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1. Introduction. The formal apparatus of the algebra of differential forms

appears as a rather special amalgam of multilinear and homological algebra,

which has not been satisfactorily absorbed in the general theory of derived

functors. It is our main purpose here to identify the exterior algebra of differ-

ential forms as a certain canonical graded algebra based on the Tor functor

and to obtain the cohomology of differential forms from the Ext functor of a

universal algebra of differential operators similar to the universal enveloping

algebra of a Lie algebra.

Let K be a field, E a commutative E-algebra, Tr the E-module of all

E-derivations of E, Dr the E-module of the formal K-differentials (see §4)

on E. It is an immediate consequence of the definitions that Tr may be

identified with HomR(DR, R). However, in general, Dr is not identifiable

with Homie(Fie, E). The algebra of the formal differentials is the exterior E-

algebra E(Dr) built over the E-module Dr. The algebra of the differential forms

is the E-algebra HomÄ(£(Fie), E), where E(Tr) is the exterior E-algebra

built over Tr and where the product is the usual "shuffle" product of alter-

nating multilinear maps.

The point of departure of our investigation lies in the well-known and

elementary observation that Tr and Dr are naturally isomorphic with

Extfi.(E, E) and Torf(E, E), respectively, where Ee = E<8>x E. Moreover,

both Extfl«(E, E) and Tors'(E, E) can be equipped in a natural fashion with

the structure of a graded skew-commutative E-algebra, and there is a natural

duality homomorphism h: Extfl«(E, E)—>HomR(TorR'(R, E), E), which ex-

tends the natural isomorphism of Tr onto HomÄ(T>Ä, E).

We concentrate our attention chiefly on a regular affine E-algebra E (cf.

§2), where K is a perfect field. Our first main result is that then the algebra

TorÄ'(E, E) coincides with the algebra E(Dr) of the formal differentials,

Extjj.(E, E) coincides with E(TR), and the above duality homomorphism h

is an isomorphism dualizing into an isomorphism of the algebra E(DR) of

the formal differentials onto the algebra HomÄ(£(Fie), E) of the differential

forms.

In order to identify the cohomology of differential forms with an Ext

functor, we construct a universal "algebra of differential operators,"   VR,
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which is the universal associative algebra for the representations of the K-hie

algebra Tr on P-modules in which the P-module structure and the Pa-module

structure are tied together in the natural fashion. After establishing a number

of results on the structure and representation theory of Vr, we show that,

under suitable assumptions on the K-algebra R and, in particular, if R is a

regular affine 7C-algebra where K is a perfect field, the cohomology 7i-algebra

derived from the differential forms may be identified with KxtvR(R, R).

In §2, we show that the tensor product of two regular affine algebras over

a perfect field is a regular ring, and we prove a similar result for tensor prod-

ucts of fields. §§3, 4 and 5 include, besides the proof of the first main result,

a study of the formal properties of the Tor and Ext algebras and the pairing

between them, for general commutative algebras. In the remainder of this

paper, we deal with the universal algebra Vr of differential operators. In par-

ticular, we prove an analogue of the Poincaré-Birkhoff-Witt Theorem, which

is needed for obtaining an explicit projective resolution of R as a Fs-module.

Also, we discuss the homological dimensions connected with Vr.

We have had advice from M. Rosenlicht on several points of an algebraic

geometric nature, and we take this opportunity to express our thanks to him.

2. Regular rings. Let R he a commutative ring and let P be a prime ideal

of R. We denote the corresponding ring of quotients by Rp. The elements of

Rp are the equivalence classes of the pairs (x, y), where x and y are elements

of R, and y does not lie in P, and where two pairs (xi, yx) and (x2, y2) are

called equivalent if there is an element z in R such that z does not lie in P

and z(xiy2—x2yi) = 0.

By the Krull dimension of R is meant the largest non-negative integer k

(or <», if there is no largest one) for which there is a chain of prime ideals,

with proper inclusions, PoC • • • QPkQR- A Noetherian local ring always

has finite Krull dimension, and it is called a regular local ring if its maximal

ideal can be generated by k elements, where k is the Krull dimension. A

commutative Noetherian ring R with identity element is said to be regular

if, for every maximal ideal P of R, the corresponding ring of quotients Rp

is a regular local ring [2, §4].

It is well known that a regular local ring is an integrally closed integral

domain [14, Cor. 1, p. 302]. It follows that a regular integral domain R is

integrally closed ; for, if x is an element of the field of quotients of R that is

integral over R then xQRP, for every maximal ideal P of R, which evidently

implies that xQR.

Let K be a field. By an affine K-algebra is meant an integral domain R

containing K and finitely ring-generated over K. An affine 7f-algebra is

Noetherian, and its Krull dimension is equal to the transcendence degree of

its field of quotients over K, and the same holds for the Krull dimension of

every one of its rings of quotients with respect to maximal ideals [14, Ch.

VII, §7].
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Theorem 2.1(2). Let K be a perfect field, and let R and S be regular affine

K-algebras. Then R®k S is regular.

Proof. Suppose first that R®kS is an integral domain, and let M be

one of its maximal ideals. Put Mi = (MC\R) ®K S+R®k (MC\S). Then Mi

is an ideal of R®kS that is contained in M, and we have (R®k S)/Mi

= (R/(Mr\R))®K(S/(MiAS)). Now R/(RCAM) and S/(MC\S) are sub-
rings of (R®k S)/M containing K. Since (R®k S)/M is a finite algebraic

extension field of K, the same is therefore true for R/(MC\R) and S/(MC\S).

Since K is perfect, it follows that we have a direct E-algebra decomposition

(R®k S)/Mi= U+M/Mi. Let 3 be a representative in R®k S of a nonzero

element of U. Then 2 does not belong to M, and zAfG^i. Hence it is clear

that M(R®kS)m = Mi(R®kS)m.
Since E is regular, the maximal ideal (Mi\R)RMnR of the local ring

Rmi~\r is generated by dß elements, where ¿« is the degree of transcendence

of the field of quotients of E over K. Similarly, (MC\S)SMns is generated by

ds elements, where ds is the degree of transcendence of the quotient field of 5

over K. These dR+ds elements may be regarded as elements of (R®k S)m and

evidently generate the ideal MX(R®K S)m- Hence we conclude that the maxi-

mal ideal of (R®k S)m can be generated by dR +ds elements. Since the degree

of transcendence of the quotient field of R®k S over K is equal to dR+ds,

this means that (R®k S)M is a regular local ring. Thus R®k S is regular.

Now let us consider the general case. Let Q(R) and Q(S) denote the fields

of quotients of E and S. Let KR and Ks be the algebraic closures of K in

Q(R) and in Q(S), respectively. Since E and 5 are integrally closed, we have

KRER and KSES. Since Q(R) and Q(S) are finitely generated extension

fields of K, so are KR and Ks. Thus KR and Ks are finite algebraic extensions

of E.
Let M be a maximal ideal of R®k S. Since K is perfect, we have a direct

E-algebra decomposition KR®KKS=U+Ml, where Mi = MC\(KR®K Ks).

Hence we have

R®KS = R ®kx(Kr®kKs) ®ksS = E ®K* U ®ksS + M2,

where the last sum is a direct E-algebra sum, and M2 = R®kr Mi®ks SEM.

Evidently, U may be identified with a subring of the field (R®k S)/M

containing K. Hence U is a finite algebraic extension field of E. Identifying

KR and Ks with their images in U, we may also regard U as a finite algebraic

extension field of KR or Ks. Since K is perfect, U is generated by a single ele-

ment over KR or over Ks. The minimum polynomial of this element over KR

or over Ks remains irreducible in Q(E)[x] or in Q(S) [x], because KR is

algebraically closed in Q(R) and Ks is algebraically closed in Q(S). Hence

(2) The referee informs us that this result is an immediate consequence of cohomology re-

sults obtained by D. K. Harrison in a paper on Commutative algebras and cohomology, to appear

in these Transactions.
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R®k« U and U®ksS are integral domains. Moreover, by the part of the

theorem we have already proved, they are regular.

Let P denote the field U®ks Q(S). This is a finitely generated extension

field of the perfect field KR. Let (tx, ■ ■ ■ , t„) be a separating transcendence

base for P over KR, and put P0 = KR(tx, ■ ■ ■ , tn). We have Q(R)®kr T

— ((?(P) ®kb To) ®r0 P, and we may identify Q(R) ®x« Po with a subring of

Q(R)(tx, • • • , tn), with (tx, • • ■ , tn) algebraically free over Q(R). Since KR

is algebraically closed in Q(R), it follows that KR(tx, • • • , t„) is algebraically

closed in Q(R)(tx, • ■ • , tn) [6, Lemma 2, p. 83]. Now it follows by the argu-

ment we made above that R®k* Pis an integral domain,so thatP<8>xs U®ksS

is an integral domain. On the other hand, this is the tensor product, relative

to the perfect field U, of the regular affine [/-algebras R®KR U and U®ks S.

Hence we may conclude from what we have already proved that R ® kr U ® xs S

is regular.

Now consider the direct 7i-algebra decomposition

R ®K S = R ®k* U ®r3 S + Mi.

