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A THOM SPECTRUM MODEL FOR C2-INTEGRAL

BROWN–GITLER SPECTRA

GUCHUAN LI, SARAH PETERSEN, AND ELIZABETH TATUM

Abstract. A Thom spectrum model for a C2-equivariant analogue of inte-
gral Brown–Gitler spectra is established and shown to have a multiplicative
property. The C2-equivariant spectra constructed enjoy properties analogous
to classical nonequivariant integral Brown–Gitler spectra and thus may prove
useful for producing C2-equivariant analogues of splittings of BP x1y ^ BP x1y
and bo ^ bo.
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1. Introduction

In the 1970’s, Brown and Gitler constructed a family of spectra realizing certain
sub-comodules of the dual Steenrod algebra at the prime p “ 2 [BG73]. Brown–
Gitler’s motivation for constructing the original spectra was to study immersions of
manifolds. They have also been useful for studying maps out of classifying spaces.
For example, they were used by Miller to prove the Sullivan Conjecture [Mil84].

Brown–Gitler used an obstruction-theoretic approach, first constructing an alge-
braic resolution, then constructing a tower of spectra realizing that resolution, and
then taking its inverse limit to obtain the desired spectrum. In [Mah77], Ma-
howald suggested an alternative construction using a Thom spectrum model. In
particular, Mahowald posited that the natural filtration of the space Ω2S3 due to
May–Milgram [MM81] produces a filtration of the Thom spectrum pΩ2S3qµ » HF2
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2 GUCHUAN LI, SARAH PETERSEN, AND ELIZABETH TATUM

by spectra. Here, µ is the double loop map µ : Ω2S3 Ñ BO of the classifying map
of the Möbius bundle over S1. The resulting filtration spectra turn out to be the
Brown–Gitler spectra of [BG73] (see [BP78, Coh79, HK99]). In [Coh79], Cohen
made this construction precise at all primes.

In [Mah81], Mahowald suggested that integral analogues of Brown–Gitler spectra
should exist: that is, finite spectra realizing an analogous family of sub-comodules
of H˚HZ, and proposed a Thom spectrum model. In [Shi84], Shimamoto gave a
construction using the obstruction-theoretic approach, and also gave more details on
Mahowald’s proposed Thom spectrum model. Kane used an odd primary version of
this Thom spectrum construction in [Kan81]. In [CDGM88], Cohen, Davis, Goerss,
and Mahowald made these Thom spectrum constructions rigorous, in particular by
explicitly defining the base space used in the Thom spectrum construction.

In [GJM86], Goerss–Jones–Mahowald used the obstruction-theoretic approach to
construct Brown–Gitler spectra for BP x1y and bo (i.e. finite spectra realizing cer-
tain sub-comodules of H˚BP x1y and H˚bo), and Klippenstein extended these ar-
guments to the BP x2y case in [Kli88]. These spectra are collectively known as
generalized Brown–Gitler spectra.

The higher Brown–Gitler spectra have been useful in understanding the smash
products of various ring spectra. In particular, Mahowald used the integral Brown–
Gitler spectra to decompose bo ^ bo as a sum of finitely generated bo-modules
[Mah81]. Kane subsequently produced an analogous decomposition for BP x1y,
also using integral Brown–Gitler spectra [Kan81]. These splittings helped make it
feasible to use the bo- and BP x1y-based Adams spectral sequences for computations
and have proved to be powerful computational tools. For example, Mahowald used
the bo-based Adams spectral sequence to prove the telescope conjecture at the prime
2 and height 1 [Mah81].

This paper extends Mahowald’s idea for an integral analogue of Brown–Gitler spec-
tra to the C2-equivariant setting (Theorem 6.1). The C2-equivariant spectra we
construct realize an analogous family of sub-comodules of HF2‹HZ, where HF2 is
the Eilenberg-MacLane spectrum associated to the constant C2-Mackey functor F2

and HZ is the Eilenberg-MacLane spectrum associated to the constant C2-Mackey
functor Z. Our primary motivation for establishing a construction of these spectra
is to enable the study of C2-equivariant analogues of splittings of BP x1y ^ BP x1y
and bo ^ bo, and related BP x1y- and bo- based spectral sequence computations.

In the C2-equivariant setting, the Eilenberg-MacLane spectra HFp, HZp2q, and
HZ2, associated to the constant C2-Mackey functors F2, Zp2q, and Z2 respectively,

also arise from Thom spectra. In [BW18], Behrens–Wilson show there is an equiv-
alence of C2-spectra pΩρSρ`1qµ » HF2, where ρ is the regular representation of
C2 and µ is the ρ-loop map µ : ΩρSρ`1 Ñ BC2

O of the classifying map of the
Möbius bundle over S1 regarded as a C2-equivariant virtual bundle of dimension
zero by endowing both S1 and the bundle with trivial action. Note we follow the
convention that Zp2q denotes the 2-local integers and Z2 the 2-adic integers.

