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ABsSTRACT. Thissurvey of model categories and their applications in algebraic topol-
ogy is intended as an introduction for non homotopy theorists, in particular category
theorists and categorical topologists. We begin by defining model categories and
the homotopy-like equivalence relation on their morphisms. We then explore the
question of compatibility between monoidal and model structures on a category. We
conclude with a presentation of the Sullivan minimal model of rational homotopy
theory, including its application to the study of Lusternik-Schnirelmann category.

INTRODUCTION

Model category theory, first developed in the late 1960’s by Quillen [17], has
become very popular among algebraic topologists in the past five years. A model
category is a category endowed with three distinguished classes of morphisms, called
fibrations, cofibrations and weak equivalences, satisfying axioms that are properties
of the topological category and its usual fibrations, cofibrations and homotopy
equivalences. In any model category there is a notion of homotopy of morphisms,
based upon the definiton of homotopy of continuous maps.

The primary source of topologists’s current interest in model categories is prob-
ably their application to formalizing the underlying structure of stable homotopy
theory. For more than 30 years the framework of stable homotopy theory was
Boardman’s stable category or one of its variants, due to Adams or to Lewis and
May. The stable homotopy category, which is a closed, symmetric, monoidal cat-
egory, is in some ways a topological version of the derived category obtained from
the category of chain complexes by inverting all quasi-isomorphisms. The analogy
is not perfect, however, as the “tensor product” defined on the category underly-
ing the stable homotopy category is neither associative nor commutative. Thus,
when topologists applied algebraic methods to spectra, products and actions were
specified only up to homotopy, which often led to highly delicate computations.

Only in the past five years or so have topologists discovered model categories with
appropriately compatible monoidal structure such that the associated homotopy
category 1s equivalent as a monoidal category to the stable homotopy category.
Examples of such monoidal model categories include the category of S-modules of
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Elmendorf, Kriz, Mandell and May [5], the category of symmetric spectra of Hovey,
Shipley and Smith [13] and the category of I'-spaces of Lydakis [16].

Model categories have also been essential to the development of algebraic homo-
topy theory. Given a topological problem to solve, such as the problem of lifting,
extending or factoring a given continuous map, the algebraic homotopy theorist
first chooses an appropriate algebraic model, i.e., an “algebraic” category C en-
dowed with a reasonable notion of “homotopy” of morphisms, together with a
functor F :T7OP——=C, that preserves the homotopy relation. He then trans-
lates the topological problem via the functor F' into algebraic terms and studies
the resulting algebraic problem, with the aim of obtaining information about the
topological situation.

The algebraic homotopy theorist chooses C and F based on “economic” consid-
erations, endeavoring to acheive equilibrium between the information lost in trans-
lation and the ease of computation. He will therefore select C and F' in function of
the structure to be examined and the requisite depth of detail.

The methods of algebraic homotopy theory have proved quite fruitful, notably
in rational homotopy theory, as we indicate in the final section of this article.

The aim of this article, which is based on the author’s lectures at the CATOP2000
conference in honor of Prof. Kleisli, is to introduce model categories and their appli-
cations in algebraic topology to non homotopy theorists, in particular to category
theorists and to categorical topologists. We have chosen therefore to omit most
proofs, focussing instead on examples and applications. The orientation and scope
of this article is thus rather different from that of the survey article [4] of Dwyer
and Spalinski, which the author highly recommends as complementary reading.

The first section of the article consists in a very concise refresher course in the
homotopy theory of topological spaces. Model categories and the definition of a
homotopy-like equivalence relation therein are the subject of Section 2. In Section
3 we examine conditions of compatibility between model category structure and
monoidal structure. We conclude in Section 4 with a brief presentation of one of
the best-known algebraic models, the Sullivan model of rational homotopy theory,
including an example of a topological problem to which it was successfully applied.

1. THE HOMOTOPY THEORY OF TOPOLOGICAL SPACES

Given two topological spaces A and X, the homotopy equivalence relation on the
set TOP(A, X) of continuous maps from A to X can be defined in two equivalent
ways: in terms of the cylinder on A or in terms of the path space on X.

Let I denote the interval [0,1]. The cylinder on A is the product space A x I,
which fits into the following diagram

7

A<;> AxT <i1_)A
k\”l /
A
where i;(a) = (a,t) and 7(a,t) = a. Two continuous maps f,g: A——=X are left

homotopic if there is a continuous map H : A X [——=X such that the following
diagram commutes.
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N
¥ 9
X
The path space on X, denoted X', is the space {\: [—=X | \ continuous}

endowed with the compact-open topology. The path space fits into the following
commutative diagram

where py(\) = A(t) and e(y) is the constant path at y. Two continuous maps
f,g: A——=X are right homotopic if there is a continous map K : A——=X'
such that the following diagram commutes.

It is not difficult to see that both right and left homotopy define equivalence
relations on TOP(A, X), and that their sets of equivalence classes are the same. If
f and g are (right or left) homotopic, we write f ~ g.

The research of homotopy theorists often consists of seeking the solution to
topological problems up to homotopy, i.e., it is the homotopy class of a continuous
map, rather than the map itself, that is important.

There are three distinguished classes of continuous maps that together determine
the homotopy theory of topological spaces: the classes of homotopy equivalences,
fibrations and cofibrations. A map f : A——=X is a homotopy equivalence if there
exists amap ¢ : X ——=A such that gf ~ 14 and fg ~ 1x. A (Hurewicz) fibration
is a continuous map p : E——— B that has the homotopy lifting property, i.e., given
any commutative diagram of continuous maps

Yy —" > F

v xI-2 ~p

there is a continuous map H:Y x I—F such that Hig = h and pﬁ = H. The
homotopy H thus lifts H through p and extends h over 5. An inclusion of a closed
subspace i : A———=X is a (closed, Hurewicz) cofibration if ¢ has the homotopy
extension property, i.e., given any commutative diagram of continuous maps

A—">y1

12 - Po

X..—k>Y
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there is a continuous map K : X—=Y' such that pof/&\’ — k and Ki = K. The

homotopy K thus extends K over i and lifts & through pg.

The axioms of a model category, stated in Section 2, codify the properties of
these three classes that are essential to the definition of a reasonable homotopy-like
equivalence relation in an abstract category.

2. MODEL CATEGORIES

In this section we first present the precise definition of model categories, as well
as a few of their elementary properties. We then explain how to define a homotopy
relation on the sets of morphisms C(A, X) in a model category C, at least for A and
X satisfying additional, usually mild hypotheses. Given the definition of the ho-
motopy relation, we construct the homotopy category of a model category C, which
is a localization of C with respect to a certain distinguished class of morphisms,
then provide conditions under which a functor between model categories induces
an equivalence on their homotopy categories.

