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Introduction. The purpose of this paper is to give a proof of the following splitting
theorem in stable homotopy theory. We assume all spaces are localized at a fixed
prime p. Let Sfk be the symmetric group on {1,.. . , k}, Q(.) = lim QmSn(.), and Qk8°,
kel, denote the components of QS°.

THEOREM. There exists a map t: Q08°-+QB£fp such that

is an equivalence at p for any map f: BSfp ~> Q08° with /„, non-trivial on H2p_3(.;
Here f denotes the infinite loop map induced by f. The result continues to hold if BS?P is
replaced by BZ/p.

The proof contains two main ideas. First the well-known homology equivalence
0a,: B&>

a,-+Qos° <4> 1 2>i s u s e d t o approximate Q08°. Second, the transfer morphism
for generalized cohomology theories is used to construct t. We then proceed to show
tha t / • t induces an isomorphism in H+(.; Z/p) by applying the results of our study(l3)
of the transfer in the homology of symmetric groups.

This theorem was announced in (11). Since then other proofs have been given by
Segal(21) and the first author(lO). The transfer has been studied byRoush(20), Becker
and Gottlieb (2), Becker and Schultz(3), Dold(7) and others. It is now well treated in
the literature. Adams (l) has established the uniqueness of/(up to equivalence). The
theorem itself has found several applications (17, 19, 20) and the techniques of the
proof have been used by the second author to study G and G\O (18).

In view of all this, we have chosen to limit our exposition to a direct self-contained
proof of the theorem relying only on (13). For further applications see ((11), 1-8, 2-4,
3-6-7). In Section 1, we recall the definition of the stable transfer for coverings and
show that in cohomology it induces the ordinary transfer homomorphism for the
cohomology of coverings. Section 2 is devoted to the proof of the theorem.

1. Preliminaries on the transfer. In this section, we use Boardman's 'little cubes'
spaces to define the transfer for finite coverings. The resulting definition is more
concise and transparent than the one given in (li). We also give a proof of the basic
fact that the stable transfer induces the ordinary transfer homomorphism in co-
homology.

A 'little 7i-cube' c: in t / n ->int / m is a linear embedding with edges parallel to the
coordinate axes (i.e. c = dlx ... xdn, wheredf (0, l)->(0,1) is a linear map

), 4-1)
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104 D. S. K A H N AND S. B. P R I D D Y

Let ^n(^) = {(ci> •••>cfc)lci a little w-cube, I m ^ nlmfy = 0 , i 4= j}.

(c1(..., ck) can be regarded as a continuous function

(c1( ...,cfc): i n t / n I l . . . IIint/n->int7n.

Given the compact-open topology #„(&) is (n — 2) connected and Sfk acts freely on the
left by permuting little cubes

T(CX, ...,Ck) = (CT-itt), . . . . C , - ! ^ ) ) .

An inclusion o~n:
 <^n{Jc)-^-<iSn+x{k) is defined by

O"n(Ci Ck) = {C1Xl,...,CkXl),

where 1 = id on (0,1). Let ^(fc) = U *»(*)•
n

Let II: E-+B be an i^-fold covering with $ connected and B a CW complex. Let
H = ^(.S), G = 7T1(£). Then II: E-+B is isomorphic to the covering p: XjH-^XjG,
where X is a universal covering of B and p is the projection. X can be given the struc-
ture of a CW complex so that G (and hence H) act freely and cellularly on X from the
right (22). Let GjH = {rxH,..., TNH] be the left cosets of H in G. Then G acts on the
left of G\H as a group of permutations and thus defines a representation p; G -^-S^N by

(1 • 1) grt = T ^ x ^ for some Aceff.

Since G acts freely and cellularly on X and since ^X{N) is a contractible y^-space,
there is a p-equivariant map p+: X-^^^N) which is unique up to a p-equivariant
homotopy (6). (Here, we view G acting on the left of X by gx = xg~x.) Define

by ®(x) = (p+(x); XTlt xr2, ••-, xrN), where x is the class of a; in X\G and xri is the class
of xri in XjH. Here S?N acts on the left of (X/H)N by permuting coordinates:

<r(xi XN) = (^(r-Mi) X

Thus, £-1(w;x1,...,xN) = (£-1w;x£(i),...,xgN)) describes the action of S?N on

LEMMA 1-2. Q> is well defined and a change ofcoset ordering does not change the homo-
topy class of O.

