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ANNALSg OF MIATHEMATICS 

Vol. 67, No. 2, March, 1958 
Printed in Japan 

A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS 

BY DANIEL M. KAN* 

(Received May 1, 1-957) 

1. Introduction 

The usual definition of the homotopy groups of a simplicial complex 
involves only its underlying topological space and disregards the sim- 
plicial structure. Our main result is a definition of the homotopy groups 
of a simplicial complex (or more general: c.s.s. complex) using only the 
simplicial structure. Although the simplicial approximation theorem 
suggests such a definition, the present one is much simpler and resembles 
the definition of the homology groups. It involves free groups where the 
corresponding definition of the homology groups involves free abelian 
groups. 

The results will be stated in terms of the c.s.s. complexes of Eilenberg- 
Zilber [1]. There are four chapters and an appendix. 

In Chapter I, we review several definitions and results on c. s. s. com- 
plexes and homotopy groups. Chapter II contains the new definition of 
the homotopy groups. The main tools used are a construction G which 
assigns to a connected c.s.s. complex L with base point s/ a c. s. s. group 
G(L; Vi) which, roughly speaking, " is of the homotopy type of the loops 
on L ", and J. C. Moore's definition of the homotopy groups of a c. s. s. 
group [11]. As is shown in the appendix, the construction G is a gene- 
ralization of the construction F of J.W. Milnor [10], the abstract analogue 
of the reduced product construction of I.M. James [3]. In Chapter III, it 
is shown in what precise sense the homology groups are " abelianized 
homotopy groups ". We reduce the Hurewicz theorem to a purely group 
theoretical theorem. Chapter IV, contains miscellaneous results on the 
construction G. 

It should be noted that in several definitions either the first or the last 
face or degeneracy operator plays a special role and that another defini- 
tion could be obtained by using the other extreme operator. Both defini- 
tions, however, are essentially equivalent and it is mainly a matter of 
convenience which one is chosen. 

Most of the results were announced in [5]. 
The author is indebted to helpful discussions with J.C. Moore. 

* The author was partially supported by Air Force Contract AF 18(600)-1494 during the 
perio(l when the work on this paper was being d-one at Princeton University. 
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A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS 283 

CHAPTER I. C.S.S. COMPLEXES AND HOMOTOPY GROUPS 

2. The homotopy groups (special case) 

We recall the definitions of c.s.s. complexes and the extension condition 
and define homotopy groups only for c.s.s. complex which satisfy the 
extension condition. The general case will be considered in ?4. 

DEFINITION 2.1. A c.s.s. complex K is a collection of elements (called 
simplices), to each of which is attached a dimension n > 0, such that for 
every n-simplex o- e K and every integer i with 0 < i < n there are defin- 
ed in K 

(a) an (n - 1)-simplex oe- (called the i"t face of a-) 
(b) an (n + 1)-simplex o-< (called the it1 degeneracy of a-) 

The operators E` and rf are required to satisfy the following identities 
ef eE1 - i < j 

iJ-li = (#i; t j 
< j 

-I Ei = identity i =j,j + 1 
f Ei=_ eEi-1 if > j +1 

The set of the n-simplices of K will be denoted by Kin 
A c.s.s. map f: K -+ L is a dimension preserving function which com- 

mutes with all face and degeneracy operators, i.e. for every n-simplex 
EK 

f (T Ei) = a-) E, 0 < i < n 

f (an 0yi = a- () 7yo 0 < i < n . 
DEFINITION 2.2. A c.s.s. complex K is said to satisfy the extension 

condition if for every pair of integers (k, n) such that 0 < k < n and for 
every n (n - 1)-simplices * * k, k+ *... * e K such that v-i El` 
as_ Ei for i < K and i k i j, there exists an n-simplex a- e K such that 
Ges = a, for i # k. 

The following relation on the simplices of a c.s.s. complex will be 
needed. 

DEFINITION 2.3. Two n-simplices a and t of a c.s.s. complex K are 
called homotopic (notation a- -- -r) if 

(a) their faces coincide, i.e. a-ei = te for all i 
(b) there exists an (n + 1)-simplex p E K such that 

JE n = a- 

VEn+f = n 

Thai = Phi 1; n-1 = gd 7n-1 0 <iX < n. 
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284 DANIEL M. KAN 

PROPOSITION 2.4. Let K satisfy the extension condition. Then the rela- 
tion - is an equivalence on the simplices of K. 

PROOF. For every n-simplex a- e K we have va-n el = = f and 
G-in Et = o-Et in-i for 0 < i < n. Hence the relation~ is reflexive and it 
thus remains to show that o- ~ z and C - sb imply t - {J. Let Pn, Pn+i 
e K, be such that 

pin E = o-, n En+1 = 7-, pn e =te n-1 0 < i < n 
Pn+i E= = 0,9 Pn6+1 = Pnet = E be tn-l 0 < i < n 

Then the (n + 1)-simplices ryn 7qn e?, ***, *io * 6n-1, q n, Pn + 1 "match " and 
application of the extension condition (k = n + 2) yields an (n + 2)-sim- 
plex p e K such that pen = pA, pen+1 = Pn+ and peI = t,,n qn E for 0 < i < n. 
A straightforward computation now yields 

,n +2 n n2 n+1_n+ nl 
pEn+2 En - pe+2 =n- 

= 
i 1 

= Td 
PE -= 

0 < i < n. 
DEFINITION 2.5. A complex with base point is a pair (K; k) where K is 

a c.s.s. complex and p e K is a 0-simplex (the base point). 
Let (K; b) and (L;Ob) be complexes with base point. By a map f: 

(K; b) -*(L; V') we then mean a c.s.s. map f: K- L such thatcfh = V . 

DEFINITION 2.6. Let (K; 0) be a c.s.s. complex with base point, where 
K satisfies the extension condition. For every integer n > 0 we define 
a set wr(K; 0) as follows. Let Fan be the set consisting of those n-sim- 
plices a e K such that 

q = 07O .-..n-2 0 < i < n. 

The equivalence relation divides 1?a into classes. Then wn(K; p) will be 
the set of these equivalence classes, i.e. wn(K; / ') = Fn/(--). The class 
containing an n-simplex a- will be denoted by {a-}. The set w0,(K; k) is 
called the set of components of K. 

For n > 0 the set wr(K; /t) may be converted into a group (the nth homo- 
topy group of K rel. A) as follows. Let a- e a and r e b be n-simplices in 
the classes a, b e rn(K; / ). Because K satisfies the extension condition 
there exists an (n + 1)-simplex p e K such that 

p0En-1 = by, pn+l = TP (7?***7n-1 ? < iJ < n - 1. 
The product a * b then is defined by 

a- b = {pen} 

It may be verified (by the method used in the proof of Proposition 2.4) 
that this multiplication is independent of the choice of o, t and p. Fur- 
thermore 

PROPOSITION 2.7. The multiplication defined above converts 7rn(K; A) 
into a group. 
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A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS 285 

A map f: (K; 0) -* (L; sb) induces for every integer n > o a map w7n(f): 

7rn(K; p) --* 7(L ;0). Clearly 7rn(f) is a homomorphism for n> o, while 
7w0(f) is such that 7r0(f) {/} = {sb}. 

PROOF OF PROPOSITION 2.7. We must prove left and right divisibility 
and associativity. 

Divisibility. Let a, b e 7rn(K; qb) and let o- e a and r e b. Using the ex- 
tension condition (k = n - 1, n + 1) one may find p0, Pi e Kn+, such that 

pne = T 
n+1 

= 0r 0 . . .n-1 O < 3 < n 

Pl c-p 6= =CT. pn poei = O.... fn-l 0 < i < n 1 

Consequently {p0sn-1} - a- = r and - -* {pen+1} = r . 
Associativity. Let a, b, c e 7wn(K; qb) and let CT e a, t e b and 0 e c. Then 

there exist Pn-i, pn, Pn 2+ (use the extension condition for k = n) such 
that 

Pn-i 6n , = fi n-i 6n+1 = i p 1 Ef o = . n0 O..n-1 0 < i < n 

pi Isen-1 = pfi1 en, Pn+ in+l = V& iPnl 6i 
= 

0)6 
n 0 < i < n-1 

Pn+i 
-n I= I-, P)n+2 En+ = (ps PN+2 -'= ?J7 * 

. 
.7 

. O- < i < n - 1. 

Application of the extension condition one dimension higher (k= n) yields 
a f e Kn+2 such that pe' = p, for i = n-1, n + 1, n + 2 and pei'= 

*-- n for 0 < i < n - 1. A simple computation yields 

pen Cni = IPEn n+1=fin+' En psn = =p(k* * * 0 in-1 o < < 

Consequently 

(a 
- 

T) 
- VY = fPn-i E'nJ 0 = {Pn+i n-i* J =) fPels, En} 

= {pen ?} I T= * {fPn+2 n} == - (- V*) . 

