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Introduction

An ultimate goal is to calculate the homotopy type of automorphism spaces of
compact manifolds M. A promising approach uses the parametrized surgery
theory introduced by Hsiang and Sharpe in [HS76]. Historically, one studied
the fiber of map from parametrized surgery to surgery using the involution on
concordance theory, see [H.I82D] and [Bur78|. Two step computations along these
lines are, for example, found in [HST6|, [H.I83|, [HI82a| and [FHT78|. However,
the experts knew that one should try to combine surgery theory and concordance
theory to get direct computations of parametrized surgery. Recent advances in
homotopy theory has made it possible for Weiss and Williams to define this LA-
theory, see [WWOT]. Still, LA-theory is not easily computed, but it is related to
algebraic K-theory via a map called =, and algebraic K-theory can be studied
via trace maps into TC' or THH, see [Mad94].

Surgery theory classifies manifolds within a given simple homotopy type.
A basic ingredient in this theory is the L-groups, whose definition depends
on the ring Z[m M] together with an involution, see [Wal99|. In concordance
theory, turning a concordance upside down gives an involution on the homo-
topy groups of the stabilized concordance space, C(M). Hatcher’s spectral se-
quence, see [Hat78| proposition 2.2, has in a stable range an E?-page given by
qu = H,(Z/2;7,C(M)), and converges to give information relating surgery the-
ory to automorphism spaces at the level of homotopy groups. Weiss and Williams
strengthen Hatcher’s result to the level of spaces in [WWSRS|. In [Vog85|, Vogell
shows that the involution on concordance spaces corresponds to his canonical in-
volution on algebraic K-theory of spaces. Also Steiner, [Ste81], and Hsiang and
Jahren, [H.I82D|, [H.I], considers involutions on A-theory.

The input for LA, K, TC and THH should be a “ring up to homotopy”.
We choose orthogonal ring spectra, as defined in [MMSS0T], to be our model
for such rings. Hence, the theories above need to be redefined for this setting.
Waldhausen’s work on algebraic K-theory tells us that S[QQM] is the correct
ring to consider when relating to concordances. Geometry, as discussed above,
demands an involution on our ring, and Vogell shows that interesting involutions
come from bundles & over M. However, it is not immediately clear that such &
give involutions on the orthogonal ring spectrum S[QM].

The contribution of this thesis is to construct for each vector bundle £ an



orthogonal ring spectrum R, weakly equivalent to S[Q2M], together with an in-
volution on R. On the homotopy groups m,S[QQM] our involution corresponds
to parallel transportation in &, and reversing loops in M. The main result is
theorem L3208, The orthogonal ring spectrum R with involution is intended as
input for the theories mentioned above. We take a first step in this direction by
considering the definition and a few basic properties of TC'(L) and THH (L) for
arbitrary orthogonal ring spectra L (with involution). However, in the future the
author hopes to show that LA(R) will yield information about the automorphism
space of M.

Chapter [ recalls from the literature various simplicial techniques. Much of
this should be well known to the reader. The reason the author included this
material is mainly to point out certain viewpoints and to introduce notation.

In order to get strong results in stable homotopy theory, one can prove theo-
rems in a category of spectra with symmetric smash product. We find orthogonal
spectra particularly convenient for our purposes. In chapter Bl we give an expo-
sition of the relevant theory and develop the techniques needed to work within
this category.

We study the equivariant homotopy theory of orthogonal spectra for two rea-
sons; the definition of an operad involves actions of symmetric groups, and TTH H
comes with an S'-action, or O(2)-action in the involutive setting. ChapterBlis an
introduction to equivariant orthogonal spectra and provides the results necessary
for our applications.

Chapter Hl proves the main theorem. An important ingredient is the concept of
operads, and we introduce the operad H, which encodes multiplication together
with an anti-commutative involution. Moreover, we explain the notion of an
operad in orthogonal spectra. The main idea of the proof is to start out with
a vector bundle £ over our compact manifold M and then attempt to construct
a related involution on S[Q2M]. Doing this involves many choices, in fact there
are orthogonal spectra D,,(j) parameterizing this. Could the collection D,, be an
operad where S[QM] is its algebra by the parametrization? The answer is yes,
and the formulas for the composition operations of the operad are forced by the
algebra structure. Furthermore, D,, is “up to homotopy” sufficiently equal to H.
Using May’s two-sided bar construction, we therefore can replace S[QM]| by a
weakly equivalent H-algebra. This gives our orthogonal ring spectrum R with
involution. Unfortunately, the logic demands that we reverse this argument when
writing out the proof.

Chapter [ ends this thesis. It contains some theory regarding TH H and T'C'
of orthogonal ring spectra with involution.

[ am very grateful to my advisor Bjgrn Jahren for many enlightening discus-
sions, and for his constructive feedback during my writing of the manuscript.
You have always been available, and you have a keen eye for the beauty in math-
ematics. Furthermore, I would like to thank Sverre Lunge-Nielsen, Christian
Schlichtkrull, Halvard Fausk, and John Rognes for helpful conversations. The



support from my wife, Tordis Fuskeland, has been very valuable to me. You have
carefully proofread the final manuscript, but the errors that remain are mine.
Together with our son, Andreas, you are the most important part of my life.
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Chapter 1

Simplicial techniques

The theory of simplicial sets and simplicial spaces is classical. Simplicial sets
were first defined in [EEZ50]. The geometric realization was defined in [Mil57].
Other references to simplicial techniques are [May67|, [G.J99] and [DHOT)]. For
the theory of simplicial spaces see [May72|, [Seg74] and [Mad94|. This chapter
will recall from the literature the simplicial techniques which are relevant to
this thesis. One reason for including this material is for completeness, but also
important is the viewpoint and the notation.

1.1 The category A and its relatives

Definition 1.1.1

Let [n] be the ordered set {0 < 1 < ... < n}. The category A has one object
[n] for each non-negative integer n, and the morphisms are ordering preserving
functions ¢ : [m] — [n].

It is customary to let &; : [n — 1] — [n] be the order preserving function that
misses ¢, and o; : [n+ 1] — [n] be the order preserving function that hits i twice.
The ¢’s and ¢’s generate all morphisms in A.

Definition 1.1.2
A simplicial set is a functor X, : A°® — Ens. A simplicial space is a functor X, :
A°? — Top. More generally, one can define simplicial objects in any category.

Observe that simplicial sets can be considered as simplicial spaces by giving
each X, the discrete topology. Hence, in most cases we can do our constructions
for simplicial spaces, the corresponding results for simplicial sets follow implicitly.

Given a simplicial space X,, the following notation and terminology is stan-
dard: The space X, is called the n-simplices of X,. ¢; : [n — 1] — [n] induces a
map d; : X,, — X,,_1 called the i’th face map, and o; : [n + 1] — [n] induces the
1’th degeneracy map, s; : X,, — X,11. A simplex x in X, is said to be degenerate

1



2 CHAPTER 1. SIMPLICIAL TECHNIQUES

if x = s;2’ for some 7 and 2’ € X,,_;. We denote by sX,_; the subspace of X,
consisting of the degenerate simplices.

1.1.1 Geometric realization of simplicial spaces

Simplicial spaces are combinatorial models for topological spaces, and geometric
realization is the functor which turns a simplicial space into the topological space
for which it is a model. The geometric realization, due to Milnor [Mil57|, has
several good properties, it commutes with products and it commutes with all
colimits. See [May67] or [DHOT)]. Furthermore, every point in the geometric real-
ization is uniquely determined as the interior point of a non-degenerate simplex.
We give a modern formulation of this result; giving a filtration for the geometric
realization.

Geometric realization of simplicial spaces is defined using a functor A : A —
Top. We send [n] to the space A" = {(to,...,t,) € R"™ | o;t; = 1,¢; > 0}. And
we call A" the topological n-simpler. On morphisms the functor is defined by
sending ¢; : [n — 1] — [n] to the map

(Si(to, . ,tn_l) = (to, e 7tz’—17 0, ti, . ,tn_l) s
and o; : [n+ 1] — [n] to
O'i(to, e atn—i-l) = (to, Ceey ti—la tz + ti+1>ti+2a Ce >tn+1)

Now we define the geometric realization of a simplicial space X, as the coend
[n]leA
X = / X, x A"

Coends are defined in section IX.5 in [ML98]. The space | X,| is isomorphic to the
quotient of [] X, x A™ where we identify (x, ¢(t)) with (¢*z, t) for all morphisms
¢ in A.

Remark 1.1.3

In order to have convenient technical properties, one should form the geometric
realization in the category of compactly generated spaces (=weak Hausdorff k-
spaces), see [McCBY)|. This ensures, for example, that the product theorem holds.

There is also a presimplicial realization, defined using only the injective mor-
phisms in A. The injective morphisms are those generated by the d’s. Let ¢A
denote this subcategory. We define the presimplicial realization as the coend

[n]eiA
| Xe|| = / X, x A"

This space is the quotient of [ [ X,, x A™ where we identify (z, §;(t)) with (d;(x), t)
for all d;’s.
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Whereas the geometrical realization, | X,|, has better formal properties, it is
often easier to prove results about the homotopy of the presimplicial realization,
| Xe||. And we can compare the two realizations via a natural map

[ Xell = [Xe]

It is natural to ask when this is a weak homotopy equivalence. This question is
answered by Segal in [Seg74] and by May in [May72]. We follow Segal and define:

Definition 1.1.4
A simplicial space X, is good if for all n and i, the map s; : X, — X, 11 Is a
closed cofibration.

We refer to our remark or one of the articles [Ste67)| or [Str66| for the
definition of a closed cofibration. Observe that any simplicial set automatically
is good, since an injective map between discrete spaces is a closed cofibration.
Now, Segal shows in his proposition A.1(iv) that:

Proposition 1.1.5
If X, is a good simplicial space, then the natural map || X.|| — |X.| is a weak
equivalence.

Let us now describe the realizations more carefully. We have already men-
tioned Milnor’s result, that a point in |X,| is uniquely given as the interior point
of a non-degenerate simplex. There is a similar description for the presimplicial
realization. We now give a modern formulation of these statements:

Construction 1.1.6

First we consider the case of the presimplicial realization. Recall that || X,|| is the

quotient space formed from [] X,, x A™ by identifying (z,d(t)) with (d;z,t) for

all morphisms d;. We define a filtration by letting the ¢’th space, F,||X.||, ¢ > 0,

be the image of [[,, X, x A™ in [|X,||. Notice that Fy|X,|| is the pushout of
Xy x AT — X, x 0AT — F_4|| X,

Now observe that

colim F|| X, || is equal to || X.||, and

each X, x 0AT — X, x A7 is a closed cofibration. It follows that also
Fo_1|| Xe|| — F,l|X4]| is a closed cofibration.

The last observation explains why the presimplicial realization behaves so well

homotopically; it is easy to give inductive arguments using the pushout diagram
relating F,_1]| Xe|| to Fy||Xe]l-
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Construction 1.1.7

Next consider the geometric realization. Recall that | X,| is the quotient of [ [ X, x
A" where we identify (z, ¢(t)) with (¢*x,t) for all morphisms ¢ in A. We define
Fy|X.|, ¢ > 0, to be the image of [],., X, x A". Recall that the degenerate
simplices, sX,_;, are the points in X, which are in the image of some map
s; : Xg—1 — X,. Notice that the following diagram is pushout:

Xy x 0ATUsX, 1 x AT —— F, 4| X,
g |
X, x Al —  F X,
Here the map j comes from the square

sXgo1 X O0AT —— sX, 1 x A?

J !

Xgx 0AT  —— X x Al

By Lillig’s union theorem, see [Lil73]|, we have that j is a closed cofibration
whenever sX,_; C X, is a closed cofibration. Now observe that

colim F;| X,| is equal to | X,|, and

if each sX,_; C X, is a closed cofibration, then X, x 0ATUsX, ; x A —
X, x A% and F, 1| X.| — F,| X.| are closed cofibrations.

The last observation explains why good simplicial spaces behave well with respect
to homotopy.

These filtrations are extremely useful when proving results about realizations.
We illustrate this by proving a few well known facts:

Proposition 1.1.8
Let fo : Xo — Y, be a map of simplicial spaces such that each f, is a weak
homotopy equivalence. Then the induced map

[fall = 1Xe]] = [IYall
also is a weak homotopy equivalence.
Proof: We use the filtration from construction [LT.0l and prove inductively that

F, || X.|| = Fy||Ys| is a weak homotopy equivalence. It will follow that || f]| is a
weak homotopy equivalence.



1.1. THE CATEGORY A AND ITS RELATIVES 5

Fo|| Xe|| = Xo — Yy = Fy||Ys]| is a weak homotopy equivalence by assumption.
Now consider the inductive step. We have the diagram

Xy X AT X, x 0AT —— F, || X.|

quidl quidl l

-/

Yy x A7 Z ¥, x 9AT —— Fy ||V

Here j and j' are closed cofibrations, while all vertical maps are weak homotopy
equivalences. By proposition [AT4l the map of the row-wise pushouts,

Fol| Xoll = o[ Yol

also is a weak homotopy equivalence. This finishes the proof. O

A straight forward corollary of this proposition together with proposition [LT.5
is:
Corollary 1.1.9

If fo : Xo — Y, is a map between good simplicial spaces and each f, is a weak
homotopy equivalence, then

[fol + [Xo] = [Y7]

also is a weak homotopy equivalence.

Let us also prove the product theorem. Given two simplicial spaces, X, and
Y,, we define their product X, x Y, to be the simplicial space with n-simplices
X, x Y,. We have a natural map 7 : | X X Y,| — |X.| x |Y,| defined using the
natural projections from X, x Y, into X, and Y,. The product theorem states
that 7 is a homeomorphism. It is hard to find a proof in the literature, which
is of the generality suggested in remark This is the reason for including a
proof here:

Proposition 1.1.10
Since the geometric realization is formed in the category of compactly generated
spaces, the natural map

1| Xe X Yo| = [Xo] x [V
is a homeomorphism.
Proof: It is well known that 7 is a continuous bijection, see theorem 2 in [Mil57]

or theorem 11.5 in [May72|. The hard part is to check that 5! is continuous.
May proves this when “spaces” is the category of compactly generated Hausdorff
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spaces, although his proof for continuity of ! is not particularly clear. The au-
thor hopes that the argument below will be more understandable, but in essence
the proofs are the same.

We use the filtration of the geometrical realization given in construction [LT.7
The product | X,| x |Ys| inherits a filtration given by

F(I X x Vi) = |J FulXd|x E|Yi|

m-+n=q

And by the constructions one can see that 7 restricts to a continuous bijection
F,IX. x Y| 2 F(|X.] x |Va]).

A continuous bijection 1 between compactly generated spaces is a homeo-
morphism, if n71(K) is compact whenever K is compact. This follows from the
definition of compactly generated by lemma 2.1 in [McC69).

We will now try to apply lemma 2.8 in [McC69|. Suppose that K C | X.| % |Y|
is a compact subset. Then K is contained in Fj(|X,| % |Ys|) for some ¢. ¢ is
now fixed. Below we will specify Z,’s such that for all & we have commutative
diagrams

[lycg Xp X Yp x AP e—— Z, C[],,, Xn X A" X YV, x A™

J 5

FlX.xY) X| x |Ya]

Here the vertical maps are surjective and 7, is injective. Furthermore, the target
of the map 7 has the quotient topology. The Z,’s depend on the standard
triangulation of A™ x A™. For given m and n let i, : A" — A" x A™
be the inclusion of a maximal topological simplex in this triangulation. We set
Zo = X, XY, x A" included in Hnm X, x A" xY,, x A™ via i,. Moreover, via
the appropriate degeneracy maps, there are maps Z, — X, xY, x AP, p = n+m,
such that the diagram above commutes. These maps are explicitly constructed
in May’s proof.

Now observe that the collection of Z,’s with n +m < ¢ covers the image of
F,|X¢ x Y,|. This collection is finite. Thus all conditions of McCord’s lemma 2.8
are satisfied. This implies that 7, is an embedding, and consequently we have
that 7~ (K) =, '(K) is compact. And we are done. O

1.1.2 Crossed simplicial categories

Techniques involving simplicial sets or simplicial spaces are extremely useful when
working with topological spaces. However, if we want to consider involutions, S*-
or O(2)-actions on our spaces, it is handy to replace A by other categories; AT,
AC and AD. We will recall the notion of a crossed simplicial group from [ELIT].
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The categories mentioned above are examples of such, they will be defined below
and we will introduce notation for their morphisms.

Definition 1.1.11

A sequence of groups {G,}, n > 0, is a crossed simplicial group if it is equipped
with the following structure. There is a small category AG, which is part of the
structure, such that

the objects of AG are [n], n > 0,
AG contains A as a subcategory,
the automorphisms of [n] in AG is the opposite group of G, and

any morphism in AG([m], [n]) can be uniquely written as a composite ¢og,
where ¢ € A([m], [n]) and g € GP.

Remark 1.1.12
The last axiom implies that for any g € G,, and ¢ € A([m], [n]) there exist unique
»*(9) € G, and g*(¢) € A([m], [n]) such that

goop=yg"(¢)od*(9)

The functor that sends [n] to G,, and ¢ to ¢* : G,, — G,, gives G, the structure
of a simplicial set.

Unlike [FL91], our focus will not be these simplicial sets, but rather the cat-
egories AG and their analogue of simplicial sets and spaces, i.e. functors from
AG® into sets and spaces. We will therefore refer to AG as a crossed simplicial
category.

Here are the crossed simplicial categories relevant for this thesis, they are
taken from the examples 2, 4, 5 and 7 in [FL91]:

Definition 1.1.13

Define AT to be the crossed simplicial category with the automorphism group
of [n] cyclic of order 2. Let p, be the generator of the automorphism group and
put ppd; = On_ipn—1 and ppo; = 0p_ipni1.

Definition 1.1.14

Let AC be the crossed simplicial category where the automorphism group of [n]
is cyclic of order (n+1). We name the preferred generator T, and introduce the
relations:

Tnbo = 0, and 7,0; = 0;_17,_1, for 1 < i <n, and

TnOo = anT,fH and T,0; = 0;_1Tny1, for 1 < i <mn.
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Definition 1.1.15

Let AD be crossed simplicial category where the automorphism group of [n| is

the dihedral group of order 2(n + 1). We name the preferred generators p,, and
n+1l __

Ty, where p? = 7" = id and p,7, = 7, ' pn, and introduce the relations:

pnéz - 6n—z'pn—17
PnO0; = On—iPn+1,
Tn0o = 0, and 7,0; = 0;_17,_1, for 1 < i <n, and

TnOo = anT,fH and T,0; = 0;_1Tny1, for 1 < i <mn.

Definition 1.1.16

Let AC,, r > 1, be the crossed simplicial category where the automorphism
group of [n] is cyclic of order r(n + 1). We name the preferred generator ,,
where 7"V = id, and introduce the same relations as in definition [T

Definition 1.1.17

Let AD,, r > 1, be crossed simplicial category where the automorphism group
of [n] is the dihedral group of order 2r(n+1). We name the preferred generators
pn and T,, where p> = 7o = id and p,7, = 7 'p,, and introduce the same

relations as in definition [[L13.

We now give names to these crossed simplicial categories, and call AT, AC,
AD, AC, and AD, the nvolutive simplicial category, the cyclic category, the
dihedral category, the r-cyclic category and the r-dihedral category respectively.
Notice that AC; = AC and AD; = AD. We see that AC, is a subcategory of
AD,, and that AT is a subcategory of AD,., for any r» > 1.

Our reason for introducing crossed simplicial categories is to study G,-objects
in some category ¢:

Definition 1.1.18

Let AG be a crossed simplicial category and € any category. A G,-object in € is
a functor AG® — €. A G,-map between G,-objects is a natural transformation
of functors.

If AG is one of the crossed simplicial categories above and ¢ is Zop, the
category of (compactly generated) spaces, then we call G,-objects for involutive
stmplicial spaces, cyclic spaces, dihedral spaces, r-cyclic spaces and r-dihedral
spaces accordingly, and similarly we replace the word “spaces” by “sets” when
¢ = &ns, the category of sets.

Given an r-dihedral space X, we have the following notation: The map in-
duced by ¢; is denoted by d; : X,, — X,,_1 and called the i ’th face map. The map
induced by o; is denoted s; : X,, — X,1 and called the ¢’th degeneracy map.
The map induced by p, is denoted by 7, : X,, — X, and called the involutive
operator. And the map induced by 7, is denoted by ¢, : X,, — X, and called the
cyclic operator.
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For an r-cyclic space, we use the same notation and terminology, but in this
case there are no involutive operators. Analogously, there are no cyclic operators
for involutive simplicial spaces.

1.1.3 Geometric realization of (G,-spaces

We now turn toward the geometric realization of (G,-spaces. Via the inclusion
j A — AG we associate to any G,-space X, its underlying simplicial space

j*X,, which is given as the composition A% 2> AG®P Xe, Top. And we define:

Definition 1.1.19
The geometric realization of a Ge-space X, is the geometric realization of its
underlying simplicial space j*X,.

From the article [FL91] we now summarize results about the geometric real-
ization of a G,-space.

Theorem 1.1.20
Let AG be a crossed simplicial category, and X, a simplicial space. We have:

The functor j* from G,.-spaces to simplicial spaces has a left adjoint, de-
noted by Fg, and there are projection maps p; : |Fa(X,)| — |Gl| and
P2t [Fa(Xe)| — [ Xof.

The map (p1,p2) : |Fa(Xe)| — |Ge| X | X4| is a homeomorphism.

For any simplicial map f, : X¢ — Y, the following diagrams commute:

Ffo [}
FeX.| Lo may) 175 AN R
pQJ/ J{pz aﬂd pll lpl
X, Ly G| —— |G|

Since Fg is a left adjoint, there are canonical natural transformations fi, :
Fo(Fo(Xe)) — Fo(X,e) and te : Xo — F(X,o). And the following diagrams

commute:
Fa(Fa(Xa))| 2L |Fo(x)| X, = | Fax)
le lm and :l lpz
|Fa(X)] _P2 | | X | | Xe| — | X

There is a canonical isomorphism G, = Fg (%) and the composition |G4| =
|Fo(%)| 25 |G| is the identity.
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Let 1 denote the point in |G| determined by the unit in Gy. The following
diagram commutes:

lee

X =L | Fa(X))

| B

{1} — G,
|G| is a topological group.
If X, is a Go-space, then there is an induced action |Ge| X | Xe| — | Xa|.
(p1,p2) : [Fa(Xe)| — |Ge| X | X,| is an equivariant homeomorphism.
For every n there is an inclusion of Gy, in |G,| as a discrete subgroup.
For a proof see propositions 4.4, 5.1, 5.3 and 5.13 in [EL91].

Remark 1.1.21

Chasing Fiedorowicz and Loday’s proof of theorem above, it is not hard
to see that all results are natural with respect to a morphism AG — AG’ of
crossed simplicial categories. In particular we get an induced homomorphism of
topological groups |G.| — |GL|. Furthermore, it is possible to consider short
exact sequences of crossed simplicial categories. It is more convenient to write
such a sequence in terms of the corresponding crossed simplicial groups. The
sequence

0—-G! -Gy — G, —0

is short exact if the evaluation at each [n] is. Taking the geometric realization
one gets a sequence

GL = G &Gl
which an extension of topological groups.

Let us now determine what the group |G| is for our crossed simplicial cate-
gories.

Example 1.1.22

Consider the involutive simplicial category, AT. The automorphism group, G2P,
of [n] in AT is isomorphic to Z/2. Recall that G, is a simplicial set, the face and
degeneracy maps are given by the formula in remark [CTT2l The degeneracy map
sg is always injective. By counting the order of GG,,, we immediately see that the
only non-degenerate simplices lie in degree 0. Hence, we have that |G,|, in this
case, is the group Z/2. This means that the geometric realization of an involutive
simplicial space is a topological space with involution.
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Example 1.1.23

Next consider the cyclic category, AC. Using the formula from remark [CTT2,
we find that the non-degenerate simplices are 7, € Gy and 7, € G;. Hence,
|G| = S'. We now determine the group structure. A theorem by von Neumann
says that any compact, locally Euclidean topological group is a Lie group, see
theorem 57 in [Pon39|. The theory of Lie groups now tells us that the only
topological group structure on S! is the ordinary group structure.

Example 1.1.24

Now look at the r-cyclic category, AC,. Let G, be the associated crossed
simplicial group. To determine |G,| as a topological space, we find the non-
degenerate simplices. The O-simplices, Gy = C,., are non-degenerate. Recall from
remark the formula defining the simplicial structure on G,. The relation

T000 = O'()T12
implies that so(73) = 7. Hence, 71, 7¢,..., 7"~ ! are the non-degenerate simplices
in GG;. Playing with the relations in AC,, we see that there are no more non-
degenerate simplices. Furthermore, we have that do(r{' ') = 7 " and d; (77" 1) =
7¢. Hence, |G| = S'. And S! has a unique structure as a topological group.

Example 1.1.25

Let us now study the r-dihedral category, AD,. We can use the definition of the
category and the formula from remark [LT.T2 to determine the simplicial structure
on the associated simplicial group G,. Finding non-degenerate simplices and
calculating the face maps, we see that

|G.| = St x Z/2

as topological spaces. Hence there are two possibilities for the group structure
on |G,|: it is isomorphic either to S' x Z/2 or O(2). By the last statement of
theorem [LT20, |G,| contains dihedral subgroups. This excludes S* x Z/2, so
|Go| = O(2).

The theorem above tells us that the geometric realization of a G,-space
has a |G,| action. However, it is usually the case that the action takes one out of
the topological simplex one starts in. In particular, the ¢’th space of the filtration
F,|X.| is seldom |G,|-equivariant. In many situations it would be easier if the
action stayed inside the topological simplices and the filtration had |G,|-action.
We can achieve this by defining the topological |G,|-simplices according to the
crossed simplicial category under consideration.

Let AG be a crossed simplicial category. Consider the representable functors

AG(—,[n]) : AG® — &ns
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Definition 1.1.26
Let AG : AG — Top be the functor with AG™ = |AG(—, [n])|. The topological
|Go|-simplices are the spaces AG™, n > 0.

Observe that the representable functor AG(—,[n]) is Fg(A(—,[n])), hence
we have homeomorphisms AG" = |AG(—, [n])| = |G.| x A™. So the |G,|-action
does not take points outside AG™.

Using the functor AG® we can now define a geometric realization of GG,-spaces
X given by:

[n]eAG
‘X|AG:/ XHXAGTL

This space is isomorphic to the quotient of | [ X,, x AG™ where we identify (x, ¢(t))
with (¢*x,t) for all morphisms ¢ in AG.

Lemma 1.1.27
There is a natural homeomorphism | X|aq = | X| for AG®-spaces X.

Proof: Consider the functor F': (A x AG)® x (A x AG) — Zop given by
F([no], [mol, [n], [m]) = Xom, x AG(j(no),m) x A"

We have that
[nleA
[ ) bl o ) 2 X, % AG

and
[(mleAG
/ F(n, [m], [n], [m]) = X (j(n,)) x A"

The result now follows from the Fubini theorem for coends, see §IX.8 in [ML9S|:
coends can be interchanged. U

To achieve full control of the |G,|-action on | X,|, it suffices to have an explicit
description of the functor AG®. This description should specify the map AG" —
AG™ induced by a morphism ¢ : [n] — [m] in AG. In the case AC, this
description is given implicitly in proposition 2.7 in [DHKS85], and more explicitly
in theorem 3.4 in [Jon87|. For the r-cyclic case a formula is given by lemma 1.6
in [BHM93|, and by formula (2.1.3) in [Mad94]. In general it is just a question
about writing out the equivariant homeomorphism (py, p2) : |Fo(AY)| — |Gd| X
|A?| from theorem [CT20. Here A7 is the simplicial n-simplex A(—, [n]).

Explicitly we have in our cases:

Example 1.1.28
For the involutive simplicial category AT we define the functor AT* by sending
[n] to Z/2 x A™. We write Z/2 multiplicatively. The generators of AT induce
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the following maps:

di(€to, .. tn) = (€t0, ..., tim1, 0.t . tn)
O'Z'(E;to, Ce ,tn) = (E;to, P 7t’i—l7ti +ti+1,ti+2, P ,tn) y and
Pn(€tos - tn) = (=€ tn, ta1, ... 1, t0)

Example 1.1.29

For the r-cyclic category AC, we define the functor AC?® by sending [n] to
St x A", We identify S* with the quotient R/Z. The generators of AC, induce
the following maps:

51(9,150,,15“) = (9;150,...,ti_l,O,ti,...,tn) 5
O'Z'(Q;to, e ,tn) = (e,to, .. '7tz’—17tz’ +ti+1,ti+2, . ,tn) s and

1
Tn(e;to, e ,tn) = (9 — —to;tl,tg, e ,tn,to)
r

Example 1.1.30
For the r-dihedral category AD, we define the functor AD? by sending [n] to
0(2) x A™. O(2) is the space of orthogonal 2 x 2-matrices. For ¢t € R/Z let R(t)

cos(2mt) Sln(Qm)), and let T be the matrix

denote the rotation matrix (_ sin(2rt) cos(2nt)

((1) (1)) The generators of AD,. induce the following maps:

5Z(M,t0,,
O'i(M;to,..., n) — M;t07"'7ti—l7ti+ti+l)ti+27'"7tn) 5
(
(

):(M;to,...,ti_l,o,ti,...,tn) 5
) =(
1
Tn M,to,,tn) = (MR(——to);tl,tQ,...,tn,to) ,&Ild
T
) =(

pu(Mito, ...,

~
3
I
=
~
3
~
S
L
\;F
=
~
o
~

1.1.4 Filtering the geometric realization

Similar to the constructions [CTH and [CT7, we now design a filtration of | X,],
when X, is a Go-space. This filtration is |G,|-equivariant.

Construction 1.1.31

Let AG be a crossed simplicial category and X, a G,-space. The drawback
of using the filtration above to study |X,.| is that F,|X,| has no |G.| action.
Therefore we define another filtration F©|X,|. Recall that | X,| can be described
as the quotient of [[ X,, x AG™ where we identify (x, ¢(t)) with (¢*z,t) for all
morphisms ¢ in AG. Define FqG|X.| to be the image of [], ., X, x AG". We
define the G,.-degenerate simplices of X, to be the subspace s®X,_; consisting of
all points which lie in the image of some map ¢* : X,_1 — X, ¢ € AG([q], [¢—1]).
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Recall that the opposite group of G, is the automorphisms of [¢] in AG. Hence
X, and sX, ; have G, actions, while AGY? and JAGY have G actions. Let
Xy %@, AGY denote the quotient of the product where we have identified (gz,t)
with (z, g*t) for every g in G;,. We now have a pushout diagram

Xy Xa, OAGI U sX, 1 Xg, AGI —— FZ | X,|

| |

X, %G, AGE —— FI)X,|

Remark 1.1.32
Here is a warning: In general it is not true that natural map Xox g, |Gs| — FF|X,|
is an homeomorphism, but it is always an equivariant quotient map.

1.1.5 Edgewise subdivision

Above we have seen that both cyclic and r-cyclic spaces yield S!'-spaces after
geometric realization. Similarly both dihedral and r-dihedral spaces realize to
O(2)-spaces. So why do we bother with the r-cyclic and r-dihedral categories?
Observe that neither the S'- nor the O(2)-action is simplicial. Let C' be a finite
cyclic group. Notice that C' embeds as a normal subgroup of both S' and O(2).
The answer to the question is that C-fixed points can be studied simplicially
whenever the order of C' divides r.

After making precise the observations above, we shall define the ¢’'th edgewise
subdivision, ¢ > 1. This is a functor sd. from r-cyclic spaces to rc-cyclic spaces,
and similarly from r-dihedral spaces to rc-dihedral spaces. The edgewise subdi-
visions come with natural equivariant homeomorphisms D.. : |sd. Xo| — |X,|. In
particular we can replace a cyclic space with an r-cyclic space for the purpose of
studying its restricted C,-action.

Let C be a finite cyclic group C of order c¢. Recall from example [LT30 that
R(t) € O(2) denotes a rotation by 27t, while T € O(2) is a reflection. We
identify C' as the normal subgroup of O(2) generated by R(2). Now we construct
homomorphisms

pc: 0(2) = 0(2)/C
by letting pc(R(t)) = R(%) and pc(T) = T. Observe that pc is an isomorphism.

The restriction of pc to St is the “c-th root map” S* = S'/C.

Two basic facts are: The C-fixed point space of an O(2)-space Y is an O(2)/C-
space Y9, and an O(2)/C-space Z can be viewed as an O(2)-space piZ via the
isomorphism p¢.

After these preliminaries we show:

Proposition 1.1.33
Assume that X, is an r-dihedral space and C' a finite cyclic group of order c.
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Assume that ¢ divides r and let cs = r. Fach X,, has a C-action and X¢ is an s-
dihedral space. Furthermore, there is a natural O(2)-equivariant homeomorphism

pelXa| = X7

A similar result holds for r-cyclic spaces.

Proof: The C action on X, is given by the map tn st Observe that all the

operators d;, s;, t, and r, preserve C-fixed points. Hence X¢ is an r-dihedral
space. But since t,, st s the identity when restricted to X¢, we see that X
satisfies the identities for an s-dihedral space.

To define the natural O(2)-homeomorphism we use the filtration from con-
struction [LT3T Assume inductively that we have an O(2)-homeomorphism

p FADT|X |C ~ FADS XC‘

Recall that the automorphism group of [n] in AD, is the dihedral group
Doyyng1y of order 2r(n 4+ 1). If Y is a Daynq1)-space, then we may form the
induced O(2)-space Y Xp, . .,  O(2). It is a basic fact about induced O(2)-spaces
and C-fixed points, compare lemma B.82 that

C
(Y XDy O) =Y 5, 10 O2)/C

For the induction step we inspect the n-simplices, and calculate:

1%

C
pe (X X A") %1, .1, 0(2)
> e (Xu x A" xp,, 1,70 O(2)/C)

= (Xn X An) XD2s(n+1) pC ( ( )/C)
= Xn XD2s(n+1) ADQ

C
pg (Xn XDQr(n+1) ADT”)

10

Similarly, we have an O(2)-equivariant homeomorphism for the degenerate points.
And these O(2)-homeomorphisms fit into a diagram

C C
AD7
P (X XDy ADE) 0y (X XDy pny OADE UsXno1 XDy () D) —p FART|Xa|

- - I

Xn ADY XS Xp,, ., OADTUsXS AD}  — FARs X

X Das(n+1) —1 XDag(nt1)

By construction LT3 we see that the map of the row-wise pushouts is FAP:| X{| =
PeF P

The statement for r-cyclic spaces is proved similarly. U
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We now define the edgewise subdivision functor sd. : AD,. — AD,. The
idea behind sd, is to send the ordered set [¢] to the disjoint union of ¢ copies of

[q]:
sdelg] = [q] 1T --- I [q] = [c(qg + 1) — 1]

This yields the following formulas for sd. of the generators in the dihedral case:

Sdc((5i = 5i+(c—1)(q+1) e '5z‘+(q+1)(5i )

)
sde(o;) = 0i0i+(q+2) " " " Oit(c—1)(g+2) >
(7q) Te(g+1)-1 > and

)

Observe that sd,. restricts to functors AC,. — AC,, AT — AT and A — A.

Definition 1.1.34
Let X, be an r-dihedral space. Its c’th edgewise subdivision, sd. X, is the com-

position AD® sde, ADY X, Top. Similarly, we also define the c’th edgewise
subdivision of r-cyclic, involutive simplicial and simplicial spaces.

To compare the geometric realization of sd. X, and X,, we first define a
diagonal map from the topological rc-dihedral ¢g-simplex ADZ, to the topological
r-dihedral (c¢(q + 1) — 1)-simplex ADZ. This map is given by

1 1 1 1 1 1
M;tg, ...t M;—to, ..., =ty —to, ..., —tgy .., —to, .., =1
( y L0y 7q)'_>( ’007 7Cq7007 7cq7 7007 ’Cq)
This map is O(2)-equivariant. Varying g, we get a natural transformation AD?, —

AD?osd,.. Using a trick with coends we define a natural O(2)-map D, : | sd. Xo| —
| Xo|. Consider

[p|€AD,c [¢gleAD,
[ [ X xAD ) x AD

Observe that the evaluation
[qleAD,
| X < AD s o) — (.),

is a homeomorphism. (The identity in AD,(sd.[p], sd.[p]) gives an inverse map.)
It follows that the double coend above equals

[p|€AD,¢
/ (sd. X), x AD?. = |sd, X.|

On the other hand, by the Fubini theorem for coends, we can consider the coend
over [p] € AD,, first. Via the diagonal map given above, we get a natural
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O(2)-map

[qJeAD, [ [p]eAD;.
[ [ X < ADsddsl i) x a0

[q]eAD, [p]€eAD;
= [T ([T AD sl la) x AD

diagonal l[gleAD, [P]€AD:
dingonal, / X, x / AD, (sd [p), [q]) x ADb

luat [q]eAD,
evaluate
evalute, / X, x AD?

= [X.]

Putting this together we see that the diagonal map on topological simplices gives
a natural O(2)-map

D.:|sd. Xo| — | X

Similarly, for the cyclic, the involutive simplicial and the simplicial categories we
have a natural S'-map, Z/2-map and map respectively.

Proposition 1.1.35

Let X, be an r-dihedral space, an r-cyclic space, an involutive simplicial space
or a simplicial space. In all cases, the (equivariant) map D, : |sd. Xe| — | X| is
a homeomorphism.

Proof: Recall that we can compute the geometric realization either over the
crossed simplicial category or over A. Because both methods yield the same
space, lemma [[LT.Z27, it is enough to inspect the map in the simplicial case.

The proof for simplicial sets, lemma 1.1 in [BHM93| applies also to the case
of simplicial spaces: One first checks by explicit computation that D, is a home-
omorphism when X, is the simplicial 1-simplex A(—, [1]). It follows that D, also
is a homeomorphism for products A(—,[1])*?. Then it holds for the simplicial

g-simplex because of the retraction A(—,[q]) = A(—,[1])*? & A(—,[q]). Let
1, denote the inverse of D. : |sd. A(—,[¢])| — |A(—,[¢])|- For general simplicial
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spaces X, we now define the inverse as follows:

[gea
X = / X, x A

[deA
- [ X< 1A )

1d X1q [a)ea
——H/ X, % |sde A(—, [q))

:/WA&X</WAAmemxAﬂ

/ EA/ 2 X % Al [g]) % A
= | sd. X

1.2 Homotopy colimits over topological categories

In this short section we will define the homotopy colimit of a continuous func-
tor over a topological category. Also, we give a condition on F' such that
hocolimg F' — B% is a A-quasi cofibration.

Assume that % is a small topological category; we have a discrete set of
objects, while for each pair of objects, a,b € %, we have a topological space
% (a,b) of morphisms from a to b. For continuous functors F' : € — Top we
would like to define a homotopy colimit.

Definition 1.2.1
We define hocolimy F' as the realization of a simplicial space. Its q-simplices are

X, = H Cfaq 1,0q) X -+ X € (ag,a1) x F(ag)

Face and degeneracy maps are given by

(fq—lw"?fl;fO(x)) fOfi:O,
dz’(fq—la o forw) = (fq—l, oo S fio fict, fice, oo, fosx) for 0 <i <gq,
(fo—25 -5 fo; ) for i = q, and

Si(fq—b . '7f0;x) = (fq—la s '>fi7 Zdapfi—l, . .7f0;.CE)
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hocolim is functorial. If 7 : F — F”’ is a natural transformation, then there is
an induced map
hoc(glim F— hoc{glim F

Furthermore, if j : 2 — % is a functor, then there is an induced map
hocolim j*F — hocolim F'
2 %
where j*f is the composite f o F : & — Top.

Proposition 1.2.2
If 7 : jo — j1 is a natural transformation between continuous functors 9 — €,
then there is a simplicial homotopy between

hocglim JoF Lo, hoc(glim F

and

hocglim JoF = hocglim i F AEDLA hoc{glimF

for any continuous functor F' : ¢ — Top.

Proof: We define a simplicial homotopy. It is given by maps

hi: [[2(bg-1,bg) X -+ x D(bo, b1) x F(jo(bo))
- Hcg(amaq-i-l) X € (ag-1,aq) X -+ X € (ag,a1) X F(ao)
for 0 <7 < q. To define the h;’s we consider the diagram in ¢

jo(bo) ]O(f()) jo(bl) ]O(fl)

TbOJ( Tle{ .« e J/qu

. i1 (f . i1(f j1(fg—1) .
dilbo) 2 i) 2 2D )

. jO(qul)

h; is now given by the formula:

hi(fo-1,- -5 fos ) = (1(fo=1)s 5 1 (fi)s Toi o (fiz1), - -+, o (fo); @)
It is easily checked that this is the required simplicial homotopy. U

We now define \-quasi fibrations:

Definition 1.2.3

A map p : E — B is a A-quasi fibration if for any b € B the induced map
mi(E,p~'(b)) — mi(B,b) is an isomorphism for 0 < i < X and a surjection for
= A
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Proposition 1.2.4
Consider the diagram:

E, < R, E,
P2l lpo lpl
B, —— B, —— B,

Assume that the p;’s are A-quasi fibrations with p;*(b) path-connected for all i
and b € B;. Ifi is a cofibration, the right square pullback, and py*(b) — py ' (f(b))
A-connected for all b € By, then the induced map of pushouts p : E — B is a
A-quasi fibration.

Proof: We can assume that f is a cofibration, if not one can replace By by the
mapping cylinder My, and E, by the pullback r*Ey over the retraction r : My —
B>. Moreover, we can assume that F' is a cofibration, if not we can replace Ey
by Mp. Using that f is injective it follows that Mrp — Bs is a A-quasi fibration.

Now compare the long exact sequences of homotopy groups for the triples
(Ey, Eo,py ' (b)) and (By, By, b), where b € By. Since py ' (b) = p;'(b), remember
that the right square is pullback, and using that pg and p; are A-quasi fibrations,
we get that m;(Ey, Ey) — m(Biy, By) is an isomorphism for 0 < i < X and
surjective for i = .

Regarding the connectedness of m;(Fy, py ' (b)) — m;(Ba,b), we reason as fol-
lows: Since py ' (b) — py ' (f(b)) is A-connected, we get that m;(py ' (f(b)), py " (b))
is the trivial group when ¢ < A. Now consider the long exact sequence of ho-
motopy groups for (Ey, py ' (f(b)),p5'(b)). The homomorphism m;( Es, py* (b)) —
7i(Ey,p3 ' (f(b))) is an isomorphism for i < A and surjective for i = \. Using that
P2 is a A-quasi fibration, the composed map

mi(Ez, py " (b)) — mi( Bz, py ((b))) — mi( Bz, b)

is also an isomorphism for ¢ < A and surjective for ¢ = .

Comparing the long exact sequences of homotopy groups for (Ey, Ey, py" (b))
and (B2, Bo,b), we see that m;(Ey, Ey) — m;(Ba, By) is an isomorphism for 0 <
1 < A and surjective for i = A.

Since the maps under consideration are cofibrations, the Mayer-Vietoris prop-
erty for homotopy groups holds as stated in [Hat02| proposition 4K.1. Therefore,
we have that m;(F, Ey) — m;(B, By) is an isomorphism for i« < A and surjective
for i = \. The same is also true for m;(E, Ey) — m;(B, By).

At last we can check whether p : E — B is a A-quasi fibration. If b € By
we compare the long exact sequences of homotopy groups for (E, Ey, p~!(b)) and
(B, By,b). By the five lemma we see that m;(E,p~'(b)) — m;(B,b) is an isomor-
phism for ¢ < A and surjective for « = A\. When b € B; \ By, we compare long
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exact sequences of homotopy groups for (E, Ey,p~!(b)) and (B, By,b). The same
conclusion holds. 0

Observe that for any functor F' : € — 7op there is a natural map

hoc%glim F — B¥%

Here B% is the bar construction (—geometric realization of the nerve). In some
cases, this map is a A\-quasi fibration:

Proposition 1.2.5
If the induced map F(a) — F(b) is A-connected for all morphisms of €, € is
well-pointed and all F'(a)’s are path-connected, then

hoc%glim F — B¥%

is a A-quasi fibration.

Proof: Asabovelet X, denote the simplicial space whose realization is hocolime F'.
Now compare the presimplicial realization with the geometric realization:

F(ag) —— [ Xo] — [1B.Z]

1k

F(ag) — |X.| —— [B.9]

Here F'(ap) is the fiber over some point b in ||B,%||. The fiber over b’s image in
| B,%| is identical. This can be seen by inspecting the definition of the degeneracy
maps.

Since € is well-pointed, it follows that X, and B,% are good simplicial spaces.
Hence, the vertical maps are weak equivalences. Therefore it is enough to show
that [| X,|| — || B« is a A\-quasi fibration.

Following Quillen, we now consider the skeletal filtration of the presimplicial
realization.

Fo || Xe|| «—— X, x0A?7 — X, x Al

| l l

Fy1||BSE| —— B,€ x 0A" —— B,€ x Al

This diagram satisfies the conditions of proposition [CZ4, so the map of pushouts
F,|| Xe|| = F,||Bo€|| is a A-quasi fibration.

Now the result follows since the direct limit of A-quasi fibrations is a A-quasi
fibration. O
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Chapter 2

Orthogonal spectra

This chapter will introduce the relevant results about orthogonal spectra. The
main reference for these results is the article [MMSSOT]. The aim of that article
is to compare different constructions of a category of spectra with an associative
and commutative smash product. Their theorem 0.1 says that the categories
of N -spectra, symmetric spectra, orthogonal spectra, and # -spaces are Quillen
equivalent. However, the aim of this thesis is to study involutions on certain ring
spectra related to geometry of manifolds, see chapter @l Therefore we are free
to choose the category of spectra most convenient for our purposes. This is the
category of orthogonal spectra, and we will focus on how to work within this
category.

Below we will give an exposition of the theory of orthogonal spectra. All
relevant definitions are included here. For completeness we also reprove some of
the results of [MMSSOT]|. However, there are also new results here: We introduce
l-cofibrations, definition ZT.7 in order to study simplicial orthogonal spectra,
propositions and We consider induced functors, corollary E23TH.
And we construct cofibrant and fibrant replacement functors with additional
properties, theorem and theorem PLG.T] respectively.

We use the convention that topological spaces mean compactly generated
spaces (=weak Hausdorff k-spaces). This category satisfies Steenrod’s convenient
technical properties as defined in [Ste67|. In addition the category is closed under
the operation of passing to the quotient X /A of any closed pair (X, A), and under
the operation of taking the union of an expanding sequence of closed subspaces.
We refer to §2 of [McC69) for the definition and further properties of compactly
generated spaces. We let Zop denote this category, and Zop, based compactly
generated spaces.

23
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2.1 Basic definitions

In this section we will define the category of orthogonal spectra, .#.7. It is a topo-
logical category. To define .#.% we introduce the topological category .# of finite
dimensional real inner product spaces and linear isometric isomorphisms. The
morphism spaces & (V, W) are empty when V and W have different dimensions,
and homeomorphic to the orthogonal group O(n) when n = dimV = dim W.
Direct sum gives .# the structure of a symmetric monoidal category, and one-
point-compactification gives a functor S from . to compactly generated spaces.

Definition 2.1.1

The category .#.% of orthogonal spectra has as its objects continuous functors
L from .# to based compactly generated spaces together with maps o : L(V') A
SW — L(V @ W), natural in V and W, such that the composite

LV)Y2LV)AS* S L(V@0)x L(V)

is the identity and o is associative in the sense that the following diagram com-
mutes

LWU)ASY ASY M L UeV)ASY

gl l
LO)ASYW 25 LU VaoW)

A map of orthogonal spectra is a natural transformation f : K — L of functors
such that the following diagram commutes

K(V)ASY —2 K(VaW)

fv/\idl J{fveaw

LVYASY —Z— L(VaeW)

We call o the right assembly map. There is also a unique left assembly &
corresponding to o via the symmetry of A and &.

There are several interesting examples of orthogonal spectra. First observe
that the functor S is an example by letting o : SV A SW — SVEW be the natural
homeomorphism. We call S the sphere spectrum. For based topological spaces
X the suspension spectrum is defined by V — X ASY. We can also define Thom
spectra by letting TO(V'), for an n-dimensional V| be the Thom space of the
tautological n-plane bundle over the Grassmannian of n-planes in V & V.

2.1.1 Shift desuspension functors

There is a shift desuspension functor Fy from based compactly generated spaces
to Z.% for any V. It is defined by the formula

(FyA(W) = (VaRL W), Aow (AN ST,
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where A is a based space and d = dimW — dimV. We let (Fy,A)(W) = * for
dim W < dim V. The right assembly o : (Fy A)(W) A SY — (FyA)(W @ U) is
defined by choosing an isomorphism ¢ : R* = U, and is well defined since we
divide out by O(d + d’) in the definition of (Fy A)(W & U).

Fy is left adjoint to the evaluation at level V:

SIS (FvA L)~ Top, (A, L(V))

for all V, A and L.

2.1.2 Notions of equivalence

For orthogonal spectra there are two different notions of equivalence:

Definition 2.1.2
A map f: K — L of orthogonal spectra is a level equivalence if for every V' the
map fy : K(V) — L(V) is a weak equivalence.

To define the other kind of equivalence we make use of a forgetful functor U
from .7 to prespectra. (The theory of prespectra can be found in chapter II
of [Rnd98|.) The n’th space of UL is L(R™) and the suspension map s,, : (UL), A
St — (UL),41 comes from the right assembly by identifying R™ & R with R"*!.
Recall that the homotopy groups of a prespectrum X is defined as

T (X) = co711im Tgtn (Xn)

We now define:

Definition 2.1.3

A map f: K — L of orthogonal spectra is a m.-isomorphism if the underlying
map of prespectra Uf : UK — UL induces an isomorphism on all homotopy
groups.

A level equivalence X' — L induces an isomorphism 7, (UK),, — m44,(UL),
for all ¢ and n, thus we have:

Lemma 2.1.4
Any level equivalence is a T,-isomorphism.

We also have a notion of {2-spectra:

Definition 2.1.5
An orthogonal spectrum FE is an ()-spectrum if the adjoint of o,

EV)—=QVEVaoW) |,

is a weak equivalence for all V and W .
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Notice that E is an 2-spectrum if and only if UF is an 2-prespectrum.

Remark 2.1.6

For general diagram spectra, and symmetric spectra in particular, there is a third
notion of equivalence, namely stable equivalence. Let [L, E] denote the set of
maps in the level homotopy category. If L is cofibrant (see section below for a
definition of cofibrant), then [L, E] is isomorphic to the set of path components of
the topological space .#.% (L, ). We say that f : K — L is a stable equivalence
if f*:[L, E] — [K, E] is a bijection for all Q-spectra E. However, for orthogonal
spectra there is no difference between m,-isomorphisms and stable equivalences.
See proposition 8.7 in [MMSSO1].

2.1.3 l-cofibrations

There are many conditions on maps ¢ : A — L that could be taken as the
definition of some kind of cofibration of orthogonal spectra. In section below
we are going to study g-cofibrations. They depend on cellular techniques; this is
a strong condition. However, in this section we will consider a very weak way of
defining a notion of cofibrancy:

Definition 2.1.7
A mapi: A — L of orthogonal spectra is an [-cofibration if for every V' the map

A(V) — L(V)

is an unbased closed cofibration of topological spaces. We call L well-pointed if
x — L is an I-cofibration.

Remark 2.1.8

Recall that any unbased cofibration of topological spaces is a homeomorphism
onto its image (Theorem 1 in [Sfr66]). Therefore, we can always assume without
loss of generality that any unbased closed cofibration is an inclusion of a closed
subspace. Furthermore, if i : A C X is the inclusion of a subspace, then the
following are equivalent ways to define that ¢ is a cofibration:

For any map f : X — Y and any homotopy F : A x [ — Y with F'(a,0) =
fi(a) for all a € A, there exists a homotopy F': X x I — Y such that F’
restricts to ' on A x I and F(z,0) = f(x) for all z € X.

The subspace X x 0U A x [ is a retract of X x I. (Theorem 2 in [Stx68].)
There exists a continuous function ¢ : X — [ and a homotopy H : X x [ —

X such that A C ¢71(0), H(z,0) = z for all x € X, H(a,t) = a for all
a€ Aandt € I, and H(z,t) € A whenever t > ¢(x). (Lemma 4 in [Str68].)
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Notice that the subspace topology on X x 0U A x I does not always coincides
with the mapping cylinder topology, but in two important cases these topologies
are identical: 1) If A is a closed subspace of X, or 2) if A C X is a cofibration.

Let us now look at some properties of l-cofibrations of orthogonal spectra:

Proposition 2.1.9

If we are given a map i between sequences of I-cofibrations Ay — A; — --- and
Ly — Ly — --- and each i,, : A, — L,, is a m,-iso, then the induced map of
colimitsi: A — L is also a m,-iso.

Proof: Since spheres S? and disks D! are compact, we have

7 A(V) = colimm, A, (V)

m

and similar for L. Thus

7y A = colim g, A (R") =R colim g4 L (R") = m,L

)

is an isomorphism because each i, : A,, — L,, is a 7,-iso. ]

From the category of spaces we immediately inherit union and gluing theorems
for 1-cofibrations:

Proposition 2.1.10
IfA— L, B— L and ANB — L are I-cofibrations and AUB — L an inclusion,
then AU B — L is also an l-cofibration.

