its pullback along η is inverse to the relative dualizing complex of the morphism
η : SpecpRq Ñ X. Since η is a closed immersion, the latter dualizing complex should
be realized concretely as the OX-linear dual of R (where we regard R as a OX-module
via the augmentation OX Ñ R determined by η). In the case where X is 1-dimensional,
this agrees with Definition 4.2.1:
Proposition 4.2.12. Let R be an E8-ring and let X be a 1-dimensional formal
hyperplane over R equipped with a base point η P Xpτě0Rq. Then there is a canonical
equivalence of R-modules Map

OX
pR,OXq » Σ´1ω´1

X,η.
Proof. Let e : R Ñ Map

OX
pR,Rq be the unit map and let f : Map

OX
pR,OXq Ñ

Map
OX
pR,Rq be the map given by postcomposition with with augmentation ε : OX Ñ

R. A simple calculation (using our assumption that X is 1-dimensional) shows that
the map

pe‘ fq : R ‘Map
OX
pR,OXq Ñ Map

OX
pR,Rq

is an equivalence. We can therefore identify Map
OX
pR,OXq with the cofiber of e.

Unwinding the definitions, we can describe e as the R-linear dual of the multiplication
map m : R bOX RÑ R, so that the cofiber cofibpeq is the R-linear dual of the fiber
fibpmq. The desired result now follows from Proposition 4.2.8.
Remark 4.2.13 (Dualizing Lines in Higher Dimensions). Let R be an E8-ring and
let X be a formal hyperplane of dimension n over R, equipped with a base point
η P Xpτě0Rq. It is not difficult to show that Map

OX
pR,OXq is an invertible R-module.

We can then define an R-module ωX,η by the formula ωX,η “ Σ´nMap
OX
pR,OXq

´1. It
follows from Proposition 4.2.12 that, in the case n “ 1, this agrees with the dualizing
line of Definition 4.2.1. Heuristically, one can think of the R-module ΣnωX,η as the
pullback along η of the relative dualizing complex of the projection map X Ñ SpecpRq.
One can show that ωX,η is always locally free of rank 1 as an R-module, and is equipped
with a canonical isomorphism

π0pωX,ηq » detpT ˚X0,η0q “
ľn

π0pRq
pT ˚X0,η0q,

where T ˚X0,η0 denotes the cotangent space to the underlying formal hyperplane X0 over
the commutative ring π0pRq, equipped with the base point η0 P X0pπ0pRqq determined
by η.

4.2.5 The Dualizing Line of a Formal Group

Let R be an E8-ring and let pG be a formal group over R. We will say that pG has
dimension n if the underlying formal hyperplane Ω8 pG has dimension n.
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Definition 4.2.14. Let pG be a formal group of dimension 1 over an E8-ring R. If pG
has dimension 1, we let ω

pG P ModR denote the dualizing line ωX,η of Definition 4.2.1,
where X “ Ω8 ˝ pG is the underlying formal hyperplane of pG and η P Xpτě0Rq is the
base point (that is, the identity with respect to the group structure on pG). Then ω

pG
is a locally free R-module of rank 1, which we will refer to as the dualizing line of pG.

Example 4.2.15. If pG is a 1-dimensional formal group over a commutative ring R,
then the dualizing line ω

pG is the R-linear dual of the Lie algebra LieppGq.

Example 4.2.16 (The Dualizing Line of pGm). By construction, the E8-ring of
functions O

pGm
can be identified with the completion of Srt˘1s » Σ8`pZq with respect

to the augmentation ideal pt´ 1q. It follows that we have a canonical equivalence

S bO
xGm

S » S bSrt˘1s S

» Σ8`p˚q bΣ8
`
pZq Σ8`p˚q

» Σ8`pB Zq
“ Σ8`pS1

q

which restricts to an equivalence ω
pGm
» S, where ω

pGm
is the dualizing line of Definition

4.2.1. (Of course, the existence of such an equivalence is automatic, since every locally
free S-module of rank 1 is equivalent to S; however, it would a priori be ambiguous
up to a sign.)

Remark 4.2.17 (Linearization). For every connective E8-ring R, Construction 4.2.9
determines a map of spaces

L : Ω8`1
pGmpRq Ñ Ω1 MapSppω pGm

, Rq » Ω8`1
pRq.

Unwinding the definitions, we see that L is given by the composition

Ω8`1
pGmpRq » Ω8`1GmpRq

Ωα
ÝÝÑ Ω GL1pRq
γ
ÝÑ Ω8`1R,

where α : Ω8GmpRq Ñ GL1pRq is the map of Remark 1.6.12, and γ is the homotopy
equivalence induced by translation by p´1q.

Remark 4.2.18 (Functoriality). The dualizing line ω
pG of Definition 4.2.14 depends

functorially on R and pG. More precisely:
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• For any morphism of E8-rings R Ñ R1, we have a canonical equivalence of
R1-modules ω

pGR1
» R1 bR ω pG.

• Every morphism f : pG Ñ pG1 of 1-dimensional formal groups over R induces
a pullback map f˚ : ω

pG1 Ñ ω
pG, which is an equivalence if and only if f is an

equivalence.

See Remarks 4.2.4 and 4.2.5.

Example 4.2.19. [The Quillen Formal Group] Let A be a complex periodic E8-ring.
Then the Quillen formal group pGQ

A admits a dualizing line ω
pGQ
A

(Definition 4.2.14).
By virtue of Proposition 4.2.8, the dualizing line ω

pGQ
A

is characterized by the existence
of a fiber sequence

Σpω
pGQ
A
q Ñ AbC˚pCP8;Aq A

m
ÝÑ A,

where m denotes the multiplication on A (regarded as a C˚pCP8;Aq-algebra by
means of evaluation at the base point of CP8). Here the middle term can be
identified with C˚pS1;Aq, and this identification carries m to the map given by
evaluation at the base point of S1. We therefore obtain an A-module equivalence
Σpω

pGQ
A
q » C˚redpS

1;Aq » Σ´1A. Desuspending both sides, we obtain an A-module
equivalence ω

pGQ
A
» Σ´2pAq (note that the right hand side is locally free of rank 1 as

an A-module, by virtue of our assumption that A is weakly 2-periodic).

4.3 Orientations
Let A be a complex periodic E8-ring and let pGQ

A be the Quillen formal group of
A (Construction 4.1.13). Our goal in this section is to articulate a universal property
that characterizes pGQ

A as an object of the 8-category FGrouppAq of formal groups
over A: for any formal group pG, giving a morphism of formal groups f : pGQ

A Ñ
pG

is equivalent to giving a preorientation of pG (see Definition 4.3.19 and Proposition
4.3.21). Moreover, to any preorientation e we associate a Bott map βe : ω

pG Ñ Σ´2pAq,
which is invertible if and only if A is complex periodic and the associated map of
formal groups f : pGQ

A Ñ
pG is an equivalence (Proposition 4.3.23).

4.3.1 Preorientations of Formal Hyperplanes

We begin with some general remarks.
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Definition 4.3.1. Let R be an E8-ring and let X : CAlgcn
τě0pRq Ñ S˚ be a pointed

formal hyperplane over R. A preorientation of X is a map of pointed spaces

e : S2
Ñ Xpτě0pRqq.

We let PrepXq “ Ω2Xpτě0Rq denote the space of preorientations of X. A preoriented
formal hyperplane is a pair pX, eq, where X is a pointed formal hyperplane over R
and e P PrepXq is a preorientation of X.

Remark 4.3.2. To define the notion of a preoriented formal hyperplane, it is not
necessary to mention base points: the data of a preoriented formal hyperplane pX, eq
over R is equivalent to the data of a formal hyperplane X and a map of spaces
e : S2 Ñ Xpτě0Rq; we can then regard e as a pointed map by equipping X with the
base point given by applying e to the base point of S2. However, the slightly baroque
phrasing of Definition 4.3.1 is better suited to our applications: we will be interested
in studying the totality of preorientations which are compatible with a fixed base
point of X (in practice, we will take X to be the underlying formal hyperplane of a
formal group, with base point given by the zero section).

Remark 4.3.3. Let R be an E8-ring, and let X be a pointed formal hyperplane R,
which we can also view as a pointed formal hyperplane over the connective cover τě0R

(Variant 1.5.11). The space of preorientations PrepXq does not depend on whether we
view pG as a formal group over R or over τě0pRq. Consequently, for the purpose of
studying preorientations, it is harmless to replace R by its connective cover.

Remark 4.3.4. Let X be a pointed formal hyperplane over an E8-ring R. Then the
set of homotopy classes of preorientations of X can be identified with π2Xpτě0Rq.

Example 4.3.5. Let R be a connective E8-ring which is 1-truncated: that is, the
homotopy groups π˚R vanish for ˚ R t0, 1u. Then, for any pointed formal hyper-
plane X over R, the space XpRq is always 1-truncated. It follows that the space of
preorientations PrepXq “ Ω2XpRq is contractible. In particular, if R is an ordinary
commutative ring, then every pointed formal hyperplane X admits an essentially
unique preorientation.

Remark 4.3.6 (Functoriality). Let R be an E8-ring and let X be a pointed formal hy-
perplane over R. Then, for any E8-algebra R1 P CAlgR, we can identify Ω2Xpτě0pR

1qq

with the space PrepXR1q, where XR1 is the pointed formal hyperplane over R1 obtained
from X by extending scalars. In particular, the construction R1 ÞÑ PrepXR1q depends
functorially on R1.
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4.3.2 Orientations of Formal Hyperplanes

Note that a pointed formal hyperplane X over an E8-ring R can be always equipped
with a preorientation, by taking e : S2 Ñ Xpτě0pRqq to be a constant map. We now
study a special class of preorientations which are, in some sense, very far from being
constant.

Construction 4.3.7 (The Bott Map). Let R be an E8-ring, let X be a 1-dimensional
formal hyperplane over R, equipped with a base point η P Xpτě0Rq and associated
dualizing line ωX,η (Definition 4.2.1). Applying Construction 4.2.9, we obtain a
linearization map

L : ΩXpτě0pRq Ñ Ω1 MapModRpωX,η, Rq.

Passing to loop spaces, we obtain a map

PrepXq Ñ MapModRpωX,η,Σ
´2
pRqq.

For each preorientation e P PrepXq, we denote its image under this map by βe : ωX,η Ñ
Σ´2pRq. We will refer to βe as the Bott map of e.

Remark 4.3.8. The terminology of Construction 4.3.7 is motivated by the considera-
tion of a particular case, where R “ KU is the complex K-theory spectrum, X is the
underlying formal hyperplane of the formal multiplicative group pGm (see Construction
1.6.16), and

e : S2
“ CP1

Ñ Ω8 pGmpKUq

is the preorientation corresponding to the complex line bundle Op1q on CP1; in
this case, βe can be identified with the classical Bott periodicity equivalence KU Ñ
Σ´2pKUq. We will return to this example in §6.5 (see also §4.3.6).

Definition 4.3.9. Let R be an E8-ring and let X be a 1-dimensional formal hyper-
plane over R with a base point η. An orientation of X is a preorientation e P PrepXq
for which the Bott map βe : ωX,η Ñ Σ´2pRq is an equivalence. We let OrDatpXq
denote the summand of PrepXq spanned by the orientations of X.

Remark 4.3.10 (Functoriality). Let f : RÑ R1 be a morphism of E8-rings, X be a
1-dimensional formal hyperplane over R, and let X 1 “ XR1 be the formal hyperplane
over R1 obtained by extending scalars along f . Suppose we are given a base point
η P Xpτě0pRqq having image η1 P X 1pτě0pR

1qq, and a preorientation e P PrepXq having
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image e1 P PrepX 1q. Then the Bott map βe1 : ωX 1,η1 Ñ Σ´2pR1q can be identified with
the composition

ωX 1,η1 » R1 bR ωX,η
βe
ÝÑ R1 bR Σ´2

pRq » Σ´2
pR1q.

In particular, if βe is an equivalence, then so is βe1 . It follows that the natural map
PrepXq Ñ PrepX 1q carries the summand OrDatpXq Ď PrepXq into the summand
OrDatpX 1q Ď PrepX 1q.

Remark 4.3.11. Let R be an E8-ring and let X be a 1-dimensionalformal hyperplane
over R with a base point η. Then the dualizing line ωX,η is locally free of rank 1 as an
R-module. Consequently, the existence of an orientation of X implies that R is weakly
2-periodic. In particular, if R is nonzero and connective, then the space OrDatpXq is
empty.

Warning 4.3.12. Let R be an E8-ring and let X be a 1-dimensional pointed formal
hyperplane over R. Then X can be identified with a pointed formal hyperplane X0

over the connective cover τě0pRq, and giving a preorientation of X is the same as
giving a preorientation of X0. Beware, however, that giving an orientation of X is
not the same as giving an orientation of X0. In fact, the formal hyperplane X0 never
admits an orientation, except in the trivial case R » 0 (Remark 4.3.11).

4.3.3 Orientation Classifiers

Let R be an E8-ring and let X be a 1-dimensional pointed formal hyperplane over
R. By virtue of Remark 4.3.10, we can regard the construction R1 ÞÑ OrDatpXR1q as a
functor from the 8-category CAlgR to the 8-category S of spaces (it is a subfunctor
of R1 ÞÑ PrepR1q “ Ω2Xpτě0R

1q). Better yet, it is a corepresentable functor:

Proposition 4.3.13. Let R be an E8-ring and let X be a 1-dimensional pointed
formal hyperplane over R. Then there exists an E8-algebra OX and an orientation
e P OrDatpXOX q which is universal in the following sense: for every object R1 P CAlgR,
evaluation on e induces a homotopy equivalence

MapCAlgRpOX , R
1
q Ñ OrDatpXR1q.

Definition 4.3.14. In the situation of Proposition 4.3.13, we will refer to OX as the
orientation classifier of X.

If pG is a 1-dimensional formal group over R, we let O
pG denote the orientation

classifier OX , where X denotes the underlying formal hyperplane Ω8 pG (with base
point given by the identity section of pG).
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We first prove a version of Proposition 4.3.13 for preorientations.

Lemma 4.3.15. Let R be a connective E8-ring and let X be a formal hyperplane
over R, equipped with a base point η P XpRq. Then:

paq The base point η is classified by a map OX Ñ R which exhibits R as a perfect
OX-module.

pbq The tensor product R bOX R is perfect as an R-module.

pcq the functor ΩX : CAlgcn
R Ñ S is corepresentable by an object B P CAlgcn

R which
is perfect as an R-module.

Proof. The implications paq ñ pbq ñ pcq are clear. We will prove paq. By virtue of
Corollary SAG.8.3.5.9 , it will suffice to show that the tensor product RbOXR is perfect
as an R-module. To prove this, we can work locally on | SpecpRq| and thereby reduce
to the case where there is an isomorphism π˚pOXq » π˚pRqrrt1, . . . , tnss. Without loss
of generality, we may assume that this isomorphism is chosen so that ti belongs to the
kernel of the augmentation ε : π0pOXq Ñ π0pRq determined by η. Then ε extends to
a map of A-modules ρi : cofibpti : OX Ñ OXq Ñ R. Tensoring these maps together,
we obtain a single map ρ :

Â

1ďiďn cofibpti : OX Ñ OXq Ñ R, which is easily checked
to be an equivalence.

Lemma 4.3.16. Let R be an E8-ring and let X be a pointed formal hyperplane over
R. Then the functor

pR1 P CAlgRq ÞÑ pPrepXR1q P Sq

is corepresentable by an E8-algebra A over R. Moreover, if R is connective, then A is
almost of finite presentation over R.

Proof. It follows from Lemma 4.3.15 that the functor ΩX : CAlgcn
R Ñ S is corepre-

sentable by an E8-algebra B which is perfect as an R-module, and therefore almost
of finite presentation if R is connective (Corollary SAG.5.2.2.2 ). It follows that that
the functor Ω2X is corepresentable by A “ R bB R, which is also almost of finite
presentation if R is connective.

To deduce Proposition 4.3.13 from Lemma 4.3.16, we will need to study the
procedure of “inverting” the Bott map.

Proposition 4.3.17. Let R be an E8-ring and suppose we are given a pair of invertible
objects L,L1 P ModR, together with a map u : L1 Ñ L.
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paq There exists an object Rru´1s P CAlgA with the following universal property: for
every object A P CAlgR, the mapping space MapCAlgRpRru

´1s, Aq is contractible
if u induces an equivalence uA : AbR L1 Ñ AbR L, and is otherwise empty.

pbq As an R-module, Rru´1s can be identified with the direct limit of the sequence

R
u
ÝÑ L1´1

bR L
u
ÝÑ pL1´1

q
b2
bR L

b2 u
ÝÑ pL1´1

q
b3
bR L

b3
Ñ ¨ ¨ ¨ .

Remark 4.3.18. Proposition 4.3.17 is most familiar in the case L “ L1 “ R; in this
case, we can identify u with an element of π0pRq and Rru´1s with the associated
Zariski localization of R. However, we can also apply Proposition 4.3.17 to invertible
R-modules which are not locally free, like the suspension ΣnpRq.

Proof of Proposition 4.3.17. Replacing L by the tensor product L1´1 bR L, we can
reduce to the case where L1 “ R. For every R-module M , let uM : M Ñ M bR L

denote the tensor product of idM with u, and let M ru´1s denote the colimit of the
diagram

M
uM
ÝÝÑM bR L

uMbRL
ÝÝÝÝÑM bR LbR LÑ ¨ ¨ ¨

Let us say that M is u-local if the map uM is an equivalence. Let C Ď ModR denote
the full subcategory spanned by the u-local objects. We will deduce Proposition 4.3.17
from the following assertion:

p˚q For every R-module M , the canonical map M ÑM ru´1s exhibits M ru´1s as a
C-localization of M . In particular, the inclusion functor C ãÑ ModR admits a
left adjoint, given by M ÞÑM ru´1s.

Let us assume p˚q for the moment. The explicit description of the localization
M ru´1s shows that for any R-module N , we have a canonical equivalence pN bR

Mqru´1s » N bR M ru
´1s. It follows that if f : M Ñ M 1 is a morphism of R-

modules which induces an equivalence M ru´1s » M 1ru´1s, then the induced map
pidN bfq : NbRM Ñ NbRM

1 has the same property. In other words, the localization
functor M ÞÑM ru´1s is compatible with the symmetric monoidal structure on ModR,
in the sense of Definition HA.2.2.1.6 . It follows that the 8-category C inherits a
symmetric monoidal structure, which is characterized by the requirement that the
construction M ÞÑM ru´1s determines a symmetric monoidal functor from ModR to
C (see Proposition HA.2.2.1.9 ). Note that the inclusion functor C ãÑ ModR induces
a fully faithful embedding CAlgpCq Ñ CAlgpModRq » CAlgR, whose essential image
is spanned by the u-local E8-algebras over R. The construction A ÞÑ Aru´1s is left
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adjoint to this inclusion, and therefore carries R to an initial object Rru´1s P CAlgpCq.
It follows immediately that Rru´1s has the desired universal property required by paq,
and assertion p˚q guarantees that it has the explicit description required by pbq.

It remains to prove p˚q. We first show that, for every R-module M , the canon-
ical map M Ñ M ru´1s induces a homotopy equivalence MapModRpM ru

´1s, Nq Ñ

MapModRpM,Nq whenever N is u-local. To prove this, it will suffice to show that each
of the transition maps

MapModRpM bR L
bn`1, Nq Ñ MapModRpM bR L

bn, Nq

is a homotopy equivalence. Replacing M by M bR L
bn, we can reduce to the case

n “ 0. We wish to show that composition with u induces an equivalence of R-modules

vN : Map
R
pL,Nq Ñ Map

R
pR,Nq » N.

Since L is invertible, we can identify vNbidL with an R-module map u1N : N Ñ NbRL.
Let s : LbRLÑ LbRL be the map given by exchanging the tensor factors. Then s is
an equivalence from LbRL to itself, and is therefore (by virtue of our assumption that
L is invertible) given by multiplication by an invertible element ε P π0pRq. Unwinding
the definitions, we see that the diagram

N
ε //

uN

$$

N
u1N

zz
N bR L

commutes. Consequently, our assumption that N is u-local guarantees that u1N is an
equivalence, as desired.

To complete the proof, it will suffice to show that for every R-module M , the
R-module M ru´1s is u-local. For each k ě 0, let T kpMq denote the tensor product
M bR L

b2k, and define γ : T kpMq Ñ T k`1pMq to be the composition

T kpMq
u
TkpMq
ÝÝÝÝÑ T kpMq bR L

u
TkpMqbRL
ÝÝÝÝÝÝÝÑ T k`1

pMq.

Then M ru´1s can be identified with the colimit of the sequence

M “ T 0
pMq

γ
ÝÑ T 1

pMq
γ
ÝÑ T 2

pMq Ñ ¨ ¨ ¨ .

We will show that this colimit is u-local by verifying that the commutative diagram

T 0pMq
γ //

uT0pMq
��

//

��

T 1pMq
γ //

uT1pMq
��

γ // T 2pMq

uT2pMq
��

// ¨ ¨ ¨

T 0pMq bR L
γbid // T 1pMq bR L

γbid // T 2pMq bR L // ¨ ¨ ¨
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becomes an equivalence after passing to the colimit in the horizontal direction. For
this, it will suffice to show that for every square in this diagram, we can produce a
map ρ : T kpMq bR LÑ T k`1pMq which makes the diagram

T kpMq
γ //

u
TkpMq

��

T k`1pMq

u
Tk`1pMq
��

T kpMq bR L

ρ
66

γbid // T k`1pMq bR L

commute up to homotopy. We accomplish this by taking ρ to be the tensor product of
idTkpMq with the map L » LbRR

idLbu
ÝÝÝÝÑ LbRL. A simple calculation then shows that

the upper triangle commutes, and the lower triangle commutes up to multiplication
by ε2 P π0pRq. To complete the proof, it will suffice to show that ε2 “ 1, which is clear
(since s2 is homotopic to the identity).

Proof of Proposition 4.3.13. Let R be an E8-ring and let X be a pointed formal
hyperplane of dimension 1 over R. By virtue of Lemma 4.3.16, the functor R1 ÞÑ
PrepXR1q is corepresented by an E8-algebra A over R. In particular, the formal group
XA is equipped a tautological preorientation e. Let η denote the base point of XA

and let βe : ωXA,η Ñ Σ´2pAq be the Bott map of Construction 4.3.7. We can then
take OX to be the localization Arβ´1

e s of Proposition 4.3.17.

4.3.4 Preorientations of Formal Groups

We now specialize to the case of interest.

Definition 4.3.19. Let R be an E8-ring and let pG be a formal group over R. A
preorientation of pG is a preorientation of the underlying pointed formal hyperplane
X “ Ω8 pG. We let PreppGq “ PrepXq denote the space of preorientations of pG.

Remark 4.3.20. Let pG be a formal group over an E8-ring R. Then we have a
canonical homotopy equivalence

PreppGq “ MapS˚pS
2,Ω8 pGpτě0Rqq » MapModZ

pΣ2
pZq, pGpτě0Rqq.

We now establish the promised universal property of the Quillen formal group:

Proposition 4.3.21. Let R be a complex periodic E8-ring, let pGQ
R P FGrouppRq

denote the Quillen formal group of Construction 4.1.13, and let pG be any formal group
over R. Then we have a canonical homotopy equivalence

PreppGq » MapFGrouppRqp
pGQ
R , pGq.

187



Proof. Let C denote the image of pG under the equivalence

FGrouppRq » AbpHyppRqq cSpec
ÐÝÝÝ AbpcCAlgsm

R q,

We then have canonical homotopy equivalences

PreppGq “ MapS˚pS
2,Ω8 pGpτě0Rqq

» MapAbpSqpCP8,MapcCAlgRpR,Cqq

» MapAbpcCAlgRqpC˚pCP8;Rq, Cq
» MapAbpHyppRqqpcSpecpC˚pCP8;Rqq, cSpecpCqq
» MapFGrouppRqp

pGQ
R , pGq.

4.3.5 Orientations of Formal Groups

Let R be an E8-ring and let pG be a 1-dimensional formal group over R, equipped
with a preorientation e P PreppGq. We will say that is an orientation if it is an
orientation of the underlying formal hyperplane of pG, in the sense of Definition 4.3.9:
that is, if the Bott map

βe : ω
pG Ñ Σ´2

pRq

is an equivalence.

Example 4.3.22. Let R be a complex periodic E8-ring and let pGQ
R be the Quillen

formal group over R (Construction 4.1.13). Then the identity map id : pGQ
R »

pGQ
R

corresponds, under the homotopy equivalence of Proposition 4.3.21, to a preorientation
e P PreppGQ

Rq. Unwinding the definitions, we see that the associated Bott map
βe : ω

pGQ
R
Ñ Σ´2pRq agrees with the equivalence described in Example 4.2.19. In

particular, e is an orientation.

In fact, all orientations of formal groups are of the form described in Example
4.3.22:

Proposition 4.3.23. Let R be an E8-ring, let pG be a 1-dimensional formal group
over R, and let e P PreppGq be a preorientation of pG. Then e is an orientation if and
only if the following condition are satisfied:

p1q The E8-ring R is complex periodic.
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p2q Let f : pGQ
R Ñ

pG denote the image of e under the homotopy equivalence PreppGq »
MapFGrouppRqp

pGQ
R , pGq of Proposition 4.3.21. Then f is an equivalence of formal

groups over R.

Proof. We first show that if e is an orientation of pG, then R is complex periodic. We
have already seen that R is weakly 2-periodic (Remark 4.3.11). We will show that R
is complex orientable. Let O

pGp´1q denote the fiber of the augmentation O
pG Ñ R.

Pullback along f determines a map of E8-algebras f˚ : O
pG Ñ C˚pCP8;Rq which

fits into a commutative diagram

O
pGp´1q //

��

O
pG

//

f˚

��

R

id
��

C˚redpCP8;Rq //

��

C˚pCP8;Rq //

��

R

id
��

C˚redpCP1;Rq // C˚pCP1;Rq // R.

Using Remark 4.2.10, we see that the left vertical composition can be identified with
the map

O
pGp´1q u

ÝÑ R bO
xG

O
pGp´1q

“ ω
pG

βe
ÝÑ Σ´2

pRq

» C˚redpCP1;Rq.

The assumption that e is an orientation guarantees that the Bott map βe is an
equivalence. Since u is surjective on homotopy groups, it follows that the composite
map

π´2 O
pGp´1q Ñ π´2C

˚
redpCP8;Rq π

ÝÑ´2 C
˚
redpCP1;Rq

is surjective. In particular, the canonical generator of π´2C
˚
redpCP1;Rq can be lifted

to an element of π´2C
˚
redpCP8;Rq, so that R is complex orientable as desired.

Let us now assume that p1q is satisfied, so that the Quillen formal group pGQ
R is

well-defined and e can be identified with a map of formal groups f : pGQ
R Ñ

pG, which
carries the tautological preorientation e0 P PreppGQ

Rq to e. It follows that the map βe
factors as a composition

ω
pG

f˚
ÝÑ ω

pGQ
R

βe0
ÝÝÑ Σ´2

pRq,
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where the map βe0 is an equivalence (Example 4.3.22). Consequently, the map
βe : ω

pG Ñ Σ´2pRq is an equivalence if and only if f induces an equivalence of dualizing
lines, which is equivalent to condition p2q (see Remark 4.2.18).

4.3.6 Example: Orientations of pGm

Let pGm be the formal multiplicative group of Construction 1.6.16. In this section,
we study the classification of (pre)orientations of pGm.

Remark 4.3.24. LetR be an E8-ring. By definition, a preorientation of pGm (regarded
as a formal group over R) is a map of pointed spaces e : S2 Ñ Ω8 pGmpτě0Rq. Note
that we have a fiber sequence

pGmpτě0Rq
u
ÝÑ GmpRq Ñ Gmpπ0pRq

red
q,

where the third term is discrete. It follows that that u induces a homotopy equivalence

PreppGmq “ Ω8`2
pGmpτě0Rq Ñ Ω8`2GmpRq.

Put more informally, giving a preorientation of the formal multiplicative group pGm is
equivalent to giving a preorientation of the strict multiplicative group Gm.

In the situation of Remark 4.3.24, we can identify Ω8`2GmpRq with the mapping
space MapModZ

pΣ2pZq,GmpRqq. Combining this observation with Remark 1.6.11, we
obtain the following:

Proposition 4.3.25. Let R be an E8-ring and regard pGm as a formal group over R.
Then we have a canonical homotopy equivalence

PreppGmq » MapCAlgpΣ8` CP8, Rq.

In §4.3.5, we associated to each preorientation e of a 1-dimensional formal group
pG a Bott map βe : ω

pG Ñ Σ´2pRq. In the special case where pG “ pGm is the formal
multiplicative group, the dualizing line ω

pG can be canonically identified with R

(Example 4.2.16), so that βe is classified by an element of π2pRq.

Proposition 4.3.26. Let R be an E8-ring and let e be a preorientation of the formal
multiplicative group pGm (regarded as a formal group over R), classified by a morphism
of E8-rings f : Σ8`pCP8

q Ñ R. Then the Bott map βe of Construction 4.3.7 is given
by multiplication by the element β P π2pRq represented by the composition

S2
“ CP1

Ñ CP8
Ñ Ω8Σ8`pCP8

q
f
ÝÑ R.
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Proof. Apply Remark 4.2.17.

Corollary 4.3.27. The localization Σ8`pCP8
qrβ´1s is an orientation classifier for

the formal multiplication group pGm P FGrouppSq, in the sense of Definition 4.3.14.

4.4 Formal Groups of Dimension 1
In this section, we review some standard facts about 1-dimensional formal groups

over ordinary commutative rings.

4.4.1 The Height of a Formal Group

Let p be a prime number, which we regard as fixed throughout this section.

Definition 4.4.1. Let R be a commutative ring, let pG be a 1-dimensional formal
group over R, and let rps : pG Ñ pG be the map given by multiplication by p. For
n ě 1, we will say that pG has height ě n if p “ 0 in R and the map rps factors through
the iterated relative Frobenius map pG

ϕ
xGn
ÝÝÑ pGppnq (see Notation 2.2.2).

We extend this terminology to the case n “ 0 by declaring that all formal groups
over R have height ě 0 (in this case, we do not require that p “ 0 in R).

Warning 4.4.2. The terminology of Definition 4.4.1 is potentially confusing, because
the condition that a 1-dimensional formal group pG has height ě n depends on the
choice of prime number p. However, the danger of confusion is slight, since a formal
group which has height ě 1 at a prime p cannot have positive height at any other
prime (except in the trivial case R » 0).

