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Introduction

Elliptic cohomology studies a special class of cohomology theories which are
“associated” to elliptic curves, in the following sense:

Definition 0.0.1. An elliptic cohomology theory is a triple (A, E, «), where A is an
even periodic cohomology theory, F is an elliptic curve over the commutative ring
R = A%(x), and « is an isomorphism of Spf AY(CP*) with the formal completion E
of F (in the category of formal groups over R).

In [5], we proposed that many aspects of the theory of elliptic cohomology can be
elucidated by considering a refinement of Definition [0.0.1, where the elliptic curve
E and the isomorphism « are required to be defined over the cohomology theory A,
rather than over the commutative ring R. This is the first in a series of papers whose
ultimate aim is to carry out the details of the program outlined in [5]. The more
modest goal of the present paper is to answer the following:

Question 0.0.2. What does it mean to give an elliptic curve (or, more generally, an
abelian variety) over a cohomology theory A? To what extent do such objects behave
like their counterparts in classical algebraic geometry?

Let us now outline the contents of this paper. We begin in {1| by addressing the
first half of Question [0.0.2l For this, we will assume that the cohomology theory A is
representable by an E.-ring (which, by abuse of notation, we will also denote by A).
The language of spectral algebraic geometry (developed extensively in [8]) then allows
us to “do” algebraic geometry over A, much as the language of schemes allows one
to “do” algebraic geometry over an arbitrary commutative ring. Using this language,
we introduce the notion of abelian variety over A (Definition and the closely
related notion of strict abelian variety (Definition . Specializing to the case of
abelian varieties having relative dimension 1, we obtain a notion of elliptic curve (and
strict elliptic curve) over A.

In the setting of classical algebraic geometry, elliptic curves themselves admit an
algebro-geometric parametrization. More precisely, there exists a Deligne-Mumford
stack M 1 called the moduli stack of elliptic curves such that, for any commutative
ring R, the groupoid of maps Spét R — M, ; can be identified with the groupoid of
elliptic curves over R. In §2] we show that the same phenomenon occurs in spectral
algebraic geometry: there exist spectral Deligne-Mumford stacks M and M?* which
classify elliptic curves and strict elliptic curves (respectively) over arbitrary E-rings



(Theorem [2.0.3)). In contrast with the classical case, there is no obvious “hands-on”
construction of these moduli stacks (via geometric invariant theory, for example);
instead, we establish existence using a spectral version of Artin’s representability
theorem.

Let k be a field and let X be an abelian variety over k. One can then associate to
X another abelian variety )A(, called the dual of X, with the following features:

(7) The dual X can be identified with (or defined as) the identity component Pic”(X)
of the Picard variety Pic(X).

(7) The construction X +— X is involutive: that is, we can identify X with the dual
of X.

(731) The derived categories of coherent sheaves on X and X are canonically equivalent
to one another by means of the Fourier-Mukai transform of [9].

Roughly half of this paper is devoted to generalizing this duality theory to abelian
varieties over an arbitrary (connective) E,-ring A. In classical algebraic geometry,
one can take (i) as the definition of the dual abelian variety X, and (77) and (7ii) as
theorems that can be deduced from this definition. In the setting of spectral algebraic
geometry, assertion (i) fails: we can no longer identify the dual X of an abelian
variety X with a connected component of Pic(X). We therefore adopt a different
approach, using a categorified form of Cartier duality (developed in §3)) to construct
the co-category QCoh()z) of quasi-coherent sheaves on the dual X, from which we
can recover X using the formalism of Tannaka duality (as developed in [§]). From
this perspective, it takes some work to show that the dual X actually exists (this is
the subject of §f]), but the counterparts of assertions (ii) and (iii) are more or less
immediate from the definition (as we will see in §4)).

Our final goal in this paper is to generalize the theory of p-divisible groups to the
setting of spectral algebraic geometry. In §6, we define the notion of p-divisible group
over an arbitrary Ey,-ring A (Definition . We show that every strict abelian
variety X over A determines a p-divisible group X[p*] (Proposition [6.7.1]), and that
this construction is compatible with duality (Proposition . In , we use these
ideas to formulate and prove a “spectral” version of the classical Serre-Tate theorem:
when working over E.,-rings A which are p-complete, the deformation theory of a
strict abelian variety X is equivalent to the deformation theory of its p-divisible group

X[p*] (Theorem [7.0.1]).



Remark 0.0.3. To understand the construction of topological modular forms using
the formalism of spectral algebraic geometry (as outlined in [5]), the duality theory of
abelian varieties is not necessary: one only needs the ideas of §1] §2 §6 and §7] of the
present paper. However, duality theory (at least for elliptic curves) plays a role in the
construction of the string orientation of the theory of topological modular forms.

Remark 0.0.4. In many parts of this paper, we work in the setting of (spectral)
algebraic geometry over an E, -ring A which might be nonconnective. However, this
seeming generality is illusory: all of the geometric objects we study are required to be
flat over A, so there is no difference between working over A or over its connective cover
T>0A (see Proposition. Nevertheless, it will be convenient to allow nonconnective
ring spectra since we will later wish to consider oriented elliptic curves (see [3]), which
exist only in the nonconnective setting.

Warning 0.0.5. The theory of topological modular forms can be understood as arising
from a certain nonconnective spectral Deligne-Mumford stack M9 which classifies
oriented elliptic curves (see [5]). This object does not agree with the moduli stacks M
and M® constructed in which parametrize elliptic curves without an orientation.
However, the moduli stack M?® constructed here is a useful first approximation to the
moduli stack M of [5]. More details will be given in the sequel.

Notation and Terminology

Throughout this paper, we will assume that the reader is familiar with the language
of higher category theory developed in [6] and [7], as well as the language of spectral
algebraic geometry as developed in [8]. Since we will need to refer to these texts
frequently, we adopt the following conventions:

(HTT) We will indicate references to [6] using the letters HT'T.
(HA) We will indicate references to [7] using the letters HA.

(SAG) We will indicate references to [§] using the letters SAG.

For example, Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [6].

For the reader’s convenience, we now review some cases in which the conventions
of this this paper differ from those of the texts listed above, or from the established
mathematical literature.



e We will generally not distinguish between a category C and its nerve N(C). In
particular, we regard every category C as an co-category.

e We will generally abuse terminology by not distinguishing between an abelian
group M and the associated Eilenberg-MacLane spectrum: that is, we view the
ordinary category of abelian groups as a full subcategory of the co-category Sp
of spectra. Similarly, we regard the ordinary category of commutative rings as a
full subcategory of the co-category CAlg of E.-rings.

e Let A be an E-ring. We will refer to A-module spectra simply as A-modules.
The collection of A-modules can be organized into a stable co-category which
we will denote by Mod s and refer to as the co-category of A-modules. This
convention has an unfortunate feature: when A is an ordinary commutative ring,
it does not reduce to the usual notion of A-module. In this case, Mod 4 is not the
abelian category of A-modules but is closely related to it: the homotopy category
hMod, is equivalent to the derived category D(A). Unless otherwise specified,
the term “A-module” will be used to refer to an object of Mod 4, even when A
is an ordinary commutative ring. When we wish to consider an A-module M
in the usual sense, we will say that M is a discrete A-module or an ordinary

A-module.

e Unless otherwise specified, all algebraic constructions we consider in this book
should be understood in the “derived” sense. For example, if we are given
discrete modules M and N over a commutative ring A, then the tensor product
M®a N denotes the derived tensor product M ®% N. This may not be a discrete
A-module: its homotopy groups are given by m,(M ®4 N) ~ Tor’}(M, N). When
we wish to consider the usual tensor product of M with N over A, we will denote
it by Torg (M, N) or by mo(M ®4 N).

e If M and N are spectra, we will denote the smash product of M with N by
M ® N, rather than M A N. More generally, if M and N are modules over
an E,-ring A, then we will denote the smash product of M with N over A by
M ®4 N, rather than M A 4 N. Note that when A is an ordinary commutative
ring and the modules M and N are discrete, this agrees with the preceding
convention.

e If C is an co-category, we let C~ denote the largest Kan complex contained
in C: that is, the co-category obtained from C by discarding all non-invertible



morphisms.

o We will say that a functor f : C — D between co-categories is left cofinal if, for
every object D € D, the co-category C xp Dp, is weakly contractible (this differs
from the convention of [6], which refers to a functor with this property simply
as cofinal; see Theorem HTT.4.1.3.1). We will say that f is right cofinal if the
induced map C°® — D°P is left cofinal, so that f is right cofinal if and only if
the co-category C xp D,p is weakly contractible for each D € D.

o If A is an E,-ring, we denote the associated affine nonconnective spectral
Deligne-Mumford stack by Spét A. If A is an ordinary commutative ring, we let
Spec A denote the associated affine scheme. Note that in this case, Spec A and
Spét A are essentially “the same” object, and we will often abuse notation by
identifying them with one another.

Divergence with the Classical Theory

Roughly speaking, our objective in this paper is to define the notion of abelian
variety over an arbitrary E.,-ring A and to show that, in many respects, the theory of
abelian varieties over A resembles the classical theory of abelian varieties. However,
there are several respects in which the theory we develop here does not mirror its
classical counterpart. For the reader’s convenience, we collect here some of the most
important:

e In the setting of classical algebraic geometry, the group structure on an abelian
variety is essentially unique. If X is a smooth projective algebraic variety over
a field k equipped with a “zero-section” e : Spec k — X, then there is at most
one multiplication map m : X Xgpecx X — X having e as a (two-sided) identity.
Moreover, if such a multiplication exists, then it is automatically commutative
and associative.

In the setting of spectral algebraic geometry, the analogous statement fails: if X
is an abelian variety over an E,-ring A, then we generally cannot recover the
group structure on X from the underlying map X — Spét A, even if the identity
section e : Spét A — X is specified. Moreover, commutativity is not automatic
(and different commutativity assumptions lead to slightly different theories: this
is what distinguishes the abelian varieties of Definition from the strict
abelian varieties of Definition [1.5.1)).



e In classical algebraic geometry, the theory of algebraic curves provides a rich
supply of examples of abelian varieties: every smooth projective curve of genus g
X — Spec k admits a Jacobian Pic®(X), which is an abelian variety of dimension
g over k. In the setting of spectral algebraic geometry over an E,-ring A, the
analogous construction generally does not yield an abelian variety over A, unless
A is assumed to be of characteristic zero (if A is connective, it yields an object
which is differentially smooth over A, rather than fiber smooth).

e In classical algebraic geometry, the dual of an abelian variety X can be identified
with a connected component of the Picard variety Pic(X). In the setting of
spectral algebraic geometry, this is almost never true (except for elliptic curves in
characteristic zero). However, it is still true that the dual of X can be identified
with the moduli space of multiplicative line bundles on X (that is, extensions of
X by the multiplicative group): see §5|for details.

e In classical algebraic geometry, the theory of line bundles is controlled by the
theorem of the cube: if X, Y, Z are smooth projective varieties over a field k
equipped with base points z € X(k), y € Y(k), and z € Z(k), and .Z is a line
bundle on the product X x Y x Z which is trivial when restricted to {z} x Y x Z,
Xx{y} x Z, and X xY x{z}, then & itself is trivial. This result plays an
essential role in the analysis of line bundles on an abelian variety X (and in the
construction of the dual abelian variety )A() However, it has no counterpart in
the setting of spectral algebraic geometry.
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1 Abelian Varieties in Spectral Algebraic Geome-
try

Let x be a field. Recall that an abelian variety over k is a commutative group
scheme X over k for which the map X — &k is smooth, proper, and geometrically
connected. Our goal in this section is to introduce a generalization of this definition,



where we replace the field x by an arbitrary E,-ring R. We will give the definition in
two steps:

e We first introduce the notion of a wariety over R, given by a morphism of
(possibly nonconnective) spectral Deligne-Mumford stacks X — Spét R satisfying
a few requirements (Definition [L.1.1)). The collection of varieties over R can be
organized into an co-category Var(R) which admits finite products.

e Roughly speaking, we would like to define an abelian variety over R to be an
object X € Var(R) equipped with a commutative group structure. However, in
the setting of homotopy theory, commutativity comes in a variety of flavors. For
the applications we have in mind, two of these will be relevant:

(a) We could take X to be a grouplike commutative monoid object of Var(R)
(see : in other words, we could require that for every A € CAlgy, the
space X(A) of A-valued points of X has the structure of an infinite loop
space. This leads to the notion we call an abelian variety over R, which we

will study in §1.4)).
(b) We could take X to be an abelian group object of Var(R) (see §1.2): in
other words, we could require that for every A € CAlgy, the space X(A) of

A-valued points of X is homotopy equivalent to a topological abelian group.
This leads to the notion we call a strict abelian variety over R, which we

study in

1.1 Varieties over K -Rings

We begin by reviewing some terminology. We will use the following slight general-
ization of Definition SAG.19.4.5.3:

Definition 1.1.1. Let R be an E,-ring. A variety over R is a nonconnective spectral
Deligne-Mumford stack X = (X, Ox) equipped with a flat map f : X — Spét R
having the following property: the underlying map of spectral Deligne-Mumford
stacks (X, 7=0 Ox) — Spét(1=9R) is proper, locally almost of finite presentation,
geometrically reduced, and geometrically connected. We let Var(R) denote the full
subcategory of SpDMJS .  spanned by the varieties over R.



Remark 1.1.2. Suppose we are given a pullback diagram of nonconnective spectral
Deligne-Mumford stacks

X X

r

Spét R —— Spét R.

If f exhibits X as a variety over R, then f’ exhibits X’ as a variety over R’. Consequently,
we can view the construction R — Var(R) as a functor Var : CAlg — S.

When the E,-ring R is connective, Definition coincides with the definition
of variety given in §SAG.19.4.5. The extension of this definition to nonconnective
E-rings does not really provide any additional generality, by virtue of the following:

Proposition 1.1.3. For every E-ring R, the canonical map 7>oR — R induces an
equivalence of co-categories p : Var(tsgR) — Var(R).

Proof. The construction (X, Ox) — (X, Ts¢ Ox) determines a homotopy inverse to p.
See Proposition SAG.2.8.2.10. O]

Proposition 1.1.4. Let R be a connective Ey-ring and let f : X — Y be a morphism
in Var(R). Suppose that, for every field k and every morphism of Ey-rings R — K,
the induced map Spét k Xgpst r X — SPét k Xgpst g Y 45 an equivalence. Then f is an
equivalence.

Proof. Apply Corollary SAG.6.1.4.12. m

Remark 1.1.5 (The Functor of Points). Let R be an E,-ring. The construction
X — MapSpDM%pétR(Spét e, X) determines a fully faithful embedding of oo-categories
Var(R) — Fun(CAlgy, S). We will refer to the image of X under this functor as the
functor of points of X.

If the Ey-ring R is connective and n-truncated (for 0 < n < o), then the same
construction determines a fully faithful embedding Var(R) — Fun(rg, CAlgy',S),
which we will also refer to as the functor of points.

1.2 Abelian Group Objects of co-Categories

We begin with some general remarks about abelian group objects of co-categories.

Definition 1.2.1. A lattice is a free abelian group of finite rank. We let Ab denote
the category of abelian groups, and Lat denote the full subcategory of Ab spanned by
the lattices. We will refer to Lat as the category of lattices.
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Remark 1.2.2. The category of lattices Lat is essentially small (it is equivalent to the
full subcategory of the category of abelian groups spanned by the objects {Z"},>0).

Remark 1.2.3. The category of lattices Lat is additive and admits finite product
and coproducts.

Definition 1.2.4. Let C be an oo-category which admits finite products. An abelian
group object of C is a functor A : Lat®® — C which commutes with finite products. We
let Ab(C) denote the full subcategory of Fun(Lat?, C) spanned by the abelian group
objects of C. We will refer to Ab(C) as the co-category of abelian group objects of C.

Example 1.2.5. Let M be an abelian group. We let hy; : Lat®® — Set denote
the functor represented by M, given by hy(A) = Homap(A, M). The functor hy,
commutes with finite products, and is therefore an abelian group object of Set in the

sense of Definition [1.2.4]

Remark 1.2.6 (Duality). The category Lat of lattices is canonically equivalent to
its opposite Lat°®, via the duality functor A — AY = Hom(A,Z). Consequently, if
C is an oo-category and X : Lat®® — C is an abelian group object of C, then the
construction A — X (AY) determines a functor X" : Lat®® — C°P. If the oo-category
C is semiadditive (see Definition SAG.C.4.1.6 ), then X is an abelian group object of
C°®. In this case, the construction X — XV induces an equivalence of co-categories

Ab(C)® ~ Ab(CP).

Proposition 1.2.7. The construction M — hy of Example induces an equiva-
lence of categories Ab — Ab(Set).

Proof. Let A € Ab(Set) < Fun(Lat®, Set). Then the set A(Z) has the structure of
an abelian group, with multiplication induced by the map

A(Z) x A(Z) ~ A(Z x Z) 22 A(z)
where ¢ : Z — Z x Z is the diagonal map. It is easy to check that the construction
A — A(Z) is a homotopy inverse to the functor M +— hy,. O

Remark 1.2.8. Proposition is a formal consequence of the fact that lattices
form compact generators for the category Ab.

Example 1.2.9. Let S denote the co-category of spaces. Then Ab(S) can be identified
with the co-category Pyx(Lat) (see §HTT.5.5.8 ), obtained by freely adjoining sifted
colimits to the oo-category Lat. Combining Propositions HTT.5.5.9.2 and [1.2.7], we
deduce that Ab(S) is equivalent to the underlying co-category of the model category
Ab2™ of simplicial abelian groups.

11



Remark 1.2.10. Let Mod7' denote the co-category of connective Z-module spectra.
We will abuse notation by identifying the category Ab of abelian groups with the
full subcategory Modqz9 < Mody' spanned by the discrete objects. In particular, we
can identify Lat with a full subcategory of Mody'. Invoking the universal property of
Example [1.2.9] we see that the inclusion Lat < Modz' admits an essentially unique
extension to a functor p : Ab(S) — Mody' which commutes with sifted colimits. By
virtue of Proposition HA.7.1.1.15, the functor p is an equivalence of co-categories.
That is, we can identify connective Z-module spectra with abelian group objects of
the oo-category S of spaces.

Remark 1.2.11. Let C be an essentially small co-category which admits finite prod-
ucts, and let j : C — Fun(C°?, S) denote the Yoneda embedding. Then j induces a fully
faithful embedding Ab(C) — Ab(Fun(C,S)) ~ Fun(C°?, Ab(S)) ~ Fun(C°®, Mod7}).
Unwinding the definitions, we see that the essential image of this embedding consists
of those functors F : C°® — Mod$" for which the composition C° %> Mod$" 2, 8 s

representable by an object of C.

Example 1.2.12. Let C be an ordinary category which admits finite products. If
F : C® — Mody' is any functor having the property that the composition C°? EN
Mod7' 2 S s representable, then F' must take values in the full subcategory
Ab ~ Modg € Modgz. Consequently, Remark supplies an equivalence of Ab(C)
with the full subcategory of Fun(C?, Ab) spanned by those functors F' for which the
composition C°P £ Ab — Set is representable. We can summarize the situation
more informally as follows: an object of Ab(C) consists of an object C' € C together
with an abelian group structure on the functor Home(e, C) represented by C'. This
abelian group structure can be described more explicitly via a multiplication map
m : C x C — (C satisfying suitable analogues of the axioms defining the notion of
abelian group.

Example 1.2.13. Let C be a presentable co-category. Using the adjoint functor
theorem (Corollary HTT.5.5.2.9 and Remark HTT.5.5.2.10 ), we see that that essential
image of the fully faithful embedding Ab(C) < Fun(C°?,ModZ') consists of those
functors F' : C®* — Mody' which preserve small limits. It follows that Ab(C) can
be identified with the tensor product C ® Mody', formed in the co-category Prl of
presentable co-categories (see Proposition HA.4.8.1.17).

Example 1.2.14. Let C be an additive presentable co-category. Then we can regard
C as tensored over the oo-category Sp™ (see Theorem SAG.C.4.1.1). Combining

12



Example [1.2.13| with Theorem HA.4.8.4.6, we obtain an equivalence of co-categories
Ab(C) ~ LModz(C).

Remark 1.2.15. Let C and D be oo-categories which admit finite products and let
F : C — D be a functor which preserves finite products. Then composition with F’
induces a functor Ab(C) — Ab(D). This observation applies in particular when F is
the tautological map from C to its homotopy category hC. Consequently, every abelian
group object of C can be regarded (by neglect of structure) as an abelian group object
of the homotopy category hC.

1.3 Commutative Monoid Objects of co-Categories

We now compare Definition with the theory of commutative monoid objects
introduced in §HA.2.4.2. We begin by recalling some definitions.

Notation 1.3.1. For each n > 0, we let (n) denote the pointed set {1,...,n,=}. We
let Fin, denote the category whose objects are the sets (n) and whose morphisms are
pointed maps. For 1 <i < n, we let p' : (ny — (1) = {1, =} denote the morphism in
. _ o 1 ifi=j

Fin, described by the formula p'(j) =

+  otherwise.

Definition 1.3.2. Let C be an oo-category which admits finite products. A commu-
tative monoid object of C is a functor M : Fin, — C with the following property: for
each n > 0, the maps {M(p") : M({(n)) — M({1))}1<i<n determine an equivalence
M({n)) — M({1))"™ in the co-category C. We let CMon(C) denote the full subcategory
of Fun(Fin,,C) spanned by the commutative monoid objects of C.

In the special case where C = S is the oo-category of spaces, we will denote the
ow-category CMon(C) simply by CMon. We will sometimes refer to CMon as the
oo-category of B -spaces.

Example 1.3.3. Let M : Fin, — Set be a commutative monoid object of the
category of sets. The unique map u : (2) — (1) satisfying u={+} = {+} determines a
multiplication map m : M ((1)) x M({1)) ~ M({(2)) M), M ({1)). The multiplication
m is commutative, associative and unital: that is, it equips the set M ({1)) with

the structure of a commutative monoid. The construction M +— M ({1)) induces an
equivalence from the category CMon(Set) to the category of commutative monoids.

Example 1.3.4. Let C be a semiadditive co-category (Definition SAG.C.4.1.6). Then
the forgetful functor CMon(C) — C is an equivalence of co-categories: that is, every

13



object of C admits an essentially unique commutative monoid structure (see Remark
SAG.C.1.5.3).

Remark 1.3.5. Let C and D be oo-categories which admit finite products and let
F : C — D be a functor which preserves finite products. Then composition with F’
determines a functor CMon(C) — CMon(D).

Remark 1.3.6. In the situation of Definition [1.3.2] we will often abuse notation by
identifying a commutative monoid object M € CMon(C) with the object M ((1)) € C.

Example 1.3.7. Let C be an oo-category which admits finite products. For each
object C € C, the construction D — w9 Map.(C, D) determines a functor ex : C — Set
which commutes with finite products. It follows that if M is a commutative monoid
object of C, we can regard ec o M as a commutative monoid object of Set: that is, the
set mo Map,(C, M) = Homype(C, M) inherits the structure of a commutative monoid.

Definition 1.3.8. Let C be an oo-category which admits finite products and let M
be a commutative monoid object of C. We say that M is grouplike if, for every object
C' € C, the commutative monoid m9 Map.(C, M) of Example is an abelian group.
We let CMon®”(C) denote the full subcategory of CMon(C) spanned by the grouplike
commutative monoid objects of C.

Construction 1.3.9. Let I, be a pointed set. We let Hom,(/,,Z) denote the set
of pointed maps from I, into Z (that is, functions e : I, — Z satisfying e(x) = 0).
Note that Hom, (., Z) forms a group under pointwise addition. If the set I, is finite,
then Hom, (/,,Z) is a lattice. Consequently, the construction (n) — Hom,({(n),Z)
determines a functor A : Fin, — Lat°P.

For any oco-category C, precomposition with A induces a functor Fun(Lat’?,C) —
Fun(Fin,,C). If C admits finite products, then this functor carries abelian group
objects of C (in the sense of Definition to grouplike commutative monoid
objects of C (in the sense of Definition [1.3.2)). We therefore obtain a forgetful functor
6 : Ab(C) — CMon®*(C).

Warning 1.3.10. If C is an ordinary category, then the forgetful functor 6 : Ab(C) —
CMon®?(C) of Construction is an equivalence. That is, we can identify abelian
group objects of C with grouplike commutative monoid objects M € C. In general, this
does not hold. For example, if C is the oco-category of spectra, then 6 can be identified
with the forgetful functor Modz = Modz(Sp) — Sp, which is neither fully faithful nor
essentially surjective.
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1.4 Abelian Varieties
We are now ready to introduce the main objects of interest in this paper.

Definition 1.4.1. Let R be an E-ring. An abelian variety over R is a commutative
monoid object of the co-category Var(R). We let AVar(R) denote the co-category
CMon(Var(R)) of abelian varieties over R.

Remark 1.4.2. If X is an abelian variety over R, we will generally abuse ter-
minology by identifying X with its image under the forgetful functor AVar(R) ~
CMon(Var(R)) — Var(R).

Remark 1.4.3. Let R be an Ey-ring and let 7-qR denote the connective cover of R.
Using Proposition [1.1.3] we deduce that extension of scalars along the tautological
map 7o — R induces an equivalence of co-categories AVar(ms¢R) — AVar(R).

Proposition 1.4.4. Let X be an abelian variety over an E,-ring R. Then X is a
grouplike commutative monoid object of Var(R).

Proof. By virtue of Proposition [I.1.3, we may assume that R is connective. Let
m : X Xgpgt g X — X denote the multiplication map and let p : X xgp6 g X — X denote
the projection onto the first factor. To show that X is grouplike, it will suffice to show
that the “shearing” map (p, m) : X Xgpst g X — X Xgpat g X 1s an equivalence. By virtue
of Corollary SAG.6.1.4.12, it will suffice to show that for every field £ and every map
n : Spét k — X, the induced map Spét k Xgper r X — Spét K X gpet g X is an equivalence.
Without loss of generality, we may assume that x is algebraically closed. Replacing
R by k, we can reduce to the case where R = k is a field and 7 is an element of the
commutative monoid X(x) = Mapy,,,)(Spét x, X) of k-valued points of X. We will
complete the proof by showing that 7 is an invertible element of X (k).

Since X is proper over k, the map (p,m) : X Xgpet s X — X Xgpetx X has closed
image. Let U < | X Xgpet » X | be the complement of the image of (p, m). The projection
map p is flat, so U has open image in | X|. Let K < | X| be the complement of p(U).
Unwinding the definitions, we see that a k-valued point = € X(k) factors through K if
and only the multiplication map

, id
My : X > Spét K Xgpern X > X Xgpepr X —> X

is surjective. In particular, the unit element e € X(k) factors through K, so K is
nonempty. We will complete the proof by showing that K = | X|. It then follows
that m,, : X — X is surjective. Using our assumption that x is algebraically closed, it
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follows that multiplication by 7 induces a surjective map from the set X(k) to itself,
so that 7 is an invertible element of X(k) as desired.

Since the projection map X — Spét x is geometrically connected, the topological
space | X| is connected. Consequently, to show that K = | X|, it will suffice to show
that K is open. Let W be the interior of K in | X|; we wish to show that W = K.
Assume otherwise: then we can choose a closed point v of K which does not belong
to W. Let us identify v with a x-valued point of X. Our assumption that v belongs
to K guarantees that the translation map m, : X — X is surjective. Our assumption
that x is algebraically closed guarantees that multiplication by 7 induces a surjection
X(k) — X(k): that is, v admits an inverse y~* in the commutative monoid X(x). It
follows that the map m,, is an isomorphism, and is therefore flat. It follows that there
exists an open subset V < | X xgpet X | containing [{y} xgpetx X| such that (p, m)
is flat when restricted to V' (Corollary SAG.6.1.4.6 ). Since the projection map p is
closed, we can assume without loss of generality that V' is the inverse image of some
open set Vy < | X| containing v. Our assumption v ¢ W guarantees that Vy & K:
that is, we can choose a point d € V which does not belong to K. Without loss of
generality, we may assume that 0 is closed in V4 and therefore also in | X |, so that we
can identify ¢ with a x-valued point of X. The assumption ¢ € Vj guarantees that
my : X — X is flat. The induced map of topological spaces | X| — | X| is then open
(since my is flat) and closed (since X is proper over k), and therefore surjective (since
| X | is connected). This is a contradiction, since § does not belong to K. O

Remark 1.4.5 (The Functor of Points). Let R be an E.-ring. Then the functor of
points construction Var(R) — Fun(CAlgg,S) of Remark induces a fully faithful
embedding
AVar(R) = CMon(Var(R))

= CMon®’(Var(R))

—  CMon®’(Fun(CAlgg, S))

= Fun(CAlgg, CMon®?(S)).
The essential image of this embedding consists of those functors X : CAlg, — CMon

for which the underlying functor CAlgy = CMon — S is representable by an object
of Var(R).

Variant 1.4.6. Let R be an E,-ring which is connective and n-truncated for 0 <
n < 0. Then the composite functor

AVar(R) — Fun(CAlgy, CMon) «— Fun(7<, CAlgg', CMon)
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is also fully faithful. Moreover, this functor takes values in the full subcategory
Fun(re, CAlg®', 7<,, CMon). We therefore obtain a fully faithful embedding of co-
categories AVar(R) — Fun(7<, CAlgh', 7<, CMon). If X is an abelian variety over R,
we will refer to its image under this embedding as the functor of points of X.

We now compare Definition [1.4.1| with the classical theory of abelian varieties.

Proposition 1.4.7 (Artin). Let k be an algebraically closed field and let X be an
abelian variety over k. Then X is schematic and the projection map X — Spét Kk is

fiber smooth (see Definition SAG.11.2.5.5 ).

Remark 1.4.8. It follows from Proposition that in the special case where R = k
is an algebraically closed field, the notion of abelian variety over R (in the sense of
Definition reduces to the usual notion of abelian variety over x (in the sense of
classical algebraic geometry): that is, to the notion of a group scheme over x which is
proper, smooth, and connected. More generally, if R is any commutative ring, then
the theory of abelian varieties over R (in the sense of Definition reduces to the
classical theory of abelian schemes over R (see, for example, [10]). The nontrivial
point (due to Raynaud) is that any abelian variety over R is automatically schematic.
For a proof, we refer the reader to Theorem 1.9 of [2].

Corollary 1.4.9. Let R be a connective Ey-ring and let X be an abelian variety over
R. Then the projection map X — Spét R is fiber smooth.

Proof. Using Proposition SAG.11.2.3.6 , we can reduce to to the case where R is an
algebraically closed field, in which case the desired result follows from Proposition

47 O

Proof of Proposition[1.].7]. Let X be an abelian variety over an algebraically closed
field k. Then X is a nonempty separated spectral algebraic space. Using Corollary
SAG.3.4.2.4, we can choose a nonempty open subspace Uy € X where Uy ~ Spét R
is affine. Since X is flat and locally almost of finite presentation over k, the K-
ring R is discrete and finitely generated as a x-algebra. Moreover, the projection
map X — Spét k is geometrically reduced, so that R is reduced. Replacing R by a
localization, we can assume that it is smooth over s (in the sense of commutative
algebra), so that Uy is fiber smooth over Spét x (in the sense of spectral algebraic
geometry).

Let U € X be the largest open subspace which is schematic and fiber smooth
over k. Let X(k) = Mapyy,,(.)(Spét &, X) be the set of k-valued points of X, which we
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will identify with closed points of the topological space |X|. For each n € X(k), let
my, : X — X be the map given by translation by 7. It follows from Proposition [I.4.4]
that m,, is an automorphism of X, and therefore carries U into itself.

Because Uy is nonempty, we can choose a point 7 € X(x) which factors through Ug.
The map m.,-: carries Uy = U into U, so that U contains the identity element of X(x).
Using the invariance of U under translations, we deduce that U contains all closed
points of | X |. We therefore have U ~ X| so that X is schematic and fiber smooth over
k as desired. O

1.5 Strict Abelian Varieties

Let x be a field and let X be a group scheme over x which is proper, smooth, and
connected. The group structure on X is then automatically commutative (see [10]),
so that X can be regarded as an abelian variety over k. In the context of spectral
algebraic geometry, the analogous statement is false: commutativity does not come
for free. Moreover, in the oco-categorical setting, one can consider many flavors of
commutativity which are classically indistinguishable. We therefore introduce the
following variant of Definition

Definition 1.5.1. Let R be an E-ring. A strict abelian variety over R is an abelian
group object of the oo-category Var(R) (see Definition [1.2.4). We let AVar®(R) =
Ab(Var(R)) denote the co-category of abelian varieties over R.

Remark 1.5.2. Let R be an E,-ring. Then the co-category AVar®(R) is semiadditive.
Using Example |1.3.4] we deduce that the forgetful functor

Ab(AVar(R)) = Ab(CMon(Var(R))
~ CMon(Ab(Var(R))
— Ab(Var(R))
= AVar’(R)

is an equivalence of co-categories. In other words, we can identify AVar®(R) with the
a-category of abelian group objects of AVar(R), rather than Var(R).

Remark 1.5.3. Let R be an E -ring and let 7-qR denote the connective cover of R.
Using Proposition [1.1.3] we deduce that extension of scalars along the tautological
map 7TsoRR — R induces an equivalence of co-categories AVar®(t>oR) — AVar®(R).
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Remark 1.5.4 (The Functor of Points). Let R be an E.-ring. Then the functor of
points construction Var(R) — Fun(CAlgg, S) of Remark induces a fully faithful
embedding

AVar®(R) = Ab(Var(R))
— Ab(Fun(CAlgg,S))
= Fun(CAlgg, Ab(S))
~ Fun(CAlgg, Mody').

The essential image of this embedding consists of those functors X : CAlg, — Mod7'
for which the 0th space Q*X : CAlgp — S is representable by an object of Var(R).

Remark 1.5.5. Applying Construction to the oo-category Var(R), we obtain a
forgetful functor AVar®(R) — AVar(R). In terms of the functors of points (Remark
[1.4.6| and [1.5.4)), this forgetful functor is obtained by composition with the forgetful
functor Ab(S) ~ Modz(Sp™) — Sp™ ~ CMon®?(S).

We will generally abuse notation by identifying a strict abelian variety X € AVar®(R)

with its image in AVar(R) (and, by extension, with its image under the forgetful
functor AVar®(R) — AVar(R) — Var(R)).

Proposition 1.5.6. For every commutative ring R, the forgetful functor AVar®(R) —
AVar(R) is an equivalence of categories.

Proof. Since Var(R) is equivalent to an ordinary category, Warning implies
that the forgetful functor AVar®(R) = Ab(Var(R)) — CMon(Var(R)) ~ AVar(R) is a
fully faithful embedding, whose essential image consists of the grouplike commutative
monoid objects of Var(R). The desired result now follows from the fact that every
abelian variety is grouplike (Proposition [1.4.4)). O

Warning 1.5.7. If R is a non-discrete Eo-ring, then the forgetful functor AVar®(R) —
AVar(R) need not be an equivalence of oo-categories. However, we will see later that
it is an equivalence when 7R is an algebra over the field Q of rational numbers (see

Theorem [2.1.1]).

Warning 1.5.8. If R is an ordinary commutative ring, then the forgetful functor
AVar®(R) — Var(R) is almost a fully faithful embedding: if X and Y are abelian
varieties over R, then any morphism f : X — Y in Var(R) which preserves the identity
sections is automatically a morphism of abelian varieties over R. The analogous
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statement does not hold in the setting of spectral algebraic geometry: an abelian
variety X over a non-discrete E,-ring R generally cannot be recovered from its
underlying spectral algebraic space, even if the identity section is specified.

