
ON THE ALGEBRAS OVER EQUIVARIANT LITTLE DISKS

MICHAEL A. HILL

Abstract. We describe the structure present in algebras over the little disks

operads for various representations of a finite group G, including those that

are not necessarily universe or that do not contain trivial summands. We then
spell out in more detail what happens for G = C2, describing the structure

on algebras over the little disks operad for the sign representation. Here we

can also describe the resulting structure in Bredon homology. Finally, we
produce a stable splitting of coinduced spaces analogous to the stable splitting

of the product, and we use this to determine the homology of the signed James

construction.

1. Twisted equivariant “monoids”

We begin with a purely algebra observation. Consider the free associative monoid
on the set C2 = {x, x̄}. The fixed points of this are the one point set consisting of the
identity element, and elements which we expect from the commutative case, like the
norm classes xx̄ are not fixed here. If we enforce commutativity, then these become
fixed, but as homotopy theorists, we should instead attach cells which connect xx̄
to x̄x, building a C2-CW complex. Unfortunately, since xx̄ and x̄x form a free
orbit, these new cells will also be C2-free. Continuing to make the multiplication
more highly commutative will never add fixed cells, so we never produce new fixed
points. This is reflecting a classical observation.

Proposition 1.1. If Otr is an E∞ operad with trivial G-action, and X is a free
G-space, then the fixed points of the free algebra are trivial:(

POtr (X)
)G ' ∗.

More generally, if V is a countable dimensional vector space with trivial G-action,
and if D(V ) is the little disks operad for V , then the free algebra on X also has
trivial fixed points: (

PD(V )(X)
)G ' ∗.

This is in stark contrast with the “genuine” commutative case, where the tom
Dieck splitting shows that the putative norm classes do give rise to new fixed points.

Proposition 1.2. If O is a G-E∞ operad, and if X is a free G-space, then we
have (

PO(X)
)G ' POtr (X/G).

The obvious map

i∗ePO(X) ' POtr (i∗eX)→ POtr (X/G) ↪→
(
PO(X)

)G
The author was supported by NSF Grant DMS-1509652.
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is the operadic norm from the underlying space to the fixed points. Adams’ orig-
inal discussion of the construction of the transfer in the G-equivariant Spanier-
Whitehead category shows that we have a similar norm map for free algebras over
the little disks algebra for any orthogonal G-representation in which G equivariantly
embeds.

The primary goal of this paper is to study these exact phenomena by carefully
unpacking some of the structure that we see in these algebras over little disks op-
erads for (possibly finite dimensional) orthogonal G-representations. Since a trivial
E∞ operad and a G-E∞ operad are both little disks operads, we will recover our
classical understanding. More generally, a little disks operad for a G-universe U
is the prototype of an N∞ operad, the definition of which and the basic proper-
ties thereof were described by Blumberg and the author in [2]. In particular, the
N∞ operads behave very much like ordinary E∞ operads plus operations which
coherently encode norm maps. A natural question then, is what operads deserve
to be called Nk operads for finite k. Exploring the examples for little disks gives
desiderata for defining the Nk, but we leave this for later work.

Work of Rourke and Sanderson [12], Segal [14], and Hauschild [7], equivariantiz-
ing foundational work of May [10], connects this general analysis to the study of
loop spaces. They show that if O is the little disks operad for a representation V ,
then the natural map

PO(X)→ ΩV ΣVX

is a group completion. Thus our operadic analysis describes geometric content for
these generalized loop spaces. In particular, it provides a basic step for describing
the operations on V -fold loop spaces, in the vein of Cohen [4].

A secondary goal of this paper is to build on the connection to these equivariant
loop spaces, collecting some results about signed-loop spaces for the group C2 which
have become folklore. We will study the basic properties of signed loop spaces. We
then turn to cohomology, looking at the cohomology of a coinduced space and
the resulting structure on the homology of a signed loop space. We next study
the signed version of the James construction on a C2-space, showing that after
suspension by the regular representation it splits. As an appendix, we include a
result of independent interest: that coinduction for the group C2 splits after a single
signed suspension.

Notation and conventions. In all that follows, G will denote a finite group, and
H will usually denote a subgroup thereof. Letters around X in the alphabet will
denote G-spaces; letters around T in the alphabet will denote G-sets; and letters
around V in the alphabet will denote G-representations.

If X is a G-space and x ∈ X is any point, then Stab(x) will denote the stabilizer
subgroup of x in G. If H ⊂ G, then WG(H) will denote the Weyl group of H in G.

In the second half of the paper, we will begin doing equivariant algebra, and
we will work often with Mackey functors for the cyclic group of order 2, C2. The
Mackey functor versions of standard classical constructions like homotopy or homol-
ogy groups will be denoted with an underline to the classical symbol. For Mackey
functors, we will follow Lewis’ notation, stacking the values at the two orbits and
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indicating the structure maps:

M(C2/C2)

res

��
M(C2/e)

tr

^^

Finally, for gradings, we follow the increasingly standard wild-card notation: ∗
will be reserved for an arbitary element of Z, while ? will denote an element of
RO(G).

Acknowledgements. We thank Mark Behrens and Dylan Wilson for several very
inspiring conversations early on in this project and for reading an early preprint.
We also think Kirsten Wickelgren, Ugur Yigit, and Doug Ravenel for several help-
ful conversations about the James construction and signed loops. We also thank
Andrew Blumberg and Tyler Lawson for help clarifying several operadic points.

