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1. Introduction 

An A~ ring space (May [4], Schw/inzl and Vogt [6]) is a space which is a semiring 
up to homotopy in a specifically coherent way. (A semiring is like a ring with one 
except that additive inverses are not required.) In some ways an A~ ring space X 
behaves like an algebraic ring. In particular, if X is ringlike (the semiring %X of 
path-components of X is actually a ring), then one can imitate the construction of 
algebraic K-theory. There is a space glX, which serves as substitute for an infinite 
general linear group, and one can form the plus-construction (BglX) + of its 
classifying space BglX (May [4], Steiner [9]). The space (BglX) + can be regarded 
as the algebraic K-theory of X; one sets KqX = %[(BglX) + ] (q > 1). These ideas 
are used in geometric topology (Waldhausen [12]). 

In the same way as for rings, one can use infinite loop space machinery to show 
that (BglX) + is an infinite loop space (Steiner [9], Schw/inzl and Vogt [7]). In fact 
there are connected spaces E 1, E 2 . . . .  such that 

7/x  (BglX) + "~ f2E1, El ~ QE2 . . . . .  

This delooping has some disadvantages. Very little is known about the spaces E.. 
The factor E appears because the method works with the analogue of free rather 
than projective modules. 

There is however a different method of delooping the algebraic K-theory of a 
ring, due to Wagoner [11]. Given a ring R, he constructs another ring SR, the 
suspension of R (in Wagoner [11] SR is denoted ~/R), such that 

KoR x (BGLR) + - f2[-KoSR x (BGLSR) +]  . 

The object of this paper is to generalise Wagoner 's delooping to A~ ring spaces. 
The result is as follows. 

Theorem 1.1. There is a suspension construction s passing from an Ao~ ring space X to 
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an Aoo ring space sX. l f  X is a ringlike Aoo ring space, then sX is ringlike and 

KoltoX x (BglX) + ~_ [2[KonosX • (BglsX) + ] . 

This shows that if X is a ringlike A~ ring space, then one may take KqX as 
KorcoS-qX for q < 0. In fact one has a nonconnective spectrum KX with 

nqKX ~ KqnoX f o r q < 0 .  

(To see that rtqKX is as stated for q < 0, note that :zqKX = Kortos-qX by 1.I, that 
KorCoS-qX ~ KoS-q~ZoX by 5.1 below, and that KoS-qr~o X ~  - Kqr~oX by 
[Wagoner, end of Section 31.) 

Thus the suspension construction produces a definition KqX = KqZ~oX (q < 0) 
for a ringlike A~ ring space in a natural way. The construction is also being used in 
the work of Fiedorowicz, Schw/inzl and Vogt on the Hermitian K-theory of A= 
ring spaces with involution, which has applications to spaces of self homotopy 
equivalences of manifolds. 

Section 2 describes a general method for dealing with A~ ring spaces. The 
suspension sX is constructed in Section 3 and proved to be an Ao~ ring space in 
Section 4. In Section 5 it is shown that sX is ringlike if X is, and the delooping result 
is proved in Section 6. Sections 7-9 give the proofs of subsidiary results used in 
Section 6. 

2. Constructions on Rings and A~ Ring Spaces 

Throughout the paper we shall be making constructions on semirings and trans- 
ferring them to A~ ring spaces by the method of Steiner [9]. We first describe this 
informally; there is a more detailed and more formal description at the end of the 
section, which may be helpful. 

The constructions to which the method applies are functors taking a semiring R 
to a diagram of sets and functions in which the sets are disjoint unions of powers of 
R. A function 

f :  LI LI 
E ~  E'~,(' 

between two such disjoint unions must have the following form: there is a function 
0: g --, $" and f maps each R t into R ~ by a natural transformation. Such natural 
transformations are called semiring operations; they must have the form 

(Xe: e~  E)--* (ye,: e'E E') 

where each Ye' is a finite sum of non-commutative monomials in the x e. The 
operation is called simple if each Ye' is a sum of distinct monomials. The result of 
Steiner ([9], 1.4) is that if all the operations involved in such a diagram are simple, 
then one can construct a similar diagram of spaces and maps for an A~ ring space 
X. The spaces are homotopy equivalent to the appropriate disjoint unions of 
powers of X and the maps have the appropriate homotopy classes in terms of the 
homotopy semiring structure of X. 