2 Moduli of Elliptic Curves

Let R be an E-ring, let X = (X, Ox) be an abelian variety over R, and let g be
a nonnegative integer. We will say that X has dimension g if, for every field x and
every map moR — &, the fiber product Spét k X spetror (X, mo Ox) has Krull dimension
g. We let AVar,(R) denote the full subcategory of AVar(R) spanned by the abelian
varieties of dimension g over R, and we let AVar;(R) denote the full subcategory of
AVar®(R) spanned by the strict abelian varieties of dimension g over R.

Remark 2.0.1. Let R be an E,-ring and let X = (X, Ox) be an abelian variety over
R. Then the function

(x € | Spec R|) — dim(Spét k() Xgpstror (X, T0 Ox))

is locally constant on Spec R. In particular, if |Spec R| is connected, then every
abelian variety over R has dimension g for some uniquely determined nonnegative
integer g.

Definition 2.0.2. Let R be an E-ring. An elliptic curve over R is an abelian variety
of dimension 1 over R. A strict elliptic curve over R is a strict abelian variety of
dimension 1 over R. We let ElI*(R) = AVarj(R) denote the oo-category of strict
elliptic curves over R, and Ell(R) = AVar;(R) the oo-category of elliptic curves over
R.

Our goal in this section is to prove the following result:

Theorem 2.0.3. The functors R — ElI*(R)~ and R — El(R)™ are representable by
spectral Deligne-Mumford stacks. That is, there exists spectral Deligne-Mumford stacks
M?® and M which are equipped with functorial homotopy equivalences

Mapg,pyme (Spét R, M*) ~ ElI°(R)™ Mapg,pyme (Spét R, M) ~ ElI(R)~.

We will refer to M as the moduli stack of elliptic curves, and M?* as the moduli stack
of strict elliptic curves.
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We will deduce Theorem [2.0.3| using the spectral version of Artin’s representability
theorem (Theorem SAG.18.3.0.1). To verify the hypotheses of Artin’s criterion, we will
need to study the deformation theory of the functors R — Ell’(R)™ and R — Ell(R)~;
this will occupy our attention throughout this section.

2.1 Comparing Abelian Varieties with Strict Abelian Vari-
eties

We begin with a brief digression. In §I], we introduced the notions of abelian variety
and strict abelian variety over an arbitrary E-ring R. Over E,-rings of characteristic
zero, these two notions coincide:

Theorem 2.1.1. Let R be an E-algebra over Q. Then the forgetful functor
AVar®(R) — AVar(R)
is an equivalence of co-categories.

Theorem will not be needed elsewhere in this paper. However, our proof of
Theorem will showcase some of the ideas needed to establish Theorem [2.0.3l We

begin with some preliminaries.

Proposition 2.1.2. Let R be a connective Eo-ring, let X be an abelian variety over
R, let e : Spec R — X be the identity section, and set w = e*Lx /sperr € Mody'.
Let X : CAlgp — Sp™ denote the functor of points of X (see Remark[1.4.5). For
every R-module M, we have a canonical homotopy equivalence X (R@® M) ~ X (R) ®
TsoMap , (w, M).

Proof. For every connective R-module M, we have canonical maps X (R) — X(R&®
M) — X(R) whose composition is the identity. We therefore obtain a direct sum
decomposition X (R® M) ~ X(R) @ F(M) for some functor F': Mody — Sp™. Let
F’: Modf' — Sp™ denote the functor given by M — 7>Map ,(w, M). We wish to
show that the functors F' and F’ are equivalent.

Using the definition of the cotangent complex Lx /gps g, We obtain a homotopy
equivalence a : Q°F(M) ~ Mapyy,q, (W, M) ~ Q*F'(M), depending functorially on
M. Let Exc,(Mod%', Sp™) denote the full subcategory of Fun(Mod%', Sp™) spanned
by those functors which are reduced and excisive (see Definition HA.1.4.2.1), and
define Exc,(Mod%', S) similarly. Since the co-category Mod}' is prestable, the functor
M — Mapy,q,,(w, M) belongs to Exc,(Mod%',S). It follows that the functors Q% o F
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and Q% o F’ are reduced and excisive. The functor Q% : Sp™ — S is conservative
and left exact, so the functors F' and F” are also reduced and excisive. Moreover, Q%
induces an equivalence on stabilizations, so Proposition HA.1.4.2.22 guarantees that
composition with % induces an equivalence of co-categories Exc,(Mod%y', Sp™) —
Exc.(Mod}®,S). Consequently, the equivalence « can be lifted (in an essentially
unique way) to an equivalence of functors F' ~ F. O

We now use Proposition to establish a weak form of Theorem [2.1.1

Proposition 2.1.3. Let R be a connective Ey-algebra over Q and let X and Y
be strict abelian varieties over R. Then the canonical map Map gy p) (X, Y) —
Map avar(r) (X, Y) is a homotopy equivalence.

Proof. Let X, Y : CAlgy — Mody' be the functors represented by X and Y (see
Remark [1.5.4). Let 6 : Mody' — Sp™ denote the forgetful functor. We wish to show
that the canonical map

MapFun(CAlgg‘,Modg‘ (X,Y) — MapFun(CMgg;,spC“ (0X,0Y)

is a homotopy equivalence.

Let us say that a functor Z : CAlgy — Mody' is good if the canonical map
Mappun(calgsr Modgr (X5 Z) — Mappyycager spen (0X,02) is a homotopy equivalence.
We wish to show that Y is good. We begin with some elementary observations:

(a) Let Z : CAlgy — Mody' be a functor which factors through the full subcategory
Mod,;, < Modg'. Then Z is good. This follows from the fact that the forgetful
functor Modz' — Sp®™ induces an equivalence Modg — Sp”.

(b) Let Z : CAlgly — Mod7 be a functor which factors through the forgetful functor
Modg — Mody'. Then Z is good (since the forgetful functors Modg — Modz'
and Modg — Sp™ are both fully faithful).

(¢) The collection of good functors Z : CAlgR' — Mody' is closed under limits.

For each n > 0, define Y,, : CAlgly’ — Mody' by the formula Y,(A) = Y (7<,4).
Using Proposition SAG.17.3.2.3, we see that Y can be identified with the limit of the
tower {Y, },>0. Consequently, to show that Y is good, it will suffice to show that each
Y, is good. The proof proceeds by induction on n. In the case n = 0, the functor Y,
takes values in Mody,, so the desired result follows from (a).
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We now carry out the inductive step. Assume that n > 0 and that the functor
Y, -1 is good. For every object A € CAlg}y', Theorem HA.7.4.1.26 supplies a canonical
pullback diagram

TSnA 7_Sn—lAA

| |

Ten1A—— (T<n 1 A) @ X" (7, A).

It follows from Example SAG.17.3.1.2 that this diagram remains a pullback square
after applying the functor Y. Writing Y ((1<,_1A)®X" (7, A)) = Y (7<, 1 A)BK(A),
we obtain a pullback square

Yn—l(A)

|

Yo(4)
Yoo 1(A) — Y1 (A) @ K (A)

in the oo-category Mody', depending functorially on A. By virtue of (¢), to show
that the functor Y,, is good, it will suffice to show that the functor A — K(A) is
good. Let w € Modg be as in the statement of Proposition 2.1.2] Then Proposition
supplies canonical equivalences K (A) ~ mooMap ,(w, X"*'m, A). Since R is a
Q-algebra, the homotopy group m,A admits the structure of a vector space over Q. It
follows that the homotopy groups of K(A) are also vector spaces over Q, so that the
functor K : CAlgy' — Mody' factors through Modg. Applying (b), we deduce that
the functor K is good, as desired. O]

Proposition 2.1.4. The constructions R — AVar(R) and R — AVar®(R) determine
cohesive functors CAlg™ — Caty,, in the sense of Definition SAG.19.2.1.1. In other
words, for every pullback diagram

ROl - RO

L

Rlﬁ'R

of connective Ey-rings for which the underlying ring homomorphisms mgRy — moR <
moR1 are surjective, the diagrams of co-categories

AVar(Ryl) — AVar(Ry) AVar®(Ry;) — AVar®(Ry)

l ! l l

AVar(R,) —— AVar(R) AVar®(R;) —— AVar®(R)
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are pullback squares.

Proof. 1t follows from Theorem SAG.19.4.0.2 and Proposition SAG.19.4.5.6 that
the construction R — Var(R) is cohesive. The desired result now follows from the
observation that the constructions C — CMon(C) and C — Ab(C) preserve limits. [

Proposition 2.1.5. The constructions R — AVar(R) and R — AVar®(R) determine
nilcomplete functors CAlg™ — Caty, in the sense of Definition SAG.19.2.1.1. In
other words, for every connective By -ring R, the canonical maps

AVar(R) — lim AVar(r<,R) AVar®(R) — lim AVar®(7<, R)
are equivalences of co-categories.

Proof. Tt follows from Theorem SAG.19.4.0.2 and Proposition SAG.19.4.5.6 that the
construction R — Var(R) is nilcomplete. The desired result now follows from the
observation that the constructions C — CMon(C) and C — Ab(C) preserve limits. []

Proof of Theorem[2.1.1. Let R be an E.-algebra over Q; we wish to show that the
forgetful functor g : AVar®’(R) — AVar(R) is an equivalence of co-categories. Using
Remarks [1.4.3]and [1.5.3], we can assume without loss of generality that R is connective.
In this case, Proposition [2.1.5| guarantees that we can write 6 as the limit of a tower
of functors 6,_, g : AVar®(7<,R) — AVar(7<,R). It will therefore suffice to show that
each 0, is an equivalence. In oother words, we are reduced to proving Theorem [2.1.1

in the special case where R is connective and n-truncated for some n > 0.

The proof now proceeds by induction on n. In the case n = 0, the E,-ring R
is discrete and the desired result follows from Proposition [1.5.6 To carry out the
inductive step, suppose that R is n-truncated for n > 0 and set Ry = 7<,,_1R. Set
M = m,R, so that R is a square-zero extension of Ry by X" M (Theorem HA.7.4.1.26 ).
We therefore have a pullback diagram of E-rings

T RO
Ro —— RO @ Zn+1M.

Applying Proposition [2.1.4] we deduce that the diagram

Op — 0Op,

L

QRO 9]%0@2"7‘Jr 1M
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is a pullback square in the oo-category Fun(A!, Caty,). The functor 0z, is an equivalence
by virtue of our inductive hypothesis and the functor 0g qsn+1) is fully faithful by
virtue of Proposition [2.1.3] so that 0y is also an equivalence of oo-categories. O]

2.2 Deformation Theory of Abelian Varieties

We begin with an analysis of the functor R — AVar(R).

Proposition 2.2.1. Letn = 0 be a nonnegative integer and let F' : 7<,, CAlg™ — Cato,
be the functor given by F(R) = AVar(R). Then F commutes with filtered colimits.
(More informally, the functor AVar is locally almost of finite presentation.)

The proof of Proposition will require some preliminaries.

Lemma 2.2.2. Let {C,} be a filtered diagram of co-categories. Suppose that each C,
admits finite products and that each of the transition maps C, — Cg preserves finite
products. Assume further that there exists an integer n such that each C, is equivalent
to an n-category. Then the canonical map

0 : lim Mon(C,) — Mon(lim C,)
is an equivalence of co-categories.

Proof. For every co-category D which admits finite products, let U(D) denote the
full subcategory of Fun(A°? D) spanned by the category objects of D. Note that if
D is equivalent to an n-category, Theorem SAG.A.8.2.3 allows us to identify U(D)
with the full subcategory of Fun(AZ, ,,, D) spanned by the (n + 2)-skeletal category
objects (see Definition SAG.A.8.2.2). Since the (n + 1)-skeleton of the simplicial set
N(AZ,,3) is finite, the canonical map lim U(C,) — U(lim C,) is an equivalence of
w-categories. Moreover, if D admits finite products, then we can identify Mon(D)
with the full subcategory of U(D) spanned by those simplicial objects D, for which
Dy is a final object of D. It follows that we have a pullback diagram of co-categories

lim Mon(C,) . Mon(lim C,,)

| l

lim U(C.) U(lin C.),
which shows that € is an equivalence of co-categories. O]
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Lemma 2.2.3. Let {C,} be a filtered diagram of co-categories. Suppose that each C,
admits finite products and that each of the transition maps C, — Cg preserves finite
products. Assume further that there exists an integer n such that each C, is equivalent
to an n-category. Then the canonical map

¢ : lim CMon(C,) — CMon(lim C,)
s an equivalence of co-categories.

Proof. For each k > 0, we have a commutative diagram

limy CMon(Cy) —%—~ CMon(lim C,,)

i i

lim Mong, (C,) O, Mong, (lim C,);

here Mong, (D) denotes the oo-category Ei-monoid objects of D (see Definition
HA.2.4.2.1). Our assumption that each C, is equivalent to an n-category guar-
antees that the vertical maps are equivalences of co-categories for k£ > n (Example
HA.5.1.2.3). It will therefore suffice to show that 6y is an equivalence of co-categories
for each £ = 1. We proceed by induction on k. For £ > 1, Theorem HA.5.1.2.2 allows
us to factor 0y as a composition

lim Mong, (C,) =~ lim Mon(Mong,_, (C.))

« «

— MOD(M_H} MOnEk—l (CO‘))

~  Mong, (lim C,),

where 0" is an equivalence by virtue of Lemma and 6" is an equivalence by our
inductive hypothesis. O

Remark 2.2.4. In the situation of Lemma the functor € restricts to an equiva-
lence of full subcategories lim CMon®"(C,,) — CMon®**(lim C,,).

Proof of Proposition [2.2.1. According to Corollary SAG.19.4.5.7, the functor R —
Var(R) commutes with filtered colimits when restricted to 7, CAlg™. Moreover, if R
is n-truncated, then Var(R) is equivalent to an (n + 1)-category (Lemma SAG.1.6.8.8).
Invoking Lemma [2.2.3) we conclude that the functor

R — AVar(R) ~ CMon(Var(R))
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also commutes with filtered colimits when restricted to 7<,, CAlg™. O

Lemma 2.2.5. Let K be a simplicial set and let F : CAlg™ — S denote the functor
given by the formula Fx(R) = Fun(K, AVar(R))~. Then the functor Fx admits a
(—1)-connective cotangent complex.

Proof. Define G : CAlg™ — S by the formula G(R) = Fun(Fin, x K, Var(R))~. For
every connective E,-ring R, we can identify Fi(R) with the summand of G(R)
spanned by those functors X : Fin, xK — Var(R).

condition:

which satisfy the following

(¥) For every vertex v € K, the restriction X|zin, x} @ Fin, — Var(R) is a
commutative monoid object of Var(R).

Theorem SAG.19.4.0.2 implies that the functor G admits a (—1)-connective cotangent
complex Lg € QCoh(G). We claim that the image Lg in the oo-category QCoh(Fk)
is a cotangent complex for Fg. To prove this, it will suffice to show that for every
connective E,-ring R and every connective R-module M, the diagram

Fr(R®M)— Fg(R)

i i

G(R® M) —G(R)

is a pullback square. Without loss of generality, we may assume that K = A% in this
case, we must show that a diagram Fin, — Var(R@® M) is a commutative monoid
object of Var(R@® M) if and only if the composite map Fin, — Var(R®M) — Var(R)
is a commutative monoid object of Var(R). This is clear, since the extension-of-scalars
functor Var(R @® M) — Var(R) is conservative (Proposition [1.1.4)). O

Proposition 2.2.6. Let K be a finite simplicial set, and let Fx : CAlg™ — S be
the functor given by Fr(R) = Fun(K, AVar(R))~. Then the functor Fx admits a
cotangent complex which is connective and almost perfect.

Remark 2.2.7. In the situation of Proposition [2.2.6], the connectivity of the cotangent
complex Lp, does not require the assumption that K is finite. In fact, the general
case can be deduced from the case where K is finite, using Remark SAG.17.2.4.5.

Proof. Proposition [2.2.1] implies that the functor F is locally almost of finite presen-
tation, and Lemma guarantees that the cotangent complex Lg, € QCoh(FF)
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exists and is (—1)-connective. Applying Corollary SAG.17.4.2.2, we deduce that Lp,
is almost perfect. We will complete the proof by showing that L, is connective.

Let R be a connective E,-ring and choose a point in 7 € Fx(R). We wish to
show that M = n*Lg, € Modg is connective. Since M is (—1)-connective and
almost perfect, the homotopy group m_ M is finitely generated as a module over the
commutative ring moR. We wish to show that m_; M vanishes. Using Nakayama’s
lemma, we are reduced to proving that the vector space

T_1(k®@r M) ~ Torg*"(k, m_1 M)

vanishes for every residue field x of R. We may therefore replace R by x and thereby
reduce to the case where R = k is a field. Moreover, we may assume without loss of
generality that x is algebraically closed.

Let A = x[e]/(€?) denote the ring of dual numbers over x, and let n4 € Fx(A) =
Fun(K, AVar(A))~ denote the image of . Unwinding the definitions, we see that the
dual space Hom,(m_1M, k) can be identified with the set of automorphisms of 74
which restrict to the identity automorphism of 7. We wish to prove that every such
automorphism is trivial. To establish this, it suffices to treat the case where K = A°,
in which case we are reduced to the following classical assertion:

(x) Let X be an abelian variety over x and let f be an automorphism of X, =
Spét A Xgper s X (in the category of abelian varieties over A). If f restricts to
the identity on X, then f = idx,.

To prove (=), let g : X4 — X4 denote the difference f — idx, (computed with
respect to the group structure on X). If f restricts to the identity on X, then g factors
set-theoretically through the closed point of |X4| ~ |X|. Choose an affine open
subspace U € X containing the identity of X (which exists by virtue of Proposition
, and write U = Spét R for some commutative x-algebra R. The identity section
of X then determines a k-algebra map e : R — . The map g factors as a composition
Xa — GoSpét A Xgper s U = X4, where gy is classified by a morphism of A-algebras
¢ : Rle]/(€*) — mol'(Xa; Ox,,)-

Let u : A — m'(X4; Ox,) be the unit map. Since the projection map X, —
Spét A is proper, locally almost of finite presentation, geometrically reduced, and
geometrically connected, the map w is an isomorphism (Proposition SAG.8.6.4.1). Let
e : mol'(X4; Ox,) — A be the map given by evaluation at the identity of X4. Then e
is left inverse to u, and is therefore also an isomorphism. To show that f = idx,, we
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must show that ¢ coincides with the composition
v Rle]/(€) = sle]/(€*) = mT (Xa; Ox.,).

Equivalently, we must show that € o ¢ = € o ¢). This follows from the observation that
g vanishes along the identity section of X4 (since f is an automorphism of abelian
varieties over X4, and therefore preserves the identity sections). O

2.3 Deformation Theory of Strict Abelian Varieties

We now establish analogues of the results of for the theory of strict abelian
varieties.

Proposition 2.3.1. Let R be a connective E-ring and suppose we are given strict
abelian varieties X, Y € AVar®(R). For every morphism of connective Eo,-rings R — R/,
let Xpr = Spét R’ xgpet r X and Yr = Spét R’ Xgpee r X be the images of X and Y in
AVar®(R), and set F(R') = Mapayaesr)(Xr, Yrr). For each n = 0, the functor
F: CAlgy — S commutes with filtered colimits when restricted to T<, CAlg®™.

Proof. Fix an integer n > 0; we will show that the functor F|,_, ¢ Alger commutes with
filtered colimits. Without loss of generality, we may replace R by 7, R and thereby
reduce to the case where R is n-truncated. For every object R’ € 1<, CAlg%', let us use
Remark identify AVar®(R') with its essential image in Fun(7¢, CAlgy, Mody'),
and let Xp and Y g denote the images of X and Y in AVar®(R). If M is a connective
Z-Z bimodule spectrum, we define Fy : 1<, CAlgy — S by the formula Fy(R') =
Mappyn(re,, calgen Moag) (M @z Xrr, Yrr). We will say that M is good if the functor Fiy

R/7
commutes with filtered colimits. We now proceed in several steps:

(a) The construction M +— Fj; carries colimits in the co-category ModZs, 5 to limits
in the oo-category Fun(re, CAlgy',S). Consequently, the collection of good
objects M € Modz'g 5 is closed under finite colimits.

(b) The module M = Z®Z is good. This follows from the calculation

FM(R/) = Ma‘pF\ln(CAlg‘E’,,Modczn) ((Z ® Z) ®z Xp, YR’)
MapFun(CAlgg, ,Sp°n) (X, Yr')

= MapAVar(R) (XR/7 YR')’

together with Proposition [2.2.1]
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(¢) Every connective perfect (Z ® Z)-module is good; this follows from (a) and (b).

(d) If f: M — M’ is a morphism of connective (Z ® Z)-modules that induces an
equivalence 7<,M — 1<, M’, then the induced map F);, — F); is an equivalence
of functors. Consequently, M is good if and only if M’ is good.

(e) Every almost perfect (Z ® Z)-module is good (this follows from (c) and (d), by
virtue of Corollary SAG.2.7.2.2).

To complete the proof, we note that F|._, calger can be identified with the functor
Fz. By virtue of (e), we are reduced to showing that Z is almost perfect when regard
as a (Z®Z)-module. This follows from the criterion of Proposition HA.7.2.4.17 , since
the Eo-ring Z®Z is Noetherian (which follows from Theorem HA.7.2.4.31, since
Z ®7Z is almost of finite presentation over Z). ]

We need the following analogue of Lemma

Lemma 2.3.2. Let K be a simplicial set and let F : CAlg™ — S denote the functor
given by the formula Fx(R) = Fun(K, AVar®(R))~. Then the functor Fx admits a
(—1)-connective cotangent complex.

Proof. We proceed as in the proof of Lemma with some minor modifications.
Define G : CAlg™ — S by the formula G(R) = Fun(Lat®® x K, Var(R))~. For every
connective Eq-ring R, we can identify Fy(R) with the summand of G(R) spanned by
those functors X : Lat®® x K' — Var(R). which satisfy the following condition:

(¥) For every vertex v € K, the restriction X|pator g0 @ Lat®™ — Var(R) is an
abelian group object of Var(R).

Theorem SAG.19.4.0.2 implies that the functor G admits a (—1)-connective cotangent
complex Lg € QCoh(G). We claim that the image Lg in the oo-category QCoh(Fk)
is a cotangent complex for Fg. To prove this, it will suffice to show that for every
connective E,-ring R and every connective R-module M, the diagram

Fx(R® M) —— Fx(R)

i i

G(R®M)—G(R)

is a pullback square. Without loss of generality, we may assume that K = A% in
this case, we must show that a diagram Lat®” — Var(R ® M) commutes with finite
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products if and only if the composite map Lat®® — Var(R@® M) — Var(R) commutes
with finite products Var(R). This is clear, since the extension-of-scalars functor
Var(R@® M) — Var(R) is conservative (Proposition (1.1.4)). O

Proposition 2.3.3. The construction R — AVar®(R) is locally almost of finite pre-
sentation: that is, it commutes with filtered colimits when restricted to T<, CAlg™, for
each n = 0.

Proof. For every simplicial set K, define Fy : CAlg™ — S by the formula Fx(R) =
Fun(K, AVar®(R))~. To prove Proposition [2.3.3] it will suffice to show that whenever
K is finite, the functor Fi is locally almost of finite presentation (that is, it commutes
with filtered colimits when restricted to 7<, CAlg™ for each n > 0). In fact, we
prove more generally that for every inclusion of finite simplicial sets K’ <— K, the
restriction map Fx — Fg is locally almost of finite presentation. Our proof proceeds
by induction on the dimension k of K. Since the collection of morphisms which are
locally almost of finite presentation is closed under composition, we can reduce to the
case where K is obtained from K’ by adjoining a single nondegenerate simplex: that
is, there exists a pushout diagram

0N ——~ Al

o

K ——K
for some d < k. We then have a pullback diagram

FK4>FK/

-

FAdHFﬁAd.

We may therefore replace K by A? and K’ by 0 AY. If d > 2, then we have a
commutative diagram

FAd FaAd

N,

FAzli

where the left diagonal morphism is an equivalence (and therefore locally almost
of finite presentation), and the right diagonal morphism is locally almost of finite
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presentation by our inductive hypothesis. It then follows that the horizontal arrow is a
locally almost of finite presentation, as desired. If d = 1, then the assertion that that
Faa — F;aa is locally almost of finite presentation is a reformulation of Proposition
231

It will therefore suffice to treat the case d = 0. We have evident maps of simplicial
sets 0 Al < Al — A® which induce maps Fao 2> Fair — Fs a1, hence a fiber sequence
5*LFAl JFyp Lp,, JFyp Lpo/Fy (where the relevant cotangent complexes are
well-defined by virtue of Lemma [2.3.2). The first term in this fiber sequence is
almost perfect (this follows from Proposition and Corollary SAG.17.4.2.2)
and the third term vanishes (since the forgetful functor Var(R@® M) — Var(R) is
conservative for any connective E-ring R and every connective R-module M, by virtue
of Proposition. It follows that the cotangent complex L, ,/r, ,
We now observe that the identification Fya1 ~ Fao X Fao induces an equivalence
Lpo/r, 0 = YLp,,, so that Lg , is almost perfect. Using Propositions|1.5.6/and 2.2.1]
we deduce that the functor Fao commutes with filtered colimits when restricted to
CAlg”. Applying Corollary SAG.17.4.2.2 (note that Fao is infinitesimally cohesive by
Proposition , we conclude that Fao is locally almost of finite presentation, as
desired. O

, is almost perfect.

Proposition 2.3.4. Let K be a finite simplicial set, and let Fy : CAlg™ — S be
the functor given by Fr(R) = Fun(K, AVar®(R))=. Then the functor Fx admits a
cotangent complex which is connective and almost perfect.

Proof. Proposition [2.3.3| implies that the functor F is locally almost of finite presen-
tation, and Lemma guarantees that the cotangent complex Lp, € QCoh(Ff)
exists. Applying Corollary SAG.17.4.2.2, we deduce that Lp, is almost perfect. To
complete the proof, it will suffice to show that Lp, is connective. Equivalently, we
must show that if R is a discrete E,-ring and M is a discrete R-module, then the
forgetful functor 6 : Fun(K, AVar®(R@® M))™ — Fun(K, AVar®(R))™ is injective on
automorphism groups. Using Proposition [1.5.6, we can identify # with the forget-
ful functor Fun(K, AVar(R® M))~ — Fun(K, AVar(R))™, so that the desired result
follows from Proposition [2.2.6 O]

2.4 The Moduli Stack of Elliptic Curves

We are now ready to give the proof of Theorem In fact, we will establish
the following slightly stronger assertion:
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Theorem 2.4.1. The functors R — ElII*(R)~ and R — El(R)™ are representable
by spectral Deligne-Mumford 1-stacks M?® and M which are locally almost of finite
presentation over the sphere spectrum.

Remark 2.4.2. Let M denote the classical moduli stack of elliptic curves, which
we regard as a O-truncated spectral Deligne-Mumford stack. Then M° represents the
functor R — EII*(R)> ~ Ell(R)> on the category CAlg” of commutative rings. It
follows that we can identify M® with the ordinary Deligne-Mumford stack underlying
both M and MY. In particular, we have closed immersions of spectral Deligne-
Mumford stacks M — M?® — M which are equivalences at the level of the underlying
oo-topoi. At the level of structure sheaves, one can show that both of these maps
are rational equivalences (for the map M* — M, this follows from Theorem [2.1.1]).
However, their integral structures are quite different.

Proof of Theorem[2.4.1. We will give the proof for the functor R — EII*(R)™; the
proof in the other case is similar. Let F' : CAlg™ — S be the functor given by
F(R) = ElII’(R)~. Note that the inclusion map Ell’(e)~ < AVar®(e)™ is an open
immersion of functors (Remark [2.0.1)). Combining Proposition SAG.19.2.4.3 with
Propositions 2.1.4] 2.1.5] 2.3.3], and 2.3.4] we deduce that the functor F is cohesive,

nilcomplete, locally almost of finite presentation, and admits a cotangent complex

which is connective and almost perfect. It follows immediately from the definitions that
the functor F' satisfies descent for the étale topology and carries discrete E-rings to
1-truncated spaces. By virtue of the spectral version of Artin’s representability theorem
(Theorem SAG.18.3.0.1), the functor F is representable by a spectral Deligne-Mumford
1-stack which is locally almost of finite presentation over the sphere spectrum if and
only if it is integrable (Definition SAG.17.3.1.1). Using Proposition SAG.17.3.5.1, we
can formulate the integrability of F' as follows:

(x) Let A be a complete local Noetherian commutative ring with maximal ideal m.
Then the canonical map F(A) — lim F(lim A/m") is a homotopy equivalence.

In the situation of (x), Corollary SAG.8.5.3.3 implies that the canonical map p :
Var(A) — lim Var(A/m") is a fully faithful embedding (which commutes with finite
products). It follows that we have a pullback diagram of co-categories

AVar®(A) —1lim AVar®(A/m")

| |

Var(A) lim Var(A/m").
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Consequently, the upper horizontal map is a fully faithful embedding. We wish to
show that its essential image contains every object of lim EII*(A/m"), which is an
immediate consequence of Proposition SAG.?7.

Let M be a spectral Deligne-Mumford stack which represents the functor F' and
let F'* : CAlg — S be the functor given by F'*(R) = Mapg,pyme(Spét R, M). Since
the structure sheaf &\, is connective, the functor F'* is a left Kan extension of its
restriction F'*|cajgen to connective Eq-rings: more concretely, the canonical map
F*(m=oR) — F*(R) is an equivalence for every E,-ring R. To complete the proof,
it will suffice to show that the functor R +— EII*(R)™> has the same property, which
follows from Remark [1.5.3l O

3 Cartier Duality

Let A be a commutative ring and let FFG(A) denote the category of commutative
finite flat group schemes over A. The category FFG(A) is equipped with a canonical
anti-involution G — D(G), given by Cartier duality. This operation admits several
descriptions:

(a) Let G be a commutative finite flat group scheme over A. For every commutative
A-algebra B, the abelian group D(G)(B) of B-valued points of D(G) can be
identified with the set of morphisms f : Gg — GL; in the category of group
schemes over B, where G = Spec B Xgpec 4 G denote the group scheme over B
obtained from G by extension of scalars.

(b) Let G be a commutative finite flat group scheme over A. Then we can write
G = Spec H, where H is a (commutative and cocommutative) Hopf algebra over
A which is projective of finite rank as an A-module. The A-linear dual H" is
also a commutative and cocommutative Hopf algebra over A, whose spectrum
Spec HY can be identified with the Cartier dual D(G) of G.

In this section, we study a generalization of Cartier duality, where we replace
category Mod] of (discrete) A-modules by an arbitrary symmetric monoidal oo-
category. To any symmetric monoidal co-category C, we associate an co-category
bAlg(C) of (commutative and cocommutative) bialgebra objects of C (Definition [3.3.1)).
The co-category bAlg(C) comes equipped with fully faithful “functor of points” Spec’ :
bAlg(C)°? — Fun(CAlg(C),CMon) (Variant [3.4.2). Our main result (Proposition
asserts that if H is a bialgebra object of C which is dualizable in C, then the dual
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HY can also be regarded as a bialgebra object of C, so that the spectrum Spec® HY
classifies natural transformations Spec® H — A!, where A' : CAlg(C) — CMon
denotes the “affine line” (that is, the functor corepresented by the unit object 1 € C;
see Construction [3.5.1). More informally, this result asserts that the equivalence
between (a) and (b) extends to the setting of an arbitrary symmetric monoidal co-
category C (and to commutative monoids which are not necessarily grouplike; we
specialize to the grouplike case in .
In this paper, we will be primarily interested in the following examples:

e When A is a commutative ring and we take C to be the category Modg of
discrete A-modules, then our theory reproduces the classical theory of Cartier
duality (in a slightly more general form: it applies to all finite flat commutative
monoid schemes over A, rather than merely to finite flat commutative group
schemes).

o If Ais an E,-ring and we take C to be the co-category Mod4 of all A-modules,
then we obtain an analogue of Cartier duality in the setting of spectral algebraic
geometry. We will return to this example in §6.3

e Let A be a connective E,-ring and take C = LimCautElt to be the oo-category
of stable A-linear co-categories (see Definition SAG.D.1.4.1). The theory of
Tannaka duality supplies a fully faithful embedding Var(A) < CAlg(C)°?, which
extends to a fully faithful embedding AVar(A) < bAlg(C)°? (see Proposition
4.4.1)). In this case, the theory of Cartier duality developed in this section
specializes to the duality theory of abelian varieties, which we will explain in

detail in §4 and g5

3.1 Coalgebra Objects of co-Categories

We begin with some general remarks. For every symmetric monoidal co-category C,
we let CAlg(C) denote the oo-category of commutative algebra objects of C (Definition
HA.2.1.3.1). Note that a symmetric monoidal structure on an co-category C determines
a symmetric monoidal structure on the opposite co-category C°? (Remark HA.2.4.2.7),
which motivates the following:

Definition 3.1.1. Let C be a symmetric monoidal co-category. A commutative
coalgebra object of C is a commutative algebra object of the opposite co-category CP.
We let ¢cCAlg(C) denote the co-category CAlg(CP)°P; we will refer to cCAlg(C) as the
oo-category of commutative coalgebra objects of C.
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Proposition 3.1.2. Let C be a symmetric monoidal co-category and let K be a
simplicial set. If C admits K-indexed colimits, then the oo-category cCAlg(C) admits
K-indexed colimits, and the forgetful functor cCAlg(C) — C preserves K-indexed
colimits.

Proof. Apply Corollary HA.3.2.2.5 to the symmetric monoidal co-category C°P. [

Proposition 3.1.3. Let C be a symmetric monoidal co-category. Suppose that C is
accessible and that the tensor product functor ® : C x C — C is accessible. Then the
aw-category cCAlg(C) of commutative coalgebra objects of C is accessible.

Proof. Let us regard C as a commutative monoid object of the co-category EEROO of
co-categories which are not necessarily small, given by a map F': Fin, — EEROO. The
functor F is classified by a Cartesian fibration ¢ : £ — FingP, whose fiber over an
object (n) € Fing? can be identified with C". Let D = Fung,er (Fing?, &) denote the
aw-category of sections of g. Unwinding the definitions, we can identify cCAlg(C)
with the full subcategory of D spanned by those functors F': Fing® — £ which carry
inert morphisms of Fing? to ¢g-Cartesian morphisms in £. It follows from Corollary
HTT.5.4.7.17 that the co-category D is accessible and that, for each object (n) € Fin,
evaluation at (n) determines an accessible functor &€ — C". Applying Proposition

HTT.5.4.6.6, we deduce that cCAlg(C) is also accessible. O

Corollary 3.1.4. Let C be a symmetric monoidal co-category. Suppose that the
oo-category C is presentable and that the tensor product functor ® : C xC — C is
accessible (this condition is satisfied, for example, if the functor ® preserves small
colimits separately in each variable). Then the co-category cCAlg(C) is presentable
and the forgetful functor cCAlg(C) — C preserves small colimits.

Proof. Combine Propositions 3.1.2] and [3.1.3] m

Corollary 3.1.5. Let C be a symmetric monoidal co-category. Suppose that the co-
category C is presentable and that the tensor product functor ® : C x C — C is accessible.
Then the forgetful functor cCAlg(C) — C admits a right adjoint V : C — cCAlg(C).

