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Introduetion

In the usual theory of categories, with any two objects A, B of a
category & there is associated a set .o/ (4 B) of morphisms of 4 into B.
Frequently the set o7 (4 B) is endowed with an additional structure such
as a privileged element or an abelian group structure. It has become
clear that as the ramifications of the theory of categories increase, the
structures that o/ (4 B) will carry will be richer and more complex. The
need for a general theory has been widely felt for some time, and be-
ginnings have been made in various directions and often under restrictive
hypotheses; e.g. by MacLang [15], Kerry [10], BENaBovU [3], LiNTON
[12].

In order to gain sufficient generality one should assume that o7 (4 B)
is an object of some category #7¢, that this category ¥7¢ is equipped
with a functor V:¥7p — & into the category & of sets, and that
VsZ (A B) is the set of morphisms A — B in /. One then can write
&Zo(A B) for Vo/ (A B), and distinguish the “enriched category’ 7 from
the ordinary category 27 that underlies it. Upon inspection it turned
out that the categories ¥ which occur in this connexion are endowed
with a structure considerably richer than that of a category. We propose
calling these “‘closed categories”, and we may best describe them by
citing two examples.

Let & be the category of real or complex Banach spaces. In order
to ensure that an isomorphism is an isometry we take the morphisms
f: 4 — B to be the linear transformations with norm ||| < 1; these
then form the set % (A B). In addition however we may consider all
the bounded linear transformations 4 — B; these form in a natural
fashion a Banach space (4 B). This yields an “internal Hom-functor”
B* X B — B. The set #(A B) is obtained from the Banach space (4 B)
by applying the functor # — & which to each Banach space assigns
its unit ball considered as a set. In addition we have a special “‘unit”
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Banach space I, namely R or C as appropriate, and a natural isomorphism
1: A ~ (IA4). There is also a composition law that will be discussed
later.

As a second example consider a topological space X and let b X
be the category of sheaves of sets over X. For any two such sheaves
A and B, we then have the set ¥k X (4 B). Given any open subset
U of X, we may also consider the set Sh U(4|U, B|U) where A|U
is the restriction of the sheaf 4 to U. These sets form a pre-sheaf on
X and define a sheaf that we shall denote by (4 B). This again yields an
“internal Hom-functor”. The set #h X (4 B) is obtained from (4 B) by
applying the functor I': ¥h X — & which to each sheaf assigns its set
of sections. Again there is a privileged unit sheaf I and a natural iso-
morphism 7: 4 ~ (I4).

The basic elements of the structure of a closed category now become
clear. First there is an ordinary category ¥, represented by # or hX
in the examples above. Next there is a functor V:¥7p — .. Then an
internal Hom-functor ¥"§ X ¥"¢ — ¥o, denoted by (4 B), and such that
V(4B) is the set ¥ ¢(4B) of morphisms 4 — B. Further there is a
unit object I and a natural isomorphism i: 4 o~ (I4). What is still
lacking is a composition law that generalizes the ordinary composition
law in ¥"9. The notion of composition is usually linked with a notion
of “product”. However the need of a product for defining composition
is only superficial. Indeed if we consider an ordinary category &/ and for
a fixed 4 € &/ we wish to consider the left represented functor L4 =
A (A—): o - &, then we must indicate the effect of L% on mor-
phisms; i.e. we must give a morphism

Liy: o/ (BC)— L (/(AB), o (A0));
and this morphism is nothing but the composition law

(Lgehg=1g.
Generalizing this we define the composition law in a closed category to
be a morphism

L4s: (BO)— ((AB), (A0)).

This is the last needed primitive term for a closed category, and we
denote the whole set of data (¥, V, (4AB), I,1, L), i.e. the closed
category, by ¥". There are five axioms, but as they involve a term j
derived from the other terms, we preferred to include j as a primitive
term and add a sixth axiom to fix its value (§1.2).

In Chapter I we give a precise definition of closed category, and
define the corresponding notions of closed functor and closed natural
transformation. Then we consider for a closed category ¥~ the notion of
a ¥ -category &7, i.e. a “category”’ whose Hom-functor has values 27 (4 B)
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in ¥7p. With such a ¥ -category 7 is associated an ordinary underlying
category &7y with o/¢(4 B) = Vo7 (A4 B) as indicated above. There is
a corresponding notion of ¥ -functor, and also of ¥ -natural transforma-
tion. The notations ¥~, ¥"¢ suggest that ¥~ itself is a ¥ -category with
underlying category ¥"9, which is indeed the case. Each object A of
a ¥ -category o/ determines a ‘“‘left represented”” ¥ -functor L4:.o/ —¥",
and this leads to the key representation theorem (Theorem 1.8.6.) which
is the generalization of the YONEDA theorem for ordinary categories. We
here thank Jonn Gray for impressing upon us the importance of such a
theorem; actually the one he wanted was a still higher form which must
await a later paper on functor categories. We note throughout the
chapter various gross simplifications that ensue when the basic functor
V:¥g— % is faithful.

In Chapter IT we consider closed categories which possess a tensor
product defined by the adjointness relation

(4® B, C) = (A4(BC)).

These considerations lead us to the notion of a monoidal category, which
is a catégorie avec multiplication in the terminology of BinaBou ([I], [2],
[3]). A key result here is Theorem II.5.8 which allows us to re-
construct the closed structure on ¥~ from the monoidal structure. A sim-
ilar result is to be found in [3]; cf. also [10].

The theory as developed thus far does not allow for a consideration
of dual #"-categories and therefore all ¥ -functors must remain covariant.
In order to introduce contravariance one needs a notion of symmetry.
In the presence of a tensor product a symmetry takes the form of a
natural isomorphism

ARQB~B®A

satisfying suitable conditions. This is the subject of Chapter III, where
we also show that a symmetry allows us to introduce ¥ -functors of
many variables and the appropriate generalized natural transformations.
In a separate paper we shall study closed categories with symmetry but
without assuming the tensor product. The symmetry then takes the form
of an isomorphism

(4(BC)) == (B(40)).

Chapter 1V is devoted to examples. These show the frequency with
which closed categories appear in various parts of mathematics. The
examples were also chosen to illustrate the various points treated in
Chapters I—III. Certain classes of examples will form the subject matter
of subsequent papers and such examples have been either completely
omitted or treated very sketchily. This in particular applies to the con-



424 S. EILENBERG and G. M. KELLY

struction of “functor categories’” which form an indispensable continua-
tion of the theory presented in this paper.

Chapter 1

Closed Categories
1. Notation and Preliminaries

In our notation we use brackets no more than is necessary (logically
or psychologically); in particular fx denotes the value of the function f
at the argument x. Then (Kf)x denotes the value of Kf at x, f(xy)
denotes the value of f at zy, and f(z,y) denotes the value of f at (z,y).
We often use dots in place of brackets, as in Kg. Kf. « for (Kg) (K{)=.
We are similarly sparing of commas: for a bifunctor T' we write T (4 B),
not 7'(A4, B); but we write 7'(f, g) since 7' (fg) would be confusing.

We use &/ * for the dual of a category 7; then a functor T': & —> #
has a dual T*:.o/* —%*, and a natural transformation o.: T —>S8: ./ %
has a dual a* : 8* — T'*: &/ * — Z*. We reserve the symbol .% for the
category of sets, and we denote by Hom.Z the Hom-functor
A* X oA - & ; however we abbreviate the values Hom /(4 B) and
Hom 7 (f, g) of Hom &7 to &7 (AB) and 2/ (f, g). Note that we do not
require of a category .7 that the various &7 (A4 B) be disjoint.

If o = (x4)4 e is & family of morphisms, where say aq: 74 — S A4,
we often abbreviate to o : 74 — S A. Where there are several variables
as in Liy: (BC) — ((AB) (A0)), we may abbreviate L4, totally to L,
or partially to, say, L4 if we wish to emphasize A. We also use L4 at
times to denote the partial family got by fixing 4 and letting B and C
vary.

The reader should note that the criterion for a family of morphisms
o4:TA — SA to be a natural transformation «: 7' — S, where T', S:
A — %, is the commutativity of the diagram

#(AB) —_Ta2_ _ g(14,7B)
Sar .@(1,0(3) (11)

BOASB) . H(TASB) ;
HB(oa,1)

the more usual criterion, got by evaluating (1.1) at f € &7 (4B), is the
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commutativity of the diagram
ra__Tf _ 7R
o4 aBp

84— = 8B
Sf

As our discourse concerns generalizations of categories, functors, and
natural transformations, it will be convenient to use the abstract lan-
guage of hypercategories (the 2-categories of EHRESMANN [6]). A hyper-
category U consists of

(1) a class of objects o7, %, ...;
(ii) for each pair of objects &7, Z a set of morphisms

T,8,...:4 >%B;

(iii) for each .7, # and for each pair 7', S: o/ — % a set of hyper-
morphisms A, y,...: T —>8: A—>B;
together with four kinds of composition law:
NifT:o/ >F andS:# —% then ST : 4 - F;
() if 7o/ ->% and 1: 88— R:% — € then
AT:8T >RT: o/ %,
(iii) if A:S—>R:of >% and T:H — € then
TA:TS—>TR: o/ —~%;
(iv) if A: T —>8: o/ >% and u:8S— R: o/ - % then
ur:T—>R: oA >H;
and two kinds of identity:
(i) 1y:f —>;
i) 1p: T >T: 4 > AB.
These data are to satisfy the following five axioms:
HC1. The objects and the morphisms form a category %o .
HC2. Foreach o/, # the morphisms &7 —> % and the hypermorphisms
between them form a category U (2/ %).
HC3. AT >T": A >B, A" A g, and By B~ B,
we have
(a) 1gA= 14, (b) A1,=121,
() (8'S)A=28(S4), (d) A(RR)=(AR)R’,
() (SA)R=S(AR).
HC4. If R: &/’ - & and S: % — &' the assignments T > STR,
At> SAR constitute a functor A(R, S): (A B) — (L' H').
HC5 If : T —>8: &/ >% and u:P — Q: # — €, the following
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diagram commutes:

pr__PA _ PS8

QT — @8

If A and B are hypercategories, a hyperfunctor @ : U — B consists of
functions assigning
(i) to each object &7 of A an object @ o7 of B;
(il) to eachmorphism 7 : o/ — % in ¥ a morphism @71 : @7 — PH
in B;
(iii) to each hypermorphism A: 7' — S : &7 —Z% in % a hypermorphism
10T >DP8: DA >DHin V.

These are to satisfy the axioms:

HF1. &(ST)=®S8.®T and Dl=1.
HF2. 9AT)=DLDT.
HF3. ¢(TH)=®T.DA.
HF4. O(ul)=Pu. P41 and DPl=1.

If @, .U B are hyperfunctors, a hypernatural transformation
n:® — ¥ is a function assigning to each object &/ of U a morphism
Ny Pl — Wof, and satisfying the axioms:

HNI1. If T': &/ — % in ¥, the following diagram commutes:

oo 2T _ oz

Ner N

Wef WA
vr
HN2. If A: T - S: &/ — % in ¥, then
Mg Pl:ng. PT -1y 08: DA >VH

coincides with
V2ing:PT.ny—>VY8 0y, Ot -VAH.

It is clear that small categories, functors, and natural transformations
form a hypercategory; so do small hypercategories, hyperfunctors, and
hypernatural transformations, if we use the obvious definitions of
composition. Since however we shall use hypercategories purely as a
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convenient language at the formal level, we shall not hesitate to speak
of the “hypercategory” €af of all categories and the “hypercategory”
34 of all hypercategories, sometimes as here using quotation marks to
emphasize this purely formal use. In fact when we speak in this way
we suppose ¢ to contain not merely all categories but also all “cate-
gories”’. Note that from any hypercategory U we get a category o by
discarding the hypermorphisms; indeed U %y is clearly the object-
function of a forgetful hyperfunctor #y/ — €at.

We recall some special properties of the hypercategory €z¢ that
provide at once a guideline for our generalizations of categories and a
tool for our investigations. The underlying category €a¢¢ of ¥« has an
initial object, the empty category;and a terminal object, the category .#
with a single object and a single morphism. The objects and the morphisms
of a category & may be identified with the functors # — &/ and the
natural transformations between these. The category & of sets plays a
special role in ¥«¢; to each object 4 in the category .7 there is the left
represented functor L4 = Hom &/ (4 —): &/ > &, and for any functor
T: o — & we obtain a bijection between the natural transformations
«: L4 — T and the elements of 7’4 by sending o to asls e T'A. This
representation theorem (YOoNEDA [I7]) occurs most frequently in our
applications in the following form, in which we formally state it:

Theorem 1.1. Let T: o/ — % be a functor and let Ke s/, M € 4.
Denote by {p} the class of natural transformations

p=pa: L (KA)—-~FM,TA),
and define a map I': {p} - B (M, T K) by
I'p=pklk. (1.2)
Then I' is a bijection, with inverse Q2:B(M, TK) — {p}, where 20 is
the composite
Q0 :AKA) 75 B(TK, TA)5575% (M, TA). (1.3)

Proof. 20 is indeed natural, since T'x4 is natural in 4 and % (6, 1p)
in B. That I'2 = 1 is obvious, and that QI" = 1 follows by a simple
naturality argument.

We record the form of (1.3) obtained by evaluating at f e o7 (KA);
setting p = 20 we have the commutative diagram

\ /; (1.4)
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Note that if we take # = % and M to be a single point we regain the
usual form of the theorem.

The hypercategory €a¢ is further enriched by its product hyper-
functor &7, # > o/ X% and its duality hyperfunctor & > o7*, which
allow us to define functors of many variables and both variances. There
is a corresponding extension of the concept of natural transformation,
which the authors have described in [7], and with which we shall assume
familiarity. We record here the appropriate extension to the represen-
tation theorem:

Proposition 1.2. Let o7, B, €, 2 be categories and let T': DX A — B,
K:CXD* > A, M:€ —F be functors. Let

P = PcDA: .,Q{(K(CD), A) —>.%(MO, T(DA))
be a family of morphisms, natural in A for each fixed C, D; and let
0=0cp: MC—T (D, K(CD))

be I'pcp. Then p is natural in C (resp. D) if and only if 0 is.
Proof. If 0 is natural so is p by (1.3). If p is natural so is the composite

%7 o (K(CD), K(CD))5 #(MC, T (D, K(CD)))

where * is a single point and j % = 1, for j : % — &/ (A 4) is clearly natural
in A. It is easy to see that this implies the naturality of pj*, which is 6.

2. Closed Categories

We begin by axiomatizing those structures, called closed categories, in
which the Hom-functors of our generalized categories will take their values.
A closed category ¥ = (¥"o, V,hom ¥", I, 1,4, L) consists of the
following seven data:
(i) a category ¥ o;
(i1) a functor V:% ¢ — &;
(ili) a functor hom ¥ : ¥"§ X ¥ o =¥
(we write (AB) for hom ¥ (AB) and (f, g) for hom ¥"(f, 9));
(iv) an object I of ¥";
(v) a natural ssomorphism i =i4: A — (I 4) in ¥,
(vi) a natural transformation j = j4: I — (4 4) in ¥;
(vii) a natural transformation L = L4, : (BC)— ((AB) (AC)) in ¥".
These data are to satisfy the following six axioms:
CCO. The following diagram of functors commutes:

Y o*X ¥ ._h(ln_lL, %o

Hom ¥ 4

<
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CC1. The following diagram commutes:

(B B) —————-> ((4 B) (4 B))

\/

CC2. The following diagram commutes:

L.A
(40) —= = ((44) (40))
\ l(]', 1)

(1(40))

CC3. The following diagram commutes:

LB
(CD) ((BC)(BD))
LAl
((40) (4 D)) (1, 14)
L(AB)l
{((4 B) (A 0)), (4 B) (4 D)) " ((BC), ((4 B) (4 D))
(L%, 1)

CC4. The-_following diagram commutes:

I
(BO) — 2= (IB) (1))

N J(i, 1)

(B(I0))

CC5. The map
Viuay:V(4dA)—>V(I(A4)),
which by CCO may also be written
Vi : 7 0(44) =¥ oI, (44)),
sends 14 € ¥ o(A4) to jue ¥ o(I, (44)).

We consider some properties of closed categories that follow directly
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from the above axioms. Note that by CCO we have
V(A B)=7"4(AB), 2.1
V(t.9)="70(}.9). (2:2)
Define a natural isomorphism
t=1u14:VA—>V(IA)
by
tu="Vig. (2.3)
Proposition 2.1. ¢ provides a representation of the functor V: ¥ g— &,
Axiom CC5 may be written as
ja=114; (2.4)

of course we could drop j as a primitive term, and drop axiom CC5,
using (2.4) as a definition of j; note that j so defined is automatically
natural. Any statement about composition with j may be turned into
a statement about the image of 1 by means of:

Lemma 2.2. For any f: (AA) - X in ¥y, the composite
I744)7X
ts the vmage of 1 € V(A A) under the composite map
V(AA) v VX7 V(I X).
Proof. Evaluate at 1 € V(44) the diagram

v vi
(4 4) TX

V({I(44)) —-V—(l—f—)—a— V({IX),

which commutes by the naturality of «.

Proposition 2.3. In the presence of CCO and CC5, the axiom CC1 is
equivalent to any of the following:

(a) (VLp) 1= 1un; (2.5)
(b) (VL3c)f=(1,f) e V((4B), (4C)) for fe V(BO); (2.6)
(¢) VL4o = (4 —): V(BC)—>V((4B),(40)). 2.7)

Proof. Lemma 2.2 shows the equivalence of CC1 with (a), while (b)
is merely the evaluated form of (c). The equivalence of (c¢) with (a)
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follows by applying the representation theorem, Theorem 1.1, to the
natural transformations V L4 and (4 —) in (2.7), since (4, 1g) = 1.

Proposition 2.4. For any f € V(4 B) we have a commutative diagram

! fa (4.4)

9’3[ U La,n 2.8)

(BB) ————= (4 B),

(HL1)
the diagonal being the image of f under
tup): V(4 B)—V(I(AB)).

Proof. By Lemma 2.2 we have
LHj=eV(@.1,
but V(L,/)1 =7"0(1,f) 1 =f; similarly (f,1)j =¢f.
Proposition 2.5. 374 = (1,24) : (1 4) — (I(1 4)).

Proof. From the naturality of ¢ we have a commutative diagram

i
A ————(I4)

l lu,z-)

(I4) ———= (11 4)),

whence the result since ¢ is an isomorphism.
Proposition 2.6. For any f e V(I A), the composite
I7A47(14)
ts the image of f under +: V(I4) — V (I, (14)).
Proof. Apply V to Proposition 2.5 and evaluate at f.
Proposition 2.7, jr =i;: I - (I I).
Proof. Take A = I and f = 1 in Proposition 2.6.
Proposition 2.8, For fe V(II) we have (1,f) = (f,1): (I1) — (II).

Proof. In (2.8) put A = B = I; the result follows because j; = iy is
an isomorphism.
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Proposition 2.9. The monoid ¥ o(II) of endomorphisms of I is
commutative.

Proof. Applying V to Proposition 2.8 gives
VALH=V({L1): VI D)~V I);
evaluating at g € V(I 1) now gives fg = g¢f.

Proposition 2.10. If V is faithful, the axioms CC2, CC3, CC4 are
consequences of CC0O, CC1, CC5.

Proof. First note that we have made no use of CC2, CC3, CC4 in the
deductions above. If V is faithful, a diagram commutes if and only if
V of it does so. Applying V to the diagram of CC2 and evaluating at
fe V(AC), using (2.6), we get +f = (1, f) j, which is true by Proposition
2.4. Applying V to the diagram of CC3 and using (2.6), we obtain the dia-
gram asserting the naturality in C of L%, which obtains by hypo-
thesis. Similarly V' of CC4 is the assertion of the naturality of s.

Proposition 2.11. Let there be given a category ¥y, a faithful functor
V¥ o= &, arepresentation 1: VA >~ ¥ o(IA) of V, and, for each A, B
V"o, an object (A B) of ¥ with

V(A B)=v(AB).
Then there is a closed category ¥~ = (¥"o, V,hom ¥", I, 1, §, L) with
hom 7" (4 B) = (4 B)
and
Vi=y
if and only f
(i) for each f: A" — A and g: B — B', the morphism
Yo(f,9):70(4B) 70 (4" B')
is V(f, g) for some morphism (f, g): (4 B) — (4’ B');
(i) for each A, 1: VA — ¥ o(1A) is Vi for some isomorphism
1: 4 —(LA);
(iii) for each A, B, C the map h — (1,h): V(BC) - V((4 B) (40))
is V L4 for some L4y : (BC) — ((4 B) (40));
and if these conditions are satisfed ¥ is unique.

Proof. The conditions are clearly necessary, in view of (2.2) and (2.6).
Suppose they are satisfied; then (f, g), ¢, and L are unique by the faith-
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fulness of V.
For A”77 4’74 and By B 7 B” wehave
V{{'t99)=""0(f199)
=7"(£,9) 7 0(f:9")
=V V(.9
= V{599,

whence (f'f,99') = (f,9) (f,g9’) by the faithfulness of V. Similarly
(1,1) =1, and thus (4 B) and (f, g) are the values of a functor hom ¥~
satisfying CCO.

Again since V is faithful the naturality of ¢ follows from that of
Vi =, and that of L4 follows from that of VL4 = (4 —). We define
7 by (2.4), so that CC5 is satisfied; then CC1 is satisfied by Proposition
2.3, and the remaining axioms follow by Proposition 2.10.

Proposition 2.12. We obtain a closed category, which we denote by &,
if we set ¥o=F, V=1 and hom ¥ = Hom &; take for I a set %,
chosen once for all, consisting of a single point %; and define 3, j, L by:

(ta)x=a, acAd; 2.9)
je=1; (2.10)
(Lhg=1g, [e(BO), ge(4B). (2.11)

Proof. It is clear that ¢, j, L are natural. Verification of CC0, CC1
(in the form (2.6)), and CC5 is immediate, and the other axioms follow
by Proposition 2.10.

Remark 2.13. For a closed category ¥~ we shall call ¥ the underlying
category, V : ¥ o — & the basic functor, and hom ¥~ the internal Hom-
functor.

3. Closed Functors

Let ¥ = (¥, V,hom¥", I,4,§, L) and ¥" = (¥, V', hom ¥, I,
', 4', L') be closed categories; we write (XY) for hom ¥ (XY) as well
as (4 B) for hom ¥ (4 B). A closed functor @ = (¢, ¢A, 0 : YV — ¥
consists of

(i) a functor ¢: ¥ o —¥;

(ii) a natural transformation ¢ = Pap: ¢ (4 B) — (¢ 4, ¢ B);

(ili) a morphism ¢0: I’ — ¢ I.
These data are to satisfy the following three axioms:

Conference on Categorical Algebra 28
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CF1. The following diagram commutes:

o1 —21 o 44

¢° l$

r —7—*(¢A,¢A)

CF2. The following diagram commutes:

$(I14) —2m (41, 44)

¢i] lwso, 1)
¢4 U ¢ 4)
CF3. The following diagram commutes:

L é
$(BO) $((4 B), (40)) ————— (4(4 B), $(4C))

RSSY

1, 4)

(#B.$0) ————= (64§ B). (64, $0) ————= ($(4 B), (4 4, 4 )
- G BABL G440

s

Theorem 3.1. Closed categories and closed functors form a “category”
€y if we define the composite of

D=(4,0,49:7 =¥ and W= (W, P, 0 : V" =V
tobe X = (y,%, 2% : ¥ — ¥ where
(i) x is the composite ¥ o~ ¥ - Vo (3.1)
(i) 7 ds the composite y § (4 B) 5y (44, ¢ B) 5-(p $ 4, p $B); (3.2)
(iii) %O is the composite I" yo p I' ygiyp $ I . (3.3)

Proof. It is immediate that composition as defined above is associative,
with identities 1 = (1, 1, 1). What has to be verified is that X satisfies
CF1—CF3; that is, that the exteriors of the following three diagrams
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commute:
poI 42PN
p o v
pI’ 7 p(p4, ¢ A) (34)
v
0 1@
I’ 7,,, (W¢A’w¢A)
pod) —2 e (31,4 4) — T m (4 Ly )
J
Jw(qﬂ‘% 1) (w ¢ 1)
y i VI ¢ d) ———= (v Iy $4) (3.5)
1,01:, (wo:l)
\
yod o (1", 9 4)
. L V($(AB),¢(40)
yeé ,j,
yoL

BC) ————— y4((4B),(40))

L/
B, ¢ C)—Zmyp(($ 4, $ B),($ 4, $C))

B,y¢C)

L/I
1)

~N

(oA, pdB), (wdA,pdC))

w(1, ) (9 $(AB),yd(40))

($(A B),($ 4, $C)) (L)

v 1) \”\
(v $(AB), (b4, $C)

v V

(v(¢4,4B),v(44,$C)) (L, 9)

1,%) (y$(AB), (vdpA,y40))

/fm?,l)

(w(¢A4,¢B),(wdd,p¢C)) (3.6)

28%*
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Now in (3.4) one region commutes by y of CF1 for @, and the other
region by CF1 for ¥; in (3.5) one region commutes by y of CF2 for @,
one by CF2 for ¥, and the third by the naturality of 9; and in (3.6) one
region commutes by y of CF3 for @, one by CF3 for ¥, two by the
naturality of 9, and the last region trivially.

Proposition 3.2. A closed functor @ = (¢, $, @) : ¥ — ¥, is an iso-
morphism in the category €4y if and only if ¢ : ¥ o — ¥ is an isomorphism
of categories, each q?AB s an tsomorphism, and ¢° is an isomorphism.

Proof. If @ has an inverse ¥ = (y, 9, p9), the composites (3.1)—(3.3)
are all the identity, and so are the corresponding composites with @
and ¥ interchanged. It follows at once that ¢, gZ, @9 are all isomorphisms.

If 4, q?, #0 are all isomorphisms, define y = ¢-1 and take for 9 and ¢°
the unique values that render the composites (3.2) and (3.3) equal to
the identity; ﬁ is clearly natural, and we have Y@ = 1, but we must
show that ¥ satisfies CF1 — CF3.

Consider diagrams (3.4)—(3.6); we know that the exteriors commute
and that all the internal regions commute except those that express
CF1—CF3 for V. It follows that the latter regions commute also (using,
in the case of (3.6), the fact that 1/;(,; is an isomorphism).

Thus ¥ is a left inverse of @. But y, 9, 30 are all isomorphisms, and
so by the same argument ¥ itself has a left inverse. Hence ¥ is a two-
sided inverse for @.

Proposition 3.3. In a closed functor @ = (P, <z, ¢0) V" >, PO is
uniquely determined when ¢ and ¢ are given, and ¢0 is an isomorphism
if each of ¢, 0 is.

Proof. Let (¢, ¢, ¢9) and (¢, ¢, ¢9) both be closed functors ¥~ — ¥
We express the fact that the first satisfies CF1 and the second satisfies
CF2, in each case taking 4 = I. Thus

"= ¢-ir 4%,
i = (4% 1). §. pir.
Since j; = i; by Proposition 2.7, it follows that the composites

' ——— (¢ ,$I) —— (I',¢I),
7 LD~ (14 )

I - ¢ 1
o T

are equal; but the first of these is ¢/ gZO by Proposition 2.4, while the

I é1),
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second is ¢’ ¢° by Proposition 2.6. Since ¢’ is an isomorphism, we have
p=9p.
If $ is an isomorphism, so too by CF2 is
(¢%.1): (1, 4) > (I', 4 4).

If ¢ also is an isomorphism, we can replace ¢4 here by any X € ¥7,.
Doing this and applying V', we see that

Vig0,1): V(¢ I, X)—>V'(I', X)
is an isomorphism for all X; hence ¢0 is an isomorphism.

Proposition 3.4. Let ¥~ and ¥ be closed categories and let ¢ : ¥ o — 7
be a functor. Then there is a bijection between morphisms

0 I'>¢1I
and natural transformations
bo:V>V'é: 70>,
given by requiring commutativity in the diagram

V(14) # VI, 44)

1 V(49 1) (3.7)

v4a -—¢-——>V’¢A VI, ¢ 4)

0 v
Proof. Since ¢ and ¢’ are natural isomorphisms, this is immediate from
the representation theorem.

