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Introdu
tionAn ultimate goal is to 
al
ulate the homotopy type of automorphism spa
es of
ompa
t manifolds M . A promising approa
h uses the parametrized surgerytheory introdu
ed by Hsiang and Sharpe in [HS76℄. Histori
ally, one studiedthe �ber of map from parametrized surgery to surgery using the involution on
on
ordan
e theory, see [HJ82b℄ and [Bur78℄. Two step 
omputations along theselines are, for example, found in [HS76℄, [HJ83℄, [HJ82a℄ and [FH78℄. However,the experts knew that one should try to 
ombine surgery theory and 
on
ordan
etheory to get dire
t 
omputations of parametrized surgery. Re
ent advan
es inhomotopy theory has made it possible for Weiss and Williams to de�ne this LA-theory, see [WW01℄. Still, LA-theory is not easily 
omputed, but it is related toalgebrai
 K-theory via a map 
alled Ξ, and algebrai
 K-theory 
an be studiedvia tra
e maps into TC or THH , see [Mad94℄.Surgery theory 
lassi�es manifolds within a given simple homotopy type.A basi
 ingredient in this theory is the L-groups, whose de�nition dependson the ring Z[π1M ] together with an involution, see [Wal99℄. In 
on
ordan
etheory, turning a 
on
ordan
e upside down gives an involution on the homo-topy groups of the stabilized 
on
ordan
e spa
e, C(M). Hat
her's spe
tral se-quen
e, see [Hat78℄ proposition 2.2, has in a stable range an E2-page given by
E2

pq = Hp(Z/2; πqC(M)), and 
onverges to give information relating surgery the-ory to automorphism spa
es at the level of homotopy groups. Weiss and Williamsstrengthen Hat
her's result to the level of spa
es in [WW88℄. In [Vog85℄, Vogellshows that the involution on 
on
ordan
e spa
es 
orresponds to his 
anoni
al in-volution on algebrai
 K-theory of spa
es. Also Steiner, [Ste81℄, and Hsiang andJahren,[HJ82b℄, [HJ℄, 
onsiders involutions on A-theory.The input for LA, K, TC and THH should be a �ring up to homotopy�.We 
hoose orthogonal ring spe
tra, as de�ned in [MMSS01℄, to be our modelfor su
h rings. Hen
e, the theories above need to be rede�ned for this setting.Waldhausen's work on algebrai
 K-theory tells us that S[ΩM ] is the 
orre
tring to 
onsider when relating to 
on
ordan
es. Geometry, as dis
ussed above,demands an involution on our ring, and Vogell shows that interesting involutions
ome from bundles ξ over M . However, it is not immediately 
lear that su
h ξgive involutions on the orthogonal ring spe
trum S[ΩM ].The 
ontribution of this thesis is to 
onstru
t for ea
h ve
tor bundle ξ an



orthogonal ring spe
trum R, weakly equivalent to S[ΩM ], together with an in-volution on R. On the homotopy groups π∗S[ΩM ] our involution 
orrespondsto parallel transportation in ξ, and reversing loops in M . The main result istheorem 4.3.26. The orthogonal ring spe
trum R with involution is intended asinput for the theories mentioned above. We take a �rst step in this dire
tion by
onsidering the de�nition and a few basi
 properties of TC(L) and THH(L) forarbitrary orthogonal ring spe
tra L (with involution). However, in the future theauthor hopes to show that LA(R) will yield information about the automorphismspa
e of M .Chapter 1 re
alls from the literature various simpli
ial te
hniques. Mu
h ofthis should be well known to the reader. The reason the author in
luded thismaterial is mainly to point out 
ertain viewpoints and to introdu
e notation.In order to get strong results in stable homotopy theory, one 
an prove theo-rems in a 
ategory of spe
tra with symmetri
 smash produ
t. We �nd orthogonalspe
tra parti
ularly 
onvenient for our purposes. In 
hapter 2 we give an expo-sition of the relevant theory and develop the te
hniques needed to work withinthis 
ategory.We study the equivariant homotopy theory of orthogonal spe
tra for two rea-sons; the de�nition of an operad involves a
tions of symmetri
 groups, and THH
omes with an S1-a
tion, or O(2)-a
tion in the involutive setting. Chapter 3 is anintrodu
tion to equivariant orthogonal spe
tra and provides the results ne
essaryfor our appli
ations.Chapter 4 proves the main theorem. An important ingredient is the 
on
ept ofoperads, and we introdu
e the operad H, whi
h en
odes multipli
ation togetherwith an anti-
ommutative involution. Moreover, we explain the notion of anoperad in orthogonal spe
tra. The main idea of the proof is to start out witha ve
tor bundle ξ over our 
ompa
t manifold M and then attempt to 
onstru
ta related involution on S[ΩM ]. Doing this involves many 
hoi
es, in fa
t thereare orthogonal spe
tra Dn(j) parameterizing this. Could the 
olle
tion Dn be anoperad where S[ΩM ] is its algebra by the parametrization? The answer is yes,and the formulas for the 
omposition operations of the operad are for
ed by thealgebra stru
ture. Furthermore, Dn is �up to homotopy� su�
iently equal to H.Using May's two-sided bar 
onstru
tion, we therefore 
an repla
e S[ΩM ] by aweakly equivalent H-algebra. This gives our orthogonal ring spe
trum R withinvolution. Unfortunately, the logi
 demands that we reverse this argument whenwriting out the proof.Chapter 5 ends this thesis. It 
ontains some theory regarding THH and TCof orthogonal ring spe
tra with involution.I am very grateful to my advisor Bjørn Jahren for many enlightening dis
us-sions, and for his 
onstru
tive feedba
k during my writing of the manus
ript.You have always been available, and you have a keen eye for the beauty in math-emati
s. Furthermore, I would like to thank Sverre Lunøe-Nielsen, ChristianS
hli
htkrull, Halvard Fausk, and John Rognes for helpful 
onversations. The



support from my wife, Tordis Fuskeland, has been very valuable to me. You have
arefully proofread the �nal manus
ript, but the errors that remain are mine.Together with our son, Andreas, you are the most important part of my life.
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Chapter 1Simpli
ial te
hniquesThe theory of simpli
ial sets and simpli
ial spa
es is 
lassi
al. Simpli
ial setswere �rst de�ned in [EZ50℄. The geometri
 realization was de�ned in [Mil57℄.Other referen
es to simpli
ial te
hniques are [May67℄, [GJ99℄ and [DH01℄. Forthe theory of simpli
ial spa
es see [May72℄, [Seg74℄ and [Mad94℄. This 
hapterwill re
all from the literature the simpli
ial te
hniques whi
h are relevant tothis thesis. One reason for in
luding this material is for 
ompleteness, but alsoimportant is the viewpoint and the notation.1.1 The 
ategory ∆ and its relativesDe�nition 1.1.1Let [n] be the ordered set {0 < 1 < . . . < n}. The 
ategory ∆ has one obje
t
[n] for ea
h non-negative integer n, and the morphisms are ordering preservingfun
tions φ : [m]→ [n].It is 
ustomary to let δi : [n− 1]→ [n] be the order preserving fun
tion thatmisses i, and σi : [n+ 1]→ [n] be the order preserving fun
tion that hits i twi
e.The δ's and σ's generate all morphisms in ∆.De�nition 1.1.2A simpli
ial set is a fun
tor X• : ∆op → Ens. A simpli
ial spa
e is a fun
tor X• :
∆op → Top. More generally, one 
an de�ne simpli
ial obje
ts in any 
ategory.Observe that simpli
ial sets 
an be 
onsidered as simpli
ial spa
es by givingea
h Xn the dis
rete topology. Hen
e, in most 
ases we 
an do our 
onstru
tionsfor simpli
ial spa
es, the 
orresponding results for simpli
ial sets follow impli
itly.Given a simpli
ial spa
e X•, the following notation and terminology is stan-dard: The spa
e Xn is 
alled the n-simpli
es of X•. δi : [n − 1] → [n] indu
es amap di : Xn → Xn−1 
alled the i'th fa
e map, and σi : [n + 1]→ [n] indu
es the
i'th degenera
y map, si : Xn → Xn+1. A simplex x in Xn is said to be degenerate1



2 CHAPTER 1. SIMPLICIAL TECHNIQUESif x = six
′ for some i and x′ ∈ Xn−1. We denote by sXn−1 the subspa
e of Xn
onsisting of the degenerate simpli
es.1.1.1 Geometri
 realization of simpli
ial spa
esSimpli
ial spa
es are 
ombinatorial models for topologi
al spa
es, and geometri
realization is the fun
tor whi
h turns a simpli
ial spa
e into the topologi
al spa
efor whi
h it is a model. The geometri
 realization, due to Milnor [Mil57℄, hasseveral good properties, it 
ommutes with produ
ts and it 
ommutes with all
olimits. See [May67℄ or [DH01℄. Furthermore, every point in the geometri
 real-ization is uniquely determined as the interior point of a non-degenerate simplex.We give a modern formulation of this result; giving a �ltration for the geometri
realization.Geometri
 realization of simpli
ial spa
es is de�ned using a fun
tor ∆ : ∆→

Top. We send [n] to the spa
e ∆n = {(t0, . . . , tn) ∈ Rn+1 | σiti = 1, ti ≥ 0}. Andwe 
all ∆n the topologi
al n-simplex. On morphisms the fun
tor is de�ned bysending δi : [n− 1]→ [n] to the map
δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1) ,and σi : [n+ 1]→ [n] to

σi(t0, . . . , tn+1) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1) .Now we de�ne the geometri
 realization of a simpli
ial spa
e X• as the 
oend
|X•| =

∫ [n]∈∆

Xn ×∆n .Coends are de�ned in se
tion IX.5 in [ML98℄. The spa
e |X•| is isomorphi
 to thequotient of∐Xn×∆n where we identify (x, φ(t)) with (φ∗x, t) for all morphisms
φ in ∆.Remark 1.1.3In order to have 
onvenient te
hni
al properties, one should form the geometri
realization in the 
ategory of 
ompa
tly generated spa
es (=weak Hausdor� k-spa
es), see [M
C69℄. This ensures, for example, that the produ
t theorem holds.There is also a presimpli
ial realization, de�ned using only the inje
tive mor-phisms in ∆. The inje
tive morphisms are those generated by the δ's. Let i∆denote this sub
ategory. We de�ne the presimpli
ial realization as the 
oend

‖X•‖ =

∫ [n]∈i∆

Xn ×∆n .This spa
e is the quotient of∐Xn×∆n where we identify (x, δi(t)) with (di(x), t)for all δi's.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 3Whereas the geometri
al realization, |X•|, has better formal properties, it isoften easier to prove results about the homotopy of the presimpli
ial realization,
‖X•‖. And we 
an 
ompare the two realizations via a natural map

‖X•‖ → |X•| .It is natural to ask when this is a weak homotopy equivalen
e. This question isanswered by Segal in [Seg74℄ and by May in [May72℄. We follow Segal and de�ne:De�nition 1.1.4A simpli
ial spa
e X• is good if for all n and i, the map si : Xn → Xn+1 is a
losed 
o�bration.We refer to our remark 2.1.8 or one of the arti
les [Ste67℄ or [Str66℄ for thede�nition of a 
losed 
o�bration. Observe that any simpli
ial set automati
allyis good, sin
e an inje
tive map between dis
rete spa
es is a 
losed 
o�bration.Now, Segal shows in his proposition A.1(iv) that:Proposition 1.1.5If X• is a good simpli
ial spa
e, then the natural map ‖X•‖ → |X•| is a weakequivalen
e.Let us now des
ribe the realizations more 
arefully. We have already men-tioned Milnor's result, that a point in |X•| is uniquely given as the interior pointof a non-degenerate simplex. There is a similar des
ription for the presimpli
ialrealization. We now give a modern formulation of these statements:Constru
tion 1.1.6First we 
onsider the 
ase of the presimpli
ial realization. Re
all that ‖X•‖ is thequotient spa
e formed from ∐
Xn ×∆n by identifying (x, δi(t)) with (dix, t) forall morphisms di. We de�ne a �ltration by letting the q'th spa
e, Fq‖X•‖, q ≥ 0,be the image of ∐n≤q Xn ×∆n in ‖X•‖. Noti
e that Fq‖X•‖ is the pushout of

Xq ×∆q ← Xq × ∂∆
q → Fq−1‖X•‖ .Now observe that

colimFq‖X•‖ is equal to ‖X•‖, andea
h Xq × ∂∆q → Xq × ∆q is a 
losed 
o�bration. It follows that also
Fq−1‖X•‖ → Fq‖X•‖ is a 
losed 
o�bration.The last observation explains why the presimpli
ial realization behaves so wellhomotopi
ally; it is easy to give indu
tive arguments using the pushout diagramrelating Fq−1‖X•‖ to Fq‖X•‖.



4 CHAPTER 1. SIMPLICIAL TECHNIQUESConstru
tion 1.1.7Next 
onsider the geometri
 realization. Re
all that |X•| is the quotient of∐Xn×
∆n where we identify (x, φ(t)) with (φ∗x, t) for all morphisms φ in ∆. We de�ne
Fq|X•|, q ≥ 0, to be the image of ∐n≤q Xn × ∆n. Re
all that the degeneratesimpli
es, sXq−1, are the points in Xq whi
h are in the image of some map
si : Xq−1 → Xq. Noti
e that the following diagram is pushout:

Xq × ∂∆q ∪ sXq−1 ×∆q −−−→ Fq−1|X•|

j

y
y

Xq ×∆q −−−→ Fq|X•|

.Here the map j 
omes from the square
sXq−1 × ∂∆q −−−→ sXq−1 ×∆q

y
y

Xq × ∂∆q −−−→ Xq ×∆q

.By Lillig's union theorem, see [Lil73℄, we have that j is a 
losed 
o�brationwhenever sXq−1 ⊂ Xq is a 
losed 
o�bration. Now observe that
colimFq|X•| is equal to |X•|, andif ea
h sXq−1 ⊂ Xq is a 
losed 
o�bration, then Xq × ∂∆q ∪ sXq−1 ×∆q →
Xq ×∆q and Fq−1|X•| → Fq|X•| are 
losed 
o�brations.The last observation explains why good simpli
ial spa
es behave well with respe
tto homotopy.These �ltrations are extremely useful when proving results about realizations.We illustrate this by proving a few well known fa
ts:Proposition 1.1.8Let f• : X• → Y• be a map of simpli
ial spa
es su
h that ea
h fq is a weakhomotopy equivalen
e. Then the indu
ed map

‖f•‖ : ‖X•‖ → ‖Y•‖also is a weak homotopy equivalen
e.Proof: We use the �ltration from 
onstru
tion 1.1.6, and prove indu
tively that
Fq‖X•‖ → Fq‖Y•‖ is a weak homotopy equivalen
e. It will follow that ‖f‖ is aweak homotopy equivalen
e.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 5
F0‖X•‖ = X0 → Y0 = F0‖Y•‖ is a weak homotopy equivalen
e by assumption.Now 
onsider the indu
tive step. We have the diagram

Xq ×∆q j
←−−− Xq × ∂∆q −−−→ Fq−1‖X•‖

fq×id

y fq×id

y
y

Yq ×∆q j′

←−−− Yq × ∂∆
q −−−→ Fq−1‖Y•‖

.Here j and j′ are 
losed 
o�brations, while all verti
al maps are weak homotopyequivalen
es. By proposition A.1.4, the map of the row-wise pushouts,
Fq‖X•‖ → Fq‖Y•‖also is a weak homotopy equivalen
e. This �nishes the proof. �A straight forward 
orollary of this proposition together with proposition 1.1.5is:Corollary 1.1.9If f• : X• → Y• is a map between good simpli
ial spa
es and ea
h fq is a weakhomotopy equivalen
e, then
|f•| : |X•| → |Y•|also is a weak homotopy equivalen
e.Let us also prove the produ
t theorem. Given two simpli
ial spa
es, X• and

Y•, we de�ne their produ
t X• × Y• to be the simpli
ial spa
e with n-simpli
es
Xn × Yn. We have a natural map η : |X• × Y•| → |X•| × |Y•| de�ned using thenatural proje
tions from X• × Y• into X• and Y•. The produ
t theorem statesthat η is a homeomorphism. It is hard to �nd a proof in the literature, whi
his of the generality suggested in remark 1.1.3. This is the reason for in
luding aproof here:Proposition 1.1.10Sin
e the geometri
 realization is formed in the 
ategory of 
ompa
tly generatedspa
es, the natural map

η : |X• × Y•| → |X•| × |Y•|is a homeomorphism.Proof: It is well known that η is a 
ontinuous bije
tion, see theorem 2 in [Mil57℄or theorem 11.5 in [May72℄. The hard part is to 
he
k that η−1 is 
ontinuous.May proves this when �spa
es� is the 
ategory of 
ompa
tly generated Hausdor�



6 CHAPTER 1. SIMPLICIAL TECHNIQUESspa
es, although his proof for 
ontinuity of η−1 is not parti
ularly 
lear. The au-thor hopes that the argument below will be more understandable, but in essen
ethe proofs are the same.We use the �ltration of the geometri
al realization given in 
onstru
tion 1.1.7.The produ
t |X•| × |Y•| inherits a �ltration given by
Fq(|X•| × |Y•|) =

⋃

m+n=q

Fm|X•| × Fn|Y•| .And by the 
onstru
tions one 
an see that η restri
ts to a 
ontinuous bije
tion
Fq|X• × Y•| ∼= Fq(|X•| × |Y•|).A 
ontinuous bije
tion η between 
ompa
tly generated spa
es is a homeo-morphism, if η−1(K) is 
ompa
t whenever K is 
ompa
t. This follows from thede�nition of 
ompa
tly generated by lemma 2.1 in [M
C69℄.We will now try to apply lemma 2.8 in [M
C69℄. Suppose that K ⊂ |X•|×|Y•|is a 
ompa
t subset. Then K is 
ontained in Fq(|X•| × |Y•|) for some q. q isnow �xed. Below we will spe
ify Zα's su
h that for all α we have 
ommutativediagrams

∐
p≤q Xp × Yp ×∆p ←−−− Zα ⊂

∐
n,mXn ×∆n × Ym ×∆m

y
yπ

Fq|X• × Y•|
ηq

−−−→ |X•| × |Y•|

.Here the verti
al maps are surje
tive and ηq is inje
tive. Furthermore, the targetof the map π has the quotient topology. The Zα's depend on the standardtriangulation of ∆n × ∆m. For given m and n let iα : ∆n+m → ∆n × ∆mbe the in
lusion of a maximal topologi
al simplex in this triangulation. We set
Zα = Xn×Ym×∆n+m, in
luded in∐n,mXn×∆n×Ym×∆m via iα. Moreover, viathe appropriate degenera
y maps, there are maps Zα → Xp×Yp×∆p, p = n+m,su
h that the diagram above 
ommutes. These maps are expli
itly 
onstru
tedin May's proof.Now observe that the 
olle
tion of Zα's with n + m ≤ q 
overs the image of
Fq|X•× Y•|. This 
olle
tion is �nite. Thus all 
onditions of M
Cord's lemma 2.8are satis�ed. This implies that ηq is an embedding, and 
onsequently we havethat η−1(K) = η−1

q (K) is 
ompa
t. And we are done. �1.1.2 Crossed simpli
ial 
ategoriesTe
hniques involving simpli
ial sets or simpli
ial spa
es are extremely useful whenworking with topologi
al spa
es. However, if we want to 
onsider involutions, S1-or O(2)-a
tions on our spa
es, it is handy to repla
e ∆ by other 
ategories; ∆T,
∆C and ∆D. We will re
all the notion of a 
rossed simpli
ial group from [FL91℄.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 7The 
ategories mentioned above are examples of su
h, they will be de�ned belowand we will introdu
e notation for their morphisms.De�nition 1.1.11A sequen
e of groups {Gn}, n ≥ 0, is a 
rossed simpli
ial group if it is equippedwith the following stru
ture. There is a small 
ategory ∆G, whi
h is part of thestru
ture, su
h thatthe obje
ts of ∆G are [n], n ≥ 0,
∆G 
ontains ∆ as a sub
ategory,the automorphisms of [n] in ∆G is the opposite group of Gn, andany morphism in ∆G([m], [n]) 
an be uniquely written as a 
omposite φ◦g,where φ ∈∆([m], [n]) and g ∈ Gop

m .Remark 1.1.12The last axiom implies that for any g ∈ Gn and φ ∈∆([m], [n]) there exist unique
φ∗(g) ∈ Gm and g∗(φ) ∈∆([m], [n]) su
h that

g ◦ φ = g∗(φ) ◦ φ∗(g) .The fun
tor that sends [n] to Gn and φ to φ∗ : Gn → Gm gives G• the stru
tureof a simpli
ial set.Unlike [FL91℄, our fo
us will not be these simpli
ial sets, but rather the 
at-egories ∆G and their analogue of simpli
ial sets and spa
es, i.e. fun
tors from
∆Gop into sets and spa
es. We will therefore refer to ∆G as a 
rossed simpli
ial
ategory.Here are the 
rossed simpli
ial 
ategories relevant for this thesis, they aretaken from the examples 2, 4, 5 and 7 in [FL91℄:De�nition 1.1.13De�ne ∆T to be the 
rossed simpli
ial 
ategory with the automorphism groupof [n] 
y
li
 of order 2. Let ρn be the generator of the automorphism group andput ρnδi = δn−iρn−1 and ρnσi = σn−iρn+1.De�nition 1.1.14Let ∆C be the 
rossed simpli
ial 
ategory where the automorphism group of [n]is 
y
li
 of order (n+ 1). We name the preferred generator τn, and introdu
e therelations:

τnδ0 = δn and τnδi = δi−1τn−1, for 1 ≤ i ≤ n, and
τnσ0 = σnτ

2
n+1 and τnσi = σi−1τn+1, for 1 ≤ i ≤ n.



8 CHAPTER 1. SIMPLICIAL TECHNIQUESDe�nition 1.1.15Let ∆D be 
rossed simpli
ial 
ategory where the automorphism group of [n] isthe dihedral group of order 2(n + 1). We name the preferred generators ρn and
τn, where ρ2

n = τn+1
n = id and ρnτn = τ−1

n ρn, and introdu
e the relations:
ρnδi = δn−iρn−1,

ρnσi = σn−iρn+1,

τnδ0 = δn and τnδi = δi−1τn−1, for 1 ≤ i ≤ n, and
τnσ0 = σnτ

2
n+1 and τnσi = σi−1τn+1, for 1 ≤ i ≤ n.De�nition 1.1.16Let ∆Cr, r ≥ 1, be the 
rossed simpli
ial 
ategory where the automorphismgroup of [n] is 
y
li
 of order r(n + 1). We name the preferred generator τn,where τ r(n+1)

n = id , and introdu
e the same relations as in de�nition 1.1.14.De�nition 1.1.17Let ∆Dr, r ≥ 1, be 
rossed simpli
ial 
ategory where the automorphism groupof [n] is the dihedral group of order 2r(n+ 1). We name the preferred generators
ρn and τn, where ρ2

n = τ
r(n+1)
n = id and ρnτn = τ−1

n ρn, and introdu
e the samerelations as in de�nition 1.1.15.We now give names to these 
rossed simpli
ial 
ategories, and 
all ∆T, ∆C,
∆D, ∆Cr and ∆Dr the involutive simpli
ial 
ategory, the 
y
li
 
ategory, thedihedral 
ategory, the r-
y
li
 
ategory and the r-dihedral 
ategory respe
tively.Noti
e that ∆C1 = ∆C and ∆D1 = ∆D. We see that ∆Cr is a sub
ategory of
∆Dr, and that ∆T is a sub
ategory of ∆Dr, for any r ≥ 1.Our reason for introdu
ing 
rossed simpli
ial 
ategories is to study G•-obje
tsin some 
ategory C :De�nition 1.1.18Let ∆G be a 
rossed simpli
ial 
ategory and C any 
ategory. A G•-obje
t in C isa fun
tor ∆Gop → C . A G•-map between G•-obje
ts is a natural transformationof fun
tors.If ∆G is one of the 
rossed simpli
ial 
ategories above and C is Top, the
ategory of (
ompa
tly generated) spa
es, then we 
all G•-obje
ts for involutivesimpli
ial spa
es, 
y
li
 spa
es, dihedral spa
es, r-
y
li
 spa
es and r-dihedralspa
es a

ordingly, and similarly we repla
e the word �spa
es� by �sets� when
C = Ens , the 
ategory of sets.Given an r-dihedral spa
e X• we have the following notation: The map in-du
ed by δi is denoted by di : Xn → Xn−1 and 
alled the i'th fa
e map. The mapindu
ed by σi is denoted si : Xn → Xn+1 and 
alled the i'th degenera
y map.The map indu
ed by ρn is denoted by rn : Xn → Xn and 
alled the involutiveoperator. And the map indu
ed by τn is denoted by tn : Xn → Xn and 
alled the
y
li
 operator.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 9For an r-
y
li
 spa
e, we use the same notation and terminology, but in this
ase there are no involutive operators. Analogously, there are no 
y
li
 operatorsfor involutive simpli
ial spa
es.1.1.3 Geometri
 realization of G•-spa
esWe now turn toward the geometri
 realization of G•-spa
es. Via the in
lusion
j : ∆ → ∆G we asso
iate to any G•-spa
e X• its underlying simpli
ial spa
e
j∗X•, whi
h is given as the 
omposition ∆op j

−→∆Gop X•−→ Top. And we de�ne:De�nition 1.1.19The geometri
 realization of a G•-spa
e X• is the geometri
 realization of itsunderlying simpli
ial spa
e j∗X•.From the arti
le [FL91℄ we now summarize results about the geometri
 real-ization of a G•-spa
e.Theorem 1.1.20Let ∆G be a 
rossed simpli
ial 
ategory, and X• a simpli
ial spa
e. We have:The fun
tor j∗ from G•-spa
es to simpli
ial spa
es has a left adjoint, de-noted by FG, and there are proje
tion maps p1 : |FG(X•)| → |G•| and
p2 : |FG(X•)| → |X•|.The map (p1, p2) : |FG(X•)| → |G•| × |X•| is a homeomorphism.For any simpli
ial map f• : X• → Y• the following diagrams 
ommute:

|FGX•|
|FGf•|
−−−→ |FGY•|

p2

y
yp2

|X•|
|f•|
−−−→ |Y•|

and |FGX•|
|FGf•|
−−−→ |FGY•|

p1

y
yp1

|G•| |G•|

.Sin
e FG is a left adjoint, there are 
anoni
al natural transformations µ• :
FG(FG(X•))→ FG(X•) and ι• : X• → FG(X•). And the following diagrams
ommute:

|FG(FG(X•))|
|µ•|
−−−→ |FG(X•)|

p2

y
yp2

|FG(X•)|
p2
−−−→ |X•|

and |X•|
|ι•|
−−−→ |FGX•|

=

y
yp2

|X•| |X•|

.There is a 
anoni
al isomorphism G• ∼= FG(∗) and the 
omposition |G•| ∼=
|FG(∗)|

p1−→ |G•| is the identity.



10 CHAPTER 1. SIMPLICIAL TECHNIQUESLet 1 denote the point in |G•| determined by the unit in G0. The followingdiagram 
ommutes:
|X•|

|ι•|
−−−→ |FG(X•)|y

yp1

{1} −−−→ |G•|

.

|G•| is a topologi
al group.If X• is a G•-spa
e, then there is an indu
ed a
tion |G•| × |X•| → |X•|.
(p1, p2) : |FG(X•)| → |G•| × |X•| is an equivariant homeomorphism.For every n there is an in
lusion of Gn in |G•| as a dis
rete subgroup.For a proof see propositions 4.4, 5.1, 5.3 and 5.13 in [FL91℄.Remark 1.1.21Chasing Fiedorowi
z and Loday's proof of theorem 1.1.20 above, it is not hardto see that all results are natural with respe
t to a morphism ∆G → ∆G′ of
rossed simpli
ial 
ategories. In parti
ular we get an indu
ed homomorphism oftopologi
al groups |G•| → |G′•|. Furthermore, it is possible to 
onsider shortexa
t sequen
es of 
rossed simpli
ial 
ategories. It is more 
onvenient to writesu
h a sequen
e in terms of the 
orresponding 
rossed simpli
ial groups. Thesequen
e

0→ G′′• → G• → G′• → 0is short exa
t if the evaluation at ea
h [n] is. Taking the geometri
 realizationone gets a sequen
e
|G′′•| → |G•|

f
−→ |G′•| ,whi
h an extension of topologi
al groups.Let us now determine what the group |G•| is for our 
rossed simpli
ial 
ate-gories.Example 1.1.22Consider the involutive simpli
ial 
ategory, ∆T. The automorphism group, Gop

n ,of [n] in ∆T is isomorphi
 to Z/2. Re
all that G• is a simpli
ial set, the fa
e anddegenera
y maps are given by the formula in remark 1.1.12. The degenera
y map
s0 is always inje
tive. By 
ounting the order of Gn, we immediately see that theonly non-degenerate simpli
es lie in degree 0. Hen
e, we have that |G•|, in this
ase, is the group Z/2. This means that the geometri
 realization of an involutivesimpli
ial spa
e is a topologi
al spa
e with involution.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 11Example 1.1.23Next 
onsider the 
y
li
 
ategory, ∆C. Using the formula from remark 1.1.12,we �nd that the non-degenerate simpli
es are τ0 ∈ G0 and τ1 ∈ G1. Hen
e,
|G•| ∼= S1. We now determine the group stru
ture. A theorem by von Neumannsays that any 
ompa
t, lo
ally Eu
lidean topologi
al group is a Lie group, seetheorem 57 in [Pon39℄. The theory of Lie groups now tells us that the onlytopologi
al group stru
ture on S1 is the ordinary group stru
ture.Example 1.1.24Now look at the r-
y
li
 
ategory, ∆Cr. Let G• be the asso
iated 
rossedsimpli
ial group. To determine |G•| as a topologi
al spa
e, we �nd the non-degenerate simpli
es. The 0-simpli
es, G0 = Cr, are non-degenerate. Re
all fromremark 1.1.12 the formula de�ning the simpli
ial stru
ture on G•. The relation

τ0σ0 = σ0τ
2
1implies that s0(τ

i
0) = τ 2i

1 . Hen
e, τ1, τ 3
1 ,. . ., τ 2r−1

1 are the non-degenerate simpli
esin G1. Playing with the relations in ∆Cr, we see that there are no more non-degenerate simpli
es. Furthermore, we have that d0(τ
2i−1
1 ) = τ i−1

0 and d1(τ
2i−1
1 ) =

τ i
0. Hen
e, |G•| ∼= S1. And S1 has a unique stru
ture as a topologi
al group.Example 1.1.25Let us now study the r-dihedral 
ategory, ∆Dr. We 
an use the de�nition of the
ategory and the formula from remark 1.1.12 to determine the simpli
ial stru
tureon the asso
iated simpli
ial group G•. Finding non-degenerate simpli
es and
al
ulating the fa
e maps, we see that

|G•| ∼= S1 × Z/2as topologi
al spa
es. Hen
e there are two possibilities for the group stru
tureon |G•|: it is isomorphi
 either to S1 × Z/2 or O(2). By the last statement oftheorem 1.1.20, |G•| 
ontains dihedral subgroups. This ex
ludes S1 × Z/2, so
|G•| = O(2).The theorem 1.1.20 above tells us that the geometri
 realization of a G•-spa
ehas a |G•| a
tion. However, it is usually the 
ase that the a
tion takes one out ofthe topologi
al simplex one starts in. In parti
ular, the q'th spa
e of the �ltration
Fq|X•| is seldom |G•|-equivariant. In many situations it would be easier if thea
tion stayed inside the topologi
al simpli
es and the �ltration had |G•|-a
tion.We 
an a
hieve this by de�ning the topologi
al |G•|-simpli
es a

ording to the
rossed simpli
ial 
ategory under 
onsideration.Let ∆G be a 
rossed simpli
ial 
ategory. Consider the representable fun
tors

∆G(−, [n]) : ∆Gop → Ens .



12 CHAPTER 1. SIMPLICIAL TECHNIQUESDe�nition 1.1.26Let ∆G : ∆G→ Top be the fun
tor with ∆Gn = |∆G(−, [n])|. The topologi
al
|G•|-simpli
es are the spa
es ∆Gn, n ≥ 0.Observe that the representable fun
tor ∆G(−, [n]) is FG(∆(−, [n])), hen
ewe have homeomorphisms ∆Gn = |∆G(−, [n])| ∼= |G•| ×∆n. So the |G•|-a
tiondoes not take points outside ∆Gn.Using the fun
tor ∆G• we 
an now de�ne a geometri
 realization of G•-spa
es
X given by:

|X|∆G =

∫ [n]∈∆G

Xn ×∆Gn .This spa
e is isomorphi
 to the quotient of∐Xn×∆Gn where we identify (x, φ(t))with (φ∗x, t) for all morphisms φ in ∆G.Lemma 1.1.27There is a natural homeomorphism |X|∆G
∼= |X| for ∆Gop-spa
es X.Proof: Consider the fun
tor F : (∆×∆G)op × (∆×∆G)→ Top given by

F ([no], [mo], [n], [m]) = Xmo
×∆G(j(no), m)×∆n .We have that ∫ [n]∈∆

F ([n], [mo], [n], [m]) ∼= Xmo
×∆Gmand ∫ [m]∈∆G

F ([no], [m], [n], [m]) ∼= X(j(no))×∆n .The result now follows from the Fubini theorem for 
oends, see �IX.8 in [ML98℄:
oends 
an be inter
hanged. �To a
hieve full 
ontrol of the |G•|-a
tion on |X•|, it su�
es to have an expli
itdes
ription of the fun
tor ∆G•. This des
ription should spe
ify the map ∆Gn →
∆Gm indu
ed by a morphism φ : [n] → [m] in ∆G. In the 
ase ∆C, thisdes
ription is given impli
itly in proposition 2.7 in [DHK85℄, and more expli
itlyin theorem 3.4 in [Jon87℄. For the r-
y
li
 
ase a formula is given by lemma 1.6in [BHM93℄, and by formula (2.1.3) in [Mad94℄. In general it is just a questionabout writing out the equivariant homeomorphism (p1, p2) : |FG(∆n

• )| → |G•| ×
|∆n
• | from theorem 1.1.20. Here ∆n

• is the simpli
ial n-simplex ∆(−, [n]).Expli
itly we have in our 
ases:Example 1.1.28For the involutive simpli
ial 
ategory ∆T we de�ne the fun
tor ∆T • by sending
[n] to Z/2 × ∆n. We write Z/2 multipli
atively. The generators of ∆T indu
e
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δi(ǫ; t0, . . . , tn) = (ǫ; t0, . . . , ti−1, 0, ti, . . . , tn) ,

σi(ǫ; t0, . . . , tn) = (ǫ; t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn) , and
ρn(ǫ; t0, . . . , tn) = (−ǫ; tn, tn−1, . . . , t1, t0) .Example 1.1.29For the r-
y
li
 
ategory ∆Cr we de�ne the fun
tor ∆C•r by sending [n] to

S1 ×∆n. We identify S1 with the quotient R/Z. The generators of ∆Cr indu
ethe following maps:
δi(θ; t0, . . . , tn) = (θ; t0, . . . , ti−1, 0, ti, . . . , tn) ,

σi(θ; t0, . . . , tn) = (θ; t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn) , and
τn(θ; t0, . . . , tn) = (θ −

1

r
t0; t1, t2, . . . , tn, t0) .Example 1.1.30For the r-dihedral 
ategory ∆Dr we de�ne the fun
tor ∆D•r by sending [n] to

O(2)×∆n. O(2) is the spa
e of orthogonal 2× 2-matri
es. For t ∈ R/Z let R(t)denote the rotation matrix ( cos(2πt) sin(2πt)
− sin(2πt) cos(2πt)

), and let T be the matrix
(

0 1
1 0

). The generators of ∆Dr indu
e the following maps:
δi(M ; t0, . . . , tn) = (M ; t0, . . . , ti−1, 0, ti, . . . , tn) ,

σi(M ; t0, . . . , tn) = (M ; t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn) ,

τn(M ; t0, . . . , tn) = (MR(−
1

r
t0); t1, t2, . . . , tn, t0) , and

ρn(M ; t0, . . . , tn) = (MT ; tn, tn−1, . . . , t1, t0) .1.1.4 Filtering the geometri
 realizationSimilar to the 
onstru
tions 1.1.6 and 1.1.7, we now design a �ltration of |X•|,when X• is a G•-spa
e. This �ltration is |G•|-equivariant.Constru
tion 1.1.31Let ∆G be a 
rossed simpli
ial 
ategory and X• a G•-spa
e. The drawba
kof using the �ltration above to study |X•| is that Fq|X•| has no |G•| a
tion.Therefore we de�ne another �ltration FG
q |X•|. Re
all that |X•| 
an be des
ribedas the quotient of ∐Xn × ∆Gn where we identify (x, φ(t)) with (φ∗x, t) for allmorphisms φ in ∆G. De�ne FG

q |X•| to be the image of ∐n≤q Xn × ∆Gn. Wede�ne the G•-degenerate simpli
es of Xq to be the subspa
e sGXq−1 
onsisting ofall points whi
h lie in the image of some map φ∗ : Xq−1 → Xq, φ ∈∆G([q], [q−1]).
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all that the opposite group of Gq is the automorphisms of [q] in ∆G. Hen
e
Xq and sXq−1 have Gq a
tions, while ∆Gq and ∂∆Gq have Gop

q a
tions. Let
Xq ×Gq

∆Gq denote the quotient of the produ
t where we have identi�ed (gx, t)with (x, g∗t) for every g in Gq. We now have a pushout diagram
Xq ×Gq

∂∆Gq ∪ sXq−1 ×Gq
∆Gq −−−→ FG

q−1|X•|

i

y
y

Xq ×Gq
∆Gq −−−→ FG

q |X•|

.Remark 1.1.32Here is a warning: In general it is not true that natural mapX0×G0 |G•| → FG
0 |X•|is an homeomorphism, but it is always an equivariant quotient map.1.1.5 Edgewise subdivisionAbove we have seen that both 
y
li
 and r-
y
li
 spa
es yield S1-spa
es aftergeometri
 realization. Similarly both dihedral and r-dihedral spa
es realize to

O(2)-spa
es. So why do we bother with the r-
y
li
 and r-dihedral 
ategories?Observe that neither the S1- nor the O(2)-a
tion is simpli
ial. Let C be a �nite
y
li
 group. Noti
e that C embeds as a normal subgroup of both S1 and O(2).The answer to the question is that C-�xed points 
an be studied simpli
iallywhenever the order of C divides r.After making pre
ise the observations above, we shall de�ne the c'th edgewisesubdivision, c ≥ 1. This is a fun
tor sdc from r-
y
li
 spa
es to rc-
y
li
 spa
es,and similarly from r-dihedral spa
es to rc-dihedral spa
es. The edgewise subdi-visions 
ome with natural equivariant homeomorphisms Dc : | sdcX•| → |X•|. Inparti
ular we 
an repla
e a 
y
li
 spa
e with an r-
y
li
 spa
e for the purpose ofstudying its restri
ted Cr-a
tion.Let C be a �nite 
y
li
 group C of order c. Re
all from example 1.1.30 that
R(t) ∈ O(2) denotes a rotation by 2πt, while T ∈ O(2) is a re�e
tion. Weidentify C as the normal subgroup of O(2) generated by R(1

c
). Now we 
onstru
thomomorphisms

ρC : O(2)→ O(2)/Cby letting ρC(R(t)) = R( t
c
) and ρC(T ) = T . Observe that ρC is an isomorphism.The restri
tion of ρC to S1 is the �c-th root map� S1

∼=
−→ S1/C.Two basi
 fa
ts are: The C-�xed point spa
e of an O(2)-spa
e Y is an O(2)/C-spa
e Y C , and an O(2)/C-spa
e Z 
an be viewed as an O(2)-spa
e ρ∗CZ via theisomorphism ρC .After these preliminaries we show:Proposition 1.1.33Assume that X• is an r-dihedral spa
e and C a �nite 
y
li
 group of order c.



1.1. THE CATEGORY ∆ AND ITS RELATIVES 15Assume that c divides r and let cs = r. Ea
h Xn has a C-a
tion and XC
• is an s-dihedral spa
e. Furthermore, there is a natural O(2)-equivariant homeomorphism

ρ∗C |X•|
C ∼= |XC

• | .A similar result holds for r-
y
li
 spa
es.Proof: The C a
tion on Xn is given by the map ts(n+1)
n . Observe that all theoperators di, si, tn and rn preserve C-�xed points. Hen
e, XC

• is an r-dihedralspa
e. But sin
e ts(n+1)
n is the identity when restri
ted to XC

n , we see that XC
•satis�es the identities for an s-dihedral spa
e.To de�ne the natural O(2)-homeomorphism we use the �ltration from 
on-stru
tion 1.1.31. Assume indu
tively that we have an O(2)-homeomorphism

ρ∗CF
∆Dr

n−1 |X•|
C ∼= F∆Ds

n−1 |X
C
• | .Re
all that the automorphism group of [n] in ∆Dr is the dihedral group

D2r(n+1) of order 2r(n + 1). If Y is a D2r(n+1)-spa
e, then we may form theindu
ed O(2)-spa
e Y ×D2r(n+1)
O(2). It is a basi
 fa
t about indu
ed O(2)-spa
esand C-�xed points, 
ompare lemma 3.8.2, that

(
Y ×D2r(n+1)

O(2)
)C
∼= Y C ×D2r(n+1)/C O(2)/C .For the indu
tion step we inspe
t the n-simpli
es, and 
al
ulate:

ρ∗C

(
Xn ×D2r(n+1)

∆Dn
r

)C
∼= ρ∗C

(
(Xn ×∆n)×D2r(n+1)

O(2)
)C

∼= ρ∗C

(
(Xn ×∆n)C ×D2r(n+1)/C O(2)/C

)

∼= (Xn ×∆n)C ×D2s(n+1)
ρ−1

C (O(2)/C)

∼= (XC
n ×∆n)×D2s(n+1)

O(2)

∼= Xn ×D2s(n+1)
∆Dn

s .Similarly, we have an O(2)-equivariant homeomorphism for the degenerate points.And these O(2)-homeomorphisms �t into a diagram
ρ∗

C

(
Xn ×D2r(n+1)

∆Dn
r

)C
←ρ∗

C

(
Xn ×D2r(n+1)

∂∆Dn
r ∪ sXn−1 ×D2r(n+1)

∆Dn
r

)C
→ρ∗

C
F∆Dr

n−1 |X•|C

∼=

y ∼=

y
y∼=

Xn ×D2s(n+1)
∆Dn

s ← XC
n ×D2s(n+1)

∂∆Dn
s ∪ sXC

n−1 ×D2s(n+1)
∆Dn

s → F∆Ds
n−1 |X

C
• |

.By 
onstru
tion 1.1.31 we see that the map of the row-wise pushouts is F∆Ds
n |XC

• |
∼=

ρ∗CF
∆Dr
n |X•|

C .The statement for r-
y
li
 spa
es is proved similarly. �



16 CHAPTER 1. SIMPLICIAL TECHNIQUESWe now de�ne the edgewise subdivision fun
tor sdc : ∆Drc → ∆Dr. Theidea behind sdc is to send the ordered set [q] to the disjoint union of c 
opies of
[q]:

sdc[q] = [q]∐ · · · ∐ [q] = [c(q + 1)− 1] .This yields the following formulas for sdc of the generators in the dihedral 
ase:
sdc(δi) = δi+(c−1)(q+1) · · · δi+(q+1)δi ,

sdc(σi) = σiσi+(q+2) · · ·σi+(c−1)(q+2) ,

sdc(τq) = τc(q+1)−1 , and
sdc(ρq) = ρc(q+1)−1 .Observe that sdc restri
ts to fun
tors ∆Crc → ∆Cr, ∆T→∆T and ∆→ ∆.De�nition 1.1.34Let X• be an r-dihedral spa
e. Its c'th edgewise subdivision, sdcX• is the 
om-position ∆Dop

rc
sdc−→ ∆Dop

r
X•−→ Top. Similarly, we also de�ne the c'th edgewisesubdivision of r-
y
li
, involutive simpli
ial and simpli
ial spa
es.To 
ompare the geometri
 realization of sdcX• and X•, we �rst de�ne adiagonal map from the topologi
al rc-dihedral q-simplex ∆Dq

rc to the topologi
al
r-dihedral (c(q + 1)− 1)-simplex ∆Dq

r . This map is given by
(M ; t0, . . . , tq) 7→ (M ;

1

c
t0, . . . ,

1

c
tq,

1

c
t0, . . . ,

1

c
tq, . . . ,

1

c
t0, . . . ,

1

c
tq) .This map isO(2)-equivariant. Varying q, we get a natural transformation∆D•rc →

∆D•r◦sdc. Using a tri
k with 
oends we de�ne a naturalO(2)-mapDc : | sdcX•| →
|X•|. Consider

∫ [p]∈∆Drc
∫ [q]∈∆Dr

Xq ×∆Dr(sdc[p], [q])×∆Dp
rc .Observe that the evaluation

∫ [q]∈∆Dr

Xq ×∆Dr(sdc[p], [q])→ (sdcX)pis a homeomorphism. (The identity in ∆Dr(sdc[p], sdc[p]) gives an inverse map.)It follows that the double 
oend above equals
∫ [p]∈∆Drc

(sdcX)p ×∆Dp
rc = | sdcX•| .On the other hand, by the Fubini theorem for 
oends, we 
an 
onsider the 
oendover [p] ∈ ∆Drc �rst. Via the diagonal map given above, we get a natural
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O(2)-map
∫ [q]∈∆Dr

∫ [p]∈∆Drc

Xq ×∆Dr(sdc[p], [q])×∆Dp
rc

∼=

∫ [q]∈∆Dr

Xq ×

(∫ [p]∈∆Drc

∆Dr(sdc[p], [q])×∆Dp
rc

)diagonal
−−−−→

∫ [q]∈∆Dr

Xq ×

(∫ [p]∈∆Drc

∆Dr(sdc[p], [q])×∆Dsdc[p]
r

)evaluate
−−−−→

∫ [q]∈∆Dr

Xq ×∆Dq
r

= |X•| .Putting this together we see that the diagonal map on topologi
al simpli
es givesa natural O(2)-map
Dc : | sdc X•| → |X•| .Similarly, for the 
y
li
, the involutive simpli
ial and the simpli
ial 
ategories wehave a natural S1-map, Z/2-map and map respe
tively.Proposition 1.1.35Let X• be an r-dihedral spa
e, an r-
y
li
 spa
e, an involutive simpli
ial spa
eor a simpli
ial spa
e. In all 
ases, the (equivariant) map Dc : | sdcX•| → |X•| isa homeomorphism.Proof: Re
all that we 
an 
ompute the geometri
 realization either over the
rossed simpli
ial 
ategory or over ∆. Be
ause both methods yield the samespa
e, lemma 1.1.27, it is enough to inspe
t the map in the simpli
ial 
ase.The proof for simpli
ial sets, lemma 1.1 in [BHM93℄ applies also to the 
aseof simpli
ial spa
es: One �rst 
he
ks by expli
it 
omputation that Dc is a home-omorphism when X• is the simpli
ial 1-simplex ∆(−, [1]). It follows that Dc alsois a homeomorphism for produ
ts ∆(−, [1])×q. Then it holds for the simpli
ial

q-simplex be
ause of the retra
tion ∆(−, [q])
i
−→ ∆(−, [1])×q r

−→ ∆(−, [q]). Let
ηq denote the inverse of Dc : | sdc ∆(−, [q])| → |∆(−, [q])|. For general simpli
ial



18 CHAPTER 1. SIMPLICIAL TECHNIQUESspa
es X• we now de�ne the inverse as follows:
|X•| =

∫ [q]∈∆

Xq ×∆q

=

∫ [q]∈∆

Xq × |∆(−, [q])|

id×ηq
−−−→

∫ [q]∈∆

Xq × | sdc ∆(−, [q])|

=

∫ [q]∈∆

Xq ×

(∫ [p]∈∆

∆(sdc[p], [q])×∆p

)

=

∫ [q]∈∆ ∫ [p]∈∆

Xq ×∆(sdc[p], [q])×∆p

= | sdc X•| .

�1.2 Homotopy 
olimits over topologi
al 
ategoriesIn this short se
tion we will de�ne the homotopy 
olimit of a 
ontinuous fun
-tor over a topologi
al 
ategory. Also, we give a 
ondition on F su
h that
hocolimC F → BC is a λ-quasi 
o�bration.Assume that C is a small topologi
al 
ategory; we have a dis
rete set ofobje
ts, while for ea
h pair of obje
ts, a, b ∈ C , we have a topologi
al spa
e
C (a, b) of morphisms from a to b. For 
ontinuous fun
tors F : C → Top wewould like to de�ne a homotopy 
olimit.De�nition 1.2.1We de�ne hocolimC F as the realization of a simpli
ial spa
e. Its q-simpli
es are

Xq =
∐

a0,...,aq∈C

C (aq−1, aq)× · · · × C (a0, a1)× F (a0) .Fa
e and degenera
y maps are given by
di(fq−1, . . . , f0; x) =






(fq−1, . . . , f1; f0(x)) for i = 0,
(fq−1, . . . , fi+1, fi ◦ fi−1, fi−2, . . . , f0; x) for 0 < i < q,
(fq−2, . . . , f0; x) for i = q, and

si(fq−1, . . . , f0; x) = (fq−1, . . . , fi, idai
, fi−1, . . . , f0; x) .
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hocolim is fun
torial. If τ : F → F ′ is a natural transformation, then there isan indu
ed map

hocolim
C

F → hocolim
C

F ′ .Furthermore, if j : D → C is a fun
tor, then there is an indu
ed map
hocolim

D
j∗F → hocolim

C
F ,where j∗f is the 
omposite f ◦ F : D → Top.Proposition 1.2.2If τ : j0 → j1 is a natural transformation between 
ontinuous fun
tors D → C ,then there is a simpli
ial homotopy between

hocolim
D

j∗0F
(j0)∗
−−→ hocolim

C
Fand

hocolim
D

j∗0F
τ∗−→ hocolim

D
j∗1F

(j1)∗
−−→ hocolim

C
Ffor any 
ontinuous fun
tor F : C → Top.Proof: We de�ne a simpli
ial homotopy. It is given by maps

hi :
∐

D(bq−1, bq)× · · · ×D(b0, b1)× F (j0(b0))

→
∐

C (aq, aq+1)× C (aq−1, aq)× · · · × C (a0, a1)× F (a0)for 0 ≤ i ≤ q. To de�ne the hi's we 
onsider the diagram in C :
j0(b0)

j0(f0)
−−−→ j0(b1)

j0(f1)
−−−→ · · ·

j0(fq−1)
−−−−−→ j0(bq)

τb0

y τb1

y · · ·
yτbq

j1(b0)
j1(f0)
−−−→ j1(b1)

j1(f1)
−−−→ · · ·

j1(fq−1)
−−−−−→ j1(bq)

.

hi is now given by the formula:
hi(fq−1, . . . , f0; x) = (j1(fq−1), . . . , j1(fi), τbi

, j0(fi−1), . . . , j0(f0); x) .It is easily 
he
ked that this is the required simpli
ial homotopy. �We now de�ne λ-quasi �brations:De�nition 1.2.3A map p : E → B is a λ-quasi �bration if for any b ∈ B the indu
ed map
πi(E, p

−1(b)) → πi(B, b) is an isomorphism for 0 ≤ i < λ and a surje
tion for
i = λ.



20 CHAPTER 1. SIMPLICIAL TECHNIQUESProposition 1.2.4Consider the diagram:
E2

F
←−−− E0 −−−→ E1

p2

y
yp0

yp1

B2
f

←−−− B0
i

−−−→ B1

.Assume that the pi's are λ-quasi �brations with p−1
i (b) path-
onne
ted for all iand b ∈ Bi. If i is a 
o�bration, the right square pullba
k, and p−1

0 (b)→ p−1
2 (f(b))

λ-
onne
ted for all b ∈ B0, then the indu
ed map of pushouts p : E → B is a
λ-quasi �bration.Proof: We 
an assume that f is a 
o�bration, if not one 
an repla
e B2 by themapping 
ylinder Mf , and E2 by the pullba
k r∗E2 over the retra
tion r : Mf →
B2. Moreover, we 
an assume that F is a 
o�bration, if not we 
an repla
e E2by MF . Using that f is inje
tive it follows that MF → B2 is a λ-quasi �bration.Now 
ompare the long exa
t sequen
es of homotopy groups for the triples
(E1, E0, p

−1
0 (b)) and (B1, B0, b), where b ∈ B0. Sin
e p−1

0 (b) = p−1
1 (b), rememberthat the right square is pullba
k, and using that p0 and p1 are λ-quasi �brations,we get that πi(E1, E0) → πi(B1, B0) is an isomorphism for 0 ≤ i < λ andsurje
tive for i = λ.Regarding the 
onne
tedness of πi(E2, p

−1
0 (b)) → πi(B2, b), we reason as fol-lows: Sin
e p−1

0 (b) → p−1
2 (f(b)) is λ-
onne
ted, we get that πi(p

−1
2 (f(b)), p−1

0 (b))is the trivial group when i ≤ λ. Now 
onsider the long exa
t sequen
e of ho-motopy groups for (E2, p
−1
2 (f(b)), p−1

0 (b)). The homomorphism πi(E2, p
−1
0 (b)) →

πi(E2, p
−1
2 (f(b))) is an isomorphism for i < λ and surje
tive for i = λ. Using that

p2 is a λ-quasi �bration, the 
omposed map
πi(E2, p

−1
0 (b))→ πi(E2, p

−1
2 (f(b)))→ πi(B2, b)is also an isomorphism for i < λ and surje
tive for i = λ.Comparing the long exa
t sequen
es of homotopy groups for (E2, E0, p

−1
0 (b))and (B2, B0, b), we see that πi(E2, E0) → πi(B2, B0) is an isomorphism for 0 ≤

i < λ and surje
tive for i = λ.Sin
e the maps under 
onsideration are 
o�brations, the Mayer-Vietoris prop-erty for homotopy groups holds as stated in [Hat02℄ proposition 4K.1. Therefore,we have that πi(E,E1) → πi(B,B1) is an isomorphism for i ≤ λ and surje
tivefor i = λ. The same is also true for πi(E,E2)→ πi(B,B2).At last we 
an 
he
k whether p : E → B is a λ-quasi �bration. If b ∈ B2we 
ompare the long exa
t sequen
es of homotopy groups for (E,E2, p
−1(b)) and

(B,B2, b). By the �ve lemma we see that πi(E, p
−1(b)) → πi(B, b) is an isomor-phism for i ≤ λ and surje
tive for i = λ. When b ∈ B1 r B0, we 
ompare long
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t sequen
es of homotopy groups for (E,E1, p
−1(b)) and (B,B1, b). The same
on
lusion holds. �Observe that for any fun
tor F : C → Top there is a natural map

hocolim
C

F → BC .Here BC is the bar 
onstru
tion (=geometri
 realization of the nerve). In some
ases, this map is a λ-quasi �bration:Proposition 1.2.5If the indu
ed map F (a) → F (b) is λ-
onne
ted for all morphisms of C , C iswell-pointed and all F (a)'s are path-
onne
ted, then
hocolim

C
F → BCis a λ-quasi �bration.Proof: As above letX• denote the simpli
ial spa
e whose realization is hocolimC F .Now 
ompare the presimpli
ial realization with the geometri
 realization:

F (a0) −−−→ ‖X•‖ −−−→ ‖B•C ‖

=

y
y≃

y≃

F (a0) −−−→ |X•| −−−→ |B•C |

.Here F (a0) is the �ber over some point b in ‖B•C ‖. The �ber over b's image in
|B•C | is identi
al. This 
an be seen by inspe
ting the de�nition of the degenera
ymaps.Sin
e C is well-pointed, it follows thatX• and B•C are good simpli
ial spa
es.Hen
e, the verti
al maps are weak equivalen
es. Therefore it is enough to showthat ‖X•‖ → ‖B•C ‖ is a λ-quasi �bration.Following Quillen, we now 
onsider the skeletal �ltration of the presimpli
ialrealization.

Fq−1‖X•‖ ←−−− Xq × ∂∆q −−−→ Xq ×∆q

y
y

y

Fq−1‖B•C ‖ ←−−− BqC × ∂∆
q −−−→ BqC ×∆q

.This diagram satis�es the 
onditions of proposition 1.2.4, so the map of pushouts
Fq‖X•‖ → Fq‖B•C ‖ is a λ-quasi �bration.Now the result follows sin
e the dire
t limit of λ-quasi �brations is a λ-quasi�bration. �
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Chapter 2
Orthogonal spe
tra
This 
hapter will introdu
e the relevant results about orthogonal spe
tra. Themain referen
e for these results is the arti
le [MMSS01℄. The aim of that arti
leis to 
ompare di�erent 
onstru
tions of a 
ategory of spe
tra with an asso
iativeand 
ommutative smash produ
t. Their theorem 0.1 says that the 
ategoriesof N -spe
tra, symmetri
 spe
tra, orthogonal spe
tra, and W -spa
es are Quillenequivalent. However, the aim of this thesis is to study involutions on 
ertain ringspe
tra related to geometry of manifolds, see 
hapter 4. Therefore we are freeto 
hoose the 
ategory of spe
tra most 
onvenient for our purposes. This is the
ategory of orthogonal spe
tra, and we will fo
us on how to work within this
ategory.Below we will give an exposition of the theory of orthogonal spe
tra. Allrelevant de�nitions are in
luded here. For 
ompleteness we also reprove some ofthe results of [MMSS01℄. However, there are also new results here: We introdu
el-
o�brations, de�nition 2.1.7, in order to study simpli
ial orthogonal spe
tra,propositions 2.5.2 and 2.5.3. We 
onsider indu
ed fun
tors, 
orollary 2.3.15.And we 
onstru
t 
o�brant and �brant repla
ement fun
tors with additionalproperties, theorem 2.2.13 and theorem 2.6.1 respe
tively.We use the 
onvention that topologi
al spa
es mean 
ompa
tly generatedspa
es (=weak Hausdor� k-spa
es). This 
ategory satis�es Steenrod's 
onvenientte
hni
al properties as de�ned in [Ste67℄. In addition the 
ategory is 
losed underthe operation of passing to the quotient X/A of any 
losed pair (X,A), and underthe operation of taking the union of an expanding sequen
e of 
losed subspa
es.We refer to �2 of [M
C69℄ for the de�nition and further properties of 
ompa
tlygenerated spa
es. We let Top denote this 
ategory, and Top∗ based 
ompa
tlygenerated spa
es. 23



24 CHAPTER 2. ORTHOGONAL SPECTRA2.1 Basi
 de�nitionsIn this se
tion we will de�ne the 
ategory of orthogonal spe
tra, I S . It is a topo-logi
al 
ategory. To de�ne I S we introdu
e the topologi
al 
ategory I of �nitedimensional real inner produ
t spa
es and linear isometri
 isomorphisms. Themorphism spa
es I (V,W ) are empty when V and W have di�erent dimensions,and homeomorphi
 to the orthogonal group O(n) when n = dimV = dimW .Dire
t sum gives I the stru
ture of a symmetri
 monoidal 
ategory, and one-point-
ompa
ti�
ation gives a fun
tor S from I to 
ompa
tly generated spa
es.De�nition 2.1.1The 
ategory I S of orthogonal spe
tra has as its obje
ts 
ontinuous fun
tors
L from I to based 
ompa
tly generated spa
es together with maps σ : L(V ) ∧
SW → L(V ⊕W ), natural in V and W , su
h that the 
omposite

L(V ) ∼= L(V ) ∧ S0 σ
−→ L(V ⊕ 0) ∼= L(V )is the identity and σ is asso
iative in the sense that the following diagram 
om-mutes

L(U) ∧ SV ∧ SW σ∧id
−−−→ L(U ⊕ V ) ∧ SW

∼=

y
yσ

L(U) ∧ SV⊕W σ
−−−→ L(U ⊕ V ⊕W )

.A map of orthogonal spe
tra is a natural transformation f : K → L of fun
torssu
h that the following diagram 
ommutes
K(V ) ∧ SW σ

−−−→ K(V ⊕W )

fV ∧id

y
yfV ⊕W

L(V ) ∧ SW σ
−−−→ L(V ⊕W )

.We 
all σ the right assembly map. There is also a unique left assembly σ̄
orresponding to σ via the symmetry of ∧ and ⊕.There are several interesting examples of orthogonal spe
tra. First observethat the fun
tor S is an example by letting σ : SV ∧SW → SV⊕W be the naturalhomeomorphism. We 
all S the sphere spe
trum. For based topologi
al spa
es
X the suspension spe
trum is de�ned by V 7→ X ∧SV . We 
an also de�ne Thomspe
tra by letting TO(V ), for an n-dimensional V , be the Thom spa
e of thetautologi
al n-plane bundle over the Grassmannian of n-planes in V ⊕ V .2.1.1 Shift desuspension fun
torsThere is a shift desuspension fun
tor FV from based 
ompa
tly generated spa
esto I S for any V . It is de�ned by the formula

(FVA)(W ) = I (V ⊕Rd,W )+ ∧O(d) (A ∧ Sd) ,
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e and d = dimW − dim V . We let (FVA)(W ) = ∗ for
dimW < dimV . The right assembly σ : (FVA)(W ) ∧ SU → (FVA)(W ⊕ U) isde�ned by 
hoosing an isomorphism g : Rd′ ∼= U , and is well de�ned sin
e wedivide out by O(d+ d′) in the de�nition of (FVA)(W ⊕ U).

FV is left adjoint to the evaluation at level V :
I S (FVA,L) ∼= Top∗(A,L(V )) ,for all V , A and L.2.1.2 Notions of equivalen
eFor orthogonal spe
tra there are two di�erent notions of equivalen
e:De�nition 2.1.2A map f : K → L of orthogonal spe
tra is a level equivalen
e if for every V themap fV : K(V )→ L(V ) is a weak equivalen
e.To de�ne the other kind of equivalen
e we make use of a forgetful fun
tor Ufrom I S to prespe
tra. (The theory of prespe
tra 
an be found in 
hapter IIof [Rud98℄.) The n'th spa
e of UL is L(Rn) and the suspension map sn : (UL)n∧

S1 → (UL)n+1 
omes from the right assembly by identifying Rn ⊕ R with Rn+1.Re
all that the homotopy groups of a prespe
trum X is de�ned as
πq(X) = colim

n
πq+n(Xn) .We now de�ne:De�nition 2.1.3A map f : K → L of orthogonal spe
tra is a π∗-isomorphism if the underlyingmap of prespe
tra Uf : UK → UL indu
es an isomorphism on all homotopygroups.A level equivalen
e K → L indu
es an isomorphism πq+n(UK)n → πq+n(UL)nfor all q and n, thus we have:Lemma 2.1.4Any level equivalen
e is a π∗-isomorphism.We also have a notion of Ω-spe
tra:De�nition 2.1.5An orthogonal spe
trum E is an Ω-spe
trum if the adjoint of σ,

E(V )→ ΩWE(V ⊕W ) ,is a weak equivalen
e for all V and W .
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e that E is an Ω-spe
trum if and only if UE is an Ω-prespe
trum.Remark 2.1.6For general diagram spe
tra, and symmetri
 spe
tra in parti
ular, there is a thirdnotion of equivalen
e, namely stable equivalen
e. Let [L,E] denote the set ofmaps in the level homotopy 
ategory. If L is 
o�brant (see se
tion 2.2 below for ade�nition of 
o�brant), then [L,E] is isomorphi
 to the set of path 
omponents ofthe topologi
al spa
e I S (L,E). We say that f : K → L is a stable equivalen
eif f ∗ : [L,E]→ [K,E] is a bije
tion for all Ω-spe
tra E. However, for orthogonalspe
tra there is no di�eren
e between π∗-isomorphisms and stable equivalen
es.See proposition 8.7 in [MMSS01℄.2.1.3 l-
o�brationsThere are many 
onditions on maps i : A → L that 
ould be taken as thede�nition of some kind of 
o�bration of orthogonal spe
tra. In se
tion 2.2 belowwe are going to study q-
o�brations. They depend on 
ellular te
hniques; this isa strong 
ondition. However, in this se
tion we will 
onsider a very weak way ofde�ning a notion of 
o�bran
y:De�nition 2.1.7A map i : A→ L of orthogonal spe
tra is an l-
o�bration if for every V the map
A(V )→ L(V )is an unbased 
losed 
o�bration of topologi
al spa
es. We 
all L well-pointed if

∗ → L is an l-
o�bration.Remark 2.1.8Re
all that any unbased 
o�bration of topologi
al spa
es is a homeomorphismonto its image (Theorem 1 in [Str66℄). Therefore, we 
an always assume withoutloss of generality that any unbased 
losed 
o�bration is an in
lusion of a 
losedsubspa
e. Furthermore, if i : A ⊆ X is the in
lusion of a subspa
e, then thefollowing are equivalent ways to de�ne that i is a 
o�bration:For any map f : X → Y and any homotopy F̄ : A× I → Y with F̄ (a, 0) =
fi(a) for all a ∈ A, there exists a homotopy F : X × I → Y su
h that Frestri
ts to F̄ on A× I and F (x, 0) = f(x) for all x ∈ X.The subspa
e X × 0 ∪A× I is a retra
t of X × I. (Theorem 2 in [Str68℄.)There exists a 
ontinuous fun
tion φ : X → I and a homotopy H : X×I →
X su
h that A ⊆ φ−1(0), H(x, 0) = x for all x ∈ X, H(a, t) = a for all
a ∈ A and t ∈ I, and H(x, t) ∈ A whenever t > φ(x). (Lemma 4 in [Str68℄.)
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e that the subspa
e topology on X × 0 ∪ A × I does not always 
oin
ideswith the mapping 
ylinder topology, but in two important 
ases these topologiesare identi
al: 1) If A is a 
losed subspa
e of X, or 2) if A ⊆ X is a 
o�bration.Let us now look at some properties of l-
o�brations of orthogonal spe
tra:Proposition 2.1.9If we are given a map i between sequen
es of l-
o�brations A0 → A1 → · · · and
L0 → L1 → · · · and ea
h im : Am → Lm is a π∗-iso, then the indu
ed map of
olimits i : A→ L is also a π∗-iso.Proof: Sin
e spheres Sq and disks Dq+1 are 
ompa
t, we have

πqA(V ) = colim
m

πqAm(V ) ,and similar for L. Thus
πqA = colim

n,m
πq+nAm(Rn)

∼=
−→ colim

n,m
πq+nLm(Rn) = πqLis an isomorphism be
ause ea
h im : Am → Lm is a π∗-iso. �From the 
ategory of spa
es we immediately inherit union and gluing theoremsfor l-
o�brations:Proposition 2.1.10If A→ L, B → L and A∩B → L are l-
o�brations and A∪B → L an in
lusion,then A ∪ B → L is also an l-
o�bration.Proof: Noti
e that interse
tion and union are level-wise 
onstru
tions onorthogonal spe
tra. Now the result follows dire
tly from the de�nition of l-
o�bration and Lillig's union theorem [Lil73℄. �Proposition 2.1.11If we have a diagram

B ←−−− A
i1−−−→ L

f2

y f0

y
yf1

B′ ←−−− A′
i2−−−→ L′of orthogonal spe
tra, where i1, i2, f0, f1 and f2 are l-
o�brations and the rightsquare is pullba
k, then the map of the row-wise pushouts is an l-
o�bration.
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ks are level-wise 
onstru
tions, therefore the resultfollows from proposition 2.5 in [Lew82℄. �If X is a based spa
e and L an orthogonal spe
trum, then we may form thefun
tion spe
trum
F (X,L)level-wise. To be pre
ise we let F (X,L)(V ) be the spa
e of based maps X →

L(V ). This is again an orthogonal spe
trum, see example 2.1.17. We now apply
F (X,−) to an l-
o�bration:Proposition 2.1.12If C is a 
ompa
t based spa
e, and i : A → L is an l-
o�bration of orthogonalspe
tra, then

F (C,A)→ F (C,L)is also an l-
o�bration.Proof: Fix V . Then we have H : L(V ) × I → L(V ) and φ : L(V ) → Isatisfying Strøm's 
riterion. De�ne H̄ : F (C,L(V )) × I → F (C,L(V )) and
φ̄ : F (C,L(V ))→ I by

H̄(f, t)(c) = H(f(c), t) and φ̄(f) = sup
c∈C

φf(c) ,for f : C → L(V ) and t ∈ I. Then (H̄, φ̄) shows that F (C,A)(V )→ F (C,L)(V )is a 
o�bration. �Remark 2.1.13One 
an de�ne h-
o�brations as the maps i : A→ L having the homotopy exten-sion property, see �5 in [MMSS01℄. These should behave more or less like based
o�brations of spa
es. Therefore, we run into problems if we try to prove unionand gluing theorems for h-
o�brations without introdu
ing extra 
onditions.2.1.4 A symmetri
 monoidal smash produ
tThe main advantage of orthogonal spe
tra 
ompared to prespe
tra is the existen
eof a symmetri
 monoidal smash produ
t. To de�ne this we follow [MMSS01℄.De�ne the 
ategory of I -spa
es, I Top∗, to be fun
tors I → Top∗. It is atopologi
al 
ategory, the morphisms being the spa
e of natural transformations.Before de�ning ∧ on I S , we de�ne the smash produ
t, ∧̃, of I -spa
es. Thisis given by
(X∧̃Y )(V ) =

∨

d1,d2

I (Rd1 ⊕Rd2 , V )+ ∧O(d1)×O(d2) (X(Rd1) ∧ Y (Rd2)) .
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tra, noti
e that the assembly indu
es a map of
I -spa
es σ : L∧̃S → L, and similarly the left assembly indu
es σ̄ : S∧̃K → K.We now de�ne the smash produ
t, L∧K, of orthogonal spe
tra by the 
oequalizerdiagram of I -spa
es:

L∧̃S∧̃K
σ∧id

⇉
id∧σ̄

L∧̃K → L ∧K .Coequalizers in I Top∗ are formed level-wise. Re
all that Top∗ is the 
ategoryof 
ompa
tly generated spa
es. It is 
o
omplete, and hen
e the topology of
(L∧K)(V ) is given as a 
oequalizer in this 
ategory. As explained in [MMSS01℄,the smash produ
t is symmetri
 monoidal.Having the smash produ
t we de�ne the � produ
t of maps:De�nition 2.1.14Let f : A → L and g : B → K be maps of orthogonal spe
tra, then we de�ne
f�g as the map

f�g : A ∧K ∪ L ∧B → L ∧K .We also have internal fun
tion obje
ts. Again we start by de�ning the internalfun
tion obje
t, F̃ (−,−), on I -spa
es. This is given by
F̃ (X, Y )(V ) = I Top∗(X, Y (V ⊕−)) .And we have an adjun
tion for I -spa
es X, Y and Z:

I Top∗(X∧̃Y, Z) ∼= I Top∗(X, F̃ (Y, Z)) .If L and K are orthogonal spe
tra, the assembly indu
es a map σ∗ : F̃ (L,K)→
F̃ (L∧̃S,K). By the adjun
tion above there is an evaluationmap ǫ : F̃ (L,K)∧̃L→
K. Now 
onsider the 
omposite

F̃ (L,K)∧̃L∧̃S
ǫ∧̃id
−−→ K∧̃S

σ
−→ K ,let ω be its adjoint. De�ne the internal fun
tion spe
trum, F (L,K), by theequalizer diagram of I -spa
es:

F (L,K)→ F̃ (L,K)
σ∗

⇉
ω
F̃ (L∧̃S,K) .We immediately get an adjun
tion for orthogonal spe
tra L, K, X:

I S (L ∧K,X) ∼= I S (L, F (K,X)) .Lemma 2.1.15There is an adjun
tion for the internal hom obje
ts:
F (X ∧ Y, Z) ∼= F (X,F (Y, Z))for X, Y and Z orthogonal spe
tra.
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es. Then we 
he
k by thede�nitions that
F̃ (X∧̃Y, Z)(V ) ∼= F̃ (X, F̃ (Y, Z))(V )for all V .By the 
oequalizer de�ning ∧ and the equalizer de�ning F (−,−), the adjun
-tion also holds for internal hom obje
ts in I S . �2.1.5 The external viewpointWe have presented the symmetri
 monoidal 
ategory I S of orthogonal spe
tra.The formal properties are ni
e, but when we a
tually want to do 
onstru
tionsthings usually are a bit harder. For example it is not easy to de�ne a map

L ∧K → X dire
tly using the de�nition of L ∧K. Therefore it is useful to havealternative viewpoints.Orthogonal spe
tra may be des
ribed as diagram spa
es, see II.4 in [MM02℄and �23 in [MMSS01℄: There is a topologi
al 
ategory J su
h that 
ontinu-ous fun
tors J → Top∗ 
orresponds to orthogonal spe
tra. The obje
ts of Jare the same as the obje
ts of I , �nite dimensional real inner produ
t spa
es
V . Let E (V,W ) be the spa
e of linear isometries V →֒ W . And let E(V,W )
onsist of pairs (f, w) where f : V → W is a linear isometry and w ∈ W isorthogonal to f(V ). E(V,W ) is a ve
tor bundle over E (V,W ), and we de�ne thespa
e of morphisms J (V,W ) to be the Thom spa
e of E(V,W ). (First apply�ber-wise one-point-
ompa
ti�
ation to E(V,W ), then identify the points at∞.)Composition

◦ : J (W,U) ∧J (V,W )→J (V, U)is de�ned by the formula (g, u)◦(f, w) = (g◦f, g(w)+u). The identity of V in Jis represented by (idV , 0). Dire
t sum gives J a symmetri
 monoidal stru
ture:Here
⊕ : J (V,W ) ∧J (V ′,W ′)→J (V ⊕ V,W ⊕W ′)is de�ned by (f, w)⊕ (f ′, w′) = (f ⊕ f ′, (w,w′)). Observe that when V ⊆W , wehave the identi�
ation:

J (V,W ) ∼= O(W )+ ∧O(W−V ) S
W−V .Theorem 2.1.16The 
ategory I S of orthogonal spe
tra is isomorphi
 to the 
ategory of J -spa
es as symmetri
 monoidal 
ategories.Proof: This is the spe
ial 
ase R = S of theorem 2.2 in [MMSS01℄. Given an
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trum L, the 
orresponding J -spa
e L′ is de�ned by
L′(V ) = L(V )and the map L′(V )→ L′(W ) indu
ed by (f, w) is the 
omposition

L′(V ) = L(V )
x 7→(x,w)
−−−−−→ L(V )∧SW−f(V ) σ

−→ L(V⊕(W−f(V ))) ∼= L(W ) = L′(W ) .

