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 THE STRUCTURE OF THE HOPF ALGEBRA H*(BU)
 OVER A Z(P)-ALGEBRA.

 By DALE HUSEMOLLER.

 In [5] John Moore gave a description of the lopf algebra H* (BU, R)
 over any ring R using two kinds of universal constructions for llopf algebras.

 Over any ring B which is a Q-algebra it is well known that H*, (BU, R)
 decomposes as an infinite tensor product of polynomial llopf algebras on one

 generator. Over a Z(,) algebra R (for example the field F-p of p elements),
 we will show that H* (BU, R) is an infinite tensor product of Hopf algebras
 indexed by the integers prime to p. The llopf algebras in the infinite tensor

 product are isomorphic up to change of the bottom degree d and have one

 primitive element and one indecomposible element in exactly each degree of

 the form pLd. The above discussion applies to H* (BU), H* (B'Sp), and
 H* (BSp) and also to H* (BO, R) and 1* (BO, R) when either R is a Z(p)
 algebra for p odd or an F2-algebra.

 In Sections 1, 2, and 3 we review the universal constructions that are

 needed. We digress to consider some questions about the universal free com-

 mutative algebras S (M) and coalgebras S(M). For example, in the ungraded

 case the polynomial algebra S (M) on a free module M is again a free module.

 In the graded (twisted) commutative case this is not universally true. These

 constructions are related to ideas in the theory of formal groups, because a

 smooth formal group can be viewed as a llopf algebra structure on S'(M)

 for some free ungraded module M, see [2].

 In Section 4 we recount the description of the biuniversal llopf algebra

 B [x, d] and give new proofs of some of the results based on methods used in

 the theory of A-rings and Witt vectors. In Section 5 we compare B [x, d]

 and B [x, rd] using the morphism 0: P (A) Q (A) which is defined for any
 Hopf algebra.

 In Sections 6, 7 and 8 the biuniversal Hopf algebras B(, [x, d] are

 introduced and studied. The decomposition over a Z( )-algebra B[x, d]

 - ((r,p)=, B(p) [x, rd] is proven. The Hopf algebra B(p) [x, d] is related to
 B[x, d] in the same manner that the p-Witt vectors are related to the (big)
 universal Witt vectors, see [6]. In the ungraded case B(p [x, d] is the
 analogue of the Hopf algebra (or bialgebra or bigebre) of distributions on
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 330 DALE HUSEMOLLER.

 the p-Witt vectors and then the decomposition comes from the Artin-Hiasse

 exponential series, see [7].

 I wish to thank l'Institut des ilautes Etudes Scientifiques for their

 hospitality while this paper was written and the ilaverford College faculty

 research fund for their support.

 1. The covariant and invariant tensor spaces Sn(M) and S M'(M).

 Let R denote (usually) a commutative ring (with 1), and consider the

 category Gr+(R) of positively graded R-modules. In this category we have

 a tensor product functor L 01M where in degree n the module (L 0 M) n

 equals 11 LA0Mj, together with a commutativity morphism
 i+j=n

 T=T(L,M): L0M--M0L

 given by the relation T(x? y) (- 1) iy0x for xC Li, yC Mj. For di.s-
 cussion of the general setting see [3].

 Let T, (M) denote Mn? the tensor product of M with itself n times
 where To (M) =R (concentrated in degree 0 as usual) and T1 (M) _-M.

 The symmetric group on n objects acts on Tt,(M) by the relation

 f (Xj X * **X Xn) ~ XT(1) O ... * * XXT(n)

 where ax and r are inverse to each other in the symmetric group and xi E Mm (i.
 Let oS '(M) -- T" (M) denote the natural inclusion of the submodule

 S '(M) of invariant tensors under the action of the symmetric group into

 Tn (M). Let Tn (M) -- Sn (M) denote the natural quotient by the submodule
 generated by a (t) - t for t E t4, (M) and a in the symmetric group. Clearly

 the functor M-> Tl (M) has M l-- S '(M) and M &-> Sn (M) as a subfunctor
 and a quotient functor respectively.

 If M is projective of finite type, then Tlx(M) is also and the dual module

 Tn (M) = Tn (lMt) where M' is the dual of M. If, in addition, Sn' (M) and

 Su, (M) are projective of finite type, then the transpose morphism of

 Sn'(3M) - T (M) is T (M) -> S(M') =S'(M)' and the transpose mor-
 phism of T,, (M) -- Sq (M) is Sn (M)' Sn'(M') -- Tn (M') up to canonical
 isomorphism. The question of when Sn (M) and Sn' (M) are projective of

 finite type will be considered in Section 3 using the universal constructions

 of Section 2.

 Recall that a module M is connected provided Mo 0. If M is con-

 nected, then T,(M) = Sn'(M) 0 for i < n. Let [x, d] denote the (graded)
 module free on one generator x in degree d. Clearly [x, d] is connected if

 and only if d > 0.
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 HOPF ALGEBRA. 331

 (1.1) Example. The module T4[x, dl is 0 if nd#i and Rxn?, i.e.
 free of rank 1, if nd i. Also Sn'[x) d],= Sn[x, d] 0 for nd i, and

 fRXn( for n =- O, 1 and all n if d is even.
 n JX dnd JR l (Z/2Z) xn8 for n > 1 when d is odd.

 (, d) {Rxn? for n = O, 1 and all n if d is even.
 n _( d) nd Tor (R, Z/2Z)xn ? for n > 1 when d is odd.

 Here R 0 (Z/2Z) R/2R has a quotient R-module structure and

 Tor (R, Z/2Z) = 2R, the ideal of all a C R with 2a 0, has an R-submodule
 structure.

 For R=Z it follows that S'[Jx,1]n=0 for n> 1 and Sn[x,1]n
 - (Z/2Zxn? for n > 1 and thus no simple duality relation holds between

 Sn[x, 1] and S8/[x, 1]. The next special cases give the direction for a satis-
 factory general theory.