There is a naturality statement: if the construction is applied to a diagram D 
and to a subdiagram D', then the diagram resulting from D' is naturally homotopy 
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equivalent to the appropriate subdiagram of that resulting from D. Because of this 
we can use different diagrams in different parts of the paper and get compatible 
results. 

In fact we need a slightly more general result than that stated in Steiner [9]: we 

have to allow infinite powers; that is in U R E the sets E have to be permitted to be 
E 

infinite. However the proofs of Steiner [9] still work as given. 
In the applications of this method the semiring operations involved are mostly 

addition and multiplication of distinct matrices, and they are easily checked to be 
simple. We shall not usually mention simplicity explicitly. 

As an example we consider the space BglX that appears in Theorem 1.1. Let R 
be a semiring. We have a chain of monoids 

c 
M ~  R �9 M ~  , . . . .  

where M d R  = R d2 is the d • d matrices over R, the superscript • signifies that one 
is using matrix multiplication, and the inclusions are direct sums with 1. By 
applying the bar construction one gets a chain of simplicial sets 

B.M~R--,B.M?R--,...; 

when drawn in full this is a diagram containing sets 

B q M ~  R = ( M ~ R )  q . 

The general method now gives a similar chain of simplicial spaces 

B.M?X~B.M;X-~... 

for an A ~  ring space X. If X is ringlike, then there is a subdiagram 

B.glIX ~ B.gl2X--* . . . 

got by taking points in the path components corresponding to elements of G LdnoX 
• x inside Md noX ~ n o M d X. We can now use geometric realisation and a homotopy 

colimit to get 
BglX = hocolimaBolaX = hocolimalB.gldXI �9 

Note that by using a homotopy colimit we get the correct fundamental group: 

7z 1 BglX ~ coliman 1 BgldX ---- cotimarcogldX 

_-~ colim~ G L~noX ="~ GLno X . 

The method described so far produces results up to homotopy. It is adequate for all 
the results of this paper except the result of section 4: If X is an A| ring space then 
sX is an A= ring space. This requires the methods of Schw/inzl and Vogt l-6]. 

In order to explain this we describe A~ ring spaces more formally and in more 
detail. Let 0s, be the theory of semi-rings; this is the category with objects 0, 1, 2 . . . .  
and with morphisms from m to n the semiring operations Rrn---* R n. Let 
Os~ be the corresponding "infinitary" theory; its objects are sets E, finite or infinite, 
and the morphisms from E to E' are the semiring operations from R E to R E', note 
that  there is no question of infinite sums or products. Finally let X ~0~ be a "wreath 
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product with sets"; its objects are families ~ of sets and the morphisms from ~ to r  
consist of a function 8: ~ ~ ~ '  and a family of semiring operations R E --* R ~ 
(E e ~f ). We can now give a formal description of the diagrams of disjoint unions of 
powers of semirings described at the beginning of the section; they are functors 
�9 -+ z I02,. 

Recall Schw/inzl-Vogt ([6], 1.7) that a topological theory 0 together with an 
augmentation s: 0 --* 0st which is the identity on objects and a homotopy equival- 
ence over simple morphisms (since 0sr is discrete this means that e-t(tO) is to be 
contractible if~o is a simple semiring operation) is an Aoo ring theory. A space X is an 
Aoo ring space if it is a P-space for some Aoo ring theory 0; that is, if there is a 
continuous product-preserving functor X: 0--*Top with X (m )=  X m for m = 
0,1,2 . . . . .  