�Example 2.1.17 (Level-wise 
onstru
tions)Given a 
ontinuous endofun
tor F on Top∗, we may apply this level-wise to anorthogonal spe
trum L. This yields a new orthogonal spe
trum F (L). To seethis we view L as a fun
tor J → Top∗ and 
onsider the 
omposition
J

L
−→ Top∗

F
−→ Top∗ .Examples of su
h endofun
tors are: Based loops Ω(−), suspension Σ(−), fun
tionspa
es F (X,−), the Barratt-E

les fun
tor Γ+(−).Example 2.1.18 (External des
ription of the smash produ
t)Given J -spa
es K and L we have an external smash produ
t ∧̄. This produ
esa fun
tor J ×J → Top∗ de�ned by

(K∧̄L)(V1, V2) = K(V1) ∧ L(V2) .Re
all that ⊕ is a fun
tor J ×J → J . Left Kan extension, see se
tion X.4in [ML98℄, of K∧̄L along ⊕ gives an internal produ
t. Theorem 2.1.16 saysthat this internal produ
t is equal to K ∧ L de�ned above. Adjun
tion for leftKan extensions now says that for orthogonal spe
tra K, L and X there is ahomeomorphism betweenthe spa
e of natural transformations (K∧̄L)(V1, V2)→ X(V1 ⊕ V2)where V1, V2 ∈J andthe spa
e of maps of orthogonal spe
tra K ∧ L→ X .This adjun
tion is useful when de�ning maps K ∧L→ X. All we have to dois to provide maps
K(V1) ∧ L(V2)→ X(V1 ⊕ V2)for all V1 and V2 su
h that the following diagrams 
ommute

SW ∧K(V1) ∧ L(V2) −−−→ SW ∧X(V1 ⊕ V2)

σ̄∧idL

y
yσ̄

K(W ⊕ V1) ∧ L(V2) −−−→ X(W ⊕ V1 ⊕ V2)
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K(V1) ∧ L(V2) ∧ SW −−−→ X(V1 ⊕ V2) ∧ SW

idK∧σ

y
yσ

K(V1) ∧ L(V2 ⊕W ) −−−→ X(V1 ⊕ V2 ⊕W )for all V1, V2 and W .2.1.6 Orthogonal ring spe
tra; S-algebrasHaving a symmetri
 smash produ
t ∧ of orthogonal spe
tra we de�ne orthogonalring spe
tra, also 
alled S-algebras, as follows:De�nition 2.1.19An orthogonal ring spe
trum, or S-algebra, is an orthogonal spe
trum L togetherwith maps η : S → L and µ : L ∧ L → L su
h that the following diagrams
ommute:
S ∧ L

S is the unit for ∧
−−−−−−−−−−→ L

η∧id

y
y=

L ∧ L
µ

−−−→ L

,

L ∧ S
S is the unit for ∧
−−−−−−−−−−→ L

id∧η

y
y=

L ∧ L
µ

−−−→ Land
L ∧ L ∧ L

µ∧id
−−−→ L ∧ L

id∧µ

y
yµ

L ∧ L
µ

−−−→ L

.De�nition 2.1.20An involution on an orthogonal ring spe
trum is a map ι : L→ L su
h that thefollowing diagram 
ommutes:
L ∧ L

ι∧ι
−−−→ L ∧ L

twist
−−−→ L ∧ L

µ

y
yµ

L
ι

−−−→ L L

.Remark 2.1.21We 
an externalize the de�nition of an orthogonal ring spe
trum. What we thenget is a 
ontinuous fun
tor L : I → Top∗ together with natural transformations
η : SV → L(V ) and µ : L(V ) ∧ L(W )→ L(V ⊕W )
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ertain 
onditions. L has involution if we in addition have ι : L(V )→
L(V ). We often 
all an orthogonal ring spe
trum an I -FSP when we view itexternally.2.2 Cellular te
hniques; q-
o�brationsA

ording to [MMSS01℄ the q-
o�brations are the retra
ts of relative 
ellularmaps. Let us therefore see what a relative 
ellular map is: We start by de�ningour set of 
ells.De�nition 2.2.1Let FI be the set of all maps FRmSn−1

+ → FRmDn
+, where m ≥ 0 and n ≥ 0.We think about FRmDn

+ as a 
ell with boundary FRmSn−1
+ . In the 
ase n = 0the boundary is ∗.Remark 2.2.2 (Symmetries of 
ells)If we inspe
t a 
ell FRmSn−1

+ → FRmDn
+, we see that it has internal symmetries.We will parti
ularly be interested in two di�erent a
tions. First we have an a
tionof the permutation group Σn. It a
ts on Rn by permuting the fa
tors. Anypermutation preserves the subspa
es Dn and Sn−1. Therefore, σ ∈ Σn indu
es amap of pairs

σ∗ : (Dn
+, S

n−1
+ )→ (Dn

+, S
n−1
+ ) .Applying the shift desuspension fun
tor FRm(−) we get self-maps of the 
ell

FRmSn−1
+ → FRmDn

+. We denote this map by F (σ).There is also another a
tion. Σm a
ts on Rm by permuting the fa
tors. Thesemaps are isometries, so for any spa
e A a permutation σ ∈ Σm indu
es a map
Fσ : FRmA→ FRmAnatural in A. This gives another a
tion on FRmSn−1

+ → FRmDn
+.De�nition 2.2.3A map i : A→ L of orthogonal spe
tra is relative FI-
ellular if:

i(A) is a subspe
trum of L.There is a set C of subspe
tra Lα su
h that ea
h Lα 
ontains i(A) and⋃
α∈C Lα = L.

C is partially ordered by in
lusion. We write β ≤ α if Lβ ⊆ Lα. And forall α the set Pα = {β ∈ C | β < α} is �nite.



34 CHAPTER 2. ORTHOGONAL SPECTRAFor every α ∈ C there is a pushout diagram
FRmSn−1

+ −−−→ FRmDn
+y

y
⋃

β<α Lβ −−−→ Lα

.Re
all that in the 
ategory of orthogonal spe
tra pushouts are formed level-wise. If α is minimal, then the union ⋃β<α Lβ is indexed over the empty set. Ifthis is the 
ase we interpret the union as i(A). C is the set of 
ells in the givenrelative 
ellular de
omposition of i : A → L, and β < α if the 
ell β is atta
hedprior to α. Observe that we allow some redundan
y in this de�nition, sin
e wedo not insist that the map FRmSn−1
+ →

⋃
β<α Lβ meets ea
h Lβ non-trivially.Remark 2.2.4There is also a notion of relative CW-orthogonal spe
tra: What we do is to puton the extra 
ondition that the 
ells are atta
hed to 
ells of lower dimension only.The dimension of a 
ell FRmDn

+ is n − m. In other words: A relative FI-
ellstru
ture of i : A→ L is CW if the map dim : C → Z is stri
tly in
reasing.De�nition 2.2.5A map i : A→ L is a q-
o�bration if it is a retra
t of a relative FI-
ellular map.We 
all L 
o�brant if ∗ → L is a q-
o�bration.This de�nition says that there exists a relative FI-
ellular map B → K anda diagram
A −−−→ B −−−→ A

i

y
y

yi

L −−−→ K −−−→ Lsu
h that the horizontal 
ompositions are the identity. Now observe that there isno loss of generality if we assume that B = A. This follows from the elementaryfa
t that relative FI-
ellular maps are 
losed under 
obase 
hange.Observe that all q-
o�brations are both l-
o�brations and h-
o�brations.Remark 2.2.6Alternatively one 
ould de�ne q-
o�brations as the maps whi
h has the left liftingproperty with respe
t to all level a
y
li
 �brations. See �6 in [MMSS01℄. Re
allthat a level a
y
li
 �bration f : E → B is by de�nition a map su
h that for ea
h
V the map fV : E(V )→ B(V ) is both a weak equivalen
e and a Serre �bration.Here is an example of an orthogonal spe
trum whi
h is not 
o�brant:



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 35Example 2.2.7Let S ′ be the orthogonal spe
trum given by
S ′(V ) =

{
SV if dimV > 0, and
∗ if dimV = 0.This is a subspe
trum of S, and the assembly maps are inherited. We will nowshow that S ′ is not 
o�brant.Assume that S ′ is 
o�brant. For 
ontradi
tion we now 
onstru
t a level a
y
li
�bration f : E → B and a diagram
∗ −−−→ Ey

y

S ′ −−−→ Bsu
h that no lifting S ′ → E exists. Hen
e, S ′ 
annot be 
o�brant.Consider the map
p : S∞+ ∧ S

1 → S1given by 
ollapsing S∞ to a point. This is a weak equivalen
e sin
e S∞ is 
on-tra
tible. The map p is involutive. Here Z/2 a
ts on S1 by re�e
ting the 
ir
lea
ross a line, and Z/2 a
ts freely on S∞. The smash produ
t is given the diagonala
tion. However p is not a �bration, so we use the standard tri
k: Let Ep be the
Z/2-spa
e of pairs (x, γ), where x ∈ S∞+ ∧ S

1 and γ is a path in S1 su
h that
p(x) = γ(0). The natural map

(x, γ) 7→ γ(1) : Ep → S1is again a weak equivalen
e. Taking Z/2-�xed points we see that
∗ = (Ep)

Z/2 → (S1)Z/2 = S0 .Now de�ne the level a
y
li
 �bration E → B of orthogonal spe
tra by
E(V ) =

{
I (R1, V ) ∧O(1) Ep if dimV = 1,
∗ otherwise,and

B(V ) =

{
I (R1, V ) ∧O(1) S

1 if dimV = 1, and
∗ otherwise.There is a map S ′ → B de�ned by letting the evaluation on level R1 be theidentity. If S ′ is 
o�brant, there exists a lift to E and at level R1 we have
S ′(R1)→ E(R1)→ B(R1)
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omposite is a Z/2-equivariant homeomorphism. Taking Z/2-�xedpoints we get
S0 → ∗ → S0 ,and sin
e the 
omposition 
annot be a homeomorphism, this yields the 
ontra-di
tion.For topologi
al spa
es we know that a 
ompa
t subset of a CW -
omplex onlymeets �nitely many 
ells. The same is true for relative FI-
ellular orthogonalspe
tra, as the following lemma shows:Lemma 2.2.8If K is a 
ompa
t spa
e, i : A → L a relative FI-
ellular map of orthogonalspe
tra and f : K → L(Rm) a map, then there exists a �nite set of 
ells P su
hthat f fa
tors through ⋃α∈P Lα(Rm).Proof: We say that K meets a 
ell α non-trivially if there exists a point x in

K su
h that f(x) ∈ Lα(Rm), but f(x) 6∈ Lβ(Rm) for any β < α. We have toprove that K only meets �nitely many 
ells non-trivially. For a 
ontradi
tionassume that S = {x1, x2, . . .} is a 
ountable subset of K su
h that ea
h xi meetsa distin
t 
ell non-trivially. Then we 
an show that f(S) ∩ Lα(Rm) is 
losed forall α by indu
tion on the number of elements in Pα. The indu
tion step uses thepushout diagram in de�nition 2.2.3. Sin
e L has the topology of colimα∈C Lα,it follows that f(S) is 
losed in L(Rm). The same argument shows that anysubset of f(S) also is 
losed. Hen
e f(K) 
ontains an in�nite dis
rete set. This
ontradi
ts 
ompa
tness of K.Let P be the set of 
ells whi
h K meets non-trivially. �We have the following reformulation of 
ellularity.Proposition 2.2.9A map j : A→ L of orthogonal spe
tra is relative FI-
ellular if and only if thereexists a sequen
e L0 → L1 → · · · of orthogonal spe
tra su
h that:
A = L0.
L = colimi Li and j equals the natural map L0 → colimi Li.For ea
h i there is a pushout diagram

∨
α∈Ci

FVα
Snα−1

+ −−−→
∨

α∈Ci
FVα

Dnα
+y

y

Li −−−→ Li+1

.Here Ci is the set of 
ells atta
hed to Li.
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ellular. Let Ci be a 
olle
tion of subsetsof C su
h thatthe set of indexes i is the non-negative natural numbers,the Ci's are disjoint, and ⋃∞i=0Ci = C,if α ∈ Ci and β < α then β ∈ Ck for some k < i.For example, we 
ould let Ci be the set of all 
ells α su
h that Pα 
ontains exa
tly
i elements.We set L0 = A, and let Li+1 be the union of all Lα when α runs through
C0 ∪ C1 ∪ · · · ∪ Ci. Then ⋃α∈C Lα = L and j : A → L is the natural map
L0 → colimi Li. To get the pushout diagram of the proposition, 
onsider thefun
tor D from C0 ∪ C1 ∪ · · · ∪ Ci to pushout diagrams whi
h sends α ∈ Ci to

FRmαSnα−1
+ −−−→ FRmαDnα

+y
y

⋃
β<α Lβ −−−→ Lα

,and α ∈ C0 ∪ C1 ∪ · · · ∪ Ci−1 to
∗ −−−→ ∗y

y

Lα −−−→ Lα

.If β < α, then we 
learly have a map of pushout diagrams D(β) → D(α).Taking the 
olimit yields the desired diagram, and this is a pushout, sin
e formingpushouts 
ommutes with forming 
olimits.Now assume that j satis�es the properties of the proposition. We will indu
-tively 
onstru
t relative FI-
ell stru
tures on Li+1 with 
ells C0 ∪ · · · ∪ Ci, su
hthat Li is a sub
omplex. To start the indu
tion we regard A =
−→ L0 as a relative

FI-
ell 
omplex with the set of 
ells being the empty set. Assume that Li alreadyhas been given a relative FI-
ellular stru
ture. The set of 
ells in Li+1 should be
C0 ∪ · · · ∪ Ci, but we need to extend the partial ordering from C0 ∪ · · · ∪ Ci−1.We do this by spe
ifying subspe
tra Lα for all α in Ci. Re
all that for ea
h su
h
α we have a diagram

FVα
Snα−1

+ −−−→ FVα
Dnα

+y
y

Li −−−→ Li+1

.



38 CHAPTER 2. ORTHOGONAL SPECTRALook at the atta
hing map Snα−1
+ → Li(Vα). By lemma 2.2.8 this map fa
torsthrough ⋃β∈P Lβ(Vα) for some �nite subset P of C0 ∪ · · · ∪ Ci−1. De�ne Lα bythe pushout diagram

FVα
Snα−1

+ −−−→ FVα
Dnα

+y
y

⋃
β∈P Lβ −−−→ Li+1

.Here the Lβ 's are already de�ned sin
e β is a 
ell in Li.Letting i go to ∞ we get a relative FI-
ellular stru
ture for j : A→ L. �2.2.1 The smash produ
t of relative 
ellular mapsAssume that A → L and B → K are relative FI-
ellular maps. We will nowdes
ribe the relative FI-
ellular stru
ture of L ∧B ∪ A ∧K → L ∧K.We will need a te
hni
al lemma:Lemma 2.2.10Consider a diagram of spa
es:
B0 ←−−− A0 −−−→ X0y

y
y

B1 ←−−− A1 −−−→ X1

.Let Y0 and Y1 be the pushout of the top and bottom row respe
tively. Then thediagram
A1 ∪A0 X0 −−−→ X1y

y

B1 ∪B0 Y0 −−−→ Y1is pushout.Here we use the notation B ∪AX for the pushout of B ← A→ B, even whenneither of the two maps are inje
tive.Proof: To see this, take a look at the diagram
A1 −−−→ A1 ∪A0 X0 −−−→ X1y

y
y

B1 −−−→ B1 ∪B0 Y0 −−−→ Y1

.By the observation that B1 ∪B0 Y0 = B1 ∪B0 (B0 ∪A0 X0) = B1 ∪A0 X0 =
B1 ∪A1 (A1 ∪A0 X0), we get that the left square is pushout. Sin
e the outer
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an
ellation that the right square also is. �Lemma 2.2.11Assume that
A0

i0−−−→ L0y
y

A1 −−−→ L1

and B0
j0−−−→ K0y

y

B1 −−−→ K1are pushout squares of orthogonal spe
tra, where i0 and j0 are l-
o�brations.Then the diagram
A0 ∧K0 ∪ L0 ∧ B0 −−−→ L0 ∧K0y

y

A1 ∧K1 ∪ L1 ∧ B1 −−−→ L1 ∧K1is also pushout.Using the � produ
t, de�nition 2.1.14, we 
an say that the bottom diagramis the row-wise � of the upper diagrams.Proof: It is enough to prove the result in the 
ase where B1 = B0 and K1 = K0.Sin
e the fun
tor −∧X preserve pushout diagrams for any orthogonal spe
-trum X, we have that the row-wise pushout of
A1 ∧ B0 ←−−− A0 ∧B0 −−−→ L0 ∧ B0y

y
y

A1 ∧K0 ←−−− A0 ∧K0 −−−→ L0 ∧K0is L1∧B0 → L1∧K0. Sin
e the property of being a pushout diagram is level-wise,we 
an apply lemma 2.2.10. Thus we get that
A0 ∧K0 ∪ L0 ∧ B0 −−−→ L0 ∧K0y

y

A1 ∧K0 ∪ L1 ∧ B0 −−−→ L1 ∧K0is pushout. This 
ompletes the proof. �Proposition 2.2.12Assume that i : A → L and j : B → K are relative FI-
ellular maps. Then
i�j : L ∧B ∪A ∧K → L ∧K is also relative FI-
ellular.
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ribe the relative FI-
ellular stru
ture of i�j. Let C and Dbe the sets of 
ells of i and j respe
tively. The set of 
ells for i�j will be C ×D,and we de�ne (L ∧K)(α1,α2) to be
L ∧ B ∪ Lα1 ∧Kα2 ∪ A ∧K .Observe that P(α1,α2) = Pα1 × Pα2 ∪ {α1} × Pα2 ∪ Pα1 × {α2}, thus it is �nite. Itis 
lear that ⋃C×D(L ∧K)(α1,α2) = L ∧K. It remains to show that for ea
h 
ell

(α1, α2) there are pushout diagrams:
FVα1⊕Vα2

S
nα1+nα2−1
+ −−−→ FVα1⊕Vα2

D
nα1+nα2
+y

y
⋃

(β1,β2)∈P(α1,α2)
(L ∧K)(β1,β2) −−−→ (L ∧K)(α1,α2)

.To see this, apply lemma 2.2.11 to the diagrams:
FVα1

S
nα1−1
+ −−−→ FVα1

D
nα1
+y

y
⋃

β1∈Pα1
Lβ1 −−−→ Lα1

and FVα2
S

nα2−1
+ −−−→ FVα2

D
nα2
+y

y
⋃

β2∈Pα2
Kβ2 −−−→ Kα2

.Then apply (L∧B ∪A∧K)∪(Lα1∧B∪A∧Kα2 )− to the lower map. This 
on
ludesthe proof. �2.2.2 Co�brant repla
ement fun
torNow we shall introdu
e a 
o�brant repla
ement fun
tor. Among other uses,we want to apply this fun
tor to orthogonal ring spe
tra with involution to get
o�brant orthogonal ring spe
tra with involution. Therefore we want the fun
torto be lax skew-symmetri
 with respe
t to ∧. See appendix A.2 for de�nitions of(symmetri
) (
o)monoidal 
ategories and lax/strong (symmetri
) (
o)monoidalfun
tors. Skew-symmetry will be de�ned below. Our stru
ture theorem is:Theorem 2.2.13There is an endofun
tor Γ on orthogonal spe
tra having the following properties:
ΓL is 
o�brant for all L.If K → L is the in
lusion of a subspe
trum, then ΓK → ΓL is a q-
o�bration.
Γ 
omes with a natural level-wise a
y
li
 �bration γL : ΓL→ L.
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Γ 
omes with a natural transformation φL,K : ΓL ∧ ΓK → Γ(L ∧K).
Γ 
omes with an involution ι : ΓL→ ΓL, and ι2 = id .There is a 
anoni
al level-wise a
y
li
 q-
o�bration λ : S → ΓS.With λ, φ and ι the fun
tor Γ is lax skew-symmetri
 monoidal with respe
tto ∧.
Γ 
omes with a natural level equivalen
e ρL,K : Γ(L×K)→ ΓL× ΓK.With γ∗ : Γ∗ → ∗ and ρ the fun
tor Γ is lax symmetri
 
omonoidal withrespe
t to ×.Note that φ is not always a π∗-iso. If L and K both are su�
iently bad,the smash produ
t L ∧ K 
an have homotopy unrelated to L and K. Thus

Γ(L∧K) will have the same bad homotopy, whereas ΓL∧ΓK will have the 
orre
thomotopy. However, if either L orK is 
o�brant, then φ will be a π∗-isomorphism,sin
e smashing with a 
o�brant orthogonal spe
trum preserves π∗-isomorphisms,see proposition 2.4.7.Proof: We will break the proof of the stru
ture theorem into several proposi-tions, and the proof will span the rest of this subse
tion. However, we �rst showthat the 
omonoidality with respe
t to × is a formal 
onsequen
e of the otherproperties:To de�ne a map into a ×-produ
t, it is enough to de�ne one map into ea
hfa
tor. Γ applied to the proje
tions gives
Γ(L×K)→ ΓL and Γ(L×K)→ ΓK ,and ρL,K is determined by these maps. It is elementary to see that the 
rossprodu
t of two level equivalen
es is a level equivalen
e. Hen
e, we have thediagram

Γ(L×K)
ρ

−−−→ ΓL× ΓK

γ

y≃ ≃

yγ×γ

L×K L×K

,and it follows that ρ is a level equivalen
e.We know that × is the 
ategori
al produ
t on I S , hen
e lemma A.2.9 im-plies that Γ is lax symmetri
 
omonoidal with respe
t to ×. �Let us now look at the 
onstru
tion of Γ. The idea is to apply Quillen's smallobje
t argument, see 7.12 in [DS95℄. We pro
eed as follows:



42 CHAPTER 2. ORTHOGONAL SPECTRASuppose that p : A → L is a map of orthogonal spe
tra. We now 
onstru
tan orthogonal spe
trum G(p) and a fa
torization of p:
A→ G(p)→ L .Let C be the set of all diagrams

FRmSn−1
+

FRm in
−−−−→ FRmDn

+

f

y
yg

A
p

−−−→ L

,where n,m ≥ 0. Now de�ne G(p) by the pushout diagram
∨

α∈C FRmαSnα−1
+ −−−→

∨
α∈C FRmαDnα

+

∨
α∈C fα

y
y∨α∈C gα

A
p

−−−→ G(p)

.By 
onstru
tion we see that A is a subspe
trum of G(p), and the natural map
G(p)→ L 
omes from the universal property of the pushout. Observe that G(p)is a fun
tor; a morphism between maps p1 : A1 → L1 and p2 : A2 → L2 is a
ommutative diagram

A1
p1−−−→ L1y

y

A2
p2−−−→ L2

.Without a proof we observe that:Lemma 2.2.14There exists a relative FI-
ellular stru
ture on the map A→ G(p).To de�ne ΓL we iterate the gluing 
onstru
tion. Start with p0 : ∗ → L. Applythe 
onstru
tion above and set G1(L) = G(p0) to get a diagram:
∗

j0
−→ G1(L)

p1
−→ L .Iterate to get diagrams

Gi(L)
ji−→ Gi+1(L)

pi+1
−−→ L .De�nition 2.2.15De�ne the q-
o�brant repla
ement of L, ΓL, to be the 
olimit of the Gi(L)'s
onstru
ted above.
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olimit of a sequen
e relative FI-
ellular maps starting from ∗, we seethat ΓL is 
o�brant. Γ is a fun
tor and the natural transformation γL : ΓL→ Lis indu
ed by the natural maps Gi(L)→ L. Let us now begin to prove the variousstatements of theorem 2.2.13.Proposition 2.2.16If j : K → L is the in
lusion of a subspe
trum, then ΓK → ΓL is a q-
o�bration.Proof: Inspe
t the gluing 
onstru
tion. By indu
tion it is enough to 
onsidera diagram
B

j0
−−−→ A

p

y
yq

K
j

−−−→ L

,where j0 is a relative FI-
ellular. We must show that G(p) ∪B A maps homeo-morphi
ally onto a sub
omplex of G(q). Compare with proposition 2.4.10.Consider a 
ell α of G(p):
FRmSn−1

+
FRm in
−−−−→ FRmDn

+

f

y
yg

B
p

−−−→ K

.Composing f with j0 and g with j we get a new diagram β representing a 
ellin G(q). Sin
e j0 and j are inje
tive, we see that di�erent 
ells α and α′ in G(p)gives di�erent 
ells β and β ′ in G(q). It follows that
G(p) ∪B A→ G(q)is relative FI-
ellular. �It is easy to 
onstru
t the map λ : S → ΓS: The diagram
∗ −−−→ F0D

0
+y

y∼=

∗ −−−→ Sdetermines a 
ell α of ΓS. We have ΓSα
∼= S, and de�ne λ to be the 
omposition

S
∼=
−→ ΓSα → ΓS .Proposition 2.2.17

γ : ΓL→ L is a level a
y
li
 �bration.



44 CHAPTER 2. ORTHOGONAL SPECTRAProof: Fix some level V = Rm. We have to show that for every diagram
Sn−1 f

−−−→ ΓL(V )y
yγ

Dn −−−→ L(V )there is a lift Dn → ΓL(V ). Sin
e Sn−1 is 
ompa
t there is an i su
h that ffa
tors through Gi(L)(V ). Then we get the diagram
Sn−1 f

−−−→ Gi(L)(V )y
ypi

Dn −−−→ L(V )

,but this is exa
tly what determines a new 
ell α in G(pi). And we see that Dnlifts into Gi+1(L)(V ). �Constru
tion 2.2.18Next we 
onstru
t the natural transformation φ : ΓL ∧ ΓK → Γ(L ∧K). Indu
-tively we de�ne maps
φi,j : Gi(L) ∧Gj(K)→ Gi+j−1(L ∧K)su
h that the following diagrams 
ommute for all i and j:
Gi(L) ∧Gj(K)

φi,j
−−−→ Gi+j−1(L ∧K)

⊆

y
y⊆

Gi+1(L) ∧Gj(K)
φi+1,j
−−−→ Gi+j(L ∧K)

,

Gi(L) ∧Gj(K)
φi,j
−−−→ Gi+j−1(L ∧K)

⊆

y
y⊆

Gi(L) ∧Gj+1(K)
φi,j+1
−−−→ Gi+j(L ∧K)

and
Gi(L) ∧Gj(K)

φi,j
−−−→ Gi+j−1(L ∧K)y

y

L ∧K L ∧K

.By taking the 
olimit as both i and j tend to in�nity, we get our natural trans-formation ΓL ∧ ΓK → Γ(L ∧K).



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 45Let Gi(L) be ∗ for i ≤ 0. If i ≤ 0 or j ≤ 0, then φi,j is trivially de�ned. We
onstru
t the φ's by indu
tion on i+ j. Let α and β be the diagrams
FRmSn−1

+ −−−→ FRmDn
+

f

y
yg

Gi−1(L) −−−→ L

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yg′

Gj−1(K) −−−→ Krespe
tively. By the 
onstru
tion of Gi(L) and Gj(K) there are unique lifts of αand β to diagrams ᾱ and β̄:
FRmSn−1

+ −−−→ FRmDn
+

f

y
yḡ

Gi−1(L) −−−→ Gi(L)

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yḡ′

Gj−1(K) −−−→ Gj(K)

.Re
all the de�nition of � of two maps, see de�nition 2.1.14. Now 
onsider thediagram
FRm+m′Sn+n′−1

+ −−−→ FRm+m′Dn+n′

+

f∧ḡ′∪ḡ∧f ′

y
yḡ∧ḡ′

Gi−1(L) ∧Gj(K) ∪Gi(L) ∧Gj−1(K) −−−→ Gi(L) ∧Gj(K)

φi−1,j∪φi,j−1

y
y

Gi+j−2(L ∧K) −−−→ L ∧K

,

where the upper part is row-wise � of ᾱ and β̄. The map φi−1,j ∪ φi,j−1 existsby our indu
tion hypothesis. The outer square is a diagram in C for the gluing
onstru
tion applied to Gi+j−2(L ∧K) → L ∧ K. Call this diagram δ. And bythe 
ell δ we get a map
Gi(L)α ∧G

j(K)β → Gi+j−1(L ∧K)δ ⊆ Gi+j−1(L ∧K) .Letting α and β run through all 
ells of Gi(L) and Gj(K) respe
tively, we getour map
φi,j : Gi(L) ∧Gj(K)→ Gi+j−1(L ∧K) .This �nishes the 
onstru
tion of φ : ΓL ∧ ΓK → Γ(L ∧K).Lemma 2.2.19Let A→ L and B → K be maps of orthogonal spe
tra. Consider diagrams

FRm1S
n1−1
+ −−−→ FRm1D

n1
+y

y

A −−−→ L

and FRm2S
n2−1
+ −−−→ FRm2D

n2
+y

y

B −−−→ K

,
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ells 
alled α and β respe
tively. We 
an 
ompare the 
ells α�β and
β�α via the twist map L ∧K → K ∧ L. And we havetwist ◦ (α�β) = (β�α) ◦ F (σ)Fρ ,where F (σ) is the 
ell symmetry permuting 
oordinates of the (n1 + n2)-disk asindi
ated by the map Dn1 × Dn2 ∼= Dn2 × Dn1, and Fρ is the 
ell symmetrypermuting the indexing spa
es as indi
ated by Rm1 ⊕ Rm2 ∼= Rm2 ⊕ Rm1 .Proof: We write out the proof only for the disks. The boundary of the 
ells
an be treated similarly.Consider the diagram

FRm1+m2D
n1+n2
+

F (σ)Fρ

−−−−→ FRm2+m1D
n2+n1
+

∼=

x
x∼=

FRm1D
n1
+ ∧ FRm2D

n2
+

twist
−−−→ FRm2D

n2
+ ∧ FRm1D

n1
+y

y

L ∧K
twist
−−−→ K ∧ L

.

The bottom part 
learly 
ommutes, so it remains to 
he
k that the top part alsodoes. We evaluate at level Rm1+m2 and get:
I (Rm1+m2 , Rm1+m2)+ ∧Dn1+n2

+
σ∗ρ∗

−−−−→ I (Rm2+m1 , Rm1+m2)+ ∧Dn2+n1
+

∼=

x
x∼=

I (Rm1 ⊕ Rm2 , Rm1+m2)+ ∧Dn1
+ ∧Dn2

+
twist
−−−−→ I (Rm2 ⊕ Rm1 , Rm1+m2)+ ∧Dn2

+ ∧Dn1
+

.The map twist swaps both the indexing spa
es Rm1 and Rm2 , and the disks Dn1and Dn2. σ∗ is the map Dn1+n2 ∼= Dn2+n1 permuting the fa
tors, while ρ∗ is thelinear map Rm1+m2 ∼= Rm2+m1 applied to the �rst fa
tor of I (Rm1+m2 ,Rm1+m2).The left verti
al identi�
ation is de�ned via Rm1⊕Rm2 ∼= Rm1+m2 andDn1
+ ∧D

n2
+
∼=

Dn1+n2
+ , and the right verti
al identi�
ation is given by Rm2⊕Rm1 ∼= Rm2+m1 and

Dn2
+ ∧D

n1
+
∼= Dn2+n1

+ . And we see that the diagram 
ommutes. �Now we are ready to de�ne skew-symmetry and to show that Γ satis�es this.De�nition 2.2.20A lax monoidal fun
tor F : M → B is skew-symmetri
 with respe
t to a produ
t
� if there exists a natural transformation ι : F (a) → F (a) with ι2 = id , su
hthat the following diagram 
ommutes:

F (a)�F (b)
ι�ι
−−−→ F (a)�F (b)

γ
−−−→ F (b)�F (a)

φ

y
yφ

F (a�b)
ι

−−−→ F (a�b)
F (γ)
−−−→ F (b�a)

.
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an say that ι measures the failure of F being symmetri
. In our 
ase wehave:Proposition 2.2.21
Γ is a lax skew-symmetri
 monoidal fun
tor with respe
t to ∧.Proof: We begin by 
onstru
ting ι. It is a 
ellular map and 
an be de�ned onthe gluing 
onstru
tion. Let α be the 
ell

FRmSn−1
+ −−−→ FRmDn

+y
y

A
p

−−−→ Lof G(p). Let τn and τm denote the order reversing permutations in Σn and Σmrespe
tively. ι : G(p) → G(p) is the map that sends α to the 
ell F (τn)Fτm
(α).By 
onstru
tion of ΓL as the iterated gluing 
onstru
tion, we get the naturaltransformation

ι : ΓL→ ΓL .Clearly ι2 = id .Inspe
ting the 
onstru
tion of φ : ΓL ∧ ΓK → Γ(L ∧ K), we see that Γ islax monoidal. In order to 
he
k skew-symmetry, it remains to 
he
k that thefollowing diagram 
ommutes:
ΓL ∧ ΓK

ι∧ι
−−−→ ΓL ∧ ΓK

twist
−−−→ ΓK ∧ ΓL

φ

y
yφ

Γ(L ∧K)
ι

−−−→ Γ(L ∧K)
Γ(twist)
−−−−→ Γ(K ∧ L)

.By indu
tion on i+ j we prove that
Gi(L) ∧Gj(K)

ι∧ι
−−−→ Gi(L) ∧Gj(K)

twist
−−−→ Gj(K) ∧Gi(L)

φi,j

y
yφj,i

Gi+j−1(L ∧K)
ι

−−−→ Gi+j−1(L ∧K)
Gi+j−1(twist)
−−−−−−−−→ Gi+j−1(K ∧ L)
ommutes. Let α and β be the diagrams

FRmSn−1
+ −−−→ FRmDn

+

f

y
yg

Gi−1(L) −−−→ L

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yg′

Gj−1(K) −−−→ Krespe
tively, and let ᾱ and β̄ be liftings as de�ned in the 
onstru
tion of φi,j. Bythe previous lemma the diagrams twist◦(ᾱ�β̄) and β̄�ᾱ di�er by the permutation
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oordinates σ∗ : Dn+n′ ∼= Dn′+n and the permutation of indexing spa
e ρ∗ :
Rm+m′ ∼= Rm′+m. Computing with permutations in Σn+n′ we have that

(τn ∐ τn′)σ = στn+n′ .And similarly (τm ∐ τm′)ρ = ρτm+m′ in Σm+m′ . Therefore the diagram
Gi(L)α ∧Gj(K)β

ι
−−−→ Gi(L)F (τn)Fτm (α) ∧G

j(K)F (τn′ )Fτ
m′ (β)

φi,j

y twisty
Gi+j−1(L ∧K) Gj(K)F (τn′ )Fτ

m′ (β) ∧G
i(L)F (τn)Fτm (α)

ι

y
yφj,i

Gi+j−1(L ∧K)
Gi+j−1(twist)
−−−−−−−−→ Gi+j−1(K ∧ L)
ommutes. And the result follows. �2.3 BoundednessWhen doing 
onstru
tions with orthogonal spe
tra, it 
an be useful to 
onsiderthose spe
tra whi
h are bounded below, or those whi
h in addition have highly
onne
ted assembly maps. However 
ellular orthogonal spe
tra does not in gen-eral have these properties. An example is ∨∞m=0 FRmS0. But we may approximateany 
ellular orthogonal spe
tra by spe
tra satisfying these properties.Let us begin with some de�nitions:De�nition 2.3.1Let L be an orthogonal spe
trum.

L is stri
tly c-
onne
ted if there exists an integer N su
h that L(Rn) is
(n+ c)-
onne
ted for all n ≥ N .We 
all L stri
tly 
onne
ted if L is stri
tly (−1)-
onne
ted.
L is stri
tly bounded below if there exists a c su
h that L is stri
tly c-
onne
ted.We 
an simplify the de�nition of stri
tly bounded below:Lemma 2.3.2

L is stri
tly bounded below if and only if there exists a c su
h that L(Rn) is
(n+ c)-
onne
ted for all n.
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tion is obvious. For the �only if� dire
tion assume that L isstri
tly c-
onne
ted. Let N be su
h that L(Rn) is (n+c)-
onne
ted for all n ≥ N .Now set c′ = min(c,−N). When n ≥ N , the spa
e L(Rn) is (n + c)-
onne
ted,hen
e also (n+c′)-
onne
ted. Sin
e every based spa
e is (−1)-
onne
ted, we havethat L(Rn) is (n+ c′)-
onne
ted also for n < N . �By the de�nition of the homotopy groups of an orthogonal spe
trum we im-mediately get:Proposition 2.3.3Let L be an orthogonal spe
trum.If L is stri
tly c-
onne
ted, then πqL = 0 for q ≤ c.If L is stri
tly bounded below, then there exists a c su
h that πqL = 0 forall q ≤ c.The 
onverse is not true as the following examples show:Example 2.3.4Let m be an integer and 
onsider L de�ned by
L(V ) =

{
I (Rn, V )+ ∧ S

n−m if dimV = n ≥ m, and
∗ otherwisewith trivial assembly maps. Assume n ≥ m. By the Freudenthal suspensiontheorem we have that L(Rn) is (n −m − 1)-
onne
ted, and by homology 
al
u-lations we get that L(Rn) is not (n−m)-
onne
ted. Consequently, we have that

L is stri
tly (−m−1)-
onne
ted, but not stri
tly (−m)-
onne
ted. However, thehomotopy groups πqL are trivial for all q.Example 2.3.5Let L be given by
L(V ) =

∞∨

m=0

I (Rm, V )+with trivial assembly maps. Then for all n ≥ 0 we have that L(Rn) is not 0-
onne
ted. Hen
e, there exists no c su
h that L(Rn) is (n + c)-
onne
ted for all
n. It follows that L is not stri
tly bounded below. But sin
e the assembly mapsare trivial, it follows that πqL = 0 for all q.Lemma 2.3.6If A→ X is an l-
o�bration, A, B and X stri
tly c-
onne
ted orthogonal spe
tra,then the pushout, Y , of B ← A→ X is also stri
tly c-
onne
ted.
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es A(Rn), B(Rn) and X(Rn) all are (n + c)-
onne
ted. Wewant to show that Y (Rn) also is (n+ c)-
onne
ted. Consider the diagram
A(Rn) −−−→ X(Rn)y

y

B(Rn) −−−→ Y (Rn)

.For (n+ c) = −1 and (n+ c) = 0, it is obvious that Y (Rn) is (n+ c)-
onne
ted.Assume (n + c) > 0. Blakers-Massey applies and shows that
πq(X(Rn), A(Rn))→ πq(Y (Rn), B(Rn))is an isomorphism when q < 2(n+ c). By the long exa
t sequen
es in homotopyfor the pairs (X(Rn), A(Rn)) and (Y (Rn), B(Rn)), the result follows. �Corollary 2.3.7Assume A, B and X stri
tly bounded below. Then the pushout of B ← A→ Xis also stri
tly bounded below if at least one of the maps is an l-
o�bration.Lemma 2.3.8Let L =

∨
α FVα

Aα. If Aα is well-pointed and dimVα ≤ k for all α, then L isstri
tly (−k − 1)-
onne
ted.Proof: First 
onsider the 
ase with only one wedge summand: A = Aα is a well-pointed spa
e and Vα = Rk. We want to 
al
ulate the 
onne
tivity of FRkA(Rn).If n < k, then by de�nition FRkA(Rn) = ∗, so assume that k ≤ n. Then
FRkA(Rn) = O(n)+ ∧O(n−k) (A ∧ Sn−k) ∼= A ∧

(
O(n)+ ∧O(n−k) S

n−k
)

.Now 
onsider the diagram
O(n− k)y

O(n)× Sn−k

y

O(n)/O(n− k) −−−→ O(n)×O(n−k) S
n−k −−−→ O(n)+ ∧O(n−k) S

n−k

.

Here the verti
al sequen
e is a �bration, and the horizontal sequen
e a 
o�bration.Sin
e O(n− k)→ O(n) is (n− k − 1)-
onne
ted, the long exa
t sequen
e of the�bration yields that O(n) ×O(n−k) S
n−k is (n − k − 1)-
onne
ted. Furthermore,
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onne
ted. Using proposition 4.28in [Hat02℄, we see that O(n)+ ∧O(n−k) S
n−k is also (n− k − 1)-
onne
ted.By Blakers-Massey or CW-approximation, one 
an prove that for well-pointedspa
es X and Y whi
h are r- and s-
onne
ted respe
tively, the smash produ
t

X ∧ Y is (r+ s+ 1)-
onne
ted. Sin
e any spa
e is (−1)-
onne
ted, applying thisto A ∧ (O(n)+ ∧O(n−k) S
n−k
) yields that FRkA(Rn) is (n− k − 1)-
onne
ted.Now 
onsider the wedge

L =
∨

α

FVα
Aα .By the 
al
ulation above L(Rn) is a wedge of well-pointed (n− k− 1)-
onne
tedspa
es. Using CW-approximation or Blakers-Massey we 
an prove that the wedgeof well-pointed l-
onne
ted spa
es again is l-
onne
ted. And it follows that L(Rn)is (n− k − 1)-
onne
ted for all n. �For some purposes we need a stronger 
ondition than stri
tly bounded below:De�nition 2.3.9An orthogonal spe
trum L is meta-stable if it is stri
tly bounded below and thereexists an integer d su
h that σ : L(Rn)∧S1 → L(Rn+1) is (2n+ d)-
onne
ted forall n.Lemma 2.3.10Let K be the pushout of L← A

i
−→ B. Assume that A, B and L are meta-stableorthogonal spe
tra, that i is an l-
o�bration and A is well-pointed. Then K isalso meta-stable.Proof: Consider the diagram

L(Rn) ∧ S1 ←−−− A(Rn) ∧ S1 i
−−−→ B(Rn) ∧ S1

y
y

y

L(Rn+1) ←−−− A(Rn+1)
i

−−−→ B(Rn+1)

.Sin
e A, B and L are bounded below, we may in
rease n until all spa
es in the di-agram above are simply 
onne
ted. Therefore it is enough to 
onsider homologywhen 
al
ulating 
onne
tedness. Comparing Mayer-Vietoris sequen
es for thetwo rows, we get that K(Rn) ∧ S1 → K(Rn+1) is (2n + d)-
onne
ted, assumingthat all three verti
al maps in the diagram above also have this 
onne
tedness. �Lemma 2.3.11Let L =
∨

α FVα
Aα. If all Aα are well-pointed and there exists a k su
h that

dimVα ≤ k for all α, then L is meta-stable.
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onsider the 
ase with a single wedge summand. Assumethat n > k. Then we have by lemma 2.3.8 that both FRkA(Rn) ∧ S1 and
FRkA(Rn+1) are simply 
onne
ted. Thus we 
an 
al
ulate the 
onne
tivity of
σ : FRkA(Rn) ∧ S1 → FRk(Rn+1) using homology. By the de�nition of FRk themap under 
onsideration is

O(n)+ ∧O(n−k) (A ∧ Sn−k) ∧ S1 → O(n+ 1)+ ∧O(n−k+1) (A ∧ Sn−k+1) .We see that this map is l-
onne
ted if and only if the map
O(n)+ ∧O(n−k) (A ∧ Sn−k) ∧ S1 ∧ Sk → O(n+ 1)+ ∧O(n−k+1) (A ∧ Sn−k+1) ∧ Skis (l+k)-
onne
ted. Now observe that the O(n−k+1)-a
tion on (A∧Sn−k+1)∧Sk
an be extended to a O(n+ 1)-a
tion, and thus we have
O(n+1)+∧O(n−k+1) (A∧Sn−k+1)∧Sk ∼= O(n+1)/O(n−k+1)+∧ (A∧Sn+1) ,and similarly for the sour
e spa
e. Thus we are 
onsidering the 
onne
tivity of
O(n)/O(n− k)+ ∧ (A ∧ Sn+1)→ O(n+ 1)/O(n− k + 1)+ ∧ (A ∧ Sn+1) .This map is easily seen to be (2n−k)-
onne
ted. And it follows that σ is (2n−2k)-
onne
ted for n > k. An inspe
tion of the 
ase n = k shows that FRkA(Rk+1)is 0-
onne
ted, and it follows that σ is 0-
onne
ted. Hen
e we 
an take d in thede�nition of meta-stability to be (−2k).In the general 
ase we observe that the suspension map is the 
omposition

L(Rn) ∧ S1 ∼=
∨

α

(FVα
Aα(Rn) ∧ S1)

∨
σ
−−→

∨

α

FVα
Aα(Rn+1) .But the wedge of (2n − 2k)-
onne
ted maps are (2n − 2k)-
onne
ted. And itfollows that L is meta-stable. �The following result is a useful property of relative FI-
ellularity.Proposition 2.3.12Assume that A → L is a relative FI-
ellular map of orthogonal spe
tra. If Ais stri
tly bounded below, then there exists a sequen
e A = L0 → L1 → · · · ofl-
o�brations with 
olimit L, and su
h that ea
h Li is stri
tly bounded below. If

A is meta-stable, then ea
h Li 
an also be assumed meta-stable.Proof: Let C be the poset of 
ells. For a 
ell α let mα denote the desuspensiondegree, i.e. the dimension of V in FV S
n−1
+ → FVD

n
+. Now de�ne Ci indu
tively:Let C0 be those α ∈ C su
h that mα = 0 and Pα = ∅.
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ells α not in Ck for any k < i su
h that
mα ≤ i and for any β < α there is an l < i su
h that β ∈ Cl.Sin
e ea
h Pα is �nite, we see that ⋃i Ci = C. Thus, the 
olle
tion of Ci's satis�esthe 
onditions in the proof of proposition 2.2.9. And by the proof we 
an then
onstru
t the sequen
e A = L0 → L1 → · · · with 
olimit L, indu
tively. Li isde�ned by the pushout diagram

∨
α∈Ci

FRmαSnα−1
+ −−−→

∨
α∈Ci

FRmαDnα
+y

y

Li−1 −−−→ Li

.Sin
e mα ≤ i for all α in Ci, it follows by the lemma 2.3.8 and 
orollary 2.3.7that ea
h Li is stri
tly bounded below. If A in addition is meta-stable, we 
anuse the lemmas 2.3.10 and 2.3.11 to show that ea
h Li is meta-stable. �Let us prove the following property of meta-stable orthogonal spe
tra:Lemma 2.3.13If L is meta-stable and well-pointed, then there exists a 
onstant e su
h that theassembly indu
es a (2n + k + e)-
onne
ted map
ΩkL(Rn+k)→ Ωk+lL(Rn+k+l)for all n, k and l.Proof: By indu
tion we may redu
e to the 
ase where l = 1.Sin
e L(Rn+k)∧S1 → L(Rn+k+1) is (2n+2k+d)-
onne
ted for some 
onstant

d independent of n and k, it follows that
Ω
(
L(Rn+k) ∧ S1

)
→ ΩL(Rn+k+1)is (2n + 2k + d− 1)-
onne
ted. There exists a 
onstant c, also independent of nand k, su
h that L(Rn+k) is (n+ k + c)-
onne
ted. By Freudenthal's suspensiontheorem we have that

L(Rn+k)→ Ω
(
L(Rn+k) ∧ S1

)is (2n+2k+2c+1)-
onne
ted. Hen
e, there exists an e su
h that the 
omposite
L(Rn+k)→ ΩL(Rn+k+1)is (2n+ 2k + e)-
onne
ted. Applying Ωk− we get that

ΩkL(Rn+k)→ Ωk+1L(Rn+k+1)is (2n+ k + e)-
onne
ted. �
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ed fun
tors on orthogonal spe
traConsider a 
ontinuous endofun
tor F de�ned on based spa
es. We already knowfrom example 2.1.17 that applying F level-wise to an orthogonal spe
trum Lyields a new orthogonal spe
trum F (L). What 
an be said about F (L)? Theresults we are looking for will 
ompare F (L) andG(L) whenever we have a naturaltransformation f : F → G of 
ontinuous endofun
tors.Lemma 2.3.14Assume that there exists an integer d su
h that fX : F (X)→ G(X) is (2n + d)-
onne
ted when X is n-
onne
ted and well-pointed. If L is stri
tly boundedbelow and well-pointed, then L→ F (L) is a π∗-iso.Proof: The natural transformation f indu
es a map of orthogonal spe
tra
F (L)→ G(L) .We take the underlying prespe
tra, and look at the q'th homotopy groups:

πqF (L) = colim
n

πq+nF (L(Rn))→ colim
n

πq+nG(L(Rn)) = πqG(L) .For a �xed q and under the given assumptions on f and L, the map πq+nF (L(Rn))→
πq+nG(L(Rn)) is eventually an isomorphism: There exist integers N and c su
hthat L(Rn) is (n + c)-
onne
ted for n ≥ N . Furthermore, there is a d su
hthat F (X) → G(X) is (2n + d)-
onne
ted when X is n-
onne
ted. Therefore,
F (L(Rn))→ G(L(Rn)) is (2n+2c+d)-
onne
ted for n ≥ N , so πq+nF (L(Rn))→
πq+nG(L(Rn)) is an iso for n > max(q − 2c− d,N). �However, the 
ondition we usually want to assume is 
o�bran
y, not stri
tlybounded below. Therefore we use proposition 2.3.12 to transform the lemmaabove.Corollary 2.3.15Let f : F → G be a natural transformation of endofun
tors on Top∗. Assumethat there exists an integer d su
h that fX is (2n + d)-
onne
ted when X is

n-
onne
ted and well-pointed,
F and G preserves 
o�brations of spa
es, andif X0 → X1 → X2 → · · · is any sequen
e of 
o�brations of spa
es,then the natural maps colimi F (Xi) → F (colimiXi) and colimiG(Xi) →
G(colimiXi) are weak equivalen
es.
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o�brant, then the indu
ed map
F (L)→ G(L)is a π∗-isomorphism.Proof: First suppose that L is FI-
ellular. By proposition 2.3.12 there is asequen
e ∗ = L0 → L1 → of l-
o�brations with 
olimit L su
h that ea
h Li isstri
tly bounded below. Apply f : F → G to the sequen
e and 
ompare:

F (L0) −−−→ F (L1) −−−→ F (L2) −−−→ · · ·y
y

y

G(L0) −−−→ G(L1) −−−→ G(L2) −−−→ · · ·

.All horizontal maps are l-
o�brations, while lemma 2.3.14 implies that all verti
almaps are π∗-isomorphisms. It follows that colimi F (Li) → colimiG(Li) is a π∗-iso. By the last assumption, we get that F (L)→ G(L) is a π∗-iso.Now suppose that L is any 
o�brant orthogonal spe
trum. Then L is a re-tra
t of an FI-
ellular orthogonal spe
trum K. It follows that F (L) → G(L) isa retra
t of a π∗-iso F (K)→ G(K), hen
e the �rst map is also a π∗-iso. �The te
hnique of indu
ed fun
tors 
an be extended to multi-fun
tors Topn
∗ →

Top∗. But instead of giving the most general statement, we will illustrate this by
onsidering the example:
iX,Y : X ∨ Y → X × Y , for spa
es X and Y .Proposition 2.3.16If L and K are 
o�brant orthogonal spe
tra, then L ∨ K → L × K is a π∗-isomorphism.Proof: Observe that iX,Y is (n + m + 1)-
onne
ted if X is n-
onne
ted, Y is

m-
onne
ted and both spa
es are well-pointed. Now assume that L and K arewell-pointed and stri
tly bounded below. Then there exists a c su
h that L(Rn)and K(Rn) are (n+ c)-
onne
ted. It follows that
πq+n(L(Rn) ∨K(Rn))→ πq+n(L(Rn)×K(Rn))is an isomorphism when n ≥ q − 2c. Hen
e L ∨K → L×K is a π∗-iso.To get the result in the general 
ase, we use proposition 2.3.12 and the fol-lowing observations:

L 7→ L∨K and L 7→ L×K preserves l-
o�brations when K is well-pointed,
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(colimi Li) ∨K = colimi(Li ∨K), and
(colimi Li)×K = colimi(Li ×K).First assume that L is 
o�brant, and K is stri
tly bounded below and well-pointed. Filtrating L with ea
h Li being stri
tly bounded below and well-pointed,we see that L ∨ K → L × K is a π∗-iso. Next, assume that L and K are both
o�brant, �ltrate K and use the previous senten
e to �nish the proof. �2.4 I S as a model 
ategoryModel 
ategories (=
losed model 
ategories) were introdu
ed by Quillen [Qui67℄and [Qui69℄ as an axiomatization of homotopy theory. See also the survey arti-
le [DS95℄ or the book [Hir03℄. We will re
all the de�nition of a model 
ategorybelow. Mandell, May, S
hwede and Shipley [MMSS01℄ show that the 
ategoryof orthogonal spe
tra has several model stru
tures. We will explain this. These
tion ends by listing various results 
on
erning the model 
ategory theory oforthogonal spe
tra.De�nition 2.4.1A model 
ategory is a 
ategory C with three distinguished 
lasses of maps: weakequivalen
es, �brations and 
o�brations. Ea
h of these 
lasses is 
losed under
omposition and 
ontains all identity maps. A map whi
h is both a �bration(resp. 
o�bration) and a weak equivalen
e is 
alled an a
y
li
 �bration (resp.a
y
li
 
o�bration). And we have the following axioms:MC1 Finite limits and 
olimits exist in C .MC2 If A f
−→ B

g
−→ C are 
omposable maps in C , and if two of the three maps f ,

g and gf are weak equivalen
es, then so is the third.MC3 If f is a retra
t of g and g is a �bration, 
o�bration or weak equivalen
e,then so is f .MC4 Given a 
ommutative diagram
A

f
−−−→ X

i

y
yp

B
g

−−−→ Y

,then there exists a lift h : B → X su
h that hi = f and ph = g in thefollowing two situations: when i is a 
o�bration and p is an a
y
li
 �bration,or when i is an a
y
li
 
o�bration and p is a �bration.
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an be fa
tored in two ways: as f = pi where i is a 
o�brationand p is an a
y
li
 �bration, and as f = pi where i is an a
y
li
 
o�brationand p is a �bration.A model stru
ture on a 
ategory C is a model 
ategory with C as its underlying
ategory.Axiom MC4 gives liftings of 
ertain diagrams. Sin
e liftings are importantin model 
ategory theory, we have the following standard terminology: A map
i : A → B has the left lifting property with respe
t to another map p : X → Yif for any diagram of the same form as the diagram in MC4, there exists a lift
h : B → X su
h that hi = f and ph = g. Dually, we say that p : X → Y has theright lifting property with respe
t to i : A→ B.A basi
 result about model 
ategories, proposition 3.13 in [DS95℄, says that
i is a 
o�bration if and only if it has the left lifting property with respe
t to alla
y
li
 �brations. Dually, p is a �bration if and only if it has the right liftingproperty with respe
t to all a
y
li
 
o�brations. Hen
e, when spe
ifying a model
ategory it is enough to de�ne the weak equivalen
es and either 
o�brations or�brations. The remaining 
lass is determined by lifting properties.Model 
ategories often 
ome with extra stru
ture. For example we have sim-pli
ial model 
ategories, see �II.3 in [GJ99℄. More relevant to us are topologi
almodel 
ategories, see �5 in [MMSS01℄.There are several model stru
tures on the 
ategory of orthogonal spe
tra. The�rst model stru
ture is:De�nition 2.4.2The level model stru
ture on orthogonal spe
tra is given by setting

f : K → L is a weak equivalen
e if f is a level equivalen
e,
f : K → L is a 
o�bration if f is a q-
o�bration (=retra
t of relative
FI-
ellular map), and
f : K → L is a �bration if for ea
h level V the map f : K(V )→ L(V ) is aSerre �bration.Theorem 6.5 in [MMSS01℄ says that the level model stru
ture on orthogonalspe
tra is a model stru
ture. Next we have:De�nition 2.4.3The stable model stru
ture on orthogonal spe
tra is given by setting
f : K → L is a weak equivalen
e if f is a π∗-isomorphism,
f : K → L is a 
o�bration if f is a q-
o�bration (=retra
t of relative
FI-
ellular map), and
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f : K → L is a �bration if f has the right lifting property with respe
tto the a
y
li
 
o�brations (=maps whi
h are both π∗-isomorphisms andq-
o�brations).Theorem 9.2 in [MMSS01℄ says that the stable model stru
ture on orthogonalspe
tra is a model stru
ture.Remark 2.4.4There is also a positive stable model stru
ture on the 
ategory of orthogonal spe
-tra. The weak equivalen
es of this model stru
ture are the π∗-isomorphisms.There are fewer 
o�brations than the previous model stru
tures, be
ause inthe positive stable stru
ture one does not allow 
ells FRmSn−1

+ → FRmDn
+ with

m = 0. The �brations are de�ned via the right lifting property. Theorem 14.2in [MMSS01℄ veri�es that the positive stable model stru
ture is a model stru
ture.The purpose of the positive stable models stru
ture is to study 
ommutativeorthogonal ring spe
tra. However, in this thesis we study orthogonal ring spe
trawith involution, and they are rarely 
ommutative. Hen
e we do not need thepositive stable model stru
ture.We now list mis
ellaneous results:Proposition 2.4.5Consider the diagram
L

i
←−−− A −−−→ K

≃

y
y≃

y≃

L′
i′

←−−− A′ −−−→ K ′where i and i′ are h-
o�brations and the verti
al maps are π∗-isos. Then the mapof the row-wise pushouts is also a π∗-iso.For a proof see theorem 8.12(iv) in [MMSS01℄. The result also holds when iand i′ are q-
o�brations, sin
e any q-
o�bration is an h-
o�bration.Proposition 2.4.6The 
on
lusion of proposition 2.4.5 also holds if we assume that i and i′ arel-
o�brations instead of h-
o�brations.Proof: Apply the 
o�brant repla
ement fun
tor to the diagram of proposi-tion 2.4.5. In the resulting diagram,
ΓL

Γi
←−−− ΓA −−−→ ΓK

≃

y
y≃

y≃

ΓL′
Γi′
←−−− ΓA′ −−−→ ΓK ′

,



2.4. I S AS A MODEL CATEGORY 59we observe that Γi and Γi′ are q-
o�brations, by theorem 2.2.13, and the verti
almaps are π∗-isomorphisms. From the proposition above it follows that
ΓL ∪ΓA ΓK → ΓL′ ∪ΓA′ ΓK ′is a π∗-iso. Now inspe
t the diagram
ΓL

Γi
←−−− ΓA −−−→ ΓK

≃l

y
y≃l

y≃l

L
i

←−−− A −−−→ K

.Here the verti
al maps are level-equivalen
es. And sin
e the pushout is formedlevel-wise, we may evaluate at some level V and use the gluing theorem for weakequivalen
es between spa
es, proposition A.1.4, to 
on
lude that
ΓL ∪ΓA ΓK → L ∪A Kis a level-equivalen
e. Similarly the map ΓL′ ∪ΓA′ ΓK ′ → L′ ∪A′ K ′ is also alevel-equivalen
e. Now 
onsider the 
ommutative square

ΓL ∪ΓA ΓK
≃l−−−→ L ∪A K

≃

y
y

ΓL′ ∪ΓA′ ΓK ′
≃l−−−→ L′ ∪A′ K ′

.We see that the last map must be a π∗-iso, and we are done. �Proposition 2.4.7If X is 
o�brant and K → L is a π∗-iso, then also K ∧X → L ∧X is a π∗-iso.For a proof see proposition 12.3 in [MMSS01℄.Proposition 2.4.8If f : A→ L and g : B → K are q-
o�brations, then
f�g : A ∧K ∪ L ∧ B → L ∧Kis also a q-
o�bration. Furthermore, if f or g is in addition a π∗-iso, then f�g isalso a π∗-iso.The �rst part is a 
orollary of proposition 2.2.12, this is also lemma 6.6in [MMSS01℄. The last part is the pushout-produ
t axiom, proposition 12.6in [MMSS01℄.



