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SMITH IDEALS OF STRUCTURED RING SPECTRA

MARK HOVEY

Abstract. Pursuing ideas of Jeff Smith, we develop a homotopy theory of
ideals of monoids in a symmetric monoidal model category. This includes
Smith ideals of structured ring spectra and of differential graded algebras.
Such Smith ideals are NOT subobjects, and as a result the theory seems to
require us to consider all Smith ideals of all monoids simultaneously, rather
then restricting to the Smith ideals of one particular monoid. However, we
can take a quotient by a Smith ideal and get a monoid homomorphism. In
the stable case, we show that this construction is part of a Quillen equivalence
between a model category of Smith ideals and a model category of monoid
homomorphisms.

Introduction

There has been a great deal of interest in the last several decades in the theory of
structured ring spectra in algebraic topology. In simple terms, these are cohomology
theories with cup products that are infinitely homotopy associative, though we now
think of them just as monoids in a suitable model category of spectra. In trying to
develop the ring theory of these ring spectra, one runs into a basic problem right
away: a ring spectrum R has no elements. Thus even a simple concept like an
ideal of a ring spectrum has not been developed. Of course, a ring spectrum R
has associated to it its homotopy ring π∗R, and we can talk of ideals here. But
right away we run into trouble. For R = S, the sphere spectrum, and the element
2 ∈ π0S, the cofiber of the times 2 map, the mod 2 Moore spectrum, is not a ring
spectrum even up to homotopy. So (2) cannot be an ideal of S, though it is an
ideal of π∗S.

In a talk given on June 6, 2006, Jeff Smith outlined a theory of ideals of ring
spectra. He did much more than this, using his theory to discuss algebraic K-
theory of pushouts. Bob Bruner kindly sent me his notes from the talk, and some
of his thoughts with Dan Isaksen [BI07] about Smith’s work. This paper is my
interpretation of some of that work. I stress that the material in this paper was
essentially the background material in Smith’s talk, so there is much more left to
be done.

Obviously we cannot think of an ideal in a ring spectrum as a collection of
elements. We should instead think of it as a map f : I −→ R. If I is a two-sided
ideal, this should be a monomorphism of R-bimodules. However, we know that
“monomorphism” is not a good homotopy-theoretic concept, because every map
should be homotopic to a monomorphism. So a Smith ideal should be a map
f : I −→ R of R-bimodules that is trying to be a monomorphism in some way.

We could continue in this vein, but let us instead think for a moment about
the category Arr C of maps in a symmetric monoidal category C. A Smith ideal is
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2 MARK HOVEY

going to be a certain kind of object in Arr C, and since it is related to monoids in
C, maybe a Smith ideal should simply be a monoid in Arr C. For this, we need a
symmetric monoidal structure on Arr C induced by the one from C. There is one
obvious one, the tensor product monoidal structure, in which the monoidal
product of f : X0 −→ X1 and g : Y0 −→ Y1 is

f ⊗ g : X0 ⊗ Y0 −→ X1 ⊗ Y1.

However, a monoid for this monoidal structure is just a monoid homomorphism, so
this cannot be the right monoidal structure.

The correct monoidal structure on Arr C is the pushout product monoidal

structure, in which the monoidal product f � g of f and g is the map

f � g : (X0 ⊗ Y1) ∐(X0⊗Y0) (X1 ⊗ Y0) −→ X1 ⊗ Y1.

This is the same pushout product used in the definition of a symmetric monoidal
model structure. A monoid for this monoidal structure turns out to be a monoid
R, an R-bimodule I, and a map of R-bimodules j : I −→ R, such that

µ(1⊗ j) = µ(j ⊗ 1): I ⊗ I −→ I,

where µ denotes both the right and left multiplication of R on I. This is a Smith
ideal and is equivalent (by using work of Bruner and Isaksen [BI07]) to the definition
Smith gave in his talk in terms of enriched functors.

In this paper, we first construct the pushout product and tensor product monoidal
structures on Arr C in Section 1, and show the perhaps suprising result that the
cokernel is a symmetric monoidal functor from the pushout product monoidal struc-
ture to the tensor product monoidal structure. This means that the cokernel of a
Smith ideal is a ring spectrum.

We then need to consider homotopy theory. In Section 3 and Section 2 we develop
two model category structures on Arr C. In the projective model structure, a mor-
phism in Arr C is a fibration or weak equivalence if and only if its two components
are so in C. The projective model structure is compatible with the tensor product
monoidal structure. In the injective model structure, a morphism is a cofibration or
weak equivalence if and only if its two components are so in C. The injective model
structure is compatible with the pushout product monoidal structure. As a result,
we get model categories of Smith ideals and monoid homomorphisms, and the cok-
ernel is a left Quillen functor from Smith ideals to monoid homomorphisms. To
take the homotopically meaningful quotient of a ring spectrum R by a Smith ideal
j : I −→ R, we must first take a cofibrant approximation j′ : I ′ −→ R′ in the model
category of Smith ideals, and then take R′/I ′. Note that R′ is weakly equivalent
as a monoid to R, but of course it is not R.

In Section 4 we prove that the cokernel is a Quillen equivalence in case our
model category C is stable, as for example any model category of spectra. Thus, in
the stable case, a Smith ideal is the same information homotopically as a monoid
homomorphism. This is a bit disconcerting, since this says, for example, that every
structured ring spectrum R is weakly equivalent to the quotient of the sphere S
by some Smith ideal. This would be like saying that every ring is a quotient of
the integers Z. But we have to remember that we are free to add an enormous
contractible ring spectrum to S and take a Smith ideal of that, and this is why we
can get R as a quotient of S up to homotopy. There is also an appendix where we
discuss some technical issues.
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There is much work still to be done. For example, given any map f : I −→ R,
what is the Smith ideal generated by f? The answer must be the free monoid Tf on
f in the pushout product monoidal structure. The problem is that this is a Smith
ideal of the free monoid TR on R, not of R itself. The author has tried various
ways to convert this to a Smith ideal of R, without success. It is possible that we
have to accept that the ideal generated by 2: S −→ S is an ideal of TS = S[x], not
of S. Even in that case, it would be extremely interesting to know the quotient of
S[x] by T (2).

A related question is to fix the quotient issue. We have the wrong definition of
quotient if every ring spectrum is a quotient of S. Our weakening of the definition
of ideal means that we should strengthen the definition of quotient. One way to do
it is to define a monoid homomophism p : R −→ S to be a strong quotient if the
map

S ⊗R QN −→ N

is a weak equivalence for all fibrant S-modules N , where Q denotes cofibrant re-
placement in the category of R-modules. This would mean that the homotopy
category of S-modules is a fully faithful subcategory of the homotopy category of
R-modules. Is this a useful notion? Is it possible to use Smith ideals to help classify
strong quotients of ring spectra? We don’t know the answers.