Since M2QM, the corresponding projection epimorphism R®KS

—>R®kr U®ksS sends the complement of M in R®KS onto the comple-

ment of MC\(R®KR U®rs S) in R®KR U®ks S. Moreover, there is an ele-

ment z in the complement of M such that zM2— (0). Hence it is clear that the

projection epimorphism yields an isomorphism of (R®k S)m onto the local

ring over R®k*U®ksS that corresponds to the maximal ideal

Mr\(R®KR U®ks S). Hence (R®k S)m is a regular local ring, and Theorem

2.1 is proved.

Theorem 2.2. Let K be an arbitrary field, let F be a finitely and separably

generated extension field of K, and let L be an arbitrary field containing K. Then

F®k L is a regular ring.

Proof. It is known that the (homological) algebra dimension dim(F), i.e.,

the projective dimension of P as an F®k P-module is finite; in fact, it is

equal to the transcendence degree of F over K [il, Th. 10]. Since dim(P®xL)

= dim(£), where F®k L is regarded as an 7,-algebra [4, Cor. 7.2, p. 177] we

have that dim(£®j¡; L) is finite. Since L is a field, this implies that the global

homological dimension d(F®KL) is also finite [4, Prop. 7.6, p. 179]. Since

F®k L is a commutative Noetherian ring, we have, for every maximal ideal

M of F®K L, d((F®K L)M)^d(F®KL) [4, Ex. 11, p. 142; 1, Th. lj.

Thus each local ring (F®k L)m is of finite global homological dimension. By

a well-known result of Serre's [12, Th. 3], this implies that (F®kL)m is a

regular local ring. Hence F®k L is a regular ring.

Note. Actually, we shall later appeal only to the following special conse-

quence of Theorem 2.2: let F be a finitely separably generated extension field

of K; let / be the kernel of the natural epimorphism F®k F—*F; then the
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local ring (F®k F)j is regular. This special result can be proved much more

easily and directly along the lines of our proof of Theorem 2.1. On the other

hand, Theorem 2.1 can be derived more quickly, though less elementarily,

from the result of Serre used above.

3. The Tor-algebra for regular rings. Let E and S be commutative rings

with identity elements, and let <p be a unitary ring epimorphism S—*R. We

regard E as a right or left 5-module via <p, in the usual way, and we consider

Tors(E, E).

Since 5 is commutative, every left 5-module may also be regarded as a

right 5-module, and we shall do so whenever this is convenient. Let 77 stand

for the homology functor on complexes of 5-modules, and let U and V be

any two 5-module complexes. There is an evident canonical homomorphism

of H(U)®s 77(F) into H(U®s V), which gives rise to an algebra structure

on Tors(E, E), as follows. Let X be an 5-projective resolution of E. With

U=V = R®s X, the canonical homomorphism becomes a homomorphism

Tors(E, E) ®s Tors(R, R) -> 77((E ®s X) ®s (R ®s X)).

Evidently, (E <g> s X) ® s (R ® s X) may be identified with (E ® s R) ® s (X ® s X),

and hence with R®s (X®s X). Now X®sX is an 5-projective complex

over R®s R = R, whence we have the natural homomorphism

H(R ®s (X ®s X)) -> Tors(E, E).

Composing this with the homomorphism above, we obtain an 5-module

homomorphism

Tor5 (R, R) ®s Tors(E, E) -* Tors(E, E).

This is the product (T) of [4, p. 211] and it is independent of the choice of the

resolution X. Standard arguments on tensor products of complexes and

resolutions show that this product is associative and skew-commutative in

the sense that aß=( — i)pqßa when a is homogeneous of degree p and j3 is

homogeneous of degree q. In principle, this product is a product of 5-algebras.

However, 5 operates on Tors(E, E) through cb: S-^R, and we shall accord-

ingly regard Tors(E, E) as an E-algebra.

Theorem 3.1. Let S and R be Noetherian commutative rings with identity

elements, and let <p be a ring epimorphism S—*R with kernel I. Assume that R

is a regular ring and that, for every maximal ideal M of S that contains I, the

local ring Sm is regular. Then Tors(E, E) is finitely generated and projective

as an R-module and is naturally isomorphic with the exterior R-algebra con-

structed over Torf(E, E).

Proof. Let F denote the tensor algebra constructed over the E-module

Torf(E, E), let P denote the kernel of the canonical E-algebra homomorphism
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\\i: T-+Tors(R, R), and put Q = Tora(R, R)/\p(T). Let U denote the 2-sided

ideal of T that is generated by the squares of the elements of Torx (R, R). The

last assertion of our theorem means that Q = (0) and P=U. The statement

Q=(0) is equivalent to the statement Rn®r Q=(0), for all maximal ideals

N oí R. The statement P = U is equivalent to the statement (P+ U)/P=(0)

and (P+U)/U=(0), or to the statement RN®R (P+[/)/P= (0) and

Rn ® r(P + U)/ U = (0), for all maximal ideals N of R. This, in turn, is equiva-

lent to the statement that the images of Rn ®rP and Rn ® r U in RN ®r(P-\-U)

coincide with Rn®r (P+U). Since Rn is P-flat, these tensor products may

be identified with their canonical images in Rn®r T; and Rn®r P is thereby

identified with the kernel of the homomorphism of Rn®r T into

Rn®r Tors(P, R) that is induced by \p. Hence it is clear that the statement

Q = (0) and P = U is equivalent to the statement that the homomorphism of

Rn®r T into Rn®r Tors(P, R) that is induced by ip is an epimorphism with

kernel Rn®r U, for every maximal ideal N of P.

Let M be the maximal ideal of 5 that contains 7 and is such that M/I = N.

Clearly, the epimorphism <j> induces an epimorphism Sm^>Rn with kernel

ISm in the natural fashion.

Now let X be an 5-projective resolution of P. Since S m is 5-flat, Sm®s X

is then an 5m-protective resolution of Sm®s R —Sm/ISm = Rn- Hence we

have

Tots"(Sm/ISm, Sm/ISm) = H((Sm/ISm) ®Sli (Sm ®s X)).

On the other hand,

(Su/ISm) ®su (Sm ®s X) = (Sm/ISu) ®sX = Rn®sX = Ry ®R (R ®s X).

Since Rn is P-flat, we have H(Rn®r (R®s X)) =Rn®r Tors(R, R). Thus

Rn®rTots(R, R) is naturally isomorphic with Totsm(Sm/ISm, Sm/ISm).

Similarly, we see that Rn®r Pis naturally isomorphic with the tensor algebra

constructed over the Pjv-module TorfM(5M/75jif, SM/ISM). Moreover, it is

easily seen that these isomorphisms transport our homomorphism Rn®r T

-^Rn®r Tors(R, R) into the canonical homomorphism of the tensor algebra

over To^^m/ISm, Sm/ISm) into Totsm(Sm/ISm, Sm/ISm).

Each Torp(P, P) is finitely generated as an S-module, and hence also as

an P-module. Hence if we show that Rn®r TorP(R, R) is a free P^-module,

for every maximal ideal N of R, we shall be able to conclude from a standard

result [4, Ex. 11, p. 142] that Torf(R, R) is a finitely generated projective

P-module. In particular, if Torf(P, P) is a finitely generated projective R-

module, we imbed it as a direct P-module summand in a finitely generated

free P-module to show that the exterior algebra constructed over it has non-

zero components only up to a certain degree and is a finitely generated projec-

tive P-module.

From this preparation, it is clear that it suffices to adduce the following
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result(3): let L( = SM) be a regular local ring and let J( = ISm) be a prime

ideal of L such that the local ring L/J is regular. Then Torf (L/J, L/J) is a

finitely generated free E/7-module, and TorL(L/J, L/J) is naturally iso-

morphic, as an L//-algebra, with the exterior algebra constructed over

Torf (L/J, L/J).
To prove this, note first that the assumptions imply that the ideal J can

be generated by an E-sequence (ai, ■ ■ ■ , a¡) of elements of L, i.e., by a sys-

tem with the property that each ak is not a zero-divisor mod the ideal gener-

ated by Oi, • • • , ak-i [14, Th. 26, p. 303 and Cor. 1, p. 302]. If X is the
Koszul resolution of L/J as an L-module [4, pp. 151-153], constructed with

the use of this E-sequence, then X has the structure of an exterior E-algebra

over a free L-module of rank j, this algebra structure being compatible with

the boundary map, so that it induces the algebra structure on TorL(L/J, L/J)

via (L/J)®LX. Moreover, the boundary map on (L/J)®LX is the zero

map. Hence it follows immediately that Tor\(L/ J, L/J) is a free E/7-module

of rank/ and that TorL(L/J, L/J) is the exterior algebra over this module.

This completes the proof of Theorem 3.1.

4. Duality between Tor and Ext. Let E and S be commutative rings with

identity elements, and let <p be a ring epimorphism of 5 onto E. As before, all

E-modules are regarded as 5-modules via cp. Let X be an 5-projective resolu-

tion of E, and let A be an E-module. Then Exts(E, A) =77(Homs(Z, A)).