60 CHAPTER 2. ORTHOGONAL SPECTRAProposition 2.4.9If f : A→ L, g : B → K and g′ : B′ → K ′ are q-
o�brations, and A is 
o�brantand there is a 
ommutative diagram
B

g
−−−→ K

≃

y
y≃

B′
g′

−−−→ K ′where the verti
al maps are π∗-isomorphisms, then the verti
al maps in the dia-gram
A ∧K ∪ L ∧ B

f�g
−−−→ L ∧K

≃

y
y≃

A ∧K ′ ∪ L ∧ B′
f�g′

−−−→ L ∧K ′are also π∗-isomorphisms.Proof: Sin
e L is 
o�brant, the map L ∧K → L ∧K ′ is a π∗-iso by proposi-tion 2.4.7.Let h be the map A ∧ K ∪ L ∧ B → A ∧K ′ ∪ L ∧ B′. Noti
e that h is therow-wise pushout of
A ∧K ←−−− A ∧ B −−−→ L ∧ By

y
y

A ∧K ′ ←−−− A ∧B′ −−−→ L ∧B′

.Sin
e A and L are 
o�brant, the verti
al maps are π∗-isos by proposition 2.4.7.The maps A ∧ B → A ∧ K and A ∧ B′ → A ∧ K ′ are q-
o�brant by proposi-tion 2.4.8. Now we apply proposition 2.4.5 and 
on
lude that h also is a π∗-iso. �Proposition 2.4.10Assume that we have a map between two sequen
es of orthogonal spe
tra:
K0 −−−→ K1 −−−→ K2 −−−→ · · ·y

y
y

L0 −−−→ L1 −−−→ L2 −−−→ · · ·

.If K0 → L0 is a q-
o�bration, and Ki ∪Ki−1
Li−1 → Li is a q-
o�bration for every

i ≥ 0, then
colim

i
Ki → colim

i
Lialso is a q-
o�bration. In parti
ular, the 
ase where Ki is 
onstant equal to L0yields that L0 → colimi Li is a q-
o�bration if ea
h Li−1 → Li is.
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ategories, we give an abstra
t proof.Re
all that a map in a model 
ategory is a 
o�bration if and only if it has the leftlifting property with respe
t to a
y
li
 �brations, see [DS95℄. Consider a diagram
colimiKi −−−→ Xy

y

colimi Li −−−→ B

,where X → B is an a
y
li
 �bration. De�ne f0 : L0 → X to be a lift in
K0 −−−→ Xy

y

L0 −−−→ B

.Indu
tively, 
hoose a lift fi : Li → X in the diagram
Ki ∪Ki−1

Li−1 −−−→ Xy
y

Li −−−→ B

.Now observe that colimi fi : colimi Li → X lifts the original left lifting problem. �Lemma 2.4.11The maps FRnSn → S, adjoint to the homeomorphisms Sn → S(Rn), are π∗-isomorphisms for all n ≥ 0.This follows from lemma 8.6 in [MMSS01℄.2.5 Simpli
ial orthogonal spe
traWe need to dis
uss simpli
ial orthogonal spe
tra and we will use the theory ofsimpli
ial spa
es as our guideline. In [Seg74℄ Segal de�nes what it means fora simpli
ial spa
e to be good, and shows that good simpli
ial spa
es behaveswell with respe
t to geometri
 realization. May has a similar de�nition, proper,in [May72℄. Using Lillig's union theorem [Lil73℄ one 
an prove that proper andgood are equivalent notions.Let us now de�ne simpli
ial orthogonal spe
tra.De�nition 2.5.1A simpli
ial orthogonal spe
trum is a fun
tor L• : ∆op → I S . It is good if ea
h
si : Lq → Lq+1 is an l-
o�bration.
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 realization fun
tor |−| from simpli
ial orthogonalspe
tra to I S . A qui
k de�nition of |L•| is given by a 
oend:
|L•| =

∫ [q]∈∆

Lq ∧∆q
+ .It is easy to see that | − | is the same as applying the geometri
 realization ofsimpli
ial spa
es level-wise. We therefore have the formula |L•|(V ) ∼= |L•(V )|.There also is a presimpli
ial realization, ‖−‖, given by identifying along inje
tivemaps of ∆ only. As above this 
onstru
tion is also level-wise: We have that

‖L•‖(V ) ∼= ‖L•(V )‖.There is a natural map ‖L•‖ → |L•| and we have the following standardresult:Proposition 2.5.2For a good simpli
ial orthogonal spe
trum L•, the natural map ‖L•‖ → |L•| is alevel equivalen
e.Proof: We evaluate at V and apply the 
orresponding result for simpli
ialspa
es, proposition A.1(iv) in [Seg74℄. �Our su�
ient 
riterion for |K•| → |L•| to be a π∗-isomorphism, is a bit harderto prove:Proposition 2.5.3Let f : K• → L• be a map of simpli
ial orthogonal spe
tra. If K• and L• aregood and the map fq : Kq → Lq is a π∗-isomorphism for any q, then the indu
edmap |f | : |K•| → |L•| is also a π∗-isomorphism.Proof: By the previous proposition it is enough to prove that ‖f‖ : ‖K•‖ →
‖L•‖ is a π∗-isomorphism.We have a �ltration Fq‖K•‖ of ‖K•‖ by skeleta, and pushout diagrams

Kq ∧ ∂∆
q
+ −−−→ Fq−1‖K•‖y

y

Kq ∧∆q
+ −−−→ Fq‖K•‖for ea
h q ≥ 1. It 
an be 
he
ked dire
tly that the left verti
al map is anl-
o�bration, and 
onsequently the right verti
al map is also an l-
o�bration.There is a similar �ltration for ‖L•‖. We 
ompare the two �ltrations. Byproposition 2.1.9 it is enough to show that ea
h map Fq‖K•‖ → Fq‖L•‖ is a

π∗-isomorphism. This is proved by indu
tion:
F0‖K•‖ = K0

f0−→ L0 = F0‖L•‖ is a π∗-isomorphism by assumption.
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tion step we 
onsider the diagram
Kq ∧∆q

+ ←−−− Kq ∧ ∂∆
q
+ −−−→ Fq−1‖K•‖y

y
y

Lq ∧∆q
+ ←−−− Lq ∧ ∂∆

q
+ −−−→ Fq−1‖L•‖

.Here the �rst two verti
al maps are π∗-isomorphisms by proposition 2.4.7, andthe last verti
al map is a π∗-iso by indu
tion. By the gluing lemma, proposi-tion 2.4.6, we get that Fq‖K•‖ → Fq‖L•‖ is a π∗-iso. �An important feature of simpli
ial sets and simpli
ial spa
es is that realization
ommutes with produ
ts. This also holds for simpli
ial orthogonal spe
tra:Lemma 2.5.4The 
ategory of simpli
ial orthogonal spe
tra, sI S , is symmetri
 monoidalunder the produ
t sending K• and L• to [q] 7→ Kq∧Lq. And geometri
 realizationis strong symmetri
 monoidal. In parti
ular there is a natural isomorphism
|K•| ∧ |L•| → |K• ∧ L•| .Proof: It is 
lear that sI S is symmetri
 monoidal, with unit [q] 7→ S. To
he
k that | − | is strong symmetri
 monoidal, we �rst 
he
k the 
orrespondingstatement for the geometri
 realization of simpli
ial I -spa
es. Here the produ
tis ∧̃. Let V be a �nite dimensional real ve
tor spa
e, and evaluate. We have:

(|K•|∧̃|L•|) (V ) ∼= I (Rd ⊕Rd′ , V )+ ∧O(d)×O(d′) (|K•(R
d)| ∧ |L•(R

d′)|)and
|K•∧̃L•|(V ) ∼= |I (Rd ⊕ Rd′, V )+ ∧O(d)×O(d′) (K•(R

d) ∧ L•(R
d′))| .Sin
e realization is a strong symmetri
 monoidal fun
tor from simpli
ial spa
esto spa
es, these formulas imply that | − | is strong symmetri
 monoidal on sim-pli
ial I -spa
es. Now the result also follows for simpli
ial orthogonal spe
tra byinspe
ting the 
oequalizer de�nition of ∧. We have

|K•|∧̃|S|∧̃|L•|⇉|K•|∧̃|L•|→|K•| ∧ |L•|

∼=

y ∼=

y
y

|K•∧̃S∧̃L•| ⇉ |K•∧̃L•| → |K• ∧ L•|

,and it follows that the last map is an isomorphism. �
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ement fun
tor QWe will need the underlying in�nite loop spa
e of an orthogonal spe
trum in orderto de�ne ĜL and 
onsequently alsoK-theory. Getting the underlying in�nite loopspa
e is a two step pro
ess. First there is a fun
tor, whi
h we will 
all Q, thattries to turn orthogonal spe
tra into Ω-spe
tra. To get the underlying in�niteloop spa
e of L, one then pi
ks out the 0'th spa
e of QL.The 
lassi
al idea for 
onstru
ting QL is to take the homotopy 
olimit of
ΩnL(Rn⊕−) as n grows to in�nity. This 
onstru
tion would give the 
orre
t ho-motopy, at least when L is suitably ni
e, but the monoidal properties with respe
tto ∧ are bad. Bökstedt solved this problem by instead 
onsidering a homotopy
olimit over the 
ategory of �nite sets and inje
tions. See the proof of lemma 2.3.7in [Mad94℄. When n lives in this 
ategory the fun
tor n 7→ ΩnL(Rn ⊕ −) hasmonoidal properties, and 
onsequently also its homotopy 
olimit. However, forthe purpose of 
onstru
ting a �brant repla
ement fun
tor of orthogonal spe
trawith monoidal properties, it is more natural to let the indexing 
ategory be �nitedimensional real inner produ
t spa
es and isometri
 embeddings.When reading the proof of proposition 8.8 in [MMSS01℄ or the proof of theo-rem 3.1.11 in [HSS00℄, one 
an get the impression that the 
onstru
tion indi
atedabove does not yield a �brant repla
ement fun
tor. But their problem is 
loselytied to symmetri
 spe
tra, rather than with the 
onstru
tion. In that 
ategoryof spe
tra it is not true that the FI-
ells are meta-stable. For example 
onsiderthe symmetri
 spe
trum F1S

1, see example 3.1.10 in [HSS00℄.We now state the stru
ture theorem for Q:Theorem 2.6.1There is an endofun
tor Q on orthogonal spe
tra having the following properties:
QL is an Ω-spe
trum if L is well-pointed.
Q preserves l-
o�brations of well-pointed orthogonal spe
tra.
Q 
ommutes with sequential 
olimits.If K → L is a π∗-isomorphism and L and K are well-pointed, then QK →
QL is a level-equivalen
e.There is a natural in
lusion ηL : L→ QL, this is a π∗-iso if L is well-pointed.There is a natural map µL,K : QL∧QK → Q(L∧K) su
h that µL,K ◦ (ηL∧
ηK) = ηL∧K .With ηS and µ the fun
tor Q is lax monoidal with respe
t to ∧.



2.6. THE FIBRANT REPLACEMENT FUNCTOR Q 65There is a natural transformation ιL : QL→ QL su
h that ι2 = id , ιη = η,
ι is level equivalent to id when L is well-pointed and the following diagram
ommutes:

QL ∧QK
ι∧ι
−−−→ QL ∧QK

twist
−−−→ QK ∧QLy

y

Q(L ∧K)
ι

−−−→ Q(L ∧K)
twist
−−−→ Q(K ∧ L)

.There is a natural map αL,K : QL × QK → Q(L × K), this is a levelequivalen
e if L and K are well-pointed.With η∗ and α the fun
tor Q is lax monoidal with respe
t to ×.Remark 2.6.2Warning: Q is not symmetri
. That would lead to a 
ontradi
tion: The 0'thspa
e of QS would then be a 
ommutative topologi
al monoid with unit andzero elements, and have the homotopy type of Ω∞Σ∞S0. By a result of Moore,[Moo58℄, this would imply that the path 
omponent of the unit of Ω∞Σ∞S0 hasthe homotopy type of a 
ross produ
t of Eilenberg-Ma
Lane spa
es. This is nottrue.The fa
t that Q is not symmetri
 is the pre
ise point where the 
ategory oforthogonal spe
tra fails to be a �
onvenient 
ategory of spe
tra� as de�ned byLewis, [Lew91℄.Our theorem above is therefore the best possible result regarding the �brantrepla
ement fun
tor: It is lax skew-symmetri
 monoidal, and the involution ι ishomotopi
 to id .Let us now look into the 
onstru
tion of QL. First we let E be the topologi
al
ategory of the �nite dimensional real inner produ
t spa
es Rn, n ≥ 0, andisometri
 embeddings. Given an orthogonal spe
trum L, we have a 
ontinuousfun
tor from E to I S given by
W 7→ ΩWL(W ⊕−) .For morphisms in E from W to U we de�ne the map

E (W,U)+ ∧ ΩWL(W ⊕ V )→ ΩUL(U ⊕ V )as follows: Assume f : W → U is an isometri
 embedding and α : SW →
L(W ⊕ V ) represent a point in ΩWL(W ⊕ V ). Let d be the 
odimension of W in
U . Now 
onsider the 
omposition

SU ∼= Sd ∧ SW id∧α
−−−→ Sd ∧ L(W ⊕ V )

σ̄
−→ L(Rd ⊕W ⊕ V ) ∼= L(U ⊕ V ) ,
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ed by f , and σ̄ is the left assembly. This
omposition represents a point in ΩUL(U ⊕ V ).We have 
hosen to work with the Eu
lidean spa
es Rn, n ≥ 0, instead of all�nite dimensional real inner produ
t spa
es. The reason is that we would like totake a �homotopy 
olimit� over E . Therefore, the obje
ts should be a set. De�ne
Q•L to be the simpli
ial orthogonal spe
trum given by
QqL(V ) =

∨

n0,...,nq≥0

E (Rnq−1 ,Rnq)+ ∧ · · · ∧ E (Rn0,Rn1)+ ∧ Ωn0L(Rn0 ⊕ V ) .The fa
e and degenera
y maps are given by
di(fq−1, . . . , f0;α) =






(fq−1, . . . , f1; f0(α)) for i = 0,
(fq−1, . . . , fi+1, fi ◦ fi−1, fi−2, . . . , f0;α) for 0 < i < q,
(fq−2, . . . , f0;α) for i = q, and

si(fq−1, . . . , f0;α) = (fq−1, . . . , fi, idRni , fi−1, . . . , f0;α) .We now de�ne:De�nition 2.6.3The fun
tor Q is an endofun
tor on orthogonal spe
tra, given on L as the geo-metri
 realization of Q•L.Clearly there is a natural in
lusion ηL : L → QL. This 
omes from thein
lusion of L(V ) as the wedge summand of Q0L(V ) =
∨

n0≥0 Ωn0L(Rn0 ⊕ V )
orresponding to n0 = 0.Lemma 2.6.4If L is well-pointed, then Q•L is a good simpli
ial orthogonal spe
trum.Proof: The spa
e E (Rn,Rn) is well-pointed at idRn, it is even a smooth man-ifold. By assumption Ωn0L(Rn0 ⊕ V ) is well-pointed. By applying the smashprodu
t theorem for well-pointed 
o�brations in Top∗, proposition 12 in [Str72℄,we get that ea
h si is an l-
o�bration. �Lemma 2.6.5
Q preserves level equivalen
es between well-pointed orthogonal spe
tra.Proof: If K → L is a level equivalen
e, it follows that ΩnK(Rn ⊕ V ) →
ΩnL(Rn ⊕ V ) is a weak equivalen
e for all n and V . Hen
e in ea
h simpli
ialdegree q the map

Qq(K)(V )→ Qq(L)(V )is a weak equivalen
e. The result follows sin
e both Q•K and Q•L are good. �
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Q 
ommutes with sequential 
olimits.Proof: Let L0 → L1 → L2 → · · · be a sequen
e of orthogonal spe
tra with
olimit L = colimi Li. Colimits 
ommute with geometri
 realization, thus it isenough to show that

colim
i

QqLi = QqLfor every simpli
ial degree q. Sequential 
olimits are level-wise 
onstru
tions, soit is enough to 
he
k that the 
olimit of QqL0(V ) → QqL1(V ) → · · · is QqL(V )for ea
h V . We now inspe
t the de�nition of Qq − (V ). Colimits 
ommute withwedge, but in general an arbitrary 
olimit does not 
ommute with smash prod-u
ts. However, sequential 
olimits (of based spa
es) 
ommute with the fun
tor
X 7→ A ∧X, where A is some �xed spa
e. Therefore it is enough to show that

colim
i

Ωn0Li(R
n0 ⊕ V ) = Ωn0L(Rn0 ⊕ V )for �xed n0 and V . This is true sin
e the 
olimit is sequential and Sn0 
ompa
t. �Proposition 2.6.7

Q preserves l-
o�brations of well-pointed orthogonal spe
tra.Proof: We start with an l-
o�bration A→ L of well-pointed orthogonal spe
tra.By proposition 2.1.12 the map
ΩnA(Rn ⊕ V )→ ΩnL(Rn ⊕ V )is a 
losed 
o�bration of well-pointed spa
es for all n and V . By the smash prod-u
t theorem for well-pointed 
o�brations of spa
es (proposition 12 in [Str72℄) itfollows that QqA→ QqL is an l-
o�bration of well-pointed orthogonal spe
tra forevery q. Both Q•A and Q•L are good, and by the gluing theorem for l-
o�brationsand the �ltration of the geometri
 realization it now follows that QA → QL isan l-
o�bration. �Lemma 2.6.8The 
lassifying spa
e BE is 
ontra
tible.Proof: Dire
t sum indu
es a map ⊕ : BE ×BE → BE . Sin
e there is a naturaltransformation from the proje
tion E ×E → E onto the �rst fa
tor to the dire
tsum, we get a homotopy between ⊕ and the proje
tion pr 1 : BE × BE → BE .Similarly we get a homotopy ⊕ ≃ pr 2.
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hoose a basepoint ∗ in BE and 
onsider the 
omposition of the in
lusion
i : BE × ∗ → BE × BEwith pr 1, ⊕ and pr 2. We get homotopies

id = pr 1 ◦ i ≃ ⊕ ◦ i ≃ pr 2 ◦ i = ∗ .Thus BE is 
ontra
tible. �We will now start proving that ηL is a π∗-iso when L is well-pointed. Theproof is divided into three parts: First we show the result for meta-stable well-pointed L. Next we �lter any 
o�brant L as the 
olimit of orthogonal spe
tra ofthe �rst type. At last we use 
o�brant approximation to prove the general 
ase.Lemma 2.6.9If L is meta-stable and well-pointed, then η : L→ QL is a π∗-isomorphism.Proof: Evaluating at a level V we land in topologi
al spa
es. Here we alsohave unbased homotopy 
olimits. Let Q̃L(V ) be the geometri
 realization of thesimpli
ial spa
e with q-simplexes given by:
Q̃L(V )q =

∐

n0,...,nq≥0

E (Rnq−1,Rnq)× · · · × E (Rn0 ,Rn1)× Ωn0L(Rn0 ⊕ V ) .Consider the diagram
L(V )y

BE −−−→ Q̃L(V ) −−−→ QL(V )y

BE

.

By lemma 2.3.13 and proposition 1.2.5, there exists a 
onstant d su
h that
Q̃L(Rn) → BE is a (2n + d)-quasi �bration. But BE is 
ontra
tible, thereforethe map L(Rn)→ Q̃L(Rn) is (2n+ d− 1)-
onne
ted.The horizontal part is a 
o�bration sequen
e. Now we use 
orollary A.1.8 andthat BE is 
ontra
tible to see that

πi(Q̃L(Rn))→ πi(QL(Rn))is an isomorphism for all i.
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onstant c su
h that
L(Rn)→ QL(Rn)is (2n+ c)-
onne
ted. And it follows that L→ QL is a π∗-iso. �Remark 2.6.10In the proof above we 
ompared an unbased homotopy 
olimit over a topologi
al
ategory, Q̃L(V ), with the 
orresponding based homotopy 
olimit, QL(V ). Inthe more elementary 
ase where the 
ategory is dis
rete, there is a general resultdue to E. Dror Farjoun that 
ompares unbased and based homotopy 
olimits, seeproposition 18.8.4 in [Hir03℄.Lemma 2.6.11If L is 
o�brant, then the natural map L→ QL is a π∗-iso.Proof: We �rst prove this when L is 
ellular. By proposition 2.3.12, there existsa sequen
e L0 → L1 → · · · of orthogonal spe
tra with 
olimit L su
h that ea
h

Li is meta-stable and well-pointed, while the maps Li → Li+1 are l-
o�brations.Applying Q to this sequen
e we get
L0 −−−→ L1 −−−→ · · · −−−→ L

≃

y ≃

y
y

QL0 −−−→ QL1 −−−→ · · · −−−→ QL

.The verti
al maps Li → QLi are π∗-isomorphism by lemma 2.6.9. Sin
e bothsequen
es 
onsist of l-
o�brations, it follows that L→ QL also is a π∗-iso.For the general 
ase we use that a 
o�brant L is a retra
t of some L′ whi
his 
ellular. It follows that L→ QL is a retra
t of L′ → QL′. Thus L→ QL is a
π∗-iso. �Proposition 2.6.12If L is well-pointed, then the natural map L→ QL is a π∗-iso.Proof: Consider the diagram

ΓL −−−→ QΓLy
y

L −−−→ QL

.



70 CHAPTER 2. ORTHOGONAL SPECTRAThe top map is a π∗-iso by the previous lemma. The left map is a level equivalen
eby theorem 2.2.13. Sin
e Q preserves level equivalen
es between well-pointed or-thogonal spe
tra, lemma 2.6.5, the right map is also a level equivalen
e. It followsthat the bottom map also is a π∗-iso. �Let Ek be the full sub
ategory of E having obje
ts Rn for n ≥ k. We will
ompare QL with the homotopy 
olimit of ΩnL(Rn ⊕ −) over this sub
ategory.Let QkL be the geometri
 realization of the simpli
ial orthogonal spe
trum whose
q-simplexes are:
Qk

qL(V ) =
∨

n0,...,nq≥k

E (Rn0 ,Rn1)+ ∧ · · · ∧ E (Rnq−1 ,Rnq)+ ∧ Ωn0L(V ⊕ Rn0) .Lemma 2.6.13The in
lusion QkL→ QL is a level equivalen
e for all k.Proof: We will show that the fun
tor (Rk ⊕ −) : E → Ek indu
es a map f :
QL → QkL whi
h is a homotopy inverse to incl. First 
onsider the 
omposition
incl ◦f : QL → QL. This map is indu
ed by Rn 7→ Rk ⊕ Rn, 
onsidered as anendofun
tor on E . But we have a natural transformation τ : idE → (Rk ⊕ −)whi
h in
ludes Rn as the last n-
oordinates of Rk+n. By proposition 1.2.2, whi
halso holds in the based 
ase sin
e the formulas for the simpli
ial homotopy stillwork, we get a homotopy between idQL and incl ◦f : QL→ QL indu
ed by τ .The opposite 
omposition, f ◦ incl is also indu
ed by (Rk ⊕−) 
onsidered asan endofun
tor on Ek, and the same natural transformation gives a homotopy
f ◦ incl ≃ idQkL. �Lemma 2.6.14The 
lassifying spa
e BEk is 
ontra
tible.Proof: The proof is similar to that of lemma 2.6.8. Noti
e that also in this
ase there are natural transformations from the proje
tions Ek × Ek → Ek to thedire
t sum. �Lemma 2.6.15If L is meta-stable and well-pointed, then QL is an Ω-spe
trum.Proof: To prove this we have to show that QL(Rn) → ΩQL(Rn+1) is a weakequivalen
e for all n. Fix n. Observe that by lemma 2.6.13 it is enough to showthat for any λ there is a k su
h that

QkL(Rn)→ ΩQkL(Rn+1)
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onne
ted.As in the proof of lemma 2.6.9 we have unbased homotopy limits Q̃kL(V )when V is �xed. From the diagram
ΩkL(V ⊕ Rk)y

BEk −−−→ Q̃kL(V ) −−−→ QkL(V )y

BEkwe estimate the 
onne
tivity of the mapΩkL(Rn+k)→ QkL(Rn). By lemma 2.3.13and proposition 1.2.5 and the fa
t that BEk is 
ontra
tible, there exists a 
onstant
d su
h that

ΩkL(Rn+k)→ ˜QkL(Rn)is (2n + k + d)-
onne
ted. Using that the horizontal part is a 
o�ber sequen
eand that BEk is 
ontra
tible, it follows by 
orollary A.1.8 that
˜QkL(Rn)→ QkL(Rn)is a weak equivalen
e. Thus there exists a d su
h that for all n and k the map

ΩkL(Rn+k)→ QkL(Rn)is (2n+ k + d)-
onne
ted. Now inspe
t the diagram
ΩkL(Rn+k) −−−→ Ωk+1L(Rn+k+1)y

y

QkL(Rn) −−−→ ΩQkL(Rn+1)

.There is a 
onstant c su
h that the map on the top and the two verti
al mapsare (2n + k + c)-
onne
ted. Thus we 
an, by in
reasing k, ensure that the mapon the bottom is λ-
onne
ted for any �xed n. �Lemma 2.6.16If L is 
o�brant, then QL is an Ω-spe
trum.Proof: First assume that L is 
ellular. By proposition 2.3.12, there exists asequen
e L0 → L1 → · · · with 
olimit L su
h that ea
h Li is a meta-stable well-pointed orthogonal spe
trum, and ea
h map Li → Li+1 is an l-
o�bration. By the



72 CHAPTER 2. ORTHOGONAL SPECTRAproposition above we see that QL is the 
olimit of a sequen
e QL0 → QL1 → · · ·of Ω-spe
tra where the maps are l-
o�brations. Now we have
QL(V ) ∼= colim

i
QLi(V )

≃
−→ colim

i
ΩQLi(V ⊕ R) ∼= ΩQL(V ⊕ R) .The map in the middle is a weak equivalen
e sin
e ea
h QLi(V )→ ΩQLi(V ⊕R)is, and both 
olimits are sequential over unbased 
losed 
o�brations. The lastmap is a homeomorphism sin
e the 
olimit system is sequential and S1 is 
ompa
t.General 
o�brant L are retra
ts of some 
ellular L′. Thus QL is the retra
t ofsome Ω-spe
trum QL′. But then the map QL(V )→ ΩQL(V ⊕R) is a retra
t of

QL′(V )→ ΩQL′(V ⊕R), and the former map must be a weak equivalen
e sin
ethe latter already is. �Proposition 2.6.17If L is well-pointed, then QL is an Ω-spe
trum.Proof: Consider the level equivalen
e
QΓL→ QL .Sin
e ΓL is 
o�brant, we know that QΓL is an Ω-spe
trum. It is an elementaryfa
t that a well-pointed orthogonal spe
trum level equivalent to an Ω-spe
trumis itself an Ω-spe
trum. �Corollary 2.6.18If f : L → K is a π∗-iso between well-pointed orthogonal spe
tra, then Qf :

QL→ QK is a level equivalen
e.Proof: This follows sin
e a π∗-iso between Ω-spe
tra is a level equivalen
e.See [MMSS01℄ lemma 8.11. �We will now des
ribe the monoidal stru
ture of Q with respe
t to ∧. To dothis, we �rst de�ne maps of orthogonal spe
tra
µ : ΩnL(Rn ⊕−) ∧ ΩmK(Rm ⊕−)→ Ωn+m(L ∧K)(Rn+m ⊕−) ,natural for L and K in I S and Rn and Rm in E . We take the external viewpointof the smash produ
t, and let the map

µ : ΩnL(Rn ⊕ V ) ∧ ΩmK(Rm ⊕W )→ Ωn+m(L ∧K)(Rn+m ⊕ V ⊕W )be given by sending the point represented by α : Sn → L(Rn⊕ V ) and β : Sm →
K(Rm ⊕W ) to the point represented by the 
omposition
Sn+m α∧β

−−−→ L(Rn⊕V )∧K(Rm⊕W )→ (L∧K)(Rn⊕V ⊕Rm⊕W ) ∼= (L∧K)(Rn+m⊕V ⊕W ) .



2.6. THE FIBRANT REPLACEMENT FUNCTOR Q 73To see that µ is a map of orthogonal spe
tra, we should 
he
k that it 
ommuteswith left and right assembly. Let us inspe
t the 
ase of the right assembly. Sin
ethe identity on L ∧K is a spe
trum map, the external viewpoint gives that
L(V ) ∧K(W ) ∧ SU −−−→ (L ∧K)(V ⊕W ) ∧ SU

id∧σ

y
yσ

L(V ) ∧K(W ⊕ U) −−−→ (L ∧K)(V ⊕W ⊕ U)
ommutes. Using this fa
t, it is easily 
he
ked by 
hasing that the followingdiagram also 
ommutes:
ΩnL(Rn ⊕ V ) ∧ ΩmK(Rm ⊕W ) ∧ SU −−−−→ Ωn+m(L ∧K)(Rn+m ⊕ V ⊕W ) ∧ SU

id∧σ

y
yσ

ΩnL(Rn ⊕ V ) ∧ ΩmK(Rm ⊕W ⊕ U) −−−−→ Ωn+m(L ∧K)(Rn+m ⊕ V ⊕W ⊕ U)

.The other 
ase is done similarly. We 
on
lude that µ is a map of orthogonalspe
tra.Naturality in E ×E means that the map from ΩnL(Rn⊕V )∧ΩmK(Rm⊕W )indu
ed by linear isometries f : Rn → Rn′ and g : Rm → Rm′ 
orresponds to themap from Ωn+m(L∧K)(Rn+m⊕ V ⊕W ) indu
ed by f ⊕ g. It is enough to 
he
kthis when g is the identity on Rm. Let d be the 
odimension of f and α and βas above. It all boils down to the 
ommutativity of the following diagram:
Sn′+m ∼= Sd ∧ Sn+m

id∧α∧β

y

Sd ∧ L(Rn ⊕ V ) ∧K(Rm ⊕W ) −−−→ Sd ∧ (L ∧K)(Rn ⊕ V ⊕ Rm ⊕W )

σ̄∧id

y
yσ̄

L(Rd ⊕ Rn ⊕ V ) ∧K(Rm ⊕W ) −−−→ (L ∧K)(Rd ⊕Rn ⊕ V ⊕Rm ⊕W )

∼=

y

(L ∧K)(Rn′+m ⊕ V ⊕W )

.

Proposition 2.6.19
µ indu
es a natural transformation QL∧QK → Q(L∧K) and Q be
omes a laxmonoidal fun
tor with respe
t to ∧. In addition we have µL,K ◦ (ηL∧ηK) = ηL∧K .Proof: Inspe
ting the de�nition of Q•L, we see that µ together with dire
t sum
E (Rn,Rn′

)× E (Rm,Rm′

)→ E (Rn+m,Rn′+m′

) give a simpli
ial map
Q•L ∧Q•K → Q•(L ∧K) .
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 realization gives the natural transformationQL∧QK → Q(L∧K).Asso
iativity follows from asso
iativity of ⊕ on E and µ on ΩnL(Rn ⊕−).The natural in
lusion for the sphere spe
trum, ηS : S ⊆ QS, satis�es left andright unity: To see this one observes that µ : ΩnL(Rn ⊕−) ∧ ΩmK(Rm ⊕ −) →
Ωn+m(L∧K)(Rn+m⊕−) is equal to the right assembly if m = 0 and K = S, andequal to the left assembly if n = 0 and L = S. This gives left and right unity for
µ. To get form here to Q we use in addition the unit of E .To 
he
k the last formula of the proposition, we observe that µ = id when
n = m = 0. �Re
all from remark 2.6.2 that Q 
annot be symmetri
. However we have:Proposition 2.6.20
Q is skew-symmetri
. This means that there is a natural transformation ι : QL→
QL su
h that ι2 = id and the diagram

QL ∧QK
ι∧ι
−−−→ QL ∧QK

twist
−−−→ QK ∧QLy

y

Q(L ∧K)
ι

−−−→ Q(L ∧K)
twist
−−−→ Q(K ∧ L)
ommutes. Furthermore, ιη = η and ι is level equivalent to the identity when Lis well-pointed.Proof: Let rn : Rn → Rn be the isometries whi
h reverses the standard basis.Conjugating an isometri
 embedding Rn → Rm with rn and rm gives a fun
tor

conj : E → E .Let G denote the fun
tor E → I S given by Rn 7→ ΩnL(Rn ⊕ −). We now
onstru
t a natural transformation ι from G to G ◦ conj by sending a point α in
ΩnL(V ⊕ Rn) to ι(α) de�ned by the 
ommutativity of

Sn α
−−−→ L(V ⊕Rn)

Srn

y
yL(idV ⊕rn)

Sn ι(α)
−−−→ L(V ⊕Rn)

.This natural transformation gives a map of simpli
ial spa
es:
Q•L

ι
−→ Q•L .Taking the geometri
 realization we get the natural transformation we are lookingfor. It is easily seen that ι2 = id .
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ommutativity of the main diagram of the proposition, we observethat for maps α : Sn → L(V ⊕ Rn) and β : Sm → K(W ⊕ Rm) we have thattwist ◦ ι(α ∧ β) = ι(β) ∧ ι(α)as maps Sn+m → (K ∧ L)(V ⊕ W ⊕ Rn+m). Here twist is the isomorphism
L ∧K ∼= K ∧ L.To see that ι is level equivalent to the identity, we inspe
t the diagram

L L

η

y
yη

QL
ι

−−−→ QL

.Commutativity follows sin
e r0 = id on R0. When L is well-pointed, both verti
almaps are π∗-isomorphisms, so we see that ι indu
es the identity on homotopygroups. But QL is an Ω-spe
trum, therefore it follows that ι also indu
es theidentity
πqQL(V )→ πqQL(V )for all levels V and q ≥ 0. �Proposition 2.6.21There is a natural map αL,K : QL×QK → Q(L×K), this is a level equivalen
eif L and K are well-pointed. With η∗ and α the fun
tor Q is lax monoidal withrespe
t to ×.Proof: α is de�ned similarly to µ. Given (β1, β2) ∈ ΩnL(Rn⊕V )×ΩmK(Rm⊕V )we 
an suspend β1 to a point in Ωn+mL(Rn+m⊕V ) using the in
lusion i1 : Rn →

Rn ⊕ Rm = Rn+m and suspend β2 to a point in Ωn+mK(Rn+m ⊕ V ) using thein
lusion i2 : Rm → Rn⊕Rm = Rn+m. This gives a point in Ωn+m(L×K)(Rn+m⊕
V ) by the 
anoni
al homeomorphism

Ωn+mL(Rn+m ⊕ V )× Ωn+mK(Rn+m ⊕ V ) ∼= Ωn+m(L×K)(Rn+m ⊕ V ) .This natural transformation
ΩnL(Rn ⊕ V )× ΩmK(Rm ⊕ V )→ Ωn+m(L×K)(Rn+m ⊕ V )together with dire
t sum on E indu
e the natural map

αL,K : QL×QK → Q(L×K) .This 
learly satis�es asso
iativity and unity with respe
t to η∗ : ∗ → Q∗.
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ommutative diagram
L×K L×K

ηL×ηK

y
yηL×K

QL×QK
αL,K
−−−→ Q(L×K)

.If L and K are well-pointed, then the verti
al maps are π∗-isomorphisms. Andit follows that αL,K also is a π∗-iso. But QL × QK and Q(L × K) are both
Ω-spe
tra, hen
e αL,K is a level equivalen
e. �



Chapter 3Equivarian
e for orthogonal spe
traWe now give an exposition of the theory of equivariant orthogonal spe
tra. Mu
hof the material presented here 
an also be found in [MM02℄. However, there aresome new results. The author would like to point out three novelties: We intro-du
e new types of 
ells, indu
ed- and orbit- 
ells, and provide a lax symmetri
orbit 
o�brant repla
ement fun
tor Γ̃, see theorem 3.9.1. The se
ond new resultis a formula for the geometri
 �xed points of indu
ed G-spe
tra, see proposi-tion 3.8.10. We also introdu
e a diagonal map for the iterated smash produ
ts
L∧q of an orthogonal spe
trum L, see de�nition 3.10.4. When L is 
o�brant,the diagonal map is an isomorphism into the geometri
 �xed points, see proposi-tion 3.10.7.In this 
hapter G will be a 
ompa
t Lie group, but for some arguments werestri
t to the 
ase where G is a �nite, dis
rete group. Genuine equivarian
emeans to allow any G-representation when indexing our spe
trum. Naive equiv-arian
e means to allow trivial representations only. However, lemma 3.2.1 pro-vides 
hange of universe fun
tors, and they are equivalen
es of 
ategories. Hen
e,there is only one 
ategory of orthogonal G-spe
tra. This 
ategory hasmany model stru
tures, and these model stru
tures do depend on the 
hoi
e of a
G-universe. So the modi�ers �genuine� and �naive� apply to notions su
h as weakequivalen
es, 
ellularity, model stru
tures, geometri
 �xed points et
.3.1 PreliminariesLet us now introdu
e the relevant terminology and notation for G-
ategories.This material 
an also be found in 
hapter II �1 of [MM02℄, but is in
luded herefor the 
onvenien
e of the reader.A topologi
al G-
ategory is a 
ategory CG su
h that its hom sets CG(C,D) arebased topologi
al G-spa
es, and 
omposition

◦ : CG(D,E) ∧ CG(C,D)→ CG(C,E)77
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ontinuous G-map. We think about the elements of CG(C,D) as the non-equivariant maps C → D, and we 
all them the arrows of CG. Observe that
idC ∈ CG(C,C) is �xed by the G-a
tion; this is easily dedu
ed from the fa
t thatthe 
omposition ◦ is G-equivariant.Given a topologi
al G-
ategory CG, we 
an form a topologi
al 
ategory GC .This 
ategory has the same obje
ts, but the hom sets are given by taking G-�xedpoints:

GC (C,D) = CG(C,D)G .Hen
e GC (C,D) is a based topologi
al spa
e, and 
omposition is 
ontinuous. Wethink about the elements of GC (C,D) as the G-equivariant maps C → D, andwe 
all them G-maps.If we ever en
ounter a situation where the G-spa
es of arrows, CG(D,E), aregiven as unbased G-spa
es, we impli
itly add disjoint G-�xed basepoints.Example 3.1.1We let TopG∗ denote the topologi
al G-
ategory of 
ompa
tly generated G-spa
es(=weak Hausdor� k-spa
es with G-a
tion) and non-equivariant maps. G a
ts onthe spa
e TopG∗(X, Y ) of arrows X → Y by 
onjugation. Written out expli
itly,the element g ∈ G sends a map f : X → Y to the 
omposition gfg−1. The
G-maps from X to Y are the G-�xed points

GTop∗(X, Y ) = TopG∗(X, Y )G .A 
ontinuous G-fun
tor F : CG → DG between topologi
al G-
ategories is afun
tor F su
h that
F : CG(C,D)→ DG(F (C), F (D))is a 
ontinuous G-equivariant map of based G-spa
es. It follows that F indu
esa fun
tor GC → GD .A natural G-transformation α : F1 → F2 between 
ontinuous G-fun
tors

CG → DG 
onsists of G-maps α : F1(C)→ F2(C) for every obje
t C in CG su
hthat the diagrams
F1(C)

F1(f)
−−−→ F1(D)

α

y
yα

F2(C)
F2(f)
−−−→ F2(D)
ommute in DG for all f ∈ CG(C,D).Now we begin de�ning orthogonal G-spe
tra. The �rst thing we have to do isto somehow spe
ify the G-representations we will allow for indexing. We preferthe notion of a good 
olle
tion, but one 
ould also talk about G-universes. Afterthat, we de�ne the topologi
al G-
ategories IG. And IG-spa
es will relate toorthogonal G-spe
tra, just as I-spa
es relate to orthogonal spe
tra.



3.1. PRELIMINARIES 79De�nition 3.1.2Let V be a 
olle
tion of �nite dimensional real G-inner produ
t spa
es. We 
all
V a good 
olle
tion if it 
ontains the trivial representations and is 
losed underdire
t sum. V is 
alled a very good 
olle
tion if it in addition to being a good
olle
tion, is 
losed under passage to subrepresentations.A G-universe U is a sum of 
ountably many 
opies of ea
h real G-inner prod-u
t spa
es in some set of irredu
ible representations of G that in
ludes the trivialrepresentation. U is 
omplete if it 
ontains all irredu
ible representations. U istrivial if it 
ontains only trivial representations. Observe that there is a 
orre-sponden
e between very good 
olle
tions and universes. Given U one 
an de�ne a
olle
tion V (U) 
onsisting of all G-representations isomorphi
 to a �nite dimen-sional sub G-inner produ
t spa
e of U . Given a very good 
olle
tion V one 
anpi
k one representative for every isomorphism 
lass of irredu
ible representations
ontained in V . This set of irredu
ible representations generate a G-universe.De�nition 3.1.3Let V be a good 
olle
tion of G-representations. De�ne I V

G to be the (unbased)topologi
al G-
ategory whose obje
ts are those of V and whose arrows (=non-equivariant maps) are the linear isometri
 isomorphisms. G a
ts on the spa
e
I V

G (V,W ) of arrows V → W by 
onjugation. Let GI V be the topologi
al
ategory with the same obje
ts, but with G-maps V → W as morphisms. Wehave
GI V (V,W ) = I V

G (V,W )G .Remark 3.1.4We will usually omit the 
olle
tion V from the notation. Thus we write IGinstead of I V
G . Mostly we will be interested in the 
ase where V = A ℓℓ isthe 
olle
tion of all G-representations. The other extreme 
ase is V = triv, the
olle
tion 
ontaining only the trivial G-representations. We shall see below thatup to equivalen
e of 
ategories the 
hoi
e of V does not matter. However, itplays an important role for model stru
tures on GI S .De�nition 3.1.5An IG-spa
e is a 
ontinuous G-fun
tor X : IG → TopG∗. Let IGTop∗ bethe topologi
al G-
ategory of IG-spa
es and arrows the non-equivariant natu-ral transformations X → Y . G a
ts on IGTop∗(X, Y ) by 
onjugation. We de�ne

GI Top∗ to be the topologi
al 
ategory with the same obje
ts and naturalG-maps
X → Y as morphisms. We have

GI Top∗(X, Y ) = IGTop∗(X, Y )G .It is not obvious how to de�ne a topology on IGTop∗(X, Y ). Here is how todo it. First 
hoose a skeleton sk IG of IG. (A skeleton sk C for a 
ategory C isde�ned as a full sub
ategory su
h that ea
h obje
t in C is isomorphi
 to a unique
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t in sk C .) Observe that sk IG is small. Given IG-spa
es X and Y , we 
an
onsider the produ
t of the fun
tion spa
es F (X(V ), Y (V )) over V ∈ sk IG. Now
IGTop∗(X, Y ) lies as a subset inside∏V ∈skIG

F (X(V ), Y (V )), and we give it thesubspa
e topology.Here is an example of an IG-spa
e:Example 3.1.6Let S be the fun
tor IG → TopG∗ sending the G-representation V to SV , theone-point-
ompa
ti�
ation of V .We now de�ne orthogonal G-spe
tra:De�nition 3.1.7An orthogonal G-spe
trum L is an IG-spa
e L together with a natural G-map
σ : L(V )∧SW → L(V ⊕W ) su
h that unit and asso
iativity diagrams 
ommute.These diagrams are identi
al to those found in de�nition 2.1.1. Let IGS denotethe topologi
al G-
ategory of orthogonal G-spe
tra and arrows f : L → K that
ommute with σ. In general f is non-equivariant, and G a
ts on IGS (L,K) by
onjugation. Let GI S be the topologi
al 
ategory of orthogonal G-spe
tra and
G-maps. We have

GI S (L,K) = IGS (L,K)G .Observe that S is an orthogonal G-spe
trum. We 
all S the sphere spe
trum.Similar to the des
ription of orthogonal spe
tra given by theorem 2.1.16, wenow de�ne topologi
al G-
ategories JG su
h that JG-spa
es are the same asorthogonal G-spe
tra. This is also done in 
hapter II �4 of [MM02℄.De�nition 3.1.8Let V be some good 
olle
tion of G-representations. The obje
ts of J V
G are thesame as the obje
ts of I V

G , the �nite dimensional G-representations V 
ontainedin V . Let E (V,W ) be the G-spa
e of (non-equivariant) linear isometries V →֒ W .
G a
ts on E (V,W ) by 
onjugation. And de�ne E(V,W ) to be the G-spa
e ofpairs (f, w) where f : V →W is a linear isometry and w ∈W is orthogonal to thelinear subspa
e f(V ). E(V,W ) is a ve
tor bundle over E (V,W ), and we de�nethe G-spa
e of morphisms J V

G (V,W ) to be the Thom spa
e of E(V,W ). (Firstapply �ber-wise one-point 
ompa
ti�
ation to E(V,W ), then identify the pointsat ∞.) The G-a
tion on J V
G (V,W ) is expli
itly given as follows; an element

g ∈ G sends the pair (f, w) to (gfg−1, g(w)). Composition
◦ : J V

G (W,U) ∧J V
G (V,W )→J V

G (V, U)is de�ned by the formula (h, u) ◦ (f, w) = (h ◦ f, h(w) + u). The identity of Vin J V
G is represented by (idV , 0). Dire
t sum gives J V

G a symmetri
 monoidalstru
ture:
⊕ : J V

G (V,W ) ∧J V
G (V ′,W ′)→J V

G (V ⊕ V,W ⊕W ′)



3.2. CHANGE OF UNIVERSE FUNCTORS 81is de�ned by (f, w)⊕ (f ′, w′) = (f ⊕ f ′, (w,w′)).Observe that when V ⊆W we have the identi�
ation:
J V

G (V,W ) ∼= O(W )+ ∧O(W−V ) S
W−V .As usual we let GJ V denote the G-�xed 
ategory of J V

G . The two 
ategorieshas the same obje
ts and
GJ V (V,W ) = J V

G (V,W )G .We follow the 
onvention from remark 3.1.4 and omit the 
olle
tion V from thenotation, thus writing JG and GJ .
JG-spa
es are de�ned as 
ontinuous G-fun
tors JG → TopG∗. We have anexternal smash produ
t sending a pair of JG-spa
es to a JG ×JG-spa
e. The(internal) smash produ
t of JG-spa
es is given as the left Kan extension along ⊕of the external smash produ
t. Similar to theorem 2.1.16 we have the followingresult:Theorem 3.1.9The symmetri
 monoidal 
ategory of orthogonal G-spe
tra is isomorphi
 to thesymmetri
 monoidal 
ategory of JG-spa
es.This is theorem II.4.3 in [MM02℄. For a proof mimi
 �23 in [MMSS01℄.3.1.1 Shift desuspension fun
torsThe equivariant shift desuspension fun
tors FV : TopG∗ → IGS are de�ned forall G-representations V . For based G-spa
es A, the orthogonal G-spe
trum FVAis given at level W by

(FVA)(W ) = JG(V,W ) ∧A .Observe that FV is the left adjoint to evaluation at level V . We have:
IGS (FVA,L) ∼= TopG∗(A,L(V ))for all V , A and L.3.2 Change of universe fun
torsReading the de�nition it seems that the 
ategories IGS and GI S depend onthe 
hoi
e of a good 
olle
tion V of G-representations. As we soon shall see, up to
anoni
al equivalen
e of 
ategories this 
hoi
e does not matter. Therefore, it is ourpoint of view that the notion of an orthogonalG-spe
trum is well-de�ned, withoutany modi�er determining a 
hoi
e of V . �Naive� and �genuine� are examples



82 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAof su
h modi�ers. However, these modi�ers will later play an important role,for example when 
onsidering extra stru
ture on IGS and when 
onstru
tingasso
iated fun
tors.The key lemma is:Lemma 3.2.1Let V ∈ V be a G-representation and n = dim V . For an orthogonal G-spe
trum
L the evaluation G-map

IG(Rn, V )+ ∧ L(Rn)→ L(V )indu
es a G-homeomorphism
α : IG(Rn, V )+ ∧O(n) L(Rn)→ L(V ) .Proof: This is lemma V.1.1 in [MM02℄. The proof is illustrative, so we in
ludeit here: The evaluation is a G-map sin
e L is a G-fun
tor. The O(n)-a
tion on

IG(Rn, V )+ and L(Rn) 
ommutes with the G-a
tion, hen
e the α is a G-map.Choose any linear isomorphism f : Rn → V . We get the inverse to α by sending
y ∈ L(V ) to the point represented by (f, L(f−1)(y)). �De�nition 3.2.2Let V and V ′ be good 
olle
tions of G-representations. We de�ne the G-fun
tor
ItrivV : I triv

G S → I V
G S by letting

(ItrivV L)(V ) = IG(Rn, V )+ ∧O(n) L(Rn) , where n = dimV .In addition there are forgetful fun
tors IV ′triv : I V ′

G S → I triv
G S . And we de�ne

IV ′

V as the 
omposite
I V ′

G S
IV

′triv−−→ I triv
G S

Itriv
V−−→ I V

G S .Theorem 3.2.3
IV ′

V is an isomorphism between the 
ategories I V ′

G S and I V
G S .Proof: It is enough to 
he
k that ItrivV is an isomorphism of 
ategories. Itsinverse is the forgetful fun
tor IVtriv. And by the de�nition of the former it iseasily seen that ItrivV ◦ IVtriv is naturally isomorphi
 to the identity fun
tor on

I triv
G S . Lemma 3.2.1 above provides a natural isomorphism

IVtriv ◦ ItrivV
∼= id .This �nishes the proof. �
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eUnlike the 
ategory of orthogonal spe
tra, I S , where we 
onsidered just twonotions of equivalen
e, namely level equivalen
es and π∗-isomorphisms, we willin the equivariant 
ase de�ne many di�erent 
lasses of weak equivalen
es. Thereason for this phenomenon is three 
hoi
es in�uen
ing our de�nition. These arethe 
hoi
e of level-wise versus stable,the 
hoi
e of a family F of subgroups of G, andthe 
hoi
e of a good 
olle
tion V of G-representations.Of 
ourse, not all possible sets of 
hoi
es are equally interesting. We shall pointout a few interesting examples. Often one has a parti
ular appli
ation of thetheory in mind when 
onsidering a notion of equivalen
e. For example, we willde�ne 
y
lotomi
 π∗-isomorphisms below, in order to study THH and TC oforthogonal ring spe
tra (with involution) in 
hapter 5.A family of subgroups of G is de�ned as a 
olle
tion F of H ⊆ G 
losed underpassage to 
onjugates and subgroups.Let us begin by 
onsidering the level-wise 
ases.De�nition 3.3.1Let f : L→ K be a map of orthogonal G-spe
tra. We say that f is a level-wise
(F ,V )-equivalen
e if for every H ∈ F and V ∈ V the map

L(V )H → K(V )His a weak equivalen
e of topologi
al spa
es.We now de�ne homotopy groups. In non-equivariant homotopy theory wehave one homotopy group for every q ∈ Z, whereas in equivariant homotopytheory we index our homotopy groups by an integer q and a subgroup H of G.For orthogonal G-spe
tra the homotopy groups also depend on the 
hoi
e of agood 
olle
tion V .De�nition 3.3.2Let U be a G-universe asso
iated to V . The homotopy groups are de�ned by
πH

q L =

{
colimV⊂U πq(Ω

V L(V ))H if q ≥ 0, and
colimRq⊆V⊂U π0(Ω

V−Rq

L(V ))H if q ≤ 0.Remark 3.3.3Observe that for �xed H the homotopy group πH
q L does not really depend onwhi
h G-representations V 
ontains, but rather on the H-representations appear-ing as the restri
tion of some V in V . To see this, assume that φ : V →W is an
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H-linear isometri
 isometry. The diagram

SV f
−−−→ L(V )

φ∗

y∼= ∼=

yL(φ)

SW g
−−−→ L(W )gives a homeomorphism between the (non-equivariant) spa
es (ΩVL(V )

)H and(
ΩVL(V )

)H , de�ned by sending f to the unique g making the diagram 
ommute.Stable notions of equivalen
e are now de�ned as follows:De�nition 3.3.4Let f : L→ K be a map of orthogonal G-spe
tra. We say that f is an (F ,V )-
π∗-isomorphism if for every H ∈ F and q ∈ Z the map

πH
q L→ πH

q Kis an isomorphism.We now have overwhelmingly many notions of equivalen
e for orthogonal G-spe
tra. Let us now give names to the extreme 
ases and some other interestingexamples.De�nition 3.3.5The naive level-equivalen
es are the level-wise (A ℓℓ, triv)-equivalen
es, the gen-uine level-equivalen
es are the level-wise (A ℓℓ,A ℓℓ)-equivalen
es, the naive π∗-isomorphisms are the (A ℓℓ, triv)-π∗-isomorphism, and the genuine π∗-isomorphismsare the (A ℓℓ,A ℓℓ)-π∗-isomorphism.Here the familyA ℓℓ is the 
olle
tion of all subgroups ofG, triv is the 
olle
tionof the trivial G-representations, and the good 
olle
tion A ℓℓ is the 
olle
tion ofall G-representations.Remark 3.3.6Clearly every genuine level-equivalen
e is a naive level-equivalen
e. Furthermoregenuine π∗-isomorphisms are naive π∗-isomorphisms by theorem V.1.7 in [MM02℄.Be
ause of lemma 3.2.1 it is tempting to think that the 
onverse statements alsomust be true. However this is not the 
ase. The reason in the level-
ase, isthat the H-�xed points of IG(Rn, V )+ ∧O(n) L(Rn) is generally not equal to
IG(Rn, V )+ ∧O(n) L(Rn)H .If the Lie group G is S1 or O(2) we de�ne:De�nition 3.3.7Let F be the family of �nite 
y
li
 subgroups of S1. The 
y
lotomi
 π∗-isomorphismsare the (F ,A ℓℓ)-π∗-isomorphisms.
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lusion S1 ⊂ O(2), the family F is also a family of subgroups of
O(2).

Ω-spe
tra in the equivariant setting are given as follows:De�nition 3.3.8An orthogonal G-spe
trum L is an Ω-G-spe
trum if all maps
L(V )H →

(
ΩWL(V ⊕W )

)Hare weak equivalen
es of spa
es. Here V and W are G-representations, and H a
losed subgroup of G.3.4 Cellular orthogonal G-spe
traIn this se
tion we re
all the notion of an F V IG-
ell from [MM02℄, we also introdu
enew types of 
ells, namely indu
ed G-
ells and orbit G-
ells.De�nition 3.4.1Given a good 
olle
tion V of G-representations. Choose a skeleton sk I V
G for

I V
G . The F V IG-
ells is the set of all maps

FV

(
Sn−1 ×G/H

)
+
→ FV

(
Dn−1 ×G/H

)
+

,where n ≥ 0, V ∈ sk IG and H is a 
losed subgroup of G.The two extreme 
ases are:De�nition 3.4.2The naive FIG-
ells are the F trivIG-
ells; we allow only trivial G-representations
V . The genuine FIG-
ells are the FA ℓℓIG-
ells; we allow all G-representations.Remark 3.4.3To what degree does the equivariant stru
ture of the orthogonal G-spe
trum
FV (Dn ×G/H)+ depend on the representation V ?Assume that H is trivial. Choose a (non-equivariant) isometri
 isomorphism
φ : Rm → V . Evaluating FV (Dn ×G)+ at some level W we get

JG(V,W ) ∧ (Dn ×G)+ .Represent a point by a triple (f, x, g). We have a map into JG(Rm,W )∧ (Dn×
G)+ given by sending (f, x, g) to (fgφ, x, g). And it is easily 
he
ked that thismap is a G-map. Hen
e we have a G-isomorphism of orthogonal G-spe
tra

FV (Dn ×G)+
∼= FRm(Dn ×G)+ .Now assume that H is non-trivial. Whenever we have an H-linear isometri
isomorphism φ : U → V , then FV (Dn×G)+ and FU(Dn×G)+ are G-isomorphi
.



86 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAThe isomorphism is de�ned by sending (f, x, [g]) to (fgφg−1, x, [g]). The H-linearity of φ ensures that this map does not depend on 
hoi
e of g representingthe 
lass [g] ∈ G/H .Up to G-isomorphism, the orthogonal G-spe
trum FV (Dn ×G/H)+ dependsonly on V as an H-representation.In our appli
ations we will need even more general 
ells. Therefore we de�ne:De�nition 3.4.4For any 
losed subgroup H of G, let A ℓℓH be the 
olle
tion of all �nite dimen-sional H-representations. Choose skeletons sk I A ℓℓH

H for all I A ℓℓH

H . De�ne theset of indu
ed G-
ells to be the set IndG FI of all maps
(
FV S

n−1
+

)
∧H G+ →

(
FVD

n
+

)
∧H G+ ,where n ≥ 0, H is a 
losed subgroup of G, and V is a �nite dimensional H-representation in sk I VH

H .The fun
tor − ∧H G+ assigns to an H-spa
e its indu
ed G-spa
e. It alsotakes orthogonal H-spe
tra to orthogonal G-spe
tra. For pre
ise de�nitions seese
tion 3.8 below.Remark 3.4.5If V is the restri
tion of a G-representation, then (FVD
n
+

)
∧H G+

∼= FV (Dn
+ ∧

G/H+). This shows that all genuine FIG-
ells are indu
ed G-
ells.In order to get a symmetri
 
o�brant repla
ement fun
tor we will 
onsider aneven nastier kind of 
ells. In this 
ase we restri
t ourselves to �nite G. The 
ellsare de�ned as follows:De�nition 3.4.6Let H be any �nite group, and let VH be the 
olle
tion of all �nite dimensional
H-representations. Choose skeletons sk I VH

H for all I VH

H . De�ne the set of orbit
G-
ells to be the set OrbG FI of all maps

(
FV S

n−1
+ ∧G+

)
/H →

(
FVD

n
+ ∧G+

)
/H ,where n ≥ 0, V is a �nite dimensional H-representation in sk I VH

H , H a
tstrivially on Sn−1 and Dn, and the a
tion of H on G is given via a group homo-morphism H → G.Remark 3.4.7If H is a subgroup of G a
ting on G via the in
lusion, then we have the followingidenti�
ation: (
FVD

n
+ ∧G+

)
/H ∼=

(
FVD

n
+

)
∧H G+ .Thus we see that any indu
ed G-
ell is an orbit G-
ell.



3.4. CELLULAR ORTHOGONAL G-SPECTRA 87In order to bring things more down to earth, we will now write out expli
itlywhat an orbit G-
ell looks like at some level W .Example 3.4.8Let φ : H → G denote the group homomorphism. Let W be a G-representation.We are now going to evaluate FVD
n
+ ∧ G+ at level W and spe
ify the G and Ha
tions. By de�nition of the shift desuspension we have

(
FVD

n
+ ∧G+

)
(W ) = J (V,W ) ∧Dn

+ ∧G+ .Re
all that a non-basepoint in J (V,W ) 
onsists of an isometri
 embedding
f : V → W and a w ∈ W orthogonal to f . Thus a tuple (f, w, x, g) represents apoint in the spa
e above. An h ∈ H gives an isometry h : V → V , and h sends fto the 
omposition fh−1. Via φ the element h a
ts on g by sending g to gφ(h).Dividing out by H we see that

(fh−1, w, x, g) and (f, w, x, gφ(h))are identi�ed in (FVD
n
+ ∧G+

)
/H(W ). Furthermore, on this spa
e we have ana
tion of G. Let γ be an element in G. It a
ts from the left by sending (f, w, x, g)to (γf, γ(w), x, γg).This example also shows the reason for the name �orbit G-
ell�. Contrary toall other types of 
ells, the a
tion of O(W ) on the W 'th level of the orbit 
ell isnot ne
essarily free. And non-free a
tions have more than one type of orbits.Remark 3.4.9Noti
e the following redundan
y in the de�nition of the orbitG-
ell (FVD

n
+ ∧G+

)
/H :If there is a kernel K of the map H → G×O(V ), then we have the identi�
ation

(
FVD

n
+ ∧G+

)
/H ∼=

(
FVD

n
+ ∧G+

)
/J ,where J is the quotient H/K.Example 3.4.10Consider the orbit G-
ells when G is the trivial group. They have the form

(
FV S

n−1
+

)
/H →

(
FVD

n
+

)
/H .If V is a non-trivial H-representation, then this orbit 
ell is not isomorphi
 toany FI-
ell.Now we are ready to de�ne the various types of relative G-equivariant 
ellularmaps.De�nition 3.4.11Let K be either the set of F V IG-
ells for some good 
olle
tion, the set of indu
ed

G-
ells, or the set of orbit G-
ells. A map i : A → L of orthogonal G-spe
tra isrelative K-
ellular if:
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i(A) is a sub-G-spe
trum of L.There is a set C of sub-G-spe
tra Lα su
h that ea
h Lα 
ontains i(A) and⋃

α∈C Lα = L.
C is partially ordered by in
lusion. We write β ≤ α if Lβ ⊆ Lα. And forall α the set Pα = {β ∈ C | β < α} is �nite.For every α ∈ C there is pushout diagram with G-equivariant maps:

∂E
i

−−−→ Ey
y

⋃
β<α Lβ −−−→ Lα

,where ∂E i
−→ E is a 
ell in K.Corresponding to the di�erent kinds of relative 
ellular maps we have q-
o�brations. The naive q-
o�brations are the retra
ts of relative FItrivG -
ellularmaps, the genuine q-
o�brations are the retra
ts of relative FIA ℓℓ

G -
ellular maps,the indu
ed q-
o�brations are the retra
ts of relative IndG FI-
ellular maps, andthe orbit q-
o�brations are the retra
ts of relative OrbG FI-
ellular maps.Remark 3.4.12Observe that naive q-
o�brations are genuine q-
o�brations, that genuine q-
o�brations are indu
ed q-
o�brations, and that indu
ed q-
o�brations are orbitq-
o�brations. All these kinds of q-
o�brations are both l- and h-
o�brations.3.5 Model stru
tures on GI SA justi�ed question is what 
ombinations of 
o�brations and equivalen
es givemodel stru
tures on GI S . In this subse
tion we shall brie�y 
omment this byre
alling some results from [MM02℄. But �rst we re
all the notion of a 
ompa
tlygenerated model 
ategory, see de�nition 5.9 in [MMSS01℄:Roughly speaking a model 
ategory A is 
ompa
tly generated if there existsets of maps I and J in A , whi
h 
an be used in the small obje
t argument, andsu
h that the �brations in A are the maps whi
h satisfy the right lifting propertywith respe
t to all maps in J and the a
y
li
 �brations are the maps whi
h satisfythe right lifting property with respe
t to all maps in I. The maps in I are 
alledthe generating 
o�brations and the maps in J are 
alled the generating a
y
li

o�brations.Here are our model 
ategories:
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ture on GI S has naive level-equivalen
esas weak equivalen
es and naive q-
o�brations as 
o�brations. See theo-rem III.2.4 in [MM02℄.The genuine level-wise model stru
ture onGI S has genuine level-equivalen
esas weak equivalen
es and genuine q-
o�brations as 
o�brations. Again seetheorem III.2.4 in [MM02℄.The naive stable model stru
ture on GI S has naive π∗-isomorphismsas weak equivalen
es and naive q-
o�brations as 
o�brations. See theo-rem III.4.2 in [MM02℄.The genuine stable model stru
ture on GI S has genuine π∗-isomorphismsas weak equivalen
es and genuine q-
o�brations as 
o�brations. The �brantobje
ts are the Ω-G-spe
tra. Again see theorem III.4.2 in [MM02℄.Let F be a family of subgroups of G. The stable F -model stru
ture has
(F ,A ℓℓ)-π∗-isomorphisms as weak equivalen
es. The generating 
o�bra-tions are those genuine G-
ells FV (Dn × G/H)+ where H ∈ F . See theo-rem IV.6.5 in [MM02℄.In parti
ular there is a stable 
y
lotomi
 model stru
ture on orthogonal S1-andO(2)-spe
tra. The weak equivalen
es are the 
y
lotomi
 π∗-isomorphisms,and the 
o�brations are 
onstru
ted allowing only the 
ells FV (Dn×G/H)+where H ⊂ S1 (⊂ O(2)) is �nite 
y
li
.All these model stru
tures are 
ompa
tly generated.Remark 3.5.1Indu
ed G-
ells and orbit G-
ells are introdu
ed in this thesis. And it is beyondthe s
ope of this work to �nd model stru
tures on GI S where the 
o�bra-tions are generated by these 
lasses of 
ells. However, if su
h model stru
turesexist, they probably have better properties. For the 
ase with orbit G-
ells,theorem 3.9.1 gives a hint about this.3.6 Categori
al �xed pointsLet H be a 
losed subgroup of G. In this se
tion we will des
ribe how to takethe H-�xed points of an orthogonal G-spe
trum. The basi
 properties of this
onstru
tion is given in proposition 3.6.2. We will also de�ne the notion of a freeorthogonal G-spe
trum, and state some elementary observations.De�nition 3.6.1Assume that L is an orthogonal G-spe
trum and N a 
losed normal subgroup of

G. Let J be the quotient G/N . The 
ategori
al N-�xed point spe
trum LN is
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LN(Rn) = L(Rn)N ,for trivial representations Rn. Clearly LN is an orthogonal spe
trum. Noti
ethat LN has a J-a
tion. By the appropriate 
hange of universe fun
tor we de�ne

LN (V ) for any J-representation V . Thus LN is an orthogonal J-spe
trum.More generally we 
ould de�ne LH for any 
losed subgroup H of G by �rstrestri
ting L to an orthogonal NH-spe
trum. Here NH denotes the normalizerof H in G. Taking the H-�xed point spe
trum LH we get an orthogonal WH =
NH/H-spe
trum.Again let N be a 
losed normal subgroup of G, and let ǫ : G→ J = G/N bethe quotient map. We shall now spe
ify a right adjoint ǫ∗ to the fun
tor (−)N .Given an orthogonal J-spe
trum K, we de�ne the orthogonal G-spe
trum ǫ∗Kby giving K(Rn) the N-trivial G-a
tion. We have

(ǫ∗K)(Rn) = ǫ∗(K(Rn)) .We extend (ǫ∗K)(V ) to all G-representations V by the appropriate 
hange ofuniverse fun
tor.The main properties of the 
ategori
al �xed points 
an now be summarizedin the following proposition:Proposition 3.6.2Let L be an orthogonal G-spe
trum and K an orthogonal J-spe
trum. There isa natural isomorphism
GI S (ǫ∗K,L) ∼= JI S (K,LN) .Furthermore, if V is a G-representation and A a based G-spa
e, then we havethat

(FVA)N =

{
FV (AN ) if V is an N-trivial G-representation, and
∗ otherwise.The fun
tor (−)N preserves naive and genuine q-
o�brations, it also preservesa
y
li
 naive q-
o�brations, but not a
y
li
 genuine q-
o�brations.For a proof see the propositions V.3.5 and V.3.10 in [MM02℄.We now de�ne what a free orthogonal G-spe
trum is:De�nition 3.6.3Assume that L is an orthogonal G-spe
trum. We say that L is free if L(V )H = ∗for all non-trivial 
losed subgroups H of G and all G-representations V .
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ategori
al H-�xed point spe
trum LH istrivial for all H 6= {1}. However, the 
onverse of this statement is not true. Itis possible for an orthogonal G-spe
trum to have L(Rm)H = ∗ for all Rm and
H 6= {1}, but L(V )H 6= ∗ for some non-trivial G-representation V and H 6= {1}.For examples of su
h L, 
onsider the orbit G-
ells.Remark 3.6.4We now make some elementary observations: Let L be an orthogonalG-spe
trum.Assume that L is both free and naive FIG-
ellular. Then all 
ells o

urringare of the form FRm(Dn ×G)+.Assume that L is both free and genuine FIG-
ellular. The all 
ells o

urringare of the form FV (Dn ×G)+, where V is some G-representation, but dueto remark 3.4.3 it 
an always be assumed that V is trivial. Hen
e, L isa
tually naive FIG-
ellular.Assume that L is both free and IndG FI-
ellular. An indu
ed 
ell (FVD

n
+

)
∧H

G+ have non-trivial H �xed points, so unless H is trivial L 
annot be free.Re
all that V was an H-representation. Thus V = Rm for some m sin
e
H = {1}. Hen
e, all 
ells of L are of the form FRm(Dn ×G)+. This showsthat L a
tually is naive FIG-
ellular.Assume that L is both free and OrbG FI-
ellular. Then group homomor-phism H → G of a 
ell in L must be trivial, and all 
ells 
an thus be writtenas (

FVD
n
+ ∧G+

)
/H ∼=

(
FVD

n
+

)
/H ∧G+for some H-representation V .We end this se
tion by a simple, but important observation.Proposition 3.6.5If f : L→ K is a naive level-equivalen
e between free orthogonal G-spe
tra, then

f is also a genuine level-equivalen
e.Proof: Let V be a G-representation and H a subgroup of G. We must 
he
kthat fH : L(V )H → K(V )H is a weak equivalen
e of spa
es. There are two
ases to 
onsider. Assume �rst that H is the trivial group. Sin
e f is a naivelevel-equivalen
e, the map
L(V )H = L(V ) ∼= L(Rm)

f
−→ K(Rm) ∼= K(V ) = K(V )His a weak equivalen
e of spa
es. Here m = dimV , and the identi�
ations L(V ) ∼=

L(Rm) and K(V ) ∼= K(Rm) are non-equivariant.
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ase is when H is non-trivial. Then by freeness, both L(V )H and
K(V )H are equal to the trivial orthogonal spe
trum ∗. Thus it is a tautologythat

fH : L(V )H → K(V )His a weak equivalen
e of spa
es. �3.7 Geometri
al �xed pointsWe now de�ne the geometri
 �xed point fun
tor, and give the relevant results.This fun
tor 
ertainly depends on the 
hoi
e of a 
olle
tion V ofG-representations.In fa
t, if V = triv, then the geometri
 �xed points are equal to the 
ategori
al�xed points. However, we are going to use the 
onvention that for the purposeof taking geometri
 �xed points if not otherwise spe
i�ed, then V is understoodto be the 
olle
tion A ℓℓ of all G-representations.We follow the exposition given in 
hapter V �4 of [MM02℄ 
losely, and beginwith some 
ategori
al preliminaries.Let E denote the short exa
t sequen
e,
0→ N → G

ǫ
−→ J → 0 ,of Lie groups. Here N is a 
losed normal subgroup of G. We now de�ne atopologi
al J-
ategory JE as follows: The obje
ts are the G-representations V
ontained in our 
olle
tion V . The morphisms from V to W are the N-�xedpoints of JG(V,W ). This means that a non-basepoint arrow of JE(V,W ) 
anbe represented by a pair (f, w), where f is an N-linear isometry V → W and wis a point in WN orthogonal to f(V N). Observe that JE = GJ when N = G,

JE = JG when N is trivial, and JE = J triv
J when V = triv.Let φ : JE → JJ denote the J-fun
tor whi
h sends the G-representation

V to the J-representation V N , and the arrow (f, w) ∈ JE(V,W ) to (fN , w) ∈
JJ(V N ,WN). We think about φ as the N -�xed point fun
tor.Let ν : JJ → JE be the J-fun
tor whi
h sends the J-representation V tothe G-representation ǫ∗V , and the arrow (f, w) ∈ JJ(V,W ) maps to (f, w) ∈
JE(ǫ∗V, ǫ∗W ). We think about ν as the pullba
k along ǫ : G→ J .Observe that φ ◦ ν = id : JJ →JJ .De�nition 3.7.1Let JETop∗ denote the 
ategory of JE-spa
es, namely 
ontinuous J-fun
tors
JE → TopJ∗. The fun
tors φ and ν indu
e forgetful fun
tors denoted by

Uφ : JJTop∗ →JETop∗ and Uν : JETop∗ →JJTop∗respe
tively. Left Kan extension along φ and ν gives prolongation fun
tors
Pφ : JETop∗ →JJTop∗ and Pν : JJTop∗ →JETop∗
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tively. We have Uν ◦ Uφ = id and Pφ ◦ Pν
∼= id .De�nition 3.7.2Let FixN : JGTop∗ →JETop∗ be the fun
tor sending an orthogonalG-spe
trum

L to the JE-spa
e FixN L given by
(FixN L)(V ) = L(V )Nand with evaluation J-maps

(FixN L)(V )∧JE(V,W ) = L(V )N∧JG(V,W )N evN

−−→ L(W )N = (FixN L)(W ) .Here the maps ev : L(V ) ∧JG(V,W ) → L(W ) are the evaluation G-map of
L. De�ne the geometri
 �xed point fun
tor ΦN : JGTop∗ → JJTop∗ to be the
omposition Pφ ◦ FixN .Constru
tion 3.7.3There is a natural J-map from the 
ategori
al �xed points to the geometri
al �xedpoints. This map LN → ΦNL is de�ned as follows: Observe that LN = Uν FixN L.The adjun
tion between Uφ and Pφ has a unit η : id → Uφ ◦Pφ. And the natural
J-map above is 
onstru
ted as the 
omposition

LN = Uν FixN L
Uνη
−−→ UνUφPφ FixN L = Pφ FixN L = ΦNL .In order to 
ompute with the geometri
 �xed points we have the followingproposition:Proposition 3.7.4For a G-representation V in V and a based G-spa
e A, we have

ΦN (FVA) ∼= FV NAN .Furthermore, if K is the pushout of B ← A
i
−→ L in the 
ategory of orthogonal G-spe
tra and i is a 
losed in
lusion, then ΦNK is the pushout of ΦNB ← ΦNA→

ΦNL. The fun
tor ΦN preserves q-
o�brations and a
y
li
 q-
o�brations.For a proof see proposition V.4.5 in [MM02℄.3.8 Indu
ed orthogonal G-spe
traIn this se
tion we will de�ne the notion of an indu
ed G-spe
trum, see de�ni-tion 3.8.4. The main topi
 is to study the geometri
 �xed points of indu
ed
G-spe
tra. Our main result is proposition 3.8.10. There is an annoying 
onditionin this proposition, but so far no 
ounterexample has been found.
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 fa
ts about indu
ed G-spa
esLet H be a subgroup of G, and N a normal subgroup of G whi
h is 
ontained in
H . All subgroups are 
losed, and i : H → G denotes the in
lusion. We will �rstde�ne orthogonal G-spe
tra indu
ed from orthogonal H-spe
tra. To do this weneed some basi
 fa
ts about equivariant spa
es.The setup for the groups o

urring in this subse
tion 
an be expressed by twoshort exa
t sequen
es. We have

0 −−−→ N −−−→ H −−−→ J0 −−−→ 0

=

y i

y
yi1

0 −−−→ N −−−→ G −−−→ J −−−→ 0

.We denote the �rst sequen
e by E0 and the se
ond sequen
e by E. Let j : E0 → Ebe the map of sequen
es given by the diagram above.Assume that X is a based G-spa
e and Y a based H-spa
e. By forgettingpart of the G-a
tion on X we get the H-spa
e i∗X. Observe that i∗ is a fun
torfrom based G-spa
e to based H-spa
es. This fun
tor has both a left and a rightadjoint. The right adjoint of i∗ is the 
oindu
ed G-spa
e, and is given by theformula FH(G+, Y ), where FH denotes the spa
e of based H-maps. However, wewill not meet 
oindu
ed G-spa
es in this thesis. Therefore we do not write outthis side of the theory. The left adjoint is de�ned by sending Y to the based
G-spa
e

Y ∧H G+ .This is the quotient spa
e of Y ∧G+ where (hy, g) is identi�ed with (y, gh) for all
h ∈ H . An element γ ∈ G sends (y, g) to (y, γg). We 
all Y ∧H G+ the indu
ed
G-spa
e.A basi
 lemma for indu
ed spa
es is:Lemma 3.8.1Giving smash produ
ts the diagonal a
tion, there is a natural G-homeomorphism

X ∧ (Y ∧H G+) ∼= (i∗X ∧ Y ) ∧H G+ .In parti
ular, X ∧ (G/H)+
∼= (i∗X) ∧H G+.Proof: A point (x; y, g) inX∧(Y ∧HG+) is sent to (g−1x, y; g) in (i∗X∧Y )∧HG+.