In [HW20], Hahn–Wilson generalize the result of Behrens–Wilson. They show the
G-equivariant mod p Eilenberg-MacLane spectrum arises as an equivariant Thom
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spectrum for any finite, p-power cyclic group G. Hahn–Wilson also establish a
Thom spectrum model for HZppq, building a base space from the G-space ΩλSλ`1,

where λ denotes the standard representation of G on the complex numbers with a
generator acting by e2πi{p

n

. They observe that this space carries the arity filtration
from the Eλ-operad and thus one could define equivariant Brown–Gitler spectra as
the spectra coming from this filtration. This is the perspective we take and extend
to the integral setting in this paper.

Non-equivariantly, two conditions characterize Brown–Gitler spectra. First, these
spectra realize certain sub-comodules of the dual Steenrod algebra. Additionally,
they satisfy a surjectivity condition coming from the geometry involved in Brown–
Gitler’s original construction [BG73]. While the Thom spectrum model does satisfy
this additional condition in the non-equivariant setting, it is not clear from neither
the geometry nor the Thom spectra filtration models, how to generalize this second
condition in the equivariant setting. We discuss this in Remark 6.2, taking the
philosophy proposed by Hahn–Wilson: one can simply define equivariant Brown–
Gitler spectra using filtrations on the Thom spectra models and see if these spectra
are computationally useful.

Several factors motivate our choice to study C2-equivariant, as opposed to Cp-
equivariant spectra for all primes p. First, ROpC2q-graded HF2-homology is free
over its coefficients in important examples such as the dual Steenrod algebra
HF2‹HF2 [HK01] and HF2‹HZ [Orm11]. This is helpful because integral Brown–
Gitler spectra topologically realize certain sub-comodules of HF2‹HZ. In contrast,
ROpCpq-graded HFp-homology is often not free over its coefficients when p ą 2.
In particular, the Cp-dual Steenrod algebra is not free [SW22], which suggests the
odd primary Cp-equivariant story may be more complicated, requiring techniques
beyond those developed in this paper.

Furthermore, whenG “ C2, there is a non-obviousC2-equivalence of spaces Ω
λSλ`1 »

ΩρSρ`1 [HW20]. Thus there are filtrations of ΩλSλ`1 » ΩρSρ`1 by both the Eλ

and Eρ operads, leading to at least two definitions of Brown–Gitler spectra. In
this paper, we choose to work with the Eρ-filtration because it is the most compu-
tationally accessible. Studying these two definitions of Brown–Gitler spectra may
prove an interesting direction for future work.

2. Statement of Theorems

Our main result is a C2-equivariant analogue of [CDGM88, Theorem 1.5(i),(ii)]. To
state this theorem precisely, we recall HF2 has distinguished elements a P HF2t´σu

and u P HF2t1´σu, where σ is the one-dimensional sign representation of C2. We

define a weight filtration on

HF2‹HZ – HF2‹rξ̄1, ξ̄2, ξ̄3, ¨ ¨ ¨ , cpτ1q, cpτ2q, ¨ ¨ ¨ s{pcpτ2i q “ acpτi`1q ` uξ̄i`1q,

where |τj | “ 2jρ ´ σ, |ξ̄i| “ p2i ´ 1qρ, and c denotes the antiautomorphism of the
dual Steenrod algebra A – π‹HF2 ^ HF2 (the computation of HF2‹HZ follows
from [Orm11, Theorem 3.8]). A weight filtration is defined by

wtpcpτjqq “ wtpξ̄jq “ 2j , wtpxyq “ wtpxq ` wtpyq.
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Theorem (Theorem 6.1). For n ą 0, there is a 2-complete spectrum B1pnq and a
map

B1pnq
g

ÝÑ HZ2

such that

(i) g‹ sends HF2‹pB1pnqq isomorphically onto the span of monomials of weight
ď 2n;

(ii) there are pairings

B1pmq ^ B1pnq Ñ B1pm ` nq

whose homology homomorphism is compatible with the multiplication in
HF2‹pHZ2q.

The spectra B1pnq are C2-equivariant analogues of Cohen, Davis, Goerss and Ma-
howald’s integral Brown–Gitler spectra in the sense that they realize certain sub-
comodules of HF2‹HZ. This result follows from the more technical Theorem 5.1,
which is a C2-equivariant analogue of [CDGM88, Theorem 1.3]. To state Theorem
5.1, we introduce both an increasing filtration of the space ΩρSρ`1 and a homotopy
fiber sequence.