Clearly, we may identify Horn s (X, A) with HomB(E(S>s X, A), so that we

may write Exts(E, 4) =77(HomB(E®s X, A)). Now there is a natural map

(a specialization of [4, p. 119, last line])

h: H(H.omR(R ®s X, A)) -» Homs(Tors(E, R), A)

defined as follows. Let p be an element of 77(HomB(E<g>s X, A)). Then p is

represented by an element uEHomR(R®s X, A) that annihilates d(R®s X),

where d is the boundary map in the complex R®s X. Hence, by restriction

to the cycles of R®s X, u yields an element of HomÄ(Tors(E, E), A), and

it is seen immediately that this element depends only on p and not on the

particular choice of the representative u. Now h(p) is defined to be this ele-

ment of HomB(Tors(E, E), A).

Clearly, h is an E-module homomorphism of Exts(E, 4) into

HomÄ(Tors(E, E), A). In degree 0, we have Tor^E, R)=R®SR = R, and

Exts(E, ^4) = Homs(E, 4) = HomÄ(E, A), and this last identification trans-

ports h into the identity map. Thus h is an isomorphism in degree 0. Note that

Toro(E, R)=R is projective as an E-module, whence the following lemma

implies, in particular, that h is an isomorphism also in degree 1.

Lemma 4.1. Let <j>: S—>E be an epimorphism of commutative rings with

identity elements, and regard R-modules as S-modules via <b. Let A be an R-

(3) This is a special case of [13, Th. 4, etc.], which gave the suggestion for our proof of

Theorem 3.1.
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module, and let k be a positive integer. Assume that Torf(P, P) is R-projective

for all i < k. Then the map

hi-. Exts(P, A) -> Homfi(Torf (R, R), A),

obtained by restriction of the map h defined above, is an isomorphism, for all i ^ k.

Proof. Let Z< denote the kernel of d in R®s Xit and put Bi = d(R®s Xi+x),

Ci = R®s X{. We have Zo = Co. Suppose that we have already shown, for some

i<k, that Zi is P-projective. Since Torf(P, P) is P-projective, the exact

sequence 0—»75 ¿—»Z,-->Torf(P, P)—»0 shows that P< is a direct module sum-

mand in Z, and hence is P-projective. Hence the exact sequence 0—»Zi+i

—»Cj+i—»d75,—»0 shows that Zi+x is a direct module summand in d+x and

hence is P-projective. Hence, starting at i = 0, we conclude that B{ is a direct

P-module summand of d for all i<k, and that Z, is a direct P-module sum-

mand of d for all i ^ k.
Now let i^k, and let p be an element of Exts(P, A) such that A<(p) =0.

Let m be a representative of p in Hom^Cj, A). Then u vanishes on Z„ so

that it induces an element uGHomi^w, A) such that v o d — u. Since P¿_i

is a direct P-module summand of C<_i, v can be extended (trivially) to an

element wGHomjä(C,_i, A). Now u = wo d, which means that p = 0. Thus hi

is a monomorphism.

Now let YGHomfi(Torf(P, P), A). We may regard 7 as an element of

Homß(Zi, A). Since Z< is a direct P-module summand of C,-, 7 can be ex-

tended to an element of Homjj(C,-, A), which represents an element

pGExts(P, A) such that A,(p) =7. Thus hi is an epimorphism. This completes

the proof of Lemma 4.1.

In degree 1, we have Torf(P, R)=R®s I, where 7 is the kernel of <p, and

Exts(P, A)=Homs(7, A) = HomR(R®s I, A), this identification being pre-

cisely the one obtained from the isomorphism hx. Alternatively, we may

identify R®sl with 7/72 (whose P-module structure is naturally induced

from its 5-module structure), and thus we may write, compatibly with hx,

Tor?(P, P) =7/72, and Ext¿(P, A) =HomÄ(7/72, A).

We are particularly interested in the following special case. Let K be a

commutative ring with identity, and let P be a commutative P-algebra with

identity. Let S be the P-algebra R®k R, and let <j> be the epimorphism S—>P

that sends x®y onto xy. Let Tr(A) denote the P-module of all PJ-linear

derivations of P into the P-module A. We recall the well-known fact that

Tr(A) is naturally isomorphic with Exts(P, A). Indeed, if ÇQTr(A) then f

yields an element f*GHoms(7, A) such that f*(Zx®y)= Zx"fCy)
= — Z^'TW (since ~^2,xy = 0). Clearly, the map f—►$"* is an P-module homo-

morphism. If f* = 0, we have, for every xQR, f(x) = f*(l(8)x — x®l) =0.

Thus the map f—>f* is a monomorphism. If 7GHoms(7, A), we define a map

f of P into A  by putting f(x) =7(1 ®x— x®l). One checks easily that
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ÇETr(A) and f* = 7. Thus the map f—»f* is an E-module isomorphism of

Tr(A) onto Exts(E, A).
Regard 5 as an E-module such that x-(y®z) = (xy) ®z, and let J he the

E-submodule of 5 that is generated by the elements of the form i®(xy)

—x®y—y®x. The factor module 5/7 is the E-module of the formal differen-

tials of E. The mapx—>¿x = the coset of 1 ®x mod 7 is the usual derivation of

E into the E-module of the formal differentials and, in fact, the definition of

these amounts simply to enforcing the rule d(xy) =xdy+ydx. Let Dr denote

the E-module of these formal differentials. It is easily verified that the map

5—»7 that sends x®y onto x®y — (xy)®i induces in the natural way an iso-

morphism of the E-module Dr onto 7/72 = Torf(E, E) [3, Exp. 13]. Tracing

through our above definitions and identifications, we see immediately that

the duality isomorphism hi: Exts(E, A)—>HomÄ(Tor?(E, E), A) is trans-

ported into the map F,r(4)—►Hom^E'Ä, 4) attaching to ÇETr(A) the ele-

ment f of HomB(EÄ, E) given by f'(]£xdy) = 2~lx-t(y).
Let U be a multiplicatively closed subset of nonzero elements of E con-

taining the identity element. Let Ru denote the corresponding ring of quo-

tients. This is still a E-algebra, and we write Su for Ru®k Ru. By an argu-

ment almost identical with the localization argument of the proof of Theorem

3.1, we see that Ru®r Tors(E, E) is naturally isomorphic with Torsv(Ru, Ru) ■

In particular, we have Ru®r Dr naturally isomorphic with Drv.

It is immediate from Theorems 2.1 and 3.1 that, if K is a perfect field and

E is a regular affine E-algebra, then Tors(E, E) is a finitely generated projec-

tive E-module. We can use the above results to prove the following converse.

Theorem 4.1 (4). Let K be a perfect field and let R be an affine K-algebra.

Put S = R®k R and suppose that Torf(R, R) is R-projective. Then R is a

regular ring.

Proof. Let Q be the field of quotients of R, and let N be a maximal ideal

of E. Since 5 is Noetherian, DR( = I/I2) is finitely generated, and, by assump-

tion, it is E-projective. Hence Rn®rDr is a finitely generated projective,

and hence free Ejv-module. Thus Drn is a finitely generated free Ejv-module.

Now Q®rn Drn is isomorphic, as a Q-space, with Dq. We have Hom0(7>Q, Q)

isomorphic with Tq(Q), and, since Q is a finitely generated separable exten-

sion field of E, Tq(Q) is of dimension t over Q, where t is the transcendence

degree of Q over K. Hence the dimension of Dq over Q is equal to t, whence we

conclude that Drn is of rank t over Rn.

Write L for RN and M for NRn. Since Dl is a free E-module of rank t, the

L/M-space HomL(DL, L/M) is of dimension t over L/M. We know from the

(*) The essential, local, part of this result is contained in [10, Folgerung, p. 177]. Our proof

of the local part is adapted from [3, Exp. 17, Th. 5]. The global theorem has also been obtained

by Y. Nakai, On the theory of differentials in commutative rings, J. Math. Soc. Japan 13 (1961),

63-84.
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above that Homz,(PL, L/M) is isomorphic with TL(L/M). Hence TL(L/M)

is of dimension t over L/M. Now a derivation of L into L/M must annihilate

M2 and hence induces a derivation of L/M2 into L/M. Moreover, every

derivation of L/M2 into L/M can evidently be lifted to give a derivation of

L into L/M. Hence Tliw(L/M) is isomorphic, as an L/M-space with

TL(L/M), and thus is of dimension t.

Now L/M2 is a finite dimensional algebra over the perfect field K with

radical M/M2. Hence we can write L/M2 as a semidirect sum L/M2= V

A-M/M2, where F is a subalgebra isomorphic with the field L/M. Since K

is perfect, every P-linear derivation of F into L/M must therefore be 0. Hence

it is clear that the restriction of the elements of Tt,imí(L/M) to M/M2 yields

an isomorphism of Tl/m^(L/M) onto HomL/M(M/M2, L/M). Hence we con-

clude that the dimension of M/M2 over L/M is equal to t. It follows by a

standard argument from this that M can be generated by / elements. Since

t is the Krull dimension of L, this shows that L, i.e., Pat, is a regular local

ring. This completes the proof.

5. Explicit multiplication. Let K be a commutative ring with identity,

and let P be a commutative P-projective P-algebra. As before, let S = R®kR,

and let <p he the natural epimorphism S—»P. If A and B are 5-modules we

regard them as two sided P-modules in the usual way, and we form A ®R B.