3. The homotopy sequence (special case) 

In defining the homotopy sequence of a fibre sequence we again re- 
strict ourselves temporarily to c.s.s. complexes which satisfy the exten- 
sion condition. 

DEFINITION 3.1. A c.s.s. map p: E -B is called a fibre map if for 
every pair of integers (k, n) such that 0 < k < n, for every n (n - 1)- 
simplices T0, *. * * , fk -l1, C+, * * *, ' n e E such that CT0 e-1 = CTj e for i < j 

and i # k c j and for every n-simplex t e B such that rEl = pCT, for i # k, 
there exists an n-simplex CT e E such that pa- = t and o-C0 = CTi for all 
i # k. The complex E is called the total complex, B the base. Let 0 e B 
be a 0-simplex. Then we mean by the fibre of p over s the sub-complex 
F Q E such that Fn = p-1(?0?? *. **n-1) for all n. 

PROPOSITION 3.2. Let p: E -+ B be a fibre map. Then B satisfies the 
extension condition if and only if E does so. 
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286 DANIEL M. KAN 

PROOF. Suppose B satisfies the extension condition. Let a-0, -, a'k-1f 

?k+1 '* * * , an e En-l be such that A-d eil- = ad E for i < j and izk # j. 
Using the extension condition one obtains an n-simplex r e B such that 
tr = po-, for i # k and because p is a fibre map it follows that there ex- 
ists an n-simplex C- e E such that anEt = o-, for i # k. Hence E satisfies 
the extension condition. 

The other half of the proof is similar, although slightly more compli- 
cated. 

DEFINITION 3.3. A sequence of maps of complexes with base point 

(F; q) qL (E; X) -P (B, V') 

is called a fibre sequence if 
(a) p is a fibre map onto 
(b) q is an isomorphism into, 
(c) " the image of q " = " the fibre of p over sb 

We call F, E and B respectively the fibre, total complex and base of the 
fibre sequence. 

DEFINITION 3.4. Let 

(F; q) * (E; X) P (B; 

be a fibre sequence such that B (and hence E) satisfies the extension 
condition. For every integer n > 0 we define a boundary map an(q, p): 
7wn(B; ,b) 7tn-I (F; p ) as follows. Let a e wn (B; i") and let T e a be an n- 
simplex. Because p is a fibre map there exists an n-simplex a- e E such 
that pa = r and oa-El X . . n-2 for i t n. We then define an(q, p)a e 
7n- (F; p) by 

a9(q, p)a = {q l (,_n)} 

It may be verified (as in the proof of Proposition 2.4) that this definition 
is independent of the choice of r and A-. For n > 1 the map 8n(q, p) is 
a homomorphism, while 8,(q, p) is such that a,(q, p){ob?} = p1t . 

We can now form the homotopy sequences of a fibre sequence. 

PROPOSITION 3.5. Let 

(F;) q (E; X) P (B; 

be a fibre sequence such that B (and hence E) satisfies the extension con- 
dition. Then the sequence 
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7 n(F; d) 7() *7t(E; X) 7rp(B; V') a-(q p) ... 

w0 7r(B; V!) > 1 

is exact (in the sense that " image of each map" "kernel of the next 
map "). 

PROOF. We will show exactness only at 7wn -(F; O)). The other parts 
of the proof are similar. 

Let a e 7rn-(F; p). If b e kernel 7rn- (q), then there exists a p e b and 
a (oeEn such that qp = T6n and n- = 0 ... 7j1-2 for i / n. Hence 
b = 8A(q, p) {p a}. Conversely if b e image an(q, p) then there exists a 
pe b and a of - En such that qp - _n and re1 = Xo . . . vn-2 fori =/H n and 
hence qp o * 7 

5. The general case 

We shall now define homotopy groups and boundary maps for all c.s.s. 
complexes with base point. As use will be made of the definitions given 
in ?? 2 and 3 we, in order to avoid confusion, denote temporarily the 
homotopy groups and boundary maps as defined in ?? 2 and 3 by 7n and 

An. 

DEFINITION 4.1. Let (K; p) be a complex with base point, let K i de- 
note its geometrical realization in the sense of J.W. Milnor [9]. (1KI is 
a CW-complex of which the n-cells are in one-to-one correspondence with 
the non-degenerate n-simplices of K), let SI K i be the total singular com- 
plex of I K I and let i: K -+ SiKi denote the natural embedding map (see 
[9]). For every integer n > 0 we then define 7rn(K; k) by 

w7n(K; `) = 7n(SIKl ; iq)) 
Definition 4.1. clearly involves topological spaces and continuous 

maps. It is however possible to give an equivalent definition which only 
involves c.s.s. complexes and maps. Using only c.s.s. complexes and maps, 
one may define for every c.s.s. complex K a c.s.s. complex Ex-K and 
a c.s.s. map e-(K): K -+ Ex-K and for every c.s.s. map f: K -+ L a c.s.s. 
map Ex-f: Ex-K -+ Ex-L (the exact definitions will be omitted; they 
can be found in M7]) having the following properties. 

4.2a. For every c.s.s. complex K the complex Ex-K satisfies the exten- 
sion condition. 

4.2b. The construction Exam preserves fibre sequences, i.e., if 

(F; qb) q (E; X) P (B; V') 
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288 DANIEL M. KAN 

is a fibre sequence, then so is the sequence 
Ex~oq Ex- p 

(ExLF; e-(F)4) -- (Ex-E ; e-(E)X) -- (Ex- B (em ; (B)VY). 
The proof of these properties can also be found in [7]. 
In view of Property 4.2a we now can define 

DEFINITION 4.3. Let (K; p) be a complex with base point. For every 
integer n > 0 we then define 7rw(K; p) by 

7r(K; p) = rn(Ex- K; e-(K)q). 
Let f: (K; p ) -+ (L; V) be a map. Then for every integer n > 0 the in- 
duced map wn(f): wn(K; 0) -+ rw(L; 9) is defined by 

rn(f ) = rn(Ex f). 

It may be shown that the Definitions 4.1 and 4.3 are equivalent, and 
that if K satisfies the extension condition, both are equivalent with De- 
finition 2.6. For more details see [7]. 

In view of Property 4.2b the boundary maps may be defined as follows 

DEFINITION 4.4. Let 

(F; f q> (E; p)(B; 
be a fibre sequence. For every integer n > 0 we then define the boundary 
map an(q, p): 7wr(B; V') -+ 7r (F; p) by 

an(q, p) = 8n(Ex- q, Exp P) . 

The following then is an immediate consequence of Proposition 3.5. 

PROPOSITION 4.5. Let 

(F; q)q (E; X) p (B; S ) 
be a fibre sequence. Then the sequence 

7wn(q) 7Tn(P) a(q, p) 
> rn(F; ;0- 7rn(E; X) n(- 7rn(B; s/) - > 

7?p 7ro(B;s) - 1 

is exact (in the sense that " image of each map" = "kernel of the next 
map "). 

5. The homotopy groups of c.s.s. groups 

DEFINITION 5.1. Let G be a c.s.s. complex. The face and degeneracy 
operators may be considered as functions et: Gn -+ Gn-1 and (i: Gn Gn+ip 
The complex G will be called an (abelian) c.s.s. group if 

(a) Gn is an (abelian) group for all n > 0 
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A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS 289 

(b) the functions if: G. -- G., and (': G,, - G,+l are homomorphisms 
for all 0 ? i < n. 
The identity element of G. will be denoted by en. 

Let G and H be c.s.s. groups. A c.s.s. mapf: G -+H is called a c.s.s. 
homomorphism if the restriction fIG, is a homomorphism for all n > 0. 

Let G be a c.s.s. group. A c.s.s. subgroup H c G is a subcomplex of 
G such that H. is a subgroup of G, for all n > 0. By the c.s.s. subgroup 
generated by a subset of K c G we mean the smallest c.s.s. subgroup of 
G containing K. 

The following important property of c.s.s. groups was proved by J.C. 
Moore [11]. 

PROPOSITION 5.2 Every c.s.s. group satisfies the extension condition. 

