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A SPECTRUM-LEVEL SPLITTING OF THE kug-COOPERATIONS
ALGEBRA

GUCHUAN LI, SARAH PETERSEN, ELIZABETH TATUM

ABSTRACT. In the 1980’s, Mahowald and Kane used integral Brown—Gitler spectra to
decompose ku A ku as a sum of finitely generated ku-module spectra. This splitting,
along with an analogous decomposition of ko A ko led to a great deal of progress in stable
homotopy computations and understanding of wvi-periodicity in the stable homotopy
groups of spheres. In this paper, we construct a Cg-equivariant lift of Mahowald and
Kane’s splitting of ku A ku. We also give a description of the resulting Cs-equivariant
splitting in terms of Ca-equivariant Adams covers and record an analogous splitting for
HZ A HZ. Similarly to the nonequivariant story, we expect the techniques of this paper
to facilitate further C2-equivariant stable homotopy computations and understanding of
vy-periodicity in Ca-equivariant stable stems.
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1. INTRODUCTION

1.1. Motivation. In the 1970’s Brown—Gitler and Cohen constructed Brown—Gitler spec-
tra, a family of spectra realizing subcomodules of the dual Steenrod algebra A, [BGT73,
[Coh79]. Mahowald subsequently observed these spectra could be used to decompose the
cooperations algebra for integral homology, HZ A HZ, as a sum of finite HZ-modules.
Mahowald and Kane later used integral Brown—Gitler spectra, a family of spectra real-
izing subcomodules of H,HZ, to decompose ku A ku and ko A ko in an analogous way

[Mah81, Kan81].
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These splittings of ku A ku and ko A ko proved particularly useful in ku- or ko-Adams
spectral sequences. As kuyku or kosko is not flat over kuy or koy, the corresponding Fs-
page cannot be computed as an Ext group. One has to start the computation with the
E;-page. However, Mahowald and Kane’s decompositions of ku A ku and ko A ko in terms
of finitely generated ku- and ko-modules, respectively, made computation of the E;-pages of
these spectral sequences tractable by splitting the computation of the E;-page into smaller
pieces [Mah81l, [Dav87, [DM89, BBB*20]. Further, even the information on the Es-pages
of these spectral sequences provides a wealth of homotopical information. Both the ku-
and ko-based Adams spectral sequences have vanishing lines which result in collapse at the
FEs-page in a large range.

The ko-Adams spectral sequence in particular is a very effective tool for studying wv;-
periodicity in the stable homotopy groups of the sphere, 74S(2). For example, Mahowald
famously used the ko-Adams spectral sequence to prove the Telescope Conjecture for height
one at the prime 2 [Mah81]. The ko-based Adams spectral sequence is also a highly efficient
way to compute 74 S(2y through the 40-stem [Dav87, [DM89, BBB*20]. Additionally, at odd
primes, Gonzalez used the ku-Adams spectral sequence to study v;-periodicity, as well as
to classify stunted lens spaces [Gon00].

Given the range of successful applications of Mahowald and Kane’s splittings in nonequiv-
ariant homotopy theory, one may ask whether analogous splittings exist in equivariant ho-
motopy theory. In this paper, we answer this question affirmatively by constructing a Cs-
equivariant splitting of kug A kug, in terms of finitely generated kug-modules. Here, kug is
the equivariant connective cover of KUp, the spectrum representing Atiyah real K-theory.

There are several reasons for working with the group of equivariance G = Cs, the cyclic
group of order two. First, Mahowald and Kane’s nonequivariant splittings involve (integral)
Brown—Gitler spectral which realize subcomodules of the dual Steenrod algebra A, or in
the case of integral Brown—Gitler spectra, realize subcomodules of HFs, HZ. Thus it is
reasonable to begin with a group of equivariance where the dual Steenrod algebra has been
computed and closely resembles the classical dual Steenrod algebra. This is the case when
G = (3 [HKO1, Theorem 6.41] (see also [LSWX19, Theorem 2.14] for a description written
in notation more obviously mirroring the classical dual Steenrod algebra), and in an earlier
paper, we constructed Cy-equivariant integral Brown—Gitler spectra By (k) realizing certain
subcomodules of HF,, HZ [LPT23]. In this paper, these spectra play an integral role in our
construction of a Cs-equivariant splitting of kug A kug.

For cyclic groups of prime order p # 2, the dual Steenrod algebra has been computed and
is known not to be flat over the coefficients HF,, [SW22, [HKSZ23|. This suggests the con-
struction of Cp-equivariant (integral) Brown-Gitler spectra, where p is an odd prime, may
be more complicated, requiring techniques beyond those developed in [LPT23|. Addition-
ally, odd primary analogues of BPg are only beginning to be studied and also require the
development of further computational techniques [HSW23].

Even in the case where G = (5, constructing a splitting of kug A kugr is significantly
more complicated than in the nonequivariant case. This is largely due to the fact that the
coefficients HFF,, form a bigraded ring (described in Section rather than a single copy
of Fy as in the nonequivariant case. In particular, many of the results in Section [4] deal with
this technical difficulty. Further, much of the work in Sections [f] and [6] where we construct
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the HZ A HZ and kug A kug splittings, lies in keeping careful track of all the bigraded
elements.

We now describe our main results. This is followed by a discussion of problems which are
newly accessible with the methods developed in this paper.

1.2. Main results. The main result of this paper is a lift of Mahowald and Kane’s splitting
of ku A ku to the Cs-equivariant spectra:

Theorem (Theorem . Up to 2-completion, there is a splitting of kug-modules
kup A kup ~ kug A EpkBo(k).

Our proof of this theorem requires the development of a number of Cs-equivariant ho-
mology results. Specifically, we give a Whitehead Theorem for Margolis homology in the
Cy-equivariant setting (Proposition , compute the homology of Cs-equivariant mod 2
and integral Brown—Gitler spectra (Propositions and , and record a computation
of HF,, BPr{n) which we first learned from Christian Carrick.

Just as in the nonequivariant setting, this splitting allows us to also describe kugr A kug in
terms of equivariant Adams covers k‘uﬁ{zw» of kug.

Theorem (Theorem . Up to 2-completion,

0
kug A kugp ~ \/ E2kku]§{l/2(n!)> vV,
k=0

where V' is a sum of suspensions of H.

Incidentally to our proof of the main theorem, we describe the cooperations algebra kug, kug.
Theorem (Theorem [6.3). The kug-cooperations algebra kur,kug splits as

0
kur, kurp = (—B]{Z’ILR*,]WBQ(k))7
k=0

where as a kug,-module

kug . Bo (k @ HZ w0, 71, Ty 21 —1) © kurAT0y 201} @ Vi,

with extensions vix;_1 = px;, and where |x;| = pi and Vi is a sum of suspensions of H,.

We also describe the operations algebra [kug, kug].

Theorem (Theorem [6.4). The cooperations algebra [kug, kur] splits as
]{ZUR7 kuR (—D ZpkB() kuR]
k=0

The Adams spectral sequence
Extg(yy, (HBo(k), Hokur) = [S7By(k), kug]
collapses at the Es-page, and its Eo-page is described in Lemmas [6.9 and [6.10,
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And, we also record an analogous splitting of HZ A HZ.
Theorem (Theorem . Up to 2-completion there is a splitting

0
HZ A HZ ~ \/ HZ  S**B_, (k)
k=0
of HZ-modules.

Our proof of the splitting of HZ A HZ in Section [f] largely serves as a warm-up to that of
our main theorem.

We also show that, similarly to the nonequivariant setting, there is a splitting in the homol-
ogy of BPr{n) A BPg{n) at all heights. Specifically,

Theorem (Theorem . Let n = 0. Then there exists a family of maps
{0y, : 2P*B,,_1 (k) — H,BPg(n)| k e N}
such that their sum .
P 0r : SP*H,B,,_1 (k) — H.BPx(n)

k=0
is an isomorphism of £(n).-comodules.

1.3. New directions. Similarly to the nonequivariant setting, we expect the splitting of
kug A kug (Theorem will make kug-Adams spectral sequence computations newly ac-
cessible. Specifically, it would be interesting to investigate the extent to which this splitting
allows one to compute Cs-equivariant stable stems and see if these techniques could extend
Isaksen—Guillou’s computations of Cs-equivariant stable stems [GI24]. Also, similarly to
the nonequivariant setting, the kugr-Adams spectral sequence should have a vanishing line
allowing one to identify vi-periodicity in the Cs-equivariant stable stems.

One may further wonder whether koc,-Adams spectral sequences are even more efficient for
computing stable stems and detecting v;-periodicity. Here, we use koc, to denote the equi-
variant connective cover of KOc,, the spectrum representing the K-theory of Cy-equivariant
real vector bundles. Thus one may also be interested in constructing a Cs-equivariant split-
ting for koc, A koc, in terms of finite koc,-modules. The techniques and methods of this
paper may be viewed as a stepping stone towards such a construction.

Additionally, computations with kur-Adams spectral sequences are closely related to those
of koc,-Adams spectral sequences via the Wood cofiber sequence

Y koc, - koc, — kug.

Here, 7 is the first Co-equivariant Hopf map. Thus in a precise sense kug-based computations
already contain koc, information.

In addition to computational applications of the splitting, the cooperations algebra kug, kug
(Theorem is of interest due to connections with number theory. In the underlying
nonequivariant setting, kusku can be described in terms of numerical polynomials. In par-
ticular, KU KU can be identified with the ring of finite Laurent series satisfying certain
conditions [Ada74l Theorem 13.4]. This extends to a description of KU,ku in terms of
numerical polynomials [Ada74, Theorem 17.4], as well as to the torsion-free component of
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kuyku [Ada74l p. 358]. Using this comparison, one can identify the summands of the split-
ting of kuysku in KU, KU. A detailed discussion of this correspondence (and the analogous
story for ko) can be found in Sections 3.2 and 3.3 of [BOSS19]. Our computation of kug,kug
gives a starting point for developing a similar description in the Cy-equivariant setting.

Similarly to the splitting of kugr A kug, the decomposition of HZ A HZ into a sum of finite
HZ-modules given by Theorem and Corollary provides a starting point for HZ-
based Adams spectral sequence computations. For example, Burklund-Pstragowksi use the
nonequivariant analogue of Corollary [5.9 to give a cleaner and more concise rephrasing of
Toda’s original obstruction-theoretic approach to the construction of BP in terms of the
HZ-Adams spectral sequence [BP23|, Thm 4.41|. It would be interesting to investigate such
an argument in the Cs-equivariant case.

