
MODEL CATEGORIES IN ALGEBRAIC TOPOLOGYKathryn HessEole Polytehnique F�ed�erale de LausanneDediated to Prof. Heinrih Kleisli on the oasion of his 70th birthdayAbstrat. This survey of model ategories and their appliations in algebrai topol-ogy is intended as an introdution for non homotopy theorists, in partiular ategorytheorists and ategorial topologists. We begin by de�ning model ategories andthe homotopy-like equivalene relation on their morphisms. We then explore thequestion of ompatibility between monoidal and model strutures on a ategory. Weonlude with a presentation of the Sullivan minimal model of rational homotopytheory, inluding its appliation to the study of Lusternik-Shnirelmann ategory.IntrodutionModel ategory theory, �rst developed in the late 1960's by Quillen [17℄, hasbeome very popular among algebrai topologists in the past �ve years. A modelategory is a ategory endowed with three distinguished lasses of morphisms, alled�brations, o�brations and weak equivalenes, satisfying axioms that are propertiesof the topologial ategory and its usual �brations, o�brations and homotopyequivalenes. In any model ategory there is a notion of homotopy of morphisms,based upon the de�niton of homotopy of ontinuous maps.The primary soure of topologists's urrent interest in model ategories is prob-ably their appliation to formalizing the underlying struture of stable homotopytheory. For more than 30 years the framework of stable homotopy theory wasBoardman's stable ategory or one of its variants, due to Adams or to Lewis andMay. The stable homotopy ategory, whih is a losed, symmetri, monoidal at-egory, is in some ways a topologial version of the derived ategory obtained fromthe ategory of hain omplexes by inverting all quasi-isomorphisms. The analogyis not perfet, however, as the \tensor produt" de�ned on the ategory underly-ing the stable homotopy ategory is neither assoiative nor ommutative. Thus,when topologists applied algebrai methods to spetra, produts and ations werespei�ed only up to homotopy, whih often led to highly deliate omputations.Only in the past �ve years or so have topologists disoveredmodel ategories withappropriately ompatible monoidal struture suh that the assoiated homotopyategory is equivalent as a monoidal ategory to the stable homotopy ategory.Examples of suh monoidal model ategories inlude the ategory of S-modules of1991 Mathematis Subjet Classi�ation. Primary: 55U35, Seondary: 18D10, 18D15, 18G55,55M30, 55P62, 55U15.Key words and phrases. Algebrai homotopy theory, Lusternik-Shnirelmann ategory, modelategory, monoidal ategory, rational homotopy theory, Sullivan model.1



2 KATHRYN HESSElmendorf, Kriz, Mandell and May [5℄, the ategory of symmetri spetra of Hovey,Shipley and Smith [13℄ and the ategory of �-spaes of Lydakis [16℄.Model ategories have also been essential to the development of algebrai homo-topy theory. Given a topologial problem to solve, suh as the problem of lifting,extending or fatoring a given ontinuous map, the algebrai homotopy theorist�rst hooses an appropriate algebrai model, i.e., an \algebrai" ategory C en-dowed with a reasonable notion of \homotopy" of morphisms, together with afuntor F : T OP // C , that preserves the homotopy relation. He then trans-lates the topologial problem via the funtor F into algebrai terms and studiesthe resulting algebrai problem, with the aim of obtaining information about thetopologial situation.The algebrai homotopy theorist hooses C and F based on \eonomi" onsid-erations, endeavoring to aheive equilibrium between the information lost in trans-lation and the ease of omputation. He will therefore selet C and F in funtion ofthe struture to be examined and the requisite depth of detail.The methods of algebrai homotopy theory have proved quite fruitful, notablyin rational homotopy theory, as we indiate in the �nal setion of this artile.The aim of this artile, whih is based on the author's letures at the CATOP2000onferene in honor of Prof. Kleisli, is to introdue model ategories and their appli-ations in algebrai topology to non homotopy theorists, in partiular to ategorytheorists and to ategorial topologists. We have hosen therefore to omit mostproofs, foussing instead on examples and appliations. The orientation and sopeof this artile is thus rather di�erent from that of the survey artile [4℄ of Dwyerand Spalinski, whih the author highly reommends as omplementary reading.The �rst setion of the artile onsists in a very onise refresher ourse in thehomotopy theory of topologial spaes. Model ategories and the de�nition of ahomotopy-like equivalene relation therein are the subjet of Setion 2. In Setion3 we examine onditions of ompatibility between model ategory struture andmonoidal struture. We onlude in Setion 4 with a brief presentation of one ofthe best-known algebrai models, the Sullivan model of rational homotopy theory,inluding an example of a topologial problem to whih it was suessfully applied.1. The homotopy theory of topologial spaesGiven two topologial spaes A and X, the homotopy equivalene relation on theset T OP(A;X) of ontinuous maps from A to X an be de�ned in two equivalentways: in terms of the ylinder on A or in terms of the path spae on X.Let I denote the interval [0; 1℄. The ylinder on A is the produt spae A � I,whih �ts into the following diagramA 1A ""EE
EE

EE
EE

E
� � i0 // A� I�

��

A? _i1oo 1A||yy
yy

yy
yy

yAwhere it(a) = (a; t) and �(a; t) = a. Two ontinuous maps f; g : A //X are lefthomotopi if there is a ontinuous map H : A � I //X suh that the followingdiagram ommutes.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 3A f ""EE
EE

EE
EE

E
� � i0 // A� IH

��

A? _i1oo g
||yy

yy
yy

yy
yXThe path spae on X, denoted XI , is the spae f� : I //X j � ontinuousgendowed with the ompat-open topology. The path spae �ts into the followingommutative diagram X XIp0oooo p1 // // XX1X``BBBBBBBB

e OO 1X >>||||||||where pt(�) = �(t) and e(y) is the onstant path at y. Two ontinuous mapsf; g : A //X are right homotopi if there is a ontinous map K : A //XIsuh that the following diagram ommutes.X XIp0oooo p1 // // XAf``BBBBBBBB
K OO g >>||||||||It is not diÆult to see that both right and left homotopy de�ne equivalenerelations on T OP(A;X), and that their sets of equivalene lasses are the same. Iff and g are (right or left) homotopi, we write f ' g.The researh of homotopy theorists often onsists of seeking the solution totopologial problems up to homotopy, i.e., it is the homotopy lass of a ontinuousmap, rather than the map itself, that is important.There are three distinguished lasses of ontinuous maps that together determinethe homotopy theory of topologial spaes: the lasses of homotopy equivalenes,�brations and o�brations. A map f : A //X is a homotopy equivalene if thereexists a map g : X //A suh that gf ' 1A and fg ' 1X . A (Hurewiz) �brationis a ontinuous map p : E //B that has the homotopy lifting property, i.e., givenany ommutative diagram of ontinuous mapsY h //

