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TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 340, Number 2, December 1993

EHP SPECTRA AND PERIODICITY. I:
GEOMETRIC CONSTRUCTIONS

BRAYTON GRAY

ABSTRACT. The techniques used in EHP calculation are studied, and lead to
the notion of an EHP spectrum. A simple inductive procedure suggests the
existence of higher order EHP spectra in which the first differential corresponds
to v, multiplication. The next case (n = 1) is constructed using the work of
Cohen, Moore, and Neisendorfer. Some of the expected universal properties
are proven.

It is the purpose of this note to show how some very elementary consid-
erations about how the EHP spectral sequence works can be generalized and
combined with some constructions of Cohen, Moore, and Neisendorfer [CMN
1, 2, 3]. If these constructions can be carried out in general it would yield a
new unstable development for the spectra V' (m) of Smith and Toda [S, T3].
Thus we add to the problem of constructing the spectra V' (m), the problem of
constructing an unstable filtration together with EHP sequences generalizing the
classical EHP sequences when m = —1. If this approximation to V' (m) can be
constructed, we shall see that V' (m + 1) exists. Thus, among other things, we
present a new inductive approach to constructing V' (m). In particular, sparse-
ness arguments do not appear.

The first new case is m = 0 and we will discuss this at some length. The
results of Cohen, Moore, and Neisendorfer and some recent work of Anick are
germane to the construction. We also indicate an inductive approach to the
general problem, which we intend to pursue.

I wish to thank Mark Mahowald, who first alerted me to the notion of higher
order suspension, and whose intuition has been a valuable source. Numerous
conversations with Rob Thompson have been valuable throughout this work.

1

There are a number of systematic ways of working with the EHP spectral
sequence. One of the simplest and most fruitful is with the use of the Barratt-
Toda formula [B1, T1]. Suppose a € 7, (S”) and B € m;(S™). Then by the
Barratt-Hilton formula [BH] the composites a8 and o are equal on S"+"
i.e., EMaoE*B = +E"BoE'a aselements of m;(S™*"). Let us write [a, f] =
EmlaoEF-18FE"-1B0E!"'a, so E[a, f]=0. (Note: this is a commutator,
not a Whitehead product!) Now from the EHP sequences, [a, f] must be in
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596 BRAYTON GRAY

the image of P. If either « or B is a suspension, [, f] =0 so [«a, 8] must
depend only on H(a) and H(f). In fact

Theorem 1.1 (Barratt-Toda) [B1, T1]. Localized at 2,
[a, B1=P(E(H(a) A H(B))).

This is effective in calculation since P determines the differential. Through-
out the calculation one makes a list of all possible composites. This is aided by
the fact that under mild hypothesis! H(a o f) = H(a)o . One then follows
the composites ao # and f o« and finds that the stable relation aff = +f«
is enforced by the relevant differential on E(H(a) A H(f)) which itself is a
composite H(a)o H(B) or H(B)o H(a).

Localized at an odd prime a similar situation occurs. We need to take ac-
count, in this case, for the fact that E : n,(S%~!) — =,,,(S*) is a monomor-
phism. Thus if m and n are odd, [a, f] =0 and we construct a commutator
on S™*+"=2 Tt lies in the bracket {H(a), pt, H(B)}.

Now we enquire whether there are other spectra which could enjoy these
properties. We ask for a spectrum X = {X"} together with fibrations:

Ly xn-t £ qxn A, Qx /-1

which we will refer to as EHP fibrations. We would like a “Barratt-Toda for-
mula” to hold. We need, then, to define “compositions” in the homotopy of
X . Given a “unit” u; : S’ — X! and a homotopy class 8 : S’ — X™ we then
seek an extension:
st xm
2
“’l / /E
s

XI
possibly with some uniqueness property. In this case we can define composi-
tions, by f 3 a = Boa for a € n,(X!). In favorable circumstances this will
induce a bilinear multiplication in 7z,(X). Now let us assume that X is a ring
spectrum with unit ¥ and multiplication u : X* A X" — X"*™ which is ho-
motopy associative (compositions are associative) and homotopy commutative
(the Barratt-Toda formula will enforce this). Suppose that among the unique-
ness properties for E we require that it be an X module map; i.e., we have a
commutative diagram

XIinXm —— XJjtm

LAﬁ )
X' AX! —— XxiH

This guarantees that =E"f 5 Ela = u(a A f) = +E™a 5 EFB. Now
given a € m(X") and B € m(X™), we can define a commutator [a, f] €

Localized at an odd prime we conjecture that no hypothesis is needed ([G3; Theorem 1] implies
half of the cases).
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 597

Teyi—1(X"tm=1) as before. Furthermore E[a, B] ~ *, and so [a, B] = P(y)
where y : Skti+1 _, x/(n+m)—1  Now consider the composition:

Sk gl HENHB) - v im-1 o xfim-1 £, xfm+fim)=-2,
A

If a Barratt-Toda formula were to hold we would need f(n)+ f(m) = f(n+m).
This implies that f(n) = kn where k = f(1).

