
MODEL CATEGORIES IN ALGEBRAIC TOPOLOGYKathryn HessE
ole Polyte
hnique F�ed�erale de LausanneDedi
ated to Prof. Heinri
h Kleisli on the o

asion of his 70th birthdayAbstra
t. This survey of model 
ategories and their appli
ations in algebrai
 topol-ogy is intended as an introdu
tion for non homotopy theorists, in parti
ular 
ategorytheorists and 
ategori
al topologists. We begin by de�ning model 
ategories andthe homotopy-like equivalen
e relation on their morphisms. We then explore thequestion of 
ompatibility between monoidal and model stru
tures on a 
ategory. We
on
lude with a presentation of the Sullivan minimal model of rational homotopytheory, in
luding its appli
ation to the study of Lusternik-S
hnirelmann 
ategory.Introdu
tionModel 
ategory theory, �rst developed in the late 1960's by Quillen [17℄, hasbe
ome very popular among algebrai
 topologists in the past �ve years. A model
ategory is a 
ategory endowed with three distinguished 
lasses of morphisms, 
alled�brations, 
o�brations and weak equivalen
es, satisfying axioms that are propertiesof the topologi
al 
ategory and its usual �brations, 
o�brations and homotopyequivalen
es. In any model 
ategory there is a notion of homotopy of morphisms,based upon the de�niton of homotopy of 
ontinuous maps.The primary sour
e of topologists's 
urrent interest in model 
ategories is prob-ably their appli
ation to formalizing the underlying stru
ture of stable homotopytheory. For more than 30 years the framework of stable homotopy theory wasBoardman's stable 
ategory or one of its variants, due to Adams or to Lewis andMay. The stable homotopy 
ategory, whi
h is a 
losed, symmetri
, monoidal 
at-egory, is in some ways a topologi
al version of the derived 
ategory obtained fromthe 
ategory of 
hain 
omplexes by inverting all quasi-isomorphisms. The analogyis not perfe
t, however, as the \tensor produ
t" de�ned on the 
ategory underly-ing the stable homotopy 
ategory is neither asso
iative nor 
ommutative. Thus,when topologists applied algebrai
 methods to spe
tra, produ
ts and a
tions werespe
i�ed only up to homotopy, whi
h often led to highly deli
ate 
omputations.Only in the past �ve years or so have topologists dis
overedmodel 
ategories withappropriately 
ompatible monoidal stru
ture su
h that the asso
iated homotopy
ategory is equivalent as a monoidal 
ategory to the stable homotopy 
ategory.Examples of su
h monoidal model 
ategories in
lude the 
ategory of S-modules of1991 Mathemati
s Subje
t Classi�
ation. Primary: 55U35, Se
ondary: 18D10, 18D15, 18G55,55M30, 55P62, 55U15.Key words and phrases. Algebrai
 homotopy theory, Lusternik-S
hnirelmann 
ategory, model
ategory, monoidal 
ategory, rational homotopy theory, Sullivan model.1



2 KATHRYN HESSElmendorf, Kriz, Mandell and May [5℄, the 
ategory of symmetri
 spe
tra of Hovey,Shipley and Smith [13℄ and the 
ategory of �-spa
es of Lydakis [16℄.Model 
ategories have also been essential to the development of algebrai
 homo-topy theory. Given a topologi
al problem to solve, su
h as the problem of lifting,extending or fa
toring a given 
ontinuous map, the algebrai
 homotopy theorist�rst 
hooses an appropriate algebrai
 model, i.e., an \algebrai
" 
ategory C en-dowed with a reasonable notion of \homotopy" of morphisms, together with afun
tor F : T OP // C , that preserves the homotopy relation. He then trans-lates the topologi
al problem via the fun
tor F into algebrai
 terms and studiesthe resulting algebrai
 problem, with the aim of obtaining information about thetopologi
al situation.The algebrai
 homotopy theorist 
hooses C and F based on \e
onomi
" 
onsid-erations, endeavoring to a
heive equilibrium between the information lost in trans-lation and the ease of 
omputation. He will therefore sele
t C and F in fun
tion ofthe stru
ture to be examined and the requisite depth of detail.The methods of algebrai
 homotopy theory have proved quite fruitful, notablyin rational homotopy theory, as we indi
ate in the �nal se
tion of this arti
le.The aim of this arti
le, whi
h is based on the author's le
tures at the CATOP2000
onferen
e in honor of Prof. Kleisli, is to introdu
e model 
ategories and their appli-
ations in algebrai
 topology to non homotopy theorists, in parti
ular to 
ategorytheorists and to 
ategori
al topologists. We have 
hosen therefore to omit mostproofs, fo
ussing instead on examples and appli
ations. The orientation and s
opeof this arti
le is thus rather di�erent from that of the survey arti
le [4℄ of Dwyerand Spalinski, whi
h the author highly re
ommends as 
omplementary reading.The �rst se
tion of the arti
le 
onsists in a very 
on
ise refresher 
ourse in thehomotopy theory of topologi
al spa
es. Model 
ategories and the de�nition of ahomotopy-like equivalen
e relation therein are the subje
t of Se
tion 2. In Se
tion3 we examine 
onditions of 
ompatibility between model 
ategory stru
ture andmonoidal stru
ture. We 
on
lude in Se
tion 4 with a brief presentation of one ofthe best-known algebrai
 models, the Sullivan model of rational homotopy theory,in
luding an example of a topologi
al problem to whi
h it was su

essfully applied.1. The homotopy theory of topologi
al spa
esGiven two topologi
al spa
es A and X, the homotopy equivalen
e relation on theset T OP(A;X) of 
ontinuous maps from A to X 
an be de�ned in two equivalentways: in terms of the 
ylinder on A or in terms of the path spa
e on X.Let I denote the interval [0; 1℄. The 
ylinder on A is the produ
t spa
e A � I,whi
h �ts into the following diagramA 1A ""EE
EE

EE
EE

E
� � i0 // A� I�

��

A? _i1oo 1A||yy
yy

yy
yy

yAwhere it(a) = (a; t) and �(a; t) = a. Two 
ontinuous maps f; g : A //X are lefthomotopi
 if there is a 
ontinuous map H : A � I //X su
h that the followingdiagram 
ommutes.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 3A f ""EE
EE

EE
EE

E
� � i0 // A� IH

��

A? _i1oo g
||yy

yy
yy

yy
yXThe path spa
e on X, denoted XI , is the spa
e f� : I //X j � 
ontinuousgendowed with the 
ompa
t-open topology. The path spa
e �ts into the following
ommutative diagram X XIp0oooo p1 // // XX1X``BBBBBBBB

e OO 1X >>||||||||where pt(�) = �(t) and e(y) is the 
onstant path at y. Two 
ontinuous mapsf; g : A //X are right homotopi
 if there is a 
ontinous map K : A //XIsu
h that the following diagram 
ommutes.X XIp0oooo p1 // // XAf``BBBBBBBB
K OO g >>||||||||It is not diÆ
ult to see that both right and left homotopy de�ne equivalen
erelations on T OP(A;X), and that their sets of equivalen
e 
lasses are the same. Iff and g are (right or left) homotopi
, we write f ' g.The resear
h of homotopy theorists often 
onsists of seeking the solution totopologi
al problems up to homotopy, i.e., it is the homotopy 
lass of a 
ontinuousmap, rather than the map itself, that is important.There are three distinguished 
lasses of 
ontinuous maps that together determinethe homotopy theory of topologi
al spa
es: the 
lasses of homotopy equivalen
es,�brations and 
o�brations. A map f : A //X is a homotopy equivalen
e if thereexists a map g : X //A su
h that gf ' 1A and fg ' 1X . A (Hurewi
z) �brationis a 
ontinuous map p : E //B that has the homotopy lifting property, i.e., givenany 
ommutative diagram of 
ontinuous mapsY h //

