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ANNALS OF MATHEMATICS
Vol. 67, No. 2, March, 1958
Printed in Japan

A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS

BY DANIEL M. KAN*

(Received May 1, 1957

1. Introduction

The usual definition of the homotopy groups of a simplicial complex
involves only its underlying topological space and disregards the sim-
plicial structure. Our main result is a definition of the homotopy groups
of a simplicial complex (or more general : c.s.s. complex) using only the
simplicial structure. Although the simplicial approximation theorem
suggests such a definition, the present one is much simpler and resembles
the definition of the homology groups. It involves free groups where the
corresponding definition of the homology groups involves free abelian
groups.

The results will be stated in terms of the c.s.s. complexes of Eilenberg-
Zilber [1]. There are four chapters and an appendix.

In Chapter 1, we review several definitions and results on ¢.s.s. com-
plexes and homotopy groups. Chapter II contains the new definition of
the homotopy groups. The main tools used are a construction G which
assigns to a connected c.s.s. complex L with base point ¢ a c.s.s. group
G(L; ¢) which, roughly speaking, ‘“ is of the homotopy type of the loops
on L”’, and J.C. Moore’s definition of the homotopy groups of a c.s.s.
group [11]. As is shown in the appendix, the construction G is a gene-
ralization of the construction /" of J.W. Milnor [10], the abstract analogue
of the reduced product construction of I.M. James [3]. In Chapter III, it
is shown in what precise sense the homology groups are ‘‘ abelianized
homotopy groups’’. We reduce the Hurewicez theorem to a purely group
theoretical theorem. Chapter 1V, contains miscellaneous results on the
construection G.

It should be noted that in several definitions either the first or the last
face or degeneracy operator plays a special role and that another defini-
tion could be obtained by using the other extreme operator. Both defini-
tions, however, are essentially equivalent and it is mainly a matter of
convenience which one is chosen.

Most of the results were announced in [5].

The author is indebted to helpful discussions with J.C. Moore.

* The author was partially supported by Air Force Contract AF 18(600)-1494 during the
period when the work on this paper was being done at Princeton University.
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A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS 283

CHAPTER I. C.s.S. COMPLEXES AND HOMOTOPY GROUPS

2. The homotopy groups (special case)

We recall the definitions of c.s.s. complexes and the extension condition
and define homotopy groups only for c.s.s. complex which satisfy the
extension condition. The general case will be considered in §4.

DEFINITION 2.1. A ¢.s.s. complex K is a collection of elements (called
simplices), to each of which is attached a dimension n = 0, such that for
every n-simplex o € K and every integer ¢« with 0 < ¢ < n there are defin-
edin K

(a) an (n — 1)-simplex o¢' (called the 7" face of o)

(b) an (= + 1)-simplex o7 (called the i*" degeneracy of o)

The operators ¢ and 7' are required to satisfy the following identities

el =¢lé 1< g
7y =77 1<J
P =yt i<j
7’ ¢ = identity 1=7,7+1
) et = -1 y? 1 >7+1

The set of the n-simplices of K will be denoted by K,.
A c¢.s.s. map f: K — L is a dimension preserving function which com-

mutes with all face and degeneracy operators, i.e. for every n-simplex
cge K

flae) =(fo)¢ 0=i=mn

Flog)=(fa)y 0<iz=mn.

DEFINITION 2.2. A c.s.s. complex K is said to satisfy the extension

condition if for every pair of integers (k, n) such that 0 < k£ < n and for

every n (n — 1)-simplices o, +, 0515 Ops1, ***, o € K such that o, &% =

oset for ©<j and i+ k= j, there exists an n-simplex o e K such that
oet = o, for ¢ + k.

The following relation on the simplices of a c.s.s. complex will be
needed.

DEFINITION 2.3. Two n-simplices ¢ and z of a c.s.s. complex K are
called homotopic (notation o ~ z) if

(a) their faces coincide, i.e. o€ = z¢' for all ¢

(b) there exists an (z + 1)-simplex p ¢ K such that

psn = o
penﬂ = r
{,et — O'ei 7;,n—l — Tsi 7777.--1. , 0 éq‘ < n.

This content downloaded from 128.151.13.95 on Wed, 22 Jul 2015 10:59:12 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

284 DANIEL M. KAN

PROPOSITION 2.4. Let K satisfy the extension condition. Then the rela-
tion ~ 18 an equivalence on the simplices of K.

PRrOOF. For every n-simplex o € K we have o7"¢" = o7" "' = o and
o et = oet " for 0 <4 < m. Hence the relation ~is reflexive and it
thus remains to show that ¢ ~7and ¢ ~ ¢ imply . ~ ¢. Let pn, Pni
€ K., be such that

P € = G, Pr "t =1, pp &t = 7t ! 0i1<n

Pre1 € = Gy Pray € = ¢, Ppyg & = Pt ! 0i<n.

Then the (r + 1)-simplices 7" 7" &%, <« +, 9" 9" """, Py, Pns; ‘‘match’ and

application of the extension condition (k = n + 2) yields an (n + 2)-sim-

plex p € K such that pe® = p,, pe"*' = p,., and p =" " &' for 0 <1 < m.
A straightforward computation now yields

pe’n-l-Z P T, p€n+2 en+1 — ¢’ P€n+2 ei — rei 77n-l 0 § ’l: < n.

DEFINITION 2.5. A complex with base point is a pair (K; ¢) where K is
a c.s.s. complex and ¢ € K is a 0-simplex (the base point).

Let (K; ¢) and (L;¢) be complexes with base point. By a map f:
(K; ¢) = (L; ¢) we then mean a c.s.s. map f: K — L such that f¢p = ¢.

DEFINITION 2.6. Let (K ; ¢) be a ¢.s.s. complex with base point, where
K satisfies the extension condition. For every integer » = 0 we define
a set m.(K; ¢) as follows. Let I', be the set consisting of those n-sim-
plices o € K such that

gt = ¢’ .. 0isn.
The equivalence relation ~divides 1', into classes. Then 7,(K; ¢) will be
the set of these equivalence classes, i.e. m.(K; ¢) = 1'./(~). The class
containing an n-simplex o will be denoted by {s}. The set = (K; ¢) is
called the set of components of K.

For n > 0 the set 7,(K;$) may be converted into a group (the ™ Aomo-
topy group of K rel. ¢) as follows. Let o€ a and reb be n-simplices in
the classes a, be m,(K; ¢). Because K satisfies the extension condition
there exists an (n + 1)-simplex p € K such that

pet =g, p"t =7, pf =’ -t 0=Zi<m—1.
The product a - b then is defined by
a-b= {pe"}
It may be verified (by the method used in the proof of Proposition 2.4)
that this multiplication is independent of the choice of o, r and p. Fur-
thermore

PROPOSITION 2.7. The multiplication defined above converts m.(K; ¢)
into a group.
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A map f: (K; ¢)—(L; ¢) induces for every integer » = 0 a map m,(f):
m(K; ¢) = m(L;¢). Clearly z,(f) is a homomorphism for » > o, while
m(f) is such that z(f) {¢} = {¢}.

PROOF OF PROPOSITION 2.7. We must prove left and right divisibility
and associativity.
tension condition (k¥ = n — 1, » + 1) one may find p,, p, € Ky, such that

P =7, Pt =0, pet = Pl et 0= i <n—1
P =0, p =1, 0 =7 et 0S4 <n—1.

Consequently {pe""'} - o =rand o+ {pe"*'} =1.
Associativity. Let a, b, ce 7,(K; ¢) and let cea,zeband ¢€c. Then

there exist pn_i, Pn, Prs» (use the extension condition for k = m) such
that ,

Pr-1 €71 = 0, Pag € =1, Pro1 € = ¢770 oo vn_l 0=si<m—1
Ons1 el = Prn-1 e, Pns1 "t = ¢, Pr+1 e = §b770 e vn-l 0 = 1<n—1
Pn+1€”—1 =Ty Pn+2 e = Sby Pr+2 e = ¢'770 M vn—l ’ 0 g ) <n-— 1.

Application of the extension condition one dimension higher (k = ») yields
a peK,,, such that peé=p, for i=n—1,n+1,n+2 and pe =
¢7" --- 7" for 0 <4 <m — 1. A simple computation yields
pen et = o, pet &t = p,,, € petet =gy’ oo 7?7, 0T <n—1.
Consequently
(0-7) ¢ ={ppr €} « ¢ = {Ppr:e"'} - $ = {Puer €}
= {p"e"} =0 {ppef =0 (v ).

