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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 340, Number 2, December 1993 

EHP SPECTRA AND PERIODICITY. I: 
GEOMETRIC CONSTRUCTIONS 

BRAYTON GRAY 

ABSTRACT. The techniques used in EHP calculation are studied, and lead to 
the notion of an EHP spectrum. A simple inductive procedure suggests the 
existence of higher order EHP spectra in which the first differential corresponds 
to vn multiplication. The next case (n = 1) is constructed using the work of 
Cohen, Moore, and Neisendorfer. Some of the expected universal properties 
are proven. 

It is the purpose of this note to show how some very elementary consid- 
erations about how the EHP spectral sequence works can be generalized and 
combined with some constructions of Cohen, Moore, and Neisendorfer [CMN 
1, 2, 3]. If these constructions can be carried out in general it would yield a 
new unstable development for the spectra V(m) of Smith and Toda [S, T3]. 
Thus we add to the problem of constructing the spectra V(m), the problem of 
constructing an unstable filtration together with EHP sequences generalizing the 
classical EHP sequences when m = -1 . If this approximation to V(m) can be 
constructed, we shall see that V(m + 1) exists. Thus, among other things, we 
present a new inductive approach to constructing V(m). In particular, sparse- 
ness arguments do not appear. 

The first new case is m = 0 and we will discuss this at some length. The 
results of Cohen, Moore, and Neisendorfer and some recent work of Anick are 
germane to the construction. We also indicate an inductive approach to the 
general problem, which we intend to pursue. 

I wish to thank Mark Mahowald, who first alerted me to the notion of higher 
order suspension, and whose intuition has been a valuable source. Numerous 
conversations with Rob Thompson have been valuable throughout this work. 

I 

There are a number of systematic ways of working with the EHP spectral 
sequence. One of the simplest and most fruitful is with the use of the Barratt- 
Toda formula [Bl, Tl]. Suppose a E grk(Sn) and fi E 7r,(Sm). Then by the 
Barratt-Hilton formula [BH] the composites a/I and ,oa are equal on sn+m, 
i.e., EmaoEkIl = ?En/3oEla as elements of 7rk+l(Sm+n) . Let us write [a, fl] = 
Em-lIa oEk- JITEn-Ifl oEl-l a, so E[a, fi] = 0. (Note: this is a commutator, 
not a Whitehead product!) Now from the EHP sequences, [a, /1] must be in 
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596 BRAYTON GRAY 

the image of P. If either a or ,B is a suspension, [a, ,B] = 0 so [a, ,B] must 
depend only on H(a) and H(,8). In fact 

Theorem 1.1 (Barratt-Toda) [B 1, TI]. Localized at 2, 

[a, ,6] = P(E(H(a) A H(/3))). 

This is effective in calculation since P determines the differential. Through- 
out the calculation one makes a list of all possible composites. This is aided by 
the fact that under mild hypothesis' H(a o 16) = H(a) o 16. One then follows 
the composites a o ,B and ,B o a and finds that the stable relation a,8 = +,8a 
is enforced by the relevant differential on E(H(a) A H(,8)) which itself is a 
composite H(a) o H(,8) or H(,8) o H(a). 

Localized at an odd prime a similar situation occurs. We need to take ac- 
count, in this case, for the fact that E: Tr (s2s-l1) i 7Cr+l (S2s) is a monomor- 
phism. Thus if m and n are odd, [a, 16] = 0 and we construct a commutator 
on Sm+n-2 . It lies in the bracket {H(a)), pi, H(,8)}. 

Now we enquire whether there are other spectra which could enjoy these 
properties. We ask for a spectrum X = {Xn} together with fibrations: 

P. Xn _1 E) Xn H nXf(n)- I 

which we will refer to as EHP fibrations. We would like a "Barratt-Toda for- 
mula" to hold. We need, then, to define "compositions" in the homotopy of 
X. Given a "unit" u1: Sl --+ Xl and a homotopy class 1Sl S-- Xm we then 
seek an extension: 

xl 

possibly with some uniqueness property. In this case we can define composi- 
tions, by 16 o a = 16 o a for a E 7r* (X1) . In favorable circumstances this will 
induce a bilinear multiplication in 7r* (X). Now let us assume that X is a ring 
spectrum with unit u and multiplication ,i : Xn A Xn , Xn+m which is ho- 
motopy associative (compositions are associative) and homotopy commutative 
(the Barratt-Toda formula will enforce this). Suppose that among the unique- 
ness properties for 16 we require that it be an X module map; i.e., we have a 
commutative diagram 

Xi A Xm , Xj+M 

{1A8 {EJ,8 

Xi A Xl , Xj+1 

This guarantees that ?Enf1 o Ela = #u(a A 16) = +Ema o Ek16. Now 
given a E 7rk(Xn) and 16 E 7ir(Xm), we can define a commutator [a, ,6] E 

Localized at an odd prime we conjecture that no hypothesis is needed ([G3; Theorem I] implies 
half of the cases). 
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 597 

7rk+l_l(Xn+m-l) as before. Furthermore E[a, ,B] *, and so [a, ,B] = P(y) 
where y Sk+l+l _ Xf(n+m) -. Now consider the composition: 

Sk A s' H(a)AH(fi) Xf(n)-1 A Xf(m)u1 Xf(n)+f(m)-2 

If a Barratt-Toda formula were to hold we would need f(n) + f(m) = f(n + m) . 
This implies that f(n) = kn where k = f(l). 

