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Constructions of elements in Picard groups

MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SADOFSKY

AasTRACT. We discuss the first author's PiC&l'd groups of stable homo­
topy. We give 1I. detailed description of the calculation of Pie" and go on
to describe geometric constructions for lifts of the elements of PiCl' We
also construct a 15 ceU complex that localizes to what we speculate ill an
interesting element of Pic2. For all n we describe an algebraic approxima.­
tion to Picn using the Ada.ms-Novikov spectral sequence. We also show
that the p-adic integers embed in the group Picn for all n and p.

1. Introduction and statement of results

We begin with the basic definition. The functor

En:XI--+SnI\X

is an automorphism of the category of spectra, which preserves cofibration se­

quences and infinite wedges. If T is another such automorphism, then Brown's
representability theorem applied to 1I".(TX) gives a spectrum ST with

TX = ST!lX

and
ST-l I\ST = So.

This motivates the following definition.

DEFINITION 1.1. A spectrum Z is inverl.ible if and only if there is some spec­
trum W such that

ZI\W=SO.

Pic is the group of isomorphism classes of invertible spectra, with multiplication
given by smash product. Given an isomorphism class A E Pic we will write SA
for a representative spectrum.
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To see this, consider all spectra X such that the evaluation map

is the same as

Z" F(Z, LK(n)X) - LK(n)X

Z "F(Z, LK(n)s") " X _ LK(n)s" /\ X,

and that map is an isomorphism on K(n) if and only if

Z" F(Z, LK(n)X) - LK(n)X(1)

is an isomorphism on K(n). It is easy to see that X ::;; K(n) works. Furthermore,
the class of X that makes (1) an isomorphism is closed under cofibrations and
wedges.

Hopkins and Ravenel show that if X is a finite type n spectrum, then LK(n)X

has a finite filtration where each cofiber is a wedge of K(n),s. This result is
unpublished, but can be deduced from [20), Corollary 8.2.7 and Section 8.3. It
follows that X finite type n makes (1) an isomorphism on K(n). But if X is
finite,

LK(n)(Z " W) = LK(n)s".

Pic itself is not very interesting; it is just the integers and the elements are just
spheres. To see this observe that jf Z E Pic then H*(Z) = Z in some dimension,
say k, and 0 in other dimensions. One can then map Z to Sf: by working up
the Postnikov tower so that the map induces an isomorphism on homology. By
smashing the analogous map for Z-1 with Z one gets a map from Sf: to Z that
is an isomorphism on homology. It follows that Z = Sf: V A for some A. Since
the same is true for Z-I, it follows that A = *.

We can alter the definition to apply to a category afloca! spectra, but variants
of this argument tell us that Pic = Z even if we restrict to the p-Iocal (or p­
complete) categories. The situation is more interesting if we look at the category

of K(n)-local spectra where K(n) is the nth Morava K~theory. We have the
following definition.

DEFINITION 1.2. A K(n) local spectrum Z is invertible in the K{n)-local cat·
egory if and only if there. is a spectrum W such that

PiCn is the group of isom-orphism classes of such spectra, with multiplication
given by

(X, Y) ~ LK(n)(X " Y).

Z" F(Z, LK(n)s") _ LK(o)s"

is. 0

""-e postpone showing that Pie-n. is a set to section 7.
The following result is useful in identifying elements of Picn . We describe the

functor KI"l,~(-) in sedion 7. It is essentially a completion of E(n) .. (-).

THEOREM 1.3. The following are equivalent:
(i) LK(n)Z is in Picn .

(ii) dimK(n) .. K(n) .. Z = 1.
(iii) ICn,.(Z) '" ICn,.(S·) for ,orne k.

PROOF. We reserve the proof of (ii) ¢::} (iii) for section 7. (i) implies (ii) by
the Kiinneth theorem for Morava [<-theories.

To show (ii) implies (i), assume Z satisfies (ii). Let Y = F(Z, LK(n)SO) where
F(A, B) is defined to be the representing spectrum for the cohomology theory

X ~ [X "A,B].

There is an "evaluation" map

In the next several sections, we want to give some particular examples from
the zoo, Pic t _ We will find spectra which are quite familiar and which represent
various classes in PiCl, and others which are constructed in a simple way from
quite natural objects, but have surprising properties.

Before we continue, we would like to illustrate how some of these examples
come about. It is a consequence of Thompson's work [23] that the EHP sequence
at odd primes is just a Bockstein spectral sequence when one uses Vi periodic
homotopy. To be precise, let MO(pi) be the Z/(pi) Moore spectrum with top
cell in dimension 0, and let J be the image of J spectrum at p. An interpretation
of what is shown in [23] is that there is a map

n2n+1s2n +t _ nOO(J 1\ Mo(pn»

which is an equivalence in VI periodic homotopy. Thus the EHP spectral se­
quence, using VI periodic homotopy theory is just the spectral sequence associ­
ated with the system of spectra

Z" Y - LK(n)s" (2) MO(p) _ MO(p') _ ... _ MD(pn)_

that is the adjoint of the identity in The cofibration sequences at the stages of this direct system are

[F(Z, LK(n)SD), F(Z, LK(n)s")] = [Y, F(Z, LK(n)s")I. MO(pn) _ Mo(pn+I) _ MO(p).

The direct limit of this system is MO(pDO). On K(l)~, each map in the system is
an isomorphism on the copy of [{(1) .. associated to the cell in dimension 0, and

We claim that this map is an isomorphism on K(n).. and hence an equivalence
after localizing.
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S-1 _ L
Q

S- 1 _ MO(pOO)

1J~ .. "n
M-qa.._I(pn)~ M-qan(pn) _ M- qa"(pn+1).

oon the other copy of K(l). and hence K(l). of the limit is I«l).(SO). In fact
consideration of the cafiber sequence

shows that the direct limit is homotopy equivalent to SO after applying LK(l)­

Now if .\ is a p-arlic integer, we can write ..\ as (the limit of) a sequence
ai == Gi_l + A,p' where Ai is an integer such that 0 ::; ..\; < p, and a_I = O. Using
..\ as a template we can describe another system of spectra

1 (mod p) iff (p-l)lk

1 (mod pr+l)

1 (mod p'+'j if p Ys

~,"(.p') = '7"

"

7'
l'a(p-l)pT

,.(p_l)pT

LEMMA 2.2. The map ev is a homomorphism.

PROOF. Suppose X, Y E M. Then K
'
,.(Xj = K".(Y) = K

"
.(S"), so by the

Kiinneth theorem,

K1,.(X to. Y) = K
"
.(X) 0K. K

"
.(Y)

(5)

(4)

K
"
.(X) = ~K.(X to. M(p")).

"

2. Calculation of Picl at p > 2

Let, be a topological generator of (Zp)x. For example we can take, to be
(l+p)~ where ~ is a primitive (P_l)st root of unity in Zp. K will denote complex
K-theory completed at p, and K p the Adams summand. We will be considering
the Adams operation t/J"l. We will need some notation from section 7; we define
K

"
.(X) by

PROPOSITION 2.1. There is an extension of abelian groups

It is easy to check that Kl, .. (X) = K .. (X) if K.. (X) is finitely generated over K .. "
We introduce K: l ,.. ( -) because we need an integral invariant so we can con­

veniently work with Adams operations. Also, because of Theorem 1.3, K: l ,.. ( -)

is better adapted for studying Picl than K" is. In fact, the proof of (ii) {::}
(iii) of Theorem 1.3 shows that K:l,,,{X) = 0 {:::? [(I).{X) = 0, and hence that
Kl,,,(X) = A:), .. (LK(n)X). Neither of these facts are true for K .. (-) in place of
K l ,,,(-) as the example X = M(pOO) shows.

The theory K l ,,,{-) does have the drawback of not being a homology theory in
the usual sense; because of the inverse limit in its definition, it fails to commute
with direct limits.

on K C
. The following facts follow since r is a topological generator of (Zp)( .

0-> M _ PieI _ Z/(2) -> O.

The map Picl _ Z/(2) takes X to the dimension (modulo 2) of the generator of
Kl,.(X). M is the kernel of this map, and ev : M -> (Zp)X is an isomorphism,
where ev(X) is the eigenvalue of,pl on Kl,o(X).

Note by Theorem 1.3, X E Picl <=> K:1, .. (X) = K:l,,,(SI:) for some k. If X EM,
we can take k = O. We will prove the statement about M in stages.

Before we embark on the proof, we have to note some number theoretic prop­
erties of ljJ"l. Since it is an Adams operation,

.,),0 VP~1

MO(p)~ M-q<tO(p) --+ M-Qall(p2)~ M- qa1 (p2) _ ....(3)

Here q = 2p - 2 = Ivd, and vr-' :E'lpi-t M(pi) ~ M(pi) is an Adams map

inducing a J<-theory isomorphism and multiplication by vr- 1

on BP•. In this

direct system, the nth stage is M-qan_l (pn), and the map from the nth stage

to the (n + 1)th stage is the composite

If ..\ happens to be an ordinary integer, then as in (2) the direct limit of this
system is M-,l,'l(pOO) which is the same as S-),.q after applying LK(l)'

It is clear that in I«l)., the v~ maps are isomorphisms, so that K(l). of the
direct limit is the same as before. Thus the limit has the K(l )-theory of So. This
means that for each ..\ we have constructed an element in PiCl. The homotopy
groups will depend on the p-adic integer..\. One of the main results of this note
will be that at odd primes, essentially nothing else happens. We discuss this in
detail, from a slightly different perspective, in section 2. At the prime two, we
get similar examples and some more.

The rest of the paper is organized a.s follows. Section 2 calculates PiCl at
odd primes, and shows that the examples illustrated above contain everything.
Section 3 calculates PiCl at p = 2. Section 4 constructs elements of PiCl at
p = 2 related to Rpoo. Section 5 constructs some bizarre elements of Picl at
p = 2. Section 6 contains an interesting example in Picz at p = 2. Sections 7
and 8 discuss an algebraic approximation for Picn based on the Adams-Novikov
spectral sequence, and section 9 generalizes the construction above to prove Zp
embeds in Pien.

This paper was motivated by attempts on the part of the other authors to
better understand a talk given by the first author at the Adams symposium in
Manchester. The basic definitions and many of the results are due to the first
author.

We thank the referee for a thorough reading and many constructive criticisms;
we also thank Mark Hovey for useful comments on an early draft.
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as a module over the Adams operations, since the Adams operations are multi­
plicative. 0

LEMMA 2.3.
!,p"-ljAl

L K (1)X = jib,,{(K A X);-(K A X);].

