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ENHANCED SIX OPERATIONS AND BASE CHANGE THEOREM

FOR HIGHER ARTIN STACKS
YIFENG LIU AND WEIZHE ZHENG

ABSTRACT. In this article, we develop a theory of Grothendieck’s six operations for
derived categories in étale cohomology of Artin stacks. We prove several desired
properties of the operations, including the base change theorem in derived categories.
This extends all previous theories on this subject, including the recent one developed
by Laszlo and Olsson, in which the operations are subject to more assumptions and
the base change isomorphism is only constructed on the level of sheaves. Moreover,
our theory works for higher Artin stacks as well.

Our method differs from all previous approaches, as we exploit the theory of
stable oco-categories developed by Lurie. We enhance derived categories, functors,
and natural isomorphisms to the level of co-categories and introduce oco-categorical
(co)homological descent. To handle the “homotopy coherence”, we apply the results
of our previous article [LZa] and develop several other oo-categorical techniques.
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INTRODUCTION

Derived categories in étale cohomology on Artin stacks and Grothendieck’s six opera-
tions between such categories have been developed by many authors including [Zhel5]
(for Deligne-Mumford stacks), [LMBO00], [Beh03], [Ols07] and [LOO08]. These theo-
ries all have some restrictions. In the most recent and general one [LO08] by Laszlo
and Olsson on Artin stacks, a technical condition was imposed on the base scheme
which excludes, for example, the spectra of certain fields!. More importantly, the base
change isomorphism was constructed only on the level of (usual) cohomology sheaves
[LOO08, §5]. The Base Change theorem is fundamental in many applications. In the
Geometric Langlands Program for example, the theorem has already been used on the
level of perverse cohomology. It is thus necessary to construct the Base Change isomor-
phism not just on the level of cohomology, but also in the derived category. Another
limitation of most previous works is that they dealt only with constructible sheaves.
When working with morphisms locally of finite type, it is desirable to have the six
operations for more general lisse-étale sheaves.

In this article, we develop a theory that provides the desired extensions of previous
works. Instead of the usual unbounded derived category, we work with its enhancement,
which is a stable oco-category in the sense of Lurie [HA, 1.1.1.9]. This makes our
approach different from all previous ones. We construct functors and produce relations
in the world of oco-categories, which themselves form an oo-category. We start by

IFor example, the field k(z1, zs, ... ) obtained by adjoining countably infinitely many variables to
an algebraically closed field %k in which ¢ is invertible.
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upgrading the known theory of six operations for (coproducts of) quasi-compact and
separated schemes to oo-categories. The coherence of the construction is carefully
recorded. This enables us to apply oo-categorical descent to carry over the theory of
six operations, including the Base Change theorem, to algebraic spaces, higher Deligne—
Mumford stacks and higher Artin stacks.

0.1. Results. In this section, we will state our results only in the classical setting of
Artin stacks on the level of usual derived categories (which are homotopy categories of
the derived oo-categories), among other simplification. We refer the reader to Chapter 6
for a list of complete results for higher Deligne-Mumford stacks and higher Artin stacks,
stated on the level of stable co-categories.

By an algebraic space, we mean a sheaf in the big fppf site satisfying the usual
axioms [SP, 025Y]: its diagonal is representable (by schemes); and it admits an étale
and surjective map from a scheme (in Schy; see §0.5).

By an Artin stack, we mean an algebraic stack in the sense of [SP, 0260]: it is a
stack in (1-)groupoids over (Schy)gpe; its diagonal is representable by algebraic spaces;
and it admits a smooth and surjective map from a scheme. In particular, we do not
assume that an Artin stack is quasi-separated. Our main results are the construction
of the six operations for the derived categories of lisse-étale sheaves on Artin stacks
and the expected relations among them. In what follows, A is a unital commutative
ring, or more generally, a ringed diagram in Definition 2.2.5.

Let X be an Artin stack. We denote by D(Xjs.¢t, A) the unbounded derived category
of (Xjiset, A)-modules, where X5 ¢ is the lisse-étale topos associated to X. Recall
that an (X, A)-module Z is equivalent to an assignment to each smooth morphism
v:Y — X with Y an algebraic space a (Y, A)-module %, and to each 2-commutative
triangle

with v, v" smooth and Y, Y’ being algebraic spaces, a morphism 7,: f*%, — Z,
that is an isomorphism if f is étale, such that the collection {7,} satisfies a natural
cocycle condition [LMBO00, 12.2.1]. An (Xjse, A)-module .Z is Cartesian if in the
above description, all morphisms 7, are isomorphisms [LMBO00, 12.3].

Let Deart(Xiiset; A) be the full subcategory of D(Xjg4, A) spanned by complexes
whose cohomology sheaves are all Cartesian. If X is Deligne-Mumford, then we have
an equivalence of categories Deart(Xiisst, A) = D(Xeg, A).
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Let f: Y — X be a morphism of Artin stacks. We define the following four operations
in §6.2:

It Deart (Xiis-at, A) = Deart (Yis-et, A),
fet Deart (ylis—éta A) — Dcart(xlis—étu A)7
— ®x — Deart (Xiis-6t; A) X Deart (Xtis-6ts A) = Deart (Xiis-st, A),
Homy : Deart (Xiis-st, A) X Deart (Xiis-st, A) = Deart (Xiis-se, A)-

The pairs (f*, f.) and (— @ K, Homy (K, —)) for every K € Deart(Xiisst, A) are pairs of
adjoint functors.

To state the other two operations, we fix a nonempty set [J of rational primes. A
ring is O-torsion [SGA4, IX 1.1] if each element of it is killed by an integer that is
a product of primes in [J. An Artin stack X is -coprime if there exists a morphism
X — SpecZ[O7!]. If X and Y are O-coprime (resp. Deligne-Mumford), f: Y — X is
locally of finite type, and A is O-torsion (resp. torsion), then we have another pair of
adjoint functors:

f! . Dcart (ylis—éta A) — Dcart(xlis—ét> A)>
f! . Dcart(xlis—éta A) — Dcart (‘Hlis—étv A)

Next we list some properties of the six operations. We refer the reader to §6.2 for a
more complete list.

Theorem 0.1.1 (Kiinneth Formula, Theorem 6.2.1). Let A be a O-torsion (resp. tor-
sion) ring, and

@ q2
di=—Y—1>

f1l lf lfz
x, 2x -2,

a diagram of O-coprime Artin stacks (resp. of arbitrary Deligne—Mumford stacks) that
exhibits Y as the limit Yy X, X X, Y1, where f1 and fy are locally of finite type. Then
we have a natural isomorphism of functors:

flay = ®ygz—) =~ (p1fu—) ®x (p3fa—):
Dcart(ljl,lis—éta A) X Dcart(%2,lis—ét7 A) — Dcart(xlis—étu A)

It has the following two corollaries.

Corollary 0.1.2 (Base Change). Let A be a O-torsion (resp. a torsion) ring, and

w-—2-2

|

9—X
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a Cartesian diagram of O-coprime Artin stacks (resp. of arbitrary Deligne—Mumford
stacks) where p is locally of finite type. Then we have a natural isomorphism of func-
tors:

f* opr=q o 9*1 Dcart(z’lis—étu A) — Dcart(%lis—étv A)

Corollary 0.1.3 (Projection Formula). Let A be a O-torsion (resp. torsion) ring, and
f:Y — X a morphism locally of finite type of O-coprime Artin stacks (resp. of arbitrary
Deligne-Mumford stacks). Then we have a natural isomorphism of functors:

f!(_ ®‘j f*_) = (f'_) x —: Dcart(%lis—éta A) X Dcart(xlis—étu A) — Dcart(xlis—étu A)

Theorem 0.1.4 (Trace map and Poincaré duality, Theorem 6.2.9). Let A be a O-
torsion ring, and f:Y — X a flat morphism locally of finite presentation of Ll-coprime
Artin stacks. Then

(1) There is a functorial trace map
Tl"fl TZOfIAg <d> = Tzofl(f*Ax)<d> — Ax,

where d is an integer larger than or equal to the dimension of every geometric

fiber of f; Ax and Ay denote the constant sheaves placed in degree 0; and (d) =

[2d](d) is the composition of the shift by 2d and the d-th power of Tate’s twist.
(2) If f is moreover smooth, then the induced natural transformation

Uf: fio f*<d1mf> — idy

is a counit transformation, where idy is the identity functor of Deart(Xiis-et, A)-
In other words, we have a natural isomorphism of functors:

f* <d1m f> = f! : Dcart(xlis—étv A) — Dcart (‘Hlis—étu A)
Corollary 0.1.5 (Smooth Base Change, Corollary 6.2.10). Let A of a O-torsion ring,
and
w—2-2
q p
y Lo x
a Cartesian diagram of (J-coprime Artin stacks where p is smooth. Then the natural
transformation of functors

p*f* — g*q* Dcart(ylis—éta A) — Dcart(z'lis—éta A)
s a natural isomorphism.
Theorem 0.1.6 (Descent, Corollary 6.2.14). Let A be a ring, f:Y — X a morphism
of Artin stacks, and y: Y5 — Y a smooth surjective morphism. Let Y¥ be the Cech
nerve of y with the morphism y,: Y5 — Y, =Y. Put f, = foy,: Y — X.
(1) For every complezx K € D=°(Y, A), we have a convergent spectral sequence

EPY = HI(f,.y2K) = HPF LK.
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(2) If X is O-coprime; A is O-torsion; and f is locally of finite type, then for every
complez K € D=C(Y, A), we have a convergent spectral sequence

EP? = HY(f_py’ K) = B fiK

Remark 0.1.7. Note that even in the case of schemes, Theorem 0.1.6 (2) seems to be a
new result.

To state our results for constructible sheaves, we work over a [J-coprime base scheme
S that is either quasi-excellent finite-dimensional or regular of dimension < 1. We
consider only Artin stacks X that are locally of finite type over S. Let A be a Noetherian
[(-torsion ring. Recall that an (Xjs4, A)-module is constructible if it is Cartesian and
its pullback to every scheme, finite type over S, is constructible in the usual sense.
Let Deons(Xiiset, A) be the full subcategory of D(f)Chs ¢, \) spanned by complexes whose
cohomology sheaves are constructible. Let D(H) (Xyee, A) (resp. D) (Xjisst, A)) be the
full subcategory of Deons(Xiisst, A) spanned by complexes whose cohomology sheaves
are locally bounded from below (resp. from above). The six operations mentioned
previously restrict to the following refined ones as in §6.4 (see Propositions 6.4.4 and
6.4.5 for precise statements):

J* Deons(Liis-et, A) = Deons(Yris-et, M),
£+ Deons(Xiis-et: A) = Deons(Ynis-ee A),
— Qx —: Dcons(xhs ats A) X D((:ons(xhs aN) = D,
Homy: D) (Xiser, M) x D) (Xpiger, A) — D
If fis quasi-compact and quasi-separated, then we have
fo: DG (Yners A) = DL (X, A),
fri DS (riseae, A) = DS (Lrisear, A).

We will also show that when the base scheme, the coefficient ring, and the mor-
phism f are all in the range of [LLO08], our operations for constructible complexes are
compatible with those constructed by Laszlo and Olsson on the level of usual derived
categories. In particular, Corollary 0.1.2 implies that their operations satisfy Base
Change in derived categories, which was left open in [LOO0S].

In [LZb], we will develop an adic formalism and establish adic analogues of the above
results. Let A = (£, A) be a partially ordered diagram of coefficient rings, that is, =
is a partially ordered set and A is a functor from = to the category of commutative
rings (with units). A typical example is the projective system

= L T — - — T,
where ¢ is a fixed prime number and the transition maps are natural projections.
We define the adic derived category D(X, A), to be the “limit” of the diagram & —
Deart (Xiiset, A(€)) indexed by =P, where the limit is taken in certain oo-categorical

sense. We will show that D(X, \), is canonically equivalent to a full subcategory of
Dcart(xﬁs-éta A)'

xhs &t A)7
xhs &t A)

cons (

cons ( cons ( cons (
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0.2. Why oo-categories? The oo-categories in this article refer to the ones studied
by A. Joyal [Joy02, Joy| (where they are called quasi-categories), J. Lurie [HTT], et
al. Namely, an co-category is a simplicial set satisfying lifting properties of inner horn
inclusions [HTT, 1.1.2.4]. In particular, they are models for (oo, 1)-categories, that
is, higher categories whose n-morphisms are invertible for n > 2. For readers who
are not familiar with this language, we recommend [Gro| for a brief introduction of
Lurie’s theory [HTT], [HA], etc. There are also other models for (oo, 1)-categories
such as topological categories, simplicial categories, complete Segal spaces, Segal cat-
egories, model categories, and, in a looser sense, differential graded (DG) categories
and A.-categories. We address two questions in this section. First, why do we need
(00, 1)-categories instead of (usual) derived categories? Second, why do we choose this
particular model of (oo, 1)-categories?

To answer these questions, let us fix an Artin stack X and an atlas u: X — X,
that is, a smooth and surjective morphism with X an algebraic space. We de-
note by Mod(Xjiset, A) (resp. Mod(Xg, A)) the category of (Xjser, A)-modules (resp.
(Xgt, A)-modules) which is a Grothendieck Abelian category. Let po: X Xy X — X
(v = 1,2) be the two projections. We know that if .# € Mod (X4, A) is Cartesian,
then there is a natural isomorphism o: pju*%# = piu*F satisfying a cocycle condi-
tion. Conversely, an object ¥ € Mod(Xg;, A) such that there exists an isomorphism
o: piY = pi9 satisfying the same cocycle condition is isomorphic to u*# for some
F € Mod(Xjsst,A). This descent property can be described in the following for-
mal way. Let Modgat(Xiset, A) be the full subcategory of Mod(Xyiser, A) spanned by
Cartesian sheaves. Then it is the (2-)limit of the following diagram

pi
MOd(Xét, A) — MOd((X Xx X)ét, A) — MOd((X Xx X Xx X)ét, A)

p3

in the (2, 1)-category of Abelian categories?. Therefore, to study Modear (Xiser, A), we
only need to study Mod(Xg, A) for (all) algebraic spaces X in a “2-coherent way”, that
is, we need to track down all the information of natural isomorphisms (2-cells). Such
2-coherence is not more complicated than the one in Grothendieck’s theory of descent
[Gro95].

One may want to apply the same idea to derived categories. The problem is that the
descent property mentioned previously, in its naive sense, does not hold anymore, since
otherwise the classifying stack BG,, over an algebraically closed field will have finite
cohomological dimension which is incorrect. In fact, when forming derived categories,
we throw away too much information on the coherence of homotopy equivalences or
quasi-isomorphisms, which causes the failure of such descent. A descent theory in a
weaker sense, known as cohomological descent [SGA4, V bis] and due to Deligne, does
exist partially on the level of objects. It is one of the main techniques used in Ols-
son [Ols07] and Laszlo—Olsson [LOO08] for the definition of the six operations on Artin

2A (2,1)-category is a 2-category in which all 2-cells are invertible.
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stacks in certain cases. However, it has the following restrictions. First, Deligne’s coho-
mological descent is valid only for complexes bounded from below. Although a theory
of cohomological descent for unbounded complexes was developed in [LO08], it comes
at the price of imposing further finiteness conditions and restricting to constructible
complexes when defining the remaining operators. Second, relevant spectral sequences
suggest that cohomological descent cannot be used directly to define !-pushforward.

A more natural solution can be reached once the derived categories are “enhanced”.
Roughly speaking (see Proposition 5.3.5 for the precise statement), if we write X,, =
X Xy - xx X ((n+ 1)-fold), then Deare(Xyiser, A) is naturally equivalent to the limit
of following cosimplicial diagram

Py —_—
®(X0,ét> A) p:;i ®(X1,ét> A) 5 ®(X2,ét> A) E T
2

in a suitable oo-category of closed symmetric monoidal presentable stable co-categories.
This is completely parallel to the descent property for module categories. Here
Decart (Xiisets A) (resp. D(Xp e, A)) is a closed symmetric monoidal presentable stable
oo-category which serves as the enhancement of Deayt(Xiset, A) (resp. D(Xp e, A)).
Strictly speaking, the previous diagram is incomplete in the sense that we do not mark
all the higher cells in the diagram, that is, all natural equivalences of functors, “equiv-
alences between natural equivalences”, etc. In fact, there is an infinite hierarchy of
(homotopy) equivalences hidden behind the limit of the previous diagram, not just the
2-level hierarchy in the classical case. To deal with such kind of “homotopy coherence”
is the major difficulty of the work, that is, we need to find a way to encode all such
hierarchy simultaneously in order to make the idea of descent work. In other words,
we need to work in the totality of all co-categories of concern.

It is possible that such a descent theory (and other relevant higher-categorical
techniques introduced below) can be realized by using other models for higher cat-
egories. We have chosen the theory developed by Lurie in [HTT], [HA] for its elegance
and availability. Precisely, we will use the techniques of the (marked) straighten-
ing /unstraightening construction, Adjoint Functor Theorem, and the oco-categorical
Barr-Beck Theorem. Based on Lurie’s theory, we develop further co-categorical tech-
niques to treat the homotopy-coherence problem mentioned as above. These techniques
would enable us to, for example,

take partial adjoints along given directions (§1.4);

find a coherent way to decompose morphisms [L.Za, §4];

gluing data from Cartesian diagrams to general ones [L.Za, §5];
e make a coherent choice of descent data (§4.2).

In the next section, we will have a chance to explain some of them.

We would also like to remark that Lurie’s theory has already been used, for example,
in [BZFN10] to study quasi-coherent sheaves on certain (derived) stacks with many
applications. This work, which studies lisse-étale sheaves, is another manifestation of
the power of Lurie’s theory. Moreover, the co-categorical enhancement of six operations
and its adic version, which is studied in the subsequent article [LLZb], are necessary in
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certain applications of geometric/categorical method to the Langlands program, as
shown for example in the recent work of Bezrukavnikov, Kazhdan and Varshavsky
[BKV15].

During the preparation of this article, Gaitsgory [Gail3] and Gaitsgory—Rozenblyum
[GR] studied operations for ind-coherent sheaves on DG schemes and derived stacks in
the framework of co-categories. Our work bears some similarity to his. We would like
to point out that their approach uses (0o, 2)-categories (see [GR, Chapter V]), while
we stay in the world of (0o, 1)-categories.

0.3. What do we need to enhance? In the previous section, we mention the en-
hancement of a single derived category. It is a stable oco-category (which can be
thought of as an co-categorical version of a triangulated category) Do (Xiiset, A) (resp.
D(Xge, A) for X an algebraic space) whose homotopy category (which is an ordinary
category) is naturally equivalent to Deare(Xpser, A) (resp. D(Xg,A)). The enhance-
ment of operations is understood in the similar way. For example, the enhancement of
x-pullback for f: Y — X should be an exact functor

(01) f* . ‘Dcart(xlis—étv A) — ®cart (‘Hlis—étv A)
such that the induced functor
hf* . Dcart(xlis—éta A) — Dcart(%lis—étu A)

is the x-pullback functor of usual derived categories.

However, such enhancement is not enough for us to do descent. The reason is that we
need to put all schemes and then algebraic spaces together. Let us denote by Sch*P
the category of coproducts of quasi-compact and separated schemes. The enhancement
of x-pullback for schemes in the strong sense is a functor:

(0.2) saacs BO™ 1 N(8ch®sP)r — Pyl

where N denotes the nerve functor (see the definition preceding [HTT, 1.1.2.2]) and
Prl is certain oo-category of presentable stable oo-categories, which will be specified
later. Then (0.1) is just the image of the edge f: Y — X if f belongs to 8ch9*?”. The
construction of (0.2) (and its right adjoint which is the enhancement of *-pushforward)
is not hard, with the help of the general construction in [HA]. The difficulty arises in
the enhancement of !-pushforward. Namely, we need to construct a functor:

e = BO, - N(8ch1%5P) jp — Prlr,

where N(8ch*P) is the subcategory of N(8ch9“*”) only allowing morphisms that are
locally of finite type. The basic idea is similar to the classical approach: using Nagata
compactification theorem. The problem is the following: for a morphism f: Y — X
in 8ch¥*P  locally of finite type, we need to choose (non-canonically!) a relative
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compactification
Y — Y
't
X <1 X,

that is, 7 is an open immersion and f is proper, and define f, = py o f, o4 (in the
derived sense). It turns out that the resulting functor of usual derived categories is
independent of the choice, up to natural isomorphism. First, we need to upgrade such
natural isomorphisms to natural equivalences between oo-categories. Second and more
importantly, we need to “remember” such natural equivalences for all different com-
pactifications, and even “equivalences among natural equivalences”. We immediately
find ourselves in the same scenario of an infinity hierarchy of homotopy equivalences
again. For handling this kind of homotopy coherence, we use a technique called multi-
simplicial descent in [L.Za, §4], which can be viewed as an co-categorical generalization
of [SGA4, XVII 3.3].

This is not the end of the story since our goal is to prove all expected relations
among six operations. To use the same idea of descent, we need to “enhance” not just
operations, but also relations as well. To simplify the discussion, let us temporarily
ignore the two binary operations (® and Hom) and consider how to enhance the “Base
Change theorem” which essentially involves x-pullback and !-pushforward. We define
a simplicial set 65 15, N(8ch*®)g% in the following way:

e The vertices are objects X of Sch“*?P.
e The edges are Cartesian diagrams

(0.3) Xo1 —— Xoo
f
Xll > XlO

with p locally of finite type, whose source is Xgg and target is Xi;.
e Simplices of higher dimensions are defined in a similar way.

Note that this is not an oo-category. Assuming that A is torsion, the enhancement of
the Base Change theorem (for 8ch*®?) is a functor

A %, ok qc.sep\cart L

such that it sends the edge

Xoo i—d> Xoo (resp. X1 — Xoo )
l l idl lid
i f
Xll —d>X11 Xll —>'X00

to pi: D(Xooet, A) = D(Xiy1et, A) (resp. f*r D(Xige0, A) = D(Xooet, A)). The upshot
is that the image of the edge (0.3) is a functor D(Xiy e, A) — D(Xgoet, A) which
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is naturally equivalent to both f* o p, and ¢ o ¢g*. In other words, this functor has
already encoded the Base Change theorem (for 8ch9*?) in a homotopy coherent way.
This allows us to apply the descent method to construct the enhancement of the Base
Change theorem for Artin stacks, which itself includes the enhancement of the four
operations f*, f., fi and f' by restriction and adjunction. To deal with the homotopy
coherence involved in the construction of g acs»EO}, we use another technique called
Cartesian gluing in [LZa, §5], which can be viewed as an oco-categorical variant of
[Zhel7, §6, §7].

In fact, we can even modify the map gqec0 EO; such that its source is an co-category
as well. We use the idea of monoidal category of correspondence. Let us continue the
current setup, and define a new category® (Sch*®)% . . as follows. An object of it
is a sequence {X;}1<;<; for { > 0 (which is the empty sequence if [ = 0). A morphism
{Xihi<i<i = {Y;}1<j<m consists of the following data:

e amap a: {1,.... [} U{x} — {1,...,m} U {x} preserving x,
e a morphism Y] — X; for every 1 < j < m and every i with a(i) = j,
e a morphism Y/ — Y locally of finite type for every 1 < j < m.

Given another morphism {Y}}1<j<m — {Zi }1<k<n consisting of similar data (8, Z;, —
Y;, Z; — Zy), its composition with the previous one is given by the data (5o «, Z}] —
X, Z} — Zy) where Z} is the fiber product as in the following square

Zy — o=+ Y]

_—

Zy — ag)=x Y5-

The category (8ch*®)Z . p. has a canonical symmetric monoidal structure given by
coproducts.

Theorem 0.3.1 (see §6.1 for the precise statement). We construct a “lax monoidal”
functor

Schqc.se/p\EO . 1\]'((SCth'Sep)® ) — eat;o

corr * corr: Flall

between oo-categories that encodes the four operations and Kinneth Formula (hence
Base Change and Projection Formula). Here, Cat’, is the (canonical) Cartesian sym-
metric monoidal co-category of Caty, [HA, 2.4.1].

We hope the discussion so far explains the meaning of enhancement to some degree.
The actual enhancement (3.8) constructed in the article is more complicated than the
ones mentioned previously, since we need to include also the information of binary
operations, the projection formula and extension of scalars.

3Strictly speaking, it is a (2, 1)-category.
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0.4. Structure of the article. The main body of the article is divided into seven
chapters.

Chapter 1 is a collection of preliminaries on oo-categories, including the technique
of partial adjoints (§1.4).

Chapter 2 is the starting point of the theory, where we construct enhanced operations
for ringed topoi. The first two chapters do not involve algebraic geometry.

In Chapter 3, we construct the enhanced operation map for schemes in the category
8ch*P  The enhanced operation map encodes even more information than the en-
hancement of the Base Change theorem we mentioned in §0.3. We also prove several
properties of the map that are crucial for later constructions.

In Chapter 4, we develop an abstract program which we name DESCENT. The
program allows us to extend the existing theory to a larger category. It will be run
recursively from schemes to algebraic spaces, then to Artin stacks, and eventually to
higher Artin or Deligne-Mumford stacks.

The detailed running process is described in Chapter 5. There, we also prove certain
compatibility between our theory and existing ones.

In Chapter 6, we write down the resulting six operations for the most general sit-
uations and summarize their properties. We also develop a theory of constructible
complexes, based on finiteness results of Deligne [SGA4d, Th. finitude] and Gabber
[TGxiii]. Finally, we show that our theory is compatible with the work of Laszlo and
Olsson [LOO0S].

For more detailed descriptions of the individual chapters, we refer to the beginning
of these chapters.

We assume that the reader has some knowledge of Lurie’s theory of oo-categories,
especially Chapters 1 through 5 of [HTT], and Chapters 1 through 4 of [HA]. In par-
ticular, we assume that the reader is familiar with basic concepts of simplicial sets
[HTT, A.2.7]. However, an effort has been made to provide precise references for no-
tation, concepts, constructions, and results used in this article, (at least) at their first
appearance.

0.5. Conventions and notation.
e All rings are assumed to be commutative with unity.
For set-theoretical issues:

e We fix two (Grothendieck) universes U and V such that U belongs to V. The
adjective small means U-small. In particular, Grothendieck Abelian categories
and presentable co-categories are relative to U. A topos means a U-topos.

e All rings are assumed to be U-small. We denote by Ring the category of rings
in U. By the usual abuse of language, we call Ring the category of U-small
rings.

e All schemes are assumed to be U-small. We denote by Sch the category of
schemes belonging to U and by Sch®™® the full subcategory consisting of affine
schemes belonging to U. We have an equivalence of categories Spec: (Ring)® —
Sch*®. The big fppf site on SchT is not a U-site, so that we need to consider
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prestacks with values in V. More precisely, for W = U or V, let 8y [HTT,
1.2.16.1] be the oo-category of spaces in W. We define the oo-category of
prestacks to be Fun(N(8ch®®)?, 8y) [HTT, 1.2.7.2]. However, a (higher) Artin
stack is assumed to be contained in the essential image of the full subcategory
Fun(N(8ch®)°?, 8y(). See §5.4 for more details.

The (small) étale site of an algebraic scheme and the lisse-étale site of an
Artin stack are U-sites.

e For every V-small set I, we denote by Set;a the category of I-simplicial sets in
V. See also variants in §1.3. We denote by Caty, the (non V-small) co-category
of co-categories in V [HTT, 3.0.0.1]* (Multi)simplicial sets and oo-categories
are usually tacitly assumed to be V-small.

For lower categories:

e Unless otherwise specified, a category will be understood as an ordinary cat-
egory. A (2,1)-category C is a (strict) 2-category in which all 2-cells are in-
vertible, or, equivalently, a category enriched in the category of groupoids. We
regard C as a simplicial category by taking N(Mape(X,Y)) for all objects X
and Y of C.

e Let C, D be two categories. We denote by Fun(C, D) the category of functors
from € to D, whose objects are functors and morphisms are natural transfor-
mations.

e Let A be an additive category. We denote by Ch(A) the category of cochain
complexes of A.

e Recall that a partially ordered set P is an (ordinary) category such that there is
at most one arrow (usual denoted as <) between each pair of objects. For every
element p € P, we identify the overcategory P, (resp. undercategory P,/) with
the full partially ordered subset of P consisting of elements < p (resp. > p). For
p,p’ € P, we identify P,/ with the full partially ordered subset of P consisting
of elements both > p and < p/, which is empty unless p < p'.

e Let [n] be the ordered set {0,...,n} for n > 0, and put [—1] = 0. Let us
recall the category of combinatorial simplices A (resp. AS", A, AE") Its
objects are the linearly ordered sets [i] for @ > 0 (resp. 0 < i < n, i > —1,
—1 < 4 < n) and its morphisms are given by (nonstrictly) order-preserving
maps. In particular, for every n > 0 and 0 < k < n, we have the face map
d: [n— 1] — [n] that is the unique injective map with & not in the image; and
the degeneration map sj: [n + 1] — [n] that is the unique surjective map such
that sp(k + 1) = sp(k).

For higher categories:

e As we have mentioned, the word co-category refers to the one defined in [HTT,
1.1.2.4]. Throughout the article, an effort has been made to keep our notation
consistent with those in [HTT] and [HA].

n [HTT], Caty, denotes the category of small oco-categories. Thus our Cats, corresponds more
closely to the notation Cats, in [HTT, 3.0.0.5], where the extension of universes is tacit.
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e For C a category, a (2, 1)-category, a simplicial category, or an oo-category, we
denote by ide the identity functor of €. We denote by N(C) the (simplicial)
nerve of a (simplicial) category € [HTT, 1.1.5.5]. We identify Ar(C) (the set of
arrows of €) with N(C); (the set of edges of N(€)) if C is a category. Usually,
we will not distinguish between N(C°) and N(C)? for € a category, a (2, 1)-
category or a simplicial category.

e We denote the homotopy category [HTT, 1.1.3.2, 1.2.3.1] of an oco-category C
by h€ and we view it as an ordinary category. In other words, we ignore the
H-enrichment of hC.

e Let C be an co-category, and ¢*: N(A) — € (resp. ¢o: N(A)? — €) a cosimpli-
cial (resp. simplicial) object of €. Then the limit [HTT, 1.2.13.4] I'Lm(c') (resp.
colimit or geometric realization lig(c.)), if it exists, is denoted by lim _ . ¢"
(resp. @ne Aop ¢n). It is viewed as an object (up to equivalences parameterized
by a contractible Kan complex) of C.

e Let C be an (oo-)category, and €' C € a full subcategory. We say that a
morphism f: y — x in C is representable in C' if for every Cartesian diagram

[HTT, 4.4.2]
w——>z
|,
y——u

such that z is an object of €', w is equivalent to an object of €.

e We refer the reader to the beginning of [HTT, 2.3.3] for the terminology homo-
topic relative to A over S. We say that f and f’ are homotopic over S (resp.
homotopic relative to A) if A =0 (resp. S = *).

e Recall that Caty, is the co-category of V-small co-categories. In [HTT, 5.5.3.1],
the subcategories Pr, Pr® C Qat, are defined®. We define subcategories
Prl PrR C Caty, as follows:

— The objects of both Prl and PrR are the U-presentable stable co-categories
in V [HTT, 5.5.0.1], [HA, 1.1.1.9].