It follows that the homotopy groups of a c.s.s. group G may be defined 
as in ?2 in terms of the c.s.s. structure of G. Following J.C. Moore [11] 
we shall now give another definition which is completely in terms of the 
group structure of G 

DEFINITION 5.3. Let G be a c.s.s. group. For every integer n > 0 let 

-= G. n kernel e, n ... n kernel en 

Then - e G +1 implies a? e G-. Hence we may define homomorphisms 

Sn Gn+1 - Gn by 
an+, ff=re reff6Gn+1.* 

For each integer m < 0 let Gm be trivial and let .m+. Gm+i Gm be the 
trivial map. Then it can be shown that image an+1 is a normal subgroup 
of kernel an for all n, i.e., G = {Gn n) is a (not necessarily abelian) chain 
complex. This chain complex will be called the Moore chain complex 
of G. 

The homology groups of G are 

H1(G) = kernel 8s/image 9n+a 

A comparison with the homotopy groups as defined in ?2 yields 

PROPOSITION 5.4. Let G be a c.s.s. group. Then for every integer n > 0 

Hn(G) = rn(G; e0) . 

It follows that 7r(G; e.) may be converted into a group. If f: G "+ H 
is a c.s.s. homomorphism, then clearly 7r0(f): 7r(G; e.) -+7r,(H; ej) becomes 
a homomorphism. 
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6. Principal bundles and loop complexes 

In defining the c.s.s. analogue of a principal bundle we roughly follow 
J.C. Moore [12]. 

DEFINITION 6.1. A principal bundle with twisting function is a triple 
((B; 0), F, t) where 

(i) B is a c.s.s. complex (the base) with base point V1. 
(ii) F is a c.s.s. group. 
(iii) t is a function t: B -+ F (the twisting function) which lowers the 

dimension by one and is such that for every integer n > 0 and every 
simplex o- e B,+1 

(tr)- - t(TOi) 0 ? i < n 
(t(,),n t((,,n) 

_ (t(,y4Sn+,))-l 

(to)k' = 0- 0~ft < i < n 
en+ 1 =t(,-,n ) 

By the bundle complex or total complex we mean the c.s.s. complex F x B 
defined as follows. An n-simplex of F x B is any pair (p, T) where 
p e Fn and of e Bn. Its faces (p, ojeI and degeneracies (p, o-fr/ are given by 
the formulas 

(0a CY)Ei = (0EI, (Eel 0 _ < n 

(p, o)en = (pen to-, E n) 

(pY )zy = (Pays 'zT~ ) 0 < i < n. 

REMARK. As principal bundles with twisting function are the only 
principal bundle we will use, we will frequently omit the mention of the 
twisting function. 

With a principal bundle ((B; 'b), F, t) we may associate a fibre sequence 

(F; eo) - (Fx t B; (eo, 0)) L (B; V') 

where the maps p and q are given by 

p(P I-) = , (p, )eFx B 
_p (py pro -. (n-1) p {a F, . 

It should be noted that for this fibre sequence the boundary map 
al(q, p): w71(B; S) -+ w0(F; e0) is also a homomorphism. 

DEFINITION 6.2. Let K be a c.s.s. complex and 0 a 0-simplex of K. 
Then K is called connected if wro(K; q) consists of one element and is called 
contractible if 7Tc(K; q) consists of one element for all n ? 0. 

Following J.W. Milnor [10], we now define 

DEFINITION 6.3. Let ((K; q), G. t) be a principal bundle. Then G is 
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called a loop complex of K rel. 0 (under the twisting function t) if the 
bundle complex G x, K is contractible 

Combination of Definitions 6.2 and 6.3 with Proposition 4.5 yields 
PROPOSITION 6.4. Let (K; p) be a complex with base point and let G be 

a c.s.s. group. If G is a loop complex of K rel. q (under some twisting 
function) then K is connected. 

CHAPTER II. THE CONSTRUCTION G AND THE DEFINITION 
OF THE HOMOTOPY GROUPS 

7. The construction G for a reduced complex 

Let K be a reduced complex, i.e., K is a c.s.s. complex which has only 
one 0-simplex q. Then we define a c.s.s. group GK as follows. The 
group of the n-simplices, Gn K is a group which has 

(i) one generator a- for every (n + 1)-simplex a- e K,+1 
(ii) one relation _rn = e,, for every n-simplex e e Kn. 

Clearly the groups Gn K so defined are free. Hence it suffices to define 
the face and degeneracy homomorphisms et: Gn K -e Gn, K and (r: Gn K-* 
Gn+1 K on the generators of GnK. This is done by the following formulas 

ptE = TEb 0 _ i < n 
ESsn = ',nv . ((TEn + T)1 

(3?^fl - addn ( 1 < i < n 
It is readily verified that GK so defined is a c.s.s. group. 

THEOREM 7.1. Let K be a reduced complex with 0-simplex p. Then the 
c.s.s. group GK is a loop complex of K rel. (b (Definition 6.3) i.e., there 
exists a principal bundle with K as base, GK as fibre and contractible 
bundle complex. 

PROOF. Define a function t: K -* GK (which lowers the dimension by 
one) by 

ta = (T ry e K. 
Then clearly t is a twisting function and hence ((K; t), G(K, t) is a prin- 
cipal bundle, (Definition 6.1). Let EK= GK x, K be the bundle complex. 
Then Theorem 7.1 is a direct consequence of the following lemma which 
will be proved in ?13. 

LEMMA 7.2. The c.s.s. complex EK = GK x, K is contractible. 

8. The homotopy groups of a reduced complex 

Let K be a reduced complex. Because K has only one 0-simplex q, 
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the homotopy groups of K do not depend on a choice of base point. 
Therefore we shall usually write wn(K) instead of w,,(K; q)). Using the 
c.s.s. group GK we shall now obtain a new definition of 7w,(K) which is 
much more straightforward than the one given in ?4. 

Let K be a reduced complex and consider the fibre sequence 

(GK; e,) * (EK; (eo, s)) * (K; d) 

associated with the principal bundle ((K; p), GK, t) (?6). Combining the 
exactness of the homotopy sequence of this fibre sequence (Proposition 
4.5) with Lemma 7.2, we get that for every integer n > 0 the boundary 
map an(q, p) is an isomorphism 

an(qg p):7 Zn (K) z-, 7rn-,(GK; eo) 

Hence we could define the homotopy groups of K to be those of GK (with 
a shift in dimension). But GK is a c.s.s. group and the homotopy groups 
of a c.s.s. group may be expressed in terms of the group structure of 
GK (?5). Consequently the homotopy groups of a reduced complex K may 
be defined in the following group theoretical manner. 

DEFINITION 8.1. Let K be a reduced complex. Form the c.s.s. group 

GK(?2). Let GK be the Moore chain complex of GK(Definition 5.3). 
Then for every integer n > 0 we define 7,(K), the nth homotopy group 
of K, by 

Z7n(K) = Hn-I (GK). 

9. The construction G for an arbitrary connected c.s.s. complex 

We shall extend the definition of G to an arbitrary connected c.s.s. 
complex L with base point V. The procedure followed, which is a direct 
generalization of ?7 involves the choice of a maximal tree of L. It will 
however be shown in ?12 that the c.s.s. group G(L; V') so obtained is 
independent of the choice of a maximal tree. 

Let L be a connected c.s.s. complex with base point Sb. A maximal 
tree T c L is roughly speaking " a connected 1-dimensional subcomplex 
which contains all vertices of L but no closed loops ". We first give 
a more exact definition. By an n-loop of L of length k we mean a sequence 

.1*, Y0) of 2k (n + 1)-simplices of L such that 
j- += n+ < j < _ 

n .. 0 
:>en*** . 0= .. jIn ... 1 j 

G' * * * = 2k En * * * E= sb 
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i.e., two adjacent simplices have alternatingly the same last face or the 
same last vertex (i.e., the 0-simplex opposite the last face). By a reduced 
n-loop of L of length k we mean an n-loop (or', ..*, os) such that 

O's #= 's+1 1 < 1 < 2k 
i.e., two adjacent simplices are always distinct. We define a tree of L as 
a connected subcomplex Tc L with ,b e T, which contains no reduced 
loops of length > 0. A maximal tree T c L is a tree which contains all 
0-simplices of L, i.e., To = Lg 

LEMMA 9.1. A connected c.s.s. complex L with base point ,b contains 
a maximal tree. 

PROOF. The proof will only be sketched. The details are left to the 
reader. Clearly the subcomplex of L consisting only of ,b and its de- 
generacies is a tree. Let T' be a tree which is not maximal. Then be- 
cause L is connected, there exists a 1-simplex a- e L such that oe? e T' 
and oe'l T' (or a-El e T' and o-e0 0 T'). Let S c L be the subcomplex 
generated by a-. Then it is readily verified that T' U S is also a tree. It 
follows from the connectedness of L that it is possible to obtain an in- 
creasing sequence 

T1 TT ... Tn... 
of trees of L such that every 0-simplex of L is contained in all but 
a finite number of them. Let T= U1 T" be their union, then T is 
a maximal tree 

Let L be a connected c.s.s. complex with base point b. Choose a max- 
imal tree TQ L. We then define a c.s.s. group G(L; V') as follows. The 
group of the n-simplices, Gn(L; S/), is a group which has 

(i) one generator o- for every (n + 1)-simplex o- e Ln+1, 
(ii) one relation _r-n = en for every n-simplex T e Ln, 
(iii) one relation = en for every (n + 1)-simplex p e Tn+1. 