Finally, we have not dealt with the commutative situation at all. It is generally
much more difficult to determine whether commutative monoids in a symmetric
monoidal model category inherit a model structure, as there are several well-known
instances where it is false. But if they do, one might hope to define a commutative
Smith ideal as a commutative monoid in the arrow category. This would give us a
potentially different notion of ideal, and we would like to know how different.

Obiovusly, this talk owes everything to Jeff Smith’s 2006 lecture, and the author
thanks him for having such wonderful ideas. The author is certain that he has
not come close to the depth of Smith’s vision about the subject. The author also
thanks Bob Bruner and Dan Isaksen for sharing their very helpful thoughts on
Smith ideals.

Throughout this paper, C will denote a bicomplete closed symmetric monoidal
category with monoidal product A ⊗ B, closed structure Hom(A,B), and unit S.
Usually C will also be a model category, and in that case we will always assume
the model structure is compatible the monoidal structure, so that C is a symmetric
monoidal model category. Facts about model categories can generally be found
in [Hov99], among other places, but we try to cite specific facts more precisely.

1. The arrow category of a symmetric monoidal model category

In this section, we show that there are two different closed symmetric monoidal
structures on the arrow category Arr C of our closed symmetric monoidal category
C. We also discuss the cokernel functor, which is a symmetric monoidal functor
from one of these structures to the other. Finally, we discuss monoids and modules
in each of these symmetric monoidal structures. We postpone all discussion of
homotopy theory to the next section.

Recall that an object Arr C is simply a map f of C. For notational convenience,
we will often write f as f : X0 −→ X1. A map α : f −→ g in Arr C is then a
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commutative square

X0
f

−−−−→ Y1

α0





y





y

α1

Y0 −−−−→
g

Y1.

Note that Arr C is the category of functors from the category J with two objects
0 and 1 and one non-identity map 0 −→ 1 to C. Hence, since C is bicomplete,
so is Arr C, with limits and colimits taken objectwise. In addition, if C is locally
presentable, so is Arr C, as a category of small diagrams in a locally presentable
category [AR94].

There are obvious functors Ev0,Ev1 : Arr C −→ C, and these have left and right
adjoints. We leave the following lemma to the reader.

Lemma 1.1. Suppose C is a closed symmetric monoidal category. The evaluation

functors Ev0,Ev1 : Arr C −→ C have left adjoints L0, L1 and right adjoints U0, U1.

We have

L0(X) = U1X = 1X , L1(X) = 0 −→ X, and U0(X) = X −→ ∗.

We now discuss monoidal structures on Arr C, of which there are at least two.

Theorem 1.2. Let C be a closed symmetric monoical category. The category Arr C
has two different closed symmetric monoidal structures. In the tensor product

monoidal structure, the monoidal product of f : X0 −→ X1 and g : Y0 −→ Y1 is

given by

f ⊗ g : X0 ⊗ Y0 −→ X1 ⊗ Y1.

The unit is L0S, and the closed structure is given by the projection map

Hom⊗(f, g) = Hom(X0, Y0)×Hom(X0,Y1) Hom(X1, Y1) −→ Hom(X1, Y1).

In the pushout product monoidal structure, the monoidal product of f and g
is the pushout product

(X0 ⊗ Y1) ∐(X0⊗Y0) (X1 ⊗ Y0) −→ X1 ⊗ Y1.

The unit is L1S, and the closed structure Hom�(f, g) is given by

Hom�(f, g) = Hom(X1, Y0) −→ Hom(X0, Y0)×Hom(X0,Y1) Hom(X1, Y1).

We note that Arr C itself, with either closed symmetric monoidal structure above,
is an appropriate input for Theorem 1.2. That is, we can iterate the construction
and get various closed symmetric monoidal structures on ArrArr C, the category of
commutative squares in C. We can of course continue this iteration.

Proof. We leave the majority of this proof to the reader. The most annoying thing
to construct is the associativity isomorphism for the pushout product monoidal
structure. Here the idea is to use the properties of colimits to conclude that both
(f � g)� h and f � (g � h) are isomorphic to

colim(i,j,k) 6=(1,1,1)(Xi ⊗ Yj ⊗ Zk −→ X1 ⊗ Y1 ⊗ Z1,

where h : Z0 −→ Z1. �

It is useful to record how L0 and L1 interact with these symmetric monoidal
structures.
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Lemma 1.3. Let C be a closed symmetric monoidal category. As a functor to the

tensor product monoidal structure, L0 : C −→ Arr C is symmetric monoidal, whereas

L1X⊗f = L1(X⊗Ev1f). As a functor to the pushout product monoidal structure,

L1 is symmetric monoidal, whereas L0(X)� f = L0(X ⊗ Ev1f).

Again, we leave the proof to the reader.
Since we are interested in exploring the relationship between ideals and quotients,

we need to understand the functor coker: Arr C −→ Arr C. Here we need to assume
C is pointed. The cokernel functor is defined by

coker(f : A −→ B) = (B −→ coker f),

where we rely on context to distinguish between coker f as a map in C and as an
object in C.

We can now see the importance of the two different symmetric monoidal struc-
tures on Arr C.

Theorem 1.4. Suppose C is a pointed closed symmetric monoidal category. The

functor coker: Arr C −→ Arr C is a (strongly)symmetric monoidal functor from the

pushout product monoidal structure to the tensor product monoidal structure. Its

right adjoint is the kernel.

Proof. First note that the cokernel preserves the units, since

coker(0 −→ S) = (S
=
−→ S).

To see the cokernel is monoidal, we use the fact that pushouts commute with
each other. More precisely, we have the following commutative diagram, for maps
f : X0 −→ X1 and g : Y0 −→ Y1.

X1 ⊗ Y1 ←−−−− X0 ⊗ Y1 −−−−→ 0
x





x





∥

∥

∥

X1 ⊗ Y0 ←−−−− X0 ⊗ Y0 −−−−→ 0
∥

∥

∥





y

∥

∥

∥

X1 ⊗ Y0 X1 ⊗ Y0 −−−−→ 0

If we take vertical pushouts in this diagram, we get the diagram

X1 ⊗ Y1
f�g
←−−− (X0 ⊗ Y1)∐X0⊗Y0

(X1 ⊗ Y0) −→ 0,

whose pushout is coker(f�g). On the other hand, if we take the horizontal pushouts
instead, we get the diagram

coker f ⊗ Y1 ←− coker f ⊗ Y0 −→ 0,

whose pushout is coker f ⊗ coker g. Since pushouts commute with each other, we
see that

coker(f � g) ∼= coker f ⊗ coker g,

both as objects in C and as maps in C. We leave the check that the required
coherence diagrams commute to the reader, as also the proof that the kernel is
right adjoint to the cokernel. �

We now consider the monoids and modules in our two symmetric monoidal struc-
tures on Arr C.
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Proposition 1.5. Let C be a closed symmetric monoidal category. A monoid in

the tensor product monoidal structure on Arr C is simply a monoid homomorphism

p : R0 −→ R1 in C. A module over the monoid p is an R0-module M0, an R1-module

M1, and an R0-module map f : M0 −→M1, where M1 is an R0-module by restricting

scalars through p.