Let us now confine our attention to odd primes where we find our examples.
Using the sphere spectrum as a model, we can only expect the usual Barratt-
Toda formula to hold when one of » and m is even. Thus f(2n) = An and
f(2n+1) = hn+ f(1) . Both because of some technicalities that will soon come
up, and because of the examples we have in mind, we will assume that both %
and f(1) are even.

Definition 1.2. An EHP spectrum of period 2d is a p-local spectrum X =
{X"},>0 together with fibrations:

1
. P X2n—1 E QXZ” H QXan—l ,
. P X2n E Qx2n+l H QX 2kn+2d+1

Here 4 = 2k and f(1) = 2d + 2. It is important to observe that this is
an unstable property of a spectrum. Two spectra X and Y could be stably
homotopy equivalent while only one is an EHP spectrum. The spaces X" thus
give a favorable unstable development of a stable homotopy type. We do not
require either that X be connective or a ring spectrum. In fact, if X is an
EHP spectrum, QX = {QX"},>( is also an EHP spectrum stably equivalent to
>lx.

We shall see that in the construction process that follows, it is often easier to
construct Q5X* than to construct X* for some s > 0. This is inconsequential
for a homotopy spectral sequence. All of the examples of interest have k =p,
and k = p’ seems almost necessary if the construction of H is natural enough.
The cases of interest, if they can be delooped to be ring spectra, will have
X0 ~ Z, with the discrete topology.

The composite A, = H o QP:

Q3X2nk+2d+l N QXZ” N QXan—l

will be called the periodicity operator. In favorable cases it corresponds to a
self-map of X of degree 2d.

In the case of the sphere spectrum, A, = Qg, for some map ¢, : Q2S?"7+1 —
S272=1 [G4]. Maps of this type have been constructed by Cohen, Moore, and
Neisendorfer [CMN1, CMN2]. They have constructed a sequence of maps
m, : Q282+l _, §2n—1 guch that the diagrams

Q452n+3 9_27"11_, Q292n+1
TQzEZ TE2

9252”"'1 _ T S2n—1

homotopy commute for each n > 1. We formulate this as
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598 BRAYTON GRAY

Property CMN. There are maps 7, : Q2X27+2d+1 _, x2n=1 for n > 1 such that
the diagrams:

Qd y2n+2d+3 i o) yons

(+) Taor e

Q2 x2n+2d+1 7n X2n-1
commute and A, ~ Q. .
The significance of this property is illuminated by the following.

Theorem 1.3. Suppose that X is an EHP spectrum of period 2d satisfying CMN.
Then there is a derived EHP spectrum Y of period 2d' where d’' = (d+1)k—1.

Proof. We define spaces Y" as the fibers in the following fibrations:
y2n—1 L, Q2 x2n+2d+1 Tn Xx2n—1 ,

y?2n QX 2n+2d+1 Qpn+1 Qx|

where ppi1 = 7t 0 E2. Now let W, — x2-1 L, Q2xm+l pe a fibration;
W, is also the fiber of A, as usual. This follows from the diagram:

QZX2n+l QZX2n+1
TEZ TE
X2n—1 E QXZn QXan—l

I I |

W, Q3 x2nk+2d+1 _An () y2nk—1
so W, ~ QY2"k—1_ We now construct the EHP fibrations for Y with the
following diagrams of fibrations:
y2n Qy2n+l , Qy2nk+2d'+l

! ! H

E2
QX2n+2d+1 N Q3X2n+2d+3 W;z+d+1

Qpnyi1 l Q7pe1 1

QX2n+1 - QX2n+l

Y2n—1 Qyzn Qyznk—l

! !

2 y2n+2d+l — 2 y2n+2d+1
QX — QX

”nl szn«HJv
QY 2nk—1 , x2n—-1 E? Q2 x2n+l

This completes the proof.
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 599

Let us assume that for suitable primes p, this process can be iterated m + 1
times beginning with the sphere spectrum. This would require that we prove
CMN at each stage in order to go on. We will first look at the sequence of
periods. Beginning with d = 0 and using the formula d’ = (d + 1)p — 1, we
obtain the sequence qg, q1, ... , gms1 Where g, = 2(p™ —1). As we shall see,
the maps 7n, and p, are compressions of internal v, self-maps. Let us now
display the fibration sequence that we would get in this case. Write W(’,’n) for
the nth space we would get in the (m + 1)th k iteration. Thus wr = noif
n isodd and J,_(S") if n iseven.? As we shall see, the space {Wimy> n=0}

form a spectrum equivalent to ="~V (m), where V(m) is the Smith-Toda
complex [Sm, T2]. We would then get two EHP sequences: "

H: ... Swk 5 owit L owlrrat!
. P 2n—1 E 2 H' 2np—1
. Sowiet Laowg D awiet

There would be a sequence corresponding to the double suspension:

2. m—1 _E* ~2pp2n+l 2np—1
E —->W'(":’) —-—Q W'(":')“L -—»VV(”:'fr’l) .

