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Equivariant multiplicative closure

M. A. Hill and M. J. Hopkins

Introduction

This paper concerns a subtle issue that arises when attempting to invert element
in the homotopy groups of equivariant commutative (E∞) rings. It arose for the
authors in [5], as part of the construction of the spectrum there denoted Ω, and
was called to our attention when Justin Noel asked us, “how do you know you can
do that?”

To set the stage, let G be a finite group, and R a G-equivariant commutative
ring, by which we mean and equivariant E∞ ring spectrum. We suppose given a
subset S ⊂ πG

∗ R.

Question 1. Can one form an equivariant commutative ring S−1R?

Example 2. Take G = Z/2, R = S0, and S = {2} ⊂ π0S
0. In this case

Noel’s question becomes, “is it possible to invert 2 in equivariant stable homotopy
theory?”

We will see that the questions is a little misleading as stated. One can in fact
always invert 2 (in fact one can invert anything), but in order to know that the
outcome is the expected one, there is a non-trivial condition to check.

The authors would like to thank Justin Noel for bringing this issue to our
attention. It is underlain by a subtlety in the symmetric monoidal structure on
equivariant spectra that seems to have gone unnoticed. It is also intimately con-
nected to the theory of the “norm” in [5]. This note describes the main ideas that
go into resolving Question 1. Details and a much more expanded discussion will
appear elsewhere.

A purely algebraic analogue of some of the structures discussed in this paper
were first formulated by Tambara in [10], and are now known by the name of
“Tambara functors.” For a recent general introduction to the algebraic theory the
reader is referred to [9]. The question of localization in the context of Tambara
functors has been investigated by Nakaoka [8], in which his Proposition 4.8 is similar
to our Proposition 4.9. Our discussion of localization of rings and modules follows,
more or less, the presentation of [3, Chapter VIII].
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1. Localization of commutative rings

Let’s begin with localization in ordinary commutative algebra. Suppose that
R is a commutative ring, and S ⊂ R a subset of elements we intend to invert.

Definition 1.3. The map R → S−1R is the universal map f : R → R′ having
the property that f(s) is a unit in R′ for every s ∈ S.

Spelled out more precisely, the condition is that given a map f : R → R′ with
the property that f(s) is a unit for every s ∈ S, there is a unique map S−1R → R′

factoring f .
Such a universal arrow clearly exists. One can take S−1R to be the quotient

S−1R = R[xs | s ∈ S]/(s · xs = 1)

of the polynomial algebra over R constructed by adding a variable xs for each s ∈ S,
by the relation indicated. There are advantages and disadvantages to this charac-
terization. On one hand, it is clear that S−1R exists, and that the construction can
be generalized. On the other hand, many of the fundamental properties of S−1R
are not apparent. For example, it is not clear that S−1R is flat, or even that it is
non-zero.

There is a second common description of S−1R. Suppose for simplicity that
S is finite and let {s1, s2, . . . } be a sequence of elements of S having the property
that each s ∈ S occurs infinitely often as an si. The second description of S−1R is
that it is the colimit of the sequence

· · · si−→ R
si+1−−−→ R

si+2−−−→ · · · .
From this description it is obvious that S−1R is flat, and that it is non-zero as long
as there is an element of R which is not annihilated by any product of powers of
elements of S. It is not, however, immediately obvious from this description that
S−1R is a commutative ring, or even that it is independent of the choice of sequence
{si}. These are not difficult things to verify, but the proofs involve explicit use of
the elements of R, and so don’t generalize well.

In fact, what this second construction actually produces is a universal R-module
map from R to an R-module M having the property that for each s ∈ S, the map
“multiplication by s”

s : M → M

is an isomorphism. Since an R-algebra is an R-module there is a canonical map
between these two constructions, and our basic question becomes

Question 1.4. When is the canonical map from the localization of R as a
module to the localization of R as an algebra and isomorphism?