Said another way, with the tensor product monoidal structure, the monoids in
the arrow category of C are the arrows in the monoid category of C.

Proof. A monoidal structure on p consists of a unit map

S S




y





y

R0 −−−−→
p

R1

and a multiplication map

R0 ⊗R0
p⊗p
−−−−→ R1 ⊗R1





y





y

R0 −−−−→
p

R1.

These are just equivalent to a unit and a multiplication for R0 and R1 that are
preserved by p. The associativity and unit diagrams says that the multiplications
on R0 and R1 are associative and unital. The proof for modules is similar. �

The monoids and modules in the pushout product monoidal structure are much
more interesting.

Definition 1.6. Let C be a closed symmetric monoidal category. A Smith ideal

in C is a monoid j : I −→ R in the pushout product monoidal structure on Arr C,
which we often denote (R, I). Given a Smith ideal (R, I), a (right) (R, I)-module

is a right module in the pushout product monoidal structure on Arr C over the
monoid j.

The “Smith” in Smith ideal is Jeff Smith. We will discuss the relationship
between our definition and the definition given by Smith below.

Our first job is to unwind these definitions.

Proposition 1.7. Let C be a closed symmetric monoidal category. A Smith ideal

j : I −→ R in C is equivalent to a monoid R in C, an R-bimodule I in C, and a

morphism j : I −→ R of R-bimodules such that the diagram below commutes.

I ⊗R I
j⊗1
−−−−→ R⊗R I

i⊗j





y





y

∼=

I ⊗R R −−−−→
∼=

I

Of course the tensor products in the commutative diagram above are tensor
products of bimodules, so involve both the right and left action of R on I.
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Proof. A monoid structure on j is given by a multiplication map µ : j� j −→ j and
a unit η : L1S −→ j making the usual associativity and unit diagrams commute.
Writing j : I −→ R, we see that η is equivalent to a map η : S −→ R, and µ is
equivalent to the commutative diagram below.

(I ⊗R)∐I⊗I (R⊗ I) −−−−→ R⊗R




y





y

I −−−−→
j

R

Thus the existence of µ is equivalent to a multiplication on R, a left and right
multiplication of R on I that agree on I ⊗ I, and the fact that j preserves those
multiplications. If we write out j � (j � j) carefully, we see that its domain is an
iterated pushout involving I ⊗ (R ⊗ R), R ⊗ (I ⊗ R), and R ⊗ (R ⊗ I), and its
codomain is R⊗ (R⊗R). Similarly, the domain of (j� j)� j is an iterated pushout
involving (I⊗R)⊗R, (R⊗I)⊗R, and (R⊗R)⊗I, and the codomain is (R⊗R)⊗R.
Therefore, the associativity diagram for µ is equivalent to associativity of the left
multiplication of R on I, the fact that the left and right multiplications of R and I
commute with each other, associativity of the right multiplication of R on I, and
the associativity of the multiplication on R. The unit diagrams are equivalent to η
acting as a left and right unit on R and on I. �

It was pointed out by Bruner and Isaksen [BI07] that the data above, an R-
bimodule map j : I −→ R making the diagram in Proposition 1.7 commute, are
equivalent to a monoid R and a C-category I with two objects a and b where
I(a, a) = I(b, b) = I(a, b) = R with all compositions involving only these morphism
objects being multiplication in R. This was the definition of an ideal of R given by
Jeff Smith in his talk of June 6, 2006. The R-bimodule I is then I(b, a).

A map of Smith ideals α : (R, I) −→ (R′, I ′) is of course just a map of monoids in
Arr C. This unwinds to a map of monoids α1 : R −→ R′ and a map of R-bimodules
α0 : I −→ I ′, where I ′ is an R-bimodule through restriction of scalars, such that
α1j = j′α0.

We also unwind the definition of a module over a Smith ideal.

Proposition 1.8. If j : I −→ R is a Smith ideal in a closed symmetric monoidal

category C, an (R, I)-module is equivalent to maps of right R-modules f : M0 −→M1

and φ : M1 ⊗R I −→M0 such that the diagrams

M0 ⊗R I
1⊗j
−−−−→ M0 ⊗R R

f⊗1





y





y

∼=

M1 ⊗R I −−−−→
φ

M0

and

M1 ⊗R I
1⊗j
−−−−→ M1 ⊗R R

φ





y





y

∼=

M0 −−−−→
f

M1

commute.
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The result for left R-modules is similar; this time we have maps f : M0 −→ M1

and φ : I ⊗R M1 −→M0 of left R-modules making analogous diagrams commute.

Proof. Let f : M0 −→M1 denote an object in Arr C. A right j-module structure on
f is an action map µ : f � j −→ f making associativity and unit diagrams commute.
Since we have

f � j : (M0 ⊗R) ∐M0⊗I (M1 ⊗ I) −→M1 ⊗R,

the map µ is equivalent to right multiplications µ0, µ1 of R on M0 and M1 that
are preserved by f and a map φ0 : M1 ⊗ I −→ M0 such that fφ0 = µ1(1 ⊗ j)
and φ0(f ⊗ 1) = µ0(1 ⊗ j). Careful consideration of the associativity diagram
shows that µ is associative when µ0 and µ1 are associative, when φ0 descends to
φ : M1 ⊗R I −→ M0, and when φ is a right R-module map. Of course, the unit
diagram commutes exactly when the action of R on M0 and M1 is unital. �

A map of (R, I)-modules M −→ N is of course a pair of right R-module maps
M0 −→ N0 and M1 −→ N1 making the evident diagrams involving f and φ commute.

Whenever we have monoids and modules, we also have extension and restriction
of scalars. It is useful to unwind these definitions as well. For the tensor product
monoidal structure, this is simple. Suppose α : p −→ p′ is a map of monoid homo-
morphisms, where p : R0 −→ R1 and p′ : R′

0 −→ R′
1. If f : M0 −→ M1 is a p-module,

then the extension of scalars functor sends to f to

f ⊗p p
′ : M0 ⊗R0

R′
0 −→M1 ⊗R1

R′
1.

The restriction of scalars functor sends f to itself, as usual.
For the pushout product monoidal structure, life is a bit more complicated.

