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This is the second in a trilogy of papers introducing and 
studying the notion of decomposition space as a general frame-
work for incidence algebras and Möbius inversion, with coeffi-
cients in ∞-groupoids. A decomposition space is a simplicial 
∞-groupoid satisfying an exactness condition weaker than the 
Segal condition. Just as the Segal condition expresses compo-
sition, the new condition expresses decomposition.
In this paper, we introduce various technical conditions on 
decomposition spaces. The first is a completeness condition 
(weaker than Rezk completeness), needed to control simpli-
cial nondegeneracy. For complete decomposition spaces we 
establish a general Möbius inversion principle, expressed as 
an explicit equivalence of ∞-groupoids. Next we analyse two 
finiteness conditions on decomposition spaces. The first, that 
of locally finite length, guarantees the existence of the im-
portant length filtration for the associated incidence coalge-
bra. We show that a decomposition space of locally finite 
length is actually the left Kan extension of a semi-simplicial 
space. The second finiteness condition, local finiteness, en-
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sures we can take homotopy cardinality to pass from the level 
of ∞-groupoids to the level of Q-vector spaces.
These three conditions — completeness, locally finite length, 
and local finiteness — together define our notion of Möbius 
decomposition space, which extends Leroux’s notion of Möbius 
category (in turn a common generalisation of the locally finite 
posets of Rota et al. and of the finite decomposition monoids 
of Cartier–Foata), but which also covers many coalgebra con-
structions which do not arise from Möbius categories, such as 
the Faà di Bruno and Connes–Kreimer bialgebras.
Note: The notion of decomposition space was arrived at in-
dependently by Dyckerhoff and Kapranov [6] who call them 
unital 2-Segal spaces.

© 2018 Elsevier Inc. All rights reserved.
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0. Introduction

In the first paper of this trilogy [11], we introduced the notion of decomposition space 
as a general framework for incidence (co)algebras. It is equivalent to the notion of unital 
2-Segal space of Dyckerhoff and Kapranov [6]. The relevant main results are recalled 
in Section 1 below. A decomposition space is a simplicial ∞-groupoid X satisfying a 
certain exactness condition, weaker than the Segal condition. Just as the Segal con-
dition expresses composition, the new condition expresses decomposition, and implies 
the existence of an incidence (co)algebra. There is a rich supply of examples in combina-
torics [14]. An easy example is the decomposition space of graphs (yielding the chromatic 
Hopf algebra [31]), which will serve as a running example. In the present paper we pro-
ceed to establish a Möbius inversion principle for what we call complete decomposition 
spaces, and analyse the associated finiteness issues.

Classically [30], the Möbius inversion principle states that the zeta function of any 
incidence algebra (of a locally finite poset, say, or more generally a Möbius category in the 
sense of Leroux [25]) is invertible for the convolution product; its inverse is by definition 
the Möbius function. The Möbius inversion formula is a powerful and versatile counting 
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device. Since it is an equality stated at the vector-space level in the incidence algebra, it 
belongs to algebraic combinatorics rather than bijective combinatorics. It is possible to 
give Möbius inversion a bijective meaning, by following the objective method, pioneered 
in this context by Lawvere and Menni [23], which seeks to lift algebraic identities to the 
‘objective level’ of (finite) sets and bijections, working with certain categories spanned 
by the combinatorial objects instead of with vector spaces spanned by isoclasses of these 
objects. The algebraic identity then appears as the cardinality of the bijection established 
at the objective level.

To illustrate the objective viewpoint, observe that a vector in the free vector space 
on a set B is just a collection of scalars indexed by (a finite subset of) B. The objective 
counterpart is a family of sets indexed by B, i.e. an object in the slice category Set/B . 
‘Linear maps’ at this level are given by spans A ← M → B. The Möbius inversion prin-
ciple states an equality between certain linear maps (elements in the incidence algebra). 
At the objective level, such an equality can be expressed as a bijection between sets in 
the spans representing those linear functors. In this way, the algebraic identity is re-
vealed to be just the cardinality of a bijection of sets, which carry much more structural 
information. As an example, the objective counterpart of the binomial algebra is the cat-
egory of species with the Cauchy tensor product [14], a much richer structure, and at the 
objective level there are obstructions to cancellations in the Möbius function that take 
place at the numerical level only. The significance of these phenomena is not yet clear, 
and is under investigation [14]. Lawvere and Menni [23] established an objective version 
of the Möbius inversion principle for Möbius categories in the sense of Leroux [25].

Our discovery in [11] is that something considerably weaker than a category suffices to 
construct an incidence algebra, namely a decomposition space. This discovery is interest-
ing even at the level of simplicial sets, but we work at the level of simplicial ∞-groupoids. 
Thus, the role of vector spaces is played by slices of the ∞-category of ∞-groupoids. 
In [10] we have developed the necessary ‘homotopy linear algebra’ and homotopy car-
dinality, extending and streamlining many results of Baez–Hoffnung–Walker [2] who 
worked with 1-groupoids.

The decomposition-space axiom on a simplicial ∞-groupoid X is expressly the con-
dition needed for a canonical coalgebra structure to be induced on the slice ∞-category 
S/X1 , (where S denotes the ∞-category of ∞-groupoids, also called spaces). The comul-
tiplication is the linear functor

Δ : S/X1 → S/X1 ⊗ S/X1

given by the span

X1
d1←− X2

(d2,d0)−→ X1 ×X1.

This can be read as saying that comultiplying an edge f ∈ X1 returns the sum of all 
pairs of edges (a, b) that are the short edges of a 2-simplex with long edge f . In the 
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case that X is the nerve of a category, this is the sum of all pairs (a, b) of arrows with 
composite b ◦ a = f .

The aims of this paper are to establish a Möbius inversion principle in the frame-
work of complete decomposition spaces, and also to introduce the necessary finiteness
conditions on a complete decomposition space to ensure that incidence (co)algebras and 
Möbius inversion descend to classical vector-space-level coalgebras on taking the homo-
topy cardinality of the objects involved. Along the way we also establish some auxiliary 
results of a more technical nature which are needed in the applications in the sequel 
papers [12–14].

We proceed to summarise the main results.
After briefly reviewing in Section 1 the notion of decomposition space and the notion 

of CULF maps between them — simplicial maps that induce coalgebra homomorphisms 
— we come to the notion of completeness in Section 2:

Definition. We say that a decomposition space X is complete (2.1) when s0 : X0 →
X1 is a monomorphism. It then follows that all degeneracy maps are monomorphisms 
(Lemma 2.5).

The motivating feature of this notion is that all issues concerning degeneracy can then 
be settled in terms of the canonical projection maps Xr → (X1)r sending a simplex to its 
principal edges: a simplex in a complete decomposition space is nondegenerate precisely 
when all its principal edges are nondegenerate (Corollary 2.16). Let �Xr ⊂ Xr denote the 
subspace of these nondegenerate simplices.

For any decomposition space X, the comultiplication on S/X1 yields a convolution 
product on the linear dual SX1 (that is, the category of linear functors from S/X1 to 
S) called the incidence algebra of X. This contains, in particular, the zeta functor ζ, 
given by the span X1

=← X1 → 1, and the counit ε (neutral for convolution) given 
by X1 ← X0 → 1. In a complete decomposition space X we can consider the spans 
X1 ← �Xr → 1 and the linear functors Φr they define in the incidence algebra of X. We 
can now establish the decomposition-space version of the Möbius inversion principle, in 
the spirit of [23]:

Theorem 3.8. For a complete decomposition space, there are explicit equivalences

ζ ∗ Φeven 
 ε + ζ ∗ Φodd, Φeven ∗ ζ 
 ε + Φodd ∗ ζ.

It is tempting to read this as saying that “Φeven−Φodd” is the convolution inverse of ζ, 
but the lack of additive inverses in S necessitates our sign-free formulation. Upon taking 
homotopy cardinality, as we will later, this yields the usual Möbius inversion formula 
μ = Φeven − Φodd, valid in the incidence algebra with Q-coefficients.

Having established the general Möbius inversion principle on the objective level, we 
proceed to analyse the finiteness conditions on complete decomposition spaces needed for 
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this principle to descend to the vector-space level of Q-algebras. There are two conditions: 
X should be of locally finite length (Section 6), and X should be locally finite (Section 7). 
The first is a numerical condition, like a chain condition; the second is a homotopy 
finiteness condition. Complete decomposition spaces satisfying both conditions are called 
Möbius decomposition spaces (Section 8). We analyse the two conditions separately.

Definition. (Cf. 6.1.) The length of an arrow f is the greatest dimension of a nondegen-
erate simplex with long edge f . We say that a complete decomposition space is of locally 
finite length — we also say tight — when every arrow has finite length.

Although many examples coming from combinatorics do satisfy this condition, it 
is actually a rather strong condition, as witnessed by the following result, which is a 
consequence of Propositions 5.16 and 6.6:

Every tight decomposition space is the left Kan extension of a semi-simplicial space.

We can prove this result for more general simplicial spaces, and digress to establish 
this in Section 5: we say a complete simplicial space is split if all face maps preserve 
nondegenerate simplices. In Corollary 5.11 we show this is the analogue of the condition 
for categories that identities are indecomposable, enjoyed in particular by Möbius cate-
gories in the sense of Leroux [25]. We prove that a simplicial space is split if and only 
if it is the left Kan extension along Δinj ⊂ Δ of a semi-simplicial space Δop

inj → S, and in 
fact we establish more precisely:

Theorem 5.19. Left Kan extension along Δinj ⊂ Δ induces an equivalence of ∞-categories

Fun(Δop
inj, S) 
 Splitcons,

where the right-hand side is the ∞-category of split simplicial spaces and conservative 
maps.

This has the following interesting corollary.

Proposition 5.20. Left Kan extension along Δinj ⊂ Δ induces an equivalence between the 
∞-category of 2-Segal semi-simplicial spaces and ULF maps, and the ∞-category of split 
decomposition spaces and CULF maps.

We show that a complete decomposition space X is tight if and only if it has a filtration

X
(0)
• ↪→ X

(1)
• ↪→ · · · ↪→ X

of CULF monomorphisms, the so-called length filtration. This is precisely the structure 
needed to get a filtration of the incidence coalgebra (6.13).

In Section 7 we impose the finiteness condition needed to be able to take homotopy 
cardinality and obtain coalgebras and algebras at the numerical level of Q-vector spaces 
(and profinite-dimensional Q-vector spaces).
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Definition. An ∞-groupoid S is locally finite if at each base point x the homotopy groups 
πi(S, x) are finite for i ≥ 1 and are trivial for i sufficiently large. It is called finite if 
furthermore it has only finitely many components. A map of ∞-groupoids is called a 
finite map if its fibres are finite ∞-groupoids.

A decomposition space X is called locally finite (7.4) when X1 is a locally finite 
∞-groupoid and s0 : X0 → X1 and d1 : X2 → X1 are finite maps.

The condition ‘locally finite’ extends the notion of locally finite for posets. The condi-
tion ensures that the coalgebra structure descends to coefficients in finite ∞-groupoids, 
and hence, via homotopy cardinality, to Q-algebras. In Section 7.10 we calculate 
the section coefficients (structure constants for the (co)multiplication) in some easy 
cases.

Finally we introduce the Möbius condition:

Definition. A complete decomposition space is called Möbius (8.3) when it is locally finite 
and of locally finite length (i.e. is tight).

These are the conditions needed for the general Möbius inversion formula to descend to 
coefficients in finite ∞-groupoids and hence Q-coefficients, giving the following formula 
for the Möbius function (convolution inverse to the zeta function):

|μ| = |Φeven| − |Φodd| .