Proof: Notice that intersection and union are level-wise constructions on
orthogonal spectra. Now the result follows directly from the definition of I-
cofibration and Lillig’s union theorem [Lil73]. O

Proposition 2.1.11
If we have a diagram

B AL
le fol lﬁ
B/ A/ 7:2 L/

of orthogonal spectra, where 11, 2, fo, f1 and fy are I-cofibrations and the right
square is pullback, then the map of the row-wise pushouts is an I-cofibration.
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Proof: Pushouts and pullbacks are level-wise constructions, therefore the result
follows from proposition 2.5 in [Lew82]. O

If X is a based space and L an orthogonal spectrum, then we may form the
function spectrum

F(X,L)

level-wise. To be precise we let F'(X, L)(V) be the space of based maps X —
L(V'). This is again an orthogonal spectrum, see example ZZ.T7. We now apply
F(X,—) to an l-cofibration:

Proposition 2.1.12
If C' is a compact based space, and i : A — L is an I-cofibration of orthogonal

spectra, then
F(C,A) — F(C,L)

is also an I-cofibration.

Proof: Fix V. Then we have H : L(V) x I — L(V) and ¢ : L(V) — I
satisfying Strgm’s criterion. Define H : F(C,L(V)) x I — F(C,L(V)) and
¢: F(C,L(V)) — I by
H(f,t)(c) = H(f(c),t) and ¢(f) =supof(c)
ce
for f: C — L(V)and t € I. Then (H, ¢) shows that F(C, A)(V) — F(C,L)(V)
is a cofibration. O

Remark 2.1.13

One can define h-cofibrations as the maps ¢ : A — L having the homotopy exten-
sion property, see §5 in [MMSSOI|. These should behave more or less like based
cofibrations of spaces. Therefore, we run into problems if we try to prove union
and gluing theorems for h-cofibrations without introducing extra conditions.

2.1.4 A symmetric monoidal smash product

The main advantage of orthogonal spectra compared to prespectra is the existence
of a symmetric monoidal smash product. To define this we follow [MMSSO1].
Define the category of .#-spaces, .#7op,, to be functors . — Top,. It is a
topological category, the morphisms being the space of natural transformations.

Before defining A on .#.%, we define the smash product, A, of .#-spaces. This
is given by

(XAY)(V) = \/ F(RE @R, V), Ao, eows (X(RY) AY(RE))

dy,d2
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If L and K are orthogonal spectra, notice that the assembly induces a map of
& -spaces o : LAS — L, and similarly the left assembly induces ¢ : SAK — K.
We now define the smash product, LA K, of orthogonal spectra by the coequalizer
diagram of .#-spaces:

oAid
LASAK = LAK - LAK
id NG
Coequalizers in .#7op, are formed level-wise. Recall that Zop, is the category
of compactly generated spaces. It is cocomplete, and hence the topology of
(LAK)(V) is given as a coequalizer in this category. As explained in [MMSS0T],

the smash product is symmetric monoidal.
Having the smash product we define the [J product of maps:

Definition 2.1.14
Let f: A— L and g : B — K be maps of orthogonal spectra, then we define

fOg as the map
fOg: ANKULANB — LAK

We also have internal function objects. Again we start by defining the internal
function object, F'(—,—), on .#-spaces. This is given by
F(X,Y)(V) = ITop, (X, Y(V & —))
And we have an adjunction for .#-spaces X, Y and Z:

I Top (XAY, Z) = I Top, (X, F(Y, Z))

If L and K are orthogonal spectra, the assembly induces a map o* : F(L,K) —
F(LAS, K). By the adjunction above there is an evaluation map € : F(L, K)AL —
K. Now consider the composite

ad eAid

F(L, K)ALAS L% KAS & K

let w be its adjoint. Define the internal function spectrum, F'(L, K), by the
equalizer diagram of .#-spaces:

F(L,K) — F(L,K) = F(LAS, K)

We immediately get an adjunction for orthogonal spectra L, K, X:
IS LNK X)) 7S (L, F(K, X))

Lemma 2.1.15
There is an adjunction for the internal hom objects:

F(XAY,Z) 2 F(X,F(Y,Z))

for X, Y and Z orthogonal spectra.
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Proof: Assume first that X, Y and Z are .#-spaces. Then we check by the
definitions that ) ) )
F(XAY, Z)(V) 2 F(X, F(Y, Z))(V)

for all V.
By the coequalizer defining A and the equalizer defining F'(—, —), the adjunc-
tion also holds for internal hom objects in .#.7. U

2.1.5 The external viewpoint

We have presented the symmetric monoidal category .#.7 of orthogonal spectra.
The formal properties are nice, but when we actually want to do constructions
things usually are a bit harder. For example it is not easy to define a map
LN K — X directly using the definition of L A K. Therefore it is useful to have
alternative viewpoints.

Orthogonal spectra may be described as diagram spaces, see 1.4 in [MMO2]
and §23 in [MMSSOT]: There is a topological category _# such that continu-
ous functors _# — 7Top, corresponds to orthogonal spectra. The objects of _#
are the same as the objects of .#, finite dimensional real inner product spaces
V. Let &(V,W) be the space of linear isometries V' <— W. And let E(V,W)
consist of pairs (f,w) where f : V — W is a linear isometry and w € W is
orthogonal to f(V'). E(V,W) is a vector bundle over &(V, W), and we define the
space of morphisms ¢ (V, W) to be the Thom space of E(V,W). (First apply
fiber-wise one-point-compactification to E(V, W), then identify the points at cc.)
Composition

o: F(WU)A Z(V.W) = £(V,U)

is defined by the formula (g, u)o(f, w) = (go f, g(w)+wu). The identity of V in ¢
is represented by (idy,0). Direct sum gives ¢ a symmetric monoidal structure:
Here

&: JVW)NJV W) = VeV, WaeW)

is defined by (f,w)® (f',w') = (f @ f', (w,w’)). Observe that when V C W, we
have the identification:

T VW) 2OW) s Now-vy SV

Theorem 2.1.16
The category %/ of orthogonal spectra is isomorphic to the category of -
spaces as symmetric monoidal categories.

Proof: This is the special case R = S of theorem 2.2 in [MMSS0T]. Given an
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orthogonal spectrum L, the corresponding _#-space L' is defined by
L'(V) = L(V)
and the map L'(V) — L'(W) induced by (f,w) is the composition

x—(z,w)

LOVASV=IW) 2 L(ve(W—f(V))) = L(W) = L'(W)
O

L'(V) = L(V)

Example 2.1.17 (Level-wise constructions)

Given a continuous endofunctor F' on Zop,, we may apply this level-wise to an
orthogonal spectrum L. This yields a new orthogonal spectrum F(L). To see
this we view L as a functor # — 7op, and consider the composition

7 i>’Z?)p* i’]’op*

Examples of such endofunctors are: Based loops §2(—), suspension ¥(—), function
spaces F'(X, —), the Barratt-Eccles functor I't(—).

Example 2.1.18 (External description of the smash product)
Given _Z-spaces K and L we have an external smash product A. This produces
a functor ¢ x ¢ — Top, defined by

(KAL)(V1, Vo) = K (Vi) A L(Va)

Recall that @ is a functor ¢ x ¢ — _#. Left Kan extension, see section X.4
in [ML9§|, of KAL along & gives an internal product. Theorem ZTI6 says
that this internal product is equal to K A L defined above. Adjunction for left
Kan extensions now says that for orthogonal spectra K, L and X there is a
homeomorphism between

the space of natural transformations (KAL)(Vi, V) — X (V) & V43)
where V;, V5 € _# and
the space of maps of orthogonal spectra K AL — X

This adjunction is useful when defining maps K A L — X. All we have to do
is to provide maps
K(Vi) ANL(V2) = X (V1 © Va)

for all Vi and V5 such that the following diagrams commute

SWAK(VY) ALV, —— SWAX(VL@Vy)

BAidLJ la

KWea& V)ALV, —— X(WaeVialh)
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and
KWV) AL(Vo) NSV —— X (Vi@ Vo) ASY

idK/\Ul l(r

KWALVaa W) — X(ViaV,eW)
for all V4, V5 and W.

2.1.6 Orthogonal ring spectra; S-algebras

Having a symmetric smash product A of orthogonal spectra we define orthogonal
ring spectra, also called S-algebras, as follows:

Definition 2.1.19
An orthogonal ring spectrum, or S-algebra, is an orthogonal spectrum L together
with mapsn : S — L and  : L AN L — L such that the following diagrams

commute:
S is the unit for A

SAL

i | |-

LAL LN L
L/\S S is the unit for N\ I

| I-

LAL _r L

and 4
LALANL 2% DAL

ian | [

LANL —“ L

Definition 2.1.20
An involution on an orthogonal ring spectrum is a map ¢ : L — L such that the
following diagram commutes:

twist

LAL s AL 2% DAL
ul lu

Remark 2.1.21
We can externalize the definition of an orthogonal ring spectrum. What we then
get is a continuous functor L : .¢ — 7Jop, together with natural transformations

n:S" = L(V) and p:L(V)ANLW)— L(V&W)
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satisfying certain conditions. L has involution if we in addition have ¢ : L(V) —
L(V). We often call an orthogonal ring spectrum an .#-FSP when we view it
externally.

2.2 Cellular techniques; g-cofibrations

According to [MMSSO1]| the g-cofibrations are the retracts of relative cellular
maps. Let us therefore see what a relative cellular map is: We start by defining
our set, of cells.

Definition 2.2.1
Let F'I be the set of all maps FRmel — Frm D, where m > 0 and n > 0.

We think about Frm D" as a cell with boundary FRmel. In the case n =0
the boundary is *.

Remark 2.2.2 (Symmetries of cells)

If we inspect a cell Fgm ST — Frm D7}, we see that it has internal symmetries.
We will particularly be interested in two different actions. First we have an action
of the permutation group ¥,. It acts on R by permuting the factors. Any
permutation preserves the subspaces D" and S™~!. Therefore, o € ¥, induces a
map of pairs

o, (DY, 8171 — (DY, 817

Applying the shift desuspension functor Fgm(—) we get self-maps of the cell
Fgm ST — Fgrm D™. We denote this map by F(o).

There is also another action. X, acts on R™ by permuting the factors. These
maps are isometries, so for any space A a permutation o € ¥, induces a map

Fo- . FRmA — FRmA

natural in A. This gives another action on Fgm S_’ﬁ_l — Frm DY

Definition 2.2.3
A mapi: A — L of orthogonal spectra is relative F'I-cellular if:

i(A) is a subspectrum of L.

There is a set C' of subspectra L, such that each L, contains i(A) and
Uaec La = L.

C' is partially ordered by inclusion. We write 3 < « if Lg C L,. And for
all a the set P, = {f € C' | § < «} is finite.
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For every a € C' there is a pushout diagram

Fam S —— Fpn D"

! |

Uﬁ<a Lﬁ - LO!

Recall that in the category of orthogonal spectra pushouts are formed level-
wise. If o is minimal, then the union Uﬁm Lg is indexed over the empty set. If
this is the case we interpret the union as i(A). C is the set of cells in the given
relative cellular decomposition of 7 : A — L, and § < « if the cell 3 is attached
prior to a. Observe that we allow some redundancy in this definition, since we
do not insist that the map Fgm ST — Up<o L meets each L non-trivially.

Remark 2.2.4

There is also a notion of relative CW-orthogonal spectra: What we do is to put
on the extra condition that the cells are attached to cells of lower dimension only.
The dimension of a cell FrmD? is n —m. In other words: A relative FI-cell
structure of i : A — L is CW if the map dim : C' — Z is strictly increasing.

Definition 2.2.5
A mapi: A— L is a g-cofibration if it is a retract of a relative F'[-cellular map.
We call L cofibrant if * — L is a q-cofibration.

This definition says that there exists a relative F'I-cellular map B — K and
a diagram

N

such that the horizontal compositions are the identity. Now observe that there is
no loss of generality if we assume that B = A. This follows from the elementary
fact that relative F'I-cellular maps are closed under cobase change.

Observe that all g-cofibrations are both l-cofibrations and h-cofibrations.

Remark 2.2.6

Alternatively one could define g-cofibrations as the maps which has the left lifting
property with respect to all level acyclic fibrations. See §6 in [MMSSOT]. Recall
that a level acyclic fibration f : E — B is by definition a map such that for each
V' the map fy : E(V) — B(V) is both a weak equivalence and a Serre fibration.

Here is an example of an orthogonal spectrum which is not cofibrant:
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Example 2.2.7
Let S’ be the orthogonal spectrum given by

S'(V) =

SV if dimV > 0, and
* if dim V' = 0.

This is a subspectrum of S, and the assembly maps are inherited. We will now
show that S’ is not cofibrant.

Assume that S’ is cofibrant. For contradiction we now construct a level acyclic
fibration f : £ — B and a diagram

* —— B
I
S —— B

such that no lifting S — E exists. Hence, S’ cannot be cofibrant.

Consider the map
p:STA St — st

given by collapsing S* to a point. This is a weak equivalence since S* is con-
tractible. The map p is involutive. Here Z/2 acts on S! by reflecting the circle
across a line, and Z/2 acts freely on S*°. The smash product is given the diagonal
action. However p is not a fibration, so we use the standard trick: Let E, be the
Z/2-space of pairs (z,7), where z € S A S' and ~ is a path in S' such that
p(z) = v(0). The natural map

(z,7) = (1) : B, — S
is again a weak equivalence. Taking 7Z/2-fixed points we see that
.= (EP)Z/Q s (S22 = g0
Now define the level acyclic fibration £ — B of orthogonal spectra by

E(V) = {ﬂ(Rla V) Nowy Ep if dimV =1,

* otherwise,

and

* otherwise.

BV) = {ﬂ(Rl,V) Aomy S' if dimV =1, and

There is a map S’ — B defined by letting the evaluation on level R! be the
identity. If S’ is cofibrant, there exists a lift to E and at level R! we have

S'(R') — E(R') — B(R")
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where the composite is a Z/2-equivariant homeomorphism. Taking 7Z/2-fixed
points we get,
SO x — g0

)

and since the composition cannot be a homeomorphism, this yields the contra-
diction.

For topological spaces we know that a compact subset of a CW-complex only
meets finitely many cells. The same is true for relative F'I-cellular orthogonal
spectra, as the following lemma shows:

Lemma 2.2.8
If K is a compact space, i : A — L a relative F'I-cellular map of orthogonal

spectra and f : K — L(R™) a map, then there exists a finite set of cells P such
that f factors through | J,.p La(R™).

Proof: We say that K meets a cell a non-trivially if there exists a point z in
K such that f(z) € L,(R™), but f(x) ¢ Lg(R™) for any 5 < a. We have to
prove that K only meets finitely many cells non-trivially. For a contradiction
assume that S = {xy,x9,...} is a countable subset of K such that each z; meets
a distinct cell non-trivially. Then we can show that f(S) N L,(R™) is closed for
all a by induction on the number of elements in P,. The induction step uses the
pushout diagram in definition 23 Since L has the topology of colim,cc Lq,
it follows that f(S) is closed in L(R™). The same argument shows that any
subset of f(5) also is closed. Hence f(K) contains an infinite discrete set. This
contradicts compactness of K.

Let P be the set of cells which K meets non-trivially. 0

We have the following reformulation of cellularity.

Proposition 2.2.9
A map j : A — L of orthogonal spectra is relative F'I-cellular if and only if there
exists a sequence Ly — L; — --- of orthogonal spectra such that:

A= Ly.
L = colim; L; and j equals the natural map Lo — colim; L;.
For each 1 there is a pushout diagram

na—1 Na
\/ozEC’i FVa S+ - ’ VaECi FVaD+

l !

L; — Li+1

Here C; is the set of cells attached to L;.
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Proof: Assume that j is relative F'I-cellular. Let C; be a collection of subsets
of C such that

the set of indexes 7 is the non-negative natural numbers,
the C;’s are disjoint, and |J;2, C; = C,
if « € C; and § < a then 3 € C}, for some k < 1.

For example, we could let C; be the set of all cells a such that P, contains exactly
1 elements.

We set Ly = A, and let L;;; be the union of all L, when « runs through
CoUuCyU---UC;. Then Jyee Lo = L and j : A — L is the natural map
Ly — colim; L;. To get the pushout diagram of the proposition, consider the
functor D from Cy U Cy U ---U C; to pushout diagrams which sends o € C; to

—1
FRma S:L_a —_— FRma D:L_a

J .

UIB<a LIB - La

and a € CoUCTU---UC;_4 to
k —> Xk
L, — L,

If 3 < a, then we clearly have a map of pushout diagrams D(5) — D(«).
Taking the colimit yields the desired diagram, and this is a pushout, since forming
pushouts commutes with forming colimits.

Now assume that j satisfies the properties of the proposition. We will induc-
tively construct relative F'I-cell structures on L;,; with cells Cy U --- U C}, such
that L; is a subcomplex. To start the induction we regard A = Ly as a relative
F'I-cell complex with the set of cells being the empty set. Assume that L; already
has been given a relative F'I-cellular structure. The set of cells in L;,; should be
Co U ---UC;, but we need to extend the partial ordering from Cy U --- U C;_;.
We do this by specifying subspectra L, for all a in C;. Recall that for each such
a we have a diagram

FVaSia_l —_— FVaD?_a

l l

L; — Lip
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Look at the attaching map S7*~' — L;(V,). By lemma this map factors
through Uﬂep Ls(V,,) for some finite subset P of Cy U ---U C;_y. Define L, by

the pushout diagram
Fy, St —— R, DY

l l

UﬁePLﬁ — L

Here the Lg’s are already defined since 3 is a cell in L;.
Letting 7 go to oo we get a relative F'[-cellular structure for j : A — L. [

2.2.1 The smash product of relative cellular maps

Assume that A — L and B — K are relative F'[-cellular maps. We will now
describe the relative F'I-cellular structure of LABUAANK — LAK.
We will need a technical lemma:

Lemma 2.2.10
Consider a diagram of spaces:

By Ao Xo
I
B, Ay X1

Let Yy and Y, be the pushout of the top and bottom row respectively. Then the
diagram
ApUgy Xo — X4

l |

BiUp, Yo — Y1

is pushout.
Here we use the notation BU,4 X for the pushout of B «+ A — B, even when
neither of the two maps are injective.
Proof: To see this, take a look at the diagram
A —— AUy Xo — X4
By —— BiUp Yo — 1

By the observation that By Ug, Yo = B Ug, (Bo Ua, Xo) = By Ua, Xo =
By Ug, (A; Uy, Xo), we get that the left square is pushout. Since the outer
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square is pushout, it now follows by cancellation that the right square also is. [

Lemma 2.2.11
Assume that

Ay —2 Ly By —2 K,
N
Al _— Ll B1 E— Kl

are pushout squares of orthogonal spectra, where 1y and j, are I-cofibrations.
Then the diagram
Ao/\K()ULo/\BO —_— Lo/\KO

! l

Al/\K1UL1/\Bl —_— Ll/\Kl

is also pushout.

Using the [J product, definition EZT.T4], we can say that the bottom diagram
is the row-wise [J of the upper diagrams.

Proof: It is enough to prove the result in the case where By = By and K; = K.
Since the functor — A X preserve pushout diagrams for any orthogonal spec-
trum X, we have that the row-wise pushout of

Al/\BO — Ao/\BO —_— Lo/\BO

l l J

Al/\Ko — Ao/\Ko —_— Lo/\KO

is Ly AByg — L1 AN Kj. Since the property of being a pushout diagram is level-wise,
we can apply lemma 2210 Thus we get that

Ao/\K()ULo/\BO E— Lo/\KO

! l

Al/\K0UL1/\Bo—>L1/\K0
is pushout. This completes the proof. O
Proposition 2.2.12

Assume that i : A — L and j : B — K are relative FI-cellular maps. Then
iy : LABUANANK — L N K is also relative F'I-cellular.
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Proof: We will describe the relative F'I-cellular structure of :lJj. Let C' and D
be the sets of cells of i« and j respectively. The set of cells for i[Jj will be C' x D,
and we define (L A K)(q,,ay) to be

LABULy ANKy UANK

Observe that Pa, ay) = Pa; X Pa, U{an} x P, U P, X {a}, thus it is finite. It
is clear that Uy p(L A K)(ar,a0) = L A K. It remains to show that for each cell
(a1, arp) there are pushout diagrams:

Naq +nag—1 Naq +Nay
Fy, ev., 5% — Fy, ev., Dy

l |

U(ﬁl?/@Z)eP(al,QQ) (L A K)(ﬁl,ﬁz) - (L A K)(Oélm)

To see this, apply lemma 2217l to the diagrams:

Ry, Sy —— Fy, D™ Ry, 80" —— Ry, D
| [ooma ] |
UﬁlePal Ly, ’ La, U52€pa2 Kg, —— Ko,

Then apply (LA BUAA K) UL, ABUAAK,,) — t0 the lower map. This concludes
the proof. O

2.2.2 Cofibrant replacement functor

Now we shall introduce a cofibrant replacement functor. Among other uses,
we want to apply this functor to orthogonal ring spectra with involution to get
cofibrant orthogonal ring spectra with involution. Therefore we want the functor
to be lax skew-symmetric with respect to A. See appendix for definitions of
(symmetric) (co)monoidal categories and lax/strong (symmetric) (co)monoidal
functors. Skew-symmetry will be defined below. Our structure theorem is:

Theorem 2.2.13
There is an endofunctor I' on orthogonal spectra having the following properties:

I'L is cofibrant for all L.

If K — L is the inclusion of a subspectrum, then 'K — I'L is a ¢-
cofibration.

I' comes with a natural level-wise acyclic fibration vy : 'L — L.



2.2. CELLULAR TECHNIQUES; Q-COFIBRATIONS 41

I' comes with a natural transformation ¢ x : 'L ATK — I'(L A K).
' comes with an involution ¢ : 'L — 'L, and (*> = id.
There is a canonical level-wise acyclic q-cofibration \ : S — T'S.

With A\, ¢ and ¢ the functor I' is lax skew-symmetric monoidal with respect
to A.

I' comes with a natural level equivalence pp i : I'(L x K) - 'L x I'K..

With 7, : I's — % and p the functor I' is lax symmetric comonoidal with
respect to X.

Note that ¢ is not always a m,-iso. If L and K both are sufficiently bad,
the smash product L A K can have homotopy unrelated to L and K. Thus
['(LAK) will have the same bad homotopy, whereas ' LAT' K will have the correct
homotopy. However, if either L or K is cofibrant, then ¢ will be a 7,-isomorphism,
since smashing with a cofibrant orthogonal spectrum preserves 7,-isomorphisms,
see proposition 41

Proof: We will break the proof of the structure theorem into several proposi-
tions, and the proof will span the rest of this subsection. However, we first show
that the comonoidality with respect to x is a formal consequence of the other
properties:

To define a map into a x-product, it is enough to define one map into each
factor. I' applied to the projections gives

I'(LxK)—TL and DI(LxK)—>TK |,

and pr g is determined by these maps. It is elementary to see that the cross
product of two level equivalences is a level equivalence. Hence, we have the
diagram

INLxK) - I'LxTK

’Vl: :l'\/xw )

LxK — LxK

and it follows that p is a level equivalence.
We know that x is the categorical product on .7, hence lemma [A.2.9 im-
plies that I' is lax symmetric comonoidal with respect to x. U

Let us now look at the construction of I'. The idea is to apply Quillen’s small
object argument, see 7.12 in [DS95]. We proceed as follows:
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Suppose that p : A — L is a map of orthogonal spectra. We now construct
an orthogonal spectrum G(p) and a factorization of p:

A—G(p)— L

Let C be the set of all diagrams

n—1 FRmin
FRmS+ — FRmD?_

L
A L L
where n,m > 0. Now define G(p) by the pushout diagram
Vaeo Frma S35 —— Vo Frma DY
Voo fe | [Vacos
A —— G(p)

By construction we see that A is a subspectrum of G(p), and the natural map
G(p) — L comes from the universal property of the pushout. Observe that G(p)
is a functor; a morphism between maps p; : Ay — Ly and py : Ay — Ly is a

commutative diagram
p1
Ay —— Iy

Lo

Az LLz

Without a proof we observe that:

Lemma 2.2.14
There exists a relative F'I-cellular structure on the map A — G(p).

To define I'L we iterate the gluing construction. Start with py : * — L. Apply
the construction above and set G'(L) = G(py) to get a diagram:

« 2 GYL) S L
[terate to get diagrams
G(L) L G 2L L

Definition 2.2.15
Define the q-cofibrant replacement of L, T'L, to be the colimit of the G'(L)’s
constructed above.
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As a colimit of a sequence relative F'I-cellular maps starting from *, we see
that I'L is cofibrant. I' is a functor and the natural transformation v, : 'L — L
is induced by the natural maps G*(L) — L. Let us now begin to prove the various
statements of theorem PZ2T3

Proposition 2.2.16
If j : K — L is the inclusion of a subspectrum, then 'K — I'L is a g-cofibration.

Proof: Inspect the gluing construction. By induction it is enough to consider
a diagram

B _d, A
Pl lq )
K 1.1
where jj is a relative F'[-cellular. We must show that G(p) Ugp A maps homeo-

morphically onto a subcomplex of G(g). Compare with proposition
Consider a cell a of G(p):

Fyn ST 200 By DT
/| 5
B L. K

Composing f with jg and g with j we get a new diagram [ representing a cell
in G(q). Since jy and j are injective, we see that different cells a and o in G(p)
gives different cells § and ' in G(q). It follows that

G(p)Up A — G(q)

is relative F'I-cellular. O

It is easy to construct the map A\ : S — I'S: The diagram

X — Fng_

It

x —— S
determines a cell o of I'S. We have I'S, = S, and define A to be the composition
S 518, »TS

Proposition 2.2.17
~v:T'L — L is a level acyclic fibration.
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Proof: Fix some level V = R™. We have to show that for every diagram

st L L)

| b

Dr— L(V)

there is a lift D" — T'L(V). Since S"™! is compact there is an i such that f
factors through G*(L)(V). Then we get the diagram

st L Ginywv)

J/ J{pi )
D" —— L(V)
but this is exactly what determines a new cell @ in G(p;). And we see that D™

lifts into G**1(L)(V). O

Construction 2.2.18
Next we construct the natural transformation ¢ : 'L ATK — I'(L A K). Induc-
tively we define maps

¢ij: G(L)ANG'(K) — G Y(LAK)
such that the following diagrams commute for all ¢ and j:

G(L)AGIK) 22, G-I AK)

‘| [

GHUL) A GI(K) 24, qiti(L A K)

GL)AGI(K) 21, GH-Y(LAK)

gl lc and

GHL) A G (K) 295 it A K)
GUL) A GI(K) 22 Giti-Y(L A K)

! l

LANK - LANK
By taking the colimit as both ¢ and j tend to infinity, we get our natural trans-
formation 'L ATK — I'(L A K).
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Let G(L) be x for i < 0. If i < 0 or j <0, then ¢, is trivially defined. We
construct the ¢’s by induction on ¢ + j. Let o and (3 be the diagrams

Fgm ST —— Fgm DV Fs ST —— Fpu DY
| oo ] ls
G (L) — L GYK) — K

respectively. By the construction of G*(L) and G7(K) there are unique lifts of a
and ( to diagrams @ and [3:

Fgm ST —— Fgm D7 Fs ST —— Fpu DY
| oo ] ls
G L) —— G'(L) GIYK) —— GI(K)

Recall the definition of [J of two maps, see definition ZT.T4. Now consider the
diagram
Fgmtms S ——  Fgnim DY
f/\glug/\f/l lg/\gl
G HLI)NGH(K)UG(L)ANGITYK) —— GY{(L)ANGI(K) ,
¢i—1,jU¢i,j—1l l
Git-2(L A K) —  LAK

where the upper part is row-wise [0 of & and 3. The map Gi—1,; U @; j_1 exists
by our induction hypothesis. The outer square is a diagram in C for the gluing
construction applied to G ~2(L A K) — L A K. Call this diagram §. And by
the cell 6 we get a map

G(L)o NG (K)s — G "HLAK); CGTHLAK)

Letting a and (3 run through all cells of G*(L) and G’(K) respectively, we get
our map

¢i,j : GZ(L) N G](K) — Gi+j_1(L N K)
This finishes the construction of ¢ : 'L ATK — I'(L A K).

Lemma 2.2.19
Let A — L and B — K be maps of orthogonal spectra. Consider diagrams

-1 -1
F]le S_?_l — FleDil FRmQSZQ — F’ngl)_rf_2

l l and l l :

A _— L B _ K
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representing cells called o and (3 respectively. We can compare the cells ol 13 and
G0« via the twist map L N K — K A L. And we have

twist o (o0f) = (B0a) o F(0)F,
where F (o) is the cell symmetry permuting coordinates of the (ny + ns)-disk as

indicated by the map D™ x D"* = D" x D™ and F, is the cell symmetry
permuting the indexing spaces as indicated by R"™ ¢ R™2? = R™ ¢ R™!.

Proof: We write out the proof only for the disks. The boundary of the cells
can be treated similarly.
Consider the diagram

F(o)F,
ni+n P na2+n
FRm1+m2 D+1 2 —— FRm2+m1 D+2 !

ET Tg

twist
Fam DA Frmy D72 2 Fpn, D2 A Fgmy D

l l

LAK it KAL
The bottom part clearly commutes, so it remains to check that the top part also
does. We evaluate at level R™ ™2 and get:

](Rmﬂrmz ’ Rm1+m2)+ A Dil +ng T Px f(RmQerl ’ Rm1+m2)+ A DinrTn

4 Tg

S (R™ @ Rm2 Rmitmz), A DM A Dtz M5 g(gma g R Rrmatmz), A DMz A DM
The map twist swaps both the indexing spaces R™! and R™2, and the disks D™
and D"2. ¢, is the map D™ "2 = D"2™™ permuting the factors, while p, is the
linear map R™*™m2 &2 R™2T™M1 applied to the first factor of & (R™+m2 RMitm2),
The left vertical identification is defined via R™ @R™2 = R™ ™2 and D' AD'? =
D™+ and the right vertical identification is given by R™2 @R™ = R™2+™1 and
D2 A D= D™ And we see that the diagram commutes. O

Now we are ready to define skew-symmetry and to show that I' satisfies this.

Definition 2.2.20

A lax monoidal functor F : M — B is skew-symmetric with respect to a product
[0 if there exists a natural transformation v : F(a) — F(a) with * = id, such
that the following diagram commutes:

F(a)OF(b) -2 F(a)OF(b) —— F(b)OF(a)

| l¢

FlaOb) —— Fab) L2 peda)
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We can say that « measures the failure of F' being symmetric. In our case we
have:

Proposition 2.2.21
I’ is a lax skew-symmetric monoidal functor with respect to A.

Proof: We begin by constructing ¢. It is a cellular map and can be defined on
the gluing construction. Let a be the cell

Fam S ' —— Fpn D1

A L L
of G(p). Let 7, and 7, denote the order reversing permutations in ¥, and ¥,
respectively. ¢ : G(p) — G(p) is the map that sends « to the cell F(r,)F,, ().

By construction of I'L as the iterated gluing construction, we get the natural

transformation
t:T'L —-TL

Clearly % = id.

Inspecting the construction of ¢ : TL ATK — I'(L A K), we see that I" is
lax monoidal. In order to check skew-symmetry, it remains to check that the
following diagram commutes:

twist

I'LATK 2 TLATK 'K ATL
¢l y
L T'(twist)
INLAK) —— D(LAK) —= T(K A L)
By induction on 7 + j we prove that

G(L)AGI(K) L G AGI(K) 22, GI(K) AGY(L)

¢i,gi l%‘,i
iti—1 L iti—1 Gi+j_1(twist) iti—1
G LAK) —— G (LK) SO iy A L)

commutes. Let o and (§ be the diagrams

Fgm ST —— Fgm DV F ST —— Fpu DY
| lowa o I
G4 (L) — L GYK) — K

respectively, and let @ and 3 be liftings as defined in the construction of ¢; ;. By
the previous lemma the diagrams twisto(ald3) and f0a differ by the permutation
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of coordinates o, : D" = D"+ and the permutation of indexing space p, :
R™+m >~ RM+™ - Computing with permutations in ¥, ., we have that

(o U 7)o = 0Ty

And similarly (7., I 7,/)p = pTotme 0 Eppy. Therefore the diagram

L

G(LaNG(K)g  ——  GUL)rm)r, e NG E)r@)r ,6)

®ij l twistl

G+ A K) G E)rer, ,3) NG (L) F(ra)Frp (@)

| Jo

G~ 1 (twist)

G LA K) GHi=L(K A L)

commutes. And the result follows. O

2.3 Boundedness

When doing constructions with orthogonal spectra, it can be useful to consider
those spectra which are bounded below, or those which in addition have highly
connected assembly maps. However cellular orthogonal spectra does not in gen-
eral have these properties. An exampleis \/;-_, Fr=S®. But we may approximate
any cellular orthogonal spectra by spectra satisfying these properties.

Let us begin with some definitions:

Definition 2.3.1
Let L be an orthogonal spectrum.

L is strictly c-connected if there exists an integer N such that L(R™) is
(n + ¢)-connected for alln > N.

We call L strictly connected if L is strictly (—1)-connected.

L is strictly bounded below if there exists a c¢ such that L is strictly c-
connected.

We can simplify the definition of strictly bounded below:

Lemma 2.3.2
L is strictly bounded below if and only if there exists a ¢ such that L(R™) is
(n + ¢)-connected for all n.
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Proof: The “if” direction is obvious. For the “only if” direction assume that L is
strictly c-connected. Let N be such that L(R") is (n+c¢)-connected for alln > N.
Now set ¢ = min(¢, —N). When n > N, the space L(R") is (n + ¢)-connected,
hence also (n+¢)-connected. Since every based space is (—1)-connected, we have
that L(R™) is (n + ¢’)-connected also for n < N. O

By the definition of the homotopy groups of an orthogonal spectrum we im-
mediately get:

Proposition 2.3.3
Let L be an orthogonal spectrum.

If L is strictly c-connected, then m,L = 0 for ¢ < c.

If L is strictly bounded below, then there exists a ¢ such that 7,L = 0 for
all ¢ < c.

The converse is not true as the following examples show:

Example 2.3.4
Let m be an integer and consider L defined by
L(V) = FJ R V) AST™ if dim"/ =n >m, and
* otherwise
with trivial assembly maps. Assume n > m. By the Freudenthal suspension
theorem we have that L(R") is (n — m — 1)-connected, and by homology calcu-
lations we get that L(R™) is not (n — m)-connected. Consequently, we have that

L is strictly (—m — 1)-connected, but not strictly (—m)-connected. However, the
homotopy groups m,L are trivial for all .

Example 2.3.5
Let L be given by

L(V) = (7 Z(R™ V),

with trivial assembly maps. Then for all n > 0 we have that L(R") is not 0-
connected. Hence, there exists no ¢ such that L(R") is (n + ¢)-connected for all
n. It follows that L is not strictly bounded below. But since the assembly maps
are trivial, it follows that 7,L = 0 for all ¢.

Lemma 2.3.6
If A — X is an [-cofibration, A, B and X strictly c-connected orthogonal spectra,
then the pushout, Y, of B «+— A — X is also strictly c-connected.
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Proof: The spaces A(R"), B(R") and X (R") all are (n + ¢)-connected. We
want to show that Y (R™) also is (n + ¢)-connected. Consider the diagram

AR") —— X(R")
B(R") —— Y (R")
For (n+c¢) = —1 and (n + ¢) = 0, it is obvious that Y (R"™) is (n + ¢)-connected.
Assume (n + ¢) > 0. Blakers-Massey applies and shows that
Ty (X(R"), A(R")) — my(Y(R"), B(R"))

is an isomorphism when ¢ < 2(n + ¢). By the long exact sequences in homotopy
for the pairs (X (R"), A(R")) and (Y (R"), B(R™)), the result follows. O

Corollary 2.3.7
Assume A, B and X strictly bounded below. Then the pushout of B — A — X
is also strictly bounded below if at least one of the maps is an I-cofibration.

Lemma 2.3.8
Let L =\, Fy,Ay. If A, is well-pointed and dimV,, < k for all o, then L is
strictly (—k — 1)-connected.

Proof: First consider the case with only one wedge summand: A = A, is a well-
pointed space and V,, = R*¥. We want to calculate the connectivity of Fix A(R™).
If n < k, then by definition Fpr A(R™) = *, so assume that & < n. Then

FRkA(Rn) = O(n)+ NO(n—k) (A A Sn_k) ~ AN (O(n)+ NO(n—k) Sn_k)

Now consider the diagram

O(n—k)

|

O(n) x S"*

|

O(n)/O(n — /C) —_ O(n) X0 (n—k) sk O(n)+ /\O(n—k) Sn—k

Here the vertical sequence is a fibration, and the horizontal sequence a cofibration.
Since O(n — k) — O(n) is (n — k — 1)-connected, the long exact sequence of the
fibration yields that O(n) Xo@-k) S™ % is (n — k — 1)-connected. Furthermore,
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we know that O(n)/O(n — k) is (n — k — 1)-connected. Using proposition 4.28
in [Hat02], we see that O(n); Aom—k) S"* is also (n — k — 1)-connected.

By Blakers-Massey or CW-approximation, one can prove that for well-pointed
spaces X and Y which are r- and s-connected respectively, the smash product
X AY is (r+ s+ 1)-connected. Since any space is (—1)-connected, applying this
to AN (O(n)4 Aom—ky S™*) yields that Fpx A(R™) is (n — k — 1)-connected.

Now consider the wedge

L=\/FyAq

By the calculation above L(R") is a wedge of well-pointed (n — k — 1)-connected
spaces. Using CW-approximation or Blakers-Massey we can prove that the wedge
of well-pointed [-connected spaces again is [-connected. And it follows that L(R™)
is (n — k — 1)-connected for all n. O

For some purposes we need a stronger condition than strictly bounded below:

Definition 2.3.9

An orthogonal spectrum L is meta-stable if it is strictly bounded below and there
exists an integer d such that o : L(R™) A S' — L(R"™) is (2n + d)-connected for
all n.

Lemma 2.3.10 .

Let K be the pushout of L «— A - B. Assume that A, B and L are meta-stable
orthogonal spectra, that ¢ is an I-cofibration and A is well-pointed. Then K is
also meta-stable.

Proof: Consider the diagram

LR")AS" —— ARY)AS! —— B(R") A S

l l l

L(R”+1) — A(R”+1) _Z> B(Rn+1)

Since A, B and L are bounded below, we may increase n until all spaces in the di-
agram above are simply connected. Therefore it is enough to consider homology
when calculating connectedness. Comparing Mayer-Vietoris sequences for the
two rows, we get that K(R") A ST — K(R"™) is (2n + d)-connected, assuming
that all three vertical maps in the diagram above also have this connectedness. []

Lemma 2.3.11
Let L =\, Fyv,Ay. If all A, are well-pointed and there exists a k such that
dim V, < k for all o, then L is meta-stable.
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Proof: First we consider the case with a single wedge summand. Assume
that n > k. Then we have by lemma that both FrrA(R™) A ST and
Frr A(R™1) are simply connected. Thus we can calculate the connectivity of
o Fpr A(R?) A ST — Fgi(R™™) using homology. By the definition of Fgx the
map under consideration is

O(n) 1 Nom—r) (ANSTFYA ST — O(n+ 1)1 Aom—ki1) (AAS"HT
We see that this map is [-connected if and only if the map
O(n) s Aom-t) (ANS") NS ASY — O+ 1)1 Aoty (AAS"FHYA S

is (I+k)-connected. Now observe that the O(n—k+1)-action on (AAS™FT1)ASF
can be extended to a O(n + 1)-action, and thus we have

On+1)4 Aom—rr1) (AANS"FIYASF 2 O(n+1)/0O(n—k+1); A(AANS™) |
and similarly for the source space. Thus we are considering the connectivity of
On)/O(n—k). AN(AAS"™) - O +1)/O(n—k+ 1) A(AAS™

This map is easily seen to be (2n—k)-connected. And it follows that o is (2n—2k)-
connected for n > k. An inspection of the case n = k shows that Fpr A(RF+1)
is O-connected, and it follows that ¢ is O-connected. Hence we can take d in the
definition of meta-stability to be (—2k).

In the general case we observe that the suspension map is the composition

LR") A S 22 \/(Fy, Aa(R") A S) 5 \/Fv (R™+1)

«

But the wedge of (2n — 2k)-connected maps are (2n — 2k)-connected. And it
follows that L is meta-stable. O

The following result is a useful property of relative F'I-cellularity.

Proposition 2.3.12

Assume that A — L is a relative F'I-cellular map of orthogonal spectra. If A
is strictly bounded below, then there exists a sequence A = Ly — L; — --- of
I-cofibrations with colimit L, and such that each L; is strictly bounded below. If
A is meta-stable, then each L; can also be assumed meta-stable.

Proof: Let C be the poset of cells. For a cell a let m,, denote the desuspension
degree, i.e. the dimension of V in Fy/S7 ' — FyD". Now define C; inductively:

Let Cy be those o € C such that m, =0 and P, = 0.
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Given Cy,...,C;_1, let C; be the cells a not in C} for any k < ¢ such that
me < 1 and for any 8 < « there is an [ < 7 such that g € C).

Since each P, is finite, we see that | J, C; = C. Thus, the collection of C;’s satisfies
the conditions in the proof of proposition And by the proof we can then
construct the sequence A = Ly — L; — --- with colimit L, inductively. L; is
defined by the pushout diagram

Na—1 Na
Vaeoi Frma S+ - \/aECi Frma D+

| l

Li—l — LZ
Since m, < i for all « in Cj, it follows by the lemma and corollary 2237
that each L; is strictly bounded below. If A in addition is meta-stable, we can
use the lemmas and 23171 to show that each L; is meta-stable. O

Let us prove the following property of meta-stable orthogonal spectra:

Lemma 2.3.13
If L is meta-stable and well-pointed, then there exists a constant e such that the
assembly induces a (2n + k + e)-connected map

QkL(Rn+k) N Qk-i-lL(Rn—i-k—i-l)
for all n, k and [.

Proof: By induction we may reduce to the case where [ = 1.
Since L(R"*) A ST — L(R"F+1) is (2n+ 2k + d)-connected for some constant
d independent of n and k, it follows that

0 (L(Rn+k) A Sl) N QL(RH-HH-I)

is (2n 4 2k + d — 1)-connected. There exists a constant ¢, also independent of n
and k, such that L(R"**) is (n + k + ¢)-connected. By Freudenthal’s suspension
theorem we have that

LR™ ) — Q (L(R™*) A S1)
is (2n 4 2k + 2c+ 1)-connected. Hence, there exists an e such that the composite
L(R™) = QL(R™+1)
is (2n + 2k + e)-connected. Applying QF— we get that
QFL(R™) — QL (R
is (2n + k + e)-connected. O
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2.3.1 Induced functors on orthogonal spectra

Consider a continuous endofunctor F' defined on based spaces. We already know
from example EET.T7 that applying F' level-wise to an orthogonal spectrum L
yields a new orthogonal spectrum F'(L). What can be said about F(L)? The
results we are looking for will compare F'(L) and G(L) whenever we have a natural
transformation f : ' — G of continuous endofunctors.

Lemma 2.3.14

Assume that there exists an integer d such that fx : F(X) — G(X) is (2n + d)-
connected when X is n-connected and well-pointed. If L is strictly bounded
below and well-pointed, then L — F(L) is a m,-iso.

Proof: The natural transformation f induces a map of orthogonal spectra
F(L) — G(L)
We take the underlying prespectra, and look at the ¢’th homotopy groups:

m, F(L) = co}}m TgnF (L(R™)) — co}}m TgnG(L(R")) = 1,G(L)

For a fixed ¢ and under the given assumptions on f and L, the map 7,4, F'(L(R")) —
TgtnG(L(R™)) is eventually an isomorphism: There exist integers N and ¢ such
that L(R™) is (n + c)-connected for n > N. Furthermore, there is a d such
that F(X) — G(X) is (2n + d)-connected when X is n-connected. Therefore,
F(L(R™)) — G(L(R™)) is (2n+2c+d)-connected for n > N, so w1, F(L(R")) —
TgtnG(L(R™)) is an iso for n > max(¢ — 2¢ — d, N). O

However, the condition we usually want to assume is cofibrancy, not strictly
bounded below. Therefore we use proposition 2312 to transform the lemma
above.

Corollary 2.3.15
Let f : F — G be a natural transformation of endofunctors on Zop,. Assume
that

there exists an integer d such that fx is (2n + d)-connected when X is
n-connected and well-pointed,

F and G preserves cofibrations of spaces, and
it Xo - X7 — Xy — .-+ is any sequence of cofibrations of spaces,

then the natural maps colim; F(X;) — F(colim; X;) and colim; G(X;) —
G(colim; X;) are weak equivalences.
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If L is cofibrant, then the induced map
F(L) — G(L)

is a m,-isomorphism.

Proof: First suppose that L is F'I-cellular. By proposition 2312 there is a
sequence x = Ly — L; — of l-cofibrations with colimit L such that each L; is
strictly bounded below. Apply f: F — G to the sequence and compare:

F(Ly) —— F(L)) — F(Ly) — -

! l !

All horizontal maps are l-cofibrations, while lemma 23 T4 implies that all vertical
maps are T,-isomorphisms. It follows that colim; F'(L;) — colim; G(L;) is a .-
iso. By the last assumption, we get that F'(L) — G(L) is a m.-iso.

Now suppose that L is any cofibrant orthogonal spectrum. Then L is a re-
tract of an F'I-cellular orthogonal spectrum K. It follows that F(L) — G(L) is
a retract of a m,-iso F'(K) — G(K), hence the first map is also a m,-iso. O

The technique of induced functors can be extended to multi-functors Zop? —
Top,. But instead of giving the most general statement, we will illustrate this by
considering the example:

ixy : XVY — X xY | for spaces X and Y.

Proposition 2.3.16
If L and K are cofibrant orthogonal spectra, then LV K — L X K is a -
isomorphism.

Proof: Observe that ixy is (n + m + 1)-connected if X is n-connected, Y is
m-connected and both spaces are well-pointed. Now assume that L and K are
well-pointed and strictly bounded below. Then there exists a ¢ such that L(R")
and K (R") are (n + c)-connected. It follows that

Tarn(LR") V K(R")) = mgn(L(R") x K(R"))

is an isomorphism when n > ¢ — 2c¢. Hence LV K — L x K is a m,-iso.
To get the result in the general case, we use proposition Z23.12 and the fol-
lowing observations:

L+— LVK and L — L x K preserves l-cofibrations when K is well-pointed,
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(colim; L;) V K = colim;(L; V K), and
(colim; L;) x K = colim;(L; x K).

First assume that L is cofibrant, and K is strictly bounded below and well-
pointed. Filtrating L with each L; being strictly bounded below and well-pointed,
we see that LV K — L x K is a m,-iso. Next, assume that L and K are both
cofibrant, filtrate K and use the previous sentence to finish the proof. O

2.4 Z.% as a model category

Model categories (—closed model categories) were introduced by Quillen [Qui67]
and [Quib9] as an axiomatization of homotopy theory. See also the survey arti-
cle [DS95] or the book [Hir03]. We will recall the definition of a model category
below. Mandell, May, Schwede and Shipley [MMSS01] show that the category
of orthogonal spectra has several model structures. We will explain this. The
section ends by listing various results concerning the model category theory of
orthogonal spectra.

Definition 2.4.1

A model category is a category € with three distinguished classes of maps: weak
equivalences, fibrations and cofibrations. FEach of these classes is closed under
composition and contains all identity maps. A map which is both a fibration
(resp. cofibration) and a weak equivalence is called an acyclic fibration (resp.
acyclic cofibration). And we have the following axioms:

MC1 Finite limits and colimits exist in € .

MC2 If AL B C are composable maps in €, and if two of the three maps f,
g and gf are weak equivalences, then so is the third.

MC3 If f is a retract of g and g is a fibration, cofibration or weak equivalence,
then so is f.

MC4 Given a commutative diagram

ALX

1 b
B—2-Y
then there exists a lift h : B — X such that hi = f and ph = g in the

following two situations: when 1 is a cofibration and p is an acyclic fibration,
or when i is an acyclic cofibration and p is a fibration.
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MC5 Any map f can be factored in two ways: as f = pit where i is a cofibration
and p is an acyclic fibration, and as f = pi where ¢ is an acyclic cofibration
and p is a fibration.

A model structure on a category € is a model category with € as its underlying
category.

Axiom MC4 gives liftings of certain diagrams. Since liftings are important
in model category theory, we have the following standard terminology: A map
1 : A — B has the left lifting property with respect to another map p: X — Y
if for any diagram of the same form as the diagram in MC4, there exists a lift
h : B — X such that hi = f and ph = ¢g. Dually, we say that p: X — Y has the
right lifting property with respect to ¢ : A — B.

A basic result about model categories, proposition 3.13 in [DS95], says that
1 is a cofibration if and only if it has the left lifting property with respect to all
acyclic fibrations. Dually, p is a fibration if and only if it has the right lifting
property with respect to all acyclic cofibrations. Hence, when specifying a model
category it is enough to define the weak equivalences and either cofibrations or
fibrations. The remaining class is determined by lifting properties.

Model categories often come with extra structure. For example we have sim-
plicial model categories, see §11.3 in [(GI99]. More relevant to us are topological
model categories, see §5 in [MMSSOT].

There are several model structures on the category of orthogonal spectra. The
first model structure is:

Definition 2.4.2
The level model structure on orthogonal spectra is given by setting

f: K — L is a weak equivalence if f is a level equivalence,

f : K — L is a cofibration if f is a q-cofibration (=retract of relative
FI-cellular map), and

f: K — L is a fibration if for each level V the map f : K(V) — L(V) is a
Serre fibration.

Theorem 6.5 in [MMSSO0T] says that the level model structure on orthogonal
spectra is a model structure. Next we have:

Definition 2.4.3
The stable model structure on orthogonal spectra is given by setting

f K — L is a weak equivalence if f is a m,-isomorphism,

f : K — L is a cofibration if f is a q-cofibration (=retract of relative
FI-cellular map), and
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f : K — L is a fibration if f has the right lifting property with respect
to the acyclic cofibrations (=maps which are both m,-isomorphisms and
g-cofibrations).

Theorem 9.2 in [MMSS0T] says that the stable model structure on orthogonal
spectra is a model structure.

Remark 2.4.4
There is also a positive stable model structure on the category of orthogonal spec-
tra. The weak equivalences of this model structure are the m,-isomorphisms.
There are fewer cofibrations than the previous model structures, because in
the positive stable structure one does not allow cells FRmSi_l — Frm DT with
m = 0. The fibrations are defined via the right lifting property. Theorem 14.2
in [MMSSO0T]| verifies that the positive stable model structure is a model structure.
The purpose of the positive stable models structure is to study commutative
orthogonal ring spectra. However, in this thesis we study orthogonal ring spectra
with involution, and they are rarely commutative. Hence we do not need the
positive stable model structure.

We now list miscellaneous results:

Proposition 2.4.5
Consider the diagram

L «—— A K
I/ i A K’

where 1 and i’ are h-cofibrations and the vertical maps are m,-isos. Then the map
of the row-wise pushouts is also a m,-iso.

For a proof see theorem 8.12(iv) in [MMSSOT|. The result also holds when ¢
and 4’ are g-cofibrations, since any g-cofibration is an h-cofibration.

Proposition 2.4.6
The conclusion of proposition also holds if we assume that i and i’ are
I-cofibrations instead of h-cofibrations.

Proof: Apply the cofibrant replacement functor to the diagram of proposi-
tion ZZ0. In the resulting diagram,

'L <& A — . TK

R

rr <& 4 — K
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we observe that I' and I'i’ are g-cofibrations, by theorem EZ2Z. T3 and the vertical
maps are m,-isomorphisms. From the proposition above it follows that

I'LUraTK — TL'Upay TK'
is a m,-iso. Now inspect the diagram

'L <X TA — TK
|
L — A — K

Here the vertical maps are level-equivalences. And since the pushout is formed
level-wise, we may evaluate at some level V' and use the gluing theorem for weak
equivalences between spaces, proposition [A-T.4, to conclude that

I'LUppaTK - LUy K

is a level-equivalence. Similarly the map 'L Urp 'K’ — L' Ug K' is also a
level-equivalence. Now consider the commutative square

=~

FLUFAFK I LUAK
IL Ury TK — ' Uay K’

We see that the last map must be a m,-iso, and we are done. U

Proposition 2.4.7
If X is cofibrant and K — L is a m,-iso, then also K N X — L AN X is a m,-iso.

For a proof see proposition 12.3 in [MMSS01].

Proposition 2.4.8
Iff: A— L and g: B — K are g-cofibrations, then

fOg : ANKULANB—LANK

is also a g-cofibration. Furthermore, if f or g is in addition a 7,-iso, then fllg is
also a m,-iso.

The first part is a corollary of proposition Z2ZT2, this is also lemma 6.6
in [MMSSO0T). The last part is the pushout-product axiom, proposition 12.6
in [MMSSOT].
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Proposition 2.4.9
Iff:A—L,g: B— K and g’ : B' — K’ are g-cofibrations, and A is cofibrant
and there is a commutative diagram

B Y. K
B L K

where the vertical maps are m,-isomorphisms, then the vertical maps in the dia-
gram

ANKULAB 22, LAK
fOg’

ANK'ULANB —— LAK'
are also m.-isomorphisms.

Proof: Since L is cofibrant, the map L A K — L A K’ is a m,-iso by proposi-
tion 24T

Let A be the map ANKULAB — AN K'UL A B'. Notice that h is the
row-wise pushout of

ANK «—— AANB —— LAB

l l l

ANK' «—— AANB —— LADB

Since A and L are cofibrant, the vertical maps are 7,-isos by proposition 247
The maps ANB — ANK and ANB" — AN K’ are g-cofibrant by proposi-
tion 2248 Now we apply proposition EZ4.5 and conclude that h also is a m,-iso. [J

Proposition 2.4.10
Assume that we have a map between two sequences of orthogonal spectra:

KO —_— Kl K2
LO —_— Ll L2

If Ky — Ly is a g-cofibration, and K; Uy, , L,_1 — L; is a q-cofibration for every
1> 0, then
colim K; — colim L;
1 (3

also is a q-cofibration. In particular, the case where K; is constant equal to Ly
vields that Ly — colim; L; is a q-cofibration if each L; 1 — L; is.
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Proof: This statement holds in all model categories, we give an abstract proof.
Recall that a map in a model category is a cofibration if and only if it has the left
lifting property with respect to acyclic fibrations, see [DS95|. Consider a diagram

colimi Kz — X
COlimi Lz —— B
where X — B is an acyclic fibration. Define fy : Ly — X to be a lift in
KO — X

Lo

LO —— B
Inductively, choose a lift f; : L; — X in the diagram

KiUk, , Lin —— X

J |

Now observe that colim; f; : colim; L; — X lifts the original left lifting problem. [

Lemma 2.4.11
The maps FgnS™ — S, adjoint to the homeomorphisms S™ — S(R"), are -
isomorphisms for all n > 0.