Proof. Since H acts on X from the right, xrji = xri and <b is independent of the choice
of coset representative. To see that 0 is well defined, we note that

= (p*(xg); xgrltxgT2 xgrN)

= (P(9 X)-P*(*); a^^ci) OTptoHiv)) = (/9*(a;); a;Tj XTN) = 0(5).

Before examining the effect of a change in the order of the cosets, we note that <I>
may be defined by the use of any p-equivariant map p%: X -> ̂ ( iV) without changing
the homotopy class of O.
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Now let r'iH = T^yH, eet?N, be a reordering of the cosets. Then p' = e~xpe and the
map p* = e-x.p+: X-*-(<o ^(N) is/>'-equivariant. With this choice of p'*, G>' = 0, for

Remark. The earliest precursor of the map <J> seems to be the homomorphism
W: G^S^NJH defined by Evens(9) via the formula Tfer) = (p(g); hx, ...,hn) withp,ht

as in (1-1); i/r is well-defined up to conjugation. Letting EG be a universal cover of BG,
we construct <I> for the cover BH ~ EG/H-s-EG/G = JBG and show that $ may be
taken for BW. First note that

x ys(EGIH)» = [VJN) x

It is easily checked that the map $ ' : EG-t-tf^N) x (EG)N given by

is T-equivariant. Upon dividing by G and S^NJH respectively, we obtain the pre-
transfer <!>: BG-^^x(N)x ys{EG\H)N. This is all that is necessary to identify the
homotopy class of $ with that of BY.

Let (.)+ denote the addition of a disjoint basepoint. The pretransfer

T:

is the unique pointed map extending O.
We turn now to defining the transfer for a generalized cohomology theory. If Y is

a pointed space Q.nY = (Y, «,)«">>. The Dyer-Lashof map for €inY

is defined as follows: if (clt ...,ck)e&n(k), (flt...,fk) e (Q.nY)k and ueIn, then

(fiC^iu) if

If Y = {Yq} is an Q-spectrum (all Q-spectra are assumed strict, i.e. Yi = OYi+1;
May (15) shows these spectra are adequate), then the maps d\ fit together (via aH) to
give a map * : * < * ) x

The (Y-cohomology) transfer morphism

p': H^X/H; Y)-+H*(XIQ: Y)
is defined by

p\oc) = [9^.(1 x^a^)-T]:

x yjf ttXIH+)»i-^X Va{N) x y, ( 7 f l ^ - ^ Yq,

where a: (XjH)+^-Yq represents a. The following is now clear.

PROPOSITION 1-3. The transfer pl is well defined and natural with respect to morphisms
of strict Q-spectra.
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Next we consider a stable version of the transfer. Let/: {X(G)+^-Q({XjH)+) be the
composite

x
where i: {XjH)+^Q({XjH)+) is the inclusion, i.e.

for the Q-spectrum Y with Yk = Q(T.k((XIH)+)). If Z<°X denotes the suspension
spectrum of X, then the stable adjoint of/

adj/: L»(Z/G)+-*Z"(Z/H)+
is a map of suspension spectra.

PROPOSITION 1-4. 7/ E is an Q-spectrum, then

H*(XjH; E)-^H*(X/G: E)

• !
<r x \ <r

(adi/)*
h; li<) > i i *(ii(A/Cr)+;li>)

commutes, where a denotes the suspension isomorphism.
Proof. Let [a]eHQ(XIH; E) and consider the homotopy commutative diagram

where r is the retraction map. The top row represents #'([a]) and so its stable adjoint
Sco((X/G!)+)->-E is a map of degree q which represents 2>'([a])- The stable adjoint of
the bottom route is a map

• E

of degree g which represents (adj/)* (o-a). This completes the proof.
We now investigate adj/in case E is an Eilenberg-MacLane spectrum K(A), where

A is an abelian group. The nth space of the strict Q-spectrum K(vl) is denoted by
K(A,n). We can find a homotopy equivalence I: K{A,n)^~K', where K' is an abelian
topological monoid. We may also assume that I carries the constant loop to the unit
of K'. The homotopy equivalence I converts the Dyer-Lashof maps for K(A,n) into
a particularly simple form. Let SPk(X) = Xk\Sfk be the symmetric product.