1.4. Outline of the Paper. In Section [2] we discuss various approaches to the nonequiv-
ariant splittings. We then outline the nonequivariant Adams spectral sequence argument
underlying our equivariant arguments. In Section 3] we recall equivariant foundations neces-
sary for our main computations. In Section [ we introduce Cs-equivariant homology results
which will later be used in our constructions of splittings. In particular, we describe the
homology of BPgr{n), state some Cs-equivariant Margolis homology results, and compute
the homology of Cs-equivariant (integral) Brown—Gitler spectra in terms of Cy-equivariant
lightning flash modules. We also prove a splitting in homology at all heights n. In Sec-
tion [5} we construct a Cs-equivariant spectrum level splitting for HZ A HZ. In Section []
we construct the splitting for kug A kug.

1.5. Notation. We will make use of the following notation:

(1) H = HF, denotes the Eilenberg—MacLane spectrum associated to the Cs-constant
Mackey functor F,.

(2) MS = Fy[7] is the motivic cohomology of C with Fy coefficients, where 7 has bidegree
(0,1).

(3) M5 = Fa[r, p] is the motivic cohomology of R with Fy coefficients, where 7 and p
have bidegrees (0,1) and (1,1) respectively.

(4) M, is the bigraded equivariant cohomology of a point with coefficients in the con-
stant Mackey functor F,. See Section for a description.

(5) A, AC, AR and A are the classical, C-motivic, R-motivic, and Cy-equivariant mod
2 Steenrod algebras.

(6) £(n) is the subalgebra of A generated by Qo = Sq', @1 = Sq'Sq*+Sq?Sq’,
-++,Qn. The analogously defined subalgebras of A® and A® are denoted £®(n)
and £€(n), respectively.

(7) The square-zero extension My =~ Mj @ NC induces a decomposition [GHIR20, p.§]

Exte(n), (M52, M5?) = Exter () (M5, M§) @ Exter(,) (NC, Mj).
We will abuse notation by writing
Extez () (M2, Ma) := Exter(,) (M3, M3)

and
Extene (n)(Ma, Ma) 1= Extez(,) (NC, M3).
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Furthermore, we will inductively compute Extg(,,), (M, N) for various modules
M and N, which will split into a “positive cone summand” coming from
Extes (), (Mg, My) and a “negative cone summand” coming from
Extene () (Mg, Mz). We will denote these summands respectively as
Extg(, (M,N) and Ext;$) (M, N).
(8) Fﬁ—:[g] is the Fa[7]-module colim,, Fa[7]/7™. We write Fﬁ—c[f]{x} for the infinitely divis-
ible IFo[7]-module consisting of elements of the form % for k& > 1.
(9) MUy is the spectrum MU with complex conjugation action.
(10) BPg is the analogue of the nonequivariant Brown—Peterson spectrum BP with com-
plex conjugation action.
(11) BPr{n) models the classical truncated Brown—Peterson spectrum BP{n) with Co-
action via complex conjugation.
(12) kug is the equivariant connective cover of KUg, the spectrum representing Atiyah
real K-theory. See [GHIR20, p. 25| for the definition of
(13) koc, is the equivariant connective cover of KO¢,, the spectrum representing the
K-theory of Cy-equivariant real vector bundles.
(14) Given a Cy-spectrum X, we use X ¢ to denote the underlying nonequivariant spec-
trum.

Grading conventions: Consider the real representation ring of Cy, RO(Cy) = Z[o]/(c? — 1).
Here o is the one-dimensional real sign representation. We express the equivariant degree
i + jo according to the motivic convention as (i + j,j) where i + j is the total degree and
7 is the weight. We will also at times use representation spheres to denote the appropriate
suspension. For example, instead of writing %!, we will write ¥* where p is the Cy-regular
representation. Whether p is an element in the homology of the point or the Cs-regular
representation will be clear from context.

We grade Ext groups in the form (s, f, w), where s is the stem, i.e., the total degree minus
the homological degree; f is the Adams filtration, i.e., the homological degree; and w is the
weight. We will also refer to the Milnor-Witt degree, which is s — w.
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2. UNDERLYING NONEQUIVARIANT SPLITTINGS

In this section, we give a summary of the nonequivariant splittings related to ku and ko
found in the literature. We also outline a construction of the splitting of ku A ku using the
same strategy as we use in Sections [5] and [6] where we construct Cs-equivariant splittings of
HZ A HZ and kug A kug.

2.1. Nonequivariant Brown-Gitler spectra. Let A denote the classical Steenrod al-
gebra, and let A{ := HF,, HF, denote its dual. When p = 2,

Afgl ;F2[£1362a"'§n]3
where |¢;| = 2/ — 1. When p is odd,
Ail gIF‘2|:€17£27'''S’n]C@‘E‘(’]—O?le")7
where [§;| = 2(p* — 1) and |7;| = 2p® — 1.

The weight filtration on A¢ is defined by setting wt(&) = wt(7) = p* and wt(zy) =
wt(z) + wit(y).

Let £%(n) denote the subalgebra £%(n) = E(Qo, Q1,. .. Q). Then
HyBP{n) = A"//E(n)

. In particular, Hy HZ =~ A //£°(0)4. At each prime p, there is a family of integral Brown-
Gitler spectra {By(k)| k € N} such that HyBy(k) = F,{x € H,HZ| wt(z) < k} [GJMS0].

2.2. Nonequivariant Splittings.

2.2.1. Literature on nonequivariant splittings. In [Mah&81], Mahowald constructs the split-
ting
ko A ko ~ ko A ©* By (k).

Subsequently, Kane constructed a splitting
BP{1) A BP{1) ~ BP{1) n 2% By(k)

at odd primes. While the splitting for ku at the prime 2 does not appear in the literature, it
can be deduced either from Mahowald’s construction for ko, or by using the same arguments
as Kane’s odd primary splitting. In [K1i89], Klippenstein also constructs a decomposition of
BP{1) A BP{n) in terms of BP{1)-module spectra at odd primes, but notes that the same
statements hold at the prime 2.

2.2.2. Strategies for the nonequivariant splitting. Following Mahowald’s strategy for the con-
struction of the ko-splitting, Kane used pairings By (k) A Bo(m) — Bo(k +m) to inductively
construct maps

0x : ©2*By(k) — BP{1) n BP{1)

such that the sum of the composites

o0
O \/ BP(Q) A 2 By(k) =22 BP)Y"? L2 BP(1)?
k=0
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is a homotopy equivalence. Towards constructing the splitting, assume inductively that
appropriate maps 6 : ©2*By(k) — BP{1) A BP{1) have been constructed. If n is not a
power of p, take the p-adic decomposition n = ng+nip+---+n,p", and consider the cofiber
sequence

Bo(1)™ A Bo(p)™ A -+ A Bo(p")"" — Bo(n) — C(n),
where C(n) is the cofiber of the composite of the pairing maps. Consider the composite

no ny Ny
[N RN

Bo(1)™ A Bo(p)™ A -+ A Bo(p")™ BP{1) A BP{1)--- BP{1)
BP{1) n BP(1),

where the second map is the standard multiplication map. The key step in the construction is
to show that this composite factors through By(n). One can then show that this factorization
is the appropriate map 6, : Bo(n) - BP{1) A BP{1).

However, the strategy for showing that the map factors through By(n) does not lend itself
well to the equivariant setting for two reasons: first, it relies in part on connectivity argu-
ments that the negative cone prevents us from replicating. Second, extending this argument
to the equivariant setting would require us to deduce that in homology, various complicated
cofibers of free My-modules are also free. While these obstacles may be surmountable, we
have found that the alternative strategy of using an Adams spectral sequence to lift the
isomorphism on homology is most readily adaptable to the equivariant setting. Since this
exact argument does not appear in the literature, we present it here. This Adamas spectral
sequence argument is most similar to Klippenstein’s splitting construction. However, we
use a ku-relative Adams spectral sequence as it makes the construction slightly cleaner. We
also do not need his comparison with the Universal Coeflicient Spectral Sequence as we only
address the case BP{1) A BP{(1), not BP{1) A BP{n). For ease of comparison to the rest
of this paper, we present the 2-primary version and use the notation ku. However, the same
argument works for BP(1) for all primes.

2.2.3. Constructing the nonequivariant splitting. Consider the ku-relative Adams spectral
sequence

(2.1) Extgd ), (5" HaBo(k), Hiku) = [ku A 22 Bo(k), ku A ku].

Consider 0y, : HyX?*By(k) — Hyku as a class in filtration f = 0. If we can show that this
class survives the spectral sequence for each k, then we have constructed a family of maps
realizing the £°(1),-comodule isomorphism Hyku =~ @7 % H, By(k), and thus will have
a ku-module splitting

[e¢]
ku A ku >~ \/ ku A 5% By (k).
k=0

The following identification of H.ku is useful for computing the Es-page of this spectral
sequence.

Proposition 2.2. There is an isomorphism

[00)
Hyku = P H,X* By(k)
k=0

of £(1)4-comodules.
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Thus to compute the Es-page of it suffices to compute Extgei(1), (HxBo(k), Bo(m)) for
all m. Towards this goal, it is helpful to use the following decomposition of the homology
of the Brown-Gitler spectra in terms of homological lighting fash modules.

Definition 2.3. The homological lightning flash module is given by
L(k) = E(W){a1, @9, ap | 2i11Q1 = 2:Qo V1 < i < k}
where |x;| = 2i + 1. Further define L(0) = Fs.
Proposition 2.4. As an £%(1)-module,
H,Bo(k) = L(vz(K!)) © Fj,

where Fy is a sum of suspensions of copies of £%(1)y.

Thus we can rewrite the FEs-page of the Adams spectral sequence [2.1] as
[ee]
(25) Ethcl(l)* (.[ZLK.BO(]{)7 H*ku) = (—B Ethcl(l)* (L(VQ(k'))7 ZQmL(l/g(m'))) @ I/V7
m=0

where W is a sum of suspensions of Fs in filtration f = 0.
The Extger(y), (L(k), L(m)) terms have a fairly simple description as IFp[vo, v1]-modules.
Proposition 2.6. For k < m,
Eth’C’;(l)*(L(k:),L(m)) =~ Faolvo, v1]{T0, 1, - . Tm—k| V1T; = VoTi41},
where |x;| = (24,0).
For k >m,

U1Yi = VoYi+1,
EXt§7cJ;(1)*(L(k)7L(m)) = Fp[IUOuvl]{x}@]Fp[vO7vl] Yo, Y1, -+ -y Yk—m| VoYo = 07 )
V1Yk—m = 0

where |z| = (0,k —m) and |y;| = (-1 — 2(k —m —4),0).