This is again a two sided P-module, and hence an 5-module. Let X be an

5-projective resolution of P. Using that P is P-projective, we see that

X®r X is 5-projective; essentially, this follows from the fact that S®r S

= R®k R®k R, with the two sided P-module structure in which a• (u®v®w)

= (au)®v®w and (u®v®w) -a = u®v®(wa), so that 5®r 5 is 5-projec-

tive whenever P is P-projective. Moreover, 5 is P-projective as a left

or right P-module, so that X is an P-projective resolution of P. Hence

H(X®r X) =TorR(R, R) and therefore has its components of positive degree

equal to 0, so that X®r X is still an 5-projective resolution of P. For two

sided P-modules i/and V, regard Homs(£/, V) as a two sided P-module such

that (r-/)(«)=r•/(«)(=/(/•«)) and (f-r)(u)=f(u)-r(=f(u-r)).

Now the standard 5-module homomorphism

$: Homs(X, A) ®ß Homs(X, 75) -+ Homs(X ®R X, A ®RB),

where ipif®g)(u®v) =/(w) ®giv), induces an 5-module homomorphism

Exts(P, A) ®r Exts(p, 75) -» Exts(P, A ®RB).

This is the product V, as given in [4, Ex. 2, p. 229], and it is independent of

the choice of the resolution X. In particular, for A=B=R, this defines the

structure of an associative and skew-commutative P-algebra on Exts(P, P).

In order to make the algebra structures on Tors(P, P) and Exts(P, P)

explicit, we use the following well-known resolution Y of P as an 5-module.

We put Fo = 5 and we let <p: S-^R he the augmentation. Generally, let Yn he
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the tensor product, relative to K, of n+2 copies of E. The 5-module structure

of Fn is defined so that

(a ® b) - (xo ® ■ - ■ ® xn+i) = (ax0) ® Xi® • • • ® xn® (xn+ib).

The boundary map ¿on F is given by

n

d(x0 ®   ■  ■  ■  ® Xn+i)  =  23 (—1)^0 ®   ■  ■  ■  ®  (XiXi+i)  ®   ■  ■  ■  ® Xn+i.
i=0

This complex is not only acyclic but it has actually a right E-module homo-

topy h, where h(xi® - ■ ■ ®x„) = l®Xi® • • • ®xn. Since E is E-projective,

it follows as above for X®R X that Y is 5-projective. Thus F is an S-projéc-

rive resolution of E.

The complex Y can be given the structure of an associative skew-com-

mutative 5-algebra with respect to which d is an antiderivation, as follows.

If Xi, ■ • • , xp and yi, • - - , yq are elements of E let [xi, ■ • • ,xp;yi, • • • , yq]

stand for the sum, in the tensor product over E of p+q copies of E, of all

terms of the form +zi<g> • • • ®zp+q, where zik = xk for some ordered subset

(ii, • • • , ip) of (1, • • • , p+q), and Zjk=yk for the ordered complement

O'ii ' ' ' i j«)i an(I where the sign is + or — according to whether the permuta-

tion (¿i, • • • , ipiji, • • ■ ,jq) of (1, • • • , p+q) is even or odd. Then the prod-

uct in Y is given by the maps Yp ® s Fa—> YP+q that send

(x0 ® - - ■ ® xp+i) ®s (y0 ® ■ • • ® yq+i)

onto

(xoyo) ® [xh ■ • - , xp; yu ■ ■ - , yt] ® (yî+iXp+1).

It can be verified directly that this is indeed an associative and skew-com-

mutative product and, if a is homogeneous of degree p and ß arbitrary, one

has d(aß)=d(a)ß + (-l)*ad(ß); cf. [4, pp. 218-219].
This product evidently induces a product in R®s Y, and hence in

Tors(E, E). By the nature of the definition of the product on Tors(E, E),

as given earlier in the general case, the product induced from that on Y is

the standard product (Tl on Tors(E, E).

Next we shall define a map of the complex F into the complex Y®r Y

which will serve to make the product on Exts(E, E) explicit. We have

(Y®r Y)p= 2^~o Yt®r Fp_r. As an 5-module, each Yt®r Fp_r may be

identified with the tensor product, relative to E, of p + 3 copies of E, i.e.,

with Fp+i. With this understanding, we define an 5-module homomorphism

yr: Yp—>Yr®R Fp_r such that

7r(Xo  ®   •   •   •   ®  Xp+l)   =   Xo ®   ■   ■   •   ®  Xr ®   1  ®  Xr+1 ®   -   -   -   ®  Xp+l.

Now the desired map 7: Y^>Y®r Y is defined so that, for uE Yp, the com-

ponent of y(u) in Yr®R Fp_r is yr(u). It is somewhat lengthy, but not diffi-

cult, to verify that 7 is compatible with the boundary maps on F and on
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Y®r Y. The product V on Exts(P, P) is induced by the product on

Homs(F, P) induced by 7. In particular, with aGHoms(Fp, P) and

ßQrloms(Ys, R), we have(6)

(aß)(xo ® ■ ■ • ® Xp+t+x)

= a(xo ® ■ ■ ■ ® xp ® 1)/3(1 ® Xp+x ® ■ • ■ <8> Xp+t+x)

= Xoa(l ® Xx ® • • • ® Xp ® 1)/3(1 ® Xp+x ® ■ ■ ■ ® Xp+q ® l)xp±q+x.

Consider a formal differential ^2xdyQDR. It is easily verified that the

corresponding element of Torf(P, P) is represented in R®s Yx by the element

Z*®s (l®y®l). On the other hand, let {QTr(R) = Tr (say). Then it is
easily seen that its image f*GExtg(P, P) is represented in Homs(Fi, P) by

the element f, where Ç'(xo®xx®x2) =x0Ç(xx)x2.

Now let $i, * • • , tn be elements of Tr, and let f* • • • fî denote the

product in Exts(P, P) of their canonical images ff in Exts(P, P). Then

TÍ • " ■ Tn is represented in Homs(F„, P) by the product f/ • • • Çn', as

induced from the above map 7. One sees immediately from the formula

written above that

ÛÏ   •  •   • fn )(Xo ®   ■   •   ■   ® Xn+x)   =  Xofl(Xi)   •   •   • ín(xn)xn+l.

Now let a Q Tovsv(R, R), ßQ Torst(R, P), and let us compute

Mfî ' " • Çt+î)(aP)- Choose representatives aQR®s Yp and bQR®s Yq of

a and ß, respectively. Then aß is represented in R®s Yp+t by the product

ab. We obtain A(ff • • • f*+„)(a/3) by applying the element of

Homfi(P®s Yp+t, R) that corresponds naturally to $"/••• £/+, to a&.

Clearly, the result so obtained is the same as the result one would obtain by

performing the shuffling involved in forming ab on the sequence fi, • • ■ , fp'+5

rather than on the arguments x< and y¡ in the product formula for ab. Hence

we have

h(h ■ ■ ■ tp+g)(c>ß) = Z <r(t)h(£(x) ■ ■ • i'*P))(a)Ä(fuJH-i) • • • f*H-4))0S),
t

where the summation goes over all those permutations t oí (1, • • • , p-\-q) for

which t(l)< ■ ■ ■ <t(p) and ¿(£ + l)< • • • <t(p+q), and where o(t) is the

signature of /.

Let Ap(Tr) denote the P-module of all alternating (P, p)-\\near maps/of

/»-tuples of elements of Tr into P, where "alternating" is to mean that

/(rid), • • • , Ti(p)) = <r(0/(ri, • • • , fp), for every permutation t of the set

(1, • • • , p). Then the duality map h: Ext|(P, P)-»HomÄ(Tor£(P, P), P)

yields an P-module homomorphism A* of Torp(P, P) into Ap(Tr), where

h*(a)(U ■ ■ ■ , fp) = A(fî • • • raí«)-

Put A(TR) = Zj> ^4p(Pb). Then A(TR) is the usual algebra of the differen-

(6) This is the value-wise product of cochains, such as was used in [l 1, Th. 6].
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tial forms on E, where the multiplication is defined by means of the above

shuffling of the arguments f< and summing with the appropriate signatures.

Our result is therefore the following.

Theorem 5.1. Let K be a commutative ring with identity, and let R be a

K-projective commutative K-algebra with identity. Let S = R®k E. Then the

duality map h of Exts(E, E) into Homiî(Tors(E, E), E) and the multiplication

in Exts(E, E) yield, in the natural fashion, an R-algebra homomorphism h* of

Tors(E, E) into the R-algebra A(Tr) of the differential forms on R.

In particular, suppose that E is a regular affine E-algebra, where E is a

perfect field. Then, in virtue of Theorem 2.1, the assumptions of Theorem 3.1

are satisfied, and we conclude that Tors(E, E) is finitely generated and pro-

jective as an E-module, and may be identified with the exterior E-algebra

constructed over Tor?(E, E). By imbedding Tor?(E, E) as a direct E-module

summand in a finitely generated free E-module, we see that

HomÄfror^E, E), E) is isomorphic in the standard fashion (dual of exterior

algebra ~ exterior algebra over dual) with the exterior E-algebra constructed

over HomB(Torf(E, E), E).