Proof. Use Corollary and the adjoint functor theorem (Corollary HTT.5.5.2.9).
[

Remark 3.1.6. In the situation of Corollary [3.1.5] we will refer to the functor
V : C — c¢CAlg(C) as the cofree coalgebra functor. We do not know any explicit
description of the functor V', except in special cases. On a similar note, Corollary
implies that the oo-category cCAlg(C) admits small limits, which we do not know how
to construct directly.
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3.2 Duality between Algebra and Coalgebra Objects

Let C be a symmetric monoidal co-category with unit object 1. Recall that an
object C € C is said to be dualizable if there exists another object C'V € C, together
with maps

e:CVRC—-1 c:1-0xCY

for which the composite maps
C~10C 2L 0 0% cr1~C
CV~C" 1898 0veeec” @L1CY ~CY

are homotopic to the identity (for more details, we refer the reader to §HA.4.6.1). We
let Cgq denote the full subcategory of C spanned by the dualizable objects. This choice
of notation is motivated by the following example:

Example 3.2.1. Let « be a field and let C = Modg be the category of vector spaces
over k. Then Cy is the category of finite-dimensional vector spaces over k. More
generally, if C = Modg is the category of (discrete) modules over a commutative
ring A, then Cy is the full subcategory of C spanned by those A-modules which are
projective of finite rank.

Example 3.2.2. Let A be a connective E,-ring and let C = Mod}' denote the oo-
category of connective A-modules. Then Cgq is the full subcategory of C spanned by
the projective A-modules of finite rank.

Example 3.2.3. Let A be an E,,-ring and let C = Mod 4 denote the co-category of all
A-modules. Then Cgq is the full subcategory of C spanned by the perfect A-modules.

If C' is a dualizable object of a symmetric monoidal co-category C, then the dual
C" depends functorially on C. In fact, we can be more precise:

Proposition 3.2.4. Let C be a symmetric monoidal co-category. Then the construction
C — CV determines an equivalence of symmetric monoidal co-categories C3y — Ciq.

Proof. Replacing C by Cy if necessary, we may assume that every object of C is
dualizable. Let M denote the fiber product (C x C) x¢ C/; whose objects are triples
(C, D, e), where C' and D are objects of C and e : C ® D — 1 is a morphism in C.
Then projection onto the first factor determines a right fibration A : M — C x C.
We regard A as a pairing of oo-categories, in the sense of Definition HA.5.2.1.8. Our
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assumption that every object of C is dualizable guarantees that A is left (and right)
representable, and therefore determines a duality functor ©, : C°®* — C, given on
objects by C' — CV. Note that an object (C,D,e) € M is left universal (in the
sense of Definition HA.5.2.1.8) if and only if it is right universal: both conditions
are equivalent to the requirement that e exhibits C' and D as duals of one another.
Applying Corollary HA.5.2.1.22, we deduce that 2, is an equivalence of co-categories.

Note that the symmetric monoidal structure on C induces a symmetric monoidal
structure on M and on the functor A\. We may therefore regard A as a pairing of
symmetric monoidal co-categories, in the sense of Definition HA.5.2.2.20 . It follows
from Remark HA.5.2.2.25 that the functor ®, inherits the structure of a lax symmetric
monoidal functor. To show that this functor is actually symmetric monoidal, it suffices
to observe that the collection of left representable objects of M is closed under tensor
products. O

In the situation of Proposition [3.2.4] the construction C' — C'v exchanges commu-
tative algebras with commutative coalgebras:

Corollary 3.2.5. Let C be a symmetric monoidal co-category. Then there is a
canonical equivalence of co-categories CAlg(Ciq)°P ~ cCAlg(Cyq), given on objects by
the construction A — AY.

Remark 3.2.6 (Functoriality). The equivalence of Corollary|[3.2.5|depends functorially
on C, in the following precise sense: the constructions C — CAlg(Csq)°® and C —
cCAlg(Cs) are equivalent when regarded as functors CAlg(Caty,) — Caty. More
informally: if F': C — D is a symmetric monoidal functor, then F' carries dualizable
objects of C to dualizable objects of D, and we have a commutative diagram of
oo-categories

CAlg(Cra)*? —— CAlg(Dya)°

| |

cCAlg(Cra) — = cCAlg(Dya),
where the vertical maps are the equivalences supplied by Corollary [3.2.5]

3.3 Bialgebra Objects of co-Categories

We now study objects of symmetric monoidal oo-categories which simultaneously
admit the structure of a commutative algebra and a commutative coalgebra, in a
compatible way.
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Definition 3.3.1. Let C be a symmetric monoidal co-category, so that the co-category
CAlg(C) inherits a symmetric monoidal structure (see Construction HA.3.2.4.1). A
bialgebra object of C is a commutative coalgebra object of CAlg(C). We let bAlg(C)
denote the oo-category cCAlg(CAlg(C)) of bialgebra objects of C.

Remark 3.3.2. The notion of bialgebra object introduced in Definition |3.3.1] might
more properly be referred to as a commutative and cocommutative bialgebra object.
We will omit mention of commutativity, since we have no need to consider bialgebras
which are not commutative (and cocommutative) in this paper.

It is not immediately obvious from Definition that the notion of bialgebra
object is self-dual: that is, that the co-categories cCAlg(CAlg(C)) and CAlg(cCAlg(C))
are equivalent. To see that this is the case, it is convenient to characterize the oo-
category bAlg(C) by a universal property. Recall that an oo-category £ is said to be
semiadditive if it admits both finite products and finite coproducts, and the Cartesian
symmetric monoidal structure on £ agrees with the coCartesian symmetric monoidal

structure on & (see Definition SAG.C.4.1.6).
Proposition 3.3.3. Let C be a symmetric monoidal co-category. Then:

(a) The wo-category bAlg(C) of bialgebra objects of C is semiadditive (Definition
SAG.C.4.1.6): that is, it admits a zero object, and the canonical map C'11 D —
C x D is an equivalence for every pair of objects C, D € C.

(b) The symmetric monoidal structure on C induces a symmetric monoidal structure
on bAlg(C) which is both Cartesian and coCartesian.

(¢) Let € be any semiadditive co-category, and regard € as equipped with the
Cartesian symmetric monoidal structure (or, equivalently, with the coCarte-
stan symmetric monoidal structure). Then the forgetful functor bAlg(C) — C
induces an equivalence of 0-categories Fun®(€, bAlg(C)) — Fun®(€,C). Here
Fun®(€,C) denotes the co-category of symmetric monoidal functors from € to C,
and Fun® (&€, bAlg(C)) is defined similarly.

We can summarize Proposition [3.3.3| more informally as follows: if C is a symmetric
monoidal oo-category, then bAlg(C) is universal among Cartesian and coCartesian
symmetric monoidal co-categories £ equipped with a symmetric monoidal functor
& — C. Note that this description is manifestly self-dual:
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Corollary 3.3.4. Let C be a symmetric monoidal oo-category. Then there is a
canonical (symmetric monoidal) equivalence bAlg(C°P) ~ bAlg(C)°P. In other words,
the oo-categories cCAlg(CAlg(C)) and CAlg(cCAlg(C)) are canonically equivalent.

Proof of Proposition[3.53.5 We first prove (b). Observe that the symmetric monoidal
structure on CAlg(C) is coCartesian (Proposition HA.3.2.4.7); in particular, the co-
category CAlg(C) admits finite coproducts. Applying Corollary HA.3.2.2.5 (to the
ao-category CAlg(C)P), we deduce that the co-category bAlg(C) = cCAlg(CAlg(C))
also admits finite coproducts, and that the forgetful functor 6 : bAlg(C) — CAlg(C)
preserves finite coproducts. Moreover, Proposition HA.3.2.4.7 implies that the sym-
metric monoidal structure on bAlg(C) is Cartesian (and in particular that bAlg(C)
admits finite products). We will complete the proof of (b) by showing that the symmet-
ric monoidal structure on bAlg(C) is also coCartesian: that is, it satisfies conditions
(1) and (2) of Definition HA.2.4.0.1:

(1) Let 1 denote the unit object of bAlg(C); we wish to show that 1 is initial. Since
the forgetful functor 6 is conservative and preserves finite coproducts, it will
suffice to show that 6(1) is an initial object of CAlg(C). Because 6 is a symmetric
monoidal functor, we can identify 6(1) with the unit object of CAlg(C). The
desired result now follows from the fact that the symmetric monoidal structure
on CAlg(C) is coCartesian (Proposition HA.3.2.4.7).

(2) Let C' and D be objects of bAlg(C); we wish to show that the canonical maps
C~CR1509DEL19D~D

exhibit C' ® D as a coproduct of C'and D in the co-category bAlg(C). Because
the functor 0 is conservative and preserves finite coproducts, it will suffice to
show that 6(u) and 0(v) exhibit 0(C ® D) as a coproduct of §(C) and (D) in
the co-category CAlg(C). This again follows from the fact that the symmetric
monoidal structure on CAlg(C) is coCartesian (Proposition HA.3.2.4.7).

Assertion (a) is a formal consequence of (b) (see Remark SAG.C.4.1.8). We now
prove (c¢). Let £ be a semiadditive co-category, and regard & as equipped with
the Cartesian (or equivalently the coCartesian) symmetric monoidal structure. We
wish to show that the composite functor Fun®(&, bAlg(C)) & Fun®(&, CAlg(C)) 2,
Fun®(&,C) is an equivalence of oo-categories. Since the symmetric monoidal structure
on & is coCartesian, we can use Remark HA.3.2.4.9 to identify p’ with the forgetful
functor Fun(&, CAlg(CAlg(C))) — Fun(&, CAlg(C), which is an equivalence by virtue
of Example HA.3.2.4.5. A similar argument shows that p is an equivalence. m
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Corollary 3.3.5. Let C be a symmetric monoidal co-category. Suppose that the oo-
category C is presentable and that the tensor product ® : C x C — C preserves small
colimits separately in each variable. Then the co-category bAlg(C) is presentable.

Proof. Corollary HA.3.2.3.5 implies that the oo-category CAlg(C) is presentable.
Moreover, the tensor product functor ® : CAlg(C) x CAlg(C) — CAlg(C) preserves
sifted colimits, and is therefore accessible. Applying Corollary [3.1.4] we deduce that
the co-category bAlg(C) = cCAlg(CAlg(C)) is presentable. ]

Remark 3.3.6. Let C be as in Corollary Using Corollaries [3.1.4] and [3.3.4} we
deduce that the forgetful functor bAlg(C) ~ CAlg(cCAlg(C)) — cCAlg(C) admits a
left adjoint, given by the construction C' +— Symg C'. In other words, the commutative

diagram of co-categories

bAlg(C) —— cCAlg(C)
CAlg(C) C

is left adjointable. More informally: if C' is a commutative coalgebra object of C, then
the free commutative algebra Symj C' inherits the structure of a bialgebra object of
C. In particular, if 1 denotes the unit object of C, then we can regard Sym;1 as a
bialgebra object of C.

3.4 The Spectrum of a Bialgebra

Let k be a field and let H be a (commutative and cocommutative) Hopf algebra
over kK. Then the comultiplication A : H — H ®, H endows the affine scheme Spec H
with the structure of a (commutative) group scheme over . In other words, the
functor of points (A € CAlgY) — Mapg a? (H, A) can be regarded as an abelian
group in the functor category Fun(CAlgS, Set). We now extend this observation to
bialgebra objects of an arbitrary symmetric monoidal co-category.

Notation 3.4.1 (The Spectrum of a Commutative Algebra). Let C be a symmetric
monoidal co-category. For every commutative algebra object A € CAlg(C), we let
Spec®(A) : CAlg(C) — S denote the functor corepresented by A, given by the formula
Spect(A)(B) = Mapcaig(c) (A4, B). We will refer to Spec(A) as the spectrum of A. We
regard Spec® as a functor from the co-category CAlg(C)°? to the functor co-category
Fun(CAlg(C),S). This functor is fully faithful (it is the Yoneda embedding for the
ao-category CAlg(C)°P).
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Variant 3.4.2 (The Spectrum of a Bialgebra). Let C be a symmetric monoidal
owo-category. Then the symmetric monoidal structure on CAlg(C) is coCartesian
(Proposition HA.3.2.4.7), so the induced monoidal structure on CAlg(C)°P is Cartesian.
Applying Proposition HA.2.4.2.5 | we obtain a canonical equivalence of oo-categories
bAlg(C)? = CAlg(CAlg(C)°?) ~ CMon(CAlg(C)°?). Composing this equivalence
with the Yoneda embedding Spec® : CAlg(C)°® — Fun(CAlg(C), S) of Notation [3.4.1]
we obtain a fully faithful functor

bAlg(C)°® — CMon(Fun(CAlg(C),S)) = Fun(CAlg(C), CMon).

We will abuse notation by denoting this functor also by Spec®. By construction, we
have a commutative diagram of co-categories

bAlg(C)oP CAlg(C)°P

iSpecC lSpecC

Fun(CAlg(C), CMon(S)) — Fun(CAlg(C), S),

where the horizontal maps are the evident forgetful functors. We can summarize
the situation more informally as follows: if H is a bialgebra object of C, then the
spectrum Spec®(H) can be regarded as a CMon-valued functor on the oo-category
CAlg(C). In particular, if A is a commutative algebra object of C, then the mapping
space Mapcajy(c)(H, A) inherits the structure of an Eq-space.

Remark 3.4.3. Let C be a symmetric monoidal co-category and let X : CAlg(C) —
CMon be a functor. The following conditions are equivalent:

(a) There exists an equivalence X ~ Spec®(H) for some bialgebra object H €
bAlg(C).

(b) The composite functor CAlg(C) = CMon — S is corepresentable.

In this case, we will say that the functor X is corepresentable.

3.5 The Affine Line

Let x be a field and let Al = Speck[t] denote the affine line over k. For every
commutative k-algebra R, the set Al(R) of R-valued points of Al can be identified
with R itself, and therefore inherits the structure of a commutative ring. We can
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summarize the situation by saying that the affine line Al is a commutative ring object
in the category of k-schemes.

In this section, we will consider a generalization of the affine line, replacing the
category Modf of k-vector spaces by an arbitrary symmetric monoidal co-category C.
In this more general setting, one does not expect the affine line to admit an addition
(the addition on Al is tied to the additive structure of the category Modg). However,
the multiplicative structure survives:

Construction 3.5.1 (The Affine Line). Let C be a symmetric monoidal co-category,
let 1 be the unit object of C, and let e : C — S denote the functor given by
e(C) = Map.(1,C). Then we can regard e as a lax symmetric monoidal functor
(where we endow S with the Cartesian monoidal structure). Passing to commutative
algebra objects, we obtain a functor A' : CAlg(C) — CAlg(S) = CMon. We will refer
to A! as the affine line.

Example 3.5.2. Let R be a commutative ring and let C = Modg be the category of
(discrete) R-modules, so that CAlg(C) is equivalent to the category of commutative
R-algebras. Then the functor A' : CAlg(C) — CMon assigns to each commutative
R-algebra A its underlying set, regarded as a commutative monoid with respect to
multiplication.

Example 3.5.3. Let A be a connective E,-ring and let C = Mod$' be the oo-category
of connective A-modules. Then CAlg(C) can be identified with the co-category CAlg$y’
of connective E.-algebras over A. In this case, the affine line A! : CAlg%' — CMon
is given by the construction B — Q*B, where we regard the Oth space 2B as an
E,-space using the multiplication on B.

Example 3.5.4. [Representability of A'] Let C be a symmetric monoidal oo-category.
Suppose that C is presentable and that the tensor product ® : C x C — C preserves
small colimits separately in each variable. Let 1 denote the unit object of C, and
regard the symmetric algebra Sym/ 1 as a bialgebra object as in Remark (so that,
for every bialgebra object H € bAlg(C), we have a canonical homotopy equivalence
Mapy,al(c)(Syme 1, H) ~ Map ey (1, H)). Unwinding the definitions, we see that
the affine line A' can be identified with the spectrum Spec(Symy 1) (see Variant
3.4.2).

Remark 3.5.5 (Functoriality). Let C and D be symmetric monoidal co-categories
and let f : C — D be a symmetric monoidal functor. Suppose that f admits a
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right adjoint g. Then ¢ is a lax symmetric monoidal functor, and therefore induces a

functor G : CAlg(D) — CAlg(C). Let A} and AJ, be the functors obtained by applying

Construction to the co-categories C and D, respectively. Unwinding the definitions,
1

we see that Al is given by the composition CAlg(D) <> CAlg(C) A¢, CMon.

Proposition 3.5.6. Let C be a symmetric monoidal c0-category and let H be a
bialgebra object of C. Then there is a canonical homotopy equivalence

Q. MapF‘un(CA]g(C),CMon) (Specc H? Al) = MachAlg(C) (17 H) :
The proof of Proposition [3.5.6|is based on the following;:

Lemma 3.5.7. Let C' be a symmetric monoidal co-category, let C < C' be a full
subcategory which contains the unit object and is closed under tensor products, and
let H be a bialgebra object of C (so that we can also regard H as a bialgebra object of
C'). Then the functor Spec® (H) : CAlg(C') — CMon is a left Kan extension of the
functor Spec®(H) : CAlg(C) — CMon.

Proof. We prove a stronger claim: the functor Spec” (H) is a left Kan extension
of Spec® H when regarded as a functor from CAlg(C') to Fun(Fin,,S). To prove
this, it suffices to show that for each object (k) € Fin,, the functor (Spec® H)((k)) :
CAlg(C") — S is a left Kan extension of its restriction to CAlg(C). This is clear, since
the functor (Spec H)((k)) is corepresented by an object of CAlg(C) (namely, the kth
tensor power of H).

O]

Proof of Proposition[3.5.6. Enlarging the universe if necessary, we may assume that
the oo-category C is small. Let C' = Fun(C°?, S) denote the oo-category of S-valued
presheaves on C, and let j : C — C’ be the Yoneda embedding. We will abuse notation
by identifying C with its essential image in C’. Using Proposition HA.4.8.1.10, we
deduce that ¢’ admits an essentially unique symmetric monoidal structure (given
by Day convolution) for which the functor j is symmetric monoidal and the tensor
product ® : €' x C" — C’ preserves small colimits separately in each variable. Let A} :
CAlg(C) — CMon and A}, : CAlg(C') — CMon be given by applying Construction
in the oo-categories C and C’, respectively. Using Example we obtain
canonical homotopy equivalences

MachAlg(C) (17 H) = MachAlg(C’) (17 H)
~  Mapypager (Syme: 1, H)

C/
>~ MapFun(CAlg(C’),CMon) (Spec™ H, Aé')‘
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To complete the proof, it will suffice to show that the restriction map

¢ c
Map g (calg(e).cmon) (SPECT H, Apr) = MaDp,calg(c).omon) (SPEC H, Al)

is a homotopy equivalence, which follows from Lemma [3.5.7] O

3.6 Smash Products of E -Spaces

Let X, Y, and Z be commutative monoids. We say that amap b: X xY — Z is
bilinear if it satisfies the identities

b(z,0) =0=">b0,y) blx+a',y)=>bz,y)+ba",y) blx,y+y)=>bxy)+by).

For fixed X and Y, there exists a bilinear map by : X x Y — Z; which is universal
in the following sense: every bilinear map b : X x Y — Z factors uniquely as a
composition

XxY ™ z7,% 27

where ¢ is a homomorphism of commutative monoids. In this case, we say that b
exhibits Zy as the tensor product of X and Y (in the category of commutative monoids).
Note that when X and Y are abelian groups, this recovers the usual theory of tensor
products in the category of abelian groups.

We now generalize this notion of tensor product to the setting of E,-spaces
(that is, commutative monoid objects of the oo-category S of spaces, rather than
the ordinary category of sets). To avoid confusion with the various other notions
of tensor product appearing in this paper, we will denote the relevant operation by
A @ CMon x CMon — CMon, which we refer to as the smash product of E,-spaces
(this terminology is motivated by a close relationship with the usual smash product of

spectra; see Remark below).

Proposition 3.6.1 (The Smash Product). Let CMon denote the co-category of Eq,-
spaces, and let Sym™® : S — CMon denote a left adjoint to the forgetful functor. Then
there exists an essentially unique symmetric monoidal structure on the co-category
CMon with the following properties:

(1) The underlying bifunctor CMon x CMon — CMon preserves small colimits
separately in each variable.

(i1) The functor Sym§ : S — CMon is symmetric monoidal, where we endow S with
the Cartesian symmetric monoidal structure (in particular, for every pair of
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spaces X and Y, we have a canonical homotopy equivalence Symg(X x Y) ~
Sym3g(X) A Symg(Y).

Notation 3.6.2. We will refer to the symmetric monoidal structure of Proposition

3.6.1|as the smash product symmetric monoidal structure on the co-category CMon, and
will denote the underlying bifunctor by CMon x CMon — CMon by (X,Y) — X A Y.

Proof of Proposition[3.6.1 Let Pr" denote the oo-category whose objects are pre-
sentable co-categories and whose morphisms are colimit-preserving functors (see Defi-
nition HTT.5.5.3.1). We will regard Pr" as a symmetric monoidal oo-category, whose
tensor product ® : Pr" x Prl — Prl can be characterized as follows: for every triple
of objects C, D, £ € Prt, we can identify colimit-preserving functors F : CQD — &
with bifunctors f : C x D — & which preserve colimits separately in each variable (see
§HA.4.8.1). Let L : Pr* — Pr¥ be the functor given by C — C ® CMon. The functor
Symj determines a natural transformation idp,. — L. It follows from Proposition
SAG.C.4.1.9 that L is a localization functor whose essential image consists of the
presentable semiadditive co-categories. It follows that the functor Syms : & — CMon
exhibits CMon as an idempotent object of the symmetric monoidal co-category Pr¥, in
the sense of Definition HA.4.8.2.1). Applying Proposition HA.4.8.2.9, we deduce that
Symj can be promoted (in an essentially unique way) to a morphism of commutative
algebra objects of Prl. O

Remark 3.6.3. Let Fin™ denote the category whose objects are finite sets and whose
morphisms are bijections. Then the nerve N(Fin™) is a Kan complex which we can
identify with the image of the one-point space = under the functor Syms : S — CMon.
In particular, N(Fin™) admits the structure of an Ey-space (whose multiplication is
induced by the disjoint union functor I1: Fin™ x Fin™ — Fin™). Moreover, since § is
the unit object of the symmetric monoidal co-category Prl and a colimit-preserving
functor F' : & — CMon is determined by the object F'(x), we can replace condition
(7) of Proposition with the following a priori weaker condition:

(77") The Ey -space N(Fin™) is a unit object of CMon.

Remark 3.6.4 (Comparision with Tensor Products of Commutative Monoids). Let
Set denote the category of sets. Then Set can be regarded as an idempotent object of
the co-category Prl (see Example HA.4.8.1.23). Note that the category CMon(Set)
of commutative monoids can be identified with the tensor product Set ® CMon, and
is therefore also an idempotent object of the co-category Pr. Applying Proposition
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HA.4.8.2.9 , we deduce that there is an essentially unique symmetric monoidal structure
on the category CMon(Set) with the following properties:

(7) The tensor product on CMon(Set) preserves small colimits separately in each
variable.

(72) The unit object of CMon(Set) is the commutative monoid Zy.

It follows from uniqueness that this symmetric monoidal structure must coincide
(up to essentially unique equivalence) with the usual tensor product on commutative
monoids, described in the introduction to this section.

Note that the functor mp : CMon — CMon(Set) can be identified with the tensor
product of the identity functor idcyon With the functor my : S — Set, and can therefore
be regarded as a morphism of commutative algebra objects of Pr¥. In particular, if
X and Y are E-spaces, then the commutative monoid mo(X A Y) can be identified
with the tensor product of the commutative monoids 7y X and myY .

Remark 3.6.5 (Comparison with Smash Products of Spectra). Let Sp™ denote the
oo-category of connective spectra, and regard Sp™ as a symmetric monoidal co-category
via the usual smash product of spectra. Since the co-category Sp™ is semiadditive,
there is an essentially unique symmetric monoidal functor F' : CMon — Sp™ which
commutes with small colimits. Moreover, if we neglect symmetric monoidal structures,
then F' is characterized up to equivalence by the requirement that F' carries the
unit object N(Fin™) € CMon to the sphere spectrum S € Sp™. It follows that the
composition of F' with the equivalence Sp™ ~ CMon®”(S) can be identified with a
left adjoint to the inclusion CMon®?(S) < CMon(S) (this left adjoint is given by the
formation of group completion in the setting of E,-spaces).

Remark 3.6.6 (Comparison with Tensor Products of oo-Operads). Let Op,, denote
the co-category of co-operads (see Definition HA.2.1.4.1). Then we can identify the
oo-category CMon of E-spaces with the full subcategory of Op., spanned by those
w-operads ¢ : O® — Fin, for which ¢ is a left fibration. This observation determines a
fully faithful embedding CMon < Op,,, which admits a left adjoint U : Op,, — CMon.
One can show that this left adjoint is a symmetric monoidal functor, where we regard
Opy as equipped with the symmetric monoidal structure described in §HA.2.2.5, and
CMon as equipped with the symmetric monoidal structure of Proposition In
particular, the functor U carries tensor products of co-operads to smash products of
E-spaces.
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3.7 The Cartier Dual of a Functor

Let R be a commutative ring and let G be a finite flat commutative group scheme
over R. Recall that the Cartier dual of G is another finite flat group scheme over
R which parametrizes homomorphisms G — G,,. We now consider an analogous
construction in a more general setting.

Construction 3.7.1 (Cartier Duality). Let C be a symmetric monoidal co-category.
We regard the oo-category Fun(CAlg(C),CMon) as equipped with the symmetric
monoidal structure given by pointwise smash product (see Proposition , whose
underlying multiplication

A : Fun(CAlg(C), CMon) x Fun(CAlg(C), CMon) — Fun(CAlg(C), CMon)

is described by the formula (X A Y)(A) = X(A) A Y(A). Note that this operation
preserves small colimits separately in each variable.

Assume now that the co-category C is essentially small. Then the functor oo-
category Fun(CAlg(C),CMon) is presentable (Proposition HTT.5.5.3.6). It follows
that the smash product monoidal structure on Fun(CAlg(C),CMon) is closed (see
Definition HA.4.1.1.15). In particular, for every object X € Fun(CAlg(C), CMon)
there exists another object D(X) € Fun(CAlg(C), CMon) equipped with a map « :
X A D(X) —» A' with the following universal property: for every functor Y €
Fun(CAlg(C), CMon), composition with « induces a homotopy equivalence

Mappyn(cag(@).cmon) (Y- D(X)) = Mapp,calge).cvon) (X A Y, AL).

In this case, we will refer to D(X) as the Cartier dual of X, and we will say that «
exhibits D(X) as a Cartier dual of X.

Variant 3.7.2. For some applications, it is inconvenient to assume that the co-category
C appearing in Construction is essentially small. Without this assumption, one
cannot apply Construction directly, because the symmetric monoidal co-category
Fun(CAlg(C), CMon(C)) is generally not closed. However, one can correct this defect
by passing to a larger universe which contains C: if we then let S denote the oo-
category of spaces which are not necessarily small, then the symmetric monoidal

A~

structure on the oo-category Fun(CAlg(C), CMon(S)) is closed, so that any functor
X € Fun(CAlg(C), CMon) < Fun(CAlg(C), CMon(S)) admits a Cartier dual D(X) e
Fun(CAlg(C), CMon(:S\')). In cases of interest to us, one can then check directly that
D(X) belongs to (the essential image of) the full subcategory Fun(CAlg(C), CMon) <

Fun(CAlg(C), CMon(S)).
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Our next goal is to give a a more explicit description of the Cartier dual D(X) as
a functor. We begin by evaluating D(X) at the initial object of CAlg(C).

Example 3.7.3. Let C be a symmetric monoidal co-category and let 1 denote the
unit object of C, which we regard as a commutative algebra object (namely, the initial
object of CAlg(C)). Let E denote the unit object of Fun(CAlg(C), CMon), given by
the constant functor taking the value N(Fin™) € CMon (see Remark [3.6.3). Note that
E is a left Kan extension of its restriction to the subcategory {1} < CAlg(C). For any
functor X : CAlg(C) — CMon, we obtain canonical homotopy equivalences

D(X)(1) =~ Mapg(+,D(X)(1))
Mapcyon (N(Fin™), D(X)(1))
Mappyn(calg(c),cMon) (£ D(X))
Mappyn(calg(e).cmon) (X A E, A
(

= MapFun(CAlg C),CMon) X? Al)

We now study the behavior of Construction as the co-category C varies.

Notation 3.7.4. Let f : C — D be a symmetric monoidal functor between essentially

small symmetric monoidal co-categories, and suppose that f admits a right adjoint

g. Then g inherits the structure of a lax symmetric monoidal functor, so that f and
F

g determine an adjunction CAIg(C)%)CAIg(D). The functor G induces another

adjunction

Fun(CAlg(C), CMOH)%Fun(CAlg(D), CMon),

where G* is given by pointwise composition with G' and G is given by left Kan extension
along G. Note that G* is a symmetric monoidal functor (with respect to formation
of pointwise smash products). For every pair of functors X : CAlg(C) — CMon and
Y : CAlg(D) — CMon, the composition

G*(X)AY - G*(X) AG*GI(Y) ~ G*(X A Gi(Y))
classifies a map fxy : GI(G*(X) AY) — X A G(Y).

Lemma 3.7.5 (Projection Formula). In the situation of Notation suppose
that the functor G is a coCartesian fibration of co-categories. Then, for every pair
of functors X : CAlg(C) — CMon and Y : CAlg(D) — CMon, the map Bxy :
GI(GH*(X)AY) = X AGI(Y) is an equivalence.
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Proof. Fix an object C' € CAlg(C); we wish to show that Sxy induces an equivalence
when evaluated at C. Let CAlg(D),c = CAlg(D) xcaige) CAlg(C) o denote the oo-
category whose objects are pairs (D, u), where D € CAlg(D) and u: G(D) — C'is a
morphism in CAlg(C). Unwinding the definitions, we wish to show that the canonical

map
o lim  (X(GD)AY(D)—X(C)a  lm V(D)
(D,u)eCAlg(D),c (D,u)eCAlg(D),c

is an equivalence in the co-category CMon. Let CAlg(D)j. denote the full sub-
category of CAlg(D),c spanned by those pairs (D,u) where u is an equivalence.
Our assumption that G is a coCartesian fibration guarantees that the inclusion
CAlg(D)jc — CAlg(D),c admits a left adjoint, and is therefore left cofinal. Conse-
quently, we can identify p with the canonical map

lim  (X(GD) AY(D)—X([C)a  lim V(D)
(D,u)eCAlg(D)5, (D,u)eCAlg(D)5,,

which is an equivalence by virtue of the fact that the smash product functor A :
CMon x CMon — CMon preserves small colimits separately in each variable. O

Proposition 3.7.6. In the situation of Notation suppose that the functor G is
a coCartesian fibration of co-categories. Then, for any functor X : CAlg(C) — CMon,
there is a canonical equivalence G*(D(X)) ~ D(G*X).

Proof. Let A} and A be the functors obtained by applying Construction to the
oo-categories C and D, respectively. Remark then supplies a canonical equivalence
AL ~ G*A}. Let Y : CAlg(D) — CMon be any functor. Using Lemma [3.7.5 we
obtain canonical homotopy equivalences

Mappun(catg(m),cmon) (Vs GF(D(X))) =~ Mapp,calg(c),omon) (G1Y; D(X))
Mapgun(calge).ovon (X A GIY, Al)
MaDgn(catge),omon (G1(GFX) AY), Ag)
MapFun(CAlg ,CMon) (G*X) A, G*Ac)
(G*X) A Y, AL)
,D(G"X)).

(
MapF‘un(CAlg ,CMon) (
(Y.

= Ma’pFun(CAlg ,CMon)
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Example 3.7.7. Let C be a symmetric monoidal co-category and let A be a commu-
tative algebra object of C. Suppose that C admits geometric realizations of simplicial
objects and that the tensor product functor ® : C xC — C preserves geometric
realizations of simplicial objects, so that the oo-category of A-modules Mod4(C) in-
herits a symmetric monoidal structure (given by the relative tensor product ®4,);
see §HA.4.5.2. Extension and restriction of scalars then determine an adjunction

f
C?ModA(C). Passing to commutative algebra objects, we obtain an adjunc-

tion CAIg(C)%CAIg(ModA(C)). Let us identify the oo-category CAlg(Mod(C))

with the co-category CAlg(C)a,. Given any functor X : CAlg(C) — CMon, we let
X4 = G*X denote the composite functor CAlg(C) 4, £, CAlg(C) 2 CMon. Since the
functor G is a left fibration of co-categories, Proposition [3.7.6| supplies a canonical
equivalence D(X,4) ~ D(X), in the co-category Fun(CAlg(C)4/, CMon). In other
words, the formation of Cartier duality commutes with extension of scalars.

Proposition 3.7.8. Let C be a symmetric monoidal co-category. Suppose that C
admits geometric realizations of simplicial objects and that the tensor product functor
® : C x C — C preserves geometric realizations of simplicial objects. Then, for every
functor X : CAlg(C) — CMon, we have canonical homotopy equivalences D(X)(A) ~

Mappyn(calg(e) ,.cvon (X a; Ak), where Xa and Ay are defined as in Ezample .

Proof. Combine Examples [3.7.7] and [3.7.3] ]

3.8 Duality for Bialgebras

We now specialize the Cartier duality construction of to the case of corepre-
sentable functors.

Proposition 3.8.1. Let C be a symmetric monoidal co-category. Assume that C admits
geometric realizations of simplicial objects and that the tensor product ® : C x C — C
preserves geometric realizations of simplicial objects. Let H be a bialgebra object of
C, and set X = Spec® H € Fun(CAlg(C), CMon). Assume that H is dualizable as an
object of C, and let HY denote the image of H under the forgetful functor

bAlg(Cra) — cCAlg(Cra) ~ CAlg(Cra)™ = CAlg(C)*®

(see Corollary|3.2.5). Then H" corepresents the functor CAlg(C) P, ¢Mon — .
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We can summarize the contents of Proposition [3.8.1] more informally as follows:
if H is a bialgebra object of C which is dualizable as an object of C, then the dual
HY also admits the structure of a bialgebra object of C. Moreover, we can identify
Spec® HY with the Cartier dual of Spec® H.

Proof of Proposition|3.8.1. Let A be a commutative algebra object of C. Combin-

ing Proposition |3.7.8], Proposition |3.5.6, and Corollary we obtain homotopy
equivalences

0

D(X)(4) MapF‘un(CAlg(ModA (C)),CMon) (Xa, Aix)

MapFun(CAlg(Mod 4(C)),CMon) (SpeCMOdA © (A® H), A.lA)
Map, cagmoda(c)) (A A® H)

MapcatgMod () (A ® HY, A)

= MapCAlg(C) (HY,A).

10

Moreover, these homotopy equivalences depend functorially on A (see Remark |3.2.6]).
m

Remark 3.8.2. In the statement of Proposition [3.8.1] the assumption that C admits
geometric realizations of simplicial objects is not necessary: it can be eliminated

by embedding C into a larger symmetric monoidal co-category, as in the proof of
Proposition [3.5.6, We leave the details to the reader.