Let us now confine our attention to odd primes where we find our examples. 
Using the sphere spectrum as a model, we can only expect the usual Barratt- 
Toda formula to hold when one of n and m is even. Thus f(2n) = hn and 
f (2n + 1) = hn + f( 1) . Both because of some technicalities that will soon come 
up, and because of the examples we have in mind, we will assume that both h 
and f(1) are even. 

Definition 1.2. An EHP spectrum of period 2d is a p-local spectrum X = 
{Xn }n>O together with fibrations: 

P x2n-1 E X2n H- fX2kn-1, ... ) ) fix 

... I2n x X2n+l H 
QX2kn+2d+ I 

Here h = 2k and f ( 1) = 2d + 2. It is important to observe that this is 
an unstable property of a spectrum. Two spectra X and Y could be stably 
homotopy equivalent while only one is an EHP spectrum. The spaces Xn thus 
give a favorable unstable development of a stable homotopy type. We do not 
require either that X be connective or a ring spectrum. In fact, if X is an 
EHP spectrum, QX = {QXn}n>o is also an EHP spectrum stably equivalent to 
x-1X. 

We shall see that in the construction process that follows, it is often easier to 
construct fjsXk than to construct Xk for some s > 0. This is inconsequential 
for a homotopy spectral sequence. All of the examples of interest have k = p, 
and k = pi seems almost necessary if the construction of H is natural enough. 
The cases of interest, if they can be delooped to be ring spectra, will have 
XO - Zp with the discrete topology. 

The composite An = H' o fP: 

fi3x2nk+2d+l ) Qx2n f QX2nk- I 

will be called the periodicity operator. In favorable cases it corresponds to a 
self-map of X of degree 2d. 

In the case of the sphere spectrum, An = fln for some map (On : n2S2nP+l 4 

S2np-I [G4]. Maps of this type have been constructed by Cohen, Moore, and 
Neisendorfer [CMN1, CMN2]. They have constructed a sequence of maps 

n :2S2n+l __- S2n-1 such that the diagrams 

fQ4S2n+3 Q27 n+l Q2s2n+1 

Q2E2 {E2 

u2S2n+ 1 Wen fs2n- I 

homotopy commute for each n > I . We formulate this as 
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598 BRAYTON GRAY 

Property CMN. There are maps 7rn: i2X2n+2d+l _ X2n-I for n > 1 such that 
the diagrams: 

f4x2n+2d+3 Q27L+L' Q2X2n+1 

(*) >Q2E2 TE2 

Q2x2n+2d+l n X2n- I 

commute and A/n -2nk- 
The significance of this property is illuminated by the following. 

Theorem 1.3. Suppose that X is an EHP spectrum ofperiod 2d satisfying CMN. 
Then there is a derived EHP spectrum Y ofperiod 2d' where d' = (d + 1 )k - 1. 
Proof. We define spaces yn as the fibers in the following fibrations: 

y2n - 1 , 2x2n+2d+l1 7rn ) X2n - I 

y2n - X2n+2d+l IPn+1L nx2n+l 

where Pn+1 = 7 an+1 ? E2 . Now let Wn - X2'-' E2 Q2X2nl+I be a fibration; 

Wn is also the fiber of An as usual. This follows from the diagram: 

f2x2n+l _2x2n+_1 

TE2 E 

X2n- I E > QX2n n X2nk- I 

Wn k Q3x2nk+2d+r 1X2nk- I 

so Wn Qy2nk-I We now construct the EHP fibrations for Y with the 

following diagrams of fibrations: 
y2n . y2n+1 . y2nk+2d'+ 1 

i2X2n+2d+1 E fl3x2n+2d+3 

QPn+i{ ~ ~ ~ ~ ~ ~ ~ n++ 

2Pn+ I KQ7In+ I 

,Qx2n+1 - - nX2n+1 

y2n- I yny2n , y2nk-1 

1 ~~~~~~~~~11 
fl2x2n+2d+ 1 - 2x2n+2d+ I 

7rn QPn+l I 

Q y2nk-1 X2n-I E2 Q2X2n+l 

This completes the proof. 
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 599 

Let us assume that for suitable primes p, this process can be iterated m + 1 
times beginning with the sphere spectrum. This would require that we prove 
CMN at each stage in order to go on. We will first look at the sequence of 
periods. Beginning with d = 0 and using the formula d' = (d + 1)p - 1, we 
obtain the sequence qo, ql, ... , qm+l where qm = 2(pm - 1). As we shall see, 
the maps 7r, and p, are compressions of internal vm self-maps. Let us now 
display the fibration sequence that we would get in this case. Write WI for 
the nth space we would get in the (m + 1 )th k iteration. Thus W(n 1) = Sn if 
n is odd and Jp-(5fl) if n is even.2 As we shall see, the space {W(), n > O} 
form a spectrum equivalent to 1-rm-I V(m), where V(m) is the Smith-Toda 
complex [Sm, T2]. We would then get two EHP sequences: 

H: ... W2'n) 
E 

QW 2"n+I 
H IL 2npqP+qm+l 

(mn) (mn) (m) 

H' : . ~+W2' - f- 2WI~-- JV~- 

There would be a sequence corresponding to the double suspension: 

... W2n-I E2 , n2w21 - 
np- 

(in) (in) (Mn?1) 

Finally there would be the defining Cohen-Moore-Neisendorfer sequence and 
a restricted version: 

CMN: . . . >2 l W2n -1 w2'n -1e - 
- 

2n+qm +1 7n W2n-1I (RMN-) (mn) (Mn-) (rn-i) 

RCMN: . W2? 
(rn-i) (in) (rn-i) (rn-i) 

A noteworthy consequence is the following: 

Proposition 1.4. If there is an EHP spectrum {WI )} representing n-m-I V(m) 
as above, the spectrum V(m + 1) exists; furthermore if { JnJ(,) } satisfies condition 
CMN, {J/J/1 +,)} represents -r-2 V(m + 1). 

