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(Received 22 September 1997)

1. Introduction

In the mid 1970s Mark Mahowald constructed a new infinite family of elements in

the 2-component of the stable homotopy groups of spheres, η
j
`πS

#
j(S!)

(#)
[M]. Using

standard Adams spectral sequence terminology (which will be recalled in Section 3

below), η
j
is detected by h

"
h
j
`Ext#,$! (Z}2,Z}2). Thus he had found an infinite family

of elements all having the same Adams filtration (in this case, 2), thus dooming the

so-called Doomsday Conjecture. His constructions were ingenious: his elements were

constructed as composites of pairs of maps, with the intermediate spaces having, on

one hand, a geometric origin coming from double loopspace theory and, on the other

hand, mod2 cohomology making them amenable to Adams Spectral Sequence

analysis and suggesting that they were related to the new discovered Brown–Gitler

spectra [BG].

In the years that followed, various other related 2-primary infinite families were

constructed, perhaps most notably (and correctly) Bruner’s family detected by

h
#
}h#

j
`Ext$,$! (Z}2,Z}2) [B]. An odd prime version was studied by Cohen [C], leading

to a family in πS

$

(S!)
(p)

detected by h
!
b
j
`Ext$,$! (Z}p,Z}p) and a filtration 2 family

in the stable homotopy groups of the odd prime Moore space. Cohen also initiated the

development of odd primary Brown–Gitler spectra, completed in the mid 1980s,

using a different approach, by Goerss [G], and given the ultimate ‘modern’

treatment by Goerss, Lannes and Morel in the 1993 paper [GLM]. Various papers

in the late 1970s and early 1980s, e.g. [BP, C, BC], related some of these to loopspace

constructions.

Our project originated with two goals. One was to see if any of the later work on

Brown–Gitler spectra led to clarification of the original constructions. The other was

to see if taking advantage of post Segal Conjecture knowledge of the stable

cohomotopy of the classifying space BZ}p would help in constructing new families

at odd primes, in particular a conjectural family detected by h
!
h
j
`Ext#,$! (Z}p,Z}p).

(This followed a paper [K1] by one of us on 2 primary families from this point of

view.)

What resulted, and what we do here, is the following. We isolate the two crucial

results from the older literature (Propositions 2±1 and 2±2 below) and present these

stripped of extraneous detours. We then reorganize how these results are used,

together with the new idea that BZ}p should be an intermediate space in the

† Present address : Dept of Mathematics, North Central College, Naperville, IL 60540.
‡ Research by N.J.K. was partially supported by the NSF.
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constructions. This leads to streamlined proofs of the main theorems of [M, B, C].

In the odd prime case, improvements are most dramatic: generously counting, we

need only 30 of the 75 pages making up Cohen’s original proof.

With respect to our original goals, we can report the following.

Regarding Brown–Gitler spectra, in some logical sense, nothing subsequently

learned about them helps simplify the construction of these sorts of homotopy

classes. Indeed, one of our highlighted older results, Proposition 2±2, is precisely what

is also essential when one reviews the literature relating Brown–Gitler spectra to

pieces of double loop spaces. However, our proof of this key proposition does take

advantage of some later observations: in particular, we use Carlsson modules [Ca]

and the fact that these modules can be realized as the cohomology of certain mapping

telescopes. In a companion paper [HK], we will discuss this more thoroughly.

Regarding odd primary classes, to recover the main theorems of [C], we find we

need to construct one element in the cohomotopy of BZ}p (see Proposition 2±3). This

we do using ‘elementary’ methods and maps which would have all been available in

the mid 1970s. We are not able to determine whether the elements h
!
h
j

are

permanent cycles at odd primes, but our parallel development of the p¯ 2 and the

odd prime cases suggests that they are not ; and that a commonly held view, that the

odd prime elements h
!
h
j
`Ext#,$! (Z}p,Z}p) are analogous to h

"
h
j
`Ext#,$! (Z}2,Z}2),

is perhaps misguided. We find that the elements h
#
h
j
`Ext#,$! (Z}2,Z}2), which are

not permanent cycles, behave more similarly.

In Section 2, we quickly state three key propositions. Assuming these, the main

theorems of [M, B, C], and related results, are then formally deduced in Section 3.

The proof of each key proposition is then discussed in its own section. In a final short

section, we deduce some related mod2 results using elementary means (and note that

odd prime analogues do not exist).

In the rest of the paper, we are working in the stable homotopy category. Spectra

are completed at p, and H*(X) means cohomology with Z}p coefficients, where the

prime p will be clear from the context.

Some of the results in this paper appeared in the first author’s thesis [H].

2. Three key Propositions

To state our first two propositions, we need to define certain finite spectra T(n).

Recall that, if X is a path connected space, there is a stable decomposition [Sn]

Ω#Σ#XD 6
m"

!

D
#,m

X.

Here D
#,m

X¯F(R#,m)
+
gΣ

m

X[m], where F(R#,m) is the configuration space of

ordered m-tuples of distinct points in R#,Y
+

denotes a space Y with a disjoint

basepoint and the symmetric group Σ
m

acts in the obvious way on both F(R#,m) and

X[m], the m-fold smash product of X with itself. (We also let D
#,!

