M. J. HOPKINS AND B. H. GROSS

- [Kat79] N. Katz. Crystalline cohomology, Dieudonné modules and Jacobi sums. In Automorphic forms, Representation theory and Arithmetic, pages 165-246, Bombay, 1979. Tata Institute of Fundamental Research.
- [Laz55] M. Lazard. Sur les groupes de Lie formels à une paramètre. Bull. Soc. Math. France, 83:251-274, 1955.
- [LST64] J. Lubin, J-P. Serre, and J. Tate. Elliptic curves and formal groups. In Seminar at Woods Hole Institute on algebraic geometry, 1964.
- [LT65] J. Lubin and J. Tate. Formal complex multiplication in local fields. Annals of Mathematics, 81:380-387, 1965.
- [LT66] J. Lubin and J. Tate. Formal moduli for one parameter formal Lie groups. Bull. Soc. Math. France, 94:49-60, 1966.
- [Lub67] J. Lubin. Finite subgroups and isogenies of one-parameter formal Lie groups. Annals of Mathematics, 85:296-302, 1967.
- [Mac50] S. MacLane. Cohomology theory of abelian groups. In Proc. ICM Cambridge, MA, pages 8-14, 1950.
 - [Ser] J-P. Serre. Letter to J. Tate, January 25, 1964.
- [Ser62] J-P. Serre. Endomorphisms complètement continus des espaces de banach p-adique. Publ. Math. IHES, 12:69-85, 1962.
- Tail J. Tate. Letter to J-P. Serre, December 16, 1963.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA

Constructions of elements in Picard groups

MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SADOFSKY

ABSTRACT. We discuss the first author's Picard groups of stable homotopy. We give a detailed description of the calculation of Pic_{1} , and go on to describe geometric constructions for lifts of the elements of Pic_{1} . We also construct a 15 cell complex that localizes to what we speculate is an interesting element of Pic_{2} . For all n we describe an algebraic approximation to Pic_{n} using the Adams-Novikov spectral sequence. We also show that the p-adic integers embed in the group Pic_{n} for all n and p.

1. Introduction and statement of results

We begin with the basic definition. The functor

$\Sigma^n : X \mapsto S^n \wedge X$

is an automorphism of the category of spectra, which preserves cofibration sequences and infinite wedges. If T is another such automorphism, then Brown's representability theorem applied to $\pi_*(TX)$ gives a spectrum S_T with

 $TX = S_T \wedge X$

and

 $S_{T-1} \wedge S_T = S^0.$

This motivates the following definition.

DEFINITION 1.1. A spectrum Z is invertible if and only if there is some spectrum W such that

 $Z \wedge W = S^0$.

Pic is the group of isomorphism classes of invertible spectra, with multiplication given by smash product. Given an isomorphism class $\lambda \in Pic$ we will write S^{λ} for a representative spectrum.

The authors were partially supported by the National Science Foundation.

This article is in final form and no version of it will be submitted for publication elsewhere.

© 1994 American Mathematical Society 0271-4132/94 \$1.00 + \$.25 per page

⁸⁸

¹⁹⁹¹ Mathematics Subject Classification. Primary 55P42; Secondary 55Q10.

90 MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY

Pic itself is not very interesting; it is just the integers and the elements are just spheres. To see this observe that if $Z \in \text{Pic}$ then $H_*(Z) = \mathbb{Z}$ in some dimension, say k, and 0 in other dimensions. One can then map Z to S^k by working up the Postnikov tower so that the map induces an isomorphism on homology. By smashing the analogous map for Z^{-1} with Z one gets a map from S^k to Z that is an isomorphism on homology. It follows that $Z = S^k \vee A$ for some A. Since the same is true for Z^{-1} , it follows that A = *.

We can alter the definition to apply to a category of local spectra, but variants of this argument tell us that Pic = \mathbb{Z} even if we restrict to the *p*-local (or *p*-complete) categories. The situation is more interesting if we look at the category of K(n)-local spectra where K(n) is the n^{th} Morava K-theory. We have the following definition.

DEFINITION 1.2. A K(n) local spectrum Z is invertible in the K(n)-local category if and only if there is a spectrum W such that

$$L_{K(n)}(Z \wedge W) = L_{K(n)}S^0.$$

 Pic_n is the group of isomorphism classes of such spectra, with multiplication given by

$$(X,Y) \mapsto L_{K(n)}(X \wedge Y).$$

We postpone showing that Pic_n is a set to section 7.

The following result is useful in identifying elements of Pic_n. We describe the functor $\mathcal{K}_{n,*}(-)$ in section 7. It is essentially a completion of $E(n)_*(-)$.

THEOREM 1.3. The following are equivalent:

(i) $L_{K(n)}Z$ is in Pic_n .

(ii) $\dim_{K(n), K(n), Z} = 1.$

(iii) $\mathcal{K}_{n,*}(Z) \cong \mathcal{K}_{n,*}(S^k)$ for some k.

PROOF. We reserve the proof of (ii) \Leftrightarrow (iii) for section 7. (i) implies (ii) by the Künneth theorem for Morava K-theories.

To show (ii) implies (i), assume Z satisfies (ii). Let $Y = F(Z, L_{K(n)}S^0)$ where F(A, B) is defined to be the representing spectrum for the cohomology theory

$$X \mapsto [X \land A, B].$$

There is an "evaluation" map

$$Z \wedge Y \to L_{K(n)}S^0$$

that is the adjoint of the identity in

$$[F(Z, L_{K(n)}S^{0}), F(Z, L_{K(n)}S^{0})] = [Y, F(Z, L_{K(n)}S^{0})].$$

We claim that this map is an isomorphism on $K(n)_{\star}$ and hence an equivalence after localizing.

To see this, consider all spectra X such that the evaluation map

(1)
$$Z \wedge F(Z, L_{K(n)}X) \to L_{K(n)}X$$

is an isomorphism on K(n). It is easy to see that X = K(n) works. Furthermore, the class of X that makes (1) an isomorphism is closed under cofibrations and wedges.

Hopkins and Ravenel show that if X is a finite type n spectrum, then $L_{K(n)}X$ has a finite filtration where each cofiber is a wedge of K(n)'s. This result is unpublished, but can be deduced from [20], Corollary 8.2.7 and Section 8.3. It follows that X finite type n makes (1) an isomorphism on K(n). But if X is finite,

$$Z \wedge F(Z, L_{K(n)}X) \to L_{K(n)}X$$

is the same as

$$Z \wedge F(Z, L_{K(n)}S^0) \wedge X \to L_{K(n)}S^0 \wedge X,$$

and that map is an isomorphism on K(n) if and only if

$$Z \wedge F(Z, L_{K(n)}S^0) \rightarrow L_{K(n)}S^0$$

is. 🗀

In the next several sections, we want to give some particular examples from the zoo, Pic_1 . We will find spectra which are quite familiar and which represent various classes in Pic_1 , and others which are constructed in a simple way from quite natural objects, but have surprising properties.

Before we continue, we would like to illustrate how some of these examples come about. It is a consequence of Thompson's work [23] that the EHP sequence at odd primes is just a Bockstein spectral sequence when one uses v_1 periodic homotopy. To be precise, let $M^0(p^j)$ be the $\mathbb{Z}/(p^j)$ Moore spectrum with top cell in dimension 0, and let J be the image of J spectrum at p. An interpretation of what is shown in [23] is that there is a map

$$\Omega^{2n+1}S^{2n+1} \to \Omega^{\infty}(J \wedge M^0(p^n))$$

which is an equivalence in v_1 periodic homotopy. Thus the EHP spectral sequence, using v_1 periodic homotopy theory is just the spectral sequence associated with the system of spectra

(2) $M^0(p) \to M^0(p^2) \to \cdots \to M^0(p^n) \to \cdots$

The cofibration sequences at the stages of this direct system are

$$M^0(p^n) \to M^0(p^{n+1}) \to M^0(p)$$

The direct limit of this system is $M^0(p^{\infty})$. On $K(1)_*$, each map in the system is an isomorphism on the copy of $K(1)_*$ associated to the cell in dimension 0, and

0 on the other copy of $K(1)_*$ and hence $K(1)_*$ of the limit is $K(1)_*(S^0)$. In fact consideration of the cofiber sequence

$$S^{-1} \to L_{\mathbf{Q}}S^{-1} \to M^0(p^\infty)$$

shows that the direct limit is homotopy equivalent to S^0 after applying $L_{K(1)}$.

Now if λ is a p-adic integer, we can write λ as (the limit of) a sequence $a_i = a_{i-1} + \lambda_i p^i$ where λ_i is an integer such that $0 \leq \lambda_i < p$, and $a_{-1} = 0$. Using λ as a template we can describe another system of spectra

(3)
$$M^0(p) \xrightarrow{v_1^{\lambda_0}} M^{-qa_0}(p) \to M^{-qa_0}(p^2) \xrightarrow{v_1^{p\lambda_1}} M^{-qa_1}(p^2) \to \cdots$$

Here $q = 2p - 2 = |v_1|$, and $v_1^{p^{i-1}} : \Sigma^{qp^{i-1}} M(p^i) \to M(p^i)$ is an Adams map inducing a K-theory isomorphism and multiplication by $v_1^{p^{i-1}}$ on BP_* . In this direct system, the n^{th} stage is $M^{-qa_{n-2}}(p^n)$, and the map from the n^{th} stage to the $(n+1)^{\text{th}}$ stage is the composite

$$M^{-qa_{n-1}}(p^n) \xrightarrow{v_i^{\lambda_n p^n}} M^{-qa_n}(p^n) \to M^{-qa_n}(p^{n+1}).$$

If λ happens to be an ordinary integer, then as in (2) the direct limit of this system is $M^{-\lambda q}(p^{\infty})$ which is the same as $S^{-\lambda q}$ after applying $L_{K(1)}$.

It is clear that in $K(1)_{\star}$, the v_1^k maps are isomorphisms, so that $K(1)_{\star}$ of the direct limit is the same as before. Thus the limit has the K(1)-theory of S^0 . This means that for each λ we have constructed an element in Pic₁. The homotopy groups will depend on the p-adic integer λ . One of the main results of this note will be that at odd primes, essentially nothing else happens. We discuss this in detail, from a slightly different perspective, in section 2. At the prime two, we get similar examples and some more.

The rest of the paper is organized as follows. Section 2 calculates Pic₁ at odd primes, and shows that the examples illustrated above contain everything. Section 3 calculates Pic₁ at p = 2. Section 4 constructs elements of Pic₁ at p = 2 related to $\mathbb{R}P^{\infty}$. Section 5 constructs some bizarre elements of Pic₁ at p = 2. Section 6 contains an interesting example in Pic₂ at p = 2. Sections 7 and 8 discuss an algebraic approximation for Pic_n based on the Adams-Novikov spectral sequence, and section 9 generalizes the construction above to prove \mathbb{Z}_p embeds in Pic_n.

This paper was motivated by attempts on the part of the other authors to better understand a talk given by the first author at the Adams symposium in Manchester. The basic definitions and many of the results are due to the first author.

We thank the referee for a thorough reading and many constructive criticisms; we also thank Mark Hovey for useful comments on an early draft.

CONSTRUCTIONS OF ELEMENTS IN PICARD GROUPS

2. Calculation of Pic₁ at p > 2

Let γ be a topological generator of $(\mathbb{Z}_p)^{\times}$. For example we can take γ to be $(1+p)\xi$ where ξ is a primitive $(p-1)^{\text{st}}$ root of unity in \mathbb{Z}_p . K will denote complex K-theory completed at p, and K_p the Adams summand. We will be considering the Adams operation ψ^{γ} . We will need some notation from section 7; we define $\mathcal{K}_{1,*}(X)$ by

$$\mathcal{K}_{1,*}(X) = \lim_{n \to \infty} K_*(X \wedge M(p^n)).$$

It is easy to check that $\mathcal{K}_{1,*}(X) = K_*(X)$ if $K_*(X)$ is finitely generated over K_* .

We introduce $\mathcal{K}_{1,*}(-)$ because we need an integral invariant so we can conveniently work with Adams operations. Also, because of Theorem 1.3, $\mathcal{K}_{1,*}(-)$ is better adapted for studying Pic₁ than K_* is. In fact, the proof of (ii) \Leftrightarrow (iii) of Theorem 1.3 shows that $\mathcal{K}_{1,*}(X) = 0 \Leftrightarrow K(1)_*(X) = 0$, and hence that $\mathcal{K}_{1,*}(X) = \mathcal{K}_{1,*}(L_{K(n)}X)$. Neither of these facts are true for $K_*(-)$ in place of $\mathcal{K}_{1,*}(-)$ as the example $X = M(p^{\infty})$ shows.

The theory $\mathcal{K}_{1,*}(-)$ does have the drawback of not being a homology theory in the usual sense; because of the inverse limit in its definition, it fails to commute with direct limits.

PROPOSITION 2.1. There is an extension of abelian groups

$$0 \rightarrow M \rightarrow Pic_1 \rightarrow \mathbf{Z}/(2) \rightarrow 0.$$

The map $\operatorname{Pic}_1 \to \mathbb{Z}/(2)$ takes X to the dimension (modulo 2) of the generator of $\mathcal{K}_{1,*}(X)$. M is the kernel of this map, and $ev : M \to (\mathbb{Z}_p)^{\times}$ is an isomorphism, where ev(X) is the eigenvalue of ψ^{γ} on $\mathcal{K}_{1,0}(X)$.

Note by Theorem 1.3, $X \in \operatorname{Pic}_1 \Leftrightarrow \mathcal{K}_{1,*}(X) = \mathcal{K}_{1,*}(S^k)$ for some k. If $X \in M$, we can take k = 0. We will prove the statement about M in stages.

Before we embark on the proof, we have to note some number theoretic properties of ψ^{γ} . Since it is an Adams operation,

(4)
$$\pi_{2n}(\psi^{\gamma}) = \cdot \gamma^n$$

on $K^{\mathbf{C}}$. The following facts follow since γ is a topological generator of $(\mathbf{Z}_p)^{\times}$.

(5)
$$\gamma^{k} \equiv 1 \pmod{p} \quad \text{iff} \quad (p-1)|k$$
$$\gamma^{s(p-1)p^{r}} \equiv 1 \pmod{p^{r+1}}$$
$$\gamma^{s(p-1)p^{r}} \not\equiv 1 \pmod{p^{r+2}} \quad \text{if} \quad p \not\mid s$$

LEMMA 2.2. The map ev is a homomorphism.

PROOF. Suppose $X, Y \in M$. Then $\mathcal{K}_{1,*}(X) = \mathcal{K}_{1,*}(Y) = \mathcal{K}_{1,*}(S^0)$, so by the Künneth theorem,

$$\mathcal{K}_{1,*}(X \wedge Y) = \mathcal{K}_{1,*}(X) \otimes_{K_*} \mathcal{K}_{1,*}(Y)$$

MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY

as a module over the Adams operations, since the Adams operations are multiplicative. $\hfill\square$

LEMMA 2.3.

$$L_{K(1)}X = fiber[(K \wedge X)_{\rho} \xrightarrow{[\psi^{\tau} - 1] \wedge 1} (K \wedge X)_{\rho}]$$

PROOF. This follows from Theorem 4.3 of [5] and the fact that $L_{K(1)}X = (L_K X)_p^2$ (Proposition 2.11 of [5]). Taken together these imply that if

$$J = \text{fiber}[K \xrightarrow{\psi^{\tau} - 1} K]$$

then $L_{K(1)}X = (X \wedge J)_{p}^{\circ}$. (Because of (5), it doesn't matter that we are using K where Bousfield uses $KO_{(p)}$.)