Clearly the groups Gn(L; V') are free and hence it suffices to define the 
face and degeneracy homomorphisms e :Gn(L; () -+ Gn l(L; () and 
7) : Gn(L; (b) -- Gn+1(L; (b) on the generators of Gn(L; (b). This is done by 
the following formulas 

0 _ i < n 
=n - n . (,en+l)-l 

0 i _ n. 
Clearly G(L; V') so defined is a c.s.s. group. 

THEOREM 9.2. Let L be a connected c.s.s. complex with base point Vy. 
Then the c.s.s. group G(L; b) is a loop complex of L rel. 0, (Definition 6.3.) 
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i.e., there exists a principal bundle with L as base, G(L; V) as fibre and 
contractible bundle complex. 

PROOF. Define a function t: L -- G(L; b) (which lowers the dimension 
by one) by 

ta=: a'OL. 

Then clearly t is a twisting function and hence ((L; Vy), G(L; V'), t) is 
a principal bundle, (Definition 6.1). Let E(L; VY) = G(L; V') x , L be the 
bundle complex. Then Theorem 9.2 is a direct consequence of the fol- 
lowing lemma. 

LEMMA 9.3. The c.s.s. complex E(L; At) = G(L; V{) x L is contractible, 
The proof is similar to that of Lemma 7.2. (See ?13). 

REMARK. If L has only one 0-simplex, then clearly the only possible 
maximal tree of L is the subcomplex generated by V'. The results of this 
? then reduces to those of ?7, i.e., G(L; /) = GL and E(L; /) = EL. 

10. The homotopy groups of a connected c.s.s. complex 

The definition of homotopy groups of ?8 will now be extended to ar- 
bitrary connected c.s.s. complexes. 

Let L be a connected c.s.s. complex with base point sb. Consider the 
fibre sequences. 

(G(L; d~); e.) (iE(L; V,); (e, } ) (L; Vlt) 
associated with the principal bundle ((L; sb), G(L; tb), 1). Combination of 
the exactness of the homotopy sequence of this fibre sequence with 
Lemma 9.3 yields that for every integer n > 0 the boundary map 6n(q, p) 
is an isomorphism 

8n(q, p) :7r.(L; b) ;z, 7rn,-,(G(L; V,); ej) 
It will be shown in ?12 that the above fibre sequence is independent of 
the choice of the maximal tree T c L. Hence so are the boundary maps 
6n(q, p) and as in ?8 we may give the following group theoretical defini- 
tion of the homotopy groups of L. 

DEFINITION 10.1. Let L be a connected c.s.s. complex with base 
point (P. Choose a maximal tree T c L. Form the c.s.s. group G(L; 0b) 
(see ?9) and let G(L; Vb) be the Moore chain complex of G(L; (P) (Defini- 
tion 5.3). Then for every integer n > 0 we define 7rn(L; sb), the n" 
homotopy group of L rel. 0b, by 

7Z.(L; 5b) = H,1 (G(L; sb)) 

This content downloaded from 128.151.13.95 on Wed, 22 Jul 2015 10:59:12 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS 295 

REMARK. If L has only one 0-simplex sb, then Definition 10.1 reduces 
to Definition 8.1. 

11. The homotopy groups of a simplicial complex 

Let M be a connected simplicial complex and let a be one of its ver- 
tices. It is well known that the fundamental group 7r,(M; a) may be 
defined combinatorially, i.e. in terms of the simplicial structure of M. 
The usual definitions of the higher homotopy groups, however, involve 
the underlying topological space of M and disregard completely the 
simplicial structure. It will now be shown how, using the results of 
?10, a purely combinatorial definition may be obtained for the homotopy 
groups of M. For the fundamental group this new definition coincides 
with the old combinatorial one. 

Choose an ordering of the vertices of M. Then we may associate with 
M a c.s.s. complex L (which depends on the ordering chosen) as follows. 
An n-simplex of L is an (n + 1)-tuple (A,,, - - *, A.) of vertices of M such 
that 

(a) Ai < A+1 0 < i < n 
(b) An, ..., A. lie in a common simplex of M. 

Its faces and degeneracies are given by 

(A(, **,A.),i - (A,, ,* *, Ai1,, Ai+, **, An) 0 < i < n 
(AO,*- An)ki (AOe* , Ai, Ai, * An) 0 < i < n. 

Define a base point sb e L by b _ (a). 
Clearly M is homeomorphic with ILI, the geometrical realization of L 

[9], and it follows that the homotopy groups of M are isomorphic with 
those of L (see ?4), which by ?10, may be defined in a comparatively 
simple combinatorial manner. As L was defined in terms of the sim- 
plicial structure of M only, it follows that the resulting definition of 
7r:(M; a) also involves only the simplicial structure of M and completely 
disregards the underlying topological space. 

It follows from the results of ?18 that for z71(M; a) this combinatorial 
definition coincides with the old one, in which a maximal tree S c M was 
chosen (i.e. a connected 1-dimensional subcomplex containing all vertices 
but no closed loops). The fundamental group then was a group with one 
generator for every 1-simplex of M, not in S, and a relation for every 
2-simplex of M. 

12. The role of the maximal tree 

Let L be a connected c.s.s. complex with base point $! and let T c L be 
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a maximal tree. In order to show that the c.s.s. group G(L; 5b) does not 
depend on the choice of T, we construct a c.s.s. group G'(L; sb), the de- 
finition of which does not involve T, together with a (multiplicative) 
isomorphism 

g: G'(L; b) G(L; 5b) 
which is completely determined by T. If we identify G(L; 5b) with 
G'(L; 5b) under this isomorphism, then clearly G(L; 5b) becomes independ- 
ent of the choice of the maximal tree T. The role played by T then 
becomes merely that of choosing a basis for the free groups G.'(L; b). 
A different choice of T induces different bases for these groups. 

The proof that the fibre sequence 

(G(L; A); eo) q>(E(L; 0); (eo, 0)) (L; 0) 
is independent of T is similar. This is done by constructing a fibre 
sequence 

q' U~p' 
(G'(L; 0); eo) (E'(L; A ) )(L; ) 

the definition of which does not involve T, together with an isomorphism 
e: E'(L; 5b) ;z, E(L; 5b) 

which is completely determined by T and is such that commutativity 
holds in the diagram 

G(L; (V}) Ad E(L; !)--IL 

(12.1) Ijg e I 

G'(L; 5 )E'(L; 5b-- L 

where i: L -+ L denotes the identity map. 

In order to define the c.s.s. group G'(L; 5b) we need a function < > 
which assigns to every loop (ot,, .., Ik2) of L a reduced loop < l, *-, 
'2k > as follows If (s1, , I2k) is a reduced loop, then 

< 01 Y 
. .. 

02k > = (TI Y. 'T20 ) f 

It (Al I , T) is not reduced, i.e. IT = O'+I for one or more integers s 
with I < s < 2k, then choose one of them, s, and define by induction 

< s 1 I2k > = < As 'Ts-1, Os+2, , 02k > 

It is readily vertified that this definition is independent of the choice of s. 
The c.s.s. group G'(L; St) is now defined as follows. An n-simplex of 

G'(L; b) is any reduced n-loop of L. The product of two n-simplices 
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( *.., oJ) and (zr1, *--, r2m) is given by 

(i I... 0-2k) (7r1 I 2 7m) = < -1I, 0-2k, I1, l 72m > 

and it is easily seen that under this multiplication G.'(L; sb), the set of 
the n-simplices of G'(L; 5b), becomes a group. The face and degeneracy 
homomorphisms el: G'(L; Gb) -G(L; 5b) and 7): Gn(L; G') +G,+1(L; b) 
are given by the formulas: 

(0-1, , 0 2k)e = < .1 6 . 0-2k 6 > 0 < i < n 
(OrlI , 0-2k)77 = < 177 I . 

. . 
I 2k 77 > 0 < i < n 

Finally the map g: G'(L; (b) -+ G(L; 0b) is defined by 

g(O', I S02k) = 0 i 02.... - k-I *k -1 

and it remains to show that 

LEMMA 12.2. The map g: G'(L; 5b) G(L; VY) is a (multiplicative) 
isomorphism. 

The proof of Lemma 12.2 will be given in ?14. 

