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Abstract. In the 1980’s, Mahowald and Kane used integral Brown–Gitler spectra to
decompose ku ^ ku as a sum of finitely generated ku-module spectra. This splitting,
along with an analogous decomposition of ko^ko led to a great deal of progress in stable
homotopy computations and understanding of v1-periodicity in the stable homotopy
groups of spheres. In this paper, we construct a C2-equivariant lift of Mahowald and
Kane’s splitting of ku ^ ku. We also give a description of the resulting C2-equivariant
splitting in terms of C2-equivariant Adams covers and record an analogous splitting for
HZ ^ HZ. Similarly to the nonequivariant story, we expect the techniques of this paper
to facilitate further C2-equivariant stable homotopy computations and understanding of
v1-periodicity in C2-equivariant stable stems.
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1. Introduction

1.1. Motivation. In the 1970’s Brown–Gitler and Cohen constructed Brown–Gitler spec-
tra, a family of spectra realizing subcomodules of the dual Steenrod algebra A˚ [BG73,
Coh79]. Mahowald subsequently observed these spectra could be used to decompose the
cooperations algebra for integral homology, HZ ^ HZ, as a sum of finite HZ-modules.
Mahowald and Kane later used integral Brown–Gitler spectra, a family of spectra real-
izing subcomodules of H˚HZ, to decompose ku ^ ku and ko ^ ko in an analogous way
[Mah81, Kan81].
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These splittings of ku ^ ku and ko ^ ko proved particularly useful in ku- or ko-Adams
spectral sequences. As ku˚ku or ko˚ko is not flat over ku˚ or ko˚, the corresponding E2-
page cannot be computed as an Ext group. One has to start the computation with the
E1-page. However, Mahowald and Kane’s decompositions of ku^ ku and ko^ ko in terms
of finitely generated ku- and ko-modules, respectively, made computation of the E1-pages of
these spectral sequences tractable by splitting the computation of the E1-page into smaller
pieces [Mah81, Dav87, DM89, BBB`20]. Further, even the information on the E2-pages
of these spectral sequences provides a wealth of homotopical information. Both the ku-
and ko-based Adams spectral sequences have vanishing lines which result in collapse at the
E2-page in a large range.

The ko-Adams spectral sequence in particular is a very effective tool for studying v1-
periodicity in the stable homotopy groups of the sphere, π˚Sp2q. For example, Mahowald
famously used the ko-Adams spectral sequence to prove the Telescope Conjecture for height
one at the prime 2 [Mah81]. The ko-based Adams spectral sequence is also a highly efficient
way to compute π˚Sp2q through the 40-stem [Dav87, DM89, BBB`20]. Additionally, at odd
primes, Gonzalez used the ku-Adams spectral sequence to study v1-periodicity, as well as
to classify stunted lens spaces [Gon00].

Given the range of successful applications of Mahowald and Kane’s splittings in nonequiv-
ariant homotopy theory, one may ask whether analogous splittings exist in equivariant ho-
motopy theory. In this paper, we answer this question affirmatively by constructing a C2-
equivariant splitting of kuR ^ kuR, in terms of finitely generated kuR-modules. Here, kuR is
the equivariant connective cover of KUR, the spectrum representing Atiyah real K-theory.

There are several reasons for working with the group of equivariance G “ C2, the cyclic
group of order two. First, Mahowald and Kane’s nonequivariant splittings involve (integral)
Brown–Gitler spectral which realize subcomodules of the dual Steenrod algebra A˚, or in
the case of integral Brown–Gitler spectra, realize subcomodules of HF2˚HZ. Thus it is
reasonable to begin with a group of equivariance where the dual Steenrod algebra has been
computed and closely resembles the classical dual Steenrod algebra. This is the case when
G “ C2 [HK01, Theorem 6.41] (see also [LSWX19, Theorem 2.14] for a description written
in notation more obviously mirroring the classical dual Steenrod algebra), and in an earlier
paper, we constructed C2-equivariant integral Brown–Gitler spectra B0pkq realizing certain
subcomodules of HF2‹HZ [LPT23]. In this paper, these spectra play an integral role in our
construction of a C2-equivariant splitting of kuR ^ kuR.

For cyclic groups of prime order p ‰ 2, the dual Steenrod algebra has been computed and
is known not to be flat over the coefficients HFp‹

[SW22, HKSZ23]. This suggests the con-
struction of Cp-equivariant (integral) Brown–Gitler spectra, where p is an odd prime, may
be more complicated, requiring techniques beyond those developed in [LPT23]. Addition-
ally, odd primary analogues of BPR are only beginning to be studied and also require the
development of further computational techniques [HSW23].

Even in the case where G “ C2, constructing a splitting of kuR ^ kuR is significantly
more complicated than in the nonequivariant case. This is largely due to the fact that the
coefficients HF2‹ form a bigraded ring (described in Section 3.1) rather than a single copy
of F2 as in the nonequivariant case. In particular, many of the results in Section 4 deal with
this technical difficulty. Further, much of the work in Sections 5 and 6, where we construct
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the HZ ^ HZ and kuR ^ kuR splittings, lies in keeping careful track of all the bigraded
elements.

We now describe our main results. This is followed by a discussion of problems which are
newly accessible with the methods developed in this paper.

1.2. Main results. The main result of this paper is a lift of Mahowald and Kane’s splitting
of ku^ ku to the C2-equivariant spectra:

Theorem (Theorem 6.1). Up to 2-completion, there is a splitting of kuR-modules

kuR ^ kuR » kuR ^ ΣρkB0pkq.

Our proof of this theorem requires the development of a number of C2-equivariant ho-
mology results. Specifically, we give a Whitehead Theorem for Margolis homology in the
C2-equivariant setting (Proposition 4.16), compute the homology of C2-equivariant mod 2
and integral Brown–Gitler spectra (Propositions 4.19 and 4.21), and record a computation
of HF2‹BPRxny which we first learned from Christian Carrick.

Just as in the nonequivariant setting, this splitting allows us to also describe kuR ^ kuR in
terms of equivariant Adams covers kuxν2pn!qy

R of kuR.

Theorem (Theorem 6.2). Up to 2-completion,

kuR ^ kuR »

8
ł

k“0

Σ2kku
xν2pn!qy

R _ V,

where V is a sum of suspensions of H.

Incidentally to our proof of the main theorem, we describe the cooperations algebra kuR‹
kuR.

Theorem (Theorem 6.3). The kuR-cooperations algebra kuR‹kuR splits as

kuR‹kuR –

8
à

k“0

kuR‹´kρB0pkq,

where as a kuR‹-module

kuR‹B0pkq –

8
à

k“0

HZ‹tx0, x1, . . . , xν2p2k!q´1u ‘ kuR‹txν2p2k!qu ‘ Vk,

with extensions v1xi´1 “ ρxi, and where |xi| “ ρi and Vk is a sum of suspensions of H‹.

We also describe the operations algebra rkuR, kuRs.

Theorem (Theorem 6.4). The cooperations algebra rkuR, kuRs splits as

rkuR, kuRs –

8
à

k“0

rΣρkB0pkq, kuRs.

The Adams spectral sequence

ExtEp1q‹
pH‹B0pkq, H‹kuRq ùñ rΣρkB0pkq, kuRs

collapses at the E2-page, and its E2-page is described in Lemmas 6.9 and 6.10.
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And, we also record an analogous splitting of HZ ^HZ.

Theorem (Theorem 5.1). Up to 2-completion there is a splitting

HZ ^HZ »

8
ł

k“0

HZ ^ ΣρkB´1pkq

of HZ-modules.

Our proof of the splitting of HZ ^ HZ in Section 5 largely serves as a warm-up to that of
our main theorem.

We also show that, similarly to the nonequivariant setting, there is a splitting in the homol-
ogy of BPRxny ^BPRxny at all heights. Specifically,

Theorem (Theorem 4.1). Let n ě 0. Then there exists a family of maps

tθk : ΣρkBn´1pkq Ñ H‹BPRxny | k P Nu

such that their sum
8
à

k“0

θk : ΣρkH‹Bn´1pkq Ñ H‹BPRxny

is an isomorphism of Epnq‹-comodules.

1.3. New directions. Similarly to the nonequivariant setting, we expect the splitting of
kuR ^ kuR (Theorem 6.1) will make kuR-Adams spectral sequence computations newly ac-
cessible. Specifically, it would be interesting to investigate the extent to which this splitting
allows one to compute C2-equivariant stable stems and see if these techniques could extend
Isaksen–Guillou’s computations of C2-equivariant stable stems [GI24]. Also, similarly to
the nonequivariant setting, the kuR-Adams spectral sequence should have a vanishing line
allowing one to identify v1-periodicity in the C2-equivariant stable stems.

One may further wonder whether koC2-Adams spectral sequences are even more efficient for
computing stable stems and detecting v1-periodicity. Here, we use koC2

to denote the equi-
variant connective cover of KOC2

, the spectrum representing the K-theory of C2-equivariant
real vector bundles. Thus one may also be interested in constructing a C2-equivariant split-
ting for koC2 ^ koC2 in terms of finite koC2 -modules. The techniques and methods of this
paper may be viewed as a stepping stone towards such a construction.

Additionally, computations with kuR-Adams spectral sequences are closely related to those
of koC2 -Adams spectral sequences via the Wood cofiber sequence

ΣσkoC2

η
ÝÑ koC2

Ñ kuR.

Here, η is the first C2-equivariant Hopf map. Thus in a precise sense kuR-based computations
already contain koC2 information.

In addition to computational applications of the splitting, the cooperations algebra kuR‹kuR
(Theorem 6.3) is of interest due to connections with number theory. In the underlying
nonequivariant setting, ku˚ku can be described in terms of numerical polynomials. In par-
ticular, KU˚KU can be identified with the ring of finite Laurent series satisfying certain
conditions [Ada74, Theorem 13.4]. This extends to a description of KU˚ku in terms of
numerical polynomials [Ada74, Theorem 17.4], as well as to the torsion-free component of
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ku˚ku [Ada74, p. 358]. Using this comparison, one can identify the summands of the split-
ting of ku˚ku in KU˚KU . A detailed discussion of this correspondence (and the analogous
story for ko) can be found in Sections 3.2 and 3.3 of [BOSS19]. Our computation of kuR‹kuR
gives a starting point for developing a similar description in the C2-equivariant setting.

Similarly to the splitting of kuR ^ kuR, the decomposition of HZ ^HZ into a sum of finite
HZ-modules given by Theorem 5.1 and Corollary 5.9 provides a starting point for HZ-
based Adams spectral sequence computations. For example, Burklund-Pstrągowksi use the
nonequivariant analogue of Corollary 5.9 to give a cleaner and more concise rephrasing of
Toda’s original obstruction-theoretic approach to the construction of BP in terms of the
HZ-Adams spectral sequence [BP23, Thm 4.41]. It would be interesting to investigate such
an argument in the C2-equivariant case.

1.4. Outline of the Paper. In Section 2, we discuss various approaches to the nonequiv-
ariant splittings. We then outline the nonequivariant Adams spectral sequence argument
underlying our equivariant arguments. In Section 3, we recall equivariant foundations neces-
sary for our main computations. In Section 4 we introduce C2-equivariant homology results
which will later be used in our constructions of splittings. In particular, we describe the
homology of BPRxny, state some C2-equivariant Margolis homology results, and compute
the homology of C2-equivariant (integral) Brown–Gitler spectra in terms of C2-equivariant
lightning flash modules. We also prove a splitting in homology at all heights n. In Sec-
tion 5, we construct a C2-equivariant spectrum level splitting for HZ ^ HZ. In Section 6,
we construct the splitting for kuR ^ kuR.

1.5. Notation. We will make use of the following notation:

(1) H “ HF2 denotes the Eilenberg–MacLane spectrum associated to the C2-constant
Mackey functor F2.

(2) MC
2 “ F2rτ s is the motivic cohomology of C with F2 coefficients, where τ has bidegree

p0, 1q.
(3) MR

2 “ F2rτ, ρs is the motivic cohomology of R with F2 coefficients, where τ and ρ
have bidegrees p0, 1q and p1, 1q respectively.

(4) M2 is the bigraded equivariant cohomology of a point with coefficients in the con-
stant Mackey functor F2. See Section 3.1 for a description.

(5) Acl, AC, AR and A are the classical, C-motivic, R-motivic, and C2-equivariant mod
2 Steenrod algebras.

(6) Epnq is the subalgebra of A generated by Q0 “ Sq1, Q1 “ Sq1 Sq2 ` Sq2 Sq1,
¨ ¨ ¨ , Qn. The analogously defined subalgebras of AR and AC are denoted ERpnq

and ECpnq, respectively.
(7) The square-zero extension M2 – MR

2 ‘NC induces a decomposition [GHIR20, p.8]

ExtEpnq‹
pMC2

2 ,MC2
2 q – ExtER

‹ pnqpMR
2 ,MR

2 q ‘ ExtER
‹ pnqpNC,MR

2 q.