LEMMA 2.4. ev is injective.

PROOF. Suppose ev(X) = 1. We get a diagram

where g is a generator of $\pi_0(K \wedge X)$. Since $([\psi^{\gamma} - 1] \wedge 1)g = *, g$ lifts to X, and since X is K(1) local, the lift extends to a map

$$f: L_{K(1)}S^0 \to X$$

Now $K(1)_{\bullet}(g)$ is monic, so it follows that $K(1)_{\bullet}(f)$ is monic. Therefore, $K(1)_{\bullet}(f)$ is an isomorphism because the source and target are both isomorphic to $K(1)_{\bullet}$, so since the source and target are K(1)-local, f is a homotopy equivalence. \Box

LEMMA 2.5. Let X_{γ^n} be the fiber of $K \frac{\psi^{\gamma} - \gamma^n}{K} K$

Then $X_{\gamma^n} = L_{K(1)}S^{2n}$.

PROOF. Let f below be an inclusion of the Adams summand in that dimension.

Let $i: S^0 \to K_p$ be the unit. By (4), $(\psi^{\gamma} - \gamma^n)fi = *$, so $fi: S^{2n} \to K$ factors through X_{γ^n} . But X_{γ^n} is K(1) local, so the map from $L_{K(1)}S^{2n}$ lifts to X_{γ^n} .

Using the numbers from (5) it is easy to check that this map $L_{K(1)}S^{2n} \to X_{\gamma^n}$ is an isomorphism on homotopy groups. \Box

COROLLARY 2.6. ev is onto.

PROOF. It suffices to show that the image of ev contains the $Z_p \subset Z_p^{\times}$ that is the subgroup of units congruent to 1 modulo p. This is because Lemma 2.5 allows us to deduce that the other summand of Z_p^{\times} is in that image.

Since γ is a generator of \mathbb{Z}_p^{\times} , we can take γ^{p-1} as a generator of the \mathbb{Z}_p summand. Take $\lambda \in \mathbb{Z}_p \subset \mathbb{Z}_p^{\times}$ be a unit congruent to 1 modulo p. Let X_{λ} be the fiber of $\psi^{\gamma} - \lambda$. We claim $X_{\lambda} \in M$. We have checked this above in the case $\lambda = \gamma^{n(p-1)}$. Any λ is equal to some power of γ^{p-1} modulo p, so $K(1)_*(X_{\lambda}) = K(1)_*(X_{\gamma^*}) = K(1)_*$ for some n.

Since γ^{p-1} is a topological generator of $\mathbf{Z}_p \subset \mathbf{Z}_p^{\times}$, $\lambda = \gamma^{\pi(p-1)}$ for some $\pi \in \mathbf{Z}_p$. We check that $ev(X_{\lambda}) = \gamma^{-\pi(p-1)}$. This is true when π is an ordinary integer by Lemma 2.5.

For other π , choose $k \in \mathbb{Z}$ so that $\gamma^k \equiv \gamma^* \pmod{p^r}$. Then $\lambda \equiv \gamma^{k(p-1)} \pmod{p^r}$, from which one can conclude

$$X_{\lambda} \wedge M(p^r) \simeq X_{\gamma^{k}(p-1)} \wedge M(p^r).$$

From this we conclude that $ev(X_{\lambda}) \equiv ev(X_{\gamma^{k(r-1)}}) = \gamma^{-k(p-1)} \equiv \gamma^{-\pi(p-1)}$ where the congruences are modulo p^r . Since r was arbitrary, $ev(X_{\lambda}) = \gamma^{-\pi} = \lambda^{-1}$. \Box

An easy formula for the homotopy of X_{λ} is given by

$$\pi_{2k-1}(X_{\lambda}) = \mathbf{Z}_{p}/(\gamma^{k} - \lambda)$$

$$\pi_{2k}(X_{\lambda}) = \begin{cases} \mathbf{Z}_{p} & \lambda = \gamma^{k} \\ 0 & \text{else.} \end{cases}$$

Notice that because γ is a topological generator for Z_{p}^{*} , for any λ there are ordinary integers k making γ^{k} arbitrarily close to λ . This implies that no X_{λ} has a finite homotopy exponent. This is not true when p = 2.

We remind the reader that $q \simeq 2p - 2$.

PROPOSITION 2.7. The extension given above for Pic₁ is not split, so

$$Pic_1 \simeq \mathbf{Z}_n \oplus \mathbf{Z}/q$$
.

PROOF. We will leave out $L_{K(1)}$ localizations here. S^{-1} is a lift of the nonzero element of $\mathbb{Z}/2$. If the extension splits then $S^{-1} \wedge X_{\mu}$ has order 2 for some μ ; that is

$$X_{\mu^2} = S^2 = X_{\gamma}$$

so $\gamma = \mu^2$. This contradicts the choice of γ as a topological generator of \mathbb{Z}_p^{\times} , so the extension doesn't split.

Since $\mathbf{Z}_p^{\times} \simeq \mathbf{Z}_p \oplus \mathbf{Z}/(p-1)$, the only non-split extension is the one given in the statement of the proposition. \Box

MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY

Proposition 2.7 implies there is some element of $Z \in \text{Pic}_1$ of order q. To find Z, note that Z must project to $1 \in \mathbb{Z}/2$, so we can write $Z = S^{-1} \wedge X_{\mu}$. Since Z has order q,

$$S^{0} = Z^{\wedge q} = (S^{-1} \wedge X_{\mu})^{\wedge q} = S^{-q} \wedge X_{\mu^{q}}.$$

This means

96

 $X_{\gamma P^{-1}} = X_{\mu^{q}}.$

So $\mu = \sqrt[q]{\gamma^{p-1}}$. By examining the group of units of \mathbb{Z}/p^r it is easy to see that μ exists, in fact if we take $\gamma = \xi(1+p)$ then $\mu = \sqrt[q]{1+p}$ which exists by Hensel's Lemma.

An explicit isomorphism

$$\mathbf{Z}_p \oplus \mathbf{Z}/q \xrightarrow{F} \operatorname{Pic}_1$$

is given by

$$F(\lambda, n) = X_{(1+p)^{\lambda}} \wedge Z^{n}.$$

We now wish to show that the elements of Pic_1 come from geometrically defined spectra. In particular, they are derived from complex vector bundles over $B\Sigma_{p_1}$ the classifying space of the symmetric group on p letters.

We abuse notation by calling any map of spaces $\nu : X \to BU$ a complex vector bundle. When X is compact, the map lands in some BU(n) and hence defines a vector bundle (though not uniquely); we define the Thom spectrum as usual (see for example [22]) to be the desuspension of the Thom space of that bundle by the (real) dimension of the bundle. Thus the Thom spectrum doesn't depend on the dimension of the bundle. If X is not compact, we define the Thom spectrum by taking limits of the Thom spectra of the compact subspaces of X. Recall that a Thom space has a spherical cell in dimension n if n is the dimension of the vector bundle; we call the cofiber of the inclusion of that cell the reduced Thom space. This guarantees a spherical 0 cell in a Thom spectrum. The reduced Thom spectrum is the cofiber of the inclusion of this 0 cell, and we denote the reduced Thom spectrum of ν by X^{ν} .

Let $\xi = \rho - [p]$ be the virtual complex vector bundle over $B\Sigma_p$ given by subtracting the trivial bundle of dimension p from the permutation bundle. Recall that $\widetilde{K}((B\Sigma_p)_{(p)}) = \mathbb{Z}_p$ with topological generator ξ . We make the following definition.

DEFINITION 2.8. For $\lambda \in \mathbf{Z}_p$

$$P_{q\lambda+(q-1)} = ([B\Sigma_p]^{\lambda\xi})_{(p)}.$$

The transfer $(B\Sigma_p)_{(p)} \to S^0$ is a $K(1)_*$ isomorphism, so $L_{K(1)}B\Sigma_p = L_{K(1)}S^0$. By the Thom isomorphism $L_{K(1)}P_{\lambda g+(g-1)} \in M \subseteq \operatorname{Pic}_1$.

We write P_n^m for the stunted skeleton of $(B\Sigma_p)_{(p)}$:

$$P_n^m = [(B\Sigma_p)_{(p)}]^{(m)} / [(B\Sigma_p)_{(p)}]^{(n-1)}$$

Here the subscript (p) means localization, and the superscripts indicate skeleta. This explains our notation $P_{q\lambda+(q-1)}$; it has been chosen so that when λ is a positive integer.

$$P_{\lambda q+(q-1)} = \Sigma^{-\lambda q} P_{\lambda q+(q-1)}^{\infty} = \Sigma^{-\lambda q} (B\Sigma_p)_{(p)} / [(B\Sigma_p)_{(p)}]^{\{\lambda q\}}.$$

Here we use a CW-structure for $(B\Sigma_p)_{(p)}$ having one cell in each dimension congruent to 0 or -1 modulo q.

We have the following proposition about stunted classifying spaces.

- (i) $\Sigma^{kq} P_{mq-1}^{mq+nq} \simeq \Sigma^{mq} P_{kq-1}^{kq+nq}$ if $k-m \equiv 0$ modulo PROPOSITION 2.9. $\begin{array}{l} p^n.\\ (\text{ii}) \ (B\Sigma_p^{(nq)})_{(p)}^{k\xi} \simeq \Sigma^{-kq} P_{(k+1)q-1}^{nq+kq} \ \text{where} \ B\Sigma_p^{(nq)} \ \text{is the } nq \ \text{skeleton of} \ B\Sigma_p. \end{array}$

This follows from the analog of the second part of Proposition 2.9 for $BS^1 =$ CP^{∞} (see [2]), which leads to an analog of our Proposition 2.9 for BZ/(p). Then we use the transfer, and the associated splittings (after localization) to deduce Proposition 2.9 itself.

Write λ as the limit of a sequence $a_i = a_{i-1} + \lambda_i p^i \in \mathbb{Z}_p$, with $a_{-1} = 0$. A consequence of the definition of Thom spectra and Proposition 2.9 is that $P_{\lambda q+(q-1)}$ is the following direct limit.

$$P_{q-1}^{q} \hookrightarrow \Sigma^{-a_0 q} P_{a_0 q+q-1}^{a_0 q+2q} \hookrightarrow \Sigma^{-a_1 q} P_{a_1 q+q-1}^{a_1 q+3q} \hookrightarrow \Sigma^{-a_2 q} P_{a_2 q+q-1}^{a_2 q+4q} \hookrightarrow \cdots$$

If λ is an ordinary integer,

$$P_{\lambda q+(q-1)} = \Sigma^{-\lambda q} [(B\Sigma_p)_{(p)}/(B\Sigma_{(p)})_p^{\{\lambda q\}}] = S^{-q\lambda}$$

where the last equality only holds after localizing with respect to K(1). This can be checked by noting that $L_{K(1)}P_{\lambda q+(q-1)} \in M \subseteq \operatorname{Pic}_1$, and $ev(P_{\lambda q+(q-1)}) =$ $ev(S^{-q\lambda}).$

It follows by taking inverse limits (that is working mod p^r for all r) that $L_{K(1)}P_{\lambda q+(q-1)} = X_{\gamma^{\lambda(1-p)}}$. We then have the following proposition.

PROPOSITION 2.10.

$$Pic_1 \equiv \{L_{K(1)}(P_{\lambda q+(q-1)} \land S^i) \mid \lambda \in \mathbf{Z}_p, \quad 0 \le i < q\}.$$

Although this discussion looks somewhat different than the discussion in the introduction around (3), it can be translated into those terms by observing that

$$L_1 P_{nq-1}^{nq+rq} \simeq L_1 M^0(p^{r+1}).$$

Recall as noted above that for p > 2, \mathbf{Z}_p^{\times} is topologically cyclic. If we topologize M be making ev a homeomorphism, we see $L_{K(1)}S^2$ is a topological generator of M since it is taken to a topological generator of \mathbf{Z}_n^{\times} under ev. Now since $L_{K(1)}S^2$ is a generator, every element of M is topologically close to some power of $L_{K(1)}S^2$.

There are two differences we will see when p = 2. One is that the localizations of ordinary even dimensional spheres have square roots that are not topologically close to localizations of ordinary spheres. The other difference will be caused by the fact that \mathbb{Z}_2^{\times} is not topologically cyclic. Because of these facts, for p = 2we will see that the analog of Proposition 2.10 does not hold. In other words, ordinary spheres and the analogs of the $P_{\lambda q+(q-1)}$ are not sufficient to give Pic₁.

3. Calculation of Pic_1 for p = 2

In order to minimize the technicalities surrounding the difference between the functors L_1 and $L_{K(1)}$, in this section we write KO for the real K-theory spectrum completed at 2. We use K for the complex K-theory spectrum completed at 2. We write

$$\mathcal{K}_{1,*}(X) = \lim_{k \to \infty} K_*(X \wedge M(2^k)),$$

as well as

$$\mathcal{K}O_{\bullet}(X) = \lim_{k} \mathcal{K}O_{\bullet}(X \wedge M(2^{k})).$$

In general $KO_{\bullet}(X) \neq \mathcal{K}O_{\bullet}(X)$ unless $KO_{\bullet}(X)$ is finitely generated over KO_{\bullet} . It is also not necessarily the same as the 2-completion of $KO_{\bullet}(X)$ unless $KO_{\bullet}(X)$ is finitely generated over KO_{\bullet} . $\mathcal{K}O_{\bullet}(-)$ is introduced here for the same reason we introduced $\mathcal{K}_{1,\bullet}(-)$ in section 2; we need an integral invariant so we can work with real Adams operations. The same caution applies $-\mathcal{K}O_{\bullet}(-)$ is not a representable homology theory since it doesn't satisfy the direct limit axiom.

We need the following specialization of Theorem 1.3 for this calculation.

THEOREM 3.1. Let p = 2. The following are equivalent: (i) $L_{K(1)}Z \in Pic_1$. (ii) $KO_{\bullet}(Z; \mathbb{Z}/(2)) = KO_{\bullet}(S^k; \mathbb{Z}/(2))$ for some k. (iii) $KO_{\bullet}(X) = KO_{\bullet}(S^k)$ for some k.

Note that $\mathcal{KO}_*(S^k) = \mathcal{KO}_*(S^k)$, and similarly $\mathcal{K}_{1,*}(S^k) = \mathcal{K}_*(S^k)$. Theorem 3.1 follows from Theorem 1.3 and the following lemma.