We have strived throughout to distill the most natural conditions from the require-
ments imposed by applications of the theory, and we find it an attractive feature that all 
the conditions can be formulated categorically. Just as the decomposition-space axiom is 
an exactness condition (that certain ‘active–inert’ pushouts in Δ are taken to pullbacks), 
it is noteworthy that further conditions we require — completeness, stiffness, indecom-
posable units, and splitness — are also exactness conditions (stipulating that certain 
other classes of pushouts are taken to pullbacks, cf. 2.7, 4.1, 5.5, and Corollary 5.10). 
This fact is both conceptually pleasing and facilitates efficient arguments.

Related work. The notion of decomposition space was discovered independently by Dy-
ckerhoff and Kapranov [6], who call them unital 2-Segal spaces. While some of the basic 
results in [11] were also proved in [6], the present paper has no overlap with [6].

The results in this paper on Möbius inversion are in the tradition of Leroux et al. [25], 
[4], [26], Dür [5], and Lawvere–Menni [23]. There is a different notion of Möbius category, 
due to Haigh [15]. The two notions have been compared, and to some extent unified, 
by Leinster [24], who calls Leroux’s Möbius inversion fine and Haigh’s coarse (as it 
only depends on the underlying graph of the category). We should mention also the 
K-theoretic Möbius inversion for quasi-finite EI categories of Lück and collaborators 
[27], [7].
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Note. This paper is the second in a series, originally posted on the arXiv as a single 
manuscript Decomposition spaces, incidence algebras and Möbius inversion [9] but split 
for publication into:

(0) Homotopy linear algebra [10]
(1) Decomposition spaces, incidence algebras and Möbius inversion I: basic theory [11]
(2) Decomposition spaces, incidence algebras and Möbius inversion II: completeness, 

length filtration, and finiteness [this paper]
(3) Decomposition spaces, incidence algebras and Möbius inversion III: the decomposi-

tion space of Möbius intervals [12]
(4) Decomposition spaces and restriction species [13]
(5) Decomposition spaces in combinatorics [14].
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1. Preliminaries on decomposition spaces

1.1. ∞-Groupoids. We work in the ∞-category S of ∞-groupoids, also called spaces, and 
in closely related ∞-categories such as its slices. By ∞-category we mean quasi-category 
in the sense of Joyal [18], [19], but follow rather the terminology of Lurie [28]. Most of 
our arguments are elementary, though, and for this reason we can get away with model-
independent reasoning rather than working with the Joyal model structure on simplicial 
sets. In particular, when we refer to the ∞-category S/B (whose objects are maps of 
∞-groupoids X → B), we only refer to an ∞-category determined up to equivalence 
by a certain universal property, and do not make any distinction between the specific 
models for this object exploited by Joyal and Lurie (normal slice and fat slice).

1.2. Pullbacks and fibres. Pullbacks play an essential role in many of our arguments. By 
pullback we always mean pullback in the ∞-category S. This notion enjoys a universal 
property which in the model-independent formulation is similar to the universal property 
of the pullback in ordinary categories (such as Set). Again, we shall only ever need 
homotopy invariant properties, making it irrelevant which particular model is chosen for 
the notion of pullback in the Joyal model structure for quasi-categories. In particular, 
the fibre Xb of a map f : X → B over a base point b in B is also a homotopy invariant 
notion: it is the pullback of f along the map �b� : 1 → B that picks out the base 
point.
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One property which we shall use repeatedly is the following elementary lemma (a 
proof can be found in [28, 4.4.2.1]).

Lemma 1.3. In any diagram of ∞-groupoids

· · ·

· · ·

if the outer rectangle and the right-hand square are pullbacks, then the left-hand square 
is a pullback.

1.4. Monomorphisms. The homotopy invariant notion of monomorphism of ∞-groupoids 
plays an important role throughout this paper, notably through the definition of com-
plete decomposition space (2.1). A map of ∞-groupoids is a monomorphism when its 
(homotopy) fibres are (−1)-groupoids (i.e. are either empty or contractible).

(We warn against a potential point of confusion: in the Joyal model, ∞-groupoid 
means Kan complex, but the homotopy-invariant notion of monomorphism between 
∞-groupoids is not the same as levelwise injective simplicial map between Kan com-
plexes. For example, any equivalence of ∞-groupoids is a monomorphism, but not every 
equivalence of Kan complexes is levelwise injective. Conversely the inclusion 1 → BG

of a point into the classifying space of a group is not a monomorphism of ∞-groupoids, 
but it is injective levelwise in the sense of Kan complexes.)

In some respects, this notion of monomorphism does behave as for sets: for example, 
if f : X → Y is a monomorphism, then there is a complement Z := Y �X such that 
X + Z 
 Y . Hence a monomorphism is essentially an equivalence from X onto some 
connected components of Y . On the other hand, a crucial difference between sets and 
∞-groupoids is that diagonal maps of ∞-groupoids are not in general monomorphisms. 
In fact X → X ×X is a monomorphism if and only if X is discrete (i.e. equivalent to a 
set).

1.5. Linear algebra with coefficients in ∞-groupoids [10]. The slice ∞-categories of the 
form S/I form the objects of a symmetric monoidal ∞-category LIN , described in 
detail in [10]: the morphisms are the linear functors, meaning that they preserve ho-
motopy sums, or equivalently indeed all colimits. Such functors are given by spans: the 
span

I
p← M

q→ J

defines the linear functor

q! ◦ p∗ : S/S −→ S/T
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given by pullback along p followed by composition with q. The ∞-category LIN can 
play the role of the category of vector spaces, although to be strict about that in-
terpretation, finiteness conditions should be imposed, as we do later in this paper 
(Section 7).

The symmetric monoidal structure on LIN is easy to describe on objects: we have

S/I ⊗ S/J := S/I×J ,

just as the tensor product of vector spaces with bases indexed by sets I and J is the 
vector space with basis indexed by I × J . The neutral object is S/1 
 S.

1.6. Simplicial spaces. Throughout, our main objects of study will be simplicial spaces 
X : Δop → S, by which we mean objects in the functor ∞-category Fun(Δop, S). A simpli-
cial space (synonym for simplicial ∞-groupoid) is thus a homotopy-coherent simplicial 
diagram of ∞-groupoids. Note that this means that the simplicial identities are squares 
that commute up to a homotopy, such as for example

X3
d3

d1

X2

d1

X2
d2

X1,

(1)

and it makes sense to ask whether such a square is a pullback. We shall never need to 
spell out the homotopies, as only their structural properties are needed.

By an n-simplex of X we mean an object in the ∞-groupoid Xn, which in turn can 
be described (via the Yoneda lemma for ∞-groupoid-valued presheaves) as the mapping 
space Map(Δ[n], X). If σ is an object of Xn then we write �σ� : 1 → Xn for the 
corresponding map.

A simplicial map f : X → Y between simplicial spaces X and Y is by defini-
tion an object in the mapping space MapS(X, Y ). It amounts to a sequence of maps 
fi : Xi → Yi commuting with the face and degeneracy maps up to specified coherent 
homotopies.

We briefly review the main notions and results from the first paper in the trilogy [11], 
and in particular the notion of decomposition space. This notion is equivalent to that 
of unital 2-Segal space, introduced by Dyckerhoff and Kapranov [6]. While Dyckerhoff 
and Kapranov formulate the condition in terms of triangulation of convex polygons, our 
formulation refers to the categorical notion of active and inert maps, which we recall 
next.

1.7. Active and inert maps (generic and free maps). The category Δ of nonempty finite 
ordinals and monotone maps has an active–inert factorisation system. An arrow a :
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[m] → [n] in Δ is active (also called generic) when it preserves end-points, a(0) = 0
and a(m) = n; and it is inert (also called free) if it is distance preserving, a(i + 1) =
a(i) + 1 for 0 ≤ i ≤ m − 1. A coface map dj : [m] → [m + 1] is active if and only 
if it is inner, i.e. 1 ≤ j ≤ m. The active maps are generated by the codegeneracy 
maps and the inner coface maps, while the inert maps are generated by the outer coface 
maps. Every morphism in Δ factors uniquely as an active map followed by an inert 
map.

The notions of generic and free maps are general notions in category theory, intro-
duced by Weber [34,35], who extracted the notions from earlier work of Joyal [17]; a 
recommended entry point to the theory is Berger–Melliès–Weber [3]. We have adopted 
the more recent terminology ‘active/inert’ (due to Lurie [29]), which is more suggestive 
of the role the two classes of maps play.

Lemma 1.8. Active and inert maps in Δ admit pushouts along each other, and the result-
ing maps are again active and inert.

1.9. Decomposition spaces [11]. A simplicial space X : Δop → S is called a decomposition 
space when it takes active–inert pushouts in Δ to pullbacks. An example of such a square 
is (1) above.

Every Segal space is a decomposition space. For example, the nerve of a category or a 
poset is a decomposition space. In a Segal space X, all the information is contained in X0

and X1 and the composition map d1 : X2 → X1. This cannot be said for decomposition 
spaces in general, but we still have the following important property.

Lemma 1.10. In a decomposition space X, every active face map is a pullback of d1 :
X2 → X1, and every degeneracy map is a pullback of s0 : X0 → X1.

Proof. If we consider the inert maps fj : [1] → [m] given by fj(0) = j and fj(1) = j + 1
for j = 0, . . . , m − 1, then we have the following active–inert pushouts in Δ,

[1]
fj

d1

[m]

dj+1

[2] [m + 1],

[1]
fj

s0

[m]

sj

[0] [m− 1],

which are sent to pullbacks by any decomposition space X. �
As far as incidence coalgebras are concerned, the notion of decomposition space can 

be seen as an abstraction of that of poset: it is precisely the condition required to obtain 
a counital coassociative comultiplication on S/X1 . Precisely, the following is the main 
theorem of [11].
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Theorem 1.11. [11] For X a decomposition space, the slice ∞-category S/X1 has the 
structure of a strong homotopy comonoid in the symmetric monoidal ∞-category LIN, 
with the comultiplication Δ and counit ε defined by the spans

X1
d1←− X2

(d2,d0)−→ X1 ×X1, X1
s0←− X0 −→ 1.

If X is the nerve of a locally finite category or poset, then X2 is the set of composable 
pairs of arrows, and (after passing to Q-vector spaces by taking homotopy cardinality as 
in 7.3 and [10]) the formula is the classical comultiplication formula

Δ(f) =
∑

b◦a=f

a⊗ b.

1.12. CULF functors. For the present purposes, the relevant notion of morphism between 
decomposition spaces is that of CULF functors, since these induce homomorphisms of the 
associated incidence coalgebras: a simplicial map (between arbitrary simplicial spaces) 
is called ULF (unique lifting of factorisations) if the naturality square for every inner 
coface map is a pullback, and it is called conservative if the naturality square for every 
codegeneracy map is a pullback. We write CULF for conservative and ULF, that is, the 
naturality square for every active map in Δ is a pullback.

For maps between Rezk complete Segal groupoids, such as fat nerves of categories, 
the notion of conservative is the classical notion, i.e. only invertible maps are sent to 
invertible ones, and ULF is a homotopy version of the notion of unique lifting of factori-
sations.

1.13. Example. We describe a decomposition space G of finite graphs, whose incidence 
coalgebra is the chromatic Hopf algebra of Schmitt [31]. This will serve as a running 
example throughout the paper. For definiteness, by ‘graph’ we will mean simple non-
directed graph, though other notions of graph would work too.

Let Gn be the groupoid of finite graphs with an n-layering (meaning an ordered 
partition of the vertex set into n ‘layers’, which may be empty), and isomorphisms 
between them. In particular, G0 is the contractible groupoid consisting only of the 
empty graph (the only graph admitting a 0-layering), G1 is just the groupoid of all fi-
nite graphs, and G2 is the groupoid of finite graphs with vertex set partitioned into 
two. All the Gn assemble into a simplicial groupoid: the face maps join two adja-
cent layers, or project away the bottom or top layer; the degeneracy maps insert an 
empty layer. It is easy to see that this is not a Segal space: a 2-layered graph can-
not be reconstructed from the graphs of its layers, since the information about edges 
joining the layers is missing. One can check that it is a decomposition space: that the 
square
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G2

d0

G3
d2

d0

G1 G2
d1

is a pullback is to say that a graph with a 3-layering (∈ G3) can be reconstructed 
uniquely from a pair of elements in G2 with common image in G1 (under the indicated 
face maps). The following picture represents elements corresponding to each other in the 
four groupoids.

