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Abstract

We compute the stable homotopy groups up to dimension 90, except for some
carefully enumerated uncertainties.
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CHAPTER 1

Introduction

The computation of stable homotopy groups of spheres is one of the most fun-
damental and important problems in homotopy theory. It has connections to many
topics in topology, such as the cobordism theory of framed manifolds, the classifica-
tion of smooth structures on spheres, obstruction theory, the theory of topological
modular forms, algebraic K-theory, motivic homotopy theory, and equivariant ho-
motopy theory.

Despite their simple definition, which was available eighty years ago, these
groups are notoriously hard to compute. All known methods only give a complete
answer through a range, and then reach an obstacle until a new method is intro-
duced. The standard approach to computing stable stems is to use Adams type
spectral sequences that converge from algebra to homotopy. In turn, to identify
the algebraic Ea-pages, one needs algebraic spectral sequences that converge from
simpler algebra to more complicated algebra. For any spectral sequence, difficul-
ties arise in computing differentials and in solving extension problems. Different
methods lead to trade-offs. One method may compute some types of differentials
and extension problems efficiently, but leave other types unanswered, perhaps even
unsolvable by that technique. To obtain complete computations, one must be eclec-
tic, applying and combining different methodologies. Even so, combining all known
methods, there are eventually some problems that cannot be solved. Mahowald’s
uncertainty principle states that no finite collection of methods can completely
compute the stable homotopy groups of spheres.

Because stable stems are finite groups (except for the 0-stem), the computation
is most easily accomplished by working one prime at a time. At odd primes, the
Adams-Novikov spectral sequence and the chromatic spectral sequence, which are
based on complex cobordism and formal groups, have yielded a wealth of data [36].
As the prime grows, so does the range of computation. For example, at the primes
3 and 5, we have complete knowledge up to around 100 and 1000 stems respectively
[36].

The prime 2, being the smallest prime, remains the most difficult part of the
computation. In this case, the Adams spectral sequence is the most effective tool.
The manuscript [16] presents a careful analysis of the Adams spectral sequence, in
both the classical and C-motivic contexts, that is essentially complete through the
59-stem. This includes a verification of the details in the classical literature [2] [3]
[6] [29]. Subsequently, the second and third authors computed the 60-stem and
61-stem [44].

We also mention [25] [26], which take an entirely different approach to com-
puting stable homotopy groups. However, the computations in [25] [26] are now
known to contain several errors. See [44] Section 2] for a more detailed discussion.
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The goal of this manuscript is to continue the analysis of the Adams spectral
sequence into higher stems at the prime 2. We will present information up to the
90-stem. While we have not been able to resolve all of the possible differentials
in this range, we enumerate the handful of uncertainties explicitly. See especially
Table [[0 for a summary of the possible differentials that remain unresolved.

The charts in [19] and [20] are an essential companion to this manuscript.
They present the same information in an easily interpretable graphical format.

Our analysis uses various methods and techniques, including machine-generated
homological algebra computations, a deformation of homotopy theories that con-
nects C-motivic and classical stable homotopy theory, and the theory of motivic
modular forms. Here is a quick summary of our approach:

(1) Compute the cohomology of the C-motivic Steenrod algebra by machine.
These groups serve as the input to the C-motivic Adams spectral sequence.

(2) Compute by machine the algebraic Novikov spectral sequence that con-
verges to the cohomology of the Hopf algebroid (BP,, BP.BP). This
includes all differentials, and the multiplicative structure of the cohomol-
ogy of (BP., BP.BP).

(3) Identify the C-motivic Adams spectral sequence for the cofiber of 7 with
the algebraic Novikov spectral sequence [11]. This includes an identifica-
tion of the cohomology of (BP,, BP,BP) with the homotopy groups of
the cofiber of 7.

(4) Pull back and push forward Adams differentials for the cofiber of 7 to
Adams differentials for the C-motivic sphere, along the inclusion of the
bottom cell and the projection to the top cell.

(5) Deduce additional Adams differentials for the C-motivic sphere with a
variety of ad hoc arguments. The most important methods are Toda
bracket shuffles and comparison to the motivic modular forms spectrum
mmf [10].

(6) Deduce hidden 7 extensions in the C-motivic Adams spectral sequence for
the sphere, using a long exact sequence in homotopy groups.

(7) Obtain the classical Adams spectral sequence and the classical stable ho-
motopy groups by inverting 7.

The machine-generated data that we obtain in steps () and (@) are available
at [42]. See also [43] for a discussion of the implementation of the machine com-
putation.

Much of this process is essentially automatic. The exception occurs in step (Gl
where ad hoc arguments come into play.

This document describes the results of this systematic program through the 90-
stem. We anticipate that our approach will allow us to compute into even higher
stems, especially towards the last unsolved Kervaire invariant problem in dimension
126. However, we have not yet carried out a careful analysis.

1.1. New Ingredients

We discuss in more detail several new ingredients that allow us to carry out
this program.

1.1.1. Machine-generated algebraic data. The Adams-Novikov spectral
sequence has been used very successfully to carry out computations at odd primes.
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However, at the prime 2, its usage has not been fully exploited in stemwise com-
putations. This is due to the difficulty of computing its Es-page. The first author
predicted in [16] that “the next major breakthrough in computing stable stems will
involve machine computation of the Adams-Novikov Fs-page.”

The second author achieved this machine computation; the resulting data is
available at [42]. The process goes roughly like this. Start with a minimal reso-
lution that computes the cohomology of the Steenrod algebra. Lift this resolution
to a resolution of BP,BP. Finally, use the Curtis algorithm to compute the ho-
mology of the resulting complex, and to compute differentials in the associated
algebraic spectral sequences, such as the algebraic Novikov spectral sequence and
the Bockstein spectral sequence. See [43] for further details.

1.1.2. Motivic homotopy theory. The C-motivic stable homotopy cate-
gory gives rise to new methods to compute stable stems. These ideas are used in a
critical way in [16] to compute stable stems up to the 59-stem.

The key insight of this article that distinguishes it significantly from [16] is
that C-motivic cellular stable homotopy theory is a deformation of classical stable
homotopy theory [1I]. From this perspective, the “generic fiber” of C-motivic
stable homotopy theory is classical stable homotopy theory, and the “special fiber”
has an entirely algebraic description. The special fiber is the category of BP,BP-
comodules, or equivalently, the category of quasicoherent sheaves on the moduli
stack of 1-dimensional formal groups.

In more concrete terms, let C'7 be the cofiber of the C-motivic stable map 7.
The homotopy category of C-modules has an algebraic structure [I11I]. In partic-
ular, the C-motivic Adams spectral sequence for C'7 is isomorphic to the algebraic
Novikov spectral sequence that computes the Fs-page of the Adams-Novikov spec-
tral sequence. Using naturality of Adams spectral sequences, the differentials in
the algebraic Novikov spectral sequence, which are computed by machine, can be
lifted to differentials in the C-motivic Adams spectral sequence for the C-motivic
sphere spectrum. Then the Betti realization functor produces differentials in the
classical Adams spectral sequence.

Our use of C-motivic stable homotopy theory appears to rely on the funda-
mental computations, due to Voevodsky [40] [41], of the motivic cohomology of a
point and of the motivic Steenrod algebra. In fact, recent progress has determined
that our results do not depend on this deep and difficult work. There are now
purely topological constructions of homotopy categories that have identical com-
putational properties to the cellular stable C-motivic homotopy category [10] [35].
In these homotopy categories, one can obtain from first principles the fundamental
computations of the cohomology of a point and of the Steenrod algebra, using only
well-known classical computations. Therefore, the material in this manuscript does
not logically depend on Voevodsky’s work, even though the methods were very
much inspired by his groundbreaking computations.

1.1.3. Motivic modular forms. In classical chromatic homotopy theory, the
theory of topological modular forms, introduced by Hopkins and Mahowald [39],
plays a central role in the computations of the K (2)-local sphere.

Using a topological model of the cellular stable C-motivic homotopy category,
one can construct a “motivic modular forms” spectrum mmf [10], whose motivic
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cohomology is the quotient of the C-motivic Steenrod algebra by its subalgebra gen-
erated by Sq', Sq2, and Sq*. Just as tmf plays an essential role in studies of the clas-
sical Adams spectral sequence, mmf is an essential tool for motivic computations.
The C-motivic Adams spectral sequence for mmf can be analyzed completely [17],
and naturality of Adams spectral sequences along the unit map of mmf provides
much information about the behavior of the C-motivic Adams spectral sequence
for the C-motivic sphere spectrum.

1.2. Main results
We summarize our main results in the following theorem and corollaries.

THEOREM 1.1. The C-motivic Adams spectral sequence for the C-motivic sphere
spectrum is displayed in the charts in [19], up to the 90-stem.

The proof of Theorem [I.1] consists of a series of specific computational facts,
which are verified throughout this manuscript.

COROLLARY 1.2. The classical Adams spectral sequence for the sphere spectrum
is displayed in the charts in [19], up to the 90-stem.

Corollary [[.2] follows immediately from Theorem [Tl One simply inverts 7, or
equivalently ignores 7-torsion.

COROLLARY 1.3. The Adams-Novikov spectral sequence for the sphere spectrum
is displayed in the charts in [20].

Corollary also follows immediately from Theorem [[LI1 As described in
[16] Chapter 6], the Adams-Novikov spectral sequence can be reverse-engineered
from information about C-motivic stable homotopy groups.

COROLLARY 1.4. Table[dl describes the stable homotopy groups m, for all values
of k up to 90.

We adopt the following notation in Table[Il An integer n stands for the cyclic
abelian group Z/n; the symbol - by itself stands for the trivial group; the expression
n-m stands for the direct sum Z/n & Z/m; and n? stands for the direct sum of j
copies of Z/n. The horizontal line after dimension 61 indicates the range in which
our computations are new information.

Table [ describes each group 7 as the direct sum of three subgroups: the
2-primary wvi-torsion, the odd primary vi-torsion, and the vi-periodic subgroups.

The last column of Table [l describes the groups of homotopy spheres that
classify smooth structures on spheres in dimensions at least 5. See Section [[.4] and
Theorem [I.7] for more details.

Starting in dimension 82, there remain some uncertainties in the 2-primary
vi-torsion. In most cases, these uncertainties mean that the order of some stable
homotopy groups are known only up to factors of 2. In a few cases, the additive
group structures are also undetermined.

These uncertainties have two causes. First, there are a handful of differentials
that remain unresolved. Table [[0] describes these. Second, there are some possible
hidden 2 extensions that remain unresolved.
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Table 1: Stable homotopy groups up to dimension 90

ot

v1-torsion vi-torsion wvi-periodic group of
at the prime 2 at odd smooth structures
primes
1 2
2 2
3 83 .
4 . ?
5 |.
6 |2 . .
7 - 16-3-5 by
8 |2 2 2
9 |2 . 22 222
10 3 2 2-3
11 897 b3
12 . . ;
13 |- 3 3
14 | 2-2 . . 2
15| 2 32:3-5 by-2
16 | 2 2 2
17 | 22 22 2-23
18 |8 2 2-8
19| 2 . 8-3-11 b5-2
20| 8 3 . 83
21| 22 . 2-22
22 | 22 . . 22
23 | 2-8 3 16-9-5-7-13 b6-2-8-3
24| 2 . 2 2
25| - . 22 2:2
26 | 2 3 2 22.3
27 | - 8-3 br
28 | 2 . 2
29 | - 3 3
30| 2 3 . 3
31|22 : 64-3-5-17 bg-2?
32|23 2 23
33|23 22 2-24
34 | 224 2 23.4
35 | 22 . 8-27-7-19 by-22
36 | 2 3 . 2-3
37|22 3 2-22.3
38|24 3-5 . 2-4-3-5
39| 2° 3 16-3-25-11 b19-2°-3
40 | 244 3 2 24.4.3
41 | 23 . 22 2.24
42| 2-8 3 2 22.8.3
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Table 1: Stable homotopy groups up to dimension 90

k | v1-torsion vi-torsion wvi-periodic group of

at the prime 2 at odd smooth structures
primes

43 - 8-3-23 b1

44 | 8 : : 8

45 | 2316 9.5 2.23.16-9-5

46 | 24 3 - 24.3

47| 234 3 32.9:5.7-13 b12:2%-4-3

48 | 234 : 2 23.4

49 | - 3 22 2.2:3

50 | 22 3 2 23.3

51 | 2-8 : 83 b13-2-8

52 | 23 3 : 23.3

53 | 24 2.4

54 | 24 : : 2.4

55 | - 3 16-3-5-29 b14-3

56 | - . 2 .

57 2 22 2.22

58 | 2 2 22

59 | 22 8.9.7-11-31 bis-22

60 | 4 : 4

61 . . .

62 | 2% 3 - 23.3

63 | 224 128-3-5:17 bi6-2%-4

64 | 254 : 2 25.4

65 | 274 3 22 2.28.4.3

66 | 25-8 : 2 206.8

67 | 234 : 83 bi7-23-4

68 | 23 3 23.3

69 | 24 - 2.24

70 | 25.42 : 25.42

71| 26.4.8 : 16-27-5:7-13-19-37  by15-26-4-8

72| 27 3 2 27.3

73] 2° : 22 2.26

74 | 43 3 2 2.43.3

7512 9 83 b19-29

76 | 224 5 : 22.4.5

771 254 : 2.25.4

78 | 23.42 3 : 23.42.3

79 | 264 32:3-25-11-41 bao-2%-4

80 | 28 : 2 28

81 | 23.4-8 32 22 2.2%.4.8.32

82 | 25-8 or 2*-8 or 3.7 2 26.8.3.7 or 2°.8:3-.7
23.4.8 or 24.4.8-3-7

83 | 23.8 or 234 5 8:9-49-43 bo1-23-8:5 or boy-23-4-5

84 | 26 or 2° 32 : 26.32 or 25.32
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Table 1: Stable homotopy groups up to dimension 90

k | v1-torsion vi-torsion wvi-periodic group of

at the prime 2 at odd smooth structures
primes

85 | 26.42 or 2542 or 32 26.42.32 or 2°.42.32
24.43 or 2%.43.32

86 | 2°-8%2 or 282 or 3.5 25.82.3.5 or 24.82.3.5 or
23.4.82 or 22.4.82 23.4.82.3.5 or 22.4.82.3-5

87 |28 or 27 or 16-3-5-23 @-28 or @-27 or
26.4 or 2°.4 @-26-4 or @-25-4

88 | 244 2 244

89 | 23 . 22 2.04

90 | 23.8 or 22.8 3 2 24.8.3 or 22.8-3

Figure [ displays the 2-primary stable homotopy groups in a graphical format

originally promoted by Allen Hatcher. Vertical chains of n dots indicate Z/2™. The
non-vertical lines indicate multiplications by 1 and v. The blue dots represent the
vi-periodic subgroups. The green dots are associated to the topological modular
forms spectrum tmf. These elements are detected by the unit map from the sphere
spectrum to tmf, either in homotopy or in the algebraic Ext groups that serve as
Adams FEs-pages.

Finally, the red dots indicate uncertainties. In addition, in higher stems, there

are possible extensions by 2, 77, and v that are not indicated in Figure[ll See Tables
[I6] I8 and 20] for more details about these possible extensions.

FIGURE 1. 2-primary stable homotopy groups

—
=

i

10 12 14 16

18

'I/A an

20 22 24 26 28



8 1. INTRODUCTION

{L/
ReEgars
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g a sl b

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

62 64 66 68 70 T2 T4 76 78 8 82 84 8 88 90

The orders of individual 2-primary stable homotopy groups do not follow a
clear pattern, with large increases and decreases seemingly at random. However,
an empirically observed pattern emerges if we consider the cumulative size of the
groups, i.e., the product of the orders of all 2-primary stable homotopy groups from
dimension 1 to dimension k.
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Our data strongly suggest that asymptotically, there is a linear relationship be-
tween k2 and the logarithm of this product of orders. In other words, the number
of dots in Figuredin stems 1 through k is linearly proportional to k2. Correspond-
ingly, the number of dots in the classical Adams E,-page in stems 1 through k
is linearly proportional to k2. Thus, in extending from dimension 60 to dimension
90, the overall size of the computation more than doubles. Specifically, through di-
mension 60, the cumulative rank of the Adams F..,-page is 199, and is 435 through
dimension 90. Similarly, through dimension 60, the cumulative rank of the Adams
FEs-page is 488, and is 1,461 through dimension 90.

CONJECTURE 1.5. Let f(k) be the product of the orders of the 2-primary stable
homotopy groups in dimensions 1 through k. There exists a mon-zero constant C

such that

k—o0 k2 =¢

One interpretation of this conjecture is that the expected value of the logarithm
of the order of the 2-primary component of 7, grows linearly in k. We have only data
to support the conjecture, and we have not formulated a mathematical rationale.
It is possible that in higher stems, new phenomena occur that alter the growth rate
of the stable homotopy groups.

By comparison, data indicates that the growth rate of the Adams Fs-page is
qualitatively greater than the growth rate of the Adams F..-page. This apparent
mismatch has implications for the frequency of Adams differentials.

1.3. Remaining uncertainties

Some uncertainties remain in the analysis of the first 90 stable stems. Table
lists all possible differentials in this range that are undetermined. Some of
these unknown differentials are inconsequential because possible error terms are
killed by later differentials. Others are inconsequential because they only affect the
names (and Adams filtrations) of the elements in the Adams E.-page that detect
particular stable homotopy elements. A few of the unknown differentials affect the
structure of the stable homotopy groups more significantly. This means that the
orders of some of the stable homotopy groups are known only up to factors of 2.

In addition, there are some possible hidden extensions by 2, n, and v that re-
main unresolved. Tables[T6l I8 and 20 summarize these possibilities. The presence
of unknown hidden extensions by 2 means that the group structures of some stable
homotopy groups are not known, even though their orders are known.

1.4. Groups of homotopy spheres

An important application of stable homotopy group computations is to the
work of Kervaire and Milnor [23] on the classification of smooth structures on
spheres in dimensions at least 5. Let O, be the group of h-cobordism classes of
homotopy n-spheres. This group classifies the differential structures on S™ for
n > 5. It has a subgroup ©%, which consists of homotopy spheres that bound

parallelizable manifolds. The relation between ©,, and the stable homotopy group
7, is summarized in Theorem See also [32] for a survey on this subject.