LEMMA 3.2. $K(1)_*(X) = K(1)_* \Leftrightarrow KO_*(X; \mathbb{Z}/(2)) = KO_*(S^{2r}; \mathbb{Z}/(2))$ for some r. Similarly, $\mathcal{K}_{1,*}(X) = \mathcal{K}_{1,*}(S^{2r}) \Leftrightarrow \mathcal{K}O_*(X) = \mathcal{K}O_*(S^{2r})$ for some r.

PROOF. We start with the second statement. Recall the spectrum

$$Y = \Sigma^{+3} \mathbf{R} P^2 \wedge \mathbf{C} P^2 = M(2) \wedge M(\eta).$$

Note $KO \wedge Y = K(1) = K \wedge M(2)$ and $K = KO \wedge M(\eta)$. These are all easy to prove by calculating the mod 2 cohomology of the appropriate connective theories. Consistently below, when we write η as a self map, we will mean to smash η on the sphere with the spectrum concerned.

CONSTRUCTIONS OF ELEMENTS IN PICARD GROUPS

Assume that $\mathcal{K}O_*(X) = \mathcal{K}O_*(S^{2r})$. Then there is an equivalence,

$$\Sigma^{2r} KO \simeq (KO \wedge X)_2^2.$$

Hence we get

$$S^{1} \wedge \Sigma^{2r} KO \xrightarrow{\eta \wedge 1} \Sigma^{2r} KO \xrightarrow{\qquad \Sigma^{2r} K} \Sigma^{2r} K$$

$$\simeq \downarrow \qquad \qquad \simeq \downarrow \qquad \qquad \downarrow^{\simeq}$$

$$S^{1} \wedge (KO \wedge X)_{2}^{2} \xrightarrow{\eta \wedge 1} (KO \wedge X)_{2}^{2} \xrightarrow{\qquad (K \wedge X)_{2}^{2}}$$

so $\mathcal{K}_{1,*}(X) = \mathcal{K}_{1,*}(S^{2r}) = \mathcal{K}_{1,*}(S^0).$

Now suppose $\mathcal{K}_{1,*}(X) = K_*(S^0)$. We want to show $\mathcal{KO}_*(X) = \mathcal{KO}_*(S^{2r})$ for some r. We are interested in the following cofibration:

$$(6) \qquad \Sigma(KO \wedge X)_{2}^{2} \xrightarrow{q} (KO \wedge X)_{2}^{2} \rightarrow (K \wedge X)_{2}^{2} \rightarrow \Sigma^{2}(KO \wedge X)_{2}^{2}.$$

The sequence is a cofibration before completion because $K = KO \wedge M(\eta)$. Completion is localization with respect to a homology theory, so the sequence is still a cofibration.

We are assuming that $(K \wedge X)_2^2 \simeq K$ and we wish to prove that $(KO \wedge X)_2^2 \simeq \Sigma^{2r} KO$. First note that (6) splits rationally, since η is rationally trivial. This shows that $(KO \wedge X)_2^2$ has the right number of \mathbb{Z}_2 's in the right places to be an even suspension of KO_2^2 .

The homotopy of $(KO \wedge X)_2^\circ$ is a module over $KO_{\bullet}(S^\circ)$, and by using this fact (in particular that η^3 and 2η are null), the cofibration (6), the value of $\pi_{\bullet}((K \wedge X)_2^\circ)$ and a diagram chase, we can deduce that (for some r)

$$\pi_*((KO \wedge X)_2) = \Sigma^{2r} KO_* \qquad \text{or}$$

(7)
$$\pi_{\bullet}((KO \wedge X)_{2}) = \begin{cases} \mathbf{Z}_{2} & * \equiv 0 \pmod{4 + 2r} \\ \mathbf{Z}/(2) & * \equiv 1, 2 \pmod{4 + 2r} \\ 0 & \text{else} \end{cases}$$

with the obvious KO_* -module structure.

One can check that (7) is not realizable as a KO_* -module. Suppose (7) holds. Map KO to $(KO \wedge X)_2^\circ$ by using a generator of one of the \mathbb{Z}_2 's and the KO-module structure. The KO_* -module structures force this map to be injective on homotopy, and hence the homotopy of the cofiber would be

$$N = \begin{cases} \mathbf{Z}/(2) & * \equiv 0, 1, 2 \pmod{8+2r} \\ 0 & \text{else.} \end{cases}$$

The element η acts non-trivially whenever possible. Now we can map $KO \wedge M(2)$ into the spectrum with homotopy N by using a generator of one of the $\mathbb{Z}/(2)$'s in dimension 2τ . If this map commutes with multiplication by η (as it must) then it cannot be a map of groups, since η^2 on the generator of $\pi_0(KO \wedge M(2))$

100 MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY

is a multiple of 2, but its image under our map is supposed to be η^2 times the generator of N_0 , which is the generator of N_2 .

It follows that $(KO \wedge X)_2^2$ has the homotopy of $\Sigma^{2r} KO$, and the fact that it is a KO-module spectrum allows one to construct an equivalence with $\Sigma^{2r} KO$.

To prove the first statement, if we know $KO(X; \mathbb{Z}/(2))$ we proceed as in the case where we knew $KO_{\bullet}(X)$, and if we know $K(1)_{\bullet}(X)$ we use Theorem 1.3, the second statement, and reduction modulo 2. \Box

For the next theorem, note that $\mathbf{Z}_2^{\times} \simeq \mathbf{Z}_2 \times \mathbf{Z}/(2)$.

THEOREM 3.3. There is an extension of abelian groups

(8)
$$0 \rightarrow M \rightarrow Pic_1 \rightarrow \mathbb{Z}/8 \rightarrow 0.$$

The map to $\mathbb{Z}/8$ takes X to the dimension (mod 8) of the generator of $\mathcal{KO}_*(X)$ for $X \in \operatorname{Pic}_{\underline{dv}}$. M is by definition the kernel of this map and there is an isomorphism $M \xrightarrow{\longrightarrow} (\mathbb{Z}_2)^{\times}$ where ev(X) is the eigenvalue of the Adams operation ψ^3 on $\mathcal{KO}_0(X)$. The extension is non-trivial and

$$Pic_1 \simeq \mathbf{Z}_2^{\times} \times \mathbf{Z}/4 \simeq \mathbf{Z}/2 \times \mathbf{Z}_2 \times \mathbf{Z}/4$$

To prove this, our first steps are just as in the odd primary case. The proofs that ev is a homomorphism, that

$$L_{K(1)}X = \text{fiber}[(KO \land X)_2^{2} \xrightarrow{[\psi^3 \frown 1] \land 1} (KO \land X)_2^{2}],$$

and that ev is injective are exactly as before, except replacing K with KO.

LEMMA 3.4. ev is onto.

PROOF. Take $\lambda \in \mathbb{Z}_2^{\times}$. Let $X_{\lambda} = \text{fiber}(KO \xrightarrow{\psi^3 - \lambda} KO)$. Since λ is a unit, $\lambda \equiv 1 \pmod{2}$, so $\psi^3 - \lambda$ has the same effect on $K(1)_*$ as $\psi^3 - 1$. Therefore $K(1)_*(X_{\lambda}) = K(1)_*$, so $X_{\lambda} \in \text{Pic}_1$. We need to verify that $X_{\lambda} \in M$, and then compute $ev(X_{\lambda})$.

To see that $X_{\lambda} \in M$, first note that $\lambda \equiv 1$ modulo 2 since λ is a unit. So $\psi^3 - \lambda = (\psi^3 - 1) + \mu$ where μ is an even 2-adic integer. It follows that

$$(\psi^3 - \lambda)^{2^n} \equiv (\psi^3 - 1)^{2^n}$$

modulo 2^n , and hence if n > 1 (since then $1_{M(2^n)}$ has order 2^n)

$$\operatorname{fiber}[(\psi^3 - \lambda)^{2^n}] \wedge M(2^n) \simeq \operatorname{fiber}[(\psi^3 - 1)^{2^n}] \wedge M(2^n).$$

Now let $X_{\lambda,n}$ be the fiber of $(\psi^3 - \lambda)^{2^n}$. It is easy to check, by induction, using the diagram of cofiber sequences

and $\mathcal{KO}_{\bullet}(X_{\lambda}) = \Sigma^{r} \mathcal{KO}_{\bullet}$ that $\mathcal{KO}_{\bullet}(X_{\lambda,n})$ is an extension of $\Sigma^{r} \mathcal{KO}_{\bullet}$ by the \mathcal{KO}_{\bullet} module $\mathcal{KO}_{\bullet}(X_{\lambda,n-1})$ (that is, the long exact sequence in $\mathcal{KO}_{\bullet}(-)$ is really a short exact sequence). Since r = 0 when $\lambda = 1$, and $X_{\lambda,2^{\bullet}} \wedge \mathcal{M}(2^{n}) = X_{1,2^{n}} \wedge \mathcal{M}(2^{n})$, it follows that r = 0. This shows that $X_{\lambda} \in \mathcal{M}$.

We want to check that $ev(X_{\lambda}) = \lambda^{-1}$, i.e. $ev(\psi^3|_{\mathcal{KO}_0(X_{\lambda})}) = \lambda^{-1}$. Actually, since the map $KO \to K$ induces an isomorphism

$$\mathcal{K}O_0(X_\lambda) \to \mathcal{K}_{1,0}(X_\lambda),$$

 $ev(\psi^3|_{\mathcal{K}O_0(X_{\lambda})}) = ev(\psi^3|_{\mathcal{K}_{1,0}(X_{\lambda})})$, and it is this second number we will actually compute.

To make our calculation we need to understand $\mathcal{K}_{1,*}(KO)$. We will describe this with the isomorphism

$$\mathcal{K}_{1,*}(K) = \operatorname{maps}_{\operatorname{cont}}(\mathbf{Z}_2^{\times}, K_*)$$

via the map

$$f \in \mathcal{K}_{1,r}(K) \mapsto [\nu \in \mathbf{Z}_2^{\times} \mapsto (\overline{f}(\nu) : S^r \xrightarrow{f} (K \wedge K)_2^{2} \xrightarrow{1 \wedge \psi^{\nu}} (K \wedge K)_2^{2} \xrightarrow{\mu} K)].$$

We denote this element of $\operatorname{maps}_{\operatorname{cont}}(\mathbb{Z}_2^{\times}, K_{\bullet})$ by \overline{f} . This result appears originally in [1], and is also deducible from [16], though it doesn't appear in exactly this form in either place. It is spelled out in this form in [8].

We note $\mathbf{Z}_2^{\times} \simeq \mathbf{Z}_2 \times \mathbf{Z}/(2)$ and with this \mathbf{Z}_2 in mind as a quotient of the $\mathbf{Z}/(2)$ action,

(9)
$$\mathcal{K}_{1,*}(KO) = \operatorname{maps}_{\operatorname{cont.}}(\mathbf{Z}_2, K_*).$$

To see this we start by recalling that K has a $\mathbb{Z}/(2)$ action give by ψ^{-1} (complex conjugation). We have

$$KO \simeq K^{h\mathbb{Z}/(2)}$$
 and $(K \wedge K)_2^{h\mathbb{Z}/(2)} \simeq (K \wedge KO)_2^2$

from Lemma 3.5 below. In the second equivalence above, Z/(2) acts on the second factor. (The first equivalence is implicit in [3, Corollary 3.8] and is made

more explicit in the proof of 3.1 in [21], which gives a map inducing

$$KO^* = \lim_{k} KR^*((E\mathbf{Z}/(2)^{\langle k \rangle}),$$

where $X^{\{k\}}$ is the k skeleton of X. On the category of $\mathbb{Z}/(2)$ -CW complexes, KR^* is represented by the naive $\mathbb{Z}/(2)$ spectrum obtained by letting $\mathbb{Z}/(2)$ act by conjugation on the complex K-theory spectrum.)

Since ψ^{-1} gives the non-trivial involution of K, the homotopy fixed point spectral sequence for $\pi_*([K \wedge K]_2^{h\mathbb{Z}/(2)})$ collapses at

$$E_2 = H_c^*(\mathbf{Z}/(2); \mathcal{K}_{1,*}(K)) = \begin{cases} \mathcal{K}_{1,*}(K)^{\mathbf{Z}/(2)} & * = 0\\ 0 & \text{else.} \end{cases}$$

Equation (9) follows because an element of maps_{cont.} $(\mathbb{Z}_2^{\times}, K_*)$ is fixed under the $\mathbb{Z}/(2)$ action iff it passes to the quotient $\mathbb{Z}_2 = \mathbb{Z}_2^{\times}/\mathbb{Z}/(2)$.

Using the multiplicative properties of the Adams operations,

$$\begin{array}{ccc} (K \wedge K)_{2}^{2} & \xrightarrow{\mu} & K \\ \psi^{\nu} \wedge \psi^{\nu} \downarrow & & \downarrow \psi^{\nu} \\ (K \wedge K)_{2}^{2} & \xrightarrow{\mu} & K \end{array}$$

one can check

$$\mu(1 \wedge \psi^x)(\psi^\nu \wedge 1)f \simeq \psi^\nu \mu(1 \wedge \psi^{x\nu^{-1}})f$$

in other words

$$(\overline{\psi^{\nu} \wedge 1})\overline{f}(x) = \psi^{\nu}_{*}\overline{f}(x\nu^{-1})$$

Now we examine the diagram

We want to know the eigenvalue of the leftmost vertical map on π_0 . Suppose $g \in \pi_0(K \wedge X_\lambda)_2^\circ$. We abuse notation by identifying g with its image in $\pi_0(K \wedge KO)_2^\circ$. Then \overline{g} is an element of maps_{cont} (\mathbb{Z}_2, K_*) that is in the kernel of $1 \wedge (\psi^3 - \lambda)$. This kernel is the kernel of precomposition by multiplication by 3 minus multiplication by λ . In other words, $\overline{g}(x_3) = \lambda \overline{g}(x)$.

Now

$$\overline{(\psi^3 \wedge 1)g}(x) = \psi^3_*\overline{g}(x \cdot 3^{-1}) = \overline{g}(x \cdot 3^{-1}) = \lambda^{-1}\overline{g}(x).$$

The second equality follows because $\overline{g}(x \cdot 3^{-1}) \in \pi_0 K$, so ψ^3 acts as the identity. Hence $ev(X_{\lambda}) = \lambda^{-1}$. \Box

We need the following lemma for the proof of Lemma 3.4.

CONSTRUCTIONS OF ELEMENTS IN PICARD GROUPS

LEMMA 3.5. For any spectrum E, where $\mathbb{Z}/(2)$ acts only on the spectrum K.

$$[(E \wedge K)_2]^{h\mathbb{Z}/(2)} \simeq (E \wedge KO)_2.$$

PROOF. Since completion and homotopy fixed points are both homotopy inverse limits, it suffices to show

(10)
$$(E \wedge K \wedge W)^{h\mathbb{Z}/(2)} \simeq (E \wedge KO \wedge W)$$

for $W = M(2^n)$, all n.

「「「「「「」」」

Let C be the class of all spectra W satisfying (10). C is closed under cofibrations and retracts, so if we can show $\mathbb{C}P^2 \wedge M(2)$ is in C then it follows that $M(2^n)$ is in C for all n.