� _i0
��

Ep
��Y � I H //

bH << Bthere is a ontinuous map bH : Y � I //E suh that bHi0 = h and p bH = H. Thehomotopy bH thus lifts H through p and extends h over i0. An inlusion of a losedsubspae i : A � � //X is a (losed, Hurewiz) o�bration if i has the homotopyextension property, i.e., given any ommutative diagram of ontinuous mapsA K //i
��

Y Ip0
����X k //

bK >> Y



4 KATHRYN HESSthere is a ontinuous map bK : X //Y I suh that p0 bK = k and bKi = K. Thehomotopy bK thus extends K over i and lifts k through p0.The axioms of a model ategory, stated in Setion 2, odify the properties ofthese three lasses that are essential to the de�nition of a reasonable homotopy-likeequivalene relation in an abstrat ategory.2. Model ategoriesIn this setion we �rst present the preise de�nition of model ategories, as wellas a few of their elementary properties. We then explain how to de�ne a homotopyrelation on the sets of morphisms C(A;X) in a model ategory C, at least for A andX satisfying additional, usually mild hypotheses. Given the de�nition of the ho-motopy relation, we onstrut the homotopy ategory of a model ategory C, whihis a loalization of C with respet to a ertain distinguished lass of morphisms,then provide onditions under whih a funtor between model ategories induesan equivalene on their homotopy ategories.Co�brantly generated model ategories, whih are model ategories in whihthe entire model struture an be generated in a natural manner by two distin-guished lasses of maps, are the next topi of this setion. Though their de�nitionis somewhat tehnial, it is often muh easier to prove theorems about o�brantlygenerated model ategories than about general model ategories. Fortunately, manyfamiliar model ategories are o�brantly generated. The notion of o�brant gener-ation is essential to understanding the ompatibility between model and monoidalstrutures in Setion 3.We onlude this setion with several examples of model ategories.We refer the reader to either the survey artile [4℄ of Dwyer and Spalinski or themonograph [11℄ of Hovey for further details and missing proofs. In partiular, ourpresentation of o�brantly generated ategories is based on that in [11℄.2.1 De�nition and elementary properties of model ategories.De�nition. Let I be a subset of Mor C. A morphism f : A //B in C satis-�es the left lifting property with respet to I, denoted f 2 LLP (I), if for everyommutative diagram A h //f
��

Cg
��B k //

k̂ >> Dof morphisms in C with g 2 I, there exists a morphism k̂ : B //C suh thatgk̂ = k and k̂f = h.Dually, we say that f has the right lifting property with respet to I, denotedf 2 RLP (I), if for every ommutative diagramC h //g
��

Af
��D k //

k̂ >> B



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 5of morphisms in C with g 2 I, there exists a morphism k̂ : D //A suh thatfk̂ = k and k̂g = h.Reall that a morphism f in a ategory C is a retrat of a morphism g if thereis a ommutative diagram of morphisms in C�f
��

i // �g
��

r // �f
��� j // � s // �suh that ri and sj are identity morphisms.De�nition. A model ategory onsists of a ategory C, together with lasses ofmorphismsWE;Fib;Cof �Mor C that are losed under omposition and ontainall identities, suh that the following axioms are satis�ed.(M1) All �nite limits and olimits exist.(M2) Let f : A //B and g : B //C be morphisms in C. If two of f , g, andgf are in WE, then so is the third.(M3) If f is a retrat of g and g belongs to WE (respetively Fib, respetivelyCof), then f also belongs to WE (respetively Fib, respetively Cof).(M4) Cof � LLP (Fib \WE) and Fib � RLP (Cof \WE).(M5) If f 2Mor C, then there exist(a) i 2 Cof and p 2 Fib \WE suh that f = pi;(b) j 2 Cof \WE and q 2 Fib suh that f = qj.By analogy with the homotopy struture in the ategory of topologial spaes, themorphisms belonging to the lassesWE, Fib and Cof are alled weak equivalenes,�brations, and o�brations and are denoted by deorated arrows � // , // // , and

// // . The elements of the lasses Fib\WE and Cof\WE are alled, respetively,ayli �brations and ayli o�brations. Sine WE, Fib and Cof are all losedunder omposition and ontain all isomorphisms, we an and sometimes do viewthem as subategories of C, rather than simply as lasses of morphisms.Axiom (M1) implies that any model ategory has an initial objet � and aterminal objet e. An objet A in a model ategory is o�brant if the uniquemorphism � //A is a o�bration. Similarly, A is �brant if the unique morphismA //e is a �bration.Sine the axioms of a model ategory imply that the lasses Fib and WE deter-mine Cof , while the lasses Cof andWE determine Fib, it is lear that the aboveset of axioms is not minimal. One de�nite estheti and pratial advantage to thishoie of axioms, however, is the symmetry they express between o�brations and�brations, whih is the basis of Ekmann-Hilton duality in homotopy theory.There are numerous variations on the model ategory theme, di�erent ways ofendowing a ategory with additional struture enabling one to de�ne a homotopy-like equivalene relation. The o�bration ategories of Baues [1℄, in whih there areonly two distinguished lass of morphisms, weak equivalenes and o�brations, areprobably among the best known and most widely applied of these variations. If C isa model ategory in the sense of this paper, then its full subategory onsisting ofo�brant objets, together with the orresponding sublasses of weak equivalenes



6 KATHRYN HESSand o�brations, is a o�bration ategory. We reommend the artile [3℄ of Doeraeneto the reader interested in a omparative study of di�erent types of ategorialstruture leading to a reasonable de�nition of a homotopy-like equivalene relation.The three elementary but useful properties of model ategories stated in theproposition below are easy onsequenes of the axioms of a model ategory.Proposition 2.1.1. Let (C;WE;F ib;Cof) be a model ategory.(1) Cof = LLP (Fib \WE) and Fib = RLP (Cof \WE).(2) Cof and Cof \WE are preserved under push-out.(3) Fib and Fib \WE are preserved under pull-bak.2.2 The homotopy relation in a model ategory.Motivated by the de�nition of the homotopy relation in T OP, we obtain thefollowing two possible de�nitions of homotopy of morphisms in an arbitrary modelategory C. Unless A and X are hosen aording the riteria we establish below,the two de�nitions are not neessarily equivalent and do not neessarily determineequivalene relations on C(A;X).Throughout this setion (C;WE;F ib;Cof) denotes a model ategory.De�nition. Given A 2 Ob C, onsider the push-out of the morphism � //Awith itself �
��

// Aj0
�� 1A

��

A j1 // 1A ,,

A _A r
""FF

FF
FF

FF
F Awhere r : A _A //A denotes the \folding" map, i.e., the morphism indued bythe identity on eah opy of A. Observe that A _A is a oprodut.A ylinder on A onsists of a fatorization of r.A _A r //i %%JJJJJJJJJ ACyl(A) p� ;;xxxxxxxxxLet i0 = ij0 and i1 = ij1.The ylinder is good if i 2 Cof and very good if, in addition, p 2 Fib \WE.Let f; g : A //X be morphisms in C. A left homotopy from f to g onsists ofa morphism H : Cyl(A) //X suh that the diagramA f

##FFFFFFFFF
� � i0 // Cyl(A)H

��

A? _i1oo g
{{xxxxxxxxxXommutes, where A _ A i //Cyl(A) p //A is any ylinder on A. We denote theexistene of a left homotopy from f to g by f �̀ g.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 7The next proposition lists the elementary properties of left homotopy that areessential to our purposes here.Proposition 2.2.1.(1) If A is a o�brant objet in C, then �̀ is an equivalene relation on C(A;X)for all objets X. The quotient set of left homotopy equivalene lasses isdenoted �`(A;X).(2) If A is o�brant and p : Y � // //X , then p indues an isomorphismp� : �`(A;Y ) //�`(A;X) :(3) If X is �brant, thenf �̀ g : B //X; h �̀ k : A //B +3 fh �̀ gk : A //X :The de�nition of path objets and right homotopy is dual (in the Ekmann-Hiltonsense) to the de�nition of ylinders and left homotopy.De�nition. Given X 2 Ob C, onsider the pull-bak of the morphism X //ewith itself X 1X
��

� ##GG
GG

GG
GG

G 1X
%%X �Xp0

��

p1 // X
��X // ewhere � : X //X �X denotes the \diagonal" map, i.e., the morphism induedby the identity into eah opy of X. Observe that X �X is a produt.A path objet on X onsists of a fatorization of �.X � //�j !!CC

CC
CC

CC
X �XPX q ::uuuuuuuuuLet q0 = p0q and q1 = p1q.The path objet is good if p 2 Fib and very good if, in addition, j 2 Cof \WE.Let f; g : A //X be morphisms in C. A right homotopy from f to g onsistsof a morphism K : A //PX suh that the diagramX PXp0oooo p1 // // XAfaaDDDDDDDD

K OO g ==zzzzzzzzommutes, where X j //PX q //X �X is any path objet on X. We denotethe existene of a right homotopy from f to g by f �r g.The elementary properties of right homotopy and their proofs are stritly dualto those for left homotopy.



8 KATHRYN HESSProposition 2.2.2.(1) If X is a �brant objet in C, then �r is an equivalene relation on C(A;X)for all objets A. The quotient set of right homotopy equivalene lasses isdenoted �r(A;X).(2) If X is �brant and i : A // � //B , then i indues an isomorphismi� : �r(B;X) //�r(A;X) :(3) If A is o�brant, thenf �r g : A //X; h �r k : X //Y +3 hf �r kg : A //Y :We are now prepared to study the relationship between right and left homotopy.Lemma 2.2.3. Let f; g : A //X be morphisms in C.(1) If A is o�brant and f �̀ g, then f �r g.(2) If X is �brant and f �r g, the f �̀ g.The following key de�nition is an easy orollary of the preeding lemma andPropositions 2.2.1(1) and 2.2.2(1).De�nition/Corollary 2.2.4. Suppose that A is a o�brant objet and X is a�brant objet in a model ategory (C;WE;F ib;Cof). There is an equivalenerelation � on C(A;X) suh that f � g if and only if f �̀ g or, equivalently, if andonly if f �r g. When f � g, we say that f and g are homotopi.The set of homotopy lasses of morphisms from A to X is denoted �(A;X).If A and X are both �brant and o�brant, then a morphism f : A //X is ahomotopy equivalene if there is a morphism g : X //A suh that gf � 1A andfg � 1X.The property of the homotopy relation stated in the next proposition is an easybut important onsequene of Propositions 2.2.1(3) and 2.2.2(3).Proposition 2.2.5. If A is o�brant, X is �brant and o�brant, and Y is �brant,then f � g : A //X;h � k : X //Y +3hf � kg : A //Y:Thus, in partiular, omposition preserves the homotopy relation on morphismssuh that the soure and target are both �brant and o�brant.The next proposition, when applied to the seond model ategory struture givenfor T OP (Example 2.5.1), yields the famous Whitehead Theorem, whih statesthat a weak homotopy equivalene between CW-omplexes is atually a homotopyequivalene.Proposition 2.2.6. Suppose that A and X are objets that are both �brant ando�brant in a model ategory (C;WE;F ib;Cof). If f : A //X is a morphismin C, then f is a weak equivalene if and only if it is a homotopy equivalene.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 92.3 The homotopy ategory of a model ategory.The next step in our development of the theory of model ategories is theonstrution of the homotopy ategory of a model ategory (C;WE;F ib;Cof).We begin by supposing that we have �xed for eah objet A a o�brant model� // //QA � // //A and a �brant model A // � //RA // //e , where we require thatQA = A if A is o�brant and that RA = A if A is �brant.De�nition. The homotopy ategory Ho C of a model ategory (C;WE;F ib;Cof)is the ategory with Ob Ho C = Ob C and Ho C(A;X) = �(RQA;RQX).Observe that Proposition 2.2.5 implies that the omposition in Ho C is wellde�ned.There is a natural quotient funtor  : C //Ho C that is the identity on objetsand that is de�ned on morphisms in two stages, as follows. Let f : A //X beany morphism in C. First onsider the ommutative diagram� // //
��

��

QX� pX
����QA �pA // //

Qf 66A f // XBy axiom (M4) we an lift fpA through pX to a morphism Qf : QA //QX .Furthermore, Proposition 2.2.1(2) implies that all suh lifts are left homotopi,sine QA is o�brant. Then, by Lemma 2.2.3(1), they are all right homotopi aswell, also beause QA is o�brant.Next onsider the ommutative diagramQA Qf //
�� �jQA
��

QX // �jQX // RQX
����RQA // //

RQf 55 eApplying axiom (M4) again, we obtain a extension RQf of jQXQf over jQA, whihis unique up to homotopy for reasons stritly dual to those appliable to the on-strution of Qf .The funtor  provides us with an alternate way of haraterizing the homotopyategory. We �rst motivate this haraterization by the following observation.Proposition 2.3.1. Let f be a morphism in a model ategory (C;WE;F ib;Cof).Then (f) is an isomorphism if and only if f is a weak equivalene.Reall that a loalization of a ategory C with respet to a lass of morphismsS �Mor C onsists of a funtor F : C //D suh that(1) ObC = ObD, and F is the identity on objets;(2) F (s) is an isomorphism in D for all s 2 S; and(3) if G : C //E is any other funtor suh that G(s) is an isomorphism forall s 2 S, then there is a unique funtor bG : D //E suh that bGF = G.



