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AYGUL GALIMOVA

Abstract. Bott periodicity sits at the intersection of different fields of math-

ematics and physics: Morse Theory, Clifford Algebras, K-Theory, and others.

This paper discusses the the weak form of Bott Periodicity in both the real
and complex case through the viewpoint of the original proof done via Morse

Theory. The paper is organized in two main parts: the first part looks at the

complex case and the second part looks at the real case.
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1. Background

For the sake of brevity, this paper will give minimal background material and dive
into the proof(s) of Bott Periodicity. The two parts of this paper study the original
formulation of Bott Periodicity. The original proof of complex Bott periodicity uses
Morse theory to show that Ω2U ∼= U where U = colimnU(n) is the infinite unitary
group.

2. Morse Theory

Morse originally invented Morse theory to study the energy functional on the in-
finite dimensional space of loops in a manifold. While it was intended to understand
geodesic motion, Bott employed this theory to show that the homotopy groups of
the unitary group U , the orthogonal group O, and the symplectic group Sp are
periodic. A consequence of Bott periodicity is that the infinite unitary space is an
infinite loop space (and, hence, an E∞-space). The power of Morse theory should
not be understated; for example, Smale proved the h-cobordism and generalized
Poincare conjectures via Morse theory and surgery cobordisms.

The proof of Bott periodicity given here focuses on the main lemmas while the
details can be found in Milnor’s Morse theory [1]. Morse theory essentially connects
the structure of differentiable manifolds with the behavior of certain real-valued
functions called Morse functions. Most of the normal functions people deal with
are Morse or can be perturbed to become Morse. The advantage of Morse Theory
is that the homotopy type of M can be established via the behavior of f at the
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Figure 1: The height function on a torus from Wikipedia.

non-degenerate critical points where the Hessian of f is nonsingular. Moreover,
each critical point can be given an index λ that is determined by the Hessian of f
at that point. This shows that M has the homotopy type of a CW-complex with a
cell-dimension λ for each critical point.

Example 2.1. Height function on the torus
The classic example of a Morse function is the height function on a torus standing

on one end (Figure 1). A height function h : T → R can be assigned to the image
that indicates the minimal distance from each point of the torus to the plane. The
points p, q, t, and s are the critical points of h, and an index can be assigned to each
of them which counts the number of independent directions along which one can
move such that h decreases. We see that index(p) = 0, index(q) = 1, index(t) = 1,
and index(s) = 2. As it turns out, information about the index corresponds to
information about a CW-complex. Without fleshing the details out, giving T the
corresponding homotopy type of a CW-complex with one 0-cell, two 1-cells, and
one 2-cell allows us to deduce topological information from geometric information.

Analogously, through the lens of Riemannian Geometry, we can study the path
space of geodesics on a Riemannian manifold N . In particular, consider the non-
minimal geodesics connecting points p and q in N . Keeping in mind the Index The-
orem (which will be mentioned later), each non-minimal geodesic can be assigned
an index λ. This is done by counting the conjugate points along the geodesic.
This gives us the Fundamental Theorem of Morse Theory which states that
the path space between p and q in N has the homotopy type of a CW-complex
which contains a cell of dimension λ for each geodesic of index λ. Note that this is
analogous to assigning an index to each non-degenerate critical point.

Moreover, information is gained when we consider the Morse lemma: the
lemma allows us to directly analyze the neighborhoods of non-degenerate critical
points on a manifold. Let p0 be a non-degenerate critical point of a smooth function
f : M → R where M is an n-manifold. We can choose a local coordinate system
(x1, · · · , xn) centered at p0 such that

f = −x21 − x22 − . . .− x2λ + x2λ + . . .+ x2n + c

where c = f(p0) is some constant and λ is the index of f at the critical point p0.
The Morse Lemma will be an important tool in Bott Periodicity (and, moreover,
tends to be vital in calculations involving Morse theory).
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Figure 2: The Mobius band (right) is a nontrivial bundle compared to the
cylinder (left), a trivial bundle, from [HEP].

2.1. Unitary Case. For the unitary group, the fact that πi−1(U) ∼= πi+1(U) for
i ≥ 1 shows us that the homotopy groups are two-periodic. Before diving into the
proof, remarks on linear algebra, Jacobi fields, and fiber bundles will be mentioned.