2. Algebras over equivariant little disks operads

2.1. The general case. We take as our model the analysis of algebras over the
little disks for a G-universe from [2, Theorem 4.19]. The key idea there was to
understand which finite H-sets embed in our universe. Essentially everything goes
through without change: the only difference is that the spaces parameterizing our
generalized multiplications are no longer necessarily contractible. Much of the
analysis of the spaces is closely related to results of Rourke and Sanderson [12]; we
cast things in a way that most transparently reflects how various norms arise in the
algebras.

2.1.1. Basic Definition.

Definition 2.1. Let V be an orthogonal representation of G (not necessarily finite
dimensional, and not necessarily a universe for G). Let W be a finite dimensional
orthogonal subrepresentation of V . A little disk in W is a (not necessarily equi-
variant) affine map D(V )→ D(V ).

Define the space DW (V )n to be the space of n-tuples of nonoverlapping little
disks. This is a G× Σn-space, where G acts by conjugation and Σn by permuting
the coordinates. The operadic structure is by composition.

If W ⊂ W ′, then the affine maps defining any of the little disks in DW (V )n
extend to give little disks in DW ′(V )n, so we define

D(V )n = colim
W
DW (V )n.

Of course, if V is finite dimensional, then {V } is cofinal in the set of finite
dimensional subspaces of V , so we can ignore any colimits.

The operadic multiplications and transfers are produced by the fixed points for
various subgroups of G× Σn.

2.1.2. Structure of graph fixed points. We begin with a basic observation which
follows immediately from the requirement that the little n-disks not overlap.

Proposition 2.2. For any orthogonal representation V , Σn acts freely on D(V )n.

Thus the only subgroups which could have fixed points are the “graph subgroups”
considered in [2].
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Definition 2.3. A graph subgroups of G × Σn is a subgroup which intersects
Σn trivially.

The name comes from the fact that if Γ is a graph subgroup of G × Σn, then
there is a subgroup H ⊂ G and a homomorphism φ : H → Σn such that Γ is the
graph of φ. In particular, to each graph subgroup, associate a subgroup H of G and
an H-set structure on {1, . . . , n}. If H is a proper subgroup of G, then the analysis
of the Γ fixed points of D(V ) is most naturally an H-equivariant one, and hence
is covered by an induction argument on the subgroups. We can therefore restrict
attention to H = G.

Lemma 2.4. Let Γ be a graph subgroup of G × Σn corresponding to a G-set T .
Then the map taking a disk to its center gives a weak equivalence

D(V )Γ
n ' EmbG(T, V ),

where EmbG(T, V ) is the space of G-equivariant embeddings of T into V . Moreover,
this equivalence is

WG×Σn(Γ) ∼= AutG(T )

equivariant.

Proof. The map sending a little disk to its center establishes a G×Σn-weak equiv-
alence

D(V )n ' Emb
(
{1, . . . , n}, V

)
,

where G × Σn acts on the latter via the Σn-action on the source and the G-
action on the target. When restricted to Γ, this becomes the conjugation action on
Emb(T, V ). The result is now obvious. �

Since we are considering only finite G-sets, these spaces of embeddings are a kind
of equivariant configuration space.

Definition 2.5. Let n ≥ 1, and let X be a G-space. Define the configuration
space of nG/H in X to be

ConfnG/H(X) :=
{

(x1, . . . , xn) | ∀i Stab(xi) = H and ∀i 6= j,∀g ∈ G, xi 6= gxj
}
,

topologized as a subspace of Xn.

Note that by construction

ConfnG/H(X) ⊂ (XH)n.

The latter has a canonical action of WG(H) o Σn extending the coordinate actions
of WG(H). By construction, ConfnG/H(X) is an equivariant subspace. With this
observation, the following is immediate.

Proposition 2.6. If X is any space, then we have a homeomorphism

EmbG(nG/H,X) ∼= ConfnG/H(X)

given by choosing an ordering of the summands and evaluating at the cosets of the
identity for each summand. This is equivariant for

AutG(nG/H) ∼= WG(H) o Σn.

When X is a representation, then these are simpler still: they are hyperplane
complements.
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Definition 2.7. Let H ⊂ G be a subgroup and V a representation of G.
Let

V ∂H :=
⋃
H⊂K

V K

be the H-relative singular set of V , and let

V̊ H := V H − V ∂H .

Proposition 2.8. The configuration space of nG/H in a representation V is a
hyperplane complement:

ConfnG/H(V ) =
{

(v1, . . . , vn) ∈ V̊ H | ∀i 6= j,∀gH ∈WG(H), vj 6= gvj
}

= (V H − V ∂H)n −
⋃

i 6=j,gH∈WG(H)

Wi,j,gH ,

where

Wi,j,gH =
{

(v1, . . . , vn) | vi = gvj
}
⊂ (V H)n.

Proof. The subspace V̊ H is the subspace of V consisting of those points with stabi-
lizer H. It itself is a hyperplane complement, so its n-fold Cartesian power is. The
result follows immediately from the definition. �

Putting this all together, we deduce the graph fixed points for an arbitrary graph
subgroup.

Theorem 2.9. Let T = n1G/H1 q · · · q nkG/Hk, where if i 6= j, then Hi and Hj

are not conjugate. Then we have an AutG(T )-equivariant homeomorphism

EmbG(T, V ) ∼=
k∏
i=1

ConfniG/Hi
(V ).

In particular, this is a hyperplane complement.

Proof. It only remains to prove that the embeddings for non-conjugate stabiliz-
ers can never coincide (hence we get a product decomposition). However, this is
obvious, since an embedding preserves stabilizers. �

Corollary 2.10. If T is any finite G-set such that TG = ∅, then

EmbG(T, V ) ' EmbG(T q ∗, V ).