In raising the issue we have considered only R, first as an R-algebra and then
as an R-module. Our formulation will better lend itself to generalization if we think
in terms of an arbitrary commutative R-algebra A and an arbitrary commutative
R-module M . For a subset S ⊂ R we let A → S−1

algA be the universal map from A
to a commutative R-algebra in which each element of S becomes a unit. Similarly,
we let M → S−1

modM be the universal R-module map to an R-module on which
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EQUIVARIANT MULTIPLICATIVE CLOSURE 185

multiplication by each element of S is an isomorphism. The universal properties
give an evident map

S−1
modA → S−1

algA

and we are interested in the conditions guaranteeing it to be an isomorphism.

2. Homotopy theoretic commutative algebra

We now pursue the previous considerations in homotopy theory. Fix a finite
group G, and let R be a G-equivariant E∞ ring spectrum. We will just refer to
this structure by saying that R is an “equivariant commutative ring.” We will also
choose a finite subset S of the equivariant homotopy groups of R, and write |s|
for the “degree” of an element s ∈ S. We are being deliberately noncommittal
about the term “equivariant homotopy groups.” When we are led to the eventual
formulation of our criteria in §4 we will want to allow s to be an G-equivariant
map SV → R, where V is a virtual real representation of G, and SV its “one-point
compactification.” In that case the symbol |s| will refer to V . Nothing will be lost
at this point if the reader imagines the set S to consist of G-equivariant maps

s : Sn → R

with n ∈ Z, in which case |s| is the integer n.
It is a little easier to reverse the order of the previous section and begin with

the localization of modules.

2.1. Modules. Let R-mod be the category of equivariant left R-modules. We
do homotopy theory in R-mod by defining a map to be a weak equivalence if
the underlying map of equivariant spectra is, and employ the shorthand notation
[M,N ]mod to denote the abelian group of maps from M to N in the homotopy
category hoR-mod.

For an equivariant R-module M and s ∈ S let

(2.1) s : S|s| ∧M → M

be the map representing “multiplication by s.” It is given by the composite

S|s| ∧M
s∧1−−→ R ∧M → M.

Since any suspension of a module is a module, this means we will be using the
same symbol s to denote any suspension of the map (2.1). Similarly, if M is an
equivariant right R-module we will let ·s denote the map “right multiplication by
s, given by

M ∧ S|s| 1∧s−−→ M ∧R → M.

When M is an equivariant R bi-module the map s is a map of right R-modules
and ·s is a map of equivariant left modules. Of course our assumption that R is
commutative means that every left module can be regarded as a bimodule, and
the distinction is not actually significant. However since our main concern is a
subtlety in the theory of equivariant commutative rings, it seems best to use the
commutativity of R sparingly.

Definition 2.2. A left R-module M is S-local if for each s ∈ S the map
s : S|s| ∧M → M is a weak equivalence. Similarly a right module is S-local if each
of the maps ·s is a weak equivalence.
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2.1.1. The localization conditions. The module localization ofM is meant to be
a universal arrow from M to an S-local R-module N . A little homotopical algebra
is needed to state the universal property accurately. Let R-modM/ be the category
of equivariant R-modules equipped with a map from M . We define a map

M → N1 → N2

in R-mod/M to be a weak equivalence if the underlying map N1 → N2 of equivariant
spectra is. We say that an object M → N is S-local if N is. The module localization
M → S−1

modM is characterized uniquely up to unique isomorphism in hoR-modM/

by the following conditions:

(i)mod The module S−1
modM is S-local;

(ii)mod If M → N is S-local, then hoR-modM/(S
−1M,N) = pt.

In stating these conditions we have abbreviated M → S−1
modM and M → N to just

S−1
modM and N in order to avoid a cumbersome expression for maps in the homotopy

category.
2.1.2. Local modules. To construct the S-localization of M we first investigate

S-local modules. let {s1, s2, . . . } be a sequence of elements of S having the property
that each s ∈ S occurs infinitely often as an si, and let E be the right R-module
given by

E = ho lim−→
{
R

s1−→ S−|s1| ∧R
s2−→ S−|s1|−|s2| ∧R → · · ·

}
.

and E′ left R-module

E′ = ho lim−→
{
R

·s1−−→ S−|s1| ∧R
·s2−−→ S−|s1|−|s2| ∧R → · · ·

}
.

Of course since R is commutative there is a canonical equivalence between E re-
garded as an equivariant left R-module, and E′. Write

Z = {St ∧ (R ∪·s C(S|s| ∧R)) | s ∈ S, t ∈ Z}
for the set of suspensions mapping cones of the maps s. The elements of Z are left
R-modules.