Let E(Tr) denote the exterior E-algebra constructed over Tr. The map

f—*h(Ç*) is an isomorphism of TR onto Homß(Torf(E, E), E). By what we

have just remarked, this extends in the standard fashion to an isomorphism

p of E(Tr) onto HornR(Tor5(E, E), E). Let fi, • '• • , ff be elements of TR,

and let fi • • • Tp stand for their product in E(TR). Then we see from Theorem

5.1 that h(Ç* ■ ■ ■ f*)=p(fi • • • fp). By Lemma 4.1, h is an isomorphism.
Hence we conclude that the map f^f* extends in the natural fashion to an

/¿-algebra isomorphism of E(Tr) onto Exts(E, E). Moreover, it is clear that,

in the present case, h* is a monomorphism sending Tors(E, E) onto the sub-

algebra of A(Tr) that is generated by the strongly alternating maps, i.e., by

the maps that vanish whenever two of the arguments are equal. We may

summarize these results as follows.
i

Theorem 5.2. Let R be a regular affine K-algebra, where K is a perfect

field. Then Tors(E, E) is naturally isomorphic with the exterior algebra E(Dr)

constructed over the R-module Dr of the formal differentials, and Exts(E, E) is

naturally isomorphic with the exterior algebra E(Tr) constructed over the

R-module Tr of the K-derivations of R. These isomorphisms transport the duality

map h: Exts(E, E)—»Homj¡(Tors(E, E), E) into the canonical homomorphism

E(TR)-j>HomR(E(Dr), E), which is an isomorphism because Dr is finitely

generated and projective as an R-module. The homomorphism h* of Theorem 5.1

becomes an isomorphism of E(Dr) onto the R-algebra of the strongly alternating

differential forms.

Now suppose that E is an arbitrary field, and that F is a finitely generated

separable extension field of E. Then everything we have said above concern-

ing the regular affine E-algebra E holds equally for F, the only change in the
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proof being that the appeal to Theorem 2.1 is now replaced with an appeal

to Theorem 2.2. Thus we have the following result.

Theorem 5.3. The conclusions of Theorem 5.2 hold also when K is an

arbitrary field and R is a finitely generated separable extension field of K.

In his thesis (Chicago, 1956), W. Ballard has obtained a part of Theorem

5.3, namely: Exts(E, R)~E(TR).

It is of interest to observe, in connection with Theorem 5.1, that the weak

definition of "alternating" used in describing A(Tr), rather than the usual

stronger requirement on "alternating" maps, which demands that they vanish

whenever two of the arguments are equal, is appropriate, in general. This is

shown by the following example. Let E be a field of characteristic 2 and let

R = K[a], with a2 = uEK, but aEK. Consider the element 1 <S>s(l ®a®a®a)

+ í®s(í®u®a®í)ER®sY2. One checks immediately that this element is a

cycle and thus represents an element «GTorf(E, E). We have Tr = RÇ,

where f (a) = 1. Now one verifies immediately that Ä*(a)(f, f) =a. Thus h*(a)

is not alternating in the strong sense. Of course, it is clear from Theorem 5.2

that this phenomenon cannot arise when E is a regular affine algebra over a

perfect field. Note that in our present example the element a does not belong

to the subalgebra of Tors(E, E) that is generated by Torf(E, E); indeed, h*

must evidently vanish on Tor?(E, E)Tori(E, E), in the present case.

6. The algebra of differential operators. Let E be a commutative ring

with identity, and let E be a commutative E-algebra with identity. Let Tr

denote the E-module of all E-derivations of E. Clearly, Tr has naturally the

structure of a Lie algebra over E. We make the direct E-module sum R +TR

into a Lie algebra over E, defining the commutators by the formula

[fi-r-Ti, r2-r-T2] = (ri(r2)—T2(ri)) + [Ti, r2], where riER, TiETR, and [n, r2]

is the ordinary commutator tit2 — r2n of the derivations ri and r2.

Let U denote the universal enveloping algebra of the E-Lie algebra

R + Tr, defined as the appropriate homomorphic image of the tensor E-alge-

bra constructed over the E-module R + Tr. Denote the canonical E-module

homomorphism of R+Tr into U by z—^z'. Let U+ denote the subalgebra of

U that is generated by these elements z'. Let P denote the two sided ideal of

U+ that is generated by the elements of the form r'z' — (r-z)', where r ranges

over E, z ranges over R+Tr, and r-z is the r-multiple of z for the E-module

structure of R+TR. We define Vr as the factor E-algebra U+/P.

It is clear from this definition that the unitary Fu-modules are precisely

those Lie algebra modules M for the Lie algebra R+Tr on which we have

r-(z-m) = (r-z)-m, for all rER, zER + Tr, mEM, and on which \-m = m,

where 1 is the identity element of E. We shall call such modules regular

(E-r-FÄ)-modules. In particular, it is clear that E is a regular (R+TR)-

module in the natural way, and one sees easily that the representation of

R+TR on E is faithful. Hence the canonical homomorphism of R+TR into
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Vr is actually a monomorphism, and we shall accordingly identify R-\-Tr

with its image in Vr.

Let A and B he any two regular (P+ Tr) -modules. We define the struc-

ture of a regular (P+Pß)-module on HomÄ(A, B) such that, with rQR,

tQTr, aQA, hQHomR(A,B),

(r-h)(a) = r-h(a)    and    (r-h)(a) = r-h(a) — h(r-a).

The verification that the above conditions for regularity are satisfied presents

no difficulties. Thus, if A and B are any two unitary Fß-modules, this defines

the structure of a unitary F^-module on rîomR(A, B).

Lemma 6.1. Let B be a unitary VR-module, and regard Vr as a VR-module

in the natural fashion (the operators being the left multiplications). Then the

VR-module Homj(VrB, B), with the structure defined above, is isomorphic with

the VR-module Homfi( Vr, B) in which the module structure is defined in the

usual way from the right multiplications in Vr, i.e., in which (u-h)(v) =h(vu),

for all hQHomR(VR, B) and all u, v in Vr.

Proof. For every hQHomR(VR, B), define h*Q\AomR(VR, B) by h*(u)

= (u-h)(l), where u-h denotes the transform of h by the element u of Vr, for

the first Ffl-module structure of HomÄ(Fß, B). We claim that, for all u, v in

Vr, (u-h*)(v) = (v-h)(u). This is immediately verified from the definitions

when uQR. Now suppose that the result has already been established for some

m and all v. Let tQTr. Then we have

(ru-h*)(v) = r-((u-h*)(v)) - (u-h*)(rv) = r-((vh)(u)) - (rvh)(u) = (vk)(ru).

Thus our claim follows inductively for all right P-multiples u of monomials

in elements of Tr and hence generally for all uQ Vr.

In particular, (u-h*)(l) =h(u), so that A** = A. Thus our map A—»A* is

an additive (actually P-linear) involution of Hom¡í(Fj¡, B). Now we have

(v-h)*(u) = (uv-h)(l) =h*(uv). This means that our involution A—»A* trans-

ports the Fje-module structure defined originally into the Fß-module struc-

ture given by (v-h)(u) =h(uv). This completes the proof of Lemma 6.1.

Let A and B he unitary Ffi-modules. Using the induced P-module struc-

tures on A and B (written on the right or on the left, as the notation re-

quires), we may form the tensor product A ®rB. We define the structure of

a regular (P + Pfi)-module, and hence that of a unitary Fß-module, on A ®rB

such that, for rQR, aQA, bQB, tQTr, r-(a®b) = (r-a)®b(=a®(r-b)) and

T-(a®b) = (T-a)®b-r-a®(T-b). It is verified in a straightforward way that

these definitions indeed satisfy the conditions for a regular (R-\-TR)-module.

Lemma 6.2. Let B be a unitary VR-module, and regard Vr as a VR-module

by left multiplication and as a right R-niodule by right multiplication. Then the

VR-module B®R Vr, with the module structure defined as above, is isomorphic
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with the VR-module Vr®r B in which the module structure is defined from that

of Vr alone, i.e., is such that u-(v®b) = (uv) ®b.

Proof. There is an evident F^-module homomorphism \^:Vr®rB

-*B®r Vr such that if/(u®b) =u-(b®l). We shall show that ip is actually

an isomorphism by exhibiting an inverse.

For this purpose, we must momentarily return to the definition of Vr as

the factor algebra U+/P. The map r + r—^r — r is evidently an anti-automor-

phism of order 2 of the E-Lie algebra R+ Tr and induces, in the natural way,

a E-linear involution u—>u* of U+ such that, for rGE and tETr, (r')* = r'

and (r')*= — r', and, for arbitrary elements u and v of U+, (uv)*—v*u*. Our

return to U+ is necessitated by the fact that this involution does not send

the ideal P into itself, so that it does not induce an involution of Vr. Let Ei

be the two sided ideal of i/+ that is generated by the elements of the form

r{r{ —(rir2y, with n and r2 ranging over E. Write W for U+/Pi and P' for

P/Pi. Then the map r—V, followed by the canonical epimorphism U+-+W,

is a homomorphism of E into W and yields the structure of a two sided E-

module on W in the natural fashion. Our involution u—>u* of U+ sends Ei

into itself and hence induces an involution of W which we still denote by

w—*w*. If z is an element of R+Tr we shall write z' also to denote the

canonical image of z in W. By copying the above definitions of the Fje-modules

B®r Vr and VR®R B with W in the place of Vr, we define the IF-modules

B®r W and W®rB. There is evidently a E-module homomorphism

x—>x* of B®r W into W®r B such that (b®u)* = u*®b. Now define the

map 4>:B®r W-+W®R B such that <p(b®u) = (u*-(b®l'))*.