For the definition of the c.s.s. complex E'(L; 0b) we need the notion of 
an n-path and a reduced n-path. An n-path of L of length k ending at 
the n-simplex o- e L is a sequence ( - , 2k+l) of 2k + 1 (n + 1)-sim- 
plices of L such that 

af'l 0- = n+1 1 < j< k 
0-2k+1 I'n+1 - a' 

1 en . .6.S = VI 

2j 
en ... o= a'2j.+1en ..e . S 1 < j k 

i.e., two adjacent simplices have alternatingly the same last face or last 
vertex. A reduced n-path of L is an n-path (a-,, *--, ok+1) such that 

?s 
o -s~l 1??< < 2k 

i.e., two adjacent simplices are always distinct. 
The following function < > assigns to every n-path of L a reduced 

n-path. If (of1, * * *, a-k-l) is a reduced n-path of L, then < 0-1, . .. 02k+l > 

- (TI, *--., 0Tk+i). If an n-path (0-1, *. - - 
k+ ) is not reduced, choose an 

integer s such that 1 < s < 2k and a-, = a-, and define by induction 
< 0-i,* 0-2 k+I > = < o, 

*,- ?s as+ *--, 'T2k+1 >. Clearly this defini- 
tion is independent of the choice of s. 

The c.s.s. complex E'(L; b) is now defined as follows. An n-simplex 
of E'(L; b) is any reduced n-path of L. The face and degeneracy opera- 
tors are given by 

(0-i, . 
. 

.Ik+l)6 = < e ?S ***, 02k+ i > 0 < i < n 
(0i, * ., I0-2k+) = < 0-1 ,i, * * I 7ii > 0 < ? < n . 

This content downloaded from 128.151.13.95 on Wed, 22 Jul 2015 10:59:12 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


298 DANIEL M. KAN 

Let X (sb) and define the maps p': E'(L; A) L and q': G'(L; b) 
E'(L; p) by the formulas 

P'(oi, .. Y 2k0+21k ) =02kO1 n+ 
q (T, Is 

- 
a-2k) < 719 

.. 
9 C21kS I 077 ***7n > 

Finally the map e: E'(L; Va) -- E(L; ha) is given by 
e(o-1, .. * * 2k) = (Ty, ) 

where 

=-1 *- *-2 -- k-1 * Au k- 2k+l e Gn(L; b) 
'T = 

2k+1 e Ln Y 

and it is readily verified that commutativity holds in Diagram 12.1. It 
thus remains to show 

LEMMA 12.3. The c.s.s. map e: E'(L; V') is an isomorphism. 
The proof is similar to that of Lemma 12.2 (see ?14). 

13. Proof of Lemma 7.2 

Clearly the standard 0-simplex z[0] ([7], ?2), is contractible. Also 
Hn(zA[0]) = 0 for n > 0. Letf: EKE- A (0) be the only such c.s.s. map. 
Then it follows from the c.s.s. version of a theorem of J.H.C. Whitehead 
[131 that EK is contractible if and only if EK is simply connected and 
Hn(EK) = 0 for n > 0. Hence it remains to prove the following two 
lemmas 

LEMMA 13.1. EK is simply connected. 

LEMMA 13.2. Hn(EK) = Ofor n > 0. 
PROOF OF LEMMA 13.1. The proof given here is analogous to one given 

by J.W. Milnor in case K is a suspension [10]. Throughout this proof we 
shall write E instead of EK 

It must be shown that 7r1(E) = 0, i.e. that 7r(l E l) = 0 where I El is the 
geometrical realization of E (by a CW-complex of which the n cells are 
in one to one correspondence with the non degenerate n-simplices of E). 
Choose a maximal tree in JEl. Then 7r,(lEl) can be considered as a group 
with one generator corresponding to each 1-cell of IEl, not in the tree, 
and one relation corresponding to each 2-cell. 

As maximal tree in IEl take the union of all 1-cells which correspond 
to 1-simplices of the form (p-, o) where r e G0K and c e K1. Then as 
generators of 7rr1(lEl) we have all elements (r, a) e E1 such that r is non- 
degenerate. A 2-simplex of the form (T/ i,7) yields a relation 

{ P0 ,s,1\ <J _ {v Sy(),1 , , v( a c 
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or, because (r?/, f1)62 = (rTl 0O* -g, a-) is in the tree, 

(13.3a.) (r, a-) = (r, 00 ?) 
Similarly a 2-simplex of the form (pr/, a) yield a relation 

(13.3b.) (r, asp) = * 
It now follows easily from the relations (13.3a) and (13.b) that 7re (j El) 
- . 

PROOF OF LEMMA 13.2. Let C = {Cn, A,} be the chain complex of EK, 
i.e. CQ is the free abelian group generated by the n-simplices of EK and 
the homomorphism t.: C. -* Cn-, is defined by i9. = Ef=O(- 1)i 7. It 
then must be shown that there exist homomorphisms 

Dn: Cn -*Cn+ 

such that 
8n+1 Dn + Dn-, An = identity n > 0 . 

In the definitions of those homomorphisms Dn use will be made of the 
results of ??9 and 12. 

Let (y, a-) e En K and let A be the reduced n-path of K such that eA 
- (r, a). Choose an n-path l = (a-,, * * *a-,2k+l) such that < , > = A and 
define for every pair of integers (i, s) such that 0 < i < n and 1 < s < 
2k + 1 an (n + 1)-path u(i, s) of K by 

1i( S) = (a-1 
i , * * * S-1 Din a-SEn * Si+l 7 "i+ . n+1) s odd 

X(i S)= (O1 (is * **s Oi s En ... .6i+1 7+1 .. n+l1 s even . 

Let j(i, s) = e < p,4i s) > and define 

Dn(7', C) = Es-1 E =0(1 Pt,). 

Then it is readily verified that this definition is independent of the choice 
of p, and it thus remains to show that the homomorphisms Dn so defined 
have the desired property. Let 

goM = (0f1 tSM9 ... * * 2k+1 I ) 0_ m n . 

Then clearly 
e < pm > =( 6 

Hence 
Dnl((, ale ) =, E2k+1En_-1 (_i+s 'n(i, S) 

A straightforward computation yields 
-(iS)e = m(i -1- 1 S) m < i 

Ft(i, S)'S = Mt to8 m>V (, s)e = P(i, s) M > i +1 

,(0, S)SO = /i(O, s - 1)60 s odd 

,u(n, 8)6n+l = p(n, s - 1)en+' s even . 

This content downloaded from 128.151.13.95 on Wed, 22 Jul 2015 10:59:12 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


300 DANIEL M. KAN 

Consequently 
an+1 Dn(-, A) + Dn-i in( A) 

n 
Em- IEs-+I J:w=0 ( )i 

s+ 
-(i9 S) i 

= 
=nO /-2k?1 tn (1 y 1 i(, 

+ Ee=o Espy Eni 
1 
(- 1)i+s+m -lm(,) ? EM S (- iy P m(i, s) - (r- o- 

14. Proof of Lemma 12.2 

It is readily verified that the map g: G'(L; (b) -+ G(L; (b) is a c.s.s. 
homomorphism. It thus remains to show that g is onto and has trivial 
kernel. 

In order to prove that g is onto, it suffices to show that for every 
generator ar e Gn(L; (b) there exists a reduced n-loop (-s, , k) such 
that g(-1, *, -(2k) = C. Let ar = -,En ** be the (n + 1)-vertex of oa and 
d = 6n+i En-l ... *o the n-vertex. Choose in the maximal tree T c L two 
sequences (a, * * P) (P, ' ..* P,2) of 1-simplices such that 

X16? = 0 d1b = 0 
aj6? = Paj 01e? j0? = Pj+1?e j even 

a2p6? = a d 

so 

=d 
ocEls = Oaf+lsl :>E1 = Pj+e1E j odd 

and let 
a 

I = OCy)0 ... anl -1 = n... nl1 

That it is easily verified that 

P = < 1 ' 
* 2P s Ad 6 a P .2. 9 * * 9 > 

is a reduced n-loop of L such that gp = cr. Thus g is onto. 
We now show that the kernel of g is trivial. Let " = (c-r9 9, -2k) be 

a reduced n-loop of L such that gp = en 
Suppose first that 4ai = en for all 1 < i < 2k. If o- e T for some j, then 

cry =r Vforsome r e Ln. Leti =j-1 if jiseven, and i=j+ 1 if jis 
odd. Then -fin+1 = 0?En+l = - e T. Hence a-i e T and consequently o-' 
= -rn = o-r. But this is impossible as , is reduced. Hence a-i e T for all 
1 < i < 2k and because T is a tree and p is reduced it follows that k = 0 
and hence 1, is the identity. 

