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Topological Cyclic Homology of Local Fields

Ruochuan Liu ∗and Guozhen Wang †

Abstract

We introduce a new approach to compute topological cyclic homology using the
descent spectral sequence. We carry out the computation for a p-adic local field with
Fp-coefficient.

Contents

1 Introduction 2

2 Cyclotomic structures on relative THH 5

3 Structure of TP0(OK/SW (k)[z1, z2]) 10

4 Hopf algebroid 18

5 The decent spectral sequence 22

6 Refined algebraic Tate differentials 26

7 E2-term of mod p descent spectral sequence I 41

8 E2-term of mod p descent spectral sequence II 44

9 Constant term of the Eisenstein polynomial 52

10 Comparison with motivic cohomology 55

∗R. Liu is partially supported by the National Natural Science Foundation of China under agreement No.
NSFC-11725101 and the Tencent Foundation.

†G. Wang is partially supported by the National Natural Science Foundation of China under agreement
No. NSFC-11801082 and the Shanghai Rising-Star Program under agreement No. 20QA1401600.

http://arxiv.org/abs/2012.15014v1


1 Introduction

Fix a prime number p. Let K be a p-adic local field, i.e. a finite extension of Qp. In
this paper, we introduce the descent spectral sequence to compute topological cyclic
homology TC∗(OK) and its variants TC−

∗ (OK) and TP∗(OK). In fact, we carry out
the computation in the modulo p case, and obtain the structure of TC∗(OK ;Fp), which
in turn determines the mod p algebraic K-theory of OK by the cyclotomic trace map.
Moreover, our approach for computing topological cyclic homology may apply to more
general cases. In a forthcoming paper [8], we will treat the case of locally complete
intersection schemes over Zp.

The descent spectral sequence is constructed using relative topological Hochschild
homology through an Adams type resolution of the base ring. More precisely, let k be
the residue field of OK , and let W (k) be the ring of Witt vectors over k. Let SW (k)

be the spherical Witt vectors (cf. [9, §5.2]). Let N be the additive monoid of natural
numbers, and let SW (k)[z] be the E∞-ring spectrum

SW (k) ⊗S Σ
∞N+.

We have a map of E∞-ring spectra SW (k)[z]→ OK sending z to ̟K . Using this map,
we may define the relative topological Hochschild homology THH(OK/SW (k)[z]), which
has the structure of an E∞-cyclotomic spectrum by [2]. Therefore we may further define
relative periodic topological cyclic homology TP(OK/SW (k)[z]) and relative negative
topological cyclic homology TC−(OK/SW (k)[z]).

By taking an Adams type resolution

SW (k) → SW (k)[z]→ SW (k)[z1, z2]→ . . . (⋆)

of SW (k), we obtain a cosimplicial E∞-cyclotomic spectrum THH(OK/SW (k)[z]
⊗•).

This gives rise to the descent spectral sequences

Ei,j
1 (THH(OK)) = THHj(OK/SW (k)[z]

⊗i)⇒ THHj−i(OK/SW (k)),

Ei,j
1 (TC−(OK)) = TC−

j (OK/SW (k)[z]
⊗i)⇒ TC−

j−i(OK/SW (k)),

and
Ei,j

1 (TP−(OK)) = TPj(OK/SW (k)[z]
⊗i)⇒ TPj−i(OK/SW (k))

(see §5 for more details); they are analogues of the Adams spectral sequence in the
category of cyclotomic spectra. Combining the last two spectral sequences we obtain
the third spectral sequence

Ei,j
2 (TC(OK))⇒ TCj−i(OK/SW (k)),

where Ei,j
2 (TC−(OK)), Ei,j

2 (TP(OK)) and Ei,j
2 (TC(OK)) are related by a long exact

sequence induced from the fiber sequence

TC(OK/SW (k))→ TC−(OK/SW (k))
can−ϕ−−−−→ TP(OK/SW (k)).

By similar procedures as in the construction of the Adams spectral sequence, we
show that the E2-term of the decent spectral sequence for THH(OK/SW (k)) (resp.
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TP(OK/SW (k))) is isomorphic to the cobar complex for THH∗(OK/SW (k)[z]) (resp.
TP∗(OK/SW (k)[z])) with respect to the Hopf algebroid

(THH∗(OK/SW (k)[z]),THH∗(OK/SW (k)[z1, z2]))

(resp. (TP0(OK/SW (k)[z]),TP0(OK/SW (k)[z1, z2]))). To understand the structure of
these Hopf algebroids, we make use of the theory of δ-rings. Recall that a δ-ring
structure on a p-torsionfree commutative ring A is equivalent to the datum of a ring
map ϕ : A→ A lifting the Frobenius on A/p; the corresponding δ-structure is given by

δ(x) =
ϕ(x)− xp

p
.

Note that there is a Frobenius map ϕ on W (k)[z] which is the Frobenius on W (k) and
sends z to zp. This makes W (k)[z] into a δ-ring. In fact, the Frobenius map ϕ makes
all TP0(OK/SW (k)[z]

⊗•) into δ-rings.
Let̟K be a uniformizer ofOK . Using results of [2], we know that TP0(OK/SW (k)[z])

is isomorphic to the completion of W (k)[z] with respect to the filtration defined by
powers of EK(z), which is a minimal polynomial for ̟K over W (k). Determining the
structures of TP0(OK/SW (k)[z1, z2]) and THH∗(OK/SW (k)[z1, z2]) is one of the key
steps of the paper. It turns out that the former is isomorphic to the completed δ-ring
obtained by adjoining

h =
ϕ(z1 − z2)

ϕ(EK(z1))

to W (k)[z1, z2]. Consequently, we obtain an explicit description of the Hopf algebroid
(THH(OK/SW (k)[z]),THH(OK/SW (k)[z1, z2])), which is isomorphic to the associated
graded Hopf algebroid of (TP0(OK/SW (k)[z]),TP0(OK/SW (k)[z1, z2])) (see §3, §4 for
more details).

The explicit description of (THH(OK/SW (k)[z]),THH(OK/SW (k)[z1, z2])) allows us
to compute E2-terms of the descent spectral sequences using standard relative injective
resolutions. In §5, we first do this for THH(OK). Then we use the Nygaard filtration
on the cobar complex for TP0(OK/SW (k)[z]) to construct the algebraic Tate spectral
sequence

E2(THH(OK))[σ±]⇒ E2(TP(OK)).

We also construct the algebraic homotopy fixed points spectral sequence

E2(THH(OK))[v]⇒ E2(TC
−(OK))

in a similar way.
It turns out that extra complication occurs when apply the above approach to

compute E2-terms of the mod p descent spectral sequences. To remedy, we introduce
a refinement of the Nygaard filtration on TP∗(OK/SW (k)[z]

⊗•;Fp) and compute all
the differentials of the refined algebraic Tate spectral sequence in §6. Using refined
algebraic Tate differentials, we compute E2-terms of the descent spectral sequences for
TC−

∗ (OK ;Fp) and TP∗(OK ;Fp) in §7. In §8, we compute the E2-term of the spectral
sequence for TC∗(OK ;Fp). In §9, using the Bott elements in K2(Qp(ζpn)), we deduce
that the constant term of EK(z) has to be equal to p. Putting these together, we finally
conclude our main result:
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Theorem 1.1. Let d = [K(ζp) : K]. Then we explicitly construct

β, λ, γ, α
(1)
1 , . . . , α(1)

eK , α
(2)
1 , . . . , α(2)

eK , . . . , α
(d)
1 , . . . , α(d)

eK ∈ TC∗(OK ;Fp)

with |β| = 2d, |λ| = −1, |γ| = 2d+ 1, |α(j)
i | = 2j − 1, such that

TC∗(OK ;Fp) ∼= Fp[β]{1, λ, γ, λγ} ⊕ k[β]{α(j)
i |1 ≤ i ≤ eK , 1 ≤ j ≤ d}

as Fp[β]-modules. In particular, TC∗(OK ;Fp) is a free Fp[β]-module.

Topological cyclic homology is an important tool for understanding algebraic K-
theory. The case of p-adic local fields has been extensively studied by many people.
For example, the case p odd and eK = 1 is computed in [4] and [13]. The case p odd
and eK arbitrary is computed in [5]. The case p = 2 and eK = 1 is computed in [12].

These prior works adopt a similar strategy, which is different form ours; the differ-
ence may be summarized by the following diagram

E2(THH(OK))[σ±]

descent

qy ❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

algebraic Tate

%-
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

THH∗(OK)[σ±]

Tate
%-

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

E2(TP(OK)).

descent
qy ❦❦❦

❦❦
❦❦
❦❦
❦❦
❦❦
❦

❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

TP∗(OK)

In the works mentioned above, one starts with the descent spectral sequence for
THH(OK), which collapses at E2-term in consideration of degrees. Then one applies
the Tate spectral sequence to compute TP∗(OK). The hard part is to compute the
Tate differentials, and the main technique for doing this is to inductively determine the
structures of the Tate spectral sequences for all finite subgroups of the circle group T.

Our approach proceeds in another direction. We first run the (mod p) algebraic Tate
spectral sequence to compute the E2-term of the descent spectral sequence for TP(OK).
Since the cobar complex can be described explicitly thanks to the determination of
the Hopf algebroid (TP0(OK/SW (k)[z]),TP0(OK/SW (k)[z1, z2])), the computation of
algebraic Tate differentials is purely algebraic. It follows that the descent spectral
sequence for TP∗(OK) collapses at the E2-term in consideration of degrees. Indeed,
it turns out that the structure of the algebraic Tate spectral sequence is similar to
the structure of the Tate spectral sequence (see Remark 6.42). That is to say, by the
resolution (⋆) and the Nygaard filtration, we transform the problem of computing the
Tate differentials, which is topological in nature, to a purely algebraic problem which
in turn can be solved explicitly.

As indicated in the diagram, our approach consists of two steps. The first one
is to determine the algebraic Tate differentials, which is purely algebraic. The other
one is the computation of the descent spectral sequence for TP. As mentioned at the
beginning, we will apply this approach to study the topological cyclic homology of
locally complete intersection schemes over Zp in a forthcoming paper. It turns out
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that for those schemes, the descent spectral sequence for TP is no longer degenerate.
Their size are bounded by the number of generators of the sheaf of regular functions.

Finally, in §10, we observe that the decent spectral sequence computing TC∗(OK ;Fp)
is reminiscent of the motivic spectral sequence computing K∗(K,Fp). We expect that
the decent spectral sequence will provide some incarnation of the motivic spectral
sequence in the p-adic setting.

Relation with other works

The present work started with an attempt to compute TC(OK) using the spectral se-
quence introduced by Bhatt-Morrow-Scholze relating the prisms and topological cyclic
homology [2]. In fact, one may resolve OK by perfectoids in the quasi-syntomic site,
and obtain a complex similar to (⋆) but having p-fractional powers of zi’s. More-
over, the E1-term of the resulting spectral sequence has the descent spectral sequence
as a subcomplex consisting of terms with integer exponents. We conjecture that the
E1-terms of these two spectral sequences are quasi-isomorphic, i.e. the subcomplex
consisting of terms with non-integer exponents is acyclic.

In [6], Krause-Nikolaus also introduce a descent style spectral sequence to compute
the topological Hochschild homology of quotients of DVRs. Their work also recover
the main result of Lindenstrauss-Madsen [7] as ours (Corollary 5.19).

Notation and conventions

Fix a prime p. Let K be a finite extension of Qp with residue field k. Denote by
K0 = W (k)[1/p] the maximal unramified subextension of K over Qp. Let eK and fK
be the ramification index and inertia degree of K over Qp respectively. Let ̟K be
a uniformizer of OK , and let EK(z) be a minimal polynomial of ̟K over K0. Let µ
denote the leading coefficient of EK(z).
Warning: Throughout this paper, all Nygaard filtrations involved only jump at even
numbers. For our purpose, we rescale the index of Nygaard filtrations by 2 after
Convention 6.7.

Acknowledgements

Both authors are grateful to Lars Hesselholt for suggesting this project, and for his
tremendous help during preparation of this paper. Especially, he proposed to us the
approach of using resolution (⋆) in relative topological Hochschild homology. Thanks
also to Dustin Clausen, Bjørn Ian Dundas, Jingbang Guo, Marc Levine, Thomas Niko-
laus, Paul Arne Østvær, and John Rognes for valuable discussions and suggestions.

2 Cyclotomic structures on relative THH

Recall that the relative topological Hochschild homology is defined by the cyclic bar
construction over the base.
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Definition 2.1. Let E be an E∞-ring spectrum, and let A be an E∞-algebra over E.
The relative topological Hochschild homology of A over E is defined as

THH(A/E) = A⊗ET

in the ∞-category of E∞-ring spectra, which is universal among the objects of T-
equivariant E∞-E-algebras with a (non-equivariant) map from A.

The universal property of relative THH implies the following multiplicative property

THH(A1/E1)⊗THH(A2/E2) THH(A3/E3) ∼= THH(A1 ⊗A2 A3/E1 ⊗E2 E3). (2.2)

In general, relative topological Hochschild homology may not have cyclotomic struc-
tures. For example, the Hochschild homology HH(−) = THH(−/Z) is not cyclotomic
([11, III.1.10]). However, we may put more conditions on the base to obtain a natural
cyclotomic structure on the resulting relative THH.

Lemma 2.3. The following are true.

(1) Let E be an E∞-cyclotomic spectrum such that the underlying T-action is trivial.
If the augmentation map

THH(E)→ E

is a map of E∞-cyclotomic spectra, then the functor THH(−/E) can be lifted to
a functor from E∞-E-algebras to E∞-cyclotomic spectra.

(2) Moreover, suppose we have a commutative diagram of E∞-cyclotomic spectra

THH(E1)

��

// E1

��

THH(E2) // E2

with trivial T-actions on E1 and E2 such that it extends to a commutative diagram
of E∞-ring spectra

THH(E1)

��

// E1
//

��

A1

��

THH(E2) // E2
// A2.

Then the natural map THH(A1/E1)→ THH(A2/E2) is a map of E∞-cyclotomic
spectra.

Proof. Part (1) is essentially [2, Construction 11.5]. In fact, by (2.2), we get

THH(X/E) ∼= THH(X) ⊗THH(E) E

in the∞-category of E∞-ring spectra. Since the forgetful functor from E∞-cyclotomic
spectra to E∞-ring spectra is symmetric monoidal and preserves small colimits, we
may lift THH(X/E) as the pushout of THH(X) ← THH(E) → E in the ∞-category
of E∞-cyclotomic spectra. Part (2) follows immediately.
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Definition 2.4. When the condition of Lemma 2.3(1) holds, we set the relative neg-
ative cyclic homology

TC−(−/E) = THH(−/E)hT

and the relative periodic cyclic homology

TP(−/E) = (THH(−/E)tT.

As in the absolute case, for any prime l, the cyclotomic structure on THH(−/E) induces
the Frobenius

ϕl : TC
−(−/E) = THH(−/E)hT → (THH(−/E)tCl)hT. (2.5)

Moreover, there is the canonical map

can : TC−(−/E) ∼= (THH(−/E)hCl)h(T/Cl) = (THH(−/E)hCl)hT → (THH(−/E)tCl)hT.
(2.6)

The relative topological cyclic homology is defined by the fiber sequence

TC(−/E)→ TC−(−/E)

∏
l(ϕ

hT
l −can)−−−−−−−−→ TP(−/E). (2.7)

Using the argument of [11, Lemma II 4.2], we have

TP(−/E;Zp) ∼= (THH(−/E)tCp)hT. (2.8)

Taking p-completion on (2.5), (2.6), we get

ϕ : TC−(−/E;Zp)→ TP(−/E;Zp), can : TC−(−/E;Zp)→ TP(−/E;Zp)

and the fiber sequence

TC(−/E;Zp)→ TC−(−/E;Zp)
ϕ−can−−−−→ TP(−/E;Zp).

As in the absolute case, there are the homotopy fixed point spectral sequence

Ei,j
2 = THH∗(−/E)[v] ⇒ TC−

i−j(−/E) (2.9)

and the Tate spectral sequence

Ei,j
2 = THH∗(−/E)[σ±1]⇒ TPi−j(−/E), (2.10)

where |v| = −2, |σ| = 2, and can(v) = σ−1. The Nygaard filtration N≥• is defined to
be the filtration on the abutment of the Tate spectral sequence; it is multiplicative as
the Tate spectral sequence is multiplicative. When the Tate spectral sequence collapses
at the E2-term, we denote by pj the natural projection

N≥j(TP0(−/E))→ THHj(−/E).

Recall that by [2, Proposition 11.3], S[z] admits an E∞-cyclotomic structure over
THH(S[z]) in which the T-action is trivial and the Frobenius sends z to zp.

7



Proposition 2.11. The following are true.

(1) There is a functorial E∞-cyclotomic structure on THH(−/SW (k)).

(2) There is a functorial E∞-cyclotomic structure on THH(−/SW (k)[z]).

Proof. We set the Frobenius on SW (k) to be the unique E∞-automorphism inducing
the Frobenius on π0. It follows that the resulting cyclotomic structure on SW (k) agrees
with the p-completion of the cyclotomic structure on THH(SW (k)) via the augmentation
map [11, IV.1.2]. This yields (1) by Lemma 2.3.

For (2), note that
SW (k)[z] ∼= SW (k) ⊗S S[z]

in the ∞-category of E∞-ring spectra. We then define the cyclotomic structure on
SW (k)[z] using the cyclotomic structures on SW (k) and S[z], and the monoidal structure
on the ∞-category of E∞-cyclotomic spectra. We conclude (2) by (1) and Lemma
2.3.

Remark 2.12. Since SW (k) is the p-completion of THH(SW (k)), it follows that

THH(OK/SW (k)) ∼= THH(OK)⊗THH(SW (k)) SW (k)

is isomorphic to the p-completion of THH(OK). Similarly, THH(OK/SW (k)[z]) is iso-
morphic to the p-completion of THH(OK/S[z]).