Though we eventually hope to endow E with the structure of an equivariant
commutative R-algebra, it isn’t clear at this point whether or not it has a multipli-
cation. It is, however, a right R-module, and it does come equipped with a “unit”
R → E.

Lemma 2.3. Both E and E′ are S-local. For each Z ∈ Z the G-spectrum E∧
R
Z

is contractible.

Proof: This result makes use of the commutativity of R. We begin with the
assertion that E is S-local. Let s ∈ S and consider the following commutative
ladder

R ∧ S|s| s1 ��

·s
��

S−|s1| ∧R ∧ S|s| ss ��

·s
��

S−|s1|−|s2| ∧R ∧ S|s|

·s
��

�� · · ·

R s1
�� S−|s1| ∧R s2

�� S−|s1|−|s2| ∧R �� · · ·

The induced map of homotopy colimits of the rows is right multiplication by s

·s : E ∧ S|s| → E.

Licensed to Univ of Rochester.  Prepared on Tue Jun 19 05:22:56 EDT 2018for download from IP 128.151.13.21.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



EQUIVARIANT MULTIPLICATIVE CLOSURE 187

One easily checks it to be an equivalence by considering the induced map of equivari-
ant homotopy groups, using the homotopy commutativity of R and the condition
that each s ∈ S occurs as an si infinitely often. The proof that E′ is S-local is
similar. The last assertion follows from the cofibration sequence

St ∧ E ∧ S|s| ·s−→ St ∧E → E ∧
R
Z.

�

Proposition 2.4. For an R-module N the following are equivalent

i) For each s ∈ S the map s : S|s| ∧N → N is a weak equivalence;

ii) The map N → E ∧
R
N , given by smashing with the unit, is a weak equivalence;

iii) For each Z with E ∧
R
Z ∼ ∗, the group [Z,N ]mod is trivial;

iv) For each Z ∈ Z the group [Z,N ]mod is trivial;

Proof: The assertion i) =⇒ ii) follows from the fact that smashing commutes
with colimits, and ii) =⇒ iii) is a consequence of the diagram

Z
f ��

��

N

∼
��

E ∧
R
Z E∧f

��
E ∧

R
N

which is constructed by smashing an equivariant R-module map Z → N with the
unit map R → E. The implication iii) =⇒ iv) is immediate from the second
assertion in Lemma 2.3. Finally, iv) =⇒ i) follows from the fact that the map

[St ∧R,N ]mod → [St ∧ S|s| ∧R,N ]mod,

induced by s : S|s| ∧R → R, is isomorphic to the map

πtN → πtS
−|s| ∧N

induced by s. �
From Lemma 2.3 and the equivalence of the first two parts statements in Propo-

sition 2.4 we have

Corollary 2.5. The map R → E′ extends to a weak equivalence

E → E ∧
R
E′.

�
As mentioned earlier, the commutativity of R allows one to regard left modules

as right modules and for us to identify E with E′. It also makes the category of
equivariant left modules into a symmetric monoidal category. With this in mind
the equivalence in Corollary 2.5 can be written as an equivalence

E → E ∧
R
E,

making it appear that the module E must be an equivariant commutative R-algebra,
and that it must be so in a unique way. As we shall see, something like this is true.
But there is more to the story.
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188 M. A. HILL AND M. J. HOPKINS

2.1.3. Construction of the module localization. It follows from part iii) of Propo-
sition 2.4 that an R-module is S-local if and only if it is E-local in the sense of
Bousfield [1], and that the universal arrow

(2.6) M → S−1
modM

we are looking for is the Bousfield localization. This leads to a construction. The
Bousfield localization of any R-module M can be constructed as the homotopy
colimit of the sequence

M0 → · · · → Mi → Mi+1 → · · ·

constructed inductively, starting with M0 = M and, building Mi+1 out of Mi as a
pushout

(2.7) Zi
��

��

CZi

��
Mi

�� Mi+1

in which Zi is the wedge

Zi =
∨

Z→Mi
Z∈Z

Z

and the map Zi → Mi is the tautological map, whose restriction to each summand
is the map indicated by its index.