Finally there would be the defining Cohen-Moore-Neisendorfer sequence and
a restricted version:

) 2n-1 2—1_, 2 2ntam+l T py2n—1
CMN: .= QWEL W1 QW W)

RCMN: ... »Q2WXth — W2 — QWiianst Do, quantt
A noteworthy consequence is the following:

Proposition 1.4. If there is an EHP spectrum {W(',’n)} representing T~V (m)
as above, the spectrum V (m+1) exists; furthermore if {W(;'n)} satisfies condition
CMN, {W}, 1)} represents T2V (m+1).

m+1
Proof. Since Wi is n—m~—2 connected, E : W(fn”) — QI/I/'(fn”)Jrl isa 2np+qm—
m — 2 isomorphism and FE : W(fn")‘l — QW% isa 2np — m — 4 isomorphism,;
whence E : W(fn")" — Q¥ W(fn”)”"l isa 2np — m — 4 isomorphism. Thus if #
is large W(fn")‘l = (¥2*~m=2)(m)) U higher cells. In particular, for n large, we
have a factorization:

37 2np+am+1 P wm H 2np—1
QW)™ = QWG = AW
S2np+am=—m=3 Y (1) Ume $2np=m=3Y ()

Let 22"~m=3)(m+ 1) be the mapping cone. By an argument in §5, Q"*! # 0
in V(m+ 1) so it is the desired space.

2Throughout this work we will write S27 for FARTALON
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600 BRAYTON GRAY

In [G7] we show that there are A algebra models for each of these spaces,
and short exact sequences for each of these fibrations. In particular, there is an
EHP spectral sequence for Ext,, (H*(V(m))) generalizing the Bousfield-Curtis
spectral sequence when m = —1.

From the sequence CM N we see that there is a map QW(',’n_l) — W(;'n) . By
iteration we get a map Q"+1S" — W('}n) which is an n—m—1 isomorphism, and
by 1.4, {W(’,'n)} ~ X"~V (m). Our original analysis required a ring spectrum
with unit, so this suggests that we might try to write {W[,,} = Q"*!{V 1}
delooping the spaces and maps m + 1 times. This possibility is encouraged by
[G7, Proposition 7.5]. As we shall see, this in fact happens when m = 0. In the
inductive construction of the derived EHP spectrum Y each Y?2" was given as
a loop space; in fact we have a fibration

Y2n N QX2”+2d+1 —)QXZ”'H N BY2n N X2n+2d+1 Pr+1 X2n+l

To deloop Y we also need a fibration
y2n—1 _, QZX2n+2d+1 Tn, x2n—1 _, BY?2n-1 LN Qx2n+2d+1

and a lifting of 7, to Y?". Let us examine these fibrations in case m =0, i.e.
X2+l = §2n+1 and 4 = 0. The first is

Y2n N Qs2n+1 P, Qs2n+1 N By2n N S2n+1 P, S2n+l.
Clearly BY?" = §2"+1{p} . The second fibration is
y2n—1 __, QZS2n+1 LN S2n—1 — BYy?n-1 LN Qs+l
Such a fibration occurs in the work of Anick [A, Proposition 15.1]. A lift of y,
to a map BY?"~! — Y2 = QS?"+1{p} is provided in [AG].
The general pattern of deloopings would then have delooped fibrations:

. 2172n+qm+1 Bn 172n—1 2n—1 Vn 2n4gm+1
BCMN: ... —QtitiBy2n-t, pncl I, Qp2ntdntl

BRCMN: ...— QVZl — p2n —ylrtiett b, pond

m—1) (m)
The other sequences E2, H, and H' would be the same as before with I/Efn) in
place of szn) throughout. Finally {V(;'n)} = V' (m) . This delooping is supported
by [G7, Proposition 7.5].
Let us we consider the consequences of another assumption: that the map

) ) . . Q
pre VE‘rIrlel) - V(}n_l) has “Hopf invariant one”; i.e. the composite QV(‘,’;;jll) by

1 H m+1 . . . 0 ~ 0
?V(m_lll) —d—> QI/E‘,’,,:'I) is the identity. In this case I/Em) ~ V(m_l) as we can see
rom the diagram:

m+l m+1
* > QU ——= Q¥

! | U

m+1
Vin-1)y — oy —— Q¥
Vow —— Vo —— %
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 601

As we shall see I/Eg) = Z, with the discrete topology. This suggests that I/E(,’n) =
Z, and this is supported by [G7, Corollary 3.6].

2

At this point we will discuss our main new example: V' (0). As we shall see it
comes very close to fitting the above scheme, and does produce a derived EHP
spectral sequence for the stable homotopy of V'(0).