Work of Rourke-Sanderson [RS00] shows the space ΩρSρ`1 admits an increasing
filtration by

FnΩ
ρSρ`1 »

ž

0ďkăn

Ckpρq ˆ
Σk

pS1qk{ „(2.1)

where

Ckpρq “ tm1,m2, ¨ ¨ ¨ ,mk|mi ‰ mj if i ‰ ju

is the configuration space of k ordered points in the C2-regular representation ρ.

Note when k “ 0, this gives the base point x0. If xn “ x0, the relation „ identifies

pm1, ¨ ¨ ¨ ,mn;x1, ¨ ¨ ¨xnq „ pm1, ¨ ¨ ¨ ,mn´1;x1, ¨ ¨ ¨ , xn´1q.

Remark 2.2. The observant reader might notice our definition of FnΩ
ρSρ`1 differs

slightly from that of [RS00]. This stems from the fact that Rourke–Sanderson
work entirely with fixed points. A description comparing definitions can be found
following Theorem 1.11 in [GM17].

Let X2 denote the Bousfield localization of X with respect to HF2 and let Fn “
pFnΩ

ρSρ`1q2. Then there are product maps

Fm ˆ Fn
µ

Ñ Fm`n

induced by the corresponding maps for the filtration spaces and the fact that lo-
calization preserves finite products. Define An by the homotopy fiber sequence

An Ñ F2n`1 Ñ S1
2(2.3)

where the second map is the HF2-localization of the composite

F2n`1Ω
ρSρ`1 Ñ ΩρSρ`1 Ñ S1.
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Theorem (Theorem 5.1). The fiber sequence (2.3) is equivalent to a product fibra-

tion. Indeed, there is a C2-equivariant map An
φ

Ñ F2n and a commutative diagram
of fibrations

An An

S1
2 ˆ An S1

2 ˆ F2n “ F1 ˆ F2n F2n`1

S1
2 S1

2

1ˆφ

p1

m

which is an equivalence on total spaces and on fibers.

Our argument for deducing Theorem 6.1 from Theorem 5.1 follows that of Cohen–
Davis–Goerss–Mahowald and thus relies on a Thom spectrum construction of HZ2

with an HF2-local base space (Theorem 4.1).

In [HW20], Hahn–Wilson establish a construction of HZp2q as a C2-Thom spec-
trum. In Section 4, we extend Hahn–Wilson’s arguments to construct HZ2 as a
C2-equivariant Thom spectrum with an HF2-local base space, resulting in Theorem
4.1, an equivariant analogue of [CMT81, Theorem 1], which was originally proposed
by Mahowald in the nonequivariant setting.

To state Theorem 4.1, we require the following maps. Consider the ρ-loops of the
unit map Sρ`1 Ñ KpZ, ρ ` 1q. Composing with the adjoint to ´1 P πC2

0 pS02q, we
get a map

ΩρSρ`1 Ñ ΩρKpZ, ρ ` 1q Ñ BGL1pS02q.

Note ΩρKpZ, ρ ` 1q » S1 with trivial C2-action.

Let ΩρSρ`1xρ`1y denote the homotopy fiber of the map ΩρSρ`1 Ñ S1 and consider
the composition

µ : ΩρSρ`1xρ ` 1y Ñ ΩρSρ`1 Ñ S1 Ñ BGL1pS02q.

Theorem (4.1). There is an equivalence of C2-spectra

pΩρSρ`1xρ ` 1y2qµ Ñ HZ2.
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is based upon work supported by the National Science Foundation under Grant No.
DMS 2135884.
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2.1. Structure of Argument. We extend the arguments of Cohen–Davis–Goerss–
Mahowald to the C2-equivariant setting. To make this extension clear, we first re-
call Cohen–Davis–Goerss–Mahowald’s nonequivariant argument, then outline the
structure of our equivariant extension.

In [CDGM88], Cohen–Davis–Goerss–Mahowald make a Thom spectrum model for
integral Brown–Gitler spectra precise by explicitly defining the base space. Specifi-
cally, they consider the space Ω2S3x3y, the double loop space of the homotopy fiber
of the unit map S3 Ñ KpZ, 3q. They show that the HF2-localization Ω2S3x3y2
carries a filtration which induces the weight filtration on homology. The filtration
pieces of the space Ω2S3x3y2 are the base spaces in the Thom spectrum model for
integral Brown–Gitler spectra.