Let’s temporarily write M → LEM for the map from M to the homotopy
colimit of the sequence above. The fact that the modules Z ∈ Z are compact
objects implies that LEM satisfies condition iv) of Proposition 2.4 and hence is
S-local. The pushout squares show that for any M → N in which N is S-local

hoR-modM/(Mi, N) = pt

hence

hoR-modM/(LEM,N) = pt.

Thus M → LEM satisfies conditions (i)mod and (ii)mod of §2.1.1, so can be taken
to be the universal arrow M → S−1

modM we were seeking.
Bousfield’s construction leads to a further property of localization that is special

to modules. Applying E ∧
R
(− ) to the pushout square (2.7) one finds that the map

E ∧
R
Mi → E ∧

R
Mi+1

is a weak equivalence. It follows that the map

E ∧
R
M → E ∧

R
LEM

is a weak equivalence. This leads to another characterization of the module localiza-
tion M → S−1

modM (which, in Bousfield’s formulation [1] is taken as the definition).

Proposition 2.8. Let M → N be a map of equivariant left R-modules in which
N is S-local. If

E ∧
R
M → E ∧

R
N
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EQUIVARIANT MULTIPLICATIVE CLOSURE 189

is a weak equivalence then the unique map S−1M → N making

(2.9) M ��

���
��

��
��

��
S−1M

��
N

commute is a weak equivalence.

Proof: Smashing (2.9) with E gives a diagram

E ∧
R
M ��

����
���

���
��

E ∧
R
S−1M

��
E ∧

R
N

in which the top arrow is a weak equivalence by the above discussion and the
diagonal arrow is a weak equivalence by assumption. This means that the vertical
is also a weak equivalence. Now consider the diagram

S−1M ��

��

N

��
E ∧

R
S−1M

��
E ∧

R
N.

We have just shown that the bottom horizontal arrow to be a weak equivalence.
The vertical arrows are weak equivalences by part ii) of Proposition 2.4. It follows
that the top arrow is a weak equivalence. �

Corollary 2.10. The unit map R → E′ is the S-localization of R, and the
R-modules E and E′ are independent of the choice of sequence {s1, s2, . . . }.

Proof: By Lemma 2.3 and Corollary 2.5 the mapR → E′ satisfies the conditions
of Proposition 2.8. �

We have now seen that the module localization of R, characterized by the
properties described in §2.1.1, has the homotopy type we expect both the algebra
and module the localizations to have, namely that of

E′ = ho lim−→
{
R

·s1−−→ S−|s1| ∧R
·s2−−→ S−|s1|−|s2| ∧R → · · ·

}
.

Our next aim is to investigate what actually happens with the algebra localization.

2.2. Algebras. We now turn to the localization in algebras. Let R-alg be the
category of G-equivariant E∞ algebras over R. We do homotopy theory in R-alg
by defining a map to be a weak equivalence if the underlying map of equivariant
spectra is. We will say that an R-algebra is S-local if it is so when regarded as a
left R-module. As with modules, in order to state the universal property of algebra
localization we will need to consider the category of equivariant commutative R-
algebras B equipped with an R-algebra map A → B. But such a B is just an
A-algebra, so we will denote this category A-alg, rather than using the analogue
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190 M. A. HILL AND M. J. HOPKINS

R-algA/ of our notation for modules. We do homotopy theory in A-alg by defining
a map A → B1 → B2 to be a weak equivalence if the underlying map of G-spectra
B1 → B2 is.

Given an R-algebra A we wish to construct an R-algebra map A → S−1
algA

which is universal for maps from A to R-algebras B which are S-local. As in the
discussion of modules, the universal property consists of the conditions

(i)alg The R-algebra S−1
algA is S-local;

(ii)alg If A → B is S-local, then the set hoA-alg(S−1
algA,B) consists of just one

point.

Imitating the discussion in §1, one can certainly construct S−1
algA as the pushout

of

SymA[rs | s ∈ S] ��

��

A

��
SymA[xs | s ∈ S] �� S−1

algA

in which |xs| = −|s|, |rs| = 0, the left vertical arrow sends rs to s · xs and the top
arrow sends rs to 1. This construction produces an algebra which is clearly S-local,
however it requires a small computation in topological Andre-Quillen cohomology
to show that it satisfies property (ii)alg.