First, consider c = (c1, . . . , cn) and d = (d1, . . . , dn) ∈ Cn, and note that the
Hermitian inner product is 〈c, d〉 =

∑n
1 cidi. Furthermore, a matrix A is unitary if

it satisfies 〈Ac,Ad〉 = 〈c, d〉. Therefore A ∈ Cn×n is unitary if and only if AA∗ = In.
Moreover, the unitary group U(n) is the group of n by n unitary matrices in Cn×n
under matrix multiplication. Moreover, A is unitary if and only if its columns are
orthonormal.

Next, suppose c : [0, a] → M is a geodesic. We say that a vector field J along

a geodesic c is a Jacobi field if it satisfies the equation
D2J

dt2
+ R(

dc

dt
, J)

dc

dt
= 0,

where R is the curvature. Note that these are the solutions to an ODE, and so

they are uniquely determined by their initial conditions J0 and
DJ

dt
(0). The geo-

metric significance of Jacobi fields comes from considering a parametrized surface
s : (−ε, ε) × [0, 1] → M where s(u, t) is a geodesic for each u ∈ (−ε, ε). Now, we

have that the variation vector field Vt :
dt

du
(0, t) is a Jacobi field along s(0, t) and

that conversely every Jacobi field along a geodesic c : [0, 1] → M can be obtained
from a similar variation of c through geodesics.

Definition 2.2. A fiber bundle over B with fiber F is defined as a surjective
map p : E → B where every p ∈ B has a neighborhood U such that p−1(U) is
homeomorphic to U × F via γ : p−1(U)→ U × F and p = projU (U × F ) ◦ γ.

Example 2.3. The Cartesian product E = B × F is known as the trivial fiber
bundle.

Example 2.4. The (open) Mobius strip is a non trivial bundle whose base space
is the circle and whose fiber is the real line. Intuitively, you make it by twisting a
strip of paper. Formally, you can consider the trivial bundle ([0, 1]×R) and identify
(0, x)(0, x) with (1,−x)(1,−x).

Example 2.5. A vector bundle is a special class of the fiber bundle where the
fiber is a vector space.
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A fiber bundle is written as F → E → B. We can think of E as being somehow
put together from B and F . Intuitively, we can think of E as ”almost” – or at
least, locally – a product of F and B. Thus, the fiber bundle F → E → B tells us
that locally E looks like the product of B × F even if the two globally differ.

In particular, the following types of fiber bundles will be important.

Example 2.6. The inclusion i : U(n)→ U(n+ 1) defined by

A→
(

1 0
0 A

)
and the map j : U(n+ 1)→ S2n+1 ⊂ Cn+1 that takes a matrix to its first column
give the following fiber bundle:

U(n)→ U(n+ 1)→ S2n+1

This induces the following long exact sequence of homotopy groups:

. . .→ πi+1(S2n+1)→ πi(U(n))→ πi(U(n+ 1))→ πi(S
2n+1)→ . . .

Note that for 2n + 1 > i we have that πi(S
2n+1) = 0. Hence, we have that

πi(U(n)) ∼= πi(U(n + 1)) ∼= π1(U(n + 2)) ∼= . . . for 2n + 1 > i, and that πi(U(n))
is independent of n for big enough n. Thus, we have that πi(U) ∼= πi(U(n)) for
sufficiently large n.

Example 2.7. The complex Steifel manifold, Vk(Cn), is the coset space U(2k)/U(k).
It is the space of k-tuples of orthonormal vectors in C. We have that U(n) acts
transitively on Vk(Cn) via matrix multiplication. Moreover, by noting that an n-
frame of Cn is fixed by a member of U(n) which acts non-trivially only on the k
frame of the orthogonal complement, we obtain the following fiber bundle:

U(n− k)→ U(n)→ Vk(Cn)

So, from looking at the associated long exact homotopy sequence, we have that
πi(Vk(Cn)) is trivial for all i ≤ 2(k − n).

Example 2.8. The complex Grassmann manifold, Gm(Cn), can be identified
with the coset space U(2m)/U(m) × U(m). It is the collection of m dimensional
subspaces of Cn for some m ≤ n. Take the mapping Vm(C)n) → Gm(Cn) that
sends an m-frame in Cn to the m-dimensional subspace it spans and note that
the fibers here are the collections of m-frames spanning the same m-dimensional
subspace. So, we have the following fiber bundle:

U(m)→ Vm(Cn)→ Gm(Cn)

In addition, we have the long exact sequence of homotopy groups:

. . .→ πi(Vm(Cn))→ πi(Gm(Cn))→ πi−1(U(m))→ πi−1(Vm(Cn))→ . . .

