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1. Introduction

The subject of this paper is the algebraic K-theory of (structured) ring spectra.
The field was initiated by Waldhausen [Wal78], with motivations from manifold
topology, cf. [WJR13], and has recently seen spectacular applications to the tele-
scope conjecture in chromatic homotopy theory [BHLS23].

Placing even classical discrete rings in the context of ring spectra (or derived
rings) is very fruitful: For instance, derived blowups play an important role in the
solution of Weibel’s conjecture [KST18], and the approach to excision in K-theory
of [LT19, LT23] also illustrates how ring spectra arise naturally even in questions
involving only the K-theory of classical rings. In addition, trace methods can
be used to approximate K-theory by topological cyclic homology and have been
a major computational technique for the past decades (see e.g. [BHM93, HM97,
DGM13,CMM21]).

For a given ring spectrum R, it is often easier to study completions or local-
izations of the spectrum K(R) than directly the homotopy groups of K(R), i.e.
the groups Ki(R). For example, it is a theorem of Suslin [Sus83] that the p-adic
completion of the algebraic K-theory of separably closed fields is fully understood,
much unlike its rationalization. Conversely Borel [Bor74] computed the rational
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1012 M. LAND, A. MATHEW, L. MEIER, AND G. TAMME

K-theory of number rings long before substantial information (beyond finite gen-
eration) about their integral behavior was known. Moreover, Waldhausen [Wal78]
proved that a rational equivalence between connective ring spectra which is a π0-
isomorphism induces an equivalence in rational algebraic K-theory. As the map
S → Z from the sphere spectrum to the integers is a rational equivalence, this
resulted in a computation of the rational K-theory of S, which was of great use in
geometric topology, see e.g. [FH78].

Our article is concerned with generalizations of Waldhausen’s result in the con-
text of chromatic homotopy theory, which organizes stable homotopy theory by a
notion of height in which classical discrete rings have height ≤ 0. From this view-
point, inverting p, or equivalently localization at S[ 1p ] = T (0), for which the analog

of Waldhausen’s result is equally correct, is merely the zeroth in a whole sequence
of localizations depending on a fixed prime p. The higher height analogs at prime p
are given by localization with respect to a height n telescope T (n), see Section 2.1
for details. The associated Bousfield localization functor LT (n) isolates phenomena
at height n, just like p-completion isolates phenomena at the prime p. We refer to
LT (n) as telescopic localization (at height n and implicit prime p).

For n = 1, the telescopic localization agrees with the better known localization
at Morava K-theory K(1) by [Mil81,Mah81]. Moreover, in seminal work [Tho85],
Thomason related étale algebraic K-theory to the K(1)-localization of K-theory
thereby showing that algebraic K-theory interacts in an intriguing way with the
chromatic filtration in low heights. The Lichtenbaum–Quillen conjecture, now a
theorem due to work of Voevodsky and Rost [Voe03,Voe11], can therefore be for-
mulated as describing the height one information of the algebraic K-theory of rings
of height 0. Moreover, it was shown by Mitchell that the higher telescopic local-
izations of algebraic K-theory of classical rings vanish [Mit90]. This, together with
concrete calculations with Ausoni [AR02], led Rognes to formulate the redshift phi-
losophy and higher chromatic versions of Quillen–Lichtenbaum type conjectures.
Roughly speaking, these conjectures say that the algebraic K-theory of a ring spec-
trum of height n should be of height (n+1), in a quantitative manner. We explain
more about redshift and how our results contribute to its understanding later in
this introduction.

In the context of the interaction of algebraic K-theory with different chromatic
heights, Bhatt–Clausen–Mathew [BCM20] have recently proven the following theo-
rem, based on arithmetic techniques, in particular the theory of prismatic cohomol-
ogy and its relationship with topological cyclic homology, [BMS19,BS22]: A map
of HZ-algebras which is a T (0)-equivalence induces an equivalence in T (1)-local
K-theory. Taking all of the above into account, one is naturally led to the following
question:

For general height n, to what extent does the T (n)-localK-theory
of a ring spectrum A depend only on telescopic localizations of
A?

Except from the above results of Waldhausen and Bhatt–Clausen–Mathew nothing
in this direction was known. The main goal of this paper is to give a complete
answer to this question at all chromatic heights n ≥ 1. The strongest form of our
result—the Purity Theorem—is proved jointly between this paper and the related
work [CMNN23]. Our contribution here is Theorem A.

Theorem A. Let A be a ring spectrum.
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PURITY IN CHROMATICALLY LOCALIZED K-THEORY 1013

(i) For n ≥ 1, the canonical map A → LT (0)⊕···⊕T (n)A induces an equivalence
on T (n)-local K-theory.

(ii) For n ≥ 2, the canonical map A → LT (1)⊕···⊕T (n)A induces an equivalence
on T (n)-local K-theory.

As a direct consequence one obtains for instance that, for n ≥ 2, the T (n)-
local K-theory of a ring spectrum depends only on its connective cover, allowing
for effective use of trace methods. For instance, Clausen–Mathew–Naumann–Noel
made use of it in establishing the following vanishing result, and subsequently
Ben-Moshe–Carmeli–Schlank–Yanovski made use of such results in their work on
hyperdescent for K(n)-local K-theory [BMCSY23].

Theorem 1.1 ([CMNN23]). For n ≥ 2, the K-theory of LT (0)⊕···⊕T (n−2)S vanishes
T (n)-locally.

In fact, Clausen–Mathew–Naumann–Noel prove a more general result, see
[CMNN23, Theorem C]. For the reader’s convenience we indicate the proof of the
above special case in Remark 3.9. Combining Theorems A and 1.1, a fracture
square argument yields the following result.

Purity Theorem. Let A be a ring spectrum. For n ≥ 1, the canonical map
A → LT (n−1)⊕T (n)A induces an equivalence in T (n)-local K-theory.

The Purity Theorem is optimal in the sense that the functor A �→ LT (n)K(A)
does not factor through either A �→ LT (n−1)A or A �→ LT (n)A (see Remark 3.11).
In the following, we discuss some consequences of our results.

Redshift. As indicated before, in seminal papers Thomason [Tho85,TT90] proved
that (under mild finiteness assumptions) the T (1)-localK-theory of algebraic spaces
in which p is invertible satisfies étale hyperdescent and describes their T (1)-local K-
groups in terms of étale cohomology groups with coefficients in p-adic Tate twists;
see [BCM20, Theorem 3.9] for a spectrum level version. As a consequence, one can
formulate the proven Lichtenbaum–Quillen conjecture as asserting that for schemes
over Z[ 1p ] the p-adic K-theory is asymptotically T (1)-local, that is, it agrees with

its T (1)-localization in high enough degrees ([Wal84, §4], see [CM21] for a modern
account and precise statements). Informally, one can think of T (1)-localization as
enforcing a form of Bott periodicity so that the p-adic K-theory is Bott periodic in
high degrees.

Ausoni–Rognes conjectured higher chromatic analogs of such statements and
provided evidence through precise computations of the mod (p, v1)-homotopy of
the algebraic K-theory of �p = BP 〈1〉, ku∧

p , and �p/p [AR08,AR02,Aus10,AR12].
Quite recently, étale hyperdescent for telescopically localizedK-theory at any height
has been established in [CMNN20, CM21]. Exciting progress in the direction of
the Lichtenbaum–Quillen conjectures at arbitrary height has been made by Hahn–
Wilson [HW22] verifying these for the truncated Brown–Peterson spectra BP 〈n〉
for all n.

These higher chromatic Lichtenbaum–Quillen conjectures suggest in particular
that algebraic K-theory increases chromatic complexity by 1, a property which
has been coined redshift. Despite the computational advances mentioned above, a
complete structural understanding of redshift has been missing so far. Now, for
E∞-rings there is a particularly well behaved notion of chromatic complexity called
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1014 M. LAND, A. MATHEW, L. MEIER, AND G. TAMME

the height. Namely Hahn [Hah22] proved that, for any n, a T (n)-acyclic E∞-ring
is also T (n+ 1)-acyclic, and one defines the height of an E∞-ring R as

ht(R) = inf{n ≥ −1 |R⊗ T (n+ 1) = 0}.
One precise formulation of redshift is that for E∞-rings of non-negative height, one
has ht(K(R)) = ht(R) + 1.1 Prior to our work, a general form of redshift was
wide open. As an immediate consequence of the Purity Theorem one obtains the
following inequality (see also [CMNN23, Theorem A] for this joint result):

Theorem B. For an E∞-ring R, we have ht(K(R)) ≤ ht(R) + 1.

The converse inequality is by now in fact also known and follows from works of
Yuan and Burklund–Schlank–Yuan, each of which appeared after the first versions
of the present article: Making use of Theorem A, Yuan proved that ht(K(En)) ≥
ht(En) + 1 where En is the Lubin–Tate theory associated to a formal group G

of height n over a perfect field k of characteristic p, see [Yua21, Theorem A]. He
uses our result, together with several other ingredients, to reduce the question to
showing ht(K((τ≥0En)

tCp)) ≥ n, for which he can employ an argument using the
T-equivariant Dennis trace map. Then, in their work on higher chromatic analogs of
Hilbert’s Nullstellensatz, Burklund–Schlank–Yuan [BSY22, Theorem D] show that,
for n ≥ 0 and any E∞-ring R with LT (n)R 	= 0, there exists an E∞-map R → En

for an appropriate choice of (G, k).2 Combining these results with Theorem B, one
thus obtains redshift for E∞-rings:

Redshift Theorem ([Yua21,BSY22], Theorem B). For an E∞-ring R with ht(R)
≥ 0, we have ht(K(R)) = ht(R) + 1.

One can interpret this result as follows. We recall that associated to any spec-
trum X is its telescopic filtration {Lp,f

n X}n≥0 which is closely related to the chro-
matic filtration {Lp

nX}n≥0 alluded to in the very beginning of this introduction,
see Section 2.1 for further background. It follows from Lemma 2.3 that for a ring
spectrum, the nth graded piece in the telescopic filtration vanishes if and only if
the nth graded piece in the chromatic filtration vanishes. The Redshift Theorem
can then be interpreted as stating the following. For an E∞-ring R with ht(R) ≥ 0,
the following assertions are equivalent:

• The nth graded piece of the chromatic filtration of R is trivial.
• The (n+ 1)th graded piece of the chromatic filtration of K(R) is trivial.

Further applications. Many results follow quite quickly from the Purity The-
orem. We list a few of them here, and refer to the body of the text for more
applications and explanations.

Corollary C. For a T (1)-acyclic ring spectrum A, the canonical map K(A) →
K(A[ 1p ]) is a T (1)-local equivalence.

This recovers the result of Bhatt–Clausen–Mathew [BCM20] for HZ-algebras
mentioned earlier and gives a new proof by purely homotopy and K-theoretic meth-
ods. As a consequence, T (1)-local K-theory is truncating on T (1)-acyclic ring spec-
tra and therefore satisfies excision, nilinvariance and cdh-descent. In addition, it

1Since ht(K(F
tCp
p )) = −1 �= ht(F

tCp
p ) + 1, one should indeed restrict this formulation of

redshift to non-negative height rings (or introduce a finer notion of negative heights, so that

ht(F
tCp
p ) = −2).