3. The homotopy sequence (special case)

In defining the homotopy sequence of a fibre sequence we again re-
strict ourselves temporarily to c.s.s. complexes which satisfy the exten-
sion condition.

DEFINITION 3.1. A c.s.s. map p: E — B is called a fibre map if for
every pair of integers (k, n) such that 0 < k < n, for every n(n — 1)-
simplices o, «««, 04 1, Tps1y *++, 0, € E such that o,¢"' = o,¢" for 1 < j
and ¢ #+ k # 5 and for every n-simplex r € B such that ¢! = po, for i # k,
there exists an n-simplex o€ E such that poc = 7 and o€ = o, for all
i #+ k. The complex E is called the total complex, B the base. Let ¢ € B
be a 0-simplex. Then we mean by the fibre of p over ¢ the sub-complex
F < E such that F, = p~'(¢7" « - - *7") for all n.

PROPOSITION 3.2. Let p: E — B be a fibre map. Then B satisfies the
extension condition if and only if E does so.
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PROOF. Suppose B satisfies the extension condition. Let o, «--, o_,,
gy **y 0,€ K, be such that o,¢7' = o,¢ for ¢ <j and ¢ # k # J.
Using the extension condition one obtains an n-simplex r€ B such that
ret = po, for © + k and because p is a fibre map it follows that there ex-
ists an n-simplex o€ E such that o¢' = o, for ¢ #+ k. Hence E satisfies
the extension condition.

The other half of the proof is similar, although slightly more compli-
cated.

DEFINITION 3.3. A sequence of maps of complexes with base point
q P
(F; ¢) —> (E; 1) —> (B, ¢)

is called a fibre sequence if
(a) pis a fibre map onto
(b) ¢ is an isomorphism into,
(¢) ““the image of ¢ > = *‘ the fibre of p over ¢ ”’.

We call F, E and B respectively the fibre, total complex and base of the
fibre sequence.

DEFINITION 3.4. Let

(F: o) L (B, 1) 2> (B ¢)

be a fibre sequence such that B (and hence E) satisfies the extension
condition. For every integer n > 0 we define a boundary map 9.(q, p) :
To(B; ¢) = 7,1 (F ¢) as follows. Let aer,(B; ¢) and let r€a be an n-
simplex. Because p is a fibre map there exists an n-simplex o€ E such
that po = r and oe* =y7°--- 7** for 1 +n. We then define 9.(q, p)a€
-1 (£ $) by

0,(q, P)a = {g7'(oe")} .

It may be verified (as in the proof of Proposition 2.4) that this definition
is independent of the choice of = and o. For » > 1 the map 0,(¢q, p) is
a homomorphism, while 0,(g, p) is such that 9,(¢, p){¢7"} = {o} .

We can now form the homotopy sequences of a fibre sequence.

PROPOSITION 3.5. Let
q D
(F ¢) — (E; ) —> (B5 ¢)

be a fibre sequence such that B (and hence E) satisfies the extension con-
dition. Then the sequence
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3 7 Q) 7a(D) 0.(q, P)
— T(F5 ) — 7, (B Y) —<— 7(B; ¢) — "
WD) B, ) —1
18 exact (in the sense that ‘‘ image of each map’ = ‘‘ kernel of the newt
map ).

PrROOF. We will show exactness only at =,_,(F; ¢). The other parts
of the proof are similar.

Let a€ 7, (F; ¢). If be kernel =,_, (q), then there exists a peb and
a o€ E, such that gp = o¢® and o¢' = y7* --- 7" for ¢+ n. Hence
b = d,(q, ){po}. Conversely if be image 9,(q, p) then there exists a
peband aoe E, such that gp = o¢” and o’ = y7° -+ - 7"~* for ¢ # n and
hence qp ~ y7° «+ - "%

5. The general case

We shall now define homotopy groups and boundary maps for all c.s.s.
complexes with base point. As use will be made of the definitions given
in §§ 2 and 3 we, in order to avoid confusion, denote temporarily the
homotopy groups and boundary maps as defined in §§ 2 and 3 by =, and
0,

DEFINITION 4.1. Let (K; ¢) be a complex with base point, let |K'| de-
note its geometrical realization in the sense of J.W. Milnor [9]. (K] is
a CW-complex of which the n-cells are in one-to-one correspondence with
the non-degenerate n-simplices of K), let S|K| be the total singular com-
plex of |K| and let i: K — S|K| denote the natural embedding map (see
[9]). For every integer n = 0 we then define =,(K; ¢) by

7(K; ¢) = 7 (SIK] ; i)

Definition 4.1. clearly involves topological spaces and continuous
maps. It is however possible to give an equivalent definition which only
involves c.s.s. complexes and maps. Using only c.s.s. complexes and maps,
one may define for every c.s.s. complex K a c.s.s. complex Ex~K and
ac.s.s. map e~(K): K — Ez~K and for every c.s.s. map f: K — L a c.s.s.
map Ex>f: Ex”K — Ex~L (the exact definitions will be omitted ; they
can be found in [7]) having the following properties.

4.2a. For every c.s.s. complex K the complex Ex~K satisfies the exten-
ston condition.

4.2b. The construction Ex> preserves fibre sequences, i.e., if

(F: ) -1 (B 1) —=> (B; ¢)
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18 a fibre sequence, then so is the sequence

Ex=q el ) .
(Ex=F"; e(F)¢p) ———> (Ex™E ; e=(E)Y) — (Ex= B (e~ ; (B)Y) .
The proof of these properties can also be found in [7].
In view of Property 4.2a we now can define

DEFINITION 4.3. Let (K; ¢) be a complex with base point. For every
integer n» = 0 we then define 7,(K; ¢) by

T K; ¢) = m(Ex™ K; e”(K)p) .
Let f: (K; ¢) > (L; ¢) be a map. Then for every integer n = 0 the in-
duced map 7,(f) : 7,(K; ¢) — m,(L; ¢) is defined by

m(f) = m(Ex f) .
It may be shown that the Definitions 4.1 and 4.3 are equivalent, and
that if K satisfies the extension condition, both are equivalent with De-
finition 2.6. For more details see [7].

In view of Property 4.2b the boundary maps may be defined as follows

DEFINITION 4.4. Let

(F; ) —> (B 1) 2, (B ¢)
be a fibre sequence. For every integer n > 0 we then define the boundary
map 9.(q, p) : 7B ¢) = Tuy (F'; $) by
0:(q, p) = 0u(Ex~ q, Ez p) .
The following then is an immediate consequence of Proposition 3.5.

q

PRrROPOSITION 4.5. Let

q D
(F;0) —(E; 1) —> (B; ¢)
be a fibre sequence. Then the sequence

ma(q (D) 9.(q, D) .

—> ma(F; ¢) @, (B f) ——— 7l B; §) ———
D) i) —1

s exact (in the sense that ‘‘ image of each map’’ = * kernel of the next

map’’).

5. The homotopy groups of c.s.s. groups

DEFINITION 5.1. Let G be a c.s.s. complex. The face and degeneracy
operators may be considered as functions ¢': G,— G,_; and 7*: G, = Gnyyy
The complex G will be called an (abelian) c.s.s. group if

(a) G, is an (abelian) group for all» = 0
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(b) the functions ¢': G, —» G,_, and 7': G, = G,., are homomorphisms
forall0 <7 < n.
The identity element of G, will be denoted by e,.

Let G and H be c.s.s. groups. A c.s.s.mapf: G — His called a c.s.s.
homomorphism if the restriction |G, is a homomorphism for all n = 0.

Let G be a c.s.s. group. A c.s.s. subgroup H c G is a subcomplex of
G such that H, is a subgroup of G, for all » = 0. By the c.s.s. subgroup
generated by a subset of K C G we mean the smallest c.s.s. subgroup of
G containing K.

The following important property of c.s.s. groups was proved by J.C.
Moore [11].

PROPOSITION 5.2 FEwery c.s.s. group satisfies the extension condition.