 $K^*(\mathbb{C}P^2)$ is free over $\mathbb{Z}/(2)$ since x and x^2 are generators over K^* , so x and $\psi^{-1}(x) = -x + x^2$ are generators over K^* ($\psi^{-1}(x)$ is determined by recalling that x = L - 1 where L is the tautological line bundle).

Hence $K^*(\mathbb{C}P^2 \wedge M(2)) = K(1)^*(\mathbb{C}P^2)$ is also free over $\mathbb{Z}/(2)$, and it follows that $K(1)_*(\mathbb{C}P^2) = K_*(\mathbb{C}P^2 \wedge M(2))$ is free over $\mathbb{Z}/(2)$. Finally,

$$\pi_*(E \wedge K \wedge \mathbb{C}P^2 \wedge M(2)) = K(1)_*(E) \otimes_{K(1)_*} K(1)_*(\mathbb{C}P^2)$$

is free over $\mathbf{Z}/(2)$ since the second factor is.

So the homotopy fixed point spectral sequence for $E \wedge K \wedge \mathbb{C}P^2 \wedge M(2)$ collapses at

$$E_2 = \pi_* (E \wedge K \wedge \mathbb{C}P^2 \wedge M(2))^{\mathbb{Z}/(2)} = [K(1)_*(E) \otimes_{K(1)_*} K(1)_*(\mathbb{C}P^2)]^{\mathbb{Z}/(2)} = K(1)_*(E).$$

Since this is also $\pi_*(E \wedge KO \wedge \mathbb{C}P^2 \wedge M(2)) = \pi_*(E \wedge K^{h\mathbb{Z}/(2)} \wedge \mathbb{C}P^2 \wedge M(2))$, the natural map $E \wedge K^{h\mathbb{Z}/(2)} \wedge \mathbb{C}P^2 \wedge M(2) \to (E \wedge K \wedge \mathbb{C}P^2 \wedge M(2))^{h\mathbb{Z}/(2)}$ is an equivalence. \Box

We have now shown Theorem 3.3 except for identifying the extension. Suppose the extension was trivial. Then we can lift the generator of $\mathbb{Z}/(8)$ to an element $X \wedge S^1$ (where $X \in M$) of order 8. So $(X \wedge S^1)^{\wedge 8} \simeq S^0$ (after appropriate localizations), i.e. $X^{\wedge 8} = S^{-8}$ in Pic₁. So $ev(X^{\wedge 8}) = ev(X)^8 = ev(S^{-8}) = 3^4$. This is a contradiction since 3^4 does not have an 8^{th} root in \mathbb{Z}_2 .

To see what the extension is, let $X \in M$ be the element with ev(X) = 3. Then $X \wedge S^2$ is a lift of an element of order 4 in $\mathbb{Z}/(8)$, so $(X \wedge S^2)^{\wedge 4} \in M$, and

$$ev((X \wedge S^2)^{\wedge 4}) = ev(X^{\wedge 4}) \cdot ev(S^8) = 3^4 \cdot 3^{-4} = 1$$

so $X \wedge S^2$ has order 4 in Pic₁. It follows that the extension is as claimed.

104 MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY

4. Stunted projective spaces and Pic₁

In this section we will construct most of the elements in Pic₁ at p=2. We use stunted projective spaces and related objects to do this. Our constructions give these elements as localizations of geometrically defined spectra related to $\mathbb{R}P^{\infty}$, in place of the abstract construction of Lemma 3.4.

Recall the short exact sequence (8) from Theorem 3.3, where $M \xrightarrow{ev} \mathbf{Z}_2^{\times}$ is an isomorphism. We will use the ideal of virtual vector bundles $4\mathbf{Z}_2 \subseteq \mathbf{Z}_2 \simeq KO^0(\mathbf{R}P^{\infty})$ to make Thom spectra.

Now $\overline{KO}^0(\mathbf{R}P^{\infty}) = \mathbf{Z}_2$ has topological generator $\lambda - [1]$ where λ is the usual line bundle over $\mathbf{R}P^{\infty}$ and [1] is the one dimensional trivial bundle. Call this generator ξ . Then

$$(\mathbf{R}P^{\infty})^{\xi} = \Sigma^{-1}\mathbf{R}P^{\infty}/\mathbf{R}P^{1}$$

and generally

$$(\mathbf{R}P^m)^{n\xi} = \Sigma^{-n} \mathbf{R}P^{n+m} / \mathbf{R}P^n$$

To simplify notation we make the following definition,

DEFINITION 4.1. For $\gamma \in \mathbb{Z}_2$,

$$P_{\gamma+1} = (\mathbf{R}P^{\infty})^{\gamma \xi}$$

This is convenient notation because when n is a positive integer, P_n is a desuspension of the cofiber of $\mathbb{R}P^{n-1} \to \mathbb{R}P^{\infty}$.

Thom spectra of even elements of $KO^0(\mathbb{R}P^\infty) = \mathbb{Z}_2$ give elements of Pic₁, because these have complex structures so we can use the Thom isomorphism theorem to show $K(1)_*P_{2\gamma+1} \simeq K(1)_*S^0$. We will restrict to studying $P_{4\gamma+1}$ because their localizations are in the subgroup M of Theorem 3.3 (also, Proposition 4.5 implies this is not a real restriction).

 $L_{K(1)}P_{4\gamma+1} \in M$ since bundles divisible by 4 in $KO^0(\mathbb{R}P^{\infty})$ satisfy the hypotheses of the KO-theory Thom isomorphism so $\mathcal{KO}_{\bullet}(P_{4\gamma+1}) = \mathcal{KO}_{\bullet}(\mathbb{R}P^{\infty}) = KO_{\bullet}(S^0)$ (the fact that we are using $\mathcal{KO}_{\bullet}(-)$ instead of KO_{\bullet} is not an issue, since if the KO Thom isomorphism holds for ν , then so does the $KO \wedge M(2^n)$ Thom isomorphism for all n > 1, and $\mathcal{KO}_{\bullet}(-)$ is just the inverse limit of these theories). We remind the reader that we are taking reduced Thom spectra to make these elements of Pic₁.

It is worth making explicit that P_5 corresponds to $(0,2) \in \mathbb{Z}/(2) \times \mathbb{Z}_2 = \mathbb{Z}_2^{\times}$. The point is that

$$ev(L_{K(1)}P_5) = ev(\psi^3|_{\Sigma^{-4}L_{K(1)}\mathbb{R}P^{\infty}/\mathbb{R}P^{+}}) = ev(\Sigma^{-4}L_{K(1)}\mathbb{R}P^{\infty})$$

= $ev(L_{K(1)}S^{-4}) = 9 = 3^2.$

To see the second equality above, observe that the map

$$\mathcal{K}O_0(\mathbf{R}P^\infty) \to \mathcal{K}O_0(\mathbf{R}P^\infty/\mathbf{R}P^4)$$

must be multiplication by some non-zero element of \mathbb{Z}_2 (the map can't be zero since $\mathcal{KO}_{\bullet}(\mathbb{R}P^4)$ is all torsion). It follows by naturality that ψ^3 has the same eigenvalue on both \mathbb{Z}_2 's concerned. To identify the element of $\mathbb{Z}/(2) \times \mathbb{Z}_2 = \mathbb{Z}_2^{\times}$, we observe that $3 \in \mathbb{Z}_2^{\times} = \mathbb{Z}/(2) \times \mathbb{Z}_2$ is a topological generator of the \mathbb{Z}_2 summand. We observe that this is unlike the p > 2 case since no S^k satisfies both $L_{\mathcal{K}(1)}S^k \in M$ and $ev(S^k) = 9$.

It is interesting to see just how one constructs these Thom spectra. As an example we will take $4\lambda + 1 = \sqrt{17}$ and make the Thom spectrum of $4\lambda\xi$, that is, $P_{\sqrt{17}}$. Let n = 4a + b where $0 \le b < 4$. Let $\phi(n) = 8a + 2^b$. James periodicity gives the following equivalences. For a simple proof see [11].

PROPOSITION 4.2. If $k - m \equiv 0 \pmod{2^n}$ then

的。如何的是不能的。他们的

$$\Sigma^k P_m^{m+\phi(n)-1} \simeq \Sigma^m P_k^{k+\phi(n)-1}$$

To construct the reduced Thom spectrum $(\mathbf{R}P^{\infty})^{4\lambda\xi} = (\mathbf{R}P^{\infty})^{(\sqrt{17}-1)\xi}$, we do as described above: construct the reduced Thom spectrum for $4\lambda\xi$ restricted to each $\mathbf{R}P^{\phi(n)}$ and fit these together into a direct system. In [2], these are identified with stunted projective spaces $\Sigma^{-4k}P_{4k+1}^{4k+\phi(n)}$.

If we want to include $P_{4k+1}^{4k+\phi(n)}$ into a stunted projective space with $\phi(n+1) - \phi(n)$ more cells, we have two choices

$$P_{4k+4}^{4k+\phi(n)} \to P_{4k+1}^{4k+\phi(n+1)} \text{ and}$$

$$P_{4k+1}^{4n+\phi(n)} = \Sigma^{-2^n} P_{4k+1+2^n}^{4k+\phi(n)+2^n} \to \Sigma^{-2^n} P_{4k+1+2^n}^{4k+\phi(n+1)+2^*}$$

The next Thom spectrum (for $\mathbb{R}P^{\phi(n+1)}$) tells us which space to use. In terms of the number $\sqrt{17}$, this is a 2-adic integer so there is a sequence of zeroes and ones which represents it. For example we note that $9961^2 \equiv 17 \pmod{2^{16}}$. Thus the first 14 terms of the sequence for $4\lambda = \sqrt{17} - 1$ is 10011011101000. To construct $P_{\sqrt{17}}$ we will use the 1's in the dyadic expansion of 4λ to guide us. Because 4λ always starts with two 0's we always begin with P_1^4 since $\phi(2) = 4$. The next zero in the expansion for $\sqrt{17}$ tells us to include this in P_1^8 since $\phi(3) = 8$. At the next stage, the 1 that is present is an instruction to include P_1^8 into $\Sigma^{-8}P_9^{17}$ rather than into P_1^9 . We get the sequence

$$P_1^4 \to P_1^8 \to \Sigma^{-8} P_9^{16} \to \Sigma^{-8} P_9^{17}.$$

Here we are using the fact that $\phi(4) - \phi(3) = 9 - 8 = 1$. The next 0 gives us the inclusion

$$\Sigma^{-8} P_9^{17} \rightarrow \Sigma^{-8} P_9^{18}$$

To summarize the process, each time there is a 1 in the dyadic expansion we use Proposition 4.2. Each time there is a 0 we just include one stunted projective space into the next. If we continue in this fashion through the digits which represent 9961 we will have $\Sigma^{-9960}P_{9961}^{9968}$. To continue, we need to find the next

digits in $\sqrt{17} - 1$. By the results of [2] on Thom spaces over projective spaces, this is precisely the construction of the Thom spectrum.

Before we continue, we note the following results.

Proposition 4.3. $L_{K(1)}P_{8n+1} = L_{K(1)}S^{-8n}$.

PROOF. $ev(P_{-8n+1}) = ev(\Sigma^{-8n} \mathbb{R} P^{\infty}) = ev(S^{-8n})$. PROPOSITION 4.4.

$$L_{K(1)}P_{4\lambda+1}\simeq X_{9^{\lambda}}\in M\subset Pic_1$$

PROOF. See the proof of Lemma 3.4 for the meaning of $X_{S^{\lambda}}$. This Proposition follows immediately from knowing $L_{K(1)}P_{4\lambda+1} \in M$, since the construction of $P_{4\lambda+1}$ implies that $ev(P_{4\lambda+1}) = 9^{-\lambda}$. \Box

PROPOSITION 4.5.

$$\Sigma^{-2} L_{K(1)} P_{4\gamma-1} \simeq L_{K(1)} P_{4\gamma+1}$$

PROOF. The results of [12] applied to the finite subcomplexes of the spectra concerned show that $\mathcal{KO}_*(\Sigma^{-2}P_{4\gamma-1}) = \mathcal{KO}_*(P_{4\gamma+1})$. The evident map $\Sigma^{-2}P_{4\gamma-1} \rightarrow P_{4\gamma+1}$ together with naturality shows that both spectra have the same value under the map ev. So Theorem 3.3 shows the spectra are homotopy equivalent. \Box

PROPOSITION 4.6. $L_{K(1)}P_5 = L_{K(1)}X$ where X is the complex $S^{-4} \cup_{\eta} e^{-2} \cup_2 e^{-1}$.

PROOF. The map $\lambda : \mathbb{R}P^{\infty} \to S^0$ is a $K(1)_*$ isomorphism [17, Theorem 9.1]. Consider the diagram of cofibrations (where ι is the obvious inclusion)

After localization, A = *, therefore $\Sigma^3 P_3 = \Sigma^5 X$, but since by Proposition 4.5 $\Sigma^3 P_3 = \Sigma^5 P_5$ after localization, we are done.

The first author has proposed that Picard groups are an appropriate way of indexing homotopy groups. These projective space examples allow one to make this more precise. Let J be the connective image of J spectrum and let

$$N_i = \{k \in N | 2^i J_k(P_{4\lambda+1}) \neq 0\}.$$

Then $\{N_i\}$ forms a 2-adic neighborhood system which converges to a 2-adic integer, $\bar{\lambda}$. If λ is an ordinary integer, h, then $\bar{\lambda} = -4h + 1$. In general, $(\bar{\lambda} + 1)$

can be viewed as giving the "dimension" of the element of Pic_1 , and if h happens to be even,

$$P_{4h+1}, L_{K(1)}X] = [S^{-4h}, L_{K(1)}X]$$

If we do this for the $\sqrt{17}$ example we get $N_i = \{k | k \equiv -\sqrt{17} - 1 \pmod{2^i}\}$.

5. Interesting examples in Pic₁ at p=2

The spectra $\{L_{K(1)}P_{4\lambda+1}\}$ form a subgroup of Pic₁, in fact they give the subgroup $0 \times 2\mathbb{Z}_2 \subseteq \mathbb{Z}/(2) \times \mathbb{Z}_2 = M \subseteq \text{Pic}_1$, so the cokernel of the inclusion into M is $\mathbb{Z}/(2) \times \mathbb{Z}/(2)$. We can try to lift the generators of the quotient. (1,0) lifts to an element of order 2, X_{-1} . $X_{-1} \wedge X_{-1} = S^0$ after localization. Similarly, (0, 1) lifts to X_3 , which is a square root of $L_{K(1)}P_5$. M is parametrized by $X_{(-1)*3^b}$ for $(a,b) \in \mathbb{Z}/(2) \times \mathbb{Z}_2$. Whenever a or b (or both) are odd, we get element of Pic₁ with the following properties:

- $K(1) \wedge X_{(-1)^{a}3^{b}} = K(1)$. This is just because $S^{(a,b)} \in \operatorname{Pic}_{1}$.
- $\pi_*(X_{(-1)^{*3^b}})$ has exponent 4. In fact the homotopy of this spectrum is "half" of the homotopy of $L_1M(2)$ $(L_1M(4)$ in case both a and b are odd) in the sense that it is generated by the periodicity element and one lightning flash.