Cofibrantly generated model categories, which are model categories in which
the entire model structure can be generated in a natural manner by two distin-
guished classes of maps, are the next topic of this section. Though their definition
is somewhat technical, it is often much easier to prove theorems about cofibrantly
generated model categories than about general model categories. Fortunately, many
familiar model categories are cofibrantly generated. The notion of cofibrant gener-
ation is essential to understanding the compatibility between model and monoidal
structures in Section 3.

We conclude this section with several examples of model categories.

We refer the reader to either the survey article [4] of Dwyer and Spalinski or the
monograph [11] of Hovey for further details and missing proofs. In particular, our
presentation of cofibrantly generated categories is based on that in [11].

2.1 Definition and elementary properties of model categories.

Definition. Let Z be a subset of Mor C. A morphism f: A——=PB in C satis-
fies the left lifting property with respect to Z, denoted f € LLP(T), if for every
commutative diagram

lb

<~
Eral
%\\
<= a

Y :

of morphisms in C with ¢ € I, there exists a morphism k : B——=C such that
gk =k and kf = h.

Dually, we say that f has the right lifting property with respect to Z, denoted
f € RLP(T), if for every commutative diagram

lb

<0
A
<~
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of morphisms in C with ¢ € I, there exists a morphism j: D——=A such that

fk =k and kg = h.

Recall that a morphism f in a category C is a retract of a morphism ¢ if there
is a commutative diagram of morphisms in C

r
- >
g

S
- >

o<—0

s
!
J
—

o<—20

such that r and sj are identity morphisms.

Definition. A model category consists of a category C, together with classes of
morphisms WE, Fib,Cof C Mor C that are closed under composition and contain
all identities, such that the following axioms are satisfied.

(M1) All finite limits and colimits exist.

(M2) Let f: A——=B and g: B——=C be morphisms in C. If two of f, g, and
gf are in WE, then so is the third.

(M3) If f is a retract of ¢ and g belongs to WE (respectively Fib, respectively
Cof), then f also belongs to W E (respectively Fib, respectively Cof).

(M4) Cof C LLP(Fibn WE) and Fib C RLP(Cof N WE).

(M5) If f € Mor C, then there exist
(a) 1 € Cof and p € FibN WE such that f = pi;
(b) j € Cof NWE and ¢ € Fib such that f = ¢j.

By analogy with the homotopy structure in the category of topological spaces, the
morphisms belonging to the classes W E, Fib and Cof are called weak equivalences,

fibrations, and cofibrations and are denoted by decorated arrows ——>, —s_ and
>—— . The elements of the classes FibNW E and CofNW E are called, respectively,
acyclic fibrations and acyclic cofibrations. Since WE, Fib and Cof are all closed
under composition and contain all isomorphisms, we can and sometimes do view
them as subcategories of C, rather than simply as classes of morphisms.

Axiom (M1) implies that any model category has an initial object ¢ and a
terminal object e. An object A in a model category is cofibrant if the unique
morphism ¢——=A is a cofibration. Similarly, A is fibrant if the unique morphism
A——>¢ is a fibration.

Since the axioms of a model category imply that the classes Fib and W E deter-
mine Cof, while the classes Cof and W E determine F1b, it is clear that the above
set of axioms 1s not minimal. One definite esthetic and practical advantage to this
choice of axioms, however, is the symmetry they express between cofibrations and
fibrations, which is the basis of Eckmann-Hilton duality in homotopy theory.

There are numerous variations on the model category theme, different ways of
endowing a category with additional structure enabling one to define a homotopy-
like equivalence relation. The cofibration categories of Baues [1], in which there are
only two distinguished class of morphisms, weak equivalences and cofibrations, are
probably among the best known and most widely applied of these variations. If C is
a model category in the sense of this paper, then its full subcategory consisting of
cofibrant objects, together with the corresponding subclasses of weak equivalences
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and cofibrations, is a cofibration category. We recommend the article [3] of Doeraene
to the reader interested in a comparative study of different types of categorical
structure leading to a reasonable definition of a homotopy-like equivalence relation.
The three elementary but useful properties of model categories stated in the
proposition below are easy consequences of the axioms of a model category.

Proposition 2.1.1. Let (C,WE, Fib,Cof) be a model category.
(1) Cof = LLP(FibAWE) and Fib = RLP(Cof N WE).
(2) Cof and Cof NWE are preserved under push-out.
(3) Fib and FibNWE are preserved under pull-back.

2.2 The homotopy relation in a model category.

Motivated by the definition of the homotopy relation in 7OP, we obtain the
following two possible definitions of homotopy of morphisms in an arbitrary model
category C. Unless A and X are chosen according the criteria we establish below,
the two definitions are not necessarily equivalent and do not necessarily determine
equivalence relations on C(A, X).

Throughout this section (C, WE, Fib,Cof) denotes a model category.

Definition. Given A € Ob C, consider the push-out of the morphism ¢——A
with itself

p—A

l l
J1 la

A——=AV A
X
1a

where V: AV A——=A denotes the “folding” map, i.e., the morphism induced by
the identity on each copy of A. Observe that AV A is a coproduct.

A

A cylinder on A consists of a factorization of V.

Cyl(A)

Let io = Z]O and il = Z]l
The cylinder is good if ¢ € C'of and very good if, in addition, p € FibN W E.
Let f,g: A——=X be morphisms in C. A left homotopy from f to g consists of
a morphism H : Cyl(A)——=X such that the diagram

AC S Cyl(A) <Oy

A

X

commutes, where AV A—i>Cyl(A)p—>A is any cylinder on A. We denote the
existence of a left homotopy from f to ¢ by f v 9
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The next proposition lists the elementary properties of left homotopy that are
essential to our purposes here.

Proposition 2.2.1.
(1) If A is a cofibrant object in C, then ~ is an equivalence relation on C(A, X)

for all objects X. The quotient set of left homotopy equivalence classes s
denoted 7*(A, X).

(2) If A is cofibrant and p: Y —>=X, then p induces an isomorphism
Pt TH(AY)——=7l(A X).
(3) If X s fibrant, then
f7g:B—>X, h7k:A—>B:>fh7gk:A—>X‘

The definition of path objects and right homotopy is dual (in the Eckmann-Hilton
sense) to the definition of cylinders and left homotopy.

Definition. Given X € Ob C, consider the pull-back of the morphism X ——se¢
with itself

1x
lpo l
X ———e¢

where A : X——=X x X denotes the “diagonal” map, i.e., the morphism induced
by the identity into each copy of X. Observe that X x X is a product.
A path object on X consists of a factorization of A.

