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Abstract
We study the F2-synthetic Adams spectral sequence. We obtain new computational
information about C-motivic and classical stable homotopy groups.
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1 Introduction

The topic of this manuscript is the computation of the stable homotopy groups

πn = colimk πn+k(S
k),

where πn+k(Sk) is the group of based homotopy classes of maps from a sphere Sn+k

to another sphere Sk . These groups are a central object of study in topology. For n > 0,
each stable homotopy group is a finite group [19]. Therefore, we can compute πn by
studying its p-primary components for each prime p. In this manuscript, we consider
only the 2-primary components.

Building on earlier work of many authors, the 2-primary stable homotopy groups
are mostly computed for n ≤ 90 in [13, 14]. However, there are a few gaps in those
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computations; for example, π82 and π83 are computed only up to a factor of Z/2. Our
work completes the computation of both π82 and π83.

Theorem 1.1 (1) The 2-primary component of π82 is (Z/2)6 ⊕ Z/8.
(2) The 2-primary component of π83 is (Z/2)3 ⊕ (Z/8)2.

The proof of Theorem 1.1 is to show that a particular element h6g + h2e2 in the
Adams spectral sequence is a permanent cycle.We construct a certain six-cell complex
that allows us to identify a homotopy class that must be detected by h6g + h2e2. The
structure of the argument is similar to the proof that the Kervaire class h25 survives [3],
but the detailed supporting computations are different.

From [14, Lemma5.24],we already know that h6g+h2e2 survives to the E9-page of
theAdams spectral sequence, but there is a possible non-zero value for d9(h6g+h2e2).

Remark 1.2 Mark Behrens suggested an argument using height 2 chromatic homotopy
theory that would rule out this differential, whichwould provide a completely different
argument that h6g + h2e2 is a permanent cycle.

A distinguishing feature of our argument is the use of the F2-synthetic Adams
spectral sequence.Motivic stable homotopy theory is useful for classical computations
because it is an enhancement of classical stable homotopy theory. This can be made
precise using the language of deformations [8, 9, 18]. In this manuscript, we use F2-
synthetic stable homotopy theory, which is a different enhancement of classical stable
homotopy theory and provides access to different pieces of information. Here we are
using F2 as shorthand for the Eilenberg–MacLane spectrum HF2.

In addition to the study of h6g+ h2e2, this manuscript also includes the proofs of a
number of less prominent computations about stable homotopy groups. These results
fill in several gaps left by the motivic techniques of [14]. Individually, these facts have
little direct connection, but their proofs all use the same basic idea of exploiting the
additional structure ofF2-synthetic stable homotopy theory. Tables 1 and 2 summarize
the precise results that we prove.

Theorem 1.3 (1) Table 1 lists some differentials in the F2-synthetic Adams spectral
sequence.

(2) Table 2 lists some hidden extensions in the F2-synthetic Adams spectral sequence.

Not all of the results in Tables 1 and 2 are new. In a few cases, we have pro-
vided simpler proofs of facts that were previously known to be true by more intricate
arguments. Very recently announced machine computations [15] independently verify
some of our results. However, current machine results do not establish that h6g+h2e2
is a permanent cycle, so our argument regarding that particular element is the only
known proof.

Most of the notation in Tables 1 and 2 is the same as in [14]. The exceptions are
λ, which is the F2-synthetic parameter analogous to the motivic parameter τ ; and˜2,
which is our notation for an F2-synthetic homotopy class such that λ˜2 = 2.

Regarding degrees in these tables, s and f represent the familiar topological stem
and Adams filtration, respectively, while d is the “synthetic degree”. In short, if x
is a classical element in Adams filtration f , then λr x is a synthetic element whose
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Table 1 Some Adams differentials

(s, f , d) Element r dr Proof

(56, 9, 9) Ph5e0 5 λ4il Proposition 3.1

(61, 6, 6) A′ 5 λ4Mh1d0 Proposition 3.8

(70, 4, 4) p1 + h20h3h6 5 λ4h22C
′ + λ4h3(�e1+C0) [14, Lemma 5.61], [15]

(71, 5, 5) h1 p1 5 λ4h1h3(�e1 + C0) [15]

(83, 5, 5) h6g + h2e2 9 0 Theorem 2.17

(93, 13, 13) P2h6d0 6 0 Proposition 3.29

(93, 13, 13) t Q2 6 λ5MP�h1d0 Proposition 3.31

Table 2 Some hidden extensions

(s, f , d) Source Type Target Proof

(71, 5, 5) h1 p1 ν 0 Proposition 3.10

(74, 6, 6) h3n1 ˜2 λx74,8 Proposition 3.11

(77, 7, 7) m1 ν 0 Proposition 3.13

(77, 7, 5) λ2m1 η 0 Proposition 3.14

(77, 12, 12) M�h1h3 ν λ2Mh1e
2
0 Proposition 3.6

(79, 7, 7) h2x76,6 η 0 Lemma 3.26

(81, 12, 12) �2 p ν 0 Proposition 3.21

(84, 10, 10) Px76,6 ˜2 0 Proposition 3.28

synthetic degree is f − r . See Sects. 1.1 and 1.4 below for a more careful discussion
of degrees and notation.

To carry out the computations in Tables 1 and 2, we need a number of technical
supporting details, including some Toda bracket computations as well as some careful
choices of stable homotopy elements.

Theorem 1.4 (1) There exist elements in theF2-synthetic stable homotopy groups with
the properties shown in Table 3.

(2) Table 4 lists some Toda brackets in the F2-synthetic stable homotopy groups.

1.1 The Synthetic Adams Spectral Sequence

For simplicity,we use themore concise term “synthetic” instead of “F2-synthetic”. The
only two synthetic homotopy theories under consideration in this manuscript are the
F2-synthetic and BP-synthetic ones. To avoid confusion, we use the term “motivic”
to describe the latter homotopy theory.