Thus, πi−1(U(m)) ∼= πi(Gm(Cn)), i < 2(n−m).

Definition 2.9. The special unitary group is the subgroup SU(m) ⊂ U(M) of
matrices with determinant 1.
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Note that the determinant map U(m) → S1 ⊂ C gives us a fiber bundle
SU(m) → U(m) → S1. We then have πi(SU(m)) ∼= πi(U(m)) and πi(SU(m)) ∼=
πi(U) for i > 1 from the long exact sequence of homotopy groups:

. . .→ πi+1(S1)→ πi(SU(m))→ πi(U(m))→ πi(S
1)→ . . .

Thus, the last two examples give us

πi−1(U(m)) ∼= πi(Gm(C2m)) and πi+1(SU(2m)) ∼= πi+1(U(m))

for sufficiently large m and 1 ≤ i ≤ 2m. Returning to Bott periodicity, we now want
to prove that πiGm(C2m) ∼= πi+1U(2m) for large m (Theorem 23.3 in [1]). This is
difficult to do directly; hence we will look at the space Ωα of minimal geodesics in
SU(2m) from I to −I and use the tools of Morse Theory mentioned before.

Lemma 2.10. πi(Gm(C2m)) ∼= πi(Ω
α)

Proof. This uses calculus of variations applications to Morse Theory. Check lemma
23.1 in [1].

Consider the Lie group SU(2m). We identify the tangent space TISU(2m) with
the space of 2m by 2m skew-Hermitian matrices with trace 0. The exponential map

exp(A) = 1 +A+
1

2!
A2

sends TISU(2m) into SU(2m).
Choose some A ∈ TISU(2m) such that exp(A) = −I (which we do in order to

obtain the minimal geodesic) and define γ(t) = exp(tA) for t ∈ [0, 1]. Since A is
skew-Hermitian, it may be diagonalized D = TAT−1. Then

exp(D) = T exp(A)T−1 = −I,
so we may assume that A is diagonal without loss of generality. Since A is skew-
Hermitian, its (diagonal) entries aj are purely imaginary and sum to zero. In fact,
we may write aj = ikjπ where each kj is odd and

∑
j kj = 0.

Skipping a few small steps, we have that a geodesic exp(tA) has length ‖A‖ =√
〈A,A〉 = π

√
k21 + . . .+ k22m. It is also the case that all minimal geodesics from

−I to I in SU(2m) have the form exp(tA), where A is a diagonal matrix with m
entries equal to iπ and m entries equal to −iπ. Hence, A is uniquely determined
by its eigenspace for iπ, an m-dimensional subspace of C2m. Hence, we see that
the minimal geodesic from I to −I is equivalent to a matrix in SU(2m) with two
eigenspaces of m-dimensions corresponding to iπ and −iπ.

The second step is to show that the matrix SU(2m) with two eigenspaces of
m-dimensions, corresponding to iπ and −iπ, is equivalent to the eigenspace corre-
sponding to iπ as a point in Gm(2m). This is an algebraic map where it suffices to
show one of the directions is continuous (since the Grassmannian is compact and
the space of matrices is Hausdorff). Without writing out the explicit computation,
the Grassmannian can be considered by the local coordinates given by m × 2m
matrices. In turn, we use the local coordinates to explicitly construct the map to
a matrix in SU(2m) with eigenvalues iπ and −iπ. Since all these matrices are
conjugate to each other, determining one of the eigenspaces give you the explicit
conjugating matrix. From here, we get our desired πi(Gm(C2m)) ∼= πi(Ω

α).
�

Lemma 2.11. πi(Ω
α) ∼= πi+1(SU(2m)), for i ≤ 2m
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This proof hinges on conjugate points and different parts of Morse Theory. Before
getting into the proof, we’ll define the following:

Definition 2.12. Along a curve γ, γ(a) and γ(b) are conjugate if there is a non-zero
Jacobi field J that vanishes at both of them.

Recall that a Jacobi field satisfies
D2J

dt2
+ R(

dγ

dt
, J)

dγ

dt
= 0 where

D

dt
is the

covariant derivative and R is the curvature.
The next few theorems will be used but not proven. The purpose of these

theorems is to show that the index of a geodesic may be obtained by counting
conjugate points along it. We may think of geodesics as ”straight lines.” A path

c : [a, b]→M is a geodesic if the acceleration
D

dt

dc

dt
is 0.