∈ G1 ∈ G2

∈ G2 ∈ G3

d2

d1

d0 d0

The horizontal maps join the last two layers. The vertical maps forget the first layer. 
Clearly the diagram commutes. To reconstruct the graph with a 3-layering (upper right-
hand corner), most of the information is already available in the upper left-hand corner, 
namely the underlying graph and all the subdivisions except the one between layer 2 
and layer 3. But this information is precisely available in the lower right-hand corner, 
and their common image in G1 says precisely how this missing piece of information is 
to be implanted.

In the comultiplication formula, d1∗ takes a graph G to the groupoid of all possi-
ble 2-layerings on G, and (d2, d0)! returns the two layers, meaning the graphs induced 
by the two subsets of the vertex set V . After taking homotopy cardinality, this is 
precisely the comultiplication of the chromatic Hopf algebra of Schmitt [31]: it takes 
a basis element G to the sum 

∑
G|V1 ⊗ G|V2, the sum being over all 2-layerings 

V = V1 + V2.
There is a CULF functor from the decomposition space of graphs to the decompo-

sition space of finite sets (defined similarly — its incidence coalgebra is the binomial 
coalgebra [14]), which to a graph associates its vertex set. The CULF condition simply 
says that the n-layerings on a graph are determined by the n-layerings of the vertex set. 
This CULF functor induces a coalgebra homomorphism from the chromatic coalgebra 
to the binomial coalgebra.
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2. Complete decomposition spaces

In this section we introduce the notion of complete decomposition spaces, which is 
needed to talk about nondegenerate simplices in a meaningful way.

2.1. Complete decomposition spaces. A decomposition space X is called complete if s0 :
X0 → X1 is a monomorphism of ∞-groupoids.

2.2. Discussion. It is clear that a Rezk complete Segal space is complete in the sense 
of 2.1. While it makes sense to state the Rezk completeness condition for decomposition 
spaces too (cf. 5.13 below), our condition 2.1 covers some important examples which are 
not Rezk complete, such as the ordinary nerve of a group (cf. Example 2.3 below). The 
incidence algebra of the nerve of a group is the group algebra — certainly an example 
worth covering.

The completeness condition is necessary to define Φeven and Φodd (the even and odd 
parts of the ‘Möbius functor’, see 3.4) and to establish the Möbius inversion principle 
at the objective level (Theorem 3.8). The completeness condition is also needed to make 
sense of the notion of length (6.1), and to define the length filtration (6.10), which is 
of independent interest, and is also required to be able to take homotopy cardinality of 
Möbius inversion.

2.3. Examples. If a decomposition space X is discrete, meaning that each Xi is a set, 
then it will be complete, because s0 : X0 → X1 is a section to d0 : X1 → X0 and is 
therefore an injection of sets. Slightly more generally, a decomposition space X will be 
complete if d0 : X1 → X0 is discrete (that is, has discrete (homotopy) fibres) since a 
section to a discrete map is always a monomorphism.

For the simplest example of a decomposition space which is not complete, let G be 
a nontrivial group, and denote the corresponding one-object groupoid by BG. Consider 
the simplicial groupoid X with Xn = (BG)n. Here s0 : 1 → BG is not a monomor-
phism (although it is a section of BG → 1): its (homotopy) fibre is the set of elements 
of G.

2.4. Example (continued from 1.13). The decomposition space G of finite graphs is com-
plete: indeed, s0 : G0 → G1 assigns to the empty graph with zero layers the empty 
graph with one layer. Clearly this has trivial automorphism group, so s0 is a monomor-
phism.

The following basic result follows immediately from Lemma 1.10.

Lemma 2.5. In a complete decomposition space, all degeneracy maps are monomor-
phisms.
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2.6. Completeness for simplicial spaces. We shall briefly need completeness also for gen-
eral simplicial spaces, and the first batch of results holds in this generality. We shall say 
that X : Δop → S is complete if all degeneracy maps are monomorphisms. In view of 
Lemma 2.5, this agrees with the previous definition when X is a decomposition space.

2.7. Completeness as an exactness condition. It is interesting to note that completeness 
is an exactness condition, just as the decomposition-space axiom itself. Indeed, for 0 ≤
i ≤ n the squares

[n] [n]=

[n]

=

[n+1]

si

si

are pushouts in Δ, and the completeness condition on X : Δop → S is precisely to send 
these pushouts to pullbacks (because a map is mono if and only if its pullback along itself 
is an equivalence). If X is assumed to be a decomposition space, then the completeness 
condition can be expressed by the requirement that the following single square is a 
pullback.

X0
=

=

X0

s0

X0 s0
X1.

For the rest of this section, X will denote a complete simplicial space, except where 
it is explicitly stated to be a complete decomposition space.

2.8. Word notation. Since s0 : X0 → X1 is mono, we can identify X0 with a full 
sub-∞-groupoid of X1. We denote by Xa its complement, the full sub-∞-groupoid of 
nondegenerate 1-simplices:

X1 = X0 + Xa.

We extend this notation as follows. Consider the alphabet with three letters {0, 1, a}. 
Here 0 indicates degenerate edges s0(x) ∈ X1, the letter a indicates edges which are 
nondegenerate, and 1 indicates edges which may be degenerate or nondegenerate. For w
a word in this alphabet {0, 1, a}, of length |w| = n, put

Xw :=
∏

Xi ⊂ (X1)n.

i∈w
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This inclusion is full since Xa ⊂ X1 is full by completeness. Denote by Xw the 
∞-groupoid of n-simplices whose principal edges have the types indicated in the word 
w, or more explicitly, the full sub-∞-groupoid of Xn given by the pullback diagram

Xw Xn

Xw (X1)n.

(2)

Lemma 2.9. If X and Y are complete simplicial spaces and f : Y → X is conservative, 
then Ya maps to Xa, and the following square is a pullback:

Y1 Ya

X1 Xa.

Proof. This square is the complement of the pullback saying what conservative means. 
But it is general in extensive ∞-categories such as S, that in the situation

A′ A′ + B′ B′

A A + B B,

one square is a pullback if and only if the other is. �
Corollary 2.10. If X and Y are complete simplicial spaces and f : Y → X is conservative, 
then for every word w ∈ {0, 1, a}∗, the following square is a pullback:

Yn Yw

Xn Xw.

(3)

Proof. The square is connected to

(Y1)n Y w

(X1)n Xw

(4)
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by two instances of pullback-square (2), one for Y and one for X. It follows from 
Lemma 2.9 that (4) is a pullback, hence also (3) is a pullback, by Lemma 1.3. �
Proposition 2.11. If X and Y are complete simplicial spaces and f : Y → X is CULF, 
then for any word w ∈ {0, 1, a}∗ the following square is a pullback:

Y1

f

Yn Yw

f

X1 Xn Xw.

Proof. The required pullback square is a horizontal composite

Y1

f

Yn

f

Yw

f

X1 Xn Xw,

where the right-hand square is the pullback square (3) of Corollary 2.10. The horizontal 
arrows of the left-hand square are induced by the unique active map [n] → [1], and since 
f is CULF this square is a pullback also. �
Lemma 2.12. Let X be a complete simplicial space. Then for any words v, v′ ∈ {0, 1, a}∗, 
we have

Xv1v′ = Xv0v′ + Xvav′ ,

and hence

Xn =
∑

w∈{0,a}n

Xw.

Proof. Consider the diagram

Xv0v′ Xv1v′ Xvav′

Xv0v′
Xv1v′

Xvav′

The two squares are pullbacks, by an application of Lemma 1.3, since horizontal compo-
sition of either with the pullback square (2) for w = v1v′ gives again the pullback square 
(2), for w = v0v′ or w = vav′.

Since the bottom row is a sum diagram, it follows that the top row is also (since the 
∞-category of ∞-groupoids is extensive). �
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We now specialise to complete decomposition spaces, although the following result 
will be subsumed in Section 4 on stiff simplicial spaces.

Proposition 2.13. Let X be a complete decomposition space. Then for any words v, v′ in 
the alphabet {0, 1, a} we have

Xv0v′ = Im(s|v| : Xvv′ → Xv1v′).

That is, the kth principal edge of a simplex σ is degenerate if and only if σ = sk−1dkσ.

Recall that |v| denotes the length of the word v and, as always, the notation Im refers 
to the essential image.

Proof. From (2) we see that (independently of the decomposition-space axiom) Xv0v′ is 
characterised by the top pullback square in the diagram

Xv0v′ Xv1v′

d⊥
|v| d�

|v′|Xv0v′
Xv1v′

X0 s0
X1

But the decomposition-space axiom applied to the exterior pullback diagram says that 
the top horizontal map is s|v|, and hence identifies Xv0v′ with the image of s|v| : Xvv′ →
Xv1v′ . For the final statement, note that if σ = sk−1τ then τ = dkσ. �

Combining this with Lemma 2.12 we obtain the following result.

Corollary 2.14. Let X be a complete decomposition space. For any words v, v′ in the 
alphabet {0, 1, a} we have

Xv1v′ = s|v|(Xvv′) + Xvav′ .

2.15. Effective simplices. A simplex in a complete simplicial space X is called effective
when all its principal edges are nondegenerate. We put

�Xn := Xa···a ⊂ Xn,

the full sub-∞-groupoid of Xn spanned by the effective simplices. (Every 0-simplex is 
effective by convention: �X0 = X0.) It is clear that outer face maps d⊥, d� : Xn → Xn−1
preserve effective simplices, and that every effective simplex is nondegenerate, i.e. is not 
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in the image of any degeneracy map. It is a useful feature of complete decomposition 
spaces that the converse is true too:

Corollary 2.16. In a complete decomposition space X, a simplex is effective if and only 
if it is nondegenerate:

�Xn = Xn \
⋃n

i=0 Im(si).

Proof. It is clear that �Xn is the complement of X01···1 ∪ · · · ∪ X1···10 and by Proposi-
tion 2.13 we can identify each of these spaces with the image of a degeneracy map. �

In fact this feature is enjoyed by a more general class of complete simplicial spaces, 
called stiff, treated in Section 4.

Iterated use of Corollary 2.14 yields

Corollary 2.17. For X a complete decomposition space we have

Xn =
∑

sjk . . . sj1( �Xn−k),

where the sum is over all subsets {j1 < · · · < jk} of {0, . . . , n − 1}.

Lemma 2.18. If a complete decomposition space X is a Segal space, then �Xn 
 �X1 ×X0

· · · ×X0
�X1, the ∞-groupoid of strings of n composable nondegenerate arrows in Xn 


X1 ×X0 · · · ×X0 X1.

This follows immediately from the pullback square (2). Note that if furthermore X is 
Rezk complete, we can say non-invertible instead of nondegenerate.

3. Möbius inversion in the convolution algebra

In this section, we establish a Möbius inversion principle at the objective level for 
arbitrary complete decomposition spaces. (Later we shall impose the finiteness conditions 
necessary for taking (homotopy) cardinality to obtain the Möbius inversion principle also 
at the classical ‘numerical’ level.)

3.1. Convolution. In homotopy linear algebra [10], ∞-categories S/B play the role of the 
vector spaces with basis π0B. Just as a linear functional is determined by its values on 
basis elements, linear functors S/B → S correspond to arbitrary functors B → S, hence 
the ∞-category SB can be considered the linear dual of the slice ∞-category S/B (see [10]
for the precise statements and proof).

If X is a decomposition space, the coalgebra structure on S/X1 therefore induces an 
algebra structure on SX1 . The convolution product of two linear functors
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F,G : S/X1 −→ S,

given by spans X1 ← M → 1 and X1 ← N → 1, is the composite of their tensor product 
F ⊗G and the comultiplication,

F ∗G : S/X1
Δ−→ S/X1 ⊗ S/X1

F⊗G−→ S⊗ S
∼−→ S.