— A functor F': € — D of presentable stable co-categories is a morphism of
Prl if and only if F preserves small colimits, or, equivalently, F is a left
adjoint functor [HTT, 5.2.2.1, 5.5.2.9 (1)].

— A functor G: € — D of presentable stable co-categories is a morphism of
PrR if and only if G is accessible and preserves small limits, or, equivalently,
G is a right adjoint functor [HTT, 5.5.2.9(2)].

We adopt the notation of [HTT, 5.2.6.1]: for oo-categories € and D, we
denote by Fun™(C,D) (resp. Fun®(€, D)) the full subcategory of Fun(C,D)
[HTT, 1.2.7.2] spanned by left (resp. right) adjoint functors. Small limits exist

SUnder our convention, the objects of Pr" and PrR are the U-presentable co-categories in V.
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in Caty,, Prl, PrR Prl and Prl. Such limits are preserved by the natural inclu-
sions Prly C Prl C Caty, and Prl C PrR C Cat,, by [HTT, 5.5.3.13, 5.5.3.18]
and [HA, 1.1.4.4].

e For a simplicial model category A, we denote by A° the subcategory spanned
by fibrant-cofibrant objects.

e For the simplicial model category SetX of marked simplicial sets in V [HTT,
3.1.0.2] with respect to the Cartesian model structure [HTT, 3.1.3.7, 3.1.4.4],
we fix a fibrant replacement simplicial functor

Fibr: Setf — (Set})°

via the Small Object Argument [HTT, A.1.2.5, A.1.2.6]. By construction, it
commutes with finite products. If C is a V-small simplicial category [HTT,
1.1.4.1], we let Fibr®: (8et{)® — ((S8etf)°)® C (8et£)® be the induced fibrant

replacement simplicial functor with respect to the projective model structure
[HTT, A.3.3.1].
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1. PRELIMINARIES ON 00-CATEGORIES

This chapter is a collection of preliminaries on oo-categories. In §1.1, we record
some basic lemmas. In §1.2, we recall a key lemma and its variant established in [L.Za],
which will be subsequently used in this article. In §1.3, we recall the definitions of
multisimplicial sets and multi-marked simplicial sets from [LZa]. In §1.4, we develop
a method of taking partial adjoints, namely, taking adjoint functors along given direc-
tions. This will be used to construct the initial enhanced operation map for schemes.
In §1.5, we collect some general facts and constructions related to symmetric monoidal
oo-categories.

1.1. Elementary lemmas. Let us start with the following lemma, which appears as
[Lur, 2.4.6]. We include a proof for the convenience of the reader.

Lemma 1.1.1. Let € be a nonempty oo-category that admits product of two objects.
Then the geometric realization |C| is contractible.

Proof. Fix an object X of € and a functor € — € sending Y to X x Y. The projections
X xY — X and X x Y — Y define functors h, h’: A' x € — € such that

o h| Al xe=hn|Al x ¢
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o h| All} x @ is the constant functor of value X

o | A{l} x @ = lde
Then |h| and |A'| provide a homotopy between idjej and the constant map of value
X. U

The following is a variant of the Adjoint Functor Theorem [HTT, 5.5.2.9].

Lemma 1.1.2. Let F: € — D be a functor between presentable co-categories. Let
hF': h€ — hD be the functor of (unenriched) homotopy categories.

(1) The functor F' has a right adjoint if and only if it preserves pushouts and hF
has a right adjoint.

(2) The functor F' has a left adjoint if and only if it is accessible and preserves
pullbacks and hF has a left adjoint.

Proof. The necessity follows from [HTT, 5.2.2.9]. The sufficiency in (1) follows from the
fact that small colimits can be constructed out of pushouts and small coproducts [HT'T,
4.4.2.7] and preservation of small coproducts can be tested on hF'. The sufficiency in
(2) follows from dual statements. O

We will apply the above lemma in the following form.

Lemma 1.1.3. Let F': C — D be a functor between presentable stable co-categories.
Let hF': h€ — hD be the functor of (unenriched) homotopy categories. Then

(1) The functor F' admits a right adjoint if and only if hF' is a triangulated functor
and admits a right adjoint.

(2) The functor F' admits a left adjoint if F' admits a right adjoint and hF admits
a left adjoint.

Proof. By [HA, 1.2.4.14], a functor G between stable co-categories is exact if and only
if hG is triangulated. The lemma then follows from Lemma 1.1.2 and [HA, 1.1.4.1]. O

Lemma 1.1.4. Let F: A — B be a left exact functor between Grothendieck Abelian
categories that commutes with small coproducts. Assume that F' has finite cohomological
dimension. Then the right derived functor RF: D(A) — D(B) admits a right adjoint.

Proof. By the previous lemma, it suffices to show that h(RF') commutes with small
coproducts. This is standard. See [KS06, Proposition 14.3.4 (ii)]. O

1.2. Constructing functors via the category of simplices. In this section we
recall the technique in [LZa, §2] for constructing functors to co-categories. It is crucial
for many constructions in both articles.

We start with some generalities on diagrams of simplicial sets. Let J be a (small)
ordinary category. We consider the injective model structure on the functor category
(Seta)’ := Fun(J,Seta). We say that a morphism i: N — M in (Seta)’ is anodyne
if i(c): N(o) — M(0o) is anodyne for every object o of 3. We say that a morphism
R — R in (Seta)’ is an injective fibration if it has the right lifting property with
respect to every anodyne morphism N — M in (Seta)’. We say that an object R
of (8eta)’ is injectively fibrant if the morphism from R to the final object A is an
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injective fibration. The right adjoint of the diagonal functor Setx — (Seta)’ is the
global section functor

I': (SetA)j — SetA

defined by the formula I'(N), = Hom s, 17 (Af, N), where Af: J — Seta is the constant
functor of value A9.

Notation 1.2.1. Let ®: N — R be a morphism of (Seta)’. We let T's(R) C T'(R)
denote the simplicial subset, union of the images of I'(¥): I'(M) — T'(R) for all fac-
torizations '

NS M5 R
of ® such that ¢ is anodyne.

Let K be a simplicial set. The category of simplices of K, which we denote by
A/ following [HTT, Notation 6.1.2.5], plays a key role in our construction technique.
Recall that A/ is the strict fiber product A Xge, (Seta)/x. An object of Ak is
a pair (n,o), where n > 0 is some integer and ¢ € Homge, (A", K). A morphism
(n,o) — (n',0') is a map d: A" — A™ such that ¢ = ¢’ o d. In what follows, we
sometimes simply write o for an object of Ak if n is insensitive. Moreover, when
J = (A/k)?, we simply write A% for Af.

Notation 1.2.2. We define a functor Map[K, —]: Set{ — (Seta)@/x)” as follows.
For a marked simplicial set M, we define Map[K, M] by

Mapl[K, M](n, o) = Map?((A")’, M),

for every object (n,0) of A/x. A morphism d: (n,0) — (n',0’) in Ak goes to
the natural restriction map Res?: Map®((A™)", M) — Map*((A™)’, M). For an oo-
category €, we set Map[K, €] = Map[K, 7.

By [L.Za, Remark 2.7], the map
Map (K, M) — T'(Map|[K, M])

induced by the restriction maps Map?(K?, M) — Map*((A")?, M) is an isomorphism
of simplicial sets.

If g: K — K is a map, then composition with the functor A g — A g induced
by ¢ defines a functor g*: (Seta)A/x)” — (Setp)@/x)™  We have g* Map[K, M| =
Map|K', M].

Lemma 1.2.3. Let f: Z — T be a fibration in Set} with respect to the Cartesian
model structure, K a simplicial set, a: K* — T a map, and N € (Seta)A/<)” such
that N(o) is weakly contractible for all o € Ax. We let Map[K, f|, denote the fiber of
Map|K, f]: Map|K, Z] — Map[K,T] at the section A% — Map[K,T] corresponding
to a.
(1) For every morphism ®: N — Map|K, fl,, the simplicial set I'¢(Map|K, f],) is
a (nonempty) connected component of I'(Map| K, f]a).



18 YIFENG LIU AND WEIZHE ZHENG

(2) For homotopic ®,®": N — Map[K, f|., we have
I'y(MaplK, f]a) = l's(Map[K, fla).

The condition in (2) means that there exists a morphism H: AL x N — Map[K, f],
in (Seta)@/©)7 such that H | Al x N =, H | Al x N = ¢,

Proof. This is [LZa, Lemma 2.4] applied to R = Map[K, f],. The latter is injectively
fibrant by [LZa, Proposition 2.8]. O

Lemma 1.2.4 ([L.Za, Proposition 2.14]). Let K be a simplicial set, C an co-category,
and i: A — B a monomorphism of simplicial sets. Denote by f: Fun(B,C) —
Fun(A, @) the map induced by i. Let N be an object of (Seta)@/x)” such that N(o)
is weakly contractible for all o0 € A )i, and ®: N — Map[K, Fun(B, C)] a morphism
such that Map[K, f] o ®: N — Map[K, Fun(A, C)] factorizes through A(()A/K)op to give

a functor a: K — Fun(A,C). Then there exists b: K — Fun(B, C) such thatbop = a
and for every map g: K' — K and every global section v € T'(¢g*N)q, the maps bo g
and g*® ov: K' — Fun(B, C) are homotopic over Fun(A, C). Here, g*® denotes the
induced map g*N — ¢g* Map[K, Fun(B, €)] = Map[K’, Fun(B, C)].

1.3. Multisimplicial sets. We recall the definitions of multisimplicial sets and multi-
marked simplicial sets from [L.Za, §3].

Definition 1.3.1 (Multisimplicial set). Let I be a V-small set. We define the category
of I-simplicial sets to be Seta := Fun((A!)%, 8et), where A! := Fun(I, A). For an
integer k > 0, we define the category of k-simplicial sets to be Setia := Set;a, where
I={1,...,k}. We identify Set;n with Seta.

We denote by A€/ the I-simplicial set represented by the object ([n,])ie;r of Al
For an I-simplicial set S, we denote by S, cr the value of S at the object ([n;])ier
of AL An (n;);er-cell of an I-simplicial set S is an element of S,,;c;. By Yoneda’s
lemma, there is a canonical bijection between the set S, ,c; and the set of maps from
AMlEl 6 S

For J C I, composition with the partial opposite functor A’ — Al sending
(«..n Py, Pyyooo) to (oo, Py PP, L) (taking op for Py when j € J) defines
a functor op’: Set;a — Setja. We put A% = opl Amli€l - Although A% is iso-
morphic to A™I*€! the notational distinction will be useful in specifying the variance of

many constructions. When J = (), opj is the identity functor so that Ag”ie[ = Amiliel

Definition 1.3.2. Let I, J be two V-small sets.

(1) Let f: J — I be amap of sets. Composition with f defines a functor A/: AT —
A’. Composition with (A/)?? induces a functor (Af)*: Set;a — Set;a, which
has a right adjoint (A7),: Set;a — Setya. We will now look at two special
cases.

(2) Let f: J — I be an injective map. The functor A/ has a right adjoint ¢;: A7 —
Al given by ¢;(F); = F}; if f(j) =4 and ¢;(F); = [0] if 4 is not in the image of f.
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The functor (A/), can be identified with the functor €/ induced by composition
with (cp). If J = {1,..., K}, we write e} 5 for €.

(3) Consider the map f: I — {1}. Then §; := A/: A — Al is the diagonal map,
and composition with (8;)° induces the diagonal functor 05 = (A7)*: Set;n —
Seta. We define

A["z}zel = 6*Am\z€] HAnZ
iel
We define the multisimplicial nerve functor to be the right adjoint 67: Seta —
Setra of 8%, An (n;)ser-cell of 61X is given by a map Alilier — X
(4) For J C I, we define the twisted diagonal functor & ; as 6joop’: Set;a — Seta.

We define
A[m il . 5* An1|zel §EA nz\zel ( H A”l) (H(Anj)OP) _
iel—J jed
When J = ), we have 07 5 = 07 and A([Z,"”ief — Alnilier
When I = {1, ..., k}, we write k instead of I in the previous notation. For example,

in (2) we have (¢ kK ) =Ko, .n.. 0, where n is at the j-th position and all other indices
are 0. In (3) we have oF: Setm — 8eta defined by (5;X)n, = Xo n-

Definition 1.3.3 (Exterior product). Let I = [[;c;I; be a partition. We define a
functor
&jeji H SethA — Setm
jeJ
by the formula K¢ ;57 = [[;c;(A%)*S7, where ¢;: I; < I is the inclusion. For J =
{1,....m}, I; ={1,...,k;}, we define

R R =t Setya X - X Sety, A — Setya.

We have the isomorphisms My A™ ~ AP and 6 Rje; §7 ~ [1je, 07,57,

Remark 1.3.4. For a map f: J — I, we have (Af)*Amili€l ~ R AlMlier—16) 5o that
an (n;);es-cell of (A), X is given by a map R AMlier—o — X

Definition 1.3.5 (Multi-marked simplicial set). An [-marked simplicial set (resp. I-
marked co-category) is the data (X, € = {&;}icr), where X is a simplicial set (resp. an
oo-category) and, for all i € I, &; is a set of edges of X that contains every degenerate
edge. A morphism f: (X,{&;}ier) = (X', {&}}ier) of [-marked simplicial sets is a map
f: X — X’ having the property that f(&;) C &! for all i € I. We denote the category
of I-marked simplicial sets by Seth". It is the strict fiber product of I copies of Set}
over Seta.

Definition 1.3.6 (Cartesian nerve). For an I-marked co-category (C, £), we denote by
Cgrt C §1@ the Cartesian I-simplicial nerve of (€, &) [LZa, Definition 3.16]. Roughly
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speaking, its (n;);e-simplices are functors Alilier — @ such that the image of a mor-
phism in the i-th direction belongs to &; for ¢ € I, and the image of every “unit
square” is a Cartesian diagram. For a marked oo-category (C,¢&), we write C¢ for
et ~ Map?((A2)°, (€, &)).

1.4. Partial adjoints. We first recall the notion of adjoints of squares.

Definition 1.4.1. Consider diagrams of co-categories

c<D c—%-D
b4
e F ! e G’ D

that commute up to specified equivalences a: F"oV — UoF and 8: VoG — G'oU.
We say that o is a left adjoint to 7 and 7 is a right adjoint to o, if F' is a left adjoint
of G, F" is a left adjoint of G, and « is equivalent to the composite transformation

FloV—osFoVoGoF Y FloGolUoF —-UoF.

Remark 1.4.2. The diagram 7 has a left adjoint if and only if 7 is left adjointable in
the sense of [HTT, 7.3.1.2] and [HA, 4.7.5.13]. If G and G’ are equivalences, then 7 is
left adjointable. We have analogous notions for ordinary categories. A square 7 of oco-
categories is left adjointable if and only if G and G” admit left adjoints and the square
h7 of homotopy categories is left adjointable. When visualizing a square A! x Al — €,
we adopt the convention that the first factor of A! x A! is vertical and the second
factor is horizontal.

Lemma 1.4.3. Consider a diagram of right Quillen functors
A—-B
o
A S B
of model categories, that commutes up to a natural equivalence 3: VoG — G'oU and is

endowed with Quillen equivalences (F,G) and (F',G"). Assume that U preserves weak
equivalences and all objects of B’ are cofibrant. Let v be the composite transformation

FloV—oFoVoGoF Y FloGolUoF —UoF.

Then for every fibrant-cofibrant object Y of B, the morphism a(Y): (F' o V)(Y) —
(U o F)(Y) is a weak equivalence.

Proof. The square R
hA 9 1B

o |

hA’ 9 WB
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of homotopy categories is left adjointable. Let o: LEF" o RV — RU o LF be its left
adjoint. For fibrant-cofibrant Y, a(Y’) computes o(Y). O

We apply Lemma 1.4.3 to the straightening functor [HTT, 3.2.1]. Let p: S’ — S be
a map of simplicial sets, and 7: €’ — € a functor of simplicial categories fitting into a
diagram

Q:[Sl] L Glop

¢[p] l lﬂ"”

¢[S] —2 e
which is commutative up to a simplicial natural equivalence. By [HTT, 3.2.1.4], we
have a diagram

) +

7_‘_* l lp*
Un™

(Set})® — (Set}) s,

which satisfies the assumptions of Lemma 1.4.3 if ¢ and ¢’ are equivalences of simplicial
categories. In this case, for every fibrant object f: X — S of (8et}) /s, endowed with
the Cartesian model structure, the morphism

(St} op*)X — (7% 0 St])X

is a pointwise Cartesian equivalence.
Similarly, if g: € — D is a functor of (V-small) categories, then [HTT, 3.2.5.14]
provides a diagram

N (D)
(SetZ)D — (SetZ)/N(D)

g*l lN(g)*
N (@)
(Setz)e — (Setz)/N(G)
satisfying the assumptions of Lemma 1.4.3. Thus for every fibrant object Y of
(8etX) /Ny, endowed with the coCartesian model structure, the morphism

5§(g)*y(e) — ¢"§v(D)
is a pointwise coCartesian equivalence.

Proposition 1.4.4 (partial adjoint). Consider quadruples (I,J, R, f) where I is a
set, J C I, R is an I-simplicial set and f: 0jR — Caty is a functor, satisfying the
following conditions:
(1) For every j € J and every edge e of 6§R, the functor f(e) has a left adjoint.
(2) For every i € J° := I\J, every j € J and every 7 € (¢ jR)11, the square
f(7): Al x Al — Caty, is left adjointable.
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There exists a way to associate, to every such quadruple, a functor f;: 07 ;R — Cate,
satisfying the following conclusions:
(1) fr]0%(A") R = f|0%5(A").R, where v: J¢ — I is the inclusion.
(2) For every j € J and every edge e of EJI-R, the functor f;(e) is a left adjoint of
fle).
(3) For everyi € J¢, every j € J and every T € (] jR)1,1, the square f;(7) is a left
adjoint of f(1).
(4) For two quadruples (I,J,R,f), (I')J',R,f") and maps p: I' — 1,
u: (AR — R such that J = p='(J) and f' = f o dju, the functor
[l is equivalent to f o 67 ju.

Note that in Conclusion (1), 6% (A").R is naturally a simplicial subset of both 6} R
and 07 ;. When visualizing (1, 1)-simplices of ei{jR, we adopt the convention that
direction i is vertical and direction j is horizontal. If J¢ is nonempty, then Condition
(2) implies Condition (1), and Conclusion (3) implies Conclusion (2).

Proof. Recall that we have fixed a fibrant replacement functor Fibr: Set} — Set}.

Let o € (47 ;R), be an object of A/(;?JR, corresponding to A?'ie} — R, where
n; = n. It induces a functor f(o): N(D) ~ A!;”LEI — Cato,, where D is the partially
ordered set S x T with S = [n]/* and T' = [n]’. This corresponds to a projectively
fibrant simplicial functor F: €[N(D)] — SetX. Let ¢p: €[N(D)] — D be the canonical
equivalence of simplicial categories and put F’ = (Fibr” oSt(';%,oUnf\?( pyer)F: D — Set .
We have weak equivalences

F+ (Stg(D)op o Unf\?(D)op)ff — (¢p o dpro Stg(D)op o Unﬁ(D)op)?
~ (¢}, 0 St;fon o Unypyon)F = ¢p(F).

Thus, for every 7 € (¢ ;N(D))1,1, the square F(7) is equivalent to f(7), both taking
values in Cat.
Let ” be the composition

o Unt
S = (Set k)™ —25 (Seth) ner,s

where the first functor is induced by . For every s € S, the value F(s): X(s) — N(T)
is a fibrant object of (Set}) n¢r) with respect to the Cartesian model structure. In
other words, there exists a Cartesian fibration p(s): Y(s) — N(7') and an isomorphism
X (s) = Y(s)%. By Condition (1), for every morphism ¢t — ¢’ of T, the induced functor
Y (s)y — Y (s); has a left adjoint. By [HTT, 5.2.2.5], p(s) is also a coCartesian fibration.
We consider the object (p(s), E(s)) of (SetX) n(r), where E(s) is the set of p-coCartesian
edges of Y(s). By Condition (2), this construction is functorial in s, giving rise to a
functor §': S — (SetX) /n(r)-
The composition

/ + .
S %5 (Set)ner) =% (Setf)” T (Set)”
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induces a projectively fibrant diagram
G: S xT — Set}.
We denote by G, : [n] — Set the composition
[n] = S x T — Set},

where the first functor is the diagonal functor. The construction of G, is not functorial
in o because the straightening functors do not commute with pullbacks, even up to
natural equivalences. Nevertheless, for every morphism d: o — & in A+ g, we have

a canonical morphism G, — d*G; in (Setz)[”], which is a weak equivalence by Lemma
1.4.3. The functor
(A/(S;JR)J/ — (SetZ)["}

sending d: ¢ — & to d*Gs induces a map
N(o) = N((Ays; ,r)oy) = Map*((A"), (Catoc)"),
which we denote by ®(c). Since the category (A/s: r)o, has an initial object, the

simplicial set N(o) is weakly contractible. This construction is functorial in ¢ so that
A g
®: N — Map|d7 R, Caty] is a morphism of (SetA)( /57,47

. Applying Lemma 1.2.3
(1), we obtain a functor f;: 07 ;R — Cats, satisfying Conclusions (2) and (3) up to
homotopy.

Under the situation of Conclusion (4), 67 ju: 67 R — 07 ;R induces ¢: N' —
(67,yu)*N. By construction, there exists a homotopy between ®" and ((7 ju)*®) o ¢.
By Lemma 1.2.3 (2), this implies that f’, and fyo o7, yu are homotopic.

By construction, there exists a homotopy between r*® and the composite map 7*N —
A% J1e, Map|@, Cato.], where @ :E*C(AL)*R and 7: Q — 67 ;R is the inclusion. By
Lemma 1.2.3 (2), this implies that f; | @ and f | @ are homotopic. Since the inclusion

QF x (AN T (67,R)F x (AN — (57 jR)F x (A
QFx (AL0})!

is marked anodyne, there exists f;: o7 ;R — Cato, homotopic to E such that f; | Q =
f1eQ. O

Remark 1.4.5. We have the following remarks concerning Proposition 1.4.4.

(1) There is an obvious dual version of Proposition 1.4.4 for right adjoints.
(2) Proposition 1.4.4 holds without the (implicit) convention that R is V-small.

To see this, it suffices to apply the proposition to the composite map ;R ER
Catey — Gatl/vo, where W O V is a universe containing R and Gatzvo is the
oo-category of oo-categories in 'W.

(3) Consider the 2-tiled co-category (Cats,, T) where T = (Caty )1, To consists of
all functors that admit a left adjoint, and T75 consists of all squares that are

left adjointable. Let
¢: 627 (Catey, T) = 0502, Cato, — Cato
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be the natural functor induced by the counit map. Applying Proposition 1.4.4
(and Remark 1.4.5 (2)) to the quadruple ({1, 2}, {2}, 0?7 (Cateo, T), @), we get a
functor
G2y 0y (202 (Catos, T) — Catog.

This functor is universal in the sense that for any quadruple (I, J, R, f) satisfy-
ing the conditions in Proposition 1.4.4, if we denote by pu: I — {1,2} the map
given by p~(2) = J, then f: §5(A*)*R — Caty, uniquely determines a map
u: (A*)*R — 65.Caty by adjunction which factorizes through 622(Cat, T)
and f; can be taken to be the composite functor

ox u
57 R = 0 1y (A")" R 220, 53 620 (Cata, T) 22 Cat.

(4) For the quadruple ({1}, {1}, Pr®, ¢) where ¢: Pr® — Caty, is the natural in-
clusion, the functor ¢y, constructed in Proposition 1.4.4 induces an equiv-
alence ¢p,: (Pr?*)? — Prl. This gives another proof of the second asser-
tion of [HTT, 5.5.3.4]. By restriction, this equivalence induces an equivalence
Gpry, : Pri — (PrR)or of co-categories.

(5) For the quadruple ({1,2}, {1}, S X Fun“*¢(S%, Cat.,), f) where

f: 8% x Fun"*(S Cat,,) — Caty,
is the evaluation map, the functor
fay: S x Fun"*(S%, Cat,) — Cate,

constructed in Proposition 1.4.4 induces an equivalence Fun™*4(S°, Cat.,) —
Fun®*4(S Cat.,). This gives an alternative proof of [HA, 4.7.5.18 (3)].

1.5. Symmetric monoidal co-categories. Let Fin, be the category of pointed finite
sets defined in [HA, 2.0.0.2]. It is (equivalent to) the category whose objects are sets
(n) = (n)° U {x}, where (n)° = {1,...,n} ((0)° = 0) for n > 0, and morphisms are
maps of sets that map * to .

Let € be an oo-category that admits finite products. By [HA, 2.4.1.5], we have a
symmetric monoidal co-category [HA, 2.0.0.7] €* — N(Fin, ), known as the Cartesian
symmetric monoidal co-category associated to €. We put CAlg(C) = CAlg(C*) [HA,
2.1.3.1] as the oco-category of commutative algebra objects in €. We have the functor

(1.1) G: CAlg(C) —» ¢

by evaluating at (1).

Remark 1.5.1. In the above construction, if we put € = Cat,,, then CAlg(Cat,,) is
canonically equivalent to CatZ, the oo-category of symmetric monoidal co-categories

[HA, 2.1.4.13]. The functor G restricts to a functor CAlg(Cats,) — Catys sending €
to its underlying oo-category C.

Recall that a symmetric monoidal oco-category C® is closed [HA, 4.1.1.17] if the
functor — ® —: € x € — C, written as € — Fun(€, €), factorizes through Funl(€, €).
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Definition 1.5.2. We define a subcategory CAlg(Catoo )}, (resp. CAlg(Catoo )y, o) of
CAlg(Caty,) as follows:

e An object that belongs to this subcategory is a symmetric monoidal oo-
categories C¥ such that € = G(C¥) is presentable (resp. and stable).

e A morphism that belongs to this subcategory is a symmetric monoidal functor
F®: C® — D® such that the underlying functor F' = G(F®) is a left adjoint
functor.

In particular, we have functors
G: CAlg(Cateo)y, — Pr',  G: CAlg(Cateo)y o — Prh.

pr,st

Moreover, we define CAlg(Caty)a € CAlg(Cats), CAlg(Cateo)r,q & CAlg(Cato)l,

pr,cl

and CAlg(Cat, )L C CAlg(Caty, )X . to be the full subcategories spanned by closed

pr,st,cl = pr,st
symmetric monoidal co-categories.

Remark 1.5.3. The oo-categories CAlg(Caty, )t , and CAlg(Cat, ) admit small

pr,cl pr,st,cl
limits and such limits are preserved under the inclusions

CAlg(Caty )" C CAlg(Caty, )k, € CAlg(Caty,).

pr,st,cl pr,cl

In fact, we only have to show that for a small simplicial set S and a diagram p®: S —
CAlg(Pr") such that p®(s) = €% is closed for every vertex s of S, the limit @(p®) is
closed. Let p: S — CAlg(Pr") — Prl (resp. p': S — CAlg(Prl) — Fun(Al, Cat,.)) be
the diagram induced by evaluating at the object (1) (resp. unique active map (2) — (1))
of N(Fin,). For every object ¢ of € = @(p), the diagram p’ induces a diagram
p.: S — Fun(Al, Prl) such that p.(s) is the functor ffc ® —: €, — €, that admits
right adjoints, where f}: € — C, is the obvious functor. Since Pr* C Cat,, is stable
under small limits, the limit @(p;) is an object of Fun™(€, €), which shows that the
limit @(p®) is closed.

A diagram p: S — CAlg(Caty, )L is a limit diagram if and only if G o p: S —

pr,st,cl

CAlg(Cat ) S Caty is a limit diagram, by the dual version of [HTT, 5.1.2.3).

pr,st,cl

Let € be an oco-category. Recall that by [HA, 2.4.3.1, 2.4.3.3], we have an oo-operad
p: €T — N(Fin,). Suppose that C is a fibrant simplicial category. We define € to be
the fibrant simplicial category such that an object of €I consists of an object (n) € Fin,
together with a sequence of objects (Y3,...,Y,) in €, and

Mapen (X1, ..., X)), (Y1,...,Y,)) = H H Mape(Xi, Yag))s
@ jea—1(n)°

where a runs through all maps of pointed sets from (m) to (n). By construction,
we have a forgetful functor €1 — Fin,, and its simplicial nerve N(C!) — N(Fin,) is
canonically isomorphic to N(C)! — N(&Fin,).

Definition 1.5.4. Let p: € — N(JFin,) be a functor of oco-categories. We say that
a diagram in C is p-static (or simply static if p is clear) if its composition with p is
constant.
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Lemma 1.5.5. Let C be an oco-category that admits finite colimits. Then a square

(1.2) (X1, X)) — (Vi,..., V)

| |

(X1,..., X)) —=(Y],....Y))
in CY with static vertical morphisms is a pushout square if and only if for every 1 <
7 < n, the induced square

L

Haw=; Xi — Y]
in C is a pushout square.