�We will now see how the N-�xed point fun
tor 
ommutes with the indu
edspa
e fun
tor. Re
all that J = G/N and J0 = H/N . Note that XN is a J-spa
eand Y N is a J0-spa
e. We have:
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(Y ∧H G+)N ∼= Y N ∧J0 J+ .Proof: We 
onstru
t map both ways and end the proof by observing that theyare inverses to ea
h other. Assume that (y, g) is a point in (Y ∧H G+)N . For all

n ∈ N we have
(y, g) = (y, ng) = (y, gn′) = (n′y, g) ,where n′ = g−1ng ∈ N . Thus y = n′y. Sin
e 
onjugating with g is anautomorphism of N , we see that y is an N-�xed point. We therefore send

(y, g) ∈ (Y ∧H G+)N to (y, [g]) ∈ Y N ∧J0 J+.Given a point (y, [g]) in Y N ∧J0 J+, we 
hoose an element g ∈ G representingthe 
lass [g] ∈ J = G/N . We 
laim that the map sending (y, [g]) to (y, g) ∈
(Y ∧H G+)N is well-de�ned. Suppose that g′ ∈ G was another 
hoi
e of elementrepresenting [g], then

(y, g′) = (y, gg−1g′) = (g−1g′y, g) = (y, g) .The last equality follows sin
e g−1g′ ∈ N and y ∈ Y N . Obviously, the two mapsare inverses to ea
h other. �3.8.2 �Change� fun
tors for equivariant orthogonal spe
traand JE-spa
esNow 
onsider the 
ase of equivariant orthogonal spe
tra. First we de�ne the
hange of group fun
tor, then we look at its adjoints and at last we determinehow the left adjoint, the indu
ed spe
tra, intera
t with the geometri
 �xed pointfun
tors. The in
lusion i : H → G indu
es a 
hange of group fun
tor fromorthogonal G-spe
tra to orthogonal H-spe
tra. Assume that K is an orthogonal
G-spe
trum, and L an orthogonal H-spe
trum.De�nition 3.8.3The 
hange of group fun
tor is de�ned by letting i∗K be the orthogonal H-spe
trum given by (i∗K)(i∗V ) = i∗K(V ) for G-representations V . We extend
i∗K to H-representations W not of the form i∗V , by the 
hange of universefun
tor.The right adjoint of i∗, the 
oindu
ed orthogonal G-spe
trum fun
tor, is de-�ned at level V as FH(G+, L)(V ) = FH(G+, L(i∗V )), where FH is the spa
e ofbased H-maps. For further details, see proposition V.2.4 in [MM02℄.We now look at indu
ed orthogonal G-spe
tra. The de�nition 
an be foundin proposition V.2.3 in [MM02℄, but we in
lude it here for the 
onvenien
e of thereader.
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ed orthogonal G-spe
trum, L ∧H G+, is given by (L ∧H G+)(V ) =
L(i∗V ) ∧H G+ for G-representations V .How to de�ne the evaluation H-maps will be dis
ussed below in the moregeneral setting of indu
ed JE spa
es. See remark 3.8.9.Let us now build the theory for �
hange� fun
tors for JE-spa
es. Unlikethe 
ase of equivariant orthogonal spe
tra, the 
hange of universe fun
tors willnot always be equivalen
es of 
ategories. This subtle di�eren
e for
es us to beextremely 
areful regarding universes. We begin with an example:Example 3.8.5A key ingredient in the proof of lemma 3.2.1, was that for any good 
olle
tion Vof G-representations and any V ∈ V , there is a trivial G-representation Rn su
hthat Rn and V were isomorphi
 in the 
ategory J V

G . The analogous statementfor JE is in general not true:Let E be the sequen
e 0 → C2 → S1 → S1/C2 → 0, and let V be the
olle
tion of all S1-representations. Identify S1 with the unit 
ir
le in C and
onsider the representation C, where S1 a
ts by multipli
ation. Any C2-linearisometry from a trivial S1-representation Rn into C must map C2-�xed pointsonto C2-�xed points. Sin
e CC2 = 0, there is no isomorphism in J V
E between Cand some trivial representation.Therefore, the forgetful fun
tor from J V

E -spa
es to J triv
E -spa
es 
annot bean isomorphism of 
ategories.De�nition 3.8.6Let E be a short exa
t sequen
e of 
ompa
t Lie groups. Assume that V ⊆ V ′are two good 
olle
tions of G-representations. Then we have a forgetful fun
tor

U : J V ′

E Top∗ → J V
E Top∗. By left Kan extension, we de�ne a prolongationfun
tor

P : J V
E Top∗ →J V ′

E Top∗left adjoint to U. These are the 
hange of universe fun
tors for JE-spa
es.Let us now look at the 
hange of sequen
e. As above we 
onsider a diagram
0 −−−→ N −−−→ H −−−→ J0 −−−→ 0

=

y i

y
yi1

0 −−−→ N −−−→ G −−−→ J −−−→ 0

.This diagram is a map j : E0 → E of short exa
t sequen
es. Let V be a good
olle
tion of G-representations. Now let i∗V be de�ned as the 
olle
tion of H-representations i∗V , whi
h are the restri
tion of some V ∈ V . And we de�ne:
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hange of sequen
e fun
tor
j∗ : J V

E Top∗ →J i∗V
E0
Top∗is given by sending the J V

E -spa
e X to the J i∗V
E0

-spa
e given by
(j∗X)(i∗V ) = i∗1X(V )for H-representations i∗V being the restri
tion of a G-representation V in V .The 
hange of group fun
tor for equivariant orthogonal spe
tra had both leftand right adjoints. These were the indu
ed and 
oindu
ed spe
tra. Analogouslywe now de�ne indu
ed and 
oindu
ed JE-spa
es. Sin
e the 
oindu
ed JE-spa
es will not be used later in the thesis, we only sket
h the de�nition: Given a

J i∗V
E0

-spa
e Y we let the 
oindu
ed J V
E -spa
e FJ0(J+, Y ) be given by

FJ0(J+, Y )(V ) = FJ0(J+, Y (i∗V )) .The indu
ed JE-spa
es are de�ned as follows:De�nition 3.8.8Let Y be a J i∗V
E0

-spa
e, then the indu
ed J V
E -spa
e Y ∧J0 J+ is given by

(Y ∧J0 J+)(V ) = Y (i∗V ) ∧J0 J+for G-representations V in V . The evaluation J-maps are given by
J V

E (V,W ) ∧ (Y ∧J0 J+)(V ) = JG(V,W )N ∧ (Y (i∗V ) ∧J0 J+)

∼=
(
i∗1JG(V,W )N ∧ Y (i∗V )

)
∧J0 J+

∼=
(
JH(i∗V, i∗W )N ∧ Y (i∗V )

)
∧J0 J+

→ Y (i∗W ) ∧J0 J+ = (Y ∧J0 J+)(W )for G-representations V and W in V .Here we have used the G-homeomorphism X ∧ (Y ∧H G+) ∼= (i∗X ∧Y )∧H G+from lemma 3.8.1, and the evaluation JE0(i
∗V, i∗W )∧Y (i∗V )→ Y (i∗W ) for the

J i∗V
E0

-spa
e Y .Remark 3.8.9If N is trivial, then JE = JG. Hen
e, the last part of the de�nition above tellsus how to de�ne the evaluation G-maps for the indu
ed orthogonal G-spe
trumfun
tor.
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 �xed points and indu
ed spe
traWe will now 
onsider how the geometri
 N-�xed point fun
tors intera
t withindu
ed orthogonal G-spe
tra. In order to prove the result we have to make anassumption relating representations of N and G. The author has not found any
ounterexample to the 
ondition.As before we 
onsider the diagram
0 −−−→ N −−−→ H −−−→ J0 −−−→ 0

=

y i

y
yi1

0 −−−→ N −−−→ G −−−→ J −−−→ 0

.

E0 is the �rst short exa
t sequen
e and E the se
ond. Let j : E0 → E be themap of sequen
es given by the diagram.Proposition 3.8.10Let j : E0 → E be as above. Suppose that for any N-representation W thereexists a G-representation V and an N-linear isometri
 embedding W → V su
hthatWN = V N . Then for orthogonalH-spe
tra L there is a natural isomorphism
(ΦNL) ∧J0 J+

∼= ΦN(L ∧H G+) .Remark 3.8.11It is enough to 
he
k the assumption for non-trivial irredu
ible N-representations
W . The 
ondition 
ertainly holds whenever the quotient group J = G/N is �nite.Be
ause in this 
ase one 
an take V to be the indu
ed G-representation of W .If one �xes the 
ompa
t Lie group G, one 
an try to list normal subgroupsand their representations and then 
he
k expli
itly if the 
ondition holds. To
he
k that the assumption holds in the 
ases G = S1 and G = O(2), is an easyexer
ise left to the reader.The proof of the proposition is to 
he
k 
ommutativity of the following dia-gram:

JHTop∗
FixN

−−−→ J W
E0
Top∗

Pφ0−−−→ JJ0Top∗

=

y U

y
y=

JHTop∗ J i∗V
E0
Top∗

Pi∗V

φ0−−−→ JJ0Top∗

−∧HG+

y −∧J0
J+

y
y−∧J0

J+

JGTop∗
FixN

−−−→ J V
E Top∗

Pφ
−−−→ JJTop∗

.

Here V denotes the 
olle
tion of all G-representations, while W are all H-representations. We have not spe
i�ed universes for the 
ategories of orthogonal
H-, G-, J0- and J-spe
tra. This is sin
e the 
hange of universe is an isomorphism
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ases, and we 
an 
hange universe whenever needed. The fun
tors FixNare de�ned with respe
t to genuine equivarian
e. Similarly, the prolongationfun
tors Pφ0 and Pφ, given in de�nition 3.7.1, use all representations. However,the prolongation fun
tor Pi∗V
φ0

is de�ned using only those representations beingrestri
tions from J and G.We prove three lemmas, ea
h 
he
king 
ommutativity of one of the squares.Let us start with the hardest:Lemma 3.8.12Suppose that for any N-representation W there exists a G-representation V andan N-linear isometri
 embedding W → V su
h that WN = V N . Let Y be a
J W

E0
-spa
e. Then we have a natural isomorphism

Pi∗V
φ0

UY ∼= Pφ0Y .Proof: Sin
e Pi∗V
φ0

and Pφ0 are left adjoints, while U is a right adjoint, the proofof this lemma 
annot be abstra
t 
ategory theory. By 
hange of universe fororthogonal J0-spe
tra it is enough to 
he
k that we have a natural isomorphismwhen evaluating at the trivial J0-representations Rn. We begin by writing outboth sides evaluated at Rn expli
itly. We have
(
Pi∗V

φ0
UY
)
(Rn) =

∫ i∗V ∈i∗V

JJ0((i
∗V )N ,Rn) ∧ Y (i∗V )and

(Pφ0Y ) (Rn) =

∫ W∈W

JJ0(W
N ,Rn) ∧ Y (W ) .Re
all that i∗V are theH-representations of the form i∗V for someG-representation

V , while W are all H-representations. Sin
e i∗V ⊂ W , we 
learly have a naturalmap
Pi∗V

φ0
UY → Pφ0Y .Now we show that this map is surje
tive. Pi
k a point in (Pφ0Y )(Rn). It is repre-sented by a pair ((f, u), y) in JJ0(W

N ,Rn)∧Y (W ) for someH-representationW .By the assumption, we 
an 
hoose aG-representation V together with anN-linearisometri
 embedding g : W → V su
h thatWN ∼= V N . What we have is an arrow
(g, 0) in JE0(W, i

∗V ). This arrow is a relation in (Pφ0Y )(Rn) between the pointwe pi
ked and the point ((f(gN)−1, u), (g, 0)(y)) in JJ0((i
∗V )N ,Rn) ∧ Y (i∗V ).This new point is in the image of (Pi∗V

φ0
UY )(Rn).To show inje
tivity we 
onsider a generating relation in (Pφ0Y )(Rn) between

((f1, u1), y1) in JJ0(W
N
1 ,R

n)∧Y (W1) and ((f2, u2), y2) in JJ0(W
N
2 ,R

n)∧Y (W2).By the argument above we 
an 
hoose liftings of these points to (Pi∗V
φ0

UY )(Rn).And the proof is 
ompleted by showing that the lifted points are related in
(Pi∗V

φ0
UY )(Rn).
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i�ed by a triple
((f, u), (h, w), y) ∈JJ0(W

N
2 ,R

n) ∧JE0(W1,W2) ∧ Y (W1) .Here f : WN
2 → Rn is an isometri
 embedding, u a point in Rn orthogonalto f(WN

2 ), h : W1 → W2 an N-linear isometri
 embedding, w a point in WN
2orthogonal to h(WN

1 ) and y a point in Y (W1). This generating relation identi�esthe point
((f1, u1), y1) =

(
(fhN , u+ f(w)), y

) in JJ0(W
N
1 ,R

n) ∧ Y (W1)and
((f2, u2), y2) = ((f, u), (h, w)(y)) in JJ0(W

N
2 ,R

n) ∧ Y (W2) .Liftings of these points to (Pi∗V
φ0

UY )(Rn) are given by G-representations V1 and
V2, and N-linear isometri
 embeddings g1 : W1 → V1 and g2 : W2 → V2 su
h that
WN

1 = V N
1 and WN

2 = V N
2 . The lifting of the �rst point is given by

(
(f1(g

N
1 )−1, u1), (g1, 0)(y1)

) in JJ0((i
∗V1)

N ,Rn) ∧ Y (i∗V1)and similarly for the se
ond point. Unfortunately, we 
annot automati
ally 
om-plete the diagram
W1

h
−−−→ W2

g1

y
yg2

V1 V2by an arrow at the bottom. However, we 
an form the H-representation i∗V1⊕W1

i∗V2, and by the assumption there exists a G-representation V together with an
N-linear isometri
 embedding i∗V1⊕W1 i

∗V2 → V , su
h that their N-�xed pointsagree. Now we have N -linear isometri
 embeddings h1 : V1 → V and h2 : V2 → V .Putting these maps into the diagram above we get a 
ommutative pentagon. Alsoobserve that V N = V N
2 = WN

2 . Thus we have the arrow (h2, 0) in JE0(i
∗V2, i

∗V )and the arrow (h1, w) in JE0(i
∗V1, i

∗V ).By (h2, 0) we have a relation in (Pi∗V
φ0

UY )(Rn) between the se
ond lifting,
(
(f2(g

N
2 )−1, u2), (g2, 0)(y2)

) in JJ0((i
∗V2)

N ,Rn) ∧ Y (i∗V2) ,and
(
(f2(g

N
2 )−1(hN

2 )−1, u2), (h2, 0)(g2, 0)(y2)
) in JJ0((i

∗V )N ,Rn) ∧ Y (i∗V ) .Now look at the generating relation in (Pi∗V
φ0

UY )(Rn) spe
i�ed by
(
(f2(g

N
2 )−1(hN

2 )−1, u2), (h1, w), (g1, 0)(y1)
)in JJ0((i

∗V )N ,Rn) ∧JE0(i
∗V1, i

∗V ) ∧ Y (i∗V1) .
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(
(f2(g

N
2 )−1(hN

2 )−1hN
1 , u2 + f2(g

N
2 )−1(hN

2 )−1(w)), (g1, 0)(y1)
)

=
(
(f1(g

N
1 )−1, u1), (g1, 0)(y1)

)in JJ0((i
∗V1)

N ,Rn) ∧ Y (i∗V1) with
(
(f2(g

N
2 )−1(hN

2 )−1, u2), (h1, w)(g1, 0)(y1)
)

=
(
(f2(g

N
2 )−1(hN

2 )−1, u2), (h2, 0)(g2, 0)(y2)
)in JJ0((i

∗V )N ,Rn)∧Y (i∗V ). Thus we have a relation in (Pi∗V
φ0

UY )(Rn) betweenthe two lifted points. This 
ompletes the proof of the lemma. �The two other lemmas are easy:Lemma 3.8.13Let L be an orthogonal H-spe
trum. We have a natural isomorphism
(U FixN L) ∧J0 J+

∼= FixN(L ∧H G+)of J V
E -spa
es.Proof: Let V be a G-representation. We evaluate both sides of the naturalisomorphism at V . The left side at level V be
omes:

(
(U FixN L) ∧J0 J+

)
(V ) = (FixN L)(i∗V ) ∧J0 J+

= L(i∗V )N ∧J0 J+ .And the right side at level V be
omes:
FixN(L ∧H G+)(V ) = ((L ∧H G+)(V ))N

= (L(i∗V ) ∧H G+)N .From lemma 3.8.2 we re
all the natural homeomorphism (Y ∧HG+)N ∼= Y N∧J0J+for H-spa
es Y . Setting Y = L(i∗V ) we get
(
(U FixN L) ∧J0 J+

)
(V ) ∼= FixN (L ∧H G+)(V ) .To 
he
k the fa
t that the evaluation J-mapsJE(V,W )∧

(
(U FixN L) ∧J0 J+

)
(V )→(

(U FixN L) ∧J0 J+

)
(W ) and JE(V,W ) ∧ FixN(L ∧H G+)(V ) → FixN(L ∧H

G+)(W ) agree is left as an exer
ise to the reader. �
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J i∗V

E0
Top∗

Pi∗V

φ0−−−→ JJ0Top∗

−∧J0
J+

y
y−∧J0

J+

J V
E Top∗

Pφ
−−−→ JJTop∗
ommutes.Proof: It is enough to 
he
k 
ommutativity of the 
orresponding diagram ofright adjoints:

J i∗V
E0
Top∗

Ui∗V

φ0←−−− JJ0Top∗

j∗
x

xi∗1

J V
E Top∗

Uφ
←−−− JJTop∗

.Let L be an orthogonal J-spe
trum and V a G-representation. Now 
ompare
Ui∗V

φ0
i∗1L and j∗UφL at the level i∗V . We have:

(Ui∗V
φ0
i∗1L)(i∗V ) = (i∗1L)

(
(i∗V )N

)

= (i∗1L)
(
i∗1(V

N)
)

= i∗1
(
L(V N)

)

= i∗1 ((UφL)(V ))

= (j∗UφL)(i∗V ) .Again we leave to the reader to 
he
k that the evaluation J0-maps agree. �Together the three lemmas above prove proposition 3.8.10.3.9 A symmetri
 
o�brant repla
ement fun
torIn this se
tion we mainly work with non-equivariant orthogonal spe
tra. Re
allthe de�nition of the 
o�brant repla
ement fun
tor Γ, see theorem 2.2.13. Dueto lemma 2.2.19 there are two obstru
tions to symmetry of Γ. The obstru
tionsare that the twists of the disks, Dn1 × Dn2 ∼= Dn2 × Dn1, and the twists of theindexing spa
es, Rm1 ⊕ Rm2 ∼= Rm2 ⊕ Rm1 , are not the identity maps. If we are
ontent with getting orbit 
ells instead of naive 
ells, then we 
an divide out bythese twists when performing the small obje
t argument. We will explain this indetail below, thus 
onstru
ting a symmetri
 fun
tor Γ̃. The se
tion ends with asubse
tion 
ontaining various results 
on
erning this fun
tor and equivarian
e.Our theorem says:
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tor Γ̃ on orthogonal spe
tra having the following properties:
Γ̃L is orbit 
o�brant for all L.If K → L is the in
lusion of a subspe
trum, then Γ̃K → Γ̃L is an orbitq-
o�bration.
Γ̃ 
omes with a natural level-wise a
y
li
 �bration Γ̃L→ L.There is a natural quotient map ΓL→ Γ̃L.There is a symmetri
 natural transformation φ : Γ̃L∧ Γ̃K → Γ̃(L∧K) anda 
anoni
al map S → Γ̃S.To prove this, we begin with the 
onstru
tion of Γ̃:Constru
tion 3.9.2We modify the small obje
t argument. The basi
 step is to introdu
e a newgluing 
onstru
tion.Suppose that p : A→ L is a map of orthogonal spe
tra. Let Cn,m be the setof all diagrams

FRmSn−1
+

FRm in
−−−−→ FRmDn

+

f

y
yg

A
p

−−−→ L

.Re
all that the orthogonal spe
trum G(p) was de�ned as the pushout of
A

f
←−
∨

FRmSn−1
+

FRm in
−−−→

∨
FRmDn

+ ,where the wedge runs over all diagrams in Cn,m with n,m ≥ 0.Re
all from remark 2.2.2 that Σn and Σm both a
t on a 
ell FRmSn−1
+ →

FRmDn
+ in Cn,m. A permutation σ ∈ Σn gives a map σ : Dn → Dn, and σ a
ts ondiagrams α of Cn,m by 
omposing fα and gα with F (σ). A permutation ρ ∈ Σmgives an isometry ρ : Rm → Rm, and ρ a
ts on diagrams α of Cn,m by 
omposing

fα and gα with Fρ. Altogether we get an a
tion of Σn × Σm on Gn,m(p). Divideout by this a
tion and de�ne G̃(p) as the union over all quotients:
G̃(p) =

⋃

n,m

Gn,m(p)/Σn × Σm .Now we pro
eed as before and de�ne Γ̃L by iterating the gluing 
onstru
tion
G̃(p). Start with ∗ p0

−→ L, de�ne G̃1(L) = G̃(p0), and let p1 be the 
anoni
al map
G̃1(L)→ L. Indu
tively we get Gi−1(L) ⊆ G̃i = G̃(pi−1)

pi−→ L.



104 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRADe�nition 3.9.3The orbit 
o�brant repla
ement fun
tor Γ̃ is de�ned for L ∈ I S as the 
olimitof the G̃i(L)'s.We now begin to prove the statements in theorem 3.9.1. As a �rst result wejustify the name �orbit 
o�brant repla
ement fun
tor� by showing:Proposition 3.9.4
Γ̃L is orbit 
o�brant for any orthogonal spe
trum L.Proof: It is enough to 
onsider the natural in
lusion j of gluing 
onstru
tion
A

j
−→ G̃(p), and show that this map is a relative orbit q-
o�bration.Let α be a 
ell in Cn,m. There is a subgroup Hα of Σn × Σm of symmetries�xing the diagram

FRmSn−1
+

FRm in
−−−−→ FRmDn

+

f

y
yg

A
p

−−−→ L
orresponding to α. Observe that G̃(p) also 
an be des
ribed as the pushout of
A

f
←−
∨

α

(
FRmSn−1

+

)
/Hα →

∨

α

(
FRmDn

+

)
/Hα ,where α runs through one representative for every Σn×Σm orbit of Cn,m, n,m ≥ 0.By Illman's theorem [Ill83℄ we may triangulate FRmDn

+ evaluated at Rm as a �nite
O(m)×Hα-CW-
omplex. All O(m)-orbits are free. Divide out by the Hα-a
tion.This des
ribes (FRmSn−1

+

)
/Hα →

∨
α

(
FRmDn

+

)
/Hα as a relative orbit 
ellularmap. Hen
e A j

−→ G̃(p) is also relative orbit 
ellular. �Sin
e G̃(p) is a quotient of G(p) it follows that Γ̃L is a quotient of ΓL. The
anoni
al map S → Γ̃S is 
onstru
ted just as before. To prove the next twostatements of the theorem, namely that Γ̃ takes in
lusions to orbit q-
o�brations,and that the natural map Γ̃L → L is a level-wise a
y
li
 �bration, we just 
opythe proofs of the propositions 2.2.16 and 2.2.17 respe
tively.What now remains is to de�ne the natural map φ : Γ̃L ∧ Γ̃K → Γ̃(L ∧ K),and show that it is symmetri
.Constru
tion 3.9.5The 
onstru
tion is similar to 
onstru
tion 2.2.18. We inspe
t the G̃i(L)'s andthe G̃j(K)'s and de�ne indu
tively maps
φi,j : G̃i(L) ∧ G̃j(K)→ G̃i+j−1(L ∧K)
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h that diagrams similar to those in 
onstru
tion 2.2.18 
ommute. By takingthe 
olimit as both i and j tend to in�nity, we get our natural transformation
Γ̃L ∧ Γ̃K → Γ̃(L ∧K).We pro
eed by indu
tion on i + j. Assume that α and β are the 
ells givenby the diagrams

FRmSn−1
+ −−−→ FRmDn

+

f

y
yg

Gi−1(L) −−−→ L

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yg′

Gj−1(K) −−−→ K

.By the 
onstru
tion of G̃i(L) and G̃j(K) there are unique lifts of α and β todiagrams ᾱ and β̄:
FRmSn−1

+ −−−→ FRmDn
+

f

y
yḡ

G̃i−1(L) −−−→ G̃i(L)

and FRm′Sn′−1
+ −−−→ FRm′Dn′

+

f ′

y
yḡ′

G̃j−1(K) −−−→ G̃j(K)

.As in the old 
onstru
tion, we see that ᾱ�β̄ together with the map
G̃i−1(L) ∧ G̃j(K) ∪ G̃i(L) ∧ G̃j−1(K)

φi−1,j∪φi,j−1
−−−−−−−−→ G̃i+j−2(L ∧K)determines a 
ell δ in Gi+j−1(L ∧ K). Let Hα be the subgroup of Σn × Σmthat preserves α, Hβ the analogous subgroup for β, and Hδ the subgroup of

Σn+n′×Σm+m′ that preserves δ. Now observe thatHα∐Hβ then must be 
ontainedin Hδ. This ensures that all relations in G̃i(L) ∧ G̃j(K) also give relations in
G̃i+j−1(L ∧K). Hen
e, φi,j is well-de�ned.We �nish the proof of theorem 3.9.1 by showing:Proposition 3.9.6The natural transformation φ : Γ̃L ∧ Γ̃K → Γ̃(L ∧K) is symmetri
.Proof: Comparing Γ with Γ̃ we see that there is a 
ommutative diagram

ΓL ∧ ΓK
φ

−−−→ Γ(L ∧K)y
y

Γ̃L ∧ Γ̃K
φ

−−−→ Γ̃(L ∧K)

,where the verti
al maps are quotient maps. Proposition 2.2.21 says that Γ isskew-symmetri
, with ι : ΓL → ΓL measuring the failure of symmetry. Re
allthat ι was de�ned by �ipping both the disks Dn and the indexing spa
es Rm
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ells in ΓL. Similarly we 
an de�ne ι for Γ̃L. And the proof of propo-sition 2.2.21 works also in this 
ase, and yields that Γ̃ is skew-symmetri
. Butwhen 
onstru
tion Γ̃ we divided out by all permutations of 
oordinates on both
Dn and Rm. This shows that ι = id for Γ̃L. Hen
e, symmetry follows. �

3.9.1 Equivariant features of Γ and Γ̃For orthogonal G-spe
tra we have de�ned many di�erent notions of 
o�bran
y.In ea
h 
ase one 
ould ask for a 
o�brant repla
ement fun
tor. For the 
ategoryof orthogonal spe
tra we 
onstru
ted su
h a fun
tor Γ in theorem 2.2.13. We alsohave the orbit 
o�brant repla
ement fun
tor Γ̃ de�ned above. It seems unlikelythat these fun
tors 
an be used in the equivariant setting, but by some mira
le
ΓL and Γ̃L are naive 
o�brant and orbit 
o�brant respe
tively, and the naturalmaps ΓL→ L and Γ̃L→ L are naive level-equivalen
es. The author thinks it isunlikely that these maps are genuine level-equivalen
es.In order to apply the fun
tors Γ and Γ̃ to orthogonal G-spe
tra, we assumethat G is a �nite and dis
rete group. By indexing our orthogonal G-spe
tra Lby trivial representations only, we see that su
h L are the same as orthogonalspe
tra with G-a
tion, i.e. fun
tors G → I S . Hen
e applying Γ or Γ̃ to Lyields a new orthogonal spe
trum with G-a
tion. We 
an ask whether or not ΓLand Γ̃L are 
o�brant (for one of the G-equivariant notions of 
o�bran
y).We dis
uss the fun
tor Γ �rst. And we have:Proposition 3.9.7Assume that G is a �nite group. Let L be an orthogonal G-spe
trum, then ΓLis naive G-
ellular.Proof: By indu
tion it is enough to 
onsider the gluing 
onstru
tion. Supposethat p : A→ L is a G-equivariant map between orthogonal G-spe
tra. We must
onstru
t a relative FIG-
ellular stru
ture on A→ G(p).Re
all that C denotes the set of all diagrams

FRmSn−1
+ −−−→ FRmDn

+y
y

A
p

−−−→ L

,where n,m ≥ 0. Let α be a diagram in C, and let Hα be the subgroup of G
onsisting of those elements g whi
h preserve the 
ell α. We 
an now des
ribe
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onstru
tion G(p) equivariantly by the pushout diagram
∨
FRmSn−1

+ ∧ (G/Hα)+ −−−→
∨
FRmDn

+ ∧ (G/Hα)+y
y

A −−−→ G(p)

,where the wedge runs through one representative α for ea
h G-orbit in C. Thisimplies that A→ G(p) is a relative naive FIG-
ellular map. �Lemma 3.9.8Let L be an orthogonal G-spe
trum and H a subgroup of G, then
(ΓL)H(Rm) = Γ(LH)(Rm) ,for all Rm.Proof: To see this we inspe
t the gluing 
onstru
tion for a map p : A→ L. Let

α be a diagram in C. The result follows from the observation that the diagram
FRmSn−1

+ −−−→ FRmDn
+

f

y
yg

A
p

−−−→ Lis �xed by H if and only if f and g map into AH and LH respe
tively. �Corollary 3.9.9Let L be an orthogonal G-spe
trum. The map ΓL → L indu
es a weak equiva-len
e
(ΓL)H(Rm)→ LH(Rm)for all Rm and H . Consequently, the map ΓL → L is a naive G-equivariantlevel-equivalen
e.This 
orollary says that Γ is a 
o�brant repla
ement fun
tor for the naivemodel stru
ture on GI S . But in general a naive level-equivalen
e is not agenuine level-equivalen
e, see remark 3.3.6.We now turn to the 
ase of the orbit 
o�brant repla
ement fun
tor Γ̃, andshow 
orresponding results:Proposition 3.9.10Assume that G is a �nite group. Let L be an orthogonal G-spe
trum, then Γ̃Lis orbit G-
ellular.
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onsider the gluing 
onstru
tion G̃(p) for a G-equivariantmap p : A→ L between orthogonal G-spe
tra, and we must 
onstru
t a relative
OrbG FI-
ellular stru
ture on A→ G̃(p).Re
all that for �xed n and m, the set Cn,m 
onsists of all non-trivial diagrams

FRmSn−1
+ −−−→ FRmDn

+y
y

A
p

−−−→ L

.Observe that the group G×Σn ×Σm a
ts on C ′n,m. Let α be a diagram in C ′n,m,and let Hα be the subgroup of G×Σn×Σm 
onsisting of those elements (g, σ, ρ)whi
h preserve the 
ell α. We 
an now des
ribe the gluing 
onstru
tion G̃(p)equivariantly by the pushout diagram
∨(

FRmSn−1
+ ∧G+

)
/Hα −−−→

∨(
FRmDn

+ ∧G+

)
/Hαy

y

A −−−→ G̃(p)

,where the wedge runs through all n and m and one representative α for ea
h
G× Σn × Σm-orbit in C ′n,m.We now appeal to Illman's theorem [Ill83℄ in order to show that ea
h map

(
FRmSn−1

+ ∧G+

)
/Hα →

(
FRmDn

+ ∧G+

)
/Hαis relative OrbG FI-
ellular. To see this 
onsider (FRmDn

+ ∧G+

)
(Rm) as an

(O(m)×Hα)-spa
e and triangulate to des
ribe it as an (O(m)×Hα)-CW-
omplex.Dividing by Hα we get that the map above is orbit G-
ellular. This implies that
A→ G̃(p) is a relative OrbG FI-
ellular map. And the result follows. �We have:Proposition 3.9.11For all orthogonal G-spe
tra L the map Γ̃L→ L is a naive level-equivalen
e.Proof: It is enough to show that for all G-equivariant diagrams

(Sn−1 ×G/H)+ −−−→ Γ̃L(Rm)y
y

(Dn ×G/H)+ −−−→ L(Rm)



3.10. THE DIAGONAL MAP 109there is a lift (Dn × G/H)+ → Γ̃L(Rm). Sin
e Sn−1 is 
ompa
t and G �nite,the map on the top fa
tors through some G̃i(L)(Rm). Restri
ting the left side tosome element of G/H we now get the diagram
Sn−1

+ −−−→ G̃i(L)(Rm)y
y

Dn
+ −−−→ L(Rm)

.Observe that the a
tion of H preserves this diagram. And by 
onstru
tion of
G̃i+1(L) we 
ertainly have a lift Dn

+ → G̃i+1(L)(Rm). This lift is H-equivariant.Now a basi
 adjun
tion gives a G-equivariant lift
(Dn ×G/H)+ → G̃i+1(L)(Rm) ⊂ Γ̃L(Rm)solving the �rst lifting problem. �This proposition shows that Γ̃ is an orbit 
o�brant repla
ement fun
tor forthe naive G-equivariant model stru
ture on GI S .3.10 The diagonal mapWe 
onsider the diagonal map in two 
ases, without and with involution. Foran FI-
ellular orthogonal spe
tra L (without involution), we des
ribe a Cq-equivariant 
ell stru
ture on the iterated smash produ
t L∧q. This uses theindu
ed 
ells, see de�nition 3.4.4. After this we 
onstru
t the diagonal map

L∧q → ΦCr(L∧rq). It is de�ned for arbitrary L, but if L is 
o�brant, then thediagonal map is an isomorphism. The proof uses the equivariant 
ell stru
ture.In the se
ond subse
tion, we repeat this for orthogonal spe
tra L with invo-lution. Re
all that D2q denotes the dihedral group of order 2q. In the involutive
ase the diagonal map L∧q → ΦCr(L∧rq) is D2q-equivariant, and an isomorphismwhen L is genuine Z/2-equivariantly 
o�brant.3.10.1 Without involutionLet L be an orthogonal spe
trum. Consider the iterated smash produ
t L∧q.Sin
e ∧ is symmetri
, we get a Σq a
tion on L∧q by permuting fa
tors. In ourappli
ations we will only 
onsider a
tions of 
y
li
 groups, so for simpli
ity werestri
t our attention to the a
tion of Cq on L∧q.Now assume that L is FI-
ellular. The following result des
ribes an indu
ed
Cq-
ellular stru
ture on L∧q:



110 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAProposition 3.10.1Let C be the partially ordered set of 
ells for an FI-
ellular orthogonal spe
trum
L. The q-fold produ
t C×q has a Cq a
tion, and let D be the set of Cq-orbits.The Cq-equivariant stru
ture on L∧q is given as follows:For ea
h [α] inD there is a subspe
trum (L∧q)[α] of L∧q, and⋃[α]∈D(L∧q)[α] =

L∧q.
D is partially ordered by in
lusion. We write [β] ≤ [α] if (L∧q)[β] ⊆ (L∧q)[α].And for all [α] the set P[α] = {[β] ∈ D | [β] < [α]} is �nite.For every [α] ∈ D there is pushout diagram with Cq-equivariant maps:

(
FRmsSns−1

+

)
∧Cs

(Cq)+ −−−→
(
FRmsDns

+

)
∧Cs

(Cq)+y
y

⋃
[β]<[α](L

∧q)[β] −−−→ (L∧q)[α]

,where Cs is a subgroup of Cq, and Cs a
ts on Rms, Sns−1 and Dns bypermuting the 
oordinates.Moreover, ea
h (FRmsSns−1
+

)
∧Cs

(Cq)+ →
(
FRmsDns

+

)
∧Cs

(Cq)+ 
an be subdi-vided as a relative IndCqFI-
ellular map. Hen
e, L∧q is an indu
ed 
o�brantorthogonal Cq-spe
trum.Proof: Re
all from proposition 2.2.12 that L∧q has an FI-
ellular stru
turewith C×q as its set of 
ells. An α = (α1, . . . , αq) ∈ C×q represents an orbit [α]in D and we de�ne (L∧q)[α] to be
⋃

ρ∈Cq

Lαρ(1)
∧ · · · ∧ Lαρ(q)

.Clearly, ⋃[α]∈D(L∧q)[α] = L∧q.Assume that (L∧q)[β] ⊆ (L∧q)[α] for someα = (α1, . . . , αq) and β = (β1, . . . , βq).Then ea
h Lβi
must be 
ontained in some Lαj

. Sin
e there are only �nitely many
δ ∈ C su
h that Lδ ⊂ Lαj

, it follows that ea
h P[α] is �nite.Consider some α = (α1, . . . , αq) in C×q, and let Cs be the subgroup of Cqa
ting trivially on α. To be more expli
it: Let s be the greatest integer dividing
q, where t = q

s
, su
h that αi = αj whenever i ≡ j modulo t. We now see that Csa
ts trivially on the q-tuple (α1, . . . , αq). By the FI-
ellular stru
ture on L thereis a pushout diagram

FRmiS
ni−1
+ −−−→ FRmiD

ni
+y

y
⋃

β<αi
Lβ −−−→ Lαi



3.10. THE DIAGONAL MAP 111for every αi. Smashing these diagrams together, as in lemma 2.2.11, we get apushout diagram
FRm1+···+mqS

n1+···+nq−1
+ −−−→ FRm1+···+mqD

n1+···+nq

+y
y

⋃
β<αLβ1 ∧ · · · ∧ Lβq

−−−→ Lα1 ∧ · · · ∧ Lαq

,where the maps are Cs-equivariant. Cq a
ts on su
h diagrams, and taking theunion over all diagrams in the Cq-orbit of our α, we get a pushout diagram
(
FRm1+···+mqS

n1+···+nq−1
+

)
∧Cs

(Cq)+ −−−→
(
FRm1+···+mqD

n1+···+nq

+

)
∧Cs

(Cq)+
y

y
⋃

[β]<[α](L
∧q)[β] −−−→ (L∧q)[α]

.Sin
e mi = mj and ni = nj whenever i ≡ j modulo t, we see that Cs a
tson Rm1+···+mq , Sn1+···+nq−1 and Dn1+···+nq by permuting 
oordinates. Now put
m = m1 + · · ·+mt and n = n1 + · · ·+ nt.The last statement of the proposition follows by applying Illman's equivarianttriangulation theorem for �nite groups, see [Ill78℄, to produ
e a Cs-triangulationof Dns. �Remark 3.10.2Assume that S → L is a relative FI-
ellular map. Re
all the notation sL∧q−1 forthe subspe
trum

S ∧ L∧q−1 ∪ L ∧ S ∧ L∧q−2 ∪ · · · ∪ L∧q−1 ∧ S ⊆ L∧q .The proposition above immediately gives a Cq-equivariant des
ription of sL∧q−1.It is the sub-Cq-spe
trum of L∧q built using only those [α] in D with at least one
αi equal to the 
ell of S.Next we 
onstru
t the diagonal map. Let L be any orthogonal spe
trum.As above the q-fold smash produ
t L∧q is an orthogonal Cq-spe
trum via thea
tion that 
y
li
ally permutes the fa
tors. Similarly L∧rq is an orthogonal Crq-spe
trum. The diagonal will be a map L∧q → ΦCr(L∧rq). This exists for allpositive numbers r and q.Constru
tion 3.10.3Let E be the short exa
t sequen
e 0→ Cr → Crq → Cq → 0. Re
all the de�nitionof the 
ategory JE. Let i : J reg

E →JE be the full sub
ategory whose obje
tsare dire
t sums of regular Crq-representations. For an inner produ
t spa
e U , wehave that U⊕rq is an obje
t of J reg
E . First we 
onstru
t a Cq-map

L∧q(U⊕q)→ FixCr(L∧rq)(U⊕rq) .
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oends we 
an express the smash produ
t L∧q(U⊕q) as
∫ d1,...,dq

J (Rd1 ⊕ · · · ⊕ Rdq , U⊕q) ∧ L(Rd1) ∧ · · · ∧ L(Rdq) .A point in this spa
e is given by (f, u; x1, . . . , xq), where f : Rd1 ⊕ · · ·Rdq → U⊕qis an isometri
 embedding, u is a point in U⊕q orthogonal to f , and xi lies in
L(Rdi). To des
ribe the Cq-a
tion, we let a : U⊕q → U⊕q be the map whi
hsends (u1, . . . , uq) to (uq, u1, . . . , uq−1), and we de�ne b : Rd1 ⊕ · · · ⊕ Rdq →
Rdq ⊕ Rd1 ⊕ · · · ⊕ Rdq−1 similarly. The preferred generator of Cq then a
ts bysending

(f, u; x1, . . . , xq) to (afb−1, au; xq, x1, . . . , xq−1) .Analogously, we have that L∧rq(U⊕rq) is equal to the 
oend
∫ d1,...,drq

J (Rd1 ⊕ · · · ⊕ Rdrq , U⊕rq) ∧ L(Rd1) ∧ · · · ∧ L(Rdrq) .To de�ne the diagonal map, take a point
(f, u; x1, . . . , xq) in J (Rd1 ⊕ · · · ⊕ Rdq , U⊕q) ∧ L(Rd1) ∧ · · · ∧ L(Rdq)and map it to

(
f⊕r, (u, . . . , u); (x1, . . . , xq), (x1, . . . , xq), . . . , (x1, . . . , xq)

)in
J ((Rd1 ⊕· · ·⊕Rdq )⊕· · ·⊕ (Rd1 ⊕· · ·⊕Rdq ), U⊕rq)∧ (L(Rd1 )∧ · · ·∧L(Rdq ))∧ · · ·∧ (L(Rd1 )∧ · · ·∧L(Rdq )) .We easily see that the image is a Cr-�xed point, and that the diagonal map is
Cq-equivariant. The Cq-map, as 
onstru
ted above, 
an be rewritten as a naturaltransformation

UiUφL
∧q → Ui FixCr(L∧rq)of J reg

E -spa
es, where Ui is the forgetful fun
tor from J reg
E -spa
es to JE-spa
es,and Uφ denotes the fun
tor given in the de�nition of geometri
al �xed points, seede�nition 3.7.1. By left Kan extension, we have a left adjoint Pi to Ui, and the
ounit of this adjun
tion is a natural transformation PiUi → id . Re
all that Pφdenotes the left adjoint to Uφ.De�nition 3.10.4The diagonal map L∧q → ΦCr(L∧rq) is de�ned as the 
omposition

L∧q → PφPiUi FixCr(L∧rq)→ Pφ FixCr(L∧rq) = ΦCr(L∧rq) ,where the �rst map 
omes from the 
onstru
tion above, and the se
ond map isindu
ed by the 
ounit PiUi → id .



3.10. THE DIAGONAL MAP 113Remark 3.10.5Assume that S → L is the in
lusion of a subspe
trum. Considering the restri
tionof the diagonal map to sL∧q−1, we get a diagram
sL∧q−1 −−−→ ΦCr

(srL∧rq−r)

⊆

y
y⊆

L∧q −−−→ ΦCr(L∧rq)

,where srL∧rq−r is the subspe
trum of L∧rq given as
srL∧rq−r =

⋃

i

L∧i−1 ∧ S ∧ L∧q−1 ∧ S ∧ L∧q−1 ∧ S ∧ · · · ∧ S ∧ L∧q−i .The existen
e of this diagram follows from inspe
tion of the 
onstru
tion.Example 3.10.6Let us inspe
t the diagonal map in the 
ase L = FVA. Then
L∧q = FV ⊕q(A∧q) and L∧rq = FV ⊕rq(A∧rq) .Computing the geometri
 Cr-�xed points of the last orthogonal spe
trum, we getby the formula in proposition 3.7.4 that

ΦCr(L∧rq) = F(V ⊕rq)Cr (A∧rq)Cr = FV ⊕q(A∧q) = L∧q .Inspe
ting de�nitions, we see that the diagonal map is an isomorphism in this
ase.More generally we have:Proposition 3.10.7If L is a 
o�brant orthogonal spe
trum, then the diagonal map L∧q → ΦCr(L∧rq)is a Cq-equivariant isomorphism.It is enough to prove the result in the 
ase where L is FI-
ellular. Themain idea is to use the equivariant des
ription of the iterated produ
ts, given inproposition 3.10.1. But in order to apply this des
ription we have to 
omputethe geometri
 �xed points of indu
ed 
ells.Lemma 3.10.8Let H be a subgroup and N a normal subgroup of a 
ompa
t Lie group G.Suppose that for any N-representation W there exists a G-representation U andan N-linear isometri
 embedding W → U su
h that WN = UN . Assume that Vis an H-representation and A a based H-spa
e. Then we have:
ΦN ((FVA) ∧H G+) ∼=





(FV NAN ) ∧J0 J+

if N is a subgroup of Hwith J0 = H/N , J = G/N , and
∗ otherwise.
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ontained in H . Then proposition 3.8.10 applies,and we have
ΦN ((FVA) ∧H G+) ∼=

(
ΦN (FVA)

)
∧J0 J+ .Furthermore, proposition 3.7.4 yields that

(
ΦN (FVA)

)
∧J0 J+

∼= (FV NAN) ∧J0 J+ .Next assume that N is not 
ontained in H . The following is an elementaryfa
t: If X is a based H-spa
e, then the indu
ed G-spa
e, X ∧H G+, has no non-trivial N-�xed points. It follows that FixN ((FVA) ∧H G+) = ∗. Consequently,also ΦN ((FVA) ∧H G+) = ∗. �By remark 3.8.11 the 
ondition is always true for �nite G. We are now readyto prove the proposition:Proof: Let L be an FI-
ellular orthogonal spe
trum with 
ells C. We now applyproposition 3.10.1. Let D be the Cq-orbits of C×q and let D′ be the Crq-orbits of
C×rq. Let ǫ∗ be the map C×q → C×rq given by

ǫ∗(α1, α2, . . . , αq) = (α1, α2, . . . , αq, α1, α2, . . . , αq, . . . , α1, α2, . . . , αq) .The q-tuple (α1, α2, . . . , αq) is repeated r times. Passing to orbits we get a map
ǫ∗ : D → D′.Now we 
laim that:

ΦCr(L∧rq) =
⋃

[β]∈D

ΦCr(L∧rq)[ǫ∗β] .To prove this 
laim, we show by indu
tion on the number of elements in P[α] that
ΦCr(L∧rq)[α] =

⋃

[ǫ∗β]<[α]

ΦCr(L∧rq)[ǫ∗β] .There are two 
ases to 
onsider when proving the indu
tion step: If [α] = [ǫ∗β]for some [β] in D, then the indu
tion hypothesis is trivially true. The other 
aseis when [α] is not of the form [ǫ∗β] for any [β] in D. We 
onsider the diagram
⋃

[δ]<[α]

ΦCr(L∧rq)[δ] ←ΦCr
(
(FRmsSns−1

+ ) ∧Cs
(Crq)+

)
→ΦCr

(
(FRmsDns

+ ) ∧Cs
(Crq)+

)

=

y
y=

y=

⋃
[ǫ∗β]<[α]

ΦCr(L∧rq)[ǫ∗β]← ∗ → ∗

.The left verti
al map is an equality by indu
tion. Sin
e [α] is not of the form
[ǫ∗β], if follows that Cr is not a subgroup of Cs, and hen
e lemma 3.10.8 implies
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al maps also are equalities. By proposition 3.10.1, thepushout of the top row is ΦCr(L∧rq)[α]. This �nishes the proof of the 
laim.Our next 
laim is that the restri
tion of the diagonal map to (L∧q)[α] gives anisomorphism
(L∧q)[α]

∼=
−→ ΦCr(L∧rq)[ǫ∗α]for all [α] in D. We prove the 
laim by indu
tion on the number of elements in

P[α]. Consider the diagram
⋃

[β]<[α]

(L∧q)[β] ←
(
FRmsSns−1

+

)
∧Cs

(Cq)+ →
(
FRmsDns

+

)
∧Cs

(Cq)+

y
y

y
⋃

[β]<[α]

ΦCr (L∧rq)[ǫ∗β]←ΦCr
(
(FRmrsSnrs−1

+ ) ∧Crs
(Crq)+

)
→ΦCr

(
(FRmrsDnrs

+ ) ∧Crs
(Crq)+

)
.Here the verti
al maps are instan
es of the diagonal map. The row on the top
omes from the Cq-equivariant des
ription of (L∧q)[α], while the bottom row is

ΦCr applied to the Crq-equivariant des
ription of (L∧rq)[ǫ∗α]. By indu
tion and theprevious 
laim, the left verti
al map is an isomorphism. Sin
e Cr is a subgroup of
Crs, lemma 3.10.8 implies that the two other verti
al maps also are isomorphisms.Taking the row-wise pushouts proves our 
laim, see proposition 3.10.1.Clearly, the two 
laims together prove the proposition. �Remark 3.10.9By the proof above, we see that the diagonal map restri
ted to sL∧q−1 is anisomorphism

sL∧q−1 ∼= ΦCr

(srL∧rq−r) .3.10.2 With involutionThe dihedral group D2q has generators x and y, and relations xq = y2 = 1 and
xy = yx−1. Let L be an orthogonal Z/2-spe
trum, the involution is determinedby a map ι : L → L. Now we 
an extend the Cq-a
tion on L∧q to a D2q-a
tionby letting y a
t by

L ∧ L ∧ · · · ∧ L
reverse
−−−−→ L ∧ · · · ∧ L ∧ L

ι∧···∧ι∧ι
−−−−−→ L ∧ · · · ∧ L ∧ L .Assume that L is genuine FIZ/2-
ellular with C as its set of Z/2-
ells. Thenthe dihedral group D2q a
ts on C×q, x a
ts by permuting fa
tors 
y
li
ally, while

y sends a q-tuple (α1, α2, . . . , αq) to (αq, . . . , α2, α1). Now L∧q gets an indu
ed
D2q-
ellular stru
ture by an argument similar to proposition 3.10.1.Next we 
onstru
t the diagonal map for L with involution. The diagonal willbe a D2q-map L∧q → ΦCr(L∧rq).
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tion 3.10.10Let E be the short exa
t sequen
e 0 → Cr → D2rq → D2q → 0. Let i :
J reg

E → JE be the full sub
ategory whose obje
ts are dire
t sums of regular
D2rq-representations. For ea
h inner produ
t spa
e U , we get an obje
t U⊕2rq of
J reg

E . Let Ui be the forgetful fun
tor from J reg
E -spa
es to JE-spa
es, and byleft Kan extension, we de�ne Pi.As before we 
onstru
t a D2q-map

UiUφL
∧q → Ui FixCr(L∧rq)of J reg

E -spa
es. This map is given on level U⊕2rq as a natural D2q-equivarianttransformation
L∧q(U⊕2q)→ FixCr(L∧2rq)(U⊕2rq) .To de�ne this, we expli
itly write out both sides using 
oends. Pi
king a pointon the left side,

(f, u; x1, . . . , xq) in J (Rd1 ⊕ · · · ⊕ Rdq , U⊕q) ∧ L(Rd1) ∧ · · · ∧ L(Rdq)we map it to
(
f⊕r, (u, . . . , u); (x1, . . . , xq), (x1, . . . , xq), . . . , (x1, . . . , xq)

)in
J ((Rd1 ⊕· · ·⊕Rdq )⊕· · ·⊕ (Rd1 ⊕· · ·⊕Rdq ), U⊕rq)∧ (L(Rd1 )∧ · · ·∧L(Rdq ))∧ · · ·∧ (L(Rd1 )∧ · · ·∧L(Rdq )) .Again it is easily seen that the image is a Cr-�xed point, and that the diagonalmap is D2q-equivariant.De�nition 3.10.11The diagonal map for L with involution, L∧q → ΦCr(L∧rq), is de�ned as the
omposition

L∧q → PφPiUi FixCr(L∧rq)→ Pφ FixCr(L∧rq) = ΦCr(L∧rq) ,where the �rst map 
omes from the 
onstru
tion above, and the se
ond map isindu
ed by the 
ounit PiUi → id .Assume that L is genuine FIZ/2-
ellular. Using expli
it indu
ed D2q- and
D2rq-
ellular stru
tures on L∧q and L∧rq respe
tively, we prove the following resultan argument similar to the proof of proposition 3.10.7:Proposition 3.10.12If L is a 
o�brant orthogonal Z/2-spe
trum, then the diagonal map L∧q →
ΦCr(L∧rq) is a D2q-equivariant isomorphism.Further details are omitted.



3.11. MISCELLANEOUS RESULTS 1173.11 Mis
ellaneous resultsIn this se
tion we list or show various results whi
h will be used later in the thesis.3.11.1 About orbit q-
o�brations of orthogonal spe
traProposition 3.11.1Assume that i : A → L and j : B → K are orbit q-
o�brations of (non-equivariant) orthogonal spe
tra, then also
i�j : L ∧B ∪ A ∧K → L ∧Kis an orbit q-
o�bration.Proof: We 
an assume that i and j are relative OrbFI-
ellular maps. We willapply the method used when proving proposition 2.2.12. In that proof we useonly one non-formal property about the set of 
ells, namely that the � produ
tof two 
ells yields a new 
ell. On
e this property has been 
he
ked for orbit 
ells,the present result follows.Consider two (non-equivariant) orbit 
ells:

(
FV1S

n1−1
+

)
/H1 →

(
FV1D

n1
+

)
/H1 and (

FV2S
n2−1
+

)
/H2 →

(
FV2D

n2
+

)
/H2 .Here V1 and V2 are H1- and H2-representations respe
tively. Let V = V1 ⊕ V2 bethe H1 ×H2-representation de�ned by letting H1 a
t trivially on V2, and H2 a
ttrivially on V1. And � of the 
ells above 
an now be written as

(
FV (Dn1 × Sn2−1 ∪ Sn1−1 ×Dn2)+

)
/(H1×H2)→ (FV (Dn1 ×Dn2)+) /(H1×H2) .This is again an orbit 
ell. �Proposition 3.11.2Assume that L is an orbit 
o�brant orthogonal spe
trum and X → Y a level-equivalen
e of orthogonal spe
tra, then also

L ∧X → L ∧ Yis a level-equivalen
e.Proof: There is no loss of generality by assuming that L is OrbFI-
ellular. Byanalogy with proposition 2.2.9, there exists a sequen
e ∗ = L0 → L1 → L2 → · · ·su
h that L is its 
olimit and ea
h Li+i is the pushout of a diagram
Li ←

∨(
FV S

n−1
+

)
/H →

∨(
FVD

n
+

)
/H .
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e, ea
h Li → Li+1 is an h-
o�bration. Smashing the sequen
e with X → Y ,we get
L0 ∧X −−−→ L1 ∧X −−−→ L2 ∧X −−−→ · · ·y

y
y

L0 ∧ Y −−−→ L1 ∧ Y −−−→ L2 ∧ Y −−−→ · · ·

.The horizontal maps are again h-
o�brations, by lemma 12.2 in [MMSS01℄.Hen
e, it is enough to show that ea
h Li ∧ X → Li ∧ Y is a level-equivalen
e.Pro
eeding indu
tively, what we have to show is that
(FVA) /H ∧X → (FVA) /H ∧ Yis a level-equivalen
e when A is a sphere or a disk and H and V arbitrary. Byremark 3.4.9, we 
an always assume that H → O(V ) is inje
tive. Then the state-ment above is a 
onsequen
e of lemma 3.11.3 below. And we are done moduloproving the lemma. �Inspired by lemma 15.5 in [MMSS01℄ we prove:Lemma 3.11.3Let A be a based CW-
omplex, H a �nite group, V an H-representation and

X any orthogonal spe
trum. Assume that H → O(V ) is inje
tive. Then thequotient map
(EH+ ∧H FVA) ∧X → (FVA) /H ∧Xis a level-equivalen
e. Consequently, the fun
tor (FVA) /H ∧ − preserves level-equivalen
es.Proof: We evaluate both sides of the quotient map at some level Rm. In orderto write things out we 
hoose a linear isometry V → Rm. Then we have

((FVA) ∧X) (Rm) ∼= O(m)+ ∧O(Rm−V ) (A ∧X(Rm − V )) ,and
((EH+ ∧ FVA) ∧X) (Rm) ∼= O(m)+ ∧O(Rm−V ) (EH+ ∧A ∧X(Rm − V )) .The quotient EH×O(m)→ O(m) is an (H×O(Rm−V ))-equivariant homotopyequivalen
e sin
e O(m) is a free (H×O(Rm−V ))-spa
e that 
an be triangulatedas a �nite (H ×O(Rm − V ))-CW-
omplex by [Ill83℄.We 
ompare the des
ription above via the quotient map EH×O(m)→ O(m).Dividing out by the H-a
tion, we get a weak equivalen
e
(
O(m)+ ∧O(Rm−V ) (EH+ ∧ A ∧X(Rm − V ))

)
/H

→
(
O(m)+ ∧O(Rm−V ) (A ∧X(Rm − V ))

)
/H .



3.11. MISCELLANEOUS RESULTS 119And the result follows. �Analogous to proposition 2.4.10 we have the following proposition for orbitq-
o�brations:Proposition 3.11.4Assume that we have a map between two sequen
es of orthogonal spe
tra:
K0 −−−→ K1 −−−→ K2 −−−→ · · ·y

y
y

L0 −−−→ L1 −−−→ L2 −−−→ · · ·

.If K0 → L0 is an orbit q-
o�bration, and Ki ∪Ki−1
Li−1 → Li is an orbit q-
o�bration for every i ≥ 0, then

colim
i

Ki → colim
i

Liis also an orbit q-
o�bration.Proof: If orbit q-
o�brations were the 
o�brations of a model stru
ture on
I S , then the formal proof given for proposition 2.4.10 would apply. La
kingsu
h a model stru
ture we give a dire
t proof.Observe that the following diagram is pushout for all n:

Ln ∪Kn
Kn+1 −−−→ Ln ∪Kn

colimKiy
y

Ln+1 −−−→ Ln+1 ∪Kn+1 colimKi

.The left verti
al map is an orbit q-
o�bration by assumption, hen
e the rightverti
al map is also an orbit q-
o�bration. We thus get a sequen
e
colimKi → L0 ∪K0 colimKi → L1 ∪K1 colimKi → · · · → colimLiof orbit q-
o�brations. An elementary argument, similar to the last part of theproof of proposition 2.2.9, shows that given a sequen
e X0 → X1 → X2 → · · ·of orbit q-
o�brations maps, the indu
ed map X0 → colimXi is also an orbitq-
o�bration. Applied to our situation we see that colimiKi → colimi Li is anorbit q-
o�bration. �



120 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRA3.11.2 About the small obje
t argumentThe small obje
t argument, see [DS95℄ or [Hir03℄, is the most 
ommon way toprodu
e both 
o�brant and �brant repla
ement fun
tors in a model 
ategory. Wehave already used this 
onstru
tion when de�ning our fun
tor Γ. In general wehave proposition 10.5.16 in [Hir03℄ whi
h says:Proposition 3.11.5If C is a 
o
omplete 
ategory and I a set of maps in C that permits the smallobje
t argument, then there is a fun
torial fa
torization of every map in C intoa relative I-
ell 
omplex followed by a map having the right lifting property withrespe
t to any map in I.So given I, we get a fun
tor taking a map f : X → Y in C to a fa
torization
X

jI−→ QI(f)
pI−→ Y .And QI is de�ned as the 
olimit of a sequen
e X = Q0

I(f)→ Q1
I(f)→ Q2

I(f)→
· · · , where ea
h step is a gluing 
onstru
tion.We now 
ompare the small obje
t arguments in two di�erent 
ategories:Lemma 3.11.6Assume that F : C → D is a fun
tor between 
o
omplete 
ategories. Let I and
J be sets of maps in C and D respe
tively, and suppose that they permit thesmall obje
t argument. If F takes I into J , then there is a fun
torial diagram

F (X)
F (jI)
−−−→ F (QI(f))

F (pI)
−−−→ F (Y )

=

y
y

y=

F (X)
jJ−−−→ QJ(F (f))

pJ−−−→ F (Y )for every map f : X → Y in C .Proof: Assume by indu
tion that we have a sequen
e
F (X)→ F (Qi

I(f))→ Qi
J(F (f))→ F (Y ) .Now 
onsider one I-
ell in Qi+1

I (f) relative to Qi
I(f). Su
h 
ells are determinedby a diagram

A −−−→ By
y

Qi
I(f) −−−→ Y

,



3.11. MISCELLANEOUS RESULTS 121where A→ B is a map in I. Now apply F to this diagram, and use the indu
tionhypothesis to form
F (A) −−−→ F (B)y

y

F (Qi
I(f)) −−−→ F (Y )y

y=

Qi
J(F (f)) −−−→ F (Y )

.

Comparing the pushout of the upper square with the pushout of the outer square,we get the sequen
e
F (X)→ F (Qi+1

I (f))→ Qi+1
J (F (f))→ F (Y ) .

�Example 3.11.7A �brant repla
ement fun
tor QG for the 
ategory of orthogonal G-spe
tra 
anbe 
onstru
ted by applying the small obje
t argument to a set of maps K 
alledthe generating a
y
li
 q-
o�brations. See de�nition III.4.6 in [MM02℄. By propo-sition 3.7.4 ΦN takes K to the generating a
y
li
 q-
o�brations of orthogonal
G/N-spe
tra. Hen
e, there is a natural transformation

ΦNQGL→ QG/NΦNLfor orthogonal G-spe
tra L.3.11.3 About geometri
 �xed pointsWe re
all 
orollary V.4.6 and proposition V.4.7 in [MM02℄, and enhan
e the lastresult to also 
over a new 
ase:Proposition 3.11.8For based G-spa
es A, the geometri
 N-�xed points of the suspension spe
trumare given by
ΦNF0A ∼= F0A

N .For orthogonal G-spe
tra K and L, there is a natural J-map
α : ΦNK ∧ ΦNL→ ΦN (K ∧ L)of orthogonal J-spe
tra, and α is an isomorphism if K and L are 
o�brant.Furthermore, α is also an isomorphism if K is a suspension spe
trum and L isarbitrary.



122 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAProof: The �rst parts are 
ited from the referen
e. To show the last part, wedo an expli
it 
al
ulation. Assume that K = F0A, where A is a based G-spa
e.We then have
FixN(F0A ∧ L) ∼= FixN(A ∧ L) ∼= AN ∧ (FixN L) ∼= F0A

N ∧ (FixN L) .Here F0 on the left is the suspension from G-spa
es to orthogonal G-spe
tra,while F0 on the right is the suspension from G-spa
es to JE-spa
es. Sin
e Pφ isstrong symmetri
 monoidal, see I.2.14 in [MM02℄, we get that
ΦN (F0A ∧ L) = Pφ FixN(F0A ∧ L) ∼= PφF0A

N ∧ Pφ(FixN L) = F0A
N ∧ ΦNL .This 
ompletes the proof. �Geometri
 �xed points 
an be used in order to re
ognize G-equivariant π∗-isomorphisms:Proposition 3.11.9Assume that F is a family of normal subgroups of G. Let f : K → L be a mapof orthogonal G-spe
tra. The following statements are equivalent:

f is an (F ,A ℓℓ)-π∗-isomorphism.
f indu
es isomorphisms πN

q K → πN
q L for all q and N ∈ F .

ΦNf : ΦNK → ΦNL is non-equivariantly a π∗-isomorphism for all N ∈ F .Compare this result to theorem 4.7 in [GM95℄.Proof: The �rst two statements are equivalent by de�nition. Sin
e 
ompa
tLie groups have the des
ending 
hain property, we 
an do indu
tion on the sizeof F .Let us show that the last statement implies the se
ond. Let F be some familyof normal subgroups of G. Assume that we are given a map f : K → L su
hthat ΦHf : ΦHK → ΦHL is non-equivariantly a π∗-isomorphism for all H ∈ F .Let N be any normal subgroup of F . What we want to 
he
k is that f indu
esisomorphisms πN
∗ K → πN

∗ L.Let F [N ] be the family of subgroups of G that do not 
ontain N . Observethat the interse
tion F ∩ F [N ] is a family properly 
ontained in F . By theindu
tion hypothesis, we get that f indu
es isomorphisms πH
∗ K → πH

∗ L for all
H ∈ F ∩ F [N ]. Observe that the family F ∩ F [N ] 
onsists of all propersubgroups of N .Re
all the notion of a universal F [N ]-spa
e. It is a G-CW-
omplex EF [N ]su
h that EF [N ]H ≃ ∗ for H ∈ F [N ] and EF [N ]H = ∅ for H 6∈ F [N ].Furthermore, ẼF [N ] is de�ned as the 
o�ber of the map EF [N ]+ → S0.