Remark 4.4.3. Let R be a commutative ring and let pG be a 1-dimensional formal
group over R. Suppose that there exists a prime number p for which R is ppq-local and
pG has height ě n, for some positive integer n. Then the prime number p is uniquely
determined, except in the trivial case R “ t0u: it is the unique prime number which
vanishes in R.

Example 4.4.4. Let R be a commutative ring and let pGm be the formal multiplicative
group over R (see Construction 1.6.16). Then the ring of functions O

pGm
is the

completion of the Laurent polynomial ring Rrq˘1s with respect to the ideal pq ´ 1q,
which we will write as a power series ring Rrrεss for ε “ q´1. Under this identification,
the map p : pGm Ñ pGm is classified by the map of power series rings

rps˚ : O
pGm
Ñ O

yGm
ε ÞÑ pε` 1qp ´ 1 “ pε`

ˆ

p

2

˙

ε2 ` ¨ ¨ ¨ ` εp.
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If R is an Fp-algebra, then this map is given more simply by ε ÞÑ εp. It follows that
pGm has height ě 1, but does not have height ě 2 (except in the trivial case R » 0).

4.4.2 Differentials and Frobenius Maps

To make use of Definition 4.4.1, it is useful to have a criterion for detecting when
a map of formal groups factors through the Frobenius.

Proposition 4.4.5. Let R be a commutative Fp-algebra and let f : pG Ñ pG1 be
a morphism of 1-dimensional formal groups over R. The following conditions are
equivalent:

p1q The pullback map f˚ : ω
pG1 Ñ ω

pG vanishes (see Remark 4.2.18).

p2q The morphism f factors as a composition

pG
ϕ
xG
ÝÝÑ pGppq g

ÝÑ pG1.

Moreover, if these conditions are satisfied, then the map g is uniquely determined.

Remark 4.4.6. In the statement of Proposition 4.4.5, we do not need to assume that
pG and pG1 are 1-dimensional. However, in the general case, we should replace the
dualizing lines of pG and pG1 by their cotangent spaces at the identity (see §4.2)

Proof of Proposition 4.4.5. Working locally on SpecpRq, we can reduce to the case
where O

pG is isomorphic to a power series ring RrrT ss. Then the Frobenius pullback
pGppq can be identified with the formal spectrum of the subalgebra RrrT pss Ď RrrT ss.
It follows that the factorization described in p2q exists if and only if the pullback map
f˚ : O

pG1 Ñ O
pG » RrrT ss factors through the subalgebra RrrT pss Ď RrrT ss, and is

automatically unique if it exists.
Let Ω “ ΩO

xG {R
denote the module of Kähler differentials of O

pG » RrrT ss over R,
so that Ω is a free RrrT ss-module on a single generator dT . We observe that a power
series u P RrrT ss belongs to the subalgebra RrrT pss if and only if du vanishes in Ω.
Set Ω1 “ ΩO

xG1 {R
, so that f˚ induces a map of O

pG1-modules f˚ : Ω1 Ñ Ω characterized
by the equation df˚puq “ f˚pduq. Consequently, assertion p2q is equivalent to the
vanishing of the pullback map f˚ : Ω1 Ñ Ω. Using the group structure on pG and
pG1, we can write Ω » O

pGbRω pG and Ω1 “ O
pG1 bRω pG1 , where we identify ω

pG and ω
pG1

with the R-submodules of Ω and Ω1 consisting of translation-invariant differentials
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on pG and pG1, respectively. The equivalence of p1q and p2q now follows from the
commutativity of the diagram

ω
pG1

f˚ //

��

ω
pG

��
Ω1 f˚ // Ω.

Example 4.4.7. Let R be a commutative Fp-algebra and let pG be a 1-dimensional
formal group over R. Then the map rps : pG Ñ pG automatically satisfies condition 1q
of Proposition 4.4.5 (since ω

pG is an R-module), and therefore factors uniquely as a
composition

pG
ϕ
xG
ÝÝÑ pGppq V

ÝÑ pG.

Corollary 4.4.8. Let R be a commutative ring and let pG be a 1-dimensional formal
group over R. Then pG has height ě 1 if and only if p “ 0 in R.

4.4.3 Hasse Invariants and Landweber Ideals

Construction 4.4.9 (The Hasse Invariant). Let R be a commutative ring and let pG
be a 1-dimensional formal group over R which has height ě n, for some nonnegative
integer n. If n ą 0, then the prime number p vanishes in R and the map rps : pG Ñ pG
factors as a composition

pG
ϕ
xGn
ÝÝÑ pGppnq T

ÝÑ pG.

Moreover, it follows from Proposition 4.4.5 that T is uniquely determined, and therefore
induces a pullback map

T ˚ : ω
pG Ñ ω

pGppnqq
» ωbp

n

pG ,

which we can identify with an element vn P ωbpp
n´1q

pG . We will refer to vn as the nth
Hasse invariant. By virtue of Proposition 4.4.5, it vanishes if and only if pG has height
ě n` 1.

This construction extends to the case n “ 0 by setting v0 “ p P R » ω
bpp0´1q
pG .

which can be identified with the endomorphism of ω
pG induced by the map rps : pG Ñ pG;

note that p vanishes in R if and only if pG has height ě 1 (Corollary 4.4.8).

Proposition 4.4.10. Let R be a commutative ring and let pG be a formal group of
dimension 1 over R. Then, for each integer n ě 0, there exists a finitely generated
ideal I pG

n Ď R with the following property: a ring homomorphism RÑ R1 annihilates
I
pG
n if and only if the formal group pGR1 has height ě n.
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Proof. Let m be the largest element of t0, . . . , nu for which pG has height ě m. We
proceed by descending induction on m. If m “ n, then the formal group pG itself has
height ě n and we can take I

pG
n “ p0q. Otherwise, let vm P ωbpp

m´1q
pG be the mth Hasse

invariant of pG (Construction 4.4.9), and view vm as an R-module homomorphism
ω
bp1´pmq
pG Ñ R. The image of this map is a finitely generated ideal J Ď R, and the

formal group pGR{J has vanishing mth Hasse invariant and therefore has height ě m`1.
Invoking our inductive hypothesis, we deduce that there exists a finitely generated
ideal I Ď R{J with the property that a ring homomorphism R{J Ñ R1 annihilates
the ideal I if and only if the formal group pGR1 has height ě n. Let I

pG
n denote the

inverse image of I under the reduction map R Ñ R{J . This ideal has the desired
universal property by construction, and is finitely generated because both I and J are
finitely generated.

Definition 4.4.11. Let R be a commutative ring and let pG be a formal group of
dimension 1 over R. We will refer to the ideal I pG

n Ď R as the nth Landweber ideal of
pG.

Remark 4.4.12. Let R be a commutative ring and let pG be a formal group of
dimension 1 over R, and suppose that the dualizing line ω

pG is trivial: that is, it is
isomorphic to R as an R-module. Then, for every n ě 0, the nth Landweber ideal I pG

n

is generated by n elements. Roughly speaking, it is generated by the Hasse invariants
v0 “ p, v1, v2, . . . , vn´1 of Construction 4.4.9, modulo the caveat that each vm is only
well-defined modulo the ideal pv0, . . . , vm´1q (because the construction of vm requires
that the formal group pG has height ě m).

Variant 4.4.13 (Formal Groups over E8-Rings). Let pG be a 1-dimensional formal
group over an E8-ring R. Then pG determines a 1-dimensional formal group pG0 over
the ordinary commutative ring π0pRq. For each n ě 0, we set I

pG
n “ I

pG0
n Ď π0pRq. We

will refer to I
pG
n as the nth Landweber ideal of the formal group pG.

4.4.4 p-Divisibility of 1-Dimensional Formal Groups

We now use the theory of heights to formulate a criterion for p-divisibility of
1-dimensional formal groups.

Theorem 4.4.14. Let R be a complete adic E8-ring. Assume that p is topologically
nilpotent in π0pRq and let pG be a 1-dimensional formal group over R. Fix an integer
n ě 1. The following conditions are equivalent:
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p1q There exists a formally connected p-divisible group G of height n and an equiva-
lence pG » G˝.

p2q For every point x P | SpfpRq| Ď | SpecpRq|, the formal group pGκpxq has height n
(see Definition 4.4.17 below).

Example 4.4.15. Let R be an E8-ring and let pG be a 1-dimensional formal group
over R. Suppose that R is complete with respect to the nth Landweber ideal I pG

n for
some n ě 1 (in particular, R is ppq-complete) and that I

pG
n`1 “ π0pRq. Then the pair

pR, pGq satisfies the requirements of Theorem 4.4.14, where we endow π0pRq with the
I
pG
n -adic topology. Consequently, the formal group pG can be realized as the identity

component of an (essentially unique) p-divisible group G of height n.

Before giving the proof of Theorem 4.4.14, let us introduce some useful terminology.

Definition 4.4.16. Let R be an E8-ring and let pG be a 1-dimensional formal group
over R. We will say that pG has height ă n if the nth Landweber ideal I pG

n is equal to
π0pRq (see Variant 4.4.13). Equivalently, we say that pG has height ă n if there does
not exist a point x P | SpecpRq| for which the fiber pGκpxq has height ě n, as a formal
group over the residue field κpxq.

Definition 4.4.17. Let R be a commutative ring and let pG be a 1-dimensional formal
group over R. We will say that pG has exact height n if it has height ě n (Definition
4.4.1) and height ă n` 1 (Definition 4.4.16).

Remark 4.4.18. Let R be a commutative ring and let pG be a 1-dimensional formal
group over R. Then pG has exact height n if and only if I pG

n “ p0q and I
pG
n`1 “ R.

The first condition guarantees that the Hasse invariant vn P ωbpp
n´1q

pG is well-defined,
and the second condition is equivalent to the requirement that vn is a generator of
ω
bppn´1q
pG .

Remark 4.4.19. Let R be a commutative ring and let pG be a 1-dimensional formal
group over R. If n ą 0, then pG has exact height n if and only if p “ 0 in R and the
map p : pG Ñ pG factors as a composition

pG
ϕn
xG
ÝÝÑ pGppnq α

ÝÑ pG,

where ϕn
pG denotes the nth iterate of the relative Frobenius map and α is an isomorphism

of formal groups.
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Remark 4.4.20. Let R be a commutative ring and let pG be a 1-dimensional formal
group over R. The following conditions are equivalent:

p1q The formal group pG has exact height 0.

p2q The prime number p is invertible in R.

p3q The map p : pG Ñ pG is an isomorphism.

Remark 4.4.21. Let κ be a field of characteristic p and let pG be a 1-dimensional
formal group over κ. Then one of the following possibilities occurs:

paq There exists a unique integer n ě 1 such that pG has exact height n.

pbq The map p : pG Ñ pG vanishes.

In case pbq, pG is not a p-divisible formal group (in fact, one can show that pG is
isomorphic to the formal additive group pGa).

4.4.5 The Proof of Theorem 4.4.14

We will deduce Theorem 4.4.14 from the following standard algebraic assertion:

Proposition 4.4.22. Let R be a commutative Fp-algebra and let pG be a 1-dimensional
formal group over R having exact height n. Then there exists a connected p-divisible
group G over R of height n and an isomorphism pG » G˝.

Proof. Let pGrps denote the fiber of the map p : pG Ñ pG. By virtue of Theorem 2.3.20
(and Remark 2.3.25), it will suffice to show that Ω8 pGrps is (representable by) a finite
flat R-algebra of degree pn. Using Remark 4.4.19, we deduce that pGrps can also be
identified with the fiber of the iterated relative Frobenius map ϕn

pG : pG Ñ pGppnq, from
which the desired result follows immediately (note that Zariski locally on | SpecpRq|,
this can be identified with the map of formal schemes SpfpRrrtssq Ñ SpfpRrrtpnssq).

Proof of Theorem 4.4.14. Let R be a complete adic E8-ring with p topologically
nilpotent in π0pRq, and let pG be a formal group over R. Suppose first that condition p2q
is satisfied. The condition that pGκpxq has height ě n for each x P | SpfpRq| Ď | SpecpRq|
guarantees that we can choose a finitely generated ideal of definition I Ď π0pRq which
contains the nth Landweber ideal I pG

n . Then pGπ0pRq{I is a formal group of height ě n

over the commutative ring π0pRq{I. Using the assumption that pGκpxq has height ď n

at each point x P | SpfpRq|, we deduce that pGπ0pRq{I has exact height n. Applying
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Proposition 4.4.22, we see that pGπ0pRq{I can be realized as the identity component of
a connected p-divisible group G1 of height n over π0pRq{I. In particular, pGπ0pRq{I is a
p-divisible formal group over π0pRq{I, so Theorem 2.3.26 implies that pG is a p-divisible
formal group over R. We can therefore identify pG with the identity component G˝,
where G is a formally connected p-divisible group over R. Corollary 2.3.13 then
supplies an equivalence G1 » Gπ0pRq{I , so that G must have height n at every point
x P | SpfpRq| Ď | SpecpRq|. Since every closed subset of | SpecpRq| has nonempty
intersection with | SpfpRq|, it follows that G is a p-divisible group of height n, which
completes the proof of p1q.

We now show that p1q ñ p2q. Assume that pG » G˝, where G is a formally
connected p-divisible group of height n over R. We wish to show that, for each point
x P | SpfpRq| Ď | SpecpRq|, the formal group pGκpxq has height n. Note that since
multiplication by p is nonzero on the connected p-divisible group Gκpxq, it is also
nonzero on the formal group pGκpxq » G˝

κpxq (Corollary 2.3.13). Consequently, there
exists some positive integer m such that pGκpxq has exact height m (Remark 4.4.21).
Applying Proposition 4.4.22, we deduce that pGκpxq is the identity component of a
connected p-divisible group G1 of height m over κpxq. It follows from Corollary 2.3.13
that the p-divisible groups Gκpxq and G1 are isomorphic, so we must have m “ n.

4.4.6 Descending Formal Groups Along the Frobenius

The following fact about formal groups of exact height n will be useful in §5:

Proposition 4.4.23. Let R be commutative Fp-algebra and let FGroup“npRq denote
the full subcategory of FGrouppRq spanned by those formal groups over R which are 1-
dimensional of exact height n. Then the extension of scalars functor FGroup“npRq Ñ
FGroup“npR1{p8q is an equivalence of categories.

Remark 4.4.24. In fact, one can prove a stronger assertion: for each n ą 0, the
moduli stack of formal groups of exact height n can be realized as a gerbe for a
profinite group (so that FGroup“npRq depends only on the category of finite étale
R-algebras). However, we will not need this stronger assertion.

Proof of Proposition 4.4.23. For every Fp-algebra R, let FGroupϕnpRq denote the
category whose objects are pairs ppG, ρq, where pG is a formal group over R and ρ :
pGppnq » pG is an isomorphism of formal groups; here pGppnq denotes the n-fold Frobenius
pullback of pG; a morphism from ppG, ρq to ppG1, ρ1q in the category FGroupϕnpRq is
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given by a map of formal groups f : pG Ñ pG1 for which the diagram

pGppnq ρ //

f pp
nq

��

pG
f
��

pG1ppnq ρ1 // pG1

commutes. Note that, for each object ppG, ρq P FGroupϕnpRq, the Frobenius pullback
ppGppnq, ρpp

nqq is also an object of FGroupϕnpRq. Moreover, the relative Frobenius map
ϕn : pG Ñ pGppnq and ρ : pGppnq Ñ pG can be regarded as morphisms in FGroupϕnpRq.
Unwinding the definitions, we can identify FGroup“npRq with the full subcategory of
FGroupϕnpRq spanned by those objects ppG, ρq for which pG is 1-dimensional and the
composite map

pG ϕn
ÝÑ pGppnq ρ

ÝÑ pG

coincides with multiplication by p. Consequently, to show that extension of scalars
determines an equivalence of categories FGroup“npRq Ñ FGroup“npR1{p8q, it will
suffice to show that it determines an equivalence of categories FGroupϕnpRq Ñ
FGroupϕnpR1{p8q.

For every commutative Fp-algebra R, let Hyp˚pRq denote the category of pointed
formal hyperplanes over R. We let Hypϕn˚ pRq denote the category whose objects
are pairs pX, ρq, where X is a pointed formal hyperplane over R and ρ : Xppnq » X

is an isomorphism of pointed formal hyperplanes. Note that FGroupϕnpRq can be
identified with the category of abelian group objects of Hypϕn˚ pRq. Consequently, to
prove Proposition 4.4.23, it will suffice to show that the extension of scalars functor
Hypϕn˚ pRq Ñ Hypϕn˚ pR1{p8q is an equivalence of categories.

For every Fp-algebra R and every integer m ě 0, let CmpRq denote the category
of augmented R-algebras which have the form

À

0ďiďm Symi
RpMq, where M is a

projective R-module of finite rank, and let Cϕnm pRq denote the category of pairs pA, ρq
where A P Cm and ρ : A » App

nq is an isomorphism in CmpRq. The category of pointed
formal hyperplanes Hyp˚pRq can be identified with the inverse limit of the tower

¨ ¨ ¨ Ñ CmpRq Ñ Cm´1pRq Ñ Cm´2pRq Ñ ¨ ¨ ¨ Ñ C0pRq » ˚,

and this induces an identification of Hypϕn˚ pRq with the limit of the tower tCϕnm pRqu.
We are therefore reduced to showing that, for each m ě 0, the extension of scalars
functor Cϕnm pRq Ñ Cϕ

n

m pR
1{p8q is an equivalence of categories. However, it is easy to

see that the construction R ÞÑ Cϕnm pRq commutes with filtered colimits (since algebras
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of the form
À

0ďiďm Symi
RpMq are finitely presented over R). Writing the perfection

Rfrmros´´{p8 as the direct limit of the sequence R ϕR
ÝÝÑ R

ϕR
ÝÝÑ R

ϕR
ÝÝÑ RÑ ¨ ¨ ¨ , we are

reduced to proving that the Frobenius map ϕR : R Ñ R induces an equivalence of
categories Cϕnm pRq Ñ Cϕ

n

m pRq, which follows immediately from the definition.

Corollary 4.4.25. Let R0 be a perfect Fp-algebra, let G0 be a connected 1-dimensional
p-divisible group of exact height n over R0, and let G P BTp

pRun
G0q be its universal de-

formation. Then the kernel of the augmentation map ε : π0pR
un
G0q is the nth Landweber

ideal IG˝

n Ď π0pR
un
G0q.

Proof. Since the formal group G˝
π0pRq{ kerpεq » G˝

0 has height ě n, it is clear that the
nth Landweber ideal IG˝

n is contained in the kernel kerpεq. We wish to prove the
reverse inclusion. Set R “ π0pR

un
G0q{I

G˝

n and let I Ď R be the image of kerpεq (that is,
the kernel ideal of the natural map RÑ R0). Then the ideal I is finitely generated
and the commutative ring R is I-complete (since Run

G0 is complete with respect to
kerpεq). We can regard the Fp-algebra R{I2 as a square-zero extension of R0 by I{I2.
Since R0 is perfect, this square-zero extension admits a unique splitting s : R0 Ñ R{I2.
Let G1 denote the p-divisible group over R{I2 obtained from G0 by extending scalars
along s. We then have a pair of p-divisible groups G1 and GR{I2 over the commutative
ring R{I2, and a canonical isomorphism α0 between their restrictions to SpecpR0q.
Since the identity components G1˝ and G˝

R{I2 have exact height n and the projection
map R{I2 Ñ R0 induces an equivalence of perfections, Proposition 4.4.23 guarantees
that we can lift α0 uniquely to an isomorphism of formal groups G1˝ » G˝

R{I2 , or
equivalently to an isomorphism of p-divisible groups α : G1 » GR{I2 (since both G1

and GR{I2 are connected). Invoking the universal property of the spectral deformation
ring Run

G0 , we conclude that the canonical map Run
G0 Ñ R{I2 factors through s. In

particular, s is surjective, so that the quotient I{I2 vanishes. Since R is I-complete,
the ideal I is contained in every maximal ideal m of R. It follows that the quotient
I{mI also vanishes, so that (by Nakayama’s lemma) the localization Im vanishes.
Allowing m to vary, we conclude that I » kerpεq{IG˝

n vanishes, so that kerpεq “ IG˝

n

as desired.

4.5 The Kpnq-Local Case
Throughout this section, we fix a prime number p. Let Kpnq denote the nth Morava

K-theory (at the prime p). Our goal is to supply a purely algebraic criterion which
can be used to determine when a complex periodic ring spectrum A is Kpnq-local.
First, let us introduce some terminology.
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Definition 4.5.1. Let A be a ppq-local E8-ring and let pG be a formal group of
dimension 1 over A. Then pG determines a 1-dimensional formal group over the
commutative ring π0A, which we will denote by pGπ0A. For each n ě 0, we set
I
pG
n “ I

pGπ0A
n . We will refer to I

pG
n as the nth Landweber ideal of pG.

In the special case where A is complex periodic and pG “ pGQ
A is the Quillen formal

group, we will denote the Landweber ideal I pG
n simply by IAn , and refer to it as the

nth Landweber ideal of A. Let pGQn
A denote the formal group obtained from pGQ0

A

by extending scalars along the quotient map π0pAq Ñ π0pAq{I
A
n . Then pGQn

A has
height ě n, and its dualizing line is given by π2pAq{I

A
nπ2pAq (see Example 4.2.19).

We let vn denote the nth Hasse invariant of pGQn
A , which we regard as an element

of π2pn´2pAq{I
A
nπ2pn´2pAq. Then the ideal IAn`1 is generated by IAn together with

vnπ2´2pnpAq, where vn P π2pn´2pAq is any lift of vn.

We can now state our main result:

Theorem 4.5.2. Let A be a ppq-local complex periodic E8-ring and let n be a positive
integer. Then A is Kpnq-local if and only if the following conditions are satisfied:

paq The E8-ring A is complete with respect to the nth Landweber ideal IAn Ď π0pAq.

pbq The pn` 1qst Landweber ideal IAn`1 is equal to π0pAq. In other words, the formal
group pGQ0

A has height ď n, in the sense of Definition 4.4.16.

Let A be a ppq-local complex periodic E8-ring. Hypothesis paq of Theorem 4.5.2 is
equivalent to the requirement that each homotopy group πmpAq is IAn -complete, when
regarded as a discrete module over π0pAq (Theorem SAG.7.3.4.1 ). Since A is weakly
2-periodic, it suffices to verify this condition for m P t0, 1u. In particular, we obtain
the following:

Corollary 4.5.3. Let A be an even periodic ppq-local E8-ring and let n be a positive
integer. Then A is Kpnq-local if and only if the commutative ring π0pAq is IAn -complete
and the formal group pGQ0

A has height ď n.

4.5.1 Kpnq-Locality of Modules

We will deduce Theorem 4.5.2 from the following more general assertion:

Proposition 4.5.4. Let A be a ppq-local complex periodic E8-ring, let M be an A-
module, and let n be a positive integer. Then M is Kpnq-local if and only if the
following conditions are satisfied:
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paq The module M is complete with respect to the nth Landweber ideal IAn Ď π0pAq.

pbq Let vn P π2pn´2pAq{I
A
nπ2pn´2pAq be as in Definition 4.5.1 and let vn P π2pn´2pAq

be any lift of vn. Then multiplication by vn induces an equivalence from Σ2pn´2M

to M (note that if condition paq is satisfied, then this condition is independent
of the choice of vn).

Proof of Theorem 4.5.2 from Proposition 4.5.4. Suppose first that A is Kpnq-local,
and let vn P π2pn´2pAq be a lift of vn P π2pn´2pAq{I

A
nπ2pn´2pAq. It follows from

Proposition 4.5.4 that A is complete with respect to IAn and that vn is invertible in
π˚pAq. Since IAn`1 contains the image of the map π2´2pnA

vn
ÝÑ π0A, it follows that

IAn`1 “ π0pAq.
Now suppose that conditions paq and pbq of Theorem 4.5.2 are satisfied. Then

IAn`1 “ π0pAq, so that π0pAq is generated by IAn together with the image of the map
vn : π2´2pnpAq Ñ π0pAq. It follows that there exists an element x P π2´2pnpAq such
that vnx ” 1 mod IAn . Condition paq implies that π0pAq is IAn -complete, so that
vnx is invertible in π0pAq (Corollary SAG.7.3.4.9 ). Consequently, vn is an invertible
element of the graded ring π˚pAq, so that A is Kpnq-local by virtue of Proposition
4.5.4.

4.5.2 The Proof of Proposition 4.5.4

We need the following simple observation:

Lemma 4.5.5. Let A be a weakly 2-periodic E8-ring, let x P π2mpAq, and let I Ď
π0pAq be an ideal which contains the image of the map π´2mpAq Ñ π0pAq given by
multiplication by x. Let M be an A-module. If x induces an equivalence Σ2mM ÑM ,
then M is I-local.

Proof. The assertion is local with respect to the Zariski topology on A. We may
therefore assume that π´2pAq contains an element t which is invertible in π˚pAq. In
this case, multiplication by the element tmx P I Ď π0A induces an equivalence from
M to itself, so that M is ptmxq-local and therefore I-local.

Proof of Proposition 4.5.4. Let A be a ppq-local complex periodic E8-ring and let M
be an A-module. Suppose first that M is Kpnq-local; we will show that conditions
paq and pbq of Proposition 4.5.4 are satisfied. We begin by proving paq. By virtue
of Corollary SAG.7.3.3.3 , it will suffice to show that M is ptq-complete, for each
element t P IAn . Let N be an Ar1{ts-module; we will show that the mapping space
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MapModApN,Mq vanishes. Since M is Kpnq-local, it will suffice to show that KpnqbSN
vanishes. Note that Kpnq bS N can be viewed as a module over the ring spectrum
Kpnq bS Ar1{ts. We are therefore reduced to showing that B “ Kpnq bS Ar1{ts
vanishes. This is clear, since the classical Quillen formal group pGQ0

B has height n
(since it is obtained by extension of scalars from pGQ0

Kpnq) and also height ă n (since it
is obtained by extension of scalars from pGQ0

Ar1{ts. (Beware that Kpnq is not an E8-ring,
or even homotopy commutative at the prime p “ 2; however, the classical Quillen
formal group of Kpnq is still well-defined.)

We now prove pbq. Let f : Σ2pn´2M Ñ M be the map induced by vn; we wish
to prove that f is an equivalence. Since f is a map between Kpnq-local spectra, it
will suffice to show that the induced map Σ2pn´2M bS Kpnq Ñ M bS Kpnq is an
equivalence. This is clear, since the image of vn is invertible in π˚pA bS Kpnqq (by
virtue of the fact that the classical Quillen formal group of A bS Kpnq has height
exactly n).

Now suppose that conditions paq and pbq of Proposition 4.5.4 are satisfied; we wish
to show that the module M is Kpnq-local. For 0 ď m ď n, let vm P π2ppm´1qpAq be
a lift of the mth Hasse invariant vm P π2ppm´1qpAq{I

A
mπ2ppm´1qpAq. Using condition

pbq, we see that M can be regarded as a module over the localization Arv´1
n s; we may

therefore replace A by Arv´1
n s and thereby reduce to the case where vn is invertible in

π˚pAq. We will prove the following more general result for 0 ď m ď n:

p˚mq Let N be a perfect A-module which is IAm-nilpotent. Then the tensor product
M bA N is Kpnq-local.

Note that assertion p˚0q implies that M »M bA A is Kpnq-local. We will prove p˚mq
by descending induction on m. Let us first carry out the inductive step. Assume that
m ă n and that p˚m`1q is satisfied; we will prove that p˚mq is also satisfied. Let N be a
perfect A-module which is IAm-nilpotent. Since M is IAn -complete and N is perfect, the
tensor product M bA N is also IAn -complete. It follows that we can identify M bA N

with the homotopy limit of the tower

tM bA cofibpvkm : Σ2ppm´1qkN Ñ Nqukě0.

Since each cofiber cofibpvkm : Σ2ppm´1qkN Ñ Nq is IAm`1-nilpotent, our inductive
hypothesis guarantees that the tensor product M bA cofibpvkm : Σ2ppm´1qkN Ñ Nq is
Kpnq-local. Passing to the limit, we deduce that M bA N is Kpnq-local.

To complete the proof, it will suffice to show that assertion p˚nq holds. Let N be
a perfect A-module which is IAn nilpotent and let X be a Kpnq-local spectrum; we
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wish to show that the mapping space MapSppX,M bA Nq is contractible. For this,
it will suffice to show that the smash product X bS N

_ vanishes, where N_ denotes
the A-linear dual of N . Let MP denote the periodic complex bordism spectrum
(see Construction 5.3.9). Then the smash product AbS MP is faithfully flat over A
(Theorem 5.3.13 and Proposition 5.3.12). It will therefore suffice to show that the
smash product

X bS N
_
bA pAbS MPq » X bS N

_
bS MP

vanishes.
Let u be an invertible element in π2pMPq. For 0 ď m ď n, choose wm P π0pMPq so

that upm´1wm represents the mth Hasse invariant in π2ppm´1qpMPq{IMP
m π2ppm´1qpMPq.

Then the elements pw0, w1, . . . , wn´1q generate the nth Landweber ideal IMP
n . Note

that IAn and IMP
n generate the same ideal π0pA bS MPq. Since N is perfect and

IAn -nilpotent, it follows that N_ bS MP is a perfect module over A bS MP which
is IMP

n -nilpotent. Since vn is invertible in π˚pAq, the image wn in π0pA bS MPq is
invertible modulo the ideal IMP

n , and therefore acts invertibly on N_ bS MP. We can
therefore identify N_ bS MP with the localization N_ bS MPrw´1

n s.
By construction, the pA bS MPq-module N_ bS MP is a retract of the smash

product

N_
bS cofibpwk0 : MP Ñ MPq bMP ¨ ¨ ¨ bMP cofibpwkn´1 : MP Ñ MPq.

for k " 0. It will therefore suffice to show that each of the smash products

X bS N
_
bS cofibpwk0 : MP Ñ MPq bMP ¨ ¨ ¨ bMP cofibpwkn´1 : MP Ñ MPq

vanishes. Note that such a smash product admits a filtration by kn copies of the
smash product

X bS N
_
bS pcofibpw0 : MP Ñ MPq bMP ¨ ¨ ¨ bMP cofibpwkn´1 : MP Ñ MPqqrw´1

n s.