Proof. The origin is always fixed in V , thus ConfG/G(V ) is always non-empty. �

Remark 2.11. If |T | = n, then choose an ordering of the points of T and hence a
non-equivariant identification of T and {1, . . . n}. Including ∗ as the (n+1)st point
gives a non-equivariant identification of T q∗ with {1, . . . , n+ 1}. In this case, the
homotopy equivalence in Corollary 2.10 can be realized by the inclusion of the unit
in the (n+ 1)st coordinate.
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2.1.3. Algebras over little disks. Lemma 2.4 is the key result that underpins our
analysis.

Theorem 2.12 (Compare [2, Lemma 6.6]). Let X be a D(V )-algebra in spaces,

and let T be a finite H-set. Then the space EmbH(T, V ) encodes H-equivariant
multiplications

Map(T,X)→ X.

Proof. Let Γ be the graph subgroup associated to an ordering of T . Lemma 2.4
shows that we have an equivalence

MapG×Σn
(
G× Σn/ΓT ,D(V )n

)
' EmbH(T, V ),

and that this equivalence is compatible with the (H-)Weyl action on the source and

the AutH(T )-action on the target. If EmbH(T, V ) is empty, then we have nothing

to prove, so assume that this is non-empty. In this case, each point in EmbH(T, V )
gives a G-equivariant map

G×H Map(T,X) ∼= G×H
(
(H × Σn/ΓT )×Σn X

×n)→ D(V )n ×Σn X
n → X.

The maps in the theorem are the adjoint. �

Using Corollary 2.10, we get a kind of module structure on a D(V )-algebra.

Corollary 2.13. If X is a D(V )-module and T is a finite G-set such that TG = ∅,
then EmbG(T, V ) also parameterizes maps

Map(T,X)×X → X.

There are obvious coherence questions which arise here, and the answer is en-
coded in Elmendorf’s Theorem allowing us to rebuild the homotopy type of a G-
space out of the diagram of fixed points. This gives us a way to understand the
homotopy type of D(V )n ×Σn

X×n out of the data of Lemma 2.4.

Definition 2.14. Let OrbG denote the orbit category of G. Let

J : OrbG → T opG

denote the natural embedding which sends an orbit G/H to G/H viewed as a
G-space. If X is a G-space, let

X(−) : (OrbG)op → T op

denote the functor which sends G/H to MapG(G/H,X) ∼= XH .

We will also take advantage of a simplification from the freeness of the Σn-action
on D(V )n. This gives a natural family of subgroups and hence subcategory of the
orbit category.

Definition 2.15. If V is an orthogonal representation of G, let FnV denote the
family of subgroups Γ ⊂ G × Σn such that D(V )Γ

n is non-empty. Let FnV also
denote the corresponding sieve in the orbit category.

Theorem 2.16. If X is a G-CW complex, then we have a natural weak equivalence∣∣B•(D(V )(−)
n ,FnV , J |Fn

V
×Σn

Xn
)∣∣ ' D(V )n ×Σn

Xn,

where the left-hand side is the geometric realization of the 2-sided bar construction.
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Proof. Elmendorf’s Theorem [5] shows that we have a natural G×Σn-weak equiv-
alence ∣∣B•(D(V )(−)

n ,OrbG×Σn , J
)∣∣ ' D(V )n.

Since D(V )Γ
n is by definition non-empty only for those Γ ∈ FnV , and since FnV is a

sieve, we have a simplicial homeomorphism of simplicial spaces

B•
(
D(V )(−)

n ,OrbG×Σn , J
) ∼= B•

(
D(V )(−)

n ,FnV , J
)
.

The result follows from passing the product with X past the geometric realization
and commuting the Σn-orbits passed the geometric realization. �

Remark 2.17. The pieces in the two-sided bar construction are ones already en-
countered in Theorem 2.12: for some ΓT ∈ FnV , Lemma 2.4 identifies D(V )ΓT

n and(
G× Σn/ΓT

)
×Σn X

n ' Map(T,X).

Theorem 2.16 shows that the free D(V )-algebra on X is homotopically built out of
exactly this data.

Corollary 2.18. Let K ⊂ H ⊂ G, and let T be a finite H-set and T ′ a finite K-set
such that i∗KT

∼= T ′. Then the inclusion

MapH(T, V ) ↪→ MapK(T ′, V )

describes the restriction map on the operadic multiplications.

2.1.4. Basic consequences. We first make a simple observation which olds for all
algebras over all little disks operads (including for the absurd case of V = 0).

Proposition 2.19. For any V and for any D(V )-algebra X, we have a canonical
G-fixed basepoint e ∈ X.

Proof. This is the zeroth structure map corresponding to D(V )0 = ∗. �

This connects with traditional constructions in the expected way: trivial sub-
spaces gives increasingly coherently commutative multiplications.

Proposition 2.20. For any V and for any D(V )-algebra X, if H ⊂ G has
dimV H ≥ 1, then i∗HX has an EdimV H -structure. The basepoint e ∈ i∗HX is
the unit.

Corollary 2.21. If V is any orthongal representation which contains infinitely
many copies of the trivial representation, then any D(V )-algebra has an underlying
E∞ multiplication.

The analysis of the embedding spaces automatically gives us additional structure
maps.

Proposition 2.22. If V has V̊ H 6= ∅, then we have norm maps

MapH(G, i∗HX) ∼= Map(G/H,X)→ X,

and if π0V̊
H = ∗, then this is unique up to homotopy.

Remark 2.23. If V is a G-universe (so D(V ) is an N∞ operad), then cöınduction is
both the right and the left adjoint to the forgetful functor. The norm maps realize
the counit of the adjunction (with cöınduction as the left adjoint).
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Proposition 2.24. If V has V̊ H 6= ∅, then we have an action map

µG/H : Map(G/H,X)×X → X

making X into a module over the EdimV H -space Map(G/H,X). If π0V̊
H = ∗, then

this is homotopically unique.