X x X

X A
PX
Let go = poq and ¢1 = p1g.

The path object is good if p € Fib and very good if, in addition, y € Cof NWE.
Let f,g: A——=X be morphisms in C. A right homotopy from f to g consists

of a morphism K : A——=PX such that the diagram

X Po PX P1 X
wNlA
b g
A

commutes, where X L oPX—1oX x X is any path object on X. We denote

the existence of a right homotopy from f to g by f ~ g.
T

The elementary properties of right homotopy and their proofs are strictly dual
to those for left homotopy.
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Proposition 2.2.2.
(1) If X is a fibrant object in C, then ~ is an equivalence relation on C(A,X)

T
for all objects A. The quotient set of right homotopy equivalence classes s

denoted 7" (A, X).

(2) If X is fibrant and i : A=—"—=B, then i induces an isomorphism
ot (B,X)——7"(A, X).
(3) If A is cofibrant, then

frgi A—sX Ak X——Y=— hf ~kg: A—=Y

We are now prepared to study the relationship between right and left homotopy.

Lemma 2.2.3. Let f,g: A——=X be morphisms in C.
(1) If A is cofibrant and f v 9 then f ~ g.
(2) If X s fibrant and f ~ g, the f v 9

The following key definition is an easy corollary of the preceding lemma and
Propositions 2.2.1(1) and 2.2.2(1).

Definition/Corollary 2.2.4. Suppose that A is a cofibrant object and X is a
fibrant object in a model category (C,WE, Fib,Cof). There is an equivalence
relation ~ on C(A, X) such that f ~ ¢ if and only if f ~ g or, equivalently, if and

only if f ~ 9. When f ~ ¢, we say that f and g are homotopic.

The set of homotopy classes of morphisms from A to X is denoted 7(A4, X).
If A and X are both fibrant and cofibrant, then a morphism f: A——=X is a

homotopy equivalence if there is a morphism ¢ : X ——A such that ¢f ~ 14 and
fg~1x.

The property of the homotopy relation stated in the next proposition is an easy
but important consequence of Propositions 2.2.1(3) and 2.2.2(3).

Proposition 2.2.5. If A is cofibrant, X is fibrant and cofibrant, and Y 1is fibrant,
then
fr~g  A—sX h~vk: X—sY=—hf~kg: A—=Y.

Thus, in particular, composition preserves the homotopy relation on morphisms
such that the source and target are both fibrant and cofibrant.

The next proposition, when applied to the second model category structure given
for TOP (Example 2.5.1), yields the famous Whitehead Theorem, which states
that a weak homotopy equivalence between CW-complexes is actually a homotopy
equivalence.

Proposition 2.2.6. Suppose that A and X are objects that are both fibrant and
cofibrant in a model category (C,WE,Fib,Cof). If f: A——=X 1is a morphism

in C, then f is a weak equivalence if and only if it 1s a homotopy equivalence.
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2.3 The homotopy category of a model category.

The next step in our development of the theory of model categories is the
construction of the homotopy category of a model category (C,WE, Fib,Cof).
We begin by supposing that we have fixed for each object A a cofibrant model

o QA—">A and a fibrant model A>">RA e, where we require that
QA = A if Ais cofibrant and that RA = A if A is fibrant.

Definition. The homotopy category Ho C of a model category (C, WE, Fib,Cof)
is the category with Ob HoC = ObC and Ho C(A,X) = n(RQA, RQX).

Observe that Proposition 2.2.5 implies that the composition in Ho C is well
defined.

There is a natural quotient functor v : C———=Ho C that is the identity on objects
and that is defined on morphisms in two stages, as follows. Let f: A——=X be
any morphism in C. First consider the commutative diagram

0X

¢ 7
~ | px

QA > A——=>X

By axiom (M4) we can lift fpa through px to a morphism Qf: QA——QX.
Furthermore, Proposition 2.2.1(2) implies that all such lifts are left homotopic,
since QA is cofibrant. Then, by Lemma 2.2.3(1), they are all right homotopic as
well, also because QA is cofibrant.

Next consider the commutative diagram

Qf Jox

QA QX" RQX
jQAIN RQf l
RQA - e

Applying axiom (M4) again, we obtain a extension RQf of jox@Qf over jga, which
is unique up to homotopy for reasons strictly dual to those applicable to the con-
struction of Qf.

The functor ~ provides us with an alternate way of characterizing the homotopy
category. We first motivate this characterization by the following observation.

Proposition 2.3.1. Let f be a morphism in a model category (C, WE, Fib,Cof).
Then ~(f) is an wsomorphism if and only if f is a weak equivalence.

Recall that a localization of a category C with respect to a class of morphisms
S C Mor C consists of a functor F': C———=D such that

(1) ObC = ObD, and F is the identity on objects;
(2) F(s)is an isomorphism in D for all s € S; and
(3) if G:C——=¢& is any other functor such that G(s) is an isomorphism for

all s € 5, then there is a unique functor G : D—>& such that GF = G.



10 KATHRYN HESS

Theorem 2.3.2. The functor v:C——=Ho C 1s a localization of C with respect
to the class WE.

Thus the homotopy category of a model category depends only on its class of
weak equivalences.

We next explore the question of when a functor between two model categories
respects the homotopy relation, i.e., when it induces a functor on homotopy cate-
gories. It is particularly interesting to determine when such a functor induces an
equivalence of homotopy categories.

Definition. Let F':C——=D be a functor from a model category C to any cat-
egory D. A left derived functor of F' consists of a functor LF : Ho C——D to-
gether with a natural transformation ¢: LF o~v——=F such that for each pair
(G: HoC——=D, s: Go~y——=F) there exists a unique natural transformation
5 : G——=LF such that t5y = s.

Dually, a right derived functor of F' consists of a functor RF : Ho C——=7D to-

gether with a natural transformation ¢: F —— RF o+ such that for each pair

(G:HoC——=1D, s: F——= Go~) there exists a unique natural transforma-

tion §: RF——=G such that §vt = s.

For example, if F' sends all weak equivalences to isomorphisms in D, then the
definition of localization implies that there is a unique F: HoC—=D such that
ﬁ’y = F. Thus, in this case, LF = F =RF.

More generally, if F' sends all weak equivalences with cofibrant source and target
to isomorphisms, then the left derived functor of F exists. It is defined by LF(X) =

F(QX) and LF(f) = F(Qf), where QX —>X is the fixed cofibrant model and
Qf is constructed as above. There is a similar construction in the dual case.
We now consider the case in which C and D are both model categories.

