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Pushouts of Dwyer maps are .1; 1/–categorical
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MARTINA ROVELLI

The inclusion of 1–categories into .1; 1/–categories fails to preserve colimits in general, and pushouts in
particular. We observe that if one functor in a span of categories belongs to a certain previously identified
class of functors, then the 1–categorical pushout is preserved under this inclusion. Dwyer maps, a kind
of neighborhood deformation retract of categories, were used by Thomason in the construction of his
model structure on 1–categories. Thomason previously observed that the nerves of such pushouts have the
correct weak homotopy type. We refine this result and show that the weak homotopical equivalence is a
weak categorical equivalence. We also identify a more general class of functors along which 1–categorical
pushouts are .1; 1/–categorical.

18N60, 55U35

1 Introduction

Classical 1–categories define an important special case of .1; 1/–categories. The fact that .1; 1/–
category theory restricts to ordinary 1–categories can be understood, in part, by the observation that
the inclusion of 1–categories into .1; 1/–categories is full as an inclusion of .1; 2/–categories. This
full inclusion is reflective — with the left adjoint given by the functor that sends an .1; 1/–category
to its quotient “homotopy category” — but not coreflective and as a consequence colimits of ordinary
1–categories need not be preserved by the passage to .1; 1/–categories. Indeed there are known examples
of colimits of 1–categories that generate nontrivial higher-dimensional structure when the colimit is
formed in the category of .1; 1/–categories.

For example, consider the span of posets
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The pushout in 1–categories is the arrow category �! �, while the pushout in .1; 1/–categories defines
an .1; 1/–category which has the homotopy type of the 2–sphere.

As a second example, let M be the monoid with five elements, e, x11, x12, x21 and x22, and multiplication
rule given by xij xk` D xi`. Inverting all elements of M yields the trivial group. That is, if one considers
M as a 1–category with a single object, then the pushout of the span M  

`
M 2!

`
M I (where 2

is the free-living arrow and I is the free-living isomorphism) in categories is the terminal category 1.
On the other hand, the pushout of this span in .1; 1/–categories is the1–groupoid S2 as follows from
[Fiedorowicz 2002, Lemma]. The results of [McDuff 1979] imply that this example is generalizable to a
vast class of monoids.

More generally, the Gabriel–Zisman category of fractions CŒW�1� is formed by freely inverting the
morphisms in a class of arrows W in a 1–category C. This can also be constructed as a pushout of
1–categories of the span

C 
a
w2W

2 ,!
a
w2W

I

where each arrow in W is replaced by a free-living isomorphism. By contrast, the .1; 1/–category
defined by this pushout is modeled by the Dwyer–Kan simplicial localization, which has nontrivial higher
dimensional structure in many instances [Dwyer and Kan 1980; Joyal 2008, page 168; Stevenson 2017,
Lemma 18]. Indeed, all .1; 1/–categories arise in this way [Barwick and Kan 2012].

As the examples above show, pushouts of 1–categories in particular are problematic. Our aim is to prove
that a certain class of pushout diagrams of 1–categories are guaranteed to be .1; 1/–categorical. The
requirement is that one of the two maps in the span that generates the pushout belong to a class of functors
between 1–categories first considered by Thomason [1980, Definition 4.1] under the name “Dwyer maps”
that feature in a central way in the construction of the Thomason model structure on categories.

Definition 1.2 (Thomason) A full sub-1–category inclusion I WA ,!B is a Dwyer map if the following
conditions hold.

(i) The category A is a sieve in B, meaning there is a necessarily unique functor � W B! 2 with
��1.0/DA. We write V WD ��1.1/ for the complementary cosieve of A in B.

(ii) The inclusion I WA ,!W into the minimal cosieve1 W�B containing A admits a right adjoint
left inverse R WW!A, a right adjoint for which the unit is an identity.

Schwede [2019] describes Dwyer maps as “categorical analogs of the inclusion of a neighborhood
deformation retract”. In fact, many examples of Dwyer maps are more like deformation retracts, in that
the cosieve W generated by A is the full codomain category B.

1Explicitly W is the full subcategory of B containing every object that arises as the codomain of an arrow with domain in A.
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Example 1.3 (i) The vertex inclusion 0 W 1! 2 is a Dwyer map, with ! W 2! 1 the right adjoint left
inverse. The other vertex inclusion 1 W 1! 2 is not a Dwyer map.