Furthermore, one can lift the £°(1)4-comodule isomorphism of Proposition to a splitting
of ku-module spectra, using a ku-relative Adams spectral sequence.

Proposition 2.7. There are ku-module splittings

ku A Bo(]f) =~ Ck \ Vk

kunku~CvV,

where Vi, and V' are sums of suspensions of HF2, and C' is a vy-torsion-free ku-module.

Thus the splitting of the Es-page (2.5) is in fact a splitting of spectral sequences, and we
are ready to prove that the spectral sequence collapses.

Proposition 2.8. For all k, the Adams spectral sequence [2.] collapses.
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Proof. First, recall that no nontrivial differentials can go from wv;-torsion classes to v;-torsion
free classes. Next, note that all of the vi-torsion free classes are concentrated in even stem
s, and the Adams differential d, has degree (s, f) = (—1,r), so there is no possibility of
differentials from the v;-torsion free classes to other vy-torsion free classes. Finally, we must
consider the possibility of differentials from the v;-torsion free classes to vy-torsion classes.
This is impossible for the following degree reasons.

First, note that 32y, only occur in stem s < —3. On the other hand, for m’ > k,
»2(m'—k) Exteer(1y, (L(v2(k!)), L(v2(m’))) is contained entirely in stem s > 0. So we are
just left to show that there are no differentials from the summand

SR Exteayy, (L(va(k!)), L(va(m'1)))
to EQ(m_k)véyj for m' < k. Let r > 0. In stem —2r, any generators $2(m =k 7 must be in
filtration at least v5(k!) — vo((k — r)!). On the other hand, any class of the form XF~"v]y;
in stem —2r — 1 has filtration at most vo(k!) — vo((k — r + 1)!) + 1. Thus no classes of
the form 220~y are the target of differentials, and indeed the Adams spectral sequence
collapses. O

So indeed the isomorphism of Proposition [2.4] lifts, and the splitting is an immediate conse-
quence.

Theorem 2.1. Up to 2-completion, there exists a splitting of ku-modules

[ee]
ku A ku ~ \/ ku A %2 By (k).
k=0

This splitting can also be reinterpreted in terms of Adams covers. Let ku(™ denote the n-th
Adams cover of ku, that is, the n'” term in a minimal Adams resolution of ku over HF,
(See |Lel84l p.2-3] and Proposition 6.18 of [Kan81] for discussion of the definition and the
proof of the next proposition. Note that their phrasing is slightly different as they discuss
cohomology and do not reference relative homology).

Proposition 2.9. The ku-relative homology of the n-th Adams cover of ku is
HPEuS™ =~ L(vy(n)).

The Adams cover ku™ is uniquely determined up to homotopy by its homology, and the
fact that it is a ku-module.

Theorem 2.2. Up to 2-completion,
ku A By(n) ~ ku2(™) v,

where V,, is a sum of suspensions of HF5.

Proof. Consider the ku-relative Adams spectral sequence

(210) E;’f >~ EXtZ’CJ;(l)* (Hf“CH,Hif“ku<V2(n')>) — [ku A Z2kBo(/€),ku A ku],

where the homological degree is denoted f, and s denotes the stem, ie the topological degree
minus the homological degree. Note that

Extzf . ( HEe,, Hiukuwn!») ~ Bxty] ), (L(va(n)), L(va(n)))).
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It follows from the arguments of Proposition [2.8] that this spectral sequence collapses at the
FEs-page, and we can lift the isomorphism H¥“C,, — Hflf“ku@?("!)> to the level of spectra. [

Corollary 2.11. Up to 2-completion,

o0
ku A ku ~ \/ DIEL TINEICOVEVA 78
k=0

where V' is a sum of suspensions of HF,.

3. EQUIVARIANT PRELIMINARIES

3.1. The Cs-equivariant homology of a point. A detailed description of the coefficients
H, will be useful for our calculations. Our description closely follows that of [GHIR20) Sec-
tion 2.1], which in turn is a reinterpretation of results in [HKO1l Proposition 6.2]. Through-
out, we frequently denote the coefficients H, as M.

Additively, My is

(1) s in degree (s,w) if s < 0 and w < s.
(2) Fo in degree (s,w) if s >0 and w = s + 2.
(3) 0 otherwise.

This additive structure is represented by the dots in Figure |3.1 The non-zero element in
degree (0, —1) is called 7, and the non-zero element in degree (—1, —1) is called p. Sometimes
in the equivariant literature, the element 7 is called u or u,, and p is called a or a,. We
choose to use the names 7 and p common in motivic literature so we can easily write My as
a square-zero extension of M5, the motivic homology of R with Fy-coefficients.

Ze e oe e
4 Le o e

3 Le o

-2 pPPe e eg2
-3 pPe s s g2
-4 Fe e s e e

5 ple e e s e e

-5 -4 -3 -2-10 1 2 3 4 5

FIGURE 3.1. M,

The “positive cone” refers to the part of My in degrees (s, w) with w < 0. The positive cone
is isomorphic to the R-motivic homology ring M]§ of a point. Multiplicatively, the positive
cone is a polynomial ring on two variables, p and 7.
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The “negative cone” NC refers to the part of My in degrees (s,w) with w < —2. Multi-
plicatively, the product of any two elements of NC'is zero, so M5 is a square-zero extension
of M. Multiplications by p and 7 are non-zero in NC whenever they make sense. Thus
elements of NC' are infinitely divisible by both p and 7. We use the notation —5 for the
non-zero element in degree (j, 1+ j + k), which is consistent with the described multiplica-
tive properties. The symbol v, which does not correspond to an actual element of My, has

degree (0,1).

The Fa[7]-module structure on M is essential for calculations filtered by powers of p. Thus
we describe the Fo[7]-module structure on NC' in further detail. We define Fo[7]/7% to be

the Fo[7]-module colim,, Fo[7]/7*. Following [GHIR20], we write %{x} for the infinitely
divisible Fo[7]-module consisting of elements of the form % for k& > 1. Note that x itself

is not an element of Fi—g]{x} The idea is that x represents the infinitely many relations
7k . 2 =0 that define F:—E,:]{x}

With this notation in place, My is equal to
Fo|T 07
M§®NO = M§®@72[ | {}

[se) s
5=0 p

as an Fy[7]-module.

3.2. Comparison with nonequivariant homology. Suppose X is a Cs-spectrum. The
cofiber of 7,

S0 s 57 — Cr,
is stably given by C7 ~ 3X'=9Cy . Smashing H A X with the transfer map
gl=o Lo nl=o0y, ~ Cr

gives a map
SIT"HAX~>HAX >HAX ACT.

where the equivalence is given by 7 € H,.
Applying 7r‘c;2 to this map gives a homomorphism
¢ Hy (X) — Hyy|(X9),

which can be used to compare the Cs-equivariant homology with the underlying nonequiv-
ariant homology of the nonequivariant spectrum underlying X.

Later, in Section @ we will smash kug A X with the transfer map and apply 7752 in order
to compare the kug,-module structure of kug, X structure to the kus-module structure of
kuy X¢ and deduce extensions.

3.3. Equivariant connective covers. Suppose X is a Cs-spectrum. The equivariant con-
nective cover X(0) % X is a Cy-spectrum such that:

(1) the restriction of ¢ is the connective cover of the underlying spectrum X¢, and
(2) the categorical fixed points of ¢ is the categorical fixed points of X.
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See [GHIR20, p. 25| for a more detailed description of the restriction and categorical fixed
points functors (cf. [Lew95, Proposition 3.3]).

3.4. The Cs-equivariant Dual Steenrod Algebra. In [HKO0I|, Hu-Kriz computed the
Cs-equivariant dual Steenrod algebra

Av = H 61,6, 70,71 ]/(Tz2 = aTip1 + (u+ a7)8it1),

where || = (20 — 1)p, |75] = 2°p — 0, and
(&)= ), &0 Pm) =r@l+ Y & e
(USA Osy<i
We denote the images of the generators &; and 7; under the conjugation map
c: A9 5 AC:
by & and 7; respectively.
The coproduct formulas on the conjugates are

vE) = Y e, YR =107 @+ 3, &,

(USA (US/A

3.5. Relative homology and Adams spectral sequences. We will make use of relative
homology and relative Adams spectral sequences in our computations. In general, if F is an
R-algebra and M is an R-module in spectra, then E-homology in the category of R-modules
is

ER(M) :=7.(E A M).

Note that
ERRAM)=r.(E ARA M) = E,M.

In [BLOIl Prop 2.1], Baker-Lazarev introduce a relative Adams spectral sequence in the
category of R-modules. The RO(Cs)-graded version exists by the same construction.

Proposition 3.1. Let E be a Cs-equivariant R-algebra spectrum, and let XY be R-
modules. If ERX is projective as an E,-module, then there exists an E-based Adams spectral
sequence in the category of R-modules

EyT = Extylp (BFX, BRY) — [X, YL >/

ERE

where [ X, Y]g denotes the E-nilpotent completion of R-module maps from X toY, s denotes
the stem, f denotes the homological degree, and w denotes the weight.

Proposition 3.2. The BP{0)-relative dual Steenrod algebra is
HEPFOH ~ B(0),

and the BP{1)-relative dual Steenrod algebras is
HBPOH ~ B(1),.
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Proof. We give an argument for the second statement and leave the first to the reader.
Consider the cofiber sequence

BP(1) > BP{1) — HZ.
Smashing H 5 P& - with the cofiber sequence yields a splitting
1
H A HZ~HAn(S"v ST,
BP:(1)

which suffices to determine the additive structure of H, F PeCl Z.

The multiplicative structure can be deduced from the algebra map

m(H A H) Hm(HBP/RkDH).

4. C3-EQUIVARIANT HOMOLOGY RESULTS

4.1. The homology of BPg{n). The authors first learned of a computation of the equi-
variant homology groups H,BPg(n) from Christian Carrick in the context of Carrick, Hill,
and Ravenel’s work on the homological slice spectral sequence in motivic and Real bordism
[CHR24]. While Carrick—Hill-Ravenel did indeed compute the equivariant homology groups
H, BPg{n), the result does not appear in the final version of their paper, so we include an
argument due to Carrick here.

Recall that 7y, BPr = Z[01, 02, - -]. Consider the cofibre sequence
HAX®-92Bpy %, [ A\ BPy — H A BPx/v;.
Note that v; = 0 € H, BPg, so applying homotopy yields a short exact sequence
0 — H,BPr — H.(BPr/v;) = H,_(2:—1)p+1)BPr — 0.
This sequence splits as a sum of H, B Pg-modules, so
H,(BPg/v;) ~ H,BPa @ H,_((2:_1)p+1)BPs.
In particular, H,(BPr/7;) is a free H, BPg-module.