Proof. 1t follows from the fact that for every pair of objects {X;}i<i<m, {Y;}i<j<m of
€M, the mapping space Mapen ({ X }1<i<m, {Yj}1<j<m) is naturally equivalent to

H H Map@ (Xw Ya(i))7

a€Homgiy, ((m),(n)) ica—1(n)°
and the discussion in [HTT, 4.4.2]. O

Remark 1.5.6. Let T: C1 — Caty, be a functor that is a weak Cartesian structure
[HA, 2.4.1.1]. Then we have an induced oo-operad map T®: €1 — CatX [HA, 2.4.1.7],
which is an object of Algen(CatX). The choice of such T® is parameterized by a
trivial Kan complex. Since the obvious map Algeu(Catl) — Fun(C, CAlg(Caty,)) is
a trivial Kan fibration [HA, 2.4.3.18], in what follows, we will regard T® as a functor
C — CAlg(Caty,).

2. ENHANCED OPERATIONS FOR RINGED TOPOI

In this chapter, we construct a functor T (2.1) and its induced functor T® (2.2) that
enhance the derived x-pullback and derived tensor product for ringed topoi. It also
encodes the symmetric monoidal structures in a homotopy-coherent way. This serves
as a starting point for the construction of the enhanced operation map.

The construction is based on the flat model structure. This marks a major difference
with the study of quasi-coherent sheaves. For the latter one can simply start with the
dual version of the model structure constructed in [HA, 1.3.5.3], because the category
of quasi-coherent sheaves on affine schemes have enough projectives. The flat model
structure for a ringed topological space has been constructed by [Gil06, Gil07]. In §2.1,
we adapt the construction to every topos with enough points.
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2.1. The flat model structure. Let (X,Ox) be a ringed topos. In other words, X
is a (Grothendieck) topos and Oy is a sheaf of rings in X. An Ox-module C' is called

cotorsion if Ext'(F,C) = 0 for every flat Ox-module F. The following definition is a
special case of [Gil07, 2.1].

Definition 2.1.1. Let K be a cochain complex of O y-modules.

o K is called a flat complex if it is exact and Z" K is flat for all n.

e K is called a cotorsion complez if it is exact and Z™K is cotorsion for all n.

o K is called a dg-flat complex if K" is flat for every n, and every cochain map
K — C, where C'is a cotorsion complex, is homotopic to zero.

e K is called a dg-cotorsion complex if K™ is cotorsion for every n, and every
cochain map F — K, where F' is a flat complex, is homotopic to zero.

Lemma 2.1.2. Let (f,7): (Y,0y) = (X, O0x) be a morphism of ringed topoi. Then

(1) (f,7)" preserves flat modules, flat complexes, and dg-flat complezxes;
(2) (f,7)« preserves cotorsion modules, cotorsion complexes, and dg-cotorsion com-
plezes.

Recall that the functor (f,7)* = Oy ®f0, f*—: Mod(X,0x) — Mod(Y,Oy) is a
left adjoint of the functor (f,7).: Mod(Y, Oy) — Mod(X, Oy).

Proof. Let F' € Mod(X,Ox) be flat, and C € Mod(Y,Oy) cotorsion. We have a
monomorphism Ext!(F, (f,7).C) — Ext'((f,7)*F,C) = 0. Thus (f,~).C is cotorsion.
Moreover, since short exact sequences of cotorsion Oy-modules are exact as sequences
of presheaves, (f,7). preserves short exact sequences of cotorsion modules, hence it
preserves cotorsion complexes. It follows that (f,~)* preserves dg-flat complexes.

It is well known that (f,~)* preserves flat modules and short exact sequences of flat
modules. It follows that (f,~y)* preserves flat complexes and hence (f,~). preserves
dg-cotorsion complexes. O

The model structure in the following generalization of [Gil07, 7.8] is called the flat
model structure.

Proposition 2.1.3. Assume that X has enough points. Then there exists a combina-
torial model structure on Ch(Mod(X,Ox)) such that

e The cofibrations are the monomorphisms with dg-flat cokernels.
e The fibrations are the epimorphisms with dg-cotorsion kernels.
o The weak equivalences are quasi-isomorphisms.

Furthermore, this model structure is monoidal with respect to the usual tensor product
of chain complezes.

For a morphism (f,7): (Y,0y) — (X,0x) of ringed topoi with enough points,
the pair of functors ((f,7)*, (f,7)«) is a Quillen adjunction between the categories
Ch(Mod(Y, Oy)) and Ch(Mod (X, Ox)) endowed with the flat model structures.

Remark 2.1.4. We have the following remarks about different model structures.
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(1) The functor id: Ch(Mod(X, Ox))8t — Ch(Mod(X,Ox))™ is a right Quillen
equivalence. Here Ch(Mod(X, Ox))%¢ (resp. Ch(Mod (X, Ox))™) is the model
category Ch(Mod(X,0Ox)) endowed with the flat model structure (resp. the
injective model structure [HA, 1.3.5.3]).

(2) If X = % and Ox = R is a (commutative) ring, then id: Ch(Mod(x, R))P* —
Ch(Mod(x, R))%* is a symmetric monoidal left Quillen equivalence between
symmetric monoidal model categories. Here Ch(Mod(x, R))P™ is the model
category Ch(Mod(x, R)) endowed with the (symmetric monoidal) projective
model structure [HA, 7.1.2.11].

To prove Proposition 2.1.3, we adapt the proof of [Gil07, 7.8]. Let S be a site, and
G a small topologically generating family [SGA4, 1T 3.0.1] of S. For a presheaf F' on
S, we put |F|q = supyeq card(F(U)).

Lemma 2.1.5. Let § > card(G) be an infinite cardinal such that f > card(Hom(U, V))
for all U and V in G, and k a cardinal > 2°. Let F be a presheaf on S such that
|F|a < Kk, and F* the sheaf associated to F. Then |FT|q < k.

Proof. By the construction in [SGA4, IT 3.5], we have F'* = LLF, where

(LF)(U) = liy Homg(R,F)
ReJ(U)

for U € S in which J(U) is the set of sieves covering U and S is the category of
presheaves on S. By [SGA4, II 3.0.4] and its proof, |LF|g < B2kP* = k. O

Let Og be a sheaf of rings on S. For an element U € S, we denote by jy the
left adjoint of the restriction functor Mod(S, Os) — Mod(U, Oy ). Using the fact that
(JonOv)veg is a family of flat generators of Mod(S, Og), we have the following analogue
of [Gil07, 7.7] with essentially the same proof.

Lemma 2.1.6. Let 8 > card(G) be an infinite cardinal such that § > card(Hom(U,V'))
for all U and V in G. Let k > max{2° |Og|lc} be a cardinal such that jinOy is
k-generated for every U in G. Then the following conditions are equivalent for an
Og-module F':

(1) |Fla < ;

(2) F is k-generated;

(3) F is k-presentable.

Let F' be an Og-premodule. We say that an Og-subpremodule E C F' is G-pure if
E(U) C F(U) is pure for every U in G. This implies that E* C F'* is pure. As in
[EO02, 2.4], one proves the following.

Lemma 2.1.7. Let 8 > card(G) be an infinite cardinal such that § > card(Hom(U,V'))
for all U and V in G. Let k > max{2°,|0g|g} be a cardinal, and let E C F be Og-
premodules such that |E|g < k. Then there exists a G-pure Og-subpremodule E' of F
containing E such that |E'|q < k.
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Proof of Proposition 2.1.3. We choose a site S of X, and a small topologically gener-
ating family G, and a cardinal k satisfying the assumptions of Lemma 2.1.6. Using
the previous lemmas, one shows as in the proof of [Gil07, 7.8] that the conditions of
[Gil07, 4.12, 5.1] are satisfied for s, which finishes the proof. U

Remark 2.1.8. Using the sheaves i,(Q/Z), where i runs through points P — X of X
one can show as in [Gil06, 5.6] that a complex K of Ox-modules is dg-flat if and only
if K™ is flat for each n and K ®g, L is exact for each exact sequence L of Ox-modules.

2.2. Enhanced operations. Let us start by recalling the category of ringed topoi.

Definition 2.2.1. Let RingedPTopos be the (2,1)-category of ringed U-topoi in V
with enough points:

e An object of RingedPTopos is a ringed topos (X, Ox) such that X has enough
points.

e A morphism (X,0x) — (X’,0x/) in RingedPTopos is a morphism of ringed
topoi in the sense of [SGA4, IV 13.3], namely a pair (f, ), where f: X — X’
is a morphism of topoi and v: f*Ox — Ox.

e A 2-morphism (f1,71) — (f2,72) in RingedPTopos is an equivalence €: f; — f,
such that v, equals the composition f5Ox N fi0x 2 Ox.

e Composition of morphisms and 2-morphisms are defined in the obvious way.

We sometimes simply write X for an object of RingedPTopos if the structure sheaf is
insensitive.

Our goal in this section is to construct a functor
(2.1) T: N(RingedPTopos?)! — Caty,

that is a weak Cartesian structure such that the induced functor T® (see Remark
1.5.6) factorizes through CAlg(Cate)r, . & CAlg(Caty). In other words, we have
the induced functor

(2.2) T%: N(RingedPTopos?) — CAlg(Caty,):

pr,st,cl»

where CAlg(Catos )}, o« is defined in Definition 1.5.2.

Let Cat{ be the (2, 1)-category of marked categories, namely pairs (€, &) consisting of
an (ordinary) category € and a set of arrows € containing all identity arrows. We have
a simplicial functor Cat{ — Set} sending (C, &) to (N(€), €). We start by constructing

a pseudofunctor
T: (RingedPTopos™)! — Cat].

Recall that to every object X € RingedPTopos, we can associate a marked simplicial
set

(N(Ch(Mod(X))ag-sat), W (X)),

where Ch(Mod(X))dgfiat € Ch(Mod(X)) is the full subcategory spanned by the dg-
flat complexes, and W (X) is the set of quasi-isomorphisms. We define the image of an
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object (X1,...,X,,) under T to be

m

TT(Ch (Mod(X0) g, W (X0).

i=1
By definition, a (1-)morphism f: (Xi,...,X,,) — (Y1,...,Y,) in (RingedPTopos?)!
consists of a map a: (m) — (n) and a morphism f;: Y,;) — X; in RingedPTopos for
every i € a~1(n)°. Now we define the image of f under T to be the functor
[T(Ch(Mod(X;))agfiar, W (X:)) — [T(Ch(Mod(Y;))ag-ftae, W (Y7))

i=1 j=1

{Ki}i<icm { X fi*Ki} :
1<j<n

a(i)=]
where we take the unit object as the tensor product over an empty set. The image of
2-morphisms are defined in the obvious way. Composing with the simplicial functor

Cat! — Setf 2% (Setk)° and taking nerves, we obtain the desired functor T (2.1).

Lemma 2.2.2. We have that

(1) the functor T is a weak Cartesian structure [HA, 2.4.1.1];
(2) the functor T® factorizes through CAlg(Caty)™ . 4; and

pr,st,cl’

(3) the functor T® sends small coproducts to products.

Proof. Part (1) is clear from the construction.

For (2), we note that for an object X of RingedPTopos, its image under T, denoted
by D(X), is the fibrant replacement of (N(Ch(Mod(X))dgfiat), W (X)). In particular,
by Remark 2.1.4 (1) and [HA, 1.3.4.16, 1.3.5.15], D(X) is equivalent to the derived
oo-category of Mod(X) defined in [HA, 1.3.5.8]. It is a presentable stable oo-category
by [HA, 1.3.5.9, 1.3.5.21 (1)]. Combining this with Lemma 1.1.3, we deduce that the
image of T% is actually contained in CAlg(Catos ), o - This proves part (2).

Part (3) follows from the construction and Remark 1.5.3. O

Notation 2.2.3. For an object X of RingedPTopos, we denote the image of X under
T® by D(X)®, which is a symmetric monoidal oco-category, whose underlying oo-
category is denoted by D(X) as in the proof of the previous lemma.

Remark 2.2.4. We have the following remarks.

(1) The oco-category T((X1,...,X,,)) is equivalent to [T/%; D(X;).

(2) By Remark 2.1.4 (2) and [HA, 4.1.3.5], for every (commutative) ring R,
D(*, R)® is equivalent to the symmetric monoidal co-category D(Ch(R))® de-
fined in [HA, 7.1.2.12].

(3) Let f: X — X’ be a morphism of RingedPTopos. It follows from Remark
2.1.8 and [KS06, 14.4.1, 18.6.4] that the functors f*: D(X') — D(X) and —®x
—: D(X) x D(X) — D(X) induced by T® are equivalent to the respective
functors constructed in [KS06, 18.6], where D(X) = hD(X) and D(X') =
hD(X").
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Let Ring be the category of (small commutative) rings. To deal with torsion and
adic coefficients simultaneously. We introduce the category Rind of ringed diagrams
as follows.

Definition 2.2.5 (Ringed diagram). We define a category Rind as follows:

e An object of Rind is a pair (=, A), called a ringed diagram, where = is a small
partially ordered set and A: E — Ring is a functor. We identify (=, A) with
the topos of presheaves on =, ringed by A. A typical example is (N,n —
Z,/0"T17) with transition maps given by projections.

e A morphism of ringed diagrams (=, A’) — (£, A) is a pair (I',y) where I': =" —
= is a functor (that is, an order-preserving map) and v: ['*A := Ao '? — A’
is a morphism of Ring=".

For an object (Z,A) of Rind and an object £ of =, we define the over ringed diagram
(2, A) /e to be the ringed diagram whose underlying category is =/ and the correspond-
ing functor is Aje := A | Ze.

For a topos X and a small partially ordered set =, we denote by X= the topos
Fun(Z°, X). If (,A) is a ringed diagram, then A defines a sheaf of rings on X=,
which we still denote by A. We thus obtain a pseudofunctor

(2.3) PTopos x Rind — RingedPTopos

carrying (X, (Z,A)) to (X=,A), where PTopos is the (2,1)-category of ringed topoi
with enough points. Composing the nerve of (2.3) with T (2.1), we obtain a functor

(2.4) EO": (N(PTopos)? x N(Rind)”?)! — Catq,

that is a weak Cartesian structure.

PTopos

Notation 2.2.6. By abuse of notation, we denote by D(X, A\)® the image of an object
(X, \) of PTopos x Rind under the induced functor

EO% = ( EON®: N(PTopos)” x N(Rind)?? — CAlg(Cat, )"

pr,st,cl»
whose underlying oco-category is denoted by D(X, A) which is (equivalent to) the image
of (X, X, (1),{1}) under the functor pq.,EO".

Definition 2.2.7. A morphism (I',v): (2, A’) — (£, A) of Rind is said to be perfect if
for every £ € Z', A'(€) is a perfect complex in the derived category of A(I'(£))-modules.

PTopos PTopos

Lemma 2.2.8. Let f: Y — X be a morphism of PTopos, and w: X' — X\ a perfect
morphism of Rind. Then the square

(2.5) D(Y, V) <1 DX, \)

-l B

D(Y, ) <I— D(X, \)

is right adjointable and its transpose is left adjointable.
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Proof. Write A = (£,A) and X = (Z',A’). We denote by e the natural morphism
({&}, N (&) — (E',A). We show that (2.5) is right adjointable and 7* preserves small
limits. As the family of functors (ef)¢e= is conservative, it suffices to show these
assertions with 7 replaced by e¢ and by moe,. In other words, we may assume =’ = {x}.
We decompose 7 as

({1 A) 5 ({CHAQ) 5 (B A)c - (B A).

We show that the assertions hold with 7* replaced by ¢*, by s*, and by ¢t*. The assertions
for ¢* follow from Lemma 2.2.9 below. The assertions for s* are trivial as s* ~ p,,
where p: (£,A),c — ({¢},A(C)). As t, is conservative, the assertions for t* follow
from the assertions for ¢, and t.t*— ~ Homy (A Y. —), which are trivial. Here we
used the fact that for any perfect complex M in the derived category of A(()-modules,
the natural transformation M ®x) — — Homp ) (MY, —) is a natural equivalence,
where MY = Homp ) (M, A(¢)). This applies to M = A" by the assumption that 7 is
perfect. U

Lemma 2.2.9. Let f: (X', A') — (X, A) be a morphism of ringed topoi, and j: V — U
a morphism of X. Put j' = f~X(j): V' = f~YV) — f~Y(U) = U'. Then the square

D(X i, A x U) —— D(X )y, A x V)

Ly l l fiv

D(X g, A X U') = DXy, A x V)
is left adjointable and its transpose is right adjointable.

Proof. The functor ji: Mod(X,y,A x V) — Mod(X,y, A x U) is exact and induces a
functor D(X v, AxV) = D(X,y, AxU), left adjoint of j*. The same holds for j;. The
first assertion of the lemma follows from the existence of these left adjoints and the

second assertion. The second assertion follows from the fact that j™ preserves fibrant
objects in Ch(Mod(—))™. O

3. ENHANCED OPERATIONS FOR SCHEMES

In this chapter, we construct the enhanced operation map for the category of co-
products of quasi-compact and separated schemes, and establish several properties of
the map. In §3.1, we introduce an abstract notion of (universal) descent and collect
some basic properties. In §3.2, we construct the enhanced operation maps (3.3) and
(3.8) based on the techniques developed in the previous two chapters. In §3.3, we
establish some properties of the maps constructed in the previous sections, including
an enhanced version of (co)homological descent for smooth coverings. This property is
crucial for the extension of the enhanced operation map to algebraic spaces and stacks
in Chapter 5.



ENHANCED SIX OPERATIONS AND BASE CHANGE THEOREM 33

3.1. Abstract descent properties. We start from the definition of morphisms with
descent properties.

Definition 3.1.1 (F-descent). Let € be an oo-category admitting pullbacks, F': C%? —
D a functor of co-categories, and f: X;~ — X, a morphism of €. We say that f is of F -
descent if F o (XF)?: N(A,) — D is a limit diagram in D, where X, : N(A,)? — C
is a Cech nerve of f (see the definition after [HTT, 6.1.2.11]). We say that f is of
universal F-descent if every pullback of f in € is of F-descent. Dually, for a functor
G: C — D, we say that f is of G-codescent (resp. of universal G-codescent) if it is of
GP-descent (resp. of universal GP-descent).

We say that a morphism f of an oco-category C is a retraction if it is a retraction in
the homotopy category hC. Equivalently, f is a retraction if it can be completed into
a weak retraction diagram [HTT, 4.4.5.4] Ret — € of €, corresponding to a 2-cell of C

of the form
Y
X
idx

The following is an co-categorical version of [Gir64, 10.10, 10.11] (for ordinary descent)
and [SGA4, Vbis 3.3.1] (for cohomological descent). See also [T'Gxii, Proposition 1.5,
Corollary 1.6, Remark 2.4].

X X.

Lemma 3.1.2. Let C be an co-category admitting pullbacks, and F': C°P — D a functor
of co-categories. Then

(1) Every retraction f in C is of universal F-descent.

(2) Let
(3.1) w27
q p
y Lo x

be a pullback diagram in C such that the base change of f to (Z/X)' is of F-
descent for i > 0 and the base change of p to (Y/X)? is of F-descent for j > 1.
Then p is of F-descent.

(3) Let

N

be a 2-cell of C such that h is of universal F-descent. Then f is of universal
F-descent.

A X
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(4) Let

Z%h\\fx

be a 2-cell of € such that f is of F-descent and g is of universal F-descent.
Then h is of F-descent.

The assumptions on f and p in (2) are satisfied if f is of F-descent and g and ¢ are
of universal F-descent.

Proof. For (1), it suffices to show that f is of F’-descent. Consider the map N(A, )% x
Ret — €, right Kan extension along the inclusion
K={-1} xRet J] N(AI")? x {0} CN(A;)” x Ret
{I=113x{0}
of the map K — C corresponding to the diagram

Y Y
f Y f
7N
X x X.

Then by [HA, 4.7.3.9], the Cech nerve of f is split. Therefore, the assertion follows
from the dual version of [HTT, 6.1.3.16].

For (2), let XJ5: N(A;)? x N(A,)” — C be an augmented bisimplicial object of €
such that X, is a right Kan extension of (3.1), considered as a diagram N(AZ?) x
N(AZ")? — €. By assumption, F o (X;})? is a limit diagram in D for i > —1 and
Fo (X)) is a limit diagram in D for j > 0. By the dual version of [HTT, 5.5.2.3],
Fo (X} )% is a limit diagram in D, which proves (2) since X,"; is a Cech nerve of p.

For (3), it suffices to show that f is of F-descent. Consider the diagram

(3.2) A \
&

idz
X E—
x 2 5

Z

Y

Y X

in C. Since pr, is a retraction, it is of universal F-descent by (1). It then suffices to
apply (2).

For (4), consider the diagram (3.2). By (3), pry is of universal F-descent. It then
suffices to apply (2). d

!
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Next, we prove a descent lemma for general topoi. Let X be a topos that has
enough points, with a fixed final object e. Let ug: Uy — e be a covering, which induces
a hypercovering u,: U, — e by taking the Cech nerve. Let A be a sheaf of rings in X,
and put A, = A x U,,. In particular, we obtain an augmented simplicial ringed topoi
(X/v., ), where U_; = e and A_; = A. Suppose that for every n > —1, we are given a
strictly full subcategory €, (€ = €_;) of Mod(X/y,, A,) such that for every morphism
a: [m] = [n] of Ay, w): Mod(X,y,,An) = Mod(X,y,,, Ap) sends €, to C,,. Then,
applying the functor G o T® (2.2), we obtain an augmented cosimplicial oco-category

De, (X/u,, As), where De, (X1, Ay) is the full subcategory of D(Xy, , A,,) spanned by
complexes whose cohomology sheaves belong to C,,.

Lemma 3.1.3. Assume that for every object % of Mod(X, A) such that Ung belongs
to Coy, we have .# € C. Then the natural map
De(X,A) = lim De, (X/u,, An)
neA
is an equivalence of co-categories.

Proof. We first consider the case where €, = Mod(X/y,,A,) for n > —1. We apply
[HA, 4.7.6.3]. Assumption (1) follows from the fact that Ugo D(X,A) = D(X,1,, Mo)

is a morphism of Prl. Moreover, the functor u’ is conservative since ug is a covering.
0

Therefore, we only need to check Assumption (2) of [HA, 4.7.6.3], that is, the left
adjointability of the diagram

*
uderl

®(X/Um7 Am) Oﬁ ‘D(X/Um+17Am+1>

* *
ual . lua/
udnJrl

®(X/Un7 An) 0% ‘D(X/Un+17 An—l—l)

for every morphism a: [m] — [n] of Ay, where o’: [m + 1] — [n + 1] is the induced
morphism. This is a special case of Lemma 2.2.9.
Now the general case follows from Lemma 3.1.4 below and the fact that u:zg is exact.

U

Lemma 3.1.4. Let p: K¢ — Caty be a limit diagram. Suppose that for each vertex k
of K<, we are given a strictly full subcategory Dy C C = p(k) such that

(1) For every morphism f: k — k', the induced functor p(f) sends Dy to Dyr.

(2) An object ¢ of Cy belongs to D, if and only if for every vertez k of K, p(fx)(c)
belongs to Dy, where oo denotes the cone point of K<, fi: oo — k is the unique
edge.

Then the induced diagram q: K< — Cat., sending k to Dy is also a limit diagram.
Proof. Let p: X — (K°)" be a Cartesian fibration classified by p [HTT, 3.3.2.2]. Let

Y C X be the simplicial subset spanned by vertices in each fiber X} that are in the
essential image of Dy for all vertices k of K¥. The map ¢ =p|Y:Y — (K°)" has
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the property that if f: x — y is p-Cartesian and y belongs to Y, then x also belongs
to Y by assumption (1), and f is g-Cartesian by the dual version of [HTT, 2.4.1.8]. It
follows that ¢ is a Cartesian fibration, which is in fact classified by ¢. By assumption
(2) and [HTT, 3.3.3.2], ¢ is a limit diagram. O

3.2. Enhanced operation map.

Notation 3.2.1. For a property (P) in the category Ring, we say that a ringed diagram
(I', A) (Definition 2.2.5) has the property (P) if for every object £ of =, the ring A(&)
has the property (P). We denote by Rindy,, the full subcategory of Rind consisting of
torsion ringed diagrams.

Let 8ch9*® C 8ch be the full subcategory spanned by (small) coproducts of quasi-
compact and separated schemes. For each object X of Sch (resp. 8ch9“*?), we denote

by Et(X) C 8ch/x (resp. Etaeser (X)) C 8ch™) the full subcategory spanned by
the étale morphisms, which is naturally a site. We denote by X (resp. Xqcsep.ct)
the associated topos, namely the category of sheaves on Et(X) (resp. Et%*?(X)). In
[SGA4, VII 1.2], Et(X) is called the étale site of X and Xg is called the étale topos of

X. The inclusion thC'Sep(X ) € Et(X) induces an equivalence of topoi Xe — Xoesep.ct-
In this chapter, we will not distinguish between X¢ and Xc sep.4t-

Definition 3.2.2. In what follows, we will often deal with co-categories of the form
(€7 x DP)ter = (€ x D)7

where € is an oo-category and D is a subcategory of N(Rind). Suppose that € is a
subset of edges of C that contains every isomorphism.

We say that an edge f: ({(X],Y/)h<icm) = ({(Xi, Yi)hi<izm) of (€ x DP)fer
statically belongs to € if f is static (Definition 1.5.4) and the corresponding edge
X! — X, (resp. Y/ = Y;) of C (resp. D) belongs to € (resp. is an isomorphism). By
abuse of notation, we will denote again by € the subset of edges of (€% x DP)LP that
statically belong to €. Moreover, if sometimes € is defined by a property P, then edges
that statically belong to € are said to statically have the property P. We also denote

by “all” the set of all edges of (G x DP)er,

For € = N(8ch¥*P), we denote by

e [ the set of morphisms of € locally of finite type;
e P C F the subset consisting of proper morphisms;
e | C F the subset consisting of local isomorphisms.

Lemma 3.2.3. Let D be a subcategory of N(Rind). The natural map
5,45 (N(8ch 9= P)P 5 DPYILPYEI | — 85 19y (N(8chI™*P) P > DPYHLor)gaty
is a categorical equivalence.

Proof. The proof is similar to [LZa, Corollary 0.4]. Let Fiy C F be the set consisting
of morphisms of finite type, and put Iy = I N F. Consider the following commutative
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diagram

1.0y (N(Sch®)op s DoPYIEP)EE | o = 03 g3 (N(Sch ™= )P x Der)lherygar

1,1 ,all

5.3 (N(8ch®5P)P 5 DOPYILP)YEY ) ——— 03 15 (N(Sch®>P )P x DoP)her) it

To show that the lower horizontal map is a categorical equivalence, it suffices to show
that the other three maps are categorical equivalences.

In [LZa, Theorem 0.1], we put k = 4, € = (N(8ch¥*P)P x Der)hor &, = Fy,
E1=P, =1y, E3 =1, and &, = all. Note that we have a canonical isomorphism

(N(Schqc.sop)op % @op)H ~ (N(Schqc.sep>op)ﬂ XN(?in*) (@0}7)]_1'

By Nagata compactification theorem [Con07, 4.1], condition (2) of [LZa, Theorem
0.1] is satisfied. The other conditions are also satisfied by Lemma 1.5.5. It follows
that the map in the upper horizontal arrow is a categorical equivalence. Similarly,
using [L.Za, Theorem 0.1], one proves that the vertical arrows are also categorical

equivalences. O
Remark 3.2.4. The same proof shows that the lemma also holds with 8ch*® replaced
by the category of disjoint unions of quasi-compact quasi-separated schemes and F

replaced by the set of separated morphisms locally of finite type.

Our goal is to construct a map (3.8) which encodes f*, f; and the monoidal structure
given by tensor product.

We start by encoding f* and the monoidal structure. Composing the nerve of the
pseudofunctor 8ch®** — PTopos carrying X to Xe with p5.,,EO" (2.4), we obtain
a functor

(3.3) sepacser BOT: (N(8ch®5P)P x N(Rind)?)! — Catq,
that is a weak Cartesian structure, which induces a functor (Notation 2.2.3)
(3.4)  gqacser BEO® = (gpacsr EOT)® 0 N(8ch¥*P)? x N(Rind)” — CAlg(Cat,,):

pr,st,cl
by Lemma 2.2.2.
To encode fi, we resort to the technique of taking partial adjoints. Consider the
composite map

(3.5) 03 12,5 (N(Sch™*P) x N(Rind)?) )5’y

Lac.sep BEOT(3.3)

— (N(8ch9*P)% x N(Rind)P)" &
First, we apply the dual version of Proposition 1.4.4 to (3.5) for direction 1 to
construct the partial right adjoint
(3.6) 342,33 (N(Sch¥™P)oP x N(Rindtor)‘”’)u"’p)?‘}fan — Catoo.

The adjointability condition for direction (1,2) is a special case of that for direction
(1,3). We check the latter as follows.

Cate.
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Lemma 3.2.5. Let a: (m) — (n) be a morphism of Fin,. Let f;: X! — X, be proper
morphisms of schemes in 8ch%*? and take \; € Rindi,, for 1 < i < m. For pullback
squares

}/‘;',

%wﬁ

l 117
Ha(i):j Xz( - Ha(i):j Xi
of schemes in 8ch*® and morphisms j1; — Tlow=; Ni in Rindier for 1 < j < n, the
square

[Ljer DY}, 1) <— Tjer DY, 11y)

! T

[lies DX, Ai) = Tlies D(Xi, M)
given by pullback and tensor product is right adjointable.

Note that the right adjoints of the horizontal arrows admit right adjoints. Indeed,
for the lower arrow we may assume X; quasi-compact and apply Lemma 1.1.4.