Theorem 2.13. Index Theorem: The (finite) index λ of a geodesic γ from γ(0) = I
to γ(1) = −I is equal to the number of points such that γ(t) is conjugate to γ(0)
along γ (counted with multiplicity).

Theorem 2.14. Consider a differentiable manifold M . For p, q ∈M , the space of
minimal geodesics from p to q is a topological manifold Ω, and if every non-minimal
geodesic from p to q has index ≥ λ0then πi(Ω) ∼= πi+1(M) for i = 0, . . . , λ0 − 2.

Proof and discussion of the above two theorems can be found at the end of
Chapter 23 in [1].

We now compute a lower bound on the indices of non-minimal geodesics in order
to establish the above equivalence of homotopy groups.

Theorem 2.15. Every non-minimal geodesic γ from I to -I in SU(2m) has index
≥ 2m+ 2

Consider a non-minimal geodesic γ of SU(2m) from I to −I, and note that it can
be written in the form γ(t) = exp(tA) where γ(0) = I and γ(1) = −I. Without loss
of generality, A is diagonal, with entries k1πi, . . . k2mπi where kj odd,

∑
kj = 0,

and k1 ≤ k2 ≤ . . . k2m.
To find conjugate points of γ(t) = exp(tA), 0 ≤ t ≤ 1, consider the following

lemma:

Lemma 2.16. Conjugate pairs occur along the above geodesic whenever t = πk√
ei
∈

[0, 1], where k is a non-zero integer and ei is a positive eigenvalue of the map KV :

TISU(2m)→ TISU(2m) defined by KV (W ) = R(V,W )V where V =
dγ

dt
(0) and R

is the curvature tensor.

Proof. By noting that KV is self-adjoint (which follows from the symmetry condi-
tion), we have that

〈KV (W ),W ′〉 = 〈R(V,W )V,W ′〉 = 〈R(V,W ′)V,W 〉 = 〈W,KV (W ′)〉
and so there is an orthonormal eigenbasis U1, . . . U2m of TISU(2m) such that
KV (Ui) = eiUi. Since KV is self adjoint, we can extend V,U1, . . . , U2m to a parallel

vector field Ṽ , Ũ1, . . . Ũ2m along γ such that Ṽ (0) = V, Ũi(0) = Ui for i = 1, . . . , 2m.
Since SU(2m) is a locally symmetric, compact, connected Lie group, we have that

it is globally symmetric. Hence, we have that KṼ (Ũ1) = R(Ṽ , Ũ1)Ṽ is a parallel
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vector field along γ that extends along KṼ (Ũ1) = eiŨ1. For the last step, take
Wi = sin(

√
ei)Ui for ei > 0, and note

D2Wi

dt2
+KV (Wi) =

d2

dt2
(sin(

√
ei))Ui + sin(

√
ei)eiUi = 0

Hence Wi is a Jacobi field that vanishes at multiples of π/
√
ei, giving us all the

conjugate points along the geodesic for t ∈ [0, 1] with needed multiplicities.

The positive eigenvalues of KV : TISU(2m)→ TISU(2m) are
π2

4
(kj−kl)2, kj 6=

kl. The calculation for this relies on the fact that R(A,W )A =
1

4
[[A,W ], A], where

[X,Y ] = XY − Y X, and so

KA(W ) =
1

4
[[A,W ], A]

Direct computation shows KA(W ) =
π2

4
((kj−kl)2wj,l). Therefore KA(W ) has cor-

responding conjugate points t =
2

kj − kl
,

4

kj − kl
,

6

kj − kl
,

8

kj − kl
, · · · . The Index

theorem tells us that the index is equal to:

∑
kj>kl

2(
kj − kl

2
− 1) =

∑
kj>kl

(kj − kl − 2)

Since the geodesic is non-minimal, we have that
∑2
i=1mki = 0 where not all

ki = ±1. Hence, there are three cases: m of the ki are positive and m are negative,
at least m + 1 of the ki are positive, and at least m + 1 of the ki are negative.
One-line index calculations for each case show that the index is greater than or
equal to 2m+ 2.

At this point, we can fully approach Bott Periodicity. Recall we have that
π0(U) ∼= π0(U(1)) and π1(U) ∼= π1(U(1)). Note that U(1) can be identified with
the unit circle in C. Thus, computing the homotopy groups, we have that:

(2.17) πn(U) ∼=

{
0 n = 0 mod 2

Z n = 1 mod 2

This completes the section of the (weak form) of the Unitary Case.