The application of a construction F: q~-, ZI0s~ on semirings to an A~ ring 
space X can now be described as follows. In an evident notation we have functors 

4~ 

x S 0  ~176 

zl ~ 

F S i 0 c  ~ ) sr 

z)'x=, T o p .  

Form the pullback 

# F > 2;~0 ~176 

t~ F , z ~  0c~sr 

If F involves only simple operations, then v is an equivalence, so by Segal's 
construction (Segal 1-8], Appendix B) one gets a functor v, [(Z S X ~)o F-]: �9 --* Top 
homotopy equivalent to (I ;JX~)oP :. This is the required diagram of spaces 
homotopy equivalent to disjoint unions of powers of X. 

In Section 4 we have a case in which 4~ = 0s, x A~ A ~ where A is the 
simplicial category; thus F corresponds to a construction of bisimplicial semirings 
from semirings. The function v is a homotopy equivalence only over morphisms of 
the form (tO, 0t,/7) with tO simple. 

The lifting theorem of Schw/inzl and Vogt ([6], 2.16) now gives a commutative 
diagram of theories 

~ •  
0 ( . ~ ,  . ~ )  x A ~ x / l  ~ , Osr x zl ~ x A ~ 
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where 0(~Yf, Z~' ) is the A~ ring theory corresponding to the canonical A~ operad 
pair of Steiner [10] and W( ) and # are such that # is a homotopy equivalence over 
all morphisms. One can now use Segal's construction as before (or rather a product 
preserving version, e.g. (Schw~inzl and Vogt [6], 4.12), which is compatible with 
Segal's up to homotopy),  to get 

#,[(zJ'X~176 I:o r/I: O(~.vC, ,jr x A ~ x A op ---, Top. 

This is a bisimplicial 0(~f ~, s )-space, and gives a 0 ( ~ ,  ~ )-space (that is, an A~o 
ring space) by double geometric realisation. 

3. The Construction of sX 

Let R be a ring. Then Wagoner's construction of the suspension SR is as follows 
(Wagoner [1 1]). Let CR be the ring of locally finite matrices over R; these are 
infinite matrices with rows and columns indexed by ~ = { 1,2 . . . .  } and with only 
finitely many non-zero elements in each row and column. Inside CR there is the 
two-sided ideal M R of finite matrices (only finitely many non-zero entries alto- 
gether). Then S R is the quotient ring C R/M R. Clearly this construction can also be 
applied to a semi-ring R and gives a semiring SR. 

We now adapt this construction so that the method of Section 2 can be applied. 
Because of the delicacy of Section 4 we give more details than usual. Let R be a 
semiring. Call a set A locally finite if A c ~ x ~ and for each k e ~ the sets 

{ i e l ~ : ( i , k ) e A }  and { j e l ~ : ( k , j ) e A }  

are finite. By a finite set we will mean a finite subset of ~ x ~. Evidently 

CR = colim n Iocally finite RA' M R = c o l i m A  finite R A" 

To get the correct homotopy groups we replace the colimits by homotopy colimits; 
thus we set 

cR = hocolim A IocallyJinite RA" mR = hocolimA3-nite R A 

From the definition (Bousfield and Kan [3], XII.2) this means that cR is the 
realisation of a simplicial set c~ 8 for which 

CqR = {(x, A(0) . . . . .  A(q) ) :A(0)  = A( I )  ~ . . .  = A(q)  

are locally finite sets and x e R A(0)} . 

The faces in Co R are got by omitting A(i)'s and the degeneracies by duplicating 
them. Similarly mR is the realisation of a simplicial set mo R defined using finite 
sets. We can now apply the methods of Section 2 to get spaces cX and mX for X an 
A~ ring space such that 

cX ~ hocolim A locatlyfinite x A '  m X  ----- hocolimA/i~te XA . 

To get the suspension we need some analogue for the quotient CR/MR (R a 
semiring). We note that co R is a simplicial commutative monoid, essentially 
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because CR is a filtered commutative monoid; the addition on Cq R is given by 

(x, A(0) . . . . .  A(q))  + (x', A'(0) . . . . .  A ' (q) )  

= ((x + x'),  A(0) w A'(0) . . . . .  A(q)  u a ' (q)) .  