Let $\lambda = (-1)^a 3^b$. If exactly one of a or b is odd, then $\psi^3 - \lambda \equiv 2 \pmod{4}$ in dimensions divisible by 4. From this it is clear that 4 is an exponent for the homotopy groups of the fiber, and there is a non-trivial extension in $\pi_{8k+2}(X_\lambda)$ making 4 the actual exponent for that group. Similarly, if a and b are both odd, $\psi^3 - \lambda \equiv 4 \pmod{8}$.

Of course X_{λ} can be constructed as in Lemma 3.4, but here we describe "lifts" of these elements when a or b is odd constructed by successively attaching mod 2 (or mod 4 when both a and b are odd) Moore spectra. Our construction will give lifts in the sense that the spectra we construct will be 0-connected spectra that localize to the elements of Pic₁ under consideration.

The spectra we are interested in describing then, are the X_{λ} where $\lambda \equiv 3, 5$, or 7 modulo 8. We describe two of the cases in detail below.

Write M(2) for the mod 2 Moore spectrum with the bottom cell in dimension 0.

THEOREM 5.1. Take $\Sigma^{k} X_{\lambda} \in Pic_{1}$ with $\lambda \equiv 3(4)$. Then X_{λ} has homotopy exponent 4, and there are 0-connected finite type spectra X_{n} , $0 \leq n < \infty$ and a 0-connected spectrum $X_{\infty} = \lim_{n \to \infty} X_{n}$ such that

- (i) $L_{K(1)}X_{\infty} = X$.
- (ii) $\Sigma^{k_n}M(2) \to X_n \to X_{n+1}$ is a cofibration for some $k_n > 0$ and $f_n : \Sigma^{k_n}M(2) \to X_n$.
- (iii) $\Sigma^{k_n}M(2) \to X_n \to \Sigma^{k_{n-1}+1}M(2)$ on $K(1)_*$ corresponding to the top cell of the domain to the copy of $K(1)_*$ corresponding to the bottom cell of the range and is 0 on the other copy

MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY

of $K(1)_*$, and in π_*L_1 takes $v_1^{4r}i$ to the generator of $\pi_{8s-1}L_1M(2)$ for appropriate r, s.

PROOF. Without loss of generality, assume k = 0. Since $\lambda \equiv 3(4)$, the effect of $\psi^3 - \lambda$ on $\pi_{4m} KO_2^\circ$ is to take \mathbb{Z}_2 to $2\mathbb{Z}_2$ by multiplication by some 2-adic integer congruent to 2 modulo 4. Call that integer τ_m . This is sufficient to establish the claim about the homotopy exponent since $\pi_*(X_\lambda)$ is thus an extension of direct sums of $\mathbb{Z}/(2)$'s.

We get the following diagram:

108

An analysis of the diagram in homotopy shows that after applying $L_{K(1)}$, the map $M(2) \to \Sigma X_{\lambda}$ is onto in homotopy. Checking the diagram in $K(1)_{\bullet}$ shows that this map has the same effect in $K(1)_{\bullet}$ as $M(2) \to S^{1}$. Let $X_{\lambda,1}$ be the cofiber of $L_{K(1)}\Sigma^{-1}M(2) \to X_{\lambda}$. It follows from the effect on $K(1)_{\bullet}$ that $X_{\lambda,1} \in \text{Pic}_{1}$.

Using the cofibration that defines $X_{\lambda,1}$, we see that

$$ev(\psi^{\mathfrak{s}}|_{\mathcal{K}O_{\mathfrak{s}\mathfrak{m}}(X_{\lambda})}) = ev(\psi^{\mathfrak{s}}|_{\mathcal{K}O_{\mathfrak{s}\mathfrak{m}}(X_{\lambda},1)}).$$

The numbers on the left are all congruent to 3 modulo 4, hence so are the numbers on the right. Therefore $X_{\lambda,1}$ satisfies the same hypotheses as X_{λ} , so we can iterate this construction.

We get the following tower of spectra:

Note that $\lim_{i} X_{\lambda,i} = *$ since each map in the direct system is 0 on homotopy.

Next we take the constant tower X_{λ} and map it into the tower constructed above. Call the cofiber at each stage Y_n . We get a new tower:

Here $Y_0 = *$ and $Y_1 = L_{K(1)}M(2)$. The spectrum $\lim_n Y_n$ is obviously ΣX_{λ} .

We wish to replace the tower we just constructed with a tower of finite spectra. Assume inductively that $Y_n = L_{K(1)}X_n$ where X_n is finite, connective and torsion. Then for k arbitrarily large, we can use the n = 1 telescope conjecture to

find a map $\Sigma^{8k-1}M(2) \to X_n$ that localizes to the map in our tower above. Take X_{n+1} to be the cofiber; it follows that X_{n+1} is finite, connective and torsion.

It remains to check that $L_{K(1)}X_{\infty} = X$ where $X_{\infty} = \underline{\lim}_{n} X_{n}$. We have just made the tower

Now if we apply L_1 to this tower we get our tower involving the Y_n 's, and since L_1 is smashing, that implies that $L_1X_{\infty} = \lim_{K \to \infty} Y_n = X_{\lambda}$ But X is K(1)-local by hypothesis, so $X = L_{K(1)}X = L_{K(1)}L_1X_{\infty} = L_{K(1)}X_{\infty}$. \Box

In the case of $\Sigma^k X_\lambda$ where $\lambda \equiv 5(8)$, we can prove a theorem similar to Theorem 5.1 involving $\mathbb{Z}/(4)$ Moore spectra instead of $\mathbb{Z}/(2)$ Moore spectra.

Theorem 5.1 shows that we can construct these examples by adjoining Moore spaces. We would like to construct X_{λ} as in Theorem 5.1 explicitly by giving specific X_i and attaching maps to gain some understanding of these examples. The calculations necessary to give the complete description are extensive. In the following we will give a sketch proof of an explicit construction. It should not be viewed as complete. We try to indicate where to do the calculations and what calculations are necessary.

We wish to look at $[M(2), M(2)]_{\bullet}$. This corresponds to $\pi_{\bullet}(M(2) \wedge M(2))$ by Spanier-Whitehead duality. Further, we want maps which are essential in $L_{K(1)}$. Thus we need to calculate $J_{\bullet}(M(2) \wedge M(2))$. Using [12] we can check the following.

LEMMA 5.2. The map

$$\pi_{8k-1}(M(2) \wedge M(2)) \to J_{8k-1}(M(2) \wedge M(2))$$

is onto and $J_{6k-1}(M(2) \wedge M(2)) = \mathbb{Z}/4 \oplus \mathbb{Z}/2$.

LEMMA 5.3. The class of order 2 in $J_{8k-1}(M(2) \wedge M(2))$ lifts to give a map

$$\Sigma^{8k-1}M(2) \to M(2)$$

which is detected by $K(1)_{*}$.

PROOF. A specific choice for the generator involves composing the Bockstein δ with the periodicity element. This choice is non-trivial in K(1). The other choice involves adding twice the generator of order 4, and the extra term is 0 on K(1) since it is a multiple of 2. \Box

Given any class of order 4, if we add the class of order 2 from the lemma above the result still has order 4, so we get

110 MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY

COROLLARY 5.4. There is a choice of the class of order 4 in $J_{8k-1}(M(2) \land M(2))$ so that a lifted map

$$f_k: \Sigma^{\mathbf{S}k-1}M(2) \to M(2)$$

is detected by $K(1)_{\bullet}$.

The following picture gives the first few groups of $J_*(M(2))$. The pattern beginning in dimension 7 continues periodically every 8 dimensions. The class labeled a in the following picture represents v_1^4 and $v_1^{4k}a$ is the corresponding generator in dimension 8k + 8. The class labeled b represents a generator of the image of J on the bottom cell. If $\rho_j \in \pi_{8k-1}(S^0)$ is a generator of the image of J, then $\rho_j a = v_1^{4j}b$. In addition, $v_1 a (v_1 b)$ is a name for a generator of the $\mathbb{Z}/4$ in the 10 stem (9 stem).

Next we wish to calculate what $f = f_2$ does in homotopy.

THEOREM 5.5. i. $f_*(v_1^{4k}a) = v_1^{4(k+1)}b$. ii. $f_*(v_1^{4k}v_1a) = v_1^{4(k+1)}v_1b + \eta v_1^{4k+8}a$. iii. $f_*(v_1^{4k}b) = 0$ iv $f_*(v_1^{4k}v_1b) = \eta v_1^{4k+8}b$.

v. The classes $v_1^{4k}b$, $\eta v_1^{4k}a + v_1^{4k}v_1b$, and their η composites give the kernel of f_{\bullet} .

The proof of this follows easily from the calculations given in [13].

Now we can begin the construction of X. Let $X_1 = M(2)$. Let $X_2 = M(2) \cup_f \Sigma^{16}M(2)$. Let

$$p: X_2 \to \Sigma^{16} M(2)$$

be the pinch map. Theorem 5.5 allows one to define some classes in $\pi_{31}(X_2)$ which map to the kernel of f under p. If we define

$$g_2: \Sigma^{31}M(2) \to X_2$$

so that g_*p_* maps onto the kernel of p_* , then Theorem 5.5 can be used to show that $g \cdot p$ induces in homotopy the same map as $\Sigma^{16} f_2$. Thus we can form $X_3 = X_2 \cup_g \Sigma^{32} M(2)$. Calculations with modified Adams spectral sequences can be made that show we can iterate this process and construct X_{∞} .

THEOREM 5.6. The homotopy of $L_1(X)$ satisfies

$$\pi_*(L_1(X)) = KO_*(M(2)).$$

The $K(1)_{\bullet}$ -theory of X satisfies

$$K(1)_{*}(X) = K(1)_{*}(S^{0}).$$

This discussions in this chapter have an interesting connection with the generating hypothesis. Let X_n be the nth stage of the construction outlined immediately above, or the spectrum of the same name from Theorem 5.1. This is a finite spectrum with KO_*X_n having order 2^n . Yet the E_2 term of an appropriate modified Adams spectral sequence looks just like the E_2 term of the corresponding stage for a construction of $bo \wedge M^0(2)$. This spectrum has order 4. The generating hypothesis would require π_*X_n to have elements of order 2^n . It is hard to see how this might happen.

The X_n 's provide counterexamples at p = 2 to the most optimistic conjecture one might make as an L_1 version of the generating hypothesis, since the map $4: X_n \to X_n$ is 0 on $\pi_* L_1 X_n$, but is of order 2^{n-2} . There is an example of this sort in [7, Remark 1.7], our example has the property that 4 is of high order if n is large.

6. An example for Pic_2 at p = 2

Let A_1 be a complex which is free over A(1) on one generator, where A(1) is the sub-algebra of the Steenrod algebra generated by Sq^1 and Sq^2 . Let M_{ν} be $\Sigma^{-4}HP^2$. We will prove the following result which gives a novel element in Pic₂. This example is alluded to in [6]. Its importance in this context was certainly not appreciated at that time.

We believe this example gives an element of Pic_2 that is not the localization of any ordinary sphere, but is in the kernel of the map (18) of section 7; that is, this element is not detected by doing algebra over the Morava stabilizer algebra. This is analogous to the role P_5 has in Pic₁.

We use the notation $X^{\{n\}}$ for the *n* skeleton of *X*.

THEOREM 6.1. There is a map

$$\nu_2:\Sigma^6((A_1\wedge M_\nu)^{(9)})\to A_1\wedge M_\nu$$

so that if B is the cofiber, then $H_*(H^*(B);Q_i) = \mathbb{Z}/2$ for i = 0, 1, 2. In particular, $L_{K(2)}B \in Pic_2$. In addition, if

$$S^9 \to (A_1 \wedge M_\nu)^{(9)} \xrightarrow{v_2} A_1 \wedge M_\nu$$

is a cofiber sequence, then,

$$S^{15} \longrightarrow \Sigma^6((A_1 \wedge M_{\nu})^{\{9\}}) \xrightarrow{v_2} A_1 \wedge M_{\nu}$$

is $h_{2n}^3 \neq *$.

We begin with some generalities. Let X(1) be the Thom complex of the natural bundle over ΩS^2 . Let X_5 be the Thom complex of the natural bundle over ΩS^5 , and recall that $M_{\nu} = X_5^{(4)}$. The following is proved in [6]. In particular note that $X(1) = X_2$ and use [6, Theorem 3.4] for i and [6, Theorem 3.7] for ii.

i. $CP^2 \wedge \mathbf{R}P^2 \wedge X_5 = \Sigma^3 X(1)$. THEOREM 6.2. ii. $A_1 \wedge X_5$ is an X(1) module.

We construct a self map $\Sigma^6 A_1 \wedge X_5 \to A_1 \wedge X_5$ using $v_2 \in \pi_6(X\{1\})$ and the module structure over X(1).

Now consider the diagram

$$\begin{array}{cccc} A_{1} \wedge M_{\nu} & \rightarrow & A_{1} \wedge X_{5} & \stackrel{p}{\longrightarrow} & A_{1} \wedge X_{5}/A_{1} \wedge M_{\nu} \\ & & & \uparrow^{\nu_{2}} \\ \Sigma^{6}A_{1} \wedge M_{\nu} & \stackrel{i}{\longrightarrow} & \Sigma^{6}A_{1} \wedge X_{5} \end{array}$$

We want to understand pv_2i . If this composite is null, we can make a v_2 map on all of $A_1 \wedge M_{\nu}$, otherwise there is some obstruction. We calculate a little of $Ext_A(H^*(A_1 \wedge X_5), \mathbb{Z}/2)$. This is quite easy and we will just state the result.

PROPOSITION 6.3. $Ext_A(H^*(A_1 \wedge X_5), \mathbb{Z}/2)$ has the following values. For s = 0 and t = 0 we have $\mathbb{Z}/2$. For s = 1 we have the following classes: h_{20} , v_2 , $h_{21}, h_{30}, v_3, \cdots$ For s = 2 we have the following classes: $h_{20}^2, v_2^2, h_{20}v_2, h_{21}h_{20}$. For s = 3 we have just h_{20}^3 and these are all the classes for t - s < 16.