A better approach is to imitate the construction of the Bousfield localization
described in §2.1 and construct S−1

algA as the homotopy colimit of the sequence

· · · → Ai → Ai+1 → · · ·
constructed inductively, starting with A0 = A, and constructing Ai+1 from Ai as
the (algebra) pushout of

(2.11) SymR(Zi) ��

��

SymR(CZi)

��
Ai

�� Ai+1,

in which Zi is the wedge of R-modules

Zi =
∨

Z→Ai
Z∈Z

Z

and the map Sym(Zi) → Ai is the algebra extension of the tautological map whose
restriction to each summand is indicated by its index. From this description the
universal property is more obvious. That S−1

algA is S-local follows, as before, from
the compactness of the Z ∈ Z. The Meyer-Vietoris sequence associated to each
pushout square shows that if B is an S-local A-algebra then for each i the restriction
map

hoA-alg(Ai+1, B) → hoA-alg(Ai, B)

is a bijection. Since A0 = A each of these sets consists of just one point, and hence
so does

hoA-alg(S−1
algA,B).

Thus Bousfield’s construction produces an A-algebra which is easily verified to have
the two properties characterizing the localization of A at S.
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EQUIVARIANT MULTIPLICATIVE CLOSURE 191

Since S−1
algA is S-local as an R-module, there is a unique a module map

(2.12) S−1
modA → S−1

algA,

and our main question becomes

Question 2.13. Under what conditions on S is (2.12) a weak equivalence?

By Proposition 2.8, this is equivalent to

Question 2.14. Under what conditions on S is the map

E ∧
R
A → E ∧

R
S−1
algA

a weak equivalence?

An analysis of the pushout squares (2.11) shows that this, in turn, is equivalent to

Question 2.15. Under what conditions on S is the map

E ∧
R
SymR(Z) → E ∧

R
R

induced by Z → ∗ a weak equivalence for all Z ∈ Z?

Finally, this is equivalent to

Question 2.16. Under what conditions on S is

E ∧
R
Symn Z

contractible, for all n ≥ 1 and all Z ∈ Z?

We will address this question in the next section.

3. Extended powers and indexed monoidal products

3.1. The homotopy type of symmetric powers. We have a spectrum Z
which is E-acyclic in the sense that E ∧

R
Z is contractible, and we wish to know

whether or not Symn Z is E-acyclic. To define Symn Z requires that R be commu-
tative so that the category R-mod acquires a symmetric monoidal structure. The
definitions are arranged (see for example [3,6,7]) so that Symn Z has the homotopy
type of

(EGΣn)+ ∧
Σn

Z(n),

in which
Z(n) = Z ∧

R
. . . ∧

R
Z,

is the iterated smash product over R, and EGΣn is the G-equivariant analogue of
the free contractible Σn-space EΣn. We first consider the case of the trivial group.

When G is trivial one has

Symn Z ∼ (EΣn)+ ∧
Σn

Z(n).

Since EΣn is a homotopy colimit of free Σn-sets, it suffices to show that if T is a
free Σn-set then

T+ ∧
Σn

Z(n)

is E-acyclic. This reduces to the case in which T = Σn, in which case

T+ ∧
Σn

Z(n) = (Σn)+ ∧
Σn

Z(n) = Z(n).
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192 M. A. HILL AND M. J. HOPKINS

But if Z is E-acyclic, then so is Z(n) by the associativity of the smash product. We
therefore have

Proposition 3.1. When G is the trivial group, the map S−1
modA → S−1

algA is a
weak equivalence for any equivariant commutative R-algebra A. �

How does this change if G is non-trivial? The main difference is that the
Σn-space EΣn must be replaced by the EGΣn. As mentioned above, EGΣn is the
G-analogue of EΣn. It is a space with a G×Σn-action and can be defined to be the
total space of the universal G-equivariant principal Σn-bundle. It is characterized
up to G × Σn-equivariant weak equivalence by the property that its fixed point
space for H ⊂ G× Σn is empty if H ∩ Σn is non-zero, and contractible otherwise.
This characterization shows that the EGΣn is a homotopy colimit of transitive
G× Σn-sets T which are Σn-free. Thus to show that

Symn Z = (EGΣn)+ ∧
Σn

Z(n)

is E-acyclic when Z is, it suffices to show that for such T , if Z is E-acyclic, so is
the result of forming

T+ ∧
Σn

Z(n).