It follows that the homotopy groups of a c¢.s.s. group G may be defined
as in §2 in terms of the c.s.s. structure of G. Following J.C. Moore [11]
we shall now give another definition which is completely in terms of the
group structure of G

DEFINITION 5.3. Let G be a c.s.s. group. For every integer n = 0 let

G,= G, N kernel ¢ N --- N kernel ¢
Then o€ G,,, implies oe’e G,. Hence we may define homomorphisms
Opsr: Guor— G, by
0pe10 = o€ o€ Gy .
For each integer m < 0 let G,, be trivial and let 81 Gy — G, be the
trivial map. Then it can be shown that smage 9,., is a normal subgroup

of kernel 9, for all n, i.e., G= {G'n, d,) is a (not necessarily abelian) chain
complex. This chain complex will be called the Moore chain complex
of G.

The homology groups of G are
H,(G) = kernel 5n/image O -
A comparison with the homotopy groups as defined in §2 yields
PROPOSITION 5.4. Let G be a c.s.s. group. Then for every integer n >0
HG) =G ; &) -

It follows that 7,(G ; ¢,) may be converted into a group. If f: G- H
is a c.s.s. homomorphism, then clearly =,(f) : 7(G; e,) > m,(H; ¢;) becomes
a homomorphism.
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6. Principal bundles and loop complexes

In defining the c.s.s. analogue of a principal bundle we roughly follow
J.C. Moore [12].

DEFINITION 6.1. A principal bundle with twisting function is a triple
((B; ¢), F, t) where

(i) B is a c.s.s. complex (the base) with base point ¢.

(ii) F'is a c.s.s. group.

(iii) ¢ is a function ¢ : B — F' (the twisting function) which lowers the
dimension by one and is such that for every integer n > 0 and every
simplex o € B,,,

(to)et = t(ae’) 0<i<n
(to)e™ = t(oe) « (t(oe*'))!
(to)y' = t(o7!) 0<i<n

en+1 — t(O'vnH)
By the bundle complex or total complex we mean the c.s.s. complex F' x,B
defined as follows. An n-simplex of F' x, B is any pair (p, o) where
peF,and o€ B,. Its faces (p, o)¢' and degeneracies (p, )7’ are given by
the formulas

(0, @)e = (pél, oel) 0:<n
(P, O-)sn = (Pen - to, O-sn)
(0, o)7* = (p7', o7") 0=i=mn.

REMARK. As principal bundles with twisting function are the only
principal bundle we will use, we will frequently omit the mention of the
twisting function.

With a principal bundle ((B; ¢), F', t) we may associate a fibre sequence

(F; 0) —> (Fx , B; (6 §)) — (B; ¢)
where the maps p and ¢ are given by
n(p, o) =0 (p,o)e Fa,B
qp = (P, §7° -+ 7"7) pekF,.
It should be noted that for this fibre sequence the boundary map
0.(q, p): m(B;¢) = 7(F; €,) is also a homomorphism.

DEFINITION 6.2. Let K be a c.s.s. complex and ¢ a 0-simplex of K.
Then K is called connected if =(K; ¢) consists of one element and is called
contractible if 7, (K; ¢) consists of one element for all » > 0.

Following J.W. Milnor [10], we now define

DEFINITION 6.3. Let ((K; ¢), G, t) be a principal bundle. Then G is
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called a loop complex of K rel. ¢ (under the twisting function ¢) if the
bundle complex G x, K is contractible
Combination of Definitions 6.2 and 6.3 with Proposition 4.5 yields

PROPOSITION 6.4. Let (K; ¢) be a complex with base point and let G be
a c.s8.8. group. If G is a loop complex of K rel. ¢ (under some twisting
Sunction) then K is connected.

CHAPTER II. THE CONSTRUCTION G AND THE DEFINITION
OF THE HOMOTOPY GROUPS

7. The construction G for a reduced complex

Let K be a reduced complex, i.e., K is a c.s.s. complex which has only
one 0-simplex ¢. Then we define a c.s.s. group GK as follows. The
group of the n-simplices, G, K is a group which has

(i) one generator o for every (n + 1)-simplex o € K,,,

(ii) one relation 77" = e, for every n-simplex r € K,.

Clearly the groups G, K so defined are free. Hence it suffices to define
the face and degeneracy homomorphisms ¢: G, K —»G,_, K and 7*: G, K—
G, K on the generators of G,K. This is done by the following formulas

ol = get 0 = 1< n
6_€n — ge” . (;:'ST;L—)_—l
oyt = oyt 0isn.

It is readily verified that GK so defined is a c.s.s. group.
THEOREM 7.1. Let K be a reduced complex with 0-simplex ¢. Then the
c.s.s. group GK is a loop complex of K rel. ¢ (Definition 6.3) i.e., there

exists a principal bundle with K as base, GK as fibre and contractible
bundle complex.

ProoF. Define a function ¢: K — GK (which lowers the dimension by
one) by

toc = o e K.
Then clearly ¢ is a twisting function and hence ((K; ¢), GK, t) is a prin-
cipal bundle, (Definition 6.1). Let EK = GK x, K be the bundle complex.

Then Theorem 7.1 is a direct consequence of the following lemma which
will be proved in §13.

LEMMA 7.2. The c.s.s. complex EK = GK x, K 18 contractible.

8. The homotopy groups of a reduced complex

Let K be a reduced complex. Because K has only one 0-simplex ¢,
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the homotopy groups of K do not depend on a choice of base point.
Therefore we shall usually write =,(K) instead of 7, (K; ¢#). Using the
¢.s.s. group GK we shall now obtain a new definition of z,(K) which is
much more straightforward than the one given in §4.

Let K be a reduced complex and consider the fibre sequence

(GK; ¢) —1 (EK; (60, $) > (K ¢)

associated with the principal bundle ((K; ¢), GK, t) (§6). Combining the
exactness of the homotopy sequence of this fibre sequence (Proposition
4.5) with Lemma 7.2, we get that for every integer » > 0 the boundary
map 0,(q, p) is an isomorphism

0.(q, p): 7 (K) =~ m,(GK ; ¢,) .

Hence we could define the homotopy groups of K to be those of GK (with
a shift in dimension). But GK is a c.s.s. group and the homotopy groups
of a c¢.s.s. group may be expressed in terms of the group structure of
GK (§5). Consequently the homotopy groups of a reduced complex K may
be defined in the following group theoretical manner.

DEFINITION 8.1. Let K be a reduced complex. Form the c.s.s. group

GK(§2). Let GK be the Moore chain complex of GK(Definition 5.3).
Then for every integer n > 0 we define 7,(K), the n** homotopy group
of K, by

7(K) = H,, (GK) .

9. The construction G for an arbitrary connected c.s.s. complex

We shall extend the definition of G to an arbitrary connected c.s.s.
complex L with base point ¢. The procedure followed, which is a direct
generalization of §7 involves the choice of a maximal tree of L. It will
however be shown in §12 that the c.s.s. group G(L; ¢) so obtained is
independent of the choice of a maximal tree.

Let L be a connected c.s.s. complex with base point ¢. A maximal
tree T c L is roughly speaking ‘‘ a connected 1-dimensional subcomplex
which contains all vertices of L but no closed loops’’. We first give
a more exact definition. By an n-loop of L of length k we mean a sequence
(o4, ++-, oy) of 2k (n 4+ 1)-simplices of L such that

1 __ 1 y [~
Oy &1 = 0yt 1=k
0'215"...50:(7'2]_‘_15"...50 1§j<k
0'15” -..50_—_0-%5"..- €0=¢
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i.e., two adjacent simplices have alternatingly the same last face or the
same last vertex (i.e., the 0-simplex opposite the last face). By a reduced
n-loop of L of length k£ we mean an n-loop (o4, -+, 0,;,) such that

Oy F Oguy 1§S<2k
i.e., two adjacent simplices are always distinct. We define a tree of L as
a connected subcomplex T'c L with ¢ € T, which contains no reduced
loops of length > 0. A maximal tree T L is a tree which contains all
0-simplices of L, i.e., T, = L,.

LEMMA 9.1. A connected c.s.s. complex L with base point ¢ contains
a maximal tree.