We complete the proof by observing that the spectrum

X bS pcofibpw0 : MP Ñ MPq bMP ¨ ¨ ¨ bMP cofibpwkn´1 : MP Ñ MPqqrw´1
n s

vanishes, since X is Kpnq-acyclic and the smash product MPrw´1
n s bMP cofibpw0 :

MP Ñ MPq bMP ¨ ¨ ¨ bMP cofibpwkn´1 : MP Ñ MPq can be written as a sum of copies
of Kpnq.
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4.6 The Quillen p-Divisible Group
Let A be a complex periodic E8-ring, and suppose that A is Kpnq-local for some

n ą 0. Then A is complete with respect to the nth Landweber ideal IAn , and the
pn ` 1qst Landweber ideal IAn`1 is equal to A (Theorem 4.5.2). Let us regard A as
a complete adic E8-ring by endowing π0pAq with the IAn -adic topology. Applying
Theorems 4.4.14 and 2.3.26, we deduce that pGQ

A is a p-divisible formal group: that
is, it can be realized as the identity component of an (essentially unique) formally
connected p-divisible group over A. Our goal in this section is to give an explicit
construction of this p-divisible group, which we will denote by GQ

A and refer to as
the Quillen p-divisible group of A. The details of this construction will not be needed
elsewhere in this paper (but will be used in a sequel, where we discuss applications of
these ideas to transchromatic character theory).

4.6.1 The Construction of GQ
A

For the purposes of constructing GQ
A , it will be useful to temporarily abandon the

conventions of Definition 2.0.2 and return to the definition of p-divisible groups given in
[26]: namely, as certain p-torsion objects of the 8-category SpDMnc

A of nonconnective
spectral Deligne-Mumford stacks over A.

Notation 4.6.1. Let Abpfin denote the category of finite abelian p-groups. For each
M P Abpfin, we let M˚ denote the Pontryagin dual of M , given by

M˚
“ HomZpM,Q {Zq.

Let A be an E8-ring. For every space X, we let C˚pX;Aq denote the function
spectrum of (unpointed) maps from X into A. Then C˚pX;Aq is an E8-algebra over
A, so we can regard the spectrum SpecpC˚pX;Aqq as an object of SpDMnc

A .

Construction 4.6.2 (The Quillen p-Divisible Group). Let A be an E8-ring. For every
finite abelian p-group M , we let GQ

ArM s denote the spectrum SpecpC˚pBM˚;Aqq. We
regard the construction M ÞÑ GQ

ArM s as a functor

GQ
A : pAbpfinq

op
Ñ SpDMnc

A .

Theorem 4.6.3. Let A be a complex periodic E8-ring which is Kpnq-local for some
n ą 0. Then the functor M ÞÑ GQ

ArM s of Construction 4.6.2 is a p-divisible group of
height n over A, in the sense of Proposition AV.6.5.5 . In other words:
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p1q For every pair of finite abelian p-groups M and M 1, the canonical map

C˚pBM ;Aq bA C˚pBM 1;Aq Ñ C˚pBpM ˆM 1
q;Aq

is an equivalence of E8-algebras over A.

p2q For every short exact sequence 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 of finite abelian
p-groups, the diagram of E8-algebras

C˚pBM2;Aq //

��

C˚pBM ;Aq

��
A // C˚pBM 1;Aq

is a pushout square in CAlgA.

p3q For each m ą 0, the map C˚pB Z {pm´1 Z;Aq Ñ C˚pB Z {pm Z;Aq is finite flat
of degree pn.

In particular, each C˚pBM ;Aq is finite flat of degree |M |n as an A-module.

Definition 4.6.4. Let A be a complex periodic E8-ring which is Kpnq-local for some
n ą 0. We will refer to the p-divisible group GQ

A of Theorem 4.6.3 as the Quillen
p-divisible group over A.

4.6.2 Universal Flatness

We will need some preliminaries.

Definition 4.6.5. Let A be an E8-ring and let f : X Ñ Y be a map of spaces. We
will say that f is universally A-flat if the following conditions are satisfied:

paq The pullback map C˚pY ;Aq Ñ C˚pX;Aq is finite flat.

pbq For every point y P Y with homotopy fiber Xy “ X ˆY tyu, the diagram of
E8-rings

C˚pY ;Aq //

��

C˚ptyu;Aq

��
C˚pX;Aq // C˚pXy;Aq

is a pushout square; in particular, C˚pXy;Aq is finite flat over A.
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If, in addition, the map C˚pY ;Aq Ñ C˚pX;Aq has degree d, then we will say that f
is universally A-flat of degree d.

Proposition 4.6.6. Let A be an E8-ring and suppose we are given a pullback diagram
of spaces

X 1 f 1 //

��

Y 1

��
X

f // Y.

If f is universally A-flat (of degree d), then f 1 is universally A-flat (of degree d) and
the diagram of E8-rings σ :

C˚pY ;Aq //

��

C˚pY 1;Aq

��
C˚pX;Aq // C˚pX 1;Aq

is a pushout square.

Proof. We first show that σ is a pushout square: that is, it induces an equivalence of
E8-rings

θY 1 : C˚pX;Aq bC˚pY ;Aq C
˚
pY 1;Aq Ñ C˚pX 1;Aq.

Observe that since C˚pX;Aq is finite flat over C˚pY ;Aq, the construction Y 1 ÞÑ θY 1

carries colimits in S{Y to limits in the8-category Funp∆1,CAlgq. Since the8-category
S{Y 1 is generated under small colimits by maps tyu ãÑ Y for y P Y , we can reduce to
the case where Y 1 is a point, in which case the desired result follows from condition
pbq of Definition 4.6.5.

Since σ is a pushout square, the map C˚pY 1;Aq Ñ C˚pX 1;Aq is finite flat (and
has degree d if C˚pY ;Aq Ñ C˚pX;Aq has degree d). To complete the proof, it will
suffice to show that f 1 also satisfies condition pbq of Definition 4.6.5: that is, for every
point y1 P Y 1, the right square in the diagram

C˚pY ;Aq //

��

C˚pY 1;Aq

��

// C˚pty1u;Aq

��
C˚pX;Aq // C˚pX 1;Aq // C˚pX 1

y1 ;Aq

is a pushout diagram of E8-rings. This is clear, since the left square and the outer
rectangle are pushout diagrams.
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The main ingredient in the proof of Theorem 4.6.3 is the following:
Proposition 4.6.7. Let A be a complex periodic E8-ring which is Kpnq-local for
some integer n ą 0. Then the pth power map p : CP8

Ñ CP8 is universally A-flat
of degree pn.

We will give the proof of Proposition 4.6.7 in §4.6.3.
Corollary 4.6.8. Let A be a complex periodic E8-ring which is Kpnq-local for some
integer n ą 0 and let f : M Ñ N be a surjection of finite abelian p-groups. Then the
induced map of classifying spaces BM Ñ BN is universally A-flat of degree | kerpfq|n.
Proof. Proceeding by induction on the order of kerpfq, we can reduce to the case
where kerpfq has order p. Let Up1q denote the circle group, so that there exists an
embedding α0 : kerpfq Ñ Up1q. Since Up1q is injective as an abelian group, we can
extend α0 to a group homomorphism α : M Ñ Up1q. The map α fits into a pullback
diagram of abelian groups

M

α
��

f // N

��
Up1q p // Up1q.

Passing to classifying spaces, we obtain a homotopy pullback square

BM //

��

BN

��
CP8 p // CP8 .

By virtue of Proposition 4.6.6, we are reduced to showing that the map p : CP8
Ñ

CP8 is universally A-flat of degree pn, which follows from Proposition 4.6.7.
Corollary 4.6.9. Let A be a complex periodic E8-ring which is Kpnq-local for some
n ą 0, and suppose we are given a pullback diagram of finite abelian p-groups

M 1 //

��

M

��
N 1 // N

where the vertical maps are surjective. Then the diagram σ :

C˚pBM 1;Aq C˚pBM ;Aqoo

C˚pBN 1;Aq

OO

C˚pBN ;Aq

OO

oo
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is a pushout square in CAlgA.

Proof. Combine Corollary 4.6.8 with Proposition 4.6.6.

Proof of Theorem 4.6.3. Let A be a complex periodic E8-ring which is Kpnq-local for
some n ą 0. We wish to show that the construction

M ÞÑ GQ
ArM s “ SpecpC˚pBM˚;Aqq

satisfies conditions p1q, p2q, and p3q of Theorem 4.6.3. Conditions p1q and p2q are
special cases of Corollary 4.6.9, and condition p3q follows from Corollary 4.6.8.

4.6.3 The Proof of Proposition 4.6.7

Let A be a complex periodic E8-ring; we wish to show that the map p : CP8
Ñ

CP8 is universally A-flat of degree pn. Conditions paq and pbq of Definition 4.6.5
follow immediately from the following results:

Proposition 4.6.10. Let A be an E8-ring which is complex periodic and Kpnq-local
for some integer n ě 1. Then the map p : CP8

Ñ CP8 induces map of E8-rings
φ : C˚pCP8;Aq Ñ C˚pCP8;Aq which is finite flat of rank pn.

Proposition 4.6.11. Let A be a complex orientable E8-ring. For every fiber sequence
of spaces rX Ñ X

φ
Ñ CP8, the canonical map

C˚pX;Aq bC˚pCP8;Aq AÑ C˚p rX;Aq

is an equivalence.

Let us begin with the proof of Proposition 4.6.11, which is slightly easier (note
that it does not require the hypothesis that A is Kpnq-local).

Remark 4.6.12. Let A be an E8-ring, and let e be a complex orientation of A. We
can regard e as an element of

π´2 fibpC˚pCP8;Aq Ñ C˚p˚;Aqq.

Given any commutative diagram of spaces σ :

rX //

��

˚

��
X // CP8,
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the pullback of e determines an element ξσ P π´2 fibpC˚pX;Aq Ñ C˚p rX;Aqq. For
every space Y , let AY P FunpY ; ModAq denote the constant local system (of A-module
spectra) on Y with value A. Multiplication by ξσ then determines a map

Σ´2AX Ñ fibpAX Ñ π˚A rXq.

We claim that if σ is a pullback diagram, then this map is an equivalence: in other
words, we obtain a fiber sequence

Σ´2AX Ñ AX Ñ π˚A rX

of local systems on X. It suffices to verify this stalkwise: that is, we can assume
that X is a point. In this case, we wish to show that ξσ determines an equivalence of
spectra

Σ´2AÑ fibpC˚p˚;Aq Ñ C˚pUp1q;Aqq.

Let σ1 denote the rightmost square in the diagram of spaces

Up1q //

��

˚

��

// ˚

��
˚ // S2 // CP8 .

Here the left square is a pushout, and therefire induces an equivalence

fibpC˚pS2;Aq Ñ C˚p˚;Aqq Ñ fibpC˚p˚;Aq Ñ C˚pUp1q;Aqq.

We are therefore reduced to proving that ξσ1 induces an equivalence

Σ´2AÑ fibpC˚pS2;Aq Ñ C˚p˚;Aqq.

This follows immediately from our assumption that e is a complex orientation.

Remark 4.6.13. Let A be an E8-ring equipped with a complex orientation e, and
suppose we are given a fiber sequence of spaces rX Ñ X Ñ CP8. Then e determines
an element ξ P A2pXq. Using Remark 4.6.12, we deduce the existence of a fiber
sequence of A-module spectra

Σ´2C˚pX;Aq ξ
Ñ C˚pX;Aq Ñ C˚p rX;Aq.
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Proof of Proposition 4.6.11. For every space Y , let AY denote the constant local
system (of A-module spectra) on Y taking the value A. For every local system of
A-module spectra F on CP8, we have a canonical map

eF : C˚pX;Aq bC˚pCP8;Aq C
˚
pCP8; F q Ñ C˚pX;φ˚F q.

Let ψ : ˚ Ñ CP8 be the inclusion of the base point. Unwinding the definitions, we
wish to prove that eF is an equivalence when F “ ψ˚A˚. According to Remark 4.6.13,
a choice of complex orientation of A gives a fiber sequence of local systems

Σ´2ACP8 Ñ ACP8 Ñ ψ˚A˚.

We are therefore reduced to proving that eF is an equivalence when F “ ACP8 ,
which follows immediately from the definitions.

We now turn to the proof of Proposition 4.6.10. We will need a few algebraic
preliminaries.

Notation 4.6.14. Let R be a commutative ring and let ω be an invertible R-module.
For every R-module spectrum M , we let M rrωss denote the product

ś

ně0 ω
bn bRM .

In the special case where ω is the free R-module on a generator x and M is discrete,
the R-module M rrωss is also discrete; we identify elements of M rrωss with formal
sums

ř

ně0 cnx
n, where cn PM .

Let ω1 be another invertible R-module, and suppose we are given a map f : ω1 Ñ
Rrrωss, given by a family of R-module homomorphisms fn : ω1 Ñ ωbn. If f0 “ 0,
then f induces a “composition map” λM : M rrω1ss ÑM rrωss, given informally by the
formula λMpgpx1qq “ pg ˝ fqpxq. More formally, λM is given by the collection of maps

λM,n : M rrω1ss Ñ ωn bRM,

where λM,n “
ř

kě0
ř

n“n1`¨¨¨`nk
λM,n1,...,nk , with λM,n1,...,nk given by the composite

map
M rrω1ss Ñ ω1bk bRM

fn1b¨¨¨bfnk
ÝÝÝÝÝÝÝÑ ωbn bRM.

Lemma 4.6.15. Let R be a commutative ring, I Ď R a finitely generated ideal, n ą 0
a positive integer Let ω and ω1 be invertible R-modules, and let f “ tfmumě0 be a
map from ω1 to Rrrωss. Suppose that fn : ω1 Ñ ωbn is an isomorphism, f0 “ 0, and
fmpω

1q Ď Iωbm for 0 ă m ă n. If M is an I-complete R-module, then the map
λM : M rrω1ss ÑM rrωss of Notation 4.6.14 induces an isomorphism

θM : p
à

0ďmăn
ωbmq bRM rrω

1
ss ÑM rrωss.
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Proof. Note that the maps λM and θM are well-defined for any R-module spectrum M ;
however, the construction is compatible with passage to homotopy groups, so we may
assume without loss of generality that M is discrete. Choose a finite set x1, . . . , xa of
generators for the ideal I. We proceed by induction on a. Suppose a ą 0. For each
b ě 0, let Mb denote the cofiber of the map xb1 : M ÑM . Since M is I-complete, it
can be identified with the limit of the tower of R-module spectra

¨ ¨ ¨ ÑM2 ÑM1 ÑM0 » 0.

It follows that θM is a limit of the tower of morphisms tθMb
ubě0. To prove that θM

is an equivalence, it suffices to show that each θMb
is an equivalence. Since Mb can

be written as a successive extension of b copies of M1, we are reduced to proving
that θM1 is an equivalence. Equivalently, we must show that θN is an equivalence for
N “ π0M1 “ cokerpx1 : M Ñ Mq and N “ π1M1 » kerpx1 : M Ñ Mq. Replacing
M by N , we are reduced to the case where M is annihilated by x1. We may then
replace R by R{px1q and I by its image in R{px1q, which is generated by the images
of the elements x2, x3, . . . , xa P R. The desired result then follows from the inductive
hypothesis.

It remains to handle the case a “ 0: that is, where I is the zero ideal in R. Consider
the filtration

M rrωss “ F 0M rrωss Ě F 1M rrωss Ě ¨ ¨ ¨

where F dM rrωss “
ś

iědpω
bibRMq. Let X “ p

À

0ďmăn ω
bmqbRM rrω

1ss, and define
a filtration X “ F 0X Ě F 1X Ě ¨ ¨ ¨ so that

F dX “
à

0ďmăn
pωbm bR

ź

m`iněd

pω1bi bRMqq.

Then θM is an inverse limit of maps

θd : X{F dX ÑM rrωss{F dM rrωss.

It will therefore suffice to show that each of these maps is an isomorphism. Proceeding
by induction on d, we are reduced to showing that each of the maps of successive
quotients

F dX{F d`1X Ñ F dM rrωss{F d`1M rrωss

is an isomorphism. This follows immediately from our assumption that fn : ω1 Ñ ωbn

is an isomorphism.
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Proof of Proposition 4.6.10. Let A be a complex periodic E8-ring which is Kpnq-local
for some n ą 0. Let R “ π0pAq and set ω “ π2pAq. A choice of complex orientation of
A gives an equivalence C˚pCP8;Aq »

ś

mě0 Σ´2mA, hence isomorphisms of homotopy
groups πmC˚pCP8;Aq » pπmAqrrωss. In particular, we can identify π0C

˚pCP8;Aq
with Rrrωss. The map p : CP8

Ñ CP8 induces a ring homomorphism from Rrrωss

to itself, which is determined by f : ω Ñ Rrrωss given by a family of maps tfm :
ω Ñ ωbmu. Let IAn Ď R be the nth Landweber ideal of A (Definition 4.5.1). Since
the image of pGQ

A in FGrouppπ0pAq{I
A
n q has height ě n, the composite map ω

f
ÝÑ

Rrrωss Ñ pR{IAn qrrωss factors through the subalgebra pR{IAn qrrωp
n
ss. It follows that

fmpωq Ď IAnω
bm for m ă pn. Moreover, the element fpn P ωbpp

n´1q » π2pn´2pAq is a
lift of the Hasse invariant vn P π2pn´2pAq{I

A
nπ2pn´2pAq.

Let B “ B1 “ C˚pCP8;Aq, and regard φ as a map from B to B1. The product
decomposition B1 »

ś

mě0 Σ´2mA gives a collection of A-module maps Σ´2mAÑ B1,
and therefore a collection of B-module maps Σ´2mB Ñ B1. Since A is Kpnq-local,
Theorem 4.5.2 implies that the homotopy groups of A are IAn -complete and that fpn
is an isomorphism. Lemma 4.6.15 guarantees that the map

À

0ďmăpn Σ´2mB Ñ B1 is
an equivalence of B-modules, so that φ is finite flat of rank pn.

4.6.4 The Identity Component of GQ
A

We now show that the Quillen p-divisible group GQ
A bears the promised relationship

to the Quillen formal group pGQ
A :

Theorem 4.6.16. Let A be a complex periodic E8-ring which is Kpnq-local for some
n ą 0, let pGQ

A denote the Quillen formal group of A (Construction 4.1.13), and let GQ
A

denote the Quillen p-divisible group of A (Definition 4.6.4). Then there is a canonical
equivalence α : pGQ

A » GQ
A

˝ of formal groups over A: that is, pGQ
A can be realized as the

identity component of GQ
A.

The proof of Theorem 4.6.16 will require an auxiliary construction.

Notation 4.6.17. Let Latppq denote the category of abelian groups which are either
free Z-modules of finite rank or finite abelian p-groups (see Notation AV.6.4.5 ). Note
that each object M P Latppq can be regarded as a perfect Z-module spectrum, and
therefore admits a dual M_ in the 8-category ModZ. The construction

M ÞÑ Ω8´2M_
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determines a functor of 8-categories pLatppqqop Ñ S. This functor carries an ob-
ject M P Latppq to the classifying space BM˚, where M˚ “ HompM,Up1qq is the
Pontryagin dual of M in the category of locally compact abelian groups. More
concretely:

• If M is a finite abelian p-group, then Ω8´2M_ is the classifying space BM˚ of
the finite abelian p-group M˚ “ HompM,Q {Zq.

• If M is a free abelian group of rank r, then Ω8´2M_ » KpM_, 2q is the
Eilenberg-MacLane space associated to free abelian group M_; noncanonically,
it is homotopy equivalent to a product of r copies of CP8.

Construction 4.6.18. Let A be a Kpnq-local complex periodic E8-ring. For each
object M P Latppq, we let OM denote the E8-algebra over A given by C˚pΩ8´2M_;Aq.
Then:

• If M is a finite abelian p-group, then OM “ C˚pBM˚;Aq is a finite flat A-algebra
of degree |M |n (Corollary 4.6.8).

• If M is a free abelian group, then OM is the dual of C˚pKpM_, 2q;Aq, which is
a smooth coalgebra over A by virtue of Remark 4.1.12.

We let Oě0
M denote the connective cover of OM , which we regard as an E8-algebra

over τě0A. Note that the base point of Ω8´2M determines a ring homomorphism
εM : π0 OM Ñ π0A; we will denote the kernel of this homomorphism by JM Ď π0 OM »

π0 Oě0
M . Note that the ideal JM is always finitely generated. We will regard Oě0

M as an
adic E8-ring by equipping π0 Oě0

M with the JM -adic topology. Then the construction
M ÞÑ SpfpOě0

M q determines a functor

X : pLatppqqop
Ñ FunpCAlgcn

τě0A,Sq.

Remark 4.6.19. Let Lat Ď Latppq be the full subcategory spanned by the free abelian
groups, and let X be as in Construction 4.6.18. By construction, the restriction X|Latop

agrees with the Quillen formal group pGQ
A , regarded as an abelian group object of the

8-category FunpCAlgcn
τě0A,Sq.

Remark 4.6.20. Let X be as in Construction 4.6.18. For every finite abelian p-
group M , we can identify XpMq “ Spfpτě0C

˚pBM˚;Aqq with the subfunctor of
Specpτě0C

˚pBM˚;Aqq » GQ
ArM s, whose value on an B P CAlgcn

τě0A is the summand
of MapModZ

pM,GQ
ApBqq consisting of those maps SpecpBq Ñ GQ

ArM s which factor
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through the zero section at the level of topological spaces: in other words, the
summand given by the fiber of the map GQ

ArM spBq Ñ GQ
ArM spB

redq. It follows
that the restriction of X to the subcategory pAbpfinq

op Ď pLatppqqop is a p-torsion
object of the 8-category FunpCAlgcn

τě0A,Sq in the sense of Proposition AV.6.5.5 . In
particular, we can identify X|pAbpfinq

op with the functor CAlgcn
τě0A Ñ Modcn

Z given by
B ÞÑ fibpGQ

ApBq Ñ GQ
ApB

redqq.

We will deduce Theorem 4.6.16 from the following:

Proposition 4.6.21. Let A be a Kpnq-local complex periodic E8-ring and let X :
pLatppqqop Ñ FunpCAlgcn

τě0A,Sq be the functor of Construction 4.6.18. Then X is a
right Kan extension of X|Latop.

We defer the proof of Proposition 4.6.21 until the end of this section.

Corollary 4.6.22. Let A be a Kpnq-local complex periodic E8-ring. Then, for every
object B P CAlgcn

τě0A, we have a canonical equivalence

fibppGQ
ApBq Ñ pGQ

ApBqr1{psq » fibpGQ
ApBq Ñ GQ

ApB
red
qq.

Proof. Combining Remarks 4.6.19 and 4.6.20 with Proposition 4.6.21, we deduce that
the functor B ÞÑ fibpGQ

ApBq Ñ GQ
ApB

redqq can be identified with the functor pGQ
Arp

8s

of Construction AV.6.4.7 .

Proof of Theorem 4.6.16. Let A be a Kpnq-local complex periodic E8-ring and let
E Ď CAlgcn

τě0A be the full subcategory spanned by those connective E8-algebras over
τě0A which are truncated and ppq-nilpotent. It follows from Lemma 2.3.24 that for
B P E , the localization pGQ

ApBqr1{ps vanishes. Consequently, Corollary 4.6.22 supplies
an equivalence

pGQ
ApBq » fibpGQ

ApBq Ñ GQ
ApB

red
qq “ pGQ

Aq
˝
pBq,

depending functorially on B P E . Applying Proposition 2.1.1, we obtain an equivalence
of formal groups pGQ

A » pGQ
Aq
˝.

We now turn to the proof of Proposition 4.6.21. By virtue of Remark AV.6.4.8 , it
will suffice to establish the following:
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Proposition 4.6.23. Let A be a Kpnq-local complex periodic E8-ring and let M be a
finite abelian p-group. Then there exists a short exact sequence 0 Ñ Λ1 Ñ Λ ÑM Ñ 0,
where Λ is a free abelian group of finite rank, for which the diagram

XpMq //

��

XpΛq

��
Xp0q // XpΛ1q

is a pullback square in the 8-category FunpCAlgcn
τě0A,Sq.

Proof. Choose a direct sum decomposition M » Z {pe1 Z‘ ¨ ¨ ¨ ‘ Z {per Z. We can
then take Λ “ Zr and Λ1 “ pe1 Z‘ ¨ ¨ ¨ ‘ per Z. It follows from Remark 4.6.19 that
the functor X|Latop commutes with finite products, and from Remark 4.6.20 that the
functor X|pAbpfinq

op commutes with finite products. We may therefore reduce to the
case r “ 1. In this case, we wish to show that the pullback diagram of spaces σ :

B Z {pe Z //

��

CP8

pe

��
˚ // CP8

induces a pullback diagram of functors τ :

Spfpτě0C
˚pB Z {pe Z;Aqq //

��

Spfpτě0C
˚pCP8;Aqq

��
Spfpτě0Aq // Spfpτě0C

˚pCP8;Aqq.

It follows from iterated application of Proposition 4.6.7 that the diagram σ deter-
mines a pushout square of E8-rings σ1 :

C˚pB Z {pe Z;Aq C˚pCP8;Aqoo

A

OO

C˚pCP8;Aqoo

OO

in which the vertical maps are finite flat of degree pne. It follows that σ1 induces a
pushout square of connective covers σ2:

τě0C
˚pB Z {pe Z;Aq τě0C

˚pCP8;Aqoo

τě0A

OO

τě0C
˚pCP8;Aq.oo

OO
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Since the lower horizontal map is surjective on π0, it follows that the upper horizontal
map is also surjective on π0; consequently, the ideal JZ {pe Z Ď π0C

˚pB Z {pe Z;Aq
appearing in Construction 4.6.18 is generated by the image of JZ Ď π0C

˚pCP8;Aq.
It follows that σ2 is also a pushout diagram in the 8-category of adic E8-rings, so
that τ » Spfpσ2q is a pullback diagram of (functors represented by) formal spectral
Deligne-Mumford stacks.

5 Lubin-Tate Spectra
Let κ be a perfect field of characteristic and let pG0 be a 1-dimensional formal

group of height n ă 8 over κ. Then pG0 admits a universal deformation pG defined
over a complete local Noetherian ring RLT (see Theorem 3.0.1). Morava observed
that pG can be realized as the classical Quillen formal group of an even periodic ring
spectrum E, and Goerss-Hopkins-Miller proved that E admits an essentially unique
E8-ring structure. We begin with a brief review of their work, which will require a bit
of terminology.

Notation 5.0.1. We define a category FG as follows:

• The objects of FG are pairs pR, pGq, where R is a commutative ring and pG is a
1-dimensional formal group over R.

• A morphism from pR, pGq to pR1, pG1q in the category FG is a pair pf, αq, where
f : R Ñ R1 is a ring homomorphism and α : pG1 » pGR1 is an isomorphism of
formal groups over R1.

If A is a complex periodic E8-ring and IAn denotes the nth Landweber ideal of
the classical Quillen formal group pGQ0

A , we let pGQn
A denote the formal group obtained

from pGQ0
A by extension of scalars along the surjection π0pAq Ñ π0pAq{I

A
n (so that

pGQn
A has height ě n).

Theorem 5.0.2 (Goerss-Hopkins-Miller). Let κ be a perfect field of characteristic
p ą 0 and let pG0 be a 1-dimensional formal group of height n ă 8 over κ. Then there
exists a complex periodic E8-ring E and an isomorphism

α : pκ, pG0q » pπ0pEq{I
E
n , pG

Qn
E q

in the category FG with the following features:
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piq The E8-ring E is even periodic and the composite map

pπ0pEq, pGQ0
E q Ñ pπ0pEq{I

E
n , pG

Qn
E q

α´1
ÝÝÑ pκ, pG0q

exhibits the classical Quillen formal group pGQ0
E as a universal deformation of

pG0 (in the sense of Theorem 3.0.1). In particular, π0pEq can be identified with
the Lubin-Tate ring RLT of pG0.

piiq The E8-ring E is Kpnq-local. Moreover, for every complex periodic Kpnq-local
E8-ring A, composition with α induces a homotopy equivalence

MapCAlgpE,Aq » HomFGppκ, pG0q, pπ0pAq{I
A
n , pG

Qn
A qq.

In particular, the mapping space MapCAlgpE,Aq is discrete.

Note that properties piq and piiq of Theorem 5.0.2 have a different character. We
can regard piq as a description of the homotopy groups of the spectrum E: they are
given by the formula

πmpEq »

#

ωbk
pG if m “ 2k is even

0 if m is odd,

where pG is the universal deformation of pG0. Roughly speaking, this gives information
about the structure of maps to the spectrum E. By contrast, property piiq gives
information about maps from E to other Kpnq-local E8-rings A: they are given by
the formula

MapCAlgpE,Aq »

#

HomFGppκ, pG0q, pπ0pAq{I
A
n , pG

Qn
A qq for A complex periodic

H otherwise.

Once we know that there exists an E8-ring E (and an isomorphism α) having both of
these properties, either one can be taken as a characterization of E:

Proposition 5.0.3. Let κ be a perfect field of characteristic p ą 0 and let pG0 be a
1-dimensional formal group of height n ă 8 over κ. Suppose that E is a Kpnq-local
complex periodic E8-ring and that we are given a map

α : pκ, pG0q Ñ pπ0pEq{I
E
n , pG

Qn
E q

which satisfies condition piiq of Theorem 5.0.2. Then α is an isomorphism which also
satisfies condition piq.
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Proof. By virtue of Theorem 5.0.2, we can choose a complex periodic E8-ring E 1 and
an isomorphism of formal groups

α1 : pκ, pG0q » pπ0pE
1
q{IE

1

n , pG
Qn
E1 q

which satisfies conditions piq and piiq of Theorem 5.0.2. Since the map α satisfies
condition piiq of Theorem 5.0.2, there is an essentially unique morphism of E8-rings
f : E Ñ E 1 for which α1 factors as a composition

pκ, pG0q
α
ÝÑ pπ0pEq{I

E
n , pG

Qn
E q

f
ÝÑ pπ0pE

1
q{IE

1

n , pG
Qn
E1 q.

For any complex periodic Kpnq-local E8-ring A, we have a commutative diagram

MapCAlgpE
1, Aq

˝f //

**

MapCAlgpE,Aq

tt

HomFGppκ, pG0q, pπ0pAq{I
A
n , pG

Qn
A qq

where the vertical maps are homotopy equivalences. It follows that the upper horizontal
map is also a homotopy equivalence. Applying Yoneda’s lemma, we deduce that f is
a homotopy equivalence. It follows that α is an isomorphism which exhibits E as a
Lubin-Tate spectrum of pG0.