Thus we can use ¢, q’S\, ¢o instead of ¢, a, @0 as the data for a closed
functor. We record the form of (3.7) got by evaluating at fe V([ A4):

¢f. 40 = dor 1t f. (3.8)
Taking in particular 4 = I and f= 17, we get
¢ =1 ore11;. (3.9)

Now replace 4 by (4B) and let f = g where g € V(A4 B); since we also
have f = (1, g)j by (2.8), (3.8) becomes

$(L,9).47.4°='dog. (3.10)
Taking in particular B = A4 and g = 14, we get
¢jA-¢0=LI¢01A- (3.11)

Proposition 3.5. Axiom CF1 is equivalent to the commutativity of the
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diagram
$o
V(AB) —————V"¢(4 B)
P ) (3.12)
V(¢ 4,4 B)

Proof. By the representation theorem (3.12) commutes if and only if
both legs give the same result when we set B = 4 and evaluate at 1.
But ¢1 =1, and by (3.11)

V'd.dol=V'é.02(hj. 4.
Since by the naturality of ' we have
V'g{;. =1 P, gg) ,
the commutativity of (3.12) is equivalent to
=017, 4) (45 49).
that is,
Y1=TV'(L ) (4.4
or
i=9.4i.¢°,
which is CF1.
Proposition 3.6. If (y, 7, x°) s the composite of the closed functors
(6.6 407 =7 and (p, )V >V
then yo:V — V" pd is the composite

S A (3.13)

Proof. We show that if we define yo by (3.13) and then use Proposi-
tion 3.4 to define 40 we get (3.3). By (3.9) we have
20=1"Xpi 11
=1"podot 11
=1"po'"1¢% by (3.9)
=p¢0.y0 by (3.8),
which agrees with (3.3).
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We say that a closed functor @ = (¢, (f;, @Y : ¥ — ¥ is normal if
=V'¢: Vo> and ¢g=1:V — V'¢. From Proposition 3.6 we
get at once:

Proposition 3.7. T'he identity closed functor, and the composite of normal
closed functors, are normal; so is the inverse of a normal closed functor that
s an isomorphism.

In view of Proposition 3.5, we may define a normal closed functor
@:¥" — ¥ directly, as consisting of a functor ¢: ¥’ — 77 and a

natural transformation gz 1 ¢(AB) — (¢ A, ¢ B), satisfying the axioms
NCFo. V=V¢: 409>,
NCF1. V'$: V' $(AB)—>V'(pA, ¢ B)
coincides with
$:V(AB) > V'($A, $ B);
and also the axioms CF2, CF3, in which 49 is defined by (3.7) with
do=1.
Proposition 3.8. The axzioms CF2 and CF3 for a closed functor
(D:(¢,¢A,¢°):"//——>V’

are consequences of CF1 if V' is faithful, provided that ¢o: VA — V'dA
is an epimorphism for each A (and so in particular if @ is normal).

Proof. For simplicity we shall give the proof only for the case where
@ is normal; the reader will easily provide the proof of the general case,
relying on (3.12) instead of its special case NCF1.

Since V' is faithful the diagrams of CF2 and CF3 commute if their
images under ¥’ do so. However V' of CF2 coincides, in view of NCF0
and NCF1, with the diagram (3.7) (with ¢9 = 1) which defines ¢9. Again
V' of CF3 coincides, in view of NCF0, NCF1, and (2.7), with the dia-

gram asserting the naturality in B of quB.

Proposition 3.9. Let ¥~ and ¥ be closed categories with V': ¥( — &
faithful, and for each A € ¥ o let ¢ A be an object of ¥ ywith V'd A = VA.
Then there is @ normal closed functor @ = (¢, ) : ¥~ — ¥ with the given
value on objects if and only f

(i) for each f: A — B in ¥y, the morphism Vf: VA — VB is V'¢f
for some ¢f:pA — ¢ B;

(ii) for each A, B in ¥ o, the morphism ¢: V(AB) — V'($p A, ¢ B) is

V’qSA]‘or some ¢: $(AB) — (¢ A, ¢ B);

and if these condilions are satisfied @ is unique.
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Proof. The conditions are clearly necessary, and if they are satisfied
¢f and :ﬁ are unique by the faithfulness of ¥’. We further conclude from
the faithfulness of V' that ¢ is functorial and that a is natural (because
V'd = ¢ is).

Remark 3.10. In concrete cases of closed functors, as in the pro-
position below, we often by abuse of language denote a closed functor

(¢, 3, °) by the letter ¢.
Proposition 3.11. If ¥ is a closed category, the functor V:¥ "¢ — &

admits a unique extension to a normal closed functor (V, f/, Vo). v - &,
which we still denote by V. We have

Vap=Vap: V(AB) - (VA, VB), (3.14)

and VO:x— VI 1isgiven by
VOox = ;11 (3.15)
where 17: VI — V(I I). Moreover for any f € V(I4), the image of % under
xp VIgp VA is olfeVA; (3.16)

and in particular the image of * under
* 3o VI V(44) is 14. (3.17)

Proof. Clearly Vv is unique by NCF1, and NCFO0 and NCF1 are in
fact satisfied, which suffices by Proposition 3.8. The equations (3.15) and
(3.16) are translations of (3.9) and (3.8), and (3.17) is a special case of
(3.16).

Proposition 3.12. 4 closed functor @ : ¥ — ¥ is normal if and only
if the following diagram of closed functors commutes:

Proof. Set V'® = X = (y, %, £°); then by (3.1), (3.2) and (3.13) we
have y = V'$, y = V. V', and y0 = ¢o. So if X = V we have ¢ =
Vo =1 and @ is normal; while if @ is normal we have ¥ = V'¢ =V
by NCFO0, and 5 = V". V’gz = V'¢d = V by NCFO and NCF1, so that
X=17.

Remark 3.13. We shall refer to V: ¥ — & as the basic closed functor
associated with ¥”.
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4, Closed Natural Transformations

Let @ = (¢, (3, #9), ¥ = (p, p, y°) be closed functors ¥~ — 7. A
closed natural transformation

:@->VY: 9V =9
consists of a natural transformation
n:p—>yp: ¥ o>7

satisfying the following two axioms.
CN1. The following diagram commutes:

¢0

I ——————=g7

30 nr
I
CN2. The following diagram commutes:

$(4 B) d ($4,4 D)

@, m)

Y ($4,v B)
(1)

v(4.B) 7 (y4,9B)

Proposition 4.1. If we define ¢o and o as in Proposition 3.4, CN1 is
equivalent to the commutativity of the diagram

v do Ve

'z (1)

Yo
Vy

Proof. We show that if we define o by (4.1), the 90 that corresponds
to it by Proposition 3.4 is that given by CN1. We have by (3.9)

P =1ypourll=10.V'n.dot711;
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but by the naturality of ' we have
V=V (1,9 .4,
and thus
0= V'(Lp)oet 1
= V(L) ¢° by (3.9)
=n¢°

as required.

Theorem 4.2. Closed categories, closed functors, and closed natural trans-
formations form a hypercategory €¢ if we define the composite of n: P —>@’
and §: @' — @ to be the composite {nof n:d —> ¢ and {: ¢ — ¢, and
iffor Vet >4, XoHW W', and n: @ > D': V" — W we define n¥
and X7 to be ny and yn. Moreover np: @ — @’ is an isomorphism if and
only if n:d—¢' is.

The proofs are straightforward, and we leave them to the reader.

Proposition 4.3. The axiom CN2 for a closed natural transformation
n:DP—>¥:¥ — ¥ is a consequence of CN1 if V' is faithful and @ is
normal.

Proof. If @ is normal we have ¢g = 1 and (4.1) gives
V'n=wyo. (4.2)

Since V' is faithful it suffices to show that the image under V' of the
diagram CN2 commutes. Using NCF0 and NCF1 for @, and (4.2), we
may write V' of CN2 in the form

V(A4 B) e V' ($A, ¢ B)
v,

Yo V(¢ 4,y B)
70 1)

V'y(4 B) g VA D)

Since V'y . po =y by (3.12), this is just the diagram that asserts the
naturality of 7.

Remark 4.4. For the above proposition it would suffice to assume ¢
epimorphic instead of @ normal.
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Proposition 4.5. If @: ¥~ — ¥ is a closed functor, the natural trans-
formation ¢o:V —V'éd: ¥ 90— & is a closed natural transformation
do: V>V @:¥ —F. Moreover if n: P —W¥:9 — ¥ we have the
commutative diagram of closed natural transformations

, 4.3
Yo lV 1 (4.3)

144’4

Proof. By Proposition 4.3 we need verify only CN1. If we write this
in the equivalent form (4.1) it becomes

V————=7V

do l ’
V'é

which commutes trivially. The diagram (4.3) is just a translation of (4.1).

5. Categories Over a Closed Category

Let ¥~ be a closed category. A category =7 over ¥, or a ¥ -category,

consists of the following four data:
(i) a class obj &7 of “objects™;
(ii) for each 4, Beobj e/, an object o7 (AB) of ¥;
(iii) for each 4 €obj o/, a morphism
ja: I —> A (44)

in Vo;

(iv) for each A4, B, C €obj &/, a morphism

Lio: o/ (BC) — (£ (AB), o (A0))

in ¥p.

These data are to satisfy the following three axioms, in which L#45)
and j,4 p) are the L and the j of ¥”, while the other L’s and j’s are those
of o7:
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VC1. The folowing diagram commutes:

& (B B) S/ (4 B), /(4 B))

\\\\\///ézm

VC2. The following diagram commutes:

: 4
A (AC) ————— (4 (A A), A (AC)

i (G, 1)

(I, (A C))
VC3. The following diagram commutes:

LB

o (C D) = (A (BC), o (BD))
LAl
(£ (AC), (A D)) (1, L4)
LM (AB)l
N%MB%MMCm@ﬂAB%%MDm7fr——>wﬂBmA%MB%%MDm

L%, 1)

If o/ and # are ¥ -categories, a ¥ -functor 7' : o/ — % consists of
the following two data:

(i) a function 7':obj &/ — obj #;

(ii) for each B, C €obj.«/, a morphism

T=1Tpc:4(BC)—>ZTB,TC)

in ¥".

These data are to satisfy the following two axioms:

VF1. The following diagram commutes:

& (BB) ———> %(TB, TB)

N
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VF2. The following diagram commutes:

LB
2 (CD) («/(BC), & (BD))
Tcul
%(TC,TD) (1, Tsp)

LTBl/

(B(T B, TC),%(T B, T D)) —————= (£ (BC),%(T B, T D))
(Tsc, 1)
Theorem b.1. ¥ -categories and ¥ -functors form a “category” ¥ if we
define the composite of T': o — FB and S: B — € to be P: o/ —~FC where

PA=8TA (5.1)
and Py4pg is the composite
Pug: A(AB) 5, B(TA,TB) g, ¢ 8TA,STB). (5.2)

Proof. Clearly composition is associative, with obvious identities
1: o/ — /. We must verify that P satisfies VF1 and VF2, that is,
that the exteriors of the following two diagrams commute (See page
446 for diagram (5.4)):

T N
& (BB) ——— Z(T'B,TBy— ¥(8T B,ST B)

i . (53)

In (5.3) one region commutes by VF1 for 7' and the other by VF1
for S; in (5.4) one region commutes by VF2 for 7', one by VF2 for S,
and the third trivially.

Theorem 5.2. If ¥~ is a closed category we get a ¥ -category, also de-
noted by ¥, if we take the objects of ¥ to be those of ¥y, take ¥ (AB) to
be (AB), and take for j and L those of the closed category ¥". Moreover if
& is any ¥V -category and A € o, we get a ¥ -functor L4 : of — ¥ if we
take LA B = sZ (AB) and (L4)pc = L.

Proof. The axioms VC1—VC3 for ¥~ reduce to CC1—CC3, and the
axioms VF1 and VF2 for L4 reduce to VC1 and VC3.

Remark. In accordance with the above proposition, “object of ¥
and “object of 7" are synonyms; we often write 4 € ¥".
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Q
5 _ S a
n & 9 & 8
= o N - &
¥ .5 = <
~= % N
(@) D s
8 Q 2
k) > 8
= =
& S
= s
E %
- q
_ B
& =) »
S S (54)
. & &~
q g
& S
s S
'Ui
a
»q B
=o]
~
&
®
5\ NS
— B <)
- Q] 2] &
S_ .S .v_.3
=) S &~
¥ 8 5 % o= 8 o&
8 ® 2
@,

Proposition 5.3. We obtain a ¥ -category # with a single object * if we
take S (xx) = I, takej: I — F (xx)tobel: I — I, andtake L: F (x%)—
— (S (x%), F (k%)) to be i : I — (II). Moreover if o/ is a ¥ -category and
Aest, we get a ¥ -functor J4: I — of if we set JAx= A and lake
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J4: I (k%) > oA (AA) to be j: I — o/ (AA). There are no ¥ -functors
S — o other than the J4.
We leave the verification to the reader.

Proposition 5.4. An F-category o/ may be identified with an ordinary
category 7 if we identify the image of j: % — o (AA) with 14 and identify
(L4cf)g with the composite fg, where f € &7 (BC) and g € &/ (AB). An &-
functor is then an ordinary functor, and in particular the functor L : of — &
is then the left represented functor o7 (A —).

Proof. The reader will easily verify that VC1—VC3 express the two
identity laws and the associative law for composition, while VF1 and
VF2 become T1l=1 and T(fg)=Tf-Tg.

Remark. By analogy with the above we call the ¥ -functor L4: .o/ —7~
a left represented ¥ -functor.

6. The Effect of a Closed Functor

In this section it will be convenient to use j, L for the appropriate
data in a ¥ -category 7, and j’, L' for the corresponding data in @ ¥"'-
category 4, ete.

Proposition 6.1. If ® = (¢, ¢, ¢°): ¥ — ¥ is a closed functor and
& is a ¥ -category, the following data define a ¥'-category Dy o7 :

(1) the objects of Dy o are those of o ; (6.1)
(i) (Dy H)(AB) = ¢ (AB) (that is, (L (AB))); (6.2)
(1id) j' I’ — dof (A A) is the composite

I'ge ¢ 157 A (A4); (6.3)

(iv) L': ¢4 (BC)— (¢ (AB), £ (AC)) is the composite
b5 (BC) 5 $(/ (AB),  (A0)) 5 ($4 (AB), 7 (AC)).
(6.4)

Proof. The axioms VC1—VC3 for @, o assert the commutativity of
the exteriors of the following three diagrams:

”

L
¢M(BB)———¢—-> é(<Z (A B), o/ (4 B)) — - (¢ /(A B), ¢ /(A B))

N 2 7
éj

1 e T (65
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$

¢ (A (A 4), S (AC)) ———($A (4 A), 64 (4 ()

éL éG, 1) ($J, 1)
¢A(AC) — = ¢(I, 4 (40)) d > (¢ I, $4(A0))
~ (¢%1)
(2
(I, L (AC))
(6.6)

In the next diagram, X, Y, Z stand for &7 (4 B), &7 (AC), o/ (AD):

$44(0D) = $(o0(BO), o7 (B D) ———m (4.1 (BC), 64 (BD)
l(ﬁ(l,L) 1(1, éL)
$L $(64 (BO), (X2) ———3—= (¢ (BO) $(X)
$(L.1)
s L (X Y), (X2)) - )
3 lg )
@142 ($(X 7). $(X2)
r l(l, )
Y

(¢ X, ¢ 7), (¢X,¢Z))W ($(XY),(¢X,42) WL (¢4 (BC), (X, $2))

(6.7)

In (6.5) one region commutes by ¢ of VC1 for 7, and the other by
CF1; in (6.6) one region commutes by ¢ of VC2 for o/, one by CF2,

and the third by the naturality of ¢; in (6.7) one region commutes by

¢ of VC3 for o7, one by CF 3, two by the naturality of $, and one trivially.
The proofs of the following propositions are similar but rather easier:
we leave them to the reader.

Proposition 6.2. If @ = (¢, ¢A, #0): ¥ — ¥ is a closed functor and
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T:of — & is a ¥ -functor, the following data define a ¥"'-functor
D, T DA >D B
(i) (P THYA=TA; (6.8)
(i) (DPxT)pc=¢Tpe: AL (BC)—>¢H(TB,TC). (6.9)
Proposition 6.3. The assigments o — Dy, T — D, T constitute a

functor @y : ¥V . — Vg from the “category” of ¥ -categories and ¥ -func-
tors to that of ¥"'-categories and ¥"'-functors.

Proposition 6.4. If n: ® — ¥ : ¥ — ¥ is a closed natural transforma-
tion and o is a ¥ -category, we obtain a ¥ -functor Ny Py A — Py A
iof we set

(i) 7apd=A4; (6.10)
(i) (Mxw)BC = Napmey: A (BC) >y (BC). (6.11)
Moreover the 1y, for & € ¥ constitute a natural transformation
Ne D > ¥ V5 > k.
Theorem 6.5. The assigments ¥ ¥y, @ 1— Dy, 11— 0, constitute a
hyperfunctor , : €¢ — Cad from the “hypercategory’ of closed categories to
that of categories.

We now consider the effect of @, on the particular ¥ -category ¥~
and on the particular ¥ -functors L4 : o/ — ¥".

Theorem 6.6. If @ = (¢, $, @) : ¥ — ¥ is a closed functor, we ob-
tain a ¥ -functor & DV — V" if we set

(i) dA4=d4; (6.12)

(ii) Ppc=Psc:$(BO)—>(4B,40). (6.13)
If W:9¥"— " is another closed functor, and if X =¥VD: ¥ — ¥,
then X is the composite

VDoV 3 TV 5 V. (6.14)

If o is a ¥ -category and A € L, the following diagram of ¥”'-functors
commutes:

&, L4
Byl ———— = DY
~ (6.15)
L4 ¢
,Vl

Conference on Categorical Algebra 29
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Proof. The axioms VF1 and VF3 for @ reduce to CF1 and CF3
for @. The assertions (6.14) and (6.15) are immediate from (3.1), (3.2),
(6.2) and (6.4).

The next proposition does the same for the particular ¥ -category
and the particular ¥ "-functors J4:.# — o/; we write .#' for the ¥™'-
category analogous to .#. We leave the proofs to the reader.

Proposition 6.7. If @ = (¢, $, @0 : 7 — ¥ is a closed functor, we
obtain a ¥"'-functor @0: F' — D, F if we set:

(i) POx=x; (6.16)

(i) Py : I (k%) > I (k%) is $0:I'—>¢I. (6.17)

If . 9" — 4" is another closed functor, and if X = V& : ¥ — ¥,
then X0 is the composite

¥ S T*JWT*Q*J (6.18)

If of is a ¥ -category and A € A, the following diagram of ¥'-functors
commules:

oo

j,

i ®,J4 (6.19)

7. The Effect of the Closed Funector V: ¥ — &

We apply the results of § 6 to the particular closed functor V:¥"— .
Each 7 -category &7 determines an ordinary category V, .o/, with the
same objects as =7, and with

(Vi) (AB) =V L (AB). (7.1)
The §* of V, &/ is the composite
* 70 VI7 VL (44), (7.2)

so that the identity 14 in V, & is the image of % under (7.2). By (3.16)
we can express this by:

tla=1ja (7.3)
where
v Val(AA) > V(I, o (A4)).
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Just as (2.4) gives Lemma 2.2, so (7.3) gives:
Lemma 7.1. For any f: & (AA) - X in ¥y, the composite
Is/(A4)7 X
ts the tmage of 1 € V.of (A A) under the composite map
VA (AA) vy VX~ V(IX).
The L' of V, &/ is the composite
Vo (BC) vz V(Z(AB), (AC)) 5 (VA (AB), VL (4(C)), (74)
so that the composite in Vy o/ of ge V(A B) and fe V&/(BC) is
fg= (VLY f)g. (7.5)
Taking &/ to be the ¥ -category ¥~, we have:

Proposition 7.2. V7" = ¥".
Proof. V, ¥  has the same objects as ¥”, and so the same objects as
¥"0; and by (7.1) and (2.1),
(V¥ )(AB)=V(AB)="70(4B).
By (7.3) and (2.4), V¥ and ¥"p have the same identities; by (7.5), (2.6),
and (2.2) the composite in V, ¥ is given by
fg9=VVLH)g
=V @LHyg
=701y,
and this is also the composite fg in ¥7.

In accordance with this result we denote V,&f by &y, for any
¥ -category &7 ; and we re-write (7.1) for reference as

Lo(AB) = Vol (AB). (7.6)

Similarly if 7': &f — % is a ¥ -functor, we denote V., T by Ty, so that

To: Lo — Bo. The assignment T +— Ty is functorial, and T is given
by:

ToA=TA, (7.7)

Tof=(VT)f for feVZ(BO). (7.8)

We call &7 the underlying category of o/, and Ty the underlying functor
of T.

For the underlying functor of L4 : .o/ — ¥  we adopt the special
notation & (A4 —): &g —> %9, so that

AA—-)=TV IA. (7.9)

20%
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The value of &7 (A4 —) on the object B is o/ (4 B), and its value o7 (4{)
on the morphism fe Vo/ (BC) is given by

L (Af) = (VLA)f. (7.10)
Comparing this with (2.6), we see that

V(4d—-)=(4-). (7.11)

Since the functor ¥ : VoV — & is just V:¥ g — &, (6.15) becomes
the commutative diagram

/(4 —)
o 7o
(7.12)
PAZES v
&
In particular for f e .27y (BC) we have
Vo (Af) = Ao(Af). (7.13)

As the reader no doubt suspects, we shall later show the existence
of a functor o7 (— B) : /¥ — ¥y, forming together with .7 (4 —) a bi-
functor

hom o7 : AE X Ay —Y
satisfying the analogue of CCO. Until we do we can state the analogue
of only one half of Proposition 2.4, namely the commutativity of

I — - g

y S (Af) (7.14)

s/ (4 B)

where f € V.o (A B); this follows at once from Lemma 7.1 and (7.13).
Now let @ = (¢, $, ¢%): ¥ — ¥ be a closed functor. By Proposi-
tion 4.5 the natural transformation ¢o: V — V'¢ is a closed natural
transformation ¢o: V —> V' ®@. By Proposition 6.4 therefore, it induces
a natural transformation ¢o, : Vy, — Vi@, : ¥ — &,. We shall write
D for o, ; then Proposition 6.4 may be stated for this special case as:

Proposition 7.3. If ©: ¥ — ¥ is a closed functor, we have for each
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¥ -category & a functor @y, : Lo — (Py )0 given by

1) DPoprd=24; (7.15)
(i) Powl=gdof for feVs(BO), (7.16)
where

¢o: Vel (BO)—V'¢ AL (BC).
Moreover if T: o — % 1s a ¥ -functor, we have a commutative diagram

of functors

To

Ay ———————— =,

Doy Doz (7.17)

(Pyl)o (D+%B)o

—_——
(P4T)o

If @ is normal we have /o = (Py Ao and Dy, = 1.

Consider now the ¥”'-functor @ : D, V" — ¥ and its underlying func-
tor Vi@ : (P, ¥ )o — ¥ b; the latter is given on objects by (Vi ®) A =
= ¢ A,and on morphisms by (V. P)f= (V'¢d)f, where

V'$:V'$(AB)—>V'($ A, $ B).

It follows immediately from (3.12) that we have a commutative diagram
of functors

Doy~
Vo = (D, 7)o
3 V' ® (7.18)
Yo

Proposition 7.4. If @: ¥ — ¥ is a closed functor, we have for any
¥ -category o/ and any A € o a commutative diagram of functors

(4 —)
Ay ———= 7

Do é (7.19)

O Gena
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Proof. Consider the diagram:

v, L4
o - * T Yo
Doy (DO“//' ¢
(PyH )0 ’—T(Q* o —_— Yo
* Uk «P

The rectangle commutes by (7.17), and the triangle by (7.18). The top
edge is VLA = o/ (A —), and the bottom edge is, by (6.15),
Ve L4 = (D, ) (4—).
Proposition 7.5. If @: ¥ — ¥ and ¥ : ¥ — ¥ are closed functors

with composite X = V@ : ¥ — ¥, we have for any ¥ -category o/ a
commutative diagram of functors:

L]
K4 ot ((D*d)()
Xow Pod,ss (7.20)
(P Dy )o

Proof. Immediate from (3.13).

Proposition 7.6. If n: P — ¥ : ¥ — ¥ is a closed natural transfor-
mation we have for any ¥ -category o a commutative diagram of functors

Door
Ay —— (D, )
» Vit (7.21)
(Pet)o

Proof. Immediate from Proposition 4.5.

8. ¥ -functors into ¥~

We shall in § 10 define ¥ -natural transformations between ¥ -func-
tors, turning ¥", into a hypercategory; but we cannot do so until we
have defined, for a ¥ -category ¢, the functor o/ (— B): o/F — ¥.
The easiest way to get this and to establish its properties is by using the
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representation theorem for ¥ -functors, which we shall prove below. To
discuss the representation theorem we need ¥ -natural transformations,
but only for functors into ¥”; and here there is no difficulty, for we
already have the functor (— B): ¥ § — .

For a closed category ¥ and ¥ -functors T, 8: &/ — ¥7, a ¥ -natural
transformation o : T —> 8 consists of a family of morphisms a«y: 74 —
— S84 in ¥, indexed by the objects of 7, satisfying the axiom:

VN (¥7). The following diagram commutes:

T
A(AB) ——22 = (T'4,TB)

SaB (1, aB)

(84,8 By—————=(T'A, 8 B)
&4, 1)
Proposition 8.1. For a fixed ¥ -category &, the ¥ -functors & — ¥~

and the ¥ -natural transformations between them form a “category” if we
define the composite oo of «: T — 8 and §:8 — R by

(Bo)a = Paca. (8.1)

Moreover o.: T' — 8 is an tsomorphism in this category if and only if each
o 8 an 1somorphism in ¥y.

Proof. The composition law (8.1) is associative, with identities 1
having components 174. The axiom VN for S« asserts the commutativity
of the exterior of the following diagram:

(T A, T B) N L L (T 4,8 B)

V %])\ﬁ)
S

o (4 B) —————— (84,8 B) (TA,RB) (8.2)
EN e A
(R4, RB) A0 (S4, RB)

Here one region commutes by VN for «, one by VN for §, and one
trivially.

If B = a1 then by (8.1) we have B4 = a’. Conversely if « is ¥"-
natural and each a4 is an isomorphism, define 8 by 4 = o . Then in
(8.2) the top region, the right region, and the exterior all commute.
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Since («, 1) is an isomorphism, the bottom region commutes also, and
thisis VN for §.

Proposition 8.2. Let Q: € — o/ be a ¥ -functor and o.: T — S: o —
— V" a ¥ -natural transformation. Then there is a ¥ -natural transforma-
tion 0 Q:TQ —8Q:€ — ¥ with components

(x@)c = %qQc - (8.3)

Proof. Write the diagram VN for o, with 4 and B replaced by @C
and @D, and compose both legs with Qcp : € (C D) — & (QC, @ D). There
results the diagram VN for « Q.

Proposition 8.3. If T: o — & is a ¥ -functor, the morphisms
Tpo: A (BC)—->H(TB,TC), Ces,
are the components of a ¥ -natural transformation
Tg:L? > LT8T .ot ¥ .
In particular, taking T to be LA : of — ¥, the morphisms
Lio: o/ (BO) — (Z/(AB), 4 (AC)), Cedf,
are the components of a ¥ -natural transformation
L4 LA > LYABD LA of 57,
Proof. The axiom VN for 7' reduces to VF2 for T.
Proposition 8.4. If f € ¥7o(4 B), the morphisms
(f,1):(BC)—(A4C), Cev,
are the components of a ¥ -natural transformation
L2 14 v v
Proof. VN for Lf asserts the commutativity of the diagram

LB
(CD) ——— ((BO)(BD))

L4 (19 (frl))

AC)(4 D)) —————((BO)(4 D)),
((40)(4 D)) DD ((BC)(4 D))

which is precisely the assertion that L&, is natural in 4 (which it is,
by hypothesis).
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Proposition 8.5. T'he morphisms
t4:A—>(1A)
are the components of a ¥ -natural transformation
1Ly v

Proof. VN for ¢ is CC4 for ¥".
‘We now prove the representation theorem for ¥ -functors:

Theorem 8.6. Let T': of — ¥~ be a ¥ -functor, let K € o, and denote
by {p} the class of ¥ -natural transformations

p: L >T:of >¥,
with components
pa: A (KAYy—->TA.
Define a map I':{p} — V (I, TK) by setting I'p equal to the composite
I'p: 15 (KEK)57 TK. (8.4)

Then I is a bijection with tnverse Q: V (I, T K) — {p} where £20 is the
composite

. K TK I
26: L ==L T LeT'LT peryad (8.5)

with components

oA (K 4) —== (TK,T4) —p= (LT 4) —5= T4 (8.6)

Proof. Note that by Propositions 8.1 to 8.5, 20 defined by (8.5) is
indeed a ¥ -natural transformation.
Consider the diagram

’ 7~

T
o (K K)——> (TK, TK) —(I TK)

\$Z

The left region commutes by VF1 for 7', the middle region by Prop-
osition 2.4, and the right region by Proposition 2.6. Thus I'Q260 = 6,
or I'Q=1.
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Now let p € {p} and consider the diagram

K : .
(K A) —L—>(x(KK), A (K A)) —(]-’1—>>(I, o (KA))—“—» (K A)

T (L p) (L p) »

(TK,TA)m(&/(KK),TA) —U.—K-’I—)>—(I,TA) —rl_—_» TA

The left region commutes by VN for p, the middle region trivially,
and the right region by the naturality of ¢. The composite s-1(j, 1) L%
along the top edge is 1 by VC2 for &/; hence

p=1i(pxjx, )T =Q21I'p,
so that QI'=1.