(ii) Generalizing the previous example, if A is a category with a terminal object and AF is the category
which formally adds a new terminal object, then the inclusion A ,!AF is a Dwyer map.2

Thomason observed that Dwyer maps are stable under pushouts, as we now recall:

Lemma 1.4 [Thomason 1980, Proposition 4.3] Any pushout of a Dwyer map I defines a Dwyer map J :

A C

B D

I

F

p
J

G

Note, for example, that Lemma 1.4 explains the Dwyer map of Example 1.3(ii): if A has a terminal
object t , then the pushout

1 A

2 AF
p

0

t

defines the category AF.

Our aim is to show that pushouts of categories involving at least one Dwyer map can also be regarded
as pushouts of .1; 1/–categories in the sense made precise by considering the nerve embedding from
categories into quasicategories:

Theorem 1.5 Let
A C

B D

I

F

p
J

G

be a pushout of categories , and assume that I is a Dwyer map. Then the induced map of simplicial sets

N BqN A N C!N D

is a weak categorical equivalence.

By a weak categorical equivalence, we mean a weak equivalence in Joyal’s model structure for quasi-
categories [Joyal and Tierney 2007, Section 1]. Theorem 1.5 is a refinement of a similar result of
Thomason [1980, Proposition 4.3], which proves that the same map is a weak homotopy equivalence.

2If A does not have a terminal object, then A!AF need not be a Dwyer map. Indeed, if AD 1q1, the only cosieve containing
A is AF itself, and there cannot be a right adjoint AF!A as A does not have a terminal object. But see Example 3.5(iii), which
explains that this example is discretely flat.
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While Theorem 1.5 is the natural generalization of Thomason’s result, we prove it by considering
instead the embedding of 1–categories as discrete simplicially enriched categories, using Bergner’s
model of .1; 1/–categories. This tactic was suggested by a referee; for our original argument using the
quasicategory model see [Hackney et al. 2022]. We show in Proposition 3.3 that a Dwyer map, when
considered as a map between discrete simplicial categories, satisfies a certain “flatness” property with
respect to the Bergner model structure. Since this discrete embedding of 1–categories into simplicial
categories preserves pushouts, unlike the nerve embedding of 1–categories into quasicategories, it is
straightforward to prove that:

Theorem 1.6 The inclusion Cat1 ,! Cat.1;1/ of the .1; 1/–category of 1–categories into the .1; 1/–
category of .1; 1/–categories preserves (homotopy) pushouts along Dwyer maps.

When then deduce Theorem 1.5 as a corollary of this result.

Though the two previous theorems refer to Dwyer maps, they also hold for the pseudo-Dwyer maps
introduced by Cisinski [1999], which are retracts of Dwyer maps. In fact, we prove both Theorems 1.5
and 1.6 for more general classes of functors introduced in Definition 3.4 that include the Dwyer maps.
The key property of a Dwyer map (or pseudo-Dwyer map) is that it is “discretely flat” as well as a faithful
inclusion. For a functor to be discretely flat means that pushouts along it, considered as a functor of
discrete simplicial categories, preserve Dwyer–Kan equivalences of simplicial categories.

In a companion paper, we give an application of Theorem 1.5 to the theory of .1; 2/–categories. There
we prove:

Theorem 1.7 [Hackney et al. 2023, 4.4.2] The space of composites of any pasting diagram in any
.1; 2/–category is contractible.

To prove this, we make use of Lurie’s [2009b] model structure of .1; 2/–categories as categories enriched
over quasicategories. In this model, a pasting diagram is a simplicially enriched functor out of the free
simplicially enriched category defined by gluing together the objects, atomic 1–cells, and atomic 2–cells
of a pasting scheme, while the composites of these cells belong to the homotopy coherent diagram indexed
by the nerve of the free 2–category generated by the pasting scheme.

This pair of .1; 2/–categories has a common set of objects so the difference lies in their hom-spaces. The
essential difference between the procedure of attaching an atomic 2–cell along the bottom of a pasting
diagram or along the bottom of the free 2–category it generates is the difference between forming a
pushout of hom-categories in the category of .1; 1/–categories or in the category of 1–categories. Since
one of the functors in the span that defines the pushout under consideration is a Dwyer map, Theorem 1.5
proves that the resulting .1; 2/–categories are equivalent.