10 KATHRYN HESSTheorem 2.3.2. The funtor  : C //Ho C is a loalization of C with respetto the lass WE.Thus the homotopy ategory of a model ategory depends only on its lass ofweak equivalenes.We next explore the question of when a funtor between two model ategoriesrespets the homotopy relation, i.e., when it indues a funtor on homotopy ate-gories. It is partiularly interesting to determine when suh a funtor indues anequivalene of homotopy ategories.De�nition. Let F : C //D be a funtor from a model ategory C to any at-egory D. A left derived funtor of F onsists of a funtor LF : Ho C //D to-gether with a natural transformation t : LF Æ  //F suh that for eah pair(G : Ho C //D; s : G Æ  //F ) there exists a unique natural transformationŝ : G //LF suh that tŝ = s.Dually, a right derived funtor of F onsists of a funtor RF : Ho C //D to-gether with a natural transformation t : F // RF Æ  suh that for eah pair(G : Ho C // D; s : F // G Æ ) there exists a unique natural transforma-tion ŝ : RF //G suh that ŝt = s.For example, if F sends all weak equivalenes to isomorphisms in D, then thede�nition of loalization implies that there is a unique bF : Ho C //D suh thatbF = F . Thus, in this ase, LF = bF = RF .More generally, if F sends all weak equivalenes with o�brant soure and targetto isomorphisms, then the left derived funtor of F exists. It is de�ned by LF (X) =F (QX) and LF (f) = F (Qf), where QX � // //X is the �xed o�brant model andQf is onstruted as above. There is a similar onstrution in the dual ase.We now onsider the ase in whih C and D are both model ategories.De�nition. Let F : C //D be a funtor between model ategories. The lefttotal derived funtor of F , denoted LF : Ho C //Ho D , is the left derived fun-tor of the omposition DF . Dually the right total derived funtor of F , denotedRF : Ho C //Ho D is the right derived funtor of the omposition DF .Proving the existene of a pair of adjoint funtors between two ategories is a �rststep towards establishing an equivalene, hene the interest of the next de�nition.De�nition. Let (C;WEC; F ibC ; CofC) and (D;WED ; F ibD; CofD) be model at-egories. A pair of adjoint funtors F : C //D : Goo is a Quillen pair if F (CofC) �CofD and G(FibD) � FibC.It is easy to see that (F;G) is a Quillen pair if and only if G(FibD) � FibC andG(FibD \WED) � FibC \WEC, whih is in turn equivalent to F (CofC) � CofDand F (CofC \WEC) � CofD \WED. The proof of these equivalenes applies theadjointness of F and G to the dual de�nitions of Fib and Cof in terms of liftingproperties.A simple example of a Quillen pair is the adjoint pair W : C � C // C : �oo ,where W (A � B) = A _ B and �(A) = (A;A). The distinguished lasses of themodel ategory C � C are the produts of the distinguished lasses of C.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 11Proposition 2.3.3. A Quillen pair F : C //D : Goo indues an adjoint pairLF : Ho C //Ho D : RGoo :De�nition. A Quillen pair F : C //D : Goo is a Quillen equivalene if for allA 2 Ob C, B 2 Ob Df : FA //B 2WED ks +3 f ℄ : A //GB 2WEC;where f ℄ denotes the adjoint of f .Proposition 2.3.4. The adjoint pair (LF;RG) indued by a Quillen equivalene(F;G) is a pair of mutually inverse equivalenes.2.4 Co�brantly generated model ategories.In many familiar model ategories it is possible to hoose relatively small fami-lies of o�brations and ayli o�brations that generate the entire model ategorystruture in a natural way. In suh ategories many theorems about model ate-gories are easier to prove, as it suÆes to prove them for the generating families.We are also able in suh a ategory to obtain funtorial fatorizations of the sortrequired by axiom (M5).The de�nitions and results presented below are essential to understanding Se-tion 3, where we state onditions ensuring ompatability between model andmonoidalategory strutures.We begin with a sequene of rather tehnial de�nitions that serve to explainwhat it means for an objet in a ategory to be small with respet to a lassof morphisms. The notion of smallness is essential in the de�nition of o�brantgeneration.De�nition. Let C be any oomplete ategory.(1) Let � be an ordinal. A �-suite in C is a funtor X : � //C , i.e., a diagramX0 //X1 //X2 // � � � //X� // � � � (� < �);suh that the indued morphism olim�<X� //X is an isomorphismfor every limit ordinal .(2) The omposition of a �-sequene is the morphism X0 //olim�<�X� .(3) Let D be a subategory of C. A trans�nite omposition of D-morphisms isthe omposition in C of a �-sequene suh that X� //X�+1 2Mor D forall � < �.(4) Let D be a subategory of C. An objet A in C is small with respet toD if there is a o�nal set S of ordinals suh that for all � 2 S and for all�-sequenes X : � //D , the indued set mapolim�<�C(A;X� ) //C(A; olim�<�X�)is an isomorphism.