Proof. Decomposing the product categories with respect to (n), we are reduced to two
cases: (a) n = 0; (b) n = 1 and «a({(m)°) C {1}. Case (a) is trivial. For case (b),
writing (f;)1<i<m as a composition, we may further assume that at most one f; is not
the identity. Changing notation, we are reduced to showing that for every pullback
square

v Ly

oo
x o x

of schemes in Sch*" with f proper and every morphism 7: ¢ — A in Rindy,,, the
diagram

f/*
Q(Y/a :u) -~ ®(Y> :u)

(g’,n)*—@f’*KT T(gﬂr)*—@K
D(X',3) = D(X. )
is right adjointable for every K € D(Y, ). As in the proof of Lemma 2.2.8, we easily
reduce to the case with A = ({*}, A) and u = ({*}, M). This case is the combination of
proper base change and projection formula. See [SGA4, XVII 4.3.1] for a proof in D~.
Finally, the right completeness of unbounded derived categories [HA, 1.3.5.21] implies
that every object L of D(X, ) is the sequential colimit of 7<"L. The unbounded case
follow since the vertical arrows and the right adjoints of the horizontal arrows preserve
sequential colimits. O
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Second, we apply Proposition 1.4.4 to (3.6) for direction 2 to construct a map
(3.7) §7{3}((N(Schqc'sep)°p X N(Rindtor)"p)u’ol’)??au — Catoo.

The adjointability condition for direction (2,1) follows from the fact that, for every
separated étale morphism f of finite type between quasi-separated and quasi-compact
schemes, the functor f, constructed in [SGA4, XVII 5.1.8] is a left adjoint of f* [SGA4,
XVII 6.2.11]. The adjointability condition for direction (2,3) follows from étale base
change and a trivial projection formula [KS06, 18.2.5].

Third, we compose (3.7) with (a quasi-inverse) of the categorical equivalence in
Lemma 3.2.3 to construct a map

(38)  sepaeser BOM: 85 1) (N(Sch™5)P 5 N(Rindior)?) " P) & — Catoe.

Now we explain how to encode f, and f' via adjunction. Note that we have a
natural map from d; ry ((N(8ch®*®)P x N(Rindio, ) )™ 7)) to N(Fin, ), whose fiber
over (1) is isomorphic to 05 5, N(8ch*P) g x N(Rindior ). Denote by ggacser EOY the
restriction of ggaqcser EOM to the above fiber. By construction, we see that the image of
sepacser O} actually factorizes through the subcategory Prk C Caty,. In other words,
(3.8) induces a map

(39) SChqc.sepEOT: 6;7{2}N(8Chqc.sop)?;ﬁl X N(Rindtor)()p — j)r;:
Evaluating (3.4) at the object (1) € Fin,, we obtain the map
(3.10) sepacser BO™ : N(8chi°P)P » N(Rind)? — Prk.

Note that this is equivalent to the map by restricting (3.9) to the second direction, on
N(8ch¥*P)P x N(Rindi., ). Composing the equivalence ¢g,, in Remark 1.4.5 with
schacser EO™, we obtain the map

sepacser 5O, 1 N(8ch9*P) x N(Rind) — Prl.
Restricting (3.9) to the first direction, we obtain the map

(311) SChqc.scpEO!: N(SCth-Sep)F X N(fRiIldtor)Op _> ?r;
Composing the equivalence ¢p,, in Remark 1.4.5 with g ac.sp EO,, we obtain the map
(3.12) sepacser BO' 1 N(8chI*P)% x N(Rindge,) — Pri.

Variant 3.2.6. Let Q(C F') C Ar(8ch*P) be the set of locally quasi-finite morphisms
[SP, 01TD]. Recall that base change for an integral morphism [SGA4, VIII 5.6] holds
for all Abelian sheaves. Replacing proper base change by finite base change in the
construction of (3.8), we obtain

senacs s BOM: 63 01 (N(8ch®*®)P x N(Rind)??)™hP)&rt — Cato.
When restricted to their common domain of definition, this map is equivalent to
SChqc.sepEOH (38)

Notation 3.2.7. We introduce the following notation.
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For an object (X, \) of Sch®*® x Rind, we denote its image under g ac.eo EO® by
D(X, \)®, with the underlying oo-category D (X, \). In other words, we have
D(X,\)® = D(Xg,N)® and D(X,\) = D(X¢,A). By construction and Re-
mark 2.2.4 (2), D(X, \) is equivalent to the derived oo-category of Mod(X§, A)
if A\ = (Z,A), and the monoidal structure on D(X,\)® is an oo-categorical
enhancement of the usual (derived) tensor product in the classical derived cat-
egory.

For a morphism f: (X', X) — (X, A) of 8ch®*P x Rind, we denote its image
under g acser EO® by

DX, NP — DX, N2,

with the underlying functor f*: D(X,\) — D(X’, N). Note that f* is an oco-
categorical enhancement of the usual (derived) pullback functor in the classical
derived category, which is monoidal. If A’ — X is the identity, we denote the
image of f under gy acsep EO, by

£ DY, \) = D(X,N),

which is an co-categorical enhancement of the usual (derived) pushforward func-
tor.

For a morphism f: Y — X locally of finite type of Sch®“** and an object A\ of
Rindyer, we denote its image under g qc.se0 EO; and g aese0 EO' by

fi: DY, N = DX, ), f:DX,\) = DY, N\

which are oo-categorical enhancement of the usual fi and f' in the classical
derived category, respectively.

Remark 3.2.8. In the previous discussion, we have constructed two maps

I II
Schac-sep EO 5 Schqc.scpEO

from which we deduce the other six maps

!
SChqc.sepEO®, SchchsepEOT, SChqc.sepEO*, SchchsepEO*, SchchsepEO!, Schqo.sepEO .

Moreover, maps ggacser BO! and ggacse0 EO are equivalent on their common part of
domain, which is (N(8ch®P)P x N(Rind,, )°?)".

Now we explain how Kiinneth Formula is encoded in the map g,ac.o EO™. In partic-

ular, as special cases, Base Change and Projection Formula are also encoded. Suppose
that we have a diagram

}/1 q1 y q2 }/2

|l b

p1 p2
Xi=—X—X,,
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which exhibits Y as the limit Y; x x, x X X x, Y5 and such that f; and f; (hence f) are
locally of finite type. Fix an object A of Rindy,,. They together induce an edge

((X17 )‘>7 (X27 >‘)) - (Xv )‘)

l l

((}/h )‘)> (1/2’ )‘)) - (Y> )‘)

of 85 1y (N(Sch™*P)oP x N(Rindye, )?)oP) 258 above the unique active map (2) — (1)
of Fin,. Applying the map g acser EO' and by adjunction, we obtain the following
square

Qv qy—

D(¥, A) x D(Ya, \) DY, \)
f1!><f2!l lf!
D(X1,\) x D(Xp, \) 227 (X, )

in Caty,,. At the level of homotopy categories, this recovers the classical Kiinneth
Formula.

We end this section by the following adjointability result.

Lemma 3.2.9. Let f: Y — X be a morphism locally of finite type of 8chi*®, and
m: N = X\ a perfect morphism of Rindy,, (Definition 2.2.7). Then the square

DY, N) L= D(X, )

| B

D(Y,A) —= D(X, A),
is right adjointable and its transpose is left adjointable.

Proof. The assertion being trivial for f in I, we may assume f in P. As in the proof of
Lemma 2.2.8, we are reduced to the case where 7* is replaced ef and ¢, ot*, respectively.
Here, we have maps ({*}, A') 5 ({¢}, AQ) =5 (B, A).

The assertion for ¢, o t* is trivial, since a left adjoint of ¢, o t* is — ®, () AY ~
Homye)(A', =), where A = Homp ) (A, A(¢)). We denote by e a left adjoint of €.
For £ € =, since ¢f commutes with f. by Lemma 2.2.8, it suffices to check that e; o e
commutes with f.. Here ec: ({£}, A(€)) = (Z, A) is the obvious morphism. For & < (,
we have ef o eq1 > — ®(¢) A(§) and the assertion follows from projection formula. For
other £ € =, the map €} o e is zero. O

3.3. Poincaré duality and (co)homological descent. For an object X of Sch*®
and an object A\ = (2, A) of Rind, we have a t-structure (D=°(X, ), D=°(X, \))® on

5We use a cohomological indexing convention, which is different from [HA, 1.2.1.4].
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D(X, \), which induces the usual t-structure on its homotopy category D(XZ, A). We
denote by 70 and 72° the corresponding truncation functors. The heart

DV(X,N\) == DX, A) N DX, \) C D(X,\)
is canonically equivalent to (the nerve of) the Abelian category
Mod (X, \) == Mod(X3, A).

The constant sheaf Ax on XZ of value A is an object of DV(X, \).

We fix a nonempty set [ of rational primes. Recall that a ring R is a [I-torsion ring
if each element is killed by an integer that is a product of primes in [J. In particular, a
[J-torsion ring is a torsion ring. We denote by Rindq¢o, € Rindy,, the full subcategory
spanned by [-torsion ringed diagrams. Recall that a scheme X is -coprime if [ does
not contain any residue characteristic of X. Let Schi*® be the full subcategory of
8ch*? spanned by [J-coprime schemes. In particular, Spec Z[(17!] is a final object of
S8ch*P. By abuse of notation, we still use A and F to denote A N Ar(8ch*®") and
F N Ar(8ch ™), respectively. Moreover, let L C F be the set of smooth morphisms.

Definition 3.3.1 (Tate twist). We define a functor
tw: (N(Rindm o))" — Cate
such that

(1) the restriction of tw to N(Rindq ¢, )°" coincides with the restriction of the func-
tor gacser BEO* (3.10) to {Spec Z[O71|} x N(Rindior)%;

(2) tw(—00) equals AY;

(3) for every object A\ of Rindp ¢, the image of 0 under the functor tw(—oo — \)
is the Tate twisted sheaf, denoted by An(1), is dualizable in the symmetric
monoidal co-category D(Spec Z[[171], \)®.

Let (X, ) be an object of 8chi*® x Rindq.¢;. We define the following functor
—(1) = (= @sxA0(1)[2]: DX, A) = DX, A),

where sy: X — SpecZ[(J7!] is the structure morphism. We know that —(1) is an
auto-equivalence since A\g(1) is dualizable and s% is monoidal. In general, for d € Z,
we define —(d) to be the (inverse of the, if d < 0) |d|-th iteration of —(1).

We adapt the classical theory of trace maps and the Poincaré duality to the oo-
categorical setting, as follows. Let f: Y — X be a flat morphism in 8chi*®", locally
of finite presentation, and such that every geometric fiber has dimension < d. Let A
be an object of Rindp . In [SGA4, XVIII 2.9], Deligne constructed the trace map

(313) Tl"f = Tl"f’)\Z TZOf!)\y<d> — Ax,

which turns out to be a morphism of D¥(X, \). The construction satisfies the following
functorial properties.

Lemma 3.3.2 (Functoriality of trace maps, [SGA4, XVIII §2]). The trace maps Try
for all such f and \ are functorial in the following sense:
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(1) For every morphism A — X' of Rindp_or, the diagram

720 f' >\Y

/ Trf)\
= (Trys 5 ®)\/ Ax)

T=((T=fidy (d) @ Ax)

commautes.
(2) For every Cartesian diagram

of 8ch P the diagram

0
w70 fidy (d >—>u Ly

gl N l:

720 f Ay (d) ——— Ay

commutes.
(3) Consider a 2-cell

Z " X
Y
of N(8chy*P) with f (resp. g) flat, locally of finite presentation, and such that
every geometric fiber has dimension < d (resp. < e). Then h is flat, locally of

finite presentation, and such that every geometric fiber has dimension < d+ e,
and the diagram

720 (7200 4 e)) ) 0 220 0, )

-| lnf

Tzoh!)\z<d+€> )\X

commutes.
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Let f: Y — X be as above. We have the following 2-cell
D(Y, A)

/

@(X, )\) fi

f!@

D(X,A)
of Cat.,. If we abuse of notation by writing f*(d) for —(d) o f*, then the composition

(314) Uy fg o f*<d> :> fl)\Y<d> X — = Tzof!)\y<d> X — m )\X X — :> ldX
is a natural transformation, where idx is the identity functor of D(X, \).

Lemma 3.3.3. If f: Y — X is smooth and of pure relative dimension d, then uy is a
counit transformation. In particular, the functors f*(d) and f' are equivalent.

Proof. Tt follows from [SGA4, XVIII 3.2.5] and the fact that f' is right adjoint to f;. O

Remark 3.3.4. Let f: Y — X be a morphism in Sch?*® that is flat, locally quasi-
finite, and locally of finite presentation. Let A be an object of Rind (see Variant 3.2.6
for the definition of the enhanced operation map in this setting). In [SGA4, XVII
6.2.3], Deligne constructed the trace map

TI'fZ Tzof!)\y — Ax,

which is a morphism of DY(X, \). It coincides with the trace map (3.13) when both are
defined, and satisfies similar functorial properties. Moreover, by [SGA4, XVII 6.2.11],
the map uys: fio f* — idx constructed similarly as (3.14) is a counit transform when
f is étale. Thus, the functors f' and f* are equivalent in this case.

The following proposition will be used in the construction of the enhanced operation
map for quasi-separated schemes.

Proposition 3.3.5 ((Co)homological descent). Let f: X — Xy be a smooth and
surjective morphism of Sch¥*P. Then

(1) (f,idy) is of universal g acser EO®-descent (3.4), where X is an arbitrary object
of Rind;

(2) (f,idy) is of universal ggacser EO,-codescent (3.11), where X\ is an arbitrary ob-
ject of Rindye,.

See Definition 3.1.1 for the definition of universal (co)descent.

Proof. We restrict both functors to a fixed object A of Rind or Rind,,.

We first prove the case where f is étale. For (1), let X be a Cech nerve of f,
and put (D®*)% = gyacsrEO® 0o (X)?. By Remark 1.5.3, we only need to check
that (D*)% = G o (D®*)? is a limit diagram, where G is the functor (1.1). This is
a special case of Lemma 3.1.3 by letting U, be the sheaf represented by X/, and

e )
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C. be the whole category. For (2), by [Caia, 1.3.3]", we only need to prove that
(DY = ¢ogupacser EO 0 (X )P is a limit diagram. Here ¢: Prft — Caty, is the natural
inclusion, and the functor ggasp EO' is the one in (3.12). We apply Lemma 3.3.6
below. Assumption (1) follows from the fact that (D');! admits small limits and such
limits are preserved by f'. Assumption (2) follows from the Poincaré duality for étale
morphisms recalled in Remark 3.3.4. Moreover, f' is conservative since it is equivalent
to f*.

The general case where u is smooth follows from the above case by Lemma 3.1.2
(3) (and its dual version), and the fact that there exists an étale surjective morphism
g: Y — X of 8ch*? that factorizes through f [EGAIV, 17.16.3 (ii)]. O

Lemma 3.3.6. Let C*: N(A, ) — Caty be an augmented cosimplicial co-category, and
put € = C71. Let G: € — €° be the evident functor (1.1). Assume that:
(1) The co-category C~1 admits limits of G-split cosimplicial objects [HA, 4.7.3.2],
and those limits are preserved by G.
(2) For every morphism a: [m] — [n] of AL, the diagram

em d° Gm—i—l

|,

en d° Gn—i-l

is right adjointable.
(8) G is conservative.

Then the canonical map 6: C — @neA C™ is an equivalence.

Proof. We only need to apply [HA, 4.7.6.3] to the augmented cosimplicial co-category

N(A,) — Caty KN Cats,, where R is the equivalence that associates to every oo-
category its opposite [HA, 2.4.2.7]. O

4. THE PROGRAM DESCENT

From Remark 3.2.8, we know that all useful information of six operations for Sch*®
is encoded in the maps gacser EO! (3.3) and g acse0 EOY (3.8) constructed in §3.2. In
this chapter, we develop a program called DESCENT, which is an abstract categorical
procedure to extend the above two maps to larger categories. The extended maps
satisfy similar properties as the original ones. This program will be run in the next
chapter to extend our theory successively to quasi-separated schemes, to algebraic
spaces, to Artin stacks, and eventually to higher Deligne-Mumford and higher Artin
stacks.

In §4.1, we describe the program by formalizing the data for Sch*". In §4.2, we
construct the extension of the maps. In §4.3, we prove the required properties of the
extended maps.

7Although in [Gaia] the author works with the oo-category DGCatcont, the proof for Lemma 1.3.3
works for Prl as well.
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4.1. Description. In §3.2, we constructed two maps guac.ser EOT (3.3) and g, ac.s00 EO™
(3.8). They satisfy certain properties such as descent for smooth morphisms (Proposi-
tion 3.3.5). We would like to extend these maps to maps defined on the co-category of
higher Deligne-Mumford or higher Artin stacks, satisfying similar properties. We will
achieve this in many steps, by first extending the maps to quasi-separated schemes,
and then to algebraic spaces, and then to Artin stacks, and so on. All the steps are
similar to each other. The output of one step provides the input for the next step. We
will think of this as recursively running a program, which we name DESCENT. In this
section, we axiomatize the input and output of this program in an abstract setting.
Let us start with a toy model.

Proposition 4.1.1. Let (€, &) be a marked oo-category such that C admits pullbacks
and & is stable under composition and pullback. Let € C C be a full subcategory stable
under pullback such that for every object X of C, there exists a morphismY — X in &
representable in C with Y in €. Let D be an oo-category such that D admits geometric
realizations. Let Fun®(C?, D) C Fun(C, D) (resp. Fun® (€, D) C Fun(@"p D)) be the
full subcategory spanned by functors F such that every edge in &= ENCy (resp. in &)
is of F'-descent. Then the restriction map

Fun® (€, D) — Fun®(C”, D)
is a trivial fibration.
The proof will be given at the end of §4.2.

Example 4.1.2. Let Sch®™ C 8ch be the full subcategory spanned by quasi-separated
schemes. It contains 8ch9“*? as a full subcategory. By Proposition 3.3.5 (1), we may
apply Proposition 4.1.1 to

o C = (N(8ch®)% x N(Rind)*)p,

o C = (N(8ch®*P)° x N(Rind)°P)Lep,

o D= Caty,

e and the set € consists of edges f that are statically smooth surjective (Definition

3.2.2).

Then we obtain an extension of the map gy acse EO! with larger source (N(8ch®)% x
N(Rind)o?)".

Now we describe the program in full. We begin by summarizing the categorical
properties we need on the geometric side into the following definition.

Definition 4.1.3. An oo-category € is geometric if it admits small coproducts and
pullbacks such that

(1) Coproducts are disjoint: every coCartesian diagram

) ——X

.

Y —X]IY
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is also Cartesian, where () denotes an initial object of C.
(2) Coproducts are universal: For a small collection of Cartesian diagrams

Y —=Y

|

XZ'—>'X,

1 € I, the diagram
[lie; Yi —Y

.

HiEI XZ X7
is also Cartesian.

Remark 4.1.4. We have the following remarks about geometric categories.

(1) Let € be geometric. Then a small coproduct of Cartesian diagrams of € is again
Cartesian.

(2) The oo-categories N(Schi®*?), N(8ch®), N(Esp), N(€hp), Chp*** and Chp*PM
(k > 0) appearing in this article are all geometric.

We now describe the input and the output of the program. The input has three
parts: 0, I, and II. The output has two parts: I and II. We refer the reader to Example
4.1.12 for a typical example.

Input 0. We are given
e A 5-marked oo-category (€, &, & E" &, F), a full subcategory € C €, and a
morphism s” — ¢’ of (—1)-truncated objects of € [HTT, 5.5.6.1].
e For each d € Z U {—00}, a subset & of £,
e A sequence of inclusions of co-categories £L” C L' C L.
e A function dim*: F — Z U {—o0, +00}.
Put & = E,NCy, & =E'NCy, & =E"NCy, &= E/NCy (d € ZU{—00}), & = ENECy
and F = F N Cy. Let @ (resp. €, €7, and €”) be the full subcategory of € (resp. €, €,
and €) spanned by those objects that admit morphisms to s’ (resp. s/, s”, and s”). Put
F =FNE, and I’ = F N C). They satisfy
(1) € is geometric, and the inclusion € C € is stable under finite limits. Moreover,
for every small coproduct X = [[;c; X; in €, X belongs to € if and only if X;
belongs to € for all 7 € I.
(2) L" C L' and L' C L are full subcategories.
(3) &, &, 8" &, F are stable under composition, pullback and small coproducts;
and & CE"C & CT.
(4) For every object X of @€, there exists an edge f: Y — X in & N & with Y in
C. Such an edge f is called an atlas for X.
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(5) For every object X of @, the diagonal morphism X — X x X is representable
in C.
(6) For every edge f: Y — X in &”, there exist 2-simplices

(4.1) Y
iq f
/fd\\
Y, X

of € with f, in ég for d € 7Z, such that the edges iy exhibit Y as the coproduct
HdeZ }/;l _ _ B

(7) For every d € ZU{—oc}, we have €} C ", that £/} is stable under pullback and
small coproducts, and that &” « 1s the set of edges whose source is an initial
object. For distinct integers d and e, we have €4 N E" = &" __.

(8) For every small set I and every pair of objects X and Y of @, the morphisms
X = X[IY and [[; X — X are in é{)’. For every 2-cell

Y
N,

h
of € with f in ég and ¢ in g’e’, where d and e are integers, h is in énge.
(9) The function dim™ satisfies the following conditions.
(a) dim™(f) = —oo if and only if f isin " __.
(b) The restriction of dim™* to &4 — &”__ is of constant value d.
(c) For every 2-cell (4.2) in € with edges in F, we have dim™(h) < dim™(f) +

dim™(g), and that the equality holds when g belongs to & N &”.
(d) For every Cartesian diagram

(4.2)

A X

w 2.7

|

Y — X
in C with f (and hence ¢) in F, we have dim™(g) < dim™(f), and equality

holds when p belongs to &.
(e) For every edge f: Y — X in F and every small collection

Y
N

of 2-simplices with g; in égi such that the morphism [],c; Z; = Y isin &,
we have dim+(f) = sup;;{dim™ (h;) — d;}.
(10) We have &' = &j.

Z;
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Remark 4.1.5. By (8) and (9c,d,e), for every small collection {Y; LN X }ier of edges in
F, we have dim™ (IL;e; fi) = sup;e; {dim™(f;)}.
Input I. Input I consists of two maps as follows.

e The first abstract operation map:
EO': (€% x £ — Cat,,.
e The second abstract operation map:
o BEOM: 57{2}((6”0” X L’OP)H")”);&}T;H — Caty.

Input I is subject to the following properties:

PO: Monoidal symmetry. The functor ;EO! is a weak Cartesian structure, and
the induced functor (EO® := (,EO")® factorizes through CAlg(Cata)r, . (See
Remark 1.5.6).

P1: Disjointness. The map (EO® sends small coproducts to products.

P2: Compatibility. The restrictions of ;EO! and oEOY to (€ x L£P) are
equivalent functors.

Before stating the remaining properties, we have to fix some notation. Similar to
the construction of (3.9), we obtain a map

C’EOT: ;7{2}6;%%7%/1 X ,E//OP — :Prgt
from EOM. Similar to the construction of (3.10) and (3.11), we obtain maps

(EO™: €7 x L% = Pl LEO,: € x L' — Prl

st

Moreover, we will use similar notation as in Notation 3.2.7 for the image of 0 and 1-cells
under above maps, after replacing Sch®*?" (resp. Rind) by € (resp. £). Now we are
ready to state the remaining properties.

P3: Conservativeness. If f: Y — X belongs to &g, then f*: D(X, \) — D(Y, \)
is conservative for every object A of L.

P4: Descent. Let f be a morphism of € (resp. €') and A an object of £ (resp.
L). If f belongs to EsNE” (resp. Es N E" N C}), then (f,idy) is of universal
cEO®-descent (resp. oEO,-codescent).

P5: Adjointability for &'. Let

g

W—12Z7

q P
vy o x

be a Cartesian diagram of €’ with f in &', and A\ an object of £’. Then
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(1) The square
D(Z,X) <— D(X, )

g*l lf*

D(W, \) <— DY, \)

has a right adjoint which is a square of Prf.
(2) If p is also in &', then the square

D(X,\) <L DY, \)

p*l lq*

D(Z,\) <Z— D(W, \)

is right adjointable.
P5Ps: Adjointability for &”. We have the same statement as in (P5) after replac-
ing ¢’ by €7, & by &”, and L' by L".
Input II. Input II consists of the following data.

e A functor tw: (L£"P)9 — Cat satisfying that

— the restriction of tw to £L"° coincides with the restriction of ;EO* to {s"} x
L//op;

— tw(—00) equals AY;

— for every object A of Rindq,, if we denote the image of 0 under the
functor tw(—oo — A): A? — D(s”, \) by A(1), then it is dualizable in the
symmetric monoidal co-category D(s”, \)®.

e A t-structure on D(X, \) for every object X of C and every object A of L.

e (Trace map for &) A map Trp: 72°fidy(d) — Ax for every edge f: Y — X in
& N CY, every integer d > dim™(f), and every object X of £L”. Here, \x is a
unit object of the monoidal co-category D (X, A) and similarly for Ay; —(d) is
defined in the same way as in Definition 3.3.1.

e (Trace map for &) A map Try: 72°fidy — Ax for every edge f: YV — X
in & N €] and every object A of £’ which coincides with the one above for
feé&ney.

Input II is subject to the following properties.
P6: t-structure. Let A be an arbitrary object of £L. We have

(1) For every object X of C, we have A\x € DY(X, \).

(2) If X belongs to £” and X is an object of €”, then the auto-equivalence
— ® s%A(L) of D(X, A) is t-exact.

(3) For every object X of €, the t-structure on D(X,\) is accessible, right
complete, and D=7°(X | \) := ), D=""(X, \) consists of zero objects.

(4) For every morphism f:Y — X of €, the functor f*: D(X,\) — D(Y, )
is t-exact.

P7: Poincaré duality for E”. We have
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(1) For every f in &NEY, every integer d > dim™ (f), and every object A of £”,
the source of the trace map Tr; belongs to the heart DV (X, \). Moreover,
Tr; is functorial in the way as in Lemma 3.3.2. See Remark 4.1.6 below
for more details.

(2) For every f in €N CY, and every object A of £L”, the map uy: fio f*(d) —
idx, induced by the trace map Try: 72°fidy(d) — Ax similarly as (3.14),
is a counit transformation. Here idy is the identity functor of D(X, ).

P7Ps: Poincaré duality for €. We have the same statement as in (P7) after
letting d = 0, and replacing C” by ¢, & by &, and L” by L.

Remark 4.1.6. In (P7)(1) above, the trace maps Try for all such f and A are functorial
in the following sense:

(1) For every morphism A\ — X\ of £” the diagram

720 fl)\y

/ Trf ) ®>\k

T=((T22fid (d)) ®x Ax)

commutes.
(2) For every Cartesian diagram

of €”, the diagram

commutes.
(3) Consider a 2-cell
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of " with f, g € & NEY such that dim™(f) < d and dim™(g) < e. In particular,
we have h € & N €Y and dim™*(h) < d + e. Then the diagram

720 fi Trg (d)

20 (72097 (e)) ) v (d)
y |
7=z (d + e) - Ax

commutes.

Remark 4.1.7. We have the following remarks concerning input.

(1) (PO) and (P4) imply the following: If f is an edge of (C% x L°P)I°P that
statically belongs to & N &”, then it is of universal ;EO'-descent.

(2) (P4) implies that (P3) holds for f € E,NE”.

(3) If d > dim™(f), then the trace map Tr; is not interesting because its source
720 fi\y(d) is a zero object. We have included such maps in the data in order
to state the functoriality as in Remark 4.1.6 more conveniently.

(4) We extend the trace map to morphisms f: Y — X in & N C] endowed with 2-
simplices (4.1) satisfying dim™ (f;) < d and such that the morphisms i4 exhibit
Y as [l4ez Ya. For every object A of £” the map

DY, ) = [[ D(Ya M),
ez
induced by i4 is an equivalence by (P1). We write —(dim™): D(Y, \) — D(Y, \)
for the product of (—(d): D(Ya, A\) = D(Ya, A))aez. Since Ay =~ @4z iaMy,, the
maps Try, induce a map Try: 72° fily (dim™) — Ax. Moreover,the trace map
is functorial in the sense that an analogue of Remark 4.1.6 holds.

(5) (PT7) (2) still holds for morphisms f: Y — X in €” N €Y. For such morphisms,
the 2-simplices in Input 0 (6) are unique up to equivalence by Input 0 (7).
We write —(dim f): D(Y,A\) — D(Y, A) for the product of (—(d): D(Yy, A) —
D(Ya, A))aez. Then, (PT) (2) for the morphisms f,; implies that the map ug: fio
f*(dim f) — idx induced by the trace map Tr;: 72°fidy(d) — Ax is a counit
transformation.

The output has two parts: T & II.
Output I. Output I consists of two maps as follows.

e The first abstract operation map:
sEO': (7 x L) — Caty,

extending (EO".
e The second abstract operation map:

o EOM: 05 (o) (€ x LP)LP)@t — Cato

extending o EO.
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Output II. Output II consists of the following data, all extending the existed data in
Input II.

e A functor tw: (L"?) — Cat,, same as in Input II.

e A t-structure on D(X, \) for every object X of © and every object A of £.

e (Trace map for &) A map Try: 720 fi\y(d) — Ax for every edge f: Y — X in
&, N €Y, every integer d > dim™(f), and every object \ of £”.

e (Trace map for &) A map Try: 72°fidy — Ay for every edge f: Y — X
in &n é’l and every object A of £’, which coincides with the one above for
feé&ner

We introduce properties (P0) through (P7¢) for Output I and II by replacing ¢/, "
and (@, &, &, 8", &, F) by €, € and (€, &, & &, &, F), respectively. The following
theorem shows how our program works.

Theorem 4.1.8. Fixz an Input 0. Then

(1) Every Input I satisfying (P0) through (P5°*) can be extended to an Output I
satisfying (P0) through (P5").

(2) For given Input I, II satisfying (P0) through (P7°®) and given Output I ex-
tending Input I and satisfying (P0) through (P5Y®), there ewists an Output II
extending Input II and satisfying (P6), (P7), (P7"%).

Output I will be accomplished in §4.2. Output II and the proof of properties (P1)
through (P7"$) will be accomplished in §4.3.

Variant 4.1.9. Let us introduce a variant of DESCENT. In Input 0, we let & = &”,
s’ — " be a degenerate edge, L' = £”, and ignore (10). In Input II (resp. Output II),
we also ignore the trace map for & (resp. £') and property (P7"). In particular, (P5)
and (P5P®) coincide. Theorem 4.1.8 for this variant still holds and will be applied to
(higher) Artin stacks.

Remark 4.1.10. We have the following remarks concerning Theorem 4.1.8.

