
GOODWILLIE TOWERS AND CHROMATIC HOMOTOPY:
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Abstract. This paper is based on talks I gave in Nagoya and Kinosaki
in August of 2003. I survey, from my own perspective, Goodwillie's work
on towers associated to continuous functors between topological model
categories, and then include a discussion of applications to periodic ho-
motopy as in my work and the work of Arone{Mahowald.

1. Introduction

About two decades ago, Tom Goodwillie began formulating his calculus
of homotopy functors as a way to organize and understand arguments being
used by him and others in algebraic K{theory. Though it was clear early on
that his general theory o�ered a new approach to the concerns of classical
homotopy, and often shed light on older approaches, it is relatively recently
that its promise has been begun to be realized. This has been helped by the
recent publication of the last of Goodwillie's series [G1, G2, G3], and by the
support of many timely new results in homotopical algebra and localization
theory allowing his ideas to be applied more widely.
At the Workshop in Algebraic Topology held in Nagoya in August 2002,

I gave a series of three talks entitled `Goodwillie towers: key features and
examples', in which I reviewed the aspects of Goodwillie's work that I �nd
most compelling for homotopy theory. A �rst goal of this paper is to o�er a
written account of my talks. As in my talks, I focus on towers associated to
functors, i.e. the material of [G3]. As `added value' in this written version,
I include some fairly extensive comments about the general model category
requirements for running Goodwillie's arguments.
At the Conference on Algebraic Topology held in Kinosaki just previous

to the workshop, I discussed a result of mine [K5] that says that Goodwillie
towers of functors of spectra split after periodic localization. This is one of
a number of ways discovered so far in which Goodwillie calculus interacts
beautifully with homotopy as organized by the chromatic point of view;
another is the theorem of Greg Arone and Mark Mahowald [AM]. A second
goal is to survey these results as well, and point to directions for the future.
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The paper is organized as follows.
In x2, I describe the major properties of Goodwillie towers associated

to continuous functors from one topological model category to another. In
x3, I discuss model category prerequisites. The basic facts about cubical
diagrams and polynomial functors are reviewed in x4. The construction of
the Goodwillie tower of a functor is given in x5, and I sketch the main ideas
behind the proofs that towers have the properties described in x2.
In x6, I discuss some of my favorite examples: Arone's model for the

tower of the functor sending a space X to �1Map(K;Z) [A], the tower for
the functor sending a spectrum X to �1
1X, the tower of the identity
functor on the category of commutative augmented S{algebras, and tower
for the identity functor on the category of topological spaces as analyzed by
Brenda Johnson, Arone, Mahowald, and Bill Dwyer [J, AM, AD]. Besides
organizing these in a way that I hope readers will �nd helpful, I have also
included some remarks that haven't appeared elsewhere, e.g. I note (in
Example 6.3) that the bottom of the tower for �1
1X can be used to
prove the Kahn{Priddy Theorem, `up to one loop'.
The long x7 begins with a discussion of how Goodwillie towers interact

with Bous�eld localization. Included is a simple example (see Example 7.4)
that shows that the composite of homogeneous functors between spectra
need not again be homogeneous. In the remainder of the section, I survey
three striking results in which the Goodwillie towers discussed in x6 interact
with chromatic homotopy theory: my theorems on splitting localized tow-
ers [K5] and calculating the Morava K-theories of in�nite loopspaces [K4],
and Arone and Mahowald's work on calculating the unstable vn{periodic
homotopy groups of spheres [AM]. All of these relate to telescopic functors
�n from spaces to spectra constructed a while ago by Pete Bous�eld and
me [B1, K2, B3] using the Nilpotence and Periodicity Theorems [DHS, HS].
This suggests that Goodwillie calculus can be used to further explore these
curious functors. Included in this section, as an application of my work in
[K4], is an outline of a new way to possibly �nd a counterexample to the
Telescope Conjecture.
The Kinosaki conference was on the occasion of Professor Nishida's 60th

birthday, and I wish to both o�er him my hearty congratulations, and thank
him for his kind interest in my research over the years. Many thanks also
to Noriko Minami and the other conference organizers for their hospitality.

2. Properties of Goodwillie towers

The basic problem that Goodwillie calculus is designed to attack is as
follows. One has a homotopy functor

F : C ! D

between two categories in which one can do homotopy. One wishes to un-
derstand the homotopy type of F (X), perhaps for some particular X 2 C.
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Goodwillie's key idea is to use the functoriality as X varies, to construct
a canonical polynomial resolution of F (X) as a functor of X.
The �rst thing to specify is what is meant by categories in which one can

do homotopy theory. In Goodwillie's papers, these are T , the category of
pointed topological spaces, or S, an associated category of spectra (e.g. the
S{modules of [EKMM]), or variants of these, e.g. TY , the category of spaces
over and under a �xed space Y . But the arguments and constructions of
[G3] are written in a such a manner that they apply to situations in which
C and D are suitably nice based model categories: in x3, we will spell out
precisely what we mean.
Among all functors F : C ! D, some will be d{excisive (or polynomial of

degree at most d). This will be carefully explained in x4.2; we note that a 0{
excisive functor is one that is homotopically constant, a functor is 1{excisive
if it sends homotopy pushout squares to homotopy pullback squares, and a
(d� 1){excisive functor is also d{excisive.
Goodwillie's �rst theorem says that any F admits a canonical polynomial

resolution.

Theorem 2.1. [G3, Thm.1.8] Given a homotopy functor F : C ! D there
exists a natural tower of �brations under F (X),

...

��
P2F (X)

p2
��

P1F (X)

p1
��

F (X)
e0 //

e1
44jjjjjjjjjjjjjjjjjjj

e2

::tttttttttttttttttttttttt
P0F (X);

such that

(1) PdF is d{excisive, and

(2) ed : F ! PdF is the universal weak natural transformation to a d-
excisive functor.

Let us explain what we mean by property (2). By a weak natural transfor-

mation f : F ! G, we mean a pair of natural transformation F
g
�! H

h
 � G

such that H(X)
h
 � G(X) is a weak equivalence for all X. Note that a weak

natural transformation induces a well de�ned natural transformation be-
tween functors taking values in the associated homotopy category. Property
(2) means that, given any d{excisive functor G, and natural transformation
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f : F ! G, there exists a weak natural transformation g : PdF ! G such
that, in the homotopy category of D,

F (X)

f(X)
��

ed(X) // PdF (X)

g(X)yyttttttttt

G(X)

commutes for all X 2 C, and any two such g agree.
A very useful property of the Pd construction is the following.

Lemma 2.2. Given natural transformations F ! G! H, if

F (X)! G(X)! H(X)

is a �ber sequence for all X, then so is

PdF (X)! PdG(X)! PdH(X):

Let DdF : C ! D be de�ned by letting DdF (X) be the homotopy �ber of
PdF (X) ! Pd�1F (X). The lemma and theorem formally imply that DdF
is homogeneous of degree d: it is d{excisive, and Pd�1DdF (X) ' � for all X.
When D is T , Goodwillie discovered a remarkable fact: these �bers are

canonically in�nite loopspaces. For a general D, we let S(D) be the associ-
ated category of `D{spectra' (see x3), and Goodwillie's second theorem then
goes as follows.

