
ALGEBRAS FOR ENRICHED ∞-OPERADS
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Abstract. Using the description of enriched ∞-operads as associative alge-

bras in symmetric sequences, we define algebras for enriched ∞-operads as
certain modules in symmetric sequences. For V a symmetric monoidal model

category and O a Σ-cofibrant operad in V for which the model structure on V

can be lifted to one on O-algebras, we then prove that strict algebras in V are
equivalent to ∞-categorical algebras in the symmetric monoidal ∞-category

associated to V. We also show that for an ∞-operad O enriched in a suit-

able closed symmetric monoidal ∞-category V, we can equivalently describe
O-algebras in V as morphisms of ∞-operads from O to a self-enrichment of V.
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1. Introduction

If V is a symmetric monoidal category whose tensor product is compatible with
colimits, then (one-object1) operads enriched in V can be described as associative
algebras in Fun(F≃,V), the category of symmetric sequences inV. Here F≃ denotes
the groupoid

∐
n BΣn of finite sets and bijections, and the monoidal structure on

symmetric sequences is the composition product, which is a monoidal structure given
by the formula

(X ⊙ Y )(n) ∼=
∞∐
k=0

( ∐
i1+···+ik=n

(Y (i1)⊗ · · · ⊗ Y (ik))×Σi1
×···×Σik

Σn

)
⊗Σk

X(k).

In a previous paper [Hau22] we proved that (one-object) ∞-operads enriched in a
suitable symmetric monoidal ∞-category V admit a similar description, as associa-
tive algebras in Fun(F≃,V) using a monoidal structure given by the same formula.

Our goal in this short paper is to use this description of ∞-operads to study
algebras for enriched ∞-operads. Classically, if O is a (one-object) V-operad, then
an O-algebra in V consists of an object A ∈ V and Σn-equivariant morphisms

A⊗n ⊗O(n) → A

compatible with the composition and unit of O. This data can be packaged in a
convenient way using the composition product: an O-algebra is the same thing as a

1We focus on the one-object case for simplicity, but similar descriptions apply to (∞-)operads
with any fixed set (space) of objects.
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right2 O-module M in Fun(F≃,V) that is concentrated in degree zero, i.e. M(n) is
the initial object ∅ for n ̸= 0. Indeed, such a right O-module is given by a morphism

M ⊙O → M,

and expanding out the composition product we see that (since M(n) vanishes for
n ̸= 0) this is precisely given by a map∐

k

M(0)⊗k ⊗Σk
O(k) → M(0).

Here we take the corresponding modules in the ∞-categorical setting (and their
analogues for many-object operads) as a definition of algebras for enriched ∞-
operads. For a symmetric monoidal ∞-category V (whose tensor product is com-
patible with colimits indexed by ∞-groupoids) and a V-enriched ∞-operad O, this
results in an ∞-category AlgO(V) with several pleasant properties, including the
expected formula for free O-algebras, as we will see in §3 after reviewing the results
of [Hau22] in §2.

We then prove two main results about this ∞-categorical notion of O-algebras.
First, in §4 we prove a rectification result for algebras over operads enriched in a
symmetric monoidal model category:

Theorem 1.1 (See Theorem 4.10). Let V be a symmetric monoidal model category
(with cofibrant unit) and O an S-coloured Σ-cofibrant V-operad such that the cate-
gory AlgO(V) admits a model structure whose weak equivalences and fibrations are
detected by the forgetful functor to Fun(S,V). Then this model category describes
the ∞-category of algebras for this operad in the ∞-categorical localization of V.
That is, there is an equivalence of ∞-categories

AlgO(V)[W−1
O ] ≃ AlgO(V)

where on the left WO denotes the collection of weak equivalences between O-algebras,
and on the right V := V[W−1] is the localization of V at its weak equivalences and
O denotes O viewed an ∞-operad enriched in V via the localization functor.

The comparison applies, for instance, to all Σ-cofibrant operads in chain com-
plexes over a field of characteristic zero or in simplicial sets.3 We in fact prove a
slightly more general result that avoids the assumption that the unit is cofibrant,
which applies to all Σ-cofibrant operads in symmetric spectra. The proof boils
down to a combination of model-categorical results of Pavlov–Scholbach and our
formula for free algebras, using the same strategy as [Lur17, Theorems 4.1.4.4] and
[PS18a, Theorem 7.10] to prove that both sides are ∞-categories of algebras for
equivalent monads.

Another classical description of algebras over (one-object) V-operads uses endo-
morphism operads: For v an object of V there is an operad EndV(v) with n-ary
operations given by the internal Hom HOMV(v⊗n, v) (where the Σn-action per-
mutes the factors in v⊗n). If O is a (one-object) V-operad then we can describe
O-algebras in V with underlying object v as morphisms of one-object operads
O → EndV(v). More generally, we can consider an S-coloured endomorphism op-
erad EndV(f) for any map of sets S → obV, where operations from (s1, . . . , sn)
to s′ are given by HOMV(f(s1)⊗ · · · ⊗ f(sn), f(s

′)); for an S-coloured operad O,

2This is correct under our convention for the ordering of the composition product, chosen to

be compatible with our construction of the ∞-categorical version; in most references on ordinary
operads the reverse ordering is used, so that O-algebras are certain left O-modules.

3For more general model categories, including chain complexes in positive characteristic, there

is typically only a semi-model structure on algebras over a Σ-cofibrant operad; see Remark 4.14
for more discussion of this case.
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we can then identify O-algebras in V given by f on objects with morphisms of
S-coloured operads from O to EndV(f).

In §5 we will use Lurie’s construction of endomorphism algebras [Lur17, §4.7.1],
following work of Hinich [Hin20] in the case of enriched ∞-categories, to construct
endomorphism∞-operads EndV(f) for any map of∞-groupoids f : X → V≃, where
V is a closed symmetric monoidal ∞-category compatible with colimits indexed by
small ∞-groupoids. Moreover, we show that these endomorphism ∞-operads can
be combined into a self-enrichment of V, which gives our second main result:

Theorem 1.2 (See Theorem 5.12). Let V be a closed symmetric monoidal ∞-
category compatible with colimits indexed by small ∞-groupoids. Then there exists
a V-∞-operad V, whose object of multimorphisms from (v1, . . . , vn) to w is the
internal Hom MAPV(v1 ⊗ · · · ⊗ vn, w), such that for a V-∞-operad O there is a
natural equivalence of ∞-groupoids

{O-algebras in V} ≃ {morphisms of V-∞-operads O → V}.