Remark 2.13. By the previous remark, we see that TC(OK/SW (k)), TC(OK/SW (k)[z]),
TC−(OK/SW (k)), TC

−(OK/SW (k)[z]), TP(OK/SW (k)) and TP(OK/SW (k)[z]) are iso-
morphic to p-completions of TC(OK), TC(OK/S[z]), TC−(OK), TC−(OK/S[z]), TP(OK)
and TP(OK/S[z]) respectively.

Note that the composite

S[z]→ THH(−/S[z]),
which is a map of E∞-cyclotomic spectra, induces

iC : S[z]hT → TC−
0 (−/S[z];Zp), iP : (S[z]tCp)hT → TP0(−/S[z];Zp).

Recall that S[z] is equipped with the trivial T-action. In the following, when the context
is clear, we abusively use z to denote the its images under iC and can ◦ iC .
Proposition 2.14. We have ϕ(z) = zp.

Proof. Recall that the Frobenius ϕp on S[z] is the composite

S[z]
z 7→zp−−−→ S[z]→ S[z]hCp can−−→ S[z]tCp .

It follows that the composite

ϕhT
p : S[z]hT

z 7→zp−−−→ S[z]hT → S[z]hT
can−−→ (S[z]tCp)hT

satisfies ϕhT
p (z) = can(z)p. On the other hand, it is straightforward to see

ϕ ◦ iC = iP ◦ ϕhT
p and can ◦ iC = iP ◦ can.

The desired result follows.
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Now we specialize to the case of OK .

Theorem 2.15. We have the following results on homotopy groups.

(1) We have
THH∗(OK/SW (k)[z]) ∼= OK [u],

where u ∈ THH2(OK/SW (k)[z]) is any lift of the Bökstedt element in THH2(k).

(2) The Tate spectral sequence for TP∗(OK/SW (k)[z]) degenerates at the E2-term.
Consequently,

TP∗(OK/SW (k)[z]) ∼= TP0(OK/SW (k)[z])[σ
±1]

with |σ| = 2.

(3) We have
TP0(OK/SW (k)[z]) ∼= W (k)[[z]],

and the natural map p0 : TP0(OK/SW (k)[z])→ THH0(OK/SW (k)[z]) corresponds
to

W (k)[[z]]
z 7→̟K−−−−→ OK .

(4) The homotopy fixed point spectral sequence for TC−
0 (OK/SW (k)[z]) degenerates at

the E2-term. Consequently, the canonical map induces

TC−
j (OK/SW (k)[z]) ∼= TPj(OK/SW (k)[z]).

for j ≤ 0.

(5) Under the isomorphisms in (3) and (4), the Frobenius

ϕ : TC−
0 (OK/SW (k)[z])→ TP0(OK/SW (k)[z])

corresponds to the map W (k)[[z]] → W (k)[[z]] which is the Frobenius on W (k)
and sends z to zp.

(6) We have

TC−
∗ (OK/SW (k)[z]) ∼= TC−

0 (OK/SW (k)[z])[u, v]/(uv − EK(z))

where u is a lift of the u given in (1) under p0 and |v| = −2 satisfying ϕ(u) = σ
and can(v) = σ−1. As a consequence, under the isomorphisms in (3), the Nygaard
filtration on TP0(OK/SW (k)[z]) is given by

N≥2jTP0(OK/SW (k)[z]) = N≥2j+1TP0(OK/SW (k)[z]) = (EK(z))j , j ≥ 0.
(2.16)

Moreover, we can make the constant term of EK(z) the same for all K.

Proof. By Remark 2.13, we see that all the statements except the last assertion of (6)
follow immediately from [2, Proposition 11.10]. In fact, the argument given in loc. cit.
is enough to show the following statement:

9



(6)’ For any u′ ∈ TC−
2 (OK/SW (k)[z]) lifting the u given in (1), there exist v′ ∈

TC−
−2(OK/SW (k)[z]) and σ′ ∈ TP2(OK/SW (k)[z]) such that

can(v′) = σ′−1, ϕ(u′) = σ′, TP∗(OK/SW (k)[z]) ∼= TP0(OK/SW (k)[z])[σ
′±1]

and
TC−

∗ (OK/SW (k)[z]) ∼= TP0(OK/SW (k)[z])[u
′, v′]/(u′v′ − EK(z)),

where EK(z) is a minimal polynomial of ̟K over K0.

In the following, we give a proof of (6) based on (6)’. Firstly, by [11], there exists some
nonzero uFp ∈ TC−

2 (Fp) such that

can(uFp) = pτϕ(uFp)

for some τ ∈ Zp
×. Let uk be the image of uFp along Fp → k. By Lemma 2.3, the

commutative diagram
SW (k)[z] //

z 7→̟K

��

SW (k)

��

OK
// k

induces a map of E∞-cyclotomic spectra THH(OK/SW (k)[z])→ THH(k). By (3) and
(4), the induced map

TC−
0 (OK/SW (k)[z])→ TC−

0 (k)

corresponds to the map W (k)[[z]]
z 7→0−−−→ W (k), which is surjective. Moreover, by (6),

TC−
2 (OK/SW (k)[z]) is free of rank 1 over TC−

0 (OK/SW (k)[z]). Hence

TC−
2 (OK/SW (k)[z])→ TC−

2 (k)

is surjective as well.
Now take a lift u′ of uk in TC−

2 (OK/SW (k)[z]). Using (6)’, we have v′, σ′ such that

can(v′) = σ′−1, ϕ(u′) = σ′, TP∗(OK/SW (k)[z]) ∼= TP0(OK/SW (k)[z])[σ
′±1]

and
TC−

∗ (OK/SW (k)[z]) ∼= TP0(OK/SW (k)[z])[u
′, v′]/(u′v′ − EK(z)).

Now by the construction of u′, we deduce that the constant term of EK(z) is equal to
pτ , yielding the desired result.

3 Structure of TP0(OK/SW (k)[z1, z2])

This section is devoted to determining the structure of TP0(OK/SW (k)[z1, z2]). Here

we regard OK as an SW (k)[z1, z2]-algebra via the map SW (k)[z1, z2]
z1,z2 7→̟K−−−−−−−→ OK .

Proposition 3.1. THH(OK/SW (k)[z1, z2]) has a natural E∞-cyclotomic structure.
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Proof. By the multiplicative property of relative THH (2.2), we have

THH(OK/SW (k)[z1, z2]) ∼= THH(OK/SW (k)[z1])⊗THH(OK/SW (k)) THH(OK/SW (k)[z2]).

The cyclotomic structures of THH(OK/SW (k)[zi]), i = 1, 2, and the symmetric monoidal
structure on the ∞-category of E∞-cyclotomic spectra give rise to the E∞-cyclotomic
structure on THH(OK/SW (k)[z1, z2]).

For ♥ ∈ {THH,TC,TC−,TP}, the left unit ηL and right unit ηR are the maps

♥(OK/SW (k)[z])→ ♥(OK/SW (k)[z1, z2])

induced by z 7→ z1 and z 7→ z2 respectively. For ? ∈ {z, u, v, σ}, we denote by ?1 and ?2
the images of ? under the left and right units respectively. In the following, we regard
THH∗(OK/SW (k)[z1, z2]) as an OK [u1]-module via ηL.

Let I be the kernel of W (k)[z1, z2]→ OK sending z1, z2 to ̟, and let tz1−z2 denote
the image of z1 − z2 in THH2(OK/SW (k)[z1, z2]) under the composite of isomorphisms

I/I2 ∼= HH2(OK/W (k)[z1, z2]) ∼= THH2(OK/SW (k)[z1, z2]).

Lemma 3.2. The graded algebra associated to the filtration on THH∗(OK/SW (k)[z1, z2])
defined by powers of u1 is isomorphic to OK [u1]⊗OK

OK〈tz1−z2〉, where OK〈t〉 denotes
the one variable divided power polynomial algebra over OK .

Proof. By Theorem 2.15(1), we have

THH(OK/SW (k)[z1, z2])/(u1) ∼= THH(OK/SW (k)[z1, z2])⊗THH(OK/SW(k)[z1]) THH(OK/OK)

∼= THH(OK/OK [z2]).
(3.3)

Since THH∗(OK/OK [z]) ∼= HH∗(OK/OK [z]) ∼= OK〈t〉 for any generator t ∈ HH2(OK/OK [z]),
we deduce that the u1-Bockstein spectral sequence collapses since everything is con-
centrated in even degrees. Hence the associated graded algebra is isomorphic to
OK [u1] ⊗OK

OK〈t〉. Note that under the isomorphism (3.3), tz1−z2 maps to a gen-
erator of THH2(OK/OK [z]). This yields the desired result.

The following result follows immediately.

Corollary 3.4. We have that THH∗(OK/SW (k)[z1, z2]) is a p-torsionfree integeral do-
main.

Corollary 3.5. Both the Tate spectral sequence for TP∗(OK/SW (k)[z1, z2]) and the
homotopy fixed point spectral sequence for TC−

∗ (OK/SW (k)[z1, z2]) degenerate at the E2-

term. Moreover, TC−
j (OK/SW (k)[z1, z2]) and TPj(OK/SW (k)[z1, z2]) are concentrated

in even degrees. The canonical morphism induces

TC−
j (OK/SW (k)[z1, z2]) ∼= N≥jTPj(OK/SW (k)[z1, z2]).

In particular,

can : TC−
j (OK/SW (k)[z1, z2])→ TPj(OK/SW (k)[z1, z2])

is an isomorphism for j ≤ 0.

11



Proof. By Lemma 3.2, THH∗(OK/SW (k)[z1, z2]) is concentrated in even degrees. It
follows that both the Tate spectral sequence and the homotopy fixed point spectral se-
quence degenerate at the E2-term; TC−

j (OK/SW (k)[z1, z2]) and TPj(OK/SW (k)[z1, z2])
are concentrated in even degrees. The rest of the corollary follows immediately.

Remark 3.6. In general, for n ≥ 0, we may regard OK as an SW (k)[z1, . . . , zn]-module
by sending all zi to ̟K . Using the argument of Lemma 3.2 inductively, one easily
shows that THH(OK/SW (k)[z1, . . . , zn]) is concentrated in even degrees. Consequently,
Corollary 3.5 generalizes to this case.

Lemma 3.7. The graded algebra associated to the Nygaard filtration of TP0(OK/SW (k)[z1, z2])
is isomorphic to THH∗(OK/SW (k)[z1, z2]).

Proof. This follows from Corollary 3.5.

The following two results follow immediately.

Corollary 3.8. For a ∈ TP0(OK/SW (k)[z1, z2]), it has Nygaard filtration j if and only
if pa has Nygaard filtration j.

Corollary 3.9. We have that TP0(OK/SW (k)[z1, z2]) is a p-torsionfree integral do-
main.

Henceforth, by Corollary 3.5, we may identify TC−
0 (OK/SW (k)[z1, z2]) with TP0(OK/SW (k)[z1, z2])

via the canonical map, and regard the Frobenius as an endomorphism on TP0(OK/SW (k)[z1, z2]).
By Proposition 2.14, we have

ϕ(z1) = zp1 , ϕ(z2) = zp2 . (3.10)

Lemma 3.11. If a ∈ N≥2jTP0(OK/SW (k)[z1, z2]), then ϕ(a) is divisible by ϕ(EK(z1))
j .

Proof. By Corollary 3.5, the Tate spectral sequence for TP∗(OK/SW (k)[z1, z2]) col-

lapses at the E2-term. We may write a = σ−j
1 a0 for some

a0 ∈ N≥2jTP2j(OK/SW (k)[z1, z2]) = TC−
2j(OK/SW (k)[z1, z2]).

Hence by Theorem 2.15,

ϕ(a) = ϕ(σ−1
1 )jϕ(a0) = ϕ(v1)

jϕ(u1)
jσ−j

1 ϕ(a0) = ϕ(EK(z1))
jσ−j

1 ϕ(a0),

yielding the desired result.

Remark 3.12. By Theorem 2.15(3), EK(z) has Nygaard filtration 2 in TP0(OK/SW (k)[z]).
Hence EK(zi) has Nygaard filtration 2 in TP0(OK/SW (k)[z1, z2]). By Lemma 3.11,
ϕ(EK(zi)) is divisible by ϕ(EK(z3−i)) for i = 1, 2. Thus ϕ(EK(z1))ϕ(EK(z2))

−1 is a
unit in TP0(OK/SW (k)[z1, z2]).

Definition 3.13. For a ring R equipped with a multiplicative decreasing filtration
N≥•, we call the topology on R defined by the filtration N≥• the N -topology. We
define the (p,N )-topology on R to be the topology in which {(pj) +N≥j}j≥0 forms a
basis of open neighborhoods of 0.
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Clearly R becomes a topological ring under either the N or the (p,N )-topology.

Remark 3.14. By Theorem 2.15, it is straightforward to see that TP0(OK/SW (k)[z])
is complete and separated under either the N or the (p,N )-topology. Moreover, the
Frobenius is continuous with respect to the (p,N )-topology, but not the N -topology.

Lemma 3.15. Both the N and (p,N )-topology on TP0(OK/SW (k)[z1, z2]) are complete
and separated.

Proof. The assertion for the N -topology follows from the isomorphism

TP0(OK/SW (k)[z1, z2]) ∼= TC−
0 (OK/SW (k)[z1, z2])

given by Corollary 3.5 and the fact that TC−
∗ (OK/SW (k)[z1, z2]) are all complete with

respect to the N -topology. For the (p,N )-topology, we first note that by Lemma
3.2, THH∗(OK/SW (k)[z1, z2]) are all p-complete. By degeneration of the Tate spectral
sequence, this implies that for each j ≥ 0,

TP0(OK/SW (k)[z1, z2])/N≥jTP0(OK/SW (k)[z1, z2])

is p-complete and separated. Hence the (p,N )-completeness (resp. separateness) fol-
lows from the N -completeness (resp, separateness).

Lemma 3.16. The Frobenius on TP0(OK/SW (k)[z1, z2]) is continuous with respect to
the (p,N )-topology.

Proof. By Lemma 3.11, we have ϕ((p2j) +N≥2j) ⊂ (p2j) +N≥2j . The desired result
follows.

In the rest of this section, we give an explicit description of TP0(OK/SW (k)[z1, z2]).
To this end, we make use of the theory of δ-rings. Recall that a δ-ring structure on a
p-torsionfree commutative ring A is equivalent to the datum of a ring map ϕ : A→ A
lifting the Frobenius on A/p; the corresponding δ-structure is given by

δ(x) =
ϕ(x)− xp

p
.

Using Theorem 2.15(3), we deduce that

p0 : TP0(OK/SW (k)[z1, z2])→ THH0(OK/SW (k)[z1, z2]) ∼= OK

sends zi to ̟K . It follows that z1 − z2 lies in

ker(p0) = N≥2TP0(OK/SW (k)[z1, z2]).

By Lemma 3.11, there exists h ∈ TP0(OK/SW (k)[z1, z2]) such that

hϕ(EK(z1)) = ϕ(z1 − z2) = zp1 − zp2 .

For k ≥ 0, we inductively define f (k) ∈ TP0(OK/SW (k)[z1, z2])[1/p] by setting f (0) =
z1 − z2,

f (k+1) =
−(f (k))p + δk(h)EK(z1)

pk+1

p
. (3.17)
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Proposition 3.18. For k ≥ 0, f (k) ∈ N≥2pkTP0(OK/SW (k)[z1, z2]) and

δk(h)ϕ(EK (z1))
pk = ϕ(f (k)) (3.19)

Proof. We will proceed by induction to show that

f (k) ∈W (k)[z1, z2][h, . . . , δ
k−1(h)] ∩ N≥2pkTP0(OK/SW (k)[z1, z2])

and
δk(h)ϕ(EK(z1))

pk = ϕ(f (k)).

The initial case is obvious. Now suppose for some l ≥ 0, the claim holds for all
0 ≤ k ≤ l. By Lemma 3.11, we first deduce that δk(h) ∈ TP0(OK/SW (k)[z1, z2]) for all
k ≤ l. Using (3.19) for k = l, we get

f (l+1) =
−(f (l))p + δl(h)EK(z1)

pl+1

p

=
(ϕ(f (l))− (f (l))p) + (δl(h)EK(z1)

pl+1 − δl(h)ϕ(EK(z1))
pl)

p

= δ(f (l))− δl(h)δ(EK (z1)
pl).

(3.20)

By Theorem 2.15(5), we deduce that δ(EK(z1)
pl) ∈ TP0(OK/SW (k)[z1, z2]). By induc-

tive hypothesis, we conclude f (l+1) ∈W (k)[z1, z2][h, . . . , δ
l(h)] ⊂ TP0(OK/SW (k)[z1, z2]).

By inductive hypothesis and Remark 3.12, pf (l+1) has Nygaard filtration ≥ pl+1. Hence
f (l+1) has Nygaard filtration ≥ pl+1 by Corollary 3.8.

It remains to show (3.19) for k = l+1. To this end, applying ϕ on (3.17) for k = l
and using inductive hypothesis, we get

ϕ(f (l+1)) =
−ϕ(f (l))p + ϕ(δl(h))ϕ(EK (z1))

pl+1

p

=
−δl(h)pϕ(EK(z1))

pl+1
+ ϕ(δl(h))ϕ(EK (z1))

pl+1

p

= δl+1(h))ϕ(EK(z1))
pl+1

.

Lemma 3.21. The set of elements {f (k)|k ≥ 0} generates, over W (k)[z1, z2], a dense
subring R of TP0(OK/SW (k)[z1, z2]) with respect to the N -topology.

Proof. It reduces to show that for all j ≥ 0,

p2j : R ∩N≥2jTP0(OK/SW (k)[z1, z2])→ THH2j(OK/SW (k)[z1, z2])

is surjective.
Firstly, by Theorem 2.15, we see that p2(EK(z)) = u, yielding

p2(EK(z1)
j) = uj1

14



by functoriality of the Tate spectral sequence. To conclude, by Lemma 3.2, it suffices

to show that p2j(R) contains t
[j]
z1−z2 for all j ≥ 0.

