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Constructions of elements in Picard groups

MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SADOFSKY

ABSTRACT. We discuss the first author's Picard groups of stable homo-
Lopy. We give a detailed description of the calculation of Picy, and go on
to describe geometric constructions for lifts of the elements of Pic;. We
also construct a 15 ¢ell complex that localizes to what we speculate is an
interesting element of Picg. For all n we describe an algebraic approxima-
tion to Pic, using the Adams-Novikov spectral sequence. We also show
that the p-adic integers embed in the group Pic, for all n and p.

1. Introduction and statement of results
We begin with the basic definition. The functor
X =S5 AX

is an automorphism of the category of spectra, which preserves cofibration se-
quences and infinite wedges. If T is another such automorphism, then Brown's
representability theorem applied to 7.(1'X) gives a spectrum St with

TX=SrAX
and
Spo1 A Sy = 5",
This motivates the following definition.
DEFINITION 1.1. .A specirum Z is inveriible if and only if ihe_re is some spec-

trum W such that

ZAW=5"
Pic is the group of isomorphism classes of invertible specirn, with multiplication
given by smash product. Given an isomorphism cluss A € Pic we will write S*
for a represeniative spectrum.
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Pic itself is not very interesting; it is just the integers and the elements are just
spheres. To see this observe that if Z € Pic then H.(Z) = Z in some dimension,
say k, and 0 in other dimensions. One can then map Z to 5% by working up
the Postnikov tower so that the map induces an isomorphism on homology. By
smashing the analogous map for Z~! with 2 one gets a map from S* to Z that
is an isomorphism on homology. It follows that Z = S* v A for some A. Since
the same is true for £7!, it follows that 4 = *.

We can alter the definition to apply to a category of local spectra, but. varianis
of this argument tell us that Pic = Z even if we restrict to the p-local (or p-
complete) categories. The sitnation is more interesting if we look at the category
of K{n)-local spectra where K{(n) is the ath Morava K-theory. We have the
following definition.

DEFINITION 1.2, A K(n) local specirum Z is tnveriible in the K(n)-local cat-
egory if and only if there ts a spectrum W such that

LK(")(Z AW} = LK(H}SG.

Pic, is the group of isomorphism classes of such spectra, with mulliplication
given by
(XY} — Lrim)(X AY).

We postpone showing that Pic, is a set to section 7.
The following result is useful in identifying elements of Pic,. We describe the
functor K, .(—) in section 7. Tt is essentially a completion of E{n).(-).

THEOREM 1.3. The following are equivalent:
(l) LK(H}Z s in Picﬂ.

(il) dim;((,,)_ F:(ﬂ),z =1.

(il) Kn,o(Z) = Kn o(S*) for some k.

PROOF. We reserve the proof of (i) & (iii) for section 7. (i} implies (ii) by
the Kiinneth theorem for Morava K-theories.

To show (i} implies (i), assume Z satisfies (ii). Let ¥ = F(Z, Lx(n)S") where
F(4, B) is defined to be the representing spectrum for the cohomology theory

X —[X ANA, Bl
There is an “evaluation” map
ZAY — Lgys°
that is the adjoint of the identity in

[F(zl LK(n)SDL F(Zl LK(n)SO)] = {Y, F(Z, LK(H)S{))].

We claim that this map is an isomorphism on K (n). and herice an equivalence
after localizing.
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To see this, consider all spectra X such that the evaluation map
(1) ZAF(Z, LK(,,)X) ——*LK(H}X

is an isomorphism on K(n). It is casy to see that X = K(n) works. Furthermore,
the class of X that makes (1) an isomorphism is closed under cofibrations and
wedges,

Hopkins and Ravenel show that if X is a finite type n specirum, then Ly X
has a finite filtration where each cofiber is a wedge of K(n)’s, This result is
unpublished, but can be deduced from {20), Corollary 8.2.7 and Section 8.3. It
follows that X finite type n makes {1) an isomorphism on K(n). But if X is
finite, '

) ZAF(Z LgmyX) = LgmX
is the same as
ZAF(E, LK(H]SD) AX — LK(H}SO AX,
and that map is an isomorphism on K(n) if and only if
Z A F(Z, LK(,.,)SO) — LK(H)S‘] )
is. O3

In the next several sections, we want to give some particular examples from
the zoo, Pic;. We will find spectra which are quite familier and which represent
various ¢lasses in Picy, and others which are consiructed in a simple way from
quite natural objects, but have surprising properties. '

Before we continue, we would like to illustrate how some of these examples
come about. It is a consequence of Thompson’s work [23] that the EHP sequence
at odd primes is just a Bockstein spectral sequence when one uses vy periodic
homotopy. To be precise, let M?(p’) be the Z/(p/) Moore spectrum with top
cell in dimension 0, and let J be the image of J spectrum at p. An interpretation
of what is shown in [23] is that there is a map

QZH+152n+1 — Qm(_f A Mﬂ(pn))

which is an equivalence in v; periodic homotopy. Thus the EHP spectral se-
quence, using v; periodic homotopy theory is just the spectral sequence associ-
ated with the system of spectra

2 MO(p) = MO(p%) — - — MO(p") = oo
The cofibration sequences at the stages of this direct system are
Mo(pn) — Mﬂ(pn+l) s Mn(p).

The direct limit of this system is M%(p®). On K(1)., each map in the system is
an isomorphism on the copy of {1}, associated to the cell in dimension 0, and
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0 on the other copy of K(1}, and hence K(1), of the limit is K{1).(5%). In fact
consideration of the cofiber sequence

571 — LgS™! — M%(p™)

shows that the direct limit is homotopy equivalent to S° after applying L)

Now if A is a p-adic integer, we can write A as (the limit of) a sequence
a; = a;_1 + X;p’ where }; is an integer such that 0 < A; < p, and a_; = 0. Using
A as a template we can describe another system of specira

A »
(3) Mﬂ(p} .EL M=1%(p) — M—Qan(’p2) i; M—qa;(pz) —_

Here ¢ = 2p — 2 = |uy|, and u’l’i_l : E“’pi_lM(p") — M({p') is an Adams map
inducing a K-theory isomorphism and multipiication by 'u’l”_l on-BP,. In this

th

direct system, the nth stage is M ~9%-1(p®), and the map from the n"! stage

to the (n+ I)th stage is the composite

Anz"
M—qﬂl_j(pn) Yy M—qan{pn) — M—qn,.(pn-!-l).

If A happens to be an ordinary integer, then as in (2) the direct limit of this
system is M ~*?(p™) which is the same as §* after applying Ly

It is clear that in K(1)., the of maps are isomorphisms, so that K{1). of the
direct limit is the same as before. Thus the limit has the X (1)-theory of §°. This
means that for each A we have constructed an element in Pic;. The homotopy
groups will depend on the p-adi¢ integer A. One of the main results of this note
will be that at odd primes, essentially nothing else happens. We discuss this in
detail, from a slightly different perspective, in sectior 2. At the prime two, we
get similar examples and some more.

The rest of the paper is organized as follows. Section 2 calculates Pic; at
odd primes, and shows that the examples illustrated above contain everything.
Section 3 calculates Pic; at p = 2. Section 4 constructs elements of Pic; at
p = 2 related to RP™. Section 5 constructs some bizarre elements of Pic; at

= 2. Section § contains an interesting example in Pic; at p = 2. Sections 7
and 8 discuss an algebraic approximation for Pic, based on the Adams-Novikov
spectral sequetice, and section 9 generalizes the construction above te prove Z,
embeds in Pic,.

This paper was motivated by attempts on the part of the other authors to
better understand a talk given by the first author at the Adams symposium in
Manchester. The basic definitions and many of the results are due to the first
author. -

We thank the referee for a thorough reading and many constructive criticisms;
we also thank Mark Hovey for useful comments on an early draft.
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2. Calculation of Pic; at p > 2

Let 7 be a topological generator of (Z,)*. For example we can take 7 to be
{14p)€ where £ is a primitive (p—l)”'t' root of unity in Z,. K will denote complex
K-theory completed at p, and K, the Adams summand. We will be considering
the Adams operation . We will need some notation from section 7; we define
IC1,* (X) by

K1,+(X) = lim K. (X A M(p")).
n
It is easy to check that Xy {X) = K.(X) if K.(X) is finitely generated over K,.

We introduce K .(—)} because we need an integral invariant so we can con-
veniently work with Adams operations. Also, because of Theorem 1.3, K1,.{—)
is better adapted for studying Pic; than X, is. In fact, the proof of (ii) <
(iti) of Theorem 1.3 shows that K .{(X) = 0 & K(1).{X) = 0, and hence that
K1+ (X) = Kyo(Lr(n)X). Neither of these facts are true for K.(—) in place of
K1 4(—) as the example X = Af(p*) showas.

The theory K .(—) does have the drawback of not being a homology theory in
the usual sense; because of the inverse limit in its definition, it fails to commute
with direct limits.

PROPOSITION 2.1. There is an extension of abelian groups
0— M — Picy, — Z/(2) —0.

The map Picy — Z/(2} takes X to the dimension (module 2} of the generator of
K1,(X). M is the kernel of this map, and ev : M — (Z,)" is an isomorphism,
where ev(X) is the eigenvalue of Y7 on Ky po(X).

Note by Theorem 1.3, X € Pic; & K .(X) = ’Cli.(S") forsomek. X € M,
we can take ¥ = 0. We will prove the statement about M in stages.

Before we embark on the proof, we have to note some number theoretic prop-
erties of ¥7. Since it is an Adams operation,

4) Tan(97) = 4"
an K% The following facts follow since + is a topological generator of (Zp)=.
P = l(medp) it (p—L)k
(5) Aty R | (mod p*1)
Lt A | (mod p"t?) if pfs

LeMMA 2.2. The map ev is a homomorphism,

PROOF. Suppose X, Y € M. Then Ky .(X) = K1.(Y) = K1,.(5%), 50 by the
Ktnneth theorem,

_ Ki X AY) =K1 (X)) ®x, K1,.(Y)
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as a module over the Adams operations, sinice the Adams operations are multi-
plicative. [J
LEMMA 2.3.
Jem-1lm .
LK(l)X =ﬁbcf‘[(Kf\X)p (K A X)p]
ProoF. This follows from Theorem 4.3 of [5] and the fact that Ly yX =
(L& X)p (Proposition 2.11 of [5]). Taken together these imply that if

yT-1
J = fiber[ K —— K]

then Ly1yX = (X A J)p. (Because of (5), it doesn’t matter that we are using
K where Bousfield uses KOyy.) 0O

LEMMA 2.4, ev is snjective.