2For n = 0, En is given by k[t±] with |t| = 2 and k of characteristic 0.
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PURITY IN CHROMATICALLY LOCALIZED K-THEORY 1015

is A1-homotopy invariant and thus identifies with the T (1)-localization of Weibel’s
homotopy K-theory,3 see Section 4.4.

As further sample applications of the Purity Theorem, we offer Corollary D,
special cases of which appear in work of Ausoni–Rognes, Angelini-Knoll–Salch, and
Hahn–Wilson [AR02,AR12,AKS20,HW22].

Corollary D.

(i) For positive integers m 	= n, n+1, the spectrum K(K(n)) is T (m)-acyclic.
(ii) The map K(BP 〈n〉) → K(E(n)) is a T (m)-equivalence for m ≥ n + 1,

and both terms vanish T (m)-locally for m ≥ n+ 2.

See Section 4.2 for details, further results, and a discussion of (ii) in light of a
question of Rognes. The following two corollaries are discussed in Section 4.5.

Corollary E. Let A be a ring spectrum. For n ≥ 2, the map induced by the
connective cover and the cyclotomic trace

K(A) ←− K(τ≥0A) −→ TC(τ≥0A)

are T (n)-local equivalences.

Together with results of [LRRV17,CMM21], this gives the following Farrell–Jones
type equivalence. We denote by OC(G) the orbit category of a group G with respect
to the family of cyclic subgroups, that is, the full subcategory of the category of
G-spaces on transitive G-sets of the form G/H with H ⊆ G a cyclic subgroup. For
a ring spectrum A and any group G, we write AG = A⊗ Σ∞

+ G for the group ring
of G with coefficients in A.

Corollary F. For a ring spectrum A, a group G, and n ≥ 2, the assembly map in
algebraic K-theory for the family of cyclic subgroups

colim
G/H∈OC(G)

K(AH) −→ K(AG)

is a T (n)-local equivalence.

Conventions. We fix a prime number p which will be the implicit prime in all
Morava K-theories K(i) and T (i) below. We adopt the convention that K(0) =
HQ. Whenever we speak of a ring spectrum, we mean an E1-ring spectrum, i.e. an
algebra in the symmetric monoidal ∞-category Sp of spectra. By a module over a
ring spectrum we mean a right module. Given an Ek-ring spectrum R for k ≥ 2,
an R-algebra is an algebra in the monoidal ∞-category RMod(R) of R-modules.
For a spectrum E, we denote by LE the Bousfield localization functor at E. For
a spectrum X and a pointed space Y , we write X ⊗ Y for the smash product
X ⊗ Σ∞Y .

2. Preliminaries

2.1. Preliminaries from chromatic homotopy theory. For an integer n ≥ 1,
we denote by Vn a type n-complex, i.e. a pointed finite CW-complex with K(i) ⊗
Vn = 0 for i < n and K(n) ⊗ Vn 	= 0. We denote by vn a vn-self map of Vn,
i.e. a map ΣdVn → Vn for some positive integer d inducing an isomorphism on
K(n)-homology and nilpotent maps on K(i)-homology for i 	= n. Such maps exist
by [HS98].

3From this fact, excision, nilinvariance, and cdh-descent also follow.
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If X is a pointed space or a spectrum, we define its vn-periodic homotopy groups
v−1
n π∗(X;Vn) by the formula

v−1
n π∗(X;Vn) = Z[v±1

n ]⊗Z[vn] π∗Map∗(Vn, X).

Definition 2.1. We call a map of pointed spaces or spectra a vn-periodic equiva-
lence (with n ≥ 1) if it induces an isomorphism on vn-periodic homotopy groups. A
map of spectra or simple spaces is a v0-periodic equivalence if it becomes an equiv-
alence after inverting p, and the v0-periodic homotopy groups are by definition the
homotopy groups with p inverted. For a spectrum E, we say that another spectrum
X is E-acyclic if E ⊗X = 0 and say that a map is an E-equivalence if its fibre is
E-acyclic.

For a fixed pair (Vn, vn) we denote by T (n) = Σ∞Vn[v
−1
n ] the telescope of vn.

We adopt the convention that T (0) = S[ 1p ]. We recall that the Bousfield class of a

spectrum E is the full subcategory of Sp consisting of the E-acyclic spectra. For
the convenience of the reader not familiar with chromatic homotopy theory, we note
the following well-known properties.

Lemma 2.2. Let X be a spectrum and Y be a pointed space.

(i) We have v−1
n π∗(X;Vn) ∼= v−1

n π∗(Ω
∞X;Vn).

(ii) The maps τ≥kX → X and τ≥kY → Y are vn-periodic equivalences for all
k and all n ≥ 1.

(iii) The spectra K(m) are T (n)-acyclic for n 	= m.
(iv) Any T (n)-acyclic spectrum is K(n)-acyclic.
(v) A spectrum which is S/p-acyclic is also T (n)-acyclic for all n ≥ 1.
(vi) The map X → X∧

p is a T (n)-equivalence for all n ≥ 1.
(vii) The Bousfield class of T (n) does not depend on the choice of (Vn, vn).
(viii) A spectrum is T (n)-acyclic if and only if its vn-periodic homotopy groups

vanish.

Proof. Part (i) follows immediately from the definitions and the equivalence
Map∗(Vn, X) � Map∗(Vn,Ω

∞X). Assertion (ii) follows from the observation that
the vn-periodic homotopy groups of a bounded above spectrum or space vanish.
This in turn follows from the fact that the degree d of the self map vn is positive.
Claim (iii) follows from the fact that K(m) ⊗ T (n) � (K(m) ⊗ Vn)[v

−1
n ] which

vanishes as vn is nilpotent on Morava K-homology if n is different from m. To see
(iv), assume that X is T (n)-acyclic. Then we have 0 = K(n) ⊗ T (n) ⊗ X. But
K(n)⊗T (n) 	= 0, so, since K(n) is a field spectrum (any module is a direct sum of
shifted copies of K(n)), we must have K(n)⊗X = 0.

For part (v) observe that some power of p, say pk, is zero on Vn and hence on
T (n). Given an S/p-acyclic spectrum X, we have X/pk = 0. Thus we see that

0 = X/pk ⊗ T (n) � X ⊗ T (n)/pk � X ⊗ (T (n)⊕ ΣT (n)),

and the latter term has X ⊗ T (n) as a retract. Thus X is T (n)-acyclic. Statement
(vi) follows from (v), since the fibre of X → X∧

p is S/p-acyclic.
For (vii), as in [MS95, Lemma 2.1], we fix a pair (Vn, vn) and consider the full

subcategory of finite p-local spectra consisting of those Y which admit a vn-self
map y and such that T (n)⊗ Z = 0 implies that Y [y−1]⊗ Z = 0 as well. This is a
thick subcategory, as follows from [HS98, Corollary 3.8]. Since it contains Vn, this
thick subcategory is given by the thick subcategory of finite spectra of type at least
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PURITY IN CHROMATICALLY LOCALIZED K-THEORY 1017

n, see [HS98, Theorem 7]. Hence if T (n) ⊗ Z = 0 and (V ′
n, v

′
n) is another choice,

also T (n)′ ⊗ Z = 0. Running the same argument also with V ′
n instead of Vn gives

the claim.
To see (viii), consider a spectrum X and observe that we may calculate its

vn-periodic homotopy groups using the mapping spectrum map(Vn, X) instead of
the mapping space Map(Vn, X) due to the positivity of the degree of the self-map
vn. Thus, the vn-periodic homotopy groups of X are isomorphic to the homotopy
groups of the spectrum (DVn⊗X)[Dv−1

n ], where DVn denotes the dual of the finite
spectrum Σ∞Vn (which is again of type n). This spectrum is equivalent to T (n)⊗X
where T (n) is the telescope of Dvn. The claim then follows from (vii). �

We remark that the converse of statement (iv) (for n ≥ 1) is the content of the
telescope conjecture. It is known [Mah81,Mil81] to be true in height n = 1 and
was recently disproved at all higher heights and all primes [BHLS23].

We thank Dustin Clausen for help with Lemma 2.3, which is a consequence of
the nilpotence theorem.

Lemma 2.3. Let R be a ring spectrum, and n ≥ 1 an integer. Then R is K(n)-
acyclic if and only if it is T (n)-acyclic.

Proof. The “if”-part follows from Lemma 2.2(iv). To see the “only if” statement,
we argue first that one can assume that T (n) is a ring spectrum. Indeed, by
replacing Vn by Wn = Vn⊗DVn � End(Σ∞Vn), we can assume that the suspension
spectrum of our type n-complex is an E1-ring spectrum. Moreover, the vn-self-map
of Vn defines an element w ∈ π∗(Wn), multiplication with which is a vn-self map
again. By [HS98, Theorem 11] a power of w lies in the center of π∗(Wn). Thus the
localization Wn[w

−1] admits the structure of an E1-ring spectrum. As the Bousfield
class of T (n) does not depend on the choice of the type n complex, we can thus
indeed assume that T (n) is a ring spectrum. We then observe that a ring spectrum
like T (n)⊗R is zero if and only if its unit is nilpotent. By the nilpotence theorem
[HS98, Theorem 3], this is the case if and only if K(m) ⊗ (T (n) ⊗ R) = 0 for all
0 ≤ m ≤ ∞. If m 	= n then K(m) ⊗ T (n) ⊗ R = 0 as K(m) ⊗ T (n) = 0 by
Lemma 2.2(iii). Since R is K(n)-acyclic, also K(n) ⊗ T (n) ⊗ R = 0. We thus
conclude that T (n)⊗R vanishes. �

Remark 2.4. In the proof above, it was not used that R is an algebra in the ∞-
category of spectra. It suffices that R is a unital magma in the homotopy category
of spectra.

2.2. Some localization functors. We recall that the functor Lf
n on spectra is

defined as Bousfield localization at the spectrum HQ ⊕ T (1) ⊕ · · · ⊕ T (n). To
formulate our main result, we will use the following variant.

Definition 2.5. We denote by Lp,f
n the Bousfield localization at T (0) ⊕ T (1) ⊕

· · · ⊕ T (n).

Recall that a Bousfield localization functor L : Sp → Sp is called smashing if
it preserves colimits or, equivalently, if it is of the form LX � X ⊗ LS. If every
L-acyclic spectrum is a colimit of compact, L-acyclic spectra, then L is called finite
and is in particular smashing, see [Mil92] or [Lur10, Lecture 20, Example 12]. For
example, Lf

n is smashing. The same proof also shows that Lp,f
n is smashing. For

convenience, we recall this proof below. Write C>n for the ∞-category of p-local,
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1018 M. LAND, A. MATHEW, L. MEIER, AND G. TAMME

finite spectra which are of type greater than n, i.e. which are K(0) ⊕ · · · ⊕K(n)-
acyclic.

Lemma 2.6. The category of Lp,f
n -acyclic spectra coincides with Ind(C>n). In

particular, Lp,f
n is a smashing localization.