X¯S!.) Fixing a

prime p, we then define T(n) for n& 0 by S-duality:

T(2rε)¯Σ#pr+#
ε Dual (D

#,pr+ε S"),

for all r& 0, ε¯ 0, 1.

Viewed as a module over the modp Steenrod algebra !,H*(T(n) ; Z}p) is dual to

an appropriate Brown–Gitler module. When p¯ 2, this is [M, theorem 2±6]; when p
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is odd, this is the content of the 10-page, second chapter of [C]. Our indexing has

been chosen to be consistent with the modern literature (for example [Mi, section 7]),

so that H*(T(n) ; Z}p) is the injective envelope of H*(Sn ;Z}p) in the category of

unstable !-modules." In particular, H*(T(2pj) ; Z}p) has bottom classes in

dimensions 1 and 2 linked by the Bockstein and top class in dimension 2pj.

Let C(g) denote the cofibre of a map g.

P 2±1.

(1) (p¯ 2). There exist maps g
j
: S#

j UT(2j−$) with Sq#j acting nonzero on H"(C(g
j
) ;

Z}2).

(2) (p odd). There exist maps g
j
: S#(p−")p

j UT(2pj−") with 0p
j acting nonzero on

H"(C(g
j
) ;Z}p).

When p¯ 2, this is [M, theorem 2(b)]. When p is odd, this is [C, theorem IV±2±1].

(The maps in these references are S-dual to ours.)

P 2±2.

(1) (p¯ 2). There exist maps f
j
: T(2j−$)UBZ}2 with H

"
( f

j
;Z}2)1 0.

(2) (p odd). There exist maps f
j
: T(2pj−")UBZ}p with H

"
( f

j
;Z}p)1 0.

When p¯ 2, this was proved by Brown and Peterson in [BP, lemma 4±1]. When

p is odd, this is [C, theorem III±2±2]. (Starting from these references, readers will have

to use properties of S-duality of finite complexes and manifolds to read off the

proposition as stated.)

P 2±3.

(1) (p¯ 2). Let M¯Σ−$RP#. There exists a map e : BZ}2UM with Sq% acting

nonzero on Hi(C(e) ; Z}2), i¯®2,®1.

(2) (p odd). Let M¯S%−#pe
p
D&−#p. There exists a map e : BZ}pUM with 0" acting

nonzero on Hi(C(e) ;Z}p), i¯ (4®2p), (5®2p).

When p¯ 2, this was implicitly stated in [K1, paragraph preceding theorem 4±4].

3. The main Theorems

Let [X,Y] denote the stable homotopy classes of maps between two connective, p-

complete, spectra X and Y. Recall (see e.g. [R2]) that the classic Adams spectral

sequence arises from a filtration of [X,Y], where a map f : XUY has filtration at least

s if it can be written as a composite

XMNf" Y
"
MNf# IMNY

(s−")
MNfs Y,

in which each H*( f
i
;Z}p)¯ 0. Intuitively, as the filtration increases, maps are

harder to understand. The spectral sequence takes the form

Exts,t! (H*(Y ;Z}p),H*(X ;Z}p))¯Es,t

#
3 [Σt−sX,Y].

Using standard notation, Ext",$! (Z}2,Z}2) is spanned by elements

h
j
`Ext",#j! (Z}2,Z}2), j& 0,

" It is miraculous that it is unstable.
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with h
j

corresponding to the indecomposable Sq#j `!. Adams [A] showed that

d
#
(h

j
)¯ h

!
h#
j−"

and deduced that the permanent cycles in Ext",$! (Z}2,Z}2) are

spanned by h
!
, h

"
, h

#
and h

$
. These correspond to the classic Hopf maps 2 `πS

!
(S!),

η `πS

"
(S!), ν `πS

$
(S!) and σ `πS

(
(S!), respectively.

For p odd, Ext#,$! (Z}p,Z}p) is spanned by a
!
`Ext","! (Z}p,Z}p) and elements

h
j
`Ext",#(p−")p

j

! (Z}p,Z}p), j& 0,

with a
!

and h
j

respectively corresponding to β and 0p
j `!. Then d

#
(h

j
)¯ a

!
b
j−"

,

where b
j−"

`Ext#,#(p−")p
j

! (Z}p,Z}p) is the p-fold Massey product ©h
j−"

,… , h
j−"

ª (see

[Liu]). The filtration 1 permanent cycles are spanned by a
!
and h

!
, which represent

the elements p `πS

!
(S!) and α `πS

#p−$
(S!).

T 3±1
(1) (p¯ 2)

(a) The map g
j
is represented by i

"$
(h

j
) `Ext#,$! (H*(T(2j−$)), Z}2).

(b) The composite S#
j Ugj T(2j−$)U

π
T(2j−$)}S" is represented by i

#$
(h#

j−"
) `

Ext#,$! (H*(T(2j−$)}S"),Z}2).

(2) (p odd)

(a) The map g
j
is represented by i

"$
(h

j
) `Ext",$! (H*(T(2pj−")), Z}2).