Thus the convolution product of F and G is given by the composite of spans

X1

X2 M ∗N

X1 ×X1 M ×N 1.

The neutral element for convolution is ε : S/X1 → S defined by the span

X1
s0← X0 → 1 .

3.2. The zeta functor. The zeta functor

ζ : S/X1 → S

is the linear functor defined by the span

X1
=← X1 → 1 .

We will see later in the locally finite situation (see 7.4) that on taking the homotopy 
cardinality of the zeta functor one obtains the constant function 1 on π0X1, that is, the 
classical zeta function in the incidence algebra.

It is clear from the definition of the convolution product that the kth convolution 
power of the zeta functor is given by

ζk : X1
g← Xk → 1,

where g : [1] → [k] is the unique active map in degree k.
Consider also the elements δa and ha of the incidence algebra given by the spans

δa : X1 ← (X1)[a] → 1, ha : X1
�a�← 1 → 1

where (X1)[a] denotes the component of X1 containing a ∈ X1. Then zeta is the sum of 
the elements δa, or the homotopy sum of ha
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ζ 

∑

a∈π0X1

δa 

a∫
ha.

3.3. The idea of Möbius inversion à la Leroux. We are interested in the invertibility of 
the zeta functor under the convolution product. Unfortunately, at the objective level it 
can practically never be convolution invertible, because the inverse μ should always be 
given by an alternating sum (cf. Theorem 3.8)

μ = Φeven − Φodd

(of the Phi functors defined below). We have no minus sign available, but following 
the idea of Content–Lemay–Leroux [4], developed further by Lawvere–Menni [23], we 
establish the sign-free equations

ζ ∗ Φeven 
 ε + ζ ∗ Φodd, Φeven ∗ ζ 
 ε + Φodd ∗ ζ.

In the category case (cf. [4] and [23]), Φeven (resp. Φodd) is given by even-length 
(resp. odd-length) chains of non-identity arrows. (We keep the Φ-notation in honour of 
Content–Lemay–Leroux.) In the general setting of decomposition spaces we cannot talk 
about chains of arrows, but in the complete case we can still talk about effective simplices 
and their principal edges.

From now on we assume again that X is a complete decomposition space.

3.4. ‘Phi’ functors. We define Φn to be the linear functor given by the span

X1 ←− �Xn −→ 1,

where �Xn is the full sub-∞-groupoid of Xn spanned by the effective simplices, which are 
the same as the non-degenerate simplices since X is a complete decomposition space, see 
2.15 and Corollary 2.16. If n = 0 then �X0 = X0 by convention, and Φ0 is given by the 
span

X1 ←− X0 −→ 1.

That is, Φ0 is the linear functor ε. Note that Φ1 = ζ − ε. The minus sign makes sense 
here, since X0 (representing ε) is really a full sub-∞-groupoid of X1 (representing ζ).

To compute convolution with Φn, a key ingredient is the following general lemma 
(with reference to the word notation of 2.8).

Lemma 3.5. Let X be a complete decomposition space. Then for any words v, v′ in the 
alphabet {0, 1, a}, the square
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Xvv′ X2

Xv ×Xv′ X1 ×X1

is a pullback.

Proof. Let m = |v| and n = |v′|. The square is the outer rectangle in the top row of the 
diagram

Xvv′ Xm+n X1+n X2

Xv ×Xv′ Xm ×Xn X1 ×Xn X1 ×X1

Xv ×Xv′
X1

m ×X1
n

The left-hand outer rectangle is a pullback by definition of Xvv′, and the bottom square 
is a pullback by definition of Xv and Xv′ . Hence the top-left square is a pullback. But the 
other squares in the top row are pullbacks because X is a decomposition space (compare 
the square 1 of [11, 5.3]). �
Lemma 3.6. We have

Φn 
 (Φ1)n = (ζ − ε)n,

the nth convolution product of Φ1 with itself.

Proof. This follows from the definitions and Lemma 3.5. �
Proposition 3.7. The linear functors Φn satisfy

ζ ∗ Φn 
 Φn + Φn+1 
 Φn ∗ ζ.

Proof. We can compute the convolution ζ ∗ Φn by Lemma 3.5 as

X1

X2 X1a···a

X1 ×X1 X1 × �Xn 1
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But Lemma 2.12 tells us that X1a···a = X0a···a + Xaa···a = �Xn + �Xn+1, where the 
identification in the first summand is via s0, in virtue of Proposition 2.13. This is an 
equivalence of ∞-groupoids over X1 so the resulting span is Φn + Φn+1 as desired. The 
second identity claimed follows similarly. �

Put

Φeven :=
∑

n even
Φn, Φodd :=

∑
n odd

Φn.

Theorem 3.8. For a complete decomposition space, the following Möbius inversion prin-
ciple holds:

ζ ∗ Φeven 
 ε + ζ ∗ Φodd,

Φeven ∗ ζ 
 ε + Φodd ∗ ζ.

In fact, these four linear functors are all equivalent.

Proof. This follows immediately from Proposition 3.7: all four linear functors are equiv-
alent to 

∑
r≥0 Φr. �

We note the following immediate corollary of Proposition 2.11, which can be read as 
saying ‘Möbius inversion is preserved by CULF functors’:

Corollary 3.9. If f : Y → X is CULF, then f∗ζ 
 ζ and f∗Φn 
 Φn for all n ≥ 0.

4. Stiff simplicial spaces

We saw that in a complete decomposition space, degeneracy can be detected on princi-
pal edges. In Section 5 we shall come to split simplicial spaces, which share this property. 
A common generalisation is that of stiff complete simplicial spaces, which we now intro-
duce.

4.1. Stiffness. A simplicial space X : Δop → S is called stiff if it sends codegeneracy/inert 
pushouts in Δ to pullbacks in S. These pushouts are examples of active–inert pushouts, 
so in particular every decomposition space is stiff.

Lemma 4.2. A simplicial space X is stiff if and only if the following diagrams are pull-
backs for all 0 ≤ i ≤ n.

Xn

si
Xn+1

d⊥
i d�

n−i

X0 s0
X1
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Proof. The squares in the lemma are special cases of the degeneracy/inert squares. On 
the other hand, every degeneracy/inert square sits in between two of the squares of the 
lemma in such a way that Lemma 1.3 forces it to be a pullback too. �

The following two lemmas for stiff simplicial spaces are proved in the same way as for 
decomposition spaces [11, Lemmas 3.10 and 3.9 respectively].

Lemma 4.3. (‘Bonus pullbacks’) Let X be a stiff simplicial space. For all n ≥ 3 and all 
0 < i < j < n, the following squares of active face and degeneracy maps are pullbacks.

Xn−3
si−1

sj−2

Xn−2

sj−1

Xn−2 si−1
Xn−1

Xn−1
di

sj

Xn−2

sj−1

Xn
di

Xn−1

Xn−1
dj−1

si−1

Xn−2

si−1

Xn
dj

Xn−1.

Lemma 4.4. In a stiff simplicial space X, every degeneracy map is a pullback of s0 :
X0 → X1. In particular, if just s0 : X0 → X1 is mono then all degeneracy maps are 
mono.

Corollary 4.5. A simplicial map f : Y → X between stiff simplicial spaces is conservative 
if and only if the naturality square for s0 is a pullback:

Y0
s0

Y1

X0 s0
X1.

Corollary 4.6. A stiff simplicial space X is complete if and only if the canonical map 
from the constant simplicial space X0 is conservative.

Proof. This follows from the previous two lemmas and a standard pullback argument, 
exploiting the pullback characterisation of completeness 2.7. �

For complete simplicial spaces, stiffness can be characterised in terms of degeneracy:

Proposition 4.7. The following are equivalent for a complete simplicial space X.

(1) X is stiff.
(2) Outer face maps d⊥, d� : Xn → Xn−1 preserve nondegenerate simplices.
(3) Any nondegenerate simplex is effective. More precisely,

�Xn = Xn \
⋃n

i=0 Im(si−1).
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(4) If the ith principal edge of σ ∈ Xn is degenerate, then σ = si−1di−1σ = si−1diσ, 
that is

X1...101...1 = Im(si−1 : Xn−1 → Xn)

(5) For each word w ∈ {0, a}n we have

Xw = Im(sjk−1 . . . sj1−1 : �Xn−k → Xn).

where {j1 < · · · < jk} = {j : wj = 0}.

Proof. (1) ⇒ (2): Suppose σ ∈ Xn and that d�σ is degenerate. Then d�σ is in the image 
of some si : Xn−2 → Xn−1, and hence by (1) already σ is in the image of si : Xn−1 → Xn.

(2) ⇒ (3): The principal edges of a simplex are obtained by applying outer face maps, 
so nondegenerate simplices are also effective. For the more precise statement, just note 
that both subspaces are full, so are determined by the properties characterising their 
objects.

(3) ⇒ (4): As σ is not effective, we have σ = sjτ . If j > i − 1 then the ith principal 
edge of σ is also that of τ , so by induction τ ∈ Im(si−1). Therefore σ ∈ Im(si−1) also, 
and σ = si−1di−1σ = si−1diσ as required. If j < i − 1 the argument is similar.

(4) ⇔ (1): To show that X is stiff, by Lemma 4.2 it is enough to check that this is a 
pullback:

Xn

si
Xn+1

d⊥
i d�

n−i

X0 s0
X1

But the pullback is by definition X1···101···1 ⊂ Xn+1, and by assumption this is canoni-
cally identified with the image of si : Xn → Xn+1, establishing the required pullback.

(4) ⇔ (5): This is clear, using Lemma 2.12. �
In summary, an important feature of complete stiff simplicial spaces is that all informa-

tion about degeneracy is encoded in the principal edges. We exploit this to characterise 
conservative maps between complete stiff simplicial spaces:

Proposition 4.8. For X and Y complete stiff simplicial spaces, and f : Y → X a simpli-
cial map, the following are equivalent.

(1) f is conservative.
(2) f preserves the word splitting, i.e. for every word w ∈ {0, a}∗, f sends Yw to Xw.
(3) f1 maps Ya to Xa.
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Proof. We already saw (Corollary 2.10) that conservative maps preserve the word split-
ting (independently of X and Y being stiff), which proves (1) ⇒ (2). The implication 
(2) ⇒ (3) is trivial. Finally assume that f1 maps Ya to Xa. To check that f is conserva-
tive, it is enough (by Corollary 4.5) to check that the square

Y0
s0

Y1

X0 s0
X1

is a pullback. But since X and Y are complete, this square is just

Y0
s0

Y0 + Ya

X0 s0
X0 + Xa,

which is clearly a pullback when f1 maps Ya to Xa. �
This proposition can be stated more formally as follows. For X and Y stiff complete 

simplicial spaces, the space of conservative maps Cons(Y, X) is given as the pullback

Cons(Y,X)
∏
n∈N

∏
w∈{0,a}n

Map(Yw, Xw)

Nat(Y,X)
∏
n∈N

Map(Yn, Xn).

The vertical arrow on the right is given as follows. We have

Map(Yn, Xn) 
 Map(
∑

w∈{0,a}n

Yw,
∑

v∈{0,a}n

Xv) 

∏

w∈{0,a}n

Map(Yw,
∑

v∈{0,a}n

Xv).

For fixed w ∈ {0, a}n, the space Map(Yw, 
∑

v∈{0,a}n Xv) has a distinguished subobject, 
namely consisting of those maps that map into Xw for that same word w.

5. Split decomposition spaces

In this section, we digress to introduce split decomposition spaces, more general than 
the decomposition spaces of locally finite length of the following section. The interest in 
this notion is its relation to Kan extension of semi-simplicial spaces (Theorem 5.19).
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5.1. Split simplicial spaces. In a complete simplicial space X, by definition all degeneracy 
maps are monomorphisms, so in particular it makes sense to talk about nondegenerate 
simplices in degree n: these form the full sub-∞-groupoid of Xn given as the complement 
of the degeneracy maps si : Xn−1 → Xn. A simplicial space is split if it is complete and 
the face maps preserve nondegenerate simplices.