Also m. R is a simplicial submonoid. We can therefore form the bar construction 
(May [4], 2.7). It is a bisimplicial set s. .  R = B.(c. t3, m. R, o) with 

Bq(C.R, re.R, o) = c.R x (m.R)  q x {o} ; 

the faces are got by adding consecutive entries and the degeneracies by inserting 
zeros. 

By the method of Section 2 we get a bisimplicial space s. .X from an A~ ring 
space X; we define the suspension sX of X as its double geometric realisation. Thus 

sX -~ B(cX, mX, o) 

is a plausible substitute for a quot ient of cX by mX. 

4. The A~o Ring Structure on sX 

In this section we show that sX is an A~ ring space for any Ao~ ring space X, thus 
proving the first part of Theorem 1.1. By the argument at the end of Section 2, it 
suffices to construct a bisimplicial semiring structure on s..  13 (13 a semiring). 

We first note that c .R is a simplicial semiring, essentially because CR is a 
filtered semiring. The addition of Cq R was given in the last section; the multiplica- 
tion is given by 

(x, A(0) . . . .  , A(q))  o (x', A ' ( 0 ) , . . . ,  A ' (q))  

= ( x x ' ,  A(0)o A'(0) . . . . .  A(q)  o A ' (q ) ) ,  

where for locally finite sets A and A' the locally finite set A o A' is defined by 

AoA'  = {(i, j):there exists k such that (i, k)~A and (k, j)~A'}. 

One also checks that m. R is a simplicial two-sided ideal of c. R; essentially this is 
because M R is an ideal of CR. To complete the proof that s..  R is a simplicial ring 
one uses the following result. 

Proposition 4.1. Let S be a semiring and I be a two-sided ideal. Then B.(S, I, o) is a 
simplicial semiring. 

Proof The addition on  Bq(S, [, o) = S • [q is componentwise, The multiplication 
is given by 

(x . . . . . .  xq)(yo, � 9  yq) = 

(XoYo,(Xo+Xl)(Yo+Ytl - -xoy . . . . . .  ( X o + . . .  +xq)(yo + . . .  +yq)  

- ( X o +  . - .  + Xq _ ~) (y o +  . . .  + y ~ _ ~ ) ) .  
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One can check that this makes sense over a semiring and makes B~ I, o) a 
simplicial semiring. 

5. sX is Ringlike 

For the rest of this paper X will be a ringlike Aoo ring space. In this section we prove 
that sX is ringlike, that is rCoS• is a ring. In fact we describe all the homotopy groups 
of sX. To do this, we extend the functors M, C and S to abelian groups. Thus, if G is 
an abelian group, then there are abelian groups 

MG = colim a finite G A , 

C G = colim A tocatly fi nite G A ,  

SG = C G / M G .  

Proposition 5.1. For all q, 

zqmX ~ MzqX, rtqCX ~- CnqX, nqsX ~ SnqX. 

In particular 7ZoSX is the rin# SzoX, so sX is ringlike. 

Proof. Since mX = hocolimAjini~e XA, 

7zqmX - colimA j~nite~q(X A) ~-- colimA finite(ztqX) A ~- MZtqX. 

The same argument works for cX as re, commutes with arbitrary products. In 
particular ~o(mX) is an abelian group. Imitating the theory of the two-sided bar 
construction for monoids (May [5], 7.9, 8.6) using (Schw~inzl and Vogt [63, 2.16; 
Boardman and Vogt [1], 4.58, 4.23) we get a fibration 

cX -* B(cX, mX, o) ~ B(o, mX, o) ,  

sX 

where B(o, mX, o) is constructed in a similar way to sX. Now f2B(o, mX, o)~- mX, 
so we get a fibration 

(5.2) mX --* cX --* sX . 