 (1. 2) Special cases of (1. 1). If R is a Z[1/2] algebra, then St'[x, d],d

 -S n[x, d]wd7 0 for n> 1 and d odd. If R is an F2-algebra (Fq denotes
 the finite field of q elements), then Sn'[x, d],nd = Rxn = Sn [x, d]nd for all
 n and all d.

 2. Universal constructions ojf algebras, coalgebras and Hopf algebras.

 In this section we outline those properties of universal constructions needed

 for analysing the homology Hopf algebras of certain K-spaces. For an

 introduction to these questions see [5] and for a detailed treatment see [3].
 For generalities on lopf algebras see also [4].

 We put together these universal constructions from the modules T (M)),

 Sff/(M1), and S(3(M) considered in the previous section. Observe that there are
 canonical isomorphisms Tn+mn(M) -> Trn(M) OTm(M) and T,,(M) 0 T,,(M)
 >Ti,,+m (M) inverse to each other inducing respectively the monomorphism
 S+mm'(M) > S '(M) 0 Sm'(M) and the epimorphism Sn(M) 0 Sm(M) > S,m( 31).
 These monomorphisms collect to define a natural comultiplication A: S'(M)

 ->S'(M) '0S'(M) where S'(M) = jj St,'(M), and these epimorphisms col-
 o'n

 lect to define a natural multiplication 1: S((M) (0S(M) -* S((M) where
 S((M) = jE4(M). In fact, S((M) is a (supplemented) algebra and S'(M)

 is a (supplemented) coalgebra each of whose properties are stated in the

 next two paragraphs. They are called respectively the free commutative

 algebra and coalgebra on the module M.

 (2.1) The algebra S(M) and the Hopf algebra S(C).
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 332 DALE HUSEMIOLLER.

 (a) S (M) is a supplemented algebra with multiplication 1 given above

 with unit R -* S (M) and augmentation S (M) -X R given by the direct sum-
 mand So (Ml) X of S(M). The augmentation ideal is I(S(M)) =! j1 Sn(Ml)

 o<n

 (b) S (Ml) is commutative (also called anticommutative), that is,

 T==4: S (M) 0S(M) -S(M) where T is the commutative morphism of
 the tensor product.

 (c) The module injection /3: M -- S (M) has the following universal
 property: for any morphism f: M -* I (A) of modules where A is a commu-

 tative (supplemented) algebra, there exists a unique morphism g: S (Al) -* A

 of (supplemented) algebras such that I (g),8 = f. This defines S((M) as a
 functor from modules to commutative algebras.

 For a supplemented coalgebra C we form the commutative algebra

 S(I (C) ). The composite of the restriction I (A) : I (C)-> I (C) 0I (C) of the

 comultiplication A on C and 0X,8: I (C) 0 I (C) -- S (I (C) ) 0 S (I (C) )
 defines by (c) a comultiplication A on S (I (C) ) making S (I (C) ) into a Hopf

 algebra. By abuse of language we denote this Hopf algebra S(I(C)) by
 simply S (C), and if C is commutative, then S(C) is cocommutative.

 (d) The injection /: C -* S(C) of coalgebras has the following uni-

 versal property: for any morphism fi: C -* B of coalgebas where B is a

 commutative Hopf algebra, there exists a unique morphism g: S (C) -* B of

 lopf algebras such that g,3 = f. This defines S as a functor from coalgebras
 to commutative Hopf algebras.

 (e) For the module [x, d] with d even, the algebra S[x, d] has a basis

 (xD) O with multiplication given by xxj= x"i and degree (xi) = id. For
 the zero coalgebra R 0 [x, d] where Ax x 0 1 + 1 0 x the Hopf algebra

 S (BRE [x, d]) is the algebra S [x, d] together with the comultiplication
 A(xm) = Y (i,j)x 0 xi where (a,b) - (a+ b) !/(a!) (b!), the binomial

 i+j=m

 Poefficient.

 (f) If C is a connected coalgebra, i. e. CO = R, then by multiplication
 in S(C) the morphism /3(n): Cn? .-*S (C) which is a surjection in degree ? n.

 The above discussion could be carried out with S (M) and S(C) replaced

 by the tensor algebra T(A) - L T,A(M) and the tensor Hopf algebra T(C)
 o<n

 respectively. The universal properties would hold for morphisms into any

 algebra.

 In the next paragraph we restrict ourselves to the connected case,

 although the discussion could be carried out for cocomplete coalgebras, see [3]

 (2.2) The coalgebra S'(A) and the Hopf algebra S'(A).
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 HOPF ALGEBRA. 333

 (a) S'(M) is a supplemented coalgebra with comultiplication A given

 above with unit S' (M) ->1R and augmentation R -S 5'(M) given by the direct
 summand So''(M) = R of S' (M). The augmentation ideal is

 I (S' (M) = H Sn (Ml)
 o<n

 (b) S'(M) is commutative, that is, TA =A: S'(M) ->S'(M) X S'(M).

 (c) For M connected, the module projection a: S'(M) -> M has the

 following universal property: for any morphism f: I (C) -> M of modules

 where C is a commutative connected coalgebra, there exists a uniqne morphism

 g: C ->S'(M) of coalgebras such that aiI(g)- f. This defines S'(M) as a

 functor from connected modules to connected coalgebras.

 For a connected algebra A we form the commutative coalgebras S'(I (A)).

 The composite of the quotient I (1): I (A) 0 I (A) ->I (A) of the multiplica-
 tion 1 on A and a : S'(I(A)) S'(I(A)) ->I(A) XI(A) defines by

 (c) a multiplication 1 on S'(I(A)) making S'(I(A)) into a Hopf algebra.

 By abuse of language we denote this Hopf algebra S' (I(A)) by simply

 S'(A), and if A is commutative, then S' (A) is commutative.

 (d) The projection a: S' (A) -> A of algebras has the following uni-
 versal property: for any morphism f: B -> A of algebras where B is a
 connected, cocommutative Hopf algebra, there exists a unique morphism,

 g: B -> S'(A) of Hopf algebras such that arg = fi. This defines S' as a

 functor from connected algebras to connected cocommutative Hopf algebras.