Corollary 8.7. In the circumstances of Theorem 8.6 we also have a bi-
jection I : {p} — VT K given by

I"p= (Vpx)1x (8.7)
where
Vog: VoA (KK)—VTK.
Proof. By Lemma 2.2, I"p =11 p. (8.8)

We now consider the effect of a closed functor ¥~ — #:

Proposition 8.8. Let ® = (¢, q?, @0): ¥ — ¥ be a closed functor and
let a: T —>8: -V be a ¥ -natural transformation. Then the mor-
phisms

baa:¢TA—>PSA
are the components of a ¥'-natural transformation
$0:D. O, TP . Dy S: Dyl V.

Proof. VN for ¢a asserts the commutativity of the exterior of the

diagram:

é /(4 B) T . $(T A, T B) ——¢—>(¢ TA,4TB)

¢Sl lszs(l, %)

SA4,8 By ———— (T 4,SB (1, ¢
PEASH =T o
(484,48 B) ($T A4, $8 B)

(¢os 1)



Closed Categories 459

One region commutes by ¢ of VN for «, and two by the naturality of gZ
We apply the above proposition to a ¥ -natural transformation

p:LET:of >V
note that @ . &, LX = L'¥ by (6.15), so that we have
¢p:L’K—>a5.Q5*T:@*d—>V'.
Then:

Proposition 8.9, Let @: ¥ — ¥ be a closed functor, T: f -V a
¥ -functor and K € f. Let {p} be the class of ¥ -natural transformations

p:LET:of v
and let {q} be the class of ¥"'-natural transformations
G LESD. O T: 0,4 >V".
Let ¢:{p} — {q} be the map p — ¢p given by Proposition 8.8, define

I'":{p}—>VTK by (8.1), and A" : {g} — V'¢ TK analogously. Then we
have a commutative diagram

4

{9} ————{g}
I a4 (8.9)

VTE — = V'¢TK
dorx

Proof. Define A : {q} - V'(I', $ TK) by the analogue of (8.4); it fol-
lows at once from (6.3) that A ¢p is the composite

A¢p: I o oI 5T7 ¢TK. (8.10)

By (3.8) we can write this as A¢p = '¢doe=1I"p, which by (8.8) is
A'¢pp= oI p; and this is (8.9).

Proposition 8.10. Let : D@ — ¥: ¥ — ¥ be a closed natural trans-
formation. Then 7 is also a ¥"'-natural transformation

1}:&5-»5[7.17*1,:@*"//»1/'

where the second ¥'-functor here is the composite
(15*"//;:1—;}[’*“//—@‘”//'.

Proof. VN for % reduces to CN2 for 7.
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Note that with 5 as in Proposition 8.10 each ¥ -functor T': o/ — ¥~
gives rise to a commutative diagram

T
D, &—-—»@*V

st Ny

v L
g Y

so that we have a #"'-natural transformation
n.@*T:d’;.(D*T»Y}.T* T.7 %
We leave the reader to pursue the relation of this to Proposition 8.9.

Proposition 8.11. 4 ¥ -natural transformation oo: T — S: o/ — ¥ is
also a natural transformation o« : Ty — So: o — ¥ o.

Proof. Applying V to VN for «: 7' — S we get the criterion (1.1)
for naturality of «: T9 — So.

9. The Bifunctor hom 7

Let ¥~ be a closed category and &/ a ¥ -category. For 4, B e o/ let
{p} be the class of ¥ -natural transformations

p: LB LA od ¥
with components
po: L (BO)— L (A0).
Since L4 B = 2/ (A B), we have by Corollary 8.7 a bijection
I :{p} >V (AB)

given by
I"p=(Vps)ls. 9.1)
For each fe V& (AB) (= &/o(AB)), define
L LB 1A
by
I"Li=§, (9.2)
that is, by

(VL)1 ={. 9.3)
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By Proposition 8.11, L7 is also a natural transformation
Lf:V, LBV, L4,
that is,
Lf:od(B—)—>(4A—).
Applying V gives another natural transformation
VLI . VoA (B—) >V (4A—),
or by (7.12)
VLI :olo(B—)—o(4—).
Proposition 9.1. VLS = &/ (f, 1) : o (BC) — /o (AQ).

Proof. By the representation theorem, since VLS and 27¢(f, 1) are
both natural transformations, it suffices to show that, when C = B,
they have the same value at 1g. But «7¢(f,1)1 = f, and (VLH1 = f
by (9.3).

Proposition 9.2. The assignments A - L4, f 1— Lf constitute a functor
from ¢ to the “category” of ¥ -functors o/ — ¥~ and ¥ -natural trans-
formations between them.

Proof. We have to show that
=1, (9.4)
Lfs=L9L7. (9.5)
Since 1”1 = (V1)1 =1, (9.4) follows since I"is a bijection. Now

I'"(LsLfy=VLs . VLF.1 by (9.1)
=VLs.f by (9.3)
= (g, 1) f by Proposition 9.1
=193

so that (9.5) follows since I’ is a bijection.
Now regarding L7 merely as a natural transformation

Lf: st (B—)—> o (A—),

it follows from Proposition 9.2 that the assigments A4 i o/ (4—),
f = Lf constitute a functor from /¢ to the category of functors o7p—>%"
and natural transformations between them. Since, as is well known, a
functor into a functor category corresponds to a bifunctor, we have here
a bifunctor

hom & : /& X Lo —> Y.
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Its value hom /(4 B) on objects is &7 (4 B), and we agree to write
& (f, g) for hom & (f, g). The defining conditions of hom &/ may then
be written:

hom o/ (4 —) = (A=) (= V, LY), (9.6)
(f,1)=Lr: o/ (BC) - AL (AC). (9.7)
Proposition 9.3. The following diagram of functors commutes:
M: X Mo M;—»VO
v (9.8)
Hom.sz/o
&

Proof. In view of (7.12), we have only to show that V.&Z(f, 1) =
o (f, 1); this follows from (9.7) and Proposition 9.1.
We record the evaluated form of (9.8):
Ve (f,9) = olf.9). (9.9)

Note that when &/ = ¥ the Lf defined in Proposition 8.4 clearly
satisfies (9.3), so that the notation Lf is consistent. So is the notation
hom 77, as we see by comparing (9.6) and (9.7) with (7.11) and Prop-
osition 8.4.

Now that &7 (4 B) is the value of a functor hom .o/ the question can
be raised of the naturality of

ja:I—>o/(AA) and L4i,:/(BC)— (4 (AB), o (AC)).

Similarly if 7': & — # is a ¥ "-functor, one can discuss the naturality
of Tge: & (BC)—> %(T B, TC), meaning of course the naturality of
Tge: & (BC)—>%(To B, ToC); recall that ToA = T4 by (7.7).

Proposition 9.4. If o7 is a ¥ -category the morphisms
ja:I—>o/(AA) and L4g: o/ (BO)— (£ (AB), o (AC))

are natural in every variable; and if T : of — % is a ¥ -functor the mor-
phism Tpo: & (BC) - B (T B, TC) is natural in both variables.

Proof. For feo/y(AB) = V./(4B), consider the diagram

I J

(A A)

j of (1, ) (9.10)
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The upper triangle commutes by (7.14); so does the lower one by Lem-
ma 7.1 in view of (9.9). Hence the exterior commutes, so that § is natural.
By Propositions 8.3 and 8.11, 7'g is a natural transformation

S (B—)—>H(ToB,To—),

i.e. Tpe is natural in C. To prove it also natural in B is to show, for
each fe/y(4B), the commutativity of

T
& (BC) ——=—= @(TB, TC)

o (AC) — 7 B(TA, TC)

AC

Now (9.11) is the C-component of the following diagram of ¥ -natural
transformations:

LA. T LTAT

and so by the representation theorem for ¥ -functors it suffices to apply
V to (9.11), put ¢ = B, and verify that both legs have the same value at
1. Using (7.8) and (9.9), we have

VB(Tof,1).VT.1=VA(Tof,1).1=Tof,
VT .V (f,1).1=VT.f=Tof.

Applying the above to the ¥ -functor L4, we have the naturality in
B and in C of Li; it remains to prove its naturality in 4, namely the
commutativity for fe ofo(DA4) of

L4
o (BCYy (o4 (4 B), £ (AC))
LD (1, &(f, 1)) (9.12)

& (DB), Z(DC (A B), o (DC
(()())—m(()())
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This does indeed commute, being by (9.7) precisely the axiom VN for
LS. This completes the proof.

The category /¢ and the functor hom & associated with a ¥ -cat-
egory &/, whose existence we have shown constructively, are charac-
terized by the following uniqueness theorem, in which of course 27y and
hom .o/ cease temporarily to have the meanings we have given them.

Proposition 9.5. Let ¥~ be a closed category, and suppose we are given
a category sy, a functor hom o : LF X Lo — ¥ o (whose values on 0b-
jects and on morphisms we write as Z (AB) and & (f, g)), @ natural trans-
formation j4: I — o2 (A A), and a natural transformation L4, : o/ (BCO)—
— (L (AB), o/ (AC)), satisfying VC1, VC2, VC3 and also (9.8) and (7.3).
Then of is a fortiori @ ¥ -category, and we necessarily have:
(i) A=V, H;
(i) o (A—)="V, L4
(iii) </ (f,1)=L7.
Proof. From (7.3) we get Lemma 7.1, and use it to write VC1 in the
form

(VL%B) 1p= ]-M(AB) 5 (9.13)

just as in Proposition 2.3 we show that this is equivalent to (7.10). The
proof that V, o7 is & is now exactly similar to that of Proposition 7.2,
and then (7.10) may be written VL4 = o7 (4 —). The naturality of
L4, in A gives (9.12), which shows that o/ (f, 1) : L4 — L? is ¥ -natural;
since (V& (f,1))1 = o(f,1)1 = f, we conclude from (9.3) that

(f,1) = L7.
Similarly for ¥ -functors:

Proposition 9.6. Let o7 and B be ¥ -categories, and suppose we are given
a functor Tq: o —> %o and a natural transformation Tpe: L (BC) —
—> % (ToB, TyC), such that T satisfies VF1 and VF2 if we write TA for
ToA. Then T is a fortiori a ¥ -functor, and we necessarily have

To=V T:90—>%.
Proof. We use Lemma 7.1 to write VF1 for 7 in the form
(VTpp)1p=1lrg; (9.14)
then by the representation theorem the two natural transformations
Togc, VIpe: VA (BC)—> VE(To B, ToC)

coincide, which completes the proof.
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Remark 9.7. It follows from Proposition 9.5 that we could have
given an alternative definition of ¥ -category, including the category 7,
and the functor hom ./ among the data, insisting on naturality of j and
L, and adding (9.8) and (7.3) to VC1—VC3 as axioms. Then § is a super-
fluous datum, as (7.3) defines it; and VC1 may be expressed without
using j in the form (9.13), or equivalently as (7.9) or (7.10). If V is
faithful, axioms VC2 and VC3 are then unnecessary, by an argument
exactly like that of Proposition 2.10. Indeed when V is faithful the data
themselves are somewhat redundant; we leave the reader to formulate
an analogue of Proposition 2.11. Similarly we may include Ty in the
definition of a ¥ -functor 7', and require 7'g¢ to be natural. Then VF1
may be written as (9.14) or (7.8), and VF2 is a consequence if V is
faithful.

Proposition 9.8. If @: ¥~ — ¥ is a closed functor and < is a ¥ -cal-

egory, the following diagram of functors commutes:

hom 2/

A X Ay
Doy X Do’ é (9.15)

D, ANy X (Pyl Yg —————— ]
(* )0 (* )0 homtp*d ’Vo

Proof. As we already have Proposition 7.4, it only remains to show
that (9.15) commutes when evaluated at morphisms fe /¥ (BA) and
1 e .2/4(CC); that is, that for f e o&7¢(4B) the morphisms

6L (f,1): ¢4 (BC)— oL (AC), (9.16)
(D ) (dof,1): ¢ L (BC) - Z(AC), (9.17)

coincide.
Now by Proposition 8.8, (9.16) is the C-component of the ¥"'-natural

transformation
QLI L'ELC: Dy of >,

since @ . @, L = L'® by (6.15); while (9.17) is the (-component of the
¥ -natural transformation

L9/ LB >LC: Dy d >V,
We have therefore to show that
LM = L'$o], (9.18)

Conference on Categorical Algebra 30
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and by (9.3) it suffices to show that
(V' L) 1p = ¢of. (9.19)

By the naturality of ¢y we have a commutative diagram

f
Vs (BB) — o Vs (4 B)

do $o

. BB) —————> V' AB
Vst (BB) —— e V4 (4B)
Evaluating both legs at 1p gives (9.19), since (VL)1 = f by (9.3), and
¢ol =1 since Py is a functor.

10. ¥ -natural Transformations

We now define ¥ -natural transformations in general. For a closed
category ¥~ and ¥ -functors T, S: o/ — %, a ¥ -natural transformation
o: T —8: 9 — % consists of a family of morphisms ag: 7’4 — S4 in
%y, indexed by the objects of o7, satisfying the axiom:

VN. The following diagram commutes:

Tup
A(AB) ——22 = (T4, TB)

S4B (1, ap)

% (S4, 8B) —W.@(TA, SB)

Proposition 10.1. 4 ¥ -natural transformation o: T — 8 : o/ — R 1is

also a natural transformation o : To —> So: Lo — Bo. If V is faithful, the
naturality of o conversely implies its ¥ -naturality.

Proof. Both statements follow from the fact that V of the diagram
VN is the diagram (1.1) expressing the naturality of «.

Theorem 10.2. ¥ -categories, ¥ -functors, and ¥ -natural transformations
form a “hypercategory’ (which we still denote by ¥, ) if we define the
compostte of

@) o:T>8: A —>F and [:S—>R: oA >F by

(Ba)a= Baca; (10.1)



Closed Categories 467

(i) Q: €~ and o:T—>8: o >F by

(2 Q)¢ = xqc; (10.2)
() «: T'—>8:/ % and P:B—>2D by
(Po)a= Poxy. (10.3)

Moreover o is an tsomorphism if and only if each oyq is an isomorphism.
The hypercategory &y s then Cat, and Vi : ¥V g — Ly is a hyper-
functor if we set

Vo =a. (10.4)

Proof. The proof that S« is ¥ -natural, and of the statement about
isomorphisms, is a trivial generalization of the proof of Proposition 8.1;
similarly the proof of Proposition 8.2 generalizes to show that « @ is
¥ -natural. To show that Pa is ¥ -natural is to show the commutativity
of the exterior of the diagram

P
#(TA, TB) ———————— G(PTA, PTB)
/ %1, o« Ya, Poa)
o (4 B) B(TA,SB) i 2(PTA, PSB)

\ / y %Pofx, )

% (PSA, PSB
P ( )

One region commutes by VN for «, and the other two by the naturality
of P guaranteed by Proposition 9.4.

V, clearly preserves all the above laws of composition, so that
HC2—HC4 for ¥, follow from HC2—HC4 for ¥asf. As we already
have HC1, this completes the proof.

Proposition 10.3. If @: ¥ — ¥ is a closed functor and

w:T—>8: A >FB

is a ¥ -natural tramsformation, we get a ¥ '-natural tramsformation
D,00: P T >DP8: Py A >D, B
if we set

(D)4 = Dogoa (10.5)
where
@0_% : gf?o — (¢* .@)0 .

30%*
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In particular if @ is normal we have (cf. (10.4))
Do =u. (10.6)
Proof. Writing y for @, «, VN for y asserts the commutativity of:

$T
¢ (A B) ———>¢#B(T4, TB)

8 (P4 Z) (1, %) (10.7)

#(8A,8B) —— = B(TA,SB
$BELEB) G PP )

Since y = Dyza, it follows from (9.15) that (P, H) (1,y) = ¢Z(1, «)
and (@, %) (v, 1) = ¢H(«, 1); thus (10.7) does indeed commute, being
¢ of VN for «.

Proposition 10.4. If @ : ¥~ — ¥ is a closed functor and o.: T — S : o7
— ¥ is a ¥ -natural transformation, the ¥ -natural transformation

qﬂoc:a?.(ﬁ* T—>é\5.¢*8:@*&i—>V'
of Proposition 8.8 is given by
do=.D, 0. (10.8)

Proof. By (10.3)and (10.5) the A-component of . D aisV, D. Doy .o,
and this is doy by (7.18).

Proposition 10.5. If @: ¥ —> ¥ is a closed funcior, @y ¥ " >V
s a hyperfunctor.

Proof. We have to show that @, respects the composition laws (10.1),
(10.2), (10.3). For (10.1) this follows since @4 is a functor, and for (10.2)
it is trivial since (D,Q) C = QC by (6.8). For (10.3), the 4-component
of @, (Pa) is Dygy Poxa, which by (7.17) is equal to (D, P)oDPygoa,
which is the A-component of @, P. D a.

Proposition 10.6. If 7: D ¥ : ¥ — ¥ is a closed natural trans-
formation, the ¥ -functors Ny z: @y — ¥y A defined by (6.10) and (6.11)
are the components of a hypernatural transformation n,: P,—V,:

Proof. By Proposition 6.4 7, is natural,i.e. HN 1 is satisfied. We have
to verify HN 2, namely the coincidence of

Nz Ps 0 Nsezg Py T = N3 Py S: Py A ¥ B
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and
Vet aer Ve T g >V SNy : Py A >V, B,

where oo: T — S:of — % is a ¥ -natural transformation. By (10.2),
(10.3), and (10.5), the A-components of 7z Py o and of Y, .7y, are
respectively V. 7,z . Poz-04 and ¥ygzaa, and these are equal by (7.21).

Theorem 10.7. The assignments ¥~ — ¥ ., @ — D, , 1 — 1, constitute
a hyperfunctor ,: €€ — Hyf from the “hypercategory” of closed categories
to that of hypercategories.

Proof. As we already have Theorem 6.5, all that remains to be shown
is that, if @: ¥ =¥ and ¥:¥" — ¥ are closed functors and
o: T —8: o — % is a ¥ "-natural transformation, we have (P®)y o =
= ¥, D, «; this is immediate from (7.20).

We now give a form of the representation theorem for ¥ -functors
analogous to Theorem 1.1:

Theorem 10.8. Let T': o/ — % be a ¥ -functor, let K € of and M € %,
and denote by {p} the class of ¥ -natural transformations

p:LE > IMT:of >4
with components
pa: st (KA)—>B(M, T4).
Define a map I : {p} > VE (M, TK) by:
I"p—= (Vo) k. (10.9)

Then I is a bijection with inverse Q' : VB(M, TK) — {p} where 2’0
1s the composite

Q0: LE 5z LTET 557 LM T (10.10)
with components
oA (KA) 5 B(TK, TA) i B(M, TA). (10.11)
Proof. I is a bijection by Corollary 8.7, and clearly I Q' = 1.

Remark 10.9. In the circumstances of Theorem 10.8 let @ : ¥~ — ¥
be a closed functor and let {q} be the class of ¥”'-natural transformations

q:LE LMD T: Dy >3
with components

ga: ¢ (KA)—> B (M, TA).
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Define A': {q} - V' ¢# (M, TK) analogously to I"”; then by Propo-
sition 8.9 we have a commutative diagram

{p} —————={¢}
I A

VA, TK)—==V'$B (M, TK)
0

where (¢p)a = ¢p4. In particular if @ is normal we have ¢o = 1, and
so ¢ : {p} — {¢} is also a bijection. Note especially the case when @ is
Vv -

Proposition 10.10. Let 7', S : of — B be ¥ -functors and let wq: TA—SA
be a family of morphisms. Then the following assertions are equivalent:
(a) The aq are the components of a ¥ -natural transformation o«: 1T — S.
(b) The morphisms

B(,ap) B(TA,TB)>H(TA,SB), Be%,
are for each A the components of a ¥ -natural transformation
LT4T »LT48.
(¢) The composite morphisms
A (AB) 5 B(TA, TB) g3 #(TA,8B), Be#,
are for each A the components of a ¥ -natural transformation
LA L7438,

Proof. If « is ¥ "-natural, #(1, «) = LT« is also ¥ -natural, so (a)
implies (b). Similarly (b) implies (c) since T4 : L4 — LT4 T is ¥ -natural.
We have to show that (c) implies (a).

In the diagram VN for «, namely

&7 (AB) T . B(TA, TB)
S (1, «)

% (84, SB) Tl)‘) #(TA, SB)
Xy

the top leg is by hypothesis (¢) ¥ -natural for each 4; but the bottom
leg is also ¥ -natural, being the B-component of L*§.84. If we put
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B = A, apply V, and evaluate at 14, each leg gives a4; hence by the
representation theorem for ¥ -functors the diagram commutes.

Remark 10.11. By a representation of a ¥ -functor T : o/ — ¥~ we
mean an object K of &/ together with a # -natural isomorphism p : LE—T';
if 7' admits a representation we say it is representable. If p : LX — T and
q:LM — S are representations of T, 8: ./ — ¥, it is clear from the
representation theorem that a bijection is set up between ¥ -natural
transformations «: 7 — 8 and morphisms f: M — K by requiring
commutativity in the diagram

P
LE———1

Lr o
M N

In particular if p: LX — T and q: L™ — T are two representations of 7'
then there is a unique isomorphism f € V.27 (M K) giving a commutative
diagram

X T

Lf

M
Remark 10.12. If o7 is a ¥ -category, any morphism f € o/y(4B) is a
¥ -natural transformation f:J4 — JB: ¥ — o/; for VN for f is just
(9.10). If T': of — & is a ¥ -functor, it is then consistent with (10.3) to

write T'f for Tof. We shall use both notations, the one for brevity and
the other where there is danger of confusion.

Chapter 11
Monoidal Closed Categories
1. Monoidal Categories

A monoidal category V" = (¥"0, ®, I, 1,1, a) consists of the following
six data:

(i) a category ¥ o;
(1) a functor ®: ¥ 7o X ¥ o — ¥ o (written between its arguments and
called the tensor product of ¥7);
(iii) an object I of ¥7;
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(iv) a natural isomorphismr =r4: 4 @1 > A4;
(v) a natural isomorphism ! =14:1®A—>4;
(vi) a natural isomorphism @ = a4pc: (4 ® B)®C -4 ® (BRC).
These data are to satisfy the following five axioms:
MCI1. The following diagram commutes:

a

I®A4)® B I®(4® B)

A® B

MC2. The following diagram commutes:

A®I) @B———»A@ (I ® B)

N,

A®B
MC3. The following diagram commutes:

(A®B)®C)®D (4® B)®(CRD) AR (BRC®D))
a®1 1®a,
(A®BRO))®D = 4R ({(B®C)® D)

MC4. The following diagram commutes:

(A®B®I A®(BRI)
r 1®r
A® B
MC5. h=r:IQI->1.

We remark at once that the above axioms are not independent; we
have listed them all, and arranged them in the above rather odd order,
for later comparison with CC1—CC5. In fact it has been shown (KerLy
[9]) that:

Proposition 1.1. MC1, MC4, and MC5 are consequences of MC2 and
MC3.
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Natural isomorphisms such as a, r, ! are said to be cokerent if, roughly
speaking, all diagrams made by their use alone (with their inverses, 1,
and ), such as the diagrams of MC1—MC5, commute. For an exact
description of the meaning of coherence, see Mac LANE [14], where it is
proved that MC1—-MC5 imply:

Proposition 1.2. The isomorphisms a, r, l are coherent.
Let ¥ = (¥, ®,I,7,l,a) and ¥ = (¥4, R, 1,71, a)
be monoidal categories; we write & for &’ when there is no danger of
confusion. A monoidal functor ® = (¢, ;s, $#0): 4" — ¥ consists of
(i) a functor ¢: ¥ "o —¥7;
(i) a natural transformation qz = JAB ¢ A R@¢B—¢(4 R B);
(iii) a morphism ¢0: I’ > ¢ I.
These data are to satisfy the following three axioms:
MF1. The following diagram commutes:

~

P1® A ——= 41 4)
$®1 $1

I,®¢A—-—l,—>-¢A

MF2. The following diagram commutes:

~

$4@ 41 HA® D)
1@ ¢0 pr
$AQ L ———— $A

MF3. The following diagram commutes:

$(4® B)® 0) $(A4®(B®O))
7 5

$(4® B)® ¢C $4® $(B®C)

$®¢ 103

($4Q@¢B)® ¢C o $AR (6B® ¢0)
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Let @ = (¢, ¢, ¢°) and ¥ = (y, §, »°) be monoidal functors ¥" 7.
A monoidal natural transformation

n:O->Y: 9 >
consists of a natural transformation
nidp—>yp:Vo—>77
satisfying the following two axioms:

MN1. The following diagram commutes:

0
r ¢ G1I
0 "
pI
MN2. The following diagram commutes:
¢4 ¢B $(4® B)
n®n n

pyAQ@yB = p(4® B)

We define the composite of monoidal functors
D= (4,4 ¢%:7 >7" and W= (y,,90): ¥ —¥"
tobe X = (3, 7, x°): ¥ — %" where
(i) x is the composite

Yo Vo5 V05 (1.1)

(ii) ¥ is the composite

oA QydB 3 y(AR®¢B)yzyd (A4 ® B); (1.2)

(ii) x0is the composite

I" eyl gpypdl. (1.3)

We define the composite of monoidal natural transformations
n: @D :¥V ># and {: @' - @"': ¥ =W to be the composite {y
of n:d—>¢" and {: ¢’ >¢";and for V. V"' =V, : O > D' ¥V >W
and X : %" —#" we define ¥ and X7 to be ny and y7. We now leave
the reader to prove, along the lines of Theorem 1.3.1,
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Theorem 1.3. Monoidal categories, monoidal functors, and monoidal
natural transformations form with the above rules of composition a ““hyper-

category” Mon. Moreover a monoidal functor @ = (¢, gz, @) s an iso-
morphism if and only if each of ¢, d, #° is an isomorphism, and @ monoidal
natural transformation n:® — ¥ is an isomorphism if and only if
n:¢—>ypis.

2. Monoidal Closed Categories

A monoidal closed category (or equally closed monoidal category)
¥ = (™Y, p, ¢¥") consists of the following three data:
(i) a monoidal category ™¥" = (¥, ®, I, 7,1, a);
(ii) a closed category ¢¥" = (¥"9, V,hom?", I, ¢, j, L) with the same
Yo and I as m¥”;
(iii) a natural isomorphism p = papc: (4 ® B, C) — (A (BC)).

These data are to satisfy the following four axioms, whose bizarre
numeration is for later convenience:

MCC2. The following diagram commutes:

(I®4, B) 2 (I(4B))
(N /
(4B)

MCC3. The following diagram commutes:

(A® B)® C, D) —2—= (4® B, (CD)) ————= (4, (B(CD)))

(a, 1) (1, p)
A4®(B®C),D) p (4, (B® C, D))
MCC3’. The following diagram commutes:
LA®B
(CD) ((4® B, 0), (4 ® B, D))
LB
((BC) (BD)) (L, p)
A

((4(BC)), (4(BD))) TS ((4® B, (), (A(BD)))
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MCC4. The following diagram commutes:
p

(A® I, B) (4(IB))
(:N A)
(4 B)

Remark 2.1. We shall normally denote the monoidal category m¥~
and the closed category ¢#” by the same symbol ¥~ as the monoidal
closed category, except where we wish to distinguish between the three
structures.