Since nqmX --* nqCX is the inclusion MZtqX --* CzcqX for each q, the homotopy exact 
sequence of (5.2) splits into short exact sequences and 

~qsX _~ ~qCX/~qmX -_ C~qX/MrcqX = SrcqX, 

as required. 

6. The Delooping Result 

In this section we outline the proof of the delooping result 

Ko~oX x (BglX) + -~ f2[KoZcoSX x (BglsX) + ] . 



50 z. Fiedorowicz et al. 

The general plan is a close imitation of Wagoner [11], but many of the proofs use 
Berrick [2]. Roughly speaking, one tries to get a fibration by applying (Bgl) + to the 
fibration (5.2). However mX corresponds to M R (R a ring), which is a ring without 
one, so G LM R does not make sense. We therefore consider a new multiplication on 
MdS (S a semiring without one) defined by 

xoy = x . y + x + y  

(x o y is the new product, x.  y is the original product). Under this product MdS is a 
monoid, which we denote M,]S. It has 0 as its identity element. If S is a ring (still 
without one) then we denote the group of invertibte elements by G k,~ S. We embed 
M~S in M,]+ l S by taking direct sums with 0; in this way we get M~ (and GL~ If 
S actually has a one, then there is a homomorphism M~S ~ M~ S (recall that 
M r S  is MdS with its usual product) given by x ~ x + l .  This induces a 
homomorphism M~ ~ M • S, and if S is a ring with one it gives an isomorphism 
GL~ --* GLS. 

We now apply these constructions to X a ring-like A~-ring space. Using the 
method of Section 2, we obtain spaces and maps 

BglX ~- BgI~ --* Bgl~ 

(the map BgI~ ~ Bgl~ comes from the stabilisation homomorphism 

Bgl~ ~ BglcX, 

Bgl~ - ,  BglsX. 

Proposition 6.1. The maps 

BglX ~ BgI~ -~ BgI~ , 

Bgl~ -* BglcX,  

BgI~ -* BglsX are homotopy equivalences. 

Proof We compute the homotopy groups. All the spaces are path-connected. For  
BglX we have 

~ BglX _- ~zoglX ~ GL~toX 
and f o r q >  1, 

/~q+lBglX ~ ~qglX -~/tqmX ~ M/~qX 

(recall that glX is got from mX by deleting some path-components and X is ring- 
like). 

Similarly the homotopy groups of Bgl~ are G L ~ ~oX and M ~q X (q >__ 1). Since 
GL~ ~ GLnoX, we have a homotopy equivalence Bgl~ --* BglX. Similarly the 
homotopy groups of Bgl~ are GLOM~oX ~ GL~ and MM~qX ~ M~qX 
(q > 1), so BgI~ - Bgl~ The other homotopy equivalences are proved in the 
same way. 

The next step in the proof is the following result. 
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Lemma 6,2. The spaces (BglX) + and (Bgl~ + are nilpotent. 

Indeed (BglX) § is nilpotent because it is an infinite loop space (Steiner E9]), and 
the same method works for (Bgl~ + (which is equivalent to (BglX) § by 6.1). We 
shall sketch a proof of 6.2 independent of Steiner I-9] in Section 9. 

The next step is the following. 

Proposition 6.3. For any field of coefficients, I~, (BglcX) = 0. Hence (Bgl ~ cX) + is 
contractible. 

The homology calculation will be given in Section 7. To deduce that (Bgl~ + 
is contractible we note that by 6.1 

/~ , ( (BgI~ +) ~ / ~ , ( ( B g l c X )  +) ~ / ~ , ( n g l c X )  = 0 .  

To proceed further, we recall (Wagoner, [11], 1) that if R is a ring then the 
maximal perfect subgroup of GL~ is the group E~ generated by elementary 
matrices, that is those with zeros on the main diagonal and at most one non-zero 
entry elsewhere. We recall also that K1R is by definition the abelian group 
GLOR/EOR. 

By the method of Section 2 we can form e~ inside gl~ and we get a map 
BeosX --, BglOsX. 