Proposition 1.9. Suppose α : j −→ j′ is a map of Smith ideals in a closed sym-

metric monoidal category C, where j : I −→ R and j′ : I ′ −→ R′. Let U denote the

restriction of scalars functor from j′-modules to j-modules. If N is a j′-module,

then (UN)0 = N0, (UN)1 = N1, and fUN = fN , where N0 and N1 are R-modules

via restriction of scalars, and φUN is the composite

N1 ⊗R I
1⊗α
−−−→ N1 ⊗R′ I ′

φN
−−→ N0.

If M is a j-module, then the extension of scalars M�j j
′ has (M�jj

′)1 = M1⊗RR
′,

and (M �j j
′)0 is the pushout in the diagram below.

(M0 ⊗R I ′) ∐ (M1 ⊗R I ⊗R R′) −−−−→ M0 ⊗R R′





y





y

M1 ⊗R I ′ −−−−−→
φM�jj

′

(M �j j
′)0

The map fM�jj′ is the evident one, induced by fM ⊗ 1 and 1⊗ j′.

The corestriction Hom�,j(j
′,M) has a dual description, using a pullback instead

of a pushout, but we leave the details to the reader.

Proof. The only thing we need to prove is the description of M �j j
′, which by

definition is the coequalizer of the two maps

M � j � j′ ⇒ M � j′.
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Both Ev0 and Ev1 preserve coequalizers, and it follows easily that Ev1(M �j j
′) =

M1 ⊗R R′. We have

Ev0(M � j′) = (M0 ⊗R′) ∐M0⊗I′ (M1 ⊗ I ′),

whereas Ev0(M � j � j′) is a pushout of the three objects

M0 ⊗R⊗R′,M1 ⊗ I ⊗R′, and M1 ⊗R⊗ I ′.

Upon taking the coequalizer, the first of these objects convertsM0⊗R
′ to M0⊗RR

′,
the second appears in our description (suitably tensored over R), and the third
converts M1 ⊗ I ′ to M1 ⊗R I ′. �

We now return to the cokernel functor, which we recall from Theorem 1.4 is a
symmetric monoidal functor from the pushout product monoidal structure to the
tensor product monoidal structure. It therefore preserves monoids and modules.
More precisely, we have the following theorem.

Theorem 1.10. Suppose C is a pointed closed symmetric monoidal category. The

cokernel induces a functor from Smith ideals in C to monoid homomorphisms in

C whose right adjoint is the kernel. That is, if j : I −→ R is a Smith ideal, then

the cokernel R −→ R/I is canonically a monoid homomorphism. Furthermore, the

cokernel also induces a functor from modules over the Smith ideal j to modules over

the monoid homomorphism coker j whose right adjoint is the kernel.

Proof. This is an immediate corollary of Theorem 1.4. Since the cokernel is (strongly)
symmetric monoidal, its right adjoint, the kernel, is lax symmetric monoidal. That
is, there is a natural map

ker f � ker g −→ ker(f ⊗ g)

adjoint to the map

coker(ker f � ker g) ∼= coker ker f ⊗ coker ker g −→ f ⊗ g,

making all the usual coherence diagrams commute. This makes the kernel functor
pass to a functor of monoids, where it is right adjoint to the cokernel as a functor
of monoids. It also means the kernel defines a functor from coker j-modules to
j-modules that is right adjoint to the cokernel as well. This too is standard, but
we remind the reader that if f is a coker j-module, then ker f is a j-module via the
multiplication

j � ker f −→ ker coker j � ker f −→ ker(coker j ⊗ f) −→ ker f.

This completes the proof. �

2. The injective model structure on the arrow category

In this section, we suppose that C is a closed symmetric monoidal model category
in the sense of [Hov99, Definition 4.2.6]. In this case, we would like Arr C to be a
closed symmetric monoidal model category as well, but we need two different model
structures. The model structure compatible with the pushout product is the pro-

jective model structure, where a map in Arr C is a weak equivalence or fibration
if and only if its components are so in C. The model structure compatible with
the tensor product monoidal structure is the injective model structure, where a
map in Arr C is a weak equivalence or cofibration if and only if its components are
so in Arr C. In this section, we construct the injective model structure and establish
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the basic properties of it that we need. The main goal is to prove there is a good
theory of monoids and modules over them.

Theorem 2.1. Suppose C is a model category. Then there is a model structure on

Arr C, called the injective model structure, with the following properties :

(1) A map α in Arr C is a weak equivalence (resp. cofibration)if and only if

Ev0α and Ev1α are weak equivalences (resp. cofibrations)in C;
(2) A map α : f −→ g is a (trivial)fibration if and only if the maps Ev1α and

Ev0f
(f,Ev0α)
−−−−−−→ Ev1f ×Ev1g Ev0g

are (trivial)fibrations in C. In particular, if α is a fibration in Arr C, then
both Ev0α and Ev1α are fibrations in C.

(3) The functors L0, L1 : C −→ Arr C are left Quillen functors, as are Ev0 and

Ev1.
(4) If C is a symmetric monoidal model category, the tensor product monoidal

structure and the injective model structure on Arr C make Arr C into a sym-

metric monoidal model category.

The injective model structure on Arr C can now be used as input into Theorem 2.1
to obtain a doubly injective model structure on ArrArr C, if desired.

Proof. We think of the category J with two objects and one non-identity map
as an inverse category in the sense of [Hov99, Definition 5.1.1]. Then [Hov99,
Theorem 5.1.3] implies parts (1) and (2), since Arr C is the category of J -diagrams
in C. We also need the dual of [Hov99, Remark 5.1.7] to see that if α is a fibration,
then Ev0α is a fibration in C. Part (3) follows, since the functors Evi preserve weak
equivalences, fibrations, and cofibrations.

For part (4), suppose that α : f −→ g and β : f ′ −→ g′ are cofibrations in the
injective model structure. We must show that the map

(f ⊗ g′) ∐f⊗f ′ (f ′
⊗ g) −→ g ⊗ g′

is a cofibration, which is trivial if either α or β is. But the components of this map
are precisely

Ev0α� Ev0β and Ev1α� Ev1β

and these are guaranteed to be cofibrations, trivial if either α or β is so, by the fact
that C is a monoidal model category. We recall that there is also a unit condition;
we need to know that the map Q1S⊗α −→ α is a weak equivalence for all cofibrant α,
where Q1S is a cofibrant replacement of the unit 1S of the tensor product monoidal
structure. In fact, if QS is a cofibrant replacement of S in C, then 1QS is a cofibrant
replacement of 1S in the injective model structure. Hence the unit axiom for Arr C
follows from the unit axiom for C. �

To have a really good theory of monoids and modules over them in a symmetric
monoidal model category, though, we need to know a bit more about the model
structure. The monoid axiom [SS00, Definition 2.2] guarantees that there is an
induced model structure on monoids and on modules over them.

Proposition 2.2. Let C be a model category, and give Arr C the injective model

structure.