Warning 1.3. Throughout this paper we use the term “V-∞-operad” to refer
to the algebraic notion of an ∞-operad, given by objects of multimorphisms in V

with homotopy-coherently associative and unital composition operations. Thus we
have a class of fully faithful and essentially surjective morphisms between enriched
∞-operads that we would have to invert to get the “correct” ∞-category of V-∞-
operads. In terms of the description of V-∞-operads we use, this means we are not
requiring these to be “complete” (see [CH20, §3]). In the terminology of [AF18],
our enriched ∞-operads can be thought of as being flagged enriched ∞-operads,
meaning a (complete) enriched ∞-operad equipped with an essentially surjective
morphism of ∞-groupoids to its space of objects. Note that, as we will see in
Remark 3.10, the ∞-categories of algebras we will study are in fact invariant under
fully faithful and essentially surjective maps of enriched ∞-operads, so it does not
really make a difference whether we use complete objects or not.

1.1. Related Work. Much of our work here is not particularly reliant on the
specific construction of the composition product from [Hau22]. An alternative
construction, using the description of symmetric sequences in V as the free pre-
sentably symmetric monoidal ∞-category on V and generalizing the approach to
1-categorical operads due to Trimble [Tri] and Carboni, has been worked out by
Brantner [Bra17]; however, this construction of ∞-operads has not yet been com-
pared to any of the other approaches. In the setting of dendroidal sets, Heuts
describes algebras valued in spaces and ∞-categories in terms of dendroidal ver-
sions of left and cocartesian fibrations in [Heu11].

1.2. Acknowledgments. I thank Stefan Schwede and Irakli Patchkoria for helpful
discussions about model structures on spectra, and DavidWhite for help with model
structures on operad algebras. Much of this paper was written while the author
was employed by the IBS Center for Geometry and Physics in a position funded by
grant IBS-R003-D1 of the Institute for Basic Science of the Republic of Korea.

2. ∞-Operads as Algebras

In this section we will review the main results on enriched ∞-operads from
[Hau22], where we showed that enriched ∞-operads can be viewed as associative
algebras in a double ∞-category of symmetric collections. For this the relevant
notion of enriched ∞-operads is an enriched variant of Barwick’s definition of ∞-
operads [Bar18] as presheaves on a category ∆F satisfying Segal (and completeness)
conditions; this definition was first introduced in [CH20]. We will now briefly review
this definition, as well as a slight generalization considered in [Hau22] that we will
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use to define modules over enriched ∞-operads; we start by recalling the definition
of Barwick’s category ∆F:

Definition 2.1. Let F denote a skeleton of the category of finite sets, with objects
k := {1, . . . , k}, k = 0, 1, . . .. We write ∆F for the category whose objects are
pairs ([n], f : [n] → F), with a morphism ([n], f) → ([m], g) given by a morphism
ϕ : [n] → [m] in ∆ and a natural transformation η : f → g ◦ ϕ such that

(i) the map ηi : f(i) → g(ϕ(i)) is injective for all i = 0, . . . ,m,
(ii) the commutative square

f(i) g(ϕ(i))

f(j) g(ϕ(j))

ηi

ηj

is cartesian for all 0 ≤ i ≤ j ≤ m.

Note that there is an obvious projection ∆op
F → ∆op; this is a double ∞-category.

There is also a functor V : ∆op
F → F∗ which takes ([n], f) to (

∐n
i=1 f(i))+; see

[CH20, Definition 2.2.11] for a complete definition.

Remark 2.2. An object of ∆F is a sequence of maps of finite sets

a0
f1−→ a1 → · · · fn−→ an,

which we can think of as a forest of |an| oriented trees with n levels: the edges are
the elements of all the sets ai, and since each vertex has a unique outgoing edge we
can also think of the elements of ai for i > 0 as the vertices; the function fi assigns
to each edge in level i − 1 the vertex of which it is an incoming edge. Note that
this means the functor V takes each forest to its set of vertices (with a disjoint base
point). The morphisms in ∆F are defined so that a vertex in the source is mapped
to a subtree of the target with the same number of incoming edges.

Definition 2.3. For X ∈ S, we write ∆op
F,X → ∆op

F for the left fibration cor-

responding to the functor ∆op
F → S obtained as the right Kan extension of the

functor ∗ → S with value X along the inclusion {([0],1)} ↪→ ∆op
F .

Remark 2.4. The fibre of ∆op
F,X → ∆op

F at an object F is equivalent to a product
of copies of X indexed by the number of edges in the forest F ; we can thus think
of an object of ∆op

F,X as a forest whose edges are labelled by points of X.

Notation 2.5. If O is a non-symmetric ∞-operad4, we write OF := O ×∆op ∆op
F

and OF,X := O×∆op ∆op
F,X .

Definition 2.6. We say a morphism in ∆op
F is operadic inert if it lies over an

inert morphism in ∆op. We then call a morphism in ∆op
F,X operadic inert if it is a

(necessarily cocartesian) morphism over an operadic inert morphism in ∆op
F . If O is

a non-symmetric ∞-operad, we similarly say a morphism in OF,X is operadic inert
if it maps to an inert morphism in O and an operadic inert morphism in ∆op

F . The
functor V : ∆op

F → F∗ takes operadic inert morphisms to inert morphisms, hence if
V is a symmetric monoidal ∞-category we can define an operadic algebra for OF,X

4We do not review the definition here, as it will not really play a role in this paper: the only
examples we will encounter are ∆op and the non-symmetric operad for right modules, which we

describe explicitly in Definition 3.1. We refer the reader to [Hau22, §2.1] for a brief review, or
[GH15, §2.2] for more motivation and discussion of the definition.
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in V to be a commutative square

OF,X V⊗

∆op
F F∗,

A

V

such that A takes operadic inert morphisms to inert morphisms in V⊗. We write

AlgopdOF,X
(V) for the full subcategory of Fun/F∗(OF,X ,V⊗) spanned by the operadic

algebras. We also write AlgdopdOF
(V) → S for the cartesian fibration corresponding

to the functor X 7→ AlgopdOF,X
(V) and refer to its objects as operadic OF-algebroids

in V.

Remark 2.7. The condition for a commutative triangle

∆op
F,X V⊗

F∗

F

to be an operadic algebra is essentially that the value of F at a forest whose edges
are labelled by points of X consists of a list of the values of F at the corollas (one-
vertex subtrees) of the forest. The latter should be thought of as the objects of
multimorphisms in a V-enriched ∞-operad, whose homotopy-coherent composition
is encoded by the rest of the data in F . Indeed, operadic algebras for ∆op

F,X gives

one of the notions of enriched ∞-operads introduced in [CH20], which justifies the
following notation:

Notation 2.8. For a space X, we write OpdX(V) := Algopd
∆op

F,X
(V). We also write

Opd(V) := Algdopd
∆op

F
(V), so that we have a cartesian fibration Opd(V) → S whose

fibre at X is OpdX(V).

Notation 2.9. For X,Y ∈ S, we write F≃
X,Y for the ∞-groupoid

∐∞
n=0 X

×n
hΣn

×
Y . For a functor Φ: F≃

X,Y → V we will denote its value at ((x1, . . . , xn), y) by

Φ
(
x1,...,xn

y

)
. We also abbreviate F≃

X := F≃
X,X and write CollX(V) := Fun(F≃

X ,V);

we refer to the objects of this ∞-category as (symmetric) X-collections in V.