PROOF. This follows from Theorem 4.3 of [5] and the fact that LK(l)X =
(LK X); (Proposition 2.11 of [5]). Taken together these imply that if

~"-1

J = fiber[K~K]

then L K (1)X = (X /I. J)p. (Because of (5), it doesn't matter that we are using
K where Bousfield uses KO(p).) 0

LEMMA 2.4. ev is injective.

PROOF. Suppose ev(X) = 1. We get a diagram

X~ (I( AX); [.'-IIAI (K AX);

'T
SO

where 9 is a generator of 7ro(I< A X). Since ([tt'''r - 1) 1\ l)g = *, 9 lifts to X, and
since X is K(l) local, the lift extends to a map

f: LK(l)SO - X.

Now K(1).(9) is monic, so it follows that K(1).(I) is monic. Therefore,
K(1).. (I) is an isomorphism because the source and target are both isomor­
phic to K(l)., so si.nce the source and target are K(1)~10cal, I is a homotopy
equivalence. 0

LEMMA 2.5. Let X"(" be the fiber of
liJ-r_..,n

K_K.

f.'ROOF. It suffices to show that the image of ev contains the Zp C Z; that
is the subgroup of units congruent to 1 modulo p. This is because Lemma 2.5
allows us to deduce that the other summand of Z; is in that image.

Since l' is a generator of Z;, we can take ,,/1'-1 as a generator of the Zp
summand. Take..\ E Z1' C Z; be a unit congruent to 1 modulo p. Let X.lt..
be the fiber of T/J"" -"\. We claim XJo. E M. We have checked this above in
the case ..\ :;;; ,-"(1'-1). Any..\ is equal to some power of 1'1'-1 modulo p, so
K(I).(X,) = K(I).(X,_) = K(I). for some n.

Since yP-l is a topological generator or' Z1' C Z;, ..\ :;;; I ...(p-l) for some
1r E Zp_ We check that ev(XJo.):;;; 1'-:1"(1'-1). This is true when 1f is an ordinary
integer by Lemma 2.5.

For other 'If, choose k E Z so that II: == 1':1" (mod pr). Then ..\;;:: 1'1:(1'-1) (mod
pr), from which one can condude

X, A M(p') '" X""_,, A M(p').

From this we conclude that ev(X),) == ev(X..,k(P_IJ) :;;; 1-1:(p-1) == i-:I"(1'-1)

where the congruences are modulo pr. Since r was arbitrary, ev(X),) :;;:; i- lr =
..\-1. 0

An easy formula for the homotopy of X.lt.. is given by

~"_I(X,) = Zp/h' -.I)

{
Z .I-.'

'lf2.l;(X),) == P - Io else.

Notice that because I is a topological generator for Z;, for any ..\ there are
ordinary integers k making "YI: arbitrarily close to..\. This implies that no X.lt..
has a finite homotopy exponent. This is not true when p:;;; 2.

We remind the reader that q :;;; 2p - 2.

Then X..,n :;;; L K (I)S211.

PROOF. Let f below be an inclusion of the Adams summand in that dimen-

"'_[.,,(l+~) 11
LK(I)S2" _ E2"Kp '" - E 211 [{p

Let i : SO - K1' be the unit. By (4), (T/J"1 - 'Y")/i:;;; *, so Ii : 5 2n _ K factors
through X"1n. But X..,.n is K(1) local, so the map from L K (l)B2n lifts to X..,.".

Using the numbers from (5) it is easy to check that this map LK (I)S2" - X..,. ..
is an isomorphism on homotopy groups. 0

COROLLARY 2.6. ev is onto.

sian. X,_
- f{

IT

~ [{

~

,~

PROPOSITION 2.7. The extension given above for PiCI is not split, so

PiCl ::::: Z1' $ Z/q.

PROOF. We will leave out LK(l) localizations here. 8- 1 is a lift of the non­
zero element of Z/2. If the extension splits then 8- 1 1\ XIJ has order 2 for some
Pi that is

XIJ2 :;;;52 :;;;X-y,

so I :;;; Jl2. This contradicts the choice of i as a topological generator of Z; , so
the extension doesn't split.

Since Z; ::::: Zp EfJ Z/(p - 1), the only non-split extension is the one given in
the statement of the proposition. 0
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Although this discussion looks somewhat different than the discussion in the
introduction around (3), it can be translated into those terms by observing that

LIP::t~~q ~ L 1MO(pr+1).

Recall as noted above that for p > 2, Z; is topologically cyclic. If we topolo­
gize M be making ev a homeomorphism, we see L K (1)S2 is a topological gener­
ator.of M since it is taken to a topological genera.tor of Z; under ev. Now since
L K (1)S2 is a generator, every element of M is topologically close to some power
of L K (l)S2.

Here the subscript (p) means localiza.tion, and the superscripts indicate skeleta.
This explains our .notation P 9>..+(q-l); it has been chosen so that when ..\ is a
positive integer,

P,,+c,-1) = E-"Pf;+c,-1) = E-"(BE,)cp)/[(BEp)(p)Je',}.

Here we use a CW-structure for (BEp)(p) having one cell in each dimension
congruent to 0 or -1 modulo q.

We have the following proposition about stunted classifying spaces.

PROPOSITION 2.9. (i) Ekg p::::~~i ~ E fn 9p:r~~9 if k - m == 0 modulo
pn.

(ii) (BE(n9))l:e "" E-l:qpn9+kq where. BE(n'll is the nq skeleton o/BE. p (p) - (1::+1)g-1 P p.

This follows from the analog of the second part of Proposition 2.9 for BS1 =
Cpoo (see [2]), which leads to an analog of our Proposition 2.9 for BZ/(p). Then
we use the transfer, and the associated splittings (after localization) to deduce
Proposition 2.9 itself.

Write A as the limit of a sequence OJ = a;_1 + ..\ipi E Zp, with a_1 = o.
A consequence of the definition of Thorn spectra and Proposition 2.9 is that
P>"9+('l-1) is the following direct limit.

pi ~ E-aOqpaoq+2q ~ E-a''lpOI9+3q '---+ E-a~qpa2g+49 e.......,. ••
'1'-1 "0'1'+'1'-1 a''1+'1-1 029+'1'-1

If ..\ is an ordinary integer,

P'<+e,-1) = E-"[(BE,)cp)/(BEcp));',11 = S-"

where the last equality only holds after localizing with respect to K(l). This
can be checked by noting that L K (1)P>.,q+(q-1) E M ~ Picl , and ev(P>,q+(q_l») =
<u(S-" ).

It follows by taking inverse limits (that is working mod pr for all r) that
LK(l)P>.q+(q-l) = X-yA(l-pl. We then have the following proposition.

PROPOSIT10N 2.10.

Proposition 2.7 implies there is some element of Z E Pic1 of order q. To find
Z, note that Z must project to 1 E Zj2, so we can write Z = 5- 1 1\ X/-l- Since
Z has order q ~

SO = zl\q = (8- 1 II X/J)"I/ = s-q" XjJ9.

This means

X-yp_. = XP.9.

So J.l = {l1'p-l. By examining the group of units of Zjpr it is easy to see that jj

exists, in fact if we take 'Y = ~(1 + p) then J.l = V'I"+P which exists by Hensel's
Lemma.

An explicit isomorphism
F

Zp EEl Zlq__Pic}

is given by

F(A, n) = X(1+p)'>' !\ Zn.

We now wish to show that the elements of Pic1 come f~om geometrically
defined spectra. In particular, they are derived from complex vector bundles
over BL:p , the classifying space of the symmetric group on p letters.

We abuse notation by calling any map of spaces v : X __ BU a complex
vector bundle. When X is compact, the map lands in some BU(n) and hence
defines a vector bundle (though Dot uniquely); we define the Thom spectrum as
usual (see for example [22]) to be the desuspension of the Thorn space of that
bundle by the (real) dimension of the bundle. Thus the Thorn spectrum doesn't
depend on the dimension of the bundle. If X is not compact, we define the
Thorn spectrum by taking limits of the Thorn spectra of the compact subspaces
of X. Recall that a Thorn space has a spherical cell in dimension n if n is the
dimension of the vector bundle; we call the cofiber of the inclusion of that cell
the reduced Thorn space. This guarantees a spherical 0 cell in a Thorn spectrum.
The reduced Thorn spectrum is the cofiber of the inclusion of this 0 cell, and we
denote the reduced Thorn spectrum of v by Xv.

Let ~ = p - [PJ be the virtual complex vector bundle over BEl" given by sub­
tracting the trivial bundle of dimension p from the permutation bundle. Recall
that K((BEp)cp») = Zp with topological generator~. We make the following
definition.

DEFINITION 2.8. For..\ E Zp

P,He,-1) = ([BE,J")cp).

The transfer (BEp)(p) -+ SO is a [«(1). isomorphism,so L K (1)BEp = L K (1)SO.

By the Thorn isomorphism L K (1)P>,q+(g_1) E M ~ PiC1.

We write P;:' for the stunted skeleton of (BEp)(p):

P;:' = [(BE,)c,)Jem
) /[(BE,)(,)Jen

-
11.

Picl == {LK(1)(P>,q+(q_1) /\ S) AEZp , 05 i <q}.
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SI A (KOAX)2~ ([(OAX)i~ (KAX)i

'" K1,.(X) = /C".(S2') = /C, .•(sn).
Now suppose JCt,.(X) = K.(SO). We want to show JCO.(X) = ](0.. (S2r) for

some r. We are interested in the following cofibration:

);(KO AX)i~(KO A Xli ~ (K A X)2 ~ );'(KO A X)2.

Assume that KO.(X) :;; KO.(S2r). Then there is an equivalence,

);" KO '" (KO AXli.

There are two differences we will see when p = 2. One is that the localizations
of ordinary even dimensional spheres have square roots that are not topologically
close to localizations of ordinary spheres. The other difference will be caused by
the fact that Z~ is not topologically cydic. Because of these facts, for p = 2
we will see that the analog of Proposition 2.10 does not hold. In other words,
ordinary spheres and the analogs of the P~g+(q-l) are not sufficient to give Pic,.

3. Calculation of Picl for p = 2

In order to minimize the technicalities surrounding the difference between the
functors L 1 and LK(I)' in this section we write KO for the real K-theory spec~

truro completed at 2. We use K for the complex ]{-theory spectrum completed
at 2. We write

/C".(X) = ~[(.(X A M(2')),,

Hence we get

(6)

51 /\ r:2r KO

~1

,AI
~ r:2rKO

~1

~ E2r K

1~

N={ Z/(2) *"O,1,2(mod8+2r)
o else.

The element 1/ acts non-trivially whenever possible. Now we can map I<O/\.M(2)
into the spectrum with homotopy N by using a generator of one of the Zj(2)'s
in dimension 2r. If this map commutes with multiplication by 1/ (as it must)
then it cannot be a map of groups, since 1]2 on the generator of 1ro(I<O 1\ M(2))

with the obvious KO.-module structure.
One can check that (7) is not realizable as a [{D.-module. Suppose (7) bolds.