Theorem 2.3. [G3, Thm.2.1] Let F : C ! D be homogeneous of degree d.
Then there is a naturally de�ned homogeneous degree d functor F st : C !
S(D), such that, for all X 2 C, there is a weak equivalence

F (X) ' 
1(F st(X)):

The category S(D) is an example of a stable model category. In a manner
similar to results in the algebra literature, Goodwillie relates homogenous
degree d functors landing in a stable model category to symmetric multilin-
ear ones. A functor L : Cd ! D is d{linear if it is homogeneous of degree
1 in each variable, and is symmetric if L is invariant under permutations of
the coordinates of Cd. Goodwillie's third theorem goes as follows.

Theorem 2.4. [G3, Thm.3.5] Let F : C ! D be a homogeneous functor of
degree d with D a stable model category. Then there is a naturally de�ned
symmetric d{linear functor LF : Cd ! D, and a weak natural equivalence

(LF (X; : : : ;X))h�d ' F (X):

If F : C ! D is a homotopy functor with C and D either T or S, let
CF (d) = L(DdF )

st(S; : : : ; S), a spectrum with �d{action. Goodwillie refers
to CF (d) as the d

th Taylor coeÆcient of F due the following corollary of the
last theorem.
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Corollary 2.5. In this situation, there is a weak natural transformation

(CF (d) ^X
^d)h�d ! (DdF )

st(X)

that is an equivalence if either X is a �nite complex, or F commutes with
directed homotopy colimits up to weak equivalence.

As will be illustrated in the examples, these equivariant spectra have often
been identi�ed.
The theorems above are the ones I wish to stress in these notes, but I

should say a little about convergence. In [G2], Goodwillie carefully proves
a generalized Blakers{Massey theorem, and uses it to study questions that
are equivalent to the convergence of these towers in the cases when C is T
or S. In particular, many functors can be shown to be `analytic', and an
analytic functor F admits a `radius of convergence' r(F ) with the property
that the tower for F (X) converges strongly for all r(F ){connected objects
X. The number r(F ) is often known, as will be illustrated in the examples.
A nice result from [G2] reads as follows.

Proposition 2.6. [G2, Prop.5.1] Let F ! G be a natural transformation
between analytic functors, and let r be the maximum of r(F ) and r(G).
If F (X) ! G(X) is an equivalence for all X that are equivalent to high
suspensions then it is an equivalence for all r{connected X.

3. Model category prerequisites

References for model categories include Quillen's orginal 1967 lecture
notes [Q], Dwyer and Spalinski's 1995 survey article [DS], and the more
recent books by Hovey and Hirschhorn [H1, Hi].

3.1. Nice model categories. We will assume that C and D are either
simplicial or topological based model categories. `Based' means that the
initial and �nal object are the same: we denote will this object by �.
As part of the structure of a based topological (or simplicial) model cat-

egory C, given K 2 T and X 2 C, one has new objects in C, X 
 K and
Map(K;X) satisfying standard properties. This implies that C supports
canonical homotopy limits and colimits: given a functor X : J ! C from
a small category J , hocolimJ X and holimJ X are de�ned as appropriate
coends and ends:

hocolim
J

X = X(j) 
j2J EJ (j)+; and

holim
J
X =

Z
j2J

Map(EJ (j)+;X(j))

With such canonical homotopy limits and colimits, C will support a sen-
sible theory of homotopy Cartesian and coCartesian cubes, as discussed in
[G2]: see x4.1 below. To know that certain explicit cubes in C are homotopy
coCartesian, one also needs that C be left proper, and it seems prudent to
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require both C and D to be proper: the pushout of a weak equivalence by a
co�bration is a weak equivalence, and dually for pullbacks.
D then needs a further axiom ensuring that the sequential homotopy

colimit of homotopy Cartesian cubes is again homotopy Cartesian: assuming
that D admits the (sequential) small object argument does the job: see [Sch,
x1.3].

Examples 3.1. The following categories satisfy our hypotheses:

� TY , the category of spaces over and under Y ,
� R�Mod, the category of R{modules, where R is an E1 ring spec-
trum, a.k.a. commutative S{algebra [EKMM],
� R�Alg, the category of augmented commutative R{algebras,
� simplicial versions of all of these, e.g. spectra as in [BF].

3.2. Spectra in model categories. Let D be a model category as above,
and let �X denote X 
 S1. Trying to force the suspension � : D ! D
to be `homotopy invertible' leads to a model category of spectra S(D) in
the `usual way': this has been studied carefully by Schwede [Sch] (following
[BF]), Hovey [H2], and Basterra{Mandell [BMa]. Roughly put, an object in
S(D) will consist of a sequence of objects X0;X1;X2; : : : in D, together with
maps �Xn ! Xn+1. The point of this construction is that the model cate-
gory structure S(D) has the additional property that it is stable: homotopy
co�bration sequences in S(D) agree with the homotopy �bration sequences.
The associated homotopy category will be triangulated.
As in the familiar case when D = T , there are adjoint functors

�1 : D ! S(D) and 
1 : S(D)! D:

If D is already stable these functors form a Quillen equivalence. For an
arbitrary D, this adjoint pair can take a surprising form, as the following
example illustrates.

Example 3.2. In [BMa], the authors show that the category S(R�Alg) is
Quillen equivalent to R�Mod so that �1 : R�Alg ! S(R�Alg) identi�es
with the Topological Andr�e{Quillen Homology functor1 TAQ : R �Alg !
R�Mod, and 
1 : S(R�Alg)! R�Alg identi�es with the functor sending
an R{moduleM to the trivial augmented R{algebra R_M . (Partial results
along these lines were also proved in [BMc, Sch].)

3.3. Functors between model categories. Suppose C and D are nice
topological model categories. There are couple of useful properties that a
functor

F : C ! D

might have.

1To be precise, by TAQ(B) we mean the Topological Andr�e{Quillen Homology of B
with coeÆcients in the B{bimodule R.



CALCULUS AND CHROMATIC HOMOTOPY 7

Firstly F will usually be continuous: for all X and Y in C, the function

F : MapC(X;Y )! MapD(F (X); F (Y ))

should be continuous.
If F is continuous, given X 2 C and K 2 T , there is a natural assembly

map

(3.1) F (X) 
K ! F (X 
K)

de�ned by means of various adjunctions. The existence of these assembly
maps implies that F will be a homotopy functor: a weak equivalence between
�brant co�brant objects in C is carried by F to a weak equivalence in D.
The second property that some functors F satisfy is that F commutes

with �ltered homotopy colimits, up to weak equivalence. A functor having
this property has sometimes also been termed `continuous', but Goodwillie
[G3] more cautiously uses the term �nitary and so will we.
One implication of being �nitary is that the assembly map (3.1) will be an

equivalence. Thus there are many interesting functors that are not �nitary,
as the next example shows.