Remark 3.8.3. Let C be as in Proposition |3.8.1] It follows from Proposition [3.8.1
that there exists a unique functor D : bAlg(Csq)°® — bAlg(Cyq) for which the diagram

bAlg(Csq)°P 2 bAlg(Cra)

iSpecc lSpecc

Fun(CAlg(C), CMon)°® —— Fun(CAlg(C), CMon)

commutes, where the bottom vertical map is given by Cartier duality. Moreover,
Proposition also establishes the commutativity of the diagram

bAlg(Crq)? —2—bAlg(Cyq)

l |

cCAlg(Ctq)°? —— CAlg(Cyy),
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where the vertical maps are the forgetful functors and the bottom horizontal map is
the equivalence of Corollary [3.2.5]

Using more refined arguments, one can give a more direct description of the functor
D: it is obtained by combining Proposition with Corollary to obtain

equivalences

bAlg(Cw)® = cCAlg(CAlg(Csq))®
CAlg(cCAlg(C)
CAlg(cCAlg(Csa)
~ cCAlg(CAlg(Csq)
= bAlg(Cu).

0

)
)
)

Remark 3.8.4. Let C be a symmetric monoidal co-category, let H, H € bAlg(C) be
bialgebra objects of C, and suppose that H is dualizable as an object of C. Let us
regard R = H® H’ as a commutative algebra object of C, so that we have tautologcial
points 7 € (Spec® H)(A) and 7' € (Spec® H')(R). Suppose that we are given a natural
transformation y : (Spec® H) A (Spec® H') — A'. Then the induced map of S-valued

functors
(Spec® H) x (Spec® H') — (Spec® H) A (Spec” H') £ A

carries (1,7') to a point of the space A!'(R), which we can identify with a map
fny 1 — R=H® H'in the co-category C.

It follows from Proposition that the dual HY admits the structure of a
bialgebra object of C, and that pu is classified by a map of bialgebras u : HY — H'.
Unwinding the definitions, we see that the image of u under the forgetful functor
bAlg(C) — C coincides with the composition

HY 1d @y

H QHH S10H ~ H',
where e : HY ® H — 1 is the evaluation map. In particular, u is an equivalence if and
only if the map s, ,, exhibits H' as a dual of H in the symmetric monoidal oo-category

C.

Suppose we are given a symmetric monoidal co-category C and a pair of functors
X, X" : CAlg(C) — CMon. Every natural transformation u : X A X’ — A' induces
maps

a: X - D(X') f: X — D(X).
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We will say that p exhibits X as a Cartier dual of X' if o is an equivalence, and that
i exhibits X' as a Cartier dual of X if § is an equivalence. Combining Proposition

with Remark [3.8.4] we obtain the following:

Proposition 3.8.5. Let C be a symmetric monoidal co-category containing bialgebra
objects H, H' € bAlg(C) representing functors X = Spec® H and X' = Spec® H', and
suppose a morphism ji: X A X' — AL, The following conditions are equivalent:

(1) The image of H in C is dualizable, and the map u exhibits functor u exhibits X'
as a Cartier dual of X.

(2) The image of H' in C is dualizable, and the map p exhibits functor u exhibits X
as a Cartier dual of X'.

(3) Letne X(H) and ' € X'(H') be the tautological points, and let 6 denote the
image of (n,n') under the composite map

X(H)x X'(H) —» X(H®H)xX'(HQH')
— (X AXNH®H)
L AYH®H)
— Mapg(1, H® H').

Then 0 :1 — H® H' determines a duality between H and H' in the symmetric
monoidal co-category C.

3.9 Duality for Hopf Algebras

In the classical theory of Cartier duality, it is more common describe the Cartier
dual of a finite flat commutative group scheme G as the scheme parametrizing group
scheme homomorphisms from G into GL;, rather than monoid scheme homomorphisms
from G into A'. Of course, there is no difference: if G is a group scheme, then any
monoid scheme homomorphism G — A! automatically factors through the open
immersion GL; < A!. This observation extends to the more general setting of

Construction B.7.1]

Definition 3.9.1. Let C be a symmetric monoidal co-category and let X : CAlg(C) —
CMon be a functor. We will say that X is grouplike if, for every object A € CAlg(C),
the E,-space X (A) is grouplike (that is, the commutative monoid moX(A) is an
abelian group).
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Remark 3.9.2. Let C be a symmetric monoidal co-category and let X, Y : CAlg(C) —
CMon be two functors. If either X or Y is grouplike, then the (pointwise) smash
product X AY is grouplike.

Remark 3.9.3. The inclusion functor ¢ : CMon®’(S) < CMon admits both a
left adjoint +* (given by group completion) and a right adjoint (. For any sym-
metric monoidal oo-category C, the inclusion functor Fun(CAlg(C), CMon®?(S)) —
Fun(CAlg(C), CMon) also admits left and right adjoints, given by postcomposition
with & and f* respectively.

Construction 3.9.4 (The Functor GL;). Let C be a symmetric monoidal co-category
with unit object 1. For every commutative algebra object R € CAlg(C), we let GL;(R)
denote the summand of Map,(1, R) given by the union of those connected components
which are invertible in the commutative monoid my Map,(1, R) (where the monoid
structure is induced by the multiplication on R). We regard GL; as a functor from
the co-category CAlg(C) to the co-category CMon®?(S) of grouplike E-spaces.

Remark 3.9.5. Let C be a symmetric monoidal co-category. Then we have a canonical
inclusion of functors GL; < A!, which exhibits GL; as universal among grouplike
functors X : CAlg(C) — CMon equipped with a map X — Al (see Remark [3.9.3).

Proposition 3.9.6. Let C be a symmetric monoidal co-category and let X be a
grouplike object of Fun(CAlg(C), CMon). Then:

(a) The Cartier dual D(X) : CAlg(C) — CMon is grouplike.

(b) The canonical map X A D(X) — A! factors through GL, (in an essentially
unique way).

(¢) The resulting map p: X A D(X) — GL; has the following universal property:
for every functor'Y : CAlg(C) — CMon, composition with u induces a homotopy
equivalence

Mapgyn(calge),cmon (Ys D(X)) = Mappu,calg(c),omon (X A Y, GLy).

Proof. Assertions (b) and (c) follow immediately from Remarks|[3.9.2| and [3.9.5] We
will prove (a). Let (£ : CMon — CMon®?(S) be as in Remark and set Y =
F o D(X). It follows from Remark that the localization functor (“ on CMon is
compatible with the smash product monoidal structure. Consequently, the canonical
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map f: X AD(X) — X AY induces an equivalence after group completion. Since
X AD(X) and X A Y are already grouplike (Remark [3.9.2)), it follows that f is an
equivalence. Tt follows that the canonical map X A D(X) — A! factors through f (in
an essentially unique way). Invoking the definition of D(X), we see that the canonical
map D(X) — Y admits a left homotopy inverse, so that D(X) is a retract of Y and
is therefore grouplike, as desired. O

Definition 3.9.7. Let C be a symmetric monoidal co-category and let H € bAlg(C)
be a bialgebra object of C. We will say that H is a Hopf algebra object of C if the
functor Spec®(H) : CAlg(C) — CMon is grouplike, in the sense of Definition [3.9.1]

More concretely: a bialgebra object H € bAlg(C) is a Hopf algebra if and only
if every commutative algebra morphism f : H — A in C is invertible (with respect
to the commutative monoid structure on 7o Mapgac)(H, A) determined by the
comultiplication on H).

Remark 3.9.8. The terminology of Definition is potentially misleading: our
notion of Hopf algebra object might more properly be referred to as a commutative,
cocommutative Hopf algebra object (see Remark [3.3.2).

Proposition 3.9.9. Let C be a symmetric monoidal co-category and let H be a Hopf
algebra object of C. Suppose that H is dualizable as an object of C, so that the dual
HY admits the structure of a bialgebra object of C (as in Proposition . The HY
is also a Hopf algebra object of C.

Proof. Combine Propositions [3.8.5| and [3.9.6| n

4 Biextensions and the Fourier-Mukai Transform

Let A be a connective E,-ring and let X be an abelian variety over A. Then
QCoh(X) can be regarded as a symmetric monoidal co-category in two different ways:

e Via the usual tensor product of quasi-coherent sheaves (#,¥) — Z QY.

e Via the convolution product (#,¥9) — Fx9 = m(¥X¥Y), where m :
X Xgpet r X — X denotes the addition law on X (see for more details).

In this section, we will show that these two symmetric monoidal structures are
compatible with one another in the following sense: they exhibit QCoh(X) as a
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Hopf algebra in the co-category LinCaﬁc%t of stable R-linear oo-categories (where the
multiplication on QCoh(X) is given by the usual tensor product, and the tensor
product is dual to the convolution product). Pairing this observation with the general
version of Cartier developed in §3, we obtain a notion of “duality pairing” between
abelian varieties. In §4.4] we use Tannaka duality to show that such a pairing can
be identified with the classical notion of biextension (see Theorem [£.4.4). We will
apply these ideas in §5[to extend the classical duality theory of abelian varieties to
the setting of spectral algebraic geometry.

4.1 Line Bundles and Invertible Sheaves

We begin by reviewing some terminology (for more details, we refer the reader to
§SAG.2.9.4).

Definition 4.1.1. Let X be a spectral Deligne-Mumford stack and let .Z be a quasi-
coherent sheaf. We say that £ is an invertible sheaf if it is an invertible object
of QCoh(X): that is, if there exists an object Z ' € QCoh(X) and an equivalence
LRL "~ Ox. Welet Zic’(X) denote the subcategory of QCoh(X) whose objects
are invertible sheaves and whose morphisms are equivalences.

We say that a sheaf £ € QCoh(X) is a line bundle if there exists an étale surjection
U — X and an equivalence .Z |y ~ Oy. We let Pic(X) denote the subcategory of
QCoh(X) whose objects are line bundles and whose morphisms are equivalences.

Remark 4.1.2. Let X be a spectral Deligne-Mumford stack. Every line bundle on X
is an invertible sheaf on X: that is, we have an inclusion Zic(X) < Zicl(X).

Remark 4.1.3 (Tensor Products of Line Bundles). Let X be a spectral Deligne-
Mumford stack. The collection of line bundles on X contains the structure sheaf &'x
and is closed under tensor products. Consequently, the symmetric monoidal structure
on QCoh(X) restricts to symmetric monoidal structures on the Kan complex Zic(X).
Consequently, the space Pic(X) admits a commutative monoid structure, depending
functorially on X. Moreover, this monoid structure is grouplike (note that if £ is a
line bundle on X, then the inverse .Z ! is also a line bundle on X): that is, we can
regard Zic(X) as an infinite loop space. Similarly, the space Zic!(X) also admits a
grouplike commutative monoid structure, depending functorially on X.

Remark 4.1.4. Let X be a spectral Deligne-Mumford stack, and suppose that the
underlying topological space X is connected. Then a sheaf .Z € QCoh(X) is invertible
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if and only if some suspension X" Z is a line bundle. A similar assertion holds when
| X| is not connected, but in this case we must replace the integer n by a (locally
constant) function on | X |; see Corollary SAG.2.9.5.7 .

Construction 4.1.5 (The Classifying Stack of Line Bundles). We define functors
BGL;, BGL! : CAlg™ — CMon by the formulae

BGLy(A) = Zic(Spét A)  BGLI(A) = Zic!(Spét A).

We will refer to BGL; as the classifying stack of line bundles, and BGLI as the
classifying stack of invertible sheaves.

Remark 4.1.6. In more concrete terms: the functor BGLI assigns to each connective
E,-ring A the Kan complex of projective A-modules of rank 1, while the functor
BGL; assigns to each connective E -ring A the Kan complex of invertible A-modules.

Remark 4.1.7. Let A be a connective Eo-ring. Then m9 BGL;(A) can be identified
with the set of isomorphism classes of locally free A-modules of rank 1. Moreover, we
have canonical isomorphisms

A ifn=1
7 BGLy(4) ~ 4 o) ifn
1A ifn>1.

Applying Corollary HA.7.2.2.19, we see that the canonical map
5 BGL1 (A) — T; BGL1 (71'014)
is an isomorphism for i € {0, 1}.

Remark 4.1.8. Let X be a spectral Deligne-Mumford stack. Then the space Pic(X)
can be identified with the mapping space Mappy,,calgs)(X, BGL1); here we abuse
notation by identifying X with its functor of points, and BGL; with the composite

functor CAlg BGL1, CMon — S. Similarly, we have a canonical homotopy equivalence
‘@iCT (X) = MapFun(CAlg,S) <X7 BGLI)

Variant 4.1.9. Let R be some fixed E,-ring. Then the composite functors

T
CAlg, — CAlg 2%, CMon  CAlg,, — CAlg 222 CMon

determine functors CAlg, — CMon. We will abuse notation by denoting these
functors also by BGL; and BGLI.
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4.2 Biextensions of Abelian Varieties

We begin by adapting the theory of biextensions to the setting of spectral algebraic
geometry.

Definition 4.2.1 (Biextensions). Let R be a connective E,-ring and let X and
Y be abelian varieties over R, which we identify with their functors of points
X,Y : CAlg, — CMon (Remark [1.4.5). A biextension of (X,Y) is a morphism
pu: XAY — BGL; in the co-category Fun(CAlgg, CMon). We let BiExt(X,Y) =
Mappun(calg,,onMon) (X A Y, BGL1) denote the space of biextensions of (X,Y).

Remark 4.2.2. Let X and Y be abelian varieties over an E,-ring R. Given a
line bundle . € QCoh(X xgpetr Y), an R-algebra A, and a pair of A-valued points

z € X(4), y € Y(A), we let .Z,, denote the A-module obtained by pulling .Z

back along the map Spét A ), x Xgpet r Y. Definition |4.2.1) can be phrased more

informally as follows: a biextension of (X,Y) is a line bundle .2 on X xgu¢ g Y which
is equipped with equivalences

Lorary = Loy®@Lwy Loyry =~ Loy®Lwy,

for x,2" € X(A) and y,y’ € Y(A), which are coherently commutative and associative
and depend functorially on A. For a more complete discussion from this point of view,
we refer the reader to [3].

In the setting of Definition [£.2.1] it does not matter if we use line bundles or
invertible sheaves:

Proposition 4.2.3. Let R be a connective B, -ring and let X and Y be abelian varieties
over R, which we idenitfy with their functors of points. Then any map X A Y — BGLI
factors through the subfunctor BGL; < BGLJ{.

Proof. Let A be a connective R-algebra; we wish to show that the canonical map
X(A) A Y(A) — BGLI(A) factors through BGL;(A). Note that we can identify
mo(X(A) A Y(A)) with the tensor product of the abelian groups my X(A) and 7o Y (A),
so that mo(X(A) A Y(A)) is generated as an abelian group by the image of the map
mo(X(A) x Y(A)) — mo(X(A) A Y(A)). It will therefore suffice to show that the
composite map

X(A) x Y(A) = X(A) A Y(A) —» BGLI(A)
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factors through BGL;(A), for each A € CAlg%'. Equivalently, we wish to show that
the composite map
p: X xgpatr Y — X AY — BCL!

factors through BGL;. Let us identify the map p with an invertible sheaf Z €
QCoh(X xgpet rY) (see Remark . The failure of £ to be a line bundle is
measured by some locally constant function s : | X xgpetr Y | = Z (Remark ; we
wish to show that s vanishes. Since the projection map X — Spét R is geometrically
connected, the map s factors as a composition | X Xgueer Y| — | Y| = Zs it will
therefore suffice to show that s’ vanishes. Let e : Spét R — X be the identity section,
so that e induces a map ey : Y — X xgpsg Y. Then s’ can be identified with the
composition | Y| 25 | X xgpsr Y | = Z. We are therefore reduced to showing that the
pullback e¥ .Z is a line bundle on Y. In fact, we can say more: since the map p factors
through the smash product X A'Y, there is a canonical equivalence e . ~ Oy. [

In the setting of classical algebraic geometry, biextensions exist in great abundance:

Proposition 4.2.4. Let R be a commutative ring and let X,Y € AVar(R). Then there
is a canonical fiber sequence

BiExt(X,Y) — Zic(X xgpetr Y) = Pic(X) X mic(spet gy 2ic(Y),
where e is the map defined by restriction along the zero sections of X and Y.

More informally: in the setting of classical algebraic geometry, any line bundle .Z
on the product X xgp¢ g Y which is equipped with compatible trivializations along X
and Y can be regarded as a biextension of (X,Y) in an essentially unique way.

Example 4.2.5. [The Biextension Associated to a Line Bundle] Let R be a com-
mutative ring, let X be an abelian variety over R, and let .Z be a line bundle on
X which is equipped with a trivalization « along the zero section e : Spét R — X.
Let m, 7" : X xgpet R X — X denote the projection maps and let m : X xgpe, g X — X
denote the multiplication. Then & = m* Z@n* £ ' @r"* £ ! is a line bundle on
X X spet r X, and « determines compatible trivializations of P along X x{e} and {e} x X.

Using Proposition [4.2.4] we see that P is the underlying line bundle of a biextension
XA X — BGL;.

Proof of Proposition[{.2.4. For the proof, it will be convenient to borrow some nota-
tions and results from and 5.4 Let R be a commutative ring, let X and Y be
abelian varieties over R with identity sections ex € X(R) and ey € Y(R), and let £
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be a line bundle on X xgu¢ g Y equipped with compatible trivalizations o of .2 |x ey
and (8 of & |exyxy-

Let Zic% denote the spectral algebraic space over R which parametrizes line
bundles on X equipped with a trivialization along the identity section (Notation
and let Zicy’ be the spectral algebraic space parametrizing multiplicative line bundles
on X (see Definition and Proposition p.5.1)). The pair (.2, «) is classified by a map
of spectral algebraic spaces f : Y — Zicy. We will complete the proof by showing that

f admits an essentially unique factorization as a composition Y ER Picy — Picy, and
that f can be promoted to a morphism of commutative monoids in an essentially unique
way. Let 7«9 Picy’ and 7<) Zick denote the underlying classical algebraic spaces of
Zicy and Picy, respectively. Using Proposition [5.4.9] we see that the canonical map
T<o Picy — T<o Picy is a closed and open immersion. Set U =Y x,_; gicc T<o Picy,
so that we can regard U as a closed and open substack of Y. The existence of
the trivialization 8 shows that the identity section ey factors through U. Since the
projection map Y — Spét R is geometrically connected, it follows that U = Y, which
is equivalent to the existence (and uniqueness) of the map f. To complete the proof,
it will suffice to show that the map f can be promoted to a morphism of commutative
monoids. Using Proposition we see that this is equivalent to promoting f to a
morphism of commutative monoids. Unwinding the definitions, we see that this is
equivalent to showing that the map g : X — Zicy classifying (.Z, 5) factors through
Picy’. This follows by repeating the preceding argument, with roles of X and Y
exchanged. O]

4.3 Digression: Tannaka Duality

We now briefly review the theory of Tannaka duality for spectral algebraic spaces
and introduce some terminology which we will need. For a more detailed discussion,
we refer the reader to §SAG.9.6.

Notation 4.3.1. Let R be an E,-ring and let Modgr denote the oco-category of R-
module spectra. Then we can regard Modg as a commutative algebra object of the
owo-category Prl of presentable co-categories. Recall that a stable R-linear oo-category
is a presentable co-category C which is tensored over Modpg, for which the action
®gr : Modg x C — C preserves small colimits separately in each variable. We let
LinCat%t denote the co-category Modyod, (Prh). We will refer to LinCaﬂz%t as the
aw-category of stable R-linear co-categories (the morphisms in LinCatizt are colimit-
preserving R-linear functors). For more details, we refer the reader to §SAG.D.1.
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Warning 4.3.2. The oo-category LinCat$; is not locally small: if C and D are stable
R-linear co-categories, then the collection of equivalences classes of R-linear functors
from C to D generally forms a proper class. For readers who prefer to avoid such
constructs, this is easily remedied. For our applications, it is sufficient to restrict
our attention to R-linear co-categories which are compactly generated and R-linear
functors which preserve compact objects. These restrictions single out a symmetric
monoidal subcategory & < LinCafc%t which is locally small (in fact, even presentable),
which can be used as a replacement for LinCatj in all the constructions which follow.

Example 4.3.3. Let R be a connective E-ring and let X be a spectral Deligne-
Mumford stack over R. Then QCoh(X) is a stable R-linear co-category, which we
can regard as an object of LinCat%t. Moreover, the tensor product of quasi-coherent
sheaves on X determines a symmetric monoidal structure on QCoh(X) (compatible
with the symmetric monoidal structure on Modg), so that QCoh(X) can be regarded
as a commutative algebra object of LinCat%t.

Theorem 4.3.4 (Tannaka Duality for Spectral Algebraic Spaces). Let R be a connec-
tive Eo,-ring. Suppose that X and Y are spectral Deligne-Mumford stacks over R. If X
is a quasi-compact, quasi-separated spectral algebraic space, then the canonical map

MapSpDM/ SpétR(Y’ X) - MapCAIg(LinCa‘c%)(QCOh(X)7 QCOh(Y))
is a homotopy equivalence.
Proof. This is an immediate consequence of Theorem SAG.9.6.0.1. [

Corollary 4.3.5. Let R be a connective Eo,-ring. Then the construction A — Mod
induces a fully faithful embedding © : CAlgs — CAlg(LinCat’y).

Remark 4.3.6. Corollary is much more elementary (and general) than Theorem
4.3.4F see SHA.4.8.5.

Notation 4.3.7. Let R be a connective E,-ring. We let AlgSpace(R) denote the
ao-category of quasi-compact, quasi-separated spectral algebraic spaces over R (which
we regard as a full subcategory of SpDM g4 i here SpDM denotes the co-category
of spectral Deligne-Mumford stacks). We regard Var(R) as a full subcategory of
AlgSpace(R).

Corollary 4.3.8. Let R be a connective E-ring. Then the construction X —
QCoh(X) determines a fully faithful embedding AlgSpace(R) — CAlg(LinCat3)oP.

Moreover, this embedding commutes with finite limits.
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Proof. The first assertion follows from Theorem and the second is a special case
of Remark SAG.10.2.6.4 . O]

We would like to apply the Cartier duality formalism of §3| to study bialgebra
objects of LinCat%t. To this end, let us consider some examples of functors whose
domain is the co-category CAlg(LinCat}).

Construction 4.3.9 (The Spectrum of a Symmetric Monoidal co-Category). Let
R be a connective E-ring and let A be a commutative algebra object of LinCat%t:
that is, a presentable symmetric monoidal co-category, equipped with a symmetric
monoidal functor Modrp — A. We let Spec*(A) : CAlg(LinCat}) — S denote the
functor corepresented by A (see Notation ; here S denotes the co-category of
spaces which are not necessarily small (Warning 4.3.2)).

In the special case where A is a bialgebra object of the co-category LinCatS,’;f, we

regard Spec*(A) as a functor from the co-category CAlg(LinCat3') to the oo-category
CMon(S) of (not necessarily small) E,-spaces (see Variant [3.4.2))

Remark 4.3.10. In the situation of Construction|4.3.9 suppose that the co-category A
is compactly generated and that every compact object of A is dualizable (this condition
is satisfied, for example, if A = QCoh(X) where X is a quasi-compact, quasi-separated
spectral algebraic space; see Proposition SAG.9.6.1.1). Then, for every commutative
algebra object B € CAlg(LinCat}), the space Mapg Alg(Lincatsh) (A, B) is essentially
small. Consequently, we can regard Spec*(.A) as a functor from CAlg(LinCat}) to S.

To prove this, we observe that there exists a regular cardinal x such that the unit
object of B is k-compact. It follows that every dualizable object of B is xk-compact, so
that every symmetric monoidal functor F': A — B carries compact objects of A to
r-compact objects of B.

Construction 4.3.11 (The Functor of Invertible Objects). Let R be a connective
E,-ring. We let GL! : CAlg(LinCat}) — CMon(S) denote the functor obtained by
applying Construction m to the symmetric monoidal oco-category C = LinCat%t.
More concretely, if A is a commutative algebra object of LinCat%t (that is, an R-
linear symmetric monoidal oo-category), then GL](A) can be identified with the full
subcategory of A~ spanned by the invertible objects.

Remark 4.3.12. In the situation of Construction 4.3.11} the space GL](A) is always
essentially small. To see this, we observe that if the unit object 1 € A is k-compact
for some regular cardinal k, then every invertible object of A is k-compact.
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Example 4.3.13. Let X be a spectral Deligne-Mumford stack over a connective -
ring R. Then we have a canonical homotopy equivalence GL}(QCoh(X)) ~ Zic'(X).

Example 4.3.14. Let R be a connective E-ring, let © : CAlg® — CAlg(LinCat$})
denote the fully faithful embedding of Corollary [4.3.5] and let

©* : Fun(CAlg(LinCat}),S) — Fun(CAlg$, S)

be the functor given by composition with ©. Then we have a canonical equivalence
©*(GL}) ~ BGL! (this is a restatement of Example . If X is a quasi-compact,
quasi-separated spectral algebraic space over R, then Theorem supplies a canon-
ical equivalence ©*(Spec” QCoh(X)) ~ X (here we abuse notation by identifying X
with its functor of points CAlgy — S).

4.4 Biextensions: Tannakian Perspective

We now apply the ideas of to give a reformulation of Definition 4.2.1 Our

starting point is the following observation:

Proposition 4.4.1 (Tannaka Duality for Abelian Varieties). Let R be a connective
E-ring. Then the construction X — QCoh(X) determines a fully faithful embedding
AVar(R) — Hopf(LinCat})°P.

Proof. Combine Corollary with Proposition [1.4.4 O

Remark 4.4.2. If X is an abelian variety over R, then the algebra structure on
QCoh(X) is given by the usual tensor product of quasi-coherent sheaves, while the
coalgebra structure on QCoh(X) is related to the operation of convolution (with respect
to the multiplication on X); we will explain this in more detail in

Construction 4.4.3. Let R be a connective E-ring and suppose we are given abelian
varieties X,Y € AVar(R), which we regard as functors X,Y : CAlgy;' — CMon. Using
Proposition [4.4.1] we can regard QCoh(X) and QCoh(Y) as Hopf algebra objects of
the oco-category LinCat%t, which in turn determine functors

Spec*(QCoh(X)), Spec* (QCoh(Y)) : CAlg(LinCat}) — CMon(S)
(see Construction 4.3.9). Set & = Fun(CAlg(LinCat}}),S), and let ©* : £ —
Fun(CAlg%', S) be as in Example |4.3.14, Combining Example with Propo-
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sition |4.2.3 we obtain a canonical map

Mapg (Spec*(QCoh(X)) A Spec*(QCoh(Y)), GL})

|o»

Mappyn(calgs cMon(s) (X A Y, BGL!)

TN

Mappyn(calgs cMon(s)) (X A Y, BGL1)

BiExt(X,Y).

Theorem 4.4.4. Let R be a connective Eo-ring and let X, Y € AVar(R) be abelian
varieties over R. Then Construction [{.4.3 determines a homotopy equivalence

MapFun(CAlg(LinCat%),CMon) (SpeC*(QCOh(X)) A SpeC*(QCOh<Y))7 GLI) - BlEXt<X7Y)

Proof. Let C' denote the co-category CAlg(LinCat%t), let C denote the full subcategory
of C’ spanned by those co-categories of the form QCoh(Z), where Z is a quasi-compact,
quasi-separated spectral algebraic space over R, and let C, < C denote the full
subcategory spanned by those co-categories of the form Mody ~ QCoh(Spét A) for
A e CAlg}'. Define

Fx = Spec*(QCoh(X)) Fy = Spec*(QCoh(Y)) G = GLj,

which we regard as functors from C’ to the ow-category CMon(S). Unwinding the
definitions, we are reduced to showing that the composite map

MapFun(C’ CMon(S8)) (FX A Fy, G)
¢

<~

Mapgyn(c,onmon(s) (Fx A Fy)le, Gle)

¥

Mapgun(cy,cnmon(s)) (Fx A Fy)leys Gley)

is a homotopy equivalence. We first observe that G| is a left Kan extension of G|c,
(see Proposition SAG.6.2.4.1), so the map ® is a homotopy equivalence. To complete
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the proof, it will suffice to show that the functor Fx A Fy is a left Kan extension of
its restriction to C, so that ¢ is also a homotopy equivalence.

Fix an object C € CAIg(LinCat%t) = C and set C)c = C x¢r Cl/c- We then have a
commutative diagram

(lim, . Fx(B)) Alim_, (F/(B))

—)BEC/C —>BEC/C

lin, . (Fx(B) A Fy(B)) d Fx(C) A By (C)

—> BeC

A~

in the co-category CMon(S), and we wish to show that /3 is an equivalence. Since the
aw-category C is closed under finite colimits in C' (Corollary , the oo-category
C,c is filtered. The smash product functor A : CMon(S) x CMon(S) — CMon(S)
commutes with (not necessarily small) colimits separately in each variable, so the map
« is an equivalence. We are therefore reduced to proving that « is an equivalence. This

is clear, since the functors F|x and F'y are left Kan extensions of their restrictions to

C (Lemma [3.5.7)). O

4.5 Categorical Digression

We now collect some general categorical remarks which will be useful for our study
of convolution of quasi-coherent sheaves in §4.6| Recall that a stable monoidal oo-
category C is locally rigid if it is compactly generated, the tensor product ® : CQC — C
preserves small colimits separately in each variable, and the compact objects of C are
precisely the dualizable objects (see Definition SAG.D.7.4.1).

Proposition 4.5.1. Let C and D be locally rigid symmetric monoidal co-categories and
let F': C — D be a symmetric monoidal functor which preserves small colimits, so that
the tensor product on D determines a (symmetric monoidal) functor m : D®¢ D — D.
Then F admits a C-linear right adjoint G : D — C which preserves small colimits.
Moreover, the composite functor

e:DR:D=DSC

exhibits D as a self-dual object of the co-category Mode(PrY) of C-linear presentable
stable co-categories.

Proof. Let us regard D®¢ D as a symmetric monoidal co-category, and let :
D xD — D®cD denote the canonical map. Note that if D, D’ € D are compact
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objects, then the object D [x] D' € D®¢ D is also compact (see the proof of Lemma
SAG.D.5.3.3). In particular, the unit object 1 X1 € D®¢ D is compact.

Since D ®¢ D is generated under small colimits by objects of the form D X D', it
follows that D ®¢ D is compactly generated. Moreover, the full subcategory of D ®: D
spanned by the compact objects is the smallest stable subcategory which is closed
under retracts and contains D [X] D', whenever D, D’ € D are compact. It follows
that every compact object of D®¢ D is dualizable: that is, the symmetric monoidal
ao-category D ®c D is locally rigid (see Definition SAG.D.7.4.1).

It follows from Example SAG.D.7.4.5 that the functor F' : C — D admits a
C-linear right adjoint G : D — C which preserves small colimits. Similarly, Example
SAG.D.7.4.5 guarantees that the functor m : D ®¢ D admits a colimit-preserving right
adjoint § : D — D ®c D, which can be regarded as a (D ®¢ D)-linear functor (and, in
particular, a C-linear functor). Let ¢ : C — D ®¢ D denote the C-linear functor given
by the composition

cLEDADR:D.

We will show that e and ¢ are compatible evaluation and coevaluation maps for a
duality datum in the symmetric monoidal oo-category Mode(PrY). To prove this, it
suffices to show that the composite maps

D 4% DR DR D L9 D

D L DR DR D L& D

are homotopic to the identity. We consider the first of these composite maps; the
proof in the other case is identical. Unwinding the definitions, we must show that the
composite functor

D id@F D@cD id ®d D@cD@cD mid D@CD GRid D

is homotopic to the identity (as a C-linear functor from D to itself).
Note that the composite functors

D 4O, DD = D

D5 D@D LD

are homotopic to the identity. Concatenating these, we deduce that the functor
DY, DD DL DD L8 D
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is homotopic to the identity. To complete the proof, it will suffice to show that that
the C-linear functors

dom,(m®id) o (id®J) : D®:D — D Q¢ D

are homotopic. We have a commutative diagram of C-linear co-categories o :

D®cDRcDLEL DR D

|nia |

DD —o D,

which determines a C-linear natural transformation 8 : (m ®id) o (id®4§) — 6 o m.
To complete the proof, it will suffice to show that § is an equivalence. For this, we
can ignore the C-linearity: we must show that o is right adjointable as a diagram of
co-categories.

For Z € D, let rz; : D&:D — D®c¢ D be the functor given by the action of Z
on the second tensor factor (so that rz(X XY) ~ XX (Y ® Z) ). For every pair of
objects X,Y € D, 3 induces a map

BX,Y . Ty(éX) — 5(X®Y)

in the oo-category D®¢D. We wish to show that each of the maps Bxy is an
equivalence. Since the construction Y — [xy commutes with filtered colimits, we
may assume without loss of generality that Y € D is compact and therefore admits
a dual YV. Since D®c D is generated (under small colimits) by objects of the form
DX D', it will suffice to show that fxy induces a homotopy equivalence

6 : Mappg.p(DX D' 7y (6X)) = Mappg, p(DH D', (X ®Y))

for each D, D" € D. Unwinding the definitions, we see that 6 is given by the composition
of homotopy equivalences

MapD®CD(DD’,7"y((5X)) ~ MapD®CD(D(D’®YV),(5X)
Mapp(D® D' @YY, X)
Mapp(D® D', X ®Y)

~ Mappg.p(DXKI D, (X Q®Y)).
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Proposition 4.5.2. Suppose we are given a commutative diagram

*

where C, D, & are locally rigid symmetric monoidal co-categories and f*, g*, and h* are

colimit-preserving symmetric monoidal functors. Let us regard g* as a C-linear functor
from D to &, and let F : £ — D denote the dual of g* (where we use Proposition
to identify D and £ with their own duals in the symmetric monoidal o-category
Modc(PrY)). Then F can be identified with the right adjoint g, of g* (as a C-linear
functor; see Example SAG.D.7.4.5 ).

Proof. Let eg : £EQc & — C be the evaluation map appearing in the statement of
Proposition 4.5.1} and ¢p : C — D®¢ D be the coevaluation map appearing in the
proof of Proposition [£.5.1 Unwinding the definitions, we see that F is given by the

composition
5 id@CD g®c D@c D id®g*®id 5®C g®c D 8g®id D )

Let mp : D®¢D — D and me : £E®c £ — £ be the multiplication maps, and denote
their right adjoints by dp : D - D®¢ D and d¢ : £ > ERQc £. Then F' is homotopic
to the composition

g MO e@,D
&, e ®:D®eD
U, e @0 £ @ D

id
B, £®eD
m®d,

here h, denotes a right adjoint to h*.
Let Fy denote the composition

EQeD L&, £@.D®eD
U, oo, £ @ D
mge®id g®cD,
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so that F' ~ (h, ®id) o Fy o (id®f*). Let I'* denote the composition
E@cD U, g@eE e €.
Then I'* admits a C-linear right adjoint I'y, = d¢ o (id ®g,). We will prove:
(x) There is a canonical equivalence of C-linear functors Fy ~ I', o I'™*.

Assuming (=), we deduce that F' is homotopic to the composition ((h, ® id) o T'y) o
(I'* o (id®f*)). Combining this with the evident equivalences

(he ®id) o Ty ~ g, o (id®f*) ~id

we conclude that F'is homotopic to g, as desired.
It remains to prove (x). We have a commutative diagram of C-linear functors o :

id®mp

EQe D@D ——ERcD

lF*@id ll—‘*

@D —" ¢

which induces a C-linear natural transformation
f:Fy=(I"®id)o (id®dip) — I'" o [',.

In order to prove (x), it suffices to show that [ is an equivalence. Once again, this is
a statement that can be checked at the level of the underlying functor: we can ignore
the C-linearity.