Map KO to (KO II· X)2 by using a generator of one of the Z2'S and the KO­
module structure. The ](O.-module structures force this map to be injective on
homotopy, and hence the homotopy of the cofiber would be

The sequence is a cofibration before completion because K :;; KO II M(1/). Com­
pletion is localization with respect to a homology theory, so the sequence is still
a cofibration.

We are assuming that (K /\Xh ::: K and we wish to prove that (KO /\X); ::::
r:2r KG. First note that (6) splits rationally, since TJ is rationally trivial. This
shows that (KO /\ X)2 has the right number of Z2'S in the right places to be an

even suspension of [{0;.
The homotopy of (l{0 1\ X)i is a module over KO.(SO), and by using this

fact (in particular that 1/3 and 21] are null), the cofibration (6), the value of
1l'.«(I{ I\. X)2) and a diagram chase, we can deduce tbat (for some r)

~.«KOA Xli) = );" KO. or

{

Z2 * == 0 (mod 4 + 2r)
..«(1<0 A Xli) = Z/(2) *" 1,2 (mod 4 + 2r)

o else
(7)

THEOREM 3.1. Let p :;; 2. The following are equivalent:
(i) L K (1)Z E Picl.

Oi) ]W.(Z;Z/(2) = [(0.(5'; Z/(2)) for some k.
(iii) /CO. (X) = /CO.(S') for some k.

Note that /CO.(S') = [(0.(5'), and similarly /C".(S') = [(.(5'). Theo­
rem 3.1 follows from Theorem 1.3 and the following lemma.

PROOF. We start with the second statement. Recall the spectrum

LEMMA 3.2. [(I).(X) = [(I). ¢> ]W.(X; Z/(2)) = [(0.(5"; Z/(2)) for
some r. Similarly, K 1,.(X) :;; K: l ,.(S2r) {:} KO.(X) :;; KO.(S2r) lor some r.

as well as

Y = );-'RP' A CP' = M(2) A M(~).

Note [(0 A Y = [(I) = K A M(2) and K = KO A M(~). These are all easy
to prove by calculating the mod 2 cohomology of the appropriate connective
theories. Consistently below, when we write 1/ as a self map, we will mean to
smash TJ on the sphere with the spectrum concerned.

/CO. (X) = lim]W.(X A M(2')).,
In general KO.(X) =f:. K:O.(X) unless KO.(X) is finitely generated over KO•.
It is also not necesSarily the same as the 2-completion of KO.(X) unless KO.(X)
is finitely -generated over ](O•. KO.(-) is introduced here for the same reason
we introduced K 1,.(-) in section 2; we need an integral invariant so we can
work with real Adams operations. The same caution applies - ,.1(:0.(-) is not a
representable homology theory since it doesn't satisfy the direct limit axiom.

We need the following specialization·of Theorem 1.3 for this calculation.
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is a multiple of 2, but its image under our map is supposed to be "1 2 times the
generator of No, which is the generator of N 2 _

It follows that (KO 1\ X)2 has the homotopy of I::2r KO, and the fact that it
is a KG-module spectrum allows one to construct an equivalence with r;2r KO.

To prove the first statement, if we know KO(X; Z/(2)) we proceed as in the
case where we knew KO.(X), and if we know K(I) .. (X) we use Theorem 1.3,
the second statement, and reduction modulo 2. 0

For the next theorem, note that Z; ::::: Z2 x Zj(2).

Now let X>.,n be the fiber of (1/J3 - ~)2". It is easy to check, by induction,
using the-diagram of cofiber sequences

X>..,i - X>",'+1 ~ XA

1 1 1
X~,i- KO

(1/>3_>.);
~KO

1 (rJo~->..r+11 1(rJo3_~)

• ~ KO ~KO

The map to Z!8 takes X to ihe dimension (mod 8) a/the generator of KO.(X)
for X EPic},; M is by definition the kernel of this map and there is an isomor­
phism M _(Z2)X where ev(X) is the eigenvalue of the Adams operation fj;3
on KOo(X). The extension is non-trivial and

(8)

THEOREM 3.3. There is an extension of abelian groups

o --+ M --+ Pic! --+ Z/S --+ O.

and KO..(X~) = E" KO.. that K:O .. (X~,n) is an extension on:"KO.. by the KO..
module K:O"(X>,,.n_l) (that is, the long exact sequence in KO.. (-) is really a short
exact sequence). Since r = 0 when ~ = 1, and X>..,2" 1\ M(2n) = X 1,2" /\M(2n ),
it follows that r = O. This shows that X>.. E M_

We want to check that ev(X>.) = ..\-1, i.e. ev(Tj!3 k o o(xA)) = ~-1. Actually,
since the map [(0 --+ K induces an isomorphism

KOO(XA ) ~ K1,o(XA),

PiCl :::: Z; x Zj4:::::: Zj2 x Z2 x Zj4.

To prove this, our first steps are just as in the odd primary case. The proofs
that ev is a homomorphism, that

ev(t/J3koo(XA» = ev(Tj!3 k,.o(x>.), and it is this second number we will actually
compute.

To make our calculation we need to understand K 1,.. (1(0). We will describe
this with the isomorphism

[,p~-111l1

LK(l)X = fiber[(KO AX);~(KO A X);]' K1 .• (K) = m,p'condZ~, K.)

via the map

- J 1"l/'~ /.l
f E K1,.(K) ~ [v E Z~ ~ (f(v) , S ~(KAK)i~(KAK);~K)J.

To see this we start by reca.lIing tha.t K has a. Zj(2) action give by 1/J-l
(complex conjugation). We have

We denote this element of mapscont.(Z;, K .. ) by 7. This result a.ppears origi­
nally in [1], and is also deducible from [16), though it doesn't appear in exactly
this form in either place. It is spelled out in this form in [8].

We note Z;: :::::: Z2 x Zj(2) and with this Z2 in mind as a quotient of the Zj(2)
action,

K1, ..(I<0} = mapscont.(Z2,K.. ).(9)

(,p3 _ .1)2' ,,(,p3 _ 1)'"

and that ev is injective are exactly as before, except replacing I{ with KO.

LEMMA 3.4. ev is onto.

",~->..

PROOF. Take ~ E Z;. Let X~ = fiber(I<O~KO). Since..\ is a unit,
>. == 1 (mod 2), so t/J3 - >. has the same effect on [{(I).. as 1/;3 - 1. Therefore
[{(I).. (X>..) = [«(I) .. , so X~ E Picl_ We need to verify that X>.. E M, and then
compute ev(X>..)_

To see that X>. EM, first note that ~ == 1 modulo 2 since ..\ is a unit. So
t/J3 -..\ = (1/;3 -1) + fl where J.l is an even 2-adic integer. It follows that

modulo 2n
, and hence if n > 1 (since then IM(2") has order 2n )

KO", K hZ/(2) and (K A K);hZ/(2) '" (I( A KOj;

fiber[(,p3 - -1)2") A M(2") '" fiber[(,p3 _ 1)2') A M(2").
from Lemma 3.5 below. In the second equivalence above, Zj(2) acts on the
second factor. (The first equivalence is implicit in [3 1 Corollary 3.8] a.nd is made

;.,
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more explicit in the proof of 3.1 in [21], which gi~es a map inducing LEMMA 3.5. For any spectrum E, where Z/(2) acts only on the spectrum K,

[(E /\ K)'lhZ/I') '" (E /\ KO);.

~.(E /\ K /\ CP' /\ M(2)) = K(I).(E) 0KII). K(I).(CP')

PROOF. Since completion and homotopy fixed points are both homotopy in­
verse limits, it suffices to show

(E /\ K /\ W)hZ/I') '" (E /\ KO /\ W)(10)

fO' W = M(2"), .11 n.
Let C be the class of all spectra W satisfying (to). C is closed under cafibra­

tions and retracts, so if we can show CP2 A M(2) is in C then it follows that
M(2n ) is in C for all n.

K+{CP2) is free over Z/(2) since :r: and x 2 are generators over K·, 80 X and
v)-l(x) = -x + x2 are generators over K* (1,&-1(x) is determined by recalling
that x = L - 1 where L is the tautological line bundle).

Hence K*(CP2 A M(2» = K(1)*(CP2) is also free over Z/(2), and it follows
th.t K(l).(CP') = K.(CP' /\ M(2») is f,ee over Zj(2). Fin.lIy,

where X{i:) is the k skeleton of X. On the category of Z/(2)-CW complexes,
KR'" is represented by the naive ZJ(2) spectrum obtained by letting Z/(2) act
by conjugation on the complex J(-theory spectrum.)

Since If-I gives the non-trivial involution of K, the homotopy fixed point
spectral sequence for 1r.. ([K 1\ K]i hZ/(2») collapses at

E - W(Zj(2)-!C (K)) _ {fC1,.(K)Z/(') • = 0
2 - e J t," - 0 else.

(K /\ K); ----"---.., [(

.",."1 k
(K /\ K); ----"---.., K

KO· = ~KR"((EZj(2)I'J).

Equation (9) follows because an element ofmapScont.(Z;, J(.) is fixed under the
Z/(2) action iff it passes to the quotient Z2 = Z;/Z/(2).

Using the multiplicative properties of the Adams operations,

one can check

/,(1/\ ,,')(tf>" /\ 1)/ '" "./,(1/\ ,,'.-')/.

in other words

(,," /\ 1)/(x) = "~7(xv-I).

Now we examine the diagram

(K /\ X,), _ (K /\ K012 1"(,,,,3_.1.)
(K /\KO);

",,3,,11 ""3"11 ",,31'111

(K /\ X,); _ (J( /\ KO), 11'1(",,3_,,\ (K /\ KO)2.

is free over Z/(2) since the second factor is.
So the homotopy fixed point spectral sequence for E 1\ K 1\ CP2 1\ M(2)

collapses at

E, = ~.(E /\ K /\ CP' /\ M(2))z/(,) =

[K(I).(E) 0K(1). K(I).(CP')]z/(,) = K(I).(E).

Siooe this is .lso ~.(E /\ KO /\ CP' /\ M(2)) = ~.(E /\ K hZ/(') /\ CP' /\ M(2)),
the natural map Ell K hZ/(2) 1\ Cp2 II M(2) --+ (E 1\ J( 1\ CP2 1\ M(2))hZ/(2) is
an equivalence. 0

We want to know the eigenvalue of the leftmost vertical map on "'-0. Suppose 9 E
1ro(KAX,,);. We abuse notation by identifying 9 with its image in "'-0(1< I\KO):i.
Then 9 is an element of maP8cont.(Z2,K.) that is in the kernel of 1 II (t/;3_
A). This kernel is the kernel of precomposition by multiplication by 3 minus
multiplication by A. In other words, g(x3) = ).g(x).