12 KATHRYN HESSRemarks.(1) If (C;WE;F ib;Cof) is a oomplete model ategory, it is relatively easy toverify that Cof and Cof \WE are losed under trans�nite omposition.(2) De�nition (4) means in essene that a morphism fromA into any suÆientlylong omposition will fator through some stage of the omposition.(3) Every set is small with respet to the entire ategory of sets.(4) Every �nite, pointed CW-omplex is small in the ategory of based topo-logial spaes, with respet to the subategory of pointed CW-omplexesand inlusions thereof.We now introdue the three lasses of morphisms naturally assoiated to a givenlass in Mor C. The notion of \generation" in a o�brantly generated ategoryrefers to reation of these three lasses.De�nition. Let C be any oomplete ategory, and let I � Mor C. The lass ofmorphisms I gives rise to the following three other lasses.(1) I � inj := RLP (I)(2) I � of := LLP (I � inj)(3) I � ell is the lass of morphisms f : A //B in C for whih there ex-ist an ordinal � and a �-sequene X : � //C suh that X0 = A, eahX� //X�+1 is a push-out of a morphism in I, and the ompositionX0 //olim�<�X� is isomorphi to f .Note that I � ell � I � of .The next theorem, whih is one of the most useful tools in model ategory theory,explains the importane of small objets and of the lasses de�ned above.Theorem 2.4.1 (The Small Objet Argument). Let C be a oomplete ate-gory. Suppose that I � C is suh that the soure of every morphism in I is smallwith respet to I. Then there is a funtor(i; p) :Mor C //I � ell � I � injsuh that f = p(f) Æ i(f) for all f 2Mor C.The de�nition below of o�brantly generated model ategories is inspired bythe desire to apply the Small Objet Argument to the onstrution of funtorial,(M5)-type fatorizations of morphisms in a model ategory.De�nition. A model ategory (C;WE;F ib;Cof) is o�brantly generated if thereexist two lasses I;J �Mor C suh that(1) The soure of every morphism in I is small with respet to Cof , while thesoure of every morphism in J is small with respet to Cof \WE.(2) Fib = J � inj and Fib \WE = I � inj.The elements of I and J are then alled generating o�brations and generatingayli o�brations, respetively.Observe that ondition (2) of the de�nition above implies that Cof = I � ofand Cof \WE = J � of .It is lear that in a o�brantly generated model ategory, one an always applythe Small Objet Argument to the lasses of generating o�brations and generatingayli o�brations, thereby obtaining funtorial fatorizations as in axiom (M5).Furthermore, in a o�brantly generated model ategory, many results involvingonditions on o�brations an be proved by trans�nite indution, via �-sequenes.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 132.5 Examples of model ategories.Example 2.5.1. There are two well-known and oft-employedmodel ategory stru-tures on the ategory of topologial spaes, T OP, both of whih de�ne the samehomotopy theory on T OP. On the one hand, Str�m showed in [20℄ that settingWE to be the lass of homotopy equivalenes, Fib to be the lass of Hurewiz�brations, and Cof to be the lass of losed Hurewiz o�brations de�ned a modelategory struture on T OP. In this ase, all objets are both �brant and o�brant.On the other hand, aording to Quillen [17℄, one also obtains a model ategorystruture on T OP by letting WE be the lass of weak homotopy equivalenes, Fibthe lass of Serre �brations and Cof the lass of retrats of inlusions A � � //Xsuh that (X;A) is a relative CW-omplex. Reall that weak homotopy equivalenesare maps induing an isomorphism on homotopy groups, while Serre �brations aremaps with the right lifting property with respet to the lass of ontinuous mapsfi0 : Dn //Dn � I j n � 0g, where Dn is the n-dimensional disk. With respetto this struture, all objets are �brant, while the o�brant objets are the CW-omplexes.Hovey showed in [11℄ that the seond model ategory struture on T OP is o�-brantly generated. The inlusions Sn�1 � � //Dn for n � 1 are the generatingo�brations, while the inlusions i0 : Dn � � //Dn � I for n � 0 are the generatingayli o�brations.When it is important to have a losed, monoidal struture on the ategory oftopologial spaes in whih he works, the homotopy theorist usually resorts toworking in the subategory T of ompatly generated spaes. Reall that a spaeis ompatly generated if it is weak Hausdor� and every ompatly open subsetis open. As Hovey explained in [11℄, T is a o�brantly generated model ategorywith respet to the same lasses of generating o�brations and ayli o�brationsas T OP. Furthermore, T is Quillen equivalent to T OP.Example 2.5.2. Let C be a pointed abelian ategory in whih all �nite limits andolimits exist. If WE = Mor C, Fib is the lass of all monomorphisms in Mor C,and Cof is the lass of all epimorphisms in Mor C, then (C;WE;F ib;Cof) is amodel ategory. The initial and terminal objet of C is both o�brant and �brant,and there is no other objet that is either �brant or o�brant.This example serves as a reminder that our natural inlination to think of �bra-tions as projetions and o�brations as injetions should be avoided!Example 2.5.3. Let R be a unitary, ommutative ring. A (non-negative) hainomplex over R onsists of a graded left R-module C� =Li2N Ci endowed with aR-module map d : C� //C��1 , alled the di�erential, satisfying d Æ d = 0. Thehomology of a hain omplex is a graded R-module H�(C�; d) de�ned byHn(C�; d) = ker(d : Cn //Cn�1 )=Im(d : Cn+1 //Cn )for n > 0 and H0(C�; d) = C0=Im(d : C1 //C0 ).A morphism f : (C�; d) //(C 0�; d0) of hain omplexes over R, also alled ahain map, is a morphism of graded R-modules suh that d0f = fd. It is easy tosee that a morphism of hain omplexes indues a morphism of graded modules inhomology. We denote the ategory of hain omplexes over R and their morphismsby ChCx�(R).



14 KATHRYN HESSLet WE be the lass of quasi-isomorphisms, i.e., of hain maps induing isomor-phisms in homology. Let Fib be the lass of surjetive hain maps and Cof thelass of degree-wise split, injetive hain maps with degree-wise projetive okernel.Hovey established in [11℄ that these hoies determine a model ategory strutureon ChCx�(R), with respet to whih all objets are �brant and the o�brant hainomplexes are projetive in eah degree. Moreover, any hain omplex (C�; d) thatis projetive in eah degree is o�brant.Hovey proved furthermore that every hain omplex is small with respet tolass of all hain maps, whih he then used in showing that ChCx�(R) is o�-brantly generated. Let Sn(R) denote the hain omplex with Sn(R)i = R ifi = n and Sn(R)i = 0 otherwise. The di�erential is neessarily trivial in alldegrees. Let Dn(R) denote the hain omplex with Dn(R)i = R if i = n� 1; n andDn(R)i = 0 otherwise. The di�erential d : Dn(R)i //Dn(R)i�1 is the identity ifi = n and 0 otherwise. The generating o�brations of ChCx�(R) are the inlusionsSn�1(R) //Dn(R) for all n, while the generating ayli o�brations are theinlusions of the zero omplex into Dn(R) for all n.The algebrai notion of derived funtor oinides in ChCx�(R) with the notionof total derived funtor. In partiular, if M is a right R-module, then we an de�nea funtor F =M 
R � : ChCx�(R) //ChCx�(Z):The left total derived funtor of F exists, andHi�LF (S0(R) 
R N)� �= TorRi (M;N)for all i � 0 and for all left R-modules N .The model ategory in the next example is the target ategory of the well-knownalgebrai model we present in Setion 4. When explaining this example, we workwith non-negatively graded ohain omplexes over the �eld Q of rational numbers,i.e., with graded Q-vetor spaes C� = Li�0 Ci endowed with a di�erential ofdegree +1. The de�nitions of ohain maps and of the ohomology of ohainomplexes and their maps are analogous to the dual de�nitions for hain omplexes.Example 2.5.4. A ommutative di�erential graded algebra (.g.d.a.) over Q is aommutative monoid in the ategory of non-negatively graded ohain omplexes.In other words, a .g.d.a. (A�; d) is a ohain omplex overQ, endowed with ohainmaps � : Q //(A�; d)alled the unit and� : (A�d)
Q (A�; d) //(A�; d) : a
 b � //a � b;alled the produt suh that(1) � is graded ommutative, i.e., if a 2 Ap and b 2 Aq, then a � b = (�1)pqb � a;(2) � is assoiative; and(3) �(� 
 1A) = 1A = �(1A 
 �).An important lass of .d.g.a.'s is omposed of the KS-omplexes. For any non-negatively graded vetor spae V , let �V denote the free, ommutative, gradedalgebra generated by V , i.e., �V = S[V even℄ 
Q E(V odd), tensor produt of the