We will abuse notation by writing

ExtER
‹ pnqpM2,M2q :“ ExtER

‹ pnqpMR
2 ,MR

2 q

and
ExtENC

‹ pnqpM2,M2q :“ ExtER
‹ pnqpNC,MR

2 q.
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Furthermore, we will inductively compute ExtEpnq‹
pM,Nq for various modules

M and N , which will split into a “positive cone summand” coming from
ExtERpnq‹

pM2,M2q and a “negative cone summand” coming from
ExtENC

‹ pnqpM2,M2q. We will denote these summands respectively as
ExtPCEpnq‹

pM,Nq and ExtNCEpnq‹
pM,Nq.

(8) F2rτs

τ8 is the F2rτ s-module colimn F2rτ s{τn. We write F2rτs

τ8 txu for the infinitely divis-
ible F2rτ s-module consisting of elements of the form x

τk for k ě 1.
(9) MUR is the spectrum MU with complex conjugation action.

(10) BPR is the analogue of the nonequivariant Brown–Peterson spectrum BP with com-
plex conjugation action.

(11) BPRxny models the classical truncated Brown–Peterson spectrum BP xny with C2-
action via complex conjugation.

(12) kuR is the equivariant connective cover of KUR, the spectrum representing Atiyah
real K-theory. See [GHIR20, p. 25] for the definition of

(13) koC2
is the equivariant connective cover of KOC2

, the spectrum representing the
K-theory of C2-equivariant real vector bundles.

(14) Given a C2-spectrum X, we use Xe to denote the underlying nonequivariant spec-
trum.

Grading conventions: Consider the real representation ring of C2, ROpC2q – Zrσs{pσ2 ´ 1q.
Here σ is the one-dimensional real sign representation. We express the equivariant degree
i ` jσ according to the motivic convention as pi ` j, jq where i ` j is the total degree and
j is the weight. We will also at times use representation spheres to denote the appropriate
suspension. For example, instead of writing Σ2,1, we will write Σρ where ρ is the C2-regular
representation. Whether ρ is an element in the homology of the point or the C2-regular
representation will be clear from context.

We grade Ext groups in the form ps, f, wq, where s is the stem, i.e., the total degree minus
the homological degree; f is the Adams filtration, i.e., the homological degree; and w is the
weight. We will also refer to the Milnor–Witt degree, which is s´ w.
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2. Underlying nonequivariant splittings

In this section, we give a summary of the nonequivariant splittings related to ku and ko
found in the literature. We also outline a construction of the splitting of ku^ ku using the
same strategy as we use in Sections 5 and 6 where we construct C2-equivariant splittings of
HZ ^HZ and kuR ^ kuR.

2.1. Nonequivariant Brown-Gitler spectra. Let Acl denote the classical Steenrod al-
gebra, and let Acl

˚ :“ HFp˚
HFp denote its dual. When p “ 2,

Acl
˚ – F2rξ1, ξ2, . . . ξns,

where |ξi| “ 2i ´ 1. When p is odd,

Acl
˚ – F2rξ1, ξ2, . . . ξns b Epτ0, τ1, . . .q,

where |ξi| “ 2ppi ´ 1q and |τi| “ 2pi ´ 1.

The weight filtration on Acl
˚ is defined by setting wtpξ̄kq “ wtpτ̄kq “ pk and wtpxyq “

wtpxq ` wtpyq.

Let Eclpnq denote the subalgebra Eclpnq “ EpQ0, Q1, . . . Qnq. Then

H˚BP xny – Acl{{Eclpnq˚

. In particular, H˚HZ – Acl{{Eclp0q˚. At each prime p, there is a family of integral Brown-
Gitler spectra tB0pkq| k P Nu such that H˚B0pkq – Fptx P H˚HZ| wtpxq ď ku [GJM86].

2.2. Nonequivariant Splittings.

2.2.1. Literature on nonequivariant splittings. In [Mah81], Mahowald constructs the split-
ting

ko^ ko » ko^ Σ4kB0pkq.

Subsequently, Kane constructed a splitting

BP x1y ^BP x1y » BP x1y ^ Σ2kB0pkq

at odd primes. While the splitting for ku at the prime 2 does not appear in the literature, it
can be deduced either from Mahowald’s construction for ko, or by using the same arguments
as Kane’s odd primary splitting. In [Kli89], Klippenstein also constructs a decomposition of
BP x1y ^BP xny in terms of BP x1y-module spectra at odd primes, but notes that the same
statements hold at the prime 2.

2.2.2. Strategies for the nonequivariant splitting. Following Mahowald’s strategy for the con-
struction of the ko-splitting, Kane used pairings B0pkq ^B0pmq Ñ B0pk`mq to inductively
construct maps

θk : Σ2kB0pkq Ñ BP x1y ^BP x1y

such that the sum of the composites

θ̄k :
8
ł

k“0

BP x1y ^ Σ2kB0pkq
1^θk

ÝÝÝÑ BP x1y^3 µ^1
ÝÝÝÑ BP x1y^2
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is a homotopy equivalence. Towards constructing the splitting, assume inductively that
appropriate maps θk : Σ2kB0pkq Ñ BP x1y ^ BP x1y have been constructed. If n is not a
power of p, take the p-adic decomposition n “ n0 `n1p`¨ ¨ ¨`nrp

r, and consider the cofiber
sequence

B0p1qn0 ^B0ppqn1 ^ ¨ ¨ ¨ ^B0pprqnr Ñ B0pnq Ñ Cpnq,

where Cpnq is the cofiber of the composite of the pairing maps. Consider the composite

B0p1qn0 ^B0ppqn1 ^ ¨ ¨ ¨ ^B0pprqnr
θ
n0
0 ^θ

n1
1 ^θnr

r
ÝÝÝÝÝÝÝÝÝÑ BP x1y ^BP x1y ¨ ¨ ¨BP x1y

ÝÝÝÝÝÝÝÑ BP x1y ^BP x1y,

where the second map is the standard multiplication map. The key step in the construction is
to show that this composite factors through B0pnq. One can then show that this factorization
is the appropriate map θn : B0pnq Ñ BP x1y ^BP x1y.

However, the strategy for showing that the map factors through B0pnq does not lend itself
well to the equivariant setting for two reasons: first, it relies in part on connectivity argu-
ments that the negative cone prevents us from replicating. Second, extending this argument
to the equivariant setting would require us to deduce that in homology, various complicated
cofibers of free M2-modules are also free. While these obstacles may be surmountable, we
have found that the alternative strategy of using an Adams spectral sequence to lift the
isomorphism on homology is most readily adaptable to the equivariant setting. Since this
exact argument does not appear in the literature, we present it here. This Adamas spectral
sequence argument is most similar to Klippenstein’s splitting construction. However, we
use a ku-relative Adams spectral sequence as it makes the construction slightly cleaner. We
also do not need his comparison with the Universal Coefficient Spectral Sequence as we only
address the case BP x1y ^ BP x1y, not BP x1y ^ BP xny. For ease of comparison to the rest
of this paper, we present the 2-primary version and use the notation ku. However, the same
argument works for BP x1y for all primes.

2.2.3. Constructing the nonequivariant splitting. Consider the ku-relative Adams spectral
sequence

(2.1) Exts,fEclp1q˚

`

Σ2kH˚B0pkq, H˚ku
˘

ùñ rku^ Σ2kB0pkq, ku^ kus.

Consider θk : H˚Σ
2kB0pkq Ñ H˚ku as a class in filtration f “ 0. If we can show that this

class survives the spectral sequence for each k, then we have constructed a family of maps
realizing the Eclp1q‹-comodule isomorphism H˚ku – ‘8

k“0Σ
2kH˚B0pkq, and thus will have

a ku-module splitting

ku^ ku »

8
ł

k“0

ku^ Σ2kB0pkq.

The following identification of H˚ku is useful for computing the E2-page of this spectral
sequence.

Proposition 2.2. There is an isomorphism

H˚ku –

8
à

k“0

H˚Σ
2kB0pkq

of Eclp1q˚-comodules.
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Thus to compute the E2-page of 2.1, it suffices to compute ExtEclp1q˚
pH˚B0pkq, B0pmqq for

all m. Towards this goal, it is helpful to use the following decomposition of the homology
of the Brown-Gitler spectra in terms of homological lighting fash modules.

Definition 2.3. The homological lightning flash module is given by

Lpkq “ Eclp1qtx1, x2, ¨ ¨ ¨ , xk |xi`1Q1 “ xiQ0 @1 ď i ď ku

where |xi| “ 2i` 1. Further define Lp0q “ F2.

Proposition 2.4. As an Eclp1q-module,

H˚B0pkq – Lpν2pk!qq ‘ Fk

where Fk is a sum of suspensions of copies of Eclp1q˚.

Thus we can rewrite the E2-page of the Adams spectral sequence 2.1 as

(2.5) ExtEclp1q˚
pH˚B0pkq, H˚kuq –

8
à

m“0

ExtEclp1q˚

`

Lpν2pk!qq,Σ2mLpν2pm!qq
˘

‘W,

where W is a sum of suspensions of F2 in filtration f “ 0.

The ExtEclp1q˚
pLpkq, Lpmqq terms have a fairly simple description as Fprv0, v1s-modules.

Proposition 2.6. For k ď m,

Exts,fEclp1q˚
pLpkq, Lpmqq – F2rv0, v1stx0, x1, . . . xm´k| v1xi “ v0xi`1u,

where |xi| “ p2i, 0q.

For k ą m,

Exts,fEclp1q˚
pLpkq, Lpmqq – Fprv0, v1stxu ‘ Fprv0, v1s

$

&

%

y0, y1, . . . , yk´m

ˇ

ˇ

ˇ

ˇ

ˇ

v1yi “ v0yi`1,
v0y0 “ 0,
v1yk´m “ 0

,

.

-

,

where |x| “ p0, k ´mq and |yi| “ p´1 ´ 2pk ´m´ iq, 0q.

Furthermore, one can lift the Eclp1q˚-comodule isomorphism of Proposition 2.4 to a splitting
of ku-module spectra, using a ku-relative Adams spectral sequence.

Proposition 2.7. There are ku-module splittings

ku^B0pkq » Ck _ Vk

ku^ ku » C _ V,

where Vk and V are sums of suspensions of HF2, and C is a v1-torsion-free ku-module.

Thus the splitting of the E2-page (2.5) is in fact a splitting of spectral sequences, and we
are ready to prove that the spectral sequence collapses.

Proposition 2.8. For all k, the Adams spectral sequence 2.1 collapses.
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Proof. First, recall that no nontrivial differentials can go from v1-torsion classes to v1-torsion
free classes. Next, note that all of the v1-torsion free classes are concentrated in even stem
s, and the Adams differential dr has degree ps, fq “ p´1, rq, so there is no possibility of
differentials from the v1-torsion free classes to other v1-torsion free classes. Finally, we must
consider the possibility of differentials from the v1-torsion free classes to v1-torsion classes.
This is impossible for the following degree reasons.

First, note that Σ2pm´kqyi only occur in stem s ď ´3. On the other hand, for m1 ě k,
Σ2pm1

´kq ExtEclp1q˚
pLpν2pk!qq, Lpν2pm1!qqq is contained entirely in stem s ě 0. So we are

just left to show that there are no differentials from the summand

Σ2pm1
´kq ExtEclp1q˚

pLpν2pk!qq, Lpν2pm1!qqq

to Σ2pm´kqvi0yj for m1 ă k. Let r ě 0. In stem ´2r, any generators Σ2pm1
´kqx must be in

filtration at least ν2pk!q ´ ν2ppk ´ rq!q. On the other hand, any class of the form Σk´mvj0yi
in stem ´2r ´ 1 has filtration at most ν2pk!q ´ ν2ppk ´ r ` 1q!q + 1. Thus no classes of
the form Σ2pm´kqyi are the target of differentials, and indeed the Adams spectral sequence
collapses. □

So indeed the isomorphism of Proposition 2.4 lifts, and the splitting is an immediate conse-
quence.

Theorem 2.1. Up to 2-completion, there exists a splitting of ku-modules

ku^ ku »

8
ł

k“0

ku^ Σ2kB0pkq.

This splitting can also be reinterpreted in terms of Adams covers. Let kuxny denote the n-th
Adams cover of ku, that is, the nth term in a minimal Adams resolution of ku over HF2

(See [Lel84, p.2-3] and Proposition 6.18 of [Kan81] for discussion of the definition and the
proof of the next proposition. Note that their phrasing is slightly different as they discuss
cohomology and do not reference relative homology).

Proposition 2.9. The ku-relative homology of the n-th Adams cover of ku is

Hku
˚ kuxny – Lpν2pnqq.

The Adams cover kuxny is uniquely determined up to homotopy by its homology, and the
fact that it is a ku-module.

Theorem 2.2. Up to 2-completion,

ku^B0pnq » kuxν2pn!qy _ Vn,

where Vn is a sum of suspensions of HF2.