(1) If the only goal is to extend the first and second operation maps, the statement
of Theorem 4.1.8 (1) can be made more compact: every Input I satisfying
properties (P0), (P2), (P4), and (P5) can be extended to an Output I satisfying
(P0), (P2), (P4), and (P5). This will follow from our proof of Theorem 4.1.8
in this chapter.

(2) The Output I in Theorem 4.1.8 (1) is unique up to equivalence. More precisely,
we can define a simplicial set K classifying those Input I that satisfy (P2) and
(P4). The vertices of K are triples (,EO!, (EO™, 1), where h is the equivalence
n (P2). Similarly, let K be the simplicial set classifying those Output II that
satisfy (P2) and (P4). Then the restriction map K — K satisfies the right
lifting property with respect to 0A™ C A" for all n > 1. One can show this
by adapting our proof of Theorem 4.1.8. Moreover, in all the above, h can be
taken to be the identity without loss of generality.
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(3) The Output II in Theorem 4.1.8 (2) is also unique up to equivalence. More
precisely, let us fix an Output I extending Input I and satisfying (P2) and (P4).
Note that the functor tw remains the same. Fix an assignment of t-structures
for the Input satisfying (P6). Then there exists a unique extension to the
Output satisfying (P6). Moreover, for every assignment of traces for the Input
satisfying (P7) (resp. (P7°®)), there exists a unique extension to the Output
satisfying (P7) (resp. (P7")). Note that the trace map is defined in the heart,
so that no homotopy issue arises.

Definition 4.1.11. For a morphism f: Y — X locally of finite type between algebraic
spaces, we define the upper relative dimension of f to be

sup{dim(Y X x SpecQ)} € Z U {—o0, +00}

[SP, 04N6], where the supremum is taken over all geometric points Spec Q2 — X. We
adopt the convention that the empty scheme has dimension —oo.

Example 4.1.12. The initial input for DESCENT is the following:

o C = N(S8ch®), where 8ch® C 8ch is the full subcategory spanned by quasi-
separated schemes as in Example 4.1.2. It is geometric and admits SpecZ as a
final object.

e C = N(8ch®*®P) and s” — ¢’ is the unique morphism SpecZ[(17'] — Spec Z.

In particular, €' = € and e =C.

&s is the set of surjective morphisms.

&' is the set of étale morphisms.

&" is the set of smooth morphisms.

" is the set of smooth morphisms of pure relative dimension d.

ét is the set of morphisms that are flat and locally of finite presentation.

F is the set of morphisms locally of finite type.

e L =N(Rind)?, L' = N(Rind;e, ), and L£L” = N(Rindq 4or ).

e dim™ is the (function of) upper relative dimension (Definition 4.1.11).

e .EO!is (3.3), and o EO" is (3.8).

e tw is defined in Definition 3.3.1.

e D(X, \) is endowed with its usual t-structure recalled at the beginning of §3.3.

e The trace maps are the classical ones (3.13); see also Remark 3.3.4.

Properties (P0) through (P7"*) are satisfied as follows:

P0) This is Lemma 2.2.2 (1,2).

) This is Lemma 2.2.2 (3).

) This follows from our construction. In fact, the two maps are equal in this case.
) This is obvious.
)
)

This is Proposition 3.3.5.

This follows from Lemma 4.1.13 below. Part (1) of (P5), namely the étale base
change, is trivial.

(P5Ps) This follows from Lemma 4.1.13 below. Part (1) of (P5®) is the smooth base
change.
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(P6) Part (3) follows from [HA, 1.3.5.21]. The rest follows from construction.
(P7) This has been recalled in Lemmas 3.3.2 and 3.3.3.
(P7") This has been recalled in Remark 3.3.4.

Lemma 4.1.13. Assume (P7). Then (P5) holds. In fact, we have the stronger result
that part (2) of (P5) holds without the assumption that p is also in &'. The similar
statements hold concerning (P7°*) and (P5"*).

Proof. We denote by p, (resp. ¢.) a right adjoint of p* (resp. ¢*) and by f' (resp. ¢') a
right adjoint of f, (resp. g1).
By (P7) or (P7°%), f* and g* have left adjoints. Moreover, the diagram

(4.3)
fp{dim f) ——— q.g"(dim f) ¢.g*(dim f)

| | |

S pe(dim f) — f' figg™(dim f) — f'p.gig*(dim f) — ¢.g'gig*(dim f) )=~

lTrf Try \L Trg l

f'ps I'ps = 4+9'

is commutative up to homotopy. It follows that the top horizontal arrow is an equiva-
lence.
Since the diagram

¢ f*(dim f) ¢* f*(dim f) ——— g*p*(dim f)
~( ¢ f fif (dim f) — ¢'p* fif*(dim f) ——= ¢'gi¢* f*(dim f) — ¢'qig*p*(dim f) | =~
Trfl/ lTrf Trgl
q*f‘ g'p* g'p*

is commutative up to homotopy, the bottom horizontal arrow is an equivalence. [l

1

4.2. Construction. The goal of this subsection is to construct the maps éEOI and
EO™" in Output I in §4.1. We will construct Output II and check the properties (P0)
— (P7"#) in the next section.

Let us start from the construction of second abstract operation map 5 EO™. The first
one @EOI will be constructed at the end of this section, after the proof of Proposition
4.1.1.

Let R C F be the subset of morphisms that are representable in €. We have
successive inclusions

5.2y ((C77 X LPYRPYTEY C 05 10 ((CF x LP)RP)TE C 6 1y (€7 > LP)P)TE

We proceed in two steps.
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Step 1. We first extend o EO™ to the map 3EO! with the new source
52 (€7 x LroP) Py,
An n-cell of the above source is given by a functor
o A" X (A™)P — (P x L/oP)Hop
We define Cov(c) to be the full subcategory of
Fun(A™ x (A™)% x N(A )P, (€% x L/P)her) X Fun(An x (Am)op x {1}, (&op x cropyer) {0}

spanned by functors 0?: A" x (A™)? x N(A, )% — (€% x L£'P)1op guch that

e for every 0 < j < n, the restriction ¢° | A7) x N(AZ")?, regarded as an edge
of (G x L'P)ILop is statically an atlas (see Definition 3.2.2 and Input 0 (4));
e 0 is a right Kan extension of 0| A"} x (A™)P x N(AT")PUA™ x (A™)P x {[-1]}
along the obvious inclusion.
In particular, for every object (i, ) of A™ x (A™)°, the restriction ¢ | A7) x N(A )P
is a Cech nerve of the restriction ¢ | A7) x N(AT")or,
The oo-category Cov(o) is nonempty by Input 0 (4) and (5), and admits product of
two objects. Indeed, for every pair of objects o) and o9 of Cov(c), the assignment

(i, 4, [k]) = 0V(i, 4, [K]) Xo@.5) 090, J, [K])

induces a product of o) and o) by Lemma 1.5.5. Therefore, by Lemma 1.1.1, Cov(c)
is a weakly contractible Kan complex.
The restriction functor

Cov(o) — Fun(N(A)% x A" x (Am), (€ x L'or)lor)
induces a map
Cov(o)®” — Fun(N(A), Fun(A", ;{2}((6"”) X L'OP)H’OP)?}T;H)).
Composing with the map EO, we obtain a functor
¢(0): Cov(o)” — Fun(N(A), Fun(A", Caty)).

Let X C Fun(N(A ), Fun(A", Cat.,)) be the full subcategory spanned by those func-
tors F': N(A;) — Fun(A", Cats,) that are right Kan extensions of F'|N(A). Consider
the following diagram

N(o) Cov(o)?
res;¢(0) \Lqﬁ(o)
Fun(A”, Caty, ) ——— K —> Fun(N(A), Fun(A", Cate))

in which the right square is Cartesian, and res, is the restriction to {[—1]}. Put

®(0) =resg oresip(o): N(o) — Fun(A", Caty,).
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It is easy to see that the above process is functorial so that the collection of ®(o)
defines a morphism ® of the category

>(A6;7{2} ((&'op XL,OP)H’OP)SSI;:H)OP

(SetA

See §1.2 for more backgrounds.
Lemma 4.2.1. The map ®(o) takes values in Map*((A")’, Cat?_).

Proof. Let X_; be an object of (€' x £'°?)1or and Cov(X_;) the full subcategory of
FUH(N(A+)OP, (é/Op X L/OP>H,Op> XFun({[—l]},(é’oPXL/OP)H'OP) {X_l}

spanned by functors X, such that the edge Xq — X _; is statically an atlas and X, is
a Cech nerve of Xy — X_;. By (P2), it suffices to show that for every morphism f
of Cov(X_;), considered as a functor f: Al x N(A L)% — (€' x £'P)1oP and every
right Kan extension F of ;EO'o (f | A! x N(A)%)° the morphism F | (A! x {[-1]})°?
is an equivalence in Caty.

In fact, let f: X2 — X! be a morphism of Cov(X_;). Let X2 be an object of
Cov(X_1). Then we have a diagram

X0 x x2 2 X0

7 e

X2 oxtex2 2 x1

Here products are taken in Cov(X_;). Thus it suffices to show the assertion for the
projection X, x X, — X/, where X, and X| are objects of Cov(X_1).
Let Yao: N(A,)” x N(A,)?” — € be an augmented bisimplicial object of € such

that

i Y—lo = X:, Y;—l = X.-

e Y,, is a right Kan extension of Y_1, UY,_;.
Let §: [1] x A? — A% x AP be the functor sending (0, [n]) to ([n], [n]) and (1, [n]) to
([—1],[n]). It suffices to show the assertion for Y,e o N(d), regarded as a morphism of
Cov(X_1). This follows from Lemma 4.2.2 below by taking p to be Cat,, — * and ¢**
to be a right Kan extension of ;EO o (Y,e | N(A,,)?). Here, A, C A, X A, is
the full subcategory spanned by all objects except the initial one. Assumptions (2) and
(3) of Lemma 4.2.2 are satisfied thanks to (P0) and (P4); see Remark 4.1.7 (1). O

Lemma 4.2.2. Let p: € — D be a categorical fibration of oo-categories. Let
c**: N(A,) x N(AL) — € be an augmented bicosimplicial object of C. For n > —1,
put " = c** | {[n]} x N(AL) and ¢*" = ¢** | N(A}) x {[n]}, respectively. Assume that
(a) c** is a p-limit [HTT, 4.3.1.1] of ¢** | N(A4), where Ay C A x AL is the full
subcategory spanned by all objects except the initial one.

(b) For every n >0, ¢ is a p-limit of ¢ | N(A).

(¢) For every n >0, ¢*" is a p-limit of ¢*" | N(A).

Then
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(1) c™1* is a p-limit of c71* | {[-1]} x N(A).

(2) 7Y is a p-limit of 71| N(A) x {[-1]}.

(3) c**IN(AL)diag 5 @ p-limit of ¢*®|N(A)giag, where N(AL)giag € N(AL)XN(AL)
is the image of the diagonal inclusion diag: N(A,) — N(A,) x N(A,) and
N(A)aiag s defined similarly.

Proof. For (1), we apply (the dual version of) [HTT, 4.3.2.8] to p and N(A, x A) C
N(A,;) CN(A; x Ay). By (the dual version of) [HTT, 4.3.2.9] and assumption (b),
the restriction ¢**[N(A x A ) is a p-right Kan extension of the restriction ¢**|N(Ax A)
[HTT, 4.3.2.2]. It follows that ¢**|N(A, ) is a p-right Kan extension of ¢**|N(A; x A).
By assumption (a), ¢*® is a p-right Kan extension of ¢** | N(A, ). Therefore, ¢*® is a
p-right Kan extension of ¢** |[N(A, x A). By [HTT, 4.3.2.9] again, ¢™!* is a p-limit of
1+ {[=1]} x N(A).

For (2), it follows from conclusion (1) by symmetry.

For (3), we view (A x A)? as a full subcategory of A, x A, by sending the cone
point to the initial object. By [HTT, 4.3.2.7], we find that ¢** | (A x A)? is a p-limit
diagram. By [HTT, 5.5.8.4], the simplicial set N(A) is sifted [HTT, 5.5.8.1], that is,
the diagonal map N(A)® — N(A)? x N(A)? is cofinal. Therefore, ¢*® | N(A)diag 18
a p-limit of ¢** | N(A)diag- O

Since res; is a trivial fibration by [HTT, 4.3.2.15], the simplicial set N(o) is weakly
contractible. By Lemma 4.2.1, we can apply Lemma 1.2.4 to

K = 80y (€7 x LIongns K = 6 (€ x L)on)erty  gi K s K,
and the section v given by EO™. This extends o EO™ to a map
gEOII: ;{2}((@’0” X L’OP)H’O”)SQET;EI — Caty.

Step 2. Now we are going to extend éﬁEOH to the map é,EOII with the new source

;,{2}((é/op % L/op)H,op)%é}f;H.

An n-cell of the above source is given by a functor
c: A" x (An)op N (é/op % L/op)H,op
We define Kov(s) to be the full subcategory of
Fun(A" X (An)Op X N(A+)Op, (élOp X £/Op)H,Op) XFun(AnX(An)OPX{[_l]}y(é/opXL/op)H,op) {g}

spanned by functors ¢0: A" x (A™)P x N(AL)? — (€' x L)L such that

e for every 0 < i < n, the restriction ¢° | A®? x N(AZ")?, regarded as an edge
of (€7 x L'P)Lor statically belongs to & N E N R;

e ¢%is a right Kan extension of ¢°| A" x (A{H)? x N(AT?)PUA™ x (A™)? x {[-1]}
along the obvious inclusion;

e the restriction ¢° | A" x (A{})? x {[0]} corresponds to an n-cell of (G x
L/OP)LLOP)‘_’R-
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In particular, for every object (i,5) of A" x (A™)?, the restriction ¢ | A®7) x N(A )P
is a Cech nerve of the restriction ¢° | A®) x N(AZ?). Moreover, the restriction
O A" x (A™)P x {[0]} corresponds to an n-cell of 5’2*7{2}((@0?” x Lrop)theryeart,
Similar to Cov(o), the co-category Kov(s) is nonempty and admits product of two
objects. Therefore, by Lemma 1.1.1, Kov(s) is a weakly contractible Kan complex.
The restriction functor

Kov(s) — Fun(N(A)P x A" x (AM)?, (€ x L/%)1Lop)
induces a map
Kov(s) = Fun(N(A)%, Fun(A", 65 1, (€7 x L'P)hor)git))).
Composing with the map &EO, we obtain a functor
#(s): Kov(o) = Fun(N(A)?, Fun(A", Caty)).

Let X' C Fun(N(A,)? Fun(A", Caty,)) be the full subcategory spanned by those
functors F': N(A, ) — Fun(A", Cat,,) that are right Kan extensions of F' | N(A).
Consider the following diagram

N(¢) Kov(s)
erSW(O l¢(<)
Fun(A”, Caty, ) ——— K’ — Fun(N(A)?, Fun(A", Cat.,))

in which the right square is Cartesian, and res, is the restriction to {[—1]}. Put
() = resy oreso(s): N(s) — Fun(A”, Caty,).

It is easy to see that the above process is functorial so that the collection of ®(¢) defines
a morphism @ of the category

o
((é/opx‘c/op)ﬂ,op)cart ) P

(A c
(Setp) 22 F,all
Lemma 4.2.3. The map ®(s) takes values in Map?((A™)’, Cat?).

Proof. Let Xo: N(AL)? — (G x L£'°?)1°P he an augmented simplicial object that
is a Cech nerve of f: X, — X_; such that f statically belongs to & N & NR. By
the construction of ®(c), it suffices to show that R o X, is a left Kan extension of
Ro X, |N(A)? where R = gEOII | ((€P x L'°P)1oP) 4 is the restriction along direction
1.

Choose an object X of Cov(X_1) and form a bisimplicial object Yee: N(A )% X
N(AL)% — (€ x L'°P)1oP a5 in the proof of Lemma 4.2.1, which is static. Applying
é}?EOH to Yee and by adjunction, we obtain a diagram x2: N(A,)? X N(A, ) — Caty.
By the construction of JEO!, we have that x is a limit diagram for n > —1. By (P4),
X7 is a colimit diagram for n > 0. Therefore, by (P5) (2) and [HA, 4.7.5.19] applied
to the restriction x3 | N(Ag )% x N(Ag ), we have that Ro X, = x,! is a colimit
diagram. In the last sentence, we used [HTT, 6.5.3.7] twice. O
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Since res; is a trivial fibration by [HTT, 4.3.2.15], the simplicial set N(s) is weakly
contractible. By Lemma 4.2.3, we can apply Lemma 1.2.4 to

K = 6 (€ x L) lem)art, K= 6 ) (@7 x Lor)len)gan g0 Ky K

and the section v given by gEOII. This extends éﬁEOH to a map
o BO™: 65 15y (€7 x £17)HP)ZH — Cato,

as demanded.

Now we prove Proposition 4.1.1, which will be applied to construct the first abstract
operation map @EOI in Output L.

Proof of Proposition 4.1.1. The proof is similar to Step 1 above. Consider the diagram
A" —~ Fun® (Ger, D)

7
-~
7
-
7

A" /—F> Fun®(C», D).

Let 0: (A™) — @ be an m-cell of €. We denote by Cov(c) the full subcategory of

Fun((A™)? x N(A4)?, €) X Fun((A™)or x {[~1]},&) {o}

spanned by Cech nerves o°: (A™)% x N(A,)® — € such that ¢° | (A™) x N(A)?
factorizes through €, and that ¢° | A¥} x N(AZ)? belongs to € and is representable
in € for all 0 < j < m. Since Cov(o) admits product of two objects, it is a contractible
Kan complex by Lemma 1.1.1.

Let X C Fun(N(A ), Fun(A™, D)) be the full subcategories spanned by augmented
cosimplicial objects X that are right Kan extensions of Xf|N(A). By [HTT, 4.3.2.15],
the restriction map X — Fun(N(A), Fun(A™, D)) is a trivial fibration. We have a

diagram
Cov(o)? a
X\

% Fun(A”, Fun(N(A) x A™, D))

N |

Fun(0A™, X) — Fun(9A™, Fun(N(A) x A™, D))

where the square is Cartesian, « is induced by F', and [ is induced by G. Consider the
diagram

N(o) Cov(o)?
res’{¢l lqj
Fun(A”, Fun(A™, D)) <—— Fun(A", K) ——— K,
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where the square is Cartesian and res, is the restriction to {[—1]}. Since res; is a trivial
fibration, N(o) is a contractible Kan complex.

Put ®(o) = resy o resj¢p. The construction is functorial in ¢ in the sense that it
defines a morphism ® of the category (Seta)@er)™ . Moreover, ®(o) takes values in
Map?((A™)°, Fun(A”, D)?). In fact, this is trivial for n > 0 and the proof of Lemma
4.2.1 can be easily adapted to treat the case n = 0. Applying Lemma 1.2.3 to ® and
a = G, we obtain a lifting F': A" — Fun(C®, D) of F extending G.

It remains to show that F' factorizes through Fun®(€?, D). This is trivial for n > 0.
For n = 0, we need to show that every morphism f: Y — X in € is of F-descent,
where we regard F as a functor € — D. Let u: X' — X be a morphism in & with
X' in @, and v the composite morphism Y’ = Y xx X’ — Y of the pullback of u and
a morphism w in € with Y’ in €. This provides a diagram

Y/ i> X/

vy Lo x
where u and v are in € and f’ belongs to & Then f and u are of F-descent by
construction. It follows that f is of F-descent by Lemma 3.1.2 (3), (4). O
Thanks to (P0) and (P4) (see Remark 4.1.7 (1)), we may apply Proposition 4.1.1 to

C = (C» x Lor)lhop,

C = (€ x Lor)Mep,

D = Caty, . -
e and the set € consists of edges f that statically belong to £, N E”,

and obtain an extension of the functor (EO! to a functor

sEO': (€7 x L) — Caty,

as demanded.

4.3. Properties. We construct Output II and prove that Output I and Output II
satisfy all required properties.

Lemma 4.3.1 (P0). The functor ;EO" is a weak Cartesian structure, and the induced
functor ;EO® := (;EO")® factorizes through CAlg(Cat )5

pr,st,cl®

Proof. This follows from the construction of éEOI as the properties in (P0) are pre-
served under limits. U

Lemma 4.3.2 (P1). The map ;EO® sends small coproducts to products.

Proof. Since € is geometric (Definition 4.1.3), small coproducts commute with pull-
backs. Therefore, forming Cech nerves commutes with the such coproducts. Then the
lemma follows from the construction of ;EO® and the property (P1) for (EO®. U
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Lemma 4.3.3 (P2). The restrictions of sEO" and 5 EOM to (C x L") are equivalent
functors.

Proof. By Proposition 4.1.1 and the original (P2), it suffices to show that the restriction
F = 5BEOM | (€ x L") belongs to Fun®((C'? x £?)!! Cat.,) where set € consists
of edges f of that statically belong to & N &” N €}. In other words, it suffices to show
that f is of F-descent.

By construction, the assertions are true if f is statically an atlas. Moreover, by the
original (P4), the assertions are also true if f is a morphism of €’. In the general case,
consider a diagram

P

y/ L. x/
y Lo x
where u is an atlas and f’ belongs to €, N €”. For example, we can take v to be an
atlas of Y xx X'. The proposition then follows from Lemma 3.1.2 (3), (4). O

Lemma 4.3.4 (P3). If f: Y — X belongs to &, then f*: D(X,\) — D(Y,\) is
conservative for every object \ of L.

Proof. We may put f into the following diagram

Y/ L_ Xl

y Lo x
where u is an atlas, Y belongs to € and f’ belongs to &;. Then we only need to show
that v* o f*, which is equivalent to f™* o u*, is conservative. By [HA, 4.7.6.2 (3)],
u* is conservative, and f"* is also conservative by the original (P3). Therefore, f* is
conservative. U
Proposition 4.3.5 (P4). Let f be a morphism of C% (resp. €').
(1) If f belongs to E N E", then (f,idy) is of universal sEO%-descent for every
object X of L. 3 3
(2) If f belongs to €N E" N CY, then (f,idy) is of universal 5 EO,-codescent for
every object \ of L.
Proof. Part (1) follows from the construction of ;EO'. Part (2) follows from the same
argument as in Lemma 4.3.3. L]
We will only check (P5), and (P5") follows in the same way.
Proposition 4.3.6 (P5). Let
g

W—12Z7

p

Q

vy o x
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be a Cartesian diagram of € with f in &, and X\ an object of £'. Then
(1) The square

(4.4) D(Z,\) <~ D(X, \)

g*l lf*

D(W, \) <— DY, \)

has a right adjoint which is a square of Pri.
(2) If p is also in &', the square

(4.5) D(X,\) <L DY, \)

|

D(Z,\) <=— D(W, \)
is right adjointable.
We first prove a technical lemma.

Lemma 4.3.7. Let K be a simplicial set, and p: K — Fun(A! x Al, Caty,) a diagram
of squares of oco-categories. We view p as a functor K x Al x Al — Cat,. If for
every edge o: A' — K x A', the induced square p o (o x ida1): Al x Al — Caty, is
right adjointable (resp. left adjointable), then the limit square @(p) is right adjointable
(resp. left adjointable).

Recall from the remark following Proposition 1.4.4 that when visualizing squares,
we adopt the convention that direction 1 is vertical and direction 2 is horizontal.

Proof. Let us prove the right adjointable case, the proof of the other case being essen-
tially the same. The assumption allows us to view p as a functor

p': K — Fun(A', Fun®*4(A! Cat,.))

[HA, 4.7.5.16]. By [HA, 4.7.5.18] and (the dual version of) [HTT, 5.1.2.3], the oco-
category Fun(A!, Fun®*4(A', Cat.,)) admits all limits and these limits are preserved
by the inclusion

Fun(A!, Fun™9 (Al Cat,,)) C Fun(A!, Fun(A!, Caty.)).
Therefore, the limit square @(p) is equivalent to lgn(p’ ) which is right adjointable. [

Proof of Proposition 4.3.6. For (1), it is clear from the construction and the original
(P5) (1) that both f* and ¢* admit left adjoints. Therefore, we only need to show that
(4.4) is right adjointable. By Lemma 4.3.7, we may assume that f belongs to &’. Then
it reduces to show that the transpose of (4.4) is left adjointable, which allows us to
assume that p is a morphism of €', again by Lemma 4.3.7. Then it follows from the
original (P5) (1).
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For (2), by Lemma 4.3.7, we may assume that p belongs to &. Then p* and ¢*
admit left adjoints. Therefore, we only need to prove that the transpose of (4.5) is
left adjointable, which allows us to assume that f is also in &, again by Lemma 4.3.7.
Then it follows from the original (P5) (2). O

Next we define the t-structure. Let X be an object of € and let A be an ob-
ject of L. For an atlas f: Xy — X, we denote by @?O(X, A) € D(X,A) (resp.
@?O(X, A) € D(X,A)) the full subcategory spanned by complexes K such that f*K
belongs to D=0(Xy, \) (resp. D=°(Xy, \)).

Lemma 4.3.8. We have
(1) The pair of subcategories (®§O(X, )\),D?O(X, A)) determine a t-structure on
D(X, N).
(2) The pair of subcategories (@?O(X, A), @?O(X, A)) do not depend on the choice
of f.

In what follows, we will write (D=0(X,\), D=%(X, \)) for (@?O(X, A),@?O(X, A))
for an arbitrary atlas f. Moreover, if X is an object of €, then the new t-structure
coincides with the old one since idy : X — X is an atlas.

Proof. For (1), let f,: X, — X be a Cech nerve of f; = f. We need to check the
axioms of [HA, 1.2.1.1]. To check axiom (1), let K be an object of ®§O(X, A) and L
an object of @?1(X, A). By (P6) for the input and Proposition 4.3.5 (1), Map(K, L)
is a homotopy limit of Map(f}K, fL) by [HTT, Theorem 4.2.4.1, Corollary A.3.2.28]
and is thus a weakly contractible Kan complex. Axiom (2) is trivial. By (P6) for
the input, we have a cosimplicial diagram p: N(A) — Fun(A!, Cat,,) sending [n] to
the functor D(X,,,\) — Fun(A' x A, D(X,,)\)) that corresponds to the following
Cartesian diagram of functors:

<0 .
7> —idy,

-

0—>7'n—,

where 7= and 72! (resp. idx, ) are the truncation functors (resp. is the identity functor)
of D(X,, A). Axiom (3) follows from the fact that @(p) provides a similar Cartesian
diagram of endofunctors of D(X, \).

For (2), by (1) it suffices to show that for every other atlas f': X — X, we have
@?O(X, A) = @%0()(, A). Let K be an object of @?O(X, A) and form a Cartesian diagram

vy 2 X}

/| f s

X0—>X.
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By (P6) for the input, the functors g* and ¢g"* are t-exact, so that
g*Tzlf/*K ~ TZlg*f/*K ~ Tzlg/*f*K ~ g/*Tzlf*K = 0.

As g* is conservative by (P3) for the input, we have 72! f*K = 0. In other words, f*K
belongs to D=0(X{, \). Therefore, we have @?O(X, A) C @?,O(X, A). By symmetry, we
have DF°(X, A) 2 DF(X, A). It follows that DT (X, A) = D7’(X, ). O

Lemma 4.3.9 (P6). Let A be an arbitrary object of L. We have

(1) For every object X of C, we have Ax € DY(X,\).

(2) If X belongs to £L" and X is an object of €, then the auto-equivalence —®s% (1)
of D(X, \) is t-exact.

(3) For every object X of C, the t-structure on D(X, \) is accessible, right complete,
and D=72(X,\) := N, D=""(X, \) consists of zero objects.

(4) For every morphism f:Y — X of C, the functor f*: D(X,\) — D(Y,\) is
t-exact.

Proof. We choose an atlas f: Xy — X. Then (1) and (2) follows from (4), the definition
of the t-structure, and that f*Ax ~ Ax,. Moreover, (3) follows from the construction,
the conservativeness of f*, and the corresponding properties for X,. Therefore, it
remains to show (4).

However, we may put f: Y — X into a diagram

Y/ L Xl

I

Y — X

where u and v are both atlases. Then the assertion follows from the definition of the
t-structure and the fact that f™* is t-exact. O

Finally we construct the trace maps. We will construct the trace maps for &, and
check (P7). Construction of the trace maps for & and verification of (P7"*) are similar
and in fact easier. 3

Same as before, we have two steps. We first construct the trace maps for R N &;.

Lemma 4.3.10. There exists a unique way to define the trace map
TI'fZ Tzof!)\y<d> — Ax,
for morphisms f:Y — X in RN & N €/ and integers d > dim™(f), satisfying (P7)

(1) and extending the input. In particular, for such a morphism f, we have fi\y(d) €
DX, N).
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Proof. Let
fo
y 1o x

be a Cartesian diagram in ©”, where zo and hence y, are atlases. Let N(A,)?Px Al —
€” be a Cech nerve, as shown in the following diagram

(4.7) Y, - X,

y.il/ f l

— X.

We call such a diagram a simplicial Cartesian atlas of f. We have dim™ (f,,) = dim™ (f)
for every n > 0. By Base Change which is encoded in z EO' and the definition of —(d),
we have

zp fidv (d) = oAy (d) = oAy (d) € D=°(Xo, N),

which implies that fi\y(d) belongs to D=Y(X, \) by the definition of the t-structure.
The uniqueness of the trace map follows from condition (2) of Remark 4.1.6 applied to
the diagram (4.6) and (P3) applied to zo.

For n > 0, we have trace maps Try, : 72°f.\y, (d) — Ax,. By condition (2) of
Remark 4.1.6 applied to the squares induced by f., we know that 7=%z,. Try, is a
morphism of cosimplicial objects of D¥(X, )\). Taking limit, we obtain a map

hm 750, Try, 0 Um 7502, 770 fudy, (d) — lim 7%, Ay, ~ Ay.