� _i0
��

Ep
��Y � I H //

bH << Bthere is a 
ontinuous map bH : Y � I //E su
h that bHi0 = h and p bH = H. Thehomotopy bH thus lifts H through p and extends h over i0. An in
lusion of a 
losedsubspa
e i : A � � //X is a (
losed, Hurewi
z) 
o�bration if i has the homotopyextension property, i.e., given any 
ommutative diagram of 
ontinuous mapsA K //i
��

Y Ip0
����X k //

bK >> Y



4 KATHRYN HESSthere is a 
ontinuous map bK : X //Y I su
h that p0 bK = k and bKi = K. Thehomotopy bK thus extends K over i and lifts k through p0.The axioms of a model 
ategory, stated in Se
tion 2, 
odify the properties ofthese three 
lasses that are essential to the de�nition of a reasonable homotopy-likeequivalen
e relation in an abstra
t 
ategory.2. Model 
ategoriesIn this se
tion we �rst present the pre
ise de�nition of model 
ategories, as wellas a few of their elementary properties. We then explain how to de�ne a homotopyrelation on the sets of morphisms C(A;X) in a model 
ategory C, at least for A andX satisfying additional, usually mild hypotheses. Given the de�nition of the ho-motopy relation, we 
onstru
t the homotopy 
ategory of a model 
ategory C, whi
his a lo
alization of C with respe
t to a 
ertain distinguished 
lass of morphisms,then provide 
onditions under whi
h a fun
tor between model 
ategories indu
esan equivalen
e on their homotopy 
ategories.Co�brantly generated model 
ategories, whi
h are model 
ategories in whi
hthe entire model stru
ture 
an be generated in a natural manner by two distin-guished 
lasses of maps, are the next topi
 of this se
tion. Though their de�nitionis somewhat te
hni
al, it is often mu
h easier to prove theorems about 
o�brantlygenerated model 
ategories than about general model 
ategories. Fortunately, manyfamiliar model 
ategories are 
o�brantly generated. The notion of 
o�brant gener-ation is essential to understanding the 
ompatibility between model and monoidalstru
tures in Se
tion 3.We 
on
lude this se
tion with several examples of model 
ategories.We refer the reader to either the survey arti
le [4℄ of Dwyer and Spalinski or themonograph [11℄ of Hovey for further details and missing proofs. In parti
ular, ourpresentation of 
o�brantly generated 
ategories is based on that in [11℄.2.1 De�nition and elementary properties of model 
ategories.De�nition. Let I be a subset of Mor C. A morphism f : A //B in C satis-�es the left lifting property with respe
t to I, denoted f 2 LLP (I), if for every
ommutative diagram A h //f
��

Cg
��B k //

k̂ >> Dof morphisms in C with g 2 I, there exists a morphism k̂ : B //C su
h thatgk̂ = k and k̂f = h.Dually, we say that f has the right lifting property with respe
t to I, denotedf 2 RLP (I), if for every 
ommutative diagramC h //g
��

Af
��D k //

k̂ >> B



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 5of morphisms in C with g 2 I, there exists a morphism k̂ : D //A su
h thatfk̂ = k and k̂g = h.Re
all that a morphism f in a 
ategory C is a retra
t of a morphism g if thereis a 
ommutative diagram of morphisms in C�f
��

i // �g
��

r // �f
��� j // � s // �su
h that ri and sj are identity morphisms.De�nition. A model 
ategory 
onsists of a 
ategory C, together with 
lasses ofmorphismsWE;Fib;Cof �Mor C that are 
losed under 
omposition and 
ontainall identities, su
h that the following axioms are satis�ed.(M1) All �nite limits and 
olimits exist.(M2) Let f : A //B and g : B //C be morphisms in C. If two of f , g, andgf are in WE, then so is the third.(M3) If f is a retra
t of g and g belongs to WE (respe
tively Fib, respe
tivelyCof), then f also belongs to WE (respe
tively Fib, respe
tively Cof).(M4) Cof � LLP (Fib \WE) and Fib � RLP (Cof \WE).(M5) If f 2Mor C, then there exist(a) i 2 Cof and p 2 Fib \WE su
h that f = pi;(b) j 2 Cof \WE and q 2 Fib su
h that f = qj.By analogy with the homotopy stru
ture in the 
ategory of topologi
al spa
es, themorphisms belonging to the 
lassesWE, Fib and Cof are 
alled weak equivalen
es,�brations, and 
o�brations and are denoted by de
orated arrows � // , // // , and

// // . The elements of the 
lasses Fib\WE and Cof\WE are 
alled, respe
tively,a
y
li
 �brations and a
y
li
 
o�brations. Sin
e WE, Fib and Cof are all 
losedunder 
omposition and 
ontain all isomorphisms, we 
an and sometimes do viewthem as sub
ategories of C, rather than simply as 
lasses of morphisms.Axiom (M1) implies that any model 
ategory has an initial obje
t � and aterminal obje
t e. An obje
t A in a model 
ategory is 
o�brant if the uniquemorphism � //A is a 
o�bration. Similarly, A is �brant if the unique morphismA //e is a �bration.Sin
e the axioms of a model 
ategory imply that the 
lasses Fib and WE deter-mine Cof , while the 
lasses Cof andWE determine Fib, it is 
lear that the aboveset of axioms is not minimal. One de�nite estheti
 and pra
ti
al advantage to this
hoi
e of axioms, however, is the symmetry they express between 
o�brations and�brations, whi
h is the basis of E
kmann-Hilton duality in homotopy theory.There are numerous variations on the model 
ategory theme, di�erent ways ofendowing a 
ategory with additional stru
ture enabling one to de�ne a homotopy-like equivalen
e relation. The 
o�bration 
ategories of Baues [1℄, in whi
h there areonly two distinguished 
lass of morphisms, weak equivalen
es and 
o�brations, areprobably among the best known and most widely applied of these variations. If C isa model 
ategory in the sense of this paper, then its full sub
ategory 
onsisting of
o�brant obje
ts, together with the 
orresponding sub
lasses of weak equivalen
es



6 KATHRYN HESSand 
o�brations, is a 
o�bration 
ategory. We re
ommend the arti
le [3℄ of Doeraeneto the reader interested in a 
omparative study of di�erent types of 
ategori
alstru
ture leading to a reasonable de�nition of a homotopy-like equivalen
e relation.The three elementary but useful properties of model 
ategories stated in theproposition below are easy 
onsequen
es of the axioms of a model 
ategory.Proposition 2.1.1. Let (C;WE;F ib;Cof) be a model 
ategory.(1) Cof = LLP (Fib \WE) and Fib = RLP (Cof \WE).(2) Cof and Cof \WE are preserved under push-out.(3) Fib and Fib \WE are preserved under pull-ba
k.2.2 The homotopy relation in a model 
ategory.Motivated by the de�nition of the homotopy relation in T OP, we obtain thefollowing two possible de�nitions of homotopy of morphisms in an arbitrary model
ategory C. Unless A and X are 
hosen a

ording the 
riteria we establish below,the two de�nitions are not ne
essarily equivalent and do not ne
essarily determineequivalen
e relations on C(A;X).Throughout this se
tion (C;WE;F ib;Cof) denotes a model 
ategory.De�nition. Given A 2 Ob C, 
onsider the push-out of the morphism � //Awith itself �
��

// Aj0
�� 1A

��

A j1 // 1A ,,

A _A r
""FF

FF
FF

FF
F Awhere r : A _A //A denotes the \folding" map, i.e., the morphism indu
ed bythe identity on ea
h 
opy of A. Observe that A _A is a 
oprodu
t.A 
ylinder on A 
onsists of a fa
torization of r.A _A r //i %%JJJJJJJJJ ACyl(A) p� ;;xxxxxxxxxLet i0 = ij0 and i1 = ij1.The 
ylinder is good if i 2 Cof and very good if, in addition, p 2 Fib \WE.Let f; g : A //X be morphisms in C. A left homotopy from f to g 
onsists ofa morphism H : Cyl(A) //X su
h that the diagramA f

##FFFFFFFFF
� � i0 // Cyl(A)H

��

A? _i1oo g
{{xxxxxxxxxX
ommutes, where A _ A i //Cyl(A) p //A is any 
ylinder on A. We denote theexisten
e of a left homotopy from f to g by f �̀ g.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 7The next proposition lists the elementary properties of left homotopy that areessential to our purposes here.Proposition 2.2.1.(1) If A is a 
o�brant obje
t in C, then �̀ is an equivalen
e relation on C(A;X)for all obje
ts X. The quotient set of left homotopy equivalen
e 
lasses isdenoted �`(A;X).(2) If A is 
o�brant and p : Y � // //X , then p indu
es an isomorphismp� : �`(A;Y ) //�`(A;X) :(3) If X is �brant, thenf �̀ g : B //X; h �̀ k : A //B +3 fh �̀ gk : A //X :The de�nition of path obje
ts and right homotopy is dual (in the E
kmann-Hiltonsense) to the de�nition of 
ylinders and left homotopy.De�nition. Given X 2 Ob C, 
onsider the pull-ba
k of the morphism X //ewith itself X 1X
��

� ##GG
GG

GG
GG

G 1X
%%X �Xp0

��

p1 // X
��X // ewhere � : X //X �X denotes the \diagonal" map, i.e., the morphism indu
edby the identity into ea
h 
opy of X. Observe that X �X is a produ
t.A path obje
t on X 
onsists of a fa
torization of �.X � //�j !!CC

CC
CC

CC
X �XPX q ::uuuuuuuuuLet q0 = p0q and q1 = p1q.The path obje
t is good if p 2 Fib and very good if, in addition, j 2 Cof \WE.Let f; g : A //X be morphisms in C. A right homotopy from f to g 
onsistsof a morphism K : A //PX su
h that the diagramX PXp0oooo p1 // // XAfaaDDDDDDDD

K OO g ==zzzzzzzz
ommutes, where X j //PX q //X �X is any path obje
t on X. We denotethe existen
e of a right homotopy from f to g by f �r g.The elementary properties of right homotopy and their proofs are stri
tly dualto those for left homotopy.



8 KATHRYN HESSProposition 2.2.2.(1) If X is a �brant obje
t in C, then �r is an equivalen
e relation on C(A;X)for all obje
ts A. The quotient set of right homotopy equivalen
e 
lasses isdenoted �r(A;X).(2) If X is �brant and i : A // � //B , then i indu
es an isomorphismi� : �r(B;X) //�r(A;X) :(3) If A is 
o�brant, thenf �r g : A //X; h �r k : X //Y +3 hf �r kg : A //Y :We are now prepared to study the relationship between right and left homotopy.Lemma 2.2.3. Let f; g : A //X be morphisms in C.(1) If A is 
o�brant and f �̀ g, then f �r g.(2) If X is �brant and f �r g, the f �̀ g.The following key de�nition is an easy 
orollary of the pre
eding lemma andPropositions 2.2.1(1) and 2.2.2(1).De�nition/Corollary 2.2.4. Suppose that A is a 
o�brant obje
t and X is a�brant obje
t in a model 
ategory (C;WE;F ib;Cof). There is an equivalen
erelation � on C(A;X) su
h that f � g if and only if f �̀ g or, equivalently, if andonly if f �r g. When f � g, we say that f and g are homotopi
.The set of homotopy 
lasses of morphisms from A to X is denoted �(A;X).If A and X are both �brant and 
o�brant, then a morphism f : A //X is ahomotopy equivalen
e if there is a morphism g : X //A su
h that gf � 1A andfg � 1X.The property of the homotopy relation stated in the next proposition is an easybut important 
onsequen
e of Propositions 2.2.1(3) and 2.2.2(3).Proposition 2.2.5. If A is 
o�brant, X is �brant and 
o�brant, and Y is �brant,then f � g : A //X;h � k : X //Y +3hf � kg : A //Y:Thus, in parti
ular, 
omposition preserves the homotopy relation on morphismssu
h that the sour
e and target are both �brant and 
o�brant.The next proposition, when applied to the se
ond model 
ategory stru
ture givenfor T OP (Example 2.5.1), yields the famous Whitehead Theorem, whi
h statesthat a weak homotopy equivalen
e between CW-
omplexes is a
tually a homotopyequivalen
e.Proposition 2.2.6. Suppose that A and X are obje
ts that are both �brant and
o�brant in a model 
ategory (C;WE;F ib;Cof). If f : A //X is a morphismin C, then f is a weak equivalen
e if and only if it is a homotopy equivalen
e.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 92.3 The homotopy 
ategory of a model 
ategory.The next step in our development of the theory of model 
ategories is the
onstru
tion of the homotopy 
ategory of a model 
ategory (C;WE;F ib;Cof).We begin by supposing that we have �xed for ea
h obje
t A a 
o�brant model� // //QA � // //A and a �brant model A // � //RA // //e , where we require thatQA = A if A is 
o�brant and that RA = A if A is �brant.De�nition. The homotopy 
ategory Ho C of a model 
ategory (C;WE;F ib;Cof)is the 
ategory with Ob Ho C = Ob C and Ho C(A;X) = �(RQA;RQX).Observe that Proposition 2.2.5 implies that the 
omposition in Ho C is wellde�ned.There is a natural quotient fun
tor 
 : C //Ho C that is the identity on obje
tsand that is de�ned on morphisms in two stages, as follows. Let f : A //X beany morphism in C. First 
onsider the 
ommutative diagram� // //
��

��

QX� pX
����QA �pA // //

Qf 66A f // XBy axiom (M4) we 
an lift fpA through pX to a morphism Qf : QA //QX .Furthermore, Proposition 2.2.1(2) implies that all su
h lifts are left homotopi
,sin
e QA is 
o�brant. Then, by Lemma 2.2.3(1), they are all right homotopi
 aswell, also be
ause QA is 
o�brant.Next 
onsider the 
ommutative diagramQA Qf //
�� �jQA
��

QX // �jQX // RQX
����RQA // //

RQf 55 eApplying axiom (M4) again, we obtain a extension RQf of jQXQf over jQA, whi
his unique up to homotopy for reasons stri
tly dual to those appli
able to the 
on-stru
tion of Qf .The fun
tor 
 provides us with an alternate way of 
hara
terizing the homotopy
ategory. We �rst motivate this 
hara
terization by the following observation.Proposition 2.3.1. Let f be a morphism in a model 
ategory (C;WE;F ib;Cof).Then 
(f) is an isomorphism if and only if f is a weak equivalen
e.Re
all that a lo
alization of a 
ategory C with respe
t to a 
lass of morphismsS �Mor C 
onsists of a fun
tor F : C //D su
h that(1) ObC = ObD, and F is the identity on obje
ts;(2) F (s) is an isomorphism in D for all s 2 S; and(3) if G : C //E is any other fun
tor su
h that G(s) is an isomorphism forall s 2 S, then there is a unique fun
tor bG : D //E su
h that bGF = G.