Proposition 6.4. There is a fibration 

(Be~ + --, (Bgl~ + ~ K(KonoX, 1). 

Proof As in the proof  of 6.1 we find that the homotopy groups of Be~ are 
E~ and MSTcqX (d > 1), while the homotopy groups of Bgl~ are GL~ X 
and MSgqX (q > 1). Now 

GL~176 = K 1S~0 x - KoXoX 

(Wagoner Ell],  3.9), so there is a fibration 

Be~ --* Bgl~ -* K(KorCoX , 1) . 

Since the base has abelian fundamental group, the fibration remains a fibration 
after applying the plus construction (Berrick [2], 6.4(a)). This completes the proof. 

We can apply similar considerations to cX. We get fibrations 

Be~ ~ Bgl~ ~ K(K 1C~ZoX, 1), 

(Be~ + --, cBgl~ + ~ K(K 1CrtoX, 1). 

However K 1CTtoX - lt~ r(Bgl~ + ] is trivial by 6.3, that is E~ = GL~ 
(These results also follow from (Wagoner E11], 2).) We get the following. 

Proposition 6.5. There are equalities E~ = G L~ and Be~ BgI~ 

We can now make precise what we mean by applying (Bgl) § to the fibration 
mX ~ cX ~ sX. 

Proposition 6.6. There is a fibration 

Bgl~  ~ Bgl~ --, BeosX. 
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Proof Applying rc 1 gives the sequence 

G L~ MTroX - ,  Gk~ ~ E~ 

which is short exact by 6.5. Applying ~Zq+ t for q > 1 gives the sequence 

MMrCqX --* MC/rqX ---* M S n ,  X ,  

which is evidently short exact. 

We now apply the plus construction. 

Proposition 6.7. Applying the plus construction to the fibration in 6.6 gives a fibration 

(Bgl~ + ~ (Bgl~ + --, (BeosX) + . 

Proof We want to apply (Berrick 1-2], 6.4(b)). This requires (Bgl~ + to be 
nilpotent, what is true by 6.2, and the following result, which will be proved in 
Section 8. 

Proposition 6.8. In the fibration of 6.6, the action of rcl (Be~ on H,(Bgl  ~ mX) is 
trivial. 

We can now prove that 

Ko~oX x (BglX) + ~ Q[KorcoSX • (BglsX) + ] , 

and so complete the proof of Theorem 1.1. Indeed 

KoTroX x (BglX) + - KortoX x (Bgl~ + (6.1) 

_~ KonoX x f2[-(Be~ + ] (6.7 and 6.3) 

-~ t2[(Bgl~ + ] (6.4) 

_ ~ [-(BglsX) + ] (6.1) 

= #[-KonoSX x (BglsX) +] (trivially). 

7. Proof of 6.3 

We prove that H , ( B g l c X ) =  0 for any field of coefficients by the method of 
(Wagoner [11], 2). 

Here we use the ordinary product on matrices. For any semiring R there are 
homomorphisms 

~: M ~ C R  x M ~ C R  -o M,~CR,  

z: Ma*CR--* M ~ C R  and 

�9 : M ~ + I C R  "-* M ~ + x C R  
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induced by q~: CR x CR --* CR , 

z: CR --+ CR, where 

XI,1 X12 

x~, x22 

Xll  

0 

= X21 

0 

[ * Yll YI2 

, Y2I Y22 

0 x12 0 

Yl l  0 Yt2 * 

0 x22 0 

Y21 O Y22 

x,t i f k = 2 ' ( 2 s - 1 ) , l = 2 r ( 2 t - 1 )  

,.C([Xij ])kl : for some r, s, t 

0 otherwise 

One can think of O ( x , y )  as x |  and z(x) as x ~ ) x @ x  . . . .  

~b(l • r)A(x) = qb(x, z x )  = "rx. 