To extend Cohen–Davis–Goerss–Mahowald’s nonequivariant argument to the C2-
equivariant setting, we show that the space ΩρSρ`1xρ`1y2 carries a filtration which
induces an analogous weight filtration on HF2-homology. This requires a model of
HZ2 as a Thom spectrum with HF2-local base space ΩρSρ`1xρ ` 1y2.

We provide equivariant preliminaries in Section 3. We construct HZ2 as a C2-
equivariant Thom spectrum with HF2-local base space (Theorem 4.1) in Section
4. In Section 5, we extend Cohen–Davis–Goerss–Mahowald’s technical argument
making the filtration of the base space rigorous. This culminates in the proof of
Theorem 5.1, from which our main result concerning a Thom spectrum model for
C2-integral Brown–Gitler spectra (Theorem 6.1) immediately follows.

3. Equivariant Preliminaries

3.1. HF2-Bousfield localization and 2-completion. A C2-spectrum X is con-
nective if both X and XC2 are connective. Define the 2-completion of X as

holimX{2k, where X{2k denotes the cofiber of X
2k

ÝÑ X . Similarly to the non-
equivariant case, for a connective C2-spectrum X ,

(3.1) X^
2 » LHF

2
X.

In this paper, we use the notation X2 to denote the HF2-localization of any space
or spectrum X . Note that all spectra in this paper are connective, so the HF2-
localization of any spectrum X will coincide with its 2-completion.

We outline how to deduce Equation (3.1) analogously to the nonequivariant ar-
gument. Let S{2 denote the C2-spectrum with trivial C2-action. One can show
that X^

2 » LS{2X by following the proof of the nonequivariant version [Bou79,
Proposition 2.5]. Let A be the Burnside Mackey functor. Replacing HZ in [Bou79,
Proposition 2.11] by HA, one can similarly show that LHA^S{2X » LS{2pLHAXq.
We use the connective condition here to note that LHAX » X . Now we have

X^
2 » LS{2X » LHA{2X.

Finally, recall that ApC2{eq – Z and ApC2{C2q – Zrαs{pα2 ´ 2αq. Then the ideals
p2q and p2, αq have the same radical and A{p2, αq – F2. One can finish the proof of
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3.1 by showing that LHA{2X » LHA{p2,αqX » LHF
2
X . In fact, one can also replace

2 with any prime p and Equation (3.1) still holds.

3.2. May–Milgram Filtration. As in [BW18, Section 4], we will make use of
an identification of the C2-fixed points of the space ΩρSρ`1. Consider the cofiber
sequence

C2` Ñ S0
ãÑ Sσ.

Mapping out of this cofiber sequence gives a fiber sequence

ΩNˆΩSρ`1 Ñ ΩρSρ`1 Ñ ΩSρ`1 ∆
ÝÑ NˆΩSρ`1,

where NˆX :“ MappC2, Xq “ X ˆ
õ

C2

X is the norm with respect to Cartesian

product (i.e. the coinduced space). On taking fixed points, we get a fiber sequence

Ω2S3 ÝÑ pΩρSρ`1qC2 Ñ ΩS2 null
ÝÝÑ ΩS3.

In particular, there is an equivalence

pΩρSρ`1qC2 » ΩS2 ˆ Ω2S3.(3.2)

Behrens–Wilson [BW18] also established an additive isomorphism

HF2‹Ω
ρSρ`1 – HF2‹ b Ert0, t1, ¨ ¨ ¨ s b P re1, e2, ¨ ¨ ¨ s(3.3)

where

|ti| “ 2iρ ´ σ

|ei| “ p2i ´ 1qρ.

We define a weight on the monomials in HF2‹pΩρSρ`1q by

wtptjq “ wtpejq “ 2j, wtpabq “ wtpaq ` wtpbq,

and recall the space ΩρSρ`1 admits an increasing filtration by spaces

FnΩ
ρSρ`1 »

ž

0ďkăn

Ckpρq ˆ
Σk

pS1qˆk{ „,

where the relation is defined in equation (2.1).

Proposition 3.4. The filtration FnΩ
ρSρ`1 is such that HF2‹pFnΩ

ρSρ`1q is the
span of monomials of weight ď n.

Proof. Let FnHF2‹Ω
ρSρ`1 denote the span of monomials ofHF2‹Ω

ρSρ`1 of weight

less than or equal to n and consider tǫek :“ tǫ00 tǫ11 ¨ ¨ ¨ ek1

1 ek2

2 P FnHF2‹Ω
ρSρ`1. Sim-

ilarly to the nonequivariant case [CLM76, p. 239], the inclusion
FnHF2‹Ω

ρSρ`1
ãÑ HF2‹Ω

ρSρ`1 factors throughHF2‹FnΩ
ρSρ`1 since every mono-

mial tǫek P FnHF2‹Ω
ρSρ`1 occurs by construction in HF2‹FnΩ

ρSρ`1. Thus it is
sufficient to show FnHF2‹Ω

ρSρ`1 is a basis for HF2‹FnΩ
ρSρ`1.