PrROOF. The proof will only be sketched. The details are left to the
reader. Clearly the subcomplex of L consisting only of ¢ and its de-
generacies is a tree. Let T" be a tree which is not maximal. Then be-
cause L is connected, there exists a 1-simplex o € L such that o< € T"
and o' ¢ T" (or oc' € T and o<® ¢ T"). Let Sc L be the subcomplex
generated by o. Then it is readily verified that T" U S is also a tree. It
follows from the connectedness of L that it is possible to obtain an in-
creasing sequence

S/ I L
of trees of L such that every 0-simplex of L is contained in all but

a finite number of them. Let T = y;,T® be their union, then T is
a maximal tree

Let L be a connected c.s.s. complex with base point ¢. Choose a max-
imal tree T c L. We then define a c.s.s. group G(L; ¢) as follows. The
group of the n-simplices, G,(L; ¢), is a group which has

(i) one generator o for every (n + 1)-simplex o € L,,,

(ii) one relation 7" = e, for every n-simplex r € L,,

(iii) one relation p = e, for every (# + 1)-simplex p € T, ;.

Clearly the groups G.(L; ¢) are free and hence it suffices to define the
face and degeneracy homomorphisms & :G,(L; ¢) —> G,_.(L; ¢) and
7' Gy(L; ¢) > Guui(L; ¢) on the generators of G,(L; ¢). This is done by
the following formulas
ol = oe 0=si<m
oe" = ae” « (gertl)!
Clearly G(L; ¢) so defined is a c.s.s. group.

THEOREM 9.2. Let L be a connected c.s.s. complex with base point ¢.
Then the c.s.s. group G(L; ¢) is a loop complex of L rel. ¢, (Definition 6.3.)

This content downloaded from 128.151.13.95 on Wed, 22 Jul 2015 10:59:12 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

294 DANIEL M. KAN

i.e., there exists a principal bundle with L as base, G(L; ¢) as fibre and
contractible bundle complex.
PRroOOF. Define a function ¢: L — G(L; ¢) (which lowers the dimension
by one) by
tc = o ce L.

Then clearly ¢ is a twisting function and hence ((L; ¢), G(L; ¢), t) is
a principal bundle, (Definition 6.1). Let E(L; ¢)) = G(L; ¢)) x, L be the
bundle complex. Then Theorem 9.2 is a direct consequence of the fol-
lowing lemma.

LEMMA 9.3. The c.s.s. complex E(L;¢) = G(L; ) x,L is contractible,
The proof is similar to that of Lemma 7.2. (See §13).

REMARK. If L has only one 0-simplex, then clearly the only possible
maximal tree of L is the subcomplex generated by ¢. The results of this
§ then reduces to those of §7, i.e., G(L; ¢) = GL and E(L; ¢) = EL.

10. The homotopy groups of a connected c.s.s. complex

The definition of homotopy groups of §8 will now be extended to ar-
bitrary connected c.s.s. complexes.

Let L be a connected c.s.s. complex with base point ¢. Consider the
fibre sequences.

(G(L; §); &) — (B(L; ) (e §) — (L )

associated with the principal bundle ((L; ¢), G(L; ¢), t). Combination of
the exactness of the homotopy sequence of this fibre sequence with
Lemma 9.3 yields that for every integer n > 0 the boundary map a,(¢, )
is an isomorphism

an(Qr 1)): nn(L’S[}) ~ 72'n—l(G(L; ‘/’); 60) .

It will be shown in §12 that the above fibre sequence is independent of
the choice of the maximal tree T — L. Hence so are the boundary maps
0.(q, p) and as in §8 we may give the following group theoretical defini-
tion of the homotopy groups of L.

DEFINITION 10.1. Let L be a connected c.s.s. complex with base
point ¢. Choose a maximal tree T'c L. Form the c.s.s. group G(L; ¢)
(see §9) and let G(L; ¢) be the Moore chain complex of G(L; ¢) (Defini-
tion 5.8). Then for every integer n > 0 we define =, (L;¢), the n*
homotopy group of L rel. ¢, by

(L3 ¢) = Hoy (G(L; ¢)).

This content downloaded from 128.151.13.95 on Wed, 22 Jul 2015 10:59:12 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS 295

REMARK. If L has only one 0-simplex ¢, then Definition 10.1 reduces
to Definition 8.1.

11. The homotopy groups of a simplicial complex

Let M be a connected simplicial complex and let @ be one of its ver-
tices. It is well known that the fundamental group =,(M; a) may be
defined combinatorially, i.e. in terms of the simplicial structure of M.
The usual definitions of the higher homotopy groups, however, involve
the underlying topological space of M and disregard completely the
simplicial structure. It will now be shown how, using the results of
810, a purely combinatorial definition may be obtained for the homotopy
groups of M. For the fundamental group this new definition coincides
with the old combinatorial one.

Choose an ordering of the vertices of M. Then we may associate with
M a c.s.s. complex L (which depends on the ordering chosen) as follows.
An n-simplex of Lis an (n -+ 1)-tuple (4,, ---, 4,) of vertices of M such
that

(a)AtéA'z-n 0i<n

(b) A, ---, A, lie in a common simplex of M .

Its faces and degeneracies are given by
(A, -+, At = (A, -y Airy Asery =00 A) 0<i<n
(Am"'!An)vi:(Am""A:‘,!Am°"’An) 0<:=<mn
Define a base point ¢ € L by ¢ = (a).

Clearly M is homeomorphic with |L|, the geometrical realization of L
[9], and it follows that the homotopy groups of M are isomorphic with
those of L (see §4), which by 8§10, may be defined in a comparatively
simple combinatorial manner. As L was defined in terms of the sim-
plicial structure of M only, it follows that the resulting definition of
7.(M; a) also involves only the simplicial structure of M and completely
disregards the underlying topological space.

It follows from the results of §18 that for =,(M; @) this combinatorial
definition coincides with the old one, in which a maximal tree S c M was
chosen (i.e. a connected 1-dimensional subcomplex containing all vertices
but no closed loops). The fundamental group then was a group with one
generator for every 1-simplex of M, not in S, and a relation for every
2-simplex of M.

12. The role of the maximal tree

Let L be a connected c.s.s. complex with base point ¢ and let T'c L be
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a maximal tree. In order to show that the c.s.s. group G(L; ¢) does not
depend on the choice of 7', we construct a c.s.s. group G'(L; ¢), the de-
finition of which does not involve 7', together with a (multiplicative)
isomorphism
9:G'(L; ¢) = G(L; ¢)
which is completely determined by 7. If we identify G(L; ¢) with
G’'(L; ¢) under this isomorphism, then clearly G(L; ¢) becomes independ-
ent of the choice of the maximal tree 7. The role played by T then
becomes merely that of choosing a basis for the free groups G,'(L; ¢).
A different choice of T induces different bases for these groups.
The proof that the fibre sequence

q D
(G(L; ¢); e) — (E(L; ¢); (€0, ¢)) — (L ¢)
is independent of T is similar. This is done by constructing a fibre
sequence

q v’
(G'(L; ¢); &) — (E"(L; ¢); 1) — (L; ¢),
the definition of which does not involve T, together with an isomorphism
e: E'(L; ¢) = E(L; ¢)
which is completely determined by 7 and is such that commutativity
holds in the diagram

(12.1) |9 le i

4 7

q D
G(L;¢)——E(L;¢)———L
where ¢: L - L denotes the identity map.

In order to define the c.s.s. group G'(L; ¢) we need a function < >
which assigns to every loop (oy, ---, o) of L a reduced loop < o, - -,
o, > as follows If (o4, ---, 0y) is a reduced loop, then

< Oy ***y Oy > = (0-1; ccy o-zk) .
It (oy, +++, o) is not reduced, i.e. o, = o,,, for one or more integers s
with 1 < s < 2k, then choose one of them, s, and define by induction
< Oy ***y Oy > =< O1y ***y 051y Og4yy °°°y Oy > .
It is readily vertified that this definition is independent of the choice of s.

The c.s.s. group G'(L; ¢) is now defined as follows. An n-simplex of

G'(L; ¢) is any reduced n-loop of L. The product of two m-simplices
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(o1, =+, o) and (zy, « =, 7,) is given by
(0-1, cen, O‘zk) . (1-1, oo Tom) = <Oyt Gy Ty %y Tom >
and it is easily seen that under this multiplication G, (L; ¢), the set of
the n-simplices of G'(L; ¢), becomes a group. The face and degeneracy
homomorphisms &': G, (L; ¢)—>G,_(L; ¢) and 7': G,(L; ¢) = Gr(L; ¢)
are given by the formulas:
(o4y »ooy o) = < 0y, oo, gy €t > 0
(1) =vy o)y = < o7, eee, o0 > 01
Finally the map g: G'(L; ¢) » G(L; ¢) is defined by
g(o-l’ M ) G.Zk) = O-l * ;2_1 DR O;Zk—l * Gik—l ’
and it remains to show that
LEMMA 12.2. The map g:G'(L; ¢) - G(L; ¢) is a (multiplicative)
1somorphism.
The proof of Lemma 12.2 will be given in §14.