If j: M ~ C R  -* M~+lCR is defined by 

x [o 
then zj = jr:  M 2 C R  --, M,~+ICR. Also if 

We have 

r/1, r/z: M ~ + I C R  ~ M ~ + I C R  x M,~+ICR 

are the inclusions, then there are pe rmuta t ion  matrices a, b in M~+ 1CR such that  

a (q6 rh j )a - l ( x )  = a@(jx, 1)a -1 = bq~(1, i x ) b - '  = b ( ~ b r / z j ) b - l ( x ) =  jx  

In (Wagoner  [ I  1], 2.5) the index is 3d, but  M 2 CR is i somorphic  to CR, so d + 1 will 
do the same job.  

These induce simplicial homotop ies  of bar  construct ions 

(Md* CR) q x HomA(q, 1 ) - *  (M,~+ 1CR) q 

between x--* ~b(jx, 1) and j, and  between 
x --, qh(1, ix) and j. The first one given by 

ix,, ; ~(u) = 0, 

y , , =  a~h(jxu, 1); ~ ( u - 1 ) = 0 , ~ ( u ) =  1 , 

O(jx . ,  1); a ( u -  1) = ~(u) = 1 . 
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We now apply these constructions to X by the method of Section 2, restrict to 
appropriate path-components, and take classifying spaces. Up to homotopy we get 
maps 

"r: B g l a c X  -4. B g l a c X ,  

"c: Bgla + 1 cX  ~ B g  I d + i c X ,  

q~: Bg ld  + 1 cX  x B g l  d + t c X  ~ B g l  d + 1 c X  

such that 

rJ = J z : B g l d C X  ~ B g l d + l C X  , 

4)(1 x r )A  = ~: Bgld+lCX--,Bgld+lCX. 

We also have non-base-point-preserving homotopies 

~br/x j z ~qzJ -----J: B g l a c X  ~ B g l d + ~ C X  �9 

This suffices by a standard a rgument  to show that j,:/-I,(BgldCX ) 
~/~,(BOld+lCX ) is zero, which gives H , ( B g l c X ) = 0  as required, since 
H,(BglcX) ~ colimdH,(BgldCX ). Indeed let z e H,(BgldCX ) with n > 0. We show 
that j , z  = 0 by induction on n. The inductive hypothesis shows that 

(J x j ) ,A , z  = j , z  x 1 + 1 x j , z ,  

so 

z , j , z  = ~b,(1 x "c),A,j,z 

= ~b,(1 x z),(j x j ) , A , z  

= ~b,(j,z x 1 + 1 x z , j , z )  

= 4~,rh, j ,z  + ~b,r /z , 'C, j ,z  

= ~b,q l , j , z  + ~ , r / 2 , j , z , z  

= j , z + j , % z  

= j , z + ~ , j , z  ; 

thus j , z  = 0 as required. 

8. Proof of 6.8 

We must show that 7q(Be~ acts trivially on H,(Bgl~ Now 
Bgl~ hocolimdBgl~ X, SO it suffices to show that ~1 (Be~ acts trivially on 
dements in the image of H,(Bgl~ for each d. We shall find subgroups 
generating nl(Be~ which act trivially on the elements of H,(Bgl~ this is 
suff• 

From 6.5 and the proof of 6.6, 

7 q ( B e ~  ~ E ~  = E ~ 1 7 6  
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For any semiring R and for distinct natural numbers k, 1 and a locally finite set A 
there is a monoid monomorphism 

R A -, M~ 

sending x~  R A c CR to the elementary matrix with x in position (k, l) and with 
zeros elsewhere. Write E~,,I, ACR for the image of this monomorphism. By defini- 
tion, E~ X is generated by the E~,,I, ACnoX, so hi(Be~215 is generated by the 
images of the E~,A, ACnoX. Since moreover an element of CnoX differs by an element 
of MnoX from an element of CnoX with zeros in its first d rows and columns, we see 
that it suffices to take A such that i, j > d for all (i,j)~A. Thus it suffices to show 
that 

Im [-E~,I, ACTZoX ~ nx(Be~ 

acts trivially on the elements of 

Im [H,(Bgl~ --* H, (BgI~  

whenever A is such that i,j > d for all (i,j)~A. 
We shall deduce this from the fact that if R is a semiring then elements of 