The difficulty lies in property CMN. In [CMN1], the authors construct maps
m, 0 Q28271 §2n=1 for n > 1 such that the rectangles () of property CMN
commute, but leave open the question of whether A, ~ Qmn,, . In [G4 and G5]
we construct a map ¢, : Q252+l _ §2w-1 with A, ~ Qg, . The reasonable
procedure then is to define:

. _{n,, from [CMN1] if (n,p)=1,
" om if n=pm.

We then need to show that the rectangies involving ¢, commute. Since
@m | S¥"P=1 is the map of degree p, the only verification necessary is that
the diagram:

QZ S2mp+1

/ |
Q2 §2mp+1 Pm S2mp—1
commutes. The main result of [H] is that the loops on this diagram:
93 S2mp+l
/ I
Q3.§2mp+1 Qpm Q

commutes. Consequently we may construct the loops on the desired EHP se-
quences and obtain:

Theorem 2.1. There are fibration sequences:

H: e, — I/I/(%Sl N QI/I/((Z);I+1 N QI/I/(g;[p.HH.l ,
QH': .. — QWET— QW — W
CMN: .. — I/V((Z);"l —, Q282n+1 Tn, @2n—1 ,
RCMN: ... — W(%;t L, QS P, gntl

Furthermore, if (n, p) =1, the fibration QH' can be delooped, giving:
. 2n—1 2 2np—1
H:.. . — VV(O;' — QW) — QW/(O;”’ .
Finally the spaces {W(g)} form a spectrum equivalent to L'V (0).

Clearly this whole matter could be greatly simplified if we could find maps
Tp 1 Q282+l §270=1 gatisfying both (a) p ~ E*m,y : Q2820+ — §2p=1
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602 BRAYTON GRAY

Q282+1 and (b) 7wy - Hy ~ x : Q2§27+ — Q282w+1 _, §2np—1  n this case
we could replace QH' by H' forall n.

3

In this section we will exploit some powerful results of David Anick. Rely-
ing heavily on the results in [A], the authors of [AG] construct the fibrations
BCMN of §1 for V(0). Unfortunately we confront yet another construction
for a map =, : Q2§2n+!1 — §2n-1 Tt does, however, give us the opportunity to
discuss compositions from the point of view of §1.

Theorem 3.1 [AG]. Let p > 5. Then there is a fibration sequence:
L, Qrgan+l P, S§2n—1 __, T2n—1 In, ) g2n+l

where T?"=1 jsan H space, y, isan H map, ¢, has degree p and Q2S2"+!
2

O, s2n=1 EL 29241 s the pth power map. Furthermore there is a lifting of

n to QS {p}.

This, of course, is precisely the fibration sequence BCMN of §1 with m =0.
We can now define a delooped version of the spectrum by?3

n _ { Sk+1{p} if n =2k,
© T2n-1 if n=2k—1.
From this we get EHP sequences

2n—1 2 2np—1
L VT A —— Wy

Conjecture 3.2. With suitable choices, W(%,g”"l o~ QVE%;’”" (and hence W(f);'”*"“
o~ QV(?);'””“) for n>1.

This would be true, for example, if ¢np o Hy, ~ x : Q2§21 — Q282+l
S2n0=1 It would give us the most favorable version of the EHP spectrum for
V(0).

We now look at the composition question. Given g : S — % , we ask for

an extension:
(]

l B,
k
Vo
This would enable us to form compositions as in §1.

We will first examine the implication of such compositions stably. If the mul-
tiplication in a ring spectrum can be accomplished by compositions as above, it

3In [AG], the spaces V(g) are denoted T", as they form the next spectrum following S” . The

notation V(g) , although more complicated, is more in keeping with the spirit of this work.
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 603

is necessarily homotopy associative. This rules out ¥ (0) when p =3 [T2]. On
the other hand V'(0) is homotopy commutative To understand the implica-
tions of this, let us replace each space V; 0 by the Moore space P**! which sta-
bly carries the homotopy. Suppose that we are given maps « : Skt7—2  pm-1
and f: 872 — Pn=!. We then define extension @ : P¥*™ — P™ and
B :P*" — P of Ea and EfB as the compositions:

Pktm ~ p2 A Sk+m=2 IAa P2 A pm-1 [ pm

Pkl ~ p2 A §l4n—2 InB P2 A pr-t “ pn.
Then if p > 3, using homotgpy associativity of the Moore space spectrum, one
can easily see that & and B are left module maps over the Moore spectrum,
and hence R R
E"@) o EXt™(B) = (-1)ME™(B) o E""(@)

as homotopy classes. R

The point here is that we use extensions @ and S constructed from the
stable null homotopy of p times the identity of ¥(0). Unstably, we have

Proposition 3.3. S2**{p} has exponent p.
Proof. See for example, [CMNI1, 1.3].

The question of the exponent of 7%"~! is open. It would suffice to show that
Q¢T2"—1 has exponent p for some small € . For example, 3.2 and [CMN]1, 5.3]
implies that Q27277—! has exponent p.