Proof. Consider the ku-relative Adams spectral sequence

(2.10) Es,f2 – Exts,fEclp1q˚

´

Hku
˚ Cn, H

ku
˚ kuxν2pn!qy

¯

ùñ rku^ Σ2kB0pkq, ku^ kus,

where the homological degree is denoted f , and s denotes the stem, ie the topological degree
minus the homological degree. Note that

Exts,fEclp1q˚

´

Hku
˚ Cn, H

ku
˚ kuxν2pn!qy

¯

– Exts,fEclp1q˚
pLpν2pn!qq, Lpν2pn!qqq .
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It follows from the arguments of Proposition 2.8 that this spectral sequence collapses at the
E2-page, and we can lift the isomorphismHku

˚ Cn Ñ Hku
˚ kuxν2pn!qy to the level of spectra. □

Corollary 2.11. Up to 2-completion,

ku^ ku »

8
ł

k“0

Σ2kkuxν2pk!qy _ V,

where V is a sum of suspensions of HF2.

3. Equivariant preliminaries

3.1. The C2-equivariant homology of a point. A detailed description of the coefficients
H‹ will be useful for our calculations. Our description closely follows that of [GHIR20, Sec-
tion 2.1], which in turn is a reinterpretation of results in [HK01, Proposition 6.2]. Through-
out, we frequently denote the coefficients H‹ as M2.

Additively, M2 is

(1) F2 in degree ps, wq if s ď 0 and w ď s.
(2) F2 in degree ps, wq if s ě 0 and w ě s` 2.
(3) 0 otherwise.

This additive structure is represented by the dots in Figure 3.1. The non-zero element in
degree p0,´1q is called τ, and the non-zero element in degree p´1,´1q is called ρ. Sometimes
in the equivariant literature, the element τ is called u or uσ, and ρ is called a or aσ. We
choose to use the names τ and ρ common in motivic literature so we can easily write M2 as
a square-zero extension of MR

2 , the motivic homology of R with F2-coefficients.

Figure 3.1. M2

The “positive cone” refers to the part of M2 in degrees ps, wq with w ď 0. The positive cone
is isomorphic to the R-motivic homology ring MR

2 of a point. Multiplicatively, the positive
cone is a polynomial ring on two variables, ρ and τ.
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The “negative cone” NC refers to the part of M2 in degrees ps, wq with w ď ´2. Multi-
plicatively, the product of any two elements of NC is zero, so M2 is a square-zero extension
of MR

2 . Multiplications by ρ and τ are non-zero in NC whenever they make sense. Thus
elements of NC are infinitely divisible by both ρ and τ. We use the notation γ

ajτk for the
non-zero element in degree pj, 1 ` j ` kq, which is consistent with the described multiplica-
tive properties. The symbol γ, which does not correspond to an actual element of M2, has
degree p0, 1q.

The F2rτ s-module structure on M2 is essential for calculations filtered by powers of ρ. Thus
we describe the F2rτ s-module structure on NC in further detail. We define F2rτ s{τ8 to be
the F2rτ s-module colimn F2rτ s{τk. Following [GHIR20], we write F2rτk

s

τ8 txu for the infinitely
divisible F2rτ s-module consisting of elements of the form x

τk for k ě 1. Note that x itself
is not an element of F2rτs

τ8 txu. The idea is that x represents the infinitely many relations
τk ¨ x

τk “ 0 that define F2rτs

τ8 txu.

With this notation in place, M2 is equal to

MR
2 ‘NC “ MR

2 ‘
à

sě0

F2rτ s

τ8

"

γ

ρs

*

as an F2rτ s-module.

3.2. Comparison with nonequivariant homology. Suppose X is a C2-spectrum. The
cofiber of τ ,

S0 ãÑ Sσ Ñ Cτ,

is stably given by Cτ » Σ1´σC2`. Smashing H ^X with the transfer map

S1´σ tr
ÝÑ Σ1´σC2` » Cτ

gives a map
Σ1´σH ^X » H ^X Ñ H ^X ^ Cτ.

where the equivalence is given by τ P H‹.

Applying πC2

V to this map gives a homomorphism

Φe : HV pXq Ñ H|V |pX
eq,

which can be used to compare the C2-equivariant homology with the underlying nonequiv-
ariant homology of the nonequivariant spectrum underlying X.

Later, in Section 6, we will smash kuR ^ X with the transfer map and apply πC2

V in order
to compare the kuR‹-module structure of kuR‹X structure to the ku˚-module structure of
ku˚X

e and deduce extensions.

3.3. Equivariant connective covers. Suppose X is a C2-spectrum. The equivariant con-
nective cover Xx0y

q
ÝÑ X is a C2-spectrum such that:

(1) the restriction of q is the connective cover of the underlying spectrum Xe, and
(2) the categorical fixed points of q is the categorical fixed points of X.
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See [GHIR20, p. 25] for a more detailed description of the restriction and categorical fixed
points functors (cf. [Lew95, Proposition 3.3]).

3.4. The C2-equivariant Dual Steenrod Algebra. In [HK01], Hu–Kriz computed the
C2-equivariant dual Steenrod algebra

A‹ – H‹rξ1, ξ2, ¨ ¨ ¨ , τ0, τ1 ¨ ¨ ¨ s{pτi
2

“ aτi`1 ` pu` aτ0qξi`1q,

where |ξi| “ p2i ´ 1qρ, |τi| “ 2iρ´ σ, and

ψpξiq “
ÿ

0ďjďi

ξ2
j

i´j b ξj ψpτiq “ τi b 1 `
ÿ

0ďjďi

ξ2
j

i´j b τj .

We denote the images of the generators ξi and τi under the conjugation map

c : AC2
‹ Ñ AC2

‹

by ξ̄i and τ̄i respectively.

The coproduct formulas on the conjugates are

ψpξ̄iq “
ÿ

0ďjďi

ξ̄j b ξ̄2
j

i´j ψpτ̄iq “ 1 b τ̄j b `
ÿ

0ďjďi

ξ̄2
j

i´j .

3.5. Relative homology and Adams spectral sequences. We will make use of relative
homology and relative Adams spectral sequences in our computations. In general, if E is an
R-algebra and M is an R-module in spectra, then E-homology in the category of R-modules
is

ER‹ pMq :“ π‹pE ^
R
Mq.

Note that
ER‹ pR ^Mq “ π‹pE ^

R
R ^Mq “ E‹M.

In [BL01, Prop 2.1], Baker–Lazarev introduce a relative Adams spectral sequence in the
category of R-modules. The ROpC2q-graded version exists by the same construction.

Proposition 3.1. Let E be a C2-equivariant R-algebra spectrum, and let X,Y be R-
modules. If ER‹ X is projective as an E‹-module, then there exists an E-based Adams spectral
sequence in the category of R-modules

Es,f,w2 – Exts,f,w
ER

‹ E
pER‹ X,E

R
‹ Y q ùñ rX,Y s

R s,f,w
pE

where rX,Y sR
pE

denotes the E-nilpotent completion of R-module maps from X to Y , s denotes
the stem, f denotes the homological degree, and w denotes the weight.

Proposition 3.2. The BP x0y-relative dual Steenrod algebra is

HBP x0y
‹ H – Ep0q‹

and the BP x1y-relative dual Steenrod algebras is

HBP x1y
‹ H – Ep1q‹.
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Proof. We give an argument for the second statement and leave the first to the reader.
Consider the cofiber sequence

BPRx1y
v1

ÝÑ BPRx1y ÝÑ HZ.
Smashing H ^

BPRx1y
— with the cofiber sequence yields a splitting

H ^
BPRx1y

HZ » H ^ pS0 _ Sρ`1q,

which suffices to determine the additive structure of HBPRx1y
‹ HZ.

The multiplicative structure can be deduced from the algebra map

π‹

`

H ^H
˘

Ñ π‹

`

H ^
BPRx1y

H
˘

.

□

4. C2-equivariant homology results

4.1. The homology of BPRxny. The authors first learned of a computation of the equi-
variant homology groups H‹BPRxny from Christian Carrick in the context of Carrick, Hill,
and Ravenel’s work on the homological slice spectral sequence in motivic and Real bordism
[CHR24]. While Carrick–Hill–Ravenel did indeed compute the equivariant homology groups
H‹BPRxny, the result does not appear in the final version of their paper, so we include an
argument due to Carrick here.

Recall that π˚ρBPR – Zrv̄1, v̄2, ¨ ¨ ¨ s. Consider the cofibre sequence

H ^ Σp2i´1qρBPR
¨v̄i

ÝÝÑ H ^BPR ÝÑ H ^BPR{v̄i.

Note that v̄i “ 0 P H‹BPR, so applying homotopy yields a short exact sequence

0 Ñ H‹BPR Ñ H‹pBPR{v̄iq Ñ H‹´pp2i´1qρ`1qBPR Ñ 0.

This sequence splits as a sum of H‹BPR-modules, so

H‹pBPR{v̄iq – H‹BPR ‘H‹´pp2i´1qρ`1qBPR.

In particular, H‹pBPR{v̄iq is a free H‹BPR-module.

Proposition 4.1. The map H‹pBPR{v̄iq Ñ H‹H is injective, with image the free H‹BPR-
submodule generated by 1 and τ̄i.

Proof. The above splitting of H‹BPR-modules is not split as A‹-comodules: if it were, one
could run the H-based Adams spectral sequence for BPR{v̄i and use this splitting to find
that v̄i ‰ 0 in π‹pBPR{v̄iq, a contradiction. It follows that, under the splitting as H‹BPR-
modules, the map H‹pBPR{v̄iq Ñ AC2

‹ cannot send the generator in degree p2i ´ 1qρ` 1 to
zero, as the kernel of H‹pBPR{v̄iq Ñ AC2

‹ must be a sub A‹-comodule.

The generator of H‹´pp2i´1qρ`1qBPR in degree p2i´1qρ`1 must be sent to an A‹-comodule
primitive in A‹{H‹BPR and we have isomorphisms

PrimpAC2
‹ {H‹BPRq – Ext1AC2

‹

pH‹, H‹BPRq – Ext1Epnq‹
pH‹, H‹q.

by Proposition 3.2.
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Extending the computation of [Hil11, Theorem 3.1] to a C2-equivariant result (i.e., analyzing
the negative cone) shows that Ext1Epnq‹

pH‹, H‹q has only one nonzero class in this degree.
We find that since τ̄i is a primitive in AC2

‹ {H‹BPR, our generator must hit τ̄i mod H‹BPR.
It follows that the map H‹pBPR{v̄iq Ñ AC2

‹ is injective. □

By freeness, for any i, j, the Künneth spectral sequence

TorH‹BPR
˚,‹ pH‹pBPR{v̄iq, H‹pBPR{v̄jqq ùñ H‹pBPR{pv̄i, v̄jqq

collapses to give an isomorphism

H‹pBPR{pv̄i, v̄jqq – H‹pBPR{v̄iq bH‹BPR H‹pBPR{v̄jq.

We can iterate this process to compute H‹BPR{pv̄n`1, ¨ ¨ ¨ , v̄n`mq. Taking the colimit of
H‹BPR{pv̄n`1, ¨ ¨ ¨ , v̄n`mq over m yields the following proposition.

Proposition 4.2. The map H‹BPRxny Ñ H‹H is injective with image the sub-H‹-algebra

H‹BPRxny – H‹rξ̄1, ξ̄2, ξ̄3, ¨ ¨ ¨ , τ̄n`1, τ̄n`2, τ̄n`3, ¨ ¨ ¨ s{pτ̄2i “ aτ̄i`1 ` uξ̄i`1q

In particular,

(4.3) H‹BPRxny – AC2
‹ ˝

Epnq‹

H‹.

Remark 4.4. The description of H‹BPRxny given in Equation (4.3) is analogous to the
nonequivariant isomorphism H˚BP xny – A{{Epnq˚. Likewise, the motivic homology of the
2-complete algebraic Johnson-Wilson spectra BPGLxny over p-adic fields [Orm11, Theo-
rem 3.9] has the same form, with the appropriate motivic analogues substituted for A and
Epnq.

The left Epiq‹-coaction on AC2
‹ ˝

Epnq‹

H‹ is given by

α : AC2
‹ ˝

Epnq‹

H‹
ψb1
ÝÑ AC2

‹ b pAC2
‹ ˝Epnq H‹q

πb1
ÝÑ Epnq b pAC2

‹ ˝Epnq H‹q,(4.5)

which on generators ξ̄k and τ̄k is

αpξ̄kq “ 1 b ξ̄k

αpτ̄n`kq “ 1 b τ̄n`k `
ÿ

0ďiďn

τ̄i b ξ̄2
i

n`k´i, for all k.

Note that Epiq‹ is the dual of the exterior algebra Epiq, and that Epiq – ErQ0, Q1, . . . , Qns,
where Qi is defined to be the dual of τi.

Let M be a left Epiq‹-comodule. Then there is an induced right Epiq-module action
λ :M b Epiq Ñ M , defined by

λpx, θq “ pθ b IdM q ˝ αpxq

where αpxq “ Σiθi b xi.
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Note that τ̄i is the dual of Qi, and so the right Ep1q-module action on H‹BPRx1y is

ξ̄jQi “ 0

τ̄kQ0 “ ξ̄k

τ̄kQ1 “ ξ̄2pk´1q.

Note that Epiq‹ is finitely generated and projective over MC2
2 [Ric15], so the following propo-

sition is standard algebra (see for example [BW03, Theorem 4.7]).