We claim that$ is a IF-module homomorphism. Let rER. Then we have

<t>(r'-(b ® «)) = 4>((r-b) ® u) = (u*-((r-b) ® 1'))*

= (u*-(b ® r'l'))* = (u*-(b ® IV))*

= r'-(u*-(b® 1'))* = r'-4>(b ® u).

Let tETr. Then we have

cb(T'-(b ® u)) = <t>((r-b) ® u) + d>(b ® (t'u))

= (u*-((r-b) ® 1'))* - ((u*r')-(b ® 1'))* =  - (u*-(b ® r'l'))*

=  - (u*-(b® IV))*

= t'-(u*- (b ® 1'))* = r'-cb(b ® u).

This suffices to establish our claim.

Now we shall show that <b maps the canonical image of B ®R P' in B ®r W

into the canonical image of P'®r B in W®r B. We recall that P is the two

sided ideal of U+ that is generated by the elements of the form r'z' — (rz)',

where rER and zER+TR. Actually, P coincides with the right ideal that is

generated by these elements. In order to see this, it suffices to show that the
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P-subspace spanned by the elements of the form r'z1' — (rz)' is stable under

commutation with the elements of R-\-Tr. Now let ZxQR+Tr. Then we have

[*/, r'z' - (rz)'] = [zl, r']z' + r'[z{, z'} - [z{, (rz)']

= [tu r]V + r'[zx, z]' - [zx, rz]'

= ([*, f]V - ([ii, r]«)') + (r'[zi, «]' - (r[zx, z])'),

and this is indeed of the required form. Next we observe that (r'z' — (rz)')

•(b®u)=b®((r'z'— (rz)')u), as is easily verified directly from the definition

of the IF-module structure on B®r W. Since <p is a IF-module homomor-

phism, this shows that <p maps the element on the right into the canonical

image of P'®r B in W®r B. Hence we may now conclude that <p maps the

image of B®RP' in B®R IF into the image of P'®rB in W®RB. Hence <p

induces a map 7 of B®R Vr into Vr®rB. Since <p is a JF-module homo-

morphism, it is clear that 7 is a Fß-module homomorphism. It follows im-

mediately from this that 7 o \p is the identity map on Vr®r B.

There remains to prove that \]> o 7 is the identity map on B ® R Vr. It is

immediate that (\p oy)(b®u) = b®u whenever uQR. Suppose that we have

already shown that this holds for some uQ Vr and all bQB. Then we have,

with tQTr,

(\l/oy)(b ® (ru)) = (^oy)(r-(b ® u) — (r-b) ® u)

= r• (ip o 7)(b ® u) — (r-b) ® u

= r-(b ® «) — (r-b) ® u = b ® (tu).

Hence it follows by an evident induction on the "degree" of u, written as a

polynomial in elements of Tr, that \p o 7 is indeed the identity map. This

completes the proof of Lemma 6.2.

Now let us assume that K is a field and that P is an affine P-algebra. Let

Q denote the field of quotients of P. Since every P-derivation of P extends

uniquely to a P-derivation of Q, we have a natural injection Tr—>Tq, and

hence a canonical Q-linear map Q®r Tr—*Tq. Since P is finitely ring-generated

over K, we see immediately that this map is an epimorphism. Since Q is P-

flat, the map Q®r Tr^>Q®r Tq induced by the injection Tr-+Tq is a mono-

morphism. Evidently, the canonical map Q®r Tq-+Tq is an isomorphism.

Thus the canonical map Q®r Tr-+Tq is an isomorphism. We shall identify

Q®r Tr with Tq whenever convenient.

The injection R-\-Tr-+Q-{-Tq is both a Lie algebra homomorphism and

an P-module homomorphism, and hence extends uniquely to a P-algebra

homomorphism Vr-+Vq. This induces a canonical Q-linear epimorphism

Q®r Fx—»Fq. Now we note that Q is a unitary Fx-module in the natural

fashion, so that we may equip Q®r Vr with the structure of a unitary F«-

module, in the manner explained above. The induced P-module structure

coincides with the P-module structure induced  by the natural Q-module
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structure of Q®R Vr. We define a product on Q®R Vr by means of this Vr-

module structure and the natural Ç-module structure, the definition being

such that

(qi ® Vi)(q2 ® v2) = qi-(vi-(q2 ® v2)).

It is not difficult to verify, by the same kind of induction we used in the proof

of Lemma 6.2, that this gives the structure of an associative E-algebra on

Q®r Vr. Moreover, it is then clear that our (Minear epimorphism Q®r Vr

—»Fo is actually a E-algebra epimorphism.

For every non-negative integer m, let Vr denote the E-submodule of Vr

consisting of the elements that can be written as sums of products of elements

of E and Tr, where each product has at most m factors from TR. If m is a

negative integer, let Vr= (0). LetG(VR) be the graded E-algebra £m Vt/Vf1

obtained from this filtration of VR; G(VR) is indeed an E-algebra, and not

only a E-algebra, because the commutation with an element of E sends each

Vr into Vg~l. Let S(Tr) denote the symmetric E-algebra built over the E-

module Tr. We have an evident natural E-algebra epimorphism S(Tr)

—^G(Vr). In the same way, we define G(Vq), S(Tq), and we have the natural

Q-algebra epimorphism S(TQ)-^G(VQ).

Theorem 6.1. Let R be an affine K-algebra, where K is an arbitrary field,

and let Q be the field of quotients of R. Let F be an arbitrary extension field of K,

regarded as a K-algebra. Then the canonical epimorphisms S(TF)—>G(VF) and

Q®r Vr—>Vq are isomorphisms.

Proof. The first part of the theorem is analogous to the Poincaré-Birkhoff-

Witt Theorem for universal enveloping algebras of Lie algebras and can be

proved by the method in [4, Lemma 3.5, p. 272]: if (t,) is an ordered F-basis

for TF, it is clear from the definition of VF that every element of VF can be

written as an E-linear combination of ordered monomials r<, • • • r,-.;

iiÉ¡ ■ • • =in. Now one shows inductively that S(TF) can be equipped with

the structure of a regular (F+F^-module such that the transform of

lG5(Ff) by vE VF is precisely the element of S(TF) that is represented by

the above standard expression for v. This evidently implies that the repre-

sentation of the elements of VF in this standard form is unique and that the

canonical map S(TF)-+G(VF) is an isomorphism.

In order to prove the second part, let us observe first that the isomorphism

Q®r Tr-+Tq extends canonically to a Ç-algebra isomorphism Q®R S(TR)

—*S(Tq), because Q®R S(TR) may be identified with S(Q®r Tr). The natu-

ral homomorphism Vr-^Vq induces an E-algebra homomorphism G(Vr)

—>G(Vq) which, in turn, induces a Q-algebra homomorphism Q®RG (Vr)

—>G(Vq). Thus we have an exact and commutative diagram of homomor-

phisms
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0

Î
0-» S(Tq)-» G(VQ)-» 0

î Î
Q ®r S(Tr) ->Q®r G(Vr) -+ 0

T
o

which shows that the homomorphism Q®R G(Vr)-+G(Vq) is an isomorphism.

Now let x be an element of Q®r Vr such that the image of x in Vq is 0.

If Xt^O, let m he the lowest non-negative integer such that x belongs to the

canonical image of <2<8>b VRl'mQ®R VR. Then x represents a nonzero element

of Q®r(Vhí/Vb1-1)QQ®rG(Vr). Since the map Q®rG(Vr)-^G(Vq) is a

monomorphism, this contradicts the assumption that the image of x in Vq is

0. Hence the epimorphism Q®r Vr—*Vq is indeed an isomorphism, and

Theorem 6.1 is proved.

Theorem 6.2. In the notation of Theorem 6.1, assume that Tr is projective

as an R-module. Then the natural homomorphism Vr—+Vq is a monomorphism,

and the canonical epimorphism S(Tr)-+G(Vr) is an isomorphism.

Proof. Since Tr is P-projective, so is S(TR), as is seen by imbedding Tr

as a direct P-module summand in a free P-module. Hence the natural homo-

morphism S(Tr)^>Q®r S(Tr)=S(Tq) is a monomorphism. Now we con-

sider the exact and commutative diagram of homomorphisms

0^S(Tq)^G(Vq)^0

î î

S(Tr) -» G(Vr) -* 0

î

0

This shows immediately that the epimorphism S(Tr)-+G(Vr) is an isomor-

phism and that the homomorphism G(Vr)^>G(Vq) is a monomorphism. The

last fact implies as above that the homomorphism Vr-^Vq is a monomor-

phism, so that Theorem 6.2 is proved.

7. The Ext functor for the algebra of differential operators. If M is any

module for a commutative ring, we denote by E(M) = Zp Ev(M) the exterior

algebra constructed over M. We deal with an affine algebra P over a field

P, and we let Q denote the field of quotients of P. Consider the natural Vq-

module Vq®q E(Tq), where u- (v®e) = (uv) ®e. This is graded by the sub-

modules Vq®q Ep(Tq). Exactly as for the analogous situation of the universal
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enveloping algebra of a Lie algebra [4, Th. 7.1, p. 280 ], we define a homo-

geneous Fg-endomorphism d of degree — 1 on this module such that d2 = 0.