If ¥~ and ¥ are monoidal closed categories, a monoidal closed functor
D: ¥ — ¥ is to be a quadruple (¢, <Z, qg, %) where m® = (¢, ¢, ¢0) is
a monoidal functor m¥” — m¥™ and @ = (¢, gg, #0) is a closed functor
¢y” — ¢¥”, and where the following axiom is satisfied:

MCF 3. The following diagram commutes:

$(4® B,C) i $(4(BC))
g I
($(4.® B), $0) (44, $(BO))
(%, l)l l(l, 9
($4® $B, 4C) = (¢4, ($B, 4C))

If ©,¥:¥ — ¥ are monoidal closed functors, a monoidal closed
natural transformation n:® —¥: ¥ —¥" is to be a natural trans-
formation 5 : ¢ — y: #"9 — ¥7, which is both a monoidal natural trans-
formation # : mP — m¥': my” — my” and a closed natural transformation
7n: 0D — Yoy oy,

We define composition of monoidal closed functors by (1.1), (1.2), (1.3),
and I(3.2); note that I(3.1) and I(3.3) reproduce (1.1) and (1.3). We
define composition of monoidal closed natural transformations, with
themselves or with monoidal closed functors, to be their composition as
monoidal natural transformations, which is the same as their composition
as closed natural transformations. To prove the following theorem
requires only the verification that axiom MCF3 survives composition,
which we leave to the reader:

Theorem 2.2. Monoidal closed categories, monoidal closed functors, and
monoidal closed natural transformations form a “hypercategory” MEL.
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3. Relations Between the Data

Both the data and the axioms for a monoidal closed category are
highly redundant (quite apart from the redundancy noted in Proposi-
tion 1.1). To examine the interconnexions we place ourselves in the
following basic situation: we suppose given a category ¥7p, functors

QR: ¥ oX YV o—¥0o and hom¥ :¥F X ¥ o—>%,
a natural isomorphism
7= mapc: 7 0(A® B, C) > 7(4(BC)),

and a functor V: ¥7g — & satisfying CCO.
The naturality of 7 gives a commutative diagram

Yo(A® B, 0) i ¥o(4, (BO))
VO(f@Q’ h) 4//‘O(f’ (gs h))
Y o(d'"® B, C’) - ¥V o(4’, (B’'C"))

wheref: A’ -~ A,9: B'— B, h: C — ('. Evaluating thisat z € ¥ o(4 ®
® B, C) gives a commutative diagram:

7(hz(f®9g)) (B'CY)
f (g, ) (3.1)
A (BC)
Tr

Define natural transformations (natural by Proposition 1.1.2)
t—:thI(BC)®B—>O,
u=1wuyp: 4 —> (B, 4K B),
by
t=mn"11lg, (3.2)
u=7t1A®B. (3.3)
Then for z: 4 ® B—C and y: A4 — (BC) we have commutative
diagrams:
ntx

A (BO)

x %’/ 2) (3.4)

(B, A® B)
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A® B Ty c
N
(BC) ® B

These may be regarded as special cases of (3.1), or as coming from
the representation theorem (cf. I(1.4)) applied to z and to x~1. Taking
in particular x = ¢ and y = % in (3.4) and (3.5) we get commutative
diagrams

(BC) (BC)

\ / t (3.6)

(B, (BC)® B)

A®B —————*—A@B

N / @)

(B,A® B)® B
The following lemma allows us to use in a systematic way the fact

that 7 is a natural isomorphism.

Lemma 3.1. With the basic situation as above, let W~ be a category,
P,Q:7o—W functors, and Be ¥ y. Then there is a bujection between
natural transformations o = aq4: PA - Q(A ® B) and natural trans-
formations § = f4: P(BA) — QA, given by

(i) Pa is the composite

P(BA) g7 @((BA) ® B) 7 @4 (3.8)

(i) oq ts the composite

PAp; P(B,A® B) ;-3 Q(A® B). (3.9)
Proof. Consider the diagram
¥Yo(d ® B, C) Y o(4(BC))
Ql lp
#(Q(4® B),QC) # (PA, P(BC)) (3.10)

W(ax %1, B)

W (P4, QC)
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In the language of Theorem I.1.1, the left edge of (3.10) is Q« and
the right edge is 28 (different £2’s, the second with reversed variance).
It follows, since 7 is an isomorphism, that the commutativity of (3.10)
sets up a bijection between «’s and f’s. Putting ¢ = 4 % Band evaluat-
ing at 1 gives (3.9); putting 4 = (BC) and evaluating at ¢ gives (3.8).

Note that by evaluating (3.10) at x € ¥ o(4 ® B, C) we get

Qr.o=p. Prx:PA—QC. (3.11)

Again, since 7 is a natural isomorphism, the representation theorem
shows that the commutativity of the diagram

VoI ® A, By ———=¥"(I(4 B))

¥ o(4 B)

sets up a bijection between natural isomorphisms I: 7 ® 4 - A4 and
natural isomorphisms

v=1v45:7 0(4dB)—7o(I(AB)).

Further the representation theorem applied to v shows that there is a
bijection between natural transformations v and natural transformations
j=7ga:1—(AA), given by
ja=1v44la. (3.13)
Then if f e ¥ ¢(AB) we have by I(1.4) the commutative diagram (cf.
1(2.8))
j

I ——————(44)

i vf 9 (3.14)
BB) ————————>(A
(BB) A (AB)
Evaluating (3.12) at 14 after putting B = 4 now gives:
nl=j. (3.15)

In the same way commutativity of the diagram

Vo(4® I, By ———>¥"o(4(IB))

"’”0(”\1\ /o(l, i) (3.16)

¥ (4 B)
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sets up a bijection between natural isomorphisms r: 4 ® I — 4 and
natural isomorphisms i: 4 — (I 4). Putting B = 4 and evaluating at 1
gives:

ar=t. (3.17)

Again, commutativity of the diagram

¥ o(A ® B, (CD)) ———== ¥"o(d, (B(CD)))

7o((4® B)® C, D)

Y o(a, 1) *o(1, p)
(4 ® (BR (), D) - ¥ o(4, (B® C, D))
(3.18)

sets up a bijection between natural isomorphisms

a:(ARXB)RC—-A4AR(BXRC)
and natural isomorphisms p: (B & C, D) — (B(CD)). Evaluating (3.18)
atxe? (4 ® (B ® C), D) gives a commutative diagram

nn(za)

A (B(CD)

\\\\ //// (3.19)
ax P

(B®C, D)

Finally, an application of Lemma 3.1 with # = ¥"§ (watch the
variances!), P = (—, (B()),and @ = (— C), gives a bijection between
natural transformations p: (4 ® B, C) — (4(BC)) and natural trans-
formations L:(4C)— ((BA) (BC)), determined by either of the
commutative diagrams

(AC) —————=((BA) (BC))

(t\ / (3.20)

((BA) ® B, 0)
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If we write (3.11) for this special case, we get for x:4 ® B — C
a commutative diagram

1
D) —&0

(4® B, D)
L P (3.22)

((BC)(BD)) W(A(BD))

Now suppose that we have besides the basic situation ¥y etc., a
second one ¥7; etc.; and that we have a functor ¢: ¥9 — ¥7. Then
since 7z and =’ are both natural isomorphisms, a trivial generalization
of the argument of Lemma 3.1 shows that the commutativity of the
diagram

¥ o(4® B, C) i Y o(4(BC))
¢ $
73($(4® B), $C) V(4. $(BO)) (3.23)
Po( D) )
V4($A® $ B, $C) ——————= ¥'i($4, (B, 4C)

sets up a bijection between natural transformations
$:¢4®$B~>¢$(4Q B)

and natural transformations
$:4(BC)~($B.40).

If we evaluate (3.23) at €% 9(4 ® B, C), we get a commutative
diagram

dnx

¢4 $(BC)
7 (3.24)
a'($z. 4)
(¢B, ¢0)
Proposition 3.2. If ¥~ is a monoidal closed category, define 7 and v by
mac = V paBc, (3.25)
vag = Viup) (= tup); (3.26)

Conference on Categorical Algebra 31
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then the basic situation obtains and we have (3.12), (3.13), (3.16), (3.18),
and (3.20). Moreover if @ : ¥ — ¥ is a monoidal closed functor we have
(3.23).

Proof. Applying V to MCC2 and using (3.26) gives (3.12); while (3.13),
in view of (3.26), is CC5. Similarly applying ¥V to MCC4 and to MCC3
gives (3.16) and (3.18).

Axiom MCC3’ may be interpreted as an instance of VN, stating:

Ppagc is the C-component of a ¥ -natural transformation

pap: LA®8 -~ LALEB, (3.27)
It follows that (3.20) is a diagram of ¥ -natural transformations

LB
IA 4 LB B

L P(BA)B
L(BA)®B

so that its commutativity will follow if, after putting C = 4 and apply-
ing V, both legs have the same value at 1. But (VL) 1 =1 by I(2.5),
and Vp. V(,1).1=Vpt=mnt=1.

If @ is a monoidal closed functor, diagram (3.23) is the exterior of:

Vp
V(4 ® B, C) V(4(BC))
N o
é , Viép ’
V¢4 ® B, C) —= V'¢(4(BC)) ¢
/q? V’?\
V'($(4® B), $C) V(4 4, $(BC))
V@ v, §)
w
V($A® ¢ B, ¢C) p—_— V¢4, (4B, ¢C))
p

Here one region commutes by ¥’ of MCF'3, two regions by 1(3.11), and
one by the naturality of ¢.

4. Relations Between the Axioms

Proposition 4.1. Suppose that in the basic situation of §3 we have
natural isomorphisms a,l, r, p, v, ¢ and natural transformations j, L, con-
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nected by (3.12), (3.13), (3.16), (3.18), and (3.20). Then the following im-
plications hold between the axioms MC, MCC, and CC:
(i) in the presence of CC5, we have MC1 < Vp =z < CC1;

(if) MC2 <= MCC2 < CC2;

(iii) MC3 < MCC3 < MCC3' < CC3;

(iv) MC4 < MCC4 < CC4;

(v) CC5 = MC5 (one way only!).

Proof of (i). Note first that Lemma I.2.2, Proposition 1.2.3, and
Proposition 1.2.4 use only CCO and CC5, and so are available here.

Since & is an isomorphism we get from MC1 an equivalent diagram
by applying 7 twice to each leg. Now

nwrla)=p.xl by (3.19)

=pj by (3.15);
and

aal®l)=ax(1l Q1))
=n(xl.l) by (3.1)
= 7 (ul) by (3.3)
=(l,u)ml by (3.1)
=(1,%); by (3.15).

Thus our equivalent diagram to MC1 is

7 (4® B, AQ® B)
] P
(44) (4(B, A® B))

(1, %)

and by Lemma 1.2.2 this may be expressed as (Vp)1l = V(1, u)1; that
is, (Vp)1 = u. Since we also have #l = u, and since Vp and m are
both natural, the statement (V p)1 = u is further equivalent to Vp = =,
by the representation theorem.
If Vp=m, we get by applying V to (3.20), putting C = 4, and
evaluating at 1,
(VL)l==.V{1).1
=mi
=1.

31*
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Conversely if (VL)1 =1, (3.21) gives
(Vp)l=V(u,1).VL.1
=V(u1).1
=,
and hence Vp=n.
Thus Vp = = is equivalent to (VL)1 = 1, and this is, in the pres-
ence of CCO and CC5, equivalent to CC1 by Proposition 1.2.3.
Proof of (ii). Applying & twice to each leg of MC2, we get
ara((l ®a)=p.x(1 ®1) by (3.19)
=p(,1).21 by (3.1)

= p(l’ l)u;
and
ar(r@®l)=n(xl.r) by (3.1)

=q(ur)

= (l,u).wr Dby (3.1)

=(1,u)s by (3.17)

=1iu by the naturality of s.

Thus the equivalent diagram to MC2 is

P
(I®B,AQ® B) (I(B, A® B))

u}%\\ //{

(B,A®B) (B,A®B)
N4
A

and this is equivalent to MCC2 by an application of Lemma 3.1.
Now use (3.22) to replace p(l, 1) in MCC2 by (=, 1)L, which by
(3.15) is (g, 1) L; the result is precisely CC2.

Proof of (iii). First note that if we put D = (4 ® B) ® C and
x=a"1in (3.19) we get

pral=nanl
=auU

= (l,w)u by (34);
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thus we have

ma1l=p1(1,u)u. (4.1)
Now write MC3 in the form
a(1®a)a=2a(@'®1): (A BRC)R®D—~>(4®B)Q(CE®D)

and apply z twice to each term. We have
ar@l(l®a)a)=p.x(a1(l ®a)) by (3.19)
=p(a,1).ma"1 by (3.1)
=p( )p(Lu)u by (41);
and
an(e(@l®1)) =mn(ra.al) by (3.1)
=(l,na). a1 by (3.1)
=(l,za)p~1(1,u)u by (4.1)
=p~1(1,(1,ma)) (1, u)u
by the naturality of p—?!
=p (1, (1, ma)u)u
=pl(l,nma)u by (3.4)
=p1(1,p.xl)u by (3.19)
=p~ (L)L, u)u.
The equivalent diagram to which we have now reduced MC3 is:

4 (B,A®B)'M"(B(C’®D,(A®B)®(C®D)))
(B, A® B) (B®(C®D),(A4® B)® (C® D))
(l,u)l l(a, 1)
(BIC®D,(4® B)®(C® D)) (B®CO)®D,(A® B)® (C® D))
(l,p)l lp
(B(C(D, (A® B)®(C’®D))))——p—_1——>(3®0, (D, (4® B)®(C®D)))

and this is equivalent to MCC3 by two applications of Lemma 3.1.
To show that MCC3 <> MCC3’, we transform both legs of MCC3;
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we have
ppla,l)=p(ma,1)L by (3.22)
= (nma,1)LL by (3.22)
= (p.nl,1)LL by (3.19)
= (u, 1) (p, 1) LL;
and

(Lp)p=(p) (w,1)L by (3.21)
=(u,1)(1,p) L.

The diagram we now have is equivalent to MCC3’ by an application of
Lemma 3.1.

To show that MCC3' <> CC3, consider the proof of Proposition 1.8.1;
it makes no use of the properties of closed categories, beyond the fact
that hom ¥ is a bifunctor, and shows purely formally that if two
families of morphisms satisfy diagrams of the form VN, so does their
composite. We can interpret MCC3' as VN for p4p and CC3 as VN for
L4; and diagrams (3.20) and (3.21) allow us to deduce each of these
from the other, if we know that (¢, 1) and (u, 1) satisfy VN. This is
indeed the case, for the proof in Proposition 1.8.4 that (f, 1) satisfies VN
uses only the naturality of L.

Proof of (iv). Applying = twice to each leg of MC4 we get
aa((l ®nrae)=p.a(l ®r) by (3.19)
=p(r, 1)zl by (3.1)

=p(r, u,
and
AT =71 by (3.17)
= (1,0)u by (3.4);

the resulting diagram is equivalent to MCC4 by an application of
Lemma 3.1.

Now use (3.22) to replace p(r, 1) in MCC4 by (nr, 1)L, which is
(7, 1)L by (3.17); the result is precisely CC4.

Proof of (v). The result j; = i of Proposition 1.2.7 used only CCO
and CC5, and so is available here. By (3.15) and (3.17) this gives I} = ry,
which is MC5.

Proposition 4.2. Under the conditions of Proposition 4.1, MC2 is a con-
sequence of MC1, MC3, MC4, and MC5.
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Proof. From the naturality of / we have a commutative diagram

I®I®A) I®A

1®I 4

I®A ——T%-A

and since ! is an isomorphism we have
I=1RI:IRURA)>IRA. (4.2)

Consider the special case of MC2 when 4 is put equal to I; (4.2) enables
us to replace therein 1 )7 by I, and MC5 to replace r ® 1 by I ® 1;
thus this special case becomes an instance of MC1, and is therefore
available under the present hypotheses.

Now consider the diagram

(I®4, B) 2 (1(4 B)) ———= (4 B)
1®L1) L&) Y
(I®(I®4),B) d (LU ® 4, B)——=(I® 4, B
(@, 1) (1, p) bz
(® I),@ 4,8~ (@I, (4B) —L= (1, (1(4 B))) ——i_1—><I<A'B))
(1 ®1,1) m\ 1,4-1) i1

(I® 4, B) >(I(4 B)) ————== (A4 B)

p i

The diagram commutes by MCC3 and MCC4 (which are available here
by Proposition 4.1) together with the naturality of p and of :~1. The
composite left edge is 1 by the above special case of MC2, so that the
composite right edge is also 1. This is MCC2, which is equivalent to
MC2 by Proposition 4.1.

Proposition 4.3. Let ¥~ and ¥ be monoidal closed categories, ¢ : ¥y —
— 774 a functor, ¢°: I' > $ I a morphism, and ¢ and ¢ natural trans-
formations connected by (3.23). Then the axioms CF, MF, and MCF are
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related by:
(i) MF1 < CF1;
(ii) MF2 < CF2;
(iii) MF3 <> MCF3 <> CF3.

Proof of (i). Apply =’ to both legs of MF1. We have

7 ($1.$($0 ®1) =’ ($1. §). §0 by (3.1)
=¢.¢nl. 40 by (3.24)
=¢.4j.4° by (3.15),

and
'l =7 by (3.15);

the equivalent diagram to which we have reduced MF1 is now precisely
CF1.

Proof of (ii). Applying =’ to MF2 we get

7 ($7. $(1 @ ¢0) = (¢°, 1) ' (¢ 7 . b) by (3.1)
= (4% 1)$. pnr by (3.24)
=(40,1) . 41 by (3.17),
and
a'r =1 by (3.17);

the resulting diagram is precisely CF2.
Proof of (iii). Apply =’ twice to each leg of MF3. We get

A7 (GARPa) =1 .7 ($(1®4) by (3.19)
=7/ (,1). 7 by  (3.1)
=p($1)d.du by (3.24) witha = 1;
and
aw ($a.$@ @) =" ($a.d).9 by (3.1)
= (¢.dna.d) by (3.24)
=(1,4).7 ($na.4) by  (3.1)
=1, ) ¢.dnana by (3.24)

=1, $é.¢(pu) by (3.19) with z=1
=LHs.¢p.pu;

giving a diagram equivalent to MCF3 by an application of Lemma 3.1.
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To show MCF3 < CF3, we use (3.22) to transform the legs of the
former. We have

P& D=L by (3.22)
=(¢.¢u, )L § by (3.24) with 2 =1
= ($u,1) (§,1) L §;

and
L) d.dp=(1,4)¢.4(u1).4L by (3.21)
= (1, gg) (Pu,l) q? ¢ L by the naturality of <$
= (w1 (1§ ¢-$L;
giving a diagram equivalent to CC3 by an application of Lemma 3.1.

Proposition 4.4. Let @,V : ¥ — ¥ be monoidal closed functors and
1 ¢ — p a natural transformation. Then CN1 is identical with MN1, and
CN2 is equivalent to MN 2.

Proof. We apply &’ to both legs of MN2, getting

gy =Ly .7'¢ by  (3.1)
=Ly dé.pu by (3.24) with z=1;

and
AP =M11).7p.9 by (3.1)

=(n,1)p.pu.yp by (3.24) for ¥ with 2 =1
= (n,1)9n.¢du by the naturality of #;
giving a diagram equivalent to CN2 by an application of Lemma 3.1.

5. The Forgetful Hyperfunetors

We say that a hyperfunctor @: A — 9B is locally isomorphic if for
each pair of objects &/, # in U the functor (/' &) - B(D L, DH)
determined by @ is an isomorphism of categories.

We have forgetful hyperfunctors 4%/ — #on and AECL — €¢ given
by ¥ —>m¥", @1>n®, n—n and ¥ >V, > D, 5> 5. From
Propositions 3.2, 4.3 and 4.4 we have at once:

Theorem 5.1. The forgetful hyperfunctors MECE — Mon and MECE — €L
are locally isomorphic.

It remains to examine which monoidal categories and which closed
categories admit enrichment to a monoidal closed category. From
Theorem 5.1 we have:
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Corollary 5.2. If a monoidal category m¥" (resp. a closed category ¢¥")
admits enrichment to a monoidal closed category ¥~, then ¥~ is unique to
within an isomorphism of the form (1,1, gzg\, 1) (resp. (1, qz, 1,1)).

We shall say that a monoidal category (resp. a closed category) is
closed (resp. monoidal) if it admits enrichment to a monoidal closed
category.

Theorem 5.3. A closed category ¥~ is monoidal if and only if the ¥ -
functor LALE : 4~ — ¥~ is representable for each A, Be ¥ . If represen-
tations

pap: LA®B ~ TALB
with components
Pagc (4 ® B, C) - (4(B0))
are chosen, there is exactly one monoidal closed structure with the given p.

Proof. The necessity is clear from (3.27). If representations as above
are given, there is a unique functor (), with the given values 4 & B on
objects, rendering p natural in 4 and B — it is already natural in C by
Proposition 8.11. For the naturality of »p means the commutativity of

[AOB _PAaB 4w
¥
Li®s LAVLB' (5.1)
LALg

LA®B —— A B
PAB

with components

(4'® B, C) a (4'(B'C))
(f®9 1) (f, (@1)
4® B,0) (A(BC)

and by Remark 1.10.11, f ® g is uniquely determined by (5.1); the
functoriality of &) is then clear.

Similarly the representation theoremfor ¥"-functors givesthe existence
of unique isomorphisms I, @, r satisfying MCC2, MCC3, MCC4. Defining
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7 and v by (3.25) and (3.26), we obtain (3.12), (3.16), and (3.18) by
applying ¥ to MCC2, MCC3, and MCC4; the naturality of [, a, r now
follows by Proposition 1.1.2. Also (3.13) is just CC5, and (3.20) follows
exactly as in the proof of Proposition 3.2. Proposition 4.1 now ensures
the validity of the remaining axioms.

Corollary 5.4. If a closed category ¥~ is monoidal, so is any closed
category isomorphic to V.

Proof. The representability of L4 L® is easily seen to survive passage
to an isomorph.

The question of which monoidal categories are closed is somewhat
more complicated due to the necessity of constructing the functor
V:%"9— &; we shall deal first with the case where V is given. By a
normalization of a monoidal category ¥~ we shall mean a functor
V: 479 — & together with a natural isomorphism ¢ = ¢4: VA - ¥7o(1A);
a monoidal category with a given normalization is said to be normalized.
A monoidal closed category has a canonical normalization given by the
V and ¢ = Vi it already possesses; any monoidal category admits a
normalization, namely ¥V = ¥7¢(I —) and ¢ = 1, but if ¥” is also closed
this differs in general from the canonical one. A normalized monoidal
category shall be said to be closed only if it admits enrichment to a
monoidal closed category with the given ¥ and with Vi equal to the
given ¢.

Theorem 5.5. A normalized monoidal category ¥ is closed if and only
tf the following two conditions are satisfied:

(i) the functor ¥ o(— @ B, 0): V& > & 1is representable for each
B,Ce¥ s

(1) representing objects (BC) and representations

7t =7apc: ¥V 0(A R B,C)—¥o(4(BC))
of the above functors may be so chosen that
V(BC)=¥(BC) (5.2)

and
the composite ¥ o(BC) y7 o5 Yol QB,C)—> 7 o(I(BC)) s ¢aey - (5.3)

V" then admits a unique monoidal closed structure with Vp equal to the
given 7.

Proof. The conditions are necessary by Proposition 3.2; suppose they
are satisfied.
By the representation theorem, there is a unique way of extending
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(BC) to a functor hom ¥~ with respect to which m4pc is natural in B
and in C as well as in A.

For f: B’ - B and g: C — C’ we have by the naturality of = and
of I a commutative diagram

¥Yo(l, 1)
¥ 0(BC) Yo(I® B,0) Yo(I(BC))
Yo(f,9) Yo(l®f9) Yo, (1, 9)
Yo(B'C) ol 1) VoI B, C)——= ¥ o(1(B'CY))

Now by (5.3) and the naturality of ¢ the left edge of this diagram must
also be V (f, g); thus CCO is satisfied.

Next define v, 4, 7, p, L by (3.12), (3.13), (3.16), (3.18), and (3.20);
these definitions are all forced by Proposition 3.2. By (3.12) and (5.3)
we have vpe = yre); axiom CC5 will follow if we prove Vi = «.

Since 4 o< (I4), to show Vig = 14 it suffices to show Viga = tqa).
By Proposition I.2.5, which uses only the fact that ¢ is a natural iso-
morphism, we have 474y = (1, 74). Since ¢(74y = vr4, We have to prove
that

V(l, tA) =Vr4: Vo(IA) — Vo(I(IA)) .

By the representation theorem, it suffices to put 4 = I and evaluate
at 1;; since V(1,47) 1 = ir, and vr; 1 = jr by (3.13), we need i = jr.
This follows at once from MC5, namely r; = I, by (3.15) and (3.17).

From Proposition 4.1 it now follows that the remaining axioms are
satisfied and that Vp = x.

Remark 5.6. A normalized monoidal category may satisfy condition
(i) of Theorem 5.5 but admit no x satisfying condition (ii). For instance
if ¥"o has only a finite number of objects and the ¥"¢ (B () are all different,
it is clearly impossible to satisfy (5.2). However if ¥ is so large that V
admits transport of structure, which is the case in most of the large
categories that occur in nature, condition (ii) can always be satisfied.
We say that a functor V: ¥"y — & admits transport of structure if, for
any 4 e€¥ 9, X € &, and isomorphism f: V4 — X, there is a Be ¥
with VB = X and an isomorphism ¢: 4 — B with Vg = {.

Proposition 5.7. If ¥ is a normalized monoidal category and V : ¥ o— &
admits transport of structure, ¥~ is closed if and only if condition (i) of
Theorem 5.5 is satisfied.

Proof. First choose representing objects (BC)" and representations
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w' ¥ o(4A ® B, C)—¥y(4, (BC)'). Then we have an isomorphism
Yo(BO) a7 oI ® B, C) 77 oI, (BC)) 7w V(BC) . (54)
Now choose for each B, C an object (BC) with V(BC) = ¥"¢(BC) and an

isomorphism kp¢ : (BC) — (BC) with Vkpc equal to (5.4). Define a new
representation 7 as the composite

72 Vo(AQ B,C) 7 7 o(4, (BOY) 7,3 ¥ o(4(BC)). (5.5)
We already have (5.2) by our choice of (BC); we show that x satisfies
(5.3). Consider the diagram

7o, 1)
¥ o(BC) —————== ¥(I® B, 0)

Vk n’

V(BOY — = n(I,y(Bcr)
Vi1 ¥V o(l, k1)

V(BC) - "lfo()(BC'))

The top region commutes by our choice of k, and the bottom region by
the naturality of ¢. In view of (5.5) this gives (5.3).

We now consider criteria for an unnormalized monoidal category to
be closed.

Theorem 5.8. A monotdal category ¥~ is closed if and only if the
following two conditions are satisfied:

(i) the functor ¥ o(— @ B, C): ¥ § — F is representable for each
B,Ce¥;

(ii) representing objects (BC) and representations

7 =mapc: ¥ 0(4 ® B,C)—>¥o(4(BC())
of the above functors may be so chosen that ¥ o(BC) and the composite
Yo (BC) 7,057 0 (I ® B,C) =70 (I (BC)) *)

depend only on (BC).

With such representations chosen, a monoidal closed structure with Vp
equal to the given 7 is unigue except for some indeterminacy in the definition
of V.

Proof. We define ¥V and ¢ on the full subcategory of ¥"y determined
by objects of the form (BC). We define V (BC) to be ¥"o(BC) and 15y
to be (*); these definitions are consistent by condition (ii). Moreover
they are forced by Proposition 3.2, which shows that condition (ii) is
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necessary; we already know that condition (i) is necessary. We take the
value of Vf for f: (BC) — (DE) to be 71 ¥7o(1, f) ¢; this is forced if ¢
is to be natural, and does make V a functor and ¢ natural.

We have considerable liberty in completing the definitions of ¥ and
of 1. For definiteness let us define VA, where A is not of the form (BC),
to be ¥"o(IA), and define ¢: VA — ¥ o(IA) to be 1; then so define V
on morphisms that ¢ is natural.