3.12. CYCLIC AND DIHEDRAL ORTHOGONAL SPECTRA 123Let us now restri
t G-a
tions to N-a
tions. Observe that the restri
tion of
EF [N ] is a universal F ∩F [N ]-spa
e. We already know that f : K → L is an
F ∩F [N ]-equivalen
e. And proposition IV.6.7 in [MM02℄ now implies that

f ∧ id : K ∧ EF [N ]+ → L ∧EF [N ]+is a π∗-isomorphism of orthogonal N-spe
tra.Let Q denote a �brant repla
ement fun
tor for the genuine model stru
tureon orthogonal G-spe
tra. Consider the diagram
Q(K ∧ EF [N ]+)N −−−→ Q(K)N −−−→ Q(K ∧ ẼF [N ])N

y
y

y

Q(L ∧ EF [N ]+)N −−−→ Q(L)N −−−→ Q(L ∧ ẼF [N ])Nof non-equivariant orthogonal spe
tra. We have just shown that the left verti
almap is a π∗-isomorphism. By proposition V.4.17 in [MM02℄, the orthogonalspe
trum Q(K ∧ ẼF [N ])N is naturally π∗-isomorphi
 to ΦNK. By statementthree, we get that
ΦNK ≃ Q(K ∧ ẼF [N ])N → Q(L ∧ ẼF [N ])N ≃ ΦNLis a π∗-isomorphism. Now it follows by long exa
t sequen
es of homotopy groups,that

πN
∗ (K) ∼= π∗Q(K)N → π∗Q(L)N ∼= πN

∗ Lis an isomorphism.To show that the se
ond statement implies the last statement, one uses theabove argument ba
kward. �Remark 3.11.10The reason for assuming that F 
onsists of normal subgroups is that geometri

N-�xed points of orthogonal G-spe
tra, have been de�ned only for normal N .Hen
e, proposition V.4.17 in [MM02℄ supplies the homotopy equivalen
e

Q(K ∧ ẼF [N ])N ∼= ΦNKin this 
ase only.3.12 Cy
li
 and dihedral orthogonal spe
traIn this short se
tion we will de�ne 
omment on how the geometri
 realization ofinvolutive simpli
ial, 
y
li
 and dihedral orthogonal spe
tra be
omes equivariantorthogonal spe
tra.



124 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRAExample 3.12.1First 
onsider an involutive simpli
ial orthogonal spe
trum. This is a fun
tor L• :
∆Top → I S . Taking the geometri
 realization level-wise, we get an orthogonalspe
trum |L•| with Z/2-a
tion. By 
hange of universe, see lemma 3.2.1, we 
anevaluate this spe
trum at any Z/2-representation V .Example 3.12.2For an r-
y
li
 orthogonal spe
trum L• the geometri
 realization |L•| has an S1-a
tion. Using the 
hange of universe fun
tor, see lemma 3.2.1, we 
an evaluateat any S1-representation V getting an S1-spa
e

|L•|(V ) .Example 3.12.3Similarly, if L• is an r-dihedral orthogonal spe
trum, then using lemma 3.2.1, wesee that
|L•|(V )is well de�ned for any O(2)-representation V .



Chapter 4Operads in orthogonal spe
tra andinvolutionWe begin this 
hapter by studying operads and orthogonal spe
tra. Traditionallyan operad 
onsists of topologi
al spa
es together with 
omposition operations. Inthe book [MSS02℄ the de�nition of an operad is extended by repla
ing topologi
alspa
es by obje
ts in a symmetri
 monoidal 
ategory. We re
all this de�nitionbelow in full generality, but our main fo
us will be operads in orthogonal spe
tra.One usually designs an operad in order to study its algebras. Classi
ally,we have the operads (in topologi
al spa
es) N and M, whose algebras are the
ommutative and the asso
iative monoids respe
tively. We will here introdu
ean operad H having asso
iative monoids with involution as its algebras. Viasuspension these results extend to orthogonal spe
tra. In parti
ular an H-algebrain orthogonal spe
tra is an orthogonal ring spe
trum with involution.In se
tion 4.2 we develop, along the lines of [May72℄, the theory of the two-sided bar 
onstru
tion. Under the hypothesis that P and Q are su�
iently �equalup to homotopy�, we 
an use this 
onstru
tion to repla
e a P-algebra by a weaklyequivalent Q-algebra. This is made pre
ise in remark 4.2.20.In se
tion 4.3 we study a geometri
ally interesting involution ι on the homo-topy groups π∗S[ΩM ]. The main result of the thesis, theorem 4.3.26, says thatthere exists an orthogonal ring spe
trum R with involution whi
h represents ιon π∗S[ΩM ]. The proof uses the ma
hinery of operads. We design an operad
Dn in orthogonal spe
tra whi
h has S[ΩM ] as an algebra. The result follows byshowing that Dn is su�
iently equal to H.4.1 Operads in I SWe will now begin looking at operads in orthogonal spe
tra. May's original def-inition [May77℄ des
ribes the 
omposition as a many-variable operation. This
an be repla
ed by a 
olle
tion of two-variable 
ompositions. Using this view-125



126 CHAPTER 4. OPERADS IN I S AND INVOLUTIONpoint, one greatly redu
es the 
omplexity of the des
ription of asso
iativity. Thisdes
ription is due to Gerstenhaber and Markl, see [MSS02℄.Let Σ be the 
ategory with obje
ts the �nite sets n = {1, 2, . . . , n} for everynon-negative integer n and bije
tions as morphisms. Here 0 is the empty set.Thus there is no morphism n→ m for n 6= m, while the endomorphisms of n 
anbe identi�ed with the symmetri
 group Σn. Therefore, we 
all Σ the symmetri
groupoid.There are 
omposition operations
◦i : Σm × Σn → Σm+n−1for n ≥ 0 and 1 ≤ i ≤ m. These are de�ned in the appendix. Let me re
allthe �box�-model here: For i and permutations ρ ∈ Σm and υ ∈ Σn we put boxesaround the integers from 1 to m+ n− 1 as follows:

1 , . . . , i− 1 , i, i+ 1, . . . , i+ n− 1 , i+ n , . . . , m+ n− 1 .We now use ρ to permute the boxes, while we use υ to permute the elements in the
i'th box. Removing the boxes one gets the permutation ρ ◦i υ. This operationgives the symmetri
 groupoid the stru
ture of a dis
rete operad. We 
all thisoperadM.There is an alternative des
ription of the 
omposition operations using per-mutation matri
es. Re
all that the permutation matrix of ρ ∈ Σm is the unique
m×m-matrix A su
h that

Aei = eρ(i) for all i.Here ei is the i'th unit ve
tor in Rm. This embeds Σm as a 
losed subgroupof O(m). A matrix in the image is 
alled a permutation matrix, and these areexa
tly those matri
es su
h that every 
olumn and every row 
ontain only 0's,ex
ept for one entry whi
h has value 1.Let A be the permutation matrix of ρ ∈ Σm and B the permutation matrixfor ν ∈ Σn. We now want to des
ribe the permutation matrix for ρ ◦i ν. We havea blo
k de
omposition of A as



A11 0 A13

0 1 0
A31 0 A33



 ,where 1 lies in the ρ(i)'th row and the i'th 
olumn. Now form the (m+ n− 1)×
(m+ n− 1)-matrix 


A11 0 A13

0 B 0
A31 0 A33



 .This is the permutation matrix for ρ ◦i ν.



4.1. OPERADS IN I S 127In the 
ase n = 0 we interpret B as the 0× 0-matrix. Thus the operation ◦ideletes the i'th 
olumn and the ρ(i)'th row from the matrix A.Now we are ready to de�ne operads in orthogonal spe
tra.De�nition 4.1.1Let (C ,∧, S) be a symmetri
 monoidal 
ategory. An operad in C is a fun
tor
P : Σ→ C with P(0) = S together with 
omposition operations

◦i : P(m) ∧ P(n)→ P(m+ n− 1)de�ned for integers m, n and i su
h that n ≥ 0 and 1 ≤ i ≤ m, satisfying thefollowing axioms:i) Asso
iativity: For the iterated 
ompositions of P(m) ∧ P(n) ∧ P(p), thefollowing asso
iativity holds:
◦i(◦j ∧ id) =






◦j+p−1(◦i ∧ id)(id ∧ π) for 1 ≤ i < j,
◦j(id ∧ ◦i−j+1) for j ≤ i < j + n, and
◦j(◦i−n+1 ∧ id)(id ∧ π) for j + n ≤ i.Here π : P(n) ∧ P(p)→ P(p) ∧ P(n) is the symmetry transposition for ∧.ii) Equivarian
e: Sin
e P is a fun
tor from Σ, ea
h P(m) has an a
tion of

Σm. We write this a
tion on the right, and for ρ ∈ Σm and υ ∈ Σn thefollowing diagram 
ommutes:
P(m) ∧ P(n)

◦ρ(i)
−−−→ P(m+ n− 1)

(−.ρ)∧(−.υ)

y
y−.(ρ◦iυ)

P(m) ∧ P(n)
◦i−−−→ P(m+ n− 1)

.iii) Unity: There is a map 1 : P(0) → P(1) su
h that the following diagrams
ommute for all 1 ≤ i ≤ m

P(m) ∧ P(0)
=
−−−→ P(m) ∧ S

id∧1

y
y∼=

P(m) ∧ P(1)
◦i−−−→ P(m)

and S ∧ P(m)
∼=
−−−→ P(m)

1∧id

y
y=

P(1) ∧ P(m)
◦1−−−→ P(m)The following types of operads are relevant for our appli
ations:De�nition 4.1.2We get dis
rete operads by putting the symmetri
 monoidal 
ategory of setswith 
ross produ
t and unit ∗, into the de�nition above.



128 CHAPTER 4. OPERADS IN I S AND INVOLUTIONWe get operads in topologi
al spa
es by putting the symmetri
 monoidal
ategory of spa
es with 
ross produ
t and unit ∗, into the de�nition above.We get operads in orthogonal spe
tra by putting (I S ,∧, S), the symmetri
monoidal 
ategory of orthogonal spe
tra, into the de�nition above.Remark 4.1.3The de�nition above is equivalent to May's �multi-operation� de�nition of anoperad. We 
onstru
t the multi-operation
γ : P(k) ∧ P(j1) ∧ · · · ∧ P(jk)→ P(j) , where j = j1 + · · ·+ jk,as the 
omposition

γ = ◦jk−1+···+j1+1(◦jk−2+···+j1+1 ∧ id) · · · (◦j1+1 ∧ id ∧ · · · ∧ id)(◦1 ∧ id ∧ · · · ∧ id) .To go the other way one uses the unit and de�nes ◦i = γ(−; 1, . . . , 1,−, 1, . . . , 1).Proposition 4.1.4If F is a lax symmetri
 monoidal fun
tor and P an operad, then FP is also anoperad.Proof: FP is 
learly a fun
tor de�ned on the symmetri
 groupoid, but werede�ne FP(0) to be S. We de�ne the 
omposition operations for FP as themaps
FP(m) ∧ FP(n)→ F (P(m) ∧ P(n))

F (◦i)
−−−→ FP(m+ n− 1) .Proving asso
iativity for FP uses asso
iativity and symmetry for F , and equiv-arian
e holds sin
e the multipli
ation for F is a natural transformation. The map

1 : FP(0)→ FP(1) is de�ned as the 
omposition
FP(0) = S → FS

F (1)
−−→ FP(1) .And unity for FP follows from the unity of F and P. �Example 4.1.5The fun
tor embedding sets in Top as the dis
rete spa
es, is lax symmetri
monoidal, hen
e we may 
onsider every dis
rete operad as an operad in topo-logi
al spa
es.Example 4.1.6 (Suspension operads)The fun
tor sending a spa
e X to the orthogonal spe
trum

F0(X+) given at level V by F0(X+)(V ) = X+ ∧ S
V
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 monoidal. Here F0 is the shift desuspension fun
tor. If C is anoperad in topologi
al spa
es, then we may 
onstru
t a suspension operad in or-thogonal spe
tra by 
omposing with X 7→ F0(X+). Usually we will denote thisoperad in orthogonal spe
tra simply by C, instead of F0(C+). And we will 
all anoperad in orthogonal spe
tra dis
rete if it is the suspension of a dis
rete operadin topologi
al spa
es.Let us give names to two operads in orthogonal spe
tra.We de�ne N (m)(V ) = SV for all m and V . The operations ◦i are in this
ase just the 
anoni
al map S ∧ S → S.De�ne M to be the suspension of the dis
rete operad m 7→ Σm. Theoperations ◦i are then equal to the suspension of the operations Σm×Σn →
Σm+n−1 de�ned above.We will now de�ne an operad geared toward anti-
ommutative involutions.The hypero
tahedral group H(n) is the group of rigid symmetries of a 
ube in

Rn. If we let the 
ube be [−1, 1]n, we 
an identify H(n) as a 
losed subgroup of
O(n). The matri
es in the image are those su
h that every row and every 
olumnhave 0's in all ex
ept one entry, and this entry is 1 or −1.We use the matrix des
ription to des
ribe the 
omposition operations. Firstlet Tn be the n× n-matrix

Tn =




0 · · · 0 −1
0 · · · −1 0... ···

... ...
−1 · · · 0 0


 .Now de�ne ◦i : H(m) ×H(n) → H(m+ n− 1) as follows. Let A be an m ×m-matrix des
ribing an element in H(m), and let B be a matrix in H(n). There isa blo
k de
omposition of A as




A11 0 A13

0 a 0
A31 0 A33



 ,where a is 1 or −1 and lies in the i'th 
olumn of A. Now de�ne the (m + n −
1)× (m+ n− 1)-matrix C to be




A11 0 A13

0 B 0
A31 0 A33



 if a = 1,and 


A11 0 A13

0 TnB 0
A31 0 A33



 if a = −1.



130 CHAPTER 4. OPERADS IN I S AND INVOLUTIONThen C is the matrix of A ◦i B in H(m+ n− 1).Proposition 4.1.7
H is a dis
rete operad.Proof: The right a
tion of σ ∈ Σn on H(n) is given by multipli
ation ofmatri
es. If A is a matrix in H and B is the permutation matrix of σ, then σsends A to AB. And the unit in H(1) is the identity matrix in O(1).Using the �matrix�-model it is easy to verify all three axioms. �Remark 4.1.8In this remark we des
ribe H(n) as (Z/2)n ⋊ Σn, and give a formula for ◦i.Write (Z/2) multipli
atively, denote elements of (Z/2)n by x = (x1, x2, . . . , xn),and embed (Z/2)n in O(n) as the n× n-matri
es having 1 or −1 on the diagonaland 0 elsewhere. Identifying Σn with the permutation matri
es we see that H(n)is a
tually the produ
t of (Z/2)n and Σn inside O(n). (Z/2)n is normal in H(n)and (Z/2)n ∩ Σn = {I}, thus H(n) is a semi-dire
t produ
t (Z/2)n ⋊ Σn. Here
Σn a
ts by permutation of fa
tors on (Z/2)n.It is possible to treat n 7→ (Z/2)n as a non-equivariant operad. The 
ompo-sition operations are given by
(x1, . . . , xm)◦i(y1, . . . , yn) =

{
(x1, . . . , xi−1, y1, . . . , yn, xi+1, . . . , xm) if xi = 1, and
(x1, . . . , xi−1,−yn, . . . ,−y1, xi+1, . . . , xm) if xi = −1.We now introdu
e the following 
onvention: τn without an argument denotes theorder reversing permutation in Σn, while τn with an argument denotes the grouphomomorphism Z/2→ Σn sending −1 to the order reversing permutation. Hen
e

τn(−1) = τn, while τn(1) = id . Now we 
an give a formula for the 
ompositionoperations ofH in terms of the ◦'s of n 7→ (Z/2)n and (n 7→ Σn) =M. Inspe
tingthe �matrix�-model we get
(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τn(xρ(i))υ))for x ∈ (Z/2)m, ρ ∈ Σm, y ∈ (Z/2)n and υ ∈ Σn.Example 4.1.9Via suspension the operad H indu
es an operad in orthogonal spe
tra. Thisindu
ed operad will also be 
alled H.Here is another example of a lax symmetri
 monoidal fun
tor applied to op-erads in orthogonal spe
tra.Example 4.1.10Re
all the 
o�brant repla
ement fun
tor Γ̃ from theorem 3.9.1. We have shownthat Γ̃ is lax symmetri
 monoidal. Hen
e, for any operad P in orthogonal spe
tra



4.1. OPERADS IN I S 131we get an operad Γ̃P. The natural map Γ̃L → L indu
es a map of operads
Γ̃P → P. The ni
e thing about this new operad is that ea
h Γ̃P(m) is Σm-equivariantly naive orbit 
o�brant.However, it is hard to say anything about the genuine homotopy of Γ̃P, evenin the 
ase where P is Σ-free.The idea behind an operad is that P(n) 
an parametrize n-fold multipli
ationson an obje
t L. If we have su
h a parametrization, we 
all L a P-algebra. Thepre
ise de�nition is:De�nition 4.1.11Let P be an operad in the symmetri
 monoidal 
ategory (C ,∧, S). A P-algebrais an obje
t L in C together with operations

θm : P(m) ∧ L∧m → Lsu
h that the following axioms holds:i) θ a
ts: For all n ≥ 0 and 1 ≤ i ≤ m the following diagram 
ommutes:
P(m) ∧ P(n) ∧ L∧(m+n−1) P(m) ∧ P(n) ∧ L∧(m+n−1)shu�ey y◦i

P(m) ∧ L∧(i−1) ∧ P(n) ∧ L∧n ∧ L∧(m−i) P(m+ n− 1) ∧ L∧(m+n−1)

id∧θn∧id

y
yθm+n−1

P(m) ∧ L∧m θm−−−→ L

.

ii) Triviality of the unit: The diagram
P(0) ∧ L S ∧ L

1∧id

y
y∼=

P(1) ∧ L
θ1−−−→ L
ommutes.iii) Equivarian
e: The group Σm a
ts from the left on P(m) and a
ts fromthe right on L∧m by permutation of the fa
tors. θm is equivariant in thesense that the diagram

P(m) ∧ L∧m ρ∧id
−−−→ P(m) ∧ L∧m

id∧ρ

y
yθm

P(m) ∧ L∧m θm−−−→ L
ommutes for every ρ ∈ Σm.



132 CHAPTER 4. OPERADS IN I S AND INVOLUTIONRemark 4.1.12
θ0 is a map P(0) = S → L, and we 
all this map the unit of L.Let us look at an example:Example 4.1.13In this example we 
onsider the dis
rete operad H in the 
ategory of sets. When
onsidering the 
ategory of sets, remember that �∧� in the de�nition above isthe 
ross produ
t, and S is the set {1}. We now want to re
ognize the 
lass of
H-algebras as a more familiar type of mathemati
al obje
ts.Assume thatX is anH-algebra. Let 1 inX denote the image of θ0 : {1} → X.Now de�ne µ : X ×X → X and ι : X → X by

µ(x, y) = θ2

((
1 0
0 1

)
, x, y

)
, and

ι(x) = θ1
((
−1
)
, x
)

.Let us now do some 
al
ulations. First we have that
µ(µ(x, y), z) = θ2

((
1 0
0 1

)
, θ2

((
1 0
0 1

)
, x, y

)
, z

)

= θ3

((
1 0
0 1

)
◦1

(
1 0
0 1

)
, x, y, z

)

= θ3








1 0 0
0 1 0
0 0 1



 , x, y, z



 .

Similarly, we 
an show that µ(x, µ(y, z)) = θ3








1 0 0
0 1 0
0 0 1



 , x, y, z



. Hen
e, µis an asso
iative operation on X. Furthermore, we have:
µ(1, x) = θ2

((
1 0
0 1

)
, θ0(1), x

)

= θ1

((
1 0
0 1

)
◦1
()
, x

)

= θ1 (1, x)

= x ,and by the same methods one also 
al
ulates that µ(x, 1) = x. This shows that
1 is a two-sided unit for µ. Hen
e, X is a monoid with unit. Let us now look at



4.1. OPERADS IN I S 133the operation ι. We have:
ι(ι(x)) = θ1

((
−1
)
, θ1
((
−1
)
, x
))

= θ1
((
−1
)
◦1
(
−1
)
, x
)

= θ1 (1, x)

= x .The intera
tion of µ and ι 
an be 
omputed as follows: First we have
ι(µ(x, y)) = θ1

((
−1
)
, θ2

((
1 0
0 1

)
, x, y

))

= θ2

((
−1
)
◦1

(
1 0
0 1

)
, x, y

)

= θ2

((
0 −1
−1 0

)
, x, y

)
,and se
ondly we 
al
ulate that

µ(ι(y), ι(x)) = θ2

((
1 0
0 1

)
, θ1
((
−1
)
, y
)
, θ1
((
−1
)
, x
))

= θ2

((
1 0
0 1

)
◦1
(
−1
)
, y, θ1

((
−1
)
, x
))

= θ2

((
−1 0
0 1

)
, y, θ1

((
−1
)
, x
))

= θ2

((
−1 0
0 1

)
◦2
(
−1
)
, y, x

)

= θ2

((
−1 0
0 −1

)
, y, x

)

= θ2

((
0 −1
−1 0

)
, x, y

)
.In the last step we used the equivarian
e axiom for H-algebras. What we haveseen is that ι2(x) = x and ι(µ(x, y)) = µ(ι(y), ι(x)). We say that ι is an involutionon the monoid X whi
h anti-
ommutes with the multipli
ation.It 
an be shown that there are no more relations for a general H-algebra.Hen
e, we re
ognize X as a monoid with unit and anti-
ommutative involution.Proposition 4.1.14If F is a lax symmetri
 monoidal fun
tor and L a P-algebra, then FL is an

FP-algebra.Proof: We de�ne the operations θ′m for FL. For m ≥ 1 we de�ne θ′m as the
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omposition
FP(m) ∧ (FL)∧m → F (P(m) ∧ L∧m)

Fθm−−→ FL .For m = 0 we use the unit of F to de�ne θ′0:
FP(0) = S → FS

Fθ0−−→ FL .It is an exer
ise to 
he
k the FP-algebra axioms for FL. Noti
e in parti
ularthat we need symmetry of F to prove both asso
iativity and equivarian
e. �We 
on
lude this se
tion by the following important observation:Proposition 4.1.15There are 1-1 
orresponden
es between
M-algebras in I S and orthogonal ring spe
tra,
N -algebras in I S and 
ommutative orthogonal ring spe
tra, and
H-algebras in I S and orthogonal ring spe
tra with involution.Proof: When P is the suspension of a dis
rete operad, we may identify P(n) ∧

L∧n with a wedge sum ∨
L∧nindexed over the non-base points in P(n)(0).Given an M-algebra L, the map θ0 : S → L is the unit. To get the multi-pli
ation we restri
t θ2 to the wedge summand 
orresponding to id ∈ Σ2. Themap on the other summand 
orresponds to µ ◦ π, where π ex
hanges the fa
torsof L ∧ L. Asso
iativity 
omes from 
omparing µ ◦ (id ∧ µ) and µ ◦ (µ ∧ id) to θ3restri
ted the summand 
orresponding to id ∈ Σ3.Conversely, given an orthogonal ring spe
trum L, it be
omes an M-algebraby de�ning θn on the wedge summand 
orresponding to id ∈ Σn to be the mul-tipli
ation map L∧n → L, and extend to the other summands by equivarian
e.If L is an N -algebra, we get that N (2) ∧ L ∧ L = L ∧ L, and set µ = θ2.Commutativity follows from the Σ2-equivarian
e of θ2.Conversely, given a 
ommutative orthogonal ring spe
trum L, it be
omes an

N -algebra by de�ning θn on N (n) ∧ L∧n = L∧n by multipli
ation. It is wellde�ned be
ause of 
ommutativity.If L is an H-algebra, we let multipli
ation be θ2 restri
ted to the summanddetermined by the matrix (1 0
0 1

), and the involution ι : L→ L is de�ned to be
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θ1 restri
ted to the summand 
orresponding to the matrix (−1

). The 
al
ulationthat (−1
)
◦1
(
−1
)

=
(
1
) implies that ι2 = id , and

((
1 0
0 1

)
◦1
(
−1
))
◦2
(
−1
)

=

(
−1 0
0 −1

)
=
(
−1
)
◦1

(
0 1
1 0

)implies that ι is an anti-homomorphism. This is analogous to the 
al
ulation inexample 4.1.13.Conversely, given an orthogonal ring spe
trum L with involution, it be
omesan H-algebra as follows: De�ne θn on the wedge summand 
orresponding to thematrix 


x1 0 · · · 0
0 x2 · · · 0... ... . . . ...
0 0 · · · xn


as the 
omposition

L∧n = L ∧ L ∧ · · · ∧ L
ι(x1)∧ι(x2)∧···∧ι(xn)
−−−−−−−−−−−−→ L ∧ L ∧ · · · ∧ L

multipli
ation
−−−−−−−→ L .Here ι(x) denotes the involution ι if x = −1, while ι(1) = id , the identity of L.We extend to all of H(n) by Σn-equivarian
e. �4.2 Operads and the two sided bar 
onstru
tion4.2.1 Operads and monadsWe now follow the theory as presented in May's book [May72℄. Our goal isto 
he
k that the basi
 results also hold for operads in a symmetri
 monoidal
ategory (C ,∧, S) provided that C has all small 
olimits. In parti
ular the theoryof this subse
tion applies to orthogonal spe
tra.Assume that P is an operad in C and that L is an obje
t in C whi
h 
omeswith a 
hosen map S → L. Let I denote Bökstedts 
ategory. This 
ategory hasobje
ts the �nite sets n for n ≥ 0. The morphisms are the inje
tive fun
tions.Noti
e that Σ is a sub
ategory of I. For any morphism ρ : n′ → n in I we havemaps

id ∧ ρ∗ : P(n) ∧ L∧n′

→ P(n) ∧ L∧nand
ρ∗ ∧ id : P(n) ∧ L∧n′

→ P(n′) ∧ L∧n′

.The �rst map 
omes from shu�ing fa
tors a

ording to ρ, and inserting S → Lfor those fa
tors in L∧n 
orresponding to points in n, not in the image of ρ. These
ond map 
omes from the identi�
ation of S with P(0), n− n′ times, and then
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omposition operations to redu
e from P(n) ∧ P(0)∧n−n′to P(n′).De�nition 4.2.1We de�ne PL to be the 
oequalizer of
∨

ρ:n′→n

P(n) ∧ L∧n′

⇉
∨

n

P(n) ∧ L∧n .Remark 4.2.2Observe that PL also 
an be des
ribed as the 
oend
∫ n∈I

P(n) ∧ L∧n .By S ↓ C we mean the 
ategory of obje
ts in C under S. We want to show that
P is a monad in this 
ategory. Re
all that a monad M in a 
ategory C 
onsistsof a fun
torM : C → C together with natural transformations µ : M2 → M and
η : id →M su
h that η is a left and right unit for µ, and µ is asso
iative.Proposition 4.2.3For any operad P in C , P is a monad in S ↓ C .Proof: Using the unit of P we have a map

L ∼= S ∧ L→ P(1) ∧ L ⊂
∨

m

P(m) ∧ L∧m → PL .This is the natural transformation η. Sin
e L is under S, PL is also an obje
t in
S ↓ C via the 
omposition S → L

η
−→ PL.To 
onstru
t the multipli
ation µ : PPL → PL we will use the 
ompositionoperations of P. Re
all the de�nition of May's multioperation γ : P(m)∧P(n1)∧

· · · ∧ P(nm)→ P(n1 + · · ·+ nm) as the 
omposition of ◦'s, see remark 4.1.3. Wenow de�ne µ̃ as the 
omposition
P(m) ∧ (P(n1) ∧ L

∧n′
1) ∧ · · · ∧ (P(nm) ∧ L∧n′

m)shu�e
−−−→ P(m) ∧ P(n1) ∧ · · · ∧ P(nm) ∧ L∧n′

1 ∧ · · · ∧ L∧n′
m

γ∧id
−−→ P(n1 + n2 + · · ·+ nm) ∧ L∧(n

′
1+n′

2+···+n′
m) .Noti
e that µ̃ is natural for nj ∈ Iop and for n′j ∈ I. Thus we have an indu
edmap

P(m) ∧ (PL)∧m → PL .
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ise to 
he
k that the diagram
P(m) ∧ (PL)∧m′ id∧ρ∗

−−−→ P(m) ∧ (PL)∧m

ρ∗∧id

y
y

P(m′) ∧ (PL)∧m′

−−−→ PL
ommutes. And we get our monad multipli
ation
µ : PPL→ PL .Clearly η is a left and right unit. Asso
iativity of µ follows from asso
iativityrules for the 
omposition operations ◦j . �If M is a monad in a 
ategory C , then we re
all that an M-algebra is anobje
t L of C together with a map θ : ML → L, su
h that θµ = θM(θ) and

θηL = idL. See 
hapter VI in [ML98℄.Proposition 4.2.4There is a natural one-to-one 
orresponden
e between P-algebras and P -algebras.Proof: Given a P -algebra L, we de�ne the P-algebra maps θm as the 
omposi-tions
P(m) ∧ L∧m → PL

θ
−→ L .Conversely, if L is a P-algebra, we 
he
k that the following diagram 
ommutes

P(m) ∧ L∧m′ id∧ρ∗
−−−→ P(m) ∧ L∧m

ρ∗∧id

y
yθm

P(m′) ∧ L∧m′ θm′

−−−→ PLfor all ρ : m′ → m in I. Thus we have an indu
ed map PL → L, and we takethis as a de�nition of θ. �Corollary 4.2.5
PL is a P-algebra, and for any map f : K → L in C , the indu
ed map Pf :
PK → PL is a map of P-algebras.Proof: The multipli
ation µ : PPL → PL gives PL a P-algebra stru
ture.And naturality implies that Pf : PK → PL is a P-algebra morphism. �Let M be a monad in C . Re
all from May [May72℄ that an M-fun
tor isa fun
tor F with the same sour
e as M together with a natural transformation
λ : FM → F , su
h that λFη is the identity and λFµ = λλ.



138 CHAPTER 4. OPERADS IN I S AND INVOLUTIONProposition 4.2.6If α : P → Q is a map of operads, then Q is a P -fun
tor.Proof: By fun
torality of the 
onstru
tion of P form P it is 
lear that α indu
esa morphism of monads P → Q.Now let αL denote the natural transformation PL→ QL, and de�ne λ to bethe 
omposition
QPL

QαL−−→ QQL
µ′

−→ QL .Here µ′ is the multipli
ation for Q. The properties of a P -fun
tor are easily ver-i�ed. �4.2.2 Homotopy theory of operads and their algebrasHaving treated the 
ategori
al theory of operads and monads we now turn to-ward homotopy theory. Berger and Moerdijk, [BM03℄, de�ne model stru
tureon operads in monoidal model 
ategories. Their approa
h requires a symmetri
monoidal �brant repla
ement fun
tor. See their theorem 3.1. We are interestedin orthogonal spe
tra, but this 
ategory does not possess su
h a fun
tor, see ourremark 2.6.2. Also see example 4.6.4 in [BM03℄. However, we do not need amodel stru
ture on operads in orthogonal spe
tra. Dire
t methods are su�
ient.Suppose given notions of 
o�bration and weak equivalen
e for orthogonalspe
tra. Let α : P → Q be a map of operads in orthogonal spe
tra, and f : K →
L a map of orthogonal spe
tra under S. We ask:When is η : L→ PL a 
o�bration?When is Pf : PK → PL a 
o�bration?If ea
h α : P(j) → Q(j) is a weak equivalen
e when is also PL → QL aweak equivalen
e?If f is a weak equivalen
e, when is Pf : PK → PL also a weak equivalen
e?Remark 4.2.7The author originally wanted to address these questions for arbitrary operads P.In this setting, the fun
tor Γ̃ of theorem 3.9.1 should be the 
o�brant repla
ementfun
tor for operads. Proposition 3.9.10 would ensure that Γ̃P had Σ-equivarian
e.However, as lemma 4.2.8 below shows, one must be able to analyze the smashprodu
t over Σj . But getting results about X ∧Σj

Y when X and Y are Σj-equivariantly orbit 
o�brant, turned out to be too di�
ult. Therefore the authorhad to impose a very restri
tive 
ondition on the operads. Further details aboutthis 
ondition 
an be found below. Still the 
ases of main interest, the operads
Dn, �ts into this restri
tive framework be
ause of theorem 4.3.11.
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ould work is to assume Σj-freeness of P(j). Butfor our appli
ations the stri
ter 
ondition is su�
ient.We will answer the questions by giving su�
ient 
riteria in the propositionsbelow. Central in all arguments is a �ltration of PL. It is given by de�ning FjPLto be the 
oequalizer of
∨

ρ:n′→n

n≤j

P(n) ∧ L∧n′

⇉

j∨

n=0

P(n) ∧ L∧n .By F0PL we will understand the sphere spe
trum S, and S = F0PL → PL isthe unit of PL. As 
oends we 
an write
FjPL =

∫ n≤j

P(n) ∧ L∧n .Lemma 4.2.8
F1PL = P(1) ∧ L, for j ≥ 2 there are pushout squares

P(j) ∧Σj
sL∧j−1 −−−→ Fj−1PLy

y

P(j) ∧Σj
L∧j −−−→ FjPLand colimj FjPL = PL.Here sL∧j−1 is an abbreviation for (S∧L∧j−1)∪(L∧S∧L∧j−2)∪· · ·∪(L∧j−1∧S).The proof that follows is 
ategori
al, so this lemma holds for any symmetri
monoidal 
ategory whi
h has small 
olimits.Proof: To see that PL = colimj FjPL we 
onsider the diagram

· · · −−−→
∨

ρ:n→m

m≤j−1

P(m) ∧ L∧n −−−→
∨

ρ:n→m

m≤j

P(m) ∧ L∧n −−−→ · · ·

� �

· · · −−−→
∨j−1

m=0 P(m) ∧ L∧m −−−→
∨j

m=0P(m) ∧ L∧m −−−→ · · ·and use that taking 
olimits and taking 
oequalizers 
ommute.To see that the diagram is pushout we will use a tri
k involving 
oends. Wenow �x j. Suppose that m and n′ are obje
ts in Bökstedts 
ategory I, we thenhave a pushout square of based sets
{θ : m→ n

′ , where m < n′ = j}+→{θ : m→ n
′ , where m < j and n′ ≤ j}+y

y

{θ : m→ n
′ , where m ≤ n′ = j}+→{θ : m→ n

′ , where m ≤ j and n′ ≤ j}+

.
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tive maps. We interpret the sets on the left to be ∗ if n′ 6= j,and all sets are ∗ if n′ > j. The subs
ript + means that we have added an extrabasepoint. Varying m ∈ Iop and n′ ∈ I we see that the 
olle
tion of these sets isa fun
tor Iop × I → Ens∗.Now smash the diagram above with P(n) on the left and L∧m′ on the right.We get a pushout diagram
P(n) ∧ {m

θ
−→ n

′ | m < n′ = j}+ ∧ L∧m′

→P(n) ∧ {m
θ
−→ n

′ | m < j, n′ ≤ j}+ ∧ L∧m′

y
y

P(n) ∧ {m
θ
−→ n

′ | m ≤ n′ = j}+ ∧ L∧m′

→ P(n) ∧ {m
θ
−→ n

′ | m, n′ ≤ j}+ ∧ L∧m′of fun
tors Iop×Iop×I×I → I S . Pushouts and 
oends 
ommute, so applyingthe iterated 
oend to the diagram yields a pushout. We 
al
ulate the 
orners ofthe resulting diagram by �rst taking the 
oend over n ∈ I, then over m ∈ I. Wehave:
∫ m ∫ n

P(n) ∧ {θ : m→ n | m < n = j}+ ∧ L
∧m

=

∫ m

P(j) ∧ {θ : m→ j | m < j}+ ∧ L
∧m

= P(j) ∧Σj
sL∧j−1 ,

∫ m ∫ n

P(n) ∧ {θ : m→ n | m ≤ n = j}+ ∧ L
∧m

=

∫ m

P(j) ∧ {θ : m→ j | m ≤ j}+ ∧ L
∧m

= P(j) ∧Σj
L∧j ,

∫ m ∫ n

P(n) ∧ {θ : m→ n | m < j and n ≤ j}+ ∧ L
∧m

=

∫ m

P(m) ∧ T (m < j) ∧ L∧m

=

∫ n<j

P(n) ∧ L∧n

= Fj−1PL and
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∫ m ∫ n

P(n) ∧ {θ : m→ n | m ≤ j and n ≤ j}+ ∧ L
∧m

=

∫ m

P(m) ∧ T (m ≤ j) ∧ L∧m

=

∫ n≤j

P(n) ∧ L∧n

= FjPL .Here T (m < j) is the fun
tor sending m to S0 if m < j and to ∗ if m ≥ j. And
T (m ≤ j) is de�ned similarly.Thus the 
al
ulations show that the resulting diagram, whi
h must be apushout by 
onstru
tion, is equal to

P(j) ∧Σj
sL∧j−1 −−−→ Fj−1PLy

y

P(j) ∧Σj
L∧j −−−→ FjPL

.This 
on
ludes the proof. �From now on we will only 
onsider operads in orthogonal spe
tra. In orderto prove the propositions we will only work with those operads P su
h thatea
h P(j) 
an be written equivariantly as X ∧ (Σj)+ for some (non-equivariant)orthogonal spe
trum X.Proposition 4.2.9If S → P(1) and S → L are orbit q-
o�brations, and ea
h P(j) 
an be writtenequivariantly as a produ
t X ∧ (Σj)+ with X being an orbit 
o�brant (non-equivariant) orthogonal spe
trum, then the unit η : L → PL is an orbit q-
o�bration.Proof: First �x j ≥ 2. By proposition 3.11.1 sL∧(j−1) → L∧j is an orbitq-
o�bration. Applying P(j) ∧Σj
− we get

P(j) ∧Σj
sL∧(j−1) = X ∧ sL∧(j−1) → X ∧ L∧j = P(j) ∧Σj

L∧j ,for some orbit 
o�brant X depending on j. Using proposition 3.11.1 again, thismap is an orbit q-
o�bration.Orbit q-
o�brations are stable under 
obase 
hange. In the �ltration for PLwe now have that ea
h Fj−1PL → FjPL is an orbit q-
o�bration for j ≥ 2.Observe that also L→ P(1) ∧ L = F1PL is an orbit q-
o�bration.We now have a sequen
e of orbit q-
o�brations and by proposition 3.11.4 wehave that
η : L→ colim

j
FjPL = PL
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o�bration. �Proposition 4.2.10Let f : K → L be a map under S. If f and S → K are orbit q-
o�brations andea
h P(j) 
an be written equivariantly as a produ
t X ∧ (Σj)+ with X being anorbit 
o�brant (non-equivariant) orthogonal spe
trum, then Pf : PK → PL isalso an orbit q-
o�bration.Proof: By proposition 3.11.4 we must show that
F1PK = P(1) ∧K → P(1) ∧ L = F1PLis an orbit q-
o�bration, and that for every j ≥ 2 the map

FjPK ∪Fj−1PK Fj−1PL→ FjPLalso is an orbit q-
o�bration. The �rst statement follows dire
tly from the as-sumptions together with proposition 3.11.1. The se
ond statement is proved asfollows:Fix some j ≥ 2 and 
onsider the diagram
sK∧(j−1) −−−→ K∧j

y
y

sL∧(j−1) −−−→ L∧j

.Observe that
K∧j ∪sK∧(j−1) sL∧(j−1) = K ∧ L∧j−1 ∪ L ∧K ∧ L∧j−2 ∪ · · · ∪ L∧j−1 ∧K .By proposition 3.11.1 the 
anoni
al map

K∧j ∪sK∧(j−1) sL∧(j−1) → L∧jis an orbit q-
o�bration. Sin
e P(j) = X ∧ (Σj)+ for some orbit 
o�brant X, thefun
tor P(j)∧Σj
− takes orbit q-
o�brations to orbit q-
o�brations, see proposi-tion 3.11.1. It follows that the map

P(j) ∧Σj
K∧j ∪P(j)∧Σj

sK∧(j−1) P(j) ∧Σj
sL∧(j−1) → P(j) ∧Σj

L∧jis an orbit q-
o�bration. Now take a look at the diagram
Fj−1PK ←−−− P(j) ∧Σj

sK∧(j−1) −−−→ P(j) ∧Σj
K∧j

y
y

y

Fj−1PL ←−−− P(j) ∧Σj
sL∧(j−1) −−−→ P(j) ∧Σj

L∧j

.
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o�brations are stable under 
obase
hange to 
on
lude that
FjPK ∪Fj−1PK Fj−1PL→ FjPLis an orbit q-
o�bration. �Proposition 4.2.11If for ea
h j the map α : P(j)→ Q(j) 
an be written equivariantly as a produ
t

X∧(Σj)+ → Y ∧(Σj)+ where X → Y is a π∗-isomorphism between orbit 
o�brantorthogonal spe
tra, and S → L is an orbit q-
o�bration, then PL → QL is a
π∗-isomorphism.Proof: Sin
e ea
h P(j) is a produ
t X ∧ (Σj)+ where X is orbit 
o�brant, the�rst part of the proof of proposition 4.2.9 shows that ea
h map

Fj−1PL→ FjPLis an orbit q-
o�bration. Similarly we have that ea
h Fj−1QL → FjQL also isan orbit q-
o�bration. Observe that any orbit q-
o�bration is an l-
o�bration.Hen
e by proposition 2.1.9 it is enough to show that ea
h FjPL → FjQL is a
π∗-isomorphism.Fix j ≥ 1. We now perform a little tri
k using the 
o�brant repla
ementfun
tor Γ: Let K be sL∧(j−1) or L∧j . In the argument that follows K 
ould infa
t be any orthogonal Σj-spe
trum. The diagram

P(j) ∧Σj
ΓK

≃
−−−→ Q(j) ∧Σj

ΓK

≃

y
y≃

P(j) ∧Σj
K −−−→ Q(j) ∧Σj

K
an be written as
X ∧ ΓK

≃
−−−→ Y ∧ ΓK

≃

y
y≃

X ∧K −−−→ Y ∧Kfor some orbit 
o�brant X and Y . Sin
e ΓK → K is a level-equivalen
e, propo-sition 3.11.2 implies that the verti
al maps are level-equivalen
es. The map atthe top is a π∗-iso by proposition 2.4.7. Thus the two maps
P(j) ∧Σj

sL∧(j−1) → Q(j) ∧Σj
sL∧(j−1) and P(j) ∧Σj

L∧j → Q(j) ∧Σj
L∧jare π∗-isomorphisms.
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tion that FjPL → FjQL is a π∗-iso. For j = 1 thisfollows dire
tly from the argument above sin
e F1PL = P(1) ∧ L and F1QL =
Q(1) ∧ L. For the indu
tion step we 
onsider the diagram

Fj−1PL ←−−− P(j) ∧Σj
sL∧(j−1) i

−−−→ P(j) ∧Σj
L∧j

y
y

y

Fj−1QL ←−−− Q(j) ∧Σj
sL∧(j−1) i′

−−−→ Q(j) ∧Σj
L∧j

.The verti
al maps are π∗-isos and the maps marked i and i′ are l-
o�brations.By proposition 2.4.6 we get that the row-wise pushout, FjPL→ FjQL, is againa π∗-iso. �Proposition 4.2.12If ea
h P(j) 
an be written equivariantly as a produ
t X ∧ (Σj)+ with X beingan orbit 
o�brant (non-equivariant) orthogonal spe
trum, and the maps S → Land S → K are orbit q-
o�brations, and f : L→ K a π∗-isomorphism under S,then the map PL→ PK is also a π∗-isomorphism.Proof: It is enough to show that ea
h FjPL→ FjPK is a π∗-iso. This followsfrom proposition 2.1.9.We have F1PL = P(1) ∧ L and F1PK = P(1) ∧K, so applying the tri
k ofthe previous proof to the diagram
P(1) ∧ ΓL −−−→ P(1) ∧ ΓKy

y

P(1) ∧ L −−−→ P(1) ∧Kwe see that the natural map F1PL→ F1PK is a π∗-iso.Let cL∧j denote the 
o�ber of sL∧j−1 → L∧j . This map is an orbit 
o�brationby proposition 3.11.1, hen
e also an l-
o�bration. This implies that cL∧j has thehomotopy type of the homotopy 
o�ber. Similarly we 
an de�ne cK∧j .Observe that proposition 2.4.9 also holds for orbit q-
o�brations. To see thisnoti
e that its proof is formal. In the orbit 
o�brant 
ase, we 
an use proposi-tion 3.11.2 instead of proposition 2.4.7, and proposition 3.11.1 instead of propo-sition 2.4.8. By indu
tion on j and using that the 
on
lusion of proposition 2.4.9for the indu
tion step, we prove that the map
cL∧j → cK∧jis a π∗-isomorphism.
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laim that the map P(j) ∧Σj
cL∧j → P(j) ∧Σj

cK∧j is a π∗-iso. To
he
k the 
laim, re
all that P(j) = X ∧ (Σj)+, where X is orbit 
o�brant. Nowinspe
t the diagram
ΓX ∧ ΓcL∧j ≃

−−−→ ΓX ∧ ΓcK∧j

≃

y
y≃

X ∧ ΓcL∧j −−−→ X ∧ ΓcK∧j

≃

y
y≃

P(j) ∧Σj
cL∧j X ∧ cL∧j −−−→ X ∧ ΓcK∧j P(j) ∧Σj

cK∧j

.

The propositions 3.11.2 and 2.4.7 show that the maps marked with ≃ are π∗-isos.The 
laim follows.Now inspe
t the map between 
o�ber sequen
es given by the �ltration:
Fj−1PL −−−→ FjPL −−−→ P(j) ∧Σj

cL∧j

y
y

y

Fj−1PK −−−→ FjPK −−−→ P(j) ∧Σj
cK∧j

.The �rst map is a π∗-iso by indu
tion, while the last map is a π∗-iso by the ar-gument above. It follows that the middle verti
al map also is a π∗-iso. �4.2.3 Operads and simpli
ial obje
tsWe are now going to dis
uss how a monad P indu
ed by an operad extends tosimpli
ial orthogonal spe
tra. Re
all that a simpli
ial orthogonal spe
trum is afun
tor
L• : ∆op → I S .But P has domain orthogonal spe
tra under the sphere spe
trum, so we 
annotform the 
omposition PL• unless we demand that L• has a 
hosen lifting to asimpli
ial obje
t in S ↓ I S . Lu
kily this is not a restri
tive 
ondition; a fun
tor

∆op → (S ↓ I S ) is equivalent to a simpli
ial orthogonal spe
trum L• togetherwith a 
hosen map S → L0.Geometri
 realization of a simpli
ial obje
t in S ↓ I S yields an orthogonalspe
trum under S. And we ask if P and | − | 
ommutes:Proposition 4.2.13Let L• be a simpli
ial obje
t in S ↓ I S and P any operad in orthogonal spe
tra,then there is a natural isomorphism
ν : |PL•| → P |L•| ,
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h that the following two diagrams 
ommute:
|L•|

|η|
−−−→ |PL•|

=

y
yν

|L•|
η

−−−→ P |L•|

and |PPL•|
Pν ν
−−−→ PP |L•|

|µ|

y
yµ

|PL•|
ν

−−−→ P |L•|

.Proof: We use the �ltration of P and 
onstru
t ν : |FjPL•| → FjP |L•| byindu
tion. For j = 1 we let
|F1PL•| = |P(1) ∧ L•| → P(1) ∧ |L•| = F1P |L•|be the natural isomorphism given by lemma 2.5.4. For the indu
tive step we
onsider the diagram

|P(j) ∧Σj
L∧j
• | ←−−− |P(j) ∧Σj

sL∧j−1
• | −−−→ |Fj−1PL•|y

y
y

P(j) ∧Σj
|L•|∧j ←−−− P(j) ∧Σj

s|L•|∧j−1 −−−→ Fj−1P |L•|

.The �rst two verti
al maps are isomorphisms by lemma 2.5.4, while the last is anisomorphism by indu
tion. It follows that the map between the pushouts also isan isomorphism.Sin
e ν : |PL•| → P |L•| is a 
olimit of isomorphisms, it is itself an isomor-phism.To see that ν is unital we just observe from the 
onstru
tion above that thefollowing diagram 
ommutes:
|L•|

|η|
−−−→ |F1PL•| −−−→ |PL•|

=

y
y

yν

|L•|
η

−−−→ F1P |L•| −−−→ P |L•|

.At last we want to 
he
k that ν ◦ |µ| is equal to µ ◦ Pν ◦ ν. Sin
e the naturalmap ∨j P(j)∧K∧j → PK is surje
tive for any orthogonal spe
trum K under S,it is enough to 
he
k that the following diagram 
ommutes:
∣∣∣
∨

j P(j) ∧
(∨

k P(k) ∧ L∧k
•

)∧j
∣∣∣ −−−→

∨
j P(j) ∧

(∨
k P(k) ∧ |L•|∧k

)∧j

y
y

∣∣∣
∨

j P(j) ∧ L∧j
•

∣∣∣ −−−→
∨

j P(j) ∧ |L•|∧j

.To do this re
all the stepwise de�nition of µ, use that wedge and geometri
 real-ization 
ommute and lemma 2.5.4. This �nishes the proof. �



4.2. OPERADS AND THE TWO SIDED BAR CONSTRUCTION 147Corollary 4.2.14Let P be an operad in orthogonal spe
tra. The geometri
 realization is a fun
torfrom simpli
ial P -algebras to P -algebras.Proof: A simpli
ial P -algebra is a fun
tor
L• : ∆op → {P -algebras} .Its geometri
 realization is de�ned by realizing the underlying simpli
ial orthog-onal spe
trum. We de�ne θ for |L•| as the 
omposition
P |L•|

ν
←−
∼=
|PL•| → |L•| .Here the last map uses the P -algebra stru
ture of ea
h Lq. Using the two diagramsin the proposition above, we easily see that this is a P -algebra.Fun
torality follows from naturality of ν. �4.2.4 The bar 
onstru
tionWe are now going to re
all the de�nition of May's two-sided bar 
onstru
tion.In [May72℄ May uses this bar 
onstru
tion in relation with operads in topologi
alspa
es. In this subse
tion we will prove his results for operads in orthogonalspe
tra. Due to remark 4.2.7 we will not 
onsider arbitrary operads, but onlythose P su
h that ea
h P(j) 
an be written equivariantly as a produ
t X ∧ (σj)+for some orbit 
o�brant X. We are parti
ularly interested in improving a P-algebra to a homotopy equivalentQ-algebra, when given a map of operads P → Qsu
h that ea
h P(j)→ Q(j) 
an be written equivariantly as the produ
t of a π∗-iso X → Y and (Σj)+.De�nition 4.2.15Let C be a monad, F a C-fun
tor andX a C-algebra, then we de�ne Bq(F,C,X) =

FCqX. We have fa
e and degenera
y operators given by
d0 = λ, λ : FCqX → FCq−1X ,

di = FCi−1µ, µ : Cq−i+1X → Cq−iX for 0 < i < q,

dq = FCq−1θ, θ : CX → X and
si = FCiη, η : Cq−iX → Cq−i+1X .And we de�ne B(F,C,X) as the geometri
 realization of B•(F,C,X).We now spe
ify the situation we are interested in. Let P be an operad inorthogonal spe
tra, and L a P-algebra. In addition let α : P → Q be a map ofoperads. Now assume that:



148 CHAPTER 4. OPERADS IN I S AND INVOLUTIONthe unit S → L is an orbit q-
o�bration,the unit S → P(1) is an orbit q-
o�bration and ea
h P(j) 
an be writtenequivariantly as a produ
t X ∧ (Σj)+ with X being an orbit 
o�brant (non-equivariant) orthogonal spe
trum,the unit S → Q(1) is an orbit q-
o�bration and ea
h Q(j) 
an be writtenequivariantly as a produ
t Y ∧ (Σj)+ with Y being an orbit 
o�brant (non-equivariant) orthogonal spe
trum, andea
h α : P(j) → Q(j) 
an be written equivariantly as a produ
t X ∧
(Σj)+ → Y ∧ (Σj)+ where X → Y is a π∗-isomorphism.These are standing assumptions for the rest of this subse
tion.In order to do 
al
ulations with the bar 
onstru
tions we should know that

[q] 7→ QP qL is good.Lemma 4.2.16Under the assumptions above [q] 7→ QP qL is good.Proof: The i'th degenera
y operator is de�ned as
si = QP iη ,where η : P q−iL→ P q−i+1L ,for 0 ≤ i ≤ q. We will 
he
k that si is an orbit q-
o�bration.We use proposition 4.2.9 and proposition 4.2.10. By simultaneous indu
tionwe prove that the unit S → P jL and η : P jL → P j+1L are orbit q-
o�brations.Sin
e both P and Q preserves orbit q-
o�brations this implies that si = QP iη isan orbit q-
o�bration. �Lemma 4.2.17

B(Q,P, L) is a Q-algebra.Proof: By 
orollary 4.2.14 it is enough to show that [q] 7→ QP qL is a simpli
ial
Q-algebra.For a given q the Q-algebra stru
ture map θ : QQP qL → QP qL is de�nedas the multipli
ation µ′ of Q. By naturality of µ′ we easily see that the si's for
0 ≤ i ≤ q and the di's for 1 ≤ i ≤ q are Q-algebra morphisms. They are allde�ned as Qf for suitable f 's. Only d0 requires more 
he
king. Re
all that d0 isde�ned to be λ : QP qL→ QP q−1L, but λ = µ′Qα and asso
iativity of µ′ impliesthat d0 is a Q-algebra morphism. �
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e L is P -algebra, the evaluation B(P, P, L)→ L is a map of P -algebras anda π∗-isomorphism.Proof: De�ne
fq : PP qL→ Lto be the iterated 
omposition

PP qL
dq
−→ P qL

dq−1
−−→ P q−1L→ · · · → PL

θ
−→ L .This de�nes a simpli
ial map from [q] 7→ PP qL to the 
onstant simpli
ial orthog-onal spe
trum [q] 7→ L. Its realization is the evaluation B(P, P, L)→ L. Sin
e Lis a P -algebra the following diagram 
ommutes for all q:

PPP qL
Pfq

−−−→ PL

µ

y
yθ

PP qL
fq

−−−→ L

,thus the 
olle
tion fq is a map of simpli
ial P -algebras, and by 
orollary 4.2.14it follows that B(P, P, L)→ L is also a P -algebra map.Using the unit η : L → PL we de�ne a 
oretra
tion for the evaluation map.On the level of q-simpli
es it is de�ned by
sq
0η : L→ PP qL .Be warned that L→ B(P, P, L) is not a P -algebra map.The 
omposition L → B(P, P, L) → L is 
learly the identity. Composing inthe opposite order we get B(P, P, L)→ L→ B(P, P, L) and the resulting map isthe realization of

sq
0ηfq : PP qL→ PP qL .Now it is easy to see that the maps hi : PP qL→ PP q+1L for 0 ≤ i ≤ q, de�nedby

hi = si
0ηd

i
0 : PP qL→ PP q+1L ,give a simpli
ial homotopy between sq

0ηfq and the identity. Thus B(P, P, L)→ Lis a π∗-isomorphism. �Proposition 4.2.19Under the assumptions above the map B(P, P, L)→ B(Q,P, L) indu
ed by α isboth a π∗-isomorphism and a map of P -algebras.
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tive use of proposition 4.2.9 the map S → P qL is an orbitq-
o�bration for every q. By proposition 4.2.11 it follows that PP qL→ QP qL isa π∗-isomorphism for all q. The simpli
ial orthogonal spe
tra [q] 7→ PP qL and
[q] 7→ QP qL both are good by lemma 4.2.16, hen
e B(P, P, L)→ B(Q,P, L) is a
π∗-iso.The last 
laim is easily 
he
ked: α indu
es a P -algebra stru
ture on QP qL,and the map (

[q] 7→ PP qL
)
→
(
[q] 7→ QP qL

)is a map of simpli
ial P -algebras. We now appeal to 
orollary 4.2.14. �Remark 4.2.20Together the two propositions 4.2.18 and 4.2.19 give a pro
edure for repla
ing a
P -algebra by a P -equivalent Q-algebra. We have

B(Q,P, L)← B(P, P, L)→ L .Here both maps are P -algebra maps and π∗-isomorphisms. In addition the �rst
P -algebra is also a Q-algebra. Moreover, the following proposition shows that
B(Q,P, L) is unique up to π∗-isomorphism of Q-algebras.Proposition 4.2.21In addition to the assumptions above assume that S → L′ and S → A are orbitq-
o�brations. If A ← L′ → L are π∗-isomorphisms of P -algebras, with A a
Q-algebra, then there are π∗-isomorphisms

A← B(Q,P, L′)→ B(Q,P, L)of Q-algebras.Proof: By fun
torality of the two-sided bar 
onstru
tion we have maps
B(Q,P, L)← B(Q,P, L′)→ B(Q,P,A)→ B(Q,Q,A)→ A .All these maps are easily seen to be maps of Q-algebras. By proposition 4.2.18the last map is a π∗-iso.By proposition 4.2.12 and 
orollary 4.2.14 the �rst two maps are π∗-isomorphisms.Combining the propositions 4.2.11 and 4.2.12, we prove by indu
tion thatea
h

QP qA→ Qq+1Ais a π∗-iso. Hen
e by 
orollary 4.2.14 also the map B(Q,P,A)→ B(Q,Q,A) is a
π∗-iso. �



4.3. INVOLUTION OPERADS ON S[ΩM ] 1514.3 Involution operads on S[ΩM ]The main 
on
ern of the previous se
tions has been to set up a theory for operadsin orthogonal spe
tra. Let M be a 
ompa
t manifold and ξ a ve
tor bundle over
M . In this se
tion we will apply this theory to 
onstru
t involutions, dependingon ξ, on orthogonal ring spe
tra R, whi
h are π∗-isomorphi
 to S[ΩM ]. Thus Rand S[ΩM ] have identi
al homotopy groups, and we want the involution on R to
oin
ide with the involution ι on π∗S[ΩM ], where ι is given as follows:De�nition 4.3.1Assume that ξ is an n-ve
tor bundle. A 
lass in πqS[ΩM ] is represented by amap

α : Sq+k → ΩM+ ∧ S
k .Parallel transportation in ξ along loops in M gives a homomorphism

P : ΩM → GL(Rn) .Using P , we de�ne a map P̄ : Sn ∧ ΩM+ → ΩM+ ∧ S
n by sending (v, γ) to

(γ̄, P (γ)(v)). We have transported v along γ and reversed the loop. The involu-tion ι is now de�ned by sending the 
lass of α to the 
lass of the 
omposition
Sn ∧ Sq+k id∧α

−−−→ Sn ∧ ΩM+ ∧ S
k P̄∧id
−−−→ ΩM+ ∧ S

k+n .The strategy now is to 
onstru
t operads Dn in orthogonal spe
tra, subse
-tion 4.3.1, for positive integers n. When n is the �ber dimension of ξ, we show insubse
tion 4.3.2 that S[ΩM ] is a Dn-algebra. The next step, subse
tion 4.3.3, isto show that Dn and H are �homotopy equivalent� operads. In subse
tion 4.3.4we bring everything together and state and prove the main theorem.4.3.1 The 
onstru
tionHere we will design operads Dn in orthogonal spe
tra for every positive integer n.Their purpose is to en
ode the involution on S[ΩM ] given by an n-dimensionalve
tor bundle ξ over a manifold M . In subse
tion 4.3.2 below we will see that
S[ΩM ] is a Dn-algebra. The main result of this subse
tion is:Theorem 4.3.2
Dn, as 
onstru
ted below, is an operad in orthogonal spe
tra. And there is a mapof operads Dn → H.The proof will be given at the end of this subse
tion, before that we have to
onstru
t the operad. We will also provide an orbit 
o�brant repla
ement for Dn,see theorem 4.3.11 below.Our �rst aim is to de�ne for ea
h j orthogonal Σj-spe
tra Dn(j). But beforerea
hing this aim we have to introdu
e the topologi
al groups Dn(j;V ). Here V



152 CHAPTER 4. OPERADS IN I S AND INVOLUTIONis a �nite dimensional real inner produ
t spa
e. We write the group operationof Dn(j;V ) multipli
atively, 1 is the unit, and we de�ne this group by spe
ifyinggenerators and relations. The generators have the form (φ, r), where φ : Rn →֒ Vis an isometri
 embedding and 1 ≤ r ≤ j an integer. Noti
e that the generatorsform a topologi
al spa
e. There are two 
lasses of relations. These are:i) Can
ellation of repeated pairs: For all φ and r we set
(φ, r)(φ, r) = 1ii) Orthogonal pairs 
ommute: Whenever φ ⊥ ψ and r 6= r′, we set

(φ, r)(ψ, r′) = (ψ, r′)(φ, r) .There is an in
reasing �ltration of Dn(j;V ). Let FmDn(j;V ) be the subset of allelements represented by words with m or fewer letters. As a topologi
al spa
e
FmDn(j;V ) is a quotient of ∐m

i=0X
×i, where X is the spa
e of generators. Andthe groupDn(j;V ) has the topology of the union (=
olimit topology). Noti
e thatan isometri
 embedding V → V ′ indu
es a homomorphismDn(j;V )→ Dn(j;V ′).We are now ready to de�ne Dn(j).De�nition 4.3.3Let Dn(j) be the orthogonal Σj-spe
trum given by the formula

Dn(j)(V ) = (Dn(j;V )× Σj)+ ∧ S
V .The right assembly, σ : Dn(j)(V ) ∧ SW → Dn(j)(V ⊕W ), is indu
ed by thenatural isometri
 embedding V → V ⊕W . Let (x, ρ, v) be a point in (Dn(j;V )×

Σj)+ ∧ SV and ν ∈ Σj . Then the right Σj-a
tion Dn(j)(V )× Σj → Dn(j)(V ) issimply given by
((x, ρ, v), ν) 7→ (x, ρν, v) .Lemma 4.3.4Ea
h Dn(j) 
an be written equivariantly as a produ
t X ∧ (Σj)+, where X is a(non-equivariant) orthogonal spe
trum.Proof: Let X(V ) = Dn(j;V )+ ∧ SV . �Now re
all the de�nition of the operad H. Here we use the des
ription givenin remark 4.1.8. And we 
onsider H to be an operad in orthogonal spe
tra viasuspension, see example 4.1.6. We will now de�ne for ea
h j a map

Dn(j)→ H(j) .
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ture on Dn we will see that the 
olle
tion of thesemaps de�nes a map of operads. We begin the 
onstru
tion by de�ning group ho-momorphisms p : Dn(j;V ) → (Z/2)j. Re
all that we write Z/2 multipli
atively.The maps p are given on generators by
p(φ, r) = (1, . . . , 1,−1, 1, . . . , 1) ,where the −1 lies in the r'th fa
tor. The map above is now de�ned as
Dn(j)(V )=(Dn(j;V )× Σj)+ ∧ SV

(p×id)+∧id

y

H(j)(V ) = ((Z/2)j × Σj)+ ∧ SV

.The 
onstru
tion of 
omposition operations on Dn is quite abstra
t. Letme therefore suggest to the reader to take a look at how the a
tion of Dn on
S[ΩM ] is de�ned, see the �rst part of subse
tion 4.3.2, before pro
eeding withthe details given here. The a
tion has been the author's guideline when de�ningthe 
omposition operation. How to de�ne the operad stru
ture on Dn is for
edby the formulas for the a
tion. So keeping the main geometri
al idea behind thea
tion in mind, will probably help the reader to understand this subse
tion.Assume for a moment that we 
an de�ne non-Σ-equivariant 
omposition op-erations ◦i : Dn(j;V )×Dn(k;W )→ Dn(j+ k− 1;V ⊕W ). Using these our nextgoal is to de�ne 
omposition operations on the produ
t Dn(j;V )×Σj . There willbe a twist by p in the de�nition of ◦i on the produ
t. Write pi(x) for the i'th fa
-tor of p(x). Let (x, ρ) and (y, υ) be elements in Dn(j;V )×Σj and Dn(k;W )×Σkrespe
tively, then the formula is

(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τk(pρ(i)(x))υ)) .Here τk denotes the group homomorphism Z/2 → Σk whi
h sends −1 to theorder reversing permutation. Compare this formula with the formula de�ning Hin remark 4.1.8.Details: We 
annot postpone the details any more. To de�ne the 
ompositionoperations
◦i : Dn(j;V )×Dn(k;W )→ Dn(j + k − 1;V ⊕W )we �rst de�ne a homomorphism ci : Dn(k;W ) → Dn(j + k − 1;V ⊕W ). Nextwe de�ne a left a
tion, ⊢i, depending on i, of Dn(j;V ) on Dn(j + k− 1;V ⊕W ).Then ◦i is given by the formula

x ◦i y = x ⊢i ci(y) .



154 CHAPTER 4. OPERADS IN I S AND INVOLUTIONLet i1 : V → V ⊕W and i2 : W → V ⊕W be the natural in
lusions. ci is de�nedon generators of Dn(k;W ) by
ci(φ, r) = (i2φ, r + i− 1) .To de�ne ⊢i, we �rst introdu
e an automorphism, z 7→ z̄ of Dn(j+k−1;V ⊕W ).This automorphism depends on i and is de�ned on generators by

(φ, r) 7→






(φ, r) for r < i,
(φ, k + 2i− r − 1) for i ≤ r < k + i, and
(φ, r) for k + i ≤ r.For a generator (φ, r) in Dn(j;V ) and an element z ∈ Dn(j + k − 1;V ⊕W ) wenow de�ne ⊢i by

(φ, r) ⊢i z =






(i1φ, r)z for r < i,
(i1φ, i+ k − 1) · · · (i1φ, i)z̄ for r = i, and
(i1φ, r + k − 1)z for r > i.To prove formulas 
ontaining the 
omposition operators we often do indu
tionon the length of a word in theDn(−;−) groups. We also need some basi
 formulas.These are:Lemma 4.3.5Let x be a word and (φ, r) a generator of Dn(j;V ), let y be a word and (ψ, r′) agenerator of Dn(k;W ), and let z be a word in Dn(j + k − 1;V ⊕W ). We have:i) 1 ◦i 1 = 1,ii) x ⊢i z = (x ◦i 1)z if pi(x) = 1,iii) x ⊢i z = (x ◦i 1)z̄ if pi(x) = −1,iv) (x(φ, r)) ◦i 1 = (x ◦i 1)(φ, r) if r < i,v) (x(φ, r)) ◦i 1 = (x ◦i 1)(φ, i+ k − 1) · · · (φ, i) if r = i and pi(x) = 1,vi) (x(φ, r)) ◦i 1 = (x ◦i 1)(φ, i) · · · (φ, i+ k − 1) if r = i and pi(x) = −1,vii) (x(φ, r)) ◦i 1 = (x ◦i 1)(φ, r + k − 1) if r > i,viii) x ◦i (y(ψ, r′)) = (x ◦i y)(ψ, r

′ + i− 1) if pi(x) = 1,ix) x ◦i (y(ψ, r′)) = (x ◦i y)(ψ, k + i− r′) if pi(x) = −1,x) (x(φ, r)) ◦i y = (x ◦i y)(φ, r) if r < i, and



4.3. INVOLUTION OPERADS ON S[ΩM ] 155xi) (x(φ, r)) ◦i y = (x ◦i y)(φ, r + k − 1) if r > i.Observe that we have omitted the 
anoni
al in
lusions i1 and i2 from the notation.Proof: All formulas are 
he
ked by inspe
ting the de�nition of ◦i. To illustratethe te
hniques involved we write out the proofs for vi) and x).vi): We have
(x(φ, r)) ◦i 1 = x ⊢i ((φ, i) ⊢i 1)

= x ⊢i

(
(φ, i+ k − 1) · · · (φ, i)

)

= (x ◦i 1)(φ, i+ k − 1) · · · (φ, i)

= (x ◦i 1)(φ, i) · · · (φ, i+ k − 1) .Here we have used iii) and that ⊢i is a group a
tion.x): Observe that (φ, r)ci(y) = ci(y)(φ, r) by the �orthogonal pairs 
ommute�relation in Dn(j+k−1;V ⊕W ). Assume that pi(x) = 1, so that ii) applies. Nowwe have:
(x(φ, r)) ◦i y = x ⊢i

(
(φ, r) ⊢i ci(y)

)

=
(
x ◦i 1

)(
(φ, r)ci(y)

)

= (x ◦i 1)ci(y)(φ, r)

=
(
x ⊢i ci(y))(φ, r)

= (x ◦i y)(φ, r) .If pi(x) = −1 we use iii) instead of ii) in the above 
al
ulation. �We have the following proposition telling us how p and ◦ intera
t:Proposition 4.3.6Let x ∈ Dn(j;V ) and y ∈ Dn(k;W ). Then
ph(x ◦i y) =






ph(x) for h < i,
ph−i+1(y) for i ≤ h < i+ k and pi(x) = 1,
−pi+k−h(y) for i ≤ h < i+ k and pi(x) = −1, and
ph−k+1(x) for i+ k ≤ h.In the 
ase i ≤ h < i + k we 
an rewrite the formula as ph(x ◦i y) = pi(x) ·

pτk(pi(x))(h−i+1)(y).Proof: The 
ases h < i and i+ k ≤ h follow immediately from the de�nitions.