By the commutative diagram

N≥2TP0(OK/SW (k)[z1, z2]) //

��

THH2(OK/SW (k)[z1, z2])

∼=
��

N≥2HP0(OK/W (k)[z1, z2]) // HH2(OK/W (k)[z1, z2])

one immediately checks that f (0) and tz1−z2 have the same image in HH2(OK/W (k)[z1, z2]).
Hence p2(f

(0)) = (tz1−z2). For k ≥ 0, we have

−(f (k))p ≡ pf (k+1) mod EK(z1)
pk+1

by (3.17). By induction, we deduce that for all k ≥ 0, t
[pk]
z1−z2 lies in the image of

R ∩N≥2pkTP0(OK/SW (k)[z1, z2]). Note that in the divided power polynomial algebra

OK〈t〉, for j = j0+pj1+· · ·+jkp
k with 0 ≤ ji ≤ p−1, t[j] is equal to tj0(t[p])j1 · · · (t[pk])jk

up to a unit of Zp. It follows that the image of R∩N≥2jTP0(OK/SW (k)[z1, z2]) contains

t
[j]
z1−z2 for all j ≥ 0.

Remark 3.22. In Corollary 4.17, we will prove that p2pk(f
(k)) is equal to t

[pk]
z1−z2 up to

a unit of Zp.

Proposition 3.23. We have that TP0(OK/SW (k)[z1, z2]) is a δ-ring. Moreover, δ is
continuous with respect to the (p,N )-topology.

Proof. We equip TP0(OK/SW (k)[z1, z2]) with the (p,N )-topology. Firstly, by Corollary
3.8, it is straightforward to see that the map

TP0(OK/SW (k)[z1, z2])
a7→pa−−−→ TP0(OK/SW (k)[z1, z2])

is strict. By Lemma 3.15, we get that the ideal (p) is closed in TP0(OK/SW (k)[z1, z2]).
Moreover, it follows that to prove the lemma, it reduces to show that for all a ∈
TP0(OK/SW (k)[z1, z2]), φ(a) = ϕ(a) − ap is divisible by p in TP0(OK/SW (k)[z1, z2]).
By Lemma 3.16, φ is continuous on TP0(OK/SW (k)[z1, z2]). Now by the proof of
Proposition 3.18, we see that R is a δ-ring. That is, φ(R) ⊂ (p). Since R is dense
by Lemma 3.21, we conclude that φ−1((p)), which is a closed subset, is forced to be
TP0(OK/SW (k)[z1, z2]), yielding the desired result.

To describe the structure of TP0(OK/SW (k)[z1, z2]), we compare it with the relative
periodic cyclic homology HP0(OK/W (k)[z1, z2]). In the following, for a commutative
ring R and an ideal I ⊂ R, denote by DR(I) the divided power envelop of I in R.
We equip it with the Nygaard filtration N≥• where N≥jDR(I) is the R-submodule
generated by I [l] for all l ≥ j. For an R-module M , denote by R〈M〉 the divided power
envelop DR[M ]((M)).

Recall the following derived version of the Hochschild-Kostant-Rosenberg theorem
(cf. [1, Theorem 3.27]):
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Theorem 3.24. Let R be a commutative ring, and let I be a complete intersection
ideal of R. Let A = R/I. Then

HH∗(A/R) ∼= A〈I/I2〉

under the canonical isomorphism I/I2 ∼= HH2(A/R). Moreover, HP0(A/R) is isomor-
phic to the completion of the divided power envelope DR(I) with respect to the Nygaard
filtration.

Now let I be the kernel ofW (k)
z 7→̟K−−−−→ OK (resp. W (k)[z1, z2]

z1,z2 7→−−−−→ OK), and let
tEK(z) (resp. tEK(zi)) denote the image of EK(z) (resp. EK(zi)) in HH2(OK/SW (k)[z1, z2])
under the isomorphism I/I2 ∼= HH2(OK/W (k)[z]) (resp. I/I2 ∼= HH2(OK/W (k)[z1, z2])).

The following result follows from Theorem 3.24 immediately.

Corollary 3.25. The following are true.

(1) W have
HH∗(OK/W (k)[z]) ∼= OK〈tEK(z)〉.

(2) We have
HP0(OK/W (k)[z]) ∼= DW (k)[z]((EK(z)))∧N .

(3) We have
HH∗(OK/W (k)[z1, z2]) ∼= OK〈tEK(z1), tz1−z2〉.

(4) We have

HP0(OK/W (k)[z1, z2]) ∼= DW (k)[z1,z2]((EK(z1), z1 − z2))
∧
N .

By Definition 3.13, we may consider theN and (p,N )-topologies forHP0(OK/W (k)[z])
and HP0(OK/W (k)[z1, z2]) as well.

Lemma 3.26. Both HP0(OK/W (k)[z]) and HP0(OK/W (k)[z1, z2]) are complete and
separated with respect to the N and (p,N )-topologies.

Proof. For the N -topology, it follows directly from Corollary 3.25(2), (4) respectively.
On the other hand, for the (p,N )-topology, as in the proof of Lemma 3.15, it suf-
fices to show that graded pieces of the Nygaard filtrations, which are isomorphic to
HH∗(OK/W (k)[z]) and HH∗(OK/W (k)[z1, z2]) repsectively, are all p-complete and sep-
arated. This in turn follows directly from Corollary 3.25(1), (3).

Lemma 3.27. Both the natural maps

TP0(OK/SW (k)[z])→ HP0(OK/W (k)[z])

and
TP0(OK/SW (k)[z1, z2])→ HP0(OK/W (k)[z1, z2])

are injective and strict with respect to the Nygaard filtration. Moreover, both maps are
strict with respect to the (p,N )-topology.
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Proof. Since both maps are compatible with the Nygaard filtration, for the first asser-
tion, it reduces to show that the induced maps on graded pieces

THH∗(OK/SW (k)[z])→ HH∗(OK/W (k)[z]) (3.28)

and
THH∗(OK/SW (k)[z1, z2])→ HH∗(OK/W (k)[z1, z2]) (3.29)

are all injective. For the second assertion, it is sufficient to show that both (3.28) and
(3.29) are strict under the p-adic topology.

Firstly, note that under the isomorphism

HH2(OK/W (k)[z]) ∼= THH2(OK/SW (k)[z]),

tEK(z) maps to u up to a unit of OK . We therefore conclude that (3.28) is injective and
strict with respect to the p-adic topology by Theorem 2.15(1) and Corollary 3.25(1).

By Lemma 3.2, we deduce that THH2j(OK/SW (k)[z1, z2]) is a successive extension

of OKu2l1 t
[2j−2l]
z1−z2 for l = 0, 1, . . . , j. On the other hand, by Corollary 3.25(3), we see

that HH2j(W (k)/SW (k)[z1, z2]) is a successive extension of OKt
[2l]
EK(z1)

t
[2j−2l]
z1−z2 for j =

0, 1, . . . , k. Since for each 0 ≤ l ≤ j,

OKu2l1 t
[2j−2l]
z1−z2 → OKt

[2l]
EK(z1)

t
[2j−2l]
z1−z2

is injective and strict with respect to the p-adic topology, we conclude that (3.29) is
injective and strict with respect to the p-adic topology.

Lemma 3.30. The δ-ring structure on W (k)[z1, z2] extends to a δ-ring structure, which
is continuous with respect to the (p,N )-topology, on HP0(OK/W (k)[z1, z2]).

Proof. By [3, Corollary 2.38] and [3, Lemma 2.17], the δ-ring structure on W (k)[z1, z2]
extends to a δ-ring structure onDW (k)[z1,z2]((EK(z1), z1−z2)), which is continuous with
respect to the (p,N )-topology. It follows that the δ-ring structure naturally extends to
the completion of DW (k)[z1,z2]((EK(z1), z1 − z2)) with respect to the (p,N )-topology.
On the other hand, by the proof of Lemma 3.26, we see that the (p,N )-completion
of DW (k)[z1,z2]((EK(z1), z1 − z2)) is naturally isomorphic to DW (k)[z1,z2]((EK(z1), z1 −
z2))

∧
N . The lemma follows.

In the following, we equip HP0(OK/W (k)[z1, z2]) with the δ-ring structure given
by Lemma 3.30.

Lemma 3.31. The natural map

ι : TP0(OK/SW (k)[z1, z2])→ HP0(OK/W (k)[z1, z2])

is a map of δ-rings.
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Proof. Since both sides are p-torsionfree, it reduces to show that ι commutes with
Frobenius. By induction, for every i ≥ 0, we may find gi, g

′
i ∈W (k)[z1, z2] such that

giδ
i(h) = g′i.

It follows that ι(ϕ(gi))ι(ϕ(δ
i(h))) = ι(ϕ(g′i)). Note that

ι(ϕ(gi)) = ϕ(ι(gi)), ι(ϕ(g′i)) = ϕ(ι(g′i)).

Since HP0(OK/W (k)[z1, z2]) is an integral domain, this implies that ι(ϕ(δi(h))) =
ϕ(ι(δi(h))). We conclude the lemma by the facts that under the (p,N )-topology,
W (k)[z1, z2][h, δ(h), . . . ] is dense in TP0(OK/SW (k)[z1, z2]) (Lemma 3.21), and that
both ι and ϕ are continuous (Lemma 3.27, Proposition 3.23, Lemma 3.30).

Corollary 3.32. We have that TP0(OK/SW (k)[z1, z2]) is isomorphic to the closure of
the sub-δ-ring of DW (k)[z1,z2]((EK(z1), z1 − z2))

∧
N generated by W (k)[z1, z2] and ι(h)

under either the N -topology or the (p,N )-topology.

Proof. This follows from the combination of Lemma 3.15, Lemma 3.21, Lemma 3.26,
Lemma 3.27 and Lemma 3.31.

4 Hopf algebroid

In this section, we will show the pairs (THH∗(OK/SW (k)[z]),THH∗(OK/SW (k)[z1, z2]))
and (TP0(OK/SW (k)[z]),TP0(OK/SW (k)[z1, z2])) form Hopf algebroids in appropriate
categories. We first recall some basis on complete filtered modules.

Let R be a ring equipped with a complete decreasing filtration. We consider the
category of complete filtered R-modules. For two complete filtered R-modules M,N ,
we define their tensor product in the category of complete filtered R-modules, i.e.
the completed tensor product M⊗̂RN , to be the completion of the filtered R-module
M⊗RN .

Definition 4.1. Let M be a complete filtered R-module equipped with a filtration
N≥•. We say M is free and locally finite over R if there exists {mi}i∈I ⊂M such that
the following conditions hold.

1. For any j, there are only finitely many i ∈ I such that mi 6∈ N≥jM .

2. The induced morphism ⊕i∈IRxi
xi→mi−−−−→ M of filtered R-modules is an isomor-

phism after taking completion.

Definition 4.2. Let S be a graded ring, and let M be a graded S-module with the
grading Gr•. We say M is free and locally finite over S if there exists {mi}i∈I ⊂ M
such that the following conditions hold.

1. For any j, there are only finitely many i ∈ I such that mi has non-zero component
in GrkM for some k ≤ j.

2. The induced morphism ⊕i∈ISxi
xi→mi−−−−→ M of graded S-modules is an isomor-

phism.
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For a complete filtered R-module M , one easily checks that M is free and locally
finite over R if and only if the associated graded module Gr•(M) is free and locally
finite over Gr•(R). Suppose M and N are free and locally finite over R. Then M⊗̂RN
is also free and locally finite over R. Moreover, we have

Gr•(M⊗̂RN) ∼= Gr•M ⊗Gr•R Gr•N.

Proposition 4.3. (1) Both ηL and ηR exhibit TP0(OK/SW (k)[z1, z2]) as a free and
locally finite filtered TP0(OK/SW (k)[z])-module.

(2) Both ηL and ηR exhibit THH∗(OK/SW (k)[z1, z2]) as a free and locally finite graded
THH∗(OK/SW (k)[z])-module.

Proof. Since (Gr•(TP0(OK/SW (k)[z])),Gr•(TP0(OK/SW (k)[z1, z2])) is isomorphic to
(THH∗(OK/SW (k)[z1, z2]),THH∗(OK/SW (k)[z1, z2])), it reduces to show (2). We only
need to treat the case of ηL. By Lemma 3.2, we see that THH∗(OK/SW (k)[z1, z2])/(u1)
is a free OK -module with a basis of degrees 0, 2, 4, . . . respectively. Using Corollary
3.4, we may further deduce that such a basis lifts to a basis of THH∗(OK/SW (k)[z1, z2])
over THH∗(OK/SW (k)[z]) with the same degrees. Hence THH∗(OK/SW (k)[z1, z2]) is
free and locally finite over THH∗(OK/SW (k)[z]) via ηL.

Corollary 4.4. We have that TP0(OK/SW (k)[z1, z2]) and THH∗(OK/SW (k)[z1, z2])
are flat over TP0(OK/SW (k)[z]) and THH∗(OK/SW (k)[z]) respectively.

For 1 ≤ i ≤ n, consider the natural maps

THH∗(OK/SW (k)[z1, . . . , zi])⊗THH∗(OK/S[zi])THH∗(OK/SW (k)[zi, . . . , zn])→ THH∗(OK/SW (k)[z1, . . . , zn])
(4.5)

and

TP0(OK/S[z1, . . . , zi])⊗TP0(OK/S[zi])TPj(OK/SW (k)[zi, . . . , zn])→ TPj(OK/SW (k)[zi, . . . , zn]).

By Remark 3.6, the Tate spectral sequence for TP∗(OK/S[z1, . . . , zn]) degenerates at
the E2-term. It follows that the Nygaard filtration on TPj(OK/S[z1, . . . , zn]) is com-
plete by the same argument as in the proof of Lemma 3.15. Hence the second map
induces

TP0(OK/S[z1, . . . , zi])⊗̂TP0(OK/S[zi])TPj(OK/SW (k)[zi, . . . , zn])→ TPj(OK/SW (k)[zi, . . . , zn]).
(4.6)

Lemma 4.7. Both (4.5) and (4.6) are isomorphisms.

Proof. The first assertion follows from the multiplicative property of relative THH.
This in turn implies that (4.6) becomes an isomorphism after taking associated graded
algebras on both sides. Thus (4.6) itself is an isomorphism.

In the following, we regard TP0(OK/SW (k)[z1, z2]) (resp. THH∗(OK/SW (k)[z1, z2]))
as a bimodule over TP0(OK/SW (k)[z]) (resp. THH∗(OK/SW (k)[z])) via the left and
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right units. Consider the following commutative diagram of E∞-spectra over OK :

SW (k)[z]
ηR //

ηL

��

SW (k)[z1, z2]

zi 7→zi

��

SW (k)[z1, z2]
zi 7→zi+1

// SW (k)[z1, z2, z3],

(4.8)

and regard OK as an SW (k)[z1, z2, z3]-module by sending zi to ̟K .

Corollary 4.9. The diagram (4.8) induces

THH∗(OK/SW (k)[z1, z2])⊗THH∗(OK/SW (k)[z])THH∗(OK/SW (k)[z1, z2]) ∼= THH∗(OK/SW (k)[z1, z2, z3])

(4.10)
and

TP0(OK/SW (k)[z1, z2])⊗̂TP0(OK/SW (k)[z])TP0(OK/SW (k)[z1, z2]) ∼= TP0(OK/SW (k)[z1, z2, z3]).

(4.11)

We define coproduct ∆ on TP0(OK/SW (k)[z1, z2]) over TP0(OK/SW (k)[z])(resp.
THH∗(OK/SW (k)[z1, z2]) over THH∗(OK/SW (k)[z])) as the composite of

TP0(OK/SW (k)[z1, z2])
z1 7→z1,z2 7→z3−−−−−−−−→ TP0(OK/SW (k)[z1, z2, z3]) (4.12)

and (4.11) (resp. the composite of

THH∗(OK/SW (k)[z1, z2])
z1 7→z1,z2 7→z3−−−−−−−−→ THH∗(OK/SW (k)[z1, z2, z3]))

and (4.10)). The counit and conjugation are defined as

ε : TP0(SW (k)[z1, z2])
zi 7→z−−−→ TP0(SW (k)[z]) (4.13)

and
c : TP0(SW (k)[z1, z2])

zi 7→z3−i−−−−−→ TP0(SW (k)[z1, z2]) (4.14)

(resp. ε : THH∗(SW (k)[z1, z2])
zi 7→z−−−→ THH∗(SW (k)[z]) and

c : THH∗(SW (k)[z1, z2])
zi 7→z3−i−−−−−→ THH∗(SW (k)[z1, z2]))

respectively.
By standard arguments as in the construction of Adams spectral sequences, we

have:

Proposition 4.15. (1) The pair
(

TP0(OK/SW (k)[z]),TP0(OK/SW (k)[z1, z2])
)

forms
a Hopf algebroid in the category of complete filtered rings with the coproduct,
counit and conjugation given above.

(2) The pair
(

THH∗(OK/SW (k)[z]), THH∗(OK/SW (k)[z1, z2])
)

forms a Hopf alge-
broid in the category of graded rings with the coproduct, counit and conjugation
given above.
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In the following, we give an explicit description of the Hopf algebroid

(THH∗(OK/SW (k)[z]),THH∗(OK/SW (k)[z1, z2])).

Lemma 4.16. For any i ≥ 0, δi(h) ∈ N≥2TP0(OK/SW (k)[z1, z2]).

Proof. Firstly, it is clear that ε(ϕ(z1 − z2)) = 0 and ε(ϕ(EK(z1))) = ϕ(EK(z)). It
follows that ε(h) = 0. Hence for all i ≥ 0,

ε(δi(h)) = δi(ε(h)) = 0.

On the other hand, note that ε induces an isomorphism

Gr0(TP0(OK/SW (k)[z1, z2])) ∼= Gr0(TP0(OK/SW (k)[z])).

This implies that
ker(ε) ⊂ N≥2TP0(OK/SW (k)[z1, z2]).

The lemma follows.