Proposition 5.0.4. Let κ be a perfect field of characteristic p ą 0 and let pG0 be
a 1-dimensional formal group of height n ă 8 over κ. Suppose that E is an even
periodic E8-ring and that we are given a map Kpnq-local complex periodic E8-ring
and that we are given a map of formal groups

β : pπ0pEq{I
E
n , pG

Qn
E q Ñ pκ, pG0q

for which the composite map

pπ0pEq, pGQ0
E q Ñ pπ0pEq{I

E
n , pG

Qn
E q

β
ÝÑ pκ, pG0q

exhibits the classical Quillen formal group pGQ0
E as a universal deformation of pG0.

Then β is an isomorphism, and the inverse map α “ β´1 satisfies condition piiq of
Theorem 5.0.2.

Proof. If β exhibits pGQ0
E is a universal deformation of pG0, then we can identify π0pEq

with the Lubin-Tate ring RLT of pG0. Using Corollary 4.4.25, we see that the nth
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Landweber ideal IEn is the maximal ideal of π0pEq, so that β is an isomorphism. Note
also that E is complete with respect to IEn and IEn`1 vanishes, so that the E8-ring E
is Kpnq-local (Theorem 4.5.2).

By virtue of Theorem 5.0.2, we can choose a complex periodic E8-ring E 1 and an
isomorphism of formal groups

α1 : pκ, pG0q » pπ0pE
1
q{IE

1

n , pG
Qn
E1 q

which satisfies conditions piq and piiq of Theorem 5.0.2. Using piiq, we see that there is
an essentially unique morphism of E8-rings g : E 1 Ñ E for which the composite map

pκ, pG0q
α1
ÝÑ pπ0pE

1
q{IE

1

n , pG
Qn
E1 q

g
ÝÑ pπ0pEq{I

E
n , pG

Qn
E q

is equal to α “ β´1. We then have a commutative diagram of formal groups

pπ0pE
1q, pGQ0

E1 q
g //

''

pπ0pEq, pGQ0
E q

xx

pκ, pG0q,

where the vertical maps both exhibit their domains as universal deformations of pG0.
It follows that g induces an isomorphism of commutative rings π0pE

1q Ñ π0pEq. Since
the E8-rings E and E 1 are both even periodic, we conclude that g is an equivalence.
It follows that α also satisfies condition piiq of Theorem 5.0.2.

Remark 5.0.5 (Uniqueness). Let κ be a perfect field of characteristic p ą 0 and let pG0

be a 1-dimensional formal group of height n ă 8 over κ. It follows immediately from
the definition that if there exists a complex periodic E8-ring E satisfying conclusion
piiq of Theorem 5.0.2, then E is unique up to equivalence (as an object of the 8-
category CAlg of E8-rings). We will emphasize this uniqueness by referring to E as
the Lubin-Tate spectrum of pG0. It follows from Proposition 5.0.4 that the Lubin-Tate
spectrum E is also characterized up to equivalence by conclusion piq of Theorem 5.0.2.
In particular, if E 1 is any other E8-ring and there exists an isomorphism γ : E » E 1

in the ordinary category CAlgphSpq of homotopy commutative ring spectra, then γ

can be promoted (in an essentially unique way) to an equivalence E » E 1 in the
8-category CAlg “ CAlgpSpq of E8-rings. We can informally summarize the situation
by saying that the E8-structure on the ring spectrum E is unique (more precisely, it is
uniquely determined by the underlying homotopy commutative multiplication on E).
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Remark 5.0.6 (Maps Between Lubin-Tate Spectra). Let κ and κ1 be perfect fields
of characteristic p, and let pG0 and pG1

0 be 1-dimensional formal groups of the same
height n over κ and κ1, respectively. Let E and E 1 denote Lubin-Tate spectra for pG0

and pG1
0, respectively. Then we have a canonical homotopy equivalences

MapCAlgpE,E
1
q » HomFGppκ, pG0q, pπ0pE

1
q{IE

1

n , pG
Qn
E1 qq

» HomFGppκ, pG0q, pκ
1, pG1

0qq.

The first homotopy equivalence arises by invoking part piiq of Theorem 5.0.2 for the
Lubin-Tate spectrum E, and the second arises from invoking part piq of Theorem 5.0.2
for the Lubin-Tate spectrum E 1.

Remark 5.0.7 (Functoriality). Let n be a positive integer, and let C Ď FG be the
full subcategory spanned by those pairs pκ, pG0q, where κ is a perfect field and pG0 is
a 1-dimensional formal group of height n over κ. It follows from Remark 5.0.6 that
there is a fully faithful functor C Ñ CAlg, which carries a formal group pκ, pG0q to the
associated Lubin-Tate spectrum E. We will say that an E8-ring E is a Lubin-Tate
spectrum of height n if it belongs to the essential image of this embedding. Note C
is an ordinary category: it follows that the full subcategory of CAlg spanned by the
Lubin-Tate spectra of height n is also (equivalent to) an ordinary category.

Remark 5.0.8 (The Morava Stabilizer Group). Let κ be a perfect field of characteristic
p, let pG0 be a 1-dimensional formal group over κ of height n ă 8, and let Γ “

Autpκ, pG0q be the automorphism group of pκ, pGq in the category FG: the objects of Γ
are given by pairs pσ, αq, where σ is an automorphism of the field κ and α : pG0 Ñ σ˚ pG0

is an isomorphism of formal groups over κ. It follows from Remark 5.0.7 that the
action of Γ on pκ, pG0q can be lifted, in an essentially unique way, to an action of Γ on
the associated Lubin-Tate spectrum E, as an object of the 8-category CAlg. More
precisely, there is a functor of 8-categories BΓ Ñ CAlg which carries the base point
of BΓ to the Lubin-Tate spectrum E; here BΓ denotes the classifying space of the
group Γ.

Remark 5.0.9. Let κ be a perfect field of characteristic p, let pG0 be a 1-dimensional
formal group over κ of height n ă 8, and let E be the associated Lubin-Tate spectrum.
It follows from Theorem 5.0.2 that for any Kpnq-local E8-ring A, the mapping space
MapCAlgpE,Aq is discrete.

A proof of Theorem 5.0.2 was given by Goerss and Hopkins in [12] (modulo the
slight caveat that condition piiq is stated only in the case where A is also a Lubin-Tate
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spectrum). Let us give a brief summary of their approach. Fix a perfect field κ of
characteristic p and a 1-dimensional formal group pG0 of height n over κ. Let RLT be
the Lubin-Tate ring of pG0 and let pG P FGrouppRLTq be the universal deformation (in
the sense of Theorem 3.0.1). Then the formal group pG satisfies Landweber’s criterion,
so we can apply the Landweber exact functor theorem (Theorem 0.0.1) to construct
an even periodic ring spectrum E equipped with isomorphisms

π0pEq » RLT pGQ0
E » pG.

By construction, the ring spectrum E satisfies requirement piq of Theorem 5.0.2, with
the caveat that the ring structure on E is a priori only commutative up to homotopy,
rather than E8 as required by Theorem 5.0.2. To remedy this, Goerss and Hopkins
study the fiber product

MpEq “ CAlgpSpq ˆCAlgphSpq tEu,

which can be viewed as a “moduli space” of E8-structures on E which are compatible
with the homotopy commutative multiplication supplied by Landweber’s theorem.
Using techniques of obstruction theory, they introduce a spectral sequence converging
to the homotopy groups of the moduli space M. By studying the geometry of the
formal group pG0, they show that this spectral sequence vanishes identically at the
second page, so that the moduli space M is contractible. This provides an essentially
unique E8-structure on the spectrum E (as in Remark 5.0.5). Moreover, if A is
any Kpnq-local E8-ring equipped with a map of homotopy commutative ring spectra
f : E Ñ A, then the same methods can be applied to prove the contractibility of the
moduli space

Mpfq “ MapCAlgpSpqpE,Aq ˆHomCAlgphSpqpE,Aq tfu

of E8-structures on f . This reduces the proof of assertion piiq of Theorem 5.0.2 to the
calculation of the set HomCAlgphSpqpE,Aq, which can be computed using Landweber’s
methods.

Our goal in this section is to present a new proof of Theorem 5.0.2. Our strategy
can be summarized as follows. Writing pG0 as the identity component of a connected
p-divisible group G0 over κ, we let Run

G0 denote the spectral deformation ring of G0

and G P BTp
pRun

G0q its universal deformation. Let Ror
G0 “ OG˝ be an orientation

classifier for the identity component G˝ (Definition 4.3.14). In §5.1, we prove directly
that the Kpnq-localization E “ LKpnqR

or
G0 satisfies condition piiq of Theorem 5.0.2:

this follows more or less formally from the relevant universal properties. We will
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prove piq by computing the homotopy groups of E (Theorem 5.4.1). Our calculation
appeals directly to Quillen’s work on the homotopy of the complex bordism spectrum
and its relationship with formal group laws, which we review in §5.3. We will also
need a general algebraic result about the deformation theory of relatively perfect ring
extensions, which we explain in §5.2.

The present approach to Theorem 5.0.2 differs from that of [12] in several ways:

• In the approach of [12], one begins with a homotopy commutative ring spectrum
E satisfying property piq of Theorem 5.0.2, and must work hard to show that E
has an E8-ring structure satisfying property piiq. In our approach, the spectrum
LKpnqR

or
G0 already has an E8-structure, and property piiq follows easily from the

definitions. We will instead need to do some work to verify condition piq: it
is not obvious from the definitions that LKpnqRor

G0 has the expected homotopy
groups, or even that it is nonzero.

• Theorem 5.0.2 is a variant of an older result of Hopkins and Miller, which asserts
that the Lubin-Tate spectrum E can be characterized by analogues of properties
piq and piiq in the 8-category AlgpSpq of associative ring spectra. From the
obstruction-theoretic perspective, this requires less elaborate machinery and is
considerably easier to prove (see [31] for a nice account). By contrast, the proof
of Theorem 5.0.2 given in this section is specific to the commutative case: it
requires us to contemplate p-divisible and formal groups defined over a ring
spectrum R; this is sensible only when R is commutative.

• In the approach of [12], the underlying spectrum E is constructed using the
Landweber exact functor theorem (Theorem 0.0.1). To ensure that the formal
group pG satisfies Landweber’s criterion, one needs to know something about
the Lubin-Tate ring RLT: namely, that it is isomorphic to a power series ring
W pκqrru1, . . . , un´1ss whose generators ui can be chosen to represent the Hasse
invariants of the formal group pG. Our approach does not appeal to Landweber’s
theorem, and the structure of the Lubin-Tate ring emerges as a consequence of
our method (see Corollary 5.4.3; note however that our proof uses Lazard’s work
on the classification of formal group laws, which can also be used to describe
RLT directly).

• In some sense, both proofs of Theorem 5.0.2 involve a kind of deformation theory,
in the sense that they produce an E8-ring as a “limit” of partial approximations.
However, these approximations have very different flavors. Roughly speaking,
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the strategy of [12] is to produce the Lubin-Tate spectrum E by starting with the
graded ring E˚E “ π˚pEbSEq, viewed as a comodule over itself, and successively
adding information about homology cooperations and Massey products of higher
and higher orders. In our approach, the Lubin-Tate spectrum E » LKpnqR

or
G0 is

built from the the spectral deformation ring Run
G0 , which is ultimately constructed

(in the proof of Theorem SAG.18.2.3.1 ) as the limit of a sequence of square-zero
extensions

¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1 Ñ A0 » κ

which parametrize successively “larger” families of deformations of G0.

5.1 Construction of Lubin-Tate Spectra
For later applications, it will be convenient to consider a slightly more general

version of Theorem 5.0.2, where we begin with a perfect ring in place of a perfect field
(see Remark 5.1.6 below).

Construction 5.1.1. Let R0 be a perfect Fp-algebra and let pG0 be a 1-dimensional
formal group of exact height n over R0 (Definition 4.4.17). Write pG0 as the identity
component of a connected p-divisible group G0 over R0 (Proposition 4.4.22). Let Run

G0

denote the spectral deformation ring of G0 and let G P BTp
pRun

G0q be its universal
deformation (Theorem 3.4.1 and Remark 3.4.2). Let Ror

G0 denote the orientation
classifier for the formal group G˝ (Definition 4.3.14). We let EppG0q denote the
Kpnq-localization LKpnqR

or
G0 . We will refer to EppG0q as the Lubin-Tate spectrum of

pG0.

Remark 5.1.2. We will later show that when R0 is a perfect field, the final step in
Construction 5.1.1 is unnecessary: the orientation classifier Ror

G0 is already Kpnq-local.
See Corollary 6.0.6.

Remark 5.1.3. In the situation of Construction 5.1.1, the Lubin-Tate spectrum
EppG0q is Kpnq-local (by construction) and complex periodic (by Proposition 4.3.23,
since there exists an oriented formal group over EppG0q).

We now justify the terminology of Construction 5.1.1 by showing that the Lubin-
Tate spectrum EppG0q satisfies property piiq of Theorem 5.0.2.

Construction 5.1.4. In the situation of Construction 5.1.1, we have a canonical
surjective map π0pR

un
G0q Ñ R0, whose kernel is the nth Landweber ideal IG˝

n (Corollary
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4.4.25). By construction, the formal group G˝ acquires an orientation after extending
scalars to Ror

G0 , and therefore also after extending scalars to the Lubin-Tate spectrum
E “ EppG0q. This orientation determines an equivalence of formal groups G˝

E »
pGQ
E

over E, hence an isomorphism of formal groups G˝
π0pEq{IEn

» pGQn
E which we can identify

with a morphism
α : pR0, pG0q Ñ pπ0pEq{I

E
n , pG

Qn
E q

in the category FG of Notation 5.0.1.

Theorem 5.1.5. Let R0 be a perfect Fp-algebra, let pG0 be a formal group of exact
height n over R0, and let E “ EppG0q be the Lubin-Tate spectrum of Construction
5.1.1. Then, for every complex periodic Kpnq-local E8-ring A, composition with the
map α of Construction 5.1.4 induces a homotopy equivalence

MapCAlgpE,Aq Ñ HomFGppR0, pG0q, pπ0pAq{I
A
n , pG

Qn
A q.

Proof. Let us regard A as an adic E8-ring by endowing π0pAq with the IAn -adic
topology. Let GQ

A be the Quillen p-divisible group of A (Definition 4.6.4), so that
GQ
A is a formally connected p-divisible group over A whose identity component is the

Quillen formal group pGQ
A (note that the existence of such a p-divisible group follows

formally from Theorem 4.4.14; for the present purposes, it is not necessary to know
that GQ

A has the explicit description of Construction 4.6.2). If G1 is any other formally
connected p-divisible group over A, then the space OrDatpG1˝q of orientations of the
identity component G1˝ can be identified with the space of equivalences of G1˝ with
pGQ
A (Proposition 4.3.23), or equivalently with the space of equivalences between G1

and GQ
A (Corollary 2.3.13).

Note that any morphism of E8-rings E Ñ A automatically carries IEn “ IG˝

n π0pEq

into IAn , so that the composite map Run
G Ñ E Ñ A is a morphism of adic E8-rings.

Invoking the definition of the spectral deformation ring Run
G0 , we can identify the

mapping space MapCAlgadpRun
G0 , Aq with the classifying space

DefG0pAq “ lim
ÝÑ
I

BTp
pAq ˆBTppπ0pAq{Iq HompR0, Iq

of G0-tagged p-divisible groups over A (here the direct limit is taken over all finitely
generated ideals of definition in π0pAq. Under this identification, the mapping space
MapCAlgpE,Aq » MapCAlgpR

or
G0 , Aq corresponds to the classifying space

lim
ÝÑ
I

BTp
orpAq ˆBTppπ0pAq{Iq HompR0, π0pAq{Iq
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of oriented p-divisible groups over A equipped with a G0-tagging. Since G0 is
connected, any G0-tagged p-divisible group G1 over A is formally connected. We may
therefore replace BTp

orpAq with the full subcategory spanned by the formally connected
oriented p-divisible groups over A, which is equivalent to the singleton tGQ

Au. Using
Corollary 2.3.13 again, we can identify MapCAlgpE,Aq with the direct limit

lim
ÝÑ
I

tpGQ
Au ˆFGrouppπ0pAq{Iq HompR0, π0pAq{Iq,

again taken over all finitely generated ideals of definition I Ď π0pAq.
Note that if we are given finitely generated ideals of definition I Ď J Ď π0pAq,

then the quotient J{I is a nilpotent ideal of π0pAq{I; our assumption that R0 is
perfect guarantees that the reduction map HompR0, π0pAq{Iq Ñ HompR0, π0pAq{Jq is
bijective. Moreover, if we are given a ring homomorphism R0 Ñ π0pAq{I and I contains
the nth Landweber ideal IAn , then ppGQ

Aqπ0pAq{I and ppG0qπ0pAq{I are 1-dimensional formal
groups of exact height n over the commutative Fp-algebra π0pAq{I. Consequently,
the set of isomorphisms between ppGQ

Aqπ0pAq{I and ppG0qπ0pAq{I is in bijection with the
set of isomorphisms between ppGQ

Aqπ0pAq{J and ppG0qπ0pAq{J (since π0pAq{I and π0pAq{J

have the same perfection; see Proposition 4.4.23). It follows that the diagram of
spaces ttpGQ

AuˆFGrouppπ0pAq{IqHompR0, π0pAq{Iqu is constant when restricted to finitely
generated ideals of definition which contain the nth Landweber ideal, so that we can
identify MapCAlgpE,Aq with the single space

tpGQ
p
Aqu ˆFGrouppπ0pAq{IAn q

HompR0, π0pAq{I
A
n q » HomFGppR0, pG0q, pπ0pAq{I

A
n , pG

Qn
A qq.

By construction, this identification is given by composition with the map α of Con-
struction 5.1.4.

Remark 5.1.6 (Smash Products of Lubin-Tate Spectra). Let R0 and R1 be commu-
tative rings, and let pG0 and pG1 be formal groups over R0 and R1, respectively. Then
the objects pR0, pG0q and pR1, pG1q have a coproduct pR01, pG01q in the category FG.
Moreover, if R0 and R1 are perfect Fp-algebras and pG0 and pG1 are of exact height n,
then R01 is also a perfect Fp-algebra (this follows immediately from Proposition 4.4.23),
and pG01 also has exact height n. By construction, there are maps of Lubin-Tate
spectra

EppG0q Ñ EppG01q Ð EppG1q.

It follows from the universal property of Theorem 5.1.5 that these maps exhibit EppG01q

as a coproduct of EppG0q and EppG1q in the 8-category CAlgpSpKpnqq of Kpnq-local
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E8-rings. In other words, we can identify EppG01q with the Kpnq-local smash product
LKpnqpEppG0q bS EppG1qq. Beware that if R0 and R1 are perfect fields, then R01 will
never be a field; this is one motivation for not restrict our attention to fields in the
setting of Construction 5.1.1.

5.2 Thickenings of Relatively Perfect Morphisms
Let κ be a perfect field of characteristic p ą 0. The theory of Witt vectors

provides a “lift” of κ to characteristic zero. More precisely, it allows us to write κ as a
quotient W pκq{pW pκq, where W pκq is a ppq-complete commutative ring in which p

is not a zero-divisor. The ring W pκq is uniquely determined by κ (up to canonical
isomorphism); we refer to it as the ring of Witt vectors of κ. There are many concrete
constructions of the ring W pκq: for example, we can identify the elements of W pκq
with formal expressions

ra0s ` ra1sp` ra2sp
2
` ra3sp

3
` ¨ ¨ ¨

where the coefficients ai are elements of κ; the addition and multiplication on W pκq

can then be given explicitly by certain expressions called Witt polynomials (see [33]
for a nice exposition). However, one can also prove the existence of W pκq by abstract
arguments. The assumption that κ is perfect guarantees that the relative cotangent
complex Lκ{Fp vanishes (Proposition 3.5.6). It follows from deformation theory that κ
can be lifted uniquely to a flat pZ {pn Zq-algebra for each n ě 0, and we can recover
the ring of Witt vectors W pκq by taking the inverse limit over n. One advantage of
the abstract approach is that it remains sensible in the setting of ring spectra, where it
is no longer feasible to carry out constructions by writing formulas. For example, one
can show that every perfect field κ can be lifted to an E8-ring W`pκq which is flat
over the sphere spectrum, from which the usual ring of Witt vectors can be recovered
by the formula W pκq » π0pW

`pκqq (see Example 5.2.7 below). Our goal in this case
is to describe a generalization of this construction which will be useful in our analysis
of Construction 5.1.1.

Definition 5.2.1. Let A be an connective E8-ring, let I Ď π0pAq be finitely generated
ideal, and set A0 “ π0pAq{I. Suppose we are given a commutative diagram of
connective E8-rings

A
f //

��

B

��
A0

f0 // B0,
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where B0 is an ordinary commutative ring. We will say that σ exhibits f as an
A-thickening of f0 if the following conditions are satisfied:

paq The E8-ring B is I-complete.

pbq The diagram σ induces an isomorphism of commutative rings π0pBq{Iπ0pBq Ñ

B0.

pcq Let R be any connective E8-algebra over A which is I-complete. Then canonical
map

MapCAlgApB,Rq » HomCAlg♥
A0
pB0, π0pRq{Iπ0pRqq

is a homotopy equivalence. In particular, the mapping space MapCAlgApB,Rq is
discrete.

Remark 5.2.2 (Uniqueness). Let A be an connective E8-ring, let I Ď π0pAq be
finitely generated ideal, and set A0 “ π0pAq{I. Suppose we are given a homomorphism
of commutative rings f0 : A0 Ñ B0. It follows immediately from the definitions that,
if there exists a diagram σ :

A
f //

��

B

��
A0

f0 // B0,

which exhibits f as an A-thickening of f0, then the morphism f (and the diagram σ)
is uniquely determined up to equivalence.

Remark 5.2.3. In Definition 5.2.1, it is not necessary to assume that A is I-complete.
However, it is harmless to add this assumption; the notion of A-thickening does not
change if we replace A by its I-completion A^I .

Remark 5.2.4 (Functorality). Suppose we are given a commutative diagram of
connective E8-rings

A
f //

��

B

��
A1

f 1 //

��

B1

��
A0

f0 // B0.
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Assume that A0 and B0 are ordinary commutative rings and that the left vertical
maps induce surjective ring homomorphism π0pAq Ñ π0pA

1q Ñ A0 whose composition
has kernel I Ď π0pAq. Suppose that the outer rectangle exhibits f as an A-thickening
of f0, and that the upper square exhibits B1 as an I-completion of B bA A1. Then the
lower square exhibits f 1 as an A1-thickening of f0.

Our goal is to prove the following existence result for thickenings:

Theorem 5.2.5. Let A be a connective E8-ring, let I Ď π0pAq be a finitely generated
ideal, and set A0 “ π0pAq{I. Suppose that A0 is an Fp-algebra which is almost perfect
as an A-module and that the Frobenius map ϕA0 : A0 Ñ A0 is flat. Let f : A0 Ñ B0

be a morphism of commutative Fp-algebras which is relatively perfect: that is, the
diagram of commutative rings

A0
f //

ϕA0
��

B0

ϕB0
��

A0
f0 // B0

is a pushout square (so that ϕB0 is also flat). Then there exists a diagram

A
f //

��

B

��
A0

f0 // B0,

which exhibits f as an A-thickening of f0. Moreover, σ is a pushout square.

Example 5.2.6 (Classical Witt Vectors). In the statement of Theorem 5.2.5, take
A to be the ring Z of integers (or the ring Zp of p-adic integers), and I to be the
ideal ppq. Then A0 “ A{I is the finite field Fp, and a morphism f0 : A0 Ñ B0 is
relatively perfect if and only if B0 is a perfect Fp-algebra. If this condition is satisfied,
then Theorem 5.2.5 allows us to lift B0 to a flat Z-algebra B, which is complete with
respect to the ideal ppq and for which the quotient B{pB is isomorphic to B0. This
Z-algebra is the ring of Witt vectors W pB0q.

Example 5.2.7 (Spherical Witt Vectors). In the statement of Theorem 5.2.5, take
A to be the sphere spectrum S of integers (or its ppq-completion S^ppq), and I to be
the ideal ppq. Then A0 “ A{I is the finite field Fp, and a morphism f0 : A0 Ñ B0 is
relatively perfect if and only if B0 is a perfect Fp-algebra. If this condition is satisfied,
then Theorem 5.2.5 allows us to lift B0 to a flat S-algebra B, which is complete with
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respect to the ideal ppq and for which the tensor product Fp bS B » π0pBq{pπ0pBq is
isomorphic to B0. This is the E8-ring W`pB0q of “spherical” Witt vectors alluded to
in the discussion preceding Definition 5.2.1.

5.2.1 Existence of Thickenings

The proof of Theorem 5.2.5 will require the following variant of Proposition 3.5.6:

Lemma 5.2.8. Let f0 : A0 Ñ B0 be a morphism of commutative Fp-algebras. Assume
that the Frobenius map ϕA0 : A0 Ñ A0 is flat and that f0 is relatively perfect. Then
the relative cotangent complex LB0{A0 vanishes.

Proof. The assumption that ϕA0 is flat guarantees that the pushout diagram

A0
f0 //

ϕA0
��

B0

f0
��

A
1{p
0

// B
1{p
0

is also a pushout diagram of E8-rings, and therefore induces an equivalence of algebraic
cotangent complexes

B
1{p
0 bB0 L

alg
B0{A0

Ñ Lalg
B

1{p
0 {A

1{p
0
.

Since this map is nullhomotopic (Lemma 3.3.6), we conclude that the algebraic
cotangent complex Lalg

B0{A0
vanishes. Applying Proposition SAG.25.3.5.1 , we deduce

that LB0{A0 also vanishes.

Proof of Theorem 5.2.5. Let A be an E8-ring and let I Ď π0pAq be a finitely generated
ideal for which A0 “ π0pAq{I is almost perfect as an A-module. Then A0 is almost of
finite presentation as an E8-algebra over A (Corollary SAG.5.2.2.2 ), so the relative
cotangent complex LA0{A is almost perfect. It is also 1-connective (since A0 is a
quotient of π0pAq). Suppose further that A0 is an Fp-algebra for which the Frobenius
map ϕA0 is flat, and let f0 : A0 Ñ B0 be a morphism of Fp-algebras which is relatively
perfect. Then the relative cotangent complex LB0{A0 vanishes (Lemma 5.2.8). Using
the fiber sequence

B0 bA0 LA0{A Ñ LB0{A Ñ LB0{A0 ,

we deduce that LB0{A is 1-connective and almost perfect.
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Let X : CAlgcn
Ñ S denote the relative de Rham space of the map SpecpB0q Ñ

SpecpAq, in the sense of Definition SAG.18.2.1.1 . Concretely, the functor X is given
by the formula

XpRq “ lim
ÝÑ
J

MapCAlgpA,Rq ˆMapCAlgpA,π0pRq{Jq MapCAlgpB0, π0pRq{Jq,

where the direct limit is taken over all nilpotent ideals J Ď π0pRq. By construction,
we have a commutative diagram of functors τ :

SpecpAq Xoo

SpecpA0q

OO

SpecpB0q

OO

oo

We claim that τ is a pullback square. To prove this, we must show that for every
connective E8-ring R, the canonical map

MapCAlgpB0, Rq Ñ lim
ÝÑ
J

MapCAlgpA0, Rq ˆMapCAlgpA0,π0pRq{Jq MapCAlgpB0, π0pRq{Jq

is a homotopy equivalence. In fact, we prove a stronger assertion: for every nilpotent
ideal J Ď π0pRq, the individual map

MapCAlgpB0, Rq Ñ MapCAlgpA0, Rq ˆMapCAlgpA0,π0pRq{Jq MapCAlgpB0, π0pRq{Jq

is a homotopy equivalence. Writing R as an inverse limit of its truncations, we may
assume that R is m-truncated. In this case, the projection map RÑ π0pRq{J can be
written as a composition of finitely many square-zero extensions. We are therefore
reduced to showing that if R is a square-zero extension of a connective E8-ring R1
(by a connective R1-module), then the canonical map

MapCAlgpB0, Rq Ñ MapCAlgpA0, Rq ˆMapCAlgpA0,R1q MapCAlgpB0, R
1
q

is a homotopy equivalence, which follows immediately from the vanishing of LB0{A0 .
Note that X is nilcomplete, infinitesimally cohesive, and admits a cotangent

complex given by LSpecpAq|X (see Corollary SAG.18.2.1.11 ). In particular, we see
that that LSpecpB0q{X » LB0{A is 1-connective and almost perfect. Applying Theorem
SAG.18.2.3.2 (together with Proposition SAG.18.2.2.8 ), we conclude that X is (repre-
sentable by) the formal spectrum SpfpBq, where B is a connective E8-ring equipped
with a surjective map ε : π0pBq Ñ B0, which is complete with respect to the (finitely
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generated) ideal I 1 “ kerpεq, and that B0 is almost perfect as a B-module. Note that
the pullback diagram τ determines a pushout diagram σ :

A
f //

��

B

��
A0

f0 // B0

of adic E8-rings, where we endow π0pBq with the I 1-adic topology and the other rings
with the discrete topology. In other words, we can identify B0 with the I 1-completion
of the tensor product B bA A0. However, since A0 is almost perfect as an A-module,
the tensor product B bA A0 is almost perfect as a B-module and is therefore already
I 1-complete (Proposition SAG.7.3.5.7 ). It follows that σ is also a pushout diagram
of E8-rings. In particular, it exhibits B0 as the quotient π0pBq{Iπ0pBq, so that the
ideal I 1 coincides with Iπ0pBq.

We now complete the proof by showing that σ exhibits f as an A-thickening of f0.
Conditions paq and pbq of Definition 5.2.1 have already been verified. To prove pcq,
suppose that we are given a connective E8-algebra R over A which is I-complete. We
wish to show that the canonical map

θR : MapCAlgApB,Rq » HomCAlg♥
A0
pB0, π0pRq{Iπ0pRqq

is a homotopy equivalence. Applying Lemma SAG.8.1.2.2 , we can write R as the
limit of a tower

¨ ¨ ¨ Ñ R3 Ñ R2 Ñ R1

for which each quotient π0pRmq{Iπ0pRmq is isomorphic to π0pRq{Iπ0pRq, and each Rm

is I-nilpotent. It follows that θR can be identified with the limit of maps tθRmumě1. It
will therefore suffice to show that θR is a homotopy equivalence under the additional
assumption that R is I-nilpotent. In this case, any morphism of A-algebras B Ñ R

automatically annihilates some power of I 1, so we can identify MapCAlgApB,Rq with
the fiber

fibpXpRq Ñ MapCAlgpA,Rqq » lim
ÝÑ
J

MapCAlgApB0, π0pRq{Jq

where the colimit is taken over all nilpotent ideals J Ď π0pRq. Restrict our attention
to the cofinal subset of ideals which contain Iπ0pAq, we can rewrite this fiber as the
colimit of the diagram of sets tHomCAlg♥

A0
pB0, π0pRq{Jqu. We complete the proof by

observing that our hypothesis that f0 is relatively perfect guarantees that this diagram
constant with value HomCAlg♥

A0
pB0, π0pRq{Iπ0pRqq.
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5.2.2 Recognition of Thickenings

In the situation of Theorem 5.2.5, we have a detection principle for A-thickenings:

Proposition 5.2.9. Let A be a connective E8-ring, let I Ď π0pAq be a finitely
generated ideal, and set A0 “ π0pAq{I. Suppose that A0 is an Fp-algebra which is
almost perfect as an A-module and that the Frobenius map ϕA0 : A0 Ñ A0 is flat.
Suppose we are given a commutative diagram of connective E8-rings σ :

A
f //

��

B

��
A0

f0 // B0,

where f0 is a relatively perfect morphism of commutative Fp-algebras. Then σ exhibits
f as an A-thickening of f0 if and only if the following conditions are satisfied:

piq The E8-ring B is I-complete (as an A-module).

piiq The diagram σ is a pushout square.