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 15symmetri algebra on the vetors of even degree and of the exterior algebra onthe vetors of odd degree. A KS-omplex is a .d.g.a. (�V; d) with augmentation" : �V //Q suh that(1) V has a basisB = fv� j � 2 Jg, where J is a well-ordered set, and "(V ) = 0;(2) dv� 2 V<� for all � 2 J , where V<� is the span of fv� j � < �g.A KS-omplex (�V; d) is minimal if V 0 = 0 and � < � implies that deg v� � deg v�.If V 1 = V 0 = 0, then (�V; d) is minimal if and only if dV � ��2V .A morphism of .g.d.a.'s f : (A�; d; �; �) //( �A�; �d; ��; ��) is a ohain map suhthat f� = ��(f 
 f) and f� = ��. The ategory of .d.g.a.'s over Q and theirmorphisms is denoted CDGA�(Q).Let WE be the lass of quasi-isomorphisms in CDGA�(Q), Fib the lass ofsurjetive .d.g.a. morphisms, and Cof = LLP (Fib\WE). Aording to Bous�eldand Gugenheim [2℄, (CDGA�(Q);WE;F ib;Cof) is a model ategory. All .d.g.a.'sare �brant with respet to this struture, and all KS-omplexes are o�brant.It is not diÆult to see that the model ategory of .d.g.a.'s is o�brantly gen-erated. Observe �rst that any .d.g.a. is small with respet to Mor CDGA�(Q),by an argument similar to that given by Hovey to prove that any hain omplex issmall with respet to the lass of all hain maps.Next we de�ne three speial families of inlusions of KS-omplexes. Let (�um; 0)denote the KS-omplex generated by a vetor spae of dimension 1, onentrated indegree m, and let (�(um; vm�1); d) denote the KS-omplex generated by a vetorspae with one basis element of degree m and one of degree m� 1, where d(v) = u.De�ne im, i0m and jm to be the following inlusions.im : 0 //(�um; 0)i0m : (�um; 0) //(�(um; vm�1); d)im : 0 //(�(um; vm�1); d)Let I = fim; i0m+1 jm � 0g and J = fjm j m � 1g.Claim. Fib = J � inj and Fib \WE = I � inj.Proof. Sine J �inj = RLP (J ), it is lear that p : (A�; d) //( �A�; �d) 2 J �inj ifand only if for allm � 1 and all .d.g.a. morphisms g : (�(um; vm�1); d) //( �A�; �d) ,there exists a .d.g.a. morphism ĝ : (�(um; vm�1); d) //(A�; d) suh that pĝ = g.It is easy to see that this ondition on p is equivalent to the surjetivity of p, sothat Fib = J � inj.On the other hand, p : (A�; d) //( �A�; �d) 2 I � inj if and only if(1) for allm � 0 and for all .d.g.a. morphisms g : (�um; 0) //( �A�; �d) , thereexists a .d.g.a. morphism ĝ : (�um; d) //(A�; d) suh that pĝ = g; and(2) for all m � 1, given any ommutative diagram of .d.g.a. morphisms(�um; 0) f //i0m
��

(A�; d)p
��(�(um; vm�1); d) g //

ĝ 77 ( �A�; �d)there exists a .d.g.a. morphism ĝ : (�(um; vm�1); d) //(A�; d) suh thatpĝ = g and ĝi0m = f .



16 KATHRYN HESSCondition (1) is equivalent to p being surjetive on the subalgebra of oyles ker �din �A�, while ondition (2) is equivalent to requiring that p be a quasi-isomorphism.Sine any quasi-isomorphism of ohain omplexes that is surjetive on oylesmust be surjetive, we see that Fib \WE = I � inj. �Thus, I and J are families of generating o�brations and generating aylio�brations for the model struture on CDGA�(Q). The elements of I � ell arealled KS-extensions.Let T OPf0 denote the full subategory of T OP given by those spaes that arenilpotent, rational and of �nite rational type. A spae X is nilpotent if its fun-damental group is nilpotent and ats nilpotently on the higher homotopy groups,rational if its homotopy groups are uniquely divisible and of �nite rational type ifdimQ Hn(X;Q) <1 for all n.Let CDGA�;f (Q) denote the full subategory of CDGA�(Q) given by those.d.g.a.'s (A�; d) for whih there exists a quasi-isomorphism of .d.g.a.'s' : (�V; d) � //(A�; d);where (�V; d) is a minimal KS-omplex suh that dimQ V n <1 for all n. The quasi-isomorphism ', or the minimal KS-omplex (�V; d), is alled a minimal model of(A�; d).Bous�eld and Gugenheim de�ned a Quillen pair of ontravariant funtorsAS : T OP //CDGA�(Q) : jF joo ;that indues an equivalene of homotopy ategories when restrited to T OPf0 andCDGA�;f (Q), i.e., Ho T OPf0 �= Ho CDGA�;f (Q):The algebrai model AS : T OPf0 //CDGA�;f (Q) is alled the Sullivanmodel, asSullivan was the �rst to onstrut it [21℄, while Bous�eld and Gugenheim providedthe �rm foundation in terms of model ategories some years later. In Setion 4, wetake a loser look at this model and desribe one of the many topologial problemsto whih it has been suessfully applied.3. Monoidal model ategoriesLet (C;1;
;Hom) be a losed, symmetri, monoidal ategory endowed with thestruture of a model ategory. In this setion we establish ompatibility onditionsunder whih there is a natural, indued monoidal struture on Ho C and exam-ine the possibility of extending suh ompatibility to ategories of modules andmonoids. The de�nitions and results we present in this setion are due to Hovey[12℄ or, in a slightly di�erent form, to Shwede and Shipley [19℄.3.1 De�nition and motivating theorem.The following onstrution plays a very important role in eluidating the rela-tionship between monoidal and model struture.De�nition. Let (C;
) be a monoidal ategory. Let f : A //B and g : X //Ybe morphisms in C. The push-out smash of f and g, denoted f�g, is the morphism