E~,I,,~CR commute with elements of M~ R inside M~ Let us think of the 
monoid M~ and its submonoid M~ as categories with one object. We can 
think of an element ct of M~ which commutes with the elements of M~ R as a 
natural transformation from the inclusion functor M~ R --* M~ to itself. We 
can also regard M~ and M~ as the 0-cells of the simplicial categories 
M~ MdR, o ) and M~ MR, o); then ~M~ MR, o) and its 
degeneracies commute with the elements of M~ d R, Md R, o), so ~ extends to a 
self natural transformations of the inclusion functor 

M~ MdR, o)-* M~176 MR, o). 

Now a natural transformation between functors from a category ~ to a category 
induces a homotopy 

I"~P x I --,. I..~1 

after geometric realisation, so a self natural transformation induces a map 

I~1 x s ' --,. I.~1 �9 

So if one applies the constructions of the last paragraph to X by the method of 
Section 2, restricts to the appropriate path-components,  and takes geometric 
realisation, then one gets a commutative diagram with spaces of the homotopy 
types given by 

c 

* x Bgl~ x �9 ~ Bgl~ 

e~,t.AC• x Bgl~ x S1 , BglOcX 

Pr~ I ~ 
e~.l.aCX x * x $1 , BeosX 
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(recall that B.(CR, MR, o) yields SR and note that B.(MdR, Md R, o) yields a 
point because it has a standard contracting simplicial homotopy). 

In this commutative diagram the right-hand column is the fibration of 6.6 while 
the left-hand column is a trivial fibration. So Im[nl(e~',j, A C X X * x S  1) 

hi(Be~215 acts trivially on elements of I m [ H , ( ,  • Bgl~ X x , )  
H,(BgI~ But up to homotopy the map e~',j, ACX • * x S x ~ Be~ is the 

composite of the standard map e~j, ACX x S 1 ~Be~',j, AcX with the obvious 
map Be~,.1,ACX ~ Be~215 so the image of the induced map of fundamental groups 
contains those elements of r h (Be~215 which come from elements of no(e~,l, ACX) 
E~,I, ACnoX. Thus Im[E~,l, ACnoX--*nt(Be~ acts trivially on elements of 
Im[H.(Bgl~ ~ H.(BgI~ as required. 

9. Proof of  6.2 

In this section we indicate how (BglX) + can be proved nilpotent by the method of 
Section 8. In fact we work with (BgI~ +, which is equivalent to (BolX) + by 6.1. 

By (Berrick [2], 10.3) it suffices to show that if n = nlBgl~ and 5~n is its 
maximal perfect subgroup, then n / ~ n  is nilpotent and acts trivially on the 
homology of the fibre of BgI~ ~ K(n/.~n, 1). As in 6.4 we find that n ~ Gk~ 
hence ~ n  ~ E ~ no• and n/~rc ~ GL~176 X = K 1 no• is certainly nilpotent, in 
fact abelian. Also the fibration we have to study is 

Be~ ~ BgI~ --, K(n/~n, 1) 

(compare 6.4). 
One can prove that rc/~n acts trivially on H,(Be~ by the method of the last 

section. Note that for each fixed d the group n/~n ~ G L~176 X is generated 
by the images of matrices over no• which have only zeros in their first d rows and 
columns. 

For GL~215 is generated by matrices of the form [~  ~](aeGl~ 

e > d), and this represents the same element of n / ~ n  as 

0 0 0 o 0 a 0 = 0 a , 

0 0 0 0 0 0 0 0 

a t 0 0 

since 0 a 0 

0 0 0 

is in E~ 

(Berrick [2], 1.9). Now if R is a semiring, then matrices Jn M~ which have only 
zeros in their first d rows and columns commute with matrices in M,] R. By the 
method of the last section it follows that n / ~ n  acts trivially on H,(Be~215 as 
required. 
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