We have made no particular effort to write a self-contained document. Rather, this
manuscript is a companion to [14], and it is just one part of a larger program to compute
stable homotopy groups in a range. We refer to [6, Section 9 and Appendix A] and
[18] for foundational material on the construction and properties of synthetic spectra
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Table 3 Some elements in the F2-synthetic stable homotopy groups

(s, d) Element Properties Defined in

(77, 7) μ Detected by m1 Lemma 3.15

λ2ημ = 0

νμ = 0

(79, 8) β λνβ = 0 Lemma 3.19

λ3β ∈ 〈˜2, λ2η, λμ〉
(82, 8) α 2α = 0 Lemma 3.24

λ3α + λκθ5 ∈ 〈λ2η, λμ, ν〉

Table 4 Some Toda brackets

(s, d) Bracket Detected by Indeterminacy Proof

(46, 7) 〈η,˜22κ2,˜2〉 Mh1 λ4d0l Lemma 3.3

(77, 12) 〈˜22κ2,˜2, {�h1h3}〉 M�h1h3 0 Lemma 3.5

(79, 5) 〈λμ, λ2η,˜2〉 0 or λ9Me20 λ3h0h2x76,6 Lemma 3.16

(82, 5) 〈ν, λμ, λ2η〉 λh25g ? Lemma 3.22

(84, 8) 〈ν, η, {h2x76,6}〉 λ2Px76,6 ? Lemma 3.26

and synthetic Adams spectral sequences. Also, [11, Chapter 6] foreshadows many of
these ideas in the motivic setting.

We provide a short overview of the structure of the synthetic Adams spectral
sequence from a computational perspective. The synthetic Adams E2-page is tri-
graded by stem, Adams filtration, and synthetic degree. The first two gradings are the
familiar ones from the classical Adams spectral sequence.

The synthetic homology of a point is equal toF2[λ], where the synthetic degree of λ
is−1. We use the letter λ for the synthetic parameter to distinguish it from the motivic
parameter τ . In the long run, we foresee computations that possess two parameters
simultaneously, and this notation is convenient for that purpose.

The synthetic Adams E2-page is a free F2[λ]-module whose generators are in one-
to-one correspondence with an F2-basis for the classical Adams E2-page. For each
basis element x of the classical Adams spectral sequence in stem s and filtration f ,
there is an F2[λ]-module generator of the synthetic Adams spectral sequence in stem
s and filtration f , and whose synthetic degree is also f . We use the same letter x to
represent this generator of the synthetic Adams E2-page.

Different authors have chosen different conventions regarding the synthetic degree.
Our choice is based on practical convenience, but unfortunately it is incompatible
with the traditional use of motivic weight. More precisely, the Thom reduction map
BP → HF2 induces a functor from BP-synthetic to F2-synthetic homotopy theory.
By careful inspection of definitions, this functor takes τ to λ2. In terms of stem,motivic
weight, and synthetic degree, the functor induces a homomorphism from the motivic
homotopy groupπs,w to the synthetic homotopy groupπs,2w−s . Beware that the formal
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suspension has synthetic degree −1. For example, the cofiber of an element γ of the
synthetic homotopy group πs,d has two cells in dimensions (0, 0) and (s + 1, d − 1).

The synthetic Adams differentials are in precise correspondence with classical
Adams differentials. For each classical differential dr (x) = y, we have a synthetic
differential dr (x) = λr−1y. Consequently, the class y itself is not hit by a differential,
but y is annihilated by λr−1 in the E∞-page. Moreover, y detects a homotopy class
that is annihilated by λr−1.

The synthetic Adams spectral sequence can be described as the classical Adams
spectral sequence “with history”. The Adams differentials can be reconstructed from
the E∞-page, since each element annihilated byλr−1 corresponds to a non-zeroAdams
dr differential.

Ifwe invertλ in the syntheticAdams spectral sequence, thenwe recover the classical
Adams spectral sequence tensored with F2[λ±1]. In more naive terms, the λ-free part
of the synthetic Adams E∞-page is identical to the classical E∞-page.

On the other hand, the λ-power torsion elements in the Adams E∞-page represent
exotic phenomena. These torsion classes can be the targets of hidden extensions that are
not seen classically. In general, the additional structure encoded in the λ-power torsion
can be exploited to carry out computations. These phenomena are well illustrated in
[2, 5, 7, 16].

1.2 �70 and�71

The value of the Adams differential d5(p1 + h20h3h6) given in Table 1 is not proved in
this manuscript. Very recently announced machine computations [15] led to the dis-
covery of a mistake regarding this differential. Note that the value of d5(p1 +h20h3h6)
claimed in [14, Table 8] is incorrect, although [14, Lemma 5.61] is correct.

We now know that there is a non-zero differential d5(h1 p1) = λ4h1h3(�e1 + C0)

that was previously believed to be zero. Therefore, the values of π70 and π71 in [14,
Table 1] are incorrect. The correct values for the 2-primary v1-torsion in π70 and π71
are

(Z/2)6 ⊕ Z/4, (Z/2)5 ⊕ Z/4 ⊕ Z/8

respectively.
Also, [14, Table 15] claims that there is a non-zero hidden 2-extension from h1h3H1

to h1h3(�e1 +C0) in the classical 70-stem. This is incorrect; h1h3(�e1 +C0) is now
known to be zero in the classical Adams E∞-page.

1.3 Organization

The main goal of Sect. 2 is to establish Theorem 2.17, which shows that h6g+ h2e2 is
a permanent cycle. This argument depends on several technical computations in stable
homotopy groups, whose proofs are assembled in Sect. 3.

Section 3 contains a number of computations. Many of these computations are
independent facts whose proofs are not directly connected. Some of the computations
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are used in the proofs of later computations. The results are arranged mostly in order
of increasing stem. However, there are a few exceptions to this general principle so
that each individual computation depends only on previous computations.

1.4 Notation

By default, we work in the synthetic Adams spectral sequence. Occasionally, we
consider the classical or C-motivic Adams spectral sequence; we will be explicit
when that occurs.

We use the same notation as [14] for elements of the Adams spectral sequence and
for elements in stable homotopy groups. For an element x in the Adams E∞-page,
let {x} represent the set of all homotopy elements that are detected by x . This set
possesses more than one element when there are other elements in filtrations higher
than the filtration of x .