We now proceed as in the proof of Proposition [4.5.1} Given a pair of objects X € &,
Y € D, we let X [X1Y denote the image of the pair (X,Y) in the co-category £ ®c D.
IfZe& welet ryz: DR®cD — £XRc D be given by the action of Z on the first factor.
For every pair of objects X € £, Y € D,  induces a map

Bxy :rx(0pY) - LI (X XY)

in the oco-category £ ®cD. We wish to show that each of the maps Bxy is an
equivalence. Since the construction X — Byy commutes with filtered colimits, we
may assume without loss of generality that X € £ is compact and therefore admits a
dual X¥. Note that £®¢ D is generated (under small colimits) by objects of the form
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EX D, where E € £ and D € D. Consequently, to prove that Sy y is an equivalence,
it will suffice to show that Sxy induces a homotopy equivalence

6 : Mapg g, p(EE D,rx(5pY)) — Mape g, p(E R D, [,I*(X K Y)).

Unwinding the definitions, we see that 6 is obtained by composing homotopy equiva-
lences

Mapg g, p(EX D, mx(0pY)) = Mapgg.p((X* Q@ E)X D, (9" ®id)(dpY’))
E Mapg g, p((X* ® E) X D, I'vg"Y)

Map (X" ® E® g*D, g*Y)

~ Map:(F®¢*D, X ®g"Y)

~ Mapgg, p(EX D, I'I*(XXY)),

0

where ¢ is given by composition with the map ay : (¢* ® id) o A (Y) — [g*Y
determined by the commutative diagram of co-categories 7 :

DR:D2~D

ig*@)id lg*

@D -¢.

It now suffices to observe that the diagram 7 is right adjointable, which follows from
the assumption that D is locally rigid (see Remark SAG.D.7.4.4). O

4.6 The Convolution Product

Let R be a connective E,-ring, let X be an abelian variety over R. Let p,q :
X Xgpet R X — X denote the projection maps onto the first and second factor, and
let m : X xgpe, g X — X denote the addition map. Then the construction (#,9) —
ma(p* F ®q*9) determines a functor x : QCoh(X) x QCoh(X) — QCoh(X), which
we will refer to as the convolution product. In this section, we will apply the results of
to show that the convolution product endows QQCoh(X) with the structure of a
symmetric monoidal co-category (Example .

Construction 4.6.1. Let R be a connective E,-ring. According to Corollary
the construction X — QCoh(X) determines a functor QCoh : AlgSpace(R) —
CAlg(LinCat$)°? which commutes with finite products. Let us regard AlgSpace(R)
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as equipped with the Cartesian symmetric monoidal structure, so that we can regard
QCoh as a symmetric monoidal functor (note that the symmetric monoidal structure
on LinCat} induces a Cartesian symmetric monoidal structure on CAlg(LinCat})°P;
see Proposition HA.3.2.4.7). Composing with the (symmetric monoidal) forget-
ful functor CAlg(LinCat}) — LinCat}, we obtain a symmetric monoidal func-
tor AlgSpace(R) — (LinCat} )P, which we will also denote by QCoh. For each
X € AlgSpace(R), the R-linear oo-category QCoh(X) is compactly generated (Propo-
sition SAG.9.6.1.1), and is therefore dualizable as an object of LinCat}i (Theorem
SAG.D.7.0.7). We denote the dual of QCoh(X) by QCoh"(X). Using Proposition
[3.2.4] we see that the construction X — QCoh” (X) can be regarded as a symmetric
monoidal functor QCoh" : AlgSpace(R) — LinCat;.

Remark 4.6.2 (Behavior of QCoh" on Objects). Let ¢ : X — Y be a morphism of
quasi-compact, quasi-separated spectral algebraic spaces. Applying Proposition [£.5.1]
to the pullback functor ¢* : QCoh(Y) — QCoh(X), we deduce that the composite
functor

QCoh(X) ®qaon(v) QCoh(X) & QCoh(X) £ QCoh(Y)

exhibits QCoh(X) as a self-dual object in the oo-category Modqconey)(Pr"). In the
special case where Y = Spét R is affine, we obtain a canonical R-linear equivalence
QCoh" (X) ~ QCoh(X). Nevertheless, it will be convenient to distinguish in notation
between QCoh(X) and QCoh" (X), because they have (a priori) different variance in X:
the construction X — QCoh(X) determines a contravariant functor from AlgSpace(R)
to LinCat}, while the construction X — QCoh" (X) determines a covariant functor
from AlgSpace(R) to LinCat?.

Remark 4.6.3 (Behavior of QCoh" on Products). Let R be a connective E.,-ring.
The functor QCoh" : AlgSpace(R) — LinCat$' is symmetric monoidal. Consequently,
for every pair of objects X,Y € AlgSpace(R), we have a canonical R-linear equivalence

o : QCohY (X) @z QCoh™ (Y) ~ QCoh" (X xsper v Y)
Under the equivalence of Remark [4.6.2] we can identify o with the R-linear equivalence
6 : QCOh(X) ®R QCOh(Y) >~ QCOh(X XSpétRY)

determines by the symmetric monoidal structure on the functor QCoh. Concretely, £
classifies the R-bilinear functor x] : QCoh(X) x QCoh(Y) — QCoh(X xgpstr Y) given
by F XY = p* F ®q¢* 9, where p : X Xgpeer Y — X and ¢ : X xgpstr Y — Y denote
the projection maps.
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Remark 4.6.4 (Behavior of QCoh" on Morphisms). Let R be a connective E-ring
and let g : X — Y be a morphism between quasi-compact, quasi-separated spectral

algebraic spaces over R. Then g induces an R-linear functor QCoh" (g) : QCoh" (X) —
QCoh" (Y). Applying Proposition to the diagram

QCoh(Spét R)

/\

QCoh(Y QCoh(X),

we deduce that the functor QCoh" (g) fits into a commutative diagram

QCoh" (X) — 29 QCoh¥(Y)
QCoh(X) o QCoh(Y),

where the vertical maps are the equivalences of Remark [4.6.2]

Remark 4.6.5 (Functoriality). With more effort, one can show that the identification
of functors g, ~ QCoh" (g) supplied by Remark is coherently associative (with
respect to composition in AlgSpace(R)). More precisely, one can show that the com-
posite functor AlgSpace(R) Qb7 LinCat}l — Cat,, classifies a Cartesian fibration
C — AlgSpace(R)°P, which is also a coCartesian fibration classified by the composite

functor AlgSpace(R)P "= AR 14 nCat}y — Cato.

Example 4.6.6 (The Convolution Product). Let R be a connective Ey-ring and let X
be an abelian variety over R, which we can identify with a commutative monoid object
of AlgSpace(R). Applying the symmetric monoidal functor QCoh" : AlgSpace(R) —
LinCat%t, we see that the co-category QCoh" (X) can be identified with a commutative
algebra object of LinCat%t. In other words, there is a symmetric monoidal structure on
the oo-category QCoh" (X), and the action of R on QCoh" (X) is given by a symmetric
monoidal functor Modr — QCoh" (X).

Using Remark , we obtain an R-linear equivalence of co-categories QCoh" (X) ~
QCoh(X). Transporting the symmetric monoidal structure on QCoh" (X) along this
equivalence, we obtain a new symmetric monoidal structure on the oo-category
QCoh(X). Using Remarks [£.6.3] and [4.6.4] we see that this symmetric monoidal

structure agrees with the convolution product

* : QCoh(X) x QCoh(X) — QCoh(X) FxY =m,(p" FRY)
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defined at the beginning of this section. Here p,q : X xgpes g X — X denote the
projection maps onto the first and second factor, while m : X xgp¢ g X — X denotes
the addition map on X.

We can summarize the situation more informally as follows: if X is an abelian
variety over R, then the convolution product » : QCoh(X) x QCoh(X) — QCoh(X)
endows the oo-category QCoh(X) with the structure of a symmetric monoidal co-
category. That is, the convolution product is commutative and associative up to
coherent homotopy.

4.7 The Fourier-Mukai Transform

We now show that every biextension of abelian varieties p € BiExt(X,Y) gives
rise to a functor FMuk, : QCoh(X) — QCoh(Y), which we will refer to as the
Fourier-Mukai transform.

Construction 4.7.1 (QCoh" (X) as a Hopf algebra). Let R be a connective E-ring
and let X be an abelian variety over R. Then we can regard the co-category QCoh(X)
as a Hopf algebra object of the co-category LinCat%. Note that QCoh(X) is dualizable
as an object of LinCat%t (see Construction . Applying Proposition we see
that the dual QCoh" (X) inherits the structure of a Hopf algebra object of X, which is
characterized (up to equivalence) by the requirement that Spec*(QCoh" (X)) is the
Cartier dual of Spec*(QCoh(X)) in the oo-category Fun(CAlg(LinCat5’), CMon).

Remark 4.7.2. Let X be as in Construction Then the Hopf algebra structure
on QCoh" (X) determines a commutative algebra structure on QCoh" (X): that is, it
exhibits QCoh" (X) as a symmetric monoidal oo-category (equipped with a symmetric
monoidal functor Modg — QCoh" (X)). Using Proposition [3.8.1] we see that this
commutative algebra structure coincides with the structure described in Example [4.6.6
In other words, under the equivalence QCoh" (X) ~ QCoh(X) supplied by Remark
[1.6.2] the multiplication on QCoh"(X) is given by convolution of quasi-coherent
sheaves.

Construction 4.7.3 (Fourier-Mukai Transform Associated to a Biextension). Let
R be a connective E,-ring, let X, Y € AVar(R) be abelian varieties over R, and let
p: X AY — BGL; be a biextension of (X,Y). Using Theorem [4.4.4, we can identify p
with a map

i : Spec” (QCoh(X)) A Spec*(QCoh(Y)) — GL]
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in the oo-category Fun(CAlg(LinCat}r), CMon), which we can identify with a map
Spec”(QCoh(X)) — D(Spec*(QCoh(Y))) ~ Spec*(QCoh" (Y))

or with a map FMuk, : QCoh"(X) — QCoh(Y) in the co-category Hopf(LinCat}}).

We will refer to FMuk,, as the Fourier-Mukai transform associated to p.

Remark 4.7.4. In the situation of Construction we can identify p with a

map Y A X — BGL;, which determines another Fourier-Mukai transform FMukL :
QCoh" (Y) — QCoh(X).

Remark 4.7.5. Let R be a connective E-ring and let X,Y € AVar(R) be abelian
varieties over R. The passage from a biextension u € BiExt(X,Y) to the associated
Fourier-Mukai transform FMuk, does not lose any information. More precisely,

the construction p — FMuk, determines a homotopy equivalence BiExt(X,Y) =~
Mappope(Lincatst) (QCoh” (X), QCoh(Y)) (this is the essential content of Theorem [4.4.4).

Remark 4.7.6 (The Underlying R-Linear Functor of FMuk,,). Let 1 : X A Y — BGL;
be a biextension of abelian varieties over a connective E,-ring R, and let £, denote
the underlying line bundle on X xgu¢ Y, which we can identify with an R-linear
functor Modz — QCoh(X xgpetrY) ~ QCoh(X) ®z QCoh(Y).

Let FMuk, : QCoh"(X) — QCoh(Y) denote the Fourier-Mukai transform asso-
ciated to pu, regarded as an R-linear functor (that is, we ignore the Hopf algebra
structures on QCoh" (X) and QCoh(Y)). Using Remark [3.8.4] we can identify the
functor FMuk,, with the composition

QCoh” (X) 2%, QCoh” (X) ®r QCoh(X) ®r QCoh(Y) <& QCoh(Y),

where e : QCoh" (X) ®r QCoh(X) — Modg is the evaluation map.
Let us identify QCoh" (X) with QCoh(X) using Remark 4.6.2] so that the evaluation

functor e is given by the composition
QCoh(X) ®r QCoh(X) =~ QCoh(X xgpet r X)
2%, QCoh(X)
L MOdR,

where 0 : X — X xgpet r X denotes the diagonal map. Under this identification, we
see that the Fourier-Mukai transform FMuk,, corresponds to the functor QCoh(X) —
QCoh(Y) given by .# — ¢.(Z, ®p* ¥ ), where

p:XXgpstrY = X q: XXgpstrY =Y

denote the projection maps.
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Remark 4.7.7. Let p: X AY — BGL; be a biextension of abelian varieties over a
connective E,-ring R. The Fourier-Mukai transform FMuk, is a morphism of Hopf
algebra objects of LinCat%t. In particular, it is a morphism of commutative algebra
objects of LinCat. It follows that the functor

FMuk,, : QCoh(X) — QCoh(Y) F = . (L, Qp* F)

of Remark is symmetric monoidal, where we regard QCoh(X) as equipped with
the symmetric monoidal structure given by convolution of quasi-coherent sheaves,
and QCoh(Y) with the symmetric monoidal structure given by tensor products of
quasi-coherent sheaves.

5 Duality Theory for Abelian Varieties

Let k be a field and let X be an abelian variety over . We let Pic(X) denote the
Picard scheme of X (whose A-valued points are given by line bundles . on the product
Xa = X Xgpecr Opec A, together with a trivialization of .# along the identity section
of X4). Then the identity component Pic’(X) < Pic(X) is an abelian variety, called
the dual abelian variety of X. Moreover, the relationship between X and Pic®(X) is
symmetric: we can recover the original abelian variety X (up to canonical isomorphism)
as the dual of Pic”(X).

In the setting of spectral algebraic geometry, the situation is more subtle. Suppose
that R is a connective E-ring and that X is an abelian variety over R. We can
again consider line bundles on X which are trivialized along the identity section
e : Spét R — X: these are parametrized by a spectral algebraic space Zicy (see
Notation . Inside Zicy, we can consider the open subspace given by the unions
of the identity components of each fiber of the projection map Zicy — Spét R.
However, this open subspace is usually not an abelian variety over R, because it need
not be flat over R.

To remedy the situation, let us return for a moment to the setting of classical
algebraic geometry and consider an alternative description of the dual abelian variety
Pic?(X): it parametrizes line bundles .Z on X which are multiplicative in the sense that
the associated G,,-torsor on X determines an extension 0 — G,, — X — X — 0 in the
category of commutative group schemes. From this description, it follows immediately
that the universal multiplicative line bundle &2 on the product X xgpec Pic”(X) can be
regarded as a biextension of (X, Pic®(X)) (in the sense of Definition [4.2.1)). Moreover,
this biextension is universal in the following (closely related) senses:
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(a) For any abelian variety Y over k, there is a canonical bijection

Hom avars () (Y, Pic” (X)) ~ BiExt(X,Y).

(b) The Fourier-Mukai transform associated to &2 (Construction [4.7.3]) induces an
equivalence of oo-categories QCoh(X) ~ QCoh(Y).

In the setting of spectral algebraic geometry, we will define the dual of an abelian
variety X to be another abelian variety X for which there is a biextension [ €
BiExt(X,)A() having the property (b) (Definition . From this perspective, it
follows immediately that the dual X is uniquely determined by X up to equivalence,
and that the relation of duality is symmetric in X and X (Proposition . However,
it is not obvious that such a universal biextension should exist: proving this is the
main goal of this section. Our strategy can be outlined as follows:

(1) Given a connective E,-ring R and an abelian variety X € AVar(R), we introduce
the notion of a multiplicative extension of X. The classification of multiplicative
extensions determines a functor Zicy’ : CAlgp — CMon. Essentially by
definition, there is a biextension p : X A Zicy’ — BGL; which is universal in
the sense (a) above.

(73) Using Artin’s representability theorem, we show that Zicy’ is representable by
a spectral algebraic space over R (Proposition [5.5.1]), which we will also denote
by Zicy.

(#7i) In the special case where R = k is an algebraically closed field, we show that the
identity component Y of the reduced subspace (Z2icy')eq is an abelian variety
over k, and that the biextension X A Y — X A Zicy £ BGL, satisfies condition
(b) (see the proof of Lemma[5.6.3). It follows formally that the same biextension
also satisfies (a), so that Y = Zicy’ and therefore Zicy’ is also an abelian variety
over K.

(iv) Returning to the case where R is an arbitrary connective E,-ring, we use (i) to
show that Zicy’ is an abelian variety over R and that the biextension u satisfies
the universal property (b) (Theorem [5.6.4)), and therefore exhibits Zicy as a
dual of X.

Warning 5.0.1. In the setting of classical algebraic geometry, there is direct approach
to step (i7) which avoids the use of Artin’s representability theorem. Any abelian
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variety X over a field k is a projective variety over k, so we can choose an ample
line bundle .Z on X. The construction (z € X) — m* £ ®.Z " then determines a
map f : X — Pic’(X) (where we regard Pic’(X) as a functor, not a priori assumed to
be representable). Using the assumption that .# is ample, one can then argue that
K = ker(f) is representable by a finite group scheme over x and that f induces an
isomorphism X /K ~ Pic’(X), thereby proving that Pic’(X) is representable by an
abelian variety (for more details, we refer the reader to [10]).

There are several obstacles to adapting this style of argument to the spectral
setting:

e In general, one does not expect an abelian variety X over an E.,-ring R to be

“projective” in any useful sense. Consequently, there is no obvious candidate for
the line bundle .Z on X.

e Given a line bundle .Z on X, there is no reason to expect line bundles of the form
m¥ £ ®L " to be multiplicative (in classical algebraic geometry, this depends
on the “theorem of the cube”, which does not extend to spectral algebraic
geometry).

In general, it does not seem reasonable to expect that the dual X ~ Picy’ can be
constructed as a quotient of X.

5.1 Perfect Biextensions

We begin by introducing the notion of a perfect biextension of abelian varieties.

Definition 5.1.1. Let R be a connective E -ring, let X and Y be abelian varieties
over R, and let 1 : X A'Y — BGL; be a biextension of (X,Y).
We will say that u is perfect if the functor

Modp 252 QCoh(X xspee 1 Y) ~ QCoh(X) ®x QCoh(Y)

exhibits QCoh(X) as a dual of QCoh(Y) in the oo-category LinCat}r of stable R-linear
ao-categories; here .2, denotes the underlying line bundle of ;. In this case, we will
also say that u exhibits Y as a dual of X, or that p exhibits X as a dual of Y.

Remark 5.1.2. Let R be a connective E,-ring and let X be an abelian variety
over R. If there exists an abelian variety Y € AVar(R) and a biextension p €
BiExt(X,Y) which exhibits Y as a dual of X, then the abelian variety Y and the
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biextension u are determined up to equivalence (in fact, up to a contractible space
of choices). However, it is not immediately clear from the definitions that the dual
Y exists: to prove this, we must show that QCoh" (X) € Hopf(LinCat}) belongs to
the essential image of the embedding AVar(R) < Hopf(LinCat3)°? of Proposition
[.4.71] Note that this is equivalent to the a priori weaker assertion that, as an object of
CAlg(LinCat})), the co-category QCohY (X) to the essential image of the embedding
Var(R) < CAlg(LinCat$)° provided by Corollary 4.3.8|

Specializing Proposition to the present situation, we obtain the following:

Proposition 5.1.3. Let R be a connective Ey-ring, let X, Y € AVar(R) be abelian
varieties over R, and let pn : X AY — BGL; be a biextension. The following conditions
are equivalent:

(1) The Fourier-Mukai transform FMuk,, : QCoh” (X) — QCoh(Y) is an equivalence
of co-categories.

(2) The Fourier-Mukai transform FMuk, : QCoh(Y) — QCoh(X) (see Remark
is an equivalence of co-categories.

(3) The biextension p is perfect.
We now supply a more concrete criterion for a biextension to be perfect:

Proposition 5.1.4. Let R be a connective B -ring, let X,Y € AVar(R) be abelian
varieties over R, let i : XAY — BGL; be a biextension, and let £, denote the
underlying line bundle on X xgpet r Y. Then p is perfect if and only if it satisfies both
of the following conditions:

(a) Let m: X xgpssr Y — X denote the projection map. Then m, L, is invertible
with respect to the convolution product on QCoh(X).

(b) Let " : X xgpetr Y — Y denote the projection map. Then 7, L, is invertible
with respect to the convolution product on QCoh(Y).

Proof. In what follows, let us abuse notation by using Remark to identify
QCohY (X) with QCoh(X) and QCoh"(Y) with QCoh(Y). Note first that if u is
perfect, then the Fourier-Mukai functors

FMuk,, : QCoh(X) — QCoh(Y) FMuk/, : QCoh(Y) — QCoh(X)
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are equivalences of co-categories (Proposition [5.1.3)). In this case, it follows that the
composite functors

(FMukj, o FMuk,,) : QCoh(X) — QCoh(X)
(FMuk,, o FMuk/,) : QCoh(Y) — QCoh(Y)

are also equivalences of co-categories. Conversely, if the functors (FMukL o FMuk,,)
and (FMuk, o FMukL) are both equivalences, then FMuk, admits a left homotopy
inverse (given by (FMukj, o FMuk,)~" o FMuk],) and a right homotopy inverse (given
by FMuk;o(FMukquMukL)_l), and is therefore an equivalence of co-categories.
Using Proposition [5.1.3| again, we see that p is perfect if and only if the following
conditions are satisfied:

(a/) The functor (FMuk), o FMuk,) : QCoh(X) — QCoh(X) is an equivalence of
oo-categories.

(0') The functor (FMuk, o FMuk/,) : QCoh(Y) — QCoh(Y) is an equivalence of
co-categories.

To complete the proof, it will suffice to show that (a) < (@) and (b) < (0'). We will
show that (a) < (a'); the other case follows by symmetry. For this, we need to give
an explicit description of the composite functor FMuk; o FMuk,,.

Consider the diagram

X Xgpet R Y Xspet r X

2,

X Xspetr Y Y Xgpet r X

q q"
/ \ p//
X Y X.

Using the description of the Fourier-Mukai transform supplied by Remark we
can identify the composition FMuk; o FMuk,, with the functor
F - qi(,ﬁf“ ®p"*q, (Z Qp™ F)
=~ qg(gu ®qsp” (gu ®p/* 9))
0iq:(q* L, @p* L, @p*p* F).
Let ro,71 : X Xgpet R X — X denote the projection onto the first and second factor,
respectively, and let u : X Xgpet r Y Xspet r X — X Xgpee g X denote the projection onto
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the outer factors. Then ¢" o g ~ ry ou and p’ o p ~ rg o u, so that FMukL o FMuk, is
given by
F = (¢t L, QpF L, QutTr;
=~ 7a1=|<<u=l<<q* g,u ®p* g,u) ®r6k
= 1(E®ryF),

)
)

F
F

where & = u.(¢* £, Qp* 2L ,).

Let m : X xgpst r X — X denote the multiplication on X, so that m induces a
map my : X Xgpst g Y Xspst X — X Xgper r Y. Since £, is the line bundle associated
to a biextension p, we have a canonical equivalence ¢* %, ®p* £, ~ my Z,. The
pullback diagram

X xspet Y Xspet R X —= X Xgpst r Y
I |

XXSpétRX m X

determines an equivalence of functors m*m, — u,m¥, and therefore an equivalence
E~m'n. 2L,

Let s : X — X denote the map given by multiplication by (—1), and let us regard
the pair (m, sory) as an equivalence of X xgpe g X with itself, having homotopy inverse
(m, s)~t. We then compute

(FMuk), o FMuk,)(#) =~ ri(m*m, L, ®rf F)
m, s)*(rome L, Qris* F)
rie(m, ), (rgme L, @ris* F)
~ mu(rime L, ris* F)

= (L) (57 P),

(
rl*(
(

where » denotes the convolution product of Since the pullback functor s* is an
equivalence, it follows that F Muk; o FMuk, is an equivalence if and only if the object
7« L, € QCoh(X) is invertible with respect to convolution. ]

5.2 Dualizing Sheaves

Let 1 : XAY — BGL; be a biextension of abelian varieties over a connective
Ey-ring R, let £, be the underlying line bundle on X xgpst g Y, and let

W:XXSpétRY—)X W/:XXSpétRY_)Y
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denote the projection maps. If p is perfect, then 7, .7, € QCoh(X) and 7, .Z,, €
QCoh(Y) are invertible objects with respect to the convolution product on QCoh(X)
and QCoh(Y) respectively. In this case, we can explicitly identify the objects ., .2,
and 7, .Z,, using the language of Grothendieck duality (see §SAG.6). We begin with
some general remarks.

Notation 5.2.1 (The Dualizing Sheaf). Let R be a connective E.-ring and let X be
an abelian variety over . We let wx = wx /spet r denote the relative dualizing sheaf
of the projection map X — Spét R (Definition SAG.6.4.5.3). We let wy denote the
pullback e*wx € QCoh(Spét R) ~ Modg, where e : Spét R — X denotes the identity
section.

Remark 5.2.2. Let R be a connective E,-ring and let X be an abelian variety over
R. Since X is fiber smooth (Corollary [I.4.9)), the sheaf wx is an invertible object of
QCoh(X) (with respect to the tensor product). If X is an abelian variety of dimension
g over R, then X 9wy is a line bundle on X.

Proposition 5.2.3. Let R be a connective Eo,-ring, let X be an abelian variety over
R, and let q : X — Spét R denote the projection map. Then there is a canonical
equivalence wy ~ q*wy in the cw-category QCoh(X).

Proof. Let m, 7" : X xgpet R X — X denote the projection onto the first and second
factor, respectively, and let m : X xgp¢t X — X be the addition map. Then we have a
diagram of pullback squares

X T X X gpet g X~ X

Pk

Spét R <~ X 4 . Spét R.

Let wy, € QCoh(X X gpet g X) denote the relative dualizing sheaf of m. Applying Remark
SAG.6.4.2.6 , we obtain equivalences m*wyx ~ w,, ~ 7™*wx. The desired result now
follows by applying the functor f* to this equivalence, where f : X — X xgpe g X is
the map given by (id, 0). ]

Remark 5.2.4 (The Adjoint Fourier-Mukai Transform). Let p : X AY — BG4
be a biextension of abelian varieties over a connective E,-ring R and let FMuk, :
QCoh" (X) — QCoh(Y) be the Fourier-Mukai transform associated to p. According
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to Remark [4.7.6, the functor FMuk, is given by the composition of functors
QCoh¥(X) =~  QCoh(X)
™, QCoh(X xgper Y)
(

EZn, QCoh(X xspser Y)
T, QCoh(Y),

where m: X Xgpsrg Y — X and 7’ : X Xgpst g Y — Y denote the projection maps and
Z,, is the underlying line bundle of x. It follows that the functor FMuk, admits a
right adjoint, given by the construction

F - W*($;1®W*wx®ﬂl* F) ~ wx®7r*($;1®7rl* F).

Remark 5.2.5. Let X be an abelian variety over a connective E,-ring R and let
e : Spét R — X be the zero section. The morphism e is proper, locally almost of finite
presentation, and of finite Tor-amplitude, and therefore admits a relative dualizing
sheaf we = wspst r/x € QCoh(Spét R). Applying Corollary SAG.6.4.2.8 to the diagram

N

Spét R i Spét R,

we obtain a canonical equivalence wy ®@we ~ wWsper r/spst R = O'spét r- 1t follows that the
sheaf w, can be identified with (wg)~!. Applying Corollary SAG.6.4.2.7, we deduce
that the direct image functor e, : QCoh(Spét R) — QCoh(X) admits a right adjoint,
given by .Z — (wy) ' ®@e* Z.

Construction 5.2.6 (The Roots of a Biextension). Let p1 : XAY — BGL; be a
biextension of abelian varieties over a connective E.-ring R and let £, be the

underlying line bundle on X xgps g Y. Let e : Spét R — X denote the identity section
and form a pullback square

Y > X xgpeer Y

lﬁ |

Spét R —=< X.

The multiplicativity of .Z, supplies a trivialization of the pullback e¥ .Z,, which
determines an equivalence

a: T, Oy ~Tey L, ~e*n,. L.
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Using Remark we obtain a canonical homotopy equivalence

MapQCoh(Y) (Oy,0v) =~ MapQCoh(Spét R) (Ospést s T O )
= MapQCoh(Spét R) (Osperr, €°Ts L u)
= MapQCoh(X) (ex (W;)_la Tw L p)-

We let p,, @ e, (wy) ™!

— 7. 2, denote the image of the identity map ids, under this
homotopy equivalence.

Applying the same construction with the roles of X and Y reversed, we obtain a
morphism pf, : €, (wy)™" — 7, 2L, where ¢ : Spét R — Y and 7’ : X xgperr Y — Y
denote the identity section and projection map, respectively. We will refer to p, and

p,, as the roots of the biextension p.

Remark 5.2.7. Let p: XA Y — BGL; be a biextension of abelian varieties over a
connective E-ring R and let p, : e.(wy) ™" — 7, £, be as in Construction [5.2.6] If
R # 0, then p,, is not nullhomotopic (by construction, p, is nullhomotopic if and only
if the identity map id : Oy — Oy is nullhomotopic).

We have the following refinement of Proposition [5.1.4f

Proposition 5.2.8. Let i : X AY — BGL; be a biextension of abelian varieties over
a connective Eoy-ring R. Then p is perfect if and only if the roots

Pu i es(wy) ™t > T L, P, (W)t - T L

of Construction are equivalences in the oo-categories QCoh(X) and QCoh(Y),

respectively.

Proof. We will employ the notation of Construction [5.2.6f Note that (wg)~! is an
invertible object of the co-category QCoh(Spét R) ~ Modg. Moreover, the direct
image functor e, : QCoh(Spét R) — QCoh(X) is symmetric monoidal, if we regard
QCoh(X) as equipped with the convolution product of . Consequently, if p, is
an equivalence, then 7w, .Z, € QCoh(X) is invertible with respect to the convolution
product. Similarly, if pf, is an equivalence, then 7, %, is invertible with respect to
the convolution product on QCoh(Y). Applying Proposition we see that if p,
and p;, are both equivalences, then p is perfect.

We now prove the converse. Suppose that p is a perfect biextension; we will show
that p, and pj, are equivalences. Working locally with respect to the Zariski topology
on R, we may assume without loss of generality that R # 0 and that X and Y have
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fixed dimensions g and ¢’, respectively. Localizing further if necessary, we may assume
that wy ~ 39 Ogpepp and wy ~ x99 0 spet k. (see Remark . Moreover, we may
assume without loss of generality that ¢ < ¢'.

Let FMuk/, : QCoh” (Y) — QCoh(X) denote the Fourier-Mukai transform associ-
ated to p, so that FMukL is an equivalence of co-categories (Proposition . Let G
denote a homotopy inverse of the functor FMuk/,. Note that FMuk, (Oy) ~ 7, .2,
(see Remark [4.7.6)), so there exists an equivalence G(my Z,) ~ Oy. The functor G is
also right adjoint to FMuk:L, so Remark supplies a calculation

Gle*wy)™h) =~ wY®W;($;1®W*€*(w§<>_1)
Wy @ T (L, ®ey 7 (wy) ™)
OJY®7T €Y*(@Y$ @7 (wx) ™ 1)
wy ® mhey (T (wg) ™)

wy @7 (wy) ™!

~ YOy,

12

It follows that we can identify G(p,) with a morphism v : X9 =9 &y — Oy in QCoh(Y).
We claim that v is an equivalence. To prove this, we may assume without loss of
generality that R = k is a field (see Corollary SAG.2.7.4.4). Our assumption that Y
is geometrically reduced and geometrically connected then supplies isomorphisms

Kk ifx=0

o) {o if + >0

Since the map 7 does not vanish (Remark , we conclude that g = ¢’ and that
7 is an equivalence. Since G is an equivalence of co-categories, we conclude that p,,
is an equivalence. Applying the same argument (with the roles of X and Y reversed;
note that the above argument shows that ¢’ < ¢), we conclude that p), is also an
equivalence. O

Corollary 5.2.9. Let u: X AY — BGL; be a biextension of abelian varieties over
a connective Ey-ring R. Suppose that, for every morphism R — k where k is an
algebraically closed field, the induced map p,; : Xi AY, — BGL; is a perfect biextension
of abelian varieties over k. Then p is perfect.

Proof. Combine Proposition with Corollary SAG.2.7.4.4. O]
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Remark 5.2.10. Let p: X A Y — BGL; be a biextension of abelian varieties over a
connective Eq-ring R with underlying line bundle .Z,,. If 1 is perfect, then Proposition
5.1.4] supplies canonical equivalences

(W) ™" = T(X xspaer YV5.2) = (w§) 7

In particular, wy and w§ are canonically equivalent (as invertible objects of Modg).

5.3 Multiplicative Line Bundles

Let R be a connective Ey-ring and let X be an abelian variety over R. If X admits
a dual X (in the sense of Definition , then X is determined by X up to equivalence
(Remark . We now make this observation more explicit by describing X in terms
of its functor of points.

Definition 5.3.1 (Multiplicative Line Bundles). Let R be a connective E.-ring and
let X be an abelian variety over R, which we identify with its functor of points
X : CAlg — CMon, and let BGL; : CAlgy — CMon be as in Construction [£.1.5]
A multiplicative line bundle on X is a morphism . : X — BGL; in the oo-category
Fun(CAlg%', CMon).

For every connective R-algebra A, we let Zicy' (A) denote the mapping space
Mappyn(calgs cMon (X4, BGL1) of multiplicative line bundles on X4 = X|calgg-

Remark 5.3.2. In the situation of Definition [5.3.1] we can regard the construction
A — Zicy'(A) as a functor from the co-category CAlgy to the oo-category CMon
of E,, spaces. This functor is equipped with a map e : X A Zicy’ — BGL; with the
following universal property: for every functor Y : CAlgy' — CMon, composition with
e induces a homotopy equivalence

MapFun(CAlg%‘,CMon(S)) (Y7 ‘QICQL) = MapFun(CAlg%“,CMon (X /\Yv BGLl)
This follows from a slight variant of the arguments given in §3.7

Example 5.3.3. Let R be a connective E-ring and suppose we are given abelian
varieties X,Y € AVar(R). Then we have a canonical homotopy equivalence

MapFun(CAlg%‘,CMon) <Y7 QICQ> = BlEXt<X7Y)

Combining Example [5.3.3| with Theorem [4.4.4] we obtain the following:
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Proposition 5.3.4. Let R be a connective Ey-ring and let p: X AY — BGL;y be a
perfect biextension of abelian varieties over R. Then the induced map o : Y — Picy’
s an equivalence.

Corollary 5.3.5. Let R be a connective Ey-ring and let X be an abelian variety
over R. If X admits a dual X, then there is a canonical equivalence X ~ Picy’. In
particular, Picy is (representable by) an abelian variety over R.

Warning 5.3.6. Let 1 : X AY — BGL; be a biextension of abelian varieties over a
connective E..-ring R. If X admits a dual X, then the converse of Proposition m
holds: if a : Y — Picy ~ X is an equivalence, then the biextension pu is perfect.
However, if we do not yet know that X admits a dual, then the converse of Proposition
(3.4 not obvious.

To understand the issue, let FMuk, : QCoh”(X) — QCoh(Y) be the Fourier-
Mukai transform associated to p. For every connective R-algebra A, we can identify

a(A) : Y(A) - Zicy (A) with the map
MapCAlg(LinCat%) (QCoh(Y),Moda) — Mapcmg(mncat?;) (QCoh™ (X), Mod )
given by precomposition with FMuk,. Using Proposition|5.1.3, we obtain the following:

(a) The biextension pu is perfect if and only if, for every commutative algebra
object C of LinCat%t, the Fourier-Mukai transform FMuk, induces a homotopy
equivalence

MapCAlg(LinCat%t) (QCOh(Y>7 C) - MapCAIg(LinCat%) (QCOhV (X)7 C)

(b) The map « is an equivalence if and only if, for every commutative algebra object
C of LinCat} having the form Mod, for some A € CAlg$', the Fourier-Mukai
transform FMuk,, induces a homotopy equivalence

MaPCAlg(LmCat%) (QCoh(Y),C) — MaPCAlg(LmCat%) (QCoh™ (X),C).