 (e) For the module [x, d] with d even and 0 < d, the coalgebra S'[x, d]

 has a basis (yj (x) )o- - with comultiplication given by Ay4,(x) = yi(x) 0 yj(X)
 i+ j=m1

 and degree (yj (x)) - id. For the zero algebra R G [x, d] where x2 = 0 the
 Hopf algebra S'(R ED [x, d]) is the coalgebra S'[x, d] together with the mul-
 tiplication yi (x) yj (x) = (i, j)yi+j (x).

 (f) For a connected algebra A, the morphism a: S'(A) -> A together

 with the comultiplication on S'(A) define a morphism a(n): S' (A) -An

 which is injective in degrees ? n.

 The above discussion could be carried out with S' (M) and S' (A)

 replaced by the tensor coalgebra T' (1II) = Lj T,, (M) and tensor Hopf algebra

 T' (A) respectively. The universal properties would hold for morphisms from

 any coalgebra.

 (2.3) The functor Q and S(M). The composite of A: M->I(S(M1))

 and I (S (M)) -> Q (S (M)) is an isomorphism where, the indecomposable

 element functor, Q (A) = coker (QD: I (A) 0 I (A) -I (A) ) is defined on the
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 category of supplemented algebras A. Recall that a morphism f: A -> A' of

 conniected algebras is surjective if and only if Q (f) is an epimorphism, see

 [4, Prop. 3. 8]. This holds under a general completeness hypothesis, see [3].

 (2.4) The functor P and S'(31). The composition of P(S'(M))

 ~I(S'(MI)) and a: I(S'(M) ) -> M is an isomorphism where, the primitive
 element functor, P(C) ==Ker(A: I(C) - I(C) 01I(C)) is defined on the

 category of supplemented coalgebras C. Recall that a morphism f: C-C'

 of connected coalgebras is injective if and only if P(f) is a monomorphism,

 see [4, Prop. 3. 9]. This holds under a general cocompleteness hypothesis,

 see [3].

 (2. 5) The morphism 0(A): P(A) Q(A). For a Hopf algebra A

 the morphism 0 (A) is the composite of P (A) -I (A) with I (A) - Q (A).
 Suppose that R is an integral domain of characteristic zero and A has no

 R-torsion. If A is commutative and connected, then 0(A) is a monomorphism.

 For R a field see [4, Prop. 4.17], and in general consider the following com-

 mutative diagram where F is the field of fractions of R and PA -e P (A 0 F)

 is a monomorphism.

 0(A)
 P(A) > Q(A)

 P(A OF) > Q(A OF)
 0(A O F)

 Since 0 (A 0 F) is a monomorphism, 0(A) is also a monomorphism.

 3. Applications of universal properties. Let a (R), ? (R), and

 Grc (R) denote respectively the categories of commutative connected algebras,
 commutative connected coalgebras, and connected modules respectively over R.

 In order to study the structure and duality properties of functors Sn and Sn',

 we use some of the general properties of these three categories and of the

 functors S, S', and I which are all developed at length in [3].

 By a degreewise construction, Grc(R) is a category with (arbitrary)

 products and coproducts (also called direct sums), and it is also an abelian

 category.

 (3. 1) PROPOSITION. The categories a(IR) and e (R) both have
 products and coproducts.

 Proof. Let A (j) (j C J) be a family of algebras in (2(R), and let
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 HOPF ALGEBRA. 335

 C(j) (j C J) be a family of coalgebras in E (R). The product TT A (j) as
 jEJ

 a graded module with projections is given by the relation

 I( TTA(j)) = TTI(A(j))
 jEJ jEJ

 in Gre (R). The coproduct 1i C (j) is constructed using the relation
 jEJ

 I( XC(j))- II(CU(j)) in Grc(R). The algebraic structure on TTA(j)
 jEJ jEJ jEJ

 is determined by the reqnirement that the projections are morphisms and

 the coalgebra structure on H C(j) by the requirement that the injections
 j E J

 are morphisms. The universal properties are easily verified.

 Assume J is finite. Then (0A (j) is the coproduct of the A (j) with
 j E J

 injections A (i) - 0 A (j) given by tensoring A (i) with (0 (R- A(j)) and
 jEJ E#J

 0 C(j) is the product of the C(j) with projections (0 C0(j) > C(i) given
 jEJ j E J

 by tensoring C(i) with 0 (C(j) -> R). To check the universal property

 in the coalgebra case, consider a family of morphisms fj: D ->C (j). Then
 f: D ->( C (j) which is the composite of the iterated comiltiplication

 jEJ

 /v: D - OD and Q fj: (? D -?0 C(j) is the unique morphism which
 jEJ jEJ jEJ jEJ

 composed with the projection onto C(i) is ft. Observe A is a morphism of

 coalgebras because D is commutative.

 For general J we have

 H A (j)= lim (A (j)
 J'finite, J' E J j E J

 and

 TTC c() lim (0 C(j)
 if J v

 J'finite, J' CJ j E J

 as modules with the evident algebra and coalgebra structures given usilig

 0 A(j)-> 0 A(j) (g A(j)
 jEJ' jEJ" jEJ'

 and

 0 C(j)-> 0 C(j)-> 0 C(j)
 jEJ' jEJ" jEJ'

 for J' C J" finite and contained in J. This proves the proposition.

 (3. 2) PROPOSITION. Let M(j) (j E J) be a family of modules itn
 Gro(R). Then it follows that
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 336 DALE HUSEMOLLER.

 S(ii l XI(j)) - IS(3M(j) ) S( TT (j) )= TT S'(3(j) ).
 jEJ jEJ jEJ jEJ

 Proof. The universal property (2. 1) (c) just says that the adjoint

 relation S -H I holds where S: GrO (R)-> C(R), and hence S preserves

 coproducts by generalities on adjoint functors. The universal property

 (2. 2)(c) says that the adjoint relation I -H S' holds where S': Gr'(R) -* (R),
 and hence S' preserves products by generalities on adjoint functors. The

 proposition could be also be proved directly.