Now

(vr' /\ l)g(x) = ,,~g(x· r l
) = g(x. 3-1 ) = ,>.-lg(X).

The second equality follows because g(x .3-1) E "'-oK, so 1/J3 acts as the identity.
Hence ev(X),) = A-1. 0

We have now shown Theorem 3.3 except for identifying the extension. Suppose
the extension was trivial. Then we can lift the generator of Z/(8) to an element
X 1\ S1 (where X E M) of order 8. So (X 1\ S1 )"8 ~ SO (after appropriate
localizations), i.e. X A8 = S-8 in Picl. So ev(XhS ) = ev(X)S = ev(S-S) = 34 •

This is a contradiction since 34 does not have an 8th root in Z2.
To see what the extension is, let X E M be the element with ev(X) = 3.

Then X 1\ Efl is a lift of an element of order 4 in Z/(8), so (X 1\ S2)A4 E M, and

ev((X /\ S')") = ev(X"). ev(S") = 3'·3-' = I

We need the following lemma for the proof of Lemma 3.4. j so X 1\ fP has order 4 in Pic1. It follows that the extension is as claimed.
i
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4. Stunted projective spaces and Picl

In this section we will construct" most of the elements in Pict at p=2. We use
stunted projective spaces and related objects to do this. OUf constructions give
these elements as localizations of geometrically defined spectra related to Rpoo ,
in place of the abstract construction of Lemma 3.4.

Recall the short exact sequence (8) from Theorem 3.3, where M~Z; is
an isomorphism. We will use the ideal of virtual vector hundles 4Z2 ~ Z2 ::::
KOO(RPOO) to make Thorn spectra.

Now 'R"(f(RPOO
) = Z2 has topological generator>. - [1] where ..\ is the usual

line hundle over Rpoo and [IJ is the one dimensional trivial hundle. Call this
generator e. Then

(RpOO )' = E-1Rpoo fRP '

and generally

(Rpm)n' = E-nRpn+m/Rpn.

To simplify notation we make the following definition,

DEFINITION 4.1. For l' E Z2,

P'Y+ 1 = (RpOO)'Y€.

This is convenient notation because when n is a positive integer, Pn is a
desuspension of the coliber of Rpn -1 --+ Rpoo .

Thorn spectra of even elements of KOO(RpOO
) = Z2 give elements of Pic1,

because these have complex structures so we can use the Thorn isomorphism
theorem to show K(I).P2'Y+l := K(I).SO. We will restrict to studying P.I1'+1
because their localiza.tions are in the subgroup M of Theorem 3.3 (also, Propo-­
sition 4.5 implies this is not a real restriction).

LK (1)P41'+1 E M since bundles divisible by 4 in KOO(RpOO
) satisfy the hy­

potheses of the KO-theory Thorn isomorphism so KO.(P41'+d = A:O.(RpOO ) =
KO.. (SO) (the fact that we are using KO.(-) instead of KO. is not an issue,
since if the KO Thorn isomorphism holds for v, then so does the KO A M(2n)
Thorn isomorphism for all n > 1, and KO.(-) is just the inverse limit of these
theories). We remind the reader that we are taking reduced Thorn spectra to
make these elements of Pic1.

It is worth making explicit that Ps corresponds to (0,2) E Zj(2) X Z2 = Zr
The point is that

ev(LK (1) P s} = ev(¢3b-~LK(I)RPoo/RP.) = ev(:E-4L K (1)Rp OO )

= ev(LK (1)S-') = 9 = 3'.

To see the second equality above, observe that the map

KOo(ItPOO) _ KOo(RpOO fRP')

must be multiplication by some non-zero element of Z2 (the map can't be zero
since KO.(Rp4) is all torsion). It follows by naturality that t/J3 has the same
eigenvalue on both Z2'S concerned. To identify the element of Z/(2) x Z2 ;; Z;,
we observe that 3 E Z~ = Zj(2) X Z2 is a topological genera.tor of the Z2
summand. We observe that this is unlike the p > 2 case since no Sk satisfies
both LK(l)Sk E M and ev(Sk) ;; 9.

It is interesting to see just how one constructs these Thorn spectra. As an
example we will take 4A + 1 = VI7 and make the Thorn spectrum of 4A~, that
is, P..(ff. Let n ;; 4a + b where 0 5: b < 4. Let ¢>(n) ;; 8a + 2h

• James periodicity
gives the following equivalences. For a simple proof see [11].

PROPOSITION 4.2. If k - m =: °(mod 2n ) then

Ekp;::+</J(r:)-l :=:Em pt+<fI(n)-1.

To construct the reduced Thorn spectrum (RPOO)4>.€ ;; (RPoo)(.;T'l-l)€, we

do as described above: construct the reduced Thorn spectrum for 4~ restricted
to each RP,p(n) and fit these together into a direct system. In [2], these are
identified with stunted projective spaces E- 4kP:::tCn ).

If we want to include P4~:I"'(n) into a stunted projective space with .p(n+ 1)­
,pen) more cells, we have two choices

P· 4k+4>(n) p4.l:+<fI(n+l) d
4.1:+1 --+ 4.1:+1 an

p4n+if(n) _ :E-2'" p 4J:+4>Cn )+2 n :E-2" p4kHCn+l)+2 R

4k+l - 4k+1+2 n --+ 4k+1+2'" .

The next Thorn spectrum (for RP4i(n+l») tells us which space to use. In terms of
the number v'I7, this is a 2-adic integer so there is a. sequence of zeroes a.nd ones
which represents it. For example we note that 99612 == 17 (mod 216). Thus the
first 14 terms of the sequence for 4A = VI7 -1 is 10011011101000. To construct
P.Jf7 we will use the 1's in the dyadic expansion of 4), to guide us. Because 4),
always starts with two 0'5 we always begin with pt since 4>(2) = 4. The next
zero in the expansion for VI7 tells us to include this in pf since ¢(3) = 8. At
the next stage, the 1 that is present is an instruction to include pf into :E-8 pJ 7

rather than into Pr. We get the sequence

p{ --+ pf --+ :E-Spi6 _ E- SpJ7.

Here we are using the fact that 4>(4) - 4>(3) ::::: 9 - 8 ;; 1. The next 0 gives us the
inclusion

E- SpJ7 --+ r;-spJs.

To summarize the process, each time there is a 1 in the dyadic expansion we use
Proposition 4.2. Each time there is a 0 we just include one stunted projective
space into the next. If we continue in this fashion through the digits which
represent 9961 we will have :E-9960P~~~. To continue, we need to find the next
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PROOF. The map A: Rpoo _ SO is a ]((1).. isomorphism [17, Theorem 9.1}.
Consider the diagram of cofibrations (where ~ is the obvious inclusion)

E2P3 _ * _ I;3P3

After localization, A :;:;; *, therefore :£3P3 :;:;; r;SX, but since by Proposition 4.5
2:3 Pa :;:;; I;S Ps after localization, we are done. 0

LK(1)P4~+1 ::::: X9~ E M ePic!

PROOF. See the proof of Lemma 3.4 for the meaning of X 9 .... This Proposition
follows immediately from knowing L K (1) P4.l..+! E M, since' the construction of
P..v.+l implies that ev(P.4).+d =. 9-),. 0

PROPOSITION 4.5.

The first author has proposed that Picard groups are an appropriate way of
indexing homotopy groups. These projective space examples allow one to make
this more precise. Let J be the connective image of J spectrum and let

N, = {k E NI2'J,(P"+l) ¥ OJ.

Then {No} forms a 2-adic neighborhood system which converges to a 2-adic
integer, .t If >. is an. ordinary integer, h, then ~ = -4h - 1. In general, (~+ 1)

[P"+l' LK(1)X] = [5-", LK(l)X].

If we do this for the v'I7 example we get N, = {klk" -v'I7 - 1 (mod l')).

O.

can be viewed as giving the "dimension" of the element of PiC1, and if h happens
to be even,

5. Interesting examples in PiC1 at p:;:;; 2

The spectra {L K (i)P4>..+d form a subgroup of PiC1, in fact they give the
subgroup 0 x 2Z2 ~ Zj(2) X Z2 = M ~ Picl, so the cokernel of the inclusion
into M is Z/(2) x Z/(2). We can try to lift the generators of the quotient.
(1,0) lifts to an element of order 2, X_i. X_t A X_t :;; SO after localization.
Similarly, (0, 1) lifts to X 3 , which is a square root of LK(i)PS. M is parametrized
by XC-l)-ab for (a,b) E Zj(2) x Z2. Whenever a or b (or both) are odd, we get
element of Pie l with the following properties:

• [«(1) A X(_t)"3b :;:;; ]((1). This is just because s(a,6) E Pict .
• 1r,,(XC_1)_3b) has exponent 4. In fact the homotopy of this spectrum is

"half" of the homotopy of L1 M(2) (L1 M{4) in case both a and bare
odd) in the sense that it is generated by the periodicity element and one
lightning flash.

Let A = (_1)<136
. If exactly one of a or b is odd, then t/J3 - A == 2 (mod 4")

in dimensions divisible by 4. From this it is clear that 4 is an exponent for the
homotopy groups of the fiber, and there is a non-trivial extension in 1l"8.i:+Z(X),)
making 4 the actual exponent for that group. Similarly, if a and b are both odd,
13

- >." 4 (mod 8).
Of course X), can be constructed as in Lemma 3.4, but here we describe "lifts"

of these elements when a or b is odd constructed by successively attaching mod
2 (or mod 4 when both a and b are odd) Moore spectra. Our construction will
give lifts in the sense that the spectra. we construct will be o-connected spectra
that localize to the elements of PiCl under consideration.

The spectra we are interested in describing then, are the X), where ..\ ==
3,5, or 7 modulo 8. We describe two of the cases in detail below.

Write M(2) for the mod 2 Moore spectrum with the bottom cell in dimension

THEOREM 5.1. Take r;1: X>.. E PiC1 with oX == 3(4). Then X), has homotopy
exponent 4, and there are O-connected finite type spectra Xn , 0 ~ n < 00 and a
O·connected spectrum X oo :;:;; ~mn X n such that

(i) LK(l)Xoo = X.
(ii) L;l: n M(2) _ X n _ X n+1 is a cofibration for some kn > 0 and In ;

E"M(2) ~ X n .