Example 3.3. Let LE : S ! S be Bous�eld localization of spectra with
respect to a spectrum E. Then LE is �nitary exactly when the assembly
map

LE(S) ^X ! LE(X)

is a weak equivalence for all spectra X. In other words, LE is �nitary exactly
when it is smashing, a property that many interesting LE 's do not have.
Just to confuse the issue, we note that if LE is regarded as taking val-

ues in the topological model category LES, in which equivalences are E�{
isomorphisms and �brant objects are E�{local [EKMM, Chap.VIII], then
LE : S ! LES is �nitary.

Finally, lets say a word about maps between functors. If C is not small,
then it seems a bit daunting (set theoretically) to impose a model cate-
gory structure on the class of functors F : C ! D. As an adequate �x
for calculus purposes, we use the following terminology. Call a natural

transformation f : F ! G a weak equivalence, and write F
f
�!
�

G, if

f(X) : F (X) ! G(X) is a weak equivalence for all X in C. By a weak
natural transformation f : F ! G we mean a pair of natural tranformations

of the form F
g
 �
�

H
h
�! G or F

h
�! H

g
 �
�

G. We say that a diagram of

weak natural transformations commutes if, after evaluation on any object
X, the associated diagram commutes in the homotopy category of D. Fi-
nally, we say that a diagram of functors F ! G ! H a �ber sequence if
F (X)! G(X)! H(X) is a (homotopy) �ber sequence for all X.
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4. Cubical diagrams and polynomial functors

4.1. Cubical diagrams. We review some of the theory of cubical diagrams;
a reference is [G2, x1].
Let S be a �nite set. The power set of S, P(S) = fT � Sg , is a

partially ordered set via inclusion, and is thus a small category. Let P0(S) =
P(S)� f;g and let P1(S) = P(S) � fSg.

De�nitions 4.1. (a) A d{cube in C is a functor X : P(S)! C with jSj = d.
(b) X is Cartesian if the natural map

X (;)! holim
T2P0(S)

X (T )

is a weak equivalence.
(c) X is coCartesian if the natural map

hocolim
T2P1(S)

X (T )! X (S)

is a weak equivalence.
(d) X is strongly coCartesian if XjP(T ) : P(T ) ! C is coCartesian for all
T � S with jT j � 2.

Often S will be the concrete set d = f1; : : : ; dg.

Example 4.2. A 0-cube X (0) is Cartesian if and only if it is coCartesian
if and only if X (0) is acyclic (i.e. weakly equivalent to the initial object �).

Example 4.3. A 1-cube f : X (0) ! X (1) is Cartesian if and only if it is
coCartesian if and only if f is an equivalence.

Example 4.4. A 2-cube

X (0)

��

// X (1)

��
X (2) // X (12)

is Cartesian if it is a homotopy pullback square, and coCartesian if it is a
homotopy pushout square.

Example 4.5. Strongly coCartesian d-cubes are equivalent to ones con-
structed as follows. Given a family of co�brations f(t) : X(0) ! X(t) for
1 � t � d, let X : d ! C be de�ned by X (T ) = the pushout of ff(t) j t 2
Tg. (Note that X (T ) can be interpreted as the coproduct under X(0) of
X(t); t 2 T .)

Critical to Goodwillie's constructions, is a special case of this last example.

De�nition 4.6. If T is a �nite set, and X is an object in C, let X � T be

the homotopy co�ber of the folding map
a
T

X ! X.
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For T � d, the assignment T 7! X � T is easily seen to de�ne a strongly

coCartesian d-cube X : if X ! � factors as X
i
�! CX

p
�! �, with i a co�-

bration and p an acyclic �bration, then X agrees with the cube of the last
example with f(t) = i : X ! CX for all t.
In the special case when C = T , X � T is the (reduced) join of X and T :

the union of jT j copies of the cone CX glued together along their common
base X.

There is a very useful way to inductively identify Cartesian cubes. Note
that the �bers of the vertical maps in a Cartesian 2-cube as in Example 4.4
form a Cartesian 1-cube as in Example 4.3. This generalizes to higher di-
mensional cubes as we now explain.
Regard d as the obvious subset of d+ 1. Given an (d + 1)-cube X :

P(d+ 1)! C, we de�ne three associated d-cubes

Xtop;Xbottom; @X : P(d)! C

as follows. Let Xtop(T ) = X (T ) and Xtop(T ) = X (T [fn+1g). Then de�ne
@X (T ) by taking homotopy �bers of the evident natural transformation
between these:

@X (T ) = ho�bfXtop(T )! Xbottom(T )g:

Lemma 4.7. X is Cartesian if and only if @X is Cartesian.

Lemma 4.8. If Xtop and Xbottom are Cartesian, so is X .

Remark 4.9. Dual lemmas hold for coCartesian cubes. One application of
this is that if C is a stable model category, so that homotopy �bre sequences
are the same as homotopy co�ber sequences, then X is Cartesian if and only
if X is coCartesian.

4.2. Polynomial functors. Let C and D be topological or simplicial model
categories as in x3.1.

De�nition 4.10. F : C ! D is called d{excisive or said to be polynomial
of degree at most d if, whenever X is a strongly coCartesian (d+1)-cube in
C, F (X ) is a Cartesian cube in D.

Example 4.11. F has degree 0 if and only if F (X)! F (�) is an equivalence
for all X 2 C, i.e. F is homotopy constant.

Example 4.12. F : C ! D is 1{excisive means that F takes pushout
squares to pullback squares.
In the classical case C and D are spaces or spectra, this implies that the

functor sending X to ��(F (X)) satis�es the Mayer{Vietoris property.
If F is also �nitary, then Milnor's wedge axiom holds as well. Then there

are spectra C0 and C1 such that F (X) ' C0 _ (C1 ^ X) if D = S and
F (X) ' 
1(C0 _ (C1 ^X)) if D = T .
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Remark 4.13. Without the �nitary hypothesis, classifying 1{excisive func-
tors seems very hard. Examples of 1{excisive functors of X from spectra
to spectra include the localization functors LEX and functors of the form
MapS(C;X) where C 2 S is �xed.

The following proposition of Goodwillie constructs d{excisive functors out
of d{variable 1{excisive functors.

Proposition 4.14. [G2, Prop.3.4] If L : Cd ! D is 1{excisive in each of
the d{variables, then the functor sending X to L(X; : : : ;X) is d{excisive.

Corollary 4.15. In this situation, if L is symmetric, and D is a stable
model category, then, given any subgroup G of the dth symmetric group �n,
the functor sending X to L(X; : : : ;X)hG is d{excisive.

The various lemmas about identifying Cartesian cubes can be used to
prove the next two useful lemmas.

Lemma 4.16. If F is d{excisive, then F is c{excisive for all c � d.

Lemma 4.17. If F ! G ! H is a �ber sequence of functors, and G and
H are both d{excisive, then so is F .