Proof. The Bousfield class 〈T (0)⊕T (1)⊕· · ·⊕T (n)〉 has as complement the Bousfield
class 〈Σ∞Vn+1〉 of a type (n+ 1)-spectrum: every spectrum is acyclic for (T (0)⊕
T (1)⊕ · · · ⊕ T (n))⊗ Vn+1 and 0 is the only spectrum which is T (0)⊕ T (1)⊕ · · · ⊕
T (n)⊕Σ∞Vn+1-acyclic. Indeed, this follows easily from the inductive construction
of a type (k + 1)-complex as Vk/v, where Vk is a type k-complex with vk-self map
v. It follows from [MS95, Proposition 3.3] that every Lp,f

n -acyclic spectrum is a
colimit of finite Lp,f

n -acyclic spectra. The thick subcategory theorem implies that
the category of finite Lp,f

n -acyclic spectra is precisely C>n. �

Lemma 2.7. For integers 0 ≤ m < n and a spectrum X there is a pullback diagram

Lp,f
n X LT (m+1)⊕···⊕T (n)X

Lp,f
m X Lp,f

m LT (m+1)⊕···⊕T (n)X

natural in X.

Proof. This is a special case of the following well known lemma. �

Lemma 2.8. Let E and F be spectra. Assume that LE preserves F -acyclic spectra.
Then there is a pullback diagram

LE⊕FX LFX

LEX LELFX

natural in X.

We note that the assumptions of the lemma are for instance satisfied if LE is
smashing, or if LF annihilates E-local objects.

Proof. Denote the pullback of the diagram LEX → LELFX ← LFX by P (X).
There is a canonical map X → P (X); it is easy to show that this map is an
(E ⊕ F )-local equivalence, and that P (X) is (E ⊕ F )-local. �

As a consequence of Lemma 2.8 we note that

(i) for p-local spectra X, the canonical map Lp,f
n X → Lf

nX is an equivalence,
and

(ii) for T (1)-acyclic spectra X, the canonical map Lp,f
1 X → X[ 1p ] is an equiv-

alence.

We will use the following criterion to detect T (i)-local equivalences, which was
indicated to us by Gijs Heuts.

Proposition 2.9. Let f : X → Y be a map of spectra, and let i ≥ 1 be an integer.
If Σ∞Ω∞f is a T (i)-local equivalence, then so is f . In other words, the functor
Σ∞Ω∞ : Sp → Sp detects T (i)-local equivalences.
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PURITY IN CHROMATICALLY LOCALIZED K-THEORY 1019

Proof. We note that the canonical composite

Ω∞ −→ Ω∞Σ∞Ω∞ −→ Ω∞

is an equivalence. It is an insight of Bousfield and Kuhn that the T (i)-localization
functor LT (i) factors through Ω∞ via the Bousfield–Kuhn functor Φi from pointed
spaces to spectra. There is thus an equivalence Φi ◦ Ω∞ � LT (i); see [Kuh08,
Theorem 1.1]. Applying Φi to the above composite shows that the composite

LT (i) −→ LT (i)Σ
∞Ω∞ −→ LT (i)

is also an equivalence. This implies that LT (i)(f) is a retract of LT (i)(Σ
∞Ω∞f)

which proves the lemma. �

Remark 2.10. Restricted to connective spectra, the functor Σ∞Ω∞ also detects
T (0)-local equivalences.

It is, however, not true that the functor Σ∞Ω∞ preserves T (i)-local equiva-
lences. For example, HZ is T (i)-acyclic, whereas Σ∞Z is not: It contains the sphere
spectrum as a summand. Nevertheless, Σ∞Ω∞ preserves suitably connective Lp,f

n -
equivalences, as the following result shows. We say that a space is m-connective if
it has trivial homotopy groups in degrees less than m, i.e., is (m − 1)-connected.
We call a map m-connective if the fibre over every basepoint is m-connective, i.e.
if it induces an isomorphism on πk for k < m and a surjection on πm.

Proposition 2.11. Let n ≥ 1 be an integer. Then there exists m ≥ 2 such that
the following hold:

(i) Let F be an m-connective pointed space whose vi-periodic homotopy groups
vanish for 0 ≤ i ≤ n. Then F is T (i)-acyclic for 0 ≤ i ≤ n.

(ii) Let f : X → Y be an m-connective map between spaces. If f is a vi-
periodic equivalence for 0 ≤ i ≤ n for every choice of basepoints, then
Σ∞f : Σ∞X → Σ∞Y is an Lp,f

n -equivalence for every choice of basepoints.
(iii) The functor Σ∞Ω∞ preserves m-connective Lp,f

n -equivalences.

Proof. Part (i) follows from a result of Bousfield ([Bou01, Corollary 4.8], [BHM21,
Theorem 3.1]) together with [BHM21, Lemma 3.3], which gives an integer m such
that any m-connective space with trivial vi-periodic homotopy groups for 0 ≤ i ≤ n
has trivial T (i)-homology for 0 ≤ i ≤ n. Note that in Bousfield’s convention T (0)
is HQ, but it is well-known that a simply connected space such that (π∗X)[ 1p ]

vanishes is also acyclic for HZ[ 1p ] and hence for T (0) = S[ 1p ].

To prove (ii), consider the Serre spectral sequence in T (i)-homology associated to
the map X → Y . By assumption, the fibre over every basepoint is an m-connective
space whose vi-periodic homotopy groups vanish for i ≤ n; thus, it is T (i)-acyclic
for 0 ≤ i ≤ n by (i). It follows that X → Y induces an isomorphism in T (i)-
homology for 0 ≤ i ≤ n. Hence, Σ∞

+ X → Σ∞
+ Y and thus Σ∞X → Σ∞Y (for any

choice of basepoints) are Lp,f
n -equivalences.

Finally, to see (iii) one applies Ω∞ to an m-connective Lp,f
n -equivalence. The

resulting map of spaces satisfies the assumptions of (ii), so the proposition follows.
�

Remark 2.12 will not be used in the sequel.
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Remark 2.12. In fact, we can take m = n + 1 in Proposition 2.11. Indeed, using
what we have proven already, it suffices to show that any (n+ 1)-connective space
F is T (i)-acyclic for 0 ≤ i ≤ n if its homotopy groups are p-primary torsion and
vanish in sufficiently high degrees. By an induction over the Postnikov tower, it
hence suffices to show that T (i)⊗K(π, r) = 0 if r > i and π is a finite group, as T (i)-
homology commutes with filtered colimits and every torsion group is the filtered
colimit of its finite subgroups. It is shown in [CSY22, Theorem E] that for a p-local
ring spectrum R the following two conditions are equivalent: (1) R ⊗K(π, r) = 0
for all r > i and (2) R⊗K(r) = 0 for all r > i. Statement (2) applies to R = T (i)
by Lemma 2.2(iii), so part (i) and hence also (ii) and (iii) of the proposition follow
with m = n+ 1.

2.3. Localizing invariants and K-theory. In this short subsection we recall
some notions and facts about algebraic K-theory which we will use throughout this
paper.

A localizing invariant is a functor Catperf∞ → Sp which sends exact sequences to

fibre sequences. Here Catperf∞ refers to the ∞-category of small, idempotent com-
plete, and stable ∞-categories and exact sequences are those sequences which are
both fibre and cofibre sequences in Catperf∞ , see [BGT13, §5] for details.4 Exam-
ples of localizing invariants are nonconnective K-theory [BGT13, §9], topological
Hochschild homology, topological cyclic homology, etc. For a localizing invariant E
and a ring spectrum A, we will write E(A) for E(Perf(A)), where Perf(A) denotes
the ∞-category of perfect A-modules, which coincides with the compact objects of
RMod(A).

For a connective ring spectrum A, the space Ω∞τ≥1K(A) can be described as
a plus-construction [BGT13, Lemma 9.39]: We denote by GL(A) the E1-space
GL(A) = colimGLn(A), where GLn(A) denotes the invertible components in the
E1-space Ω∞ End(An). In particular, π0(GL(A)) ∼= GL(π0(A)), where the right-
hand side denotes the group of invertible matrices over the discrete ring π0(A).
There is a canonical map BGL(A) → Ω∞τ≥1K(A) which exhibits the target as the
plus construction BGL(A)+. In particular, this map is a homology equivalence,
and hence the map of spectra Σ∞BGL(A) → Σ∞Ω∞τ≥1K(A) is an equivalence.

For an arbitrary C ∈ Catperf∞ , we will also need the explicit description of
the K-theory space Ω∞K(C), which arises via the Waldhausen S•-construction,
cf. [BGT13, Sec. 7.1]. The S•-construction produces a simplicial object S•C ∈
Fun(Δop,Catperf∞ ) such that there is a natural equivalence of spaces

(1) Ω∞K(C) � Ω|S•(C)�|,

where (−)� denotes the underlying space of an ∞-category; moreover, we have for
each n ≥ 0 a natural equivalence Sn(C) � Fun(Δn−1, C). Note that both sides

have the canonical structure of E∞-spaces since Catperf∞ is semiadditive, i.e. it has
finite biproducts as in [GGN15, Definition 2.1]. In fact, the equivalence (1) is one
of E∞-spaces, therefore, we can deloop both sides to obtain

(2) Ω∞(τ≥0K(C)[1]) � |S•(C)�|.

4In [BGT13] localizing invariants are further required to preserve filtered colimits.

Licensed to Univ of Rochester. Prepared on Sun Mar  9 08:06:10 EDT 2025 for download from IP 128.151.13.83.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PURITY IN CHROMATICALLY LOCALIZED K-THEORY 1021

3. Proof of the Purity Theorem

In this section, we will prove Theorem A, which we restate here as Theorem 3.8,
in several steps, each of which will give a special case of the result. We then combine
this with Theorem 1.1 to obtain the Purity Theorem. Our first step, which we treat
in the following subsection, will involve only highly connective maps of connective
ring spectra.

3.1. The highly connective case.

Proposition 3.1. Let n ≥ 1. There exists N ≥ 1 such that the following holds: let
A → B be an N-connective Lp,f

n -equivalence between connective ring spectra. Then
the induced map K(A) → K(B) is again an Lp,f

n -equivalence.

Proof. We take N = m − 1, where m is as in Proposition 2.11. By Waldhausen’s
result (see [Wal78, Propositions 1.1, 2.2] or [LT19, Lemma 2.4]) the map K(A) →
K(B) is a T (0)-equivalence. It hence remains to prove that the map K(A) → K(B)
is a T (i)-local equivalence for 1 ≤ i ≤ n. By Lemma 2.2(ii), it suffices to show that
τ≥1K(A) → τ≥1K(B) is a T (i)-local equivalence for 1 ≤ i ≤ n.

We consider the following commutative diagram, where we use the plus-
construction description of algebraic K-theory for connective ring spectra as re-
called in Section 2.3.

Σ∞BGL(A) Σ∞BGL(B)

Σ∞Ω∞τ≥1K(A) Σ∞Ω∞τ≥1K(B).

� �

By Proposition 2.9, it suffices to show that the lower horizontal map is a T (i)-
local equivalence for 1 ≤ i ≤ n. Since the vertical maps in the above diagram are
equivalences, this is the case if the top horizontal map is a T (i)-local equivalence.
This and thus the proposition will follow from Proposition 2.11(ii) once we have
shown the following: The map BGL(A) → BGL(B) is m-connective and induces
an isomorphism on vi-periodic homotopy groups for i ≤ n.