Proposition 4.6. There is an equivalence of categories between left Epnq‹-comodules and
right Epnq-modules.

4.2. Mahowald weight and Brown–Gitler Subcomodules. Define a weight filtration
on AC2

‹ by
wtpξ̄kq “ 2k “ wtpτ̄kq and wtpxyq “ wtpxq ` wtpyq.

For i ě 0, the jth Brown–Gitler comodule Nipjq is the subspace of AC2
‹ ˝Epiq‹

H‹ spanned by
monomials of weight less than or equal to 2j. For i “ ´1, let N´1pjq denote the subspace
of AC2

‹ ˝Ep´1q‹
H‹ spanned by monomials of weight less than or equal to j.

4.3. A Splitting in Homology. Define Mipjq to be the M2-submodule of AC2
‹ ˝Epiq‹

H‹

spanned by monomials of weight exactly 2j. Observe from the coaction on the generators τ̄j
and ξ̄j (4.5) that the Epiq‹-coaction on A{{Epnq‹ preserves Mahowald weight, so Mipjq is an
Epiq‹-subcomodule of A{{Epnq‹. The next proposition follows immediately, and is analogous
to the underlying nonequivariant statement [Cul19, Proposition 3.3].

Proposition 4.7. There is a natural isomorphism

AC2
‹ ˝

Epiq‹

H‹ –
à

kě0

Mipkq

of left Epiq‹-comodules.

Just as in the nonequivariant case [Cul19, Lemma 3.4],[Cul20, Lemma 4.10], we also have
the following Epiq‹-comodule isomorphism.

Proposition 4.8. For n ě 0, there is an isomorphism of Epnq‹-comodules

ΣρkNn´1pkq
–

ÝÑ Mnpkq

for all k, where

ξ̄k11 ξ̄k22 ¨ ¨ ¨ ξ̄k1i`1τ̄
ϵi`1

i`1 ξ̄
ki`2

i`2 τ̄
ϵi`2

i`2 ¨ ¨ ¨ ÞÑ ξ̄a1 ξ̄
k1
2 ¨ ¨ ¨ ξ̄k1i`2τ̄

ϵi`1

i`2 ξ̄
ki`2

i`3 τ̄
ϵi`2

i`3 ¨ ¨ ¨

and a “ j ´ 1
2wtpξ̄

k1
2 ¨ ¨ ¨ ξ̄k1i`2τ̄

ϵi`1

i`2 ξ̄
ki`2

i`3 τ̄
ϵi`2

3`2 q.

Thus the following analogue of [Cul20, Rmk 4.12] is immediate.

Theorem 4.1. Let n ě 0. Then there is a family of maps

tθk : ΣρkBn´1pkq Ñ H‹BPRxny | k P Nu

such that their sum
8
à

k“0

θk : ΣρkH‹Bn´1pkq Ñ H‹BPRxny
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is an isomorphism of Epnq‹-comodules.

The following A‹-isomorphism is an immediate consequence.

Corollary 4.9. For n ě 0, there are A‹-comodule isomorphisms

H‹pBPRxny ^BPRxnyq – H‹pBPRxny b ΣρkNn´1pkqq.

This naturally leads one to ask for which heights n these isomorphisms can be realized. The
first hurdle is to construct spectra realizing the Brown-Gitler comodules Nipkq.

4.4. C2-equivariant Brown–Gitler spectra. In [BW18], Behrens–Wilson give an equiv-
alence

pΩρSρ`1qµ » H

of C2-spectra. In [HW20], Hahn–Wilson observe that the left hand side of this equivalence
caries a natural filtration, which produces a filtration of H by spectra. This filtration is
analogous to the May-Milgram filtration of HF2, which Mahowald observed and Cohen
proved could be used to construct Brown–Gitler spectra [Coh85, Mah77]. Hahn–Wilson
point out that one can simply define equivariant Brown–Gitler spectra using this filtration.
In [LPT23, Proposition 3.4], we confirm that these spectra, which we will denote B´1pkq,
indeed have the property that

H‹B´1pkq – M2tx P AC2
‹ |wtpxq ď ku.

In [CDGM88], Cohen-Davis-Goerss-Mahowald give a construction of integral Brown-Gitler
spectra. In [LPT23, Thm 6.1], we construct C2-equivariant lifts of these spectra, that is
finite spectra tB0pkq| k P Nu such that

H‹B0pkq – M2tx P H‹HZ| wtpxq ď ku.

Remark 4.10. There is a small difference between our notation for the integral Brown-
Gitler spectra here and in [LPT23]. Here we use B0pkq to denote the Brown-Gitler spectrum
realizing the subcomodule H‹HZ having weight at most k. In [LPT23], we used B0pkq to
denote the Brown-Gitler spectrum realizing the subcomodule H‹HZ having weight at most
2k. Since every element of H‹HZ has weight divisible by 2, these are indeed the same family
of spectra. The convention in this paper makes the results of Section 4.3 easier to state, and
generally makes the formulas in Section 6 cleaner and more readable.

4.5. Margolis homology and free Epnq-modules. The goal of this subsection is to give
a Whitehead Theorem for Margolis homology in the C2-equivariant setting. To this end,
we first establish some C2-equivariant freeness criteria. These criteria are C2-equivariant
analogues of the R-motivic freeness criteria studied in [BGL22, Section 2], and we follow
the techniques developed there closely.

Proposition 4.11. A finitely generated Epnq-module M is free if and only if

(1) M is free as an M2-module and
(2) F2bM2

M is free as an Epnq-module.
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Note that

F2 b M2 b Epnq :“ Epnq
M

pa, uq – ECpnq
M

pτq ,(4.12)

where ECpnq is the analogously defined subalgebra of the C-motivic Steenrod algebra, and
τ P MC

2 with |τ | “ p0, 1q. We will make use of the following C-motivic lemma, which is an
immediate consequence of [HK18, Theorem B(i)].

Lemma 4.13. Let M be a ECp1q-module that is free and of finite type over MC
2 . If

M˚pM{τ, Q0q and M˚pM{τ, Q1q are zero, then M is ECp1q-free.

Combining the isomorphism of Equation (4.12) with Lemma 4.13 gives

Corollary 4.14. Let M be a finitely generated left Epnq-module and let

M
M

pa, uq :“ M bM2
F2.

Then M is a free Epnq-module if and only if

(1) M is free over M2

(2) M˚

´

M
M

pa, uq , Qi

¯

“ 0 for 0 ď i ď n.

To finish our proof of Proposition 4.11, we need a C2-equivariant analogue of the R-motivic
statement given in [BGL22, Lemma 2.1].

Lemma 4.15 ([BGL22] Lemma 2.1). A finitely generated Epnq-module M is free if and
only if

1. M is a free M2-module
2. M{paq is a free Epnq{paq-module

Proof. If a finitely generated Epnq-module M is free, the two conditions are immediately
satisfied. Thus we consider M where the two conditions are satisfied and show M is a free
Epnq-module.

Choose a basis β “ tb1, ¨ ¨ ¨ , bnu of M{paq and let b̄i P M be any lift of bi. Let F denote the
free Epnq-module generated by β and consider the map

f : F Ñ M

defined by fpbiq “ b̄i. We show f is an isomorphism by inductively proving f induces an
isomorphism F {panq – M{panq for all n ě 1. The case n “ 1 is true by assumption. Consider
the diagram

0 F {pan´1q F {panq F {paq 0

0 M{pan´1q M{panq M{paq 0

fn´1 fn f0

Since a is in the center, that is ηRpaq “ a (see [HK01, Theorem 6.41] and [LSWX19, Theo-
rems 2.6 and 2.14]), this is a diagram of Epnq-modules. By assumption f0 is an isomorphism
and by induction, fn´1 is an isomorphism, so applying the five lemma gives that fn is an
isomorphism. □
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The proof of Proposition 4.11 then follows from Lemma 4.15 combined with Lemma 4.13
and the fact that

ECpnq “ Epnq{paq.

Moreover, since the second condition of Proposition 4.11, that is that

F2 bM2
Epnq :“ Epnq{pa, uq – ECpnq{pτq

is free over Ep1q, can be calculated using Lemma 4.15, we get a C2-equivariant Whitehead
Theorem as a corollary.

Proposition 4.16 (Whitehead Theorem). Let M and N be finitely generated Ep1q-modules
that are M2-free, and let f :M Ñ N be an Ep1q-module map. Then f is a stable equivalence
if and only if f{pa, uq :M{pa, uq Ñ N{pa, uq induces an isomorphism in Margolis homologies
with respect to Q0 and Q1.

Remark 4.17. Proposition 4.16 is the C2-equivariant analogue of the C-motivic result of
[GIR18, Corollary 4.10].

4.6. The homology of mod-2 Brown–Gitler spectra. Recall that H‹B´1p0q – M2.
We now show that H‹B´1pkq is a free and injective E‹p0q-comodule for all k ą 0. To do so,
we need a few propositions

Proposition 4.18. If M is a free Epnq‹-comodule, then M is an injective Epnq‹-comodule.

Proof. First, recall from Proposition 4.6 that we can instead work with Epnq-modules. Since
every free Epnq-module is a sum of copies of Epnq, it will suffice to show that Epnq is
self-injective. This follows from modifying May’s proof that M2 is self-injective [May20,
Appendix]. In particular, the graded ideals of Epnq are just those of M2, with the addition
of various Qi. □

Proposition 4.19. For all k ą 0, H‹B´1pkq is a free and injective Ep0q‹-comodule.

Proof. We use Proposition 4.11 to show that H‹B´1pkq is a free Ep0q-module for all k ą 0.
First, note that H‹B´1pkq is a free M2-module. Then observe that

F2 bM2 H‹B´1pkq – F2tx “ ξ̄i11 ξ̄
i2
2 ¨ ¨ ¨ ξ̄irr τ̄

ϵ0
0 τ̄

ϵ1
1 ¨ ¨ ¨ τ̄ ϵss | wtpxq ď nu,

which is exactly the homology of the classical Brown–Gitler spectrum of weight k. The
homology of the classical Brown–Gitler spectrum of weight k is a free Ep0q-module. Thus
H‹B´1pkq is a free Ep0q-module. So by Proposition 4.18, we know that H‹B´1pkq is a free
and injective Ep0q‹-comodule. □

4.7. The homology of integral Brown–Gitler spectra.

Definition 4.20. The homological lightning flash module is given by

Lpkq “ Ep1qtx1, x2, ¨ ¨ ¨ , xk |xi`1Q1 “ xiQ0 @1 ď i ď ku

where |xi| “ iρ` 1. Further define Lp0q “ M2.

These lightning flash modules can be easily visualized as in Figure 4.1, which depicts Lp4q

using the motivic grading convention that the total topological degree (number of sign plus
trivial real C2-representations) is plotted along the horizontal axis and the number of sign
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representations is plotted along the vertical axis. Here, a point denotes a copy of M2,
straight arrows indicate the (non-trivial) operation of Q0, and curved arrows indicate the
(non-trivial) operation of Q1.

ă

ă

ă

ă

ă

x1

ă

x2

ă

x3

ă

x4

‚

‚ ‚

‚‚

‚‚

‚‚

Figure 4.1. Homological lightning flash module: Lp4q

Proposition 4.21. Let k ě 0. Then

H‹B0 pkq – Lpν2pk!qq ‘Wk,

where Wk is a sum of suspensions of Ep1q‹.

Proof. First, observe that M˚

`

Lpkq, Q0

˘

– F2t1u and M˚

`

Lpν2pk!qq, Q1

˘

– F2tQ0xν2pk!qu.
Next, observe

M˚ pH‹B0 pkq {pa, uq, Q0q – F2t1u

M˚ pH‹B0 pkq {pa, uq, Q1q – F2tξ̄i1 ξ̄i2 . . . ξ̄inu,

where i1 ă i2 ă ¨ ¨ ¨ ă in and 2i1 ` 2i2 ` ¨ ¨ ¨ ` 2in is the 2-adic expansion of k. (This is best
seen by comparison with the underlying case.) Note that |xν2pk!q| “ |ξ̄i1 ξ̄i2 ¨ ¨ ¨ ξ̄in |. So if we
construct an Ep1q-module map Lpνppk!qq Ñ H‹B0

`X

k
2

\˘

realizing the isomorphism, then we
can apply Proposition 4.16 to conclude the proof. Let Spkq denote the submodule of Lpkq

Spkq “ Ep1qtξ̄i1 ξ̄i2 . . . ξ̄in τ̄j |j ď i1 ă i2 ă ¨ ¨ ¨ ă inu.

Observe that Spkq is naturally isomorphic to Lpkq, and so the inclusion Spkq Ñ H‹B0

`X

k
2

\˘

is exactly the map we are looking for. □

5. Splitting HZ ^HZ

In this section, we construct a family of HZ-module maps

fk : ΣρkHZ ^ B´1pkq Ñ HZ ^HZ

such that
8
ł

k“0

fk :
8
ł

k“0

ΣρkHZ ^ B´1pkq
»

ÝÑ HZ ^HZ

is an equivalence (up to p-completion).
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5.1. Strategy. Theorem 4.1 gives a family of maps

tθk : ΣρkB´1pkq Ñ H‹HZ | k P Nu

such that their sum
8
à

k“0

θk : ΣρkH‹B´1pkq Ñ H‹HZ

is an isomorphism of Ep0q‹-comodules.