Proof. The necessity of condition piq is part of the definition of an A-thickening, and
the necessity of condition piiq follows from Theorem 5.2.5. We will show that they are
also sufficient. Assume that σ satisfies conditions piq and piiq. It follows from condition
piiq that σ induces an isomorphism of commutative rings γ : π0pBq{Iπ0pBq Ñ B0.
Using Theorem 5.2.5, we can choose a diagram σ1 :

A
f 1 //

��

B1

��
A0

f0 // B0

which exhibits f 1 as an A-thickening of f0. Applying condition piq, we deduce that
the canonical map

MapCAlgApB
1, Bq Ñ HomCAlg♥

A0
pB0, π0pBq{Iπ0pBqq

is a homotopy equivalence. In particular, we can lift γ´1 to a morphism of g : B1 Ñ B,
which fits into a commutative diagram

A
f 1 //

��

B1
g //

��

B

��
A0

f0 // B0
id // B0.
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The left square in this diagram is a pushout (by Theorem 5.2.5) and the outer rectangle
is a pushout (by hypothesis piiq), so the right square is also a pushout: that is, the
morphism g becomes an equivalence after tensoring over B1 with B0 “ π0pB

1q{Iπ0pB
1q.

Since B and B1 are both connective and I-complete, it follows that g is an equivalence,
so that σ also exhibits f as an A-thickening of f0.

Remark 5.2.10. In the situation of Theorem 5.2.5, suppose that B0 is Noetherian.
Then B is also Noetherian. This follows from Corollary SAG.18.2.4.4 .

Remark 5.2.11. In the situation of Theorem 5.2.5, suppose that A is I-complete,
that A0 and B0 are Noetherian, and that f0 : A0 Ñ B0 is flat. Then A and B are
Noetherian (Corollary SAG.18.2.4.4 ), so the map f : A Ñ B is also flat (Lemma
6.1.9). In particular, if A is discrete, then B is also discrete.

5.2.3 Regular Sequences

The following observation will be useful for helping to compute with A-thickenings:

Proposition 5.2.12. Let A be a commutative ring and let I Ď A be an ideal which
is generated by a regular sequence x1, x2, . . . , xn P A. Suppose that A0 “ A{I is an
Fp-algebra for which the Frobenius map ϕA0 : A0 Ñ A0 is flat. Let f0 : A0 Ñ B0 be a
relatively perfect morphism of commutative Fp-algebras, and let σ :

A
f //

��

B

��
A0

f0 // B0

be a diagram which exhibits f as an A-thickening of f0. Then B is an ordinary
commutative ring and the sequence fpx1q, fpx2q, . . . , fpxnq is regular in B.

Warning 5.2.13. In the statement of Proposition 5.2.12 (and in the situation we will
apply it), we do not assume that A is Noetherian. Consequently, notion of regular
sequence must be handled with some care (in general, it can depend on the order of
the sequence). We interpret regularity as the statement that, for each 1 ď i ď n, the
element xi is not a zero divisor in the quotient ring A{px1, . . . , xi´1q.

Proof of Proposition 5.2.12. We proceed by induction on n. Set A1 “ A{px1q, and
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extend σ to a commutative diagram of E8-rings

A
f //

��

B

��
A1

f 1 //

��

B1

��
A0

f0 // B0

where the upper square is a pushout. Since B is I-complete, the E8-ring B1 » cofibpx1 :
B Ñ Bq is also I-complete. Applying Remark 5.2.4, we deduce that the bottom
square exhibits f 1 as an A1-thickening of f0. Applying our inductive hypothesis to the
regular sequence x2, . . . , xn P A

1, we deduce that B1 is discrete and that x2, x3, . . . , xn
is a regular sequence in B1. For every integer k, the cofiber cofibpxk1 : B Ñ Bq

can be written as an extension of finitely many copies of B1 (in the 8-category of
B-modules), and is therefore also discrete. Since B is I-complete, it is px1q-complete,
and can therefore be identified with the limit of the tower tcofibpxk1 : B Ñ Bqukě0

of discrete B-modules with surjective transition maps. It follows that B is discrete.
Since B1 “ cofibpx1 : B Ñ Bq is discrete, we conclude that x1 is not a zero-divisor
in B, so that the regularity of the sequence x2, . . . , xn in B1 implies the regularity of
x1, . . . , xn in B.

5.3 Review: Complex Bordism and the Lazard Ring
In this section, we recall (without proofs) some foundational results about the

Lazard ring and its relationship with complex bordism.

5.3.1 Formal Group Laws

Definition 5.3.1. Let R be a commutative ring and let pA1
R “ SpfpRrrtssq be the

formal affine line over R, which we regard as a pointed formal hyperplane (with base
point given by the vanishing locus of t). A formal group law over R is an abelian
group structure on pA1

R which is compatible with this choice of base point: that is, a
map of pointed formal hyperplanes

m : pA1
R ˆSpecpRq pA1

R Ñ
pA1
R.

which endows pA1
R with the structure of an abelian group object of Hyp˚pRq. We let

FGLpRq denote the set of all formal group laws over R.
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Remark 5.3.2. Concretely, the datum of a formal group law over R can be described
as a formal power series fpu, vq P Rrru, vss satisfying the identities

fpu, 0q “ u fpu, vq “ fpv, uq fpu, fpv, wqq “ fpfpu, vq, wq.

The construction R ÞÑ FGLpRq determines a functor from the category of commu-
tative rings to the category of sets. This functor was studied by Lazard in [22].

Theorem 5.3.3 (Lazard). There exists a commutative ring L and a formal group law
funipu, vq P FGLpLq with the following universal property: for every commutative ring
R, evaluation on funipu, vq induces a bijection HompL,Rq Ñ FGLpRq. Moreover:

paq There is an isomorphism of commutative rings L » Zrc1, c2, . . . s.

pbq Let pGuni denote the formal group over L determined by the formal group law
funi. Then the generators tciu of part paq can be chosen so that, for every
prime number p and every integer n ě 0, the sequence p, cp´1, cp2´1, . . . cpn´1´1

generates the nth Landweber ideal I pGuni
n (Definition 4.4.11).

We will refer to the commutative ring L of Theorem 5.3.3 as the Lazard ring, to the
formal group law funipu, vq as the universal formal group law, and to the underlying
formal group pGuni as the universal coordinatized formal group. For our applications, we
will not need the full strength of Theorem 5.3.3. However, we will need the following
weaker statement:

Corollary 5.3.4. Let L be the Lazard ring. Fix a prime number p. Then there exists
a regular sequence p “ w0, w1, w2, . . . in the ring L with the following property: for
every n ě 0, the nth Landweber ideal of the universal coordinatized formal group
pGuni is given by pw0, w1, . . . , wn´1q. Moreover, for n ą 0, the Frobenius morphism
ϕ : L{pw0, . . . , wn´1q Ñ L{pw0, . . . , wn´1q is flat.

5.3.2 Coordinates on Formal Groups

Let R be a commutative ring and let pG be a 1-dimensional formal group over R.
A coordinate on pG is an element of the augmentation ideal t P O

pGp´eq whose image is
a generator for the dualizing line ω

pG “ O
pGp´eq{O pGp´eq

2. Equivalently, a coordinate
on pG is an isomorphism of formal R-schemes pG » SpfpRrrtssq which is compatible
with base points (that is, it carries the zero section of pG to the vanishing locus of t).

Definition 5.3.5. A coordinatized formal group over R is a pair ppG, tq, where pG is a
1-dimensional formal group over R and t is a coordinate on pG.
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Remark 5.3.6. Let R be a commutative ring. For any formal group law fpu, vq over
R, the corresponding formal group (with underlying formal scheme SpfpRrrtssq) comes
with a canonical coordinate t. This construction determines a bijection

FGLpRq » tCoordinatized formal groups over Ru{isomorphism.

In particular, every coordinatized formal group ppG, tq over R determines a formal
group law over R, classified by a homomorphism from the Lazard ring L into R.

Example 5.3.7 (Formal Group Laws from Topology). Let A be a complex periodic
E8-ring and let pG “ pGQ0

A be the classical Quillen formal group of A. Suppose we are
given an element t P O

pGp´eq » A0
redpCP8

q. Then:

• The element t is a coordinate on pG if and only if its image u P A0
redpCP1

q » π2pAq

is an invertible element of π˚pAq.

• If u is invertible, then u´1t P A2
redpCP8

q is a complex orientation of A.

Conversely, if u is an element of π2pAq which is invertible in π˚pAq and e P A2
redpCP8

q

is a complex orientation of A, then the product ue P A0
redpCP8

q is a coordinate on pG.
We therefore obtain a canonical bijection

tCoordinates on pGu » tComplex Orientations of Au ˆ tUnits in π2pAqu.

Example 5.3.8. Let A be an E8-ring and suppose we are given a map of spectra
f : Σ8pCP8

q Ñ A. The homotopy class of the restriction f |Σ8pCP1q determines an
element u P π2pAq. If u is invertible, then the composite map

Σ8´2
pCP8 Σ´2pfq

ÝÝÝÝÑ Σ´2
pAq

u´1
ÝÝÑ A

is a complex orientation of A. It follows that A is complex periodic and that the
homotopy class rf s P A0

redpCP8
q is a coordinate on the classical Quillen formal group

pGQ0
A .

If u is not invertible in π2pAq, then we can remedy the situation by replacing A
by the localization Aru´1s (see Proposition 4.3.17); it follows that Aru´1s is complex
periodic and that f determines a coordinate on the Quillen formal group pGQ0

Aru´1s.
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5.3.3 Periodic Complex Bordism

We now consider an important special case of Example 5.3.8.

Construction 5.3.9 (Periodic Complex Bordism). Let Vect»C denote the topologically
enriched category whose objects are finite-dimensional complex vector spaces and
whose morphisms are isomorphisms. Let NpVect»Cq denote the nerve of Vect»C (in
the topologically enriched sense; see Definition HTT.1.1.5.5 ). We regard Vect»C as
a symmetric monoidal category with respect to the operation of direct sum, so that
NpVect»Cq inherits the structure of an E8-space.

For every finite-dimensional complex vector space V , we let V c denote the one-
point compactification of V . The construction V ÞÑ V c determines a symmetric
monoidal functor NpVect»Cq Ñ S˚, where we endow S˚ with the symmetric monoidal
structure given by the smash product of pointed spaces. It follows that the colimit
Y “ lim

ÝÑV PNpVect»Cq
V c can be regarded as a commutative algebra object of S (with

respect to the smash product). Note that, as a pointed space, Y can be described as
an infinite wedge

ł

ně0
BUpnq{BUpn´ 1q,

where BUpnq denotes the classifying space of the unitary group Upnq (and we agree
to the convention that BUp´1q is empty, so that the quotient BUp0q{BUp´1q is the
pointed space S0). It follows that we can regard the suspension spectrum Σ8pY q as
a connective E8-ring. By construction, the inclusion CP8

» BUp1q{BUp0q ãÑ Y

induces a map of spectra f : Σ8pCP8
q Ñ Σ8pY q. Let u P π2pΣ8pY qq be the

homotopy class of f |Σ8pCP1q. We let MP denote the localization Σ8pY qru´1s (see
Proposition 4.3.17). We will refer to MP as the periodic complex bordism spectrum.
By construction, the spectrum MP is complex periodic and the homotopy class of the
composite map

Σ8pCP8
q
f
ÝÑ Σ8pY q Ñ MP

is classified by an element t P MP0
redpCP8

q which determines a coordinate on the
classical Quillen formal group pGQ0

MP (see Example 5.3.8).

The following result is essentially proven in [29] (though it is stated there for a
non-periodic version of complex bordism):

Theorem 5.3.10 (Quillen). Let L be the Lazard ring, let MP be the periodic complex
bordism spectrum, let t P MP0

redpCP8
q be as in Construction 5.3.9, and let ρ : L Ñ

π0pMPq be the map which classifying the coordinatized formal group ppGQ0
MP, tq (in the
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sense of Remark 5.3.6). Then ρ is an isomorphism. Moreover, the homotopy groups
of MP are concentrated in even degrees.

5.3.4 Homology of the Complex Bordism Spectrum

We will need a second universal property of the periodic complex bordism spectrum.
To state it, we first need a bit of terminology.

Notation 5.3.11. Let R be a commutative ring and let pG be a 1-dimensional formal
group over R. We let CoordppGq : CAlg♥

R Ñ Set denote the functor given by

CoordppGqpAq “ tCoordinates on pGAu

Proposition 5.3.12. Let R be a commutative ring and let pG be a 1-dimensional
formal group over R. Then the functor CoordppGq is (representable by) an affine
R-scheme which is faithfully flat over R.

Proof. Since every 1-dimensional formal group admits a coordinate Zariski-locally, we
can identify CoordppGq with a torsor (in the Zariski topology) for the group-valued
functor G “ Aut0ppA1q, given by

GpAq “ tfptq P Arrtss : fp0q “ 0 and f is invertible u
“ ta1t` a2t

2
` ¨ ¨ ¨ : a1 P R

ˆ, a2, a3, . . . P Ru

It now suffices to observe that G » SpecpRra˘1
1 , a2, a3, . . .sq is a flat affine group

scheme over R.

Let A be any complex periodic E8-ring and let B denote the smash product
A bS MP. Over the commutative ring π0pBq, we have canonical isomorphisms of
formal groups

ppGQ0
MPqπ0pBq »

pGQ0
B » ppGQ0

A qπ0pBq.

This isomorphism carries the canonical coordinate on pGQ0
MP » pGuni to a coordi-

nate on the formal group ppGQ0
A qπ0pBq, and therefore induces a morphism of schemes.

Specpπ0pBqq Ñ CoordppGQ0
A q.

Theorem 5.3.13. Let A be a complex periodic E8-ring. Then AbS MP is flat over
A, and the preceding construction induces an isomorphism Specpπ0pA bS MPqq Ñ
CoordppGQ0

A q.

Remark 5.3.14. We can paraphrase Theorems 5.3.10 and 5.3.13 as follows:
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• The classical Quillen formal group pGQ0
MP is universal among coordinatized formal

groups.

• For any complex periodic E8-ring A, the classical Quillen formal group pGQ0
AbSMP

is universal among coordinatized formal groups which can be obtained from pGQ0
A

by extending scalars.

For a proof of Theorem 5.3.13, we refer the reader to [1] (though it is stated there
in a slightly different form, for the non-periodic version of complex bordism).

5.4 Homotopy Groups of Lubin-Tate Spectra
Our goal in this section is compute the homotopy groups of the Lubin-Tate spectra

introduced in Construction 5.1.1. Our main result can be stated as follows:

Theorem 5.4.1. Let R0 be a perfect Fp-algebra, let pG0 be a 1-dimensional formal
group of exact height n over R0, and let E “ EppG0q be the Lubin-Tate spectrum of
Construction 5.1.1. Then:

paq The map α of Construction 5.1.4 induces an isomorphism of commutative rings
R0 Ñ π0pEq{I

E
n .

pbq The homotopy groups of E are concentrated in even degrees.

pcq Choose any sequence of elements tvm P π2ppm´1qpEqu0ďmăn such that the image
of each vm in π˚pEq{I

E
mπ˚pEq is the mth Hasse invariant vm (Construction

4.4.9). Then p “ v0, v1, . . . , vn´1 is a regular sequence in π˚pEq.

Theorem 5.4.1 can be stated a bit more simply in the case where the dualizing
line ω

pG0
is trivial. In this case, we can lift any trivialization of ω

pG0
to an element of

e P π2pEq which is invertible in π˚pEq.

Corollary 5.4.2. Let R0, pG0, and E be as in Theorem 5.4.1, and suppose that
there exists an element e P π2pEq which is invertible in π˚pEq. Choose elements
vm P π2ppm´1qpRq representing the Hasse invariants vm P π2ppm´1qpRq{I

R
mπ2ppm´1qpRq,

and set um “ vm{e
pm´1 P π0pRq. Then we have a canonical isomorphisms

π0pRq » W pR0qrru1, . . . , um´1ss π˚pRq » W pR0qrru1, . . . , um´1ssre
˘1
s.

From Corollary 5.4.2, we can recover the structure theory of classical Lubin-Tate
rings:
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Corollary 5.4.3 (Lubin-Tate). Let κ be a perfect field of characteristic p ą 0, let
pG0 be a 1-dimensional formal group of height n ă 8 over κ, and let RLT denote the
associated Lubin-Tate ring. Then RLT is (noncanonically) isomorphic to a power series
ring W pκqrru1, . . . , un´1ss. In particular, it is a regular local ring of Krull dimension
n.

Proof. Let pG P FGrouppRLTq be the universal deformation of pG0 in the classical sense
of Theorem 3.0.1. Let ω

pG be the dualizing line of the formal group pG (Definition
4.2.14). Since RLT is a local ring, we can choose an RLT-module generator e P ω

pG.
For each m ě 0, let I

pG
m denote the mth Landweber ideal (Definition 4.4.11) and let

vm P ω
bppm´1q
pG {I

pG
mω

bppm´1q
pG be the mth Hasse invariant (Construction 4.4.9). Then

each vm can be lifted to an element of ωbpp
m´1q

pG , which we can write as umep
m´1 for

some element um P RLT. Note that the elements p “ u0, u1, . . . , un´1 generate the nth
Landweber ideal I pG

n , which is also the maximal ideal of RLT by virtue of Corollary
4.4.25. It follows that the sequence u1, . . . , un´1 determines a surjection of complete
local Noetherian rings ρ : W pκqrru1, . . . , un´1ss Ñ RLT. To prove Corollary 5.4.3, we
must show that ρ is also injective. Write pG0 as the identity component of a connected
p-divisible group G0, and let E “ EppG0q be its Lubin-Tate spectrum. Using Corollary
5.4.2, we see that the composite map

W pκqrru1, . . . , un´1ss
ρ
ÝÑ RLT » π0pR

un
G0q Ñ π0pEq

is an isomorphism. It follows that ρ is injective, as desired.

Proof of Theorem 5.0.2. Let κ be a perfect field of characteristic p ą 0, let pG0 be a
1-dimensional formal group of height n ă 8 over κ, let E “ EppG0q be the Lubin-Tate
spectrum of Construction 5.1.1, and let

α : pκ, pG0q Ñ pπ0pEq{I
E
n , pG

Qn
E q

be the morphism in FG described in Construction 5.1.4. It follows from Theorem
5.4.1 that α is an isomorphism. We claim that α has properties piq and piiq of
Theorem 5.0.2. Property piiq was established in Theorem 5.1.5. To prove piq, we first
observe that π0pEq is a complete local Noetherian ring with residue field κ (Corollary
5.4.2), so that α is classified by a map of commutative rings µ : RLT Ñ π0pEq.
Let ρ : W pκqrru1, . . . , un´1ss Ñ RLT be the isomorphism appearing in the proof of
Corollary 5.4.3. Corollary 5.4.2 implies that the composition µ ˝ ρ is an isomorphism,
so that µ is also an isomorphism. It follows that α exhibits the classical Quillen formal
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group pGQ0
E as a universal deformation of pG0 in the sense of Theorem 3.0.1. It will

therefore suffice to show that the homotopy groups of E are concentrated in even
degrees, which follows from Theorem 5.4.1.

5.4.1 The Proof of Theorem 5.4.1

For the remainder of this section, we fix a perfect Fp-algebra R0 and a formal
group pG0 of exact height n over R0. Let L denote the Lazard ring, and let In “ I

pGuni
n

denote the nth Landweber ideal of the universal coordinatized formal group. By virtue
of Proposition 5.3.12, the functor

CoordppG0q : CAlg♥
R0 Ñ Set

is representable by a faithfully flat R0-algebra, which we will denote by rR0. Let t denote
the tautological coordinate on the formal group ppG0q rR0

, so that the coordinatized
formal group pppG0q rR0

, tq is classified by a ring homomorphism LÑ rR0. Since pG0 has
exact height n, the formal group ppG0q rR0

also has exact height n. It follows that the
map L Ñ rR0 annihilates the ideal Landweber In Ď L, and therefore induces a ring
homomorphism ρ0 : L{In Ñ rR0.

Lemma 5.4.4. The homomorphism ρ0 : L{In Ñ rR0 is a relatively perfect morphism
of Fp-algebras.

Proof. For every commutative ring A, let FGLěnpAq denote the subset of FGLpAq
consisting of those formal group laws over A for which the associated formal group has
height ě n, and let FGL“npAq denote the subset consisting of those formal groups
which have exact height n. By construction, the commutative ring L{In corepresents
the functor FGLěn. Suppose that A is R0-algebra, and let Appq denote the R0-algebra
obtained from A by extending scalars along the Frobenius isomorphism ϕR0 : R0 Ñ R0.
The statement of Lemma 5.4.4 is equivalent to the assertion that the outer rectangle
in the diagram

CoordppG0qpA
ppqq //

��

FGL“npAppqq //

��

FGLěnpAppqq

��
CoordppG0qpAq // FGL“npAq // FGLěnpAq

is a pullback square of sets, where the vertical maps are induced by the relative
Frobenius map Appq Ñ A. Note that the right square is automatically a pullback (since
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FGL“n is an open subfunctor of FGLěn). It will therefore suffice to show that the
square on the left is a pullback. Unwinding the definitions, we must show that if ppG1, tq

is a coordinatized formal group of exact height n over Appq, then any isomorphism
pG1
A » ppG0qA of formal groups over A can be lifted uniquely to an isomorphism

pG1 » ppG0qAppq of formal groups over Appq. This follows from Proposition 4.4.23, since
the relative Frobenius map Appq Ñ A induces an isomorphism of perfections.

Lemma 5.4.5. Let MP denote the periodic complex bordism spectrum. Then the
canonical map

τě0pMPq Ñ π0pMPq » LÑ L{In

exhibits L{In as a perfect module over τě0pMPq.

Proof. Let u P π2pMPq be as in Construction 5.3.9, so that u is invertible in π˚pMPq.
Theorem 5.3.10 implies that the homotopy groups of MP are concentrated in even
degrees, so that multiplication by u determines a cofiber sequence

Σ2
pτě0pMPqq Ñ τě0pMPq Ñ L.

It follows that L is perfect as a module over τě0pMPq. Since In is generated by a
regular sequence in L (Corollary 5.3.4), the quotient L{In is perfect as a module over
L and therefore also as a module over τě0pMPq.

Construction 5.4.6. Recall that the quotient ring L{In is an Fp-algebra for which
the Frobenius map ϕL{In : L{In Ñ L{In is flat. Applying Theorem 5.3.3 to the map
τě0pMPq Ñ L{In and the relatively perfect morphism ρ : L{In Ñ rR0, we obtain a
pushout diagram of E8-rings σ :

τě0pMPq ρ //

��

rA

��

L{In
ρ0 // rR0

which exhibits ρ as a τě0pMPq-thickening of ρ0, in the sense of Definition 5.2.1.

Lemma 5.4.7. Let rA be as in Construction 5.4.6. Then:

p1q The element u P π2pMPq induces an isomorphism of rings π˚pRq » π0p rAqrus.

p2q Any regular sequence w0, w1, . . . , wn´1 generating the ideal I Ď L remains regular
in π0p rAq.
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Proof. Expand the commutative square σ of Construction 5.4.6 to a diagram of
connective E8-rings

τě0pMPq ρ //

��

rA

��

L
ρ1 //

��

rA0

��

L{In
ρ0 // rR0

where the upper square is a pushout. Applying Remark 5.2.4, we deduce that the
lower square exhibit ρ1 as an L-thickening of ρ0. It follows from Proposition 5.2.12
that rA0 is discrete and that w0, . . . , wn´1 is a regular sequence in rA0. By construction,
we have a cofiber sequence

Σ2
rA

u
ÝÑ rAÑ rA0.

The associated long exact sequence of homotopy groups shows that the map π0p rAq Ñ
rA0 is an isomorphism and that multiplication by u induces isomorphisms πk´2p rAq »

πkp rAq for k ą 0. It follows that π˚p rAq can be identified with the polynomial ring
rA0rus, which immediately implies p1q and p2q.

Notation 5.4.8. Let A denote the localization rAru´1s (where we abuse notation by
identifying the element u P π2pMPq with its image in π2p rAq). Note that the map
ρ : τě0pMPq Ñ A extends to a map of localizations

ρ : MP » pτě0pMPqqru´1
s Ñ rAru´1

s “ A.

Lemma 5.4.9. The E8-ring A is even periodic and Kpnq-local. Moreover, the
canonical map rAÑ A exhibits rA as a connective cover of A.

Proof. It follows from Lemma 5.4.7 that the homotopy ring π˚pAq can be identified
with the Laurent polynomial ring π0p rAqru

˘1s. This proves that A is even periodic,
and that rA is a connective cover of A. We will prove that A is Kpnq-local by applying
the criterion of Theorem 4.5.2. Note that the nth Landweber ideal IAn is given by
Inπ0pAq. By construction, rA is In-complete and therefore the commutative ring π0p rA

is In-complete (Theorem SAG.7.3.4.1 ). Since each homotopy group of A is isomorphic
to π0p rAq, it follows that A is also In-complete (Theorem SAG.7.3.4.1 ). Choose an
element w P L such that In`1 “ pwq ` In. To complete the proof that A is Kpnq-local,
it will suffice to show that the image of w is invertible in π0p rAq. Because π0p rAq is
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I-complete, it will suffice to show that w has invertible image in π0p rAq{Inπ0p rAq » rR0.
This follows from our assumption that the the formal group pG0 has exact height n.

Using the commutativity of the diagram

L //

��

π0pAq

��

L{In
ρ0 // rR0,

and the definition of ρ0, we obtain a canonical map

γ0 : pR0, pG0q Ñ p rR0, pGQn
A q

in the category FG. Since A is Kpnq-local, Theorem 5.1.5 ensures that γ0 admits an
essentially unique lift to a morphism of E8-rings γ : E Ñ A. We will deduce Theorem
5.4.1 from the following:
Proposition 5.4.10. The maps ρ : MP Ñ A and γ : E Ñ A exhibit A as the
In-completion of the smash product MPbSE.
Proof. Since the Quillen formal group pGQ0

E has height ă n` 1, we can identify the
In-completion of MPbSE with its Kpnq-localization (Theorem 4.5.2). It will therefore
suffice to show that, for every Kpnq-local E8-ring B, the canonical map

MapCAlgpA,Bq Ñ MapCAlgpMPbSE,Bq » MapCAlgpMP, Bq ˆMapCAlgpE,Bq

is a homotopy equivalence. Equivalently, we must show that if B is a Kpnq-local
E8-algebra over MP, then composition with γ induces a homotopy equivalence θ :
MapCAlgMP

pA,Bq Ñ MapCAlgpE,Bq. Set B0 “ π0pBq{Inπ0pBq, so that the map
MP Ñ B determines a coordinate t on pGQn

B . Using Theorem 5.1.5, we can identify
MapCAlgpE,Bq with the set HomFGppR0, pG0q, pB0, pGQn

B qq. Since the restriction map
MapCAlgMP

pA,Bq Ñ MapCAlgτě0 MP
p rA, τě0Bq is a homotopy equivalence, we can invoke

the definition ρ as a τě0pMPq lift of ρ0 to obtain a homotopy equivalence

MapCAlgMP
pA,Bq » HomCAlg♥

L{In

p rR0, B0q.

Under these identifications, θ corresponds to a map θ1 which fits into a commutative
diagram of sets

HomCAlg♥
L{In

p rR0, B0q
θ1 //

))

HomFGppR0, pG0q, pB0, pGQn
B qq

tt
HomCAlg♥pR0, B0q.
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To show that θ1 is bijective, it will suffice to prove bijectivity after restricting to the
fiber over any ring homomorphism g : R0 Ñ B0. This follows from an examination of
the pullback square

CoordppG0qpB0q //

��

tpG0u

��
FGLpB0q // FGrouppB0q

by taking fibers over (the isomorphism class of) the coordinatized formal group
ppGQn

B , tq P FGLpB0q.

Proof of Theorem 5.4.1. Let tvm P π2ppm´1qpEqu0ďmăn be as in the statement of The-
orem 5.4.1. For each 0 ď m ă n, let cofibpvmq denote the cofiber of the map
vm : Σ2ppm´1qE Ñ E. For 0 ď m ď n, we let Epmq denote the “Koszul complex” given
by the tensor product

Â

iăm cofibpvmq (where the tensor product is formed in the
8-category ModE), and set Apmq “ Epmq bE A. We first prove the following:

pimq The canonical map A Ñ Apmq induces an isomorphism π˚pAq{Imπ˚pAq »

π˚pApmqq.