We now begin the proof of Theorem 6.1. In the following diagram we construct the Adams resolution for $A_1 \wedge X_5$ through the range we are interested in and through level one. This is the left hand side. The right hand side is the corresponding resolution of $A_1 \wedge X_5/A_1 \wedge M_{\nu}$. The map between them is the map induced by p.

g1

CONSTRUCTIONS OF ELEMENTS IN PICARD GROUPS

First note that f_1 can be represented by

$$(Sq(0,2), Sq(0,0,1), Sq(0,4), Sq(0,0,2), Sq(0,0,0,1))$$

Similarly, g_1 can be represented by

We use the fact that $g_1 Sq(8) = hf_1$ and

$$Sq(0,2)Sq(8) = Sq(8,2) + Sq(7,0,1)$$

$$Sq(8)Sq(0,2) = Sq(8,2) + Sq(4,1,1)$$

to see that

(12)
$$h^{*}(\iota_{13}) = Sq(8)\iota_{5} + (Sq(7) + S(4, 1))\iota_{6} + \iota_{13} + \epsilon_{5}Sq(0, 0, 1)\iota_{6} + \epsilon_{4}Sq(1, 2)\iota_{6} + \epsilon_{8}Sq(2, 2)\iota_{5} + \epsilon_{9}Sq(1, 0, 1)\iota_{6}$$

where we don't know ϵ_5 and we only know $\epsilon_4 + \epsilon_8 + \epsilon_9 = 0$. The projection of v_2 to E_1 lifts to F_1 and we get the factorization

$$\Sigma^6 A_1 \wedge X_5 \to F_1 \to E_1$$

This map restricted to F_1 sends the fundamental class in dimension six to the generator and is zero on the other fundamental classes. Let us call this map v_2 also. Then (12) shows that

(13)
$$i^*v_2^*h^*(\iota_{13}) = Sq(7) + Sq(4,1)$$

It follows that $pv_2i \neq 0$.

We now need to know if we can alter the map $v_2 i: \Sigma^6 A_1 \wedge M_{\nu} \to A_1 \wedge X_5$ so that it is null after composing with p (and still the same on the bottom cell of the domain). If we had a map

(14)
$$g: \Sigma^6 A_1 \wedge M_\nu \to A_1 \wedge X_5$$

such that $pg = pv_2i$ but $g|_{S^6} = *$ we could add this map to v_2i to give a map which lifts to a $v_2 \max \Sigma^6 A_1 \wedge M_{\nu} \to A_1 \wedge M_{\nu}$. So we need to determine if such a map exists.

Suppose we have a g as in (14). Using the low dimensional homotopy groups of the domain and range of p, it is easy to check that $pg|_{12-\text{skeleton}} = *$. Also, g must be 0 on cohomology, so the continuation of g to E_1 lifts to F_1 :

$$\tilde{g}: \Sigma^6 A_1 \wedge M_{\nu} \to F_1$$

Since $pg = pv_2 i$, $\tilde{g}^* \iota_{13} = Sq^2 Sq^1 Sq^4 \iota_6$ from equations (13) and (12).

We claim that while such a map can exist on the 13 skeleton (induced from taking \tilde{g} as described and 0 on the other fundamental classes), it cannot be extended to all of $\Sigma^6 A_1 \wedge M_{\nu}$. We can extend to the 14 skeleton because h_{30} which is represented by ι_{13} has order 2. We can extend to the 15 skeleton because

the 15 cell is not attached to the 13 cell that hits the image of h_{30} . In order to extend to the last cell though, we need $v_1h_{30} = *$, but

$$v_1 h_{30} \equiv \langle v_1, h_{20}^2, v_1 \rangle$$

because $d_2h_{30} = v_1h_{20}^2$ in the ASS for X(1), and $v_1h_{30} + h_{30}v_1$ has image v_1h_{30} in $A_1 \wedge X_5$. From [14, Lemma 4.3] it follows that

$$\langle v_1, h_{20}^2, v_1 \rangle = h_{20}^2 v_1 \cup_1 v_1 = h_{20}^3$$

in $\pi_{\bullet}(X(1))$, so the same is true in $A_1 \wedge X_5$, and $h_{20}^3 \neq *$. This proves that no map as in (14) exists unless we at least restrict to the 15 skeleton.

' We will now show that there is such a map if we restrict to the 15 skeleton, i.e. there is a

$$g_3: (\Sigma^6 A_1 \wedge M_\nu)^{(15)} \to A_1 \wedge X_5$$

with $pg_3 = pv_2i|_{15-\text{skeleton}}$ and $g_3|_{S^*} = *$.

Let

$$g_1: (\Sigma^6 A_1 \wedge M_{\nu})^{\langle 15 \rangle} \to A_1 \wedge X_5$$

be any map such that $pg_1|_{13-\text{skeleton}} = pv_2i|_{13-\text{skeleton}}$ (such a map can be derived from \tilde{g} as described above). If $p(g_1 - v_2i)|_{14-\text{skeleton}} \neq *$, we construct a map

$$\varepsilon: \Sigma^6 A_1 \wedge M_\nu \to A_1 \wedge X_5$$

which is trivial on the 13 skeleton and such that $p\varepsilon = p(g_1 - v_2 i)$ when restricted to the 14 skeleton, using that p_* is onto in dimension 14. So if we take $g_2 = g_1 - \varepsilon$ then $pg_2|_{14-\text{skeleton}} = pv_2 i|_{14-\text{skeleton}}$. We can repeat this in dimension 15 if necessary to produce g_3 so that $pg_3 = pv_2 i$ on the 15 skeleton. $g|_{15-\text{skeleton}} - g_3$ will be the desired map that lifts to $v_2 : \Sigma^6((A_1 \wedge M_\nu)^{(9)}) \to A_1 \wedge M_\nu$ as in Theorem 6.1.

This completes the proof.

We speculate that this example plays a role in Pic_2 which is similar to the role played by P_5 . We do not believe it is just a suspension of the sphere. The complete understanding of the role it will play will require substantially more information about Pic_2 .

7. Algebraic approximations

In this section we discuss an algebraic approximation to Pic_n . The important observation is that we can use the Adams-Novikov spectral sequence to approximate $\pi_*(X)$. Roughly speaking, if X and Y are two elements of Pic_n and $E(n)_*(X) \neq E(n)_*(Y)$ as comodules, then we know they are different elements of Pic_n . Furthermore, it will be easy to see that in the generic situation (p large with respect to n), if X and Y give the same comodule structure, they are equal in Pic_n .

PROPOSITION 7.1 (HOPKINS-RAVENEL). If X satisfies $v_{n-1}^{-1}BP_*(X) = 0$, then

CONSTRUCTIONS OF ELEMENTS IN PICARD GROUPS

$$BP_*(L_nX) = v_n^{-1}BP_*(X).$$

i.

ii. The Adams-Novikov spectral sequence for $L_n X$ converges to $\pi_*(L_n X)$, and

 $E_2 = v_n^{-1} Ext_{BP,BP}^{*,*}(BP_*, BP_*(X)).$

The first part is part of [19, Theorem 1]. In the second part the identification of the E_2 term follows from the first part, and the convergence of the spectral sequence was communicated to us by Ravenel.

Recall that $E(n)_* = \mathbb{Z}_{(p)}[v_1, \ldots, v_n, v_n^{-1}]$, where E(n) is the Johnson-Wilson homology theory. From [17], E(n) has the same Bousfield type as $K(0) \vee \cdots \vee K(n)$. We define a flat $E(n)_*$ algebra:

$$E_n = \mathbf{W}_{\mathbf{F}_{n}}[[u_1, \ldots, u_{n-1}]][u, u^{-1}].$$

Here $W_{\mathbf{F}_{p^n}}$ is the Witt vectors of the field \mathbf{F}_{p^n} . It is isomorphic to $\mathbb{Z}_p[\xi]$ where ξ is a primitive $p^n - 1$ root of 1. The u_i 's all have degree 0, and |u| = -2. The map from $E(n)_*$ to E_n sends v_i to $u_i u^{1-p^i}$ and v_n to u^{1-p^n} .

By composing the map $E(n)_* \to E_n$ with the usual map $BP_* \to E(n)_*$, we get a map from BP_* to E_n . Since E_n is flat over $E(n)_*$, this induces a complex oriented homology theory by

$$E_n(X) = E_n \otimes_{BP_*} BP_*(X) = E_n \otimes_{E(n)_*} E(n)_*(X).$$

Morava proves in [15]

PROPOSITION 7.2 (MORAVA). If $BP_*(X)$ is v_0, \ldots, v_{n-1} torsion, then

 $\mathbf{W}_{\mathbf{F}_{g^n}} \otimes_{\mathbf{Z}_{(g)}} v_n^{-1} Ext_{BP,BP}^{*,*}(BP_*, BP_*(X)) = H^{*,*}(S_n, E_n(X)).$

Here S_n is the n^{th} Morava stabilizer group. This is a *p*-adic Lie group related to the study of height *n* formal group laws in characteristic *p*.

Example: Take n = 1, p > 2. Then E_1 is completed complex K-theory, and S_1 is the group of units in \mathbb{Z}_p congruent to 1 modulo p, which is isomorphic to \mathbb{Z}_p . To see how this operates on $E_1(X)$, a generator for this group is the Adams operation ψ^{p+1} . Note that S_1 acts non-trivially on $E_1(S^0)$.

Now for our purposes, we are less interested in the homology theory E_n than in a theory we define below. This theory will be the same as E_n in case $BP_*(X)$ is finitely generated, but will have the advantage of coming with a more tractable Adams-Novikov spectral sequence. It will not be a homology theory; we have an inverse limit in our definition that will prevent this theory from satisfying the direct limit axiom.

We confuse E_n with its representing spectrum and inductively on k < n, define $E_n/(p^{i_0}, \ldots, v_k^{i_k})$ to be the cofiber of

$$v_{k}^{i_{k}}: \Sigma^{i_{k}|v_{k}|} E_{n}/(p^{i_{0}}, \ldots, v_{k-1}^{i_{k-1}}) \to E_{n}/(p^{i_{0}}, \ldots, v_{k-1}^{i_{k-1}})$$

(The spectrum $E(n)/(p^{i_0}, \ldots, v_{k-1}^{i_{k-1}})$ is defined similarly.) In case there is a finite spectrum $M(p^{i_0}, \ldots, v_k^{i_k})$ satisfying

$$BP_*(M(p^{i_0},\ldots,v^{i_k}_k)) = BP_*/(p^{i_0},\ldots,v^{i_k}_k)$$

 $E_n/(p^{i_0},\ldots,v_k^{i_k}) = E_n \wedge M(p^{i_0},\ldots,v_k^{i_k}).$ We have

$$E_n \simeq \lim_{\substack{(i_0,\ldots,i_{n-1})}} E_n/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})$$

so we view E_n as a "pro-spectrum" and use this to define the theory below.

DEFINITION 7.3. The n^{th} Morava module of X, $\mathcal{K}_{n,*}(X)$ is defined by

$$\mathcal{K}_{n,*}(X) = \lim_{\substack{(i_0,\dots,i_{n-1})}} [E_n/(p^{i_0},\dots,v_{n-1}^{i_{n-1}})]_*(X).$$

Since smashing doesn't commute with inverse limits, $\mathcal{K}_{n,\bullet}(X)$ is not, in general, the same as $E_n(X)$ though the two theories coincide when X is finite.

PROPOSITION 7.4. If $\mathcal{K}_{n,*}(X)$ is finitely generated over E_n , then there is a spectral sequence

$$E_2 = H^{*,*}(S_n; \mathcal{K}_{n,*}(X)) \Longrightarrow \mathbf{W}_{\mathbf{F}_{\mathbf{z}^n}} \otimes_{\mathbf{Z}_{\mathbf{z}}} \pi_*(L_{K(n)}X)$$

PROOF. This spectral sequence is constructed by taking the inverse limit of the Adams-Novikov spectral sequences for $L_n(X \wedge M(p^{i_0}, \ldots, v_{n-1}^{i_{n-1}}))$. Each of these spectral sequences converges and has an E_2 term of the given form by Proposition 7.1 and Proposition 7.2. The finiteness condition in the hypotheses guarantees that all relevant \lim^1 terms vanish. Also, these spectral sequences are 0 in negative homological degrees. Together these conditions imply that the inverse limit of these spectral sequences converges to the inverse limit of the abutments, which will be the homotopy of the inverse limit of $L_n(X \wedge M(p^{i_0}, \ldots, v_{n-1}^{i_{n-1}}))$.

Since $M(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})$ is L_{n-1} acyclic,

$$L_n(X \wedge M(p^{i_0}, \ldots, v_{n-1}^{i_{n-1}})) = L_{K(n)}(X \wedge M(p^{i_0}, \ldots, v_{n-1}^{i_{n-1}})).$$

We need to verify that $L_{K(n)}$ commutes with this inverse limit. Clearly the inverse limit is local, so we need only check that the map

$$X \wedge K(n) \to [\lim_{\stackrel{\leftarrow}{I}} L_n(X \wedge M(p^{i_0}, \dots, v_{n-1}^{i_{n-1}}))] \wedge K(n)$$

induced by the inclusion of the bottom cells in the generalized Moore spectra is an equivalence. To do this, let D be some fixed generalize Moore spectrum of

CONSTRUCTIONS OF ELEMENTS IN PICARD GROUPS

type n. We consider the diagram

$$\begin{array}{cccc} X \wedge K(n) & \longrightarrow & [\lim_{I \to I} L_n(X \wedge M(p^{i_0}, \dots, v_{n-1}^{i_{n-1}}))] \wedge K(n) \\ & & \downarrow \\ X \wedge D \wedge K(n) & \longrightarrow & [\lim_{I \to I} L_n(X \wedge M(p^{i_0}, \dots, v_{n-1}^{i_{n-1}}) \wedge D)] \wedge K(n). \end{array}$$

(Since D is finite, it doesn't matter where it is placed in the parentheses in the lower right item.) $D \wedge K(n)$ is a wedge of K(n)'s indexed over the cells of D, so the vertical maps are inclusions of a summand in a wedge.

On the other hand, once α is sufficiently large, $M(\alpha) \wedge D$ is a wedge of copies of D indexed by the cells of $M(\alpha)$ and the map

$$M(\alpha') \wedge D \rightarrow M(\alpha) \wedge D$$

is the identity on the D indexed by the bottom cells and trivial on the others if α is sufficiently large and α' is sufficiently larger than α . It follows that the bottom map is an equivalence, and hence that the top one is also.

The theories $\mathcal{K}_{n,*}(-)$ are of interest to us because of Theorem 1.3. We owe the reader a proof of (ii) \Leftrightarrow (iii) which we supply at this point.

COMPLETION OF PROOF OF THEOREM 1.3. The implication (iii) implies (ii) is easy; $K(n)_{*}(Z)$ is just the reduction of $\mathcal{K}_{n,*}(Z)$ modulo $(p, v_1, \ldots, v_{n-1})$.

To show the other implication, assume $K(n)_*(Z) = K(n)_*$.

We claim that

(15)
$$[E(n)/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})]_*(Z) = [E(n)/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})]_*.$$

The proof is by induction on $N = i_0 + \cdots + i_{n-1}$. The base case is N = n, in which case $E(n)/(p^{i_0}, \ldots, p_{n-1}^{i_{n-1}}) = K(n)$ so (15) holds.

First we observe (by induction) that $[E(n)/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})]_{\bullet}(Z)$ is a monogenic $E(n)_{\bullet}$ -module, with generator in even degree. This is true by hypotheses if N = n. If N > n, let j be such that $i_j > 1$.