We now have (5.2) and (5.3), and Theorem 5.5 gives the desired
result. We have only to note that our manner of completing the definitions
of V and of « makes no difference to the forced definitions of §, ¢, L, p.

Theorem 5.9. A monoidal category ¥~ possesses an isomorph V"' which
ts closed if and only f it satisfies condition (i) of Theorem 5.8. Moreover
tf representations 7w: ¥ o(A ® B, C) — ¥ o(A(BC)) are given, there is a
canonical way of constructing the monoidal closed category ¥”.

Proof. Condition (i) is necessary because it clearly survives passage
to an isomorph. Suppose representations sz as above are given.

We define a new category ¥ and an isomorphism ¢ : ¥ — ¥". The
objects of #7; are those of ¥79, and ¢ is the identity on objects. We set

Y o(BO) = ¥o(L, (BC)) (5.6)
and define ¢po: ¥ o(BC) — ¥ (BC) to be the composite
$rc: VY o(BO) g VoL ® B, C) 7o (1(BC)). (5.7)

Finally we define composition in ¥ so that ¢ becomes a functor.

We now use the isomorphism ¢ to transfer to ¥7, the structure of
monoidal category on ¥7, getting a monoidal category ¥” and an
isomorphic monoidal functor @ = (¢, qZ, $9): ¥ — ¥". To be precise,
wehave A Q' B=AQR B, R g=3¢(d1fRd1g), I =1,d = da,
V=gl r'=¢r, ¢ =1, ¢0=1.

We next define a normalization of ¥”'. We define

V'A="7(IA) (5.8)
and define /' : V' A — ¥ (I A) to be
U=¢:¥o[A)~>¥(LA); (5.9)

then define ¥V’ on morphisms so that ¢ is natural.

Finally we define representations 7’ : #°o(4 ® B, C) — ¥ (4 (B0))
by setting n" equal to the composite
a4 R B,0) g V(A ® B, C) 7 o(A(BC)) 5 ¥4 (A(BO));

(5.10)
this is clearly natural in 4.
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¥’ satisfies (5.2) by (5.6) and (5.8); we show that it also satisfies
(5.3). Consider the diagram

7ol 1) £
¥ o(BO) —=7(I® B, ()

Y o(1(BC))

Y o(BC ¥ (IR B, C) ——=>7"4(1,(BC
of )m oI ® ) e oL, (BC))
The left region commutes by the naturality of ¢, since I’ = ¢/, and the
right region by (5.10). The left edge and the top edge are equal iso-
morphisms by (5.7); hence the bottom edge equals the right edge, which
is ¢« by (5.9). This is (5.3) for ¥, and we now appeal to Theorem 5.5.

We complete this section by describing an economical way of giving
a monoidal closed category:

Theorem 5.10. Suppose given a category ¥y, functors X: ¥ o X ¥ o—¥ 0o
and hom ¥ : ¥ § X ¥°o — V"0, and a functor V : ¥ — & satisfying CCO.
Suppose further given an object I of ¥ o, a natural isomorphism i:4A — (I A4),
and a natural isomorphism p: (A ® B, C) — (A (BC)). Then these data
can be completed to give a monoidal closed category if and only if the r and
the a defined by (3.16) and (3.18), with 7 = V p, satisfy MCC4 and MCC3;
and ¥~ is then unique. Moreover if V is faithful the satisfaction of MCC4
and MCC3 is automatic.

Proof. The necessity of the conditions follows from Proposition 3.2;
moreover if V is faithful MCC4 and MCC3 follow from their images
under V, which are (3.16) and (3.18).

If the conditions are satisfied we define v by (3.26), j by (3.13),
1 by (3.12), and L by (3.20). Since we have forced CC5 by our definition
of v, and since we have Vp = =, it follows from Propositions 4.1 and
4.2 that all the axioms are satisfied.

6. Categories over a Monoidal Closed Category

If ¥" is a monoidal category, we define a ¥ -category o/ to consist
of the following four data:

(i) a class obj o of “objects”;
(ii) for each A, B € obj &7, an object &7 (4 B) of ¥7y;
(iii) for each A €obj.«Z, a morphism
ja: I > (AA)
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in ¥"o;
(iv) for each A4, B, C € obj &/, a morphism
ME,: o/ (BC)® /(A B) s (AC)
in 7.
These data are to satisfy the following three axioms:

VCY'. The following diagram commutes:
M
A (BB)® o (AB)——= o/ (AB)
i®l ]
I® o (4B)
VC2'. The following diagram commutes:
M
A (AC) ® S (A4)—= A (40)
1®j

SAORI

VC3'. The following diagram commutes:

(#(CD)® /(BC)) ® o4 (4 B)——= o/ (CD) ® (£ (BC) ® #(4B))
M®ll 11®M
&/ (BD) ® o (A B) A (CD)® L (4C)

M M
(AD)

If o7 and # are ¥ -categories where ¥~ is a monoidal category, a
¥ -functor T : ./ — & is to consist of the following two data:

(i) a function T': obj & — obj #;
(il) for each B, C € obj &/, a morphism
T=Tpe:(BC)—>Z%(TB,TC)

in ¥%.
These data are to satisfy the following two axioms:
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VF1'. The following diagram commutes:

& (B B) ——————> # (T B, T B)
VF2'. The following diagram commutes:
M
o (CD) ® o (BC) ————== 5/(BD)
T®T T

#(TC, TD) @ B(T'B, T0)~>#(TB, TD)

We leave the reader to verify:

Proposition 6.1. If ¥~ is a monoidal category, ¥ -categories and ¥ -
functors form a “category’ ¥, if we define composition by 1(5.1) and 1(5.2).

Remark 6.2. If ¥~ is monoidal without being closed, ¥~ itself does
not in general have the structure of a ¥ -category. However there is
always a 7 -category .#, defined as in Proposition 1.5.3 except that in
place of L we give M : .7 (x%) ® F (%) — S (¥%), defining it to be
Ir: I ® I — I. The rest of Proposition 1.5.3 then applies word for word.

We also leave the reader to verify:

Proposition 6.3. From a monoidal functor @ = (¢, {s @)V >
we get a functor @y : ¥y — ¥ 4 if we define @, of by 1(6.1), 1(6.2), 1(6.3),
and:

M : ¢ (BO)®¢A(AB)—>dot(A0)
18 the composite

¢/ (BC) ® ¢ (4 B) 5 ¢(/ (BO) @ # (A B)) g3 ¢ (4 0); (6.1)

and define P, T by 1(6.8) and 1(6.9). Further if n: @ —¥: ¥ — ¥ is
a monoidal natural transformation we get a natural transformation

Ny : Py >V o >V 5

tf we define 1 by 1(6.10) and 1(6.11). Finally the assignments ¥~ - ¥,
D — Dy, 11— 1, constitute a hyperfunctor , : Mon — Cal.

Conference on Categorical Algebra 32
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Theorem 6.4. Let ¥~ be a monoidal closed category. Then the “categories’
™Y and ¢V, coincide if we identify the ™Y -category of = (obj <,
(A B), §, M) with the ¢¥ -category o/ = (obj o/, o/ (A B), j, L) where

L = n Mic; (6.2)
here 7 is
a=Vp:V(Z(BC)R L (AB), A (AC)) —
-V (#(BO),(# (4 B), £(A0)).
Moreover if @ : 9" — ¥ is a monoidal closed functor, m@, :mY", — my",

coincides with @, : ¢V — V", and if n: @ — ¥ is a monoidal closed
natural transformation, 1, : M@, — ™V, coincides with 1y : Dy — .

Proof. We shall prove (i) VC1 <= VC1’; (ii) VC2 < VC2'; (iii) VC3 <
VC3'; (iv) VF2 < VF2'; (v) 1(6.4) and (6.1) are related by (6.2). The
other matters to be verified are trivial.

Proof of (i). Apply & to both legs of VC1'; we get

alMGiR)=xaM.j by (3.1)
=Lj by (6.2);

and
al=j by (3.15);

the resulting diagram equivalent to VC1’ is precisely VCI.
Proof of (ii). Applying 7z to both legs of VC2' we get

a(M(1®7) =01).aM by (3.1)
=@ DL by (6.2);

and
nr==¢ by (3.17);

the resulting diagram is VC2.
Proof of (iii). Applying = twice to each leg of VC3’ we get

an(M(lR@M)a)=p.x(M(1 KR M) by (3.19)
=pM,1).x M by (3.1)
=p(M,1) L by (6.2)
=(xwM,1)LL by (3.22)
= (L,1)LL by (6.2);

and
an(MM Q) =axM.M) by (3.1)

=a(LM) by (6.2)
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=(1,L).aM by (3.1)
=(1, L)L by (6.2);
the resulting diagram is precisely VC3.
Proof of (iv). Applying 7 to each leg of VF2' we get

a(TM)y=Q1,T).=M by (3.1)
=(1,7)L by (6.2);

and
aMTRT)=T,1).aM.T by (3.1)
=(T,1)LT by (6.2);

the resulting diagram is VF2.
Proof of (v) We have, with M’ defined by (6.1),
7 M = (M. P

—=¢.¢nM by (3.24)
=¢.4L by (6.2)
=L by 1(6.4).

Remark 6.5. If ¥ and ¥ are monoidal closed categories we shall,
in view of Theorems 5.1 and 6.4, identify a monoidal closed functor

D = (¢, q‘;, ¢A, ¢9): ¥ — ¥ with the monoidal functor (¢, gz;, #%) and
the closed functor (¢, ¢, ¢9).

7. The ¥ -functor K&

Let ¥” be a monoidal closed category. By Lemma 3.1 the natural
transformation

p1:(4(BC)) > (4 ®B,0)
determines a natural transformation
K%;:(AC)>(A®B,C® B)
connected with p—1 by the diagrams

B
(40C) (A® B, C® B)
(4, (B, C® B))

32*
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(4(BC))

(A® B, C)
K5 (1,

(A® B, (BO)® B)

Theorem 7.1. Let ¥~ be a monoidal closed category. For each B eV we
obtain a ¥V -functor KB: 9" — ¥ of we set KB4 = A ® B and (KB)4¢
= K25, and the underlying functor V KB: ¥ g — ¥y is — @ B. More-
over the morphisms tge: (BC) ® B —C and ucp: C — (B, C ® B) are
the C-components of ¥ -natural transformations tg: KELE > 1:¥ — ¥~
and ug:1 —>LBEKB . v v,

Proof. Applying V to (7.1) and evaluating at f € V(A C) gives
(VEB)f =a1V (L, u)f

= a-l(uf)
=alu.(1®f) by 3.1)
=1®f by (3.3).

Thus V4 KB= — ® B, and we have VF1 for K in the form (VK5)1=1
(cf. Remark I1.9.7). Leave aside for the moment the question of VF2
for Kpg.

From (3.20) and (7.2) we get a commutative diagram

B
(4C) ———=((BA4) (B())

¢ 1) (= KB

((B4)® B, C)H ((B4)® B, (BO)® B);

’

the exterior of this is VN for ¢p. Similarly from (3.21) and (7.1) we get
a commutative diagram
(1, u)
(4C) —————= (4(B,0C® b))

KB p (u, 1)

(A®B,C®B)E-B>((B,A®B), (B,C® B));

the exterior of this is VN for u.p.
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Since the proofs of the assertions of Theorem 1.10.2 make no use of
VF2 for the ¥ -functors involved, we can use them here before we have
VF2 for KB. The composite p~1(1, ) in (7.1) is therefore the C-com-
ponent of a ¥ -natural transformation

L4 Liu., LALBKEB }fﬁﬁ LA®BEKE
and so this composite, which by (7.1) is KZ,, satisfies VN; and this is
VF2 for K5,

Proposition 7.2. If ¥" is a monoidal closed category and f € ¥ o(AB),
the morphisms

1R CRA—->CRB
are the C-components of a ¥ -natural transformation
Ki:K4 > K%5,
Proof. VN for K/ asserts the commutativity of

KA
(CD) (C®A4,DR® A)
K® L1®/)
(C®B,D® B) CRA,DR®B
(1®f,1)( ® ®8

and this is just the assertion that K{, is natural in B, which it is by
its definition (7.1).

The following result shows the relation of ¢ and « to special cases of
M (i.e. the M of ¥ itself) and K:

Proposition 7.3. In a monoidal closed category we have commutative
diagrams:

(BC)® B o}
1®i i (7.3)
(BC)® (IB) 7 (o)
¢ (B,C® B)
: 1) (7.4)
(e (I® B,CQ® B)

K
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Proof. Applying z to both legs of (7.3) we get
w(tty=(1,2).xt by (3.1)
= (L,9) by (3.2),
and
a(M(1®1))=(©G1).aM by (3.1)
= (i, 1) L by (6.2);
thus (7.3) reduces to CC4.
We compose each leg of (7.4) with the isomorphism
p:(I®B,C®B)—~>(I(B,CQ B)),

getting
pKi=(1,u)i by (7.1)
=1iu by the naturality of ¢,
and
pl,)u=1u by MCC2;

thus (7.4) commutes.

The following is an adjoint form, as it were, of the representation
theorem for ¥ -functors:

Proposition 7.4. Let ¥~ be a monoidal closed category, o/ a ¥ -category,
T:o >V a ¥ -functor, A e o/ and Be¥". Denote by {q} the class of
¥ -natural transformations

¢ KBLA T :of >¢
with components
go: A (AC)RXB—->TC.
Define a map A:{q} — V (B, TA) by setting Aq equal to the composite
Aq: Bir I @Bjgy L (AA)Q B TA. (7.5)

Then A is a bijection with inverse II, where I10 for 0: B— TA is the
composite

176 KBLA 7 KBLTAT 4 KBELBT o7 T, (7.6)

with components
F(AC)RB7gi(TA, TO)Q® Benei (B, TC)QB—TC. (1.7)
Proof. By (3.4), mqc is the composite
A (A0) (B, L (A0) ® B)g5 (B, TO)
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which is the component of a ¥ -natural transformation
mq: LA~ zo LBKBLA 3 LPT.
Similarly, if g¢: & (AC) — (B, T C) are the components of a ¥ -natural

transformation §: L4 — LET, then 7~1§c, which by (3.5) is the com-
posite

H(AC)RQBzi(B,TO)QB—TC,
is the component of a ¥ -natural transformation
w1lg: KBLATK;;’KBLBT?T—’
Thus we have a bijection x:{¢} — {7}, and so by Theorem 1.10.8 we
have a bijection

{6} = {87 V(B T4,
with inverse
V (B, TA) o @) = {a}-
Comparison of I (10.11), (3.4), and (7.6) shows at once that z~10Q" = II.
It remains to show that I"mw = A.
Evaluating (3.12) at x € #79(4 B) and using (3.26) gives (x = (),
and (3.4) then gives
tx= (1, xl)u. (7.8)
Applying this to Agq gives
t4g=01,9)(1,j®@1u
= (1,¢9)uj by the naturality of u
=17q.] by (3.4)
=1(I"xq) by I(10.9) and Lemma 1.2.2;
thus Aq = I'"nq, as required.
If in the above proposition we take &/ = ¥~ and A = I, and use
the isomorphism ¢ : 1 — L%, we get:

Corollary 7.8. If ¥~ is a monotdal closed category and T : ¥ — ¥ is
a ¥V -functor, there is a bijection between V¥ -natural transformations

q: KB — T and morphisms 0 : B — TI, where 0 is the composite
BmwI®B—;;TI. (7.9)

7
In particular, q is determined by qr.

8. The Underlying Category of a ¥ -category

The closed category & is monoidal, with the cartesian product 4 X B
for A ® B, since L4 L* admits the representation

p:(4dx B,C)—>(A(BCQ))
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where
((pHa)y=f(x,y), fe(AdXB,C), zcd, yeB. (8.1)
We verify at once that a, r,1 have their expected values and that M
given by (6.2) corresponds to the usual composition law in categories.
Let ¥~ be a normalized monoidal category, and define V0:% — VI
by
Vo =115, (8.2)
then by the naturality of ¢ (cf. I(3.16)) the image of % under the com-
posite x 37 VI 37 VA is given by
ViVolx=,1f, (8.3)

Now define a natural transformation
V:VAXVB->V(4A® B)
by the commutative diagram

V
VAX VB V(4 ® B)

1 Xt 1

’Vo(IA)X'VO(IB)-——®—>V0(I®I,A®B) ¥Yo(l, A ® B)

Y o(I71, 1)
(8.4)

where () is the map sending (f, g) to f ® g; we record the evaluated form
of (8.4) as

Vi, y) = (2 ®@y)lyt. (8.5)
Proposition 8.1. If ¥ is a normalized monoidal category, and VO and v

are defined by (8.2) and (8.4), the triple (V, 17, V) is a monoidal functor
V: v - &.

Proof. Consider for example axiom MF3 for V, which reads:

V(A® B)®C) — % = p(4® (B 0))

v v
V(A ® B)x VC VAX V(B®C)
V1 1xV
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Since both legs are natural and since V ~ ¥7g(I —), repeated applica-
tion of Proposition 7.4 shows that it suffices to put A =B =C=1
and verify that both legs have the same value at ((¢:711,¢11), 11);
this verification is immediate. Similarly we verify MF1 and MF2.
Essentially the following result is given by BEnasou [3]:

Theorem 8.2. Let ¥~ be a normalized monoidal category and let o/ be
a ¥ -category. Then we can find in exactly one way a category <o and a
functor hom &7 : AF X of o — V"¢ such that:

(1) 2o has the same objects as & ;
(ii) hom & (A B) = o/ (AB); (8.6)

(i) the following diagram commutes:

hom 7
.M‘Jx g ———= ¥
(8.7)
Hom 7 v
S
(iv) ja = ¢1a, (8.8)

where 1. VA (AA) =7V oI, A (A4));
(v) M4 is natural in A, B, and C, and j4 in A.
Proof. We first prove the uniqueness. The objects and the morphisms
of &7 are fixed by (8.6) and (8.7); we must have
Ho(AB)=VHZ(AB). (8.9
Next, ¢,/ (45 gives a natural isomorphism (using (8.9))
t:Ao(AB)y—>¥"o(I, o (AB)).

Since 11 =j by (8.8), the representation theorem (applied both to
o(4—) and Zo(— B)) shows that for f e .o/o(4AB) we have a com-
mutative diagram

j 4 (1, 1) (8.10)
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For f e o/(BC) the following diagram commutes by the naturality
of M and by (8.10):

i®1

M
I® s/(AB) o (BB) ® s (A By———ss/ (4 B)

Cf®l Z(L,H®1 (1, f)
o (BC) ® o/ (A B) ——7—= 5/ (4C)

Composing both legs of this with I-1: &/ (4AB) - I Q) &/ (4B), and us-
ing VC1', we get a commutative diagram

(L, {)
(A B) ——————= A (AC)

- M (8.11)

I®M(AB)—”‘—'@T-M(BC)®M(AB)

This fixes the value of 2/(1, f). Similarly we get the following diagram,
which fixes the value of &7 (f, 1):

(f, 1)
&/ (0 D) ——————= o/ (BD)

1 u (8.12)

S (OCDYD I o (CD)® < (BC)

1®:f

Thus the functor hom .7 is unique. Finally (8.7) gives &Zo(l,f) =
Vs (1, f); so that «Z¢(L, f) is determined, and with it the law of com-
position in &7¢; for &Zo(1, f)g = fg.

We now prove the existence. We take the monoidal functor V of Prop-
osition 8.1 and define

Ly=V, . (8.13)

We then have (i) and (8.9). By the definition I(6.3) of j* (cf. Proposi-
tion 6.3), the identity of 27¢(4 A4) is the image of % under

* v V57 Vsl (AA),
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so that by (8.3) we have (8.8). The naturality of § now follows from
that of «.
By (6.1) the M of o is the composite

Ve (BC)X VA (AB) 5V ((BC) R L (AB)) v VA (AC);
evaluating this at fe Vo/(BC) and g € V.o/ (A B), and using (8.5) and
the naturality of ¢, we find that ((fg) € "o (I, &/ (4 C)) is the composite

I;7I1®1 5552 (B0O)® A (AB) 37 L (AC). (8.14)

We now define =7 (1, f) by (8.11), and observe at once that by (8.8)
and VC1', &7(1, 1) = 1. Similarly we define o7 (f, 1) by (8.12). We have
yet to prove that these definitions, together with (8.6), give a bifunctor
hom &7, that (8.7) is satisfied, and that M is natural.

Since we have (8.9), (8.7) will follow if we prove Vo7 (1, f) = &Zo(1, f)

and V</(f,1) = /o(f,1); by symmetry we need only prove one of
these. We take the first and express it in the evaluated form

(V£ (1,))g=1fg, where gelo(AB) and felo(BC).
By the naturality of ¢, the same statement may be expressed:
the composite I~/ (AB) zap5~(4C) is «(fg). (8.15)
Consider the diagram

1———?—»&1(143) ———ﬂl’ﬁ———»,ﬂ(xw)
-1 -1 M
I —_— AB);
I®I 10 ® (A B) Tol o7 (BC) ® A ( )

the left region commutes by the naturality of /, and the right region by
(8.11); since by (8.14) the long leg is ¢(fg), we have (8.15).

We now prove part of the naturality of M, namely the commutativity
of

o (BC)® A (4 B) —M—»Jg(AC)
Z(1L,)H®1 (1, f) (8.16)

M(BD)@M(AB)T </ (4 D)
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where f: C — D. Writing x for ¢f and using (8.11), (8.16) is the exterior
of the following diagram:

M

o/ (BC)® (A B) S (AC)
-1
@1 -1
I® A (BC))® (4 B) I® (Z(BC)® (4 B)) oM I® & (AC)
z®1®1 z® 1 z®1

(CD)® A (BC))® (4 B) ————a—>d(CD) ® (M(BO)@%(AB))WM(CD) ® (4

M1 M

& (BD)® o (A B) ~ 52 (A D)

One region commutes by VC3’, one by MC1, one by the naturality of /,
one by the naturality of e, and one trivially.
Another part of the naturality of M, namely the commutativity of

o (CD)® «(BC) &/ (BD)
1® (1 1) & (f, 1) (8.17)
S (CD)® o (AC) o/ (AD)

M

where f: A — B, follows by symmetry. The final part is the commuta-

tivity of
S (CD)R (A B)M&/(BD) ® £ (AB)
1® (L)) M (8.18)
A (CDY® A (A0) (4 D)

M

where f: B — C. Writing « for ¢f and using (8.11) and (8.12), (8.18) is
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the exterior of the following diagram:

o/ (CD) ® (4 B)
(Z(CD)Q®I)® A (4 B) 2 H(CD)® (I ® (4 B))
1®2)®1 1®@E®I)
(£ (CD)® & (BC)) ® (4 B) H(CD)® (Z(BC) Q< (4 B))

MR1 1Q M

o/ (BD) @ 5/ (4 B) — = o/ (D) =/ (0D) @ / (40)

This commutes by MC2, the naturality of @, and VC3'.

It now remains to prove that hom 7 is a functor; we need to show
that &7 (1, f)Z (1, 9) = &4 (1, fg), that (g, 1) (f, 1) = & (fg, 1), and
that o7 (1, f) &7 (g, 1) = &7 (g, 1) (1, f). We need not prove the second
of these, for it will follow by symmetry when we have proved the first.
Consider the diagram, where ¢g: B—C and f:C — D:

M
o/ (BB)® o (AB) —————— 2/ (A B)

1®1 (1,9 @1 l&((l, 9
1@ (AB) 7 o>/ (BO)® o/ (4B) S (AC)
(fg @1 4LH®1 Lﬂmn

#(BD)® o (4 B) ———==/(4D)

The triangles commute by (8.15) (using j = ¢1) and the rectangles by

(8.16). Since M (j ® 1) =1 by VCI’, one leg is &/ (1, f)Z (1, g)!; the

other leg is &7 (1, fg)l by (8.11). Thus &/ (1, )7 (1, g9) = (1, fg).
Now let g: 4 — B and f: C — D, and consider the diagram

-1 f®1 M

o/ (BC) 1® o (BC)———— 4 (CD) R o (BC) # (BD)
(g, 1) 1@ (g, 1) 1® (g, 1) (g
A (AC) I®A(AC) —— 4 (0D)® A (AC) o (AD)

-1 f®1 M
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One region commutes by the naturality of I, one trivially, and one by
(8.17). The top and the bottom edge are each 27 (1, f), by (8.11); hence
g, 1)L 1, )= (1, f) (g, 1). This completes the proof.

We leave to the reader the proof of:

Proposition 8.3. If ¥~ is a normalized monoidal category and T': o/ —%B
18 a ¥ -functor, there is exactly one functor Ty : oy — Bo, with T4 = T4,
such that Tpe: o/ (BC)—> % (T B, ToC) is natural; namely

To="V,T. (8.19)

Remark 8.4. If ¥~ is a normalized monoidal category, it is now pos-
sible to define ¥ -natural transformations exactly as in § I1.10; the proofs
of Proposition 1.10.1 and Theorem I.10.2 remain valid word for word.

To discuss the effect of a monoidal functor @ : ¥ — ¥, where ¥~
and ¥ are both normalized, we define ¢o: V — V'¢ exactly as in Prop-
osition 1.3.4, except that we must now write ¥"y(4AB) and not V (4 B),
etc. Note that equations I(3.8) and I(3.9) are still valid, and these give
1(3.13) and I(4.1).

The analogue of Proposition 1.4.5, namely that ¢ is a monoidal nat-
ural transformation

G0 V>V ¥ >, (8.20)

is still valid but needs a new proof; we can then write 1(4.1) as 1(4.3).
To prove (8.20), note that MN1 for ¢y states the commutativity of

0
* ——V—-—a- VI
v do
V5 ——————=V'41
Vo ¢
which follows immediately from 1(3.9) and (8.3). MN2 for ¢¢ states the

commutativity of

VAx VB L V(4® B)

do X do do

(8.21)
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Since V =~ #"o(I —), it follows by repeated application of Proposition 7.4
that it suffices to put A = B = I and verify that both legs of (8.21)
have the same value at (¢-11, (~11). Using (8.5) and I(3.9), the resulting
assertion is the commutativity of

[} 0
rer L IR SI
r-1 $
I $I IR 1),

$0 G-t
which is immediate from MF1 for @ and the naturality of I'.

We then have at once the analogue of Propositions 1.7.3, 1.7.5, and
1.7.6; we also have that of Proposition 1.9.8, but we need a new proof
for this. By symmetry it suffices to prove that

¢ (1, ) = (Py ) (1, $of)

where fe s7o(BC); since by I(3.8) (with ¢f in place of f) we have
dif. ¢9 = J¢of, we are led by the definition (8.11) to proving the com-
mutativity of the exterior of:

-1 ) $f®1)

¢ (A B) ——————=$(I ® A (4 B) $(/(BC)® /(A B))

v

F@¢ 4 (AB)— 5o $1Q® ¢4 (AB) 5o~ ¢/ (BCO)® 4/ (4 B)

The left region commutes by MF1, the middle region by the naturality
of ¢~, and the right region by (6.1).

We now have at once the analogues of Propositions 1.10.3, 1.10.5, and
1.10.6, and Theorem 1.10.7. What we have no analogue of, if ¥~ is not
closed, is propositions referring to the ¥ -category ¥ .

Theorem 8.5. If ¥ is a monoidal closed category, the monoidal functor
V: ¥ — & of Proposition 8.1 coincides with the closed functor V: ¥V~ — &
of Proposition 1.3.11. Moreover the category oo and the functors hom .7,
Ty, Dy, defined above then coincide with those of Chapter I.

el
A
o
R
N
>
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Proof. Let the unique monoidal closed functor extending (V, v, Vo)
be (V, V, V, V0). Since we have the same V0 as in Proposition 1.3.11,
and since Vg depends only on V and V09, it follows that (V, V, V9) is

normal. Hence by NCF1 we have V=", as required.

The assertions about &7y, hom 7, and 7'y are clear from the uniqueness
clauses of Propositions I.9.5 and 1.9.6, Theorem 8.2, and Proposition 8.3.
The assertion about @, , is obvious.

Remark 8.6. We have included a definite functor V: %79 — % as
part of the definition of a closed category ¥~, while treating it as an
“extra’ for a monoidal ¥°, because when ¥~ is closed ¥ itself is a ¥"-
category, and it is most tedious if the ¥"p and the hom ¥~ constructed
in § 1.7 and §1.9 differ from those given as part of the data of ¥".