(1) If C is cofibrantly generated, so is Arr C.
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(2) If C is a symmetric monoidal model category and satisfies the monoid axiom

of [SS00, Definition 2.2], so does Arr C.

Proof. Suppose C is cofibrantly generated, with generating cofibrations I and gen-
erating trivial cofibrations J . Let I ′ ⊆ morArr C consist of the maps L1i for i ∈ I
and

αi : i −→ U1Ev1i

for i ∈ I. If i : A −→ B, then αi is the map

A
i

−−−−→ B

i





y

∥

∥

∥

B B.

in Arr C. Define J ′ similarly using J . Then one can check that β has the right lifting
property with respect to L1i if and only if Ev1β has the right lifting property with
respect to i, and β : f −→ g has the right lifting property with respect to αi if and
only if

Ev0f −→ Ev1f ×Ev1g Ev0g

has the right lifting property with respect to i. Therefore the maps I ′ and J ′ will
serve as generating cofibrations and generating trivial cofibrations for the injective
model structure. One must also check that the domains and codomains of I ′ and
J ′ are small in Arr C, but this follows from smallness in C.

The monoid axiom says that transfinite compositions of pushouts of maps of the
form f ⊗A, where f is a trivial cofibration in C and A is an object of C, are weak
equivalences. So in Arr C we must check that transfinite compositions β of pushouts
of maps of the form α ⊗ g, where α is a trivial cofibration and g is an object of
Arr C, are weak equivalences. Since Evi commutes with transfinite compositions
and pushouts for i = 0, 1, Eviβ is a transfinite composition of pushouts of maps of
the form

Evi(α ⊗ g) = Eviα⊗ Evig.

Since Eviα is a trivial cofibration in C, Eviβ is a weak equivalence by the monoid
axiom in C. Therefore, β is a weak equivalence as required. �

Corollary 2.3. Suppoce C is a cofibrantly generated symmetric monoidal model

category satisfying the monoid axiom.

(1) There is a model structure on the category of monoid homomorphisms in

C, in which a map α : f −→ f ′ is a weak equivalence or fibration if and only

if it is so in the injective model structure on Arr C. In particular, α is a

weak equivalence if and only if Ev0α and Ev1α are weak equivalences in C.

(2) Given a monoid homomorphism f : R0 −→ R1, there is a model structure on

the category of f -modules in which α is a weak equivalence or fibration if

and only if it is so in the injective model structure on Arr C. In particular,

α is a weak equivalence if and only if Ev0α and Ev1α are weak equivalences

in C.

This corollary follows immediately from [SS00, Theorem 3.1]. Note that a monoid
homomorphism f is fibrant if and only if it is a fibration of fibrant objects in C.

But we would also like a weak equivalence of monoids to induce a corresponding
Quillen equivalence of the categories of modules, as in [SS00, Theorem 3.3], so that
the module categories are homotopy invariant. This requires a bit more.
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Definition 2.4. Suppose C is a symmetric monoidal model category. If R is a
monoid in C and M is a right R-module, we say that M is flat over R if the
functor M ⊗R (−) takes weak equivalences of left R-modules to weak equivalences
in C. Here a weak equivalence of left R-modules is an R-module map that is a
weak equivalence in C. We say that cofibrant modules are flat in C if, for every
monoid R, every cofibrant right R-module M is flat over R.

Then Theorem 3.3 of [SS00] says that if cofibrant modules are flat in C, and C
satisfies the monoid axiom, then module categories are homotopy invariant.

Proposition 2.5. Suppose C is cofibrantly generated and satisfies the monoid ax-

iom, and cofibrant modules are flat in C. Then cofibrant modules are flat in the

injective model structure on Arr C. In particular, in this case a weak equivalence

α : f −→ g of monoid homomorphisms induces a Quillen equivalence of the corre-

sponding model categories of f -modules and g-modules.

Before proving this proposition, we need a lemma.

Lemma 2.6. Suppose C is cofibrantly generated and satisfies the monoid axiom,

and f : R0 −→ R1 is a monoid in the tensor product monoidal structure. Then

Ev0 : f -mod −→ R0-mod and Ev1 : f -mod −→ R1-mod are left and right Quillen

functors.

Proof. Since Ev0 and Ev1 are strict monoidal as functors from the tensor product
monoidal structure to C, they induce functors from the module categories as desired,
as do their right adjoints U0 and U1. The left adjoint L1 is also strict monoidal
and so induces a functor L1 : R1-mod −→ f -mod left adjoint to Ev1. However, L0 is
not monoidal, and the left adjoint of Ev0 : f -mod −→ R0-mod is instead L′

0, where
L′
0(A) is the map A −→ R1 ⊗R0

A.
Certainly Ev0 and Ev1 preserve weak equivalences. A fibration of f -modules in

particular has Ev0f and Ev1f fibrations in C, and so also in R0-mod and R1-mod,
respectively. Thus Ev0 and Ev1 are right Quillen functors. To see they are also
left Quillen functors, take a (trivial) fibration h of R-modules. Since U0A is just
the map A −→ 0, one can check easily that U0h is a (trivial) fibration of f -modules.
Similarly, if h is a (trivial) fibration of R′-modules, use the fact that U1A = 1A to
see that U1h is a (trivial) fibration of f -modules. �

Proof of Proposition 2.5. Suppose f is a monoid in the tensor product monoidal
structure, so that f : R0 −→ R1 is a homomorphism of monoids in C. Let g be a
cofibrant f -module. Then Ev0g is a cofibrant R0-module and Ev1g is a cofibrant
R1-module by Lemma 2.6. Now suppose α is a weak equivalence of left f -modules,
so that Ev0α is a weak equivalence of R0-modules and Ev1α is a weak equivalence
of R1-modules. Then

Ev0(g ⊗f α) = Ev0g ⊗R0
Ev0α and Ev1(g ⊗f α) = Ev1g ⊗R1

Ev1α

so the result follows from the fact that cofibrant modules are flat in C. �

3. The projective model structure on the arrow category

In this section, we establish the projective model structure on Arr C, which is
compatible with the pushout product monoidal structure. Just as in the previous
section, we show that there is a good theory of monoids (Smith ideals) and modules
over them, although stronger assumptions on C are needed to get a really good
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theory. In fact, to check that cofibrant modules are flat in the projective model
structure is sufficiently complicated that we discuss it in an appendix.

Theorem 3.1. Suppose C is a model category. Then there is a model structure on

Arr C, called the projective model structure, with the following properties :

(1) A map α in Arr C is a weak equivalence (resp. fibration)if and only if Ev0α
and Ev1α are weak equivalences (resp. fibrations)in C;

(2) A map α : f −→ g is a (trivial)cofibration if and only if the maps Ev0α and

Ev1f ∐Ev0f Ev0g
(Ev1α,g)
−−−−−−→ Ev1g

are (trivial)cofibrations in C. In particular, if α is a cofibration in Arr C,
then both Ev0α and Ev1α are cofibrations in C.