Now suppose that c--- # en for some j. Then because gp = en there is 
an integer i such that art = a-, and because pt is reduced li--il > 1. 
Choose a pair (i, j) such that art = -r, cy # en9, i -j > 1 and a-t = en for 
all j < t < i. It then follows by the same kind of argument that there 
exists an integer s with j < s < i - 1 such that a-s = a-s+ This is in 
contradiction with the fact that p is reduced. Hence it is impossible that 
cry # en for some j. This completes the proof that the kernel of g is 
trivial. 
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CHAPTER III: THE HUREWICZ HOMOMORPHISMS 

15. The homology groups 

Let K be a reduced complex (this restriction is not essential). It is well 
known that the first homology group of K is isomorphic with the funda- 
mental group of K made abelian. This statement will be generalized; it 
will be shown that the higher homology groups may also be regarded as 
a kind of " abelianized " homotopy groups. 

First we abelianize the c.s.s. group GK, i.e., we form the abelian c.s.s. 
group 

AK = GK/[GK, GK] 
By this we mean that for every integer n > 0 the group AnK is " G.K 
made abelian ", i.e., AnK ia an abelian group with one generator A(o-) for 
every (n + 1)-simplex o- e Kn+1 and one relation A(zr7n) = 0 for every n- 
simplex r e Kn. Clearly AnK is free abelian. The face and degeneracy 
homomorphisms s': AnK-An l K and (': AnK - An+, K are those induced 
by the corresponding homomorphisms of GK, i.e. they are given by 

A(oT)s6 = A(a-se) - < i < n 
A(Gr)En = A(G-en) - A(6,Sn+,) 

A(-)7z = A(o-i/) 0 < i < n 

The homotopy groups of the abelian c.s.s. group AK are closely related 
to the homology groups of K. In fact 

THEOREM 15.1. There exists (in a natural manner) an isomorphism 

an: Hn(K) t rn-i (AK; eo) n > 0. 
We are now able to formulate in what sense the homology groups are 

"abelianized " homotopy groups. In ?8 it was shown that 7rn(K) is iso- 

morphic with 7rnw,(GK; eo) = Hn1(GK). In view of this fact a new 
definition of the homotopy groups of K was given, using GK. However 
if we " abelianize " this definition, i.e., if we replace GK by AK then it 
follows from Theorem 15.1 and Proposition 6.4 that we get the following 
definition of the homology groups of K. 

DEFINITION 15.2 Let Kbe a reduced complex. Form the abelian c.s.s. 

group AK = GK/[GK, GK]. Let AK be the Moore chain complex of AK 
(Definition 5.3). Then for every integer n > 0 we define HI(K), the nth 
homology group of K, by 

Hn(K) = Hn-(AK) 

PROOF OF THEOREM 15.1. Let A = {AnK, 8n} be the chain complex 
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where the homomorphism n: A.K -An K is given by 

OnP = E=of- Vpsi p e AK 
Let CNK be the chain complex of K normalized in the last direction (i.e., 
CnK is the free abelian group with a generator CN(o-) for every a- e K& 
and a relation CN(T~n) = 0 for every r e K.-). It is readily verified that 
the function x: CNK -+ A defined by 

aCN(o) = A(af) or e K 
lowers dimensions by one, is an isomorphism in every dimension and 
commutes with the boundary homomorphisms. Hence it induces isomor- 
phisms 

a *: Hn(K) t H 1(A) . 

Let CK be the chain complex of K normalized in all directions (i.e. CnK 
is the free abelian group with a generator C(o-) for every o- e Kn and 
relation C(Qr) = 0 for every r e K.-J, and let p: CNK -+ CK be the 
projection. Denote by j: AK--+ A the inclusion map. Then it may be 
verified by a straightforward although rather long computation that the 
composite map 

AK -A - CNK > CK 

raises dimensions by one, is an isomorphism in every dimension and 
commutes with the boundary homomorphisms. Hence it induces an iso- 
morphism HRn(AK) ; H.(K). Application of Proposition 5.4 now yields 
an isomorphism 

an: Rn(K) >- 7rn - (AK; eo)e 

16. The Hurewicz homomorphisms 

Let K be a reduced complex (again this restriction is not essential). 
Let 

k: GK-+AK 

be the projection, i.e., k maps an n-simplex of GK on the coset of [GnK, 
GnK] containing it. Clearly k is a c.s.s. homomorphism. It induces 
chain map I: GK -+ AK of the Moore chain complexes and hence induces 
homomorphisms 

k*: Hn-1(GK) -+ Hn-(AK). 

In view of the isomorphisms (??8 and 15) 
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8n(qq p): 7rn(K) t~ Hn_,(GK) 
an: Hn(K) H n - (AK) 

the homomorphisms k* induce homomorphisms of the homotopy groups 
of K into the homology groups. It will be shown that these homomor- 
phisms are exactly the Hurewicz homomorphisms [2] 

h*: 7rn(K) -+Hn(K) 
In fact we have 

THEOREM 16.1. Commutativity holds in the diagram 

h* 
7Tn(K) Hn(K) 

8n(qq P) an Xn > 0 

Hn-1(GK) - - Hn- (AK) 

It follows from Theorem 16.1 that if we use for the homotopy and 
homology groups the Definitions 8.1 and 15.2, then we may give the fol- 
lowing corresponding definition for the Hurewicz homomorphisms. 

DEFINITION 16.2 Let K be a reduced complex. Form GK and AK 
- GK/[GK, GK]. Let k: GK -+ AK be the projection and let k: GK -- 

AK be the induced chain map on the Moore chain complexes. Then for 
every integer n > 0 we define the Hurewicz homomorphism h*: 7rn(K)-) 
Hn(K) by 

A*= k*. 

PROOF OF THEOREM 16.1. It follows readily from the naturality of 

On(q, P), any h* and k* that it suffices to prove the theorem for the case 
that K is an n-sphere. 

Let Sn be a reduced complex with an n-simplex C as its only non-de- 
generate simplex in dimension > 0. Embed Sn in S I Sn 1, the total singular 
complex of its geometrical realization, under the map i: Sn -+ SISn I [9]. 
Clearly {C} generates 7rn(Sn), {CN(,)} generates Hn(Sn) and h*{J} 
- {CN(C)}. Let an(q, p): 7rn(Sn) -+2rnl(GSn; eJ) be the boundary map, then 

On(q, p) {l} = {I}. Furthermore k(C) = A(C) and axCN(C) = A(:). Hence 

atnh* {C= k*in(q, p)J{C} 

17. The Hurewicz Theorem 

It will be shown that the Hurewicz Theorem may be regarded as 
a special case of a purely group theoretical theorem. 
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We first formulate both halves of the Hurewicz Theorem [2] in Theo- 
rems 17.1 and 17.2 below. Again we restrict ourselves to reduced com- 
plexes. 

THEOREM 17.1. Let K be a reduced complex. Then the Hurewicz 
homomorphism h*: 7rw(K) -+H1(K) is onto and has [Tr1(K), 7rw(K)] as kernel. 

THEOREM 17.2. Let K be a reduced complex and let 7rw(K) = 0 for 0 < 
i < n. Then the Hurewicz homomorphism h,: 7rn+ (K) -+ Hn,+(K) is an 
isomorphism and h:: 7rn+2(K) -- Hn+2(K) is onto. 

As the definitions 8.1, 15.2 and 16.2 for homotopy groups, homology 
groups and Hurewicz homomorphisms are equivalent with the usual 
ones, it follows that Theorem 17.1 and 17.2 are equivalent with the fol- 
lowing theorems. 

THEOREM 17.3. Let K be a reduced complex. Let k: GK -+ AK be the 

projection and let k: GK -+ AK be the induced chain map. Then k*: 

HO(GK) -+ H0(AK) is onto and has [H,(GK), H,(GK)] as kernel. 
THEOREM 17.4. Let K be a reduced complex and let 7rw(K)- 0 for 0 < 

i ? n. Let k: GK -+ AK be the projection and let k: GK -+.AK be the in- 

duced chain map. Then k*: Hn(GK) -+ Hn(AK) is an isomorphism and 

k*: Hn+1(GK)--Hn+1(AK) is onto. 
If one tries to prove Theorems 17.3 and 17.4 group theoretically, then 

it appears that the complex K plays no role at all; the only facts used in 
the proof are 

(a) GnK is free for all n, 
(b) AK is " GK made abelian" 
(c) k: GK -- AK is the projection. 

Hence Theorems 17.3 and 17.4 and, therefore, the Hurewicz Theorem 
may be considered as a special case of the following group theoretical 
theorems. 