We write˜2 for an element in π0,1 that is detected by h0. We choose˜2 such that
2 = 1+1 in π0,0 is equal to λ˜2 and is detected by λh0. Another possible notation for˜2
is h, which some authors have used for the motivic homotopy element that is detected
by h0. It stands for “hyperbolic” because of its relationship to the hyperbolic plane as
an element of the Grothendieck–Witt group. It also stands for “Hopf” because it is the
zeroth Hopf map (followed by η, ν, and σ ).

Most of our results are stated with the degrees in which they occur. This makes the
manuscript easier to use for readers who are seeking specific results.

2 The Permanent Cycle h6g + h2e2

Our goal is to show that the element h6g+h2e2 in the 83-stem is a permanent cycle.We
begin by sketching a line of reasoning without supporting details. Motivated by this
sketch, later in this section, we give a precise argument that relies on a number of spe-
cific computational facts about various stable homotopy groups. These computational
facts appear in the tables in Sect. 1, and their proofs are given in Sect. 3.

One might expect that the element h6g detects the Toda bracket 〈2, θ5, κ〉 since the
relation 2θ5 = 0 (proved in [21]) is suggested by the Adams differential d2(h6) =
h0h25, and κ is detected by g. There are two problems with this hope. First, we do not
expect h6g itself to be a permanent cycle. Rather we expect the linear combination
h6g+h2e2 to survive. Second, the Toda bracket is not defined because θ5κ is non-zero
and detected by h25g in the 82-stem.

But there is a relation h25g = h2x1 in the Adams E2-page. Therefore, one might
hope for a matric Toda bracket of the form

〈

2,
[

θ5 ξ
]

,

[

κ

ν

]〉

,
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Fig. 1 The six-cell complex X

where ξ is detected by x1. The existence of such a bracket would require that 2ξ = 0.
This relation is created by the Adams differential d2(e2) = h0x1. This is a promising
sign because we anticipate the appearance of h2e2.

But the matric Toda bracket has a fatal flaw because x1 does not survive; in fact,
d3(x1) = h1m1. Therefore, we want to replace the entry ξ in the above matric bracket
with something involving the relation ημ = 0, where μ is detected by m1.

At this point, the language of matric Toda brackets of maps between spheres is
no longer adequate because of varying lengths of the null compositions that go into
the construction. The cell complex construction that we adopt is a way of turning the
above sketch into a precise argument.

2.1 The Construction of a Six-Cell Complex X

In this section, we will construct an explicit cell complex X that has six cells in
bidegrees

(0,−2), (20, 4), (3, 1), (81, 6), (83, 4), (83, 7).

We also construct some closely related complexes that map to X or receive a map
from X . Using standard obstruction theory, we will construct X by attaching cells to
smaller complexes.

The spectrum X can be intuitively described in terms of the cell diagram in Fig. 1.
See [3, 10, 20] for other uses of cell diagrams. In this figure (and throughout the
construction of X ), we refer to the elements α, β, and μ shown in Table 3.

Step 2.1 To begin, Lemma 3.15 implies that λμ ·λ2η is zero. Therefore, we can form a
three-cell complex Y with cells in bidegrees (3, 1), (81, 6), and (83, 4). The attaching
maps for Y are λμ and λ2η. The first part of Fig. 2 shows a cell diagram for Y . Note
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Fig. 2 Some complexes related to X

that Y comes equipped with inclusion iY : S3,1 → Y of the bottom cell and projection
pY : Y → S83,4 to the top cell.

Beware that the construction ofY depends on a choice of null-homotopy forλμ·λ2η.
For now, this choice is immaterial. However, later in Step 2.8, we will make a choice
of null-homotopy with specific additional properties.

Step 2.2 Next, consider the composition iY · λβ : S82,8 → Y . Let Q be the cofiber
of this map. The second part of Fig. 2 shows a cell diagram for Q. Note that Q comes
equipped with inclusion iQ : S3,1 → Q of the bottom cell.

The top cell of Q is only attached to the bottom cell in bidegree (3, 1), so the
projection pY : Y → S83,4 extends to a projection pQ : Q → S83,4 to the third cell
of Q. More formally, the dashed arrow in the commutative diagram

S82,8
iY ·λβ �� Y

pY
��

�� Q

pQ���
�
�
�

S83,4

exists because the top row is a cofiber sequence and because the composition pY ·iY ·λβ
is zero (since pY · iY is zero).

There is also a projection p′
Q : Q → S83,7 ∨ S83,4 to the top two cells. The first

component of p′
Q is projection to the top cell, and the second component is the map

pQ defined in the previous paragraph.

Step 2.3 Now consider the composition (λθ5, λα) · pQ : Q → S21,3 ∨ S1,−3. Define
X to be the fiber of this map.
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Note that X comes equipped with an inclusion iX : S3,1 ∨ S20,4 ∨ S0,−2 → X
of the bottom three cells because they are not attached to each other. More formally,
consider the diagram

S3,1

���
�
�
�
�

iQ
��

S20,4 ∨ S0,−2 �� X �� Q
(λθ5,λα)·pQ

�� S21,3 ∨ S1,−3,

in which the bottom row is a cofiber sequence. The last two components of iX appear in
the cofiber sequence. The first component, shown as the dashed arrow, exists because
the composition (λθ5, λα) · pQ · iQ is zero (since pQ · iQ is zero).

Step 2.4 We define Z to be the fiber of the projection pX : X → S83,7 to the top cell.
The third part of Fig. 2 shows a cell diagram for Z . Note that Z comes equipped with
an inclusion iZ : S3,1 ∨ S20,4 ∨ S0,−2 → Z . More precisely, consider the diagram

S3,1 ∨ S20,4 ∨ S0,−2

iX
��

iZ

��� � � � � � �

Z �� X pX
�� S83,7

in which the bottom row is a cofiber sequence. The dashed arrow exists because the
composition pX iX is zero.

Step 2.5 We defineC to be the cofiber of themap λθ5 : S82,5 → S20,4. The fourth part
of Fig. 2 shows a cell diagram for C . Note that there is an inclusion iC : S20,4 → C
of the bottom cell.