 Thus for J finite we have

 S ( jL M(j) ) == ? S(M(j) ) and S'( _j1 M (j) ) e S(M(j)).
 jEJ JEJ jEJ jTJ

 From these preliminaries we can deduce the main theorem on the module

 structure of S((M) and S'(M). A graded module 3 is free provided it is a
 coproduct of [x, d] and projective provided it is a summand of a free module.
 A graded module M is even provided Mm , 0 for m odd.

 (3. 3) THEOREM. Let M be a graded module over a ring 1 such that

 either 3 is even, R1 has no 2-torsion, or R is an F2-algebra, i.e. 2R = O.

 If M is free (resp. projective), then S'(M) and each S,',(M) are free (resp.
 projective) modules. If 31 is free (resp. projective) of finite type, then each

 S '(M1) is free (resp. projective) of finite type, and if, in addition, M is
 connected, then S'(M) is a free (resp. pro jective) module of finite type.

 Proof. From the relation S'(M OD N) = S'(M) 08 S'(N) and the fact
 that S '(M) is a direct summand of S'(M) it suffices to prove the statements

 referring to the free module M3= lH [xj, dj]i. For J finite S'(M) 3= 0S' [xj, dj]
 j E J j E J

 by (3. 2) and we use (1. 1), that is, S8[xj, dj] is free. For J infinite,
 Tn (M) = lim Tn ( *j [xj, dj]) and from the exactness of lim, it follows that

 -J' jEJ' <

 S' (M) =lim Sn, ( jj [xj, dj) where J' ranges over the finite subsets of J.
 -*J' jEJ'

 The theorem now follows easily.

 (3.4) THEOREM. Let M be a graded module over a ring R such that

 either M is even, R is a Z[1/2]-algebra, or R is F2-algebra. If M is free

 (resp. projective), then S(M) and each St,(M) are free (resp. projective)
 modules. If M is free (resp. projective) of finite type, then each Sn3(M) is
 free(resp. projective) of finite type, and if, in addition, M is connected, then
 S(M1) is a free (resp. projective) module of finite type.

 Proof. From the relation S(M 30 N) =S (M) 0 S (N) and the fact that
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 S,, (M) is a direct summand of S (M) it suffices to prove the statements

 referring to the free module M= l H [xi, dj]. By (3. 2) we have S(M)
 j E J

 - 0 S[xj, dj], and we use that S[xj, dj] is free, see (1.1). The general
 jEJ

 tensor product, which is just lim of the finite tensor products, of free modules

 is again a free module. The theorem follows now easily.

 (3. 5) THEOREM. Let M be a graded module over a ring B such

 that either M is even, R is a Z[1/2]-algebra, or R is a F2-algebra. If M

 is projective of finite type, then transpose of T,, (M) -* Sn (M) is isomorphic
 to S,,'(M) -* S. (Mi) and the transpose of Sn'(M) -> T,,(M) is isomorphic
 to T,, (M) ->S,, (M). If M is connected and pro jective of finite type, then

 the dual coalgebra of the algebra S(M) is S'(M') and the dual algebra of

 the coalgebra S'(M) is S(M').

 Proof. The second statement is a straight forward consequence of the

 first one. We have two exact sequences

 f3n

 H Tn (M) >T., (M) -->Sn (M) -> O
 a E S(n)

 and

 axn

 0 ->S'(M) e> T-n(M) > - TT TIn (M)
 a E S(n)

 defining Sn (M) and Sn' (M) where S (n) is the symmetric group on n

 letters and the restriction of 83n or the projection of a, to the factor a is
 aq-I: T.(M)->Tn(M). For orS(in) acting on Tn(M) the transpose is

 v-1 acting on T, (MW) = T, (M)". Thus under our hypothesis of projective
 of finite type the two exact sequences are dual to each other. This proves
 the theorem.

 (3. 6) Remarkc. Let R1 -- R' be a morphism of rings, i. e. view R1

 as an R-algebra. The change of coefficient (or change of base) functor

 M3 - 1R' 0 is defined Gr+(R) - Gr(1(R'). It induces functors (1(R) - ((R'),
 R

 .e (R) -- 6 (R') and from Hopf algebras over R to llopf algebras over R'.
 From the canonical isomorphisms

 R' 0 T,(M) == T(R' 0 M) and (0 T(M) =-- T(R' 0 M)
 R R R R

 we have the commutativity of the following diagram by passing to quotients
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 Grc(R) > Gr (R')

 a (R) - > a (R').-

 On the other hand such a general commutativity assertion does not hold for

 S'. If 1 -R' is a morphism of either Z[1/2]-algebras or F2-algebras, then
 the following diagrams of functors are commutative up to natural isomorphism

 Grc (R) - > Grc (R')

 4 ,

 The horizontal arrows in both diagrams are defined by change of coefficients.

 (3. 7) Piemnarics. The algebra S (M) has a natural Hopf algebra struc-

 ture induced by viewing Mi as the zero coalgebra, i. e. A (x) x 0 1 + 1 08 x
 for all x C M or P (M) = M. Then 0: PS (M) - QS (M) IM is an epi-
 morphism, see also (2. 1) (e) for Ml of rank 1. Similarly the coalgebra
 S' (M1) has a natural Hopf algebra structure induced by viewing 31 as the
 zero algebra, i. e. xy = 0 for all x, y C M or Q (M) = M. Then 0: M1 PS'(M)
 -- QS'(M) is a monomorphism, see also (2. 2) (e) for I of rank 1. When

 llI has rank 1 we see that S'(M) is an algebra with divided power operations

 7mM(x). From the tensor product theorem [1, expose 7, theoreme 2, p. /-04]
 and (3. 2) we see that S'(M) has divided power operations for a free module

 M. In fact for MI a free module, S' (M) is just the universal algebra U (M)
 with divided powers, see [1, pp. from 8-06 to 8-09].