We prove pimq by induction on m, the case m “ 0 being trivial. Let us therefore suppose
that p˚mq is known for some m ă n; we will prove p˚m`1q. Using Corollary 5.3.4, we
see that the ideal Im`1 Ď L is generated by a regular sequence w0, w1, . . . , wm P L

for which the subsequence w0, w1, . . . , wm´1 generates Im. Let us abuse notation by
identifying each wi with its image in π0pAq under the map ρ, and each vi with its
image in π2ppi´1qpAq under the map γ. Note that u1´pmvm and wm are both non-
zero divisors of π0pAq{Imπ0pAq which generate the ideal Im`1π0pAq{Imπ0pAq, so their
images differ by a unit in π0pAq{Imπ0pAq. Lemma 5.4.7 implies that multiplication by
wm is injective on π˚pAq{Imπ˚pAq, so multiplication by vm must also be injective. We
therefore have a short exact sequence

0 Ñ π˚´2ppm´1qpApmqq
vm
ÝÝÑ π˚pApmqq Ñ π˚pApm` 1qq Ñ 0,

from which assertion pim`1q follows.
By virtue of Lemma 5.4.9, we can identify the quotient π˚pAq{Inπ˚pAq with rR0ru

˘1s.
We can therefore reformulate p˚nq as follows:

piiq There is a canonical isomorphism of π˚pAq-modules
rR0ru

˘1
s » π˚pApnqq

which carries 1 P rR0 to the homotopy class of the natural map AÑ Apnq.
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It follows from Proposition 5.4.10 that each Apmq can be identified with the com-
pletion of the smash product MPbSEpmq with respect to the ideal In Ď π0pMPq, or
equivalently with respect to the ideal IEn Ď π0pEq (since both generate the Landweber
ideal IAn Ď π0pAq). Note that the smash product MPbSEpnq is already IEn -complete
(since it is annihilated by a power of each vi). Combining this observation with piiq,
we obtain the following:

piiiq There is a canonical isomorphism of π˚pMPbSEq-modules

rR0ru
˘1
s » π˚pMPbSEpnqq

which carries 1 P rR0 to the homotopy class of the natural map MPbSE Ñ

MPbSEpnq.

By virtue of Theorem 5.3.13, the smash product MPbSE is flat over E. Since
p˚2q implies that the homotopy groups of

MPbSEpnq » pMPbSEq bE Epnq

are concentrated in even degrees, it follows that the homotopy groups of Epnq are
concentrated in even degrees. We now prove the following more general assertion for
0 ď m ď n

pivmq The homotopy groups of Epmq are concentrated in even degrees.

We proceed by descending induction on m; the case m “ n has already been treated
above. Let us therefore assume that m ă n and that the homotopy groups of Epm`1q
are concentrated in even degrees. Using the cofiber sequence

Σ2ppm´1qEpmq
vm
ÝÝÑ Epmq Ñ Epm` 1q,

we conclude that the map vm : π˚pEpmqq Ñ π˚pEpmqq is surjective on homotopy
groups in odd degrees. Consequently, if π˚pEpmqq were nonzero some odd degree,
then the inverse limit of the tower

¨ ¨ ¨ Ñ Σ4ppm´1qEpmq
vm
ÝÝÑ Σ2ppm´1qEpmq

vm
ÝÝÑ Epmq

would have nonzero homotopy. This is impossible, since Epmq is complete with respect
to the ideal IEn (because it is a perfect E-module and E is IEn -complete).
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Applying pivmq in the case m “ 0, we deduce that the homotopy groups of
E » Ep0q are concentrated in even degrees, which proves assertion pbq of Theorem
5.4.1. Moreover, it follows from pivmq that each of the cofiber sequences

Σ2ppm´1qEpmq
vm
ÝÝÑ Epmq Ñ Epm` 1q

induces a short exact sequence of graded abelian groups

0 Ñ π˚´2ppm´1qpEpmqq
vm
ÝÝÑ π˚pEpmqq Ñ π˚pEpm` 1qq Ñ 0.

It follows that the sequence v0, v1, . . . , vn´1 is regular in π˚pEq (which proves pcq) and
that the canonical map E Ñ Epnq induces an isomorphism

π˚pEq{pv0, . . . , vn´1q “ π˚pEq{I
E
n π˚pEq Ñ π˚pEpnqq.

To complete the proof of Theorem 5.4.1, we must show that the canonical map
ψ : R0 Ñ π0pEq{I

E
n is an isomorphism. Since rR0 is faithfully flat over R0 (Proposition

5.3.12), it will suffice to show that ψ induces an isomorphism

rψ : rR0 Ñ rR0 bR0 pπ0pEq{I
E
n q »

rR0 bR0 π0pEpnqq.

Using Theorem 5.3.13, we can identify rR0bR0 π0pEpnqq with π0pMPbSEpnqq, so that
the desired result follows from piiiq.

6 Oriented Deformation Rings
Let R0 be a commutative Fp-algebra and let G0 be a p-divisible group over R0. In

§3, we studied conditions which guarantee that G0 admits a universal deformation,
defined over an E8-ring Run

G0 which we refer to as the spectral deformation ring of G0.
In this section, we study a variant of Run

G0 , which classifies oriented deformations of
G0.

Construction 6.0.1. Let R0 be a Noetherian Fp-algebra which is F -finite, let G0

be a nonstationary p-divisible group over R0, and let G P BTp
pRun

G0q be a universal
deformation of G0 (see Theorem 3.0.11). We let Ror

G0 denote an orientation classifier
for the underlying formal group G˝ (Definition 4.3.14). We will refer to Ror

G0 as the
oriented deformation ring of G0.
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Remark 6.0.2. In the situation of Theorem 6.0.3, let G P BTp
pRun

G0q denote the
universal deformation of G0. Then the formal group G˝ acquires an orientation
after extending scalars to Ror

G0 . It follows from Proposition 4.3.23 that the oriented
deformation ring Ror

G0 is complex periodic.

In the situation of Construction 6.0.1, we have a canonical map of E8-rings
Run

G0 Ñ Ror
G0 , which induces a ring homomorphism Rcl

G0 Ñ π0pR
or
G0q.

Theorem 6.0.3. Let R0 be a commutative Fp-algebra which is Noetherian and F -finite
and let G0 be a 1-dimensional nonstationary p-divisible group over R0, with classical
deformation ring Rcl

G0 and oriented deformation ring Ror
G0. Then:

paq The canonical map u : Rcl
G0 Ñ π0pR

or
G0q is an isomorphism of commutative rings.

pbq The homotopy groups of Ror
G0 are concentrated in even degrees.

Note that Theorem 6.0.3 can be regarded as a more precise version of the main
result claimed in the introduction to this paper:

Proof of Theorem 0.0.8 from Theorem 6.0.3. Let pR0,G0q be as in the statement of
Theorem 6.0.3, let G P BTp

pRun
G q denote the universal deformation of G0, and

set E “ Ror
G0 . By construction, the formal group G˝ acquires an orientation after

extending scalars from Run
G0 to E. It follows that E is complex periodic and that the

G˝
E can be identified with the Quillen formal group pGQ

E . It follows from Theorem
6.0.3 that the classical Quillen formal group pGQ0

E agrees with the identity component
of the formal group Gcl obtained from G by extending scalars along the projection
map Run

G0 Ñ π0pR
un
G0q, which is the classical universal deformation of G0 (see Corollary

3.0.13).

Remark 6.0.4. In the situation above, the homotopy groups of Ror
G0 are given by

π˚pR
or
G0q »

#

ωbk if ˚ “ 2k is even
0 otherwise.

where ω denotes the dualizing line of the formal group G˝
cl.

Let us describe some other consequences of Theorem 6.0.3. Recall first that the
spectral deformation ring Run

G0 is equipped with the structure of an adic E8-ring.
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Corollary 6.0.5. Let R0 be a commutative Fp-algebra which is Noetherian and F -
finite, let G0 be a 1-dimensional nonstationary p-divisible group over R0, and let
I Ď π0pR

un
G0q be a finitely generated ideal of definition. Then the oriented deformation

ring Ror
G0 is I-complete.

Proof. By virtue of Theorem SAG.7.3.4.1 , it will suffice to show that each homotopy
group πkpR

or
G0q is I-complete. If k is odd, then πkpR

or
G0q vanishes (Theorem 6.4.6)

and there is nothing to prove. If k is even, then πkpR
or
G0q is an invertible module

over π0pR
or
G0q. It will therefore suffice to show that π0pR

or
G0q is I-complete. Invoking

Theorem 6.4.6, we see that the unit map π0pR
un
G0q Ñ π0pR

or
G0q is an isomorphism. We

are therefore reduced to showing that π0pR
un
G0q is I-complete, which follows from the

I-completeness of Run
G0 (Theorem SAG.7.3.4.1 ).

Corollary 6.0.6. Let κ be a perfect field of characteristic p, let G0 be a connected
1-dimensional p-divisible group over κ, and let E “ EpG˝

0q denote the associated
Lubin-Tate spectrum. Then the oriented deformation ring Ror

G0 is equivalent to E.

Proof. Recall that E was defined as the Kpnq-localization of the oriented deformation
ring A “ Ror

G0 (Construction 5.1.1). It will therefore suffice to show that A is already
Kpnq-local. By virtue of Theorem 4.5.2, it will suffice to show that A is complete with
respect to the nth Landweber ideal IAn , and that IAn`1 “ π0pAq. The second assertion
is obvious, and the first follows from from Theorem 6.0.3, since the nth Landweber
ideal defines the topology on π0pR

un
G0q (Corollary 4.4.25).

Remark 6.0.7 (The Universal Property of Ror
G0). In the situation of Theorem 6.0.3, let

us regard the oriented deformation ring Ror
G0 as a complete adic E8-ring by endowing

π0pR
or
G0q with the topology determined by the isomorphism π0pR

un
G0q » π0pR

or
G0q. Let A

be an arbitrary adic E8-ring. Unwinding the definitions, we can identify the mapping
space MapCAlgad

cpl
pRor

G0 , Aq with a space Defor
G0pAq classifying triples pG, α, eq where G

is a p-divisible group, α is an equivalence class of G0-taggings of A (see Definition
3.1.1), and e is an orientation of the identity component G˝. Note that the existence
of α guarantees that p is topologically nilpotent in A and that the p-divisible group
G is 1-dimensional.

Let us now briefly outline our strategy for proving Theorem 6.0.3. Note that the
statement of Theorem 6.0.3 refers to a p-divisible group G0 over a commutative ring
R0, which we can think of as a family of p-divisible groups parametrized by the affine
scheme SpecpR0q. For every point x P | SpecpRq|, let κpxq denote an algebraic closure
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of the residue field κpxq, so that G0 determines a p-divisible group G1
0 over the field

κpxq by extension of scalars. In §6.1, we will show that the spectral deformation ring
Run

G1
0

is flat as a E8-algebra over the spectral deformation ring Run
G0 (Theorem 6.1.2).

Using this observation, we will reduce the proof of Theorem 6.0.3 to the case where
R0 is an algebraically closed field. In this case, the p-divisible group G0 admits a
connected-étale sequence

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0.

In §6.2, we will show that the spectral deformation ring Run
G0 can be regarded as a flat

E8-algebra over Run
G1

0
. This will allow us to replace G0 by G1

0, and thereby further
reduce to the situation where G0 is a connected p-divisible group of some height
n ą 0. In this case, we can identify π0pR

un
G0q with the Lubin-Tate ring RLT of the

formal group G˝
0. Roughly speaking, the idea is then to argue that the description

of Theorem 6.0.3 must be correct because it becomes correct after completing at the
closed point of | SpecpRLTq| (by virtue of Theorem 5.4.1) and also after deleting the
closed point of | SpecpRLTq| (by repeating the above analysis to reduce to a statement
about p-divisible groups of smaller height). To carry out the details of this argument,
we will need to show that the higher homotopy groups of the spectral deformation
ring Run

G0 are rationally trivial, which we prove in §6.3 using a similar strategy (see
Theorem 6.3.1).

6.1 Flatness of Comparison Maps
In §3.1, we defined the spectral deformation ring Run

G0 of a nonstationary p-divisible
group G0 over an F -finite Fp-algebra R0 (Definition 3.1.11). Our goal in this section
is to study the behavior of spectral deformation ring Run

G0 as we vary the commutative
ring R0. We begin with a simple observation:

Lemma 6.1.1. Let f : R0 Ñ R10 be a morphism of commutative rings in which p is
nilpotent, and assume that the absolute cotangent complexes LR0 and LR10 are almost
perfect. Let G0 be a nonstationary p-divisible group over R0, and let G1

0 “ pG0qR10
denote the p-divisible group obtained from G0 by extending scalars along f . Then G1

0
is nonstationary if and only if the module of Kähler differentials ΩR10{R0 vanishes.

Proof. Since LSpecpR0q{MBT is 1-connective (Remark 3.4.4), the fiber sequence

R1 bR LSpecpR0q{MBT Ñ LSpecpR10q{MBT Ñ LR10{R0
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induces an isomorphism π0LSpecpR10q{MBT » π0LR10{R0 “ ΩR10{R0 . It follows that
LSpecpR10q{MBT is 1-connective if and only if ΩR10{R0 vanishes, so the desired result
follows from Remark 3.4.4.

In the situation of Lemma 6.1.1, composition with f induces a natural transforma-
tion of deformation functors u : DefG1

0
Ñ DefG0 . If ΩR10{R0 vanishes, then Theorem

3.4.1 and Lemma 6.1.1 imply that the functors DefG0 and DefG0 are corepresented by
spectral deformation rings Run

G0 and Run
G1

0
, respectively. The natural transformation

u is then classified by a map Run
G0 Ñ Run

G1
0
. Our goal in this section is to prove the

following:

Theorem 6.1.2. Let f : R0 Ñ R10 be a morphism of F -finite Noetherian Fp-algebras.
Let G0 be a nonstationary p-divisible group over R0, let G1

0 denote its extension of
scalars to R10, and assume that ΩR10{R0 vanishes (so that G1

0 is also nonstationary).
Then the induced map of spectral deformation rings Run

G0 Ñ Run
G1

0
is flat.

6.1.1 The Case of a Closed Immersion

Let us first describe an important special case of Theorem 6.1.2, in which the
conclusion follows immediately from the definitions:

Example 6.1.3. Let R0 be a commutative ring and let G0 be a p-divisible group
over R0. Suppose we are given an ideal I Ď R0, and let G1

0 “ pG0qR0{I be the induced
p-divisible group over R0{I. For any complete adic E8-ring A, the we have a pullback
diagram of spaces

DefG1
0
pAq //

��

DefG0pAq

��
lim
ÝÑJ

HompR0{I, π0pAq{Jq // lim
ÝÑJ

HompR0, π0pAq{Jq.

Let us now suppose that the hypotheses of Theorem 3.4.1 are satisfied, so that
G0 admits a spectral deformation ring R “ Run

G0 . Assume further that the ideal I is
finitely generated, so that the inverse image of I is a finitely generated ideal I Ď π0pRq.
The above description shows that, for every complete adic E8-ring A, we can identify
DefG1

0
pAq with the summand of MapCAlgad

cpl
pR,Aq » DefG0pAq spanned by those maps

RÑ A for which the underlying ring homomorphism u : π0pRq Ñ π0pAq is continuous
when we equip π0pRq with the I-adic topology. It follows that the functor DefG1

0
is
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corepresented by the I-completion R^
I

(regarded as an adic E8-ring with the I-adic
topology).

In the special case where R0 is an F -finite Noetherian Fp-algebra, the spectral
deformation ring R is Noetherian (Theorem 3.4.1), so that R^I is flat over R by virtue
of Corollary SAG.7.3.6.9 .

Example 6.1.4. Let R0 be an F -finite Noetherian Fp-algebra and let G0 be a
nonstationary p-divisible group over R0. Let I Ď R0 be an ideal, and set G1

0 “ pG0qR0{I .
If R0 is I-complete, then the induced map of spectral deformation rings Run

G0 Ñ Run
G1

0
is an equivalence at the level of E8-rings (this follows from Example 6.1.3 and Remark
SAG.7.3.6.8 ). Beware that it usually not not an equivalence of adic E8-rings (this
happens if and only if the ideal I is nilpotent): that is, the commutative rings π0pR

un
G0q

and π0pR
un
G1

0
q are equipped with different topologies.

The following result supplies some examples of situations in which Example 6.1.4
can be applied:

Proposition 6.1.5. Let R0 be an F -finite Noetherian Fp-algebra and let G0 be a
nonstationary p-divisible group over R0. Set R “ Run

G0 and let G P BTp
pRq be the

universal deformation of G0. Then:

paq The commutative ring R1 “ π0pRq{ppq is Noetherian and F -finite.

pbq The p-divisible group GR1 P BTp
pR1q is nonstationary.

pcq The natural map of spectral deformation rings Run
G1 Ñ Run

G0
“ R is an equivalence

in the 8-category of E8-rings (though generally not as a morphism of adic E8-
rings).

Proof. The natural map R Ñ R0 extends to a surjective ring homomorphism ρ :
R1 Ñ R0, and Theorem 3.4.1 guarantees that R1 is complete with respect to the ideal
I “ kerpρq. Assertion paq follows from Proposition 3.3.9. To prove pbq, we note that the
relative cotangent complex LSpecpR1q{MBT is almost perfect as an R1-module; we wish
to show that LSpecpR1q{MBT is 1-connective (Remark 3.4.4). By Nakayama’s lemma,
it will suffice to show that the tensor product κ bR1 LSpecpR1q{MBT is 1-connective,
whenever κ is the residue field of R1 at a maximal ideal m Ď R1. Equivalently, we
wish to show that every map of R1-modules u : LSpecpR1q{MBT Ñ κ is nullhomotopic.

Let ρ : R1 Ñ κ be the canonical quotient map. Then u determines a ring
homomorphism

ρ : R1 Ñ κrεs{pε2q ρpxq “ ρpxq ` εdx
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having the property that the p-divisible group pG1qd is trivial as a first-order defor-
mation of pG1qκ. Since R1 is I-complete, the maximal ideal m contains I. It follows
that the p-divisible group pG1qd admits a G0-tagging, in the sense of Definition 3.1.1;
it is therefore classified by a map of adic E8-rings ρ1 : R Ñ κrεs{pε2q. It follows
immediately that ρ1 is obtained by composing ρ with the canonical map q : RÑ R1.
On the other hand, the fact that pG1qd is a trivial first order deformation of pG1qκ

guarantees that ρ1 factors through the subalgebra κ Ď κrεs{pε2q. Since the map q is
surjective on π0, we conclude that ρ also factors through κ: that is, the derivation
d : R1 Ñ κ vanishes. This proves that u is nullhomotopic, as desired.

6.1.2 The General Case

We now turn to the proof of Theorem 6.1.2. Our strategy is to reduce to a general
statement about E8-rings (Proposition 6.1.8).

Lemma 6.1.6. Let f : RÑ R1 be a morphism of ppq-complete Noetherian E8-rings,
and assume that the commutative rings π0pRq{ppq and π0pR

1q{ppq are F -finite. Then
the ppq-completion of the relative cotangent complex LR1{R is almost perfect as an
R1-module.

Proof. By virtue of Lemma SAG.8.1.2.3 , it will suffice to show that for every morphism
of connective E8-rings u : R1 Ñ A, where A is ppq-nilpotent, the tensor product
AbR1 LR1{R is almost perfect. By virtue of Proposition SAG.2.7.3.2 , we can assume
that A is a commutative Fp-algebra. Without loss of generality, we can assume that
A “ π0pR

1q{ppq. In this case, the map u factors through the relative tensor product
pπ0pRq{ppqq bR R

1. We may therefore replace R by π0pRq{ppq and thereby reduce
to the case where R is a commutative Fp-algebra and A “ π0pR

1q. Using the fiber
sequence

AbR1 LR1{R Ñ LA{R Ñ LA{R1 ,

we are reduced to showing that the relative cotangent complexes LA{R and LA{R1 are
almost perfect as modules over A. For the relative cotangent complex LA{R, this
follows from Theorem 3.3.1 (since R and A are Noetherian and F -finite). For the
relative cotangent complex LA{R1 , we observe that A » π0pR

1q is almost of finite
presentation over R1, since R1 is Noetherian (Proposition HA.7.2.4.31 ).

Lemma 6.1.7. In the situation of Theorem 6.1.2, the relative cotangent complex
LRun

G10
{Run

G0
is ppq-rational: that is, it vanishes after completion at ppq.
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Proof. To simplify notation, set R “ Run
G0 and R1 “ Run

G1
0
. Then R1 is an adic E8-ring;

let I Ď π0pR
1q be a finitely generated ideal of definition. Then I contains a power of p.

Consequently, for any R1-module M , the canonical map from M to its ppq-completion
M^
ppq induces an equivalence of I-completions M^

I Ñ pM^
ppqq

^
I . In the special case

M “ LR1{R, the ppq-completion M^
ppq is almost perfect over R1 (Proposition 6.1.5

and Lemma 6.1.6), and therefore already I-complete (since R1 is I-complete; see
Proposition SAG.7.3.5.7 ). It follows that the ppq-completion of LR1{R can be identified
with the I-completion of LR1{R, which can be identified with the relative cotangent
complex of the map of formal spectra SpfpR1q Ñ SpfpRq (see Example SAG.17.1.2.9 ).
It will therefore suffice to show that LSpfpR1q{ SpfpRq vanishes. Using the fiber sequence

LSpfpRq{MBT |SpfpR1q Ñ LSpfpR1q{MBT Ñ LSpfpR1q{ SpfpRq,

we are reduced to proving that the relative cotangent complexes LSpfpRq{MBT and
LSpfpR1q{MBT vanish. This follows the description of SpfpRq » DefG0 and SpfpR1q »
DefG1

0
as relative de Rham spaces (Proposition 3.4.3 and Corollary SAG.18.2.1.11 ).

By virtue of Proposition 6.1.5 and Lemma 6.1.7, Theorem 6.1.2 is a consequence
of the following algebraic assertion:

Proposition 6.1.8. Let u : R Ñ R1 be a morphism of ppq-complete Noetherian
E8-rings. If the relative cotangent complex LR1{R is ppq-rational, then u is flat.

We will need the following general fact:

Lemma 6.1.9. Let f : RÑ R1 be a morphism of Noetherian E8-rings. Assume that
R is complete with respect to an ideal I Ď π0pRq and that R1 is complete with respect
to Iπ0pR

1q. The following conditions are equivalent:

paq The morphism f is flat.

pbq The induced map π0pRq{I Ñ pπ0pRq{Iq bR R
1 is flat.

Proof. The implication paq ñ pbq is clear. Assume that pbq is satisfied; we wish to
prove that f is flat. Proceeding by induction on the number of generators of I, we can
reduce to the case where I “ pxq is a principal ideal. Let M be a discrete R-module;
we wish to show that M bR R

1 is also discrete. Writing M as a filtered colimit of
finitely generated R-modules, we can assume that M is finitely generated as a module
over π0pRq. We then have an exact sequence 0 Ñ M 1 Ñ M Ñ M2 Ñ 0, where the
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action of x on M 1 is locally nilpotent and M2 has no x-torsion. We will complete the
proof by showing that M 1 bR R

1 and M2 bR R
1 are discrete.

We first show that M 1 bR R
1 is discrete. Since R is Noetherian, M 1 is finitely

generated as a module over π0pRq, and therefore annihilated by xk for k " 0. We
can therefore write M 1 as a successive extension of finitely many discrete R-modules,
each of which is annihilated by x. Consequently, it will suffice to show that the tensor
product N bR R

1 is discrete when N is a discrete R-module annihilated by x. In this
case, N admits the structure of a module over π0pRq{I, and the desired result follows
from assumption pbq.

We now show that M2 bR R
1 is discrete. Note that M2 is almost perfect as an

R-module (Proposition HA.7.2.4.17 ), so that M2bRR
1 is also finitely generated as an

R1, and therefore pxq-complete (Proposition SAG.7.3.5.7 ). It follows that M2 bR R
1

can be written as the limit of the tower tpM2{xjM2qbRR
1ujě0. Consequently, to show

that M2bRR
1 is discrete, it will suffice to show that each pM2{xjM2qbRR

1 is discrete,
and that each of the transition maps pM2{xj`1M2q bR R

1 Ñ pM2{xjM2q bR R
1 is

surjective. Using the fiber sequence

pM2
{xM2

q bR R
1 xj
ÝÑ pM2

{xj`1M2
q bR R

1
Ñ pM2

{xjM2
q bR R

1,

we are reduced to showing that the tensor product pM2{xM2qbRR
1 is discrete, which

follows immediately from pbq.

Proof of Proposition 6.1.8. Let u : R Ñ R1 be as in the statement of Proposition
6.1.8; we wish to show that u is flat. By virtue of Lemma 6.1.9, we can replace R by
π0pRq{ppq and R1 by the tensor product pπ0pRq{ppqq bR R

1 and thereby reduce to the
case where R is a commutative Fp-algebra. In this case, our assumption guarantees
that the relative cotangent complex LR1{R vanishes, and the desired result follows from
Proposition 3.5.5.

6.2 Serre-Tate Parameters
Let R0 be a commutative ring and suppose we are given a short exact sequence

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0

of p-divisible groups over R0. In this section, we will study the relationship between
the deformation theories of G1

0 and G0, under the assumption that G2
0 is étale.
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6.2.1 Deformations of Short Exact Sequences

We begin by introducing some terminology.

Notation 6.2.1. Let R be an E8-ring. We let Mex
BTpRq denote the subcategory of

Funp∆1 ˆ∆1,BTp
pRqq whose objects are short exact sequences of p-divisible groups

G1 //

��

G

��
0 //G2

in the sense of Definition 2.4.9, and whose morphisms are equivalences.
Suppose we are given a commutative ring R0 and a short exact sequence σ0 :

G1
0

//

��

G0

��
0 //G2

0

of p-divisible groups over R0. For every complete adic E8-ring A, we let Bσ0pAq

denote the direct limit

lim
ÝÑ
I

pMex
BTpAq ˆMex

BTpπ0pAq{Iq HompR, π0pAq{Iqq,

where I ranges over all finitely generated ideals of definition for π0pAq.

Proposition 6.2.2. Let R0 be a commutative ring and let σ0 :

G1
0

//

��

G0

��
0 //G2

0

be a short exact sequence of p-divisible groups over R0. Assume that G2
0 is étale. Then

the construction
p0 Ñ G1

Ñ G Ñ G2
Ñ 0q ÞÑ G

induces an equivalence of deformation functors Defσ0 Ñ DefG0

Proof. Combine Proposition 2.4.8, Remark 2.5.11, and Proposition 3.1.18.
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Remark 6.2.3. Proposition 6.2.2 can be stated more informally as follows: if a
p-divisible group G0 fits into an exact sequence

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0

where G2
0 is étale, then giving a deformation of G0 is equivalent to giving a deformation

of the entire short exact sequence.
Note that the construction

p0 Ñ G1
Ñ G Ñ G2

Ñ 0q ÞÑ G1

determines another natural transformation of deformation functors Defσ0 Ñ DefG1
0
.

Composing this natural transformation with the inverse of the equivalence Defσ0 Ñ

DefG0 , we obtain a forgetful functor DefG0 Ñ DefG1
0

(under the assumption that G2
0

is étale).

6.2.2 The Main Theorem

The main result of this section can be stated as follows:

Theorem 6.2.4. Let R0 be a Noetherian Fp-algebra which is F -finite, and suppose
we are given a short exact sequence of p-divisible groups

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0

where G1
0 is nonstationary and G2

0 is étale. Then:

paq The p-divisible group G0 is also nonstationary.

pbq The natural transformation of deformation functors DefG0 Ñ DefG1
0

induces a
flat morphism of spectral deformation rings Run

G1
0
Ñ Run

G0.

Corollary 6.2.5. Let R0 be a Noetherian Fp-algebra which is F -finite and let G0 be
a nonstationary p-divisible group over R0. Assume that G0 is ordinary: that is, for
every residue field κ of R0, the p-divisible group pG0qκ fits into a short exact sequence

0 Ñ G1
Ñ pG0qκ Ñ G2

Ñ 0,

where G2 is étale and the Cartier dual of G1 is étale. Then the spectral deformation
ring Run

G0 is flat over the sphere spectrum S.
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Proof. It will suffice to show that, for each maximal ideal m Ď π0pR
un
G0q, the localization

pRun
G0qm is flat over S. Note that m is the inverse image of a maximal ideal m0 Ď R0.

Let κ denote the residue field R0{m0 » π0pR
un
G0q{m, and let R1 denote the spectral

deformation ring of pG0qκ. It follows from Theorem 6.1.2 that the natural map
Run

G0 Ñ R1 is flat, and the quotient π0pR
1q{mπ0pR

1q is nonzero. It will therefore suffice
to show that R1 is flat over S. We may therefore replace R0 by κ, and thereby reduce
to the case where there exists a short exact sequence

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0,

where G2
0 and the Cartier dual of G1

0 are étale. By virtue of Theorem 6.2.4, we can
replace G0 by G1

0 and thereby reduce to the case where G0 is Cartier dual to an étale
p-divisible group. Using Remark 3.1.13 we can replace G0 by its Cartier dual, and
thereby reduce to the case where G0 is étale. Applying Theorem 6.2.4 again, we can
reduce to the case where G0 “ 0. In this case, the p-divisible group G0 is defined over
Fp, so we can use Theorem 6.1.2 to reduce to the case R0 “ Fp. The desired result
now follows from Proposition 3.1.18.

6.2.3 Extensions of p-Divisible Groups

We begin by introducing some terminology which will be useful in the proof of
Theorem 6.2.4.

Notation 6.2.6. Let R be an E8-ring. We note that the construction pG1 Ñ G Ñ

G2q ÞÑ pG1,G2q determines a map of spacesMex
BTpRq Ñ BTp

pRq»ˆBTp
pRq». Given

a pair of p-divisible groups G1,G2 P BTp
pRq, we let ExtpG2,G1q denote the fiber

product
Mex

BTpRq ˆBTppRq»ˆBTppRq» tpG1,G2
qu.

We will refer to ExtpG2,G1q as the space of extensions of G2 by G1.

Notation 6.2.7. Let R be an E8-ring and let G be a p-divisible group over R. For
each integer k ě 0, we let BGrpks : CAlgcn

R Ñ Modcn
Z denote the sheafification of the

functor A ÞÑ ΣGrpks with respect to the finite flat topology on CAlgcn
R . Note that the

0th space Ω8BGrpkspAq can be identified with the classifying space for Grpks-torsors
on SpecpAq (with respect to the finite flat topology). Note that since Grpks is finite
flat commutative group scheme over R, every Grpks-torsor in the fpqc topology is also
a Grpks-torsor in the finite flat topology (since it is split by itself); consequently, each
of the functors BGrpks satisfies descent for the fpqc topology.
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We define BG : CAlgcn
R Ñ Modcn

Z by the formula BGpAq “ lim
ÝÑ

BGrpkspAq.
Alternatively, we can describe BG as the suspension of G in the prestable 8-category
C “ ShvModcn,Nilppq

Z
pCAlgcn

R q of Modcn,Nilppq
Z -valued sheaves with respect to the finite flat

topology on CAlgcn
R .

Lemma 6.2.8. Let R be an E8-ring and let G be a p-divisible group over R. Then
the functor BG : CAlgcn

R Ñ Modcn
Z is cohesive.