THEOREM 1.6. (Kervaire-Milnor [23]) Suppose that n > 5.
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(1) The subgroup O is cyclic, and has the following order:
1, if n is even,
% ={ 1or2, ifn=4k+1,
br, ifn =4k — 1.

Here by, is 228=2(22k=1 1) times the numerator of 4Bay,/k, where Bay is
the 2kth Bernoulli number.

(2) Forn # 2 (mod 4), there is an exact sequence

0 ebr 0, 7/ J — 0.

Here m,/J is the cokernel of the J-homomorphism.

(8) For n =2 (mod 4), there is an exact sequence

0 ebr e, M) —2>17)2 —= 0%  — 0.
Here the map ® is the Kervaire invariant.

The first few values, and then estimates, of the numbers by are given by the
sequence

28, 992, 8128, 261632, 1.45 x 10, 6.71 x 107, 1.94 x 10'2, 7.54 x 10™,....

THEOREM 1.7. The last column of Table[dl describes the groups ©,, for n < 90,
with the exception of n = 4. The underlined symbols denote the contributions from

b
o,

The cokernel of the J-homomorphism is slightly different than the v;-torsion
part of m, at the prime 2. In dimensions 8m + 1 and 8m + 2, there are classes
detected by P™h; and P™h? in the Adams spectral sequence. These classes are
vi-periodic, in the sense that they are detected by the K (1)-local sphere. However,
they are also in the cokernel of the J-homomorphism.

We restate the following conjecture from [44], which is based on the current
knowledge of stable stems and a problem proposed by Milnor [32].

CONJECTURE 1.8. In dimensions greater than 4, the only spheres with unique
smooth structures are S°, S, S12, 8§56 and SO,

Uniqueness in dimensions 5, 6 and 12 was known to Kervaire and Milnor [23].
Uniqueness in dimension 56 is due to the first author [16], and uniqueness in di-
mension 61 is due to the second and the third authors [44].

Conjecture [[.8 is equivalent to the claim that the group ©,, is not of order
1 for dimensions greater than 61. This conjecture has been confirmed in all odd
dimensions by the second and the third authors [44] based on the work of Hill,
Hopkins, and Ravenel [13], and in even dimensions up to 140 by Behrens, Hill,
Hopkins, and Mahowald [4].

1.5. Notation

The cohomology of the Steenrod algebra is highly irregular, so consistent nam-
ing systems for elements presents a challenge. A list of multiplicative generators
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appears in Table @l To a large extent, we rely on the traditional names for ele-
ments, as used in [7], [16], [37], and elsewhere. However, we have adopted some
new conventions in order to partially systematize the names of elements.

First, we use the symbol Az to indicate an element that is represented by vjx
in the May spectral sequence. This use of A is consistent with the role that vj
plays in the homotopy of tmf, where it detects the discriminant element A. For
example, instead of the traditional symbol 7, we use the name Ah3.

Second, the symbol M indicates the Massey product operator (—, h3, g2). For
example, instead of the traditional symbol By, we use the name Mh;.

Similarly, the symbol g indicates the Massey product operator {—, h{, hy). For
example, we write hag for the indecomposable element (ha, hi, hs).

Eventually, we encounter elements that neither have traditional names, nor can
be named using symbols such as P, A, M, and g. In these cases, we use arbitrary
names of the form x; ¢, where s and f are the stem and Adams filtration of the
element.

The last column of Table Ml gives alternative names, if any, for each multiplica-
tive generator. These alternative names appear in at least one of [7] [16] [37].

REMARK 1.9. One specific element deserves further discussion. We define 7Q3
to be the unique element such that hs-7Q3 = 0. This choice is not compatible with
the notation of [16]. The element 7Q3 from [16] equals the element 7Q3 + 7n; in
this manuscript.

We shall also extensively study the Adams spectral sequence for the cofiber of
7. See Section Bl for more discussion of the names of elements in this spectral
sequence, and how they relate to the Adams spectral sequence for the sphere.

Table [Tl gives some notation for elements in 7, .. Many of these names follow
standard usage, but we have introduced additional non-standard elements such as
k1 and Ro. These elements are defined by the classes in the Adams FE.-page that
detect them. In some cases, this style of definition leaves indeterminacy because
of the presence of elements in the F..-page in higher filtration. In some of these
cases, Table[I] provides additional defining information. Beware that this additional
defining information does not completely specify a unique element in 7, , in all
cases. For the purposes of our computations, these remaining indeterminacies are
not, consequential.

(1) Ct represents the cofiber of 7: §%~1 — §%0 We can also write S/7 for
this C-motivic spectrum, but the latter notation is more cumbersome.

(2) Ext = Extc is the cohomology of the C-motivic Steenrod algebra. It is
graded in the form (s, f, w), where s is the stem (i.e., the total degree mi-
nus the Adams filtration), f is the Adams filtration (i.e., the homological
degree), and w is the motivic weight.

(3) Extq is the cohomology of the classical Steenrod algebra. It is graded in
the form (s, f), where s is the stem (i.e., the total degree minus the Adams
filtration), and f is the Adams filtration (i.e., the homological degree).

(4) 7y s is the 2-completed C-motivic stable homotopy groups.

(5) H*(S; BP) is the Adams-Novikov Es-page for the classical sphere spec-
trum, i.e., EXth*Bp(BP*, BP*)

(6) H*(S/2; BP) is the Adams-Novikov Es-page for the classical mod 2 Moore
spectrum, i.e., Extgp, gp(BPy, BP./2).
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1.6. How to use this manuscript

The manuscript is oriented around a series of tables to be found in Chapter [§
In a sense, the rest of the manuscript consists of detailed arguments for establishing
each of the computations listed in the tables. We have attempted to give references
and cross-references within these tables, so that the reader can more easily find the
specific arguments pertaining to each computation.

We have attempted to make the arguments accessible to users who do not intend
to read the manuscript in its entirety. To some extent, with an understanding of
how the manuscript is structured, it is possible to extract information about a
particular homotopy class in isolation.

We assume that the reader is also referring to the Adams charts in [19] and
[17]. These charts describe the same information as the tables, except in graphical
form.

This manuscript is very much a sequel to [16]. We will frequently refer to
discussions in [16], rather than repeat that same material here in an essentially
redundant way. This is especially true for the first parts of Chapters 2, 3, and 4
of [16], which discuss respectively the general properties of Ext, the May spectral
sequence, and Massey products; the Adams spectral sequence and Toda brackets;
and hidden extensions.

Chapter 2] provides some additional miscellaneous background material not al-
ready covered in [16]. Chapter B] discusses the nature of the machine-generated
data that we rely on. In particular, it describes our data on the algebraic Novikov
spectral sequence, which is equal to the Adams spectral sequence for the cofiber of
7. Chapter M provides some tools for computing Massey products in Ext, and gives
some specific computations. Chapter [ carries out a detailed analysis of Adams dif-
ferentials. Chapter [0 computes some miscellaneous Toda brackets that are needed
for various specific arguments elsewhere. Chapter [l methodically studies hidden
extensions by 7, 2, 7, and v in the E-page of the C-motivic Adams spectral se-
quence. This chapter also gives some information about other miscellaneous hidden
extensions. Finally, Chapter [{lincludes the tables that summarize the multitude of
specific computations that contribute to our study of stable homotopy groups.
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CHAPTER 2

Background

2.1. Associated graded objects

DEFINITION 2.1. A filtered object A consists of a finite chain
A=FRADFADHAD . - -DF, 1ADF,A=0
of inclusions descending from A to 0.

We will only consider finite chains because these are the examples that arise
in our Adams spectral sequences. Thus we do not need to refer to “exhaustive”
and “Hausdorft” conditions on filtrations, and we avoid subtle convergence issues
associated with infinite filtrations.

ExXAMPLE 2.2. The C-motivic stable homotopy group mas = Z/2®Z/2 is a
filtered object under the Adams filtration. The generators of this group are o2 and
k. The subgroup F3 is zero, the subgroup F3 = Fj is generated by k, and the
subgroup Fy = F; = F; is generated by o2 and .

DEFINITION 2.3. Let A be a filtered object. The associated graded object Gr A
is
P
P FA/F A
0
If a is an element of Gr A, then we write {a} for the set of elements of A
that are detected by a. In general, {a} consists of more than one element of A,
unless a happens to have maximal filtration. More precisely, the element a is a
coset o + Fiy1 A for some « in A, and {a} is another name for this coset. In this
situation, we say that a detects «.
In this manuscript, the main example of a filtered object is a C-motivic homo-
topy group 7, 4, equipped with its Adams filtration.

ExXAMPLE 2.4. Consider the C-motivic stable homotopy group 7148 with its
Adams filtration, as described in Example The associated graded object is
non-trivial only in degrees 2 and 4, and it is generated by h% and dy respectively.

DEFINITION 2.5. Let A and B be filtered objects, perhaps with filtrations of
different lengths. A map f : A — B is filtration preserving if f(F;A) is contained
in F;B for all i.

Let f : A — B be a filtration preserving map of filtered objects. We write
Gr f : Gr A — Gr B for the induced map on associated graded objects.

DEFINITION 2.6. Let a and b be elements of Gr A and Gr B respectively. We
say that b is the (not hidden) value of a under f if Gr f(a) = b.
We say that b is the hidden value of @ under f if:

13



14 2. BACKGROUND

(1) Gr f(a) =0.

(2) there exists an element « of {a} in A such that f(«) is contained in {b}
in B.

(3) there is no element v in filtration strictly higher than « such that f(v) is
contained in {b}.

The motivation for condition (3) may not be obvious. The point is to avoid
situations in which condition (2) is satisfied trivially. Suppose that there is an
element 7 such that f(v) is contained in {b}. Let a be any element of Gr A whose
filtration is strictly less than the filtration of . Now let a be any element of {a}
such that f(a) = 0. (It may not be possible to choose such an « in general, but
sometimes it is possible.) Then « + v is another element of {a} such that f(a +7)
is contained in {b}. Thus f takes some element of {a} into {b}, but only because
of the presence of 7. Condition (3) is designed to exclude this situation.

EXAMPLE 2.7. We illustrate the role of condition (3) in Definition with a
specific example. Consider the map 7 : 4,8 — m15,9. The associated graded map
Gr(n) takes hZ to 0 and takes dy to hidp.

The coset {h3} in 7145 consists of two elements 02 and o + . One of these
elements is non-zero after multiplying by 7. (In fact, no? equals zero, and n(o? +
K) = mk is non-zero, but that is not relevant here.) Conditions (1) and (2) of
Definition are satisfied, but condition (3) fails because of the presence of x in
higher filtration.

Suppose that b is the hidden value of a under f. It is typically the case that
f(a) is contained in {b} for every o in A. However, an even more complicated
situation can occur in which this is not true.

Suppose that by is the hidden value of ag under f, and suppose that b; is the
(hidden or not hidden) value of a; under f. Moreover, suppose that the filtration
of ag is strictly lower than the filtration of a1, and the filtration of by is strictly
greater than the filtration of b;. In this situation, we say that the value of ap under
f crosses the value of a; under f.

The terminology arises from the usual graphical calculus, in which elements of
higher filtration are drawn above elements of lower filtration, and values of maps
are indicated by line segments, as in Figure [l

FIGURE 1. Crossing values

bo
by
ai

ao

ExaMpLE 2.8. For any map X — Y of C-motivic spectra, naturality of the
Adams spectral sequence induces a filtration preserving map m, ¢ X — m, Y. We
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are often interested in inclusion S%° — C7 of the bottom cell into C7, and in
projection C7 — Sb~! from C7 to the top cell. We also consider the unit map
500 5 mmf.

2.1.1. Indeterminacy in hidden values. Definition allows for the pos-
sibility of some essentially redundant cases. In order to avoid this redundancy, we
introduce indeterminacy into our definition.

Suppose, as in Definition 2.6] that b is the hidden value of a under f, so there
exists some « in {a} such that f(«) is contained in {b}. Suppose also that there
is another element a’ in Gr A in degree strictly greater than the degree of a, such
that f(a’) is contained in {b'}, where o’ is in {a'} and V' has the same degree as
b. Then b+ b’ is also a hidden value of @ under f, since a + o’ is contained in {a}
and f(a + o) is contained in {b+ 0'}. In this case, we say that b’ belongs to the
target indeterminacy of the hidden value.

EXAMPLE 2.9. Consider the map 7 : 763,33 — 7Tea,34. The element hz(Q)2 is a
hidden value of 7hy H; under this map. This hidden value has target indeterminacy
generated by 7h1 Xs = hy - (X2 + 7C").

2.1.2. Hidden extensions. Let o be an element of 7, ;. Then multiplication
by « induces a filtration preserving map mp, ; — Tpta,q+b- A hidden value of this
map is precisely the same as a hidden extension by « in the sense of [16] Definition
4.2]. For clarity, we repeat the definition here.

DEFINITION 2.10. Let a be an element of 7, , that is detected by an element
a of the Fo-page of the C-motivic Adams spectral sequence. A hidden extension
by « is a pair of elements b and ¢ of F,, such that:
(1) ab =0 in the E,-page.
(2) There exists an element § of {b} such that af is contained in {c}.
(3) If there exists an element 8 of {b'} such that a8’ is contained in {c}, then
the Adams filtration of &’ is less than or equal to the Adams filtration of
b.

A crossing value for the map « : m, ¢ — Tpya,q+b IS precisely the same as a
crossing extension in the sense of [16] Examples 4.6 and 4.7].

The discussion target indeterminacy applies to the case of hidden extensions.
For example, the hidden 7 extension from h3Q2 to T7hiH; has target indeterminacy
generated by 7hi Xs.

Typically, there is a symmetry in the presence of hidden extensions, in the
following sense. Let a and 8 be detected by a and b respectively. If there is a
hidden « extension from b to ¢, then usually there is also a hidden 8 extension from
a to ¢ as well. However, this symmetry does not always occur, as the following
example demonstrates.

EXAMPLE 2.11. We prove in Lemma [[.156] that (02 + )05 is zero. Therefore,
there is no (02 + k) extension on h2. On the other hand, Table 21l shows that o205
is non-zero and detected by hohsA. Therefore, there is a hidden 65 extension from
h% to h0h4A.

In later chapters, we will thoroughly explore hidden extensions by 2, n, and v.
We warn the reader that a complete understanding of such hidden extensions does
not necessarily lead to a complete understanding of multiplication by 2, n, and v
in the C-motivic stable homotopy groups.
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For example, in the 45-stem, there exists an element 6,5 that is detected by
h3hs such that 464 5 is detected by hohsdo. This is an example of a hidden 4 ex-
tension. However, there is no hidden 2 extension from h0h§ hs to hohsdy; condition
(3) of Definition [2Z8] is not satisfied.

In fact, a complete understanding of all hidden extensions leads to a complete
understanding of the multiplicative structure of the C-motivic stable homotopy
groups, but the process is perhaps more complicated than expected.

For example, we mentioned in Example 2.7 that either (02 + &) or no? is non-
zero, but these cases cannot be distinguished by a study of hidden 7 extensions.
However, we can express that no? is zero by observing that there is no hidden o
extension from hihs to hidp.

There are even further complications. For example, the equation h3 + h2hs = 0
does not prove that v® + %0 equals zero because it could be detected in higher
filtration. In fact, this does occur. Toda’s relation [38] says that

n’o + % = e,
where ne is detected by hico.
We can express Toda’s relation in terms of a “matric hidden extension”. We
have amap [v 7] : 7.4 ®7s,5 — 796. The associated graded map takes (h%, hihs)

to zero, but hicg is the hidden value of (h3, hihs) under this map, in the sense of
Definition

2.2. Motivic modular forms

Over C, a “motivic modular forms” spectrum mmf has recently been con-
structed [I0]. From our computational perspective, mmf is a ring spectrum whose
cohomology is A//A(2), i.e., the quotient of the C-motivic Steenrod algebra by the
subalgebra generated by Sq', Sq?, and Sq*. By the usual change-of-rings isomor-
phism, this implies that the homotopy groups of mmf are computed by an Adams
spectral sequence whose Es-page is the cohomology of C-motivic A(2) [14]. The
Adams spectral sequence for mmf has been completely computed [17].

By naturality, the unit map S%° — mmf yields a map of Adams spectral
sequences. This map allows us to transport information from the thoroughly un-
derstood spectral sequence for mmf to the less well understood spectral sequence
for %Y. This comparison technique is essential at many points throughout our
computations.

We rely on notation from [14] and [17] for the Adams spectral sequence for
mmyf, except that we use a and n instead of o and v respectively.

For the most part, the map 7, s — m .mmf is detected on Adams E.-pages.
However, this map does have some hidden values.

THEOREM 2.12. Through dimension 90, Table[d lists all hidden values of the
MAP Ty — T« MMS.

PROOF. Most of these hidden values follow from hidden 7 extensions in the
Adams spectral sequences for S%° and for mmf For example, for S%°, there is a
hidden 7 extension from h1hgg to d3. For mmf, there is a hidden 7 extension from
cg to d?. This implies that cg is the hidden value of hihsg.

A few cases are slightly more difficult. The hidden values of Ahihs and hohsi
follow from the Adams-Novikov spectral sequences for S%Y and for mmf These
two values are detected on Adams-Novikov E..-pages in filtration 2.
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Next, the hidden value on Phohsj follows from multiplying the hidden value on
hohsi by do. Finally, the hidden values on Ah2hs, hohahsi, and Phsj follow from
already established hidden values, relying on h; extensions and ho extensions. [l

REMARK 2.13. Through the 90-stem, there are no crossing values for the map
Ty« — Tx «mmf. Moreover, in this range, there is only one hidden value that has
target indeterminacy. Namely, A2had is the hidden value of Phsj, with target
indeterminacy generated by 73Ah; g%

2.3. The cohomology of the C-motivic Steenrod algebra

We have implemented machine computations of Ext, i.e., the cohomology of
the C-motivic Steenrod algebra, in detail through the 110-stem. We take this
computational data for granted. It is depicted graphically in the chart of the Fso-
page shown in [19]. The data is available at [42]. See [43] for a discussion of the
implementation.

In addition to the additive structure of Ext, we also have complete information
about multiplications by hg, h1, ha, and hs. We do not have complete multiplicative
information. Occasionally we must deduce some multiplicative information on an
ad hoc basis.

Similarly, we do not have systematic machine-generated Massey product infor-
mation about Ext. We deduce some of the necessary information about Massey
products in Chapter [l

In the classical situation, Bruner has carried out extensive machine computa-
tions of the cohomology of the classical Steenrod algebra [7]. This data includes
complete primary multiplicative information, but no higher Massey product struc-
ture. We rely heavily on this information. Our reliance on this data is so ubiquitous
that we will not give repeated citations.