 4. The Hopf algebra B[x,d]. Recall from [5; pp. 10-05, 10-06] the

 universal bicommutative Hopf algebras S(S'(3(M)) defined over the coalgebra
 S'(M) and S'(S(M)) defined over the algebra S(M) are related by a unique
 morphism of IHopf algebras A: S (S'(Mi)) >S'(S (M)) such that the fol-
 lowing diagram is commutative.

 S'(/3Q11))

 Si (M) >S' (S (M) )

 SS()(S(S(M))
 (SI, (M)) s (M M

 S(S'(M) ) >S(M1).
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 The morphism A is constructed from either the universal property of p(S'(M1))
 or of a (S (M) ) .

 Let M be a graded module over a ring R such that either M is even,

 R is a Z[1/2]-algebra, or R is a F2-algebra. Then the transpose of
 A: S(S'(M)) - S'(S(m)) is

 A

 S' (S (M) v S (SI, (mv ) >So (S (MV) ) S (S' (M) v

 by Theorem (3.5).

 (4. 1) THEOREM. Let d C Z wvith 1 ? d such that either d is even,

 R is a Z[1/2]-algebra, or R is a F2-algebra. Then A: S(S'[x, d]) - S'(S[x, d])
 is an isomorphism.

 Proof. The case where d is even is contained in [5; Theorem 1]. The

 case where d is odd and R is an F2-algebra follows by the same argument as

 for d even. When d is odd and R a Z[1/2]-algebra reduces to the observation

 that S (S'[x, d] ) and S'(S[x, d] ) are each the exterior Hopf algebras on one

 generator x with x2 = 0 and x primitive together with the fact that fi (S' (M) ),

 S'(/3 (M) ), a (S (M) ), and S(a (M) ) are all isomorphisms. This proves the
 theorem.

 Now we study A: S(S'[x,dd])S'(S[x,d]) in the case where d is even
 or R is an F2-algebra and denote this Hopf algebra by B [x, d]. We have a
 morphism /3: S'[x, d] -- B [x, d] of coalgebras and ca: B [x, d] -* S [x, d] of
 algebras with universal properties given in (2. 1)(d) and (2. 2)(d) respectively.

 In terms of the element x there is a unique basis of S'[x, d] consisting

 of ci(x) C S'[x,d]id such that c1(x) =-x and A(cm(X)) = ci(x) 0cj(x).
 i+j=Jfl

 For S [x, d] the powers xi C S [x, d]id form a base. Thus the image / (ci (x))
 in B [x, d], also denoted ci (x), form a family of elements whose image in
 QB[x, d] is a base for 1 ? i and there is a family of primitive elements
 bi(x) C PB[x, d]id such that a (bi(x)) xi which form a basis of PB[x, d].

 In [5; p. 10-06] we find a relation between ci(x) and bi(x) (with different
 notation). This we state again amd give a new proof the result which is

 motivated by the definition of the Adams operations in K-theory.

 (4. 2) PROPOSITION. The natural basis (bi(x)) of the primitive
 elements PB[x, d] is related to the natural basis (ci(x)) of the indecorn-
 posable elements QB[x,d] by the Newton relations:

 bn(x) E (-)i+1c(x)b,j (x) 4- (1)"+1ncn (x) (n > ).
 Oj<jfn
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 Proof. Introduce an indeterminant t of degree - d and consider the

 algebras of formula series B [x, d] [ [t] ] and (B [x, d] 0 B [x, d]) [t] ] and the
 morphism induced by A also denoted

 a: B [x, d] [ [t] ] >(B [x, d] O B [x, d] ) [t]]

 For the element ct(x) - E c.(x) t with c0(x) = 1 we have the relation
 0_z

 Act (x)-- ct (X) 0 ct (x). Now we introduce the element bt (x) ==b, *(x) ti
 1?j

 by the requirement that

 b$t (x) tdtc()CtX-

 Since b*-t(x) is a logarithmic derivative, it follows that

 Abt (x) b*t (x) 0 1 + 1 -0 b*t (t)

 by calculus and the coefficients b*i(x) of b*t(x) are primitive of degree id.

 From the relation

 (, b bj (x) (- t) i) ( cj C(x) ti)- ncn (x) tn
 i-Ci 0?j 1_?n

 we derive the Newton relations for b*t(x) by equating coefficients of tn in
 the form

 (_1)nb*n(X) + E (J)n-ib*j(x)cj(x) =-ncCn(x).

 Since c: B[x,d] - S[x,d] is a morphism of algebras with acm(x)) 0
 for m >1 and a (el(x)) ==a (x) =x, it follows from the Newton relations
 that a (b*m, (x) ) xa (b*,, (x) ). Since b*1 (x) ~=x, we have a (b *m (x) )
 xm n x (bin (x) ) by induction on m and the definition of bm (x). But
 aI PB[x, d] is injective. Thus bm (x) b*m (x) and the Newton relations
 hold for bm(x). This proves the proposition.

 The following theorem, which is the basis for our analysis, is an imme-

 diate consequence of (4.2) since bn(x) is a free generator of PB[x,d] d,
 C,(x) or QB[x,d] nd, and 0 (b,n(x)) - ( 1)fn+1nc(x) in QB[x,d]nd.

 (4. 3) THEOREM. For d even or R an F2-algebra the following sequence
 is exact.

 6

 O- Tor (R, Z/nZ) ->PB [x, d]-nd > QB [x, d],d - R II Z/nZ - 0

 (4.4) PROPOSITION. The Hopf algebra B [x, d]nd is isomorphic to its
 dual.
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 Proof. The dual of the isomorphism x: S (S'[x, d]) S'(S [x, d]) is

 again the same isomorphism for the module [x, d] .