To state the main result we will use from [Hau22], we need to recall one further
definition:

Definition 2.10. A double ∞-category is a cocartesian fibration F → ∆op that
corresponds to a functor F : ∆op → Cat∞ that satisfies the Segal condition: for
every n, the functor

F ([n]) → F ([1])×F ([0]) · · · ×F ([0]) F ([1]),

induced by the value of F at the inert maps [0], [1] → [n] in∆, is an equivalence. We
say a double ∞-category is framed if the functor F ([1]) → F ([0])×F ([0]), induced
by the two face maps [0] → [1], is a cocartesian fibration. If O is a non-symmetric
∞-operad, then an O-algebra in F is a commutative triangle

O F

∆op

A

such that A preserves cocartesian morphisms over inert maps in ∆op.
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Remark 2.11. If F → ∆op is a double ∞-category, then we think of this as an
∞-categorical version of a double category where

• the objects are the objects of F[0],
• the vertical morphisms are the morphisms in F[0],
• the horizontal morphisms are the objects of F[1],
• the squares are the morphisms in F[1].

Theorem 2.12 (See [Hau22, Corollary 4.2.8]). Suppose V is a symmetric monoidal
∞-category compatible with colimits indexed by small ∞-groupoids. Then there
exists a framed double ∞-category COLL(V) such that:

(i) COLL(V)0 ≃ S, i.e. the objects of COLL(V) are small ∞-groupoids and the
vertical morphisms are morphisms thereof.

(ii) A horizontal morphism from X to Y is a functor F≃
X,Y → V.

(iii) If Φ is a horizontal morphism from X to Y and Ψ is one from Y to Z then
their composite Φ⊙Y Ψ is given by the formula

Φ⊙Y Ψ

(
x1, . . . , xn

z

)
≃ colim

n→m→1
colim

(yi)∈Y ×m

⊗
i∈m

Φ

(
xk : k ∈ ni

yi

)
⊗Ψ

(
y1, . . . , yk

z

)
.

(iv) If O is any non-symmetric ∞-operad then there is a natural equivalence

AlgO(COLL(V)) ≃ AlgdopdOF
(V).

(v) If F : V → W is a symmetric monoidal functor that preserves colimits indexed
by small ∞-groupoids, then composition with F induces a morphism of double
∞-categories COLL(V) → COLL(W).

Remark 2.13. In (iii), the outer colimit is more precisely over the groupoid
Fact(n → 1) of factorizations n → m → 1, with morphisms given by diagrams

m

n 1.

m′

∼

Remark 2.14. In particular, associative algebras in COLL(V) are equivalent to
∞-operads enriched in V:

Alg∆op(COLL(V)) ≃ Algdopd
∆op

F
(V) ≃ Opd(V).

For X ∈ V, the ∞-category

COLL(V)(X,X) ≃ CollX(V) ≃ Fun(F≃
X ,V)

of horizontal endomorphisms of X has a monoidal structure given by composition.
Moreover, by [Hau22, Proposition 3.4.8] a morphism f : X → Y induces a natural
lax monoidal functor f∗ : CollY (V) → CollX(V), given by composition with the
induced map F≃

X → F≃
Y . By [Hau22, Corollary 3.4.10] we also have:

Corollary 2.15. Let O be a weakly contractible non-symmetric ∞-operad. Then
the functor

AlgO(COLL(V)) → S

given by evaluation at ∗ ∈ O0 is a cartesian fibration corresponding to the functor
S → Cat∞ that takes X to AlgO(CollX(V)) and a morphism f : X → Y to the func-
tor given by composition with the lax monoidal functor f∗ : CollY (V) → CollX(V).
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Remark 2.16. This corollary applies in particular to the weakly contractible non-
symmetric ∞-operad ∆op, so that by Remark 2.14, enriched ∞-operads with X as
space of objects are given by associative algebras in CollX(V), i.e.

OpdX(V) ≃ Alg∆op(CollX(V)).

Remark 2.17. For f : X → Y , the lax monoidal functor f∗ : CollY (V) → CollX(V)
is given by composition with a morphism of ∞-groupoids fF≃ : F≃

X → F≃
Y . Since

V has colimits indexed by ∞-groupoids, this functor has a left adjoint f!, given
by left Kan extension along fF≃ . Moreover, since AlgO(CollX(V)) → CollX(V)
detects limits and sifted colimits for any non-symmetric ∞-operad O, the func-
tor f∗ : AlgO(CollY (V)) → AlgO(CollX(V)) preserves limits and sifted colimits,
since this is true for f∗ : CollY (V) → CollX(V). If V is presentably symmetric
monoidal, then the ∞-category AlgO(CollY (V)) is presentable, since it is equiva-

lent to AlgopdOF,X
(V), which in turn is equivalent to the ∞-category of algebras in V

for some symmetric ∞-operad. It then follows from the adjoint functor theorem
that f∗ : AlgO(CollY (V)) → AlgO(CollX(V)) has a left adjoint. This implies:

Corollary 2.18. Let O be a weakly contractible non-symmetric ∞-operad and V a
presentably symmetric monoidal ∞-category. Then the functor

AlgO(COLL(V)) → S

given by evaluation at ∗ ∈ O0 is also a cocartesian fibration. □

In general the cocartesian morphisms over f are not easily described in terms of
the left Kan extension along the map fF≃ : F≃

X → F≃
Y . However, we can derive a

simple description in the case of monomorphisms of ∞-groupoids:

Proposition 2.19. Suppose i : X ↪→ Y is a monomorphism of ∞-groupoids. Then
the left adjoint i! : CollX(V) → CollY (V) has a canonical monoidal structure, such
that composition with i! and i∗ gives for any ∞-operad O an adjunction

i! : AlgO(CollX(V)) ⇄ AlgO(CollY (V)) : i
∗.