ProoF. Suppose ev(X) = 1. We get a diagram

X —— (K AX), B

d
50

where g is a generator of mo{& A X). Since ([¢7 — 1] Al)g = %, g lifts to X, and
since X is K(1) local, the lift extends to a map

f M LK(I]SD nad X.

Now K(1).{g) is monic, so it follows that K{1).(f) is monic. Therefore,
K(1)u(f) is an isomorphism because the source and target are both isomor-
phic to K(1),, so since the source and target are K(1)-local, f is a homotopy
equivalence. [J

LemMa 2.5, Let X be the fiber of

T —y"
/aaiNg

(K AX),

Then X-yn = LK(I)SEH'
Proor. Let f below be an inclusion of the Adams summand in that dimen-

sion.
K
4

Lx(nSz" EE“K,, Ez"K,,
Let i : §% — K, be the unit. By (4), (¢7 — 4")fi = #, s0 fi : 5** — K factors
through Xon. But Xy is K(1) local, so the map from Ly )52 lifts to Xyn.
Using the numbers from (5) it is easy to check that this map Lk(l]Sg" —
is an isomorphism on homotopy groups. [

Xy — —_— K

B[+ ]

yn

COROLLARY 2.6. ev is onlo.

Ry
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Proor. It suffices to show that the image of ev contains the Z, C 2} that
is the subgroup of units congruent to 1 modulo p. This is becanse Lemma 2.5
allows us to deduce that the other summand of Z¥ is in that image.

Since 7 is a generator of 2, we can take v*=! as a generator of the Z
summand. Take A € Zp C 2 be a unit congruent to 1 modulo p. Let X,
be the fiber of ¥7 — A. We claim X, € M. We have checked this above in
the case A = 4"(P=3}. Any A is equal to some power of 4*~! modulo p, so
K(1).{X,) = K(1)«(X4=) = K(1). for some r.

Since v*~! is a topological generator of Z, C ZX, A = 4**~1 for some
7 & Z,. We check that ev(Xy) = y~"~1). This is true when = is an ordinary
integer by Lemma 2.5.

For other 7, choose k € Z so that ¥* = v* (mod p"). Then A = v**~ (mod
p"), from which one can conclude

Ay A M(pr) ~ X,.',t(,—n A M(pr).

From this we conclude that es(X3) = ev(Xpemny ) = y~EP-1) = y~mr-1)
where the congruences are modulo p". Since r was arbitrary, ev(X,) = 777 =
ATt

An easy formula for the homotopy of X, is given by

mu_1(Xa) = Zp/(rt - )
T A= oF
m(Xy) = {OP else.‘r

Nolice that because v is a topological generator for ZJ, for any A there are
ordinary integers £ making 4% arbitrarily close to A. This implies that no X,
has a finite homotopy exponent. This is not true when p = 2.

We remind the reader that ¢ = 2p ~ 2.

ProposttioN 2.7. The extension given above for Picy is not splii, so
Piﬂl e ZP 53] Z/q

ProoF. We will leave out Ly(;) localizations here. §-1 is a lift of the non-
zero element of Z/2. If the extension splits then 57 A X, has order 2 for some
u; that is

Xy =8 =X,
so 7 = p*. This contradicts the choice of 7 as 2 topological generator of Z7, so
the extension doesn’t split.

Since Z) ~ Zp & Z/(p — 1), the only non-split extension is the one given in
the statement of the proposition. 0O
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Proposition 2.7 implies there is some element of Z € Pic; of order g. To find
Z, note that Z must project to 1 € Z/2, so we can write Z = 5§71 A X,. Since
Z has order g,

S = ZM = (STIAX I =57 A Xy
This means
X-,.p—l = Xﬂ'—

S0 u = {/vP—'. By examining the group of units of Z/p" it is easy to see that u
exists, in fact if we take ¥ = £(1 + p} ther 4 = T+ p which exists by Hensel’s
Lemma.

An explicit isomorphism

F .
Z, ® Z/g——Picy

is given by
F()\,n) = X(I_H,),\ A Z“.

We now wish to show that the elements of Pic; come from geometrically
defined spectra. In particular, they are derived from complex vector bundles
over BL,, the classifying space of the symmetric group on p letters.

We abuse notation by calling any map of spaces v : X — BI/ a complex
vector bundle. When X is compact, the map lands in some BU(n) and hence
defines a vector bundle {though not uniquely); we define the Thom specirum as
usual (see for example [22]) to be the desuspension of the Thom space of that
bundle by the (real) dimension of the bundle. Thus the Thom spectrum doesn’t
depend on the dimension of the bundle. If X is not compact, we define the
Thom spectrum by taking limits of the Thom spectra of the compact subspaces
of X. Recall that a Thom space has a spherical cell in dimension n if » is the
dimension of the vector bundle; we call the cofiber of the inclusion of that cell
the reduced Thiom space. This gnarantees a spherical 0 cell in a Thom spectrum.
The reduced Thorn spectzum is the cofiber of the inclusion of this 0 cell, and we
‘denote the reduced Thom spectrum of v by X*.

Let § = p — [p] be the virtual complex vector bundle over BE, given by sub-
tracting the trivial bundle of dimension p from the permutation bundle. Recall
that K((BE, Yoy) = Z, with topological generator £. We make the following
definition.

DeriniTION 2.8, For A € Z,

Portia-1) = (B )iy

The transfer (B, )(,) ~ 5 is a J(1). isomorphism, so LgyBEy = LgyS°.
By the Thom isomorphism Lri1yPagig-1) € M C Picy.
We write P for the stunted skeleton of (BE, }i;):

P = {(BE )™ /[(BE )"~
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Here the subscript (p) means localization, and the superseripts indicate skeleta.
‘This explains our notation Pyyy(,—1); it has been chosen so that when A is a
positive integer,

Prgtig-1)= E_quf:+(q—1) = E_M(BEP)@)/[(BEP)(P)](M}-

Here we use a CW-structure for (BE,)(p) having one cell in each dimension
congruent to 0 or —1 modulo ¢,
We have the following proposition about stunted classifying spaces.

Prorosrrion 2.9. (i) SHPTIIM ~ mmepHtH if b —m = 0 modulo
oI

r -
(i) (BELY)E = SoRopRitM | where BT is the ng skeleton of BY,.

This follows from the analog of the second part of Proposition 2.9 for BS! =
G P (see [2]), which leads to an analog of our Proposition 2.9 for BZ/(p). Then
we use the transfer, and the associated splittings (after localization) to deduce
Proposition 2.9 itself.

Write A as the limit of a sequence a; = a;_y + Mpt € Z,, with a_; = 0.
A consequence of the definition of Thom spectra and Proposition 2.9 is that
Prg(g-1) is the following direct limit.

q T—ang pled+2g —a g po19+3¢ —azq pI2g+iyg o
P = BT R e = I L = I P e =

If A is an ordinary integer,
Prote-1) = E (B )/ (BEG) ] = 57

where the last equality only holds after localizing with respect to K(1). This
can be checked by noting that L(1)Pag{g-1) € M C Picy, and ev(Prgy(g—1)) =
ev(§-%).

It follows by taking inverse limits (that is working mod p” for all ») that
LrayPag+te-1) = X,r-p. We then have the following proposition.

ProrosiTioN 2.10.
Pic; = {LK(I){PJ\q+[q_1] AS‘) | A€ Z, 0<i<« g}

Although this discussion looks somewhat different than the discussion in the
introduction around (3), it can be translated into those terms by observing that

LiPISe o L M ().

Recall as noted above that for p > 2, 2} is topologically cyclic. If we topolo-
gize M be making ¢v a homeomorphism, we see Ly (1,5 is a topalogical gener-
ator of M since it is taken to a topological generator of Z under ev. Now since
Lg(l)Sz is a generator, every element of M is topologically close to some power

of Lyc1yS2.
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There are two differences we will see when p = 2. One is that the localizations
of ordinary even dimensional spheres have square roots that are not topologically
close to localizations of ordinary spheres. The other difference will be caused by
the fact that Z3 is not topologically cyclic. Because of these facts, for p = 2
we will see that the analog of Proposition 2.10 does not hold. In other words,
ordinary spheres and the analogs of the Py ,q¢,_1) are not sufficient to give Picy.

3. Calculation of Pic, for p=2

In order to minimize the technicalities surrounding the difference between the
functors Ly and Lg(yy, in this section we write KO for the real K-theory spec-
trum completed at 2. We use K for the complex K-theory spectrum completed
at 2. We write

Ki.(X) = im K, (X A M(2%}),

&

as well as
KO.(X) = lim KO.(X A M(2)).

[
In general KO.(X) # KO.(X) unless KO.(X) is finitely generated over KO..
It is also not necessarily the same as the 2-completion of K Q.(X)} unless K 0.{X)
is finitely generated over KO.. KXO,(~} is introduced here for the same reason
we introduced Xy .(—) in section 2; we need an integral invariant so we can
work with real Adams operations. The same caution applies - KO, (—) is not a
representable homology theory since it doesn’t satisly the direct limit axiom.

We need the following specialization of Theorem 1.3 for this calculation.

THEOREM 3.1. Let p=2. The following are equivalent:
(1) LK(1]Z € Pig .
(i) KOKZ;Z/(2)) = KO.(S%;Z/(2)) for some k.
(iit) KOL(X) = KO.(S?) for some k.

Note that KO,(S*) = KO.(5%), and similarly K; .(5%) = K.(5*%). Theo-
rem 3.1 follows from Theorem 1.3 and the following lemma.

LEmMa 3.2, K(1).(X) = K(1). & KOJX;Z/(2)) = KQ.(5%; Z/(2)) for
some v, Similarly, K1 (X)) = K1.(5%) & KO.(X) = KO.(5%) for some r.

PROOF. We start with the second statement. Recall the spectrum
Y = B73RPEACP? = M{2} A M(n).