(b) The composite S#(p−")p
j Ugj T(2pj−")U

π
T(2pj−")}S" is represented by i

#$
(b

j−"
) `

Ext#,$! (H*(2pj−")}S"),Z}p).

Here i
"
: S"UT(2pj) and i

#
: S#UT(2pj)}S" are inclusions of bottom cells.

Proof. Both parts (a) are just reformulations of Proposition 2±1, noting that, e.g.

when p is odd, dimension considerations show that the only primary operation that

can connect H*(T(2pj−") ; Z}p) to H*(S#(p−")p
j ; Z}p) in H*(C(g

j
) ; Z}p) is 0p

j. Then

both parts (b) follow from this, using the factorizations of Sq#j and 0p
j into a sum of

primary operations composed with secondary operations (see [A, Liu]). Once again,

dimension considerations show that the only secondary operations in this

decomposition that can act nontrivially on H*(C(g
j
) ; Z}p) are the ones associated to

h#
j−"

(when p¯ 2) and b
j−"

(when p is odd).

T 3±2
(1) (p¯ 2)

(a) The composite f
j
a g

j
: S#

j UBZ}2 is represented by i
"$

(h
j
) `Ext#,$! (H*(BZ}2),

Z}2).

(b) The composite S#
j MNfj

agj BZ}2MN
π

(BZ}2)}S" is represented by i
#$

(h#
j−"

) `
Ext#,$! (H*((BZ}2)}S"), Z}2).

(2) (p odd)

(a) The composite f
j
a g

j
:S#(p−")p

j UBZ}p is represented by i
"$

(h
j
) `Ext",$!

(H*(BZ}p), Z}p).

(b) The composite S#(p−")p
j MNfj

agj BZ}pMN
π

(BZ}p)}S" is represented by i
#$

(b
j−"

) `
Ext#,$! (H*((BZ}p)}S"), Z}p).

As before, i
"
: S"UBZ}p and i

#
: S#U (BZ}p)}S" are inclusions of bottom cells.

Proof. Using naturality properties of the Adams spectral sequence with respect to

composition, this is an immediate consequence of Theorem 3±1 and Proposition 2±2.
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Remarks 3±3. (1) When p¯ 2, these last two theorems appear in work by Cohen,

J. Jones and Mahowald [CJM, corollary 4±7 and the argument on p. 118] and they

then go on to easily conclude that the composite

S#
j MN
fj

agj
BZ}2MNBSO(2)

is represented by i
#$

(h#
j−"

) `Ext#,$! (H*(BSO(2)), Z}2), where i
#
: S#UBSO(2) is the

inclusion of the bottom cell. (Since Σ#MSO(2)DBSO(2), this is then interpreted as a

result about the Kervaire invariant of 2j–2-dimensional oriented manifolds

immersed in Euclidean space with codimension 2.) Though they proceed roughly as

we have here, we have a couple of quibbles about their arguments. Firstly, they do

not deduce part (1)(b) of Theorem 3±1 from part (1)(a) as we do. They use instead

compatibility of the maps g
j
with respect to various pairings, a method that fails at

odd primes. Secondly, they use essentially circular reasoning in their argument for

the existence of f
j
: they argue that f

j
as in Proposition 2±2 exists by using the fact

that T(2j) was shown to be an appropriate S-dual of a Brown–Gitler spectrum by

Brown and Peterson in [BP]. But this theorem of Brown and Peterson was itself

proved by using the existence of maps f
j
.

(2) When p is odd, Theorem 3±1(2)(b) essentially appears as [C, corollary III±3±6],

with an argument like ours. However, Cohen never combines Theorem 3±1(2) with

Proposition 2±2(2) to deduce Theorem 3±2(2). Indeed, Proposition 2±2(2) is only used

by him as a technical lemma enroute to proving that the family of spectra T(2pr2),

r& 0, are S-dual to odd primary Brown–Gitler spectra (that he has constructed).

(3) When p is odd, the action of Z}(p®1)D (Z}p)× on Z}p induces the

‘eigenspectra’ stable decomposition

BZ}pDZ(1)hIhZ(p®1),

indexed so that Z( j) has bottom cell in dimension 2j®1. (Z(p®1) is the p-localization

of BΣ
p
.) Obviously, both Proposition 2±2(2) and Theorem 3±2(2) can be refined by

replacing BZ}p by Z(1).

If one is interested in constructing families of elements in the stable homotopy

groups of spheres, Theorem 3±2 suggests hunting for elements in the cohomotopy of

BZ}p and (BZ}p)}S" that are tractable and nontrivial when respectively restricted

to their bottom cells S" and S#.

Certainly the simplest and best known element in π$
S
(BZ}p) is the Kahn–Priddy

map t : BZ}pUS! defined as the composite BZ}pMNBZ}p
+
MNrZ/p S!, where tZ/p

is

the Z}p-transfer.

When p¯ 2, t restricted to S" is η, which is detected by h
"
`Ext",$! (Z}2,Z}2). One

recovers Mahowald’s original η
j
family.

T 3±4. The composite (t a f
j
a g

j
) `πS

#
j(S!) is represented by h

"
h
j
`Ext#,$!

(Z}2,Z}2).