Proof. Writing BG as a filtered colimit of the functors BGrpks, we are reduced
to proving that each BGrpks is cohesive. Since the functor Ω8 : Modcn

Z Ñ S is
conservative and preserves limits, it will suffice to show that the composite functor
pΩ8 ˝ BGrpksq : CAlgcn

R Ñ S is cohesive. We now observe that this functor is an
example of a geometric stack in the sense of Definition SAG.9.3.0.1 , and therefore
cohesive by virtue of Example SAG.17.3.1.3 .

Construction 6.2.9. Let R be a connective E8-ring and let G be a p-divisible group
over R, which we regard as an object of the 8-category E “ FunpCAlgcn

R ,Modcn
Z q.

Note that the formula GpAq » lim
ÝÑkě0 GrpkspAq shows that G is Modcn

Z -valued sheaf
with respect to the Zariski topology on CAlgcn

R , so we have an equivalence

MapEpZ,Gq » Ω8GpRq,

where Z denotes the constant sheaf introduced in Example 2.5.7. We let ρG denote
the composite map

Ω8GpRq „
ÐÝ MapEpZ,Gq
“ MapEpZ,ΩBGq
» MapEpΣZ, BGq
δ
ÝÑ MapEpQp {Zp, BGq
» ExtpQp {Zp,Gq,

where δ is given by composition with the boundary map Qp {Zp Ñ ΣZ associated to
the short exact sequence of abelian groups

0 Ñ Z Ñ Zr1{ps Ñ Qp {Zp Ñ 0.

This map carries each point q P Ω8GpRq to an extension of Qp {Zp by G, which we
will write as a short exact sequence of p-divisible groups

0 Ñ G Ñ Gq Ñ Qp {Zp Ñ 0.
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Remark 6.2.10. In the situation of Construction 6.2.9, we have a commutative
diagram of fiber sequences

Z

q

��

// Zr1{ps //

��

Qp {Zp

id
��

G //Gq
//Qp {Zp.

Beware that the square on the left of this diagram is not quite a pushout square. How-
ever, it exhibits Gq as the Modcn,Nilppq

Z -valued sheaf on CAlgcn
R obtained by sheafifying

the pushout
Zr1{ps >Z G

with respect to the finite flat topology (beware that sheafification is necessary, unless
the image of q in π0GpRq is divisible by arbitrarily high powers of p).

Remark 6.2.11. In the situation of Construction 6.2.9, ρG1 is described as a compo-
sition of maps, all but one of which is a homotopy equivalence. It follows that ρG can
be identified with map δ in the fiber sequence

MapEpΣZ, BGq

δ

��
MapEpQp {Zp, BGq

��
MapEpZr1{ps, BGq.

Using the observation that BG is a sheaf for the Zariski topology (since it is a filtered
direct limit of functors BGrpks, each of which is a sheaf for the fpqc topology), we
can identify the third term in this fiber sequence with MapModZ

pZr1{ps, BGpRqq. It
follows that It follows that ρG fits into a canonical fiber sequence

Ω8GpRq ρG
ÝÑ ExtpQp {Zp,Gq Ñ MapModZ

pZr1{ps, BGpRqq.

6.2.4 Classification of Extensions

Our next goal is to show that, under some mild assumptions, all extensions of the
constant p-divisible group Qp {Zp can be obtained from Construction 6.2.9.
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Proposition 6.2.12. Let R be a connective E8-ring, and let G be a p-divisible group
over R. Assume that R is truncated and that p is nilpotent in π0pRq. Then, for every
nilpotent ideal I Ď π0pRq, the canonical map

MapModZ
pZr1{ps, BGpRqq Ñ MapModZ

pZr1{ps, BGpπ0pRq{Iqq

is a homotopy equivalence.

Proof. We proceed as in the proof of Lemma 2.3.24. Choose an integers k and m such
that Ik “ 0 and R is m-truncated. Then the canonical map RÑ π0pRq{I factors as a
composition of square-zero extensions

R “ τďmRÑ τďm´1RÑ ¨ ¨ ¨ Ñ τď0R “ π0pRq{I
k
Ñ π0pRq{I

k´1
Ñ ¨ ¨ ¨ Ñ π0pRq{I.

It will therefore suffice to prove:

p˚q Let f : A Ñ B be a morphism in CAlgcn
R which exhibits A as a square-zero

extension of B by ΣkpMq, where M is a discrete B-module. Then the canonical
map ρ : MapModZ

pZr1{ps, BGpAqq Ñ MapModZ
pZr1{ps, BGpBqq is a homotopy

equivalence.

To prove p˚q, we choose a pullback square

A //

��

B

��
B // B ‘ Σk`1pMq.

Since the functor BG is cohesive (Lemma 6.2.8), the map ρ is a pullback the map
ρ1 : MapModZ

pZr1{ps, BGpBqq Ñ MapModZ
pZr1{ps, BGpB ‘ Σk`1pMqqq. We show

that ρ1 is a homotopy equivalence.
For the rest of the proof, we regard B P CAlgcn

R as fixed. For every connective
B-module N , the canonical maps BGpBq Ñ BGpB ‘Nq Ñ BGpBq exhibit BGpBq
as a direct summand of BGpB ‘ Nq. We will denote the auxiliary summand by
F pNq P Modcn

Z . To show that ρ1 is a homotopy equivalence, it will suffice to show
that the mapping space MapModZ

pZr1{ps, F pΣk`1Mqq is contractible. Note that this
mapping space can be realized as the 0th space of the Z-module spectrum given by
the limit of the tower

¨ ¨ ¨
p
ÝÑ F pΣk`1

pMqq
p
ÝÑ F pΣk`1Mq

p
ÝÑ F pΣk`1Mq
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where the transition maps are given by multiplication by p. Lemma 6.2.8 guarantees
that the functor BG is cohesive (Lemma 6.2.8), so that the functor F is additive. In
particular, multiplication by p on F pΣk`1Mq can be obtained by applying the functor
F to the map p : Σk`1M Ñ Σk`1M . Our assumption that p is nilpotent in π0pRq

guarantees that M is annihilated by pi for i " 0. It follows that the preceding tower
vanishes as a Pro-object of Modcn

Z , so that its inverse limit vanishes.

Corollary 6.2.13. Let R be a connective E8-ring, and let G be a p-divisible group
over R. Assume that R is truncated and that p is nilpotent in π0pRq. Then, for every
nilpotent ideal I Ď π0pRq, the diagram

Ω8GpRq ρG //

��

ExtpQp {Zp,Gq

��
Ω8Gpπ0pRq{Iq // ExtpQp {Zp,Gπ0pRq{Iq

is a pullback square.

In the situation of Corollary 6.2.13, we can identify G˝pRq with the fiber product
GpRq ˆGpπ0pRq{Iq G˝pπ0pRq{Iq. We therefore obtain:

Corollary 6.2.14. Let R be a connective E8-ring, and let G be a p-divisible group
over R. Assume that R is truncated and that p is nilpotent in π0pRq. Then, for every
nilpotent ideal I Ď π0pRq, we have a canonical pullback square

Ω8G˝pRq //

��

ExtpQp {Zp,Gq

��
Ω8G˝pπ0pRq{Iq // ExtpQp {Zp,Gπ0pRq{Iq

is a pullback square.

In the situation of Corollary 6.2.14, the functor Ω8G˝ is locally almost of finite
presentation (Corollary 1.5.20), so the direct limit lim

ÝÑI
Ω8G˝pπ0pRq{Iq » Ω8G˝pRredq

is contractible (here we take I to range over the the collection of all nilpotent ideals
in π0pRq). We therefore obtain:

Corollary 6.2.15. Let R be a connective E8-ring, and let G be a p-divisible group
over R. Assume that R is truncated and that p is nilpotent in π0pRq. Then we have a
canonical fiber sequence

Ω8G˝
pRq Ñ ExtpQp {Zp,Gq Ñ lim

ÝÑ
I

ExtpQp {Zp,Gπ0pRq{Iq,
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where the colimit is taken over all nilpotent ideals I Ď π0pRq.

6.2.5 The Proof of Theorem 6.2.4

We will deduce Theorem 6.2.4 from a more precise statement in the special case
where G0 splits as a direct sum G1

0 ‘Qp {Zp.

Theorem 6.2.16. Let R0 be a commutative ring for which p is nilpotent and absolute
cotangent complex LR0 is almost perfect, and let G1

0 be a nonstationary p-divisible
group over R0 and set G0 “ G1

0 ‘ Qp {Zp. Let G˝ denote the identity component
of G and let X “ Ω8G˝ be its underlying formal hyperplane, which we view as an
(affine) formal spectral Deligne-Mumford stack over Run

G0. Then there is a canonical
pullback diagram of (affine) formal spectral Deligne-Mumford stacks

SpfpRun
G0q

//

��

X

��
SpfpRun

G1
0
q // SpecpRun

G1
0
q.

In particular, Run
G0 is equivalent to ΓpX; OXq as an E8-ring (though not as an adic

E8-ring).

Proof. To simplify notation, set R “ Run
G1

0
. Let A be a connective E8-ring and suppose

we are given a point η P SpfpRqpAq » DefG1
0
pAq, corresponding to a p-divisible

group G1 over A equipped with a G1
0-tagging (here we regard A as an adic E8-ring

by endowing π0pAq with the discrete topology). We wish to construct a homotopy
equivalence XpAq » DefG0pAqˆDefG10

pAq tηu, depending functorially on the pair pA, ηq.
Without loss of generality, we may assume that A is truncated (since both sides are
nilcomplete when regarded as functors of A). In this case, the desired homotopy
equivalence is supplied by Corollary 6.2.15.

Proof of Theorem 6.2.4. Let R0 be a Noetherian Fp-algebra which is F -finite, and
suppose we are given a short exact sequence of p-divisible groups

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0

where G1
0 is nonstationary and G2

0 is étale. We first claim that G0 is also nonstationary.
Let x be a point of | SpecpR0q| and let d : R0 Ñ κpxq be a nonzero derivation. Then
d determines first-order deformations Gd and G1

d of G0κpxq and G1
0κpxq, respectively.
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Suppose, for a contradiction, that Gd is a trivial first order deformation. Since G1
d

is obtained from Gd by applying the construction of Remark 6.2.3, it follows that
G1
d is also a trivial first-order deformation, contradicting our assumption that G1

0 is
nonstationary.

We wish to show that the map of spectral deformation rings Run
G1

0
Ñ Run

G0 is flat.
Fix a maximal ideal m Ď π0pR

un
G0q; we will show that the induced map Run

G1
0
Ñ pRun

G0qm

is flat. The maximality of m guarantees that it the inverse image of a maximal ideal
m0 Ď R0. Let κ be an algebraic closure of the residue field R0{m0. Extending scalars
to κ, we obtain a short exact sequence 0 Ñ G1

0κ Ñ G0κ Ñ G2
0κ Ñ 0 in BTp

pκq.
Applying the constructions of §6.1, we obtain a commutative diagram of spectral
deformation rings:

Run
G1

0
//

��

Run
G1

0κ

��
Run

G0
// Run

G0κ

where the horizontal maps are flat (Theorem 6.1.2) and m is the inverse image of the
maximal ideal of Run

G0κ . It will therefore suffice to show that right vertical map is flat:
that is, we can replace R0 by κ and thereby reduce to the case where R0 “ κ is an
algebraically closed field. In this case, the étale p-divisible group G2

0 is isomorphic to
Qp {Zp

r for some r ě 0, and the short exact sequence

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0

splits (Remark 2.5.24). Proceeding by induction on r, we can reduce to the case r “ 1,
so that we have a direct sum decomposition G0 » G1

0 ‘Qp {Zp. Set R “ Run
G1

0
and

let G1 P BTp
pRq be the universal deformation of G1

0. Then R is a local Noetherian
E8-ring with residue field κ, so the formal hyperplane X “ Ω8G1˝ can be written as
cSpecpCq, where C is a standard smooth coalgebra over R. It follows from Theorem
6.2.16 that the spectral deformation ring Run

G0 can be identified with the R-linear dual
C_. It follows from Proposition 1.4.10 that the homotopy ring π˚pRun

G0q is isomorphic
to π˚pRqrrt1, . . . , tnss, where n is the dimension of G1

0. Since R is Noetherian, it follows
immediately that Run

G0 is flat over R.

6.3 Rational Homotopy Groups of Run
G0

Our goal in this section is to prove the following:
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Theorem 6.3.1. Let R0 be a F -finite Noetherian Fp-algebra and let G0 be a nonsta-
tionary p-divisible group over R0 with spectral deformation ring Run

G0. If the identity
component G˝

0 is 1-dimensional, then Run
G0rp

´1s is a discrete E8-ring.

Our proof of Theorem 6.3.1 will proceed by induction on the height n of the
p-divisible group G0. When n “ 1, the desired result follows from Corollary 6.2.5. To
handle the general case, we will use Theorem 6.1.2 to reduce the proof of Theorem
6.3.1 to the case where R0 “ κ is an algebraically closed field, and Theorem 6.2.4
to reduce to the case where the p-divisible group G0 is connected. Our inductive
hypothesis then guarantees that any nonzero higher homotopy groups of Run

G0rp
´1s

must be concentrated “near” the closed point of | SpecpRun
G0q| (in a suitable sense).

For n ě 2, we use a symmetry argument to show that this is impossible.

Remark 6.3.2. It seems likely that Theorem 6.3.1 is true even without the assumption
that G˝

0 is 1-dimensional. However, this would require a different proof.

We now carry out the details. We will prove the following special case of Theorem
6.3.1, using induction on n:

p˚nq Let R0 be a F -finite Noetherian Fp-algebra and let G0 be a nonstationary
p-divisible group of height n over R0, with spectral deformation ring Run

G0 . If the
identity component G˝

0 is 1-dimensional, then Run
G0rp

´1s is a discrete E8-ring.

Note that assertion p˚nq is vacuous in the case n “ 0, and the case n “ 1 follows
immediately from Corollary 6.2.5 (since the higher homotopy groups of the sphere
spectrum S are torsion). Throughout this section, we will fix an integer n ě 2, and
assume that assertion p˚mq holds for m ă n; our goal is to prove p˚nq. The main step
is to prove the following:

Lemma 6.3.3. Let κ be an algebraically closed field of characteristic p, let G0 be a
connected p-divisible group of height n over κ, let RLT be the (classical) Lubin-Tate
ring of G0. Let rG0 P BTp

pRLTq be the universal deformation of G0 in the sense of
ordinary commutative algebra, and let G1 P BTp

pRLT{ppqq be the p-divisible group
obtained from rG0 by reduction modulo p. Then:

paq The Fp-algebra RLT{ppq is Noetherian and F -finite.

pbq The p-divisible group G1 is nonstationary, and therefore admits a spectral
deformation ring R “ Run

G1 and a universal deformation G P BTp
pRq.
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pcq The canonical map RÑ Run
G0 is an equivalence of E8-rings (so that G can also

be identified with the universal deformation of G0).

pdq The localization Rrp´1s is discrete.

Proof. Assertions paq, pbq, and pcq follow from Proposition 6.1.5. We will prove pdq.
Fix an integer k ą 0; we wish to show that the abelian group πkpRqrp

´1s vanishes.
Since R is Noetherian, we can regard M “ πkpRq as a finitely generated module over
the commutative ring π0pRq (which is isomorphic to the Lubin-Tate ring RLT, by
virtue of p3q). The support of M is a Zariski-closed subset K Ď | SpecpRLTq|. Let
V » | SpecpRLT{ppqq| Ď | SpecpRLTq| be the vanishing locus of p; we wish to show that
K Ď V . Suppose otherwise. Then there exists some irreducible component K 1 Ď K

which is not contained in V . Note that the Krull dimension of K 1 must be positive
(since V contains the closed point of | SpecpRLTq|. Let p Ď RLT be the prime ideal
corresponding to the generic point of K 1, and set A “ RLT{p. Then A can be regarded
as an algebra over the Witt vectors W pκq, so that A{pA has the structure of a vector
space over κ. We distinguish two cases:

paq The dimension dimκpA{pAq is finite. Since A is ppq-complete, it follows that A
is finitely generated as a W pκq-module, so that Arp´1s is a finite extension field
of W pκqrp´1s. Let Γ “ AutpG0q be the group of automorphisms of G0 in the
category of p-divisible groups over κ. Then Γ acts on the spectral deformation
ring R. This determines an action of Γ on the affine scheme | SpecpRLTq| which
preserves the closed subset K Ď | SpecpRLTq|. In particular, Γ acts on the set
of irreducible components of K; let Γ0 Ď Γ be the subgroup which fixes the
irreducible component K 1 Ď K. Then the action of Γ0 on the Lubin-Tate ring
RLT fixes the prime ideal p, and therefore induces an action of Γ0 on A “ RLT.
This action is trivial on the residue field κ, and therefore also on the subring
W pκq Ď A. Since the Galois group GalpArp´1s{W pκqrp´1sq is finite, there exists
a finite-index subgroup Γ1 Ď Γ0 which acts trivially on A. We then obtain
an action of Γ1 on the p-divisible group pG0qA in the category BTp

pAq. This
action is automatically faithful (since it is already faithful on the p-divisible
group G0), and therefore restricts to a faithful action of Γ1 on the identity
component pG˝

0qA. Since A is an integral domain, this induces a faithful action
of Γ1 on G˝

0qArp´1s, which is a 1-dimensional formal group over a field Arp´1s

of characteristic zero. It follows that Γ1 acts faithfully on the Lie algebra of
G˝

0qArp´1s: that is, we have a monomorphism of groups Γ1 ãÑ Arp´1sˆ. Since
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the group Arp´1sˆ is abelian, the group Γ1 must also be abelian. In particular,
the group Γ “ AutpG0q contains an abelian subgroup of finite index. However,
the structure of Γ is well-understood: it is isomorphic to the group of units
OˆD, where D is a central division algebra over Qp of Hasse invariant 1{n, and
OD Ď D is its ring of integers. For n ě 2, this is a contradiction: OˆD does not
contain abelian subgroups of finite index.

pbq The dimension dimκpA{pAq is infinite. In this case, the ring A{pA is not
Artinian. It follows that the intersection V XK 1 contains a non-closed point
x P | SpecpRLTq|. Let κpxq denote the residue field of RLT at the point x and let
Rpxq denote the spectral deformation ring of pG1qκpxq. According to Corollary
4.4.25, the maximal ideal of the Lubin-Tate ring RLT coincides with the nth
Landweber ideal of the formal group rG˝

0. Since x is not the closed point of
| SpecpRLTq|, we conclude that the formal group prG0q

˝
κpxq » pG1q

˝
κpxq has height

ă n. We can therefore choose an exact sequence of p-divisible groups

0 Ñ G1
1 Ñ pG1

1qκpxq Ñ G2
2 Ñ 0

over κpxq, where G2
2 is étale and G1

1 has height ă n. Our inductive hypothesis
then guarantees that the E8-ring Run

G1
1
rp´1s is discrete, and Theorem 6.2.4

supplies a flat map of spectral deformation rings Run
G1

1
Ñ Rpxq. It follows that

Rxrp
´1s is also discrete. Since Rx is Noetherian, it follows that the homotopy

group πkpRxq is annihilated by pa for some a " 0. On the other hand, Proposition
6.1.8 supplies a flat map of spectral deformation rings u : RÑ Rpxq. Let q be
the prime ideal of RLT corresponding to the point x, so that u induces a faithfully
flat map of local E8-rings Rq Ñ Rpxq. Then we can identify πkpRxq with the
(non-derived) tensor product πkpRqq bπ0pRqq

π0pRpxqq. Using the faithful flatness
of π0pRpxqq over π0pRqq, we deduce that πkpRqq » Mq is annihilated by pa. It
follows that the localization of M at the generic point of K 1 is also annihilated
by pa and therefore vanishes (since K 1 Ę V ), contradicting the definition of K 1.

Proof of Assertion p˚nq. Let R0 be a F -finite Noetherian Fp-algebra and let G0 be
a 1-dimensional nonstationary p-divisible group over R0, with spectral deformation
ring R “ Run

G0 . Let k ą 0 and set M “ πkpRq. Since R is Noetherian, the module
M is finitely generated over π0pRq; we wish to show that M is annihilated by some
power of p. Equivalently, we wish to show that the localization Mq vanishes, for any
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prime ideal q Ď π0pRq which does not contain p. Let m Ď π0pRq be a maximal ideal
containing q. Then m can be written as the inverse image of a maximal ideal m0 Ď R0.
Let κ denote the residue field R0{m0 » π0pRq{m and let κ be an algebraic closure of
κ. Let R1 denote the spectral deformation ring of the p-divisible group pG0qκ. Then
R1 is flat over R (Proposition 6.1.8), and therefore faithfully flat over the localization
Rm. Consequently, to show that Mq vanishes, it will suffice to show that the tensor
product

Mq bπ0pRmq π0pR
1
q » πkpR

1
qq.

Since πkpR1qq is a localization of πkpR1qrp´1s, we are reduced to showing that that the
localization πkpR

1qrp´1s vanishes. We may therefore replace pR0,G0q by pκ, pG0qκq,
and thereby reduce to the case where R0 “ κ is an algebraically closed field. In this
case, the p-divisible group G0 admits a connected-étale sequence

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0,

(Proposition 2.5.20). If G2
0 “ 0, then G0 is connected and the desired result follows

from Lemma 6.3.3. We may therefore assume that G2
0 is nonzero, so that G1

0 has height
h ă n. In this case, our inductive hypothesis p˚hq guarantees that the localization
Run

G1
0
rp´1s is discrete. Since R is flat over Run

G1
0

(Theorem 6.2.4), it follows that Rrp´1s

is also discrete.

6.4 Proof of the Main Theorem
Let R0 be a Noetherian Fp-algebra which is F -finite, and let G0 be a nonstationary

p-divisible group over R. Our goal in this section is to prove Theorem 6.0.3, which
describes the homotopy groups of the oriented deformation ring Ror

G0 . By definition,
Ror

G0 is the orientation classifier of the formal group G˝, where G denotes the universal
deformation of G0. We begin by introducing the notion of a balanced formal group
(Definition 6.4.1), and framing Theorem 6.0.3 as the statement that the formal group
G˝ is balanced. The class of balanced formal groups has good closure properties,
which will allow us to use the results of §6.1 and §6.2 to reduce to the case where R0

is a perfect field and the p-divisible group G0 is connected. In this case, we prove
the desired result by combining Theorem 5.4.1 with an induction on the height of G0

(much like in the proof of Theorem 6.3.1).
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6.4.1 Balanced Formal Hyperplanes

We begin by introducing some notations and auxiliary notions which will be useful
in the proof of Theorem 6.0.3.

Definition 6.4.1. Let R be an connective E8-ring, let X be a 1-dimensional pointed
formal hyperplane over R, and let OX denote the orientation classifier of X (Definition
4.3.14). We will say that X is balanced if the following conditions are satisfied:

paq The unit map RÑ OX induces an isomorphism of commutative rings π0pRq Ñ

π0pOXq.

pbq The homotopy groups of OX are concentrated in even degrees.

We will say that a 1-dimensional formal group pG is balanced if the underlying pointed
formal hyperplane X “ Ω8 pG is balanced.

Remark 6.4.2. Let f : R Ñ R1 be a morphism of connective E8-rings, let X be a
1-dimensional pointed formal hyperplane over R, and let X 1 be the pointed formal
hyperplane over R1 obtained by extending scalars along f . Let OX and OX 1 denote
the orientation classifiers of X and X 1, respectively. It follows immediately from the
definitions that we have a pushout diagram of E8-rings

R
f //

��

R1

��
OX

// OX 1 .

If f is flat, then the homotopy groups of OX 1 are given by

π˚pOX 1q » π˚pOXq bπ0pRq π0pR
1
q.

In particular:

piq If f is flat and X is balanced, then X 1 is balanced.

piiq If f is faithfully flat and X 1 is balanced, then X is balanced.

Remark 6.4.3. Let R be a connective E8-ring and let X be a 1-dimensional pointed
formal hyperplane over R. For each prime ideal p Ď π0pRq, let Xp denote the
associated pointed formal hyperplane over the localization Rp. If X is balanced, then
each localization Xp is balanced (this is a special case of Remark 6.4.2). Conversely, if
Xm is balanced for each maximal ideal m Ď π0pRq, then X is balanced.
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6.4.2 Balanced Formal Hyperplanes over Q

When working over the rational numbers, it is easy to find balanced formal
hyperplanes:

Proposition 6.4.4. Let R be an ordinary commutative algebra over Q and let X be
a 1-dimensional pointed formal hyperplane over R. Then X is balanced.

Remark 6.4.5. Theorem 6.4.4 has a converse: if R is an E8-algebra over Q and
there exists a pointed formal hyperplane over R which is balanced, then R must be
discrete.

Proof of Proposition 6.4.4. The assertion can be tested Zariski-locally on | SpecpRq|,
so we may assume without loss of generality that X “ SpfpRrrtssq is the underlying
formal hyperplane of the formal multiplicative group pGm. In this case, the E8-ring
C˚pCP8;Rqrβ´1s is an orientation classifier for pG, where β denotes the canonical
generator of the second homology group H2pCP8;Rq (in fact, an analogous statement
is true over the sphere; see Corollary 4.3.27). We now conclude by observing that
the homology ring H˚pCP8;Rq is isomorphic to a divided power algebra on β, and
therefore also to a polynomial algebra on β (since we have assumed that R is a
Q-algebra).

The proof of Proposition 6.4.4 suggests that it is unreasonable to hope for a formal
group over an ordinary commutative ring R to be balanced, except in the case where
R is a Q-algebra.

6.4.3 The Proof of Theorem 6.0.3

We first note that Theorem 6.0.3 can be restated as follows:

Theorem 6.4.6. Let R0 be an F -finite Noetherian Fp-algebra, let G0 be a nonstation-
ary p-divisible group of dimension 1 over R0, and let G P BTp

pRun
G0q be its universal

deformation. Then the identity component G˝ is a balanced formal group over Run
G0.

We begin by proving Theorem 6.4.6 in the Lubin-Tate case:

Theorem 6.4.7. Let κ be a perfect field of characteristic p, let G0 be a connected
p-divisible group of height n over κ, and let G P BTp

pRun
G0q be its universal preoriented

deformation. Then the identity component G˝ is a balanced formal group over Run
G0.
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Remark 6.4.8. In the situation of Theorem 6.4.7, let RLT denote the Lubin-Tate
ring of the formal group G˝

0. Theorem 6.4.7 asserts that the canonical map

RLT » π0pR
un
G0q Ñ π0pR

or
G0q

is an isomorphism of commutative rings, and that the homotopy groups of Ror
G0 are

concentrated in even degrees. Note that Theorem 5.4.1 (and Corollary 5.4.3) imply
that the analogous statements holds if we replace Ror

G0 by the Lubin-Tate spectrum
E “ LKpnqR

or
G0 . Consequently, we can restate Theorem 6.4.7 as follows:

p˚q The canonical map Ror
G0 Ñ LKpnqR

or
G0 is an equivalence: that is, the oriented

deformation ring Ror
G0 is Kpnq-local.

This is a special case of Corollary 6.0.6, but of course it would be circular to invoke
Corollary 6.0.6 here (since it depends on Theorem 6.0.3, which has not yet been
proved).

Proof of Theorem 6.4.7. We proceed by induction on the height n of G0. Let RLT »

π0pR
un
G0
q denote the Lubin-Tate ring of the formal group G˝

0. For each prime ideal
p Ď RLT, let G˝

p denote the formal group over pRun
G0qp obtained from G˝ by extending

scalars. We first prove the following:

paq If p is a non-maximal prime ideal of RLT, then the formal group G˝
p is balanced.

To prove paq, let κ1 denote the fraction field of RLT{p. If κ1 has characteristic zero,
then the E8-ring pRun

G0qp is a discrete Q-algebra (Theorem 6.3.1), so the desired result
is a special case of Theorem 6.4.4. Let us therefore assume that κ1 has characteristic
p. Let G1 denote the p-divisible group GRLT{ppq. Using Proposition 6.1.5, we see that
RLT{ppq is an F -finite Noetherian Fp-algebra, that G1 is nonstationary, and that the
canonical map Run

G1 Ñ Run
G0 is an equivalence of E8-rings (though not of adic E8-rings;

the topology on π0pR
pre
G1q is defined by the ideal ppq). It will therefore suffice to show

that G˝
p is balanced when viewed as a formal group over Run

G1 . Let κ1 be an algebraic
closure of κ1 and set G2 “ Gκ1 P BTp

pκ1q. Then the map RLT Ñ κ1 lifts to a flat map
of spectral deformation rings ρ : Run

G1 Ñ Run
G2 (Theorem 6.1.2). Note that the preimage

of the maximal ideal of π0pR
un
G2q is the prime ideal p Ď π0pR

un
G1q, so that ρ induce a

faithfully flat map pRun
G1qp Ñ Run

G2 . Using Remark 6.4.2, we are reduced to showing
that G˝

Run
G2

is a balanced formal group over Run
G2 . Note that the p-divisible group G2

admit a connected-étale sequence

0 Ñ G1
2
i0
ÝÑ G2 Ñ G2

2 Ñ 0.
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Let Run
G1

2
be the spectral deformation ring of G1

2 and let G1 P BTp
pRun

G1
2
q be its universal

deformation. Then we have a comparison map u : Run
G1

2
Ñ Run

G2 , which is essentially
characterized by the requirement that i0 can be lifted to a monomorphism

G1
Run

G2
Ñ GRun

G2

of p-divisible groups over Run
G2 . In particular, the formal group G˝

Run
G2

can be obtained
from the formal group G1˝ by extension of scalars along u. Since u is flat (Theorem
6.2.4), it will suffice to show that the formal group G1˝ is balanced (Remark 6.4.2).
This follows from our inductive hypothesis, since we have assumed that p is not the
maximal ideal of RLT and therefore the formal group G˝

2 has height ă n (Corollary
4.4.25).

Let E “ LKpnqR
or
G0 be the Lubin-Tate spectrum associated to the formal group G˝

0.
Combining paq with Remark 6.4.8, we obtain the following:

pbq If p is a non-maximal prime ideal of RLT, then the canonical map pRor
G0qp Ñ Ep

is an equivalence of E8-rings.

Let m Ď RLT be the maximal ideal. Let K denote the fiber of the natural map
f : Ror

G0 Ñ E, which we view as a module over the spectral deformation ring Run
G0 .