5. Construction of Goodwillie towers and the proof of the

main properties

5.1. Construction of the tower and the proof of Theorem 2.1. If
one is to construct a d{excisive functor PdF , then PdF (X ) needs to be
Cartesian for for all strongly coCartesion (d+1){cubes X . The idea behind
the construction of PdF is to force this condition to hold for certain strongly
coCartesion (d+ 1){cubes X .
Fix an object X 2 C. As discussed above, for T � d+ 1, the assignment

T 7! X �T de�nes a strongly coCartesian d+1-cube X . For example, when
d+ 1 = 2, one gets the pushout square

X

��

// CX

��
CX // �X:

De�nition 5.1. Let TdF : C ! D be de�ned by

TdF (X) = holim
T2P0(d+1)

F (X � T ):

Note that there is an evident natural transformation td(F ) : F ! TdF ,
and that this is an equivalence if F is d{excisive.

De�nition 5.2. Let PdF : C ! D be de�ned by

PdF (X) = hocolimfF (X)
td(F )
���! TdF (X)

td(TdF )
�����! TdTdF (X)! : : : g:
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Example 5.3. T1F (X) is the homotopy pullback of

F (CX)

��
F (CX) // F (�X);

Suppose that F (�) ' �. Then F (CX) ' �, so that T1F (X) is equivalent to
the homotopy pullback of

�

��
� // F (�X);

which is 
F (�X). It follows that there is a natural weak equivalence

P1F (X) ' hocolim
n!1


nF (�nX):

Example 5.4. Specializing the last example to the case when F is the
identity functor Id : D ! D, we see that

P1(Id)(X) ' 
1�1X:

If D = T , topological spaces, we see that P1(Id)(X) = QX.
If D = R�Alg, we see that P1(Id)(B) ' R_TAQ(B) for an augmented

commutative R{algebra B.

The proof of Theorem 2.1 amounts to checking that the Pd construction
just de�ned has the two desired properties: PdF should always be d{excisive,
and F ! PdF should be universal. Checking the �rst of these is by far the
more subtle, and follows from the next lemma.

Lemma 5.5. [G3, Lemma 1.9] If F : C ! D is a homotopy functor, and X
is strongly coCartesian (d+1){cube in C, then there is a Cartesian (d+1){
cube Y in D, such that F (X )! TdF (X ) factors through Y.

The construction of Y is very devious. Y is (roughly) constructed to be
the homotopy limit of (d+1){cubes in D that are each seen to be Cartesian
for the following reason: they are constructed by applying F to (d + 1){
cubes in C formed by means of evident objectwise equivalences between two
d{cubes.
In contrast, proving that F ! PdF is appropriately universal is much

easier. Once one knows that PdF is d{excisive, universality amounts to
checking the following two things:

(a) If F is d{excisive, then ed(F ) : F ! PdF is a weak equivalence, and

(b) Pd(ed(F ))) : PdF ! PdPdF is a weak equivalence.
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These follow immediately from Td{versions of these statements:

(a') If F is d{excisive, then td(F ) : F ! TdF is a weak equivalence, and

(b') Pd(td(F ))) : PdF ! PdTdF is a weak equivalence.

As was noted above, the �rst of these is clear. The second admits a fairly
simple proof based on the commutativity of iterated homotopy inverse limits.
Similar reasoning veri�es the next lemma, which in turn implies Lemma 2.2,
which said that Pd preserves �ber sequences.

Lemma 5.6. Given natural transformations F ! G! H, if

F (X)! G(X)! H(X)

is a �ber sequence for all X, then so is

TdF (X)! TdG(X)! TdH(X):

5.2. Delooping homogeneous functors and Theorem 2.3. The most
surprising property of Goodwillie towers is stated in Theorem 2.3. This says
that, for d > 0, homogeneous d{excisive functors are in�nitely deloopable.
To show this, Goodwillie proves his beautiful key lemma, which says that
PdF (X)! Pd�1F (X) is always a principal �bration if F is reduced: F (�) '
�.

Lemma 5.7. [G3, Lemma 2.2] Let d > 0, and let F : C ! D be a reduced
functor. There exists a homogeneous degree d functor RdF : C ! D �tting
into a �ber sequence of functors

PdF ! Pd�1F ! RdF:

Iteration of the Rd construction leads to Theorem 2.3: if F is homogeneous
of degree d, then we can let F st(X) be the spectrum with rth space Rr

dF (X).
The proof of Lemma 5.7 is yet another clever manipulation of categories

related to cubes. As an indication of how this might work, we sketch how
one can construct a homotopy pullback square

TdF (X)

��

// KdF (X)

��
Td�1F (X) // QdF (X)

with KdF (X) ' �, in the case when d = 2.
One needs to look at how one passes from P0(2) to P0(3). In pictures,

P0(2) looks like

1
}}}

2 12;
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while P0(3) looks like

1
vvv

v

2 12

3
}}}

13
vvv

23 123:

Now we decompose the poset P0(3) as

(5.1) A\ B

��

// B

��
A // A[ B = P0(3);

where A is

3
���

13
www

23 123;

and B is

1
vvv

v

2 12

13
www

23 123;

so that A\ B is

13
vvv

23 123:

The decomposition of posets (5.1) induces a homotopy pullback diagram

holimT2P0(3) F (X � T )

��

// holimT2A F (X � T )

��
holimT2B F (X � T ) // holimT2A\B F (X � T ):

The top left corner is T3F (X), by de�nition. As P0(2) is co�nal in B,
the bottom left corner is equivalent to T2F (X). Finally A has initial object
f3g, so that the upper left corner is contractible:

holim
T2A

F (X � T ) ' F (X � f3g) = F (CX) ' �:

5.3. Cross e�ects and the proof of Theorem 2.4.

De�nition 5.8. Let F : C ! D be a functor. We de�ne crdF : Cd ! D,
the dth cross e�ect of F , to be the the functor of d variables given by

(crdF )(X1; : : : ;Xd) = ho�bfF (
_
i2d

Xi)! holim
T�P0(d)

F (
_

i2d�T

Xi)g:
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The d{cube sending T to
_

i2d�T

Xi is easily seen to be strongly coCarte-

sian; letting d = 2 for example, the square

X1 _X2

��

// X2

��
X1

// �

is weakly equivalent to the evidently coCartesian square

X1 _X2

��

// CX1 _X2

��
X1 _ CX2

// CX1 _CX2:

It follows that if F is (d � 1){excisive, then crdF (X1; : : : ;Xd) ' � for all
Xi. A similar argument [G3, Lemma 3.3] shows that if F is d{excisive, then
crdF is 1{excisive in each of its variables.
Another property of crdF : Cd ! D that is easy to see is that it is reduced:

crdF (X1; : : : ;Xd) ' � if Xi ' � for some i.
A permutation of d, � 2 �d, induces an evident isomorphism

�� : crdF (X1; : : : ;Xd)! crdF (X�(1); : : : ;X�(d));

satisfying (� Æ �)� = �� Æ ��: a functor of d variables with this structure is
called symmetric.