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 17indued by f 
 1Y and 1B 
 g in the following push-out diagram.A
X1A
g
��

f
1X // B 
X
�� 1B
g

��

A 
 Y // f
1Y --

(A 
 Y ) _A
X (B 
X)f�g
((QQQQQQQQQQQQ B 
 YDe�nition. A losed, symmetri, monoidal ategory (C;1;
;Hom) that is also amodel ategory with distinguished lasses WE, Fib, and Cof is a monoidal modelategory if the following axioms are satis�ed.(1) (Push-out smash axiom)f; g 2 Cof +3f�g 2 Cofand f 2 Cof; g 2 Cof \WE +3f�g; g�f 2 Cof \WE:(2) (Unit axiom) Let q : Q1 � // //1 be a o�brant model of the unit 1. Thenq 
 1X : Q1
X //1
X �= X and 1X 
 q : X 
Q1 //X 
 1 �= Xare both weak equivalenes.Theorem 3.1.1(Hovey [11℄). The homotopy ategory of a monoidal model at-egory C has a natural symmetri, monoidal struture, indued by the monoidalstruture of C.Examples. Hovey showed in [11℄ that T (f. Example 2.5.1) is a monoidal modelategory. The tensor produt on T is given by applying the k-spae topology tothe usual artesian produt of spaes: X 
 Y := k(X �Y ). Reall that a subset ofkZ is open if and only if it is ompatly open in Z.Hovey also proved in [11℄ that ChCx�(R) (f. Example 2.5.3) is a monoidalmodel ategory, where the underlying graded module of (C�; d)
 (C 0�; d0) is de�nedby (C� 
 C 0�)n =Mk2N Ck 
R C 0n�kand the tensor di�erential D is de�ned byD( 
R 0) = d
R 0 + (�1)k
R d00if  2 Ck.



18 KATHRYN HESS3.2 Model strutures on ategories of modules and algebras.Given a monoidal model ategory C, it is ertainly natural to hope for the exis-tene of natural model ategory strutures on the ategory AMod of (left) modulesover a �xed monoid A , as well as on the ategory AA`g of algebras over A, if A isommutative. Furthermore, supposing the existene of suh strutures, one wouldhope that they were \homotopy invariant" in some appropriate sense. For example,it seems reasonable to expet that a weak equivalene of monoids would indue anequivalene of the homotopy ategories of their respetive module ategories.As we see in the results below, these hopes are not foolish, at least as long aswe are willing to aept a few additional onstraints on the ategory C and themonoids we onsider.Throughout the remainder of this setion, (C;WE;F ib;Cof) denotes a o�-brantly generated, monoidal model ategory with generating o�brations I andgenerating ayli o�brations J . Furthermore, if A 2 Ob C and K �Mor C, thenwe write A
K = f1A 
 g j g 2 Kgand C 
 K = ff 
 g j f 2Mor C; g 2 Kg:Theorem 3.2.1 (Hovey[12℄, Shwede/Shipley [19℄). Let A be a monoid in Csuh that(1) the soure of any morphism in I is small with respet to (A 
 I)-ell;(2) the soure of any morphism in J is small with respet to (A
J )-ell; and(3) (A 
 J )-ell �WE.Then AMod an be endowed with a o�brantly generated model ategory struturesuh that f 2 WEAMod +3 f 2WEC \ AModand f 2 FibAMod +3 f 2 FibC \ AMod:Remark. If A is a o�brant monoid, then A 
 I � CofC. The hypotheses (1)-(3)of the theorem above are therefore automatially satis�ed in this ase.Hovey showed that the hypotheses of the theorem above are satis�ed for anymonoid in T , so that the ategory of modules over any ompatly generated topo-logial monoid an be endowed with a o�brantly generated model ategory stru-ture.The monoids in ChCx�(R) are the assoiative hain algebras over R. Sineevery hain omplex is small with respet to the lass of all hain maps, Theorem3.2.1 and the remark above imply that the ategory of modules over an assoiativehain algebra that is bounded below and projetive in eah degree is a o�brantlygenerated model ategory.Theorem 3.2.2 (Hovey[12℄, Shwede/Shipley [19℄). Suppose that(1) the soure of any morphism in I is small with respet to (C 
 I)-ell;(2) the soure of any morphism in J is small with respet to (C 
 J )-ell; and(3) (C 
 J )-ell �WE.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 19If A is a ommutative monoid in C, then AA`g an be endowed with a o�brantlygenerated model ategory struture suh thatf 2WEAA`g +3 f 2WEC \ AA`gand f 2 FibAA`g +3 f 2 FibC \ AA`g:In partiular, under the hypotheses of Theorem 3.2.2, the ategory of monoidsin C is o�brantly generated, sine the monoids are the 1-algebras.Hovey proved that the hypotheses of Theorem 3.2.2 are satis�ed in the ategoryT of ompatly generated spaes, so that the ategory of ompatly generatedtopologial monoids an be endowed with a o�brantly generated model struture.If A is a ommutative monoid, then AMod naturally inherits a symmetrimonoidal struture from C. It seems reasonable to expet that this monoidalstruture be ompatible with the model ategory struture de�ned in the previ-ous theorem.Proposition 3.2.3. Suppose that either(1) the unit 1 is o�brant and A is a ommutative monoid satisfying the hy-potheses of Theorem 3.2.1; or(2) A is a o�brant, ommutative monoid.Then AMod is a o�brantly generated, monoidal model ategory.As an appliation of this proposition, we obtain a o�brantly generated, monoidalmodel struture on the ategory of modules over a ommutative, assoiative hainalgebra that is bounded below and projetive in eah degree.The model ategory strutures on AMod and AA`g satisfy two types of homotopyinvariane, as expressed in the following theorems.Theorem 3.2.4 (Hovey[12℄, Shwede/Shipley [19℄). Suppose that the soureof any morphism in I is o�brant. Let f : A � //A0 be a monoid morphism withA and A0 o�brant. Let Res : A0Mod //AMod denote the \restrition" funtor,i.e., Res(M) =M with the A-ation indued by f . ThenA0 
A � : AMod //A0Mod : Resoois a Quillen equivalene.If, in addition 1 is o�brant and A and A0 are ommutative, thenA0 
A � : AA`g //A0A`g : Resoois a Quillen equivalene.Theorem 3.2.5 (Hovey[12℄, Shwede/Shipley [19℄). Let C and D be o�brantlygenerated monoidal model ategories. Let F : C //D be a strong monoidal fun-tor.(1) If F (q) 2WED, where q : Q1 � // //1 is the o�brant model of 1 and A is ao�brant monoid in C, then the ategories AMod and F (A)Mod are Quillenequivalent.(2) If A is a o�brant, ommutative monoid, then the homotopy ategoriesHoAA`g and HoF (A)A`g are equivalent.