IA

n
n.

A

For the definition of the c.s.s. complex E'(L; ¢) we need the notion of
an n-path and a reduced n-path. An n-path of L of length k ending at
the n-simplex o € L is a sequence (o, -+, 0ys;) of 2k + 1 (2 + 1)-sim-
plices of L such that

n+l n+1 >
Oy3-1 8 = 0y 155k
1
Oy €7 =0
O‘]E”“‘ €0:S[’
T - 1<5<k

i.e., two adjacent simplices have alternatingly the same last face or last
vertex. A reduced n-path of L is an n-path (o4, «--, 0,,;) such that

05 F 044y 1§S§2k

i.e., two adjacent simplices are always distinct.

The following function < > assigns to every n-path of L a reduced
n-path. If (oy,«++,0,.,)1s a reduced n-path of L, then < oy, -+, 0,,,, >
= (04, *++, Oy41). If an n-path (oy, + -, 0,4;) is not reduced, choose an
integer s such that 1 < s <2k and o, = o,,; and define by induction
L Oy e, Oppr > = K Gy o0, Ogoty Osagy *° *y Tuer > Clearly this defini-
tion is independent of the choice of s.

The c.s.s. complex E'(L;¢) is now defined as follows. An n-simplex
of E'(L; ¢) is any reduced n-path of L. The face and degeneracy opera-
tors are given by

(01!""0_2k+1)€i:<0.1€i!°"’0.2k+1€i> 0sin
(O-Iv"':a'zlcﬂ)?i:<0'177iy""0'zk+177i> 012,
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Let ¥ = (¢7°) and define the maps p': E'(L; ¢) > L and ¢': G'(L; ¢) —
E'(L; ¢) by the formulas

p,(o‘u ey 0'2k+1) = Oy+1 €
ql(o'u cecy 0'21:) = < oy, **0, Oupy 9/’770 cee " >,
Finally the map e: E'(L; ¢) - E(L; ¢) is given by

6(0'1, Tty O'zk) = (Ty 0')

n+1

where

.- - -1, = .
T =010, e e s ot O Orn € G (L; ¢)
O = gy €M1 elL,,

and it is readily verified that commutativity holds in Diagram 12.1. It
thus remains to show

LEMMA 12.8. The c.s.s. map e: E'(L; ¢) is an isomorphism.
The proof is similar to that of Lemma 12.2 (see §14).

13. Proof of Lemma 7.2

Clearly the standard O0-simplex A[0] ([7], §2), is contractible. Also
H,(A[0]) = 0 for n > 0. Let f: EK — A(0) be the only such c.s.s. map.
Then it follows from the c.s.s. version of a theorem of J.H.C. Whitehead
[13] that EK is contractible if and only if EK is simply connected and
H(EK) =0 for » > 0. Hence it remains to prove the following two
lemmas

LEMMA 13.1. EK is simply connected.

LEMMA 13.2. H,(EK) = 0 for n > 0.

ProoF oF LEMMA 13.1. The proof given here is analogous to one given
by J.W. Milnor in case K is a suspension [10]. Throughout this proof we
shall write E instead of EK

It must be shown that ,(E) = 0, i.e. that n,(|E'|) = 0 where |E| is the
geometrical realization of E (by a CW-complex of which the n cells are
in one to one correspondence with the non degenerate n-simplices of E).
Choose a maximal tree in | E|. Then =,(]E|) can be considered as a group
with one generator corresponding to each 1-cell of | E|, not in the tree,
and one relation corresponding to each 2-cell.

As maximal tree in | E| take the union of all 1-cells which correspond
to 1-simplices of the form (77°, o) where 7 € G,K and o € K,. Then as
generators of 7,(| E'|) we have all elements (7, o) € E, such that r is non-
degenerate. A 2-simplex of the form (y7°, o7') yields a relation

(Tv()’ 0'771)51 — (Tv()’ 0_771)8\) . (r”ﬂy 0.771)6‘_’ ,
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or, because (77, 67')e* = (7€' 9° - o7, o) is in the tree,

(13.3a.) (r,o) =@ 7).
Similarly a 2-simplex of the form (77’ 7) yield a relation
(13.3b.) (r,e) = (r - 7, 7€) .

It now follows easily from the relations (13.3a) and (13.b) that =, (|E)
=0.

ProoF oF LEMMA 13.2. Let C = {C,, 8,} be the chain complex of EK,
i.e. C, is the free abelian group generated by the n-simplices of EK and
the homomorphism 8,:C, — C,_, is defined by 8,z = Y_r(—1)ze'. It
then must be shown that there exist homomorphisms

D,: Cp = Crir
such that
0p+1 D, + D,_, 0, = identity n>0.
In the definitions of those homomorphisms D, use will be made of the
results of §89 and 12.

Let (7,0) € E, K and let 2 be the reduced n-path of K such that el
= (7, o). Choose an n-path g=(oy, +++, 0,,,,) such that < > = 2and
define for every pair of integers (¢,s) such that 0<7<n and 1<s <
2k 4+ 1 an (n + 1)-path u(¢, s) of K by

,ll(’[;, s) — (0.1 vi, cee, a-s-l 71, a-s en e e 6i+1 7713+1 cen vn-}-l) s Odd
#(,i’ S) — (0.1 771’ .o, O-s 771, O-s en e oo 5i+1 71‘.+1 coe 77n+1 s even .
Let p(i, s) = e < p(t, 8) > and define

D1, 0) = 2 % Y o (— 1) (3, 8) .
Then it is readily verified that this definition is independent of the choice
of #, and it thus remains to show that the homomorphisms D, so defined
have the desired property. Let

pr = (01 €™ vy Oopar €M) 0<m=n.
Then clearly
e pm > =(r,0)™.
Hence
D,y (7, 0)e™) = BT (— 1)+ G, )
A straightforward computation yields

©i, 8)e™ = pm(@ + 1, 8) m < 1

#(z, 8)E™ = p™ (3, 8) m>1+1

12, s)et = p(it — 1, s)ét

#(0, 8)e = (0, s — 1)° s odd
Hn, s)er*t = m(n, s — 1)e"*! seven .
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Consequently
Ons1 Do(1, @) + Dyt 8,7, o)
= D omh DO 2ot (— 1) (@, 8)
+ Do 2o D (= 1) (3, 8) = (7, )

14. Proof of Lemma 12.2

It is readily verified that the map ¢g: G'(L; ¢) » G(L; ¢) is a c.s.s.
homomorphism. It thus remains to show that g is onto and has trivial
kernel.

In order to prove that g is onto, it suffices to show that for every
generator o € G,(L; ¢) there exists a reduced n-loop (o4, +++, o) such
that g(oy, +++, 0y) = 0. Let a =o¢" --- & be the (n + 1)-vertex of o and
B = ger*ter ... & the n-vertex. Choose in the maximal tree 7'c L two
sequences (&, * -+, ®y), (B, -+, Pyy) of 1-simplices such that

ae =¢ B =¢

e’ = ., 8 By = B;4.6° J even
@, = a Pas® = B

e = a8 Bt = By jodd,

and let
a =am’ et B =gt
That it is easily verified that
p=<a,---, a2p/’ o, o ", AH2q’! cee, B>
is a reduced n-loop of L such that gz = o. Thus g is onto.

We now show that the kernel of g is trivial. Let pz = (o, <+, o) be
a reduced n-loop of L such that g = e,

Suppose first that o, = e, for all 1 <7 <2k. If o, € T for some j, then
o, =" forsomere L, Leti=j—1ifjiseven,and 1=j+1ifjis
odd. Then og"' =oe"' =7r€ T. Hence o' € T and consequently o'
= " = o,. But this is impossible as p is reduced. Hence o’ € T for all
1 <4 < 2k and because T is a tree and y is reduced it follows that £ =0
and hence ¢ is the identity.