Corollary 4.17. We have

THH∗(OK/SW (k)[z1, z2]) ∼= OK [u1]⊗OK
OK〈tz1−z2〉. (4.18)

Proof. By Lemma 4.16 and (3.17), we get that −(f (k))p and pf (k+1) have the same im-
age in THH2pk+1(OK/SW (k)[z1, z2]). Using the argument of Lemma 3.21, we conclude

that the images of {f (k)}k≥0 in THH∗(OK/SW (k)[z1, z2]) generates t
[j]
z1−z2 for all j ≥ 0

over Zp. This allows us to define the OK [u1]-linear map

OK [u1]⊗OK
OK〈t〉 → THH∗(OK/SW (k)[z1, z2]), t[j] 7→ t

[j]
z1−z2 .

By Lemma 3.2, this map induces isomorphisms on graded pieces under the u1-filtrations.
Hence it is an isomorphism.

Proposition 4.19. Under the isomorphism (4.18), we have

u2 = u1 − E′
K(̟K)tz1−z2 , (4.20)

and
∆(t

[i]
z1−z2) =

∑

0≤j≤i

t
[j]
z1−z2 ⊗ t

[i−j]
z1−z2 , ε(tz1−z2) = 0. (4.21)

Proof. Using Theorem 2.15, we have that u2 = p2(EK(z2)). We conclude (4.20) by
writing

EK(z2) = EK(z1)− E′
K(z1)(z1 − z2) + (z1 − z2)

2F (z1)

for some F . For (4.21), since z1 − z2 maps to z1 − z3 under (4.12), we conclude by the
binomial expansion

(z1 − z3)
i =

∑

0≤j≤i

i!

j!(i − j)!
(z1 − z2)

j(z2 − z3)
i−j .
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5 The decent spectral sequence

Consider the SW (k)[z]-Adams resolution for SW (k):

SW (k) → SW (k)[z]
⊗•, (5.1)

where SW (k)[z]
⊗n denotes the n-fold tensor product of SW (k)[z] over SW (k). It induces

the augmented cosimplicial cyclotomic E∞-spectra

THH(OK/SW (k))→ THH(OK/SW (k)[z]
⊗•), (5.2)

TC−(OK/SW (k))→ TC−(OK/SW (k)[z]
⊗•) (5.3)

and
TP(OK/SW (k))→ TP(OK/SW (k)[z]

⊗•). (5.4)

By the multiplicative property of relative THH, THH(OK/SW (k)[z]
⊗n) is equivalent

to the n-fold tensor product of THH(OK/SW (k)[z]) over THH(OK/SW (k)). Hence (5.2)
is an Adams resolution for THH(OK/SW (k)) in the category of THH(OK/SW (k)[z])-
modules.

Proposition 5.5. The Adams resolution (5.2) induces

THH(OK/SW (k)) ∼= Tot(THH(OK/SW (k)[z]
⊗•)). (5.6)

Proof. By [10, Proposition 2.14], the fiber of

THH(OK/SW (k))→ Totn(THH(OK/SW (k)[z]
⊗•)) (5.7)

is homotopy equivalent to the n-fold smash product of the fiber of

THH(OK/SW (k))→ THH(OK/SW (k)[z]) (5.8)

with itself. It follows that the fiber of (5.7) is n − 1-connected as the fiber of (5.8) is
0-connected. The proposition follows.

Corollary 5.9. The cosimplicial spectra (5.3), (5.4) induce

TC−(OK/SW (k)) ∼= Tot(TC−(OK/SW (k)[z]
⊗•)) (5.10)

and
TP(OK/SW (k)) ∼= Tot(TP(OK/SW (k)[z]

⊗•)). (5.11)

Proof. The claim for TC− is clear since

Tot(THH(OK/SW (k)[z]
⊗•))hT ∼= Tot(THH(OK/SW (k)[z]

⊗•)hT).

For the case of TP, first note that

Totn(THH(OK/SW (k)[z]
⊗•))hT ∼= Totn(THH(OK/SW (k)[z]

⊗•)hT).

22



Since the fiber of (5.7) is (n−1)-connected by the proof of Proposition 5.5, the fiber of

THH(OK/SW (k))hT → Totn(THH(OK/SW (k)[z]
⊗•))hT

is (n− 1)-connected as well. Hence the fiber of

THH(OK/SW (k))hT → Totn(THH(OK/SW (k)[z]
⊗•)hT)

is (n− 1)-connected. We thus conclude

THH(OK/SW (k))hT ∼= Tot(THH(OK/SW (k)[z]
⊗•)hT),

yielding the claim for TP.

Using Proposition 5.5 and Corollary 5.9, the coskeleton filtrations of THH(OK/SW (k)[z]
⊗•),

TP(OK/SW (k)[z]
⊗•) and TC−(OK/SW (k)[z]

⊗•) give rise to spectral sequences comput-
ing THH∗(OK/SW (k)), TP∗(OK/SW (k)) and TC−

∗ (OK/SW (k)) respectively.

• The descent spectral sequence for THH(OK/SW (k)):

Ei,j
1 (THH(OK)) = THHj(OK/SW (k)[z]

⊗i)⇒ THHj−i(OK/SW (k)).

By Lemma 4.7 and Corollary 4.4, the E1-term may be identified with the cobar
complex for THH∗(OK/SW (k)[z]) with respect to the Hopf algebroid

(THH∗(OK/SW (k)[z1, z2]),THH∗(OK/SW (k)[z])).

It follows that

Ei,j
2 (THH(OK)) ∼= Exti,jTHH∗(OK/SW (k)[z1,z2])

(THH∗(OK/SW (k)[z])).

• The descent spectral sequence for TP(OK/SW (k)):

Ei,j
1 (TP(OK)) = TPj(OK/SW (k)[z]

⊗i)⇒ TPj−i(OK/SW (k)).

By Lemma 4.7 and Corollary 4.4, the j-th row of the E1-term may be identified
with the cobar complex for TPj(OK/SW (k)[z]) with respect to the Hopf algebroid
(TP0(OK/SW (k)[z1, z2]),TP0(OK/SW (k)[z])). It follows that

Ei,j
2 (TP(OK)) ∼= ExtiTP0(OK/SW (k) [z1,z2])

(TPj(OK/SW (k)[z])).

• The descent spectral sequence for TC−(OK/SW (k)):

Ei,j
1 (TC−(OK)) = TC−

j (OK/SW (k)[z]
⊗i)⇒ TC−

j−i(OK/SW (k)).

Remark 5.12. Indeed, the E2-term of the descent spectral sequence for TC−(OK/SW (k))
may also be identified as an Ext-group in the category of complete filtered comodules
over filtered Hopf algebroids. The details will be given in [8].
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Using (5.10) and (5.11), we may also construct a spectral sequence computing
TC∗(OK/SW (k)). Firstly, the maps can, ϕ from relative TC− to relative TP induce the
maps of cosimplical E∞-spectra

can, ϕ : TC−(OK/SW (k)[z]
⊗•)→ TP(OK/SW (k)[z]

⊗•).

Define TC(OK/SW (k))(n) to be the fiber of

can− ϕ : Totn(TC
−(OK/SW (k)[z]

⊗•))→ Totn−1(TP(OK/SW (k)[z]
⊗•)).

By construction, we get

TC(OK/SW (k))(n−1)

TC(OK/SW (k))(n)
∼=

Totn−1(TC
−(OK/SW (k)[z]

⊗•))

Totn(TC
−(OK/SW (k)[z]

⊗•))
⊕ Σ−1Totn−2(TP(OK/SW (k)[z]

⊗•))

Totn−1(TP(OK/SW (k)[z]
⊗•))

.

The tower {TC(OK)(n)}n≥0 gives rise to the descent spectral sequence for TC(OK/SW (k)):

Ei,j
1 (TC(OK))⇒ TCj−i(OK/SW (k)),

where E1(TC(OK)) may be identified with

E1(TC
−(OK))

can−ϕ−−−−→ E1(TP(OK)).

Consequently, there is a multiplicative spectral sequence

Ẽi,k,j
2 (TC(OK))⇒ Ei+k,j

2 (TC(OK)),

where

Ẽi,0,j
2 (TC(OK)) ∼= ker(can − ϕ : Ei,j

2 (TC−(OK))→ Ei,j
2 (TP(OK))),

Ẽi,1,j
2 (TC(OK)) ∼= coker(can − ϕ : Ei,j

2 (TC−(OK))→ Ei,j
2 (TP(OK)))

and
Ẽi,k,j

2 (TC(OK)) = 0

for k 6= 0, 1.
In the rest of this section, we will compute Ei,j

2 (THH(OK)) explicitly. To this end,
first note that it follows from Corollary 4.17 and (4.21) that the left THH∗(OK/SW (k)[z])-
linear map

D : THH∗(OK/SW (k)[z1, z2])→ THH∗(OK/SW (k)[z1, z2]),

which sends t
[i]
z1−z2 to t

[i−1]
z1−z2 , is a map of left THH(OK/SW (k)[z1, z2])-modules. It follows

that the complex

0→ THH∗(OK/SW (k)[z])
ηL−→ THH∗(OK/SW (k)[z1, z2]

a7→D(a)dz−−−−−−→ THH∗(OK/SW (k)[z1, z2])dz → 0,
(5.13)

where dz has degree 2, is a relative injective resolution for THH∗(OK/SW (k)[z]) as left
THH∗(OK/SW (k)[z1, z2])-modules.
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Proposition 5.14. We have that Exti,jTHH∗(OK/SW (k)[z1,z2])
(THH∗(OK/SW (k)[z]) is com-

puted by the complex

THH∗(OK/SW (k)[z])
(D0◦ηR)dz−−−−−−−→ THH∗(OK/SW (k)[z])dz, (5.15)

where the left THH∗(OK/SW (k)[z])-linear map

D0 : THH∗(OK/SW (k)[z1, z2])〉 → THH∗(OK/SW (k)[z])

is given by D0(tz1−z2) = 1 and D0(t
[i]
z1−z2) = 0 for i 6= 1.

Proof. Using (5.13), we first get that Exti,jTHH∗(OK/SW (k)[z1,z2])
(THH∗(OK/SW (k)[z]) is

computed by the complex

HomTHH∗(OK/SW (k)[z1,z2])(THH∗(OK/SW (k)[z]),THH∗(OK/SW (k)[z1, z2]))

f 7→(D◦f)dz−−−−−−−→ HomTHH∗(OK/SW (k)[z1,z2])(THH∗(OK/SW (k)[z]),THH∗(OK/SW (k)[z1, z2]))dz.

(5.16)

Recall that for a (commutative) Hopf algebroid (A,Γ), a left Γ-module M and an
A-module N , there is a canonical isomorphism

HomA(M,N) ∼= HomΓ(M,Γ⊗A N), f 7→ f̃ = (id⊗ f) ◦∆. (5.17)

It is straightforward to check that D0 corresponds to D under this isomorphism. It
follows that (5.16) may be identified with the THH∗(OK/SW (k)[z])-linear complex

HomTHH∗(OK/SW (k)[z])(THH∗(OK/SW (k)[z]),THH∗(OK/SW (k)[z]))

f 7→(D◦f̃)dz−−−−−−−→ HomTHH∗(OK/SW (k)[z])(THH∗(OK/SW (k)[z]),THH∗(OK/SW (k)[z]))dz.

(5.18)

Note that under the isomorphism (5.17), the identity map on THH∗(OK/SW (k)[z])
corresponds to ηR . We thus conclude the proposition by the isomorphism

HomTHH∗(OK/SW (k)[z])(THH∗(OK/SW (k)[z]),THH∗(OK/SW (k)[z])) ∼= THH∗(OK/SW (k)[z]),

which sends f to f(1).

The following results follow immediately.

Corollary 5.19. We have

Ext0,0THH∗(OK/SW (k)[z1,z2])
(THH∗(OK/SW (k)[z])) ∼= OK

and

Ext1,2nTHH∗(OK/SW (k)[z1,z2])
(THH∗(OK/SW (k)[z])) ∼= OK/(nE′

K(̟K)), n ≥ 0.

The other Ext-groups vanish. As a consequence, the descent spectral sequence for
THH(OK/SW (k)) collapses at the E2-term.
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Remark 5.20. Corollary 5.19 recovers the main result of [7].

In the remainder of this section, we introduce the algebraic Tate spectral sequence
and the algebraic homotopy fixed points spectral sequence. Note that the E1-terms
of the descent spectral sequences for TC− and TP are equipped with the Nygaard
filtration. This gives rise to the algebraic homotopy fixed points spectral sequence

Ei,j,k
1 (TC−(OK)) = H i(Gr2k(TC−

j (OK/SW (k)[z]
⊗•)))⇒ Ei,j

2 (TC−(OK)), (5.21)

and the algebraic Tate spectral sequence

Ei,j,k
1 (TP(OK)) = H i(Gr2k(TPj(OK/SW (k)[z]

⊗•)))⇒ Ei,j
2 (TP(OK)). (5.22)

They are multiplicative spectral sequences. Moreover, by Remark 3.6, we see that
the graded pieces of the Nygaard filtrations of E1(TP(OK)) together with the induced
d1-differentials may be identified with part of E1(THH(OK))[σ±1] in the sense that

Ei,j,k
1 (TP(OK)) ∼= Ei,2k

2 (THH(OK))σj .

Since the algebraic homotopy fixed points spectral sequence is a truncation of the
algebraic Tate spectral sequence, using Corollary 5.19, the following result follows
immediately.

Proposition 5.23. Both E2(TC
−(OK)) and E2(TP(OK)) are concentrated in E0,∗

2

and E1,∗
2 . In particular, both the decent spectral sequences for TC−(OK/SW (k)) and

TP(OK/SW (k)) collapse at the E2-term.

6 Refined algebraic Tate differentials

In this section, we consider mod p version of decent spectral sequences. To compute the
E2-terms of mod p descent sequences for TP(OK) and TC−(OK), we introduce refined
version of algebraic Tate and algebraic homotopy fixed point spectral sequences, and
completely determine the refined algebraic Tate differentials.

By Lemma 4.7 and induction on n, we get that THH∗(OK/SW (k)[z]
⊗n) are p-

torsionfree for all n ≥ 1. Hence TP∗(OK/SW (k)[z]
⊗n) and TC−

∗ (OK/SW (k)[z]
⊗n) are

all p-torsionfree as well by degeneracy of the Tate and homotopy fixed point spectral
sequences respectively. It follows that for n ≥ 1,

THH∗(OK/SW (k)[z]
⊗n;Fp) = THH∗(OK/SW (k)[z]

⊗n)⊗Z Fp,

TP∗(OK/SW (k)[z]
⊗n;Fp) = TP∗(OK/SW (k)[z]

⊗n)⊗Z Fp

and
TC−

∗ (OK/SW (k)[z]
⊗n;Fp) = TC−

∗ (OK/SW (k)[z]
⊗n)⊗Z Fp.

This in turn implies the degeneracy of of the Tate and homotopy fixed point spec-
tral sequences for TP∗(OK/SW (k)[z]

⊗n;Fp) and TC−
∗ (OK/SW (k)[z]

⊗n;Fp) respectively.
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Moreover, analogues of Proposition 5.5 and Corollary 5.9 hold as well. Thus the coskele-
ton filtrations of the cosimplicial spectra

THH(OK/SW (k)[z]
⊗•;Fp), TP(OK/SW (k)[z]

⊗•;Fp), TC−(OK/SW (k)[z]
⊗•;Fp)

give rise tomod p decent spectral sequences computing THH∗(OK/SW (k);Fp), TP∗(OK/SW (k);Fp)
and TC−

∗ (OK/SW (k);Fp) as follows.

• The descent spectral sequence for THH(OK/SW (k);Fp):

Ei,j
1 (THH(OK);Fp) = THHj(OK/SW (k)[z]

⊗i;Fp)⇒ THHj−i(OK/SW (k);Fp).

TheE1-term may be identified with the cobar complex for THH∗(OK/SW (k)[z];Fp)
with respect to the Hopf algebroid

(THH∗(OK/SW (k)[z1, z2];Fp),THH∗(OK/SW (k)[z];Fp)).

Hence

Ei,j
2 (THH(OK);Fp) ∼= Exti,jTHH∗(OK/SW (k)[z1,z2];Fp)

(THH∗(OK/SW (k)[z];Fp)).

• The descent spectral sequence for TP(OK/SW (k);Fp):

Ei,j
1 (TP(OK);Fp) = TPj(OK/SW (k)[z]

⊗i;Fp)⇒ TPj−i(OK/SW (k);Fp).

The j-th row of the E1-term may be identified with the cobar complex for
TPj(OK/SW (k)[z];Fp) with respect to the Hopf algebroid

(TP0(OK/SW (k)[z1, z2];Fp),TP0(OK/SW (k)[z];Fp)).

It follows that

Ei,j
2 (TP(OK);Fp) ∼= ExtiTP0(OK/SW (k)[z1,z2];Fp)

(TPj(OK/SW (k)[z];Fp)).

• The descent spectral sequence for TC−(OK/SW (k);Fp):

Ei,j
1 (TC−(OK);Fp) = TC−

j (OK/SW (k)[z]
⊗i;Fp)⇒ TC−

j−i(OK/SW (k);Fp).

• The descent spectral sequence for TC(OK/SW (k);Fp):

Ei,j
1 (TC(OK);Fp)⇒ TCj−i(OK/SW (k);Fp).

Similarly, there is a spectral sequence

Ẽi,k,j
2 (TC(OK);Fp)⇒ Ei+k,j

2 (TC(OK);Fp),

where

Ẽi,0,j
2 (TC(OK);Fp) ∼= ker(can − ϕ : Ei,j

2 (TC−(OK);Fp)→ Ei,j
2 (TP(OK);Fp),

Ẽi,1,j
2 (TC(OK);Fp) ∼= coker(can − ϕ : Ei,j

2 (TC−(OK))→ Ei,j
2 (TP(OK);Fp)

and
Ẽi,k,j

2 (TC(OK);Fp) = 0

for k 6= 0, 1.
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In the following, we will first compute the E2-term of the descent spectral sequence
for THH(OK/SW (k);Fp). To simplify the notations, from now on for

? ∈ {z, zi, σ, σi, u, ui, v, vi, tz1−z2},

we denote its image in the mod p reduction by the same symbol. Moreover, we abusively
use z, zi to denote their images in THH∗(OK/SW (k)[z];Fp) and THH∗(OK/SW (k)[z1, z2];Fp)
respectively under p0 . Under these notations, we have

TP0(OK/SW (k)[z];Fp) ∼= W (k)[[z]] ⊗Z Fp
∼= k[[z]]

and

THH∗(OK/SW (k)[z];Fp) ∼= OK [u]⊗Z Fp
∼= (OK/(p))[u] = k[z]/(zeK )[u],

where z corresponds to ̟K under the last identification. Moreover, we have

THH∗(OK/SW (k)[z1, z2];Fp) ∼= (OK〈tz1−z2〉⊗OK
OK [u1])⊗ZFp

∼= (k[z]/(zeK1 )[u1]〈tz1−z2〉.