Proposition 3.4. Suppose Y is a homotopy commutative homgtopy associative
H space and ¢ : P?"+*! — Y . Then there is a unique H map ¢ : S*"t'{p} - Y
extending ¢ .

Lemma 3.5. Suppose that WX — X -2 CX isan H fibration with a splitting
s: CX — X, and CX is homotopy commutative. Then for each H map
f:X — Z with Z. homotopy commutative, the following are equivalent:

@) finx: WX - Z. R R

(b) There exists a unique H map f:CX —Z with fu~ f.

Proof. Clearly (b) implies (a). Suppose then that f1 ~ x. Since ,u(l —SU) ~ *,
1 —sp~im for some 7 : X —» WX. Now * ~ fim ~ f— fsu since f is an
H map,so f~ fsu. Let f = fs. f is clearly unique. To see that f is an
H map consider the diagram:

Xxx 24, cxxex 2L, zxz

! ! !

-~

u f

—— cX —— Z

where the commutativity of the right-hand square is in question. However the
left-hand square commutes, and the rectangle commutes. Since x4 x u has a
right inverse we are done.
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604 BRAYTON GRAY

Proof of 3.4. Extend ¢ to an H map ¢ : QP?"*2 — Y . We now construct a
fibration:

Q((o/ P4n+2mn+3> gZ_ng QP2"+2 _Un, S2n+l{p}
n=0
using [CMN, 11.1]. They construct a homotopy equivalence

o0

¢2n+2 . SZn+1{p} % Q(v P4n+2mn+3) S QP2n+2
n=0

by multiplying together a map ha,4; : S {p} — QP?"*2 and a map g2
as above. Thus it suffices to describe u, such that u, o g2,.2 ~ * and u, o
hania ~ 1. Since S?"*!{p} is homotopy associative [N, 4.2] we let u, be
the H map extending the inclusion P?"+! c §2%+l{p}  Since S¥"*!{p} is
atomic, u, o hy,.n ~ 1. To show that u, o go,,2 ~ *, we first note that since
it is an H map, it suffices to show that u, o g2,42|pn+anms2 ~ % . However this
restriction is a Samelson product and hence the restriction of a commutator.
Now by [G6, Proposition 3] (or [N, 4.1]) $?**1{p} is homotopy commutative,
SO Uy © anya ~ *. For the same reason Do © Qons2 ~ * SO by 3.5, ¢ exists.
Given two such extensions @; and &, , they must agree on QP22 since H
maps defined on QP?"+2 are determined by their restrictions to P2"*! up to
homotopy. By the uniqueness in 3.5 they are homotopic.

Thus by 3.4 we see that if Y is homotopy commutative and homotopy as-
sociative and we are given a null homotopy of p-I in QKY for k < 2 there
is a unique H extension

S2n N )Y

7
7
e
e
e

S2n+l{p}

compatible with the null homotopy. We would like to be able to apply this
when Y = S?"*1{p} or Y = T?*~!. For the latter, we need to know that
Q¢T2"—1 has exponent p for some small €, and that 72"~! is homotopy
associative. (Homotopy commutativity follows from [G6, Proposition 3] as
before.) Secondly, we would like to construct extensions:

S2n—l s Y

2
7
e
e

T2n—1
As we shall see, such extensions exist. We have not, however, been able to es-
tablish uniqueness. To construct extensions, we need to have more information
about the constructions of Anick. In [AG], the authors construct a sequence of
cofibrations of co-H spaces

})(i;llc{l) T G- 1—*Gk
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beginning with Gy = P?"t! . Here P(i’,’fj‘,‘) is the Z,.. Moore space of dimen-
sion 2np*. The attaching map «j is a co-H map and is divisible by P*.
Finally, 72"-! is a retract of QG and G is a retract of X721,
Proposition 3.6. Suppose Y is a homotopy commutative homotopy associative
H space with exponent ¢ and ¢ : P?" — Y . Then there is an extension:

¢

pr—toy

> 7
¢/
/
/

T2n—1
Proof. We first observe from the push out diagram:
Q4 —— AV A

| l

A —— AxA
that co-H structures on A correspond to liftings s : 4 — XQA with e -5 ~
1. Furthermore we claim that co-H maps 6 : A — B induce commutative
diagrams:

A —— 304

ol lmo

B — . SQB
By naturality, it is clear that the diagram commutes when followed by the map
YQB — BVB . However, the inclusion of the fiber of this map, is null homotopic
since it is induced from a null homotopic map from QB to B.

We now construct, inductively, maps ¢ : Gy — XY with ¢9 = Z¢. The
inductive step follows from the diagram:

Gr ~ _
T~ - %

Gioy —— 3QG,_, =2, sy —H 3y
o 2Qq

‘ kT ):ck
UL, —— ZQPYE

now the composite

prrt _, sqpirt 5 2, o Z o5y

pk+l ) (pk+ 1

is the suspension of ¢,_; o o . Hence the entire lower composite is the sus-
pension of 4o ¢,_; o ap which is divisible by pX. Thus it is trivial and the
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extension exists. This gives a map ¢ : Goo — XY . Now define $ as the
composition
X, —» QG Y3 Qzy 4 1.