THEOREM 17.5. Let F be a c.s.s. group such that F. is free for all n. 
Let B F/[F, F] and let T: F-+ B be the chain map induced by the projec- 
tion 1: F -+ B. Then l*: H0(F) -+ H,(B) is onto and has [Ho(F), Ho1(F)] as 
kernel. 

THEOREM 17.6. Let F be a c.s.s. group such that Fn is free for all n 
and let H,(F)= 0for0?i<n. LetB= F/[F,F] and let l:FB-+ be 

the chain map induced by the projection 1: F -+ B. Then T*: H n(F) 

Hn(B) is an isomorphism and l*: Hn+1(F) -+ Hn+1(B) is onto. 
A proof of Theorems 17.5 and 17.6 is given in [6]. 
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CHAPTER IV. THE GROUPS Gn(L; sb). 

18. Construction of a free basis 

Let L be a connected c.s.s. complex with base point 0b. Then GJ(L; V') 
is a free group for every n. By the Nielsen-Schreier theorem [8] a sub- 
group of a free group is free. Hence the groups Gn(L; (b) are free for 
all n. 

It should be noted that, even in case L has only a finite number of 
simplices in every dimension, and hence the groups Gn(L; (b) are finitely 
generated, in general the groups Gn(L; (b) have no finite basis. 

It will be shown how a (in general infinite) free basis may be obtained 
for the groups Gn(L; sb). 

We first recall the notion of a Schreier system of coset representatives 
and the Kurosch-Schreier theorem [8]. 

Let A be a free group freely generated by elements ac (j runs through 
some set J) and let B c A be a subgroup. Denote the right cosets of B 
in A by Bk(k runs through the set of right cosets). In each coset Be 

select a representative I Bk, I such that I B I = 1. Such a system of coset 
representatives is called a Schreier system if it satisfies the following con- 
dition: 

Let ac,,1 ... **can be a reduced word, i.e. si = +1 and se = se+1 whenever 
t = ji+1. If a J1 i ... acinn is a coset representative, then so is ... 

Jct 1 for every i < n. 
The Kurosch-Schreier theorem may be stated as follows. 
THEOREM 18.1. Let A be a free group freely generated by elements a, 

(j e J) and let B c A be a subgroup. Let I B,, I be a Schreier system of 
representatives for the right cosets Bk of B in A. Then B is freely generat- 
ed by the elements I Bk I a I Bc, I -'for those pairs (k, j) for which I Bk Iaj 

I Bkaj 1. 
We now define the notion of a free c.s.s. group and show how, if G is 

a free c.s.s. group, a free basis may be obtained for the groups Gn. This 
result then will be applied to the c.s.s. group G(L; sb). 

A c.s.s. group G will be called free if 
(a) Gn is a free group with a given basis, for all n, 
(b) the bases of the groups Gn are stable under all degeneracy homo- 

morphisms, i.e. for every generator c- e Gn and integer i with 0 < i < n, 
the element c-t is a generator of Gn+,. 

Let G be a free c.s.s. group. Define a c.s.s. group 'G as follows. For 
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every integer n > 0, 'Gn is the subgroup of Gn+1 given by 

'Gn = kernel En+1 . 
The face and degeneracy homomorphisms Id: 'Gn -+ 'Gn-l and 7/: 'G- 
'Gn+1 are the restrictions 

Si =,El 'Gin 0 _ i _ n 
7it = 77 I 'Gn 0 < 0 i n. 

Then we have 

THEOREM 18.2. The c.s.s. group 'G may be converted into a free c.s.s. 
group by taking as a basis for 'Gn the elements ry7n . - .-_ ), -7n 1 n 
for which r e Gn and o- e Gn+1 is a generator such that o- # -,en+l z. 

Let (?)G = G and define (n)G by (n)G = 'i(-1)G. Then clearly 

Gn = (n)Go 
Hence n-fold application of Theorem 18.2 yields a free basis for the 
group Gnu 

We now apply this result to the c.s.s. group G(L; V'). Choose a maxi- 
mal tree T c L. Then Gn(L; V') is a free group freely generated by the 
elements ar where or is an (n + 1)-simplex of L, not in T, and which is 
not of the form o = Tn. If or is a generator of Gn(L; sb), then clearly 

A = o is a generator of Gn+1(L; Sb) for 0 ? i ? n. Hence G(L; (b) is 
a free c.s.s. group and n-fold application of Theorem 18.2 yields a free 
basis for the group Gn(L; sb). 

For the proof of Theorem 18.2 we need the following lemma. 
LEMMA 18.3. The elements tryn, where r e Gn, form a Schreier system 

of representatives for the right cosets of 'Gn in Gn+,1 
PROOF OF THEOREM 18.2. It follows from Lemma 18.3 and Theorem 

18.1 that the elements ryan - *-lSn+1 -. r-l17n for which an + tan 
a6'n+17n form a free basis for 'Gn. As clearly r? * o- = Tn - 0Sn+1)n if and 
only if a- = oEn-ry7n it thus remains to show that these bases are stable 
under all degeneracy homomorphisms. 

Let r e Gn and ar e Gn+1. Then for every integer i with 0 ? i < n 
(n)f ar * a-l Sn+1yfl an * 7 n) = too ) *n+1 . 0i in+2,n+l . -l1fl+l 
If Tr is a generator and a- # G-6flr1fyn, then crib is a generator of Gn+1 (be- 
cause G is free) and it is readily verified that oaf # o-,)6n+2r)n+1. Hence 
7 n+1 . * (,,)Tlsn+2,,n+1 * (;r7)9-17n+1 is a generator of 'Gn+1. This com- 
pletes the proof. 

PROOF OF LEMMA 18.3. Because the composite map 
__n Sn+1 

Gn G - Gn> Gn 
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is the identity and 'Gn = kernel 6n+1, it follows that the elements r~n(r e 
GO) form a system of representatives for the right cosets of 'Gn in Gn+1. 
That they even form a Schreier system can now easily be derived from 
the fact that the given basis of G. is stable under the degeneracy homo- 
morphism (n: Gn -+Gn 

19. The fundamental group 

Let L be a connected c.s.s. complex with base point Sb and let T c L 
be a maximal tree. We shall show, using the results of ?18, that ;'r1(L; b) 
is a group with a generator for every 1-simplex of L, not in T, and 
a relation for every non-degenerate 2-simplex of L. In particular this is 
the case when L is a c.s.s. complex associated with a simplicial complex 
(see ?11). 

By definition 

7r1(L; (b) = kernel iO/image 8O* 

As kernel 50 = Go(L; 0b) it follows that kernel 50 is the free group generat- 
ed by the elements -T where r e (L1 - T1). By Theorem 18.2 G1(L; b) is 
the free group generated by the elements pr * - * -1s170 -* r-1 y where 
r e G0(L; (b) and a- e (L, - T2) is such that or + T7' for some e e L1 and 

r s, i.e. where r e Go(L; 0b) and o- is a non-degenerate 2-simplex of 
L. Thus 7r,(L; Sb) is a group with one generator T for every 1-simplex 
e (L1- T1) and a relation O1(? /. Gr. c -1I10 -. r-lj) = 1 for every r e 

Go(L; sb) and non-degenerate o- e L2. However for fixed non-degenerate 
of e L, and any r e Go(L; b) 

al~C0 Of- -l's'?o - r-170)=O ,0- <2 0-S 
(<zs)-i - 

1 

and hence the relation a1(pr/ - G*-1,s1 ,0 - r-170) = 1 is a consequence of 
the relation 

reo n = 1GE 

Thus 7rm(L; V') is the group with 
(a) one generator r for every 1-simplex r e (L1 - T1) 
(b) one relation oso. -ae2 = are for every non-degenerate 2-simplex 

G- e L2 

20. The van Kampen Theorem for G 

Let K be a reduced complex and let A and B be subcomplexes such 
that A U B = K. An immediate consequence of the result of ?19 then, 
is the van Kampen theorem [4] which asserts that 7r1(K) only depends on 
ir1(A), 7r1(B), 7r1(A n B) and the homomorphisms a*: 7r1(A n B) -* 7r1(A) and 
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b*: r1(A n B) -* 7r1(B) induced by the inclusion maps a: A n B -*A and 
b:A f B - B. 

An analogous theorem for GK will be given below. 

We recall the definitions of free product and free product with amalga- 
mated subgroup [8] only for the special case needed here. 

Let x, y and z be disjoint sets and denote by F(x), etc. the free group 
freely generated by the elements of x, etc. The free product of the 
groups F(x) and F(y) then is the group F(x U y). It is denoted by F(x) 
* F(y). Clearly the group F(z) is a subgroup of F(x U z) and of F(y U z). 
The free product of F(x U z) and F(y U z) with amalgamation of the com- 
mon subgroup F(z) then is the group F(x U y U z). It is denoted by 
(F(x U z) * F(y U Z))F(z). 