Proof. Proposition 2.20 shows that i∗HX is an EdimV H -space, and since coinduction
is a strong symmetric monoidal functor from H-spaces to G-spaces, we deduce that

MapH(G, i∗HX) ∼= Map(G/H,X)

is an EdimV H -space. The action map is given by any point in the spaceD(V )
ΓG/H

|G/H|+1,

which Corollary 2.10 shows is non-empty.
The only part of the proposition which requires proof is the assertion that this

action map makes X a module. For this, note that µG/H determines a disk deH
inside of D(V ), namely the one corresponding to the coset eH. This in turn gives
a map

D(V )m
∆G

−−→ Map
(
G/H,D(V )m

) µG/H−−−→ D(V )m|G/H|

which is G × Σm-equivariant. Here ∆G is the twisted diagonal adjoint to the
identity map on i∗HD(V )m, and Σm acts diagonally in the coinduced space and via

the diagonal copy of Σ
|G/H|
m in Σm|G/H|. Moreover, we here identify the element

µG/H with the equivariant map

G× Σ|G/H|/ΓG/H → D(V )|G/H|.

This map views D(V )m as being an arrangement of m little disks in deH , forming
the |G/H| collections of little m disks by conjugating by g, and then using the nat-
ural embedding of G×H deH into V given by µG/H . This map is visibly compatible
with compositions in the source, which gives the module structure.

The homotopical uniqueness follows from the homotopical uniqueness of µG/H
in the case the space V̊ H is path connected. �

Remark 2.25. We have not used the full-strength of the operadic action here. The
operad D(i∗HV ) acts on i∗HX and hence on Map(G/H,X). This also has norm maps,
by this procedure, and that endows X also with a compatible module structure over
this via

MapH
(
G,MapK(H, i∗KX)

)
×Map(G/H,X)×X → Map(G/H,X)×X → X.

2.2. The case of D(σ). Now let X be an algebra in spaces over D(σ). Here,
however, we run into the issue that σ is one dimensional. In particular, i∗eD(σ) is an
E1-operad, and hence we have no reason to believe that it is homotopy commutative.
One of the surprising features of a D(σ)-algebra is that it comes equipped with a
canonical isomorphism

i∗eX
∼=−→ i∗eX

op.

This is one of the defining features of a D(σ)-algebra, and it was independently
observed by Hahn-Shi in their study of the Real orientation of the Lubin-Tate
spectra [6].
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2.2.1. Underlying E1-space. Since σ is one dimensional, the space i∗eX is an E1-
space. The following is classical; we include it to emphasize the equivariance.

Proposition 2.26. Pulling the images of points in an embedding of {1, . . . , 2k} to
the points −k, . . . ,−1, 1, . . . , k in σ gives a Σ2k-homotopy equivalence

D(i∗eσ)2k ' Σ2k.

Pulling the images of points in an embedding of {1, . . . , 2k + 1} to the points
−k, . . . , k in σ gives a Σ2k+1-homotopy equivalence

D(i∗eσ)2k+1 ' Σ2k+1.

We write these symmetrically because then the underlying action of C2 on σ
preserves the preferred images: the sets {±1, . . . ,±k} and {±1, . . . ,±k, 0} are C2-
equivariant subsets of σ. Of course, the underlying story does not a priori care about
what collection of points we choose, and our analysis of the underlying structure
does not care what collection of points in σ we choose. By having a C2-invariant
subset, however, we underscore the connection with the fixed points.

Under any choice of points, we see that the underlying C2 sign action turns an
ordered collection of points into one with the opposite order. Since C2 is abelian,
this is also a C2-equivariant map from D(σ) to itself. This shows the following.

Proposition 2.27. If X is a D(σ)-algebra, then the non-trivial element of C2 acts
on X as an anti-automorphism of E1-algebras.

This is exactly what makes the fixed points of a D(σ)-algebra not have a product:
the action and multiplication do not commute.

Remark 2.28. If X = ΩσY , then the effect of the anti-automorphism from Propo-
sition 2.27 in homotopy is readily understood: it is inversion.

2.2.2. Norms and actions. The analysis in the previous section shows that X comes
equipped with a collection of structure maps

Map(kC2 + εC2/C2, X) ∼= Map(C2, X)k ×Xε → X,

as k ranges over the natural numbers and ε is 0 or 1. Since dim i∗eσ = 1, this is
homotopically quite simple.

Proposition 2.29. For all k and ε, the space of structure maps is a homotopy
discrete AutC2(kC2)-torsor.

Emb(kC2, σ) ' AutC2(kC2).

Proof. The space (̊σ)e is R× ∼= C2 × R. Given any embedding, we can pull the
images like beads on a string so that they become {±1, . . . ,±k}. This is obviously

AutC2(kC2)-equivariant. �

Thus up to homotopy, there is a unique such map for each automorphism of kC2,
and moreover, the automorphisms generated by 2 kinds:

(1) Ordinary permutations of the C2-sets and

(2) the action of C2 = AutC2(C2) on each summand.

Let γ be the non-trivial element of C2. Here, we have 2 norm maps

nC2
e : Map(C2, X)→ X and nC2

e ◦ γ : Map(C2, X)→ X,



10 MICHAEL A. HILL

and 2 action maps

µC2 : Map(C2, X)×X → X and µC2 ◦ γ : Map(C2, X)×X → X.

The identification of the embedding space from Proposition 2.29 is compatible
with restriction, giving us the chosen points in Proposition 2.26. Observing that
the ordering of the negative integers is again opposite those of the positive shows
the following.