The May spectral sequence is the key tool for a conceptual computation of
Ext. See [16] for full details. In this manuscript, we use the May spectral sequence
to compute some Massey products that we need for various specific purposes; see
Remark for more details.

For convenience, we restate the following structural theorem about a portion
of Ext¢ [16, Theorem 2.19].

THEOREM 2.14. There is a highly structured isomorphism from Exte to the
subalgebra of Ext consisting of elements in degrees (s, f,w) with s + f — 2w = 0.
This isomorphism takes classical elements of degree (s, f) to motivic elements of
degree (2s+ f, f,s+ f).

2.4. Toda brackets

Toda brackets are an essential computational tool for understanding stable
homotopy groups. Brackets appear throughout the various stages of the compu-
tations, including in the analysis of Adams differentials and in the resolution of
hidden extensions.

It is well-known that the stable homotopy groups form a ring under the com-
position product. The higher Toda bracket structure is an extension of this ring
structure that is much deeper and more intricate. Our philosophy is that the sta-
ble homotopy groups are not really understood until the Toda bracket structure is
revealed.



18 2. BACKGROUND

A complete analysis of all Toda brackets (even in a range) is not a practical
goal. There are simply too many possibilities to take into account methodically,
especially when including matric Toda brackets (and possibly other more exotic
non-linear types of brackets). In practice, we compute only the Toda brackets that
we need for our specific computational purposes.

2.4.1. The Moss Convergence Theorem. We next discuss the Moss Con-
vergence Theorem [33], which is the essential tool for computing Toda brackets in
stable homotopy groups. In order to make this precise, we must clarify the various
types of bracket operations that arise.

First, the Adams Fs-page has Massey products arising from the fact that it
is the homology of the cobar complex, which is a differential graded algebra. We
typically refer to these simply as “Massey products”, although we write “Massey
products in the Es-page” for clarification when necessary.

Next, each higher E,-page also has Massey products, since it is the homology
of the E,_i-page, which is a differential graded algebra. We always refer to these
as “Massey products in the FE,.-page” to avoid confusion with the more familiar
Massey products in the Fs-page. This type of bracket appears only occasionally
throughout the manuscript.

Beware that the higher FE,.-pages do not inherit Massey products from the
preceding pages. For example, Th? equals the Massey product (hg, h1,ho) in the
Es-page. However, in the Es-page, the bracket (ho, h1,ho) equals zero, since the
product hoh; is already equal to zero in the Fs-page before taking homology to
obtain the Es3-page.

On the other hand, the Massey product (hy, hg, h3) is not a well-defined Massey
product in the Es-page since hoh3 is non-zero, while (hy, hg,h3) in the Es-page
equals hihy because of the differential da(hy) = hoh3.

Finally, we have Toda brackets in the stable homotopy groups 7 .. The point
of the Moss Convergence Theorem is to relate these various kinds of brackets.

DEFINITION 2.15. Let a and b be elements in the E,.-page of the C-motivic
Adams spectral sequence such that ab = 0, and let n > 1. We call a nonzero
differential

drynT =1y
a crossing differential for the product ab in the E, page, if the element y has the
same stem and motivic weight as the product ab = 0, and the difference between
the Adams filtration of y and of ab is strictly greater than 0 but strictly less than
n+ 1.

Figure [2 depicts the situation of a crossing differential in a chart for the E,.-
page. Typically, the product ab is zero in the E,-page because it was hit by a d,_1
differential, as shown by the dashed arrow in the figure. However, it may very well
be the case that the product ab is already zero in the E,_i-page (or even in an
earlier page), in which case the dashed d,_; differential is actually d,._1(0) = 0.

THEOREM 2.16 (Moss Convergence Theorem). Suppose that a, b, and ¢ are
permanent cycles in the E,.-page of the C-motivic Adams spectral sequence that
detect homotopy classes o, B, and 7y in 7, . respectively. Suppose further that

(1) the Massey product {(a,b,c) is defined in the E,.-page, i.e., ab = 0 and
bc =0 in the E,-page.
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FIGURE 2. Crossing differentials

(2) the Toda bracket (o, 8,7) is defined in Ty, i.e., af =0 and By = 0.
(3) there are no crossing differentials for the products ab and bc in the E,.-
page.
Then there exists an element e contained in the Massey product {(a,b,c) in the
E,.-page, such that
(1) the element e is a permanent cycle.
(2) the element e detects a homotopy class in the Toda bracket {«, 3,7).

REMARK 2.17. The homotopy classes «, 3, and  are usually not unique. The
presence of elements in higher Adams filtration implies that a, b, and ¢ detect more
than one homotopy class. Moreover, it may be the case that {«, 8,~) is defined for
only some choices of «, 8, and -, while the Toda bracket is not defined for other
choices.

REMARK 2.18. The Moss Convergence Theorem[2.T60says that a certain Massey
product {a,b,c) in the E,-page contains an element with certain properties. The
theorem does not claim that every element of (a, b, ¢) has these properties. In the
presence of indeterminacies, there can be elements in (a, b, c) that do not satisfy
the given properties.

REMARK 2.19. Beware that the Toda bracket {(«, 3,7) may have non-zero in-
determinacy. In this case, we only know that e detects one element of the Toda
bracket. Other elements of the Toda bracket could possibly be detected by other
elements of the Adams F.,-page; these occurrences must be determined by inspec-
tion.

REMARK 2.20. In practice, one computes a Toda bracket («,3,~) by first
studying its corresponding Massey product (a,b, ¢) in a certain page of the Adams
spectral sequence. In the case that the Massey product (a, b, ¢) equals zero in the
E,-page in Adams filtration f, the Moss Convergence Theorem 2.16] does not imply
that the Toda bracket («, 8,v) contains zero. Rather, the Toda bracket contains
an element (possibly zero) that is detected in Adams filtration at least f + 1.

ExAMPLE 2.21. Consider the Toda bracket (v,n,v). The elements h; and hg
are permanent cycles that detect n and v, and the product nv is zero. We have
that (ha, h1,ho) equals hihs, with no indeterminacy, in the Es-page. There are
no crossing differentials for the product hihe = 0 in the Es-page, so the Moss
Convergence Theorem 210 implies that hihs detects a homotopy class in (v, n, v).
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Note that hihs detects the homotopy class no because hs is a permanent cycle
that detects . However, we cannot conclude that no is contained in (v, n, ). The
presence of the permanent cycle ¢y in higher filtration means that hihs detects
both no and no + €, where € is the unique homotopy class that is detected by cg.
The Moss Convergence Theorem implies that either no or no + € is contained
in the Toda bracket (v,n,v). In fact, no + € is contained in the Toda bracket, but
determining this requires further analysis.

EXAMPLE 2.22. Consider the Toda bracket (62,2, n). The elements h3, ho, and
hy are permanent cycles that detect o2, 2, and 7 respectively, and the products 202
and 27 are both zero. Due to the Adams differential da(hy) = hohg, the Massey
product (h3, ho, h1) equals hihy in the Es-page, with zero indeterminacy. There
are no crossing differentials for the products hoh? = 0 and hohy = 0 in the Es-page.
The Moss Convergence Theorem implies that hihs detects a homotopy class
in the Toda bracket (02,2, 7).

The element h also detects 0% + k, where  is the unique homotopy class
that is detected by dp, and the product 2(c? + k) is zero. The Moss Convergence
Theorem also implies that hihy detects a homotopy class in the Toda bracket
(0% + K, 2,7).

ExaMPLE 2.23. Counsider the Toda bracket (k,2,n). The elements dy, ho, and
hy are permanent cycles that detect x, 2, and 7 respectively, and the products 2x
and 27 are both zero. Due to the Adams differential ds(hohs) = hodp, the Massey
product (dy, ho, h1) equals hohs - h1 = 0 in Adams filtration 3 in the E4-page, with
zero indeterminacy. There are no crossing differentials for the products hody = 0
and hoh1 = 0 in the E4-page. The Moss Convergence Theorem implies that
the Toda bracket (k,2,7) either contains zero, or it contains a non-zero element
detected in Adams filtration greater than 3.

The only possible detecting element is Pcg. There is a hidden n extension
from hgh4 to Pcg, so Pcy detects an element in the indeterminacy of (k,2,7).
Consequently, the Toda bracket is {0, 7p15}, where p15 is detected by h3hy.

EXAMPLE 2.24. The Massey product (ha,h3,h3) equals {fo, fo + h3hahs} in
the Es-page. The elements ho, h3, and h2 are permanent cycles that detect v, o2,
and 4 respectively, and the products vo? and 402 are both zero. However, the
product h3h% has a crossing differential ds(hohs) = hody. The Moss Convergence
Theorem does not apply, and we cannot conclude anything about the Toda
bracket (v, 02, 4). In particular, we cannot conclude that {fo, fo+h3hohs} contains

a permanent cycle. In fact, both elements support Adams dy differentials.

REMARK 2.25. There is a version of the Moss Convergence Theorem for
computing fourfold Toda brackets {(«a, 8,7, 0) in terms of fourfold Massey products
{(a,b,c,d) in the E,-page. In this case, the crossing differential condition applies
not only to the products ab, be, and cd, but also to the subbrackets (a, b, c) and
(b, e, d).

REMARK 2.26. Just as the Moss Convergence Theorem is the key tool for
computing Toda brackets with the Adams spectral sequence, the May Convergence
Theorem is the key tool for computing Massey products with the May spectral
sequence. The statement of the May Convergence Theorem is entirely analogous to
the statement of the Moss Convergence Theorem, with Adams differentials replaced
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by May differentials; Adams FE,-pages replaced by May E,.-pages; 7, . replaced
by Ext; and Toda brackets replaced by Massey products. An analogous crossing
differential condition applies. See [16] Section 2.2] [30] for more details. We will
use the May Convergence Theorem to compute various Massey products that we
need for specific purposes.

2.4.2. Moss’s higher Leibniz rule. Occasionally, we will use Moss’s higher
Leibniz rule [33], which describes how Massey products in the FE,-page interact
with the Adams d, differential. This theorem is a direct generalization of the usual
Leibniz rule d,(ab) = d,(a)b + ad,(b) for twofold products.

THEOREM 2.27. [33] Suppose that a, b, and ¢ are elements in the E,.-page of
the C-motivic Adams spectral sequence such that ab = 0, be = 0, d,.(b)a = 0, and
d-(b)e =0. Then

dy(a,b,c) C (dr(a),b,c) + (a, dr(b), c) + (a, b, dr(c)),
where all brackets are computed in the E.-page.

REMARK 2.28. By the Leibniz rule, the conditions d,.(b)a = 0 and d,.(b)c =0
imply that d(a)b = 0 and d,-(¢)b = 0. Therefore, all of the Massey products in
Theorem are well-defined.

REMARK 2.29. The Massey products in Moss’s higher Leibniz rule may
have indeterminacies, so the statement involves an inclusion of sets, rather than an
equality.

REMARK 2.30. Beware that Moss’s higher Leibniz rule cannot be applied
to Massey products in the FE,-page to study differentials in higher pages. For
example, we cannot use it to compute the dg differential on a Massey product in
the Es-page. In fact, there are versions of the higher Leibniz rule that apply to
higher differentials [24) Theorem 8.2] [30, Theorem 4.3], but these results have
strong vanishing conditions that often do not hold in practice.

EXAMPLE 2.31. Consider the element 7A1h?, which was called G in [37]. Table
M shows that there is an Adams differential do(7A1h3) = Mhyhs, which follows by
comparison to C7. To illustrate Moss’s higher Leibniz rule Z.27] we shall give an
independent derivation of this differential.

Table B shows that 7A1h? equals the Massey product (h, ho, D1), with no in-
determinacy. By Moss’s higher Leibiz ruleZ.27] the element do(7A1h?) is contained
in

<0, ho, D1> + <h1, 0, D1> + <h1, ho, d2(D1)>
By inspection, the first two terms vanish. Also, Table @] shows that d2(D1) equals
h&hsgo.

Therefore, do(7A1h?) is contained in the bracket (hi, ho, h3h3g2), which equals
(h1,ho, h2ga)hs. Finally, Table Bl shows that (hi, ho, higa) equals M h;. This shows
that d2 (TAlh%) equals Mhlh,g.

EXAMPLE 2.32. Consider the element Tegg in the Adams FEs-page. Because of
the Adams differential da(eg) = h3dy, we have that Tegg equals {do, h?,7g) in the
Adams Es-page. The higher Leibniz rule implies that ds(regg) is contained in

<07h%77—g> + <d070aTg> + <d07h§70>a
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which equals {0, cod2}. In this case, the higher Leibniz rule 227 does not help to
determine the value of ds(7egg) because the indeterminacy is too large. (In fact,
ds(Teog) does equal cod3, but we need a different argument.)

EXAMPLE 2.33. Lemma [5.29 shows that d3(Ah3he) equals hihgd3. This argu-
ment uses that AhZhg equals (Ah3, h2, ho) in the E3-page, because of the Adams
differential dg(hg) = hoh?.

2.4.3. Shuffling formulas for Toda brackets. Toda brackets satisfy various
types of formal relations that we will use extensively. The most important example
of such a relation is the shuffle formula

a(B,v,0) = (o, B,7)6,

which holds whenever both Toda brackets are defined. Note the equality of sets
here; the indeterminacies of both expressions are the same.

The following theorem states some formal properties of threefold Toda brackets
that we will use later. We apply these results so frequently that we typically use
them without further mention.

THEOREM 2.34. Let o, o/, B3, 7, and 6 be homotopy classes in m. «. Each of the
following relations involving threefold Toda brackets holds up to a sign, whenever
the Toda brackets are defined:

(1) {a+d',B8,7) C{a, B,7) +(, B,7)-
(2) (a,B,7) = (7,8, ).

(8) a{B,7,3) C (ap,,9).
(4) (aB,v,6) C (a,Bv,6).
(5) a<67775> = (o, B,7)6.

(6) 0 € {a,B,7) + (8,7, ) + (v, B).

We next turn our attention to fourfold Toda brackets. New complications
arise in this context. If a8 = 0, By = 0, v§ = 0, {(a,3,7) contains zero, and
(8,7, d) contains zero, then the fourfold bracket («, 8,~, §) is not necessarily defined.
Problems can arise when both threefold subbrackets have indeterminacy. See [15]
for a careful analysis of this problem in the analogous context of Massey products.

However, when at least one of the threefold subbrackets is strictly zero, then
these difficulties vanish. Every fourfold bracket that we use has at least one threefold
subbracket that is strictly zero.

Another complication with fourfold Toda brackets lies in the description of
the indeterminacy. If at least one threefold subbracket is strictly zero, then the
indeterminacy of (a, 3,7, ) is the linear span of the sets (a, 8,€), {a,€,6), and
(€,7,0), where € ranges over all possible values in the appropriate degree for which
the Toda bracket is defined.

The following theorem states some formal properties of fourfold Toda brackets
that we will use later. We apply these results so frequently that we typically use
them without further mention.

THEOREM 2.35. Let o, o, B8, 7y, 0, and e be homotopy classes in my «. Each of
the following relations involving fourfold Toda brackets holds up to a sign, whenever
the Toda brackets are defined:

(1) {(a+ 0, B,7,0) C (a, B,7,6) + (&, B,7,0).
(2) {a, B,7,6) = (5,7, 8, a).



2.4. TODA BRACKETS 23

(3) a{B,7,0,€) C (ap,v,6,¢€).
(4) (aB,7,0,€) C (a,Bv,6,¢€).
(5) a(B,7,0,€) = {a, 8,7, d)e.
(6) a(B,7,0,€) C {{a, B,7),0,€).

(7) 0 € ((a, 3,7), 0, €) + (o, (B,7,0),€) + (o, B, (7,6, €)).

Part (@) of Theorem requires some further explanation. In the expres-
sion {{a, 8,7),0,€), we have a set {«,3,7) as the first input to a threefold Toda
bracket. The expression ({(«, 5,7), 9, €) is defined to be the union of all sets of the
form (¢, , €), where ¢ ranges over all elements of {(«, 3,7). Part () uses the same
notational convention.

We will make occasional use of matric Toda brackets. We will not describe their
shuffling properties in detail, except to observe that they obey analogous matric
versions of the properties in Theorems 2.34] and






CHAPTER 3

The algebraic Novikov spectral sequence

Consider the cofiber sequence

_ T 7 p _
SO’ 1 SO’O Cr Sl7 17

where C7 is the cofiber of 7. The inclusion ¢ of the bottom cell and projection
p to the top cell are tools for comparing the C-motivic Adams spectral sequence
for S0 to the C-motivic Adams spectral sequence for C7. In [16], we analyzed
both spectral sequences simultaneously, playing the structure of each against the
other in order to obtain more detailed information about both. Then we used the
structure of the homotopy of C'7 to reverse-engineer the structure of the classical
Adams-Novikov spectral sequence.

In this manuscript, we use C'7 in a different, more powerful way, because we
have a deeper understanding of the connection between the homotopy of Ct and
the structure of the classical Adams-Novikov spectral sequence. Namely, the C-
motivic spectrum C7 is an Ey-ring spectrum [9] (here E, is used in the naive
sense, not in some enriched motivic sense). Moreover, with appropriate finiteness
conditions, the homotopy category of C'7-modules is equivalent to the category of
BP,.BP-comodules [11] [27]. By considering endomorphisms of unit objects, this
comparison of homotopy categories gives a structured explanation for the identifi-
cation of the homotopy of C't and the classical Adams-Novikov Es-page.

From a computational perspective, there is an even better connection. Namely,
the algebraic Novikov spectral sequence for computing the Adams-Novikov Fs-page
[34] [31] is identical to the C-motivic Adams spectral sequence for computing the
homotopy of C'7. This rather shocking, and incredibly powerful, identification of
spectral sequences allows us to transform purely algebraic computations directly
into information about Adams differentials for C7. Finally, naturality along the
inclusion ¢ of the bottom cell and along the projection p to the top cell allows us
to deduce information about Adams differentials for S%°.

Due to the large quantity of data, we do not explicitly describe the structure
of the Adams spectral sequence for C'7 in this manuscript. We refer the interested
reader to the charts in [21], which provide details in a graphical form.