Proposition 4.1. The map H.(BPr/v;) — H.H is injective, with image the free H,BPg-
submodule generated by 1 and 7;.

Proof. The above splitting of H, B Pgr-modules is not split as A.-comodules: if it were, one
could run the H-based Adams spectral sequence for BPg/?; and use this splitting to find
that ©; # 0 in 7. (BPg/7;), a contradiction. It follows that, under the splitting as H, B Pg-
modules, the map H, (BPg/v;) — AS? cannot send the generator in degree (2° —1)p + 1 to
zero, as the kernel of H,(BPg/v;) — A2 must be a sub A,-comodule.

The generator of H, _((2i_1),+1)BPg in degree (2 —1)p+ 1 must be sent to an A,-comodule
primitive in A, /H,BPg and we have isomorphisms

Prim(AS?/H, BPy) = Ext',c, (H,, H.BPx) = Extg ) (H., H.).

by Proposition [3.2]
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Extending the computation of [Hillll Theorem 3.1] to a Cy-equivariant result (i.e., analyzing
the negative cone) shows that Exté(n)*(H*, H,) has only one nonzero class in this degree.

We find that since 7; is a primitive in A2 /H, BPg, our generator must hit 7; mod H, B Pg.
It follows that the map H,(BPg/v;) — AS? is injective. O

By freeness, for any i, j, the Kiinneth spectral sequence
Tor 5P (H, (BPe /0:), Hu(BPa/1;) — H.(BPe/(51,5;))
collapses to give an isomorphism
H,(BPr/(v:,0;)) = H,(BPr/Vi) ®n, Br, Hi(BPr/Vj).

We can iterate this process to compute H,BPr/(Op41, " ,Untm). Taking the colimit of
H,BPRr/(Tn+1, "+ 5 Un+m) over m yields the following proposition.

Proposition 4.2. The map H,.BPr{n) — H,H is injective with image the sub-H.,-algebra
H,BPgp(ny = H,[£1,&2,83,+ , Tnt1, Tnt2, Tnis, - )/ (77 = aFi1 + uéis)
In particular,

(4.3) H,BPg(n) = AS? ) H,.

Remark 4.4. The description of H,BPr{(n) given in Equation (4.3)) is analogous to the
nonequivariant isomorphism HyBP{ny ~ A//E(n),. Likewise, the motivic homology of the
2-complete algebraic Johnson-Wilson spectra BPGL{n) over p-adic fields [Ormlll Theo-

rem 3.9] has the same form, with the appropriate motivic analogues substituted for A and

The left £(i),-coaction on A2 ° H, is given by

(n)«

45) a: A% o H, U5 A% @ (AL op Hy) ™5 £(n) ® (AS? og(n) Ha),

E(n)«
which on generators Ek and Ty is
a(ér) =1®&
a(Tryk) = 1@ Tpgr + Z T ®£_Zi+kﬂ-, for all k.

0<i<n

Note that £(%)« is the dual of the exterior algebra £(7), and that £(i) = E[Qo, @1, -, Qn],
where @; is defined to be the dual of 7;.

Let M be a left £(i).-comodule. Then there is an induced right £(i)-module action
A M®E(i) - M, defined by

Az, 0) = (0® Idpy) o ox)

where a(x) = ¥;0; ® ;.
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Note that 7; is the dual of @;, and so the right £(1)-module action on H,BPg(1) is
Qi =0
Qo = &k
Q1 = &y

Note that £(7), is finitely generated and projective over MSQ [Ric15], so the following propo-
sition is standard algebra (see for example [BWO03| Theorem 4.7]).

Proposition 4.6. There is an equivalence of categories between left £(n)y-comodules and
right £(n)-modules.

4.2. Mahowald weight and Brown—Gitler Subcomodules. Define a weight filtration
on A%2 by

wt(&) = 28 = wt(7) and wt(zy) = wt(z) + wit(y).
For i = 0, the j** Brown-Gitler comodule N;(j) is the subspace of A2 Og (i), H+ spanned by
monomials of weight less than or equal to 2j. For i = —1, let N_;(j) denote the subspace
of A¢? 0g(—1), Hx spanned by monomials of weight less than or equal to j.

4.3. A Splitting in Homology. Define M;(j) to be the My-submodule of A2 og(;), H,

spanned by monomials of weight exactly 2j. Observe from the coaction on the generators 7;
and ¢; that the £().-coaction on A//E(n). preserves Mahowald weight, so M;(j) is an
E(i)«-subcomodule of A//E(n).. The next proposition follows immediately, and is analogous
to the underlying nonequivariant statement [Cull9, Proposition 3.3].

Proposition 4.7. There is a natural isomorphism

AC2 D_ H,~ @@ M;(k
@) k=0

of left £(i)«-comodules.

Just as in the nonequivariant case [Cull9, Lemma 3.4],[Cul20, Lemma 4.10], we also have
the following &(7).-comodule isomorphism.

Proposition 4.8. For n > 0, there is an isomorphism of £(n).-comodules
SPEN, 1 (k) = M, (k)
for all k, where

ck1 cko k1 —€1+1 P42 = 57.+2 ca ¢k k1 —€z+1 i+2 = €1+2
16 G T fz+2 iv2 & - &itaTits §z+3 i+3
o 1 k1 FEi+1 gRit z€iv2
and a = j — §1Ut( 2 51+2 i+2 §z+3 3+2)

Thus the following analogue of [Cul20, Rmk 4.12] is immediate.
Theorem 4.1. Letn > 0. Then there is a family of maps

{0y : P*B,,_ (k) — H,BPa(n)| k € N}
such that their sum

0
@ 0r : ©°*H,B,,_1(k) — H.BPx(n)
k=0
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is an isomorphism of £(n).-comodules.

The following A,-isomorphism is an immediate consequence.

Corollary 4.9. Forn > 0, there are A.-comodule isomorphisms

H,(BPg(n) n BPg(n)) =~ H,(BPx(n)® X*N,,_1(k)).

This naturally leads one to ask for which heights n these isomorphisms can be realized. The
first hurdle is to construct spectra realizing the Brown-Gitler comodules N; (k).

4.4. Cy-equivariant Brown—Gitler spectra. In [BW18]|, Behrens—Wilson give an equiv-
alence

QPSP ~ H

of Cay-spectra. In [HW20], Hahn—-Wilson observe that the left hand side of this equivalence
caries a natural filtration, which produces a filtration of H by spectra. This filtration is
analogous to the May-Milgram filtration of HIFFs, which Mahowald observed and Cohen
proved could be used to construct Brown—Gitler spectra [Coh85l Mah77]. Hahn-Wilson
point out that one can simply define equivariant Brown—Gitler spectra using this filtration.
In [LPT23, Proposition 3.4], we confirm that these spectra, which we will denote B_;(k),
indeed have the property that

H.B_1(k) =~ Ma{z € AS? |wt(z) < k}.

In [CDGMSS|, Cohen-Davis-Goerss-Mahowald give a construction of integral Brown-Gitler
spectra. In [LPT23l Thm 6.1], we construct Cy-equivariant lifts of these spectra, that is
finite spectra {By(k)| k € N} such that

H.Bo(k) =~ May{z € H,HZ| wt(z) < k}.

Remark 4.10. There is a small difference between our notation for the integral Brown-
Gitler spectra here and in [LPT23|. Here we use By(k) to denote the Brown-Gitler spectrum
realizing the subcomodule Hy,HZ having weight at most k. In [LPT23|, we used By(k) to
denote the Brown-Gitler spectrum realizing the subcomodule H,HZ having weight at most
2k. Since every element of H, HZ has weight divisible by 2, these are indeed the same family
of spectra. The convention in this paper makes the results of Section[{.3 easier to state, and
generally makes the formulas in Section[f cleaner and more readable.

4.5. Margolis homology and free £(n)-modules. The goal of this subsection is to give
a Whitehead Theorem for Margolis homology in the Cy-equivariant setting. To this end,
we first establish some Cs-equivariant freeness criteria. These criteria are Cs-equivariant
analogues of the R-motivic freeness criteria studied in [BGL22| Section 2|, and we follow
the techniques developed there closely.

Proposition 4.11. A finitely generated £(n)-module M is free if and only if

(1) M is free as an My-module and
(2) Fa®m, M is free as an E(n)-module.
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Note that
(4.12) F2 @M ®E(n) i= £(0) /(q,u) = E°() /7y,

where £€(n) is the analogously defined subalgebra of the C-motivic Steenrod algebra, and
7 € MS with |7| = (0,1). We will make use of the following C-motivic lemma, which is an
immediate consequence of [HKI8, Theorem B(i)].

Lemma 4.13. Let M be a £C(1)-module that is free and of finite type over MS. If
My (M7, Qo) and My(M/7, Q1) are zero, then M is E(1)-free.

Combining the isomorphism of Equation (4.12)) with Lemma m gives
Corollary 4.14. Let M be a finitely generated left £(n)-module and let

M/(a’u) = M ®u, Fa.
Then M is a free £(n)-module if and only if

(1) M is free over My
(2) M (M/(a,u), Q,») =0 for0<i<n.

To finish our proof of Proposition we need a Cs-equivariant analogue of the R-motivic
statement given in [BGL22, Lemma 2.1].

Lemma 4.15 (|[BGL22| Lemma 2.1). A finitely generated &(n)-module M is free if and
only if

1. M is a free Mly-module
2. M/(a) is a free £(n)/(a)-module

Proof. If a finitely generated £(n)-module M is free, the two conditions are immediately
satisfied. Thus we consider M where the two conditions are satisfied and show M is a free
&(n)-module.

Choose a basis 3 = {by,--+ ,b,} of M/(a) and let b; € M be any lift of b;. Let F denote the
free £(n)-module generated by 5 and consider the map
f:F—>M

defined by f(b;) = b;. We show f is an isomorphism by inductively proving f induces an
isomorphism F'/(a™) = M /(a™) for all n > 1. The case n = 1 is true by assumption. Consider
the diagram

0 —— F/(a"1) —— F/(a") —— F/(a) —— 0

H J{fnfl lf n lfo

0 —— M/(a" ') —— M/(a") —— M/(a) — 0

Since a is in the center, that is nr(a) = a (see [HK01, Theorem 6.41] and [LSWX19, Theo-
rems 2.6 and 2.14]), this is a diagram of £(n)-modules. By assumption fy is an isomorphism
and by induction, f,—1 is an isomorphism, so applying the five lemma gives that f, is an
isomorphism. O
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The proof of Proposition then follows from Lemma combined with Lemma [£.13

and the fact that
E%(n) = €(n)/(a).