Chapter 111
Symmetric Monoidal Closed Categories
1. Symmetric Monoidal Categories

A symmetry for a monoidal category ¥~ consists of a natural iso-
morphism ¢ =c4p: A ® B— B ® A in ¥, satisfying the following
two axioms:

MC6. cpacap=1:ARXB—>ARB.
MC7. The following diagram commutes:

A4®B®C AR (B®CO) (BRO®A4
c®1 a
(BA®C B®A®C0) B®(C®A)

1®c

A monoidal category ¥~ together with a symmetry ¢ for ¥ is called a
symmetric monoidal category. Note that a monoidal category 77, even a
closed one, may admit several distinct symmetries; an example of this
is given in § IV.6 below.

We have from MacLaxe [74] and KEeLLY [9]:

Proposition 1.1. In a symmetric monoidal category ¥~ the natural iso-
morphisms a, r, 1, ¢ are coherent.

If ¥~ and ¥’ are symmetric monoidal categories, a monoidal functor
D = (¢, gz, ¢9) 1 ¥ — ¥ is said to be symmetric if the following axiom
is satisfied:
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MF4. The following diagram commutes:

$4® B —2L° = 4B®4)

~

é] é
$AQ B ————=$B@ ¢4

One easily verifies:

Proposition 1.2. Composites and inverses of symmetric monoidal func-
tors are symmetric.

Thus symmetric monoidal categories, symmetric monoidal functors,
and monoidal natural transformations (no change in the definition of
these last) form a sub-hypercategory . #on of .#on.

The monoidal closed category % admits an obvious symmetry
¢: 4 X B— BxA given by c[z, y] = [y, ]. (In this chapter we shall
use square brackets to denote ordered pairs to avoid confusion with our
use of (— —) in a closed category.)

Proposition 1.3. If the symmetric monoidal category ¥~ has a normaliza-
tion V, 1, the monoidal functor V: ¥ — & is symmetric.

Proof. To verify the commutativity of

Ve
V(4 ® B)

V(B® A)
v v (L.1)
VAX VB — VBx VA
it suffices by repeated application of Proposition II.7.4, since V ~

=~ ¥ o(I—), to put A = B = I and show that both legs have the same
value at [¢~11, (~11]. This reduces to showing the commutativity of

IQI QI

-1 -1

which we have by coherence.

Conference on Categorical Algebra 33
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Remark 1.4. In future we shall suppose without explicit mention,
wherever the context requires it, that a normalization is chosen for the
monoidal category ¥; if ¥ is closed the normalization is of course to be
the canonical one.

2. Duality for ¥ -categories

If ¥ is a symmetric monoidal category, ¥ -categories and ¥ -functors
are defined as in Chapter II, the symmetry playing no part in these def-
initions; similarly, given a normalization of ¥~, ¥ -natural transforma-
tions are defined as in Chapter II.

Proposition 2.1. If ¥~ s a symmetric monoidal category and <7 is a
¥ -category, the following data define a ¥ -category o/ * called the dual of <7 :

(i) obj&/* = obj; (2.1)
(i) /*(AB) = (BA); (2.2)
(i) jiI—>*AA) is j: I (AA); (2.3)

(iv) M: Z*(BC) ® A*(AB) — L*(AC) is the composite
K (CB) QA (BA) AL (BA) QAL (CB) 3 & (CA). (24)

Proof. We verify VC3’ for .o/*, leaving the reader to verify VC1’ and
VC2'. We need the commutativity of the exterior of (see page 515):

The hexagon commutes by coherence, the pentagon by VC3’ for «7, and
the two quadrangles by the naturality of c.

In the following propositions the absence of a proof indicates that
they are straightforward and that their verification is left to the reader.

Proposition 2.2. If ¥~ is a symmetric monoidal category and T : o —5B
is a ¥ -functor, the following data define a ¥ -functor T* : oA * — B*:

(i) T*A =TA; (2.5)
(i) T%q: Z*(BC)—>B*(TB,TC) is Tep: A4 (CB) —
-~ % (TC, TB). (2.6)

Proposition 2.3. If ¥ is a symmetric monoidal category, the assignments
A Z*, T — T* constitute an involutory functor D: ¥y — ¥ .

Remark 2.4. It will be clear from the context whether ¥, denotes
the hypercategory or the underlying category; a notational distinction
here would be cumbersome.

Proposition 2.5. Let ¥~ be a symmetric monoidal category and let . be
the ¥ -category of Remark 11.6.2; then S* = £ and J4* = J4,
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S 5
S
X% o
® - ® N S
g ® ¥ 2 ©® X
I B o S
. | S
® e\ s =
9 ) Q ¥ O\"
S S o\ % g
¥ ¥ J
2 3
] -®
o —
¥ 23
® ~
< S
S
3
e : S
%
S
o)
3 s /=
® = g
o]
s & 2
s g 43 =
<) s f9 S
0y /g /N
VAV
.8 o
% o ® 8
® - 9 = S
S e ®
I}

Proposition 2.6, If @: ¥ — ¥ is a symmeiric monoidal functor, the
functor Dy : ¥y — ¥y commutes with D; that is,

(Py A)* = D ¥, (2.7)
(D T)* =D, T*. (2.8)

33*



516 S. EILENBERG and G. M. KeLLY

Proposition 2.7. Let p: @ — ¥ : ¥~ — ¥ be a monoidal natural trans-
formation between symmetric monoidal functors. Then if o is a ¥ -category
we have

Niesg* = M) ® 1 Py I* > W, A*. (2.9)

Remark 2.8. A ¥ -functor 7 : &/* — 4 is sometimes called a contra-
variant ¥ -functor T : o/ — A.

Applying Proposition 2.6 to the symmetric monoidal functor
V:¥ - & gives:

(Ao)* = (L *)o, (2.10)
(To)* = (T*)o; (2.11)
we therefore write szé‘, T¥; note that for & -categories duality reduces

to the classical concept. In the following proposition ¢ is the functor
sending [4 B] to [BA] and [f, g] to {g, f].

Proposition 2.9. If ¥~ is a symmelric monoidal category and <7 is a
¥ -category, the following diagram of functors commutes:

*
ﬂo % M; hom &/ 1/_0

hom o (2.12)

g X o
Proof. Commutativity on objects is immediate, and it remains to
show that
Z*(1, )=}, 1), (2.13)
S*(f, 1y =/ (1,f). (2.14)
It suffices by symmetry to prove the first of these. Writing x for .f

and M for the “M” of o/*, we have by 11(8.11) and I1(8.12) to prove the
commutativity of the exterior of:

(A B)
-1 1
I® L(AB) ° A(AB)R I
z®1 ll@x
&/ (BC) ® o/ (A B) ° (A B)® o (BC)
M M

L (AC)
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The top region commutes by coherence, the middle one by the naturality
of ¢, and the bottom one by (2.4).

Proposition 2.10. Let ¥~ be a symmetric monoidal category and
o: T —>8: o >R a V-natural transformation. Then the wy : TA—-SA
are also the components of a ¥ -natural transformation

a*: S* = T* . of* > Z*,

Proof. In view of Propositions 2.2 and 2.9, VN for «* is identical
with VN for «.

Proposition 2.11. If ¥ is a symmetric monoidal category, D : ¥y — ¥,
becomes an involutory hyperfunctor if we set Do = a*; and if @ : ¥ — ¥
ts a symmetric monoidal functor, D and D, commute as hyperfunctors;
that is,

(Dyo)* = Dy a*. (2.15)
Proof. Clearly D respects, in a contravariant way, composition of

¥ -natural transformations, with themselves and with ¥ -functors; to
be precise we have

(Bo)* = o* f*, (2.16)
(Ta)* = T*a*, (2.17)
(x8)* = a* S*. (2.18)
Proposition 2.7 applied to ¢o: V — V'®: ¥ — & gives
Doz = (Pog)* » (2.19)

whence (2.15) from 1(10.5).

Remark 2.12. Hypercategories will be shown in §IV.2 to be ¥"-
categories for a suitable ¥”, namely the category of small categories
with an appropriate symmetric monoidal closed structure. The dual of
a hypercategory U is therefore given by U* (o/ B) = A(F 7). However
there is another kind of dual given by U (o/ F) = U(Z #)*, the dual
of the category U(s/ #). The type of contravariance exhibited by the
hyperfunctor D: ¥"y — ¥, in Proposition 2.11 is that appropriate to
this second kind of duality.

3. Tensor Products of ¥ -eategories

For a symmetric monoidal category ¥~ we construct by suitable
combinations of @, @71, and ¢, (the details being irrelevant by coherence),
a natural isomorphism

m:(A®B)®CQD)—~(4R®0)R(BRD),
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called the middle-four interchange.

Proposition 3.1. If ¥~ is a symmetric monoidal category and <7, B are
¥ -categories, the following data define a ¥ -category & & AB:

(1) the objects of o Q) & are the ordered pairs [AB), A € o/, Be #;

(3.1)

(ii) (7 ®@B)((4B],[4' B']) = A (44") ® Z(BB'); (3.2)
(iii) 7: I —> (& Q&) ([4B],[AB]) is the composite

I 1IQI597(44) ® B (BB); (3.3)

(iv) M: (& Q%) (4" B'],[A" B"])) ® (¥ ® B) ([4 B],[4" B']) —
—(+/ ® %) ([4 B], [A” B"])

1s given by the commutative diagram

M
(Z(AA")RAB(B'B")) @ (#(44") @ B(BB)) ————>= A/ (44") @ #(BB")

m oM (3.4)

(A A'A")® £ (4 4))® (@(B'B") ® B(BB))

The proof is straightforward, although the diagrams are hard to fit on
a page. The diagram proving VC3' for &/ R # looks like this:

a

m
. a®a
[ J
x MRHR/URXD (1M1 M)
[ ]

HQM MM

[ ]
\
®

m@1l

X

The hexagon commutes by coherence, the two quadrangles by the
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naturality of m, and the pentagon by VC3' for o/ and for #. The reader
may verify VC1’ and VC2'. Similarly we easily verify:

Proposition 3.2. If ¥~ is a symmetric monoidal category and T : of —~€
and S: B — D are ¥V -functors, the following data define a ¥ -functor
TRS: A RAB—>F X D:

Q) (TS [A4B=[TA,S8B]; (3.5)

(i) (T @ S)sya1: (F Q@ B) (4 B],[4' B')) —

> (€ R2)([TA,8SB],{TA’,SB) is
A (AAYQB(BB) 5 a5m C(TA, TA YR 2(SB,8B'). (3.6)

Proposition 3.3. If ¥~ is a symmetric monoidal category the assignments
LB~ QB and T,S T @ S constitute a functor R : ¥ XV y—
=Y .

We now define ¥ -functors

0:(F RB)RC>A QB RE),

t: sl QI —Z,
R A — 7,
A RE B R A .

For instance, a[[4B]C]=[4[BC]], and
a: (4 ®B) @) ([[4B]C],[[4" B']C']) >
> (¥ QZ %) ([A[BC]],[A'[B'C])
is
a: (L (AA)YRHZ(BB)RF(CC)—>AL(AAYR (B(BB)RE(CC)).
We then easily verify:

Proposition 3.4. If ¥ is a symmetric monoidal category, then a, t, 1, ¢
are coherent natural isomorphisms in ¥, defining on ¥, the structure
of a symmelric monoidal “category” ¥ ..

To discuss the effect of a symmetric monoidal functor we need the
following lemma, which is an easy consequence of MF3 and MF4:

Lemma 3.5. For a symmetric monoidal functor @ : ¥ — ¥ we have
a commutative diagram:

(4R B)y®(C® D)) $((4 ®C) ® (B D))
;1 7
(AR B)® ¢(C® D) (AR C)R $(BR D) (3.7)
5@«27 s@4
(44®$B)® (4C® ¢ D) ($A®¢0)® (¢ B® ¢D)

m/
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Now if @:7 — ¥ is a symmetric monoidal functor and 7, # are
¥ -categories, we define a ¥”'-functor

g#:d?*%(@@*@—)@*(&i@@);
¢~# is the identity on objects, and q;#[AB] [4’B’] is
$: 954 (A4") ® $ B(BB) — §(/ (A44') ® B(BB)).  (3.8)
Verification that q~5# is indeed a ¥"'-functor is easy using (3.7). Similarly
we define a ¥”'-functor
Y I > D, S
YGx=2x, and ¢%:S (k%) >PF (xx) is $0:I'>¢I.

Propositij)n 3.6. If ©: v — ¥ is a symmetric monoidal functor, the

triple (D, ¢, $%) is @ symmetric monoidal functor Dy : ¥ 4—7 4.

Proposition 3.7. If n: @ - ¥ : ¥ — ¥ is a monoidal natural trans-
formation where @ and ¥ are symmetric monoidal functors, then

n*:d?*e?’*:f*—»"//;
18 a monoidal natural transformation
Ny Pup >y 1V e >V e

Proposition 3.8. The assignments V" 1> ¥ "y, @ > Dy, 1 - 1, con-
stitute a hyperfunctor from .M on to itself.

Proposition 3.9. If ¥~ is a symmelric monoidal category we have
(A QB)* = A* R B*, (3.9)
(I ®@8)*=T*RS*. (3.10)
Proposition 3.10. If ¥ is a symmetric monoidal category, D becomes a
symmetric monoidal functor D: ¥ 4 — ¥y if we se¢ D=1, D0 =1.

Moreover if @: ¥ — ¥ is a symmelric monoidal functor, D commutes

We now consider underlying categories. Note that (& & %) is not
expressible in terms of &7y and %,. Applying Proposition 3.6 to the
symmetric monoidal functor V: %" — & gives a symmetric monoidal
functor V. : ¥y — & 4. In particular we have the functor

Vi slo X Bo— (o @ Bo;
it is the identity on objects and is given on morphisms by

Vilf.91=VIf.q. (3.11)
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Let us introduce for this last morphism the notation

f®g="TItel; (3.12)
thusif f: 4 — 4" in /¢ and g: B — B’ in %y we have f ® g: [AB] —
—[4' B']in (& @ Z)o. (If ¥ happens to be closed and if o7 = & = ¥,
one must be careful to distinguish this from f ® ¢: 4 ® B+ 4" ® B’
in ¥7.)

Since V is a functor we have
hf@kg =Rk (f®9), (3.13)
1®1 =1. (3.14)
From the naturality of f/# we get, for ¥ -functors 7': o/ — €% and
S:%—~9,
(T ®8)(f®9) =Tof ®Sog. (3.15)

The fact that V. satisfies MF1—MF4 can be expressed in terms of the
functors ap: (& ® &) ® €)o — (F ® (B ® €))o, ete., as follows:

I®NH=F (3.16)
w(f®1) =f; (3.17)
(@9 =fR G h); (3.18)
(f®9=9f. (3.19)

Note that the 1 of (3.16) and (3.17) is the 1 of ., and is the element
Vox =11 of VI.

Lemma 3.11. Let f € o/ (BC) and g € Bo(Y Z), so that
[ ®@ge(d @B (BY],[CZ]).
Then tf: I—>o/(BO),1g:I1->B(YZ), and +(f ®g): I - (BC) QAB(Y Z)

are connected by the commutative diagram.:

(f®9)

I s/ (BC)® B(YZ)
_1 3.20
! 1f®eg (3:20)
I®I

Proof. Immediate from II(8.5).
In the following proposition m is the middle-four interchange for
categories:

Proposition 3.12. If ¥~ is a symmetric monoidal category and </, &
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are ¥ -categories, the following diagram of functors commutes:

(@Bt @@y — 2T OD
17;# X I‘;#
(o § % Bg) X (o X HBo) ® (3.21)
m

(ﬂ:x .%0))((55’6*)(.@0) 'V()X'//'o

—_—
hom &7 X hom #

Proof. Commutativity on objects is immediate, and commutativity
on morphisms states:

(A RQB) (R, [RDg) =L [) QB 9). (3.22)
It suffices by symmetry to prove:
(@ QB (L,]R®y =11 ®%Z(1.9). (3.23)

Writing « and y for «f and tg, and M for the “M” of &/ R %, we need
by II(8.11) and by (3.20) the commutativity of the exterior of:

-1

S (AB)RZ(XY) IQH(AB)QFXY))
el F®1
(I®A(AB)® (IR AB(XY)) = (I®I)® (#(4AB)®Z(XY))

(@@L Ry1

(A (BO)® #(4B)) @ (B(YZ)®HB(XY)) ~=—— (4 (BO)@#(YZ)) ® (4 (4B) ® &(

A (AC)® B(XZ)

The top region commutes by coherence, the middle region by the natural-
ity of m, and the bottom region by (3.4).

Proposition 3.13. Let ¥~ be a symmetric monoidal category and let
«:T—>8:f >Fandf: P— Q: B — D be ¥ -natural transformations.
Then the aa ® fp: [T A, PB] - [SA, QB] are the components of a
" -natural transformation o X B: T QP >SRQ: A E>F R D.

Proof. In view of (3.22), VN for « ® g is the tensor product of VN
for « and VN for g.
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Proposition 3.14. If ¥" is a symmetric monoidal category, @ : 7, X
X Vg =V 4 18 in fact a hyperfunctor and the natural isomorphisms
a, t, 1, ¢ are in fact hypernatural.

Proof. To show that ) is a hyperfunctor we need to show
@A (PRQ=aPRBQ, (3.24)
(TR =Te®SP, (3.25)
(y®0)(@®@p=yx®0f, and 1®1=1.(3.26)
Of these, (3.24) is trivial, (3.25) is immediate from (3.15), and (3.26) is
immediate from (3.13) and (3.14).
The hypernaturality of a, r, |, ¢ is immediate from (3.16)—(3.19).
Proposition 3.15. If @ : ¥~ — ¥ is a symmetric monoidal functor, the
natural transformation ¢y Py A @ P B — Dy (A ® F) is in fact
hypernatural.
Proof. Let : T' > T":of —F and §: S — 8" : B — 2 be ¥ -natural
transformations. By the naturality of ¢,. we have a commutative diagram

~

i

DA QDR D (A R B)

6,7 ® P,8 ®,(T® ) (3.27)

2,6 R0, 0, (¢ ® 2)
Py

and a similar diagram for 7", 8’. The hypernaturality of q;# means that
we also have

P (Proa @ Py f) =Dy (x @ ) - b (3.28)
in view of the various definitions this follows from II(8.21).

Proposition 3.16. If ¥~ is a symmetric monoidal category and o and f
are ¥ -natural transformations, we have

(x @P)* =a* ® P*. (3.29)

4. ¥ -bifunctors

If 7 is a symmetric monoidal category, a ¥ -functor 7' : of Q) & — €
is often called a ¥ -bifunctor. For its value on objects we use the usual
notation 7' (4 B) instead of T[4 B]. Given such a ¥ -bifunctor we define
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for each A € o7 a ¥ -functor 7'(4 —) : # — € as the composite

TA-—): B I QB gagr A REB 7 F . 4.1)
Similarly for each B € # we define a ¥ -functor 7' (— B) : &/ — € as the
composite

T(— B): A7 A QI g3 A QB FE. (4.2)

We call T (4 —) and T (— B) the partial functors of T'. For their values
on objects we have

T(A—)B=T(—B)A=T(4B). (4.3)

Proposition 4.1, If ¥ is a symmetric monoidal category and T : o Q &
% is a ¥ -functor, the following diagram commutes, and each leg is
equal to T[AB][A’B’] A (AA"Y R # (BB —>g(T(AB), T(A' Bl)) :

T(-B)®T(4-)

S (AA") ® B (BB %(T(AB), T(4'B)) ® €(T(AB), T(4B))
lM
¢ @(T(4B), T(4'B))
M
Z(BB')® (44 E(T(4’'B), T(A’BY)YRE(T(AB), T(A’B
e (T(4 B), T(4’B))
4.4)
Proof. Consider the diagram
S (AA)® B(BB)
(Z(44)® 1) ©® (I ® R (BB)) “ (Z(44)© 1)® (I® B(BB))
A1®HS GO 1OHOGOD

(/(44")® A (A4)) ®(F(B'B) ® B(BB)) =——— (/(A4') @ B(B'B)) ® (4 (44) @ B(BI

MM TQT

Z(AA) @ B(BB) C(T(AB"), T(A'B))®@€(T(4B), T(4B
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The top region commutes by coherence, the middle region by the
naturality of m, and the bottom region by VF2' for T' (in view of (3.4)).
Thus the exterior commutes. By VC2’ for o/ and VC1’ for %, the left
leg is just T'; by (4.1) and (4.2) the right leg is the upper leg of (4.4).

The proof that the lower leg of (4.4) is also 7' is entirely similar,
using the diagram

A (AA") Q B(BB) B(BB) @ oA (A4')
@t 1@t
(IQ®A(A44) R #(BB)RQ I)== ~ (I®Q(BB’))®'(M(AA’)®I)
(TeHR®I1®I)) ((ON®(1E®))

(4'4') ® o (A4")) @ (B(BB') ® B(BB))~————(s/ (4’ 4’y ® #(BB')) ® (o/ (AA') ® B(BB))

MM TRT

A (AA")® B(BB) %(T(A’ B), T(4’ B')) ® €(T(4 B), T(4’ B))

T M
¢(T(4B), T(4’B))

Proposition 4.2. Let ¥~ be a symmetric monoidal category and let
TA—):%# —>C and T(— B): o — ¥ be families of ¥ -functors indexed
by A e o/ and B e % respectively. Suppose that T(A—) B = T(—B) 4,
and write T (A B) for their common value; and suppose that (4.4) commules.
Then there is a unique ¥ -functor T : o Q) B — € of which T(A —) and
T (— B) are the partial functors.

Proof. Define T': o/ (AA') Q #(BB') >¥€(T(AB), T(4'B")) to be
the top leg of (4.4); this is forced by Proposition 4.1, which proves the
uniqueness.

VF1' for T requires the commutativity of the exterior of the diagram

T(-B)®T(A-)

A (AA4) ® Z(BB) ¢(T(AB), T(AB)) ® ¢(T(4B), T(4B))
i©i %
I®I —= I®¥(T(4B), T(4B)) M
[ 1®J
-1 !

I —> ¢(T(4B), T(4B))
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The top region commutes by VF1’ for T'(— B) and for T (4 —), the
bottom region by the naturality of /, and the right region by VC1’ for %.

VF2' for T requires the commutativity of the following diagram, in
which «, o, ', 8’ stand for T(4—), T(A'—), T(— B’), T(— B"), and
in which (4" B’, A" B"") stands for € (7' (4’ B’), T (4" B"")), etc.:

&
q
)
® ~
o 2
& R
X S 3 ‘:
s ® 8 ® AW
N s R 3 =
®—-—-9®—-Q—l—>®
) ‘:3 =S
= NI 3
3 3 3
<)
= o
X =
N
3
X _
<3 N
N & 8
= ~
o
® <
= S
A ~
Y X
® =
< ®
s .z .
2 S &
® = ~
& S )
& s =
Qe —Q
§ 3 o = <O
® ® 7 ® §
~ & 3 E
e - N
—~ & e}
T g A s
3 <
¥ o 32 -
&
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Writing m out in terms of @ and ¢, this becomes the exterior of the
following diagram, in which we leave the reader to fill in the objects:

= ° 3
® ®
g Q.
° = ° - ° __®‘ °
®
5 ® 3 S
° g ° o
° 5 -
Y
3 ~ 3 :® g
g 2 e 3 ®
S A ~
° — ¢ ®
3 —
®
=z
— ® =
— N ®
Y
é g ° = 'y = HY
® N /
- X,
[ ] [ ] ®
~
5 | Z
T ® T ® S
e & e 7 ®
— @ — §
[ J f_: @ >0
® ) =
B ®
S s = S
®
o > @ ° °
= ®
®
— ~

B'Rd)Q(F®a)
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The two hexagons at the top commute by the naturality of a. The
pentagon in the middle of the top commutes by (4.4) (tensored with
two other diagrams that commute trivially). The pentagon at the far
right commutes by VF2' for T'(— B”) and for T (4 —). The four other
pentagons commute by VC3’ for ¢, and the two quadrangles by the
naturality of a.

Finally it is easily verified that 7' has the given partial functors.

Remark 4.3. We note for later purposes that (4.4) is needed only to
get VE'2' for T'.

Proposition 4.4. Let ¥~ be a symmelric monoidal category and let
P:od' >, Q: B B N:C—>C,and T: o QFB—>E be ¥ -func-
tors. Define S: ' R B — €' to be the composite

L' QB oA QB € 5 C .
Then S(— B'): &' — €' is the composite
A A o€ TE,
with a similar formula for S(4" —).
Proposition 4.5. If ¥ is a symmetric monoidal category and P : of —F,

Q: %D are V-functors, set T=P R Q: A QF >C R ZD. Then
T (— B) is the composite

A7 QI pgreE € QD .

Proposition 4.6. If ¥ is a symmetric monoidal category and P :.of —%B
is a ¥ -functor, denote by T the composite I Q & — o/ 5 B. Then
T(x—)= P.

Proposition 4.7. If ¥ is a symmetric monoidal category and P :of QB
— € is a ¥ -functor, denote by T the composite B R A —— L Q B 5 €.
Then T(—A)=P(4—).

Proposition 4.8. If ¥ is a symmetric monoidal category and
P.oA Q(BREC)—>2 is a ¥V -functor, denote by T the composite
(A RABRQEC A RQZERE) 5 2,

and write S for T(—C): A QB — D. Then S(— B) = P(— [BC)).
Remark 4.9. Propositions 4.6—4.8 allow us to identify (& Q%) RF

with o ® (Z ® %), ete., and to write for example T : 2/ @ Z ® € 2.
We then write T (— BC) ete. for the partial functors.
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If @: ¥ — ¥ is a symmetric monoidal functor, and T : &/ B —>F
is a ¥ -functor, let us write @, T: D, I Q Py # — D, € for the
composite

Dy T: Q*.ﬂ®¢*.@*§;’¢*(ﬂ®ﬂ)—m—'¢*%. (4.5)

Proposition 4.10. If @ : ¥~ — ¥ is a symmetric monoidal functor and
T:. o QB —€ is a ¥ -functor, we have

(@u T) (A — )= Dy (T(A—)): Dy ik > D, E. (4.6)

Proposition 4.11. If : @ - ¥: ¥~ — ¥”' is a monoidal natural trans-
formation where @, ¥ are symmetric monoidal functors, and if T : & Q@ B
— & is a ¥ -functor, we have a commutative diagram:

7 .M@ Ne®
O AR DB — = VA RV.B
DuxT YerT (4.7)
DxE V¥
Mxe

Proof. This follows easily from the naturality of 7, together with
Proposition 3.7.

Proposition 4.12. Let ¥~ be a symmetric monoidal category and T, S:
I R # — € be ¥ -functors. Let

«ap: T(AB)—>S(AB), Aecsl, Be4B,

be a family of morphisms in €o. Then the asp are the components of a
¥ -natural transformation o : T — S if and only if, for each A, aap is the
B-component of a ¥ -natural transformation a4:T(A—) - S(4—) and
further, for each B, aup is the A-component of a ¥ -natural transformation
o.g: T(— B) - 8(— B).

Proof. Suppose that «: I' > 8 : & ® # — € is ¥ "-natural; then so
isaW4®1)1: T(A4—)—>8(4—): B —€; and the B-component of
a(J4 ®1) -1 is ayp. Thus as is ¥ -natural, and a similar argument
shows that a.p is # -natural.

Now suppose that a4 and o.p are ¥ -natural. Using the top leg of
(4.4) to express T and 8, VN for a becomes the exterior of the following

Conference on Categorical Algebra 34
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(VIS EV)NG =

(193

((gv)si@vL)s

(*Ds

gL @v)L)s

diagram:

(gms@vNas@Uag v)s(av)sas

1°%®1
(Lgv)s@v)r)s@Ug.v)s(gv)ss (—ms®(g-)g
/
J1's P‘Da®1
(gL @VL)s Ug.v)s(av)ss Vi ela-ly (gD vv)x
) d I®I %)
gL @DsUgv)sgvL)s (=PI ®(g-)z
R
e gL @D Ug. VLTV
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The left regions commute by VN for a.p. and a4, and the other regions
by the naturality of M.