Proposition 2.30. As E1-space, we have

i∗e Map(C2, X) ∼= i∗eX × i∗eXop,

the enveloping algebra of i∗eX.

Of course, Proposition 2.27 shows that as E1-spaces, this is isomorphic to the
Cartesian square of i∗eX. Using this hides the more natural ordering of the coordi-
nates.

Corollary 2.31. The restriction of the norm map is the multiplication map

(i∗eX × i∗eXop)→ i∗eX.

The restriction of the action map is the bimodule action map

(i∗eX × i∗eXop)× i∗eX → i∗eX.

The Map(C2, X)-module map condition restricts to the observation that these are
maps of i∗eX-bimodules.

3. Cohomology of D(σ)-algebras

3.1. RO(C2)-graded algebra. To describe the structure seen in the homology
of a D(σ)-algebra, we need to work in the category of RO(C2)-graded Mackey
functors. A wonderful introduction is provided by Lewis and Mandell in their
study of equivariant Künneth and Universal Coefficients Spectral Sequences [9],
especially Sections 2 and 3 therein. We include here only what we need.

Definition 3.1 ([9, Definition 2.2]). An RO(C2)-graded Mackey functor is a col-
lection of Mackey functors Mα, where α ranges over the virtual representations of
C2.

A map of RO(C2)-graded Mackey functors f : M? → N? is a collection of maps
of Mackey functor fα : Mα → Nα, where α ranges over the virtual representations
of C2.

There are natural suspension functors which change the gradings in the expected
ways.

Definition 3.2. If M? is an RO(C2)-graded Mackey functor and if α is a virtual
representation of C2, then let ΣαM? be the RO(C2)-graded Mackey with

(ΣαM)τ = Mτ−α.

Just as with ordinary abelian groups, the category of RO(C2)-graded Mackey
functors inherits a closed symmetric monoidal structure from Mackey functors.

Proposition 3.3 ([9, Proposition 2.5]). There is a close symmetric monoidal cat-
egory structure on the category of RO(C2)-graded Mackey functors extending the
box product on Mackey functors.
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Definition 3.4. An RO(C2)-graded Green functor is an associative monoid for
the box product in RO(C2)-graded Mackey functors.

Proposition 3.5 ([9, Proposition 3.10(a)]). If R? is a commutative RO(C2)-graded
Green functor, then there is closed, symmetric monoidal category of R?-modules.

Remark 3.6. There is a subtlety as to what graded commutativity means in the
RO(C2)-graded setting, since commuting the sign representation past itself intro-
duces an exotic element of the Burnside ring. In the applications below, this unit
of the Burnside ring maps to −1, and hence this is ordinary commutativity.

We can further unpack the internal Hom to understand maps in this category a
little better. We introduce some useful notation.

Definition 3.7. Let T be a finite G-set, and let AT denote the Mackey functor:

AT (T ′) := A(T × T ′).

Viewing this as an RO(C2)-graded Mackey functor in degree zero, if R? is a com-
mutative RO(C2)-graded Green functor, let

RT? := R?�A
T .

Finally, if M? is an R?-module, then let

MT
? := M?�R

T
? .

Proposition 3.8 ([9, Proposition 4.2]). Let M? be an R?-module. Then we have
a natural isomorphism

Hom0
R?

(ΣαRT? ,M?)(C2/C2) ∼= Mα(T ).

In other words, maps out of the projective R-modules ΣαRT? recover the value
at T of the αth Mackey functor of an R?-module.

The shifts RT? have a second nice interaction with the symmetric monoidal struc-
ture.

Proposition 3.9. For any finite G-sets T and T ′ and for any R?-module M?, we
have natural isomorphisms

RT?�R?
MT ′

?
∼= MT×T ′

? .

In our cases of interest below, we will be considering only special modules.

Definition 3.10. Let R? be an RO(C2)-graded Green functor, and let M? be an
R?-module. Then we say that M? is free if there is an isomorphism of R?-modules

M?
∼=

(⊕
s∈S∗

ΣαsR?

)
⊕

 ⊕
t∈SC2

ΣβtRC2
?

 .

3.2. Coinduction and the norm. Any algebra X over D(σ) in spaces is endowed
with operadic transfer maps

Mape(C2, X)→ X.

By naturality of homology, this gives us a map

H?

(
Mape(C2, X);M

)
→ H?(X;M)
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for any Mackey functor M , which is a kind of twisted analogue of the Pontryagin
product on the homology of an associative algebra in spaces. We make this precise
here.

Definition 3.11. A graded set is a set S together with a map S
deg−−→ Z.

This allows us to describe what we see in algebra for the Bredon homology of
coinduction. We remark that there is almost the expected universal property: the
difficulty is that maps out of R itself in degree 0 is a priori non-zero for a great
many RO(C2)-graded suspensions of R.

Definition 3.12. Let S be a graded set. We define a kind of RO(C2)-grading on
the C2-set Mape(C2, S) as follows. If f ∈ Mape(C2, S), then define

deg(f) :=

{
deg

(
f(e)

)
+ deg

(
f(g)

)
f(e) 6= f(g)

deg
(
f(e)

)
ρ2 f(e) = f(g).

In particular, for for each point f ∈ Mape(C2, S), we have assigned a virtual
representation for the subgroup Stab(f). Since C2 is abelian, this is all we need to
form wedges of the form ∨

f∈Mape(C2,S)

Sdeg(f) ∈ SpC2 .

Theorem 3.13. Let R be a ring and let X be a space such that the homology
of X with coefficients in R is free on a graded set S. Then the Bredon homol-
ogy of Mape(C2, X) with coefficients in NC2

e R is free on the RO(C2)-graded set
Mape(C2, S).