20 KATHRYN HESS4. The Sullivan model and Lusternik-Shnirelmann ategoryReall from the exposition of Example 3.5.4 that a minimal model of a .g.d.a.(A�; d) onsists of a quasi-isomorphism of .g.d.a.'s' : (�V; d) � //(A�; d);where (�V; d) is a minimal KS-omplex. If H0(A�; d) = Q, it is straightforwardto onstrut a minimal model of (A�; d) indutively. Furthermore, minimal modelsare unique up to isomorphism.Let X be a onneted, nilpotent spae of �nite rational type. There is a ontinu-ous map ` : X //X0 , alled the rationalization of X, suh thatX0 is rational and��`
Q is an isomorphism. The minimal model of the Sullivan model AS(X0) of therationalization of X is alled the Sullivan minimal model of X. Sine the .d.g.a.AS(X0) is huge and has a ompliated produt, rational homotopy theorists preferto work with the Sullivan minimal model, whih has only �nitely many generatorsin eah dimension and is free as an algebra, when arrying out omputations.We refer the reader to the new, enylopedi referene on rational homotopytheory [8℄ by F�elix, Halperin and Thomas for an in-depth treatment of the Sullivanminimal model. We mention below only a few of its most important properties.In the statement of the following theorem and proposition, the word \spae"refers exlusively to onneted, nilpotent spaes of �nite rational type.Theorem 4.1. Let ' : (�V; d) � //AS(X0) be the Sullivan minimal model of aspae X.(1) The ohomologies H�(�V; d) and H�(X;Q) are isomorphi as graded om-mutative algebras.(2) H�(V; d1) �= HomZ (��X;Q), where d1 denotes the omposition of the re-strition of d to V with the projetion �V //V .Elementary examples.(1) The minimal model of a sphere Sk is (�uk; 0).(2) The minimal model of a omplex projetive spae CP k is (�(u2; v2k+1); d),where dv = uk+1.(3) The minimal model of a produt of two spaes is the tensor produt of theminimal models.The following proposition, whih is essential to modelling ontinuous maps, anbe proved in several di�erent ways, inluding by indutive onstrution.Proposition 4.2. Let ' : (�V; d) � //AS(X0) and '0 : (�V 0; d0) � //AS(X 00) beSullivan minimal models of spaes X and X 0. If f : X 0 //X is any ontinuousmap, there is a morphism of .d.g.a.'s  : (�V; d) //(�V 0; d0) suh that the fol-lowing diagram ommutes up to homotopy.(�V; d)  //'
��

(�V 0; d0)'0
��AS(X0) AS(f0)// AS(X 00)



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 21It is important to note that, unlike the minimal model of a spae, the morphism is de�ned only up to homotopy.One of the most spetaular suesses of the Sullivan minimal model has been inits appliation to studying the numerial homotopy invariant known as Lusternik-Shnirelmann (L.-S.) ategory. The L.-S. ategory of a topologial spaeX, denotedatX, is equal to n if the ardinality of the smallest ategorial overing of X isn + 1. A ategorial overing of a spae X is an open over of X suh that eahmember of the over is ontratible in X.L.-S. ategory is in general extremely diÆult to ompute. It is trivial, however,to prove that atSn = 1 for all n and somewhat trikier, though still not diÆult,to prove that atT = 2, where T is the torus S1 � S1.One elementary property of L.-S. ategory is that at(X �Y ) � atX+ atY forall spaesX and Y . At the end of the 1960's Ganea observed that in the only knownexamples for whih at(X �Y ) 6= atX + atY , the spaes X and Y had homologytorsion at distint primes. He onjetured therefore that at(X � Sn) = atX + 1for all spaes X and all n � 1, sine Sn has no homology torsion whatsoever.The groundbreaking artile [6℄ of F�elix and Halperin, in whih they establishedthe following haraterization of the L.-S. ategory of a rational spae in terms of itsSullivan model, initiated the appliation of rational homotopy theory to the studyof L.-S. ategory.Theorem 4.3 (F�elix/Halperin [6℄). Let ' : (�V; d) � //AS(X) be the Sulli-van minimal model of a rational, nilpotent spae X of �nite rational type. Let(�V=�>nV; �d) denote the .d.g.a. obtained by taking the quotient of (�V; d) by theideal of words of length greater than n, and let(�V; d) q //i ''NNNNNNNNNNN
(�V=�>nV; �d)(�(V �W ); d) p� 66mmmmmmmmmmmmbe the funtorial fatorization of the quotient map q obtained by applying the SmallObjet Argument to I. Then atX � n if and only if there is a morphism of.g.d.a.'s � : (�(V �W ); d) //(�V; d) suh that �i = 1(�V;d).In [9℄ Halperin and Lemaire proposed the study of a weakened version of theabove haraterization, in whih the retration � is required only to be a mor-phism of (�V; d)-modules. They alled the homotopy invariant of X thus obtainedMat0X.Following Halperin and Lemaire's lead, Jessup proved in 1986 that Ganea's on-jeture holds with Mat0 in the plae of at.Theorem 4.4 (Jessup [15℄). Mat0(X � Sn) = Mat0X + 1 for all simply-onneted rational spaes X of �nite rational type and all n � 2.The following theorem then ompleted the proof of Ganea's onjeture for ratio-nal spaes.Theorem 4.5 (Hess [10℄). Mat0X = atX for all simply-onneted rationalspaes X of �nite rational type.
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