Proof. Since Wnis n-- 2 connected, E: W2n -_ QW2n+l is a 2np+qm- (m) ~ ~ ~ ~ (i) (in) 

m - 2 isomorphism and E: W 2n-4 is a 2n p - m - 4 isomorphism; 
whence E: w2n-1 -2rW2n+2r-1 is a 2np - m - 4 isomorphism. Thus if n 
is large WJ2nJ-i = (2n-m-2 V(m)) U higher cells. In particular, for n large, we 
have a factorization: 

-3 W2np+qm+I P 2n H' - W2np-I 

I I 
j2nP+qm-m-3V(m) VM+22np-m-3V(m) 

Let X2nP-m-3 V(m + 1) be the mapping cone. By an argument in ?5, Qmi+ $ 0 
in V(m + 1) so it is the desired space. 

2Throughout this work we will write S2n for p_I (S2n). 
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600 BRAYTON GRAY 

In [G7] we show that there are A algebra models for each of these spaces, 
and short exact sequences for each of these fibrations. In particular, there is an 
EHP spectral sequence for EXtA, (H* (V(m))) generalizing the Bousfield-Curtis 
spectral sequence when m = -1 . 

From the sequence CMN we see that there is a map Wn%1) n W(). By 
iteration we get a map rm+ lSn , J$n) which is an n - m -I isomorphism, and 
by 1.4, { Wn} 1l-m- 1 V(m) . Our original analysis required a ring spectrum 
with unit, so this suggests that we might try to write { wn} I= {m+ lV,n} 
delooping the spaces and maps m + 1 times. This possibility is encouraged by 
[G7, Proposition 7.5]. As we shall see, this in fact happens when m = 0. In the 
inductive construction of the derived EHP spectrum Y each y2n was given as 
a loop space; in fact we have a fibration 

y2n -, fx2n+2d+l -_ -X2n+I y2n -, X2n+2d+l Pn+1 X2n+1 

To deloop Y we also need a fibration 
y2n-l > f2x2n+2d+1 rn X2n-* I By2n-I Yn X2n+2d+I 

and a lifting of Yn to y2n. Let us examine these fibrations in case m = 0, i.e. 
x2n+l = S2n+l and d = 0. The first is 

y2n ) fs2n+l P -s2n+l By2n - S2n+I P s2n+1. 

Clearly B y2n = S2n+l{p}. The second fibration is 

y2n- I + n2s2n+ I 7n )S2n-I ) g y2n-lI Yn + fI2n+ 1 

Such a fibration occurs in the work of Anick [A, Proposition 1 5.1]. A lift of Yn 
to a map B y2n-I y2n = fS2n+Il{p} is provided in [AG]. 

The general pattern of deloopings would then have delooped fibrations: 

B C M N ... l2 V2mnTlq+l 7rn V(2n-l I v(2n)-I Yn (2n+qm+l BCMN: ... 2+ l+-+iZ~n V2~ -~?~ ~~fl?m 
(rn-i) (rn-i) (mn) (rn-i) 

BRCMN: ... V2n - V2mn -+v2fn+qm+l Pn+1 v2n+I 
(rn-i) (mn) (rn-i) (rn- 1), 

The other sequences E2, H, and H' would be the same as before with VJn/) in 
place of J$n) throughout. Finally { VJn/ }= V(m). This delooping is supported 
by [G7, Proposition 7.5]. 

Let us we consider the consequences of another assumption: that the map 

PI : V1l_*V has "Hopf invariant one"; i.e. the composite Q Vqm+l EP'I (M ) (rn-i) (Mn-i) 

fV1, H Vlqm-+ll is the identity. In this case VO VO as we can see (rn-i) (Mn-i) (mn) - m (r-i) 
from the diagram: 

* ) Q V(rn-iK ) iVqm+ 

(m-1) (m-1) (m- 1) 

V? ) V(nm) 
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 601 

As we shall see VO = Zp with the discrete topology. This suggests that VO= 
(0) (n 

Zp and this is supported by [G7, Corollary 3.6]. 

2 

At this point we will discuss our main new example: V(O) . As we shall see it 
comes very close to fitting the above scheme, and does produce a derived EHP 
spectral sequence for the stable homotopy of V(O) . 

The difficulty lies in property CMN. In [CMN1], the authors construct maps 
n : f2S2n+1 __- S2n- 1 for n > 1 such that the rectangles (*) of property CMN 

commute, but leave open the question of whether A/n - J7np . In [G4 and G5] 
we construct a map (n : fl2S2np+l __ S2np-1 with An rV l(fn . The reasonable 
procedure then is to define: 

{n 7ln from [CMN I if (n, p) = 1, 
ro m if n =pm. 