10 KATHRYN HESSTheorem 2.3.2. The fun
tor 
 : C //Ho C is a lo
alization of C with respe
tto the 
lass WE.Thus the homotopy 
ategory of a model 
ategory depends only on its 
lass ofweak equivalen
es.We next explore the question of when a fun
tor between two model 
ategoriesrespe
ts the homotopy relation, i.e., when it indu
es a fun
tor on homotopy 
ate-gories. It is parti
ularly interesting to determine when su
h a fun
tor indu
es anequivalen
e of homotopy 
ategories.De�nition. Let F : C //D be a fun
tor from a model 
ategory C to any 
at-egory D. A left derived fun
tor of F 
onsists of a fun
tor LF : Ho C //D to-gether with a natural transformation t : LF Æ 
 //F su
h that for ea
h pair(G : Ho C //D; s : G Æ 
 //F ) there exists a unique natural transformationŝ : G //LF su
h that tŝ
 = s.Dually, a right derived fun
tor of F 
onsists of a fun
tor RF : Ho C //D to-gether with a natural transformation t : F // RF Æ 
 su
h that for ea
h pair(G : Ho C // D; s : F // G Æ 
) there exists a unique natural transforma-tion ŝ : RF //G su
h that ŝ
t = s.For example, if F sends all weak equivalen
es to isomorphisms in D, then thede�nition of lo
alization implies that there is a unique bF : Ho C //D su
h thatbF
 = F . Thus, in this 
ase, LF = bF = RF .More generally, if F sends all weak equivalen
es with 
o�brant sour
e and targetto isomorphisms, then the left derived fun
tor of F exists. It is de�ned by LF (X) =F (QX) and LF (f) = F (Qf), where QX � // //X is the �xed 
o�brant model andQf is 
onstru
ted as above. There is a similar 
onstru
tion in the dual 
ase.We now 
onsider the 
ase in whi
h C and D are both model 
ategories.De�nition. Let F : C //D be a fun
tor between model 
ategories. The lefttotal derived fun
tor of F , denoted LF : Ho C //Ho D , is the left derived fun
-tor of the 
omposition 
DF . Dually the right total derived fun
tor of F , denotedRF : Ho C //Ho D is the right derived fun
tor of the 
omposition 
DF .Proving the existen
e of a pair of adjoint fun
tors between two 
ategories is a �rststep towards establishing an equivalen
e, hen
e the interest of the next de�nition.De�nition. Let (C;WEC; F ibC ; CofC) and (D;WED ; F ibD; CofD) be model 
at-egories. A pair of adjoint fun
tors F : C //D : Goo is a Quillen pair if F (CofC) �CofD and G(FibD) � FibC.It is easy to see that (F;G) is a Quillen pair if and only if G(FibD) � FibC andG(FibD \WED) � FibC \WEC, whi
h is in turn equivalent to F (CofC) � CofDand F (CofC \WEC) � CofD \WED. The proof of these equivalen
es applies theadjointness of F and G to the dual de�nitions of Fib and Cof in terms of liftingproperties.A simple example of a Quillen pair is the adjoint pair W : C � C // C : �oo ,where W (A � B) = A _ B and �(A) = (A;A). The distinguished 
lasses of themodel 
ategory C � C are the produ
ts of the distinguished 
lasses of C.



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 11Proposition 2.3.3. A Quillen pair F : C //D : Goo indu
es an adjoint pairLF : Ho C //Ho D : RGoo :De�nition. A Quillen pair F : C //D : Goo is a Quillen equivalen
e if for allA 2 Ob C, B 2 Ob Df : FA //B 2WED ks +3 f ℄ : A //GB 2WEC;where f ℄ denotes the adjoint of f .Proposition 2.3.4. The adjoint pair (LF;RG) indu
ed by a Quillen equivalen
e(F;G) is a pair of mutually inverse equivalen
es.2.4 Co�brantly generated model 
ategories.In many familiar model 
ategories it is possible to 
hoose relatively small fami-lies of 
o�brations and a
y
li
 
o�brations that generate the entire model 
ategorystru
ture in a natural way. In su
h 
ategories many theorems about model 
ate-gories are easier to prove, as it suÆ
es to prove them for the generating families.We are also able in su
h a 
ategory to obtain fun
torial fa
torizations of the sortrequired by axiom (M5).The de�nitions and results presented below are essential to understanding Se
-tion 3, where we state 
onditions ensuring 
ompatability between model andmonoidal
ategory stru
tures.We begin with a sequen
e of rather te
hni
al de�nitions that serve to explainwhat it means for an obje
t in a 
ategory to be small with respe
t to a 
lassof morphisms. The notion of smallness is essential in the de�nition of 
o�brantgeneration.De�nition. Let C be any 
o
omplete 
ategory.(1) Let � be an ordinal. A �-suite in C is a fun
tor X : � //C , i.e., a diagramX0 //X1 //X2 // � � � //X� // � � � (� < �);su
h that the indu
ed morphism 
olim�<
X� //X
 is an isomorphismfor every limit ordinal 
.(2) The 
omposition of a �-sequen
e is the morphism X0 //
olim�<�X� .(3) Let D be a sub
ategory of C. A trans�nite 
omposition of D-morphisms isthe 
omposition in C of a �-sequen
e su
h that X� //X�+1 2Mor D forall � < �.(4) Let D be a sub
ategory of C. An obje
t A in C is small with respe
t toD if there is a 
o�nal set S of ordinals su
h that for all � 2 S and for all�-sequen
es X : � //D , the indu
ed set map
olim�<�C(A;X� ) //C(A; 
olim�<�X�)is an isomorphism.



12 KATHRYN HESSRemarks.(1) If (C;WE;F ib;Cof) is a 
o
omplete model 
ategory, it is relatively easy toverify that Cof and Cof \WE are 
losed under trans�nite 
omposition.(2) De�nition (4) means in essen
e that a morphism fromA into any suÆ
ientlylong 
omposition will fa
tor through some stage of the 
omposition.(3) Every set is small with respe
t to the entire 
ategory of sets.(4) Every �nite, pointed CW-
omplex is small in the 
ategory of based topo-logi
al spa
es, with respe
t to the sub
ategory of pointed CW-
omplexesand in
lusions thereof.We now introdu
e the three 
lasses of morphisms naturally asso
iated to a given
lass in Mor C. The notion of \generation" in a 
o�brantly generated 
ategoryrefers to 
reation of these three 
lasses.De�nition. Let C be any 
o
omplete 
ategory, and let I � Mor C. The 
lass ofmorphisms I gives rise to the following three other 
lasses.(1) I � inj := RLP (I)(2) I � 
of := LLP (I � inj)(3) I � 
ell is the 
lass of morphisms f : A //B in C for whi
h there ex-ist an ordinal � and a �-sequen
e X : � //C su
h that X0 = A, ea
hX� //X�+1 is a push-out of a morphism in I, and the 
ompositionX0 //
olim�<�X� is isomorphi
 to f .Note that I � 
ell � I � 
of .The next theorem, whi
h is one of the most useful tools in model 
ategory theory,explains the importan
e of small obje
ts and of the 
lasses de�ned above.Theorem 2.4.1 (The Small Obje
t Argument). Let C be a 
o
omplete 
ate-gory. Suppose that I � C is su
h that the sour
e of every morphism in I is smallwith respe
t to I. Then there is a fun
tor(i; p) :Mor C //I � 
ell � I � injsu
h that f = p(f) Æ i(f) for all f 2Mor C.The de�nition below of 
o�brantly generated model 
ategories is inspired bythe desire to apply the Small Obje
t Argument to the 
onstru
tion of fun
torial,(M5)-type fa
torizations of morphisms in a model 
ategory.De�nition. A model 
ategory (C;WE;F ib;Cof) is 
o�brantly generated if thereexist two 
lasses I;J �Mor C su
h that(1) The sour
e of every morphism in I is small with respe
t to Cof , while thesour
e of every morphism in J is small with respe
t to Cof \WE.(2) Fib = J � inj and Fib \WE = I � inj.The elements of I and J are then 
alled generating 
o�brations and generatinga
y
li
 