However, the left-hand side is isomorphic to

lim Tgol’n*TZOfn!y;)\y (d) ~ lim TSOZL'H*TZOZL';fg)\y<d>
~ lim 792,25 720 fidy (d) ~ 720 fidy (d).
neA

Therefore, we obtain a map Try, : 720 fidy (d) = Ax.
This extends the trace map of the input. In fact, for f in €/, by condition (2) of
Remark 4.1.6 applied to (4.7), Try, can be identified with T&lne A ZTnsy, Try. Moreover,

condition (2) of Remark 4.1.6 holds in general if one interprets Try as Try, and Trp
as Try;, where f] is a simplicial Cartesian atlas of f’, compatible with f,. In fact, by
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condition (2) of Remark 4.1.6 for the input, the bottom square of the diagram

u* Try
w20 fidy (d) : Ay
\ Trfl ‘ \
L]
~ 720 fidy+(d) Ax
lim 7<%/ u* Try = L
<0, k>0 & e ; <00 % ~
lgl = xn*un’ri fn!AY” <d> 1&1 T= ‘En*unAXn -
\ 1.1nTSO$/n* T\rf/\
: <0,./ >0 g1 n : <0,./
l&n T T n!)\Y/L l&l T= Ty /\X,’L

is commutative, where all the limits are taken over n € A. Since the vertical squares
are commutative, it follows that the top square is commutative as well. The case of
condition (2) of Remark 4.1.6 where u is an atlas then implies that Try, does not
depend on the choice of f,. We may therefore denote it by Try.

It remains to check conditions (1) and (3) of Remark 4.1.6. Similarly to the situation
of condition (2), these follow from the input by taking limits. O

Lemma 4.3.11. If f: Y — X belongs to RN EL N CY, then the induced natural trans-
formation

[H{dy =idy o f*{d) = f'o fro f1(d) S f
is an equivalence, where the first arrow is given by the unit transformation and wy is

defined similarly as (3.14).

Proof. Consider diagram (4.7). We need to show that for every object K of D(X, \),
the natural map f*K(d) — f'K is an equivalence. By Proposition 4.3.5 (1), the map
K — @ne A unusK is an equivalence. Moreover, f' preserves small limits, and, by

(P5"5) (1), so does f*, since f belongs to &”. Therefore, we may assume K = z,,L,
where L € D(X,,, A). Similarly to (4.3), the diagram

J 2z d) — ynifrL{d)

is commutative up to homotopy. The upper horizontal arrow is an equivalence by
(P5"#) (1), the lower horizontal arrow is an equivalence by 5 EO}, and the right vertical
arrow is an equivalence by (P6) for the input. It follows that the left vertical arrow is
an equivalence. O

Proposition 4.3.12 (P7 (1)). There exists a unique way to define the trace map
TI'fZ Tzof!)\y<d> — Ax,
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for morphisms f:Y — X in & N CY and integers d > dim™ (f), satisfying (P7) (1)
and extending the input. In particular, for such a morphism f, we have fidy(d) €
DX, N).

Proof. Let Y,: N(A,)” — € be a Cech nerve of an atlas y: Yy — Y, and form a

triangle
Y
VN,
fo

For n > 0, we have f, € RN &, N €Y. By Proposition 4.3.5 (2), we have equivalences

(4.8)

Y. X.

lim fuyi Ay = i fiyayl Ay = f lim gy Ay = fdy.
nﬁp ne%tp ne%tp

Since y, belongs to RN E” N €Y, by Lemmas 4.3.11 and Remark 4.1.7 (5), we have
equivalences

limg fudy, (d+dimy,) ~ lm fuysAy(d+dimy,) = lm fuy,Av(d).

neA°P neA°P neA°P

Combining the above ones, we obtain an equivalence

hﬂ fny)\yn <d + dim yn> l) f!)\y <d>

neA°pP

By Lemma 4.3.10, fu\y, (d+ dimy,) belongs to D=Y(X, \) for every n > 0. It follows
that the colimit is as well by [HA, 1.2.1.6]. Moreover, the composite map

720 fudv, (d+ dimy,) = lim 720 fdy, (d + dim y,,)
neA°P

= 720 hﬂ fady, (d + dim y,) = 72° fidy (d)
neA°P

is induced by Try,. The uniqueness of Tr; then follows from condition (3) of Remark
4.1.6 applied to the triangle (4.8).

Condition (3) of Remark 4.1.6 applied to the triangles induced by f, implies the
compatibility of

TI'fn : Tzofng)\yn <d + dim yn> — )\X
with the transition maps, so that we obtain a map Try,: 72°fidy(d) — Ax. This

extends the trace map of Lemma 4.3.10, by condition (3) of Remark 4.1.6 applied

to (4.8) for f € RN &N @7, Moreover, condition (3) of Remark 4.1.6 holds for
g € RN ENCY, if we interpret Try as Try, and Try, as Try,, where hq: Yy Xy Z — X.
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In fact, by condition (3) of Remark 4.1.6 for morphisms in R N & N €7, the diagram

lirg 720 f Trg (d+dim yn)

limg 7° 4 (1291 Az (€) )(d + dim ) ling =5 (@)
| l \ r205, Trg<d>\
liy 720%, A7 (d + e + dim y,) 0 i Az {e))(d) T fidv (d)
\ :\L lTrf.
7=z (d + €) e Ax

commutes, where all the colimits are taken over n € A°. It follows that Try, does not
depend on the choice of f,. We may therefore denote it by Try.

It remains to check the functoriality of the trace map. Similarly to the above special
case of condition (2) of Remark 4.1.6, this follows from the functoriality of the trace
map for morphisms in R N &, N é’l’ by taking colimits. U

Proposition 4.3.13 (P7 (2)). If f: Y — X belongs to &4 N €/, the induced natural
transformation

FUd) = idy o f7{d) = f'o fio fr(d) 2 f

is an equivalence, where the first arrow is given by the unit transformation and wy is
defined similarly as (3.14).

Proof. We need to show that f*K{(d) — f'K is an equivalence of every object K of
D(X,A). Let yo: Yo — Y be an atlas. Since v§ is conservative by Lemma 4.3.4, we
only need to show that the composite map

yeK{(dim fo) = yi FK{d + dim yo) — i £ K{dimye) = yh f'K = fiK

is an equivalence, where fy: Yy — X is a composite of f and y,. However, this follows
from Lemma 4.3.11 applied to fo. U

5. RuNnNING DESCENT

In this chapter, we run the program DESCENT recursively to construct the theory
of six operations of quasi-separated schemes in §5.1, algebraic spaces in §5.2, (classical)
Artin stacks in §5.3, and eventually higher Artin stacks in §5.4. Moreover, we start
from algebraic spaces to construct the theory for higher Deligne-Mumford (DM) stacks
as well in §5.5. We would like to point out that although higher DM stacks are special
cases of higher Artin stacks, we have less restrictions on the coefficient rings for the
former.

Throughout this chapter, we fix a nonempty set [ of rational primes. See Remark
5.5.5 for the relevance on [J.
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5.1. Quasi-separated schemes. Recall from Example 4.1.12 that Sch® is the full
subcategory of Sch spanned by quasi-separated schemes, which contains Sch*" as
a full subcategory. We run the program DESCENT with the input data in Example
4.1.12. Then the output consists of the following two maps: a functor

(5.1) sepas B0 : (N(8ch®)?? x N(Rind)P)! — Cat,
that is a weak Cartesian structure, and a map
(5.2) sepas BO™ 05 123 (N(8ch®)? x N(Rindter)ol’)u”p)??ll — Caty,,

and Output II. Here we recall that F' denotes the set of morphisms locally of finite
type of quasi-separated schemes.

For each object X of 8ch®, we denote by thS(X ) the quasi-separated étale site of X.
Its underlying category is the full subcategory of Sch‘fx spanned by étale morphisms.

We denote by X4 the associated topos, namely the category of sheaves on thS(X ).
For every object X of $ch®*® | the inclusions Eta®sP(X) C Et#(X) C Et(X) induce
equivalences of topoi Xcsep.ct — Xgs.ot — Xet-

The pseudofunctor 8ch® x Rind — RingedPTopos sending (X, (Z,A)) to (X ¢, A)
induces a map N(8ch®) x N(Rind) — N(RingedPTopos). Composing with T (2.1), we
obtain a functor

(5.3) ELEO!: (N(8ch®)” x N(Rind)?)! — Cato

that is a weak Cartesian structure. It is clear that the restriction of {SSEO! to
(N(8ch*P)P x N(Rind)?)" is equivalent to gyacser EO'. By the same proof of Propo-
sition 3.3.5 (1), we have the following.

Proposition 5.1.1 (Cohomological descent for étale topoi). Let f be an edge of
(N(8ch®)? x N(Rind)°?)! that is statically a smooth surjective morphism of quasi-
separated schemes. Then f is of universal {5 EO'-descent.

From the above proposition and Proposition 4.1.1, we obtain the following compat-

ibility result.
Proposition 5.1.2. The two functors g4,EO" (5.1) and JSEOT (5.3) are equivalent.

Remark 5.1.3. Let X be object of 8ch® and A = (=, A) an object of Rind. Then it is
easy to see that the usual t-structure on D(X, 4, A) coincides with the one on D(X, )
obtained in Output II of the program DESCENT.

5.2. Algebraic spaces. Let Esp be the category of algebraic spaces (§0.1). It contains
8ch® as a full subcategory. We run the program DESCENT with the following input:
e C=N(E&sp). It is geometric.
e C = N(8ch®), and s” — ¢’ is the unique morphism Spec Z[(1~!] — SpecZ. In
particular, ¢’ = C and e =C.
o & is the set of surjective morphisms of algebraic spaces.
e &' is the set of étale morphisms of algebraic spaces.
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° g” is the set of smooth morphisms of algebraic spaces.
o &/ is the set of smooth morphisms of algebraic spaces of pure relative dimension
d. In particular, & = &g.
e & is the set of flat morphisms locally of finite presentation of algebraic spaces.
e J = Fis the set of morphisms locally of finite type of algebraic spaces.
e L =N(Rind)?, L' = N(Rindy,, ), and L£L” = N(Rindq_¢or ).
e dim™ is the upper relative dimension (Definition 4.1.11).
e Input I and II are the output of §5.1. In particular, ,EO! is (5.1), and o EO!
is (5.2).
Then the output consists of the following two maps: a functor
(5.4) espEO": (N(Esp)” x N(Rind)?)" — Cato,
that is a weak Cartesian structure, and a map
(5.5) espBO™ 1 05 101 (N(E8p)” x N(Rindeor) )™M P) 0l — Catos,
and Output II.

For each object X of Esp, we denote by Et*P(X) the spatial étale site of X. Its
underlying category is the full subcategory of €sp,y spanned by étale morphisms. We

denote by Xepe the associated topos, namely the category of sheaves on EteSp(X ).
For every object X of Sch®, the inclusion of the original étale site £t%(X) of X into
Etese (X) induces an equivalence of topoi Xespet — Xs.ct-

As in §5.1, we obtain a functor

(5.6) SEEEOL: (N(Esp)® x N(Rind)P)! — Cate,

Esp

that is a weak Cartesian structure. It is clear that the restriction CS%’S;EOI | (N(8ch®)P x
N(Rind)P)! is equivalent to g4 EO! By the same proof of Proposition 3.3.5 (1), we

have the following.

Proposition 5.2.1 (Cohomological descent for étale topoi). Let f be an edge of
(N(€sp)? x N(Rind)P)! that is statically a smooth surjective morphism of algebraic

. . 6t
spaces. Then f is of universal “EO-descent.

From the above proposition and Proposition 4.1.1, we obtain the following compat-
ibility result.

Proposition 5.2.2. The two functors ¢ ,EO' (5.4) and eS%'SéIEEOI (5.6) are equivalent.

Remark 5.2.3. Let X be object of Esp, and A = (=, A) an object of Rind. Then it is
easy to see that the usual t-structure on D(X, 4, A) coincides with the one on D(X, )

obtained in Output II of the program DESCENT.

Remark 5.2.4. In our construction of the map (3.8) in §3.2, the essential facts we
used from algebraic geometry are Nagata’s compactification and proper base change.
Nagata’s compactification has been extended to separated morphisms of finite type
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between quasi-compact and quasi-separated algebraic spaces [CLO12, 1.2.1]. Proper
base change for algebraic spaces follows from the case of schemes by cohomological de-
scent and Chow’s lemma for algebraic spaces [RG71, I 5.7.13] or the existence theorem
of a finite cover by a scheme. The latter is a special case of [Ryd15, Theorem B] and
also follows from the Noetherian case [LMBO00, 16.6] by Noetherian approximation of
algebraic spaces [CLO12, 1.2.2].

Therefore, if we denote by Espi®*P the full subcategory of Esp spanned by (small)
coproducts of quasi-compact and separated algebraic spaces (hence contains Sch*®
as a full subcategory), and repeat the process in §3.2, then we obtain a map

e SEEOM: 63 ) (N(ESpI*P) x N(Rindor) ) 7) 25 — Cato,

whose restriction to 85 ) (N(8ch*P) x N(Rindio,)?)™P)@4, is equivalent to the
map gac-ser BO™.

Moreover, the restriction g FO™ | 5 oy (N(Esp®*P)? x N(Rindie)?)™ 7)) is
equivalent to the map gy acies EO'. In fact, by Remark 4.1.10 (2), it suffices to prove
that g et BEO! satisfies (P4). For this, we can repeat the proof of Proposition 3.3.5.
The analogue of Remark 3.3.4 holds for algebraic spaces because the definition of trace
maps is local for the étale topology on the target.

5.3. Artin stacks. Let Chp be the (2, 1)-category of Artin stacks (§0.1). It contains
Esp as a full subcategory. We run the simplified DESCENT (see Variant 4.1.9) with
the following input:
e C = N(Chp). It is geometric.
e C=N(&sp), and s” — ¢ is the identity morphism of Spec Z[[J7!]. In particular,
@ = €" = N(&spy) (resp. €' = €” = N(Chpy)), where Espy (resp. Chpy) is the
category of U-coprime algebraic spaces (resp. Artin stacks).
&, is the set of surjective morphisms of Artin stacks.
g’ — &” is the set of smooth morphisms of Artin stacks.
Y is the set of smooth morphisms of Artin stacks of pure relative dimension d.
ét is the set of flat morphisms locally of finite presentation of Artin stacks.
F = F is the set of morphisms locally of finite type of Artin stacks.
e L =N(Rind)?, and L' = L" = N(Rind_or) .
e dim™ is upper relative dimension, which is defined as a special case in Definition
5.4.4 later.
e Input I and IT are given by the output of §5.2. In particular, ;EO! is (5.5), and
¢EO™ = ., _EO™" is defined as the restriction of ,,EO' (5.4) to

03,23 (N(Espp) ™ x N(Rindr tor) %)) Eii-
Then the output consists of the following two maps: a functor
(5.7) enpEO": (N(€hp)” x N(Rind)?)" — Catq,
that is a weak Cartesian structure, and a map
thDEOH: 5.2 (N(Chp)? x N(Rindg_tor)”)u"’p)‘jﬁf;ﬁl — Caty,
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and Output II.

Now we study the values of objects under the above two maps. Let us recall the
lisse-étale site Lis-ét(X) of an Artin stack X. Its underlying category, the full subcat-
egory (which is in fact an ordinary category) of Chp /x spanned by smooth morphisms
whose sources are algebraic spaces, is equivalent to a U-small category. In particular,
Lis-ét(X) endowed with the étale topology is a U-site. We denote by Xjis ¢ the as-
sociated topos. Let M C Ar(Chp) be the set of smooth representable morphisms of
Artin stacks. The lisse-étale topos has enough points by [LMBO00, 12.2.2], and is func-
torial with respect to M, so that we obtain a functor Chp,, x Rind — RingedPTopos.
Composing with T (2.1), we obtain a functor

(5.8) (N(Chp)Fh x N(Rind)?)T — Catq,

that is a weak Cartesian structure.
To simplify the notation, for an algebraic space U, we will write U instead of Uegp ¢t
in what follows. Let A = (=, A) be an object of Rind. We denote by

Dcart (Xlis—ét7 >\) g ‘D(Xlis—étv >\)

(Notation 2.2.6) the full subcategory consisting of complexes whose cohomology sheaves
are all Cartesian (§0.1), or, equivalently, complexes K such that for every morphism
f:Y" =Y of Lis-ét(X), the map f*(K|Yy) — (K|Y/) is an equivalence. This full
subcategory is functorial under T in the sense that (5.8) restricts to a new functor

(5.9) e EO!: (N(€Chp)3 x N(Rind)”)" — Cate

that is a weak Cartesian structure, whose value at (X, \) iS Deare(Xiiser, A). 1t is
clear that the restrictions of “éf;EOI and ¢, EO' (5.4) to (N(Esp)7), x N(Rind)?)" are
equivalent, where M’ = M N Ar(€sp). In order to compare "§o-EO! and ¢, EO' more
generally, we start from the following lemma, which is a variant of Proposition 4.1.1.
Its proof is similar to Proposition 4.1.1, and we leave the details to the reader.

Lemma 5.3.1. Let (C,&,F) be a 2-marked co-category such that € admits pullbacks
and & C F are stable under composition and pullback. Let @ C C be a full subcategory
stable under pullback such that every edge in F is representable in € and for every
object X of C, there exists a morphismY — X in & with Y in C. Let D be an oo-
category such that D admits geometric realizations. Put & = ENCy, F=FNEC,. Let
Fun®(CP, D) C Fun(CY, D) (resp. Funs(ég_f’, D) C Fun(é;p, D) ) be the full subcategory
spanned by functors F such that for every edge f: X§ — X, in & (resp. in é),
Fo (X3T)P: N(A, 1) — D is a limit diagram, where X3t is a semisimplicial Cech
nerve of f in C (resp. €) [HTT, 6.5.3.6]. Then the restriction map

Funé(é%p, D) — Fun®(CP, D)

is a trivial fibration.
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For an object V' — X of Lis-ét(X), we denote by V the sheaf in Xlis.¢t repre-
sented by V. The overcategory (Xist) v is equivalent to the topos defined by the site

Lis-ét(X) i endowed with the étale topology [SGA4, III 5.4]. A morphism f: U — U’
of Lis-ét(X),y induces a 2-commutative diagram

(Xiset) 75— Ug

U /v
/ f*l lfét*

€U’y

(Xuis-at) 77 ~ (Xlis-ét)/g, — U},
of topoi [SGA4, TV 5.5].
For an object A = (Z, A) of Rind, let Dcm((XhS_ét)/‘;, N)® C 'D((th_ét)/";, A)® be the

full (monoidal) subcategory [HTT, 2.2.1] spanned by complexes on which the natural
transformation f* o ey, o u'™* — €y, ou* is an isomorphism for all f. We have a functor

[1] x Lis-ét(X) x Rind — RingedPTopos
sending [1] x {f: U — V'} x {\} to the square

((Xiisst) %, A) —== (UE, A)

/fj? ét?

f*l lfét*

((Xlis—ét)/E"}u A) i> (‘/0?7 A)

Composing with the functor T® (2.2), we obtain a functor
F: (A" x N(Lis-6t(X)) x N(Rind)” — CAlg(Cateo) gt a1-
By construction, F'(0,V,\) = @((X]is_ét)/"‘/’, A)®. Replacing F(0,V,\) by the full sub-

category Deare((Xiis-et) 5, A)®, we obtain a new functor

V'
F': (AY) x N(Lis-ét(X)) x N(Rind)” — CAlg(Caty,)

sending (A")? x {f: U — V} x {A\} to the square
'Dcart((Xlis—ét)/ﬁu )‘)® <l ®(Uét7 >\)®

f*T Ié

®cart((Xlis—ét)/\7> )‘)® 'é ®(V:§t> )‘)®
We have the following two lemmas.

Lemma 5.3.2. The functor F', viewed as an edge of

Fun(N(Lis-ét(X))? x N(Rind)??, CAlg(Cat..)),

L

is an equivalence. In particular, the functor F' factorizes through CAlg(Cates )y st.a1-



ENHANCED SIX OPERATIONS AND BASE CHANGE THEOREM 75

Proof. We only need to prove that for every object V' of Lis-ét(.X), the functor
€ D(Vees A) = Deart (Xiiset) 775 A)
is an equivalence. This follows from the fact that
€v: Mod(Vet, A) = Modcart ((Xiiset)
is an equivalence of categories and that the functor
€Vt MOd((X]is_ét)/";, A) = (Veg, A)
is exact, by the following lemma. O

Lemma 5.3.3. Let F': A — B be an exact fully faithful functor between Grothendieck
Abelian categories that admit an exact right adjoint G. Then F induces an equivalence
of oo-categories D(A) — Du(B), where Dy(B) denotes the full subcategory of D(B)
spanned by complexes with cohomology in the essential image of €.

Vo

/‘7’ )‘)

Proof. This is standard. The pair (F,G) induce a pair of t-exact adjoint between
D(A) and Dy (B). To check that the unit and counit are natural equivalences, we may
reduce to objects in the Abelian categories, for which the assertion follows from the
assumptions. O

Lemma 5.3.4. Letv: V — X be an object of Lis-ét(X), viewed as a morphism of Chp.
Assume that v is surjective. Then a complex K € D(Xjisst, A) belongs to Deart(Xiis-st, A)
if and only if v*K belongs to Dcart((th_ét)/‘;, A).

Proof. The necessity is trivial. Assume that v*K belongs to D vt ((Xiis-st) iz A). We

need to show that for every morphism f: Y’ — Y of Lis-ét(X), the map f*(K|Yy) —
(K| YY) is an equivalence. The problem is local for the étale topology on Y. However,
locally for the étale topology on Y, the morphism Y — X factorizes through v [EGAIV,
17.16.3 (ii)]. The assertions thus follows from the assumption. O

Now let V4 : N(A )% — N(Chp) be a Cech nerve of v where v: V — X be an object
of Lis-ét(.X'), which can be viewed as a simplicial object of Lis-ét(X). By Lemma 5.3.4,
we can apply Lemma 3.1.3 to U, = V. and C, = Modeart ((Xiisst)= , A). We obtain a
natural equivalence of symmetric monoidal co-categories

‘Dcart(Xlis—étv >\)® :> lﬂl Dcart((Xlis—ét)
neA

Combining this with a quasi-inverse of the equivalence in Lemma 5.3.2, we obtain the
following result.

‘}:7

NE.

Va'

Proposition 5.3.5 (Cohomological descent for lisse-étale topoi). Let X be an Artin
stack, V' an algebraic space, and v: V — X a surjective smooth morphism. Then there
is an equivalence in Fun(N(Rind)?, CAlg(Cate, )L . 1) sending X to the equivalence

pr,st,cl
gcart(Xlis—éta )\)® :> 1£1 Q(Vn,éta )\)®a

neA

where V, is a Cech nerve of v.
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The proposition has the following corollaries.

Corollary 5.3.6. Let f: Y — X be a smooth surjective representable morphism of
Artin stacks, \ an object of Rind, and Y, a Cech nerve of f. Then the functor
®cart(Xlis—ét7 ) L Cart( n,lis- et7>\)®

neEAg

s an equivalence.

Corollary 5.3.7. The functor "3 tEO! (5.9) belongs to Fun® (G P Cats) with the no-
tation in Lemma 5.3.1, where

e C = (N(Chp)?® x N(Rind)o)lLop;

o F consists of edges of that statzcally belong to M; and

o & C T consists of edges that are also statically surjective.

Corollary 5.3.8. The functor CtEOI (5.9) is equivalent to the restriction of the
functor ¢, EO' (5.7) to (N(Chp)3j x N(Rind)?)". In particular, for every Artin stack
X and every object X of Rind, we have an equivalence

®cart(Xlis—éta )\)® = ®(X7 )‘)®

of symmetric monoidal co-categories. Consequently, Deart(Xiisst, \)® s a closed pre-
sentable stable symmetric monoidal co-category. Here we recall that D(X, \)® is the
value of (X, A, (1),{1}) under the functor ¢, ,EO.

Corollary 5.3.9. Let X be an Artin stack, and \ an object of Rind. Under the
equivalence in Corollary 5.3.8, the usual t-structure on Dear(Xiiset, A) coincides with
the t-structure on D(X, \) obtained in Output II. In particular, the heart of D(X, \)
is equivalent to (the nerve of) Modea(Xin g, A), the Abelian category of Cartesian
(XE &, A)-modules.

Remark 5.3.10 (de Jong). The -pullback encoded by ¢, EO' can be described more
directly using big étale topoi of Artin stacks. For any Artin stack X, we consider the
full subcategories Espy,/xy © Chp,e,i,/x 0f Chp,y spanned by morphisms locally of
finite presentation whose sources are algebraic spaces and by representable morphisms
locally of finite presentation®, respectively. They are ordinary categories and we endow
them with the étale topology. The corresponding topoi are equivalent, and we denote
them by Xiyize. The construction of Xi,g e is functorial in X, so that we obtain a
functor Chp x Rind — RingedPTopos. Composing with T, we obtain a functor

(N(Chp)? x N(Rind)?)! — Cate,
that is a weak Cartesian structure, sending (X, \) to D(Xyige, A). Replacing the
latter by the full subcategory Deast(Xpig.et, A) consisting of complexes K such that
fA(K|Yg) = (K| Yy) is an equivalence for every morphism f: Y — Y’ of Esp,y, we
obtain a new functor

enfEO": (N(Chp)” x N(Rind)?)" — Cato,

8We impose the “locally of finite presentation” condition here to avoid set-theoretic issues.
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that is a weak Cartesian structure. Using similar arguments as in this section, with
e . bi

Lemma 5.3.1 replaced by Proposition 4.1.1, one shows that e EO" and ¢, ,EO' are

equivalent.

5.4. Higher Artin stacks. We begin by recalling the definition of higher Artin stacks.
We will use the fppf topology instead of the étale topology adopted in [Toé10]. The two
definitions are equivalent [Toé11]. Let 8ch®® C Sch be the full subcategory spanned by
affine schemes. Recall that 8y is the co-category of spaces in W € {U, V}°.

Definition 5.4.1 (Prestack and stack). We defined the oo-category of (V-)prestacks
to be ChpP™® := Fun(N(8ch*®)?, 8y). We endow N(Sch*™) with the fppf topology. We
define the co-category of (small) stacks Chp™"* to be the essential image of the following
inclusion
Shv (N(8ch™™)gopr) N Fun(N(8ch™), 8y) € Chp**,

where Shv(N(8ch®®)g, 1) € Fun(N(8ch*")?, 8y) is the full subcategory spanned by fppf
sheaves [HTT, 6.2.2.6]. A prestack F' is k-truncated [HTT, 5.5.6.1] for an integer
k> —1, if m;(F(A)) = 0 for every object A of 8ch™ and every integer i > k.

The Yoneda embedding N(Sch*™) — ChpP™ extends to a fully faithful functor
N(Esp) — Chp™™ sending X to the discrete Kan complex Homeg,(Spec A, X). The
image of this functor is contained in Chp™"". We will generally not distinguish between
N(Esp) and its essential image in Chp™?. A stack X belongs to (the essential image
of) N(&Esp) if and only if it satisfies the following conditions.

e [t is O-truncated.

e The diagonal morphism X — X x X is schematic, that is, for every morphism
Z — X x X with Z a scheme, the fiber product X X x.x Z is a scheme.

e There exists a scheme Y and an (automatically schematic) morphism f: Y — X
that is smooth (resp. étale) and surjective. In other words, for every morphism
Z — X with Z a scheme, the induced morphism Y x x Z — Z is smooth (resp.
étale) and surjective. The morphism f is called an atlas (resp. étale atlas) for
X.

Definition 5.4.2 (Higher Artin stack; see [Toél0, Gaib]). We define k-Artin stacks
inductively for k£ > 0.
o A stack X is a 0-Artin stack if it belongs to (the essential image of) N(Esp).
For k£ > 0, assume that we have defined k-Artin stacks. We define:

e A morphism F’ — F of prestacks is k-Artin if for every morphism Z — F
where Z is a k-Artin stack, the fiber product F’ X Z is a k-Artin stack.

e A k-Artin morphism F’" — F is flat (resp. locally of finite type, resp. locally of
finite presentation, resp. smooth, resp. surjective) if for every morphism Z — F
and every atlas f: Y — F’' xp Z where Y and Z are schemes, the composite
morphism Y — F' xp Z — Z is a flat (resp. locally of finite type, resp. locally
of finite presentation, resp. smooth, resp. surjective) morphism of schemes.

9We refer to §0.5 for conventions on set-theoretical issues.
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e A stack X is a (k + 1)-Artin stack if the diagonal morphism X — X x X is
k-Artin, and there exists a scheme Y together with an (automatically k-Artin)
morphism f: Y — X that is smooth and surjective. The morphism f is called
an atlas for X.

We denote by Chp** C Chp®P! the full subcategory spanned by k-Artin stacks. We
define higher Artin stacks to be objects of Chp™ = Uyso Chp™™*. A morphism F’ — F
of prestacks is higher Artin if for every morphism Z — F where Z is a higher Artin
stack, the fiber product I’ xr Z is a higher Artin stack.

To simplify the notation, we put Chp™VAr = N(8ch®) and Chp(2-Ar = N(8ch*P),
and we call their objects (—1)-Artin stacks and (—2)-Artin stacks, respectively.

By definition, Chp®** and Chp'™*" are equivalent to N(Esp) and N(Chp), respectively.
For k > 0, k-Artin stacks are k-truncated prestacks. Higher Artin stacks are hypercom-
plete sheaves [HTT, 6.5.2.9]. Every flat surjective morphism locally of finite presenta-
tion of higher Artin stacks is an effective epimorphism in the co-topos ShV(N(SChaH)fppf)
in the sense after [HTT, 6.2.3.5]. A higher Artin morphism of prestacks is k-Artin for
some k > 0.

Definition 5.4.3. We have the following notion of quasi-compactness.

e A higher Artin stack X is quasi-compact if there exists an atlas f: Y — X such
that Y is a quasi-compact scheme.

e A higher Artin morphism F’' — F of prestacks is quasi-compact if for every
morphism Z — F where Z is a quasi-compact scheme, the fiber product F' x pZ
is a quasi-compact higher Artin stack.

We define quasi-separated higher Artin morphisms of prestacks by induction as follows.

e A 0-Artin morphism of prestacks ' — F' is quasi-separated if the diagonal
morphism F' — F' X F', which is automatically schematic, is quasi-compact.
e For k£ > 0, a (k + 1)-Artin morphism of prestacks F' — F' is quasi-separated
if the diagonal morphism F' — F’ xp F’, which is automatically k-Artin, is
quasi-separated and quasi-compact.
We say that a morphism of higher Artin stacks is of finite presentation if it is quasi-
compact, quasi-separated, and locally of finite presentation.