3.1. Naming conventions

Our naming convention for elements of the algebraic Novikov spectral sequence
(and for elements of the Adams-Novikov spectral sequence) differs from previous
approaches. Our names are chosen to respect the inclusion 7 of the bottom cell and
the projection p to the top cell. Specifically, if x is an element of the C-motivic
Adams Fa-page for S99 then we use the same letter = to indicate its image i.(z)
in the Adams FEs-page for C7. It is certainly possible that i.(x) is zero, but we
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26 3. THE ALGEBRAIC NOVIKOV SPECTRAL SEQUENCE

will only use this convention in cases where i.(x) is non-zero, i.e., when z is not a
multiple of 7.

On the other hand, if x is an element of the C-motivic Adams Fs-page for S%°
such that 7z is zero, then we use the symbol 7 to indicate an element of p;!(x)
in the Adams Fs-page for C'7. There is often more than one possible choice for
T, and the indeterminacy in this choice equals the image of i, in the appropriate
degree. We will not usually be explicit about these choices. However, potential
confusion can arise in this context. For example, it may be the case that one choice
of T supports an h; extension, while another choice of T supports an ho extension,
but there is no possible choice of T that simultaneously supports both extensions.
(The authors dwell on this point because this precise issue has generated confusion
about specific computations.)

3.2. Machine computations

We have analyzed the algebraic Novikov spectral sequence by computer in a
large range. Roughly speaking, our algorithm computes a Curtis table for a minimal
resolution. Significant effort went into optimizing the linear algebra algorithms to
complete the computation in a reasonable amount of time. The data is available
at [42]. See [43] for a discussion of the implementation.

Our machine computations give us a full description of the additive structure of
the algebraic Novikov Es-page, together with all d,. differentials for » > 2. It thus
yields a full description of the additive structure of the algebraic Novikov F..-page.

Moreover, the data also gives full information about multiplication by 2, hq,
and ho in the Adams-Novikov Fs-page for the classical sphere spectrum, which we
denote by H*(S; BP).

We have also conducted machine computations of the Adams-Novikov Fs-
page for the classical cofiber of 2, which we denote by H*(S/2; BP). Note that
H*(S; BP) is the homology of a differential graded algebra (i.e., the cobar com-
plex) that is free as a Zy-module. Therefore, H*(S/2; BP) is the homology of this
differential graded algebra modulo 2. We have computed this homology by ma-
chine, including full information about multiplication by hi, hs, and hs. These
computations are related by a long exact sequence

o~ H*(S; BP)— =H*(S/2; BP)— = H*(S; BP)—> --

Because h3, h3, h3, and hi are annihilated by 2 in H*(S; BP), there are classes
h3, h%, h2, and h? in H*(S/2; BP) such that ¢(h?) equals h? for 2 < i < 5. We also
have full information about multiplication by h3, h3, h2, and h2 in H*(S/2; BP)

This multiplicative information allows use to determine some of the Massey
product structure in the Adams-Novikov Fs-page for the sphere spectrum. There
are several cases to consider.

First, let « and y be elements of H*(S; BP). If the product j(z)j(y) is non-zero
in H*(S/2; BP), then zy must also be non-zero in H*(S; BP).

In the second case, let z be an element of H*(S; BP), and let i be an element
of H*(S/2; BP) such that ¢(y) = y. If the product z -y is non-zero in H*(S/2; BP)
and equals j(z) for some z in H*(S; BP), then z belongs to the Massey product
(2,y,x). This follows immediately from the relationship between Massey products
and the multiplicative structure of a cofiber, as discussed in [16] Section 3.1.1].
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Third, let  and ¥ be elements of H*(S/2; BP) such that ¢(Z) = z, q(¥) = v,
and ¢(Z - y) = z. Then z belongs to the Massey product (z,2,y) in H*(S; BP).
This follows immediately from the multiplicative snake lemma

EXAMPLE 3.1. Computer data shows that the product h3 - hZ does not equal
zero in H*(S/2; BP). This implies that the Massey product (h3,2,hZ) does not
contain zero in H*(S; BP), which in turn implies that the Toda bracket (64,2, 05)
does not contain zero in my3 4s.

REMARK 3.2. let 7 and y be elements of H*(S/2; BP) such that ¢(Z) and ¢(y)
equal z and y, and such that Z - § equals j(z) for some z in H*(S; BP). It appears
that z has some relationship to the fourfold Massey product (2, z, 2, y), but we have
not made this precise.

LEMMA 3.3 (Multiplicative Snake Lemma). Let A be a differential graded al-
gebra that has no 2-torsion, and let H(A) be its homology. Also let H(A/2) be the
homology of A/2, and let 6 : H(A/2) — H(A) be the boundary map associated to

the short exact sequence

0 A—2s4 A)2 0.

Suppose that a and b are elements of H(A/2) such that 26(a) =0 and 26(b) =0 in
H(A). Then the Massey product {§(a),2,5(b)) in H(A) contains 6(ab).

PRrROOF. We carry out a diagram chase in the spirit of the snake lemma. Write
0 for the boundary operators in A and A/2.

Let z and y be cycles in A/2 that represent a and b respectively. Let 2’ and ¢/’
be elements in A that reduce to  and y. Then 9z’ and 9y’ reduce to zero in A/2
because x and y are cycles. Therefore, 0z’ = 27 and 0y’ = 2y for some 7 and 7 in
A.

By definition of the boundary map, §(a) and §(b) are represented by Z and y. By
the definition of Massey products, the cycle Ty’ 4+ 2’y is contained in (§(a), 2, §(b)).

Now we compute §(ab). Note that z'y’ is an element of A that reduces to ab.
Then

O('y') = 0(a" )y +2'0(y') = 2(Ty’ + 2'Y).

This shows that §(ab) is represented by zy’' + z'y. O

3.3. hi-Bockstein spectral sequence

The charts in [21] show graphically the algebraic Novikov spectral sequence,
i.e., the Adams spectral sequence for C't. Essentially all of the information in
the charts can be read off from machine-generated data. This includes hidden
extensions in the F.-page.

One aspect of these charts requires further explanation. The C-motivic Adams
E>-page for C'7 contains a large number of hi-periodic elements, i.e., elements
that support infinitely many h; multiplications. The behavior of these elements
is entirely understood [12], at least up to many multiplications by hq, i.e., in an
hi-periodic sense.

On the other hand, it takes some work to “desperiodicize” this information.
For example, we can immediately deduce from [12] that do(h¥eq) = hE2dy for
large values of k, but that does not necessarily determine the behavior of Adams
differentials for small values of k.
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The behavior of these elements is a bit subtle in another sense, as illustrated
by Example 3.4

EXAMPLE 3.4. Consider the hi-periodic element ¢geg. Machine computations
tell us that this element supports a ds differential, but there is more than one
possible value for dz(c5€g) because of the presence of both h%cody and Pey.

In fact, da(cody) equals Pdgy, and da(Peg) equals Ph2dy. Therefore, Peg +
h%codo is the only non-zero ds cycle, and it follows that d2(¢peg) must equal Peg +
h%COdo.

In higher stems, it becomes more and more difficult to determine the exact
values of the Adams ds differentials on hi-periodic classes. Eventually, these com-
plications become unmanageable because they involve sums of many monomials.

Fortunately, we only need concern ourselves with the Adams ds differential in
this context. The hi-periodic Es-page equals the hi-periodic F-page, and the
only non-zero classes are well-understood wvi-periodic families running along the
top of the Adams chart.

Our solution to this problem, as usual, is to introduce a filtration that hides the
filtration. In this case, we filter by powers of h;. The effect is that terms involving
higher powers of h; are ignored, and the formulas become much more manageable.

This hi-Bockstein spectral sequence starts with an Ey-page, because there are
some differentials that do not increase h; divisibility. For example, we have Bock-
stein differentials do(h?eq) = hidp and do(codo) = Pdy, reflecting the Adams dif-
ferentials d2 (h%eo) = hildo and d2 (%) = Pdo

There are also plenty of higher h1-Bockstein differentials, such as da(eg) = hidy,
and dr(e3g) = MhS.

REMARK 3.5. Beware that filtering by powers of h; changes the multiplica-
tive structure in perhaps unexpected ways. For example, Ph; and dy are not
hi-multiples, so their h;-Bockstein filtration is zero. One might expect their prod-
uct to be Phidg, but the hi-Bockstein filtration of this element is 1. Therefore,
Phq - dy equals 0 in the hi-Bockstein spectral sequence.

But not all Ph; multiplications are trivial in the hi-Bockstein spectral sequence.
For example, we have Phy - cody = Phicody because the hi-Bockstein filtrations of
all three elements are zero.

In Example B4 we explained that there is an Adams differential ds(cgeg) =
Peo+ h%%. When we throw out higher powers of h1, we obtain the hi-Bockstein
differential do(¢oeg) = Peg. We also have an hi-Bockstein differential do(cody) =
Pdy.

The first four charts in [21] show graphically how this h;-Bockstein spectral
sequence plays out in practice. The main point is that the hi-Bockstein E..-page
reveals which (formerly) hi-periodic classes contribute to the Adams Es-page for
Cr.



CHAPTER 4

Massey products

The purpose of this chapter is to provide some general tools, and to give some
specific computations, of Massey products in Ext. This material contributes to
Table Bl which lists a number of Massey products in Ext that we need for various
specific purposes. Most commonly, these Massey products yield information about
Toda brackets via the Moss Convergence Theorem

We begin with a C-motivic version of a classical theorem of Adams about
symmetric Massey products [1, Lemma 2.5.4].

THEOREM 4.1.

(1) If hox is zero, then (hg,x, ho) contains Thix.
(2) If n > 1 and hpx is zero, then (h,,x, hy) contains hy 1.

4.1. The operator g

The projection map p : A. — A(2). induces a map p. : Extc — Exta(a).
Because Ext 4() is completely known [14], this map is useful for detecting structure
in Extc. Proposition provides a tool for using p, to compute certain types of
Massey products.

PROPOSITION 4.2. Let x be an element of Extc such that hiz = 0. Then
De (<h4, h%,@) equals the element gp.(x) in Ext ).

PROOF. The idea of the proof is essentially the same as in [I8], Proposition 3.1].
The Extc-module Ext (o) is a “Toda module”, in the sense that Massey products
(z,a,b) are defined for all = in Ext 42y and all @ and b in Extc such that x-a =0
and ab = 0. In particular, the bracket (1, hy, hi) is defined in Ext (2). We wish to
compute this bracket.

We use the May Convergence Theorem in order to compute the bracket. The
crossing differentials condition on the theorem is satisfied because there are no
possible differentials that could interfere.

The key point is the May differential dy(b3;) = h1hys. This shows that g is
contained in (1, hy, h$). Also, the bracket has no indeterminacy by inspection.

Now suppose that x is an element of Extc such that hix = 0. Then

D (<h4a hz]%a I>) =1 <h4a hz]%a I> = <17 h’47 h411> Cr = gp*(x)
O
ExAMPLE 4.3. We illustrate the practical usefulness of Proposition with

a specific example. Consider the Massey product (h3ha, h1, he). The proposition
says that

ps ((hha, i, ho)) = hag
in Ext 4(2). This implies that (h3h4, b1, hs) equals hag in Extc.

29
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REMARK 4.4. The Massey product computation in Example[£3]is in relatively
low dimension, and it can be computed using other more direct methods. Table
lists additional examples, including some that cannot be determined by more
elementary methods.

4.2. The Mahowald operator

We recall some results from [18] about the Mahowald operator. The Mahowald
operator is defined to be Mz = (z,h3, g2) for all x such that hjz equals zero. As
always, one must be cautious about indeterminacy in Mx.

There exists a subalgebra B of the C-motivic Steenrod algebra whose coho-
mology Extp(Mg, M) equals Ma[vz] ®m, Exta(2). The inclusion of B into the
C-motivic Steenrod algebra induces a map p, : Extc — Extg.

PROPOSITION 4.5. [I8] Theorem 1.1] The map p. : Extc — Extp takes Mx to
the product (egv3 + h3v3)p.(x), whenever Mz is defined.

Proposition is useful in practice for detecting certain Massey products of
the form (z,h3, g2). For example, if z is an element of Extc such that hdz equals
zero and eop. () is non-zero in Ext 49, then (z, h3, g2) is non-zero.

EXAMPLE 4.6. Proposition shows that (hi, ho, h3g2) is non-zero. There
is only one non-zero element in the appropriate degree, so we have identified the
Massey product. We give this element the name Mh;.

ExXAMPLE 4.7. Expanding on Example [£.6] Proposition also shows that
(Mhq, ho, h3gs) is non-zero. Again, there is only one non-zero element in the ap-
propriate degree, so we have identified the Massey product. We give this element
the name M?h,.

4.3. Additional computations

LEMMA 4.8. The Massey product (h3h4, h1,7gn) equals Tg*n, with indetermi-
nacy generated by Mhoh3g.

PROOF. We start by analyzing the indeterminacy. The product Mcg - hihy
equals

(g2, hiy coYhha = (g2, hiy, Bihaco) = (g2, by, hoha - hag) = (g2, h, hag)hoha,

which equals Mhoh3g. The equalities hold because the indeterminacies are zero,
and the first and last brackets in this computation are given by Table[3 This shows
that Mhoh3g belongs to the indeterminacy.

Table Bl shows that

<h'27 h’i)hﬁla h1> == <h27 h’17 h’i)h4>
equals hog. Then
h2<h€’h4, hi,7gn) = (ha, h?h4, hi)Tgn = Thag?’n.

This implies that (h$hy, h1,7gn) contains either 7¢g?n or T¢*n + Ahzg?. However,
the shuffle
hi(hiha, by, 7gn) = (h1, hiha, hi)Tgn =0

eliminates 7g°n + Ahzg?. O



4.3. ADDITIONAL COMPUTATIONS 31

REMARK 4.9. The Massey product of Lemma L8 cannot be established with
Proposition .2l because p.(7gn) = 0 in Ext 4(2).

LEMMA 4.10. The Massey product (Aey + Co, h3, hihs) equals (Aey + Co)g,
with no indeterminacy.

PrOOF. Consider the Massey product (7(Ae; + Cp), hi, hs). By inspection,
this Massey product has no indeterminacy. Therefore,

<T(A61 + CO)? hAllv h4> = (Ael + OO)<T7 hAllv h4>

Table B shows that the latter bracket equals Tg, so the expression equals 7(Aey +
Co)y.

On the other hand, it also equals 7(Aej + Co, h$, h1hg). Therefore, the bracket
(Aey + Co, b3, hihy) must contain (Ae; + Cp)g. Finally, the indeterminacy can be
computed by inspection. ([

LEMMA 4.11. The Massey product (hs,p', ha) equals hoea, with no indetermi-
nacy.

PROOF. We have
(ha,p',ha)hi = hs(p', ha, hi) = p'(ha, b3, hs).
Table [3] shows that the last Massey product equals co. Observe that p’cs equals
hohi&g.

This shows that (hs,p’, ha) equals either hoea or hges + hgeg. However, shuffle
to obtain
(hs,p', ha)hi = h(p', ha, ha),
which must equal zero. Since hi(hoea+hgeo) is non-zero, it cannot equal (hs, p’, ha).
The indeterminacy is zero by inspection. O

LEMMA 4.12. The Massey product (t3gGo, hoha, ha) has indeterminacy gener-
ated by TM?ho, and it either contains zero or TeoTre,9- In particular, it does not
contain any linear combination of A2h1gs with other elements.

PrOOF. The indeterminacy can be computed by inspection.
The only possible elements in the Massey product (729G, hoha, h) are linear
combinations of egx76,9 and M 2hy. The inclusion
T<T2gG0, hohz, h2> g <T39G0, hth, h2>
gives the desired result. O
LEMMA 4.13. The Massey product (h%,h3,h3, h3) equals Aih3.

PROOF. Table [l shows that Ah3 equals the Massey product (h3,h%, h3,h3).
Recall the isomorphism between classical Ext groups and C-motivic Ext groups in
degrees satisfying s + f — 2w = 0, as described in Theorem 214l This shows that
A1h3 equals (h%, h3, h3 h3). O






CHAPTER 5

Adams differentials

The goal of this chapter is to describe the values of the Adams differentials
in the motivic Adams spectral sequence. These values are given in Tables [ [, [7
B and @l See also the Adams charts in [19] for a graphical representation of the
computations.

5.1. The Adams d> differential

THEOREM b5.1. Table []] lists the values of the Adams ds differential on all
multiplicative generators, through the 95-stem, except that:
(1) d2(D5%) equals either hy X3 or hy X5 + Th1C”.
(2) da(wgas) might equal Th3xer 5.
(3) da(zes,7) equals either xga9 or x9a.9 + Td1 Hy.

PROOF. The fourth column of Table Ml gives information on the proof of each
differential. Most follow immediately by comparison to the Adams spectral se-
quence for C'7. A few additional differentials follow by comparison to the classical
Adams spectral sequence for tmf.

If an element is listed in the fourth column of Table 4] then the corresponding
differential can be deduced from a straightforward argument using a multiplicative
relation. For example, it is possible that da(Ahihs) equals Tdpeg. However, hg -
Ahqhg is zero, while hg - Tdgeq is non-zero. Therefore, da(Ahihs) must equal zero.

In some cases, it is necessary to combine these different techniques to establish
the differential.

The remaining more difficult computations are carried out in the following
lemmas. (]

Table @ lists all of the multiplicative generators of the Adams Es-page through
the 95-stem. The third column indicates the value of the dy differential, if it is
non-zero. A blank entry in the third column indicates that the do differential is
zero. The fourth column indicates the proof. A blank entry in the fourth column
indicates that there are no possible values for the differential. The fifth column
gives alternative names for the element, as used in [37], [7], and [16].

REMARK 5.2. Note that ds(xg4,8) is non-zero in the Adams spectral sequence
for C7. Therefore, either da(wgq8) equals Thiwg: g, or d3(woss) equals hiTgs 10. In
either case, ro4 g does not survive to the En.-page, and either Th3wg; g or h1zg92.10
is hit by a differential.

LEMMA 5.3. dg(AJJ) = h%B4 + 7 Mhdg.

PROOF. We have a differential da(Ax) = h3 By in the Adams spectral sequence
for Cr. Therefore, da(Az) equals either h3 By or h3By + 7 Mhydy.
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We have the relation h? - Ax = Phy - TA1h3, so hida(Az) = Phida(TA1h3) =
Phihs - Mhy = TMh3dy. Therefore, da(Ax) must equal hi By + 7Mhydy. O

REMARK 5.4. The proof of [16, Lemma 3.50] is incorrect. We claimed that
h? - Ax equals hg - A%hihg, when in fact h? - Az equals Thg - A%hihg.