o�brations, respe
tively.Observe that 
ondition (2) of the de�nition above implies that Cof = I � 
ofand Cof \WE = J � 
of .It is 
lear that in a 
o�brantly generated model 
ategory, one 
an always applythe Small Obje
t Argument to the 
lasses of generating 
o�brations and generatinga
y
li
 
o�brations, thereby obtaining fun
torial fa
torizations as in axiom (M5).Furthermore, in a 
o�brantly generated model 
ategory, many results involving
onditions on 
o�brations 
an be proved by trans�nite indu
tion, via �-sequen
es.
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ategories.Example 2.5.1. There are two well-known and oft-employedmodel 
ategory stru
-tures on the 
ategory of topologi
al spa
es, T OP, both of whi
h de�ne the samehomotopy theory on T OP. On the one hand, Str�m showed in [20℄ that settingWE to be the 
lass of homotopy equivalen
es, Fib to be the 
lass of Hurewi
z�brations, and Cof to be the 
lass of 
losed Hurewi
z 
o�brations de�ned a model
ategory stru
ture on T OP. In this 
ase, all obje
ts are both �brant and 
o�brant.On the other hand, a

ording to Quillen [17℄, one also obtains a model 
ategorystru
ture on T OP by letting WE be the 
lass of weak homotopy equivalen
es, Fibthe 
lass of Serre �brations and Cof the 
lass of retra
ts of in
lusions A � � //Xsu
h that (X;A) is a relative CW-
omplex. Re
all that weak homotopy equivalen
esare maps indu
ing an isomorphism on homotopy groups, while Serre �brations aremaps with the right lifting property with respe
t to the 
lass of 
ontinuous mapsfi0 : Dn //Dn � I j n � 0g, where Dn is the n-dimensional disk. With respe
tto this stru
ture, all obje
ts are �brant, while the 
o�brant obje
ts are the CW-
omplexes.Hovey showed in [11℄ that the se
ond model 
ategory stru
ture on T OP is 
o�-brantly generated. The in
lusions Sn�1 � � //Dn for n � 1 are the generating
o�brations, while the in
lusions i0 : Dn � � //Dn � I for n � 0 are the generatinga
y
li
 
o�brations.When it is important to have a 
losed, monoidal stru
ture on the 
ategory oftopologi
al spa
es in whi
h he works, the homotopy theorist usually resorts toworking in the sub
ategory T of 
ompa
tly generated spa
es. Re
all that a spa
eis 
ompa
tly generated if it is weak Hausdor� and every 
ompa
tly open subsetis open. As Hovey explained in [11℄, T is a 
o�brantly generated model 
ategorywith respe
t to the same 
lasses of generating 
o�brations and a
y
li
 
o�brationsas T OP. Furthermore, T is Quillen equivalent to T OP.Example 2.5.2. Let C be a pointed abelian 
ategory in whi
h all �nite limits and
olimits exist. If WE = Mor C, Fib is the 
lass of all monomorphisms in Mor C,and Cof is the 
lass of all epimorphisms in Mor C, then (C;WE;F ib;Cof) is amodel 
ategory. The initial and terminal obje
t of C is both 
o�brant and �brant,and there is no other obje
t that is either �brant or 
o�brant.This example serves as a reminder that our natural in
lination to think of �bra-tions as proje
tions and 
o�brations as inje
tions should be avoided!Example 2.5.3. Let R be a unitary, 
ommutative ring. A (non-negative) 
hain
omplex over R 
onsists of a graded left R-module C� =Li2N Ci endowed with aR-module map d : C� //C��1 , 
alled the di�erential, satisfying d Æ d = 0. Thehomology of a 
hain 
omplex is a graded R-module H�(C�; d) de�ned byHn(C�; d) = ker(d : Cn //Cn�1 )=Im(d : Cn+1 //Cn )for n > 0 and H0(C�; d) = C0=Im(d : C1 //C0 ).A morphism f : (C�; d) //(C 0�; d0) of 
hain 
omplexes over R, also 
alled a
hain map, is a morphism of graded R-modules su
h that d0f = fd. It is easy tosee that a morphism of 
hain 
omplexes indu
es a morphism of graded modules inhomology. We denote the 
ategory of 
hain 
omplexes over R and their morphismsby ChCx�(R).



14 KATHRYN HESSLet WE be the 
lass of quasi-isomorphisms, i.e., of 
hain maps indu
ing isomor-phisms in homology. Let Fib be the 
lass of surje
tive 
hain maps and Cof the
lass of degree-wise split, inje
tive 
hain maps with degree-wise proje
tive 
okernel.Hovey established in [11℄ that these 
hoi
es determine a model 
ategory stru
tureon ChCx�(R), with respe
t to whi
h all obje
ts are �brant and the 
o�brant 
hain
omplexes are proje
tive in ea
h degree. Moreover, any 
hain 
omplex (C�; d) thatis proje
tive in ea
h degree is 
o�brant.Hovey proved furthermore that every 
hain 
omplex is small with respe
t to
lass of all 
hain maps, whi
h he then used in showing that ChCx�(R) is 
o�-brantly generated. Let Sn(R) denote the 
hain 
omplex with Sn(R)i = R ifi = n and Sn(R)i = 0 otherwise. The di�erential is ne
essarily trivial in alldegrees. Let Dn(R) denote the 
hain 
omplex with Dn(R)i = R if i = n� 1; n andDn(R)i = 0 otherwise. The di�erential d : Dn(R)i //Dn(R)i�1 is the identity ifi = n and 0 otherwise. The generating 
o�brations of ChCx�(R) are the in
lusionsSn�1(R) //Dn(R) for all n, while the generating a
y
li
 