In Section 2, we analyze 1–categorical pushouts of Dwyer maps. In Section 3, we extend these observations
to pushouts of simplicial categories involving a Dwyer map between 1–categories as one leg of the span,
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axiomatize the classes of functors that are well-behaved with respect to simplicial pushouts, and prove
Theorem 1.6. In Section 4, we deduce Theorem 1.5 as a corollary and consider a further special case
Corollary 4.1, which observes that the canonical comparison between the pushout of nerves of categories
and the nerve of the pushout is inner anodyne, provided that one of the functors in the span is a Dwyer
map and the other is an injective on objects faithful functor.

2 Dwyer pushouts

We now establish some notation that we will freely reference in the remainder of this paper. By
Definition 1.2, a Dwyer map I WA ,!B uniquely determines a functor � WB! 2 that classifies the sieve
A WD ��1.0/ and its complementary cosieve V WD ��1.1/

V B A

1 2 1

y
�

x

1 0

as well as a right adjoint left inverse adjunction .I aR; " W IR) idW/ associated to the inclusion of A

into the minimal cosieve A�W�B. This data may be summarized by the diagram

.2.1/

¿

U A

V W 1

1 B

2

p

p x

y

R

>

0

1

in which U WDW\VŠWnA. Consider the pushout of a Dwyer map along an arbitrary functor F WA!C:

A C

V B D

1 1

1 2 2

I

p

F

J

�

G

0

01

�

The induced functor � W D! 2 partitions the objects of D into the two fibers ob.��1.0// Š obC and
ob.��1.1//Š obV and prohibits any morphisms from the latter to the former.
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The right adjoint left inverse adjunction .I aR; " W IR) idW/ associated to the inclusion of A into the
minimal cosieve A�W�B pushes out to define a right adjoint left inverse .J a S; � W JS) idY/ to
the inclusion of C into the minimal cosieve C� Y� D:

A C A C A C

W Y W Y W Y C2

B D A C W2 Y2

F

I
a

p
J
a

F

I

p
J

F

I

p
J

�

G

p

R S

G

R

S
"

G
�

J 2

G F G2

These observations explain the closure of Dwyer maps under pushout and furthermore can be used to
explicitly describe the structure of the category D defined by the pushout of a Dwyer map, as proven
in [Bohmann et al. 2015, Proof of Lemma 2.5]; cf also [Schwede 2019, Construction 1.2; Ara and
Maltsiniotis 2014, Section 7.1].

Proposition 2.2 The objects in the pushout category D are given by

obCq obV Š
�! obD

while the hom sets are given by

C.c; c0/Š D.c; c0/; V.v; v0/ŠB.v; v0/Š D.v; v0/; C.c;Su/
�uı.�/

Š
���! D.c;u/; f 7! Of ;

for all c; c0 2 C, v; v0 2 V and u 2U, and are empty otherwise. Functoriality of the inclusions J and G

defines the composition on the image of C and V. For objects c; c0 2 C and u;u0 2U, the composition
map

D.u;u0/�D.c;u/�D.c0; c/ D.c0;u0/

D.u;u0/�C.c;Su/�C.c0; c/

C.Su;Su0/�C.c;Su/�C.c0; c/ C.c0;Su0/

ı

Š

S�id

ı

Š

is the unique map making the diagram commute.3

To summarize, J and G define fully faithful inclusions

V D C

1 2 1

y
�

x

1 0

that are jointly surjective on objects. In particular, we may identify V with the complementary cosieve
of C in D.
3Note if u 2U and v 2 VnU, then B.u; v/D¿.
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3 Pushouts in simplicial categories

By simplicial category we always mean simplicially enriched category as opposed to a simplicial object
in Cat. There is a fully faithful inclusion sCat ,! Cat�

op
, identifying a simplicial category with an

identity-on-objects simplicial object.

The following model structure on sCat is due to Bergner [2007], though Lurie [2009a, A.3.2.4, A.3.2.25]
observed that the Bergner model structure is left proper and combinatorial.

Definition 3.1 (Bergner model structure) The category sCat of simplicially enriched categories admits
a proper, combinatorial model structure in which:

� A map f W C! D is a weak equivalence just when

(W1) for each pair of objects x and y, the map C.x;y/! D.f x; fy/ is a weak homotopy equiva-
lence of simplicial sets, and

(W2) the functor �0f W �0C! �0D is essentially surjective.