The map ¢, can be recovered from ¢ as the composite Go, — ZX(p) e, XY,
the map ¢, is clearly not unique unless it is required to satisfy some stronger
property than being an extension of ¢y = Z¢. However given a homotopy of
commutativity in Y and a null homotopy of p times the identity in Q°Y, the
construction of ¢ can be made without any choices. It seems, therefore, that
there is some hope for a functorial construction.

The universality of Vo) is reflected in the following freeness property which

is easily verified.

Proposition 3.7. H*(I/Zg) ; Zp) is the free commutative algebra generated by the
Z, module H,(Z"V(0); Zp).
Proof. This follows immediately from the fibrations:

Qsznﬂ__) VE%;: __)Szw-l ,

S2n—l —->V((2);’_1——> QSzn+1
in which the connecting homomorphism is zero in mod p homology.
Finally, we will use this structure to construct the strong multiplicative struc-
ture for Vo) required in §1; viz.:
VorVe — Vo
This translates to maps:
S2n+l{p} A S2m+1{p} — S2n+2m+l{p} ,

S2n+1{p} A T2m—1 N T2n+2m—1 ,
T2n——1 A T2m—1 N S2n+2m—1{p}‘

These are obtained from the adjoints:
SZ”“{p} — map*(Sz’”“{p} , S2n+2m+1{p}) ,

SZ""'l{p} SN map*(Tz’”‘l , T2n+2m——l) ,

T2n——l SN map*(Tz’"" , Szn+2m—1{p})

by using 3.4 and 3.6, assuming in the second case, that 72"+2™~1 is homotopy
commutative. Then these mapping spaces are all homotopy commutative H
spaces and the extensions are obtained from the restrictions to the appropriate
Moore space. Here we use retractions TS?"t1{p} — P2m+2 and ¥27?2"1 —
TS§2m+1{p} — P2m+2 1o construct the restrictions so we need »n > 1 in the first
case and »n > 2 in the others.

As in the case m = —1, we expect that the third map actually factors through
G%+2m=2 providing a desuspension:

Q(T2n~1 A T2m—l) _ QGgg+2m—2 N T2n+2m—3_
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By the above method it is possible to construct something similar, namely a
map
QTZn—l A T2m—l T2n+2m—3

and hence
QT2n—1 A QTZm—l N QT2"+2m_3.

4

In this section we will discuss Conjecture 3.2. There are various stronger
versions of this conjecture and we will discuss our results to date. It seems to
be difficult even to intuit which of the various conjectures will hold up.

We begin with the following:

Conjecture 4.1. There is a map X2Q2S2#+1 1, p2w+l ywpich is an epimorphism
in Z, homology.

Propesition 4.2. Conjecture 4.1 implies Conjecture 3.2.

Proof. Since X?(Q2§?"+1) ~ ¥2(S?"~1 x BW,) by [G4], 4.1 is equivalent to
having a map A’ : 22BW, — P?"*+! which is a Z, homology epimorphism.
Now P2 is the 2np skeleton of T2"7~!  Since T?"~! is an H space,
there is an extension QP2"7+!1 —, T27p=1  Thuys the adjoint of A’ gives a map

BW, X, Q2p2ne+l _, Q21 Both spaces have isomorphic Z, cohomology
which is a tensor product of divided polynomial algebras and exterior algebras.
All of the generators are tied together by the operations f and Z! in such
a way that a map inducing an isomorphism in dimension 2xnp — 2 induces an
isomorphism in all cohomology groups (as in the atomicity proof in [CM1]).
Thus BW, ~ QT?"?=! Since V;)Z””'l = fiber of ¢, = BW,, we are done.

We will hazard a further conjecture that may seem to some to be uncau-
tious. This concerns the number of suspensions necessary to split Q2S§27+1
when S$27+1 is localized at an odd prime. At one time Barratt [B] conjectured
that the Snaith splitting [S]:

o0
I®(Q"E"X) ~ £° (\/ Dk(X)>

k=0
could be obtained after n suspensions. It was later proven by Kirley [K] that
the maps in the Snaith splitting could not be desuspended to split Q"X"X after
a finite number of suspensions if H.(X;Z;) # 0. Cohen [C] also proved
that one needs 2" suspensions to split off D,.-:(X) when Dy.-i(X) is not
contractible. Mahowald [M] has a particularly nice description of the problem
when X = §2"~1 localized at 2: The pieces Dy-: and Dy hold onto each
other until the Freudenthal suspension theorem demands that they split. None
of these results applies to Q2S2"*! localized at an odd prime. In particular,
Mahowald’s graphic description of the problem does not have an analogy away
from 2.

Conjecture 4.3. Z2Q?S2+! ~ 32(\/, 5 Di(S**~!)) when localized at an odd
prime. Clearly 4.3 implies 4.1.