o�brations are thein
lusions of the zero 
omplex into Dn(R) for all n.The algebrai
 notion of derived fun
tor 
oin
ides in ChCx�(R) with the notionof total derived fun
tor. In parti
ular, if M is a right R-module, then we 
an de�nea fun
tor F =M 
R � : ChCx�(R) //ChCx�(Z):The left total derived fun
tor of F exists, andHi�LF (S0(R) 
R N)� �= TorRi (M;N)for all i � 0 and for all left R-modules N .The model 
ategory in the next example is the target 
ategory of the well-knownalgebrai
 model we present in Se
tion 4. When explaining this example, we workwith non-negatively graded 
o
hain 
omplexes over the �eld Q of rational numbers,i.e., with graded Q-ve
tor spa
es C� = Li�0 Ci endowed with a di�erential ofdegree +1. The de�nitions of 
o
hain maps and of the 
ohomology of 
o
hain
omplexes and their maps are analogous to the dual de�nitions for 
hain 
omplexes.Example 2.5.4. A 
ommutative di�erential graded algebra (
.g.d.a.) over Q is a
ommutative monoid in the 
ategory of non-negatively graded 
o
hain 
omplexes.In other words, a 
.g.d.a. (A�; d) is a 
o
hain 
omplex overQ, endowed with 
o
hainmaps � : Q //(A�; d)
alled the unit and� : (A�d)
Q (A�; d) //(A�; d) : a
 b � //a � b;
alled the produ
t su
h that(1) � is graded 
ommutative, i.e., if a 2 Ap and b 2 Aq, then a � b = (�1)pqb � a;(2) � is asso
iative; and(3) �(� 
 1A) = 1A = �(1A 
 �).An important 
lass of 
.d.g.a.'s is 
omposed of the KS-
omplexes. For any non-negatively graded ve
tor spa
e V , let �V denote the free, 
ommutative, gradedalgebra generated by V , i.e., �V = S[V even℄ 
Q E(V odd), tensor produ
t of the
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 algebra on the ve
tors of even degree and of the exterior algebra onthe ve
tors of odd degree. A KS-
omplex is a 
.d.g.a. (�V; d) with augmentation" : �V //Q su
h that(1) V has a basisB = fv� j � 2 Jg, where J is a well-ordered set, and "(V ) = 0;(2) dv� 2 V<� for all � 2 J , where V<� is the span of fv� j � < �g.A KS-
omplex (�V; d) is minimal if V 0 = 0 and � < � implies that deg v� � deg v�.If V 1 = V 0 = 0, then (�V; d) is minimal if and only if dV � ��2V .A morphism of 
.g.d.a.'s f : (A�; d; �; �) //( �A�; �d; ��; ��) is a 
o
hain map su
hthat f� = ��(f 
 f) and f� = ��. The 
ategory of 
.d.g.a.'s over Q and theirmorphisms is denoted CDGA�(Q).Let WE be the 
lass of quasi-isomorphisms in CDGA�(Q), Fib the 
lass ofsurje
tive 
.d.g.a. morphisms, and Cof = LLP (Fib\WE). A

ording to Bous�eldand Gugenheim [2℄, (CDGA�(Q);WE;F ib;Cof) is a model 
ategory. All 
.d.g.a.'sare �brant with respe
t to this stru
ture, and all KS-
omplexes are 
o�brant.It is not diÆ
ult to see that the model 
ategory of 
.d.g.a.'s is 
o�brantly gen-erated. Observe �rst that any 
.d.g.a. is small with respe
t to Mor CDGA�(Q),by an argument similar to that given by Hovey to prove that any 
hain 
omplex issmall with respe
t to the 
lass of all 
hain maps.Next we de�ne three spe
ial families of in
lusions of KS-
omplexes. Let (�um; 0)denote the KS-
omplex generated by a ve
tor spa
e of dimension 1, 
on
entrated indegree m, and let (�(um; vm�1); d) denote the KS-
omplex generated by a ve
torspa
e with one basis element of degree m and one of degree m� 1, where d(v) = u.De�ne im, i0m and jm to be the following in
lusions.im : 0 //(�um; 0)i0m : (�um; 0) //(�(um; vm�1); d)im : 0 //(�(um; vm�1); d)Let I = fim; i0m+1 jm � 0g and J = fjm j m � 1g.Claim. Fib = J � inj and Fib \WE = I � inj.Proof. Sin
e J �inj = RLP (J ), it is 
lear that p : (A�; d) //( �A�; �d) 2 J �inj ifand only if for allm � 1 and all 
.d.g.a. morphisms g : (�(um; vm�1); d) //( �A�; �d) ,there exists a 
.d.g.a. morphism ĝ : (�(um; vm�1); d) //(A�; d) su
h that pĝ = g.It is easy to see that this 
ondition on p is equivalent to the surje
tivity of p, sothat Fib = J � inj.On the other hand, p : (A�; d) //( �A�; �d) 2 I � inj if and only if(1) for allm � 0 and for all 
.d.g.a. morphisms g : (�um; 0) //( �A�; �d) , thereexists a 
.d.g.a. morphism ĝ : (�um; d) //(A�; d) su
h that pĝ = g; and(2) for all m � 1, given any 
ommutative diagram of 
.d.g.a. morphisms(�um; 0) f //i0m
��

(A�; d)p
��(�(um; vm�1); d) g //

ĝ 77 ( �A�; �d)there exists a 
.d.g.a. morphism ĝ : (�(um; vm�1); d) //(A�; d) su
h thatpĝ = g and ĝi0m = f .



16 KATHRYN HESSCondition (1) is equivalent to p being surje
tive on the subalgebra of 
o
y
les ker �din �A�, while 
ondition (2) is equivalent to requiring that p be a quasi-isomorphism.Sin
e any quasi-isomorphism of 
o
hain 
omplexes that is surje
tive on 
o
y
lesmust be surje
tive, we see that Fib \WE = I � inj. �Thus, I and J are families of generating 
o�brations and generating a
y
li

o�brations for the model stru
ture on CDGA�(Q). The elements of I � 
ell are
alled KS-extensions.Let T OPf0 denote the full sub
ategory of T OP given by those spa
es that arenilpotent, rational and of �nite rational type. A spa
e X is nilpotent if its fun-damental group is nilpotent and a
ts nilpotently on the higher homotopy groups,rational if its homotopy groups are uniquely divisible and of �nite rational type ifdimQ Hn(X;Q) <1 for all n.Let CDGA�;f (Q) denote the full sub
ategory of CDGA�(Q) given by those
.d.g.a.'s (A�; d) for whi
h there exists a quasi-isomorphism of 
.d.g.a.'s' : (�V; d) � //(A�; d);where (�V; d) is a minimal KS-
omplex su
h that dimQ V n <1 for all n. The quasi-isomorphism ', or the minimal KS-
omplex (�V; d), is 
alled a minimal model of(A�; d).Bous�eld and Gugenheim de�ned a Quillen pair of 
ontravariant fun
torsAS : T OP //CDGA�(Q) : jF joo ;that indu
es an equivalen
e of homotopy 
ategories when restri
ted to T OPf0 andCDGA�;f (Q), i.e., Ho T OPf0 �= Ho CDGA�;f (Q):The algebrai
 model AS : T OPf0 //CDGA�;f (Q) is 
alled the Sullivanmodel, asSullivan was the �rst to 
onstru
t it [21℄, while Bous�eld and Gugenheim providedthe �rm foundation in terms of model 
ategories some years later. In Se
tion 4, wetake a 
loser look at this model and des
ribe one of the many topologi
al problemsto whi
h it has been su