We then need to show that the rectangles involving fm commute. Since 
(m I S2mp-1 is the map of degree p, the only verification necessary is that 
the diagram: 

n2s2mp+1 

p 

f12s2mp+1 s2mp-1 

commutes. The main result of [H] is that the loops on this diagram: 

n3s2mP+1 

3 s2mp+1 Qfm # 

commutes. Consequently we may construct the loops on the desired EHP se- 
quences and obtain: 

Theorem 2.1. There are fibration sequences: 

H : ... ) -W20n - w 2n+l > Q r2nP+q++l 
(0) (0) (0) 

Q HX *-- Q w20n-l Q2 -20n f Q2 W2np-1 
CMN : . .. fl WI0nl > 2+1U 2 (0) (0) (0) 
CMN: ... f- - 

2 ?S2n+S P Q S2n-1 (0) 
RCMN: ... -fIS2n +2 I 

(0) 

Furthermore, if (n, p) = 1, the fibration flH' can be delooped, giving: 

H': -~~w2-1 -2n f 
2p H: ... (0) 

Finally the spaces { J/J/) } form a spectrum equivalent to S-1 V(O). 

Clearly this whole matter could be greatly simplified if we could find maps 
7 Snp : fl2s2np+l I S2np-1 satisfying both (a) p V E27rnp : f2S2np+l > S2np-+ > 
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602 BRAYTON GRAY 

Q 2S2fp+l and (b) 7C,p 
* H, * : *222n+1 > 2S2np+l + S2np-. In this case 

we could replace LH' by H' for all n. 

3 

In this section we will exploit some powerful results of David Anick. Rely- 
ing heavily on the results in [A], the authors of [AG] construct the fibrations 
BCMN of ? 1 for V(O). Unfortunately we confront yet another construction 
for a map rn : n2S2n+l * S2n-' . It does, however, give us the opportunity to 
discuss compositions from the point of view of ? 1. 

Theorem 3.1 [AG]. Let p > 5. Then there is a fibration sequence: 

.. n2s2n+1 0n) S2n-1 > T2n-1 IYn ) s2n+l 

where T2n-1 is an H space, Yn is an H map, qOn has degree p and El2S2n+l 

On s2n-1 E 22S2n+l is the pth power map. Furthermore there is a lifting of 
yn to g2S2n+1{p}. 

This, of course, is precisely the fibration sequence BCMN of ? 1 with m = 0. 
We can now define a delooped version of the spectrum by3 

{n S2k+lpl if n =2k, 
?)- T2n-1 if n = 2k - 1. 

From this we get EHP sequences 

. . . (0) Q V(0) (0) 

... -+2n vJ2n+I jy2nlp+4+l . .. , V(0)" > fi 0) (0) 

and { I V(O)- 

Conjecture 3.2. With suitable choices, W20"' - V2)"- (and hence w2nP?q+ 
(0) - (0) (0) 

nV(2np+q+1) for n> 1. 

This would be true, for example, if Onp o Hn *: Q 
S2np-1. It would give us the most favorable version of the EHP spectrum for 
V(O). 

We now look at the composition question. Given /B: Sk V0, we ask for 
an extension: 

Sk L4 Vn 

Vk 
V(0) 

This would enable us to form compositions as in ? 1. 
We will first examine the implication of such compositions stably. If the mul- 

tiplication in a ring spectrum can be accomplished by compositions as above, it 

3In [AG], the spaces 0 are denoted Tn , as they form the next spectrum following Sn . The 
notation Vn), although more complicated, is more in keeping with the spirit of this work. 
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 603 

is necessarily homotopy associative. This rules out V(O) when p = 3 [T2]. On 
the other hand V(O) is homotopy commutative. To understand the implica- 
tions of this, let us replace each space Vn) by the Moore space pn+1 which sta- 

bly carries the homotopy. Suppose that we are given maps a: Sk+m-2 pm-I 
and ,8: S1 +n2 pn-1 We then define extension a pk+m pm and 
,B pl+n - pn of Ea and E,B as the compositions: 

pk+m J p2 A Sk+m-2 1Aa p2 A pm-1 l L pm 

pk+l p2 A Sl+n-2 lAfl Jp2 A pn-1 11 pn. 

Then if p > 3, using homotopy associativity of the Moore space spectrum, one 
can easily see that a' and ,B are left module maps over the Moore spectrum, 
and hence 

Eh a )o Ek+m() = (- )klEm() El+"(a) 

as homotopy classes. 
The point here is that we use extensions "a and ,B constructed from the 

stable null homotopy of p times the identity of V(0). Unstably, we have 

Proposition 3.3. S2n+1 {p} has exponent p. 
Proof. See for example, [CMN1, 1.3]. 

The question of the exponent of T2n-i is open. It would suffice to show that 
KY T2n-l has exponent p for some small e . For example, 3.2 and [CMN1, 5.3] 
implies that Q2T2np1 has exponent p. 

Proposition 3.4. Suppose Y is a homotopy commutative homotopy associative 
H space and q$: p2n+1 -+ Y. Then there is a unique H map q: S2n+1{p} - Y 
extending q. 