Proof. The graded set S gives a weak equivalence of HR-module spectra∨
s∈S

Sdeg(s) ∧HR '−→ Σ∞+ X ∧HR.

If we apply the norm NC2
e to both sides, then we deduce an equivalence of NC2

e HR-
module spectra

NC2
e

(∨
s∈S

Sdeg(s)

)
∧NC2

e HR
'−→ NC2

e (Σ∞+ X) ∧NC2
e HR.

The distributive law applied to the source gives an isomorphism of NC2
e HR-modules

NC2
e

(∨
s∈S

Sdeg(s)

)
∧NC2

e HR '
∨

f∈Mape(C2,S)

Sdeg(f) ∧NC2
e HR.

Similarly, since the infinite suspension is strong G-symmetric monoidal, we have a
natural equivalence

NC2
e Σ∞+ X ' Σ∞Mape(C2, X).

Finally, since HR can be modeled by a commutative ring spectrum, NC2
e HR is a

C2-equivariant commutative ring spectrum, so the category of modules thereover is
symmetric monoidal. The map from a (−1)-connected C2-equivariant commutative
ring spectrum to its zeroth Postnikov section preserves C2-equivariant commutative
ring spectra, and

π0N
C2
e HR ∼= NC2

e R,
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where the righthand norm is the Mazur-Hoyer norm on Mackey functors [11], [8].
Base-changing along the zeroth Postnikov map

NC2
e HR→ HNC2

e R

gives the desired result. �

Remark 3.14. There is also a coordinate-free version of this result. We have a
canonical isomorphism of simplicial G-sets

Mape
(
C2,Sing•(X)

) ∼= Sing•
(

Mape(C2, X)
)
.

In particular, this produces a canonical isomorphism of simplicial Mackey functors
upon applying the Burnside Mackey functor (or more generally, any other coeffi-
cients). The left-hand side is essentially the definition of the Mazur-Hoyer norm is
simplicial Mackey functors. We will return to this more generally in a subsequent
paper.

We pause here to clarify a small notational point. The set over which we take
our wedge in the proof of Theorem 3.13 is a C2-set. In particular, the action on
the indexing set is combined with the action on the individual factors. Thus if
f ∈ Mape(C2, S) has f(e) 6= f(g), then the summands corresponding to f and to
g · f are switched by the group action. Thus we could rewrite the sum as∨

f∈Mape(C2,S)/C2

C2+ ∧Stab(f) S
deg(f) ∧HNC2

e R.

Since cohomology with coefficients in a field is always free, this gives us a nice
family of space for which we know Bredon homology groups.

Definition 3.15. Let B = NC2
e F2. This is the Green functor

Z/4

1

** Z/2

2

jj

Definition 3.16. Let
B? := π?HB.

Proposition 3.17. The RO(C2)-graded Mackey functor B is naturally a commu-
tative RO(C2)-graded Green functor.

Proof. The Eilenberg-Mac Lane spectrum HB is a commutative ring spectrum by
work of Ullman. Since π? is a lax monoidal functor (see, for a complete proof [9,
Appendix A]), the result follows. �

Since B is a quotient of the constant Mackey functor Z, the sign rule here is the
ordinary one, using only the underlying dimension of the representations.

Corollary 3.18. If X is any space, then the Bredon homology of Mape(C2, X)
with coefficients in B is a free B?-module.

This can also be identified with a purely algebraic functor: the norm in RO(C2)-
graded Mackey functors. This is the obvious extension of the Mazur-Hoyer norm,
taking into consideration the canonical isomorphism

NC2
e ΣkM ∼= ΣkρNC2

e M.
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This, plus the distributive law, immediately gives the following.

Corollary 3.19. If X is any space, then the Bredon homology of Mape(C2, X)
with coefficients in B is isomorphic to

NC2
e H∗(i

∗
eX;F2).

More generally, we get a freeness result for any module over B. Since the Bredon
homology with coefficients in B is a free RO(C2)-graded module, it is flat over B?.
In particular, the universal coefficients spectral sequence collapses.

Corollary 3.20. If M is any B-module, then

H?

(
Mape(C2, X);M

) ∼= NC2
e

(
H∗(X;F2)

)
�BM,

which splits as an RO(C2)-graded sum of copies of M .

In particular, this implies a fairly strong form of a Künneth isomorphism.

Proposition 3.21. If X is a space and Y is a C2-space, then we have a natural
isomorphism

H?

(
Mape(C2, X)× Y ;B

) ∼= H?

(
Mape(C2, X);B

)
�B?

H?(Y ;B).

Proof. The Lewis-Mandell RO(C2)-graded Künneth spectral sequence collapses,
since H?

(
Mape(C2, X);B

)
is a free module. �

Finally, there is a pointed version of all of these results; the proofs are essentially
unchanged.

Proposition 3.22. If X is a pointed space, then

H̃?

(
NC2
e X;B

) ∼= NC2
e

(
H̃∗(X;F2)

)
.

3.3. Cohomology of D(σ)-spaces. We can now combine the structural results
from § 2.2 to determine the structure present in homology of a signed loop space.
We begin with a small definition.

Definition 3.23. Let R be an associative ring. A pointed R-module is an R-
module M together with an element m ∈M .

By the free-forget adjunction, this is of course the same data as an R-module
homomorphism R→M .

Theorem 3.24. Let X is an algebra over D(σ). Let

R∗ = H∗(i
∗
eX;F2)

and let
R? = NC2

e R∗ ∼= H?

(
Map(C2, X);B

)
.

Then

(1) R∗ is a graded, associative ring equipped with an isomorphism

(-) : R∗ → Rop∗

(2) H?(X;B) is naturally a pointed R?-module, and the restriction of distin-
guished point is the multiplicative unit in R∗.