156 CHAPTER 4. OPERADS IN I S AND INVOLUTIONAssume that i ≤ h < i+ k. The proof pro
eeds by indu
tion on the length of x.If x = 1, then pi(x) = 1 and we have
ph(x ◦i y) = ph(1 ◦i y) = ph(ci(y)) = ph−i+1(y) .Now let x = (φ, r)x′ and assume that the formula is true for x′. There aresix 
ases to 
onsider. For r we have three possibilities r < i, r = i or r > i, and

pi(x
′) 
an be 1 or −1. We 
he
k two 
ases 
arefully, and leave the four others tothe reader.If r < i and pi(x

′) = −1, then also pi(x) = −1. The left side of the formulabe
omes
ph(((φ, r)x

′) ◦i y) = ph((φ, r)(x
′ ◦i y)) = ph((φ, r)) · ph(x

′ ◦i y) = ph(x
′ ◦i y) ,while the right side is −pi+k−h(y). Thus the formula holds by the indu
tionhypothesis.If r = 1 and pi(x

′) = 1, then pi(x) = pi((φ, i)x
′) = pi(φ, i) · pi(x

′) = (−1) · 1 =
−1. Observe that by the de�nition of the involution z 7→ z̄ onDn(j+k−1;V ⊕W )we have ph(z̄) = pk+2i−h−1(z). Cal
ulating the left side of the formula we get
ph(((φ, i)x

′) ◦i y) = ph((φ, i+ k − 1) · · · (φ, i)(x′ ◦i y)) = −pk+2i−h−1(x
′ ◦i y) ,and the right side is −pi+k−h(y). The indu
tion hypothesis says that pi(x

′) = 1and thus pk+2i−h−1(x
′ ◦i y) = pi+k−h(y) sin
e i ≤ k+2i−h−1 < i+k. Thereforethe formula is true for x. �We now dedu
e the arithmeti
 rules for the 
omposition operators onDn(−;−).Proposition 4.3.7Let x ∈ Dn(j;V ), y ∈ Dn(k;W ) and z ∈ Dn(l;U). The following asso
iativityformula holds:

(x ◦i y) ◦h z =






(x ◦h z) ◦i+l−1 y for h < i,
x ◦i (y ◦h−i+1 z) for i ≤ h < i+ k and pi(x) = 1,
x ◦i (y ◦i+k−h z) for i ≤ h < i+ k and pi(x) = −1, and
(x ◦h−k+1 z) ◦i y for i+ k ≤ h.Proof: To 
omplete this proof we have to do indu
tion three times. Lu
kily we
an redu
e the number of 
ases using the following observation: Suppose that wealready have proved the �rst 
ase of the formula, (x◦i y)◦h z = (x◦h z)◦i+l−1 y for

h < i, then by inserting x = x′, y = z′, z = y′, l = k′, h = i′ and i = h′ − k′ + 1we immediately get that
(x′ ◦h′−k′+1 z

′) ◦i′ y
′ = (x′ ◦i′ y

′) ◦h′ z′ for i′ < h′ − k′ + 1.And this is the last 
ase. Hen
e we need only to prove the �rst three 
ases.
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tion: We begin the proof by showing that
(x ◦i 1) ◦h 1 =






(x ◦h 1) ◦i+l−1 1 for h < i,
x ◦i (1 ◦h−i+1 1) for i ≤ h < i+ k and pi(x) = 1, and
x ◦i (1 ◦i+k−h 1) for i ≤ h < i+ k and pi(x) = −1.This is proved by indu
tion on the length of x. Assume that x = x′(φ, r). To
omplete the indu
tion step we need to 
he
k the following 
ases individually:

h < i and r < h,
h < i, r = h and ph(x

′) = 1,
h < i, r = h and ph(x

′) = −1,
h < i and h < r < i,
h < i, r = i and pi(x

′) = 1,
h < i, r = i and pi(x

′) = −1,
h < i and i < r,
i ≤ h < i+ k, r < i and pi(x

′) = 1,
i ≤ h < i+ k, r < i and pi(x

′) = −1,
i ≤ h < i+ k, r = i and pi(x

′) = 1,
i ≤ h < i+ k, r = i and pi(x

′) = −1,
i ≤ h < i+ k, r > i and pi(x

′) = 1, and
i ≤ h < i+ k, r > i and pi(x

′) = −1.All 
ases are straight forward to 
he
k using various formulas from lemma 4.3.5.As an illustration we verify two of the 
ases.For example if r = h < i and ph(x
′) = −1 then

((x′(φ, r)) ◦i 1) ◦h 1 = ((x′ ◦i 1)(φ, h)) ◦h 1

= ((x′ ◦i 1) ◦h 1)(φ, h) · · · (φ, h+ l − 1)

= ((x′ ◦h 1) ◦i+l−1 1)(φ, h) · · · (φ, h+ l − 1)

= ((x′ ◦h 1)(φ, h) · · · (φ, h+ l − 1)) ◦i+l−1 1

= ((x′(φ, r)) ◦h 1) ◦i+l−1 1 .Here we have used the formulas iv) and vi) from lemma 4.3.5 and the indu
tionhypothesis for the middle step.In the 
ase i ≤ h < i+ k, r > i and pi(x
′) = 1, we have

((x′(φ, r)) ◦i 1) ◦h 1 = ((x′ ◦i 1)(φ, r + k − 1)) ◦h 1

= ((x′ ◦i 1) ◦h 1)(φ, r + k + l − 2)

= (x′ ◦i (1 ◦h−i+1 1))(φ, r + k + l − 2)

= (x′(φ, r)) ◦i (1 ◦h−i+1 1) .Here we have used the indu
tion hypothesis and formula vii) from lemma 4.3.5.The other 
ases are left as exer
ises.



158 CHAPTER 4. OPERADS IN I S AND INVOLUTIONSe
ond indu
tion: Next we do indu
tion on the length of y to show that
(x ◦i y) ◦h 1 =






(x ◦h 1) ◦i+l−1 y for h < i,
x ◦i (y ◦h−i+1 1) for i ≤ h < i+ k and pi(x) = 1, and
x ◦i (y ◦i+k−h 1) for i ≤ h < i+ k and pi(x) = −1.Observe that for y = 1 we have the formula we proved above. Assume that

y = y′(ψ, r′). Again there are several 
ases to 
onsider:
h < i and pi(x) = 1,
h < i and pi(x) = −1,
i ≤ h < i+ k, pi(x) = 1 and r′ < h− i+ 1,
i ≤ h < i+ k, pi(x) = 1, r′ = h− i+ 1 and ph−i+1(y

′) = 1,
i ≤ h < i+ k, pi(x) = 1, r′ = h− i+ 1 and ph−i+1(y

′) = 1,
i ≤ h < i+ k, pi(x) = 1 and r′ > h− i+ 1,
i ≤ h < i+ k, pi(x) = −1 and r′ < i+ k − h,
i ≤ h < i+ k, pi(x) = −1, r′ = i+ k − h and pi+k−h(y

′) = 1,
i ≤ h < i+ k, pi(x) = −1, r′ = i+ k − h and pi+k−h(y

′) = −1, and
i ≤ h < i+ k, pi(x) = −1 and r′ > i+ k − h.For example if h < i and pi(x) = 1, then

(x ◦i (y′(ψ, r′))) ◦h 1 = ((x ◦i y
′)(ψ, k + i− r′)) ◦h 1

= ((x ◦i y
′) ◦h 1)(ψ, k + i− r′)

= ((x ◦h 1) ◦i+l−1 y
′)(ψ, k + i− r′)

= (x ◦h 1) ◦i+l−1 (y′(ψ, r′)) .We have used that pi+l−1(x ◦h 1) = pi(x) = 1, the formulas viii) and vi) from thelemma and the indu
tion hypothesis.Let us 
he
k one more 
ase. If i ≤ h < i+ k, r′ = i+ k − h, pi(x) = −1 and
pi+k−h(y

′) = 1, then
(x ◦i (y′(ψ, r′))) ◦h 1 = ((x ◦i y

′)(ψ, i+ k − r′)) ◦h 1

= ((x ◦i y
′)(ψ, h)) ◦h 1

= ((x ◦i y
′) ◦h 1)(ψ, h) · · · (ψ, h+ l − 1)

= (x ◦i (y′ ◦i+k−h 1))(ψ, h) · · · (ψ, h+ l − 1)

= x ◦i ((y′ ◦i+k−h 1)(ψ, i+ k − h+ l − 1) · · · (ψ, i+ k − h))

= x ◦i ((y′(ψ, i+ k − h)) ◦i+k−h 1)

= x ◦i ((y′(ψ, r′)) ◦i+k−h 1) .We have used the formulas ix), vi) and v) from the lemma, the indu
tion hypoth-esis and that ph(x ◦i y′) = −1.
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tion: At last we use indu
tion on the length of z to prove that
(x ◦i y) ◦h z =






(x ◦h z) ◦i+l−1 y for h < i,
x ◦i (y ◦h−i+1 z) for i ≤ h < i+ k and pi(x) = 1, and
x ◦i (y ◦i+k−h z) for i ≤ h < i+ k and pi(x) = −1.Observe that the previous indu
tion proves this formula in the 
ase z = 1. Nowassume that z = z′(θ, r′′). These are the 
ases to 
onsider:

h < i and ph(x) = 1,
h < i and ph(x) = −1,
i ≤ h < i+ k, pi(x) = 1 and ph−i+1(y) = 1,
i ≤ h < i+ k, pi(x) = 1 and ph−i+1(y) = −1,
i ≤ h < i+ k, pi(x) = −1 and pi+k−h(y) = 1, and
i ≤ h < i+ k, pi(x) = −1 and pi+k−h(y) = −1.We write out two of the 
ases: If h < i and ph(x) = 1, then

(x ◦i y) ◦h (z′(θ, r′′)) = ((x ◦i y) ◦h z
′)(θ, r′′ + h− 1)

= ((x ◦h z
′) ◦i+l−1 y)(θ, r

′′ + h− 1)

= ((x ◦h z
′)(θ, r′′ + h− 1)) ◦i+l−1 y

= (x ◦h (z′(θ, r′′))) ◦i+l−1 y .We have here used that ph(x◦i y) = ph(x) = 1, the formulas viii) and x) from thelemma and the indu
tion hypothesis.In the 
ase i ≤ h < i+ k, pi(x) = 1, ph−i+1(y) = −1 we have
(x ◦i y) ◦h (z′(θ, r′′)) = ((x ◦i y) ◦h z

′)(θ, l + h− r′′)

= (x ◦i (y ◦h−i+1 z
′))(θ, l + h− r′′)

= x ◦i ((y ◦h−i+1 z
′)(θ, l + h− i+ 1− r′′))

= x ◦i (y ◦h−i+1 (z′(θ, r′′))) .We have used that ph(x ◦i y) = ph−i+1(y) = −1, the formulas viii) and ix) of thelemma and the indu
tion hypothesis.The 
he
king of all remaining 
ases is left to the reader. �Re
all that our aim is to de�ne 
omposition operations for the produ
ts
Dn(j;V )× Σj . The formula is

(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τk(pρ(i)(x))υ)) .And we want to 
he
k asso
iativity, equivarian
e and unity. We begin withequivarian
e.



160 CHAPTER 4. OPERADS IN I S AND INVOLUTIONLemma 4.3.8Let (x, ρ) ∈ Dn(j;V )× Σj , ρ′ ∈ Σj , (y, υ) ∈ Dn(k;W )× Σk and υ′ ∈ Σk. Thereis a right a
tion of Σj on Dn(j;V )× Σj de�ned by
(x, ρ).ρ′ = (x, ρρ′)and we have

((x, ρ).ρ′) ◦i ((y, υ).υ′) = ((x, ρ) ◦ρ′(i) (y, υ)).(ρ′ ◦i υ
′) .Proof: This proof is easy. We have:

((x, ρ).ρ′) ◦i ((y, υ).υ′) = (x, ρρ′) ◦i (y, υυ′)

= (x ◦ρρ′(i) y, (ρρ
′) ◦i (τk(pρρ′(i)(x))υυ

′))

= (x ◦ρρ′(i) y, ρ ◦ρ′(i) (τk(pρρ′(i)(x))υ)(ρ′ ◦i υ
′))

= (x ◦ρρ′(i) y, ρ ◦ρ′(i) (τk(pρρ′(i)(x))υ)).(ρ′ ◦i υ
′)

= ((x, ρ) ◦ρ′(i) (y, υ)).(ρ′ ◦i υ
′) .

�Lemma 4.3.9Let (x, ρ) ∈ Dn(j;V ) × Σj , (y, υ) ∈ Dn(k;W ) × Σk and (z, µ) ∈ Dn(l;U) × Σl.The following asso
iativity holds for ◦:
((x, ρ)◦i (y, υ))◦h(z, µ) =






((x, ρ) ◦h (z, µ)) ◦i+l−1 (y, υ) for h < i,
(x, ρ) ◦i ((y, υ) ◦h−i+1 (z, µ)) for i ≤ h < i+ k, and
((x, ρ) ◦h−k+1 (z, µ)) ◦i (y, υ) for i+ k ≤ h.Proof: As in the proof of proposition 4.3.7, we observe that the �rst 
ase ofthis formula implies the last 
ase. Hen
e it is enough to 
he
k the �rst two 
ases.Re
all the formula de�ning the 
omposition operators on Dn(−;−)×Σ−. Wemay rewrite the formula as

(x, ρ) ◦i (y, υ) =

{
(x ◦ρ(i) y, ρ ◦i υ) if pρ(i)(x) = 1, and
(x ◦ρ(i) y, ρ ◦i (τkυ)) if pρ(i)(x) = −1.Here we have used the 
onvention that τk without an argument denotes theorder reversing permutation in Σk, while τk with an argument denotes the grouphomomorphism Z/2→ Σk sending −1 to the order reversing permutation. Thisformula will be applied many times throughout this proof, both forward andba
kward.
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ial 
ase for h < i: First we assume that the permutations ρ, υ and µare the identity.
(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i τk(pi(x))) ◦h (z, id l)

= ((x ◦i y) ◦h z, (id j ◦i τk(pi(x))) ◦h τl(ph(x)))

= ((x ◦h z) ◦i+l−1 y, (id j ◦h τl(ph(x))) ◦i+l−1 τk(pi(x)))

= (x ◦h z, id j ◦h τl(ph(x))) ◦i+l−1 (y, idk)

=
(
(x, id j) ◦h (z, id l)

)
◦h (y, idk) .In addition to the formula we have used the asso
iativity for the 
ompositionoperators, proposition 4.3.7 for Dn(−;−) and lemma A.3.5 for ◦ of the per-mutations, and the 
al
ulations: id j ◦i τk(pi(x))(h) = h, ph(x ◦i y) = ph(x),

id j ◦h τl(ph(x))(i+ l − 1) = i+ l − 1 and pi+l−1(x ◦h z) = pi(x).A spe
ial 
ase for i ≤ h < i+ k: Also here we let the permutations ρ, υ and
µ be the identity. If pi(x) = 1 and ph−i+1(y) = 1, then

(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i idk) ◦h (z, id l)

= ((x ◦i y) ◦h z, (id j ◦i idk) ◦h id l)

= (x ◦i (y ◦h−i+1 z), id j ◦i (idk ◦h−i+1 id l))

= (x, id j) ◦i (y ◦h−i+1 z, id k ◦h−i+1 id l)

= (x, id j) ◦i
(
(y, idk) ◦h−i+1 (z, id l)

)
.If pi(x) = 1 and ph−i+1(y) = −1, then

(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i idk) ◦h (z, id l)

= ((x ◦i y) ◦h z, (id j ◦i idk) ◦h τl)

= (x ◦i (y ◦h−i+1 z), id j ◦i (idk ◦h−i+1 τl))

= (x, id j) ◦i (y ◦h−i+1 z, id k ◦h−i+1 τl)

= (x, id j) ◦i
(
(y, idk) ◦h−i+1 (z, id l)

)
.If pi(x) = −1 and ph−i+1(y) = 1, then

(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i τk) ◦h (z, id l)

= ((x ◦i y) ◦2i+k−h−1 z, (id j ◦i τk) ◦h τl)

= (x ◦i (y ◦h−i+1 z), id j ◦i (τk ◦h−i+1 τl))

= (x ◦i (y ◦h−i+1 z), id j ◦i (τk+l−1(idk ◦h−i+1 id l)))

= (x, id j) ◦i (y ◦h−i+1 z, id k ◦h−i+1 id l)

= (x, id j) ◦i
(
(y, idk) ◦h−i+1 (z, id l)

)
.



162 CHAPTER 4. OPERADS IN I S AND INVOLUTIONIf pi(x) = −1 and ph−i+1(y) = −1, then
(
(x, id j) ◦i (y, idk)

)
◦h (z, id l) = (x ◦i y, id j ◦i τk) ◦h (z, id l)

= ((x ◦i y) ◦2i+k−h−1 z, (id j ◦i τk) ◦h id l)

= (x ◦i (y ◦h−i+1 z), id j ◦i (τk ◦h−i+1 id l))

= (x ◦i (y ◦h−i+1 z), id j ◦i (τk+l−1(idk ◦h−i+1 τl))))

= (x, id j) ◦i (y ◦h−i+1 z, id k ◦h−i+1 τl)

= (x, id j) ◦i
(
(y, idk) ◦h−i+1 (z, id l)

)
.In addition to the formula we have used proposition 4.3.7 and lemma A.3.5, andsome small 
al
ulations. Most notably that τk ◦h−i+1 id l = τk+l−1(idk ◦h−i+1 τl).The general 
ase: Now we will use equivarian
e to get asso
iativity in the
ase where the permutations ρ, υ and µ are arbitrary. We have:

((x, ρ) ◦i (y, υ)) ◦h (z, µ) =
(
((x, id j) ◦ρ(i) (y, idk)) ◦(ρ◦iυ)(h) (z, id l)

)
.
(
(ρ ◦i υ) ◦h µ

)
,

((x, ρ) ◦h (z, µ)) ◦i+l−1 (y, υ) =
(
((x, id j) ◦ρ(h) (z, id l)) ◦(ρ◦hµ)(i+l−1) (y, idk)

)
.
(
(ρ ◦h µ) ◦i+l−1 υ

)
,

(x, ρ) ◦i ((y, υ) ◦h−i+1 (z, µ)) =
(
(x, id j) ◦ρ(i) ((y, idk) ◦υ(h−i+1) (z, id l))

)
.
(
ρ ◦i (υ ◦h−i+1 µ)

) and
((x, ρ) ◦h−k+1 (z, µ)) ◦i (y, υ) =

(
((x, id j) ◦ρ(h−k+1) (z, id l)) ◦(ρ◦hµ)(i) (y, idk)

)
.
(
(ρ ◦h−k+1 µ) ◦i υ

)
.Using that ◦ is asso
iative for permutations, and that asso
iativity holds when thepermutations are the identity (the spe
ial 
ases), we now get the general result. �Lemma 4.3.10

(1, id) is the unit for ◦ on Dn(j;V )× Σj .Proof: This is obvious. Simple 
al
ulations show that for all (x, ρ) ∈ Dn(j;W )×
Σj we have

(x, ρ) ◦i (1, id1) = (x, ρ)and
(1, id1) ◦1 (x, ρ) = (x, ρ) .

�We now 
omplete the proof of theorem 4.3.2:Proof: The main issue is to 
onstru
t the 
omposition operations, and then toverify the axioms. We already have de�ned
◦i : (Dn(j;V )× Σj)+ ∧ (Dn(k;W )× Σk)+ → (Dn(j + k − 1;V ⊕W )×Σj+k−1)+by the formula

(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τk(pρ(i)(x))υ)) .
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all that Dn(j)(V ) is de�ned as (Dn(j;V ) × Σj)+ ∧ SV . Let ◦̃i : Dn(j)(V ) ∧
Dn(k)(W )→ Dn(j+k−1)(V ⊕W ) be indu
ed by these. We think of ◦̃i as exterior
omposition operations. And we 
he
k that they are natural transformations that
oequalizers

Dn(j)∧̃S∧̃Dn(k) ⇉ Dn(j)∧̃Dn(k) .Therefore we have indu
ed maps
◦i : Dn(j) ∧ Dn(k)→ Dn(j + k − 1) .Asso
iativity for ◦ onDn follows from asso
iativity for ◦ on j 7→ Dn(j;−)×Σj ,likewise for equivarian
e when we let the right a
tion of Σj on Dn(j) be indu
edfrom the right a
tion of Σj on Dn(j;−)×Σj . The unity axiom follows similarly.To see that the 
olle
tion of maps Dn(j) → H(j) de�nes a map of operadsone 
ompares the formula above and the formula given in remark 4.1.8. Re
allthat p denotes the group homomorphism Dn(j;V ) → (Z/2)j, and noti
e that

p(x ◦i y) = p(x) ◦i p(y) by proposition 4.3.6. �We round up this subse
tion by providing an orbit 
o�brant repla
ement for
Dn:Theorem 4.3.11There exists an operad in orthogonal spe
tra, whi
h we denote by Γ̂Dn, su
h thatthere is a map of operads Γ̂Dn → Dn,for ea
h j the map Γ̂Dn(j)→ Dn(j) is a level-equivalen
e, andea
h Γ̂Dn(j) 
an be des
ribed Σj-equivariantly as a produ
t X ∧ (Σj)+,where X is non-equivariant and orbit 
o�brant.Proof: We have a non-Σ version D′n of the operad Dn given by

D′n(j)(V ) = Dn(j;V )+ ∧ S
V .In analogy to what we did in the proof above, we have non-Σ 
omposition op-erations ◦i for D′n indu
ed by the ◦i's on Dn(−;V )+. Observe that Dn(j) ∼=

D′n(j) ∧ (Σj)+. The idea is now to apply the orbit 
o�brant repla
ement fun
tor
Γ̃ to D′n. For the de�nition and the properties of Γ̃, see theorem 3.9.1.We now de�ne the ◦i's for Γ̃D′n as 
ompositions

Γ̃D′n(j) ∧ Γ̃D′n(k)
φ
−→ Γ̃ (D′n(j) ∧ D′n(k))

Γ̃(◦i)
−−−→ Γ̃D′n(j + k − 1) .Sin
e Γ̃ is symmetri
, these ◦i's for Γ̃D′n will satisfy asso
iativity relations anal-ogous to those given in proposition 4.3.7.
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Γ̂Dn(j) = Γ̃D′n(j) ∧ (Σj)+ .We have right Σj a
tions as usual. And the ◦i's on Γ̂Dn are de�ned by the sameformula as before. Lemma 4.3.8 is formal and the argument yields that ◦i's on

Γ̂Dn are equivariant. Furthermore, the argument of lemma 4.3.9 is also formal,thus ◦i's on Γ̂Dn are also asso
iative. Hen
e Γ̂Dn is an operad in orthogonalspe
tra.The natural level-equivalen
e Γ̃L → L from theorem 3.9.1, indu
es the mapof operads Γ̂Dn → Dn. Clearly for ea
h j the map Γ̂Dn(j) → Dn(j) is a level-equivalen
e. And sin
e Γ̃L is orbit 
o�brant for any L the last statement follows.
�Remark 4.3.12By the 
onstru
tion of Γ̂Dn it is easily seen that there exists a map of operads

f :M→ Γ̂Dn su
h that the 
omposition
M

f
−→ Γ̂Dn → Dn →His the standard in
lusion. The identity element in Dn(j;V ) gives an in
lusion
S → D′n(j)for every j. Re
all that Γ̃ 
omes with a unit map S → Γ̃S. So we get a map

S → Γ̃D′n(j) .Smashing with (Σj)+ yields
f :M(j)→ Γ̂Dn(j) .4.3.2 The a
tion of Dn on S[ΩM ]In this subse
tion we will 
onstru
t a Dn-algebra stru
ture on the orthogonalspe
trum S[ΩM ]. This stru
ture depends on an n-ve
tor bundle ξ overM . Re
allthat by de�nition of S[ΩM ], the V 'th spa
e is (ΩM)+ ∧ SV . In this subse
tionwe will prove the following theorem:Theorem 4.3.13Let M be a 
ompa
t smooth manifold and ξ an n-ve
tor bundle over M , thenthe orthogonal spe
trum S[ΩM ] has a Dn-algebra stru
ture whi
h depends on ξ.



4.3. INVOLUTION OPERADS ON S[ΩM ] 165Before proving this theorem there are some preliminary 
onsiderations and
onstru
tions. First we should agree on a suitable model for the loop spa
e ΩM .See [AH56℄ or subse
tion 5.1 in [CM95℄ for the de�nition of �Moore loops�. Wemodify this de�nition slightly to get pie
ewise smooth �Moore loops�.Let m0 be a base point inM . For te
hni
al reasons it is important to have anasso
iative multipli
ation (
omposition of loops) and that every loop is pie
ewisesmooth. Here we de�ne su
h a spa
e ΩM as the geometri
al realization of asimpli
ial monoid. A q-simplex is a pie
ewise smooth map
γ : ∆q × I →Mtogether with a pie
ewise a�ne map
l : ∆q → [0,∞)su
h that γ(t, 0) = γ(t, 1) = m0 for all t ∈ ∆q and whenever l(t) = 0 then

γ(t, s) = m0 for all s ∈ I. Here l(t) is thought of as the �length� of the loop
s 7→ γ(t, s).If we have two q-simpli
es (γ1, l1) and (γ2, l2) we multiply (
ompose) these asfollows: Let l = l1 + l2 and de�ne γ by

γ(t, s) =






γ1(t,
s(l1+l2)

l1
) if s(l1 + l2) < l1,

m0 if s(l1 + l2) = l1, and
γ2(t,

s(l1+l2)−l1
l2

) if s(l1 + l2) > l1.Here we have divided the interval I into two pie
es, the ratio between theirlengths being l1(t) to l2(t). On the �rst pie
e we use γ1 and on the se
ond weuse γ2. Asso
iativity of the 
omposition follows. We will use the notation � forthis operation.Noti
e that ΩM has the 
orre
t homotopy type. Let Ω′M be the geometri
alrealization of the simpli
ial set having q-simpli
es the pie
ewise smooth maps
γ : ∆q × I → M su
h that γ(t, 0) = γ(t, 1) = m0. Then we 
an 
ompare thisspa
e with ΩM . There is an in
lusion

i : Ω′M → ΩMde�ned by setting l 
onstant equal to 1. And we have a retra
tion
r : ΩM → Ω′Mby forgetting l. Clearly ri = id . And it is possible to 
onstru
t a simpli
ialhomotopy ir ≃ id . Therefore ΩM ≃ Ω′M . Furthermore, Ω′M is homotopi
 tothe spa
e of 
ontinuous maps (I, {0, 1})→ (M,m0), see 
hapter 17 in [Mil63℄.There is an involution on ΩM . We write (γ, l) 7→ (γ, l), and it is de�ned bysending γ to the reversed loop,

γ(t, s) = γ(t, 1− s) ,
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hanged. Noti
e that the involution is an anti-homomorphism.This means that
(γ1, l1) � (γ2, l2) = (γ2, l2) � (γ1, l1) .We will often simplify the notation for a loop in ΩM , and leave the length lout of the notation.The 
onstru
tion of the Dn-algebra stru
ture on S[ΩM ] will use a 
onne
tion

∇ on ξ. We need to take parallel transportation along pie
ewise smooth loopsin M . However, the 
hoi
e of 
onne
tion will not 
arry any information up tohomotopy.Choose a 
onne
tion ∇ on ξ and an isomorphism Rn ∼= ξm0 . Then paralleltransportation yields a 
ontinuous map
P : ΩM → GL(Rn)su
h that

P (γ1 � γ2) = P (γ2)P (γ1) for all pie
ewise smooth loops γ1 and γ2, and
P (γ) = P (γ)−1 for all pie
ewise smooth loops γ.For more about parallel transportation see remark 17.4 in [MT97℄.Given a �nite dimensional real inner produ
t spa
e V and an isometri
 em-bedding φ : Rn → V , we write V as the sum φ(Rn) + V ⊥, where V ⊥ is theorthogonal 
omplement of φ(Rn) in V . Given a pie
ewise smooth loop γ in M ,we de�ne the map φ∗(γ) : V → V by using P (γ) on φ(Rn) while leaving V ⊥un
hanged. For v = φ(u) + w, u ∈ Rn and w ∈ V ⊥ we have

φ∗(γ)(v) = φ(P (γ)(u)) + w .Let φ and ψ be isometri
 embeddings of Rn in V , and γ, γ1 and γ2 be pie
ewisesmooth loops in M , then:
φ∗(γ1 � γ2) = φ∗(γ2)φ

∗(γ1),
φ∗(γ) = φ∗(γ)−1, and
φ∗(γ1)ψ

∗(γ2) = ψ∗(γ2)φ
∗(γ1) if φ ⊥ ψ.Noti
e that the map (φ, γ) 7→ φ∗(γ) is 
ontinuous when φ lies in the spa
e ofisometri
 embeddings, γ lies in ΩM and the image lies in GL(V ).Next we de�ne an a
tion of the group Dn(j;V ) on the spa
e F (SV , SV ) ∧

(ΩM+)∧j. Re
all that F (X, Y ) denotes the spa
e of based maps X → Y .Let (φ, r) be a generator of Dn(j;V ) and (f ; γ1, . . . , γj) a point in F (SV , SV ) ∧
(ΩM+)∧j. Then we de�ne the a
tion by the formula

(φ, r).(f ; γ1, . . . , γj) = (φ∗(γr) ◦ f ; γ1, . . . , γr−1, γr, γr+1, . . . , γj) .
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(φ, r).

(
(φ, r).(f ; γ1, . . . , γj)

)
= (f ; γ1, . . . , γj)and if φ ⊥ ψ and r 6= r′, then

(φ, r).
(
(ψ, r′).(f ; γ1, . . . , γj)

)
= (ψ, r′).

(
(φ, r).(f ; γ1, . . . , γj)

)
.Thus we have a well de�ned group a
tion.Also Σj a
ts from the left on the spa
e F (SV , SV ) ∧ (ΩM+)∧j . This a
tion isby permutation of the loops. For ρ ∈ Σj we have

ρ.(f ; γ1, . . . , γj) = (f ; γρ−1(1), . . . , γρ−1(j)) .Now de�ne θ̄j : Dn(j)∧(ΩM+)∧j → S[ΩM ] by 
ommutativity of the followingdiagram:
SV ∧ (Dn(j;V )× Σj)+ ∧ F (SV , SV ) ∧ (ΩM+)∧j→SV ∧ F (SV , SV ) ∧ (ΩM+)∧j

x
y

(Dn(j;V )× Σj)+ ∧ S
V ∧ (ΩM+)∧j → ΩM+ ∧ SV

.The top map 
ombines the group a
tions, �rst apply the Σj-a
tion, then the
Dn(j;V )-a
tion. The left map is the in
lusion at id ∈ F (SV , SV ) and the rightmap evaluates f ∈ F (SV , SV ) on SV and multiplies (
omposes) the loops. Themap at the bottom is θ̄j evaluated at V . Clearly θ̄j 
ommutes with assembliesfor Dn(j) ∧ (ΩM+)∧j and S[ΩM ], and is thus a well de�ned map of orthogonalspe
tra.Via a series of adjun
tions there is for orthogonal spe
tra L and K and abased spa
e A, a one-to-one 
orresponden
e between maps L∧A→ K and maps
L ∧ F0A→ K. The adjun
tions are:

I S (L ∧A, Y ) ∼= Top∗(A,I S (L,K))
∼= Top∗(A,F (L,K)(0)) ∼= I S (F0A,F (L,K)) ∼= I S (L ∧ F0A,K) .Applied to θ̄j we get our map

θj : Dn(j) ∧ S[ΩM ]∧j → S[ΩM ] .Alternatively, it is possible to give a more expli
it des
ription of θ̄j . Let
x = (φ1, r1) . . . (φs, rs) be a point in Dn(j;V ), ρ ∈ Σj , v ∈ V and (γ1, . . . , γj)loops in ΩM j . We now want to give a formula for θ̄j(x, ρ, v; γ1, . . . , γj). Thepermutation ρ permutes the loops, and ea
h (φt, rt) reverses the loop at the rt'thposition. Therefore we de�ne δi to be the loop given by

δi =

{
γρ−1(i) if pi(x) = 1, and
γρ−1(i) if pi(x) = −1.
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h (φt, rt) also 
hanges the ve
tor v in V by parallel transportation alongthe loop at the rt'th position. But noti
e that the dire
tion along the loop inwhi
h one should perform the parallel transportation, depends on the number ofo

urren
es of the number rt among rt+1, . . . , rs. Therefore we de�ne the sign ǫtby
ǫt = prt

((φt+1, rt+1) . . . (φs, rs)) .Cal
ulating, we get that
θ̄j(x, ρ, v; γ1, . . . , γj) = (δ1 � · · · � δj, φ

∗
1(γρ−1(r1))

ǫ1 · · ·φ∗s(γρ−1(rs))
ǫs(v)) .Remark 4.3.14To identify the involution we should pay spe
ial attention to the 
ase where

j = 1. Inspe
t the map θ̄1 at level V = Rn, and at the points in Dn(1) given by
x = (idRn, 1) and ρ = id . We send (v, γ) to

θ̄1(x, ρ, v; γ) = (γ̄, (idRn)∗(γ)(v)) = (γ̄, P (γ)(v)) .Re
all that P (γ) is the parallel transport in ξ along γ. The resulting map
Sn ∧ ΩM+ → ΩM+ ∧ S

nis pre
isely the map P̄ , whi
h we use to de�ne the involution ι on π∗S[ΩM ]. Seede�nition 4.3.1.We 
omplete the proof of theorem 4.3.13 by showing that the maps θj for
j ≥ 0, is a Dn-algebra stru
ture on S[ΩM ].Proof: We have to 
he
k the axioms given in de�nition 4.1.11. Triviality of theunit and equivarian
e are easily seen to hold. It remains to show that θ a
ts.Let Z be the spa
e F (SV⊕W , SV⊕W ) ∧ (ΩM+)∧j+k−1. A point z in Z 
an bewritten as (f ; γ1, . . . , γj+k−1), where f is an endomorphism of SV⊕W and the γ'sare loops in M . The main ingredient of the proof will be to de�ne several groupa
tions on Z, understand how these intera
t with ea
h other and how the a
tionsrelate to θ and ◦.By A we will denote the a
tion of Dn(j + k − 1;V ⊕W ) on Z de�ned above.Re
all that the formula on generators is
A ((φ, r), (f ; γ1, . . . , γj+k−1)) = (φ∗(γr) ◦ f ; γ1, . . . , γr−1, γr, γr+1, . . . , γj+k−1) .The a
tion of Σj+k−1 on Z will in this proof be denoted by B and is given by

B (ρ, (f ; γ1, . . . , γj+k−1)) = (f ; γρ−1(1), . . . , γρ−1(j+k−1)) .Depending on i there are a
tions Ai of Dn(j;V ) on Z. We de�ne the a
tion
Ai of the generator (φ, r) on z = (f ; γ1, . . . , γj+k−1) by the formula

Ai((φ, r), z) =






(φ∗(γr) ◦ f ; γ1, . . . , γr−1, γr, γr+1, . . . , γj+k−1) if r < i,
(φ∗(δ) ◦ f ; γ1, . . . , γi−1, γi+k−1, . . . , γi, γi+k, . . . , γj+k−1) if r = i, and
(φ∗(γr+k−1) ◦ f ; γ1, . . . , γr+k−2, γr+k−1, γr+k, . . . , γj+k−1) if r > i.
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omposition γi � · · · � γi+k−1. We have impli
itly 
hanged the targetof the isometri
 embedding φ to be V ⊕W via the 
anoni
al map V → V ⊕W .Also depending on i there are a
tionsBi ofΣj on Z. Let z = (f ; γ1, . . . , γj+k−1)be a point in Z. The a
tion Bi of ρ ∈ Σj is given by putting boxes around the
γ's as follows:

γ1 , . . . , γi−1 , γi, γi+1, . . . , γi+k−1 , γi+n , . . . , γj+k−1 .And we use ρ to permute the boxes. The a
tion leaves f un
hanged. The resultis 
alled Bi(ρ, z).De�ne the a
tion αi of Dn(k;W ) on Z by the formula:
αi((φ, r), z) = (φ∗(γr+i−1) ◦ f ; γ1, . . . , γr+i−2, γr+i−1, γr+i, . . . , γj+k−1) .Here we understand the target of φ to be V ⊕W via the 
anoni
al map W →

V ⊕W .The a
tion βi of Σk on Z is given by permuting the loops γi, . . . , γi+k−1. For
υ ∈ Σk we have

βi(υ, z) = (f ; γ1, . . . , γi−1, γυ−1(1)+i−1, . . . , γυ−1(k)+i−1, γi+k, . . . , γj+k−1) .Re
all also the de�nition of ◦i : Dn(j;V )×Dn(k;W )→ Dn(j+k−1;V ⊕W ).We had homomorphisms ci : Dn(k;W )→ Dn(j+k−1;V ⊕W ) given by ci(φ, r) =
(φ, r+ i−1), and a
tions ⊢i of Dn(j;V ) on Dn(j+k−1;V ⊕W ). For a generator
(φ, r) in Dn(j;V ) and an element y ∈ Dn(j + k − 1;V ⊕W ), ⊢i is given by

(φ, r) ⊢i y =






(φ, r)y for r < i,
(φ, i+ k − 1) · · · (φ, i)ȳ for r = i, and
(φ, r + k − 1)y for r > i,where y 7→ ȳ is an automorphism of Dn(j + k− 1;V ⊕W ) de�ned on generatorsby

(φ, r) 7→






(φ, r) for r < i,
(φ, k + 2i− r − 1) for i ≤ r < k + i, and
(φ, r) for k + i ≤ r.Now if x ∈ Dn(j;V ) and y ∈ Dn(k;W ), then

x ◦i y = x ⊢i ci(y) .Re
all that ◦i on (Dn(j;V )× Σj)× (Dn(k;W )× Σk) is de�ned by the formula
(x, ρ) ◦i (y, υ) = (x ◦ρ(i) y, ρ ◦i (τk(pρ(i)(x))υ)) .By E we will denote the map

SV⊕W ∧ F (SV⊕W , SV⊕W ) ∧ (ΩM+)∧(j+k−1) → ΩM+ ∧ S
V⊕W
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omposing.Let Z̃ be the spa
e F (SV , SV ) ∧ F (SW , SW ) ∧ (ΩM+)∧(j+k−1). There is anatural map Z̃ → Z given by taking the smash produ
t of f1 : SV → SV and
f2 : SW → SW . Observe that the a
tions Ai, αi, Bi and βi lift to a
tions Ãi, α̃i,
B̃i and β̃i on Z̃.We have designed α̃i and β̃i su
h that they 
orrespond to smashing the a
-tions on F (SW , SW )∧ (ΩM+)∧k in the de�nition of θ̄k with the trivial a
tions on
F (SV , SV ) ∧ (ΩM+)∧k−1. Up to shu�ing the fa
tor F (SW , SW ), we have that

(idSV ; γ1, . . . , γi−1, y.(idSW ; γi, . . . , γi+k−1), γi+k, . . . , γj+k−1)is equal to
α̃i

(
y, (idSV , idSW ; γ1, . . . , γj+k−1)

)
,and similar for the Σk-a
tion βi.The a
tions Ãi and B̃i see the loops γi, . . . , γi+k as one 
omposed loop. If weby

ei : F (SV , SV ) ∧ F (SW , SW ) ∧ (ΩM+)∧(j+k−1) → F (SV , SV ) ∧ (ΩM+)∧j ∧ SWdenote the map given by evaluating f2 : SW → SW on SW and 
omposing theloops γi, . . . , γi+k−1, then we observe that
ei is Dn(j;V )-equivariant (the a
tion on the target is given by smashingthe Dn(j;V )-a
tion in the de�nition of θ̄j with the trivial a
tion on SW ),and
ρ.ei(f1, f2; γ1, . . . , γj+k−1) = eρ(i)B̃i

(
ρ, (f1, f2; γ1, . . . , γj+k−1)

) (as usual ρ ∈
Σj a
ts on the target of ei by permuting the loops).Let (x, ρ, v) be a point in (Dn(j;V )×Σj)+∧SV = Dn(j)(V ), (y, υ, w) a point in

(Dn(k;W )×Σk)+∧SW = Dn(k)(W ) and (γ1, . . . , γj+k−1) loops in (ΩM+)∧(j+k−1).Let z in Z be the point (idSV ⊕W ; γ1, . . . , γj+k−1).By de�nition of the θ̄'s we see that the 
omposition
Dn(j)(V ) ∧ Dn(k)(W ) ∧ (ΩM+)∧(j+k−1)shu�ey

Dn(j)(V ) ∧ (ΩM+)∧(i−1) ∧ Dn(k)(W ) ∧ (ΩM+)∧j ∧ (ΩM+)∧(j−i)

id∧θ̄k∧id

y

Dn(j)(V ) ∧ (ΩM+)∧j ∧ SW

θ̄j∧idSW

y

ΩM+ ∧ SV⊕W
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E
(
(v, w), Aρ(i)(x,Bi(ρ, αi(y, βi(υ, z))))

)
,and by the formula for ◦i and de�nition of θ̄j+k−1 the 
omposition

Dn(j)(V ) ∧ Dn(k)(W ) ∧ (ΩM+)∧(j+k−1)

y◦i

Dn(j + k − 1)(V ⊕W ) ∧ (ΩM+)∧(j+k−1)

yθ̄j+k−1

ΩM+ ∧ SV⊕Wevaluated at the same point is
E
(
(v, w),A(x ◦ρ(i) y,B(ρ ◦i (τk(pρ(i)(x))υ), z))

)
.To �nish the proof it is enough to show that

Aρ(i)(x,Bi(ρ, αi(y, βi(υ, z)))) = A(x ◦ρ(i) y,B(ρ ◦i (τk(pρ(i)(x))υ), z)) .And if we 
an 
he
k the following formulas, then we are done:i) Bi(ρ, αi(y, z)) = αρ(i)(y, Bi(ρ, z)),ii) B(ρ ◦i υ, z) = Bi(ρ, βi(υ, z)),iii) A(x ◦i y,B(id j ◦i τk(pi(x)), z)) = Ai(x, αi(y, z)), andiv) ρ ◦i (τkυ) = (id j ◦ρ(i) τk)(ρ ◦i υ).Here iv) is a spe
ial 
ase of lemma A.3.4v), while i) and ii) follow dire
tly fromthe de�nitions. We prove formula iii) by indu
tion on the length of x. Assume�rst that x = 1. In this 
ase we have to show that
A(1 ◦i y, z) = αi(y, z) .Using that 1 ◦i y = ci(y) and 
he
king the de�nitions we see that this formulaholds.Assume that x = (φ, r)x′. We 
onsider the 
ase when r 6= i. Let d be a pointin Dn(j + k − 1;V ⊕W ) and z′ ∈ Z. By the de�nitions of ⊢i, A and Ai we have

A
(
(φ, r) ⊢i d, z

′
)

= Ai

(
(φ, r),A(d, z′)

)
.Setting d = x′ ◦i y and z′ = B(id j ◦i τk(pi(x)), z)) we get

A
(
x ◦i y,B(id j ◦i τk(pi(x)), z))

)
= Ai

(
(φ, r),A(x′ ◦i y,B(id j ◦i τk(pi(x)), z)))

)
.
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e that pi(x) = pi(x
′). By indu
tion we have that A(x′◦iy,B(id j◦iτk(pi(x

′)), z)) =
Ai(x

′, αi(y, z)). This implies
A(x ◦i y,B(id j ◦i τk(pi(x)), z)) = Ai(x, αi(y, z)) .At last we 
onsider the 
ase when x = (φ, r)x′ and r = i. It is su�
ient toshow that

A
(
(φ, i) ⊢i d,B(id j ◦i τk, z

′)
)

= Ai

(
(φ, i),A(d, z′)

)
,be
ause setting d = x′ ◦i y and z′ = B(id j ◦i τk(pi(x

′)), z)) and using indu
tionyields the formula for x. By de�nition of ⊢i we have
(φ, i) ⊢i d = (φ, i+ k − 1) · · · (φ, i)d̄ .Furthermore, we 
he
k the following formulas dire
tly:

A(d̄,B(id j ◦i τk, z
′)) = B(id j ◦i τk,A(d, z′)) , and

A
(
(φ, i+ k − 1) · · · (φ, i),B(id j ◦i τk, z

′′)
)

= Ai((φ, i), z
′′) .Now only a simple 
al
ulation remains:

A
(
(φ, i) ⊢i d,B(id j ◦i τk, z

′)
)

= A
(
(φ, i+ k − 1) · · · (φ, i)d̄,B(id j ◦i τk, z

′)
)

= A
(
(φ, i+ k − 1) · · · (φ, i),A(d̄,B(id j ◦i τk, z

′))
)

= A
(
(φ, i+ k − 1) · · · (φ, i),B(id j ◦i τk,A(d, z′))

)

= Ai((φ, i),A(d, z′)) .

�4.3.3 Homotopy dis
reteness of DnIn this subse
tion we will 
ompare Dn toH. Re
all that there is a map of operads
Dn → H. This map 
omes from a homomorphism of groups, p : Dn(j;V ) →
(Z/2)j, whose i'th fa
tor is the �parity� of the number of �letters� of the form
(−, i) in a word x ∈ Dn(j;V ). We get our map of operads by applying the fun
tor
(−× Σj)+ ∧ S

V to p.Our theorem says:Theorem 4.3.15For ea
h j the map Dn(j) → H(j) 
an be written equivariantly as a produ
t
X ∧ (Σj)+ → Y ∧ (Σj)+ where X → Y is a π∗-isomorphism of (non-equivariant)orthogonal spe
tra.
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ial 
ase j = 1. The �orthogonalpairs 
ommute�-relation ofDn(1;V ) is void, therefore it is not too hard to analyzethe orthogonal spe
trum Dn(1) dire
tly.Lemma 4.3.16The map p : Dn(1)→H(1) is a π∗-isomorphism.Re
all that there is a forgetful fun
tor U from orthogonal spe
tra to prespe
-tra. If L is an orthogonal spe
trum, then the q'th spa
e of UL is L(Rq). Byde�nition 2.1.3 a map K → L of orthogonal spe
tra is a π∗-iso, if the underlyingmap UK → UL is a π∗-iso.We say that a map X → Y of prespe
tra is an l-
o�bration if for every q themap at level q, Xq → Yq is an unbased 
losed 
o�bration of topologi
al spa
es.Noti
e that a map f : K → L between orthogonal spe
tra is an l-
o�bration ifand only if Uf is an l-
o�bration between prespe
tra.Cubi
al diagrams of spa
es and prespe
tra will play a part in the provingthat p is a π∗-isomorphism. We refer to [Goo92℄ for the theory. We re
all thede�nition here: Let T be a �nite set, and P(T ) the partially ordered set of allsubsets of T . Let C be a 
ategory, usually a 
ategory of spa
es, prespe
tra ororthogonal spe
tra. A 
ubi
al diagram is a fun
tor X : P(T ) → C . If T has nelements, then X is an n-
ube.Assume that our 
ategory C 
omes with a distinguished 
lass of maps, 
alled
o�brations, and that C has all �nite limits. Following Goodwillie we de�ne Xto be a 
o�bration 
ube if for every U ⊂ T the map
colim
V $U

X (V )→ colim
V⊂U

X (V ) = X (U)is a 
o�bration. The 
ategories of spa
es, prespe
tra and orthogonal spe
trasatisfy the assumptions. We use unbased 
losed 
o�brations for the 
ategory ofspa
es and l-
o�brations for prespe
tra and orthogonal spe
tra. Therefore wehave notions of 
o�bration 
ubes of spa
es, l-
o�bration 
ubes of prespe
tra andl-
o�bration 
ubes of orthogonal spe
tra.For a given 
ubi
al diagram X in spa
es, prespe
tra or orthogonal spe
tra,we are often interested in the map colimV $T X (V ) → X (T ) up to homotopy.However it is often easier to 
al
ulate with the homotopy 
olimit. Therefore we
ompare these via the 
anoni
al map. We have the following result:Proposition 4.3.17If X is a 
o�bration 
ube of spa
es, then the 
anoni
al map
hocolim

V $T
X (V )→ colim

V $T
X (V )is a weak equivalen
e. Furthermore, if X is an l-
o�bration 
ube of prespe
traor orthogonal spe
tra, then the 
anoni
al map is a π∗-isomorphism.
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o�bration 
ubes of spa
es is proposition 1.16 in [Goo92℄.Assume that X is an l-
o�bration 
ube of prespe
tra. Observe that hocolimand colim are level-wise 
onstru
tions. Hen
e the q'th spa
e of hocolimV $T X (V )is hocolimV $T Xq(V ), and similarly for colim. Sin
e ea
h Xq is a 
o�bration 
ubeof spa
es, the result for the 
ase of spa
es implies that the 
anoni
al map
hocolim

V $T
X (V )→ colim

V $T
X (V )is a level-equivalen
e, hen
e also a π∗-iso.The result for l-
o�bration 
ubes of orthogonal spe
tra is proved similarly. �Using the de�nition to 
he
k dire
tly if a given 
ube is a 
o�bration 
ubeor not, is not a very e�
ient method. The author has learned the followingre
ognition 
riterion from Christian S
hli
htkrull. But �rst some notation:If V ⊂ U ⊂ T and U rV 
ontains exa
tly one element, then we 
all V ⊂ Uan edge of T .If U and V are subsets of T su
h that U ∩V ⊂ U and U ⊂ U ∪V are edges,then we say that U and V span a 2-fa
e of T .Proposition 4.3.18Let X be a T -
ube of spa
es. Ifi) for all edges V ⊂ U of T the map X (V ) → X (U) is an unbased 
losed
o�bration, andii) whenever U and V span a 2-fa
e of T the square

X (U ∩ V ) −−−→ X (U)y
y

X (V ) −−−→ X (U ∪ V )is pullba
k,then X is a 
o�bration 
ube. The 
orresponding results for l-
o�bration 
ubesof prespe
tra and orthogonal spe
tra also hold.Proof: Consider 
ubes in spa
es. We assume by indu
tion that the result holdsfor all n-
ubes for n < |T |. We must show that the map
bU : colim

V $U
X (V )→X (U)
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losed 
o�bration of spa
es. Observe that by the indu
tion hy-pothesis it is enough to show that this holds for bT .The 
ase n = 1 is trivial, and n = 2 follows dire
tly from Lillig's uniontheorem [Lil73℄.Choose some t0 ∈ T and let T ′ = T r {t0}. De�ne Y to be the T ′-
ube with
Y (U) the pushout of

X (U ∪ {t0})←X (U)→ X (T ′) .Noti
e that the map bT is equal to the map
b′T ′ : colim

V $T ′

Y (V )→ Y (T ′) .Hen
e it remains to show that Y satis�es i) and ii).Let V ⊂ U be an edge of T ′. Consider the diagram
X (V ∪ {t0}) ←−−− X (V ) −−−→ X (T ′)y

y
y=

X (U ∪ {t0}) ←−−− X (U) −−−→ X (T ′)

.The left square is pullba
k by ii) for X , thus the gluing lemma for unbased 
losed
o�brations, proposition 2.5 in [Lew82℄ applies and yields that Y (V ) → Y (U)is a 
o�bration.Next assume that U and V span a 2-fa
e of T ′. By i) for Y we 
an assumethat Y (U) and Y (V ) are subspa
es of Y (U ∪ V ), and we must show that theinterse
tion of these subspa
es is Y (U ∩ V ). Also X (U ∪ {t0}), X (U ∪ {t0})and X (T ′) are subspa
es of Y (U ∪ V ) and we have:
Y (U) ∩ Y (V ) = (X (U ∪ {t0}) ∪X (T ′)) ∩ (X (V ∪ {t0}) ∪X (T ′))

= (X (U ∪ {t0}) ∩X (V ∪ {t0})) ∪X (T ′)

= X ((U ∩ V ) ∪ {t0}) ∪X (T ′) = Y (U ∩ V ) .Here we have used ii) for X on the 2-fa
e spanned by U ∪ {t0} and V ∪ {t0}.The proposition also holds for prespe
tra and orthogonal spe
tra by applyingthe result for spa
es level-wise. �The prerequisites for proving lemma 4.3.16 are now in pla
e, and we give itsproof:Proof: It is enough to 
onsider the map between the underlying prespe
tra.The main idea of the proof is to �lter Dn(1; Rq) by word length. Let FmDn(1; Rq)be the set of all elements represented by words with m or fewer letters. We relatethe 
o�ber of Fm−1Dn(1; Rq) ⊂ FmDn(1; Rq) to the Stiefel manifold Vn(Rq) of
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n-frames in Rq: If Vn(Rq)m denotes the m-fold 
ross produ
t and sVn(Rq)m−1 thesubspa
e 
onsisting of those m-tuples (φ1, . . . , φm) with φr = φr+1 for some r,then the following diagram is pushout

sVn(Rq)m−1 −−−→ Fm−1Dn(1; Rq)y
y

Vn(Rq)m −−−→ FmDn(1; Rq)

.The horizontal maps send an m-tuple (φ1, . . . , φm) to the word (φ1, 1) · · · (φm, 1).Noti
e that the diagram is natural for isometri
 embeddings Rq → Rq′. The�ltration of Dn(1; Rq) indu
es a �ltration of UDn(1) by letting the q'th spa
e of
FmUDn(1) be FmDn(1; Rq) ∧ Sq.Fix m. Let T be the set {1, 2, . . . , m− 1}. For U ⊆ T de�ne
V m

n (Rq;U) = {(φ1, . . . , φm) |for ea
h i, φi ∈ Vn(Rq) and for all r 6∈ U , we have φr = φr+1.}This de�nes a T -
ube of spa
es. Observe that
colim
U$T

V m
n (Rq;U) = sVn(Rq)m−1 .De�ne a 
ubi
al diagram, V m

n , of prespe
tra by de�ning the q'th spa
e of theprespe
trum V m
n (U) to be

V m
n (Rq;U)+ ∧ S

q .For m ≥ 2 we have pushout diagrams of prespe
tra:
colimU$T V m

n (U) −−−→ Fm−1UDn(1)y
y

V m
n (T ) −−−→ FmUDn(1)

.We now 
he
k that V m
n is an l-
o�bration 
ube. Our intention is to applyproposition 4.3.18. Let U ⊂ U ∪ {r} be an edge of T . Noti
e that V m

n (Rq;U)is a smooth submanifold of V m
n (Rq;U ∪ {r}). Hen
e the existen
e of a tubularneighborhood implies that the in
lusion V m

n (Rq;U) → V m
n (Rq;U ∪ {r}) is anunbased 
losed 
o�bration. Sin
e the fun
tor (−)+∧Sq preserves unbased 
losed
o�brations this proves that 
ondition i) of the proposition holds for V m

n . The fa
tthat 
ondition ii) holds follows nearly dire
tly from the de�nition of V m
n (Rq,−).By dire
t 
omputation we now show that V m

n (U) is π∗-isomorphi
 to thesphere prespe
trum, S, for all U . We de�ne a map V m
n (U) → S by identifying

S0 with {1}+, sending V m
n (Rq;U) to 1 and applying the fun
tor (−)+ ∧Sq to getthe map at level q:

fq : (V m
n (U))q = V m

n (Rq;U)+ ∧ S
q → Sq .
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ed map of homotopy groups is
πsV

m
n (U) = colim

q
πq+s(V

m
n (Rq;U)+ ∧ S

q)
colimq πq+s(fq)
−−−−−−−−→ colim

q
πq+sS

q = πsS .We inspe
t the map in the middle at some �xed q. By the Hurewi
z theoremthe �rst non-trivial relative homotopy group of fq is isomorphi
 to the �rst non-trivial relative homology group. And in homology suspension indu
es a naturalisomorphism. Therefore we inspe
t when
H̃s(V

m
n (Rq;U)+)→ H̃s(S

0)is an isomorphism. Sin
e V m
n (Rq;U) is a 
ross produ
t of the Stiefel manifold of

n-frames in Rq, the range for s where πq+s(fq) is an iso 
learly goes to ∞ when
q in
reases.Let S be the T -
ube with S (U) 
onstant equal to the sphere prespe
trum.The 
omputation above showed that there is a map of T -
ubes

V m
n → Swhi
h is a π∗-iso at ea
h U ⊆ T . Furthermore, both 
ubes are l-
o�bration 
ubes.Now 
onsider the diagram

hocolimU$T V m
n (U)

≃
−−−→ colimU$T V m

n (U)

≃

y
y

hocolimU$T S (U)
≃
−−−→ colimU$T S (U)

.The left verti
al map is a π∗-iso sin
e a homotopy 
olimit of π∗-iso is itself a π∗-iso. The horizontal maps are π∗-isos by proposition 4.3.17. But S is 
onstant,so colimU$T S (U) is equal to S. Hen
e the map
colim
U$T

V m
n (U)→ Sis a π∗-iso.Re
all that H(1) is the suspension of (Z/2)+. Thus we may identify theprespe
trum UH(1) with ∨Z/2 S. We will now 
on
lude the proof by showing,using indu
tion, that for ea
h m ≥ 1 the map

p : FmUDn(1)→ UH(1) =
∨

Z/2

S = S ∨ Sis a π∗-iso. Observe that F1Dn(1; Rq) is homeomorphi
 to {1} ∪ Vn(Rq). Thisimplies that S ∨ V 1
n (∅) is isomorphi
 to F1UDn(1), and the indu
tion hypothesisholds for m = 1.
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onsider the diagram
V m

n (T )
i

←−−− colimU$T V m
n (U) −−−→ Fm−1UDn(1)y

y
yp

S S
j

−−−→ S ∨ S

.Depending on the parity of m the map j is the in
lusion of the odd or even wedgesummand. All verti
al maps are π∗-isos and the horizontal maps in the left squareare l-
o�brations, hen
e the map of the row-wise pushouts, p : FmUDn(1)→ S∨S,is again a π∗-iso. �Lemma 4.3.19
UDn(1) is well-pointed.Proof: We use the �ltration FmUDn(1) from the proof of the previous lemma.The q'th spa
e of F1UDn(1) is

Sq ∨ (Vn(R
q) ∧ Sq) ,hen
e well-pointed. Furthermore, we have seen that V m

n is an l-
o�bration 
ube.Hen
e the left verti
al map in the pushout diagram
colimU$T V m

n (U) −−−→ Fm−1UDn(1)y
y

V m
n (T ) −−−→ FmUDn(1)is an l-
o�bration. It follows that the map
Fm−1UDn(1)→ FmUDn(1)is an l-
o�bration for any m. Therefore UDn(1) is well-pointed. �The 
ategory of prespe
tra has a major disadvantage, it la
ks a symmetri
monoidal smash produ
t. However, for the purpose of 
al
ulating in the homo-topy 
ategory we may, in several di�erent ways, de�ne �handi
rafted� or naivesmash produ
ts of prespe
tra.De�nition 4.3.20De�ne the naive smash produ
t of prespe
tra X and Y by

(X ∧ Y )2q = Xq ∧ Yq and (X ∧ Y )2q+1 = Xq ∧ Yq ∧ S
1 .The stru
ture maps are evident.
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t iteratively:
(X1 ∧ · · · ∧Xj) = X1 ∧ (X2 ∧ (X3 · · · ∧ (Xj−1 ∧Xj) · · · )) .�11 in [MMSS01℄ explains the 
onne
tion between the naive smash produ
t of pre-spe
tra and the smash produ
t of orthogonal spe
tra. Given orthogonal spe
tra

L and K there is a weak map
φ : UL ∧UK → U(L ∧K) ,and their proposition 11.9 says that φ is a π∗-iso whenever L or K is 
o�brant.More important for our purposes is a 
riterion for when the naive smashprodu
t preserves π∗-isomorphisms:Proposition 4.3.21Assume that X, Y and Z are well-pointed prespe
tra. If f : Y → Z is a π∗-isomorphism, then the indu
ed map of naive smash produ
ts id ∧ f : X ∧ Y →

X ∧ Z is also a π∗-isomorphism.Proof: We �rst prove the 
orresponding result for spa
es. Let A, B and Cbe well-pointed spa
es and f : B → C a weak equivalen
e. Then 
onsider thediagram
∗ ←−−− A ∨B

i
−−−→ A× By

y
y

∗ ←−−− A ∨ C
i′

−−−→ A× C

.The verti
al maps are weak equivalen
es, and i and i′ are 
o�brations by Steen-rod's produ
t theorem, see theorem 6.3 in [Ste67℄ or theorem 6 in [Str68℄. Byproposition A.1.4 the map A ∧B → A ∧ C is a weak equivalen
e.Let A be a based CW-
omplex and f : Y → Z a π∗-iso of prespe
tra. Theo-rem 7.4(i) in [MMSS01℄ says that also id ∧ f : A ∧ Y → A ∧X is a π∗-iso.Assume that B is a well-pointed spa
e and (A, ∗) a CW-approximation for
(B, ∗), see proposition A.1.2. If Y is a well-pointed prespe
trum, then the resultfor spa
es implies that

A ∧ Y → B ∧ Yis a level-equivalen
e, hen
e also a π∗-iso.Now assume that f is a π∗-iso between well-pointed prespe
tra, and (A, ∗),
(B, ∗) as above. Consider the diagram

A ∧ Y
≃
−−−→ A ∧ Z

≃

y
y≃

B ∧ Y
idB∧f
−−−→ B ∧ Z

.
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e B.Next 
onsider the homotopy groups of X ∧ Y . We 
an rewrite them as:
πs(X ∧ Y ) = colim

q
π2q+s(Xq ∧ Yq) = colim

q
πq+s(Xq ∧ Y ) .Sin
e Xq is well-pointed, it follows that Xq ∧Y → Xq ∧Z is a π∗-iso. This provesthe result. �Suppose that we want to 
he
k that a map f : X → Y of prespe
tra is a

π∗-iso. In order to do so, it is enough to give a weak inverse. By a weak inverseto f we mean for ea
h q a map gq : Yq ∧ Sl → Xq+l where l is some positiveinteger, su
h that both gq ◦ (fq ∧ S
l) and fq+l ◦ gq are homotopi
 to suspensions.Proposition 4.3.22If f : X → Y has a weak inverse, then f is a π∗-isomorphism.Proof: First we 
he
k that f∗ : πsX → πsY is surje
tive for all s. A 
lass in

πsY is represented by some β ∈ πq+sYq and suspends to β ′ ∈ πq+s+l(Yq ∧Sl). Let
α ∈ πq+l+sXq+l be gq(β

′). Sin
e fq+l ◦ gq is homotopi
 to the suspension, observethat fq+l(α) ≃ β ′. Thus we see that the 
lass of α in πsX maps to the 
lass of βin πsY .To 
he
k that f∗ is inje
tive, we pi
k an element of the kernel. It 
an berepresented by a α ∈ πq+sXq su
h that fq(α) is null homotopi
 in Yq. Suspendthe null homotopy by the appropriate Sl and apply gq. Sin
e gq ◦ (fq ∧ Sl) ishomotopi
 to the suspension, we get a null homotopy of α ∧ Sl in Xq+l. �In 
ontrast to proposition 4.3.21, we do not need that X is well-pointed inorder to draw the 
on
lusion that the naive smash produ
t fun
torX∧− preservesthe property of having weak inverses:Proposition 4.3.23If f : Y → Z has a weak inverse and X is any prespe
trum, then id∧f : X∧Y →
X ∧ Z also has a weak inverse.Proof: Let gq : Zq ∧ S

l → Yq+l be the weak inverse of f . We will 
onstru
t aweak inverse h for idX ∧f . Observe that it is enough to de�ne h for even indexes.And we let h2q be the 
omposition
(X ∧ Z)2q ∧ S

2l ∼= Xq ∧ S
l ∧ Zq ∧ S

l suspension∧gq

−−−−−−−−→ Xq+l ∧ Yq+l = (X ∧ Y )2(q+l) .It is easily seen that h is a weak inverse as 
laimed. �And the property of having weak inverses is 
losed under 
omposition:
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omposition
f ′f : X → Z has also a weak inverse.Proof: Let g and g′ denote the respe
tive weak inverses. We de�ne a weakinverse h for f ′f as follows: Assume g′q maps Zq ∧ S

l′ to Yq+l′ and gq+l′ maps
Yq+l′ ∧ Sl to Xq+l′+l, then we let hq be the 
omposition

Zq ∧ S
l′+l ∼= Zq ∧ S

l′ ∧ Sl g′q∧Sl

−−−→ Yq+l′ ∧ S
l

gq+l′

−−−→ Xq+l′+l .

�Now we introdu
e the orthogonal spe
trum D′n(j). Let the V 'th spa
e be
Dn(j;V )+ ∧ SV . Noti
e that

Dn(j) ∼= D′n(j) ∧ (Σj)+ ,and that this splitting 
orresponds to splitting H(j) as the smash produ
t of thesuspension of (Z/2)∧j
+ and (Σj)+.Lemma 4.3.25There is a π∗-isomorphism of prespe
tra (UDn(1))∧j → UD′n(j).Proof: By indu
tion on j we will 
onstru
t the map (UDn(1))∧j → UD′n(j)together with a weak inverse. For j = 1 the map is the identity.Assume that (UDn(1))∧(j−1) → UD′n(j − 1) already is given. Then the map

(UDn(1))∧j → UDn(1) ∧ UD′n(j − 1) has a weak inverse by proposition 4.3.23.By proposition 4.3.24 we are done on
e we have 
onstru
ted a map f : UDn(1)∧
UD′n(j − 1)→ UD′n(j) and a weak inverse.A map out of our naive smash produ
t is 
ompletely determined by what itis at the (2q)'th spa
es. What we need is a map from Dn(1; Rq)+ ∧ Sq ∧Dn(j −
1; Rq)+∧Sq toDn(j; R2q)+∧S2q. To de�ne it we smash a suitable shu�ing of S1's,
sh : Sq ∧Sq ∼= S2q, with a group homomorphism α : Dn(1; Rq)×Dn(j− 1; Rq)→
Dn(j; R2q).Let iodd : Rq → R2q be the in
lusion of the odd 
oordinates,

iodd(x1, x2, . . . , xq) = (x1, 0, x2, 0, . . . , xq, 0) ,and ieven : Rq → R2q the in
lusion of the even 
oordinates,
ieven(x1, x2, . . . , xq) = (0, x1, 0, x2, . . . , 0, xq) .Our group homomorphism α sends (φ, 1) in Dn(1; Rq) to (ioddφ, 1) in Dn(j; R2q)and (ψ, r) in Dn(j − 1; Rq) to (ievenψ, r + 1) in Dn(j; R2q). By the �orthogonalpairs 
ommute�-relation in Dn(j; R2q) we have

(ioddφ, 1)(ievenψ, r + 1) = (ievenψ, r + 1)(ioddφ, 1)
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e ioddφ is orthogonal to ievenψ. This shows that the group homomorphism iswell de�ned.If we identify Sq and S2q with one-point-
ompa
ti�
ations of Rq and R2qrespe
tively, we 
an write the shu�ing sh : Sq ∧ Sq ∼= S2q as follows:
(
(v1, v2, . . . , vq), (w1, w2, . . . , wq)

)
7→ (v1, w1, v2, w2, . . . , vq, wq) .This ensures that the maps Dn(1; Rq)+∧S
q∧Dn(j−1; Rq)+∧S

q → Dn(j; R2q)+∧
S2q 
ommute stri
tly with the suspensions, and thus we get our map

f : (UDn(1))∧j → UD′n(j) .To 
onstru
t a weak inverse g for f we �rst de�ne a group homomorphism
β : Dn(j; Rq)→ Dn(1; Rq)×Dn(j − 1; Rq) .On generators β is given by
β(φ, r) =

{(
(φ, 1), 1

) if r = 1, and(
1, (φ, r − 1)

) if r > 1.Now de�ne gq as the 
omposition
(
UD′n(j)

)
q
∧ Sq

= Dn(j; Rq)+ ∧ S
2q β∧sh−1

−−−−→ Dn(1; Rq)+ ∧ S
q ∧Dn(j − 1; Rq)+ ∧ S

q

=
(
UDn(1) ∧UD′n(j − 1)

)
2q

.Let i1 : Rq → R2q be the standard in
lusion (embeds Rq as the �rst q 
oordi-nates). The spa
e of isometri
 embeddings of Rq in R2q is 
onne
ted, so we 
an
hoose paths from iodd and ieven to i1. Now it is easy to see that the 
omposition
Dn(1; Rq)×Dn(j − 1; Rq)

α
−→ Dn(j; R2q)

β
−→ Dn(1; R2q)×Dn(j − 1; R2q)is homotopi
 to the map of Dn(1;−) × Dn(j − 1;−) indu
ed by i1. With theopposite 
omposition,

Dn(j; Rq)
β
−→ Dn(1; Rq)×Dn(j − 1; Rq)

α
−→ Dn(j; R2q) ,we have to be a bit more 
areful. On generators this map is given by

βα(φ, r) =

{
(ioddφ, r) if r = 1, and
(ievenφ, r) if r > 1.Let it, t ∈ [0, π

2

] be the homotopy between iodd and ieven given by the formula
it(x1, x2, . . . , xq) =

(
x1 cos t, x1 sin t, x2 cos t, x2 sin t, . . . , xq cos t, xq sin t

)
.Noti
e that when x and y are orthogonal ve
tors in Rq, then
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it(x) and it(y) are orthogonal, and
i0(x) and it(y) are orthogonal.De�ne ht : Dn(j; Rq)→ Dn(j; R2q), t ∈ [0, π

2

] on generators by
ht(φ, r) =

{
(ioddφ, r) if r = 1, and
(itφ, r) if r > 1.It is well de�ned, for t = 0 it equals the map indu
ed by iodd and for t = π

2
it is

βα. And using the path from iodd to i1, we 
an extend ht to a homotopy from
βα to the map Dn(j; Rq)→ Dn(j; R2q) indu
ed by i1.Che
king what happens with the spheres, we see that g2q ◦ (fq ∧ S2q) and
f2q ◦ gq both are homotopi
 to suspensions. �With the lemmas 4.3.16 and 4.3.25 in pla
e it is quite easy to prove theo-rem 4.3.15.Proof: Re
all the de�nition of the group homomorphism p : Dn(j;V )→ (Z/2)j.Applying (−)+∧SV we get a map of orthogonal spe
tra D′n(j)→ F0(Z/2)∧j

+ . Here
F0 denotes the 0'th shift desuspension fun
tor. Noti
e that this map �ts into adiagram of prespe
tra

(UDn(1))∧j −−−→ UD′n(j)

p∧j

y
y

(UH(1))∧j UF0(Z/2)∧j
+

.The map at the top is the π∗-iso from lemma 4.3.25, and left map is an iteratednaive smash produ
t of the π∗-iso p form lemma 4.3.16. Sin
e both UDn(1) and
UH(1) are well-pointed, it follows from proposition 4.3.21 that the left map isalso a π∗-iso. This implies that D′n(j) → F0(Z/2)∧j

+ is a π∗-iso. Smashing bothsides with (Σj)+, we get that the map
Dn(j)→ H(j) .