Lemma 3.5. Suppose that WX A X -* CX is an H fibration with a splitting 
s: CX -+ X, and CX is homotopy commutative. Then for each H map 
f: X -+ Z with Z homotopy commutative, the following are equivalent: 

(a) fi-*:WX -- Z. 
(b) There exists a unique H map f: CX -- Z with f1u f. 

Proof. Clearly (b) implies (a). Suppose then that fi *. Since 1u(l -s) s -) 
1 -s,- ui forsome r :X X WX. Now *fin -f-fsp since f is an 
H map, so f fsj. Let f = fs. f is clearly unique. To see that f is an 
H map consider the diagram: 

XXX -iX2#- CXx CX fX,ZXZ 

X X- --- 
X 

4CXx 
x 

zx 

x t cx f )Z 

where the commutativity of the right-hand square is in question. However the 
left-hand square commutes, and the rectangle commutes. Since ,u x Yu has a 
right inverse we are done. 
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604 BRAYTON GRAY 

Proof of 3.4. Extend q$ to an H map q$ 2 Qp2n+2 y_ y. We now construct a 
fibration: 

,00\ 

(V ~p4n+2mn+3) 92n+2 Qp2n+2 un+ S2n+lip} 
n=0 

using [CMN, 1 1.1]. They construct a homotopy equivalence 

'k2n+2: S2n+ l{p} X Q ( V p4n+2mn+3) ip2n+2 

by multiplying together a map h2n+2: s2n+l {p} _ fip2n+2 and a map g2n+2 

as above. Thus it suffices to describe un such that Un ? g2n+2 - * and Un o 

h2n+2 1. Since S2n+l{p} is homotopy associative [N, 4.2] we let un be 
the H map extending the inclusion p2n+1 C S2n+'{p}. Since S2n+l{p} is 
atomic, un o h2n+2 1 . To show that Un 0 g2n+2 *, we first note that sinCe 
it is an H map, it suffices to show that un 0 g2n+21p2n+4nm+2 *. However this 
restriction is a Samelson product and hence the restriction of a commutator. 
Now by [G6, Proposition 3] (or [N, 4.1]) S2n+l{p} is homotopy commutative, 
so Un 0 g2n+2 *. For the same reason qO4 0 g2n+2 * so by 3.5, q exists. 
Given two such extensions q1 and q$2, they must agree on Qp2n+2 since H 
maps defined on Qp2n+2 are determined by their restrictions to p2n+1 up to 
homotopy. By the uniqueness in 3.5 they are homotopic. 

Thus by 3.4 we see that if Y is homotopy commutative and homotopy as- 
sociative and we are given a null homotopy of p * I in Qk y for k < 2n there 
is a unique H extension 

S2n , y 

S2n+1 {p} 

compatible with the null homotopy. We would like to be able to apply this 
when Y = S2n+lfp} or Y = T2n-1. For the latter, we need to know that 
Q T2n-1 has exponent p for some small e, and that T2n-1 is homotopy 
associative. (Homotopy commutativity follows from [G6, Proposition 3] as 
before.) Secondly, we would like to construct extensions: 

s2n-1 y 

T2n- I 

As we shall see, such extensions exist. We have not, however, been able to es- 
tablish uniqueness. To construct extensions, we need to have more information 
about the constructions of Anick. In [AG], the authors construct a sequence of 
cofibrations of co-H spaces 

p2npk k Ga l k Gk 
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 605 

beginning with Go = p2n+1 . Here p2npk is the Zpk+1 Moore space of dimen- 

sion 2npk. The attaching map ak is a co-H map and is divisible by pk. 

Finally, T2n-1 is a retract of QGo, and Go, is a retract of IT2n1. 

Proposition 3.6. Suppose Y is a homotopy commutative homotopy associative 
H space with exponent X and q: p2n Y. Then there is an extension: 

p2n Y y 

I 0/ 
T2n-l 

Proof. We first observe from the push out diagram: 

XQA ) A VA 

eI 

A ) AxA 

that co-H structures on A correspond to liftings s: A - Y2EQA with e * s 
1. Furthermore we claim that co-H maps 0 : A -- B induce commutative 
diagrams: 

A s- , If X2A 

B ) YA2B 
By naturality, it is clear that the diagram commutes when followed by the map 
XQB )-- BVB . However, the inclusion of the fiber of this map, is null homotopic 
since it is induced from a null hoinotopic map from QB to B. 

We now construct, inductively, maps qk: Gk - Y2Y with q0 = 2q. The 
inductive step follows from the diagram: 

Gk - 

Gkl- * X z2Gk1 

Xn1 Qz ,z 

/ k Ck 

p2npk Ip2npk 
(pk+l) (pk+1) 

now the composite 

p2npk In,p2nkpl 
k I 

Ely- 
(pk+l) (pk+l) - 

is the suspension of bn-I ? ak. Hence the entire lower composite is the sus- 
pension of ,u o n-1 ? ak which is divisible by pk. Thus it is trivial and the 
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606 BRAYTON GRAY 

extension exists. This gives a map q$: Go, - XY. Now define q as the 
composition 

X, - K2GOO gy QY Y. 

The map 00q4c can be recovered from b as the composite Gao -+ Y2X(n) S Y; 
the map 0q, is clearly not unique unless it is required to satisfy some stronger 
property than being an extension of q0 = X0. However given a homotopy of 
commutativity in Y and a null homotopy of p times the identity in KY Y, the 
construction of q can be made without any choices. It seems, therefore, that 
there is some hope for a functorial construction. 