� A map f W C! D is a fibration just when

(F1) for each pair of objects x and y, the map C.x;y/! D.f x; fy/ is a Kan fibration, and

(F2) the functor �0f W �0C! �0D is an isofibration.

If C is a simplicial category, then �0C is the ordinary category obtained by taking path components of
each hom-simplicial set. We call simplicial functors satisfying (W1) fully faithful (meaning of course in
the homotopical sense), and functors satisfying (W2) essentially surjective.

The constant diagram functor Cat! Cat�
op
, given by precomposition with �op

! 1, factors through the
full subcategory inclusion sCat ,! Cat�

op
. Write disc W Cat! sCat for the induced full inclusion, which

identifies categories as those simplicial categories with discrete hom-simplicial sets.

Lemma 3.2 The functor disc W Cat! sCat preserves limits and colimits.

Proof The precomposition functor Cat!Cat�
op

preserves all limits and colimits, while the full inclusion
sCat! Cat�

op
reflects them. The conclusion follows.

Our key technical result is the following proposition, which observes that when I is a Dwyer map, the
functor disc.I/ of simplicial categories is a flat map in the terminology of [Hill et al. 2016, B.9] or an
h–cofibration in the terminology of [Batanin and Berger 2017, 1.1] relative to the Bergner model structure.

Proposition 3.3 If I WA ,!B is a Dwyer map , then

disc Bqdisc A .�/ W
disc A=sCat! disc B=sCat

preserves weak equivalences.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof Consider a composable pair of simplicial functors disc A F
�! C0 M

�! C and form the following
pushouts:

disc A C0 C

disc B D0 D
p

F M

pH

When M is a weak equivalence in the Bergner model structure, we wish to show that the induced map
H W D0! D between the pushouts is as well.

As in Proposition 2.2, we identify obD0 with obC0q obV and similarly obDD obCq obV. We regard
the simplicial categories D0 and D as simplicial objects D0

�
and D� via the inclusion sCat ,! Cat�

op
. For

each n, we have Dn DBqA Cn and similarly for D0n. We have already computed the hom sets of these
categories in Proposition 2.2, and the descriptions there are functorial in the C–variable. Thus,

C0.c; c0/ C.Mc;Mc0/ C0.c;FRu/ C.Mc;MFRu/

D0.c; c0/ D.Hc;Hc0/ D0.c;u/ D.Hc;Hu/

'

Š Š

'

Š Š

for c; c0 2C0 and u2U. Meanwhile, for v; v0 2V we have that both D.v; v0/ and D0.v; v0/ are isomorphic
to the discrete simplicial set V.v; v0/. Finally, the hom-simplicial sets D0.c; v0/, D.Hc; v0/, D.v; c/ and
D.v;Hc/ are all empty for c 2 C0, v 2 V and v0 2 VnU. Thus H is fully faithful.

For essential surjectivity of H , notice that we have a commutative square of functors

C0q disc V Cq disc V

D0 D

Mqid

H

where the vertical maps are bijective on objects and the top map is essentially surjective. It follows that
H is essentially surjective as well.

Our main results hold not just for Dwyer maps but for arbitrary functors between 1–categories that satisfy
the property established in Proposition 3.3 plus some injectivity conditions. The following terminology
highlights the required properties.

Definition 3.4 A functor I W A! B between 1–categories is discretely flat if the simplicial functor
disc.I/ is flat, ie if

disc Bqdisc A .�/ W
disc A=sCat! disc B=sCat

preserves Bergner weak equivalences. If, in addition, I is injective on objects, we call it a discretely flat
cofibration, and if it is both injective on objects and faithful, we call it a discretely flat inclusion.

Dwyer maps are discretely flat inclusions, but such functors aren’t the only examples.
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Example 3.5 (i) Since the passage to opposite categories commutes with all of the structures involved
in Definition 3.4, co-Dwyer maps, whose opposites are Dwyer maps, are also discretely flat
inclusions.

(ii) As flat maps are closed under retracts — see [Hill et al. 2016, B.11] or [Batanin and Berger 2017,
Lemma 1.3] — Cisinski’s [1999] pseudo-Dwyer maps are also discretely flat inclusions.