Proposition 4.13. The map o — aq of Proposition 4.12 satisfies:

(i) (Na)g =Noyg where N:€—>%'; (4.8)
(i) (c(P RQ@Q)a=ops @ where P: ' —> o and Q: % —H; (4.9)
(iil) (Bo)a = Paoa where B:8S—>U: A QB—>F. (4.10)

If®: ¥ — ¥ is a symmetric monoidal functorand a: 7' — §: & &
& # — € is a ¥ -natural transformation, define

Doyt Py T > Dy S P, A RQDH—> D E
by .
Dy =D .. (4.11)
Then, since ;S# is the identity on objects, we have
(Pyese )4 = (Py 2)4B, (4.12)
which is @og(xap) by 1(10.5). Thus we have trivially:

Proposition 4.14. If @ : ¥ — ¥’ is a symmelric monoidal functor and
w: T —8: o QB —F is a ¥ -natural transformation, we have

(D)4 = Dyeta- (4.13)
From the hypernaturality of 5, together with Proposition 3.7, we get:

Proposition 4.15. If : @ >V : ¥ — ¥ is a monoidal natural trans-
formation where @ and ¥ are symmetric monoidal functors, and if o : T —
—>8: 8 QB € is a ¥ -natural transformation, then

Nse Pix @ Ny Pasxs T >Ny Pyey S Py A QO B>V, €
coincides with
Vs 0 Mz ON5e) Vs T Mo @ Niep) —
>4 8. N4t @ Ns4z) P A QD B~V F .

Proposition 4.16. Let @: ¥ — ¥ be a symmetric monoidal functor,
and w: T - 8: A QF — € a ¥ -natural transformation. We have

T*(A—)=(T(4-))*, (4.14)
Dy T* = (Dys T)*, (4.15)
Dy = (Dypa)*. (4.16)

Proposition 4.17. Let @: ¥~ — ¥ be a symmetric monoidal functor,
let T:oA QB —F be a ¥ -functor, and let a.: P —> P': o' — of and
B:Q—>Q : % — & be ¥ -natural transformations. Then

34*
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Dy T (D PROQ =D, TPy (PRQ): DA QDB —D, %,

(4.17)
and
Dy T (P e @Dy f) = Dy T Dy (e ® B) - (4.18)
Proof. We have a commutative diagram
Orct' @ On# — DL 41 @ 047
9’; ;s'# Dy s
Du(st’ @B VX Dy @ B) a7 D4E

by the naturality of ¢~# and the definition of @, 7'; and by the hyper-
naturality of ¢, we have a similar diagram with «, § in place of P, @.

Taking the symmetric monoidal functor V:¥" — % and a ¥ -func-
tor T: o/ ® % — €, we write

Too=Vus T, (4.19)
so that Ty : 279 X B9 — €0 is the composite
o X Bo57 (4 @ Bho 1 o. (4.20)

Hoa:T—>8:o QA —F is a ¥ -natural transformation, we have by
(4.12) since V is normal

(Vs o)aB = o4B; (4.21)

we shall in practice identify V., o with o, so that we also have «: To9 —
— Soo0: o X By — €o. Proposition 4.17 gives in this case

Too(oa, fB) = Tolea ® BB), (4.22)
so that by 1(10.3) we have
(T'(« @ B))aB = Too(ota, BB). (4.23)

Proposition 4.18. Let ¥ be a symmetric monoidal category and let
T:o QB —F be a ¥ -functor. Then

T(A—):#(BB')—>%(Too(4B), Too(4B"))
s natural in A; with a similar result for T (— B).
Proof. Let f e o/y(4AA") and compose both legs of (4.4) with
B(BB) 1w I Q%B(BB') ;514 (AA") ® #(BB').
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By the naturality of «, the composite

I A(AA)5=5¢(T(AB'), T(4'B'))
is t((VT(— B"))f), that is, ¢ ((T(— B’))of), or ¢t Too(1, f) by (4.6). Using
the naturality of c and II(8.11) and I1(8.12), we find we have the diagram

T4~
(BB WD) o s, TaBy)

T(4’—) €1, Toolf, 1) (4.24)

T(4’B), T(4' B)) ———————= % (T(4.B), T(4’B"))-
%(T(4’B), T( ))‘K(Too(f,l),l) (T(4.B), T(4’B))

which expresses the naturality in 4 of T'(4 —).

Proposition 4.19. Let ¥~ be a symmetric monoidal category and let
T QB —F be a ¥ -functor. Then for each fe Lo(AA'), the mor-
phism

Too(f,1): T(AB)—-T(4'B)
18 the B-component of a ¥ -natural transformation
T(f,1): T(4—) > T(A'—);
with a stmilar result for T (1, g).
Proof. VN for 7'(f,1) is (4.24).

5. Extraordinary ¥ -natural Transformations

Let #” be a symmetric monoidal category. We now introduce for
¥ -categories the extraordinary kinds of natural transformation intro-
duced for ordinary categories in [7].

Let o/ and & be ¥ -categories, T': &/* Q) o — % a ¥ -functor, and
B a fixed object of #. A family of morphisms in %,

ya:B—>T(44), Aes,

is said to be ¥ -natural if the following axiom is satisfied:
VN'. The following diagram commutes:

T(4 —) ,
A(AA) ——— B(T (4 4), T(44"))

T(—A4') %(ya,1)

B(T(A A), TAA") m %(B,T(44")
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Similarly a family of morphisms in %,
0a:T(AA)—>B, Aedd,

is said to be ¥ -natural if the following axiom is satisfied:
VN". The following diagram commutes:

T(— A4)

A(44) B(T (4’ 4), T(A A))
T4’ —) B(1, 84)
B(T(A'4), T(4’AY) #(T(4’4), B)

et S
#(1,64°)

Now if we have ¥ -functors
T:AfRA QD QAly QAp Q1R REr—>D,
8: 8RB Q- QB %y R1 Q- Q€r—~ D,
and morphisms
O gpeeedpBr--BoCro-Cr: T (A1A1» Ap ApCr--- Cf) —
S(B1Bi++ By By C1++-Cy),

we define « to be ¥ -natural if it is so in each variable 4 .-+ C, sep-
arately when the others are held fixed. Proposition 4.12 shows that we
may group the variables Cy, ..., Cr at pleasure; the situation is entirely
similar for the other variables, and we leave the reader to adapt the
proof of Proposition 4.12 to prove:

Proposition 5.1. If ¥~ is a symmelric monoidal category, if
T A*QB*RQA RB—~>F
is a ¥V -functor, and if C €€, a family of morphisms
oaap: T(ABAB) -~ C
is ¥ -natural in [A B] if and only if it is so in each of A, B separately.

Proposition 5.2. The rules for composition of extraordinary ¥ -natural
transformations are formally identical with those of [7].

Proof. The considerations of [7] use only the formal properties of
diagrams VN, VN’, VN".

For composition of ¥ -natural transformations with ¥ -functors, we
have:
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Proposition 5.3. Let ¥~ be a symmetric monoidal category, let
T - A*RQA %, P:C—A, Q:B—>9

be ¥ -functors, and let y4: B — T (A A) be ¥ -natural. Then the family of
morphisms

Qoypc:QB—QT(PC, PC)
is also ¥ -natural, the relevant befunctor now being
RQT(P*R®P):¢*R¥—~>2.

We leave the reader to adapt the proof from that of Theorem 1.10.2.
There is of course a corresponding result for ¥ -natural transformations
of the VN"’ type, but it is only the dual of the above and needs no sep-
arate proof. Note that by Remark 1.10.12 we may write @yp¢ instead
of Qoypc; for the name of the family we shall use @y P.

The proof of the following proposition is exactly like that of Prop-
osition I1.10.3:

Proposition 5.4. Let @: ¥ — ¥ be a symmetric monoidal functor,
T:9* QA —~Ha?V -functor, and yq: B — T (A A) a ¥ -natural trans-
formation. Then Qygya: B — (Dyy T) (A A4) is a ¥'-natural transforma-
tion, which we shall write D, y.

Analogously to Proposition 1.10.6 we have (cf. also Proposition 4.11):

Proposition 5.5. Let n: @ — ¥ : ¥~ — ¥ be a monoidal natural trans-
formation where @, ¥ are symmetric monotdal functors, and let ya: B —
— T (A A) be a ¥ -natural transformation, where T : A/* Q) o — B. Then
the V"' -natural transformations

s Pay 1 B—>14g (Pyy T) (A A)
and
Ve nsa) B>V T(Maesr Ay Ny A)

coincide.

6. Symmetric Monoidal Closed Categories

A symmetric monoidal closed category ¥~ shall mean a monoidal closed
category ¥~ with a symmetry as in §1. If ¥~ and ¥” are symmetric

monoidal closed categories, a symmetric monoidal functor @ = (¢, ¢,
$#9): ¥" —¥”, identified with the monoidal closed functor @ = (¢, ¢,

~

&, §0): ¥ — ¥, shall be called a symmetric closed functor. Then sym-
metric monoidal closed categories, symmetric closed functors, and closed
natural transformations form a sub-hypercategory & . #%/ of A%L.
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Proposition 6.1. If V is faithful, the monoidal closed category ¥~ ad-
mits at most one symmetry.

Proof. Let ¢ and ¢ be two symmetries. From (1.1) we get
Ve.V=VeV.
Now apply I1(3.24) with @ = V and = = ¢; we get, since V= v,
V.Vac=V.Va=c.
Since V is faithful and 7 is an isomorphism, we deduce ¢ = ¢.

If ¥ is a symmetric monoidal closed category and 7 is a ¥ -category,
we have for each 4 € o/ the ¥ -functor L4 :.o/* — ¥". To distinguish
this from the L of .7 we write it as R4: o/* — %", and treat it as an
attribute of .o/ rather than o/*. We have

RAB=o/(BA), (6.1)
and
Riq: /% (BC) — (4*(AB), *(AC));
that is,
R4,: o/ (OB) — (£ (BA), o (CA)). (6.2)
Since the M of «/* is given by (2.4), we have by I1(6.2)
R=n(Mc). (6.3)

Tt follows that R4 in (6.2) is natural in all variables, since 7z, M, ¢ are.
We call R4 the right represented ¥ -functor.
The underlying functor V, R*: /¥ — ¥ is given by

Ve RA= ot (—A): ALF >V, (6.4)
in view of Proposition 2.9. Translating Proposition 1.8.3 we get:

Proposition 6.2. If ¥~ is a symmetric monoidal closed category and
T:o — A is a ¥ -functor, the morphisms

Tge:4(BC)—>%(TB,TC), Be«,
are the components of a ¥ -natural transformation
T.c:RC— RICT* of% >4,
As in Proposition 1.8.4, the naturality of R4 in A4 gives:

Proposition 6.3. If ¥~ is a symmetric monoidal closed category and <7
18 a ¥ -category, let f € /o(AB). Then the morphisms

(1, f): o (CA)—> o7 (CB), Cesf,
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are the components of a ¥ -natural transformation
Rf: R4 > REB: /% 4",
Theorem 6.4. If ¥~ is a symmetric monoidal closed category and o is

a ¥ -category, the ¥ -functors REB: o/* ¥ and LA: o/ — ¥ are the
partial functors of a ¥ -functor

Hom o7 : Z* QA — 7.

We defer the proof of this, which consists in verifying (4.4), to §7. By
I1(7.9) and (6.4) we have:

(Hom /)gp = hom o7 : /F X Lo — 7. (6.5)

Proposition 6.5. If ¥~ is a symmetric monoidal closed category and </
is a ¥ -category, the following diagram of ¥ -functors commutes:

Hom o/ *
M@ Ak —————
¢ Hom &7 (6.6)
A*RQ) oA

Proof. By the uniqueness in Proposition 4.2, it suffices to check that
the partial functors agree. This is obvious from Proposition 4.7 and the
definition of R4.

Proposition 6.6. Let D : ¥~ — ¥ be a symmetric closed functor and o/
a ¥ -category. Then

Hom @, o : P, A* Q Dy L -V
18 the composite

Dy A* QD A g, Homa Pu ¥V 57"

Proof. It suffices to check the partial functors; in view of Proposition
4.10 the result follows from 1(6.15) for o/ and for o7/ *.

Now for a symmetric monoidal closed category ¥~ define a natural
transformation

H%,:(A0)> (B®A4,B®/C)
as the composite

(A0 55 (AR B,CRB) (B4, BRCO); (6.7)
see § I1.7 for the definition of K.
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Proposition 6.7. For each B in the symmetric monoidal closed category
V" we obtain a ¥ -functor HE: ¥ — ¥ if we set HPA = B R A and
(HBYac = HE, and the underlying functor V,HB: ¥ o — ¥y is B® —.

Proof. We have, for fe ¥74(40),

(VHB)f=V(c,c). VKE.f by (6.7)
=V(,c)(1®/f) by Theorem I1.7.1
=c(1®f)ec
=f®1 by the naturality of c.

Thus we have V,HE = B @ —, and we have VF1 for HZ in the form
(VHP)1 =1 (cf. Remark 1.9.7).

Axiom VF2 for HB is axiom VN for HZ. Since the proofs of the
assertions of Theorem 1.10.2 make no use of VF2 for the ¥ -functors
involved, we can use them here before we have VF2 for H5. Since ¢2 = 1,
the definition (6.7) may be written in the form VN to show that

CCB - C ® B—~B ® C
is the C-component of a ¥ -natural transformation
C.B: KB - HB .

The composite (6.7) is therefore the C-component of a ¥ -natural trans-
formation

A EE» LA®BKB O] LB®4A KB %70.—; LB®4A B,
thus HZ, is ¥ -natural in O, which is VF2 for H3.

From the naturality in B of H%;, which is immediate from its def-
inition (6.7), we get just as in Proposition 11.7.2:

Proposition 6.8. If ¥ is a symmetric monoidal closed category and
fe€? o(AB), the morphisms

f®L1L:ARC—-BRC, Ce?,
are the components of a ¥ -natural transformation
Hi:HA—HE: ¥ v
We defer to § 7 the proof of:

Theorem 6.9. If ¥~ is a symmelric monoidal closed category, the ¥ -
functors K2: 9" — " and H4: ¥~ — ¥ are the partial functors of a ¥"-
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functor
Ten: v Q¥ =7 .
Since Vo K= — ® B and V,H* = A ® —, we have
(Ten)oo = ® : ¥ o X ¥ o—¥0. (6.8)

Proposition 6.10. If ¥~ is a symmetric monoidal closed category and </
and B are ¥ -categories, the following diagram of ¥ -functors commutes:

H oA QB
(AQBN® (A ©F) — OB _ .
- Ten (6.9)
oI* 7%
(SO ) © (B*OB) e ¥ O

Proof. It suffices to check the partial functors; we must therefore
show that the LI48] of o/ ® & is given by the composite

ﬂ@gLA(@LE”V@'VﬁKV; (610)

the same result applied to &7* and #* then gives equality of the other
partial functors.

Let the partial functors of LI458l: of @ & — ¥ be L4Bl(—D) =
=P:o - ¥ and LU4BI(C —) = Q: # — ¥ . Then to show that LI45)
is (6.10) is to show that P is the composite

and that @ is the composite
BIBY Haaoy Vs (6.12)

as we see from Proposition 4.4.
We immediately verify that P agrees with (6.11) and @ with (6.12)
on objects. By (4.2), Pxy is given by:

A (XY) 7 A (XY) @ Lig; 4 (XY) @ B(DD) gam
— (' (AX) ® #(BD), &L (AY) ® #(BD)). (6.13)
Taking 1 of (6.13), using 1I(3.1), II(6.2), and (3.4), we get the upper
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leg of the following diagram:

—
~f
—
e

(e A V)

nwew

10H®1 -1 ®1

()@ @a)H) QxR U X)2) (@ @N® (XV) 27X X)) @D (xXV)r L X)r)

w w 1-?

(@D xV)FOUaH @ A X)) =e———— (A DNE R XV QURU X)) =——(TDsRXV)»FQUX)»
I®ERT1) I® 14
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Now in (6.14) the top left region commutes by coherence, the top right
region by the naturality of m, and the bottom region by VC1’ for #.
It follows that we have
alP=(ME@1l)a1l. (6.15)
Thus
P=a((MQ1)a1)

=pl.an(M®1) by I1(3.19)

=p1l.7a(uM) by I1(3.1) with z =1
=p 1, u).aM by II(3.1)
=KL by 1I(7.1) and 11(6.2);

which proves that P is (6.11).
In an exactly similar way one proves that

al@=1QM)cal(l®c); (6.16)
by the naturality of ¢ we also have
alQ=c(M ®Na(1®c);
IT(3.1) then gives
Q=(c)n((M1)at)
= (c,c) KL by the calculation above
=HL by (6.7).
This completes the proof.

7. The ¥ -naturality of the Canonical Morphisms

Proposition 7.1. Let ¥~ be a symmetric monoidal closed category and let
T(A—-): B —>% and T(— B): o/ — € be families of ¥ -functors indexed
by Aec ./ and Be B, with T(A—)B = T (— B)A = T(AB). Then these
are the partial functors of a bifunctor T: o @ B — € if and only if
either of the following diagrams commutes:

T(— B) L
A (A 4)———=F(T(4B), T(4'B) —=((T(4 B), T(4B),% (T4 B), T(4'B))
T(— B)
(T(A4 B), T(4'B)) (T(4 =), 1)

Rt
(¢(T(4'B), T(4' B')),¥(T(4 B), T(4’ B)) (#(BB),¢(T(AB), T(4'BY)

(T4’ =), 1)
(7.1)
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#(BB) i ¢(T(4’B), T(4’B") —L—>(?(T(A B), T(4’ B)), ¢ (T (A B), T(4’ B'))
T(4 —)1
€ (T(4 B), T(4 B')) (T(—B),1)
R

(€(T(A B'), T(A’B")), ¢ (T(4 B), T(A’ B))) _(_JT—_BW} (#(44"),¢(T(4 B), T(4’' BY)))

(7.2)

Proof. By Propositions 4.1 and 4.2, it suffices to show that each of

(7.1), (7.2) is equivalent to (4.4). Applying 7 to both legs of (4.4), we get
a(M(IT(—BYRTA-)=(TA—-),1).aM.T(—B) bylIl(3.1)

=(T'(4-),)LT(— B') by I1(6.2);
and
a(M(T(A'—) ® T(— B))¢) = a(Mc(T(— B) ® T(4'—))) by the
naturality
of ¢,
= (T(4'—),1) RT(~ B) by 11(3.1)
and (6.3);

thus (4.4) is equivalent to (7.1).
Similarly we get (7.2) if we reverse the direction of the arrow ¢ in (4.4)
before applying .

Corollary 7.2. If ¥ is a symmetric monoidal closed category and
T: A QB —F is a ¥V -functor, then

T(A—):B(BB')—>%(T(AB), T(AB"))
and T(—B): Z(AA") € (T(AB), T(4'B))

are ¥ -natural in A and B respectively, with respect to the bifunctors

LR L F*QC

7,
T(=BreT(—B) Hom%

B*Q R * -y
® T(A—*Q T (4" —) O Hone

Proof. VN’ for 7'(4 —) is (7.1), and for T (— B) is (7.2).

Remark 7.3. As we noted in Remark 4.3, we needed (4.4), or equiv-
alently (7.1) or (7.2), only to get VF2 for 7. Now VF2 for T is not
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involved in the definitions of extraordinary ¥ -natural transformations
in § 5, nor in Propositions 5.2, 5.3, 5.4. We can therefore use all of these
before proving Theorem 6.4 and 6.9. Indeed, we shall prove these pre-
cisely by appealing to (7.1) and (7.2), stated in terms of ¥ -naturality;
the proofs are contained in the following theorem. The bifunctors, or in
the first instance their partial functors, with respect to which the stated
¥ -naturality obtains, are obvious compositions of H, K, L, and E.

Theorem 7.4. If ¥~ is a symmetric monoidal closed category, the mor-
phisms a, 1,1, ¢, p, ¢, w, H, K are ¥ -natural in every variable. Moreover
if &7 is a ¥ -category, the morphisms M, L, R, § are ¥ -natural in every
variable.

Remark 7.5. The ¥ -naturality in A of H4 and of L4 establishes
Theorems 6.4 and 6.9 by means of Proposition 7.1.

Proof of Theorem 7.4, We first observe that c4p is # -natural in both
variables, for since ¢2 = 1 the definition (6.7) of H may be interpreted
as VN for ¢ in either variable. We next prove the ¥ -naturality of ¢pc;
it is # -natural in C' by Theorem II.7.1. Consider the diagram:

(BB)® ((B'C)® B) (BB)® (B® (B'0))
a1 i
(BB)®(B'C)® B (BB)® B)® (B'C)
c®1 c t®1
(BC)® (BB)® B (BC)®(BB)®B) B ® (B0
M1 19t _~
\
(BC)® B (BO)® B @3
\ /

c

The top region commutes by coherence, and the right region by the
naturality of ¢. The bottom region would commute by VC3’ for ¥ if
we had (IB), (IB’), (IC) in place of B, B’, C at the extreme right of
each object, and M in place of ¢; it therefore commutes by I1(7.3).
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Now apply 7 to each leg of (7.3). We get

atcERDa 11 ®Re)) = (%) (cc)n(t®1)al) by II(3.1)
=(Lt)(c,c)plan(t®1) by I1(3.19)
= (L,t) (¢, c)plm(ut) by II(3.1)
with =1
= (L,t) (c,c) p~1(1, u) by II(3.1)
since 7t =1
= (Lt)(c,c) K by II(7.1)
=1,)H by (6.7);
and
(MR (cR®1l)at)=a(n1(Mc).a1) by I1(3.5)
=plax (n1(Mc)) by 1I(3.19)
=pla(Mc)
=p1R by (6.3)
= (1,t) KR by II(7.2);

the resulting diagram is precisely VN’ for the ¥ -naturality of ¢p¢ in B.
Note that by stopping one line before the end of the above calculation
we have

(1,¢)H = p~1R. (7.4)

We now prove the ¥ -naturality of uup; it is ¥"-natural in 4 by
Theorem II.7.1. For its ¥ -naturality in B, VN’ is the exterior of the
diagram: (see page 545):

The top left region commutes by (7.4), and the bottom region by 11(3.7).
The other regions, reading from left to right, commute (i) by the natural-
ity of H, (ii) trivially, (iii) by the naturality of p, (iv) by 1L(3.21).

We turn to L, R, and M. Because L4 and R4 are ¥ -functors, L4
and R4, are ¥ -natural in B and C by Proposition 1.8.3 and Proposition

6.2. Since M = =1 L by 11(6.2), it is by II1(3.5) the composite:

ME,: o/ (BC)® o/ (AB) 7g; (4 (AB), # (AC)) ® # (AB) —~ £ (AC).
(7.5)

Since ¢ is ¥ -natural in everything and L (X 1 is ¥ -natural in everything
except A, MB, is ¥ -natural in B and C. (We are implicitly using Prop-
ositions 5.2 and 5.3, and Proposition 6.8. We continue to use these
implicitly, as well as 1(9.7), Proposition 11.7.2, and Proposition 6.3; note
that these last and Proposition 6.8 become subsumed under Proposition
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4.19 only after we know that we have bifunctors Hom & and Ten.) We
also have M = n~1 R . ¢ by (6.3), so that M is the composite:

ME,: o/ (BC)® A (AB)— o (AB) ® o/ (BC) —
w1 (Z(BO), £ (AC)) ® L (BC) L (AC). (7.6)

Since ¢t and ¢ are ¥ -natural in everything, and B ® 1 in everything
except C, M2, is ¥ -natural in B and A. Thus M is ¥ -natural in all
variables. Now L = n M, and so by I1(3.4) we have L = (1, M) u; thus
L is ¥ -natural in all variables since M and « are. Similarly R = @ (M c)
= (1, M¢) u is ¥/ -natural in all variables.

p is now ¥ -natural in all variables by I1(3.21), then K by II(7.1)
(the inverses of ordinary ¥ -natural transformations are ¥ -natural by
Theorem 1.10.2), then H by (6.7).

Since ¢ is ¥ -natural by Proposition 1.8.5, it follows from MCC2,
MCC3, MCC4 that (I, 1), (@, 1), (r, 1) are ¥ -natural in every variable.
The ¥ -naturality of [, @, r themselves now follows by Proposition 1.10.10.

Finally we consider j. VN’ for j is the exterior of the following
diagram:

L
A (AC) —————= (L (A A4), A (40))
R ¢ G:1)
((CC), #(A0)) (I, A(A0C))

@ 1)

The two regions commute by VC2 for &/ and for /*. This completes
the proof.

Proposition 7.6. If ¥~ is a symmelric monoidal closed category and
T: oA ®F—F isa ¥ -functor, then
T:/(44"YR B(BB)—>%(T(AB), T(A' B))
28 ¥ -natural in A, A’, B, and B’.
Proof. By Propositions 1.8.3 and 6.2, T' is ¥ -natural in [AB] and
[4’ B']. Therefore by Proposition 4.12 it is ¥ -natural in 4, B, 4’, B’

with respect to the appropriate partial functors. By Proposition 6.10
these are what they should be.

Proposition 7.7, If @ : ¥ — ¥ is a symmetric closed functor, $AB and
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q;AB are ¥"'-natural in all variables. More precisely we have for fixed A:
$a: P O IA L. D: DV >V,
Ga:HO4.® > O HA: D ¥V >V,

with similar results for fixed B.

Proof. Since qg\AB are the components of the ¥”'-functor é\:@*V -7,
the result for g; follows by Propositions 1.8.3 and 6.2, in view of 1(6.15).

Now consider the diagram of MCF3; o/, (1, 9;) and gz? are ¥ '-natural
in all vanables, and so is ¢p by Proposition 1.8.8. We deduce the ¥™-

naturahty of ¢ 1) ¢ and so by composition that of (¢ 1) ¢ ¢ H. Since

qS ¢ H are the components of D . @, H4, the ¥"-naturality of ¢ follows
from Proposition 1.10.10.

Lemma 7.8. Let ¥~ be a symmetric monotdal closed category and let
PQ: A >B and T: * QA —FB be ¥V-functors. Consider families
of morphisms

aq: PA—>QA,
ya:B—T(44),
04:T(44)—> B.
Then the ¥ -naturality of o, y, d is equivalent to that of the families
tag: I >B(PA,QA),
tya: 1 —>%(B,T(AA)),
t04: 1 >FB(T(44), B).

Proof. We give the proof for «, leaving the others to the reader.
Since by I(7.14) ta is the composite

I1-%PA,PA)gas#(PAQA),
the ¥ -naturality of (o follows from that of « in view of the ¥ -naturality
of 5.
Now suppose that (« is ¥ "-natural. By Proposition 1.10.10, to prove

the ¥ -naturality of « it suffices to prove the ¥ -naturality in C of the
composite

A (AC) 5 #(PA, PC)za,5%(P4A,QC),

and since ¢ is ¥ -natural, it suffices to prove the ¥ -naturality in C of the
composite

A(AC) 5 B(PA, PC) gz B(PA,QC)— (I, B(PA,QC). (1.7)
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Now (7.7) is certainly ¥ -natural in A. If we put 4 = C, apply V,and
evaluate at 1¢ we get toec. Thus by Theorem 1.10.8 (with &/* in place
of &71), (7.7) is the composite

A (AC) 5 B(PA,PC) 7 (B(PC,QC),B(PA,QC)) —~
wan (I, #(PA,QQC)). (7.8)

By the # -naturality of ¢«, this is ¥ -natural in C, as required.
We now prove the ¥ -analogue of Proposition I.1.2:

Proposition 7.9. Let ¥~ be a symmetric monoidal closed category and let

T - 20A >B,P:€RD*—>A, Q: € — % be ¥ -functors. Let
gcpa: A (P(CD), A) - Z(QC, T(D 4))
be a family of morphisms, ¥ -natural in A for each C, D; and in the
language of Theorem 1.10.8 let I qcp be
Ocp: QC — T (D, P(CD)).

Then q is ¥ -natural in C (resp. D) if and only if 0 s.

Proof. ¢ as '8 is the composite

A (P(CD),A)75p3%(T (D, P(CD)), T(DA)) go.13 Z(QC, T(DA))
and so is ¥ -natural if 0 is. Similarly ¢0 is the composite
I~ (P(CD), P(CD)Z(QC, T(D, P(CD)))

and is ¥ -natural if ¢ is. Lemma 7.8 then gives the ¥ -naturality of 0.

Chapter IV

Examples
1. Elementary Examples

We have seen that the category % of sets admits an obvious structure
of symmetric monoidal closed category, and that % -categories are
ordinary categories, etc.