Moreover, since the second condition of Proposition [£.11] that is that
F2 @u, E(n) := E(n)/(a,u) = E%(n)/(7)

is free over £(1), can be calculated using Lemma we get a Co-equivariant Whitehead
Theorem as a corollary.

Proposition 4.16 (Whitehead Theorem). Let M and N be finitely generated E(1)-modules
that are My-free, and let f : M — N be an £(1)-module map. Then f is a stable equivalence
if and only if f/(a,u) : M/(a,u) — N/(a,u) induces an isomorphism in Margolis homologies
with respect to Qo and Q.

Remark 4.17. Proposition is the Cy-equivariant analogue of the C-motivic result of
[GIR18] Corollary 4.10].

4.6. The homology of mod-2 Brown—Gitler spectra. Recall that H,B_;(0) =~ M.
We now show that H,B_;(k) is a free and injective £x(0)-comodule for all k¥ > 0. To do so,
we need a few propositions

Proposition 4.18. If M is a free £(n).-comodule, then M is an injective E(n)-comodule.

Proof. First, recall from Proposition 4.6/ that we can instead work with £(n)-modules. Since
every free £(n)-module is a sum of copies of £(n), it will suffice to show that £(n) is
self-injective. This follows from modifying May’s proof that My is self-injective [May20l
Appendix]. In particular, the graded ideals of £(n) are just those of My, with the addition
of various @;. O

Proposition 4.19. For all k > 0, H,B_1(k) is a free and injective £(0).-comodule.

Proof. We use Proposition to show that H,B_;(k) is a free £(0)-module for all k£ > 0.
First, note that H,B_1(k) is a free My-module. Then observe that

Fy @u, H B_1(k) = Fofw = &3 - Errgoryt - 780

which is exactly the homology of the classical Brown—Gitler spectrum of weight k. The
homology of the classical Brown—Gitler spectrum of weight k is a free E(0)-module. Thus
H.B_i(k) is a free £(0)-module. So by Proposition [£.18 we know that H,B_;(k) is a free
and injective £(0).-comodule. O

wt(z) < n},

4.7. The homology of integral Brown—Gitler spectra.

Definition 4.20. The homological lightning flash module is given by
L(k) = EW){z1, 22, 2k [2i41Q1 = 2iQo V1 < i < k}

where |z;| = ip + 1. Further define L(0) = M.

These lightning flash modules can be easily visualized as in Figure which depicts L(4)
using the motivic grading convention that the total topological degree (number of sign plus
trivial real Cy-representations) is plotted along the horizontal axis and the number of sign
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representations is plotted along the vertical axis. Here, a point denotes a copy of My,
straight arrows indicate the (non-trivial) operation of Qg, and curved arrows indicate the
(non-trivial) operation of Q.

FIGURE 4.1. Homological lightning flash module: L(4)

Proposition 4.21. Let k > 0. Then
H,Bg (k) =~ L(va (k) ® Wy,

where Wy, is a sum of suspensions of E(1).

Proof. First, observe that M (L(k), Qo) = F2{1} and My (L(v2(k!)), Q1) = F2{QoZw, k1) }-
Next, observe

M (H.Bo (k) /(a,u), Qo) = Fa{1}

M (H By (k) /(a,u), Q1) = Faofi, &, .. &},

where i; < iy < .-+ < i, and 2% + 2?2 4 ... 4 2¥~ is the 2-adic expansion of k. (This is best

seen by comparison with the underlying case.) Note that |z, )| = &, &, -+ &.,|- So if we

construct an £(1)-module map L(v,(k!)) — H.By (| 4]) realizing the isomorphism, then we
can apply Proposition to conclude the proof. Let S(k) denote the submodule of L(k)

S(k) = E(L){&, &, ---S_iﬁﬂj iy <idg <+ <ipl

Observe that S(k) is naturally isomorphic to L(k), and so the inclusion S(k) — H, By (| %])
is exactly the map we are looking for. O

5. SPLITTING HZ A HZ

In this section, we construct a family of HZ-module maps

fe :XP*HZ A B_1(k) — HZ A HZ

such that

[ee] [e¢]
\ Ji:
k=0 k&

is an equivalence (up to p-completion).

SPRHZ A B_(k) = HZ A HZ
0
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5.1. Strategy. Theorem [.1] gives a family of maps
{0y, : 2P*B_1 (k) — H,HZ| k € N}
such that their sum
0
P Or : SP*H,B_1(k) > H.HZ
k=0
is an isomorphism of £(0),-comodules.

Using HZ-relative homology (discussed in Section [3.5), we can think of the family of £(0),-
comodule maps

0
@ Or : =*H,B_ (k) - H.HZ

k=0
as a family of maps

0
P 0 : " HFE(HZ,B_1(k)) —» HFZ(HZ ~ HZ)
k=0

and consider the HZ-relative Adams spectral sequence

(5.1)  E3T = Extz{y’ (2P H By (k), HLHZ) = [HZ A S**B_y(k), HZ n HZ]"Z.

We grade Ext-groups in the form (s, f,w), where s is the stem, that is, the total degree
minus the homological degree, f is the Adams filtration, that is the homological degree, and
w is the weight. So |0 = (0,0,0). The Adams differential d, decreases stem by 1, increases
filtration by r, and preserves motivic weight.

Since ES’f " is finite in each degree, the spectral sequence converges [Boa99, Thm 15.6,
Thm 7.1]. Thus constructing maps f : HZ A X**B_1(k) — HZ ~ HZ for all n € N is the
same as showing the 6, survive the spectral sequence. In fact, we will show that the Adams
spectral sequence collapses at the Es-page.

5.2. Analyzing the Fs-page.

5.2.1. Starting the analysis.
Proposition 5.2. The Fs-page of the Adams spectral sequence has the form
By = Bxtgl! (S H By (k), H.HZ) = Extly) (M, M) @V,

where V' is an My-vector space concentrated in Adams filtration f = 0.

Proof. Using the isomorphism

e}
HHZ=>= @ 0,, : ¥’ H,B_(m)

m=0

of £(0).-comodules given by Theorem yields,

Ey! ~ Bty (2" H B (k), H,HL)

a0
~ @0 Eatyly! (S H, By (k), ™ H,B_y (m)).
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Since H,B_1(k) is a free and injective £(0),-comodule when k > 0 by Proposition any

summand Ext?{d;‘j (SP*H,B_1(k),SP™H,B_1(m)) with k or m nonzero must be concen-

trated on the (f = 0)-line. Then since H,B_1(0) =~ My by definition,
BT = Extpll (M, Ms) @V,
where V' is an Ms-vector space concentrated in filtration f = 0. ]

s, fow

We now compute Extg(o)* (My, My). Our computation closely follows that of

Ext?(fl’)“: (M3, M3) in [GHIR20], which uses simpler C-motivic and R-motivic calculations

as stepping stones. In that vein, we view Cs-equivariant coefficients as tensored up from
R-motivic coefficients. In particular,

E(n). = Ma @y EX(n)
(see [GHIR20, Equation 2.4] for more details).

Let NC denote the negative cone, so that My =~ M5 @ NC' as an Fy[r]-module. Then the
square-zero extension My =~ M% @ NC induces a decomposition [GHIR20, page 8]

Exte(y), (M2, Ma) = Exter(,,) (M5, M5) @ Extez(,) (NC, M3)
and one can use the p-Bockstein spectral sequence to analyze each of these summands.
Proposition 5.3 (J[GHIR20|] Proposition 3.1). There is a p-Bockstein spectral sequence
Ey = Extg e(n). (gr, Mg, gr, Mp) = Extg(y,), (M2, M),

such that the differential d, sends a class in degree (s, f,w) to a class of degree (s—1, f+1,w).
Furthermore, the spectral sequence decomposes into the following two pieces:

E‘lJr = Extc¢ [p] = Frip

and

_ A MEy
Ef =P —2 {ps N(?CExtEC(n)(Mg,MS):ExtNC.
2

5.2.2. Analyzing EY . In [Hil11], Hill gives a complete calculation of Exter ) (M5, M5). We
are only working over £(0) right now, so we state that portion of the result here.

Proposition 5.4 ([Hilll] Thm 3.2). There exists a p-Bockstein spectral sequence
E) = Extec(g) (M3, M3)[p] = Fa[7, v, p] = Eater () (Ms, My),
with differential dy (1) = pvo.

The values of Exter ) (M5, M3) follow immediately.
Proposition 5.5 ([Hilll] Thm 3.1).
Ext gz o) (M3, My) = Fa[p, 72, v0]/(pv0),

where |vo| = (0,1,0), |72| = (0,0,—-2) and |p| = (—1,0,—1).
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5.2.3. Analyzing E{ . It remains to calculate the £ summand in the p-Bockstein spectral
sequence. Since Extg(n)(Mg, MS) is free over MS, we can write E; in the following form.

Proposition 5.6 (J[GHIR20, Proposition 3.1]).

7} ® Extpe(n) (M5, M5) = Extyz (NC,Ms).
P | Mg

To determine the differentials in the negative cone, we use the strategy described on pages
17-18 of [GHIR20]. Note that E~ is an ET-module. The E; page is generated over E;
by the elements pj% The differentials in E~ are infinitely divisible by p, meaning that if
dy(z) =y, then d,(J57) = -5 for all j > 0. So all differentials in the E~-summand of the
p-Bockstein spectral sequence are determined by the differential

d1 7 = Y (%)
pT2k+1 T2k+2 77

in combination with the Leibnitz rule, Et-module structure, and infinite-p-divisibility.

Thus using the p-Bockstein spectral sequence, we conclude

Proposition 5.7. The summand Extenc ) (M5, ME) consists of two components:

(1) elements of the form — [%], which are vo-torsion and concentrated on the (f = 0)-

line, and
(2) wvo-towers, of the form Fa[vo]{ =2}

=N oW e oo

-1 0 1 2 3 4 5 6

FIGURE 5.1. Extenc o) (M3, M5)

Now that we have both the positive cone summand Extg*m(o)(MD;,MD§) and negative cone
summand Extexe o) (M3, M3) of Exte, (,)(Ma, My), we are ready to show that the Adams
spectral sequence (Equation (5.1))) collapses.
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5.2.4. Running the Adams spectral sequence.

Proposition 5.8. The Adams spectral sequence

Byt — Ext?(to)*(Z"’“H*B_l(k:),H*HZ) — [HZ » B_1(k), HZ » HZ]"Z

collapses at the E3-page.