The implication (a) = (b) is the contents of Proposition To prove the converse,
it would suffice to show that QCoh" (X) can be obtained as an inverse limit (in the
co-category CAlg(LinCat3})) of oo-categories of the form Mod,, for A € CAlg$y. This
condition is satisfied if X admits a dual (we then have QCoh" (X) ~ QCoh()A()), but is
not obvious from the definitions.
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We now study the deformation-theoretic properties of the functor Zicy’.

Proposition 5.3.7. Let R be a connective E-ring, let X be an abelian variety over
R, and let us regard Zicy’ as a functor from the co-category CAlgy' to the co-category
S of spaces. Then:

(a) For every object R’ € CAlg}', the space Picy (R') is essentially small.

(b) The functor Picy : CAlgy — S is nilcomplete.

(¢) The functor Picy : CAlg™ — S is cohesive.

(d) The functor Picy admits a (—1)-connective cotangent complez (relative to R).

Proof. For every object R’ € CAlg%', let us regard the commutative monoids Xz and
BGL; as defining a map of simplicial sets N(Fin,) x d A! — Fun(CAlg%,S). For
every map of simplicial sets f : T'— N(Fin,) x Al, let T, denote the inverse image of
N(Fin,) x d Al in T, and let Fr(R’') denote the fiber of the categorical fibration

Fun(7, Fun(CAlg%, S)) — Fun(T5, Fun(CAlgy, S))

over the point determined by the pair (Xg, BGL;). Then we can regard Fr as defining
a functor CAlgy' — S.
Let T" be a simplicial subset of T' containing T,. We will prove the following:

(a") For every R’ € CAlg§', the map of spaces Frr(R') — Fp(R') has essentially small
homotopy fibers.

(/) The natural transformation Fr — Fp is nilcomplete.
() The natural transformation Fr — Fp is cohesive.

(d') The natural transformation Fr — Fp admits a (—1)-connective cotangent
complex.

Taking T = N(Fin,) x A! and T" = T, we will obtain the desired result.

We proceed by induction on the (possibly infinite) dimension of 7. Choose a
transfinite sequence of simplicial subsets 7" =Ty < Ty < --- < T, = T satisfying the
following conditions:

(4) If v is a nonzero limit ordinal, then T, = (J,_, T
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(i1) If v = B+ 1 is a successor ordinal, then T’ is obtained from T by adjoining a
single nondegenerate simplex (whose boundary is already contained in Tj).

We will prove, using induction on v < «, that assertions (a’) through (d’) hold for
the inclusion 77 < T),. If v = 0, then 7" = T, and there is nothing to prove. If vy
is a nonzero limit ordinal, then fr ~ lim By Fr,, so that the desired result follows
from the inductive hypothesis (see Remark SAG.17.2.4.5 in case (d')). It therefore
suffices to treat the case where v = 5 + 1 is a successor ordinal. Using the inductive
hypothesis (and Proposition SAG.17.3.9.1 in case (d’)), we are reduced to proving
that the inclusion T < T, satisfies the analogues of (a') through (d'). We have a
pushout diagram of simplicial sets

0A" —= A"

L

Ty ——T,,
hence a pullback diagram of functors

Fr, —— Fr,

|

FAn HFaAn.

We may therefore replace T' by A™ and 7" by 0 A".

Note that the map f : T — N(Fin,)xA! cannot factor through N(Fin,)x A (since
T, < 0 A™). It follows that there exists 1 < ¢ < n such that f(i — 1) € N(Fin,) x {0}
and f(i) € N(Fin,) x {1}.

Suppose now that ¢ < n, and let 7”7 < T' = A" denote the union of the simplices

Fr ¥ Fp
DN

FT//.

Since the inclusion 7” < T is inner anodyne, the map ¢ is an equivalence. Consequently,
to verify that assertions (a’) through (d’) hold for the morphism 4, it suffices to verify
that (a’) through (d’) hold for the morphism ¢’. This follows from the inductive
hypothesis, since 7" has dimension smaller than that of 7.
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and proceed as above. We are therefore reduced to the case where ¢ = n = 1.
Then Fp is contractible, and f determines a morphism ((m),0) — ({(m'),1) in
N(Fin,) x Al. Unwinding the definitions, we see that Fir is the functor which classifies
maps X" to BGLTI; here X" denotes the mth power of X in the co-category of spectral
algebraic spaces over R. Assertions (a') through (d') now follow from Proposition
SAG.19.2.4.7. O

5.4 The Functor Picy

In the setting of classical algebraic geometry, the theory of multiplicative line
bundles simplifies: if X is an abelian variety over a field x, then a line bundle .
is multiplicative if and only if there exists an isomorphism m* ¥ ~ Z X%, where
m @ X Xgper s X — X is the addition law on X (see Proposition below).

Notation 5.4.1. Let R be a connective E,-ring and let X € Var(R) be a variety
over R equipped with an R-valued point e : Spét R — X. We let Zicy : CAlgy — S
denote the functor given by the formula

Pics (A) = fib( Pic(X xspee 1 SPét A) L5 Pic(Spét A)).

By virtue of Theorem SAG.19.2.0.5, the functor Zicy is representable by a spectral
algebraic space which is quasi-separated and locally of finite presentation over R
(which we will also denote by Zick).

Construction 5.4.2. Let R be a connective Ey-ring and let X, Y € Var(R) be varieties
over R, equipped with R-valued points e : Spét R — X and ¢’ : Spét R — Y. Then ¢
and ¢’ determine maps

¥
e
Y&XXSpétRYéX.

We let @iC§7Y denote the fiber of the pullback map
. (e€) ed xe¥ e o
QICX Xspst R Y ‘@mX X'Spét R c@lcy .

More informally, @ieﬁy parametrizes line bundles .Z" on the product X xgps;p Y
which are equipped with (compatible) trivializations along X and Y.

Proposition 5.4.3. In the situation of Construction the projection map T :
t@iCQ’Y — Spét R admits a cotangent complex which is perfect and 1-connective.
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Proof. For each variety Z over R, let Zicz denote the classifying stack of line bundles
on Z (not equipped with any trivialization), and let ¢z : Zicz; — Spét R be the
projection map. Using Remark SAG.19.2.4.8 | we deduce that ¢z admits a relative
cotangent complex, given by ¥71¢3T'(Z; 0z)¥. Unwinding the definitions, we see that
f@icﬁy can be described as the total fiber of the commutative diagram

:@iCx xspstrRY T :@iCx

i |

CgZiCY —— gZiCSpétR .

It follows that the relative cotangent complex of 7 can be obtained by applying the
functor X~17* to the total cofiber of the diagram o :

F(X, ﬁx)v ®R F(Y, ﬁy)v <;F(X, ﬁx)v

| |

F(Y, ﬁ)y)v R

It will therefore suffice to show that the total cofiber of ¢ is perfect and 2-connective.
This is clear, since the cofiber is dual to the tensor product

where each factor is perfect of Tor-amplitude < —1 by virtue of our assumption that
X and Y are varieties over R (see Proposition SAG.8.6.4.1). O

Corollary 5.4.4. Let R be a commutative ring, let X,Y € Var(R) be varieties over R
equipped with points e : Spét R — X and €' : Spét R — Y, and let 7« gzicﬁy denote
the underlying 0-truncated spectral algebraic space of e@icﬁy. Then the structure sheaf
Ox xspennY 18 Classified by an étale morphism u : Spét R — 7« @icﬁy.

Proof. Set Z = ﬁicﬁY and Zy = 7<o Z, so that we have a tautological closed immersion
t:Zy — Z. Using the fiber sequence u* Lz spet  — Lspet r/spet B — Lsper r/z together
with Proposition [5.4.3] we deduce that Lgpe; r/z is 2-connective. Applying Corollary
SAG.17.1.4.3, we deduce that the relative cotangent complex Lz, /7 is also 2-connective.
Using the fiber sequence t* Lz, /7 — Lspet r/z — Lspet R/ zo, We deduce that Ly r)z,
is also 2-connective. Using Proposition SAG.11.2.4.1, we deduce that the morphism u
is fiber smooth. The map u admits a left homotopy inverse (given by the composition
Zy > Z — Spét R) and therefore locally quasi-finite. It follows that u is étale, as
desired. O]
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Remark 5.4.5. In the situation of Corollary [5.4.4] suppose that X and Y are fiber
smooth over R. Applying Proposition SAG.19.2.5.3, we deduce that the spectral
")

apetnY A€ separated. It follows that gzic)ﬁy

algebraic spaces Zicy, Zicy, and 91o§f "
is also separated, so that the morphism u : Spét R — 7« ,@icﬁy is a closed immersion.
It follows that u is a clopen immersion (see Definition SAG.3.1.7.2): that is, u exhibits

7 - A
Spét R as a summand of 7>¢ Zicyy.

Construction 5.4.6. Let R be a connective E -ring, let X be an abelian variety over
R, and let u : Spét moR — 7«9 gzicﬁ,x be the closed and open immersion of Corollary
[.4.4] (and Remark [5.4.5)). Then there is a unique (up to equivalence) closed and open
subspace U © @ic)%’x which fits into a pullback square

Spét Mo R —> T« @icﬁ,x

| |

. A
U Pick x -

Let m, 7" : X xgpet g X — X denote the projection maps and m : X xgpe g X — X is
the addition map on X. The construction .Z — m* £ Qn* ¥ L@r* £~ determines
a map Zicy — gzicix. We let Picy denote the fiber product Picy X pica, U; which
we regard as a closed and open subspace of Zicy.

Remark 5.4.7. More informally, the spectral algebraic space Zicy of Construction
parametrizes line bundles £ on X (equipped with a trivialization along the
identity section) for which the line bundles m* .Z and .Z [X] £ become equivalent when
restricted to the O-truncation of X xgp¢; r X. Note that this condition is automatically
satisfied if .Z is a multiplicative line bundle on X. Consequently, the forgetful map
Picy — Picy factors through Picy.

Warning 5.4.8. Let X be as in Construction m By construction, Picy is an
open and closed subspace of Zicy. In fact, we can say more: Picy is the “identity
component” of Zicy, so that the fibers of the map Picy — Spét R are connected.
This is not a priori obvious from the definition. However, it follows from Theorem
5.6.4] (which shows that Zicy is an abelian variety over R) together with Proposition
(which shows that Zicy’ and Picy have the same underlying classical algebraic
space).

Proposition 5.4.9. Let R be a connective E-ring and let X be an abelian variety over
R. For every discrete R-algebra R, the map Picy (R') — Picy(R’) is a homotopy
equivalence. In particular, the space Picy (R') is discrete.
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Proof. Without loss of generality, we may replace R by R’ and thereby reduce to
the case where R is discrete. In what follows, we work in the category of algebraic
spaces over R; to simplify the notation, we will denote fiber products over Spét R
simply as Cartesian products. Let e : Spét R — X denote the identity section of X,
let 7,7’ : X x X — X denote the projection maps, and let m : X x X — X denote the
addition map.

Unwinding the definitions, we see that Z2icy’(R) can be identified with the classi-
fying space of the groupoid of extensions of X by the multiplicative group G,,. To
prove that this classifying space is discrete, it suffices to show that there are do not
exist any nontrivial group homomorphisms ¢ : X — G,,. As a map of algebraic spaces,
¢ is determined by an (invertible) global section f € H(X; &x). Since the base point
e induces an isomorphism H%(X; Ox) — R, ¢ is determined by the composite map
Spét R 5 X 2, G, which is necessarily trivial whenever ¢ is a group homomorphism.

Now suppose we are given an element of Zicy(R), classifying a line bundle .Z on
X together with a trivialization of e* .Z. Let X be the associated principal G,,-bundle
over X, so that the trivialization of e* % determines a point € : Spec R — X. To
promote £ to a point of Zicy'(R), we need to supply a compatible abelian group
structure on X having € as the identity section. Such an abelian group structure
is determined by a multiplication map m : X x X — X. Such a map is necessarily
G,, x G,,-equivariant and therefore determined by an isomorphism of line bundles
a:m* L ~n* L™ L, which exists if and only if % is classified by an R-valued
point of Licy(R) (and, in this case, the isomorphism « is uniquely determined by
the requirement that it is compatible with the trivialization of e* .#). To complete
the proof, it will suffice to show that for any such isomorphism «, the induced
multiplication m : )N(2 — X is commutative and associative, has € as a unit, and admits
inverses. We verify each of these conditions in turn:

(a) The point €: Spét R — X is a left unit for the multiplication m. To prove this,
we must show that the composite map

(B} x X > X x X — X
is the identity. Unwinding the definitions, this amounts to the assertion that
the map of line bundles

B: L ~(exid)*m" L= (exid)* (1" L " L)~ 0" L RYL ~ L

is the identity map, where 0 : X — X denotes the zero map. This map is given
by multiplication by an invertible element of H(X; &x). Since evaluation at e
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induces an isomorphism H°(X; @x) — R, it suffices to check that 3 restricts to
the identity map from e* £ to itself, which is evident.

The multiplication m is commutative. Let m’ denote the opposite multiplication
on X (obtained by composing m with the automorphism of X x X which
exchanges the factors). Then m' is determined by another isomorphism of line
bundles o : m* ¥ ~ n* £ @n"* £. Note that o and o’ differ by multiplication
by an invertible element of H°(X?; @y2). The map (e, e) : Spét R — X? induces
an isomorphism H°(X?; Oy2) — R. Consequently, to prove that o = o, it
suffices to show that they induce the same isomorphism after restricting the
base point of X?, which is evident.

~3 ~
The multiplication m is associative. Let f,g : X — X denote the maps given by
the compositions

X g g*m, %
Let ms : X* — X denote the multiplication map, and let pgy, p1,ps : X* — X
be the projections onto the three factors. Then f and g are determined by

isomorphisms of line bundles
8,8 :m3 L — py L ®p] L @p; L .

We wish to prove that § = §’. Note that 5 and 3’ differ by multiplication by an
invertible element of H?(X®, @ys). Since the base point (e, e,e) : Spec R — X?
induces an isomorphism HO(X3, Ox3) — R, we are reduced to proving that
and (' agree after restriction the base point of X*, which is obvious.

The commutative monoid structure on X admits inverses. Suppose we are given
a commutative algebra A over R and an A-valued point x : Spét A — X. We
wish to prove that there exists another point y : Spét A — X such that the
composite map

Spét A @YX« X B X

factors through e. Since y is uniquely determined (if it exists), the existence
of y can be tested locally with respect to the Zariski topology on A. Let
Yo : Spét A — X be an inverse to the composite map Spét A > X — X. Passing
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to a localization of A if necessary, we may suppose that y; £ is trivial so that
Yo lifts to a point y : Spét A — X. Then the composite map

2y) 2 W
~:Spét A TY XX

factors through ker()N( — X) ~ G,,, and therefore admits an inverse in G,,.
Modifying y if necessary, we may assume that v factors through e, as desired.

O

5.5 Representability of the Functor Zicy’

We have now assembled most of the ingredients needed for the proof of the following
result:

Proposition 5.5.1. Let R be a connective Ey-ring and let X be an abelian variety
over R. Then the functor Picy : CAlgy — S is representable by a separated spectral
algebraic space which is locally almost of finite presentation over R. Moreover, if
i:Z— Picy is a closed immersion of spectral algebraic spaces and Y is quasi-compact,
then Z is proper over R.

Proof. Let e : Spét R — X denote the identity section of X. Using Proposition
SAG.19.2.0.5 and Corollary SAG.19.2.5.3, we see that the functor Picy is repre-
sentable by a separated spectral algebraic space. By virtue of Proposition [5.4.9] the
functors Picy and Zick agree when restricted to the category CAlg}, < CAlgS® of
discrete R-algebras. Since the functor Zicy’ is cohesive, nilcomplete, and admits a
cotangent complex (Proposition [5.3.7)), Theorem SAG.18.1.0.2 guarantees that Zicy’
is representable by a spectral Deligne-Mumford stack over R. Since Picy and Zicy’
agree on discrete R-algebras, we conclude that Zicy’ is also a separated spectral
algebraic space. Note that if i : Z — Picy is a closed immersion, then the composite
map Z 5 Picy — Pic is also a closed immersion. If Z is quasi-compact, then
Corollary SAG.19.2.5.3 guarantees that Z is proper over R.

We now complete the proof by showing that Zicy’ is locally almost of finite
presentation over R. By virtue of Proposition SAG.17.4.3.1, we are reduced to proving
the following:

(x) For each integer n = 0, the functor Zicy’ commutes with filtered colimits when
restricted to 7, CAlg%'.
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Let us now regard n as fixed. For each n-truncated object R’ € CAlg%', we let Cp
denote the full subcategory of CAlg} spanned by the n-truncated objects, and regard

st
Cr as equipped with the étale topology. Let Shv (R’) denote the full subcategory of
Fun(CAlg%s, S) which are sheaves with respect to the étale topology. Consider the
following condition on a functor F"

(') Let F': CAlgp — S be a left Kan extension of Flc,,. Then the canonical map
F" — F exhibits F' as a sheafification of F” with respect to the étale topology.

Note that the collection of functors F' which satisfy (x) is closed under colimits in

gh\vet(R’ ). Moreover, any functor which is corepresentable by an n-truncated object of
CAlg} satisfies (+'). It follows that if a functor F' is representable by an n-truncated
spectral Deligne-Mumford stack over R, then F satisfies (+').

Suppose we are given a simplicial set K and a pair of diagrams Y, 7 : K —
Fun(CAlg%, 3’) Assume that for every vertex v € K, the functor Z(v) : CAlgpy — S
is a sheaf for the étale topology, and the functor Y (v) : CAlgh — S satisfies (+').
Then the restriction map

MapFun(K,Fun(CAlg‘;’, ,3<Y’ Z> - MapFun(K,Fun(CR/ S)) (Y’CR” Z|CR’)

is a homotopy equivalence. In particular, we obtain a homotopy equivalence

Pic (R) >~ MapeyonFun(calgen,s) (X [oatgen BGL1 [caigen)

R’

= MapCMon(Fun(CR/,S)) (X |CR/ ) BGL, |CR’)'

Note that X|c,, is an n-truncated object of Fun(Cr,S) and that BGL: |¢, is an
(n + 1)-truncated object of Fun(Cg/, S).

For every integer k = 0, let Mong, (Fun(Cr/, 7<n+1S)) denote the co-category of
Ej-monoid objects of Fun(Cr/, 7<p11S) (see §HA.5.1). Let X |§.§/) denote the image of
Xle,, in Mong, (Fun(Cg/, T<p+1 S)), define BGLY;%/ similarly, and let @icg(k)(R’ ) denote
the mapping space MapPyion, (Fun(Cp renss 8))(x§§), BGL%,). The construction R’ —
%c;’“)(R’ ) determines a functor %cﬁ“’ : T<n CAlgy — S. Since Fun(Cpr, 7<pni1 S) is
equivalent to an (n + 2)-category, Example HA.5.1.2.3 implies that the restriction
functor CMon(Fun(Cr/, 7<p41S)) — Mong, (Fun(Cr/, 7<n41,S)) is an equivalence of
awo-categories for k = n+3. It follows that the restriction map Zicy'(R') — Qicgf)(R’ )
is a homotopy equivalence for k > n + 3, for any n-truncated object R’ € CAlg%'. To
complete the proof, it will suffice to show that the functors ,@icg(k ) commute with
filtered colimits for &£ > 0.
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We now proceed by induction on k. In the case k£ = 0, the desired result

is an immediate consequence of Proposition SAG.19.2.4.7. To carry out the in-

) commutes with

filtered colimits for ewvery abelian variety Y over R; we will show that e@icg(kﬂ)

ductive step, let us suppose that & > 0 and the functor g@icg(/€

commutes with filtered colimits. For every n-truncated object R’ € CAlg%', let
Er = Mong, (Fun(Cr, T7<n4+1S)). Using Theorem HA.5.1.2.2, we obtain an equiva-
lence of oo-categories Mong, ,, (Fun(Cp/, 7<n+1S)) ~ Mon(Ep). In particular, XS;';,H)
and BGLgIZ,rl) determine monoid objects Er/, % € Mon(€) < Fun(A?, Ex), and the
functor f@ic&k 1 is given by R/ Mapyion(e ) (Errs ). For every map of simplicial
sets K — N(A)P, let F : 7<, CAlgly — S be the functor given by the formula

R - Ma‘pFun(K,gR/)<ER'|K7 E}%'|K)

We wish to prove that the functor Fyayr commutes with filtered colimits.

For any n-truncated object R’ € CAlg%', the co-category Fun(Cpr, T<pni1S) is
equivalent to an (n + 2)-category. It follows that £ is also equivalent to an (n + 2)-
category. Applying Theorem SAG.A.8.2.3, we deduce that the inclusion AL, , 5 — A
induces an equivalence Fx(ayr — Fy AP - It will therefore suffice to prove that the
functor Fx commutes with filtered colimits for every finite simplicial set K equipped
with a map K — N(AP).

We now proceed by induction on the dimension p of K and on the number of
nondegenerate p-simplices of K. If K = ¢ there is nothing to prove. Otherwise, we
can choose a pushout diagram of simplicial sets

0 AP —— AP

L

K ——K,
hence a pullback diagram of functors

FKHFK/

.

Far ——Fyar.

The inductive hypothesis implies that the functors Fya» and Fg commute with filtered
colimits. We are therefore reduced to proving that the functor Fa» commutes with
filtered colimits. If p > 2, then there exists an inner anodyne inclusion A} < AP which
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induces an equivalence Fap — FAzlz, and the desired result follows from the inductive
hypothesis. We may therefore reduce to the case where K = AP and p < 1.

Let us now consider the case where p = 0. In this case, the map K — N(A)°
determines an object [a] € A, and the functor Fk is given by the formula

Fx(R') = Map,, (Er([al), Ef([a])) ~ Map  (Er([a]), Ef ([1]))* ~ Pickd (R)",

and therefore commutes with filtered colimits by the inductive hypothesis (applied to
the abelian variety X over R).

We conclude by treating the case where p = 1, so that the map K — N(A)°P
classifies a map of finite linearly ordered sets [a] — [b]. Unwinding the definitions, we
obtain a pullback square (depending functorially on R'):

Fi(R) Mapg , (Er([a]), B ([a]))

|

Mapg , (Er ([0]), ER ([b])) —Mapg , (Er ([b]), E ([a]),

which gives a pullback square of functors

Fy (Pick))a

| |

(2ic))r —— (2icl))

Since the functors f@icg(ka) and f@icg(kb) commute with filtered colimits by the inductive
hypothesis, we deduce that the functor Fx commutes with filtered colimits. O

5.6 Existence of the Dual Abelian Variety

Our goal in this section is to show that every abelian variety X over a connective
E,-ring R admits a dual (Theorem . The strategy of proof is to first treat the
case where R is an algebraically closed field (in which case the result is classical, but we
include a proof here for completeness). We begin with some preliminary observations.

Lemma 5.6.1. Let x be a field, let X be an abelian variety over k, and let £ be a
multiplicative line bundle on X. If £ is nontrivial, then the cohomology H*(X; %)
vanishes.
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Proof. Let m, " : X Xgpstx X — X denote the two projection maps and let m :
X Xgpetx X — X denote the addition map. Then (m,m) : X Xgpet s X — X Xgpstx X
is an automorphism. Moreover, the multiplicativity of £ supplies an an isomor-
phism (m,m)*(7* Ox @n"™* L) ~ * £ @n'* £. Passing to cohomology, we obtain an
isomorphism of graded vector spaces

a:H'(X; Ox) ®. H*(X; .¢) ~ H*(X; £) ®. H*(X; Z).

Assume that H*(X;.%) is nonzero. Then there exists some smallest integer n > 0
such that H"(X; %) is nonzero. Note that the domain of « is nonzero in (cohomological)
degree n, and the codomain of @ vanishes in (cohomological) degrees < 2n. Since « is
an isomorphism, we conclude that n = 0: that is, there exists a nonzero global section u
of .Z. Note that .Z ! is isomorphic to the pullback of . along the map (—1) : X — X,
and therefore also has nonzero cohomology. Applying the same argument to .2~ ", we
deduce that there exists a nonzero global section v of Z~!. Since X is irreducible,
the product wv is a nonzero global section of £ ® % L~ 0y. Tt follows that uv is
nowhere vanishing, so that u determines an isomorphism Oy ~ .Z. O

Lemma 5.6.2. Let k be an algebraically closed field and let X be an abelian variety
of dimension g over k. Then there exists another abelian variety Y of dimension g
over K and a biextension p: X AY — BGLy with the following property:

(#) Let £, be the underlying line bundle of p. Then there are only finitely many
r-valued points x € X(k) such that L, |(z1xv s trivial, and only finitely many
r-valued points y € Y (k) such that L, |x gy 15 trivial.

Proof. Choose a nonempty affine open subset U < | X| (such an open set exists by
virtue of Proposition or Corollary SAG.3.4.2.4). Shrinking U if necessary, we
may assume that the complement of U is a Cartier divisor D < | X|. Let Ox(—D)
denote the ideal sheaf of D and let Ox(D) = Ox(—D)™" denote its inverse. Without
loss of generality, we may assume that U contains the identity section of X, so
that Ox (D) is canonically trivialized at the identity of X. Let m, 7" : X xgpsrn X —
X denote the projection maps and let m : X xgp¢x X — X denote the addition
map, and let .Z,, denote the line bundle on X xg,¢; X given by the tensor product
m* Ox(D) @ m* Ox(—D) @ 1'* Ox(—D). Then .Z, is the underlying line bundle of a
biextension z1 : X A X — BGL; (see Example [4.2.5). We claim that p satisfies condition
(x). To prove this, let us identify p with a map f: X — Zicy’, and let K < | X| be
the inverse image of the identity element of Zicy (k). We wish to show that K is
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finite. To prove this, we let X' denote the reduced closed subspace of X corresponding
to the connected component of the identity in K. Then X' is also an abelian variety
over £, and the biextension p is trivial on X' A X" (even on X' A X). We wish to show
that X' ~ Spét k. Replacing X by X', we are reduced to the case where the map f is
nullhomotopic, so that the line bundle .#, is trivial. Applying Proposition [5.4.9] we
deduce that Ox(D) admits the structure of a multiplicative line bundle on X. Since
H°(X; Ox(D)) is nonzero, Lemma implies that the line bundle &x(D) is trivial.
It follows that the structure sheaf &’y admits a section s which vanishes exactly on
the Cartier divisor D. Since X is connected and proper, any nonvanishing section of
Ox is nowhere vanishing. It follows that D = ¢, so that U = | X|. Then the abelian
variety X is proper and affine over x, hence zero-dimensional as desired. O

Lemma 5.6.3. Let k be an algebraically closed field and let X be an abelian variety
over k. Then X admits a dual.

Proof. Let p: X A'Y — BGL; be a biextension of abelian varieties over x which satisfies
condition (x) of Lemma [5.6.2 Then p determines an additive map f: Y — Zic}
of spectral algebraic spaces over k. Let Y’ denote the schematic image of f (see
Construction SAG.3.1.5.1). Then the canonical map Y’ — Zic¥’ is a closed immersion.
Since Zicy is of finite type over k (Proposition , the algebraic space Y’ is of
finite type over k. Because Y is connected, reduced, and proper over x, we conclude
that Y’ is also connected, reduced, and proper over . Using the additivity of f, we
see that the composite map

/ ! . m :m ® s m
Y Xgpetr Y — Picy’ Xgpern Picy — Picy

factors (in an essentially unique way) through Y’. Tt follows that Y’ inherits the
structure of an abelian variety over x and that the closed immersion Y’ — Z2ic}’ can
be regarded as a morphism of commutative monoids. This morphism determines a
biextension i’ : X AY' — BGL; which also satisfies condition (*) of Lemma
(note that condition () implies that the kernel of the map Y — Y’ is finite, so that
Y and Y’ have the same dimension). Replacing u by p/, we may reduce to the case
where f:Y — Picy’ is a closed immersion.

We will complete the proof by showing that the biextension p is perfect. Since f
is a closed immersion, Proposition [5.4.9] implies the following:

(7) The map Y(R) — Zicy (R) — Pick(R) is a monomorphism whenever R is a
discrete k-algebra.
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In particular, if y € Y (k) is a x-valued point for which .2, [x «(y is trivial, then y must
be the identity element yy € Y(k). Let m: X xgpers Y — X and 7 : X xgpetn Y = Y
denote the projection maps. Using Lemma [5.6.1) we deduce that the direct image
F =, 2L, is supported at the point yj.

Let &0 = Yox Osper s € QCoh(Y) denote the skyscraper sheaf at the point yy. Since
the map 7’ is proper and flat, the sheaf .# is perfect (Theorem SAG.6.1.3.2). Moreover,
the map 7’ has relative dimension g (where g denotes the dimension of the abelian
variety X), so Corollary SAG.9.6.1.4 guarantees that .# is (—g)-connective. It follows
that .# can be written as a finite extension of sheaves of the form ¢ &, for a > —g.
By assumption, Y is also an abelian variety of dimension g over k, so the local ring of
Y at the point g is regular of dimension g. It follows that there exists an equivalence
&y ~ X798y, so that the dual .#" can be written as a finite extension of sheaves
of the form %79 & for a = —g, and therefore belongs to QCoh(Y)<o. On the other
hand, the direct image .% = 7}, % has Tor-amplitude < 0 (Proposition SAG.6.1.3.1),
so that .# " is connective. It follows that .%" belongs to QCoh(Y)".

Note that we have canonical equivalences

12

MapQCoh(Y)(ﬁ. Y, &) MapQCoh(Spét K) (yo #°, 0 Spétn)

MapQCoh(Spét K) (Ospét > Yoy F)
Mapqcon(spét r) (Ospet s Yo To L 1)
MapQCoh(X) (Ox, 2, |x x{yo}
MapQCoh(X) (Ox, Ox)

~ K.

In particular, there exists a nonzero map u : %" — &, which is unique up to scalar
multiplication. Since .% " is set-theoretically supported at the point y, we can choose
amap v : Oy — Z" such that the composition Oy = .Z¥ % &, is an epimorphism
(in the abelian category QCoh(Y)"). Using Nakayama’s lemma, we deduce that v is
an epimorphism: that is, it induces an isomorphism v : Oy /Z ~ F", where Z < Oy
is some quasi-coherent ideal sheaf. Let ¢ : Yy — Y be the closed immersion determined

I with a nonzero

by the ideal sheaf Z. Then we can identify the inverse isomorphism 7~
global section of the pullback (*.%, or equivalently with a nonzero global section of
2 [X xspee Yo This global section is nowhere vanishing (since this can be checked
after replacing Y by the closed point 1), and therefore determines a trivialization of
the restriction £ |x xg,. . Yo- APPlying (i), we deduce that the map ¢ factors through

Yo, so that Oy /T is equivalent to &. Since ¥ is an isomorphism, we conclude that
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F " is equivalent to &, so that # ~ &) ~ ¥79&. It follows that .# is invertible
with respect to the convolution product on QCoh(Y).

Set ¢ = 1, £, € QCoh(X). Note that if x € X(k) is a k-valued point for which
the restriction £, |(zyxy is nontrivial, then 2*% ~ 0 (Lemma . This condition
is satisfied for all but finitely many points z € X(x) (by virtue of our assumption
that u satisfies condition () of Lemma [5.6.2)), so that the quasi-coherent sheaf ¢ is
supported on a finite subset of X. Moreover, we have a canonical equivalence

DX %) ~ DX xspern Y, Z,)
L(Y; #)
L(Y;579&)

~ Yk,

It follows that ¢ is equivalent to the suspension of a skyscraper sheaf at some point
x € X(k), and is therefore invertible with respect to the convolution product on
QCoh(X). Applying the criterion of Proposition , we deduce that the biextension
1 is perfect, as desired. O

We now come to our main result.

Theorem 5.6.4. Let R be a connective Ey-ring and let X be an abelian variety over
R. Then X admits a dual.

Proof. Let Y = Zicy be as in Definition [5.3.1] so that Y is representable by a
spectral algebraic space over R (Proposition . Let m : Y xgpee r Y — Y denote
the multiplication map and let e : Spét R — Y be the zero section. Since Spét R is
quasi-compact, we can choose a quasi-compact open subspace U € Y which contains
the image of e. We first prove the following:

(*) The composite map my : U xgpssr U <= Y Xsper Y > Y s surjective.

To prove (), we can assume without loss of generality that R = « is an algebraically
closed field. In this case, Lemma [5.6.3| guarantees that X admits a dual, so that
Corollary implies that Y is dual to X. In particular, Y is an abelian variety over
R and therefore connected. Fix a s-valued point y € | Y |, and let U = Y denote the
image of U under the map ¢’ — y —3/. Then U and U’ are nonempty open subspaces
of Y. Since Y is irreducible, the intersection U n U’ is nonempty and therefore contains
a k-valued point ¥’ € Y(k). In this case, the map my carries the point (v, y — ') to y.
Allowing y to vary, we deduce that my is surjective, as desired.
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We now return to the general case. Using (*), we deduce that Y is quasi-compact.
It then follows from Proposition that Y is proper and locally almost of finite
presentation over R. We claim that Y is also an abelian variety over R. To prove this,
we must show that the projection map Y — Spét R is flat, geometrically reduced, and
geometrically connected. By virtue of Corollary SAG.6.1.4.8 , it suffices to check these
conditions after replacing R by an algebraically closed field. In this case, the desired
result follows again by combining Lemma [5.6.3] with Corollary [5.3.5]

By construction, there is a tautological biextension of abelian varieties yt : X AY —
BGL;. To complete the proof, it will suffice to show that p is perfect. Using Corollary
5.2.9, we can again reduce to the case where k is an algebraically closed field, in which
case the desired result follows from Proposition [5.3.4! O]

6 p-Divisible Groups

Let X be an abelian variety of dimension g over a commutative ring R. For every
integer n > 0, let [n] : X — X denote the map given by multiplication by n (with
respect to the group structure on X, and let X[n] denote the kernel ker([n]) (formed in
the category of group schemes over R). A foundational result in the theory of abelian
varieties guarantees that X[n] is a finite flat group scheme of degree n?¥ over R (see
Proposition [6.7.3). In [I1], Tate observed that for each prime number p, the collection
of group schemes {X[p*]}r=0 could be organized into a mathematical object called a
p-divisible group (also known as a Barsotti-Tate module), and can be regarded as a
useful replacement for the Tate module of X in the case where p is not invertible in R.

Our goal in this section is to generalize the theory of p-divisible groups, replacing
the commutative ring R by an arbitrary E,-ring A. With an eye to later applications,
we consider more generally the notion of S-divisible group, where S is a set of prime
numbers (this is essentially just for terminological convenience: specifying an S-divisible
group is equivalent to specifying a p-divisible group for each p € S; see Remark .
We begin in by introducing the notion of a (commutative) finite flat group scheme
over A (Definition . Moreover, we show that the theory of finite flat group
schemes comes equipped with good notions of monomorphism, epimorphism, exact
sequence, and Cartier duality (see and .