Recall that the leading coefficient of EK(z) is denoted by µ.

Proposition 6.1. The following are true.

(1) E0,∗
2 (THH(OK);Fp) is the k-vector space freely generated by

{

zlun, 1 ≤ l ≤ eK − 1 or p | eKn, if eK > 1

un, p | n, if eK = 1.

(2) E1,∗
2 (THH(OK);Fp) is the k-vector space freely generated by the set of cocycles

{

zl1(u
n−1
1 tz1−z2 − (n− 1)E′

K(z1)u
n−2
1 t

[2]
z1−z2), 0 ≤ l ≤ eK − 2 or p | eKn, if eK > 1

∑l
j=1

(n−1)!
(n−j)! (−µ̄)ju

n−j
1 t

[j]
z1−z2 , p | n, if eK = 1.

(3) For i 6= 0, 1, Ei,∗
2 (THH(OK);Fp) = 0.

Proof. By similar argument as in the proof of Proposition 5.14, we get that E2(THH(OK);Fp)
is computed by the complex

0→ THH∗(OK/SW (k)[z];Fp)
(D0◦ηR)dz−−−−−−−→ THH∗(OK/SW (k)[z];Fp)dz → 0. (6.2)

This implies (3) immediately. Using (4.20) and E′
K(z) ≡ eKµzeK−1 mod p, (6.2) may

be identified with

0→ (k[z]/(zeK ))[u]
f(u)7→−eK µ̄zeK−1f ′(u)dz−−−−−−−−−−−−−−−−→ (k[z]/(zeK ))[u]dz → 0. (6.3)

Then a short computation shows that H0 is the k-vector space freely generated by

{

zlun, 1 ≤ l ≤ eK − 1 or p | eKn, if eK > 1

un, p | n, if eK = 1.
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and H1 is the k-vector space freely generated by the set of cocycles
{

zlun−1dz, 0 ≤ l ≤ eK − 2 or p | eKn, if eK > 1

un−1dz, p | n, if eK = 1.

To compare (6.2) with the cobar complex, for n ≥ 1, set

u(n) =

n
∑

j=1

(n − 1)!

(n − j)!
(−E′

K(z))j−1un−j
1 t

[j]
z1−z2 =

un1 − un2
nE′

K(z)
∈ THH∗(OK/SW (k)[z1, z2]).

(6.4)
It is straightforward to see that u(n) is a cocycle in the cobar complex for THH∗(OK/SW (k)[z]).
Now consider the diagram

THH∗(OK/SW (k)[z];Fp)
(D0◦ηR)dz

//

id
��

THH∗(OK/SW (k)[z];Fp)dz

β

��

THH∗(OK/SW (k)[z];Fp)
ηL−ηR

// THH∗(OK/SW (k)[z1, z2];Fp),

(6.5)

where β is the k[z]-linear map sending undz to u(n+1). By (6.4), it is straightforward
to check that (6.12) is commutative. Thus it gives rise to a morphism from (6.2) to the
cobar complex of THH∗(OK/SW (k)[z];Fp). Note that the right vertical map of (6.12) is
injective. Since both (6.2) and the cobar complex compute the E2-term of the descent
spectral sequence, we deduce that (6.12) induces a quasi-isomorphism. Finally, note
that if eK > 1, then E′

K(z)2 = 0 in k[z]/(zeK ). Now the proposition follows.

Remark 6.6. The extra complication of E2(THH(OK/SW (k);Fp)) originates from the
“accidental” filtration clash of the differentials

zmeK 7→ meK µ̄zmeK−1
1 dz

in degree 2m. To remedy, we introduce the refined Nygaard filtration as follows.

Convention 6.7. From now on, we rescale the index of Nygaard filtrations by 2. That
is, N≥j takes place of N≥2j.

Definition 6.8. Let M be a filtered TP0(OK/SW (k)[z];Fp)-module with the filtration
N≥•. Define a refinement of N≥• on M by setting

N≥j+ m
eK M = zmN≥jM +N≥j+1M

for j ∈ Z, 0 ≤ m < eK , and call it the refined filtration of N≥•. Note that under the
refined filtrations, M is still a filtered TP0(OK/SW (k)[z];Fp)-module.

In the following, regard both TP∗(OK/SW (k)[z]
⊗•;Fp) and TC−

∗ (OK/SW (k)[z]
⊗•;Fp)

as TP0(OK/SW (k)[z];Fp)-modules via z 7→ z1. We call the refined filtration of Nygaard
filtration the refined Nygaard filtration. Note that we may refine the Nygaard filtration
of TP0(OK/SW (k)[z1, z2];Fp) via both ηL and ηR. However, since

zm1 − zm2 ∈ N≥1TP0(OK/SW (k)[z1, z2];Fp)

for m ≥ 1, we get that both ways end up with the same filtration. Combining
Corollary 4.17 and Proposition 4.19, we reach the following result.
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Lemma 6.9. Under the refined Nygaard filtration, the associated graded Hopf algebroid
of

(

TP0(OK/SW (k)[z];Fp),TP0(OK/SW (k)[z1, z2];Fp)
)

is
(k[z],k[z1]⊗k k〈tz1−z2〉),

in which the following holds.

(1) If eK = 1, then z2 = z1 + tz1−z2. If eK > 1, then z2 = z1; in this case the Hopf
algebroid becomes the Hopf algebra

(k[z],k[z] ⊗k k〈tz1−z2〉).

(2) The coproduct ∆ and counit ε satisfy

∆(t
[i]
z1−z2) =

∑

0≤j≤i

t
[j]
z1−z2 ⊗ t

[i−j]
z1−z2 , ε(t

[i]
z1−z2) = 0

for all i ≥ 0.

The refined Nygaard filtration on E1-terms of the descent spectral sequences for
TP(OK/SW (k);Fp) and TC−(OK/SW (k);Fp) give rise to the refined algebraic Tate spec-
tral sequence

Ẽi,j,k
1

eK

(TP(OK);Fp) = H i(Grk(TPj(OK/SW (k)[z]
⊗•)))⇒ Ei,j

2 (TP(OK);Fp)

and the refined algebraic homotopy fixed points spectral sequence

Ẽi,j,k
1

eK

(TC−(OK);Fp) = H i(Grk(TC−
j (OK/SW (k)[z]

⊗•)))⇒ Ei,j
2 (TC−(OK);Fp).

They are multiplicative spectral sequences with Ẽr-terms for all r ∈ 1
eK

Z≥0. Moreover,
by Remark 3.6, Lemma 6.9 and the functoriality of Tate spectral sequence, we see that
Ẽ 1

eK

(TP(OK);Fp) may be identified with the cobar complex for k[z][σ±1] with respect

to the Hopf algebroid (k[z],k[z1] ⊗k k〈t〉), and Ẽ 1
eK

(TC−(OK);Fp) is a truncation of

Ẽ 1
eK

(TP(OK);Fp).

Lemma 6.10. The following are true.

(1) If eK > 1, then

Ẽ0,j,∗

1− 1
eK

(TP(OK);Fp) ∼= k[z]σj , Ẽ1,0,∗

1− 1
eK

(TP(OK);Fp) ∼= k[z1]tz1−z2σ
j .

Moreover, d1− 1
eK

(zσj) = tz1−z2σ
j .

(2) If eK = 1, then

Ẽ0,j,∗
1 (TP(OK);Fp) ∼= k[zp]σj , Ẽ1,j,∗

1 (TP(OK);Fp) ∼= ⊕p|nk

n
∑

j=1

(n− 1)!

(n − j)!
(−1)jzn−j

1 t
[j]
z1−z2σ

j .
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(3) For i 6= 0, 1, Ẽi,j,∗
1

eK

(TP(OK);Fp) = 0.

Proof. By functoriality of the Tate spectral sequence, we have

σ1σ
−1
2 − 1 ∈ N≥1TP0(OK/SW (k)[z1, z2]).

It follows that σ1 = σ2 in graded pieces of the cobar complex for TP∗(OK/SW (k)[z]).
Therefore we reduce to the case j = 0.

By a similar argument as for Proposition 5.14, we first see that Extk[z1]⊗kk〈t〉(k[z],k[z])
is computed by the complex

0→ k[z]
f(z)7→−f ′(z)dz−−−−−−−−−→ k[z]dz → 0. (6.11)

Then we proceed as in the poof of Proposition 6.1. Consider the commutative diagram

k[z]
f(z)7→−f ′(z)dz

//

id
��

k[z]dz

β
��

k[z]
ηL−ηR

// k[z1]⊗k k〈t〉,

(6.12)

where β is the k[z]-linear (under ηL) map sending zndz to
∑n

j=0
n!

(n−j)!(−1)jz
n−j
1 t

[j+1]
z1−z2 .

By a similar argument as in the proof of Proposition 6.1, we deduce that it gives rise to
an quasi-isomorphism between (6.11) and the cobar complex. This yields the desired
result on cohomology of the cobar complex. Finally, when eK > 1, the differential of
the cobar complex sends

zn ∈ N≥ n
eK \ N≥n+1

eK

to

zn2 − zn1 =
∑

1≤j≤n

(

n

j

)

(z2 − z1)
jzn−j

1 ,

which belongs to N≥ n
eK

+1− 1
eK TP0(OK/SW (k)[z1, z2];Fp). It follows that

Ẽ∗,0,∗
1

eK

(TP(OK);Fp) = Ẽ∗,0,∗
2

eK

(TP(OK);Fp) = · · · = Ẽ∗,0,∗

1− 1
eK

(TP(OK);Fp)

and d1− 1
eK

(z) = tz1−z2 .

Corollary 6.13. Both E2(TC
−(OK);Fp) and E2(TP(OK);Fp) are concentrated in

E0,∗
2 and E1,∗

2 . In particular, both the decent spectral sequences for TC−(OK/SW (k);Fp)
and TP(OK/SW (k);Fp) collapse at the E2-term.

Convention 6.14. Motivated by the results of Lemma 6.10, in what follows, denote
tz1−z2 by dz. When eK = 1, denote

n
∑

j=1

(n− 1)!

(n− j)!
(−1)jzn−j

1 t
[j]
z1−z2 ,

which is formally equal to
zn1 −zn2

n , by zn−1
1 dz.
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Under Convention 6.14, we may reformulate Lemma 6.10(1), (2) as follows.

Corollary 6.15. For eK > 1, we have

Ẽ∗,j,∗

1− 1
eK

(TP(OK);Fp) ∼= k[z]σj ⊕ k[z1]dzσ
j ,

and d1− 1
eK

(zσj) = dzσj . For eK = 1, we have

Ẽ∗,j,∗
1 (TP(OK);Fp) ∼= k[zp]σj ⊕ zp−1

1 k[zp1 ]dzσ
j .

In the rest of this section, we will compute the higher refined algebraic Tate differentials.
We first treat the case of 0-stems. In the following, when the context is clear, for
j ∈ Z≥0, we will simply denoteN≥jTP0(OK/SW (k)[z1, z2]) byN≥j . For r ∈ 1

eK
Z≥0, we

denote N≥rTP0(OK/SW (k)[z1, z2];Fp) by N≥r, and denote by (p,N≥r) the preimage
of N≥rTP0(OK/SW (k)[z1, z2];Fp) under the natural projection

TP0(OK/SW (k)[z1, z2])→ TP0(OK/SW (k)[z1, z2];Fp).

In the following, for a ∈ TP0(OK/SW (k)[z1, z2]) (resp. a ∈ TP0(OK/SW (k)[z1, z2];Fp)),

we denote by ν(a) the smallest j ∈ Z≥0 (resp. r ∈ 1
eK

Z≥0) such that a ∈ N≥j (resp.

a ∈ N≥r). Since the associated graded algebra are integral in both cases, we have
ν(ab) = ν(a) + ν(b).

Lemma 6.16. We have ξ0 = −δ(f (0))/f (0) ∈ TP0(OK/SW (k)[z1, z2]). Moreover,

ξ0 ≡ zp−1
1 mod (p,N≥ p−2

eK
+1

).

In particular, ξ0 ∈ (p,N≥ p−1
eK ).

Proof. For the first claim, we have

δ(f (0)) =
ϕ(f (0))− (f (0))p

p

=
zp1 − (z1 − f (0))p − (f (0))p

p

= −f (0)(zp−1
1 − p− 1

2
zp−2
1 f (0) + · · ·+ ((−1)p + 1)

(f (0))p−1

p
).

Note that (−1)p+1
p ∈ Z. Hence

ξ0 = zp−1
1 − p− 1

2
zp−2
1 f (0) + · · ·+ ((−1)p + 1)

(f (0))p−1

p

belongs to TP0(OK/SW (k)[z1, z2]). For 1 ≤ i ≤ p − 1, p−1−i
eK

+ i ≥ p−2
eK

+ 1. Thus

for such i, zp−1−i
1 (f (0))i ∈ (p,N≥ p−2

eK
+1

). This implies that ξ0 − zp1 ∈ (p,N≥ p−2
eK

+1
),

yielding the second claim.
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Put µ̃ = − µp

δ(EK(z1))
.

Lemma 6.17. We have

ϕ(f (0)) ≡ µ̃zpeK+p−1
1 f (0) mod (p,N≥2p).

Proof. Recall that hϕ(EK(z1)) = ϕ(f (0)). Note that

ϕ(EK(z1)) ≡ µpzpeK1 mod p.

Thus
ϕ(f (0)) ≡ µpzpeK1 h mod p. (6.18)

On the other hand, using (3.20) for l = 0, we have

f (1) = δ(f (0))− hδ(EK(z1)). (6.19)

Since f (1) ∈ N≥p, we get

h ≡ δ(f (0))/δ(EK (z1)) mod N≥p.

Combining this with Lemma 6.16 and the fact that peK + p−2
eK

+ 2 ≥ 2p, we deduce
that

µ̃zpeK+p−1
1 f (0) ≡ µ̃ξ0z

peK
1 f (0) = µpzpeK1 δ(f (0))/δ(EK (z1)) ≡ µpzpeK1 h ≡ ϕ(f (0)) mod (p,N≥2p),

concluding the lemma.

Lemma 6.20. Suppose p > 2 and eK > 1. Then for l ≥ 1,

ϕl(f (0)) ≡ µ̃
pl−1
p−1 z

(peK+p−1)p
l
−1

p−1

1 f (0) mod (p,N≥pl(1+ 1
p−1

+ 1
eK

)
) (6.21)

Proof. We will establish the lemma by induction on l. The case l = 1 follows from
Lemma 6.17 and the inequality 1

eK
+ p

p−1 ≤ 1
2 +

3
2 = 2.

Now suppose the claim holds for some l ≥ 1. Raising both sides of (6.21) to the
p-th power, we get

ϕl+1(f (0)) ≡ µ̃
pl+1

−p
p−1 z

(peK+p−1)p
l+1

−p
p−1

1 ϕ(f (0)) mod (p,N≥pl+1(1+ 1
p−1

+ 1
eK

)
). (6.22)

Using Lemma 6.17 again, we have

µ̃
pl+1

−p
p−1 z

(peK+p−1)p
l+1

−p
p−1

1 ϕ(f (0)) ≡ µ̃
pl+1

−1
p−1 z

(peK+p−1)p
l+1

−1
p−1

1 f (0) mod (p,N≥ pl+2
−p2

p−1
+ pl+1

−p
eK

+2p
).

(6.23)
On the other hand, it is straightforward to see that

pl+2 − p2

p− 1
+

pl+1 − p

eK
+ 2p ≥ pl+1(1 +

1

p− 1
+

1

eK
). (6.24)

Putting (6.22), (6.23) and (6.24) together, we prove the induction step.
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Lemma 6.25. For p = 2 and l ≥ 1, we have

(f (1))2
l ∈ (2,N≥2l+1(1+ 1

4
)).

Proof. Recall that by construction, we have

2f (2) = −(f (1))2 + δ2(h)EK(z1)
4.

By Lemma 4.16, δ2(h) ∈ N≥1. It follows that

(f (1))2 ∈ (2,N≥5).

We thus conclude by raising to the 2l−1-th power.

Lemma 6.26. Suppose p = 2 and eK > 3. Then for l ≥ 1,

ϕl(f (0)) ≡ µ̃2l−1z
(2l−1)(2eK+1)
1 f (0) mod (2,N≥2l(2+ 1

eK
)− 2

eK ).

Proof. We proceed by induction on l. The case l = 1 follows from Lemma 6.17. Now
suppose the claim holds for some l ≥ 1. Using (6.18), (6.19), we first have

ϕ(f (0)) ≡ µ2z2eK1 h ≡ µ̃z2eK1 (ξ0f
(0) + f (1)) mod 2

Raising to the power of 2l, we get

ϕl+1(f (0)) ≡ µ̃2lz2
l+1eK

1 (ξ2
l

0 ϕl(f (0)) + (f (1))2
l
) mod 2.

By induction hypothesis, we have

ϕl(f (0)) ≡ µ̃2l−1z
(2l−1)(2eK+1)
1 f (0) mod (2,N≥2l(2+ 1

eK
)− 2

eK ).

It follows that
ϕl(f (0)) ∈ (2,N≥(2l−1)(2+ 1

eK
)+1

).

On the other hand, using Lemma 6.16, we get

ξ2
l

0 ≡ z2
l

1 mod (2,N≥2l).