This follows from lemma 8.6 in [MMSSOT].

2.5 Simplicial orthogonal spectra

We need to discuss simplicial orthogonal spectra and we will use the theory of
simplicial spaces as our guideline. In [Seg74] Segal defines what it means for
a simplicial space to be good, and shows that good simplicial spaces behaves
well with respect to geometric realization. May has a similar definition, proper,
in [May72|. Using Lillig’s union theorem [Lil73] one can prove that proper and
good are equivalent notions.

Let us now define simplicial orthogonal spectra.

Definition 2.5.1
A simplicial orthogonal spectrum is a functor L, : A% — #.%. It is good if each
s;: Ly — Lgyy Is an I-cofibration.
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As usual there is a geometric realization functor |—| from simplicial orthogonal
spectra to .#.%. A quick definition of |L,| is given by a coend:

l[dea .
Li= [ Loaat

It is easy to see that | — | is the same as applying the geometric realization of
simplicial spaces level-wise. We therefore have the formula |L.|(V) = |Ll.(V)|.
There also is a presimplicial realization, || — ||, given by identifying along injective
maps of A only. As above this construction is also level-wise: We have that
[La[[ (V) = | La(V)]]-

There is a natural map ||L.|| — |Ls| and we have the following standard
result:

Proposition 2.5.2
For a good simplicial orthogonal spectrum L,, the natural map ||Le|| — |L| is a
level equivalence.

Proof: We evaluate at V' and apply the corresponding result for simplicial
spaces, proposition A.1(iv) in [Seg74]. O

Our sufficient criterion for |K,| — |Le| to be a m,-isomorphism, is a bit harder
to prove:

Proposition 2.5.3

Let f : K, — L, be a map of simplicial orthogonal spectra. If K, and L, are
good and the map f, : K, — L, is a m.-isomorphism for any ¢, then the induced
map |f|: |Ko| — |Le| is also a m.-isomorphism.

Proof: By the previous proposition it is enough to prove that ||f|| : || K.|| —
| Le|| is a m,-isomorphism.
We have a filtration F, || K| of ||K.|| by skeleta, and pushout diagrams

Ky NOAL —— Fyi|| K|

J J

K ANAL —— Bl

for each ¢ > 1. It can be checked directly that the left vertical map is an
l-cofibration, and consequently the right vertical map is also an l-cofibration.
There is a similar filtration for ||L.||. We compare the two filtrations. By
proposition it is enough to show that each map F,||K.|| — F,||L.| is a
me-isomorphism. This is proved by induction:

F||K.|| = Ko ELNy Fy||Le|| is a me-isomorphism by assumption.
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For the induction step we consider the diagram

Ky AAL e K AOAL —— Fyy|[K)|

l | !

Lq/\Az_ — Lq/\aAi — q—lHLoH

Here the first two vertical maps are 7,-isomorphisms by proposition 247 and
the last vertical map is a m.-iso by induction. By the gluing lemma, proposi-
tion ZZA0, we get that Fi || K.|| — Fy||Le|| is a m.-iso. O

An important feature of simplicial sets and simplicial spaces is that realization
commutes with products. This also holds for simplicial orthogonal spectra:

Lemma 2.5.4

The category of simplicial orthogonal spectra, s.%./, is symmetric monoidal
under the product sending K, and L, to [q] — K,AL,. And geometric realization
is strong symmetric monoidal. In particular there is a natural isomorphism

|Ko| A |Le| — | Ko A L]

Proof: It is clear that s.#.% is symmetric monoidal, with unit [¢] — S. To
check that | — | is strong symmetric monoidal, we first check the corresponding
statement for the geometric realization of simplicial .#-spaces. Here the product
is A. Let V be a finite dimensional real vector space, and evaluate. We have:

(KAL) (V) 2 Z(RT @R, V)1 Ao@xow@) ([Ke(RY)| A |Lo(R)))
and
|KAL|(V) = [Z (R @ RY, V)4 Ao@xow) (Ke(RY) A Lo(RY))]

Since realization is a strong symmetric monoidal functor from simplicial spaces
to spaces, these formulas imply that | — | is strong symmetric monoidal on sim-
plicial .#-spaces. Now the result also follows for simplicial orthogonal spectra by
inspecting the coequalizer definition of A. We have

| K| A|S|A|Le| = | Ko |A| Lo | —| K| A | La|

.| .| |

|KJASALL| = |KJALs| — |Ku A Ld|

and it follows that the last map is an isomorphism. U
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2.6 The fibrant replacement functor ()

We will need the underlying infinite loop space of an orthogonal spectrum in order
to define GL and consequently also K-theory. Getting the underlying infinite loop
space is a two step process. First there is a functor, which we will call (), that
tries to turn orthogonal spectra into {2-spectra. To get the underlying infinite
loop space of L, one then picks out the 0’th space of QL.

The classical idea for constructing QL is to take the homotopy colimit of
O"L(R™ @ —) as n grows to infinity. This construction would give the correct ho-
motopy, at least when L is suitably nice, but the monoidal properties with respect
to A are bad. Bokstedt solved this problem by instead considering a homotopy
colimit over the category of finite sets and injections. See the proof of lemma 2.3.7
in [Mad94]. When n lives in this category the functor n — Q"L(R™ @ —) has
monoidal properties, and consequently also its homotopy colimit. However, for
the purpose of constructing a fibrant replacement functor of orthogonal spectra
with monoidal properties, it is more natural to let the indexing category be finite
dimensional real inner product spaces and isometric embeddings.

When reading the proof of proposition 8.8 in [MMSS01]| or the proof of theo-
rem 3.1.11 in [HSS00|, one can get the impression that the construction indicated
above does not yield a fibrant replacement functor. But their problem is closely
tied to symmetric spectra, rather than with the construction. In that category
of spectra it is not true that the F'I-cells are meta-stable. For example consider
the symmetric spectrum F;S', see example 3.1.10 in [HSS00].

We now state the structure theorem for Q:

Theorem 2.6.1
There is an endofunctor () on orthogonal spectra having the following properties:

QL is an Q-spectrum if L is well-pointed.
@ preserves I-cofibrations of well-pointed orthogonal spectra.
() commutes with sequential colimits.

If K — L is a m,-isomorphism and L and K are well-pointed, then QK —
QL is a level-equivalence.

There is a natural inclusion ny, : L — QL, this is a m,-iso if L is well-pointed.

There is a natural map pup i : QLAQK — Q(LAK) such that uy, o (n A
Ni) = NLAK-

With ng and p the functor Q) is lax monoidal with respect to A.
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There is a natural transformation v;, : QL — QL such that *> = id, 1y =,
v is level equivalent to id when L is well-pointed and the following diagram
commutes:

QL AQK — QL AQK M QK AQL

l l

QILAK) —— QLAK) 2 Q(K A L)

There is a natural map apx : QL x QK — Q(L x K), this is a level
equivalence if L and K are well-pointed.

With n, and « the functor () is lax monoidal with respect to X.

Remark 2.6.2

Warning: () is not symmetric. That would lead to a contradiction: The 0’th
space of QS would then be a commutative topological monoid with unit and
zero elements, and have the homotopy type of Q®°¥>S° By a result of Moore,
[M0058], this would imply that the path component of the unit of Q*°%>S° has
the homotopy type of a cross product of Eilenberg-MacLane spaces. This is not
true.

The fact that @) is not symmetric is the precise point where the category of
orthogonal spectra fails to be a “convenient category of spectra” as defined by
Lewis, [Lew9T].

Our theorem above is therefore the best possible result regarding the fibrant
replacement functor: It is lax skew-symmetric monoidal, and the involution ¢ is
homotopic to id.

Let us now look into the construction of Q) L. First we let & be the topological
category of the finite dimensional real inner product spaces R™, n > 0, and
isometric embeddings. Given an orthogonal spectrum L, we have a continuous
functor from & to .#.% given by

W QVLW e -)
For morphisms in & from W to U we define the map
EW,U), AQYLW V) = QLU V)

as follows: Assume f : W — U is an isometric embedding and o : S —
L(W @ V) represent a point in QW L(W @ V). Let d be the codimension of W in
U. Now consider the composition

SV gl a W M gl A LW e V)L LRGW e V)X LUGV) |
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where the first and last map is induced by f, and & is the left assembly. This
composition represents a point in QUL(U @ V).

We have chosen to work with the Euclidean spaces R™, n > 0, instead of all
finite dimensional real inner product spaces. The reason is that we would like to
take a “homotopy colimit” over &. Therefore, the objects should be a set. Define
Q. L to be the simplicial orthogonal spectrum given by

QLV)= \/ ER R A AERR™) AQULR®BV)

The face and degeneracy maps are given by

(o155 f15 fola)) for i =0,
di(fQ_l""’-fO;a): (fq—1>"'7fi+17fiOfi—lafi—Qa"'?fO;a) f0r0<2.<q,
(fo—2,-- 5 fo; @) for i = ¢, and

Si(fq—lu .. '7f0;a> - (fq—h .. '7fi7 idR"ﬂfl’—h .. '7f0;a)
We now define:

Definition 2.6.3
The functor () is an endofunctor on orthogonal spectra, given on L as the geo-
metric realization of QL.

Clearly there is a natural inclusion 7, : L — QL. This comes from the
inclusion of L(V) as the wedge summand of QoL(V) =V, 5, QL(R™ & V)
corresponding to ng = 0.

Lemma 2.6.4
If L is well-pointed, then QQ,L is a good simplicial orthogonal spectrum.

Proof: The space &(R",R") is well-pointed at idg», it is even a smooth man-
ifold. By assumption Q" L(R"™ @ V') is well-pointed. By applying the smash
product theorem for well-pointed cofibrations in Zop,, proposition 12 in [Str72],
we get that each s; is an l-cofibration. 0

Lemma 2.6.5
Q@ preserves level equivalences between well-pointed orthogonal spectra.

Proof: If K — L is a level equivalence, it follows that Q"K(R" & V) —
O"L(R™ @ V) is a weak equivalence for all n and V. Hence in each simplicial
degree ¢ the map

Qq(K)(V) = Qq(L)(V)

is a weak equivalence. The result follows since both Q4K and @, L are good. [



2.6. THE FIBRANT REPLACEMENT FUNCTOR @ 67

Proposition 2.6.6
() commutes with sequential colimits.

Proof: Let Ly — L; — Ly — --- be a sequence of orthogonal spectra with
colimit L = colim; L;. Colimits commute with geometric realization, thus it is
enough to show that

coliim QqLi = Q,L

for every simplicial degree ¢q. Sequential colimits are level-wise constructions, so
it is enough to check that the colimit of Q,Lo(V) — Q,L1(V) — -+ is Q,L(V)
for each V. We now inspect the definition of @, — (V). Colimits commute with
wedge, but in general an arbitrary colimit does not commute with smash prod-
ucts. However, sequential colimits (of based spaces) commute with the functor
X — AN X, where A is some fixed space. Therefore it is enough to show that

colim Q™ L;(R™ @ V) = Q™ L(R™ & V)

for fixed ng and V. This is true since the colimit is sequential and S™ compact. []

Proposition 2.6.7
@ preserves I-cofibrations of well-pointed orthogonal spectra.

Proof: We start with an l-cofibration A — L of well-pointed orthogonal spectra.
By proposition Z.T.T2 the map

VAR ® V) > QLR & V)

is a closed cofibration of well-pointed spaces for all n and V. By the smash prod-
uct theorem for well-pointed cofibrations of spaces (proposition 12 in [Sfr72]) it
follows that Q,A — Q,L is an l-cofibration of well-pointed orthogonal spectra for
every q. Both QA and (), L are good, and by the gluing theorem for I-cofibrations
and the filtration of the geometric realization it now follows that QA — QL is
an l-cofibration. O

Lemma 2.6.8
The classifying space B& is contractible.

Proof: Direct sum induces a map & : B& x B& — B& . Since there is a natural
transformation from the projection & x & — & onto the first factor to the direct
sum, we get a homotopy between @& and the projection pr, : B& x B& — Bé&'.
Similarly we get a homotopy & ~ pr,.
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Now choose a basepoint % in B& and consider the composition of the inclusion
1:B& xx — B& x B&
with pry, @ and pr,. We get homotopies
id=prioi>~@oi~pryoi=x%
Thus Bé& is contractible. U

We will now start proving that 7, is a m,-iso when L is well-pointed. The
proof is divided into three parts: First we show the result for meta-stable well-
pointed L. Next we filter any cofibrant L as the colimit of orthogonal spectra of
the first type. At last we use cofibrant approximation to prove the general case.

Lemma 2.6.9
If L is meta-stable and well-pointed, then n : L. — Q)L is a 7,-isomorphism.

Proof: Evaluating at a level V' we land in topological spaces. Here we also

have unbased homotopy colimits. Let QQL(V') be the geometric realization of the
simplicial space with g-simplexes given by:

—~——

QL(V)q = H g(anﬂ’an) X X g’(Rnoij) % QnoL(Rno D V)

By lemma P.3.T3 and proposition [LZ3H there exists a constant d such that

o~

QL(R") — Bé& is a (2n + d)-quasi fibration. But B& is contractible, therefore

the map L(R") — QL(R") is (2n + d — 1)-connected.
The horizontal part is a cofibration sequence. Now we use corollary A8 and
that B& is contractible to see that

—~——

mi(QL(R™)) — m(QL(R™))

is an isomorphism for all 7.



2.6. THE FIBRANT REPLACEMENT FUNCTOR @ 69

Putting things together we see that there exists a constant c such that
L(R") — QL(R")

is (2n + c¢)-connected. And it follows that L — QL is a m.-iso. O

Remark 2.6.10
In the proof above we compared an unbased homotopy colimit over a topological

—~—

category, QL(V'), with the corresponding based homotopy colimit, QL(V'). In
the more elementary case where the category is discrete, there is a general result
due to E. Dror Farjoun that compares unbased and based homotopy colimits, see
proposition 18.8.4 in [Hir()3)].

Lemma 2.6.11
If L is cofibrant, then the natural map L — QL is a m,-iso.

Proof: We first prove this when L is cellular. By proposition 22312, there exists
a sequence Ly — L; — --- of orthogonal spectra with colimit L such that each
L; is meta-stable and well-pointed, while the maps L; — L;,; are l-cofibrations.
Applying @ to this sequence we get

Lo —— I, L
L |
QLy — QL QL

The vertical maps L; — QL; are m,-isomorphism by lemma 6.9 Since both
sequences consist of l-cofibrations, it follows that L — Q)L also is a m,-iso.

For the general case we use that a cofibrant L is a retract of some L’ which
is cellular. It follows that L — QL is a retract of L' — QL'. Thus L — QL is a
T4-1S0. U

Proposition 2.6.12
If L is well-pointed, then the natural map L — QL is a m,-iso.

Proof: Consider the diagram

L —— QUL

L

L —— QL
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The top map is a m,-iso by the previous lemma. The left map is a level equivalence
by theorem Since @) preserves level equivalences between well-pointed or-
thogonal spectra, lemmaP.6.0 the right map is also a level equivalence. It follows
that the bottom map also is a 7,-iso. O

Let & be the full subcategory of & having objects R™ for n > k. We will
compare QL with the homotopy colimit of Q" L(R™ @& —) over this subcategory.
Let QL be the geometric realization of the simplicial orthogonal spectrum whose
g-simplexes are:

QL) = \/ ERORU)L A NSRS R, A QUL & R™)

Lemma 2.6.13
The inclusion Q*L — QL is a level equivalence for all k.

Proof: We will show that the functor (R¥ ® —) : & — & induces a map f :
QL — Q"L which is a homotopy inverse to incl. First consider the composition
inclof : QL — QL. This map is induced by R” — R*¥ @ R", considered as an
endofunctor on &. But we have a natural transformation 7 : ids — (R¥ @ —)
which includes R” as the last n-coordinates of R¥*". By proposition [[ZZ2, which
also holds in the based case since the formulas for the simplicial homotopy still
work, we get a homotopy between idgr, and inclof : QL — QL induced by 7.
The opposite composition, f o incl is also induced by (R* @& —) considered as
an endofunctor on &%, and the same natural transformation gives a homotopy
foincl ~ idgrp,. U

Lemma 2.6.14
The classifying space Bé&, is contractible.

Proof: The proof is similar to that of lemma P68 Notice that also in this
case there are natural transformations from the projections & x &, — &} to the
direct sum. ]

Lemma 2.6.15
If L is meta-stable and well-pointed, then QL is an €)-spectrum.

Proof: To prove this we have to show that QL(R™) — QQL(R"*!) is a weak
equivalence for all n. Fix n. Observe that by lemma it is enough to show
that for any A there is a k£ such that

Q*L(R") — QQ*L(R™)
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is A-connected. o
As in the proof of lemma we have unbased homotopy limits Q*L(V)
when V' is fixed. From the diagram

QFL(V & RY)

|

—~——

B&, ——  QFL(V) —— Q"L(V)

l

Bé&

we estimate the connectivity of the map Q¥ L(R"**) — Q*L(R"). By lemmaPZ3 13
and proposition [[L2ZH and the fact that B&, is contractible, there exists a constant
d such that

—~—

QFL(R™*) — QFL(Rn)

is (2n + k + d)-connected. Using that the horizontal part is a cofiber sequence
and that Bé&), is contractible, it follows by corollary [A.1.8l that

—_—

QFL(R™) — Q"L(R")
is a weak equivalence. Thus there exists a d such that for all n and k£ the map
Q L(R™) — QP L(R™)
is (2n + k + d)-connected. Now inspect the diagram

QkL(Rn+k) Qk-i—lL(Rn-i-k-i-l)

l |

QkL(Rn) N QQkL(Rn+1)

There is a constant ¢ such that the map on the top and the two vertical maps
are (2n + k + c¢)-connected. Thus we can, by increasing k, ensure that the map
on the bottom is A-connected for any fixed n. O

Lemma 2.6.16
If L is cofibrant, then QL is an )-spectrum.

Proof: First assume that L is cellular. By proposition E.3.T2, there exists a
sequence Lo — Ly — --- with colimit L such that each L, is a meta-stable well-
pointed orthogonal spectrum, and each map L; — L;, is an l-cofibration. By the
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proposition above we see that ()L is the colimit of a sequence Q Ly — QL; — - --
of Q2-spectra where the maps are l-cofibrations. Now we have

QL(V) = colim QL;(V) = colim QQL;(V & R) = QQL(V & R)

The map in the middle is a weak equivalence since each QL;(V) — QQL;(V &R)
is, and both colimits are sequential over unbased closed cofibrations. The last
map is a homeomorphism since the colimit system is sequential and S! is compact.

General cofibrant L are retracts of some cellular L. Thus QL is the retract of
some Q-spectrum QL'. But then the map QL(V) — QQL(V & R) is a retract of
QL (V) — QQL'(V & R), and the former map must be a weak equivalence since
the latter already is. 0

Proposition 2.6.17
If L is well-pointed, then Q)L is an )-spectrum.

Proof: Consider the level equivalence
Q'L — QL

Since I'L is cofibrant, we know that QI'L is an (2-spectrum. It is an elementary
fact that a well-pointed orthogonal spectrum level equivalent to an 2-spectrum
is itself an (2-spectrum. U

Corollary 2.6.18
If f: L — K is a m,-iso between well-pointed orthogonal spectra, then Qf :
QL — QK is a level equivalence.

Proof: This follows since a m,-iso between (2-spectra is a level equivalence.
See [MMSSOT] lemma 8.11. O

We will now describe the monoidal structure of ) with respect to A. To do
this, we first define maps of orthogonal spectra

p: LR HAQ"KR"® —) - Q""" (LAK) (R @ —)
natural for L and K in .#.% and R" and R™ in &. We take the external viewpoint
of the smash product, and let the map

p: LR V)AQ"KR™ W) — QT (LAK)(R"™™ oV o W)

be given by sending the point represented by a: S — L(R*@® V') and f: S™ —
K(R™ @ W) to the point represented by the composition

anp

grtm 0 LR"®V)AK (R W) — (LAK)(R"@VER™eW) = (LAK)(R*"™™ oV aoW)
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To see that p is a map of orthogonal spectra, we should check that it commutes
with left and right assembly. Let us inspect the case of the right assembly. Since
the identity on L A K is a spectrum map, the external viewpoint gives that

LVYNKW)ASY —— (LAK)(VeW)ASY

LV)ANKW @ U) — (LAK)VaWaU)

commutes. Using this fact, it is easily checked by chasing that the following
diagram also commutes:

Q'LR™ & V) A QPK(R™ & W) ASY —— Qtm (LA K)(R™™ @V e W) A SU

o] |-

DLR"BVI)ANQ"KR" W aU) —— Q""™(LAK)R"™aVaeW o)

The other case is done similarly. We conclude that p is a map of orthogonal
spectra.

Naturality in & X & means that the map from Q"L(R"®V)AQ"K(R™ @& W)
induced by linear isometries f : R* — R" and g : R™ — R" corresponds to the
map from Q"™ (LA K)(R*™™™ &V @ W) induced by f @ g. It is enough to check
this when g is the identity on R™. Let d be the codimension of f and « and (3
as above. It all boils down to the commutativity of the following diagram:

Sn’+m ~ Sd A Sntm
id/\oz/\ﬁl
SINLR"®VIAKR"®W) —— SIAN(LAK)R"®V R W)

)
Bl\idl l&

LRIGR"@V)ANKR" W) —— (LAK)(RIGR" OV OR™ @ W)

|

(LAK)RY ™oV W)

Proposition 2.6.19
w induces a natural transformation QL N QK — Q(L A K) and @) becomes a lax
monoidal functor with respect to A. In addition we have py, o (N, ANk) = NLak-

Proof: Inspecting the definition of Q, L, we see that u together with direct sum
&R R™) x &(R™ R™) — &(R*™ RY*+™) give a simplicial map

QuL A QUK — Qu(L AK)
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The geometric realization gives the natural transformation QLAQK — Q(LAK).
Associativity follows from associativity of @ on & and p on Q"L(R" & —).

The natural inclusion for the sphere spectrum, ngs : S C S, satisfies left and
right unity: To see this one observes that p: Q"L(R" & —) AQ"K(R"™ & —) —
QLA K)(R™™ @ —) is equal to the right assembly if m = 0 and K = S, and
equal to the left assembly if n = 0 and L = S. This gives left and right unity for
1. To get form here to ) we use in addition the unit of &

To check the last formula of the proposition, we observe that p = id when
n=m=0. 0

Recall from remark .62 that () cannot be symmetric. However we have:

Proposition 2.6.20
Q is skew-symmetric. This means that there is a natural transformation ¢ : QL —
QL such that 1> = id and the diagram

OLAQK —2 QLAQK ™% QK AQL
QILAK) —— QLAK) 2 Q(K AL)

commutes. Furthermore, 17 = n and ¢ is level equivalent to the identity when L
is well-pointed.

Proof: Let r, : R® — R"™ be the isometries which reverses the standard basis.
Conjugating an isometric embedding R" — R™ with r, and r,, gives a functor
conj: & — &

Let G denote the functor & — .. given by R" — Q"L(R" & —). We now
construct a natural transformation ¢ from G to G o conj by sending a point « in
O"L(V & R") to ¢(«) defined by the commutativity of

sn 2 L(Va&RY
grn l lL(idV@TTL)
gn U9, L(VeR"Y)
This natural transformation gives a map of simplicial spaces:
QsL = Q.L

Taking the geometric realization we get the natural transformation we are looking
for. It is easily seen that 2 = id.
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To get the commutativity of the main diagram of the proposition, we observe
that for maps a : 8" — L(V @& R") and 3 : S™ — K(W @ R™) we have that

twist o t(a A B) = ¢(B) A 1)

as maps S"t" — (K A L)(V @ W @ R"™). Here twist is the isomorphism
LANK=KAL.
To see that ¢ is level equivalent to the identity, we inspect the diagram

L —— L
QL —— QL

Commutativity follows since ry = id on R°. When L is well-pointed, both vertical
maps are m,-isomorphisms, so we see that ¢ induces the identity on homotopy
groups. But QL is an Q-spectrum, therefore it follows that ¢ also induces the
identity

T QL(V) — 7,QL(V)

for all levels V' and ¢ > 0. O

Proposition 2.6.21

There is a natural map o,k : QL x QK — Q(L x K), this is a level equivalence
if L and K are well-pointed. With n, and « the functor () is lax monoidal with
respect to X.

Proof: «is defined similarly to p. Given (8y, 82) € Q"L(R"®V ) xQ™ K (R™®V)
we can suspend (; to a point in Q"™ L(R™™ @ V') using the inclusion i; : R” —
R™ @ R™ = R™™ and suspend [, to a point in Q""" K(R"™™ & V') using the
inclusion iy : R™ — R"@R™ = R™™. This gives a point in Q" (Lx K)(R"*"®
V') by the canonical homeomorphism

QLR V) x QKR e V) X QML x K) (R @ V)
This natural transformation
VC'LR"&V)x Q"KR™"®V) — Q" (L x K)(R"™ V)
together with direct sum on & induce the natural map
ark QL x QK — Q(L x K)

This clearly satisfies associativity and unity with respect to 7, : x — Qx.
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For all L and K, we have a commutative diagram

LxK — LxK

77L><77Kl lanK

QL x QK 25, Q(L x K)

If L and K are well-pointed, then the vertical maps are m,-isomorphisms. And
it follows that o x also is a m-iso. But QL x QK and Q(L x K) are both
(2-spectra, hence oy, k is a level equivalence. U



Chapter 3

Equivariance for orthogonal spectra

We now give an exposition of the theory of equivariant orthogonal spectra. Much
of the material presented here can also be found in [MMO02|. However, there are
some new results. The author would like to point out three novelties: We intro-
duce new types of cells, induced- and orbit- cells, and provide a lax symmetric
orbit cofibrant replacement functor I, see theorem B0l The second new result
is a formula for the geometric fixed points of induced G-spectra, see proposi-
tion BT We also introduce a diagonal map for the iterated smash products
LM of an orthogonal spectrum L, see definition BI04l When L is cofibrant,
the diagonal map is an isomorphism into the geometric fixed points, see proposi-
tion B10.7

In this chapter G will be a compact Lie group, but for some arguments we
restrict to the case where G is a finite, discrete group. Genuine equivariance
means to allow any G-representation when indexing our spectrum. Naive equiv-
ariance means to allow trivial representations only. However, lemma B21] pro-
vides change of universe functors, and they are equivalences of categories. Hence,
there is only one category of orthogonal GG-spectra. This category has
many model structures, and these model structures do depend on the choice of a
G-universe. So the modifiers “genuine” and “naive” apply to notions such as weak
equivalences, cellularity, model structures, geometric fixed points etc.

3.1 Preliminaries

Let us now introduce the relevant terminology and notation for G-categories.
This material can also be found in chapter II §1 of [MM02], but is included here
for the convenience of the reader.

A topological G-category is a category 6 such that its hom sets €5 (C, D) are
based topological G-spaces, and composition

(1 Cgg(l),E) A ng(c, D) ad %G(C, E)

7
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is a continuous G-map. We think about the elements of €5 (C, D) as the non-
equivariant maps C' — D, and we call them the arrows of 5. Observe that
ide € ¢c(C,C) is fixed by the G-action; this is easily deduced from the fact that
the composition o is G-equivariant.

Given a topological G-category %, we can form a topological category G% .
This category has the same objects, but the hom sets are given by taking G-fixed
points:

G#(C, D) = €4(C, D)®

Hence G¢'(C, D) is a based topological space, and composition is continuous. We
think about the elements of G%(C, D) as the G-equivariant maps C' — D, and
we call them G-maps.

If we ever encounter a situation where the G-spaces of arrows, é5(D, E), are
given as unbased G-spaces, we implicitly add disjoint G-fixed basepoints.

Example 3.1.1

We let Zop,, denote the topological G-category of compactly generated G-spaces
(=weak Hausdorff k-spaces with G-action) and non-equivariant maps. G acts on
the space Topq,(X,Y) of arrows X — Y by conjugation. Written out explicitly,
the element ¢ € G sends a map f : X — Y to the composition gfg~t. The
G-maps from X to Y are the G-fixed points

G%p*(Xv Y) - %pG*(Xv Y)G

A continuous G-functor F : 6o — Yg between topological G-categories is a
functor F' such that

F:%6:(C,D)— 9(F(C),F(D))

is a continuous G-equivariant map of based G-spaces. It follows that F' induces
a functor G¢ — GZ.

A natural G-transformation o« : F; — F5 between continuous G-functors
e — Y consists of G-maps « : F1(C) — F»(C) for every object C' in % such

that the diagrams

) 22 Fy(D)

al la
Fy(C) =)

—— (D)
commute in Y for all f € 65(C, D).

Now we begin defining orthogonal G-spectra. The first thing we have to do is
to somehow specify the G-representations we will allow for indexing. We prefer
the notion of a good collection, but one could also talk about G-universes. After
that, we define the topological G-categories .#;. And Yg-spaces will relate to
orthogonal G-spectra, just as Z-spaces relate to orthogonal spectra.
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Definition 3.1.2

Let 7 be a collection of finite dimensional real G-inner product spaces. We call
¥V a good collection if it contains the trivial representations and is closed under
direct sum. ¥ is called a very good collection if it in addition to being a good
collection, is closed under passage to subrepresentations.

A G-universe U is a sum of countably many copies of each real G-inner prod-
uct spaces in some set of irreducible representations of G that includes the trivial
representation. U is complete if it contains all irreducible representations. U is
trivial if it contains only trivial representations. Observe that there is a corre-
spondence between very good collections and universes. Given U one can define a
collection ¥ (U) consisting of all G-representations isomorphic to a finite dimen-
sional sub G-inner product space of U. Given a very good collection ¥ one can
pick one representative for every isomorphism class of irreducible representations
contained in #. This set of irreducible representations generate a G-universe.

Definition 3.1.3

Let ¥ be a good collection of G-representations. Define ./, to be the (unbased)
topological G-category whose objects are those of ¥ and whose arrows (=non-
equivariant maps) are the linear isometric isomorphisms. G acts on the space
IL(V,W) of arrows V. — W by conjugation. Let G.#” be the topological
category with the same objects, but with G-maps V' — W as morphisms. We
have

GI"(V,W) = 7L (V,W)¢

Remark 3.1.4

We will usually omit the collection ¥  from the notation. Thus we write .Zg
instead of #2. Mostly we will be interested in the case where ¥ = &0/ is
the collection of all G-representations. The other extreme case is ¥ = triv, the
collection containing only the trivial G-representations. We shall see below that
up to equivalence of categories the choice of ¥ does not matter. However, it
plays an important role for model structures on G.¢.%.

Definition 3.1.5

An Jg-space is a continuous G-functor X : g — Topq,. Let FgTop, be
the topological G-category of Jg-spaces and arrows the non-equivariant natu-
ral transformations X — Y. G acts on S57Top,(X,Y) by conjugation. We define
G 9 Top, to be the topological category with the same objects and natural G-maps
X — Y as morphisms. We have

GITop,(X.Y) = I5Top,(X,Y)°

It is not obvious how to define a topology on Z7op,(X,Y). Here is how to
do it. First choose a skeleton sk .75 of ;. (A skeleton sk € for a category € is
defined as a full subcategory such that each object in € is isomorphic to a unique
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object in sk €.) Observe that sk .7 is small. Given .#z-spaces X and Y, we can
consider the product of the function spaces F'(X(V),Y (V)) over V € sk Z5. Now
FcTop (X, Y) lies as a subset inside [[icy . F(X(V),Y(V)), and we give it the
subspace topology.

Here is an example of an .Zg-space:

Example 3.1.6
Let S be the functor .z — 7Zop., sending the G-representation V to SV, the
one-point-compactification of V.

We now define orthogonal G-spectra:

Definition 3.1.7

An orthogonal G-spectrum L is an Yg-space L together with a natural G-map
o: L(V)ASY — L(V @W) such that unit and associativity diagrams commute.
These diagrams are identical to those found in definition 2. Let .. denote
the topological G-category of orthogonal G-spectra and arrows f : L — K that
commute with o. In general f is non-equivariant, and G acts on 9. (L, K) by
conjugation. Let G.Z.% be the topological category of orthogonal G-spectra and

G-maps. We have
GIS (LK) =957 (L,K)°

Observe that S is an orthogonal G-spectrum. We call S the sphere spectrum.

Similar to the description of orthogonal spectra given by theorem ELT.TH, we
now define topological G-categories Z such that fg-spaces are the same as
orthogonal G-spectra. This is also done in chapter II §4 of [MMO2].

Definition 3.1.8

Let ¥ be some good collection of G-representations. The objects of ¢/ are the
same as the objects of #7, the finite dimensional G-representations V contained
in V. Let &(V, W) be the G-space of (non-equivariant) linear isometries V — W.
G acts on &(V,W) by conjugation. And define E(V,W) to be the G-space of
pairs (f,w) where f : V — W is a linear isometry and w € W is orthogonal to the
linear subspace f(V). E(V,W) is a vector bundle over &(V,W), and we define
the G-space of morphisms ¢ (V,W) to be the Thom space of E(V,W). (First
apply fiber-wise one-point compactification to E(V, W), then identify the points
at 00.) The G-action on #/ (V,W) is explicitly given as follows; an element
g € G sends the pair (f,w) to (¢9fg~ ", g(w)). Composition

O:/CZ/(WU)/\/C?(V>W)_>/C§/(V>U)

is defined by the formula (h,u) o (f,w) = (ho f,h(w) 4+ w). The identity of V
in 7/ is represented by (idy,0). Direct sum gives ¢/ a symmetric monoidal
structure:

O JLV, W)V FLV W) — gL (VaeV,Wae W)
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is defined by (f,w) @ (f',w') = (f © f', (w,w')).
Observe that when V C W we have the identification:

JE VW) = O(W)y how-v) SV

As usual we let G_¢#” denote the G-fixed category of ¢4 . The two categories
has the same objects and

GJ (VW)= 75 (V.W)"

We follow the convention from remark and omit the collection ¥ from the
notation, thus writing #¢ and G_¢.

Fa-spaces are defined as continuous G-functors Zg — Tops,. We have an
external smash product sending a pair of Zg-spaces to a _fg x _Zg-space. The
(internal) smash product of _Zg-spaces is given as the left Kan extension along &
of the external smash product. Similar to theorem we have the following
result:

Theorem 3.1.9
The symmetric monoidal category of orthogonal G-spectra is isomorphic to the
symmetric monoidal category of _f#¢-spaces.

This is theorem I1.4.3 in [MM02]. For a proof mimic §23 in [MMSS01].

3.1.1 Shift desuspension functors

The equivariant shift desuspension functors Fy : Topqs, — S are defined for
all G-representations V. For based G-spaces A, the orthogonal G-spectrum Fy A
is given at level W by

(Fy A)(W) = Ja(V,IW) N A
Observe that Fy is the left adjoint to evaluation at level V. We have:
ij(FV/éL L) = %pG*(A7 L(V))

for all V, A and L.

3.2 Change of universe functors

Reading the definition it seems that the categories ;. and G.¢.% depend on
the choice of a good collection ¥ of G-representations. As we soon shall see, up to
canonical equivalence of categories this choice does not matter. Therefore, it is our
point of view that the notion of an orthogonal G-spectrum is well-defined, without
any modifier determining a choice of 7. “Naive” and “genuine” are examples
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of such modifiers. However, these modifiers will later play an important role,
for example when considering extra structure on .#5.% and when constructing
associated functors.

The key lemma is:

Lemma 3.2.1
Let V € ¥ be a G-representation and n = dim V. For an orthogonal G-spectrum
L the evaluation G-map

TR, V)4 A LRY) = L(V)
induces a GG-homeomorphism

Proof: This is lemma V.1.1 in [MMO02]. The proof is illustrative, so we include
it here: The evaluation is a G-map since L is a G-functor. The O(n)-action on
Fa(R", V), and L(R™) commutes with the G-action, hence the a is a G-map.
Choose any linear isomorphism f : R” — V. We get the inverse to a by sending
y € L(V) to the point represented by (f, L(f~1)(y)). O

Definition 3.2.2
Let ¥ and 7' be good collections of G-representations. We define the G-functor
Ifv . gy — g% by letting

(LFVLY(V) = IR, V)1 Aoy LR™) , where n = dim V.

In addition there are forgetful functors I/ : #Y & — FLV.7. And we define

L,/ as the composite

triv *

! tnv

i v
o) L, guivg DL g0 o
Theorem 3.2.3
I is an isomorphism between the categories 9. and I ..

Proof: It is enough to check that %'V is an isomorphism of categories. Its
inverse is the forgetful functor I, . And by the definition of the former it is
easily seen that IV o I, is naturally isomorphic to the identity functor on

IV, Lemma BZT above provides a natural isomorphism

IV O]’tI'lV ~ id

triv

This finishes the proof. U
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3.3 Notions of equivalence

Unlike the category of orthogonal spectra, 7., where we considered just two
notions of equivalence, namely level equivalences and m,-isomorphisms, we will
in the equivariant case define many different classes of weak equivalences. The
reason for this phenomenon is three choices influencing our definition. These are

the choice of level-wise versus stable,
the choice of a family .7 of subgroups of GG, and
the choice of a good collection ¥ of G-representations.

Of course, not all possible sets of choices are equally interesting. We shall point
out a few interesting examples. Often one has a particular application of the
theory in mind when considering a notion of equivalence. For example, we will
define cyclotomic m,-isomorphisms below, in order to study THH and TC of
orthogonal ring spectra (with involution) in chapter B

A family of subgroups of G is defined as a collection .% of H C G closed under
passage to conjugates and subgroups.

Let us begin by considering the level-wise cases.

Definition 3.3.1
Let f: L - K be a map of orthogonal G-spectra. We say that f is a level-wise
(F,V)-equivalence if for every H € .% and V € ¥ the map

LV)" — K(V)"
is a weak equivalence of topological spaces.

We now define homotopy groups. In non-equivariant homotopy theory we
have one homotopy group for every ¢ € Z, whereas in equivariant homotopy
theory we index our homotopy groups by an integer ¢ and a subgroup H of G.
For orthogonal G-spectra the homotopy groups also depend on the choice of a
good collection 7.

Definition 3.3.2
Let U be a G-universe associated to ¥. The homotopy groups are defined by

Hy colimy ¢ m (Y L(V))# if ¢ >0, and
1 COliqugch Wo(QV_RqL(V))H if ¢ <0.

Remark 3.3.3

Observe that for fixed H the homotopy group ﬂfL does not really depend on
which G-representations 7 contains, but rather on the H-representations appear-
ing as the restriction of some V in #. To see this, assume that ¢ : V' — W is an
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H-linear isometric isometry. The diagram

sV L L)

mlz %L(ab)

SV L (W)

gives a homeomorphism between the (non-equivariant) spaces (QVL(V))H and

(QVL(V))H, defined by sending f to the unique g making the diagram commute.
Stable notions of equivalence are now defined as follows:

Definition 3.3.4
Let f: L — K be a map of orthogonal G-spectra. We say that f is an (Z,V)-
me-isomorphism if for every H € % and q € 7 the map

il — gl K
q q
is an isomorphism.

We now have overwhelmingly many notions of equivalence for orthogonal G-
spectra. Let us now give names to the extreme cases and some other interesting
examples.

Definition 3.3.5

The naive level-equivalences are the level-wise (<7 ¢l triv)-equivalences, the gen-
uine level-equivalences are the level-wise (o (0, of {)-equivalences, the naive -
isomorphisms are the (<7 (0, triv)-m,-isomorphism, and the genuine m,-isomorphisms

are the (/' U0, of U0)-T.~isomorphism.

Here the family .o/ /¢ is the collection of all subgroups of G, triv is the collection
of the trivial G-representations, and the good collection &7 ¢/¢ is the collection of
all G-representations.

Remark 3.3.6

Clearly every genuine level-equivalence is a naive level-equivalence. Furthermore
genuine 7,-isomorphisms are naive 7,-isomorphisms by theorem V.1.7 in [MM02].
Because of lemma B2 Tl it is tempting to think that the converse statements also
must be true. However this is not the case. The reason in the level-case, is
that the H-fixed points of Zo(R", V) Aowm) L(R") is generally not equal to
jG(Rn’ V)-i— /\O(n) L(Rn)H

If the Lie group G is S or O(2) we define:

Definition 3.3.7
Let . be the family of finite cyclic subgroups of S*. The cyclotomic m,-isomorphisms
are the (F, o/ Ul)-r,-isomorphisms.
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By the inclusion S C O(2), the family .Z is also a family of subgroups of
0(2).
(-spectra in the equivariant setting are given as follows:

Definition 3.3.8
An orthogonal G-spectrum L is an Q)-G-spectrum if all maps

LN — (Y L(v e W)

are weak equivalences of spaces. Here V and W are G-representations, and H a
closed subgroup of G.

3.4 Cellular orthogonal G-spectra

In this section we recall the notion of an F” I5-cell from [MM02], we also introduce
new types of cells, namely induced G-cells and orbit G-cells.

Definition 3.4.1
Given a good collection ¥ of G-representations. Choose a skeleton sk %7 for
I . The F” Ig-cells is the set of all maps

Fy (S"'xG/H), - Fy (D" 'xG/H),
where n > 0, V € sk %5 and H is a closed subgroup of G.

The two extreme cases are:

Definition 3.4.2
The naive Flq-cells are the F"V [-cells; we allow only trivial G-representations
V. The genuine FIg-cells are the F“*I5-cells; we allow all G-representations.

Remark 3.4.3
To what degree does the equivariant structure of the orthogonal G-spectrum
Fy (D™ x G/H), depend on the representation V7

Assume that H is trivial. Choose a (non-equivariant) isometric isomorphism
¢ : R™ — V. Evaluating Fy, (D" x G)4 at some level W we get

Ja(V.W)AN (D™ x G)y

Represent a point by a triple (f,z, g). We have a map into _Z¢(R™, W) A (D" x
G)4 given by sending (f,z,g) to (fg¢,z,g). And it is easily checked that this
map is a G-map. Hence we have a G-isomorphism of orthogonal G-spectra

F\/(Dn X G)+ = FRm(Dn X G)+

Now assume that H is non-trivial. Whenever we have an H-linear isometric
isomorphism ¢ : U — V, then Fy (D" x G)4 and Fy (D" X G)4 are G-isomorphic.
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The isomorphism is defined by sending (f,x,[g]) to (fgog~', z,[g]). The H-
linearity of ¢ ensures that this map does not depend on choice of g representing
the class [g] € G/H.

Up to G-isomorphism, the orthogonal G-spectrum Fy (D" x G/H ), depends
only on V' as an H-representation.

In our applications we will need even more general cells. Therefore we define:

Definition 3.4.4

For any closed subgroup H of G, let @/ {l{y be the collection of all finite dimen-
sional H-representations. Choose skeletons sk JI? “r for all JI? 1 Define the
set of induced G-cells to be the set Indg F'I of all maps

(Fvsi_l) /\H G+ — (F\/Di) /\H G+ 5

where n > 0, H is a closed subgroup of G, and V is a finite dimensional H-
representation in sk .7, HVH .

The functor — Ay G assigns to an H-space its induced G-space. It also
takes orthogonal H-spectra to orthogonal G-spectra. For precise definitions see
section below.

Remark 3.4.5
If V is the restriction of a G-representation, then (FVD_’";) Aa Gy = Fy(D} A
G/H,). This shows that all genuine F'Ig-cells are induced G-cells.

In order to get a symmetric cofibrant replacement functor we will consider an
even nastier kind of cells. In this case we restrict ourselves to finite G. The cells
are defined as follows:

Definition 3.4.6

Let H be any finite group, and let ¥y be the collection of all finite dimensional
H-representations. Choose skeletons sk %" for all .#;". Define the set of orbit
G-cells to be the set Orbg F'I of all maps

(FvST'ANGy) /H — (KDY ANGL) /H

where n > 0, V is a finite dimensional H-representation in sk JZI/H , H acts
trivially on S"! and D", and the action of H on G is given via a group homo-
morphism H — G.

Remark 3.4.7
If H is a subgroup of G acting on G via the inclusion, then we have the following
identification:

(FyD} ANGy) /H = (FyDY) A Gy

Thus we see that any induced G-cell is an orbit G-cell.
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In order to bring things more down to earth, we will now write out explicitly
what an orbit G-cell looks like at some level W.

Example 3.4.8

Let ¢ : H — (G denote the group homomorphism. Let W be a G-representation.
We are now going to evaluate Fyy D} A G at level W and specify the G and H
actions. By definition of the shift desuspension we have

(FvDY ANGy) (W)= Z(V,W)AD} NGy

Recall that a non-basepoint in _#Z (V, W) consists of an isometric embedding
f:V — W and a w € W orthogonal to f. Thus a tuple (f,w,x,g) represents a
point in the space above. An h € H gives an isometry h: V — V and h sends f
to the composition fh~!. Via ¢ the element h acts on g by sending g to go(h).
Dividing out by H we see that

are identified in (Fyy D7 A G,) /H(W). Furthermore, on this space we have an
action of G. Let « be an element in G. It acts from the left by sending (f, w, z, g)

to (vf,7(w), z,79).
This example also shows the reason for the name “orbit G-cell”. Contrary to

all other types of cells, the action of O(W) on the W’th level of the orbit cell is
not necessarily free. And non-free actions have more than one type of orbits.

Remark 3.4.9
Notice the following redundancy in the definition of the orbit G-cell (FVDi A G+) JH:
If there is a kernel K of the map H — G x O(V'), then we have the identification

(FyDY ANGL) /H= (FyD} AGy) [T
where J is the quotient H/K.

Example 3.4.10
Consider the orbit G-cells when G is the trivial group. They have the form

(Fysyt) /H = (FvDY) /H

If V is a non-trivial H-representation, then this orbit cell is not isomorphic to
any F'I-cell.

Now we are ready to define the various types of relative G-equivariant cellular
maps.

Definition 3.4.11

Let K be either the set of F” I-cells for some good collection, the set of induced
G-cells, or the set of orbit G-cells. A map i : A — L of orthogonal G-spectra is
relative K -cellular if:
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i(A) is a sub-G-spectrum of L.

There is a set C' of sub-G-spectra L, such that each L, contains i(A) and
Uaec La = L.

C' is partially ordered by inclusion. We write 3 < « if Lg C L,. And for
all a the set P, = {f € C' | § < «} is finite.

For every o € C' there is pushout diagram with G-equivariant maps:

OE — . E

l L

Uﬁ<a Lﬁ - LO!

where OF 5 E is a cell in K.

Corresponding to the different kinds of relative cellular maps we have q-
cofibrations. The naive q-cofibrations are the retracts of relative FIZY-cellular
maps, the genuine g-cofibrations are the retracts of relative Flém—cellular maps,
the induced q-cofibrations are the retracts of relative Indg F'I-cellular maps, and
the orbit g-cofibrations are the retracts of relative Orbg F'I-cellular maps.

Remark 3.4.12

Observe that naive g-cofibrations are genuine q-cofibrations, that genuine ¢-
cofibrations are induced g-cofibrations, and that induced g-cofibrations are orbit
g-cofibrations. All these kinds of g-cofibrations are both 1- and h-cofibrations.

3.5 Model structures on G.¢.¥

A justified question is what combinations of cofibrations and equivalences give
model structures on G.#.7. In this subsection we shall briefly comment this by
recalling some results from [MMO02|. But first we recall the notion of a compactly
generated model category, see definition 5.9 in [MMSSO1]:

Roughly speaking a model category ' is compactly generated if there exist
sets of maps I and J in 7, which can be used in the small object argument, and
such that the fibrations in <7 are the maps which satisfy the right lifting property
with respect to all maps in J and the acyclic fibrations are the maps which satisfy
the right lifting property with respect to all maps in /. The maps in [ are called
the generating cofibrations and the maps in J are called the generating acyclic
cofibrations.

Here are our model categories:
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The naive level-wise model structure on G . has naive level-equivalences
as weak equivalences and naive q-cofibrations as cofibrations. See theo-
rem 111.2.4 in [MMO02].

The genuine level-wise model structure on G.#.% has genuine level-equivalences
as weak equivalences and genuine g-cofibrations as cofibrations. Again see
theorem II1.2.4 in [MMO02].

The naive stable model structure on G.#.% has naive m,-isomorphisms
as weak equivalences and naive q-cofibrations as cofibrations. See theo-
rem I11.4.2 in [MMO02].

The genuine stable model structure on G.¥.% has genuine 7,-isomorphisms
as weak equivalences and genuine g-cofibrations as cofibrations. The fibrant
objects are the Q-G-spectra. Again see theorem I11.4.2 in [MMO02].

Let .# be a family of subgroups of GG. The stable % -model structure has
(.F, o/ ll)-Tr,-isomorphisms as weak equivalences. The generating cofibra-
tions are those genuine G-cells Fy, (D" x G/H), where H € .%. See theo-
rem IV.6.5 in [MMO02].

In particular there is a stable cyclotomic model structure on orthogonal S*-
and O(2)-spectra. The weak equivalences are the cyclotomic 7,-isomorphisms,
and the cofibrations are constructed allowing only the cells Fy, (D" xG/H )4
where H C S' (C O(2)) is finite cyclic.

All these model structures are compactly generated.

Remark 3.5.1

Induced G-cells and orbit G-cells are introduced in this thesis. And it is beyond
the scope of this work to find model structures on G.#.¥ where the cofibra-
tions are generated by these classes of cells. However, if such model structures
exist, they probably have better properties. For the case with orbit G-cells,
theorem B0l gives a hint about this.

3.6 Categorical fixed points

Let H be a closed subgroup of GG. In this section we will describe how to take
the H-fixed points of an orthogonal G-spectrum. The basic properties of this
construction is given in proposition B:6.2. We will also define the notion of a free
orthogonal G-spectrum, and state some elementary observations.

Definition 3.6.1
Assume that L is an orthogonal G-spectrum and N a closed normal subgroup of
G. Let J be the quotient G/N. The categorical N-fized point spectrum LY is
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given by
L¥(R") = LRM)Y

for trivial representations R™. Clearly LY is an orthogonal spectrum. Notice
that LY has a J-action. By the appropriate change of universe functor we define
LY (V) for any J-representation V. Thus L" is an orthogonal J-spectrum.

More generally we could define L¥ for any closed subgroup H of G by first
restricting L to an orthogonal Npy-spectrum. Here Ny denotes the normalizer
of H in G. Taking the H-fixed point spectrum L? we get an orthogonal Wy =
Ny /H-spectrum.

Again let N be a closed normal subgroup of G, and let ¢ : G — J = G/N be
the quotient map. We shall now specify a right adjoint €* to the functor (—)".
Given an orthogonal J-spectrum K, we define the orthogonal G-spectrum e*K
by giving K (R™) the N-trivial G-action. We have

(€ K)(R") = € (K(R"))

We extend (¢*K)(V) to all G-representations V' by the appropriate change of
universe functor.

The main properties of the categorical fixed points can now be summarized
in the following proposition:

Proposition 3.6.2
Let L be an orthogonal G-spectrum and K an orthogonal J-spectrum. There is
a natural isomorphism

GIS (K, L)~ ]IS (K, LY)

Furthermore, if V' is a G-representation and A a based G-space, then we have
that

~ ) Fy(AY) ifV is an N-trivial G-representation, and
(FvA)" =

* otherwise.

The functor (—)™ preserves naive and genuine g-cofibrations, it also preserves
acyclic naive q-cofibrations, but not acyclic genuine g-cofibrations.

For a proof see the propositions V.3.5 and V.3.10 in [MMO02].
We now define what a free orthogonal G-spectrum is:

Definition 3.6.3
Assume that L is an orthogonal G-spectrum. We say that L is free if L(V)# = x
for all non-trivial closed subgroups H of G and all G-representations V .
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Observe that if L is free, then the categorical H-fixed point spectrum L* is
trivial for all H # {1}. However, the converse of this statement is not true. It
is possible for an orthogonal G-spectrum to have L(R™)” = x for all R™ and
H # {1}, but L(V)# # « for some non-trivial G-representation V and H # {1}.
For examples of such L, consider the orbit G-cells.

Remark 3.6.4
We now make some elementary observations: Let L be an orthogonal G-spectrum.

Assume that L is both free and naive F'Ig-cellular. Then all cells occurring
are of the form Fgm (D" x G),.

Assume that L is both free and genuine F'I5-cellular. The all cells occurring
are of the form Fy (D" x G)4, where V' is some G-representation, but due
to remark it can always be assumed that V is trivial. Hence, L is
actually naive F'Ig-cellular.

Assume that L is both free and Indg F'I-cellular. An induced cell (FVDi) ANH
G, have non-trivial H fixed points, so unless H is trivial L cannot be free.
Recall that V was an H-representation. Thus V = R™ for some m since
H = {1}. Hence, all cells of L are of the form Fgm(D™ x G),. This shows
that L actually is naive F'Ig-cellular.

Assume that L is both free and Orbg F'I-cellular. Then group homomor-
phism H — G of a cell in L must be trivial, and all cells can thus be written
as

(FvD} ANGy) /H = (FyDY) JH NGy

for some H-representation V.
We end this section by a simple, but important observation.

Proposition 3.6.5
If f . L — K is a naive level-equivalence between free orthogonal GG-spectra, then
f is also a genuine level-equivalence.