LEMMA 5.5. ds (ZE7777) = TMhlhi.
The following proof was suggested to us by Dexter Chua.

Proor. This follows from the interaction between algebraic squaring opera-
tions and classical Adams differentials [6l Theorem 2.2], applied to the element x
in the 37-stem. The theorem says that

dy Sq* z = Sq® dax + ho Sq® .

The notation means that there is an Adams differential on Sq®z hitting either
Sq® dax = 0 or ho Sq® z, depending on which element has lower Adams filtration.
Therefore ds Sq* 2 = ho Sq° z.

Next, observe from [8] that Sq* z = h3276.6 + 72d1 g2, sO

ho Sq® x = hiyare.6 = TMhihj.

Therefore, there is a dy differential whose value is 7Mhih?3, and the possibility is
that do(z77,7) equals TMhqh3. O

LEMMA 5.6. da(7Bsg) = TMh3g>.

PROOF. We use the Mahowald operator methods of Section The map
ps« : Exte — Extp takes dy - 7B5g to Thoag3v§, which is non-zero. We deduce that
the product dy - 7Bsg is non-zero in Ext, and the only possibility is that it equals
TMg - hom.

Now da(7Mg - hom) equals TMg - hie3, which we also know is non-zero since
it maps to the non-zero element Thideg?v3 of Extp. It follows that da(7Bsg) must
equal TMhZg>. ([l

5.2. The Adams d3 differential

THEOREM 5.7. Table [ lists some values of the Adams ds differential on mul-
tiplicative generators. The Adams ds differential is zero on all multiplicative gen-
erators not listed in the table. The list is complete through the 95-stem, except
that:

(1) ds(hlhe) equals either ho - A%h% or hg - A%h3 + ho(72Meg + hy - Az).
(2) d3(A3hihs) equals either T*Ahiedg or T*Ahiedg + TA%hodpeo.

(3) d3(haheg) might equal Th3hsQs3.

(4) d3(A3h3dy) equals either T3 Ahyd3e or T3 Ahyd3ed + PA%hodyeo.
(5) ds(xoa,8) might equal hizgz 10.

(6) d3(A2Mhy) might equal 7> Mdged.

PROOF. The dj differential on many multiplicative generators is zero. A few
of these multiplicative generators appear in Table [0l because their proofs require
further explanation. For the remaining majority of such multiplicative generators,
the d3 differential is zero because there are no possible non-zero values, because
of comparison to the Adams spectral sequence for Cr, or because the element is
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already known to be a permanent cycle as shown in Table These cases do not
appear in Table

The last column of Table [B] gives information on the proof of each differential.
Most follow immediately by comparison to the Adams spectral sequence for C7.
A few additional differentials follow by comparison to the classical Adams spectral
sequence for tmf, or by comparison to the C-motivic Adams spectral sequence for
mmyf.

If an element is listed in the last column of Table [6] then the corresponding
differential can be deduced from a straightforward argument using a multiplicative
relation. For example,

d3(h1 -TPdoeo) = Phl . d3(7’d0€0) = P2h100d0,

so d3(TPdgeg) must equal P2cody.

If a dy differential is listed in the last column of Table[@ then the corresponding
differential is forced by consistency with that later differential. In each case, a d3
differential on an element z is forced by the existence of a later d, differential on 7.
For example, Table[7]shows that there is a differential d4(72egg) = Pd3. Therefore,
Tepg cannot survive to the Ey-page. It follows that ds(reog) = cod3.

In some cases, it is necessary to combine these different techniques to establish
the differential.

The remaining more difficult computations are carried out in the following
lemmas. O

Table [(] lists the multiplicative generators of the Adams Fs-page through the
95-stem whose d3 differentials are non-zero, or whose ds differentials are zero for
non-obvious reasons.

REMARK 5.8. Several of the uncertainties in the values of the dz differential
are inconsequential because they do not affect the structure of later pages.

(1) The uncertainty in ds(hlhe) is inconsequential because dy(72C’) equals
h0(7’2M60 + hl . A:Z?)

(2) The uncertainty in d3z(A3hyhs3) is inconsequential because dz(72doBs) =
A2h0d060.

(3) The uncertainty in d3(A3h3do) is inconsequential since dz(72M hodok) =
PA2h0d060.

REMARK 5.9. Note that ds(xg4,8) is non-zero in the Adams spectral sequence
for C1. Therefore, either da(z94,8) equals Thzg1 g, or d3(z94,8) equals h1xgs 10. In
either case, rg4 g does not survive to the E.-page, and either Th3wg; g or h1zg92.10
is hit by a differential.

REMARK 5.10. One other ds differential possesses a different kind of uncer-
tainty. We know that either 7D} or 7D 4+ 72heGy survives to the Es-page. In
Lemma [5.15], we show that the surviving element supports a ds differential hitting
72Mhog. This is an uncertainty in the source of the differential, rather than the
target, which arises from an uncertainty about the value of da(D5).

PrROPOSITION 5.11. Some permanent cycles in the C-motivic Adams spectral
sequence are shown in Table[d.

PrOOF. The third column of the table gives information on the proof for each
element. If a Toda bracket is given in the third column, then the Moss Convergence
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Theorem implies that the element must survive to detect that Toda bracket
(see Table [I] for more information on how each Toda bracket is computed). If a
product is given in the third column, then the element must survive to detect that
product (see Table 21] for more information on how each product is computed). In
a few cases, the third column refers to a specific lemma that gives a more detailed
argument. (|

LEMMA 5.12.

(1) d3(h2h5) = Thldl.
(2) d3(Phzhe) = Th1hsQo.

PROOF. In the Adams spectral sequence for C'7, there is an 1 extension from
hahs to h2dy. The element h?d; maps to hid; under projection from C7 to the top
cell, so hohs must also map non-trivially under projection from C7 to the top cell.
The only possibility is that hsohs maps to hid;. Therefore, Thid; must be hit by a
differential. This establishes the first differential.

The proof for the second differential is identical, using that there is an 7 ex-
tension from Phahg to h2hyQ2 in the Adams spectral sequence for Cr. O

LEMMA 5.13. d3(T2A1h%) =7Mecy.

PROOF. The element M P maps to zero under inclusion of the bottom cell into
C'7. Therefore, M P is either hit by a differential, or it is the target of a hidden 7
extension. There are no possible differentials, so there must be a hidden 7 extension.
The only possibility is that 7Mcy is zero in the Fo-page, and that there is a hidden
T extension from Mcqy to M P. [l

LEMMA 5.14. d3(7’h3 . Agz) = T3Ah§eog.

PROOF. Table 2] shows that the element hohsi maps to A%h3 in the Adams
spectral sequence for tmf.

Now A2h3dy is not zero and not divisible by 2 in tmf. Therefore, K{hohsi} must
be non-zero and not divisible by 2 in 7gs 36. The only possibility is that k{hohsi}
is detected by Phohsj = dy - hohsi, and that Phohsj is not an hy multiple in the
Es-page. Therefore, TAgs - h} cannot survive to the E.-page. O

LEMMA 5.15. Either dg(TDé) = T2thg or d3(TDé + T2h2GQ) = TQthg,
depending only on whether 7D} or 7D} + 72heGo survives to the E3-page.

PROOF. Table[Ilshows that the Toda bracket (2, 80,2, 0%) contains T7v&, which
is detected by 72hag. Table [ shows that Mhy detects va for some o in 45,24 de-
tected by h3hs. (Beware that there is a crossing extension, M hy does not detect va
for every « that is detected by h3hs.) It follows that 72Mhag detects (2, 80,2, 0%)a.

This expression is contained in (2,80, (2,02, a)). Lemma shows that the
inner bracket equals {0, 27%°}.

The Toda bracket (2,80,0) in 7gs 3¢ consists entirely of multiples of 2. The
Toda bracket (2,80, 27%>) contains (2, 8¢, 2)7%>. This last expression equals equals
zero because

(2,80,2) =80 =0

by Corollary [6.21 Therefore, (2,80, 27%>) equals its indeterminacy, which consists
entirely of multiples of 2 in 7gs 36.
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We conclude that 72Mhag is either hit by a differential, or is the target of a
hidden 2 extension. Lemma shows that there is no hidden 2 extension from
hsA’ to 72Mhag, and there are no other possible extensions to 72Mhag.

Therefore, 72M hog must be hit by a differential, and the only possible sources
of this differential are 7D} or 7D% + 72haGy, depending on which element survives
to the Es-page. O

LEMMA 5.16. dg(Tthol) = Azhodg

PROOF. Table[Tshows that ds(72doeg + hlhs) equals P2dy, so dy(73 Mhidoeo)
equals TM P?hidy. We have the relation hg-72Mhol = 73 Mhidgeo, but the element
TM P2%h1dy is not divisible by hg. Therefore, 72 M hgl cannot survive to the E;-page.

By comparison to the Adams spectral sequence for tmf, the value of dz (72 M hgl)
cannot be T3Ahjed + A%hgd3 or 73Ahyel. The only remaining possibility is that
d3(T>Mhol) equals A%hod3. O

LEMMA 5.17. dg(h8$78110) = 7'66093.

PROOF. Suppose that h3x7s 19 were a permanent cycle. Then it would map
under inclusion of the bottom cell to the element hix7s 10 in the Adams E..-page
for Cr.

There is a hidden v extension from h3x7s 10 to A3h?hs in the Adams E..-page
for C7. Then A3h2hs would also have to be in the image of inclusion of the bottom
cell. The only possible pre-image is the element A3h?hs in the Adams spectral
sequence for the sphere, but this element does not survive by Lemma [5.44]

By contradiction, we have shown that h3x7s 10 must support a differential. The
only possibility is that dz(h3z7s.10) equals T%eqg?. O

LEMMA 5.18. dg(xl) =7him;.

Proor. This follows from the interaction between algebraic squaring opera-
tions and classical Adams differentials [6, Theorem 2.2]. The theorem says that

d. Sqte1 = Sq® dser + hi Sq e

The notation means that there is an Adams differential on Sq' e; hitting either
Sq® dser or hiSq® ey, depending on which element has lower Adams filtration.
Therefore ds Sq1 e1 = Mh ng e1.

Finally, we observe from [8] that Sqte; = z1 and Sq® e1 = my. O

LEMMA 5.19. The element A2%d; is a permanent cycle.

PRrROOF. The element A%d; in the Adams E..-page for Ct must map to zero
under the projection from C7 to the top cell. The only possible value in sufficiently
high filtration is 72Ah;e3g. However, comparison to mmf shows that this element
is not annihilated by 7, and therefore cannot be in the image of projection to the
top cell.

Therefore, A%2d; must be in the image of the inclusion of the bottom cell into
C7. The element A2d; is the only possible pre-image in the Adams E..-page for
the sphere in sufficiently low filtration. O

LEMMA 5.20. d3(A3hih3) equals either T4 Ahiedg or T*Ahiedg + TA%hodey.
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PROOF. There is a relation Phy - A3hihg = TA3h3dy in the Adams Es-page.
Because of the differential da(A3hieg) = A3hidy + 75e3gm, we have the relation
Phy - A3hihs = Tﬁe%gm in the FE3-page.

There is a differential dy(7%eZgm) = 74d3l. But 7*d}l is not divisible by Phy,
SO Tﬁeggm cannot be divisible by Ph; in the E,-page. Therefore, d3(A3h1 hs) must
be non-zero.

The same argument shows that dz(A3hihs + 73doBs) must also be non-zero.
Because of Lemma [5.21] the only possibilities are that dz(A®hih3) equals either
T4Ahle§g or T4Ah16(2)g + 7A%hgdyeg. O

LEMMA 5.21. d3(T2dQB5) = A2h0d0€0.

PROOF. The element A%hgdgey is a permanent cycle because there are no pos-
sible differentials that it could support. Moreover, it must map to zero under the
inclusion of the bottom cell into C'1 because there are no elements in the Adams
E-page for C of sufficiently high filtration. Therefore, A2hgdgeg is either hit by
a differential, or it is the target of a hidden 7 extension.

The only possible hidden 7 extension has source h?xm& However, Table [I3]
shows that h3x76 ¢ is in the image of projection from C7 to the top cell. Therefore,
it cannot support a hidden extension.

We now know that A2?hgdgey must be hit by a differential. Lemma rules
out one possible source for this differential. The only remaining possibility is that
d3(T2doB5) equals d5(A2d1). O

LEMMA 5.22.
(1) ds(hahshg) = 0.
(2) d3(P2h2h6) =0.

Proor. The value of dg(h2h4h6) is not h2h6d0 nor hghgdo + Thiz by com-
parison to the Adams spectral sequence for C.

It remains to show that ds(hahshg) cannot equal Thiz;. Suppose that the
differential did occur. Then there would be no possible targets for a hidden 7
extension on hjzxi, so the n extension from hix; to h%:z:l would be detected by
projection from C'1 to the top cell. But there is no such 7 extension in the homotopy
groups of C'r. This establishes the first formula.

The proof of the second formula is essentially the same, using that the n ex-
tension from A%h1d; to A%h3d; cannot be detected by projection from CT to the
top cell. ([

LEMMA 5.23. d3(A%p) = 0.

PROOF. Suppose that d3(A2p) were equal to 73h; MeZ. In the Adams E,-page,
the Massey product (72Mg, Thidy, do) would equal 72M Ah3g, with no indetermi-
nacy, because of the Adams differential d3(Ah3) = Thid3 and because dg - A%p = 0.
By Moss’s higher Leibniz rule 227, d4(72M Ah3g) would be a linear combination of
multiples of 72M g and dy. But Table[llshows that d4(72M Ah3g) equals M PAh3eq,
which is not such a linear combination in the Adams F,-page. O

LEMMA 5.24. dg(Thﬁg + Th2€2) =0.
PrOOF. In the Adams E3-page, we have the matric Massey product

h2
Theg + Thoes = <[ 79 Thy }, { x? } ,h0>
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because of the Adams differentials da(hg) = hoh? and da(e2) = hoz1, as well as
the relation 7g - h + Ther; in the Adams E>-page. Moss’s higher Leibniz ruld2.27]
implies that ds(Theg + Thees) belongs to

<[o 0], [ " ],h0>—|—<[7'g 7ha], { o },ho>+<[7'g vha], [ " } ,o>

since ds(x1) = Thymi, where the Massey products are formed in the Adams Fs3-page
using the ds differential. This expression simplifies to <[Tg Tha], [ 0 } ,h0>,

Th1m1
which equals {0, 7h2h,Q3}.

Table shows that there is a hidden v extension from h%h4Q3 to Phizve,6.
The element 7Phix76,6 is non-zero in the Adams E-page. Therefore, h%h4Q3
supports a (hidden or not hidden) 7 extension whose target is in Adams filtration
at most 10. The only possibility is that 7hZhsQ3 is non-zero in the Adams E..-
page. O

LEMMA 5.25. d3(x85,6) =0.

PROOF. Suppose that ds(zss,c) equaled ThegDs. Then hogDs could not sup-
port a hidden 7 extension. The only possible target would be M Ah;dg, but that is
eliminated by the hypothetical hidden 7 extension on Ah;j; given in Remark

Table shows that there is a hidden v extension from hogD3 to Bgdy. This
hidden extension would be detected by projection from C7 to the top cell. But
there is no such v extension in the homotopy of C'r. O

LEMMA 5.26. d3(T2Mh0d0k) = PAQthQGQ.

PROOF. Table [0 shows that dy(72Mhieq) = MP?hy. Multiply by 7d3 to
see that dy(r>Mhid3eq) = TMP?hid3. We have the relation hy - 72Mhodok =
T3 Mhid3ey, but 7M P%hyd? is not divisible by hga. Therefore, 72 M hodok cannot
survive to the F4-page. By comparison to mmyf, there is only one possible value for
d3(T2Mh0d0]€). O

LEMMA 5.27. dg(hQB5g) = Mhlcoeg.

PRrROOF. First observe the relation dg - hoBsg = TMhiegg?. This relation fol-
lows from [18, Theorem 1.1], modulo a possible error term Ph{hgcoeg. However,
multiplication by hy eliminates this possibility.

Table [ shows that ds(Tepg?) = codoed. Therefore, dz(TMhieqg?) equals
Mhicodoed. Observing that Mhicodpe3 is in fact non-zero in the Adams Es-page,
we conclude that ds(heBsg) must equal Mhjcoed O

LEMMA 5.28. The element M? is a permanent cycle.

PROOF. Table[B]shows that the Massey product (Mhy, ho, h3gs) equals M?h;.
Therefore, M2h; detects the Toda bracket (nfy.5,2,02604). The indeterminacy con-
sists entirely of multiples of 76, 5. The Toda bracket contains 64(nfy 5,2, 02). Now
(nf4.5,2,02) is zero because g1 33 is zero.

We have now shown that M?2h, detects a multiple of 1. In fact, it detects a
non-zero multiple of  because M?2h; cannot be hit by a differential by comparison
to the Adams spectral sequence for C'T.

Therefore, there exists a non-zero element of mgg 45 that is detected in Adams
fitration at most 12. The only possibility is that M? survives. O
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LEMMA 5.29. dg(Ah%hﬁ) = Thlh,gdg.

PROOF. In the Adams Es-page, Ah3hg equals (Ah3, hZ, he), with no indeter-
minacy, because of the Adams differential d2(he) = hoh2. Using that d3(Ah3) =
Thid%, Moss’s higher Leibniz rule 227 implies that ds(Ah3he) is contained in

(Thidg, b3, ho) + (AR3,0, ho) + (Ah3, hZ,0).

All of these brackets have no indeterminacy, and the last two equal zero. The first
bracket equals Thihgd3, using the Adams differential da(he) = hoh?. |

LEMMA 5.30. d3(P%hgdo) = 0.

PROOF. Inthe Adams E3-page, the element P?hgdy equals the Massey product
(P2dy, h?, ho), with no indeterminacy, because of the Adams differential da(hg) =
hohg. Moss’s higher Leibniz rule implies that d3(P2h6do) is a linear combi-
nation of multiples of hg and of P2dy. The only possibility is that dz(P%*hgdp) is
Z€ero. [l

LEMMA 5.31. d3(T2MPth0j) = P2A2h0dg.

PROOF. Table [ shows that dy(72Pdgeg) = P3dy. Multiplication by 7M Phy
shows that d4(T3MP2h1d060) equals TM P*hidy. But 7>M P?hidgey equals hg -
72M Phodgj, while 7M P*h1dy is not divisible by hg. Therefore, 72M Phodyj cannot
survive to the Ey-page.