�4.3.4 The main theoremThe following result is the main theorem of this thesis. It provides an orthogonalring spe
trum with involution asso
iated to a stable ve
tor bundle over a man-ifold. The homotopy type of the underlying orthogonal ring spe
trum dependsonly on the manifold.



184 CHAPTER 4. OPERADS IN I S AND INVOLUTIONTheorem 4.3.26Let M be a manifold and ξ an n-ve
tor bundle over M . There exists an orthog-onal ring spe
trum R with an involution depending on ξ, su
h that R is weaklyhomotopi
 in the 
ategory of orthogonal ring spe
tra to S[ΩM ], and the involu-tion on R 
orresponds to ι on homotopy groups. Furthermore, up to homotopythe involution on R depends only on the stable 
lass of ξ.Here ι is the involution on π∗S[ΩM ] given in de�nition 4.3.1.Proof: By theorem 4.3.13 there is a Dn-algebra stru
ture on S[ΩM ], and bytheorem 4.3.15 there is a map of operads Dn → H su
h that for ea
h j the map
Dn(j)→ H(j) 
an be written equivariantly as a produ
t X ∧ (Σj)+ → Y ∧ (Σj)+whereX → Y is a π∗-isomorphism. This means that we almost have the ne
essaryrequirements for applying the repla
ement pro
edure des
ribed in remark 4.2.20.However, we do not know that

S → Dn(1) is an orbit q-
o�bration, andea
h Dn(j) 
an be written equivariantly as a produ
t X ∧ (Σj)+ with Xbeing an orbit 
o�brant (non-equivariant) orthogonal spe
trum.Instead of attempting to prove this, we use the orbit 
o�brant repla
ement Γ̂Dnfrom theorem 4.3.11. Pulling ba
k by the map of operads Γ̂Dn → Dn we see that
S[ΩM ] is also a Γ̂Dn-algebra. Moreover, the 
omposition Γ̂Dn → Dn → H is amap of operads, and evaluated at the j'th obje
ts it de
omposes as a produ
t
X ∧ (Σj)+ → Y ∧ (Σj)+ → Z ∧ (Σj)+, where X → Y → Z are π∗-isos. Sin
e S →
Dn(1) is an in
lusion, it follows by theorem 3.9.1 and the 
onstru
tion of Γ̂Dn(1)in theorem 4.3.11 that S → Γ̂Dn(1) is an orbit q-
o�bration. Furthermore, ea
h
Γ̂Dn(j) 
an be des
ribed Σj-equivariantly as a produ
t X ∧ (Σj)+, where X isorbit 
o�brant.Now 
onsider the repla
ement pro
edure:

B(H, Γ̂Dn, S[ΩM ])← B(Γ̂Dn, Γ̂Dn, S[ΩM ])→ S[ΩM ] .We de�ne R to be B(H, Γ̂Dn, S[ΩM ]). By the 
onsiderations above all maps are
π∗-isos. To show that R is homotopi
 to S[ΩM ] in the 
ategory of orthogonal ringspe
tra, we prove that the three maps above all are morphisms in the 
ategoryof orthogonal ring spe
tra.Re
all that by remark 4.3.12 we have a map of operadsM→ Γ̂Dn. Hen
e wehave a restri
tion fun
tor from the 
ategory of Γ̂Dn-algebras to the 
ategory of
M-algebra. Consequently, the Γ̂Dn-algebra map B(Γ̂Dn, Γ̂Dn, S[ΩM ])→ S[ΩM ]is also a map ofM-algebras, i.e. a map of orthogonal ring spe
tra.Similarly we see that the map B(H, Γ̂Dn, S[ΩM ])← B(Γ̂Dn, Γ̂Dn, S[ΩM ]) isa map in the 
ategory of orthogonal ring spe
tra, sin
e also this map is a map of
Γ̂Dn-algebras.
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lass of ξ. Ob-serve that standard in
lusion i : Rn → Rn+1 indu
es group homomorphisms
Dn+1(j;V )→ Dn(j;V )by sending a generator (φ, r), where φ : Rn+1 → V is an isometri
 embedding, to

(φ ◦ i, r). These group homomorphisms give rise to a map of operads α : Dn+1 →
Dn. And by inspe
tion of the 
onstru
tion in theorem 4.3.11, we have a lifting
α̂ : Γ̂Dn+1 → Γ̂Dn Now noti
e that the pullba
k of the Dn-algebra stru
tureon S[ΩM ] asso
iated to ξ is the Dn+1-algebra stru
ture on S[ΩM ] asso
iatedto ξ ⊕ ε1. Here ε1 denotes the trivial line bundle over M . Therefore we geta Γ̂Dn+1-algebra map B(Γ̂Dn+1, Γ̂Dn+1, S[ΩM ]) → B(H, Γ̂Dn, S[ΩM ]). Feedingthe diagram

B(H, Γ̂Dn, S[ΩM ])← B(Γ̂Dn+1, Γ̂Dn+1,ΓS[ΩM ])→ S[ΩM ]into proposition 4.2.21, we get an equivalen
e of H-algebras between
B(H, Γ̂Dn, S[ΩM ]) and B(H, Γ̂Dn+1, S[ΩM ]) .The �rst orthogonal ring spe
trum has the involution asso
iated to ξ, while these
ond has the involution asso
iated to ξ ⊕ ε1. Hen
e up to homotopy the invo-lution only depends on the stable 
lass of ξ.We now 
he
k that the involution does not depend on the 
hoi
e of 
onne
tion.Let ∇0 and ∇1 be two 
onne
tions on ξ. Let ξ × I be the ve
tor bundle over

M × I indu
ed from ξ via the proje
tion M × I → M . And let ∇′0 and ∇′1 bethe indu
ed 
onne
tions. We 
an de�ne the linear 
ombination
∇ = t∇′1 + (1− t)∇′0 ,where t is the 
oordinate of I. We see that ∇ is a 
onne
tion on ξ × I. Andpulling ∇ ba
k over the two in
lusions i0, i1 : M → M × I yields ∇0 and ∇1respe
tively.The in
lusion i0 indu
es a map of Dn-algebras
S[ΩM ]→ S[Ω(M × I)] .And we 
an therefore form the diagram

B(H, Γ̂Dn, S[Ω(M × I)])← B(Γ̂Dn, Γ̂Dn, S[ΩM ])→ S[ΩM ] .Putting this into proposition 4.2.21, we get an equivalen
e of H-algebras betweenthe orthogonal ring spe
trum with involution asso
iated to the 
onne
tion ∇0 on
ξ and the orthogonal ring spe
trum with involution asso
iated to the 
onne
tion
∇ on ξ × I. A similar 
onsideration is also true for i1 and the 
onne
tion ∇1.
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e the 
hoi
e of 
onne
tion is irrelevant up to homotopy of orthogonal ringspe
tra with involution.To show that the involution on R 
oin
ides with ι on π∗S[ΩM ]:We �rst 
onstru
t a 
ommutative square
FRnSn λ

−−−→ S

f

y
yi

Γ̂Dn(1)
p

−−−→ H(1)

.The top map, λ, is the adjoint to the identity Sn = S(Rn). By lemma 2.4.11
λ is a π∗-iso. p 
omes from the map of operads Dn → H, and the map i isindu
ed from the in
lusion of the matrix (−1

) in 0'th spa
e of H(1). Thus themap i : S →H(1) represents the involution.To 
onstru
t f re
all that Dn(1)(Rn) = Dn(1; Rn)+ ∧ S
n. The pair (idRn , 1)represents a point in Dn(1; Rn), and we get a map Sn → Dn(1)(Rn) by sending vto ((idRn , 1), v

). By adjointness we now get a map of orthogonal spe
tra FRnSn →
Dn(1), and sin
e FRnSn is 
o�brant, we 
an lift to a map

f : FRnSn → Γ̂Dn(1) .Re
all from the proof of proposition 4.1.15 that for an H-algebra L the invo-lution is the 
omposition
L ∼= S ∧ L

i∧id
−−→ H(1) ∧ L

θ1−→ L .Analogously, for a Γ̂Dn-algebra L we 
an 
onsider the 
omposition
FRnSn ∧ L

f∧id
−−→ Γ̂Dn(1) ∧ L

θ1−→ L .Now inspe
t the diagram
S ∧ B(H, Γ̂Dn, S[ΩM ])

involution
−−−−−→ B(H, Γ̂Dn, S[ΩM ])

λ∧id

x
x=

FRnSn ∧ B(H, Γ̂Dn, S[ΩM ]) −−−→ B(H, Γ̂Dn, S[ΩM ])x
x

FRnSn ∧B(Γ̂Dn, Γ̂Dn, S[ΩM ]) −−−→ B(Γ̂Dn, Γ̂Dn, S[ΩM ])y
y

FRnSn ∧ S[ΩM ] −−−→ S[ΩM ]

.

The horizontal maps, ex
ept the �rst, are de�ned via Γ̂Dn-algebra stru
tures on
B(H, Γ̂Dn, S[ΩM ]), B(Γ̂Dn, Γ̂Dn, S[ΩM ]) and S[ΩM ] respe
tively. Observe that
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al maps are π∗-isomorphisms. The map at the top is the involution on
R = B(H, Γ̂Dn, S[ΩM ]). The bottom map is determined by what happens atlevel Rn. Evaluating at this level we get a map

(FRnSn ∧ S[ΩM ])(Rn) = Sn ∧ ΩM+ → ΩM+ ∧ S
n = (S[ΩM ])(Rn) .By de�nition of f above, this is the map 
onsidered in remark 4.3.14, and by theremark it indu
es the involution ι, see de�nition 4.3.1, on the homotopy groupsof S[ΩM ]. �We end this 
hapter with the following 
onje
ture:Conje
ture 4.3.27Suppose that ξ1 and ξ2 are ve
tor bundles over M with the same underlyingstable spheri
al bundle. Let R1 and R2 be the orthogonal ring spe
tra withinvolution 
orresponding to these ve
tor bundles. Then there exists an orthogonalring spe
trum R with involution and maps R1

f1←− R
f2−→ R2 in the 
ategory oforthogonal ring spe
tra with involution, su
h that on the underlying orthogonalspe
tra both f1 and f2 are π∗-isomorphisms.Informally, the 
onje
ture says that up to homotopy of R the involution de-pends only on the stable 
lass of the underlying spheri
al bundle of ξ.The motivation for this 
onje
ture 
omes from the involution on A-theory.For a spheri
al �bration ξ over X Vogell de�nes in �2 of [Vog85℄ an involution τξon A(X). This involution is well de�ned up to homotopy. More re
ently Weissand Williams have de�ned an involution on A(X) via Waldhausen 
ategories withSpanier-Whitehead duality, see example 1.A.9 in [WW98℄ and �4.1 in [WW01℄.Like Vogell, their involution depends on a spheri
al �bration over X.Morally, the K-theory of our orthogonal ring spe
trum R with involution ιshould be weakly homotopy equivalent to A(X) when X = M , K(R) should havean involution indu
ed by ι, and this involution should agree with the involutionsde�ned by Vogell, Weiss and Williams. If so, the involution onK(R) depends onlyon a stable spheri
al �bration, and it is natural to believe that the to homotopyof R the involution has the same kind of dependen
e.To prove the 
onje
ture one should start with a geometri
 model for the spa
e

Gn of self-homotopy equivalen
es of Sn. Via a �
onne
tion� an n-spheri
al bundle
ξ overM 
orresponds to a map P : ΩM → Gn. But is this map a homomorphismof monoids? Even if it is, the la
k of stri
t inverses in Gn prevents us from sendingthe reversed loop, γ̄ to P (γ)−1. This 
auses trouble with the �
an
ellation ofrepeated pairs�-relation of Dn. Therefore, one should blow up the operad Dn tohandle this la
k of stru
ture on Gn. After de�ning this huge operad, it shouldbe possible to prove the 
onje
ture in roughly the same way we have provedtheorem 4.3.26.
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Chapter 5
THH and TC for orthogonal ringspe
tra with involutionTheorem 4.3.26 gives us an orthogonal ring spe
trum with involution. The inten-sion behind is to de�ne and 
al
ulate its L-theory, LA-theory, K-theory, topo-logi
al 
y
li
 homology and its topologi
al Ho
hs
hild homology. These theoriesshould be related via tra
e maps. Using surgery, the LA-theory should provideinformation about the homotopy type of the automorphism spa
e of our mani-fold, see [WW01℄. From L-theory there is a map Ξ into the Tate 
onstru
tion on
K-theory, see �11 in [WW98℄. Furthermore, from K-theory there are tra
e mapsinto TC and THH , see [Mad94℄.However, developing all of the above theory in the setting of orthogonal spe
-tra, is far beyond the s
ope of this thesis. In this 
hapter we shall 
onsider thede�nition of TC and THH and a few basi
 properties. We follow the frame-work of well known theory, but there are some details worth pointing out: Inproposition 5.1.5 below, we observe that it is easy to re
ognize 
y
lotomi
 π∗-isomorphisms between 
y
lotomi
 spe
tra. Theorem 5.2.5 shows that our modelfor THH of a 
o�brant orthogonal ring spe
trum is a 
y
lotomi
 spe
trum in avery strong sense; the 
y
lotomi
 stru
ture maps rC : ρ∗CΦCTHH(L) ∼= THH(L)are isomorphisms. Due to the involution, it is important to use a model for
(n×n)-matri
es whi
h is 
losed under transposition. Su
h a model is introdu
edin de�nition 5.3.1.Important referen
es for the theory of THH and TC in other settings in-
ludes [BHM93℄, [Mad94℄, [DM96℄, [HM97℄, [S
h98℄ and [Shi00℄.5.1 Cy
lotomi
 orthogonal spe
tra and TCThe purpose of this se
tion is to de�ne TC of a 
y
lotomi
 spe
trum T . We willde�ne 
y
lotomi
 spe
tra as 
ertain orthogonal S1-spe
tra together with someextra stru
ture. For the involutive 
ase T lies in the 
ategory of orthogonal189
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O(2)-spe
tra. Be
ause orthogonal S1- and O(2)-spe
tra have so many modelstru
tures, one 
an easily be
ome 
onfused about whi
h type of weak equivalen
esthat are the 
orre
t ones to 
onsider. Therefore, we will start this se
tion byqui
kly listing the model stru
tures to be used in the 
ontext of TC and THH .We end the se
tion with a result, proposition 5.1.11, whi
h tells us that our
hoi
es of model 
ategories were right.Orthogonal spe
tra: We use the stable model stru
ture, see de�nition 2.4.3.The weak equivalen
es f : K → L are the π∗-isomorphisms. The �brant orthog-onal spe
tra are the Ω-spe
tra.This model stru
ture is topologi
al, see theorem 9.2 in [MMSS01℄. Via thefun
tor Sing• from topologi
al spa
es to simpli
ial sets, it 
an be shown thatevery topologi
al model 
ategory is a simpli
ial model 
ategory. Hen
e, we havehomotopy limits in I S , and homotopy invarian
e holds, see theorem 18.5.3 ii)in [Hir03℄:Proposition 5.1.1Let C be a small 
ategory. If f : K → L is a map of C -diagrams in I S , andea
h f : K(c)→ L(c) is a π∗-isomorphism between Ω-spe
tra, then
f∗ : holim

C
K → holim

C
Lis also a π∗-isomorphism between Ω-spe
tra.Orthogonal Z/2-spe
tra: An orthogonal Z/2-spe
trum has an underlying or-thogonal spe
trum. We are interested in the model stru
ture where the weakequivalen
es are the Z/2-maps whi
h are π∗-isomorphisms between the underly-ing orthogonal spe
tra. Considering an orthogonal Z/2-spe
trum as an orthogo-nal spe
trum with Z/2-a
tion, we see that fun
torial 
onstru
tions on orthogonalspe
tra lift to 
onstru
tions on orthogonal Z/2-spe
tra. For example, proposi-tion 5.1.1 holds in this setting.Orthogonal S1-spe
tra: We are interested in the 
y
lotomi
 π∗-isomorphisms.They are given in de�nition 3.3.7. These are the maps f : K → L su
h that findu
es an isomorphism πC

∗ K → πC
∗ L for all �nite subgroups C of S1.For some 
onstru
tions we must 
hange our orthogonal S1-spe
trum into an

Ω-S1-spe
trum (=genuine �brant orthogonal S1-spe
trum), see de�nition 3.3.8.To a
hieve this, we use the �brant repla
ement fun
tor 
oming from the stablegenuine model stru
ture on orthogonal S1-spe
tra. This fun
tor is 
onstru
tedby the small obje
t argument, and we denote it by Qcy.Re
all the geometri
 �xed point fun
tor ΦC , given in de�nition 3.7.2. For a�nite subgroup C of S1 it takes orthogonal S1-spe
tra L to orthogonal S1/C-spe
tra ΦCL. Using the group isomorphism ρC : S1 → S1/C, we pull ba
k andget a new orthogonal S1-spe
trum ρ∗CΦCL.
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tor ρ∗CΦC preserves the 
lass of generating gen-uine a
y
li
 q-
o�brations. Hen
e, lemma 3.11.6 yields:Lemma 5.1.2There is a natural transformation ρ∗CΦCQcy → Qcyρ∗CΦC su
h that the followingdiagram 
ommutes for all orthogonal S1-spe
tra L:
ρ∗CΦCL ρ∗CΦCLy

y

ρ∗CΦCQcyL −−−→ Qcyρ∗CΦCL

.Orthogonal O(2)-spe
tra: Again, we are interested in the 
y
lotomi
 π∗-isomorphisms, see de�nition 3.3.7. We have a �brant repla
ement fun
tor, Qcy,
onstru
ted by the small obje
t argument in the stable genuine model stru
ture.Thus QcyL is an Ω-O(2)-spe
trum, for any orthogonal O(2)-spe
trum L. Let Cbe a �nite normal subgroup of O(2). Similar to the 
ase above, we have geometri

C-�xed point fun
tors, ΦC , and group isomorphisms ρC : O(2) ∼= O(2)/C. We
onsider the 
omposition ρ∗CΦC . Also in the 
ase of an orthogonal O(2)-spe
trum
L lemma 5.1.2 holds.We are now ready to de�ne 
y
lotomi
 spe
tra in the setting of orthogonalspe
tra. Compare this de�nition with de�nition 2.2 in [HM97℄. Furthermore, weintrodu
e the notion of an 
y
lotomi
 spe
trum with involution.De�nition 5.1.3A 
y
lotomi
 spe
trum is an orthogonal S1-spe
trum T together with a 
y
lotomi

π∗-isomorphism

rC : ρ∗CΦCT → Tfor every �nite subgroup C of S1 su
h that for any pair of �nite subgroups thefollowing diagram 
ommutes
ρ∗Cr

ΦCrρ∗Cs
ΦCsT ρ∗Crs

ΦCrsT

ρ∗
Cr

ΦCr rCs

y
yrCrs

ρ∗Cr
ΦCr

rCr−−−→ T

.A map of 
y
lotomi
 spe
tra is a map of orthogonal S1-spe
tra whi
h 
ommuteswith the rC 's.De�nition 5.1.4A 
y
lotomi
 spe
trum with involution is an orthogonalO(2)-spe
trum T togetherwith a 
y
lotomi
 π∗-isomorphism
rC : ρ∗CΦCT → T



192 CHAPTER 5. THH AND TCfor every �nite subgroup C of S1 ⊂ O(2) su
h that the diagram in de�nition 5.1.3
ommutes for every pair of su
h subgroups. A map of 
y
lotomi
 spe
tra withinvolution is a map of orthogonal O(2)-spe
tra whi
h 
ommutes with the rC 's.Be
ause of the maps rC , it is easy to 
he
k when a map between 
y
lotomi
spe
tra is a 
y
lotomi
 π∗-isomorphism:Proposition 5.1.5A map f : T1 → T2 between 
y
lotomi
 spe
tra (with involution) is a 
y
lotomi

π∗-isomorphism if and only if it is non-equivariantly a π∗-isomorphism.Proof: By de�nition, all 
y
lotomi
 π∗-isomorphisms are non-equivariant π∗-isomorphisms.Assume that f : T1 → T2 is non-equivariantly a π∗-isomorphism. Let C be a�nite normal subgroup of S1 (or O(2)), and 
onsider the diagram

ρ∗CΦCT1
rC−−−→ T1

ρ∗CΦCf

y
yf

ρ∗CΦCT2
rC−−−→ T2

.Sin
e the rC 's are 
y
lotomi
 π∗-isos, it follows that ΦCf is non-equivariantlya π∗-isomorphism. Using proposition 3.11.9 we re
ognize f as a 
y
lotomi
 π∗-isomorphism. �Remark 5.1.6The key ingredient in the proof of proposition 3.11.9 was a homotopy 
o�bersequen
e
Qcy(L ∧ EF+)C → Qcy(L)C → ΦCL ,where F is a spe
i�
 family of subgroups, and L an orthogonal S1- (or O(2)-) spe
trum. This sequen
e is a generalization of the �fundamental 
o�brationsequen
e�, see formula 2.4.6 in [Mad94℄, or theorem 2.2 in [HM97℄.In order to de�ne TC(T ) we introdu
e the 
ategory I. It has the naturalnumbers, {1, 2, 3, . . .}, as its obje
ts, and the set of all morphisms in I is generatedby two 
lasses of morphisms Rr : rm→ m and Fr : rm→ m, m ≥ 1, subje
t tothe relations

R1 = F1 = idn ,

RrRs = Rrs ,

FrFs = Frs ,

RrFs = FsRr .
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y
lotomi
 spe
trum T we now 
onstru
t a fun
tor I → I S bysending n to the 
ategori
al Cn-�xed points TCn. The map Fr : TCn → TCmis given by in
lusion of 
ategori
al �xed points. To 
onstru
t Rr we re
all thatthere is a natural map TC → ΦCT , see 
onstru
tion 3.7.3. We de�ne Rr as the
omposition
TCn = (TCr)Cm → (ΦCrT )Cm rCr−−→ TCm .De�nition 5.1.7The topologi
al 
y
li
 homology of T , TC(T ), is the orthogonal spe
trum de�nedas

TC(T ) = holim
n∈I

TCn .Lemma 5.1.8If T is a 
y
lotomi
 spe
trum with involution, then TC(T ) is an orthogonal Z/2-spe
trum.Proof: The dihedral group of order 2n is the subgroup of O(2) spanned by
Cn and the matrix (0 1

1 0

). Sin
e T is an orthogonal O(2)-spe
trum, we 
anrestri
t the a
tion getting an orthogonal D2n-spe
trum. Taking 
ategori
al Cn-�xed points, we get an Z/2 = D2n/Cn a
tion on ea
h TCn. Clearly, both Fr and
Rr be
ome Z/2-maps. �Remark 5.1.9If T is not an Ω-G-spe
trum, G = S1 or O(2), then the C-�xed points, TC , mighthave the wrong homotopy groups. See warning V.3.6 in [MM02℄. Hen
e, oneshould apply Qcy to T before 
al
ulating TC.Proposition 5.1.10The �brant repla
ement fun
tor Qcy preserves 
y
lotomi
 spe
tra.Proof: By 
onstru
tion Qcy 
omes with a natural a
y
li
 q-
o�bration T →
QcyT . By lemma 5.1.2 there is a natural transformation ρ∗CΦCQcyT → Qcyρ∗CΦCT .And the following diagram 
ommutes:

ρ∗CΦCT ρ∗CΦCT
rC−−−→
≃

T

≃

y
y

y≃

ρ∗CΦCQcyT −−−→ Qcyρ∗CΦCT
QcyrC−−−→ QcyT

.The left verti
al map is a genuine π∗-isomorphism sin
e ρ∗CΦC preserves a
y
li
q-
o�brations. We take the 
omposition of the two bottom maps as the de�nition



194 CHAPTER 5. THH AND TCof rC for QcyT . It is automati
ally a 
y
lotomi
 π∗-isomorphism sin
e rC is. �Proposition 5.1.11If a 
y
lotomi
 map f : T1 → T2 is a 
y
lotomi
 π∗-isomorphism between Ω-
G-spe
tra, G = S1 or O(2), then the indu
ed map TC(T1) → TC(T2) is a
π∗-isomorphism.Proof: Due to homotopy invarian
e of homotopy limits, see proposition 5.1.1,it is enough to show that for ea
h n the map

TCn

1 → TCn

2is a π∗-iso between Ω-spe
tra.It follows dire
tly from the de�nitions that the 
ategori
al H-�xed points ofan Ω-G-spe
trum is an Ω-spe
trum. Hen
e, TCn

1 and TCn

2 are Ω-spe
tra.Furthermore,
π∗T

Cn

1 = πCn
∗ T1

∼=
−→ πCn

∗ T2 = π∗T
Cn

2 .Here the map in the middle is an isomorphism sin
e T1 → T2 is a 
y
lotomi

π∗-isomorphism. �Remark 5.1.12Let F be the family of �nite normal subgroups of S1 or O(2). One 
an de�nethe notion of an Ω-F -spe
trum. All statements above probably remain true ifrepla
ing Ω-G-spe
tra, G = S1 or O(2), by Ω-F -spe
tra. Furthermore, one 
anprobably show that these spe
tra are the �brant obje
ts of the stable 
y
lotomi
model stru
ture on GI S .5.2 Topologi
al Ho
hs
hild homologySin
e the time when Bökstedt de�ned THH based on an idea of Goodwillie,the te
hnology of spe
tra has evolved so mu
h that we now 
an use Goodwillie'sidea as de�nition, see [Shi00℄. What is needed is a symmetri
 smash produ
tfor spe
tra. We write out the de�nition for the 
ategory of orthogonal spe
-tra. Furthermore, we show that THH(L) is a 
y
lotomi
 spe
trum, when L is
o�brant.We also 
onsider the involutive 
ase.De�nition 5.2.1Let L be an orthogonal ring spe
trum. De�ne THH•(L) to be the simpli
ialorthogonal spe
trum with q-simpli
es

THHq(L) = L∧(q+1) = L ∧ L ∧ · · · ∧ L ,
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e and degenera
y maps given by
di =

{
id∧i

L ∧ µ ∧ id
∧(q−i−1)
L for 0 ≤ i < q,

µ ∧ id
∧(q−1)
L ◦ πL∧q,L for i = q,and

si = id
∧(i+1)
L ∧ η ∧ id

∧(q−i)
L .We de�ne THH(L) to be the geometri
al realization of THH•(L).To 
larify the de�nition of dq we write it as the 
omposition

L∧(q+1) = (L∧q)∧L
twist
−−→ L∧(L∧q) = L∧L∧(L∧(q−1))

µ∧id
−−→ L∧(L∧(q−1)) = L∧q .Remark 5.2.2If the unit of the orthogonal ring spe
trum, η : S → L, is not a q-
o�bration, thenthere is no reason to expe
t the homotopy of L and the homotopy of THH(L) tobe related to ea
h other. Hen
e, we will often restri
t attention to su
h orthogonalring spe
tra, and we 
all them 
o�brant.Given an arbitrary orthogonal ring spe
trum L, it 
an often be 
he
ked di-re
tly that the unit η : S → L is a 
losed in
lusion. If this is the 
ase, then wemay apply the 
o�brant repla
ement fun
tor Γ from theorem 2.2.13, to produ
ea new orthogonal ring spe
trum ΓL, whi
h is 
o�brant.This repla
ement pro
edure also works when L 
omes with an involution. Wemust then de�ne the involution on ΓL as the 
omposed map

ΓL
ιL−→ ΓL

Γι
−→ ΓL .Here the �rst ι 
omes from theorem 2.2.13, while the se
ond ι is the involutionon L, see de�nition 2.1.20. Be
ause Γ is a skew-symmetri
 fun
tor, it followsthat ΓL is an orthogonal ring spe
trum with involution. Furthermore, ΓL is

Z/2-equivariantly 
o�brant by proposition 3.9.7.We now spe
ify S1- and O(2)-a
tions on THH(L).Proposition 5.2.3
THH•(L) is a 
y
li
 orthogonal spe
trum. If L has involution, then THH•(L) isdihedral.Proof: We de�ne the 
y
li
 operator tq : L∧(q+1) → L∧(q+1) as

L∧(q+1) = (L∧q) ∧ L
twist
−−→ L ∧ (L∧q) = L∧(q+1) .If L has involution ι : L→ L, we 
an de�ne the involutive operator rq : L∧(q+1) →

L∧(q+1) as
L∧(q+1) ι∧(q+1)

−−−−→ L∧(q+1) permute
−−−−→ L∧(q+1) .



196 CHAPTER 5. THH AND TCThe arrow labeled �permute� permutes the order of the fa
tors in the smash prod-u
t as follows: We label the fa
tors from 0'th to q'th. The 0'th fa
tor maps tothe 0'th fa
tor, while the i'th fa
tor, i > 0, maps to the (q + 1− i)'th fa
tor. �Corollary 5.2.4
THH(L) is an orthogonal S1-spe
trum. If L has involution, then THH(L) is anorthogonal O(2)-spe
trum.We now show:Theorem 5.2.5Let L be an orthogonal ring spe
trum (with involution).i) If S → L is a q-
o�bration, then there is an S1-isomorphism

rC : ρ∗CΦCTHH(L) ∼= THH(L)for every �nite subgroup C of S1, and THH(L) is a 
y
lotomi
 spe
trum.When L has involution the isomorphism is O(2)-equivariant, and in this
ase THH(L) is a 
y
lotomi
 spe
trum with involution.ii) If L → K is a π∗-isomorphism between 
o�brant orthogonal ring spe
tra(with involution), then
THH(L)→ THH(K)is a 
y
lotomi
 π∗-isomorphism.Before giving a proof, let us de�ne topologi
al 
y
li
 homology:De�nition 5.2.6The topologi
al 
y
li
 homology of a 
o�brant orthogonal ring spe
trum L (withinvolution) is de�ned as TC(THH(L)). We abbreviate this notation, and write

TC(L).Proof:Part i): We �rst 
onsider the 
ase of orthogonal ring spe
tra L without involu-tion. It is su�
ient to prove the statement in the 
ase where S → L is a relative
FI-
ellular map. Let C be the �nite subgroup of S1 of order r. We will now
onstru
t the isomorphism rC of genuine orthogonal S1-spe
tra

ρ∗CΦCTHH(L) ∼= THH(L) .By de�nition, THH(L) is the geometri
 realization of a 
y
li
 orthogonal spe
-trum THH•(L). Edgewise subdivision gives an S1-isomorphism |THH•(L)| ∼=
| sdC THH•(L)|. We will 
onstru
t rC by 
omputing ρ∗CΦC | sdC THH•(L)|.
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 realization is level-wise, so we 
an use the �ltration of thegeometri
 realization of r-
y
li
 spa
es given in 
onstru
tion 1.1.31. By indu
tionwe shall prove that
ρ∗CΦCF∆Cr

q | sdC THH•(L)| ∼= F∆C
q |THH•(L)|for all q ≥ 0. Letting q go to in�nity, this statement yields part i) of the theorem.To prove the indu
tion step we begin with a few 
al
ulations. The q-simpli
esof sdC THH•(L) are L∧rq. Here r is the order of C. We now have

ρ∗CΦC
(
L∧rq ∧Crq

∆Cq
r +

)
∼= ρ∗CΦC

(
(L∧rq ∧∆q

+) ∧Crq
S1

+

)

∼= ρ∗C
(
(ΦC(L∧rq) ∧∆q

+) ∧Cq
S1/C+

)

∼= (ΦC(L∧rq) ∧∆q
+) ∧Cq

S1
+

∼= ΦC(L∧rq) ∧Cq
∆Cq

+

∼= L∧q ∧Cq
∆Cq

+ .In this 
al
ulation we have used the following fa
ts:The topologi
al r-
y
li
 q-simplex, ∆Cq
r is de�ned as ∆q × S1.

ΦC(K ∧A) = (ΦCK)∧AC , when K is an orthogonal S1-spe
trum and A abased S1-spa
e, see proposition 3.11.8.
ΦC(K∧Crq

S1
+) ∼= (ΦCK)∧Cq

S1/C+, whenK is an orthogonal Crq-spe
trum,see proposition 3.8.10.The diagonal map L∧q ∼= ΦCL∧rq is an isomorphism for 
o�brant orthogonalspe
tra L, see proposition 3.10.7.Re
all from remark 3.10.5 the notation srL∧rq−r for the orthogonalCrq-spe
trum
srL∧rq−r =

⋃

i

L∧i−1 ∧ S ∧ L∧q−1 ∧ S ∧ L∧q−1 ∧ S ∧ · · · ∧ S ∧ L∧q−i .Observe that the degenerate q-simpli
es of sdC THH•(L) are exa
tly srL∧rq−r.By a 
al
ulation similar to that above, we get
ρ∗CΦC

(
srL∧rq−r ∧Crq

∆Cq
r +

)
∼= sL∧q−1 ∧Cq

∆Cq
+ .Restri
ting to the boundary of the topologi
al r-
y
li
 q-simplex, ∂∆Cq

r , weget
ρ∗CΦC

(
L∧rq ∧Crq

∂∆Cq
r +

)
∼= L∧q ∧Cq

∂∆Cq
+ and

ρ∗CΦC
(
srL∧rq−r ∧Crq

∂∆Cq
r +

)
∼= sL∧q−1 ∧Cq

∂∆Cq
+ .
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srL∧rq−r ∧Crq

∂∆Cq
r + −−−→ L∧rq ∧Crq

∂∆Cq
r +y

y

srL∧rq−r ∧Crq
∆Cq

r + −−−→ L∧rq ∧Crq
∆Cq

r +

.As an orthogonal spe
trum L∧rq∧Crq
∆Cq

r + has an FI-
ellular stru
ture su
h thatthe three other orthogonal spe
tra are FI-
ellular subspe
tra. It follows that themap
L∧rq ∧Crq

∂∆Cq
r + ∪srL∧rq−r∧Crq∂∆Cq

r +
srL∧rq−r ∧Crq

∆Cq
r + → L∧rq ∧Crq

∆Cq
r +is a 
losed in
lusion. Now 
onsider the diagram

L∧rq∧Crq
∆Cq

r + ← L∧rq∧Crq
∂∆Cq

r +∪s
rL∧rq−r∧Crq

∆Cq
r + → F∆Cr

q | sdC THH•(L)| .Sin
e the left map is a 
losed in
lusion, it follows by proposition 3.7.4 that ρ∗CΦCof the pushout is the pushout of ρ∗CΦC applied to the diagram. At last we lookat the following diagram:
ρ∗CΦC

(
L∧rq ∧Crq

∆Cq
r +

)
∼= L∧q ∧Cq

∆Cq
+x

x

ρ∗CΦC
(
L∧rq ∧Crq

∂∆Cq
r + ∪ srL∧rq−r ∧Crq

∆Cq
r +

)
∼=L∧q ∧Cq

∂∆Cq
+ ∪ sL∧q−1 ∧Cq

∆Cq
+y

y

ρ∗CΦCF∆Cr

q−1 | sdC THH•(L)| ∼= F∆C
q−1 |THH•(L)|

.

By the 
al
ulations above, the top and the middle horizontal maps are isomor-phisms. By the indu
tion hypothesis, the bottom horizontal map is an isomor-phism. It follows that the map of 
olumn-wise pushouts,
ρ∗CΦCF∆Cr

q | sdC THH•(L)| ∼= F∆C
q |THH•(L)| ,is an isomorphism.Now assume that L is an orthogonal ring spe
trum with involution. We provethat THH(L) is a 
y
lotomi
 spe
trum with involution by an argument similarto that above. Edgewise subdivision works also in the dihedral 
ase, and we
onstru
t the O(2)-isomorphism

rC : ρ∗CΦCTHH(L) ∼= THH(L)by indu
tion over the O(2)-equivariant �ltration for the geometri
 realization of
r-dihedral spa
es provided by 
onstru
tion 1.1.31. Sin
e the diagonal map isdihedral for L with involution, see proposition 3.10.12, the rest of the argumentworks exa
tly as before.



5.3. MATRICES OVER AN ORTHOGONAL RING SPECTRUM 199Part ii): By proposition 5.1.5, it is enough to show that the indu
ed map
THH(L)→ THH(K) is non-equivariantly a π∗-isomorphism. Sin
e both S → Land S → K are q-
o�brations, it follows that THH•(L) and THH•(K) aregood simpli
ial orthogonal spe
tra. It remains to show that the indu
ed map
THH•(L)→ THH•(K) is a π∗-iso in ea
h simpli
ial degree, see proposition 2.5.3.We 
an fa
tor the map THHq(L) = L∧(q+1) → K∧(q+1) = THHq(K) as

L∧(q+1) → L∧q ∧K → L∧(q−1) ∧K∧2 → · · · → L ∧K∧q → K∧(q+1) .The smash produ
t of 
o�brant orthogonal spe
tra is 
o�brant by proposition 2.4.8,and smashing with 
o�brant orthogonal spe
tra preserves π∗-isomorphisms, seeproposition 2.4.7. Hen
e, ea
h map in the sequen
e above is a π∗-isomorphism.The result follows. �5.3 Matri
es over an orthogonal ring spe
trumAn important ingredient when 
onstru
ting a tra
e map from K-theory to THHor TC, is the de�nition of a matrix ring. Sin
e we fo
us on orthogonal ring spe
trawith involution, we need a 
onstru
tion whi
h is involutive. In ordinary linearalgebra we have su
h an involution, namely the 
onjugate transposed matrix.However, if we 
onsider the 
ustomary de�nition of the matrix-FSP, Mn(L) =
F (n+,n+∧L), we see that transposition is not well-de�ned. Hen
e a modi�
ationof the de�nition is required.The purpose of this se
tion is to provide a 
onstru
tion of (n × n)-matri
esfor orthogonal ring spe
tra L, whi
h also works when L has involution. Let memake a list of our hopes and needs regarding the 
onstru
tion:

Mn should be an endofun
tor on orthogonal spe
tra.Up to π∗-isomorphism ∨n2 L, Mn(L) and L×n2 should be the same, at leastwhen L is 
o�brant.We want a matrix multipli
ationMn(L) ∧Mn(L)→Mn(L).Dire
t sum of matri
es should give a fun
torMn1(L)×Mn2(L)→ Mn1+n2(L).For L with involution taking the transposed involuted matrix should be aninvolution on Mn(L).We want a tra
e map from Mn(L) to some additive model for L.Re
all the 
on
ept of indu
ed fun
tors on orthogonal spe
tra, see subse
-tion 2.3.1. We �rst de�ne a 
ontinuous endofun
tor on Top∗, whi
h we also willdenote by Mn. Then we de�ne Mn on orthogonal spe
tra as the indu
ed fun
tor.



200 CHAPTER 5. THH AND TCDe�nition 5.3.1For a based spa
e X let Mn(X) be the subspa
e of X×n2 
onsisting for thosematri
es where ea
h row 
ontains at most one element di�erent from ∗ and ea
h
olumn 
ontains at most one element di�erent form ∗.Using formulas we may write Mn(X) as
Mn(X) = {(xi j) ∈ X

×n2

|if xi0 j0 6= ∗, then xi0 j = ∗ and xi j0 = ∗ for all i 6= i0 and j 6= j0.}It is 
lear that Mn is a 
ontinuous fun
tor. Sin
e Mn(∗) = ∗, there is a
anoni
al right assembly
σX,Y : Mn(X) ∧ Y →Mn(X ∧ Y ) ,see page 208 in [Mad94℄. In our 
ase we 
an easily write down a formula for

σ: Let (xi j) be a matrix in Mn(X) and y a point in Y , then σ((xi j), y) is thematrix (zi j) in Mn(X ∧ Y ), where zi j = (xi j , y) ∈ X ∧ Y . Similarly, there is aleft assembly σ̄.We now des
ribe the stru
ture of the fun
tor Mn:Lemma 5.3.2There are natural transformations
1X : X → Mn(X) ,

µX,Y : Mn(X) ∧Mn(Y )→Mn(X ∧ Y ) , and
ιX : Mn(X)→Mn(X) ,su
h thatthe 
omposition Mn(X) ∧ Y

id∧1Y−−−→ Mn(X) ∧Mn(Y )
µX,Y

−−−→ Mn(X ∧ Y ) isequal to the right assembly,the 
omposition X ∧Mn(Y )
1X∧id−−−→ Mn(X) ∧Mn(Y )

µX,Y
−−−→ Mn(X ∧ Y ) isequal to the left assembly,

µ is asso
iative,
ι2 = id , and
ι anti-
ommutes with µ, this means that the following diagram 
ommutes:
Mn(X) ∧Mn(Y )

ιX∧ιY−−−−→ Mn(X) ∧Mn(Y )
twist
−−−→ Mn(Y ) ∧Mn(X)

µX,Y

y
yµY,X

Mn(X ∧ Y )
ιX∧Y−−−→ Mn(X ∧ Y )

Mn(twist)
−−−−−→ Mn(Y ∧X)

.



5.3. MATRICES OVER AN ORTHOGONAL RING SPECTRUM 201Another way to phrase this lemma is to say thatMn is an FSP with involution.Proof: The unit 1X : X →Mn(X) is de�ned by sending x ∈ X to the (n× n)-matrix 


x ∗ · · · ∗
∗ x · · · ∗... ... . . . ...
∗ ∗ · · · x


 ,whi
h has x on the diagonal and ∗ elsewhere. Multipli
ation µX,Y : Mn(X) ∧

Mn(Y )→Mn(X ∧ Y ) is given as ordinary matrix multipli
ation. Expli
itly thisis given by sending (xi j) and (yi j) to (zi j), where
zi j =

{
(xi k, yk j) if k is su
h that xi k 6= ∗ and yk j 6= ∗,
∗ otherwise.By dire
t 
omputation it is easily seen that µ ◦ (1 ∧ id) and µ ◦ (id ∧ 1) are theleft and right assemblies respe
tively. And easy 
al
ulations also show that µ isasso
iative.We de�ne the involution ι by transposition. ιX(xi j) is (x′i j), where x′i j = xj i.Clearly, ι2 = id . To 
he
k that ι anti-
ommutes with µ, we take matri
es (xi j) and

(yi j) inMn(X) andMn(Y ) respe
tively. Let (zi j) be the matrix of µ(ι(yi j), ι(xi j))and (z′i j) = ι(µ((xi j), (yi j))). Cal
ulating we see that
zi j =

{
(yk i, xj k) if k is su
h that xj k 6= ∗ and yk i 6= ∗,
∗ otherwise,and

z′i j =

{
(xj k, yk i) if k is su
h that xj k 6= ∗ and yk i 6= ∗,
∗ otherwise.And we see that the diagram 
ommutes. �Corollary 5.3.3If L is an orthogonal ring spe
trum L, then Mn(L) is also an orthogonal ringspe
trum, and if L has involution, then Mn(L) has an indu
ed involution.Proof: We use the external des
ription of the smash produ
t, example 2.1.18.The unit for Mn(L) is de�ned as the 
omposition

SV → L(V )
1L(V )
−−−→Mn(L(V )) .
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ation for Mn(L), de�ned externally, is given by
Mn(L(V1)) ∧Mn(L(V2))

µL(V1),L(V2)

−−−−−−−−→Mn(L(V1) ∧ L(V2))
Mn(multipli
ation)
−−−−−−−−−−−−→Mn(L(V1 ⊕ V2)) .And in the 
ase L has involution, the indu
ed involution on Mn(L) is given by

Mn(L(V ))
ιL(V )
−−−→ Mn(L(V ))

Mn(involution)
−−−−−−−−→Mn(L(V )) .The stru
ture of Mn des
ribed in lemma 5.3.2 ensures that Mn(L) is an orthog-onal ring spe
trum (with involution). �Example 5.3.4 (Dire
t sum)The dire
t sum Mn1(L) ×Mn2(L) → Mn1+n2(L) is easily de�ned. First observethat dire
t sum Mn1(X)×Mn2(X) → Mn1+n2(X) is de�ned for based spa
es Xby the ordinary dire
t sum of matri
es. Applying the 
on
ept of indu
ed fun
torswe get the dire
t sum for matri
es of orthogonal ring spe
tra.Next we want to 
ompare the weak homotopy type of Mn(L) to ∨n2 L and

L×n2 . We 
learly have maps
∨

n2

L→Mn(L)→ L×n2

,and when L is 
o�brant, the 
omposition is a π∗-iso by proposition 2.3.16. Ourstrategy is to use 
orollary 2.3.15 to show that the �rst map also is a π∗-iso, giventhat L is 
o�brant.The third 
ondition in 
orollary 2.3.15 demands that the fun
tors must 
om-mute with 
olimit over sequen
es of 
o�brations. We 
he
k this for the fun
torsabove. Assume that X0 → X1 → X2 → · · · is a sequen
e of 
o�brations ofspa
es, and X is the 
olimit. Clearly we have that colimi (
∨

n2 Xi) =
∨

n2 X. (We
an des
ribe the wedge as a 
olimit, and inter
hanging 
olimits does not a�e
tthe result.) Theorem 10.3 in [Ste67℄ also holds for the 
ategory of 
ompa
tlygenerated spa
es de�ned in [M
C69℄. Therefore, we also have
colim

i

(
X×n2

i

)
= X×n2

.What we really are saying is that two a priori di�erent topologies on the same seta
tually 
oin
ide. It is easy to see that colimiMn(Xi) is equal to Mn(X) as sets.But the topology of colimiMn(Xi) is the subspa
e topology from colimi

(
X×n2

i

),whileMn(X) has the subspa
e topology from X×n2. However, the equality aboveimplies that
colim

i
Mn(Xi) = Mn(X)as topologi
al spa
es (=
ompa
tly generated spa
es).The following proposition 
he
ks the se
ond 
ondition for Mn(−).
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losed 
o�bration of spa
es, then Mn(A) → Mn(X) isalso an unbased 
losed 
o�bration.Proof: Represent the 
o�bration A → X by a homotopy H : X × I → X and
φ : X → I, see remark 2.1.8. De�ne H̄ : Mn(X)× I →Mn(X) by

H̄((xi j), t) = (H(xi j, t)) ,and φ̄ : Mn(X)→ I by
φ̄(xi j) = sup

i,j
φ(xi j) .Clearly, H̄ is a homotopy rel Mn(A) with H̄(−, 0) = idMn(X), and Mn(A) ⊆

φ̄−1(0). Assume that t > φ̄(xi j), then for ea
h i and j we have t > φ(xi j) andthus H(xi j , t) ∈ A. It follows that H̄((xi j), t) ∈Mn(A).This shows that H̄ and φ̄ represent Mn(A)→ Mn(X) as an unbased 
o�bra-tion. �We immediately get the following two 
orollaries:Corollary 5.3.6The indu
ed fun
tor Mn on orthogonal spe
tra preserves l-
o�brations.Corollary 5.3.7If L is a well-pointed orthogonal spe
trum, then also Mn(L) is well-pointed.Remark 5.3.8Observe that we do not 
laim thatMn(L) is 
o�brant. If we want a 
o�brant ver-sion, then we just apply the 
o�brant repla
ement fun
tor Γ from theorem 2.2.13.Furthermore, whenever the unit η : S → L of an orthogonal ring spe
trum is anl-
o�bration, we have that S → Mn(L) is an l-
o�bration and S → ΓMn(L) is aq-
o�bration.To 
ompare Mn(X) and ∨n2 X up to homotopy, we now provide a �ltration.De�ne Mk
n(X) to be the subspa
e of Mn(X) 
onsisting of those matri
es with atmost k elements di�erent form ∗. It is easily seen that M1

n(X) is equal to ∨n2 X,while Mn
n (X) equals Mn(X). The key lemma for analyzing this �ltrations is:Lemma 5.3.9For well-pointed X there is a natural 
o�ber sequen
e

Mk−1
n (X)→Mk

n(X)→
∨

A

X∧k ,where the wedge is indexed over a �nite set A.



204 CHAPTER 5. THH AND TCProof: Let A be the set of maps, f , from {1, . . . , k} to {1, . . . , n}2 su
h thatboth
pr 1 ◦ f : {1, . . . , k} → {1, . . . , n}is stri
tly in
reasing and
pr 2 ◦ f : {1, . . . , k} → {1, . . . , n}is inje
tive. For ea
h su
h f we 
onstru
t a map f∗ : X×k →Mk

n(X) by
(x1, . . . , xk) 7→ (yi j) where yi j =

{
xl if f(l) = (i, j) and
∗ otherwise.Let sX×k−1 be the subspa
e of X×k 
onsisting of the tuples (x1, . . . , xk) where atleast one xl = ∗. By Steenrod's produ
t theorem for 
o�brations we know that(by indu
tion) sX×k−1 → X×k is a 
o�bration. Also observe that the image of

sX×k−1 in Mk
n(X) under f∗ a
tually lies in Mk−1

n (X). Furthermore the diagram
∐

A sX
×k−1 −−−→

∐
AX

×k

f∗

y
yf∗

Mk−1
n (X) −−−→ Mk

n(X)is pushout. The lemma follows by the observation that ∨AX
∧k is the 
o�ber ofthe top row. �By 
ounting one 
an 
he
k that A 
ontains (n

k

)2
k! elements.Using the �ltration we prove the following result regarding the 
onne
tivityof the map ∨n2 X → Mn(X):Proposition 5.3.10If X is r-
onne
ted and well-pointed, then the map ∨n2 X → Mn(X) is 2r-
onne
ted.Proof: We prove by indu
tion on r and k that Mk
n(X) is r-
onne
ted and themap

Mk−1
n (X)→ Mk

n(X) , k ≥ 2 ,is 2r-
onne
ted when X is r-
onne
ted.For k = 1 observe that M1
n(X) =

∨
n2 X. Therefore M1

n(X) is r-
onne
tedwhenever X is.For r = −1 there is nothing to prove. For r = 0 we will give a dire
targument that shows that all Mk
n(X) are 0-
onne
ted. Consequently, the maps
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Mk−1

n (X)→Mk
n(X) are all 0-
onne
ted. Let (xi j) be a matrix in Mk

n(X). Sin
e
X is path-
onne
ted, we 
an for ea
h xi j 
hoose a path γi j from xi j to ∗. When
xi j = ∗, we let the path be 
onstant. Then

t 7→
(
γi j(t)

)will be a path from (xi j) to the base point in Mk
n(X). Hen
e this spa
e is alsopath-
onne
ted.Let r ≥ 1 and k ≥ 2 and assume that the indu
tion hypothesis holds forsmaller r and k. By lemma 5.3.9 above, the map

Mk−1
n (X)→ Mk

n(X)is an unbased 
losed 
o�bration with 
o�ber ∨AX
∧k. And it follows from propo-sition A.1.9 that this 
o�ber is at least (2r + 1)-
onne
ted. The indu
tion hy-pothesis says that Mk−1

n (X) is r-
onne
ted and the pair (Mk
n(X),Mk−1

n (X)) is
(2r − 2)-
onne
ted. We now apply proposition A.1.6 and get that

πq(M
k
n(X),Mk−1

n (X))→ πq(
∨

A

X∧k)is an isomorphism for q < 3r − 1. If r > 1, we immediately get that the map
Mk−1

n (X)→Mk
n(X) is 2r-
onne
ted and Mk

n(X) is r-
onne
ted.If r = 1, the statement above only says that the map Mk−1
n (X) → Mk

n(X)is 1-
onne
ted. But in this 
ase we 
an apply the proposition again with theimproved input that the pair (Mk
n(X),Mk−1

n (X)) is 1-
onne
ted. And we getthat also π2(M
k
n(X),Mk−1

n (X)) → π2(
∨

AX
∧k) = 0 is an isomorphism. Thus

Mk−1
n (X)→Mk

n(X) is a
tually 2-
onne
ted and Mk
n(X) is 1-
onne
ted. �Corollary 5.3.11If L is a 
o�brant orthogonal spe
trum, then∨n2 L→ Mn(L) is a π∗-isomorphism.Proof: The 
onsiderations and results above verify the 
onditions of 
orol-lary 2.3.15. Hen
e, the map of indu
ed fun
tors is a π∗-isomorphism. �5.4 Cross produ
t formula for THHIn this se
tion we will derive a 
ross produ
t formula for THH . Unfortunately,our result, proposition 5.4.3 below, is not as strong as we would like. The authorsuggests two ways to improve the 
on
lusion, see remark 5.4.7. We begin these
tion by dis
ussing the 
ross produ
t of orthogonal ring spe
tra.



206 CHAPTER 5. THH AND TCLemma 5.4.1If L and K are orthogonal ring spe
tra, then L × K is also an orthogonal ringspe
tra. If L and K have involutions, then also L×K 
omes with an involution.The proje
tions are maps of orthogonal ring spe
tra (with involution).Proof: Observe that maps into a 
ategori
al produ
t L×K 
orrespond to pairsof maps, one into ea
h fa
tor. In other words, for any orthogonal spe
trum Xthere is a homeomorphism
I S (X,L×K) ∼= I S (X,L)×I S (X,K) .When L and K are orthogonal ring spe
tra, we de�ne the unit for L × K asthe map determined by ηL : S → L and ηK : S → K. The multipli
ation isdetermined by the two maps
(L×K) ∧ (L×K)

prL∧prL−−−−−→ L ∧ L
µL−→ L and

(L×K) ∧ (L×K)
prK∧prK−−−−−→ K ∧K

µK−−→ K .In 
ase L and K have involutions, we de�ne an involution on L×K by the map
ιL × ιK .To 
he
k that L × K is an orthogonal ring spe
trum (with involution), oneneeds to see that 
ertain diagrams 
ommute. This is an easy 
omputation, doneby proje
ting the diagrams to L and K, where they 
ommute by assumption. �However, it is not 
lear that the 
ross produ
t of 
o�brant orthogonal ringspe
tra is 
o�brant. So we provide a 
o�brant repla
ement:Lemma 5.4.2If L is an orthogonal ring spe
trum and η : S → L is a 
losed in
lusion, then
ΓL is a 
o�brant orthogonal ring spe
trum. ΓL is involutive whenever L hasinvolution. The natural map ΓL→ L is a map of orthogonal ring spe
tra (withinvolution).Proof: The unit is de�ned as the 
omposition

S → ΓS
Γη
−→ ΓL ,the multipli
ation is given by

ΓL ∧ ΓL
⊆
−→ Γ(L ∧ L)

Γµ
−→ ΓL ,and the involution is the 
omposition

ΓL
ιL−→ ΓL

Γι
−→ ΓL ,
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omes from the natural transformation ι : Γ → Γ, and these
ond map is Γ applied to the involution on L.Commutativity of the required diagrams follows sin
e Γ is lax symmetri
monoidal. S → ΓL is a q-
o�bration sin
e S → ΓS is a q-
o�bration and Γapplied to the 
losed in
lusion η : S → L is a q-
o�bration. �We now state or 
ross produ
t formula:Proposition 5.4.3Assume that L and K are 
o�brant orthogonal ring spe
tra (with involution).The S1-map (O(2)-map)
THH(Γ(L×K))→ THH(L)× THH(K)indu
ed by the proje
tions Γ(L×K)→ L and Γ(L×K)→ K is non-equivariantlya π∗-isomorphism.We will show this by 
omparing both THH•(Γ(L × K)) and THH•(L) ×

THH•(K) to a third 
y
li
 (dihedral) orthogonal spe
trum, 
alled T•(L,K). To-gether 
orollary 5.4.5 and lemma 5.4.6 below prove the proposition.We begin by de�ning T•(L,K). Let the q-simpli
es be the ×-produ
t of all
(q + 1)-fold ∧-produ
ts where ea
h fa
tor is either L or K. Let us write upexpli
itly what we get for small q:
T0(L,K) = L×K

T1(L,K) = (L ∧ L)× (L ∧K)× (K ∧ L)× (K ∧K)

T2(L,K) = (L ∧ L ∧ L)× (L ∧ L ∧K)× (L ∧K ∧ L)× (L ∧K ∧K)

× (K ∧ L ∧ L)× (K ∧ L ∧K)× (K ∧K ∧ L)× (K ∧K ∧K) .We de�ne the 
y
li
 (dihedral) stru
ture by 
onsidering ea
h ×-fa
tor separately.Consider a fa
tor X0∧X1∧· · ·∧Xq, where ea
h Xi is L or K. The fa
e operator
di for i < q tries to multiply Xi and Xi+1. We de�ne
di : X0 ∧ · · · ∧Xq →






X0 ∧ · · · ∧Xi−1 ∧ L ∧Xi+2 ∧ · · · ∧Xq if Xi = Xi+1 = L,
X0 ∧ · · · ∧Xi−1 ∧K ∧Xi+2 ∧ · · · ∧Xq if Xi = Xi+1 = K, and
∗ otherwise.Here the map is indu
ed by µL in the �rst 
ase and µK in the se
ond. To de�ne

dq we try to multiply Xq with X0, using µL if Xq = X0 = L, µK if Xq = X0 = Kand mapping to ∗ otherwise. The degenera
y map is given by
si : X0∧· · ·∧Xq → (X0∧· · ·∧Xi∧L∧Xi+1∧· · ·∧Xq)×(X0∧· · ·∧Xi∧K∧Xi+1∧· · ·∧Xq)using ηL into the �rst fa
tor and ηK into the se
ond. The 
y
li
 operator permutesthe fa
tors:

tq : X0 ∧ · · · ∧Xq → Xq ∧X0 ∧ · · · ∧Xq−1 .
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ome with involutions, we 
an de�ne the involutive operator byapplying ι to ea
h Xi an then permute:
rq : X0 ∧ · · · ∧Xq

ι∧···∧ι
−−−→ X0 ∧ · · · ∧Xq

permute
−−−−→ X0 ∧Xq ∧ · · · ∧X1 .There is a map

pr : T•(L,K)→ THH•(L)× THH•(K)de�ned on fa
tors by
X0 ∧ · · · ∧Xq →






L∧(q+1) = THHq(L) if X0 = · · · = Xq = L,
K∧(q+1) = THHq(K) if X0 = · · · = Xq = K, and
∗ otherwise.In the opposite dire
tion we have the in
lusion

incl : THH•(L)× THH•(K)→ T•(L,K) .Lemma 5.4.4The map pr is 
y
li
 (dihedral), incl is presimpli
ial, pr incl = id , while incl pr ≃
id via a presimpli
ial homotopy.Proof: The �rst three statements are obvious. To prove the last statement wede�ne a presimpli
ial homotopy on fa
tors as follows:
hi : X0∧· · ·∧Xq →






X0 ∧ · · · ∧Xi ∧ L ∧Xi+1 ∧ · · · ∧Xq if X0 = · · · = Xi = L,
X0 ∧ · · · ∧Xi ∧K ∧Xi+1 ∧ · · · ∧Xq if X0 = · · · = Xi = K, and
∗ otherwise.Here L is inserted using ηL in the �rst 
ase, in the se
ond 
ase K is inserted using

ηK . We see that
d0h0 = id and dq+1hq = incl pr .Assume i < j, then dihj and hj−1di are ∗ if not X0 = · · · = Xj. When X0 = · · · =

Xj, it is easy to 
he
k that dihj = hj−1di. Similarly, one shows that dihj = hjdi−1for i > j + 1. At last we 
he
k that on the fa
tor X0 ∧ · · · ∧Xq we have
dihi =

{
id if X0 = · · · = Xi, and
∗ otherwise,and also

dihi−1 =

{
id if X0 = · · · = Xi, and
∗ otherwise.Thus we have a presimpli
ial homotopy. �
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o�brant orthogonal ring spe
tra (with involution).Then there is an S1-map (O(2)-map) pr : |T•(L,K)| → THH(L) × THH(K),whi
h is non-equivariantly a π∗-isomorphism.Proof: Sin
e L and K are 
o�brant, it follows that T•(L,K) and THH•(L) ×
THH•(K) are good. The result now follows from the lemma above, proposi-tion 2.5.2, and the fa
t that a presimpli
ial homotopy indu
es a homotopy onpresimpli
ial realization. �Next, we 
ompare THH•(Γ(L×K)) and T•(L,K). There is a 
y
li
 (dihedral)map f : THH•(Γ(L×K))→ T•(L,K) de�ned as follows: Fix a simpli
ial degree
q and 
onsider the fa
tor X0 ∧ · · · ∧Xq of Tq(L,K). Let pi be the 
omposition

Γ(L×K)→ L×K
pr
−→ Xi .Here pr denotes the proje
tion to the �rst fa
tor, it is L×K → L if Xi = L and

L×K → K if Xi = K. Now we map THHq(Γ(L×K)) into X0 ∧ · · · ∧Xq by
THHq(Γ(L×K)) = Γ(L×K)∧(q+1) = Γ(L×K)∧· · ·∧Γ(L×K)

p0∧···∧pq
−−−−−−→ X0∧· · ·∧Xq .Our map fq is determined by the 
olle
tion of all su
h maps when X0 ∧ · · · ∧Xqruns through all fa
tors of Tq(L,K).Lemma 5.4.6Assume that L and K are 
o�brant orthogonal ring spe
tra (with involution).The geometri
 realization of f• is an S1-map (O(2)-map) f : THH(Γ(L×K))→

|T•(L,K)|, whi
h is non-equivariantly a π∗-isomorphism.Proof: We have that THH•(Γ(L × K)) and T•(L,K) are both good 
y
li
(dihedral) orthogonal spe
tra. Hen
e by proposition 2.5.3, it is su�
ient to provethat in ea
h simpli
ial degree
fq : THHq(Γ(L×K))→ Tq(L,K)is non-equivariantly a π∗-isomorphism. The 
lue to prove this is to repla
e × by

∨. Consider the diagram
Γ(L ∨K) ∧ · · · ∧ Γ(L ∨K) −−−→

∨
X0 ∧ · · · ∧Xqy

y

Γ(L×K) ∧ · · · ∧ Γ(L×K)
fq

−−−→
∏
X0 ∧ · · · ∧Xq

.The lower left 
orner is THHq(Γ(L×K)), the lower right 
orner is Tq(L,K), andthe map at the bottom is fq.
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al map. Sin
e L and K are 
o�brant, we have that
L∨K → L×K is a π∗-iso, see proposition 2.3.16. Γ preserves π∗-isomorphisms,and Γ(L ∨K) and Γ(L ×K) are both 
o�brant. Re
all that the smash produ
tof a π∗-iso with a 
o�brant orthogonal spe
trum yields a new π∗-iso. From these
onsiderations it follows that the left verti
al map is a π∗-iso.The right verti
al map is also a π∗-iso. This follows from the fa
t that ea
h
X0 ∧ · · · ∧ Xq is 
o�brant and the fa
t that wedge and ×-produ
ts of 
o�brantorthogonal spe
tra are π∗-isomorphi
.To see that the top map is a π∗-iso, we de
ompose it as

Γ(L ∨K) ∧ · · · ∧ Γ(L ∨K)→ (L ∨K)∧(q+1) →
∨

X0 ∧ · · · ∧Xq .The �rst map is a π∗-iso sin
e Γ(L ∨K) → L ∨K is a π∗-iso between 
o�brantorthogonal spe
tra. Distributivity of ∨ over ∧ shows that the se
ond map is anisomorphism of orthogonal spe
tra.Commutativity of the diagram implies that fq also is a π∗-iso. �Remark 5.4.7The 
on
lusion of the 
ross produ
t formula we just have derived, proposition 5.4.3above, is too weak. Due to proposition 5.1.11, we would like our map
f : THH(Γ(L×K))→ THH(L)× THH(K)to be a 
y
lotomi
 π∗-isomorphism between 
y
lotomi
 spe
tra. We know onlythat f is non-equivariantly a π∗-isomorphism, and we do not know that THH(L)×

THH(K) is a 
y
lotomi
 spe
trum. These two problems are 
losely 
onne
ted:If we 
an show that THH(L) × THH(K) is a 
y
lotomi
 spe
trum, thenproposition 5.1.5 would imply that f is a 
y
lotomi
 π∗-isomorphism.There are good 
andidates for the 
y
lotomi
 stru
ture maps rC on THH(L)×
THH(K), but we do not know that these maps are 
y
lotomi
 π∗-isomorphisms.If we knew that f was a 
y
lotomi
 π∗-isomorphism, then we 
ould showthat the rC 's also are 
y
lotomi
 π∗-isomorphisms.In both approa
hes we should allow ourselves to take 
o�brant or �brant repla
e-ments. To study the �rst approa
h, one should give a more expli
it des
riptionof a 
y
lotomi
 spe
trum. Lemma 2.2 in [HM97℄ 
an be the inspiration for su
h ades
ription. To study the se
ond approa
h, one 
ould try to transfer M
Carthy's
on
ept of a spe
ial homotopy to the setting of 
y
li
 orthogonal spe
tra. Analo-gies of propositions 1.5.12 and 1.6.15 in [DM96℄ should then show that f is a
y
lotomi
 π∗-isomorphism.
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les fun
torWhen trying to de�ne a tra
e map Mn(L)→ L one en
ounters the problem thatthere is a priori no notion of addition on L, i.e. one 
annot add two points in
L(V ) and get a new point. We will use the Barratt-E

les fun
tor Γ+, see [BE74℄,to solve this problem. In the next se
tion we will 
onstru
t a tra
e map from
THH(ΓMn(L)). As a target for this tra
e we now introdu
e a new model for
THH(L), 
alled THH+(L). The 
onstru
tion uses Γ+. This is an idea due toChristian S
hli
htkrull, see [S
h98℄. The main result of this se
tion is proposi-tion 5.5.10, but this result is not as strong as hoped for, see remark 5.5.11.Let G be a dis
rete group. Re
all that E•G is the simpli
ial G-spa
e given by

EqG = Gq+1where
di(g0, . . . , gq) = (g0, . . . , gi−1, gi+1, . . . , gq) ,

si(g0, . . . , gq) = (g0, . . . , gi, gi, . . . , gq) and
(g0, . . . , gq).g = (g0g, . . . , gqg) .Let EG be the geometri
 realization.Write n for the set {1, 2, . . . , n}. Let M (m,n) be the set of all stri
tly in-
reasing fun
tions from m to n. Given a permutation σ ∈ Σn and α ∈M (m,n),then there is a unique fun
tion in M (m,n) whi
h has the same image as the
omposition σα. Denote this by σ∗(α).De�nition 5.5.1For α ∈M (m,n) de�ne the restri
tion map α∗ : Σn → Σm by 
ommutativity ofthe diagram

m
α

−−−→ n

α∗(σ)

y
yσ

m
σ∗(α)
−−−→ n

.On the Cartesian produ
t Xn we have a right a
tion of Σn given by
(x1, . . . , xn).σ = (xσ(1), . . . , xσ(n)) ,and given α ∈M (m,n) we have an indu
ed map α∗ : Xn → Xm de�ned by theformula
α∗(x1, . . . , xn) = (xα(1), . . . , xα(m)) .We say that α is entire for (x1, . . . , xn) if i 6∈ α(m) implies xi = ∗.Consider the equivalen
e relation on

∐

m≥0

E•Σm ×X
mgiven by



212 CHAPTER 5. THH AND TC(a) (c,x) ∼ (c.σ,x.σ) for c ∈ E•Σm, x ∈ Xm and σ ∈ Σm.(b) (c,x) ∼ (α∗c, α∗x) if c ∈ E•Σm, x ∈ Xm and α ∈M (m,n) is entire for x.De�nition 5.5.2Let Γ+
• (X) be (

∐
m≥0E•Σm ×Xm)/ ∼, and Γ+(X) it's geometri
al realization.Proposition 5.5.3

Γ+
• (X) is a dihedral spa
e.Proof: We must de�ne the 
y
li
 and involutive operators. Let

tq[(σ0, . . . , σq); (x1, . . . , xm)] = [(σq, σ0, . . . , σq−1); (x1, . . . , xm)]and
rq[(σ0, . . . , σq); (x1, . . . , xm)] = [(σq, σq−1, . . . , σ1, σ0); (x1, . . . , xm)] .