5.2. Example (continued). The decomposition space G of finite graphs (1.13) is split. 
Indeed, the face maps join adjacent layers or project away the bottom or top layer. To 
be nondegenerate means having no empty layers, and this property is clearly preserved 
by the face maps.

By Proposition 4.7, a split simplicial space is stiff, so the results from the previous 
section are available for split simplicial spaces. In particular, nondegeneracy can be 
measured on principal edges, and we have

Corollary 5.3. If X is a split simplicial space, then the sum splitting

Xn =
∑

w∈{0,a}n

Xw

is realised by the degeneracy maps.

5.4. Non-example. The strict nerve of any category with a nontrivial section-retraction 
pair of arrows, r ◦ s = id, constitutes an example of a complete decomposition space 
which is not split. Indeed, the nondegenerate simplices are the chains of composable 
non-identity arrows, but we have d1(s, r) = id.

In this way, splitness can be seen as an abstraction of the condition on a 1-category that 
its identity arrows be indecomposable. We proceed to formalise this, cf. Corollary 5.11
below.

5.5. Indecomposable units. A simplicial space X : Δop → S is said to have indecomposable 
units when the following squares are pullbacks for all 0 ≤ i ≤ n:

Xn
=

sisi

Xn

si

Xn+2
di+1

Xn+1.
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We note that having indecomposable units is an exactness condition: in Δ, the squares

[n] [n]=

[n+2]

sisi

[n+1]

si

di+1

are pushouts, and the condition stipulates that they be sent to pullbacks.
The first instance of the indecomposable-units condition,

X0
=

s0s0

X0

s0

X2
d1

X1

(5)

motivates the name, in view of the following important corollary.

Corollary 5.6. For a simplicial space X satisfying the pullback condition (5), if a 
2-simplex σ ∈ X2 has degenerate long edge d1σ then σ itself is totally degenerate.

For the nerve of a category, this is the classical notion of indecomposable identity arrows. 
Note that if X is furthermore complete, then the statement of the corollary is actually 
‘if and only if’.

Lemma 5.7. A stiff simplicial space X satisfying the pullback condition (5) has indecom-
posable units.

Proof. The pullback square for a general instance of the indecomposable-units condition 
can be connected to the first instance (5) by inert face maps, and the result follows from 
stiffness and the usual pullback argument. �
Lemma 5.8. For X stiff and complete, we have

X0
=

s0s0

X0

s0

X2
d1

X1

⇔

∅ X0

s0

�X2
d1

X1 .

Proof. By completeness, we can write X2 = X00 + X0a + Xa0 + Xaa. We compute the 
pullback of s0 to each of these summands, exploiting that degenerate principal edges 
only arise from degeneracy maps, cf. Proposition 4.7. The first summand gives
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X0
=

=

X0
=

s0

X0

s0

X0 s0
X1 s0

X2
d1

X1,

where the left-hand square is a pullback since X is complete. The second summand gives

∅ X0
=

s0

X0

s0

Xa X1 s0
X2

d1
X1,

since Xa and X0 are disjoint in X1. The third summand is analogous to the second. In 
conclusion, the total pullback gives X0 if and only if and the fourth summand gives ∅. �
Proposition 5.9. A simplicial space X : Δop → S is split if and only if it is stiff, complete 
and has indecomposable units.

Proof. Suppose X is split. Then it is complete, and it follows from Proposition 4.7 that 
it is stiff. By Lemmas 5.7 and 5.8, it remains just to check that the square

∅ X0

s0

�X2
d1

X1

is a pullback, but this follows from splitness: since X is stiff and complete, nondegenerate 
is the same as effective (Proposition 4.7), so splitness implies that d1 maps �X2 into �X1, 
and �X1 is disjoint from X0.

Suppose now that X is stiff and has indecomposable units. Fix a simplex σ ∈ Xn+2. We 
must show that if σ is nondegenerate then also djσ is nondegenerate for all 0 ≤ j ≤ n +2. 
By stiffness we already know that this is the case for dj inert, so it remains to treat the 
active case. The contrapositive statement is that if for some 0 < j < n + 2 we have that 
djσ is degenerate then already σ is degenerate. That is, if we have djσ = siτ for some 
indices 0 < j < n + 2 and 0 ≤ i ≤ n, and some simplex τ ∈ Xn+1, then there exists a 
simplex ρ ∈ Xn+1 and an index k such that σ = skρ. There are two cases: if j = i + 1, 
then we have the pullback square expressing indecomposable units



1270 I. Gálvez-Carrillo et al. / Advances in Mathematics 333 (2018) 1242–1292
Xn
=

sisi

Xn

si

Xn+2
di+1

Xn+1,

and we can take ρ = siτ and k = i. On the other hand for j �= i + 1, we have the ‘bonus 
pullback’ (cf. Lemma 4.3)

Xn+1

s

Xn

si

Xn+2
dj

Xn+1,

and we can take ρ ∈ Xn+1 to be the simplex corresponding to (σ, τ) in the pullback. In 
either case, we see that σ is degenerate, as required. �
Corollary 5.10. A complete simplicial space X : Δop → S is split if and only if it preserves 
pullbacks along degeneracy maps in Δop. In other words, every degeneracy map forms 
pullbacks with any other face or degeneracy map.

Proof. Since X is stiff, Lemma 4.3 says that si forms pullbacks with all dj except di+1, 
but this case is covered by having indecomposable units. On the other hand, again by 
bonus pullbacks, si forms pullbacks against all sj except against itself, but this case is 
covered by being complete (cf. 2.7). �
Corollary 5.11. A complete decomposition space is split if and only if it has indecompos-
able units. �

The long edge of a simplex σ ∈ Xn in a simplicial space is the element g(σ) ∈ X1, 
where g : Xn → X1 is the unique active map.

Proposition 5.12. In a split simplicial space X, if the long edge of a simplex σ ∈ Xn is 
degenerate then the simplex is totally degenerate (that is, in the image of s0

n).

Proof. Induction on n. The case n = 2 is Corollary 5.6. Suppose the proposition is true 
in dimension n and consider σ′ ∈ Xn+1 with long edge u′ := d1

nσ′, assumed degenerate. 
Consider the 2-simplex τ := d1

n−1σ′ and the n-simplex σ := dn+1σ
′. Then the long edge 
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of τ is d1τ = d1
nσ′ = u′, and the long edge of σ is d1

n−1σ = d1
n−1dn+1σ

′ = d2d1
n−1σ′ =

d2τ :

σ′ : 1 σ n
d0τ

0
d2τ

u′
n+1

τ

Since u′ is degenerate by assumption, τ is totally degenerate by induction, so in particular 
its principal edges d2τ and d0τ are degenerate. But d2τ is the long edge of σ, so by 
induction σ is totally degenerate. Since the principal edges of σ′ are those of σ plus d0τ

in the end, we conclude that all principal edges of σ′ are degenerate, so σ′ is totally 
degenerate by Proposition 4.7 (as X is stiff). �
5.13. Rezk complete simplicial spaces. A simplicial space X : Δop → S is called Rezk 
complete when s0 : X0 → Xeq

1 is an equivalence. Here Xeq
1 is defined as the full 

sub-∞-groupoid of X1 spanned by those f : x → y for which there exists σ, τ ∈ X2

with d0σ 
 f and d1σ 
 s0y, and d2τ 
 f and d1τ 
 s0x. When X is a Segal space, 
this definition agrees with the usual definition.

Lemma 5.14. If a complete simplicial space has indecomposable units then it is Rezk 
complete.

Proof. Since Xeq
1 → X1 is mono by construction, and s0 : X0 → X1 is mono by com-

pleteness, to show that the two sub-∞-groupoids coincide, it is enough to show that every 
element f : x → y in Xeq

1 is actually degenerate. But if σ ∈ X2 exists with d1σ 
 s0y

and d0σ 
 f , as in the definition of Xeq
1 , then indecomposability of units implies that f

is degenerate. �
5.15. Semi-decomposition spaces. Let Δinj ⊂ Δ denote the subcategory consisting of all 
the objects and only the injective maps. A semi-simplicial space is an object in the 
functor ∞-category Fun(Δop

inj, S). A semi-decomposition space is a semi-simplicial space 
preserving active–inert pullbacks in Δop

inj. Since there are no degeneracy maps in Δinj, this 
means that we are concerned only with pullbacks between active face maps and inert 
face maps.

Every simplicial space has an underlying semi-simplicial space obtained by restriction 
along Δinj ⊂ Δ. The forgetful functor Fun(Δop, S) → Fun(Δop

inj, S) has a left adjoint given 
by left Kan extension along Δinj ⊂ Δ:
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Δop
inj

Z
S

Δop
Z

The left Kan extension has the following explicit description:

Z0 = Z0

Z1 = Z1 + Z0

Z2 = Z2 + Z1 + Z1 + Z0

...

Zk =
∑

w∈{0,a}k

Z|w|a

For w ∈ {0, a}k and σ ∈ Z|w|a the corresponding element of Zk is denoted

sir . . . si2si1σ

where r = k − |w|a and i1 < i2 < · · · < ir with wij = 0. The faces and degeneracies of 
such elements are defined in the obvious way.

Proposition 5.16. A simplicial space is split if and only if it is the left Kan extension of 
a semi-simplicial space.

Proof. Given Z : Δop
inj → S, it is clear from the construction that the new degeneracy 

maps in Z are monomorphisms. Hence Z is complete. On the other hand, to say that 
σ ∈ Zn is nondegenerate is precisely to say that it belongs to the original component 
Zn, and the face maps here are the original face maps, hence map σ into Zn−1 which is 
precisely the nondegenerate component of Zn−1. Hence Z is split.

For the other implication, given a split simplicial space X, since X is stiff and com-
plete, we know that nondegenerate is the same as effective (Proposition 4.7) and we have 
a sum splitting

Xn =
∑

w∈{0,a}n

Xw.

Now by assumption the face maps restrict to the nondegenerate simplices to give a 
semi-simplicial space �X : Δop

inj → S. It is now clear from the explicit description of the 

left Kan extension that ( �Xn) = Xn, from where it follows readily that X is the left Kan 
extension of �X. �
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Proposition 5.17. A simplicial space is a split decomposition space if and only if it is the 
left Kan extension of a semi-decomposition space.

Proof. It is clear that if X is a split decomposition space then �X is a semi-decomposition 
space. Conversely, if Z is a semi-decomposition space, then one can check by inspection 
that Z satisfies the four pullback conditions in [11, Proposition 3.3]: two of these diagrams 
concern only face maps, and they are essentially from Z, with degenerate stuff added. 
The two diagrams involving degeneracy maps are easily seen to be pullbacks since the 
degeneracy maps are sum inclusions. �
5.18. Example (continued). The split decomposition space G of finite graphs (see Ex-
amples 1.13 and 5.2) is the left Kan extension of a semi-simplicial space Z where Zn is 
the groupoid of n-layered graphs with no empty layers. Here Z0 is still the contractible 
groupoid consisting of the 0-layered empty graph, and the left Kan extension freely adds 
all the degenerate n-layerings for n > 0.

Theorem 5.19. The left adjoint functor Fun(Δop
inj, S) → Fun(Δop, S) given by Kan exten-

sion along Δinj ⊂ Δ induces an equivalence of ∞-categories

Fun(Δop
inj, S) 
 Splitcons,

the ∞-category of split simplicial spaces and conservative maps.

Proof. Let X and Y be split simplicial spaces, then �X and �Y are semi-simplicial spaces 
whose left Kan extensions are X and Y again. The claim is that

Cons(Y,X) 
 Nat(�Y , �X).