The cofibration

(16)
$$\Sigma^{2p^{j-2}} E(n)/(p^{i_0}, \dots, v_j^{i_j-1}, \dots, v_{n-1}^{i_{n-1}}) \to E(n)/(p^{i_0}, \dots, v_{n-1}^{i_{n-1}}) \to E(n)/(p^{i_0}, \dots, v_{n-1}^{j_{n-1}})$$

shows that $[E(n)/(p^{i_0}, \ldots, v_{n-1}^{i_{n-1}})]_*(Z)$ is concentrated in even degrees (since this is true for the homology theories represented by the end terms of cofibration(16)). We also have a cofibration

(17)
$$\Sigma^{2p^{j}-1}E(n)/(p^{i_{0}},\ldots,v_{n-1}^{i_{n-1}}) \xrightarrow{v_{j}} E(n)/(p^{i_{0}},\ldots,v_{n-1}^{i_{n-1}}) \to E(n)/(p^{i_{0}},\ldots,v_{j}^{1},\ldots,v_{n-1}^{i_{n-1}}) \vee \Sigma^{(i_{j}-1)(2p^{j}-2)+1}E(n)/(p^{i_{0}},\ldots,v_{j}^{1},\ldots,v_{n-1}^{i_{n-1}})$$

It follows that if $[E(n)/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})]_*(Z)$ has more than one generator, then so does the quotient of multiplication by v_j . But by cofibration (17), this is just $[E(n)/(p^{i_0},\ldots,v_j^{i_1},\ldots,v_{n-1}^{i_{n-1}})]_*(Z)$, which is monogenic by inductive hypothesis.

Once we know $[E(n)/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})]_*(Z)$ is monogenic, it follows that the map from $E(n)/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})$ to $E(n)/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}}) \wedge Z$ given by a generator is a surjection, and hence by counting (only finitely many elements in each dimension) an injection.

So by induction, (15) holds for all N. This implies that

$$\lim_{\substack{(i_0,\ldots,i_{n-1})}} \frac{E(n)/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})_{\bullet}}{(i_0,\ldots,i_{n-1})} = \lim_{\substack{(i_0,\ldots,i_{n-1})}} E(n)/(p^{i_0},\ldots,v_{n-1}^{i_{n-1}})_{\bullet}(Z)$$

which shows that $\mathcal{K}_{n,*}(Z) = \mathcal{K}_{n,*}(S^0) = E_n$.

To describe our algebraic approximation, suppose $X \in \text{Pic}_n$. Then $\mathcal{K}_{n,*}(X)$ is isomorphic to some suspension of E_n . So we have a map

(18) $\operatorname{Pic}_n \to \{\text{isomorphism classes of rank } 1 \ E_n - S_n - \operatorname{modules} \}.$

By an E_n - S_n -module, we mean an E_n -module M with an S_n -action on M commuting with the E_n -action in the following way:

for any $g \in S_n$.

We would like to understand the set on the right side of (18) a bit better. Let K be some rank one E_n - S_n -module. Because the S_n action is compatible with the E_n -module structure on K, to describe K it suffices to describe the S_n action on $K_0 \simeq \mathbf{W}_{\mathbf{F},\mathbf{n}}[[u_1, \ldots, u_{n-1}]]$. So

(19) {isomorphism classes of rank 1 E_n - S_n -modules} =

{isomorphism classes of rank 1 $W_{F_n}[[u_1, \ldots, u_{n-1}]] - S_n$ -modules}.

Now both of these are actually groups (the group operation is tensor product), and by Proposition 8.4, the right hand side of (19) is isomorphic to

$$H^{1}(S_{n}; \mathbf{W}_{\mathbf{F}, n}[[u_{1}, \ldots, u_{n-1}]]^{\times}).$$

PROPOSITION 7.5. The map $\alpha : Pic_n \to H^1(S_n; \mathbf{W}_{\mathbf{F}_p^n}[[u_1, \ldots, u_{n-1}]]^{\times})$ is an injection if $n^2 \leq q$ and p > 2.

PROOF. If $n^2 \leq q = 2p-2$ and p > 2 the spectral sequence of Proposition 7.4 collapses. This is because the sparseness of the Adams-Novikov spectral sequence [18, 4.4.2] tells us the first possible differential is d_{q+1} , and [18, 6.2.10] says that differential is too long to exist in this spectral sequence.

CONSTRUCTIONS OF ELEMENTS IN PICARD GROUPS

Now suppose X is in the kernel of α . Then the E_2 term of the Adams-Novikov spectral sequence for X is isomorphic to that for $L_{K(n)}S^0$, so there is a class in the E_2 term corresponding to $S^0 \to L_{K(n)}S^0$. If we use this class to map S^0 to X (using the collapsing of the spectral sequence), and extend to $L_{K(n)}S^0 \to X$, by naturality we see that it is an isomorphism on E_2 terms (we are mapping the E_2 term for the sphere (a ring) to the other E_2 term (a copy of the same ring) by sending 1 to 1). \square

At this point it is convenient to prove the following.

PROPOSITION 7.6. Picn is a set.

PROOF. We note that Proposition 7.5 implies that Pic_n is a set if p is sufficiently large. For general p we show that Pic_n has a finite filtration so that each sub-quotient is a set.

To define the filtration, we consider the spectral sequence of Proposition 7.4. This spectral sequence collapses at some finite E_{m+1} (depending only on p and n) since the same is true for the localized Adams-Novikov spectral sequence in Proposition 7.1 and this spectral sequence is obtained from an inverse limit of those.

Let $F_0 = \operatorname{Pic}_n$. Let $X \in \operatorname{Pic}_n$ be in F_1 if the image of X is 0 under the map in (18). (This is equivalent to $\mathcal{K}_{n,*}(X) = \mathcal{K}_{n,*}(S^0)$ as a module over S_n .) If $X \in F_1$, let ι_X be the fundamental class in the E_2 term of the spectral sequence for X ($\iota_X = 1$ in the E_2 term of that spectral sequence). $X \in F_i$ if $d_2(\iota_X) =$ $\cdots = d_i(\iota_X) = 0$. Note then that $F_m = F_{m+1} = \cdots$ since the spectral sequence collapses at E_{m+1} , and by the proof of Proposition 7.5, $F_m = \{L_{K(n)}S^0\}$.

 F_0/F_1 is clearly isomorphic to the image of the map (18), and hence is a set. We claim that F_i/F_{i+1} is in one-to-one correspondence with a subset of the possible $d_{i+1}(\iota)$'s.

Suppose X and X' are in F_i and $d_{i+1}(\iota_X) = d_{i+1}(\iota_{X'})$. Let $Y \in \operatorname{Pic}_n$ be such that $L_{K(n)}(X \wedge Y) \simeq L_{K(n)}S^0$, so $\iota_{X \wedge Y}$ is a permanent cycle. It follows (from the multiplicative property of Adams spectral sequences [18, Theorem 2.3.3]) that $d_{i+1}(\iota_X) = -d_{i+1}(\iota_Y)$, and hence that $L_{K(n)}(X' \wedge Y) \in F_{i+1}$.

In other words, if X and X' are any two elements of F_i such that $d_{i+1}(\iota_X) = d_{i+1}(\iota_{X'})$, X and X' "differ" by an element of F_{i+1} .

Since this is a finite filtration on Pic_n , and the associated graded is a set, so is Pic_n . \Box

8. Digression on Picard groups of G-modules

The material in this section is standard, but we reproduce it here in the form in which we use it.

Suppose G is a finite group, R is a commutative ring, and G acts on R by ring automorphisms.

Let C be the category of R modules with "compatible" G actions. $M \in C$ means G acts on M by group homomorphisms and the compatibility axiom is the commutativity of

$$\begin{array}{cccc} R \otimes M & \xrightarrow{g \otimes g} & R \otimes M \\ & \downarrow & & \downarrow \\ M & \xrightarrow{g} & M, \end{array}$$

Notice that C is a symmetric monoidal category, where the operation on underlying R modules, is \otimes_R and the G action is the diagonal one. We will denote the operation by \wedge .

DEFINITION 8.1. Picc is the abelian group of isomorphism classes of invertible objects in C, that is the set of $M \in C$ such that there is some $N \in C$ with $M \wedge N \simeq R$.

LEMMA 8.2. If R is local, M, N are R modules such that $M \otimes_R N \simeq R$ and M is finitely generated, then $M \simeq R$. If R is noetherian we can drop the finitely generated hypothesis on M.

PROOF. There is a proof of the first claim in [4, 2.5.4.3]. The proof is by considering the isomorphism $M \otimes_R N \simeq R$ modulo the maximum ideal m of R to see that $M/\mathfrak{m}M$ is isomorphic to the residue field of R. Then Nakayama's lemma implies M is isomorphic to R.

If R is noetherian, then since m is finitely generated, the fact that M/mM is the residue field implies M is finitely generated automatically.

COROLLARY 8.3. If R is local and noetherian then $M \in Pic_{C}$ if and only if the underlying R-module of M is free of rank one.

PROOF. The "only if" follows from above. To see the "if," take M^{-1} the *R*-module Hom_{*R*}(*M*, *R*) with the *G*-action

$$(gf)(m) = g(f(g^{-1}m))$$

It is easy to check that the evaluation map

$$M \otimes_R \operatorname{Hom}_R(M, R) \to R$$

is a G-map.

From now on, we assume R is a ring such that $M \otimes_R N \simeq R$ implies $M \simeq R$ (note that $\mathbf{W}_{\mathbf{F}_p n}[[u_1, \ldots, u_{n-1}]]$ is local and noetherian). Then Pic_C is the group of isomorphism classes of free rank one G-R-modules. We want to prove the following proposition.

PROPOSITION 8.4. $Pic_{\mathcal{C}} = H^1(G, \mathbb{R}^{\times}).$

The proof proceeds in two steps. First we identify $\text{Pic}_{\mathcal{C}}$ with the group of crossed homomorphism modulo principal crossed homomorphisms, and then we identify that group with the cohomology group. The second step can be found in [10, X.3].

DEFINITION 8.5. A crossed homomorphism from a group G to a G-module V is a set map $f: G \rightarrow V$ such that $f(gh) = {}^{g}f(h) + f(g)$. The set of crossed homomorphism from G to V forms a group by using the group operation in V.

Suppose M is in Picc, and $e \in M$ is an R-module generator. This defines a crossed homomorphism

$$G \xrightarrow{f_{M_1 \epsilon}} R^{\times}$$

as follows: let $g \in G$, then ge is another R-module generator of M since g is an automorphism of R, so ${}^{g}e = u_{g}e$ where $u_{g} \in R^{\times}$. Let $f_{M,e}(g) = u_{g}$. Since $u_{gh}e = {}^{gh}e = {}^{g}(u_{h}e) = {}^{g}u_{h}{}^{g}e = {}^{g}u_{h}u_{g}e$ it follows that $f_{M,e}$ is a crossed homomorphism. (we are using multiplicative notation for the group R^{\times}).

It is easy to check that if (M, e) and (N, e') are elements of Pic_c together with specific choices of *R*-module generators, then $f_{M \wedge N, e \otimes e'} = f_{M,e} \cdot f_{N,e'}$.

We define the group $\operatorname{Pic}_{\mathcal{C}}$ to be the set of elements of $\operatorname{Pic}_{\mathcal{C}}$ together with specific choices of *R*-module generators. There is an obvious quotient homomorphism (forget the generator)

$$\Pi:\widetilde{\operatorname{Pic}_{\mathcal{C}}}\to\operatorname{Pic}_{\mathcal{C}},$$

and the correspondence $(M, e) \to f_{M,e}$ is a homomorphism from $\widetilde{\text{Picc}}$ to the group of crossed homomorphisms.

This homomorphism is actually an isomorphism: if f is a crossed homomorphism $G \to R^{\times}$, define a G action on M = R, e = 1 by ${}^{g}e = f(g)e$, ${}^{g}m = {}^{g}mf(g)e$. This gives a compatible group action, and $f = f_{M,e}$.

Using this isomorphism to identify $\operatorname{Pic}_{\mathcal{C}}$ with the group of crossed homomorphisms, the kernel of II is the set of crossed homomorphisms of the form $g \to u_g \in \mathbb{R}^{\times}$ when $u_g r = {}^{g}r$ for some fixed $r \in \mathbb{R}^{\times}$. These are called *principal* crossed homomorphisms.

We've just proven the first isomorphism in

$$\operatorname{Pic}_{\mathcal{C}} \cong \frac{\{\operatorname{crossed homomorphisms}: G \to R^{\times}\}}{\{\operatorname{principal crossed homomorphisms}\}} \cong H^{1}(G; R^{\times}).$$

We sketch a verification of the second equality replacing R^{\times} with any *G*-module *V*. Recall the bar complex: $B_n = \mathbb{Z}[G]^{\times (n+1)}$ and $H^*(G; V)$ is the cohomology of the cocomplex $\operatorname{Hom}_G(B_*, V)$.

Now $\operatorname{Hom}_{\operatorname{sets}}(G^n, V) = \operatorname{Hom}_G(B_n, V)$ by the correspondence

$$\{(g_1,\ldots,g_n)\to f(g_1,\ldots,g_n)\}\leftrightarrow\{g[g_1|\cdots|g_n]\to {}^gf(g_1,\ldots,g_n)\}$$

Using this identification, it is straightforward to verify that $f \in Z^1 \Leftrightarrow f$ is a crossed homomorphism to V, and that $f \in B^1 \Leftrightarrow f$ is a principal crossed homomorphism to V.

9. The p-adic integers embed in Pic_n

In this section we will construct a homomorphism $\mathbb{Z}_p \hookrightarrow \operatorname{Pic}_n$, that extends the obvious homomorphism $\mathbb{Z} \hookrightarrow \operatorname{Pic}_n$ obtained by $m \mapsto L_{K(n)} S^{m|v_n|}$.

This construction will generalize the construction summarized in (3) in section 1.

We denote by $M^0(p^{i_0},\ldots,v_{n-2}^{i_{n-2}})$ any finite spectrum with top cell in dimension 0, satisfying

$$BP_*(M^0(p^{i_0},\ldots,v_{n-2}^{i_{n-2}})) = BP_*/(p^{i_0},\ldots,v_{n-2}^{i_{n-2}})$$

up to suspension. (The restriction on the dimension of the top cell puts the bottom cell in dimension $1-n-i_1|v_1|-\cdots-i_{n-2}|v_{n-2}|$, which gives the dimension of the omitted suspension above.) We abbreviate the ideal $(p^{i_0},\ldots,v_{n-2}^{i_{n-2}})$ by (V^I) .

We will use the direct system of spectra

$$M^0(p^{i_0},\ldots,v^{i_{n-2}}_{n-2}) \xrightarrow{\phi} M^0(p^{j_0},\ldots,v^{j_{n-2}}_{n-2}) \xrightarrow{\phi} \cdots$$

(with $j_m \geq i_m$ for all m), such that ϕ induces

$$1 \in BP_*/(V^I) \mapsto p^{j_0 - i_0} v_1^{j_1 - i_1} \cdots v_{n-2}^{j_{n-2} - i_{n-2}} \in BP_*/(V^J).$$

and commutes with the pinch maps to the top cells.