De�nition 5.9. Let LdF : Cd ! D be the functor obtained from crdF by
applying P1 to each variable. Thus we have

LdF (X1; : : : ;Xd) ' hocolim
ni!1


n1+���+ndcrdF (�
n1X1; : : : ;�

ndXd):

LdF will always be symmetric and d{linear, and if F is d{excisive, then
the natural map crdF ! LdF is an equivalence.
If G is a �nite group, let G�D denote the category of objects in D with

a G{action. Given Y 2 G� D, we let YhG and Y hG denote the associated
homotopy quotient and �xed point objects in D.

De�nition 5.10. Let �dF : C ! �d �D be de�ned by

�dF (X) = LdF (X; : : : ;X):

A more precise version of Theorem 2.4 is the following.

Theorem 5.11. Let F : C ! D be a homotopy functor, with D a stable
model category. Then there is a natural weak equivalence

�dF (X)h�d ' DdF (X):

If F is d{excisive then �dF (X) can be identi�ed with (crdF )(X; : : : ;X).
In this case, one gets a natural transformation

�d(X) : (�dF )(X)h�d ! F (X)
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de�ned to be the composite

(�dF )(X)h�d ! F (
d_
i=1

X)h�d ! F (X):

Here the second map is induced by the fold map
Wd
i=1X ! X. The theorem

is then proved by verifying that crd(�d) is an equivalence.
We indicate how Corollary 2.5 follows from Theorem 5.11. The assembly

map for F induces an assembly map

(�dF (X)
K^d)h�d ! �dF (X 
K)h�d ;

for X 2 C and K 2 T .
If C is T , D is S, and X = S, then this reads

(CF (d) ^K
^d)h�d ! �dF (K)h�d ;

where CF (d) = �dF (S). By construction, this map is the identity if K = S,
and it follows that it will be an equivalence for all �nite K, or all K under
the additional hypothesis that F is �nitary. A similar argument holds if both
C and D are S: here the assembly map can be constructed for all K 2 S.
When the domain category C is also stable, and D = S, there is an elegant

addendum to Theorem 5.11 essentially due to R.McCarthy [McC].
Given Y 2 G � S, there is a natural norm map N(Y ) : YhG ! Y hG

satisfying the property that N(Y ) is an equivalence if Y is a �nite free G{
CW spectrum. As in [K5], we let the Tate spectrum of Y , TG(Y ), be the
co�ber.

Proposition 5.12. [K5] Let F : C ! S be any homotopy functor, with C
stable. For all d � 1, there is a homotopy pullback diagram

PdF (X)

��

// (�dF (X))h�d

��
Pd�1F (X) // T�d(�dF (X)):

6. Examples

6.1. Suspension spectra of mapping spaces. Fix a �nite C.W. complex
K. Let MapT (K;X) be the space of based continuous maps from K to a
space X. Similarly, given a spectrum Y , let MapS(K;Y ) be the evident
function spectrum.
In [G2], Goodwillie proved that the functor from spaces to spectra sending

X to �1MapT (K;X) is analytic with radius of convergence equal to the
dimension of K.
In [A], Arone gave a very concrete model for the associated Goodwillie

tower fPK
� (X)g. The paper [AK] includes further details about Arone's

construction while building in extra structure.
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Let E be the category with objects the �nite sets d, d � 1, and with
morphisms the epic functions. Ed will denote the full subcategory with
objects c with c � d.
Given a based space X, let X^ : Eop ! T be the functor sending d to

X^d. Then Arone's model for PK
d : T ! S is given by

PK
d (X) = MapS

Ed(K^;�1X^);

the spectrum of natural transformations between the two contravariant func-
tors of Ed. The natural transformation

�1MapT (K;X)! PK
d (X)

is induced by sending f : K ! X to f^ : K^ ! X^ and then stablizing.
A by product of this construction is that there is a homotopy pullback

square of S{modules which has some of the same 
avor as Proposition 5.12:

PK
d (X)

��

// MapS
�d(K^d;�1X^d)

��
PK
d�1(X) // MapS

�d(Æd(K);�1X^d);

where Æd(K) � K^d denotes the fat diagonal.
Thus the dth �ber, DK

d (X), can be described as follows. Let K(d) denote

K^d=Æd(K). Then we have

DK
d (X) = MapS

�d(K(d);�1X^d)

' MapS(K
(d);�1X^d)h�d

' (D(K(d)) ^X^d)h�d :

Here D(K(d)) denotes the equivariant S{dual of K(d), and the equivalences
follow from the fact that K(d) is both �nite and �d{free away from the
basepoint. It follows that the dth Taylor coeÆcient of the functor sending
X to �1MapT (K;X) is D(K(d)).

Remark 6.1. In [K3], we observed that, when X is also a �nite complex, the
tower PK

� (X) also arises as by taking the S{dual of a natural �ltration on
the nonunital commutative S{algebra D(X)
K.

By Alexander duality, D(K(d)) can be identi�ed an appropriate equi-
variant desuspension of the suspension spectrum of a con�guration space.
Specializing to the case when K = Sn, this takes the following concrete
form. Let C(n; d) denote the space of d distinct little n{cubes in a big n{
cube [May]. Via a Thom{Pontryagin collapse, there is a very explicit duality
map of �d spaces [AK]

C(n; d)+ ^ S
n(d) ! Snd
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One proof that Arone's model works when K = Sn goes roughly as fol-
lows. Suppose X = �nY . One has the usual �ltered con�guration space
model Cn(Y ) for 


n�nY [May]. Thus one has maps

�1FdCn(Y )! �1
n�nY ! P Sn

d (Y ):

The nontriviality of the second map is proved by showing that the composite
is an equivalence. By induction on d, is suÆces to show that crd applied to
this composite is an equivalence, and the veri�cation of that leads back to
the above explicit duality map.
A bonus corollary of this proof is that one also establishes a rather nice

version of `Snaith splitting': the tower strongly splits when X = �nY .

Example 6.2. One application of this comes from applying mod p coho-
mology to the tower. One obtains a spectral sequence of di�erential graded
algebras fEs;t

r (Sn;X)g with

Ed;�
1 (Sn;X) = H�((C(n; d)+ ^ (�

�dX)^d)h�d ;Z=p))

and converging strongly to H�(
nX;Z=p) if X is n{connected. This E1
term is a known functor of H�(X;Z=p). The di�erentials have not been
fully explored, but seem to be partly determined by derived functors of
destablization of unstable modules over the Steenrod algebra, as applied to
the A{module ��nH�(X;Z=p).