(iii) The inclusion of 1q 1 into the cospan category .1q 1/F is a discretely flat inclusion. Indeed, the
hom-simplicial sets of .1q 1/Fq.1q1/ C are readily computed by hand in terms of those for C,
and a variation of the proof of Proposition 3.3 gives the result.

Note not all functors of the form A! AF are discrete flat inclusions. In light of Theorem 1.6, the
left-hand map of (1.1) gives a counterexample. An interesting problem is to characterize the class of
discretely flat inclusions.

The fact that Dwyer pushouts are homotopy pushouts now follows from a general fact: in a left proper
model category, a pushout where one leg is a flat map is automatically a homotopy pushout; see [Batanin
and Berger 2017, Section 1.5].

Proposition 3.6 Suppose I WA!B is discretely flat. Then for any functor F W disc A! C of simplicial
categories , the pushout disc Bqdisc A C is a homotopy pushout.

Proof To form the homotopy pushout of a span in a model category, one replaces it by a cofibrant span
as below and then takes the ordinary pushout [Dwyer and Spaliński 1995, 10.4]:

¿

Y X Z

disc B disc A C

� � �

disc.I /

Thus, we must show that the induced map

YqX Z! disc Bqdisc A C

is a weak equivalence of simplicial categories. Since disc.I/ is flat by assumption and sCat is left proper,
the above map is a weak equivalence by [Hill et al. 2016, B.12].

Our model-independent statement, that Dwyer pushouts are .1; 1/–categorical, holds generally for
discretely flat cofibrations.

Theorem 1.6 The inclusion Cat1 ,! Cat.1;1/ of the .1; 1/–category of 1–categories into the .1; 1/–
category of .1; 1/–categories preserves (homotopy) pushouts along discretely flat cofibrations.

Proof The inclusion Cat1 ,! Cat.1;1/ can be modeled at the point-set level by the right Quillen functor
disc W Cat! sCat. By hypothesis, a discretely flat cofibration I W A! B is injective on objects, hence
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a cofibration in the canonical model structure on Cat. This model structure is left proper, so ordinary
pushouts along such maps are homotopy pushouts by [Hirschhorn 2003, 13.5.4]. Since the functor
disc W Cat! sCat preserves strict pushouts, Proposition 3.6 shows that disc preserves homotopy pushouts
along discretely flat cofibrations, so the conclusion follows.

4 Pushouts in simplicial sets

In this section, we describe the implications of Theorem 1.6 for the Joyal model structure on simplicial
sets, proving the results needed in [Hackney et al. 2023]. We utilize the commutative triangle of right
Quillen functors

Cat

sSet sCat

N disc

N

'

where N is the homotopy coherent nerve, a right Quillen equivalence between the Bergner and Joyal
model structures. This diagram commutes up to natural isomorphism since, for any 1–category A,

.N disc A/n WD hom.CŒn�; disc A/Š hom.Œn�;A/DW .N A/n;

which holds because the hom simplicial sets of disc A are discrete.

We first explain how to deduce Theorem 1.5 from Proposition 3.6. In fact, we use the terminology of
Definition 3.4 to prove a more general version:

Theorem 1.5 Let
A C

B D

I

F

p
J

G

be a pushout of categories , and assume I is a discretely flat inclusion. Then the induced map of simplicial
sets

N BqN A N C!N D

is a weak categorical equivalence.

Proof We organize the proof into the following commutative square of simplicial sets:

N disc BqN disc A N disc C N BqN A N C

N.disc Bqdisc A disc C/

N disc.BqA C/ N.BqA C/

Š

Š

Š
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The top and bottom isomorphisms are instances of the natural isomorphism N ŠN disc. The vertical
maps are the canonical comparison maps induced by the universal property of the pushouts. The bottom
left map is an isomorphism since disc preserves pushouts (Lemma 3.2). It remains to show that the upper
left map

N disc BqN disc A N disc C!N.disc Bqdisc A disc C/

is a weak categorical equivalence, at which point the right map will be a weak categorical equivalence by
two-of-three.