Proof. By dimension reasons, t has Adams filtration 1 and not 0. Thus t will

be represented by an element hh
"
`Ext#,$! (Z}2,H*(BZ}2)) such that i*(hh

"
)¯

h
"
`Ext#,$! (Z}2,Z}2). By Theorem 3±2(1)(a), ( f

j
a g

j
) is represented by ik(h

j
) `

Ext#,$! (H*(BZ}2), Z}2). Thus (t a f
j
a g

j
) will be represented by hh

"
ik(h

j
)¯ i*(hh

"
) h

j
¯

h
"
h
j
. *
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Now consider the same construction when p is odd. In contrast to the even case,

t restricted to S" is null. Indeed, under the decomposition of BZ}p given in Remarks

3±3(3), t factors through the summand Z(p®1)DBΣ
p
. Thus, if the map f

j

in Proposition 2±2 has been chosen to land in the Z(1) summand, the composite

(t a f
j
a g

j
) will be 0.

The maps e of Proposition 2±3 amount to next simplest maps out of BZ}p. The next

proposition is simply a convenient reformulation of Proposition 2±3.

P 3±5
(1) (p¯ 2). Let M¯Σ−$RP#. There exists a diagram

S1 BZ/2 (BZ/2)/S1 S 2

S –2 M S –1

m m

i
2

i
1

i p

e e«

in which the left square commutes, e« is induced by e so that the middle square

commutes and the right triangle commutes up to multiplication by an odd integer.

(2) (p odd). Let M¯S%−#pe
p
D&−#p. There exists a diagram

S1 BZ/p (BZ/p)/S1 S2

S4–2p M S 5–1p

α α

i
2

i
1

i p

e e«

in which the left square commutes, e« is induced by e so that the middle square

commutes and the right triangle commutes up to multiplication by an integer

prime to p.

In each part of this proposition, the lower horizontal maps form the obvious

cofibration sequence and we note that, for all primes p, the projection map π has

order p.

Once again, dimension reasons imply that the maps e and e« have Adams filtration

1 and not 0. Thus combined with Theorem 3±2, Proposition 3±5 implies the following

theorem.

T 3±6
(1) (p¯ 2). Let M¯Σ−$RP#.

(a) The composite (e a f
j
a g

j
) : S#

j UM is represented by ik(h
#
h
j
) `Ext#,$! (H*(M),

Z}2).

(b) The composite (πa e a f
j
a g

j
) `πS

s
j
+"

(S!) is an element of order 2 represented by

h
#
h#
j−"

`Ext$,$! (Z}2,Z}2).

(2) (p odd). Let M¯S%−#pe
p
D&−#p.

(a) The composite (e a f
j
a g

j
) : S#(p−")p

j UM is represented by ik(h
!
h
j
) `Ext#,$!

(H*(M),Z}p).

(b) The composite (πa e a f
j
a g

j
) `πS

#(p−")p
j
+#p−&

(S!) is an element of order p

represented by h
!
b
j−"

`Ext$,$! (Z}p,Z}p), up to multiplication by an element

in (Z}p)×.
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Part (1)(b) of this theorem says that, at the prime 2, h
#
h#
j−"

is a permanent cycle

representing an element of order 2 in πS

$

(S!). This is the main theorem of [B]. This

proof of Bruner’s theorem is roughly that of [CJM, theorem 4±12] and [K1, theorem

5±1], except that [CJM] do not recover that the elements have order 2 and [K1]

more awkwardly shows this.

Part (2) of Theorem 3±6 says that, at an odd prime p, h
!
b
j−"

is a permanent cycle

representing an element of order p in πS

$

(S!) and that ik(h
!
h
j
) is one in the Adams

spectral computing the stable homotopy groups of a modp Moore space. These are

the two main theorems of [C], but our proof here is not Cohen’s : as mentioned in the

introduction, our argument is roughly 45 pages shorter than his.

Remark 3.7. It has been widely thought that the family of elements h
!
h
j
is the

analogue, at odd primes, of the 2 primary family h
"
h
j
`Ext#,$! (Z}2,Z}2). Thus, since

h
"
h
j
is a permanent cycle when p¯ 2, it has been conjectured that h

!
h
j
should be a

permanent cycle at odd primes.# Our constructions indicate that the h
!
h
j

family

would be better deemed analogous to the family h
#
h
j
`Ext#,$! (Z}2,Z}2). Since these

are not permanent cycles, we conjecture that neither are h
!
h
j
`Ext#,$! (Z}p,Z}p).

There is an easy way to use parts (a) of Theorem 3±6 to construct more infinite

families of permanent cycles in Ext$,$! (Z}p,Z}p). Suppose given δ `πS
d
(S!) of order

p. Then, when p is odd, δ factors :

S4–2p

M,

i d«

S 4–2p–dd

and there is an analogous diagram if p¯ 2.