Now suppose that o, + e, for some j. Then because g = e, there is
an integer ¢ such that o, = o; and because p is reduced |i —j| > 1.
Choose a pair (i, j) such that ¢, = o, oy # €,, 42 —j > 1 and o, = e, for
all j < ¢ < i. It then follows by the same kind of argument that there
exists an integer s with j < s < ¢ — 1 such that o, = o,,,. This is in
contradiction with the fact that y is reduced. Hence it is impossible that
o, # e, for some j. This completes the proof that the kernel of g is
trivial.
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CHAPTER IIl: THE HUREWICZ HOMOMORPHISMS
15. The homology groups

Let K be a reduced complex (this restriction is not essential). It is well
known that the first homology group of K is isomorphic with the funda-
mental group of K made abelian. This statement will be generalized; it
will be shown that the higher homology groups may also be regarded as
a kind of ‘‘ abelianized >’ homotopy groups.

First we abelianize the c.s.s. group GK, i.e., we form the abelian c.s.s.
group

AK = GK|[GK, GK]
By this we mean that for every integer » = 0 the group A4,K is ““ G,K
made abelian ”’, i.e., 4,K ia an abelian group with one generator A(s) for
every (n + 1)-simplex o € K,., and one relation A(z7") = 0 for every n-
simplex = € K,. Clearly A,K is free abelian. The face and degeneracy
homomorphisms ¢: 4,K—A,_, K and 7': A, K — A4,., K are those induced
by the corresponding homomorphisms of GK, i.e. they are given by

A(o)et = A(aé?) 0i<mn
A(o)e" = A(oe™) — A(ce™™)
A(o)yt = A(o7?) 0i<n

The homotopy groups of the abelian c.s.s. group AK are closely related
to the homology groups of K. In fact

THEOREM 15.1. There exists (in a natural manner) an isomorphism
o, H(K) = .-, (AK; ) n>0.
We are now able to formulate in what sense the homology groups are
““ abelianized > homotopy groups. In §8 it was shown that =,(K) is iso-
morphic with =,_,(GK; ¢,) = Hn_l(GK). In view of this fact a new
definition of the homotopy groups of K was given, using GK. However
if we *‘ abelianize >’ this definition, i.e., if we replace GK by AK then it

follows from Theorem 15.1 and Proposition 6.4 that we get the following
definition of the homology groups of K.

DEFINITION 15.2 Let K be a reduced complex. Form the abelian c.s.s.
group AK = GKJ[GK, GK]. Let AK be the Moore chain complex of AK
(Definition 5.3). Then for every integer n > 0 we define H,(K), the n®
homology group of K, by

H/(K) = H,,(AK)
PROOF OF THEOREM 15.1. Let A = {4,K, 3,} be the chain complex
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where the homomorphism 4,: 4A,K - A,_,K is given by

0.0 = E;Lo( — 1)tpe* p e AK
Let C”K be the chain complex of K normalized in the last direction (i.e.,
CYK is the free abelian group with a generator C¥(s) for every o € K,
and a relation C"(7*) = 0 for every r € K,_,). It is readily verified that
the function a: C*K — A defined by

aC%¥(o) = A(o) ce K

lowers dimensions by one, is an isomorphism in every dimension and
commutes with the boundary homomorphisms. Hence it induces isomor-
phisms

ay: H(K) ~ H,,(4) .

Let CK be the chain complex of K normalized in all directions (i.e. C,K
is the free abelian group with a generator C(s) for every ¢ € K, and
relation C(»') =0 for every r e K, ;), and let p: CK — CK be the
projection. Denote by j: AK — A4 the inclusion map. Then it may be
verified by a straightforward although rather long computation that the
composite map
- _at D
raises dimensions by one, is an isomorphism in every dimension and
commutes with the boundary homomorphisms. Hence it induces an iso-
morphism H, ,(AK) ~ H,(K). Application of Proposition 5.4 now yields
an isomorphism
a,: H(K) =~ m,(AK; &) .

16. The Hurewicz homomorphisms

Let K be a reduced complex (again this restriction is not essential).
Let

k:GK —- AK

be the projection, i.e., k maps an n-simplex of GK on the coset of [G.K,
G.K] contg.inipg it. Clearly % is a c.s.s. homomorphism. It induces
chain map k: GK — AK of the Moore chain complexes and hence induces
homomorphisms

ky: H, (GK) — H,_(AK) .

In view of the isomorphisms (§§8 and 15)
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9.¢, P): m(K) = H,_(GK)
a,: H(K) ~ H,_(AK)
the homomorphisms IE* induce homomorphisms of the homotopy groups

of K into the homology groups. It will be shown that these homomor-
phisms are exactly the Hurewicz homomorphisms [2]

By ml(K) — Hy(K) .
In fact we have

THEOREM 16.1. Commutativity holds in the diagram

P

~ n>0

~

0.(q, P) i ~ a,

Hn—l(éK) __L——)Hn—l(AK)

It follows from Theorem 16.1 that if we use for the homotopy and
homology groups the Definitions 8.1 and 15.2, then we may give the fol-
lowing corresponding definition for the Hurewicz homomorphisms.

DEFINITION 16.2 Let K be a reduced complex. Form GK and AK
= GK|[GK, GK]. Let k: GK — AK be the projection and let k:GK —
AK be the induced chain map on the Moore chain complexes. Then for
every integer n > 0 we define the Hurewicz homomorphism h: m,(K) —
H,(K) by

hy = k.
ProOOF oF THEOREM 16.1. It follows readily from the naturality of

d.(q, p), &y, b, and %* that it suffices to prove the theorem for the case
that K is an n-sphere.

Let S” be a reduced complex with an n-simplex ¢ as its only non-de-
generate simplex in dimension > 0. Embed S"in S|S"|, the total singular
complex of its geometrical realization, under the map ¢: S* — S|S*| [9].
Clearly {¢} generates =,(S"), {C¥({)} generates H,(S") and hA,{{}
= {C¥()}. Let 0,(q,p): m(S*) > m.—i(GS™; &) be the boundary map, then
8.(¢, p) {¢} = {¢}. Furthermore k(¢) = A(¢) and aC¥(¢) = A({). Hence

b {8} = ki Bula, DCY -
17. The Hurewicz Theorem
It will be shown that the Hurewicz Theorem may be regarded as

a special case of a purely group theoretical theorem.
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We first formulate both halves of the Hurewicz Theorem [2] in Theo-
rems 17.1 and 17.2 below. Again we restrict ourselves to reduced com-
plexes.

THEOREM 17.1. Let K be a reduced complex. Then the Hurewicz
homomorphism h,, : n,(K)— H(K) is onto and has [7,(K), n(K)] as kernel.

THEOREM 17.2. Let K be a reduced complex and let ny(K) = 0 for 0 <
i < n. Then the Hurewicz homomorphism h,: m,.(K) — H,.(K) is an
isomorphism and h.: m,.(K) - H,,{K) is onto.

As the definitions 8.1, 15.2 and 16.2 for homotopy groups, homology
groups and Hurewicz homomorphisms are equivalent with the usual
ones, it follows that Theorem 17.1 and 17.2 are equivalent with the fol-
lowing theorems.

THEOREM 17.3. Let K be a reduced complex. Let k: GK — AK be the
projection and let k:GK — AK be the induced chain map. Then IE*:
H(GK) — H(AK) is onto and has [H(GK), H(GK)] as kernel.

THEOREM 17.4. Let K be a reduced complex and let =,(K) = 0 for 0 <
i < n. Letk: GK — AK be the projection and let k: GK — AK be the in-
duced chain map. Then IZ*: H(GK )—»Hn(ffK ) is an isomorphism and
IE*: H,,H(CK)—»HM](AK) 28 onto.

If one tries to prove Theorems 17.3 and 17.4 group theoretically, then
it appears that the complex K plays no role at all; the only facts used in
the proof are

(a) G,K is free for all n,

(b) AK is ‘“ GK made abelian ”’

(¢) k:GK — AK is the projection.

Hence Theorems 17.8 and 17.4 and, therefore, the Hurewicz Theorem
may be considered as a special case of the following group theoretical
theorems.

THEOREM 17.5. Let F be a c.s.s. group such that F, is free for all n.
Let B = F[F, F'] and let I: F— B be the chain map induced by the projec-
tion 1: F'— B. Then l,: H(F') — H(B) is onto and has [H(F), H(F)] as
kernel.