There is a map π : X → C defined as follows. Consider the diagram

�−1Q
(λθ5,λα)·pQ �� S20,4 ∨ S0,−2 ��

(iC ,0)
��

X

π

��� � � � � � � � �

C,

in which the top row is the defining cofiber sequence for X , as described in Step
2.3. To show that the dashed arrow exists, we need only argue that the composition
(iC , 0) · (λθ5, λα) · pQ is zero. This composition equals iC · λθ5 · pQ , and iC · λθ5 is
zero because C is the cofiber of λθ5.
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Fig. 3 The Maps f : S83,5 → X
and g : X → S0,0

2.2 TheMap f : S83,5 → X

We next construct a map f : S83,5 → X , where X is the complex constructed
in Sect. 2.1. The map f is intuitively described by the cell diagram in Fig. 3. It is
represented in the left two columns of the figure.

Step 2.6 Recall fromLemma3.19 thatλβ ·λ2 belongs to theToda bracket 〈λμ, λ2η,˜2〉.
Therefore, we have a map fQ : S83,5 → Q such that composition with the projection
p′
Q : Q → S83,7 ∨ S83,4 is (λ2,˜2) : S83,5 → S83,7 ∨ S83,4. Recall that the map p′

Q
was discussed in Step 2.2.

In fact, one must be careful here about the choice of null-homotopy in Step 2.1. We
need that λβ ·λ2 belongs not merely to the Toda bracket 〈λμ, λ2η,˜2〉, but rather to the
subset of this bracket consisting of representatives that are defined using the specified
null-homotopy of λμ · λ2η.

This turns out to be no problem for us. We show in Lemma 3.19 that every element
of the Toda bracket 〈λμ, λ2η,˜2〉 is of the form λβ · λ2. So we can choose β to be
compatible with the previously chosen null-homotopy.

Step 2.7 We construct f as the dashed map in the commutative diagram

S83,5

fQ
��

f

��� � � � � � �

X �� Q
(λθ5,λα)·pQ �� S21,3 ∨ S1,−3,

in which the bottom row is the fiber sequence from Step 2.3. To do this, we just
need to argue that the composition (λθ5, λα) · pQ · fQ is zero. This follows from two
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observations. First, pQ · fQ : S83,5 → S83,4 is˜2, as explained in Step 2.6. Second,
(λθ5, λα)˜2 is zero by Lemma 3.24 and [21]; here we are using that 2 equals λ˜2.

2.3 TheMap g : X → S0,0

We now construct a map g : X → S0,0, where X is the complex constructed in
Sect. 2.1. Later in Sect. 2.4, we will study the composition g f as an element of π83,5.

The map g is intuitively described by the cell diagram in Fig. 3. It is represented in
the right two columns of the figure.

Step 2.8 ByLemma3.24, κ ·λθ5+λ2·λα is contained in theToda bracket 〈ν, λμ, λ2η〉.
Therefore, we can form a map gZ : Z → S0,0 such that the composition gZ iZ is

(ν, κ, λ2) : S3,1 ∨ S20,4 ∨ S0,−2 → S0,0.

One must be careful here about the choice of null-homotopy in Step 2.1. We need
that κ · λθ5 + λ2 · λα belongs not merely to the Toda bracket 〈ν, λμ, λ2η〉, but rather
to the subset of this bracket consisting of representatives that are defined using the
specified null-homotopy of λμ · λ2η.

Since this is the only place in our entire argument where we have to be careful
about the choice, we are free to choose a null-homotopy. In particular, we choose the
null-homotopy that is relevant for the presence of κ · λθ5 + λ2 · λα in 〈ν, λμ, λ2η〉.
Step 2.9 Consider the commutative diagram

S82,8 �� Z ��

gZ
��

X
pX ��

g
���
�
�
�

S83,7

S0,0

in which the top row is a cofiber sequence. The composition S82,8 → Z → S0,0 is
zero because ν · λβ is zero. Therefore, gZ extends to the dashed arrow g : X → S0,0

shown in the diagram.

2.4 The Composition gf : S83,5 → S0,0

Wewill detect the map g f : S83,5 → S0,0 by smashing with S0,0/λ and passing to the
category of S0,0/λ-modules. This latter category is entirely algebraic, i.e., is equivalent
to the category of derived comodules over the classical dual Steenrod algebra. In
more concrete terms, the synthetic homotopy groups of S0,0/λ are isomorphic to the
classical Adams E2-page, i.e., the cohomology of the dual Steenrod algebra. These
latter homotopy groups of S0,0/λ are muchmore easily understood than the homotopy
groups of S0,0.

Wewill now show that the complex X splits completely after smashingwith S0,0/λ.
This means that maps into and out of X/λ are easy to compute.
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Proposition 2.10 The S0,0/λ-module X/λ splits as a wedge of suspensions of S0,0/λ.

Proof The S0,0/λ-module Y/λ has three cells: S83,4/λ, S81,6/λ, and S3,1/λ. The
attaching map between the bottom and middle cells is the smash product of λμ with
S0,0/λ. This smash product is zero because λμ is a multiple of λ. Similarly, the
attaching map between the middle and top cells is zero. The Adams E2-page is zero
in stem 79 and filtration 4; therefore, zero is the only possible attaching map between
the bottom and top cells. This shows that Y/λ splits.

As shown in Step 2.2, the spectrum Q is defined by the cofiber sequence

S82,8
iY ·λβ �� Y �� Q.

After smashing with S0,0/λ, this cofiber sequence splits because iY · λβ is a multiple
of λ. Consequently, Q/λ splits as

(Y/λ) ∨ (

S83,7/λ
)

,

and we have already shown that Y/λ splits.
As shown in Step 2.3, the spectrum X is defined by the cofiber sequence

X �� Q
(λθ5,λα)·pQ �� S21,3 ∨ S1,−3.

After smashing with S0,0/λ, this cofiber sequence splits because (λθ5, λα) · pQ is a
multiple of λ. Consequently, X/λ splits as

(Q/λ) ∨ (

S20,4/λ
) ∨ (

S0,−2/λ
)

,

and we have already shown that Q/λ splits. ��
Remark 2.11 Similarly to Proposition 2.10 but much easier, the S0,0/λ-module C/λ

splits as a wedge of two suspensions of S0,0/λ. Here C is the two-cell complex
discussed in Step 2.5.