We have therefore reduced Question 2.13 to

Question 3.2. What conditions on S guarantee that

T+ ∧
Σn

Z(n)

is E-acyclic when Z is E-acyclic, where T is a Σn-free finite G× Σn-set?

3.2. Indexed monoidal products. To get a feeling for the construction

T+ ∧
Σn

Z(n)

let’s focus on a simple example. Take n = 2 and G = Z/2 and write g ∈ G for the
generator. We consider two examples of Σ2-free, transitive G× Σ2-sets

TΔ = G× Σ2/diagonal and

T0 = G× Σ2/G.

For a G-spectrum Z one easily checks that

(T0)+ ∧
Σ2

Z ∧ Z

is just Z ∧ Z with the diagonal G-action

x ∧ y �→ g(x) ∧ g(y)

and

(TΔ)+ ∧
Σ2

Z ∧ Z

is Z ∧ Z with G-action

x ∧ y �→ g(y) ∧ g(x).

For instance, let Let Z = G+, i.e. S0 ∨ S0 with the “flip” action of G. Then the
two constructions work out as indicated below:
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EQUIVARIANT MULTIPLICATIVE CLOSURE 193

and when Z is the suspension spectrum of {a, b}+ with the trivial action of G one
gets

In the general case T+ ∧
Σn

Z(n) is constructed as a combination of the following

processes. First, starting with a subgroup H ⊆ G, an H-spectrum X and a finite
H-set U one forms

W =
∧
u∈U

X.

This is a spectrum with an H-action. Next one induces the result up to a G-
spectrum by forming

G+ ∧
H
W =

∨
G/H

g ·W.

These processes are studied in much more detail in [5] where they are called “in-
dexed monoidal products.” Their similarity is more apparent with a slightly more
general setup. Let U be finite H-set and u �→ Xu a functor from the action category
U//H to spectra. Thus Xu is equivariant for the isotropy group Hu ⊂ G of u, and
there are maps g∗ : Xu → Xgu whose formation is associative, etc. Out of this
functor one can construct H-spectra by forming the “indexed sum”∨

u∈U

Xu,

the “indexed product” ∏
u∈U

Xu,

and the “indexed smash product” ∧
u∈U

Xu.

Licensed to Univ of Rochester.  Prepared on Tue Jun 19 05:22:56 EDT 2018for download from IP 128.151.13.21.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



194 M. A. HILL AND M. J. HOPKINS

Pursuing this, what emerges is the principle that in equivariant homotopy the-
ory it isn’t enough to just study ordinary coproducts, products and smash products.
One must also systematically include the situation in which the group G is acting
on the indexing set. The benefits from doing this impact even the most basic no-
tions of the field. For example, the additivity of non-equivariant stable homotopy
theory is expressed by the assertion that for any X,Y , the map

X ∨ Y → X × Y

is a weak equivalence. Equivariant stable homotopy theory possesses an enhanced
equivariant additivity: the map ∨

u∈U

Xu →
∏
u∈U

Xu

is a weak equivalence. In the presence of stability (the fact that fibration se-
quences are weakly equivalent to cofibration sequences), this property is equivalent
to the dualizability of finite G CW-spectra and to the invertibility of representation
spheres SV . The invertibility of representation spheres is arguably the fundamen-
tal characteristic of equivariant stable homotopy theory. It is often referred to as
equivariant stability, and is the only aspect of equivariant stable homotopy theory
that is not easily described in algebraic terms. But (for finite G) once one thinks
in terms of indexed coproducts, equivariant stability becomes simply the enhance-
ment of ordinary stability one finds by requiring equivariant additivity. And that
is a fundamentally algebraic notion.

In the next section we will turn to the structures that arise from systematically
considering equivariant multiplicativity.