(iii) r;1:"M(2) _ X n _ r;.i: .. -,+1M(2) on K(I) .. carries the copy of [((I).

corresponding "to the top cell of the domain to the copy of [((1) .. cor­
responding to the bottom cell of the range and is 0 on the other copy

A

1

1
E'X

~

~

1

~so

1

RP'

,1 II
Rpoo~ SO

digits in vT7 - 1. By the results of [2] on Thorn~spaces over projective spaces,
this is precisely the construction of the Thorn spectrum.

Before we continue, we note the following results.

PROPOSITION 4.3. L K (i)PSn+1 = LK(1)S-Sn.

PROOF. ev(P_sn+d = ev(E-8n Rpoo ) = ev(s-sn). 0

PROPOSITION 4.4.

E-2LK(1)P4-r_l::: L K (1) P41'H

PROOF. The results of [12] applied to the finite subcomplexes of the spec­
tra. concerned show that K:O.. p:-2P41'-d = KO.(P41'+d. The evident map
B-2P4-y-l __ P41'H together with naturality shows that both spectra have the
same value under the map cu. So Theorem 3.3 shows the spectra are homotopy
equivalent. 0

PROPOSITION 4.6. LK (l)PS :;:;; LK (l)X where X is the complex S-4 U'I e- 2 U2
e- 1 •
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find a map E8k-lM(2) _ Xn that localizes to the map in our tower above. Take
Xn+1 to be the cofiber; it follows that Xn+1 is finite, connective and torsion.

It remains to check that LK(l)X= = X where X oo = lim,. Xn. We have just

made the tower

of K(l) .. , and in 1I".. L) takes vtri to the generator of 'lra~_lLIM(2) for
appropriate r, s.

PROOF. Without loss of generality, assume k = O. Since A == 3(4), the effect of
1/13 -,\ on 1l"4mK02 is to take Z2 to 2Z2 by multiplication by some 2-adic integer
congruent to 2 modulo 4. Call that integer rm. This is sufficient to establish the
claim about the homotopy exponent since 1f.(XA) is thus an extension of direct
sums of Z/(2rs.

We get the following diagram:

B" M(2)

1
* ~

B" M(2)

1
X, ~

·B"M(2)

1
X, ~

x), _ [(02~ K02 _ EX,\..

An analysis of the diagram in homotopy shows that after applying LK(l)'

the map M(2) _ EX>, is onto in homotopy. Checking the diagram in K(l) ..
shows that this map has the same effect in I{(l). as M(2) _ Sl. Let X..\,l be
the cafiber of L K (1)E- 1M(2) -+ X),. It follows from the effect on I{(l). that
X)"l E Picl.

Using the cofibration that defines X)"l, we see that

ev(¢3!K:o.... (x.>.)) = ev(¢3!K:o.... (X.>..1).

The numbers on the left are all congruent to 3 modulo 4, hence so are the
numbers on the right. Therefore X)"l satisfies the same hypotheses as X)" so
we can iterate this construction.

We get the following tower of spectra:

B- I M(2)~ (SO)i ---"'-- (SO)i

1 1 1
~M(2)

1
Now if we apply £1 to this tower we get our tower involving the Yn's, and since
L1 is smashing, that implies that L1Xoo =~ Y.. = X>.. But X is K(I)-local

by hypothesis, so X = LK(l)X = LK(1)L1Xoo = LK(l)Xoo . 0

In the case of Ek X), where A == 5(8), we can prove a. theorem simila.r to
Theorem 5.1 involving Zj(4) Moore spectra instead of Zj(2) Moore spectra.

Theorem 5.1 shows that we can construct these examples by adjoining Moore
spaces. We would like to construct X), as in Theorem 5.1 explicitly by giving
specific Xi and attaching maps to gain some understanding of these examples.
The calculations necessary to give the complete description are extensive. In the
following we will give a sketch proof of an explicit construction. It should not be
viewed as complete. We try to indicate where to do the calculations and what
calculations are necessary.

We wi,h to look .t [M(2), M(2)] •. Thi, oonespond, to ,.(M(2) 1\ M(2»
by Spanier-Whitehead duality. Further, we want maps which are essential in
LK(l)' Thus we need to calculate J.(M(2) 1\ M(2». Using [12] we can check
the following.

Note that ~i X)"i = * since each map in the direct system is 0 on homotopy.

Next we take the constant tower X), and map it into the tower constructed
above. Call the oofiber at each stage Y... We get a new tower:

Here Yo = * and Yt = L 1((1)M{2). The- spectrum~ Yn is obviously EX),.

We wish to replace the tower we just constructed with a tower of finite spec­
tra. Assume inductively that Yn = LK (1)Xn where X n is finite, connective and
torsion. Then for k arbitrarily large, we can use the n = 1 telescope conjecture to

B- 1 LK(l}M(2)

1
x,

B-1 LK(l)M(2)

1
*

B- 1LK(l)M(2)

1
X)"l

B-1 L K (I)M(2)

1
Y,

~

~

B- I LK (1)M(2)

1
X),,2

B- 1 LK(l}M(2)

1
Y,

~

LEMMA 5.2. The map

'8'_1(M(2) 1\ M(2) ~ J8k_l(M(2) 1\ M(2))

i, onto nnd J8k _ l(M(2) 1\ M(2)) = Z/4 Ell Z/2.

LEMMA 5.3. The class oj order 2 in JSJ:_l(M(2) 1\ M(2» lifts to give a map

B8k - l M(2) ~ M(2)

which is detected by 1(1)•.

PROOF. A specific choice for the generator involves composing the Bockstein
6 with the periodicity element. This choice is non-trivial in 1(1). The other
choice involves adding twice the generator of order 4, and the extra term is 0 on
K(l) since it is a multiple of 2. 0

Given any class of order 4, if we add the class of order 2 from the lemma
above the result still has order 4, so we get



110 MICHAEL J'-HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY CONSTRUCTIONS OF ELEMENTS IN PICARD GROUPS 111

COROLLARY 5.4. There is a choice of the class of order..f in JSl:_ 1(M(2)-/\
M(2)) so th,j , lifted map

f. :E"'-' M(2) ~ M(2)

is detected by K(l)•.

The following picture gives the first few groups of J.(M(2)). The pattern
beginning in dimension 7 continues periodically every B dimensions. The class
labeled a in the following pic~ure represents vt and vtka is the corresponding
generator in dimension 8k + 8. The class labeled b represents a. generator of the
image of J on the bottom cell. If Pi E 1I'"8J:_l(SO) is' a generator of the image of
J, then Pi a :;;; vii b. In addition, VI a (VI b ) is a name for a generator of the Zj4
in the 10 stem (9 stem).

/.
Next we wish to calculate what f:;;; h does in homotopy.

THEOREM 5.5. i. I.Cvllea):;;; viCJ:+l)b.

ii. f.(vtkv1a) = V{(k+1)V1b + 7]ViJ:+8a.
iii. f .. (vtkb) = 0
iv f .. (vtkVlb) = 7]Vi1:+8b.
v. The classes vtkb, 1]vtka + vtkv1b, and their 7] composites give the kernel

of f.·

The proof of this follows easily from the calculations given in [13]_
Now we can begin the construction of X. Let Xl = M(2). Let X 2 = M(2)U,

EI6 M(2). Let

p: X, ~ E16 M(2)

be the pinch map. Theorem 5.5 allows one to define some classes in 1l"3l(X2 )

which map to the kernel of f under p. If we define

g2 : E31 M(2) _ X 2

so that g..p. maps onto the kernel of P'" then Theorem 5.5 can he used to show
that 9 - P induces in homotopy the same map as ,,£}6h. Thus we can form
X3 = X 2Ug E32 M(2). Calculations with modified Adams spectral sequences can
he made that show we can iterate this process and construct X oo .

THEOREM 5.6. The homotopy of LI(X) satisfies

~.(L,(X)) = KO.(M(2)).

The K(l),,-theory of X satisfies

K(l).(X) = K(l).(s").

This discussions in this chapter have an interesting connection with the gen­
erating hypothesis. Let Xn be the nth stage of the construction outlined im­
mediately above, or the spectrum of the same name from Theorem 5.1. This
is a finite spectrum with KO.Xn having order 2n . Yet the E2 term of an ap­
propriate modified Adams spectral sequence looks just like the E2 term of the
corresponding stage for a construction of bQ 1\ MO(2). This spectrum has order
4. The generating hypothesis would require 1f.. X n to have elements of order 2n .

It is hard to see how this might happen.
The Xn's provide counterexamples at p = 2 to the most optimistic conjecture

one might make as an L1 version of the generating hypothesis, since the map
4: X n __ X n is 0 on 1r.. L t X n , but is of order 2n- 2 . There is an example of this
sort in [7, Remark 1.7], our example has the property that 4 is of high order if
n is large.

6. An exam.ple for PiC2 at p = 2

Let Al be a complex which is free over A(l) on one generator, where A(l) is
the sub-algebra of the Steenrod algebra generated by Sql and Sq2. Let Mil be
E-4H p2. We will prove the following result which gives a novel element in Pic2.
This example is alluded to in [6]. Its importance in this context was certainly
not appreciated at that time.

We believe this example gives an element of Pic2 that is not the localization
of any ordinary sphere, but is in the kernel of the map (18) of section 7; that is,
this element is not detected by doing algebra over the Morava stabilizer algebra.
This is analogous to the role P5 has in PiCI'

We use the notation x(n} for the n skeleton of x.
THEOREM 6.1. There is a map

v, :E'«A, J\ M,)I')) ~ A, J\ M,

so that if B is the cofiber, then H,,(H"(B)j Q.) = Zj2 fori = 0,1,2. In particular,
LK (2)B E PiC2. In addition, if

g9 - (AI 1\ MII)(9)~A1!\ Mil
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is r1 cofiber sequence, then,

S15 _1:6«A t -/\ Mv)(9})~AlA M"

F, • F,~

1 1
E, ~ E,

(11 ) 1 1
K(Z/2,0) ~ K(Z/2,8)

1>1 1"
K(Z/2; 6, 7, 12, 14, 15) [{(Z/2, 14, 15, 16)

is h~o i:- *:

We begin with some generalities. Let X{l) be the Thorn complex of the
natural bundle over n,S2. Let X s be the Thorn complex of the natural bundle
over nss , and recall that Mil ;::: X~4) . The following is proved in [6]. In particular
note that X(l) ;::: X 2 and use [6, Theorem 3.4] for i and [6, Theorem 3.7] for ii.

THEOREM 6.2. i. CP21\Rp2 "Xs ;::: ~3X(1).
ii. Al to. X s is an X{l) module.

We construct a self map 1;6Al !\ Xs --+ Al 1\ X s using tJ2 E 1I"6(X (I}) and the
module structure over X {I}.