This endomorphism is given by the formula

p

d(v ® TO   ■   ■   ■  Tp)   =   Z  (-l^Wi)   ®  To  •   •   •  fi  ■   ■   ■ Tp
i-O

+   Z  (-l)**»   ®   [r„ T.]to  •   •   •  Tr  ■   ■   ■  t.   ■   ■   •  Tp,
r<«

where the r,- are arbitrary elements of Tq. The definition enforces this formula

in the case where the r,- belong to a given Q-basis of TQ, and then one verifies

easily that the formula holds generally. We augment this complex by the

natural Fq-module epimorphism Vq®q E°(Tq)— Vq-+Q, where the image of

vQVq in Q is the transform vl of 1QQ by v, according to the natural Fq-

module structure of Q. Since, by Theorem 6.1, G(Vq) is isomorphic with

S(Tq), the usual filtration argument [4, pp. 281-282] shows that the aug-

mented complex Vq®q E(Tq) is acyclic and is therefore a Fq-free resolution

of the Fq-module Q; a sketch of this argument is included in what follows.

Note that this conclusion holds more generally for an arbitrary extension

field of K in the place of Q.
Now let us assume that Tr is P-projective. Then the same holds for

E(Tr). By Theorem 6.2, the natural homomorphism F«—»Fq is a monomor-

phism. Hence the induced homomorphism Vr®r E(Tr)—>Vq®r E(Tr) is a

monomorphism.Now Vq®rE(Tr) = Vq®q(Q®rE(Tr)) = Vq®qE(Q®rTr)
= Vq®qE(Tq). Taking these identifications into due account, we see that

our result means that the map Vr®r E(Tr)—+Vq®q E(Tq) that is induced

by the natural maps Vr—*Vq and E(Tr)-+E(Tq) is a monomorphism.

It is seen immediately from the explicit formula for the boundary map d

on Vq®q E(Tq) that the image of Vr®r E(Tr) is stable under d. Hence d

induces a boundary map (still denoted d) on Vr®rE(Tr), which satisfies

the same explicit formula. We have a filtration of this complex by the P-

subcomplexes Zs Vr~"®r E"(Tr) (which, since E(Tr) is P-projective, may

be identified with their canonical images in Vr®r E(Tr)). Now the associ-

ated graded complex may evidently be identified with the complex

G(Vr)®r E(Tr) and hence, using Theorem 6.2, with the complex

S(Tr)®r E(Tr). The boundary operator induced by d (still denoted d) is

given by the formula

j>
d(u   ®   TO  •   ■   ■  Tp)   =   Z (-l)'(*n)   ®  TO  ■   ■   •  fi   ■   ■   ■  Tp.

i-O

Now let P be a free P-module containing Tr as a direct P-module sum-

mand. Then our complex S(Tr)®r E(Tr) is a direct P-complex summand

of the usual Koszul complex S(F) ®R £(P). We shall prove from this that the

augmented complex Vr®r E(Tr) has an P-homotopy.
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As is well known, the augmented complex S(F) ®r E(F) has an E-homo-

topy sending E onto S°(F)®R E°(F) and each S"-q(F)®R E<(F) into

Sp-«-i(E) ®rE«+1(F), [8, p. 259]. Since S(TR) ®RE(TR) is a direct E-complex

summand of S(F)®R E(F), the augmented complex S(TR)®RE(TR) has

an induced E-homotopy h sending E onto S°(TR)®R E°(TR) and each

S"^(TR) ®R E"(TR) into 5*-«-1(FB) ®B E*+l(TR). Let X stand for the aug-

mented complex VR®R E(Tr). For p^O, let Xpstand for the augmented sub-

complex 2« FT'Sb-E^Fa), and put Xp = (0), for p<0. Then the aug-

mented complex S(Tr)®rE(Tr) is the associated graded complex

2ZXp/Xp-i = Z GW = G(X).
P p

Thus we may regard h as an E-homotopy of G(X) under which each GP(X)

is stable.

Now consider the natural E-module epimorphism Xp-+Xp/Xp..i = Gp(X).

Since Xp/Xp_i is isomorphic, as an E-module, with ^a S"~q(TR)®R Eq(TR),

for p>0, and since X0 is isomorphic, as an E-module, with S"(Tr) ®r E"(Tr)

+R = R+R, we know that each Xp/Xp-i is E-projective. Hence we can make

a direct E-module decomposition Xp — Xp_i+Yp, and Xp is the direct E-

module sum ¿Lav Yq. H aP denotes the natural E-module epimorphism

Xp-^>XP/Xp_i then the restriction of ap to FP is an isomorphism, and we may

define an E-module isomorphism a: X-^>G(X) by making a = ap on the com-

ponent Yp. In particular, it follows that X is projective as an R-module.

We have apd = dap. Moreover, a — ap evidently sends Xp into 2~lq<p Gq(X).

Hence we have (ad-da)(Xp) E Z),<p G"(X). Since GP(X) Ea(Xp), this im-

plies that (da-1-a-1d)(G"(X))EXp^i. Put y = a~1ha. Then, writing 1 for

the identity map, we have

yd + dy — 1 = a~lh(ad — da) + (da-1 — a~1d)ha.

Hence we find that (yd+dy— l)(Xp) C-^p-i- Furthermore, each Xp is stable

under y.

Now we have —(yd+dy— \)2 = y'd+dy' — \, where y' = 2y—ydy — dy2.

Hence (y'd+dy'-1)(XP) EXp-2, and (y'-y)(Xp)EXp-i. Iteration of this

process leads to a sequence of E-endomorphisms yk of X such that

(ykd+dyk-l)(Xp) EXp-2\ and (yk+i-yk)(Xp)EXp_2*. Since X, = (0), for

q<0, yk+r — yk annihilates X2*_i, for all r^O. Hence there is an E-endomor-

phism fon J such that f coincides with yk on X2k_i, for each k, and we have

Çd+dÇ = 1, i.e., f is an E-homotopy of X. Thus we have the following result.

Theorem 7.1. Let R be an affine algebra over a field K, and suppose that Tr

is R-projective. Then the complex VR ®R E(TR), as defined above, is a VR-projec-

tive resolution of the VR-module R and has an R-homolopy. If F is an arbitrary

extension field of K, regarded as a K-algebra, then VF®FE(TF) is a VF-free

resolution of the VF-module F.
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Note. It is clear from our proof that Theorem 7.1 holds more generally for

any integral domain P over P such that Tr is P-projective; one must merely

replace Pq with the canonical image of Q®r Tr in Tq. As was pointed out

to us by A. Shapiro, further generalizations, covering cases where P is not

an integral domain (e.g. the algebra of all differentiable functions on a

differentiable manifold), are easily obtainable by simultaneous use of a

suitably large family of localizations of P. Naturally, these generalizations ex-

tend to Corollary 7.1 below.

Let P = P, or P = P, as in Theorem 7.1, and let A be a unitary Fp-module.

By Theorem 7.1, we have Extv^P, A) = H(HomYp(VP®P E(TP), A)). We

may identify HomvP(Vp®P E(TP), A) with HomP(£(Pp), A). Let ô be the

coboundary map in Homp(£(Pp), A) that is induced by the boundary map

don VP®pE(Tp). Then, writing the elements of HomP(£(Pp), A) as strongly

alternating maps with arguments in Tp and values in A, we have

(«/)(ro, • • • ,t„) - Z (-lYTi(f(To, •••,?,-,•••, tp))
•=o

+   Z  (-l)r+S/([rr, T.], TO,   ■   ■   ■  , Tr,   •   •   •  ,  f„   ■   ■   •   , Tp),

if/GHomp(£p(Pp), A). Thus we see that ExtvPiP, A) is naturally isomorphic

with the usual cohomology space based on the strongly alternating A-valued

differential forms. We state this formally, for reference.

Corollary 7.1. Let P = R,orP = F,as in Theorem 7.1. Then the cohomology

K-space based on the strongly alternating differential forms with values in a

unitary Vp-module A may be identified with Exty^P, A).

If we assume that P is either a regular affine P-algebra, where K is a

perfect field, or that P is an arbitrary field and P is a finitely generated

separable extension field of P, we may appeal to Theorem 5.2, or to Theorem

5.3, respectively, to see that the complex of the strongly alternating P-valued

differential forms may be identified with the complex E(DP) of the formal

differentials, whose differential operator is the canonical extension of the

map x—>dx of P into DP. Hence, in this case, the cohomology K-space based on

the formal differentials of the K-algebra P may be identified, by Corollary 7.1,

with Extr^P, P)(6).

8. The homological dimension of the algebra of differential operators.

Theorem 8.1. Let F be a finitely generated extension field of an arbitrary

field K. Then the global homological dimension d(Fj?) of Vf is equal to the

(6) It may be of interest to point out that, in a rather different situation, namely when P

is a finitely generated purely inseparable extension field of exponent 1 of K, the cohomology

.K-algebra of the strongly alternating P-valued differential forms has been determined explicitly

by P. Cartier in [5].
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dimension over F of the space TF of all K-derivations of F, and is equal to the

projective dimension dvF(F) of the VF-module F.