Using HZ-relative homology (discussed in Section 3.5), we can think of the family of Ep0q‹-
comodule maps

8
à

k“0

θk : ΣρkH‹B´1pkq Ñ H‹HZ

as a family of maps
8
à

k“0

θk : ΣρkHHZ
‹ pHZ‹B´1pkqq Ñ HHZ

‹ pHZ ^HZq

and consider the HZ-relative Adams spectral sequence

Es,f,w2 “ Exts,f,wEp0q‹
pΣρkH‹B´1pkq, H‹HZq ùñ rHZ ^ ΣρkB´1pkq, HZ ^HZsHZ.(5.1)

We grade Ext-groups in the form ps, f, wq, where s is the stem, that is, the total degree
minus the homological degree, f is the Adams filtration, that is the homological degree, and
w is the weight. So |θk| “ p0, 0, 0q. The Adams differential dr decreases stem by 1, increases
filtration by r, and preserves motivic weight.

Since Es,f,w2 is finite in each degree, the spectral sequence converges [Boa99, Thm 15.6,
Thm 7.1]. Thus constructing maps fk : HZ ^ ΣρkB´1pkq Ñ HZ ^ HZ for all n P N is the
same as showing the θk survive the spectral sequence. In fact, we will show that the Adams
spectral sequence collapses at the E2-page.

5.2. Analyzing the E2-page.

5.2.1. Starting the analysis.

Proposition 5.2. The E2-page of the Adams spectral sequence has the form

Es,f,w2 “ Exts,f,wEp0q‹
pΣρkH‹B´1pkq, H‹HZq – Exts,f,wEp0q‹

pM2,M2q ‘ V,

where V is an M2-vector space concentrated in Adams filtration f “ 0.

Proof. Using the isomorphism

H‹HZ –

8
à

m“0

θm : ΣρmH‹B´1pmq

of Ep0q‹-comodules given by Theorem 4.1 yields,

Es,f,w2 – Exts,f,wEp0q‹
pΣρkH‹B´1pkq, H‹HZq

–

8
à

m“0

Exts,f,wEp0q‹

`

ΣρkH‹B´1pkq,ΣρmH‹B´1pmq
˘

.
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Since H‹B´1pkq is a free and injective Ep0q‹-comodule when k ą 0 by Proposition 4.19, any
summand Exts,f,wEp0q‹

`

ΣρkH‹B´1pkq,ΣρmH‹B´1pmq
˘

with k or m nonzero must be concen-
trated on the (f “ 0)-line. Then since H‹B´1p0q – M2 by definition,

Es,f,w2 – Exts,f,wEp0q‹
pM2,M2q ‘ V,

where V is an M2-vector space concentrated in filtration f “ 0. □

We now compute Exts,f,wEp0q‹
pM2,M2q. Our computation closely follows that of

Exts,f,wEp1q‹
pM2,M2q in [GHIR20], which uses simpler C-motivic and R-motivic calculations

as stepping stones. In that vein, we view C2-equivariant coefficients as tensored up from
R-motivic coefficients. In particular,

Epnq‹ – M2 bMR
2
ER

‹ pnq

(see [GHIR20, Equation 2.4] for more details).

Let NC denote the negative cone, so that M2 – MR
2 ‘ NC as an F2rτ s-module. Then the

square-zero extension M2 – MR
2 ‘NC induces a decomposition [GHIR20, page 8]

ExtEpnq‹
pM2,M2q – ExtER

‹ pnqpMR
2 ,MR

2 q ‘ ExtER
‹ pnqpNC,MR

2 q

and one can use the ρ-Bockstein spectral sequence to analyze each of these summands.

Proposition 5.3 ([GHIR20] Proposition 3.1). There is a ρ-Bockstein spectral sequence

E1 “ Extgrρ Epnq‹
pgrρM2, grρM2q ùñ ExtEpnq‹

pM2,M2q,

such that the differential dr sends a class in degree ps, f, wq to a class of degree ps´1, f`1, wq.
Furthermore, the spectral sequence decomposes into the following two pieces:

E`
1 “ ExtCrρs ùñ ExtR

and

E´
1 –

8
à

s“0

MC
2

τ8

#

γ

ρs

+

b
MC

2

ExtECpnqpMC
2 ,MC

2 q ùñ ExtNC .

5.2.2. Analyzing E`
1 . In [Hil11], Hill gives a complete calculation of ExtERpnqpMR

2 ,MR
2 q. We

are only working over Ep0q right now, so we state that portion of the result here.

Proposition 5.4 ([Hil11] Thm 3.2). There exists a ρ-Bockstein spectral sequence

E1 “ ExtECp0qpMC
2 ,MC

2 qrρs “ F2rτ, v0, ρs ùñ ExtERp0qpMR
2 ,MR

2 q,

with differential d1pτq “ ρv0.

The values of ExtERp0qpMR
2 ,MR

2 q follow immediately.

Proposition 5.5 ([Hil11] Thm 3.1).

ExtERp0qpMR
2 ,MR

2 q “ F2rρ, τ2, v0s{pρv0q,

where |v0| “ p0, 1, 0q, |τ2| “ p0, 0,´2q and |ρ| “ p´1, 0,´1q.
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5.2.3. Analyzing E´
1 . It remains to calculate the E´

1 summand in the ρ-Bockstein spectral
sequence. Since ExtCEpnqpMC

2 ,MC
2 q is free over MC

2 , we can write E´
1 in the following form.

Proposition 5.6 ([GHIR20, Proposition 3.1]).

E´
1 –

8
à

s“0

MC
2

τ8

#

γ

ρs

+

b
MC

2

ExtECpnqpMC
2 ,MC

2 q ùñ ExtMR
2
pNC,MR

2 q.

To determine the differentials in the negative cone, we use the strategy described on pages
17-18 of [GHIR20]. Note that E´ is an E`-module. The E´

1 page is generated over E`
1

by the elements γ
ρjτk . The differentials in E´ are infinitely divisible by ρ, meaning that if

drpxq “ y, then drp
x
ρj q “

y
ρj for all j ě 0. So all differentials in the E´-summand of the

ρ-Bockstein spectral sequence are determined by the differential

d1

ˆ

γ

ρτ2k`1

˙

“
γ

τ2k`2
v0,

in combination with the Leibnitz rule, E`-module structure, and infinite-ρ-divisibility.

Thus using the ρ-Bockstein spectral sequence, we conclude

Proposition 5.7. The summand ExtENC
‹ p0qpMR

2 ,MR
2 q consists of two components:

(1) elements of the form γ
τ2n

”

1
ρ

ı

, which are v0-torsion and concentrated on the pf “ 0q-
line, and

(2) v0-towers, of the form F2rv0s
␣

γ
τ2n`1

(

Figure 5.1. ExtENC
‹ p0qpMR

2 ,MR
2 q

Now that we have both the positive cone summand ExtER
‹ p0qpMR

2 ,MR
2 q and negative cone

summand ExtENC
‹ p0qpMR

2 ,MR
2 q of ExtE‹pnqpM2,M2q, we are ready to show that the Adams

spectral sequence (Equation (5.1)) collapses.
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5.2.4. Running the Adams spectral sequence.

Proposition 5.8. The Adams spectral sequence

Es,f,w2 “ Exts,tEp0q‹
pΣρkH‹B´1pkq, H‹HZq ùñ rHZ ^ B´1pkq, HZ ^HZsHZ

collapses at the E2-page.

Proof. We showed in Proposition 5.2 that the E2-page of the Adams spectral sequence has
the form

Es,f,w2 –Exts,f,wEp0q‹
pΣρkH‹B´1pkq, H‹HZq

–Exts,f,wEp0q‹
pM2,M2q ‘ V,

where V is an M2-vector space concentrated in Adams filtration f “ 0.

We will first show that elements in V do not support Adams differentials. Suppose towards
a contradiction that there exists x P V such that drpxq “ y is nonzero and r is the smallest
natural number for which such a nonzero differential exits. Then y must be an element
of Exts,f,wEp0q‹

pM2,M2q ‘ V . As calculated in Propositions 5.5 and 5.7, the only classes in
ExtEp0q‹

pM2,M2q with filtration f ą 0 are contained in v0-towers. Thus, by v0-linearity,
drpv0xq “ v0y must be nonzero. However, this is a contradiction, as v0x “ 0 since V is
concentrated in Adams filtration f “ 0.

Therefore the only possible nonzero differentials are those from Exts,f,wEp0q‹
pM2,M2q ‘ V to

itself. However, the filtration greater than zero portions of Exts,f,wEp0q‹
pM2,M2q ‘ V are con-

centrated in even Milnor-Witt degree, where Milnor-Witt degree is defined to be s´w, that
is stem minus motivic weight. Since the Adams differential has Milnor-Witt degree ´1, this
rules out any nontrivial differentials. □

Thus we can lift the maps θk : ΣρkH‹B´1pkq Ñ H‹HZ to maps

fk : HZ ^ ΣρkB´1pkq Ñ HZ ^HZ
for all n P N, and we have proved a C2-equivariant analogue of Mahowald’s splitting of
HZ ^HZ.

Theorem 5.1. Up to 2-completion there is a splitting

HZ ^HZ »

8
ł

k“0

HZ ^ ΣρkB´1pkq

of HZ-modules.

Corollary 5.9.
HZ ^HZ » HZ _ V,

where V is a sum of suspensions of HF2.

Proof. By definition B´1p0q » S0, so HZ ^ B´1p0q » HZ, and for k ą 0, H‹B´1pkq is a
sum of suspensions of Ep0q‹. Thus for k ą 0,

H‹pHZ ^ B´1pkqq –
à

H‹V.

□
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6. Splitting kuR ^ kuR

Let B0pkq denote the C2-equivariant integral Brown–Gitler spectrum defined in [LPT23].
In this section we construct a family of kuR-module maps

fk : ΣρkkuR ^B0pkq Ñ kuR ^ kuR

such that
8
ł

k“0

fk :
8
ł

k“0

ΣρkkuR ^B0pkq
»

ÝÑ kuR ^ kuR

is an equivalence (up to 2-completion).

6.1. Strategy. Our strategy is similar to that of Section 5.1 where we constructed a split-
ting of HZ ^HZ. We begin by considering the family of Ep1q‹-comodule isomorphisms

8
à

k“0

θk : ΣkρH‹B0pkq Ñ H‹kuR

given by Theorem 4.1 in the case where n “ 1. We write these as a family of maps
8
à

k“0

θk : ΣkρHkuR
‹ pkuR ^B0pkqq Ñ HkuR

‹ pkuR ^ kuRq.

and then study the Adams spectral sequence

(6.1) Es,t2 “ ExtEp1q‹

`

H‹Σ
ρkB0pkq, H‹kuR

˘

ùñ rkuR ^ ΣρkB0pkq, kuR ^ kuRskuR .

Since Es,f,w2 is finite in each degree, the spectral sequence converges [Boa99, Thm 15.6,
Thm 7.1]. Moreover, each θk is in E0,0

2 , so constructing maps fk : kuR ^ ΣkρB0pkq Ñ

kuR ^ kuR for all k P N is the same as showing that the θk survive the spectral sequence.

On our way to showing the θk survive the Adams spectral sequence, it will be helpful to first
record a simpler splitting of kuR ^ B0pkq and kuR ^ kuR. This will allow us to decompose
the Adams spectral sequence 6.1 into a sum of four separate spectral sequences.

Proposition 6.2. There are kuR-module splittings

kuR ^ B0pkq » Ck _ Vk,

kuR ^ kuR » C _ V,

where Vk and V are sums of suspensions of H, and Ck and C contain no H-summands.

Proof. In Proposition 4.21 we showed that

H‹B0pkq – Lpνppk!qq ‘Wk,

where Wk is a finite sum of suspensions of Ep1q‹. In Proposition 3.2, we also showed that
HkuR

‹ H – Ep1q‹. Take Vk to be a sum of suspensions of H such that HkuR
‹ Vk – Wk. We

can use the Adams spectral sequences

Es,f,w2 – ExtEp1q‹
pHkuR

‹ Vk, H‹B0pkq ùñ rVk, kuR ^ B0pkqs

Es,f,w2 – ExtEp1q‹
pH‹B0pkq, HkuR

‹ Vkq ùñ rkuR ^ B0pkq, Vks

to lift the homology splitting H‹B0 pkq – Lpν2pk!qq ‘ Wk to a splitting of kuR-module
spectra by viewing the inclusion i : HkuR

‹ Vk – Wk ãÑ H‹B0pkq as a class in filtration zero
in the first E2-page, and the projection j : H‹B0pkq Ñ Wk – HkuR

‹ Vk as a class in filtration
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zero of the second E2-page. Since Ep1q‹ is a free and injective module (see [Ric15] and
also Proposition 4.18), both spectral sequences are entirely concentrated in filtration f “ 0.
Therefore, there are no differentials and both the class of the inclusion and the class of the
projection lift to maps of kuR-module spectra

Vk Ñ kuR ^B0pkq Ñ Vk

and we have a splitting kuR ^B0pkq » Vk _ Ck.