 (4. 5) Remark. Since B [x, d] is a polynomial algebra on one generator

 in each degree md, it follows that the Euler-Poincare series for B [x, d] is

 -rT ( 1 - tmd) -
 tCm

 (4.6) Examples. Over any ring R of coefficients H, (BU;R) (and
 H* (BU; R) B [x, 2] where x is the first universal chern class, H* (BSp,; R)

 (and H* (BSv; R)B) =- B [x, 4] where x is the first universal symplectic Pon-
 trjagin class. Over a Z[1/2]-algebra R of coefficients H* (BO; R) (and
 H* (BO; R)) = B[x, 4] where x is the first universal Pontrjagin class. Over

 an F2-algebra R of coefficients H, (BO ; R)) = B[x, 1] where x is the first

 universal Stiefel-Whitney class.

 5. Comparison of B [x, d] and B [x, rd]. In this section, d is even or

 or R is an F2-algebra, and r is a natural number with 1 < r.

 There exists a unique morphism of algebras h,: S[y, rd] -> S [x, d] such
 that 7t(yt) - Xtr and a unique morphism of coalgebras or: S'[x, d] -> S'[y, rd]
 such that gr(yir (x)) =y (y) and gr(yj(x))- 0 if r does not divide j.

 (5.1) PROPOSITION. There exist unique morphisms of Uopf algebras

 fr: B [y, rd] -- B [x, d] and gr: B [x, d] -- B [y, rd] such that the following
 diagrams are commutative

 B [y, rd] Q ( i B a Ep d] S'[x, d] i in rd]

 a a A 1
 , fr + gr \

 S [y, rd] >SE[x, d] B [x, d] >B [y, rd]

 in the categories of algebras and coalgebras respectively. Moreovner., P (fr)
 is a mnonomnorphismn with f, (b, (y) ) -> btr (X), thus an isomxorphismn inl degrees

 ird, and Q (gr) is an epimnorphism wshich is an isomxorphism1 inl degrees ird.

 Proof. See also [5; Prop. 10]. Observe the existence and uniqueness

 of fr and gr follow from the biuniversal character of B [x, d]. The other

 assertions are either immediate or follow from a (bi (y)) = yt.

 Now in degrees mrd we have the following two morphisms of exact

 sequences:
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 0
 O -- Tor(R, Z/mZ) - PB [y, rd]mrd - > QB [y, r] mrd B 0 Z/mZ -> 0

 I {Q (fr) Q (fr) I
 O - Tor(R, Z/rmZ) PB [x, d]mr d QB [x, d]mrd> R 0Z/rmZ -O0

 where the first and fourth vertical arrows are induced by the inclusion
 Z/mZ - Z/mrZ and

 0

 O Tor(R, Z/mrZ) -> PB [x, d] mrd QB [x, d] mrd-* R 0 Z/mrZ - 0

 j 7'(9') JQ(gr)

 O -* Tor(R, Z/mZ) -* PB [y, rd ]mrd QB [y, r] mrd R 0 Z/mZ -- 0

 where the first and fourth vertical arrows are induced by the quotient

 Z/mrZ -* Z/mZ. To calculate P (g,) and Q (fr), we observe that over Z it
 is multiplication by r and this result holds over a ring R since B [x, d] n
 over R is B [x, d] 0z R.

 (5. 2) PROPOSITION. In degrees mrd for m> 1, it follows that P(fr)
 and Q (gr) are isomorphisms and P(gr) and Q (fr) are multiplications by r.
 If R is a Z[1/r]-algebra, then the composite of fT: B[y,rd]->B[x,d] and

 gr: B [x, d]-> B [y, rd] is the identity on B [y, rd].

 Proof. The first statement follows from the above remarks, and for the
 second, observe that P(grfr) and Q (grfr) are isomorphisms and by (2.3) and
 (2.4) it follows that grfr is an isomorphism. Since grfr (y) = y, one induces
 that grfr is the identity on each c (y), and hence, on B[y,rd].

 (5.3) Remark. If R is a Z[l/r]-algebra, then the following diagram
 is commutative for a unique morphism h: ker(gr) - coker (fr), and in addi-
 tion, h is an isomorphism

 h

 ker (gr) > coker (fr)

 B [x, d]

 frA \g r
 B [y, rd] > B [y, rd].

 I
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 These morphisms define isomorphisms B [y, rd] 0 ker (gr) -* B [x, d] and

 B [x, d] -> B [y, rd] 0 coker (fr) which split B [x, d]. The Euler-Poincare

 series for ker (g,) - coker (fr) is given by ]:[ (1 - tM) -1.

 6. Decomposition of B[x,d] over Z(q)-algebras. Let Z(,) denote the
 ring Z localized at the prime ideal (p) = Zp for a prime number p. In this

 section R will denote Z(,)-algebra, that is, a ring such that all n prime to p
 are invertible in R.

 (6. 1) PROPOSITION. In degree m where pd tm the morphism

 0: PB [x, d]m >QB[x, d]m

 is an isomorphism and for m= npYd where ptn the morphism 0 leads to
 the following exact sequence.

 0

 Proof. This proposition follows from (4.3) and the fact that for a

 Z(p)-algebra R the quotient morphism Z/npiZ -->Z/pfZ induces isomorphisms
 R10 (Z/np Z) -- RB (Z/p Z) and Tor (R, Z/np Z) -> Tor (R, Z/piZ).

 Now consider the following diagram where fql= ft and pg = gl are
 defined in (5.1) and w ==vu.

 0 B[yI, d] ->B[x, d] > 0 B[y,l Id]
 p prime wV p prime

 ker (g) - coker (f )

 (6. 2) PROPOSITION. WVith the above notations for m n p d the mor-

 phisms

 P (u) m:* P ker (g)m- PB [x, d]i, P (v) m: PB [x, d]m> P coker (f)m

 Q(u)m: Qker(gm)-> QB[x, d]m, Q(v)m: QB[x, d]jm Q coker(f)m,f

 are isomorphisms and if m does not have the form pid for some i?_ O, then

 P ker(g),. = P coker (f ). =- Q ker (g)m = Q coker (f)m = 0. The morphism w
 is an isomorphism of Hopf algebras.