In §6.4] we introduce the notion of a S-torsion object of an arbitrary co-category
C which admits finite limits. Moreover, we show that there is a close relationship
between S-torsion objects of C and abelian group objects of C, given by a functor
X — X[S*] which extracts the “S-torsion part” of an abelian group object X. In
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we apply these ideas to define the notion of S-divisible group over an arbitrary E-ring
A (Definition [6.5.1), and in we show that the construction X — X[S™] takes
strict abelian varieties to S-divisible groups (Proposition . Finally, we show that
there is a good theory of Cartier duality for S-divisible groups (Proposition , and
that the construction X — X[S™] intertwines the duality theory of abelian varieties
(studied in §5]) with the Cartier duality of S-divisible groups (Proposition [6.8.2)).

6.1 Finite Flat Group Schemes

We begin by introducing some terminology.

Definition 6.1.1. Let A be an E,-ring and let M be an A-module. We will say that
M is finite flat if the following conditions are satisfied:

(7) The abelian group moM is a projective module of finite rank over the commutative
ring myA.

(77) For each integer n, the canonical map (7oM) ®g,a (7, A) — m, M is an isomor-
phism.

We will say that f is finite flat of rank d if, in addition, the module moM has rank d
over myA.

For every E-ring A, we let Modi denote the full subcategory of Mod, spanned
by those A-modules which are finite flat.

Definition 6.1.2. Let f : X — Y be a morphism of nonconnective spectral Deligne-
Mumford stacks. We will say that f is finite flat (of degree d) if, for every map
Spét A — Y, the fiber product X xy Spét A has the form Spét B, where B is finite flat
(of rank d) when regarded as an A-module.

For each E,-ring A, we let FF(A) denote the full subcategory of SpDM’)" spanned
by the finite flat morphisms X — Spét A.

Remark 6.1.3. In the setting of spectral Deligne-Mumford stacks (with connective
structure sheaves), Definition reduces to Definition SAG.5.2.3.1. More precisely,
if Y is a spectral Deligne-Mumford stack and f : X — Y is a morphism of nonconnective
spectral Deligne-Mumford stacks, then f is finite flat (in the sense of Definition
if and only if the structure sheaf Oy is connective and f is finite flat as a morphism
of spectral Deligne-Mumford stacks (in the sense of Definition SAG.5.2.3.1).
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Moreover, the notion of finite flat morphism in the nonconnective setting immedi-
ately reduces to the connective one: a morphism f : (X, Ox) — (Y, Oy) is finite flat
if and only if f is flat and the underlying map of spectral Deligne-Mumford stacks
(X, 750 Ox) — (Y, =0 Oy) is finite flat.

Remark 6.1.4. Let f : X - Z and g : Y — Z be morphisms of nonconnective
spectral Deligne-Mumford stacks. Suppose that f is a finite flat surjection and that
X xzY — Z is finite flat. Then g is finite flat.

Remark 6.1.5. Let A be an E,-ring. Then the construction B — Spét B induces
an equivalence of oo-categories CAlg(Mod™ )P ~ FF(A).

Remark 6.1.6. The functor (A € CAlg™) — FF(A) is locally almost of finite
presentation: that is, it commutes with filtered colimits when restricted to 7, CAlg™,
for each n > 0. This is a special case of Corollary SAG.19.4.5.7 .

Remark 6.1.7. Let A be an Ey-ring. Then the co-category FF(A) depends only on
the connective cover 7>9A. More precisely, extension of scalars along the canonical map
Ts0A — A induces an equivalence of co-categories FF(750A) — FF(A); a homotopy
inverse to this equivalence is given by the construction (X, Ox) — (X, 759 Ox).

Definition 6.1.8. Let A be an E -ring. A commutative finite flat group scheme
over A is a grouplike commutative monoid object of the co-category FF(A). We let
FFG(A) = CMon®?(FF(A)) denote the oo-category of commutative finite flat group
schemes over A.

Remark 6.1.9. Let A be an Ey-ring. Using Remark[6.1.5] we see that the construction
B — Spét B induces an equivalence of co-categories Hopf(Mod® )P ~ FFG(A). In
other words, we can identify commutative finite flat group schemes over A with Hopf
algebras that are finite flat when regarded as A-modules.

Remark 6.1.10 (The Functor of Points). Let A be an Ey-ring. Then the functor
of points SpDM < Fun(CAlg,, S) restricts to a fully faithful embedding FF(A) —
Fun(CAlg,,S). Passing to grouplike commutative monoid objects, we obtain a
fully faithful embedding FFG(A) < Fun(CAlg,, CMon®?(S)). We will refer to this
embedding as the functor of points. In practice, we will generally abuse terminology
by not distinguishing between a commutative finite flat group scheme G € FFG(A)
and its functor of points CAlg, — CMon®*(S).
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Remark 6.1.11. The functor (A € CAlg™) — FFG(A) is locally almost of finite
presentation: that is, it commutes with filtered colimits when restricted to 7, CAlg™,
for each n > 0. This follows by combining Remark with Lemma (and

Remark [2.2.4]).

For future use, we note the following variant of Lemma for finite flat group
schemes:

Proposition 6.1.12. Let K be a simplicial set and let Fix : CAlg™ — S denote
the functor given by the formula Fx(R) = Fun(K,FFG(R))~. Then the functor Fk
admits a (—1)-connective cotangent complex.

Proof. Define G : CAlg™ — S by the formula G(R) = Fun(Fin, xK,FF(R))~. For
every connective E-ring R, we can identify Fg(R) with the summand of G(R)
spanned by those functors X : Fin, xK — FF(R). which satisfy the following
condition:

(¥) For every vertex v € K, the restriction X |z, xfv} : Fin, — FF(R) is a grouplike
commutative monoid object of FF(R).

Theorem SAG.19.4.0.2 implies that the functor G admits a (—1)-connective cotangent
complex L € QCoh(G). We claim that the image Lg in the oo-category QCoh(F)
is a cotangent complex for F. To prove this, it will suffice to show that for every
connective E,-ring R and every connective R-module M, the diagram

Fr(R® M) — Fx(R)

i i

G(R® M) ——G(R)

is a pullback square. Without loss of generality, we may assume that K = A’ in this
case, we must show that a diagram Fin, — FF(R@® M) is a grouplike commutative
monoid object of FF(R® M) if and only if the composite map Fin, — FF(R® M) —
FF(R) is a grouplike commutative monoid object of FF(R). This is clear, since the
extension-of-scalars functor FF(R@® M) — FF(R) is conservative. O

Remark 6.1.13. In the situation of Proposition [6.1.12] if K is a finite simplicial set,
then the cotangent complex Lp, is almost perfect. This follows by combining Remark

6.1.11) with Corollary SAG.17.4.2.2.
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6.2 Epimorphisms and Monomorphisms

We now introduce the notion of epimorphism between commutative finite flat
group schemes.

Proposition 6.2.1. Let A be an Ey-ring and let f : G — H be a morphism of
commutative finite flat group schemes over A. The following conditions are equivalent:

(1) The morphism f is finite flat and surjective (when regarded as a map of noncon-
nective spectral Deligne-Mumford stacks).

(2) The morphism [ is an effective epimorphism of sheaves with respect to the finite
flat topology: that is, for every B-valued point n € H(B), there exists a finite
flat surjection Spét B — Spét B such that the fiber product the fiber product
G(B) x ) {n} is nonempty.

Proof. We first show that (1) = (2). Choose any point n € H(B), and let X denote
the fiber product G x g Spét B (formed in the co-category of spectral Deligne-Mumford
stacks). Using assumption (1) we see that the projection X — Spét B is a finite flat
surjection. Writing X ~ Spét B, we observe that the fiber product G(B) x FRUE

X(B) has a canonical point.

Now suppose that (2) is satisfied; we wish to show that f is finite flat and surjective.
Write H = Spét B, where B is a (finite flat) Hopf algebra over A. Let B be as in
(2). Set K = fib(f), where the fiber is formed in the co-category SpDM. Using the
group structure on GG, we obtain an equivalence Spét B x u G ~ Spét B Xgpet 4 K. In
particular, we conclude that Spét B Xgpet 4 K is finite flat over A. Since the projection
map Spét B — Spét A is a finite flat surjection, Remark implies that K is finite
flat over A. It follows that the projection map Spét BxyG — Spét B is finite flat,
so that G is finite flat over H. Moreover, f is surjective (since the composite map
Spét B x5 G — G L H is surjective). O

Definition 6.2.2. Let A be an E,-ring and let f : G — H be a morphism of
commutative finite flat group schemes over A. We will say that f is a epimorphism
if it satisfies the equivalent conditions of Proposition [6.2.1] We will say that f is an
monomorphism if the induced map f* : m['(H; O) — ml'(G; O¢) is surjective.

Warning 6.2.3. The terminology of Definition is potentially misleading: if ¢ :
G — H is an epimorphism (monomorphism) of commutative finite flat group schemes
over an E-ring A, then f need not be a categorical epimorphism (monomorphism):
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that is, a morphism h : H — H' (f : G’ — G) need not be determined (even up to
homotopy) by the composition hog (go f).

Remark 6.2.4. Let A be a connective E,-ring and let f : G — H be a morphism of
commutative finite flat group schemes over A. Then f is a monomorphism if and only
if it is a closed immersion, in the sense of Definition SAG.3.1.0.1.

Remark 6.2.5. Let f : G — H be a morphism of commutative finite flat group
schemes over an E-ring A. Using Remark we see that f can be obtained (in an
essentially unique way) from a morphism fy : Gy — Hj of commutative finite flat group
schemes over the connective cover 7-9A. Then f is an epimorphism (monomorphism)
if and only if the map fj is an epimorphism (monomorphism).

Remark 6.2.6. Let f : G — H be a morphism of commutative finite flat group
schemes over a connective E -ring A. For every residue field k of A, let f,. : G, — H,
denote the induced map of commutative finite flat group schemes over k. Then
f is an epimorphism (monomorphism) if and only if each f, is an epimorphism
(monomorphism). For monomorphisms, this follows from Nakayama’s lemma; for
epimorphisms, it follows from Corollary SAG.6.1.4.10.

Remark 6.2.7. Let s be a field and let f : G — H be a morphism of commutative
finite flat group schemes over x. Then we can write G = Spét A and H = Spét B,
where A and B are finite-dimensional Hopf algebras over k, and f determines a map

of Hopf algebras ¢ : B — A. Then:
(a) The map f is an epimorphism if and only if ¢ is injective.
(b) The map f is a monomorphism if and only if ¢ is surjective.

Assertion (b) follows immediately from the definitions (and does not require the
assumption that « is a field). The “only if” direction of (a) is also immediate (note
that f is an epimorphism if and only if ¢ is faithfully flat). To prove the converse, let
K denote the kernel of f (formed in the ordinary category of finite flat group schemes

over k), so that f factors as a composition G EiR G/K ' H where f' is faithfully flat.
We may then replace f by f” : G/K — H and thereby reduce to the case where K ~ 0.
In this case, f is a monomorphism in the ordinary category of schemes, so the unit
map A — m(A®p A) (induced by the inclusion of either tensor factor) is surjective
(in fact, an isomorphism). The assumption that ¢ is injective guarantees that the map
of Zariski spectra |Spec A| — | Spec B| is surjective. Applying Nakayama’s lemma,
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we deduce that that the map ¢ is surjective. It follows that ¢ is an isomorphism, so
that f is an equivalence (and, in particular, an epimorphism).

Remark 6.2.8. Let f : G — H be a morphism of commutative finite flat group
schemes over a connective E-ring R, which we identify with their functors of points
G, H : CAlgy — Sp™. For every discrete R-algebra A, the spectra G(A) and H(A)
are also discrete, and can therefore be viewed as abelian groups. The map f is
a monomorphism if and only if, for every discrete R-algebra A, the induced map
G(A) — H(A) is a monomorphism in the category of abelian groups.

Proposition 6.2.9. Let A be an Ey-ring and let f : G — H be a morphism of
commutative finite flat group schemes over A. Suppose that f is an epimorphism.
Then:

(1) The fiber fib(f) (formed in the co-category CMon®?(SpDM'Y) ) is also a commu-
tative finite flat group scheme over A.

(2) The canonical map fib(f) — G is a monomorphism of commutative finite flat
group schemes over A.

(3) The tautological fiber sequence fib(f) — G — H is also a cofiber sequence (of
commutative finite flat group schemes over A).

Proof. Assertion (1) follows from the assumption that f is finite flat. To prove (2), we
can assume that A is connective (Remark . In this case, we wish to show that
the projection map G x y Spét A — G is a closed immersion (Remark [6.2.4)), which
follows from the separatedness of H.

We now prove (3). Note that the oo-category CAlg, can be equipped with a
Grothendieck topology, where the collection of coverings is generated by those finite
collections of maps {¢; : B — B;},c; which induce a finite flat surjection 11Spét B; —
Spét B; we will refer to this Grothendieck topology as the finite flat topology (see Propo-
sition SAG.A.3.2.1). Let C denote the full subcategory of Fun(CAlg ,, CMon®”(S))
spanned by those functors which are sheaves with respect to the finite flat topology,
so that the functor of points of Remark induces a fully faithful embedding
j : FFG(A) — C. To show that the fiber sequence fib(f) — G — H is also a cofiber
sequence, it suffices to show that its image under the functor j is a cofiber sequence
in C. Unwinding the definitions, we are reduced to proving that f induces an effective
epimorphism of sheaves with respect to the finite flat topology, which is equivalent to
our assumption that f is an epimorphism (Proposition [6.2.1]). ]
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6.3 Cartier Duality for Finite Flat Group Schemes

We now apply the categorical formalism of §3|to the setting of finite flat groups
schemes.

Construction 6.3.1 (The Cartier Dual). Let A be an E,-ring and let G be a
commutative finite flat group scheme over A, which we identify with its functor of
points CAlg, — CMon®?(S). We let D(G) denote the Cartier dual of G, in the sense
of Construction B.7.11

Proposition 6.3.2. Let A be an Ey-ring and let G be a commutative finite flat group
scheme over A, which we identify with its functor of points CAlg, — CMon®’(S).
Then the Cartier dual D(G) is also a commutative finite flat group scheme over A.

Proof. Since G is grouplike, the Cartier dual D(G) is also grouplike (Proposition [3.9.6)).
Write G = Spét H, where H is a Hopf algebra which is finite flat when regarded as an
A-module. Then H is dualizable as an object of of Mod 4. Applying Proposition |3.8.1],
we deduce that the dual HY admits the structure of a bialgebra object of Mod 4 for
which there is an equivalence D(G) ~ Spét H". Since H is a finite flat A-module, the
dual HVY is also a finite flat A-module. m

Corollary 6.3.3. Let A be an Ey-ring. Then the Cartier duality construction G —
D(G) induces an (involutive) equivalence of co-categories FFG(A) ~ FFG(A)°P.

Proposition 6.3.4. Let f : G — H be a morphism of finite flat group schemes over
an Eo-ring A. The following conditions are equivalent:

(1) The morphism f is an epimorphism (in the sense of Definition[0.2.9).

(2) The Cartier dual map D(f) : D(H) — D(G) is a monomorphism (in the sense

of Definition .

Proof. Using Remarks [6.2.5] and [6.2.6] we can reduce to the case where A = k is a
field. In this case, the equivalence of (1) and (2) follows immediately from the criterion
of Remark [6.2.7] O

Corollary 6.3.5. Let A be an Ey-ring and let f : G — H be a morphism of
commutative finite flat group schemes over A. Suppose that f is a monomorphism.
Then:

(1) The map f admits a cofiber cofib(f) in the co-category FFG(A).
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(2) The canonical map H — cofib(f) is an epimorphism of commutative finite flat
group schemes over A.

(3) The tautological cofiber sequence G L H - cofib(f) is also a fiber sequence (in
the co-category FFG(A)).

Proof. Using Cartier duality (Corollary [6.3.3) and Proposition [6.3.4) we see that

assertions (1), (2) and (3) follow their counterparts in Proposition [6.2.9] O
Corollary 6.3.6. Let A be an E,-ring and suppose we are given a commutative
diagram o :
a——-a
L
Spét A — G”

of commutative finite flat group schemes over A. The following conditions are equiva-
lent:

(a) The map f is an monomorphism and o is a pushout square: that is, it determines
a cofiber sequence G' — G — G”.

(b) The map g is an epimorphism and o is a pullback square: that is, it determines
a fiber sequence G' - G — G”.

Proof. Combine Proposition with Corollary O

Definition 6.3.7. Let A be an E,-ring. An ezact sequence of commutative finite flat
group schemes over A is a commutative diagram

a—1 ¢
T
Spét A —— G

which satisfies the equivalent conditions of Corollary [6.3.6]

Remark 6.3.8. In the situation of Definition [6.3.7, we will abuse terminology by
saying that the sequence G’ LG % G" is eract. In this case, we are implicitly
assuming that some nullhomotopy of g o f has been specified (which determines an
extension of the pair (f, g) to a commutative diagram such as the one appearing in

Definition and Corollary [6.3.6)).
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Remark 6.3.9. The notion of exact sequence introduced in Definition is Cartier
self-dual: for every exact sequence G’ L G % G" of commutative finite flat group

schemes over A, the dual sequence D(G") D), D(G) Dy), D(G’) is also exact.

6.4 S-Torsion Objects of co-Categories
We begin by introducing some terminology.

Notation 6.4.1. For every finite group G, we let |G| denote the order of G. If S
is a set of prime numbers, we will say that G is a S-group if every prime factor of
|G| belongs to S. We let Abj denote the category whose objects are finite abelian
S-groups and whose morphisms are group homomorphisms. In the special case where
S is the set of all prime numbers, we will denote Ab: by Abg, (so that Abg, is the
category of finite abelian groups). In the special case where S = {p} for some prime
number p, we will denote Abj by Ab% (so that AbY, is the category of finite abelian

p-groups).

Definition 6.4.2. Let S be a set of prime numbers and let C be an oco-category which
admits finite limits. A S-torsion object of C is a functor X : (Abg )P — C satisfying
the following pair of conditions:

(a) The functor X commutes with finite products.

(b) For every exact sequence 0 — M’ — M — M” — 0 of finite abelian S-groups,
the diagram
X(M") —= X(M)

L

X(0) — X (M)

is a pullback square (more informally, the functor X carries exact sequences to
fiber sequences in C).

In the special case where S is the set of all prime numbers, we will refer to an S-torsion
object of C as a torsion object of C. In the special case where S = {p} for some prime
number p, we will refer to a S-torsion object of C as a p-torsion object of C.

We let Torsg(C) denote the full subcategory of Fun((Abg )°P,C) spanned by the
S-torsion objects of C. In the special case where S is the set of all prime numbers,
we denote Torsg(C) by Tors(C); in the special case where S = {p} for some prime
number p, we denote 7T orsg(C) by T ors,(C).
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Remark 6.4.3 (Functoriality). Let C and D be co-categories which admit finite limits,
let f:C — D be a functor which preserves finite limits, and let S be a set of prime
numbers. Then composition with f induces a functor F' : Torsg(C) — Torss(D) which
also preserves finite limits. Moreover, if f is fully faithful, then F' is also fully faithful.

In the situation of Definition very little is lost by restricting our attention to
the case where the set S consists of a single prime number p:

Proposition 6.4.4. Let S be a set of prime numbers and let C be an oo-category which
admits finite limits. Then:

(1) For each prime number p € S, composition with the inclusion functor Abf <

Abg . induces a forgetful functor 6, : Torsg(C) — Tors,(C).

(2) The product map 6 : Torss(C) — [],sTorsy(C) is an equivalence of oo-
categories.

Proof. Assertion (1) follows immediately from the definitions, since the inclusion
functor Abf, — Ab?-uf1 preserves finite products and exact sequences. We now prove
(2). Using a direct limit argument, we can reduce to the case where the set S
is finite. For each finite abelian S-group M and each prime number p € S, let
M) denote the localization of M at the prime p, so that M, is a finite abelian
p-group. The construction M + M, determines a functor L : Abs  — AbE
which is right adjoint (and also left adjoint) to the inclusion Abf, < Abf . Since
L also preserves finite products and short exact sequences, precomposition with L
determines a functor p, : Tors,(C) — Torsg(C) which is right adjoint to 6,. Because
the co-category Torsg(C) admits finite products, the functor  admits a right adjoint
P [ pes Tors,(C) — Torsg(C), given by the formula p({Xp}pes) = [ [ 5 £p(Xp). For
each object X € Torsg(C) and each finite abelian S-group M, the unit map

X(M) = (po0)(X)(M) = [ [(pp 0 6,)(X)(M) = | [ X (M)
peS peS
is an equivalence by virtue of the fact that X preserves finite products. To complete
the proof, it will suffice to show that for every collection {X,, € Tors,(C)}es, the counit
map v : (0 0 p){Xp}pes — {Xp}pes is an equivalence in the oo-category [ [, Tors,(C).
Equivalently, we must show that v induces equivalences v, : (6, 0 p){X,}pes — X,, for
each p € S. Taking N to be a finite abelian p-group, we are reduced to showing that
the projection map
[ [ %0 (Nu) = Xp(N) = X,(N)

p'eS
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is an equivalence. This is clear, since the localization N,y vanishes for p’ # p (so that
Xp(Nyy) is a final object of C). O

Our next goal is to compare Definition with the theory of abelian group
objects introduced in §1.2

Notation 6.4.5. Let S be a set of prime numbers and let Ab be the category of
abelian groups. We let Lat(S) denote the full subcategory of Ab spanned by those
abelian groups which are either lattices or finite abelian S-groups. We regard Lat and
AbS as full subcategories of Lat(S).

Proposition 6.4.6. Let S be a set of prime numbers and let C be an co-category
which admits finite limits. For every abelian group object Aq : Lat®® — C, there exists
a functor A : Lat(S)°® — C which is a right Kan extension of Ay. Moreover, the
restriction A\Abgn is an S-torsion object of C.

Construction 6.4.7. Let C be an oco-category which admits finite limits, let S be
a set of prime numbers, and let £ denote the full subcategory of Fun((Lat(S))°?,C)
spanned by those functors A which satisfy the following pair of conditions:

(7) The restriction Ag = A|pater is an abelian group object of C.
(7) The functor A is a right Kan extension of Ay.

Using Propositions and HT'T.4.3.2.15, we obtain restriction functors Ab(C) «
$& L Torss (C), where the functor ¢ is a trivial Kan fibration. Choosing a section
s of ¢, we obtain a functor Ab(C) > & LN Torss(C). We will denote this functor by

X — X[S*]. In the special case where S = {p} for some prime number p, we will
denote X[S*] by X[p*].

Proof of Proposition[6.4.6. Let Ay be an abelian group object of C. Our first goal is
to show that Ay admits a right Kan extension A : Lat(S)°® — C. By virtue of Lemma
HTT.4.3.2.13, it will suffice to show that for every object M € Lat(S), the induced

opé))

map (Lat/y )" — Lat C admits a limit, where we let Lat ), denote the category
Lat Xpa(s) Lat(S)/a whose objects are lattices A equipped with a map A — M. Since
the abelian group M is finitely generated, we can choose a surjection u : My — M,
where M, is a lattice. Let M, denote the Cech nerve of u (formed in the category of
abelian groups). Then each M,, is isomorphic to a subgroup of a product of copies of

Moy, hence a free abelian group of finite rank. The construction [n] — M,, determines
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a functor A°? — (Lat),y;. Using Theorem HTT.4.1.3.1, we see that this functor is
right cofinal. We are therefore reduced to showing that the cosimplicial object Agy(M.,)
admits a totalization in the co-category C. Let A, < denote the subcategory of A
whose objects are [0] and [1] and whose morphisms are injective maps of linearly
ordered sets. Using our assumption that Ag commutes with finite products, we deduce
that the functor [n] — Ag(M,,) is a right Kan extension of its restriction to Aj <.
Using Lemma HTT.4.3.2.7, we are reduced to proving that the diagram

A, — A Tatr 2o 0

admits a limit. This is clear, since C admits finite limits and the simplicial set N(Ag <)
is finite. This completes the proof of the existence of A. Moreover, the proof yields
the following:

(#) Let A € Fun(Lat(S)°P,C) be a functor such that Ay = A|paor belongs to Ab(C).
Then A is a right Kan extension of Ay if and only if, for every object M € Abfsin
and every surjective map A — M where A is a lattice, the diagram

is a pullback square in C.

In the situation of (x), let A’ denote the kernel of the surjection A — M. We have
a split exact sequence 0 > A’ — A x,; A > A — 0, so the assumption that Aj is an
abelian group object of C guarantees that the right square in the diagram

A(A) —— A(A x 30 A) — A(N)

is a pullback. It follows that the left square is a pullback if and only if the outer
rectangle is a pullback. We may therefore reformulate the criterion of (x) as follows:

(+) Let A € Fun(Lat(S)°?,C) be a functor such that Ay = Alpater belongs to Ab(C).
Then A is a right Kan extension of Ay if and only if, for every inclusion of lattices
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A’ < A for which the quotient A/A’ is a finite S-group, the associated diagram
A(A/N)—— A(A)
A(0) ——A(A)
is a pullback square in C.

To complete the proof, it will suffice to show that if A is a functor satisfying the
criterion of («'), then the restriction X = Af(sps yop is an S-torsion object of C. We
first show that X commutes with finite products. Fix a finite collection of objects
{M;};c; in the category AbS . For each i € I, choose an exact sequence

where A; is a lattice. Using our assumption on A, we obtain a commutative diagram
of fiber sequences

Hz‘e[ A(Ml) - Hz’e[ A(Al) - Hz‘e[ A(A;)

Our assumption that Ag commutes with finite products guarantees that the right and
center vertical maps are equivalences, so that the left vertical map is an equivalence
as well.

We now complete the proof by verifying that the functor X satisfies condition
(b) of Definition [6.4.2] Let 0 — M’ — M — M” — 0 be an exact sequence of finite
abelian S-groups; we wish to show that the diagram o :

AM") —— A(M)

L

A(0) —— A(M")

is a pullback square. Choose an epimorphism A — M, where A is a lattice, and set
AN = A xpr M'. We can then extend o to a commutative diagram @ :

A(M") —= A(M) — A(A)

o

A(0) —— A(M?) —— A(N).
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Our assumption on A guarantees that the right square and the outer rectangle are
pullbacks, so that the left square is a pullback as well. O

Remark 6.4.8. Let C be an oo-category which admits finite limits and let A be an
abelian group object of C. The proof of Proposition [6.4.6| yields an explicit description
of the S-torsion object A[S™]: its value on any finite abelian S-group M is given by
the fiber of the map A(A) — A(A’), where 0 - A’ - A - M — 0 is any resolution
of M by finitely generated free abelian groups. In particular, for each prime number
p € S, the value of A[S] on the finite abelian group Z /p™ Z can be identified with
the fiber of the map A(Z) L> A(Z).

Proposition 6.4.9. Let C be an co-category which admits finite limits and sequential
colimits, and suppose that the formation of sequential colimits in C is left exact. Let
S be a set of prime numbers. Then the forgetful functor [S™]: Ab(C) — Torss(C) of
Construction admits a fully faithful left adjoint.

Proof. Tt will suffice to show that the restriction functor & — Torsg(C) admits a
fully faithful left adjoint, where £ is defined as in Construction [6.4.7] By virtue of
Proposition HTT.4.3.2.15, we are reduced to proving the following:

e For every S-torsion object X : (Abj ) — C, there exists a functor A :
Lat(S)°® — C which is a left Kan extension of X. Moreover, the functor
A belongs to &: that is, Ag = Alpaer is an abelian group object of C, and A is a
right Kan extension of Ajg.

Let us regard X € Torsg(C) as fixed. To show that X admits a left Kan extension
A : Lat(S)°? — C, it will suffice to show that for every lattice A, the diagram

P+ ((ADg)a)P — (AbG,)P = C

admits a colimit in C (Lemma HTT.4.3.2.13); here (Ab},)s, denotes the fiber product
AbS X 1at(8)(Lat(S))a, (that is, the category of finite abelian S-groups M equipped
with a map A — M).

Choose a sequence of positive integers {V;};~o with the following properties:

e Every prime divisor of each N; belongs to S.
e Each N; divides ;.

e Every finite abelian S-group M is annihilated by N; for ¢ » 0.
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For example, we can take NN; to be the product Hp pt, where p ranges over all prime
numbers p <4 such that p € S. There is an evident functor Z2 — (Ab§,)a/, given by
the tower of finite abelian p-groups

Using Theorem HTT.4.1.3.1, we see that this functor is left cofinal. Consequently, we
can identify colimits of p with colimits of the diagram

X(A/NoA) — X(A/N1A) — X(A/NoA) — -+,

which exist by virtue of our assumption that C admits sequential colimits. This proves
the existence of the functor A.

Set Ay = Alpator. The preceding argument shows that the functor A, is given
concretely by Ag(A) ~ lim X (A/N;A). From this formula (and our assumption that
sequential colimits in C commute with finite limits), we immediately deduce that Ag
commutes with finite products: that is, it is an abelian group object of C.

We now complete the proof by showing that A is a right Kan extension of Ay. For
this, it will suffice to show that the functor A satisfies the criterion of (+') in the proof
of Proposition Suppose we are given an exact sequence 0 > A’ - A — M — 0,
where A is a lattice and M is a finite abelian S-group; we wish to show that the
diagram o :

A(M) — A(A)

L

A(0) —= A(N)

is a pullback square. This follows from our assumption that the collection of pullback
squares in C is closed under sequential colimits, since o can be obtained as a filtered
colimit of diagrams o,:

X (M) X(A/N;A)

| |

X(0) ——= X(N/(N: o ),

where ¢ ranges over those positive integers for which M is annihilated by N;; here
each o, is a pullback square by virtue of our assumption that X is an S-torsion object
of C. O]
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Remark 6.4.10. Let S be a set of prime numbers and let C be an co-category which
satisfies the hypotheses of Proposition and let {N;};>0 be as in the proof of
Proposition m Then we can identify Torsg(C) with the full subcategory of Ab®(C)
spanned by those abelian group objects A which satisfy the following condition:

(¥) For every lattice A, the canonical map 0 : lim A[S](A/N;A) — A(A) is an
equivalence.

Since sequential colimits in C commute with finite limits, the map 6 fits into a pullback

diagram
limy A[p™](A/N;A) = A(A)
A(0) lim A(N;A).

Consequently, it is sufficient (but not necessary) to satisfy the following stronger
condition:

(¥") The colimit lim A(N;A) is a final object of C.
Moreover, in verifying conditions (x) or (+’), we are free to assume that A = Z.

Example 6.4.11. According to Remark [1.2.10] we have a canonical equivalence of
aw-categories Ab(S) ~ Mody', where Z denotes the ring of integers. Consequently,
Proposition determines a fully faithful embedding p : Torss S — Mody'. The

essential image of p consists of those connective Z-modules M having the following
property:

e For every element x € m, M, there exists a positive integer N such that Nz = 0
and every prime factor of N belongs to S.

For example, if S = {p} for some prime number p, then the essential image consists
of those connective Z-modules which are p-nilpotent, in the sense of Definition
SAG.7.1.1.1: that is, those modules M for which the localization M[p~'] vanishes.

Proposition 6.4.12. Let C be an co-category which admits finite limits and let S be
a set of prime numbers. Then the co-category Torss(C) is additive (see Definition
SAG.C.1.5.1).
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Proof. 1t follows from Example that we can identify Torsg(S) with an additive
(or even prestable) subcategory of the co-category Modz. It follows that the co-
category Fun(C, Torss(S)) ~ Torsg(Fun(C®,S)) is also additive. Using Remark
6.4.3] we see that the Yoneda embedding j : C — Fun(C’,S) determines a fully
faithful embedding Torsg(C) — Torsg(Fun(C°?,S)). In particular, we can identify
Torsg(C) with a full subcategory of Torsg(Fun(C°,S)) which is closed under finite
products, so that Torsg(C) is also additive (Example SAG.C.1.5.4). O

Corollary 6.4.13. Let C be an co-category which admits finite limits and let S be a set
of prime numbers. Then the forgetful functor CMon®**(C) — C induces an equivalence

6 : Torss(CMon®?(C)) — Torss(C).
Proof. Unwinding the definitions, we can identify 6 with the forgetful functor
CMon®P(Torss(C)) — Torsg(C).

Since the oo-category Torsg(C) is additive (Proposition [6.4.12)), this functor is an
equivalence (see Proposition HA.2.4.2.5 and Proposition HA.2.4.3.9). O

6.5 S-Divisible Groups

We now adapt the theory of p-divisible groups to the setting of spectral algebraic
geometry.

Definition 6.5.1. Let A be an E,-ring and let S be a set of prime numbers. A
S-divisible group over A is a functor X : (AbS ) — FFG(A) with the following

property:

(1) The commutative finite flat group scheme X (0) is trivial (that is, it is equivalent
to Spét A).

(i7) For every short exact sequence 0 — M’ — M — M"” — 0 of finite abelian
S-groups, the induced diagram

X(M") —— X (M)

L

X(0) — X (M)

is an exact sequence of commutative finite flat group schemes over A (Definition
6.3.7)).
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We will say that an S-divisible group X has height h (where h is some nonnegative
integer) if it satisfies the following additional condition:

(731) For every finite abelian S-group M, the commutative finite flat group scheme
X (M) has degree |[M|" over A (where |[M| denotes the cardinality of M).

In the case where S consists of a single prime number p, we will refer to an S-divisible
group over A as a p-divisible group over A.

We let BT®*(A) denote the full subcategory of Fun((Ab§,)°?, FFG(A)) spanned
by the S-divisible groups over A. For each h = 0, we let BT}(A) denote the full
subcategory of BT® (A) spanned by those p-divisible groups having height h. In the
special case where S = {p} for some prime number p, we write BT?(A) and BT (A)
in place of BT®(A) and BT} (A), respectively.

Remark 6.5.2. In the situation of Definition it suffices to verify condition (ii7)
in the special case M = Z /pZ for p € S (the general case then follows from iterated
application of (i7)).

Remark 6.5.3. Let A be an E,-ring and let S be a set of prime numbers. Then
extension of scalars determines an equivalence of co-categories BT®(7<oA) — BT5(A)

(see Remark [6.1.7)).

Remark 6.5.4 (Functoriality). Let ¢ : A — B be a morphism of E,-ring and let S
be a set of prime numbers. Then the extension-of-scalars map FFG(A) — FFG(B)
determines a functor BT®(A) — BT%(B), which carries S-divisible groups of height h
over A to S-divisible groups of height h over B. If the map ¢ induces an isomorphism
Tn(A) — m,(B) for n = 0, then the functor BT®(A) — BT®(B) is an equivalence of
co-categories (this follows from Remark [6.1.7)).

In the situation of Definition|6.5.1] it is not necessary to specify the group structures
on the finite flat A-schemes X (M): they are already encoded (in an essentially unique
way) by the functoriality of X. More precisely, we have the following:

Proposition 6.5.5. Let A be an Ey-ring and let S be a set of prime numbers.
Then the forgetful functor FFG(A) — SpDM'Y induces a fully faithful embedding
BT®(A) — Fun((Abg )P, SpDMY), whose essential image is spanned by those functors
X : (Ab§ )P — SpDM'Y which satisfy the following conditions:

(a) The functor X is an S-torsion object of SpDM'Y, in the sense of Definition

[0-4.2
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(b) For every prime number p € S and every positive integer n, the canonical map
X(Z /p"Z) - X(pZ /p" Z) is a finite flat surjection.