6.2. Suspension spectra of in�nite loopspaces. The previous example
can be used to determine the tower fP S1

d g for the functor from spectra to
spectra sending a spectrum X to �1
1X.
Let Xn denote the nth space of the spectrum X. Then we have that


nXn ' 
1X for all n, and the natural map

hocolim
n!1

��n�1Xn ! X

is an equivalence. From this and the last example, one can deduce that the
tower converges for 0{connected spectra X and that

hocolim
n!1

��nP Sn

d (Xn) ' P S1

d (X):

As hocolim
n!1

C(n; d)+ is a model for E�d+, and this is weakly equivalent

to S0, it follows that the formula for the dth �ber is

DS1

d (X) ' X^d
h�d

;

and thus the dth Taylor coeÆcient of the functor sending a spectrum X to
�1
1X is the sphere spectrum S for all d > 0.
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Finally, Proposition 5.12 specializes to say that for each d > 0 there is a
pullback square

P S1

d (X)

��

// (X^d)h�d

��
P S1

d�1(X) // T�d(X
^d):

Example 6.3. The tower begins

P S1
2 (X)

p1

��
�1
1X

e2
88qqqqqqqqqqq e1 // X;

where e1 : �1
1X ! X is adjoint to the identity on 
1X. A formal
consequence is that


1p1 : 

1P S1

2 (X)! 
1X

admits a natural section.
The map p1 �ts into a natural co�bration sequence

P S1

2 (X)
p1
�! X ! �(X ^X)h�2 :

Specializing to the case whenX = S�1, this can be identi�ed [K5, Appendix]
with the co�bration sequence

��1RP10
t
�! S�1 ! RP1�1 ;

where t is one desuspension of the Kahn{Priddy transfer, and RP1k denotes
the Thom spectrum of k copies of the canonical line bundle over RP1 .
Letting QZ denote 
1�1Z, we conclude that


1tr : 
QRP1+ ! 
QS0

admits a section: a result `one loop' away from the full strength of the Kahn{
Priddy Theorem [KaP] at the prime 2. The odd prime version admits a
similar proof using that, localized at a prime p, P S1

d (S�1) ' � for 1 < d < p.

6.3. The identity functor for Alg. Let Alg be the category of commuta-
tive augmented S{algebras. This is a model category in which weak equiva-
lences and �brations are determined by forgetting down to S{modules. More
curious is that the coproduct of A and B is A ^B.

Let fP alg
d g denote the tower associated to the identity I : Alg ! Alg.

Given B 2 Alg, it is not too hard to deduce that the tower fP alg
d (B)g

will strongly converge to B if I(B) is 0{connected, where I(B) denotes the
`augmentation ideal': the homotopy �ber of the augmentation B ! S.

Let Dalg
d (B) be the �ber of P alg

d (B) ! P alg
d�1(B). As already discussed

in Example 5.4, Dalg
1 (B) can be identi�ed with TAQ(B), the Topological

Andr�e{Quillen Homology of B with coeÆcients in the B{bimodule S.
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The fact that coproducts in Alg correspond to smash products of S{
modules leads to a simple calculation of the dth cross e�ect of I:

crd(I)(B1; : : : ; Bd) ' I(B1) ^ : : : ^ I(Bd):

From this, one gets a formula for Dalg
d (B):

Theorem 6.4.

Dalg
d (B) ' TAQ(B)^dh�d :

A proof of this in the spirit of this paper appears in [K4]. See also [Min].
A nice corollary of this formula says the following.

Corollary 6.5. If A and B in Alg have 0{connected augmentation ideals,
then an algebra map f : A! B is an equivalence if TAQ(f) is.

The converse of this corollary - that TAQ(f) is an equivalence if f is -
is true even without connectivity hypotheses: see, e.g. [K3]. Without any
hypotheses implying convergence, one has that if TAQ(f) is an equivalence,

so is f̂ : Â ! B̂, where Â denotes the homotopy inverse limit of the tower
for A [K4].

Example 6.6. This tower overlaps in an interesting way with the one for
�1
1X discussed above, and the corollary leads to a simple proof of a
highly stuctured version of the classical stable splitting [Ka] of QZ, for a
connected space Z.
It is well known that �1(
1X)+ is an E1 ring spectrum. Otherwise put,

we can regard �1(
1X)+ as an object in Alg. It is not hard to see that
TAQ(�1(
1X)+) is equivalent to the connective cover of X, and there is
an equivalence

P S1

d (X) ' P alg
d (�1(
1X)+)

for connective spectra X.
Another object in Alg is P(X), the free commutative S{algebra generated

by X. As an S{module,

P(X) '
1_
d=0

X^d
h�d

;

and it is not hard to compute that TAQ(P(X)) ' X.
The stable splitting of QZ gets proved as follows. The inclusion

�(Z) : Z ! QZ

induces a natural map in Alg

s(Z) : P(�1Z)! �1(QZ)+:

The construction of smakes it quite easy to verify that TAQ(s(Z)) : �1Z !
�1Z is the identity. The above corollary then implies that s(Z) is an
equivalence in Alg, and thus in S, for connected spaces Z.
A more detailed discussion of this appears in [K4].
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6.4. The identity functor for T . Let fPdg denote the tower of the iden-
tity functor on T . Given a space Z, let Dd(Z) denote the �ber of Pd(Z)!
Pd�1(Z), and then let Dst

d (Z) 2 S be the in�nite delooping provided by
Theorem 2.3.
Goodwillie's estimates [G2] show that the tower fPd(Z)g will strongly con-

verge to Z when Z is connected. Thus applying ��, one gets a strongly con-
vergent 2nd quadrant spectral sequence converging to ��(Z), with E1

�d;� =

��(D
st
d (Z)).

Johnson [J], and Arone with collaborators Mahowald and Dwyer [AM,
AD], have identi�ed the spectra Dst

d (Z):

Dst
d (Z) ' (D(�Kd) ^ Z

^d)h�d ;

where Kd is the unreduced suspension of the classifying space of the poset of
nontrivial partitions of d, and D denotes the equivariant S{dual, as before.
Using this model, the discovery of Arone and Mahowald [AM] is that

when Z is an odd dimensional sphere, these spectra are very special spectra
that were known previously. To state the theorem, we need some notation.
Let p be a prime. Let m�k denote the direct sum of m copies of the

reduced real regular representation of Vk = (Z=p)k. Then GLk(Z=p) acts on
the Thom space (BVk)

m�k . Let ek 2 Z(p)[GLk(Z=p)] be any idempotent in
the group ring representing the Steinberg module, and then let L(k;m) be
the associated stable summand of (BVk)

m�k :

L(k;m) = ek(BVk)
m�k :

The spectra L(k; 0) and L(k; 1) agree with spectra called M(k) and L(k) in
the literature: see e.g. [MP], [K1, KuP].
Collecting results from [AM] and [AD, Thm.1.9, Cor.9.6], one has the

following theorem.

Theorem 6.7. Let m be an odd natural number.

(1) Dst
d (S

m) ' � if d is not a power of a prime.

(2) Let p be a prime. Dst
pk
(Sm) ' �m�kL(k;m), and thus has p{torsion

homotopy if k > 0.

(3) H�(L(k;m);Z=p) is free over the subalgebra A(k � 1) of the Steenrod
algebra. As a function of k, the connectivity of L(k;m) has a growth rate
like pk.

Thus the associated spectral sequences for computing the unstable ho-
motopy groups of odd spheres coverges exponentially quickly, and begins
from stable information about spectra of roughly the same complexity as
the suspension spectra of classifying spaces of elementary abelian p{groups.