�Proposition 5.5.4
Γ+(X) is a monoid with unit, the operation is 
ommutative up to homotopy andthe monoid is free.Proof: A proof of this result 
an be found in [BE74℄, 
orollary 3.10 and propo-sition 3.11. However in their proofs X is a based simpli
ial set. But the de�nition
oin
ides with the one given here when X is a dis
rete based set. Therefore, thestatements about the algebrai
 stru
ture of Γ+(X) follow by applying Barrattand E

les' proofs to X's underlying dis
rete set Xδ. Hen
e, Γ+(X) is a freemonoid with unit. Che
king homotopy 
ommutativity 
an be done as in the ref-eren
e, but in order to familiarize ourselves with the operation we write out theargument for homotopy 
ommutativity here:We write + for the operation. To start we need a homomorphismΣm1×Σm2 →
Σm1+m2 . We 
all this homomorphism ∐ and it is de�ned by

(σ ∐ ρ)(j) =

{
σ(j) if j ≤ m1, and
ρ(j −m1) +m1 if j > m1.Now given [(σ0, . . . , σq); (x1, . . . , xm1)] and [(ρ0, . . . , ρq); (y1, . . . , ym2)] in Γ+

q (X)we de�ne their sum as:
[(σ0 ∐ ρ0, . . . , σq ∐ ρq); (x1, . . . , xm1 , y1, . . . , ym2)] .
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ial map Γ+
• (X)× Γ+

• (X)→ Γ+
• (X), and we de�ne + to beits geometri
 realization.To get homotopy 
ommutativity we de�ne a simpli
ial homotopy hi : Γ+

q (X)×
Γ+

q (X)→ Γ+
q+1(X), i = 0, . . . , q. Let τ ∈ Σm1+m2 be the permutation de�ned by

τ(j) =

{
j +m2 if j ≤ m1, and
j −m1 if j > m1.Noti
e that τ(σ ∐ ρ)τ−1 = ρ ∐ σ. Now we de�ne hi by:

hi([(σ0, . . . , σq); (x1, . . . , xm1)], [(ρ0, . . . , ρq); (y1, . . . , ym2)]) =

[(τσ0 ∐ ρ0, . . . , τσi ∐ ρi, σi ∐ ρi, . . . , σq ∐ ρq); (x1, . . . , xm1 , y1, . . . , ym2)] .This is a simpli
ial homotopy between x+ y and y + x. �Proposition 5.5.5If i : A→ X is an unbased 
o�bration of based topologi
al spa
es, then Γ+(A)→
Γ+(X) is also an unbased 
o�bration.Proof: Sin
e i is a 
o�bration, it is an in
lusion and we view A as a subspa
eof X. By Strøm's 
riterion there are maps H : X × I → X and φ : X → I with
A ⊂ φ−1(0), H(x, 0) = x for all x ∈ X, H(a, t) = a for all a ∈ A and t ∈ I and
H(x, t) ∈ A when φ(x) > t. Now de�ne Hm : Xm × I → I and φm : Xm → I by
Hm(x1, . . . , xm, t) = (H(x1, t), . . . ,H(xm, t)) and φm(x1, . . . , xm) = max

i
φ(xi) .

Hm and φm satis�es Strøm's 
riterion. In addition they are Σm-equivariant andif α : m→ n is entire for (x1, . . . , xm), then
α∗Hn(x1, . . . , xn, t) = Hm(α∗(x1, . . . , xn), t) and φn(x1, . . . , xn) = φmα∗(x1, . . . , xn) .Therefore, we get indu
ed maps

H ′q : (Γ+
q (X))× I → Γ+

q (X) and φ′q : Γ+
q (X)→ Ishowing that Γ+

• (A)→ Γ+
• (X) is a 
o�bration in ea
h simpli
ial degree. Moreoverthe H ′q's and the φ′q's respe
t the fa
e and degenera
y maps. Thus by geometri
realization we get maps H ′ : Γ+(X)× I → Γ+(X) and φ′ : Γ+(X)→ I, showingthat Γ+(A)→ Γ+(X) is a 
o�bration. �Proposition 5.5.6If X is an n-
onne
ted well-pointed spa
e, then the map X → Γ+(X) is (2n+1)-
onne
ted.
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q (X) → Γ+

q+1(X) that alldegenera
y maps are 
o�brations. Hen
e, Γ+
• (X) is a good simpli
ial spa
e forall X. It follows that Γ+(−) preserves weak equivalen
es.By the natural weak equivalen
e | Sing•X| → X, we see that it is su�
ientto prove the result when X is a simpli
ial set. Assume that X is n-
onne
ted.If n = −1, there is nothing to prove. Therefore 
onsider n ≥ 0. Lemma 4.8in [BE74℄ (see also 
orollary 5.4) says that X → Γ+(X) is (2n+ 1)-
onne
ted. �Corollary 5.5.7We may apply Γ+(−) level-wise to an orthogonal spe
trum L. If L is 
o�brant,then the natural map

L→ Γ+(L)is a π∗-iso.Proof: The propositions 5.5.6 and 5.5.5 verify the 
onditions required to apply
orollary 2.3.15. �We now de�ne the model THH+(L):De�nition 5.5.8Assume that L is an orthogonal ring spe
trum (with involution). We de�ne
THH+(L) to be the geometri
 realization of the bi
y
li
 (bidihedral) orthogonalspe
trum Γ+

• (THH•(L)).A bi
y
li
 orthogonal spe
trum is a fun
tor (∆C×∆C)op → I S . Restri
t-ing via the diagonal ∆C → ∆C × ∆C we get a 
y
li
 orthogonal spe
trum,whose geometri
 realization is an orthogonal S1-spe
trum. Analogously, in thebidihedral 
ase the geometri
 realization has O(2)-a
tion.Remark 5.5.9Observe that THH+(L) inherits an addition from Γ+. Fixing a simpli
ial degree
p and a level V , we have an asso
iative operation

+ : Γ+(THHp(L)(V ))× Γ+(THHp(L)(V ))→ Γ+(THHp(L)(V ))by proposition 5.5.4. Taking geometri
 realization in the p dire
tion, we getaddition
+ : THH+(L)× THH+(L)→ THH+(L) .Proposition 5.5.10Assume that L is a 
o�brant orthogonal ring spe
trum (with involution). Thenthe natural S1-map (O(2)-map) THH(L) → THH+(L) is non-equivariantly a

π∗-isomorphism.



5.6. MORITA EQUIVALENCE 215Proof: Forgetting about the a
tion, we 
an 
onsider THH+(L) as the geometri
realization of the bisimpli
ial orthogonal spe
trum Γ+
• (THH•(L)). It is 
lassi
althat the two geometri
 realizations

∣∣[q] 7→ Γ+
q (THHq(L))

∣∣ and ∣∣∣[p] 7→
∣∣[q] 7→ Γ+

q (THHp(L))
∣∣
∣∣∣are homeomorphi
. Noti
e that both THH•(L) and Γ+(THH•(L)) are goodsimpli
ial orthogonal spe
tra. Sin
e THH•(L) is 
o�brant in ea
h simpli
ialdegree, 
orollary 5.5.7 says that

THHp(L)→
∣∣[q] 7→ Γ+

q (THHp(L))
∣∣ = Γ+(THHp(L))is a π∗-isomorphism for all p. Furthermore, proposition 2.5.3 yields that the map

THH(L) = |[p] 7→ THHp(L)| −→
∣∣∣[p] 7→

∣∣[q] 7→ Γ+
q (THHp(L))

∣∣
∣∣∣ ∼= THH+(L)is also a π∗-isomorphism. �Remark 5.5.11Again, our result is weaker than what we hoped for, namely that the naturalmap THH(L) → THH+(L) would be a 
y
lotomi
 π∗-isomorphism between
y
lotomi
 spe
tra. As before, there are two strategies for improving the result:Either we 
ould show that THH+(L) is a 
y
lotomi
 spe
trum, or we 
ould showthat the natural map is a 
y
lotomi
 π∗-isomorphism. In any 
ase, the other partthen should follow formally. Compare with remark 5.4.7.5.6 Morita equivalen
eIn this se
tion we show Morita equivalen
e for THH . We adopt an approa
h byChristian S
hli
htkrull, see theorem 3.6 in [S
h98℄, to the setting of orthogonalring spe
tra (with involution). In order to 
arry out the proof, we view orthogonalspe
tra as J -spa
es and do our 
onstru
tions externally. Unfortunately, ourresult is not as strong as we would like, see remark 5.6.2.Let us start by stating the result, the proof spans the following subse
tions:Proposition 5.6.1Assume that L is a 
o�brant orthogonal ring spe
trum (with involution). Thenthere is a natural S1-map (O(2)-map)

Tr : THH(ΓMn(L))→ THH+(L) ,
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h is non-equivariantly a π∗-isomorphism. Furthermore, we have a 
ommuta-tive diagram
THH(Γ(Mn1 ×Mn2)(L))

(Tr ◦pr1,Tr ◦pr2)
−−−−−−−−−→ THH+(L)× THH+(L)

⊕

y
y+

THH(ΓMn1+n2(L))
Tr
−−−→ THH+(L)of orthogonal S1-spe
tra (orthogonal O(2)-spe
tra).Remark 5.6.2The result above is not as strong as we 
ould hope for. We have not shownthat Tr is a 
y
lotomi
 π∗-isomorphism, and we do not know that THH+(L) isa 
y
lotomi
 spe
trum. Again, it is probable that proving one of these wisheswould yield the other as an easy 
orollary. See also the remarks 5.4.7 and 5.5.11.5.6.1 InternalizingRe
all that orthogonal spe
tra 
an be des
ribed as diagram spa
es over a topo-logi
al 
ategory J , see theorem 2.1.16. Furthermore, the 
ategory J has asymmetri
 operation, namely dire
t sum ⊕. Using left Kan extension, see the-orem X.4.1 in [ML98℄, we 
an therefore lift 
onstru
tions on based topologi
alspa
es to 
onstru
tions on orthogonal spe
tra. To be more pre
ise: Let J q+1Top∗denote the 
ategory of 
ontinuous fun
tors J q+1 → Top∗. Assume that F is a
ontinuous fun
tor Topq+1

∗ → Top∗. If we are given orthogonal spe
tra L0, L1,
. . ., Lq, we 
an 
onsider these as fun
tors J → Top∗ and take the 
omposition

J q+1 L0×L1×...×Lq

−−−−−−−−→ Topq+1
∗

F
−→ Top∗ .This is an obje
t in J q+1Top∗. The iterated dire
t sum is a fun
tor J q+1 →J ,and left Kan extension is a fun
tor P : J q+1Top∗ →J Top∗ = I S . P thereforeturns the above 
omposition into a fun
tor

J → Top∗ ,i.e. a new orthogonal spe
trum. This pro
ess of internalizing is natural withrespe
t to natural transformations of fun
tors Topq+1
∗ → Top∗.Let us look at some examples:Example 5.6.3If F is given by

F (X0, . . . , Xq) = X0 ∧ · · · ∧Xq ,then it follows from the de�nition of smash produ
t of orthogonal spe
tra thatthe left Kan extension of
F (L0, . . . , Lq) is L0 ∧ · · · ∧ Lq .



5.6. MORITA EQUIVALENCE 217Example 5.6.4If F is given by
F (X0, . . . , Xq) = Mn(X0) ∧ · · · ∧Mn(Xq) ,then the left Kan extension of
F (L0, . . . , Lq) is Mn(L0) ∧ · · · ∧Mn(Lq) .Example 5.6.5Suppose that F is given by

F (X0, . . . , Xq) = Γ+(X0 ∧ · · · ∧Xq) .Let G(L0, . . . , Lq) be the left Kan extension of (F (L0, . . . , Lq)). We observe that
G(L0, . . . , Lq) is an orthogonal spe
trum, and there is a natural map

G(L0, . . . , Lq)→ Γ+(L0 ∧ · · · ∧ Lq) .To see how the map is de�ned, noti
e that the adjoint of the identity of L0∧· · ·∧Lqis a natural transformation
L0(V0) ∧ · · · ∧ L

q(Vq)→ (L0 ∧ · · · ∧ Lq)(V0 ⊕ · · · ⊕ Vq) .Apply the fun
tor Γ+(−) to get a natural transformation
F (L0(V0), . . . , L

q(Vq))→ Γ+(L0 ∧ · · · ∧ Lq)(V0 ⊕ · · · ⊕ Vq) .Its adjoint is the natural map we seek.5.6.2 Dihedral stru
ture on fun
tors Topq+1
∗ → Top∗In this subse
tion we study two 
olle
tions of fun
tors Topq+1

∗ → Top∗, q ≥ 0,these are
(X0, . . . , Xq) 7→ Mn(X0)∧· · ·∧Mn(Xq) and (X0, . . . , Xq) 7→ Γ+

q (X0∧. . .∧Xq) .A dihedral stru
ture for su
h a 
olle
tion 
onsists of natural transformations di,
si, tq and rq satisfying the dihedral identities. For Mn(X0) ∧ · · · ∧Mn(Xq) wehave:
di : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(X0) ∧ · · · ∧Mn(Xi ∧Xi+1) ∧ · · · ∧Mn(Xq) , if i < q,
dq : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(Xq ∧X0) ∧Mn(X1) ∧ · · · ∧Mn(Xq−1) ,

si : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(X0) ∧ · · · ∧Mn(Xi) ∧Mn(S0) ∧Mn(Xi+1) ∧ · · · ∧Mn(Xq) ,

tq : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(Xq) ∧Mn(X0) ∧Mn(X1) ∧ · · · ∧Mn(Xq−1) , and
rq : Mn(X0) ∧ · · · ∧Mn(Xq)→Mn(X0) ∧Mn(Xq) ∧Mn(Xq−1) ∧ · · · ∧Mn(X1) .
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ation forMn, the si's are de�ned usingthe unit in Mn(S0), 
y
li
 operators tq are given by permuting the fa
tors andthe involutive operators rq are de�ned using the transposition on Mn togetherwith the order reversing permutation of the last q fa
tors.For Γ+
q (X0 ∧ · · · ∧Xq) we have:

di : Γ+
q (X0 ∧ · · · ∧Xq)→ Γ+

q−1(X0 ∧ · · · ∧ (Xi ∧Xi+1) ∧ · · · ∧Xq) , if i < q,
dq : Γ+

q (X0 ∧ · · · ∧Xq)→ Γ+
q−1((Xq ∧X0) ∧X1 ∧ · · · ∧Xq−1) ,

si : Γ+
q (X0 ∧ · · · ∧Xq)→ Γ+

q+1(X0 ∧ · · · ∧Xi ∧ S0 ∧Xi+1 ∧ · · · ∧Xq) ,

tq : Γ+
q (X0 ∧ · · · ∧Xq)→ Γ+

q (Xq ∧X0 ∧X1 ∧ · · · ∧Xq−1) , and
rq : Γ+

q (X0 ∧ · · · ∧Xq)→ Γ+
q (X0 ∧Xq ∧Xq−1 ∧ · · · ∧X1) .And the dihedral stru
ture is dire
tly inherited from Γ+

• (−).The purpose of su
h dihedral 
olle
tions of fun
tors is to 
onstru
t 
y
li
(dihedral) orthogonal spe
tra using left Kan extension. Our result is:Proposition 5.6.6Assume that L is an orthogonal ring spe
trum (with involution). Given a 
olle
-tion of fun
tors Fq : Topq+1
∗ → Top∗ with natural transformations di, si, tq and

rq satisfying the dihedral identities, then the pro
ess of internalizing using L inall fa
tors yields a 
y
li
 (dihedral) orthogonal spe
trum. This 
onstru
tion isnatural in {Fq}.Applying this proposition toMn(X0)∧· · ·∧Mn(Xq) we get pre
isely THH•(Mn(L)).In the 
ase Γ+
q (X0 ∧ · · · ∧Xq) we get a 
y
li
 (dihedral) orthogonal spe
trum Y•,and by example 5.6.5 a map of 
y
li
 (dihedral) orthogonal spe
tra

Yq → Γ+
q (THHq(L)) .We end the subse
tion by proving the proposition.Proof: Let Xq be the left Kan extension of Fq(L, . . . , L). We will show that X•is a 
y
li
 orthogonal spe
trum, and that X• is dihedral whenever L 
omes withan involution.By de�nition of the left Kan extension there is a homeomorphism betweenthe spa
e of
ontinuous natural transformations Fq(L(V0), . . . , L(Vq))→ K(V0 ⊕ · · · ⊕ Vq)and the spa
e of orthogonal spe
trum maps Xq → Kfor any orthogonal spe
trum K. This is adjointness. In parti
ular there is anadjoint to the identity map of Xq, this means that we have a 
anoni
al map:

cq : Fq(L(V0), . . . , L(Vq))→ Xq(V0 ⊕ · · · ⊕ Vq)



5.6. MORITA EQUIVALENCE 219for all q. Now observe that all we have to do in order to de�ne a map Xq → Xpis to spe
ify a natural transformation
Fq(L(V0), . . . , L(Vq))→ Xp(V0 ⊕ · · · ⊕ Vq) .This is how we are going to de�ne the 
y
li
 operators dX

i , sX
i and tXi of X•.Re
all that an orthogonal ring spe
trum is the same as an I -FSP, see re-mark 2.1.21. Using this external des
ription we have unit η : S0 → L(0) andmultipli
ation µ : L(V ) ∧ L(W )→ L(V ⊕W ). If L has involution, we also havea natural transformation ι : L(V )→ L(V ).Fa
e maps of X• are given as follows: For i < q we 
onsider the 
omposition

Fq(L(V0), . . . , L(Vq))
di−→ Fq−1(L(V0), . . . , L(Vi−1), L(Vi) ∧ L(Vi+1), L(Vi+2), . . . , L(Vq))
µ∗

−→ Fq−1(L(V0), . . . , L(Vi−1), L(Vi ⊕ Vi+1), L(Vi+2), . . . , L(Vq))
cq−1
−−−→ Xq−1(V0 ⊕ · · · ⊕ Vq) ,and let the adjoint be dX

i : Xq → Xq−1. In the 
ase i = q we have:
Fq(L(V0), . . . , L(Vq))

dq
−→ Fq−1(L(Vq) ∧ L(V0), L(V1), . . . , L(Vq−1))
µ∗
−→ Fq−1(L(Vq ⊕ V0), L(V1), . . . , L(Vq−1))
cq−1
−−−→ Xq−1(Vq ⊕ V0 ⊕ · · · ⊕ Vq−1)permute Vi's
−−−−−−−−→ Xq−1(V0 ⊕ · · · ⊕ Vq) ,and let this de�ne dX

q : Xq → Xq−1. For degenera
y maps we 
onsider the
omposition:
Fq(L(V0), . . . , L(Vq))

si−→ Fq+1(L(V0), . . . , L(Vi), S
0, L(Vi+1), . . . , L(Vq))

η∗
−→ Fq+1(L(V0), . . . , L(Vi), L(0), L(Vi+1), . . . , L(Vq))
cq+1
−−−→ Xq+1(V0 ⊕ · · · ⊕ Vi ⊕ 0⊕ Vi+1 ⊕ · · · ⊕ Vq)

0 is the unit for ⊕
−−−−−−−−−−−→ Xq+1(V0 ⊕ · · · ⊕ Vq) ,and we de�ne sX

i : Xq → Xq+1 to be its adjoint. The 
y
li
 operator tXq : Xq → Xqis de�ned as the adjoint of the 
omposition
Fq(L(V0), . . . , L(Vq))

tq
−→ Fq(L(Vq), L(V0), . . . , L(Vq−1))
cq
−→ Xq(Vq ⊕ V0 ⊕ · · · ⊕ Vq−1)permute Vi's−−−−−−−−→ Xq(V0 ⊕ · · · ⊕ Vq) .Now assume that L has an involution ι : L→ L, then we 
an give X• dihedralstru
ture by de�ning the involutive operator rX

q : Xq → Xq to be the adjoint of
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omposition
Fq(L(V0), . . . , L(Vq))

rq
−→ Fq(L(V0), L(Vq), . . . , L(V1))

F (ι,...,ι)
−−−−−→ Fq(L(V0), L(Vq), . . . , L(V1))
cq
−→ Xq(V0 ⊕ Vq ⊕ · · · ⊕ V1)permute Vi's
−−−−−−−−→ Xq(V0 ⊕ · · · ⊕ Vq) .We are now supposed to verify a long list of identities involving the operators

dX
i , sX

i and tXi , and in the 
ase where L has involution there are even moreidentities. We will skip this painful task with one ex
eption: We will prove thedihedral identity
dX

i r
X
q = rX

q−1d
X
q−iin the 
ase 0 < i < q. This 
ase will illustrate the te
hniques used when provingthe other 
y
li
 and dihedral identities. Moreover, we will also see how the anti-
ommutativity of the involution plays a role.By adjointness and the de�nitions we observe that dX

i r
X
q is the adjoint of

Fq(L(V0), . . . , L(Vq))
rq

−→ Fq(L(V0), L(Vq), . . . , L(V1))

F (ι,...,ι)
−−−−−→ Fq(L(V0), L(Vq), . . . , L(V1))

di−→ Fq−1(L(V0), L(Vq), . . . , L(Vq−i+2), L(Vq−i+1) ∧ L(Vq−i), L(Vq−i−1), . . . , L(V1))
µ∗

−→ Fq−1(L(V0), L(Vq), . . . , L(Vq−i+2), L(Vq−i+1 ⊕ Vq−i), L(Vq−i−1), . . . , L(V1))
cq−1
−−−→ Xq−1(V0 ⊕ Vq ⊕ · · · ⊕ V1)permute
−−−−−→ Xq−1(V0 ⊕ · · · ⊕ Vq) ,and rX

q−1d
X
q−i is the adjoint of

Fq(L(V0), . . . , L(Vq))
dq−i

−−−→ Fq−1(L(V0), . . . , L(Vq−i−1), L(Vq−i) ∧ L(Vq−i+1), L(Vq−i+2), . . . , L(Vq))
µ∗

−→ Fq−1(L(V0), . . . , L(Vq−i−1), L(Vq−i ⊕ Vq−i+1), L(Vq−i+2), . . . , L(Vq))
rq−1
−−−→ Fq−1(L(V0), L(Vq), . . . , L(Vq−i+2), L(Vq−i ⊕ Vq−i+1), L(Vq−i−1), . . . , L(V1))

F (ι,...,ι)
−−−−−→ Fq−1(L(V0), L(Vq), . . . , L(Vq−i+2), L(Vq−i ⊕ Vq−i+1), L(Vq−i−1), . . . , L(V1))
cq−1
−−−→ Xq−1(V0 ⊕ Vq ⊕ · · · ⊕ Vq−i+2 ⊕ (Vq−i ⊕ Vq−i+1)⊕ Vq−i−1 ⊕ · · · ⊕ V1)permute
−−−−−→ Xq−1(V0 ⊕ · · · ⊕ Vq) .These two 
ompositions 
an be 
ompared and found to be equal using naturalityof di and rq−1 and the fa
t that
L(V ) ∧ L(W )

ι∧ι
−−−→ L(V ) ∧ L(W )

twist
−−−→ L(W ) ∧ L(V )

µ

y
yµ

L(V ⊕W )
ι

−−−→ L(V ⊕W )
L(twist)
−−−−→ L(W ⊕ V )
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ommutes. �5.6.3 The tra
eIn this subse
tion we will de�ne the tra
e map
Tr : THH(ΓMnL)→ THH+(L) ,and prove proposition 5.6.1. The de�nition of Tr will use the ma
hinery developedabove. Below we will 
onstru
t a 
olle
tion of natural transformations

Trq : Mn(X0) ∧ · · · ∧Mn(Xq)→ Γ+
q (X0 ∧ . . . ∧Xq)that 
ommutes with the 
y
li
 (dihedral) stru
ture. Feeding this into proposi-tion 5.6.6, we get an S1-map (O(2)-map) THH(Mn(L))→ THH+(L). We nowde�ne Tr as the 
omposition

THH(ΓMn(L))→ THH(Mn(L))→ THH+(L) .Here Γ denotes the 
o�brant repla
ement fun
tor of theorem 2.2.13, and the �rstmap is indu
ed by the natural transformation ΓMn(L)→Mn(L).To de�ne Trq, we would like to send a point ((x0
i j), . . . , (x

q
i j)) in Mn(X0) ∧

· · · ∧Mn(Xq) to a sum of (x0
jq j0, x

1
j0 j1, . . . , x

q
jq−1 jq

) taken in Γ+
q (X0 ∧ . . . ∧ Xq).Here j0, . . . , jq run through 1, 2, . . . , n. Sin
e Γ+ is not a stri
tly 
ommutativemonoid, this raises the question about how one should order the summands.Orderings of n(q+1): An ordering is a bije
tion λ : m → n(q+1). If we had to
hoose a single ordering, the lexi
ographi
al ordering would be the natural 
hoi
e.Denote this ordering by λ0. It is de�ned as follows:Assume that (j0, . . . , jq) = λ0(k) and (j′0, . . . , j

′
q) = λ0(l) .Then k < l whenever there exists an 0 ≤ i ≤ q su
h that

j0 = j′0, j1 = j′1, . . . , ji−1 = j′i−1, and ji < j′i .However, in our situation we must also take other orderings into a

ount. Thereason is that we want the tra
e to 
ommute with the 
y
li
 a
tions. Hen
e, we
onsider what happens when we permute the fa
tors of n(q+1) 
y
li
ally. Let λsbe the ordering de�ned as:Assume that (j0, . . . , jq) = λs(k) and (j′0, . . . , j
′
q) = λs(l) .Then k < l whenever there exists an s ≤ i ≤ q su
h that

js = j′s, js+1 = j′s+1, . . . , ji−1 = j′i−1, and ji < j′i ,or an 0 ≤ i ≤ s− 1 su
h that
js = j′s, . . . , jq = j′q, j0 = j′0, . . . , ji−1 = j′i−1, and ji < j′i .



222 CHAPTER 5. THH AND TCDe�nition of Tr: Given ((x0
i j), . . . , (x

q
i j)) in Mn(X0) ∧ · · · ∧Mn(Xq), we arenow ready to write down the formula for the tra
e: First set

x(j0, . . . , jq) = (x0
jq j0

, x1
j0 j1

, . . . , xq
jq−1 jq

) ∈ X0 ∧ · · · ∧Xq .De�nition 5.6.7Let
Trq((x

0
i j), . . . , (x

q
i j)) = [(λ−1

0 λ0, λ
−1
1 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))] .To prove that Trq is involutive we need some fa
ts about the lexi
ographi
alorderings. We let ρ denote the bije
tion on n(q+1) de�ned by ρ(j0, . . . , jq) =

(jq, . . . , j0). We also need a te
hni
al de�nition:De�nition 5.6.8Let β : k→ m be ordering preserving. We say that β is spe
ial if the 
omposition
k

β
−→m

λ0−→ n(q+1) pr i−→ nis inje
tive for all i.Our te
hni
al lemma is:Lemma 5.6.9If β is spe
ial, then β∗(λ−1
q−iρλ0) = β∗(λ−1

i λ0) for all i.Proof: Consider the two diagrams:
k

β
−−−→ m

λ0−−−→ n(q+1) pr i−−−→ n

β∗(λ−1
i λ0)

y λ−1
i λ0

y
y=

y=

k
order preserving
−−−−−−−−−→ m

λi−−−→ n(q+1) pr i−−−→ nand
k

β
−−−→ m

λ0−−−→ n(q+1) pr i−−−→ n

β∗(λ−1
q−i

ρλ0)

y λ−1
q−i

ρλ0

y
yρ

y=

k
order preserving
−−−−−−−−−→ m

λq−i
−−−→ n(q+1)

prq−i
−−−→ n

.The left squares of the �rst and se
ond diagram de�ne β∗(λ−1
i λ0) and β∗(λ−1

q−iρλ0)respe
tively. Now noti
e that the 
ompositions at the bottom of both diagramsare order preserving, while the maps at the top are the same for both diagrams.Sin
e there is a unique fa
torization of the inje
tive map
pr i ◦ λ0 ◦ β : k→ n
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omposition of a permutation k→ k and an order preserving map k→ n,we get that
β∗(λ−1

q−iρλ0) = β∗(λ−1
i λ0) .

�Lemma 5.6.10
Trq is a dihedral 
olle
tion of natural transformations.Proof: We have to verify that Tr• 
ommutes with the operators di, si, tq and
rq. These operators are spe
i�ed in subse
tion 5.6.2. Let ((x0

a b), . . . , (x
q
a b)) be apoint in Mn(X0) ∧ · · · ∧Mn(Xq).Fa
e operators: Set ((y0

a b), . . . , (y
q−1
a b )) to be equal to di((x

0
a b), . . . , (x

q
a b)). Thenwe have

ys
a b =






xs
a b if s < i,

(xi
a c(a), x

i+1
c(a), b) if s = i, and

xs
a b if s > i.Here c(a) is a 
hoi
e of index su
h that xi

a d = ∗ whenever d 6= c(a). De�ne
α : nq → nq+1 by

α(j0, . . . , jq−1) = (j0, . . . , ji−1, c(ji−1), ji, . . . , jq−1) .Let λ′s : m′ → nq be the 
y
led lexi
ographi
al orderings on q− 1 fa
tors. De�ne
β : m′ → m to be λ0αλ

′
0. Then one 
an easily prove that

β∗(λ−1
s λ0) =

{
λ′−1

s λ′0 if s < i, and
λ′−1

s−1λ
′
0 if s > i.Now we see that

Trq−1di((x
0
a b), . . . , (x

q
a b))

= Trq−1((y
0
a b), . . . , (y

q−1
a b ))

= [(λ′
−1
0 λ′0, λ

′−1
1 λ′0, . . . , λ

′−1
q−1λ

′
0);y(λ′0(1)), . . . ,y(λ′0(m

′))]

= [(β∗(λ−1
0 λ0), . . . , β

∗(λ−1
i−1λ0), β

∗(λ−1
i+1λ0), . . . , β

∗(λ−1
q λ0));

β∗(x(λ0(1)), . . . ,x(λ0(m)))]

= [(λ−1
0 λ0, . . . , λ

−1
i−1λ0, λ

−1
i+1λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= di[(λ
−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= di Trq((x
0
a b), . . . , (x

q
a b)) .
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y operators: Set ((y0
a b), . . . , (y

q+1
a b )) to be equal to si((x

0
a b), . . . , (x

q
a b)).Then we have

ys
a b =






xs
a b if s < i,

1 ∈ S0 if s = i and a = b,
∗ ∈ S0 if s = i and a 6= b, and
xs−1

a b if s > i.De�ne α : nq+2 → nq+1 by
α(j0, . . . , jq−1) = (j0, . . . , ji−1, ji, ji, ji+1, . . . , jq) .Let λ′s : m′ → nq+2 be the 
y
led lexi
ographi
al orderings on q + 1 fa
tors.De�ne β : m→m′ to be λ′0αλ0. Then one 
an easily prove that

β∗(λ′
−1
s λ′0) =

{
λ−1

s λ0 if s ≤ i, and
λ−1

s−1λ0 if s > i.Now we see that
Trq+1si((x

0
a b), . . . , (x

q
a b))

= Trq+1((y
0
a b), . . . , (y

q+1
a b ))

= [(λ′
−1
0 λ′0, λ

′−1
1 λ′0, . . . , λ

′−1
q+1λ

′
0);y(λ′0(1)), . . . ,y(λ′0(m

′))]

= [(β∗(λ−1
0 λ0), . . . , β

∗(λ−1
i λ0), β

∗(λ−1
i λ0), . . . , β

∗(λ−1
q λ0));

β∗(x(λ0(1)), . . . ,x(λ0(m)))]

= [(λ−1
0 λ0, . . . , λ

−1
i λ0, λ

−1
i λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= si[(λ
−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= si Trq((x
0
a b), . . . , (x

q
a b)) .The 
y
li
 operator: Set ((y0

a b), . . . , (y
q
a b)) to be equal to tq((x0

a b), . . . , (x
q
a b)).Then we have

ys
a b =

{
xq

a b if s = 0, and
xs−1

a b if s > 0.De�ne α : nq+2 → nq+1 by
α(j0, . . . , jq−1) = (jq, j0, . . . , jq−1) .Noti
e that αλs = λs+1 for s < q and αλq = λ0. Thus
λ−1

s λ0λ
−1
q λ0 =

{
λ−1

q λ0 if s = 0, and
λ−1

s−1λ0 if s > 0.



5.6. MORITA EQUIVALENCE 225Let τ : X0 ∧ · · · ∧ Xq → Xq ∧ X0 ∧ · · · ∧ Xq−1 be the homeomorphism whi
hpermutes the fa
tors. We have
y(α(j0, . . . , jq)) = τ(x(j0, . . . , jq)) .Now we see that

Trqtq((x
0
a b), . . . , (x

q
a b))

= Trq((y
0
a b), . . . , (y

q
a b))

= [(λ−1
0 λ0, λ

−1
1 λ0, . . . , λ

−1
q λ0);y(λ0(1)), . . . ,y(λ0(m))]

= [(λ−1
0 λ0, λ

−1
1 λ0, . . . , λ

−1
q λ0); τx(λq(1)), . . . , τx(λq(m))]

= [(λ−1
0 λ0, λ

−1
1 λ0, . . . , λ

−1
q λ0); (τx(λ0(1)), . . . , τx(λ0(m))).(λ−1

0 λq)]

= [(λ−1
0 λ0λ

−1
q λ0, λ

−1
1 λ0λ

−1
q λ0, . . . , λ

−1
q λ0λ

−1
q λ0); τx(λ0(1)), . . . , τx(λ0(m))]

= [(λ−1
q λ0, λ

−1
0 λ0, . . . , λ

−1
q−1λ0); τx(λ0(1)), . . . , τx(λ0(m))]

= tq[(λ
−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= tq Trq((x
0
a b), . . . , (x

q
a b)) .The involutive operator: Set ((y0

a b), . . . , (y
q
a b)) to be equal to rq((x

0
a b), . . . , (x

q
a b)).Then we have

ys
a b =

{
x0

b a if s = 0, and
xq+1−s

b a if s > 0.Re
all that ρ : nq+2 → nq+1 was de�ned by
ρ(j0, . . . , jq−1) = (jq, jq−1, . . . , j1, j0) .Re
all also the fa
t that β∗(λ−1

q−sρλ0) = β∗(λ−1
s λ0) if β is spe
ial, see lemma 5.6.9.Let τ : X0 ∧ · · · ∧Xq → Xq ∧Xq−1 ∧ · · · ∧X1 ∧X0 be the homeomorphism whi
hpermutes the fa
tors. We have

y(ρ(j0, . . . , jq)) = τ(x(j0, . . . , jq)) .Observe that there exists a β : k→m su
h that β is entire for (y(λ0(1)), . . . ,y(λ0(m)))and β is spe
ial. This is a 
onsequen
e of that ea
h 
olumn of a matrix inMn(X)
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ontains at most one element di�erent from ∗. Now we see that
Trqrq((x

0
a b), . . . , (x

q
a b))

= Trq((y
0
a b), . . . , (y

q
a b))

= [(λ−1
0 λ0, λ

−1
1 λ0, . . . , λ

−1
q λ0);y(λ0(1)), . . . ,y(λ0(m))]

= [(β∗(λ−1
0 λ0), β

∗(λ−1
1 λ0), . . . , β

∗(λ−1
q λ0)); β

∗(y(λ0(1)), . . . ,y(λ0(m)))]

= [(β∗(λ−1
q ρλ0), β

∗(λ−1
q−1ρλ0), . . . , β

∗(λ−1
0 ρλ0)); β

∗(y(λ0(1)), . . . ,y(λ0(m)))]

= [(λ−1
q ρλ0, λ

−1
q−1ρλ0, . . . , λ

−1
0 ρλ0);y(λ0(1)), . . . ,y(λ0(m))]

= [(λ−1
q ρλ0, λ

−1
q−1ρλ0, . . . , λ

−1
0 ρλ0); τx(ρλ0(1)), . . . ,x(ρλ0(m))]

= [(λ−1
q λ0, λ

−1
q−1λ0, . . . , λ

−1
0 λ0); τx(λ0(1)), . . . ,x(λ0(m))]

= rq[(λ
−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= rq Trq((x
0
a b), . . . , (x

q
a b)) .

�This lemma shows that Tr : THH(ΓMn(L)) → THH+(L) is an S1-map,or O(2)-map when L 
omes with an involution. Now the next statement ofproposition 5.6.1 is that Tr : THH(ΓMn(L)) → THH+(L) is non-equivariantlya π∗-isomorphism. Let us now prove this:Proof: We are assuming that L is a 
o�brant orthogonal ring spe
trum (withinvolution). Let Wn be the endofun
tor on Top∗ de�ned by X 7→ ∨
n2 X. Wewrite elements of Wn(X) on the form

(a, x, b) where a, b ∈ {1, . . . , n} and x ∈ X.We think about Wn as an �FSP without unit�. Multipli
ation µ : Wn(X) ∧
Wn(Y )→Wn(X ∧ Y ) is given by

µ((a, x, b); (c, y, d)) =

{
(a, (x, y), d) if b = c, and
∗ otherwise.We have involution given by (a, x, b) 7→ (b, x, a). Furthermore, there is a naturaltransformation fromWn toMn whi
h respe
ts both multipli
ation and involution.This natural transformation is given by sending (a, x, b) to the matrix (xi j), where

xa b = x and xi j = ∗ otherwise.
THH•(Wn(L)) is a presimpli
ial orthogonal spe
trum, the q-simpli
es are

(Wn(L))∧(q+1), and fa
e maps are given by the usual formulas. Moreover, wehave a natural presimpli
ial map THH•(Wn(L)) → THH•(Mn(L)). However,we do not know that THH•(Mn(L)) is good as a simpli
ial orthogonal spe
trum.The problem is that Mn(L) might not be 
o�brant. Therefore we repla
e Mn(L)by ΓMn(L), and 
onsider
THH•(ΓWn(L))→ THH•(ΓMn(L)) .
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ed fun
tors, we see that the presim-pli
ial realization of this map is a π∗-iso. Noti
e that Wn(L) is a wedge of 
opiesof L, thus 
o�brant. Hen
e, the natural map
THH•(ΓWn(L))→ THH•(Wn(L))is a π∗-iso in ea
h simpli
ial degree.There is a tra
e map Tr : Wn(X0) ∧ · · · ∧Wn(Xq)→ X0 ∧ · · · ∧Xq given by

Tr((a0, x0, b0), . . . , (aq, xq, bq)) =

{
(x0, . . . , xq) if b0 = a1, b1 = a2, . . ., bq = a0, and
∗ otherwise.We get an indu
ed presimpli
ial map THH•(Wn(L)) → THH•(L), whi
h �tsinto the diagram

THH•(ΓWn(L))
≃
−−−→ THH•(Wn(L))

Tr
−−−→ THH•(L)

≃

y
y

y≃

THH•(ΓMn(L)) −−−→ THH•(Mn(L))
Tr
−−−→ THH+

• (L)

.We already know that after presimpli
ial realization the left and right verti
almaps be
ome π∗-isomorphisms. Hen
e, it remains only to show that the geometri
realization of the top Tr is also a π∗-isomorphism.To show this we 
onstru
t a presimpli
ial homotopy inverse: There is a pres-impli
ial map incl : THH•(L)→ THH•(Wn(L)) de�ned by the natural transfor-mation
X →Wn(X) , whi
h sends x to (1, x, 1).It is easily seen that Tr ◦ incl is the identity. We 
omplete the proof by 
onstru
t-ing a presimpli
ial homotopy from incl ◦Tr to the identity on THH•(Wn(L)).Let the natural transformations

hi : Wn(X0)∧· · ·∧Wn(Xq)→Wn(X0)∧· · ·∧Wn(Xi)∧Wn(S0)∧Wn(Xi+1)∧· · ·∧Wn(Xq)be given by
hi((a0, x0, b0), . . . , (aq , xq, bq)) =






((a0, x0, 1), . . . , (1, xi, 1), (1, 1, bi), (ai+1, xi+1, bi+1), . . . , (aq , xq, bq))if b0 = a1, b1 = a2, . . ., bi−1 = ai, and
∗ otherwise.We see that

d0h0 = id ,

dihj = hj−1di for i < j,
dihi = dihi−1 ,

dihj = hjdi−1 for i > j + 1, and
dq+1hq = incl Trq .
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e, h is a presimpli
ial homotopy between id and incl ◦Tr. �To �nish the proof of proposition 5.6.1, it remains only to 
he
k that dire
tsum of matri
es 
orresponds to the addition indu
ed by the Barratt-E

les fun
-tor, Γ+. To 
he
k this, we �rst 
onsider the q-simpli
es via the external viewpoint.The following lemma is the key:Lemma 5.6.11The diagram
(Mn1 ×Mn2 )(X0) ∧ · · · ∧ (Mn1 ×Mn2 )(Xq)

(Tr ◦pr1,Tr ◦pr2)
−−−−−−−−−−−−→ Γ+(X0 ∧ · · · ∧Xq)× Γ+(X0 ∧ · · · ∧Xq)

⊕

y
y+

(Mn1+n2 )(X0) ∧ · · · ∧ (Mn1+n2)(Xq)
Tr

−−−−−→ Γ+(X0 ∧ · · · ∧Xq)
ommutes.Proof: Set ((x0
a b), . . . , (x

q
a b)) to be equal to ((y0

a b) ⊕ (z0
a b), . . . , (y

q
a b) ⊕ (zq

a b)).Then we have
xs

a b =






ys
a b if a ≤ n1 and b ≤ n1,
zs
(a−n1) (b−n1) if a > n1 and b > n1, and
∗ otherwise.De�ne α : n1

q+1 ∐ n2
q+1 → (n1 + n2)

q+1 by
α(j0, . . . , jq) =

{
(j0, . . . , jq) for (j0, . . . , jq) ∈ n1

q+1, and
(j0 + n1, . . . , jq + n1) for (j0, . . . , jq) ∈ n2

q+1.Denote by λ1
s, λ2

s and λs the 
y
led lexi
ographi
al orderings of n1
q+1, n2

q+1 and
(n1 + n2)

q+1 respe
tively. De�ne βs to be the unique map su
h that the diagrambelow 
ommutes:
m1 + m2

λ1
s∐λ2

s−−−→ n1
q+1 ∐ n2

q+1

βs

y
yα

m
λs−−−→ (n1 + n2)

q+1

.By the de�nition of α and the λ's we see that βs is order preserving. And fromthe 
ommutative diagram
m1 + m2

β0
−−−→ m

(λ1
s∐λ2

s)−1(λ1
0∐λ2

0)

y λ−1
s λ0

y

m1 + m2

βs
−−−→ m
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β∗0(λ

−1
s λ0) = ((λ1

s)
−1λ1

0)∐ ((λ2
s)
−1λ2

0) .Now we see that
Tr ◦pr 1((y

0
a b)⊕ (z0

a b), . . . , (y
q
a b)⊕ (zq

a b)) + Tr ◦pr 2((y
0
a b)⊕ (z0

a b), . . . , (y
q
a b)⊕ (zq

a b))

= Tr((y0
a b), . . . , (y

q
a b)) + Tr((z0

a b), . . . , (z
q
a b))

= [((λ1)−1
0 λ1

0, . . . , (λ
1)−1

q λ1
0);y(λ1

0(1)), . . . ,y(λ1
0(m1))]

+ [((λ2)−1
0 λ2

0, . . . , (λ
2)−1

q λ2
0); z(λ

2
0(1)), . . . , z(λ

2
0(m2))]

= [(((λ1)−1
0 λ1

0)∐ ((λ2)−1
0 λ2

0), . . . , ((λ
1)−1

q λ1
0)) ∐ ((λ2)−1

q λ2
0));

y(λ1
0(1)), . . . ,y(λ1

0(m1)), z(λ
2
0(1)), . . . , z(λ

2
0(m2))]

= [(β∗0(λ−1
0 λ0), . . . , β

∗
0(λ−1

q λ0));x(λ0β0(1)), . . . ,x(λ0β0(m))]

= [(λ−1
0 λ0, . . . , λ

−1
q λ0);x(λ0(1)), . . . ,x(λ0(m))]

= Tr((x0
a b), . . . , (x

q
a b)) .This 
on
ludes the proof of the lemma. �Let us now �nish the proof of proposition 5.6.1:Proof: By internalizing the diagram of the lemma, we get that

(Mn1 ×Mn2)(L)∧(q+1) (Tr ◦pr1,Tr ◦pr2)−−−−−−−−−→ Γ+(L∧(q+1))× Γ+(L∧(q+1))

⊕

y
y+

(Mn1+n2)(L)∧(q+1) Tr
−−−→ Γ+(L∧(q+1))
ommutes for any L orthogonal ring spe
trum (with involution). We identify the
orners with THHq((Mn1×Mn2)(L)), THH+

q (L)×THH+
q (L), THHq((Mn1+n2)(L))and THH+

q (L). Take geometri
 realization and use the natural transformation
ΓX → X to get the 
ommutative diagram
THH(Γ(Mn1 ×Mn2)(L))→THH((Mn1 ×Mn2)(L))

(Tr ◦pr1,Tr ◦pr2)
−−−−−−−−−−−→ THH+(L)× THH+(L)

⊕

y ⊕

y
y+

THH(ΓMn1+n2(L)) → THH(Mn1+n2(L))
Tr

−−−−→ THH+(L)

.The outer square is the diagram we are interested in. �
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Appendix AUseful results
A.1 Homotopy theoryLet us �rst re
all some results about CW-approximations:Proposition A.1.1For every spa
eX there exists a CW-
omplex Z and a weak homotopy equivalen
e
f : Z → X. Furthermore, Z is unique up to homotopy equivalen
e.See theorem 7.8.1 in [Spa91℄ for a proof. In the relative 
ase we will use thefollowing:Proposition A.1.2For every 
o�bration i : A→ X there exists a CW-pair (Z,C) and a 
ommutativediagram

C −−−→ Z

f0

y
yf

A
i

−−−→ X

,where f and f0 are weak equivalen
es. Furthermore, (Z,C) is unique up tohomotopy equivalen
e.Proof: First 
hoose a CW-approximation f0 : C → A. Let M be the mapping
ylinder of f0. Sin
e i is a 
o�bration, the map M ∪A X → X indu
ed by theproje
tion M → A is a homotopy equivalen
e. By proposition 4.13 in [Hat02℄there exists a CW-spa
e Z 
ontaining C as a sub
omplex and a weak equivalen
eof pairs f ′ : (Z,C) → (M ∪A X,C). Composing with the proje
tion (M ∪A

X,C)→ (X,A) we get our CW-approximation.Uniqueness follows by applying 
orollary 4.19 in [Hat02℄ twi
e, �rst to showthat the 
hoi
e of C is unique up to homotopy, then to show that for �xed C the231
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hoi
e of Z is unique up to homotopy rel C. �In order to e�
iently apply CW-approximation we need a gluing theorem forweak equivalen
es. The proof is formal on
e the following lemma is established:Lemma A.1.3Let Y be the pushout of X f
← A

i
→ B, where f is a weak equivalen
e and i a
o�bration. Then g : B → Y is also a weak equivalen
e.Proof: Sin
e i is a 
o�bration, we have that Y is homotopi
 to the homotopypushout. Hen
e, both the van Kampen theorem and Mayer-Vietoris sequen
es
an be applied. By elementary 
onsiderations it is seen that g indu
es a bije
tionof path 
omponents. For π1 we 
onsider ea
h path-
omponent of B separately, sowe may just as well assume that B is path-
onne
ted. If A also is path-
onne
ted,then the van Kampen theorem applies to Y = X ∪B and shows that π1B → π1Yis an isomorphism. When A has more than one path-
omponent, we write

A =
⋃

Aα and X =
⋃

Xαwhere all Aα and Xα are path 
onne
ted. Then we apply van Kampen to theunion
Y =

⋃
(Xα ∪ B) .Sin
e ea
h Xα ∪B is π1-isomorphi
 to B, it follows that g is a π1-iso.For the higher homotopy groups we use Mayer-Vietoris sequen
es and theHurewi
z theorem. �Form this lemma it is a formal argument due to Thomas Gunnarsson, see theproof of lemma 8.8 in [GJ99℄, to show the gluing theorem:Proposition A.1.4If we have a 
ommutative diagram

X ←−−− A
i

−−−→ B

≃

y
y≃

y≃

X ′ ←−−− A′
i′

−−−→ B′where i and i′ are 
o�brations and the verti
al maps are weak equivalen
es, thenthe map of pushouts is also a weak equivalen
e.We have several times used the Blakers-Massey homotopy ex
ision theorem.The following form of the theorem is suitable for our purposes:



A.1. HOMOTOPY THEORY 233Theorem A.1.5Suppose that X is a pointed spa
e and that A and B are pointed subspa
es of
X su
h that

X = A ∪ B andthe in
lusions A ∩ B → A and A ∩B → B are 
o�brations.If the pair (A,A ∩ B) is m-
onne
ted and the pair (B,A ∩ B) is n-
onne
ted,
m ≥ 0, n ≥ 0, then the homomorphism indu
ed by the in
lusion, namely i∗ :
πq(A,A ∩ B)→ πq(X,B), is an isomorphism for q < m+ n and is surje
tive for
q = m+ n.By proposition A.1.4 we 
an apply CW-approximation. Then the result fol-lows from theorem 4.23 in [Hat02℄. Two useful 
onsequen
es of homotopy ex
isionare:Proposition A.1.6Suppose thatA→ X is a 
o�bration, that the pair (X,A) is (r−1)-
onne
ted, andthat the subspa
e A is (s− 1)-
onne
ted, r ≥ 1, s ≥ 1. Then the homomorphismindu
ed by the quotient map, namely

πq(X,A)→ πq(X/A) ,is an isomorphism for q < r + s− 1 and surje
tive for q = r + s− 1.Theorem A.1.7Let X be an (n − 1)-
onne
ted well-pointed spa
e. Then the suspension map
πq(X) → πq+1(S

1 ∧ X) is an isomorphism for q < 2n − 1 and surje
tive for
q = 2n− 1.The last result is known as the Freudenthal suspension theorem. Proofs ofboth results 
an be found in [Hat02℄. Just observe that his 
onditions 
on
ernCW-pairs instead of 
o�brations, but the only pla
es where he uses these 
ondi-tions in his proofs, are when applying the Blakers-Massey homotopy extensiontheorem.As a 
orollary of the proposition we have:Corollary A.1.8If A→ X is a 
o�bration and A is weakly 
ontra
tible, then X → X/A is a weakequivalen
e.Proof: We 
an assume that X is path-
onne
ted without loss of generality. Bythe proposition, the maps

πq(X,A)→ πq(X/A)



234 APPENDIX A. USEFUL RESULTSare isomorphisms for all q. Furthermore, the maps πq(X) → πq(X,A) are alsoisomorphisms for all q sin
e A is weakly 
ontra
tible. �Proposition A.1.9If X and Y are well-pointed spa
es (r − 1)- and (s − 1)-
onne
ted respe
tively,then X ∧ Y is (r + s− 1)-
onne
ted.Proof: We 
an approximate X and Y by CW-
omplexes X ′ and Y ′ su
h thatall 
ells ex
ept ∗ has dimension greater than (r − 1) and (s − 1) respe
tively.By proposition A.1.4 we have a weak equivalen
e X ′ ∧ Y ′ → X ∧ Y . Sin
e all
ells of X ′ ∧ Y ′ have dimension greater than (r + s − 1), the smash produ
t is
(r + s− 1)-
onne
ted. �A.2 Monoidal 
ategoriesHere we spe
ify the language used for monoidal 
ategories. The standard refer-en
e is [ML98℄. See also �20 in [MMSS01℄.De�nition A.2.1A monoidal 
ategory M is a 
ategory with a bifun
tor, � : M ×M →M , a unit
e ∈M and natural isomorphisms

α : a�(b�c) ∼= (a�b)�c ,

λ : e�a ∼= a , and
ρ : a�e ∼= a ,su
h that the diagrams (i), (ii) and (iii) 
ommute.

a�(b�(c�d))
α

−−−→ (a�b)�(c�d)
α

−−−→ ((a�b)�c)�d

id�α

y
xα�id

a�((b�c)�d)
α

−−−→ (a�(b�c))�d

(i)
a�(e�c)

α
−−−→ (a�e)�c

id�λ

y
yρ�id

a�c a�c

(ii)
e�e e�e

λ

y
yρ

e e

(iii)



A.2. MONOIDAL CATEGORIES 235De�nition A.2.2A symmetri
 monoidal 
ategory M is a monoidal 
ategory M with a naturalisomorphism
γ : a�b ∼= b�asu
h that γ2 = id and the diagrams (iv) and (v) 
ommute.
a�e

γ
−−−→ e�a

ρ

y
yλ

a a

(iv)
(a�b)�c

γ
−−−→ c�(a�b)

α
−−−→ (c�a)�b

α

x γ�id

y

a�(b�c)
id�γ
−−−→ a�(c�b)

α
−−−→ (a�c)�b

(v)De�nition A.2.3A fun
tor F : M → B between monoidal 
ategories is lax monoidal if there is amap η : eB → F (eM) and a natural transformation
φ : F (a)�F (b)→ F (a�b)su
h that the diagrams (vi), (vii) and (viii) 
ommute.

F (a)�(F (b)�F (c))
id�φ
−−−→ F (a)�F (b�c)

φ
−−−→ F (a�(b�c))

α

y
yF (α)

(F (a)�F (b))�F (c)
φ�id
−−−→ F (a�b)�F (c)

φ
−−−→ F ((a�b)�c)

(vi)
F (a)�eB

ρ
−−−→ F (a)

id�η

y
xF (ρ)

F (a)�F (eM)
φ

−−−→ F (a�eM)

(vii)
eB�F (b)

λ
−−−→ F (b)

η�id

y
xF (λ)

F (eM)�F (b)
φ

−−−→ F (eM�b)

(viii)De�nition A.2.4A fun
tor F : M → B between monoidal 
ategories is lax 
omonoidal if there isa map η : F (eM)→ eB and a natural transformation
φ : F (a�b)→ F (a)�F (b)
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h that the diagrams (ix), (x) and (xi) 
ommute.
F (a)�(F (b)�F (c))

id�φ
←−−− F (a)�F (b�c)

φ
←−−− F (a�(b�c))

α

y
yF (α)

(F (a)�F (b))�F (c)
φ�id
←−−− F (a�b)�F (c)

φ
←−−− F ((a�b)�c)

(ix)
F (a)�eB

ρ
−−−→ F (a)

id�η

x
xF (ρ)

F (a)�F (eM)
φ

←−−− F (a�eM)

(x)
eB�F (b)

λ
−−−→ F (b)

η�id

x
xF (λ)

F (eM)�F (b)
φ

←−−− F (eM�b)

(xi)De�nition A.2.5A lax monoidal fun
tor F : M → B between symmetri
 monoidal 
ategories islax symmetri
 monoidal if diagram (xii) 
ommutes.
F (a)�F (b)

γ
−−−→ F (b)�F (a)

φ

y
yφ

F (a�b)
F (γ)
−−−→ F (b�a)

(xii)De�nition A.2.6A lax 
omonoidal fun
tor F : M → B between symmetri
 monoidal 
ategories islax symmetri
 
omonoidal if diagram (xiii) 
ommutes.
F (a�b)

F (γ)
−−−→ F (b�a)

φ

y
yφ

F (a)�F (b)
γ

−−−→ F (b)�F (a)

(xiii)De�nition A.2.7A lax monoidal fun
tor F : M → B between monoidal 
ategories is strongmonoidal if η and φ are isomorphisms. F is strong symmetri
 monoidal if Fis both strong monoidal and lax symmetri
 monoidal.
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ould also de�ne strong 
omonoidal, but this de�nition is redundant sin
edemanding that η and φ are isomorphisms, for a lax 
omonoidal fun
tor F , wouldimply that F together with η−1 and φ−1 is strong monoidal.Lemma A.2.9If F : M → B is a fun
tor between symmetri
 monoidal 
ategories where �M and
�B are 
ategori
al produ
ts for M and B, then F is lax symmetri
 
omonoidal.Proof: Re
all that � on B is a 
ategori
al produ
t if there are natural trans-formations

a
p1← a�b

p2→ b ,su
h that the indu
ed map
B(c, a�b)→ B(c, a)× B(c, b)is a bije
tion. Using that λ is an isomorphism, it immediately follows that eB isa terminal obje
t. We de�ne η : F (eM)→ eB to be the unique map.It is impli
itly understood when saying that �� is the 
ategori
al produ
t�that α, ρ, λ and γ are related to p1 and p2. We require that p1 = ρ when b = eBand p2 = λ when a = eB. Furthermore, the following diagrams must 
ommute:

a�(b�c)
α

−−−→ (a�b)�c

p1

y
yp1

a
p1
←−−− a�b

,

a�(b�c)
α

−−−→ (a�b)�c

p2

y
yp2

b�c
p2
←−−− c

and
a�(b�c)

α
−−−→ (a�b)�c

p2

y
yp1

b�c
p1
−−−→ b

p2
←−−− a�b

,and γ : a�b→ b�a is the unique map su
h that
a

p1
←−−− a�b

p2
−−−→ b

=

y γ

y
y=

a
p2←−−− b�a

p1−−−→ b
ommute.To de�ne φ we apply F to p1 and p2. Under the bije
tion
B(F (a�b), F (a))× B(F (a�b), F (b)) ∼= B(F (a�b), F (a)�F (b))the pair (F (p1), F (p2)) 
orresponds to φ. It is now an easy exer
ise to 
he
k thatdiagrams (ix), (x), (xi) and (xiii) 
ommutes. �



238 APPENDIX A. USEFUL RESULTSRemark A.2.10There is a dual lemma: If �M and �B are 
ategori
al 
oprodu
ts, then anyfun
tor F : M → B is symmetri
 monoidal.A.3 Arithmeti
s for May's operad MMay's operad M en
odes the stru
ture of a monoid with unit. In this se
tionwe will derive formulas for the 
omposition operation for this operad. Note thefollowing fa
t: The de�nition of the a
tion ofM on arbitrary monoids for
es thede�nition of the ◦i's.We begin by de�ning the spa
es ofM. We let
M(j) = Σj ,where Σj denotes the permutation group on the integers 1, 2, . . . , j. When neededwe will write permutations ρ in Σj as 2× j-matri
es:

ρ =

(
1 2 . . . j
ρ(1) ρ(2) . . . ρ(j)

)
.The way that M en
odes the stru
ture of a monoid G with unit is that forevery j there is an a
tion

θj :M(j)×Gj → G .This is de�ned by sending (ρ; g1, . . . , gj) to the produ
t gρ−1(1) · · · gρ−1(j).A main part of an operad is the 
omposition operations ◦i. The idea behindthe ◦i's is that they des
ribe how to a
t iteratively. Assume given elements
ρ ∈M(k) and υ ∈M(j). First use

θj(υ;−)to multiply (g1, . . . , gj). Let g′i be the result, and insert it as the i'th fa
tor in
(g′1, . . . , g

′
k). Next multiply using

θk(ρ;−) .Now we 
an hope that there exists some element µ ∈M(k + j − 1) su
h that
θk+j−1(µ; g′1, . . . , g

′
i−1, g1, . . . , gj, g

′
i+1, . . . , g

′
k)is equal to the result of the two step pro
ess above. The 
omposition operation

◦i is de�ned so that ρ ◦i υ is su
h a µ.



A.3. ARITHMETICS FOR MAY'S OPERADM 239De�nition A.3.1Let ρ ∈ Σk and υ ∈ Σj be permutations and 1 ≤ i ≤ k. We de�ne the 
ompositionoperation
◦i : Σk × Σj → Σk+j−1by the formula

(ρ ◦i υ)(t) =






ρ(t) if t < i and ρ(t) < ρ(i),
ρ(t) + j − 1 if t < i and ρ(t) > ρ(i),
υ(t− i+ 1) + ρ(i)− 1 if i ≤ t < j + i,
ρ(t− j + 1) if j + i ≤ t and ρ(t− j + 1) < ρ(i) and
ρ(t− j + 1) + j − 1 if j + i ≤ t and ρ(t− j + 1) > ρ(i).Example A.3.2We now look at some expli
it examples: For instan
e, if
ρ =

(
1 2 3 4
2 4 1 3

) and υ =

(
1 2 3
3 2 1

)
,then

ρ ◦1 υ =

(
1 2 3 4 5 6
4 3 2 6 1 5

)
,while

ρ ◦3 υ =

(
1 2 3 4 5 6
4 6 3 2 1 3

)
.There is a �box�-model that 
an be helpful when trying to visualize this op-eration. Given i, ρ and υ, we put boxes around the integers from 1 to k + j − 1as follows:

1 , . . . , i− 1 , i, i+ 1, . . . , i+ j − 1 , i+ j , . . . , k + j − 1 .We now use ρ to permute the boxes, while we use υ to permute the elements inthe i'th box. Removing the boxes one get the permutation ρ ◦i υ.To see that our de�nition of the 
omposition operation is 
orre
t, we provethe following lemma:Lemma A.3.3If g′i = θj(υ; g1, . . . , gj) then
θk(ρ; g

′
1, . . . , g

′
k) = θk+j−1(ρ ◦i υ; g′1, . . . , g

′
i−1, g1, . . . , gj, g

′
i+1, . . . , g

′
k) .Proof: By the de�nition we have that

g′i = θj(υ; g1, . . . , gj) = gυ−1(1) · · · gυ−1(j)



240 APPENDIX A. USEFUL RESULTSand
θk(ρ; g

′
1, . . . , g

′
k) = g′ρ−1(1) · · · g

′
ρ−1(k) .If we let s = ρ(i), then the s'th fa
tor in the last produ
t is g′ρ−1(s) = g′i and wehave that

θk(ρ; g
′
1, . . . , g

′
k) = g′ρ−1(1) · · · g

′
ρ−1(s−1)gυ−1(1) · · · gυ−1(j)g

′
ρ−1(s+1) · · · g

′
ρ−1(k) .To evaluate θk+j−1(ρ ◦i υ; g′1, . . . , g

′
i−1, g1, . . . , gj, g

′
i+1, . . . , g

′
k) using the de�nitionof θ we need an expli
it expression for (ρ ◦i υ)−1. We use the de�nition of ◦i todedu
e the formula:

(ρ ◦i υ)−1(r) =






ρ−1(r) if ρ−1(r) < i and r < ρ(i),
ρ−1(r) + j − 1 if ρ−1(r) > i and r < ρ(i),
υ−1(r − ρ(i) + 1) + i− 1 if ρ(i) ≤ r < ρ(i) + j,
ρ−1(t− j + 1) if ρ−1(r − j + 1) < i and r − j + 1 > ρ(i) and
ρ−1(t− j + 1) + j − 1 if ρ−1(r − j + 1) > i and r − j + 1 > ρ(i).Now we see that

θk+j−1(ρ ◦i υ; g′1, . . . , g
′
i−1, g1, . . . , gj, g

′
i+1, . . . , g

′
k)

= g′ρ−1(1) · · · g
′
ρ−1(s−1)gυ−1(1) · · · gυ−1(j)g

′
ρ−1(s+1) · · · g

′
ρ−1(k) .This 
on
ludes the proof. �Let us now dedu
e a 
ouple of formulas telling us how to 
al
ulate using the
omposition operations:Lemma A.3.4If ρ, ρ′ ∈ Σk and υ, υ′ ∈ Σj , then the following formulas hold:i) ρ ◦i υ = (ρ ◦i id j)(idk ◦i υ).ii) ρ ◦i υ = (idk ◦ρ(i) υ)(ρ ◦i id j).iii) idk ◦i (υυ′) = (idk ◦i υ)(idk ◦i υ′).iv) (ρρ′) ◦i id j = (ρ ◦ρ′(i) id j)(ρ ◦i id j).v) (ρρ′) ◦i (υυ′) = (ρ ◦ρ′(i) υ)(ρ′ ◦i υ′).Proof: To 
he
k i) we pi
k t and 
al
ulate (ρ ◦i id j)(idk ◦i υ)(t). First we have

(idk ◦i υ)(t) =






t if t < i,
υ(t− i+ 1) + i− 1 if i ≤ t < j + i, and
t if t ≥ j + i.
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(ρ ◦i id j)(t) =






ρ(t) if t < i and ρ(t) < ρ(i),
ρ(t) + j − 1 if t < i and ρ(t) > ρ(i),
t− i+ ρ(i) if i ≤ t < j + i,
ρ(t− j + 1) if j + i ≤ t and ρ(t− j + 1) < ρ(i) and
ρ(t− j + 1) + j − 1 if j + i ≤ t and ρ(t− j + 1) > ρ(i).Putting these together we get that (ρ ◦i id j)(idk ◦i υ)(t) = (ρ ◦i υ)(t).For ii) we use the formulas above to 
ompute that (idk ◦ρ(i) υ)(ρ ◦i id j)(t) =

(ρ ◦i υ)(t). Let us verify this in the 
ase i ≤ t < j + i. Then
(idk◦ρ(i)υ)(ρ◦iid j)(t) = (idk◦ρ(i)υ)(t−i+ρ(i)) = υ(t−i+ρ(i)−ρ(i)+1)+ρ(i)−1 = (ρ◦iυ)(t) .The 
ase iii) is obvious from the formula for (idk ◦i υ)(t). Also the 
ase iv) iseasy. Now formula v) follows from the other 
ases:

(ρρ′) ◦i (υυ′)

= ((ρρ′) ◦i id j)(idk ◦i (υυ′))

= (ρ ◦ρ′(i) id j)(ρ
′ ◦i id j)(idk ◦i υ)(idk ◦i υ

′)

= (ρ ◦ρ′(i) id j)(idk ◦ρ′(i) υ)(ρ′ ◦i id j)(idk ◦i υ
′)

= (ρ ◦ρ′(i) υ)(ρ′ ◦i υ
′) .

�We interpret 
ase v) as a formula for the Σ-equivarian
e for the operad M.There are also formulas for iterated 
ompositions. These are:Lemma A.3.5If ρ ∈ Σk, υ ∈ Σj and µ ∈ Σl, theni) (ρ ◦a υ) ◦b µ = (ρ ◦b µ) ◦a+l−1 υ for b < a,ii) (ρ ◦a υ) ◦b µ = ρ ◦a (υ ◦b−a+1 µ) for a ≤ b < a + j, andiii) (ρ ◦a υ) ◦b µ = (ρ ◦b−j+1 µ) ◦a υ for a + j ≤ b.Proof: This is most easily veri�ed using the box model. �
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