Proof. Let us identify FFG(A) with a full subcategory of CMon®”(SpDM'). It follows
immediately from the definitions that every S-divisible group over A (in the sense of
Definition [6.5.1]) is an S-torsion object of CMon®?(SpDMY") (in the sense of Definition

6.4.2)). Applying Corollary [6.4.13] we deduce that the forgetful functor
6 : Torss(CMon®?(SpDM’Y)) — Torss(SpDMY)

is an equivalence of co-categories. To complete the proof, it will suffice to show that
an object X € Torss(CMon®?(SpDMY)) is an S-divisible group if and only if 0(X)
satisfies conditions (a) and (b). The “only if” direction follows immediately from
the definitions. For the converse, suppose that 6(X) satisfies conditions (a) and (b).
It follows from (a) that X(0) ~ Spét A. Applying (b) repeatedly, we deduce that
X(Z /p™ Z) is finite flat over A for every prime number p € S. Since every finite abelian
S-group can be written as a finite direct sum of cyclic S-groups, it follows from (a)
that X (M) is a commutative finite flat group scheme over A for each M e Abj .

Given an exact sequence of finite abelian S-groups 0 - M’ — M — M" — 0,
condition (a) implies that the diagram o :

X(M") —— X (M)

o

X(0) —— X (M)

is a pullback square in the co-category SpDM'Y, hence also in the oo-category FFG(A).
We wish to show that o is exact: that is, that the map g is a finite flat surjection (see
Proposition [6.2.1]). Proceeding by induction on the index of M’ in M, we can reduce
to the case where there exists a pushout diagram of finite abelian groups

pZ /7L 7 )7
M M

for some prime number p € S. Using condition (a), we see that X (f) is a pullback of
X(fo), which is a finite flat surjection by virtue of assumption (b). O
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Remark 6.5.6 (Dependence on S). Let A be an E,-ring, let S be a set of prime
numbers, and let X be an S-torsion object of SpDMy". For each prime number p € S, let
X, be the p-torsion object of SpDM’y” determined by X. Note that X satisfies condition
(b) of Proposition if and only if each X, satisfies condition (b) of Proposition [6.5.5]
It follows that the equivalence Torss(SpDM’) ~ [ ] s T ors,(SpDM’) of Proposition
induces an equivalence of co-categories BT®(A) ~ [ [,cs BT?(A). More informally:
the datum of a S-divisible group over A is equivalent to the datum of a collection of
p-divisible groups over A, where p ranges over all prime numbers which belong to S.

Construction 6.5.7 (The Functor of Points). Let A be an E,-ring and let S be
a set of prime numbers. Using the functor of points j : SpDM’ — Fun(CAlg,,S),
Proposition [6.5.5, and Example [6.4.11] we fully faithful embeddings

BT®(A) — Torsg(SpDM™)
—  Torss(Fun(CAlg,,S))
~ Fun(CAlg,, Torss(S))
—  Fun(CAlg4, Mod7").

If X is an S-divisible group over A, we will refer to the image of X under this map as
the functor of points of X.

We can use Construction to give an alternate description of the co-category
BT®(A):

Proposition 6.5.8. Let A be an E-ring, let S be a set of prime numbers, and let Y :
CAlg, — Mody' be a functor. Then'Y is representable by an S-divisible group over A
(that is, it lies in the essential image of the embedding BTS(A) — Fun(CAlg,, Modg'))

if and only if it satisfies the following conditions:

(1) For each B € CAlgy, the Z-module Y (B) is S-torsion: that is, every element of
7Y (B) is annihilated by some positive integer whose prime factors belong to S.

(2) For every finite abelian S-group M, the functor B — Mapyq,(M,Y (B)) is
corepresentable by an Ey-algebra which is finite flat over A.

(3) For each prime number p € S, the “multiplication by p” map p : Y — Y is
an epimorphism locally with respect to the finite flat topology (see the proof of

Proposition .
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Remark 6.5.9. In the situation of Proposition [6.5.8 if condition (3) is satisfied, then
it suffices to verify condition (2) in the special case M = Z /pZ where p € S.

Proof of Proposition[6.5.8 We will show that conditions (1), (2), and (3) are sufficient;
the proof of necessity is similar. Using (1), we can identify Y with an S-torsion object
of the co-category Fun(CAlg,, S). Using (2), we see that each Y (M) is representable
by a nonconnective spectral Deligne-Mumford stack Y (M) € FF(A). We wish to
show that the functor M — Y (M) satisfies conditions (a) and (b) of Proposition m
Condition (a) is automatic (since Y is S-torsion object of Fun(CAlg,,S). Using the
criterion of Proposition we see that condition (b) is equivalent to the requirement
that the natural transformation Mapy.q, (Z /p" Z,Y (e)) — Mapy,q, (pZ /p" Z,Y (e))
is an effective epimorphism of sheaves with respect to the finite flat topology for each
n > 0. This follows from assumption (3). O

Warning 6.5.10 (Descent). Let p be a prime number. We will say that an object
M € Modg is p-nilpotent if the localiztion M[p~ ] vanishes: that is, if the action
of p is locally nilpotent on m,(M). Let Modg"™ ™ denote the full subcategory of
Modz spanned by those Z-module spectra which are connective and p-nilpotent.
Let R be a connective E,-ring and let X : CAlgy' — Mody' be a functor which
is (representable by) a p-divisible group over R. Then X takes values in the full

subcategory ModCn Nil(p

< Mody'. Moreover, if we regard X as a functor taking values
in Mod" NiP) then it is a sheaf with respect to the fpgc topology on CAlg%'. To see
this, we observe that the oo-category Moda™™® is generated (under small colimits)
by finite abelian p-groups. It will therefore suffice to show that, for every finite abelian
p-group M, the functor A — Mapy,q, (M, X (A)) is a sheaf with respect to the fpqc
topology. This is clear, since the functor Mapyy,q, (M, X (e)) is corepresentable by a
finite flat R-algebra.

Beware that it is not a priori clear that the functor X is a Mod'-valued sheaf with
respect to the quc topology (or even the finite flat topology), because the inclusion
functor Modg N

composite functor

— Mody' does not preserve limits. However, it is true that the

Ten CAlg® — CAlg® 5 Modg

is a sheaf with respect to the fpqc topology, for each fixed n > 0: this follows from
the fact that X can be written as a filtered colimit of the functors X, = fib(p* : X —
X), each satisfying flat descent and taking n-truncated values on the subcategory
T<n CAlgR'
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6.6 Cartier Duality for S-Divisible Groups

We now extend the Cartier duality construction of to the setting of S-divisible
groups.

Notation 6.6.1. Let M be a finite abelian group. We let M* denote the Pontryagin
dual of M: that is, the group Hom(M,Q /Z). For every set S of prime numbers,
the construction M — M™* determines an equivalence of the category Abgn with its
opposite (Abj, ).

Construction 6.6.2 (The Cartier Dual of an S-Divisible Group). Let A be an
E,-ring, let S be a set of prime numbers, and let X : (Ab? ) — FFG(A) be an
S-divisible group over A. We define a functor D(X) : (Abj )°® — FFG(A) by the
formula D(X)(M) = D(X(M*)). We will refer to D(X) as the Cartier dual of X.

Proposition 6.6.3. Let A be an Ey-ring, let S be a set of prime numbers, and let
X be an S-divisible group over A. Then the Cartier dual D(X) is also an S-divisible
group over A.

Proof. Suppose we are given a short exact sequence of finite abelian S-groups 0 —
M — M — M" — 0; we wish to show that the induced sequence D(X)(M") —
D(X)(M) — D(X)(M’) is exact. This follows by applying Remark to the
sequence X (M"™*) — X(M*) — X (M"*) (which is exact by virtue of our assumption
that X is an S-divisible group). O

Remark 6.6.4. The Cartier duality operation of Construction is involutive: for
every S-divisible group X over A, there is a canonical equivalence D(D(X)) ~ X. It

follows that the construction X — D(X) determines an equivalence of co-categories
BT5(A) ~ BT®(A)°P.

Remark 6.6.5. Let X be an S-divisible group over an E-ring A and let h > 0 be
an integer. Then X has height A if and only if D(X) has height h.

Remark 6.6.6. The formation of Cartier duals is compatible with the equivalence
BT®(A) ~ [ [,es BT"(A) of Remark [6.5.6, More precisely, if X is an S-divisible group
over A corresponding to a collection {X,},es, where each X, is a p-divisible group
over A, then the Cartier dual D(X) corresponds (under the same equivalence) to the
collection of p-divisible groups {D(X})}es.
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6.7 The S-Divisible Group of a Strict Abelian Variety

As in classical algebraic geometry, the theory of abelian varieties provides a rich
supply of p-divisible groups.

Proposition 6.7.1. Let R be an E-ring, let S be a set of prime numbers, and let X
be a strict abelian variety of dimension g over R, which we regard as an abelian group
object of the oo-category SpDMYy, and let X[S™*] be defined as in Construction|6.4.7,
Then X[S™] is an S-divisible group of height 2g over R (that is, it lies in the essential
image of the functor Bng(R) — Torss(SpDMY) of Proposition .

Remark 6.7.2. Let X be as in Proposition [6.7.1] For each prime number p, we let
X[p*] denote the associated p-torsion object SpDMY’. Proposition is equivalent
to the assertion that each X[p®] is a p-divisible group of height 2g.

We will deduce Proposition from the following:

Proposition 6.7.3. Let R be an E,,-ring and let X be an abelian variety of dimension
g over R. For every integer n > 0, the map [n] : X — X is finite flat of degree n9.

The statement of Proposition [6.7.3] can be easily reduced to the “classical” case,
where R = k is a field. We refer the reader to [10] for two proofs of this statement.
For the sake of completeness, we include a slightly different argument here.

Notation 6.7.4. Let k be a field and let X be a variety over k. If Z is a line
bundle on X, we define the Euler characteristic of £ to be the sum x(.&) =
D nso(—1)" dim, H"(X; .Z).

Lemma 6.7.5. Let X be an abelian variety of dimension g over a field k and let £
be a line bundle on X. For every integer n, we have an equality x(L®") = nIx(ZL).

Proof. Since X is a smooth group scheme over k, the tangent bundle of X is trivial.
Applying the Hirzebruch-Riemann-Roch theorem, we obtain an equality y (&) =
icl (Z)9[X]. Applying the same formula to Z®", we compute
n 1 n
xX(Z") = acl(i”@ )![X]
nd

= “ (Z)[X]

= nIx(Z).
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Lemma 6.7.6. Let k be a field and let f : X — Y be a morphism of abelian varieties
having the same dimension g over k, classified by a biextension p : X AY — BGL; with
underlying line bundle Z,,. Then f is finite flat if and only if the Euler characteristic
x(Z ) does not vanish. In this case, the degree of f is equal to (—1)9x(Z,).

Proof. Set # = f.Ox € QCoh(Y). For each k-valued point y € Y(k), let us
identify the (derived) fiber #, = y*.# with an object of Mod,, and set d, =
> (=)™ dim, 7, #,. Since .# is perfect, the function y — d, is locally constant and
therefore constant (since Y is connected); let us denote the constant value by d. We
now consider two cases:

(a) If the map f is finite flat of degree r, then f, Ox is a vector bundle of rank r
over Y, so we have d = r.

(b) Suppose that the map f is not finite flat. Since X and Y are proper smooth
r-schemes of the same dimension, some fiber of f is not finite. Because f is a
morphism of group schemes, it follows that the kernel of f is positive-dimensional,
so that the image of f has Krull dimension < g. It follows that there exists a
point y € Y(x) which does not belong to the image of f. We then have .#, ~ 0,
so that d = d, = 0.

To complete the proof of Lemma [6.7.6] it will suffice to show that d = (—1)9x(Z,,).
Let e : Spétk — Y denote the zero section and let pq : Y AY - BGL; be the
tautological (perfect) biextension and let .Z,,, denote the underlying line bundle on
Y Xgpet R?, Unwinding the definitions, we see that p is given by the composition

X AY L2 v AY £ BGL,
so that .2, is the pullback of .Z,,, along the map f x id. Using the pullback diagram

X Xgpet Y —= X

A~ _/
™
Y ><Spéth > Ya
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together with Proposition [5.2.8, we compute

(X xgpet s Y; L) =~ I'Xsme L)
(X 7r*(f><1d) L)
I(Xs [ £ o)

I'(X; f ex(wy) ™)

(

(

(

—

Y fuffes(wy) )
L(Y; . F @(esws) ™)

~ T(Yien(e" F) @ (wy) )

~ T @wy)

Note that wy is (noncanonically) equivalent to the g-fold suspension of x, this iden-
tification supplies isomorphisms H"(.Z,) ~ m,_,.%#.. Taking the dimensions of
both sides and forming an (alternating) sum over n, we obtain the desired equality
d=d, = (~1)9(£,). a

Lemma 6.7.7. Let k be a field, let X be an abelian variety of dimension g over k,
and let [n] : X — X be the map given by multiplication by n for some n > 0. Then [n]
is a finite flat map of degree n*9.

Proof. Let p: X AX = BGL; be a perfect biextension of abelian varieties over x, and
let £, denote the underlying line bundle of . Applying Lemma to the identity
map id : X — X, we obtain an equality x(.Z,) = (—1)9. The map [n] : X — X is
classified by a biextenison whose underlying line bundle can be identified with fﬁ)n.
Since the product X xgpet ,{)A( is an abelian variety of dimension 2g over k, Lemma
m supplies an equality x(£%") = n*x(£L,) = (—1)?n*. Applying Lemma m
again, we deduce that [n] : X — X is a finite flat map of degree n?9. O

Proof of Proposition[6.7.3. Let X be an abelian variety of dimension g over an arbi-
trary Eo-ring R, let n > 0, and let [n] : X — X denote the map given by multiplication
by n. We wish to show that the map [n] is finite flat of degree n?. Using Remark
1.4.3] we can reduce to the case where R is connective. Using Corollary SAG.6.1.4.10,
we can further reduce to the case where k is a field. In this case, the desired result
follows from Lemma [6.7.7 ]

Proof of Proposition|6.7.1] Let X be a strict abelian variety of dimension g over an
E,-ring R and let S be a set of prime numbers; X[S™] satisfies conditions (a) and
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(b) of Proposition [6.5.5, and that the associated S-divisible group has height 2g. For
each integer m, let X[m] denote the fiber of the map [m] : X — X. Condition (a) is
automatic. To verify (b) (and to show that the S-divisible group X[S™] has height 2g),
it will suffice to show that the natural map p : X[p"] — X[p"~1] is finite flat of degree
p?9, for each n > 0 and each p € S. Note that p fits into a commutative diagram of

pullback squares
X[p"] —=X[p" '] —= Spét R

i B l ") l

X X X.
We are therefore reduced to showing that the map [p] : X — X is finite flat of degree
p%9, which is a special case of Proposition m O

Remark 6.7.8. Let S be a set of prime numbers, 1t R be an E,-ring, and let
X be a strict abelian variety over R, which we identify with its functor of points
CAlgy — Mody'. Unwinding the definitions, we see that the S-divisible group X[S*]
can be described by the formula

X[STIM)(A) = Mapyq, (M, X(A))
QF (MY ®z X(A))
~ QP(ETIM* @z X(A))
~ QTN (M* @z X(A)).

0

Here MY denotes the dual of M in the oo-category Modz, and M* = Hom(M,Q /Z)
denotes the Pontryagin dual of M (so that MY ~ X~1M*).

6.8 Comparison of Duality Theories

Let R be a connective E,-ring and let AVar(R) denote the co-category of abelian
varieties over R. Using Theorem , we see that the duality construction X — X
induces an equivalence of co-categories AVar(R) — AVar(R)°®. Combining this
observation with Remark we obtain an equivalence of co-categories

D : Ab(AVar(R)) ~ Ab(AVar(R)*) ~ Ab(AVar(R))°,

e —

given by the formula (DX)(A) = X(AVv). Using the equivalence AVar®(R) ~
Ab(AVar(R)) of Remark [1.5.2) we can identify D with an equivalence AVar®(R) —
AVar®(R)°?. We can summarize the situation more informally as follows: if X is a
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strict abelian variety over R, then the dual X inherits the structure of a strict abelian
variety over R.

Remark 6.8.1. Let R be a connective E-ring and let X be a strict abelian variety
over R, so that the dual X also has the structure of a strict abelian variety over R. Let
us identify X and X with their functors of points X, X : CAlgy — Mody'. Unwinding
the definitions, we see that the functor X is characterized by the formula

Mapyoa, (M, X(A)) = Mappncatges,cvon) (27 (M @2z Xcalgg ), BGL1 |calgy)-

Proposition 6.8.2. Let R be a connective E-ring and let X be a strict abelian variety
over R, so that the dual X inherits the structure of a strict abelian variety over R.
For every set of prime numbers S, there is a canonical equivalence )A([SOO] ~ D(X[S™])
of S-divisible groups over R.

Proof. Let us identify X and X with their functors of points CAlg®' — Modz. Let A
be a connective E,-algebra over R, let X, and X 4 be the associated strict abelian
varieties over A, and let M be a finite abelian S-group. To simplify the notation, let
us not distinguish between the functor BGL; : CAlg®' — CMon and its restriction to
CAlg$'. Using Remarks and [6.7.8 we obtain a canonical map

X[STNM)(A) > Mapygoa, (M, X(4)
~  Mappy,(calgen,cnon) (27 (M ®z X4), BGL1)
- MapFun(CAlgf;,CMon)(QOOH(M ®z Xa), GL1)
= MapFun(CAlg;n,CMon) (Xa[p™](M*), GLy)
D(X[S*](M*))(A)
~ D(X[S*])(M)(A)

depending functorially on M and A. To complete the proof, it will suffice to show
that the map v is a homotopy equivalence. Since the functor BGL; satisfies descent
for the finite flat topology, it will suffice to show that the the functor M ®z X4 €
Fun(CAlg$', Modz) becomes 1-connective after sheafification with respect to the finite
flat topology. Splitting M as a direct sum, we may assume that M ~ Z /p" Z for some
n = 0 and some prime number p € S. In this case, the desired result follows from
the observation that the map [p"] : X4 — X4 is a finite flat surjection (Proposition
6.7.3)). O
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7 The Serre-Tate Theorem

Let p be a prime number, which we regard as fixed throughout this section.
Let R be an E,-ring and let X be a strict abelian variety of dimension g over R.
It follows from Proposition that the associated p-torsion object X[p™] is a p-
divisible group of height 2g over R. The construction X — X[p®] determines a functor
AVar;(R) — BT5,(R), depending functorially on R. Our goal in this section is to
prove the following result:

Theorem 7.0.1 (Serre-Tate). Let R be a connective Eq-ring, let M be a connective
R-module which is p-complete (Definition SAG.7.5.1.1), and let R be a square-zero
extension of R by M (Definition HA.7.4.1.6 ). For every integer g = 0, the diagram
of w-categories

AVar; (R) — AVar;(R)

| |

BT}, (R) —— BT}, (R)
is a pullback square.

Remark 7.0.2. In the special case where R and M are discrete and p is nilpotent in
R (which guarantees that M is p-complete), Theorem reduces to the classical
Serre-Tate theorem.

We will prove Theorem using an argument of Drinfeld (for an exposition in a
more classical setting, see [4]). Roughly speaking, the idea is to use formal arguments
to reduce to the case where R is a trivial square-zero extension of R by M, which we
can analyze using an elaboration of Proposition [2.1.2]

7.1 Deformation Theory of the Functor R — BT’(R)

We begin by adapting some of the results of §2f to the setting of p-divisible groups.
First, we need a bit of notation.

Notation 7.1.1. Let R be an E,-ring. We let Var™(R) denote the full subcategory
of SpDMJ§ ¢, r spanned by those flat maps f : X = (X, Ox) — Spét R for which
the underlying map of spectral Deligne-Mumford stacks (X', =9 Ox) — Spét(m=oR) is
proper and locally almost of finite presentation.
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Note that any E,-ring R, we can identify the oo-category BT?(R) of p-divisible
groups over R with a full subcategory of Fun((Abf )P, Var®(R)).

Proposition 7.1.2. Let R be a connective Ey-ring and let X : (AbE,)°P — Var®(R)
be a functor. The following conditions are equivalent:

(a) The functor X is a p-divisible group over R.

(b) For every residue field r of R, the composite functor (AbE. )P 2> Vart(R) —
Var® (k) is a p-divisible group over k.

Proof. The implication (a) = (b) is obvious. Conversely, suppose that () is satisfied.
Using Corollary SAG.6.1.4.12, we deduce that X is a p-torsion object of SpDM}".
Let M be a finite abelian p-group and let M’ < M be a finite subgroup of index p*.
Combining (b) with Corollary SAG.6.1.4.10, we deduce that the map p: X (M) —
X (M) is finite flat. O

Remark 7.1.3. In the situation of Proposition|7.1.2] the p-divisible group X has height
h if and only if each of the p-divisible groups X, : (Ab )? 5 Var®(R) — Var™ (k)
has height h.

Proposition 7.1.4. The construction R — BT?(R) determines a functor CAlg™ —
Cato, which is nilcomplete and cohesive. Similarly, for each h = 0, the functor
R — BTY(R) is nilcomplete and cohesive.

Proof. We will show that the functor R — BT?(R) is cohesive; the proofs in the other
cases are similar. Suppose we are given a pullback diagram of connective E.-rings

RHRO

|

Rl - R01

which induces surjections my Ry — moRo1 < moR1. Applying Theorem SAG.19.4.0.2,
we deduce that the diagram of co-categories

Fun((AbE)°P, Vart (R)) —— Fun((Ab} )P, Var™ (Ry))

| |

Fun((AbE,)°P, Var™ (R;)) — Fun((ADbE,)°P, Var ™ (Ro1))
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is a pullback square. To complete the proof, it will suffice to show that if X :
(AbE )°P — Var®(R) is a functor having the property that the composite functors

Xo : (Ab2 )P & Vart(R) — Vart(Ry) X : (Ab )P 2 Var® (R) — Vart(Ry)

are p-divisible groups over Ry and Ry, respectively, then X is a p-divisible group over
R. By virtue of Proposition it will suffice to show that for each residue field
of R, the composite functor (Ab% )P %5 Var*(R) — Var (k) is a p-divisible group
over k. This is clear, since our hypotheses guarantee that the map R — x factors
through either Ry or R;. [

Proposition 7.1.5. Let h = 0 be an integer and let K be a simplicial set. Define
F : CAlg™ — S by the formulas F(R) = Fun(K,BT?(R))=. Then the functor F has
a (—1)-connective cotangent complex.

Proof. Define G : CAlg® — S by the formula G(R) = Fun(K x (Abf,)°P, Var™ (R))>.
Note that for every connective E,-ring R, we can identify F(R) with a summand of
G(R). Moreover, a point n € G(R) belongs to F(R) if and only if, for every residue
field k of R, the image of 1 in G(k) belongs to F(x) (Proposition [7.1.2)). It follows
that if R is a connective Ey-ring and M is a connective R-module, then the diagram

F(R®M)——= F(R)

| l

G(R® M) ——~ G(R)

is a pullback square. Consequently, if G admits a cotangent complex Lg € QCoh(G),
then the restriction Lg|r € QCoh(F) is a cotangent complex for F. We are therefore
reduced to proving that the functor G admits a (—1)-connective cotangent complex,
which is a special case of Theorem SAG.19.4.0.2. O

7.2 The Case of a Trivial Square-Zero Extension

We will deduce Theorem from the following a priori weaker assertion:

Proposition 7.2.1. Let R be a connective E,-ring, let M be a connective R-module
which is p-complete, and let g = 0 be an integer. Then the canonical map

AVar;(R) — Bng<R> XBng(R@M) AVar;(R@ M)

is a fully faithful embedding of co-categories.
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The proof of Proposition [7.2.1| will require a few preliminaries.

Notation 7.2.2. For every connective E,-ring A and every oo-category C, we let
Shv,qe(A; C) denote the full subcategory of Fun(CAlg}', C) spanned by those functors
which are sheaves with respect to the fpqc topology. If X is a strict abelian variety
over A and X : CAlg§ — Mody is its functor of points (see Remark [1.5.4]), then X
can be regarded as an object of the oo-category Shvg,q.(A4; Modz'). In what follows,
we will abuse terminology by identifying the oo-category AVar®(A) with its essential
image under the fully faithful embedding

AVar®(A) — Shvgyec(A; Mody') X— X.

Lemma 7.2.3. Let R be a connective Ey-ring and let X € Shvge.(A; Mody') be a
strict abelian variety over R. Let M be a connective R-module. If M is p-complete,
then the fiber of the projection map X (R@® M) — X (R) is p-complete.

Proof. Using Proposition [2.1.2] we obtain an equivalence of spectra (not necessarily
Z-linear)
fib(X(R® M) — X(R)) ~ t>0Map ,(w, M)

for a certain connective A-module spectrum w. If M is p-complete, then Map ,(w, M)
is also p-complete, so that the truncation 7>¢Map A(w, R) is likewise p-complete (see

Corollary SAG.7.3.4.3). O
The proof of Proposition [6.4.9| yields the following:

Lemma 7.2.4. Let A be a connective Ey,-ring, let X, Y € Shvey.(A; Mody') be strict
abelian varieties of dimensions g over A and let X [p*],Y[p™] denote their p-divisible
groups. Then there is a canonical homotopy equivalence

MapBng(A) (X[p”7].Y[p”]) ~ im Mapgyy, . (4:Modg (fib(X = X,Y).
Proof of Proposition[7.2.1. Let X,Y € Shvg,q(R; Mody') be strict abelian varieties

of dimension g over R and let X, Yy € Shvg,qe(R @ M;Mody') denote their images
in AVar; (R® M). We wish to show that the diagram of spaces o :

Map gvars (r) (X, Y') Map svars (R (X, Yar)

| |

MaPBng(R) (X[p*],Y[p*]) — MapBng(R@M) (Xn[p™], Yar[p™])
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is a pullback square.

It follows from Propositions and that the construction M +— oy
commutes with filtered limits. For each n > 0, let M,, denote the cofiber of the map
p": M — M. Since M is p-complete, it is the limit of the tower {M,,}. It will therefore
suffice to show that each o), is a pullback square. Note that there is an equivalence
of spectra M,, ~ M ® (S/p"), where S/p" denotes the Moore spectrum (given by the
cofiber of the map p" : S — S). A simple calculation shows that the multiplication map
pk: S/p™ — S/p" is nullhomotopic for k » 0, so that p* : M,, — M,, is nullhomotopic
for £ » 0. Replacing M by M, we may reduce to the case where p* : M — M is
nullhomotopic for £ > 0.

Let S denote the oo-category of spaces which are not necessarily small, and
let us regard Shvg,q.(R; S) and Shvgge(R @ M;8) as oo-topoi after a change of
universe. The projection map R @® M — R induces a geometric morphism g, :
Shvgyge(R @ M;S) — ShvquC(R;g), with a left adjoint ¢*. Let C denote the oo-
category of abelian group objects of Shvgyq.(R; S ) and C’ the co-category of abelian
group objects of Shve,q.(R @ M; 3) The functors ¢* and ¢, are both left exact, and

*

q
therefore determine adjoint functors C<T4>C’. Unwinding the definitions, we have
*

equivalences X, ~ ¢*X and Y); ~ ¢*Y, hence canonical homotopy equivalences
1\/'[8‘1:)A\/a1r5 (R®M) (XM7 YM) = Mapc (X7 Q*q*Y>

Mape: (fib(Xyr 2 Xar), Yas) > Mape(fib(X ™ X), guq*Y).
Using Lemma [7.2.4] we can identify o,; with the diagram

Mapc <X7 Y) Mapc <X7 q*q*Y>

| l

lim Mape(fib(X % X),Y) —=lim Mapc(fib(X % X), gg*Y).

For every connective R-module N, define Eyy € C by the formula Ey(A) =
fib(Y(A® (A®g N)) — Y (A)). Note that if N has the property that p* : N — N
is nullhomotopic for £ » 0, then A ®z N has the same property, and is therefore
p-complete. It then follows from Lemma that Ex(A) is also p-complete (when
viewed as an object of Modgz). Since the projection R @® M — R admits a section,
the unit map Y — ¢.¢*Y admits a left homotopy inverse, giving a splitting ¢.q*Y ~
Y @ E);. Consequently, to show that o), is a pullback square, it will suffice to show
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that the canonical map

(b : MapC(Xu EM) - mMapC(ﬁb(X p—n) X)vEM>

is a homotopy equivalence.

Let €& = Sp(C) denote the oo-category of spectrum objects of C, which we can
identify with the oo-category Shvg,q.(R, 1\//10\dz), where mz denotes the co-category
of (not necessarily small) Z-module spectra. Then £ is a stable co-category equipped
with a t-structure (€s0,E<p), and there is a fully faithful embedding ¢ : C — &
whose essential image is £>¢. Using Proposition [2.1.2] we deduce that the canonical
map E)y; — QFys), is an equivalence, and therefore induces an equivalence ¢(E)) ~
T=082(tEsyr) in the oo-category €. We may therefore identify ¢ with the canonical
map

Mape (1.X, Q(tBsar)) — Mapg(lim ¢ fib(X 5 X), Q(:Esr)).-

Since X is a strict abelian variety over R, multiplication by p"™ induces a faithfully
flat map from X to itself, and is therefore an effective epimorphism with respect to
the flat topology (Proposition [6.7.3)). It follows that the canonical map

LAb(X 25 X)) — fib(eX 2 1X)
is an equivalence for every integer n. Let X [%] denote the colimit of the sequence

XE5x 5.

in C, so that we have a fiber sequence lim fib(e X LN 1X) — 1 X — 1 X[p~!] in the
stable oo-category £ and therefore a homotopy fiber sequence

n 1
Mapg (¢.X, Q(tExpr)) 2, Mapg (lim fib(: X 2= 1 X), Q(tEsyr) — Mape (1 X[~], tEsr).
n p
To complete the proof, it will suffice to show that the space
K = Mapg (e X[p™'], tEear) = Mape (X [p™'], Exu).

This is clear, since X [p~!] is p-local and Ey,; is p-complete. ]
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7.3 Proof of the Serre-Tate Theorem

We now explain how to deduce Theorem from Proposition [7.2.1l Let R be a
square-zero extension of R by a connective R-module M, so that we have a pullback
diagram of connective E,-rings

where the bottom horizontal map is the tautological map from R into the trivial
square-zero extension R @ X M. We wish to show that the upper square appearing in
the diagram

AVar;(R) AVar;(R)

| l
BT‘SQ(R) BT‘gg(R)

l |
BTY, (R) — BT}, (R @ M)

is a pullback. Using Proposition [7.1.4] we deduce that the lower square is a pullback;
it will therefore suffice to show that the outer rectangle is a pullback. Consider the
diagram

AVar;(R) AVar; (R)

| |

AVarj (R) — AVar;(R® XM)

l |

BT}, (R) —> BTh,(R®XM).

Since the upper square is a pullback by Proposition we are reduced to proving
that the lower square is a pullback. In other words, we wish to show that the canonical
functor

¢ : AVar;(R) — AVar’(R® XM) X BT} (ROSM) BT%,(R)

is an equivalence of oco-categories.
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Let C denote the fiber product AVar; (R) XBTY (R) BT5,(R®XM), so that we have
a commutative diagram

AVar®(R) C AVar®(R)

| |

BT?(R) —> BT?(R® S M) — BT?(R).

The outer rectangle in this diagram is a pullback square (since the horizontal composite
maps are equivalences), and the right square is a pullback by construction. It follows
that the left square is a pullback, so that the composite functor

AV&I‘S<R) i AV&I‘S(R &) EM) XBTP(R@EM) BTp(R) i C XBTP(R@EM)BTP(R)

is an equivalence of co-categories. To prove that ¢ is an equivalence of co-categories, it
will suffice to show that v is fully faithful. The functor ¢ is a pullback of the natural
map o : AVar®(R@® X M) — C. We are therefore reduced to proving that 1) is fully
faithful.

Note that R@ XM is a square-zero extension of R by X2M, so we have a pullback
diagram of connective E.-rings

R®XM T
R R®Y?M,

and therefore a commutative diagram of oco-categories

AVar; (R®XM) AVar; (R)
BT, (R®XM) BT, (R)
BT, (R) BT, (R @ S2M).

Proposition [7.1.4] implies that the lower square in this diagram is a pullback, so
that we can identify ¢y with the functor AVar®*(R @ X M) — BT?(R) Xgre(rex2m)
AVar®(R) determined by the outer rectangle. This outer rectangle appears also in the
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commutative diagram

AVar* (R ® M) AVar*(R)
AVar®(R) AVar®(R@® X2 M)
BT”(R) BT?(R ® S2M)

where the upper square is a pullback (Proposition . It follows that 1) is a pullback
of the functor ¢y : AVar®(R) — BT?(R) Xprr(rgsza) AVar’(R@ X?M) determined by
the lower square. We are therefore reduced to showing that ¢ is fully faithful, which
is a special case of Proposition

7.4 Application: Lifting Abelian Varieties from Classical to
Spectral Algebraic Geometry

We close this section by noting the following consequence of Theorem [7.0.1}

Proposition 7.4.1. Let f : R — R’ be a map of Ex-rings and p a prime number.
Assume that [ induces an isomorphism of commutative rings moR — moR', and that
the abelian groups m; R and m; R are p-complete for each i > 0. Then, for every integer
g = 0, the diagram of co-categories o :

AVar;(R) — AVar; (R')

| |

BTY,(R) —— BT5,(R)
is a pullback square.

Proof. We have a commutative diagram

AVar} (10 R) — AVar} (R) — AVar; (R)

l l l

BT, (rsoR) — BT3, (R) — BT}, (R))

where the horizontal maps on the left are equivalences (Remarks[1.5.3] and [6.5.3). We

may therefore replace R by 79 R and thereby reduce to the case where R is connective.
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In this case, f factors through the connective cover of R’, so we have a commutative
diagram
AVar; (R) — AVarj (10 R') — AVar; (R')

l l l

BT}, (R) —— BTY, (70 R') —— BT3, (R).

Remarks|1.5.3|and [6.5.3[ now imply that the right horizontal maps are equivalences, so

we may replace R’ by 7-9R’' and thereby reduce to the case where R’ is also connective.
Let R” denote the discrete commutative ring moR’, so that we have a commutative
diagram

AVar; (R) — AVar; (R') — AVar; (R")

l i |

BT%,(R) —> BT, (R') —= BT}, (R").

To prove that the left square is a pullback, it will suffice to show that the right square
is a pullback and that the outer rectangle is a pullback. It will therefore suffice to
prove Proposition under the additional assumption that R’ is discrete (so that f
exhibits R’ as the O-truncation of R).

Using Propositions [2.1.5] and [7.1.4], we deduce deduce that o is the limit of a tower
of diagrams o, :

AVar; (1<, R) — AVar, (R')

BT}, (72, R) — BT} (R)).
It will therefore suffice to show that each o, is a pullback square. The proof proceeds
by induction on n. When n = 0, this is trivial (the horizontal maps are equivalences,

by virtue of our assumption that f induces an isomorphism myR — myR’). If n > 0,
we have a commutative diagram

AVar; (1<, R) — AVar; (1<, 1 ?) — AVar; (R')
Bng (T<nR) —— BT‘SQ (Ten-1R) —— Bng(R’)

x

where the right square is a pullback by the inductive hypothesis. It will therefore
suffice to prove that the left square is a pullback. This is a special case of Theorem
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since T<, R is a square-zero extension of 7<,_1 R by the p-complete R-module

Y"(m,R) (see Theorem HA.7.4.1.26). O
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