Proof. We showed in Proposition that the Es-page of the Adams spectral sequence has
the form
By T ~Bxtpl (S H B (), H HL)
> Extg{y’ (Ma, Ms) @V,
where V' is an Ms-vector space concentrated in Adams filtration f = 0.

We will first show that elements in V' do not support Adams differentials. Suppose towards
a contradiction that there exists x € V' such that d,(z) = y is nonzero and r is the smallest
natural number for which such a nonzero differential exits. Then y must be an element
of ExtE{(’)t)’i (My,Ms) @ V. As calculated in Propositions and 5.7} the only classes in
Extg(g), (M2, My) with filtration f > 0 are contained in wp-towers. Thus, by vo-linearity,
d,(vox) = voy must be nonzero. However, this is a contradiction, as vox = 0 since V is

concentrated in Adams filtration f = 0.

s, fw

Therefore the only possible nonzero differentials are those from Ext E(O)*(MQ,MQ) @V to
itself. However, the filtration greater than zero portions of Extzj’{él)‘i (Mg, Ms) @V are con-
centrated in even Milnor-Witt degree, where Milnor-Witt degree is defined to be s — w, that
is stem minus motivic weight. Since the Adams differential has Milnor-Witt degree —1, this

rules out any nontrivial differentials. (]

Thus we can lift the maps 0 : X’*H,B_; (k) — H,HZ to maps
fe:HZ AXP*B_ (k) > HZ A~ HZ

for all n € N, and we have proved a Cs-equivariant analogue of Mahowald’s splitting of
HZ A~ HZ.

Theorem 5.1. Up to 2-completion there is a splitting

0
HZ A HZ ~ \/ HZ r S B_; (k)
k=0

of HZ-modules.

Corollary 5.9.
HZAHZ~HZvV,

where V' is a sum of suspensions of HF,.

Proof. By definition B_1(0) ~ S° so HZ A B_1(0) ~ HZ, and for k > 0, H,B_1(k) is a
sum of suspensions of £(0).. Thus for k& > 0,

H.(HZ A B_i(k)) =~ @ H.V.
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6. SPLITTING kup A kup

Let By(k) denote the Ca-equivariant integral Brown-Gitler spectrum defined in [LPT23].
In this section we construct a family of kug-module maps

fk : Zpk/{;uR AN Bo(k‘) — kuR VAN k‘uR
such that

0

0

\ fi: \/ S kug A Bo(k) = kug A kug
k=0 k=0

is an equivalence (up to 2-completion).

6.1. Strategy. Our strategy is similar to that of Section where we constructed a split-
ting of HZ n HZ. We begin by considering the family of £(1).-comodule isomorphisms

e}
P Ok : S5 H,Bo(k) — H.kug
k=0
given by Theorem in the case where n = 1. We write these as a family of maps

[e0]
P Or : S HE (kur A Bo(k)) — HE" (kug A kug).
k=0

and then study the Adams spectral sequence
(6.1)  Ey' =Exteq), (H.2*Bo(k), Hikug) = [kur A D" By(k), kug A kur]¥®.
Since Eg’f " is finite in each degree, the spectral sequence converges [Boa99, Thm 15.6,

Thm 7.1]. Moreover, each 6 is in Eg’o, so constructing maps fi : kur A S*°By(k) —
kur A kug for all k € N is the same as showing that the 6, survive the spectral sequence.

On our way to showing the 0, survive the Adams spectral sequence, it will be helpful to first
record a simpler splitting of kug A Bo(k) and kur A kug. This will allow us to decompose
the Adams spectral sequence [6.1] into a sum of four separate spectral sequences.

Proposition 6.2. There are kug-module splittings
kug A Bo(k) =~ Cx v Vi,
kugr A kug ~C vV,
where Vi, and V' are sums of suspensions of H, and Cy and C' contain no H-summands.

Proof. In Proposition [4.21] we showed that
H,By(k) = L(vp(k!)) @ Wy,

where W)}, is a finite sum of suspensions of £(1),. In Proposition we also showed that
HFuw [ ~ £(1),. Take Vi to be a sum of suspensions of H such that HF=V, =~ W,. We
can use the Adams spectral sequences

B3P = Exte(y), (HF* Vi, H By (k) = Vi, kur A Bo (k)]

EyT" = Exte(y), (HuBo(k), HF“* Vi) = [kug A Bo(k), Vi
to lift the homology splitting H,By (k) = L(va(k!)) @ Wi to a splitting of kug-module
spectra by viewing the inclusion i : HF“=V}, >~ W), — H,By(k) as a class in filtration zero
in the first Ey-page, and the projection j : H,By(k) — W}, =~ HF*:V}, as a class in filtration
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zero of the second Es-page. Since £(1). is a free and injective module (see [Ricl5] and
also Proposition [4.18]), both spectral sequences are entirely concentrated in filtration f = 0.
Therefore, there are no differentials and both the class of the inclusion and the class of the
projection lift to maps of kug-module spectra

Vk - k"U,R AN Bo(k‘) — Vk

and we have a splitting kug A Bo(k) ~ Vi v C.

To prove kug A kug ~ C' A V, consider the £(1),-comodule isomorphism

[e¢]
H.kur = @ 0y : 2°FH, By (k)
k=0
of Theorem [4.1] Composing this isomorphism with the isomorphism H, By (k) = L(v2(k!))®
W}, of Proposition [1.21] yields
[ee]
H.kug = @ 27 L(vy (k) ® H.V,
k=0
where V' is a finite-type sum of copies of H. By the same spectral sequence argument as
the first splitting,
kuR AN kuR >~ kuR AV
O

As an immediate consequence, we get a decomposition of the Adams spectral sequence (6.1)).

Proposition 6.3. The Adams spectral sequence
E3' = Extg(), (H.X*Bo(k), Hikur) = [kup A °FBo(k), kur A kugp]*"*

decomposes into a sum of four separate spectral sequences, listed below. All but the first is
concentrated on the (f = 0)-line.

Exte(1), (H S%Cy, H.C) = [£7FCy, O,

Exte(), (H S Cy,, HV) = [E7Cy, V],
Exte(1), (H 2"V, H.C) = [27*V,, O],
(H, 25V, HV) = [SPFV, V.

*

Eth(l)

Since each summand containing V' or V}, consists solely of copies of suspensions of My on
the filtration (f = 0)-line, we will focus on the spectral sequence

Exte (), (H S"Cy, H,C) = [E°FCy,, C1.

calculate Extg (q), (H,XP*Cy, H,C) in the proof of Proposition|6.11} we inductively compute

Exte), (L(va(K!)), L(vz2(m!)))
using the long exact sequences induced by Exte(y), (—, L(m)) and Extg(y), (L(m), —) ap-
plied to the short exact sequence

(6.4) 0— EPL(]C — 1) — L(k) — 5(1)//5(0)* — 0

We will phrase our long exact sequence computations in terms of the spectral sequence
associated to each long exact sequence.

By construction, HF*:Cy =~ L(vy(k!)) and HF=C ~ (—Bﬁ_oLiug(m!)). Thus in order to
-6
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Since L(0) ~ My, the base case for this inductive computation is Exte(q, (Mo, M). This
Ext term is also the Fs-page of the Adams spectral sequence for 7, kugr and is computed in
[GHIR20]. In order to build inductively on their result, we describe Exte(q), (M2, M).

Similarly to the height zero case, the square-zero extension My =~ M5 ® NC' again induces
a decomposition

Exte (1), (Ma, M) = Exter 1) (M5, M5) @ Extez (1) (NC, M3)
[GHIR20, Proposition 2.2|.

In Theorem 3.1], Hill computed Exter(1)(Mz, Mz). In the notation of [GHIR20)
Proposition 6.3],

2 42)
)

Extez(1)(Ma, Ma) = Fa[p, 74, v0, 7200, v1]/(pvo, p*v1, (T%v0)? + 7405

where the Milnor-Witt weight, stem s, filtration f, and motivic weight w are given in Table[T]

Milnor-Witt (s, f, w) T € Exter(q)

0 (-1,0,-1) p
0 (0,1,0) o
1 (2,1,1) vy
2 (0, ].7 —2) T2’U0
4 (0,0,—4) 74

TABLE 1. Generators for Exter1)(Mz, M)

In charts, Extez(q)(Ma, M) is given in Figure The horizontal axis is the stem (s), and
the vertical axis is the Adams filtration (f). Note that the motivic weight (w) is suppressed
in this depiction. We will use this grading in each of the following charts. One can also
refere to the charts in [GHIR20, Section 12].

5 n = Fy[r?]
4 s= Fi[?ﬂ ., ue ue
3 ., e e T+
9 ne ae Tt
1 L
0 o
10 1 2 3 4 5 6 °

FIGURE 6.1. Extgr(1)(Mz, M)
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The summand Extgye(1)(Mz, My), is a module over Extgz(q)(Mz, My). As such, it is best
understood by reading the charts in Figure In particular, Exteve(1)(Mg, M) is a direct
sum of parts A and B in Figure For full algebraic details see [GHIR20, §7 - 9].

5 5
« = Eyfr)/re .= Bl I
4 . 4 .
3 ¢ 28 3 N s b
| :
2 1 2 . 212 lH—b
I | I - L
1 v 1 ¢ v ee—e—
| \ Pzl
| \
0 e 0 | Hee—e 0
0 1 2 3 4 6 ¢ 0 1 2 3 4 [
Part A Part B

FIGURE 6.2. Eth'I(VC(l)(M27M2)

Computing inductively, we find the module Extz(fl)uj (M, L(m)) has the structure that the
reader familiar with the non-equivariant case might hope for: up to v-extensions, it consists
s, f,w

of a shifted copy of Ext,{})’ (M, L(m)), along with a sum of copies of Extz’(fo’;i (M, My).
The equivariant vi-extensions also parallel the nonequivariant case.

Proposition 6.5. As an Extz’(fl’;f (M, My )-module, Ext?{l’;'j(Mg,L(m)) is generated by
{z;] 0<1i<m}, where |x;| = (2i, 0, 7). The generator x,, carries a copy of

Exte(1), (M2, My), and for each 0 < i < m, x; carries a copy of Exte (g, (Mo, My). There
are extensions viT; = vox;+1 for each i.

Proof. Suppose that for m’ < m, the Ext group Ext?{l’)“: (M, L(m')) is generated by {z; |0 <

i < m'}, where |z;] = (24,0,4). The generator x,, carries a copy of Extg(q), (Mo, M),

while for each 0 < i < m’, x; carries a copy of Exte(), (Mz,Myz). There are extensions
s, fiw

v1Z; = voTit1 for each i. We will show that Extg()" (M, L(m)) has the desired description.