Proof. We will prove this by applying [Lur17, Corollary 7.3.2.12], which requires
us to show that for Φ,Ψ ∈ CollX(V), the canonical map

i!(Φ⊙X Ψ) → i!Φ⊙Y i!Ψ

is an equivalence.
We first describe i!Φ more explicitly: For (y1, . . . , yn) in Y n

hΣn
, we can identify

the fibre of Xn
hΣn

over this point as Xy1
×· · ·×Xyn

using the commutative diagram

Xy1
× · · · ×Xyn

Xn Xn
hΣn

{(y1, . . . , yn)} Y n Y n
hΣn

∗ BΣn,

⌟ ⌟

⌟

where all three squares are cartesian. Hence the fibre of F≃
X → F≃

Y at
(
y1,...,yn

y

)
is

equivalent to
∏

i Xyi
×Xy, giving

i!Φ
(
y1,...,yn

y

)
≃ colim

(x1,...,xn,x)∈
∏

i Xyi
×Xy

Φ
(
x1,...,xn

x

)
.
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We can then rewrite the formula for i!(Φ⊙X Ψ)
(
y1,...,yn

y

)
as

i!(Φ⊙X Ψ)
(
y1,...,yn

y

)
≃ colim

(x1,...,xn,x)∈
∏

i Xyi
×Xy

(Φ⊙X Ψ)
(
x1,...,xn

x

)
≃ colim

(x1,...,xn,x)∈
∏

i Xyi
×Xy

colim
n→m→1

colim
(x′

j)∈Xm

⊗
j

Φ
(xi:i∈nj

x′
j

)
⊗Ψ

(
x′
1,...,x

′
m

x

)
≃ colim

n→m→1
colim

(y′
j)∈Y m

colim
(xi)∈

∏
i Xyi

colim
(x′

j)∈
∏

j Xy′
j

colim
x∈Xy

⊗
j

Φ
(xi:i∈nj

x′
j

)
⊗Ψ

(
x′
1,...,x

′
m

x

)
.

On the other hand (i!Φ⊙Y i!Ψ)
(
y1,...,yn

y

)
is equivalent to

colim
n→m→1

colim
(y′

j)∈Y m
colim

(xi)∈
∏

i Xyi

colim
(x′

j)∈
∏

j Xy′
j

colim
(x′′

j )∈
∏

j Xy′
j

colim
x∈Xy

⊗
j

Φ
(xi:i∈nj

x′
j

)
⊗Ψ

(
x′′
1 ,...,x

′′
m

x

)
,

and the canonical map corresponds under these equivalences to the map of colimits
arising from the diagonal map

∏
j Xy′

j
→
∏

j Xy′
j
×
∏

j Xy′
j
. Since these are ∞-

groupoids, this map is cofinal if and only if it is an equivalence, which holds if and
only if the spaces Xy for y ∈ Y are either contractible or empty, i.e. if and only if
i is a monomorphism. □

Corollary 2.20. Let i : X → Y be a monomorphism of ∞-groupoids and O a
weakly contractible non-symmetric ∞-operad.

(i) For every A ∈ AlgO(CollX(V)), the unit morphism A → i∗i!A is an equiva-
lence.

(ii) The functor

i! : AlgO(CollX(V)) → AlgO(CollY (V))

is fully faithful. □

Remark 2.21. We will also need a more general version of Theorem 2.12, which
follows by using part (iii) of [Hau22, Proposition 3.5.6] instead of (vi): If F : V → W

is a symmetric monoidal functor then composition with F induces a morphism of
generalized non-symmetric ∞-operads F∗ : COLL(V) → COLL(W), which restricts
to lax monoidal functors F∗ : CollX(V) → CollX(W). These are compatible with
the lax monoidal functors f∗ coming from maps of spaces f : X → Y : A priori the
square

CollY (V) CollY (W)

CollX(V) CollX(W)

F∗

f∗ f∗

F∗

only commutes up to a natural transformation, but this is clearly a natural equiv-
alence since both functors are given by composition.

3. Algebras for ∞-Operads as Modules

In this section we define algebras for an enriched ∞-operad O as certain right O-
modules in COLL(V). We first recall the definition of the non-symmetric ∞-operad
for right modules, and prove that this is weakly contractible, allowing us to apply
Corollary 2.15:

Definition 3.1. Let rm denote the non-symmetric operad for right modules. This
has two objects, a and m, and there is a unique multimorphism (x1, . . . , xn) → y if
x1 = · · · = xn = y = a (n = 0 allowed) or x1 = y = m and x2 = · · · = xn = a, and
no multimorphisms otherwise. We write RM → ∆op for the corresponding non-
symmetric ∞-operad, or in other words the category of operators of rm. This has
objects sequences (x1, . . . , xn) with each xi being either a or m, and a morphism
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(x1, . . . , xn) → (y1, . . . , ym) is given by a map ϕ : [m] → [n] in ∆ and multimor-
phisms (xϕ(i−1)+1, . . . , xϕ(i)) → yi in rm.

Proposition 3.2. The category RM is weakly contractible.

Proof. In this proof it is convenient to use the notation (i0, . . . , in)RM for the object
of RM given by the sequence (a, . . . , a,m, · · · ,m, a, . . . , a) where there are n copies
of m and it copies of a between the tth and (t + 1)th copy of m (and i0 before
the first and in after the last). Define a functor µ : ∆op

int → RM over ∆op by
taking [n] to the unique object of the form [0, . . . , 0]RM = (m, . . . ,m) over [n], and
determined on morphisms by the inert morphisms between these objects. We claim
that µ is coinitial, and so in particular a weak homotopy equivalence. To see this,
it suffices by [Lur09, Theorem 4.1.3.1] to show that for every object X ∈ RM the
category (∆op

int)/X is weakly contractible. But this category has a terminal object:
if X = (i0, . . . , in)RM then any morphism (0, . . . , 0)RM → X factors as an inert
morphism followed by the (unique) degeneracy µ([n]) → X. Since ∆op

int is weakly
contractible (for example, because the inclusion ∆op

int ↪→ ∆op is cofinal and ∆op

has an initial object), this implies that RM is also weakly contractible. □

Corollary 3.3. The functor

AlgdopdRMF
(V) ≃ AlgRM(COLL(V)) → S,

given by evaluation at () ∈ RM0, is a cartesian fibration corresponding to the func-
tor S → Cat∞ that takes X to AlgRM(CollX(V)) and a morphism f : X → Y to
the functor given by composition with the lax monoidal functor f∗ : CollY (V) →
CollX(V). □

To define algebras we want to restrict to those modules that are concentrated in
degree 0, which will be justified by the next proposition.

Definition 3.4. We say that Φ ∈ CollX(V) is concentrated in degree 0 if

Φ

(
x1, . . . , xn

y

)
≃ ∅

whenever n > 0, where ∅ denotes the initial object in V.

Proposition 3.5. Let V be a symmetric monoidal ∞-category compatible with
colimits indexed by small ∞-groupoids.

(i) The functor Z : CollX(V) → Fun(X,V) given by composition with X ↪→ F≃
X

has a fully faithful left adjoint, which identifies Fun(X,V) with the collections
that are concentrated in degree 0.

(ii) If M : F≃
X → V is concentrated in degree 0, then so is M ⊙X N for any

N ∈ CollX(V).
(iii) The composition product induces a right CollX(V)-module structure on the

∞-category Fun(X,V).
(iv) For f : X → Y , composition with f and the induced functor F≃

X → F≃
Y gives

a lax RM-monoidal functor

f∗ : (Fun(Y,V),CollY (V)) → (Fun(X,V),CollX(V))

(v) Composition with a symmetric monoidal functor F : V → W gives a lax RM-
monoidal functor

F∗ : (Fun(X,V),CollX(V)) → (Fun(X,W),CollX(W)).