THEOREM 17.6. Let F be a c.s.s. group such that F, s free for all n

and let H(F) = 0 for 0 <4 < n. Let B = F|[F, Fland let I: F'— B be
the chain map induced by the projection 1: F — B. Then l;: Hn(ﬁ’) —

Hn(l§) s an 1somorphism and l;: Hnﬂ(ﬁ) — nﬂ(é) s onto.
A proof of Theorems 17.5 and 17.6 is given in [6].

This content downloaded from 128.151.13.95 on Wed, 22 Jul 2015 10:59:12 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS 305

CHAPTER IV. THE GROUPS G,(L; ¢).
18. Construction of a free basis

Let L be a connected c.s.s. complex with base point ¢. Then G,(L; ¢)
is a free group for every n. By the Nielsen-Schreier theorem [8] a sub-
group of a free group is free. Hence the groups Gn(L; ¢) are free for
all n.

It should be noted that, even in case L has only a finite number of
simplices in every dimension, and hence the groups G,(L; ¢) are finitely
generated, in general the groups GW(L; ¢) have no finite basis.

It will be shown how a (in general infinite) free basis may be obtained

for the groups C;'H(L; ¢).

We first recall the notion of a Schreier system of coset representatives
and the Kurosch-Schreier theorem [8].

Let A be a free group freely generated by elements «; (5 runs through
some set J) and let Bc A be a subgroup. Denote the right cosets of B
in A by By(k runs through the set of right cosets). In each coset B,
select a representative | B, | such that |B]| = 1. Such a system of coset
representatives is called a Schreier system if it satisfies the following con-
dition:

Let a; 1 --- a, *» be a reduced word, i.e. ¢, = *1and ¢; = ¢;,, whenever
Ji = Jinr If « B Ayt is a coset representative, then so is «; RN
a, i for every i < n.

The Kurosch-Schreier theorem may be stated as follows.

THEOREM 18.1. Let A be a free group freely generated by elements «,
(GeJ) and let BC A be a subgroup. Let |B,| be a Schreier system of
representatives for the right cosets B, of Bin A. Then B is freely generat-
ed by the elements | B,|a,| By, |~ for those pairs (k,j) for which |B;|a,
# | Bya,|.

We now define the notion of a free c.s.s. group and show how, if G is
a free c.s.s. group, a free basis may be obtained for the groups C". This
result then will be applied to the c.s.s. group G(L; ¢).

A c.s.s. group G will be called free if

(a) G, 1is a free group with a given basis, for all n,

(b) the bases of the groups G, are stable under all degeneracy homo-
morphisms, i.e. for every generator o € G, and integer 7 with 0 < 7 < n,
the element o7 is a generator of G,.,.

Let G be a free c.s.s. group. Define a c.s.s. group ‘G as follows. For
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every integer n = 0, 'G, is the subgroup of G,., given by
'G, = kernel &' .
The face and degeneracy homomorphisms ¢:'G, - 'G,-, and 7':'G, —>
'G .., are the restrictions
¢ =¢'G,
7' =7''G, 0

(=]
"
n s
< I

n

Then we have

THEOREM 18.2. The c.s.s. group 'G may be converted into a free c.s.s.
group by taking as a basis for ‘G, the elements 7" « o + c~L P+ gt « y=1g
for which v € G, and o € G, is a generator such that o + o™y~

Let ©OG = G and define ™G by WG = '@, Then clearly

Gn = (n)Go
Hence n-fold application of Theorem 18.2 yields a free basis for the
group G,.

We now apply this result to the c.s.s. group G(L; ¢). Choose a maxi-
mal tree T'c L. Then G,(L; ¢)is a free group freely generated by the
elements & where ¢ is an (n + 1)-simplex of L, not in 7', and which is
not of the form o = . If & is a generator of G,(L; ¢), then clearly
oyt = oy is a generator of G,..(L;¢) for 0 <i < n. Hence G(L; ¢) is
a free c.s.s. group and n-fold application of Theorem 18.2 yields a free
basis for the group é,,(L; é).

For the proof of Theorem 18.2 we need the following lemma.

LeEMMA 18.8. The elements ry", where v € G, form a Schreier system
of representatives for the right cosets of 'G, in G,.,,.

Proor oF THEOREM 18.2. It follows from Lemma 18.3 and Theorem
18.1 that the elements 77" - ¢ - a~1e"*'9y" « y=*9" for which yy" - ¢ +# ry" -
ae®*iyn form a free basis for 'G,. As clearly y7° - ¢ = r7® - o™+ if and
only if ¢ = ge"'y* it thus remains to show that these bases are stable
under all degeneracy homomorphisms.

Let 7€ G, and o € G,,,. Then for every integer 7 with 0 << n
(Tvn e g - 0_—18n+177n . T—lvn)vt — 7,771771“1 . (O_vi) €n+2 n+1l (7’77) 77n+1
If o is a generator and o #* o™+ 9", then o7 is a generator of G,.; (be-
cause (¢ is free) and it is readily verified that o7* + on*e"**»"*1. Hence
iyl e oyt - (opt)ten iyt . (ryf) 7™+ is a generator of ‘G,.,. This com-
pletes the proof.

Proor or LEMMA 18.3. Because the composite map

vn E'n-l-l
—> Gy —— G,

G

n+1
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is the identity and 'G, = kernel "+, it follows that the elements 77"(r €
G,) form a system of representatives for the right cosets of ‘G, in G,,,.
That they even form a Schreier system can now easily be derived from
the fact that the given basis of G, is stable under the degeneracy homo-
morphism 7": G, — G,,..

19. The fundamental group

Let L be a connected c.s.s. complex with base point ¢ and let T L
be a maximal tree. We shall show, using the results of §18, that =,(L; ¢)
is a group with a generator for every l-simplex of L, not in T, and
a relation for every non-degenerate 2-simplex of L. In particular this is
the case when L is a c.s.s. complex associated with a simplicial complex
(see §11).

By definition

m(L; ¢) = kernel 8,/image 9, .
As kernel 8, = G\(L; ¢) it follows that kernel 50 is the free group generat-
ed by the elements = where r € (I, — T;). By Theorem 18.2 CI(L; ¢) is
the free group generated by the elements 77° - o - a71&'%° - y~'%° where
7€ G(L; ¢) and o € (L, — T,) is such that o # ' for some r € L, and
o #+ o'y, i.e. where r € Gy(L; ¢) and ¢ is a non-degenerate 2-simplex of
L. Thus n(L; ¢)is a group with one generator = for every 1-simplex
re (L, — T,) and a relation 8,(77° - & - o€’ - r~'3°) = 1 for every r €
G(L; ¢) and non-degenerate o € L,. However for fixed non-degenerate
o€ L,and any y € G(L; ¢)
51(7'770 «c o e 6—151770 . 7‘1770) =7- ;5—0 . ;—E" . F@)'l o
and hence the relation 51(7770 - oo tely’ - r~17°) = 1 is a consequence of
the relation
P i

Thus 7,(L; ¢) is the group with

(a) one generator 7 for every 1-simplex r € (L, — T")

(b) one relation o€ - o¢* = g¢' for every non-degenerate 2-simplex
o€ L,

20. The van Kampen Theorem for G

Let K be a reduced complex and let A and B be subcomplexes such
that A U B = K. An immediate consequence of the result of §19 then,
is the van Kampen theorem [4] which asserts that z,(K) only depends on
n,(4), m(B), m(A N B) and the homomorphisms a,: 7,(4A N B) —» =,(A) and
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by m(A N B) = 7(B) induced by the inclusion maps a: AN B— 4 and
b:ANB—B.
An analogous theorem for GK will be given below.

We recall the definitions of free product and free product with amalga-
mated subgroup [8] only for the special case needed here.

Let x, y and z be disjoint sets and denote by F'(x), ete. the free group
freely generated by the elements of z, ete. The free product of the
groups F'(z) and F'(y) then is the group F'(x Uy). Itis denoted by F'(x)
* F'(y). Clearly the group F'(z) is a subgroup of F(x U 2z) and of F(y U 2).
The free product of F'(x U 2) and F(y U 2) with amalgamation of the com-
mon subgroup F'(z) then is the group F(x Uy Uz). It is denoted by
(F(z U2)* F(y U2)re-

The notions of free product and free product with an amalgamated
subgroup carry over to c.s.s. groups by applying them dimensionwise.