Intuitively, the reason this is true can be seen in the first square as in the proof of 
Lemma 4.8: to give a pullback square

Y0
s0

Y0 + Ya

X0 s0
X0 + Xa,

amounts to giving Y0 → X0 and Ya → Xa (and of course, in both cases this data is 
required to be natural in face maps), that is to give a natural transformation �Y → �X. 
To formalise this idea, note first that Nat(�Y , �X) can be described as a limit

Nat(�Y , �X) −→
∏

Map(�Yn, �Xn) → . . .

n∈N
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where the rest of the diagram contains vertices indexed by all the face maps, expressing 
naturality. Similarly Nat(Y, X) is given as a limit

Nat(Y,X) −→
∏
n∈N

Map(Yn, Xn) → . . .

where this time the rest of the diagram furthermore contains vertices corresponding to 
degeneracy maps. The full subspace of conservative maps is given instead as

Cons(Y,X) −→
∏

w∈{0,a}∗
Map(Yw, Xw) → . . .

as explained in connection with Lemma 4.8. Now for each degeneracy map si : Xn →
Xn+1, there is a vertex in the diagram. For ease of notation, let us consider s0 : Xn →
Xn+1. The corresponding vertex sits in the limit diagram as follows: for each word 
v ∈ {0, a}n, we have

∏
w∈{0,a}∗

Map(Yw, Xw)
proj

proj

Map(Y0v, X0v)

pre s0

Map(Yv, Xv) post s0
Map(Yn, Xn+1).

Now both the pre and post composition maps are monomorphisms with essential image 
Map(Yv, X0v), so the two projections coincide, which is to say that the limit factors 
through the corresponding diagonal. Applying this argument for every degeneracy map 
si : Xn → Xn+1, and for all words, we conclude that the limit factors through the 
product indexed only over the words without degeneracies,

∏
n∈N

Map(�Yn, �Xn).

Having thus eliminated all the vertices of the limit diagram that corresponded to de-
generacy maps, the remaining diagram has precisely the shape of the diagram com-
puting Nat(�Y , �X), and we have already seen that the ‘starting vertex’ is the same, ∏

n∈N
Map(�Yn, �Xn). For the remaining vertices, those corresponding to face maps, it 

is readily seen that in each case the space is that of the Nat(�Y , �X) diagram, modulo 
some constant factors that do not play any role in the limit calculation. In conclusion, 
the diagram calculating Cons(Y, X) as a limit is naturally identified with the diagram 
calculating Nat(�Y , �X) as a limit. �
Proposition 5.20. The equivalence of Theorem 5.19 restricts to an equivalence between 
semi-decomposition spaces and all maps and split decomposition spaces and conservative 
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maps, and it restricts further to an equivalence between semi-decomposition spaces and 
ULF maps and split decomposition spaces and CULF maps.

5.21. Dyckerhoff–Kapranov 2-Segal semi-simplicial spaces. Dyckerhoff and Kapranov’s 
notion of 2-Segal space [6] does not refer to degeneracy maps at all, and can be formulated 
already for semi-simplicial spaces: a 2-Segal space is precisely a simplicial space whose 
underlying semi-simplicial space is a semi-decomposition space. We get the following 
corollary to the results above.

Corollary 5.22. Every split decomposition space is the left Kan extension of a 2-Segal 
semi-simplicial space.

6. The length filtration

In this section we introduce the notion of length of an edge (1-simplex) in a complete 
decomposition space, and the corresponding notion of locally finite length, which endows 
the resulting coalgebra with an important filtration. Locally finite length is one of two 
finiteness conditions in the notion of Möbius decomposition space that we are building 
up to.

6.1. Length. Let a be an edge in a complete decomposition space X. The length of a is 
defined to be the largest dimension of an effective simplex (that is, of a nondegenerate 
simplex, see 2.15 and Corollary 2.16) with long edge a:

�(a) := max{dim σ | σ ∈ �X, g(σ) = a},

where as usual g : Xr → X1 denotes the unique active map. More formally: the length 
is the greatest r such that the pullback

( �Xr)a �Xr

g

1
�a�

X1

is nonempty (or ∞ if there is no such greatest r). Length zero can happen only for 
degenerate edges.

6.2. Decomposition spaces of locally finite length. A complete decomposition space X is 
said to have locally finite length when every edge a ∈ X1 has finite length. That is, the 
pullback
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( �Xr)a �Xr

g

1
�a�

X1

is empty for r � 0. We shall also use the word tight as synonym for ‘complete and of 
locally finite length’, to avoid confusion with the notion of ‘locally finite’ introduced in 
Section 7.

Example 6.3. For posets, the notion of locally finite length coincides with the classical 
notion (see for example Stern [33]), namely that for every x ≤ y, there is an upper bound 
on the possible lengths of chains from x to y. When X is the strict (resp. fat) nerve of a 
category, locally finite length means that for each arrow a, there is an upper bound on 
the length of factorisations of a containing no identity (resp. invertible) arrows.

A paradigmatic non-example is given by the strict nerve of a category containing 
an idempotent non-identity endo-arrow, e = e ◦ e: clearly e admits arbitrarily long 
decompositions e = e ◦ · · · ◦ e.

6.4. Example (continued). The decomposition space G of finite graphs (Example 1.13) 
is of locally finite length, since a graph G ∈ G1 with k vertices can have at most k
nonempty layers. (For similar reasons, many other examples of decomposition spaces of 
combinatorial nature have locally finite length [14].)

Proposition 6.5. If f : Y → X is CULF and X is a tight decomposition space, then also 
Y is tight.

Proof. Since X is a decomposition space and since f is CULF, also Y is a decomposi-
tion space ([11, Lemma 4.6]), and the CULF condition ensures that Y is furthermore 
complete, because the s0 of Y is the pullback of the s0 of X. Finally, Y is also tight by 
Proposition 2.11. �
Proposition 6.6. A tight decomposition space is split.

Proof. A tight decomposition space X is in particular complete and stiff, so by Lem-
mas 5.7 and 5.8 it is enough to prove that for r = 2 we have a pullback square

∅ X0

s0

�Xr g
X1,

where g : Xr → X1 is the unique active map (or equivalently, the long-edge map g
preserves nondegenerate simplices). We actually prove this for r ≥ 2. Suppose that 
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σ ∈ �Xr has degenerate long edge u = gσ. The idea is to exploit the decomposition-space 
axiom to glue together two copies of σ, called σ1 and σ2, to get a bigger nondegenerate 
simplex σ1#σ2 ∈ �Xr+r again with long edge u. By repeating this construction we obtain 
a contradiction to the finite length of u. It is essential for this construction that u is 
degenerate, say u = s0x, because we glue along the 2-simplex τ = s0u = s1u = s0s0x

which has the property that all three edges are u. Here is a picture of the gluing:

·

u

σ1 σ2

τ

·
u

u

·

To formalise this, consider the diagram

Xr+r
d1

r−1

d�
r

d⊥
r

Xr+1

d2
r−1

d�
r

d⊥
Xr

g=d1
r−1

X2

d�

d⊥
X1

Xr
g=d1

r−1
X1.

The two squares are pullbacks since X is a decomposition space, and the triangles are 
simplicial identities. In the right-hand square we have τ ∈ X2 and σ2 ∈ Xr, with d⊥τ =
u = gσ2. Hence we get a simplex ρ ∈ Xr+1. This simplex has d�rρ = d�τ = u, which 
means that in the left-hand square it matches σ1 ∈ Xr, to produce altogether the desired 
simplex σ1#σ2 ∈ Xr+r. By construction, this simplex belongs to �Xr+r: indeed, its first 
r principal edges are the principal edges of σ1, and its last r principal edges are those 
of σ2. Its long edge is clearly the long edge of τ , namely u again, so we have produced a 
longer decomposition of u than the one given by σ, thus contradicting the finite length 
of u. �

Alternative characterisations of the length of an edge in a tight decomposition space 
can now be given:

Proposition 6.7. Let X be a tight decomposition space, and f ∈ X1. Then the following 
conditions on r ∈ N are equivalent:
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(1) For all words w in the alphabet {0, a} with |w|a ≥ r + 1 (that is, the letter a occurs 
at least r + 1 times in w), the fibre (Xw)f is empty,

∅ Xw

1
�f�

X1.

(2) For all k ≥ r + 1, the fibre ( �Xk)f is empty.
(3) The fibre ( �Xr+1)f is empty.

The length �(f) of an edge in a tight decomposition space is the least r ∈ N satisfying 
these equivalent conditions.

Proof. Clearly (1) ⇒ (2) ⇒ (3) and, by definition, the length of f is the least integer 
r satisfying (2). It remains to show that (3) implies (1). Suppose (1) is false, that is, 
we have w ∈ {0, a}n with k ≥ r + 1 occurrences of a and an element σ ∈ Xw with 
g(σ) = f . Then by Corollary 2.17 we know that σ is an (n − k)-fold degeneracy of some 
τ ∈ �Xk, and σ and τ will have the same long edge f . Finally we see that (3) is false by 
considering the element d1

k−r−1τ ∈ Xr+1, which has long edge f , and is nondegenerate 
(and hence effective) since τ is and face maps preserve nondegenerate simplices (as X is 
split by Proposition 6.6). �
6.8. The length filtration of the space of 1-simplices. Let X be a tight decomposition 
space. We define the kth stage of the length filtration for 1-simplices to consist of all the 
edges of length at most k:

X
(k)
1 := {f ∈ X1 | �(f) ≤ k}.

Then X(k)
1 is the full sub-∞-groupoid of X1 given by any of the following equivalent 

definitions:

(1) the complement of Im( �Xk+1 → X1).
(2) the complement of Im(

∐
|w|a>k Xw → X1).

(3) the full sub-∞-groupoid of X1 whose objects f satisfy (Xk+1)f ⊂
⋃

siXk

(4) the full sub-∞-groupoid of X1 whose objects f satisfy ( �Xk+1)f = ∅

(5) the full sub-∞-groupoid of X1 whose objects f satisfy (Xw)f = ∅ for all w ∈ {0, a}r
such that |w|a > k

It is clear from the definition of length that we have a sequence of monomorphisms

X
(0)
1 ↪→ X

(1)
1 ↪→ X

(2)
1 ↪→ . . . ↪→ X1.

The following is now clear.
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Proposition 6.9. A complete decomposition space is tight if and only if the X(k)
1 constitute 

a filtration, i.e.

X1 =
∞⋃
k=0

X
(k)
1 .

6.10. Length filtration of a tight decomposition space. Now define the length filtration 
for all of X: the length of a simplex σ with longest edge gσ = a is defined to be the 
length of a:

�(σ) := �(a).

In other words, we are defining the filtration in Xr by pulling it back from X1 along 
the unique active map Xr → X1. This automatically defines the active maps in each 
filtration degree, yielding an active-map complex

X
(k)
• : Δop

active → S.

To get the outer face maps, the idea is simply to restrict (since by construction all 
the maps X(k)

1 ↪→ X
(k+1)
1 are monos). We need to check that an outer face map applied 

to a simplex in X(k)
n again belongs to X(k)

n−1. This will be the content of Proposition 6.11
below. Once we have done that, it is clear that we have a sequence of CULF maps

X
(0)
• ↪→ X

(1)
• ↪→ · · · ↪→ X

and we shall see that X(0)
• is the constant simplicial space X0.

Proposition 6.11. In a tight decomposition space X, face maps preserve length: precisely, 
for any face map d : Xn+1 → Xn, if σ ∈ X

(k)
n+1, then dσ ∈ X

(k)
n .