Consider the long exact sequence

- — Eatgly)! (My, L(m)) — Batyl) (M, £(1)//€(0).)

LN Baty (7" (M, 2P L(m — 1)) — - -
induced by the short exact sequence

0—->XLk—1)—> L(k) > £(1)//£(0), —> 0
of Equation ,

First, observe that we can use change-of-rings to write

Bty (Ms, £(1)//£(0),) = Extyf (My, Ms).
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s, fyw

The induction hypothesis together with the description of El'tg(o)*(Mg,Mg) in Proposi-
tion [5.5] and Proposition [5.7] imply the differential

d: Extgf)! (My, £(0),) — Extg()7" (My, £ L(m — 1))

must be zero for degree reasons. For example, this can be observed in Figure [6.3] Note that
in Figure [6.3] the classes have been relabeled as described at the end of the proof.

Therefore,

Extgl (Ma, L(m)) = Extzl (Ma, £(0).) @ Exty ()7 (Ma, S L(m — 1)),

Extgl! (Ma, L(m)) = Bxtgf " (Ma, £(0),) @ Exty( )7 (M, 27 L(m — 1))

=~ Extyy’ (Ma, £(0).) @ 2 Extyf )" (M, L(m — 1)),

up to extensions.

Let = denote the generator of Extg(fo’)“: (My, My). By comparison with the underlying cal-
culation, there must be an extension vz = vo(XPxg). There are no other additional new
multiplicative extensions for degree reasons.

Relabeling = by zg and X*x; by ;.1 finishes the proof. (Il

5 =yl g =Bl

1 n.a=F,[72 | a=Fyf1/A

Extf ) (M, L(3) ExtYS 04, L(3)

FIGURE 6.3. Extg(q), (Ma, L(3))

We now move on to compute Exte(yy, (L(k), L(m) for k > 0. We will make use the following
two lemmas.

Lemma 6.6. There is a ‘wrong-side’ change-of-rings isomorphism

Extyl (E(1)//E(0),, —) = X707 Bxt g (M, —).

Proof. By the equivalence of categories between left £(n),-comodules and right £(n)-
modules (Proposition ,

Extgf (E(1)//€(0)., —) = Extz/y"(E(1)//€(0)., =)
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As an &(1)-module, £(1)//£(0), = Xr,+1E(1)//£(0). By ordinary change-of-rings,

Extyfy (27 EW)//£(0), —) = £ Extgly My, ).

Applying the equivalence of categories again concludes the proof. ([

Lemma 6.7. Let m > k. For s <0 and even, Hom?;)*(L(kj),L(m)) = 0.

This is a straightforward computation and is best checked by drawing the relevant lightning
flash modules.

We are now ready to compute Exte(qy, (L(k), L(m)) for k > 0. We proceed by fixing m > 0
and inducting on k. Since the resulting Ext groups have a different form when k > m, we
first describe Extg(y), (L(k), L(m)) for k < m before moving on to the case where k& > m.

Proposition 6.8. Let k < m. Then
EXtE(l)* (L(]{)), L(m)) x>~ Eth(l)* (Mz, L(m — k‘)) @V,

where V' consists of v and vy-torsion concentrated on the (f = 0)-line, specifically:

(1) infinitely p-divisible towers, and
(2) p-towers in odd stem s and filtration degree (f = 0).

Proof. The base case of the induction, when k = 0, holds by Proposition Suppose that
the claim holds for k£ — 1 and consider the long exact sequence

c = Bxtgh (LK), Lm)) — Bxtg! (2P L(k — 1), L(m))

S Bxtg s (E(1)//E(0), L(m)) — -+

induced by the short exact sequence
0—->XL(k—1)—> L(k) > £(1)//£(0), — 0.

By the induction assumption,

Extyl (8P L(k — 1), L(m)) = Exteqy, (M, Lim —k + 1)) @ V.

The ‘wrong-side‘ change of rings isomorphism (Lemma gives

Bty (€(1)//€(0)., L(m)) = X~ Bat 3" (Ma, L(m)).

So

S P Bt i (My, L(m)) @ Batl® (SPL(k — 1), L(m)) —> Eate), (L(k), L(m)).

(0)« E(1)

%%, %

Let ¥~~!y denote the generator of the vg-tower in Z’pflExtg(O)*(Mg,L(m)) as in Fig-
ure There is a potential nonzero differential from ¥ Pz to ¥~ lvgy. Lemma
implies that Ext~2%*(L(k), L(m)) must be zero, so indeed d(X~Pzo) = X" Lugy.
The differential d is Exte(y), (Mg, My)-linear, so this suffices to determine all other differen-
tials. There is no room for extensions. Thus indeed

Exte(1), (L(k), L(m) = Exte(y), (Ma, L(m — k)) @V,

as illustrated in Figures [6.4] and which depict the case where m = 2 and one inducts
fromk=0tok=1. ]
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Positive cone summand Negative cone summand

FIGURE 6.4. Ej-page computing Exte (), (L(1), L(2))

Positive cone summand Negative cone summand

FIGURE 6.5. Extgy, (L(1), L(2))

Having computed Extg(y), (L(k), L(m)) for fixed m > 0 by induction on k < m, we are now
ready to continue the induction for k > m.

Lemma 6.9. The positive cone Extz’n;‘(’f)(L(k), L(m)) for k > m consists of:

(1) a triangle formation:

2
2 Y5+ » Ym—k—1 | V1% = Vo¥it1, VYo =0,
F2[ﬂ,7’ 5U07U1]/p’00 { V1Y k1 = 0, Ué“yﬂ“” =0 Vi } 5
where |y;| = (—1=2(k —m —14),0,—(k —m — 1)),
(2) infinite p-towers generated by b where |b| = (2(m —k) —1,0, m —k — 1),
(3) a copy of vi Extgz(1) (Mg, My), with generator denoted x and
|$L'| = (2(m - k)’m - k7m - k)a
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(4) p-pairs:
—k—1 2
Fa[p,vi] {b|o7" "6 = pa, p°b = 0}.

Lemma 6.10. The negative cone Ext;’(ﬂl‘;f (L(k), L(m)) for k > m consists of:

(1) a triangle formation:

2
Fol7?] | o, s ZHYm—k—1 | V175U = vo2¥ir1, VoYo =0,

=L i1 4j+2 C (o
T p® V1 S Ym—k-1 =0, vy HyTmVT? =0 Vi

(2) infinite p-divisible towers in filtration f =0,
(3) a copy of vi Extgqyve (My, My), with generators denoted % and
|z| = (2(m — k),m — k,m — k),

F 2 ;
Q[UO’Ul’T ]{IIZ, C}/(p73x7 Vopx, U0p72117, T4k+2x> Pﬂ% P72"U0'f4k - T4kc)7

T, p*
(4) p-divisible triples:
]Fg [74]

7% p® {C}/(p_3c7 'U?C - m)

Before proving Lemmas and we introduce some charts illustrating

Exte(1), (L(k), L(m)) in the cases where k = 1 and m = 0 (Figure and where k& = 2 and
m = 0 (Figure . In both figures, one can see the triangle formation begin to emerge in
stems s < —3. The shape of the triangle formation becomes more apparent as the difference
between k and m grows.

Examples of infinite p-towers can be found starting in filtration f = 0 and stem s = —3 in
the positive cone summands. As multiplication by p is represented by a horizontal line to
the left, these p towers appear as arrows on the zero line pointing to the left. Examples
of infinite p-divisible towers can be found starting in filtration f = 0 and stem s = —3 in
the negative cone summands. As divisibility by p is represented by a horizontal line to the
right, these p-divisible towers appear as arrows on the zero line pointing to the right.

The copies of v1 Extgz(1)(Mz, Mz) in the positive cone summands and vy Extene gy (Mg, M)
are best identified by comparison with the charts in Figure and Figure [6.2] respectivly.

The p-pairs and p-divisible triples only appear when k& — m > 2. As such, a p-pair can be
seen in the positive cone summand of Figure [6.9] Specifically, the p-pair there is the pair of
two blue dots in filtration f = 1 and stems s = —3 and s = —4 linked by a p-multiplication.
A p-divisible triple can be seen in the negative cone summand of Figure [6.9] Specically, the
p-divisible triple is the three green dots in filtration f = 1 and stems s = —2, s = —1, and
s = 0 linked by divisibility by p.

While proceeding through the inductive proof of Lemmas [6.9) and [6.10] it is helpful to keep
similar charts of the Ext-groups Exte(y), (L(k), L(m)) in mind.

Proof of Lemmas[6.9 and[6.10 Suppose the above description holds for all ¥ < k. For
degree reasons, the only possible nontrivial differentials originate from the vg-tower on X~z
in the positive cone, and the vo-tower on X7 in the negative one. This is illustrated in
the case where m = 0 and we are inducting from & = 0 to kK = 1 in ?? and in the case where

m = 0 and we are inducting from k =1 to k = 2 in Figure [6.8
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In Proposition We computed Extg (), (L(k), L(m)) for k = m, by fixing m and inducting
on k. Alternatively, we could fix k, and induct on m to compute Extg(), (L(k), L(m)) for
k = m. We describe the base case of this alternate induction when m = 0, computing
Exte(1), (L(1),My), in detail. The cases where m # 0 are similar and left to the reader.

The Ei-page of the spectral sequence computing Exte(q), (L(1), M) from the short exact
sequence
0—> X L(k—1) > L(k) - £(1)//£(0)x — 0
is displayed in ??. By comparison with the underlying calculation, there must be a differ-
ential
dl(E_”l) = Z_F)_lvo.
By linearity in 7 and vp, this implies there are also differentials

dy (S oY) = B ot Y, i,j =0
dy (R PuiTH72) = RreTlyltipdi—2 i=>0,j>1
in the positive cone summand and differentials
i —p—1_i+1_ " . .
d (S oty ) =3 : i>0,j>1
1 0 1+4; 0 1+4j =Y ] Z
—p. i _y—p—1i+1_ 7 S0 >
dy (E UOT3+4J,)—E v =y 1=20,7>1.

in the negative cone summand. Here it may be helpful to visualize the calculation using the
chart in ?? and recall that Fo[7%]/7% {£7712} consists of all classes ¥~°~! 5 where
k>1 i

The only remaining classes on the Ej-page that could potentially support a differential are
Fo[r*]/7* {772} and Fo[r*]/7® {772 }. However, none of these can support differ-
entials due to p-linearity. Specifically, suppose some X7t (or ¥ 7P —5;) supports a
differential. Then by p-linearity, p?% =" m (or p?x=° /)2T++4J) must also support a dif-
ferential, but this is not possible for degree reasons. Thus Extg (), (L(1),Ms) has the form
described in Lemmas [6.9] and [6.10] and illustrated in Figure [6.7} This completes the base

case calculation when k = 1.