2.2. Orthogonal Case. The orthogonal group, O(n), is the group of real n × n
matrices A such that ATA = 1.

Theorem 2.18. Bott Periodicity for Orthogonal Group: For i ≥ 0, πi(O) ∼=
πi+8(O)

For the complex case, we introduced the special unitary group and worked with
the space of minimal geodesics. Here, we introduce the space of complex structures
Ω1(n) and look at the space of geodesics on it.

Definition 2.19. J is a complex structure on Rn if J ∈ O(n) and J2 = −In.
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Define Ωk(n) to be the space of complex structures that anti-commute with fixed
J1, . . . Jk−1. By the choice of indexing, Ω1 is the set of all complex structures. It is
natural for us to define Ω0(n) = O(n) since Ωk(n) ⊂ Ωk−1 ⊂ . . . ⊂ Ω1(n) ⊂ O(n).
Recall that we have a natural inclusion O(n)→ O(n+1), so we may take the direct
limit, denoted O. Similarly, we have inclusions φ : Ωk(n) → Ωk(n + n′) for any n′

(see page 138 in Milnor’s Morse Theory); thus, we may take a direct limit of those
as well.

We now present a few lemmas about the structure of Ωk(n).

Lemma 2.20. Each Ωk(n) is a smooth, totally geodesic submanifold of O(n).

Proof. We may find a neighborhood of In in On where all points can be uniquely
expressed as exp(A) for some small, skew-symmetric A; similarly, for each J ∈
Ωk(n), we may find some neighborhood where every point in it can be written as
J exp(A) for a small, skew-symmetric matrix A. Note that J exp(A) ∈ Ωk(n) if
and only if J is a complex structure that anti-commutes with k − 1 fixed complex
structures J1, . . . , Jk−1. The first property tells us that J−1AJ + A = 0. We see
this because

− exp(J−1AJ) exp(A) = J2exp(J−1AJ)exp(A) = (Jexp(A))2 = −I

The second property tells us that AJi = JiA, which we may see by a similar
argument. Thus, locally Ωk(n) takes the values J exp(A) as A varies over some
linear subspace of the tangent space at the identity. Thus, Ωk(n) is a smooth,
totally geodesic submanifold of O(n).

�

Lemma 2.21. For fixed Jl, the space of minimal geodesics from Jl to −Jl ∈ Ωl(n)
is homeomorphic to Ωl+1(n) for 0 ≤ l < k.

Proof. The key observation is that the fixed anti-commuting complex structures
J1, · · · , Jl−1 determine Ωl(n); therefore, if we can fix some Jl ∈ Ωl(n), then we
determine Ωl+1(n).

We now construct a minimal geodesic in Ωl(n) from Jl to −Jl. First, choose
some J ∈ Ωl+1(n) and define A = JlJ . We have that A2 = −JJlJlJ = −I,
which implies that A is a complex structure. For i < l, AJi = −JlJiJ = JiA and
AJl = J = −JlA. Now, γ(t) = Jl exp(πtA) is the geodesic we seek.

Now, note that A is skew-symmetric (since A2 = −I and AAT = I) and that
exp(πtA) defines a geodesic in O(n). Since A is skew-symmetric, there exists an
element T ∈ O(n) so that TAT−1 we get a matrix of the form

C =


A1 0 . . . 0
0 A2 . . . 0
. . . . . . . . . . . .
0 0 . . . Ak


where each Ai =

(
0 ai
−ai 0

)
with ai positive. Furthermore, we get that

exp(πtAi) =
∑
k≥0

1

k!
Aki =

(
cos(πai) sin(πai)
− sin(πai) cos(πai)

)
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Now, we see that exp(πC) = exp(πTAT−1) = T exp(πA)T−1 = −I if and only if
the ai are odd integers, so the same holds true for exp(πA). Since this is a geodesic,
we will have that the ai are all equal to 1.