The nilpotence theorem ensures that given a multi-index I', there is a multiindex I with $i_m \ge i'_m$ for all m such that $M(V^I)$ exists. It also guarantees that for any multi-index I such that $M(V^I)$ exists, there is a multi-index Jwith $j_m > i_m$ such that a map ϕ as above exists. By another application of the nilpotence theorem, we can fix a cofinal sequence of spectra in this direct system.

Now fix a multi-index I so that $M^0(V^I)$ is in our sequence, and fix a $\lambda \in \mathbb{Z}_p$. We will construct a spectrum we call $M(\lambda)(V^I)$. This is one of two main steps in our construction. We will then use the collection of $M(\lambda)(V^I)$'s as I varies to construct a spectrum S_{λ} such that $L_{K(n)}S_{\lambda} \in \operatorname{Pic}_n$ and $S_{\lambda} \wedge M^0(V^I) \simeq$ $M(\lambda)(V^I)$.

Let t be such that $M^0(V^1)$ has a v_{n-1}^t map, and define

$$M_r^0(V^I) = M^0(p^{i_0}, \dots, v_{n-2}^{i_{n-2}}, v_{n-1}^{i_r}) = \operatorname{cofiber}([v_{n-1}^i]^r).$$

Since $M_r^0(V^I)$ is defined using iterates of the v_{n-1}^t map, these spectra come with maps

 $M_r^0(V^I) \xrightarrow{\iota_r} M_{r+1}^0(V^I)$

inducing the obvious map on BP_* (multiplication by v_{n-1}^t).

Before going on, we briefly describe how we are about to construct $M(\lambda)(V^I)$. If λ happens to be an ordinary integer, we can make the spectrum

$$\Sigma^{\lambda|v_{n}|} M^{0}(p^{i_{0}}, \dots, v_{n-2}^{i_{n-2}}, v_{n-1}^{\infty}) = \lim_{\substack{i_{r} \\ i_{r}}} \Sigma^{\lambda|v_{n}|} M^{0}(v^{i_{0}}, \dots, v_{n-2}^{i_{n-2}}, v_{n-1}^{i_{r}}) = \lim_{\substack{i_{r} \\ i_{r}}} \Sigma^{\lambda|v_{n}|} M^{0}_{r}(V^{I})$$

If λ is some *p*-adic integer instead, we observe that $\sum^m L_n M_r^0(V^I)$ depends only on the residue of *m* modulo the degree of a v_n self map of $M_r^0(V^I)$. So for each *r*, one can define $\sum^{\lambda |v_n|} L_n M_r^0(V^I)$ to be the *k*th suspension of $L_n M_r^0(V^I)$ where $k = \lambda |v_n|$ modulo the degree of a v_n self map of $M_r^0(V^I)$. What we want to do is fit these together in a direct system and take the limit.

Now we continue with our construction. Each $M_r^0(V^I)$ admits a $v_n^{k_r}$ map for some k_r . Without loss of generality, assume that k_{r+1} is a power of p times k_r , and that these maps commute with ι_r . We are allowed to make these assumptions by Theorem 9 of [9].

Let $x_r \in \mathbb{Z}$ be a decreasing sequence with $x_r \equiv \lambda \mod k_r$. Then $x_{r-1} - x_r = u_{r-1}k_{r-1}$. To construct $M(\lambda)(V^I)$ we take the direct limit of

$$\Sigma^{x_{1}|v_{n}|} M_{1}^{0}(V^{I}) \xrightarrow{[v_{n}^{x_{1}}]^{x_{1}}} \Sigma^{x_{2}|v_{n}|} M_{1}^{0}(V^{I}) \xrightarrow{\Sigma^{x_{2}|v_{n}|}} \Sigma^{x_{2}|v_{n}|} M_{2}^{0}(V^{I}) \xrightarrow{[v_{n}^{x_{2}}]^{x_{2}}} \rightarrow \Sigma^{x_{3}|v_{n}|} M_{2}^{0}(V^{I}) \xrightarrow{\Sigma^{x_{3}|v_{n}|}} \Sigma^{x_{3}|v_{n}|} M_{3}^{0}(V^{I}) \rightarrow \cdots .$$

Because the maps $[v_n^{k_r}]^{u_r}$ are $K(n)_*$ isomorphisms,

$$K(n)_*(M(\lambda)(V^I)) = K(n)_*(\lim_{I_T} M^0_r(V^I)) = K(n)_*(M^0(V^I)).$$

Note that $M(\lambda)(V^I)$ is not very well defined. Firstly, it obviously depends on the original choice of $M^0(V^I)$, and not necessarily just *I*. Besides that, it may depend on the choices of the x_r and hence of the k_r . Nevertheless we have the following proposition.

PROPOSITION 9.1. $L_n M(\lambda)(V^I)$ is well defined up to the choice of $M^0(V^I)$.

PROOF. We begin by assuming we have one system of v_n maps which we will call $v_n^{k_r}$ and another system we call $v_n^{k_r}$.

Now make choices of x_r and x'_r as in the construction for $M(\lambda)(V^I)$. The choices of x_r ensure that $L_n \Sigma^{x_r} M_r^0(V^I)$ and $L_n \Sigma^{x_r} M_{r-1}^0(V^I)$ are independent of the choice. Also, $x_r - x'_r$ is divisible by the smaller of k_r or k'_r , so there is a v_n map between any stage of the two direct systems in one direction or the other. This map commutes with ι_r by assumption, and after applying L_n is invertible. This gives an equivalence between the two direct systems after applying L_n .

We also have to check independence of the choice of t and v_{n-1}^{t} map on $M^{0}(V^{I})$. By the nilpotence theorem, it suffices to compare the construction for v_{n-1}^{t} to that for t' = st and $v_{n-1}^{t'} = [v_{n-1}^{t}]^{s}$. In this case, a choice of $v_{n}^{k_{r}}$ and x_{r}

for v_{n-1}^t gives us $k'_r = k_{sr}$ and $v_n^{k'_r} = v_n^{k_{sr}}$, and the system for t' is obviously a cofinal subsystem of the system for t.

PROPOSITION 9.2. Let

$$\phi: M^0(V^I) \to M^0(V^J)$$

be a map in our sequence of spectra (so $J \ge I$).

(i) There are choices of t and v_{n-1}^t (one choice of t for both $M^0(V^I)$ and $M^0(V^J)$) so that ϕ induces maps

$$\phi_r: M^0_r(V^I) \to M^0_r(V^J)$$

commuting with the pinch maps to the top cells and taking

$$1 \in BP_*/(V^I, v_{n-1}^{tr}) \mapsto p^{j_0 - i_0} v_1^{j_1 - i_1} \cdots v_{n-2}^{j_{n-2} - i_{n-2}} \in BP_*/(V^J, v_{n-1}^{tr}).$$

(ii) The spectra $M(\lambda)(V^{I})$ and $M(\lambda)(V^{J})$ can be defined so that the ϕ_{r} induce a map

 $\bar{\phi}: M(\lambda)(V^I) \to M(\lambda)(V^J).$

PROOF. To see that the first condition can be satisfied, just take t large enough so that v_{n-1}^{t} maps exist on both spectra, and then invoke the centrality result of the nilpotence theorem (to take t even larger if necessary) in order that

$$\begin{array}{cccc} M^{0}(V^{I}) & \stackrel{\phi}{\longrightarrow} & M^{0}(V^{J}) \\ & v_{n}^{t} & & & \downarrow v_{n}^{t} \\ & & & & \downarrow v_{n}^{t} \end{array}$$

$$\Sigma^{-t|v_{n}|} M^{0}(V^{I}) & \stackrel{\phi}{\longrightarrow} & \Sigma^{-t|v_{n}|} M^{0}(V^{J})$$

commutes. Define ϕ_1 on the cofiber to make the ladder of cofibrations obtained by extending downward commute.

Then inductively define ϕ_r so that the ladder of cofiber sequences

commutes.

To satisfy (ii), we note that by the nilpotence theorem if we take the k_r 's sufficiently large, both $M_r^0(V^I)$ and $M_r^0(V^J)$ have $v_n^{k_r}$ maps commuting with ϕ_r . \Box

We can now complete our construction; take

$$S(\lambda) = \lim_{I \to I} L_n M(\lambda)(V^I).$$

CONSTRUCTIONS OF ELEMENTS IN PICARD GROUPS

By construction,

$$K(n)_{\bullet}(S(\lambda)) = \lim_{I} K(n)_{\bullet} M(\lambda)(V^{I})$$

= $\lim_{I \to I} K(n)_{\bullet} \Sigma^{x_{1}} M^{0}(p^{i_{0}}, \dots, v_{n-2}^{i_{n-2}}, v_{n-1}^{\infty})$
= $K(n)_{\bullet} \Sigma^{x_{1}} M^{0}(p^{\infty}, \dots, v_{n-1}^{\infty}) = \Sigma^{x_{1}} K(n)_{\bullet}$

so $L_{K(n)}S(\lambda) \in \operatorname{Pic}_n$.

PROPOSITION 9.3. (i) The map $\mathbb{Z}_p \to Pic_n$ by

(20)

 $\lambda \mapsto L_{K(n)}S(\lambda)$

is a homomorphism.

(ii) The map (20) is an injection.

PROOF. To show our map is a homomorphism, we first note that once we choose a map

$$M^0(V^I) \wedge M^0(V^I) \rightarrow M^0(V^I)$$

(by mapping out to the top cell of, say, the leftmost factor of the spectrum on the left) the diagonal of the smash product of the direct systems defining $M(\lambda)(V^I)$ and $M(\lambda')(V^I)$ maps to the direct system defining $M(\lambda + \lambda')(V^I)$.

These maps commute as I increases, giving a map $S(\lambda) \wedge S(\lambda') \rightarrow S(\lambda + \lambda')$ that is a K(n),-isomorphism.

Finally, to show this homomorphism is injective, suppose

$$L_{K(n)}S(\lambda) = L_{K(n)}S^0.$$

We observe that

$$S(\lambda) \wedge M^0(V^I) \simeq L_n M(\lambda)(V^I)$$

for any λ .

By our hypothesis then,

$$L_{K(n)}M(\lambda)(V^{I}) \simeq L_{K(n)}[S(\lambda) \wedge M^{0}(V^{I})] = L_{K(n)}[L_{K(n)}S(\lambda) \wedge M^{0}(V^{I})] = L_{K(n)}[L_{K(n)}S^{0} \wedge M^{0}(V^{I})] = L_{K(n)}M^{0}(V^{I}).$$

Hence for each r, we have a map $L_{K(n)}M_r^o(V^I) \to L_{K(n)}M(\lambda)(V^I)$ that is non-zero on the K(n) homology coming from the top cells. But this implies $\sum^{x_r|v_n|}L_{K(n)}M_r^o(V^I) \simeq L_{K(n)}M_r^o(V^I)$ for all r, and hence $\lambda = 0$. \Box

References

- J. F. Adams, A. S. Harris, and R. M. Switzer. Hopf algebras of cooperations for real and complex K-theory. Proceedings of the London Mathematical Society (3), 23:385-408, 1971.
- 2. M. F. Atiyah. Thom complexes. Proceedings of the London Mathematical Society (3), 11:291-310, 1961.
- 3. M. F. Atiyah. K-theory and reality. Quarterly Journal of Mathematics, 17:367-386, 1966.
- 4. N. Bourbaki. Commutative Algebra, chapters 1-7. Springer-Verlag, Berlin, 1980.
- A. K. Bousfield. The localization of spectra with respect to homology. Topology, 18:257-281, 1979.
- D. M. Davis and M. E. Mahowald. v1 and v2 periodicity in stable homotopy theory. American Journal of Mathematics, 103:615-659, 1981.
- E. Devinatz. K-theory and the generating hypothesis. American Journal of Mathematics, 112:787-804, 1990.
- M. J. Hopkins and H. R. Miller. Enriched multiplications on the cohomology theories E_n. to appear.
- 9. M. J. Hopkins and J. H. Smith. Nilpotence and stable homotopy theory II. preprint.
- 10. S. Mac Lane. Homology. Springer-Verlag, Berlin, 1963.
- M. E. Mahowald. A short proof of the James periodicity. Bulletin of the American Mathematical Society, 16:512, 1965.
- M. E. Mahowald. The image of J in the EHP sequence. Annals of Mathematics, 116:65-112, 1982.
- M. E. Mahowald and R. D. Thompson. Unstable compositions related to the image of J. Proceedings of the American Mathematical Society, 102:431-436, 1988.
- M.E. Mahowald and P. Shick. Periodic phenomena in the classical Adams spectral sequence. Trans. Amer. Math. Soc., 300:191-206, 1987.
- J. Morava. Noetherian localizations of categories of cobordism comodules. Annals of Mathematics, 121:1-39, 1985.
- D. C. Ravenel. The structure of Morava stabilizer algebras. Inventiones Math., 37:109-120, 1976.
- D. C. Ravenel. Localization with respect to certain periodic homology theories. American Journal of Mathematics, 106:351-414, 1984.
- D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic Press, New York, 1986.
- D. C. Ravenel. The geometric realization of the chromatic resolution. In W. Browder, editor, Algebraic topology and algebraic K-theory, pages 168-179, 1987.
- .20. D. C. Ravenel. Nilpotence and Periodicity in Stable Homotopy Theory, volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton, 1992.
- R. M. Seymour. The Real K-theory of Lie groups and homogeneous spaces. Quarterly Journal of Mathematics, 24:7-30, 1973.
- R. Switzer. Algebraic Topology Homotopy and Homology. Springer-Verlag, New York, 1975.
- R. D. Thompson. The v₁-periodic homotopy groups of an unstable sphere at odd primes. Trans. Amer. Math. Soc., 319:535-559, 1990.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA 02139

E-mail address: mjh@math.mit.edu

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, IL 60208 E-mail address: mark@math.nwu.edu

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, IL 60208 Current address: Department of Mathematics, Johns Hopkins University, Baltimore MD 21230

E-mail address: hs@math.jhu.edu

Contemporary Mathematics Volume 158, 1994

ALL COMPLEX THOM SPECTRA ARE HARMONIC

IGOR KRIZ

ABSTRACT. In this paper, we prove that all complex Thom spectra are harmonic and all real Thom spectra are harmonic at p>2.

1. Introduction.

A spectrum is called <u>harmonic</u> at a prime p if its p-localization is local in the sense of Bousfield [2] with respect to the homology theory associated with the spectrum

$K(0) \sim K(1) \sim K(2) \sim ...$

where K(0) = K(0,0) and K(n) for n>0 are the periodic Morava K-theories (see [9]). A spectrum is <u>harmonic</u> if it is harmonic at all primes. Harmonic spectra were extensively studied by Ravenel [9], who showed that they have very strong and interesting properties. For example, an elementary observation shows that if two harmonic connective spectra X, Y have the same n-connected cover (for any chosen n), then they differ only by a wedge of rational Eilenberg-MacLane spectra.

1991 Mathematics Subject Classification. Primary 55N22, 55P42

Supported in part by the NSF.

This paper is in final form and no version of it will be submitted for publication elsewhere.

© 1994 American Mathematical Society 0271-4132/94 \$1.00 + \$.25 per page