Notice that the objects in the top row are homotopy pushouts, since NI WN A!N B is a cofibration in
sSet by the hypothesis that I is faithful and injective on objects. Let RN be the right derived functor
of N. Since discrete simplicial categories are fibrant in the Bergner model structure, the map of simplicial
sets above represents the canonical map

.RN/ disc Bqh
.RN/ disc A .RN/ disc C! .RN/.disc Bqh

disc A disc C/:

This is an equivalence since RN is an equivalence of .1; 1/–categories, hence preserves homotopy
pushouts. We conclude that N BqN A N C!N.BqA C/ is a weak categorical equivalence.

In the case where F WA! C is also injective on objects and faithful, as occurs frequently in [Hackney
et al. 2023], we are able to strengthen our conclusion and prove that the canonical comparison map is
inner anodyne.

Corollary 4.1 Let

A C

B D

I

F

p
J

G

be a pushout of categories , in which I is a discretely flat inclusion and F is faithful and injective on
objects. Then the induced inclusion of simplicial sets

N BqN A N C ,!N D

is inner anodyne.

Proof Observe in this case that the canonical map j WN BqN A N C ,!N D is an inclusion and thus, by
Theorem 1.5, an acyclic cofibration in the Joyal model structure. This acyclic cofibration is also bijective
on 0–simplices and has codomain a quasicategory. By [Stevenson 2018a, 2.19] or [Stevenson 2018b, 5.7]
it follows that j is inner anodyne.4

4See [Campbell 2020] for related discussion and an example of an acyclic cofibration that is bijective on 0–simplices but whose
codomain is not a quasicategory that is not inner anodyne.

Algebraic & Geometric Topology, Volume 24 (2024)



2182 Philip Hackney, Viktoriya Ozornova, Emily Riehl and Martina Rovelli

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant DMS-
1440140, which began while the authors were in residence at the Mathematical Sciences Research
Institute in Berkeley, California, during the Spring 2020 semester. The authors learned a lot from fruitful
discussions with the other members of the MSRI-based working group on .1; 2/–categories. This work
was supported by a grant from the Simons Foundation (850849, PH). Ozornova thankfully acknowledges
the financial support by the DFG grant OZ 91/2-1 with the project 442418934. Riehl is also grateful
for support from the NSF via DMS-1652600 and DMS-2204304, from the ARO under MURI grant
W911NF-20-1-0082, and by the Johns Hopkins President’s Frontier Award program. Rovelli is deeply
appreciative of the Mathematical Sciences Institute at the Australian National University for their support
during the pandemic year and is grateful for support from the NSF via DMS-2203915. The authors also
wish to thank the referee for [Hackney et al. 2023] who pointed out that their originally claimed proof of
this result, which originally appeared there, sufficed only to cover the case used there. The referee for
this paper suggested a strategy to greatly simplify our original proof of the general result, which allowed
us to also prove more general theorems.

References
[Ara and Maltsiniotis 2014] D Ara, G Maltsiniotis, Vers une structure de catégorie de modèles à la Thomason sur

la catégorie des n–catégories strictes, Adv. Math. 259 (2014) 557–654 MR Zbl

[Barwick and Kan 2012] C Barwick, D M Kan, Relative categories: another model for the homotopy theory of
homotopy theories, Indag. Math. 23 (2012) 42–68 MR Zbl

[Batanin and Berger 2017] M A Batanin, C Berger, Homotopy theory for algebras over polynomial monads,
Theory Appl. Categ. 32 (2017) 148–253 MR Zbl

[Bergner 2007] J E Bergner, A model category structure on the category of simplicial categories, Trans. Amer.
Math. Soc. 359 (2007) 2043–2058 MR Zbl

[Bohmann et al. 2015] A M Bohmann, K Mazur, A M Osorno, V Ozornova, K Ponto, C Yarnall, A model
structure on GCat , from “Women in topology: collaborations in homotopy theory” (M Basterra, K Bauer, K Hess,
B Johnson, editors), Contemp. Math. 641, Amer. Math. Soc., Providence, RI (2015) 123–134 MR Zbl

[Campbell 2020] A Campbell, A counterexample in quasi-category theory, Proc. Amer. Math. Soc. 148 (2020)
37–40 MR Zbl

[Cisinski 1999] D-C Cisinski, La classe des morphismes de Dwyer n’est pas stable par retractes, Cahiers Topologie
Géom. Différentielle Catég. 40 (1999) 227–231 MR Zbl

[Dwyer and Kan 1980] W G Dwyer, D M Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17
(1980) 267–284 MR Zbl
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