PROPOSITION 1-5. There is a homotopy commutative diagram
i

SPk(K(A,n)) > SPkK''
where n is projection on the second factor and /i is induced by addition.
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Proof. Let c41 be a homotopy of the little m-cube ci to the identity map on int Im.
Clearly we can arrange c41 to be a homotopy through little m-cubes (e.g. expand ci

linearly to fill int/m). The desired homotopy between Z - ^ a n d / i ' SPk(l) • n is given

^ ('Llficj'1(u) if uelmcit for some i
H c*).(/i.-.AM) = | * if

Let us now assume p: X/H->X/G is a covering in the category of CW complexes
with X simply connected. The ra-cells of X are freely permuted by G acting on the
right of X. Let the orbits of the »-cells be indexed by the set J and for each oteJ, let
<j>a: {en, e'n) -*• (Xn, X™-1) be the characteristic map of one of the cells in the orbit a.
Then the cells of X have as characteristic maps {Eg- <f>a\ae J, <7 s #}. where Rg{x) =x.g.
The characteristic maps of the n-cells of XjH is the set {PH'^u'^a}' where

JV

and pH is the projection X -> XjH. Finally the w-cells X/<? have as characteristic
maps {j>a'<j>g}, where po is the projection X ->X/G.

By abuse of notation, let us denote cells by their characteristic maps. The classical
transfer is given by the cochain map

tr*: Cn(X/H; A)-*Cn(X/G; A)

N

defined by (tr*«) (po-<f>a) - S u(pH-RTi-<f>a).

PROPOSITION 1-6. Let K(A) denote the Eilenberg-MacLane spectrum. Then

[X/G.K']

commutes, where d is the natural isomorphism. Thus the transfer p1 agrees with the
classical transfer for ordinary cohomology.

Proof. ~Letf:XIH->-K(A,n) represent a cohomology class [f]eHn(XjH; K(A)).
We may assume t h a t / carries I * " 1 ^ to the base point of K(A,n). Then the natural
isomorphism d assigns to [/] the cohomology class of the cocycle uf whose value on
pg • RTi • 4>a is the homotopy class [fpH • RTi • 0O] e nn(K(A, n)) = A. By Proposition 1-5,
l*pl[f] is represented by the composition

^ ^ SP»(XIH)^l»(SPK(A,n))

- ^ K'.
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108 D. S. KAHN AND S. B. PBIDDY

Upon composition with po • <j>a, we obtain the composite map

Since this represents the homotopy class

J i P • ,
the proof of 1-6 is complete.

Remark 1-7. In the situation of Proposition 1-4, consider the map

adj / : La>((Z/G[)+) = S
Since .X/# is connected one may pinch to a point S00^0 in both the source and target
and thus obtain a map ZCO(X/G!) -*• Sc0(X//f) whose induced cohomology homo-
morphism is equivalent to a transfer on reduced cohomology groups. We shall call
this map the stable reduced transfer and denote it by tr.

Remark 1-8. Consider the situation of Proposition 1-4. It follows from 1-6 and the
universal coefficient theorem (if X/G has finite type) that the induced ordinary homo-
logy homomorphism (adj/)* with 1/p coefficients (p a prime) is equivalent to the
classical ordinary homology transfer. This fact can be proved directly and holds for
integer coefficients also.

2. Proof of the Theorem. We begin by recalling some preliminaries on the homology
of £?n and Q0S°. Throughout this section, all (co)-homology groups are taken with
simple coefficients in Z/p.