Remark 6.8. When m = 1, one gets a spectral sequence converging to the
known graded group ��(S

1), with E1
�k;� = ��(L(k)). Comparison with my
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work on the Whitehead Conjecture [K1, KuP] suggests that E2 = E1. Greg
Arone and I certainly believe this, but a rigorous proof has yet to be nailed
down.

As discussed near the end of the next section, the properties listed in the
theorem have particularly beautiful consequences for computing the periodic
unstable homotopy groups of odd dimensional spheres.

7. Interactions with periodic homotopy

For topologists who study classical unstable and stable homotopy theory,
a major development of the past two decades has been the organization
of these subjects via the chromatic �ltration associated to the Morava K-
theories.
One of the most unexpected aspects of Goodwillie towers is that they

interact with the chromatic aspects of homotopy in striking ways. In this
section, I survey, in inverse order of when they were proved, three di�erent
theorems of this sort.

7.1. Goodwillie towers and homology isomorphisms. There are a
couple of useful general facts about how Bous�eld localization relates to
Goodwillie towers.
Let E� be a generalized homology theory. A map f : X ! Y of spaces

or spectra is called an E�{isomorphism if E�(f) is an isomorphism. A nat-
ural transformation f : F ! G between functors F;G : C ! S is an E�{
isomorphism if f(X) is for all X 2 C. Then we have

Proposition 7.1. [K6, Cor. 2.4] If F : C ! S is �nitary and f : X !
Y is an E�{isomorphism then so are DdF (f) : DdF (X) ! DdF (Y ) and
PdF (f) : DdF (X)! PdF (Y ) for all d.

Proposition 7.2. [K5, Lemma 6.1] If a natural transformation f : F ! G
between functors F;G : C ! S is an E�{isomorphism then so are Ddf :
DdF ! DdG and Pdf : PdF ! PdG for all d.

Both of these follow by observing that the various constructions de�ning
Pd and Dd preserve E�{isomorphisms.
The next example illustrates that the �nitary hypothesis in Proposi-

tion 7.1 is needed.

Example 7.3. Consider LHZ=p : S ! S, a homogeneous functor of degree
1. Then HZ=p1 is HQ�{acyclic (i.e. HZ=p

1! � is an HQ�{equivalence),
but LHZ=p(HZ=p

1) = �HZp is not.

For an application of Proposition 7.1 to the homology of mapping spaces,
see [K6]. Proposition 7.2 is crucially used in proofs of the two theorems
discussed in the next two subsections.
We end this subsection with some observations related to the phenomenon

illustrated in the last example.
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If F : C ! S is homogeneous of degree d, the functor LEF : C ! S will
always again be d{excisive, but need no longer be homogeneous.

Example 7.4. Let F : S ! S be de�ned by F (X) = (X ^ X)h�2 . The
composite functor LEF will be 2{excisive, but need no be longer homoge-
nous, even when restricted to �nite spectra. Indeed, a simple calculation
shows that

P1(LEF )(S) = hoco�bfLES ^ RP
1 ! LERP

1g:

This can easily be nonzero. For example, whenE is mod 2K{theory, one has
that LERP

1 = LES, as the transfer RP
1 ! S is an KZ=2�{isomorphism.

It follows that P1(LEF )(S) has nonzero rational homology.

As a �x for this problem, we have the next lemma, which follows from
Proposition 7.2.

Lemma 7.5. If F : C ! S is homogeneous of degree d, then Pd�1(LEF ) is
E�{acyclic. Otherwise said, Dd(LEF )! LEF is an E�{isomorphism.

7.2. Goodwillie towers and periodic localization. We will consider two
families of periodic homology theories.
Fixing a prime p, K(n)� is the n

th Morava K{theory.
To de�ne the second family, recall that a p{local �nite complex M is of

type n if M is K(m)�{acyclic for m < n, but is not K(n)�{acyclic. If M is
of type n, then M admits a vn{self map, a K(n)�{isomorphism

v : �dM !M:

We let T (n) denote the telescope of v. A consequence of the Nilpotence
and Periodicity Theorems of Devanitz, Hopkins, and J.Smith [DHS, HS,
R] is that the associated Bous�eld localization functor LT (n) : S ! S
is independent of the choice of both the complex and self map. Also, we
recall that T (n)�{acyclics areK(n)�{acyclic; thus the associated localization
functors are related by LK(n) ' LK(n)LT (n).
The main theorem of [K5] says that Goodwillie towers of functors from

spectra to spectra always split after applying LT (n).

Theorem 7.6. [K5, Thm.1.1] Let F : S ! S be any homotopy functor. For
all primes p, n � 1, and d � 1, the natural map

pd(X) : PdF (X)! Pd�1F (X)

admits a natural homotopy section after applying LT (n).

Corollary 7.7. Let F : S ! S be polynomial of degree less than d and
G : S ! S homogeneous of degree d. Then any natural transformation
f : F ! LT (n)G will be null.

The corollary follows formally from the theorem using Lemma 7.5: we
leave verifying this as an exercise for the reader. The theorem is proved by
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combining Proposition 5.12 and Proposition 7.2 with the following vanishing
theorem about Tate homology.

Theorem 7.8. [K5, Thm.1.5] For all �nite groups G, primes p, and n � 1,

LT (n)TG(LT (n)S) ' �:

In [K5], I manage to �rst reduce the proof of the theorem to the case
when G = �p. There are familiar `inverse limits of Thom spectra' models
for LT (n)T�p(LT (n)S). Using these, the equivalence LT (n)T�p(LT (n)S) ' �
can be shown to be equivalent to the case when X = S of the following
statement about the Goodwillie tower of �1
1X.

Theorem 7.9. [K5, Thm.3.7] holim
k

�kLT (n)P
S1
p (��kX)! LT (n)X admits

a homotopy section.

This theorem follows immediately from the existence of the natural section
�n(X) of LT (n)e1(X) : LT (n)�

1
1X ! LT (n)X to be discussed in the next
subsection.

Remark 7.10. A weaker version of Theorem 7.8 with K(n) replacing T (n)
appears in work by Greenlees, Hovey, and Sadofsky [GS, HSa], and certainly
inspired my thinking, if not my proof. Theorem 7.8 when G = Z=2 is
equivalent to the main theorem of [MS].

7.3. The periodic homology of in�nite loopspaces. Using the full
strength of the Periodicity Theorem, Bous�eld and I have constructed `tele-
scopic functors' as in the next theorem.

Theorem 7.11. [B1, K2, B3] For all p and n > 0, there exists a functor
�n : T ! S such that �n(


1X) ' LT (n)X. Furthermore �n(Z) is always
T (n){local.

Some further nice properties of �n will be discussed in the next subsection:
see Proposition 7.16. Here we note the following corollary.