Note KOAY = K(1) = K A M(2) and X = KO A M(5n). These are all easy
to prove by calculating the mod 2 cohomology of the appropriate connective
theories. Consistently below, when we write 1 as a self map, we will mean to
smash n on the sphere with the spectrum concerned.
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Assume that K(L{X) = KO.(5%). Then there is an equivalence,
TXKO = (KOAX).

Hence we get

nAl

StATZTKO E¥KQ we— I¥E

J y 1

S'AKOAX) 2 (KOAX): —— (K AX)

50 K1u(X) = K1,.(8%7) = K1.(5%).
Now suppose Ky .(X) = K,(5°). We want to show KO.(X} = K0.(5%) for
some r. We are interested in the following cofibration:

T

(6) (KO AX)3 (KOAX): = (KAX); —ZHEOAX).

The sequence is a cofibration before completion becanse K = KO A M(5). Com-
pletion is localization with respect to a homology theory, so the sequence is still
a cofibration.

We are assuming that (K AX); ~ K and we wish to prove that (KOAX); ~
T KO. First note that (6} splits rationally, since n is rationally trivial. This
shows that (KO A X3 has the right number of Z,’s in the right places to be an
even suspension of K 5.

The homotopy of (KO A X)i is a module over KO.{5°), and by using this
fact (in particular that »® and 25 are null), the cofibration (8), the value of
T.{(K A X))} and a diagram chase, we can deduce that (for some r)

7((KOA X)) =IZ¥KO, o

Z2 * =0 {mod 4 + 2r)
{7} m{(KOA X)) = { Z/(2) +=1,2 (mod 44 2r)
0 else

with the obvious K'Q.-module structure.

One cai check that (T) is not realizable as a K O.-module. Suppose {7) holds.
Map KO to (KO A X)5 by using a generator of one of the Z2's and the KO-
module structure. The K (,-module structures force this map to be injective on
homotopy, and hence the homotopy of the cofiber would be

Z/(2) +=0,1,2 (mod 8 + 2r)
N=
0 else,

The element 5 acts nan-trivially whenever possible. Now we can map KOA M (2)
into the spectrum with homotopy N by using a generator of one of the Z/(2)’s
in dimension 2r. If this map commutes with multiplication by » (as it must}
then it cannot be a map of groups, since p* on the generator of m( KO A M(2))
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is a multiple of 2, but its image under our map is supposed to be 52 times the
generator of Ny, which is the generator of N.. -
It follows that (KO A X)3 has the homotopy of 22 KO, and the fact that it
is a KOQ-module spectrum allows one to construct an equivalence with T2 K (.
To prove the first statement, if we know KO(X;Z/(2)} we proceed as in the
case where we knew KO,(X), and if we know K{1}.(X) we use Theorem 1.3,
the second statement, and reduction modulo 2. O

For the next theorem, note that Z3 ~ Ze x Z/{2).

THEOREM 3.3. There is an exiension of abelian groups
(8) 0= M~ Piey - Z/8 — 0.

The map to %/B takes X io the dimension (mod 8} of the generalor of KO, (X)
for X € Picév. M ts by definition the kernel of this map and there is an isomor-
phism M ——(Z2)* where ev(X) is the eigenvalue of the Adams operation 2
on KOo(X). The exiension is non-irivial and

Piei o ZF X Bjd =~ T2 % Ty x 4.

To prove this, our first .steps are just as in the odd primary case. The proofs
that ev is a homomorphism, that

[ ~1]A1
LK(I]X = ﬁb&[[(I{O A X)ﬁ

(KO A X)),

and that ev is injective are exactly as before, except replacieg K with K.
LEMMA 3.4. ev is ondo.

ProoF. Take A € ZX. Let X, = ﬁber(I{OuKO). Since A is a unit,
A =1 (mod 2), so ¥ — A has the same effect on K(1). as ¢ — 1. Therefore
K{1).(Xs) = K(1)., s0 Xa € Pic;. We need to verify that X, € M, and then
compute ev(X, ).

To see that X € M, first note that A = 1 modulo 2 since X is a unit. So
¥® — A = (¥® — 1) + p where p is an even 2-adic integer. It follows that

(1,!’3 _ A)Q" = ("bS _ 1)2"

module 2%, and hence if » > 1 (since then Lag¢zwy has order 27)

fiber{(¥® — X)2"] A M(27) = fiber[(¥® — 1)¥"} A M(2").
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Now let X, , be the fiber of (% - A)z". It is easy to check, by induction,
using the-diagram of cofiber sequences

Xai —— Xojyp ——— Xo

! l !

3y
Xy —— Ko WY ko

l (so’-»\)'*‘l lw’—xj

* KO -T»KO

and KO.(X)) =" KO, that KO.(X, ;) is an extension of Z" KO, by the KO.
module KO,.(X» ,—1) (that is, the long exact sequence in KO\, (—) is really ashort
exact sequence). Since r =0 when A = 1, and X 2 A M(2"} = Xy 30 A M{(2™},
it follows that r = 0. This shows that X) € M.

We want to check that ev(Xy) = A~ iLe. E‘ﬂ('ﬁakon(xl)) = A~L. Actually,
since the map KO — K induces an isomorphism

KOy(X,) — Ky ol Xa),

CU(‘J’”ICOD(X;)) = ev(!ﬁa]glvn(x,‘)), and it is this second mrumber we will actually
compute. .

To make our calculation we need to understand K1 .(KO). We will describe
this with the isomorphism

K1,-(K) = mapsgong (23, K.)
via the map

v

— i 1Ay I
FEKi (K) = [v € ZF e (F(2) : & — (K AR Yommms (K AK Y3 —— ).

We denote this element of mapseont (Z5, K.) by F. This result appears origi-
nally in [1], and is also deducible from [16], though it doesn’t appear in exactly
this form in either place. It is spelled out in this form in [8].

We note Z3° ~ Z, x Z/(2) and with this Z, in mind as a quotient of the Z/(2)
action,

(9) K1,.(KO) = mapsgopt (Z2, K.).

To see this we start by recalling that K has a Z/(2) action give by ¢!
{complex conjugation). We have

KO =~ K*/() and (K A K)3"% @ ~ (K A KOY

from Lemma 3.5 below. In the second equivalence above, Z/(2) acts on the
second factor. (The first equivalence is implicit in {3, Corollary 3.8] and is made




102 MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY

more explicit in the proof of 3.1 in [21], which gives a map inducing

KO" =lim KR*((EZ/(2)'*h,
N
where X{¥) is the k skeleton of X. On the category of Z/(2)-CW complexes,
K R* is represented by the naive 2/(2) spectrum obtained by letting Z/(2) act
by conjugation on the complex K-theory spectrum.)
Since ¢! gives the non-trivial involution of K, the homotopy fixed point
spectral sequence for m.([K A K]3"%/(®) collapses at

Ell.(K')z-"(z] x=10
0 else.

Ez = HYZ/(2); K1 .(K)) = {

Equation (9) follows because an element of mapsqp¢ (Z3, K.) is fixed under the
Z/(2) action iff it passes to the quotient Zp = Z3/28/(2).
Using the multiplicative properties of the Adams operations,

(KAKp —2 - K
ww"l 1«0'
(KARY 2 K
one can check
RLA YY" A o 0¥ u(l A g™ "),
in other words
@ ADf(z) = ¢ Flze).

Now we examine the diagram

(KAX)); — (KAKO); 22920, (g a k0);

1,03!\11 q’;"f\ll ¢3A1J'
L.
(K AX2): —— (K AKO); 290, (p n ks,

We want to know the eigenvalue of the lefimost vertical map on #g. Suppose g €
To(H AX,)s. We abuse notation by identifying g with its image in mo( K A KO)3.
Then 7 is an element of mapsegny (%2, K.) that is in the kernel of 1 A (v -
A). This kernel is the kernel of precomposition by multiplication by 3 minus
multiplication by A. In other words, 7(z3) = Ag(=).
Now .
(¥ Al)g(z) = ig(z-37" ) = §(z - 37") = A~ g(x).

- The second equality follows because (z -371) € mg K, s0 ¥® acts as the identity.
Hence ev(X)) =21, O -

We need the following lemma for the proof of Lemma 3.4.
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LeMMaA 3.5. For any specirum E, where Z/(2} acts only on the spectrum K,
(EA KB/ D~ (BEAKOD);.

PrOOF. Since completion and homotopy fixed points are both homotopy in-
verse limits, 1t suffices to show

(10) (EAK AW o (EAKOAW)

for W = M(2"), all n.

Let C be the class of all spectra W satisfying (10). £ is closed under cofibra-
tions and retracts, so if we can show CP? A M(2) is in C then it follows that
M{2*)isin C for all n.

K*{CP?) is free over Z/(2) since z and z? are generators over K*, 50 = and
¥ 1(z) = —=z + z* are generators over K™ (#1(z) is determined by recalling
that x = I — 1 where L is the tautological line bundle).

Hence K*(CP? A M(2)) = K(1)*(CP?) is also free over Z/(2), and it follows
that K(1).(CP?) = K,{CP? A M(2)) is free over Z/(2). Finally,

T{E A K ACP? A M(2)) = K(1).(E) ®xq). K(1).(CP?)

is free over Z/{2) since the second factor is.
So the homotopy fixed point spectral sequence for E A K A CP? A M(2)
collapses at

Ex=m(EAKACPAM(2)%® =
[K(1).(E) @1y, K(1)(CPHED = K(1).(E).

Since this is also m.(EA KO ACP? A M(2)} = m.(E A KP2CY A CP? A M(2)),
the natural map E A Kh2/(3) A CP? A M(2) — (E A K A CP3 A M{2))A2/() s
an equivalence. [J

We have now shown Theoremn 3.3 except for identifying the extension. Suppose
the extension was trivial. Then we can lift the generator of Z/(8) to an element,
X A S (where X € M) of order 8. So (X A §?)"8 ~ S% (after appropriate
localizations), i.e. X*® = 578 in Pic). So ev(X"®) = en(X)® = ev(58) = 3.
This is a contradiction since 34 does not have an 8t root in Z,.

To see what the extension is, let X € M be the element with en(X) = 3.
Then X A $? is a lift of an element of order 4 in Z/(8), so (X A %)™ € M, and

eu((X A S)M) = ev( XM} en(5%) =3t 371 =1

50 X A 52 has order 4 in Pic;. It follows that the extension is as claimed.

. i - s
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4. Stunted projective space:; and Pic;

In this section we will construct most of the elements in Pic; at p=2. We use
stunted projective spaces and related objects to do this. Our constructions give
these elements as localizations of geometrically defined spectra related to RP™,
in place of the abstract construction of Lemma 3.4.