The universality of VAn) is reflected in the following freeness property which 
is easily verified. 

Proposition 3.7. H. (V n), Z4) is the free commutative algebra generated by the 
Zp module H*(X V(O);Zp). 
Proof. This follows immediately from the fibrations: 

fS2n+l 'n s2n+1 

S2n- I v2n-1 I s2n+l1 

in which the connecting homomorphism is zero in mod p homology. 

Finally, we will use this structure to construct the strong multiplicative struc- 
ture for V(O) required in ? 1; viz.: 

VO) ) Vm+n 

This translates to maps: 

S2n+l{p} A S2m+l{p} 3 S2n+2m+l{p}, 

s2n+l{p} A T2m- 1 T2n+2m-1 

T2n- 1 A T2m-1 S2n+2m-l{p}. 

These are obtained from the adjoints: 

S2nl{p} >map*(S2m+l{p}, S2n+2m+l {p}) 

S2n+1{p} map* (T2m- , T2n+2m-1) 

T2n-1 rmap*(T2m-1 , S2n+2m-1{p}) 

by using 3.4 and 3.6, assuming in the second case, that T2n+2m- I is homotopy 
commutative. Then these mapping spaces are all homotopy commutative H 
spaces and the extensions are obtained from the restrictions to the appropriate 
Moore space. Here we use retractions XS2m+l {p} " p2m+2 and 12T2m-l 
xS2m+l {p} ,_ p2m+2 to construct the restrictions so we need n > 1 in the first 
case and n > 2 in the others. 

As in the case m = -1 , we expect that the third map actually factors through 
G2n+2m-2 providing a desuspension: 
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 607 

By the above method it is possible to construct something similar, namely a 
map 

OT2n-1 A T2m-1 T2n+2m-3 

and hence 
OT2n- 1 A QVm-l QT2 n+2m-3- 

4 

In this section we will discuss Conjecture 3.2. There are various stronger 
versions of this conjecture and we will discuss our results to date. It seems to 
be difficult even to intuit which of the various conjectures will hold up. 

We begin with the following: 

Conjecture 4.1. There is a map 12Q2S2n+1 h2L p2np+1 which is an epimorphism 
in Zp homology. 

Proposition 4.2. Conjecture 4.1 implies Conjecture 3.2. 
Proof. Since X2(Q2S2n+1) y2(S2n-1 x BWn) by [G4], 4.1 is equivalent to 
having a map h': X2BWn,> p2np+l which is a Zp homology epimorphism. 
Now p2np is the 2np skeleton of T2nP-1 . Since T2nP-1 is an H space, 
there is an extension Qp2nfp+1 -* T2nP-1 . Thus the adjoint of h' gives a map 

BWn h Q2p2np+l - QT2nP-1 . Both spaces have isomorphic Zp cohomology 
which is a tensor product of divided polynomial algebras and exterior algebras. 
All of the generators are tied together by the operations ,B and 391 in such 
a way that a map inducing an isomorphism in dimension 2np - 2 induces an 
isomorphism in all cohomology groups (as in the atomicity proof in [CM1]). 
Thus BWn - QT2nP-I . Since V2nP-l = fiber of (pn = BWn, we are done. 

We will hazard a further conjecture that may seem to some to be uncau- 
tious. This concerns the number of suspensions necessary to split Q2S2n+l 
when S2n+1 is localized at an odd prime. At one time Barratt [B] conjectured 
that the Snaith splitting [S]: 

?(Qn En X) 
? 

(V Dk(X)) 
k=0 

could be obtained after n suspensions. It was later proven by Kirley [K] that 
the maps in the Snaith splitting could not be desuspended to split QnEnX after 
a finite number of suspensions if H*(X; Z2) # 0. Cohen [C] also proved 
that one needs 2n suspensions to split off D2_1 (X) when D2n_-(X) is not 
contractible. Mahowald [M] has a particularly nice description of the problem 
when X = S2n-1 localized at 2: The pieces D2k-1 and D2k hold onto each 
other until the Freudenthal suspension theorem demands that they split. None 
of these results applies to Q2S2n+l localized at an odd prime. In particular, 
Mahowald's graphic description of the problem does not have an analogy away 
from 2. 

Conjecture 4.3. X2V2S2+> o 2(\/>0Dk (S2n-1)) when localized at an odd 
prime. Clearly 4.3 implies 4.1. 

We observe that using the techniques of [CG, Lemma 2.3] it suffices to con- 
struct maps Z2Di (S2n-1) ai y2n2S2n+l for each i > 1 . Furthermore, having 
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608 BRAYTON GRAY 

constructed ai, ... , an it follows that the splitting 4.3 works up through the 
(2np - 2)pn+l - 1 skeleton. Now a, clearly exists. 