Corollary 7.12. After applying LT (n), the natural transformation

e1(X) : �1
1X ! X

admits a section

�n(X) : LT (n)X ! LT (n)�
1
1X:

The section is de�ned by applying �n to the natural map

�(
1X) : 
1X ! Q
1X:

Remark 7.13. �n is unique up to `tower phantom' behavior in the following
sense: for all d, the composite

LT (n)X
�n(X)
����! LT (n)�

1
1X
LT (n)ed(X)
�������! LT (n)P

S1

d (X)

is the unique natural section of LT (n)P
S1

d (X)
LT (n)pd(X)
�������! LT (n)X. Here

uniqueness is a consequence of Corollary 7.7.
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In [K4], I use �n to prove a splitting result in a manner similar to Exam-
ple 6.6. The natural transformation

�n(X) : X ! LT (n)�
1
1X

induces a map of commutative augmented LT (n)S{algebras

sn(X) : LT (n)P(X)! LT (n)�
1(
1X)+:

As Example 6.6, sn(X) has been constructed so that it is easy to see that
TAQ(sn(X)) : LT (n)X ! LT (n)X is homotopic to the identity, and one
learns that sn(X) induces an equivalence of localized Goodwillie towers.
Because the towers have been localized with respect to a nonconnected ho-
mology theory, the convergence of localized towers is problematic. However,
one can easily deduce the �rst statement of the next theorem, and starting
from this, I was able to establish the rest.

Theorem 7.14. [K4] For all X 2 S,

sn(X)� : K(n)�(P(X))! K(n)�(

1X)

is monic, and �ts into a chain complex of commutative K(n)�{Hopf algebras

K(n)�(P(X))
sn���! K(n)�(


1X)!
n+1O
j=0

K(n)�(K(�j(X); j)):

This sequence of Hopf algebras is exact if X is T (m)�{acyclic for all 0 <
m < n, and only if X is K(m)�{acyclic for all 0 < m < n.

Note that the two acyclicity conditions on X are empty if n = 1. They
agree if n = 2, by the truth of the Telescope Conjecture when n = 1.
Recall that the Telescope Conjecture asserts that a K(n)�{acyclic spec-

trum will always be T (n)�{acyclic, and is believed to be not true for n � 2.
Peter May has remarked that maybe the theorem could be used to disprove
it. I end this subsection by describing one way this might go.
If Z is a connected space, let jn(Z) : LT (n)P(Z) ! LT (n)P(Z) be the

composite

LT (n)P(Z)
sn(�1Z)
������! LT (n)�

1QZ
LT (n)s(Z)

�1

��������! LT (n)P(Z):

Here we have written P(Z) for P(�1Z).
The theorem says that if Z is T (m)�{acyclic for all 0 < m < n, and only

if Z is K(m)�{acyclic for all 0 < m < n, there is a short exact sequence of
K(n)�{Hopf algebras

K(n)�(P(Z))
jn�
��! K(n)�(P(Z))!

n+1O
j=0

K(n)�(K(�Sj (Z); j)):

It appears that for some Z, a calculation of both K(n)�(P(Z)) and jn�
may be accessible. If one could �nd a K(n � 1)�{acyclic space2 Z, and

2If a space Z is K(n� 1)�{acyclic, then it is K(m)�{acyclic for all m < n by [B2].
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explicit calculation showed that the above sequence is not exact, it would
follow that Z would not be T (m)�{acyclic for some 0 < m < n. The �rst
example to check is when p = 2, n = 3, and Z = K(Z=2; 3): it is known
that this space is K(2)�{acyclic, but it is unknown whether or not it is
T (2)�{acyclic.

7.4. The periodic homotopy groups of odd dimensional spheres.
Let v : �dM !M be a K(n)�{isomorphism of a space M whose suspension
spectrum is a �nite compex of type n. If Z is a space, one can use v to
de�ne periodic homotopy groups by letting

v�1��(Z;M) = colim
r

[�rdM;Z]�:

It is clear that these behave well with respect to �bration sequences in the
Z variable. These can be similarly de�ned for spectra, and it is evident that
there is an isomorphism v�1��(


1X;M) = v�1��(X;M).
The direct limit appearing in the de�nition suggests that these functors

of spaces do not necessarily commute with holimits of towers. However
Arone and Mahowald note that the properties listed in Theorem 6.7 imply
that the tower for an odd dimensional sphere leads to a convergent spectral
sequence with only a �nite number of in�nite loop �bers for computing
periodic homotopy. More precisely, they show prove the following.

Theorem 7.15. Let m be odd. With (M;v) as above, the natural map

v�1��(S
m;M)! v�1��(PpnS

m;M)

is an isomorphism.

Bous�eld notes that periodic homotopy can be computed using the tele-
scopic functor �n (at least for the version of �n de�ned in [B3]).

Proposition 7.16. [B3, Thm.5.3(ii) and Cor.5.10(ii)] There are natural
isomorphisms

v�1��(Z;M) ' [M;�n(Z)]�:

Furthermore, given f : Y ! Z, v�1��(f ;M) is an isomorphism if and only
if �n(f) : �n(Y )! �n(Z) is a weak equivalence.

Assembling all of the various results, one deduces the following theorems.

Theorem 7.17. When m is odd, there is a spectral sequence converging to
v�1��(S

m;M) with

E1
�k;� =

(
[M;LT (n)L(k;m)]�+k�m for 0 � k � n

0 otherwise.

Theorem 7.18. Let m be odd. The spectrum �n(S
m) admits a �nite de-

creasing �ltration with �bers LT (n)�
m�kL(k;m) for k = 0; : : : ; n.
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Example 7.19. Using that L(0;m) = S0, L(1;m) = RP1=RPm�1 , and
some naturality properties of Goodwillie towers, one can quite easily deduce
that there is a weak equivalence

�1(S
2k+1) ' �2k+1LK(1)RP

2k :

One can de�ne periodic homotopy groups with integral coeÆcients. Ob-
serve that v�1��(Z;M) is really only dependent on the spectrum �1M . As
in [K2], one can construct a sequence under S of �nite spectra of type n,

C1 ! C2 ! : : :

so that the induced map C(n)! S is a K(n)�{isomorphism, where C(n) =
hocolim

r
Cr.

One de�nes v�1��(Z) by letting

v�1��(Z) = colim
r

v�1��(Z;D(Cr)):

The results above show that alternatively this can be computed as

v�1��(Z) = C(n)�(�n(Z)):

Various people have observed that C(n) is independent of choices (see

e.g. [Mil]): indeed it is the �ber of the �nite localization map S ! Lfn�1S.
Observations of Bous�eld [B3, Thm.3.3] can be interpreted as saying that
there are isomorphisms

��(M
f
nX) = eC(n)�(X) = C(n)�(LT (n)X);

where eC(n) is the co�ber of C(n + 1) ! C(n), and Mf
nX is the �ber of

LfnX ! Lfn�1X.
Thus we have our last theorem.

Theorem 7.20. When m is odd, there is a spectral sequence for computing
v�1��(S

m) with

E1
�k;� =

(eC(n)�+k�m(L(k;m)) for 0 � k � n

0 otherwise.
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