Recall the short exact sequence (8) from Theorem 3.3, where Mi»z; is
an isomorphism. We will use the ideal of virtual vector bundles 4Z, CZy
KO%RP™) to make Thom spectra.

Now K_C)'O(RP"“) = Z has topological generator A — [1] where A is the usual
line bundle over RP* and [1] is the one dimensional trivial bundle. Call this
generator £. Then

(RP=) = £1RP/RP!
and generally ’ .
(RPT)™ = T-"RP™™/RP".
To sixznpl_ify notation we make the following definition,
DEFINITION 4.1. For y € &y,
Pris = (RPYE,

This is convenient notation because when n is a positive integer, 7, is a
desuspension of the cofiber of RF™~1 — RP™.

Thom spectra of even elements of KOY(RP®) = Z; give elements of Pic;,
because these have complex structures so we can use the Thom isomorphism
theorem to show K (1).Pry4; = K(1).5°. We will restrict to studying Py,
because their localizations are in the subgroup M of Theorem 3.3 (also, Propo-
sition 4.5 implies this is not a real restriction).

L) Pays1 € M since bundles divisible by 4 in KOYRP™) satisfy the hy-
potheses of the K'O-theory Thom isomorphism so KO.(Payy1) = KOJRPZ) =
K0.(5%) (ihe fact that we are using KO.(—) instead of KO, is not an issue,
since if the KO Thom isomorphism holds for v, then so does the KO A M(2M)
Thom isomorphism for all n > 1, and KO,{=) is just the inverse limit of these
theories). We remind the reader that we are taking reduced Thom spectra to
make these elements of Pic;.

It is worth making explicit that P5 corresponds to (0,2) € Z/(2) x 2, = 23,
The point is that

ev{L()Ps} = ev($®|n-ap, ympeejrps) = ev(E7LgyRP™)
CU(LK(l]S_q) =g=3%

To see the second equality above, observe that the map

KOo(RP®) — KOW(RP™® /R P*)
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must be multiplication by some non-zero element of Zz (the map can’t be zero
since XOL(RPY) is all torsion). It follows by naturality that ¥ has the same
eigenvalue on both Zy’s concerned. To identify the element of Z/{2) x Z7 = 27,
we observe that 3 € Z) = Z/(2) x Z; is a topological generator of the Zo
summand. We observe that this is unlike the p > 2 case since no §* satisfies
both Lx1)S* € M and ev{5*) = 9.

It is interesting to see just how one constructs these Thom spectra. As an
example we will take 44 + 1 = /17 and make the Thom spectrum of 4)¢, that
is, Pyi7- Let n=da+4bwhere 0 < b < 4. Let ¢{n) =8a+ 2%, James periodicity
gives the following equivalences. For a simple proof see [11].

PROPOSITION 4.2. [fk —m =0 (mod 2™} then

mobd{n)— E+d(n)~1
T prtélni=1 o o pteln)-t,

To construct the reduced Thom spectrum (RP=)HE = (RP®)VIT-1E we
do as described above: construct the reduced Thom specirum for 4A€ restricted

* to each RP*™ and fit these together into a direct system. In {2], these are

identified with stunted projective spaces E“”‘P::Lﬂ").

If we want to include P:::f("] into a stunted projective space with ¢(n+1)—
¢(n) more cells, we have two choices

ik+d(n) 4k+@in+1)
Pagr '~ Pyg and

P < P P T B

The next Thom spectrum (for RP#("+1)) tells us which space to use. In terms of
the number /17, this is a 2-adic integer so there is a sequence of zeroes and ones
which represents it. For example we note that 9961% = 17 (mod 2!%). Thus the
first 14 terms of the sequence for 43 = /17 —1 is 10011011101000. To construct
P 5 we will use the 1's in the dyadic expansion of 4X to guide us. Because 42X
always starts with two 0’s we always begin with P since ¢(2} = 4. The next
zero in the expansion for /17 tells us to include this in PP since #(3} = 8. At
the next stage, the 1 that is present is an instruction to include P into E-8 P47
rather than into PJ. We get the sequence

P~ PP T-8pl6 , mBpT
Here we are using the fact that ¢(4) — ¢(3) = 9 — 8 = 1. The next 0 gives us the
inclusion
IRy SR D
To summarize the process, each time there is a 1 in the dyadic expansion we use
Proposition 4.2. Each time there is a 0 we just include one stunted projective

space into the next. If we continue in this fashion through the digits which
represent 9961 we will have E-%960p3988 T4 continue, we need to find the next
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digits in +/17 — 1. By the results of [2] on Thom spaces over projective spaces,
this is precisely the construction of the Thom spectrum.
Before we continue, we note the following resulis.

PROPOSITION 4.3. L (1yPan+1 = Lr)S™5".

PROOF. ev(P_gat1) = ev(E73"RP®) = en(5-%"}. O
PROPOSITION 4.4,

Lgq1)Pars1 = X2 € M C Pigy

PROOF. See the proof of Lemma 3.4 for the meaning of Xg.. This Proposition
follows immediately from knowing LigyParyr € M, since the construction of
Pary1 implies that ev(Pyng )} = 92, O

PROPOSITION 4.5,

7 L1y Pay-1 = Lre¢y Payn

FProoF. The results of [12] applied to the finite subcomplexes of the spec-
tra concerned show that KOQ.(E7?Pyy_1) = KO.(Piy41). The evident map
T2 Pyy_1 — Pyyyqs together with naturality shows that both specira have the
same valtue under the map ev. So Theorem 3.3 shows the spectra are homotopy
equivalent. [

PROPOSITION 4.6. LgyPs = Lg) X where X is the compler S~% Uy e~ 2 Uy

e,

Proor. The map A : RP™ — 5% is a K(1), isomorphism [17, Theorem 9.1}.
Consider the diagram of cofibrations (where ¢ is the obvious inclusion)

RP? A, g0, wiy

L l

Rpe 2 80, 4

! ! l

P, —— x — T3P,

After localization, A = x, therefore £3P; = Z5X, but since by Proposition 4.5
T3P, = T8 P; after localization, we are dene. [

The first author has proposed that Picard groups are an appropriate way of
indexing homotopy groups. These projective space examples allow one to make
this more precise. Let J be the connective image of J spectrum and let

Ni = {k € N2 Je(Pasy1) # 0}

Then {N;} forms a 2-adic neighborhood system which converges to a 2-adic
integer, A. If A is an ordinary integer, k, then A = —4k — 1. In general, (3 + 1)
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can be viewed as giving the “dimension” of the element of Picy, and if h happens
to be even,

[Pans1, LagyX] = [S™, Lgy X}
If we do this for the +/17 example we get N; = {k|k = —/17— 1 (mod 29},

5. Interesting examples in Pic, at p=2

The spectra {Lg(13Par41} form a subgroup of Picy, in fact they give the
subgroup 0 x 2Zy C Z/(2) x Z3 = M C Pici, so the cokernel of the inclusion
into M is Z/(2) % Z/(2). We can try to lift the generators of the quotient.
(1,0) lifts to an element of order 2, X_). X_; A X_; = 5% after localization.
Similarly, (0, 1) lifts to X3, which is a square root of LgyPs. M is parametrized
by X(_1jeae for {a,b) € Z2/(2) x Z,. Whenever a or b (or both) are odd, we get
element of Pic; with the following properties:

¢ K1} A X(_1jea = K(1). This is just because $(7#} & Pic,.

o m.(X(_1)e3) has exponent 4. In fact the homotopy of this spectrum is
“half” of the homotopy of Li M(2) (L M{4) in case both a and b are
odd) in the sense thal it is generated by the periodicity element and one
lightning flash.

Let & = {=1)°3. If exactly one of a or b is 0dd, then 4* — X = 2 (mod 4)
in dimensions divisible by 4. From this it is clear that 4 is an exponent for the
hemeotopy groups of the fiber, and there is a non-trivial extension in 7ap.42(X))}
making 4 the actual exponent for that group. Similarly, if a and b are both odd,
¥~ A =4 {(mod 8). :

Of course X, can be constructed as in Lemma 3.4, but here we describe “lifts”
of these elements when a or b is odd constructed by successively attaching mod
2 (or mod 4 when both @ and b are odd) Moore spectra. Qur construction will
give lifts in the sense that the spectra we construct will be (-connected spectra

. that localize to the elements of Pic; under consideration.

The spectra we are interested in describing then, are the X, where A =
3,5, or 7 modulo 8. We describe two of the cases in detail below.

Write M(2) for the mod 2 Moore spectrum with the bottom cell in dimension
0.

THEOREM 5.1. Take ©*X, € Pic, with A = 3(4). Then X, hes homotopy
ezponent 4, and there are (-connected finite type spectra X,, 0 < n < co and ¢
0-connected spectrum X, = l_:_‘m,, Xy such that

() LeiXe = X.
(i) T*M(2) — X, — Xny1 is a cofibration for some k, > (0 and fa s
Tkn M(‘Z) — X,.
(iil) T M2} — X, — E5=1FL00(2) on K(1). carries the ecopy of K(1).
corresponding to the top cell of the domain to the copy of K(1). cor-
respording to the bottom cell of the range and is 0 on the other copy
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of K(1)., and in m, L, takes viTi to the generator of ma,_ L) M(2) for
eppropriate r, s.

Proor. Without loss of generality, assume k = 0. Sinee A = 3(4), the effect of
¥ — X on 74 KO3 is to take Z, to 2Z3 by multiplication by some 2-adic integer
congruent to 2 modulo 4. Call that integer +,. This is sufficient to establish the
claim about the homotopy exponent since x,(X,) is thus an extension of direct
surns of Z/(2)'s.

We get the following diagram:

ETIM(2) —— (5% —— (S%): —— M(2)

l ! ! l

. W= "
Xy — KO3 - KO3 EXa.

An analysis of the diagram in homotopy shows that after applying Lg (1),
the map M(2) — XX, is onto in homotopy. Checking the diagram in K(1).
shows that this map has the same eflect in K(1). as M(2) — §*. Let X, ; be
the cofiber of Ly()T~ M (2) — X,. It follows from the effect on K(1). that
XA.l & Picl.