If F preserves colimits indexed by small ∞-groupoids, then F∗ is an RM-
monoidal functor.
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Proof. Part (i) is obvious from the description of F≃
X as

∐
n X

×n
hΣn

×X and the for-

mula for pointwise left Kan extensions, while part (ii) follows immediately from the
description of composition of horizontal morphisms in COLL(V) in Theorem 2.12.
Part (iii) then holds by combining parts (i) and (ii), and parts (iv) and (v) follow
by restricting the lax monoidal functors discussed in §2. □

Definition 3.6. Let O be a V-∞-operad with space of objects X, viewed as an as-
sociative algebra in CollX(V). An O-algebra in V is a right O-module in Fun(X,V).
We write AlgO(V) for the ∞-category RModO(Fun(X,V)) of these right modules.

Remark 3.7. By Proposition 3.5(iv) we see that for O ∈ OpdY (V), composition
with f : X → Y gives a functor AlgO(V) → Algf∗O(V), while composition with a
symmetric monoidal functor F : V → W gives a functor AlgO(V) → AlgF∗O

(W).

Since there is always a formula for free modules, with this definition we imme-
diately get a formula for free algebras over enriched ∞-operads:

Proposition 3.8. The forgetful functor UO : AlgO(V) → Fun(X,V) has a left ad-
joint FO, and the endofunctor UOFO satisfies

UOFOM(x) ≃
∐
n

colim
(x1,...,xn)∈Xn

hΣn

M(x1)⊗ · · · ⊗M(xn)⊗ O

(
x1, . . . , xn

x

)
.

Moreover, UO preserves sifted colimits and the adjunction is monadic.

Proof. By [Lur17, Corollary 4.2.4.8] the left adjoint FO exists, and UOFO(M) is
given by the composition product M ⊙O (with M viewed as a symmetric sequence
concentrated in degree 0). Expanding out this composition product now gives the
formula.

It follows from [Lur17, Proposition 4.2.3.1] that UO detects equivalences and from
[Lur17, Corollary 4.2.3.5] that AlgO(V) has sifted colimits and UO preserves these,
since the composition product preserves sifted colimits in each variable. The adjunc-
tion is therefore monadic by the monadicity theorem for ∞-categories, [Lur17, The-
orem 4.7.3.5]. □

Applying [GH15, Proposition A.5.9], we get:

Corollary 3.9. If V is a presentably symmetric monoidal ∞-category and O is a
V-enriched ∞-operad, then the ∞-category AlgO(V) is presentable. □

Remark 3.10. Let F : O → O′ be a morphism of V-∞-operads given on spaces of
objects by f : X → Y , and suppose f is surjective on π0 and F is fully faithful in
the sense that all the maps

O
(
x1,...,xn

y

)
→ O′(f(x1),...,f(xn)

f(y)

)
are equivalences in V. Then we have a commutative square

AlgO′(V) AlgO(V)

Fun(Y,V) Fun(X,V),

F∗

f∗

where the surjectivity of f implies that the composite functor AlgO′(V) → Fun(X,V)
is a monadic right adjoint. Using the formula from Proposition 3.8 it is easy to see
that F ∗ gives an equivalence of monads on Fun(X,V) and so gives an equivalence
of ∞-categories AlgO′(V) ≃ AlgO(V) by [Lur17, Corollary 4.7.3.16]. This applies in
particular if O′ is the completion of O, so by a 2-out-of-3 argument it follows that
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any fully faithful and essentially surjective morphism of V-∞-operads F : O → P

induces an equivalence

AlgO(V) ≃ AlgP(V)

on ∞-categories of algebras in V.

We end this section by showing that the nullary operations of a V-∞-operad O

give a canonical O-algebra, using the next observation:

Proposition 3.11. Z : CollX(V) → Fun(X,V) is a functor of CollX(V)-modules.

Proof. By definition of the CollX(V)-module structure on Fun(X,V), the inclusion
Fun(X,V) → CollX(V) is a functor of CollX(V)-modules. Using [Lur17, Corollary
7.3.2.7], this implies that its right adjoint Z is a lax RM-monoidal functor. Thus
for M,N ∈ CollX(V) there are natural maps

Z(M)⊙X N → Z(M ⊙X N);

by the formula for ⊙X these maps are equivalences, and so Z is an RM-monoidal
functor. □

Corollary 3.12. If O is an associative algebra in CollX(V) and M ∈ CollX(V) is a
right O-module, then the restriction Z(M) ∈ Fun(Y,V) is also a right O-module. □

Since an algebra is canonically a right module over itself, this specializes to:

Corollary 3.13. Suppose O is an algebra in CollX(V), i.e. a V-∞-operad with X as
space of objects. Then the functor Z(O) : X → V picking out the nullary operations
is canonically a right O-module. □

4. Comparison with Model Categories of Operad Algebras

Let V be a symmetric monoidal model category (with cofibrant unit). Then
by [Lur17, Proposition 4.1.7.4] the localization V[W−1] (with W the class of weak
equivalences) is a symmetric monoidal ∞-category, and the localization functor
V → V[W−1] is symmetric monoidal when restricted to the cofibrant objects. If
O is a (levelwise cofibrant) operad in V then this means we can also view O as
an operad in V[W−1]. Moreover, in good cases there is a model structure on the
category AlgO(V) of O-algebras in V. In this section we will give conditions under
which the corresponding ∞-category AlgO(V)[W−1

O ] (with WO the class of weak
equivalences of O-algebras) is equivalent to the ∞-category AlgO(V[W−1]), defined
as in the previous section. In order to do the comparison in sufficient generality to
cover examples such as symmetric spectra, we do not want to assume that the unit
of the monoidal structure is cofibrant. Instead we consider model categories with
a subcategory of flat objects in the following sense:

Definition 4.1. Let V be a symmetric monoidal model category.5 A subcategory
of flat objects is a full subcategory V♭ that satisfies the following conditions:

• V♭ is a symmetric monoidal subcategory, i.e. the unit is flat and the tensor
product of two flat objects is flat,

• If X is flat and Y → Y ′ is a weak equivalence between flat objects, then
X ⊗ Y → X ⊗ Y ′ is again a weak equivalence.

• All cofibrant objects are flat.

Example 4.2. If the unit of V is cofibrant, then the subcategory Vc of cofibrant
objects is a subcategory of flat objects.

5We assume that model categories have functorial factorizations.
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Proposition 4.3. Let V be a symmetric monoidal model category and V♭ a sub-
category of flat objects. Then the inclusions Vc ↪→ V♭ ↪→ V induce equivalences of
localizations

Vc[W−1]
∼−→ V♭[W−1]

∼−→ V[W−1],

where we denote the collections of weak equivalences in the subcategories by W in
all cases.