Proof. LetAfbe any unitary Fp-module. Then the resolution VF® F E(TF)

of F, as in Theorem 7.1, dualizes into an exact sequence of FF-modules and

Fi-homomorphisms

(0) -► M = HomF(F, M) -> Hom^F*. ®F E°(TF), M)

-> HomF(FF ®f El(TF), M)-»•■• .

As a Ff-module, each Homj^Ff® j? EP(TF), M) is isomorphic with a direct

sum of a finite number of copies of Hom^F?, M), with the module structure

defined just above the statement of Lemma 6.1. However, by Lemma 6.1,

this Fp-module is isomorphic with the Fp-module HornF(VF, M) with the

module structure given by (u-h)(v)=h(vu). As is well known, and easy to

show directly (using that F is a field), this module is Fj?-injective. Hence we

conclude that the above exact sequence is a Fp-injective resolution of M.

Since Ep(Fi?) = (0) when p exceeds the E-dimension of TF, it follows that

d( VF) does not exceed the E-dimension of TF.

Now let n denote the E-dimension of TF and let A be any unitary VF-

module. There is a basis fi, • • • , fn for TF over E and elements Xi, • • • , x„

in E such that f,(xy) = ôi;- [7, Lemma 2.1]. In particular, we have [f,-, fy] = 0,

for all i and /. If we use the resolution VF®FE(TF) of F, the E-space

ExtyF(F, A) appears as the factor space

HomF (E»(TF), A)/ô(HomF (En~'(TF), A).

Using the explicit formula for 5, as given below the statement of Theorem

7.1, and taking account of the fact that [f,-,f¿] = 0, we see that

b(HomF(En-l(TF), A)~TF-A. On the other hand, HomF(£"(rF), 4)«4.

Hence we see that ExtyF(F, A) is isomorphic with A/TF-A. Taking A — VF,

we see from this that Ext"Jf(F, VF) «E7¿(0). Hence we have indeed d(VF)

= dvF(F)=n.

Now let E be an affine E-algebra such that Tr is E-projective. In this

case, it appears that the relative global homological dimension d(VR, E) is

more easily accessible than d(VR). We refer to [8] for the requisite notions of

relative homological algebra, but we recall that the relative homological no-

tions for (Vr, R) are obtained from the corresponding notions for Vr simply

by replacing "exact sequence of FB-homomorphisms" with "E-split sequence

of Firhomomorphisms" throughout. The ordinary projective dimension of a

Fjî-module M will be denoted by dyR(M), and the relative projective dimen-

sion of M will be denoted by d{vR,R)(M). We shall prove the following result.

Theorem 8.2. Let K be a field and let R be an affine K-algebra such that

Tr is R-projective. Let Q be the field of quotients of E, and let n be the Q-dimen-

sion of Tq. Then, for every unitary VR-module A, the canonical map (induced
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from maps of the appropriate resolutions) of Ext(rR,R)(R, A) into Extys(P, A)

is an isomorphism. We have dvR(R) = d(yR,R)(R) =d(VR, R)=n. If R is regular

then d(VR) %.n-\-t, where t is the transcendence degree of Q over K.

Proof. By Theorem 7.1, VR®R E(TR) is both a Fü-projective resolution

of P and a (Vr, P)-projective resolution with P-homotopy. Hence both

ExtyH(P, A) and ExtryR,R)(R, A) can be computed as

H(Uomy¡t(VR ®RE(TR), A)),

which establishes the first assertion of our theorem.

We know that Q®rE(Tr) is isomorphic with E(Tq). Since E(Tr) is

P-projective, the natural map E(Tr)—^Q®rE(Tr) is a monomorphism.

Hence we have Ep(Tr) = (0) for p>n. Hence it is clear from the resolution

Vr®r E(Tr) of P that dvs(R) =d<yR,R)(R) Un.

Now let us consider the same sequence we used at the beginning of our

proof of Theorem 8.1:

(0) -+ M = HomÄ(P, M) -+ Homs(Fß ®R E«(Tr), M)

-» HomB(FÄ ®r El(TR), M) -» • • • .

By Theorem 7.1, the resolution VR®R E(Tr) of P has an P-homotopy, which

evidently induces an P-homotopy of the above dual sequence. On the other

hand, we see from Lemma 6.1, as in the proof of Theorem 8.1, that each

HomR(VR®R Ep(Tr), AI) is isomorphic with a direct Fjj-module summand

of a direct sum of FB-modules HomB(FÄ, M) with the module structure given

by (v-h)(ti)=h(uv). By [8, Lemma l], this last Fu-module is (Vr, P)-injec-

tive. Hence the above sequence is a (VR, P)-injective resolution with P-

homotopy of M. Hence it is clear that d(VR, R) ^n.

Now we claim that, for every VQ-module M, ExtvR(R, M) is isomorphic

with ExtvQ(Q, M). By Theorem 6.1, Vq is isomorphic with Q®R VR. It is

clear from the definition of the algebra structure of Q®rVr that this isomor-

phism transports the right FÄ-module structure of Q®rVr into the right

Ffl-module structure of Vq obtained from the natural map of Vr into Vq.

Since Q is P-flat, this implies that, as a right Fs-module, Vq is F^-flat. Hence,

if X is any FÄ-projective resolution of P, Vq®Vr X is a Fq-projective resolu-

tion of Vq®vr P. Using the natural Fq-module structure of Q, we obtain a

Fq-module epimorphism Vq®vb P—»Q sending v®r onto v-rQQ. It is easy

to verify that this is actually an isomorphism, so that we may identify

Vq®yr R with Q, as a Fq-module. Thus Vq®vb X is a Fo-projective resolu-

tion of Q. Since HomyQ( Vq®Vr X, M) may be identified with Homyß(X, M),

this establishes our claim. Now it is clear from Theorem 8.1 (applied to Q)

that dvR(R)~èn. We have shown that núdyR(R) =d(vR.R)(R) úd(VR, R)ún,

so that all but the last statement of Theorem 8.2 is proved.

As a by-product of our proof of the existence of an P-homotopy in
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VR®R E(Tr), we had obtained the result that this complex is E-projective.

In particular, Vr is E-projective as a left E-module; in fact, as an E-module,

Vr is isomorphic with G(VR) «5(Fr). Similarly, Vr is E-projective as a

right E-module. Hence we may apply [9, Th. l] to conclude that, for every

unitary Fj¡-module N,

dys(N) ^ dIVR,R)(N) + dR(N).

If E is a regular affine E-algebra, we have d(R¡f) —t, for every maximal ideal

A7of E, by [2, Ths. 1.9, LIO]. Since d(R) =maxM(d(RM)) [4, Ex. 11, p. 142;

1, Th. l], we have therefore d(R)=t. Hence the above results give d(VR)

^.d(VR, R)+d(R)=n+t. This completes the proof of Theorem 8.2.

9. The product for ExtrP(E, *). Let E be a field, and let P be a E-algebra

which is either an affine E-algebra with Tp E-projective or an arbitrary ex-

tension field of K. If 4 and B are unitary Fp-modules there is a product

ExtVp(P, A) ®k ExtVp(P, B) -► ExtYp(P, A ®PB)

which is defined as follows. Let X be any Fp-projective resolution of P.

Noting that Vp is E-projective, so that X is E-projective, and appealing to

Lemma 6.2, we see that the Fp-module X®P X is still Fp-projective. More-

over, since X is also a E-projective resolution of E, we have H(X®pX)

= Torp(P, P), whence H(X®P X) has its components of positive degree

equal to (0). Hence X®P X is still a Fp-projective resolution of P®p P = P.

Hence the natural E-space homomorphism

cb: HomKp(X, A) ®K Hom^X, B) -* Hom7p(X ®P X, A ®PB),

where <b(f®g)(u®v) =f(u) ®g(v), induces a product for ExtvP(P, *), as indi-

cated above. It is seen as usual that this product is associative and skew-

commutative. In order to make this product explicit, we require a map of

the complex X into the complex X®PX, when X= Vp®pE(TF). By im-

bedding Tp as a direct E-module summand in a free E-module, we see easily

that there is a E-module homomorphism En(TP)-^Ep(Tp) ®p En-p(TP) send-

ing each product fi • • • fB of elements of Tp onto

2J <r(0f«(l)   •  •  " i~t<p)  ® fi(p+l)  •  •  • fi(n),
t

where the summation goes over all permutations / of (1, • • • , n) for which

t(l) < • • • <t(p) and t(p + l) < • • • <t(n), and where <s(t) is the signature of

t. Hence there is a map X—*X®pX sending v®Çi - ■ - ÇnEVp®p En(Tp)

onto

»•( ¿( S ^Wí1 ® f«(D • • • fiü») ® (i <s>r<(p+i) • • • *-«(»>)JJ.

This map is evidently a Fp-module homomorphism. It is rather tedious to

verify that it commutes with the boundary maps on X and X®P X, but no
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difficulties other than those of notation are encountered in carrying out this

verification by induction on the degree in X. On the other hand, it is clear

from the definition of this map that our product for Exty^P, *) is the same

product as that obtained from the usual shuffle product of alternating differ-

ential forms, via the identification of Corollary 7.1.
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