Using the cofibration that defines X, ;, we see that

(P k0, (x23) = e0(¥P [c0smixs)-

The numbers on the left are all congruent to 3 modulo 4, hence so are the
numbers on the right. Therefore X, ; satisfies the same hypotheses as X, so
we can iterate this construction.

We get the following tower of spectra:

E_ILK“)M(Q) : E_ILK(UM(Z) E_lLK(l)M(Z)
Xy e Xy —— Xan —— e

Note that lim; X ; = * since each map in the direct system is 0 cr homotopy.
Next we take the constant tower X, and map it into the tower constructed
above. Call the cofiber at each stage ¥,,. We get a new tower:

E-ILK(UM{Q) E_]LK(;)M(Q) E_iLK(l)M(Q)
* },1 —_— })2

Here Yo = # and ¥y = Ly (3M(2). The spectrum h_rr':11 ¥, is obviously TX,.
We wish Lo replace the tower we just constructed with a Lower of finite spec-

tra. Assume imductively that ¥, = Lye1yXn where X, is finite, connective and

torsion. Then for k atbitrarily large, we can use the n = | telescope conjecture to
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find a map ¥~ 1M (2) — X,, that localizes to the map in our tower above. Take
Xn41 to be the cofiber; it follows that X, ; is finite, connective and torsion.
It remains to check that Ly(13Xe = X where Xy, = lim, X;. We have just

made the tower

THoM(2) SHM(2) Sk (2)
l | l
v — X, —— Xy —— -

Now if we apply L; to this tower we get our tower involving the ¥3;'s, and since
L1 is smashing, that implies that L; X, = lim, ¥, = X, But X is K{1)-local
by hypothesis, so X = LA = LgaylnXoo = L) Xea. O

In the case of £*X, where A = 5(8), we can prove a theorem similar to
Theorem 5.1 involving Z/(4) Moore spectra instead of Z/(2) Moore spectra.

Theorem 5.1 shows that we can construct these examples by adjoining Moore
spaces. We would like to construct X, as in Theorem 5.1 explicitly by giving
specific X; and attaching maps to gain some understanding of these examples.
The calculations necessary to give the complete description are extensive. In the
following we will give a sketch proof of an explicit construction. It should not be
viewed as complete. We try to indicate where to do the caleulations and what
calculations are necessary.

We wish to look at [M(2), M(2)].. This corresponds to =.{M(2) A M(2))
by Spanier-Whitehead duality. Further, we want maps which are essential in
Lg1y- Thus we need to caleulate J.(M(2) A M(2)). Using [12] we can check
the following. -

LEMMA 5.2, The map
Tek 14 M (2) A M(2)) — Jar—1{M(2) A M(2))
is onto and Jer_r(M(2) A M(2)) = Z/4 & Z/2.
LEMMA 5.3. The class of order 2 in Jap_ 1 (M(2) A M(2)) lifis to give o map
B -1a1(2) — M(2)
whick is detected by K(1)..

ProoF. A specific choice for the generator invalves composing the Bockstein
& with the periodicity element. This choice is non-trivial in K{1). The other
choice involves adding twice the generator of order 4, and the extra term is 0 on
K(1) since it is a multiple of 2. []

Given any class of order 4, if we add the class of order 2 from the Jlemma
above the result still has order 4, so we get
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CoroLLARY 5.4. There is a choice of the class of order § in Jas_y(M(2)A
M(2)) so that e lified map

f DB IM(2) — M(2)
is detected by K(1)..

The following picture gives the first few groups of J.(M(2)). The patbern
begirning in dimension 7 continues periodically every 8 dimensions. The class
labeled a in the following picture represents v{ and v{¥a is the corresponding
generator in dimension 8k + 8. The class labeled & represents a generator of the
image of J on the bottom cell. If p; € 7ux._1(57) is a generator of the image of
J, then pja = v{’b. In addition, via {216 ) is a name for a generator of the Z/4
in the 10 stem (9 stem).

Next we wish to calculate what f = f does in homotopy.

THEOREM 5.5.
. f. (v]“‘via) =3y
ii. fu(vi*d) =10
v fu(uffu by = nuistsp,
v. The classes vi%b, quita + vi*uib, and their n composites give the kernel

of f..

The proof of this follows easily from the calculations given in [13].
Now we can begin the construction of X. Let X; = M(2). Let X, = M2y,
TP AL(2). Let _

i fu(vika) = o1+,

i
f( b+ nuiktay,

prXya— TI5M(2)

be the pinch map. Theorem 5.5 allows one to define some classes in 731 ({X2)
which map to the kernel of f under p. If we define

g2 : T M(2) — X,

el

L e R T

o
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so that g.p. maps onto the kernel of p,, then Theorem 5.5 can be used to show
that g - p induces in homotopy the same map as T!8f;. Thus we can form
X3 = XU, Z3M(2). Calculations with modified Adams spectral sequences can
be made that show we can iterate this process and construct Xo..

THEOREM 5.6, The homotopy of L1{X) satisfies
_ 7 (L1(X)) = KO.(M(2)).
The K (1).-theory of X satisfies -
K(1).(X) = K(1).(8%).

This discussions in this chapter have an interesting connection with the gen-
erating hypothesis. Let X, be the nth stage of the construction outlined im-
mediately above, or the spectrum of the same name from Theorem 5.1. This
is a finite spectrum with KO, X, having order 2°. Yet the E2 term of an ap-
propriate modified Adams spectral sequence looks just like the E: term of the
corresponding stage for a constraction of bo A M?(2). This spectrum has order
4. The generating hypothesis would require 7,.X, to have elements of order 2",
It is hard to see how this might happen. )

The X,,’s provide counterexamples at p = 2 to the most optimistic conjecture
one might make as an L, version of the generating hypothesis, since the map
4: X, — X, is 0 on m.L; X, but is of order 2*~2. There is an example of this
sort in [7, Remark 1.7], our example has the property that 4 is of high order if
n is large. :

6. An example for Pic; at p= 2

Let A; be a complex which is free over A(1) on one generator, where A(1) is
the sub-algebra of the Steenrod algebra generated by Sy' and S¢2. Let M, be
L-*H P, We will prove the foliowing result which gives a novel element in Pics.
This example is alluded to in [6]. Its importance in this context was certainly
not appreciated at that time. .

We believe this example gives an element of Picy that is not the localization
of any ordinary sphere, but is in the kernel of the map (18) of section 7; that is,
this element is not detected by doing algebra over the Morava stabilizer algebra.
This is analogous to the role P5 has in Picy.

We use the notation X" for the n skeleton of X.

THEOREM 6.1. There is a map
ve t SH(AL A M) = A A M,

so that if B is the cofiber, then H.(H*(B);Q;} = Z/2 fori = 0,1,2. In particular,
Li(2yB € Pica. In addition, if

5% — (A A M

va

AL A M,
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is a cofiber sequence, then,
S5 5((A1 A MY A A M,
is 3y # *.

We begin with some generalities. Let X (1} be the Thom complex of the
natural bundle over 257, Let X5 be the Thom complex of the natural bundle
over (155 and recall that M, = Xéﬂ. The following is proved in [6]. In particular
note that X {1} = X, and use [6, Theorem 3.4] for i and [6, Theorem 3.7] for il.

THEOREM 6.2, i. CPPARPIA X = I3X(1).
ii. Ay A X5 is an X (1) module.

We construct a self map D54; A X5 — A A X using 13 € 76(X(1}} and the
module structure over X {1}.
Now consider the diagram
ATAM, = AAXs D AAXIAIAM,
2
TEA AM, —— TOA;AXs
We want to understand pwsi. If this composite is null, we can make a v map

on all of A; A M, , otherwise there is some obstruction. We calculate a little of
Ext{H*(Ay A Xs), Z/2). This is quite easy and we will just state the result.

PRoPOSITION 6.3. Ext (H™(A, A X5),Z2/2) has the following values. For

g=0 and t =0 we have Z/2. For s =1 we have the fellowing classes: hyo, v2,
ka1, hag, va, - -. Fors =2 we have the following classes: h3,, vi, hzova, Aot hng.
For 5 = 3 we have just h3, and these are all the classes for i — s < 16.

We now begin the proof of Theorem 6.1. In the following diagram we con-
struct the Adams resolution for A; A X5 through the rarige we are interested in
and through level one. This is the left hand side. The right hand side is the
corresponding resolution of Ay A X5/A; A M,. The map between.them is the
map induced by p.

I a1 e I

l !

By _ B

(11) l : l
- K(Z/2,0) 2B, g(2/2,8)

/|

K(Z/2,6,7,12, 14, 15)

s

K(%/2,14,15,186)
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First note that f, can be represented by
(Sq(o’ 2)’ SQ(O: U: 1)1 SQ(OI 4)1 SQ(O, 0, 2)! SQ(UI 01 0: 1))-
Similarly, g1 can be represented by
{S9(0,2), 5¢(0,0, 1}, 5¢(8)).

We use the fact that g,.5¢(8) = Af; and

Se(0, 2)S9(8) = 5¢(8,2) + 84(7,0, 1)

Sq(8)59(0,2) = Sq(8,2) 4 5¢(4.1,1)
to see that
{12)  h™(113) = S(8)us + (Sq(7) + 5(4, 1))es + 13

+e559(0, 0, 1)es + €4Se{1, 2)eg + €3.59(2, 2}us + €95¢(1, 0, L)es

where we don’t know e; and we only know ¢4 + ¢g + ¢a = (. 'Fhe projection of
vy to Ey lifts to F; and we get the factorization

A AKX — F) — By

This map restricted to F) sends the fundamental class in dimension six to the
generator and is zero an the other fundamental classes. Let us call this map vy
also. Then (12) shows that

(13) #u3A"(113) = Sa(7) + Sa(4, 1)

It follows that pvyi # 0.