Now consider the diagram

We want to understand PV2i. If this composite is null, we can make a V2 map
on all of At /\ Mil, otherwise there is some obstruction. We calculate a little of

ExtA(H"'(A1 AXs), Z/2). This is quite easy and we will just state the result.

PROPOSITION 6.3. ExtA(H"'(A l A X s), Z/2) has the following values. For
s = 0 and t = 0 we have ZJ2. For s = 1 we have the following classes: h 2o , v'l,
h'l1 , h3o , V3,···. Fors = 2 we have the following classes: hio' vi, h'l0V'l, h'l1 h 'l0 .
For s = 3 we have just h~o and these are all the classes for t - s < 16.

We now begin the proof of Theorem 6.1. In the following diagram we con­
struct the Adams resolution for A1 A X s through the range we are interested in
and through level one. This is the left hand side. The right hand side is the
corresponding resolution of Ai 1\ X S/A1 1\ M v . The map between them is the
map induced by p.

g: E 6 A I A MJ} -- AII\XS

;'vih'(,,,) ~ 8.(7) + 8.(4, 1)

8.(0, 2)8.(8) ~ 8.(8, 2) + 8.(7,0, 1)

8.(8)8.(0, 2) ~ 8.(8,2) + 8.(4, 1, 1)

(8.(0,2),8.(0,0,1),8.(0,4),8.(0,0,2),8.(0,0,0,1)).

First note that h can be represented by

(8.(0,2),8.(0,0,1),8.(8)).

We use the fact that 9tSq(8) = hit and

to see that

Similarly, 91 can be represented by

(13)

(14)

(12) hOi',,) ~ 8.(8)" + (8.(7) + 8(4, I))" + '"

+,,8.(0,0, I)" + ,,8.(1, 2)" + ,,8.(2, 2)" + ,,8.(1,0, I)"

where we don't know (5 and we only know (4 + 108 + 109 = O. The projection of
V'l to E I lifts to F1 and we get the factorization

r;6A l /\XS -. F I - E l ·

This map restricted to FI sends the fundamental class in dimension six to the
generator and is zero on the other fundamental classes. Let us call this map Vz

also. Then (12) shows that

such that P9 = pV2i but 9156 = * we could add this map to V'li to give a map
which lifts to a V2 map E 6 A 1 /\ M" _ AlA MI" So we need to determine if such
a map exists .

Suppose we have a 9 as in (14). Using the low dimensional homotopy groups

of the domain and range of p, it is easy to check that pgl1'l-skeleton = *. Also,
g must be 0 on cohomology, so the continuation of 9 to E I lifts to F I :

9 : r;6 Al /\ M" -- FI

Since pg = pV2i, 9"t13 = SqZSq1Sq4t6 from equations (13) and (12).
We claim that while such a map can exist on the 13 skeleton (induced from

taking 9 as described and 0 on the other fundamental classes), it cannot be
extended to all of E 6 Al A MI" We can extend to the 14 skeleton because h30
which is represented by t13 has order 2. We can extend to the 15 skeleton because

It follows that pV2i t- O.
We now need to know if we can alter the map V'li : E 6Al 1\ MJ} _ A 1 /\ X 5 so

that it is null after composing with p (and still the same on the bottom cell of
the domain). If we had a map

~,
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'.

the 15 cell is not attached to the 13 cell that hits~ the image of haD. In order to
extend to the last cell though, we need v1hao :;:; *, but

v1hao :;:; (VI, h~o, VI)

because d2 hao = vlh~o in the ASS for XCI), and Vthao + haoVl has image v1hao
in Al 1\ Xs . From [14, Lemma 4.3] it follows that

(vl,h~o,Vl) = h~oVl UI VI = h~o

in ll' .. (X{l»), 80 the same is true in At 1\ Xfj, and h~o 'I •. This proves that no
map as in (14) exists unless we at least restrict to the 15 skeleton.

We will now show that there is such a map if we restrict to the 15 skeleton,
i.e. there is a

93 : (£6 Al 1\ M v ){15) --+ At 1\ X s

with PUs = pv2ilui-skeleton and 931s.. = •.
Let

91 : (E6At 1\ M v )(15} --+ Al /\ X s

be any map such that pgd13- skeleton ::; pV2il13_skeleton (such a map can be
derived framg as described above). If P(91 - v2i)114_skeleton t *, we construct
a map

£: .B6 A 1 AMII --+ AtAXs

which is trivial on the 13 skeleton and such that pc = P(91-V2i) when restricted
to the 14 skeleton, using that p... is onto in dimension 14. So if we take 92 = 91 - c

then P921 14- skeleton = pV2il14_skeletow We can repeat this in dimension 15 if
necessary to produce 93 so that P9a = pV2i on the 15 skeleton. 91 1s_ skeleton - 93
will be the desired map that lifts to V2 : ~6(AI 1\ M v )(9)) --+ Al /\ M v as in
Theorem 6.1.

This completes the proof.

We speculate that this example plays a role in Pic2 which is similar to the
role played by Ps. We do ~ot believe it is just a suspension of the sphere. The
complete understanding of the role it will play will require substantially more
information about Pic:!.

7. Algebraic approximations

In this section we discuss an algebraic approximation to Picn . The impor­
tant observation is that we can use the Adams-Novikov spectral sequence to
approximate 1f.(X). Roughly speaking, if X and Yare two elements of Picn
and E{n).(X) t E(n).(Y) as comodules, then we know they are different ele­
ments of Picn. Furthermore, it will be easy to see that in the generic situation
(p large with respect to n), if X and Y give the same comodule structure, they
are equal in Picn .

PROPOSITION 7.1 (HOPKINS-RAVENEL). fIX satisfiesv;;'~IBP.(X)= 0, then

i. BP.(LnX) = v;' BP.(X).
ii. The Adams-Novikov spectral sequence for LnX conver!1es to 1f.. (LnX),

"nd

E, = v;' Ext;;~.BP(BP.,BP.(X».

The first part is part of [19, Theorem 1]. In the second part the identification
of the E2 term follows from the first part, and the convergence of the spectral
sequence was communicated to us by RaveneL

Recall that E(n). = Z(p)[VI, •.. ,Un, u;;l], where E( n) is the Johnson-Wilson
homology theory. From [17], E(n) has the same Bousfield type as K(O) V ... V
K(n). We define a flat E(n). algebra:

En = W F ._ [[Ut, ... ,un-tlJ[u, u- 1
].

Here W F.n is the Witt vectors of the field F pn. It is isomorphic to Zp[~] where
~ is a primitive pn - 1 root of 1. The ui's all have degree 0, and lui = -2. The
map from E(n). to En sends Vi to Uiul-p' and Vn to u1- pn

.

By composing the map E(n)• ....... En with the usual map BP• ....... E(n)., we
get a map from BP. to En. Since En is flat over E{n)., this induces a complex
oriented homology theory by

En(X) = En 0BP. BP.(X) = En 0E(nj. E(n).(X).

Motava proves in [15]

PROPOSITION 7.2 (MORAVA). If BP.(X) is VO"" ,Vn_l torsion, then

W,,_ 0z,,) v;' Ext;;~.BP(BP.,BP.(X)) = W"(Sn, En(X».

Here Sn is the nth Morava stabilizer group. This is a p-adic Lie group related
to the study of height n formal group laws in characteristic p.

Example: Take n = 1, p > 2. Then E 1 is completed complex J(-theory, and
81 is the group of units in Zp congruent to 1 modulo p, which is isomorphic to
Zp. To see how this operates on E1(X), a generator for this group is the Adams
operation 1/JP+l. Note that 8 1 acts non-trivially on E 1 (SJ).

Now for our purposes, we are less interested in the homology theory En than
in a theory we define below. This theory will be the same as En in case BP.(X)
is finitely generated, but will have the a.dvantage of coming with a more tractable
Adams-Novikov spectral sequence. It will not be a homology theory; we have an
inverse limit in our definition that will prevent this theory from satisfying the
direct limit axiom.

We confuse En with its representing spectrum and inductively on k < n,
define En/(pio, ... ,v~·) to be the cofiber of

v~· :E'kl"kl En/(pio, ... , v~k.:n --+ En/(pio, ... ,v~"'.:{).
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type n. We consider the diagram

X 1\ D 1\ K(n)~ ~imJ Ln(X 1\ M(p'O"" ,v~·.:;) 1\ D)] 1\ K(n),

(The spectrum E(n)j(pio, ... ,f)~~ll) is defined similarly.) In case there is a finite
spectrum M(pio, ... ,v~·) satisfying

BP.. (M(pio,... ,v~"» = BP.. /(p"n, ... ,v~"),

En/(pio, ... , v~,.) = En 1\ M(pio, ... ,v1").
We have

XI\K(n) ~

1
[~J L.(X 1\ M(p'o" .. ,v~·.:;))) I\K(n)

1

so we view En as a "pro-spectrum" and use this to define the theory below.

DEFINITION 7.3~ The nth Marava module of X, Kn,.(X) is defined by

En :::: lim

(io,•.. ,i .._d

En/(p'O, _.. I v~"':;) (Since D is finite, it doesn't matter where it is placed in the parentheses in the
lower right item.) D II K(n) is a wedge of K(n)'s indexed over the cells of D, so
the vertical maps are inclusions of a summand i.n a wedge.

On the other hand, once 0' is sufficiently large, M(a) 1\ D is a wedge of copies
of D indexed by the cells of M(a) and the map

Kn,.(X) = lim [En/(pio, ... ,v~".:n].. (X).
M(a') 1\ D _ M(a) 1\ D

(io , ... ,I n _.)

Since smashing doesn't commute with inverse limits, Kn,.(X) is not, in gen­
eral, the same as En(X) though the two theories coincide when X is finite.

PROPOSITION 7.4. If A.:n, .. (X) is finitely generated over En, then there is a
spectral sequence

E 2 = H·'·(SniJCn,.(X»~ W Fpn ®zp 1r.(LK (n)X).

PROOF. This spectral sequence is constructed by taking the inverse limit of
the Adams-Novikov spectral sequences for Ln(X /\ M(pio, ... ,v~...:t». Each
of these spectral sequences converges and has an E 2 term of the given form
by Proposition 7.1 and Proposition 7.2. T.qe finiteness condition in the hy­
potheses guarantees that all relevant lim1 terms vanish. Also, these spectral
sequences are 0 in negative homological degrees. Together these conditions
imply that the inverse limit of these spectral sequences converges to the in­
verse limit of the abutments, which will be the homotopy of the inverse limit of
Ln(X /\ M(pio, ... , v~n.:n)·

Since M(pi o , .•. ,v~n':ll) is Ln _ 1 acyclic,

Ln(X 1\ M(pio
, .•• ,V~".:ll» = LK(n)(X 1\ M(pio, .. , V~".:11».