Definition. Let F':C——=D be a functor between model categories. The left
total derived functor of F, denoted LF : Ho C———=Ho D, is the left derived func-
tor of the composition vpF. Dually the right total derived functor of F, denoted
RF: HoC——=Ho D is the right derived functor of the composition ~vp F'.

Proving the existence of a pair of adjoint functors between two categories is a first
step towards establishing an equivalence, hence the interest of the next definition.

Definition. Let (C, WE¢, Fibc,Cofc) and (D, W Ep, Fibp,Cofp) be model cat-
egories. A pair of adjoint functors F: C——=D: G is a Quillen pair if F(Cof¢) C
Cofp and G(Fibp) C Fibc.

It is easy to see that (F,G) is a Quillen pair if and only if G(Fibp) C Fibe and
G(Fibp NWEp) C Fibe N WE¢, which is in turn equivalent to F(Cofe¢) C Cofp
and F(Cofe NWE¢) C Cofp NW Ep. The proof of these equivalences applies the
adjointness of F' and G to the dual definitions of Fib and Cof in terms of lifting
properties.

A simple example of a Quillen pair is the adjoint pair W :C x C—=C: A,
where W(A x B) = AV B and A(A) = (A, A). The distinguished classes of the
model category C x C are the products of the distinguished classes of C.
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Proposition 2.3.3. A Quillen pair F:C——=D : G induces an adjoint pair

LF:HoC——=HoD:RG.

Definition. A Quillen pair F:C——=D : G is a Quillen equivalence if for all

AcObC,BcObD
f:FA— >BecWEp < ft . A— >GB € WEL,

where f* denotes the adjoint of f.

Proposition 2.3.4. The adjoint pair (LF,RG) induced by a Quillen equivalence
(F,G) s a pair of mutually inverse equivalences.

2.4 Cofibrantly generated model categories.

In many familiar model categories it is possible to choose relatively small fami-
lies of cofibrations and acyclic cofibrations that generate the entire model category
structure in a natural way. In such categories many theorems about model cate-
gories are easier to prove, as it suffices to prove them for the generating families.
We are also able in such a category to obtain functorial factorizations of the sort
required by axiom (M5).

The definitions and results presented below are essential to understanding Sec-
tion 3, where we state conditions ensuring compatability between model and monoidal
category structures.

We begin with a sequence of rather technical definitions that serve to explain
what it means for an object in a category to be small with respect to a class
of morphisms. The notion of smallness is essential in the definition of cofibrant
generation.

Definition. Let C be any cocomplete category.

(1) Let A be an ordinal. A A-suitein C is a functor X : \——==C, i.e., a diagram

Xo Xy Xo Xg (B <A),

such that the induced morphism colimg<,Xg——=X, is an isomorphism
for every limit ordinal ~.

(2) The composition of a A-sequence is the morphism Xo——=-colimg<xX3.

(3) Let D be a subcategory of C. A transfinite composition of D-morphisms is
the composition in C of a A-sequence such that Xg——X3 11 € Mor D for
all 8 < A.

(4) Let D be a subcategory of C. An object A in C is small with respect to
D if there is a cofinal set S of ordinals such that for all A € S and for all
A-sequences X : \——=7D, the induced set map

colimg<xC(A, Xg)——=C(A, colimpxXp)

is an isomorphism.
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Remarks.

(1) If (C,WE, Fib,Cof) is a cocomplete model category, it is relatively easy to
verify that Cof and Cof N W E are closed under transfinite composition.

(2) Definition (4) means in essence that a morphism from A into any sufficiently
long composition will factor through some stage of the composition.

(3) Every set is small with respect to the entire category of sets.

(4) Every finite, pointed CW-complex is small in the category of based topo-
logical spaces, with respect to the subcategory of pointed CW-complexes
and inclusions thereof.

We now introduce the three classes of morphisms naturally associated to a given
class in Mor C. The notion of “generation” in a cofibrantly generated category
refers to creation of these three classes.

Definition. Let C be any cocomplete category, and let Z C Mor C. The class of
morphisms 7 gives rise to the following three other classes.
(1) ZT—1inj := RLP(T)
(2) T —cof := LLP(T —inj)
(3) Z — cell is the class of morphisms f: A——=B in C for which there ex-
ist an ordinal A\ and a A-sequence X : A——=C such that Xy = A, each
Xp——Xg41 1s a push-out of a morphism in 7, and the composition

Xo—colimg<»Xz is isomorphic to f.

Note that Z — cell C 7T — cof.
The next theorem, which is one of the most useful tools in model category theory,
explains the importance of small objects and of the classes defined above.

Theorem 2.4.1 (The Small Object Argument). Let C be a cocomplete cate-
gory. Suppose that T C C s such that the source of every morphism i I 1s small
with respect to Z. Then there 1s a functor

(t,p): Mor C——=TI —cell x T —inj
such that f = p(f)ou(f) for all f € Mor C.

The definition below of cofibrantly generated model categories is inspired by
the desire to apply the Small Object Argument to the construction of functorial,
(M5)-type factorizations of morphisms in a model category.

Definition. A model category (C,WE, Fib,Cof) is cofibrantly generated if there
exist two classes Z, 7 C Mor C such that

(1) The source of every morphism in 7 is small with respect to C'of, while the
source of every morphism in J is small with respect to Cof N WE.
(2) Fib=J —inj and FibNWE =7 — inj.
The elements of 7 and J are then called generating cofibrations and generating
acyclic cofibrations, respectively.

Observe that condition (2) of the definition above implies that Cof = Z — cof
and Cof NWE = J — cof.

It is clear that in a cofibrantly generated model category, one can always apply
the Small Object Argument to the classes of generating cofibrations and generating
acyclic cofibrations, thereby obtaining functorial factorizations as in axiom (M5).
Furthermore, in a cofibrantly generated model category, many results involving
conditions on cofibrations can be proved by transfinite induction, via A-sequences.
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2.5 Examples of model categories.

Example 2.5.1. There are two well-known and oft-employed model category struc-
tures on the category of topological spaces, 7T OP, both of which define the same
homotopy theory on TOP. On the one hand, Strgm showed in [20] that setting
WE to be the class of homotopy equivalences, Fib to be the class of Hurewicz
fibrations, and C'of to be the class of closed Hurewicz cofibrations defined a model
category structure on 7 OP. In this case, all objects are both fibrant and cofibrant.