Putting these together, we deduce that

µ̃2lz2
l+1eK

1 ξ2
l

0 ϕl(f (0)) ≡ µ̃2l+1−1z2
l+1eK+2l

1 ϕl(f (0)) mod (2,N≥(2l−1)(2+ 1
eK

)+2l+1+2l+1
).

and

µ̃2l+1−1z2
l+1eK+2l

1 ϕl(f (0)) ≡ µ̃2l+1−1z
(2l+1−1)(2eK+1)
1 f (0) mod (2,N≥2l+1(2+ 1

eK
)− 2

eK ).

Clearly (2l − 1)(2 + 1
eK

) + 2l+1 + 2l + 1 > 2l+1(2 + 1
eK

)− 2
eK

. Hence we get

µ̃2lz2
l+1eK

1 ξ2
l

0 ϕl(f (0)) ≡ µ̃2l+1−1z
(2l+1−1)(2eK+1)
1 f (0) mod (2,N≥2l+1(2+ 1

eK
)− 2

eK ).
(6.27)

Finally, by previous lemma, we have

µ̃2lz2
l+1eK

1 (f (1))2
l ∈ (2,N≥2l+1+2l+1(1+ 1

4
)) ⊂ (2,N≥2l+1(2+ 1

eK
)− 2

eK ). (6.28)

Combining (6.27) and (6.28), we conclude the induction step.
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Proposition 6.29. Suppose p > 2, eK > 1 or p = 2, eK > 3. Then for n ≥ 0, l =
vp(n), n

′ = n
pl
, the refined algebraic Tate differential satisfies

d pl+1
−1

p−1
− 1

eK

(zn) = n′ ¯̃µ
pl−1
p−1 z

peK
pl−1
p−1

+n−1

1 dz, (6.30)

which is non-zero in Ẽ
1,0, p

l+1
−1

p−1
+n−1

eK

pl+1
−1

p−1

. Moreover, the targets of (6.30) are all different.

Proof. First note that

ν(z
peK

pl−1
p−1

+n−1

1 (z1 − z2)) =
pl+1 − 1

p− 1
+

n− 1

eK
.

On the other hand, since zp
l

1 − zp
l

2 ≡ ϕl(f (0)) mod p in TP0(OK/SW (k)[z1, z2]), by
Lemma 6.20 and Lemma 6.26, we get

ν(zp
l

1 − zp
l

2 − ¯̃µ
pl−1
p−1 z

peK
pl−1
p−1

+pl−1

1 (z1 − z2)) >
pl+1 − 1

p− 1
+

pl − 1

eK
.

Hence

ν(zp
l

1 − zp
l

2 ) = ν(¯̃µ
pl−1
p−1 z

peK
pl−1
p−1

+pl−1

1 (z1 − z2)) =
pl+1 − 1

p− 1
+

pl − 1

eK
.

Write

zn1 − zn2 = zn
′pl

1 − zn
′pl

2 = −
∑

0≤i≤n′−1

(−1)n′−i

(

n′

i

)

zip
l

1 (zp
l

1 − zp
l

2 )n−i.

It is straightforward to see

pl+1 − 1

p− 1
+

n− 1

eK
= ν(z

(n′−1)pl

1 (zp
l

1 − zp
l

2 )) < ν(zip
l

1 (zp
l

1 − zp
l

2 )n−i)

for i ≤ n− 2. Note that pl+1−1
p−1 + n−1

eK
= (p

l+1−1
p−1 − 1

eK
) + n

eK
. We thus deduce that

d pl+1
−1

p−1
− 1

eK

(zn) = n′z
(n′−1)pl

1 (zp
l

1 − zp
l

2 ) = n′ ¯̃µ
pl−1
p−1 z

peK
pl−1
p−1

+n−1

1 dz.

It remains to show that the targets of (6.30) are all different; note that this will

automatically imply that the right hand side of (6.30) is non-zero. Put ñ = peK
pl−1
p−1 +n.

Since vp(n) = l, we get l = vp(ñ+ peK
p−1). Consequently, n is uniquely determined by ñ.

This yields the desired result.

Now we treat the remaining cases. The strategy is to compare them with the known
cases.

Proposition 6.31. The result of Proposition 6.29 holds for all p and eK .
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Proof. Choose an integer m > 3 coprime to p, and let K ′ = K(̟
1
m
K ); the ramification

index of K ′ is eK ′ = meK , and the corresponding Eisenstein polynomial for ̟
1
m
K is

EK ′(z) = EK(zm). Now the commutative diagram

SW (k)[z]
z 7→zm //

z 7→̟K

��

SW (k)[z]

z 7→̟
1
m
K

��

OK
// OK ′

induces a map of cosimplicial cyclotomic spectra

Tm : TP(OK/SW (k)[z]
⊗•;Fp)→ TP(OK ′/SW (k)[z]

⊗•;Fp).

Define the ”less refined” Nygaard filtration on TP∗(OK ′/SW (k)[z]
⊗•;Fp) to be the

filtration N≥rTP∗(OK ′/SW (k)[z]
⊗•;Fp) for r ∈ 1

eK
Z≥0, which in turn induces the ”less

refined” algebraic Tate spectral sequence Ẽ
′

(TP(OK ′);Fp). Clearly Tm is compatible
with filtrations. Thus it induces a morphism of spectral sequences

Tm : Ẽ(TP(OK);Fp)→ Ẽ
′

(TP(OK ′);Fp).

By similar argument as for Proposition 6.1 and Lemma 6.10, we first obtain that

if eK > 1, then Ẽ
′∗,0,∗
1

eK

(TP(OK ′);Fp) is isomorphic to k[z]⊕ k[z1]dz, where dz denotes

tz1−z2 . If eK = 1, then Ẽ
′0,0,∗
1

eK

(TP(OK ′);Fp) is the k-vector space freely generated by

{zn|m ∤ n or p | n}, and Ẽ
′1,0,∗
1

eK

(TP(OK ′);Fp) is the k-vector space freely generated by

the set of cocycles {zn1 dz|m ∤ n+ 1 or p | n+ 1}, where zn1 dz denotes

zs1((z
m
1 )k−1tz1−z2−(k−1)mzm−1

1 (zm1 )k−2t
[2]
z1−z2), 0 ≤ s ≤ m−1 and s+(k−1)m = n,

which is formally equal to
zn+m
1 −zn+m

2

kmzm−1
1

; for j 6= 0, 1, Ẽ
′j,0,∗
1

eK

(TP(OK ′);Fp) = 0. Under

our convention of notations, it is straightforward to verify

Tm(zn) = zmn, Tm(zn1 dz) = mzmn+m−1
1 dz; (6.32)

note that right hand side of the second equality is just formally equal to zmn
1 dzm.

Combining with Lemma 6.10 and Corollary 6.15, we see that

Tm : Ẽ∗,0,∗
1

eK

(TP(OK);Fp)→ Ẽ
′∗,0,∗
1

eK

(TP(OK ′);Fp)

is injective. To proceed, we need the following result.

Lemma 6.33. For n ≥ 0, l = vp(n), where l ≥ 1 if eK = 1, n′ = n
pl
, the natural

projection

φ : Ẽ
′1,0, p

l+1
−1

p−1
+n−1

eK
1

eK

(TP(OK ′);Fp)→
Ẽ

′1,0, p
l+1

−1
p−1

+n−1
eK

1
eK

(TP(OK ′);Fp)

⊕
i 6=pmeK

pl−1
p−1

+mn−1
kzi1dz

∼= kz
pmeK

pl−1
p−1

+mn−1

1 dz
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factors through Ẽ
′1,0, p

l+1
−1

p−1
+n−1

eK

pl+1
−1

p−1

. Moreover,

d pl+1
−1

p−1
− 1

eK

(zmn) ∈ Ẽ
′1,0, p

l+1
−1

p−1
+n−1

eK

pl+1
−1

p−1

maps to n′ ¯̃µ
pl−1
p−1 z

pmeK
pl−1
p−1

+mn−1

1 dz via this projection. In particular, d pl+1
−1

p−1
− 1

eK

(zmn)

is non-zero.

Proof. By first half of Proposition 6.29, if zt ∈ Ẽ
′0,0, t

eK
1

eK

(TP(OK ′);Fp) has non-trivial

contribution to Ẽ
′1,0, k−1

eK
k−t
eK

(TP(OK ′);Fp), then

pl
′+1 − 1

p− 1
+

t− 1

meK
=

k − 1

eK
+

s

meK
for some 0 ≤ s ≤ m− 1, (6.34)

where l′ = vp(t). By the second half of Proposition 6.29, t is uniquely determined by
(k, s). In particular, if

k = eK
pl+1 − 1

p− 1
+ n, s = m− 1,

then t has to be equal to mn. Moreover, when (6.34) holds, we see from the argument

of Proposition 6.1 and Lemma 6.10 that the image of zt in Ẽ
′1,0, k−1

eK
1

eK

(TP(OK ′);Fp) is

contained in the subspace generated by the cocycles z
m(k−1)+s′

1 dz, 0 ≤ s′ ≤ s. Putting
these together, we deduce that

ker(Ẽ
′1,0, p

l+1
−1

p−1
+n−1

eK
1

eK

(TP(OK ′);Fp)→ Ẽ
′1,0, p

l+1
−1

p−1
+n−1

eK

pl+1
−1

p−1

(TP(OK ′);Fp)

is contained in the subspace generated by z
pmeK

pl−1
p−1

+mn−s

1 dz, 2 ≤ s ≤ m, yelding the
first half of the lemma. Using (6.30), we conclude the second half of the lemma.

Now we prove the proposition. We first show that zn ∈ Ẽ
0,0, n

eK
1

eK

(TP(OK);Fp) survives

to the Ẽ pl+1
−1

p−1

-term. We do this by induction. Suppose zn survives to some Ẽr-term

with 1
eK
≤ r < pl+1−1

p−1 . That is,

d(zn) ∈ N≥r+n−1
eK TP0(OK/SW (k)[z1, z2];Fp).

Since Tm(zn) = zmn, which survives to the Ẽ′
pl+1

−1
p−1

-term by Lemma 6.33, we have

Tm(d(zn)) = d(Tm(zn)) ∈ N≥r+ n
eK TP0(OK ′/SW (k)[z1, z2];Fp).
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Then the injectivity of Ẽ
1,0,r+n−1

eK
1

eK

(TP(OK);Fp) → Ẽ
′1,0,r+n−1

eK
1

eK

(TP(OK ′);Fp) implies

that d(zn) = d(α) for some α ∈ N r+n−1
eK TP0(OK ;Fp). Now

d(Tm(α)) = Tm(d(α)) = Tm(d(zn)) = 0 ∈ N r+n−1
eK TP0(OK ′/SW (k)[z1, z2];Fp),

we get Tm(α) ∈ Ẽ
′0,0,r+n−1

eK
1

eK

(TP(OK ′);Fp). By the explicit description of Ẽ
′0,0,∗
1

eK

(TP(OK);Fp)

and Ẽ
′0,0,∗
1

eK

(TP(OK ′);Fp), we conclude α ∈ Ẽ
′0,0,r+n−1

eK
1

eK

(TP(OK);Fp). Thus

d(zn) = d(α) = 0 ∈ N r+n−1
eK TP0(OK/SW (k)[z1, z2];Fp),

yielding

d(zn) ∈ N≥r+ n
eK TP0(OK/SW (k)[z1, z2];Fp).

Once we know zn survives to the Ẽ pl+1
−1

p−1

-term, since Ẽ
1,0, p

l+1
−1

p−1
+n−1

eK
1

eK

(TP(OK ;Fp)) is

generated by z
peK

pl−1
p−1

+n−1

1 dz, we may suppose

d pl+1
−1

p−1
− 1

eK

(zn) = λz
peK

pl−1
p−1

+n−1

1 dz.

Applying the second half of Lemma 6.33, we get

λ = n′ ¯̃µ
pl−1
p−1 .

The rest is the same as in the proof of Proposition 6.29.

Remark 6.35. In fact, employing the result of Proposition 6.31 in the argument of

Lemma 6.33 will prove the following fact: for r ∈ 1
eK

Z≥1∪{∞}, if Ẽ
′1,0, k−1

eK
+1

r (TP(OK);Fp)

is non-zero, that is zk−1
1 dz is not in the image of dr− 1

eK

, then the natural projection

Ẽ
′1,0, k−1

eK
+1

1
eK

(TP(OK ′);Fp)→
Ẽ

′1,0, k−1
eK

+1

1
eK

(TP(OK ′);Fp)

⊕i 6=mk−1kz
i
1dz

∼= kzmk−1
1 dz

factors through Ẽ
′1,0, k−1

eK
+1

r (TP(OK ′);Fp). In particular, Tm(zk−1
1 dz) is non-zero in

Ẽ
′1,0, k−1

eK
+1

r (TP(OK ′);Fp).

Next we investigate the differentials on non-zero stems. To this end, put

ǫ = σ1σ
−1
2 , ǫ0 =

ϕ(EK(z1))

ϕ(EK(z2))
;
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by Remark 3.12, the latter is well-defined. By the functoriality of Tate spectral se-
quence, we have

ǫ ∈ 1 +N≥1.

Using Theorem 2.15(6), we get

ǫ

ϕ(ǫ)
=

ϕ(σ−1
1 )σ1

ϕ(σ−1
2 )σ2

=
ϕ(v1)ϕ(u1)

ϕ(v2)ϕ(u2)
= ǫ0. (6.36)

Let ǭ, ǭ0 be the images of ǫ, ǫ0 in TP0(OK/SW (k)[z1, z2];Fp) respectively. It follows that

ǭ0 = ǭ1−p ≡ 1 mod N≥1.

Then it is straightforward to see that for i ≥ 0,

ǭp
i

0 ≡ 1 mod N≥pi , (6.37)

and
∞
∏

i=0

ǭp
i

0 = ǭ, (6.38)

where the LHS takes limit under the N -topology.

Lemma 6.39. Fix an integer j. Then for r ∈ 1
eK

N, m,k ∈ N such that

pk > j, min{pm, pk} > r,

we have

z
(pk−j)eK

pm+1
−p

p−1 σj ∈ Ẽ1− 1
eK

(TP(OK);Fp)

survives to the Ẽr-term.

Proof. Consider

α = (

m
∏

i=1

ϕi(EK(z)/µ))p
k−jσj ∈ TP2j(OK/SW (k)[z]).

Clearly α is a lift of z
(pk−j)eK

pm+1
−p

p−1 σj . We have

ηL(α) = (
m
∏

i=1

ϕi(EK(z1)/µ))
pk−jσj

1

and

ηR(α) = (
m
∏

i=1

ϕi(EK(z2)/µ))
pk−jσj

2 = ηL(α)ǫ
−j

m−1
∏

i=0

ϕi(ǫ0)
j−pk = ηL(α)(ǫ

−1
m−1
∏

i=0

ϕi(ǫ0))
j
m−1
∏

i=0

ϕi(ǫ0)
−pk .
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By (6.37) and (6.38), we deduce that

ǭ−1
m−1
∏

i=0

ϕi(ǭ0) ≡ 1 mod N≥pm

and
m
∏

i=1

ϕi(ǭ0)
−pk ≡ 1 mod N≥pk .

It follows that ηL(z
(pk−j)eK

pm+1
−p

p−1 σj)−ηR(z(p
k−j)eK

pm+1
−p

p−1 σj) ∈ N≥(pk−j)p
m+1

−p
p−1

+min{pm,pk}
,

concluding the lemma.

Proposition 6.40. For n ≥ 0, j ∈ Z, l = vp(n− peKj
p−1 ), and n′ ≡ p−l(n− peKj

p−1 ) mod p,
we have

d pl+1
−1

p−1
− 1

eK

(znσj) = n′ ¯̃µ
pl−1
p−1 z

peK
pl−1
p−1

+n−1

1 σjdz, (6.41)

which is non-zero in Ẽ
1,j, p

l+1
−1

p−1
+n−1

eK

pl+1
−1

p−1

. Moreover, the targets of (6.41) are all different.

Proof. Choose k,m ∈ N such that

pk > j, min{m,k} > l.

Thus

(pk − j)eK
pm+1 − p

p− 1
− n ≡ peKj

p− 1
− n mod pl+1.

It follows that (pk − j)eK
pm+1−p

p−1 = n + spl with s ≡ −n′ mod p. By Lemma 6.39,

z(p
k−j)eK

pm+1
−p

p−1 σj survives to the Ẽ pl+1
−1

p−1

-term. Hence

d pl+1
−1

p−1
− 1

eK

(z(p
k−j)eK

pm+1
−p

p−1 σj) = d pl+1
−1

p−1
− 1

eK

(zn+splσj) = 0.

By Leibniz rule and Proposition 6.29, we deduce that

zsp
l

2 d pl+1
−1

p−1
− 1

eK

(znσj) = −zn1σjd pl+1
−1

p−1
− 1

eK

(zsp
l
) = −s ¯̃µ

pl−1
p−1 z

peK
pl−1
p−1

+spl−1+n

1 σjdz.

Recall that both ηL and ηR define the refined Nygaard filtrations. It follows that

d pl+1
−1

p−1
− 1

eK

(znσj) = n′ ¯̃µ
pl−1
p−1 z

peK
pl−1
p−1

+n−1

1 σjdz.

The rest is similar to the proof of Proposition 6.29: put ñ = peK
pl−1
p−1 + n, then

l = vp(ñ−
peK(j − 1)

p− 1
).

That is, n is uniquely determined by ñ.

40



Remark 6.42. We see similarity between refined algebraic Tate differentials and Tate
differentials in prior works. More precisely, z, zeK , σ and dz correspond to ̟K , τKαK ,
τ−1
K and τK̟Kd log̟K in [5, Theorem 5.5.1] respectively; for p = 2 and eK = 1, σ,
z2σ and zσ2dz correspond to t−1, te4 and e3 in [12, Theorem 8.14] respectively; for p
odd and eK = 1, σ, zpσp−1 and zp−1σpdz correspond to t−1, tf and e in [13, Theorem
7.4] respectively.

7 E2-term of mod p descent spectral sequence I

In this section, we compute E2-terms of the mod p descent spectral sequences for
TC−(OK) and TP(OK).