We show tΦeptǫekqu forms a basis of HF2˚pFnΩ
ρSρ`1qe and tΦC2ptǫekqu forms a

basis of HF2˚pFnΩ
ρSρ`1qC2 , which by [BW18, Lemma 2.8] completes the proof.

In [BW18, §4], Behrens–Wilson compute

Φeptǫekq “ x2k1`ǫ0
1 x2k2`ǫ1

1 ¨ ¨ ¨ .
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From this we see tΦeptǫekqu forms a basis of HF2˚pFnΩ
ρSρ`1qe as computed in

[CLM76, p. 239].

Similarly, we identify

pFnpΩρSρ`1qqC2 » pFnΩS
2q ˆ pFnΩ

2S3q

by noticing that

Ck
ρ pS1qC2 »

ž

i`2j“k

ˆ

CipRq ˆ
Σi

pS1qˆi

˙

ˆ

ˆ

CjpR2q ˆ
Σj

pS1qˆj

˙

,

where CkpMq is an ordered configuration of k distinct points in M.

Then using [BW18, §4] identification of tΦC2ptǫekqu and [CLM76, p. 239], we see
tΦC2ptǫekqu indeed forms a basis of HF2˚pFnΩ

ρSρ`1qC2 . �

Recall ΩρSρ`1xρ ` 1y denotes the homotopy fiber of the map ΩρSρ`1 r
ÝÑ S1, the

ρ-loops of the unit map Sρ`1 Ñ KpZ, ρ ` 1q, so

ΩρSρ`1xρ ` 1y Ñ ΩρSρ`1 r
ÝÑ S1

is a fiber sequence. The fibration splits if there is an epimorphism

πC2

1 ΩρSρ`1 Ñ πC2

1 S1.

Lemma 3.5. There is an epimorphism πC2

1 ΩρSρ`1 Ñ πC2

1 S1. Hence, ΩρSρ`1 »
S1 ˆ ΩρSρ`1xρ ` 1y and HF2‹pΩρSρ`1xρ ` 1yq Ď HF2‹pΩρSρ`1q is the span of
monomials of weight divisible by 2.

Proof. Stably, π1pΩρSρ`1q – πρ`1S
ρ`1 is the Mackey functor

Z
2

Z.

p1 2q

The induced map π1prq : πs
1Ω

ρSρ`1 Ñ π1KpZ, 1q must be an epimorphism since
the diagram of Mackey functors

Z
2

Z

Z Z

p1 2q –

–

commutes. Evaluation at the C2{C2 level gives an epimorphism

πC2

1 ΩρSρ`1 Ñ πC2

1 S1.

�
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3.3. Thom spectra of stable spherical fibrations. We describe a Lewis–May
Thom spectrum functor for HFp-local stable spherical fibrations µ : X Ñ BFp (see
[LMSM86], see also [HW20, §4] and [BCS10, §3.4]). In the language of structured
ring spectra, BFp can be identified with BGL1pSpq, the classifying space of the
units of the HF2-localized sphere spectrum Sp.

Let V be a finite dimensional real C2-representation and FppV q be the topological
monoid of basepoint-preserving C2-equivariant homotopy equivalences of SV

p , the
HFp-localization of the one-point compactification of V. There is an associated
quasi-fibration

EFppV q Ñ BFppV q

with fiber SV
p . Write BFp for the colimit of the spaces BFppV q where the col-

imit is taken over a diagram with one object for each finite dimensional real C2-
representation and one arrow V Ñ W if and only if V Ă W.

Given a map f : X Ñ BFp, let XpV q be the closed subset f´1BFppV q and

T pfqpV q :“ f˚EFppV q{X

be the Thom space of the induced map fV : XpV q Ñ BF pV q. Here f˚EFppV q is
the pullback of EFppV q and X is viewed as a subspace via the induced section.

This defines an object T pfq in the category of C2-orthogonal prespectra. Compo-
sition with the spectrification functor gives a Thom spectrum functor

TSp : U{BFp Ñ S
C2

p

defined on the category U{BFp of C2-spaces over the classifying space BFp for
HFp-local stable spherical fibrations, with values in HFp-local C2-spectra SC2

p .