We now need fo know if we can alter the map wgi : T8 A; AM, — A; A X; so
that it is null after composing with p (and still the same on the bottom cell of
the domain}. If we had a map

(14y g T0A A M, — Ay A Xs

such that pg = pusi but glge = + we could add this map to vy to give a map
which lifts to a ve map £54; AM, — A; A M,. So we need to determine if such
a map exists,

Suppose we have a g as in {14). Using the low dimensional homotopy groups
of the domain and range of p, it is easy to check that 79|12 skeleton = *- Alsa,
g must be 0 on cohomology, so the continnation of g to £y lifts to Fy:

ﬁ:EsAl AM, — B

Since pg = puyi, §" 113 = S¢*Sq' Sqig from equations (13) and {12).

We claim that while such a map can exist on the 13 skeleton (induced from
taking § as described and 0 on the other fundamental classes), it cannot be
extended to all of 64, A M.. We can extend to the 14 skeleton because hap
which is represented by ¢15 has order 2. We can extend to the 15 skeleton becanse
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the 15 cell is not attached to the 13 cell that hits the trmage of hzg. In order to
extend to the last cell though, we need vy kap = *, but

vihao = (vs, hdp, v1)

because dyhay = vlhgo in the ASS for X' (1), and vyhap + haov) has image vyhap
in A; A Xy5. From [14, Lemma 4.3] it follows that

2 2 3
{vl‘ h’201 Ul) = hzu”l Uy = hZD

in 7.{X (1)), so the same is true in 4; A X5, and hd, # *. This proves that no
map as in (14) exists unless we at least restrict to the 15 skeleton.
* We will now show that there is such a map if we restrict to the 15 skeleton,
i.e. there is a
g3 1 (B84 A MR — 4; A X
with pgs = pvail _cLoleton 304 93lss = =.
Let :
g1 (ZFA AMOPIS S A A XS

be any map such that pg1] . geateon = prathis_gloleton (Such a map can be
derived from-§ as described above). If p(g; —v28)|,4_skeleton # *» We construct
a map

£ EGA; A M, —)Al ."\X5

which is trivial on the 13 skeleton and such that pe = p{g1 —vai) when restricted
to the 14 skeleton, using that p, is onto in dimension 14. So if we take gy = g, —¢
then pga| ., cpoleton = P2l ckeleton- Y¥e can repeal this in dimension 15 if

necessary to produce g3 so that pgs = pvai on the 15 skeleton. g|15_‘5ke]eton — g5

will be the desired map that lifts to vz : Z5({A4; A M) — 4, A A, as in

Theorem 6.1.

This completes the proof.

We speculate that this example plays a role in Pic; which is similar to the
role played by F5. We do not believe it is just a suspension of the sphere. The
complete understanding of the role it will play will require substantially more
information about Picy.

7. Algebraic approximations

In this section we discuss an algebraic approximation to Pic,. The impor-
tan{ observation is that we can use the Adams-Novikov spectral sequence to
approximate m,(X). Roughly speaking, if X and ¥ are two elements of Pic,
and E{n).{X) # E{n).(Y) as comodules, then we know they are different ele-
ments of Pic,. Furthermore, it will be easy to see that in the generic situation
(» Jarge with respect to n), if X and ¥ give the same comodule structure, they
are equal in Pic,. '

ProposiTioN T.1 (HOPKINS-RAVENEL). If X satisfies vy! BP.{X) = 0, then

£ LS
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i, BP.LnX) = vi' BP(X).
ii. The Adams-Novikov spectral sequence fer Lo X coenverges fo m.(Lo X)),
and

By = v Ezty} zp(BP., BP.(X)).

The first part is part of [19, Theorem 1]. In the second part the identification
of the B2 term follows from the first part, and the convergence of the spectral
sequence was communicated €0 us by Ravenel.

Recall that B{n}. = Z[vy, ..., va, v, where E{n} is the Johnson-Wilson
homology theory. From [17], E(n)} has the same Bousfield type as K{(0})V --- v
K(n). We define a flat F(n), algebra:

En=We, . [[u1,... tn—idlu, ™).

Here W , is the Witt vectors of the field Fp=. It is isomorphic to Zp[£} where
£ is a primitive p® — 1 root of 1. The u;’s all have degree 0, and |u] = ~2. The
map from E(n). lo By sends v to wu!™F and v, to u'~?".

By composing the map E(n). — E, with the usual map BP, — E{(n)., we
get a map from BP. to E,. Since E, is flat over E{n}., this induces a complex
oriented homology theory by

Eu(X) = By @pp, BPAX) = En ®5(n), E(n).(X).
Morava proves in [15]
ProrosiTron 7.2 (Morava}. If BP,{X) is vg,...,vn_; torsion, then
W . ®z,,, va Extyh gp(BP., BP(X)) = H*" (5, Ea(X))-

Here Sy, is the nth Morava stabilizer group. This is a p-adic Lie group related
to the study of height n formal group laws in characteristic p.
Example: Take n = 1, p > 2. Then F) is completed complex K-theory, and
81 is the group of units in Z, congruent to ! modulo p, which is isomorphic to
Zp. To see how this operates on E){X), a generator for this group is the Adams
operation y**!. Note that S acts non-trivially on E;(S°).

Now for our purposes, we are less interested in the homology theory B, than
in a theory we define below. This theory will be the same as E,, in case BF,(X)
is finitely generated, but will have the advantage of coming with a more tractable
Adams-Novikov spectral sequence. It will net be a homology theory; we have an
inverse [imit in our definition that will prevent this theory from satisfying the
direct limit axiom.

We confuse F, with its representing specttum and inductively on k < n,
define E./(p'o, .., v*) to be the cofiber of

o DB ) = Bal (T, e,

A |
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(The spectrum E’(n)/(p‘° .91} ) is defined similarly.) In case there is a finite
spectrum M{p'e, .., v}*) satisfying

BR.(M(p™,... ,vi*)) = BP./(p", ... ,o}"),

Bnf(p', .. uft) = Eu A M(pio, ... o>
We have

Enn  lim B, j(p',... v

Yot

(igsree samt)

so we view E, as a “pro-spectrum” and use this to define the theory below.
DEFINITION 7.3. The n'® Morava module of X, K (X} is defincd by

Kap(X)= lim  [Ba/(",... 0l (X).

[ L7000 FY |

Since smashing doesn’t commute with inverse limits, Kn,s(X) is not, in gen-
eral, the same as E,(X) though the two theories coincide when X is finite.

PROPOSITION T.4. If K, (X) is finitely generated over E,, then there is a
speciral sequence

Ey = H™ (50 Knp( X)) = Wr,. @z, m{Li(n)X)-

Proor. This spectral sequence is constructed by taking the inverse limit of
the Adams-Novikov spectral sequences for L (X A M(ple, .. v "' ")), EBach
of these spectral sequences converges and has an E; term of t'.he given form
by Proposition 7.1 and Proposition 7.2. The finiteness condition in the hy-
potheses guarantees that all relevant lim! terms vanish. Also, these spectral
sequences are 0 in negative homological degrees. Together these conditions
imply that the inverse limit of these spectral sequences converges to the in-
verse limit of the abutments, which will be the homoctopy of the inverse limit of
LalX AM(P,... vl ).

Since M{p“, ey n_1) is Lp_1 acyclic,

Ln(X A M{P'—D, e ,v:l“__]l)) = LK(n)(X A M(p£°7___ "n—l.))

We need to verify that Ly(ny commutes with this inverse lmit. Clearly the
inverse limit is local, so we need only check that the map

X AK(n) — [limLa (X A M(pFe, ... A Kin)
i

induced by the inclusion of the bottom cells in the generalized Moore spectra is
an equivalence. To do this, let D he some fixed generalize Moore spectrum of
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type n. We consider the diagram

XAK(R) ——  [lims Da(X A M(g,... o0} D AK(n)

! !

XADAK(R) —— uEl;Ln(XAM(p‘D,..., wn YA DY A K (n).

(Since D is finite, it doesn’t matter where it is placed in the parentheses in the
lower right item.) D A K(n) is a wedge of K(n)'s indexed over the cells of D, so
the vertical maps are inclusions of a summand in a wedge.

On the other hand, once a is sufficiently large, M{(a) A D is a wedge of copies
of I indexed by the cells of M (&) and the map

M(aYAD —M(a)A D

" is the identity on the D indexed by the bottom cells and trivial on the others

if o is sufficiently large and o' is sufficiently larger than &. It follows that the
bottom map is an equivalence, and hence that the top one is also. O

The theories Ky, .(—) are of interest to us because of Theorem 1.3. We owe
the reader a proof of (ii) < (iii} which we supply at this point.

COMPLETION OF PROOF OF THEOREM 1.3. The implication {iii} itnplies (ii)
is easy; K{n).(Z} is just the reduction of Ky, ,(Z) modulo {p,v1,..., 1)

To show the other implication, assume K{n}h{(2) = K(n)..

We claim that

(15) [E(m)/(2™, -, 625 e(2) = [Em)/ (™, - 07 Y-

The proof is by induction on N = iy + --- 4 #n—;. The base case is N = n, in
which case E(n)/{p',... ,v;"7}) = K(n) so (15) holds.

First we observe (by induction) that [E(n)/(5™,...,v'" M. (Z) is & mono-
genie E(n),-module, with generator in even degree. This is true by hypotheses
if N=n.If N >n, let j be such that ¢; > 1.

The cofibration
(16) T -2R(m)pte, ... WYL i

’J * V-t

— E(r)/(p",. .. o) — E()/(p™, ... v}, uint

shows that [E(n}/(p®,. .. "‘")] (2) is concentrated in even degrees (since this

»Un_y
is true for the homology theories represented by the end terms of cofibration(16)).
We also have a cofibration
(17) z”"“‘s(n)/(p‘". R B, 02 —

s Unad

B/, .o oh. . o) v EGIET I By f(gie ool

1 Up—
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It follows that if {E(n)/{p'°, ... , v'"")].{%) has more than one generator, then
so does the quotient of multiplication by v;. But by cofibration (17), this is just
[(B(r)/ (... ,v},... v} )].(2Z), which is monogenic by inductive hypothesia.

Once we know [E(n)/(p_"",. - (2) is monogenic, it follows that the
map from E(n)/(p", .. ,vi*5)) to B(n)f(p, ... ,v**=}) A Z given by a genera-
tor is a surjection, and hence by counting (only finitely many elements in each
dimension} an injection.