On the other hand, according to Quillen [17], one also obtains a model category
structure on TOP by letting W E be the class of weak homotopy equivalences, Fib
the class of Serre fibrations and Cof the class of retracts of inclusions A———=X
such that (X, A) is a relative CW-complex. Recall that weak homotopy equivalences
are maps inducing an isomorphism on homotopy groups, while Serre fibrations are
maps with the right lifting property with respect to the class of continuous maps
{ip : D"——=D" x I | n > 0}, where D" is the n-dimensional disk. With respect
to this structure, all objects are fibrant, while the cofibrant objects are the CW-
complexes.

Hovey showed in [11] that the second model category structure on TOP is cofi-
brantly generated. The inclusions S?"1——=D" for n > 1 are the generating
cofibrations, while the inclusions ig : D" “—=D" x I for n > 0 are the generating
acyclic cofibrations.

When it is important to have a closed, monoidal structure on the category of
topological spaces in which he works, the homotopy theorist usually resorts to
working in the subcategory T of compactly generated spaces. Recall that a space
is compactly generated if it is weak Hausdorff and every compactly open subset
is open. As Hovey explained in [11], T is a cofibrantly generated model category
with respect to the same classes of generating cofibrations and acyclic cofibrations

as TOP. Furthermore, T is Quillen equivalent to T OP.

Example 2.5.2. Let C be a pointed abelian category in which all finite limits and
colimits exist. If WE = Mor C, Fib is the class of all monomorphisms in Mor C,
and Cof is the class of all epimorphisms in Mor C, then (C,WE, Fib,Cof) is a
model category. The initial and terminal object of C is both cofibrant and fibrant,
and there is no other object that is either fibrant or cofibrant.

This example serves as a reminder that our natural inclination to think of fibra-
tions as projections and cofibrations as injections should be avoided!

Example 2.5.3. Let R be a unitary, commutative ring. A (non-negative) chain
complex over R consists of a graded left R-module Cy = P, Ci endowed with a
R-module map d: Cy,——C,_1, called the differential, satisfying d o d = 0. The
homology of a chain complex is a graded R-module H,(C,,d) defined by

H,(Cy,d)=ker(d: C,——=Cp_1)/Im(d: Chy1——=C,,)

for n > 0 and Ho(Cy,d) = Co/Im(d : C1——=Cy).

A morphism f: (Cy,d)——=(C},d") of chain complexes over R, also called a
chain map, is a morphism of graded R-modules such that d'f = fd. It is easy to
see that a morphism of chain complexes induces a morphism of graded modules in
homology. We denote the category of chain complexes over R and their morphisms

by ChCx.(R).
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Let W E be the class of quasi-isomorphisms, i.e., of chain maps inducing isomor-
phisms in homology. Let Fib be the class of surjective chain maps and Cof the
class of degree-wise split, injective chain maps with degree-wise projective cokernel.
Hovey established in [11] that these choices determine a model category structure
on ChCx.(R), with respect to which all objects are fibrant and the cofibrant chain
complexes are projective in each degree. Moreover, any chain complex (C,, d) that
is projective in each degree is cofibrant.

Hovey proved furthermore that every chain complex is small with respect to
class of all chain maps, which he then used in showing that ChCz.(R) is cofi-
brantly generated. Let S™(R) denote the chain complex with S™(R); = R if
i = n and S"(R); = 0 otherwise. The differential is necessarily trivial in all
degrees. Let D"(R) denote the chain complex with D"(R); = Rif i =n—1,n and
D™(R); = 0 otherwise. The differential d : D"(R);——D"(R);_1 is the identity if
i = n and 0 otherwise. The generating cofibrations of ChCxz.(R) are the inclusions
S"~1(R)——=D"(R) for all n, while the generating acyclic cofibrations are the
inclusions of the zero complex into D™ (R) for all n.

The algebraic notion of derived functor coincides in ChCx.(R) with the notion
of total derived functor. In particular, if M is a right R-module, then we can define
a functor

F=M@pr—:ChCa(R)——=ChCuz.(Z).
The left total derived functor of F' exists, and

H;(LF(S°(R) @r N)) = Torf (M, N)

for all 2 > 0 and for all left R-modules N.

The model category in the next example is the target category of the well-known
algebraic model we present in Section 4. When explaining this example, we work
with non-negatively graded cochain complexes over the field Q of rational numbers,
i.e., with graded Q-vector spaces C* = ., C' endowed with a differential of
degree +1. The definitions of cochain maps and of the cohomology of cochain
complexes and their maps are analogous to the dual definitions for chain complexes.

Example 2.5.4. A commutative differential graded algebra (c.g.d.a.) over Q is a
commutative monoid in the category of non-negatively graded cochain complexes.
In other words, a c.g.d.a. (A*,d) is a cochain complex over Q, endowed with cochain
maps

n: Q—>(A*7 d)
called the unit and

p (A*d) @g (A*,d)——=(A*,d) : a@br——>a-Db,

called the product such that
(1) p is graded commutative, i.e., if a« € AP and b € A?, then a-b = (—1)P%-q;
(2) p is associative; and
(3) nn@1a)=1a=pla@n).
An important class of c.d.g.a.’s is composed of the KS-complexes. For any non-

negatively graded vector space V, let AV denote the free, commutative, graded

algebra generated by V, ie., AV = S[Ve"] @g E(V°4), tensor product of the
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symmetric algebra on the vectors of even degree and of the exterior algebra on
the vectors of odd degree. A KS-complex is a c.d.g.a. (AV,d) with augmentation
¢ : AV——=Q such that

(1) V has abasis B = {v, | « € J}, where .J is a well-ordered set, and (V') = 0;
(2) dvg € Ve for all g € J, where Vg is the span of {v, | o < 8}.
A KS-complex (AV, d) is minimal if V° = 0 and o < 8 implies that deg v, < deguvg.
If V! = V9 =0, then (AV,d) is minimal if and only if dV C AZ2V.

A morphism of c.g.d.a.’s f: (A*,d, p,n)—(A*,d, [i,7) is a cochain map such
that fu = p(f @ f) and fn = . The category of c.d.g.a.’s over Q and their
morphisms is denoted CDGA*(Q).

Let WE be the class of quasi-isomorphisms in CDGA*(Q), Fib the class of
surjective c.d.g.a. morphisms, and Cof = LLP(FibNW E). According to Bousfield
and Gugenheim [2], (CDGA*(Q), WE, Fib,Cof) is a model category. All c.d.g.a.’s
are fibrant with respect to this structure, and all KS-complexes are cofibrant.

It is not difficult to see that the model category of c.d.g.a.’s is cofibrantly gen-
erated. Observe first that any c.d.g.a. is small with respect to Mor CDGA*(Q),
by an argument similar to that given by Hovey to prove that any chain complex is
small with respect to the class of all chain maps.