To prove kuR ^ kuR » C ^ V, consider the Ep1q‹-comodule isomorphism

H‹kuR –

8
à

k“0

θk : ΣρkH‹B0pkq

of Theorem 4.1. Composing this isomorphism with the isomorphism H‹B0 pkq – Lpν2pk!qq‘

Wk of Proposition 4.21 yields

H‹kuR –

8
à

k“0

ΣρkLpνppk!qq ‘H‹V,

where V is a finite-type sum of copies of H. By the same spectral sequence argument as
the first splitting,

kuR ^ kuR » kuR ^ V.

□

As an immediate consequence, we get a decomposition of the Adams spectral sequence (6.1).

Proposition 6.3. The Adams spectral sequence

Es,t2 “ ExtEp1q‹

`

H‹Σ
ρkB0pkq, H‹kuR

˘

ùñ rkuR ^ ΣρkB0pkq, kuR ^ kuRskuR

decomposes into a sum of four separate spectral sequences, listed below. All but the first is
concentrated on the pf “ 0q-line.

ExtEp1q‹
pH‹Σ

ρkCk, H‹Cq ùñ rΣρkCk, Cs,

ExtEp1q‹
pH‹Σ

ρkCk, H‹V q ùñ rΣρkCk, V s,

ExtEp1q‹
pH‹Σ

ρkVk, H‹Cq ùñ rΣρkVk, Cs,

ExtEp1q‹
pH‹Σ

ρkVk, H‹V q ùñ rΣρkVk, V s.

Since each summand containing V or Vk consists solely of copies of suspensions of M2 on
the filtration pf “ 0q-line, we will focus on the spectral sequence

ExtEp1q‹
pH‹Σ

ρkCk, H‹Cq ùñ rΣρkCk, Cs.

By construction, HkuR
‹ Ck – Lpν2pk!qq and HkuR

‹ C – ‘8
m“0Lpν2pm!qq. Thus in order to

calculate ExtEp1q‹
pH‹Σ

ρkCk, H‹Cq in the proof of Proposition 6.11. we inductively compute

ExtEp1q‹
pLpν2pk!qq, Lpν2pm!qqq

using the long exact sequences induced by ExtEp1q‹
p—, Lpmqq and ExtEp1q‹

pLpmq, —q ap-
plied to the short exact sequence

0 Ñ ΣρLpk ´ 1q Ñ Lpkq Ñ Ep1q{{Ep0q‹ Ñ 0.(6.4)

We will phrase our long exact sequence computations in terms of the spectral sequence
associated to each long exact sequence.
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Since Lp0q » M2, the base case for this inductive computation is ExtEp1q‹
pM2,M2q. This

Ext term is also the E2-page of the Adams spectral sequence for π‹kuR and is computed in
[GHIR20]. In order to build inductively on their result, we describe ExtEp1q‹

pM2,M2q.

Similarly to the height zero case, the square-zero extension M2 – MR
2 ‘ NC again induces

a decomposition

ExtEp1q‹
pM2,M2q – ExtER

‹ p1qppMR
2 ,MR

2 q ‘ ExtER
‹ p1qppNC,MR

2 q

[GHIR20, Proposition 2.2].

In [Hil11, Theorem 3.1], Hill computed ExtERp1qpM2,M2q. In the notation of [GHIR20,
Proposition 6.3],

ExtER
‹ p1qpM2,M2q – F2rρ, τ4, v0, τ

2v0, v1s{pρv0, ρ
3v1, pτ

2v0q2 ` τ4v20q,

where the Milnor-Witt weight, stem s, filtration f, and motivic weight w are given in Table 1.

Milnor-Witt ps, f, wq x P ExtERp1q

0 p´1, 0,´1q ρ
0 p0, 1, 0q v0
1 p2, 1, 1q v1
2 p0, 1,´2q τ2v0
4 p0, 0,´4q τ4

Table 1. Generators for ExtER
‹ p1qpM2,M2q

In charts, ExtER
‹ p1qpM2,M2q is given in Figure 6.1. The horizontal axis is the stem (s), and

the vertical axis is the Adams filtration pfq. Note that the motivic weight (w) is suppressed
in this depiction. We will use this grading in each of the following charts. One can also
refere to the charts in [GHIR20, Section 12].

Figure 6.1. ExtER
‹ p1qpM2,M2q
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The summand ExtENC
‹ p1qpM2,M2q, is a module over ExtER

‹ p1qpM2,M2q. As such, it is best
understood by reading the charts in Figure 6.2. In particular, ExtENC

‹ p1qpM2,M2q is a direct
sum of parts A and B in Figure 6.2. For full algebraic details see [GHIR20, §7 - 9].

Figure 6.2. ExtENC
‹ p1qpM2,M2q

Computing inductively, we find the module Exts,f,wEp1q‹
pM2, Lpmqq has the structure that the

reader familiar with the non-equivariant case might hope for: up to v1-extensions, it consists
of a shifted copy of Exts,f,wEp1q‹

pM2, Lpmqq, along with a sum of copies of Exts,f,wEp0q‹
pM2,M2q.

The equivariant v1-extensions also parallel the nonequivariant case.

Proposition 6.5. As an Exts,f,wEp1q‹
pM2,M2q-module, Exts,f,wEp1q‹

pM2, Lpmqq is generated by
txi | 0 ď i ď mu, where |xi| “ p2i, 0, iq. The generator xm carries a copy of
ExtEp1q‹

pM2,M2q, and for each 0 ď i ă m, xi carries a copy of ExtEp0q‹
pM2,M2q. There

are extensions v1xi “ v0xi`1 for each i.

Proof. Suppose that form1 ă m, the Ext group Exts,f,wEp1q‹
pM2, Lpm1qq is generated by txi | 0 ď

i ď m1u, where |xi| “ p2i, 0, iq. The generator xm1 carries a copy of ExtEp1q‹
pM2,M2q,

while for each 0 ď i ă m1, xi carries a copy of ExtEp0q‹
pM2,M2q. There are extensions

v1xi “ v0xi`1 for each i. We will show that Exts,f,wEp1q‹
pM2, Lpmqq has the desired description.

Consider the long exact sequence

¨ ¨ ¨ Ñ Exts,f,wEp1q‹
pM2, Lpmqq Ñ Exts,f,wEp1q‹

pM2, Ep1q{{Ep0q‹q

d
ÝÑ Exts`1,f,w

Ep1q‹
pM2,Σ

ρLpm´ 1qq Ñ ¨ ¨ ¨ .

induced by the short exact sequence

0 Ñ ΣρLpk ´ 1q Ñ Lpkq Ñ Ep1q{{Ep0q‹ Ñ 0

of Equation (6.4),

First, observe that we can use change-of-rings to write

Exts,f,wEp1q‹
pM2, Ep1q{{Ep0q‹q – Exts,f,wEp0q‹

pM2,M2q.
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The induction hypothesis together with the description of Exts,f,wEp0q‹
pM2,M2q in Proposi-

tion 5.5 and Proposition 5.7 imply the differential

d : Exts,f,wEp0q‹
pM2, Ep0q‹q Ñ Exts`1,f,w

Ep1q‹
pM2,Σ

ρLpm´ 1qq

must be zero for degree reasons. For example, this can be observed in Figure 6.3. Note that
in Figure 6.3, the classes have been relabeled as described at the end of the proof.

Therefore,

Exts,f,wEp1q‹
pM2, Lpmqq – Exts,f,wEp0q‹

pM2, Ep0q‹q ‘ Exts`1,f,w
Ep1q‹

pM2,Σ
ρLpm´ 1qq,

Exts,f,wEp1q‹
pM2, Lpmqq – Exts,f,wEp0q‹

pM2, Ep0q‹q ‘ Exts`1,f,w
Ep1q‹

pM2,Σ
ρLpm´ 1qq

– Exts,f,wEp0q‹
pM2, Ep0q‹q ‘ Σρ Exts`1,f,w

Ep1q‹
pM2, Lpm´ 1qq,

up to extensions.

Let x denote the generator of Exts,f,wEp0q‹
pM2,M2q. By comparison with the underlying cal-

culation, there must be an extension v1x “ v0pΣρx0q. There are no other additional new
multiplicative extensions for degree reasons.

Relabeling x by x0 and Σρxi by xi`1 finishes the proof. □

Figure 6.3. ExtEp1q‹
pM2, Lp3qq

We now move on to compute ExtEp1q‹
pLpkq, Lpmq for k ą 0. We will make use the following

two lemmas.

Lemma 6.6. There is a ‘wrong-side’ change-of-rings isomorphism

Exts,f,wEp1q‹
pEp1q{{Ep0q‹, ´ q – Σ´ρ´1 Exts,f,wEp0q‹

pM2, ´ q.

Proof. By the equivalence of categories between left Epnq‹-comodules and right Epnq-
modules (Proposition 4.6),

Exts,f,wEp1q‹
pEp1q{{Ep0q‹, ´ q – Exts,f,wEp1q

pEp1q{{Ep0q‹, ´ q.
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As an Ep1q-module, Ep1q{{Ep0q‹ – Σρ`1Ep1q{{Ep0q. By ordinary change-of-rings,

Exts,f,wEp1q
pΣρ`1Ep1q{{Ep0q, ´ q – Σ´ρ´1 Exts,f,wEp0q

pM2, ´ q.

Applying the equivalence of categories again concludes the proof. □

Lemma 6.7. Let m ą k. For s ă 0 and even, Homs,˚
Ep1q‹

pLpkq, Lpmqq “ 0.

This is a straightforward computation and is best checked by drawing the relevant lightning
flash modules.

We are now ready to compute ExtEp1q‹
pLpkq, Lpmqq for k ą 0. We proceed by fixing m ě 0

and inducting on k. Since the resulting Ext groups have a different form when k ą m, we
first describe ExtEp1q‹

pLpkq, Lpmqq for k ď m before moving on to the case where k ą m.

Proposition 6.8. Let k ď m. Then

ExtEp1q‹
pLpkq, Lpmqq – ExtEp1q‹

pM2, Lpm´ kqq ‘ V,

where V consists of v0 and v1-torsion concentrated on the pf “ 0q-line, specifically:

(1) infinitely ρ-divisible towers, and
(2) ρ-towers in odd stem s and filtration degree pf “ 0q.

Proof. The base case of the induction, when k “ 0, holds by Proposition 6.5. Suppose that
the claim holds for k ´ 1 and consider the long exact sequence

¨ ¨ ¨ Ñ Exts,f,wEp1q‹
pLpkq, Lpmqq Ñ Exts,f,wEp1q‹

pΣρLpk ´ 1q, Lpmqq

d
ÝÑ Exts`1,f,w

Ep1q‹
pEp1q{{Ep0q‹, Lpmqq Ñ ¨ ¨ ¨ .

induced by the short exact sequence

0 Ñ ΣρLpk ´ 1q Ñ Lpkq Ñ Ep1q{{Ep0q‹ Ñ 0.

By the induction assumption,

Exts,f,wEp1q‹
pΣρLpk ´ 1q, Lpmqq – ExtEp1q‹

pM2, Lpm´ k ` 1qq ‘ V.

The ‘wrong-side‘ change of rings isomorphism (Lemma 6.6) gives

Exts,f,wEp1q‹
pEp1q{{Ep0q‹, Lpmqq – Σ´ρ´1Exts,f,wEp0q‹

pM2, Lpmqq.

So

Σ´ρ´1Exts,f,wEp0q‹
pM2, Lpmqq ‘ Exts,f,wEp1q‹

pΣρLpk ´ 1q, Lpmqq ùñ ExtEp1q‹
pLpkq, Lpmqq.

Let Σ´ρ´1y denote the generator of the v0-tower in Σ´ρ´1Ext˚,˚,˚Ep0q‹
pM2, Lpmqq as in Fig-

ure 6.4. There is a potential nonzero differential from Σ´ρx0 to Σ´ρ´1v0y. Lemma 6.7
implies that Ext´2,0,˚pLpkq, Lpmqq must be zero, so indeed dpΣ´ρx0q “ Σ´ρ´1v0y.

The differential d is ExtEp1q‹
pM2,M2q-linear, so this suffices to determine all other differen-

tials. There is no room for extensions. Thus indeed

ExtEp1q‹
pLpkq, Lpmq – ExtEp1q‹

pM2, Lpm´ kqq ‘ V,

as illustrated in Figures 6.4 and 6.5 which depict the case where m “ 2 and one inducts
from k “ 0 to k “ 1. □
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Figure 6.4. E1-page computing ExtEp1q‹
pLp1q, Lp2qq

Figure 6.5. ExtEp1q‹
pLp1q, Lp2qq

Having computed ExtEp1q‹
pLpkq, Lpmqq for fixed m ě 0 by induction on k ď m, we are now

ready to continue the induction for k ą m.