So by induction, (15) holds for all ¥, This implies that

lim  E(m)/(F,... o0 = Hm o Bn)/(p", v )(E)
(Foye sfn—t) (oyeme sinet)
which shows that Kpu(Z) = K, . (SN = E,. O

To describe our algebraic approximation, suppose X & Pic,. Then Ko o(X)
is isomorphic to some suspension of E,. So we have a map

(18) Piep, — {isomorphism classes of rank 1 Eu-Sn-modules}.

By an E,-S,-module, we mean an E,-module M with an Sp-action on M com-
muting with the Ey-action in the following way:

" E,oM 22 . E oM

L

M —£ . M
for any g € S,.
We woulq like to understand the set on the right side of (18) a bit better.
Let K be some rank one E,-S,-module. Because the Sy action is compatible

with the B, -module structure on K, to describe K it suffices to describe the S,
action on Kg 2 Wp_.ffu1,... ,2._1]]. So

(19} {isomorphism classes of rank 1 Eq-Sp-modules} =
{isomorphism classes of rank 1 We,.[[u1, .. . un_s]]-Sn-modules}.

Now both of these are actually groups (the group operation is tensor product),
and by Proposition 8.4, the right hand side of (19} is isomorphic to

HI(Sn;WF,n{[Ui,--- ta—t]]7).

PROPOSITION 7.5, The map o : Pic, — H'(5, Wy . [[m1,..., up_1]]¥) is
an injection if n? < ¢ and p > 2.

Proor. Ifn? < ¢=2p—2and p > 2 the spectral sequence of Proposition 7.4
collapses. ‘This is because the sparseness of the Adams-Novikov spectral sequence
{18, 4.4.2] tells us the first possible differential is dgt1, and [18, 6.2.10] says that
differential is too long to exist in this spectral sequence.
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Now suppose X is in the kernel of a. Then the E3 term of the Adams-Novikov
spectral sequence for X is isomorphic to that for L;((,,)Sn, so there is a class in
the £3 term corresponding to 5% — Lg(n)S”. I we use this class to map 5° to
X (using the collapsing of the spectral sequence), and extend to Lgn)S° — X,
by nalurality we see that it is an isomorphism on E, terms (we are mapping the
E5 term for the sphere (a ring) to the other E3 term (a copy of the same ring)
by sending 1 to 1}. O

At this point it i1s convenient to prove the following.
ProprosITION T.6. Pic, is o sel.

ProoF. We note that Proposition 7.5 implies that Pic, is a set if p is suffi-
ciently large. For general p we show that Pic,, has a finite filtration so that each
sub-quotient is a set.

To define the filtration, we consider the spectral sequence of Proposition 7.4,
This spectral sequence collapses at some finite E,41 (depending only on p and
n) since the same is true for the localized Adams-Novikov spectral sequence in
Proposition 7.1 and this speciral sequence is obtained from an inverse limit of
those.

Let Fy = Pic,. Let' X € Pic,, be In Fy if the image of X is 0 under the map
in (18). (This is equivalent to K, .(X) = Kn (5} a6 2 module over S,.) If
X € F), let tx be the fundamental class in the Ey term of the spectral sequence
for X (1x = 1 in the E; term of that speciral sequence). X € F if do(ex) =

.- = di{ex} == 0. Note then that Fi, = Finy1 = - - since the spectral sequence
collapses at Ey, and by the proof of Proposition 7.3, Frn = {Lx(a)S°}-

Fy/Fy 15 clearly isomorphic to the image of the map (18), and hence is a
set. We claim that F;/F;y| is in one-to-one correspondence with a subset of the
possible d;(1)’s.

Suppose X and X' are in F; and dip1{ex) = dis1(tx'). Let Y € Pic, be such
that gy (X AY) =~ LK(H)S‘:’, BO Lxay is a permanent cycle. It follows (from
the multiplicative property of Adams spectral sequences [18, Thecrem 2.3.3})
that d.‘+1(l,x) = —d,‘+1(1y), and hence that L;((n)(X' N Y) € F,'+1.

In other words, if X and X’ are any two elements of F; such that diy{tx) =
diy1(exc), X and X’ “differ” by an element of Fiy,.

Since this is a finite filtration on Pic,, and the associated graded is a set, so
is Pic,. D

8. Digression on Picard groups of G-modules

The material in this section is standard, but we reproduce it here in the form
in which we use it.

Suppose G is a finite group, R is a commutative ring, and & acts on R by
ring automorphisms.



120 MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SODOFSKY

Let € be the category of R modules with “c;mpatible” G actions. M e (
means G acts on M by group homomorphisms and the compatibility axiom is
the commutativity of

ReM 22 RaMm

l l

M L, M
Notice that C is a symmetric monoidal category, where the operation on un-
derlying R modules, is ® g and the G action is the diagonal one. We will denote
the operation by A.

- DETINITION 8.1. Pice 45 the abelion group of isomorphism classes of invertible
objects tn C, that is the sel of M € C such thal there is some N € C with
MAN=~R.

LEmma 8.2, If R is local, M, N are R modules such that M ®zr N ~ R end
M is finitely generaled, then M =~ R. If R is noetherian we can drop the finitely
generated hypothesis on M.

Proor. There is a proof of the first claim in [4, 2.5.4.3). The proof is by
considering the isomorphism M ©r N ~ R modulo the maximum ideal m of R
to see that M/mM is isomorphic to the residue field of R. Then Nakayama’s
lemma implies M is isomorphic to R.

If R is noetherian, then since m is finitely generated, the fact that M/mM is
the residue field implies M is finitely generated automatically. 3

CoRoLLARY 8.3. If R is local and noetherian then M € Picc if and only if
the underlying R-module of M is free of rank one.

Proor. The “only if” follows from above. To see the “if,” take M~ the
R-module Komg{M, R) with the G-action

(8f)(m) = ¢(flg~"'m)).
It is easy to check that the evaluation map

M @r Homp(M,R)— R
is a G-map. O

From now on, we assume R is a ring such that M ® g N ~ R implies M ~ R
(note that Wg . [[uy,...,us_1]] is local and noetherian). Then Pice is the
group of isomorphismn classes of free rank one G-A-modules., We want to prove
the following proposition.

ProrositioNn 84, Pice = HYG, ¥).
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The proof proceeds in two steps. First we identify Pice with the group of
crossed homomorphism modulo principal crossed homomorphisms, and then we
identify that group with the cohomology group. The second step can be found
in {10, X.3).

DEFINITION 8.5. A crossed homomerphism fram o group G 1o a G-module V
is a sel map f : G — V such that f(gh) = 9f(h) + f(g). The sef of crossed
homomorphism from G io V forms a group by using the group eperution in V.

Suppose M is in Pice, and ¢ € M is an H-module generator. This defines a

crossed homomorphism
Iafe

G——R™

as follows: let ¢ € G, then ge is another R-module generator of M since g
is an automorphism of R, 50 % = uye where u; € R*. Let faro(s) = u,.
Since ugpe = ghy — Hupe} = %up’e = fupuge it follows that far. is a crossed
homomorphism. (we are using multiplicative notation for the group K%},

It is easy to check that if (M, e) and (N, e’} are elements of Pice together with
specific choices of R-module generators, then faran.ecoe = fMe - fNer-

We define the group f’T':—:Pc to be the set of elements of Pice together with
specific choices of R-module generators. There is an obvious quotient homomeor-
phism (forget the generator)

I : Picc — Piec,

and the correspondence (M,¢) — far,. is a homomorphism from Picc to the
group of crossed homomorphisms.

This homomorphism is actually an isomorphism: if f is a crossed homomor-
phisn G — R, define a G actionon M = R, e = 1 by % = f(g)e, *m = Imf(g)e.
This gives a compatible group action, and f = fas ..

Using this isomorphism io identify Pice with the group of crossed homo-
morphisms, the kernel of II is the set of crossed homomorphisms of the form
g — #g € B* when u,r = % for some fixed r € R*. These are called principal
crossed homomorphisms.

We’ve just proven the first isomorphism in

~ 1crossed homomorphisms: G — R¥}

Picg = — n
1 {principal crossed hemomorphisms}

= HYG; R¥).

We sketch a verification of the second equality replacing B> with any G-
module V. Recall the bar complex: B, = Z[G]*{"t!) and H*(G;V) is the
cchomology of the cocomplex Homg (B., V).

Now Homges(G", V) = Homg(By,, V) by the correspondence

{lar, - o) = flar, o ga)} — {aloil- - lgn] = *Far,...  gn)}
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Using this identification, it is straightforward to verify that f € Z! & f is
a crossed homomorphism to V, and that f € B! & f is a principal crossed
homomaorphism to V.

9. The p-adic integers embed in Pic,

In this section we will construct a homomorphism Z, — Pic,, that extends
the obvious homomorphism Z < Pic,, obtained by m — Lx(ﬂ)S”‘l""[.

This construction will generalize the construction summarized in (3) in sec-
tion 1.

We denote by M?(p'e, ..., v ") any finite spectrum with top cell in dimen-
sion 0, satisfying

BP.MOE, . o)) = BRf(,. 0
up to suspension. (The resiriction on the dimension of the top cell puts the
bottom cell in dimension 1 —n—i; vy |—- - ~—i,_ 3| _3[, which gives the dimension
of the omitted suspension above.) We abbreviate the ideal (g%, ..., :1’"‘2’) by
(V7).
We will use the direct system of spectra
MO, o) MO, )

(with jm > ém for all m}, such that ¢ induces

FEBP (V) pomion] ™l gl € gR, f(vY),

n

and comimutes with the pinch maps to the top cells.

The nilpotence theorem ensures that given a multi-index I, there is a multi-
index I with in, > 4, for all m such that M(V7) exists. It also guarantees
that for any multi-index I such that M (V7) exists, there is a multi-index J
with jm > iy such that a map 4 as above exists. By ancther application of the
nilpotence theorem, we can fix a cofinal sequence of spectra in this direct system.

Now fix a multi-index / s0 that M°(V') is in our sequence, and fix & A € Z,.
We will construct a spectrum we call M (A}(V!). This is one of two main steps
in our construction. We will then use the collection of M(A}(V!)'s as I varies
to construct a spectrum Sy such that Lg(n)Sy € Pic, and Sy A MYV ~
MV,

Let ¢ be such that M°(V7) has a »%,_| map, and define

MYy = MOl ... v 72,0 ,) = cofiber ([} _,]").