Proof: Let V be a G-representation and H a subgroup of G. We must check
that f7 : L(V)? — K(V) is a weak equivalence of spaces. There are two
cases to consider. Assume first that H is the trivial group. Since f is a naive
level-equivalence, the map

LV =L(V) =2 LR™ L KR™) = K(V) = K(V)?

~Y

is a weak equivalence of spaces. Here m = dim V', and the identifications L(V') =
L(R™) and K(V) = K(R™) are non-equivariant.
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The other case is when H is non-trivial. Then by freeness, both L(V)# and
K(V)H are equal to the trivial orthogonal spectrum . Thus it is a tautology
that

f L)t — k()"

is a weak equivalence of spaces. U

3.7 Geometrical fixed points

We now define the geometric fixed point functor, and give the relevant results.
This functor certainly depends on the choice of a collection ¥ of G-representations.
In fact, if ¥ = triv, then the geometric fixed points are equal to the categorical
fixed points. However, we are going to use the convention that for the purpose
of taking geometric fixed points if not otherwise specified, then ¥ is understood
to be the collection &7 ¢¢ of all G-representations.

We follow the exposition given in chapter V §4 of [MMO02] closely, and begin
with some categorical preliminaries.

Let E denote the short exact sequence,

0-N—-G>J—0 ,

of Lie groups. Here N is a closed normal subgroup of G. We now define a
topological J-category Zg as follows: The objects are the G-representations V'
contained in our collection #". The morphisms from V to W are the N-fixed
points of Z(V,W). This means that a non-basepoint arrow of #Zg(V, W) can
be represented by a pair (f,w), where f is an N-linear isometry V' — W and w
is a point in W¥ orthogonal to f(V?). Observe that #r =G _¢ when N = G,
I = Zc when N is trivial, and _#p = ¢} when ¥ = triv.

Let ¢ : #g — _#; denote the J-functor which sends the G-representation
V to the J-representation V', and the arrow (f,w) € Zr(V,W) to (f¥,w) €
Fy(VNWHN). We think about ¢ as the N-fixed point functor.

Let v : Z; — _Zg be the J-functor which sends the J-representation V' to
the G-representation €V, and the arrow (f,w) € _Z;(V,W) maps to (f,w) €
Ie(eV,e'W). We think about v as the pullback along e : G — J.

Observe that pov =1id: 7; — Z;.

Definition 3.7.1
Let Zg7Top, denote the category of Zp-spaces, namely continuous J-functors
FIr — Top,,. The functors ¢ and v induce forgetful functors denoted by

Uy : #yTop, — FrTop, and U,: fglop, — F;Top,

respectively. Left Kan extension along ¢ and v gives prolongation functors

Py flop, — FyTop, and P,: Z;Top, — Jrlop,
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left adjoint to Uy and U, respectively. We have U, o Uy = id and Py o P, = id.

Definition 3.7.2
Let Fix" - FcTop, — FrTop, be the functor sending an orthogonal G-spectrum

L to the _Zg-space Fix"V L given by
(Fix™ L)(V) = L(V)N
and with evaluation J-maps
(Fix¥ L)(V)A_Z5(V,W) = LV A_ga(V,W)Y =5 L)Y = (Fix" L)(W)

Here the maps ev : L(V) N _Zq(V,W) — L(W) are the evaluation G-map of
L. Define the geometric fized point functor ® : #5Top, — _#;Top, to be the
composition Py o Fix".

Construction 3.7.3

There is a natural J-map from the categorical fixed points to the geometrical fixed
points. This map LY — ®V L is defined as follows: Observe that LV = U, Fix" L.
The adjunction between U, and Py has a unit 1 : id — U, o Py. And the natural
J-map above is constructed as the composition

LN =U, Fix" L 2% U, U,P, Fix" L = P, Fix" L = L

In order to compute with the geometric fixed points we have the following
proposition:

Proposition 3.7.4
For a G-representation V in ¥ and a based G-space A, we have

SN (FyA) = Fyn AN

Furthermore, if K is the pushout of B — A 2 L in the category of orthogonal G-
spectra and i is a closed inclusion, then ® K is the pushout of ®¥ B «— ®V A —
®N L. The functor ®V preserves q-cofibrations and acyclic g-cofibrations.

For a proof see proposition V.4.5 in [MMO02].

3.8 Induced orthogonal G-spectra

In this section we will define the notion of an induced G-spectrum, see defini-
tion B84l The main topic is to study the geometric fixed points of induced
G-spectra. Our main result is proposition There is an annoying condition
in this proposition, but so far no counterexample has been found.
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3.8.1 Basic facts about induced G-spaces

Let H be a subgroup of GG, and N a normal subgroup of G which is contained in
H. All subgroups are closed, and i : H — G denotes the inclusion. We will first
define orthogonal G-spectra induced from orthogonal H-spectra. To do this we
need some basic facts about equivariant spaces.

The setup for the groups occurring in this subsection can be expressed by two
short exact sequences. We have

0 N H To 0
0 N G J 0

We denote the first sequence by Ej and the second sequence by E. Let j : £y — E
be the map of sequences given by the diagram above.

Assume that X is a based G-space and Y a based H-space. By forgetting
part of the G-action on X we get the H-space ¢*X. Observe that ¢* is a functor
from based G-space to based H-spaces. This functor has both a left and a right
adjoint. The right adjoint of ¢* is the coinduced G-space, and is given by the
formula Fy(G,,Y), where Fly denotes the space of based H-maps. However, we
will not meet coinduced G-spaces in this thesis. Therefore we do not write out
this side of the theory. The left adjoint is defined by sending Y to the based
G-space

Y Ay Gy

This is the quotient space of Y A G, where (hy, g) is identified with (y, gh) for all
h € H. An element v € G sends (y,g) to (y,7g9). We call Y Ay G the induced
G-space.

A basic lemma for induced spaces is:

Lemma 3.8.1
Giving smash products the diagonal action, there is a natural G-homeomorphism

XANYAg G =E@TXAY)Ag Gy
In particular, X A (G/H)+ = (i*X) Ag G 4.

Proof: A point (z;y,g)in XA(YAgG,)issent to (¢ 2, y; g) in (i*XAY)AgG .
O

We will now see how the N-fixed point functor commutes with the induced
space functor. Recall that J = G/N and Jy = H/N. Note that X is a J-space
and YV is a Jy-space. We have:
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Lemma 3.8.2
There is a natural J-homeomorphism

Y Ag GON =2 YN Ay Ty

Proof: We construct map both ways and end the proof by observing that they
are inverses to each other. Assume that (y, g) is a point in (Y Ay G)V. For all
n € N we have
(y.9) = (y,ng) = (y,gn') = (n'y.9) ,

where n’ = ¢g7'ng € N. Thus y = n/y. Since conjugating with ¢ is an
automorphism of N, we see that y is an N-fixed point. We therefore send
(y,9) € (Y Ag G)N to (y, [g]) € YN Ay, Ty

Given a point (y, [g]) in YV Ay, J4, we choose an element g € G representing
the class [g] € J = G/N. We claim that the map sending (v, [g]) to (y,g) €
(Y Ag G1)V is well-defined. Suppose that ¢’ € G was another choice of element
representing [g], then

(.9) = (w,997'9) = (97 '9'y,9) = (y,9)

The last equality follows since g~'¢’ € N and y € Y. Obviously, the two maps
are inverses to each other. 0

3.8.2 “Change” functors for equivariant orthogonal spectra
and _Zp-spaces

Now consider the case of equivariant orthogonal spectra. First we define the
change of group functor, then we look at its adjoints and at last we determine
how the left adjoint, the induced spectra, interact with the geometric fixed point
functors. The inclusion ¢ : H — G induces a change of group functor from
orthogonal G-spectra to orthogonal H-spectra. Assume that K is an orthogonal
G-spectrum, and L an orthogonal H-spectrum.

Definition 3.8.3

The change of group functor is defined by letting i*K be the orthogonal H-
spectrum given by (i*K)(i*V) = i*K (V) for G-representations V. We extend
1*K to H-representations W not of the form +*V, by the change of universe
functor.

The right adjoint of i*, the coinduced orthogonal G-spectrum functor, is de-
fined at level V as Fy(G4,L)(V) = Fg(Gy, L(i*V)), where Fjy is the space of
based H-maps. For further details, see proposition V.2.4 in [MMO02].

We now look at induced orthogonal G-spectra. The definition can be found
in proposition V.2.3 in [MMO02], but we include it here for the convenience of the
reader.
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Definition 3.8.4
The induced orthogonal G-spectrum, L ANy G, is given by (L Ag G4)(V) =
L(i*V') Ay G for G-representations V.

How to define the evaluation H-maps will be discussed below in the more
general setting of induced _#g spaces. See remark B89

Let us now build the theory for “change” functors for ¢g-spaces. Unlike
the case of equivariant orthogonal spectra, the change of universe functors will
not always be equivalences of categories. This subtle difference forces us to be
extremely careful regarding universes. We begin with an example:

Example 3.8.5

A key ingredient in the proof of lemma B2l was that for any good collection ¥
of G-representations and any V' € 7, there is a trivial G-representation R"™ such
that R™ and V' were isomorphic in the category /g/ . The analogous statement
for #g is in general not true:

Let E be the sequence 0 — Cy — S' — S'/Cy — 0, and let ¥ be the
collection of all Sl-representations. Identify S! with the unit circle in C and
consider the representation C, where S acts by multiplication. Any Cy-linear
isometry from a trivial S'-representation R" into C must map C,-fixed points
onto Cy-fixed points. Since C2 = 0, there is no isomorphism in Sz 7 between C
and some trivial representation.

Therefore, the forgetful functor from _¢# » -spaces to 5 iv_gpaces cannot be
an isomorphism of categories.

Definition 3.8.6

Let E be a short exact sequence of compact Lie groups. Assume that ¥ C ¥’
are two good collections of G-representations. Then we have a forgetful functor
U : /g/”]'op* — JZFTop,. By left Kan extension, we define a prolongation
functor

P: 75 Top, — Jy Top,

left adjoint to U. These are the change of universe functors for #p-spaces.

Let us now look at the change of sequence. As above we consider a diagram

0 N H Jo 0
1o
0 N G J 0

This diagram is a map j : £y — FE of short exact sequences. Let 7" be a good
collection of G-representations. Now let i*7# be defined as the collection of H-
representations ¢*V, which are the restriction of some V € #. And we define:
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Definition 3.8.7
The change of sequence functor

7 I8 Top, — I, Top,
is given by sending the ¢ » -space X to the é:’/—space given by
(" X)(@V) =4 X(V)
for H-representations t*V being the restriction of a G-representation V in V.

The change of group functor for equivariant orthogonal spectra had both left
and right adjoints. These were the induced and coinduced spectra. Analogously
we now define induced and coinduced _#g-spaces. Since the coinduced _Zg-
spaces will not be used later in the thesis, we only sketch the definition: Given a

£/ -space Y we let the coinduced #J -space Fy,(J;,Y) be given by

FJO(‘]+? Y)(V) = FJO(J+7 Y(Z*V))
The induced _#g-spaces are defined as follows:

Definition 3.8.8
Let Y be a /&:V—space, then the induced g -spaceY Ny, Jy is given by

(Y Aoy J)(V) = Y (V) Ay T
for G-representations V' in 7. The evaluation J-maps are given by

IE VW)Y Ay J)(V) = Fa(V.W)T A Y (V) Agy J4)
=~ (it Zo(V.W)N AY (V) Agy I
= (Iu(@V,i W)V AY (V) Agy T4
= Y@W)Ny, Jo = Y Ay JL) (W)

for G-representations V and W in V.

Here we have used the G-homeomorphism X A (Y AgG4) = (i* X AY)Ag G4
from lemma B8], and the evaluation Zg, (¢*V,&*W)AY (i*V) — Y (i*W) for the
4
£, -Space Y.

Remark 3.8.9

If N is trivial, then #p = Zq. Hence, the last part of the definition above tells
us how to define the evaluation G-maps for the induced orthogonal G-spectrum
functor.
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3.8.3 Geometric fixed points and induced spectra

We will now consider how the geometric N-fixed point functors interact with
induced orthogonal G-spectra. In order to prove the result we have to make an
assumption relating representations of N and GG. The author has not found any
counterexample to the condition.

As before we consider the diagram

0 N H Jo 0
0 N a J 0

Ejy is the first short exact sequence and E the second. Let j : Ey — E be the
map of sequences given by the diagram.

Proposition 3.8.10

Let j : Ey — E be as above. Suppose that for any N-representation W there
exists a G-representation V and an N-linear isometric embedding W — V' such
that WY = VN Then for orthogonal H-spectra L there is a natural isomorphism

(ONLY Ay, Jy =2 ON(L Ay GY)

Remark 3.8.11
It is enough to check the assumption for non-trivial irreducible N-representations
W. The condition certainly holds whenever the quotient group J = G/N is finite.
Because in this case one can take V' to be the induced G-representation of W.
If one fixes the compact Lie group G, one can try to list normal subgroups
and their representations and then check explicitly if the condition holds. To
check that the assumption holds in the cases G = S and G = O(2), is an easy
exercise left to the reader.

The proof of the proposition is to check commutativity of the following dia-
gram:

T FixN y/T P¢o T
jH opy — Eo 20D, — /Jo op,

= U =
L
oy o
FuTop, i, Top, —— Z5,Top,
—AgG4 A —NJjgd+

FixV v Py
HcTop, —— JpTop, —— J,Top,
Here 7 denotes the collection of all G-representations, while % are all H-

representations. We have not specified universes for the categories of orthogonal
H-, G-, Jo- and J-spectra. This is since the change of universe is an isomorphism
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for these cases, and we can change universe whenever needed. The functors Fix”"
are defined with respect to genuine equivariance. Similarly, the prolongation
functors Py, and Py, given in definition B7T] use all representations. However,
the prolongation functor IP’ZO"/ is defined using only those representations being
restrictions from J and G.

We prove three lemmas, each checking commutativity of one of the squares.
Let us start with the hardest:

Lemma 3.8.12

Suppose that for any N-representation W there exists a G-representation V and
an N-linear isometric embedding W — V such that WY = V. Let Y be a
5 E’i -space. Then we have a natural isomorphism

PLUY = Py Y

Proof: Since IP’gO"/ and Py, are left adjoints, while U is a right adjoint, the proof
of this lemma cannot be abstract category theory. By change of universe for
orthogonal Jy-spectra it is enough to check that we have a natural isomorphism
when evaluating at the trivial Jy-representations R™. We begin by writing out
both sides evaluated at R™ explicitly. We have

. *veity
(PL)UY) (R") = / I (V)N R AY (V)

and
Wew

(P%Y) (Rn) = /Jo (WN> Rn) N Y(W)

Recall that i*7 are the H-representations of the form ¢*V for some G-representation
V', while # are all H-representations. Since ¢*¥% C #', we clearly have a natural
map

Py UY — Py Y

Now we show that this map is surjective. Pick a point in (P4, Y )(R™). It is repre-
sented by a pair ((f,u),y)in _Z; (WY, R")AY (W) for some H-representation .
By the assumption, we can choose a G-representation V' together with an N-linear
isometric embedding g : W — V such that W¥ = V¥, What we have is an arrow
(9,0) in _Zp,(W,7*V). This arrow is a relation in (Py,Y")(R") between the point
we picked and the point ((f(¢")~ % u),(g,0)(y)) in Z5((@*V)N,R") AY (i*V).
This new point is in the image of (Pé;:’/UY) (R™).

To show injectivity we consider a generating relation in (Py,Y)(R") between
((frown), ) in 25 (W, RMAY (Wh) and ((f2, u2),y2) in 25 (W3, R AY (Ws).
By the argument above we can choose liftings of these points to (P, " UY)(R").
And the proof is completed by showing that the lifted points are related in
(PyUY)(R").
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A generating relation in (P, Y)(R") is specified by a triple

((fa U), (h,w),y) € on(W2N7Rn) A on(Wb WQ) A Y(W1>

Here f : WY — R" is an isometric embedding, v a point in R™ orthogonal
to f(W3¥), h : Wy — Wy an N-linear isometric embedding, w a point in W3
orthogonal to h(W}) and y a point in Y (W;). This generating relation identifies
the point

((fow),m) = ((FRY ut f(w)),y) in 2y (W], R") AY (Wh)

and

((f2u2), y2) = ((f, ), (hyw)(y) in 2o, (W5, R") A Y (Wa)

Liftings of these points to (P ”UY')(R") are given by G-representations V; and
V5, and N-linear isometric embeddings ¢g; : W7 — Vi and go : W5 — V5 such that
WN =V and W3¥ = V;N. The lifting of the first point is given by

((falg) ™ w), (91, 0)(wn))  in Zp (V)N RY) AY (V1)

and similarly for the second point. Unfortunately, we cannot automatically com-
plete the diagram

Wi L’ Wy
gll ng
Vi Va

by an arrow at the bottom. However, we can form the H-representation i*V; Gy,
1"V, and by the assumption there exists a G-representation V' together with an
N-linear isometric embedding i*V; @y, i*Vo — V, such that their N-fixed points
agree. Now we have N-linear isometric embeddings hy : V; — V and hy : Vo — V.
Putting these maps into the diagram above we get a commutative pentagon. Also

observe that V¥ = V¥ = W}V. Thus we have the arrow (hs,0) in _Zg, (i*Va,7*V)
and the arrow (hy,w) in _Zg, (¢*Vi,7*V).
By (hs,0) we have a relation in (P ”UY')(R") between the second lifting,
((f2(gév)_1> Ug), (927 0)(y2>) in /JO((Z.*VY?)N7 Rn) A Y(Z*‘/?) )

and

((f2lg2) 7 (he) ™ ua), (h2,0)(g2,0)(y2))  in Zy (V) R") AY (i"V)
Now look at the generating relation in (P}, ”“UY')(R") specified by

((f2(92) 7 (h3) ™ wa), (hayw), (g1, 0) (1))
in 2 (V)N R A _Zg (i*V4, i V) AY (*W7)
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This relation identifies

((f2(g2) M (h ) hy  us + fo(gd)~H(h) " (w)), (91,0) (1))
= ((filg?) " w), (91,0)(m1))

in _Z;((7*V1)N,R") A Y (i*V;) with
((f2(g2") "1 (h) ™", wa), (ha, w) (g1, 0) (1))
= ((f2(gév)_l(hév)_1>u2)> (h2>0)(92>0)(y2))

in _Z;,((*V)N,R*) AY (i*V). Thus we have a relation in (P, ”UY)(R") between
the two lifted points. This completes the proof of the lemma. U

The two other lemmas are easy:

Lemma 3.8.13
Let L be an orthogonal H-spectrum. We have a natural isomorphism

(UFixN L) Ay, Jy 2 Fix™(L Ay Gy)
of g -spaces.
Proof: Let V be a G-representation. We evaluate both sides of the natural
isomorphism at V. The left side at level V' becomes:

(UFixY L) Ay, J1) (V) = (Fix" L)(i*V) Ay, I+
=LV Ay Ty

And the right side at level V' becomes:

Fix™ (L Ay G )(V) = (L Ay G)(V)Y
= (L*V) Ay G)Y

From lemmaBR2 we recall the natural homeomorphism (Y AgG )N = YNA, J,
for H-spaces Y. Setting Y = L(i*V') we get

(UFix" L) Aj, J1) (V) 2 Fix™ (L A G1)(V)

To check the fact that the evaluation J-maps _#Zp(V, W)A((UFix" L) Ay, J4) (V) —
(UFix" L) Ag, J1) (W) and _Zp(V,W) A Fix¥(L Ag G4)(V) — FixV(L Ag
G4)(W) agree is left as an exercise to the reader. O
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Lemma 3.8.14
The diagram

]Pn'*"f/

e ¢
éo”f/’]'op* —O> /Jojbp*

_/\JoJ+l l—/\JoJ+

p P

commutes.

Proof: It is enough to check commutativity of the corresponding diagram of
right adjoints:

iy

" U
/éoy/%p* —— /JO%p*

] K
S Top. —— 7, Top.

Let L be an orthogonal J-spectrum and V' a G-representation. Now compare
UL i;L and j*UsL at the level V. We have:

Again we leave to the reader to check that the evaluation Jy-maps agree. U

Together the three lemmas above prove proposition B.8.1(

3.9 A symmetric cofibrant replacement functor

In this section we mainly work with non-equivariant orthogonal spectra. Recall
the definition of the cofibrant replacement functor I', see theorem E2Z2ZT3. Due
to lemma there are two obstructions to symmetry of I'. The obstructions
are that the twists of the disks, D™ x D" = D™ x D™ and the twists of the
indexing spaces, R™ @& R™2 = R™2 ¢ R™ | are not the identity maps. If we are
content with getting orbit cells instead of naive cells, then we can divide out by
these twists when performing the small object argument. We will explain this in
detail below, thus constructing a symmetric functor . The section ends with a
subsection containing various results concerning this functor and equivariance.
Our theorem says:
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Theorem 3.9.1 .
There is an endofunctor I' on orthogonal spectra having the following properties:

I'L is orbit cofibrant for all L.

If K — L is the inclusion of a subspectrum, then 'K — 'L is an orbit
q-cofibration.

T comes with a natural level-wise acyclic fibration 'L — L.
There is a natural quotient map 'L — T'L.

There is a symmetric natural transformation ¢ : ILATK — T(LAK) and
a canonical map S — I'S.

To prove this, we begin with the construction of I:

Construction 3.9.2
We modify the small object argument. The basic step is to introduce a new
gluing construction.

Suppose that p: A — L is a map of orthogonal spectra. Let C,, ,, be the set

of all diagrams

n—1 FRmin n
FRmS+ — FRmD+

1| s
A 2, L

Recall that the orthogonal spectrum G(p) was defined as the pushout of
AL\ RSt 0\ [ Fon DY

where the wedge runs over all diagrams in C,, ,,, with n,m > 0.

Recall from remark that X,, and X,, both act on a cell FRmS_’ﬁ_l —
Fpm DY in C), . A permutation o € 3, gives a map o : D" — D", and o acts on
diagrams « of C,, ,,, by composing f, and g, with F'(c). A permutation p € ¥,,
gives an isometry p : R™ — R™, and p acts on diagrams « of C,, ,,, by composing
fo and g, with F,. Altogether we get an action of £, x ¥, on G, ,,,(p). Divide
out by this action and define é(p) as the union over all quotients:

é(p) = U Gn,m(p)/zn X Y

n,m

~ Now we proceed as before and define liL by iterating the gluing construction
G(p). Start with x 2 L, define G*(L) = G(po), and let p; be the canonical map
G'(L) — L. Inductively we get G"Y(L) C G = G(pi_1) & L.
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Definition 3.9.3 .
The orbit cofibrant replacement functor I is defined for L € ¢.% as the colimit

of the G*(L)’s.

We now begin to prove the statements in theorem B3Il As a first result we
justify the name “orbit cofibrant replacement functor” by showing:

Proposition 3.9.4
I'L is orbit cofibrant for any orthogonal spectrum L.

Proof: It is enough to consider the natural inclusion j of gluing construction

A L G(p), and show that this map is a relative orbit g-cofibration.
Let a be a cell in (), ,,,. There is a subgroup H, of ¥£,, x X, of symmetries
fixing the diagram

n—1 femin n
FRmS+ — F]RmD+

/| s
A 2, L

corresponding to a. Observe that é(p) also can be described as the pushout of
AL\ (FanSyY) [Ho — \/ (Fem D) [Ha

where o runs through one representative for every 3, x%,,, orbit of C,, ,,,, n,m > 0.
By Illman’s theorem [[1I83] we may triangulate Frm D" evaluated at R™ as a finite
O(m) x H,-CW-complex. All O(m)-orbits are free. Divide out by the H,-action.
This describes (FRmSi_l) /Hy — V,, (FRmDi) /H, as a relative orbit cellular

map. Hence A % G(p) is also relative orbit cellular. O

Since G(p) is a quotient of G(p) it follows that 'L is a quotient of I'L. The
canonical map S — TS is constructed just as before. To prove the next two
statements of the theorem, namely that T takes inclusions to orbit g-cofibrations,
and that the natural map 'L — L is a level-wise acyclic fibration, we just copy
the proofs of the propositions and 22T respectively.

What now remains is to define the natural map ¢ : 'L ATK — T'(L A K),
and show that it is symmetric.

Construction 3.9.5 .
The construction is similar to construction ZZZT8 We inspect the G*(L)’s and

the G7(K)’s and define inductively maps

¢i; G(L)ANGI(K) — G YL AK)
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such that diagrams similar to those in construction commute. By taking
the colimit as both ¢ and j tend to infinity, we get our natural transformation
I'LATK —T(L AK).

We proceed by induction on ¢ + j. Assume that « and ( are the cells given
by the diagrams

Fgn ST —— FgmD? Fgs ST —— Fpu DV
| oo ] ls
GNL) — L G YK) — K

By the construction of G'(L) and GY(K) there are unique lifts of a and 3 to
diagrams & and [3:

FgnS"™t —— Fgn D" Fgs ST —— Fpu DV
/| o oma ] o
GY L) —— GY(L) GNK) —— GU(K)

As in the old construction, we see that aJ3 together with the map
GHLY A GUK) U GH(L) A GIH(K) S22, G2 A K)

determines a cell § in G"71(L A K). Let H, be the subgroup of 3, x %,
that preserves o, Hp the analogous subgroup for 3, and H; the subgroup of
Yt X X ym that preserves 6. Now observe that H,I1H 3z then must be contained
in Hs. This ensures that all relations in G*(L) A G/(K) also give relations in
G™~YL A K). Hence, ¢;; is well-defined.

We finish the proof of theorem BZ01 by showing:

Proposition 3.9.6 ) ) )
The natural transformation ¢ : 'L AT'K — I'(L A K) is symmetric.

Proof: Comparing [' with T we see that there is a commutative diagram

TLATK —%— I(LAK)

TLATK —2— D(LAK)
where the vertical maps are quotient maps. Proposition 2221l says that T' is

skew-symmetric, with ¢ : 'L — 'L measuring the failure of symmetry. Recall
that + was defined by flipping both the disks D™ and the indexing spaces R™
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of the cells in I'L. Similarly we can define ¢ for L. And the proof of propo-
sition Z227] works also in this case, and yields that T is skew-symmetric. But
when construction T’ we divided out by all permutations of coordinates on both
D™ and R™. This shows that ¢ = id for [ L. Hence, symmetry follows. 0

3.9.1 Equivariant features of I' and I

For orthogonal G-spectra we have defined many different notions of cofibrancy.
In each case one could ask for a cofibrant replacement functor. For the category
of orthogonal spectra we constructed such a functor I' in theorem ZZ2ZT3 We also
have the orbit cofibrant replacement functor I’ defined above. It seems unlikely
that these functors can be used in the equivariant setting, but by some miracle
I'L and T'L are naive cofibrant and orbit cofibrant respectively, and the natural
maps 'L — L and 'L — L are naive level-equivalences. The author thinks it is
unlikely that these maps are genuine level-equivalences.

In order to apply the functors I" and I to orthogonal G-spectra, we assume
that G is a finite and discrete group. By indexing our orthogonal G-spectra L
by trivial representations only, we see that such L are the same as orthogonal
spectra with G-action, i.e. functors G — £.%. Hence applying I or T to L
yields a new orthogonal spectrum with G-action. We can ask whether or not I'L
and T'L are cofibrant (for one of the G-equivariant notions of cofibrancy).

We discuss the functor I' first. And we have:

Proposition 3.9.7
Assume that G is a finite group. Let L be an orthogonal G-spectrum, then I'L
is naive G-cellular.

Proof: By induction it is enough to consider the gluing construction. Suppose
that p: A — L is a G-equivariant map between orthogonal G-spectra. We must
construct a relative F'Ig-cellular structure on A — G(p).

Recall that C' denotes the set of all diagrams

Fpn ST —— Fgm D7

| L

A N L

where n,m > 0. Let « be a diagram in C, and let H, be the subgroup of G
consisting of those elements g which preserve the cell a. We can now describe
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the gluing construction G(p) equivariantly by the pushout diagram

VFR’"S?-_l A (G/Ha)-i- - VFRmDi A (G/Ha)-i-

| | ’

A — G(p)
where the wedge runs through one representative « for each G-orbit in C. This
implies that A — G(p) is a relative naive F'Ig-cellular map. O
Lemma 3.9.8

Let L be an orthogonal G-spectrum and H a subgroup of GG, then
(CL)"(®R™) =T(L")(R™)

for all R™.

Proof: To see this we inspect the gluing construction for a map p: A — L. Let
a be a diagram in C. The result follows from the observation that the diagram

Fam S ' —— Fpn D1

| E

A AN L

is fixed by H if and only if f and g map into A" and LY respectively. O

Corollary 3.9.9
Let L be an orthogonal G-spectrum. The map I'LL — L induces a weak equiva-
lence

(TL)"(R™) — L (R™)

for all R™ and H. Consequently, the map I'L — L is a naive G-equivariant
level-equivalence.

This corollary says that I' is a cofibrant replacement functor for the naive
model structure on G.#.%. But in general a naive level-equivalence is not a
genuine level-equivalence, see remark

We now turn to the case of the orbit cofibrant replacement functor I', and
show corresponding results:

Proposition 3.9.10 ~
Assume that G is a finite group. Let L be an orthogonal G-spectrum, then I'L
is orbit G-cellular.



108 CHAPTER 3. EQUIVARIANCE FOR ORTHOGONAL SPECTRA

Proof: It is enough to consider the gluing construction G(p) for a G-equivariant
map p : A — L between orthogonal G-spectra, and we must construct a relative
Orbg F'I-cellular structure on A — G(p).

Recall that for fixed n and m, the set C,, ,, consists of all non-trivial diagrams

Fen ST —— Frm D7
A 2, L

Observe that the group G x ¥, x ¥, acts on C}, .. Let a be a diagram in C;

and let H, be the subgroup of G x ¥,, x ¥, consisting of those elements (g, g,’p)
which preserve the cell «. We can now describe the gluing construction G(p)
equivariantly by the pushout diagram

V (FenST ' ANGy) JHy —— \ (Fem Dt ANGL) [H,

| l ’

A — G(p)

where the wedge runs through all n and m and one representative « for each
G x ¥y X Xp,-orbit in O, .
We now appeal to [llman’s theorem [III83] in order to show that each map

(Fem ST ' ANGL) /Hy — (Frm D} AGy) /H,

is relative Orbg FI-cellular. To see this consider (FpmD7 A Gy)(R™) as an
(O(m)x H,)-space and triangulate to describe it as an (O(m) x H,)-CW-complex.
Dividing by H, we get that the map above is orbit G-cellular. This implies that
A — G(p) is a relative Orbg FI-cellular map. And the result follows. O

We have:

Proposition 3.9.11 .
For all orthogonal G-spectra L the map 'L — L is a naive level-equivalence.

Proof: It is enough to show that for all G-equivariant diagrams

(S"' x G/H), —— TL(R™)

! |

(D" x G/H)y —— L(R™)
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there is a lift (D" x G/H); — TL(R™). _Since S™" is compact and G finite,
the map on the top factors through some G*(L)(R™). Restricting the left side to
some element of G/H we now get the diagram

s —— GHL)R™)

| l

DY —— LER™)
Observe that the action of H preserves this diagram. And by construction of
G"(L) we certainly have a lift D — G**(L)(R™). This lift is H-equivariant.
Now a basic adjunction gives a G-equivariant lift

(D" x G/H), — G*YL)(R™) ¢ TL(R™)
solving the first lifting problem. U

This proposition shows that T' is an orbit cofibrant replacement functor for
the naive G-equivariant model structure on G.¢.%.

3.10 The diagonal map

We consider the diagonal map in two cases, without and with involution. For
an F'I-cellular orthogonal spectra L (without involution), we describe a C,-
equivariant cell structure on the iterated smash product L"?. This uses the
induced cells, see definition B.Z4 After this we construct the diagonal map
LN — &Y (LA9). Tt is defined for arbitrary L, but if L is cofibrant, then the
diagonal map is an isomorphism. The proof uses the equivariant cell structure.

In the second subsection, we repeat this for orthogonal spectra L with invo-
lution. Recall that Dy, denotes the dihedral group of order 2¢. In the involutive
case the diagonal map L"? — ®C (L") is Dy,-equivariant, and an isomorphism
when L is genuine Z/2-equivariantly cofibrant.

3.10.1 Without involution

Let L be an orthogonal spectrum. Consider the iterated smash product L.
Since A is symmetric, we get a ¥, action on L"? by permuting factors. In our
applications we will only consider actions of cyclic groups, so for simplicity we
restrict our attention to the action of C, on L".

Now assume that L is F'I-cellular. The following result describes an induced
Cy-cellular structure on L
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Proposition 3.10.1
Let C be the partially ordered set of cells for an F'I-cellular orthogonal spectrum
L. The g-fold product C*? has a C, action, and let D be the set of Cj-orbits.

The Cy-equivariant structure on L"? is given as follows:

For each e in D there is a subspectrum (L") of L, and gy p(L")(0) =
LM,

D is partially ordered by inclusion. We write [3] < [a] if (L") C (L") [q-
And for all [o] the set Po) = {[B] € D | [B] < ]} is finite.

For every [a| € D there is pushout diagram with C,-equivariant maps:

(Fane S e, (Co)e —— (Fame D) Acs (Cy)s

l l ’

U[,@}<[a} (L") (3] - (L") (o]

where C is a subgroup of C,, and Cy acts on R™ S"~! and D™ by
permuting the coordinates.

Moreover, each (FrmsST"™") A, (Co)y — (FrmsD7) Ac, (Cy)+ can be subdi-
vided as a relative Ind C,FI-cellular map. Hence, L™ is an induced cofibrant
orthogonal Cy-spectrum.

Proof: Recall from proposition that L™ has an F'I-cellular structure
with C*7 as its set of cells. An o = (a,..., ) € C*? represents an orbit [
in D and we define (L"9)[q to be

U Lo‘p(l) ARRRRA Lap(q)
peCyq

Clearly, U[a]eD(LAq)[a] = LM,

Assume that (L"9)(g C (L")} for some o = (a1, ...,ay) and 8 = (G4, ..., 0,).
Then each Lg, must be contained in some L. Since there are only finitely many
0 € C such that Ls C Ly, it follows that each Pq is finite.

Consider some o = (ag,...,q,) in C*% and let C, be the subgroup of C,
acting trivially on a. To be more explicit: Let s be the greatest integer dividing
q, where t = %, such that a; = a; whenever 7 = j modulo t. We now see that C
acts trivially on the g-tuple (a, ..., a,). By the F'I-cellular structure on L there

is a pushout diagram
Fgm ST —— Fgem, DT

l l

Uﬁ<ai Lﬁ - LOli
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for every «;. Smashing these diagrams together, as in lemma EZ2ZTIl we get a
pushout diagram

ni+etng—1 ni+-+n
Fle+“~+’rILq S+ 1 E— FRm1+~~~+MqD+ 4

! J ’

U[—}<aLﬁl/\"'/\Lﬂq _— Lal/\"'/\Laq

where the maps are Cs-equivariant. C, acts on such diagrams, and taking the
union over all diagrams in the Cj-orbit of our c, we get a pushout diagram

<FRm1+~~+mqSil+"'+nq_1) Ac, (Cq>+ N <Fle+m+mqul+~..+?’LQ> Ac, (Cq)+

| |
U B1<[o] (L") g - (L") e

Since m; = m; and n; = n; whenever ¢ = j modulo ¢, we see that C; acts
on R™it+me  Grit-tng=l and Dm+-+ne by permuting coordinates. Now put
m=m;+---+mgand n=mny +---+n,.

The last statement of the proposition follows by applying Illman’s equivariant
triangulation theorem for finite groups, see [[II78], to produce a Cs-triangulation
of D"*, O

Remark 3.10.2
Assume that S — L is a relative F'I-cellular map. Recall the notation sL"?~! for
the subspectrum

SANLMNVULANSALMN2U---ULMIAS C LM

The proposition above immediately gives a Cj-equivariant description of sL ™1,
It is the sub-Cj-spectrum of L"? built using only those [a] in D with at least one
«; equal to the cell of S.

Next we construct the diagonal map. Let L be any orthogonal spectrum.
As above the ¢-fold smash product L is an orthogonal C,-spectrum via the
action that cyclically permutes the factors. Similarly L""? is an orthogonal C,,-
spectrum. The diagonal will be a map LY — ®¢ (L 7). This exists for all
positive numbers r and gq.

Construction 3.10.3

Let E be the short exact sequence 0 — C, — C,, — C; — 0. Recall the definition
of the category #p. Let i: #Z.® — Zg be the full subcategory whose objects
are direct sums of regular C,,-representations. For an inner product space U, we
have that U®™? is an object of #;®. First we construct a C;-map

L/\Q(Ueaq) — FixCr (L/\rq)(Uequ)
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Using coends we can express the smash product L (U%7) as

.....

A point in this space is given by (f,u;zy,...,z,), where f: Rh @& ... R% — U4
is an isometric embedding, u is a point in U®? orthogonal to f, and x; lies in
L(R%). To describe the C -action, we let a : UP — U®? be the map which
sends (uy,...,u,) to (ug,ui,...,us 1), and we define b : R" & --- @ R —
Ré% @ R® @ --- @ R%-1 similarly. The preferred generator of C, then acts by
sending

(fru;zy, ... 2,) to (afb™ au;xg,z,. .., 24 1)

Analogously, we have that L""9(U%") is equal to the coend

.....

To define the diagonal map, take a point
(fiu;xy,...,x) in Z(R"@-  @RY UP)ALRM)A--- A LRY)
and map it to

(f@T,(u,...,u); (xl,...,xq),(xl,...,xq),...,(xl,...,xq))
in
J(RY @ oR¥) @@ R @-- - ®RYM), UPT) A (LRI A ALRU))A- - A(LRP)A---ALRY)) .

We easily see that the image is a C,-fixed point, and that the diagonal map is
Cq-equivariant. The Cj-map, as constructed above, can be rewritten as a natural
transformation

U, U, L — U, Fix© (L79)

of ¢ ®-spaces, where U, is the forgetful functor from _#®-spaces to _Zg-spaces,
and U, denotes the functor given in the definition of geometrical fixed points, see
definition BTl By left Kan extension, we have a left adjoint P; to U;, and the
counit of this adjunction is a natural transformation P;U; — id. Recall that P,
denotes the left adjoint to Us.

Definition 3.10.4
The diagonal map L"? — ®C (L") is defined as the composition

LM — PyPU; Fix“ (L) — P, Fix“ (L") = (L) |

where the first map comes from the construction above, and the second map is
induced by the counit P;U; — id.
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Remark 3.10.5
Assume that S — L is the inclusion of a subspectrum. Considering the restriction
of the diagonal map to sL"%"!, we get a diagram

SL/\q—l @CT (ST‘L/\Tq—T‘)

gl lg ,

L/\q CI)CT (L/\rq)
where s"L"77" is the subspectrum of L7 given as
LM = JLMTPAS AL AS AL AS A AS A LM
i
The existence of this diagram follows from inspection of the construction.

Example 3.10.6
Let us inspect the diagonal map in the case L = FyyA. Then

LM = Fyao(AM) and LN = Fyer(AN9)

Computing the geometric C,-fixed points of the last orthogonal spectrum, we get
by the formula in proposition B4 that

(I)C'r (L/\Tq) — F(véqu)C,« (A/\rq)C’r — FVEBq (A/\q) _ L/\q

Inspecting definitions, we see that the diagonal map is an isomorphism in this
case.

More generally we have:

Proposition 3.10.7
If L is a cofibrant orthogonal spectrum, then the diagonal map L’ — ®Cr (L")
is a Cy-equivariant isomorphism.

It is enough to prove the result in the case where L is F'[-cellular. The
main idea is to use the equivariant description of the iterated products, given in
proposition BI0.T. But in order to apply this description we have to compute
the geometric fixed points of induced cells.

Lemma 3.10.8

Let H be a subgroup and N a normal subgroup of a compact Lie group G.
Suppose that for any N-representation W there exists a G-representation U and
an N-linear isometric embedding W — U such that W~ = UN. Assume that V
is an H-representation and A a based H-space. Then we have:

(Fuw AN) Ay, J if N is a subgroup of H
N
OV (FyA) Ay Gy) =Y oot with Jo = H/N, J = G/N, and

* otherwise.
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Proof: Assume first that N is contained in H. Then proposition B-8I0 applies,
and we have

N ((FvA) Aw Gy) = (PN (FvA)) Ay J+
Furthermore, proposition yields that

(N (FyA)) Ny Iy = (Fun AN) Ay, Js

Next assume that IV is not contained in H. The following is an elementary
fact: If X is a based H-space, then the induced G-space, X Ay G, has no non-
trivial N-fixed points. It follows that Fix" ((Fy A) Ay G ) = *. Consequently,
also ®V ((Fy A) Ay G) = *. O

By remark B.8.TT] the condition is always true for finite G. We are now ready
to prove the proposition:

Proof: Let L be an F'I-cellular orthogonal spectrum with cells C'. We now apply
proposition B0 Let D be the Cj-orbits of C*9 and let D’ be the C,,-orbits of
C*". Let € be the map C*? — C*"? given by

*

€ (o, a,...,aq) = (1,00, .., 00, 01,09, ...,04,...,01,00,...,0)
The g-tuple (ai, g, ..., ) is repeated r times. Passing to orbits we get a map
e:D—D.

Now we claim that:
q)cr (L/\Tq> — U q)or (L/\rq)[e*ﬁ]
[BleD
To prove this claim, we show by induction on the number of elements in Pq that
HCr (L/\rq)[a] _ U HCr (L/\rq)[e*,@}
Bl <[]

There are two cases to consider when proving the induction step: If [a] = [¢*3]
for some [3] in D, then the induction hypothesis is trivially true. The other case
is when [a] is not of the form [¢*3] for any [3] in D. We consider the diagram

U @9 (L") @ ((Frm:ST71) Ac, (Crg)+) =@ (Frm= D) Ac. (Crq)+)

[0]<[e] :l l: l:

U oCr (LATq)[E*B] — * — *
[e*B]<[c]

The left vertical map is an equality by induction. Since [a] is not of the form
[e*3], if follows that C, is not a subgroup of Cj, and hence lemma BI0.8 implies
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that the two other vertical maps also are equalities. By proposition B0l the
pushout of the top row is ®“(L""?)(4. This finishes the proof of the claim.

Our next claim is that the restriction of the diagonal map to (L"\?)[q gives an
isomorphism

(L")jog = (L") v

for all [a] in D. We prove the claim by induction on the number of elements in
Pjo). Consider the diagram

U e = (FeeSE ) A (G = (Fene DY) e, (G
<l

| ! l

[mU[ ]<I>CT(LA”)[€*@]<—¢>CT‘ ((Frmra ST Ac,, (Crg)+) =@ ((Frmrs DY) Ac,, (Crg)+)
<|lx

Here the vertical maps are instances of the diagonal map. The row on the top
comes from the Cj-equivariant description of (L"?)4), while the bottom row is
®Cr applied to the C,-equivariant description of (L) By induction and the
previous claim, the left vertical map is an isomorphism. Since C. is a subgroup of
C,s, lemmaBT0.§ implies that the two other vertical maps also are isomorphisms.
Taking the row-wise pushouts proves our claim, see proposition BTO Tl

Clearly, the two claims together prove the proposition. 0

Remark 3.10.9
By the proof above, we see that the diagonal map restricted to sL"?~! is an
isomorphism

SL/\q—l o~ (I)CT (STL/\rq—r)

3.10.2 With involution

The dihedral group Ds, has generators = and y, and relations 27 = y* = 1 and
xy = yz~'. Let L be an orthogonal Z/2-spectrum, the involution is determined
by a map ¢ : L — L. Now we can extend the Cj -action on L"? to a Dy -action
by letting y act by

LA\ ALAL
_—

LANLAN---ANL="5%5LA---ALAL LA---ANLAL

Assume that L is genuine FIz,-cellular with C' as its set of Z/2-cells. Then
the dihedral group Ds, acts on C*?, x acts by permuting factors cyclically, while
y sends a g-tuple (aq, @, ..., ) to (ag,..., s, a1). Now L gets an induced
Ds,~cellular structure by an argument similar to proposition B0

Next we construct the diagonal map for L with involution. The diagonal will

be a Dy,-map L' — OO (L),
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Construction 3.10.10

Let E be the short exact sequence 0 — C, — Dy — Dy, — 0. Let 7 :
5t — _Zg be the full subcategory whose objects are direct sums of regular

Ds,.,-representations. For each inner product space U, we get an object U%?"? of
p°. Let U; be the forgetful functor from ¢ ®-spaces to #g-spaces, and by

left Kan extension, we define IP;.

As before we construct a Dy,-map
U, Uy LM — U, Fix©r (L)

of #Zp®-spaces. This map is given on level U®?"? as a natural D -equivariant

transformation
L/\q(UEB2q) N FiXCT (L/\2rq> (UEB2rq)

To define this, we explicitly write out both sides using coends. Picking a point
on the left side,

(fyu;zy,...,x,) in ZR"@-- - @RY U)ALRM)A--- A LRY)
we map it to

(f@T,(u,...,u); (xl,...,xq),(xl,...,xq),...,(xl,...,xq))
in
(R . oRY) D RN @ - ®RY), USTH)A(LRD)A- - ALRI))A- - A(LRD)A -+ A L(RY))
Again it is easily seen that the image is a C,-fixed point, and that the diagonal

map is Dyg-equivariant.

Definition 3.10.11
The diagonal map for L with involution, L™ — ®% (L"), is defined as the
composition

LM — PyPU; Fix“ (L") — P, Fix“ (L") = (L) |
where the first map comes from the construction above, and the second map is
induced by the counit P;U; — id.

Assume that L is genuine F'Iz-cellular. Using explicit induced D~ and
Dy, 4-cellular structures on L"? and L™ respectively, we prove the following result
an argument similar to the proof of proposition B0

Proposition 3.10.12
If L is a cofibrant orthogonal Z/2-spectrum, then the diagonal map L™ —
®COr (L) is a Day-equivariant isomorphism.

Further details are omitted.
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3.11 Miscellaneous results

In this section we list or show various results which will be used later in the thesis.

3.11.1 About orbit g-cofibrations of orthogonal spectra

Proposition 3.11.1
Assume that i : A — L and j : B — K are orbit q-cofibrations of (non-
equivariant) orthogonal spectra, then also

i0j : LABUAANK —» LAK

is an orbit q-cofibration.

Proof: We can assume that ¢ and j are relative Orb F'I-cellular maps. We will
apply the method used when proving proposition In that proof we use
only one non-formal property about the set of cells, namely that the [J product
of two cells yields a new cell. Once this property has been checked for orbit cells,
the present result follows.

Consider two (non-equivariant) orbit cells:

(P S070) [y — (Fy DY) [Hy and  (FuSm) JHy — (FDI?) /H,

Here V; and V5 are Hq- and Hs-representations respectively. Let V =V} & V5 be
the Hy; x Hs-representation defined by letting H; act trivially on V5, and H, act
trivially on V4. And O of the cells above can now be written as

(F\/(Dnl X SnQ_l U Snl_l X Dn2)+) /(H1XH2) — (F‘/(Dnl X Dn2)+) /(Hl XHQ)
This is again an orbit cell. 0
Proposition 3.11.2

Assume that L is an orbit cofibrant orthogonal spectrum and X — Y a level-
equivalence of orthogonal spectra, then also

LANX — LAY
is a level-equivalence.
Proof: There is no loss of generality by assuming that L is Orb F'I-cellular. By

analogy with proposition ZZ9 there exists a sequence x = Ly — L1 — Ly — - -
such that L is its colimit and each L;,; is the pushout of a diagram

Lo\ (Fos) 1 = \/ (F D) /1
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Hence, each L; — L;,; is an h-cofibration. Smashing the sequence with X — Y,

we get

l l l

The horizontal maps are again h-cofibrations, by lemma 12.2 in [MMSSOI].
Hence, it is enough to show that each L; A X — L; A'Y is a level-equivalence.
Proceeding inductively, what we have to show is that

(FyA) JHAX — (FyA) JHAY

is a level-equivalence when A is a sphere or a disk and H and V arbitrary. By
remark B2, we can always assume that H — O(V) is injective. Then the state-
ment above is a consequence of lemma below. And we are done modulo
proving the lemma. 0

Inspired by lemma 15.5 in [MMSS01] we prove:

Lemma 3.11.3
Let A be a based CW-complex, H a finite group, V an H-representation and
X any orthogonal spectrum. Assume that H — O(V) is injective. Then the

quotient map

is a level-equivalence. Consequently, the functor (F\yA) /H N\ — preserves level-
equivalences.

Proof: We evaluate both sides of the quotient map at some level R™. In order
to write things out we choose a linear isometry V' — R™. Then we have

(FvA) AX) (R™) = O(m)4 Nogn-v) (ANXR™ =V))
and
(EHy NFyA) ANX) (R™) = O(m)y No@m—vy (EHL NANXR™ -V))

The quotient EH x O(m) — O(m) is an (H x O(R™ —V))-equivariant homotopy
equivalence since O(m) is a free (H x O(R™ —V'))-space that can be triangulated
as a finite (H x O(R™ — V'))-CW-complex by [III83].

We compare the description above via the quotient map EH x O(m) — O(m).
Dividing out by the H-action, we get a weak equivalence

(O(m)+ No@n-v) (EHy NANX(R™ = V))) /H
— (0(m)4 No@n-vy (ANXR™ =V))) /H
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And the result follows. O

Analogous to proposition 24T we have the following proposition for orbit
g-cofibrations:

Proposition 3.11.4
Assume that we have a map between two sequences of orthogonal spectra:

KO Kl K2 E—
Ly Ly Ly ——

If Ky — Ly is an orbit g-cofibration, and K; Uk, , L,y — L; is an orbit q-
cofibration for every v > 0, then

colim K; — colim L;
(2 1

is also an orbit g-cofibration.

Proof: If orbit g-cofibrations were the cofibrations of a model structure on
.7, then the formal proof given for proposition would apply. Lacking
such a model structure we give a direct proof.

Observe that the following diagram is pushout for all n:

Ln UKn Kn+1 I Ln UKn colim Kz

l l

Ln+1 e Ln+1 UKn+1 colim Kz

The left vertical map is an orbit g-cofibration by assumption, hence the right
vertical map is also an orbit g-cofibration. We thus get a sequence

colim K; — Ly Uk, colim K; — L; Uk, colim K; — --- — colim L;

of orbit g-cofibrations. An elementary argument, similar to the last part of the
proof of proposition 229, shows that given a sequence Xqg — X; — Xy — - --
of orbit g-cofibrations maps, the induced map Xy, — colim X; is also an orbit
g-cofibration. Applied to our situation we see that colim; K; — colim; L; is an
orbit g-cofibration. O
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3.11.2 About the small object argument

The small object argument, see [DS95] or [Hir03|, is the most common way to
produce both cofibrant and fibrant replacement functors in a model category. We
have already used this construction when defining our functor I'. In general we
have proposition 10.5.16 in [Hir03] which says:

Proposition 3.11.5

If € is a cocomplete category and I a set of maps in € that permits the small
object argument, then there is a functorial factorization of every map in ¢ into
a relative I-cell complex followed by a map having the right lifting property with
respect to any map in I.

So given I, we get a functor taking a map f: X — Y in & to a factorization
XLy

And Q; is defined as the colimit of a sequence X = Q(f) — Q}(f) — Q3(f) —
-+, where each step is a gluing construction.
We now compare the small object arguments in two different categories:

Lemma 3.11.6

Assume that F : € — & is a functor between cocomplete categories. Let I and
J be sets of maps in € and & respectively, and suppose that they permit the
small object argument. If F' takes I into J, then there is a functorial diagram

FX) 29 RQu) 22 p(y)

1k

F(X) — Qu(F(f)) 2 F(Y)

for every map f: X — Y in €.

Proof: Assume by induction that we have a sequence
F(X) — F(Qi(f) — Q5(F(f)) — F(Y)
Now consider one I-cell in Q7™ (f) relative to Q%(f). Such cells are determined

by a diagram
A —— B

LD

Qi(f) — Y
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where A — B isamap in I. Now apply F to this diagram, and use the induction

hypothesis to form
F(A) —— F(B

l |

)
F(Qi(f)) —— F(Y)

| |
Qy(F(f)) — F(Y)

Comparing the pushout of the upper square with the pushout of the outer square,
we get the sequence

F(X) = FQI"(f) = QS (F(f)) = F(Y)

Example 3.11.7

A fibrant replacement functor Q¢ for the category of orthogonal G-spectra can
be constructed by applying the small object argument to a set of maps K called
the generating acyclic g-cofibrations. See definition I11.4.6 in [MMO02]. By propo-
sition B4 ®V takes K to the generating acyclic g-cofibrations of orthogonal
G /N-spectra. Hence, there is a natural transformation

PNQYL — QUNONL

for orthogonal G-spectra L.

3.11.3 About geometric fixed points

We recall corollary V.4.6 and proposition V.4.7 in [MM02], and enhance the last
result to also cover a new case:

Proposition 3.11.8
For based G-spaces A, the geometric N-fixed points of the suspension spectrum
are given by

PV A = [HAY

For orthogonal G-spectra K and L, there is a natural J-map
a: ONKANL — dN(K AL)

of orthogonal J-spectra, and « is an isomorphism if K and L are cofibrant.
Furthermore, « is also an isomorphism if K is a suspension spectrum and L is
arbitrary.
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Proof: The first parts are cited from the reference. To show the last part, we
do an explicit calculation. Assume that K = FyA, where A is a based G-space.
We then have

FixM(FpANL) 2 FixM(AAL) =2 AN A (FixY L) 2 Ry AN A (FixY L)

Here Fy on the left is the suspension from G-spaces to orthogonal G-spectra,
while Fy on the right is the suspension from G-spaces to _Zg-spaces. Since PPy is
strong symmetric monoidal, see 1.2.14 in [MMO02], we get that

ON(FyAN L) = Py FixM(FpA A L) 2 Py AN APy (Fix L) = FpAY AN L

This completes the proof. 0

Geometric fixed points can be used in order to recognize G-equivariant m,-
isomorphisms:

Proposition 3.11.9
Assume that .# is a family of normal subgroups of G. Let f : K — L be a map
of orthogonal G-spectra. The following statements are equivalent:

[ is an (%, o/ l0)-m,-isomorphism.
f induces isomorphisms 7)Y K — ) L for all ¢ and N € .%.
SN f: ®NK — ®NL is non-equivariantly a w,-isomorphism for all N € .Z.