(3) The functors L0, L1 −→ C −→ Arr C are left Quillen functors, as are Ev0 and

Ev1.
(4) If C is cofibrantly generated, so is the projective model structure on Arr C.
(5) If C is a cofibrantly generated symmetric monoidal model category, the

pushout product monoidal structure and the projective model structure on

Arr C make Arr C into a symmetric monoidal model category.

The reader may well object that part (5) of the theorem above should not require
the cofibrantly generated hypothesis. This is surely correct, but the proof involves
so many pushout diagrams of pushout diagrams that the author got too confused
to finish the proof.

The reader should note that the identity functor is a Quillen equivalence from
the projective model structure to the injective model structure on Arr C.

At least if C is cofibrantly generated, the projective model structure can also be
iterated, and we could have the doubly projective model structure on ArrArr C,
in addition to the projective injective model structure and the injective projective
model structure. We don’t know if these are useful.

Proof. We think of the category J with two objects and one non-identity map as
a direct category in the sense of [Hov99, Definition 5.1.1]. Then [Hov99, Theo-
rem 5.1.3] implies parts (1) and (2), since Arr C is the category of J -diagrams in
C. Then [Hov99, Remark 5.1.7] tells us that if α is a cofibration in the projective
model structure, Ev1α (and also Ev1α, of course) is a cofibration in C. Part (3)
now follows easily, since the functors Evi preserve weak equivalences, fibrations,
and cofibrations.

For part (4), suppose C is cofibrantly generated, with generating cofibrations
I and generating trivial cofibrations J . Then Arr C is cofibrantly generated with
generating cofibrations L0I ∪ L1I and generating trivial cofibrations L0J ∪ L1J ,
by [Hov99, Remark 5.1.8].

We must now verify that Arr C is a symmetric monoidal model category when
C is so (and is cofibrantly generated). We will check the unit condition below. For
the remaining condition, because Arr C is cofibrantly generated, we just have to
check that if α is a generating cofibration and β is a generating (trivial) cofibration
of Arr C, then the pushout product α�2 β (not to be confused with the monoidal
structure � in Arr C) is a (trivial) cofibration in Arr C. Here, if α : f −→ g and
β : f ′ −→ g′,

α�2 β : (f � g′)∐f�f ′ (g � f ′) −→ g � g′.
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Now, if α = L0i : L0A −→ L0B, it follows from Lemma 1.3 and some computation
that

L0i�2 β = L0(i� Ev1β).

In particular, if i is a cofibration in C and β is a (trivial) cofibration in Arr C, then
Ev1β is a (trivial) cofibration in C, so i � Ev1β is a (trivial) cofibration in C, and
thus L0i�2 β is a (trivial) cofibration in Arr C.

This takes care of all of the α �2 β we need to consider except α = L1i and
β = L1j. Since L1 is symmetric monoidal, we have

L1i�2 L1j = L1(i� j).

Thus, if i is a cofibration in C and j is a (trivial) cofibration in C, then i � j is a
(trivial) cofibration in C, so L1i�2L1j is a (trivial) cofibration in Arr C, as required.

We are now left with checking the unit condition. Recall that the unit condition
in C says that, if QS −→ S is a cofibrant replacement for the unit S, thenQS⊗A −→ A
is a weak equivalence for all cofibrant A in C. In Arr C, f is a cofibrant object if and
only if f is a cofibration of cofibrant objects of C. It follows that L1(QS) : 0 −→ QS
is a cofibrant replacement of the unit L1S. It follows from Lemma 1.3 that

L1(QS)� f −→ f = QS ⊗ f −→ f.

In particular, if f is cofibrant, the domain and codomain of f are cofibrant in C, so
the unit axiom in C implies this map is a weak equivalence in Arr C, as required. �

Just as with the injective model structure, we would like to ensure that good
properties of the symmetric monoidal model category C are inherited by the pro-
jective model structure on Arr C. There is no difficulty with the monoid axiom.

Proposition 3.2. If C is a cofibrantly generated symmetric monoidal model cate-

gory that satisfies the monoid axiom, then the projective model structure on Arr C
also satisfies the monoid axiom.

Proof. According to [SS00, Lemma 2.3], it suffices to check that transfinite com-
positions of pushouts of maps in Arr C of the form L0j � f and L1j � f are
weak equivalences, where j is a trivial cofibration in C. By Lemma 1.1, we have
L0j � f = L0(j ⊗ Ev1f). Thus

Ev0(L0j � f) = Ev1(L0j � f) = j ⊗ Ev1f,

and this is a trivial cofibration in C tensored with an object of C. Similarly,
Lemma 1.1 tells us that

Ev0(L1j � f) = j ⊗ Ev0f and Ev1(L1j � f) = j ⊗ Ev1f.

Therefore, these maps are also trivial cofibrations in C tensored with objects of C.
Since Ev0 and Ev1 are left adjoints, they commute with transfinite compositions
and pushouts. Thus, if we apply Ev0 or Ev1 to a transfinite composition of pushouts
of maps of the form L0j � f and L1j � f , we will get a transfinite composition of
pushouts of maps of the form j ⊗X , which are weak equivalences in C as required,
because C satisfies the monoid axiom. �

Corollary 3.3. Suppose C is a cofibrantly generated symmetric monoidal model

category satisfying the monoid axiom.
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(1) There is a model structure on the category of Smith ideals in C, in which a

map α : j −→ j′ is a weak equivalence or fibration if and only if Ev0α and

Ev1α are weak equivalences or fibrations in C.

(2) Given a Smith ideal j, there is a model structure on the category of j-
modules in which α is a weak equivalence or fibration if and only if Ev0α
and Ev1α are weak equivalences or fibrations in C.

This corollary follows from [SS00, Theorem 3.1].
It is also useful to point out the following fact.

Corollary 3.4. Suppose C is a cofibrantly generated symmetric monoidal model

category satisfying the monoid axiom.

(1) The functor Ev1 is a left Quillen functor from Smith ideals in C to monoids

in C. In particular, the codomain of a cofibrant Smith ideal is a cofibrant

monoid.

(2) If the unit S is cofibrant in C, then a cofibrant Smith ideal is, in particular,

a cofibration of cofibrant objects in C.

Proof. The functor Ev1 is strict monoidal with respect to the pushout product
monoidal structure, so does induce a functor from Smith ideals to monoids. Its
right adjoint U1 takes R to 1R, and this obviously perserves weak equivalences and
fibrations. Thus Ev1 is a left Quillen functor.