We need to verify that LK(n) commutes with this inverse limit. Clearly the
inverse limit is local, so we need only check that the map

X 1\ K(n) _ [~Ln(X 1\ M(p'o, ... ,v~·':!))J /\li(n)
J

induced by the inclusion of the bottom cells in the generalized Moore spectra is
an equivalence. To do this, let D be some fixed generalize Moore spectrum of

is the identity on the D indexed by the bottom cells and trivial on the others
if a is sufficiently large and 0:' is sufficiently larger than a. It follows that the
bottom map is an equivalence, and hence that the top one is also. 0

The theories K n ,.(-) are of interest to us because of Theorem 1.3. We owe
the reader a proof of (ii) {:} (iii) which we supply at this point.

COMPLETION OF PROOF OF THEOREM 1.3. The implication (iii) implies (ii)
is easy; K(n). (2) is just the reduction of Kn,.(Z) modulo (p, VI, .•. , Vn_I).

To show the other implication, assume K(n).(2) = K(n) •.
We claim that

(15) [E(n)((p'O, ",v~·':!l].(Z) = [E(n)j(p'O, ., ,v~·':!lJ•.

The proof is by induction on N = in + ... + in_I' The base case is N = n, in
which case E(n)j(p'o, ... ,v~'':!J = K(n) '" (15) hold"

First we observe (by induction) that [E(n)j(pio, ... , v~".:nJ. (Z) is a mono­
genic E(n).-module, with generator in even degree. This is true by hypotheses
if N = n. If N > n, let j be such that ij > 1.

The cofibration

(16) ~";-'E( )( '0 ';-1 "-'),u n p , ... ,Vj , •.. ,vn_ 1

E( )(( '0 "-') E( )(( '0 I "-')--+ n p , ... ,vn _ 1 --+ n p , ... Vj, ... ,vn_ 1

shows that [E(n)j(pio, ... , v~·.:n].(Z) is concentrated in even degrees (since this
is true for the homology theories represented by the end terms of cofibration(16).

We also have a. cofibration

21'1_1 io i._I 'Vj i o i .. _ 1(17) B E(n)j{p , ... ,vn_I)~E(n)j(p , ... ,vn_I )-

E( )(( '0 I '.-') V ~(';-I)(,pj-')+lE( )( '0 I '._')n P,,,,,Vj, ... ,vn _ 1 ~ n P,,,,,Vj,,,,,vn _ 1
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It follows that if (E(n)/(pio, ... ,v~"-=-nJ.(Z) has more than one generator, then
so does the quotient of multiplication by Vj. But by cofibration (17), this is just
[E(n)/(pia, ... ,vJ, ... ,v~~.:; )].(Z), which is monogenic by inductive hypothesis.

Once we know [E(n)j(pio, ... ,V:"-=-l' )J.(Z) is monogenic, it follows that the

map from E(n)/(pio
I'" ,v~"':;) to E(n}j(pioI'" ,v~".:;) /\ Z given by a genera­

tor is a surjection, and hence by counting (only finitely many elements in each
dimension) an injection.

So by induction, (15) holds for all N. This implies that

lim E(n)j(lo, ... ,v~".:t). = lim E(n)/(pio, ",' ,v~"~n.(Z)
(io,... ,;.._I) (io, ... ,i .._ I )

Now suppose X is in the kernel of 0". Then the E2 term of the Adams-Novikov
spectral sequence for X is isomorphic to that for LK(n)SO, so there is a class in
the £2 term corresponding to SO --+ LK(n)SO. If we use this class to map SO to
X (using the collapsing of the spectral sequence), and extend to LK(n)SO --+ X,
by naturality we see t.hat it is an isomorphism on £2 terms (we are mapping the
E 2 term for the sphere (a ring) to the other E 2 term (a copy of the same ring)
by sending 1 to 1). 0

At this point it is convenient to prove the following.

PROPOSITION 7.6. Pien is a set.

which shows that Kn,.(Z) = Kn,.(SO) = En. 0

To describe our algebraic approximation, suppose X E Picn . Then Kn,.(X)
is isomorphic to some suspension of En. So we have a map

(18) PiCn --+ {isomorphism classes of rank 1 En-Sn-modules}.

By an En-Sn-module, we mean an En·module M with an Sn-action on M com­
muting with the En-action in the following way:

En 0 M ...!!!!..- En 0 M

for any 9 E STI'

We would like to understand the set on the right side of (18) a bit better.
Let K be some rank one En-Sn-module. Because the Sn action is compatible
with the En-module structure on 1<, to describe 1< it suffices t.o describe the Sn
action on K o ::::: WF... [[UJ, ... ,Un_I]]. So

(19) {isomorphism classes of rank 1 En-Sn-modules} =

{isomorphism classes of rank 1 WP... [fur, ... , un_r]]-Sn-modules}.

Now both of these ate actually groups (the group operation is tensor product),
and by Proposition 8.4, the right hand side of (19) is isomorphic to

H'(Sn;WF,. [[u" .... Un_d)X).

PROPOSITION 7.5. The map 0" : Picn __ Hr(STliWp.... [[UJ, ... ,un_rl]X) is
an injection if n 2 ~ q and p > 2.

PROOF. Ifn2
~ q = 2p-2 and p > 2 the spectral sequence of Proposition 7.4

collapses. This is because the sparseness of the Adams-Novikov spectral sequence
[18,4.4.2] tells us the first possible differential is dq+1 , and [18, 6.2.10J says that
differential is too long to exist in this spectral sequence.

1
M ----!..-...

1
M.

PROOF. We note that Proposition 7.5 implies that Picn is a set if p is suffi­
ciently large. For general p we show that Picn has a finite filtration so that each
sub-quotient is a set.

To define the filtration, we consider the spectral sequence of Proposition 7.4.
This spectral sequence collapses at some finite Em +l (depending only on p and

n) since the same is true for the localized Adams-Novikov spectral sequence in
Proposition 7.1 and this spectral sequence is obtained from an inverse limit of
those.

Let Fo = Picn . Let X E Pien be in F r if the image of X is 0 under the map
in (18). (This is equivalent to A.:n,.(X) = A.:n,.(SO) as a module over Sn.) If
X E FI , let l.x be the fundamental class in the E 2 term of the spectral sequence
for X (LX = 1 in the E 2 term of that spectral sequence). X E Fi if d2(l.x) =

.=di(tX) = O. Note then that Fm =Pm+! =... since the spectral sequence
collapses a.t Em +1' and by the proof of Proposition 7.5, Fm = {LK(n)SO}.

FofF1 is clearly isomorphic to the image of the map (18), and hence is a­

set. We claim that FifFi+1 is in one-to-one correspondence with a subset of the
possible di+l(l.)'s.

Suppose X and X' are in Fi and di+1(tX) = di+l(tXI). Let Y E Picn be such
that LK(n)(X 1\ Y)::::: LK(n)SO, so tx"y is a permanent cycle. It follows (from
the multiplicative property of Adams spectral sequences f18, Theorem 2.3.31)

that di+1(tX) = -di+l(ty), and hence that LK(n)(X' 1\ Y) E Fi+!.
In other words, if X and X' are any two elements of Fi such that di+J(tx) =

di+l(tX 1 ), X and X' "differ" by an element of Fi+!.
Since this is a finite filtration on Pien, and the associated graded is a set, so

is PiCn· 0

8. Digression on Picard groups of G-modu1es

The materia.l in this section is standard, but we reproduce it here in the form
in which we use it.

Suppose G is a finite group, R is a commutative ring, and G acts on R by
ring a.utomorphisms.
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Let C be the category of R modules with "compatible" G actions. M E C
means G ads on M by group homomorphisms and the compatibility axiom is
the commutativity of

R0M ~R0M

The proof proceeds in two steps. First we identify Pice with the group of
crossed homomorphism modulo principal crossed homomorphisms, and then we
identify that group with the cohomology group. The second step can be found
in [10, X.3].

M ---.!.......... M.

Notice that C is a symmetric monoidal categorYt where the operation on un­
derlying R modules, is 0R and the G action is the diagonal one. We will denote
the operation by 1\.

1 1 DEFINITION 8.5. A crossed homomorphism from a group G to a G-module V
is a set map 1 : G - V such that I(gh) = gf(h) + f(g). The set of crossed
homomorphism from G to V forms a group by using the group operation in v_

Suppose M is in Pice, and e E M is an R-module generator. This defines a
crossed homomorphism

It is easy to check that the evaluation map

(gt)(m) = g(f(g-I m )).

PROOF. The "only if' follows from above. To see the "if," take M- 1 the
R-module HomR(M, R) with the G-action

COROLLARY 8.3. If R is local and noetherian then M E Pice if and only if
the underlying R-module of M is free of rank one.

'" H1(G; RX
).

II : Pice - Pice,

JM,cG__Rx

as follows: let 9 E G, then ge is another R-module generator of M since 9
is an automorphism of R, so ge = uge where u g E R X

• Let IM,e(g) = u g .

Since Ughe = ghe = 9(Uhe) = gUhge = §UhUge it follows that fM,e is a crossed
homomorphism. (we are using multiplicative notation for the group R X

).

It is easy to check that if (M, e) and (N, e' ) are elements of Pice together wi th
specific choices of R-module generators, then IMto.N.e@e' = IM,e . fN,e"

We define the group Pice to be the set of elements of Pice together with
specific choices of R-module generators. There is an obvious quotient homomor­
phism (forget the generator)

and the correspondence (M, e) _ fM,e is a homomorphism from Pice to the
group of crossed homomorphisms.

This homomorphism is act.ually an isomorphism: if f is a crossed homomor­
phism G - R X, define a G action on M = R, e = 1 by ge = I(g)e, gm =gmf(g)e.
This gives a compa.tible group action, and f = fM e.

Using this isomorphism to identify Pice with' the group of crossed homo­
morphisms, the kernel of IT is the set of crossed homomorphisms of the form
9 _ U g E R X when ugr = 9r for some fixed r E R X • These are called principal
crossed homomorphisms.

We've just proven the first isomorphism in

Pi ~ {crossed homomorphisms: G --> R X
}

ce {principal crossed homomorphisms}

M 0R HomR(M, R) - R

o

LEMMA 8.2. If R is local, M, N are R modules such that M ®R N :::- Rand
M is finitely generated, then M::::::::: R. If Ris noetherian we can drop the finitely
generated hypothesis on M.

DEFINITION 8.1. Pice is the abelian group of isomorphism classes of invertible
objects in C, that is the set of M E C such that there is some NEe with
M/\NooR.

is a G-map.

PROOF. There is a proof of the first claim in [4, 2.5.4.3]. The proof is by
considering the isomorphism M 0R N -:::: R modulo the maximum ideal m of R
to see that M/mM is isomorphic to the residue field of R. Then Nakayama's
lemma implies M is isomorphic to R.