Proposition 7.1. For j ∈ Z, E0,2j
2 (TP(OK);Fp) is non-zero if and only if j ≥ 0 and

p−1|eKj. If this condition holds, then E0,2j
2 (TP(OK);Fp) is the 1-dimensional k-vector

space generated by a cocycle with leading term z
peKj

p−1 σj . Moreover, the canonical map
induces

E0,∗
2 (TC−(OK);Fp) ∼= E0,∗

2 (TP(OK);Fp).

Proof. By Proposition 6.40, we deduce that d pl+1
−1

p−1
− 1

eK

(znσj) = 0 is equivalent to

l < vp(n−
peKj

p− 1
).

Thus znσj has non-trivial contribution to Ẽ∞(TP(OK);Fp) if and only if

n =
peKj

p− 1
.

This concludes the first two assertions. For the last one, since

can : TC−
∗ (OK ;Fp)→ TP∗(OK ;Fp)

is injective, we have

can : E0,∗
2 (TC−(OK);Fp)→ E0,∗

2 (TP(OK);Fp)

is injective as well. On the other hand, when E0,2j
2 (TP(OK);Fp) is non-zero, by The-

orem 2.15, we have z
peKj

p−1 σj = µ̄−jz
eKj

p−1 uj ∈ E0,2j
2 (TC−(OK);Fp). Thus

can : E0,∗
2 (TC−(OK);Fp)→ E0,∗

2 (TP(OK);Fp)

is also surjective.

Proposition 7.2. The k-vector space E1,2j
2 (TP(OK);Fp) is freely generated by a set

of cocycles whose leading terms are
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• z
peK (j−1)+bpl

p−1
−1

1 σjdz with l ≥ 1, b ∈ Z satisfying

−eK(j − 1)

pl−1
< b < peK −

eKj

pl−1
, p ∤ b, b ≡ −eK(j − 1) mod p− 1,

and

• z
peK (j−1)

p−1
−1

1 σjdz, if j > 1 and p− 1 | eK(j − 1).

Proof. We first treat the case of eK > 1. In this case, by Corollary 6.15, we see that
E1,2j

2 (TP(OK);Fp) is generated over k by cocycles which are detected by {zn−1
1 σjdz}n≥1.

By Proposition 6.40, zn−1
1 σjdz is hit by zmσj if and only if

peK
pl − 1

p− 1
+m = n (7.3)

with l = vp(m− peKj
p−1 ) <∞. In this case, it follows that

n ≡ m− peK
p− 1

mod pl+1,

yielding l = vp(m− peKj
p−1 ) = vp(n− peK(j−1)

p−1 ). Hence m is uniquely determined by n, j.

Now put l = vp(n− peK(j−1)
p−1 ). If l =∞, then by previous argument zn−1

1 σjdz is not

hit by any zmσj ; in this case it follows that j > 1, p− 1 | eK(j − 1) and n = peK(j−1)
p−1 .

If l <∞, then we may write

n =
peK(j − 1) + bpl

p− 1

for some b ∈ Z satisfying

p ∤ b, b ≡ −(j − 1)eK mod p− 1,
p(j − 1)eK + bpl

p− 1
≥ 1;

the last one is equivalent to

bpl + peKj ≥ p− 1 + peK . (7.4)

On the other hand, by (7.3), zn−1
1 σjdz is not hit by any refined algebraic Tate differ-

ential if and only if

n− peK(pl − 1)

p− 1
< 0. (7.5)

Note that (7.5) implies that l ≥ 1. Conversely, if l ≥ 1, then (7.4) plus (7.5) is
equivalent to

−eK(j − 1)

pl−1
< b < peK −

eKj

pl−1
,

concluding the desired result. Finally, note that all the resulting leading terms zn−1
1 σj

satisfy p|n. Thus by Corollary 6.15, the above argument applies equally to the case of
eK = 1.
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Proposition 7.6. For j ≥ 1, E1,2j
2 (TC−(OK);Fp) is freely generated over k by a set

of cocycles whose leading terms are

•

z
peK (j−1)+bpl

p−1
−1

1 σjdz

with l ≥ 0, b ∈ Z satisfying

−eK(j − 1)

pl
< b < peK −

eKj

pl
, p ∤ b, b ≡ −eK(j − 1) mod p− 1,

and

• z
peK (j−1)

p−1
−1

1 σjdz with j > 1 and p− 1 | eK(j − 1).

Proof. Recall that the refined algebraic homotopy fixed points spectral sequence is a
truncation of the refined algebraic Tate spectral sequence. More precisely, for

znσj ∈ Ẽ 1
eK

(TP (OK);Fp) (resp. zn−1
1 σjdz ∈ Ẽ 1

eK

(TP (OK);Fp)),

it belongs to Ẽ 1
eK

(TC−(OK);Fp) is equivalent to jeK ≤ n (resp. (j − 1)eK ≤ n− 1).

Therefore, using the argument of Proposition 7.2, we deduce that for

zn−1σjdz ∈ Ẽ 1
eK

(TC−(OK);Fp),

it is not hit by any refined algebraic homotopy fixed points differential if and only if

n =
peK(j − 1)

p− 1

or

n− peK
pl − 1

p− 1
< jeK (7.7)

for l = vp(n− peK(j−1)
p−1 ).

In the first case, we have j > 1 and p−1 | eK(j−1). Conversely, under this condition,
it is straightforward to verify that z

peKj

p−1 σjdz belongs to Ẽ 1
eK

(TC−(OK);Fp).

In the second case, we may write n = peK(j−1)+bpl

p−1 with

p ∤ b, b ≡ −eK(j − 1) mod p− 1.

Moreover, the conditions n ≥ 1 plus (7.7) is equivalent to

−eK(j − 1)

pl
< b < peK −

eKj

pl
.

Finally, if b satisfies all these conditions, then it is straightforward to check that

z
peK (j−1)+bpl

p−1
−1

1 σjdz belongs to Ẽ 1
eK

(TC−(OK);Fp).
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Lemma 7.8. For j ≥ 1, the kernel of the canonical map

can : E1,2j
2 (TC−(OK);Fp)→ E1,2j

2 (TP(OK);Fp)

is an eKj-dimensional k-vector space freely generated by a set of cocycles whose leading
terms are

z
peK (j−1)+bpl

p−1
−1

1 σjdz

with l ≥ 0, b ∈ Z satisfying

p ∤ b, b ≡ −eK(j − 1) mod p− 1, pl−1 ≤ eKj

peK − b
< pl. (7.9)

Proof. By Propositions 7.2, 7.6, we obtain that the kernel of can is freely generated by

a set of cocycles which are detected by z
peK (j−1)+bpl

p−1
−1

1 σjdz with l ≥ 0, b ∈ Z satisfying

−eK(j − 1)

pl
< b < peK−

eKj

pl
, p ∤ b, b ≡ −eK(j−1) mod p−1, b /∈ (−eK(j − 1)

pl−1
, peK−

eKj

pl−1
).

It is straightforward to see that the first condition plus the last conditions is equivalent
to

peK −
eKj

pl−1
≤ b < peK −

eKj

pl
, (7.10)

which in turn is equivalent to the last condition of (7.9).
It remains to count the number of cocycles. To this end, first note that (7.10)

implies that
peK(1− j) ≤ b < peK .

Conversely, for any eK(1 − j) ≤ m < eK , there is exactly one b ∈ [pm, pm + p − 1]
satisfying the first two conditions of (7.9). Moreover, for any b ∈ [peK(1 − j), peK),
there is exactly one l satisfying (7.10). We thus conclude that the number of such
cocycles is eK − eK(1− j) = eKj.

8 E2-term of mod p descent spectral sequence

II

In this section, we compute the E2-term of the mod p descent spectral sequence for
TC(OK). Firstly, we study the action of Frobenius on E2(TC

−(OK);Fp).

Lemma 8.1. For n ≥ eKj, we have

ϕ(znσj) = µ̄−pjzp(n−eKj)σj.

Proof. Using Theorem 2.15, we have

ϕ(znσj) = ϕ(zn−eKj)µ̄−pjϕ(EK(z)σ)j = µ̄−pjzp(n−eKj)ϕ(u)j = µ̄−pjzp(n−eKj)σj .
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Lemma 8.2. If eK > 1, then

ϕ(σ1(z1 − z2)) ≡ −zp−1
1 σ1(z1 − z2) mod N≥ p

eK
+1

.

Proof. In TC−
2 (OK/SW (k)[z1, z2]), we have

ϕ(σ1(z1 − z2)) = ϕ(σ1EK(z1))
ϕ(z1 − z2)

ϕ(EK(z1))
= hϕ(u1) = hσ1.

Using (3.20) for l = 0 and the fact that f (1) ∈ N≥p, we get

h ≡ δ(z1 − z2)/δ(EK (z1)) mod N≥p.

By Lemma 6.16, we have

δ(z1 − z2) ≡ −zp−1
1 (z1 − z2) mod (p,N≥ p−2

eK
+2

).

On the other hand, a short computation shows that

δ(EK(z1)) ≡ 1 mod (p,N
p

eK ).

Putting these together, we conclude

h ≡ −zp−1
1 (z1 − z2) mod (p,N≥r0),

where

r0 = min(p,
2p− 1

eK
+ 1,

p− 2

eK
+ 2) ≥ p

eK
+ 1

as eK > 1. This yields the desired result by modulo p.

Lemma 8.3. If α ∈ N≥mTC−
2j(OK/SW (k)[z1, z2];Fp), then

ϕ(α) ∈ N≥p(m−j)TP2j(OK/SW (k)[z1, z2];Fp).

Proof. Write m = m0 +
m1
eK

with m0 ≥ j, 0 ≤ m1 < eK . Then there exist

x ∈ N≥m0TC−
2j(OK/SW (k)[z1, z2];Fp), y ∈ N≥m0+1TC−

2j(OK/SW (k)[z1, z2];Fp)

such that α = zm1
1 x+y. By a variant of the proof of Lemma 3.11, we get ϕ(x) divisible

by ϕ(EK(z1))
m0−j , yielding

ϕ(x) ∈ N≥p(m0−j)TP2j(OK/SW (k)[z1, z2];Fp).

Similarly, we get ϕ(y) ∈ N≥p(m0+1−j)TP2j(OK/SW (k)[z1, z2];Fp). It follows that

ϕ(α) = zpm1
1 ϕ(x) + ϕ(y) ∈ N≥p(m−j)TP2j(OK/SW (k)[z1, z2];Fp).
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Proposition 8.4. For j ≥ 1, if α ∈ E1,2j
2 (TC−(OK);Fp) is detected by zn−1

1 σjdz, then

ϕ(α) ∈ E1,2j
2 (TP(OK);Fp) is detected by

−µ̄−p(j−1)z
p(n−eK(j−1))−1
1 σjdz.

Before proving Proposition 8.4, note that the map

zn−1
1 σjdz 7→ z

p(n−eK(j−1))−1
1 σjdz

gives rise to a bijection between leading terms of the cocycles given in Propositions 7.2
and Proposition 7.6 respectively. Therefore, granting Proposition 8.4, we obtain the
following results.

Corollary 8.5. For j ≥ 1, ϕ : E1,2j
2 (TC−(OK);Fp) → E1,2j

2 (TP(OK);Fp) is an iso-
morphism.

Corollary 8.6. Suppose α ∈ E1,2j
2 (TC−(OK);Fp) has refined Nygaard filtration m.

(1) For j ≥ 1, the filtration of ϕ(α) is higher than (resp. lower than, equal to) the
filtration of α if and only if

m >
pj − 1

p− 1
− 1

eK
(resp. m <

pj − 1

p− 1
− 1

eK
, m =

pj − 1

p− 1
− 1

eK
).

(2) For j ≤ 0, the filtration of ϕ(α) is higher than that of α.

Proof. For (1), by Proposition 8.4, ϕ(α) has filtration

m′ =
p(eK(m− 1) + 1− eK(a− 1)) − 1

eK
+ 1 = p(m− j) +

p− 1

eK
+ 1.

A short computation shows the desired result. For (2), since dz has filtration 1, we
may assume m ≥ 1. Then we may write α = βv−j with β ∈ N≥mE1,0

2 (TC−(OK);Fp).

It follows that ϕ(α) is divisible by ϕ(β), which belongs to N≥pmE1,0
2 (TP(OK);Fp).

Now the desired result follows as pm > m.

Now we prove Proposition 8.4.

Proof. Regard zn−1
1 σj

1dz as an element of the cobar complex of TC−
2j(OK/SW (k)[z];Fp).

Note that d(z1), d(σ1) ∈ N≥1TC−
2j(OK/SW (k)[z1, z2, z3];Fp). Thus by Leibniz rule, we

deduce that

d(zn−1
1 σj

1dz) ∈ N
≥n−2

eK
+2

TC−
2j(OK/SW (k)[z1, z2, z3];Fp).

Using Lemma 6.10, we deduce that there exists β ∈ N≥n−2
eK

+2
TC−

2j(OK/SW (k)[z1, z2];Fp)

such that d(β) = d(zn−2
1 σj

1dz); hence d(z
n−1
1 σj

1dz−β) = 0. Therefore, by induction on
n, it reduces to treat the case

α ≡ zn−1
1 σj

1(z1 − z2) mod N≥n−2
eK

+2
.
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By Lemma 8.3, we have

ϕ(α) ≡ ϕ(zn−1
1 σj−1

1 )ϕ(σ1(z1 − z2)) mod N p(n−2
eK

+2−j)
.

By Lemma 8.2 and Lemma 8.1, we have

ϕ(zn−1
1 σj−1

1 )ϕ(σ1(z1−z2)) ≡ −µ̄−p(j−1)z
p(n−eK(j−1))−1
1 σj

1(z1−z2) mod N≥
p(n−eK (j−1))

eK
+1

.

Note that if eK > 3, then

p(
n− 2

eK
+ 2− j) ≥ p(n− eK(j − 1))

eK
+ 1,

yielding the desired result for eK > 3.
For the case of eK ≤ 3, let m,K ′, Tm and Ẽ′

r(TP(OK ′);Fp) be as in the proof
of Proposition 6.31. Let Ẽ′

r(TC
−(OK ′);Fp) be the ”less refined” algebraic homotopy

fixed point spectral sequence, which is a truncation of Ẽ′
r(TP(OK ′);Fp). First note

that Remark 6.35 1 implies that

Tm : Ẽ1,∗,∗
∞ (TP(OK);Fp)→ Ẽ

′1,∗,∗
∞ (TP(OK ′);Fp)

is injective. Thus it restricts to an injective map Ẽ∞(TC−(OK);Fp)→ Ẽ′
∞(TC−(OK ′);Fp).

Since zn−1
1 dz is non-zero in Ẽ∞(TC−(OK);Fp), using Remark 6.35, we may deduce that

Tm(α) is detected by mzmn−1
1 σjdz. Then by the case of eK > 3, we get that

−mµ̄−p(j−1)z
p(mn−meK(j−1))−1
1 σj

1dz

detects Tm(ϕ(α)) = ϕ(Tm(α)) in Ẽ∞(TP(OK ′);Fp). Now suppose ϕ(α) is detected by
λzl−1σjdz. Then Tm(ϕ(α)) is detected by Tm(λzl−1σjdz) = λmzmj−1σjdz. Comparing
the two expressions, we get

l = p(n−meK(j − 1)), λ = −µ̄−p(j−1)

by Remark 6.35 again. This completes the proof.

Lemma 8.7. The canonical map induces

• for j > 0, a surjection

E1,2j
2 (TC−(OK);Fp)→ N≥jE1,2j

2 (TP(OK);Fp);

• for j ≤ 0, an isomorphism

E1,2j
2 (TC−(OK);Fp)→ E1,2j

2 (TP(OK);Fp);

• for m ≥ j, a surjection

N≥mE1,2j
2 (TC−(OK);Fp)→ N≥mE1,2j

2 (TP(OK);Fp).

1Using Proposition 6.40, the argument of Lemma 6.33 (hence Remark 6.35) adapts to Ẽ
′
1,j,∗(TP(OK′);Fp)

for all j ∈ Z.
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Proof. These follow from the corresponding result on

can : TC−
2j(OK/SW (k)[z]

⊗•)→ TP2j(OK/SW (k)[z]
⊗•).

Combining Corollary 8.6 and Lemma 8.7, we deduce the following results immedi-
ately.

Corollary 8.8. For j ≥ 1 and m ≥ pj−1
p−1 , the map

can− ϕ : N≥mE1,2j
2 (TC−(OK);Fp)→ N≥mE1,2j

2 (TP(OK);Fp)

is surjective.

Corollary 8.9. For j ≤ 0, the map

can− ϕ : E1,2j
2 (TC−(OK);Fp)→ E1,2j

2 (TP (OK);Fp)

is an isomorphism.

Now we are ready to compute E2(TC(OK);Fp). Let d be the minimal number such
that

p− 1 | eKd, Nk/Fp
(µ̄)d = 1,

where Nk/Fp
: k→ Fp is the norm map.

The following lemma is a reformulation of Hilbert 90 for k/Fp.

Lemma 8.10. For b ∈ k×, the map

bϕ− id : k −→ k

is bijective if Nk/Fp
(b) 6= 1, otherwise both the kernel and cokernel are isomorphic to

Fp.

Using Lemma 8.10, we may choose a (p− 1)-th root µ̄
pd
p−1 of µ̄pd in k. Denote by β

the element in Ẽ0,0,2d
2 (TC(OK);Fp) ⊆ E0,2d

2 (TC−(OK);Fp) detected by µ̄
pd
p−1 z

peKd

p−1 σd.

Proposition 8.11. We have

Ẽ0,0,∗
2 (TC(OK);Fp) ∼= Fp[β].

Proof. By Proposition 7.1, we first have

E0,∗
2 (TC−(OK);Fp) ∼= k[z

peKj

p−1 σj ],

where j is the smallest positive integer such that p− 1 | eKj.
On the other hand, by Lemma 8.1,

ϕ(z
peKj

p−1 σj) = µ̄−pjz
peKj

p−1 σj.