To show this claim, we observe that the classifying space construction B increases
the connectivity of a map by 1 and preserves vi-periodic equivalences. Thus it
suffices to see that GL(A) → GL(B) is an (m−1)-connective vi-periodic equivalence
for 1 ≤ i ≤ n. Observe that by definition the map A → B induces an isomorphism
between π0(GL(A)) = GL(π0(A)) and GL(π0(B)) = π0(GL(B)). Furthermore,
τ≥1GL(A) � τ≥1M(A), where M(A) is the space of matrices colimr Ω

∞ End(Ar) �
colimr Ω

∞Ar×r, and similarly for B. As A → B is (m−1)-connective and as m ≥ 2,
we thus see that GL(A) → GL(B) is (m − 1)-connective. Further, as A → B is
an Lp,f

n -equivalence, it induces isomorphisms on vi-periodic homotopy groups for
i ≤ n. By Lemma 2.2(i) also M(A) → M(B) is a vi-periodic equivalence, and,
finally, by Lemma 2.2(ii) also GL(A) → GL(B) is a vi-periodic equivalence for
i ≤ n, as desired. �

3.2. A truncating property. Our next goal is to prove a version of Proposi-
tion 3.1 with weaker connectivity hypotheses; in fact, we will only need a special
case (Proposition 3.4), formulated using the language of truncating invariants. To
do this, we will need some further preliminaries.
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1022 M. LAND, A. MATHEW, L. MEIER, AND G. TAMME

Lemma 3.2. Let

A B

A′ B′

be a pullback square of ring spectra in which A is connective. If A → A′ is n-
connective and A → B is m-connective, then the induced map A′ �B′

A B → B′ is
(m+ n+ 2)-connective.

Here A′ �B′

A B denotes the ring spectrum associated to the displayed pullback
square by [LT19, Main Theorem].

Proof. Denote by I the common fibre of the vertical maps, by J that of the hori-
zontal maps. From [LT19, Remark 1.16] we have an equivalence

fib(A′ �B′

A B → B′) � Σfib(I ⊗A B
μ−→ I)

where the map μ is induced by the right B-module structure on I. Now μ has a
section σ : I → I ⊗A B induced by the map A → B. The fibre of σ identifies with
I ⊗A J , which is (n + m)-connective as A is connective. In other words, σ is an
isomorphism in degrees ≤ m+n−1 and surjective in degree m+n. Since μ◦σ � idI
and so μ is surjective in every degree, it then follows that μ is an isomorphism in
degrees≤ m+n and surjective in degreem+n+1, i.e. μ is (m+n+1)-connective. By

the above equivalence, A′�B′

A B → B′ is then (m+n+2)-connective, as desired. �

Let M be a spectrum. We say that a localizing invariant E is truncating on
M -acyclic ring spectra if for every M -acyclic connective ring spectrum R, we have
E(R)

∼−→ E(π0R). Note that if a ring spectrum R is M -acyclic, then also τ≤kR is
M -acyclic for all k as follows by consideration of the ring map LMR → LMτ≤kR.
Lemma 3.3 also appears in similar form in [Mat21, Lemma 3.11].

Lemma 3.3. Let E be a localizing invariant. Suppose that there exists k ≥ 0 such
that the map E(R)

∼−→ E(τ≤kR) is an equivalence for any M -acyclic connective
ring spectrum R. Then E is truncating on M -acyclic ring spectra.

Proof. It suffices to show that if E and k > 0 are as in the statement of the lemma,
then we have in fact E(τ≤kR)

∼−→ E(τ≤k−1R) for all M -acyclic connective ring
spectra R; the result then follows by induction on k.

To this end, recall that τ≤kR → τ≤k−1R is a square-zero extension, so there is a
pullback square of ring spectra (cf. [Lur17, 7.4.1.29]),

τ≤kR Hπ0R

τ≤k−1R Hπ0R ⊕ (HπkR)[k + 1].

All ring spectra in this square are connective and M -acyclic. It follows from [LT19,
Main Theorem] that we have a pullback square of spectra

E(τ≤kR) E(Hπ0R)

E(τ≤k−1R) E
(
τ≤k−1R �Hπ0R⊕(HπkR)[k+1]

τ≤kR
Hπ0R

)
.
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PURITY IN CHROMATICALLY LOCALIZED K-THEORY 1023

It thus suffices to show that the right vertical map is an equivalence. But this
follows because, by Lemma 3.2, the map of connective, M -acyclic ring spectra

Hπ0R → τ≤k−1R �Hπ0R⊕(HπkR)[k+1]
τ≤kR

Hπ0R

induces an equivalence on τ≤k and hence on E(−). �
Proposition 3.4. For n ≥ 1, LT (n)K(−) is truncating on Lp,f

n -acyclic ring spectra.

Proof. This follows from Proposition 3.1 and Lemma 3.3. �
Corollary 3.5 (Cf. also [BCM20]). For any n ≥ 1, we have LT (i)K(Z/pn) = 0 for
i ≥ 1.

Proof. This follows from Proposition 3.4 since truncating invariants are nilinvariant,
[LT19, Corollary 3.5], and Quillen’s computation that K(Fp)

∧
p = HZp. �

3.3. The general case. Now we extend the results to nonconnective ring spectra,
and then complete the proofs of Theorem A and the Purity Theorem. Our strategy
of proof is to reduce the nonconnective case to the connective case using the S•-
construction. In this we will work with a not-necessarily stable, but additive ∞-
category A, about which we make two remarks:

• We can view A as a symmetric monoidal ∞-category under ⊕ and denote
by Kadd(A) its group-completion K-theory, cf. [GGN15] for a modern
account. If R is a connective ring spectrum and A is the ∞-category
Projω(R) of finitely generated projective R-modules, there is an equiva-
lence Kadd(A) � τ≥0K(R).

• Given two objects X and Y in an additive ∞-category A, their mapping
space has the canonical structure of a grouplike E∞-space, giving rise to
a connective spectrum homA(X,Y ). If A is stable, this is the connec-
tive cover of the homomorphism spectrum HomA(X,Y ). We remark that
HomA(X,X) is Lp,f

n -acyclic if and only if homA(X,X) is Lp,f
n -acyclic: for

T (i)-acyclicity with i > 0, this is Proposition 2.9 and each of homA(X,X)
and HomA(X,X) is T (0)-acyclic if and only if [idX ] in the common π0 is
p-power torsion.

In the following, we will assume that all ∞-categories of which we consider the
K-theory are idempotent-complete.

Proposition 3.6. Let C be an additive ∞-category. Suppose for each object X ∈ C,
the ring spectrum homC(X,X) is annihilated by Lp,f

n . Then

(i) LT (i)K
add(C) = 0 for 1 ≤ i ≤ n, and

(ii) LT (i)K(C) = 0 for 1 ≤ i ≤ n if C is stable.

Proof. For the first part, we observe that C can be written as a filtered colimit of
its full subcategories generated by finite direct sums and retracts by finitely many
objects. Passing to the direct sum of the generators, and using that K-theory
commutes with filtered colimits, we may assume that C is generated under finite
direct sums and retracts by a single object X. Hence, by the additive version
of the Schwede–Shipley theorem, C � Projω(homC(X,X)) is the ∞-category of
finitely generated projective modules over homC(X,X), which is Lp,f

n -acyclic by
assumption. Therefore, Kadd(C) � τ≥0K(homC(X,X)) is T (i)-acyclic for 1 ≤ i ≤ n
by Proposition 3.4 (together with the fact that the T (1)-localK-theory of a p-power
torsion discrete ring vanishes by Corollary 3.5).
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For the second part, we assume that C is stable. The Waldhausen S•-construction
gives a simplicial stable ∞-category S•C and a natural equivalence of spaces (as in
(2)):

Ω∞ ((τ≥0K(C))[1]) = |S•(C)�|.
Note that both sides have the structure of E∞-monoids, using the direct sum on
C (which also gives the canonical E∞-monoid structure on the left arising from
Ω∞), and the map is an equivalence of E∞-spaces. Therefore, we may group-
complete the terms inside the geometric realization on the right-hand-side to obtain
an equivalence of connective spectra

(3) (τ≥0K(C))[1] � |Kadd(S•(C))|,
where on the right we consider the additive (group-complete) K-theory as above.
The above Lp,f

n -local vanishing condition on the stable ∞-category C is stable under
passage to Fun(Δj , C) for any j ≥ 0. Therefore, by the first paragraph of the proof,
we find that the right-hand-side of (3) is T (i)-acyclic for 1 ≤ i ≤ n, hence the
result. �

For an alternative argument that (i) implies (ii) in the above Proposition, see
Proposition 3.12.

Lemma 3.7. For any ring spectrum A, there is an exact sequence

C>n ⊗ Perf(A) −→ Perf(A) −→ Perf(Lp,f
n A),

and the endomorphism spectrum of every object in C>n ⊗ Perf(A) is Lp,f
n -acyclic.

Proof. Lemma 2.6 and the Thomason–Neeman localization theorem [Nee92, Theo-
rem 2.1] imply that the sequence of small stable ∞-categories

C>n −→ Perf(S) −→ Perf(Lp,f
n S)

is exact. Tensoring the above exact sequence with Perf(A), using the fact that Lp,f
n

is smashing, we obtain the exact sequence

C>n ⊗ Perf(A) −→ Perf(A) −→ Perf(Lp,f
n A).

The ∞-category C>n ⊗ Perf(A) is generated by A-modules of the form A ⊗ F
with F being a finite p-local Lp,f

n -acyclic spectrum. Their endomorphism spectra
DF ⊗ F ⊗A are Lp,f

n -acyclic as well and so are thus the endomorphism spectra of
all objects of C>n ⊗ Perf(A). �

The following is a reformulation of Theorem A.

Theorem 3.8. Let A be a ring spectrum. Then the map A → Lp,f
n A induces an

equivalence on LT (i)K(−) for 1 ≤ i ≤ n. If n ≥ 2, the map A → LT (1)⊕···⊕T (n)A
induces an equivalence on LT (n)K(−).

Proof. As K-theory is localizing, the homotopy fibre of K(A) → K(Lp,f
n A) co-

incides with K(C>n ⊗ Perf(A)) by the preceding lemma. This is T (i)-acyclic for
1 ≤ i ≤ n by Proposition 3.6. For the last assertion, we consider the pullback
diagram

Lp,f
n A LT (1)⊕···⊕T (n)A

A[ 1p ] (LT (1)⊕···⊕T (n)A)[ 1p ]
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from Lemma 2.7 (note that Lp,f
0 A = A[ 1p ]). By [Tam18] or [LT19] and the fact that

Lp,f
0 is smashing, we deduce that the diagram

K(Lp,f
n A) K(LT (1)⊕···⊕T (n)A)

K(A[ 1p ]) K((LT (1)⊕···⊕T (n)A)[ 1p ])

is a pullback.5 By the first part, it suffices to prove that the top horizontal map
is an equivalence after T (i)-localization for i ≥ 2. Now each term in the bottom
row is a module over K(S[ 1p ]), which is p-adically equivalent to K(Z[ 1p ]) and hence

vanishes after T (i)-localization for i ≥ 2 by Mitchell’s result [Mit90]. �

We now prove the Purity Theorem. The result is a direct consequence of The-
orem 3.8 (which proves “one half” of the result) and Clausen–Mathew–Naumann–
Noel’s Theorem 1.1 (which proves the “other half”). We note that the results of
[CMNN23] also rely on Theorem 3.8 (but not on the Purity Theorem), so there is
no circularity.