The possible values for d3(72M Phodpj) are linear combinations of P2A?hgd3
and 72 PAhyd3ey. Comparison to the Adams spectral sequence for tmf shows that
the term 73 PAhyd3eq cannot appear. ([l

LEMMA 5.32. The element P3hgcy is a permanent cycle.

PRrROOF. Table [T shows that P3¢y detects the product np3;. Using the Moss
Convergence Theorem 2.16] and the Adams differential da(hg) = hoh2, the element
P3hgco must survive to detect the Toda bracket (nps1, 2, 05). O

REMARK 5.33. We suspect that P3hgco detects the product ngps;. However,
the argument of Lemma [.I51] cannot be completed because the Toda bracket
(nps1,2,05) might have indeterminacy in lower Adams filtration.

5.3. The Adams d, differential

THEOREM 5.34. Table[7 lists some values of the Adams d4 differential on mul-
tiplicative generators. The Adams dy differential is zero on all multiplicative gen-
erators not listed in the table. The list is complete through the 95-stem, except
that:

(1) dy(A2Mh3?) might equal M PAhZe.

PrOOF. The dy differential on many multiplicative generators is zero. A few
of these multiplicative generators appear in Table [ because their proofs require
further explanation. For the remaining majority of such multiplicative generators,
the d4 differential is zero because there are no possible non-zero values, or because
of comparison to the Adams spectral sequences for Ct, tmf, or mmf. In a few cases,
the multiplicative generator is already known to be a permanent cycle as shown in
Table[5l These cases do not appear in Table [7
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The last column of Table [1 gives information on the proof of each differential.
Most follow immediately by comparison to the Adams spectral sequence for Ct, or
by comparison to the classical Adams spectral sequence for tmf, or by comparison
to the C-motivic Adams spectral sequence for mmf.

If an element is listed in the last column of Table [7] then the corresponding
differential can be deduced from a straightforward argument using a multiplicative
relation. For example,

dy(do - T?e0g?) = d4(e(2) -12egg) = 6(2) . Pdg = dg,

so d4(7%egg?) must equal dj.
The remaining more difficult computations are carried out in the following
lemmas. O

Table [M lists the multiplicative generators of the Adams Ej4-page through the
95-stem whose d4 differentials are non-zero, or whose d4 differentials are zero for
non-obvious reasons.

LEMMA 5.35. d4(7’h1 . A.I) = T2Ah§d060.
For completeness, we repeat the argument from [44] Remark 11.2].

PROOF. Table [ shows that 73Ah3g? supports a dy differential, and Table
shows that 7A%h2g + 73AhZg? is a permanent cycle. Therefore, TA%h2g also
supports a dy differential.

On the other hand, we have

hy - TA%hyg = Phy - Az = Ax(hy, hihs, ho).

This expression equals (hy - Az, hhg, ho) by inspection of indeterminacies. There-
fore, the Toda bracket ({Th; - Az}, 80,2) cannot be well-formed, since otherwise
it would be detected by 7A2h%?g. The only possibility is that 7h; - Az is not
a permanent cycle, and the only possible differential is that d4(thy - Az) equals
T2Ah%d0€0. O

LEMMA 5.36. d4(A%h3) = 0.

PROOF. Table B shows that d5(Th - Az) equals 73d3ed. The element 73d3ed
is not divisible by h; in the Es-page, so Th? - Ax cannot be divisible by h; in the
FE4-page.

If dy(A2h3) equaled T2Ah3doeg, then A?h% + Thy - Az would survive to the
Es-page, and 72h? - Az would be divisible by h; in the Es-page. O

LEMMA 5.37. d4(TX2) = 7Mhaody.

PROOF. Table [1 shows that dy(C’) equals Mhady. Therefore, either 7X5 or
7Xo + 7C" is non-zero on the E.,-page. The inclusion of the bottom cell into C1
takes this element to hsdyeq.

In the homotopy of C'7, there is a v extension from hsdyeg to 7B5, and inclusion
of the bottom cell into C'r takes ThoC’ to 7Bs.

It follows that there must be a v extension with target ThoC’. The only possi-
bility is that 7X5 + 7C" is non-zero on the E-page, and therefore dy(7X3) equals
d4 (TO/). [l

LEMMA 5.38. d4(h0d2) = X3.
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PROOF. The element X3 is a permanent cycle. The only possible target for a
differential is 72dgegm, but this is ruled out by comparison to tmf.

The element X3 must map to zero under the inclusion of the bottom cell into
C'7. Therefore, X3 is the target of a hidden 7 extension, or it is hit by a differential.

The only possible hidden 7 extension would have source hy - Ajh3. In CT,
there is an 7 extension from hody to h? - Ajh3. Since h?A;h% maps non-trivially
(to h? - A1h3) under projection to the top cell of Cr, it follows that hods also maps
non-trivially under projection. The only possibility is that hods maps to hq - A1h3,
and therefore h; - A1h% does not support a hidden 7 extension.

Therefore, X3 must be hit by a differential, and there is just one possibility. [

LEMMA 5.39. dy(Mhag) = 0.

PROOF. Table [B] shows that the Massey product (hag,h3,g2) equals Mhag.
The Moss Convergence Theorem shows that Mhag must survive to detect the
Toda bracket ({hag}, 8, Ra). O

LEMMA 5.40. d4(h3Go) = T¢°n.

PROOF. Table[IHshows that there is a hidden 2 extension from hohsgs to Tgn.
Therefore, Tgn detects 4ors.

TableBlshows that (h$hy, h1,Tgn) consists of the two elements 7¢?n and Tg*n+
Mhag - hoha. Then the Toda bracket (n?n4,n,40%s) is detected by either 7g?n or
79?n + Mhag - hohe. But Mhag - hohs is hit by an Adams ds differential, so T7g%n
detects the Toda bracket.

The Toda bracket has no indeterminacy, so it equals (n?n4,n, 2)20%>. This last
expression must be zero.

We have shown that 7¢g?n must be hit by some differential. The only possibility
is that dy(h3Go) = T¢*n. O

LEMMA 5.41. d4(Ah%h3gg) = TMhld%

PROOF. Table [§ shows that d5(A’) = TMhidy. Now dpA’ is zero in the Fj-
page, so TMhid? must also be zero in the Es-page. ([

LEMMA 5.42. d4(A2h1hgg) = TAh%d%eo.

PROOF. Table [[I] shows that the element Ah3d3e, detects the Toda bracket
(tnkR2,n,1?n4). Now shuffle to obtain
(a0 ) = (7, TRES )0 na.

Table [T shows that (7, 7nx%>,7n) is detected by hohahsi. It follows that the expres-
sion (7, TnKE2,n)n*n, is zero, so TAh3d3ey must be hit by some differential. The
only possibility is that ds(A%hih3g) equals TAhZd2eq. O

LEMMA 5.43. d4(h062) = Th%d?’myg.

ProOOF. Table 1] shows that 0205 is detected by hoh4A. Since vo = 0, the
element hohahyA = Th3x76 6 must be hit by a differential. The only possibility is
that dy(hoe2) equals Th3z76 6. O

LEMMA 5.44. d4(A3h%h3) = T4d06(2)l.
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PRrROOF. Table [[7 shows that there is a hidden 7 extension from 72Ah;g? to
72dpegm. Therefore, there is also a hidden n extension from 72Ah;e3g to T2dgedl.

Also, T2Ah16(2)g detects an element in 779 43 that is annihilated by 72. There-
fore, T*dpedl must be hit by some differential. Moreover, comparison to mmf shows
that 73dge3l is not hit by a differential.

The hidden 7 extension from 72Ahielg to T3dpedl is detected by projection
from CT to the top cell. The only possibility is that this hidden 7 extension is the
image of the hy extension from A3hihs to A3h3hs3 in the Adams E..-page for C7.

Therefore, A3h?hz maps non-trivially under projection from C7 to the top cell.
Consequently, A3h3h3 cannot be a permanent cycle in the Adams spectral sequence
for the sphere. O

LEMMA 5.45. d4(A]1) = TMhoeog.

PRrROOF. Otherwise, both Aj; and 7gC’ would survive to the E.,-page, and
neither could be the target of a hidden 7 extension. They would both map non-
trivially under inclusion of the bottom cell into C'7. But there are not enough
elements in 7g3 45CT for this to occur. (I

LEMMA 5.46. The element Thy fa is a permanent cycle.

PROOF. Let a be an element of 7g6 35 that is detected by 7heC’. Then v is
detected by Th3C’, and Tva is zero.

Let @ be an element of 770 36CT that is detected by h3hshg. Projection from
CT to the top cell takes @ to va. Moreover, in the homotopy of C'7, the Toda
bracket (2,02, @) is detected by hics.

Now projection from C7 to the top cell takes (2,02 @) to (2,02, va), which
equals zero by Lemma Therefore, hjcs maps to zero under projection to the
top cell of C'1, so it must be in the image of inclusion of the bottom cell. The only
possibility is that Th; fa survives and maps to hics under inclusion of the bottom
cell. O

REMARK 5.47. In the proof of Lemma[5.46, we have used that ds(7p1+h2hshe)
equals 72h2C" in order to conclude that Tva is zero. This differential depends on
work in preparation [5].

However, we can also prove Lemma independently of [5]. Lemma
shows that the other possible value of ds(7p1 + hZhshe) is T2h3C" + Ths(Aeq + Cp).
In this case, let 3 be an element of mg2 33 that is detected by Ae; + Cy. Then
va + of3 is detected by Th3C” + h3(Aey + Cp), and T(va + o3) is zero.

Projection from C to the top cell takes @ to va + o3, and takes (2,02, @) to
(2,02, va + o3), which equals zero by Lemmas and As in the proof of
Lemma [5.46] the only possibility is that T7hj fa survives and maps to hics under
inclusion of the bottom cell of Cr.

LEMMA 5.48. d4(h163) = Th0h2h4Q3.

PROOF. Lemma shows that there exists an element o in mg7 36 that is
detected by hoQ3 + hony such that Tva equals (no + €)65.

Table [II] shows that the Toda bracket (v, o,20) is detected by hohy, so the
element ThohohsQs detects Ta(v,o,20), which is contained in (7va,o,20). The
indeterminacy in these expressions is zero because Tva - 158 and 20 - 775 41 are
both zero.



44 5. ADAMS DIFFERENTIALS

We now know that T7hohohs Q3 detects the Toda bracket ((e+no)0s, 0,20). This
bracket contains 65 (e + no, 0, 20). Lemma [6.6] shows that the bracket (e +no, 0, 20)
contains 0, so 05 (e + no, o, 20) equals zero.

Finally, we have shown that ThohohsQ3 detects zero, so it must be hit by some
differential. O

LEMMA 5.49. d4(xs7,7) = 0.
PRroOOF. Consider the exact sequence
Ts7,45 — T87,45CT — Ts6,46-

The middle term 77 45CT is isomorphic to (Z/2)*. The elements of g7 45 that are
not divisible by 7 are detected by PZhgcy, and possibly xg7,7 and TAh;H;. On
the other hand, the elements of mgs 46 that are annihilated by 7 are detected by
73Acpedg and possibly M Ah3eg.

In order for the possibility M AhZeq to occur, either xg7 7 or TAhiH; would
have to support a differential hitting 7M AhZ2eq, in which case one of those possi-
bilities could not occur.

If dy(xg7,7) equaled 739Gy, then there would not be enough elements to make
the above sequence exact. (Il

LEMMA 5.50. d4(7’Ah1H1) =0.

PROOF. The element A2h2d; is a permanent cycle that cannot be hit by any
differential because ha-A2h3d; cannot be hit by a differential. The element A?h3d;
cannot be in the image of projection from C'7 to the top cell, and it cannot support
a hidden 7 extension. Therefore, TA%hZd; cannot be hit by a differential. O

LEMMA 5.51. d4(Tth5g) = Mhldg

PROOF. Table2Ilshows that Mdg detects k6, 5. Therefore, Md3 detects 30, 5,
which equals 1?%26, 5 because Table [[7] shows that there is a hidden 7 extension
from 72h1g? to d3.

Now 1?%20, 5 is zero because 172K0y 5 is zero. Therefore, Md3 and Mhdj must
both be hit by differentials.

There are several possible differentials that can hit Mhid3. The element
hizgs,10 cannot be the source of this differential because Table [6l shows that xgs 10
is a permanent cycle. The element 7h3gC’ cannot be the source of the differential
because h3gC’ is a permanent cycle by comparison to mmf. The element Ahjgag
cannot be the source because it equals hz(Aes + Cy)g. The only remaining possi-
bility is that ds4(ThaBsg) equals Mhd3. O

LEMMA 5.52. ds(AR3A") = 0.

PROOF. In the Adams FE,-page, the element Ah3A’ equals the Massey product
(A’ h1,7d3), with no indeterminacy because of the Adams differential d3(Ah3) =
Thid3. Moss’s higher Leibniz rule implies that d4(Ah3A’) is contained in

(0, hy, 7d3) + (A',0,7d3) + (A’, hy,0),

so it is a linear combination of multiples of A’ and 7d3. The only possibility is that
ds(AhZA") is zero. O
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PrROOF. By comparison to the Adams spectral sequence for C7, the value of
ds(h3he) is either h3gs or hgs + Th1h3Ds.

Table 21] shows that h%g3 detects the product 6465. Since 260405 equals zero,
h3gs must be hit by a differential. O

5.4. The Adams ds differential

THEOREM 5.54. Table[d lists some values of the Adams ds differential on mul-
tiplicative generators. The Adams ds differential is zero on all multiplicative gen-
erators not listed in the table. The list is complete through the 95-stem, except
that:

(1) ds(A2%gs) might equal T2A2hag?.

PROOF. The ds differential on many multiplicative generators is zero. For the
majority of such multiplicative generators, the ds differential is zero because there
are no possible non-zero values, or by comparison to the Adams spectral sequence
for C7, or by comparison to tmf or mmf. In a few cases, the multiplicative gener-
ator is already known to be a permanent cycle; hihg is one such example. A few
additional cases appear in Table 8 because their proofs require further explanation.

The last column of Table [§ gives information on the proof of each differen-
tial. Many computations follow immediately by comparison to the Adams spectral
sequence for CT.

If an element is listed in the last column of Table [§] then the corresponding
differential can be deduced from a straightforward argument using a multiplicative
relation. For example,

ds(1-gA") =ds(rg-A') =19 -TMhydy = T*Mhyel,

so ds(gA’) must equal TMhye?.
A few of the more difficult computations appear in [5]. The remaining more
difficult computations are carried out in the following lemmas. O

Table [§ lists the multiplicative generators of the Adams Es-page through the
95-stem whose ds differentials are non-zero, or whose ds differentials are zero for
non-obvious reasons.

LEMMA 5.55. d5(th? - Az) = 73d3e3.

PROOF. The element 72d%e3 cannot be hit by a differential. There is a hidden
n extension from TAh3doeg to T2d3e? because of the hidden 7 extensions from
Th1g® + hihscoeq to Ah3doey and from hShscoeq to d%eg. This shows that T?’d%e%
must be hit by some differential.

This hidden 7 extension is detected by projection from C'7 to the top cell. Since
Phscody in Ct maps to TAh3dpep under projection to the top cell, it follows that
Phihscody in CT maps to 72d3e3 under projection to the top cell.

If 7h? - Ax survived, then it could not be the target of a hidden 7 extension
and it could not be hit by a differential. Also, it could not map non-trivially under
inclusion of the bottom cell into C'7, since the only possible value Phihscody has
already been accounted for in the previous paragraph. O

LEMMA 5.56. d5(h5d0i) = TAhldg

PrROOF. We showed in Lemma [5.14] that Phsohsj cannot be divisible by hg in
the Eo-page. Therefore, hsdyi must support a differential. (I
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LEMMA 5.57. ds(7p1+h3hshe) equals either T2h3C" or T2h3C" +7hs(Ae1+Cp).

PROOF. Projection to the top cell of C7 takes hyDs to 73d, g2. Moreover, there
is a v extension in the homotopy of C7 from hZhshg to hyDs. Therefore, this v
extension must be in the image of projection to the top cell.

Table M3 shows that there is a hidden v extension from 7h3C’ to 73d; g?. There-
fore, either Th3C" or Th3C’ + h3(Ae; + Cp) is in the image of projection to the top
cell, so 72h3C" or 72h3C" + Tha(Aey + Cp) is hit by a differential. The element
7p1 + h3hshe is the only possible source for this differential. O

LEMMA 5.58. d5(h1$7116) =0.

PROOF. Table [[4 shows that there is a hidden 7 extension from Mh2hszg to
Mhyd?. Therefore, M h3g must also support a 7 extension. This shows that 7Mh3g
cannot be the target of a differential. O

LEMMA 5.59. d5(h,4D2) = T4d192.

PROOF. Suppose for sake of contradiction that hsD2 survived, and let a be an
element of 773 35 that is detected by it. Table [I4] shows that there is a hidden 7
extension from h2hgco to hohyDo. Therefore, hohyDo detects both 2ac and Tnens.
However, it is possible that the difference between these two elements is detected
by 72Md% or by 72 Ahidge?. We will handle of each of these cases.

First, suppose that 2a equals 7neng. Then the Toda bracket

vtz 1 2]

is well-defined. Inclusion of the bottom cell into Cr takes this bracket to

<n7[2 0]7{%]>=<n,2,a>,

so (1,2, ) is in the image of inclusion of the bottom cell.

On the other hand, in the homotopy of C7, the bracket (1,2, a) is detected
by h$hgco, with indeterminacy generated by h3hsQ2. These elements map non-
trivially under projection to the top cell, which contradicts that they are in the
image of inclusion of the bottom cell.

Next, suppose that 2a + Tneng is detected by T73Ahidped. Then the Toda

bracket
o
<n7[2 ™me 6], | ne >

K

is well-defined, where 3 is an element of 75399 that is detected by Ahid3. The
same argument involving inclusion of the bottom cell into C'7 applies to this Toda
bracket.