If the unit S is cofibrant in C, then the unit 0 −→ S of the pushout product
monoidal structure is cofibrant in Arr C, and so a cofibrant Smith ideal is in partic-
ular cofibrant in the projective model structure on Arr C by [SS00, Theorem 3.1]. �

We would also like to know that if cofibrant modules are flat in C (see Defi-
nition 2.4), then cofibrant modules are flat in the projective model structure on
Arr C. This seems to be more complicated than the corresponding question for the
injective module structure, so we postpone this discussion to the appendix, where
we will prove the following theorem. The definition of a pure class of morphisms is
Definition A.1.

Theorem 3.5. Suppose C is a cofibrantly generated symmetric monoidal model

category satisfying the monoid axiom, and P is a pure class of morphisms of C

containing the maps i ⊗ X for all generating cofibrations i of C and all X ∈ C.
Assume that the domains and codomains of the generating cofibrations of C are

flat. Then cofibrant modules are flat in the projective model structure on Arr C. In

this case, a weak equivalence of Smith ideals induces a Quillen equivalence of the

corresponding module categories.

4. The cokernel functor in the stable case

In this section, we prove that the cokernel functor is a left Quillen functor from
the projective model structure on Arr C to the injective model structure. Even
better, when C is stable, in the sense that ho C is triangulated, the cokernel func-
tor is a Quillen equivalence. Thus a Smith ideal is the same thing as a monoid
homomorphism, up to homotopy.

Proposition 4.1. Suppose C is a pointed model category. The cokernel is a left

Quillen functor from the projective model structure on Arr C to the injective model

structure.



16 MARK HOVEY

Proof. Consider the category J with three objects −1, 0, 1 and two non-identity
morphisms 0 −→ 1 and 0 −→ −1. We consider the first map as raising degree, and the
second as lowering degree. This makes our category a Reedy category [Hov99, Defi-
nition 5.2.1]. There is therefore a model structure on J -diagrams on C [Hov99, The-
orem 5.2.5]. This is the model structure used in the proof of the cube lemma [Hov99,
Lemma 5.2.6], where it is proved that the colimit, which is just the pushout, is a
left Quillen functor from CJ to C.

Now suppose α : f −→ g is a (trivial) cofibration in the projective model structure.
Write f : X0 −→ X1 and g : Y0 −→ Y1. We then have the associated objects of CJ ,
namely

X0
f

−−−−→ X1




y

0
and

Y0
g

−−−−→ Y1




y

0.
The map α induces a map between these diagrams, and this map is a (trivial)
cofibration in CJ . Indeed, because the map 0 −→ −1 in J lowers degree, we just
need

10 : 0 −→ 0, α0 : X0 −→ Y0 and (α1, g) : X1 ∐X0
Y0 −→ Y1

to be (trivial) cofibrations, as of course they are. We conclude that the induced
map

coker f −→ coker g

of the colimits is a (trivial) cofibration, which is just what we need to make coker
a left Quillen functor from the projective to the injective model structure. �

Corollary 4.2. Suppose C is a cofibrantly generated pointed symmetric monoidal

model category.

(1) The cokernel is a left Quillen functor from the model category of Smith

ideals in C to the model cateory of monoid homomorphisms in C.

(2) If j is a Smith ideal in C, the cokernel induces a left Quillen functor from

the model category of j-modules to the model category of coker j-modules.

Proof. This follows from the general theory. The right adjoint ker preserves (trivial)
fibrations in Arr C, and since (trivial) fibrations of monoids or modules are just
maps of monoids or modules that are (trivial) fibrations in Arr C, ker will preserve
(trivial) fibrations of monoids and modules. �

We now suppose that C is stable, so that ho C is a triangulated category [Hov99,
Chapter 7]. Since a map of exact triangles in a triangulated category that is an
isomorphism on two of the three spots is an isomorphism on the third spot as well,
we should expect the cokernel to be a Quillen equivalence in this case. This is in
fact true.

Theorem 4.3. Suppose C is a stable model category. Then the cokernel is a Quillen

equivalence from the projective model structure on Arr C to the injective model struc-

ture.
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Proof. Suppose f is cofibrant in the projective model structure on Arr C and p is
fibrant in the injective model structure. This means that f : A −→ B is a cofi-
bration of cofibrant objects and p : X −→ Y is a fibration of fibrant objects. Let
α : coker f −→ p be a map, which we write

B
g

−−−−→ coker f

α0





y





y

α1

X −−−−→
p

Y,

with corresponding map β : f −→ ker p, written

A
f

−−−−→ B

β0





y





y

α0

ker p −−−−→
q

X.

We must show that a map α is a weak equivalence if and only if β is. In the
homotopy category ho C, the map f gives rise to a cofiber sequence

A
f
−→ B −→ coker f −→ ΣA

and the map g gives rise to a fiber sequence

ΩY −→ ker p
q
−→ X

p
−→ Y.

Since C is stable, every fiber sequence is (canonically isomorphic to) a cofiber se-
quence, and so

ker p
q
−→ X

p
−→ Y −→ Σ(ker p)

is a cofiber sequence, Then α and β together define a map between two exact
triangles in a triangulated category; if α or β is a weak equivalence, then this map
is an isomorphism at two out of the three spots, so also an isomorphism at the third
spot. Thus α is a weak equivalence if and only if β is so. �

Corollary 4.4. Suppose C is a cofibrantly generated stable symmetric monoidal

model category in which the unit S is cofibrant.

(1) The cokernel is a Quillen equivalence from the model category of Smith

ideals in C to the model category of monoid homomorphisms in C.

(2) If j is a cofibrant Smith ideal in C, the cokernel induces a Quillen equiva-

lence from the model category of j-modules to the model category of coker j-
modules.

Proof. The kernel, as a functor from monoid homomorphisms to Smith ideals, re-
flects weak equivalences between fibrant objects. Indeed, since fibrations and weak
equivalences are created in the underlying model structures on Arr C, this follows
from fact that the kernel, as the right half of a Quillen equivalence on Arr C, reflects
weak equivalences between fibrant objects [Hov99, Corollary 1.3.16].

Now suppose j is a cofibrant Smith ideal. Since S is cofibrant, the unit L1S
of the pushout product monoidal structure is cofibrant in the projective model
structure. Hence a cofibrant monoid is in particular cofibrant in Arr C by [SS00,
Theorem 3.1]. Thus j is cofibrant in Arr C. This means that j −→ kerT (coker j) is
a weak equivalence, where T is a fibrant replacement functor in the injective model



18 MARK HOVEY

structure on Arr C, again using [Hov99, Corollary 1.3.16]. If T ′ denotes a fibrant
replacement functor in the category of monoid homomorphisms, there is a weak
equivalence T (coker j) −→ T ′(coker j) in the injective model structure. These are
both fibrant objects, and so the induced map kerT (coker j) −→ kerT ′(coker j) is a
weak equivalence. Thus the map j −→ kerT ′(coker j) is a weak equivalence, and so
the cokernel is a Quillen equivalence from Smith ideals to monoid homomorphisms
by [Hov99, Corollary 1.3.16].