Now, given a minimal geodesic γ from Jl to −Jl, we wish to associate it with an
element of Ωl+1(n). To do so, we write γ(t) = Jlexp(πtA) for some skew-symmetric
A. We claim that JlA ∈ Ωl+1(n). To see this, change basis in order to obtain a
block-diagonal matrix B whose elements all have absolute-value 1 (by minimality).
Then we have that

B2 = −I and A2 = −I
and A is a complex structure. Recall that we had AJl = −JlA and so

(JlA)2 = −AJlJlA = −A(JlA)Jl = −Jl(JlA)

Recall that for i < 1 we had that AJi = JiA so we have that

(JlA)Ji = JlJiA = −Ji(JlA)

Thus, JlA ∈ Ωl+1(n).
�

Lemma 2.22. For each k ≥ 0, there is a real valued function gk such that any
non-minimal geodesic from J to −J in Ωk(n) has index at least gk(n) where gk(n)
tends to infinity as n→∞
Proof. This proof will have a few cases to go through. For k = 0, choose a non-
minimal geodesic γ and take the matrix A such that γ(t) = exp(πtA). We have
that A is skew-symmetric and exp(πA) = −I. We may choose some orthonormal
basis and obtain a matrix of the form

A1 0 . . . 0
0 A2 . . . 0
. . . . . . . . . . . .
0 0 . . . Ak


where

Ai =

(
0 ai
−ai 0

)
for odd integers 0 < a1 ≤ a2 . . . ≤ am.

Next, we find the index of exp(tπA) by counting the number of conjugate points.
As we have discussed earlier, the conjugate points are determined by the eigenval-
ues. Recall that

KπAW =
π2

4
[[A,W ], A]

Then, the eigenvalues of KπA are as follows:

π2(ai + aj)
2

4
, i 6= j

Thus, we have conjugate points at
2

ai + aj
and

4

ai + aj
. There are

ai + aj − 1

2
such values between 0 and 1, and thus we have at least∑

ai 6=aj

ai + aj − 1

2
=
∑
ai<aj

ai + aj − 1
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conjugate points via the index theorem. Note that we must have am ≥ 3 by non-
minimality of the geodesic. Thus, the index is at least

∑m−1
i=1 (1+3−1) = 2m−2 =

n− 2 and that g0(n) = n− 2.
The case for k > 0 is similar, but more involved. A detailed discussion may be

found on pages 143-148 of [1].
The combination of the three lemmas shows that πi(Ωk(n)) ∼= πi−1(Ωk+1(n))

for sufficiently large n. Moreover, passing to the direct limit as n → ∞ gives us
that πh(Ω0) ∼= πh−i(Ωi) for 0 ≤ i ≤ h. To show 8-periodicity, one can describe
each Ωk in terms of Ωk−1 for l = 0, 1, 2, . . . , 8. Pages 138-141 in do this in detail.
Furthermore, we have the space Ω8(16n) is diffeomorphic to orthogonal group O(n).
Passing to the limit, we see that Ω8

∼= O. Be a previous theorem, we have that
πh(Ω8) ∼= πh+1(Ω7) ∼= . . . ∼= πh+8(Ω0).

Thus, πh(O) ∼= πh+8(O). �

Because of this, it suffices to calculate πi(O) just for 0 ≤ i ≤ 7. We outline
how to calculate π0 and π1. Before proceeding, it is worth noting that πk(O(n))
stabilizes to πk(O), so only the calculations of πk(O(n)) for large n are needed.

• π0(O): The key fact needed here is that O(n) has two path connected
components. We see π0(O(n)) stabilizes to π0 ∼= Z/2Z.
• π1(O): Note that for large n, π1(O(n)) ∼= π0(Ω1(n)). We now count the

path connected components of Ω1(n). First consider the case where n = 2.
Note that for any A ∈ Ω1(2), there exists some T ∈ O(2) such that

TAT−1 =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
Solving for θ as

π

2
+ nπ, n ∈ Z (since A2 = −I), we get TAT−1 is either

B =

(
0 1
−1 0

)
or

B′ =

(
0 −1
1 0

)
Hence A = SBS−1 for some S ∈ O(2). Now, for any even n, A is similar
to a matrix of the following form:

B 0 . . . 0
0 B . . . 0
. . . . . . . . . . . . . . .
0 0 . . . B


The change of basis matrix is orthogonal, and thus has determinant ±1.
Thus, there are exactly two path components, and we have that π1(O) ∼=
π0(Ω1) ∼= Z/2Z.
• π2(O) ∼= 0 calculations are similar to the previous case and rely on the

quaternions.

We end up with:
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(2.23) πn(O) ∼=


Z/2Z n = 0, 1 mod 8

Z n = 3, 7 mod 8

0 n = 2, 4, 5, 6 mod 8

This completes the section on the (weak form of the) orthogonal case.
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