Proof of the Purity Theorem. We have to show that the map A → LT (n−1)⊕T (n)A
induces an equivalence on LT (n)K(−). As in the proof of Theorem 3.8, using that

Lp,f
n−2 is a smashing localization (or Lemma 3.7), the diagram

K(Lp,f
n A) K(LT (n−1)⊕T (n)A)

K(Lp,f
n−2A) K(Lp,f

n−2(LT (n−1)⊕T (n)A))

is a pullback. By Theorem 3.8, it suffices to prove that the top horizontal map
is an equivalence after T (n)-localization. Now each term in the bottom row is a

module over K(Lp,f
n−2S), which vanishes T (n)-locally by Theorem 1.1, so we deduce

the claim. �

Remark 3.9. In [CMNN23], the vanishing of LT (n+2)K(Lp,f
n S) is deduced as a spe-

cial case of a more general result. For the convenience of the reader, we summarize
their argument for the exact vanishing that we use here. We wish to show the
claim by induction over n. The case n = 0 follows from Mitchell’s theorem, as in
the proof of the second part of Theorem 3.8. By the strengthening of Hahn’s result
[Hah22] obtained in [CMNN23, Lemma 4.5], it suffices to show that K(Lp,f

n S)tCp is
T (n+1)-acyclic. Now, given any commutative algebra in genuine Cp-spectra whose
underlying spectrum with Cp-action is K(Lp,f

n S) with trivial Cp-action, there is a
ring map from its geometric fixed points to K(Lp,f

n S)tCp . An example is the K-
theory of the Borel complete categorical Mackey functor, where the genuine fixed
points are K(Fun(BCp,Perf(L

p,f
n S))). The transfer for this genuine Cp-spectrum

is the composite

(4) K(Lp,f
n S)hCp

−→ K(Lp,f
n S[Cp]) −→ K(Fun(BCp,Perf(L

p,f
n S))),

5This also follows more classically from Lemma 3.7.
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and by definition the geometric fixed points are the cofibre of this composite. It
hence suffices to show that each of the above two maps is a T (n+ 1)-local equiva-
lence. For the second, one uses that the Verdier quotient

Fun(BCp,Perf(L
p,f
n S))/Perf(Lp,f

n S[Cp])

is linear over (Lp,f
n S)tCp . Indeed, calling this quotient Q and writing R = Lp,f

n S,
Theorem I.3.3ii and an analogue of Lemma I.3.8iii from [NS18] imply that EndQ(R)
� RtCp . By Theorem I.3.6 in op. cit., Q has a canonical symmetric monoidal
structure and we obtain a symmetric monoidal functor Perf(RtCp) → Q. The

spectrum (Lp,f
n S)tCp is itself an algebra over Lp,f

n−1S by Kuhn’s blueshift result
[Kuh04]. Thus, by induction, the second map in (4) is a T (n+1)-local equivalence.

For the first map one uses Corollary 4.30 (whose proof relies only on Theorem 3.8)
to obtain a diagram which is cartesian after T (i)-localization, i ≥ 2,

K(Lp,f
n S)hCp

K(Lp,f
n S[Cp])

TC(τ≥0(L
p,f
n S))hCp

TC(τ≥0(L
p,f
n S)[Cp]).

Now, by [HN19, Theorem 1.4.1], the cofibre of the lower horizontal map belongs to
the localizing subcategory of spectra generated by τ≥0(L

p,f
n S), and hence vanishes

T (n+ 1)-locally as well.

Question 3.10. For a ring spectrum A and for n ≥ 2, does the map A →
LK(n−1)⊕K(n)A induce an equivalence on K(n)-local K-theory?

The above question reduces to proving an analog of Theorem 3.8 for Ln-locali-
zation: that is, for n ≥ 2, it would suffice to show that A → LnA induces an
equivalence on LK(n)K(−).

Remark 3.11. Suppose n ≥ 1. The functor A �→ LT (n)K(A) does not factor through
either of the further localizations A �→ LT (n)A or A �→ LT (n−1)A; in this sense, the
Purity Theorem is optimal.

In fact, the results of [HW22, Yua21] give examples of T (n)-acyclic ring spec-
tra for which LT (n)K(A) 	= 0. This shows that A �→ LT (n)K(A) does not factor
through A �→ LT (n)A. Moreover, we claim that A �→ LT (n)K(A) does not factor
through A �→ LT (n−1)A. Suppose the contrary: that is, suppose that any T (n−1)-
equivalence of E1-rings induced an equivalence on LT (n)K(−). We will obtain a con-
tradiction as follows. Fix any connective spectrum M which is T (n−1)-acyclic but
not T (n)-acyclic. Under our assumption, for any r ≥ 0, the map S⊕ΣrM → S of E1-
rings (where the former denotes the square-zero extension) induces an equivalence
on LT (n)K(−). It follows that the colimit colimr Ω

rfib(K(S ⊕ ΣrM) → K(S)) is
T (n)-acyclic. But by the equivalence of stableK-theory with topological Hochschild
homology [DGM13, Theorem 5.3.5.1], it follows that this colimit is ΩM , yielding a
contradiction.

We finish this section with an alternative proof of the implication (i) ⇒ (ii)
in Proposition 3.6 which was explained to us by Ishan Levy. We thank him for
suggesting to include this argument here. It is closely related to work of Neeman
[Nee21].

To introduce necessary notation, let us denote for an additive ∞-category C
by Stab(C) its stable envelope, i.e. the compact objects of Funadd(Cop, Sp). The
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image of the fully faithful Yoneda embedding y : C → Stab(C), using the connective
delooping of the mapping spaces given by additivity of C, generates Stab(C) as
an idempotent complete stable ∞-category. Moreover, τ≥0K(Stab(C)) identifies
with the group completion of C� [HS21, Corollary 8.1.3]. We may therefore define
Kadd

nc (C) = K(Stab(C)) as a nonconnective version of additive K-theory. Note that
Kadd(C) → Kadd

nc (C) is a T (i)-equivalence for all i ≥ 1.

Proposition 3.12. Let C be a stable ∞-category. Then there is a fibre sequence
K(D) → Kadd

nc (C) → K(C) where D is a stable ∞-category which admits a bounded
t-structure. In particular, the map Kadd(C) → K(C) is

(i) a T (i)-local equivalence for i ≥ 2, and
(ii) a T (1)-local equivalence if, for all objects X ∈ C, the ring spectrum

homC(X,X)[ 1p ] vanishes.

Proof. The ∞-category Funadd(Cop, Sp) admits the pointwise t-structure whose

connective part is equivalent to Funadd(Cop, Spc), which is also known as PΣ(C)—
the nonabelian derived ∞-category of C—and whose heart is the category
Funadd(Cop,Ab), the Freyd envelope also studied in [Nee01, Ch. 5]. When C is
stable, Ind(C) canonically identifies with Funex(Cop, Sp), and we obtain a localiza-
tion functor

Funadd(Cop, Sp) −→ Ind(C)
given by sending an additive functor to its first Goodwillie derivative. The kernel
of this localization is generated by compact objects of the form

(5) cofib ((cofib(y(A) → y(B)) → y(C)))

for each cofibre sequence A → B → C in C; we let D denote the compact objects
in this kernel, or equivalently the thick subcategory generated by the above ob-
jects (5). In particular, there is a fibre sequence K(D) → K(Stab(C)) → K(C). We
proceed by showing that D admits a bounded t-structure. To that end, [PP23, The-

orem 4.26] implies that the t-structure on Funadd(Cop, Sp) restricts to a t-structure
on Stab(C). Moreover, we claim that D consists precisely of the t-bounded objects
in Stab(C). To see that D consists of t-bounded objects, it suffices to observe that
the generators (5) belong to the heart. Conversely, given a t-bounded object of

Funadd(Cop, Sp), the usual expression of the first Goodwillie derivative shows that
its image in Ind(C) vanishes.

The theorem of the heart [Bar15] then implies that K≥0(D) = K≥0(D♥) admits
the structure of a K(Z)-module and thus has vanishing T (i)-localizations for i ≥ 2,

cf. [Mit90]. Thus, LT (i)K
add(C) ∼−→ LT (i)K(C) for i ≥ 2 (this fact is also proved as

Corollary 4.31).
Now suppose that for all objects X ∈ C we have homC(X,X)[ 1p ] = 0. Then

the same holds true for objects in D, whence LT (1)K(D) = LT (1)K≥0(D♥)) = 0

sinceK≥0(D♥) = K≥0(ModFp
(D♥)) by the dévissage theorem for abelian categories

[Qui73, Theorem 4] and since LT (1)K(Fp) = 0. Thus, we find that LT (1)K
add(C) ∼−→

LT (1)K(C). �

4. Consequences and examples

In this section we discuss some consequences and examples of our main result.
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4.1. Direct consequences. To begin with, we record some immediate corollaries
of the Purity Theorem.

Corollary 4.1. Let R be a ring spectrum which is T (n)⊕T (n−1)-acyclic for some
n ≥ 1. Then LT (n)K(R) = 0. �
Corollary 4.2. Let n ≥ 2. Then for any ring spectrum R, we have that the
canonical map LT (n)K(τ≥0R) → LT (n)K(R) is an equivalence. �

In the case of E∞-rings we furthermore find the following redshift phenomenon:

Corollary 4.3. Let A be an E∞-ring spectrum, B an A-algebra, and let n ≥ 0.
Then LT (n)A = 0 implies LT (n+i)K(B) = 0 for every integer i ≥ 1.

Proof. If A is T (n)-acyclic, then A, and hence also B, is T (n+j)-acyclic for all j ≥ 0
by [Hah22] and Lemma 2.3. Thus, the result follows from the Purity Theorem. �

Next, we include the following slight variants of Theorem A in the connective
case, and an analog for topological cyclic homology.

Corollary 4.4. Let A → B be a T (1) ⊕ · · · ⊕ T (n)-equivalence between connec-
tive ring spectra which induces a surjection on π0 whose kernel is nilpotent. Then
K(A) → K(B) is again a T (1)⊕ · · · ⊕ T (n)-equivalence.

Proof. Consider the pullback diagram

P B

A[ 1p ] B[ 1p ]

Since P → A[ 1p ] is a T (0)-localization, applying K-theory to the diagram yields

again a pullback, e.g. by [LT19, Main Theorem]. Furthermore, the map K(A[ 1p ]) →
K(B[ 1p ]) is a p-adic equivalence, as p-adic K-theory is truncating on S[ 1p ]-algebras

[LT19, Lemma 2.4] and hence also nilinvariant [LT19, Corollary 3.5]. Hence,
K(P ) → K(B) is a T (i)-equivalence for all i ≥ 1. Furthermore, A → P is
a T (0) ⊕ T (1) ⊕ · · · ⊕ T (n)-equivalence. Theorem 3.8 together with the already
established results thus implies that K(A) → K(B) is also a T (1) ⊕ · · · ⊕ T (n)-
equivalence. �
Corollary 4.5. Let A → B be a T (1) ⊕ · · · ⊕ T (n)-equivalence between connec-
tive ring spectra which induces a surjection on π0 whose kernel is nilpotent. Then
TC(A) → TC(B) is again a T (1)⊕ · · · ⊕ T (n)-equivalence.

Proof. By the Dundas–Goodwillie–McCarthy theorem [DGM13, Theorem VII.0.0.2],
there is a cartesian square

K(A) TC(A)

K(B) TC(B).