We say that a higher Artin stack X is O-coprime if there exists a morphism X —
Spec Z[O7!]. This is equivalent to the existence of a (-coprime atlas. We denote by
Chpa" C Chp™ the full subcategory spanned by [-coprime higher Artin stacks. We
put Chp&A" = Chp*** N Chps'.

Definition 5.4.4 (Relative dimension). We define by induction the class of smooth
morphisms of pure relative dimension d of k-Artin stacks for d € Z U {—oo} and the
upper relative dimension dim™ (f) for every morphism f locally of finite type of k-Artin
stacks. If in Input 0 of §4.1, we let F (resp. €”, €") be the set of morphisms locally
of finite type (resp. smooth morphisms, smooth morphisms of pure relative dimension
d) of k-Artin stacks, then such definitions should satisfy conditions (6) through (9) of
Input 0.
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When k£ = 0, we use the usual definitions for algebraic spaces, with the upper
relative dimension given in Definition 4.1.11. For k > 0, assuming that these notions
are defined for k-Artin stacks. We first extend these definitions to k-representable
morphisms locally of finite type of (k + 1)-Artin stacks. Let f: Y — X be such a
morphism, and X, — X an atlas of X. Let fy: Yo — X, be the base change of
f by u. Then fy is a morphism locally of finite type of k-Artin stacks. We define
dim™ (f) = dim™(fy). It is easy to see that this is independent of the atlas we choose,
by assumption (9d) of Input 0. We say that f is smooth of pure relative dimension
d if fp is. This is independent of the atlas we choose by assumption (7) of Input 0.
We need to check (6) through (9) of Input 0. (7) through (9) are easy and (6) can
be argued as follows. Since fy is a smooth morphism of k-Artin stacks, there is a

decomposition fo: Yy >~ [l4ez Yo.a M Xo. Let Xy — X be a Cech nerve of u, and
put Yeq = Yo Xx, Xe. Then [[yezYea — Y is a Cech nerve of v: Yy — Y. Put
Y, = Mne Aop Y,.a. Then Y ~ [];c; Yy is the desired decomposition.

Next we extend these definitions to all morphisms locally of finite type of (k + 1)-

Artin stacks. Let f: Y — X be such a morphism, and vy: Yy = [14ez Yo.a —>(U°’d) Y an

atlas of Y such that v 4 is smooth of pure relative dimension d. We define
dim™(f) = sup{dim™ (f o vgq4) — d}.
dez

We say that f is smooth of pure relative dimension d if for every e € Z, the morphism
f ovg, is smooth of pure relative dimension d 4 e. We leave it to the reader to check
that these definitions are independent of the atlas we choose, and satisfy (7) through
(9) of Input 0. We sketch the proof for (6). Since fouwy . is smooth and k-representable,

. (fe e/) . .
it can be decomposed as Yy, >~ [l.ez Yo e —— X such that f. . is of pure relative

dimension ¢/. We let Yy be the colimit of the underlying groupoid object of the Cech
nerve of [T_o—qYoee — X. Then Y ~[[;c7 Yy — X is the desired decomposition.

Let F be the set of morphisms locally of finite type of higher Artin stacks. For every
k, we are going to construct a functor

enpr-arEOT: ((€hp*A) x N(Rind) )" — Cate,
that is a weak Cartesian structure, and a map

ehp;é.ArEoH: 03 123 ((EhpEA) x N(Rindpyor) 7)™ P) 5ty = Cati,

such that their restrictions to (k — 1)-Artin stacks coincide with those for the latter.
We construct by induction. When £ = —2,—1,0,1, they have been constructed

in §3.2, §5.1, §5.2, and §5.3, respectively. Assume that they have been extended to
k-Artin stacks. We run the version of DESCENT in Variant 4.1.9 with the following
input:

o C = Chp* VAT Tt is geometric.

e C = Chp™*, s — ¢ is the identity morphism of Spec Z[(J~!]. In particular,

@ =€ = Chp&™T, and € = €7 = hpFTIAT,
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o &, is the set of surjective morphisms of (k + 1)-Artin stacks.

o & =" is the set of smooth morphisms of (k + 1)-Artin stacks.

e & is the set of smooth morphisms of (k + 1)-Artin stacks of pure relative
dimension d.

o &, is the set of flat morphisms locally of finite presentation of (k + 1)-Artin
stacks.

e F = F'is the set of morphisms locally of finite type of (k + 1)-Artin stacks.

e L =N(Rind)?, and L' = L" = N(Rind_or) .

e dim™ is the upper relative dimension in Definition 5.4.4.

e Input I and II is given by induction hypothesis. In particular, we take

GEOI - ehpk-ArEOI, GI:EJ()II - ehpE—ArEOII.

Then the output consists of desired two maps ehpk+1-ArEOI, ehpk+1-ArEOH and Output
[m]

11, satisfying (P0) — (P7"®). Taking union of all k& > 0, we obtain the following two
maps: a functor

(5.10) enptr EOT: ((Ehp™)? x N(Rind)”?)" — Cat,
that is a weak Cartesian structure, and a map

(511) e BO™: 85 ) (PR x N(Rinds.ior)”) )52, > Cate.

5.5. Higher Deligne—Mumford stacks. The definition of higher Deligne-Mumford
(DM) stacks is similar to that of higher Artin stacks (Definition 5.4.2).

Definition 5.5.1 (Higher DM stack).
o A stack X is a 0-DM stack if it belongs to (the essential image of) N(Esp).
For k > 0, assume that we have defined k-DM stacks. We define:

e A morphism F’ — F of prestacks is k-DM if for every morphism Z — I where
Z is a k-DM stack, the fiber product I’ X Z is a k-DM stack.

e A k-DM morphism F" — F of prestacks is étale (resp. locally quasi-finite) if for
every morphism Z — F and every étale atlas f: Y — F’ xp Z where Y and
Z are schemes, the composite morphism Y — F' xp Z — Z is an étale (resp.
locally quasi-finite) morphism of schemes.

e Astack X isa (k+1)-DM stack if the diagonal morphism X — X x X is k-DM,
and there exists a scheme Y together with an (automatically k~-DM) morphism
f:Y — X that is étale and surjective. The morphism f is called an étale atlas
for X.

We denote by Chp*PM C @hpPP! the full subcategory spanned by k-DM stacks. We
define higher DM stacks to be objects of Chp®M = Uk>o Chp"PM. We put ChpM =
Chp™™ N Chpa', and ChpsPM = ehp*PM N ehpP™M.

A morphism of higher DM stacks is étale if and only if it is smooth of pure relative
dimension 0.
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Let F' be the set of morphisms locally of finite type of higher DM stacks. For every
k, we are going to construct a functor

enpr-on EO': ((Chp"PM) 5 N(Rind)?)" — Catio
that is a weak Cartesian structure, and a map
enpr-oM BO™ 1 05 15y (((Chp™ M) 5 N(Rindyer)?) ™) 50 — Catioo,

such that their restrictions to (k—1)-DM stacks coincide with those for the latter. Note

that the first functor has already been constructed in §5.4, after restriction. However

for induction, we construct it again, which in fact coincides with the previous one.
We construct by induction. When k£ = 0, they have been constructed in §5.2. As-

suming that they have been extended to k-DM stacks. We run the program DESCENT

with the following input:

€ = Chp**+VPM Tt ig geometric.

€ = Chp*PM  s” — ¢ is the morphism Spec Z[~'] — SpecZ.

& is the set of surjective morphisms of (k + 1)-DM stacks.

&' is the set of étale morphisms of (k + 1)-DM stacks.

€ is the set of smooth morphisms of (k + 1)-DM stacks.

E" is the set of smooth morphisms of (k-+1)-DM stacks of pure relative dimension

d.

e &, is the set of flat morphisms locally of finite presentation of (k+1)-DM stacks.

e F = F is the set of morphisms locally of finite type of (k4 1)-DM stacks.

e L =N(Rind)?, L' = N(Rind;e, ), and L£L” = N(Rindq 4or ).

e dim™ is the upper relative dimension.

e Input I and II is given by induction hypothesis. In particular, we take

GEOI = ehpk-Dl\/IEOI7 CI:EDOII == ehpk—Dl\/IEOII.

Then the output consists of desired two maps ehpk+1-DMEOI, ehpk+1-D1\/IE0H and Output
11, satisfying (P0) — (P7"*). Taking union of all k > 0, we obtain a functor

(5.12) enpo EO: ((CGhp™)? x N(Rind) )" — Caty
that is a weak Cartesian structure, and a map
(5.13) enpoMBO™ 1 03 oy ((€hpPM) 5 N(Rindger)?)™) 5 — Catog.

Remark 5.5.2. We have the following compatibility properties:

e The restriction of o AEO' to ((Chp”M)P x N(Rind)®)! is equivalent to
ehle\/IEO®.

e The restrictions of ChpPM EO™" and ehpArEOH to the common domain
O

5123 ((ChpR™)” x N(Rindg.cor) )™ ) 350

are equivalent.
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Variant 5.5.3. We denote by @) C F' the set of locally quasi-finite morphisms. Apply-
ing DESCENT to the map g ac hEO™ constructed in Variant 3.2.6 (and gyacer EO'),
we obtain a map

(5.14) SIEO™: 63 15y (((ChpPM)? x N(Rind)?)™P)&r — Cat.

ehpDM

This map and g, ou EO! are equivalent when restricted to their common domain.

Remark 5.5.4. The oo-category ChpPM can be identified with a full subcategory of
the oo-category Sch(Get(Z)) of Get(Z)-schemes in the sense of [Lur, 2.3.9, 2.6.11]. The
constructions of this section can be extended to Sch(Ge(Z)) by hyperdescent. We will
provide more details in [LZb].

Remark 5.5.5. Note that in this chapter, we have fixed a non-empty set [J of rational

primes. In fact, our constructions are compatible for different [J in the obvious sense.

For example, if we are given [1; C [y, then the maps ehpdr EOY and ChpAt EO!Y are
1 2

equivalent when restricted to their common domain, which is
85,23 (((ChPE,) ™ x N(Rindg, o)) ) 51

We also have obvious compatibility properties for Output II under different (.

6. SUMMARY AND COMPLEMENTS

In this chapter we summarize the construction in the previous chapter and presents
several complements. In §6.1, we study the relation of our construction with category
of correspondences. In §6.2, we write down the resulting six operations for the most
general situations and summarize their properties. In §6.3, we prove some additional
adjointness properties in the finite-dimensional Noetherian case. In §6.4, we develop a
theory of constructible complexes, based on finiteness results of Deligne [SGA4d, Th.
finitude] and Gabber [TGxiii]. In §6.5, we show that our results for constructible
complexes are compatible with those of Laszlo-Olsson [LOO0S].

We remark that §6.1 is independent to the later sections, so readers may skip the
first section is they are not interested in the relation with category of correspondences.

Once again, we fix a nonempty set [ of rational primes.

6.1. Monoidal category of correspondences. The oo-category of correspondences
was first introduced by Gaitsgory [Gail3]. We start by recalling the construction of
the simplicial set of correspondences from [L.Za, Example 4.30].

For n > 0, we define C(A™) to be the full subcategory of A™ x (A™)° spanned by
(1,7) with ¢ < j. An edge of C(A™) is vertical (resp. horizontal) if its projection to
the second (resp. first) factor is degenerate. A square of C(A™) is exact if it is both a
pushout square and a pullback square. We extend the above construction to a colimit
preserving functor C: Seta — Seta. Then C also preserves finite products. The right
adjoint functor is denoted by Corr. In particular, we have Corr(K),, = Hom(C(A"™), K)
for a simplicial set K.
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Definition 6.1.1. Let (C, &, E2) be a 2-marked oo-category. We define a simplicial
subset Ceopr: £,.6, Of Corr(C), called the simplicial set of correspondences, such that its
n-cells are given by maps C(A™) — € that send vertical (resp. horizontal) edges into
&1 (resp. €7), and exact squares to pullback squares.

By construction, there is an obvious map

* cart
2,{2} ~¢&1,82 — Gcorr: E1,E29

which is a categorical equivalence by [L.Za, Example 4.30].
The following lemma shows that under certain mild conditions, Ceopy: ¢, ¢, 1S an oco-
category.

Lemma 6.1.2. Let (C, &4, Ey) be a 2-marked co-category such that

(1) both €, and €5 are stable under composition;
(2) pullbacks of €1 by €y exist and remain in Ey;
(8) pullbacks of €5 by &1 exist and remain in Es.

Then Ceorr: €,.6, s an co-category.

Proof. We check that Ceopr. ¢, e, — * has the right lifting property with respect to the
collection Ay in [HTT, 2.3.2.1]. Since C preserves colimits and finite products, to give
a map
[ (A" x AY) ] (0A™ x A%) — Corr(C)
DA™ X A2
is equivalent to give a map

Fo(cam xc@y)) I (Coam) x C(a?) —e.
C(DA™)x C(A2)
Let X and X’ be defined as in the dual version of [HTT, 4.2.3.15] with € = C(A?),
€% = C(A}), and D = € (in our setup). If f factorizes through Ceop. ¢,.e,, then f*
induces a commutative square

C(OA™) —= K

| ]

C(A™) — K

by assumption (2) or (3). Since the restriction map K — X’ is a trivial fibration by
the dual of [HTT, 4.2.3.15], there exists a dotted arrow g*: C(A™) — X as indicated
above. We regard ¢* as a map C(A™ x A?%) ~ C(A™) x C(A?%) — €, thus induces a
map g: A™ x A% — Corr(C). Since all exact squares of C(A™ x A?) can be obtained
by composition from exact squares either contained in the source of f* or being con-
stant under the projection to C(A™), the three assumptions ensure that if f factorizes
through Ceorr: ¢, ,¢,, then so does g. O

Now we study certain natural coCartesian symmetric monoidal structure on the oo-
category Ceomr: &;.6,- Let (€, E) be a marked oo-category. We construct a 2-marked
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co-categories ((CoP)Hor €= €7) as follows: We write an edge f of (€°P)1°P in the form
{Y;hi<j<n — {Xiti<i<m lying over an edge a: (m) — (n) of N(Fin,). Then €T consists
of f such that the induced edge Y,y — X; belongs to € for every i € o' (n)°. Define
&~ to be the subset of £T such that the edge « is degenerate.

Proposition 6.1.3. Let (C, &1, Ey) be a 2-marked co-category satisfying the assump-
tions in Lemma 6.1.2 and such that Ce, admits finite products. Then

(61) p: ((GOP)H,OP)COIT: 8;,8; - N(g:ln*)

is a coCartesian symmetric monoidal co-category [HA, 2.4.0.1], whose underlying oco-
category 15 Ceorr: £,,6, -

Proof. Put 0% := ((Cop)er) e- ¢ for simplicity. If (€, &y, &) satisfies the assump-
tions in Lemma 6.1.2, then so does ((C?)1P €7 €F). Therefore, by Lemma 6.1.2, O%®
is an oo-category hence (6.1) is an inner fibration by [HTT, 2.3.1.5]. By Lemma 6.1.4
below, we know that p is a coCartesian fibration since Ce¢, admits finite products. More-
over, we have the obvious isomorphism O%ﬂ ~ [Ti<icn O% induced by pj: Of% — O%.
By [HA, 2.0.0.7], (6.1) is a symmetric monoidal co-category. The remaining assertions
are obvious from definition and construction. O

Lemma 6.1.4. Suppose that (C, 1, Ey) satisfies the assumptions in Lemma 6.1.2. If
we write an edge f of ((CP)TP) ., - ¢+ in the form

{Zih<jen —= {Xi}ti<icm

|

{Yiticj<n

lying over an edge a: (m) — (n) of N(Fin,) under (6.1), then f is p-coCartesian
[HTT, 2.4.2.1] if and only if

(1) for every 1 < j <mn, the induced morphism Z; — Y; is an isomorphism; and
(2) for every 1 < j <mn, the induced morphisms Z; — X,; with (i) = j exhibit Z;
as the product of {X;}a@)=; in Ce,.

Proof. The only if part: Suppose that f is a p-coCartesian edge.
We first show (1). Without lost of generality, we may assume that « is the degenerate
edge at (1). In particular, the edge f we consider has the form

l

—X.
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Assume that f is p-coCartesian. In terms of the dual version of [HTT, 2.4.1.4], we are
going to construct a diagram of the form

\
AfO\L - ((GOP)H’Op)corr: 8;,8;

7
-
P lp
~

N(&Fin,)

(6.2) ATOL}

in which n = 3 and the bottom map is constant with value (1). We may construct a
map ¢ in (6.2) such that its image of C(A{12H) C(ALOL3Y) C(A023}) are

.
|

Y

—— 2z ——=x —x, oz

Y )

/

N

—_—

N TN

respectively, in which

all squares are Cartesian diagrams;

all edges z — = are same as the one in the presentation of f;

all vertical edges z — y are same as the one in the presentation of f;
in the second and third diagrams, all 2-cells are degenerate.

Note that the existence of the first diagram is due to the lifting property for n = 2.
Now we lift g to a dotted arrow as in (6.2). The image of the unique nondegenerate
exact square in C(A{123}) provides a pullback square

y/
z.
Therefore, the edge y — ¢’ is an isomorphism, and it is easy to check that the left
vertical edge y — z is an inverse of the edge z — y in the presentation of f.

Next we show (2). Without lost of generality, we may assume that « is the unique
active map from (m) to (1) [HA, 2.1.2.1]; and the edge f has the form

|

="K

Yy— {xi}lgigm-

Y
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We construct a diagram (6.2) as follows. The bottom map A™ — N(&Fin,) is given by
the sequence of morphisms

(m) 2 (1) 24 ... 2 (1),

Note that we have a projection map 7w: C(A™) — (A™)° to the second factor. Denote by

We then have a map g, = o o 7": (C(Af) N C(A™)g) x (m)° — Ce¢,, which induces a
map g as in (6.2). The existence of the dotted arrow in (6.2) will provide a filling of «
to (Atl-mh)er This implies that y — {z;}1<i<m is a final object of (Ces) bt <icm-

The if part: Let f be an edge satisfying (1) and (2). To show that f is p-coCartesian,
we again consider the diagram (6.2). Define C(A™) to be the oo-category by adding
one more object (0,0)" emitting from (0,0) in C(A™), which can be depicted as in the
following diagram

(0,2) — (0,1) — (0,0) — (0, 0)".

(1,2) —(1,1)

|

(2,2)

We have maps C(A") & C(A")" & C(A™), in which ¢ is the obvious inclusion, and
collapse the edge (0,1) — (0,0) to the single object (0,1) and sends (0,0)" to (0,0).
Let K C C(A™) be the simplicial subset that is the union of C(A{) and the top row of
C(A™). Define K’ to be the inverse image of K under . Then ¢ sends C(Af) into K.
We have one more inclusion ¢': C(A™) — C(A™)" that sends (0,0) to (0,0)" and keeps
the other objects.

A map g as in (6.2) gives rise to a map g*: C(A}) — (CP)1°P. By (2) and [HA,
2.4.3.4], we may extend ¢* to K. Consider the new map ¢* oy or: C(A}) — (€°P)tor,
which gives rise to a map ¢’ as in (6.2) however with the restriction g’ | A%} being
an equivalence in the oo-category ((€P)or) e-et by (1). Therefore, we may lift ¢’
to an edge ¢’ as the dotted arrow in (6.2) by [HTT, 2.4.1.5]. Now ¢’ induces a map
g% C(A™) — (C)er To find a lifting of g as the dotted arrow in (6.2), it suffices
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to extend §* to C(A™) under the inclusion ¢ such that its restriction to C(Af) with
respect to the other inclusion ¢/ coincides with ¢*. However, this lifting problem only
involves the top row of C(A™)’, which can be solved because of (2). O

Definition 6.1.5 (symmetric monoidal oo-category of correspondences). Let
(C, &4, &) be a 2-marked oco-category satisfying the assumptions in Proposition 6.1.3
(3). We call (6.1) the symmetric monoidal co-category of correspondences associated
to (€,&1,8&;), denoted by p: €F .. ¢ ¢, — N(JFin,) or simply CF . . ¢ ¢ It is a
reasonable abuse of notation since its underlying oo-category is Ceorr: ¢,,¢,-

We apply the above construction to the source of the map ehpérEOH (5.11). Take

C= thér X N(Rindpor), €1 := Er to be the set of edges of the form (f, g) where f
belongs to F' and ¢ is an isomorphism, and €, = all to be the set of all edges. Note that
(C, &4, &2) satisfies the assumptions in Proposition 6.1.3 (2) hence defines a symmetric
monoidal oo-category €. ¢, -

By definition, we have the identity

05 123 (((EhpE") ™ x N(Rindeyior) #)™ )50y = 85, 4o ((€F) )

&rET
Since the map

—e®

corr: €p,all

57{2}((@0”)&@)?;; — ((@°P)thor)

corr: & ,&5
is a categorical equivalence, by Proposition 6.1.3 (1), the map (5.11) induces a map

(6.3) e — Caty,.

corr: &p,all

Lemma 6.1.6. The functor (6.3) is a weak Cartesian structure.

Proof. 1t follows from the fact that (5.10) is a weak Cartesian structure, the construc-
tion of (5.11), and Lemma 6.1.4. O

From the above lemma, we know that (6.3) induces an co-operad map

(6.4) e EO oy (Chpd" x N(Rindeior)) o &, a1 — Cats

corr *

between symmetric monoidal oco-categories. Similarly, we have two more oco-operad
maps

(6.5) enpoMEO opy - (EhpPY X N(Rindyor)) s ¢ an — Cat,
and
(66> @hpé%fEOcorr: (ehpDM X N(:Rind»g))rr: Eq,all - eat:ov

induced from (5.13) and (5.14), respectively.
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Remark 6.1.7. By all the constructions and (P2) of DESCENT, we obtain the following
square

((Chpa x N(Rindpor)) ) —— ((Chp™* x N(Rind))°)"

Eocorr (64) l
Catl,

Chpér

(ChpA" x N(Rindrior))E

corr: Ep,all

in the co-category of symmetric monoidal oo-categories with oo-operad maps, where
the right vertical map is induced from g AEO" (5.10).

The new functor g a-EO,,, loses no information from the original one ehpArEOH.
[ [m]

corr
However, the new one has the advantage that its source is an co-category as well.

The above remarks can be applied to the other two cases as well.

6.2. The six operations. Now we can summarize our construction of Grothendieck’s
six operations. Let f: Y — X be a morphism of Chp™® (resp. Chp™™, resp. Chp™™), and
A an object of Rind. From ehpArEOI (5.10) (resp. ehpDMEOI (5.12), resp. ehpDMEOI) and
ChpérEocorr (6.4) (resp. gppmEOQy, (6.5), resp. ehpé‘ﬁEO (6.6)), we directly obtain
three operations:

1L: f*: D(X, A) = D(Y, \), which underlies a monoidal functor

f2:D(X,A)® = D(Y, \)%;

2L: fi: D(Y,\) — D(X, \) if f is locally of finite type, A belongs to Rindq o, and
X is O-coprime (resp. f is locally of finite type and A belongs to Rindy,,, resp.
f is locally quasi-finite and X is arbitrary);
3L: —®@ —=—Qx —: DX, A) x D(X, \) = D(X, \).
If X is a 1-Artin stack (resp. 1-DM stack), then D(X,\)® is equivalent to
Deart (Xiisets M) (resp. D(Xege, A)®) as symmetric monoidal co-categories.
Taking right adjoints for (1L) and (2L), respectively, we obtain:
1R: fi: D(Y,A) = D(X, \);
2R: f': D(X,\) — D(Y, \) under the same condition as (2L).
For (3L), moving the first factor of the source D(X, A) x D(X, \) to the target side, we
can write the functor — ® — in the form D(X, \) — Fun®(D(X, \), D(X, \)), since the
tensor product on D(X, A) is closed. Taking opposites and applying [HTT, 5.2.6.2], we
obtain a functor D(X, \)? — Fun®(D(X, \), D(X, \)), which can be written as
3R: Hom(—, —) = Homy(—, —): D(X, A)? x D(X, ) = D(X, \).
Besides these six operations, for every morphism 7: X’ — X of Rind, we have the
following functor of extension of scalars:

4L: 7*: D(X,\) — D(X, \'), which underlies a monoidal functor
7€ DX, N)® — DX, \)%.

The right adjoint of the functor 7* is the functor of restriction of scalars:
4R: 7.: DX, N) — D(X, N).

corr
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The following theorem is a consequence of existence of the map ehpérEO (6.4)

(6.5), resp. g pHEOq,, (6.6)).

corr

(resp. ep,pmEO

corr

Theorem 6.2.1 (Kiunneth Formula). Let f;: Y, — X; (i = 1,...,n) be finitely many
morphisms of Chpa' (resp. ChpPM, resp. ChpP™ ) that are locally of finite type (resp.
locally of finite type, resp. locally quasi-finite). Given a pullbacks square

y yl XX yn
fl lflx--an
X (P1,e-sPn) Yox e x Y,

of Chp" (resp. Chp™™, resp. Chp™™), then for every object X of Rindro: (resp.
Rindier, resp. Rind), the following square

7 —Qy - ®yqn—

DYy, A) X -+ x D(Yp, A) D(Y, )
f1!><"'><fn!l/ lf;
D(X1, A) X -+ X D(Xp, N) — BT gy )
is commutative up to equivalence.
It has the following two corollaries.
Corollary 6.2.2 (Base Change). Let
w—2-2
ql lp
yLox
be a Cartesian diagram in thér (resp. Chp™™, resp. ChpP™ ) where p is locally of finite

type (resp. locally of finite type, resp. locally quasi-finite). Then for every object A of
Rindg ior (resp. Rindy,, resp. Rind), the following square

D(W, \) <L D(Z, \)

|

D(Y, \) < D(X, \)

is commutative up to equivalence.

Corollary 6.2.3 (Projection Formula). Let f: Y — X be a morphism of Chp (resp.
thDM, resp. thDM) that is locally of finite type (resp. locally of finite type, resp.



90 YIFENG LIU AND WEIZHE ZHENG

locally quasi-finite). Then the following square

D(Y,\) x D(X,\) —2= Dy, \)

f!Xidl J{f!

DX, \) x D(X, ) —2= ~ D(X, \)

is commutative up to equivalence.

Proposition 6.2.4. Let f: Y — X be a morphism of Chp™, and \ an object of Rind.
Then

(1) The functors f*(— ®x —) and (f*—) ®y (f*—) are equivalent.

(2) The functors Homy(—, fo—) and f.FHomy(f*—,—) are equivalent.

(8) If f is a morphism of Chpa® (resp. Chp°™, resp. Chp®M) that is locally of
finite type (resp. locally of finite type, resp. locally quasi-finite), and \ belongs
to Rindggor (Tesp. Rindye,, resp. Rind), then the functors f'Homy(—,—) and
Homy(f*—, f'—) are equivalent.

(4) Under the same assumptions as in (3), the functors f,Homy(—,f'=) and
Homy (fi—, —) are equivalent.

Proof. For (1), it follows from the fact that f* is a symmetric monoidal functor.

For (2), the functor Hom(—, f.—): D(X,N\)? x D(Y,\) — D(X, A) induces a functor
D(X, N)? — Fun®(D(Y, \), D(X, \)). Taking opposite, we obtain a functor D(X, \) —
Fun®(D(X, \), D(Y, ), which induces a functor D(X,\) x D(X,\) — D(Y,\). By
construction, the latter is equivalent to the functor f*(— ®x —). Repeating the same
process for f,Hom(f*—, —), we obtain (f*—)®y (f*—). Therefore, by (1), the functors
Hom(—, f.—) and f.Hom(f*—, —) are equivalent.

For (3), the functor f'Hom(—, —): D(X, A\)? x D(X, A) — D(Y, \) induces a functor
D(X, NP — Fun®(D(X, N), D(Y, \)). Taking opposite, we obtain a functor D(X, \) —
Fun®(D(Y, \), D(X, \)), which induces a functor D(X,\) x D(Y,\) — D(X,\). By
construction, the latter is equivalent to the functor — ®y (fi—). Repeating the same
process for Hom(f*—, f'—), we obtain fi((f*—) ®y —). Therefore, by Corollary 6.2.3,
the functors f'Hom(—, —) and Hom(f*—, f'—) are equivalent.

For (4), the functor f,Hom(—, f'=): D(Y,\)? x D(X,\) — D(X,)\) induces a
functor D(Y, \)? — Fun®(D(X, \), D(X, \)). Taking opposite, we obtain a functor
DY, \) — Fun®(D(X,\), D(X, )\)), which induces a functor D(Y,\) x D(X,\) —
D(X, A). By construction, the latter is equivalent to the functor fi(— ®y (f*—)). Re-
peating the same process for Hom(fi—, —), we obtain (fi—) ®x —. Therefore, by
Corollary 6.2.3, the functors f,Hom(—, f'—) and Hom(fi—, —) are equivalent. O

Proposition 6.2.5. Let X be an object of Chp™, and m: N — X\ a morphism of Rind.
Then

(1) The functors m*(— ®x —) and (7*—) @y (7*—) are equivalent.

(2) The functors Homy(—, m,—) and m.Homy (7*—, —) are equivalent.

Proof. The proof is similar to Proposition 6.2.4. U
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Proposition 6.2.6. Let f: Y — X be a morphism of Chp™, and 7: N — X\ a perfect
morphism of Rind. Then the square

(6.7) D(Y, N) <I— DX, V)

| -

D(Y, \) <L D(X, \)

is right adjointable and its transpose is left adjointable.

Ar

In particular, if X is an object of Chp™ and 7: A’ — X is a perfect morphism of

Rind, then 7* admits a left adjoint
m: D(X,N) = D(X, N).