After smashing f with S0,0/λ, the map f /λ is of the form

(

a0,−2, a0,1, a2,−1, a80,4, a63,1, a83,7
)

,

where each as, f is an element of the Adams E2-page in stem s and filtration f .
Similarly, the map g/λ is of the form

(

b83,7, b83,4, b81,6, b3,1, b20,4, b0,−2
)

,

where each bs, f is an element of the Adams E2-page in stem s and filtration f . The
composition g f /λ is equal to

b83,7a0,−2 + b83,4a0,1 + b81,6a2,−1 + b3,1a80,4 + b20,4a63,1 + b0,−2a83,7.
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Fig. 4 The composition g f /λ

The computation of g f /λ is illustrated in Fig. 4. This figure can be interpreted as a
cell diagram in the category of S0,0/λ-modules. However, since X/λ splits, the cell
diagram is trivial.

Lemma 2.12 The composition g f /λ : S83,5/λ → S0,0/λ is equal to h2a80,4 + ga63,1.

Proof For degree reasons, a0,2, a2,−1, b83,4, and b0,−2 must be zero. Moreover, a0,1
must equal h0 since h0 detects˜2 and the composition of f with the projection X →
S83,4 is˜2. Similarly, b20,4 must equal g since g detects κ and the composition of g
with the inclusion S20,4 → X is κ . Also, b3,1 must equal h2 since h2 detects ν and
the composition of g with the inclusion S3,1 → X is ν.

Substituting these values, we find that g f /λ equals

b83,7 · 0 + 0 · h0 + b81,6 · 0 + h2 · a80,4 + g · a63,1 + 0 · a83,7,

which simplifies to h2a80,4 + ga63,1. ��
We still need to compute that a63,1 and a80,4 are equal to h6 and e2, respectively.

We need another cell complex to accomplish this.

Step 2.13 Recall the complex C constructed as the cofiber of λθ5 in Step 2.5. Let D
be the cofiber of the composition π f : S83,5 → C . A cell diagram for D is shown on
the left side of Fig. 5.

Lemma 2.14 The operation Sq64 is non-zero in the cohomology of D.

Proof We work in the classical context; the synthetic result that we desire follows
immediately by comparison along the realization functor, i.e., along λ-localization.
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Fig. 5 The complexes D and D/λ

Fig. 6 The maps π f and π f /λ

Recall Adams decomposition

Sq64 = Sq1 �5,5 + · · ·

of Sq64 in terms of secondary operations [1, Theorem 4.6.1]. The secondary operation
�5,5 is non-zero on the cofiber of θ5 [3, p. 536]. ��
Lemma 2.15 The map

π f /λ : S83,5/λ → C/λ

is equal to
(h0, h6) : S83,5/λ → S83,4/λ ∨ S20,4/λ.

Here we are using the splitting of C/λ given in Remark 2.11. Figure6 illustrates
Lemma 2.15 with cell diagrams.

Proof Unlike all of the other S0,0/λ-modules under consideration, D/λ does not split.
In fact, the middle cell is attached to the top cell by h0 because ˜2 is detected by
h0. Lemma 2.14 implies that Sq64 is non-zero on D/λ. Therefore, the bottom cell is
attached to the top cell by h6. A cell diagram for D/λ is shown on the right side of
Fig. 5.

The cofiber sequence

S83,5
π f �� C �� D

that defines D induces a cofiber sequence

S83,5/λ
π f /λ �� C/λ �� D/λ.
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The computation of the attaching maps for D/λ is equivalent to the computation of
π f /λ. ��
Lemma 2.16 The value of a63,1 is h6.

Proof The map π/λ : X/λ → C/λ is the standard projection onto two wedge sum-
mands of X/λ. The computation of π f /λ in Lemma 2.15 gives that a63,1 is equal to
h6. ��
Theorem 2.17 The composition g f : S83,5 → S0,0 is detected by h6g + h2e2 in the
synthetic Adams spectral sequence.

Proof Combining Lemma 2.12 with Lemma 2.16, we get that g f /λ is equal to h6g +
h2a80,4 for some value of a80,4. Therefore, g f is detected by h6g + h2a80,4 in the
synthetic Adams E2-page.

By inspection, a80,4 must be a linear combination of e2 and h21h4h6. Since h6g itself
is known to not be a permanent cycle [14], we must have that h2a80,4 is non-zero. The
only possibility is that h2a80,4 equals h2e2. ��
Remark 2.18 The careful reader will note that we did not compute a80,4. It could be
either e2 or e2 + h21h4h6. In either case, we conclude that h6g + h2e2 is a permanent
cycle.

3 Computations

Proposition 3.1 (56, 9, 9) d5(Ph5e0) = λ4il.

Remark 3.2 Proposition 3.1 immediately follows from [11, Lemma 3.92], which uses
fourfold brackets. We give a simpler proof.

Proof Recall the hidden η extension from g2 to λ�h20e0 [14, Table 18]. Multiply by
d0 to see that there is also a hidden η extension from e20g to λil. Also, an immediate
consequence of themain result of [5] is that there is a hidden˜2 extension from λ2h0h5i
to λ4e20g.

Therefore, λ5il detects a multiple of˜2η = 0, so it must be hit by a differential.
There is only one possibility. ��
Lemma 3.3 (46, 7, 7) The Toda bracket 〈η,˜22κ2,˜2〉 is detected by Mh1. The indeter-
minacy is generated by λ3η{�h1g}, which is detected by λ4d0l.

Remark 3.4 The Toda bracket in Lemma 3.3 has a classical analog 〈η, 4κ2, 2〉. The
classical bracket contains zero because ηθ4.5 is detected by Mh1. Synthetically, the
product ηθ4.5 is detected by λ3Mh1, but Mh1 itself does not detect a multiple of η.

Proof Start with the Massey product Mh1 = 〈h1, h20g2, h0〉 [14, Table 3]. Apply the
Moss Convergence Theorem [4, 17] to obtain that the Toda bracket 〈η,˜22κ2,˜2〉 is
detected by Mh1. The indeterminacy is computed by inspection. ��
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Lemma 3.5 (77, 12, 12) The Toda bracket 〈˜22κ2,˜2, {�h1h3}〉 is detected by the ele-
ment M�h1h3, with no indeterminacy.