Next we define three special families of inclusions of KS-complexes. Let (Auy,,0)
denote the KS-complex generated by a vector space of dimension 1, concentrated in
degree m, and let (A(um,vm—1),d) denote the KS-complex generated by a vector
space with one basis element of degree m and one of degree m — 1, where d(v) = u.

Define i, !, and j,, to be the following inclusions.

im 1 0——(Aup,0)
i (A, 0) ——(A(um, vm—1),d)
im : 0——=(A(Um, Vm—1),d)

Let T = {im, 1,4, | m >0} and J = {jm | m > 1}.
Claim. Fib=J —inj and FibNWE =71 —inj.
Proof. Since J —inj = RLP(J), it is clear that p : (A*,d)——=(A*,d) € J —inj if
and only if for all m > 1 and all c.d.g.a. morphisms g : (A(up,, vym—1),d)—=(A*,d),
there exists a c.d.g.a. morphism ¢ : (A(um, vm—1),d)—(A*,d) such that pg = g.
It is easy to see that this condition on p is equivalent to the surjectivity of p, so

that Fib =7 —iny.
On the other hand, p: (A*,d)——=(A*,d) € T — inj if and only if
(1) for all m > 0 and for all c.d.g.a. morphisms ¢ : (Aup,,0)——=(A*, d), there
exists a c.d.g.a. morphism ¢ : (A, d)——(A*,d) such that pg = ¢; and
(2) for all m > 1, given any commutative diagram of c.d.g.a. morphisms

(At 0) — (A%, d)

. 7
v l I l

(A(tm, vm—1), d) — (A*,d)

there exists a c.d.g.a. morphism § : (A(upm,vm—1),d)—(A*,d) such that
pg = g and giy, = f.
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Condition (1) is equivalent to p being surjective on the subalgebra of cocycles kerd
in A*, while condition (2) is equivalent to requiring that p be a quasi-isomorphism.
Since any quasi-isomorphism of cochain complexes that is surjective on cocycles
must be surjective, we see that Fib NWE =7 —iny. O

Thus, Z and J are families of generating cofibrations and generating acyclic
cofibrations for the model structure on CDGA*(Q). The elements of 7 — cell are
called KS-extensions.

Let 7’(’)73(])C denote the full subcategory of 7T OP given by those spaces that are
nilpotent, rational and of finite rational type. A space X is nilpotent if its fun-
damental group is nilpotent and acts nilpotently on the higher homotopy groups,
rational if its homotopy groups are uniquely divisible and of finite rational type if
dimg H,(X,Q) < oo for all n.

Let CDGA*7(Q) denote the full subcategory of CDGA*(Q) given by those

c.d.g.a.’s (A*,d) for which there exists a quasi-isomorphism of c.d.g.a.’s
¢ (AV,d)——=(A*,d),

where (AV, d) is a minimal KS-complex such that dimg V'™ < oo for all n. The quasi-
isomorphism ¢, or the minimal KS-complex (AV,d), is called a minimal model of
(A*,d).

Bousfield and Gugenheim defined a Quillen pair of contravariant functors
AS : TOP—=CDGA*(Q) : |F|,

that induces an equivalence of homotopy categories when restricted to 7’(’)77(])C and
CDGA*I(Q), i.e.,
Ho TOP! = Ho CDGA*/(Q).

The algebraic model AS : T(’)P(J;—>CDGA*’JC(Q) is called the Sullivan model, as
Sullivan was the first to construct it [21], while Bousfield and Gugenheim provided
the firm foundation in terms of model categories some years later. In Section 4, we
take a closer look at this model and describe one of the many topological problems
to which it has been successfully applied.

3. MONOIDAL MODEL CATEGORIES

Let (C,1,®, Hom) be a closed, symmetric, monoidal category endowed with the
structure of a model category. In this section we establish compatibility conditions
under which there is a natural, induced monoidal structure on Ho C and exam-
ine the possibility of extending such compatibility to categories of modules and
monoids. The definitions and results we present in this section are due to Hovey
[12] or, in a slightly different form, to Schwede and Shipley [19].

3.1 Definition and motivating theorem.
The following construction plays a very important role in elucidating the rela-
tionship between monoidal and model structure.

Definition. Let (C,®) be amonoidal category. Let f : A——=B and g : X ——=Y
be morphisms in C. The push-out smash of f and ¢, denoted fOg, is the morphism
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induced by f ® ly and 1p @ ¢ in the following push-out diagram.

Aox —T2 _pox

llA@g l
1®g

A9Y —>(40Y) Vv _(BoX)
fOg

fRly
BoY

Definition. A closed, symmetric, monoidal category (C,1, @, Hom) that is also a
model category with distinguished classes WE, Fib, and Cof is a monoidal model
category if the following axioms are satisfied.

(1) (Push-out smash axiom)
f,ge Cof——=f0qg € Cof
and

feCof,ge Cof NWE——=f0g,g0df € Cof NWE.

(2) (Unit axiom) Let q: Q1-——=1 be a cofibrant model of the unit 1. Then
GO1x: Q1@ X——1 X=X and 1x®q¢g: XQ1l—=X®1=2X

are both weak equivalences.

Theorem 3.1.1(Hovey [11]). The homotopy category of a monoidal model cat-
egory C has a natural symmetric, monoidal structure, induced by the monoidal
structure of C.

Examples. Hovey showed in [11] that T (cf. Example 2.5.1) is a monoidal model
category. The tensor product on 7 is given by applying the k-space topology to
the usual cartesian product of spaces: X @Y := k(X xY). Recall that a subset of
kZ is open if and only if it is compactly open in Z.

Hovey also proved in [11] that ChCx.(R) (cf. Example 2.5.3) is a monoidal
model category, where the underlying graded module of (Cy,d) @ (Cy,d") is defined
by

(C.0Cn=EPCrarC)_y
keN

and the tensor differential D is defined by
D(c®pr c’) =de@pc + (—1)kc Qpdd

iHce .
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3.2 Model structures on categories of modules and algebras.

Given a monoidal model category C, it is certainly natural to hope for the exis-
tence of natural model category structures on the category 4 Mod of (left) modules
over a fixed monoid A , as well as on the category 4.A4¢g of algebras over A, if A is
commutative. Furthermore, supposing the existence of such structures, one would
hope that they were “homotopy invariant” in some appropriate sense. For example,
it seems reasonable to expect that a weak equivalence of monoids would induce an
equivalence of the homotopy categories of their respective module categories.

As we see in the results below, these hopes are not foolish, at least as long as
we are willing to accept a few additional constraints on the category C and the
monoids we consider.