 Proof. We have the following exact sequences since P preserves kernels

 and Q preserves cokernels, see [4; 3. 12 and 3. 11]:

 O-> P ker (g)m --PB [x, d]m--> P ( B [y, Id]) I PB [yl, Id]
 and
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 H QB [yln ld]= Q ( G B [yl 1d]) ->QB [x, d]m -> Q coker (f) n, e-O
 i/p lop

 from (5. 2) it follows that the projections PB [x, d]. d> PB [yl, ld]nd and
 QB[yz, ld]nd ->QB[x, d]nd are isomorphisms. Thus Pker(g)m = 0 and
 Qcoker(f) 0 except for m- ptd. In the case m= pld the sum terms

 are 0 and it follows that P ker (g)m> PB [x, d ]m and QB [x, d]mn Q coker(f)m
 are isomorphisms.

 For m = pYd consider the following commutative diagram

 P(U)m P(v)m
 P(ker(g) )m > PB[x, d]m P(coker(f) )m

 0 0 0

 (ker(g) Q( " Q(V)Mr Q(ker(g)m > QB[x, d]m Q (coker(f) )

 Over Z(,) both 0: PB [x, d] m > QB [x, d] m and Q (v) OP (u) are multiplication
 by p$. Thus P(v) and Q(u) must be isomorphism. Since P(w) =P(v)P((u)
 and Q (w) = Q (v) Q (u) are isomorphisms, it follows by the remarks (2. 3)
 and (2. 4) that iv is an isomorphism over Z(p). Since the general case of a

 Z(V) -algebra R results by tensoring with R over Z(p), this proves the proposition.

 (6. 3) Notation. For a Z(,)-algebra R we denote by B(V) [x, d] the Hopf
 algebra ker(g). Then we have the inclusion morphism u: B(v) [x, d] -> B[x, d]

 and the projection w-1v, which we denote v, B[x, d] -> B() [x, d] such that

 vu is the identity on B(v) [x, d].

 Observe that (bDp (x) ) (i is a basis for PB(p) [x, d] with bp (x) in degree
 p d and the images of c+ (x) in QB(p) [x, d] form a basis for 0 ? i.

 (6. 4) Remarkc. Putting together the morphisms considered in (6. 3)

 and in (5. 1), we have

 frU Vgr
 B (,) [x, rd] >B[x, d] > B(,) [x, rd]

 such that (Vgr) (frp) = 1. These are used in the next theorem for the splitting
 of B [x, d].

 (6. 5) THEOREM. Consider the morphisms ID and 4' defined

 0 B(p) [xr, rd] > B[x, d] 0 B(p) [xr, d]

This content downloaded from 128.151.150.17 on Thu, 07 Nov 2019 17:31:56 UTC
All use subject to https://about.jstor.org/terms



 HOPF ALGEBRA. 345

 such that ( restricted to the factor B(p) [xi, d] is fru and t projected to the

 factor B(,) [xr, rd] is vgr. Then q and 4 are isomorphisms inverse to each
 other.

 Proof. Since (vgr) (fsu) is the identity for r = s and zero (except in
 degree 0 on the unit), it follows that 4', = identity. By (6. 2) and (5. 2)

 it follows that P (q) and Q (q) are isomorphisms, and thus q is an isomor-

 phism which proves the theorem.

 7. Properties of the algebras B( [x, d]. As in the previous section,

 R will denote a Z(,)-algebra and d ? 1 an integer which is even except
 possibly when R1 is an F2-algebra.

 (7.1) PROPOSITION. As an algebra B(p) [x, d] is a projective in the

 category a (R), that is a graded polynomial algebra, with one indecomposable

 element in each degree of the form p d. As a coalgebra B(p) [x, d] is an injec-

 tive in the category 6 (R) with one primitive element in each degree of the

 form ptd.

 Proof. The statements are true for B[x, d] and B[x, d] B() [x, d] 0 B

 as llopf algebras. Thus they hold for B(p) [x, d] with the structure of
 PB(p) [x, d] and QB(p) [x, d] given in (6. 2).

 (7. 2) PROPOSITION. The Hopf algebra B(p) [x, d] is isomorphic to its
 dual.

 Proof. The statement is true for B[x, d] by (4. 5). The dual of the

 diagram preceding (6. 2) and defining B(p) [x, d] is isomorphic to the same
 diagram which defines B(p,)[x,d].

 (7. 3) Remark. Since B () [x, d] is a polynomial algebra on one
 generator in each degree pid, it follows that the Euler-Poincare series for

 B(p)[x,d] is TT (1- tpr)-.
 O_j

 (7.4) Remarks. By composing 8: S'[x,d]->B[x,d] with the pro-

 jection B[x, d] -- B(v) [x, d], we have a morphism of coalgebras ,8(p): S'[x, d]
 - B() [x, d] such that for each morphism f: S'[x, d] -- A of coalgebras
 where A is bicommutative llopf algebra over R, there exists a unique mor-

 phism of Hlopf algebras g: B(p) [x, d] -> A such that g,8(p) = f. The universal
 factorization property follows from (2. 1) (d). Similarly, by composing

 a: B[x, d] -- S[x, d] with the injection B(p) [x, d] -- B[x, d], we have a

 morphism of algebras a(p): B(,) [x, d] -* S[x, d] such that for each morphism
 f: A-- S [x, d] of algebras where A is a bicommutative llopf algebra over R,

 6
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 there exists a unique morphism of Hopf algebras g: A -> B () [x, d] such that
 a2(p)g f.

 (7. 5) Remarks. The morphisms fr: B [y, rd] -> B [x, d] and gr: B [x, d]
 - B [y, rd] induce similar morphisms for r - pi such that the following
 diagram is commutative.

 u v

 B(v) [y, pid] > B[y, pid] B B(p) [y, pid]
 I I

 f (j) I gp If(j)
 81 u , v >

 B(p) [x,d] > B[x, d] > B(p) [x.,d]
 I I

 9 (j) I VJ 9 (j)
 u , v

 B(p) [y, pid] - B [y, pid] - (B) [y, pid].