So we deduce the corollary from Corollary 4.4. �
Remark 4.6. If A → B is a T (0)-equivalence between connective ring spectra in-
ducing a surjection on π0 whose kernel is nilpotent, then it is also true that the
map K(A) → K(B) is a T (0)-equivalence. Thus, the same also holds true for
TC(A) → TC(B).
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Let us call a morphism f : R → S of E∞-ring spectra n-nice if R and S are
connective, f induces an isomorphism on π0 and after HQ ⊕ T (1) ⊕ · · · ⊕ T (n)-
localization, and π0(R) ∼= Z. We say that f is nice if it is n-nice for all n ≥ 0.

Corollary 4.7. If R → S is an n-nice morphism of E∞-ring spectra, K(R) →
K(S) is again n-nice.

Proof. By [BGT13, Theorem 9.53], we have Ki(R) = Ki(π0(R)) for i ≤ 0 and anal-
ogously for S. We deduce that K(R) and K(S) are connective with π0 isomorphic
to Z. By [LT19, Lemma 2.4], K(f) : K(R) → K(S) is a rational equivalence and
by Corollary 4.4 a T (1)⊕ · · · ⊕ T (n)-equivalence. �

Example 4.8. The preceding corollary is tailor-made for applications to i-fold
iterated algebraic K-theory K(i). For example, we will argue momentarily that the
canonical truncation mapK(Z/pkZ) → Z is nice, so thatK(i)(Z/pkZ) → K(i−1)(Z)
is anHQ⊕T (1)⊕. . . -equivalence for all i ≥ 1 by induction and Corollary 4.7. To see
that K(Z/pkZ) → Z is nice, we first observe that the map Kn(Z/p

kZ) → Kn(Fp)
is an isomorphism for n ≤ 0. This is true more generally for any quotient of a
discrete ring by a nilpotent ideal, as follows from an inductive argument using the
fundamental theorem of K-theory [Wei13, Ch. IV, Corollary 8.4.1] and the fact
that K0 is invariant under quotients by a nilpotent ideal [Wei13, Ch. II, Lemma
2.2]. Furthermore, we have K(Z/pkZ) ⊗ Q � K(Fp) ⊗ Q � Q, using e.g. [Wei81,
Corollary 5.4] and Quillen’s seminal calculation of the K-theory of finite fields
[Qui72]. Finally, both K(Z/pkZ) and Z are T (i)-acyclic for i ≥ 1; for the former
this follows from Corollary 4.3 and for the latter it follows e.g. from Lemma 2.2(ii).

4.2. Examples of vanishing results. We give various examples showing that
the Purity Theorem (or Corollary 4.1) implies vanishing statements for suitable
telescopic localizations of the K-theory of ring spectra; this recovers a number of
existing results in the literature.

First, we begin with the case of K(n), cf. also [AKS20] in the case n = 2, p = 2, 3.

Corollary 4.9. The spectrum K(K(n)) vanishes T (m)-locally for every m 	=
0, n, n+ 1. �

Remark 4.10. Using the dévissage result [AGH19, Proposition 4.4] (preceded by
[BL14] for connective K-theory) we can also understand the T (0)-localization of
K(K(m)). There is a fibre sequence

(6) K(Fp) −→ K(k(m)) −→ K(K(m)),

where k(m) is the connective cover of K(m) and the first map is induced by the
functor Perf(Fp) → Perf(k(m)) given by restriction of scalars along the canoni-
cal map k(m) → Fp. As K(−)[ 1p ] is truncating on S[ 1p ]-acyclic ring spectra, the

canonical map K(k(m)) → K(Fp) is a T (0)-equivalence. The composite

K(Fp) −→ K(k(m)) −→ K(Fp)

is induced by the functor Perf(Fp) → Perf(k(m)) → Perf(Fp) sending X to X⊗k(m)

Fp, which is equivalent to id⊕ Σ2pm−1 as there is a fibre sequence

Σ2pm−2k(m)
vm−→ k(m) −→ HFp.
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Upon applying any localizing invariant, this gives the zero map. From (6) we thus
obtain a fibre sequence

K(Fp)[
1
p ]

0−→ K(Fp)[
1
p ] −→ K(K(m))[ 1p ]

and hence an equivalence

K(K(m))[ 1p ] � K(Fp)[
1
p ]⊕ ΣK(Fp)[

1
p ].

Corollary 4.11. For any n ≥ 0, we find that LT (i)K(τ≤nS) = 0 for i ≥ 2. �
Ben Antieau has already shown previously that a certain quantitative version of

Proposition 3.1 implies LT (n)K(τ≤mS) = 0 at least for all n such that 4p− 4 ≥ n,
where p is the implicit prime in T (n), and conjectured that Corollary 4.11 is true.

Corollary 4.12. The map K(BP 〈n〉) → K(E(n)) is a T (i)-equivalence for i ≥
n+ 1. Furthermore, both vanish T (i)-locally for i ≥ n+ 2. �
Remark 4.13. The chromatic bound for K(BP 〈n〉) has been proved previously by
Angelini-Knoll–Salch in the case where BP 〈n〉 admits an E∞-structure, [AKS20].

The above result implies that the sequence

K(BP 〈n− 1〉) −→ K(BP 〈n〉) −→ K(E(n))

becomes a fibre sequence after T (i)-localization for i ≥ n+ 1. Whether or not this
sequence is a fibre sequence (after replacing the rings with their p-completions) was
asked by Rognes, the n = 1 case being a theorem of Blumberg–Mandell [BM08],
and the n = 0 case being a classical theorem of Quillen’s. It was then shown by
Antieau–Barthel–Gepner that for n ≥ 2, the above is not a fibre sequence after
rationalization, see [ABG18].

The following is an example that arose from a discussion with George Raptis.
Recall that for a connected space X its Waldhausen A-theory is given by A(X) =
K(S[ΩX]) = K(Σ∞

+ ΩX). In particular, A(∗) = K(S). In Corollary 4.14 we assume
that n ≥ 1; the case n = 0 is due to Waldhausen.

Corollary 4.14. Let W be a connected space. If Σ∞W is T (n)⊕T (n−1)-acyclic,
then the canonical maps A(∗) � A(ΣW ) are mutually inverse T (n)-equivalences.

For instance, W could be a connected type m-complex for m > n.

Proof. The James splitting (see [Ada72, Chapter 10, Theorem 5]) gives an equiva-
lence

Σ∞ΩΣW � Σ∞
∨
k≥1

W∧k,

which implies that Σ∞ΩΣW is T (n) ⊕ T (n − 1)-acyclic. The claim thus follows
from the Purity Theorem. �

Next, we study the chromatic localization of the K-theory of certain Thom
spectra y(m) considered in [MRS01, Section 3]; compare [AKQ19] for previous
work in this direction. To explain the setup, we recall that for a fixed prime p,
there is an essentially unique map of E2-spaces

Ω2Σ2S1 −→ BGL1(S
∧
p)

sending a generator of π1 to the element 1 − p ∈ π1(BGL1(S
∧
p))

∼= Z×
p . It is a

theorem of Mahowald (for p = 2) and Hopkins (for odd primes) that its Thom
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spectrum is HFp [Mah79]; see also [ACB19]. We note that Ω2Σ2S1 � Ω(ΩS3) and
that ΩS3 has a canonical cell structure with one cell in every even dimension; see
[Mil63, Corollary 17.4]. Let us denote by Fm(ΩS3) the 2m-skeleton of this cell
structure. One then obtains maps of E1-spaces

ΩFpm−1(ΩS
3) −→ Ω2S3 −→ BGL1(S

∧
p)

whose Thom spectra are denoted by y(m), leaving the prime p implicit as always.
One has y(0) = S∧

p and y(∞) = HFp. The above filtration of ΩS3 can also be

described as the James filtration on ΩΣS2, compare [MRS01, Section 3.1].

Lemma 4.15. The spectrum y(m) is Lp,f
m−1-acyclic.

Proof. We need to show that y(m) is T (n)-acyclic for n < m. For n = 0 this
follows because π0(y(m)) = Fp (see the paragraph preceding [MRS01, Equation
3.7] for odd p and [AKQ19, Lemma 2.7] for p = 2). We now discuss the case
where n > 0. Again, we distinguish the cases of even and odd primes. For p = 2
this follows from [AKQ19, Proposition 2.22] and Lemma 2.3. For odd primes, it
is explained in [MRS01] that for a finite type n spectrum Vn, the Adams spectral
sequence for the spectrum Vn ⊗ y(m) has a vanishing line of slope 1

2pm−2 , because

this is true for y(m). On the other hand, the element vn acting on Vn gives an
element of slope 1

|vn| for the Adams spectral sequence. Hence, if n < m, it follows

that the element vn is nilpotent on Vn ⊗ y(m), so that T (n) ⊗ y(m) vanishes as
claimed. �
Corollary 4.16. The map K(y(m)) → K(Fp) is an Lp,f

m−1-equivalence. In partic-
ular, K(y(m)) vanishes T (n)-locally for 0 < n < m.

Proof. The vanishing follows immediately from the Purity Theorem and Lemma 4.15.
The map is also a T (0)-equivalence, as T (0)-local K-theory is truncating on T (0)-
acyclic ring spectra by a result of Waldhausen (see also [LT19, Lemma 2.4]). �
Remark 4.17. This corollary implies the corresponding statement with the T (i)
replaced by the Morava K-theories K(i). For p = 2, the latter was previously
studied by Angelini-Knoll and Quigley [AKQ19, Theorem 1.3] using trace methods.

We obtain a similar result for the integral versions z(m) of y(m) which appear
in [AKQ19] when p = 2. Again, there are versions for odd primes, but we refrain
from spelling them out here.

Corollary 4.18. The map K(z(m)) → K(Z(2)) is a T (n)-equivalence for 0 < n <
m.

Proof. By [AKQ19, Proposition 2.22], z(m) is K(n)-acyclic for 1 ≤ n < m, and
hence also T (n)-acyclic for 1 ≤ n < m, again by Lemma 2.3. The corollary then
follows from Corollary 4.4. �
4.3. Examples of purity. We list some further examples of purity statements,
special cases of which have been studied in the literature before.

Corollary 4.19. Let A be a ko-algebra. Then the natural map K(A) → K(A[ 1β ])

is a T (n)-local equivalence for all n ≥ 2.

Proof. This follows immediately from the Purity Theorem, as the map ko →
ko[β−1] = KO is a T (n)-equivalence for all n ≥ 1, hence so is A → A[ 1β ] for

every ko-algebra. �
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Remark 4.20. By work of Blumberg–Mandell [BM08], there is a fibre sequence of
connective K-theory spectra

Kcn(Z) −→ Kcn(ku) −→ Kcn(KU)

and likewise for ko and KO in place of ku and KU . Together with Mitchell’s
result this implies Corollary 4.19 in the case where A is ko or ku. Note also that
for ko-algebras A, we have that K(A) is T (n)-acyclic for n ≥ 3; this follows from
Corollary 4.1, but was shown for A = ku and p ≥ 5 already in [AR02] and in general
in [CMNN23]. Thus Corollary 4.19 is a useful statement only at height 2.