Proof. Let Q : V → V be a cofibrant replacement functor, with a natural weak
equivalence η : Q → id. If i denotes the inclusion Vc ↪→ V then we may view Q as
a functor V → Vc and η as a natural transformation iQ → idV. If X is cofibrant,
then ηX : QX → X is a morphism in Vc, so we may view ηi : iQi → i as a natural
transformation ηc : Qi → idVc . The functor Q preserves weak equivalences, and
both η and ηc are natural weak equivalences. It follows that Q induces a functor
V[W−1] → Vc[W−1] and the transformations η and ηc induce transformations
that exhibit this as an inverse of the functor Vc[W−1] → V[W−1] induced by
i. The same argument applies to Q restricted to the full subcategory V♭; the
functor V♭[W−1] → V[W−1] is therefore an equivalence by the 2-of-3 property of
equivalences. □

Corollary 4.4. Let V be a symmetric monoidal model category and V♭ a subcat-
egory of flat objects. Then the ∞-category V[W−1] inherits a symmetric monoidal
structure such that the functor V♭ → V[W−1] is symmetric monoidal.

Proof. By assumption, in V♭ the tensor product is compatible with weak equiva-
lences, and so the ∞-category V[W−1] ≃ V♭[W−1] inherits a symmetric monoidal
structure with this property by [Lur17, Proposition 4.1.7.4]. □

Using Remark 3.7, composition with the symmetric monoidal functor V♭ →
V[W−1] gives a natural functor

AlgO(V♭) → AlgO(V[W−1]),

if O is a levelwise flat V-operad. Here we can interpret AlgO(V♭) as the classical
ordinary category of O-algebras in V♭.

Definition 4.5. An S-coloured operad O in a symmetric monoidal model cate-
gory V is called admissible if there exists a model structure on AlgO(V) where a
morphism is a weak equivalence or a fibration precisely if its underlying morphism
in Fun(S,V) is one (i.e. it is a weak equivalence or fibration in V for each element
of S).

Definition 4.6. An S-coloured V-operad O is called Σ-cofibrant if the unit map
1S → U(O) is a cofibration in the projective model structure on Fun(F≃

S ,V), where
U denotes the forgetful functor from operads to collections and 1S is the monoidal
unit for the composition product, given by

1S

(
s1,...,sn

s′

)
=

{
1, n = 1, s1 = s′,

∅, otherwise,

where 1 is the monoidal unit in V.

Example 4.7. A one-coloured V-operad O is Σ-cofibrant precisely if 1 → O(1) is
a cofibration, and the object O(n) is projectively cofibrant in Fun(BΣn,V) for all
n ̸= 1.

Definition 4.8. Let V be a symmetric monoidal model category and V♭ a sub-
category of flat objects. We will say that a V-operad O is flat if it is enriched in
the full subcategory V♭.
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Remark 4.9. Since cofibrant objects are flat, if O is Σ-cofibrant then it is flat
precisely if in addition the objects of (unary) endomorphisms O(x, x) ∈ V are all
flat.

By [PS18a, Proposition 6.2], if O is an admissible Σ-cofibrant V-operad, then
cofibrantO-algebras have cofibrant underlying objects inV. Since cofibrant objects
are in particular flat, if O is flat, admissible and Σ-cofibrant we have a functor

AlgO(V)c → AlgO(V♭) → AlgO(V[W−1]).

This takes weak equivalences in AlgO(V)c to equivalences in AlgO(V[W−1]), since
the weak equivalences are lifted from the weak equivalences in V, and so induces a
functor of ∞-categories

AlgO(V)c[W−1
O ] → AlgO(V[W−1]),

where WO denotes the collection of weak equivalences between O-algebras.

Theorem 4.10. Let V be a symmetric monoidal model category equipped with a
subcategory V♭ of flat objects. If O is a flat admissible Σ-cofibrant V-operad, then
the functor

AlgO(V)c[W−1
O ] → AlgO(V[W−1])

is an equivalence of ∞-categories.

Proof. We follow the proof of [PS18a, Theorem 7.10], which in turn is a variant
of those of [Lur17, Theorems 4.1.4.4, 4.5.4.7]. Let S be the set of objects of O.
The right Quillen functor AlgO(V) → Fun(S,V) induces a functor of ∞-categories
U : AlgO(V)c[W−1

O ] → Fun(S,V[W−1]), which is a right adjoint by [MG16, Theo-
rem 2.1]. As O is Σ-cofibrant, the forgetful functor preserves sifted homotopy col-
imits by [PS18a, Proposition 7.8]. Since it also detects weak equivalences, it follows
by [Lur17, Theorem 4.7.3.5] (the monadicity theorem for ∞-categories) that U is a
monadic right adjoint. The same holds for the forgetful functor AlgO(V[W−1]) →
Fun(S,V[W−1]) by Proposition 3.8, so using [Lur17, Corollary 4.7.3.16] we see that
to show that the functor AlgO(V)c[W−1

O ] → AlgO(V[W−1]) is an equivalence it
suffices to show that the two associated monads on Fun(S,V[W−1]) have equivalent
underlying endofunctors. This follows from the formula in Proposition 3.8, since
the Σn-orbits that appear in the formula for free strict O-algebras are homotopy
orbits when O is Σ-cofibrant. □

The cases to which this result applies are primarily those where all operads
are admissible, as more generally we only have semi-model structure on algebras
over Σ-cofibrant operads. This includes the following examples, as discussed in
[PS18b, §7]:

(i) the category Set∆ of simplicial sets, equipped with the Kan–Quillen model
structure,

(ii) the category Top of compactly generated weak Hausdorff spaces, equipped
with the usual model structure,

(iii) the category Chk of chain complexes of k-vector spaces, where k is a field of
characteristic 0 (or more generally a ring containing Q), equipped with the
projective model structure,

(iv) the category SpΣ of symmetric spectra, equipped with the positive stable
model structure,

In the first three examples the unit is cofibrant, and in the positive stable model
structure on symmetric spectra a suitable subcategory of flat objects is supplied by
the S-cofibrant objects of [Shi04] (see also [Sch07, Chapter 5], where these are called
flat objects). Note that a Σ-cofibrant operad in symmetric spectra is necessarily
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flat, since the flat objects are the cofibrant objects in a model structure whose
cofibrations include the usual cofibrations.

Specializing to these cases, we have:

Corollary 4.11.

(i) Let O be a Σ-cofibrant simplicial operad, then

AlgO(Set∆)[W
−1
O ] ≃ AlgO(S).

(ii) Let O be a Σ-cofibrant topological operad, then

AlgO(Top)[W−1
O ] ≃ AlgO(S).