It follows from pbq that the localization Kp vanishes for every non-maximal prime
ideal p Ď RLT. Consequently, the module K is m-nilpotent: that is, every element
of π˚pKq is annihilated by some power of m. By construction, the map f exhibits
E as the m-completion of A. In particular, the morphism f becomes an equivalence
after m-completion, so that K vanishes after m-completion. On the other hand, m-
completion induces an equivalence from the 8-category of m-nilpotent Run

G0-modules
to the 8-category of m-complete Run

G0-modules (Proposition SAG.7.3.1.7 ). It follows
that K itself must vanish, so that f is an equivalence. Invoking Remark 6.4.8, we
deduce that G˝ is balanced.

Proof of Theorem 6.4.6. Let R0 be an F -finite Noetherian Fp-algebra, let G0 be a
nonstationary p-divisible group of dimension 1 over R0, and let G P BTp

pRun
G0q be its

universal deformation. We wish to show that the identity component G˝ is a balanced
formal group over Run

G0 . By virtue of Remark 6.4.3, it will suffice to show that G˝
m is a

balanced formal group over pRun
G0qm, for every maximal ideal m Ď π0pR

un
G0q. Note that

since Run
G0 is complete with respect to the kernel of the map π0pR

un
G0q Ñ R0, we can

write m as the inverse image of a maximal ideal m0 Ď R0.
Let κ be any perfect extension field of R0{m0, and let G1 “ pG0qκ be the p-divisible

group obtained from G0 by extending scalars to κ. Using Theorem 6.1.2, we obtain a
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flat map of spectral deformation rings ρ : Run
G0 Ñ Run

G1 . Moreover, the inverse image
under ρ of the maximal ideal of Run

G1 is m, so that ρ induces a faithfully flat map
pRun

G0qm Ñ Run
G1 . By virtue of Remark 6.4.2, it will suffice to show that the formal

group G˝
Run

G1
is balanced. We may therefore replace pR0,G0q by pκ,G1q and thereby

reduce to proving Theorem 6.4.6 in the special case where R0 “ κ is a perfect field
of characteristic p. In this case, the p-divisible group G0 admits a connected-étale
sequence

0 Ñ G1
0 Ñ G0 Ñ G2

0 Ñ 0.

Let Run
G1

0
be the spectral deformation ring of G1

0 and let G1 P BTp
pRun

G1
0
q be its universal

deformation. As in the proof of Theorem 6.4.7, we observe that the formal group G˝

can be obtained from G1˝ by extending scalars along a comparison map u : Run
G1

0
Ñ Run

G0 .
Since u is flat (Theorem 6.2.4), we are reduced to proving that the formal group G1˝

is balanced (Remark 6.4.2), which follows from Theorem 6.4.7.

6.5 Application: Snaith’s Theorem
Let Vect»C denote the category whose objects are finite-dimensional complex vector

spaces and whose morphisms are isomorphisms, and let NpVect»Cq denote its nerve as
a topologically enriched category (as in Construction 5.3.9). Then NpVect»Cq is a Kan
complex, which can be identified with the disjoint union of classifying spaces BUpnq
as n ranges over all nonnegative integers.

The formation of direct sums of complex vector spaces determines an E8-structure
on the space NpVect»Cq, which we will refer to as the additive E8-structure. The group
completion of NpVect»Cq (with respect to the additive E8-structure) is the 0th space of
a connective spectrum, which we denote by ku and refer to as the connective complex
K-theory spectrum.

There is a second symmetric monoidal structure on the category Vect»C, given by
tensor products of complex vector spaces. This symmetric monoidal structure induces
a different E8-structure on the space NpVect»Cq, which we refer to as the multiplicative
E8-structure. Because the tensor product of complex vector spaces distributes over
direct sums, the multiplicative E8-structure distributes over the additive E8-structure.
More precisely, it endows NpVect»Cq with the structure of a commutative algebra object
of the 8-category CMonpSq of E8-spaces, where we regard CMonpSq as equipped
with the symmetric monoidal structure given by the smash product of E8-spaces (see
Proposition AV.3.6.1 ). Put more informally, NpVect»Cq is an E8-semiring space, with
addition given by direct sum of complex vector spaces and multiplication given by the

273



tensor product. It follows that the connective complex K-theory spectrum ku inherits
the structure of an E8-ring. Moreover, the tautological map ξ : NpVect»Cq Ñ Ω8 ku can
be regarded as a map of E8-spaces, where we endow both sides with the multiplicative
E8-structure.

Let us identify CP8
» BUp1q with the summand of NpVect»Cq spanned by the

complex vector spaces of dimension 1. Then the multiplicative E8-structure on
NpVect»Cq restricts to an E8-structure on CP8, which is essentially unique (since
CP8

» KpZ, 2q is an Eilenberg-MacLane space). Note that the map ξ carries CP8

into the identity component of Ω8 ku, and therefore induces a map of E8-spaces
CP8

Ñ GL1pkuq which classifies a morphism of E8-rings ρ : Σ8`pCP8
q Ñ ku.

The composite map

S2
» CP1 ãÑ CP8 Ñ

ÝÑ Ω8Σ8`pCP8
q

determines an element β P π2pΣ8` CP8
q, which we will refer to as the Bott element.

We will generally abuse notation by identifying β with its image under the map
π2pΣ8`pCP8

q
ρ
ÝÑ π2pkuq. Inverting β on both sides (see Proposition 4.3.17), we obtain

a morphism of E8-rings Σ8`pCP8
qrβ´1s Ñ kurβ´1s. We denote the localization

kurβ´1s by KU and refer to it as the periodic complex K-theory spectrum. The
following result was proved in [34]:

Theorem 6.5.1 (Snaith). The map Σ8`pCP8
qrβ´1s Ñ KU is an equivalence of

E8-rings.

Our goal in this section is to show that Theorem 6.5.1 is a formal consequence
of Theorem 6.4.6, together with the classical Bott periodicity theorem. Our starting
point is the following observation:

Proposition 6.5.2. The formal multiplicative group pGm is a balanced formal group
over the sphere spectrum S.

Proof. By virtue of Remark 6.4.3, it will suffice to show that pGm is balanced when
viewed as a formal group over the p-local sphere Sppq, for every prime number p. Let
S^ppq denote the ppq-completed sphere spectrum. Then the natural map Sppq Ñ S^ppq is
faithfully flat. By virtue of Remark 6.4.2, it will suffice to show that pGm is balanced
when viewed as a formal group over S^ppq. This is a special case of Theorem 6.4.6,
since we can identify S^ppq with the spectral deformation ring of the p-divisible group
G0 “ µp8 over Fp (Corollary 3.1.19), and pGm with the identity component of its
universal deformation (Proposition 2.2.12).
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Corollary 6.5.3. The Bott element β P π2pΣ8`pCP8
qq induces an isomorphism of

graded rings
Zrβ˘1

s Ñ π˚pΣ8`pCP8
qrβ´1

sq.

Proof. Combine Proposition 6.5.2 with Corollary 4.3.27.

Proof of Theorem 6.5.1. Let us abuse notation by not distinguishing between the
Bott element β P π2pΣ8`pCP8

qrβ´1sq and its image in π2pkuq. It follows from Bott
periodicity that the element β induces an isomorphism of graded rings Zrβs Ñ π˚pkuq,
hence an isomorphism of localizations Zrβ˘1s Ñ π˚pkurβ´1sq “ π˚pKUq. We have a
commutative diagram

Zrβ˘1s

vv %%
π˚pΣ8`pCP8

qrβ´1sq // π˚pKUq

where the vertical maps are isomorphisms (Theorem 6.5.3), so that the lower horizontal
map is an isomorphism as well.

7 Elliptic Cohomology
For every commutative ring R, let EllpRq denote the category of elliptic curves over

R and let EllpRq» denote its underlying groupoid. The construction R ÞÑ EllpRq» is
(representable by) a Deligne-Mumford stackMEll, which we will refer to as the moduli
stack of elliptic curves. The étale topos of MEll can be identified with the category of
Set-valued sheaves ShvSetpUq, where the category U is defined as follows:

• The objects of U are pairs pR,Eq, where R is a commutative ring and E is an
elliptic curve over R which is classified by an étale map SpecpRq ÑMEll.

• A morphism from pR,Eq to pR1, E 1q in the category U is given by a pullback
diagram of schemes σ :

E
f //

��

E 1

��
SpecpRq f0 // SpecpR1q,
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having the property that f carries the zero section of E into the zero section of
E 1 (in other words, f induces an isomorphism E Ñ SpecpRq ˆSpecpR1q E

1 in the
category EllpRq).

We regard the category U as equipped with the Grothendieck topology given by
étale coverings: a collection of morphisms tpRα, Eαq Ñ pR,Equ in E is a covering if
the underlying map of schemes > SpecpRαq Ñ SpecpRq is surjective (note that it is
automatically étale, by virtue of paq). Note that the structure sheaf OMEll of the
moduli stack of elliptic curves MEll can be viewed as a sheaf of commutative rings on
the category U , given concretely by the formula OMEllpR,Eq “ R.

For any commutative ring R and any elliptic curve E P EllpRq, we can construct
a 1-dimensional formal group pE by formally completing E along its identity section.
If the classifying map f : SpecpRq Ñ MEll is flat, one can show that the formal
group pE is Landweber-exact: that is, it satisfies the hypothesis of Theorem 0.0.1 if
the formal group pE admits a coordinate, and a suitable generalization otherwise. It
follows that there is an essential unique even periodic ring spectrum AE equipped
with isomorphisms R » π0pAEq and pE » SpfpA0

EpCP8
qq. The flatness hypothesis is

automatically satisfied when f is étale: that is, when the pair pR,Eq is an object of
the category U . The construction pR,Eq ÞÑ AE determines a functor

Oh
MEll

: Uop
Ñ CAlgphSpq,

which we can view as a presheaf on U taking values in the homotopy category
CAlgphSpq of homotopy commutative ring spectra. This presheaf can be regarded
as refinement of the structure sheaf OMEll : they are related by the formula OMEll “

π0pO
h
MEll

q.
The category CAlgphSpq is not well-behaved from a categorical point of view: for

example, it has very few limits and colimits. Consequently, there is no good theory of
CAlgphSpq-valued sheaves, so it is not really sensible to ask if the presheaf Oh

MEll
is

a sheaf. However, one can remedy the situation by replacing the ordinary category
CAlgphSpq of homotopy commutative ring spectra by the 8-category CAlgpSpq of
E8-rings. Our goal in this section is to prove the following:

Theorem 7.0.1 (Goerss-Hopkins-Miller). The functor Oh
MEll

: Uop
Ñ CAlgphSpq can

be promoted to a functor Otop
MEll

: Uop
Ñ CAlgpSpq “ CAlg. Moreover, Otop

MEll
is a

CAlg-valued sheaf (with respect to the étale topology on the category U).

Remark 7.0.2. The work of Goerss-Hopkins-Miller actually proves something slightly
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stronger. Let Z denote the fiber product

FunpUop,CAlgpSpqq ˆFunpUop,CAlgphSpqq tO
h
MEll

u,

which we can think of as a classifying space for all lifts of Oh
MEll

to a sheaf of E8-rings.
One can show that the space Z is connected, so that the functor Otop

MEll
of Theorem

7.0.1 exists and is unique up to homotopy (beware, however, that Z is not contractible).
The connectedness of Z does not follow from our methods. Instead, our arguments
will produce a contractible space Z 1 with a map Z 1 Ñ Z. In other words, we will
construct a sheaf Otop

MEll
which is canonical (up to contractible ambiguity, not just up

to homotopy), but not obviously unique.

Definition 7.0.3 (Topological Modular Forms). We let TMF denote the E8-ring of
global sections of the sheaf Otop

MEll
, given concretely by the formula

TMF “ lim
ÐÝ

pR,EqPU
Otop

MEll
pR,Eq.

We will refer to TMF as the periodic spectrum of topological modular forms.

We now sketch our approach to Theorem 7.0.1. Let X “ ShvSpUq denote the
8-topos of S-valued sheaves on U . Given a sheaf Otop

MEll
as in Theorem 7.0.1, we

can view the pair Mor
Ell “ pX ,O

top
MEll

q as a nonconnective spectral Deligne-Mumford
stack in the sense of Definition SAG.1.4.4.2 . Our strategy is to show that Mor

Ell arises
naturally as the solution to a moduli problem in spectral algebraic geometry, just as
MEll arises naturally in classical algebraic geometry as a classifying object for elliptic
curves.

In §AV.2 , we introduced the notion of a strict elliptic curve over an arbitrary
E8-ring R (Definition AV.2.0.2 ). The strict elliptic curves over R form an 8-category
EllspRq, which agrees with EllpRq when R is an ordinary commutative ring. Moreover,
we proved that the construction R ÞÑ EllspRq» is (representable by) a spectral Deligne-
Mumford stackMs

Ell, which we will refer to as the moduli stack of strict elliptic curves.
In §7.1, we show that every strict elliptic curve X of an E8-ring R admits a formal
completion pX, which is a (1-dimensional) formal group over R. We use this observation
in §7.2 to construct a variant Mor

Ell of Ms
Ell which classifies oriented elliptic curves:

that is, strict elliptic curves X together with an orientation of the formal group pX (in
the sense of Definition 4.3.9). The structure sheaf of Mor

Ell determines a sheaf Otop
MEll

on U with values in the 8-category CAlg “ CAlgpSpq of E8-rings. To prove Theorem
7.0.1, it will suffice to show that the underlying presheaf of homotopy commutative
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ring spectra agrees with Oh
MEll

. In §7.3, we reduce this to the problem of showing that
the formal group of the universal elliptic curve on Ms

Ell is balanced, in the sense of
Definition 6.4.1. We prove this in §7.4 by applying a version of the Serre-Tate theorem
(Theorem AV.7.0.1 ) to reduce to an analogous statement for p-divisible groups, which
follows from Theorem 6.4.6.

7.1 The Formal Group of a Strict Abelian Variety
We begin with some general remarks.

Construction 7.1.1 (Formal Completion). Let R be an E8-ring and let X be a strict
abelian variety over R (see Definition AV.1.5.1 ), which we identify with its functor
of points X : CAlgcn

τě0R Ñ Modcn
Z . We define a new functor pX : CAlgcn

τě0R Ñ Modcn
Z by

the formula pXpAq “ fibpXpAq Ñ XpAredqq, where the fiber is formed in the 8-category
Modcn

Z . We will refer to pX as the formal completion of X.

Proposition 7.1.2. Let R be an E8-ring and let X be a strict abelian variety over R.
Then the formal completion pX of Construction 7.1.1 is a formal group over R (in the
sense of Definition 1.6.1 and Variant 1.6.2).

The proof of Proposition 7.1.2 is based on the following completely elementary
observation:

Lemma 7.1.3. Let X be a strict abelian variety over a connective E8-ring R, and
suppose we are given an A-valued point η : SpecpAq Ñ X for some A P CAlgcn

R . The
following conditions are equivalent:

piq The homotopy class of η belongs to the kernel of the map π0XpAq Ñ π0XpA
redq,

where X : CAlgcn
R Ñ S denotes the functor represented by X.

piiq The underlying map of topological spaces | SpecpAq| Ñ |X | factors through the
closed subset K Ď |X | given by the image of the zero section s : SpecpRq Ñ X.

Proof. Form a pullback diagram

Y //

��

SpecpAq
η

��
SpecpRq s // X .
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Since X is separated, s is a closed immersion, so the upper horizontal map is also a
closed immersion. We can therefore write Y “ SpecpBq, where B is some E8-algebra
over A for which the map φ : π0A Ñ π0B is surjective. Condition piiq is satisfied if
and only if the map of topological spaces | SpecpBq| Ñ | SpecpAq| is surjective: that is,
if and only if the kernel kerpφq is contained in the nilradical of π0A. This is equivalent
to the requirement that the tautological map AÑ Ared factors through φ, which is a
reformulation of condition piq.

Proof of Proposition 7.1.2. Without loss of generality we can assume that R is con-
nective. For each A P CAlgcn

R , we can identify Ω8pXpAq with the summand of Ω8 XpAq
spanned by those maps η : SpecpAq Ñ X whose restriction to SpecpAredq is nullho-
motopic. Using Lemma 7.1.3, we see that this is equivalent to the condition that
the underlying map of topological spaces | SpecpAq| Ñ |X | factors through the zero
section. We can therefore identify Ω8pX with the (functor represented by) the formal
completion of X along its zero section, which is a formal hyperplane by Proposition
1.5.15.

Remark 7.1.4. If X is a strict abelian variety of dimension d over an E8-ring R,
then the formal completion pX is a formal group of dimension d over R. In particular,
if X is a strict elliptic curve over R, then the formal group pX has dimension 1.

7.2 Oriented Elliptic Curves
We now adapt our theory of (pre)orientations to the setting of elliptic curves.

Definition 7.2.1. Let R be an E8-ring and let X be a strict elliptic curve over R. A
preorientation of X is a pointed map e : S2 Ñ Ω8 Xpτě0Rq, or equivalently a point of
the space Ω8`2 Xpτě0Rq. We will denote the space Ω8`2 Xpτě0Rq by PrepXq and refer
to it as the space of preorientations of X.

Remark 7.2.2. Let X be a strict elliptic curve over an E8-ring R and let pX denote
its formal completion (Construction 7.1.1). Then the canonical map

pXpτě0Rq Ñ Xpτě0Rq

induces an equivalence ΩpXpτě0Rq Ñ Ω Xpτě0Rq, and therefore a homotopy equivalence

PreppXq “ Ω8`2
pXpτě0Rq Ñ Ω8`2 Xpτě0Rq “ PrepXq.

In other words, giving a preorientation of X is equivalent to giving a preorientation of
the formal group pX, in the sense of Definition 4.3.19.
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Remark 7.2.3. Let R be a complex periodic E8-ring and let X be a strict elliptic
curve over R. Combining Remark 7.2.2 with Proposition 4.3.21, we see that the space
PrepXq of preorientations of X can be identified with the space MapFGrouppRqp

pGQ
R ,

pXq
of maps from the Quillen formal group pGQ

R to the formal completion pX. Equivalently,
we can identify PrepXq with the space

MapFunpCAlgcn
τě0R

,Modcn
Z q
ppGQ

R ,Xq,

where we identify X with its functor of points CAlgcn
τě0R Ñ Modcn

Z .

Notation 7.2.4. Let R be an E8-ring. The construction X ÞÑ PrepXq determines
a functor EllspRq Ñ S, which classifies a left fibration of 8-categories Ellpre

pRq Ñ

EllspRq. The objects of Ellpre
pRq can be identified with pairs pX, eq, where X is a strict

elliptic curve over R and e is a preorientation of X. We will refer to such pairs as
preoriented elliptic curves over R, and to Ellpre

pRq as the 8-category of preoriented
elliptic curves over R.

In what follows, we let Ms
Ell denote the moduli stack of strict elliptic curves (see

Theorem AV.2.0.3 ).

Proposition 7.2.5. The functor R ÞÑ Ellpre
pRq» is (representable by) a spectral

Deligne-Mumford stack Mpre
Ell . Moreover, the canonical map Mpre

Ell ÑMs
Ell is affine,

locally almost of finite presentation, and induces an equivalence of the underlying
classical Deligne-Mumford stacks (in particular, it is a closed immersion).

Remark 7.2.6. We will refer to the spectral Deligne-Mumford stack Mpre
Ell as the

moduli stack of preoriented elliptic curves.

Proof of Proposition 7.2.5. Fix a connective E8-ring R and a map SpecpRq ÑMs
Ell,

classifying strict elliptic curve X over R. We wish to show that the construction
pA P CAlgRq ÞÑ PrepXAq is corepresentable by an E8-algebra R1 P CAlgR which
is locally almost of finite presentation over R and for which the underlying map
π0pRq Ñ π0pR

1q is an isomorphism of commutative rings. This follows immediately
from Remarks 7.2.2 and Lemma 4.3.16.

Definition 7.2.7. Let R be an E8-ring and let X be a strict elliptic curve over R.
We will say that a preorientation e P Ω8`2 Xpτě0Rq is an orientation of X if its image
under the homotopy equivalence PrepXq » PreppXq (Remark 7.2.2) is an orientation
of the formal group pX, in the sense of Definition 4.3.9. We let OrDatpXq denote the
summand of PrepXq spanned by the orientations of X.
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Remark 7.2.8. Let R be an E8-ring and let X be a strict elliptic curve over R. If
R is complex periodic, then giving an orientation of X is equivalent to giving an
equivalence of formal groups pGQ

R »
pX. If R is not complex periodic, then the space

of orientations OrDatpXq is empty. This follows immediately from Remark 7.2.2 and
Proposition 4.3.23.

Definition 7.2.9. Let R be an E8-ring and let Ellpre
pRq denote the 8-category of

preoriented elliptic curves over R (Notation 7.2.4). We let Ellor
pRq denote the full

subcategory of Ellpre
pRq spanned by those pairs pX, eq where e is an orientation of X.

We will refer to such pairs as oriented elliptic curves over R, and to Ellor
pRq as the

8-category of oriented elliptic curves over R.

Proposition 7.2.10. The functor R ÞÑ Ellor
pRq» is (representable by) a nonconnec-

tive spectral Deligne-Mumford stack Mor
Ell. Moreover, the canonical map Mor

Ell ÑM
pre
Ell

is affine.

Proof. Let R be any E8-ring and let f : SpecpRq Ñ Mpre
Ell be a map, classifying a

preoriented elliptic curve pX, eq over R. Then e determines a Bott map βe : ω
pX Ñ

Σ´2pRq (see Construction 4.3.7), which we can identify with a map R Ñ Σ´2pω
pXq.

We now observe that the fiber product Mpre
Ell ˆMor

Ell
SpecpRq can be identified with

SpecpRrβ´1
e sq, where Rrβ´1

e s denotes the localization of Proposition 4.3.17.

We wil refer to the nonconnective spectral Deligne-Mumford stack Mor
Ell as the

moduli stack of oriented elliptic curves.

7.3 The Structure of Mor
Ell

Our next goal is to analyze the structure of the moduli stackMor
Ell and show that it

satisfies the demands of Theorem 7.0.1. This is essentially an immediate consequence
of the following statement which we will prove in §7.4:

Theorem 7.3.1. Let R be a connective E8-ring and let X be a strict elliptic curve over
R which is classified by an étale map SpecpRq ÑMs

Ell. Then the formal completion
pX is a balanced formal group over R (in the sense of Definition 6.4.1).

Proof of Theorem 7.0.1 from Theorem 7.3.1. Let Ms
Ell denote the moduli stack of

strict elliptic curves. We view Ms
Ell as a spectral Deligne-Mumford stack, with

underlying 8-topos X and structure sheaf OMs
Ell

. Note that underlying 0-truncated
spectral Deligne-Mumford stack pX , π0pOMs

Ell
qq can be identified with the classical
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moduli stack of elliptic curves MEll. In particular, the category U appearing in the
statement of Theorem 7.0.1 can be identified with the full subcategory of X spanned
by the affine objects (see Corollary SAG.1.4.7.3 ).

Let Mor
Ell denote the moduli stack of oriented elliptic curves, so that we have

a map of nonconnective spectral Deligne-Mumford stacks φ : Mor
Ell ÑMs

Ell. Then
the direct image φ˚OMor

Ell
is a sheaf of E8-rings on X , which determines a functor

Otop
MEll

: Uop
Ñ CAlg which is a sheaf for the étale topology on U . We will complete the

proof by showing the underlying presheaf of commutative ring spectra coincides with
the one that can be extracted from Landweber’s theorem. Fix an object U P U , given
by a commutative ring R “ OMpUq together with an étale map f : SpecpRq ÑMEll

classifying an elliptic curve X over R. Set R1 “ Os
MpUq, so that R1 is a connective E8-

ring with R » π0pR
1q, equipped with an étale map f 1 : SpecpR1q ÑMs

Ell classifying a
lift of X to a strict elliptic curve X1 P EllspR1q. Set A “ Otop

MEll
pUq. By construction,

A is an E8-algebra over R1 which classifies orientations of the strict elliptic curve X1,
or equivalently of its formal completion pX

1

. In particular, A is complex periodic and
its Quillen formal group pGQ

A can be identified with pX
1

A. In particular, the classical
Quillen formal group pGQ0

A is obtained from pX by extending scalars along the unit
map R » π0pR

1q
u
ÝÑ π0pAq. To complete the proof, it will suffice to show that u

is an isomorphism of commutative rings and that the homotopy groups of A are
concentrated in even degrees, which is exactly the content of Theorem 7.3.1.

Remark 7.3.2. The proof of Theorem 7.0.1 shows that the affine morphism φ :
Mor

Ell ÑMs
Ell has the property that the unit map

OMs
Ell
Ñ φ˚OMor

Ell

induces an isomorphism π0pOMs
Ell
q » π0pOMor

Ell
q. It follows that φ induces an equiva-

lence of the underlying 8-topoi. In other words, the moduli stack Mor
Ell of oriented

elliptic curves has the same underlying étale topos (or 8-topos) as the classical moduli
stack of elliptic curves. Moreover, their structure sheaves are related by the formula

π˚pOMor
Ell
q »

#

ωbk if ˚ “ 2k is even
0 otherwise,

where ω denotes the line bundle on MEll which associates to each elliptic curve X
over a commutative ring R its dualizing line ω

pX (or, equivalently, the R-module of
invariant differentials on X).
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7.4 The Proof of Theorem 7.3.1
Let R be an E8-ring and let X be a strict abelian variety over R (Definition

AV.1.5.1 ). From X, we can extract a formal group pX over R by the process of formal
completion along the identity section (see Proposition 7.1.2 and Remark SAG.1.2.5.3 ).
On the other hand, for every prime number p, we can extract a p-divisible group
Xrp8s (Proposition AV.6.7.1 ). These are related as follows:

Proposition 7.4.1. Let R be a ppq-complete E8-ring and let X be a strict abelian
variety over R. Then the formal completion pX is canonically equivalent to the identity
component of Xrp8s.

Proof. We proceed as in the proof of Proposition 2.2.12. Without loss of generality, we
may assume that R is connective. For each object A P CAlgcn

R , we have a commutative
diagram

pXrp8spAq //

��

Xrp8spAq //

��

Xrp8spAredq

��
pXpAq //

��

XpAq //

��

XpAredq

��
pXpAqrp´1s // XpAqrp´1s // XpAredqrp´1s.

in which the rows and columns are fiber sequences. Let E Ď CAlgcn
R be the full

subcategory spanned by the connective R-algebras which are truncated and ppq-
nilpotent. For A P E , the Z-module spectrum pXpAqrp´1s vanishes (Lemma 2.3.24), so
this diagram supplies an identification

pXpAq
„
ÐÝ pXrp8spAq

» fibpXrp8spAq Ñ Xrp8spAred
qq

“ Xrp8s˝pAq

depending functorially on A. The desired result now follows from Theorem 2.1.1.

Proposition 7.4.2. Let R be a connective E8-ring and let X be a strict elliptic curve
over R which is classified by an étale morphism f : SpecpRq ÑMs

Ell. Let m be any
maximal ideal of R. Then:

paq The residue field κ “ π0pAq{m is finite.
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pbq Let pR “ R^m denote the completion of R with respect to m and let p be the
characteristic of the field κ. Then the p-divisible group Xrp8s

pR is a universal
deformation of G0 “ Xrp8sκ, in the sense of Theorem 3.0.11: in other words,
we can identify pR with the spectral deformation ring Run

G0.

Proof. Since Ms
Ell is locally almost of finite presentation over the sphere spectrum

(Theorem AV.2.4.1 ), the commutative ring π0pRq is finitely generated over Z (in fact,
it is even a smooth Z-algebra of relative dimension 1). In particular, the quotient
π0pRq{m is a field which is finitely generated as a Z-algebra, and is therefore finite.
This proves paq. We now prove pbq. Note that pR is a complete local Noetherian
E8-ring with residue field κ, so that the deformation Xrp8s

pR of G0 is classified by a
map f : Run

G0 Ñ
pR which is the identity on residue fields. We will show that it is an

equivalence by arguing that, for every complete local Noetherian E8-ring A equipped
with a map ρ : AÑ κ which exhibits κ as the residue field of A, composition with f

induces a homotopy equivalence

MapCAlg{κp
pR,Aq Ñ MapCAlg{κpR

un
G0 , Aq.

Writing A as an inverse limit, we can reduce to the case where A is truncated and
π0pAq is Artinian. In this case, there exists a finite sequence of maps

A “ Am Ñ Am´1 Ñ ¨ ¨ ¨ Ñ A0 “ κ,

each of which exhibits Ai`1 as a square-zero extension of Ai by an almost perfect
Ai-module. It will therefore suffice to prove the following:

p˚q Let ρ : A Ñ κ be as above and let rA be a square-zero extension of A by a
connective A-module M which is almost perfect over A. Then the diagram σ :

MapCAlg{κp
pR, rAq //

��

MapCAlg{κpR
un
G0 ,

rAq

��
MapCAlg{κp

pR,Aq //MapCAlg{κpR
un
G0 , Aq

is a pullback square.

Invoking the universal property of Run
G0 (in the form articulated in Theorem 3.0.11)

and the description of pR as a completion of R, we can identify σ with the outer

284



rectangle in the diagram

MapCAlg{κpR,
rAq //

��

Ellsp rAq ˆEllspκq tXκu //

��

DefG0p
rA; ρq

��
MapCAlg{κpR,Aq

// EllspAq ˆEllspκq tXκu // DefG0pA; ρq.

Our assumption that f is étale guarantees that the left square in this diagram is a
pullback, while the Serre-Tate theorem (Theorem AV.7.0.1 ) guarantees that the right
square is a pullback.

Proof of Theorem 7.3.1. Let f : SpecpRq ÑMs
Ell be an étale morphism classifying

a strict elliptic curve X over R. We wish to show that the formal completion pX is
balanced. By virtue of Remark 6.4.3, it will suffice to show that for every maximal ideal
m Ď π0pRq, the formal group pXm is balanced as a formal group over the localization
Rm. Let p be the characteristic of the residue field κ “ π0pRq{m and let pR denote the
m-completion of R. Then pR is faithfully flat over Rm. By virtue of Remark 6.4.2, it
will suffice to show that pX

pR is a balanced formal group over pR. Since pR is p-complete,
we can identify pX

pR with the identity component of the p-divisible group Xrp8s
pR. The

desired result now follows from Theorem 6.4.6, since the p-divisible group Xrp8s
pR is a

universal deformation of Xrp8sκ (Proposition 7.4.2).
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[11] Goerss, P. Hopf rings, Dieudonné modules, and E˚Ω2S3. Homotopy invariant
algebraic structures (Baltimore, MD, 1998), 115Ð174, Contemp. Math., 239,
Amer. Math. Soc., Providence, RI, 1999.

[12] Goerss, P. and M. Hopkins. Moduli Spaces of Commutative Ring Spectra.
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