We observe that using the techniques of [CG, Lemma 2.3] it suffices to con-
struct maps X2D,i(S2"~!) 25 32Q282"+! for each i > 1. Furthermore, having
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constructed aqp, ... , a, it follows that the splitting 4.3 works up through the
(2np — 2)p™t! — 1 skeleton. Now «; clearly exists.

Proposition 4.4. There is a map X*D,,(S*~1) =% X2Q282+1 inducing a mono-

morphism in Z, homology.

Proof. We first observe that we may replace Q2S2"+! with BW, since
22(92s2n+1) ~ ZZ(sZn—l x BVVn)

(see [G4] or [G5]). Next we use the action of a p local unit k : 21 — §27-1
to induce a map [k] : BW,, — BW, . Forming telescopes in the usual manner
we can split BW,, :

SBW, ~ X1 V-V Xp_y

where H,(X;; Z,) contains all monomials of H,(BW,; Z,) whose length is
congruent to i mod (p — 1). Thus the 2np? skeleton of X; is

S2np—l Upt e2np U e(2np—2)p+1 Upt e(2np—2)p+2 U e2np2—l Upz e2np2.
There is a map S?"?~!{p} — BW, inducing a monomorphism in Z, homology.

Since £S2"7~1{p} is a wedge of Moore spaces [G1], the 2np? skeleton of X;

s
( p2ne P(2np—2)p+2) Uy e2np2—1 Ups ezan.

Now we assert that the suspension of the composite:

6, :p2np2—1 T p2np \y pnp=2)p+2 _, p2np

is null homotopic. Hence (£X;)2%#*+! ~ P2+l y 32D ,(S?"~1) and the proof
is complete.

To prove this we first observe that the composite
P2np+l C ZIXI N EZBI/V,, — 2292s2np+1 N S2np+l
induces an epimorphism in Z, homology. It follows that the composite:
panp’ Eo, p2np+l __, g2np+l

is null homotopic. We now introduce the space {77,p+1} from [CMN3, Theo-
rem 3] and the fibration sequence which appears vertically in the diagram:

QSzan
— s P2 Ty

~
~
<Y

~
> g2np-1 11 S2np"—1{p2}
k>2

P2np2—1

~

where the above null homotopy defines y . There are only two possibly non null-
homotopic components of y. Consider first y, : P27?"~1 —, §2m’~1{p2} Such
maps are detected in homology and the map S$2°~1{p?} — Tj,,,; induces a
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monomorphism in Z, homology. Since (6;). = 0 we conclude that y, = 0.
Thus y = y; : P2%’~1 _, §2%-1  Now the adjoint of the composite

21 0
P2np 1 0 P2np T2np+l QPan+1

is E6; which is stably trivial, so y; is stably divisible by p. This is impossible
for maps defined on P2"’~1 so y, is stably trivial. But [P2w’~1 §2np-1]
{p2r’=1_ §2mp-1} 50 y; ~  and hence Ef ~ *.

5

One of the important tools in EHP calculations is the map BX, — Q(S?).
Let B be the localization of BX, at p. Then we have restrictions:

A
BM™ Q2"+1S2”+1 ,
Bnq—l A Q2n§2n

and the cofibration sequence of B" maps to the EHP fibration sequences:

R E2anq—1 Z2anq S2np
/| g |
N Son _E , qgm+t _H | g+l

X , Z2n—lB(n—1)q N ZZn—anq—l S2np—2

g | |
. , §2n—1 , QS2n QS2np—1
(See [G2, Proposition 11].) It would be desirable to have similar constructions
in other cases. In fact such a construction for V' (0) can easily be made (af-

ter Ravenel [R]). Consider the diagram of cofibrations defining the right-hand
terms:

32 g(n+l)g F 2 gna , 2™

| l !

Y2 B(n+l)q _r . y2g(n+l)g Zz'B‘('H'I)Q—I

where F' is the unique compression of P = p1 A 1. (See [G2, Proposition 7].)
Note that $2B"? may not be a suspension. By a slight variant of Lemma 21 of
[G2] we get a commutative diagram:

22n+lB(n+1)q F Z2n+1Bnq 22n+1§"q

a g !

Q2 S2n+2 Tn+1 Szn+1 V(g;wl

This content downloaded from 128.151.150.9 on Mon, 1 Apr 2013 11:02:19 AM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

610 BRAYTON GRAY

More easily one gets

ZZn’E”q_l y2n+1 gng P y2n+1 gng

a gl a

y2n S2n+1 p S2n+l

)

This gives the EHP ladders:

N Ly (Lt N Ly — 5 L 2% ] ()
p l 2 l 2 l
— Wy — Qrgt —— Qg
L, yenniM | g gtle-l T2nr+ay (0)
| | |
S (00 R ) /- — QV((2)§n+l)p—l

since B"/B"""" = $n+Dap(0) and BTV /B = Sr+Da-1y(0) . We won-
der whether there are also Snaith maps in this context.
One consequence is the commutative diagram:

3172np+q+1 Anp 2np—1
Vo) —— Q¥

K K

y2np+q—1 V(O) Ui y2np—2 V(O)

Thus if Vg, satisfies CMN, the maps 7, represent v; on the bottom Moore
space and the spectrum {V/],} is stably equivalent to V' (1).