Proof. The first assertion follows from the second one. To show the second assertion,
by Lemma 4.3.7, we may assume that f is a morphism of Sch®*?. In this case the
proposition reduces to Lemma 2.2.8. L]

Proposition 6.2.7. Let f:'Y — X be a morphism of th‘ér (resp. Chp™™M, resp.
Chp™M) that is locally of finite type (resp. locally of finite type, resp. locally quasi-
finite), and w: X' — X a perfect morphism of Rindr o (resp. Rindie, resp. Rind).
Then the square

1

(6.8) D(Y, N}~ DX, V)
DY, A) L= D(X, A)
is right adjointable and its transpose is left adjointable.
Proof. 1t follows from Lemmas 4.3.7 and 3.2.9. O

Proposition 6.2.8. Let X be an object of Chp™, A = (2, A) an object of Rind, and &
an object of Z. Consider the obvious morphism w: N == (Z,¢, A|Z/¢) = X. Then

(1) The natural transformation m(—®y7*—) — (m—)®x— s a natural equivalence.

(2) The natural transformation m*Homy(—, —) — Homy (7*—, 7*—) is a natural
equivalence.

(3) The natural transformation Homy(m—,—) — mHomy(—,7*—) is a natural
equivalence.

Proof. Similarly to the proof of Proposition 6.2.4 (3), (4), one shows that the three
assertions are equivalent (for every given X). For assertion (1), we may assume that
X is an object of 8ch9*®. In this case, assertion (2) follows from the fact that 7*
preserves fibrant objects in Ch(Mod(—))™. O

Let X be an object of Chp™', and A = (Z, A) and object of Rind. There is a t-structure
on D(X, A), such that if X is a 1-Artin stack (resp. 1-DM stack), then it induces the
usual t-structure on its homotopy category Deur (X5, 4, A) (resp. D(XE, A)). For an
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object sx: X — SpecZ of Chp™T, we put Ay = 85 Aspecz, Which is a monoidal unit of
D(X, \)® and also an object of D¥(X, ). We have the following theorem of Poincaré
duality from (P7) of DESCENT.

Theorem 6.2.9 (Poincaré duality). Let f: Y — X be a morphism of Chpa' (resp.
Chp™™M) that is flat (resp. flat and locally quasi-finite) and locally of finite presentation.
Let X\ be an object of Rindg g0, (resp. Rind ). Then

(1) There is a trace map
Tl"fi Tzofg)\y <d> = TZOf'(f*)\x><d> — )\x

for every integer d > dim™ (f), which is functorial in the sense of Remark 4.1.6.
(2) If f is moreover smooth, the induced natural transformation

us: fio fH(dim f) — idy
is a counit transformation, so that the induced map
f*(dim f) = f's DX, A) = DY, A)
is a natural equivalence of functors.

Corollary 6.2.10 (Smooth (resp. Etale) Base Change). Let

w—1-2

ql lp

y_.ox
be a Cartesian diagram in Chps' (resp. Chp™™ ) where p is smooth (resp. étale). Then
for every object A of Rindp 4o, (resp. Rind), the following square

D(W, ) <L D(Z, )

q*T Tp*

D(Y, ) <I— D(X, \)

is right adjointable.

Proof. This is part (2) of (P5"). It also follows from Corollary 6.2.2 and Theorem
6.2.9 (2) as in Lemma 4.1.13. O

Proposition 6.2.11. Let f: Y — X be a morphism of Chpa' (resp. Chp°™), and X
an object of Rindp oy (resp. Rindio, ). Assume that for every morphism X — X from
an algebraic space X, the base change Y x X — X is a proper morphism of algebraic
spaces; in particular, f is locally of finite type. Then

f*vf!: ‘D(Iéa)‘) — ‘D(x7 A)

are equivalent functors.



ENHANCED SIX OPERATIONS AND BASE CHANGE THEOREM 93

Proof. We only prove the proposition for thér and leave the other case to readers.
For simplicity, we call such morphism f in the proposition as proper. For every integer
k > 0, denote by €F the subcategory of Fun(Al, thé’Ar) spanned by objects of the
form f: Y — X that is proper and edges of the form

(6.9) y

ql lp

yLox
that is a Cartesian diagram in which p hence ¢ are smooth. In addition, we let €~! be
the subcategory of €° spanned by f: Y — X such that X hence Y are quasi-compact
separated algebraic spaces. For k > —1, denote by & the subset of (C*); consists of
(6.9) in which p hence g are moreover surjective. We have &F N (€F~1); = &F1 for
k > 0.

By Corollary 6.2.10 and the map ehpE-ArEO;k (obtained from ehpI&-ArEOH as in (3.9)),

for every k > —1, we have two functors

FF FF: (C%)P — Fun(A', Cat,,)

in which the first (resp. second) one sends f: Y — X to f.: D(Y,\) = D(X,\) (resp.
fir: D(Y,\) = D(X, \)), and an edge (6.9) to

fi (vesp. f})

DY, ) DX, N)
q*T Tp*
J« (resp. fi)

D(Y, \) D(X,N).

By Remark 5.2.4, F-! and F! are equivalence. Applying Proposition 4.1.1 succes-
sively to marked oo-categories (C*, EF), we conclude that F¥ and FF are equivalence
for every k£ > 0. The proposition follows. U

Remark 6.2.12. Let f: Y — X be a morphism of thé‘r (resp. Chp”™) that is locally of
finite type and representable by DM stacks, and A an object of Rindq 4o, (resp. Rindy, ).
We can always construct a natural transformation

fi = fo: DY, A) = D(X,N)
of functors, which specializes to the equivalence in Proposition 6.2.11 if f satisfies the
property there.
Theorem 6.2.13 ((Co)homological descent). Let f: X — X, be a smooth surjective
morphism of Chp™® (resp. Chp®), and XF a Cech nerve of f.
(1) For every object X of Rind, the functor
D(XH,A) — lim D(X,1, )\
PY T

is an equivalence, where the transition maps in the limit are provided by *-
pullback.
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(2) Suppose that f is a morphism of Chpa® (resp. ChpPM ). For every object A of
Rindq.ior (resp. Rindy,, ), the functor
DX, N) — l&n DX, N)
neA
is an equivalence, where the transition maps in the limit are provided by !-
pullback.

Proof. 1t follows from (P4) of DESCENT. O

Corollary 6.2.14. Let f: Y — X be a morphism of Chp™ (resp. Chp®™) and let
y: Yot — Y be a smooth surjective morphism of Chp™” (resp. Chp®™ ). Denote Y& the
Cech nerve of y with the morphism y,: Y.F - Y =Y. Put f, = foy,: YF — X.
(1) For every object X of Rind and every object K € D=°(Y, A), we have a convergent
spectral sequence

EPY = HY(f,.y"K) = HPIf.K.

(2) Suppose that f is a morphism of Chpa® (resp. Chp®M). For every object A of
Rindg.ior (resp. Rindi, ) and every object K € D=0(Y, A), we have a convergent
spectral sequence

EP? = HI(f_py_ K) = HPTIfK.

Proof. 1t essentially follows from Theorem 6.2.13 and [HA, 1.2.4.5 & 1.2.4.9].

For (1), we obtain a cosimplicial object N(A) — D=°(Y, A) whose value at [n] is
Ynsy K, such that K is its limit by Theorem 6.2.13 (1); in other words, we have K =
Hm _ yn.yn K. Applying the functor f., we obtain another cosimplicial object N(A) —
D=9(X, A) whose value at [n] is fn.y:K, such that f,K is its limit. Put € = D(X,A)P
and let C5¢ = D2Y(X,A)? Cc = DO(X,A)? be the induced (homological) t-
structure. Then we obtain a simplicial object N(A)® — €, whose value at [n] is
faxyi K, with f.K its geometric realization. By [HA, 1.2.4.5 & 1.2.4.9], we obtain a
spectral sequence {EZ9},~; abutting to HP*7f,K, with E{"" = H(f,.y;K).

For (2), by Theorem 6.2.13 (2), the functor D(Y, \)?? — Hm D(YF, A\ is an
equivalence, where the transition maps in the limit are provided by !-pullback. Similar
to (1), we obtain a cosimplicial object N(A) — D=0(Y, A)° whose value at [n] is ¥,y K,
such that K is its limit. Applying the functor fi, we obtain another cosimplicial object
N(A) — D=(Y, A)° whose value at [n] is f.y.,K, such that fiK is its limit. Put C =
D(X,A) and let Cso == D=V(X,A), C<o == D=2°(X, A) be the induced (homological)
t-structure. Then we obtain a simplicial object N(A)%” — €5 whose value at [n] is
fuyi K, with fiK its geometric realization. By [HA, 1.2.4.5 & 1.2.4.9], we obtain a
spectral sequence {EP?},~; abutting to HP9fK, with E}? = H(f_py K). O

The following lemma will be used in §6.4.

Lemma 6.2.15. Let f: Y — X be a morphism locally of finite type of thér (resp.
Chp®™), and X an object of Rindper (resp. Rindeoy ). Then f restricts to a functor
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DY, \) — D=¥ (X, \), where d = dim™ (f). Moreover, if f is smooth (resp. étale),
then fio f' restricts to a functor D=°(X, \) — D=0(X \).

Proof. We may assume that X is the spectrum of a separably closed field.

We prove the first assertion by induction on k£ when Y is a k-Artin stack. Take an
object K € D=U(Y, \). For k = —2, Y is the coproduct of a family (Y;);c; of morphisms
of schemes separated and of finite type over X, so that

fK =@ fa(K|Y;) € DX, N),

iel
where f; is the composite morphism Y; — Y Iy X. Assume the assertion proved for

some k > —2, and let Y be a (k 4+ 1)-Artin stack. Let Y, be a Cech nerve of an atlas
(resp. étale atlas) yo: Yy — Y and form a triangle

N

Then, by Theorem 6.2.13 (2), we have fiK ~ lim o, fuyt K. Thus it suffices to show
that for every smooth (resp. étale) morphism g: Z — X where Z is a k-Artin stack,
(f 09)1g'K belongs to D=2¢(X, \). For this, we may assume that g is of pure dimension
e (resp. 0). The assertion then follows from Theorem 6.2.9 and induction hypothesis.

For the second assertion, we may assume that f is of pure dimension d (resp. 0). It
then follows from Theorem 6.2.9 (2) and the first assertion. O

X.

Remark 6.2.16. Let f: Y — X be a smooth morphism of (1-)Artin stacks, and 7: A" —
A a ring homomorphism. Standard functors for the lisse-étale topoi induce

Lfl?s_ét : Dcart(xlis—étv A) — Dcart (‘Hlis—éta A)7

- <§L§x — Deart (Xis-st, A) X Deart (Xiis-st, A) = Deart(Xiis-st, A),
Lr*: Dcart(xlis—éta A) — Dcart(xlis—éta A/)-
By Corollary 5.3.8, we have an equivalence of categories
(6.10) hD (X, A) 2 Deart (Xiis-st, M),

and isomorphisms of functors

L
hf* = Lfl?s—ét? h(_ ®x _> = (_ ®x _)7 hr* ~ Lﬂ-*v
compatible with (6.10).

Let f: Y — X be a morphism of Artin stacks. Using the methods of [Ols07, (9.16.2)],
one can define a functor

L+f*1 D} (xlis—étaA) — D:;rt(%hs-ém/\)-

cart

Similarly to Proposition 6.5.2 in §6.5, there is an isomorphism between hf** ~ L* f |
compatible with (6.10), where f** denotes the obvious restriction of f*.
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Assume that there exists a nonempty set [J of rational primes such that A is [J-torsion
and X is (J-coprime. Then the functors R™ fiis4t» and RHomy for the lisse-étale topoi
induce

R+flis—ét* . Dz_art(lélis—éta A) — Dz_art(xlis—éta A)>

Rj‘fomfxi Dcart<xlis—ét7 A>Op X Dcart(xlis—étv A) — Dcart(xlis—étv A)

Indeed, the statement for R fiisets, similar to [O1s07, 9.9], follows from smooth base
change; and the statement for RHomy, similar to [LO08, 4.2.2], follows from the
fact that the map ¢g*RHomy(—,—) — RHomy(¢*—, g*—) is an equivalence for ev-
ery smooth morphism ¢: Y — X of [-coprime schemes, which in turn follows from
the Poincaré duality. By adjunction, we obtain isomorphisms of functors hHomy ~
RHomy and hf ~ R¥ fis e, compatible with (6.10).

6.3. More adjointness in the finite-dimensional Noetherian case. Recall the
following result of Gabber: for every morphism f: Y — X of finite type between
finite-dimensional Noetherian schemes, and every prime number ¢ invertible on X, the
¢-cohomological dimension of f, is finite [TGxviiia, 1.4]. In particular, f.: D(Y,\) —
D(X, \) preserves small colimits and thus admits a right adjoint.

We say that a higher Artin stack X is locally Noetherian (resp. locally finite-
dimensional) if X admitting an atlas Y — X where Y is a coproduct of Noetherian
(resp. finite-dimensional) schemes.

Proposition 6.3.1. Let f: Y — X be a morphism locally of finite type of thér, and
m: N — X an arbitrary morphism of Rindgo,. Assume that X is locally Noetherian
and locally finite-dimensional. Then f': D(X,\) — D(Y, \) admits a right adjoint; the
squares (6.7) and (6.8) are right adjointable. Moreover, if f is 0-Artin, quasi-compact
and quasi-separated, then f.: D(Y,\) — D(X,\) also admits a right adjoint.

Proof. Let g: 11Z; = Z — Y be an atlas of Y. By the Poincaré duality, ¢' is conserva-
tive, and h} exhibits D(Z, \) as the product of D(Z;, \), where h;: Z; — Z. Therefore,
to show that f' preserves small colimits, it suffices to show that, for every 4, (f o g;)'
preserves small colimits, where g;: Z; — Y. We may thus assume that X and Y are
both affine schemes. Let 7 be a closed embedding of Y into an affine space over X. It
then suffices to show that i' preserves small colimits, which follows from the finiteness
of cohomological dimension of j,, where j is the complementary open immersion.

To show that (6.7) and (6.8) are right adjointable, we reduce by Lemma 4.3.7 to
the case of affine schemes. By the factorization above and the Poincaré duality, the
assertion for f' reduces to the assertion for f.. We may further assume that = = = =
{*} where A = (£, A) and X' = (Z/, A’). In this case, it suffices to take a resolution of
A’ by free A-modules.

For the second assertion, by smooth base change, we may assume that X is an
affine Noetherian scheme. By alternating Cech resolution, we may assume that Y is a
scheme. The assertion in this case has been recalled above. U

6.4. Constructible complexes. We study constructible complexes on higher Artin
stacks and their behavior under the six operations. Let A = (Z,A) be a Noetherian
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ringed diagram. For every object £ of =, we denote by e¢ the morphism ({£}, A(€)) —
(Z,A).

We start from the case of schemes. Let X be a scheme. Recall from [SGA4, IX 2.3]
that for a Noetherian ring R, a sheaf F of R-modules on X is said to be constructible
if the stalks of F are finitely-generated R-modules and every affine open subset of X is
the disjoint union of finitely many constructible subschemes U; such that the restriction
of F to each U; is locally constant.

Definition 6.4.1. We say that an object K of D(X, \) is a constructible complex or
simply constructible if for every object { of = and every q € Z, the sheaf Hi¢{K €
Mod(X, A(&)) is constructible. We say that an object K of D(X, \) is locally bounded
from below (resp. locally bounded from above) if for every object £ of = and every quasi-
compact open subscheme U of X, e;K | U is bounded from below (resp. bounded from
above).

Note that we do not require constructible complexes to be bounded in either direc-
tion. Note that K € D(X, ) is locally bounded from below (resp. from above) if and
only if there exists a Zariski open covering (U;);e; of X such that K | U; is bounded
from below (resp. from above).

Lemma 6.4.2. Let f: Y — X be a morphism of schemes. Let K be an object of
D(X,N). If K is constructible (resp. locally bounded from below, resp. locally bounded
from above), then f*K satisfies the same property. The converse holds when f is
surjective and locally of finite presentation.

Proof. The constructible case follows from [SGA4, IX 2.4 (iii), 2.8]. For the locally
bounded case we use the characterization by open coverings. The first assertion is then
clear. For the second assertion, by [SGA4, IX 2.8.1] we may assume f flat, hence open.
In this case the image of an open covering of Y is an open covering of X. O

The lemma implies that Definition 6.4.1 is compatible with the following.

Definition 6.4.3 (Constructible complex). Let X be a higher Artin stack. We say
that an object K of D(X,\) is a constructible complez or simply constructible (resp.
locally bounded from below, resp. locally bounded from above) if there exists an atlas
f:Y — X with Y a scheme, f*K is constructible (resp. locally bounded from below,
resp. locally bounded from above).

We denote by Deons (X, A) (resp. DH(X, N), DX, N) or DP)(X, \)) the full sub-
category of D(X, \) spanned by objects that are constructible (resp. locally bounded
from below, locally bounded from above, or locally bounded from both sides). More-
over, we put

®((::125(X7 )‘) = ®COHS(X7 )\) N ®(+)(X, )\),
‘Dgggs(Xv )\) = ®cons(X7 )\) N ®(_)(X, )\),
DE) (X, N) = Deons (X, A) N DX, ).

cons
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Proposition 6.4.4. Let f: Y — X be a morphism of higher Artin stacks.

(1) Let K be an object of D(X, ). If K is constructible (resp. locally bounded from
below, resp. locally bounded from above), then f*K satisfies the same property.
The converse holds when f is surjective and locally of finite presentation. In
particular, f* restricts to a functor

1L f*: Deons(X, A) = Deons(Y5 ).

(2) Suppose that X and Y are O-coprime higher Artin stacks (resp. higher DM
stacks), and f is of finite presentation (Definition 5.4.3). Let A be a O-torsion
(resp. torsion) Noetherian ringed diagram. Then fi restricts to

2L fi: DO (Y, N) — DE)(X,N), and if f is 0-Artin (resp. 0-DM),
f! : gcons(}/a )\) — gcons(X7 )‘)
(8) The functor — ®x — restricts to a functor
3L’ — x —: gggrzs()g )‘) X gggrzs()g )\) — ggggs(X’ )‘)

In particular, D) (X, \)® is a symmetric monoidal subcategory [HTT, 2.2.1].

cons

Proof. For (1), we reduce by taking atlases to the case of schemes, which is Lemma
6.4.2. The reduction for the second assertion is clear. The reduction for the first
assertion uses the second assertion.

For (2), we may assume = = {x}. We prove by induction on k that the assertion
holds when f is a morphism of k-Artin (resp. k-DM) stacks. The case k = —2 is
[SGA4, XVII 5.3.6]. Now assume that the assertions hold for some k£ > —2 and let
f be a morphism of (k + 1)-Artin (resp. (k + 1)-DM) stacks. By smooth base change
(Corollary 6.2.10), we may assume that X is an affine scheme. Then Y is a (k + 1)-
Artin (resp. (k + 1)-DM) stack, of finite presentation over X. It suffices to show that
for every object K of D=0 (Y, ), fiK belongs to D24 (Y, \), where d = dim™(f). Let
Y, be a Cech nerve of an atlas yy: Yy — Y, where Yj is an affine scheme, and form a

triangle
Y
2N
fo

Then for n > 0, f, is a quasi-compact and quasi-separated morphism of k-Artin (resp.
k-DM) stacks. By Theorem 6.2.13 and the dual version of [HA, 1.2.4.9], we have a
convergent spectral sequence

EP? = HY(f_y_ K) = HT fiK.

Y. X.

By induction hypothesis and the Poincaré duality (Theorem 6.2.9 (2)), E{Y? is con-
structible for all p and q. Moreover, EJ"? vanishes for p > 0 or ¢ > 2d by Lemma
6.2.15. Therefore, fiK belongs to D=2 (X, ).

For (3), we may assume X is an affine scheme. The assertion is then trivial. U

To state the results for the other operations, we work in a relative setting. Let S be
a [-coprime higher Artin stack. Assume that there exists an atlas S — S, where S is
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a coproduct of Noetherian quasi-excellent’® schemes and regular schemes of dimension

< 1. We denote by thf?tr/g C th% the full subcategory spanned by morphisms
X — S locally of finite type.

Proposition 6.4.5. Let f: Y — X be a morphism of thf?tr/g, and \ a U-torsion
Noetherian ringed diagram. Then the operations introduced in §6.2 restrict to the
following

1R f.: DD (Y, N) — D) (X, N) if f is quasi-compact and quasi-separated,
and fi: Deons(Y;A) = Deons(X, A) if S is locally finite-dimensional and f is
quasi-compact and quasi-separated and 0-Artin;

2R: f1 D (X, N) — DE (Y, N), and, if S is locally finite-dimensional,
f!: gcons(Xa )\) — gcons(Y; )\);

3R’ Homy (—, —): DE) (X, A% x DEL(X,N) = DEL(X,N) if Eje is finite for

cons cons cons
all € € =,

Proof. Suppose A = (2, A). We first reduce to the case = = {*}. The reduction follows
from Propositions 6.2.6 and 6.2.7 for (1R’) and (2R’). For (3R’), by Proposition 6.2.8
(2) and the assumption on =/, we may assume Z finite. In this case, by Proposition
6.2.5 (2), it suffices to prove that every K € D) (X, \) is a successive extension of

ee<Le, where Le € D) (Xe, A(€)) for every object & € Z. This being trivial for = = 0,
we proceed by induction on the cardinality of =. Let = C = be the partially ordered
subset spanned by the minimal elements of =, and let Z” be the complement of Z'.

Then we have a fibre sequence i,L — K — [[cez ecneiK, where i: (2", A |Z") — A
and L € D) (2" A|Z"). Since Z' is nonempty, it then suffices to apply the induction

hypothesis to L.

We then prove by induction on k that the assertions for = = {x} hold when f is a
morphism of k-Artin stacks. The case k = —2 is due to Deligne [SGA4d, Th. Finitude
1.5, 1.6] if S is regular of dimension < 1 and to Gabber [TGxiii] if S is quasi-excellent.
In fact, in the latter case, by arguments similar to [SGA4d, Th. Finitude 2.2], we
may assume A\ = (%,Z/nZ). In the finite-dimensional case we also need the finiteness
of cohomological dimension recalled at the beginning of §6.3. Now assume that the
assertions hold for some k > —2 and let f be a morphism of (k+ 1)-Artin stacks. Then
(2R’) follows from induction hypothesis, Theorem 6.2.9 (2) and (1L’); (3R’) follows
from induction hypothesis, Proposition 6.2.4 (3), Theorem 6.2.9 (2) and (1L’), (2R’).
The proof of (1R’) is similar to the proof of Proposition 6.4.4. Indeed, to show that
for every object K of D=0 (Y, )), f.K belongs to D=0 (X)), it suffices to apply the
convergent spectral sequence

EPY = HY(fy7K) = HPIf.K

and induction hypothesis. O

0Recall from [TGi, 2.10] that a ring is quasi-excellent if it is Noetherian and satisfies conditions
(2), (3) of [EGAIV, 7.8.2]. A Noetherian scheme is quasi-excellent if it admits a Zariski open cover
by spectra of quasi-excellent rings.
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6.5. Compatibility with the work of Laszlo and Olsson. In this section we es-
tablish the compatibility between our theory and the work of Laszlo and Olsson [LO0S],
under the (more restrictive) assumptions of the latter.

We fix O = {¢} and a Gorenstein local ring A of dimension 0 and residual charac-
teristic . We will suppress A from the notation when no confusion arises. Let S be a
[J-coprime scheme, endowed with a global dimension function, satisfying the following
conditions.

(1) S is affine excellent and finite-dimensional;
(2) For every S-scheme X of finite type, there exists an étale cover X’ — X such
that, for every scheme Y étale and of finite type over X', c¢d,(Y) < oo;

Remark 6.5.1. In [LOO08], the authors did not explicitly include the existence of a global
dimension function in their assumptions. However, their method relies on pinned du-
alizing complexes (see below), which makes use of the dimension function. Note that
assumption (2) above is slightly weaker than the assumption on cohomological di-
mension in [LOO0g]; for example, (2) allows the case S = SpecR and ¢ = 2 while the
assumption in [LOO08] does not. Nevertheless, assumption (2) implies that the right de-
rived functor of the countable product functor on Mod (X, A) has finite cohomological
dimension, which is in fact sufficient for the construction in [LOO0S].

Let th{}ffg be the full subcategory of thf?tr/g spanned by (1-)Artin stacks locally
of finite type over S, with quasi-compact and separated diagonal. Stacks with such
diagonal are called algebraic stacks in [LMB00] and [LO08]. We adopt the notation
DCOHS(DChS ¢t) € Deart(Xiiser) from §0.1. For a morphism f: Y — X of finite type (of

thlft /S) Laszlo—Olsson defined functors
R‘f* . COIlS (ylls et) — Dcons(xhs et)
R’f! : cons(lélls Ot) — :Dcons(:xhS Ot)
Lf* (xlis—ét) — Dcons(lélis—ét)a
R.f! s(x) — Dcons(ylis ét)
Rf}fomx . gogs(xhs ot)op X D(+ (:X:hs ct) — D( (:X:hs ct)
(

cons cons

- ®9C - Dcons :X:lls et) X D( (xlls et) — D( (:X:lls et)

cons cons

L
Three of the six functors, Rf., RHomy, and — ®y —, are standard functors for the
lisse-étale topoi and can be extended to Deayy (see Remarks 6.2.16 and 5.3.10):

Rf.: DG (neer) = Dot (Niieer),
Rf}fomxi Dcart(xlis—ét)op X Dcart(xlis—ét) — Dcart(xlis—ét)a
L
- ®:x — Dcart(xlis—ét) X Dcart(xlis—ét> — Dcart(xlis—ét>-
Moreover, the construction of Lf* in [LOO08, 4.3] can also be extended to Day:
L.f*: Dcart(xlis—ét) — Dcart(%lis—ét)-
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In fact, it suffices to apply [LOO08, 2.2.3] to Dear. The six operations satisfy all the
usual adjointness properties (cf. [LO08, 4.3.1, 4.4.2]). On the other hand, restricting
our constructions in the two previous sections, we have

e
fir
[
f
Homyy:
— Qx —:

DO (Y) — DO(X),
DY) = DEL(X),
D(X) — D(Y),

Deons(X) = Deons (),
D(X)” x D(X) = D(X),
D(X) x D(X) = D(X).

The equivalence of categories hD(X) ~ Deart(Xiisst) (6.10) restricts to an equivalence
hD cons(X) = Deons(Xiiset ). The main result of this section is the following.

Proposition 6.5.2. We have equivalences of functors

hf, ~ Rf., hf' ~ Rf,

L
h3Homy ~ RHomy, h(— @y —) ~ (- ®x —),

hfr~Rfi, hf*~Lf7,

compatible with (6.10).

Proof. The assertions for — ®y — and Homy are special cases of Remark 6.2.16. More-
over, by adjunction, the assertion for f, (resp. f;) will follow from the one for f* (resp.
).

Let us first prove that hf* ~ Lf*: Deart(Xiiset) — Deart(Yriser). We choose a com-
mutative diagram

L

where the vertical morphisms are atlases. It induces a 2-commutative diagram

_—

Y, I X,
nyl nx
y_ 1.
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Using arguments similar to §5.4, we get the following diagram

foet
®cart(MOd(K,ét)) gcart(MOd(Xo,ét))
\ Lim . \
" . #n n,ét ] .
My, cart l m’nEA ®(Yn,ét) - l m’nEA ®(Xn,ét)
/ n;{,car/
f*
®cart (ylis—ét) < - - - - - - - - - - - - === ®cart (:X:lis—ét) .

By [LOO08, 2.2.3], 0% care @and 15,y are equivalences. By the construction of Lf*, Lf*
fits into a homotopy version of the rectangle in the above diagram. Therefore, we have
an equivalence hf* ~ L f*.

Let Qs € D(S) be a potential dualizing complex (with respect to the fixed dimen-
sion function) in the sense of [TGxvii, 2.1.2], which is unique up to isomorphism by
[TGxvii, 5.1.1] (see Remark 6.5.3). For every object X of th{“fi\fg , with structure
morphism a: X — S, we put Qy = a'Qs. Let u: U — X be an object of Lis-ét(X).
Then u*Qy ~ Qu(—d) by the Poincaré duality (Theorem 6.2.9 (2)), where d = dim u.
Consider the morphism of topoi (e, €*): (Xjiset) i Us. Applying Lemma 5.3.2,
we get an equivalence Qy | (Xygst) v *Qu(—d), where we regard Qy as an object
of Deart(Xiiset) and Qp as an object of D(Uy). The equivalence is compatible with
restriction by morphisms of Lis-ét(X), so that Qy is a dualizing complex of X in the
sense of [LOO08, 3.4.5], which is unique up to isomorphism by [LOO08, 3.4.3, 3.4.4]. Put
Dy = Homy(—, Qy) and Dy = RHomy(—,Qx) ~ hDy. By [LO08, 3.5.7], the bidu-
ality functor id — Dy o Dy is a natural isomorphism of endofunctors of Dons(Xiis.et)-
Therefore, the natural transformation hf' — hf' o Dy o Dy is a natural equivalence
when restricted t0 Deons(Xiiser). By Proposition 6.2.4 (3), we have

f oDy oDy ~ f'Homy(Dy—, Q) =~ Homy(f*Dy—, f'Qx)
~ Homy(f*Dx—,Qy) = Dy o f* o Dy.
Since hf* ~ Lf*, this shows
hf' ~DyoLf* oDy =Rf,
where the last identity is the definition of Rf' in [LOO0S, 4.4.1]. O

Remark 6.5.3. As Joél Riou observed (private communication), although the definition,
existence and uniqueness of potential dualizing complexes are only stated for the coef-
ficient ring R = Z/nZ in [TGxvii, 2.1.2, 5.1.1], they can be extended to any Noetherian
ring R over R. In fact, if § is a dimension function of an excellent Z[1/n]-scheme X

L
and K is a potential dualizing complex for (X, ) relative to R, then Kp = Kr®gr R’
is a potential dualizing complex for (X, ) relative to R’ by the projection formula

L L
RI.(KRr) ®r R ~ RI',(Kgr ®g R'), where x is a geometric point of X. The formula
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follows from the fact that the punctured strict localization of X at x has finite co-
homological dimension [TGxviiia, 1.4]. Moreover, by the theorem of local biduality
[TGxvii, 6.1.1, 7.1.2], K is a dualizing complex for D2 (X, R') in the sense of

[TGxvii, 7.1.1] as long as R’ is Gorenstein of dimension 0.
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