The notions of free product and free product with an amalgamated 
subgroup carry over to c.s.s. groups by applying them dimensionwise. 

The van Kampen Theorem for G now asserts. 

THEOREM 20.1. Let K be a reduced complex and let A and B be sub- 
complexes of K such that A U B = K. Then GK is the free product of GA 
and GB with amalgamated c.s.s. subgroup G(A n B), i.e., 

GK = (GA * GB)G(A l B) 

COROLLARY 20.2. Let A and B be reduced complexes with only the ver- 
tex (and its degeneracies) in common and let K = A U B. Then GK is the 
free product of GA and GB, i.e., 

GK= GA*GB. 
PROOF OF THEOREM 20.1. For every integer n > 0 the group GnK is 

freely generated by the elements 0f where o- is an (n + 1)-simplex of K 
which is not of the form o- = ,r'zn, i.e. a- e (Kn+1 - Knn). The theorem 
now follows immediately from the fact that 

Kn+ - K.n = (An+ -An vn) U (Bn+l -Bn ) 

(A n B)n+l - (A n n = (An+1 An )n n (Bn+l -Bn n) 

21. Computation of 7r3(S2) 

Let S2 be a reduced complex with a 2-simplex : as its only non- 
degenerate simplex in dimension > 0. We shall compute 7r3(SI) with the 
methods of ? 18. 

It follows from the definition of S2 that 
(a) G1(S2) is infinite cyclic with : as generator, 
(b) G2(S2) is freely generated by Co and Cr', 
(c) G3(S2) is freely generated by CC0V1, CO072 and CC1C2. 
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Write Co, C, and co, instead of :C?, C?' and C?1. Then it follows from (a), 
(b) and (c) and Theorem 18.2 that 

(d) (')G,(S2) is freely generated by the elements j%, = CP C* P 

(e) (2)G,(S2) = G2(S2) is freely generated by the elements 

Tqsp = Cog _ Cp _ Co _;-p _ Ci-q-1 

which are # 1(i. e. p # 0), 
(f) (')G2(S2) is freely generated by the elements a.)* Col . a-l-2 where 

a e G,(S2) 
(g) (2)Gl(S2) is freely generated by the elements 

which are # 1, where a e G,(S2) and P e (1) G,(S2) 
(h) (3)GO(S2) = G3(&2) is generated by the elements g(a, P, r) = r? - 
, a) 2 Co a'-172 . a7l . C-1 . a-1 1 

_ -171 
. 7 . 0 

a_ a 
. ae 

Codi . a'e'-2 . -'~ . r )O, where a e G2(S2), 3 e (')Gl(&2) and r e (2)Go(S) 
- G2(S). 

As rqpe = 1 for every generator rqp e G.2(S9) it follows that kernel 
a2 = G2(52). By definition 

7r3(S') = kernel a2/image a3 

Hence 7r3(52) is the group obtained from G2(52) by addition of the relations 

a3g(a, 3 r) = 1 for every element a e G2(S2), P e (')Gl(2) and r e G2(S2). 

We now compute 
-1 '~1 .as,~0 O- a 1600 

'1-1O0 

a3g(a, , r) =r-.* )o * o *0. Co e0' a . aeo . C1. a . 

a. , CO . a-' * a'e-1)' * C1Cl . a-ei * j1 

in terms of the generators rqp. It is readily verified that 
(j) there exists a unique element r e 02(S9) and a unique integer q 

such that =rP 0 

(k) Pe 0 = Cjl 

(1) there exists a unique element P e (') G,(S2) and a unique integer 
r such that a = * 

(m) there exist a unique integer p, an integer n > 0 and integers 

61 *... , * ,Sn ql, ... 
* qny Pl, ... , Pn 

such that a = ;rqlplel -rqnenCpo * 

(n) ae0'0 = CPO 
(o) ae07' = C1 

(p) ay = cP+r 
Consequently 

jSO7)0 * ae0'' * * O - eso * a? * 1ol * a-O . C-a 'e 0 =S Tq rp 
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Furthermore 

Qp - .rqp*-- p 7 = ql+qp1 1.- rqn+q p *0 

Hence the relation a3g(a, 3, r) =1 may be written 

T Tqp Tr 7 ql+qplel * Tq+q, Pn enp+qr 
. q+q+lp.n rql+q+lpl - Pqqp+i1 - r = 1 

Given two integers s and t with s 0 0 it is clearly possible to choose 
a, P and r in such a manner that Pi = s, q1 = t, p = q = r = pi = qi = 0 
for i > 1, s, = 1 and r = r,, = 1. This yields the relation 

(21.1) Tts Tt+1,s1 = 1 

Given three integers s, t and u with s # 0, u # 0, it is also possible to 
choose a, P and r such that p = s, q = t, r u, pi = qi = 1 for all i and 
r = r, = 1. This yields the relation 

Tt's * rs+tu * t,S+U = 1 , 

and combination of this relation with relation 21.1 yields the 

(21.2) Tts , t*+tfr1 = 1 . 

It is readily verified that all relations a3g(a, a, r) 1 are consequences 
of the relations 21.1 and 21.2 and it follows that 7r3(S2) is an infinite 

cyclic group generated by the coset of image a3 in G(S) which contains 
the element 

TOyl = 1- CO. =CE-o C?), C?0o] 

APPENDIX 

22. The construction F of J. W. Milnor 

Let L be a c. s. s. complex with base point sb. J. W. Milnor [10] defined 
a c.s.s. group FL which is a loop complex for the suspension of L. Let 
SL denote the reduced suspension of L (see below), then it will be shown 
that FL is, in a natural manner, isomorphic with GSL. 

We recall the definition of FL. The group of the n-simplices, FnL, is a 
free group with one generator Ad for every n-simplex a- e Ln and one 
relation sbn = en, where on . .O__ *-'. The face and degeneracy 
homomorphisms are those induced by the corresponding face and degen- 
eracy operators of L, i. e. they are given by 

sf = (ash) O~~ < i < n 

@Cf = (add) O~ < i < n . 
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The reduced suspension of L is the c.s.s. complex SL defined as follows. 
For every integer n > 0 the n-simplices of SL are the pairs (k, s), where 
k > 0 is an integer and o- e LflAd is a simplex, identifying (k, Gbn-) with 
(n, 0), and (0, a-) with (dim a-, sb). The face and degeneracy operators are 
determined by the formulas 

(k, ojsi = (k, ark) (k, = (kg iy7) i < dim 

(k + 1, a)s = (k, a (k,o/ = (k + 1, a) i > dimu. 

Clearly SL is a reduced complex, its only 0-simplex being (0, sb). 
We can now formulate 

THEOREM 22.1. Let L be a c.s.s. complex with base point. Then the 
c.s.s. homomorphism A: FL -+ GSL defined by 

a-L 
is an isomorphism. 

The proof is straightforward. 

23. The construction G+ 

A c.s.s. complex H+ is called a c.s.s. monoid if 
(a) H7,+ is a monoid (i. e. associative semi-group with unit) for all n, 
(b) all face and degeneracy operators are homomorphisms. 
Let K be a reduced complex. A subcomplex G+K c GK will be defined 

such that 
(i) G+Kisac.s.s. monoid 
(ii) if K satisfies the extension condition, then G+K = GK 
(iii) if K = SL, then G+K is, in a natural way, isomorphic with F+L, 

where F+L c FL is the c.s.s. monoid defined by J. W. Milnor [10] 

Let K be a reduced complex. Then we define G+K as the smallest 
subcomplex of GK such that 

(a) o- e G+K for every simplex o- e K 
(b) G+K is a c.s.s. monoid 

THEOREM 23.1. Let K be a reduced complex which satisfies the extension 
condition. Then G+K = GK. 

PROOF. It suffices to show that J' e G+K for every simplex a- e K. 
Let a- e K,+1. Then there exists an (n + 2)-simplex p e K such that 

pefn+2 and peSn+1 =- Sn+l n. But p e G+K and hence 

p-1 1p . (p 2)1- 1 GlK 

q. e. d. 
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Let L be a c.s.s. complex with base point. Then F+L may be defined 
[10] as the smallest subcomplex of FL such that 

(a) A- e F+L for every simplex a- e L 
(b) F+L is a c.s.s. monoid. 
Hence an immediate consequence of Theorem 22.1 is 

THEOREM 23.2. Let L be a c.s.s. complex with base point. Then the 
restriction A ] F+L: F+L -* G+SL is an isomorphism. 

HEBREW UNIVERSITY, JERUSALEM, ISRAEL 
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