(iii) Let O be a Σ-cofibrant dg-operad over a field k of characteristic zero, then

AlgO(Chk)[W
−1
O ] ≃ AlgO(D(k)),

where D(k) is the derived ∞-category of k-modules.
(iv) Let O be a Σ-cofibrant operad in symmetric spectra, then

AlgO(SpΣ)[W−1
O ] ≃ AlgO(Sp),

where Sp is the ∞-category of spectra.

Remark 4.12. The case of simplicial operads was already proved as [PS18a, The-
orem 7.10].

Remark 4.13. According to Spitzweck’s thesis [Spi01, Theorem 4], a V-operad
with a single object that is cofibrant in the semi-model structure on one-object op-
erads in V is admissible without further assumptions on V. A version for coloured
operads does not yet seem to appear in the literature, but if this is correct then the
comparison of Theorem 4.10 would apply in general for such cofibrant operads.

Remark 4.14. If O is a Σ-cofibrant operad in a symmetric monoidal model cat-
egory V, then under much weaker assumptions on V there exists a semi-model
structure on the category AlgO(V), by a result of Spitzweck [Spi01, Theorem 5] in
the one-object case and White–Yau for coloured operads [WY18, Theorem 6.3.1].
Using results of Cisinski [Cis19], White and Yau have recently extended the results
relating structures in model categories to their analogues in ∞-categories needed
to carry out the proof of Theorem 4.10 in the setting of semi-model categories,
and thereby extended the comparison with ∞-operad algebras to the case where
there is only a semi-model structure on algebras over a Σ-cofibrant operad; see
[WY24, §7.3].

5. Endomorphism ∞-Operads

The first goal of this subsection is to prove that for any morphism of∞-groupoids
f : X → V≃ there exists a corresponding endomorphism ∞-operad EndV(f), where
V denotes a closed symmetric monoidal ∞-category compatible with small ∞-
groupoid-indexed colimits. Our strategy for obtaining these objects is taken from
[Hin20, §6.3] and uses the construction of endomorphism algebras from [Lur17,
§4.7.1], which we first briefly recall:6

Suppose A is a monoidal ∞-category and M is right-tensored over A. An en-
domorphism algebra for an object M ∈ M is an associative algebra End(M) in
A and a right End(M)-module structure on M with the universal property that
for any associative algebra A in A, right A-module structures on M are naturally
equivalent to morphisms of associative algebras A → End(M).

By [Lur17, Proposition 4.7.1.30, Theorem 4.7.1.34] there exists a monoidal ∞-
category A[M ] whose objects are pairs (X ∈ A,M ⊗ X → M in M), with the

6We restate it for right instead of left modules.
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property that an associative algebra in A[M ] corresponds to an assocative algebra
A ∈ A together with a right A-module structure on M . An endomorphism algebra
for M is thus precisely a terminal object in Alg∆op(A[M ]). Since the terminal
object of A[M ] has a unique algebra structure if it exists, we have:

Proposition 5.1 ([Lur17, Corollary 4.7.1.40]). If A[M ] has a terminal object
(A,M ⊗ A → M) then A is the underlying object of an endomorphism algebra
for M . □

We also note that by construction the forgetful functor A[M ] → A is a right
fibration, corresponding to the functor

A 7→ MapM(M ⊗A,M).

In the case of CollX(V) and its right module Fun(X,V) we can explitly identify
this functor:

Proposition 5.2. For M ∈ Fun(X,V) and S ∈ CollX(V) there is a natural equiv-
alence

MapFun(X,V)(M ⊙ S,M) ≃ MapCollX(V)(S,EndV(M)),

where EndV(M) : F≃
X → V is the functor given by

EndV(M)
(
x1,...,xn

x

)
≃ MAPV(M(x1)⊗ · · · ⊗M(xn),M(x)),

with MAPV denoting the internal Hom in V.

Proof. Since X is an ∞-groupoid, the twisted arrow ∞-category Tw(X) is equiva-
lent to X, and so [GHN17, Proposition 5.1] yields a natural equivalence

MapFun(X,V)(M ⊙ S,M) ≃ lim
x∈X

MapV((M ⊙ S)(x),M(x)).

Now the description of M ⊙ S from Proposition 3.8 shows that this is naturally
equivalent to

lim
x∈X

MapV

(∐
n

colim
(x1,...,xn)∈Xn

hΣn

M(x1)⊗ · · · ⊗M(xn)⊗ S
(
x1,...,xn

x

)
,M(x)

)
.

Taking the limit out and applying the universal property of MAP, this becomes

lim
x∈X

(∏
n

lim
(x1,...,xn)∈Xn

hΣn

MapV(S
(
x1,...,xn

x

)
,End(M)

(
x1,...,xn

x

)
)

)
.

We can now combine the limits to get a limit over
∐

n X ×Xn
hΣn

≃ F≃
X , i.e.

lim
ξ∈F≃

X

MapV(S(ξ),EndV(M)(ξ)).

Applying [GHN17, Proposition 5.1] once more now identifies this limit (since F≃
X is

again an ∞-groupoid) with MapFun(F≃
X ,V)(S,EndV(M)), as required. □

Corollary 5.3. For any M : X → V, the ∞-category CollX(V)[M ] has a terminal
object.

Proof. By Proposition 5.2, the functor CollX(V)op → S corresponding to the right
fibration

CollX(V)[M ] → CollX(V)

is represented by the object EndV(M). This implies that we have an equivalence

CollX(V)[M ] ≃ CollX(V)/EndV(M).

Since the right-hand side clearly has a terminal object, this completes the proof. □

Applying Proposition 5.1, we get:
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Corollary 5.4. For any M ∈ Fun(X,V) there exists an endomorphism ∞-operad
EndV(M) in OpdX(V) ≃ Alg∆op(CollX(V)) whose underlying X-collection is

EndV(M)
(
x1,...,xn

y

)
≃ MAP(M(x1)⊗ · · · ⊗M(xn),M(y)).

This has the universal property that, for any O ∈ OpdX(V), morphisms O →
EndV(M) in OpdX(V) correspond to O-algebra structures on M , i.e. there is natural
equivalence

MapOpdX(V)(O,EndV(M)) ≃ AlgO(V)
≃
M ,

where the right-hand side denotes the underlying ∞-groupoid of the fibre of AlgO(V) →
Fun(X,V) at M .

Remark 5.5. For X ≃ ∗, so that the functor ∗ → V picks out an object v of V,
we get an ∞-categorical analogue of the classical endomorphism operad: EndV(v)
is a one-object V-∞-operad with underlying symmetric sequence

EndV(v)(n) ≃ MAPV(v
⊗n, v).

If O is a one-object V-∞-operad, the universal property says that an O-algebra
structure on v is equivalent to a morphism of one-object ∞-operads O → EndV(v).