Throughout the remainder of this section, (C,WE, Fib,Cof) denotes a cofi-
brantly generated, monoidal model category with generating cofibrations 7 and
generating acyclic cofibrations 7. Furthermore, it A € Ob C and K C Mor C, then
we write

AK ={la®g|gek}

and

CoK={f®gl|feMorC,geck}.

Theorem 3.2.1 (Hovey[12], Schwede/Shipley [19]). Let A be a monoid in C
such that

(1) the source of any morphism in I is small with respect to (A @ T)-cell;
(2) the source of any morphism in J is small with respect to (A @ J)-cell; and
(3) (A® J)-cell CWE.

Then g Mod can be endowed with a cofibrantly generated model category structure
such that

fEWE, moa —— f € WEe N 4 Mod

and
fEFibAMod —— f € Fibe N s Mod.

Remark. If A is a cofibrant monoid, then A @ Z C Cofe. The hypotheses (1)-(3)
of the theorem above are therefore automatically satisfied in this case.

Hovey showed that the hypotheses of the theorem above are satisfied for any
monoid in 7, so that the category of modules over any compactly generated topo-
logical monoid can be endowed with a cofibrantly generated model category struc-
ture.

The monoids in ChCz,(R) are the associative chain algebras over R. Since
every chain complex is small with respect to the class of all chain maps, Theorem
3.2.1 and the remark above imply that the category of modules over an associative
chain algebra that is bounded below and projective in each degree is a cofibrantly
generated model category.

Theorem 3.2.2 (Hovey[12], Schwede/Shipley [19]). Suppose that

(1) the source of any morphism in I is small with respect to (C @ T)-cell;
(2) the source of any morphism in J is small with respect to (C @ J)-cell; and
(3) (CT)-cell CWE.
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If A is a commutative monoid in C, then 4 Alg can be endowed with a cofibrantly
generated model category structure such that

fEWE, a0y == f € WE:N 4 Alg

and
fEFibAAgg —— f € Fibe N 4 Alg.

In particular, under the hypotheses of Theorem 3.2.2, the category of monoids
in C is cofibrantly generated, since the monoids are the 1-algebras.

Hovey proved that the hypotheses of Theorem 3.2.2 are satisfied in the category
T of compactly generated spaces, so that the category of compactly generated
topological monoids can be endowed with a cofibrantly generated model structure.

If A is a commutative monoid, then 4Mod naturally inherits a symmetric
monoidal structure from C. It seems reasonable to expect that this monoidal
structure be compatible with the model category structure defined in the previ-
ous theorem.

Proposition 3.2.3. Suppose that either

(1) the unit 1 s cofibrant and A is a commutative monoid satisfying the hy-
potheses of Theorem 3.2.1; or
(2) A is a cofibrant, commutative monoid.

Then g4 Mod 1s a cofibrantly generated, monoidal model category.

As an application of this proposition, we obtain a cofibrantly generated, monoidal
model structure on the category of modules over a commutative, associative chain
algebra that is bounded below and projective in each degree.

The model category structures on 4 Mod and 4 Alg satisty two types of homotopy
invariance, as expressed in the following theorems.

Theorem 3.2.4 (Hovey[12], Schwede/Shipley [19]). Suppose that the source

of any morphism in T is cofibrant. Let f: A——=A" be a monoid morphism with

A and A’ cofibrant. Let Res : 4o Mod—— s Mod denote the “restriction” functor,
i.e., Res(M) = M with the A-action induced by f. Then

A g@ —: aMod——= 4, Mod : Res

18 a Quillen equivalence.
If, in addition 1 is cofibrant and A and A’ are commutative, then

A g@ — AAlg—= 4,/ Alg : Res

18 a Quillen equivalence.

Theorem 3.2.5 (Hovey|[12], Schwede/Shipley [19]). LetC and D be cofibrantly
generated monoidal model categories. Let F': C———=D be a strong monoidal func-
tor.

(1) If F(q) € WEp, where q: Q1-——=1 is the cofibrant model of 1 and A is a
cofibrant monoid in C, then the categories s Mod and g4y Mod are Quillen
equivalent.

(2) If A us a cofibrant, commutative monoid, then the homotopy categories
HoaAlg and Hop 4y Alg are equivalent.
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4. THE SULLIVAN MODEL AND LUSTERNIK-SCHNIRELMANN CATEGORY

Recall from the exposition of Example 3.5.4 that a minimal model of a c.g.d.a.
(A*,d) consists of a quasi-isomorphism of c.g.d.a.’s

@ (AV, d)N—>(A*, d),

where (AV,d) is a minimal KS-complex. If H°(A* d) = Q, it is straightforward
to construct a minimal model of (A*, d) inductively. Furthermore, minimal models
are unique up to isomorphism.

Let X be a connected, nilpotent space of finite rational type. There is a continu-
ous map ( : X ——= X, called the rationalization of X, such that X is rational and
71l @Q is an isomorphism. The minimal model of the Sullivan model AS(Xg) of the
rationalization of X is called the Sullivan minimal model of X. Since the c.d.g.a.
AS(Xyp) is huge and has a complicated product, rational homotopy theorists prefer
to work with the Sullivan minimal model, which has only finitely many generators
in each dimension and is free as an algebra, when carrying out computations.

We refer the reader to the new, encyclopedic reference on rational homotopy
theory [8] by Félix, Halperin and Thomas for an in-depth treatment of the Sullivan
minimal model. We mention below only a few of its most important properties.

In the statement of the following theorem and proposition, the word “space”
refers exclusively to connected, nilpotent spaces of finite rational type.

Theorem 4.1. Let ¢ : (AV,d)—=AS(Xq) be the Sullivan minimal model of a
space X.
(1) The cohomologies H*(AV,d) and H*(X;Q) are isomorphic as graded com-
mutative algebras.
(2) H*(V,d1) 2 Homg(m.X,Q), where di denotes the composition of the re-
striction of d to V with the projection A V——V .

Elementary examples.

(1) The minimal model of a sphere S* is (Auy, 0).

(2) The minimal model of a complex projective space CP¥ is (A(uz,v2g41),d),
where dv = u**!,

(3) The minimal model of a product of two spaces is the tensor product of the

minimal models.

The following proposition, which is essential to modelling continuous maps, can
be proved in several different ways, including by inductive construction.
Proposition 4.2. Let p : (AV,d)——=AS(Xo) and ' : (AV',d')——=AS(X]) be
Sullivan minimal models of spaces X and X'. If f: X'——=X s any continuous
map, there is a morphism of c.d.g.a.’s ¢ : (AV,d)——=(AV',d") such that the fol-
lowing diagram commutes up to homotopy.