The van Kampen Theorem for G now asserts.

THEOREM 20.1. Let K be a reduced complexr and let A and B be sub-
complexes of K such that A \U B = K. Then GK is the free product of GA
and GB with amalgamated c.s.s. subgroup G(A N B), i.e.,

GK = (GA *GB)gun 5

COROLLARY 20.2. Let A and B be reduced complexes with only the ver-
tex (and its degeneracies) in common and let K = A \J B. Then GK is the
free product of GA and GB, i.e.,

GK = GA =GB

PRrROOF OF THEOREM 20.1. For every integer » = 0 the group G,K is
freely generated by the elements & where o is an (n + 1)-simplex of K
which is not of the form o = " i.e. ¢ € (K,,, — K,5"). The theorem
now follows immediately from the fact that

Kn+1 - n’?n = (An+1 - An’?n) U (Bn+1 - ann)
(A N B)n+1 - (A n B)nvn = (An+1 - Aw") N (Bn+1 - ann) .

21. Computation of 7,(S?)

Let S* be a reduced complex with a 2-simplex ¢ as its only non-
degenerate simplex in dimension > 0. We shall compute 7;(S*) with the
methods of § 18.

It follows from the definition of S* that

(a) Gy(S? is infinite cyclic with ¢ as generator,

(b) GyS?) is freely generated by ¢7° and ¢7,

(e) G«S?) is freely generated by ¢7%}, C7%?* and &'yt
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Write ¢,, ¢; and &, instead of ¢7°, Z7* and £7%7'. Then it follows from (a),
(b) and (¢) and Theorem 18.2 that

(d) OGS is fz‘eely generated by the elements 8, = &% - &, - {77,
(e) OGS = GS? is freely generated by the elements

Tap =888 L0377 &t
which are +# 1(i. e. p # 0),

(f) ®GLS?) is freely generated by the elements ay* - £, - a”'9~* where
a € G(S?

(g) ®Gy(S is freely generated by the elements

By - an - Cn @’y ayt - ot - aly - BT
which are +#1, thre a € G(S?) and B € OG(S?)

(h) ®G(S?) = G«S?) is generated by the elements g(a, 8, 7) = 17" -
By e Lo @yt eyt - Lt e @yt e B Byt e < L - @7 - @l
o' - @'ty - B0 - 71, where a € Gi(S?), B e ©G(S)and e BG(SY)
= GAS?. -

_ As7,,¢’ =1 for every generator 7,,, € G(S?) it follows that kernel
0, = G(S?). By definition

73(S*) = kernel 5z/z'mage 53
Hence 7:(S?) is the group obtained from GZ(S‘) by addition of the relations
8,9(at, B, 7) = 1 for every element a € G(S?), f € ®G(S*) and 1 € GAS?).

We now compute

0s9(ct, B, 1) =1+ B« aept « Ly - e - e - LT - et - B
Braclratcady - (G aTiey s T
in terms of the generators r,,. It is readily verified that

(j) there exists a unique element 75 € G(S?) and a unique integer g
such that 8 = rg - &

(k) B =

(1) there exists a unique element 3, € ®G,(S*) and a unique integer
r such that « = 3, - &7

(m) there exist a unique integer p, an integer » > 0 and integers
€y *** 3 & Q1 s Qny D1y **° » D
such that @ = 7, %1+« +74,5, 7 8- &1
(n) ae® =C3
(0) aey' =107
(p) ae'y' =7
Consequently
‘880770 aeov C a-IEO a507]0 CO—I . a—18070 . ﬂ-leovﬂ — Tq.p
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Furthermore

q £ g, — H € q
CO . qu,pll e cee o an'l’n O qu_"q'pl le eee o an‘““’nn . CO

Hence the relation 8,9(ct, 8, ¥) = 1 may be written
T Tan * T8 Tapramt * °** * Tagta, 0, " * Tovar
‘ Tq+q+1,pn_e" S e qu-t-q+1,pl—81 ‘ Tq,p+r_1 ¢ Tﬁ—l =1
Given two integers s and ¢ with s # 0 it is clearly possible to choose
«, f and 7 in such a manner thatp, = s, s =¢t, p=q¢g=r=p,=¢, =0
fori > 1,¢ =1and y = 7 = 1. This yields the relation
(21.1) Tes® TMl,s_1 =1

Given three integers s, ¢ and u with s #= 0, w # 0, it is also possible to
choose a, B and y such that p =s,¢g=¢, r = u, p, = ¢, = 1 for all 7 and
v = 1 = 1. This yields the relation

Tis * Ts+tu ® rt,s+u-1 =1 ’
and combination of this relation with relation 21.1 yields the
(21.2) Tes * Tew® Toystu = = 1.

It is readily verified that all relations 5ag(a, B, r) = 1 are consequences
of the relations 21.1 and 21.2 and it follows that =,(S®) is an infinite
cyclic group generated by the coset of image 9, in G,(S?) which contains
the element

Ton=C & &t - 0_1=[E’717 E’?o]-

APPENDIX
22. The construction F of J. W. Milnor

Let L be a c. s. s. complex with base point ¢. J. W. Milnor [10] defined
a c.s.s. group F'L which is a loop complex for the suspension of L. Let
SL denote the reduced suspension of L (see below), then it will be shown
that FL is, in a natural manner, isomorphic with GSL.

We recall the definition of FIL. The group of the n-simplices, F,L, is a
free group with one generator o* for every nm-simplex o € L, and one
relation ¢, = e,, where ¢, = ¢7°-.-7*. The face and degeneracy
homomorphisms are those induced by the corresponding face and degen-
eracy operators of L, i. e. they are given by

=)
IA
IA
S

oet = (oe)

o_.vi — (O.vi)- O

IA
IA
3
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The reduced suspension of L is the c.s.s. complex SL defined as follows.
For every integer n > 0 the n-simplices of SL are the pairs (k, s), where
k = 0 is an integer and ¢ € L,_, is a simplex, identifying (k, ¢,-,) with
(n, ¢), and (0, o) with (dim o, ¢). The face and degeneracy operators are
determined by the formulas

(k, o)¢' = (k, o€ (k, o)t = (k, o7) 1 < dim o
k + 1, o) = (k, o) k,o=(k+1,0) ¢>dimo.

Clearly SL is a reduced complex, its only 0-simplex being (0, ¢).
We can now formulate

THEOREM 22.1. Let L be a c.s.s. complex with base point. Then the
¢.s.s. homomorphism A : FL — GSL defined by

o) =(1, o) g€ L

s an isomorphism.
The proof is straightforward.

23. The construction G*

A c.s.s. complex H* is called a c.s.s. monoid if

(a) H; is a monoid (i. e. associative semi-group with unit) for all #,

(b) all face and degeneracy operators are homomorphisms.

Let K be a reduced complex. A subcomplex G*K c GK will be defined
such that

(i) G*Kis a c.s.s. monoid

(i) if K satisfies the extension condition, then G*K = GK

(iii) if K = SL, then G*K is, in a natural way, isomorphic with F*L,
where F*L c FL is the c.s.s. monoid defined by J. W. Milnor [10]

Let K be a reduced complex. Then we define G*K as the smallest
subcomplex of GK such that

(a) o € G*K for every simplex ¢ € K

(b) G*K is a c.s.s. monoid

THEOREM 23.1. Let K be a reduced complex which satisfies the extension
condition. Then G*K = GK.

Proor. It suffices to show that 0! € G*K for every simplex o € K.

Let ¢ € K,,,. Then there exists an (n -+ 2)-simplex p € K such that

pe"*t = ¢ and pe™*! = oe"*y», But p € G*K and hence
Ean+1 = pen+T. (p€n+2)—1 —ole G*K .

q.e.d.
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Let L be a c.s.s. complex with base point. Then F*L may be defined
[10] as the smallest subcomplex of F'L such that

(a) o' € F*L for every simplex ¢ € L

(b) F*L is a c.s.s. monoid.

Hence an immediate consequence of Theorem 22.1 is

THEOREM 28.2. Let L be a c.s.s. complex with base point. Then the
restriction | F*L : F*L — G*SL is an 1somorphism.

HEBREW UNIVERSITY, JERUSALEM, ISRAEL
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