Compare this result to theorem 4.7 in [GM95].

Proof: The first two statements are equivalent by definition. Since compact
Lie groups have the descending chain property, we can do induction on the size
of 7.

Let us show that the last statement implies the second. Let .# be some family
of normal subgroups of G. Assume that we are given a map f : K — L such
that ®7f : ¥ K — ® L is non-equivariantly a 7,-isomorphism for all H € .Z.
Let N be any normal subgroup of .. What we want to check is that f induces
isomorphisms 7V K — 7N L.

Let .#[N] be the family of subgroups of G that do not contain N. Observe
that the intersection .# N .#[N] is a family properly contained in .%. By the
induction hypothesis, we get that f induces isomorphisms 77K — 72 L for all
H € % N .Z[N]. Observe that the family .# N .Z#[N] consists of all proper
subgroups of N.

Recall the notion of a universal .#[N]-space. It is a G-CW-complex E.Z#[N]
such that EZ[N]? ~ x for H € Z[N] and EZ[N]" = () for H ¢ Z|N].
Furthermore, E.%[N] is defined as the cofiber of the map E.Z[N], — S°.
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Let us now restrict G-actions to N-actions. Observe that the restriction of
EZ[N] is a universal .# N .%[N]-space. We already know that f : K — L is an
F N .Z[N]-equivalence. And proposition IV.6.7 in [MM0O2] now implies that

fAid: KNEZF[N]y — LANEZ[N|,

is a m,.-isomorphism of orthogonal N-spectra.
Let () denote a fibrant replacement functor for the genuine model structure
on orthogonal G-spectra. Consider the diagram

QK NEZ[N]L)Y —— Q(K)Y —— Q(K AEZ[N)Y

! | |

Q(LANEZFN]L)N —— QL)Y —— Q(LAEZ[N)N

of non-equivariant orthogonal spectra. We have just shown that the left vertical
map is a m,-isomorphism. By proposition V.4.17 in [MMO02|, the orthogonal
spectrum Q(K A E.Z[N])N is naturally m,-isomorphic to ®V K. By statement
three, we get that

VK ~ QK ANEZ[N)Y — QL AEF[N)N ~dVL

is a m,-isomorphism. Now it follows by long exact sequences of homotopy groups,
that

N (K) = mQK)Y - m QL)Y = 7L
is an isomorphism.
To show that the second statement implies the last statement, one uses the

above argument backward. 0

Remark 3.11.10

The reason for assuming that .% consists of normal subgroups is that geometric
N-fixed points of orthogonal G-spectra, have been defined only for normal N.
Hence, proposition V.4.17 in [MMO02] supplies the homotopy equivalence

QK ANEZINDN = VK

in this case only.

3.12 Cyeclic and dihedral orthogonal spectra

In this short section we will define comment on how the geometric realization of
involutive simplicial, cyclic and dihedral orthogonal spectra becomes equivariant
orthogonal spectra.
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Example 3.12.1

First consider an involutive simplicial orthogonal spectrum. This is a functor L, :
AT® — 7.7, Taking the geometric realization level-wise, we get an orthogonal
spectrum |L,| with Z/2-action. By change of universe, see lemma B2l we can
evaluate this spectrum at any Z/2-representation V.

Example 3.12.2

For an r-cyclic orthogonal spectrum L, the geometric realization |L,| has an S*-
action. Using the change of universe functor, see lemma B21] we can evaluate
at any Sl-representation V getting an S'-space

|Le[(V)

Example 3.12.3
Similarly, if L, is an r-dihedral orthogonal spectrum, then using lemma B2l we
see that

| Le|(V)

is well defined for any O(2)-representation V.



Chapter 4

Operads in orthogonal spectra and
involution

We begin this chapter by studying operads and orthogonal spectra. Traditionally
an operad consists of topological spaces together with composition operations. In
the book [MSS02] the definition of an operad is extended by replacing topological
spaces by objects in a symmetric monoidal category. We recall this definition
below in full generality, but our main focus will be operads in orthogonal spectra.

One usually designs an operad in order to study its algebras. Classically,
we have the operads (in topological spaces) N and M, whose algebras are the
commutative and the associative monoids respectively. We will here introduce
an operad H having associative monoids with involution as its algebras. Via
suspension these results extend to orthogonal spectra. In particular an H-algebra
in orthogonal spectra is an orthogonal ring spectrum with involution.

In section we develop, along the lines of [May72]|, the theory of the two-
sided bar construction. Under the hypothesis that P and Q are sufficiently “equal
up to homotopy”, we can use this construction to replace a P-algebra by a weakly
equivalent Q-algebra. This is made precise in remark

In section we study a geometrically interesting involution ¢ on the homo-
topy groups m,S[QQM]. The main result of the thesis, theorem 320 says that
there exists an orthogonal ring spectrum R with involution which represents ¢
on m,S[QM]. The proof uses the machinery of operads. We design an operad
D,, in orthogonal spectra which has S[QQM] as an algebra. The result follows by
showing that D,, is sufficiently equal to H.

4.1 Operads in ..

We will now begin looking at operads in orthogonal spectra. May’s original def-
inition [May77| describes the composition as a many-variable operation. This
can be replaced by a collection of two-variable compositions. Using this view-
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point, one greatly reduces the complexity of the description of associativity. This
description is due to Gerstenhaber and Markl, see [MSS02].

Let X be the category with objects the finite sets n = {1,2,...,n} for every
non-negative integer n and bijections as morphisms. Here 0 is the empty set.
Thus there is no morphism n — m for n # m, while the endomorphisms of n can
be identified with the symmetric group >,,. Therefore, we call > the symmetric
groupoid.

There are composition operations

Oj ! ZJm X Zn - Em-‘,—n—l

for n > 0 and 1 < ¢ < m. These are defined in the appendix. Let me recall
the “box”-model here: For ¢ and permutations p € ¥, and v € X, we put boxes
around the integers from 1 to m +n — 1 as follows:

[1],...,[i — 1],

We now use p to permute the boxes, while we use v to permute the elements in the
1’'th box. Removing the boxes one gets the permutation p o; v. This operation
gives the symmetric groupoid the structure of a discrete operad. We call this
operad M.

There is an alternative description of the composition operations using per-
mutation matrices. Recall that the permutation matrix of p € ¥, is the unique
m X m-matrix A such that

1+n m+n—1‘ .

ii+1,... . i+n—1

9 g e e ey

Ae; = ey for all 4.

Here e; is the ¢’th unit vector in R™. This embeds ¥, as a closed subgroup
of O(m). A matrix in the image is called a permutation matrix, and these are
exactly those matrices such that every column and every row contain only 0’s,
except for one entry which has value 1.

Let A be the permutation matrix of p € ¥, and B the permutation matrix
for v € ¥,,. We now want to describe the permutation matrix for po; v. We have
a block decomposition of A as

Ay 0 Agg
0 1 0| |,
As; 0 Asg

where 1 lies in the p(7)’th row and the i’th column. Now form the (m +mn —1) X
(m +n — 1)-matrix

A 0 Agg
0O B O
Azt 0 Ag

This is the permutation matrix for p o; v.
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In the case n = 0 we interpret B as the 0 X 0-matrix. Thus the operation o;
deletes the ¢'th column and the p(7)’th row from the matrix A.
Now we are ready to define operads in orthogonal spectra.

Definition 4.1.1
Let (¢,N,S) be a symmetric monoidal category. An operad in € is a functor
P 3 — € with P(0) = S together with composition operations

o;: P(m) AP(n) — Pim+n—1)

defined for integers m, n and i such that n > 0 and 1 < ¢ < m, satisfying the
following axioms:

i) Associativity: For the iterated compositions of P(m) A P(n) A P(p), the
following associativity holds:
0jyp1(0; Nid)(id N) for1 <i < j,
Oi(oj A Zd) = OJ(Zd A Oi—j-i—l) fOI'j S 1< j + n, and
oj(oi—n—i-l A Zd)(ld AN 71') fOI'j +n <.
Here w: P(n) A P(p) — P(p) A'P(n) is the symmetry transposition for A.

ii) Equivariance: Since P is a functor from ¥, each P(m) has an action of
Ym. We write this action on the right, and for p € ¥, and v € %, the
following diagram commutes:

P(m) AP(n) —2 Plm+n—1)

(—-p)A(—-U)J l—(pow)

P(m) AP(n) —— P(m+n—1)

iii) Unity: There is a map 1 : P(0) — P(1) such that the following diagrams
commute for all 1 < i <m

P(m) AP(0) —— P(m)A S SAP(m) —— P(m)
id/\lJ{ l% and Midl l:
P(m) AP(1) ——  P(m) P(1) AP(m) —— P(m)

The following types of operads are relevant for our applications:

Definition 4.1.2
We get discrete operads by putting the symmetric monoidal category of sets
with cross product and unit *, into the definition above.
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We get operads in topological spaces by putting the symmetric monoidal
category of spaces with cross product and unit *, into the definition above.

We get operads in orthogonal spectra by putting (., A\, S), the symmetric
monoidal category of orthogonal spectra, into the definition above.

Remark 4.1.3
The definition above is equivalent to May’s
operad. We construct the multi-operation

“multi-operation” definition of an

v:PE)YANPGL) AN ANP(k) — P(§) , where j =51 + -+ + ji,
as the composition
V= sttt (Og_gttinat Ad) - (04 Add A+ Nid) oy Nid A - - - Nvid)
To go the other way one uses the unit and defines o; = v(—;1,...,1,—,1,...,1).

Proposition 4.1.4
If F is a lax symmetric monoidal functor and P an operad, then F'P is also an
operad.

Proof: F'P is clearly a functor defined on the symmetric groupoid, but we
redefine F"P(0) to be S. We define the composition operations for F'P as the
maps

FP(m) A FP(n) — F(P(m) AP(n)) —2% FP(m +n — 1)

Proving associativity for F'P uses associativity and symmetry for F', and equiv-
ariance holds since the multiplication for F'is a natural transformation. The map
1: FP(0) — FP(1) is defined as the composition

FPO) =S — Fs U pp)

And unity for F'P follows from the unity of F' and P. O

Example 4.1.5

The functor embedding sets in Zop as the discrete spaces, is lax symmetric
monoidal, hence we may consider every discrete operad as an operad in topo-
logical spaces.

Example 4.1.6 (Suspension operads)
The functor sending a space X to the orthogonal spectrum

Fo(Xy) given at level V by Fo(X,)(V) = X, ASY
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is symmetric monoidal. Here F{ is the shift desuspension functor. If C is an
operad in topological spaces, then we may construct a suspension operad in or-
thogonal spectra by composing with X — Fy(X,). Usually we will denote this
operad in orthogonal spectra simply by C, instead of Fy(C, ). And we will call an
operad in orthogonal spectra discrete if it is the suspension of a discrete operad
in topological spaces.

Let us give names to two operads in orthogonal spectra.

We define N'(m)(V) = SV for all m and V. The operations o; are in this
case just the canonical map SA S — S.

Define M to be the suspension of the discrete operad m — >,. The
operations o; are then equal to the suspension of the operations X, x 3,, —
Yimin—1 defined above.

We will now define an operad geared toward anti-commutative involutions.
The hyperoctahedral group H(n) is the group of rigid symmetries of a cube in
R™. If we let the cube be [—1,1]", we can identify H(n) as a closed subgroup of
O(n). The matrices in the image are those such that every row and every column
have 0’s in all except one entry, and this entry is 1 or —1.

We use the matrix description to describe the composition operations. First
let 7,, be the n X n-matrix

Now define o; : H(m) x H(n) — H(m +n — 1) as follows. Let A be an m x m-
matrix describing an element in H(m), and let B be a matrix in H(n). There is
a block decomposition of A as

A 0 A
0 a O ,
As; 0 Asg

where a is 1 or —1 and lies in the ¢'th column of A. Now define the (m + n —
1) x (m 4+ n — 1)-matrix C to be

A 0 Ay
0 B 0| ifa=1,
As; 0 Asg
and
Ay 0 Agg

0 T.B 0 | ifa=-—1.
A1 0 Agg
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Then C'is the matrix of Ao; B'in H(m +n — 1).

Proposition 4.1.7
‘H is a discrete operad.

Proof: The right action of ¢ € ¥, on H(n) is given by multiplication of
matrices. If A is a matrix in H and B is the permutation matrix of o, then o
sends A to AB. And the unit in H(1) is the identity matrix in O(1).

Using the “matrix”-model it is easy to verify all three axioms. 0

Remark 4.1.8
In this remark we describe H(n) as (Z/2)"™ x %, and give a formula for o;.
Write (Z/2) multiplicatively, denote elements of (Z/2)" by x = (1, z2, ..., Zy),
and embed (Z/2)™ in O(n) as the n X n-matrices having 1 or —1 on the diagonal
and 0 elsewhere. Identifying ¥, with the permutation matrices we see that H(n)
is actually the product of (Z/2)™ and X" inside O(n). (Z/2)" is normal in H(n)
and (Z/2)" N X" = {I}, thus H(n) is a semi-direct product (Z/2)" x %,,. Here
Y., acts by permutation of factors on (Z/2)".
It is possible to treat n +— (Z/2)"™ as a non-equivariant operad. The compo-
sition operations are given by

(xla s L1, YLy - Yny Tit 1, - - 7xm) if Ty = ]-7 and

(:L‘l, s i1y Yny e ooy — Y1y Lit1y - - ,."L‘m) lf €T, = —1.

(@1, )0 (Y15 - Yn) = {

We now introduce the following convention: 7,, without an argument denotes the
order reversing permutation in ¥,,, while 7,, with an argument denotes the group
homomorphism Z/2 — ¥, sending —1 to the order reversing permutation. Hence
To(—1) = 7,,, while 7,,(1) = id. Now we can give a formula for the composition
operations of H in terms of the o’s of n — (Z/2)" and (n — %,,) = M. Inspecting
the “matrix”-model we get

(X7 p) O; (Y7 U) = (X Op(i) Y,poi (Tn(xp(i)>v))
forx € (Z/2)", pe X,y € (Z/2)" and v € %,,.

Example 4.1.9
Via suspension the operad H induces an operad in orthogonal spectra. This
induced operad will also be called H.

Here is another example of a lax symmetric monoidal functor applied to op-
erads in orthogonal spectra.

Example 4.1.10 B
Recall the cofibrant replacement functor I' from theorem BZOIl We have shown

that T is lax symmetric monoidal. Hence, for any operad P in orthogonal spectra
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we get an operad ['P. The natural map 'L — L induces a map of operads
[P — P. The nice thing about this new operad is that each T'P(m) is %,,-
equivariantly naive orbit cofibrant.

However, it is hard to say anything about the genuine homotopy of I'P, even
in the case where P is X-free.

The idea behind an operad is that P(n) can parametrize n-fold multiplications
on an object L. If we have such a parametrization, we call L a P-algebra. The
precise definition is:

Definition 4.1.11
Let P be an operad in the symmetric monoidal category (¢, \,S). A P-algebra
is an object L in € together with operations

O = P(m) A LN — [
such that the following axioms holds:

i) 6 acts: For alln > 0 and 1 < i < m the following diagram commutes:

P(m) AP (n) A LMD =—— P(m) AP(n) A LN"H0D
shufHel
P(m) A LN AP (n) A LN A LN (m+n—1)1fwﬂl
zd/\0n/\zdl l9m+n 1
P(m) A L™ Om L

ii) Triviality of the unit: The diagram

1Aml lg
PVAL -2 L

commutes.

iii) Equivariance: The group %, acts from the left on P(m) and acts from
the right on L™ by permutation of the factors. 6,, is equivariant in the
sense that the diagram

P(m) A LN AN P(m) N LN
id/\pl l@m
P(m) A LNm L

commutes for every p € ¥,,.
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Remark 4.1.12
6 is a map P(0) = S — L, and we call this map the unit of L.

Let us look at an example:

Example 4.1.13

In this example we consider the discrete operad H in the category of sets. When
considering the category of sets, remember that “A” in the definition above is
the cross product, and S is the set {1}. We now want to recognize the class of
‘H-algebras as a more familiar type of mathematical objects.

Assume that X is an H-algebra. Let 1 in X denote the image of 6y : {1} — X.
Now define p: X x X — X and ¢: X — X by

u(fv,y)=6’2<((1) ?),x,y) , and

Let us now do some calculations. First we have that

= (93 )9
S (R B

100
=05 01 0]),x,y,z2
0 0 1

Similarly, we can show that u(x, u(y,z)) = 05

o O =

0 0
1 0),z,y,2|. Hence, u
0 1

is an associative operation on X. Furthermore, we have:

(1, 2) = b, ((é (1’) ,90(1),9;)
(o)

== ‘91 (1,.73)

=X s

and by the same methods one also calculates that p(z,1) = x. This shows that
1 is a two-sided unit for u. Hence, X is a monoid with unit. Let us now look at
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the operation ¢. We have:

The interaction of p and ¢ can be computed as follows: First we have

ot =6 (0 (g 1))
RENTES
(4 )

_01 (1)) oy (—1) ya:)
RS
(% 7))

In the last step we used the equivariance axiom for H-algebras. What we have
seen is that (2(z) = z and «(u(x,y)) = p(e(y),t(x)). We say that ¢ is an involution
on the monoid X which anti-commutes with the multiplication.

It can be shown that there are no more relations for a general H-algebra.
Hence, we recognize X as a monoid with unit and anti-commutative involution.

((
((
=0 ((9) wtr (1))
((
((

Proposition 4.1.14
If F is a lax symmetric monoidal functor and L a P-algebra, then F'L is an
FP-algebra.

Proof: We define the operations 6/, for F'L. For m > 1 we define ¢/ as the
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composition

FOn,
—

FP(m) A (FL)"™ — F(P(m) A L"™) FL

For m = 0 we use the unit of F' to define §;:

FP0)=S — FS % FL

It is an exercise to check the FP-algebra axioms for F'L. Notice in particular
that we need symmetry of F' to prove both associativity and equivariance. 0

We conclude this section by the following important observation:

Proposition 4.1.15
There are 1-1 correspondences between

M-algebras in .Z.% and orthogonal ring spectra,
N -algebras in .#.% and commutative orthogonal ring spectra, and

‘H-algebras in .. and orthogonal ring spectra with involution.

Proof: When P is the suspension of a discrete operad, we may identify P(n) A
L™ with a wedge sum
\/ I

indexed over the non-base points in P(n)(0).

Given an M-algebra L, the map 6, : S — L is the unit. To get the multi-
plication we restrict 6y to the wedge summand corresponding to id € ¥5. The
map on the other summand corresponds to p o m, where 7 exchanges the factors
of L A L. Associativity comes from comparing p o (id A ) and po (pu A id) to 65
restricted the summand corresponding to id € 3.

Conversely, given an orthogonal ring spectrum L, it becomes an M-algebra
by defining #,, on the wedge summand corresponding to id € ¥,, to be the mul-
tiplication map L — L, and extend to the other summands by equivariance.

If L is an N-algebra, we get that N(2) ALAL = L AL, and set u = 6.
Commutativity follows from the ¥s-equivariance of 6s.

Conversely, given a commutative orthogonal ring spectrum L, it becomes an
N-algebra by defining 6,, on N(n) A L = L" by multiplication. It is well
defined because of commutativity.

If L is an H-algebra, we let multiplication be 6, restricted to the summand

determined by the matrix (é (1)), and the involution ¢ : L — L is defined to be
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6: restricted to the summand corresponding to the matrix (—1). The calculation
that (—1) oy (—1) = (1) implies that :* = id, and

() ren)atn-(3 %) -0 (02

implies that ¢ is an anti-homomorphism. This is analogous to the calculation in
example LTT3

Conversely, given an orthogonal ring spectrum L with involution, it becomes
an H-algebra as follows: Define 6,, on the wedge summand corresponding to the
matrix

z; 0 - 0
0 25 -+ 0
0 0 T,

as the composition

t(z)NA(z2) A Ae(xn) multiplication
S

I =LANLNAN---NL LALAN---NL L

Here «(x) denotes the involution ¢ if z = —1, while ¢(1) = id, the identity of L.
We extend to all of H(n) by ¥,-equivariance. O

4.2 Operads and the two sided bar construction

4.2.1 Operads and monads

We now follow the theory as presented in May’s book [May72]. Our goal is
to check that the basic results also hold for operads in a symmetric monoidal
category (%, A, S) provided that € has all small colimits. In particular the theory
of this subsection applies to orthogonal spectra.

Assume that P is an operad in % and that L is an object in 4 which comes
with a chosen map S — L. Let I denote Bokstedts category. This category has
objects the finite sets n for n > 0. The morphisms are the injective functions.
Notice that ¥ is a subcategory of I. For any morphism p : n’ — n in I we have
maps

id A p, : P(n) A LN — P(n) AL
and
p* Nid i P(n) AL — P(n') AL

The first map comes from shuffling factors according to p, and inserting S — L
for those factors in L™ corresponding to points in n, not in the image of p. The
second map comes from the identification of S with P(0), n —n’ times, and then
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using the appropriate composition operations to reduce from P(n) A P(O)A”_”'

to P(n').

Definition 4.2.1
We define PL to be the coequalizer of

\/ Pm)AL"™ = \/P(n) AL

pn’—n

Remark 4.2.2
Observe that PL also can be described as the coend

nel
/ P(n) A L™

By S | & we mean the category of objects in € under S. We want to show that
P is a monad in this category. Recall that a monad M in a category % consists
of a functor M : € — % together with natural transformations p : M? — M and
1 :1d — M such that 7 is a left and right unit for u, and p is associative.

Proposition 4.2.3
For any operad P in ¢, P is a monad in S | €.

Proof: Using the unit of P we have a map

L=SANL—PA)ALC\/Pm)AL" — PL

This is the natural transformation 7. Since L is under S, PL is also an object in
S | € via the composition S — L - PL.

To construct the multiplication p : PPL — PL we will use the composition
operations of P. Recall the definition of May’s multioperation v : P(m) AP (ny) A
- AP(nm) — P(ny+ -+ -+ ny,) as the composition of o’s, see remark We
now define [ as the composition

P(m) A (P(ny) ALY Ao A (P(ng) A L)
S Dm) AP(ng) A AP(np) A LA - A LN

N Pny + g+ -+ ) A LA )
Notice that f is natural for nj € I°? and for n; € I. Thus we have an induced
map

P(m) A (PL)"™ — PL
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Given p: m’ — m, it is an exercise to check that the diagram

—

P(m) A (PL)"™ P(m) A (PL)N™

p*/\idl l
P(m') A (PL)N —— PL
commutes. And we get our monad multiplication

u: PPL — PL

Clearly n is a left and right unit. Associativity of p follows from associativity
rules for the composition operations o;. U

If M is a monad in a category %, then we recall that an M-algebra is an
object L of € together with a map 6 : ML — L, such that O = 6M(0) and
Onr, = idr. See chapter VI in [ML9S].

Proposition 4.2.4
There is a natural one-to-one correspondence between P-algebras and P-algebras.

Proof: Given a P-algebra L, we define the P-algebra maps 6, as the composi-
tions

P(m) AL — PL 2 L
Conversely, if L is a P-algebra, we check that the following diagram commutes

_—

P(m) A LN P(m) A LN

p*/\idJ{ lem

P(m) AL . PL
for all p: m" — m in /. Thus we have an induced map PL — L, and we take
this as a definition of 6. O

Corollary 4.2.5
PL is a P-algebra, and for any map f : K — L in €, the induced map Pf :
PK — PL is a map of P-algebras.

Proof: The multiplication u : PPL — PL gives PL a P-algebra structure.
And naturality implies that Pf : PK — PL is a P-algebra morphism. O

Let M be a monad in ¥. Recall from May |[May72| that an M-functor is
a functor F' with the same source as M together with a natural transformation
A: FM — F, such that AF'n is the identity and AF'\u = A\.
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Proposition 4.2.6
If a : P — Q is a map of operads, then () is a P-functor.

Proof: By functorality of the construction of P form P it is clear that o induces
a morphism of monads P — Q).

Now let a, denote the natural transformation PL — ()L, and define A to be
the composition

OPL 2% QoL QL

Here 1/ is the multiplication for (). The properties of a P-functor are easily ver-
ified. O

4.2.2 Homotopy theory of operads and their algebras

Having treated the categorical theory of operads and monads we now turn to-
ward homotopy theory. Berger and Moerdijk, [BMO03|, define model structure
on operads in monoidal model categories. Their approach requires a symmetric
monoidal fibrant replacement functor. See their theorem 3.1. We are interested
in orthogonal spectra, but this category does not possess such a functor, see our
remark Also see example 4.6.4 in [BM03]. However, we do not need a
model structure on operads in orthogonal spectra. Direct methods are sufficient.

Suppose given notions of cofibration and weak equivalence for orthogonal
spectra. Let a: P — Q be a map of operads in orthogonal spectra, and f : K —
L a map of orthogonal spectra under S. We ask:

When is n: L — PL a cofibration?
When is Pf : PK — PL a cofibration?

If each a : P(j) — Q(j) is a weak equivalence when is also PL — QL a
weak equivalence?

If f is a weak equivalence, when is Pf : PK — PL also a weak equivalence?

Remark 4.2.7
The author originally wanted to address these questions for arbitrary operads P.

In this setting, the functor T of theorem B0 should be the cofibrant replacement
functor for operads. Proposition B.O.T0 would ensure that [P had Y-equivariance.
However, as lemma below shows, one must be able to analyze the smash
product over Y;. But getting results about X As;, Y when X and Y are X;-
equivariantly orbit cofibrant, turned out to be too difficult. Therefore the author
had to impose a very restrictive condition on the operads. Further details about
this condition can be found below. Still the cases of main interest, the operads
D, fits into this restrictive framework because of theorem 3111
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A milder hypothesis that could work is to assume X;-freeness of P(j). But
for our applications the stricter condition is sufficient.

We will answer the questions by giving sufficient criteria in the propositions
below. Central in all arguments is a filtration of PL. It is given by defining F; PL
to be the coequalizer of

\/ Pm)AL™ = \]/ P(n) A LM

! n=0
p:n'—n

n<j
By FoPL we will understand the sphere spectrum S, and S = FoPL — PL is
the unit of PL. As coends we can write

n<j
F;PL :/ P(n) A LM

Lemma 4.2.8
FyPL="P(1) AL, for j > 2 there are pushout squares

7)(]) /\Ej SL/\j_l —_— Fj_lpL
P(5) As; N — F;PL
and colim; I;PL = PL.

Here sL" 7! is an abbreviation for (SALM ™Y U(LASALN=2)U- - -U(LNVIAS).
The proof that follows is categorical, so this lemma holds for any symmetric
monoidal category which has small colimits.

Proof: To see that PL = colim; F';PL we consider the diagram
P(m) N LN —— \/p_n_)]m P(m) AL —— -

. —
vp:n—>
m<j—1 m<j

H i

e VL P AL s VL Pm) AL ——

m

and use that taking colimits and taking coequalizers commute.

To see that the diagram is pushout we will use a trick involving coends. We
now fix 7. Suppose that m and n’ are objects in Bokstedts category I, we then
have a pushout square of based sets

{:m—n' wherem<n' =j},—{0: m—n' | wherem < jandn <j}y

| |

{:m —n' | wherem<n'=j},—{0: m—n' | where m <jandn' <j},
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Here the 0’s are injective maps. We interpret the sets on the left to be * if n' #£ j,
and all sets are * if n’ > j. The subscript + means that we have added an extra
basepoint. Varying m € [°? and n’ € [ we see that the collection of these sets is
a functor I°? x I — &ns,.

Now smash the diagram above with P(n) on the left and L™ on the right.
We get a pushout diagram

P(n) A{mﬂn’ |m < n' =5} ALY —P(n) /\{mgn’ |m < j,n <j}y NN

! !

P(n) A{mﬂn’ |m <n' =35} ALNY = P(n) /\{mgn’ | m, n' <jly AN

of functors I°P x [P x [ x [ — .#.%. Pushouts and coends commute, so applying
the iterated coend to the diagram yields a pushout. We calculate the corners of
the resulting diagram by first taking the coend over n € I, then over m € I. We
have:

/ /P(n)/\{@:m—>n\m<n:j}+/\l/\m

=/'Po»~w:m—a|m<jhALM1
= P(]) /\Zj SL/\j_l )

/ /P(n)/\{ﬁ:m—u&\mgn:jh/\lfm
~ [ Ph A m =i m< ) AL
:P(.])/\EJL/\J ’

/ /P(n)/\{@:m—>n\m<jandnﬁj}Jr/\L/\m

:/mp(m)/\T(m<j)/\L/\m

n<j
= / P(n) A L™
= j—lPL and
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/ /P(n)/\{@:m—>n|m§jandnﬁj}Jr/\LAm

= /mP(m) AT(m < j)A L™

n<j
= / P(n) A L™
= F;PL

Here T'(m < j) is the functor sending m to S° if m < j and to * if m > j. And
T(m < j) is defined similarly.

Thus the calculations show that the resulting diagram, which must be a
pushout by construction, is equal to

P(]) /\Zj SL/\j_l —_— j—lPL

l |

P(j) Ay, LN —— F;PL

This concludes the proof. O

From now on we will only consider operads in orthogonal spectra. In order
to prove the propositions we will only work with those operads P such that
each P(j) can be written equivariantly as X A (£;); for some (non-equivariant)
orthogonal spectrum X.

Proposition 4.2.9

If S — P(1) and S — L are orbit q-cofibrations, and each P(j) can be written
equivariantly as a product X A (X;)+ with X being an orbit cofibrant (non-
equivariant) orthogonal spectrum, then the unit n : L — PL is an orbit g-
cofibration.

Proof: First fix j > 2. By proposition BIT1 sL"U~Y — LN is an orbit
q-cofibration. Applying P(j) As, — we get

P(j) As; sLMTY = X AsLNTYD — XA LN =P(5) As, LYV,

for some orbit cofibrant X depending on j. Using proposition BTl again, this
map is an orbit g-cofibration.

Orbit g-cofibrations are stable under cobase change. In the filtration for PL
we now have that each F;_{PL — [F;PL is an orbit g-cofibration for j > 2.
Observe that also L — P(1) A L = FyPL is an orbit g-cofibration.

We now have a sequence of orbit g-cofibrations and by proposition we
have that

n:L— cogiijPL = PL
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is an orbit g-cofibration. O

Proposition 4.2.10

Let f: K — L be a map under S. If f and S — K are orbit q-cofibrations and
each P(j) can be written equivariantly as a product X A (3;)4+ with X being an
orbit cofibrant (non-equivariant) orthogonal spectrum, then Pf : PK — PL is
also an orbit q-cofibration.

Proof: By proposition we must show that
FPK=PO1)ANK —-P1)ANL=FPL
is an orbit g-cofibration, and that for every j > 2 the map
F;PK Up,_ px F;_1PL — F;PL

also is an orbit g-cofibration. The first statement follows directly from the as-
sumptions together with proposition BITIl The second statement is proved as
follows:

Fix some j > 2 and consider the diagram

| |

Observe that
KM Uggeniin sSLNTY = KALVT'ULAKALY?2U- - ULVT'AK
By proposition BTl the canonical map
K™ Uggengon sLMTY — LN

is an orbit g-cofibration. Since P(j) = X A (¥;)4+ for some orbit cofibrant X, the
functor P(j) Ax,; — takes orbit q-cofibrations to orbit g-cofibrations, see proposi-
tion BTl It follows that the map

P(j) As, KNV Up(j)Ax, sk NG P(j) As, sLNTY — P(j) Ag, LV
is an orbit g-cofibration. Now take a look at the diagram

F; 1 PK «——— P(j) As, sK"I™) —— P(j) s, KNV

l l l

Fj1PL —— P(j) Ay, sL"V™D —— P(j) Ag, LN
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Apply lemma E22T0 and use that orbit g-cofibrations are stable under cobase
change to conclude that

FJPK UFj,lPK Fj_lpL — F’]PL

is an orbit g-cofibration. O

Proposition 4.2.11

If for each j the map o : P(j) — Q(j) can be written equivariantly as a product
XA(E))+ = YAN(E;)4+ where X — Y is am,-isomorphism between orbit cofibrant
orthogonal spectra, and S — L is an orbit g-cofibration, then PL — QL is a
T.-isomorphism.

Proof: Since each P(j) is a product X A (X;);+ where X is orbit cofibrant, the
first part of the proof of proposition shows that each map

Fj_lpL — FJPL

is an orbit g-cofibration. Similarly we have that each F;_iQL — F;QL also is
an orbit g-cofibration. Observe that any orbit g-cofibration is an l-cofibration.
Hence by proposition it is enough to show that each F;PL — F;QL is a
Te-isomorphism.

Fix 7 > 1. We now perform a little trick using the cofibrant replacement
functor I': Let K be sL"U~Y or L. In the argument that follows K could in
fact be any orthogonal X;-spectrum. The diagram

P(j) As, TK —— Q(j) As, TK

:l lﬁ

P@) Asy K —— Q) Ay, K

can be written as N
XANTK — Y ATK

zl l:

XNK — YAK
for some orbit cofibrant X and Y. Since 'K — K is a level-equivalence, propo-
sition implies that the vertical maps are level-equivalences. The map at
the top is a m,-iso by proposition EZ47 Thus the two maps

P(j) Ny, sLTD - Q()) Ns, sLAUTY and  P()) As, LY — Q(j) A, LN

are m,-isomorphisms.
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Now we prove by induction that F;PL — F;QL is a m.-iso. For j = 1 this
follows directly from the argument above since FiPL = P(1) A L and F1QL =
Q(1) A L. For the induction step we consider the diagram

Fj 1 PL «—— P(j) Ag, sLN0™D s P(5) Ag, LN

l l l

i/

FjaQL —— Q(j) As; sLNTY —— Q(j) A, LY

The vertical maps are m,-isos and the maps marked ¢ and i’ are I-cofibrations.
By proposition 2220 we get that the row-wise pushout, F;PL — F;Q)L, is again
a T4-1S0. O

Proposition 4.2.12

If each P(j) can be written equivariantly as a product X A (3;)+ with X being
an orbit cofibrant (non-equivariant) orthogonal spectrum, and the maps S — L
and S — K are orbit q-cofibrations, and f : L — K a m,-isomorphism under S,
then the map PL — PK is also a m,-isomorphism.

Proof: It is enough to show that each F;PL — F;PK is a m,-iso. This follows
from proposition 2T

We have FiPL = P(1) AL and F;PK = P(1) A K, so applying the trick of
the previous proof to the diagram

P(I)ATL —— P(1)ATK

| |

PUVAL —— PUYAK

we see that the natural map F\PL — F\PK is a m,-iso.

Let cL’V denote the cofiber of sL"V~! — L. This map is an orbit cofibration
by proposition BT, hence also an l-cofibration. This implies that ¢’V has the
homotopy type of the homotopy cofiber. Similarly we can define cK”V.

Observe that proposition also holds for orbit g-cofibrations. To see this
notice that its proof is formal. In the orbit cofibrant case, we can use proposi-
tion instead of proposition 247 and proposition B-TT1l instead of propo-
sition ZZR. By induction on j and using that the conclusion of proposition
for the induction step, we prove that the map

cILN — ¢cKNV

is a m,-isomorphism.
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We now claim that the map P(j) Ay, cL™V — P(j) Ay, cK™ is a m,-iso. To
check the claim, recall that P(j) = X A (¥;)+, where X is orbit cofibrant. Now
inspect the diagram

X ATeLN —= 5 T'X ANTcKN

:l lz

XATelN —— X ATeKN

:l lz

P@) Ay, LV ——= X ANcLlVN —— X ATcKN —= P(j) Ay, cK™

The propositions BT and show that the maps marked with ~ are 7,-isos.
The claim follows.
Now inspect the map between cofiber sequences given by the filtration:

Fj_lpL E— F’]PL E— P(]) /\Zj CL/\j

| | !

Fj_lpK E— F’]PK E— P(]) /\Zj CK/\j

The first map is a m,-iso by induction, while the last map is a m,-iso by the ar-
gument above. It follows that the middle vertical map also is a 7,-iso. O

4.2.3 Operads and simplicial objects

We are now going to discuss how a monad P induced by an operad extends to
simplicial orthogonal spectra. Recall that a simplicial orthogonal spectrum is a
functor

Ly : A® — 7.¥

But P has domain orthogonal spectra under the sphere spectrum, so we cannot
form the composition PL, unless we demand that L, has a chosen lifting to a
simplicial object in S | .#.%. Luckily this is not a restrictive condition; a functor
AP — (S | A7) is equivalent to a simplicial orthogonal spectrum L, together
with a chosen map S — L.

Geometric realization of a simplicial object in S | .Z.¥ yields an orthogonal
spectrum under S. And we ask if P and | — | commutes:

Proposition 4.2.13
Let L, be a simplicial object in S | .#.% and P any operad in orthogonal spectra,
then there is a natural isomorphism

v:|PLs| — P|Ls|
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such that the following two diagrams commute:

Puy

|L,| — |PLL,| |PPL,| —* PP|L,|
T T A
|Ls| —1— P|Ld| |PL,| —%— P|L,|

Proof: We use the filtration of P and construct v : |F;PL,| — F;P|L,| by
induction. For j =1 we let

[F\PLu| = [P(1) A Lu| = P(1) A |Lo| = FyP|Ld

be the natural isomorphism given by lemma B84 For the inductive step we
consider the diagram

|P(j) As, LY —— |P(j) As, sLY™| —— |F;_1PL,]|

l | |

P(j) N, |Lo|N —— P(j) N, $|Le|V ™t —— F;_1P|L,|

The first two vertical maps are isomorphisms by lemma .54 while the last is an
isomorphism by induction. It follows that the map between the pushouts also is
an isomorphism.

Since v : |PLs| — P|L| is a colimit of isomorphisms, it is itself an isomor-
phism.

To see that v is unital we just observe from the construction above that the
following diagram commutes:

|Le] —— [FAPL.| —— |PL.|
L] —— FiP|L| —— PI|L|

At last we want to check that v o |u| is equal to g o Pvowv. Since the natural
map \/, P(j) A KV — PK is surjective for any orthogonal spectrum K under S,
it is enough to check that the following diagram commutes:

VP (ViP5 S PG) A (Vi POE) AL
: 1

V, PG) ALY — VPG A L

To do this recall the stepwise definition of u, use that wedge and geometric real-
ization commute and lemma 254l This finishes the proof. O



4.2. OPERADS AND THE TWO SIDED BAR CONSTRUCTION 147

Corollary 4.2.14
Let P be an operad in orthogonal spectra. The geometric realization is a functor
from simplicial P-algebras to P-algebras.

Proof: A simplicial P-algebra is a functor
L, : A°® — {P-algebras}

Its geometric realization is defined by realizing the underlying simplicial orthog-
onal spectrum. We define 6 for |L,| as the composition

P|Ls| < |PLd| — |Ld|

Here the last map uses the P-algebra structure of each L,. Using the two diagrams
in the proposition above, we easily see that this is a P-algebra.
Functorality follows from naturality of v. 0

4.2.4 The bar construction

We are now going to recall the definition of May’s two-sided bar construction.
In [May72| May uses this bar construction in relation with operads in topological
spaces. In this subsection we will prove his results for operads in orthogonal
spectra. Due to remark we will not consider arbitrary operads, but only
those P such that each P(j) can be written equivariantly as a product X A (o)
for some orbit cofibrant X. We are particularly interested in improving a P-
algebra to a homotopy equivalent Q-algebra, when given a map of operads P — Q
such that each P(j) — Q(j) can be written equivariantly as the product of a m,-
iso X — Y and (%;)4.

Definition 4.2.15
Let C be a monad, F a C-functor and X a C-algebra, then we define B,(F,C, X) =
FCiX. We have face and degeneracy operators given by

dy=X\ MN:FC'X — FCI'X |
di=FC™ 'y, p:CT7X - CTX for0 < i< g,
d,=FC"'9, 0:CX — X and
s;=FC', n:C""'X — C1"MX

And we define B(F,C, X)) as the geometric realization of Be(F,C, X).

We now specify the situation we are interested in. Let P be an operad in
orthogonal spectra, and L a P-algebra. In addition let o : P — Q be a map of
operads. Now assume that:
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the unit S — L is an orbit g-cofibration,

the unit S — P(1) is an orbit g-cofibration and each P(j) can be written
equivariantly as a product X A (X;) with X being an orbit cofibrant (non-
equivariant) orthogonal spectrum,

the unit S — Q(1) is an orbit g-cofibration and each Q(j) can be written
equivariantly as a product Y A (2;)+ with Y being an orbit cofibrant (non-
equivariant) orthogonal spectrum, and

each a : P(j) — Q(j) can be written equivariantly as a product X A
(X;)+ = Y A (X)) where X — Y is a m,-isomorphism.

These are standing assumptions for the rest of this subsection.
In order to do calculations with the bar constructions we should know that
lq] — QPIL is good.

Lemma 4.2.16
Under the assumptions above [q] — QP1L is good.

Proof: The i’th degeneracy operator is defined as
S = QPin ,Where n: paif, — paitlp :

for 0 < i < q. We will check that s; is an orbit g-cofibration.

We use proposition and proposition E2T0. By simultaneous induction
we prove that the unit S — P’L and n : P/L — P7T1L are orbit g-cofibrations.
Since both P and @ preserves orbit q-cofibrations this implies that s; = QPy is
an orbit g-cofibration. O

Lemma 4.2.17
B(Q, P, L) is a Q-algebra.

Proof: By corollary 2Tl it is enough to show that [¢] — QPIL is a simplicial
(Q-algebra.

For a given ¢ the ()-algebra structure map 0 : QQPIL — QPIL is defined
as the multiplication p/ of Q). By naturality of i’ we easily see that the s;’s for
0 < i < q and the d;’s for 1 < i < g are Q-algebra morphisms. They are all
defined as Qf for suitable f’s. Only d, requires more checking. Recall that dj is
defined to be A\ : QPIYL — QP9 'L, but A = /Qa and associativity of 1/ implies
that dy is a ()-algebra morphism. O
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Proposition 4.2.18
Since L is P-algebra, the evaluation B(P, P, L) — L is a map of P-algebras and
a Ty-isomorphism.

Proof: Define
fq: PP'L — L

to be the iterated composition

ppip %, pap Y peip o pr Y

This defines a simplicial map from [g] — PP?L to the constant simplicial orthog-
onal spectrum [q] — L. Its realization is the evaluation B(P, P, L) — L. Since L
is a P-algebra the following diagram commutes for all ¢:

pppi, 2 pp

Hl l@ )
ppi, —Ji.

thus the collection f, is a map of simplicial P-algebras, and by corollary
it follows that B(P, P, L) — L is also a P-algebra map.

Using the unit n : L — PL we define a coretraction for the evaluation map.
On the level of g-simplices it is defined by

sqn: L — PPIL

Be warned that L — B(P, P, L) is not a P-algebra map.

The composition L — B(P, P,L) — L is clearly the identity. Composing in
the opposite order we get B(P, P,L) — L — B(P, P, L) and the resulting map is
the realization of

sinfy: PPL — PPL

Now it is easy to see that the maps h; : PPIL — PPY[ for 0 < i < ¢, defined
by
h; = shndly : PPL — PP

give a simplicial homotopy between s{nf, and the identity. Thus B(P, P,L) — L
is a m,-isomorphism. O

Proposition 4.2.19
Under the assumptions above the map B(P, P, L) — B(Q, P, L) induced by « is
both a m,-isomorphism and a map of P-algebras.
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Proof: By inductive use of proposition the map S — P?L is an orbit
g-cofibration for every ¢. By proposition 2.TTl it follows that PPIL — QP?L is
a m,-isomorphism for all g. The simplicial orthogonal spectra [¢] — PP?L and
lq] — QPIL both are good by lemma EL2ZT6, hence B(P, P,L) — B(Q,P,L) is a
T 4-150.

The last claim is easily checked: a induces a P-algebra structure on QP?L,
and the map

(lg) — PP'L) — (lg — QP"L)

is a map of simplicial P-algebras. We now appeal to corollary IL2ZT4L. O

Remark 4.2.20
Together the two propositions and give a procedure for replacing a
P-algebra by a P-equivalent Q-algebra. We have

B(Q,P,L)— B(P,P,L) — L

Here both maps are P-algebra maps and m,-isomorphisms. In addition the first
P-algebra is also a ()-algebra. Moreover, the following proposition shows that
B(Q, P, L) is unique up to m,-isomorphism of @-algebras.

Proposition 4.2.21

In addition to the assumptions above assume that S — L' and S — A are orbit
q-cofibrations. If A «— L' — L are m,-isomorphisms of P-algebras, with A a
(-algebra, then there are m,-isomorphisms

A+~ B(Q,P,L'")— B(Q,P, L)

of -algebras.

Proof: By functorality of the two-sided bar construction we have maps
B(Q,P, L) — B(Q,P, L") — B(Q, P, A) — B(Q,Q,A) — A

All these maps are easily seen to be maps of ()-algebras. By proposition
the last map is a m,-iso.
By proposition 2 T2 and corollary B2 T4 the first two maps are m,-isomorphisms.
Combining the propositions and EE2ZT2 we prove by induction that
each
QPIA — Q11 A

is a m.-iso. Hence by corollary EEZT4 also the map B(Q, P, A) — B(Q,Q, A) is a
T4-1S0. U
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4.3 Involution operads on S[Q2M]

The main concern of the previous sections has been to set up a theory for operads
in orthogonal spectra. Let M be a compact manifold and & a vector bundle over
M. In this section we will apply this theory to construct involutions, depending
on &, on orthogonal ring spectra R, which are m,-isomorphic to S[Q2M]. Thus R
and S[Q2M] have identical homotopy groups, and we want the involution on R to
coincide with the involution ¢ on 7, S[Q2M], where ¢ is given as follows:

Definition 4.3.1
Assume that £ is an n-vector bundle. A class in m,S[QM] is represented by a

map
a: ST QM A SF

Parallel transportation in & along loops in M gives a homomorphism
P: QM — GL(R")

Using P, we define a map P : S A QM, — QM. A S™ by sending (v,7) to
(7, P(7)(v)). We have transported v along -y and reversed the loop. The involu-
tion  is now defined by sending the class of « to the class of the composition

ANy N O VN AL N o V) NS Lia

The strategy now is to construct operads D,, in orthogonal spectra, subsec-
tion L3T], for positive integers n. When n is the fiber dimension of £, we show in
subsection that S[QQM] is a D,,-algebra. The next step, subsection L33 is
to show that D, and H are “homotopy equivalent” operads. In subsection
we bring everything together and state and prove the main theorem.

4.3.1 The construction

Here we will design operads D,, in orthogonal spectra for every positive integer n.
Their purpose is to encode the involution on S[Q2M] given by an n-dimensional
vector bundle & over a manifold M. In subsection below we will see that
S[QM] is a D,-algebra. The main result of this subsection is:

Theorem 4.3.2
D,,, as constructed below, is an operad in orthogonal spectra. And there is a map
of operads D,, — H.

The proof will be given at the end of this subsection, before that we have to
construct the operad. We will also provide an orbit cofibrant replacement for D,
see theorem EL3.TT] below.

Our first aim is to define for each j orthogonal ¥;-spectra D,,(j). But before
reaching this aim we have to introduce the topological groups D,,(7; V). Here V
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is a finite dimensional real inner product space. We write the group operation
of D,(j; V) multiplicatively, 1 is the unit, and we define this group by specifying
generators and relations. The generators have the form (¢, r), where ¢ : R" — V
is an isometric embedding and 1 < r < j an integer. Notice that the generators
form a topological space. There are two classes of relations. These are:

i) Cancellation of repeated pairs: For all ¢ and r we set
(¢,r)(¢,r) =1
ii) Orthogonal pairs commute: Whenever ¢ L ¢ and r # 1/, we set
(&, 7)), 7') = (4, 7)(¢,7)

There is an increasing filtration of D, (j; V). Let F,,,D,(j; V) be the subset of all
elements represented by words with m or fewer letters. As a topological space
F.D,(j;V) is a quotient of []", X, where X is the space of generators. And
the group D,,(7; V) has the topology of the union (=colimit topology). Notice that
an isometric embedding V' — V’ induces a homomorphism D,,(j; V') — D, (j; V).
We are now ready to define D,,(j).

Definition 4.3.3
Let D, (j) be the orthogonal ¥;-spectrum given by the formula

Du()(V) = (Dulj; V) x Zj)4 A SV

The right assembly, o : D,,(j)(V) A SY — D,(5)(V & W), is induced by the
natural isometric embedding V' — V& W. Let (z, p,v) be a point in (D, (j; V') x
)+ ASY and v € 3;. Then the right X;-action D,(5)(V) x X; — D,(5)(V) is
simply given by

((z, p,0),v) = (z, pr,v)

Lemma 4.3.4
FEach D,,(j) can be written equivariantly as a product X A (X;)4, where X is a
(non-equivariant) orthogonal spectrum.

Proof: Let X(V) = D,(j;V), ASY. O

Now recall the definition of the operad H. Here we use the description given
in remark LT.8 And we consider H to be an operad in orthogonal spectra via
suspension, see example We will now define for each j a map

Dn(j) — H()
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After defining the operad structure on D,, we will see that the collection of these
maps defines a map of operads. We begin the construction by defining group ho-
momorphisms p : D,(j;V) — (Z/2)?. Recall that we write Z/2 multiplicatively.
The maps p are given on generators by

p(o,r)=(1,...,1,—1,1,...,1) |
where the —1 lies in the r’th factor. The map above is now defined as
Du(§)(V)=(Dn(j; V) x j)+ A SV
(pxid)Midl
HG) (V)= ((Z/2) x Ej)4 A SV

The construction of composition operations on D,, is quite abstract. Let
me therefore suggest to the reader to take a look at how the action of D,, on
S[QM] is defined, see the first part of subsection 32 before proceeding with
the details given here. The action has been the author’s guideline when defining
the composition operation. How to define the operad structure on D, is forced
by the formulas for the action. So keeping the main geometrical idea behind the
action in mind, will probably help the reader to understand this subsection.

Assume for a moment that we can define non-X-equivariant composition op-
erations o; : D, (j; V) X D, (k; W) — D,(j+k—1; V@& W). Using these our next
goal is to define composition operations on the product D,,(j; V) x ¥;. There will
be a twist by p in the definition of o; on the product. Write p;(x) for the i’th fac-
tor of p(z). Let (z, p) and (y,v) be elements in D,,(j; V) x £; and D, (k; W) x &y,
respectively, then the formula is

(, p) 0i (y,v) = (x 0pi) Y, p 01 (T(Pp(e) (#))V))

Here 74, denotes the group homomorphism Z/2 — ¥, which sends —1 to the
order reversing permutation. Compare this formula with the formula defining H
in remark LT8.

Details: We cannot postpone the details any more. To define the composition
operations

0i : Dn(j; V) X Dy(ks W) = Dy(j + k= LV @ W)
we first define a homomorphism ¢; : D, (k;W) — D,(j + k— 1;V & W). Next

we define a left action, F;, depending on i, of D,(j; V) on D, (j+k—1,V & W).
Then o; is given by the formula

ro;y=u1xbtycy)
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Let i, : V - VaW and iy : W — V @& W be the natural inclusions. ¢; is defined
on generators of D, (k; W) by

ci(p,r) = (iap,r +1—1)

To define F;, we first introduce an automorphism, z +— z of D,,(j+k—1; V@ W).
This automorphism depends on ¢ and is defined on generators by

(o, 1) for r < i,
(p,r) = S (b, k+2i—r—1) fori<r<k+i, and
(o, 1) for k+1 <.

For a generator (¢,7) in D, (7;V) and an element z € D,,(j + k— 1;V & W) we
now define F; by

(i10,7)2 for r < i,
(p,r)Fiz=q (i1¢,i + k —1)---(i1¢,4)z for r =i, and
(ho,r+k—1)z for r > 4.

To prove formulas containing the composition operators we often do induction
on the length of a word in the D,,(—; —) groups. We also need some basic formulas.
These are:

Lemma 4.3.5
Let x be a word and (¢, 1) a generator of D,(j; V'), let y be a word and (¢, ") a
generator of D, (k; W), and let z be a word in D,(j +k — 1,V & W). We have:

i) 1o;1=1,
ii) xh; 2= (xo; 1)z if pi(z) =1,
i) o by 2= (v0; 1)Z if pi(a) = —1,
iv) (x(¢,r)) 0; 1 = (x0; 1)(¢,7) if r < i,

v) (x(p, 7)) 0i 1 = (2 0; 1)(¢,i+k —1)---(¢,4) if r = i and p;(x) = 1,
vi) (2(6,7)) 0; 1 = (x0; 1)(¢,3) -+ - (¢,i + k — 1) if r = i and p;(x) = —1,
vii) (2(¢,7)) 05 1 = (x o5 1)(¢,7 + k — 1) if r > i,

viii) xo; (y(, 1)) = (xo;y) (W, +i—1) if pi(z) =1,
ix) wo; (y(v,r") = (x o y) (W, k+i—1') if pi(z) = —1,
x) (2(¢,7)) 01y = (x 01 y)(é,7) if 7 < i, and
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xi) (x(o,r))ojy = (ro;y)(p,r+k—1)ifr >i.

Observe that we have omitted the canonical inclusions i; and i, from the notation.