Proof The shuffle

η〈˜22κ2,˜2, {�h1h3}〉 = 〈η,˜22κ2,˜2〉{�h1h3}

shows that η〈˜22κ2,˜2, {�h1h3}〉 is detected by Mh1 · �h1h3. Here we are using
the Toda bracket from Lemma 3.3. It follows that 〈˜22κ2,˜2, {�h1h3}〉 is detected
by M�h1h3.

The indeterminacy is zero by inspection. ��
Proposition 3.6 (77, 12, 12)There is a hidden ν extension from M�h1h3 toλ2Mh1e20.

Remark 3.7 The hidden extension in Proposition 3.6 is purely synthetic; it has no
classical (nor motivic) analog. In computational terms, the target λ2Mh1e20 of the
extension is annihilated by λ2, so it becomes zero after λ-periodicization.

However, we do not know yet that λ2Mh1e20 is annihilated by λ2. That fact is a
consequence of Proposition 3.8, whose proof depends on Proposition 3.6.

Proof Lemma 3.5 shows that the Toda bracket 〈˜22κ2,˜2, {�h1h3}〉 is detected by
M�h1h3. We have

〈˜22κ2,˜2, {�h1h3}〉ν = 〈˜22κ2,˜2, λ
2ηκκ〉

because of the hidden ν extension from�h1h3 toλ2h1e20 [14, Table 21]. Equality holds
in the displayed formula because the right side has no indeterminacy by inspection.

We also have

〈˜22κ2,˜2, λ
2ηκκ〉 = 〈˜22κ2,˜2, η〉λ2κκ.

Because of Lemma 3.3, this last expression is detected by Mh1 · λ2e20. ��
Proposition 3.8 (61, 6, 6) d5(A′) = λ4Mh1d0.

Remark 3.9 Proposition 3.8 immediately follows from [20, Theorem 12.1], which
requires eight pages of shuffling several Toda brackets in a delicate way. We give a
simpler proof.

Proof Wewill show that d5(gA′) = λ4Mh1e20, fromwhich the desired formula follows
immediately.

By comparison to motivic homotopy [14, Table 18], there is a hidden η extension
from x76,9 to λ2M�h1h3. Proposition 3.6 shows that there is a hidden ν extension
from λ2M�h1h3 to λ4Mh1e20.

Therefore, λ4Mh1e20 must be hit by a differential, but there are two possibilities.
By comparison to motivic homotopy, d3(�2 p) cannot equal λ2Mh1e20 [14, Table 6].
The only remaining possibility is that d5(gA′) equals λ4Mh1e20. ��
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Proposition 3.10 (71, 5, 5) There is no hidden ν extension on h1 p1.

Proof The elements λPh0h2h6, λ2Ph31h6, λ2x74,8, λ8�2h22 g, and λ10e20 g
2 are the

possible values for a hidden ν extension on h1 p1. As shown in [14, Lemma 7.28], the
element τh1 p1 does not support a motivic hidden 2 extension. Therefore, h1 p1 does
not support a classical hidden 2 extension. Also, h1 p1 does not support a synthetic
hidden˜2 extension because all of the possible targets are λ-periodic. Therefore, the
target of a synthetic hidden ν extension on h1 p1 must be annihilated by˜2. This rules
out λPh0h2h6 and λ2x74,8.

The remaining three cases would imply motivic hidden ν extensions from τh1 p1
to Ph31h6, τ�2h22 g, and τ 5e20 g

2 respectively. The first is ruled out by comparison to
S0,0/τ , and the last two are ruled out by comparison to mmf. ��
Proposition 3.11 (74, 6, 6) There is a hidden˜2 extension from h3n1 to λx74,8.

Remark 3.12 Proposition 3.11 follows from [14, Lemma 7.35], which uses fourfold
brackets. We give a simpler proof.

Proof Let γ be an element of π67,5 that is detected by Q3 + n1. Because of the
differentials d3(d2) = λ2h0(Q3+n1) and d4(h0d2) = λ3X3, projection to the top cell
of S0,0/λ gives a hidden˜2 extension from h20(Q3+n1) to λX3. Since h3X3 = h20x74,8,
we conclude that λh20x74,8 detects˜23σγ . This implies the desired hidden extension
since σγ is detected by h3n1. ��
Proposition 3.13 (77, 7, 7) There is no hidden ν extension on m1.

Proof As shown in [14], the elementm1 does not support amotivic hidden ν extension,
which means that m1 does not support a classical hidden ν extension. Therefore, a
λ-free element cannot be the target of a synthetic hidden ν extension on m1. By
inspection, there are no possible λ-torsion targets for a hidden ν extension on m1. ��
Proposition 3.14 (77, 7, 5) There is no hidden η extension on λ2m1.

Proof The product h1 ·λ2m1 equals zero in the synthetic Adams E∞-page because of
the differential d3(x1) = λ2h1m1.

As shown in [14], the element τm1 does not support a motivic hidden η extension,
which means that m1 does not support a classical hidden η extension. Therefore, a
λ-free element cannot be the target of a synthetic hidden η extension on λ2m1. By
inspection, there are no possible λ-torsion targets for a hidden η extension on λ2m1.

��
Lemma 3.15 (77, 7, 7) There exists an element μ in π77,7 that is detected by m1 such
that λ2ημ and νμ are both zero.

Proof Proposition 3.13 implies that there exists a choice of μ such that νμ is zero.
Moreover, as shown in [14], there are no classical hidden ν extensions in higher
filtration. Therefore, there are no synthetic hidden ν extensions in higher filtration
whose targets are λ-free. By inspection, there are no λ-torsion classes that could be
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the targets of synthetic hidden ν extensions in higher filtration. This implies that νμ

is zero for every choice of μ.
Proposition 3.14 implies that there exists an element μ′ in π77,5 that is detected by

λ2m1 such that ημ′ is zero. We just need to show that μ′ is of the form λ2μ, for some
choice of μ detected by m1.

To start, choose μ arbitrarily. The sum μ′ + λ2μ is detected in higher filtration. As
shown in [14], there are no classical hidden η extensions in higher filtration. Therefore,
there are no synthetic hidden η extensions in higher filtration whose targets are λ-free.
By inspection, there are no λ-torsion classes that could be the targets of synthetic
hidden η extensions in higher filtration.