Proposition 4.4. There is a map 12Dp2(S2n-1) 2 X2n2S2n+1 inducing a mono- 
morphism in Zp homology. 
Proof. We first observe that we may replace Q2S2n+1 with BWn since 

2 (n2s2n+1 ) _ :2 (S2n- x BWn) 

(see [G4] or [G5]). Next we use the action of a p local unit k: S2n-I + S2n-I 
to induce a map [k]: BWn -+ BWn. Forming telescopes in the usual manner 
we can split ?B Wn: 

EBWncXiV ...VXpi 
where H* (Xi; Zp) contains all monomials of H* (BWn; Zp) whose length is 
congruent to i mod (p - 1) . Thus the 2np2 skeleton of X1 is 

S2nP Up e2np U e(2nP-2)P+l Up1 e(2nP-2)P+2 U e 2-i U 2np2 

There is a map S2np - {p} I B Wn inducing a monomorphism in Zp homology. 
Since XS2np-1{p} is a wedge of Moore spaces [G1], the 2np2 skeleton of X1 
is 

(p2np V p(2nP-2)P+2 ) Uo e 2np2 1 U p e2np2 

Now we assert that the suspension of the composite: 

01 P2np2 
- 

p2n2p V p(2np-2)p+2 _, p2np 

is null homotopic. Hence (IXX)2np2+1 p2np+l V Z2D2(S2n-1) and the proof 
is complete. 

To prove this we first observe that the composite 

p2np+l C ZlX1 _ X2BWn __ X2n2S2nP+l _ S2nP+l 

induces an epimorphism in Zp homology. It follows that the composite: 

p2np2 E?2 p2np+l ) s2np+l 

is null homotopic. We now introduce the space {T2np+i } from [CMN3, Theo- 
rem 3] and the fibration sequence which appears vertically in the diagram: 

ns2np+ I 

p2np2-1 alI p2np 1 

y 1' 

S2np- H x r S2npk- 1{p2} 
k>2 

where the above null homotopy defines y. There are only two possibly non null- 
homotopic components of y. Consider first Y2 : p2np 2-1 - S2nP21 {p2}. Such 
maps are detected in homology and the map s2np21 {p2 } __ T2np+l induces a 
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 609 

monomorphism in Zp homology. Since (0)* = 0 we conclude that Y2 = 0. 
Thus y = 2' p2np2-1 _ S2np-1 . Now the adjoint of the composite 

p2np2-_1 0 p2np Tn p2np+ 

is E61 which is stably trivial, so y, is stably divisible by p. This is impossible 
for maps defined on p2np2-l, so Yl is stably trivial. But [p2np2-2, S2nP-1]- 
{p2nP2-1 S2np-1} So * and hence EO6*- 

5 

One of the important tools in EHP calculations is the map Blp Q(SO). 
Let B be the localization of Blp at p. Then we have restrictions: 

Bnq A Q2n+ls2n+1 

Bnq- 1 A Q2n?2n 

and the cofibration sequence of Bnq maps to the EHP fibration sequences: 

* ... ) 12nBnq-l1 > 2nBnq s2np 

41 4 1 
?2n E g 2S2n+ I H , S2np+ 1 

y2n-lg(n-l)q y 2n-lgnq-1 S2np-2 

41 4 1 
*. 

* * ) S2n- I ) 2n 0 QS2np-1 

(See [G2, Proposition 11].) It would be desirable to have similar constructions 
in other cases. In fact such a construction for V(0) can easily be made (af- 
ter Ravenel [R]). Consider the diagram of cofibrations defining the right-hand 
terms: 

1:2B(n+l)q F, 2Bnq 0 2B nq 

11~~ 1 
y2B(n+l)q P ) 2g(+) ?2(n+I)q- I 

where F is the unique compression of P = pi A 1. (See [G2, Proposition 7].) 
Note that 12B q may not be a suspension. By a slight variant of Lemma 21 of 
[G2] we get a commutative diagram: 

y2n+lB(n+l)q F, ?2n+lBnq , 2n+lff.q 

g22S2n+2 7tn+l s2n+1 0 T/2n+ ( 
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610 BRAYTON GRAY 

More easily one gets 

-"nq-1 2n1n,P) n1g 
12nB 2n1Bnq L x2n+lBnq 

V(o) S2n+l 1 P s2n+ 
I 

This gives the EHP ladders: 

- ,2n'nq-1 Z2nB -q , 2nP+qV(O) 

(0) QV(0) () 

V 
n (0)+ V0 . . . ,> ?2{2n+17j 12n+1w(n+l)q-l 2fP+qJV(O) 

v2n+l V v2n+2 2V2(n+l)p-1 

since gnqlgnq-1 l(n+l)gV(O) and -(n+I)q 
I q = (n+l)q-I V(O) . We won- 

der whether there are also Snaith maps in this context. 
One consequence is the commutative diagram: 

Q3 Vj2np+q+1 Ap (v2np-0 
(0) ( 02np 

z2np+q- V(O) V 2np-2 V(O) 

Thus if VJ0) satisfies CMN, the maps 7i, represent v1 on the bottom Moore 
space and the spectrum { Vn$"} is stably equivalent to V(1). 