3.4. A Thom spectrum model for HF
2
. Consider the ρ-loops of the unit map

Sρ`1 Ñ KpZ, ρ ` 1q. Let µ denote composition with the adjoint to ´1 P πC2

0 pS02q :

µ : ΩρSρ`1 Ñ ΩρKpZ, ρ ` 1q Ñ BGL1pS02q.

Lemma 3.6. The Thom class pΩρSρ`1qµ Ñ HF2 is an equivalence of C2-spectra.

This follows from [Lev22, Proof of Theorem A].

4. A Thom spectrum model for HZ2

Arguing as in Hahn–Wilson [HW20, Theorem 9.1], which uses arguments of Antoĺın-
Camarena-Barthel [ACB19, § 5.2], we prove

Theorem 4.1. There is an equivalence of C2-spectra

pΩρSρ`1xρ ` 1y2qµ Ñ HZ2.

Proof. We first show the Thom class

pΩρSρ`1xρ ` 1yqµ Ñ HZ2(4.1)
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is an equivalance of C2-spectra. Decomposing S1 into a 0-cell and a 1-cell and
trivializing the fiber on each cell produces a decomposition of the Thom spectrum
pΩρSρ`1qµ as a cofiber

pΩρSρ`1xρ ` 1yqµ
x

ÝÑ pΩρSρ`1xρ ` 1yqµ Ñ pΩρSρ`1qµ » HF2.

Each of these Thom spectra come from bundles classified by A2-maps, which is
enough to ensure the map x induces a map

π˚pΩρSρ`1xρ ` 1yqµ Ñ π˚pΩρSρ`1xρ ` 1yqµ

of modules over π0pΩρSρ`1xρ ` 1yqµ. In particular, on homotopy the map corre-
sponds to multiplication by some element x P π0pΩρSρ`1xρ ` 1yqµ.

Taking loops of µ : ΩρSρ`1xρ ` 1y Ñ BGL1pS02q, we obtain a map

ΩΩρSρ`1xρ ` 1y Ñ GL1pS02q.

By the universal property of GL1pS02q, we equivalently have an E1-ring map

f : Σ8
`ΩΩρSρ`1xρ ` 1y Ñ S

0
2.

Similarly, there is also a map ǫ : Σ8
`ΩΩρSρ`1xρ ` 1y Ñ S

0
2 coming from the trivial

map ΩρSρ`1xρ ` 1y Ñ GL1pS02q.

The construction of Thom spectra as bar constructions (see Definition 4.1 of [ABG`14])
then implies π0pΩρSρ`1xρ ` 1yqµ – cokerπ0pf ´ ǫq.

Thus π0pΩρSρ`1xρ ` 1yqµ is

π0pS0
2q “

1 t Z2rts{pt2q t

1 2 Z2 1

res tr

modulo classes in the image of f ´ ǫ. This also fits into a short exact sequence

π0Ω
ρSρ`1xρ ` 1yqµ

x
ÝÑ π0Ω

ρSρ`1xρ ` 1yqµ Ñ F2.

From the C2{e spot we deduce x “ 2 and from the short exact sequence and Mackey
functor structure deduce that

π0pΩρSρ ` 1xρ ` 1yqµ “ Z2.

We have checked that the Thom class (4.1) induces an isomorphism on π0. To show
that it is an equivalence of C2-spectra, it remains to check that this map induces
an isomorphism in πV for V ‰ 0, that is, πV ppΩρSρ`1xρ ` 1yqµq is trivial.

The underlying level follows from the classical nonequivariant result.

The genuine fixed point level follows from Nakayama’s lemma once one argues that
the genuine fixed point spectra have finitely generated homotopy groups in each
degree. The isotropy separation reduces us to the corresponding statement on
geometric fixed points.
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The geometric fixed points of a Thom spectrum are given by the Thom spectrum
of the fixed points, so

H˚pΩρSρ`1xρ ` 1yµqΦC2 – H˚pΩρSρ`1xρ ` 1yC2qµ.

We can apply the non-equivariant HF2-Thom isomorphism to get

H˚pΩρSρ`1xρ ` 1yC2qµ – H˚pΩρSρ`1xρ ` 1yC2q.

Recall from Lemma 3.5 that ΩρSρ`1 » S1 ˆ ΩρSρ`1xρ ` 1y, and from Equation
(3.2) that Ω2S3 ˆ ΩS2 » pΩρSρ`1qC2 . It follows that

Ω2S3 ˆ ΩS2 » pΩρSρ`1qC2 » pS1 ˆ ΩρSρ`1xρ ` 1yqC2 » S1 ˆ pΩρSρ`1xρ ` 1yqC2 .