However, there is a non-hidden η extension from λ7M�h1h3 to λ7M�h21h3. Let
μ′′ be an element of π77,7 that is detected by λ5M�h1h3, so λ2μ′′ is detected by
λ7M�h1h3.

If μ′ + λ2μ is not equal to λ2μ′′, then η(μ′ + λ2μ) is zero. On the other hand, if
μ′ + λ2μ is equal to λ2μ′′, then η(μ′ + λ2(μ + μ′′)) is zero. Since ημ′ was already
shown to be zero, we conclude that either λ2ημ or λ2η(μ+μ′′) is zero. Consequently,
either μ or μ + μ′′ satisfies the required conditions. ��
Lemma 3.16 (79, ?, 5) The Toda bracket 〈λμ, λ2η,˜2〉 contains zero or is detected
by λ9Me20, and its indeterminacy is generated by an element that is detected by
λ3h0h2x76,6.

Remark 3.17 The Toda bracket 〈λμ, λη,˜2〉 is also defined. Using the Moss Conver-
gence Theorem [4, 17] and the differential d3(x1) = λ2h1m1, it is detected by h0x1.
The element h0x1 is not zero but is annihilated by λ.

Remark 3.18 The element λ3h0h2x76,6 has lower Adams filtration than λ9Me20. One
must often be especially careful in situations like this when the indeterminacy is
detected in lower filtration because the various elements of the Toda bracket are
detected in different filtrations.

Proof By inspection, there are noλ-torsion elements that could detect theToda bracket.
Consequently,weonly need to considerλ-free elements, sowe canwork in the classical
context.

As shown in [14, Table 10], the corresponding motivic Toda bracket contains zero
or is detected by τ 2Me20. Therefore, the corresponding classical bracket either contains
zero or is detected by Me20.

The indeterminacy is generated by λμ ·λ3η2 and by the multiples of˜2 in π79,5. The
first expression is zero by Lemma 3.15. As shown in [14], there are no classical hidden
2 extensions in the 79-stem. This rules out all possible synthetic hidden˜2 extensions.
There is only one non-hidden˜2 extension in π79,5, and its target is λ3h0h2x76,6. ��
Lemma 3.19 (79, ?, 8) Every element of 〈λμ, λ2η,˜2〉 is of the form λ3β for some β

in π79,8 such that λνβ is zero.

Remark 3.20 We do not specify which element of the Adams E∞-page detects the
elementβ in Lemma 3.19. For our purposes later, the detecting element is unimportant.
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Proof The proof involves two steps. First, we will show that the Toda bracket contains
an element with the desired properties. Second, we will show that the elements in the
indeterminacy of the Toda bracket have the desired properties. These two steps imply
that every element of the Toda bracket has the desired properties.

There are two cases in Lemma 3.16. In one case, zero is an element in the Toda
bracket with the desired properties.

In the other case, let β be detected by λ6Me20. Then λ3β and 〈λμ, λ2η,˜2〉 are
both detected by λ9Me20. There are no elements in higher filtration, so in fact λ3β is

contained in 〈λμ, λ2η,˜2〉. Finally, λ6Me20 cannot support a ν extension because there
are no possible targets. This shows that the Toda bracket contains an element with the
desired properties.

Next, we study the elements in the indeterminacy. Lemma 3.16 shows that the
indeterminacy is generated by λ3̃2γ , where γ is an element of π79,7 that is detected
by h2x76,6. We want to show that λν ·˜2γ is zero.

Note that νγ is detected by h22x76,6. We know from [14, Lemma 7.43] that h22x76,6
does not support a classical hidden 2 extension. Therefore, it also does not support
a synthetic˜2 extension because all possible targets for such a hidden extension are
λ-free. This shows that λν ·˜2γ is zero. ��
Proposition 3.21 (81, 12, 12) There is no hidden ν extension on �2 p.

Proof The elements λ�2t and λ2M�h1d0 are the two possible targets for a hidden ν

extension on �2 p. Both elements support h1 extensions, so they cannot be targets of
hidden ν extensions. ��
Lemma 3.22 (82, 6, 5) Every element of the Toda bracket 〈ν, λμ, λ2η〉 is detected by
λh25g. Here μ is the element in π77,7 specified in Lemma 3.15.

Remark 3.23 Lemma 3.22 does not compute the indeterminacy of the Toda bracket
〈ν, λμ, λ2η〉. In fact, the bracket does have indeterminacy because of the presence of
multiples of λ2η and of ν in higher filtration. However, our later arguments do not
depend on the indeterminacy.

Proof The bracket is well defined because of Lemma 3.15. Using the synthetic Adams
differential d3(λx1) = λ3h1m1, the Moss Convergence Theorem [4, 17] implies that
λh2x1 = λh25g detects the Toda bracket.

For degree reasons, all of the indeterminacy is detected in higher filtration. Conse-
quently, every element of the bracket is detected by λh25g. ��

Lemma 3.24 (82, ?, 8)There exists an elementα ofπ82,8 such thatλ3α+λκθ5 belongs
to the Toda bracket 〈ν, λμ, λ2η〉, and also 2α is zero.

Remark 3.25 We do not specify which element of the Adams E∞-page detects the
element α in Lemma 3.24. By inspection of the proof, we know that α is detected in
Adams filtration 8 or higher. For our purposes later, the detecting element is unimpor-
tant. As in Remark 3.23, beware that the Toda bracket has non-zero indeterminacy.
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Proof Shuffle to obtain

2〈ν, λμ, λ2η〉 = 〈ν, λμ, λ2η〉λ˜2 = λν〈λμ, λ2η,˜2〉.

In either case of Lemma 3.16, the expression λν〈λμ, λ2η,˜2〉 contains zero. Therefore,
there exists an element α′ in π82,5 such that α′ is contained in the bracket 〈ν, λμ, λ2η〉,
and also 2α′ equals zero.