 This can be seen immediately from the definitions of u and v in the paragraph
 before (6.2). Moreover by (5.2) and (6.2), it follows that

 P(f(j)m: PB(v) [y, pid]m->PB(v) [x, d]m

 is an isomorphism for m? pi+ad where a_ ?O and zero on the zero module
 otherwise, and similarly

 Q(g(j))m: QB(p).[x,d]m>QB(p)[x,pJd]m

 is an isomorphism for m? pj+a where a_ ?O and zero into the zero modile
 otherwise.

 Recall the notations for a basis of PB(p) [x, d]; that is, (bp (x) ) where
 b () (x) = bp (x) is the generator of PB(p) [x, d] in degree p d such that
 cx(b(*)(x))==xP' for a: B(p)[x,d]-> S[x, d]. Let a(s) (x) =/3(cpi(x)) for
 /3: S'[x, d] -> B(p) [x, d]. Then the image of a(q) (x) in QB(p) [x, d]pid is a
 free generator. From (4. 3) we have the following theorem.

 (7. 6) THEOREM. For d even or R an F2-algebra, and, in addition a
 Z(p)-algebra structure on R1, the folbowing sequence is exact.

 0

 0-> Tor(R, Z(p/pIZ()p ) -) PB(p) [x, d] p d > QB(p) [x, d]pJd

 > R Z(p)/PiZ(p) >0.

 In the next theorem we relate the elements a(*) (x) and b(i) (x) just as
 in (4. 2) the elements c7n(x) and bn(x) were related. Observe that a(q) (x)
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 and cp (x) are different for i ? 1 even though they determine the same

 element in QB[x,d] = > QB(p)[x,d]m for m- pYd

 8. Alternative parametrization of B[x, d] and B(p, [x, d]. Let
 W[x, d] be the graded algebra over R with one polynomial generator am (x)

 in each degree md. We define a morphism e: B[x, d]-> W[x, d] by the
 requirement that in W [x, d] [[t]] the following relation holds

 1 + (Cmn(X) )tm =TT (1-am(x)tm)

 (8. 1) PROPOSITION. With the notations 4: B[x, d] -> W[x, d] is an
 isomorphism of algebras.

 Proof. Observe that

 (cm(x)) =-am(x)+ a polynomial in a,(x), a, l(x).

 Thus am(x) = (cm(x)) +a polynomial in c1(x), ,c,1(x) and t has
 an inverse.

 With the isomorphism X, we transfer the coalgebra structure on B [x, d]

 to W [x, d] making W [x, d] into a Hopf algebra. Recall that the primitive

 elements PB [x, d] have a free base of (bim (x) ) 1 where

 E bm (xt)d m td10 (1 + Cm (X) tm).
 .<M dt 1_-m

 (8. 2) PROPOSITION. The primitive elements PW[x, d] have as a free

 base

 ( ) iL)m,(b.(x) ) Edad (X)m.
 d/m

 Proof. Apply 4 to the above formula coefficientwise yielding in

 WT[x,, d] [[t]]

 E ( ) n ( bn ( X) )tn - El_ad( X) td i?---n 14-ad(xt

 d[ad (x) td+ ad (X)2t2d+ * *-*+?ad (X) mtmd+
 1=d

 E ( E dad (X) nd) tn.
 1?=n i?d

 This proves the formula.

 Now assume again that R is a Z(,,)-algebra and d ? 1 is an integer which
 is even except possibly when R is an F2-algebra. Thus the splitting

 B> r, 7x d] -> r x, d . -4 r 7, x1d
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 is defined. Let W(5) [x, d] be the subalgebra of W [x, d] with generators at, (x)
 for m- p, O < i which is defined for all R.

 (8. 3) PROPOSITION. For R a Z(,)-algebra W(,) [x, d] is a sub Hopf
 algebra of W [x, d] and 4: B [x, d] -> W [x, d] restricts to an isomorphism
 t: B(,) [x, d] -> W(,) [x, d] of Hopf algebras.

 Proof. The primitive element given by (8. 2)

 (- 1)P', (b,i (X) ) xP' + pa (x) P"- + * * * + piapi (x)

 is a member of W(,) [x, d], and hence (PB(p) [x, d]) C W(p) [x, d]. Since
 over Q =Z()l[l/p] the primitive elements PB(p,)[x,d] generate B(p)[x,d],

 it follows that (B(1,) [x, d]) C W(p,) [x, d] over Q. Since B(p) [x, d] and
 W(,) [x, d] are direct summands, $(B(1,) [x, d]) C W(p) [x, d] over any Z ()-
 algebra 1.

 Now Q (4): QB(v) [x, d] -> QW(v) [x, d] is an isomorphism, so that restric-
 tion 4: B() [x, d] -> W(,) [x, d] is an isomorphism of algebras. Since
 4: B[x, d] W[x, d] is an isomorphism of Hopf algebras, W(,) [x, d] must
 be a subllopf algebra and the restriction of 4 to B(p,) [x, d] -* W(p,) [x, d] is
 also an isomorphism of llopf algebras.

 (8. 4) Remark. By transferring elements from W(,) [x, d] to B(,) [x, d],

 we observe that we have two families of element in B(p) [x, d] namely (a (j) (x) )
 and (,8(q)(x)) where 8&(j) (x) = (- 1) Pbpi(x) and a (j)(x) -4-1(ai (x)) such
 that (/3(w) (x) ) is a base for PB(,) [x, d] and the classes of ox(j) (x) are a base
 for QB(,p) [x, d]. Moreover, the primitive elements ,8(j) (x) are the "ghost"
 Witt vectors of aU() (x), i.e.

 w13(i) (x) = (a, (0) (x), * *, (x) )
 whe're w() (xo***, xi) = xop0 + pX1PI-1 + + pi-1xiFP + p%. Also the
 relations x = a(o) (x) =A3(o) (x) hold. Finally observe that in the case where

 R is an Fp-algebra, the primitive element 8(i) (x) xP. This can be seen
 also directly.
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