Remark 3.25. The pointing in Theorem 3.24 gives us a kind of norm map on the ho-
mology. This has been used most recently by Behrens-Wilson in their construction
of HF2 as a Thom spectrum [1].
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3.4. Aside: Even more structure. Just as the homology of any space with
coefficients in a field is a co-commutative co-algebra, the homology of a C2-space
with coefficients in B has kinds of comultiplications. These arise from the two
[twisted] diagonals:

X
∆−→ X ×X and X

∆g−−→ Map(C2, X).

Applying homology with coefficients in B then gives structure maps.

Proposition 3.26. If X is any C2-space, then the homology of X with coefficients
in B has a natural co-norm map

H?(X;B)→ NC2
e H∗(i

∗
eX;F2).

Proof. Corollary 3.19 identifies the homology of the target of the map H?∆g. �

In the case we have flatness, then we can deduce also a comultiplication.

Proposition 3.27. If X is a C2-space such that H?(X;B) is a flat B?-module,
then we have a natural comultiplication

H?(X;B)→ H?(X;B)�B?
H?(X;B).

In this case, H?(X;B) is naturally a co-Tambara functor.

Since these are induced by natural maps of spaces, we deduce that all of the
structure maps described before are actually maps of co-Tambara functors.

4. The signed James construction

4.1. Construction and interpretation. Just as classically there is a combina-
torial model for the loop space of the suspension of a space, there is an elegant
combinatorial model due to Rybicki for the signed loops on the signed suspension
of a C2-space.

Definition 4.1 ([13, Section 2]). If X is a pointed C2 space, then let

Jσn (X) :=

n∐
k=0

X×k/ ∼,

where C2 acts on X×k via

(x1, . . . , xk) 7→ (x̄k, . . . , x̄1),

and where ∼ is the equivalence relation which simply omits any coordinate which
is the basepoint.

Let Jσ(X) be the colimit of Jσn (X) as n varies.

The intertwining of the C2-action on the space and on the Cartesian factors
is what makes this definition viable. For us, we will need an inductive pushout
description of the finite Jσk (X).

Lemma 4.2. Let X be a pointed C2-space. For a finite C2-set T , let FT (X) denote
the “fat wedge” for Map(T,X), that is, the collection of points in Map(T,X) for
which one of the coordinates is the basepoint.

We have pushout squares of C2-equivariant spaces:
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FnC2
(X) Map(C2, X)n

Jσ2n−1(X) Jσ2n(X)

and

FnC2q∗(X) Map(C2, X)n ×X

Jσ2n(X) Jσ2n+1(X).

4.2. Splitting the signed James construction. Classically, the James construc-
tion splits after a single suspension into a wedge of a suspension of smash powers
of the original space. Here, the presence of two kinds of products requires two
suspensions.

Theorem 4.3. For any pointed C2-space of the homotopy type of a C2-CW com-
plex, we have a natural weak equivalence

Σρ+J
σ(X) '

∨
k≥0

Σρ(NC2
e i∗eX

∧k) ∧ (S0 ∨X).

Proof. This is immediate from Lemma 4.2, once we remember that we have equi-
variant homeomorphisms

Map(C2, X
×k)/FkC2

(X) ∼= (NC2
e i∗eX)∧k,

and (
Map(C2, X

×k)×X
)
/FkC2q∗(X) ∼=

(
NC2
e i∗eX

∧k) ∧X.
Theorem A.4 below shows that upon a single sign or regular suspension, the top

row in both pushout squares from Lemma 4.2 splits. In particular we deduce two
splittings

ΣρJσ2n(X) ' ΣρJσ2n−1(X) ∧NC2
e (X)∧n

and

ΣρJσ2n+1(X) ' ΣρJσ2n(X) ∧
(
NC2
e (X)∧n

)
∧X.

Splicing these together gives the desired result. �

Corollary 4.4. For any k and for any C2-space X, we have James-Hopf maps of
the form

hkC2
: ΩσΣσX → ΩρΣρNC2

e i∗eX
∧k

and

hkC2+1 : ΩσΣσX → ΩρΣρ(X ∧NC2
e i∗eX

∧k).

Proof. These are adjoint to the projections onto the summands of the splitting of

ΣρJσ(X) ' ΣρΩσΣσX. �

Specializing to the case of X a sphere, we have a sequence of maps which are
equivariant refinements of the James-Hopf map.

Corollary 4.5. For any natural numbers j, k, we have a James-Hopf map

hC2 : ΩσSj+(k+1)σ → ΩρS(j+k+1)ρ.

There are two somewhat surprising features (and computationally vexing) as-
pects of this:

(1) We see an extra loops appearing (here in the form of Ωρ = ΩΩσ), making
an analysis of the fiber trickier than in the classical case, and

(2) the target of the map depends only on the underlying, non-equivariant
sphere, and not on the particular equivariant sphere used.
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4.3. The homology of the James construction. As an immediate consequence
of the stable splitting of the James construction, we can compute the Bredon ho-
mology of the signed James construction with coefficients in B.

Theorem 4.6. For any C2-space X, we have an isomorphism of RO(C2)-graded
Mackey functors

H?

(
JσX;B

) ∼= ( ∞⊕
i=0

NC2
e

(
H̃∗(i

∗
eX;F2)⊗i

))
�
(
B? ⊕ H̃?(X;B)

)
.

Proof. The stable splitting of the signed James construction yields

Σ∞ρ+ JσX '

( ∞∨
i=0

NC2
e (i∗eX)∧i

)
∧ (S0 ∨X).

Proposition 3.22 together with the classical Künneth theorem shows that

H?