Lemma 6.9. The positive cone Ext˚,˚,˚
ER

‹ p1q
pLpkq, Lpmqq for k ą m consists of:

(1) a triangle formation:

F2rρ, τ2, v0, v1s{ρv0

"

y0, . . . , ym´k´1 v1yi “ v0yi`1, v20y0 “ 0,
v1ym´k´1 “ 0, vi`1

0 yiτ
4i`2 “ 0 @i

*

,

where |yi| “
`

´ 1 ´ 2pk ´m´ iq, 0,´pk ´m´ iq
˘

,
(2) infinite ρ-towers generated by b where |b| “ p2pm´ kq ´ 1, 0, m´ k ´ 1q,
(3) a copy of v1 ExtER

‹ p1qpM2,M2q, with generator denoted x and
|x| “ p2pm´ kq,m´ k,m´ kq,
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(4) ρ-pairs:
F2rρ, v1s

␣

b | vm´k´1
1 b “ ρx, ρ2b “ 0

(

.

Lemma 6.10. The negative cone Ext˚,˚,˚
Ep1q´ pLpkq, Lpmqq for k ą m consists of:

(1) a triangle formation:

F2rτ2s

τ8, ρ8

" γ
τ2 y0, ¨ ¨ ¨ , γτ2 ym´k´1 v1

γ
τ2 yi “ v0

γ
τ2 yi`1, v0

γ
τ2 y0 “ 0,

v1
γ
τ2 ym´k´1 “ 0, vi`1

0
γ
τ2 yiτ

4j`2 “ 0 @i

*

,

(2) infinite ρ-divisible towers in filtration f “ 0,
(3) a copy of v1 ExtEp1qNC

‹
pM2,M2q, with generators denoted γ

τ ix and
|x| “ p2pm´ kq,m´ k,m´ kq,

F2rv0, v1, τ
2s

τ8, ρ8
tx, cu{pρ´3x, v0ρx, v0ρ

´2x, τ4k`2x, ρ´iy, ρ´2v0τ
4k ´ τ4kcq,

(4) ρ-divisible triples:
F2rτ4s

τ8ρ8
tcu{pρ´3c, vn1 c´ xq.

Before proving Lemmas 6.9 and 6.10, we introduce some charts illustrating
ExtEp1q‹

pLpkq, Lpmqq in the cases where k “ 1 and m “ 0 (Figure 6.7) and where k “ 2 and
m “ 0 (Figure 6.9). In both figures, one can see the triangle formation begin to emerge in
stems s ď ´3. The shape of the triangle formation becomes more apparent as the difference
between k and m grows.

Examples of infinite ρ-towers can be found starting in filtration f “ 0 and stem s “ ´3 in
the positive cone summands. As multiplication by ρ is represented by a horizontal line to
the left, these ρ towers appear as arrows on the zero line pointing to the left. Examples
of infinite ρ-divisible towers can be found starting in filtration f “ 0 and stem s “ ´3 in
the negative cone summands. As divisibility by ρ is represented by a horizontal line to the
right, these ρ-divisible towers appear as arrows on the zero line pointing to the right.

The copies of v1 ExtER
‹ p1qpM2,M2q in the positive cone summands and v1 ExtENC

‹ p1qpM2,M2q

are best identified by comparison with the charts in Figure 6.1 and Figure 6.2, respectivly.

The ρ-pairs and ρ-divisible triples only appear when k ´ m ě 2. As such, a ρ-pair can be
seen in the positive cone summand of Figure 6.9. Specifically, the ρ-pair there is the pair of
two blue dots in filtration f “ 1 and stems s “ ´3 and s “ ´4 linked by a ρ-multiplication.
A ρ-divisible triple can be seen in the negative cone summand of Figure 6.9. Specically, the
ρ-divisible triple is the three green dots in filtration f “ 1 and stems s “ ´2, s “ ´1, and
s “ 0 linked by divisibility by ρ.

While proceeding through the inductive proof of Lemmas 6.9 and 6.10, it is helpful to keep
similar charts of the Ext-groups ExtEp1q‹

pLpkq, Lpmqq in mind.

Proof of Lemmas 6.9 and 6.10. Suppose the above description holds for all k1 ă k. For
degree reasons, the only possible nontrivial differentials originate from the v0-tower on Σ´ρx
in the positive cone, and the v0-tower on Σ´ρ x

τ2 in the negative one. This is illustrated in
the case where m “ 0 and we are inducting from k “ 0 to k “ 1 in ?? and in the case where
m “ 0 and we are inducting from k “ 1 to k “ 2 in Figure 6.8.
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In Proposition 6.8 we computed ExtEp1q‹
pLpkq, Lpmqq for k “ m, by fixing m and inducting

on k. Alternatively, we could fix k, and induct on m to compute ExtEp1q‹
pLpkq, Lpmqq for

k “ m. We describe the base case of this alternate induction when m “ 0, computing
ExtEp1q‹

pLp1q,M2q, in detail. The cases where m ‰ 0 are similar and left to the reader.

The E1-page of the spectral sequence computing ExtEp1q‹
pLp1q,M2q from the short exact

sequence
0 Ñ ΣρLpk ´ 1q Ñ Lpkq Ñ Ep1q{{Ep0q‹ Ñ 0

is displayed in ??. By comparison with the underlying calculation, there must be a differ-
ential

d1pΣ´ρ1q “ Σ´ρ´1v0.

By linearity in τ and v0, this implies there are also differentials

d1pΣ´ρvi0τ
4jq “ Σ´ρ´1vi`1

0 τ4i, i, j ě 0

d1pΣ´ρvi0τ
4j´2q “ Σ´ρ´1vi`1

0 τ4j´2 i ě 0, j ě 1

in the positive cone summand and differentials

d1

´

Σ´ρvi0
γ

τ1`4j

¯

“ Σ´ρ´1vi`1
0

γ

τ1`4j
i ě 0, j ě 1

d1

´

Σ´ρvi0
γ

τ3`4j

¯

“ Σ´ρ´1vi`1
0

γ

τ3`4j
i ě 0, j ě 1.

in the negative cone summand. Here it may be helpful to visualize the calculation using the
chart in ?? and recall that F2rτ2s{τ8

␣

Σ´ρ´1 γ
τ

(

consists of all classes Σ´ρ´1 γ
τ1`2k where

k ě 1.

The only remaining classes on the E1-page that could potentially support a differential are
F2rτ4s{τ8

␣

Σ´ρ γ
τ2

(

and F2rτ4s{τ8
␣

Σ´ρ γ
τ4

(

. However, none of these can support differ-
entials due to ρ-linearity. Specifically, suppose some Σ´ρ γ

τ2`4j (or Σ´ρ γ
τ4`4j ) supports a

differential. Then by ρ-linearity, ρ2Σ´ρ γ
ρ2τ2`4j (or ρ2Σ´ρ γ

ρ2τ4`4j ) must also support a dif-
ferential, but this is not possible for degree reasons. Thus ExtEp1q‹

pLp1q,M2q has the form
described in Lemmas 6.9 and 6.10 and illustrated in Figure 6.7. This completes the base
case calculation when k “ 1.

We now return to the general case where we have fixed k and compute ExtEp1q‹
pLpkq, Lpmqq

where k “ m by induction on m. Comparing the result of this induction with that of Propo-
sition 6.8 (where the same ExtEp1q‹

pLpkq, Lpmqq with k “ m is computed by fixing m and
inducting on k), we see that the differential dpΣ´ρxq must be nontrivial in order for the two
methods to agree. Specifically, if, when we fix m and induct on k, we assume dpΣ´ρxq “ 0,
then we would get an infinite v0-tower in odd stem in ExtEp1q‹

pLpkq, Lpmqq. If we then fixed
k and inducted on m to compute ExtEp1q‹

pLpkq, Lpkqq, we would get the same infinite v0-
tower in odd stem in ExtEp1q‹

pLpkq, Lpkqq. But we already know from Proposition 6.8 that
ExtEp1q‹

pLpkq, Lpkqq has no infinite v0 towers in odd stems. Thus dpΣ´ρxq “ vk´m
0 Σ´ρ´1y.

Likewise, comparison with Proposition 6.8 tells us that dpΣ´ρ γ
τ2xq “ vk´m

0 Σ´ρ´1 γ
τ2y . Lin-

earity in τ and v0 give the remaining differentials in the v0-towers supported by these
classes. □
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Figure 6.6. E1-page computing ExtEp1q‹
pLp1q,M2qq

Figure 6.7. ExtEp1q‹
pLp1q,M2q

Figure 6.8. E1-page computing ExtEp1q‹
pLp2q,M2q

6.2. Analyzing Adams differentials. The goal of this section is to finish proving the
Adams spectral sequence (6.1) collapses. Specifically we show,
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Figure 6.9. ExtEp1q‹
pLp2q,M2q

Proposition 6.11. For all k ě 0, the Adams spectral sequence

Es,t2 “ ExtEp1q‹

`

H‹Σ
ρkB0pkq, H‹kuR

˘

ùñ
“

kuR ^ ΣρkB0pkq, kuR ^ kuR
‰kuR

collapses.

Our main theorem (Theorem 6.1) will follow immediately from this proposition.

Proof. In Proposition 6.3, we showed that the Adams spectral sequence splits into a sum
of four different Adams spectral sequences, and that all of the summands collapse at the
E2-page (and are concentrated on the pf “ 0q-line) except

Exts,f,wEp1q‹
pH‹Σ

ρkCk, H‹Cq ùñ rΣρkCk, Cs.

We also observed

Exts,f,wEp1q‹
pH‹Σ

ρkCk, H‹Cq –

8
à

m“0

Σρpm´kq ExtEp1q‹
pLpν2pk!qq, Lpν2pm!qqq.

To show the Adams spectral sequence collapses, we will begin by considering Adams differ-
entials with source a v1-torsion class. First, observe that by v1-linearity, the only potential
targets of such differentials are other v1-torsion classes. There are two types of v1-torsion
classes in the positive cone. The first has the form Σρpm´kqvi0yj and consists of v0-towers
in the triangle formation (Lemma 6.9 (1). All other v1-torsion classes in the positive cone
summands are infinite ρ-towers based in odd stem and filtration f “ 0 (Lemma 6.9 (2).
In the negative cone summands, the v1-torsion classes are Σρpm´kqvi0

γ
τ2 yj , the v0-towers

in the triangle formation (Lemma 6.10 1), and the infinite ρ-divisible towers in filtration
f “ 0 (Lemma 6.10 (2)). By ρ-linearity, the ρ-towers in the positive cone summands can-
not support differentials. Similarly, all the classes in the ρ-divisible towers in the negative
cone summands cannot support differentials. Suppose that drpxq ‰ 0 for some ρn-divisible
x. Then since drpxq “ ρndrpx{ρnq, drpx{ρnq must also be nonzero. Thus the infinitely
ρ-divisible towers cannot support differentials either.
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Further, since the v0-towers in the triangle formation are all in odd stem, the classes
Σρpm´kqvi0yj and Σρpm´kqvi0

γ
τ2 yj cannot support differentials for degree reasons.

We will now consider the possibility of v1-torsion free classes supporting differentials with
target a v1-torsion class. In particular, we will show all such potential differentials must be
zero.

In positive cone summands, the possible sources for such differentials are of the form

(1) Σρpm´kqxi, which are found in the summands Σρpm´kq ExtEp1q pLpνpk!q, Lpνpm!qq

when ν2pk!q ď ν2pm!q.
(2) Σρpm´kqx, which are found in the summands Σρpm´kq ExtEp1q pLpνpk!q, Lpνpm!qq

when ν2pk!q ą ν2pm!q.

The (stem, filtration, weight) degrees of these classes are |Σρpm´kqxi| “
`

2pi`m´ kq, 0, i`

m´k
˘

and |Σρpm´kqx| “
`

2pm´kq, k´m,m´k
˘

. More succinctly, they are all of the form
p2n, ˚, nq for some n. Likewise, in the negative summand the generators are of the form

(1) Σρpm´kq γ
τ4j`1 xi

(2) Σρpm´kq γ
ρ2τ4j`2 xν2pm!q´ν2pk!q

(3) Σρpm´kq γ
τ4j`3 xν2pm!q´ν2pk!q

(4) Σρpm´kq γ
ρ2τ4j`2 x.

Observe that generators of form (1) are all in stem 2n with motivic weight congruent to
n ` 2 mod 4 for some n, while generators of forms (2)-(4) the classes are in stem 2n with
motivic weight congruent to n mod 4.

First we will show that no differentials can hit the v1-torsion classes Σρpm´kqvi0yj and
Σρpm´kqvi0

γ
τ2 yj for degree reasons. First, note that Σρpm´kqvi0yj and Σρpm´kqvi0

γ
τ2 yj only oc-

cur in stem s ď ´3. On the other hand, for m1 ě k, Σρpm1
´kq ExtEp1qpLpν2pk!qq, Lpν2pm1!qqq

is contained entirely in stem s ě 0. So we are just left to show that there are no differentials
from

Σρpm1
´kq ExtEp1qpLpν2pk!qq, Lpν2pm1!qqq

to Σρpm´kqvi0yj and Σρpm´kqvi0
γ
τ2 yj for m1 ă k. Let r ě 0. In stem ´2r, any generators

Σρpm1
´kqx and Σρpm1

´kq γ
ρ2τ4j`2x must be in filtration at least ν2pk!q ´ ν2ppk ´ rq!q. On the

other hand, any class of the form Σk´mvj0yi or Σk´mvj0
γ
τ2 yi in stem ´2r´1 has filtration at

most ν2pk!q ´ ν2ppk´ r` 1q!q + 1. Thus no classes of the form Σρpm´kqyi and Σρpm´kq γ
τ2 yi

are the target of differentials.