Proof: All formulas are checked by inspecting the definition of o;. To illustrate
the techniques involved we write out the proofs for vi) and x).

vi): We have
(@(¢, 7)) 0i 1 =zt ((¢,4) Fi 1)
_x'_ (( 7Z+k_1) (¢7))

= (zo; 1)(d,i+k—1)-(¢,i)
( )(¢72) (¢>2+k—1)

Here we have used iii) and that F; is a group action.

1
0; 1

x): Observe that (¢,r)c;(y) = ¢;(y)(¢,r) by the “orthogonal pairs commute”
relation in D, (j+k—1; V@& W). Assume that p;(x) = 1, so that ii) applies. Now
we have:

(@(6,m)) 0y = x b ((6,7) Fi ca(y))
= (zoi 1) (@, 7)eily))
@OU()@>)
= (2t ai(y)(¢,r)
= (zoi y)(¢, )
If p;(x) = —1 we use iii) instead of ii) in the above calculation. O

We have the following proposition telling us how p and o interact:

Proposition 4.3.6
Let x € D,(j;V) and y € D, (k; W). Then

pr(x) for h < i,

phoiti(y)  fori < h<i+kandp;(z) =1,
—pivk—n(y) fori <h <i+k and p;(zr) = —1, and
Phks1(x)  fori+k <h.

pr(w0iy) =

In the case i < h < i+ k we can rewrite the formula as p,(z o; y) = pi(z) -
Pric(pi(a)) (h—i+1) (Y)

Proof: The cases h < i and i + k < h follow immediately from the definitions.
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Assume that ¢ < h < ¢+ k. The proof proceeds by induction on the length of x.
If =1, then p;(z) = 1 and we have

pr(roiy) = pr(lo;y) = plci(y)) = Phit1(y)

Now let © = (¢,r)z’ and assume that the formula is true for /. There are
six cases to consider. For r» we have three possibilities » < ¢, r =4 or r > 4, and
pi(2') can be 1 or —1. We check two cases carefully, and leave the four others to
the reader.

If r < i and p;(z') = —1, then also p;(z) = —1. The left side of the formula
becomes

pr(((9,7)2") 05 y) = pu((¢,7) (2" 01 y)) = pr((6,7)) - pu(a’ 05 y) = pu(a’eiy)

while the right side is —p;1x_n(y). Thus the formula holds by the induction
hypothesis.

If r =1 and p;(2') = 1, then p;(z) = p;((¢,7)2") = pi(@, 1) -pi(a') = (=1)-1 =
—1. Observe that by the definition of the involution z — z on D, (j+k—1; V&W)
we have py(2) = pri2i_n_1(2). Calculating the left side of the formula we get

pr(((@, z)x’) 0;y) = pr((d,i+k—1)---(d,i)(2' 0;y)) = _pk+2z’—h—1($/ 0 Yy)

and the right side is —p;yx_,(y). The induction hypothesis says that p;(2’) = 1
and thus prioi_n_1(2 0;y) = pivk_n(y) since i < k+2i—h—1 < i+ k. Therefore
the formula is true for x. O

We now deduce the arithmetic rules for the composition operators on D,,(—; —).

Proposition 4.3.7
Let x € D, (j;V), y € D,(k;W) and z € D, (l;U). The following associativity
formula holds:

(xopz)oiy 1y forh <i,

zo; (yop_iy12) fori <h<i+kandp(x)=1,

zo; (yoirk_nz) fori<h<i+kandp;(x)=—1,and
(xop_py12) oy fori+k <h.

(z05y) on z =

Proof: To complete this proof we have to do induction three times. Luckily we
can reduce the number of cases using the following observation: Suppose that we
already have proved the first case of the formula, (zo;y) o,z = (zop, 2)0;4_1y for
h < i, then by inserting x =2/, y =2, 2=/, =k, h=47andi=N — kK + 1
we immediately get that

(' opr_pr1 2 ) opy = (&' opyf) o 2" for i < — kK + 1.

And this is the last case. Hence we need only to prove the first three cases.
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First induction: We begin the proof by showing that

(ropl)oj 11 for h <i,
(xo;1)opl=qmxo;(lopyy11) fori<h<i+kandp;(z)=1,and
xo; (lojppl) fori<h<i+kandpj(x)=—1.

This is proved by induction on the length of . Assume that x = 2/(¢,r). To
complete the induction step we need to check the following cases individually:

h <4 andr < h,

h <i,r=hand p,(z') = 1,
h <i,r=hand py(z') = —1,
h<iand h <r <t,

h <i,r=1and p;(z) =1,
h <i,r=1and p;(2) = —1,
h <7andi<r,

i<h<i+k, 7’<2andpz(x’) 1,
i<h<i+k, r<iandp(2)=—1,

i <h<i+k r=iandp(a) =1,

i <h<i+k, r=iandp(2)=—-1,

i <h<i+k, r>iandp;(2') =1, and

i<h<i+k, r>iandp;(2)=—1.

All cases are straight forward to check using various formulas from lemma EZ35.
As an illustration we verify two of the cases.
For example if r = h < i and pp(x —1 then

((#'(¢,7)) 05 1) o 1 = (( )(¢,h)) on 1

((z"0i 1) on 1)(¢, h) - - (9, h +1—1)
(2" on 1) 01 1)(¢, h) -+ (¢ h+1 1)
((

((

/

]

) =
2 o; 1
1

i

8
0

)
2 op 1)(d,h) - (d,h+1—1)) 011
x’( 7)) onl)oiy 1l

Here we have used the formulas iv) and vi) from lemma EZ33 and the induction
hypothesis for the middle step.
In the case i < h <i+k, r > i and p;(z') = 1, we have

((@'(¢;r))0i 1) op 1= (("0; 1)(p,r + k — 1)) o5 1
= ((2'o; 1) op 1)(,r + k+1—2)
= (2" 0; (1op_jy1 ))(p,r +k+1—2)
= (2'(#,7)) 0 (Lop—it1 1)

Here we have used the induction hypothesis and formula vii) from lemma E30l
The other cases are left as exercises.
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Second induction: Next we do induction on the length of y to show that

(xop1)oiy1y forh <i,
(xojy)opl =< wo;(yop_s11) fori<h<i+kandp;(x)=1,and
x0o; (Yyojip_pl) fori<h<i+kandp(z)=—1.

Observe that for y = 1 we have the formula we proved above. Assume that
y =1vy'(1,7’). Again there are several cases to consider:

h <i and p;(x) =1,
h < i and p;(z) = —1
1< h<i+k, px

1 < h<i+k p(z

(x)=1land r < h—i+1,
(z)=1,r"=h—i+1and ppin1(y) =1,
i§h<i+k,pi(as)—1r—h—i+1aﬂdph—i+1(y/):17
i<h<i+k p(r)=1andr >h—i+1,
i<h<i+k p(zr)=-landr <i+k—h,
i<h<i+k p(z)=-1r"=i+k—hand pirn(y) =1,
i<h<i+k p(zr)=—-1,1"=i+k—hand prn(y)=—1, and
i<h<i+k p(r)=—landr >i+k—h.

\

For example if h < i and p;(z) = 1, then

(o9 )b, k+i—1"))onl
= ((woiy)on 1),k +i—1")

We have used that p;y;_1(x o, 1) = p;(x) = 1, the formulas viii) and vi) from the
lemma and the induction hypothesis.

Let us check one more case. If i <h <i+k, " =i+k—h, pi(r) =—1 and
Pirk—n(y') =1, then

(z0i (¥ (1, 7)) on 1 = ((w o y)(¢a2+k‘—7‘))oh1

= ((xoiy) (¥, h)) on

Z((ifo‘y) 1)(4, )"'(¢,h+l—1)
(Y Cigkn D)W, h) - (Y, R+ 1—1)
vourn)Wi+k—h+1—1)---(¢,i+k—h))
Y'(i+k—h))oignl)
Y'(¥,7") oirk—n 1)

O
<%
—~
AAA/—\

We have used the formulas ix), vi) and v) from the lemma, the induction hypoth-
esis and that py(z o; ') = —1.
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Third induction: At last we use induction on the length of z to prove that

(wopz)oiy1y for h <i,
(xojy)opz=< z0; (yop_ip12) fori <h<i+kandp(z)=1,and
x 0 (Y 0j4p_p2) fori<h <i+kandp;(z)=—1.

Observe that the previous induction proves this formula in the case z = 1. Now
assume that z = 2/(6,r"). These are the cases to consider:

h < and pp(z) =1,

h < and pp(x) = —1,

i <h<i+k pi(r)=1and ppin1(y) =

i <h<i+k pi(x)=1and ppin1(y) = _1
i <h<i+k p(x)=—-1and prn(y) =1, and
i <h<i+k p(x)=—-1and pjrn(y) =

We write out two of the cases: If h < i and py(z) = 1, then

(xo;y)on (Z(0,7") = ((xo;y)op 2" )0, r" +h—1)

= ((xop 2') 011 y)(0,7" + h — 1)
= ((won2)O, 7" +h—1))oi 1y
~ G

Z Op (Z/(9> 7’”))) Oiti-1Y

We have here used that p,(xo;y) = pr(z) = 1, the formulas viii) and x) from the
lemma and the induction hypothesis.
In the case i < h < i+ k, pi(x) =1, pp—i+1(y) = —1 we have

(z 01 y) op (2(6,7")) = ((z 01 y) on 2) (0,1 + h — ")

(2 0; (yon_it12))(0,1+h —1")

2 o; ((yon—irs )0, 1+ h—i+1—71"))

T 0; (Y Op—iy1 (Z/(Q, 7’")))

We have used that pp(x o; y) = pr_i+1(y) = —1, the formulas viii) and ix) of the

lemma and the induction hypothesis.
The checking of all remaining cases is left to the reader. 0

Recall that our aim is to define composition operations for the products
D, (j;V) x ¥;. The formula is

(, p) i (y,v) = (2 0pi) Y, p 01 (T(Pp(e) (#))V))

And we want to check associativity, equivariance and unity. We begin with
equivariance.
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Lemma 4.3.8
Let (z,p) € Dn(5; V) X Zj, pf € 8, (y,v) € Dy(k; W) x ¥y and v" € ¥y. There
is a right action of ¥; on D,,(j; V') x 3, defined by

(2, p).0" = (z,pp)

and we have

((z, p).p) 0i ((y,0)) = ((, p) o) (4, ))-(p 05 V')

Proof: This proof is easy. We have:

((z,p)-p') 0i ((y,v).0") = (z, pp) 0; (y,vV)

(i) Us (09) 04 (Tk(Pppr iy () )V
T 0y (i) Ys P O i) (TE(Pppr (i) (X))
T 0 i) Y5 P O (i) (T (Pppr (i) (%) )V)
(@,

p) iy (y,v)).(p 05 V')

)
0 v'))

(
= (z v
= ( (p
= ( )(POU)
= (

Lemma 4.3.9
Let (z,p) € D,(5;V) x &}, (y,v) € Dy(k; W) x 3y, and (2, 1) € D, (L U) x 3.
The following associativity holds for o:

((z,p) op (2, 10)) 04411 (y,v)  for h < i,
((z, p)oi(y,v))on(z, 1) = § (x,p) 0 ((y,v) On—iv1 (2,p)) fori <h <i+k, and
((2,p) on—ks1 (2, 11)) 0i (y,v) fori+k <h.

Proof: As in the proof of proposition BE37l we observe that the first case of
this formula implies the last case. Hence it is enough to check the first two cases.

Recall the formula defining the composition operators on D,,(—; —) x 3_. We
may rewrite the formula as

(2.p) 01 (y,v) = { o ¥ peiv) il pyp(x) =1, and
([E Op(i) Y, P 4 (Tk’l})) if Dp(i) (:p) = —1.

Here we have used the convention that 7, without an argument denotes the
order reversing permutation in 3, while 7, with an argument denotes the group
homomorphism Z/2 — ¥ sending —1 to the order reversing permutation. This
formula will be applied many times throughout this proof, both forward and
backward.
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A special case for h < i: First we assume that the permutations p, v and p
are the identity.

((m, id;) o; (v, idk)) op (z,id;) = (z 0, y,id; o; Tk (pi(2))) op (2, id))

= ((z 05 y) on 2, (id; o; Tk(pi(2))) on Ti(Pr(2)))

= ((w on 2) 0141-1Y, (id;j o, Ti(pn(2))) 031-1 Ti(pi(2)))
(2 o, 2, id; o, Ti(pn(7))) 0511 (y, idk)

((z, id;) o, (2, 1d,)) on (y, idy)

In addition to the formula we have used the associativity for the composition
operators, proposition for D,(—;—) and lemma for o of the per-
mutations, and the calculations: id; o; 7 (pi(z))(h) = h, pu(z 0; y) = pu(x),
idjop T(pn(2))(i+1—1) =i+1—1and piy—1(z op 2) = pi(z).

A special case for i < h <1+ k: Also here we let the permutations p, v and
i be the identity. If p;(x) =1 and pp_;41(y) = 1, then

((z,id;) o; (y, 1dy)) o (2, id)) = (x 0; y, id; o; idy) o, (2, id))

= ((z 0;y) oy 2, (id; o; idy) oy, id;)

= (2 0; (y on-it1 2), 1d; 0; (1dy, Op—is1 idy))
(96, ) i (y Op—it1 2, i} Op—iy1 Zdl)

= (

x,id;) o; ((y, idk) op—it1 (2, idy))
If pi(x) = 1 and p—i11(y) = —1, then

x,id;) o; (y, idy)) op (2, id)) = (x 0; y, id; 0; idy) o (2, id))
J J

~—

(
= ((z o; y) o, 2, (id; 0; idg) o, T)

= (2 0; (Y op—i+1 2), id; 0; (idg Op—it1 7))
(w,1d;) 0; (Y Oh—it1 2, ik Op—it1 T1)
(x,1id;) o; ((y, idy) op—iv1 (2, idl))

If p;(z) = —1 and pp_;+1(y) = 1, then

((x, id;) o; (v, idk)) op (z,id;) = (z 0; y, id; o; T) o, (2, 4d;)
= ((z 01 y) o2i4k—n-1 2, (id; 0; T) o 1)

= (z 0; (y On—i+1 2), id; 0; (Ti; Oh—i+1 7))

= (2 0; (y On—is1 2), id;j i (Thy1-1(idg Op—iy1 idy)))
= (z,1d;) o5 (Y Oh—it1 2, idg Op—it1 idy)
= (

,id;) o5 ((y,idk) op—it1 (2, idy))
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If p;(z) = —1 and pp_;+1(y) = —1, then

(([E, id;) o; (y, z'dk)) op (2,1d;) = (z 05y, idj o; T) op, (2, 1d))
(x 0; ) O9i4k—h—1 2, (id; 0; T);) op id;)

T 0 (Y On—iy1 2),id; 0; (Th Op—iy1 1d;))

0; (Y On—it1 2), id;j 0; (Thyi—1(idy Op—iv1 71))))
x,1 ) i (y Oh—it1 2, i) Op—it1 Tz)

x,id;) o; ((y, idy) on—is1 (2, idy))

In addition to the formula we have used proposition and lemma [A33] and
some small calculations. Most notably that 7 o ;11 id; = Tp11(idg op_iz1 71)-

(
=
= (@
= (@
=
=

The general case: Now we will use equivariance to get associativity in the
case where the permutations p, v and p are arbitrary. We have:

((z, p) i (y,v)) on (2, 1) = (((2, idy) 0p(iy (Y, idk)) O(po,uy(n) (2, d1))-((poiv) on )
((z,p) on (2, 1)) Cit1-1 (¥, (((, idy) o p(ny (2, 1d1)) ©(poppy(iti-1) (U5 idi)).((pon p) ciyi—1v)
(z,p) 0i ((y,v) on—iv1 (2, 1)) = ((z,id;) ©p(iy ((ys idk) Ou(h—it1) (2,7d1)))-(p 0i (v on—iy1p)) and
((z,p) on—k+1 (2, 1)) i (y, (((2,id;) op(h—ts1) (2:d1)) O (o)) (Ys idk)). ((p On—kt1 ) 05 V)

Using that o is associative for permutations, and that associativity holds when the
permutations are the identity (the special cases), we now get the general result. [J

)= ((
v) = ((
)= ((
v) = ((

Lemma 4.3.10
(1,4d) is the unit for o on D, (j;V) x ;.

Proof: Thisis obvious. Simple calculations show that for all (x, p) € D, (j; W)X
>; we have

(Il?,p) 04 (17 Zdl) = (Zl?,p)

and

(1,idy) oy (z, p) = (x, p)

We now complete the proof of theorem H.3.2k

Proof: The main issue is to construct the composition operations, and then to
verify the axioms. We already have defined

0; 1 (Dn(7; V) X Zj) 1 A(Dn(k; W) X Ep)y = (Dp(j+Ek—LVAW) X E 1)+
by the formula

(z,p) 0i (y,v) = (T 0p) Y, p o1 (Th(Ppi) (7))V))
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Recall that D, (5)(V) is defined as (D, (j; V) x £;)+ ASY. Let &; : D,(5)(V) A
D, (k)(W) — D,(j+k—1)(VeW) be induced by these. We think of &; as exterior
composition operations. And we check that they are natural transformations that
coequalizers

D,y ())ASAD, (k) = Dy (5)AD, (k)

Therefore we have induced maps
0; : Dy(3) NDy(k) = Dy(j +k — 1)

Associativity for o on D, follows from associativity for o on j — D, (j; —) x %,
likewise for equivariance when we let the right action of X; on D,,(j) be induced
from the right action of 3; on D, (j; —) x ;. The unity axiom follows similarly.

To see that the collection of maps D,(j) — H(j) defines a map of operads
one compares the formula above and the formula given in remark LT.8 Recall
that p denotes the group homomorphism D,(j;V) — (Z/2)’, and notice that
p(w 0; y) = p(x) o; p(y) by proposition O

We round up this subsection by providing an orbit cofibrant replacement for
D,:

Theorem 4.3.11 R
There exists an operad in orthogonal spectra, which we denote by I'D,,, such that

there is a map of operads f‘Dn — D,,
for each j the map f‘Dn(j) — D,(j) is a level-equivalence, and

each fDn(j) can be described X j-equivariantly as a product X A (¥;)4,
where X is non-equivariant and orbit cofibrant.

Proof: We have a non-Y. version D/, of the operad D,, given by
D (1)(V) = Du(j; V)4 A SV

In analogy to what we did in the proof above, we have non-X composition op-
erations o; for D/ induced by the o;’s on D,(—; V). Observe that D,(j) =
D, (j) A (25)+. The idea is now to apply the orbit cofibrant replacement functor
I' to D;,. For the definition and the properties of I', see theorem BTl
We now define the o;’s for I'D], as compositions
PD, () ATD, (k) S T (D) A DL (k) = D, (G + k = 1)

Since I' is symmetric, these o;’s for T' D! will satisfy associativity relations anal-
ogous to those given in proposition 31
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Now define ['D,, by

A

D, (j) = TD,(5) A (Z))+

We have right X, actions as usual. And the o;’s on fDn are defined by the same
formula as before. Lemma is formal and the argument yields that o;’s on
I'D,, are equivariant. Furthermore, the argument of lemma is also formal,
thus o;’s on f‘Dn are also associative. Hence fDn is an operad in orthogonal
spectra.

The natural level-equivalence I'L — L from theorem B0, induces the map
of operads ['D,, — D,. Clearly for each j the map I'D,(j) — D,(j) is a level-
equivalence. And since T'L is orbit cofibrant for any L the last statement follows.

O

Remark 4.3.12
By the construction of I'D,, it is easily seen that there exists a map of operads

f: M — I'D, such that the composition
ML D, — D, —H
is the standard inclusion. The identity element in D,,(j; V') gives an inclusion
S — Dy(j)
for every j. Recall that T' comes with a unit map S — I'S. So we get a map
S — I'D,(j)
Smashing with (2;) yields

f:M(j) = ID,(j)

4.3.2 The action of D,, on S[QQM]

In this subsection we will construct a D,-algebra structure on the orthogonal
spectrum S[Q2M]. This structure depends on an n-vector bundle £ over M. Recall

that by definition of S[QM], the V’th space is (2M), A SY. In this subsection
we will prove the following theorem:

Theorem 4.3.13
Let M be a compact smooth manifold and & an n-vector bundle over M, then
the orthogonal spectrum S[QM] has a D,-algebra structure which depends on €.
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Before proving this theorem there are some preliminary considerations and
constructions. First we should agree on a suitable model for the loop space QM.
See [AHAS6] or subsection 5.1 in [CM95] for the definition of “Moore loops”. We
modify this definition slightly to get piecewise smooth “Moore loops”.

Let mg be a base point in M. For technical reasons it is important to have an
associative multiplication (composition of loops) and that every loop is piecewise
smooth. Here we define such a space QM as the geometrical realization of a
simplicial monoid. A ¢-simplex is a piecewise smooth map

vy AT [ —- M
together with a piecewise affine map
[: A7 — [0, 00)

such that v(t,0) = ~(t,1) = my for all t € A? and whenever [(t) = 0 then
v(t,s) = my for all s € I. Here I(t) is thought of as the “length” of the loop
s — (t,s).

If we have two g-simplices (71,1) and (72, lz) we multiply (compose) these as
follows: Let | = l; + l; and define v by

(2B i (1 + 1) < Uy,
7(t,s) = < mg if s(ly +15) =1, and
’YQ(t,%) if S(ll +l2) > 1.

Here we have divided the interval I into two pieces, the ratio between their
lengths being [;(t) to l3(t). On the first piece we use 7; and on the second we
use 2. Associativity of the composition follows. We will use the notation . for
this operation.

Notice that QM has the correct homotopy type. Let QM be the geometrical
realization of the simplicial set having g¢-simplices the piecewise smooth maps
v : A% x I — M such that v(t,0) = y(t,1) = my. Then we can compare this
space with QM. There is an inclusion

i M — QM
defined by setting [ constant equal to 1. And we have a retraction
r: QM — QM

by forgetting [. Clearly i = id. And it is possible to construct a simplicial
homotopy ir ~ id. Therefore QM ~ QM. Furthermore, QM is homotopic to
the space of continuous maps (/,{0,1}) — (M, my), see chapter 17 in [Mil63].

There is an involution on QM. We write (v,0) — (7,1), and it is defined by
sending v to the reversed loop,

F(t,s) =t 1=s)
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while leaving [ unchanged. Notice that the involution is an anti-homomorphism.
This means that

(71, 01) « (72, 12) = (72, 12) « (71, 1)

We will often simplify the notation for a loop in 2M, and leave the length [
out of the notation.

The construction of the D,-algebra structure on S[QQM] will use a connection
V on £. We need to take parallel transportation along piecewise smooth loops
in M. However, the choice of connection will not carry any information up to
homotopy.

Choose a connection V on ¢ and an isomorphism R™ = ¢, . Then parallel
transportation yields a continuous map

P: QM — GL(R")
such that
P(v1+72) = P(y2)P(71) for all piecewise smooth loops v; and 72, and
P(%) = P(y)™! for all piecewise smooth loops 7.

For more about parallel transportation see remark 17.4 in [MT97].

Given a finite dimensional real inner product space V and an isometric em-
bedding ¢ : R* — V, we write V as the sum ¢(R") + V*, where V* is the
orthogonal complement of ¢(R™) in V. Given a piecewise smooth loop v in M,
we define the map ¢*(y) : V. — V by using P(y) on ¢(R") while leaving V+
unchanged. For v = ¢(u) + w, u € R® and w € V+ we have

¢*(7)(v) = ¢(P(7)(w)) +w

Let ¢ and v be isometric embeddings of R™ in V', and v, 7; and 7, be piecewise
smooth loops in M, then:

¢*(71 . 72) = ¢*(72)¢*(71),
¢*(7) = ¢*(v)~", and
" (V)™ (12) = ¥ (v2)9" () if ¢ L 2.

Notice that the map (¢,v) — ¢*() is continuous when ¢ lies in the space of
isometric embeddings, 7 lies in QM and the image lies in GL(V).

Next we define an action of the group D, (j; V) on the space F(SV,SV) A
(QM,)M. Recall that F(X,Y) denotes the space of based maps X — Y.
Let (¢,7) be a generator of D,(j;V) and (f;,...,7;) a point in F(SV,SY) A
(QM,)™N. Then we define the action by the formula

(¢ar)'(f;71> cee a7j) = (¢*(7r> o f;’)/la s 7’71“—17?) Vr41s - - 77j)
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It is easily seen that

(¢7 T)((QS? T)'(f;’yb s 77])) = (f771a s 7’7])
and if ¢ L ¢ and r # »/, then

(¢7 7’)'((%7’/)'(]‘1%%, s 77]')) = (1?77’/)‘((92577”)-“;%, cee 77]'))

Thus we have a well defined group action.
Also 3; acts from the left on the space F'(SY,SY) A (QM,)". This action is
by permutation of the loops. For p € ¥; we have

p-(fiv, ) = (f%%rl(l)a e 77p*1(j))

Now define 6; : D,,(j) A (QM, )V — S[Q2M] by commutativity of the following
diagram:

SV A (Da(§; V) % 55), A F(SY, 8Y) A QM )N —SY A F(SY,SV) A (QM, )N

T l

(Da(i V) x £5), ASY A QMY — QM. A SV

The top map combines the group actions, first apply the X;-action, then the
D, (j;V)-action. The left map is the inclusion at id € F(SV,S") and the right
map evaluates f € F(SY,S") on S¥ and multiplies (composes) the loops. The
map at the bottom is ; evaluated at V. Clearly §; commutes with assemblies
for D, (5) A (QM, )N and S[QM], and is thus a well defined map of orthogonal
spectra.

Via a series of adjunctions there is for orthogonal spectra L and K and a
based space A, a one-to-one correspondence between maps L A A — K and maps
L N FoA — K. The adjunctions are:

IS (LNAY) X Top, (A, 9.5 (L, K))
~ Top,(A, F(L, K)(0) & 7S (FyA, F(L, K)) = 7.5(L A RpA, K)

Applied to éj we get our map
0; : D, (j) A S[QM)M — S[QM]

Alternatively, it is possible to give a more explicit description of éj. Let
x = (¢1,71)...(¢s,75) be a point in D, (j;V), p € 3;, v € V and (71,...,7)
loops in QM?. We now want to give a formula for 0;(z, p,v;v,...,7;). The
permutation p permutes the loops, and each (¢, ;) reverses the loop at the r,’th
position. Therefore we define 9; to be the loop given by

5 =} ifpi(z) =1, and
e ifpe) = -1
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Each (¢, 1) also changes the vector v in V by parallel transportation along
the loop at the r,’th position. But notice that the direction along the loop in
which one should perform the parallel transportation, depends on the number of
occurrences of the number r, among 7,1, ...,7r,. Therefore we define the sign ¢;
by

& = Dr, (P41, Te41) - - (D5,75))

Calculating, we get that

ej(x7 P,V V1, - u%’) = (51 (R 5]'7 Qﬁ(%ﬁl(n))q e 'qb:(%)*l(rs))ﬁs (U))

Remark 4.3.14

To identify the involution we should pay special attention to the case where
j = 1. Inspect the map 0, at level V = R", and at the points in D, (1) given by
x = (idgn, 1) and p = id. We send (v,7) to

01(, p,vi7) = (7, (idzn)* (1) (v) = (3, P(7)(v))
Recall that P(7) is the parallel transport in £ along «y. The resulting map
S AQM, — QM. A S"

is precisely the map P, which we use to define the involution ¢ on 7, S[Q2M]. See
definition EE311

We complete the proof of theorem by showing that the maps 6; for
J >0, is a D,-algebra structure on S[QM].

Proof: We have to check the axioms given in definition ETTIl Triviality of the
unit and equivariance are easily seen to hold. It remains to show that 6 acts.

Let Z be the space F(SV®W SVOW) A (QM, )N +E=1 A point z in Z can be
written as (f;71,..-,%Vj+k-1), where f is an endomorphism of SV®" and the 7’s
are loops in M. The main ingredient of the proof will be to define several group
actions on Z, understand how these interact with each other and how the actions
relate to # and o.

By A we will denote the action of D, (j +k— 1;V @ W) on Z defined above.
Recall that the formula on generators is

A ((¢a ’l“), (.f7 Y1y .o >P)/j+k—1)) = (¢*(7T) © fa Y1, - 771"—17%) Yr+1, - - - 7’)/j+k—1)
The action of Y ;1 on Z will in this proof be denoted by B and is given by

B (p7 (fa RATEER 77j+k—1)) = (f7 Yo=1(1)5 - - - 77p*1(j+k—1))

Depending on i there are actions A; of D,,(7;V) on Z. We define the action
A; of the generator (¢,r) on z = (f;71,...,7j+k—1) by the formula

((ZS*(PYT) o f;717 .. ~7’7r71777%+1a e 7A7/j+k71) if r < 7;7
Ai((d)ar))z): ((b*((s)Of;Pyla"'7’77;717’\/1'4»16717"'7%77i+k7"'7’\/j+k71) if’f':i, and
(O (Vrtk=1) © F3 Vs« oo s Vrtkm2y Trt b Ly Yk - - -5 Vibh—1)  if 7 > i
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Here 0 is the composition 7; « - - -« ¥;1x—1. We have implicitly changed the target
of the isometric embedding ¢ to be V @& W via the canonical map V — V & W.

Also depending on i there are actions B; of ¥; on Z. Let z = (f;71, .- -, Vj+k-1)
be a point in Z. The action B; of p € ¥; is given by putting boxes around the
~’s as follows:

7---7\%—1 b Yo Vit - Yirk—1 | [Yitn ]y -

Yi+k—-1 ‘ .

And we use p to permute the boxes. The action leaves f unchanged. The result
is called B;(p, 2).
Define the action «; of D,,(k; W) on Z by the formula:

a;((9,7),2) = (" (Vrtiz1) © [3V1s -+ oy Vrice2s VrtieTs Vrtir - - - > Vith—1)

Here we understand the target of ¢ to be V & W via the canonical map W —
Ve

The action 3; of ¥ on Z is given by permuting the loops v;, ..., Vitx—1. For
v € Y, we have

@'(U, Z) = (f; Yisee s Viely Yo (D) 4i=1y - - -5 Vo= L(k)+i—1) Vitks - - - ﬁj+k—1)

Recall also the definition of o; : D,,(j; V) x D, (k; W) — D, (j+k—1,Va&W).
We had homomorphisms ¢; : D, (k; W) — D, (j+k—1;V@&W) given by ¢;(¢,r) =
(¢,r+1—1), and actions F; of D,,(j;V) on D, (j+k—1; V@ W). For a generator
(¢,7) in D, (j;V) and an element y € D, (j +k —1;V & W), I, is given by

(o, 1)y for r < i,
(¢ar)l_zy: (¢72+k_1)(¢a7')g for r =i, and
(p,r+k—1)y for r > 1,

where y — ¢ is an automorphism of D, (j + k — 1;V & W) defined on generators
by

(p,7) for r < 4,
(p,r) = S (b, k+2i—r—1) fori<r<k+i, and
(o, 1) for k+1 <.

Now if x € D, (j; V) and y € D, (k; W), then
ro;y=1xt;c(y)
Recall that o; on (D, (j; V) x X;) x (Dy(k; W) x ¥j) is defined by the formula
(@, p) 0i (y,v) = (x 050y Y, p 0 (Te(Pp(e) (%))
By E we will denote the map

SVEBW A F(sV@stV@W) A (QM+)/\(j+k—l) N QM+ A SV@W
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given by evaluating and composing.

Let Z be the space F(SY,SV) A F(SV,S") A (QM, ) 0H5=1D " There is a
natural map Z — Z given by taking the smash product of f; : SV — S" and
fo: SW — SW. Observe that the actions A;, a;, B; and 3; lift to actions fli, a;,
Bi and BZ on Z

We have designed «; and f3; such that they correspond to smashing the ac-
tions on F(S™, SW) A (QM,)"* in the definition of §; with the trivial actions on
F(SV,SY) A (QM)"=1 Up to shuffling the factor F'(S",S"), we have that

(idgvivis - Yie1, Y-(0dgws Yiy - - s Yih—1)s Vit - - - > Virh—1)
is equal to
&i (y7 (idsv, Z’dSW;/YM R 7/7j+k—1) ) )

and similar for the Y,-action ;.
The actions A; and B; see the loops 7;, ..., 7Viir as one composed loop. If we

by
e (Y, V) NF(SY, %) A QM )N — F(SY,8Y) A QM) A ST

denote the map given by evaluating f5 : S — S" on SV and composing the
loops ¥, ..., Vitr_1, then we observe that

e; is Dy(j; V)-equivariant (the action on the target is given by smashing
the D, (j;V)-action in the definition of #; with the trivial action on S"),
and

P‘ez’(fh Jaiv, - 7'Yj+k—1) = ep(i)Bi<p7 (fh S, - 7%‘+k—1)) (as usual p €
¥; acts on the target of e; by permuting the loops).

Let (z, p,v) be a point in (D, (j; V)xZ;): ASY =D, (5)(V), (y,v,w) a point in
(D (k; W)X Xg) ASY =D, (k)(W) and (v4, . . ., Yj+k_1) loops in (QM, ) 0+E=1),
Let z in Z be the point (idgvew;y1,. .., Vjtk—1)-

By definition of the #’s we see that the composition

Dn()) (V) A Dy (k) (W) A (QM ) NHE=D)

shuffle

Do () (V) A(QM )Y A Dy (k) (W) A (QM )NV A (QM )N
Dp(j)(V) A (QML)N A SW

G_j/\idsw

QM, A SVEW
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evaluated at this point is equal to

E((U,w),Ap(i)(xyBi(puai(y7/8i(v7z))))) y

and by the formula for o; and definition of §j+k_1 the composition

Dn()) (V) A Dy (k) (W) A (QM ) NHE=D)

D,(j+k—1)(VeW)A (QM,)N+E=D

J{éﬂ—k—l

QM A SVEW

evaluated at the same point is

E ((v, w), A(x 0, 4, B(p 0i (Tk(Dp) (2))0), 2)))

To finish the proof it is enough to show that

Aoy (2, Bilp, aily, Bi(v, 2)))) = Az 0pi) 4, B(p 01 (Tk(pp(i) (2))0); 2))

And if we can check the following formulas, then we are done:

i) B
i)
i)
) p

iv

Here iv) is a

(p7 al(:% )) = aP(i)(vai(pv Z)),
B(p oi v, z) = Bi(p, Bi(v, 2)),
A(x oy, B(id; o Te(pi(1)), 2)) = Ai(z, ai(y, 2)), and

o; (Tkv) = (id; 0p() ) (p 05 V).

special case of lemma [A3.4v), while i) and ii) follow directly from

the definitions. We prove formula iii) by induction on the length of z. Assume
first that x = 1. In this case we have to show that

A(l %Y, Z) = ai(?/? Z)

Using that 1 o; y = ¢;(y) and checking the definitions we see that this formula

holds.

Assume that x = (¢, 7)z’. We consider the case when r # i. Let d be a point
inD,(j+k—1,V@W)and 2’ € Z. By the definitions of -;, A and A; we have

A((g,1) i d,2') = Ay((,7), A(d, 2'))

Setting d = 2’ o; y and 2’ = B(id; o; 7(pi(x)), 2)) we get
A(@ 0; y,B(id; 0; T(pi(2)), 2))) = Ai((9,7), Az 01y, B(id; o; 7i(ps()), 2))))
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Notice that p;(x) = p;(2’). By induction we have that A(z'o;y, B(id;0;7(pi(2')), 2)) =
A;(2', a;(y, 2)). This implies

Az oy y,B(1d; 0; Ti(pi(x)), 2)) = Ai(, 4(y, 2))

At last we consider the case when x = (¢, 7))z’ and r = i. It is sufficient to
show that

A((¢,i) Fi d,B(idj 03 1i,, 7)) = Ai((9,7), A(d, 2))

because setting d = 2’ o; y and 2’ = B(id; o; 7(p;(2’)), 2)) and using induction
yields the formula for . By definition of F; we have

(¢,9) Fid=(¢,i+k—=1)---(¢,i)d
Furthermore, we check the following formulas directly:
A(d,B(id; o; 74, 2')) = B(id; o; 71,, A(d, 2")) , and
A((¢72 +k— 1) e (¢a Z)? B(Zd] O5 Tk, ZN)) = AZ((¢) Z)? Z”)
Now only a simple calculation remains:
A((¢, Z) }_z d, ]B%(Zdj O; Tk, Z,))
=A((¢,i+k—1)---(¢,4)d,B(id; 0; 7, 2")

A(gi+k—1)--( 1, B(id; o; Ty, 2
A(gi+k—1)-(

~

)

4.3.3 Homotopy discreteness of D,

In this subsection we will compare D,, to ‘H. Recall that there is a map of operads
D,, — H. This map comes from a homomorphism of groups, p : D,(j;V) —
(Z/2)7, whose i’th factor is the “parity” of the number of “letters” of the form
(—,4) inaword x € D,(j; V). We get our map of operads by applying the functor
(— X 2j)+ A SV to p.

Our theorem says:

Theorem 4.3.15

For each j the map D,(j) — H(j) can be written equivariantly as a product
XAN(E)y =Y N (Ej)+ where X — Y is a m,-isomorphism of (non-equivariant)
orthogonal spectra.
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Our first aim is to prove the theorem in the special case j = 1. The “orthogonal
pairs commute”-relation of D,,(1; V') is void, therefore it is not too hard to analyze
the orthogonal spectrum D, (1) directly.

Lemma 4.3.16
The map p : D,(1) — H(1) is a m.-isomorphism.

Recall that there is a forgetful functor U from orthogonal spectra to prespec-
tra. If L is an orthogonal spectrum, then the ¢’th space of UL is L(R?). By
definition a map K — L of orthogonal spectra is a m,-iso, if the underlying
map UK — UL is a m,-iso.

We say that a map X — Y of prespectra is an [-cofibration if for every ¢ the
map at level ¢, X, — Y, is an unbased closed cofibration of topological spaces.
Notice that a map f : K — L between orthogonal spectra is an l-cofibration if
and only if Uf is an l-cofibration between prespectra.

Cubical diagrams of spaces and prespectra will play a part in the proving
that p is a m,-isomorphism. We refer to [Goo92| for the theory. We recall the
definition here: Let T be a finite set, and Z?(T) the partially ordered set of all
subsets of T. Let € be a category, usually a category of spaces, prespectra or
orthogonal spectra. A cubical diagram is a functor 2 : P(T) — €. If T has n
elements, then 2 is an n-cube.

Assume that our category % comes with a distinguished class of maps, called
cofibrations, and that € has all finite limits. Following Goodwillie we define 2
to be a cofibration cube if for every U C T the map

colim 2" (V) — colim 2 (V) = Z°(U)

ng vcU

is a cofibration. The categories of spaces, prespectra and orthogonal spectra
satisfy the assumptions. We use unbased closed cofibrations for the category of
spaces and l-cofibrations for prespectra and orthogonal spectra. Therefore we
have notions of cofibration cubes of spaces, l-cofibration cubes of prespectra and
l-cofibration cubes of orthogonal spectra.

For a given cubical diagram 2" in spaces, prespectra or orthogonal spectra,
we are often interested in the map colimycy Z (V) — Z(T) up to homotopy.
However it is often easier to calculate with the homotopy colimit. Therefore we
compare these via the canonical map. We have the following result:

Proposition 4.3.17
If 2 is a cofibration cube of spaces, then the canonical map

hocolim 2" (V') — colim 2" (V)

C [«
VT VT

is a weak equivalence. Furthermore, if 2 is an l-cofibration cube of prespectra
or orthogonal spectra, then the canonical map is a m,-isomorphism.
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Proof: The statement for cofibration cubes of spaces is proposition 1.16 in [Go0o92].
Assume that 2 is an l-cofibration cube of prespectra. Observe that hocolim

and colim are level-wise constructions. Hence the ¢’th space of hocolimng (V)

is hocolimy ¢ Z,(V), and similarly for colim. Since each 2 is a cofibration cube

of spaces, the result for the case of spaces implies that the canonical map

hocolim 2" (V') — colim 2 (V)

C [«
VT VT

is a level-equivalence, hence also a ,-iso.
The result for I-cofibration cubes of orthogonal spectra is proved similarly. [

Using the definition to check directly if a given cube is a cofibration cube
or not, is not a very efficient method. The author has learned the following
recognition criterion from Christian Schlichtkrull. But first some notation:

If V CcU CT and U\V contains exactly one element, then we call V. C U
an edge of T'.

If U and V are subsets of T" such that UNV C U and U C UUYV are edges,
then we say that U and V' span a 2-face of T'.

Proposition 4.3.18
Let 2" be a T-cube of spaces. If

i) for all edges V- C U of T the map Z (V) — 2 (U) is an unbased closed
cofibration, and

ii) whenever U and V span a 2-face of T the square

2rUnV) —  2(U)

l l

V) — ZUuUV)
is pullback,

then 2 is a cofibration cube. The corresponding results for I-cofibration cubes
of prespectra and orthogonal spectra also hold.
Proof: Consider cubes in spaces. We assume by induction that the result holds

for all n-cubes for n < |T'|. We must show that the map

by : c‘(/?g]n%(\/) — 2 (U)



4.3. INVOLUTION OPERADS ON S[QM] 175

is an unbased closed cofibration of spaces. Observe that by the induction hy-
pothesis it is enough to show that this holds for b7.

The case n = 1 is trivial, and n = 2 follows directly from Lillig’s union
theorem [Lil73).

Choose some ty € T and let 7" = T\ {to}. Define & to be the T"-cube with
% (U) the pushout of

Z (U U{t}) « 2(U) — 2(T")
Notice that the map by is equal to the map
Uy o coim & (V) — @/(T")

vGr
Hence it remains to show that % satisfies i) and ii).
Let V C U be an edge of T’. Consider the diagram

Z(VUulte}) —— 2(V) — 2(T")

! J 5

Z (U U{te}) —— 2 (U) — 2(T")

The left square is pullback by ii) for 2", thus the gluing lemma for unbased closed
cofibrations, proposition 2.5 in [Lew82| applies and yields that % (V) — % (U)
is a cofibration.

Next assume that U and V span a 2-face of 7. By i) for # we can assume
that & (U) and % (V') are subspaces of # (U U V'), and we must show that the
intersection of these subspaces is # (U NV). Also 2 (U U {ty}), Z (U U {to})
and 2 (T") are subspaces of (U U V) and we have:

YU)NZ (V)= (2 U U{t}) U 2(T)) N (Z(V U{t}) U 2(T"))
= (Z(UU{te}) N 2Z/(V U{to})) U 2(T")
=2(UNV)U{teHh U Z(T) =2 (UNV)

Here we have used ii) for 2" on the 2-face spanned by U U {to} and V U {to}.
The proposition also holds for prespectra and orthogonal spectra by applying
the result for spaces level-wise. O

The prerequisites for proving lemma B.3. T80 are now in place, and we give its
proof:

Proof: It is enough to consider the map between the underlying prespectra.
The main idea of the proof is to filter D,,(1; R?) by word length. Let F}, D, (1; R?)
be the set of all elements represented by words with m or fewer letters. We relate
the cofiber of F,,_1D,(1;R?) C F,,D,(1;R?) to the Stiefel manifold V;,(R?) of
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n-frames in R%: If V,,(RY)™ denotes the m-fold cross product and sV, (R?)™~! the
subspace consisting of those m-tuples (¢1,. .., ¢n) with ¢, = ¢,,1 for some r,
then the following diagram is pushout

sV (RY)™ 1 —— F,_1D,(1;R9)

| |

Vo(RY)™  ——  F,,D,(1;R?)

The horizontal maps send an m-tuple (¢4, ..., ¢y) to the word (¢1,1) -+ (¢, 1).
Notice that the diagram is natural for isometric embeddings RY — R?. The
filtration of D,,(1;RY) induces a filtration of UD,,(1) by letting the ¢’'th space of
F,,UD,(1) be F,,D,(1;R?) A SC.

Fix m. Let T be the set {1,2,...,m — 1}. For U C T define

Vnm(]Rq; U) = {(¢17 ) ¢m) ‘
for each i, ¢; € V,,(R?) and for all r € U, we have ¢, = ¢,41.}

This defines a T-cube of spaces. Observe that
colim V" (R%; U) = sV, (RY)™!
usr

Define a cubical diagram, 7", of prespectra by defining the ¢’th space of the
prespectrum ¥, (U) to be

Vi (R U)4 A S
For m > 2 we have pushout diagrams of prespectra:

l |

vm(T) — F,UD,(1)

We now check that 7™ is an l-cofibration cube. Our intention is to apply
proposition Let U € U U {r} be an edge of T. Notice that V(R% U)
is a smooth submanifold of V"(R% U U {r}). Hence the existence of a tubular
neighborhood implies that the inclusion V;"(R%;U) — V™(R% U U {r}) is an
unbased closed cofibration. Since the functor (=), A SY preserves unbased closed
cofibrations this proves that condition i) of the proposition holds for #,*. The fact
that condition ii) holds follows nearly directly from the definition of V*(R9, —).

By direct computation we now show that #™(U) is m,-isomorphic to the
sphere prespectrum, S, for all U. We define a map ¥, (U) — S by identifying
S% with {1}, sending V™(R% U) to 1 and applying the functor (—), A S? to get
the map at level ¢:

fo - (B U))g = V" (REU) L A ST — 5
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The induced map of homotopy groups is

colimg mq45(fy)
_—

sV (U) = colimmyy (V" (RG U) L A SY) colim 7S = m,S

q q
We inspect the map in the middle at some fixed q. By the Hurewicz theorem
the first non-trivial relative homotopy group of f, is isomorphic to the first non-
trivial relative homology group. And in homology suspension induces a natural
isomorphism. Therefore we inspect when

(VRS U),) — H(S°)

is an isomorphism. Since V"(R%; U) is a cross product of the Stiefel manifold of
n-frames in R?, the range for s where m,4(f,) is an iso clearly goes to oo when
q increases.

Let . be the T-cube with .#(U) constant equal to the sphere prespectrum.
The computation above showed that there is a map of T-cubes

=

which is a m,-iso at each U C T. Furthermore, both cubes are l-cofibration cubes.
Now consider the diagram

hocolimy gy V(U) —— colimycr 7(U)

| l

hocolimy ¢y S(U) —— colimp ¢y L (U)

The left vertical map is a m,-iso since a homotopy colimit of m,-iso is itself a 7,-
iso. The horizontal maps are 7,-isos by proposition 317 But .¥ is constant,
s0 colimycy Z(U) is equal to S. Hence the map

colim ¥, (U) — S
usTt
1S a T,-1S0.
Recall that H(1) is the suspension of (Z/2).. Thus we may identify the

prespectrum UH(1) with \/Z/2 S. We will now conclude the proof by showing,
using induction, that for each m > 1 the map

p: F,UD,(1) = UH(1) = \/S=5VS

z/2

is a m,-iso. Observe that F}D,(1;R?) is homeomorphic to {1} U V,,(R?). This
implies that SV 7.1 (() is isomorphic to F;UD,,(1), and the induction hypothesis
holds for m = 1.
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For m > 2 we consider the diagram
V(T) —— colimycy #"(U) —— FpaUD,(1)
| | l

Depending on the parity of m the map j is the inclusion of the odd or even wedge
summand. All vertical maps are m,-isos and the horizontal maps in the left square
are l-cofibrations, hence the map of the row-wise pushouts, p : F,,,UD, (1) — SVS,
is again a m-1s0. U

Lemma 4.3.19
UD, (1) is well-pointed.

Proof: We use the filtration F,,UD,,(1) from the proof of the previous lemma.
The ¢’th space of F,UD,(1) is

STV (Vo (R A ST

hence well-pointed. Furthermore, we have seen that ¥, is an l-cofibration cube.
Hence the left vertical map in the pushout diagram

colimyrcy v (U) —— F,—1UD,(1)
7 (T) — F,UD,(1)
is an l-cofibration. It follows that the map

Fp 1 UD, (1) — F,,UD,(1)

is an l-cofibration for any m. Therefore UD,,(1) is well-pointed. O

The category of prespectra has a major disadvantage, it lacks a symmetric
monoidal smash product. However, for the purpose of calculating in the homo-
topy category we may, in several different ways, define “handicrafted” or naive
smash products of prespectra.

Definition 4.3.20
Define the naive smash product of prespectra X and Y by

(XAY)yy=X,AY, and (X AY)g1 =X, AY,AS!

The structure maps are evident.
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And we define the j-fold naive smash product iteratively:
(XPA-AX) = XA (XA (X A (XTTEA X))

§11 in [MMSSO0T] explains the connection between the naive smash product of pre-
spectra and the smash product of orthogonal spectra. Given orthogonal spectra
L and K there is a weak map

¢:ULAUK - U(LAK) |,

and their proposition 11.9 says that ¢ is a m,-iso whenever L or K is cofibrant.
More important for our purposes is a criterion for when the naive smash
product preserves m,-isomorphisms:

Proposition 4.3.21

Assume that X, Y and Z are well-pointed prespectra. If f :'Y — Z is a m,-
isomorphism, then the induced map of naive smash products id N f : X NY —
X AN Z is also a m,-isomorphism.

Proof: We first prove the corresponding result for spaces. Let A, B and C
be well-pointed spaces and f : B — C' a weak equivalence. Then consider the
diagram

* «—— AVB —— AxB

Lo l

« —— AVC —— AxC

The vertical maps are weak equivalences, and ¢ and ¢’ are cofibrations by Steen-
rod’s product theorem, see theorem 6.3 in [Ste67| or theorem 6 in [Str68|. By
proposition [A-T.4l the map AA B — A A C is a weak equivalence.

Let A be a based CW-complex and f :Y — Z a m,-iso of prespectra. Theo-
rem 7.4(i) in [MMSSOT]| says that also id A f : ANY — AA X is a 7,-iso.

Assume that B is a well-pointed space and (A, x) a CW-approximation for
(B, *), see proposition [A T2 If Y is a well-pointed prespectrum, then the result

for spaces implies that
AANY — BAY

is a level-equivalence, hence also a ,-iso.
Now assume that f is a m.-iso between well-pointed prespectra, and (A, *),
(B, *) as above. Consider the diagram

ANY —= AANZ

ﬁl lz

BAY MM, Bz
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It follows that idg A f is a m,-iso for any well-pointed space B.
Next consider the homotopy groups of X A Y. We can rewrite them as:

(X ANY) = colim oy (X, A Y,) = colim 4 5(X, A Y)
q q

Since X, is well-pointed, it follows that X,AY — X, A Z is a m,-iso. This proves
the result. O

Suppose that we want to check that a map f : X — Y of prespectra is a
m.-is0. In order to do so, it is enough to give a weak inverse. By a weak inverse
to f we mean for each ¢ a map g, : Y; A S" — X4, where [ is some positive
integer, such that both g, o (f, A S') and f,1; o g, are homotopic to suspensions.

Proposition 4.3.22
If f: X — Y has a weak inverse, then f is a m,-isomorphism.

Proof: First we check that f, : 7, X — 7Y is surjective for all s. A class in
7Y is represented by some 8 € 7Y, and suspends to 5 € my4s11(YyASY). Let
a € TypiysXqr be gq(F'). Since f4; 0 g, is homotopic to the suspension, observe
that f () >~ . Thus we see that the class of o in 7, X maps to the class of
in 7Y,

To check that f, is injective, we pick an element of the kernel. It can be
represented by a a € my4sX, such that f,(«) is null homotopic in Y;. Suspend
the null homotopy by the appropriate S’ and apply g,. Since g, o (f, A S) is
homotopic to the suspension, we get a null homotopy of @ A S* in X . 0

In contrast to proposition L3221l we do not need that X is well-pointed in
order to draw the conclusion that the naive smash product functor X A— preserves
the property of having weak inverses:

Proposition 4.3.23
If f .Y — Z has a weak inverse and X is any prespectrum, then id A\ f : X \Y —
X A Z also has a weak inverse.

Proof: Let g,: Z, A S' — Y, be the weak inverse of f. We will construct a
weak inverse h for idx A f. Observe that it is enough to define h for even indexes.
And we let hy, be the composition

suspension/Agq
(XA Z)og ANSH = X, NSUA Zy A ST 2200 X A Yy = (XA Y )aggun

It is easily seen that A is a weak inverse as claimed. U

And the property of having weak inverses is closed under composition:
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Proposition 4.3.24
If f: X — Y and f' : Y — Z both have weak inverses, the composition
f'f : X — Z has also a weak inverse.

Proof: Let g and ¢’ denote the respective weak inverses. We define a weak
inverse h for f'f as follows: Assume g, maps Z, A SY to Y,+r and gy maps
Yyer A S" to X444, then we let hy, be the composition

12 ~ 12 gl /\Sl g i
Z NS 2 2 NSUANSE s Y NS X
O

Now we introduce the orthogonal spectrum D/ (j). Let the V’th space be
D, (j;V)+ A SY. Notice that

Dn(j) = Du() A (Z5)+

and that this splitting corresponds to splitting 7(j) as the smash product of the
suspension of (Z/2)}’ and (3;).

Lemma 4.3.25
There is a m,-isomorphism of prespectra (UD,, (1)) — UD.(j).

Proof: By induction on j we will construct the map (UD, (1)) — UD., ()
together with a weak inverse. For j = 1 the map is the identity.

Assume that (UD,(1))"U=Y — UD/,(j — 1) already is given. Then the map
(UD,(1))N — UD, (1) AUD,(j — 1) has a weak inverse by proposition E323.
By proposition we are done once we have constructed a map f : UD, (1) A
UD.,(j —1) — UD,(j) and a weak inverse.

A map out of our naive smash product is completely determined by what it
is at the (2¢)’th spaces. What we need is a map from D, (1;R?); A STA D, (j —
1;RY) , ASY to D, (j; R?q) 4 AS?. To define it we smash a suitable shuffling of S'’s,
sh: S9N 872 5% with a group homomorphism « : D,,(1;R?) x D,,(j — 1;R?) —
Dy (j; R*).