We now return to the general case where we have fixed & and compute Extg(y), (L(k), L(m))
where k = m by induction on m. Comparing the result of this induction with that of Propo-
sition (where the same Extg(qy, (L(k), L(m)) with k = m is computed by fixing m and
inducting on k), we see that the differential d(X~°z) must be nontrivial in order for the two
methods to agree. Specifically, if, when we fix m and induct on k, we assume d(X""x) = 0,
then we would get an infinite vo-tower in odd stem in Exte(qy, (L(k), L(m)). If we then fixed
k and inducted on m to compute Exte(), (L(k), L(k)), we would get the same infinite vo-
tower in odd stem in Extg (), (L(k), L(k)). But we already know from Proposition [6.8| that
Exte(1), (L(k), L(k)) has no infinite vy towers in odd stems. Thus d(X7"z) = vhTmy ey,
Likewise, comparison with Proposition tells us that d(X7° %) = v’g_mE*pflT;’—y. Lin-
earity in 7 and vy give the remaining differentials in the wvp-towers supported by these
classes. (]
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f f

5 u.m=Fyr?] o 5 5 = Fyr2]/7= N
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FIGURE 6.8. Ej-page computing Extpi), (L(2), M2)

6.2. Analyzing Adams differentials. The goal of this section is to finish proving the
Adams spectral sequence ([6.1) collapses. Specifically we show,
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Proposition 6.11. For all k = 0, the Adams spectral sequence

ku]R

E;’t = Emtg(l)* (H*ZpkBo(]f),H*k’uR) - [k‘uR A EpkBo(kJ), kug A k’U,R]

collapses.

Our main theorem (Theorem will follow immediately from this proposition.

Proof. In Proposition [6.3} we showed that the Adams spectral sequence splits into a sum
of four different Adams spectral sequences, and that all of the summands collapse at the
Es-page (and are concentrated on the (f = 0)-line) except

Exty))! (H.S*Cy, H.C) = [£P*Cy, C].

We also observed

o0]
Exty/)! (HS*Cy, HoC) = @ S0 Exte), (L(va(K)), L(va(m)))).

m=0

To show the Adams spectral sequence collapses, we will begin by considering Adams differ-
entials with source a vp-torsion class. First, observe that by v;-linearity, the only potential
targets of such differentials are other v;-torsion classes. There are two types of vi-torsion
classes in the positive cone. The first has the form Ep(m’k)véyj and consists of vg-towers
in the triangle formation (Lemma . All other v;-torsion classes in the positive cone
summands are infinite p-towers based in odd stem and filtration f = 0 (Lemma (2).
In the negative cone summands, the vi-torsion classes are E”(m_k)vé%yj, the vg-towers
in the triangle formation (Lemma , and the infinite p-divisible towers in filtration
f =0 (Lemma (2)). By p-linearity, the p-towers in the positive cone summands can-
not support differentials. Similarly, all the classes in the p-divisible towers in the negative
cone summands cannot support differentials. Suppose that d,.(z) # 0 for some p™-divisible
2. Then since d.(x) = p"d,.(z/p"™), d.(x/p™) must also be nonzero. Thus the infinitely
p-divisible towers cannot support differentials either.
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Further, since the wvg-towers in the triangle formation are all in odd stem, the classes
Ep(m_k)v(’)yj and E’)(’”_k)vé%yj cannot support differentials for degree reasons.

We will now consider the possibility of vi-torsion free classes supporting differentials with
target a vq-torsion class. In particular, we will show all such potential differentials must be
Zero.

In positive cone summands, the possible sources for such differentials are of the form

(1) 2P(m=F)g; which are found in the summands %P("—%) Extery (L(v(k!), L(v(m!))
when vy (k!) < vo(m!).

(2) 2P(m=F)g which are found in the summands XP(™—F) Exte(qy (L(v(k!), L(v(m!))
when vy (k!) > vo(m!).

The (stem, filtration, weight) degrees of these classes are |[SP(™Fz;| = (2(i + m — k), 0,7 +
m— k) and |2P(m—F)g| = (2(m —k),k—m,m— k) More succinctly, they are all of the form
(2n, #,n) for some n. Likewise, in the negative summand the generators are of the form

(1) ZPlm=h) 2 g,

(2) yp(m=k) #74—21:’/2(”1!)71/2(16!)
(3) yp(m=k) 4J+3 Lvz(m!)—va(k!)
(4) 2P R) o

Observe that generators of form (1) are all in stem 2n with motivic weight congruent to
n + 2 mod 4 for some n, while generators of forms (2)-(4) the classes are in stem 2n with
motivic weight congruent to n mod 4.

First we will show that no differentials can hit the wvi-torsion classes E”( _k)v(i)yj and
ye(m=— Koy 5y, for degree reasons. First, note that yo(m—k)yi 0y, and yo(m—k) i 0=z y; only oc-
cur in stem s < —3. On the other hand, for m’ > k, £°(7'~%) Exte(1)(L (1/2(l<:!))7 (v2(m')))
is contained entirely in stem s > 0. So we are just left to show that there are no differentials
from

EPW—M Exte(1) (L(va(k!)), L(va(m'1)))
to RP(m—Fk)yi iy, and P )yl o-=y;j for m" < k. Let r > 0. In stem —2r, any generators
2P =k) g and pem' —k) p274j+2:1: must be in filtration at least v2(k!) — vo((k — r)!). On the
other hand, any class of the form =™}y, or Zk_mvé%yi in stem —2r — 1 has filtration at

most va(k!) — v ((k —r +1)!) + 1. Thus no classes of the form $#(m=*)y; and Ep(m*k)%y,;
are the target of differentials.

Finally, we will show that there are no nontrivial differentials from v;-torsion-free classes to
other v;-torsion-free classes. Note that the generators of the vi-torsion-free classes are all
in even stem, so any potential target will be in odd stem. The v;-torsion-free classes in odd
stem are all of the form

(1) SO0 oty iy [V1, 74
(2) SR [y, 74]
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(3) E(m/_k)pw%vfxw(m/!)—w(k!)> i,j€EN

(4) 2R —Xvic, i, j e N

Note that obstructions of type (1) and (2) are all in stem 2n — 1 for some n and weight
congruent to (n — 1) mod 4, while those of type (3) and (4) are all in stem 2n — 1 for some n
and weight congruent to (n + 3) mod 4. Recall that the Adams differential decreases stem
by 1 and preserves motivic weight, so indeed no nontrivial differentials are possible here. [

Thus the class 0 : H, X% By (k) — H,X*kug survives the Adams spectral sequence, and
we have proved our main theorem.

Theorem 6.1. Up to 2-completion, there exists a splitting of kug-modules

kug A kug ~ kug A P By (k).

6.3. Description in terms of Cs-equivariant Adams covers. We now give a description
of the splitting of Theorem in terms of Cy-equivariant Adams covers. Let kzu%{l> denote
the n-th Adams cover of kug, that is, the n'” term in a minimal Adams resolution of kug
over H (sec [Lel84l p.2-3] for discussion). Note that H¥# kul™ ~ L(vy(n!)), and that kuy"
must be a kug-module by construction. Up to homotopy, the Adams cover l<:u]§§"> is uniquely
determined by its homology and the fact that it is a kug-module. This can be seen from
the Adams spectral sequence

Exte 1), (HE kug” | HF kug”) = Exte ), (L(va(n))), Lva(n))) = [kug"”, kug” ]k,
which the proof of our main theorem (Theorem shows collapses at the Fs-page.
We prove

Theorem 6.2. Up to 2-completion,

6]
kugp A kup ~ \/ E”kkuﬂgﬁ(k!» vV,
k=0

where V' is a sum of suspensions of H.

Proof. Proposition shows kug A Bg(k) =~ Cy v Vi, where Vj is a sum of suspensions of
H and C}, contains no H-summands. Specifically, H¥**C), =~ L(5(n!)). Thus we can use
the Adams spectral sequence

Exte ) (HE " kug” , H,Cy) = [kul", Cj,]F=

to lift the isomorphism to an equivalence of Cs-spectra. Since the Es-page of this spectral
sequence is simply a summand of the Fs-page of the Adams spectral sequence which
appeared in the proof of Theorem [6.1} the same arguments imply this spectral sequence also
collapses. O

6.4. kug-operations and cooperations.
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6.4.1. The kug-cooperations algebra. Another consequence of our proof of Theorem isa
computation of the ku,.-cooperations algebra.
Theorem 6.3. The kug-cooperations algebra kugr,kugr splits as
[ee]
k‘uR*kuR = @kUR*—kPBO(k)7
k=0

where as a kug,-module

Ps

]{JUR*BO(]C) = Eth(l)*(Mg,L(l/g(Qk!))

=
Il
o

I
Ps

HZ {70, 21, -, Tyy2k)—1} ® kur AT, 201 } @ Vi,
0

=
Il

with extensions vix;_1 = px;, and where |x;| = pi and Vi is a sum of suspensions of H,.

While we do not specify the degree of the summands appearing in Vj in the statement of
Theorem [6.3] due to the amount of book keeping that would be involved, our computational
methods do allow one to precisely deduce them.

Proof. Consider the kug-Adams spectral sequence
Eth(l)*(Mg, H*B()(k)) = Tlx (/CU]R A Bo(k))

This is a summand of the spectral sequence of Equation (6.1) so this spectral sequence
collapses. Further, Proposition gives a complete description of the Fs-page. Observe
there are no hidden extensions for degree reasons. O

6.4.2. kug-Operations. Our computational methods further yield an inductive description
of the operations algebra for kug, that is [kug, kugr].

Theorem 6.4. The cooperations algbera [kug, kug] splits as
o0
[kug, kur] = P [Z*Bo(k), kug].
k=0
The Adams spectral sequence
Extg(yy, (HBo(k), Hokur) = [S7Bo(k), kug]

collapses at the Es-page, and its Es-page is described in Lemmas[6.9 and[6.10,

Proof. Consider the kug-Adams spectral sequence

Eth(l)*(H*Bo(k’), Mg) - [Bo(kﬁ), k’uR]kuR.

Lemmagives a description of Extg(y), (L(v(k!),Myz) for all k > 0. By the same arguments
as the proof of the main theorem (Theorem , no differentials are possible. O
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