Finally, we will show that there are no nontrivial differentials from v1-torsion-free classes to
other v1-torsion-free classes. Note that the generators of the v1-torsion-free classes are all
in even stem, so any potential target will be in odd stem. The v1-torsion-free classes in odd
stem are all of the form

(1) Σpm1
´kqρρxν2pm1!q´ν2pk!qrv1, τ

4s

(2) Σpm1
´kqρb rv1, τ

4s
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(3) Σpm1
´kqρ γ

ρτ4i`2 v
j
1xν2pm1!q´ν2pk!q, i, j P N

(4) Σpm1
´kqρ γ

ρτ4i`2 v
j
1c, i, j P N

Note that obstructions of type (1) and (2) are all in stem 2n ´ 1 for some n and weight
congruent to pn´1q mod 4, while those of type (3) and (4) are all in stem 2n´1 for some n
and weight congruent to pn ` 3q mod 4. Recall that the Adams differential decreases stem
by 1 and preserves motivic weight, so indeed no nontrivial differentials are possible here. □

Thus the class θk : H‹Σ
ρkB0pkq Ñ H‹Σ

ρkkuR survives the Adams spectral sequence, and
we have proved our main theorem.

Theorem 6.1. Up to 2-completion, there exists a splitting of kuR-modules

kuR ^ kuR » kuR ^ ΣρkB0pkq.

6.3. Description in terms of C2-equivariant Adams covers. We now give a description
of the splitting of Theorem 6.1 in terms of C2-equivariant Adams covers. Let kuxny

R denote
the n-th Adams cover of kuR, that is, the nth term in a minimal Adams resolution of kuR
over H (see [Lel84, p.2-3] for discussion). Note that HkuR

‹ ku
xny

R – Lpν2pn!qq, and that kuxny

R
must be a kuR-module by construction. Up to homotopy, the Adams cover kuxny

R is uniquely
determined by its homology and the fact that it is a kuR-module. This can be seen from
the Adams spectral sequence

ExtEp1q‹
pHkuR

‹ ku
xny

R , HkuR
‹ ku

xny

R q – ExtEp1q‹
pLpν2pn!qq, Lpν2pn!qq ùñ rku

xny

R , ku
xny

R skuR ,

which the proof of our main theorem (Theorem 6.1) shows collapses at the E2-page.

We prove

Theorem 6.2. Up to 2-completion,

kuR ^ kuR »

8
ł

k“0

Σρkku
xν2pk!qy

R _ V,

where V is a sum of suspensions of H.

Proof. Proposition 6.2 shows kuR ^ B0pkq – Ck _ Vk, where Vk is a sum of suspensions of
H and Ck contains no H-summands. Specifically, HkuR

‹ Ck – Lpν2pn!qq. Thus we can use
the Adams spectral sequence

ExtEp1qpHkuR
‹ ku

xny

R , H‹Ckq ùñ rku
xny

R , CkskuR

to lift the isomorphism to an equivalence of C2-spectra. Since the E2-page of this spectral
sequence is simply a summand of the E2-page of the Adams spectral sequence (6.1) which
appeared in the proof of Theorem 6.1, the same arguments imply this spectral sequence also
collapses. □

6.4. kuR-operations and cooperations.
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6.4.1. The kuR-cooperations algebra. Another consequence of our proof of Theorem 6.1 is a
computation of the ku‹-cooperations algebra.

Theorem 6.3. The kuR-cooperations algebra kuR‹kuR splits as

kuR‹kuR –

8
à

k“0

kuR‹´kρB0pkq,

where as a kuR‹-module

kuR‹B0pkq –

8
à

k“0

ExtEp1q‹
pM2, Lpν2p2k!qq

–

8
à

k“0

HZ‹tx0, x1, . . . , xν2p2k!q´1u ‘ kuR‹txν2p2k!qu ‘ Vk,

with extensions v1xi´1 “ ρxi, and where |xi| “ ρi and Vk is a sum of suspensions of H‹.

While we do not specify the degree of the summands appearing in Vk in the statement of
Theorem 6.3 due to the amount of book keeping that would be involved, our computational
methods do allow one to precisely deduce them.

Proof. Consider the kuR-Adams spectral sequence

ExtEp1q‹
pM2, H‹B0pkqq ùñ π‹

`

kuR ^ B0pkq
˘

.

This is a summand of the spectral sequence of Equation (6.1) so this spectral sequence
collapses. Further, Proposition 6.5 gives a complete description of the E2-page. Observe
there are no hidden extensions for degree reasons. □

6.4.2. kuR-Operations. Our computational methods further yield an inductive description
of the operations algebra for kuR, that is rkuR, kuRs.

Theorem 6.4. The cooperations algbera rkuR, kuRs splits as

rkuR, kuRs –

8
à

k“0

rΣρkB0pkq, kuRs.

The Adams spectral sequence

ExtEp1q‹
pH‹B0pkq, H‹kuRq ùñ rΣρkB0pkq, kuRs

collapses at the E2-page, and its E2-page is described in Lemmas 6.9 and 6.10.

Proof. Consider the kuR-Adams spectral sequence

ExtEp1q‹
pH‹B0pkq,M2q ùñ rB0pkq, kuRskuR .

Lemma 6.9 gives a description of ExtEp1q‹
pLpνpk!q,M2q for all k ě 0. By the same arguments

as the proof of the main theorem (Theorem 6.1), no differentials are possible. □



A SPECTRUM-LEVEL SPLITTING OF THE kuR-COOPERATIONS ALGEBRA 39

References

[Ada74] J. F. Adams. Stable homotopy and generalised homology. Chicago Lectures in Mathematics.
University of Chicago Press, Chicago, Ill.-London, 1974.

[BBB`20] A. Beaudry, M. Behrens, P. Bhattacharya, D. Culver, and Z. Xu. On the E2-term of the bo-
Adams spectral sequence. J. Topol., 13(1):356–415, 2020.

[BG73] Edgar H. Brown, Jr. and Samuel Gitler. A spectrum whose cohomology is a certain cyclic module
over the Steenrod algebra. Topology, 12:283–295, 1973.

[BGL22] Prasit Bhattacharya, Bertrand Guillou, and Ang Li. An R-motivic υ1-self-map of periodicity 1.
Homology Homotopy Appl., 24(1):299–324, 2022.

[BL01] Andrew Baker and Andrey Lazarev. On the adams spectral sequence for r–modules. Algebraic
& Geometric Topology, 1(1):173–199, 2001.

[Boa99] J Michael Boardman. Conditionally convergent spectral sequences. Contemporary Mathematics,
239:49–84, 1999.

[BOSS19] M. Behrens, K. Ormsby, N. Stapleton, and V. Stojanoska. On the ring of cooperations for
2-primary connective topological modular forms. J. Topol., 12(2):577–657, 2019.

[BP23] Robert Burklund and Piotr Pstrągowski. Quivers and the adams spectral sequence, 2023.
[BW03] Tomasz Brzezinski and Robert Wisbauer. Corings and comodules, volume 309 of London Math-

ematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.
[BW18] Mark Behrens and Dylan Wilson. A C2-equivariant analog of Mahowald’s Thom spectrum the-

orem. Proc. Amer. Math. Soc., 146(11):5003–5012, 2018.
[CDGM88] Fred R. Cohen, Donald M. Davis, Paul G. Goerss, and Mark E. Mahowald. Integral Brown-Gitler

spectra. Proc. Amer. Math. Soc., 103(4):1299–1304, 1988.
[CHR24] Christian Carrick, Michael A. Hill, and Douglas C. Ravenel. The homological slice spectral

sequence in motivic and real bordism. Adv. Math., 458:Paper No. 109955, 74, 2024.
[Coh79] Ralph L. Cohen. The geometry of Ω2S3 and braid orientations. Invent. Math., 54(1):53–67,

1979.
[Coh85] Ralph L Cohen. The immersion conjecture for differentiable manifolds. Annals of Mathematics,

122(2):237–328, 1985.
[Cul19] Dominic Leon Culver. On BPx2y-cooperations. Algebr. Geom. Topol., 19(2):807–862, 2019.
[Cul20] D. Culver. The BP x2y-cooperations algebra at odd primes. J. Pure Appl. Algebra, 224(5):106239,

28, 2020.
[Dav87] Donald M. Davis. The bo-Adams spectral sequence: some calculations and a proof of its vanishing

line. In Algebraic topology (Seattle, Wash., 1985), volume 1286 of Lecture Notes in Math., pages
267–285. Springer, Berlin, 1987.

[DM89] Donald M. Davis and Mark Mahowald. The image of the stable J-homomorphism. Topology,
28(1):39–58, 1989.

[GHIR20] Bertrand J. Guillou, Michael A. Hill, Daniel C. Isaksen, and Douglas Conner Ravenel. The
cohomology of C2-equivariant Ap1q and the homotopy of koC2

. Tunis. J. Math., 2(3):567–632,
2020.

[GI24] Bertrand J. Guillou and Daniel C. Isaksen. C2-equivariant stable stems, 2024.
[GIR18] Bogdan Gheorghe, Daniel C. Isaksen, and Nicolas Ricka. The Picard group of motivic ACp1q.

J. Homotopy Relat. Struct., 13(4):847–865, 2018.
[GJM86] Paul G. Goerss, John D. S. Jones, and Mark E. Mahowald. Some generalized Brown-Gitler

spectra. Trans. Amer. Math. Soc., 294(1):113–132, 1986.
[Gon00] Jesús González. A vanishing line in the BPx1y-Adams spectral sequence. Topology, 39(6):1137–

1153, 2000.
[Hil11] Michael A. Hill. Ext and the motivic Steenrod algebra over R. J. Pure Appl. Algebra, 215(5):715–

727, 2011.
[HK01] Po Hu and Igor Kriz. Real-oriented homotopy theory and an analogue of the Adams-Novikov

spectral sequence. Topology, 40(2):317–399, 2001.
[HK18] Drew Heard and Achim Krause. Vanishing lines for modules over the motivic Steenrod algebra.

New York J. Math., 24:183–199, 2018.
[HKSZ23] Po Hu, Igor Kriz, Petr Somberg, and Foling Zou. The Z{p-equivariant dual steenrod algebra for

an odd prime p, 2023.
[HSW23] Jeremy Hahn, Andrew Senger, and Dylan Wilson. Odd primary analogs of real orientations.

Geom. Topol., 27(1):87–129, 2023.



40 GUCHUAN LI, SARAH PETERSEN, ELIZABETH TATUM

[HW20] Jeremy Hahn and Dylan Wilson. Eilenberg–Mac Lane spectra as equivariant Thom spectra.
Geom. Topol., 24(6):2709–2748, 2020.

[Kan81] Richard M. Kane. Operations in connective K-theory. Mem. Amer. Math. Soc., 34(254):vi+102,
1981.

[Kli89] John Klippenstein. The bu cohomology of BP xny. Journal of Pure and Applied Algebra,
57(2):127–140, 1989.

[Lel84] Wolfgang Lellmann. Operations and cooperations in odd-primary connective k-theory. Journal
of the London Mathematical Society, 2(3):562–576, 1984.

[Lew95] L. Gaunce Lewis, Jr. Change of universe functors in equivariant stable homotopy theory. Fund.
Math., 148(2):117–158, 1995.

[LPT23] Guchuan Li, Sarah Petersen, and Elizabeth Ellen Tatum. A Thom spectrum model for C2-
Integral Brown–Gitler spectra, 2023.

[LSWX19] Guchuan Li, XiaoLin Danny Shi, Guozhen Wang, and Zhouli Xu. Hurewicz images of real
bordism theory and real Johnson-Wilson theories. Adv. Math., 342:67–115, 2019.

[Mah77] Mark Mahowald. A new infinite family in 2π˚
s. Topology, 16(3):249–256, 1977.

[Mah81] Mark Mahowald. bo-resolutions. Pacific J. Math., 92(2):365–383, 1981.
[May20] Clover May. A structure theorem for ROpC2q-graded Bredon cohomology. Algebr. Geom. Topol.,

20(4):1691–1728, 2020.
[Orm11] Kyle M. Ormsby. Motivic invariants of p-adic fields. J. K-Theory, 7(3):597–618, 2011.
[Ric15] Nicolas Ricka. Subalgebras of the Z{2-equivariant Steenrod algebra. Homology Homotopy Appl.,

17(1):281–305, 2015.
[SW22] Krishanu Sankar and Dylan Wilson. On the Cp-equivariant dual Steenrod algebra. Proc. Amer.

Math. Soc., 150(8):3635–3647, 2022.


	1. Introduction
	2. Underlying nonequivariant splittings
	3. Equivariant preliminaries
	4. C2-equivariant homology results
	5. Splitting H ZHZ
	6. Splitting kuRkuR
	References