( ∞∨
i=0

NC2
e (i∗eX)∧i;B

)
∼=

( ∞⊕
i=0

NC2
e

(
H̃∗(i

∗
eX;F2)⊗i

))
.

The pointed version of Proposition 3.21 then gives the rest. �

Remark 4.7. There is a version of the Bott-Samelson theorem for the signed loops,
which allows us to describe the homology as a particular algebraic functor [3]. For
this case, it is possible to work out directly, though the analysis is a bit unenlight-
ening. In short, it is the free D(σ)-algebra in Mackey functors on H̃?(X;B). The
difficulty here is describing the twisted powers, just as with the norm in spaces
above. In joint work with Tyler Lawson, we will return to this point.

Appendix A. Splitting C2-coinduction

Classically, the Cartesian product splits into the wedge and smash products
after a single suspension. Equivariantly, we have instead our G-Cartesian monoidal
structure on G-spaces, and this necessitates a more general splitting result. We
begin with a non-example.

Proposition A.1. All suspensions by trivial representations of the C2-equivariant
map Sσ → C2+ ∧ S1 with cofiber Mape(C2, S

1) are essential.

Proof. The standard picture showing the 2-torus as a quotient of the square can be
visibly made equivariant. In this case, all that follows is simply reinterpreting that
picture.

First observe that the standard C2-equivariant cell-structure of Sσ (and hence
of Sk+σ) gives us an exact sequence (of pointed sets, if k = 0):

[S1+k, C2+∧S1+k]C2 → [C2+∧S1+k, C2+∧S1+k]C2 → [Sσ+k, C2+∧S1+k]C2 → [Sk, C2+∧S1+k]C2 .

Since the C2-action on Sk and S1+k is trivial, and since the C2-fixed points of any
space of the form C2+ ∧X are a point, we conclude that the two outer terms both
vanish. Thus for all k, the map

[S1+k, i∗eC2+ ∧ S1+k] ∼= [C2+ ∧ S1+k, C2+ ∧ S1+k]C2
q∗−→ [Sσ+k, C2+ ∧ S1+k]C2

induced by the collapse map Sσ → C2+ ∧ S1 is an isomorphism. In particular, the
suspension map is an isomorphism as well for all k ≥ 1, by the classical result, and
the suspension for k = 0 is abelianization.
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We pause here to point out a simple geometric fact: the inverse to q∗ is the
function that assigns to a C2-equivariant map

f : Sσ → C2+ ∧ S1

the non-equivariant map f |Im(z)≥0, where we are viewing Sσ as the unit circle in C.

Unpacking the standard description of the attaching map for S1 × S1 shows that
the map Sσ → C2+∧S1 here corresponds to the standard crush map S1 → S1∨S1,
which survives abelianization. �

Remark A.2. The curious fact we used here is that while the underlying non-
equivariant map is the commutator of the two canonical inclusions S1 ↪→ S1 ∨ S1,
as a C2-equivariant map, the upper and lower semi-circles are oriented the same
way. In particular, we never trace out the inverses, equivariantly.

As should at this point be unsurprising, if we use twisted suspensions and a
twisted version of the join, then we can prove a splitting result.

Definition A.3. If X is a C2-space, then let

X∗C2 := Map(C2, X)×D(σ)/ ∼,

where ' is the equivalence relation

∀x, y, y′ ∈ X, (x, y,−1) ∼ (x, y′,−1)

∀x, x′, y ∈ X, (x, y, 1) ∼ (x′, y, 1).

If X is a pointed C2-space with basepoint x0, then the reduced version (which
we will also denote X∗C2) collapses the subspace (x0, x0)×D(σ).

Since the group action on Map(C2, X)×D(σ) is given by

(x, y, t) 7→ (y, x,−t),

the equivalence relation is built to be equivariant.
Using this twisted version of the join, we can prove the analogue of the ordinary

splitting of the product.

Theorem A.4. Let X be a based C2 space of the homotopy type of a C2-CW
complex. Then we have a natural weak equivalence

Σσ Map(C2, X) ' (C2+ ∧ ΣX) ∨ ΣσNC2
e X.

Proof. Let x0 denote the basepoint of X. There is a canonical map

C2+ ∧X → X∗C2

given by

(g, x) 7→ g · (x, x0, 1).

Using this, we can attach the cone on C2+ ∧X:

Y = C2+ ∧ CX ∪X∗C2 .

On the one hand, since the cone on C2+ ∧ X is equivariantly contractible, the
quotient map crushing it to a point is a homotopy equivalence:

Y
'−→ Y/(C2+ ∧ CX) ∼= Σσ Map(C2, X),

where the final homeomorphism is the standard one identifying D(σ)/S(σ) ∼= Sσ.
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On the other hand, the non-equivariant embedding CX ↪→ X∗C2 given by

(x, t) 7→ (x, 2t− 1)

obviously extends to an equivariant embedding

C2+ ∧ CX ↪→ X∗2,

which shows that the subcomplex C2+ ∧ X inside of the twisted join is null-
homotopic. Thus we have an equivalence

Y ' Y/(C2+ ∧X) ' (C2+ ∧ ΣX) ∨X∗C2/(C2+ ∧ CX).

However, the embedded copy of C2+ ∧ CX consists of all points of X∗C2 of the
form (x, y, t) where at least one of x and y is x0. In particular, we have an obvious
homeomorphism

X∗C2/(C2+ ∧ CX) ∼= ΣσNC2
e X,

finishing the proof. �

Remark A.5. The apparently asymetrical appearance of Σ rather than Σσ for the
wedge can be explained by the fact that these agree when we forget the equivariance.
We therefore have a natural homeomorphism

ΣσC2+ ∧X ∼= ΣC2+ ∧X.
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