Thus λz
peKj

p−1 σj ∈ Ẽ0,0,∗
2 (TC(OK);Fp) if and only if µ̄pj = λ−1ϕ(λ) = λp−1 for some

λ ∈ k. In this case, it follows that Nk/Fp
(µ̄)j = 1. Hence d | j. Conversely, if d | j,

then such λ is of the form λ′µ̄
pd
p−1 with λ′ ∈ Fp. Now the proposition follows.
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It turns out that Ẽi,j,∗
2 (TC(OK);Fp) is a free Fp[β]-module of finite rank for all i, j.

In the following, we will find out their generators over Fp[β]. Firstly, combing the proof
of Proposition 8.11, Lemma 8.1 and Lemma 8.10, we obtain the following result.

Proposition 8.12. We have that Ẽ0,1,∗
2 (TC(OK);Fp) is a free Fp[β]-module of rank 1

generated by 1 ∈ E0,0
2 (TP(OK);Fp).

Lemma 8.13. There exists γ ∈ ker(can − ϕ) detected by µ̄
pd
p−1 z

peKd

p−1
−1

σd+1dz.

Proof. Let γ0 ∈ E
1,2(d+1)
2 (TC−(OK);Fp) be detected by z

peKd

p−1
−1σd+1dz. By Proposi-

tion 8.4, ϕ(γ0) is detected by µ−pdz
peKd

p−1
−1σd+1dz. It follows that

(can − ϕ)(µ
pd
p−1 γ0) ∈ N≥ pd

p−1
+1

E
1,2(d+1)
2 (TP(OK);Fp).

By Corollary 8.8, can−ϕ is surjective on N≥ pd
p−1

+1
E

1,2(d+1)
2 (TC−(OK);Fp). Hence we

may modify γ0 with higher terms to construct the desired element.

In the following, let γ be as in Lemma 8.13.

Proposition 8.14. We have that Ẽ1,1,∗
2 (TC(OK);Fp) is a free Fp[β]-module of rank 1

generated by can(γ) ∈ E
1,2(d+1)
2 (TP(OK);Fp).

Proof. Let α ∈ E1,2j
2 (TC(OK);Fp) represents a non-trivial class in the cokernel of

can − ϕ such that it has the highest leading term in that class. By Corollary 8.8 and
Corollary 8.9, we see that j ≥ 1 and the leading degree of α lies in [1, pj

p−1 − 1
p−1 − 1

eK
].

On the other hand, if the leading degree of α is less than pj
p−1 − 1

p−1 − 1
eK

, by

Corollary 8.5 and Corollary 8.6, then we may find some α′ with higher leading degree
such that α = ϕ(α′). Note that can(α′) represents the same class as α, yielding a
contradiction.

Therefore α must have leading degree pj
p−1 − 1

p−1 − 1
eK

. That is, α is detected by

some λz
peK (j−1)

p−1
−1

1 σjdz. Using Lemma 8.10 and Lemma 8.13, we conclude that d | j−1

and α ∈ Fpβ
j−1
d

−1can(γ).

Proposition 8.15. We have that Ẽ1,0,∗
2 (TC(OK);Fp) is a free Fp[β]-module with a

basis given by γ and the set of cocycles detected respectively by

cz
peK (j−1)+bpl

p−1
−1σjdz ∈ E1,2j

2 (TC−(OK);Fp)

with l ≥ 0 and

0 < b < peK , p ∤ b, b ≡ −eK(j−1) mod p−1, pl−1 ≤ eKj

peK − b
< pl, 1 ≤ j ≤ d,

(8.16)
and c runs over a basis of k over Fp.
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Proof. By Corollary 8.9, ker(can − ϕ) is trivial for j ≤ 0. Now suppose j ≥ 1, and let
0 6= α ∈ Ẽ1,0,∗

2 (TC(OK);Fp). By Corollary 8.6, ϕ lowers the filtration if the filtration
is less than pj

p−1 − 1
p−1 − 1

eK
. Thus the leading degree of α is at least pj

p−1 − 1
p−1 − 1

eK
.

If the leading degree of α is pj
p−1 − 1

p−1 − 1
eK

, the by Lemma 8.10 and the argument

of Proposition 8.14, there exists some β′ ∈ Fp[β]γ such that α− β′ has leading degree
higher than pj

p−1 − 1
p−1 − 1

eK
.

Now suppose α has leading degree higher than pj
p−1 − 1

p−1 − 1
eK

. First note that for

a cocycle given in Propositions 7.2, 7.6, it lies in N> pj
p−1

− 1
p−1

− 1
eK if and only if b > 0.

Then it is straightforward to see that

can : N> pj
p−1

− 1
p−1

− 1
eK E1,2j

2 (TC−(OK);Fp)→ N> pj
p−1

− 1
p−1

− 1
eK E1,2j

2 (TP(OK);Fp).

is surjective, and the cocyles given in the statement of the proposition form an Fp-
basis of ker(can). Let S be the k-vector space generated by the remaining cocycles in

N> pj
p−1

− 1
p−1

− 1
eK E1,2j

2 (TC−(OK);Fp). It follows that can induces a filtration preserving

isomorphism between S and N> pj
p−1

− 1
p−1

− 1
eK E1,2j

2 (TP(OK);Fp).
Now we may write α = α1 + α2 with α1 ∈ ker(can), α2 ∈ S. It follows that

(can − ϕ)(α2) = ϕ(α1).

Since ϕ raises the filtration, it follows that

α2 = (1− can−1ϕ)−1(can−1ϕ(α1)) =
∑

i≥1

(can−1ϕ)i(α1).

Hence α2 is uniquely determined by α1 and has higher filtration than α1. Thus the
map α 7→ α1 induces an isomorphism between ker(can) and ker(can − ϕ) preserving
the leading term. This completes the proof.

Remark 8.17. The above argument can be summarized by the following picture. Put
a = m− j. The cocycles of E1,2j

2 (TC−(OK);Fp) with leading degree m is represented
by the point (a = m− j, j). Then we may divide the area of cocyles into three regions,
bounded by the lines j + a = 0, a = 0 and j

p−1 − a − 1
p−1 − 1

eK
= 0. The blue

line is the “critical line” for the Frobenius action. In region I, the canonical map is
an isomorphism, and the Frobenius raises filtration; thus can − ϕ is an isomorphism
(Corollary 8.9). In region II, the Frobenius raises the filtration. One may produce an
isomorphism between ker(can) and ker(can−ϕ) preserving the leading term. In region
III, the Frobenius lowers the filtration; thus ker(can − ϕ) = 0. Along the critical line,
the Frobenius differs from the canonical map by a certain power of µ̄.
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I II

III

j

Note that for 1 ≤ i ≤ eK and 1 ≤ j ≤ d, there is exactly one

b ∈ [(p − 1)i + 1, pi],

and hence one pair (b, l), satisfying (8.16). Denote by α
(j)
i the cocycle detected by

z
peK (j−1)+bpl

p−1
−1

σjdz ∈ E1,2j
2 (TC−(OK);Fp).

given in Proposition 8.15. Let λ denote the cocycle given by Proposition 8.12. Com-
bining Propositions 8.11, 8.12, 8.15, 8.14, and Corollary 6.13, we conclude:

Theorem 8.18. As Fp[β]-modules, we have

E0,∗
2 (TC(OK);Fp) ∼= Fp[β],

E1,∗
2 (TC(OK);Fp) ∼= Fp[β]{λ, γ} ⊕ k[β]{α(j)

i |1 ≤ i ≤ eK , 1 ≤ j ≤ d},
and

E2,∗
2 (TC(OK);Fp) ∼= Fp[β]{λγ}

with |λ| = (1, 0), |γ| = (1, 2(d + 1)), |α(j)
i | = (1, 2j). Moreover, for i 6= 0, 1, 2,

Ei,∗
2 (TC(OK);Fp) = 0.

Corollary 8.19. The descent spectral sequence computing TC(OK ;Fp) collapses at the
E2-term.

Proof. There is no room for higher differentials in consideration of degrees.

To complete the proof of Theorem 1.1, it remains to show d = [K(ζp) : K]. This
will be proved in Proposition 9.4.
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9 Constant term of the Eisenstein polynomial

Recall that we may arrange the constant term of EK(z) to be pτ for some τ ∈ Z×
p ,

which is independent of K (Theorem 2.15(6)). In the following, we will show that
τ = 1. To proceed, recall that ǫ = σ1σ

−1
2 lies in 1 + N≥1TP0(OK/SW (k)[z1, z2]), and

it satisfies
ǫ

ϕ(ǫ)
=

ϕ(EK(z1))

ϕ(EK((z2))

by (6.36).

Lemma 9.1. We have that ǭ is the unique element in 1+N≥1TP0(OK/SW (k)[z1, z2];Z/p
n)

satisfying
ǫ

ϕ(ǫ)
=

ϕ(EK(z1))

ϕ(EK((z2))
.

Proof. For the uniqueness, suppose

ǫ′ ∈ 1 +N≥1TP0(OK/SW (k)[z1, z2];Z/p
n)

satisfying the same equation. Thus ǫ
ǫ′ = 1+α for some α ∈ N≥1TP0(OK/SW (k)[z1, z2];Z/p

n)
satisfying α = ϕ(α). Since ϕ(α) ≡ αp modulo p, we get

α = ϕk(α) ∈ (p) +N pk

for any k ≥ 0, concluding α ∈ (p). By Corollary 3.4, we deduce that

α/p ∈ N≥1TP0(OK/SW (k)[z1, z2];Z/p
n−1)

is ϕ-invariant as well. Iterating this argument, we conclude α = 0, yielding ǭ = ǭ′.

Proposition 9.2. We have τ = 1.

Proof. Fix n ≥ 1 and put K = Qp(ζpn). Recall that K2(OK ;Z/pn) is non-nilpotent
due to the existence of Bott elements. Using cyclotomic trace map, we deduce that
TC2(OK ;Z/pn) is non-nilpotent as well. We may apply the same strategy to compute
TC∗(OK/SW (k);Z/p

n) as for TC∗(OK/SW (k);Fp). Namely we employ the descent spec-
tral sequences and use Nygaard filtrations to compute their E2-terms. By similar argu-
ments, we conclude that Ẽi,k,j

2 (TC(OK);Z/pn) = 0 unless i, k ∈ {0, 1}. Since the spec-
tral sequence Ẽ(TC(OK);Z/pn) is multiplicative, we get that Ẽi,k,j

2 (TC(OK);Z/pn) is

nilpotent unless i = k = 0. Hence Ẽ0,0,2
2 (TC(OK);Z/pn) is non-nilpotent.

Put f(z) = (1 + z)p
n − 1, and consider

β = ((1 + z)p
n − 1)σ ∈ TP2(OK/SW (k)[z];Z/p

n).

We claim that β lies in E0,2
2 (TP(OK);Z/pn). This amounts to show

ǫ ≡ f(z2)

f(z1)
mod pn.
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By previous lemma, this reduces to show

f(zp1)f(z2)

f(z1)f(z
p
2)
≡ EK(zp1)

EK(zp2)
mod pn.

Since EK(z) = τ (1+z)p
n
−1

(1+z)pn−1−1
, this is equivalent to

(

(zp1 + 1)p
n−1 − 1

(z1 + 1)pn − 1

)(

(zp2 + 1)p
n−1 − 1

(z2 + 1)pn − 1

)

≡ 1 mod pn.

This in turn follows from the fact that

(z + 1)p
n ≡ (zp + 1)p

n−1
mod pn. (9.3)

Note that β maps to zp
n
σ in E0,2

2 (TP(OK);Fp). Using Proposition 7.1 and the fact
that the mod p reduction of E1(TP(OK);Z/pn) is E1(TP(OK);Fp), we deduce that

E0,2
2 (TP(OK);Z/pn) is a free Z/pn-module generated by β. Since Ẽ0,0,2

2 (TC(OK);Z/pn)
is non-nilpotent, we conclude that the natural map

Ẽ0,0,2
2 (TC(OK);Z/pn) →֒ E0,2

2 (TC(OK);Z/pn)

is an isomorphism. In particular, β is invariant under the ϕ-action. Using (9.3) and

ϕ(σ−1)σ = ϕ(v)ϕ(u) = ϕ(EK(z)) = τ
(1 + zp)p

n − 1

(1 + zp)pn−1 − 1
,

we deduce τ ≡ 1 modulo pn. Let n→∞, we conclude τ = 1.

Let d as in Theorem 8.18. That is, d is the minimal positive integer such that
p − 1 | eKd and Nk/Fp

(µ̄)d = 1. The following proposition completes the proof of
Theorem 1.1.

Proposition 9.4. We have d = [K(ζp) : K].

Proof. Put d′ = [K(ζp) : K]. We first have

p− 1 = [K0(ζp) : K0] | [K(ζp) : K0] = d′eK .

Secondly, we have

NK0/Qp
(µ)d

′

= NK0/Qp
(

p

NK/K0
(−̟K))

)d
′

=
pfKd′

NK0(ζp)/Qp
(−̟K)

=
NK(ζp)/Qp

((1 − ζp)
d′)

NK(ζp)/Qp
(−̟K)

= NK0(ζp)/Qp
(

(1− ζp)
d′

NK(ζp)/K0(ζp)(−̟K)
).

This yields Nk/Fp
(µ̄)d

′

= NK0/Qp
(µ)d′ = NK0(ζp)/Qp

(
(1−ζp)d

′

NK(ζp)/K0(ζp)
(−̟K)) = 1. Hence

d|d′.
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It remains to show d′|d. The strategy is to construct a suitable degree d extension
of K containing K(ζp) as a subfield. Let d1 be the minimal positive integer such
that p − 1 | eKd1, and write d = d1d2. Firstly, replacing K with its tamely ramified
subextension over K0, we reduce to the case (e, p) = 1. Secondly, replacing K with its
degree d2 unramified extension, we reduce to the case d = d1.

Note that Nk/Fp
(µ̄)d1 = 1 implies that

µ ≡ λeK mod p

for some λ ∈ K0. Consider the degree d1 totally ramified extension K( d1
√
λ̟K) over

K. It is clear that the minimal polynomial of d1
√
λ̟K over K0 is E1(z) = EK(λ−1zd1),

which has leading coefficient

µ′ = µλ−eK ≡ 1 mod p. (9.5)

On the other hand, consider
ed1
p−1

√

ζp − 1, whose minimal polynomial over K0 is

E2(z) = z
−

ed1
p−1 ((z

ed1
p−1 + 1)p − 1).

Denote the roots of E2(z) by αi, 1 ≤ i ≤ ed1. Since (ed1, p) = 1, it is straightforward
to check

vp(αi − αj) =
1

ed1
, i 6= j.

Note that both E1(z) and E2(z) are Eisenstein polynomials of degree ed1 and have the
same constant term p. Moreover, by (9.5), their leading terms are congruent modulo
p. It follows that

ed1
∏

i=1

( d1
√

λ̟K − αi) = E2(
d1
√

λ̟K) = (E2 − E1)(
d1
√

λ̟K)

has p-adic valuation bigger than 1, yielding vp(
d1
√
λ̟K − αi) > 1

ed1
for some i. By

Krasner’s Lemma, this implies that K0(
ed1
p−1

√

ζp − 1) ⊆ K( d1
√
λ̟K). Hence K(ζp) ⊆

K( d1
√
λ̟K).

Remark 9.6. One can further show that if ξpn ∈ K, then

TC∗(OK ;Z/pn)→ TC∗(OK ;Fp)

is surjective. In fact, it suffices to show that the generators given in Theorem 8.18 can
be lifted to TC∗(OK ;Z/pn). This is clear except for γ. For γ, we may use the fact that
β−1γ is the mod p reduction of the trace of ̟K ∈ K× ∼= K1(K). This is compatible
with results of [5].
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10 Comparison with motivic cohomology

In this section we compare the descent spectral sequence computing TC∗(OK ;Fp) with
the motivic spectral sequence computing K∗(K;Fp). We take d = 2 for the illustration.

By Theorem 8.18, theE2-term of the spectral sequence computing TC(OK/SW (k);Fp)
may be pictured as follows, in which a circle (resp. box) with one arrow means a Fp[β]-
module (resp. k[β]-module) freely generated by the elements below it. We use the
Adams gradings so that the horizontal axis is the total stem.

1

λ α
(1)
i , 1 ≤ i ≤ eK α

(2)
i , 1 ≤ i ≤ eK γ

λγ

Let β be a generator of µd
p, which is isomorphic to Z/p as a Gal(K/K)-module. Let

α(1) be a generator of the OK/p-module

UK/Up
K ⊂ K×/(K×)p ∼= H1

ét(K,µp),

where UK is the torsion free part of O×
K . Let β−1γ ∈ H1

ét(K,µp) be the class represented
by ̟K ∈ K×/(K×)p. Let λ be the element of

H1
ét(K,Z/p) ∼= Hom(Gal(K/K),Z/p) ∼= Hom(K×/(K×)p,Z/p)

corresponding to the unramified character sending Frobenius to 1. Let β−1α(2) ∈
H1

ét(K,Z/p) be a generator of the OK/p-module Hom(UK/Up
K ,Z/p). It follows that

β−1λγ ∈ H2
ét(K,µp) corresponds to the division algebra of invariant 1

p in the Brauer
group.

The étale spectral sequence Ei,j
2 = H i

ét(K,µ⊗j
p )⇒ Két

2j−i(K,Fp) may be pictured as

follows, where a circle (resp. box) with two arrows means a Fp[β, β
−1]-module (resp.

(OK/p)[β, β−1]-module) freely generated by the elements below it.

1

λ α(1) α(2) γ

β−1λγ

Using the Bloch-Kato conjecture proved by Voevodsky [14], the E2-term of the
motivic spectral sequence computing K∗(K;Fp) may be identified with the part to the
right of the red line of the étale spectral sequence:
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1

βλα(1) α(2)β−1γ

λγ

One may show that λ generates the cokernel of the cyclotomic trace map

K(Fp;Zp)→ TC(Fp;Zp).

We thus see the similarity between the descent spectral sequence and motivic spectral
sequence. We expect that, for certain algebraic varieties over OK , one would be able
to construct some analogue of the motivic spectral sequence computing algebraic K-
theory with Fp-coefficients.
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