If p > 5 Ravenel goes on. He constructs a map 2B __ 528" which
is a compression of v; : s BN, 32BN ang represents v, . In fact
there is an obstruction theory to this process in general. We seek finite spectra
B(”,Z) and maps A, : B(",Z) — B™*amt A V(m) inducing a monomorphism in
Z, homology. Here B(”_ql') = B™ and B(’f)‘g = B"?. Inductively one seeks a
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lifting f,,_; in the diagram:

> dm B((fnﬂ“_l’l";)q - Bna+dmei AXIm Y (m — 1)
fm—-lj( 1AV,
B"+dm-1 RN B((Z';Pl")')q h’"_’,‘ BM+dma A V(m _ 1)
j 1
B m, B"+ama AV (m)

(m)
This actually works when m = 0, 1. One can then calculate Q™*!(a; Au) =
biypmy..s1 Ay where ay € flkq‘l(B; Z,), by = Pay and u € H°(V(m); Z,)
are the respective generators. These classes are nonzero in B(”,Z) (in fact in
B,)) for n large and one obtains that B, /B(k,fl) is filtered by n — k copies
of V(m+ 1). Compatible maps ZZ”“B('Z) — I/Efn”)* ! allow this information to
be transferred and we conclude that the maps 7, : Q? I/Efn”)” Hmatl V(fn”)”'l
induce vy . Thus, inductively we produce the spectra V(m +1).

6

In this section we will consider the problem of constructing Cohen-Moore-
Neisendorfer maps for the spectrum V' (0). There is a clear procedure which
imitates the analysis of [CNM4]. In order for it to work most efficiently we
will assume that V(<2);l_l = T2~ is homotopy associative (and hence homotopy

commutative).
What we seek, then, is the condition CMN for Vg namely, maps

T Q2 VE(Z);H-qH N VE(Z);'_I

so that the diagrams:

2p2ntg+l o 212041
Whg " — Oy
[
2n+q—1 Pn 2n—1
Vo) — Vo

Here p, will be given by extending the Adams map:

P2n+q p2n C V2n—1
— T 50
Pn __ — -
-
-
V2n+q—l -~
(0)

using 13.6.
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Now let Z2"V (1) = P2+l y, CP?"+22-1 with n > 2. Let u, be the com-
posite:
ZZn V(l) —, p2nt2p VE%;H-‘HI'

Since p,u, ~ *, we get a commutative diagram of fibrations:

21 2n+1 2172n+1 2n+1
PRI == — . — arg

o | | | [

QZV(g;I+q+1 —  QF, - QEZ”V(I) N QI/E(z);'+q+l

I | I

QE, —— QEV(1) —— Q3 {pun)

Problem 6.1. Decompose QF, .
The most favorable outcome would produce a map 0 : QF, — V(g;"‘ . We

would then write 7,,: Q2 I/Eg;”q“ — QF, — V(gg"‘ where Q2?p,., ~ E%om, and
nan((Z);Hq-—l ~ p, by uniqueness. This, of course, is a direct analog of [CMN4].

One would hope to use the same techniques as far as possible. If p > 5,
n«( ; V(1)) is a differential Lie algebra and one can construct Samelson prod-
ucts in H,(QF,). The situation is not entirely analogous, however. u, actually
factors through VE%;’*" , creating a new fiber F,, which is more analogous to the
previous case. There is much work to be done on this problem.

APPENDIX

Extensive calculations have been done in the case m = 0, 1,2 and o~ at
the prime 3. Assuming a Barrat-Toda formula and occasionally the maps of
§5, we have been able to calculate the EHP sequences, even though they may
not correspond to the homotopy of spaces. They do, however give 7.(V (m))
with the exception that, for p = 3, we limit our range of dimensions. The
nonassociativity of 7z.(¥(0)) appears in homotopy in dimension 49. The fol-
lowing table shows v; torsion part of the spectral sequence for p = 5. Note
the reluctance of differential to cross certain filtrations. The pieces that hold
together correspond to copies of 4; made from p copies of V(1).
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TABLE. v; torsion in k(¥ (0)) for p=15

o wn (=] 0 (=3 wn o wn o wv (=] w o w0 o
© ~ ~ © © n wn < < (23 2l o o -~ — o o (<2}
- — — P - — ~ - - - - — — — — -~ -

This content downloaded from 128.151.150.9 on Mon, 1 Apr 2013 11:02:19 AM

All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

BRAYTON GRAY

614

TABLE (continued)

85
80
75
70
65
25
20
15
10

5

35
30
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