4. Equivariant multiplicative closure

The indexed monoidal smash product allows one to express an enhanced
commutativity property possessed by equivariant commutative rings. For a non-
equivariant commutative ring, the multiplication map

R ∧R → R

is a ring homomorphism. This is, of course, related to the fact that the coproduct
of E∞ rings is weakly equivalent to the smash product. One might naturally guess
that the indexed coproduct of equivariant commutative rings is weakly equivalent
to the smash product ∐

u∈U

Ru ≈
∧
u∈U

Ru,

and that there is canonical equivariant ring homomorphism

(4.1)
∧
u∈U

Ru → R.

This is in fact the case. The particular proof depends on the particular model for
equivariant stable homotopy theory you are using, but ultimately it comes down to
the fact that the indexed product of the universal Gu × Σn-spaces∏

u∈U

EGu
Σn
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EQUIVARIANT MULTIPLICATIVE CLOSURE 195

is a model for the universal G × Σn-space EGΣn. For more details see of [5, §2,
App. A, B]. The same discussion applies to an equivariant commutative R-algebra
A, and with the smash product replaced with the smash product over R.

These considerations lead to two related notions of equivariant multiplicative
closure.

Definition 4.2. A collection C of pairs (Z,H) with H a subgroup of G and
Z and H-equivariant R-module is equivariantly multiplicatively closed if it is stable
under the formation of indexed smash products. It is an equivariant ideal if for
every finite H-set U and every functor Z from U//H to spectra, if for some u,
(Zu, Hu) is in C then so is the indexed smash product∧

u∈U

Zu.

Example 4.3. If A is an equivariant commutative R-algebra, the set

{(Z,H) | A ∧
R
Z ∼

H
∗}

of A-acylic R-modules is an equivariant ideal. (The symbol ∼H indicates an H-
equivariant weak equivalence.) Indeed if for some u

A ∧
R
Zu

is weakly Hu−contractible, then the indexed smash product∧
u∈U

(A ∧ Zu)

is H-contractible. The indexed smash product is a symmetric monoidal functor, so
this implies that ( ∧

u∈U

A

)
∧
( ∧

u∈U

Zu

)

is H-contractible. But then so is

(A) ∧
( ∧

u∈U

Zu

)

since there is an equivariant ring map∧
u∈U

A → A.

Example 4.3 bears directly on the situation we found ourselves considering in
the previous section. In fact it tells us that the map

S−1
modA → S−1

algA

is a weak equivalence for every A if and only if it is so for R, and that this holds if
the set of E-acyclic modules forms an ideal. By the above discussion, this condition
is also necessary, since after all, what we’re aiming to show in the first place is that
E is an equivariant commutative ring.

We can address this issue entirely in terms of S by considering a second notion
of equivariant multiplicative closure. Let V be a G-equivariant vector bundle over
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196 M. A. HILL AND M. J. HOPKINS

U and SV its one-point compactification. Writing Vu for the fiber over u we may
think of SV as the indexed wedge ∨

u∈U

SVu .

A G-equivariant map ∨
u∈U

SVu → R

corresponds to a collection of compatible Gu-equivariant maps

αu : SVu → R.

Forming the indexed smash product and composing with (4.1) gives a map∧
u∈U

SVu →
∧
u∈U

R → R

which we call the indexed product of the αu. We denote this indexed product by∏
u∈U

αu : SW → R

in which
W =

⊕
u∈U

Vu

is the space of global sections of V .

Example 4.4. Consider the case R = S0. Then πG
0 R is the Burnside ring

A(G) of finite G-sets. A functor T (u) = Tu from U//G to the category of finite sets
determines a G-equivariant homotopy class of maps∨

u∈U

S0 → S0.

The indexed product in this case corresponds to the G-set given by the indexed
product ∏

u∈U

Tu.

The examples at the end of §3.2 illustrate this situation in the case G = Z/2.

Example 4.5. Consider a general finite G and a transitive G-set U = G/H for
some proper subgroup H ⊂ G. The indexed product of set of Gu-equivariant maps

αu : S1 → R

will be a G-equivariant map ∏
u∈U

αu : SW → R

where W is the real G-representation induced from the trivial representation of H.