If R is noetherian, then since m is finitely generated, the fact that M/mM is
the residue field implies M is finitely generated automa.tically. 0

From now on, we assume R is a ring such that M ®R N -:::: R implies M ::::' R
(note that WFl'n [[U1, ... , Un_I]) is local and noetherian). Then Pice is the
group of isomorphism classes of free rank one G-R-modules. We want to prove
the following proposition.

We sketch a verification of the second equality replacing R X with any G­
module V. Recall the har complex: B n = Z[G]x(n+!) and H"'(G; V) is the
cohomology of the cocomplex HomG(B.. , V).

Now Homsets(Cfl, V) = HOIDG(Bn , V) by the correspondence

PROPOSITION 8.4. Pice = Hl(G, R X ). {(gl, ... ,gn) - [(gl, ... ,gn)) ~ {g[gil·· ·lgnJ - '[(g" ... ,go)).
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",

Before going on, we briefly describe how we are about to construct M (A) (V I).
If A happens to be an ordinary integer, we can make the spectrum

E),llInl MO(pio, ... ,U~n':2' v~_d ::;;:
~E),llInIMO(vio, ... ,v~".:;, V~r_l) = ~E),ltI ..IM~(VJ).

If A is somep-adic integer instead, we observe that EmLnM~(VI) depends only
on the residue of m modulo the degree of a Un self map of M~(VI). So for each
T, one can define E),ltI ..ILnM~(VI) to be the kth suspension of LnM~(V/)where
k = Alunl modulo the degree of a Un self map of M~(V/). What we want to do
is fit these together in a direct system and take the limit.

Now we continue with our construction. Each M~(VI) admits a. u~r map for
some k r . Without loss of generality, assume that kr+l is a power of p times k r ,

and that these maps commute with Lr . We are allowed to make these assumptions

by Theorem 9 of [9J.
Let Xr E Z be a decreasing sequence with Xr ;::: Amodulo kr . Then Xr_l -Xr =

ur_1kr _ 1 . To construct M(A)(V1 ) we take the direct limit of
[tlk11'" 1:'"""1 [lIk~] .. :>

EX'I\) ..IMr(VI)~EZ21IlnIMf(VI)~E:r"1It1 ..IM~(VI)~
E'""3,

-+ E"31\) ..IM~(VI)""'---:"E;I;31\)nIM~(VI) -+.

Using this identification, it is straightforward to verify that fEZ' {::} f is
a crossed homomorphism to V, and t.hat f E B 1 {::} f is a principaJ crossed
homomorphism to V.

9. The p-adic integers em.be<i in Pien

In this section we will construct a homomorphism Z" <.......+ Picn, that extends
the obvious homomorphism Z <-....t Pien obtained by m 1--+ LK(n}sm1v"l.

This construction will gen-eralize the construction summarized in (3) in sec­
tion 1.

We denote by M°(pioI'" ,v~n.:;) any finite spectrum with top cell in dimen­
sion 0 I satisfying

BP",(MO(pio, .. _ ,v~".:n) := BP./(pio, ... ,v~n.:;)

up to suspension. (The restriction on the dimension of the top cell puts the
bottom cell in dimension I-n-i1 lvtl-· ---in_ 2/vn_21, which gives the dimension
of the omitted suspension above.) We abbreviate the ideal (pi o , ••• ,v~".:n by
(VI).

We will use the direct system of spectra

'(pi. "-')' '(.1. i._,)M , ... ,v,,_2 M Jf ".', vn _ 2 -+ ..

'. '.

(with im ~ im for all m), such that r:P induces

1 E BP./(V/) I-> pi0-i0v{l-i l . .. t!,,".:;-i_-"1 E BP./(VJ ).

and commutes with the pinch maps to the top cells.
The nilpotence theorem ensures that given a multi-index [', there is a multi­

index I with im ~ i;" for all m such that M(V/) exists. It also guarantees
that for any multi-index [ such that M(V/) exists, there is a multi-index J

with im > im such that a map r:P as above exists. By another application of the
nilpotence theorem, we can fix a cofinal sequence of spectra in this direct system.

Now fix a multi-index I so that MD(V/) is in our sequence, and fix a AE Zp.
We will construct a spectrum we callM(A)(V1 ). This is one of two main steps
in our construction. We will then use the collection of M(A)(V/)'s as I varies
to construct a spectrum S), such that LK(n)S>.. E Picn and S>.. 1\ MD(V I ) ::::

M(A)(VI ).

Let t be such that MO(V/) has a V~_t map, and define

M~(VI) ::;;: MO(pio, ... ,v~".:;, v:;_t) ::;;: cofiber([v~_lr).

Since M~(VI) is defined using iterates of the v~_l map, these spectra come with
maps

° I lr ° IM.W )~M'+I(V )

inducing the obvious map on BP. (multiplication by v~_l)'

Because the maps [v~r]Ur are K(n). isomorophisms,

K(n).(M(A)(V I )) =K(n).(limM:WI
)) =K(n).(M'(V I

)).

'.
Note that M(A)(V I ) is not very well defi.ned. Firstly, it obviously depends on

the original choice of MO(V1 ), and not necessarily just I. Besides that, it. may
depend on the choices of the X r and hence of the kr • Nevertheless we have the
following proposition.

PROPOSITION 9.1. LnM(A)(V1) is well defined up to the choice of MO(V1).

PROOF. We begin by assuming we have one system of Vn maps which we will

call v~ r and another system we call v~: .
Now make choices of Xr and x~ as in the construction for M(A)(V1 ). The

choices of Xr ensure l.hat LnEzrM~(V/) and LnEZrM~_l(VI) are independent
of the choice. Also, X r - x~ is divisible by the smaller of kr or k~, so there is a V n

map between any stage of the two direct systems in one direction or the other.
This map commutes with t r by assumption, and after applying Ln is invertible.

. This gives an equivalence between the two direct systems after applying Ln.
We also have to check independence of the choice of t and u~_l map on

MO(VI ). By the nilpotence theorem, it suffices to compare the construdion for
V~_l to that for ti ::;;: st and V~_l ::;;: [v~_lls. In this case, a choice of v~r and X r
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4:

By construction,

K(n).(S(A)) = ~K(n).M(A)(VI)

I

. I· K() ~X'MO( i o i .._~ 00 )
=~I n.,t.. p "'.'Vn _ 2 'Vn _ 1

= K(n).EZ:! MO(poo, ... ,v:'_l) = EZl K(n).,

is a homomQrphism.

(ii) The map (20) is an injection.

for V~_l gives us k; = k,r and v~~ = V~H, and~ the system for t' is obviously a.
cofinal subsystem of the system for t. 0

PROPOSITION 9.2. Let

l' MO(V1) ~ Mo(VJ)

be a map in our sequence oj spectra (so J ~ I).
(i) There are choices oft and tI~_l (one choice oft for both MO(V 1) and

MO(V J )) so that ¢ induces maps

1. ,M~(VI) ~ M~(VJ)

commuting with the pinch maps to the top cells and taking

1 E BP.. /(VI ,V~r_l)""" pi0-i0v{,-i1.. ·v!.":--22- i
.. - 2 E BP.. /(VJ

l v:;_l)'

(ii) The spectra M(..\)(V 1
) and M(..\)(V J ) can be defined $0 that the tPr.

induce a m~p

·11
m
t
;£;

~

!I

II

so LK(n)S(A) E Pie".

PROPOSITION 9.3.

(20)

(i) The map Zp -+ Picn by

A~ LK(n)S(A)

1> , M(A)(VI ) ~ M(A)(V J ).

PROOF. To see that the first condition can be satisfied, just take t large
enough so that v~_l maps exist on both spectra, and then invoke the centrality
result ofthe nilpotence theorem (to take t even larger if necessary) in order that

1:1

PROOF. To show our map is a homomorphism, we first note that once we
choose a map

MO(VI ) A MO(VI )~ MO(V I )

E-'I".IMO(V 1 )~ E-'I••IMO(VJ )

commutes. Define rPl on the cofiber t.o make the ladder of cofibrations obtained
by extending downward commute.

Then inductively define rPr so that the ladder of cofiber sequences

MO(V1 )

"'1
•~ MO(VJ )

1·,
'?

~

(by mapping out to the top cell of, say, the leftmost factor of the spectrum on the
left) the diagonal of the smash product of the direct systems defining M(..\)(V I)
and M(N)(V I ) maps to the direct system defining M(>.. + ..\')(VI ).

These maps commute as I increases, giving a map S(..\) 1\ SeA') -+ S()' +N)
that is a K(n).-isomorphism.

Finally, to show this homomorphism is injective, suppose

LK(n)S(A) = LK(n)s".

commutes.

To satisfy (ii), we note that by the nilpotence theorem if we take the kr's

sufficiently large, both M~(VI) and M~(VJ) have v~r maps commuting with
1.· 0

Mf(V 1)~ M~(VI)

',1
Mf(VJ )

M~+l(VI)

'·1 1"+'
M~(VJ) _ M~+l(VJ)

We observe that

S(A) ~ MO(VI ) '" LnM(A)(V1
)

for any A.
By our hypothesis then,

LK(n)M(A)(V1) '" LK(n)[S(A) A MO(V1)] =
LK(n)[LK(n)S('\) A MO(VI )] = LK(n)[LK(n)s" A MO(VI ) = LK(n)MO(V I ).

We can now complete our construction; take

S(A) = ~ LnM(A)(vl ).
I

Hence for each r, we have a map LK(n)M~(VI) -+ LK(I1)M(...\)(V1) that is
nonRzero on the K(n) homology coming from the top cells. But this implies
El'rlto"ILK(",)M~(VI)~ LK(",)M~(VI) for all r, and hence), = o. 0
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ALL COMPLEX THOM SPECTRA ARE HARMONIC

IGORKRIZ

ABSTRACT. In this paper, we prove that all complex Thom spectra are

harmonic and all real Thom spectra are harmonic at p>2.

I. Introduction.

A spectrum is called harmonic at a prime p if its p·localization

is local in the sense of Bousfield [2) with respect to the homology

theory associated with the spectrum
K(O)vK(1)vK(2)v ...

where K(O) = K(O,O) and K(n) for n>O are the periodic Morava

K-theories (see [9)). A spectrum is hannonic if it is hannonic at all

primes. Hannonic spectra were extensively studied by Ravenel [9), who

showed that they have very strong and interesting properties: For

example, an elementary observation shows that if two hannonic

connective spectra X, Y have the same n-connected cover (for any

chosen n), then they ditTer only by a wedge of rational Eilenberg­

MacLane spectra.
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