Let ipqq : RY — R?? be the inclusion of the odd coordinates,

Goad(Z1, T2, . .., ) = (21,0,22,0,...,2,0)
and feen : RY — R% the inclusion of the even coordinates,
ieven(xlv Ly qu) = (07 Xy, 07 X2y 707 xq)

Our group homomorphism « sends (¢, 1) in D, (1;RY) to (ieqa®, 1) in D, (j;R*)
and (¢,7) in D,,(j — 1;R?) t0 (leven®,r + 1) in D, (j;R?*). By the “orthogonal
pairs commute’-relation in D,,(j; R??) we have

(iodd¢a 1)(ieven¢a T+ 1) = (ieven¢a T+ 1)(iodd¢a 1)
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since 7,qq¢ is orthogonal t0 %even?. This shows that the group homomorphism is
well defined.

If we identify S¢ and S? with one-point-compactifications of RY and R
respectively, we can write the shuffling sh : S9 A S? 2 S§24 as follows:

((01,02, ey 0g), (wr, wa, .. ,wq)) — (U1, Wy, V2, Wa, . . ., Vg, W)

This ensures that the maps D,,(1;R?), ASIAD, (j—1;R?), AS? — D, (j; R?*q) L A
S2¢ commute strictly with the suspensions, and thus we get our map

1+ (UD,(1))™ — UD,(5)
To construct a weak inverse g for f we first define a group homomorphism
B Dn(j;R?) — Dn(L,RY) x Dy(j — 1;RY)

On generators 3 is given by

ﬂ(¢’r>:{((¢,1),1) if r =1, and

(1,(¢,r—1)) ifr>1.
Now define g, as the composition

(UD;, (7)), A S

BAsh~1
_

= D,(j; RY), A 5% Da(1;RY) 4 A STA Dy(j — 1;RY) . A S9

= (UD,(1) AUD,(j — 1))

2q

Let i : R? — R be the standard inclusion (embeds R? as the first ¢ coordi-
nates). The space of isometric embeddings of R? in R?? is connected, so we can
choose paths from ioqq and ieven to 71. Now it is easy to see that the composition

Do(1;RY) x D, (j — LLRY) % D, (j;R2) 2 D, (1;R%) x D,(j — 1;R%)

is homotopic to the map of D,(1;—) x D,(j — 1;—) induced by i;. With the
opposite composition,

Da(jiRY) 2 Dy(1,RY) x Dy(j = RY) S Dy(j;RY)
we have to be a bit more careful. On generators this map is given by

1 T if r=1, and
Ba(,r) = | o)
(teven®, ) ifr > 1.
Let 44, t € [0, g] be the homotopy between i,qq and %eyen given by the formula
(21, 20, ..., 7,) = (xl cost,xysint, xg cost, rosint, ..., x4 cost, z,sin t)

Notice that when x and y are orthogonal vectors in R?, then
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i1(x) and 7,(y) are orthogonal, and

ip(x) and 7;(y) are orthogonal.

Define h; : D, (j;R?) — D, (j; R*), t € [0, g] on generators by
(toaap,r) ifr=1, and

halo,7) = {(itgzﬁ,r) if r > 1.

It is well defined, for ¢ = 0 it equals the map induced by ioqq and for ¢t = 7 it is
Ba. And using the path from i,qq to i1, we can extend h; to a homotopy from
Ba to the map D, (j; R?) — D, (j;R*) induced by ;.

Checking what happens with the spheres, we see that go, o (f, A S?7) and

f2q © g4 both are homotopic to suspensions. 0

With the lemmas BL.3.T6 and L3239 in place it is quite easy to prove theo-
rem . 5. 15

Proof: Recall the definition of the group homomorphism p : D, (j; V) — (Z/2).
Applying (—) ASY we get a map of orthogonal spectra D/, () — Fy(Z/2)5’. Here
Iy denotes the 0’th shift desuspension functor. Notice that this map fits into a

diagram of prespectra

(UD, (1)) ——  UD,(j)

! |

(UH())NV —— UFy(Z/2)}

The map at the top is the m,-iso from lemma 328 and left map is an iterated
naive smash product of the m,-iso p form lemma EEZT0l Since both UD,,(1) and
UH(1) are well-pointed, it follows from proposition 321 that the left map is
also a m,-iso. This implies that D’,(j) — Fy(Z/2)} is a m.-iso. Smashing both
sides with (X;)4, we get that the map

Dn(j) — H(j)

4.3.4 The main theorem

The following result is the main theorem of this thesis. It provides an orthogonal
ring spectrum with involution associated to a stable vector bundle over a man-
ifold. The homotopy type of the underlying orthogonal ring spectrum depends
only on the manifold.
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Theorem 4.3.26

Let M be a manifold and £ an n-vector bundle over M. There exists an orthog-
onal ring spectrum R with an involution depending on &, such that R is weakly
homotopic in the category of orthogonal ring spectra to S[Q2M], and the involu-
tion on R corresponds to ¢ on homotopy groups. Furthermore, up to homotopy
the involution on R depends only on the stable class of €.

Here ¢ is the involution on 7, S[Q2M] given in definition B3l

Proof: By theorem there is a D,-algebra structure on S[Q2M], and by
theorem there is a map of operads D,, — H such that for each j the map
D, (j) — H(j) can be written equivariantly as a product X A (3;)+ — Y A (%)
where X — Y is a m,-isomorphism. This means that we almost have the necessary
requirements for applying the replacement procedure described in remark EE220.
However, we do not know that

S — D,(1) is an orbit g-cofibration, and

each D, (j) can be written equivariantly as a product X A (¥;); with X
being an orbit cofibrant (non-equivariant) orthogonal spectrum.

Instead of attempting to prove this, we use the orbit cofibrant replacement D,
from theorem EL3TIl Pulling back by the map of operads I'D,, — D, we see that
S[QM] is also a I'D,-algebra. Moreover, the composition I'D, — D, — H is a
map of operads, and evaluated at the j’th objects it decomposes as a product
XANEj)+r = YAy = ZAN(Ej)+, where X — Y — Z are m,-isos. Since S —
D,(1) is an inclusion, it follows by theorem B9l and the construction of I'D,,(1)
in theorem B3I that S — I'D,(1) is an orbit g-cofibration. Furthermore, each
fDn(j) can be described X;-equivariantly as a product X A (3;)+, where X is
orbit cofibrant.
Now consider the replacement procedure:

B(H,ID,, S[QM]) — B(I'D,,I'D,, S[QM]) — S[QM]

We define R to be B(H,I'D,, S[QM]). By the considerations above all maps are
ms-is0s. To show that R is homotopic to S[Q2M] in the category of orthogonal ring
spectra, we prove that the three maps above all are morphisms in the category
of orthogonal ring spectra.

Recall that by remark EE3. T2 we have a map of operads M — ['D,,. Hence we
have a restriction functor from the category of r D,-algebras to the category of
Mi-algebra. Consequently, the I'D,-algebra map B(I'D,,, I'D,,, S[QM]) — S[QM]
is also a map of M-algebras, i.e. a map of orthogonal ring spectra.

Similarly we see that the map B(H,T'D,, S[QM]) — B(I'D,,I'D,, S|QM]) is
a map in the category of orthogonal ring spectra, since also this map is a map of
fDn—algebraS.
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We now show that the involution only depends on the stable class of £. Ob-
serve that standard inclusion i : R® — R™™! induces group homomorphisms

Dyi1(j; V) — Dy(4;V)

by sending a generator (¢,r), where ¢ : R""! — V is an isometric embedding, to
(¢poi,r). These group homomorphisms give rise to a map of operads a : D11 —
D And by inspection of the construction in theorem ELITI], we have a lifting

FDnH — I'D,, Now notice that the pullback of the D, -algebra structure
on S[QM] associated to ¢ is the D, ;-algebra structure on S[Q2M] associated
to £ @ e!. Here ¢! denotes the trivial line bundle over M. Therefore we get
a fDnH—algebra map B(fDnH, f‘DnH, S[QM]) — B(H, f‘Dn, S[QM]). Feeding
the diagram

B(H,I'D,, S[QM]) «— B(I'D, 1, D,,1,['S[QM]) — S[QM)]
into proposition E2Z2T] we get an equivalence of H-algebras between
B(H,I'D,,S[QM]) and B(H,I'D,.1,S[QM])

The first orthogonal ring spectrum has the involution associated to &, while the
second has the involution associated to & @ e!. Hence up to homotopy the invo-
lution only depends on the stable class of &.

We now check that the involution does not depend on the choice of connection.
Let Vo and V; be two connections on £. Let & x I be the vector bundle over
M x I induced from ¢ via the projection M x I — M. And let V{ and V) be
the induced connections. We can define the linear combination

V=tV,+(1-t)V, |

where ¢ is the coordinate of I. We see that V is a connection on & x I. And
pulling V back over the two inclusions ig,i; : M — M x I yields Vy and V;
respectively.

The inclusion i induces a map of D,-algebras

SIQM] — S[Q(M x I)]
And we can therefore form the diagram
B(H,I'D,,, S|QUM x I)]) — B(I'D,,I'D,, S|QM]) — S[QM]

Putting this into proposition LZ2T] we get an equivalence of H-algebras between
the orthogonal ring spectrum with involution associated to the connection V on
¢ and the orthogonal ring spectrum with involution associated to the connection
V on £ x I. A similar consideration is also true for ¢; and the connection Vj.
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Hence the choice of connection is irrelevant up to homotopy of orthogonal ring

spectra with involution.
To show that the involution on R coincides with ¢ on 7,S[QM]:
We first construct a commutative square

FRnSn L) S

1
I'D,(1) —— H(1)
The top map, A, is the adjoint to the identity S™ = S(R"™). By lemma EZZTT]
A is a m.-iso. p comes from the map of operads D, — H, and the map ¢ is
induced from the inclusion of the matrix (—1) in 0’th space of H(1). Thus the
map i : S — H(1) represents the involution.

To construct f recall that D,(1)(R™) = D,(1;R") A S™. The pair (idgn, 1)
represents a point in D, (1; R™), and we get a map S™ — D, (1)(R"™) by sending v
to ((ian, 1), v). By adjointness we now get a map of orthogonal spectra FgnS"™ —
D, (1), and since FgnS™ is cofibrant, we can lift to a map

f: FenS™ —TD,(1)

Recall from the proof of proposition that for an H-algebra L the invo-
lution is the composition

LESALLYL AL S L
Analogously, for a fDn—algebra L we can consider the composition
FanS" AL LS D, ()AL S L
Now inspect the diagram

SAB(H,I'D,, S[QM])  ZWon gy D, S[OM])

ANid =

FpaS™ A B(H,I'D,, S[OM]) ——  B(H,I'D,, S[QM)])

FgnS™ A B(I'D,,I'D,, S[OM]) —— B(I'D,,I'D,, S[QM])

Fn S™ A S[QM] — S[QM]

The horizontal maps, except the first, are defined via fDn—algebra structures on
B(H,I'D,, S[QM]), B(I'D,,I'D,, S[Q2M]) and S[Q2M] respectively. Observe that
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all vertical maps are m.-isomorphisms. The map at the top is the involution on
R = B(H,I'D,, S[QM]). The bottom map is determined by what happens at
level R™. Evaluating at this level we get a map

(FanS™ A S[QM])(R™) = S A QM — QM, A S = (S[QM])(R™)

By definition of f above, this is the map considered in remark EZ3T4, and by the
remark it induces the involution ¢, see definition EE31], on the homotopy groups
of S[OM]. 0

We end this chapter with the following conjecture:

Conjecture 4.3.27

Suppose that & and & are vector bundles over M with the same underlying
stable spherical bundle. Let R; and R, be the orthogonal ring spectra with
involution corresponding to these vector bundles. Then there exists an orthogonal

ring spectrum R with involution and maps R; JELRY RELN Ry in the category of
orthogonal ring spectra with involution, such that on the underlying orthogonal
spectra both f; and f; are m,-isomorphisms.

Informally, the conjecture says that up to homotopy of R the involution de-
pends only on the stable class of the underlying spherical bundle of &.

The motivation for this conjecture comes from the involution on A-theory.
For a spherical fibration  over X Vogell defines in §2 of [Vog85] an involution 7¢
on A(X). This involution is well defined up to homotopy. More recently Weiss
and Williams have defined an involution on A(X) via Waldhausen categories with
Spanier-Whitehead duality, see example 1.A.9 in [WWO9S| and §4.1 in [WWOT].
Like Vogell, their involution depends on a spherical fibration over X.

Morally, the K-theory of our orthogonal ring spectrum R with involution ¢
should be weakly homotopy equivalent to A(X) when X = M, K(R) should have
an involution induced by ¢, and this involution should agree with the involutions
defined by Vogell, Weiss and Williams. If so, the involution on K (R) depends only
on a stable spherical fibration, and it is natural to believe that the to homotopy
of R the involution has the same kind of dependence.

To prove the conjecture one should start with a geometric model for the space
G, of self-homotopy equivalences of S™. Via a “connection” an n-spherical bundle
& over M corresponds to a map P : QM — (G,,. But is this map a homomorphism
of monoids? Even if it is, the lack of strict inverses in GG,, prevents us from sending
the reversed loop, ¥ to P(y)~!. This causes trouble with the “cancellation of
repeated pairs’-relation of D,,. Therefore, one should blow up the operad D,, to
handle this lack of structure on G,,. After defining this huge operad, it should
be possible to prove the conjecture in roughly the same way we have proved
theorem 326
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Chapter 5

T'HH and T'C for orthogonal ring
spectra with involution

Theorem gives us an orthogonal ring spectrum with involution. The inten-
sion behind is to define and calculate its L-theory, LA-theory, K-theory, topo-
logical cyclic homology and its topological Hochschild homology. These theories
should be related via trace maps. Using surgery, the LA-theory should provide
information about the homotopy type of the automorphism space of our mani-
fold, see [WWOI]|. From L-theory there is a map = into the Tate construction on
K-theory, see §11 in [WWO9g|. Furthermore, from K-theory there are trace maps
into T'C' and THH, see [Mad94].

However, developing all of the above theory in the setting of orthogonal spec-
tra, is far beyond the scope of this thesis. In this chapter we shall consider the
definition of TC' and THH and a few basic properties. We follow the frame-
work of well known theory, but there are some details worth pointing out: In
proposition below, we observe that it is easy to recognize cyclotomic -
isomorphisms between cyclotomic spectra. Theorem shows that our model
for TH H of a cofibrant orthogonal ring spectrum is a cyclotomic spectrum in a
very strong sense; the cyclotomic structure maps r¢ : p,®“THH(L) 2 THH(L)
are isomorphisms. Due to the involution, it is important to use a model for
(n x n)-matrices which is closed under transposition. Such a model is introduced
in definition 311

Important references for the theory of THH and T'C' in other settings in-
cludes [BHM93)], [Mad94], [DM96], [HMI7], [Schog] and [Shi00).

5.1 Cyclotomic orthogonal spectra and T'C
The purpose of this section is to define T'C' of a cyclotomic spectrum 7. We will
define cyclotomic spectra as certain orthogonal S'-spectra together with some

extra structure. For the involutive case 7' lies in the category of orthogonal

189
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O(2)-spectra. Because orthogonal S'- and O(2)-spectra have so many model
structures, one can easily become confused about which type of weak equivalences
that are the correct ones to consider. Therefore, we will start this section by
quickly listing the model structures to be used in the context of T'C' and THH.
We end the section with a result, proposition BLTI, which tells us that our
choices of model categories were right.

Orthogonal spectra: We use the stable model structure, see definition 243
The weak equivalences f : K — L are the m,-isomorphisms. The fibrant orthog-
onal spectra are the (2-spectra.

This model structure is topological, see theorem 9.2 in [MMSS0T]. Via the
functor Sing, from topological spaces to simplicial sets, it can be shown that
every topological model category is a simplicial model category. Hence, we have
homotopy limits in .#.%, and homotopy invariance holds, see theorem 18.5.3 ii)
in [Hir03:

Proposition 5.1.1
Let € be a small category. If f : K — L is a map of € -diagrams in .., and
each f: K(c¢) — L(c) is a m.-isomorphism between )-spectra, then

f+« : holim K — holim L
% %

is also a m,-isomorphism between ()-spectra.

Orthogonal Z/2-spectra: An orthogonal Z/2-spectrum has an underlying or-
thogonal spectrum. We are interested in the model structure where the weak
equivalences are the Z/2-maps which are m,-isomorphisms between the underly-
ing orthogonal spectra. Considering an orthogonal Z/2-spectrum as an orthogo-
nal spectrum with Z/2-action, we see that functorial constructions on orthogonal
spectra lift to constructions on orthogonal Z/2-spectra. For example, proposi-
tion BT holds in this setting.

Orthogonal S'-spectra: We are interested in the cyclotomic m,-isomorphisms.
They are given in definition B30 These are the maps f : K — L such that f
induces an isomorphism 7¢K — 7¢L for all finite subgroups C of S.

For some constructions we must change our orthogonal S*-spectrum into an
Q-S'-spectrum (=genuine fibrant orthogonal S'-spectrum), see definition B3
To achieve this, we use the fibrant replacement functor coming from the stable
genuine model structure on orthogonal S*-spectra. This functor is constructed
by the small object argument, and we denote it by Q<.

Recall the geometric fixed point functor ®°, given in definition BZZ2 For a
finite subgroup C of S! it takes orthogonal S'-spectra L to orthogonal S'/C-
spectra ®° L. Using the group isomorphism pc : ST — S'/C, we pull back and
get a new orthogonal Sl-spectrum p®C L.
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By proposition BZZ4 the functor pi®C preserves the class of generating gen-
uine acyclic g-cofibrations. Hence, lemma B.IT.6 yields:

Lemma 5.1.2
There is a natural transformation pf,®°Q% — Q% p&®° such that the following
diagram commutes for all orthogonal S*-spectra L:

J |

PePCQYL —— Q¥ pL®CL

Orthogonal O(2)-spectra: Again, we are interested in the cyclotomic m,-
isomorphisms, see definition B3 We have a fibrant replacement functor, Q<,
constructed by the small object argument in the stable genuine model structure.
Thus Q¥ L is an Q-O(2)-spectrum, for any orthogonal O(2)-spectrum L. Let C
be a finite normal subgroup of O(2). Similar to the case above, we have geometric
C-fixed point functors, ®°, and group isomorphisms pc : O(2) = O(2)/C. We
consider the composition p5®¢. Also in the case of an orthogonal O(2)-spectrum
L lemma holds.

We are now ready to define cyclotomic spectra in the setting of orthogonal
spectra. Compare this definition with definition 2.2 in [HM97|. Furthermore, we
introduce the notion of an cyclotomic spectrum with involution.

Definition 5.1.3
A cyclotomic spectrum is an orthogonal S*-spectrum T together with a cyclotomic
T,-isomorphism

ro: pe®“T — T

for every finite subgroup C of S' such that for any pair of finite subgroups the
following diagram commutes

* Cr % Cs * Crs
pcr ) pCs QT —— pCrs ) T
P*CT (I)CTTCS J{ J{Tcrs
TCT
PR O

A map of cyclotomic spectra is a map of orthogonal S'-spectra which commutes
with the rg’s.

Definition 5.1.4
A cyclotomic spectrum with involution is an orthogonal O(2)-spectrum T' together
with a cyclotomic 7,-isomorphism

ro pe®°T — T
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for every finite subgroup C' of S* C O(2) such that the diagram in definition B.1.3
commutes for every pair of such subgroups. A map of cyclotomic spectra with
involution is a map of orthogonal O(2)-spectra which commutes with the r¢’s.

Because of the maps r¢, it is easy to check when a map between cyclotomic
spectra is a cyclotomic m,-isomorphism:

Proposition 5.1.5
A map f: Ty — T, between cyclotomic spectra (with involution) is a cyclotomic
me-isomorphism if and only if it is non-equivariantly a m,-isomorphism.

Proof: By definition, all cyclotomic m,-isomorphisms are non-equivariant 7,-
isomorphisms.

Assume that f : 7T} — T3 is non-equivariantly a m,-isomorphism. Let C' be a
finite normal subgroup of S* (or O(2)), and consider the diagram

p*C<I>CT1 T

p*c¢cfl lf

pe®CTy —— Ty

Since the r¢’s are cyclotomic m,-isos, it follows that ®¢ f is non-equivariantly
a m,-isomorphism. Using proposition B.TT.9 we recognize f as a cyclotomic 7,-
isomorphism. O

Remark 5.1.6
The key ingredient in the proof of proposition was a homotopy cofiber

sequence
QV(LAEZ,)C — Q(L)° — oL

where Z is a specific family of subgroups, and L an orthogonal S'- (or O(2)-
) spectrum. This sequence is a generalization of the “fundamental cofibration
sequence”; see formula 2.4.6 in [Mad94], or theorem 2.2 in [HM97].

In order to define TC(T') we introduce the category I. It has the natural
numbers, {1,2,3, ...}, as its objects, and the set of all morphisms in I is generated
by two classes of morphisms R, : rm — m and F, : rm — m, m > 1, subject to
the relations

Ry =F =1d, ,
RTRS = Rrs )
FrFs: rs

R Iy = F,R,
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Given a cyclotomic spectrum 7' we now construct a functor I — Z.% by
sending n to the categorical C,-fixed points 7. The map F, : T¢ — T
is given by inclusion of categorical fixed points. To construct R, we recall that
there is a natural map 7¢ — ®CT, see construction .73 We define R, as the
composition

TCn — (TC’I‘)Cm N ((I)CTT)C’” &) TCm

Definition 5.1.7
The topological cyclic homology of T, TC(T), is the orthogonal spectrum defined

as
TC(T) = holim 76"
ne
Lemma 5.1.8
If T is a cyclotomic spectrum with involution, then TC(T') is an orthogonal 7./2-
Sspectrum.

Proof: The dihedral group of order 2n is the subgroup of O(2) spanned by

C,, and the matrix Since T is an orthogonal O(2)-spectrum, we can

01
10
restrict the action getting an orthogonal D,,-spectrum. Taking categorical C,,-
fixed points, we get an Z/2 = Ds, /C,, action on each T". Clearly, both F, and

R, become Z/2-maps. O

Remark 5.1.9

If T is not an Q-G-spectrum, G = S* or O(2), then the C-fixed points, T, might
have the wrong homotopy groups. See warning V.3.6 in [MMO02|. Hence, one
should apply Q% to T before calculating T'C'.

Proposition 5.1.10
The fibrant replacement functor Q% preserves cyclotomic spectra.

Proof: By construction Q% comes with a natural acyclic g-cofibration 7" —
Q% T. By lemmabT 2 there is a natural transformation p},®¢ QYT — Q% p®CT.
And the following diagram commutes:

Pa®T —— 0T

~

| L

PEDCQYT —— QW prdCT 1S QT

The left vertical map is a genuine 7,-isomorphism since p5,®¢ preserves acyclic
g-cofibrations. We take the composition of the two bottom maps as the definition
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of ro for Q¥T. It is automatically a cyclotomic 7,-isomorphism since r¢ is. [

Proposition 5.1.11

If a cyclotomic map f : Ty — T, is a cyclotomic m,-isomorphism between €2-
G-spectra, G = S' or O(2), then the induced map TC(T;) — TC(Ty) is a
T.-isomorphism.

Proof: Due to homotopy invariance of homotopy limits, see proposition B1.T],
it is enough to show that for each n the map

Cn n
" — 1,

is a m,-iso between (2-spectra.
It follows directly from the definitions that the categorical H-fixed points of
an ()-G-spectrum is an (2-spectrum. Hence, TIC" and TQC" are ()-spectra.
Furthermore,

T = 76Ty = 76Ty = 1, T

Here the map in the middle is an isomorphism since 7} — 715 is a cyclotomic
T.-isomorphism. U

Remark 5.1.12

Let .Z be the family of finite normal subgroups of S* or O(2). One can define
the notion of an Q-.%-spectrum. All statements above probably remain true if
replacing Q2-G-spectra, G = S' or O(2), by Q-Z-spectra. Furthermore, one can
probably show that these spectra are the fibrant objects of the stable cyclotomic
model structure on G.¥.%.

5.2 Topological Hochschild homology

Since the time when Bokstedt defined TTHH based on an idea of Goodwillie,
the technology of spectra has evolved so much that we now can use Goodwillie’s
idea as definition, see [Shi00]. What is needed is a symmetric smash product
for spectra. We write out the definition for the category of orthogonal spec-
tra. Furthermore, we show that T"H H (L) is a cyclotomic spectrum, when L is
cofibrant.

We also consider the involutive case.

Definition 5.2.1
Let L be an orthogonal ring spectrum. Define THH,(L) to be the simplicial
orthogonal spectrum with gq-simplices

THH,(L) = L") = LALA---AL |
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and face and degeneracy maps given by

o NN idg(q_i_l) for 0 <i < gq,
' A idg(q_l) ompray,  fori =g,
and , .
5; = idg(zﬂ) AnA idg(q_z)
We define THH (L) to be the geometrical realization of THH,(L).
To clarify the definition of d, we write it as the composition

uAid
—

LMD = (DMYAL 2L ALY = DALA(LND) LA(LN@Y) = [N

Remark 5.2.2

If the unit of the orthogonal ring spectrum, n : S — L, is not a g-cofibration, then
there is no reason to expect the homotopy of L and the homotopy of THH (L) to
be related to each other. Hence, we will often restrict attention to such orthogonal
ring spectra, and we call them cofibrant.

Given an arbitrary orthogonal ring spectrum L, it can often be checked di-
rectly that the unit n : S — L is a closed inclusion. If this is the case, then we
may apply the cofibrant replacement functor I' from theorem EZ2ZT3 to produce
a new orthogonal ring spectrum I'L, which is cofibrant.

This replacement procedure also works when L comes with an involution. We
must then define the involution on I'L as the composed map

It

'L & TL-5TL

Here the first ¢ comes from theorem EZ2ZT3 while the second ¢ is the involution
on L, see definition Because I' is a skew-symmetric functor, it follows
that I'L is an orthogonal ring spectrum with involution. Furthermore, I'L is
7/ 2-equivariantly cofibrant by proposition B0

We now specify S'- and O(2)-actions on THH (L).

Proposition 5.2.3
THH,(L) is a cyclic orthogonal spectrum. If L has involution, then TH H,(L) is
dihedral.

Proof: We define the cyclic operator ¢, : LN9TY) — [N+ a9
GRS I N JRALLN SN (LN9) = LMo+

If L has involution ¢ : L — L, we can define the involutive operator r, : LN —

L/\(q+1) as
N(a+1)
—_

g+ [N g+1) Permute s A(g+1)
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The arrow labeled “permute” permutes the order of the factors in the smash prod-
uct as follows: We label the factors from 0’th to ¢'th. The 0’th factor maps to
the 0’th factor, while the #’th factor, ¢ > 0, maps to the (¢ + 1 — i)’th factor. O

Corollary 5.2.4
THH(L) is an orthogonal S*-spectrum. If L has involution, then THH (L) is an
orthogonal O(2)-spectrum.

We now show:

Theorem 5.2.5
Let L be an orthogonal ring spectrum (with involution).

i) If S — L is a q-cofibration, then there is an S'-isomorphism
ro: pe®THH(L) = THH(L)

for every finite subgroup C' of S, and THH(L) is a cyclotomic spectrum.
When L has involution the isomorphism is O(2)-equivariant, and in this
case THH(L) is a cyclotomic spectrum with involution.

ii) If L — K is a m.-isomorphism between cofibrant orthogonal ring spectra
(with involution), then

THH(L) - THH(K)
is a cyclotomic m,-isomorphism.
Before giving a proof, let us define topological cyclic homology:

Definition 5.2.6

The topological cyclic homology of a cofibrant orthogonal ring spectrum L (with
involution) is defined as TC(THH(L)). We abbreviate this notation, and write
TC(L).

Proof:

Part i): We first consider the case of orthogonal ring spectra L without involu-
tion. It is sufficient to prove the statement in the case where S — L is a relative
FI-cellular map. Let C be the finite subgroup of S! of order r. We will now
construct the isomorphism r¢ of genuine orthogonal S*-spectra

pe®°THH(L) = THH(L)

By definition, TH H (L) is the geometric realization of a cyclic orthogonal spec-
trum THH,(L). Edgewise subdivision gives an S'-isomorphism |THH,(L)| =
|sde THHo(L)|. We will construct r¢ by computing pi®“|sde TH H,(L)|.
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The geometric realization is level-wise, so we can use the filtration of the
geometric realization of r-cyclic spaces given in construction [LT31l By induction
we shall prove that

pe®CFA |sde THHL(L)| = FAC|THH,(L)]

for all ¢ > 0. Letting ¢ go to infinity, this statement yields part i) of the theorem.
To prove the induction step we begin with a few calculations. The ¢-simplices
of sde THH,(L) are L"". Here r is the order of C. We now have

pe®C (LY A, ACE,) = pp®C (LM AAY) Ac,, ST
> pi, ((8°(L7%) A AL) Ag, S'/C4)
~ (@C(L") A AL) Ag, S
>~ (L) A, ACY
> LM N, AC?y
In this calculation we have used the following facts:

The topological r-cyclic g-simplex, AC? is defined as A7 x S*.

PC(K NA) = (P°K) A AY, when K is an orthogonal S'-spectrum and A a
based S'-space, see proposition

(K A, St) = (PYK)Ae,St/Cy, when K is an orthogonal C,-spectrum,
see proposition B810.

The diagonal map L"? = ®¢ L% is an isomorphism for cofibrant orthogonal
spectra L, see proposition BI0L7

Recall from remark B-T0H the notation s”L""7" for the orthogonal C,,-spectrum

ST = U LNV UASALM VASALM PASA - ASA LN

)

Observe that the degenerate g-simplices of sdc TH H,(L) are exactly s"L\97".
By a calculation similar to that above, we get

pe®C (s L A, ACY,) = sLM A, ACY,

Restricting to the boundary of the topological r-cyclic g-simplex, 0ACY, we
get

pe®C (L9 A, OACE,) = L' Ag, DACY,  and
pe®C (s Ag,, OACE,) = LM Ag, DACY,
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Consider the diagram
s"TLNTT Ne,, OACE, —— LV A, OACY |
sTLNTT Ny, ACE, —— LM A, ACE,

As an orthogonal spectrum L' A¢, AC?, has an F'I-cellular structure such that
the three other orthogonal spectra are F'I-cellular subspectra. It follows that the
map

L/\Tq /\er aACg+ LJS'rL/\rqf'r/\eraACvg+ STL/\T‘(]—T /\CTq ACg+ N L/\T‘q /\er AC1?+
is a closed inclusion. Now consider the diagram
LNe, ACS, — L"N¢, OACE, Us" L "N¢,, ACE, — FA% |sde THH.(L)]

Since the left map is a closed inclusion, it follows by proposition B2 that pi®¢

of the pushout is the pushout of pi,®¢ applied to the diagram. At last we look
at the following diagram:

pe®C (L9 Ac,, ACY,) LM Ag, ACT,

I I

pe®C (L9 Ne,, OACE, Us"LANT" Ng, ACE )L Ag, OACT L U sL ™1 A, ACT

! !

pe®CFAT | sde THH.(L)| o~ FAS|ITHH,(L)|

1%

By the calculations above, the top and the middle horizontal maps are isomor-
phisms. By the induction hypothesis, the bottom horizontal map is an isomor-
phism. It follows that the map of column-wise pushouts,

pe®FAC |sde THHL(L)| = FAC|THHL(L)|

is an isomorphism.

Now assume that L is an orthogonal ring spectrum with involution. We prove
that THH(L) is a cyclotomic spectrum with involution by an argument similar
to that above. Edgewise subdivision works also in the dihedral case, and we
construct the O(2)-isomorphism

ro: pe®THH(L) =2 THH(L)

by induction over the O(2)-equivariant filtration for the geometric realization of
r-dihedral spaces provided by construction [LT3T. Since the diagonal map is
dihedral for L with involution, see proposition BI0T2 the rest of the argument
works exactly as before.
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Part ii): By proposition B0, it is enough to show that the induced map
THH(L) — THH(K) is non-equivariantly a m,-isomorphism. Since both S — L
and S — K are g-cofibrations, it follows that THH.(L) and THH,(K) are
good simplicial orthogonal spectra. It remains to show that the induced map
THH.(L) — THH,(K) is a m,-iso in each simplicial degree, see proposition 253l
We can factor the map THH,(L) = LN — KNot) = THH, (K) as

LAY g | TG A KA L A KN AN

The smash product of cofibrant orthogonal spectra is cofibrant by proposition 22248
and smashing with cofibrant orthogonal spectra preserves 7,-isomorphisms, see
proposition 227 Hence, each map in the sequence above is a m,-isomorphism.
The result follows. ]

5.3 Matrices over an orthogonal ring spectrum

An important ingredient when constructing a trace map from K-theory to THH
or T'C', is the definition of a matrix ring. Since we focus on orthogonal ring spectra
with involution, we need a construction which is involutive. In ordinary linear
algebra we have such an involution, namely the conjugate transposed matrix.
However, if we consider the customary definition of the matrix-FSP, M, (L) =
F(n,,n AL), we see that transposition is not well-defined. Hence a modification
of the definition is required.

The purpose of this section is to provide a construction of (n X n)-matrices
for orthogonal ring spectra L, which also works when L has involution. Let me
make a list of our hopes and needs regarding the construction:

M, should be an endofunctor on orthogonal spectra.

Up to m,-isomorphism \/_, L, M, (L) and L*"* should be the same, at least
when L is cofibrant.

We want a matrix multiplication M, (L) A M,,(L) — M,(L).
Direct sum of matrices should give a functor M, (L) x M,,(L) — M, +n,(L).

For L with involution taking the transposed involuted matrix should be an
involution on M, (L).

We want a trace map from M, (L) to some additive model for L.

Recall the concept of induced functors on orthogonal spectra, see subsec-
tion 2301 We first define a continuous endofunctor on Zop,, which we also will
denote by M,,. Then we define M,, on orthogonal spectra as the induced functor.
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Definition 5.3.1

For a based space X let M, (X) be the subspace of X xn? congsisting for those
matrices where each row contains at most one element different from * and each
column contains at most one element different form .

Using formulas we may write M, (X) as

TL2
M, (X) = {(2i;) € X |
if @, ;, # *, then x;,; = * and x; ;, = * for all i # iy and j # jo.}

It is clear that M, is a continuous functor. Since M, (%) = *, there is a
canonical right assembly

oxy : Mp(X)ANY — M, (X AY) |

see page 208 in [Mad94]. In our case we can easily write down a formula for
o: Let (z;;) be a matrix in M, (X) and y a point in Y, then o((x;;),y) is the
matrix (z;;) in M, (X AY), where z;; = (z;5,y) € X AY. Similarly, there is a
left assembly &.

We now describe the structure of the functor M,,:

Lemma 5.3.2
There are natural transformations

Iy : X — M,(X)
hxy : Mn(X) A Mn(Y) - Mn(X N Y) ’ and
Lyt Mp(X) — M,(X)

such that

the composition M,(X) AY 1% ML (X) A M, (Y) 255 M, (X AY) s
equal to the right assembly,

1x Nid UX,Y
—_

the composition X A M, (Y) Mo (X)ANM,(Y) —— M, (X AY) is

equal to the left assembly,
[ IS associative,
? = id, and

¢ anti-commutes with p, this means that the following diagram commutes:

Mu(X)AM,(Y) 2895 ML(X)AM(Y) 25 M (V) A M, (X)

/JX,Yl luy,x

M (XAY) 2% Ap(xAy) 2O (v A X)
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Another way to phrase this lemma is to say that M,, is an FSP with involution.

Proof: The unit 1x : X — M, (X) is defined by sending = € X to the (n x n)-
matrix

*x T x
. )
k*  k x

which has = on the diagonal and * elsewhere. Multiplication pxy : M,(X) A
M,(Y) — M, (X ANY) is given as ordinary matrix multiplication. Explicitly this
is given by sending (z;;) and (y;;) to (2;;), where

(i, ;) if k is such that x;, # * and yg; # *,
’ * otherwise.

By direct computation it is easily seen that o (1 A id) and po (id A 1) are the
left and right assemblies respectively. And easy calculations also show that p is
associative.

We define the involution ¢ by transposition. ¢x(v;;) is (z};), where x;
Clearly, :* = 4d. To check that ¢ anti-commutes with x, we take matrices (z; ;) and
(yi;) in M, (X) and M, (Y') respectively. Let (z;;) be the matrix of p(e(y; ), t(x;;))
and (27;) = t(p((7i5), (yi5)))- Calculating we see that

=Tji-

L {(yki,xjk) if k& is such that x5 # * and yy; # *,
(] -

* otherwise,
and
/ (g, Yki) 1if k is such that x5 # * and yy,; # *,
Z. . =
Y * otherwise.
And we see that the diagram commutes. 0

Corollary 5.3.3
If L is an orthogonal ring spectrum L, then M, (L) is also an orthogonal ring
spectrum, and if L has involution, then M, (L) has an induced involution.

Proof: We use the external description of the smash product, example ZZT.T8.
The unit for M, (L) is defined as the composition

1pvy
)

SV — L(V) =25 M, (L(V))
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The multiplication for M, (L), defined externally, is given by

HL(Vy),L(V2) (multiplication)
_—

My (L(VA)) A Mo(L(Va)) M (L(Vi) A L(Va)) 2

M, (L(Vi @ V3))
And in the case L has involution, the induced involution on M, (L) is given by

My, (involution)

M (L(V)) —————— My (L(V))

My(L(V)) =5
The structure of M, described in lemma ensures that M, (L) is an orthog-
onal ring spectrum (with involution). O

Example 5.3.4 (Direct sum)

The direct sum M, (L) X M,,(L) — My, 1n,(L) is easily defined. First observe
that direct sum M, (X) X M,,(X) — M,, 1n,(X) is defined for based spaces X
by the ordinary direct sum of matrices. Applying the concept of induced functors
we get the direct sum for matrices of orthogonal ring spectra.

Next we want to compare the weak homotopy type of M, (L) to \/,. L and
L*"* We clearly have maps

\/ L — M,(L)— L |
n2

and when L is cofibrant, the composition is a 7,-iso by proposition Our
strategy is to use corollary 22319 to show that the first map also is a m,-iso, given
that L is cofibrant.

The third condition in corollary demands that the functors must com-
mute with colimit over sequences of cofibrations. We check this for the functors
above. Assume that Xqg — X; — X, — --- is a sequence of cofibrations of
spaces, and X is the colimit. Clearly we have that colim; (\/,. X;) =V, X. (We
can describe the wedge as a colimit, and interchanging colimits does not affect
the result.) Theorem 10.3 in [Ste67| also holds for the category of compactly
generated spaces defined in [McC69|. Therefore, we also have

colim (X;"2> = xxn?

)

What we really are saying is that two a priori different topologies on the same set
actually coincide. It is easy to see that colim; M, (X;) is equal to M, (X) as sets.

But the topology of colim; M, (X;) is the subspace topology from colim; (XZ.X"2>,
while M, (X)) has the subspace topology from X*n* However, the equality above

implies that
colim M, (X;) = M, (X)

as topological spaces (=compactly generated spaces).
The following proposition checks the second condition for M, (—).
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Proposition 5.3.5
If A — X is an unbased closed cofibration of spaces, then M,(A) — M, (X) is
also an unbased closed cofibration.

Proof: Represent the cofibration A — X by a homotopy H : X x I — X and
¢ X — I, see remark ZZT.8 Define H : M,,(X) x I — M, (X) by

H((zi5),t) = (H(wij,1))

and ¢ : M,(X) — I by

¢(wi;) = Sup o(zij)
Z?]
Clearly, H is a homotopy rel M,(A) with H(—,0) = idy,(x), and M,(A) C
¢1(0). Assume that t > ¢(z;;), then for each i and j we have ¢t > ¢(z;;) and
thus H(z;;,t) € A. Tt follows that H((z;),t) € M,(A).
This shows that H and ¢ represent M, (A) — M, (X) as an unbased cofibra-
tion. O

We immediately get the following two corollaries:

Corollary 5.3.6
The induced functor M, on orthogonal spectra preserves I-cofibrations.

Corollary 5.3.7
If L is a well-pointed orthogonal spectrum, then also M, (L) is well-pointed.

Remark 5.3.8

Observe that we do not claim that M, (L) is cofibrant. If we want a cofibrant ver-
sion, then we just apply the cofibrant replacement functor I" from theorem 22213
Furthermore, whenever the unit n : S — L of an orthogonal ring spectrum is an
l-cofibration, we have that S — M, (L) is an l-cofibration and S — I'M,,(L) is a
g-cofibration.

To compare M,(X) and \/ . X up to homotopy, we now provide a filtration.
Define M*(X) to be the subspace of M, (X) consisting of those matrices with at
most k elements different form *. It is easily seen that M, (X) is equal to \/ . X,
while M(X) equals M, (X). The key lemma for analyzing this filtrations is:

Lemma 5.3.9
For well-pointed X there is a natural cofiber sequence

M1 (X) = My(X) — \/ X"
A

where the wedge is indexed over a finite set A.
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Proof: Let A be the set of maps, f, from {1,...,k} to {1,...,n}* such that
both

priof:{l,....k} = {1,...,n}

is strictly increasing and

proo f:{l,... .k} = {1,...,n}

is injective. For each such f we construct a map f, : X*¥ — M*(X) by

x; if f(I) = (i,7) and
(xl,...,xk)H(yij) Where yij: () . ( )

x  otherwise.
Let sX**~! be the subspace of X ** consisting of the tuples (z, ..., z;) where at
least one x; = *. By Steenrod’s product theorem for cofibrations we know that

(by induction) sX**~! — X** is a cofibration. Also observe that the image of
sX**=1in M*(X) under f, actually lies in M*~(X). Furthermore the diagram

HA SXXk—l HAXxk

| |1

My H(X) —— My(X)

is pushout. The lemma follows by the observation that \/ , X"** is the cofiber of
the top row. O

By counting one can check that A contains (Z)Qk! elements.
Using the filtration we prove the following result regarding the connectivity
of the map \/, . X — M, (X):

Proposition 5.3.10
If X is r-connected and well-pointed, then the map \/ .X — M,(X) is 2r-
connected.

Proof: We prove by induction on r and k that M¥(X) is r-connected and the
map

My (X) = My(X) k>2

is 2r-connected when X is r-connected.

For k = 1 observe that M}(X) = \/,. X. Therefore M}(X) is r-connected
whenever X is.

For r = —1 there is nothing to prove. For r = 0 we will give a direct
argument that shows that all M*(X) are 0-connected. Consequently, the maps



5.4. CROSS PRODUCT FORMULA FORTHH 205

MFM1(X) — MF(X) are all O-connected. Let (x;;) be a matrix in M?(X). Since
X is path-connected, we can for each x;; choose a path ~;; from z;; to x. When
x;; = *, we let the path be constant. Then

t e (7i5(1))

will be a path from (z;;) to the base point in M¥(X). Hence this space is also
path-connected.

Let » > 1 and £ > 2 and assume that the induction hypothesis holds for
smaller r and k. By lemma B39 above, the map

My~ (X) — M (X)

is an unbased closed cofibration with cofiber \/ , X AR And it follows from propo-
sition [ALT.9 that this cofiber is at least (2r + 1)-connected. The induction hy-
pothesis says that M*~!(X) is r-connected and the pair (M*(X), M*1(X)) is
(2r — 2)-connected. We now apply proposition and get that

(M (X), My~ (X)) — my(\/ X7)

is an isomorphism for ¢ < 3r — 1. If » > 1, we immediately get that the map
MFYX) — MF(X) is 2r-connected and MF*(X) is r-connected.

If » = 1, the statement above only says that the map M*1(X) — MF(X)
is 1-connected. But in this case we can apply the proposition again with the
improved input that the pair (M*(X), M* (X)) is 1-connected. And we get
that also mo(MF(X), MF1(X)) — m(\V, X*) = 0 is an isomorphism. Thus
MFYX) — MF(X) is actually 2-connected and M*(X) is 1-connected. O

Corollary 5.3.11
If L is a cofibrant orthogonal spectrum, then \/, . L — M, (L) is a m.-isomorphism.

Proof: The considerations and results above verify the conditions of corol-
lary BE3.T9 Hence, the map of induced functors is a m,-isomorphism. O

5.4 Cross product formula for THH

In this section we will derive a cross product formula for T"H H. Unfortunately,
our result, proposition B.Z3 below, is not as strong as we would like. The author
suggests two ways to improve the conclusion, see remark BAZ7 We begin the
section by discussing the cross product of orthogonal ring spectra.
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Lemma 5.4.1

If L and K are orthogonal ring spectra, then L x K is also an orthogonal ring
spectra. If L and K have involutions, then also L x K comes with an involution.
The projections are maps of orthogonal ring spectra (with involution).

Proof: Observe that maps into a categorical product L x K correspond to pairs
of maps, one into each factor. In other words, for any orthogonal spectrum X
there is a homeomorphism

IS X, LxK)= 97X,L) x 57X, K)

When L and K are orthogonal ring spectra, we define the unit for L x K as
the map determined by ny, : S — L and ng : S — K. The multiplication is
determined by the two maps

(L x K)A(Lx K) 22225 LA L 25 L and
(L x K) A (L x K) 2500 oA K28 |

In case L and K have involutions, we define an involution on L x K by the map
L, X L.

To check that L x K is an orthogonal ring spectrum (with involution), one
needs to see that certain diagrams commute. This is an easy computation, done
by projecting the diagrams to L and K, where they commute by assumption. []

However, it is not clear that the cross product of cofibrant orthogonal ring
spectra is cofibrant. So we provide a cofibrant replacement:

Lemma 5.4.2

If L is an orthogonal ring spectrum and n : S — L is a closed inclusion, then
I'L is a cofibrant orthogonal ring spectrum. I'L is involutive whenever L has
involution. The natural map 'L — L is a map of orthogonal ring spectra (with
involution).

Proof: The unit is defined as the composition
S-S |
the multiplication is given by
TLATL ST(LAL)STL |
and the involution is the composition

rrsrrsrr
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where the first map comes from the natural transformation ¢ : I' — I', and the
second map is I' applied to the involution on L.

Commutativity of the required diagrams follows since I' is lax symmetric
monoidal. S — I'L is a g-cofibration since S — I'S is a g-cofibration and T’
applied to the closed inclusion n : S — L is a g-cofibration. U

We now state or cross product formula:

Proposition 5.4.3
Assume that L and K are cofibrant orthogonal ring spectra (with involution).
The S*-map (O(2)-map)

THH(T(L x K)) — THH(L) x THH(K)

induced by the projections I'(Lx K) — L and I'(Lx K) — K is non-equivariantly
a Ty-isomorphism.

We will show this by comparing both THH,(I'(L x K)) and THH,(L) X
THH,(K) to a third cyclic (dihedral) orthogonal spectrum, called T,(L, K). To-
gether corollary and lemma .26 below prove the proposition.

We begin by defining T,(L, K). Let the g-simplices be the X-product of all
(¢ + 1)-fold A-products where each factor is either L or K. Let us write up
explicitly what we get for small g¢:

To(L,K) =L x K
T(L,K)=(LAL) x (LAK) x (KAL) x (KANK)
Ty(L,K) = (LALAL) X (LALAK)x (LAKAL)x (LAKAK)
x (KALANL)x (KALANK)x (KAKAL)x (KAKAK)

We define the cyclic (dihedral) structure by considering each Xx-factor separately.
Consider a factor Xo A X A---AX,, where each X; is L or K. The face operator
d; for i < q tries to multiply X; and X;,;. We define

X()/\"'/\Xz‘_l/\L/\XH_Q/\"'/\Xq ifXZ‘:XH_l:L,
diZXo/\"'/\Xq—> Xo/\"'/\Xi_l/\K/\XH_Q/\"'/\Xq iin:XZ-_H:K,and
* otherwise.
Here the map is induced by uy in the first case and pg in the second. To define

d, we try to multiply X, with Xy, using pup if Xy = Xo =L, ux if X, = Xo = K
and mapping to * otherwise. The degeneracy map is given by

s;: XoA-- '/\Xq — (Xo/\' SAXGALAX 1 A -/\Xq)X(Xo/\~ CAXGAKAX 1 A -/\Xq)

using 7, into the first factor and 7k into the second. The cyclic operator permutes
the factors:
tqIXo/\"'/\Xq—>Xq/\X0/\"'/\Xq_1
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If L and K come with involutions, we can define the involutive operator by
applying ¢ to each X; an then permute:

LA AL

re s Xo A A Xy L Xo A A Xy B XA XA A X
There is a map
pr:To(L,K) - THH.(L) x THH,(K)

defined on factors by

NY =THH,(L) ifXg=--=X,=1,
XoN-ANX;—  KND =THH (K) if Xg=--= X, =K, and
* otherwise.

In the opposite direction we have the inclusion
incl : THH,(L) x THH.(K) — T,(L, K)

Lemma 5.4.4
The map pr is cyclic (dihedral), incl is presimplicial, princl = id, while incl pr ~
i1d via a presimplicial homotopy.

Proof: The first three statements are obvious. To prove the last statement we
define a presimplicial homotopy on factors as follows:

Xo/\"'/\XZ‘/\L/\XZ'+1/\"'/\Xq ifXg=---=X,=1,
hiZXo/\"'/\Xq—> Xo/\"'/\XZ‘/\K/\XZ'+1/\"'/\Xq if Xo=---=X; =K, and
* otherwise.

Here L is inserted using 7y, in the first case, in the second case K is inserted using
NK. We see that
dohg = id and dgy1hy = incl pr

Assume ¢ < j, then d;h; and h;_;d; are x if not Xg = --- = X;. When Xy, =--- =
X, it is easy to check that d;h; = hj_1d;. Similarly, one shows that d;h; = h;d;—;
for i > j + 1. At last we check that on the factor Xy A --- A X, we have

i {z’d if Xo=---=X,, and

x  otherwise,

and also

%  otherwise.

P {z’d if Xp == X, and

Thus we have a presimplicial homotopy. 0
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Corollary 5.4.5

Assume that L and K are cofibrant orthogonal ring spectra (with involution).
Then there is an S'-map (O(2)-map) pr : |T.(L,K)| — THH(L) x THH(K),
which is non-equivariantly a m,-isomorphism.

Proof: Since L and K are cofibrant, it follows that T,(L, K) and THH.(L) X
THH,(K) are good. The result now follows from the lemma above, proposi-
tion 5.2 and the fact that a presimplicial homotopy induces a homotopy on
presimplicial realization. O

Next, we compare TH Ho(I'(Lx K)) and T, (L, K). There is a cyclic (dihedral)
map f: THH(I'(L x K)) — To(L, K) defined as follows: Fix a simplicial degree
q and consider the factor Xo A --- A X, of T,(L, K). Let p;, be the composition

NLxK)—LxKZX,

Here pr denotes the projection to the first factor, it is L x K — L if X; = L and
LxK— Kif X;=K. Now we map THH,(I'(L x K)) into Xo A--- A X, by

THH,(T(LxK)) = T(Lx K)N4) = D(Lx K)A- - -AT(Lx K) PoA g XoA--AX,

Our map f, is determined by the collection of all such maps when Xy A --- A X,
runs through all factors of T, (L, K).

Lemma 5.4.6

Assume that L and K are cofibrant orthogonal ring spectra (with involution).
The geometric realization of f, is an S'-map (O(2)-map) f: THH(I'(L x K)) —
|To(L, K)|, which is non-equivariantly a m,-isomorphism.

Proof: We have that THH,(I'(L x K)) and T,(L, K) are both good cyclic
(dihedral) orthogonal spectra. Hence by proposition Z03], it is sufficient to prove
that in each simplicial degree

f: THH,(T'(L x K)) — T,(L, K)

is non-equivariantly a 7,-isomorphism. The clue to prove this is to replace x by
V. Consider the diagram

T(LVE)A--AT(LVE) — VXo A AKX,
T(Lx K)A-- AT(Lx K) —2 [[XoA--AX,

The lower left corner is TH H,(I'(L x K)), the lower right corner is 7;,(L, K), and
the map at the bottom is f,.
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Look at the left vertical map. Since L and K are cofibrant, we have that
LV K — L x K is a m,-iso, see proposition 2310, I' preserves m,-isomorphisms,
and I'(L vV K) and I'(L x K) are both cofibrant. Recall that the smash product
of a m,-iso with a cofibrant orthogonal spectrum yields a new m,-iso. From these
considerations it follows that the left vertical map is a m,-iso.

The right vertical map is also a m.-iso. This follows from the fact that each
Xo N -+ AN X, is cofibrant and the fact that wedge and x-products of cofibrant
orthogonal spectra are 7,-isomorphic.

To see that the top map is a m,-iso, we decompose it as

F(LVK)/\---/\F(LVK)—>(LVK)A(‘?+1)—>\/XO/\.../\Xq

The first map is a m,-iso since I'(L V K) — LV K is a m,-iso between cofibrant
orthogonal spectra. Distributivity of VV over A shows that the second map is an
isomorphism of orthogonal spectra.

Commutativity of the diagram implies that f, also is a 7.-iso. O

Remark 5.4.7
The conclusion of the cross product formula we just have derived, proposition 243
above, is too weak. Due to proposition BEET.T1, we would like our map

FTHH((L x K)) —» THH(L) x THH(K)

to be a cyclotomic m,-isomorphism between cyclotomic spectra. We know only
that f is non-equivariantly a m,-isomorphism, and we do not know that TH H (L) x
THH(K) is a cyclotomic spectrum. These two problems are closely connected:

If we can show that THH (L) x THH(K) is a cyclotomic spectrum, then
proposition would imply that f is a cyclotomic m,-isomorphism.

There are good candidates for the cyclotomic structure maps r¢ on TH H (L) x
THH(K), but we do not know that these maps are cyclotomic 7,-isomorphisms.
If we knew that f was a cyclotomic m,-isomorphism, then we could show
that the r¢’s also are cyclotomic m,-isomorphisms.