The category & of pointed sets has as objects sets 4 with a distin-
guished element ag and as morphisms maps f: 4 — B with fag = bo. If
we take for the tensor product the “‘smash’ product 4 x B, consisting
of the cartesian product 4 X B with 4 Xbg U ap X B shrunk to a single
point, Zy becomes a symmetric monoidal category Z. It is closed, (4 B)
being % (A B) with the distinguished element fo: A ~ B where fo4 = by;
the basic functor P: &y — & is the forgetful functor assigning to each
pointed set its underlying set, and I is a set with two points, one of them



Closed Categories 549

distinguished. A Z-category & is a pointed category, i.e. one in which
each &7 (A4 B) has a distinguished element 0 such that f0g = 0; and a
P-functor T : o — Z# is one such that T'0 = 0. Since P is faithful, a
P-natural transformation is just a natural transformation.

The category %o of abelian groups admits a symmetric monoidal
closed structure ¢ that is too familiar to need description; indeed it is
by analogy with the situation here that we use the name ““tensor product”
for ® in any monoidal category. %-categories are just pre-additive
categories, and ¥-functors are additive functors, i.e. those for which
T(t+9=Tf+Tg

In the same way we get the symmetric monoidal closed category
A K of modules over a commutative ring K; & is now ®x, I is K, and
the morphisms f: 4 - B form a K-module (4B). A ring-morphism
L — K induces a symmetric closed functor .# K — .# L, and in partic-
ular we have the forgetful closed functor # K — A Z = %. (In future,
when only symmetric monoidal closed categories are in question, ‘““closed
functor” shall mean ‘“‘symmetric closed functor’” unless the contrary is
stated.) We also have forgetful closed functors ¥ -~ 2 — &; all of
these are normal, so that the composite 4 K —> F —> P — & is the
basic closed functor # K — &.

In our definition of closed category we began with an ordinary
category #"o and a functor V: ¥ ¢ — &. The reader will guess that we
might instead lay down a basic symmetric monoidal closed category #~
in place of &, and then define a closed category over #~, starting with a
W -category ¥ o and a # -functor V: ¥"o — #", and taking all the data
to be # -functors and # -natural transformations. This is the case, and
we shall show in a later paper that to give a symmetric monoidal closed
category ¥~ over # is the same thing as to give a symmetric monoidal
closed category ¥~ and a normal closed functor @: 7~ — #"; then ¥ is

the # -category @, 7, and V is @. Thus .4 K may be considered as a
closed category over %, or for that matter over &; and many other
examples will appear below.

All of the above examples fit into the class of “algebraic categories”
in the sense of LAWVERE [11], also known as ““varieties” or as “equational
categories”. The following considerations are due to Lintown [13]. (Cf.
also FrEYD [8].)

An algebraic category o comes equipped with a faithful forgetful
functor K into %, which has an adjoint F, where F' X is the free algebra
on the set X. Thus K admits a representation ¢: KA —> 4 ¢(I 4) where
I is the free algebra on one generator. Let us call /£y commutative if,
for each n-ary operation ¢ of the algebraic theory (we allow » to be any
cardinal) and each algebra A4, the map ¢: (KA4)* — K A is a morphism

Conference on Categorical Algebra 35
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Am — A in Ay; this means that if s is any m-ary operation of the theory
we have, with an obvious notation, commutativity in the diagram

n

tm t (1.1)

(KAym —————=K 4

It is easy to see that the set o#o(4 B) forms a subalgebra (A4 B) of the
cartesian power algebra BE4, for all A and B, if and only if 2y is com-
mutative.

Supposing henceforth 2"y commutative, define (AB) as above; it is
clearly a functor, and satisfies CCO. Moreover ¢ is now a natural iso-
morphism 7: A — (I A). The set A o(4, (BC)) may be identified with
the set of bimorphisms f: KA X K B — KC, a bimorphism being a map
f for which the two partial maps f(a —) and f(—b) are, for each a € K4
and b € K B, morphisms in £g. It is further clear that there is a bijection
between bimorphisms f: K4 X KB — K C and morphisms g : 4 ¥ B—C,
where 4 ) B is a suitable quotient algebra of F(KA4 X KB) (impose
upon the latter the relations ensuring “bilinearity’’). There results an
isomorphism

w: A4 R®B,C)—>HAo(A(BC))
which is at once seen to be a natural isomorphism of algebras
p:(4A®B,C)—~>(A(BCQC)).

Since K is faithful, we have by Theorem II.5.10 a monoidal closed
structure X" on %o, which is moreover clearly symmetric by the defi-
nition of . Such a o will be called an algebraic closed category. A less
elementary example is given by Mac Lane’s theory of affine modules
([4], Chapter XIT).

Note that it is not true in a general symmetric monoidal closed
category ¥~ that the tensor product is the universal object for bimor-
phisms; this cannot be the case unless V is faithful, and need not be
the case then, as is shown by the example of quasi-topological spaces
in § 2 below.

2. Cartesian Closed Categories

Any category ¥ that admits finite products (including the product
of no objects, i.e. a terminal object ) admits a structure of symmetric
monoidal category ¥” in which 4 ® B is taken to be A X B; for the
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canonical isomorphisms
(AXB)XC~AX(BxC),IxA>~AAXxI~A,AXxB~Bx A

are easily seen to be coherent. Such a symmetric monoidal category is
said to be cartesian. We are of course supposing that for each A, B a
definite product 4 X B with its projections is chosen; different choices
would replace ¥~ by an isomorph.

If a symmetric monoidal category is given, it is easily seen that its
monoidal structure coincides with some cartesian structure if and only
if the following two conditions are satisfied:

(i) I is terminal, so that for each A there is a unique 6: 4 — I;

(i) the morphisms 4 @ Bigsd @14 and A ® BsgiI @ B— B

are the projections of a product.
In particular @ and ¢ are then uniquely determined.

By Theorem IL.5.9, a cartesian monoidal category ¥ is closed (or is
so after replacing ¥ by an isomorph) if and only if the functor — x B
has a coadjoint. Thus for ¥~ to be closed it is necessary that — x B
preserve colimits, which places severe restrictions on ¥7.

In particular, if ¥7¢ has an initial object O, it is a colimit, and so we
must have O X B = 0. If ¥7y is pointed, i.e. if O ~ I, we then have

so that every object is initial. Thus the only cartesian closed categories
that are pointed are those equivalent to the unit category .# with a
single object and a single morphism. The closed category & is cartesian,
but the closed categories &, 4, .# K of § 1, being pointed, are not.

A prime example of a cartesian closed category is the category of
small categories. Let % be the category with small categories A as its
objects and functors 7: 4 — B as its morphisms, and give it the
cartesian monoidal structure €. Then ¥ is closed, for we get an adjunction
7:60(AXB,0)=%o(A(BC)) if we take (BC) to be the functor
category whose objects are functors 7': B — C' and whose morphisms
are natural transformations «: T — S. The basic functor C: %y — &
sends the category A to its set of objects, and I is the category with one
object and one morphism.

One easily verifies that €-categories, ¥-functors, and ¥-natural trans-
formations are precisely hypercategories, hyperfunctors, and hyper-
natural transformations. € itself is a ¥-category, and hence a hyper-
category.

If we ignore considerations of smallness and legitimacy, we can
identify € with €«¢, which is now a closed ‘“category”. The hyper-
category &, is ¥af qua hypercategory, while the symmetric monoidal

35%
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category & (cf. Proposition I11.3.4) is ¥a¢ qua closed category. Then
®aty is the hypercategory 5#y4, while the symmetric monoidal category
%aly is in fact a cartesian closed category which we shall still call #y4.
The basic closed functor C': €z¢ — & induces a hyperfunctor C, : #y4
— %at whose effect is to ignore the hypermorphisms; it is in fact a
normal closed functor (Proposition I11.3.6) and exhibits 57y as a closed
category over €al.

If in a hypercategory the morphisms are regarded as objects and the
hypermorphisms as morphisms there results a category. In this way
we get a hyperfunctor #y — €z, and it is easy to see that it is induced

by the closed functor M = (M, M, M%) : €ast — & defined as follows.
For any category 4, M A is the set of all morphisms f: X — X' in 4.
If g: Y — Y’ is an element of M B then M: MAx MB —> M(A x B)
maps the pair (f, g) to the morphism (f, g): (X, X') - (¥, Y’) in A X B.
MO : % — M I is uniquely defined since I has only one morphism.

Any category can be made into a hypercategory by giving it identities
as its only hypermorphisms. The resulting hyperfunctor €a¢ — #y4 is
induced by a closed functor D: & — €aé, where DX is the discrete

category based on X and 15, DO are suitably defined.

Just as a class has only objects; a category has also morphisms
between objects; and a hypercategory has also hypermorphisms between
morphisms; so one may define an n-category with morphisms of every
type 7,1 <4 < n, a morphism of type ¢ connecting two of type ¢ — 1
(cf. EERESMANN [6]). Then n-categories form a cartesian closed category
¢, and €7 = €"t1l; in particular 60 = &, €1 = Cal, €2 = Hyp.
Forgetting the morphisms of type n gives a normal closed functor
¢n — €71, so that €* may be regarded as a closed category over ¥n-1.
Note that there are many kinds of contravariance for €=-functors; for
%™, besides its duality involution D, inherits involutions from the D’s
of the €* with ¢ < n (cf. Remark II1.2.12).

Another interesting example of a cartesian closed category is that of
simplicial sets (i.e. complete semi-simplicial complexes). This is best
viewed as a functor category, and as such will be treated in a later paper.

If #7p is any category admitting finite products then, although the
cartesian monoidal structure on #”¢ may not be closed, it may be possible
to find a full product-preserving embedding of #7y into a category ¥
whose cartesian monoidal structure is closed. An example of this is
SPANIER’s [16] embedding of the category of topological spaces in that
of quasi-topological spaces, which is a cartesian closed category. The
“compactly defined” hausdorff spaces (sometimes called k-spaces; cf.
Roxarp Brown [§]) form a full closed cartesian subcategory. A detailed
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examination and generalization of Spanier’s construction will appear
elsewhere.

3. Closed Categories with one Object

Let M be an abelian monoid, written multiplicatively, and let ¥
be the category with a single object I and with M for the monoid #7y(I I)
of endomorphisms of I. Define I ® I = I, and f ® g = fg for f,ge M;
then %) is a functor, and gives ¥7¢ the structure of a symmetric mon-
oidal category #”if we take a,l, r, ¢ all to be 1. #"is in fact closed, with
(I1) =1 and (f,g) = fg; it suffices to take 1 for the adjunction .
Then i, L, p all turn out to be 1, and V: %79 — L isgiven by VI =M
(regarded as a set) and (Vf) g = fg.

It is an easy exercise to show that any closed category ¥~ with a
single object must be isomorphic to that constructed above for some M.
If M consists of the identity alone, we obtain the closed category S
with one object and one morphism.

With ¥~ as above let ¢ be the closed category of abelian groups and
consider the (not necessarily symmetric) closed functors

= (¢, 4,09 : 7 > 9.

First, ¢ I is to be some abelian group 4; and to be a functor, ¢ must
map the monoid M into the monoid of endomorphisms of 4; let us

write fa for (¢f)a, WherefeMa.ndaeA Next we have¢ IR —~
—¢(I ® I), that is, ¢ ARA—>A; write ab for ¢(a®b The

naturality of ¢ is expressed by: (fa) (9b) = (fg) (ad), for f,ge M and
a,be A. Finally we have ¢0: Z — ¢ I; write 1 for ¢°1 € 4. The axioms
MF1—MF3 give la = a, al = a, and (ab) ¢ = a(bc). Thus a closed
functor @ : ¥~ — % is just an algebra over the monoid ring Z(M) of M,
and the closed functor @ is symmetric if and only if this algebra is
commutative. One easily verifies that a closed natural transformation
@ — ¥ corresponds to a morphism of Z (M )-algebras.

One can generalize by considering closed functors ¥~ — #”, where #~
is any (not necessarily symmetric monoidal) closed category, and so
obtain what we might call a # -algebra over Z(M). Again we may
suppose that M is itself a ring, so that ¥"y is pre-additive; if we restrict
@ : ¥ — & to be additive, it corresponds to an M-algebra.

In particular, closed functors &/ — % correspond to rings, and closed
functors # — & to monoids.

4. Ordered Sets

Any full subcategory of % that is closed under 4 x B and (4 B) has
a cartesian closed structure consistent with that of . Thus we get the
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closed category of finite sets; and if » is any integer >1 or is co, we get
a still smaller closed category by excluding all sets of cardinal ¢ with
l<e<n.

Taking n = oo gives the closed category of sets with at most one
element, a closed category that is at once cartesian and algebraic. For
our purposes it is more convenient to replace this category by a skeleton,
namely the full subcategory of & determined by the empty set § and a
fixed one-element set % whose only member is also called . This category
admits the cartesian monoidal structure given by % X% = %, AXB =0
otherwise; but to make it closed we must replace it by an isomorph,
which we do by relabelling each of its three morphisms ¢—>@—%—x by
the same symbol, namely *. Then we can take (x §) = @ and (4 B) = %
otherwise, and we get a closed category J (for “tiny”). T': T — & is
given by 70 = ¢ and T % = %, and thanks to our relabelling we have
T (A B) = 9 ¢(AB) as required.

Itisclearthat a 7 -category is a category .7 in which each .27 (4 B)=0
or %, and that a 7 -functor is just a functor. In such a category all dia-
grams commute, and any category in which all diagrams commute be-
comes a J -category when we relabel all its morphisms with the same
symbol x. If we write 4 << B whenever o/ (4AB) = %, we see that a
small 7 -category &7 is the same thing as a pre-ordered set,i.e. a set .o/
with a binary relation A < B satisfying

A<B and B<(C imply 4<C,
4 < A4;
while a J -functor is an order-preserving map.

If A < Band B < A then 4 and B are isomorphic and we write
A ~ B; if A ~ B implies A = B, the pre-order is an order and the
category 7 is skeletal. The passage from a pre-ordered set 7 to the
associated ordered set .7, consisting in factoring out the equivalence
relation A ~ B, corresponds to the passage from the category 7 to a
skeleton </.

A monoidal structure on a given pre-ordered set (i. e. small 7 -category)
¥ o is determined by a function 4 & B and an object I of ¥7y; the fact
that (X is a functor is expressed by the condition

A < B implies 4A®C<BRC and CRA<CRB, 4.1)

while the existence of a,r,! (which are then unique and coherent) is
expressed by

AR®B)RC~ARBRC), ARI~A, IRA~A. 42
This monoidal category has a normalization given by
VA=x if I<4, VA=0 otherwise. (4.3)
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For it to be closed we need a function (BC) satisfying
ARB<C ifandonlyif 4 <(BC); (4.4)

condition (ii) of Theorem I1I.5.5 is automatically satisfied. The existence
of 4, L, p now implies

A~ (I4), (4.5)
(BC) < ((4B)(A0)), (4.6)
(A ® B, C) ~ (A(BC)). 4.7

Clearly a monoidal structure ¥~ on ¥"y induces under passage to the
quotient a monoidal structure ¥ on the skeleton ¥~ o, which is closed
if ¥” is; we have only to replace ~ by = in the above.

As an example let ¥ be both an ordered set and a group, the two
structures being related by

A < B implies AC<<BC and (A< CB. (4.8)

Then if we take A ® B to be AB and I to be 1, (4.1) and (4.2) are
satisfied, and we have a monoidal structure, which is symmetric if the
group is abelian. This monoidal structure is closed, for (4.4) is satisfied
with (BC) = C B-1. Note the special case when ¥7¢ is given the trivial
(i.e. discrete) order.

A further example, suggested by LAWVERE, is the following. Let 7
be a pre-ordered set with finite products; thus there is a greatest element 1
and there is a greatest lower bound 4 A B of any two elements A4, B.
Now suppose that the cartesian monoidal structure ¥~ is closed, and
write B = C instead of (BC). Then (4.4) becomes

AANB < C ifandonlyif 4 < B=20C, 4.9)
while its consequences (4.5)—(4.7) become
A~ 1=4, (4.10)
B=C < ((4=B)=4=0), (4.11)
(ANB)=C ~ A= (B=0). (4.12)

A pre-ordered set with the above properties is called a Brouwerian logic,
the motivation being as follows. Let ¥7 be the set of all sentences in
some given first-order theory or some propositional calculus, classical or
intuitionistic, and interpret “A4 << B” as “A entails B”, “4 A B” as
“A4 and B”, and “4 = B” as “A implies B”.

Assume now that ¥y has a least element 0, and define negation as

A% = 4 =0. (4.13)
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Then (4.9) with C = 0 gives
AAB ~ 0 ifandonlyif A4 < B¥* (4.14)
which gives an alternative definition of B¥*. Since the functor 4 = B
is contravariant in 4, we have
A < B implies B¥ < A%, (4.15)

The Brouwerian logic is said to be classical if it has a least element 0
and if the negation satisfies

A¥H¥ A, (4.16)

Theorem 4.1. (LAWVERE). For a Brouwerian logic ¥ the following
three conditions are equivalent:

(i) #"o s classical.

(ii) The dual 7§ (i.e. the set ¥ o with the order reversed) is also a
Brouwerian logic and the two negations are isomorphic.

(iii) 7The ordered set ¥ o associated to the pre-ordered set ¥ o is a Boolean
algebra.

Proof. (i) implies (ii). By (4.15) and (4.16), * is an order-reversing
involution and so ¥y has least upper bounds given by de Morgan’s law

AV B = (4% ) B¥)*
and ¥'§ is also a Brouwerian logic. The dual of (4.14) shows that the
negation in ¥7F is again *.
(ii) ¢mplies (iii). By (4.14) applied to #°§, which has the same nega-
tion as ¥"g, we have

AV B~1 ifandonlyif B¥<A.
Combining this with (4.14) we have
AANB~0 and AV B~1 ifandonlyif B¥~ 4.
Since the relation on the left between 4 and B is symmetric, we have
B#~ A ifandonlyif A%~ B,

that is, A¥¥* ~ A. From this and (4.15), # is an order-reversing in-
volution, and so we have de Morgan’s law

(A V B)¥ = A% A B#,
From (4.14) with A = B* we get
BAB¥~0.
Because — A B has a coadjoint it commutes with coproduets, giving

(AVCOAB=(AANB)V(CAB).
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Thus we have a Boolean algebra.
(iii) ¢mplies (i): trivial.

Corollary 4.2. In a classical logic we have
B=C ~ B¥%VC.

Proof. In a Boolean algebra, A A B < (' if and only if 4 < B¥ \/ C.

The following is an example of a non-classical Brouwerian logic. Let
X be a topological space, and let ¥7 be the set of open subsets of X
ordered by
A< B ifandonlyif Ao B

where 4 denotes the closure of 4. Then A A Bis 4 U B, and
AANB<C if AuB>C if AuB>C iff A>0— B;

thus (4.9) is satisfied with C — B for B = C. The greatest element 1
is @ and the least element 0 is X; A% being 4 = 0 is X — 4. Thus
A#¥ is the interior of A, and is in general different from A.

Finally let #7 be a linearly ordered set with a greatest element 1.
Then it is a Brouwerian logie, for 4 A B = min(A4, B) and we obtain
(4.9) if we set B = C equal to 1 if B < C and equal to C otherwise.
If ¥ has a least element 0 we find that A% = 0 if 4 +0 while 0% = 1.
We have A¥# = 0 or 1, so that ¥7 is classical if and only if it has
either one or two elements, i.e., if and only if it is either .# or 7.

5. Modules over Algebras

Let A be an algebra over the commutative ring K and let ¥"¢ be the
category of two-sided /-modules. For 4, Be ¥ define 4 X B to be
A ® /4 B, made into a two-sided A-module by using the left A-operation
on A and the right A-operation on B. With A itself as I and the ob-
vious definitions of a,r,l we obtain a monoidal category ¥~ (not in
general symmetric) over .# K.

This monoidal structure is closed, for we have w: ¥ 9(4d ® B, C) =~
=~ ¥ o(4(BC)), where (BC) is the K-module of those K-morphisms
f: B — C satisfying f(bA) = (fb)A for be B and A€ A, made into a
two-sided /A-module by setting

(yfAb=y(f(Ab)), beB, y,Aed.

Then ¢ and p turn out to have their expected values, and L to correspond
to the usual composition. The basic functor V: ¥ — A K takes 4 € ¥y
to the K-module {a € A|Aa = a4 for all 1€ A}.

Now suppose that A is a Hopf algebra over K, with co-algebra
structure given by algebra-morphisms ¢: A - K, n: A > A ® A. Let
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Wy be the category of left A-modules, and for 4, Be# " define 4 ® B
to be A Xk B, which is at first a (4 ® A)-module, and which we make
into a /-module by pull-back along #. Similarly make the K-module K
into a A-module by pull-back along . Then the a, r, I of # K are easily
verified to be A-morphisms, and define on #” a monoidal structure #~
with K as I. #" is symmetric if and only if the co-algebra structure of A
is commutative. Define a normalization W : %#"y — .# K of #~ by setting

WA ={acA|la=(¢A)a forall AeA};

then we have ¢(: WA >~ % (KA4) where (ta)k = ka.
Now the right operation of A on itself gives to 4 & B the structure
of a right A-module, and this in turn gives to #",(A ® B, C) the struc-

ture of a left A-module which we call (BC). We have an isomorphism
of K-modules

Wo((AR B) @44, C) =W o(4,% (A ® B, ()) (5.1)

where (A ® B) ®4 A4 gets its A-module structure from the left A-
module structure of A & B. The right member of (5.1) is #79(4 (BC));
we assert that the left member is isomorphic to # (4 @ B, C). Indeed
the isomorphism

(AQ@kB) @44 =(A®414) Rk B=~4A® B

is an isomorphism of (A & A)-modules, and so a fortiori of A-modules.
Thus, since # ¢ admits transport of structure, #” is closed. (It is in fact
necessary to replace the above (BC) by an isomorph in order to get
actual equality W (BC) =%#"(BC).)

6. Complexes and Graded Modules

Let K be a commutative ring. A complex over K is a diagram

d
4: i An An

in the category of K-modules, satisfying dd = 0; and a morphism of
complexes is a morphism of diagrams, so that we have a category € K.
The category %K of graded K-modules is the full subcategory deter-
mined by the complexes 4 in which d = 0.

In €9 K we define a tensor product 4 & B by

ARB)w=2A4,® By, p+qg=n;
da®b)=da @b+ (—1)Pa®db, acAdp, beBy,.
For I we take the complex, denoted by K, which has K¢y = K and

K, =0 for n +0. With the obvious definitions of a,r,! we obtain a
monoidal category € K over .# K. We easily verify that € K is closed,
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(BC) being given by
(BC)n=]](A4p, Buip), peZ;
@df)pa=d(fpa) + (—1)?fp1da, fe(AdB)u, acdy.
Then p and 7 turn out to have their expected values, and L and M

correspond to the usual composition: for instance the n-component of
M, mapping Z(BC)p ® (A B)g into (A4C)y, takes g ® f to gf, where

ptHg=n

(9H)r = grepfr for g e (BC)y and f e (AB)p. The basic functor €o K —
— M K turns out to be Zg, the functor sending each complex over K
to its K-module of 0-cycles; the morphisms A —> B are clearly the
0-cycles of (AB).

The subcategory %K is closed under A ® B and (4B), and so
inherits from % K the structure of a monoidal closed category ¢ K over
M K ; the functor Zg : €9 K — .# K when restricted to %y K merely sends
each graded K-module A4 to its 0-component.

We now discuss possible symmetries for ¥ K and 4 K. If ¢ is such
a symmetry, consider the object K? € ¥ K satisfying Kf = K, K} =0
if ¢ +p, and let 17 € K be the identity of K. Since

Kr ® K1~ Krti ~ K1 K7,
it follows that

c(1?7®19) =¢(p,q) 12X 17 where &(p,q)ekK.
By naturality it follows that ¢: 4 ® B — B (9 4 must be given by

cla®b)=¢e(p, )b Ra, acA,, beBy.
The conditions MC6, MC7 on ¢ now become

e(p.Qelgp) =1,
e(pg+r)=e(pge(pr).

If we set

k=¢(1,1)
we have

k=1
and

cla®b) =kra(b ®a), acd,, beBy.

For the category ¢ K there are no further conditions, and thus we have
one symmetry for every k € K with k2 = 1; in particular we can take k&
to be 1 or — 1, getting in one case ¢c(a ® b) = b X a and in the other
cla ®b) = (—1)P2(b ® a); if K = Z these are the only symmetries for
@ K. For the category € K however we still must ensure that ¢ commutes
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with the differentiation d. Taking p = ¢ = 1 we have
de(a®b)=kdb ®a)=kdbRa—kbRda;
cd@a®b)=c(da ®b) —cla ®db)=bRda—dbRa.

Since this is to hold for all ¢ and b we must have ¥ = —1; and for
k = — 1 we do in fact have d¢ = ¢ d. Thus % K has a unique symmetry

cl@a®b) = (—1)P2b ® a.

We define three closed functors @, Z, H : € K — 9 K, which are sym-
metric if K is given the symmetry with ¥ = — 1. The functor

D: %K - %K

forgets the differential structure, so that @4 is A considered merely as

a graded module; @ and @0 are the identity; clearly @ is not normal.
The functor Z (resp. H) assigns to each complex 4 its cycles ZA4 (resp.

its homology HA) regarded as an object of ¥ K. Z and 7 are the usual
natural transformations

ZA®ZB>Z(AQB), Z(AB)—>(ZA,ZB),

and similarly for H; Z° and HO are the identity. It is clear that Z is
normal while H is not.

There is a completely different monoidal closed structure 'K on
Yo K given by

(4 ® B)p=A4n @ Bn,
(AB);L = (An, By),
I, = K forall n;

the basic functor 99K — .# K in this case sends A4 to ]_—[An, and is
faithful.

7. Simplicial Complexes

A simplicial complex A4 is a set together with a family of finite sub-
sets of A called the spanning subsets of 4 ; there are two axioms, namely
that every subset of a spanning subset spans, and that every single-point
subset spans. A morphism or simplicial map f: A — B is a map of the
set A4 into the set B such that if T’ spans in 4 then f T spans in B. There
results a category ¢ o; there is a faithful forgetful functor K : #°g — &
sending the simplicial complex A4 to 4 regarded merely as a set, and K
is represented by the simplicial complex I consisting of a single point,
which is also the terminal object of .

We shall describe three different structures of closed category on £,
in each of which K is the basic functor. Two of these are symmetric
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monoidal; the third is an example of a non-monoidal closed category.

For the first, give 27" the cartesian monoidal structure " ; the prod-
uct 4 X B is the simplicial product, i.e. the product of the underlying
sets with T' ¢ A X B spanning if and only if its projections in 4 and in B
both span. This monoidal structure is closed, with (4 B) consisting of all
simplicial maps f: A — B with a subset {f1, ..., fs} spanning if and
only if, for each spanning subset 7' in A, the set f; T U ---U f, T spans
in B.

For the second monoidal structure ¢ on "¢, we define A X’ B so
that it solves the problem of bimorphisms; we take 4 "B to be the
product 4 X B of the underlying sets with, for its spanning sets, those
of the forms

ax8, acd, Sspansin B,

Txb, T spansin A, be B.

Again [ is the identity for ®’, and A" is symmetric and closed; (4 B)’
consists of the simplicial maps f: A — B, with {f1, ..., f»} spanning if
and only if, for each a € 4, the set {f1a,...,fra} spans in B.

The third closed structure ¢’ is not monoidal, and we start by de-
fining (4 B)"' to consist of the simplicial maps f: 4 — B, with {f1,...,fn}
spanning if and only if either n =1 or f{4A U --- U f, A spans in B.
We easily verify conditions (i)—(iii) of Proposition 1.2.11, so that since
K is faithful we have a closed category.

To see that ¢’ is not monoidal, it suffices to show that the functor
(4 —)"" does not preserve products and so cannot have an adjoint. Let s»
denote the complex consisting of #+ 1 points with all subsets spanning,
and let 4 denote the coproduct in £y, i.e., the disjoint union; we write
ps for the p-fold coproduct s 4 --- 4 s?. Then

(289,289 = 4s,,
(20, 81)" =43,

(289,280 X s1)"" = (249, 2s1)"" = 2% 4 840,
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