Thus H˚pΩρSρ`1xρ ` 1yqC2 Ď H˚pΩ2S3 ˆ ΩS2q has finitely generated homology
groups in each degree. Hence, it also has finitely generated homotopy groups in
each degree, and we can apply Nakayama’s lemma to finish the proof of the genuine
fixed point level. Therefore pΩρSρ`1xρ ` 1yqµ » HZ2.

Recalling that the last map in the composition

µ : ΩρSρ`1xρ ` 1y Ñ ΩρSρ`1 Ñ S1 Ñ BGL1pS02q.

is defined to be the adjoint to ´1 P πC2

0 pS02q in Equation (2), we define µ2 by taking
the HF2-localization

µ : ΩρSρ`1xρ ` 1y ΩρSρ`1 S1 BGL1pS02q.

µ2 : ΩρSρ`1xρ ` 1y2 ΩρS
ρ`1
2 S1

2

Thus the localization map on the base spaces induces a map

f : ΩρSρ`1xρ ` 1yµ Ñ ΩρSρ`1xρ ` 1yµ2

2 .

Since our Thom construction takes values in HF2-local C2-spectra, both
ΩρSρ`1xρ ` 1yµ and ΩρSρ`1xρ ` 1yµ2

2 are HF2-local. Thus it suffices to show that
f induces an isomorphism on HF2-homology.

The localization map on the base spaces induces an HF2-isomorphism by definition.
They also each have an HF2-Thom isomorphism since the composites

S1 Ñ BGL1pS0q Ñ BGL1pHF2q

S1
2 Ñ BGL1pS02q Ñ BGL1pHF2q

are null as the maps µ and µ2 represent the class ´1 P πC2

0 GL1pF2q, but ´1 “ 1
is the basepoint. Thus f induces an isomorphism on HF2-homology and hence
is an equivalence. Therefore, slightly abusing notation by replacing µ2 with µ,

pΩρSρ`1xρ ` 1y2qµ » HZ2. �
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5. A product fibration

Recall X2 denotes the Bousfield localization of X with respect to HF2, we have set

Fn “ pFnΩ
ρSρ`1q2,

and there are product maps

Fm ˆ Fn
µ

Ñ Fm`n.

Furthermore An is defined by the homotopy fiber sequence

An Ñ F2n`1 Ñ S1
2(5.1)

where the second map is the localization of the composite

F2n`1Ω
ρSρ`1 Ñ ΩρSρ`1 Ñ S1.

We prove the C2-equivariant analogue of [CDGM88, Theorem 1.3].

Theorem 5.1. The fiber sequence (2.3) is equivalent to a product fibration. Indeed,

there is a C2-equivariant map An
φ

Ñ F2n and a commutative diagram of fibrations

An An

S1
2 ˆ An S1

2 ˆ F2n “ F1 ˆ F2n F2n`1

S1
2 S1

2

1ˆφ

p1

m

which is an equivalence on total spaces and on fibers.

Our proof of Theorem 5.1 is a C2-equivariant analogue of [CDGM88, §2. Proof of
Theorem 1.3]. Following [CDGM88], we first show that the inclusion

Fm´1Ω
ρSρ`1 Ñ FmΩρSρ`1

may be considered as a C2-equivariant inclusion into a mapping cone. For a pointed
C2 ˆ Σm-space X, we define

MmpXq “ Cmpρq ˆ
Σm

X{pCmpρq ˆ
Σm

˚q.

Let I denote the unit interval, Im the m-dimensional unit interval, and BIm the
boundary of Im, all with trivial C2-action. Note that I{BI » S1 and BIm » Sm´1.

Lemma 5.2. Let Fm “ FmΩρSρ`1. There is a cofibration sequence

MmpBImq
c

ÝÑ Fm´1 Ñ Fm.

Proof. Let TmpS1q denote the wedge with trivial C2-action consisting of points in
them-fold Cartesian product having at least one component the basepoint. Viewing
Im as the cone of the natural map BIm Ñ TmpI{BIq yields a C2 ˆ Σm-equivariant
cofibration

BIm Ñ TmpI{BIq ãÑ pI{BIqˆm,
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with trivial C2-action and hence a cofibration

MmpBImq
k

ÝÑ MmpTmpI{BIqq Ñ MmppI{BIqˆm.(5.3)

Recall from [RS00] that

Fm “

˜

ď

kďm

MkppI{BIqˆkq

¸

{ „ .