In both approaches we should allow ourselves to take cofibrant or fibrant replace-
ments. To study the first approach, one should give a more explicit description
of a cyclotomic spectrum. Lemma 2.2 in [HM97| can be the inspiration for such a
description. To study the second approach, one could try to transfer McCarthy’s
concept of a special homotopy to the setting of cyclic orthogonal spectra. Analo-
gies of propositions 1.5.12 and 1.6.15 in [DM96| should then show that f is a
cyclotomic 7,-isomorphism.
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5.5 The Barratt-Eccles functor

When trying to define a trace map M, (L) — L one encounters the problem that
there is a priori no notion of addition on L, i.e. one cannot add two points in
L(V') and get a new point. We will use the Barratt-Eccles functor I't, see [BE74],
to solve this problem. In the next section we will construct a trace map from
THH(T'M,(L)). As a target for this trace we now introduce a new model for
THH(L), called THH™*(L). The construction uses I'". This is an idea due to
Christian Schlichtkrull, see [Sch98|. The main result of this section is proposi-
tion 5.T0, but this result is not as strong as hoped for, see remark BEO.TTl

Let G be a discrete group. Recall that F,G is the simplicial G-space given by

E,G = Gatt
where

di(g()v“‘7gq):(907"'7gi—lvgi+17"'7gq> )
Si(907"'7gq):(907"'agi7gia"'agq) and
(90:---+94)-9 = (909, - - - 9q9)

Let EG be the geometric realization.

Write n for the set {1,2,...,n}. Let .#(m,n) be the set of all strictly in-
creasing functions from m to n. Given a permutation o € 3, and a € .# (m, n),
then there is a unique function in .#(m,n) which has the same image as the
composition oa. Denote this by o, («).

Definition 5.5.1
For a € ./ (m,n) define the restriction map o* : 3, — %, by commutativity of
the diagram

«
m —— 1

a*(a)l la .

ox(a)
On the Cartesian product X™ we have a right action of ¥,, given by

([El, Ceey xn).a == (230(1), e ,xa(n)) s
and given o € . (m,n) we have an induced map o : X™ — X™ defined by the
formula
a*(xl, e ,xn) = ([Ea(l), Ce ,[Ea(m))
We say that « is entire for (z1,...,z,) if i € a(m) implies z; = *.
Consider the equivalence relation on
I Bz x X
m2>0

given by
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(a) (c,x) ~ (c.o,x.0) for c € E,%,,, x € X™ and 0 € %,,.
(b) (c,x) ~ (a*c,a*x) if c € E,X,,, x € X™ and o € .4 (m,n) is entire for x.

Definition 5.5.2
Let T'J(X) be ([,50 EeXm X X™)/ ~, and ' (X)) it’s geometrical realization.

Proposition 5.5.3
I'Y(X) is a dihedral space.

Proof: We must define the cyclic and involutive operators. Let

tol(oo, ..., 00); (1, s xm)] = [(0g, 00, - ., 0g—1); (T1, -+, T)]

and

rol(oo, ..., 09); (X1, s Tm)] = (04, Tg=1, - -, 01,00); (T1, - - -, Ty)]

Proposition 5.5.4
['"(X) is a monoid with unit, the operation is commutative up to homotopy and
the monoid is free.

Proof: A proof of this result can be found in [BET4], corollary 3.10 and propo-
sition 3.11. However in their proofs X is a based simplicial set. But the definition
coincides with the one given here when X is a discrete based set. Therefore, the
statements about the algebraic structure of I'"(X) follow by applying Barratt
and Eccles’ proofs to X’s underlying discrete set X°. Hence, I'T(X) is a free
monoid with unit. Checking homotopy commutativity can be done as in the ref-
erence, but in order to familiarize ourselves with the operation we write out the
argument for homotopy commutativity here:

We write + for the operation. To start we need a homomorphism X, x¥,,, —
Ymi+ms- We call this homomorphism IT and it is defined by

, oy if j <mq, and
1)) = {7V L
p(7 —mi)+mq if j > my.

Now given [(00,...,04); (T1,. -, Tmy)] and [(po, .-, 0q); (Y1, - Ymy)] in T (X)
we define their sum as:

(G0 pos---yog W pg)i (T1s oy Tongs Yty - -+ Yimo)]
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This defines a simplicial map I'J(X) x T'H(X) — I'l (X), and we define + to be
its geometric realization.

To get homotopy commutativity we define a simplicial homotopy h; : I'y (X)X
IHX) —=T;(X),i=0,...,q. Let 7 € Xy, ym, be the permutation defined by

, Jj+mg if 7 <my, and
() =4’ L
jg—myq if 7 > my.

Notice that 7(o 11 p)77! = p Il 0. Now we define h; by:

hz‘([(an .. '70-(1); (xlv L 7'rm1)]7 [(p()v L 7pq); (yh L 7ym2)]) -
(too WL po,...,7o; W p, o W piy oo yoq W pg); (1, ooy Ty s Y1 - - - Yima )]

This is a simplicial homotopy between z + v and y + x. O

Proposition 5.5.5
Ifi: A — X is an unbased cofibration of based topological spaces, then IT'"(A) —
't (X) is also an unbased cofibration.

Proof: Since ¢ is a cofibration, it is an inclusion and we view A as a subspace
of X. By Stregm’s criterion there are maps H : X x I — X and ¢ : X — [ with
AcC ¢ Y0), H(z,0) =z for all x € X, H(a,t) =aforalla € A and t € I and
H(z,t) € A when ¢(x) > t. Now define H™ : X™ x [ — [ and ¢™ : X™ — [ by

H™(xy,...,xm,t) = (H(z1,t),...,H(zpm,t)) and ¢"(x1,...,Tn) = maxo(z;)

H™ and ¢™ satisfies Strgm’s criterion. In addition they are ¥,,-equivariant and
if & : m — n is entire for (zy,...,z,,), then

o H"(x1,. .. xn,t) = H™ (" (21,...,2p),t) and ¢"(x1,...,2,) = "™ (21,...,2p)
Therefore, we get induced maps

H,: (IJ(X)x I —=TH(X) and ¢ :Tj(X)—1
showing that T’ (A) — T'}(X) is a cofibration in each simplicial degree. Moreover
the H;’s and the ¢;’s respect the face and degeneracy maps. Thus by geometric
realization we get maps H' : I'T(X) x I — I't(X) and ¢' : 'V (X) — I, showing
that I'"(A) — I'"(X) is a cofibration. O

Proposition 5.5.6
If X is an n-connected well-pointed space, then the map X — I't(X) is (2n+1)-
connected.
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Proof: First we observe from the definition of s; : I'} (X) — T/, (X) that all
degeneracy maps are cofibrations. Hence, I'F(X) is a good simplicial space for
all X. Tt follows that I'"(—) preserves weak equivalences.

By the natural weak equivalence |Sing, X| — X, we see that it is sufficient
to prove the result when X is a simplicial set. Assume that X is n-connected.
If n = —1, there is nothing to prove. Therefore consider n > 0. Lemma 4.8
in [BE74] (see also corollary 5.4) says that X — I'*(X) is (2n + 1)-connected. OJ

Corollary 5.5.7
We may apply Tt (—) level-wise to an orthogonal spectrum L. If L is cofibrant,

then the natural map
L —TH(L)

1S & T.-ISo.

Proof: The propositions and verify the conditions required to apply
corollary 22310 O

We now define the model THH " (L):

Definition 5.5.8

Assume that L is an orthogonal ring spectrum (with involution). We define
THHT(L) to be the geometric realization of the bicyclic (bidihedral) orthogonal
spectrum U'S(THH,(L)).

A bicyclic orthogonal spectrum is a functor (AC x AC)? — 7.7, Restrict-
ing via the diagonal AC — AC x AC we get a cyclic orthogonal spectrum,
whose geometric realization is an orthogonal S'-spectrum. Analogously, in the
bidihedral case the geometric realization has O(2)-action.

Remark 5.5.9
Observe that T"H H* (L) inherits an addition from I'". Fixing a simplicial degree
p and a level V|, we have an associative operation

+: TH(THH,(L)(V)) x T*(THH,(L)(V)) — Tt (THH,(L)(V))

by proposition Taking geometric realization in the p direction, we get
addition
+:THHY(L)x THH*(L) — THH™"(L)

Proposition 5.5.10

Assume that L is a cofibrant orthogonal ring spectrum (with involution). Then
the natural S'-map (O(2)-map) THH(L) — THH*(L) is non-equivariantly a
T.-isomorphism.
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Proof: Forgetting about the action, we can consider TH H" (L) as the geometric
realization of the bisimplicial orthogonal spectrum I'J(T'H H,(L)). It is classical
that the two geometric realizations

[la] = DH(THH(L)| and |[p] > |[g] = T (THH,(L))] |

are homeomorphic. Notice that both THH,(L) and T'"(THH,(L)) are good
simplicial orthogonal spectra. Since T'HH,(L) is cofibrant in each simplicial
degree, corollary .51 says that

THH,(L) — |[q] = T§(THH,(L))| = T (THH,(L))
is a m,-isomorphism for all p. Furthermore, proposition 253 yields that the map
THH(L) = |[p] = THH,(L)| — |[p] = |la] = T (THH,(L))| | = THH* (L)

is also a m,-isomorphism. O

Remark 5.5.11

Again, our result is weaker than what we hoped for, namely that the natural
map THH(L) — THH™*(L) would be a cyclotomic m,-isomorphism between
cyclotomic spectra. As before, there are two strategies for improving the result:
Either we could show that THH™ (L) is a cyclotomic spectrum, or we could show
that the natural map is a cyclotomic 7,-isomorphism. In any case, the other part
then should follow formally. Compare with remark B2

5.6 Morita equivalence

In this section we show Morita equivalence for TTH H. We adopt an approach by
Christian Schlichtkrull, see theorem 3.6 in [Sch98]|, to the setting of orthogonal
ring spectra (with involution). In order to carry out the proof, we view orthogonal
spectra as _Z-spaces and do our constructions externally. Unfortunately, our
result is not as strong as we would like, see remark

Let us start by stating the result, the proof spans the following subsections:

Proposition 5.6.1
Assume that L is a cofibrant orthogonal ring spectrum (with involution). Then
there is a natural S*'-map (O(2)-map)

Tr: THH(TM,(L)) — THH(L)
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which is non-equivariantly a m.-isomorphism. Furthermore, we have a commuta-
tive diagram

(Tropry,Tropry)
—)

THH(T(M,, x My,)(L)) THH*(L) x THH*(L)

°| |+
THH(TM,, (L)) LN THH*(L)
of orthogonal S'-spectra (orthogonal O(2)-spectra).

Remark 5.6.2

The result above is not as strong as we could hope for. We have not shown
that Tr is a cyclotomic m,-isomorphism, and we do not know that THH™ (L) is
a cyclotomic spectrum. Again, it is probable that proving one of these wishes
would yield the other as an easy corollary. See also the remarks and B5.TT1

5.6.1 Internalizing

Recall that orthogonal spectra can be described as diagram spaces over a topo-
logical category _Z, see theorem [LT.TB Furthermore, the category ¢ has a
symmetric operation, namely direct sum . Using left Kan extension, see the-
orem X.4.1 in [ML98|, we can therefore lift constructions on based topological
spaces to constructions on orthogonal spectra. To be more precise: Let /q“’ﬁ)p*
denote the category of continuous functors #9t!' — Top,. Assume that F is a
continuous functor Zop?*t — Top,. If we are given orthogonal spectra L°, L,
..., L7, we can consider these as functors ¢ — 7op, and take the composition

/q+1 Lo Topat! ifz—op*

This is an object in _# 9" 7op,. The iterated direct sum is a functor #9 — 7,
and left Kan extension is a functor P: _#9'7op, — #Top, = 7. P therefore
turns the above composition into a functor

J —Top,

i.e. a new orthogonal spectrum. This process of internalizing is natural with
respect to natural transformations of functors Zop?™t — Top.,.
Let us look at some examples:

xLYx..xL1

Example 5.6.3
If F'is given by
F(Xo,....,X) =XoN---NX,

then it follows from the definition of smash product of orthogonal spectra that
the left Kan extension of

F(L° ..., L% is L°A---AL"
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Example 5.6.4
If F'is given by

F(Xo, ...

then the left Kan extension of

F(L°,...

Example 5.6.5
Suppose that F'is given by

F(Xo, ...

G(L°, ...

an> - Mn(X0> ARRE

, Xy) =Tt XoA---

L9 — TH(LY A

VL9 is M (LYY A--- A

ANM,(X,)

M, (L7)

N Xy)

., L) be the left Kan extension of (F(L°...,
., L?) is an orthogonal spectrum, and there is a natural map

ALY

217

L7)). We observe that

To see how the map is defined, notice that the adjoint of the identity of L°A- - - ALY
is a natural transformation

L2(Vo) A

CALAV,) (L0 A

../\LQ)(VO@...

V)

Apply the functor T't(—) to get a natural transformation

P(L(Vo), ..,

Its adjoint is the natural map we seek.

5.6.2 Dihedral structure on functors Zop?"

LU(Vy)) — TH(L A

..@Vq)

b — Top,

In this subsection we study two collections of functors Zop?™ — Top,, q > 0,
these are

(Xo, ...

X)) = Myu(Xo)A- - -AM,(X,)

and

(Xo, ...

+Xg)

= I (XoA. . .AX,)

A dihedral structure for such a collection consists of natural transformations d;,

si, t; and 7, satisfying the dihedral identities. For M, (Xo) A --- A M, (X,) we
have:

di : Myp(Xo) AN+ A Myp(Xg) — My (Xo) A M, (X; A z+1) AN ANMp(Xy) , ifi<g,
dq : Myp(Xo) A+ AN My(Xy) —>M,L(Xq/\XO)/\Mn(X1) S AMp(Xg-1)

S0t M (Xo) A= A My (Xy) — Mn(Xo) A~ A My(X3) A M, (50) A Mo(Xii1) A A Mn(X,)
tg : Mp(Xo) Ao A Mp(Xy) — Mp(Xg) A M,L(XO) ANMp(X1 )N ANMp(Xq-1) , and

rq : Mp(Xo) Ao A Mp(Xyq) = Mp(Xo) A Mp(Xg) AN My(Xgo1) Ao A M, (X4)

)
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Here the d;’s are defined using the multiplication for M,,, the s;’s are defined using
the unit in M, (S°), cyclic operators ¢, are given by permuting the factors and
the involutive operators r, are defined using the transposition on M, together

with the order reversing permutation of the last ¢ factors.
For 'V (Xo A -+ A X,) we have:

di:P;(XOA-.-AX) (XA ANXKi A X)) AN X)), i<,
dg :T7(XoA - )—>r+ (XA X)) AXTA A Xg1)
si:P;(XOA-.- X,) — q+1(X0/\~~~/\XZ-ASOAXZ-+1A---/\Xq) ,

tg: Ty (Xo A Xg) = TH(XgAXogAXTA---ANXq 1), and
rq:r;(Xo/\--- )—>I‘+(X0/\X ANXg1 A AXq)

And the dihedral structure is directly inherited from I'J(—).
The purpose of such dihedral collections of functors is to construct cyclic
(dihedral) orthogonal spectra using left Kan extension. Our result is:

Proposition 5.6.6

Assume that L is an orthogonal ring spectrum (with involution). Given a collec-
tion of functors F, : Topi** — Top, with natural transformations d;, s;, t, and
rq satisfying the dihedral identities, then the process of internalizing using L in
all factors yields a cyclic (dihedral) orthogonal spectrum. This construction is
natural in {F,}.

Applying this proposition to M, (Xo)A- - -AM, (X,) we get precisely T H Hy(M,,(L)).
In the case I'J (Xo A--- A X,) we get a cyclic (dihedral) orthogonal spectrum Ys,
and by example a map of cyclic (dihedral) orthogonal spectra

Yy > T (THH,(L))

We end the subsection by proving the proposition.

Proof: Let X, be the left Kan extension of F,(L,...,L). We will show that X,
is a cyclic orthogonal spectrum, and that X, is dihedral whenever L comes with
an involution.

By definition of the left Kan extension there is a homeomorphism between
the space of

continuous natural transformations Fy(L(Vp),...,L(V,)) = K(Vo&---a V)

and the space of
orthogonal spectrum maps X, — K

for any orthogonal spectrum K. This is adjointness. In particular there is an
adjoint to the identity map of X,, this means that we have a canonical map:

Cq: Fg(L(Vo), -+ L(Vg)) = Xg(Vo @ --- @ Vg)
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for all g. Now observe that all we have to do in order to define a map X, — X,
is to specify a natural transformation

FQ(L(VO%’L(VYQ)) _)XP(VO@"'@VCI>

This is how we are going to define the cyclic operators dX, s and X of X,.
Recall that an orthogonal ring spectrum is the same as an .#-FSP, see re-

mark EZT2Tl Using this external description we have unit n : S — L(0) and

multiplication p : L(V) A L(W) — L(V @ W). If L has involution, we also have

a natural transformation ¢ : L(V) — L(V).
Face maps of X, are given as follows: For i < ¢ we consider the composition

Fy(LOVo)s - L(Vy)) & By t(E(VR), -, L(Vier), L(Vi) A L(Vi1), L(Viga)s - . L(Vy)
2 By (L), o Vit ) L(V; @ Vian), L(Visa), . L(Vy)

Cq—1

_,Xq_l(VO@...@Vq) ,

and let the adjoint be &;* : X, — X,_1. In the case i = ¢ we have:

Fy(L(V), ... L(Vy)) ™ Fyea (L(Vy) A L(Vo), L(VA), ..., L(Vy1))

5 Py (L(Vg @ Vo), L(VA), -, L(Vg1))

Ccq—1

— X1 (Vg@Vo® - @ V1)

permute V;’s
it RN

Xo1(Vo@---0Vy)

and let this define df : Xy — X,-1. For degeneracy maps we consider the
composition:
Fy( L), s L(Vy)) 25 Fpa (L(Vo), ., L(Vi), 8% L(Visa)s -, L(V)
L Fya(L(Vo), - L(Vi), L(0), L(Vign), . .., L(Vy))
L X1 (Vo @ @V, @00 Vi @ --- @ V)
0 is the unit for @ X (Vo®--aV,) .

and we define s : X; — X 11 to be its adjoint. The cyclic operator ¢ : X, — X,
is defined as the adjoint of the composition
t
Fy(L(Vo)... . L(Vy) & Fy(L(Vy), L(Vh), .., L(Vy-1))
L XV @ Vo @ -+ @ Vi)
rm Vi’
permute SXq(VE)@“‘@Vq)

Now assume that L has an involution ¢ : L — L, then we can give X, dihedral
structure by defining the involutive operator r;IX : X, — X, to be the adjoint of
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the composition

FyL(Vo),...,L(Vy)) =% Fy(L(Vo), L(Vy),...,L(V1))
TS, By (L), L(V,), ..., L(VA))
“ X, VooV, ®---a V)

permute V;’s
i TN

X V@ oV

We are now supposed to verify a long list of identities involving the operators
dX, sX and tX, and in the case where L has involution there are even more
identities. We will skip this painful task with one exception: We will prove the
dihedral identity

X, X X X
di Tq - ’f’q_ldq_i

in the case 0 < 7 < ¢. This case will illustrate the techniques used when proving
the other cyclic and dihedral identities. Moreover, we will also see how the anti-
commutativity of the involution plays a role.

By adjointness and the definitions we observe that d:X 7’5( is the adjoint of

Fy(L(Vo), ..., L(Vy)) =% Fy(L(Vo), L(V,), ..., L(V1))
2o, B (L(Ve), L(Va)s .. L(VD))
2 By a (Do), L(Va), - E(Vyi42), L(Vamin) A L(Vyi), L(Vgi-1), -, L(VA))
5 Fyo i (L(Vo), L(Vy)s -, L(Vimiga), L(Vi—igr @ Vi), L(Vgmia1)s -+, L(V1))

Cg—1

= Xa(VheV, e a V)
permute Xq_l(Vo ® @‘/q)

and rf_ldf_i is the adjoint of

Fy(L(Vo), ..., L(Vy)) Lo, a—1(L(Vo)s ooy L(Vy—io1), L(Vg—i) A L(Vg—iy1), L(Vg—iy2), ..., L(Vy))

L qfl(L(VO)v SRR L(V;]*ifl)ﬂ L(V:Z*i @ V:Z*iJrl)ﬂ L(‘/:Z*i+2)7 R L(V;J))

Tq——l> q—l(L(VO)v L(‘/q)a CIE 7L(‘/q—1'+2)a L(‘/q—l ©® ‘/q—l'-l-l)v L(‘/q—i—l)a CIE 7L(‘/1))
F(ey..., L
L) (LVR), L(Ve)s oy L(Vigiy2)y L(Vigs ® Vyip1), L(Vyi1), - -, L(VA))

— X 1(Vo @ Vg® - @ Vymin2 @ (Vgui @ Vi) ® Vgim1 & - - 8 V1)
per—mute,Xq_l(VO@...@Vq)

These two compositions can be compared and found to be equal using naturality
of d; and r,_; and the fact that

LIVYALW) =L LV)AL(W) 225 L(W) A L(V)

Lvew) —— Lwew) 2 rwev)
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commutes. 0

5.6.3 The trace

In this subsection we will define the trace map
Tr:THH(I'M,L) - THH*(L)

and prove proposition B.6.11 The definition of Tr will use the machinery developed
above. Below we will construct a collection of natural transformations

Trg : Mn(Xo) Ao AMp(X,) = T7(Xo AL A X)
that commutes with the cyclic (dihedral) structure. Feeding this into proposi-

tion B6.6, we get an S'-map (O(2)-map) THH (M,(L)) — THH*(L). We now
define Tr as the composition

THH(T'M,(L)) — THH(M,(L)) — THH"(L)

Here I' denotes the cofibrant replacement functor of theorem Z2ZT3 and the first
map is induced by the natural transformation I'M,,(L) — M, (L).
To define Try, we would like to send a point ((zf;),...,(z{,)) in M,(Xo) A

(%

S A My(Xy) to a sum of (2 ;a7 ;.. , @ .) taken in Iy (Xo Ao A X).
Here jo,...,j, run through 1,2,...,n. Since I'* is not a strictly commutative

monoid, this raises the question about how one should order the summands.

Orderings of n@*D: An ordering is a bijection A : m — n*V. If we had to
choose a single ordering, the lexicographical ordering would be the natural choice.
Denote this ordering by Ag. It is defined as follows:

Assume that (jo, ..., Jq) = Ao(k) and  (jg,...,7,) = Ao(l)
Then k < [ whenever there exists an 0 < ¢ < ¢ such that
jo=1Jo» J1=2J1 - Jic1=Ji1, and j;<ji
However, in our situation we must also take other orderings into account. The
reason is that we want the trace to commute with the cyclic actions. Hence, we

consider what happens when we permute the factors of n@t? cyclically. Let A,
be the ordering defined as:

Assume that (jo, ..., jq) = As(k) and  (jj,...,J;) = As(l)
Then k < [ whenever there exists an s <4 < ¢ such that
,js = .];7 js+1 = ij+17 R ji—l = jz{—h and jl < .]; )
or an 0 < ¢ < s —1 such that

js :.];7 vy jq :jc/p jO :j(/)u LRI ji—l :jz{—17 and jl <.]z/
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Definition of Tr: Given ((z;),..., (z];)) in M,(Xo) A --- A M, (X,), we are
now ready to write down the formula for the trace: First set

X(jo,...,jq):(xO xt ,,.,x?qiqu)eXO/\.../\Xq

JqJo?*“JoJ1?

Definition 5.6.7
Let

Trq((x?j), (@) = (Ao Xos AT P Ao, - - - )\(;IAO);X()\O(l)), ., x(Ao(m))]

To prove that Tr, is involutive we need some facts about the lexicographical
orderings. We let p denote the bijection on n@* defined by p(jo,--.,j,) =
(Jgs - -+ Jo)- We also need a technical definition:

Definition 5.6.8
Let 3 : k — m be ordering preserving. We say that [3 is special if the composition

A r;
k Zom 2% pletd) ey

is injective for all 1.

Our technical lemma is:

Lemma 5.6.9
If 3 is special, then ﬂ*()\q__lip)\o) = B*(\; ' \o) for all 4.

Proof: Consider the two diagrams:

A T
Kk _P L m e plery P,

ﬁ*(Ai‘le)l A;lel l: l:

k order preserving m i Il(q+1) pr;

% n
and
A T
k _r, m 20, ple+) P

. Ao [
Kk order preserving m q—1i n(q+1) Prq kN

n

The left squares of the first and second diagram define 8*(A; ' \o) and 5*(X,;pA0)
respectively. Now notice that the compositions at the bottom of both diagrams
are order preserving, while the maps at the top are the same for both diagrams.
Since there is a unique factorization of the injective map

pr.oXof:k—n
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as the composition of a permutation k — k and an order preserving map k — n,
we get that

B*(AgZipro) = B (A7 Ao)

Lemma 5.6.10
Tr, is a dihedral collection of natural transformations.

Proof: We have to verify that Tr, commutes with the operators d;, s;, t; and
r,. These operators are specified in subsection B.B2 Let ((22,),...,(z?,)) be a
point in M, (Xo) A -+ - A M, (X,).

Face operators: Set ((¢,),...,(y%,")) tobe equal to d;((22,), ..., (z%,)). Then
we have

x5, it s <1,

s i i+1 : s
Yoy = (xgc(a), xc(aw) if s =1, and

x5, if s > 4.

Here c(a) is a choice of index such that z!, = * whenever d # c(a). Define
a:n? — nitt by

Oé(j(), cee 7jq—1) = (j07 s 7ji—17 C(ji—l)ajia s 7jq—1>

Let AL : m’" — n? be the cycled lexicographical orderings on g — 1 factors. Define
B :m’ — m to be \pa\|. Then one can easily prove that

NI if s <, and
NI if s >

B (A o) = {
Now we see that

Trq—ldi((xgb)> s (@)
= Trg1((y03)s -+ (1))
= [(Ng " No, Xy Noy o, NN o)y (A1), y (A (m))]
= [(6" (A" X0), - B A1), B (A A)s - -+ B (A Xo));
B (x(Ao(1)), - - -, x(Ao(m)))]
= 15 A AT A AT 0 AT A x(ho(D)), - x(Ao(m)]
= A5 N0r- - A ) x(Ao(1)), - x(Ao(m)]
= d; Try((23), - - (27,))
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Degeneracy operators: Set ((32,), ..., (y%")) to be equal to s;((22,), ..., (z%,)).
Then we have

x5, if s <1,
s J1es8® ifs=ianda=0,
Yab =\ 4 € g0 if s =14 and a # b, and
xi;l if s > 1.

Define o : n?t? — n?t! by

a(Jos -y dq=1) = (Jos - - Jim1, Jir Jir Jit1s - - -+ Jq)

Let )\, : m" — n?™ be the cycled lexicographical orderings on ¢ + 1 factors.
Define 8 : m — m’ to be A\ja\;. Then one can easily prove that

AT\ if s <4, and
M if s>

BNTIN) = {
Now we see that

Trq+13i(($2b)v o (7))

= Trq—i—l((ygb)v ) (yiil))

= (Vg A0 NT A N A Y (D), -y (A(m))]
= [(B* (A A0); -5 BT X0), B (AT o), -5 B (AT h0));
,x(Xo(m)))]

B (x(Ao(1)), -

15 0 A D0 A ey o A X0 (1)s - X))
= 5il(Ag " o, - A A0); x (Mo (1)), - - -, x(Ao(m))]

= 5 Try((2g), - -, (2,))

The cyclic operator: Set ((v2;),...,(y?,)) to be equal to ¢,((22,),..., (z1,)).

Then we have
N z?, if s =0, and
yab =

xi;l if s > 0.

Define o : n9t2 — n9*! by

a(jOu cee 7jq—1> = (qu.j()? v 7jq—1>

Notice that als = A\s11 for s < ¢ and a); = A\g. Thus

)\;1)\0 if s =0, and

AT A T =
s 0% 70 {A;_lle if s > 0.
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Let 7 : XoN--- ANX; — Xy AN XgA--- N X1 be the homeomorphism which
permutes the factors. We have

yv(a(jo, .-, Jq)) = 7(x(jo,---,7q))

Now we see that

Trth((xgb)> e (xgb))
= TIQ((yz(z)b)v t (ygb>>
= [()\61)\0, >\_1)\0, cey >\q 1)\0) ()\0(1)), cey y<>\0( ))]

=[N Ao, AT Aoy s Ay "No); 7x(Ag(1)), . .., 7x(Ag(m))]

= [(Ag "0, AT o, - -,Aqlko) (Tx(Ao(1 )) TX(Ao(m))) (Ao Ag)]

= [()\61)\0)\_1)\0,)\ 1)\0)\ 1)\0,. . .,)\ql)\o)\ 1)\0) TX()\()(l)) ( O(m))]
[()\ 1)\0, >\0 1)\0, cey >\q 1)\0) TX()\()( )), e ,TX()\()( ))]

= to[(Ag Ao, -5 A A0)i x(Ao(1)), - .., x(Ao ()]
=, Trg((2,), - (235))

The involutive operator: Set ((y2,), ..., (y?,)) to be equal to r,((z2,),..., (z%,)).
Then we have

s ), it s =0, and
xy . if s > 0.

Recall that p : n?72 — n?"! was defined by

p(jOa cee >jq—l) = (jq>jq—l> cee ajlajO)

Recall also the fact that 5*(A;2,pAo) = B*(A\;1Ao) if B is special, see lemma G630
Let 7: Xo N ANX; — XgAN X1 Ao - AX1 A Xy be the homeomorphism which
permutes the factors. We have

Y(p(]0> s ajq)) = T(X(jOa s >jQ))

Observe that there exists a 5 : k — m such that 3 is entire for (y(Ao(1)),...,y(A
and (3 is special. This is a consequence of that each column of a matrix in M, (X)

o(m)))
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contains at most one element different from *. Now we see that

Trgrq((z5y)s -5 (23,))
= Trg((Yap): - (Yap))
= [(Ag A0, AT Ao - A A)s v (Ao(1)), - -y (Ao(m))]
= [(B*(Ag " Xo), B (A\[ 1)\0)7---aﬁ*(Agl)\o))Sﬁ*(Y(Ao(l))a--->Y(>\0(m)))]
= (87 (N "), B (AZ1PM0), -+ B (A pA0)); B (¥ (Mo (1)), -, ¥ (Ao(m)))]
= [(A7 P20, A0, -5 Ag pA0); y (Mo(1)), -, y (Mo(m))]
= [(A; " pXo, A;llp)\o, o AT TX(pA0(1)), - -, X (pAo(m))]
= [(A; Mo A1 A0, -5 A0 T A0)i Tx(Xo (1)), - - -, x(Xg(m))]
rql(Ag 1>\0, A A0)ix(Mo(1)), - x(Ag(m))]
=14 Trg((25,), - - (24,))

4

This lemma shows that Tr : THH(I'M,(L)) — THH*(L) is an S’-map,
or O(2)-map when L comes with an involution. Now the next statement of
proposition EE60l is that Tr : THH(T'M, (L)) — THH*(L) is non-equivariantly
a m,-isomorphism. Let us now prove this:

Proof: We are assuming that L is a cofibrant orthogonal ring spectrum (with
involution). Let W, be the endofunctor on Zop, defined by X — \/ . X. We
write elements of W, (X) on the form

(a,z,b) where a,b€{1,...,n} and z € X.

We think about W, as an “FSP without unit”. Multiplication p : W,(X) A
Wo(Y) — W,(X AY) is given by

M((av Z, b), (07 Y, d)) =

otherwise.

{(a, (2,9),d) ifb=c, and
*k

We have involution given by (a,x,b) — (b, z,a). Furthermore, there is a natural
transformation from W,, to M,, which respects both multiplication and involution.
This natural transformation is given by sending (a, x,b) to the matrix (x;;), where
ZTap =  and x;; = * otherwise.

THH.(W,(L)) is a presimplicial orthogonal spectrum, the g-simplices are
(W, (L))"@+D  and face maps are given by the usual formulas. Moreover, we
have a natural presimplicial map THH,(W,(L)) — THH,(M,(L)). However,
we do not know that TH H,(M,,(L)) is good as a simplicial orthogonal spectrum.
The problem is that M, (L) might not be cofibrant. Therefore we replace M,, (L)
by I'M,, (L), and consider

THH,(TW, (L)) — THH,(T'M,(L))
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By proposition B.3.T0 and results about induced functors, we see that the presim-
plicial realization of this map is a m,-iso. Notice that W, (L) is a wedge of copies
of L, thus cofibrant. Hence, the natural map

THH,TW,(L)) — THH,(W,(L))

is a m,-iso in each simplicial degree.
There is a trace map Tr: W,(Xo) A --- AW, (X,) — Xo A --- A X, given by

lfb() = ag, b1 = ag, ..., bq = Qo, and

To,.-., T
Tr((ao, zo, bo), - - -, (ag, ¢, bg)) = {( 0 7) '
* otherwise.
We get an induced presimplicial map THH,(W, (L)) — THH,(L), which fits
into the diagram

Tr

THH,(TW,(L)) —— THH,W,(L)) —— THH,(L)

| 1 -

THH,(TM,(L)) —— THH,(M,(L)) —— THHZ}(L)

We already know that after presimplicial realization the left and right vertical
maps become m,-isomorphisms. Hence, it remains only to show that the geometric
realization of the top Tr is also a m,-isomorphism.

To show this we construct a presimplicial homotopy inverse: There is a pres-
implicial map incl : THH,(L) — THH,(W,(L)) defined by the natural transfor-
mation

X — W,(X) , which sends z to (1,z,1).

It is easily seen that Troincl is the identity. We complete the proof by construct-
ing a presimplicial homotopy from inclo Tr to the identity on TH Hy(W,,(L)).
Let the natural transformations

Bt W(Xo) A+ - AW (Xy) = W(Xo) A+ - - AW (X3) AW (SO AW (Xis1 ) A+ - - AW (X,)

be given by
((ao,z0,1), ... (1,24, 1), (1, 1,0:), (@it1, Tig1,bi41)5 -+, (ag,q,bq))
hi((ao,xo0,b0), ..., (ag,zq,bq)) = ifbp = a1, b1 = a2, ..., b;—1 = a;, and
* otherwise.
We see that
doho = id |
dih]’ = hj—ldi for i < j,
dzh'l = dihi—l )

dihj = hjdi—l for ¢ > j + 1, and

dg41hg = incl Tr,
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Hence, h is a presimplicial homotopy between id and incl o Tr. U

To finish the proof of proposition b6l it remains only to check that direct
sum of matrices corresponds to the addition induced by the Barratt-Eccles func-
tor, I't. To check this, we first consider the g-simplices via the external viewpoint.
The following lemma is the key:

Lemma 5.6.11
The diagram

(Mp, X Mny)(X0) A -+ A (Mny X My, )(Xq) 0PT0TOP2) b (300 A A Xg) X TH(Xo A - A Xy)

| |+

(Mn1+n2)(X0)/\"'/\(Mn1+n2)(XQ) - F+(X0/\"'/\XIZ)

commutes.

Proof: Set ((z2,),...,(z%,)) to be equal to ((y2,) ® (z2,),...,(v%,) & (21,)).
Then we have

Yoy if a <ng and b < nq,
T, = Z(Sa_nl)(b_nl) if a > ny and b > ny, and
* otherwise.

Define o : n 7 I ng?™ — (ng + n2)q+1 by

a(] ] ) B (jo, . ,jq) fOI" (jo, P 7jq) - n1q+l, &Ild
05 ’ - . . . .
I (Jo+n1,...yjg+m1) for (Jo,...,J,) € ma?.

Denote by A\l; A2 and )\, the cycled lexicographical orderings of n;9*!, ny?** and
(ny + ng)*™" respectively. Define 3, to be the unique map such that the diagram
below commutes:

AT q+1 q+1
m; +my; — n9 " IIny

.| |-

m TN (ny + nz)qu]L

By the definition of o and the \’s we see that (3, is order preserving. And from
the commutative diagram

Bo
m; +me —— m
(AéHAE)*WéHA%)J A;lxol
Bs

mi; +my ——
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it follows that
G5 (A5 A0) = (M) 7 A0) IL((AD)TIAY)

Now we see that

Tropri((yas) @ (203):- -5 (U2) @ (22,)) + Tropra((yay) & (zap),-- - (W,) & (22,))

= Tr((yop)s- - (¥2,) + Tr((20); - (22,))

= [((A)g" A0 AN y (A1), -y
A IAG - (), 1)\2),z

= (AN "A0) (A 1A, -5 (A1) A0) H(( )1A% ;
y(Ao(1); - y(Ag(ma))

= [(B5(A\g " M0, -+, B (A q1A0>> x(Mofo(1)), . (Aoﬂb(ﬂ%)]

= [(Ag 0+ 5 Ay T A0)s x(Ao(1)), - ,X(Ao(m))]

:Tr((xgb)""?(xgb))

This concludes the proof of the lemma. 0
Let us now finish the proof of proposition B.6.1k

Proof: By internalizing the diagram of the lemma, we get that

(Tropry, Tropry)
%

(M, X My, )(L)MoH) [+ (LMD x TH(LAED)

°| ) |+

(M) (L)Y — LH(LE)

commutes for any L orthogonal ring spectrum (with involution). We identify the
corners with TH H,((My, x M, )(L)), THH (L)xTHH (L), THH((My,4n,)(L))
and THH/(L). Take geometric realization and use the natural transformation
I'’X — X to get the commutative diagram

THH(T(My, x My, )(L))~THH((My, x My,)(L)) P 0T im0y x THH*(L)

o| | [+
THH(C My, 0y(L) — THH(Myy 0, (L) L THH*(L)

The outer square is the diagram we are interested in. 0
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Appendix A

Useful results

A.1 Homotopy theory
Let us first recall some results about CW-approximations:

Proposition A.1.1
For every space X there exists a CW-complex Z and a weak homotopy equivalence
f:Z — X. Furthermore, Z is unique up to homotopy equivalence.

See theorem 7.8.1 in [Spa91] for a proof. In the relative case we will use the
following:

Proposition A.1.2
For every cofibrationi : A — X there exists a CW-pair (Z,C') and a commutative
diagram

Cc — 7

b

A X
where f and fy are weak equivalences. Furthermore, (Z,C') is unique up to
homotopy equivalence.

Proof: First choose a CW-approximation fy : C' — A. Let M be the mapping
cylinder of fy. Since ¢ is a cofibration, the map M Uy X — X induced by the
projection M — A is a homotopy equivalence. By proposition 4.13 in [Hat02]
there exists a CW-space Z containing C' as a subcomplex and a weak equivalence
of pairs ' : (Z,C) — (M Uy X,C). Composing with the projection (M Uy
X,C) — (X, A) we get our CW-approximation.

Uniqueness follows by applying corollary 4.19 in [Hat02] twice, first to show
that the choice of C' is unique up to homotopy, then to show that for fixed C' the
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choice of Z is unique up to homotopy rel C. U

In order to efficiently apply CW-approximation we need a gluing theorem for
weak equivalences. The proof is formal once the following lemma is established:

Lemma A.1.3 ,
Let Y be the pushout of X AN B, where f is a weak equivalence and i a
cofibration. Then g : B — Y is also a weak equivalence.

Proof: Since ¢ is a cofibration, we have that Y is homotopic to the homotopy
pushout. Hence, both the van Kampen theorem and Mayer-Vietoris sequences
can be applied. By elementary considerations it is seen that g induces a bijection
of path components. For m; we consider each path-component of B separately, so
we may just as well assume that B is path-connected. If A also is path-connected,
then the van Kampen theorem applies to Y = X U B and shows that 7B — m Y
is an isomorphism. When A has more than one path-component, we write

A:UAa and X:UXa

where all A, and X, are path connected. Then we apply van Kampen to the
union

Y = JX.UB)

Since each X, U B is mj-isomorphic to B, it follows that ¢ is a m-iso.
For the higher homotopy groups we use Mayer-Vietoris sequences and the
Hurewicz theorem. 0

Form this lemma it is a formal argument due to Thomas Gunnarsson, see the
proof of lemma 8.8 in [(G.J99)], to show the gluing theorem:

Proposition A.1.4
If we have a commutative diagram

X A —— B
|k
X' AL p

where i and i are cofibrations and the vertical maps are weak equivalences, then
the map of pushouts is also a weak equivalence.

We have several times used the Blakers-Massey homotopy excision theorem.
The following form of the theorem is suitable for our purposes:
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Theorem A.1.5
Suppose that X is a pointed space and that A and B are pointed subspaces of
X such that

X =AUB and
the inclusions AN B — A and AN B — B are cofibrations.

If the pair (A, AN B) is m-connected and the pair (B, AN B) is n-connected,
m > 0, n > 0, then the homomorphism induced by the inclusion, namely i, :
(A, AN B) — m,(X, B), is an isomorphism for ¢ < m + n and is surjective for
qg=m-+n.

By proposition we can apply CW-approximation. Then the result fol-
lows from theorem 4.23 in [Hatf02|. Two useful consequences of homotopy excision
are:

Proposition A.1.6

Suppose that A — X is a cofibration, that the pair (X, A) is (r—1)-connected, and
that the subspace A is (s —1)-connected, r > 1, s > 1. Then the homomorphism
induced by the quotient map, namely

Ty (X, A) = m(X/A)
is an isomorphism for ¢ < r + s — 1 and surjective for g =r + s — 1.

Theorem A.1.7

Let X be an (n — 1)-connected well-pointed space. Then the suspension map
7 (X) — 71 (ST A X) is an isomorphism for ¢ < 2n — 1 and surjective for
q="2n—1.

The last result is known as the Freudenthal suspension theorem. Proofs of
both results can be found in [Haf02|. Just observe that his conditions concern
CW-pairs instead of cofibrations, but the only places where he uses these condi-
tions in his proofs, are when applying the Blakers-Massey homotopy extension
theorem.

As a corollary of the proposition we have:

Corollary A.1.8
If A — X is a cofibration and A is weakly contractible, then X — X/A is a weak
equivalence.

Proof: We can assume that X is path-connected without loss of generality. By
the proposition, the maps

(X, A) = 1 (X/A)
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are isomorphisms for all ¢. Furthermore, the maps 7, (X) — 7, (X, A) are also
isomorphisms for all ¢ since A is weakly contractible. O

Proposition A.1.9
If X and Y are well-pointed spaces (r — 1)- and (s — 1)-connected respectively,
then X A\Y is (r + s — 1)-connected.

Proof: We can approximate X and Y by CW-complexes X’ and Y’ such that
all cells except * has dimension greater than (r — 1) and (s — 1) respectively.
By proposition [AT4 we have a weak equivalence X’ AY’" — X AY. Since all
cells of X’ A'Y’ have dimension greater than (r + s — 1), the smash product is
(r + s — 1)-connected. O

A.2 Monoidal categories

Here we specify the language used for monoidal categories. The standard refer-
ence is [MLI8]. See also §20 in [MMSS01].

Definition A.2.1
A monoidal category M is a category with a bifunctor, (] : M x M — M, a unit
e € M and natural isomorphisms

a :ad(b0c) = (aOb)de
Acellda = , and
p:ale=a

such that the diagrams (i), (ii) and (iii) commute.

a0(bO(cOd)) —2— (aOb)O(cOd) —2— ((aOb)Oc)0d
idDaJ Ta[lid (i)

ad((b0c)Od) 2 (aO(00c))Od
ad(ede) —2— (ale)Oc
idml JpDid (ii)
alle: —— alde
elle —— elle

)\l lp (1i)

€ (&
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Definition A.2.2

235

A symmetric monoidal category M is a monoidal category M with a natural

isomorphism

v alldb = bla

such that v* = id and the diagrams (iv) and (v) commute.

.
alle —— ella

pl—lx

(a0b)De —— cd(adb) —2— (cDa)db
aT WDidJ(
a0(b0c) 22, aO(eb) —2 (aOc)Tb
Definition A.2.3

A functor F : M — B between monoidal categories is lax monoidal if there is a

map 1 : eg — F(ey) and a natural transformation
¢ : F(a)OF(b) — F(ab)

such that the diagrams (vi), (vii) and (viii) commute.

F(a)O(F(0)OF(c)) 22, pa)OF®0c) —2— F(aD(b0c))

| Lo
(F()OF(1)OF(c) 224 FaOn)OF(c) —2— F((aOb)Oe)
F(a)Oeg —2—  F(a)

ianJ TF@)

F(a)OF(ey) —2— F(aOen)

esOF(B) —2—  F(b)

nDz‘dl TF(A)

Fley)OF(b) —2— F(epOb)
Definition A.2.4

(vii)

(viii)

A functor F : M — B between monoidal categories is lax comonoidal if there is

amap n: F(ey) — ep and a natural transformation

¢ : F(alb) — F(a)OF (D)
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such that the diagrams (ix), (x) and (xi) commute.

F(a)O(F(0)OF(c)) <922 pa)OF(00c) 22— F(aD(b0c))

al lF(a) (ix)

(F()OF(0)OF(c) <24 FaOn)OF(c) «2— F((aOb)Oe)

F(a)Oey —L—  F(a)
ianT TF(p) (x)
F(a)OF(ey) «—2— F(aOen)

esOF(b) —2—  F(b)

nDz‘dT TF(A) (xi)
Fley)OF(b) «—2— F(epOb)

Definition A.2.5
A lax monoidal functor F' : M — B between symmetric monoidal categories is
lax symmetric monoidal if diagram (xii) commutes.

F(a)OF(b) —— F(b)OF(a)

% l(ﬁ (xii)

Fab) 9% peDa)

Definition A.2.6
A lax comonoidal functor F' : M — B between symmetric monoidal categories is
lax symmetric comonoidal if diagram (xiii) commutes.

Fab) 29 Fe0a)

¢>l l¢ (xiii)

F(a)OF(b) —— F(b)OF(a)

Definition A.2.7

A lax monoidal functor F' : M — B between monoidal categories is strong
monoidal if 1 and ¢ are isomorphisms. F' is strong symmetric monoidal if F
is both strong monoidal and lax symmetric monoidal.
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Remark A.2.8

We could also define strong comonoidal, but this definition is redundant since
demanding that n and ¢ are isomorphisms, for a lax comonoidal functor F', would
imply that I together with =% and ¢! is strong monoidal.

Lemma A.2.9
If F: M — B is a functor between symmetric monoidal categories where [y, and
[lp are categorical products for M and B, then F' is lax symmetric comonoidal.

Proof: Recall that [J on B is a categorical product if there are natural trans-
formations
aeadb B0

such that the induced map
B(e,aldb) — B(c,a) x B(c,b)

is a bijection. Using that A is an isomorphism, it immediately follows that ep is
a terminal object. We define 1 : F'(eps) — ep to be the unique map.

It is implicitly understood when saying that “[J is the categorical product”
that o, p, A and ~ are related to p; and ps. We require that p; = p when b = ep
and po = X when a = eg. Furthermore, the following diagrams must commute:

ad(b0c) —*— (ab)Oc ad(b0c) —*— (ab)Oc

PIJ( J{pl , pzl po and

a S alb e 2 c
ad(b0c) — (a0b)Oe

| B

e 2 b L)

and v : aldb — ba is the unique map such that

a <2 o0bh -2 b
-l |-
P2 p1

a «—— blda —— b

commute.
To define ¢ we apply F' to p; and po. Under the bijection

B(F(alb), F(a)) x B(F(alb), F(b)) = B(F(ab), F(a)OF (b))

),
the pair (F'(p1), F'(p2)) corresponds to ¢. It is now an easy exercise to check that
diagrams (ix), (x), (xi) and (xiii) commutes. O
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Remark A.2.10
There is a dual lemma: If [Jy, and Up are categorical coproducts, then any
functor F': M — B is symmetric monoidal.

A.3 Arithmetics for May’s operad M

May’s operad M encodes the structure of a monoid with unit. In this section
we will derive formulas for the composition operation for this operad. Note the
following fact: The definition of the action of M on arbitrary monoids forces the
definition of the o;’s.

We begin by defining the spaces of M. We let

M@G) =%;

where YJ; denotes the permutation group on the integers 1,2, ..., 5. When needed
we will write permutations p in XJ; as 2 X j-matrices:

)= ( 12 ... )
p(1) p(2) .. p())
The way that M encodes the structure of a monoid G with unit is that for
every j there is an action

0;: M(j) x G — G

This is defined by sending (p; g1, ..., g;) to the product g,-11)- - g,-1(j)-

A main part of an operad is the composition operations o;. The idea behind
the o;’s is that they describe how to act iteratively. Assume given elements
p € M(k) and v € M(j). First use

0;(v; —)

to multiply (g1,...,9;). Let g, be the result, and insert it as the i’th factor in
(91, -5 9). Next multiply using

O(p; —)
Now we can hope that there exists some element p € M(k + j — 1) such that

9k+]’—1(,u;gia s 792—1agla s a9j>9£+1a s 7g],g)

is equal to the result of the two step process above. The composition operation
o, is defined so that po; v is such a pu.
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Definition A.3.1
Let p € ¥ and v € X; be permutations and 1 <1 < k. We define the composition
operation
0; 1 L X Zj - Zk—i-j—l
by the formula

¢

p(t) ift <i and p(t) < p(i),
p(t)+75—1 if t <i and p(t) > p(i),
(porv)(t) = vt —i+1)+p(i) —1 ifi<t<j+i,
p(t—j+1) ifj+i<tandp(t—j+1)<p(i) and
(pt—j+1)+j—1 ifj+1<tandp(t—j+1)> p(i).

Example A.3.2
We now look at some explicit examples: For instance, if

(1234 4 (23
P=\o 41 3) 29 V=13 2 1) -

then

while

There is a “box”-model that can be helpful when trying to visualize this op-
eration. Given i, p and v, we put boxes around the integers from 1 to kK + 7 — 1
as follows:

[1],...,[i —1],

We now use p to permute the boxes, while we use v to permute the elements in
the 2’th box. Removing the boxes one get the permutation p o; v.

To see that our definition of the composition operation is correct, we prove
the following lemma:

i1, it+j—1Lfi+tgl.. . k+i—1

Lemma A.3.3
If g, = 0;(v;91,...,9;) then

Ou(p; 91, -0 9) = Okj1(P OV GLs oo 3 Gi1y Gy v o3 Gy Gigts - - -+ O

Proof: By the definition we have that

gl’, = 9]-(1); g1y - -- ,gj) = Guv-1(1) * " " Gu—1(j)
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and
/ / / /
Ok(p; 915 - - 9k) = 9o-1(1) """ Yp-1(k)

If we let s = p(i), then the s’th factor in the last product is 9;—1(8) = g} and we
have that

0.(p: d AN / ’ ,
(03 G055 01) = o101y o1 (- o1 (1) o () (s 1) " Gpmi(h)

To evaluate Opy;—1(p o V; 91,  Gi—1, 91,1 Gjs Giy1s - - - gy,) using the definition
of 6 we need an explicit expression for (p o; v)™'. We use the definition of o; to
deduce the formula:

p~t(r) if p=1(r) <i and r < p(i),
p i) +j—1 if p=1(r) > i and r < p(i),
(pos 0) () = Qv (r — pli) + 1) +i— 1 i (i) < 1 < p(i) +,
plt—j+1) if p7t(r—j+1)<iandr—j+1> p(i) and
ptt—j+1)+5—1 if p~t(r—j+1)>diandr—j+1> p(i).

Now we see that
6k+j—1(p O; U; gi? s 7g7€—17gla v 7gjvg7€+17 s 791/4)
—= g,/o—l(l) . 'g;—l(s—l)gvfl(l) .. 'g’vil(]’)glp_l(s-l,-]_) . .glp_l(k’)

This concludes the proof. O

Let us now deduce a couple of formulas telling us how to calculate using the
composition operations:

Lemma A.3.4
If p,p € ¥y and v,v" € ¥;, then the following formulas hold:

i) pojv = (po;id;)(idy o; v).

ii) pojv=(idy o v)(po; id;).

iii) idy, o; (vv') = (idy o; v)(idy, 0; V').
iv) (pp') 0 id; = (p oy id;)(p o; id;).

v) (pp) o (V') = (p oy v)(p 0 V).

Proof: To check i) we pick ¢ and calculate (p o; id;)(idy, o; v)(t). First we have

t if t <1,
(idgojv)(t)=qu(t—i+1)+i—1 ifi<t<j+1i, and
t ift> 544,
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We also have that

(

p(t) if t <iand p(t) < p(3),
p(t)+j—1 if t < i and p(t) > p(i),
(pojid;)(t) =t —i+ p(i) if i <t<j+i,
p(t—j+1) if j+i<tandp(t—j+1)<p(i)and
Pt —j+1)+j—1 ifj+i<tandp(t—j—+1)> p(i).

Putting these together we get that (p o; id;)(idy o; v)(t) = (p o; v)(t).
For ii) we use the formulas above to compute that (idy o, v)(p o, id;)(t) =
(po;v)(t). Let us verify this in the case i < ¢ < j +i. Then

(idi oy ) (o) (1) = (idio,)0) (t—ip(i)) = vt —i-+p(i)—p(i) +1)+p(i) —1 = (posv) (1)

The case iii) is obvious from the formula for (idy o; v)(t). Also the case iv) is
easy. Now formula v) follows from the other cases:

(pp') 0i (V)
= ((pp') 04 id;)(idy 0; (v0"))
= (poy (@) ¢ id;)(p" o; id;)(idg o; v)(idy, o; V')
= (p oy (i) id;)(idy. 0,5y v)(p' 0; idj) (idy 0 V')
= (poy@m v)(p 0 V)
]

We interpret case v) as a formula for the Y-equivariance for the operad M.
There are also formulas for iterated compositions. These are:

Lemma A.3.5
Ifpe Xy, ved;and p €y, then

i) (pogv)op = (popp)os_1v forb<a,
ii) (pogv)oppt=pog (Vop_gr1 ) fora <b<a+j, and

iii) (poq v) oy = (poy—jr1 ) oqv fora+j<b.

Proof: This is most easily verified using the box model. 0
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