(AV,d) —2> (AV",d)

‘Pl 2]
AS(Xo) 22 as(xy)

!
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It is important to note that, unlike the minimal model of a space, the morphism
Y 1s defined only up to homotopy.

One of the most spectacular successes of the Sullivan minimal model has been in
its application to studying the numerical homotopy invariant known as Lusternik-
Schnirelmann (L.-S.) category. The L.-S. category of a topological space X, denoted
catX, is equal to n if the cardinality of the smallest categorical covering of X is
n + 1. A categorical covering of a space X is an open cover of X such that each
member of the cover is contractible in X.

L.-S. category is in general extremely difficult to compute. It is trivial, however,
to prove that catS™ = 1 for all n and somewhat trickier, though still not difficult,
to prove that catT = 2, where T is the torus S* x St

One elementary property of L.-S. category is that cat(X xY') < catX + catY for
all spaces X and Y. At the end of the 1960’s Ganea observed that in the only known
examples for which cat(X x Y') # catX + catY’, the spaces X and Y had homology
torsion at distinct primes. He conjectured therefore that cat(X x S™) = catX + 1
for all spaces X and all n > 1, since S™ has no homology torsion whatsoever.

The groundbreaking article [6] of Félix and Halperin, in which they established
the following characterization of the L.-S. category of a rational space in terms of its
Sullivan model, initiated the application of rational homotopy theory to the study
of L.-S. category.

Theorem 4.3 (Félix/Halperin [6]). Let ¢ : (AV,d)——=AS(X) be the Sulli-
van minimal model of a rational, nilpotent space X of finite rational type. Let
(AV/A>"V,d) denote the c.d.g.a. obtained by taking the quotient of (AV,d) by the
ideal of words of length greater than n, and let

(AV, d) (AV/A>"V, d)

\/

AV aWw),

be the functorial factorization of the quotient map q obtained by applying the Small
Object Argument to Z. Then catX < n if and only if there 1s a morphism of
c.g.d.a’s p: (MVSW),d)——=(AV,d) such that pi = 1zv,q).

In [9] Halperin and Lemaire proposed the study of a weakened version of the
above characterization, in which the retraction p is required only to be a mor-
phism of (AV,d)-modules. They called the homotopy invariant of X thus obtained
Mcatg X.

Following Halperin and Lemaire’s lead, Jessup proved in 1986 that Ganea’s con-
jecture holds with Mecaty in the place of cat.

Theorem 4.4 (Jessup [15]). Mcato(X x S™) = McatoX + 1 for all simply-

connected rational spaces X of finite rational type and all n > 2.

The following theorem then completed the proof of Ganea’s conjecture for ratio-
nal spaces.

Theorem 4.5 (Hess [10]). McatoX = catX for all simply-connected rational
spaces X of finite rational type.
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Corollary 4.6. Ganea’s conjecture holds for all rational, simply-connected spaces
of finite rational type and all n > 2.

As an epilogue to this story of Sullivan minimal models and L.-S. category, we
mention that in 1997 Iwase applied classical homotopy-theoretic methods to the
construction of a counter-example to Ganea’s conjecture [14]. We also remark that
in 1996 Félix, Halperin and Lemaire generalized Ganea’s conjecture for rational
spaces, proving that cat(X x Y) = catX + catY for all rational, simply-connected
spaces X and Y of finite rational type [7]. Finally, it is worth noting that this
rational version of L.-S. category has proved to be one of the most important and
useful rational homotopy invariants, as it has played a crucial role in many other
significant theorems in rational homotopy theory.

REFERENCES

1. H. Baues, Algebraic Homotopy, Cambridge studies in advanced mathematics, vol. 15, Cam-
bridge University Press, 1989.

2. A. K. Bousfield and V. K. A. M. Gugenheim, On PL De Rham Theory and Rational Homotopy
Type, Memoirs of the A. M. S., vol. 179, 1976.

3. J.-P. Doeraene, L.S.-category in a model category, J. Pure Appl. Algebra 84 (1993), 215-261.

4. W. Dwyer; J. Spalinski, Homotopy theories and model categories, Handbook of Algebraic
Topology (I. M. James, ed.), North-Holland, 1995, pp. 73-126.

5. A. Elmendorf; I. Kriz; M. Mandell; J.P. May, Rings, Modules, and Algebras in Stable Ho-
motopy Theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical
Society, 1997.

6. Y. Félix and S. Halperin, Rational L.-S. category and its applications, Trans. A.M. S. 273
(1982), 1-37.

7. Y. Félix; S. Halperin; J.-M. Lemaire, Rational category and conelength of Poincaré complezes,
Topology 37 (1998), 743-748.

8. Y. Félix; S. Halperin; J.-C. Thomas, Rational Homotopy Topology, Springer-Verlag, 2001.

9. S. Halperinand J.-M. Lemaire, Notions of category in differential algebra, Algebraic Topology:
Rational Homotopy, Springer Lecture Notes in Mathematics, vol. 1318, pp. 138-153.

10. K. Hess, A proof of Ganea’s conjecture for rational spaces, Topology 30 (1991), 205-214.

11. M. Hovey, Model Categories, Mathematical Surveys and Monographs, vol. 63, American Math-
ematical Society, 1999.

12. M. Hovey, Monoidal model categories, to appear in Trans. Amer. Math. Soc., preprint available
on the Hopf server £tp://hopf.math.purdue.edu/pub/hopf.html.

13. M. Hovey; B. Shipley; J. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149-208.

14. N. Iwase, Ganea’s conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc.
30 (1998), 623-634.

15. B. Jessup, Rational L.-S. category and a conjecture of Ganea, Trans. A. M. S. 317 (1990),
655-660.

16. M. Lydakis, Smash products and T'-spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999),
311-328.

17. D. Quillen, Homotopical Algebra, Springer Lecture Notes in Mathematics, vol. 43, 1967.

18. D. Quillen, Rational homotopy theory, Annals of Math. 90 (1969), 205-295.

19. S. Schwede; B. Shipley, Algebras and modules in monoidal model categories, preprint available
on the Hopf server (1998).

20. A. Strem, The homotopy category is a homotopy category, Arch. Math. 23 (1972), 435-441.

21. D. Sullivan, Infinitesimal computations in topology, Publ. IHES, vol. 47, 1977, pp. 269-331.

DEPARTEMENT DE MATHEMATIQUES, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, CH-
1015 LAUSANNE, SWITZERLAND
E-mail address: kathryn.hessQepfl.ch