If p > 5 Ravenel goes on. He constructs a map B2pB(n+P) g S2Bnq which 

is a compression of v1: 12Pn+ +2B(np)q and represents V2. In fact 
there is an obstruction theory to this process in general. We seek finite spectra 
Bq) and maps hm : Bnq) Bnq+qm+i A V(m) inducing a monomorphism in 

Zp homology. Here B (_1) = Bnq and B (0) = B Inductively one seeks a 
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EHP SPECTRA AND PERIODICITY. I: GEOMETRIC CONSTRUCTIONS 611 

lifting fmn-1 in the diagram: 

Zq- B(m)q Bnq+qm+l AXymV(m_ 1) 

fm- 4 1 AVm{ 

Bnq+qm.-l1 , B(n+pm)q hm- 
I 

nq+qm+1 A V(m-1) 

I I 
B(nmq) hm Bnq+qm+l A V(m) 

(in) 

This actually works when m = 0, 1 . One can then calculate Qm+1 (ak A u) = 

bk+pm+...+l Au where akE Hkq-l(B;Zp), bk=/lak and ue H0(V(m);Zp) 
are the respective generators. These classes are nonzero in B(nq) (in fact in 

B(nq ) ) for n large and one obtains that B(nm)/Bkq) is filtered by n - k copies 
of V(m + 1). Compatible maps 12n+1Bnq V2n+1 allow this information to 

(in) (in) 

be transferred and we conclude that the maps 7rnp : 02V 2fnp+qm+1+l + v2np- 
(in) (mn) 

induce vm+i . Thus, inductively we produce the spectra V(m + 1). 

6 

In this section we will consider the problem of constructing Cohen-Moore- 
Neisendorfer maps for the spectrum V(0). There is a clear procedure which 
imitates the analysis of [CNM4]. In order for it to work most efficiently we 
will assume that V2n-1 = T2n-1 is homotopy associative (and hence homotopy 
commutative). 

What we seek, then, is the condition CMN for V(o) namely, maps 

7rn : i22V2n+q+l __ V2n-1 

so that the diagrams: 

Q2 V2n+q+ l Q22 pn1 n2 v2n1 
(0) (0) 

V20n+q- I Pn v2n- 1 

Here Pn will be given by extending the Adams map: 

p2n+q __p2n c V2_n_I p 

Pn 136 

v2n+q- I 

using 1 3.6. 
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612 BRAY-TON GRAY 

Now let X2nV(l) = p2n+1 UV1 Cp2n+2p-1 with n > 2. Let jsn be the com- 
posite: 

z2n V(1 ) _ p2n+2p _ V2n+q+l 
(0) 

Since Pn,un *, we get a commutative diagram of fibrations: 
Q2 V2n+ 1 Q2 V2n+ I Q V2n+ 1 

(0) * )(0 

n2p+1 { { TQPn+1 

Q2 V2n0q) 1 QFn 1 QZ2n V(l) ln n v2n+q+I 

QEn , Q?2n v(1) f QV2on+1 fpn+il 

Problem 6.1. Decompose QFn- 
The most favorable outcome would produce a map 0 QFn 2 n- I. We (0) 

would then write 7rn: (0) n (0) where Q 2Pn+ I E2o rn and 
I n+q- Pn by uniqueness. This, of course, is a direct analog of [CMN4]. 

V(0) 

One would hope to use the same techniques as far as possible. If p > 5, 
7r* ( ; V(1)) is a differential Lie algebra and one can construct Samelson prod- 
ucts in H* (QFn) . The situation is not entirely analogous, however. jsn actually 
factors through V2n+q, creating a new fiber Fn which is more analogous to the 
previous case. There is much work to be done on this problem. 

APPENDIX 

Extensive calculations have been done in the case m = 0, 1, 2 and oo at 
the prime 3. Assuming a Barrat-Toda formula and occasionally the maps of 
?5, we have been able to calculate the EHP sequences, even though they may 
not correspond to the homotopy of spaces. They do, however give 7r*(V(m)) 
with the exception that, for p = 3, we limit our range of dimensions. The 
nonassociativity of 7r*(V(0)) appears in homotopy in dimension 49. The fol- 
lowing table shows v1 torsion part of the spectral sequence for p = 5. Note 
the reluctance of differential to cross certain filtrations. The pieces that hold 
together correspond to copies of A1 made from p copies of V(1). 
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TABLE. v1 torsion in K.(V(O)) for p = 5 

180 * I I 

175 

I 
/ II 

170 _ 4 I^ >I KII 

z I A ~ ~ ~ ~~I I I 

165 I I I 

160 

I < | t <iI I 

155 l I 

150 ik SF L t z ie i 

~ I I II 
_ 50 I K I I I 

145 I I I 

140 I I 

z I I ~ ~ ~~~~~~~I I 

135 I . 

_ * ~~~~~~~I I II 

130 I I I I 

*.P, I I I I 

125 

120 I I I 

I I I I 
115I 

1 1 0- /> 

110I I I I 

z I I ~ ~ ~~~~~~I I 

105 

100 I I I 
I ~I I I 

95 / . I A ~~~~I I I 
A I ^ ~ ~ ~ ~~I I I 

90 I I I 

0 10 20 30 40 
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TABLE (continued) 

85 / 1 

.I II 
I II 

80 I 1 

. I II 
75 I I 

I II 

65 I 

60 I I 

I II 

65 _ ~ ~~I I 

55~A1 
I II 

50 I 

I II 
*I II 

45 II 

I II 
A- I II 

40 *I 

_ ~ ~~I II 
50 ~ ~ ~~I I 

35 I I 

I II 

30I 

I II 
I II 

40 _ ~ ~~I I 

25I 

. I II 
I II 

35 _~~ ~ ~ II 

20 I I 

30 > ~ ~~I II 

I II 
I II 

15 I I 

I II 
/ I II 

I II 

10 _ 

I II 
* I II 

15 _ I I 

I II 
I II 

_ ~ ~~I II 

0 10 20 30 
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