essfully applied.3. Monoidal model 
ategoriesLet (C;1;
;Hom) be a 
losed, symmetri
, monoidal 
ategory endowed with thestru
ture of a model 
ategory. In this se
tion we establish 
ompatibility 
onditionsunder whi
h there is a natural, indu
ed monoidal stru
ture on Ho C and exam-ine the possibility of extending su
h 
ompatibility to 
ategories of modules andmonoids. The de�nitions and results we present in this se
tion are due to Hovey[12℄ or, in a slightly di�erent form, to S
hwede and Shipley [19℄.3.1 De�nition and motivating theorem.The following 
onstru
tion plays a very important role in elu
idating the rela-tionship between monoidal and model stru
ture.De�nition. Let (C;
) be a monoidal 
ategory. Let f : A //B and g : X //Ybe morphisms in C. The push-out smash of f and g, denoted f�g, is the morphism
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ed by f 
 1Y and 1B 
 g in the following push-out diagram.A
X1A
g
��

f
1X // B 
X
�� 1B
g

��

A 
 Y // f
1Y --

(A 
 Y ) _A
X (B 
X)f�g
((QQQQQQQQQQQQ B 
 YDe�nition. A 
losed, symmetri
, monoidal 
ategory (C;1;
;Hom) that is also amodel 
ategory with distinguished 
lasses WE, Fib, and Cof is a monoidal model
ategory if the following axioms are satis�ed.(1) (Push-out smash axiom)f; g 2 Cof +3f�g 2 Cofand f 2 Cof; g 2 Cof \WE +3f�g; g�f 2 Cof \WE:(2) (Unit axiom) Let q : Q1 � // //1 be a 
o�brant model of the unit 1. Thenq 
 1X : Q1
X //1
X �= X and 1X 
 q : X 
Q1 //X 
 1 �= Xare both weak equivalen
es.Theorem 3.1.1(Hovey [11℄). The homotopy 
ategory of a monoidal model 
at-egory C has a natural symmetri
, monoidal stru
ture, indu
ed by the monoidalstru
ture of C.Examples. Hovey showed in [11℄ that T (
f. Example 2.5.1) is a monoidal model
ategory. The tensor produ
t on T is given by applying the k-spa
e topology tothe usual 
artesian produ
t of spa
es: X 
 Y := k(X �Y ). Re
all that a subset ofkZ is open if and only if it is 
ompa
tly open in Z.Hovey also proved in [11℄ that ChCx�(R) (
f. Example 2.5.3) is a monoidalmodel 
ategory, where the underlying graded module of (C�; d)
 (C 0�; d0) is de�nedby (C� 
 C 0�)n =Mk2N Ck 
R C 0n�kand the tensor di�erential D is de�ned byD(
 
R 
0) = d

R 
0 + (�1)k

R d0
0if 
 2 Ck.
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tures on 
ategories of modules and algebras.Given a monoidal model 
ategory C, it is 
ertainly natural to hope for the exis-ten
e of natural model 
ategory stru
tures on the 
ategory AMod of (left) modulesover a �xed monoid A , as well as on the 
ategory AA`g of algebras over A, if A is
ommutative. Furthermore, supposing the existen
e of su
h stru
tures, one wouldhope that they were \homotopy invariant" in some appropriate sense. For example,it seems reasonable to expe
t that a weak equivalen
e of monoids would indu
e anequivalen
e of the homotopy 
ategories of their respe
tive module 
ategories.As we see in the results below, these hopes are not foolish, at least as long aswe are willing to a

ept a few additional 
onstraints on the 
ategory C and themonoids we 
onsider.Throughout the remainder of this se
tion, (C;WE;F ib;Cof) denotes a 
o�-brantly generated, monoidal model 
ategory with generating 
o�brations I andgenerating a
y
li
 
o�brations J . Furthermore, if A 2 Ob C and K �Mor C, thenwe write A
K = f1A 
 g j g 2 Kgand C 
 K = ff 
 g j f 2Mor C; g 2 Kg:Theorem 3.2.1 (Hovey[12℄, S
hwede/Shipley [19℄). Let A be a monoid in Csu
h that(1) the sour
e of any morphism in I is small with respe
t to (A 
 I)-
ell;(2) the sour
e of any morphism in J is small with respe
t to (A
J )-
ell; and(3) (A 
 J )-
ell �WE.Then AMod 
an be endowed with a 
o�brantly generated model 
ategory stru
turesu
h that f 2 WEAMod +3 f 2WEC \ AModand f 2 FibAMod +3 f 2 FibC \ AMod:Remark. If A is a 
o�brant monoid, then A 
 I � CofC. The hypotheses (1)-(3)of the theorem above are therefore automati
ally satis�ed in this 
ase.Hovey showed that the hypotheses of the theorem above are satis�ed for anymonoid in T , so that the 
ategory of modules over any 
ompa
tly generated topo-logi
al monoid 
an be endowed with a 
o�brantly generated model 
ategory stru
-ture.The monoids in ChCx�(R) are the asso
iative 
hain algebras over R. Sin
eevery 
hain 
omplex is small with respe
t to the 
lass of all 
hain maps, Theorem3.2.1 and the remark above imply that the 
ategory of modules over an asso
iative
hain algebra that is bounded below and proje
tive in ea
h degree is a 
o�brantlygenerated model 
ategory.Theorem 3.2.2 (Hovey[12℄, S
hwede/Shipley [19℄). Suppose that(1) the sour
e of any morphism in I is small with respe
t to (C 
 I)-
ell;(2) the sour
e of any morphism in J is small with respe
t to (C 
 J )-
ell; and(3) (C 
 J )-
ell �WE.
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ommutative monoid in C, then AA`g 
an be endowed with a 
o�brantlygenerated model 
ategory stru
ture su
h thatf 2WEAA`g +3 f 2WEC \ AA`gand f 2 FibAA`g +3 f 2 FibC \ AA`g:In parti
ular, under the hypotheses of Theorem 3.2.2, the 
ategory of monoidsin C is 
o�brantly generated, sin
e the monoids are the 1-algebras.Hovey proved that the hypotheses of Theorem 3.2.2 are satis�ed in the 
ategoryT of 
ompa
tly generated spa
es, so that the 
ategory of 
ompa
tly generatedtopologi
al monoids 
an be endowed with a 
o�brantly generated model stru
ture.If A is a 
ommutative monoid, then AMod naturally inherits a symmetri
monoidal stru
ture from C. It seems reasonable to expe
t that this monoidalstru
ture be 
ompatible with the model 
ategory stru
ture de�ned in the previ-ous theorem.Proposition 3.2.3. Suppose that either(1) the unit 1 is 
o�brant and A is a 
ommutative monoid satisfying the hy-potheses of Theorem 3.2.1; or(2) A is a 
o�brant, 
ommutative monoid.Then AMod is a 
o�brantly generated, monoidal model 
ategory.As an appli
ation of this proposition, we obtain a 
o�brantly generated, monoidalmodel stru
ture on the 
ategory of modules over a 
ommutative, asso
iative 
hainalgebra that is bounded below and proje
tive in ea
h degree.The model 
ategory stru
tures on AMod and AA`g satisfy two types of homotopyinvarian
e, as expressed in the following theorems.Theorem 3.2.4 (Hovey[12℄, S
hwede/Shipley [19℄). Suppose that the sour
eof any morphism in I is 
o�brant. Let f : A � //A0 be a monoid morphism withA and A0 
o�brant. Let Res : A0Mod //AMod denote the \restri
tion" fun
tor,i.e., Res(M) =M with the A-a
tion indu
ed by f . ThenA0 
A � : AMod //A0Mod : Resoois a Quillen equivalen
e.If, in addition 1 is 
o�brant and A and A0 are 
ommutative, thenA0 
A � : AA`g //A0A`g : Resoois a Quillen equivalen
e.Theorem 3.2.5 (Hovey[12℄, S
hwede/Shipley [19℄). Let C and D be 
o�brantlygenerated monoidal model 
ategories. Let F : C //D be a strong monoidal fun
-tor.(1) If F (q) 2WED, where q : Q1 � // //1 is the 
o�brant model of 1 and A is a
o�brant monoid in C, then the 
ategories AMod and F (A)Mod are Quillenequivalent.(2) If A is a 
o�brant, 
ommutative monoid, then the homotopy 
ategoriesHoAA`g and HoF (A)A`g are equivalent.
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hnirelmann 
ategoryRe
all from the exposition of Example 3.5.4 that a minimal model of a 
.g.d.a.(A�; d) 
onsists of a quasi-isomorphism of 
.g.d.a.'s' : (�V; d) � //(A�; d);where (�V; d) is a minimal KS-
omplex. If H0(A�; d) = Q, it is straightforwardto 
onstru
t a minimal model of (A�; d) indu
tively. Furthermore, minimal modelsare unique up to isomorphism.Let X be a 
onne
ted, nilpotent spa
e of �nite rational type. There is a 
ontinu-ous map ` : X //X0 , 
alled the rationalization of X, su
h thatX0 is rational and��`
Q is an isomorphism. The minimal model of the Sullivan model AS(X0) of therationalization of X is 
alled the Sullivan minimal model of X. Sin
e the 
.d.g.a.AS(X0) is huge and has a 
ompli
ated produ
t, rational homotopy theorists preferto work with the Sullivan minimal model, whi
h has only �nitely many generatorsin ea
h dimension and is free as an algebra, when 
arrying out 
omputations.We refer the reader to the new, en
y
lopedi
 referen
e on rational homotopytheory [8℄ by F�elix, Halperin and Thomas for an in-depth treatment of the Sullivanminimal model. We mention below only a few of its most important properties.In the statement of the following theorem and proposition, the word \spa
e"refers ex
lusively to 
onne
ted, nilpotent spa
es of �nite rational type.Theorem 4.1. Let ' : (�V; d) � //AS(X0) be the Sullivan minimal model of aspa
e X.(1) The 
ohomologies H�(�V; d) and H�(X;Q) are isomorphi
 as graded 
om-mutative algebras.(2) H�(V; d1) �= HomZ (��X;Q), where d1 denotes the 
omposition of the re-stri
tion of d to V with the proje
tion �V //V .Elementary examples.(1) The minimal model of a sphere Sk is (�uk; 0).(2) The minimal model of a 
omplex proje
tive spa
e CP k is (�(u2; v2k+1); d),where dv = uk+1.(3) The minimal model of a produ
t of two spa
es is the tensor produ
t of theminimal models.The following proposition, whi
h is essential to modelling 
ontinuous maps, 
anbe proved in several di�erent ways, in
luding by indu
tive 
onstru
tion.Proposition 4.2. Let ' : (�V; d) � //AS(X0) and '0 : (�V 0; d0) � //AS(X 00) beSullivan minimal models of spa
es X and X 0. If f : X 0 //X is any 
ontinuousmap, there is a morphism of 
.d.g.a.'s  : (�V; d) //(�V 0; d0) su
h that the fol-lowing diagram 
ommutes up to homotopy.(�V; d)  //'
��

(�V 0; d0)'0
��AS(X0) AS(f0)// AS(X 00)



MODEL CATEGORIES IN ALGEBRAIC TOPOLOGY 21It is important to note that, unlike the minimal model of a spa
e, the morphism is de�ned only up to homotopy.One of the most spe
ta
ular su

esses of the Sullivan minimal model has been inits appli
ation to studying the numeri
al homotopy invariant known as Lusternik-S
hnirelmann (L.-S.) 
ategory. The L.-S. 
ategory of a topologi
al spa
eX, denoted
atX, is equal to n if the 
ardinality of the smallest 
ategori
al 
overing of X isn + 1. A 
ategori
al 
overing of a spa
e X is an open 
over of X su
h that ea
hmember of the 
over is 
ontra
tible in X.L.-S. 
ategory is in general extremely diÆ
ult to 
ompute. It is trivial, however,to prove that 
atSn = 1 for all n and somewhat tri
kier, though still not diÆ
ult,to prove that 
atT = 2, where T is the torus S1 � S1.One elementary property of L.-S. 
ategory is that 
at(X �Y ) � 
atX+ 
atY forall spa
esX and Y . At the end of the 1960's Ganea observed that in the only knownexamples for whi
h 
at(X �Y ) 6= 
atX + 
atY , the spa
es X and Y had homologytorsion at distin
t primes. He 
onje
tured therefore that 
at(X � Sn) = 
atX + 1for all spa
es X and all n � 1, sin
e Sn has no homology torsion whatsoever.The groundbreaking arti
le [6℄ of F�elix and Halperin, in whi
h they establishedthe following 
hara
terization of the L.-S. 
ategory of a rational spa
e in terms of itsSullivan model, initiated the appli
ation of rational homotopy theory to the studyof L.-S. 
ategory.Theorem 4.3 (F�elix/Halperin [6℄). Let ' : (�V; d) � //AS(X) be the Sulli-van minimal model of a rational, nilpotent spa
e X of �nite rational type. Let(�V=�>nV; �d) denote the 
.d.g.a. obtained by taking the quotient of (�V; d) by theideal of words of length greater than n, and let(�V; d) q //i ''NNNNNNNNNNN
(�V=�>nV; �d)(�(V �W ); d) p� 66mmmmmmmmmmmmbe the fun
torial fa
torization of the quotient map q obtained by applying the SmallObje
t Argument to I. Then 
atX � n if and only if there is a morphism of
.g.d.a.'s � : (�(V �W ); d) //(�V; d) su
h that �i = 1(�V;d).In [9℄ Halperin and Lemaire proposed the study of a weakened version of theabove 
hara
terization, in whi
h the retra
tion � is required only to be a mor-phism of (�V; d)-modules. They 
alled the homotopy invariant of X thus obtainedM
at0X.Following Halperin and Lemaire's lead, Jessup proved in 1986 that Ganea's 
on-je
ture holds with M
at0 in the pla
e of 
at.Theorem 4.4 (Jessup [15℄). M
at0(X � Sn) = M
at0X + 1 for all simply-
onne
ted rational spa
es X of �nite rational type and all n � 2.The following theorem then 
ompleted the proof of Ganea's 
onje
ture for ratio-nal spa
es.Theorem 4.5 (Hess [10℄). M
at0X = 
atX for all simply-
onne
ted rationalspa
es X of �nite rational type.



22 KATHRYN HESSCorollary 4.6. Ganea's 
onje
ture holds for all rational, simply-
onne
ted spa
esof �nite rational type and all n � 2.As an epilogue to this story of Sullivan minimal models and L.-S. 
ategory, wemention that in 1997 Iwase applied 
lassi
al homotopy-theoreti
 methods to the
onstru
tion of a 
ounter-example to Ganea's 
onje
ture [14℄. We also remark thatin 1996 F�elix, Halperin and Lemaire generalized Ganea's 
onje
ture for rationalspa
es, proving that 
at(X � Y ) = 
atX + 
atY for all rational, simply-
onne
tedspa
es X and Y of �nite rational type [7℄. Finally, it is worth noting that thisrational version of L.-S. 
ategory has proved to be one of the most important anduseful rational homotopy invariants, as it has played a 
ru
ial role in many othersigni�
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