Example 4.5 shows that even if one were only interested in πG
n R for n ∈ Z, the

presence of indexed products for equivariant commutative rings would necessitate
consideration of the groups πG

V R for certain virtual representations V of G. In
fact by the time everything is all laid out, one is actually led to consider all of the
homotopy groups πH

V R with H ⊂ G a subgroup, and V a virtual representation of
H. In order not to overly complicate the discussion we have restricted our focus in
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EQUIVARIANT MULTIPLICATIVE CLOSURE 197

this groups πG
V R. In view of this, we henceforth take the expression “equivariant

stable homotopy groups” to mean the sum of the groups πG
V , and view it as graded

over the real representation ring of G. Elements of the equivariant stable homotopy
groups will always be assumed to be homogeneous.

The enhancement of equivariant multiplication given by the formation of “in-
dexed products” goes back to the work of Greenlees and May [4], and is related to
concept of Tambara functors in the work of Brun [2]. It leads to our second notion
of equivariant multiplicative closure.

Definition 4.6. Let R be an equivariant commutative ring. A subset of the
equivariant stable homotopy groups of R is multiplicatively closed if it is closed
under the formation of indexed products.

Example 4.7. Let A be an equivariant commutative ring. The set of α ∈ πG
V R

which are units is multiplicatively closed.

Example 4.7 tells us that if we are going to force all the elements of some set
S to become units in an equivariant commutative ring, we are also going to force
all indexed products of those elements to become units as well. This is the subtle
difference between the equivariant and non-equivariant case.

Definition 4.8. Let R be an equivariant commutative ring, and S a subset of
the equivariant homotopy groups of R. The equivariant multiplicative closure Ŝ of
S is the smallest multiplicatively closed subset of the equivariant homotopy groups
of R containing S.

We then have

Proposition 4.9. Let R be an equivariant commutative ring and A an equi-
variant commutative R-algebra. For every subset S of the equivariant homotopy
groups of R, the maps

S−1
algA → Ŝ−1

algA

and

Ŝ−1
algA → Ŝ−1

modA

are weak equivalences. �

Proposition 4.10. With the above notation, the map

S−1
modA → Ŝ−1

modA

is a weak equivalence if and only if every indexed product of elements of S divides
an ordinary product of elements of S.

Combining Propositions 4.9 and 4.10, and specializing to the case of interest,
we conclude

Corollary 4.11. The map

S−1
modR → S−1

algR

is a weak equivalence if and only if every indexed product of elements of S divides
an ordinary product of elements of S. �

The following example will be discussed in much greater detail in a later paper.
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198 M. A. HILL AND M. J. HOPKINS

Example 4.12. Consider the case R = S0 and G = Z/2. Let σ be the 1-
dimensional sign representation and s ∈ π−σS

0 the map obtained by desuspending
the fixed point inclusion S0 → Sσ. Set S = {s}. Then S−1

modR is the suspension
spectrum of the reduced suspension of EZ/2, and is not (equivariantly) contractible.
On the other hand the indexed product

(TΔ)+ ∧
Σ2

S−σ ∧ S−σ → R

depends only on the non-equivariant map underlying s, which is null. It follows
that the equivariant multiplicative closure of S contains 0 and so S−1

algR ∼ ∗. Thus
in this case the map S−1

modR → S−1
algR is not a weak equivalence.

4.1. Inverting 2. We can now turn to our specific example of Noel’s question.
Take G = Z/2 and R = S0 and S = {2}. As mentioned in Example 4.4, πG

0 S
0 is

the Burnside ring A(G). When G = Z/2 it is one has

A(G) ≈ Z[ρ]/ρ2 − 2 ρ

where ρ = G is the free, transitive G-set. Under the map A(G) → πG
0 S

0, the
element 2 corresponds to the G-set with 2 elements and trivial G-action. We cal-
culated the non-trivial indexed product of this set with itself at the end of §3.2. A
glance at the illustrations gives the formula∏

u∈Z/2

2 = 2 + ρ.

Noel’s question is thus reduced to

Question 4.13. Does 2 + ρ divide a power of 2 in Z[ρ]/(ρ2 − 2 ρ)?

If the answer to the above question is “yes” then inverting 2 in an equivariant
commutative ring has the expected effect. If it doesn’t then there is something else
going on. Fortunately the answer to this question is “yes”

(2 + ρ)(4− ρ) = 8.

In fact, for any finite group G inverting any integer n has the expected effect. There
is, however, a condition to check.
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