Finally, assume that 2a + 7nens is detected by 72Md3. Table BI] shows that
Mdy detects kb5, so T2Md3 detects 72k26045. Then 2a + Tneng equals either
72K20,.5 or T2Kk%045 + T2 SK. We can apply the same argument to the Toda bracket

(0%
<T]a [ 2 Tne 7—2%94.5 ] 5 M6 > 5

K
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or to the Toda bracket

<777 [ 2 e 7-2’{04.5 7—2[3 ] ) T/]j >

We have now shown by contradiction that h,Ds does not survive. After rul-
ing out other possibilities by comparison to C'7 and to mmf, the only remaining
possibility is that ds(hyD2) equals 74d; g% O

LEMMA 5.60. d5(T3gG0) = TMAh%dO

PROOF. Suppose for sake of contradiction that the element 73gGy survived. It
cannot be the target of a hidden 7 extension, and it cannot be hit by a differential.
Therefore, it maps non-trivially under inclusion of the bottom cell into C'7, and the
only possible image is A2e; + TAhgerg.

Let a be an element of 7sg 45 that is detected by 73gGo. Consider the Toda
bracket (o, 2v, v). Lemma[LI2limplies that this Toda bracket is detected by egz76,9,
or is detected in higher Adams filtration.

On the other hand, under inclusion of the bottom cell into Cr, the Toda bracket
is detected by A2higy. This is inconsistent with the conclusion of the previous
paragraph, since inclusion of the bottom cell can only increase Adams filtrations.

We now know that 739G does not survive. After eliminating other possibilities
by comparison to mmyf, the only remaining possibility is that ds(r3gGpo) equals
TMAQ3dy. O

LEMMA 5.61. d5(g3) = hed3.

PROOF. Table [[1l shows that hihe detects the Toda bracket (n,2,60s). There-
fore, hihgd3 detects k2(n,2,05). Now consider the shuffle

TK;2 <777 27 95> = <TK;27 mn, 2>95

Lemma [6.7] shows that the last bracket is zero. Therefore, hyhgd3 does not support
a hidden 7 extension, so it is either hit by a differential or in the image of projection
from C7 to the top cell.

In the Adams spectral sequence for C, the element h3h3hg detects the Toda
bracket (y,2,05). Therefore, hihihs must be in the image of inclusion of the
bottom cell into C. In particular, hjh3hg cannot map to hihgd3 under projection
from C7 to the top cell.

Now hihgd? cannot be in the image of projection from CT to the top cell, so
it must be hit by some differential. The only possibility is that ds(hi1gs) equals
hyhed?. O

LEMMA 5.62. d5(60$7679) = MAhlcodo.

PrOOF. If M Ahicody were a permanent non-zero cycle, then it could not sup-
port a hidden 7 extension because Lemma shows that M PAh1dy is hit by
some differential. Therefore, it would lie in the image of projection from C7 to the
top cell, and the only possible pre-image is the element A2h;gs in the E.-page of
the Adams spectral sequence for C'1.

There is a o extension from A%e; + 7Ahge g to A%2h; gy in the Adams spectral
sequence for C'7. Then M Ah;cody would also have to be the target of a o extension.
The only possible source for this extension would be MAh?dj.



48 5. ADAMS DIFFERENTIALS

Table [T shows that Mh; detects 7645, so MAh2dy detects nfy 5{Ahido}. The
product oy 5{Ah1dy} equals zero because o{Ahidy} is zero. Therefore, M Ah2dy
cannot support a hidden o extension to M Ahicody.

We have now shown that M Ah;cody must be hit by some differential, and the
only possibility is that equals ds(egz76,9). O

5.5. Higher differentials

THEOREM 5.63. Tableld lists some values of the Adams d,. differential on multi-
plicative generators of the E,.-page, for r > 6. Forr > 6, the Adams d, differential
is zero on all multiplicative generators of the E.-page not listed in the table. The
list is complete through the 90-stem, except that:

(1) do(Theg + Thaea) might equal A?han.

(2) do(zss,6) might equal M Ahydy.

(3) do(h1ms5,6) might equal MAh3dy.

(4) dlo(thGg) or dlo(hghﬁg + h%fg) might equal MAh%dQ
(5) de(TAhyHy) might equal M Ah3e.

(6) do(ws77) might equal TM AhZeg.

(7) de(A%f1) might equal T2Md3.

PROOF. The d, differential on many multiplicative generators is zero. For the
majority of such multiplicative generators, the d, differential is zero because there
are no possible non-zero values, or by comparison to the Adams spectral sequence
for C'1, or by comparison to tmfor mmf. In a few cases, the multiplicative generator
is already known to be a permanent cycle, as shown in Table 5l A few additional
cases appear in Table [A because their proofs require further explanation.

Some of the more difficult computations appear in [5]. The remaining more
difficult computations are carried out in the following lemmas. (|

Table [@ lists the multiplicative generators of the Adams E,.-page, for r > 6,
through the 90-stem whose d, differentials are non-zero, or whose d,. differentials
are zero for non-obvious reasons.

REMARK 5.64. Because dg(Ag2g) equals Md3, the uncertainty about dg(A2 f1)
is inconsequential. Either A2f; or A2f; + 72Agog survives to the E..-page.

LEMMA 5.65.

(1) dG(TQg—FTTLl) =0.
(2) ds(9Q3) =0

PROOF. Several possible differentials on these elements are eliminated by com-
parison to the Adams spectral sequences for C7 and for ¢tmf. The only remaining
possibility is that dg(7Q3 + 7n1) might equal 72Mh1g, and that dg(gQ3) might
equal 7Mhyg?.

The element M AhZeg is not hit by any differential because Table [§] shows that
h2c3 is a permanent cycle, and Table [T shows that 72gQ3 = h3Q2 must survive to
detect the Toda bracket (64, 7R, {t}).

Lemma[6.25]shows that M AhZeq detects the Toda bracket (7&2, 2, 4Rs), which
contains 7%2(n, 2, 4%s). Lemma shows that this expression contains zero. We
now know that MAhZeo detects an element in the indeterminacy of the bracket
(TnR?,4,2Kz). In fact, it must detect a multiple of T7n&? since 2Rz - T2, 22 is zero.



5.5. HIGHER DIFFERENTIALS 49

The only possibility is that M AhZey detects K times an element detected by
72Mh1g. Therefore, 72Mh;g cannot be hit by a differential. This shows that
7Q3 + T™n1 is a permanent cycle.

We also know that MAhZe is the target of a hidden 7 extension, since it
detects a multiple of 7. The element 72Mh;g? is the only possible source of this
hidden 7 extension, so it cannot be hit by a differential. This shows that ds(9Q3)
cannot equal 7Mh;g2. O

LEMMA 5.66.
(1) dg(h%Hl) = MCQdQ.
(2) d7(7‘h%H1) = MPdQ

PROOF. Table [l shows that M Pdy equals the Massey product (Pdg, hg, ga).
This implies that M Pdg detects the Toda bracket (T9?, 8, K2). Lemma [6.16] shows
that this Toda bracket consists entirely of multiples of 712%.

We now know that M Pdy detects a multiple of 71*%. The only possibility is
that M Pdy detects n times an element detected by 72Mhqg.

We will show in Lemma that 72Mhyg is the target of a v extension, so
72Mh1g cannot support a hidden 7 extension. Therefore, M Pdy must be hit by
some differential. The only possibility is that d7(Th3H;) equals M Pdy. Then h3H;
cannot survive to the E7-page, so dg(h3H1) equals Mcody. O

LEMMA 5.67. The element Thipi is a permanent cycle.

PROOF. Lemma [5.57 together with results of [5], show that Thyp; survives to
the Eg-page. We must eliminate possible higher differentials.

Table [[4] shows that there is a hidden 7 extension from Th3C” to A2h3h4cy.
This means that 7heC” + hihs(Ae; + Cy) must also support a hidden 7 extension.

The two possible targets for this hidden 7 extension are A%hoc; and TA2h2g +
73Ah%g%. The second possibility is ruled out by comparison to tmf, so A2hgcy
cannot be hit by a differential. O

LEMMA 5.68. The element Phohohg is a permanent cycle.

PROOF. First note that projection from C7 to the top cell takes Phshg to a
non-zero element. If Phgohohg were not a permanent cycle in the Adams spectral
sequence for the sphere, then projection from C7 to the top cell would also take
Phohohg to a non-zero element. Then the 2 extension from Phshg to Phohaohg in
m74,33C'T would project to a 2 extension in 773 39. However, there are no possible 2
extensions in 773 39. O

LEMMA 5.69. d7(mq) = 0.

PRrROOF. The only other possibility is that d7(m;) equals 72g%t. If that were
the case, then the v extension from 7¢?t to 72¢1g3 would be detected by projection
from C7 to the top cell. However, the homotopy groups of C7 have no such v
extension. (]

LEMMA 5.70. dg(hl.Il) =0.

PROOF. Table[Blshows that Thiz; is a permanent cycle. Then dg(Thix;) can-
not equal 72MeZ, and dg(hix1) cannot equal TMe?. O

LEMMA 5.71. dﬁ(h2h4h6) =0.
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PROOF. Table[Bshows that h3hshg is a permanent cycle. Therefore, the Adams
differential dg(h3hshg) does not equal Thoci A’, and dg(hahshg) does not equal
TC1 AI. O

LEMMA 5.72. d7($87)7) =0.

PROOF. If 7A2h3d; were hit by a differential, then the v extension from A2h3d;
to A2h%hszd; would be detected by projection from C7 to the top cell. But the
homotopy of C'7 has no such v extension. O

LEMMA 5.73. The element xgg 10 s a permanent cycle.

PrOOF. In the Adams spectral sequence for Cr, there is a hidden 7 extension
from h%:bg&ﬁ to x8s,10. Therefore, xgg 10 lies in the image of inclusion of the bottom
cell into C't. The only possible pre-image is the element zgg 19 in the Adams spectral
sequence in the sphere, so zgg 19 must survive. O

LEMMA 5.74.
(1) dﬁ(h%ng) = MC()eg.
(2) d7(7‘h%gH1) =0.

PROOF. If Mcyed is non-zero in the E.-page, then it detects an element that is
annihilated by 7 because Lemma .75 shows that the only possible target of such an
extension is hit by a differential. Then Mcpeg would be in the image of projection
from C7 to the top cell. The only possible pre-image would be the element Agag
of the Adams spectral sequence for C.

In the Adams spectral sequence for C1, there is a o extension from gA’ to
Agag. Projection from C7 to the top cell would imply that there is a hidden o
extension in the homotopy groups of the sphere, from Mhie3 to Mcoed, because
gA’ maps to Mhie3 under projection from C7 to the top cell.

But Mhqe? detects nfy5{e3}, which cannot support a o extension. This estab-
lishes the first formula.

For the second formula, if d7(Th3gH;) were equal to 72Ah3egg?, then the same
argument would apply, with TAhZegg? substituted for Mcye3. O

LEMMA 5.75. dg(Agag) = Md§.

PROOF. The proof of LemmaB.5]shows that Md3 must be hit by a differential.
The only possibility is that dg(Ageg) equals Md3.

Alternatively, Lemma shows that d;(Th3H;) = MPdy. Note that 7¢ -
Th3H; = 0 in the E7-page. Therefore, TMd3 = g - M Pdy must already be zero in
the E7-page. The only possibility is that dg(7Agag) = TMd}, and then dg(Agag) =
Md3. 0

LEMMA 5.76. The element hogs is a permanent cycle.

PROOF. In the homotopy of C7, the product 6,405 is detected by h3gs. In the
sphere, the product 6405 is therefore non-zero and detected in Adams filtration at
most 6.

Table [[T] shows that the Toda bracket (2,64, 04,2) contains 05. Therefore, the
product 8405 is contained in

94<25 047 945 2> = <945 27 94; 04>2
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(Note that the sub-bracket (04,04, 2) is zero because g1 32 is zero.) Therefore, 6405
is divisible by 2. It follows that 0405 is detected by hdgs, and hogs is a permanent
cycle that detects (04,2,04,604). O

LEMMA 5.77. dg(Alh%el) =0.

PRrROOF. Consider the element 7Mh3g? in the Adams spectral sequence for
Cr. This element cannot be in the image of inclusion of the bottom cell into C'r.
Therefore, it must map non-trivially under projection from C'7 to the top cell. The
only possibility is that 7Mh3g? is the image. Therefore, TMh3g? cannot be the
target of a differential. O

LEMMA 5.78. d7(w92.10) does not equal 72 A2hag?.

PRrROOF. If 72A2%hyg? were hit by a differential, then the 2 extension from
TA%heg? to TAZhghag? would be detected by projection from C7 to the top cell.
But the homotopy of C7 has no such 2 extension. O

LEMMA 5.79. dg(Alhgel) =0.

ProoOF. Consider the element egz76,9 in the Adams E-page for C7. It cannot
be in the image of inclusion of the bottom cell into C'7, so it must project to a non-
zero element in the top cell. The only possible image is M Ah3g. Therefore, M Ah3g
cannot be the target of a differential. O

LEMMA 5.80. The element M PAhydy is hit by some differential.

PRrROOF. Table [[4] shows that there is a hidden 7 extension from Ahjcydg to
PAhydy. Therefore, PAhydy detects Te{Ah1dg}. On the other hand, Tables [T
and 2] show that PAhidy also detects Tnr{Ahihs}. Since there are no elements
in higher Adams filtration, we have that 7e{Ahido} equals Tnr{Ahihs}.

Table 2] shows that M P detects 7efy 5, so M PAhidy detects Te{Ah1dp}045,
which equals Tnk{Ahih3}045. But ™)rby 5 is zero because all elements of mgg 32
are detected by tmf. This shows that M PAhidy detects zero, so it must be hit by
a differential. O






CHAPTER 6

Toda brackets

The purpose of this chapter is to establish various Toda brackets that are used
elsewhere in this manuscript. Many Toda brackets can be easily computed from
the Moss Convergence Theorem These are summarized in Table [[1] without
further discussion. However, some brackets require more complicated arguments.
Those arguments are collected in this chapter.

We will need the following C-motivic version of a theorem of Toda [38], Theorem
3.6] that applies to symmetric Toda brackets.

THEOREM 6.1. Let o be an element of s, with s even. There exists an
element o in Tasy1 20 Such that (o, B, a) contains the product o for all B such

that af3.
COROLLARY 6.2. If 28 =0, then (2,/,2) contains mnf[.

PROOF. Apply Theorem to a = 2. We need to find the value of o*. Table
shows that the Massey product (hg, k1, ho) equals Th?. The Moss Convergence
Theorem [Z.T6 then shows that (2,7, 2) equals 71%. Tt follows that a* equals 7. [

THEOREM 6.3. Table [I1] lists some Toda brackets in the C-motivic stable ho-
motopy groups.

ProOF. The fourth column of the table gives information about the proof of
each Toda bracket.

If the fourth column shows a Massey product, then the Toda bracket follows
from the Moss Convergence Theorem If the fourth column shows an Adams
differential, then the Toda bracket follows from the Moss Convergence Theorem
2.16] using the mentioned differential.

A few Toda brackets are established elsewhere in the literature; specific citations
are given in these cases.

Additional more difficult cases are established in the following lemmas. O

Table [IT] lists information about some Toda brackets. The third column of
Table [I] gives an element of the Adams FE.-page that detects an element of the
Toda bracket. The fourth column of Table [II] gives partial information about
indeterminacies, again by giving detecting elements of the Adams E..-page. We
have not completely analyzed the indeterminacies of all brackets when the details
are inconsequential for our purposes. The fifth column indicates the proof of the
Toda bracket, and the sixth column shows where each specific Toda bracket is used
in the manuscript.

LEMMA 6.4. The Toda bracket (k,2,m) contains zero, with indeterminacy gen-
erated by np1s.

53
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PRrOOF. Using the Adams differential ds(hohs) = hodp, the Moss Convergence
Theorem 2.16] shows that the Toda bracket is detected in filtration at least 3. The
only element in sufficiently high filtration is Pcgy, which detects the product np1s.
This product lies in the indeterminacy, so the bracket must contain zero. ([

LEMMA 6.5. The Toda bracket {k,2,n,v) is detected by Tg.

PRrROOF. The subbracket (2,7,v) is strictly zero, since w5 3 is zero. The sub-
bracket (k,2,7) contains zero by Lemma [64 Therefore, the fourfold bracket
(k,2,m,v) is well-defined.

Shuffle to obtain

<’{7 2,m, V>772 = H<2a mnv, 772>'
Table 1] shows that € is contained in the Toda bracket (n% v,7,2), so the latter
expression equals ex, which is detected by codp. It follows that (k,2,n,v) must be
detected by 7g. ([

LEMMA 6.6. The Toda bracket (e+no,c,20) contains zero, with indeterminacy
generated by 4vk in {Phidp}.

ProOOF. Consider the shuffle

(e + no,0,20)n = (e + no){o,20,n).

Table[Tlshows that hqhy detects (o, 20, ), so hihsco detects the product (o, 20, 7).
On the other hand, Table 21 shows that hih4co also detects no (o, 20,n). Therefore,
(e + no){o,20,n) is detected in filtration greater than 5. Then hscy cannot detect
(e 4+ no,o,20).

The shuffle

2{e +no,0,20) = (2,e +no,0)20 =0

shows that no elements of the Toda bracket can be detected by Thag or Thohag.

The element 4vK generates the indeterminacy because it equals Tnr(e+no). O

LEMMA 6.7. The Toda bracket (Tx%,1,2) equals zero, with no indeterminacy.

PROOF. The Adams differential d3(Ah3) = Thid} implies that the bracket is
detected by ho - AhZ, which equals zero. Therefore, the Toda bracket is detected
in Adams filtration at least 7, but there are no elements in the Adams E..-page in
sufficiently high filtration.

The indeterminacy can be computed by inspection. ([

LEMMA 6.8. The Toda bracket (n*,04,1m%) contains zero, with indeterminacy
generated by n3ns.

PROOF. If the bracket were detected by hod;, then
v(n?,02,m°) = (v,n?, 0a)n’

would be detected by h3d;. However, h3d; does not detect a multiple of n?.

The bracket cannot be detected by Thie? by comparison to tmf.

By inspection, the only remaining possibility is that the bracket contains zero.
The indeterminacy can be computed by inspection. ]

LEMMA 6.9. The Toda bracket (T,n*k1,m) is detected by t, with indeterminacy
generated by 1 3.
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PROOF. There is a relation hy - h3d; = ¢ in the homotopy of Cr. Using the
connection between Toda brackets and cofibers as described in [16], Section 3.1.1],
this shows that ¢ detects the Toda bracket.

The indeterminacy is computed by inspection. (I

LEMMA 6.10. The Toda bracket (n,2,4Fs) contains zero.