The homology of SPm is described in ((13), § 1); a 2/̂ j-basis is given by

H^B^m = {e7i* ... •ejSp'W < ra,^ admissible},

where * denotes the map in homology induced by the pairing S?k x ^j-^-^fc+j-
Let Qf HkQ0S°->H^^QQS0 denote the Dyer-Lashof operation derived from the

loop product. By (8),
H*Q0S° = A[Qj[\.]* \_-0"\\I admissible],

where A [. ] denotes the graded free commutative algebra functor and where * denotes
the loop product in Q08° and also the induced product in homology. A weight grading
can be denned in H+QgS0 by setting

w[x*y) = w(x) + w(y).
Consider the composite

. » * » ( n ) x ^ Q ^ ) - - ^ QnS°

where 6% is the Dyer-Lashof map and [ — ri\ is the basepoint of Q_n*S°. In homology
<pnm is an isomorphism in dimensions < \n (4, 16). Furthermore
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LEMMA 2-1. / / / : BSPp-+Q0S° is non-trivial on H2p_z{.) then/*(e2i(p_1)_e) is a non-
zero multiple of Q2np-j)-e[l] modulo terms of weight > p (e = 0,1).

Proof. The y-Sylow subgroup nc yp is cyclic of order p; hence H*(B£7p) imbeds
in H*(Bn) « Eixj] ® P[y2] (PfxJ if p = 2). Here E[ ] denotes the Exterior algebra,
P[ ] denotes the polynomial algebra and the subscript denotes the dimension. The
result follows from the known action of the Steenrod operations on H*(Bn).

If Y is an infinite loop space and a: X-> Y, then there is a natural extension
a: Q(X) -> Y given by a = r • Q(oc), where r: Q( Y) -*• Y is the retraction (15).

Proof of the Theorem. Sf{jpk,p) = n j . . . jn (k factors) is a^-Sylow subgroup
Consider the composite

Pk:
where trft is the stable reduced transfer (1-7) for the covering BSP{jpk,p)->BSfpk and
gk is the composite

Our first task is to show pk, is an isomorphism in homology in dimensions <
Let A = [6f(pk,p): £%*] and let i: ^'(pk,p)^-S^pk denote the inclusion. If

x = ejS.-. + e^eHtB&'pk,

then by Propositions 1-4,1-6 above and theorem 3- 8 (13) we have (in the notation of (13))

where l(I'}) = Z(/,) and ^ ( S ^ l . . . ^ . ) = (A- 1)*. Thus

9k' trfc. (a:) = Qj,(eh) * ... * Qj,(eh) + ̂ Qj^) *...* Qj-{eu),

where (J^ji) = / t , (J'i,ji) = I[- By Lemma 2-1, we have

modulo terms of higher weight. Now, applying the Cartan formula and observing
that Qj(.) and * do not decrease weight, we have

Pk.{x) » A{Q7i[l] * ... * QIt[l] * [ -pWif})

modulo terms of higher weight. Hence pk, is an isomorphism in the desired range.
Next we observe that the maps \jrk = S00^ • trfc determine a map

such that Z 0 0 / - ^ is a homology equivalence. LetBS?'*) denote the n-skeleton (which
can be assumed finite) and let ^ c \SLBaS/>(^, ZXQBS^P] be the set of all homotopy
classes [a] such that ^-f ^

is a homology equivalence up through dimension \n. We have just shown that
fk e 3fvk. Since \Z^B6^\ WQBSfj,] is finite, we see that ^ is a non-empty finite set.
Thus l i m ^ =f= 0. Since BS^W = \JB^ the desired ^ exists.
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110 D. S. KAHN AND S. B. PREDDY

Applying Q°° and localizing all spaces at p, we have an equivalence

Q{Q0S°).

Further, since $„: BSfm^-Q08° is a homology equivalence, QQ^: QB£fw->Q(Q08°)
is an equivalence. Thus there exists a map k: Q{QS0)^-QQBS^p such that Qf -k is an
equivalence. Now consider the commutative diagram

Q(Q0S°)

where r-i = id. Let A be a homotopy inverse of Qf-k and set t = r-k-h-i. Then
f-t =f-r-k-h'i = r-Q(f)-k-h-i ~ r-i = id and so/*t is an equivalence as desired.

Since g factors through QBn, the result also holds for Bn. This completes the proof.

This research was supported in part by NSP grant MPS 76-07051.
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