Proof. Since the length of a simplex only refers only to its long edge, and since an active 
face map does not alter the long edge, it is enough to treat the case of outer face maps, 
and by symmetry it is enough to treat the case of d�. Let f denote the long edge of σ. 
Let τ denote the triangle d1

n−1σ. It has long edge f again. Let u and v denote the short 
edges of τ ,

·
v

τ
·

u

f
·

that is v = d⊥τ = d⊥
nσ and u = d�τ , the long edge of d�σ. The claim is that if �(f) ≤ k, 

then �(u) ≤ k. If we were in the category case, this would be true since any decomposition 
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of u could be turned into a decomposition of f of at least the same length, simply by 
postcomposing with v. In the general case, we have to invoke the decomposition-space 
condition to glue with τ along u. Precisely, for any simplex κ ∈ Xw with long edge u we 
can obtain a simplex κ#uτ ∈ Xw1 with long edge f : since X is a decomposition space, 
we have a pullback square

κ#uτ ∈ Xw1 Xw

g

κ�

τ ∈ X2
d�

d1

X1 u�

f ∈ X1

and d�τ = u = g(κ), giving us the desired simplex in Xw1. With this construction, any 
simplex κ of length > k violating �(u) = k (cf. the characterisation of length given in 
(1) of Proposition 6.7) would also yield a simplex κ#uτ (of at least the same length) 
violating �(f) = k. �

The following is an immediate consequence of Proposition 5.12.

Corollary 6.12. For a tight decomposition space X we have X(0)
n = X0 for all n. �

6.13. Coalgebra filtration. If X is a tight decomposition space, the sequence of CULF 
maps

X
(0)
• ↪→ X

(1)
• ↪→ · · · ↪→ X

defines coalgebra homomorphisms

S
/X

(0)
1

→ S
/X

(1)
1

→ · · · → S/X1

which clearly define a coalgebra filtration of S/X1 .
Recall that a filtered coalgebra is called connected if its 0-stage coalgebra is the trivial 

coalgebra (the ground ring). In the present situation the 0-stage is S
/X

(0)
1


 S/X0 , so we 
see that S/X1 is connected if and only if X0 is contractible.

On the other hand, the 0-stage elements are precisely the degenerate edges, which 
almost tautologically are group-like. Hence the incidence coalgebra of a tight decom-
position space will always have the property that the 0-stage is spanned by group-like 
elements. For some purposes, this property is nearly as good as being connected (cf. [21], 
[22] for this viewpoint in the context of renormalisation).
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6.14. Grading. Given a 2-simplex σ ∈ X2 in a complete decomposition space X, it is 
clear that we have

�(d2σ) + �(d0σ) ≤ �(d1σ)

generalising the case of a category, where f = ab implies �(a) +�(b) ≤ �(f). In particular, 
the following configuration of edges illustrates that one does not in general have equality:

· ·

·
f

a

·

· b

Provided none of the edges can be decomposed further, we have �(f) = 3, but �(a) =
�(b) = 1. For the same reason, the length filtration is not in general a grading: Δ(f)
contains the term a ⊗b of degree splitting 1 +1 < 3. Nevertheless, it is actually common in 
examples of interest to have a grading: this happens when all maximal chains composing 
to a given edge f have the same length, �(f). Many examples from combinatorics have 
this property [14].

The abstract formulation of the condition for the length filtration to be a grading is 
this: For every k-simplex σ ∈ Xk with long edge a and principal edges e1, . . . , ek, we 
have

�(a) = �(e1) + · · · + �(ek).

Equivalently, for every 2-simplex σ ∈ X2 with long edge a and short edges e1, e2, we 
have

�(a) = �(e1) + �(e2).

The length filtration is a grading if and only if the functor � : X1 → N extends to a 
simplicial map to the nerve of the monoid (N, +) (this map is rarely CULF, though).

If X is the nerve of a poset P , then the length filtration is a grading if and only if P is 
ranked, i.e. for any x, y ∈ P , every maximal chain from x to y has the same length [32].

6.15. Example (continued). The decomposition space G of finite graphs (Example 1.13) 
is graded by the number of vertices.

7. Locally finite decomposition spaces

In order to be able to take homotopy cardinality of the S-coalgebra obtained from 
a decomposition space X to get a coalgebra at the numerical level (vector spaces), 
we need to impose certain finiteness conditions on X. Firstly, just for the coalgebra 
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structure to have a homotopy cardinality, we need X to be locally finite (7.4) but it 
is not necessary that X be complete. Secondly, in order for Möbius inversion to admit 
a homotopy cardinality, what we need in addition is precisely the filtration condition 
(which in turn assumes completeness). We shall define a Möbius decomposition space to 
be a locally finite tight decomposition space (8.3).

We begin with a few reminders on finiteness of ∞-groupoids.

7.1. Finiteness conditions for ∞-groupoids. (Cf. [10].) An ∞-groupoid B is locally finite
if at each base point b the homotopy groups πi(B, b) are finite for i ≥ 1 and are trivial for 
i sufficiently large. It is called finite if furthermore it has only finitely many components. 
We denote by F the ∞-category of finite ∞-groupoids. A map of ∞-groupoids is finite
if its fibres are [10, §3]. The role of vector spaces is played by finite-∞-groupoid slices 
F/B (where B is a locally finite ∞-groupoid), while the role of profinite-dimensional 
vector spaces is played by finite-presheaf ∞-categories FB. Linear maps are given by 
spans of finite type, meaning A 

p← M
q→ B in which p is a finite map. Prolinear maps 

are given by spans of profinite type, where q is a finite map. Inside the ∞-category 
LIN , we have two ∞-categories: lin−→ whose objects are the finite-∞-groupoid slices F/B

and whose mapping spaces are ∞-groupoids of finite-type spans, and the ∞-category 
lin←− whose objects are finite-presheaf ∞-categories FB, and whose mapping spaces are 
∞-groupoids of profinite-type spans.

We shall also need S rel.fin.
/B , the full subcategory of S/B spanned by the finite maps 

p : X → B, and FB
fin.sup., the full subcategory of SB spanned by presheaves with finite 

values and finite support. By the support of a presheaf F : B → S we mean the full 
sub-∞-groupoid of B spanned by the objects b for which F (b) �= ∅.

Proposition 7.2 (Cf. [10, Proposition 4.3]). For a span A 
p← M

q→ B of locally finite 
∞-groupoids, the following are equivalent.

(1) p is finite.
(2) The linear functor F := q! ◦ p∗ : S/A → S/B restricts to

F/A
p∗−→ F/M

q!−→ F/B .

(3) The transpose F t := p! ◦ q∗ : S/B → S/A restricts to

S rel.fin.
/B

q∗−→ S rel.fin.
/M

p!−→ S rel.fin.
/A .

(4) The dual functor F∨ : SB → SA restricts to

FB → FA.

(5) The dual of the transpose, F t∨ : SA → SB restricts to

FA
fin.sup. → FB

fin.sup..
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7.3. (Homotopy) cardinality. (Cf. [1,10]) The homotopy cardinality of a finite ∞-groupoid 
B is by definition

|B| :=
∑

b∈π0B

∏
i>0

|πi(B, b)|(−1)i
.

Here the norm signs on the right refer to order of homotopy groups. From now on we 
will just say cardinality for homotopy cardinality.

For each locally finite ∞-groupoid B, there is a ‘relative’ notion of cardinality

| | : F/B −→ Qπ0B ,

sending a basis element �b� to the basis element |�b�| := δb corresponding to b ∈ π0B. 
The delta notation for these basis elements is useful to keep track of the level of discourse.

Dually, there is a notion of cardinality | | : FB → Qπ0B . The profinite-dimensional 

vector space Qπ0B is spanned by the characteristic functions δb =
∣∣∣hb

∣∣∣
|Ω(B,b)| , the cardinality 

of the representable functor hb divided by the cardinality of the loop space.

7.4. Locally finite decomposition spaces. A decomposition space X : Δop → S is called 
locally finite if X1 is locally finite and both s0 : X0 → X1 and d1 : X2 → X1 are finite 
maps.

Lemma 7.5. Let X be a decomposition space.

(1) If s0 : X0 → X1 is finite then so are all degeneracy maps si : Xn → Xn+1.
(2) If d1 : X2 → X1 is finite then so are all active face maps dj : Xn → Xn−1, j �= 0, n.
(3) X is locally finite if and only if Xn is locally finite for every n and g : Xm → Xn is 

finite for every active map g : [n] → [m] in Δ.

Proof. Since finite maps are stable under pullback [10, Lemma 3.13], both (1) and (2) 
follow from Lemma 1.10.

Re (3): If X is locally finite, then by definition X1 is locally finite, and for each n ∈ N

the unique active map Xn → X1 is finite by (1) or (2). It follows that Xn is locally finite 
[10, Lemma 3.15]. The converse implication is trivial. �
7.6. Remark. If X is the nerve of a poset P , then it is locally finite in the above sense 
if and only if it is locally finite in the usual sense of posets [32], viz. for every x, y ∈ P , 
the interval [x, y] is finite. The points in this interval parametrise precisely the two-step 
factorisations of the unique arrow x → y, so this condition amounts to X2 → X1 having 
finite fibre over x → y. (The condition X1 locally finite is void in this case, as any discrete 
set is locally finite; the condition on s0 : X0 → X1 is also void in this case, as it is always 
just an inclusion.)
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For posets, ‘locally finite’ implies ‘locally finite length’. (The converse is not true: take 
an infinite set, considered as a discrete poset, and adjoin a top and a bottom element: 
the result is of locally finite length but not locally finite.) Already for categories, it is 
not true that locally finite implies locally finite length: for example the strict nerve of a 
finite group is locally finite but not of locally finite length.

7.7. Example (continued). The decomposition space G of finite graphs (Example 1.13) 
is locally finite. Indeed, G1 is locally finite since a finite graph has finite automorphism 
group; the map s0 : G0 → G1 is finite since it is a monomorphism (see Example 2.4), and 
d1 : G2 → G1 is finite since a given graph admits only finitely many different 2-layerings. 
(For similar reasons, many other examples of decomposition spaces of combinatorial 
nature are locally finite [14].)

7.8. Numerical incidence algebra. It follows from Proposition 7.2 that, for any locally 
finite decomposition space X, the comultiplication maps

Δn : S/X1 −→ S/X1×X1×···×X1

given for n ≥ 0 by the spans

X1 Xn
m p

X1 ×X1 × · · · ×X1

restrict to linear functors

Δn : F/X1 −→ F/X1×X1×···×X1 .

The linear functors Δ2 and Δ0 are just the comultiplication Δ and the counit ε of 
Theorem 1.11,

F/X1
Δ−→ F/X1×X1 , F/X1

ε−→ F.

and we can take their cardinality to obtain a coalgebra structure,

Qπ0X1

|Δ|−→ Qπ0X1 ⊗Qπ0X1 , Qπ0X1

|ε|−→ Q

termed the numerical incidence coalgebra of X.

7.9. Morphisms. It is worth noticing that for any CULF functor F : Y → X between 
locally finite decomposition spaces, the induced coalgebra homomorphism F! : S/Y1 →
S/X1 restricts to a functor F/Y1 → F/X1 . In other words, there are no further finiteness 
conditions to impose on CULF functors.
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7.10. Numerical convolution product. By duality, if X is locally finite, the convolution 
product descends to the profinite-dimensional vector space Qπ0X1 obtained by taking 
cardinality of FX1 . It follows from the general theory of homotopy linear algebra (see [10]) 
that the cardinality of the convolution product is the linear dual of the cardinality of 
the comultiplication. Since it is the same span that defines the comultiplication and 
the convolution product, it is also the exact same matrix that defines the cardinalities 
of these two maps. It follows that the structure constants for the convolution product 
(with respect to the pro-basis {δx}) are the same as the structure constants for the 
comultiplication (with respect to the basis {δx}). These are classically called the section 
coefficients, and we proceed to derive formulae for them in simple cases.