H

Since MO(V7) is defined using iterates of the vt _; map, these spectra come with

maps
M:](VI);’MPH(VI)

inducing the obvious map on BP, (multiplication by v _,}.
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Before going on, we briefly describe how we are about to construct M{A)(V7).
If X happens to be an ordinary integer, we can make the spectrum

DAl pr(pio, . v:,":-_f, v )=
L Bt pr0wio . pinm2 i ) = Hm BAALR (V).

is ir

If X is some p-adic integer instead, we observe that ™ L, MXV') depends only
on the residue of m modulo the degree of a v, self map of M (V7). So for each
r, one can define s L, MI(V1) to be the kth suspension of L, M2(V') where
& = Ava| modulo the degree of a vy, self map of M2(V'). What we want to do
is fit these together in a direct system and take the limit.

Now we continue with our consteuction. Each MP (V') admits a vfr map for
some k,. Without loss of generality, assume that k-4; is a power of p times k.,
and that these maps commute with ¢,. We are allowed to make these assumptions
by Theorem & of [9].

Let z, € Z be a decreasing sequence with z, = A modulo k,. Then z._) -z, =
tu,—1£,—;. To construet M(AJ(V") we take the direct limit of
CHl [0

EmlunlMﬂ(vl) E::z]v,.iMD(vI) E""I”"'MU(VI)
- T'=4|"n|M (V’) EsalvnIM (viy —..-.

Because the maps [vEr]*" are K (n}. isomorophisms,

K(m) MOV = K{n)imM7(VT)) = K(n).(M"(V")).

br

Note that M{XJ(V') is not very well defined. Firstly, it obviously depends on
the original choice of M2(V?), and not necessarily just I. Besides that, it may
depend on the choices of the z, and hence of the k.. Nevertheless we have the
following proposition.

ProposiTION 9.1. Lo M{A)(V} is well defined up to the choice of MO(V'},

ProoF. We begin by assuming we have one system of v, maps which we will
call v¥+ and another system we call urk,l'.

Now make choices of z, and z§ as in the construction for M(A)} V7). The
choices of z, ensure that L,E7* MP(VT) and L,.E* MY_,{V") are independent
of the choice. Also, r, — ! is divisible by the smaller of &, or k[, so there is a v,
map between any stage of the two direct systems in one direction or the other.
This map commutes with ¢, by assumption, and after applying L, is invertible.

- This gives an equivalence between the two direct systems after applying L.

We also have to check independence of the choice of ¢ and v}_; map on
MO(VT). By the nilpotence theorem, it suffices to compare the construction for
vh_; to that for ¢ = st and v} _; = [v%_,]*. In this case, a choice of vf* and =,
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for v},_, gives us &/ = k,, and vhr = vk, and the system for t' is abviously &
cofinal subsystem of the system for t. [

PROPOSITION 9.2. Lef
¢: MUV — MO(VY)

be a map in our sequence of specira (so J > I).
{i} There are choices of t and vi_, (one choice of ¢ for both MO(V'') and
M (V7)) so that ¢ induces maps

ér : MI(VT) — M2V}
commuting with the pinch maps to the top cells and taking

L€ BR (V! o ) me plomiou] ™0 ol ™2 @ BR (VY ol

n—1/"
(i) The spectra M(ANVT) and M{ANV’) can be defined so ihat the ¢,
induce o map
$: MOV — MQANV).
PROOF. To see that the first condition can be satisfied, just take ¢ large

enough so that vh_; maps exist on both spectra, and then invoke the centeality
result of the nilpotence theorem (to take ¢ even larger if necessary) in order that

MUV —E MOV
Dl a0y iy 2, potlval proqyY)

cormmutes. Define ¢; on the cofiber 1o make the ladder of cofibrations obtained
by extending downward commute,

Then inductively define ¢, so that the ladder of cofiber sequences
MF(VI) — MV) —— My?+1(VI)

l#ll 'ﬁrJ’ 1¢r+1
MIVI) — M?(VJ) R M£+1(VJ]
commutes.
To satisfy (ii), we note that by the nilpotence theorem if we take the ky's
sufficiently large, both MP(V') and MP(V’) have vf- maps commuting with
de. O

We can now complete our construction; take

S(A) = 1im Ly M (X)(VY).
f

vt G

g AR DAY EIE
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By construction,

K(n).(S(N) = rinﬁ'(n).M(A)(vf)
I
= limy K (n)a B MO(pfo, ., vitd, 032,

= K(n) E5 MO (p, ... v ) = B K (n).,
50 Lg(n)S{A) € Picy.

PropPosiTION 9.3, (i) The map Zy, — Pic, by

(20) A Lren)S(A)

is @ homomorphism.
(ii) The map (20) is an injection.

ProoF. To show our map is a homomorphism, we first note that once we
choose a map

MOV AMOUVTY — MY(VT)

(by mapping out to the top cell of, say, the leftmost factor of the spectrum on the
left) the diagonal of the smash product of the direct systems defining M {A)V")
and M{MYV') maps to the direct system defining M (% 4+ A ) (V).

These maps commute as [ increases, giving a map S{A} A S(A") — S(A + A")
that is a K(n}.-isomorphism.

Finally, to show this homomorphism is injective, suppose

LK(,,)S{A) = LK(,.,)SG.
We observe that
SA) A MUV = LyMO(VE

for any A.
By our hypothesis then,

LrmyMA)NV!) = LgmyiS(A) A MO (V)] =
LK(H)[LK(n]S(/\) A MD(VI)} = LK(,‘)[LK{n)SG A MO(V!) = LK(n)Mﬂ(V!)‘

Hence for each r, we have a map Lyp)MPA(V') — LgmM () (V) that is
non-zero on the K(n) homology coming from the top cells. But this implies
eVl Ly MIVY 2= Do) MO(VT) for all r, and hence A=0. 0O
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13.

REFERENCES

. 1. F. Adams, A. S. Harris, and R. M. Switzer. Hopf algebras of cooperations for real and

complex K-theory. Proceedinga of the London Mathematical Society (§), 23:385-408, 1971,

. M. F. Atiyah. Thom complexes. Proceedings of the London Mathematical Sociedy (32,

11:291-319, 1961,

. M. F. Atiyah. K-theory and reality. Quarierly Journal of Matkemaiics, 17:367-386, 1966,
. N. Bourbaki, Commutative Algebra, chapiers I-7. Springer-Verlag, Berlin, 1980,
. A. K. Bousfield. The localization of spectra with respect to homolegy. Topology, F8:257—

281, 1979.

. D. M. Davis and M. E. Mahowald. ¢; and vo periodicity in stable hnmnl.opy theory, Amer-

tcan Jeurnal of Mathematica, 103:615-659, 1981.

. E. Devinatz. K—theory and the generating hypothesis. American Jommui‘ of Mathemetics,

112:787-804, 1990,

. M. J. Hopking and H. R. Miller. Enriched multiplications on the cohomology theories Ex.

to appear.

. M. J. Hopkins and J. H. Smith. Nilpotence and stable homotopy theory JE. preprint.
. 5. Mac Lane. Homology. Springer—Verlag, Berlin, 1963,
. M. E. Mahowald. A short proof of the James petiodicity, Bulletin of the Americen Math-

ematical Seciely, 16:512, 1965.
M. E. Mahowald. The image of I in the EHP sequence. Arnals of Mathematics, 116:65-112,
1982.

M. E. Mahowald and R. D. Thompson. Unstable compositions related to the image of J.

- Proceedings of the Americen Matkemaiical Society, 102:431-436, 1988,

14.

i5.

16.

17.

18.

19.

.20

21.

22,

23.

M.E. Mahowald and P. Shick. Periodic phencmena in the classical Adams spectral se-
quence. Trons. Amer. Math. Soc., 300:181-206, 1987.

J. Morave. Noetherian localizations of categories of cobordism comadules, Annals of Math-
ematics, 121:1-39, 1985,

D. . Ravenel, The structure of Morava stablhzer algebras. Inventiones Matk., 37:109-120,
1976.

. C. Ravenel. Localization with respect to certain periodic homology theories. American
Journal of Mathematics, 106:351-414, 1934.

D. C. Ravenel. Complezr Cobordiem and Sizhle Homolopy Groups of Spheres. Academic’

Press, New York, 1936.

D. C. Ravenel. The geometric realization of the chromatic resolution. In W. Browder,
editor, Algedraic topology and alpebraic K-iheory, pages 168-179, 1987.

D. C. Ravenel. Milpotence and Periodicity in Siable Homotopy Theory, volume 128 of
Annels of Mathematics Studies. Princeton University Press, Princeton, 1292,

R. M. Seymour, The Real K-theory of Lie groups and homogeneous spaces. Quarterly
Journal of Mathematics, 24:7-30, 1973.

R. Switzer. Algebraic Topology — Homotopy and Hemology. Springer—Verlag, New York,
1975.

R. D. Thompsen. The v -periodic homotopy groups of an unstable sphere at odd primes.
Trona. Amer, Math. Sac., 319:535-559, 1990,

DZPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE ofF TECHNOLOGY, CaM-

BRIDGE, MA 02139

E-mail address; mjh@math.mit.edu

DIEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EvansTown, IL 60208
E-mail address: mark@math.nwu,.edu

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, 1L 60208
Current address: Department of Mathematics, Johns Hopkine University, Baltimore MD

21230

E-mail address: hs@math.jhu.edu

N

Contemporary Mathematica
Volume 158, 1994

ALL COMPLEX THOM SPECTRA ARE HARMONIC

IGOR KRIZ

ABSTRACT. In this paper, we prove that all complex Thom spectra are
harmonic and all real Thom spectra are harmonic at p>2.

1. Introduction.

A spectrum is called harmonic at a prime p ifits p-localization
is local in the sense of Bousfield [2] with respect to the homology
theory associated with the spectrum

K(0)vK(1}~K(2)v... _

where K(0) = K(Q,0) and K{n) for n>0 are the periodic Morava
K-theories (see [9]). A spectrum is harmonic if it is harmonic at all
primes. Harmonic spectra were extensively studied by Ravenel [9], who
showed that they have very strong and interesting properties. For
example, an elementary observation shows that if two barmonic
connective spectta X,Y have the same n-connected cover (for any
chosen 1), then they differ only by a wedge of rational Ellenberg-
MacLane spectra.
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