If δ is represented by d `Exts,d+s
! (Z}p,Z}p), we might hope that the composite

(δ« a e a f
j
a g

j
) `πS

#(p−")p
j
+#p+d−%

(S!) will be represented by dh
!
h
j
through Adams filtra-

tion s2, so that dh
!
h
j
is a permanent cycle. (This would be dh

#
h
j
if p¯ 2.) This will

be the case if the lift δ« can be chosen so that it also has Adams filtration s and is

represented by an element d« `Exts,d−s
! (Z}p,H*(M)) satisfying i*(d«)¯ d. The

following corollary, a strengthening and generalization to all primes of [K1, theorem

4±4], contains an easy to verify condition ensuring that this will be the case.

C 3±8. Suppose that δ `πS
d
(S!) is represented by d `Exts,d+s

! (Z}p,Z}p) and

pδ¯ 0. Suppose that Exts«,d+s«+"! (Z}p,Z}p) contains only permanent cycles for

s«% s®1.

(1) (p¯ 2). Then dh
#
h
j
`Exts+#,$! (Z}2,Z}2) will be a permanent cycle, for all j.

(2) (p odd). Then dh
!
h
j
`Exts+#,$! (Z}p,Z}p) will be a permanent cycle, for all j.

The proof in [K1] works for all primes without change.

Example 3±9. Let p be odd. The element β
#
`πS

%p
#
−#p−%

(S!) has order p and is

represented by k
!
¯©h

!
, h

"
, h

"
ª `Ext#,#(p−")(#p+")! (Z}p,Z}p) [R2, p. 205]. We con-

clude that k
!
h
!
h
j
`Ext%,$! (Z}p,Z}p) will be a permanent cycle, for all j.

# Indeed the main theorem of [CG] asserts precisely this. Unfortunately, N. Minami has pointed
out that the first sentence on p. 186 of [CG] is incorrect in an essential way and we ultimately learn
nothing about the existence of odd primary η

j
from these authors’ efforts.
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Remark 3±10. By construction, in the situation above, the composite (δ« a e a f
j
a g

j
)

will be an element in the Toda bracket ©δ,p, (πa e a f
j
a g

j
)ª. Thus, even when the Ext

condition of Corollary 3±8 fails, one still might be able to deduce the Adams spectral

sequence name for this composite using work of Moss [Mo] (though checking his Ext

conditions will require having some control over certain infinite families of Ext

groups$).

4. An outline of the proof of Proposition 2±1

Here, for completeness, we briefly sketch the construction of the maps g
j

of

Proposition 2±1. In discussing this construction and even more essentially, the

construction of the maps f
j
, it is useful to recall the following lemma from [CMM].

L 4±1. D
#,m

Σ#XDΣ#mD
#,m

X.

Recall that we defined T(2r) to be Σ#prDual (D
#,pr

S"). Using the lemma, we can

write

T(2r)DΣ#(p−")prDual (D
#,pr

S(#p−$)).

When p is odd, the construction of the maps g
j
then goes as follows.

Let O be the infinite orthogonal group and Q
"
S! the component of the identity map

in QS!¯ colim
nU¢ ΩnSn. Viewing α `πS

#p−$
(S!) as an unstable map α :S#p−$UQ

"
S!,

α factors through the J-homomorphism:

S#p−$U
α«

OUJ Q
"
S!.

Using the infinite loopspace structure on O, α« has a canonical double loop extension

α§ :Ω#S#p−"UO

and we let α- : (Ω#S#p−")
+
US! be the stable map adjoint to the composite of based

unstable maps

(Ω#S#p−")
+
U
α§

O
+
UJ QS!.

The map g
j
is then defined to be the 2(p®1)pjth suspension of the S-dual of the

composite

D
#,p

j S#p−$9 (Ω#S#p−")
+
U
α-

S!.

When p¯ 2 there is a similar construction, starting with a map σ« : S(UO lifting

σ `πS

(
(S!).

The assertion of Proposition 2±1, that appropriate cohomology operations act

nontrivially in the cohomology of the cofibers, is proved in a couple of pages in

[C, M] using characteristic class arguments. We know of no improvement upon these

authors’ arguments.

5. An outline of the proof of Proposition 2±2

In this section, we outline the proof of Proposition 2±2. Though this will basically

be the same as in [BP, C], with the idea going back to [M], we will take advantage

$ Checking Moss’ conditions was not done in [L2, L3], but perhaps could be, completing Lin’s
arguments.
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of work in the last 15 years on 5, the category of unstable !-modules. This, we feel,

greatly clarifies the presentation.

5±1. Algebraic results. Let J(n)¯H*(T(n) ;Z}p). Then J(n) is an unstable module

and for all M `5, we have a natural isomorphism:

Hom
A
(M,J(n))D (M

n
)*. (5±1)

By Yoneda’s lemma, given a `!
d
, the natural transformation a[ : M

n
UM

n+d
will

induce a map of !-modules

[a : J(nd)UJ(n).

To give a unified discussion for all primes, we adopt the convention that if p¯ 2,

0n `! denotes Sq#n. Then one has the so-called ‘Mahowald exact sequences’.

L 5±1 [S, proposition 2±2±3]. There is an exact sequence

0UΣJ(pn®1)UJ(pn)MN
[0n

J(n)MN 0.

By eqn (5±1) above, one sees that J(n) is an injective object in 5. This is no longer

true when one regards J(n) in the category of all !-modules, but it suggests that

perhaps even in that category, one might have some control of an injective resolution

of J(n). The following critical lemma is a reflection of this.