We get a similar result for algebras over the connective spectrum of topological
modular forms tmf , see [DFHH14, Beh20] for introductions. Recall that tmf is
by definition the connective cover of an E∞-ring spectrum Tmf that arises as
the global sections of a sheaf Otop of E∞-ring spectra on the étale site of the
compactified moduli stack of elliptic curves Mell. The evaluation of Otop on the
uncompactified moduli stack Mell is the periodic spectrum TMF . Of Corollary
4.21, the first statement was already proven in [CMNN23].

Corollary 4.21. Let A be a tmf-algebra.

(i) The spectrum K(A) vanishes T (n)-locally for all n ≥ 4.
(ii) The map K(A) → K(A⊗tmf Tmf) is a T (n)-equivalence for all n ≥ 2.
(iii) The map K(A) → K(A⊗tmf TMF ) is a T (3)-equivalence.
(iv) At the prime 2, there is a T (3)-local equivalence K(tmf) � K(TMF ) �

K(E2)
hGL2(F3), where E2 denotes the Lubin–Tate spectrum for a super-

singular elliptic curve over F4. Replacing GL2(F3) by the group of auto-
morphisms over F3 of a supersingular elliptic curve over F9, the analogous
statement holds at the prime 3 as well.

Proof. By [Rav84, Theorem 2.1], the spectrum BP [v−1
n ] has the same Bousfield

class as K(0) ⊕ · · · ⊕ K(n) and is thus Ln-local. Thus, every p-local complex
oriented ring spectrum whose formal group law has height at most n is Ln-local.
Evaluated on any affine, Otop is even and hence complex orientable; moreover its
formal group is isomorphic to that of the corresponding generalized elliptic curve
and thus has height at most 2 at any prime. We see that Tmf(p) is, as a limit of
L2-local spectra, itself L2-local and thus T (n)-acyclic for n ≥ 3. As tmf → Tmf is
a T (n)-equivalence for all n ≥ 1 by Lemma 2.2, we can deduce moreover that tmf
is T (n)-acyclic for all n ≥ 3. Thus the first two statements follow from our main
theorem.

For the third statement, it suffices to show that Tmf → TMF is a T (n)-
equivalence for n = 2 (and hence all n ≥ 2). As taking global sections of quasi-
coherent Otop-modules preserves colimits by [MM15], we have T (2) ⊗ Tmf �
Γ(T (2) ⊗ Otop); hence it suffices to show that T (2) ⊗ Otop(SpecA) → T (2) ⊗
Otop(SpecA)[Δ−1] is an equivalence for every étale affine SpecA → Mell, where Δ
denotes the discriminant. As all generalized elliptic curves of height 2 are actually
smooth elliptic curves, inverting v2 (as we do in T (2)) indeed inverts Δ as well.

Note that K(n)-localization and T (n)-localization coincide on Ln-local spectra.
Indeed, if X is Ln-local, then the fibre of the map X → LK(n)X is Ln-local and
K(n)-acyclic, whence Ln−1-local and thus T (n)-acyclic. As LK(n)X is also T (n)-
local, it follows that LT (n)X � LK(n)X. Thus, tmf → TMF → LK(2)TMF
are T (2)-local equivalences and hence induce T (3)-equivalences in K-theory by our
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main theorem. The faithful GL2(F3)-Galois extension TMF(2) → TMF (3)(2) from
[MM15, Theorem 7.6] localizes to the Galois extension LK(2)TMF→LK(2)TMF (3)
� E2 (cf. [Beh20, Proposition 6.6.10], [HMS17, Proposition 3.6]). Thus, the map
K(LK(2)TMF ) → K(E2)

hGL2(F3) is an equivalence after an arbitrary telescopic
localization by [CMNN20, Theorems 5.6, Corollary B.4]. The statement for p = 3

is proven analogously using that here LK(2)TMF � EhG24
2 , where E2 is the Lubin–

Tate spectrum for a supersingular elliptic curve C over F9 and G24 is its group of
automorphisms over F3. �

Remark 4.22. In [BL14] Barwick and Lawson provide an analog of the Blumberg–
Mandell localization sequence (see Remark 4.20) for certain regular ring spectra.
In particular, there is a localization sequence of connective K-theory spectra

Kcn(Z) −→ Kcn(tmf) −→ Kcn(Tmf),

which implies the second part of the previous corollary for A = tmf and certain
other regular tmf -algebras. We also remark that in [AGH19] these localization se-
quences are extended to nonconnective K-theory spectra. However, for the present
application this is irrelevant as the difference vanishes after telescopic localization.

4.4. Consequences for K(1)-local K-theory. We now record the consequences
of the Purity Theorem at height 1 (or, equivalently, Theorem A). Recall also that
K(1) and T (1)-localization coincide.

Corollary 4.23. K(1)-local K-theory is truncating on K(1)-acyclic ring spectra.
In fact, for a K(1)-acyclic ring spectrum A, we have LK(1)K(A) = LK(1)K(A[ 1p ]).

Proof. Let A be a K(1)-acyclic, connective ring spectrum. By Theorem 3.8 we have
an equivalence LK(1)K(A) � LK(1)K(A[ 1p ]). The claim follows from this as p-adic

K-theory is truncating on S/p-acyclic ring spectra by a result of Waldhausen (see
also [LT19, Lemma 2.4]). �

In the case of HZ-algebras, the last assertion of Corollary 4.30 also appears in
[BCM20], proved by different methods. From [LT19, Theorems 3.3, A.2] we then
get the following. Note that discrete rings are K(1)-acyclic.

Corollary 4.24. K(1)-local K-theory of discrete rings is nilinvariant and satisfies
Milnor excision and cdh-descent.

We also get the following consequence.

Corollary 4.25. Let A be a connective and K(1)-acyclic ring spectrum. Then
the canonical map LK(1)K(A) → LK(1)K(A[x]) is an equivalence. In other words,
K(1)-localK-theory is homotopy invariant on connective, K(1)-acyclic ring spectra.

Here, for any ring spectrum A, the symbol A[x] denotes the ring spectrum A⊗
Σ∞

+ Z≥0.

Proof. We observe that A[x] = A⊗S[x] is also K(1)-acyclic and connective. Hence,
by Corollary 4.23 we may assume that A is discrete so that A[x] is the usual discrete
polynomial ring A⊗ZZ[x]. By the same corollary we may furthermore assume that
p is invertible in A. In this case, Weibel [Wei81] has shown that p is also invertible
on NK(A) = fib(K(A[x]) → K(A)). So the p-completion of NK(A) vanishes, and
hence LK(1)NK(A) = 0 as well. �
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Remark 4.26. For ring spectra, there are two canonical “affine lines:” The flat
affine line A[x] as above, and the smooth affine line A ⊗ S{x}, where S{x} is the
free E∞-ring on a degree 0 generator. Since the canonical map S{x} → S[x] is a π0

isomorphism, we also obtain homotopy invariance with respect to the smooth affine
line on connective, K(1)-acyclic ring spectra A: Both maps K(A) → K(A{x}) and
K(A{x}) → K(A[x]) are K(1)-local equivalences.

Remark 4.27. Recall that Weibel’s homotopy K-theory KH(A) of a discrete ring
A is defined as the geometric realization of the simplicial spectrum K(A[Δ•]) with

A[Δn] = A[x0, . . . , xn]/(x0 + · · ·+ xn − 1) ∼= A[x1, . . . , xn].

It follows from the above corollary that

LK(1)K(A) � LK(1)KH(A).

By results of Weibel and Cisinski homotopy K-theory satisfies Milnor excision
[Wei81] and cdh-descent [Cis13]. In this way we obtain another proof of Corol-
lary 4.24.

Remark 4.28. The analog of Corollary 4.23 for topological cyclic homology does not
hold: As THH(Z[ 1p ]) is a Z[ 1p ]-algebra, it vanishes p-adically. So TC(Z[ 1p ]) vanishes

p-adically, and a fortiori after T (1)-localization. However, LT (1) TC(Z) does not
vanish: For odd primes p, Bökstedt and Madsen [BM94] computed the connective
cover of TC(Z)∧p � TC(Zp)

∧
p to be equivalent to j ⊕ Σj ⊕ Σ3ku∧

p where j is the
connective cover of the K(1)-local sphere. In particular, the T (1)- or equivalently
K(1)-localization of TC(Z) is given by

(7) LK(1) TC(Z) � LK(1)S⊕ ΣLK(1)S⊕ Σ3KU∧
p 	= 0.

For p = 2, [Rog99b, Theorem 0.5] and [Rog99a, Formula (0.2)] give a filtration of
LK(1)TC(Z), whose associated graded essentially looks like the summands in (7).
Using that KU∧

p is rationally non-trivial in infinitely many degrees, while the other
two terms are rationally non-trivial only in finitely many degrees, one obtains that
LK(1)TC(Z) is non-trivial at p = 2 as well.

Remark 4.29. We point out that, although K(1)-local TC commutes with filtered
colimits of rings [CMM21, Theorem G], it does not commute with filtered colimits
of categories. In fact, one checks that (cf. also [BCM20, Proposition 2.15]) the
filtered colimit colim

k
ModZ/pk(Perf(Z)) is the∞-category of p-power torsion perfect

Z-modules and we thus obtain an exact sequence

colim
k

ModZ/(pk)(Perf(Z)) −→ Perf(Z) −→ Perf(Z[ 1p ]).

Assuming that LK(1) TC commutes with filtered colimits we find that LK(1)TC of
the fibre vanishes, as

LK(1) TC(ModZ/(pk)(Perf(Z)))

is a module over LK(1) TC(Z/(p
k)) which vanishes since LK(1)K(Z/pk) = 0 as

above; this is a contradiction.
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4.5. Consequences for T (n)-local K-theory for n ≥ 2. In this subsection, we
record some further structural consequences of the Purity Theorem at heights ≥ 2.
Some further structural features in this context are also explored in [CMNN23].

Corollary 4.30. Let n ≥ 2. Then for any ring spectrum A, we have a natural
equivalence LT (n)K(A) = LT (n)K(τ≥0A) = LT (n)TC(τ≥0A).

Proof. Indeed, this follows because τ≥0A → A induces an equivalence on LT (n)K(−)
by Theorem 3.8. Now we use the Dundas–Goodwillie–McCarthy theorem [DGM13]
combined with Mitchell’s theorem [Mit90] to obtain

LT (n)K(τ≥0A)
∼−→ LT (n)(TC(τ≥0A)),

hence the result. �

For a T (n)-acyclic ring spectrum (with n ≥ 2), we therefore obtain an equivalence

LT (n)K(LT (n−1)A) � LT (n) TC(τ≥0A).

This should be compared to the result obtained in [BCM20] that if A is a commu-
tative, p-adically complete ring, then

LT (1)K(A[ 1p ]) � LT (1)TC(A).

Note by contrast that no commutativity or completeness at (p, v1, . . . , vn−1) is
required in Corollary 4.30.

Next, we record a result describing the behavior of group-complete K-theory
versus Waldhausen K-theory; this is essentially a restatement of the above in cat-
egorical terms, and informally states that for T (i)-local phenomena with i ≥ 2, it
suffices simply to group-complete (rather than split all cofibre sequences) in the
definition of K-theory. Given an additive ∞-category A, we let Kadd(A) denote
the group-completion K-theory of A, which we regard as a connective spectrum.
For another proof of this result, cf. Proposition 3.12.

Corollary 4.31. Let C be a stable ∞-category, and let A ⊂ C be an additive
subcategory. Suppose A generates C as a thick subcategory. Then the natural map
Kadd(A) → K(C) induces an equivalence on T (i)-localization, for i ≥ 2.