Now again assume j is a cofibrant Smith ideal. The kernel again reflects weak
equivalences between fibrant coker j-modules. We claim that a cofibrant j-module
is also cofibrant in C, so that we can repeat the above argument to complete the
proof that the cokernel is a Quillen equivalence from j-modules to Fj-modules.
Indeed, a cofibrant object in any cofibrantly generated model category is a trans-
finite extension of the cokernels of the generating cofibrations. In our case, these
cokernels are of the form j � q, where q is a cokernel of a generating cofibration in
Arr C and hence cofibrant in Arr C. Since j is also cofibrant in Arr C, we conclude
that cofibrant j-modules are cofibrant in Arr C. �

Appendix A. Pure classes of morphisms

In this appendix, we prove Theorem 3.5 about when cofibrant modules are flat
in the projective model structure on Arr C.

Consider the more general question of when cofibrant R-modules are flat, for R
a monoid in a symmetric monoidal model category C. The logical way to approach
this is to build up from the generating cofibrations in R-mod to all cofibrant R-
modules. So we should have some result that asserts that if the domains and
codomains of the generating cofibrations in C are flat, then all cofibrant R-modules
are flat, for any R. A cofibrant R-module is a retract of a transfinite composition
of pushouts of maps i ⊗ 1: A ⊗ R −→ B ⊗ R, where i : A −→ B is a generating
cofibration of C. In general, pushouts of maps in model categories only behave well
when the maps are cofibrations, and we cannot expect i ⊗ 1 to be a cofibration.
But it might be something a little weaker.

Definition A.1. Define a class of morphisms P in a model category C to be a
pure class if the following properties hold.

(1) A pushout of a map in P is in P .
(2) If we have a map of diagrams

B ←−−−− A
f

−−−−→ C




y





y





y

B′ ←−−−− A′ −−−−→
f ′

C′

in which the vertical maps are weak equivalences, and f and f ′ are in P ,
then the induced map of pushouts

B ∐A C −→ B′ ∐A′ C′

is a weak equivalence.
(3) If λ is an ordinal, X,Y : λ −→ C are colimit-preserving functors such that

each map Xα −→ Xα+1 and Yα −→ Yα+1 is in P , and f : X −→ Y is a natural
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transformation such that fα is a weak equivalence for all α < λ, then the
induced map

colimα<λ Xα −→ colimα<λ Yα

is a weak equivalence.

The basic example of a pure class of morphisms is the class of cofibrations in
a left proper model category, by [Hir03, Proposition 13.5.4] and [Hir03, Proposi-
tion 17.9.3].

The main advantage of a pure class of morphisms is the following theorem.

Theorem A.2. Suppose C is a cofibrantly generated symmetric monoidal model

category satisfying the monoid axiom, and P is a pure class of morphisms of C

containing the maps i ⊗ X for all generating cofibrations i of C and all X ∈ C.
Assume that the domains and codomains of the generating cofibrations of C are

flat. Then cofibrant R-modules are flat, for any monoid R in C.

Proof. Since retracts of flat R-modules are flat, we can assume our cofibrant R-
module X = colimα<λ Xα for some ordinal λ and some colimit-preserving functor,
where each map Xα −→ Xα+1 is a pushout of a generating cofibration of R-mod
and X0 = 0. We prove that Xα is flat for all α ≤ λ by transfinite induction, the
base case X0 = 0 being obvious. Let f : M −→ N be a weak equivalence of left
R-modules.

For the successor ordinal case, we have a pushout

A⊗R
i⊗1
−−−−→ B ⊗R





y





y

Xα −−−−→ Xα+1

where i is a generating cofibration of C. We then get a map of pushout squares
from

A⊗M −−−−→ B ⊗M




y





y

Xα ⊗R M −−−−→ Xα+1 ⊗R M

to
A⊗N −−−−→ B ⊗N





y





y

Xα ⊗R N −−−−→ Xα+1 ⊗R N.

Since A and B are flat in C, andXα is a a flatR-module by the induction hypothesis,
this map is a weak equivalence at all of the corners except the bottom-right corner.
Since the maps i⊗M and i⊗N are in the pure class P , we conclude that Xα+1⊗Rf
is a weak equivalence as well, concluding the successor ordinal case. However, we
also note that

Xα ⊗R M −→ Xα+1 ⊗R M,

and the analogous map for N , is in P .
For the limit ordinal case, suppose Xα is flat for all α < β. We have a map of

diagrams

Xα ⊗R M −→ Xα ⊗R N
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that is a weak equivalence for all α < β, and furthermore each map Xα ⊗R M −→

Xα+1 ⊗R M is in P , as is the corresponding map for N . Thus

Xβ ⊗R M −→ Xβ ⊗R N

is a weak equivalence, since P is a pure class, completing the induction. �

Now we return to Arr . For this we need to transfer our pure class from C to
Arr C. Fortunately this is straightforward, and we get the following theorem.

Theorem A.3. Suppose C is a cofibrantly generated symmetric monoidal model

category satisfying the monoid axiom, and P is a pure class of morphisms of C

containing the maps i ⊗ X for all generating cofibrations i of C and all X ∈ C.
Assume that the domains and codomains of the generating cofibrations of C are

flat. Then cofibrant modules are flat in the projective model structure on Arr C.

Proof. The plan is to apply Theorem A.2 to Arr C. The generating cofibrations of
Arr C consist of the maps L0i and L1i for generating cofibrations i : A −→ B of C.
So our first job is to check that L0 and L1 preserve flat objects. Suppose α : f −→ g
is a weak equivalence in Arr C. Applying Lemma 1.1, we find that

Evi(L0(X)� α) = X ⊗ Ev1α

and
Evi(L1(X)� α) = X ⊗ Eviα

for i = 0, 1. If X is flat, X ⊗ Eviα is a weak equivalence, and so both L0 and
L1 preserve flat objects. We conclude that the domains and codomains of the
generating cofibrations of Arr C are flat.

Let Q denote the class of morphisms f in Arr C so that Ev0f and Ev1f are in
P . Since colimits and weak equivalences in Arr C are detected in C, it is easy to see
that Q is a pure class of morphisms in Arr C. It remains to show that both L0i� f
and L1i� f are in Q for i a generating cofibration of C and f any object of Arr C.
But, again using Lemma 1.1, we find that

Evi(L0i� f) = i⊗ Ev1f

and
Evi(L1i� f) = i⊗ Evif

for i = 0, 1. Since both of these are in P , we conclude that L0i� f and L1i� f are
in Q. Hence we can apply Theorem A.2 to Arr C to get our theorem. �
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