L 5±2. In the category of !-modules, there exist injective resolutions,

0UJ(n)U I
!
(n)U I

"
(n)U I

#
(n)UI

and chain maps under [0n : J(2pn)UJ(2n),

γ
n
: Ik(2pn)U Ik(2n),

with the following property : if M is an unstable !-module,

γ
n
: Hom!(M,ΣtI

s
(2pn))UHom!(M,ΣtI

s
(2n))

is zero for all t®s! 0.

This is ‘almost’ in the literature. When p¯ 2, this is roughly [BC, lemma 2±3(i)],

though a form of it appears earlier in [M, proof of lemma 5±6] and in Brown and

Gitler’s original article [BG, lemma 2±8]. Cohen proves an odd prime version strong

enough for our applications in [C, corollary III±3±6]. See also [H, proposition 5±2±5].

In all of these references, explicit resolutions are constructed, using quotient

subcomplexes of the Lamba algebra.

The lemma immediately implies

T 5±3. If M is an unstable !-module,

([0n)k : Exts,t! (M,J(2pn))UExts,t! (M,J(2n))

is zero for all t®s! 0.

Remark 5±4. When s¯ 0, the theorem reduces to the statement that, if M is

unstable, then 0n :M
#n−t

UM
#pn−t

is zero for all t" 0. This is, of course (part of) the

unstable condition.
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We now continue as did Carlsson in [Ca]. Let K(2n) be the unstable module defined

as the inverse limit

K(2n)¯ lim ²J(2n)KLL
[0n

J(2pn)KLL
[0pn

J(2p#n)KLL
[0p#n

I´.

By eqn (5±1), for all M `5, there is a natural isomorphism

Hom!(M,K(2n))D (colim ²M
#n

MN
0n

M
#pn

MN
0pn

M
#p

#
n
MN
0p#n

I´)*. (5±2)

Theorem 5±3 has the following consequence.

C 5±5. If M is an unstable !-module,

Exts,t! (M,K(2n))¯ 0, for all t®s! 0.

5±2. Topological results. The topological input we need is given by the next lemma.

L 5±6. There exists a map Φ : T(2n)UT(2pn) such that Φ*¯ [0n : J(2pn)U
J(2n).

When p¯ 2 this is proved in [CMM]. A similar method can be used at odd primes

[H, theorem 5±1±1], and we will outline the construction of Φ below. An odd prime

version sufficient for our purposes appears as [C, theorem III±4±1].%

Now define spectra Th (2n) to be the telescopes

Th (2n)¯hocolim ²T(2n)UT(2pn)UT(2p#n)UI´.

By construction, H*(Th (2n) ;Z}p)DK(2n), as !-modules.

Now suppose X is a space with H*(X ;Z}p) of finite type. Consider the Adams

spectral sequence ²Es,t
r

´ that computes maps from Th (2n) to Σ¢X. By Corollary 5±5, we

see that

Es,t

#
¯ 0 if t®s! 0.

Thus Es,s

#
will consist of permanent cycles for all s& 0. By equation (5±2),

E!,!
#

D lim
j

H
#p

j
n
(X ;Z}p).

We conclude

T 5±7. In this situation, the natural map

[Th (2n),Σ¢X]U lim
j

H
#p

j
n
(X ;Z}p)

is onto.

Proof of Proposition 2±2. H*(BZ}p ;Z}p)DΛ(x)CZ}p[y], where x is 1-dimensional

and β(x)¯ y. From this, one deduces that

lim
j

H
#p

j(BZ}p ;Z}p)DZ}p.

Choosing a nonzero element of this inverse limit, Theorem 5±7 says that there exists

a corresponding stable map f : Th (2)UBZ}p. Such a map will be nonzero in modp

% However, Cohen’s proof relies on [C, proposition II±1±2] which, following tradition on this point,
he incorrectly asserts is proved in [CLM].
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homology in dimensions 1 and 2. With ε equal to 1 if p is odd and 3 if p¯ 2, let f
j

be the composite

T(2pj−ε)MNTh (2)MNf BZ}p.

By construction, these maps have the needed property.

We end this section with a sketch of the construction of the map Φ appearing in

Lemma 5±6.

Recall that, if X is path connected, the Milgram–May model for Ω#Σ#X comes

equipped with a natural filtration and if F
m
(Ω#Σ#X)ZΩ#Σ#X denotes the mth stage

of this, D
#,m

X¯F
m
(Ω#Σ#X)}F

m−"
(Ω#Σ#X).

Let j : ΩS#r+"UΩS#pr+" be the pth Hopf invariant. Fixing n as in the lemma, if r is

chosen sufficiently large, purely dimension reasons imply that

Ωj : Ω#S#r+"UΩ#S#pr+"

will carry F
p
#
n
(Ω#S#r+") to F

pn
(Ω#S#pr+") and F

p
#
n−"

(Ω#S#r+") to F
pn−"

(Ω#S#pr+"). There

is thus an induced map
D

#,p
#
n
S#r−"UD

#,pn
S#pr−".