Proof. By passage to filtered colimits, we can assume that A is generated under
coproducts by a single object X (and hence C is generated as a thick subcategory
by X). In particular, we have an equivalence τ≥1K

add(A) � τ≥1K(τ≥0EndC(X)),
while K(C) = K(EndC(X)). The result then follows from Corollary 4.30. �

Corollary 4.32. Let n ≥ 2. The construction A �→ LT (n)K(A), from ring spectra
to T (n)-local spectra, preserves sifted colimits. The same holds if we restrict to the
subcategory of T (n− 1)-local ring spectra.

Proof. We use here that the construction R �→ TC(R)/p, from connective ring
spectra to spectra, preserves sifted colimits, cf. [CMM21, Corollary 2.15]. We prove
the first claim that A �→ LT (n)K(A) preserves sifted colimits as A ranges over all
ring spectra. Let Ai, i ∈ I be a sifted diagram of ring spectra. Then τ≥0Ai, i ∈ I
yields a sifted diagram of connective ring spectra, and using Lemma 2.2 we find
that

LT (n)

(
colim
i∈I

TC(τ≥0Ai)
) ∼−→ LT (n)TC(colim

i∈I
τ≥0Ai).
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Using that colimi τ≥0Ai → τ≥0(colimi Ai) is a T (1) ⊕ · · · ⊕ T (n)-equivalence and
hence induces an equivalence on LT (n)K(−) thanks to Theorem 3.8, we conclude
the result from Corollary 4.30.

Finally, suppose Ai is a sifted diagram of T (n− 1)-local ring spectra. Then the
map colimiAi → LT (n−1)(colimAi) is a T (n− 1)⊕ T (n)-equivalence (as T (n− 1)-
local spectra are T (n)-acyclic), hence the last claim follows by what has already
been proved and the Purity Theorem. �

Finally, we record the T (n)-local (for n ≥ 2) analog of the Farrell–Jones con-
jecture; the following has been also observed by Marco Varisco for connective ring
spectra. We refer to the surveys [RV18,Lüc20] for an introduction to this conjecture
and its applications. This will rely on the following result about the assembly map in
p-adically completed topological cyclic homology, which follows by combining a re-
sult of Lück–Reich–Rognes–Varisco [LRRV17] and finiteness properties of TC from
[CMM21]. By contrast, the assembly map from (non-p-completed) p-typical TC
need not be an equivalence for the family of cyclic subgroups, cf. [LRRV17, Sec. 6].

Proposition 4.33. Let R be any connective ring spectrum, and let G be any group.
Let OC(G) be the subcategory of the orbit category of G spanned by G-sets of the
form G/H, with H ⊂ G cyclic. Then the assembly map

colim
G/H∈OC(G)

TC(R[H]) → TC(R[G])

is a p-adic equivalence.

Proof. By [LRRV17, Theorem 1.19], the assembly map for the family of cyclic
groups for THH is an equivalence. Since TC/p commutes with colimits as a functor
from connective cyclotomic spectra to spectra, [CMM21, Theorem 2.7], the result
follows. �

Corollary 4.34. Let R be any ring spectrum, and let G be any group, and let
OC(G) be as in Proposition 4.33. Then the assembly map

colim
G/H∈OC(G)

K(R[H]) → K(R[G])

is a T (n)-equivalence for n ≥ 2.

Proof. By Corollary 4.30, we may assume R is connective, and replace K by TC.
The result follows from Proposition 4.33. �
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226 (1994), 7–8, 57–143. K-theory (Strasbourg, 1992). MR1317117

[BM08] A. J. Blumberg and M. A. Mandell, The localization sequence for the algebraic
K-theory of topological K-theory, Acta Math. 200 (2008), no. 2, 155–179, DOI
10.1007/s11511-008-0025-4. MR2413133

[BMCSY23] S. Ben-Moshe, S. Carmeli, T. M Schlank, and L. Yanovski, Descent and Cyclotomic
Redshift for Chromatically Localized Algebraic K-theory, arXiv:2309.07123, 2023.

[BMS19] B. Bhatt, M. Morrow, and P. Scholze, Topological Hochschild homology and integral

p-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310, DOI
10.1007/s10240-019-00106-9. MR3949030

Licensed to Univ of Rochester. Prepared on Sun Mar  9 08:06:10 EDT 2025 for download from IP 128.151.13.83.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=3760300
https://mathscinet.ams.org/mathscinet-getitem?mr=3875978
https://mathscinet.ams.org/mathscinet-getitem?mr=445484
https://mathscinet.ams.org/mathscinet-getitem?mr=3935042
https://arxiv.org/abs/1908.09164
https://arxiv.org/abs/2003.03510
https://mathscinet.ams.org/mathscinet-getitem?mr=1947457
https://mathscinet.ams.org/mathscinet-getitem?mr=2928844
https://mathscinet.ams.org/mathscinet-getitem?mr=2609252
https://mathscinet.ams.org/mathscinet-getitem?mr=3427577
https://mathscinet.ams.org/mathscinet-getitem?mr=4110725
https://mathscinet.ams.org/mathscinet-getitem?mr=4197986
https://mathscinet.ams.org/mathscinet-getitem?mr=3070515
https://arxiv.org/abs/2310.17459
https://mathscinet.ams.org/mathscinet-getitem?mr=1202133
https://mathscinet.ams.org/mathscinet-getitem?mr=4242143
https://arxiv.org/abs/1402.6038
https://mathscinet.ams.org/mathscinet-getitem?mr=1317117
https://mathscinet.ams.org/mathscinet-getitem?mr=2413133
https://arxiv.org/abs/2309.07123
https://mathscinet.ams.org/mathscinet-getitem?mr=3949030


1038 M. LAND, A. MATHEW, L. MEIER, AND G. TAMME

[Bor74] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup.
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(4) (2023), arXiv:2011.08233.

[CSY22] S. Carmeli, T. M. Schlank, and L. Yanovski, Ambidexterity in chromatic homotopy
theory, Invent. Math. 228 (2022), no. 3, 1145–1254, DOI 10.1007/s00222-022-01099-
9. MR4419631

[DFHH14] C. L. Douglas, J. Francis, A. G. Henriques, and M. A. Hill (eds.), Topological modular
forms, Mathematical Surveys and Monographs, vol. 201, American Mathematical
Society, Providence, RI, 2014, DOI 10.1090/surv/201. MR3223024

[DGM13] B. I. Dundas, T. G. Goodwillie, and R. McCarthy, The local structure of algebraic
K-theory, Algebra and Applications, vol. 18, Springer-Verlag London, Ltd., London,
2013. MR3013261

[FH78] F. T. Farrell and W. C. Hsiang, On the rational homotopy groups of the diffeomor-
phism groups of discs, spheres and aspherical manifolds, Algebraic and geometric
topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Proc.
Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978, pp. 325–337.
MR520509

[GGN15] D. Gepner, M. Groth, and T. Nikolaus, Universality of multiplicative infinite
loop space machines, Algebr. Geom. Topol. 15 (2015), no. 6, 3107–3153, DOI
10.2140/agt.2015.15.3107. MR3450758

[Hah22] J. Hahn, On the Bousfield classes of H∞-ring spectra, arXiv:1612.04386, 2022.
[HM97] L. Hesselholt and I. Madsen, On the K-theory of finite algebras over Witt vectors of

perfect fields, Topology 36 (1997), no. 1, 29–101, DOI 10.1016/0040-9383(96)00003-1.
MR1410465

[HMS17] D. Heard, A. Mathew, and V. Stojanoska, Picard groups of higher real K-theory
spectra at height p − 1, Compos. Math. 153 (2017), no. 9, 1820–1854, DOI
10.1112/S0010437X17007242. MR3705278

[HN19] L. Hesselholt and T. Nikolaus, Topological cyclic homology, Handbook of homotopy
theory, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL,
[2020] c©2020, pp. 619–656. MR4197995

[HS98] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory. II, Ann. of
Math. (2) 148 (1998), no. 1, 1–49, DOI 10.2307/120991. MR1652975

[HS21] F. Hebestreit and W. Steimle, Stable moduli spaces of hermitian forms,
arXiv:2103.13911, 2021.

[HW22] J. Hahn and D. Wilson, Redshift and multiplication for truncated Brown-Peterson
spectra, Ann. of Math. (2) 196 (2022), no. 3, 1277–1351, DOI 10.4007/an-
nals.2022.196.3.6. MR4503327

[KST18] M. Kerz, F. Strunk, and G. Tamme, Algebraic K-theory and descent for blow-ups, In-
vent. Math. 211 (2018), no. 2, 523–577, DOI 10.1007/s00222-017-0752-2. MR3748313

Licensed to Univ of Rochester. Prepared on Sun Mar  9 08:06:10 EDT 2025 for download from IP 128.151.13.83.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=387496
https://mathscinet.ams.org/mathscinet-getitem?mr=1814075
https://mathscinet.ams.org/mathscinet-getitem?mr=4502597
https://arxiv.org/abs/2207.09929
https://mathscinet.ams.org/mathscinet-getitem?mr=3010804
https://mathscinet.ams.org/mathscinet-getitem?mr=4296353
https://mathscinet.ams.org/mathscinet-getitem?mr=4280864
https://mathscinet.ams.org/mathscinet-getitem?mr=4071324
https://arxiv.org/abs/2011.08233
https://mathscinet.ams.org/mathscinet-getitem?mr=4419631
https://mathscinet.ams.org/mathscinet-getitem?mr=3223024
https://mathscinet.ams.org/mathscinet-getitem?mr=3013261
https://mathscinet.ams.org/mathscinet-getitem?mr=520509
https://mathscinet.ams.org/mathscinet-getitem?mr=3450758
https://arxiv.org/abs/1612.04386
https://mathscinet.ams.org/mathscinet-getitem?mr=1410465
https://mathscinet.ams.org/mathscinet-getitem?mr=3705278
https://mathscinet.ams.org/mathscinet-getitem?mr=4197995
https://mathscinet.ams.org/mathscinet-getitem?mr=1652975
https://arxiv.org/abs/2103.13911
https://mathscinet.ams.org/mathscinet-getitem?mr=4503327
https://mathscinet.ams.org/mathscinet-getitem?mr=3748313


PURITY IN CHROMATICALLY LOCALIZED K-THEORY 1039

[Kuh04] N. J. Kuhn, Tate cohomology and periodic localization of polynomial functors, Invent.
Math. 157 (2004), no. 2, 345–370, DOI 10.1007/s00222-003-0354-z. MR2076926

[Kuh08] N. J. Kuhn, A guide to telescopic functors, Homology Homotopy Appl. 10 (2008),
no. 3, 291–319. MR2475626

[LRRV17] W. Lück, H. Reich, J. Rognes, and M. Varisco, Algebraic K-theory of group
rings and the cyclotomic trace map, Adv. Math. 304 (2017), 930–1020, DOI
10.1016/j.aim.2016.09.004. MR3558224

[LT19] M. Land and G. Tamme, On the K-theory of pullbacks, Ann. of Math. (2) 190 (2019),
no. 3, 877–930, DOI 10.4007/annals.2019.190.3.4. MR4024564

[LT23] M. Land and G. Tamme, On the K-theory of pushouts, arXiv:2304.12812, 2023.
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