Let X be a locally finite decomposition space. The comultiplication at the objective 
level

F/X1 −→ F/X1×X1

�f� �−→
[
Rf : (X2)f → X2 → X1 ×X1

]

yields a comultiplication of vector spaces by taking cardinality (remembering that 
|�f�| = δf ):

Qπ0X1 −→ Qπ0X1 ⊗Qπ0X1

δf �−→ |Rf |

=
(a,b)∈X1×X1∫

|(X2)f,a,b| δa ⊗ δb

=
∑
a,b

∣∣(X1)[a]
∣∣ ∣∣(X1)[b]

∣∣ |(X2)f,a,b| δa ⊗ δb,

where (X2)f,a,b is the fibre over the three face maps. The integral sign is a sum weighted 
by homotopy groups. These weights together with the cardinality of the triple fibre are 
called the section coefficients, denoted

cfa,b := |(X2)f,a,b| ·
∣∣(X1)[a]

∣∣ ∣∣(X1)[b]
∣∣ .

In the case where X is a Segal space (and even more, when X0 is a 1-groupoid), we can 
be very explicit about the section coefficients. For a Segal space we have X2 
 X1×X0X1, 
which helps to compute the fibre of X2 → X1 ×X1:
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Lemma 7.11. The pullback

S X1 ×X0 X1

1
�(a,b)�

X1 ×X1

is given by

S 
 MapX0
(d0a, d1b) 


{
Ω(X0, y) if d0a 
 y 
 d1b

∅ else.

Proof. We can compute the pullback as

S X1 ×X0 X1 X0

diag

1
�(a,b)�

X1 ×X1
d0×d1

X0 ×X0,

and the result follows since the fibre of the diagonal is the mapping space. �
Corollary 7.12. Suppose X is a Segal space, and that X0 is a 1-groupoid. Given a, b, f ∈
X1 such that d0a ∼= y ∼= d1b and ab = f , then we have

(X2)f,a,b 
 Ω(X0, y) × Ω(X1, f).

Proof. In this case, since X0 is a 1-groupoid, the fibres of the diagonal map X0 → X0×X0
are 0-groupoids. Thus the fibre of the previous lemma is the discrete space Ω(X0, y). 
When now computing the fibre over f , we are taking that many copies of the loop space 
of f . �
Corollary 7.13. With notation as above, the section coefficients for a locally finite Segal 
1-groupoid are

caba,b = |Aut(y)| |Aut(ab)|
|Aut(a)| |Aut(b)| .

Coassociativity of the incidence coalgebra says that the section coefficients {caba,b} form 
a 2-cocycle,

caba,bc
abc
ab,c = cbcb,cc

abc
a,bc.

In fact this cocycle is cohomologically trivial, given by the coboundary of a 1-cochain,
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caba,b = ∂(φ)(a, b) = φ(a)φ(ab)−1φ(b).

In fact, if one fixes s, t such that s + t = 1, the 1-cochain may be taken to be

φ(x a→ y) = |Aut(x)|s|Aut(y)|t
|Aut(a)| .

7.14. ‘Zeroth section coefficients’: the counit. Let us also say a word about the zeroth sec-
tion coefficients, i.e. the computation of the counit: the main case is when X is complete 
(in the sense that s0 is a monomorphism). In this case, clearly we have

ε(f) =
{

1 if f degenerate
0 else.

If X is Rezk complete, the first condition is equivalent to being invertible.
The other easy case is when X0 
 1. In this case

ε(f) =
{
|Ω(X1, f)| if f degenerate
0 else.

7.15. Example. The strict nerve of a 1-category C is a decomposition space which is 
discrete in each degree. The resulting coalgebra at the numerical level (assuming the due 
finiteness conditions) is the coalgebra of Content–Lemay–Leroux [4], and if the category 
is just a poset, that of Rota et al. [16].

For the fat nerve X of C, we find

ha ∗ hb 

{

Ω(X0, y)hab if a and b composable at y

∅ else,

as follows from Lemma 7.11. Note that the cardinality of the representable ha is generally 
different from the canonical basis element δa.

7.16. Finite support. It is also interesting to consider the subalgebra of the incidence 
algebra consisting of functions with finite support, i.e. the full subcategory FX1

fin.sup. ⊂
FX1 , and numerically Qπ0X1

fin.sup. ⊂ Qπ0X1 . Of course we have canonical identifications 
FX1

fin.sup. 
 F/X1 , as well as Qπ0X1
fin.sup. 
 Qπ0X1 , but it is important to keep track of which 

side of duality we are on.
That the decomposition space is locally finite is not the appropriate condition for 

these subalgebras to exist. Instead, for the convolution product to descend to functors 
with finite support, the requirement is that X1 be locally finite and the functor

X2 → X1 ×X1
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be finite. (This is always the case for a locally finite Segal 1-groupoid, by Lemma 7.11.) 
Similarly, one can ask for the convolution unit to have finite support, which is to require 
X0 → 1 to be a finite map.

Dually, the same conditions ensure that comultiplication and counit extend from F/X1

to S rel.fin.
/X1

, which numerically is some sort of vector space of summable infinite linear 
combinations [10, 6.8]. An example of this situation is given by the bialgebra of P -trees 
(actually P -forests) [20], whose comultiplication does extend to S rel.fin.

/X1
, but whose counit 

does not (as there are infinitely many P -forests without nodes). Importantly, this non-
counital coalgebra is the home for the so-called Green function, an infinite (homotopy) 
sum of trees, and for the Faà di Bruno formula it satisfies, which does not hold for any 
finite truncation. See [8] for these results.

7.17. Examples. If X is the strict nerve of a 1-category C, then the finite-support convo-
lution algebra is precisely the category algebra of C. (For a finite category, of course the 
two notions coincide.)

Note that the convolution unit is

ε =
∑
x

δidx =
{

1 for id arrows
0 else,

the sum of all indicator functions of identity arrows, so it will be finite if and only if the 
category has only finitely many objects.

In the case of the fat nerve of a 1-category, the finiteness condition for comultiplication 
is implied by the condition that every object has a finite automorphism group (a condition 
implied by local finiteness). On the other hand, the convolution unit has finite support 
precisely when there is only a finite number of isoclasses of objects, already a more 
drastic condition. Note the ‘category algebra’ interpretation: compared to the usual 
category algebra there is a symmetry factor (cf. Lemma 7.15):

ha ∗ hb 

{

Ω(X0, y)hab if a and b composable at y

∅ else.

Finally, the finite-support incidence algebras are important in the case of the Wald-
hausen S-construction: they are the Hall algebras (see [11]). The finiteness conditions 
are then homological, namely finite Ext0 and Ext1.

8. Möbius decomposition spaces

We finally come to the Möbius condition, which ensures the Möbius inversion principle 
descends to the numerical level.

Recall that F denotes the ∞-category of finite ∞-groupoids, as defined in 7.1.
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Lemma 8.1. If X is a complete decomposition space then the following conditions are 
equivalent

(1) d1 : X2 → X1 is finite.
(2) d1 : �X2 → X1 is finite.
(3) dr−1

1 : �Xr → X1 is finite for all r ≥ 2.

Proof. We show the first two conditions are equivalent; the third is similar. Using the 
word notation of 2.8 we consider the map

�X2 + �X1 + �X1 + X0

−−→ �X2 + X0a + Xa0 + X00

=−−→ X2
d1−−−→ X1

Thus d1 : X2 → X1 is finite if and only if the restriction of this map to the first compo-
nent, d1 : �X2 → X1, is finite. By completeness the restrictions to the other components 
are finite (in fact, mono). �
Corollary 8.2. A complete decomposition space X is locally finite if and only if X1 is 
locally finite and dr−1

1 : �Xr → X1 is finite for all r ≥ 2.

8.3. Möbius condition. A complete decomposition space X is called Möbius if it is locally 
finite and tight (i.e. of locally finite length). It then follows that the restricted composition 
map

∑
r

d1
r−1 :

∑
r

�Xr → X1

is finite. In other words, the spans defining Φeven and Φodd are of finite type, and hence 
descend to the finite slices F/X1 . In fact we have:

Lemma 8.4. A complete decomposition space X is Möbius if and only if X1 is locally 
finite and the restricted composition map

∑
r

d1
r−1 :

∑
r

�Xr → X1

is finite.

Proof. ‘Only if’ is clear. Conversely, if the map m :
∑

r d1
r−1 :

∑
r
�Xr → X1 is finite, 

in particular for each individual r the map �Xr → X1 is finite, and then also Xr → X1
is finite, by Lemma 8.1. Hence X is altogether locally finite. But it also follows from 
finiteness of m that for each a ∈ X1, the fibre ( �Xr)a must be empty for big enough r, so 
the filtration condition is satisfied, so altogether X is Möbius. �
Remark 8.5. If X is a Segal space, the Möbius condition says that for each arrow a ∈ X1, 
the factorisations of a into nondegenerate ai ∈ �X1 have bounded length. In particular, 
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if X is the strict nerve of a 1-category, then it is Möbius in the sense of the previous 
definition if and only if it is Möbius in the sense of Leroux [25]. (Note however that this 
would also have been true if we had not included the condition that X1 be locally finite 
(as obviously this is automatic for any discrete set). We insist on including the condition 
X1 locally finite because it is needed in order to have a well-defined cardinality.)

8.6. Filtered coalgebras in vector spaces. A Möbius decomposition space is in particular 
length-filtered. The coalgebra filtration (6.13) at the objective level

S
/X

(0)
1

→ S
/X

(1)
1

→ · · · → S/X1

is easily seen to descend to F-coefficients (finite ∞-groupoids):

F
/X

(0)
1

→ F
/X

(1)
1

→ · · · → F/X1 ,

and taking cardinality then yields a coalgebra filtration at the numerical level too. From 
the arguments in 6.13, it follows that this coalgebra filtration

C0 ↪→ C1 ↪→ · · · ↪→ C

has the property that C0 is generated by group-like elements. (This property has been 
found useful in the context of perturbative renormalisation [21], [22], where it serves as 
a basis for recursive arguments, as an alternative to the more common assumption of 
connectedness.) Finally, if X is a graded Möbius decomposition space, then the resulting 
coalgebra at the algebraic level is furthermore a graded coalgebra.

The following is an immediate corollary to Lemma 5.14. It extends the classical fact 
that a Möbius category in the sense of Leroux does not have non-identity invertible 
arrows [23, Lemma 2.4].

Corollary 8.7. Every Möbius decomposition space X is Rezk complete.

8.8. Möbius inversion at the algebraic level. Assume X is a locally finite complete de-
composition space. The span X1 X1

= 1 defines the zeta functor (cf. 3.2), 
which as a presheaf is ζ =

∫ t
ht, the homotopy sum of the representables. Its cardinality 

is the usual zeta function in the incidence algebra Qπ0X1 .
The spans X1 �Xr 1 define the Phi functors

Φr : S/X1 −→ S,

with Φ0 = ε. By Lemma 8.1, these functors descend to

Φr : F/X1 −→ F,
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and we can take cardinality to obtain functions |ζ| : π0(X1) → Q and |Φr| : π0(X1) → Q, 
elements in the incidence algebra Qπ0X1 .

Finally, when X is furthermore assumed to be Möbius, we can take cardinality of the 
abstract Möbius inversion formula of Theorem 3.8:

Theorem 8.9. If X is a Möbius decomposition space, then the cardinality of the zeta 
functor, |ζ| : Qπ0X1 → Q, is convolution invertible with inverse |μ| := |Φeven| − |Φodd|:

|ζ| ∗ |μ| = |ε| = |μ| ∗ |ζ| .

8.10. Example (continued). We have seen that the decomposition space G of finite graphs 
of Example 1.13 is complete, tight, and locally finite, (Examples 2.4, 6.4, and 7.7, respec-
tively). Hence it is a Möbius decomposition space. The general Möbius inversion formula 
μ = Φeven − Φodd yields a Möbius inversion formula in the chromatic Hopf algebra, but 
at the numerical level this is not the most economical. The well-known cancellation-free 
formula μ(G) = (−1)n, where n is the number of vertices of G, can be established by 
exploiting the CULF functor to the decomposition space of finite sets mentioned at the 
end of Example 1.13. This argument works more generally, for any decomposition space 
arising as a restriction species [13].
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