Recalling Lemma 4±1, the map Φ of Lemma 5±6 is defined to be the appropriate S-dual

of this.

Remarks 5±8. (1) Complete proofs of both Lemmas 5±2 and 5±6 will appear in [HK].

(2) In the p¯ 2 case, generalizations of the telescopes Th (2n) are constructed in the

second author’s paper [K2], based on using S-duals of pieces of higher loopspaces.

Algebraically there appear to be analogues of the maps f
j
, with BZ}2 replaced by

higher Eilenberg–MacLane spaces K(Z}2,m). A heuristic argument is proposed,

which, if it can be made rigorous, would give an alternative proof of Proposition 2±2
avoiding all Adams spectral sequence arguments and Brown–Gitler module

technology.

6. The proof of Proposition 2±3

We begin this section with some notation.

If F is a finite complex with S-dual D(F), we let Ψ : S!UFgD(F) be the duality

copairing.

We let Mn denote the modp Moore spectrum Sn−"e
p
Dn. Note that the S-dual of

Mn is M"−n.

With these conventions, we proceed to define the maps e of Proposition 2±3.

Definition 6±1. Let n¯ 2 when p¯ 2, and let n¯ 2p®4 if p is odd. Define

e : BZ}pUM"−n to be the composite

BZ}pMN"
gΨ

BZ}pgMngM"−nMN
Θg

" M"−n,

where Θ : BZ}pgMnUS! is the composite

BZ}pgMnMMNigi
B(Z}p¬Z}p)

+
MMNB(add)

BZ}p
+
MMNtZ/p S!.

Here maps labelled ‘ i ’ are inclusions. We remind the reader that the 2p®2

skeleton of BZ}p is stably M#hIhM#p−%hM#p−#. (At odd primes, these Moore

spaces correspond to the bottom cells of the spectra Z( j) of Remarks 3±3(3).)
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To compute cohomology operations in H*(C(e) ;Z}p) as needed in Proposition 2±3,

we first observe that, by construction, there is a diagram of cofibration sequences:

(6.1)

M1–n C(e)

C(tZ/p)gM1–n

RC

i p

1

M1–n R(BZ/p+)gM1–n

RBZ/p

where the bottom sequence is just the cofibration sequence

S!MNi C(tZ/p
)MN

π
Σ(BZ}p

+
)

smashed with M"−n, and Γ is the composite

BZ}pMMN"
gΨ

BZ}pgMngM"−nMMNigig" B(Z}p¬Z}p)
+
gM"−n MMNB(add)g"BZ}p

+
gM"−n.

Having made this observation, the !-module structure of H*(C(e) ;Z}p) can be

easily computed, as the !-module structure of H*(C(tZ/p
) ;Z}p) is well known and

it is routine to calculate Γ in cohomology. We sketch the details.

First assume p¯ 2. Then H*(C(tZ/#
) ; Z}2) is the submodule of nonnegative degree

elements in ΣZ}2[x, x−"], and the Steenrod operations act by Sqi(xk)¯ (k
i
) xk+i. Let

m
i
`Hi(M−" ;Z}2), i¯®2,®1 be generators.

We wish to show that Sq% acts nonzero on Hi(C(e) ;Z}2), for i¯®2,®1.

By diagram (6±1), it is equivalent to show that Γ*((π*)−"(Sq%σ(x−"Cm
i
)))1 0,

where σ denotes suspension. Since Sq%(x−"Cm
i
)¯ x$Cm

i
, we just need to

check that Γ*(x$Cm
i
)1 0. By the next lemma, Γ*(x$Cm

−#
)¯ ($

#
) x¯ x and

Γ*(x$Cm
−"

)¯ ($
"
) x#¯ x#.

L 6±2. Γ*(xkCm
−"

)¯ (k
"
) xk−" and Γ*(xkCm

−#
)¯ (k

#
) xk−#.

When p is odd, H*(C(tZ/p
) ;Z}p) is the submodule of nonnegative degree elements

in ΣΛ(x)CZ}p[y, y−"] and the Steenrod operations act by β(yi)¯ 0, β(x)¯ y, and

0 i(xεyk)¯ (k
i
) xεyk+(p−")i. Let m

i
`Hi(M&−#p ;Z}p), i¯ 4®2p, 5®2p be generators

chosen to be dual to xpp−$ and yp−# in H*(M#p−% ;Z}p) respectively.

We wish to show that 0" acts nonzero on Hi(C(e) ;Z}2), for i¯ 4®2p, 5®2p. By

diagram (6±1), it is equivalent to show that Γ*((π*)−"(0"σ(xy−"Cm
i
)))1 0, where σ

denotes suspension. Since 0"(xy−"Cm
i
)¯ xyp−#Cm

i
, we just need to check that

Γ*(xyp−#Cm
i
)1 0. By the next lemma, Γ*(xyp−#Cm

%−#p
)¯ (p−#

p−#
) x¯ x and

Γ*(xyp−#Cm
&−#p

)¯®(p−#
p−$

) y¯ 2y.