The map c of Lemma 5.2 is the composite

MmpBImq Ñ MmpTmpI{BIqq Ñ Fm´1,

where the second map uses the equivalence relation from (2.1) to ignore the base-
point in at least one component. The required homeomorphism from the mapping
cone of c to Fm is a quotient of the homeomorphism in (5.3) from the mapping
cone of k to MmppI{BIqˆm. �

We now return to the proof of Theorem 5.1. Assume by induction that the theorem
has been proved for n´1 so F2pn´1q`1 » S1

2 ˆAn´1. Note that F2pn´1q`1 Ñ F2n´1

is an equivalence. Localizing Lemma 5.2 yields a map

M2npBI2nq2 Ñ F2n´1 » S1
2 ˆ An´1.(5.4)

Lemma 5.5. The cohomology H1
C2

pM2npBI2nq2;Z2 q “ 0, so the map (5.4) is of

the form ˚ ˆ h, for some map h : M2npBI2nq2 Ñ An´1.

Proof. The freeness of the action of Σ2n on C2npρq implies

C2npρq ˆ
Σ2n

S2n´1{pC2npρq ˆ
Σ2n

˚q » C2npρq{Σ2n ˆ S2n´1{pC2npρq{Σ2n ˆ ˚q.

Since S2n´1 is 2n´1-connective, we can conclude that H1pM2npBI2nq;Z2q “ 0. �

We return to the proof of Theorem 5.1. Let Y denote the mapping cone of h. The
map of cofibrations

M2npBI2nq2 An´1 Y F2n{F2n´1

M2npBI2nq2 F2n´1 F2n F2n{F2n´1

φ

shows that HF2‹Y Ñ HF2‹F2n is injective with image spanned by monomials of
weight divisible by 2. There is a map of fibrations

Y An

S1
2 ˆ Y S1

2 ˆ F2n “ F1 ˆ F2n F2n`1

S1
2 S1

2 .

1ˆφ

p1

µ
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The map of total spaces induces an isomorphism in HF2-homology, and since F2n`1

is HF2-local, this map is a HF2-localization. Hence, there is an equivalence of
fibrations

Yp An

S1
2 ˆ Yp F2n`1

S1
2 S1

2 ,

extending the induction and completing the proof of Theorem 5.1.

Since φ : Yp Ñ F2n induces an injection HF2‹Y Ñ HF2‹F2n with image spanned
by monomials of weight divisible by 2, the following corollary is immediate.

Corollary 5.6. The map HF2‹An Ñ HF2‹F2n`1 is the inclusion of monomials
of weight divisible by 2 into monomials of weight less than or equal to 2n ` 1.

6. Proof of Main Theorem

Now we can use Theorems 4.1 and 5.1 to constructB1pnq, a C2-equivariant analogue
of the nth integral Brown-Gilter spectrum at the prime 2 as a Thom spectrum. Let
Ãn denote the homotopy fiber of the composite

F2n`1Ω
ρSρ`1 Ñ ΩρSρ`1 Ñ S1

so the HF2-localization of Ãn is An. Using the HF2-localization of the commutative
diagram

(6.1)

Ãn F2n`1

ΩρSρ`1xρ ` 1y ΩρSρ`1,

in

we define B1pnq to be the Thom spectrum pAnqµ.

Taking the Thom spectrum of the composites

Am ˆ An
φmˆφn

ÝÝÝÝÝÑ F2m ˆ F2n Ñ F2m`2n Ñ F2n`2m`1 Ñ Am`n,

where the last map splits the equivalence of Theorem 5.1, yields pairings

B1pmq ^ B1pnq Ñ B1pm ` nq.

Combining Corollary 5.6 with Diagram (6.1), we see that the map pinqµ : B1pnq Ñ
HZ2 induces a monomorphism in homology, with image spanned by monomials
of weight less than or equal to 2n. We have now proven Theorem 6.1, our C2-
equivariant analogue of [CDGM88, Theorem 1.5(i),(ii)].

Theorem 6.1. For n ą 0, there is a 2-complete spectrum B1pnq and a map

B1pnq
g

ÝÑ HZ2

such that
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(i) g‹ sends HF2‹pB1pnqq isomorphically onto the span of monomials of weight
ď 2n;

(ii) there are pairings

B1pmq ^ B1pnq Ñ B1pm ` nq

whose homology homomorphism is compatible with the multiplication in
HF2‹pHZ2q.

Remark 6.2. It is not currently known if a C2-equivariant analogue of [CDGM88,
Theorem 1.5(iii)] holds or if there should be some other criterion determining (inte-
gral) Brown–Gitler spectra in the C2-equivariant case. In the non-equivariant case,
[CDGM88, Theorem 1.5(iii)] states that for any CW-complex X,

g˚ : B1pnqipXq Ñ HipX ;Z2q

is surjective if i ď 2ppn`1q´1.This condition originated in the obstruction theoretic
construction and would be interesting to study further in the C2-equivariant setting.
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