Example 5.6. By Corollary 3.13, if O is any V-∞-operad with space of objects X,
then the functor Z(O) : X → V picking out the nullary operations is canonically a
right O-module. This corresponds to a canonical morphism of V-∞-operads O →
End(Z(O)), given by maps

O
(
x1,...,xn

y

)
→ MAPV(Z(O)(x1)⊗ · · · ⊗ Z(O)(xn), Z(O)(y)),

adjoint to the composition maps

O
(
x1

)
⊗ · · · ⊗ O

(
xn

)
⊗ O

(
x1,...,xn

y

)
→ O

(
y

)
for O.

We now observe that the endomorphism algebras are compatible with the lax
monoidal functors f∗ : CollY (V) → CollX(V) induced by morphisms of∞-groupoids
f : X → Y :

Proposition 5.7. For f : X → Y a morphism in S and M : Y → V, there is a
natural equivalence of RM-algebras

f∗(M,EndV(M))
∼−→ (f∗M,EndV(f

∗M)).

Proof. If O is a V-∞-operad with Y as space of objects, the lax monoidal functor
f∗ induces a a natural functor

AlgO(V) → Algf∗O(V),

given on the underlying functors to V by composition with f . Applying this to
the V-∞-operad EndV(M) and the canonical EndV(M)-algebra structure on M ,
we obtain an f∗EndV(M)-algebra structure on f∗M = M ◦ f . By the universal
property of endomorphism∞-operads this corresponds to a morphism of∞-operads
f∗EndV(M) → EndV(f

∗M) . Using the explicit description of the underlying
collection of EndV(M) in terms of internal Homs we see that this is an equivalence.

□

There exists a universal functor from an ∞-groupoid to V, namely the inclusion
V≃ → V of the underlying ∞-groupoid of V. Our construction does not apply
directly to this, since the ∞-groupoid V≃ is not small. However, by passing to a
larger universe we can define a universal endomorphism ∞-operad for V:
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Definition 5.8. Let V be a large closed symmetric monoidal ∞-category compat-
ible with colimits indexed by small ∞-groupoids. By [Lur17, Proposition 4.8.1.10]

there is a very large presentable ∞-category V̂ compatible with large colimits, with

a fully faithful symmetric monoidal functor V ↪→ V̂ that preserves colimits over

small ∞-groupoids. Let Opd(V̂) be the ∞-category of V̂-enriched ∞-operads with
potentially large spaces of objects.

Remark 5.9. Since V is a symmetric monoidal full subcategory of V̂, we can regard

Opd(V) as a full subcategory of Opd(V̂), containing precisely those V̂-∞-operads
whose spaces of objects are small and whose objects of multimorphisms all lie in
the full subcategory V. Similarly, for any O ∈ OpdX(V) we have a pullback square

AlgO(V) AlgO(V̂)

Fun(X,V) Fun(X, V̂)

where the horizontal maps are fully faithful.

Definition 5.10. Let i : V≃ → V̂ denote the inclusion of the space of objects in
the full subcategory V. Applying Corollary 5.4 in the enlarged universe to i, we get

an endomorphism V̂-∞-operad

V := End
V̂
(i).

The formula for its multimorphism objects implies that we can regard V as a (large)

V-∞-operad (i.e. an object in the∞-category OpdV≃(V) ⊆ OpdV≃(V̂), which makes
sense also when the ∞-groupoid of objects is large). Moreover, for any map of ∞-
groupoids M : X → V≃ where X is small, we can regard

End
V̂
(i ◦M) ≃ M∗V

as an object of OpdX(V).

Lemma 5.11. For any map M : X → V≃ where X is a small ∞-groupoid, we have
a canonical equivalence

M∗V ≃ EndV(M).

Proof. For O ∈ OpdX(V) we have a natural equivalence

AlgO(V)M
∼−→ AlgO(V̂)iM .

Using the universal property of the endomorphism objects this corresponds to a
natural equivalence

Map(O,M∗V)
∼−→ Map(O,EndV(M)),

and so an equivalence M∗V
∼−→ EndV(M), as required. □

Let U denote the canonical V-algebra structure on i, which we can regard as an
object of AlgV(V). For every map M : X → V≃ with X small, the pullback M∗U is
then the canonical EndV(M)-algebra structure on M , which leads to the following:

Theorem 5.12. For any small V-∞-operad O, the morphism of ∞-groupoids

Map
Opd(V̂)

(O,V) → AlgO(V)
≃,

which takes ϕ : O → V to ϕ∗U ∈ AlgO(V)
≃, is an equivalence.
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Proof. Let X be the space of objects of O. Then we have a commutative triangle
of ∞-groupoids

Map
Opd(V̂)

(O,V) AlgO(V)
≃

Map(X,V).

It suffices to show that we have an equivalence on the fibres over each map M : X →
V. But we have an equivalence between Map

Opd(V̂)
(O,V)M and

MapOpdX(V)(O,M
∗V) ≃ MapOpdX(V)(O,EndV(M)),

under which the map to AlgO(V)
≃
M is equivalent to that taking ϕ : O → EndV(M)

to ϕ∗ applied to the canonical EndV(M)-algebra structure on M . This is an equiv-
alence by the universal property of the endomorphism algebra. □

Remark 5.13. In [CH20] we constructed a natural tensoring of V-∞-operads over
∞-categories. This induces an enrichment in ∞-categories, given by

MapCat∞(C,AlgO(P)) ≃ MapOpdV
∞
(C⊗ O,P).

For P = V, we can use Theorem 5.12 to identify the ∞-category AlgO(V) with
the Segal space Alg∆•⊗O(V)

≃. We expect that this should in fact be equivalent
to the ∞-category AlgO(V), but to prove we need a better understanding of the
tensoring of V-∞-operads and ∞-categories. As this was defined rather inexplicitly
in [CH20], we suspect that this requires setting up a new definition of enriched
∞-operads where the tensoring can be described more concretely.

In the case where V is the ∞-category S of spaces, we can identify S explicitly:

Proposition 5.14. Let S× denote the symmetric monoidal ∞-category given by the
cartesian product in S, viewed as an S-enriched ∞-operad. There is an equivalence
S×

∼−→ S.

Proof. For X ∈ S, we have Z(S×)(X) ≃ MapS(∗, X) ≃ X, and the functor
Z(S×) : S≃ → S is the inclusion of the underlying ∞-groupoid. Hence, thinking

of S as an endomorphism object for ∞-operads enriched in large spaces, by Exam-
ple 5.6 there is a canonical morphism S× → S. This is given by equivalences

S×
(
X1,...,Xn

Y

) ∼−→ MapS(X1 × · · · ×Xn, Y ),

and so it is an equivalence of S-∞-operads. □

Remark 5.15. It follows that for O an S-∞-operad, the ∞-groupoid AlgO(S)
≃ in

our sense is equivalent to Map
Opd(Ŝ)

(O, S×). This is the underlying ∞-groupoid of

the ∞-category of O-algebras in S defined in [Lur17], so for S-enriched ∞-operads
our notion of O-algebras agrees with that of [Lur17], at least on the level of ∞-
groupoids.
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