L 6±3. Γ*(xykCm
%−#p

)¯ ( k
p−#

) xyk+#−p, Γ*(xykCm
&−#p

)¯®( k
p−$

) yk+$−p,

Γ*(ykCm
%−#p

)¯ ( k
p−#

) yk+#−p and Γ*(ykCm
&−#p

)¯ 0.

Remark 6±4. It is an exercise in the properties of the transfer to show that the

composite

B(Z}p¬Z}p)
+
MMNB(add)

BZ}p
+
MMNtZ/p S!

agrees with the composite

B(Z}p¬Z}p)
+
MNt

∆

BZ}p
+
MNc S!,
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where c is the collapse map and t∆ is the transfer associated to the diagonal inclusion

∆ :Z}pUZ}p¬Z}p. From this it follows that e : BZ}pUM"−n as defined here is the

map BZ}pUi BZ}p
+
Us D(BZ}p

+
)UDi D(Mn), where s is the map arising in the Segal

conjecture: it is adjoint to B(Z}p¬Z}p)
+
Ut∆ BZ}p

+
Uc S!. Related to this, we note

that, when p is odd, the S-dual of Z(1) is Z(p®2).

7. Two more maps out of (BZ}2)}S"

Theorem 3±2 suggests hunting for maps out of BZ}p which are nonzero when

restricted to S" and hunting for maps out of (BZ}p)}S" which are nonzero when

restricted to S#. Using the solution of the Segal Conjecture for the group Z}p (as in

[L1, R1]), one can systematically study such maps. When p¯ 2, this was done in

[K1] and a similar analysis is possible when p is odd [H].

Proposition 2±3, of course, gives examples of such maps, constructed by

‘elementary’ means. Here we note that there are two more 2 primary maps that can

be constructed easily. Like t : BZ}2US!, these have no odd prime analogues.

The first should be compared with Proposition 2±3(1) (or Proposition 3±5(1)).

P 7±1. There exists a map e
C
: (BZ}2)}S"UΣ−(CP# with Sq) acting

nonzero on H−&(C(e
C
) ;Z}2). Equivalently, there exists a commutative diagram

S 2 (BZ/2)/S1

S –5

σ

i2

i

eC

R–7CP2.

The map eC is defined using the (desuspended) S"-transfer t
S
"
: BS"

+
US−".

Definition 7±2. eC : (BZ}2)}S"UΣ−(CP# is defined to be the composite

(BZ}2)}S"MN"
gΨ

(BZ}2)}S"gCP#gΣ−(CP#MN
Θg

"
Σ−"DCP#¯Σ−(CP#,

where Θ : (BZ}2)}S"gCP#US−" is the composite

(BZ}2)}S"gCP#MMN
jgi

B(S"¬S")
+
MMN
B(add)

BS"
+
MMN

tS"

S−".

Here i is the obvious inclusion and j : (BZ}2)}S"UBS"
+

is any extension of the

composite of obvious maps BZ}2UBS"UBS"
+
.

To prove the proposition, one computes the action of Sq) on H−&(C(eC) ;Z}2) using

the method of the last section. With i : S#UCP# denoting the inclusion of the bottom

cell, a consequence is

T 7±3. The composite (eC aπa f
j
a g

j
) `πS

#
j
+(

(CP#) is represented by ik(h
$
h#
j−"

) `
Ext$,$! (H*(CP#),Z}2).

This theorem is essentially due to Lin [L3, last paragraph of p. 136] and leads to

an easy to check criterion for deducing that a family of the form dh
$
h#
j−"

`
Ext$,$! (Z}2,Z}2) is a permanent cycle [K1, theorem 5±3].

Our last map arises in the following way. Let δ : (BZ}p)}S"US# be defined by the

cofibration sequence

S"MN
i" BZ}pMN (BZ}p)}S"MN

δ

S#.
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Then the composite S#Ui# (BZ}p)}S"U
δ

S# has degree p and, thanks to Theorem 3±2,

we can conclude that, when p¯ 2, h
!
h#
j−"

`Ext#,$! (Z}2,Z}2) is a permanent cycle

and, when p is odd, a
!
b
j−"

`Ext$,$! (Z}p,Z}p) is a permanent cycle. Due to the Hopf

invariant one differential (see section 3), neither of these facts is new. However, the

next lemma shows that, when p¯ 2, δ lifts through π : Σ−#CP#US#.

L 7±4. At the prime 2, η a δ¯ 0. At odd primes, αa δ1 0.

Proof. By diagram chasing, it is easily seen that η a δ¯ 0 if and only if η : S"US!

extends to a map BZ}2US!, and it does. Similarly, at odd primes, αa δ¯ 0 if and

only if α : S"US%−#p extends to a map BZ}pUS%−#p, and it does not. *

Thanks to the lemma, there is an interesting map δ« : (BZ}2)}S"UΣ−#CP# (and no

odd prime analogue). [K1, theorem 5±5] has a criterion for using the composites

δ« aπa f
j
a g

j
: S#

j UΣ−#CP#, together with Toda bracket methods, to construct infinite

families of permanent cycles in Ext$,$! (Z}2,Z}2). For example (Ph
#
) h#

j−"
`

Ext(,#j+"'! (Z}2,Z}2) is a permanent cycle [K1, example 5±6].
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