PROOF. The Massey product Mhy = (hq, ho, higa) shows that M h; detects the
Toda bracket. Table [T shows that Mhy, Ahocy, and 7dgl + Acydy are all targets
of hidden 7 extensions. (Beware that the hidden n extension from h%hs to Mh is a
crossing extension in the sense of Section [Z] but that does not matter.) Therefore,
Mhy detects only multiples of 7, so the Toda bracket contains a multiple of 7. This
implies that it contains zero, since multiples of 1 belong to the indeterminacy. [

LEMMA 6.11. The Toda bracket (TRz2,02,2) equals zero.

PROOF. No elements of the bracket can be detected by 72Ah,dyg by compar-
ison to tmf.
Consider the shuffle

(TRa, o2, 2k = TE2<02, 2, k).

The bracket <U2, 2, k) is zero because it is contained in me9 16 = 0. On the other
hand, while {TMdp}x is non-zero and detected by 7Md3. Therefore, no elements
of (TKa,0?%,2) can be can be detected by 7Mdy. O

LEMMA 6.12. For every « that is detected by h3hs, the Toda bracket (2,02, o)
contains zero. The indeterminacy is generated by 27&>, which is detected by T2d3l.

PROOF. The product o2« is zero for every a that is detected by h3hs. For
degree reasons, the only elements that could detect this product either support
extensions or are detected by tmf. Therefore, the bracket is defined for all a.

By comparison to tmf, the bracket cannot be detected by 74¢3. Table [[5lshows
that 72d2[ is the target of a hidden 2 extension, so it detects an element in the
indeterminacy. Since there are no other possibilities, the bracket must contain
Z€ro. O

REMARK 6.13. This result is consistent with Table 23 of [16], which claims that
the bracket (2,02,0,5) contains an element that is detected by Bs. The element
B3 is now known to be zero in the Adams F..-page, so this just means that the
bracket contains an element detected in Adams filtration strictly greater than the
filtration of Bs.

LEMMA 6.14. The Toda bracket (64,n?,04) equals zero.

ProOOF. Theorem says that there exists an element 6} in w1 32 such that
(04,m?,04) contains n205. The group me1 32 is zero, so 65 must be zero, and the
bracket must contain zero.

In order to compute the indeterminacy of (f4,7?,64), we must consider the
product of 8, with elements of 733 15. There are several cases to consider.

First consider {Ah?h3}. The product 6,{Ah3h3} is detected in Adams filtra-
tion at least 10, but there are no elements in sufficiently high filtration.

Next consider vf, detected by p. The product 67 is zero [46], so 167 is also
Z€ero.
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Finally, consider nns detected by hihs. Table [[I] shows that (n,2,64) detects
15. Shuffle to obtain

ms0s = n(n, 2,04)05 = n*(2,64,04).

The bracket (2,04, 60,) is zero because it is contained in 761,32 = 0. O

LEMMA 6.15. The Toda bracket (n?,04,1?,04) is detected by Ajh3.

PROOF. Table [3] shows that A1h3 equals (h?,h3, h?, h3). Therefore, A1h3 de-
tects (n?,04,12,0,), if the Toda bracket is well-defined.
In order to show that the Toda bracket is well-defined, we need to know that the

subbrackets (2, 04,7%) and (04,77, 64) contain zero. These are handled by Lemmas
and O

LEMMA 6.16. The Toda bracket (T1°K,8,K2) contains zero, and its indetermi-
nacy is generated by multiples of TH*R.

PROOF. The bracket (71*%, 8, %z) contains 7i&(n, 2, 4%s). Lemma 610 shows
that this expression contains zero.

It remains to show that Ry - m2312 equals zero. There are several cases to
consider.

First, the product TonsK2 in 76032 could only be detected by 71g3 or T2d3l.
Comparison to tmf rules out both possibilities. Therefore, TonsRs is zero.

Second, the product KRz in 7e4,35 must be detected in filtration at least 9, since
Tggs equals zero, so it could only be detected by h3(Ae; + Cp). This implies that
TURRq 18 zero.

Third, we must consider the product posks. Table [II] shows that the Toda
bracket (o, 16, 2p15) detects pas. Then pa3ka is contained in

(0,16,2p15)F2 = 0 (16, 2p15, Ra).

The latter bracket is contained in g 32. As above, comparison to tmf shows that
the expression is zero. (I

LEMMA 6.17. The Toda bracket (n,v,7045%) is detected by ThyDj.

PROOF. Table[dl (see also Remark 5.10) shows that either ds(7D%) or ds(7D% +
T2haGo) equals 72 M hag. In either case, the Moss Convergence Theorem 2.16shows
that 7hy D% detects the Toda bracket. O

LEMMA 6.18. There exists an element o in mee 34 detected by T2haC’ such that
the Toda bracket (n,v,a) is defined and detected by Thip;.

PROOF. The differential ds(7p1 +hZhshe) = 72h3C" and the Moss Convergence
Theorem establish that the Toda bracket is detected by 7hipi, provided that
the Toda bracket is well-defined.

Let a be an element of mgg 34 that is detected by 72h2C’. Then va does not
necessarily equal zero; it could be detected in higher filtration by 72hoBs + hoD5.
Then we can adjust our choice of a by an element detected by 72 Bs + D} to ensure
that va is zero. (I

LEMMA 6.19. The Toda bracket (02,2, {t}, TF) is detected by hsQ2 + h3Ds.
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PRrROOF. The subbracket (02,2, {t}) contains zero by comparison to Cr, and
its indeterminacy is generated by o360, = 40%s detected by 7gn. The subbracket
(2,{t}, TR) is strictly zero because it cannot be detected by hohz2hsi by comparison
to tmf. This shows that the desired four-fold Toda bracket is well-defined.

Consider the relation

77<U27 2, {t}vTE> - <<777 027 2>7 {t}v TE>'

Let a be any element of (n,02,2). Table [l shows that « is detected by hihy
and equals either 74 or n4 + np15. By inspection, the indeterminacy of («, {t}, 7)
equals TR - 753,29, which is detected in Adams filtration at least 14. (In fact, the
indeterminacy is non-zero, since it contains both 7% - {Mco} detected by 7Md3 and
also 7R - {Ah1d3} detected by 72Ahydged.)

Table [II] shows that («, {t},7R) is detected by hihsQ2. Together with the
partial analysis of the indeterminacy in the previous paragraph, this shows that
(a, {t}, 7R) does not contain zero.

Then n{c2,2, {t}, 7R) also does not contain zero, and the only possibility is that
(02,2,{t}, 7R) is detected by hyQ2 + h3Ds. O

LEMMA 6.20. The Toda bracket (04,04, k) equals zero.

PROOF. The Massey product (h?,h3,dg) equals zero, since
h% <hiv hiv d0> = <h%7 hi7 hi>d0 =0,

while h?z75 7 is not zero. The Moss Convergence Theorem [2.16] then implies that
(04,04, k) is detected in Adams filtration at least 8.
The only element in sufficiently high filtration is Phihg. However,

n2<947947 KJ> = <772794794>K/ = 07

while h? - Phihg is not zero. Then (6,604, k) must contain zero because there are
no remaining possibilities.

The indeterminacy can be computed by inspection, using that 646, 5 is zero by
comparison to CT. O

LEMMA 6.21. The Toda bracket (k,2,05) is detected by hedp.

PRrROOF. The differential ds(hohs) = hodp implies that (k,2,65) is detected by
hohy - h% = 0 in filtration 4. In other words, the Toda bracket is detected in Adams
filtration at least 5.

The element hihedy detects (nk,2,0s), using the Adams differential da(he) =
hoh?. This expression contains n{k, 2, 5), which shows that (k, 2, 05) is detected in
filtration at most 5.

The only possibility is that the Toda bracket is detected by hgdp. ([

LEMMA 6.22. The Toda bracket (2,m,m7n{h1x76,6}) is detected by Thyiz;.

PROOF. Let o be an element of 777 41 that is detected by hizr766. First we
must show that the Toda bracket is well-defined.

Note that 2« is zero because there are no 2 extensions in 777 41 in sufficiently
high Adams filtration. Now consider the shuffle

mmia = (2,1,2)a = 2(1,2,a).
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Table [[1] shows that (n,2,«a) is detected by hoh2x766, but this element does not
support a hidden 2 extension. This shows that 7%« is zero and that the Toda
bracket is well-defined.

Finally, use the Adams differential dy(hoe2) = Th3z766 and the relation hg -
hoes = Thixy to compute the Toda bracket. O

LEMMA 6.23. The Toda bracket (2,02, {Th3C"}) equals zero, with no indeter-
minacy.

PROOF. Let a be an element of 76,35 that is detected by ThoC’, so va is the
unique element that is detected by 7h3C’. We consider the Toda bracket (2, 02, va).
By inspection, the indeterminacy is zero, so the bracket equals (2,02, v)a, which
equals (,2,0%)v.

Apply the Moss Convergence Theorem with the Adams ds differential to
see that the Toda bracket (a,2,02) is detected by 0 in Adams filtration 9, but it
could be detected by a non-zero element in higher filtration. However, this shows
that (a,2,0%)v is zero by inspection. (]

LEMMA 6.24. The Toda bracket (2,02, {h3(Ae1 + Co)}) equals zero, with no
indeterminacy.

PROOF. Let 8 be an element of mg2 33 that is detected by Ae; + Cp, so of
is the unique element that is detected by hz(Ae; + Cy). We consider the Toda
bracket (2,02, 03). By inspection, the indeterminacy is zero, so the bracket equals
(2,02, B)o.

Apply the Moss Convergence Theorem with the Adams ds differential to
see that the Toda bracket (2,02, 3) is detected by 0 in Adams filtration 9, but it
could be detected by a non-zero element in higher filtration. Then the only possible
non-zero value for (2,02, B)o is {MAhihz}o. TableZIlshows that M Ahihs detects
{Ah1h3}045, so c{MAhihs} equals 0{Ahihs}045, which equals zero. O

LEMMA 6.25. The Toda bracket (Tnk?,2,4%s) is detected by M AhZey.

PROOF. Table [3] shows that the Massey product (Ah3eq, h3, hogs) equals the
element M Ah3eg. Now apply the Moss Convergence Theorem 2.6, using that
Table [T shows that AhZeq detects TrR>. O

LEMMA 6.26. There exists an element o in me7 36 that is detected by hoQ)s+hont
such that h3cs detects the Toda bracket (T, v4,n).

PROOF. A consequence of the proof of Lemma [5.48 is that there exists o in
Te7,36 that is detected by hoQs3 + hony such that the product Tv4c is zero. There-
fore, hics detects the Toda bracket (Ta,vy,n) because of the Adams differential
d4(h163) = Th0h2h4Q3. O



CHAPTER 7

Hidden extensions

In this chapter, we will discuss hidden extensions in the F..-page of the Adams
spectral sequence. We methodically explore hidden extensions by 7, 2, i, and v,
and we study other miscellaneous hidden extensions that are relevant for specific
purposes.

7.1. Hidden 7 extensions

In order to study hidden 7 extensions, we will use the long exact sequence
T T
(7.1) - = Tp,q+1 = Tp,q >p,qCT = Tp—1,q+1 = Tp—1,q >

extensively. This sequence governs hidden 7 extensions in the following sense. An
element « in m, 4 is divisible by 7 if and only if it maps to zero in m, ,C'T, and an
element o in mp_1 441 supports a 7 extension if and only if it is not in the image
of m, 4C1. Therefore, we need to study the maps my . — 7 C7 and 7, ,.CT —
T«—1,++1 induced by inclusion of the bottom cell into C7 and by projection from
CT to the top cell.

The E..-pages of the Adams spectral sequences for S%° and Ct give associated
graded objects for the homotopy groups that are the sources and targets of these
maps. Naturality of the Adams spectral sequence induces maps on associated
graded objects.

These maps on associated graded objects often detect the values of the maps
on homotopy groups. For example, the element hg in the Adams spectral sequence
for the sphere is mapped to the element hg in the Adams spectral sequence for C7.
In homotopy groups, this means that inclusion of the bottom cell into C'r takes the
element 2 in 7y ¢ to the element 2 in my ¢C7.

On the other side, the element h} in the Adams spectral sequence for C7 is
mapped to the element A} in Adams spectral sequence for the sphere. In homotopy
groups, this means that projection from C7 to the top cell takes the element {h7}
in 75 3C'T to the element n?t in T44.

However, some values of the maps on homotopy groups can be hidden in the
map of associated graded objects. This situation is rare in low stems but becomes
more and more common in higher stems. The first such example occurs in the
30-stem. The element Ah3 is a permanent cycle in the Adams spectral sequence
for C, so {Ah3} is an element in 30,16 CT. Now Ah3 maps to zero in the E.-page
of the Adams spectral sequence for the sphere, but {Ah3} does not map to zero in
To9,17. In fact {Ah3} maps to nk?, which is detected by hid3. This demonstrates
that projection from C'7 to the top cell has a hidden value.

We refer the reader to Section 2.1] for a precise discussion of these issues.

THEOREM 7.1.

59
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(1) Through the 90-stem, Table [I2 lists all hidden values of inclusion of the
bottom cell into C'T, except that:
(a) If hixss,¢ does not survive, then Thizss e maps to A%e; + TAhserg.
(b) If haheg or haheg + h3 fo does not survive, then Thahgg or Thahgg +
Th3 fa maps to A%e; + TAhserg.
(¢) If TAhy Hy survives, then it maps to AhyBy.
(2) Through the 90-stem, Table [I3 lists all hidden values of projection from
CT to the top cell, except that:
(a) If Theg + Thees does not survive, then Theg maps to T(Aer + Co)g.
(b) If xg56 does not survive, then xgs ¢ maps to Ahyj.
(c) If hizss 6 does not survive, then hixss s maps to TMhog?.
(d) If hizss,6 survives, then A%eq + TAhge1g maps to MAh3dy.
(e) If hahgg or hohgg + h3fs does not survive, then hahgg maps to
TMhog2.
(f) If xg7.7 does not survive, then xs7 7 maps to M AhZeq.
(9) If TAhy1Hy does not survive, then Ahy By maps to MAh%eo.

PROOF. The values of inclusion of the bottom cell and projection to the top
cell are almost entirely determined by inspection of Adams E.-pages. Taking into
account the multiplicative structure, there are no other combinatorial possibilities.
For example, consider the exact sequence

30,16 — M30,16C'T — T29,17.

In the Adams E.-page for Cr, hi and Ah3 are the only two elements in the 30-

stem with weight 16. In the Adams E.-page for the sphere, h3 is the only element

in the 30-stem with weight 16, and h1d3 is the only element in the 29-stem with

weight 17. The only possibility is that A2 maps to h3 under inclusion of the bottom
cell, and Ah3 maps to hid? under projection to the top cell.

One case, given below in Lemma [[.7], requires a more complicated argument.

O

REMARK 7.2. Through the 90-stem, inclusion of the bottom cell into C7 has
only one hidden value with target indeterminacy. Namely, hoci A’ is the hidden
value of hygB7, with target indeterminacy generated by Aj;. Through the 90-stem,
projection from C'7 to the top cell has no hidden values with target indeterminacy.

REMARK 7.3. Through the 90-stem, inclusion of the bottom cell into C7 has
no crossing values. On the other hand, projection from C7 to the top cell does have
crossing values in this range. These occurrences are described in the fourth column
of Table I3l Each can be verified by direct inspection.

THEOREM 7.4. Through the 90-stem, Table lists all hidden T extensions in
C-motivic stable homotopy groups, except that:

(1) if A%han is not hit by a differential, then there is a hidden T extension
from 7(Aey + Co)g to A%han.

(2) if MAhidy is not hit by a differential, then there is a hidden T extension
fmm Ahljl to MAhldo

(3) if MAQ3dy is not hit by a differential, then there is a hidden T extension
from TMhog? to M Ah3dy.

In this range, the only crossing extension is:
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(1) the hidden T extension from h2heco to hohaD2, and the not hidden T
extension on Th3Qs.

PrOOF. Almost all of these hidden 7 extensions follow immediately from the
values of the maps in the long exact sequence (T.I]) given in Tables [I2 and [I3

For example, consider the element Pdy in the Adams F.-page for the sphere,
which belongs to the 22-stem with weight 12. Now 722 12CT is zero because there
are no elements in that degree in the Adams FE..-page for C7, so inclusion of
the bottom cell takes {Pdy} to zero. Therefore, {Pdy} must be in the image of
multiplication by 7. The only possibility is that there is a hidden 7 extension from
Codo to Pdo [l

REMARK 7.5. A straightforward analysis of the sequence (Z.I) shows that
AZhyn is not hit by a differential if and only if the possible 7 extension on 7(Ae; +
Cp)g occurs. Thus this uncertain hidden 7 extension is entirely determined by a
corresponding uncertainty in a value of an Adams differential.

REMARK 7.6. If MAhydy and MAh3dy are not hit by differentials, then a
straightforward analysis of the sequence ([TI]) shows that the possible T extensions
on Ahyj; and M hog? must occur. Thus these uncertainties are entirely determined
by corresponding uncertainties in values of the Adams differentials.

LEMMA 7.7.
(1) The element hihs(Aey + Co) + TheC” maps to hicoQa under inclusion of
the bottom cell into Cr.
(2) There is a hidden T extension from dyey to hihs(Aey + Cp).

ProoF. Consider the exact sequence 779,38 — m70,38CT — Tg9,39. For combi-
natorial reasons, one of the following two possibilities must occur:

(a) the element hihz(Aey + Co) + 7heC” maps to hicoQ2 under inclusion of the
bottom cell into C'7, and there is a hidden 7 extension from dye; to hihs(Aer +
Co).

(b) the element hihz(Ae; + Cp) maps to hicoQ2 under inclusion of the bottom cell
into C'r, and there is a hidden 7 extension from dye; to h1hs(Ae1+Co)+7hoC”.

We will show that there cannot be a hidden 7 extension from dje; to hihs(Aey +

Co) + ThoC".

Lemma shows that Tv{die;} equals Tpo{k;}. Since there is no hidden

T extension on hik;, there must exist an element « in {k1} such that Tna = 0.

Therefore, Tv{d1e; } must be zero.

If there were a T extension from dje; to hihs(Aey+Co)+7haC”, then 7v{dye1}
would be detected by

ho - (h1h3(A€1 + CQ) + ThQC/I) = Th%C”,

and in particular would be non-zero. ([l
7.2. Hidden 2 extensions

THEOREM 7.8. Tuble