Next, let α′′ equal α′ −λκθ5 in π82,5. Because of Lemma 3.22, we know that λh25g
detects both α′ and the product λκθ5. Therefore, α′′ is detected in higher filtration. By
inspection of the possible detecting elements, we find that α′′ must be a multiple of
λ3. Therefore, α′′ equals λ3α for some α in π82,8. This shows that λ3α is contained
in 〈ν, λμ, λ2η〉 − λκθ5. We rearrange this formula and conclude that λ3α + λκθ5 is
contained in 〈ν, λμ, λ2η〉.

Finally, we must show that 2α is zero. We have that 2α′′ is zero since 2 annihilates
both α′ and λκθ5 (proved in [21]). Therefore, 2λ3α is zero. By inspection, every
possible value of 2α in π82,8 is λ-free, so 2α must also be zero. ��
Lemma 3.26 (79, 7, 7) (84, 10, 8) There exists an element γ in π79,7 that is detected
by h2x76,6 such that ηγ is zero. Moreover, λ2Px76,6 detects an element in the Toda
bracket 〈ν, η, γ 〉.
Remark 3.27 Beware that Lemma3.26 does not compute the indeterminacy of theToda
bracket. In fact, the indeterminacy contains an element that is detected by λh2c1H1,
whose filtration is lower than the filtration of λ2Px76,6. One must often be especially
careful in situations like this when the indeterminacy is detected in lower filtration
because the various elements of the Toda bracket are detected in different filtrations.

Proof We know from [14] that h2x76,6 does not support a classical η extension. More-
over, there are no possible targets for a hidden η extension on h2x76,6 that are λ-torsion.
Therefore, h2x76,6 does not support a synthetic η extension, and it is possible to choose
γ . (The element λPh6c0 in higher filtration supports an h1 multiplication. This means
that not all possible choices of γ are annihilated by η.)

There is a hidden C-motivic ν extension from h22x76,6 to Ph1x76,6 [14, Table 21].
Therefore, there is also a classical ν extension, as well as a synthetic ν extension from
h22x76,6 to λ2Ph1x76,6. Shuffle to obtain

ν2γ = 〈η, ν, η〉γ = η〈ν, η, γ 〉.

Therefore, the right side is also detected by λ2Ph1x76,6, and the Toda bracket must
be detected by λ2Px76,6. ��
Proposition 3.28 (84, 10, 10) There is no hidden˜2 extension on Px76,6.

Proof The only possible targets for a hidden˜2 extension are λ3�2t and λ4M�h1d0.
The first possibility is ruled out by [14] because the motivic weights are incompatible.

If there were a hidden˜2 extension from Px76,6 to λ4M�h1d0, then there would
also be a hidden˜2 extension from λ2Px76,6 to λ6M�h1d0. The possible differentials
hitting λ8M�h1d0 and λ9M�h1d0 do not affect this argument.
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Therefore, it suffices to show that there is no hidden˜2 extension on λ2Px76,6. As
in Lemma 3.26, let γ be an element of π79,7 that is detected by h2x76,6 such that ηγ

is zero, so λ2Px76,6 detects 〈ν, η, γ 〉.
Consider the relations

〈ν, η, γ 〉˜2 ⊆ 〈ν, η,˜2γ 〉 ⊇ 〈ν, η,˜2〉γ.

The last expression is zero because 〈ν, η,˜2〉 is zero in π5,2. Consequently, 〈ν, η, γ 〉˜2
lies in the indeterminacy of the middle expression, which consists entirely of multiples
of ν.

It remains to show that λ6M�h1d0 cannot detect a multiple of ν. This follows from
inspection and Proposition 3.21. ��
Proposition 3.29 (93, 13, 13) The element P2h6d0 is a permanent cycle.

Proof We begin by computing 〈˜2, λθ5, {λ3P2d0}〉 in S0,0/λ5. There are no crossing
differentials since the differential d6(h30 · �h22h6) = λ5M�h22e0 does not occur in
S0,0/λ5. Compute the corresponding Massey product in the E3-page using the differ-
ential d2(h6) = λh0h25. We obtain λ3P2h6d0, with no indeterminacy in the E3-page.
Therefore, the Moss Convergence Theorem implies that the Toda bracket is detected
by λ3P2h6d0 in S0,0/λ5.

On the other hand, {λ3P2d0} equals zero since d4(d0e0 + h70h5) = λ3P2d0. There-
fore, the bracket in S0,0/λ5 consists entirely of multiples of˜2. In particular, λ3P2h6d0
detects a˜2multiple in S0,0/λ5. The only possibility is that there is a hidden˜2 extension
from λ2h40 · �h22h6 to λ3P2h6d0 in S0,0/λ5.

Pull back this hidden h0 extension along the map S0,0 → S0,0/λ5. We conclude
that λ2h40 · �h22h6 supports a hidden˜2 extension in S0,0. By compatibility with the
extension in S0,0/λ5, the elementλ3P2h6d0 is the only possible value for the extension
in S0,0. In particular, λ3P2h6d0 survives. In turn, this implies that P2h6d0 survives. ��
Remark 3.30 The proof of Proposition 3.29 shows that there is a motivic (and also
classical) 2 extension from h40 · �h22h6 to P2h6d0. Comparison to S0,0/τ only gives
that the target of the 2 extension is P2h6d0 modulo the possible error term τ 2M2h2.

Proposition 3.31 (93, 13, 13) d6(t Q2) = λ5MP�h1d0.

Proof In the motivic Adams spectral sequence, the element MP�h1d0 is hit by a
differential [14, Table 9].

Adapting this argument to the synthetic context, we find that ηκγ θ4.5 is detected
by λ5MP�h1d0, for some γ in π32,6 that is detected by �h1h3.

The element ληκθ4.5 is zero because all elements of π60,7 that are detected in
sufficiently high filtration are also detected by tmf. (Note that ηκθ4.5 in π60,8 is non-
zero and detected by λ3Mh1d0, but this is irrelevant.)

We now know that ληκγ θ4.5 is zero and is detected by λ6MP�h1d0. There-
fore, λ6M�h1d0 must be hit by a differential. Proposition 3.29 eliminates P2h6d0,
P2h0h6d0, and P2h20h6d0 as possible sources for this differential. The elementsM2h2
and �2h1g2 are also eliminated because they are products of permanent cycles. The
only remaining possibility is that d6(t Q2) equals λ5MP�h1d0. ��
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